
HAL Id: tel-01455101
https://theses.hal.science/tel-01455101v1

Submitted on 3 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Business environment-aware management of
service-based business processes

Olfa Bouchaala

To cite this version:
Olfa Bouchaala. Business environment-aware management of service-based business processes. Model-
ing and Simulation. Université Paris Saclay (COmUE); École nationale d’ingénieurs de Sfax (Tunisie),
2016. English. �NNT : 2016SACLL004�. �tel-01455101�

https://theses.hal.science/tel-01455101v1
https://hal.archives-ouvertes.fr






Résumé
G

Les entreprises adoptent de plus en plus les processus métiers pour automa-

tiser leurs activités. Cependant, ces entreprises opèrent dans un environnement

métier très dynamique. Un environnement métier représente tous les facteurs ex-

ternes à l’entreprise qui influencent son fonctionnement tels que les facteurs sociaux,

économiques, etc. En opérant dans un environnement métier dynamique, les poli-

tiques des entreprises changent. Par conséquent leurs processus doivent être gérés

et adaptés de point de vue métier. Ainsi, nous référons dans cette thèse par gestion

sensible aux changements de l’environnement métier pour les processus métiers qui

consiste à configurer ces processus afin de changer leurs comportements en réponse

aux évènements de l’environnement métier.

Il existe trois types d’approche de gestion sensible aux changements de l’environnement

métier : à savoir les approches impératives, déclaratives et hybrides. Les approches

déclaratives sont basées sur les règles. Ainsi, elles sont très flexibles puisqu’on peut

ajouter, supprimer ou modifier une règle lors de l’exécution. Cependant, elles sont

très couteuses en termes de temps à cause de l’inférence de l’environnement métier.

De plus, le processus doit être re-modéliser en règles. En contre partie, les approches

impératives sont très efficaces mais trop rigide puisqu’il faut spécifier les actions de ges-

tion lors de la modélisation des processus. Les approches hybrides, à leur tour, essaient

de concilier entre les approches impératives et déclaratives afin d’augmenter le niveau

concurrentiel des entreprises. Néanmoins, elles nécessitent un effort d’alignement

entre la logique métier et la logique du processus. En outre, nous constatons que

certaines approches ne sont pas faisables en pratique puisqu’ils n’utilisent pas les

standards des processus. De plus, l’efficacité et la flexibilité sont antagonistes.

Pour résoudre ces problèmes, nous fixons les objectifs suivants : (1) concilier

les techniques déclaratives et les techniques impératives en une approche hybride

pour tirer profit de leurs avantages, (2) préserver les standards des processus, et (3)

minimiser l’effort des concepteurs. Nous avons ainsi proposé une nouvelle approche

hybride pour la gestion des processus métiers. Nous avons modélisé la gestion d’un

processus métier par un processus de gestion connecté au premier qui permet de le su-

perviser et le configurer. Ce processus de gestion est généré grâce à une modélisation

sémantique des relations entre les processus métiers, les services et l’environnement

métier. Nous avons également implémenter cette approche et l’évaluer en comparaison

avec les approches existantes de gestion sensible aux changements de l’environnement

métier.

Mots clés: processus métiers, environnement métier, efficacité, flexibilité

i



ii



Abstract
G

Over the last decade, companies have increasingly search for managing their pro-

cesses from technical and business perspectives. Management, in this case, can be of

three types: technical management, business goals-based management, and business

environment-aware management. While a lot of work has been done on technical and

business goals-based management, only few work dealt with business environment-

aware management (BEAM).

However, there is also a great need to manage business processes from a business

environment point of view due to continuous business environment changes. Indeed,

companies struggle to find a balance between adapting their processes and keeping

competitiveness. While the imperative nature of business processes is too rigid to

adapt them at run-time, the declarative one of the purely rule based business processes

is, however, very time consuming. Hybrid approaches in turn try to reconcile between

these approaches aiming to reach the market requirements. Nevertheless, they also

need an effort for aligning business logic and process logic.

Therefore, in this thesis, we focus on business environment-aware management of

service-based business processes (SBPs) aiming at conciliating imperative and declar-

ative approaches. Our challenge is to develop a hybrid management approach that

preserves industry standards to describe and to manage SBPs as well as minimizes

designers’ efforts. Based on a semantic modeling of business environment, business

processes as well as their relationships, and a control dependency analysis of business

processes, we are able to synthesize a controller, itself modeled as a process, con-

nected to the business process to be monitored and configured at run-time. We also

validated the feasibility of our management approach by implementing the frame-

work Business Environment-Aware Management for Service-based Business processes

(BEAM4SBP). Experimentations show the efficiency of our approach with respect to

other BEAM approaches.

Keywords: Service-based business processes - business environment-aware man-

agement - efficiency - flexibility

iii



iv

In loving memory of my father
My role model, my inspiration and my motivation

My mother
No words are sufficient to describe her sacrifices.

Her unconditional support and encouragement impelled me
to set high goals and the confidence to achieve them.

My sister and my brother
Thanks for supporting me all along
and always being by my side.
My husband and my daughter

I give my deepest expression of love and appreciation
for the encouragement that you gave

and the sacrifices you made during this graduate program.

Olfa Bouchaala



v

Acknowledgement

The work presented in this dissertation was carried out in Telecom SudParis,

France and National engineering school of Sfax, Tunisia.

First and foremost, I would like to express my special appreciation and thanks to

my supervisor, Professor Samir TATA at Telecom SudParis. I am really appreciating

all his contributions of time, support, encouragement and invaluable guidance to make

my Ph.D.

I would like to express my deep gratitude to my supervisor, Professor Mohamed

JMAIEL at National Engineering School of Sfax, Tunisia for his generous support

and consistent kindness throughout the course of the work.

I would like to thank all my colleagues in the ReDCAD laboratory at National

school of engineering of Sfax and my colleagues in Simbad team at Telecom SudParis.

Olfa Bouchaala



vi



Table of contents

Introduction 1

Research context and problem statement . . . . . . . . . . . . . . . . . . . . 1

Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

I State of the art 7

1 Facets and management types of service-based business processes 9

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Facets of service-based business processes . . . . . . . . . . . . . . . . 10

1.1.1 Service facets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.2 Business process facets . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Running example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Management of service-based business processes . . . . . . . . . . . . 16

1.3.1 Technical Management . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.2 Business Goals-based Management . . . . . . . . . . . . . . . . 18

1.3.3 Business Environment-Aware Management . . . . . . . . . . . 18

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Business Environment-Aware Management approaches 21

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Types of business environment-aware management approaches . . . . . 22

2.1.1 The imperative approach . . . . . . . . . . . . . . . . . . . . . 22

2.1.2 The declarative approach . . . . . . . . . . . . . . . . . . . . . 22

2.1.3 The hybrid approach . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Review of existing business environment-aware management approaches 25

2.2.1 Rule-based approaches . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Variability-based approaches . . . . . . . . . . . . . . . . . . . 28

2.2.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



viii Table of contents

II Contributions 35

3 A hybrid approach for business environment-aware management of

service-based business processes 37

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Approach overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Semantic modeling of service-based business processes and business

environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Upper management ontology . . . . . . . . . . . . . . . . . . . 40

3.2.2 Semantic modeling of service-based business processes . . . . . 42

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Analysis of the structure of the managed business process 49

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Dependency analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.1 Control dependency analysis . . . . . . . . . . . . . . . . . . . 50

4.1.2 Data dependency analysis . . . . . . . . . . . . . . . . . . . . . 52

4.2 Dependency graph generation . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Control dependency graph generation . . . . . . . . . . . . . . 55

4.2.2 Data dependency graph generation . . . . . . . . . . . . . . . . 59

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Management process generation 63

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Constructing sub-processes based on Environment-Service relationship 64

5.2 Constructing sub-processes based on Service-Service relationship . . . 65

5.3 Connecting sub-processes . . . . . . . . . . . . . . . . . . . . . . . . . 67

conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

III Implementation and evaluation 73

6 Implementation 75

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 The BEAM4SBP framework . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 The Dependency Analysis Tool (DAT) . . . . . . . . . . . . . . . . . . 76

6.2.1 Architecture overview . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.2 DAT’s functionalities . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Integrating BEAM4SBP into Activiti . . . . . . . . . . . . . . . . . . . 79

6.3.1 Activiti Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.2 The integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



Table of contents ix

6.3.3 A scenario of the process configuration . . . . . . . . . . . . . . 82

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Qualitative assessment 85

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.1 The BWW representation theory . . . . . . . . . . . . . . . . . . . . . 85

7.2 The adopted evaluation methodology . . . . . . . . . . . . . . . . . . . 86

7.2.1 Representational analysis . . . . . . . . . . . . . . . . . . . . . 86

7.2.2 Comparison of representational analyses of adopted modeling

techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2.3 Overlap Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8 Quantitative assessment 95

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.1 Preparing the test-bed . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.2 Testing efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.2.1 Testing using the running example . . . . . . . . . . . . . . . . 97

8.2.2 Testing using BPMN patterns . . . . . . . . . . . . . . . . . . . 98

8.3 Studying flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.4 Guidelines for choosing the adequate BEAM approach . . . . . . . . . 102

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Conclusion and future work 105

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



x Table of contents



List of Figures

1.1 Business service/process facets. . . . . . . . . . . . . . . . . . . . . . 11

1.2 A BPEL subprocess for purchase Order process [1]. . . . . . . . . . . 13

1.3 A BPMN Purchase order process. . . . . . . . . . . . . . . . . . . . . 16

1.4 Business service/process management types. . . . . . . . . . . . . . . 19

2.1 Imperative approach for managing purchase order process. . . . . . . 23

2.2 Declarative approach for managing purchase order process. . . . . . . 24

2.3 Hybrid approach for managing purchase order process based on busi-

ness rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 rBPMN meta-model [2]. . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Integration Framework for design and analysis [3]. . . . . . . . . . . . 29

2.6 Architecture for integrating BRs and SWSs [4]. . . . . . . . . . . . . 30

2.7 Relationship between decision services and assistant services [4]. . . . 31

2.8 Definition of a variation point in VxBPEL [5]. . . . . . . . . . . . . . 32

3.1 Purchase order process with its corresponding management process. . 39

3.2 BEAM meta-model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Upper management ontology. . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 The process graph of the purchase order process. . . . . . . . . . . . 46

4.1 Control dependency graph of the purchase order process . . . . . . . . 53

4.2 Def-Use graph of the purchase order process. . . . . . . . . . . . . . . 54

4.3 Data dependency graph. . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Dependency graph of the purchase order process . . . . . . . . . . . . 56

4.5 Post dominators tree of the purchase order process . . . . . . . . . . . 58

5.1 Result of phase 1 and phase 2 . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Result of connecting subprocesses based on the upper management

ontology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1 Business environment-aware management framework for SBPs. . . . . 76

6.2 The generated BPMN file. . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 Dependency Analysis Tool (DAT) Architecture. . . . . . . . . . . . . 78

6.4 Activiti components [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.5 Upload with Business Management. . . . . . . . . . . . . . . . . . . . 82

6.6 Purchase order process. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.7 Deployment of the output file. . . . . . . . . . . . . . . . . . . . . . . . 84

7.1 BWW meta-model [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xi



xii List of Figures

7.2 UMO meta-model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 Completeness score of the assessed BEAM approaches. . . . . . . . . . 94

8.1 The test environment for declarative approaches. . . . . . . . . . . . . 97

8.2 Histograms of BEAM approaches. . . . . . . . . . . . . . . . . . . . . 99

8.3 Histograms of BEAM approaches. . . . . . . . . . . . . . . . . . . . . 100

8.4 Histograms of BEAM approaches with respect to BPMN control flow

patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



List of Tables

2.1 Review of existing business environment aware management approaches 33

7.1 Results of ontological completeness and clarity of the UMO. . . . . . . 90

7.2 Summary of the representation analyses of R2ML, SRML, PRR, SBVR,

SWRL, UMO and BPMN . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3 Comparison of overlap analyses results . . . . . . . . . . . . . . . . . . 93

8.1 Flexibility results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xiii



xiv List of Tables



List of abreviations

AOP Aspect Oriented Programming

BEAM Business Environment Aware Management

BEAM4SBP Business Environment-Aware Management for Service-based Business Processes

BGM Business Goals-based Management

BPEL Business Process Execution Language

BPEL Business Process Execution Language

BPMN Business Process Model and Notation

SBP Service-based Business Processes

BPSS Business Process Specification Schema

BWW Bunge-Wand-Weber

CDG Control Dependency Graph

CEP Complex Event Processing

CFG Control Flow Graph

DAT Dependency Analysis Tool

DDG Data Dependency Graph.

DRL Drools Rule Language

ECA Event-Condition-Action

EPC Event-driven Process Chain

IS Information System

IT Information Technology

KPI Key Performance Indicator

LTL Linear Temporal Logic

MOC Maximum Ontological Completeness

MOO Minimum Ontological Overlap

OMG Object Management Group

PDT Post-Dominators Tree

PPM Process Performance Metric

PRR Production Rule Representation

R2ML REWERSE I1 Rule Markup Language

ReteOO Rete algorithm for Object-Oriented systems

SBVR Semantics of Business Vocabulary and Business Rules

SLA Service Level Agreement

SOA Service Oriented Architecture

SRML Simple Rule Markup Language

SWRL Semantic Web Rule Language

TM Technical Management

xv



xvi List of abreviations

UML Unified Modeling Language

UMO Upper Management Ontology

WfMC Workflow Management Coalition

WSCI Web Service Choreography Interface

WSDL Web Service Definition Language

XPDL XML Process Definition Language



Introduction
G

Research context and problem statement

More and more companies are using business processes in order to automate their

activities [8].

Over the last decade, companies were interested in managing their business pro-

cesses from technical and business perspectives. Indeed, business processes encounter

highly dynamic business and execution environments. Therefore, in order to keep

high level of competitiveness within markets, companies have ever been interested in

managing performance and quality of their processes to face business and technical

changes at runtime [9, 10, 11, 12, 13].

Management of business processes can be performed according to three different

sides: business goals, business environment and execution environment. The business

goals of a process define the targets of a business enterprise such as increasing rev-

enues or reducing outgoings. The execution environment represents the Information

Technology (IT) where the service operates. It includes process engines, applications,

servers, machines, network and their properties, etc. Whereas, the business environ-

ment connotes all factors external to the business enterprise that greatly influence its

functioning. It covers economic, political, natural, social factors (e.g. during a sales

promotion, there is a decrease of clothes prices), etc.

Accordingly, we identify three types of business process management at run-time:

technical management, business goals-based management, and business environment-

aware management (BEAM). The technical management [14] focuses on monitoring

and configuring execution environments of business processes (e.g. process contain-

ers, memory, CPU). Business goals-based management [10, 15, 16] aims at aligning

business goals with IT services. It is often specified using Key Performance Indicator

(e.g. order fulfillment lead time < 3 days). However, BEAM [17, 18, 11, 4] connotes

monitoring and configuring business processes in order to change their behavior in

reaction to business environment events.

We notice that there were great efforts in dealing with technical management of

business processes (e.g. [9], [14] and [19]). There were also great efforts in managing

business processes from a business goal point of view that aims to align business goals

and IT aspects of business processes (e.g.[15], [16], [10], [20] and [21]).

Beside technical management as well as alignment of IT and business goals, we

argue, in this thesis, that there is also a great need to manage business processes

from a business environment point of view (i.e. BEAM). Indeed, enterprises are more

and more within highly competitive and constantly changing business environments.

1



2 Introduction

Thus, they need to focus on adapting their business processes to address competitions

and changes within such environments.

We distinguish two main types of approaches of BEAM: imperative and declar-

ative. On one hand, declarative approaches describe both the business process and

its management based on rules (e.g. Event-Condition-Action rules) (see for exam-

ple [17, 22]). They are flexible, since their managing rules are well adapted to be

added, removed or changed at runtime. Nevertheless, they are time consuming be-

cause of inference over rules that should be made in reaction to each change in a

business environment. In addition, declarative approaches may not adopt standard

notations for business process modeling such as Business Process Model and Notation

(BPMN) [23] or Business Process Execution Language (BPEL) [24]. As a result, the

process designer ought to re-model the process based on rules. On the other hand,

imperative approaches describe both the business process and its management as an

imperative process. It consist in hard coding management actions into the managed

business processes. Consequently, they may preserve standard notation for business

process modeling and may be very efficient, in terms of execution time. Nevertheless,

they are too rigid due to over-specifying processes at design time. It is then difficult

if not impossible to change the management rules at runtime.

Therefore, different approaches (e.g. [18, 5, 11, 4]) put forward hybrid techniques

by separating business logic which defines the company’s policies (described using

Business Rule) and the process logic (described using imperative business process).

This separation needs an effort of business process and business rule integration by

using for example aspect-oriented approaches which later on raises issues on maintain-

ability and transformation [25]. Furthermore, some approaches may need designers

efforts (e.g. [3, 11]) or did not preserve industry process standard language (e.g. [2]).

Hence, declarative approaches may be flexible in general and may not utilize

process standards which make them difficult to use in practice. Furthermore, they

are very time-consuming. Imperative approaches are efficient but they are not flexible

enough to easily address changes in business environments. Hybrid approaches that

separate business process and business rule need efforts of alignment at run-time.

Thesis overview

Objectives

In order to deal with the limitations and issues stated in Section , our objective is to

propose a novel hybrid approach for BEAM that allows: (1) conciliating imperative

and declarative approaches, (2) preserving business process industry standards, and

(3) minimizing process designers efforts.

Conciliating imperative and declarative approaches in an integrated hybrid



Introduction 3

approach allows getting benefit from both of them. This could become necessary in

order to keep a high level of competitiveness by reconciling between the efficiency and

the flexibility of business processes.

Preserving business process industry standards when describing and man-

aging business processes makes the BEAM approach feasible in practical use. Indeed,

companies are more and more using business process standards. Hence, instead of

proposing new languages for managing business processes, there is a great need to

keep using industry standards.

Minimizing process designers efforts makes the BEAM approach easier in

practice for companies. The main goal is to discharge the process designer from

additional tasks such as re-modeling business processes using new language or adding

some configuration information such as variability points.

Approach

To achieve our targeted goals, we propose a novel hybrid approach for business

environment-aware management of service-based business processes. Our proposed

approach consists in modeling, monitoring and configuring actions as a management

process connected to the business process to be managed (that we call managed pro-

cess). Monitoring reads properties of services that compose the business process while

configuration alters values of these properties. Our main challenge is to generate the

management process based essentially on a semantic model describing business envi-

ronment events, business processes, services and their relationships.

As a result, contrary to the imperative approaches, in our approach, the manage-

ment process defines several management paths. Therefore, it can encapsulate differ-

ent management behaviors. The choice of a management path is based on events of the

business environment which are semantically described. Consequently, our approach

presents a degree of flexibility inherited from declarative approaches. In addition,

our approach is proved efficient, compared to declarative approaches, since it models

the management of a business process as a process connected to it. Moreover, our

approach minimizes process designers efforts since it doesn’t define new management

rules but generates automatically the management process based only on semantic

annotations. Third, as opposite to hybrid approaches separating business processes

and business rules, our approach is based on a synergic use of semantic services and

an upper management ontology which facilitates the alignment between the business

environment and business processes.

Contributions

The major contribution of this thesis is an algorithm for generating a manage-

ment process for monitoring and configuring a given managed process. Therefore,



4 Introduction

we investigated, throughout this thesis, how to generate the management process au-

tomatically. The issue is how to compose management operations in order to alter

service properties.

In order to generate this management process, we propose a semantic model.

We also adopted and adapted a dependency analysis strategy in order to explicitly

describe the structure of the managed process.

Hence, the second contribution of this thesis is a semantic model describing

business processes, services, business environment and relationships between them.

It describes essentially an upper management ontology correlated with a domain

ontology. It is used for annotating semantic services and facilitating the management

process generation.

The third contribution consists in adapting a dependency analysis strategy in

order to identify dependency analysis relationships between services or activities of a

managed process written in BPMN. In fact, generally, data and control dependencies

are dimensions solely for programming (or programming-like) langages. However, we

argue that the unstructured and highly parallel real world processes written in BPMN

render them inadequate which requires some adaptations. Thereby, in this thesis,

we adapted and tailored their dependency analysis strategy according to BPMN 2

requirements.

To test the feasibility of the proposed approach, we implemented a business

environment-aware management framework getting as input the managed process

and the corresponding domain ontology, while resulting the adequate management

process.

To evaluate the expressiveness of our approach, its efficiency and flexibility, we

established qualitative and quantitative evaluations.

Outlines

This thesis includes 8 chapters organized in three parts.

The first part includes chapters 1 and 2 which present the state of the art and

the background of our research work. In chapter 1, we discuss briefly the service

and SBPs facets and their different management types. We also present a typical

scenario to motivate and illustrate our approach. In chapter 2, we review the work

related to our thesis. We study different approaches on business environment-aware

management. We introduce their models and analyze their solutions. This analysis

allows us to identify the objectives of our research work.

Chapters 3, 4 and 5 represent the second part which details the contributions

of our thesis. Chapter 3 overviews our approach to manage service-based business

processes against business environment events and represents the proposed semantic

model used for facilitating the management process generation. In chapter 4, we



Introduction 5

present our adopted and adapted dependency analysis strategy for facilitating the

management process generation. It explicits both control and data dependencies for

BPMN business processes. Chapter 5 shows how to generate a management process

based on both the proposed semantic model and the dependency analysis of a managed

process.

In the third part of this thesis (chapters 6, 7 and 8), we present applications and

experiments to validate and evaluate our approach. Indeed, in chapter 6, we present

our BEAM4SBP framework and its integration into the Activiti business process

engine. Both chapters 7 and 8 represent qualitative and quantitative experiments

of our approach compared to the existing business environment-aware management

approaches.

Finally, we summary our work and give an outlook to the future work.



6 Introduction



Part I

State of the art

7





Chapter 1

Facets and management types of

service-based business processes

Introduction

Business processes represent a key concept for automating companies’ activities [8].

The Workflow Management Coalition (WfMC) defines a business process by: ”A

set of one or more linked procedures or activities which collectively realise a business

objective or policy goal, normally within the context of an organisational structure

defining functional roles and relationships” [26]. Service-based business processes

(SBPs) are business processes where some activities are realized by services.

Business processes and their services have two types of facets: business and tech-

nical facets. The business facet represents business goals and business environments

of processes and services, while the technical facet represents the implementations

and the execution environment of services and processes.

SBPs are more and more encountering highly dynamic business and execution

environments. Therefore, companies have ever been interested in managing perfor-

mance and quality of their processes to face business and technical changes at run-time

[9, 10, 11]. In fact, managing processes and services in this case consists in two main

activities: monitoring and configuration.

According to facets of SBPs, we distinguish three types of management: techni-

cal management, business goals-based management and business environment-aware

management. The technical management monitors service/business process imple-

mentation (e.g. QoS) and configures accordingly the execution environment [27].

The business goals-based management monitors business goals and configures tech-

nical facets [10]. However, the business environment-aware management monitors

changes in the business environment and configures technical facets.

In the following sections, we briefly discuss issues on service and business process

facets. Besides, we introduce an overview of their different management sides based

on a running example in order to give general bases for the upcoming chapters.

9



10 Facets and management types of service-based business processes

1.1 Facets of service-based business processes

SBPs, we are dealing with, are used to meet a specific business goal by executing a set

of coordinated activities where some of them are realized through services. Thereby,

before introducing business process facets, we start by depicting service facets.

1.1.1 Service facets

As shown in Figure. 1.1, a service has business facets and technical facets. Business

facets include business goals and a business environment. In addition, technical facets

comprise both an implementation and an execution environment. In the following,

we detail each facet:

• Business goals represent what the service achieves from a business perspective.

They are clear targets that need to be reached to satisfy a business solution.

• Business environment connotes all factors external to the business company

that greatly influence its functioning. It covers economic, social, political, nat-

ural, etc. factors.

• Execution environment represents the Information Technology (IT) where

the service operates. It includes process engines, applications, servers, machines,

network and their properties, etc.

• Service implementation includes technical and operational aspects. The

technical aspects tell ”what the service does” (e.g. interface, operation, input,

output, pre-condition...) as well as ”how to access to it” (e.g. binding, proto-

cols...). Whereas, the operational aspects describe how the service works inter-

nally. They comprise functional and behavioral characteristics. They can be de-

scribed imperatively (e.g. C, JAVA) or delaratively (e.g. rule-based: ECA-rule,

ECAPE-L [17]). The service behavior can change by modifying the behavior of

its operations or by changing their coordination.

1.1.2 Business process facets

Similarly to a service, a business process has business goals and an implementation in-

cluding its operational aspects and technical aspects (Figure. 1.1). It operates within

an execution environment and interacts with a business environment. The business

goals of a process define the targets of a business enterprise such as increasing revenues

or reducing losses. The operational aspects which represents the functional and be-

havioral aspects can also be written in imperative description by service compositions

or processes such that some activities are implemented by services (e.g. BPEL [24],

XPDL [28]) or declarative description based on rules.



Facets of service-based business processes 11

Business
service/process

Technical aspects

Business
environment

Business goals

Implementation

Operational
aspects

Business facets

Technical facets

Execution
environment

Figure 1.1: Business service/process facets.

1.1.2.1 Imperative description of business process operational aspects

The operation aspects of business processes are described using modeling languages.

A first family of modeling languages for business processes consists in imperative

languages (or procedural languages) which focus on how different process activities

are performed (i.e. the execution scenario which represents an ordered sequence of

activities is described in an explicit way). There are many imperative business process

modeling languages. We distinguish high level process languages (e.g. BPMN, UML)

and execution process languages (e.g. XPDL, BPEL).

High level business process languages

• Business Process Model and Notation (BPMN) standard Even though

there is a large variety of modeling techniques, the most well-known is Business

Process Model and Notation (BPMN). It is a standard with a graphical notation

which provides companies with the capability of understanding their internal

business procedures.

The first version of BPMN was developed by BPMI (Business Process Man-



12 Facets and management types of service-based business processes

agement Initiation) in 2004 and then becomes maintained by OMG (Object

Management Group) in 2006. The current version BPMN 2.0 was published in

2011. Its full specification is provided at [29].

• UML Activity diagram UML (Unified Modeling Language) is a standard

proposed by OMG for graphical modeling used in object-oriented development.

It has become a key language in software engineering since it expresses the needs

and requirements using several diagrams (class diagram, activity diagram, etc.).

UML is also used to model business processes using the activity diagram [30].

This latter has been revised to be more suitable for process modeling in UML

2.0.

Business process execution languages

• XML Process Definition Language (XPDL) is proposed by the Work-

flow Management Coalition which consists of many workflow system providers.

XPDL specify business processes by defining activities, transitions, partners and

interactions between them [31]. XPDL is adopted by many workflow engines.

• Business Process Execution Language (BPEL) is an OASIS standard

executable language for specifying actions within business processes with web

services [24]. BPEL messages are typically used to invoke remote services,

orchestrate process execution and manage events and exceptions. Figure 1.2

illustrates a portion of BPEL purchase order process.

1.1.2.2 Declarative description of business process operational aspects

The operational aspects of business processes can be described declaratively such that

a process is considered as a set of states and a set of constraints controlling transitions

between states. In order to present these states and constraints, declarative languages

use different paradigms.

Case-handling paradigm The case-handling is a new paradigm proposed by Van

der Aalst et al. in [32] in order to model business processes flexibly. Contrary to

the imperative modeling using predefined process control structures to identify what

should be done, case handling focuses on what can be done to achieve a business

goal. It is strongly based on data as the typical product of these processes (called

cases) allowing designers to Execute, Skip or Redo process activities according to cases

availability. The case- handling paradigm was adopted in the workflow management

system called FLOWer [33].



Facets of service-based business processes 13

Figure 1.2: A BPEL subprocess for purchase Order process [1].

Linear Temproral Logic (LTL) paradigm The Linear Tempral Logic can be

used to model business processes declaratively. The LTL is a modal temporal logic

with modalities referring to time. i.e. A proposition could be false at one point of

time, then becomes true later on. This paradigm was used in the ConDec language

propsed by Pesic et al. [34].

Deontic Logic paradigm The deontic logic can also be used to model business

process in declarative manner. This logic formalizes the possible variants of business

activity execution: the obligation, prohibition and permission. This will take into

account obligations and permissions in business interactions. The deontic logic has

been used in the PENELOPE language proposed by Goedertier et al. [35].



14 Facets and management types of service-based business processes

Event-Driven process paradigm The Event-Driven process paradigm is pro-

posed to model and manage processes based on events by using the complex Event

processing (CEP) formalism. This latter identifies the situations of a business pro-

cess by selecting or aggregating events to launch the execution of a specific activity.

This paradigm is used in the EPC (Event-driven Process Chain) method to specify

business processes [36].

Rule-based modeling paradigm The rule-based modeling paradigm proposes

to model the operational aspects by a set of rules using declarative languages. The

Object Management Group (OMG) defines a business rule as ”a statement that defines

or constrains some aspect of the business. It is intended to assert business structure or

to control or influence the behavior of the business. The business rules which concern

the project are atomic that is, they cannot be broken down further.”[37].

According to [38], we distinguish four categories of business rules: integrity, deriva-

tion, reaction and production.

• Integrity rules describe constraints. They consist of a constraint modality

and a constraint assertion, which is a sentence in some logical language [38].

• Derivation rules are also known as deduction rules. They express conditions

that result in conclusions. These rules define the validity of facts and can be

used to infer new facts based on known facts [39].

• Reaction rules are also known as Event-Condition-Action (ECA) rules, alternative-

action rules, or post-conditions. They specify the event which occurs and ex-

press a specific situation. Then, the condition is evaluated and a subsequent of

actions will react.

• Production rules consist of a condition and a produced action. They do not

contain an event as the reaction rules.

There exist various rule modeling languages. Each one has its own expressive

power. In the following, we shortly present these rule languages:

• REWERSE I1 Rule Markup Language (R2ML) The REWERSE I1 Rule

Markup Language is developed by REWERSE Working Group I1 in 2007. It is a

comprehensive and user-friendly XML rule format that allows: (i) interchanging

rules between different systems and tools, (ii) enriching ontologies by rules, (iii)

connecting rule system with R2ML-based tools for visualization, verbalization,

verification and validation [40]. R2ML can support the four categories of rules

which are integrity, derivation, reaction and production.



Running example 15

• Simple Rule Markup Language (SRML) The Simple Rule Markup Lan-

guage was announced by ILOG in 2001. It describes a generic rule language

consisting of a subset of language constructs common to the popular forward-

chaining rule engines [41]. It does not use vendor-specific proprietary languages;

therefore, rules can easily be translated to any other rule engine language. This

makes it useful as an Interlingua for rule exchange between Java rule engines

[41].

• Production Rule Representation (PRR) Production Rule Representation

is an OMG standard published in 2002. As stated in [42], the goals of PRR are

: (i) accelerating adoption of production rule components in everyday software

systems, (ii) improving the modeling of production rules, especially with respect

to UML, (iii) allowing interoperability across different vendors providing pro-

duction rule implementations. The PRR supports production rules in a forward

chaining inference engine.

• Semantics of Business Vocabulary and Business Rules (SBVR) Se-

mantics of Business Vocabulary and Business Rules [43] is an adopted standard

of the OMG. It provides a formal representation to business rules written in

plain English or any other natural language. The SBVR specification is appli-

cable to the domain of business vocabularies and business rules of all kinds of

business activities in all kinds of organizations.

• Semantic Web Rule Language (SWRL) The Semantic Web Rule Language

is a product of the World Wide Web Consortium (W3C). The SWRL supports

the integrity rule. However, it is not yet standardized [44].

1.2 Running example

Service and Business process facets are illustrated here by considering a representative

example of ClothStore (fictitious name), a clothing store holding an e-commerce site.

ClothStore offers products to its customers, interacts with two suppliers and a shipper

for processing orders. It holds certain products in stock, and orders others from

suppliers in case of product lack.

The business process of the online shopping purchase order processing related

to ClothStore is illustrated in the BPMN diagram shown in Fig. 1.3. This process

behaves as follows: The customer sends a purchase order request with details about

the required products and the needed quantity. Upon receipt of customer order,

the seller checks product availability. If some of the products are not in stock, the

alternative branch ”ordering from suppliers” is executed. When all products are

available, the choice of a shipper and the calculation of the initial price of the order



16 Facets and management types of service-based business processes

are launched. Afterwards, the shipping price and the retouch price are computed

simultaneously. The total price is then computed in order to send invoice and deliver

the products to the customer. Finally, a notification is received by the shipper assuring

that the order is already delivered.

Figure 1.3: A BPMN Purchase order process.

The BPMN process shown in Fig. 1.3 represents an imperative business process

implementation of the business process described above. It can be described declar-

atively based for instance on rules. For example, the activity ”Check availability” can

be described using an ECA-rule:

ON order Receipt

IF the order is valid

Do check availability

This latter business process of the ClothStore e-commerce site is running on top

of three data center to store products and customers information. These data center

represent the business process execution environment.

ClothStore fixes its revenues to be above 100.000 e per three months.In order

to reach this busines goal, the ClothStore business process should be adapted in

response to business environment changes. For example, during festive seasons,

there is an increase in the demand for new clothes. Consequently, there is a need for

much more servers and machines to execute the huge number of customers’ requests.

Based on the service and business process facets illustrated above, we present in

Section 1.3, the different types of management of SBPs.

1.3 Management of service-based business processes

Today, the maturation of Business Process Management (BPM) has enabled the link-

age of business processes to IT services. Thereby, the management of a business

process is highly relying on the management of its services.

As stated earlier, the management step consists of two main activities: monitoring

and configuration. The monitoring aims at capturing and measuring required informa-

tion. Subsequently, the configuration acts by setting or modifying some characteristics



Management of service-based business processes 17

based on the monitored information. There are four source facets to retrieve informa-

tion and two target facets to act on (Figure 1.4). In fact, information can be retrieved

from the execution environment, the business environment, business goals and opera-

tional aspects. In case of deficiency or inadequacy, the execution environment or the

operational aspects should be reconfigured. Indeed, the configuration of a business

process includes: substituting a service by another one, configuring a service behavior

or configuring the process control flow (e.g. an operator of the service composition).

According to the business service/process facets that are involved in the management,

we distinguish three types of service-based business process management at run-time

(Figure 1.4): technical management, business goals-based management and business

environement-aware management.

In the following subsections, we detail these management types.

1.3.1 Technical Management

The Technical Management (TM) of SBPs aims at monitoring technical facets and

configuring accordingly the execution environment in case of quality degradation (Fig-

ure 1.4). As stated in Section 1.1, the operational aspects of SBPs are based on Service

Oriented Architecture (SOA) [45]. Since services constitute among others the build-

ing blocks of a SBP, the global QoS of a business process depends on the QoS of its

services as well as their coordination. Indeed, TM is usually engaged in measuring

non-functional (e.g. QoS related) properties [19] (Figure 1.4). For each service in

the example introduced in Section 1.2, we can compute its response time, availability

rate, etc. These characteristics are considered in the Service Level Agreement (SLA).

In case of SLA violation, the execution environment should be reconfigured. For

instance, the operational aspects of a process can be configured by substituting the

low quality service by a new one having the same functionality [9]. The goal is

then to select the best service available at run-time, taking into consideration process

constraints and the execution context [46]. Thereby, the adaptation in this case relies

on service selection and binding.

When monitoring the process load, in case of degradation, IT managers can adopt

an elasticity solution by reconfiguring virtual machines. In [47], Duong et al. propose

to add or remove virtual machines on demand. In [48, 49], the authors propose

to compute the optimal number of virtual machines to be deployed according to

variations of demands. Authors in [50, 51] use duplication/consolidation mechanisms

to provide elasticity of dynamic service deployment. Indeed, if the availability of a

service is of low quality, the execution environment can deploy a new service replicate.

While, the consolidation decision aims at removing an unnecessary copy of a service

in order to meet its workload decrease.

Besides, in order to provide better quality, process instances can be migrated



18 Facets and management types of service-based business processes

from one site to another. Indeed, process instance migration consists in transferring a

running process instance to another engine in order to continue process execution at

another site if any issue affects the initial hosting site. This may help the resolution

of execution problems when mobile devices change local contexts or when process

resource requirements increase dynamically [52].

1.3.2 Business Goals-based Management

Business Goals-based Management (BGM) of SBPs is the configuration of their tech-

nical facets based on the monitoring of business goal metrics (Figure 1.4). Over the

last decade, companies have increasingly search for managing their processes from a

business perspective. In fact, a major concern for companies is to ensure the effi-

ciency and performance of their business processes relatively to business goals. More

precisely, it consists in aligning business goals with IT infrastructure and service/

business process quality [10, 20, 21].

For example, the business goal of a shipping service can be: ”the number of

undelivered orders may not exceed 2 per month”. To meet this goal based on the

business goal metric ”undelivered orders ≤ 2”, the availability of the shipping ser-

vice should be 99%. Since 2003, the term ”business oriented management” has been

used to name aligning business goals with IT services [20]. Alternative used terms

include: ”Business-Driven IT management [10], ”Business centric monitoring” [53],

business/IT alignment, etc. In [54], authors present the challenge of business/IT

alignment by presenting weaknesses of Service Level Agreement (SLA) in captur-

ing the different service business needs. Thereby, Bratanis et al. [21] introduce the

Business Level Agreement (BLA) which is a contract combining non-functional and

functional characteristics of a service.

At business process level, process quality goals are specified in terms of Key Per-

formance Indicator (KPI) [15, 16]. The used KPIs are key metrics (with technical

or business meaning) with target values which are to be achieved in certain analysis

period (e.g., order fulfillment lead time < 3 days). They are monitored using Business

Activity Monitoring (BAM). In [55, 56, 57], authors propose a method to adapt pro-

cesses by identifying influential factors of business process performance. Since KPIs

potentially depend on numerous lower level PPMs (Process performnace metrics) [16]

and QoS metrics, the adaptation action ”substitute a service with another service”

may be realized.

1.3.3 Business Environment-Aware Management

Business Environment-Aware Management (BEAM) of SBPs is the configuration of

their technical facets based on the monitoring of business environment metrics (Fig-

ure 1.4). In fact, the competitiveness of business enterprises is deeply related to



Management of service-based business processes 19

adapting their processes against business environment changes [17, 18, 11, 4]. The

business environment is dynamic in nature. It keeps on changing and differs from

place to place according to social, political, technological... factors.

These changes have a direct impact on the service and process behaviors. Sub-

sequently, it affects the operational aspects (Figure 1.4). For example, during sales

promotions, there is a contestable and non-constant decrease of prices. In that case,

the behavior of the service ”calculate initial price” will change frequently since the dis-

count rate can be modified constantly. Then, the purchase order process changes its

behavior accordingly. Besides, during a festive season the execution path can change

when choosing suppliers in response to the higher demand of clothes. Configurable

services or business rules may be used to take into account these changes.

Business
service/process

Technical aspects

Business
environment

Business goals

Implementation

Operational
aspects

Business facets

Technical facets

BGMBEAM

TM

Execution
environment

Figure 1.4: Business service/process management types.

Conclusion

In this chapter, we identified three types of business process management namely,

technical management, business goals-based management and business environment-

aware management. However, we notice that there was a great effort in adopting



20 Facets and management types of service-based business processes

technical management. There were also efforts in managing SBPs from a business

point of view. Nevertheless, this type of management is effectively a business goals-

based management, often called business/IT alignment.

Beside technical management and alignment of IT and business goals, we argue

that there is also a great need to manage business processes from a business envi-

ronment point of view (i.e. BEAM). Indeed, enterprises are more and more within

highly competitive and constantly changing business environments. Thus, they need

to manage their BPs to address competitions and changes within business environ-

ments.

In this thesis, we focus on BEAM of SBPs. More details about existing approaches

of BEAM of SBPs are given in the following chapter.



Chapter 2

Business Environment-Aware

Management approaches

Introduction

In this thesis, we are interested in BEAM of SBPs. As we stated in Section 1.3, the

management of SBPs consists in two main activities: monitoring and configuration.

The monitoring captures business events sent by the business environment, while the

configuration alters operational aspects accordingly.

The operational aspects of business processes can be described by imperative pro-

cesses (e.g. BPMN, BPEL) (see Section 1.1.2.1). They can also be described declar-

atively based on case-handling paradigm, Linear Temporal Logic paradigm, deontic

logic paradigm, event-driven process paradigm or rule-based modeling paradigm (see

Section 1.1.2.2). In this thesis, we focus on declarative descriptions based on rules.

The configuration of a business process can also be described using rules, im-

perative processes or both of them. The management of a business process (called

later-on managed process) can be accordingly defined by three different approaches:

declarative, imperative or hybrid.

The imperative approach describes both the managed process and its configuration

based on an imperative process. Regarding the declarative approach, the managed

process and its configuration are described based on rules. As for hybrid approaches,

they integrate imperative and declarative approaches. Most hybrid approaches in-

tegrate imperative business processes and business rules [11]. The managed process

and its configuration are respectively described based on an imperative process and

rules.

In the following sections, we present these management approaches illustrated

by the running example. Besides, we review existing businesss environment-aware

management approaches.

21



22 Business Environment-Aware Management approaches

2.1 Types of business environment-aware management

approaches

2.1.1 The imperative approach

In the imperative approach, the operational aspects (Figure 1.1) of the managed pro-

cess are described based on an imperative process (Section 1.1.2). The configuration

is described as an imperative process, too. Indeed, it consists in adding a set of pro-

cess fragments to the managed process. Hence, all the configurations are modeled

within the managed process as process fragments described imperatively.

In imperative approaches, managed processes and their configuration are described

using process languages such as BPEL, XPDL and BPMN.

Coming back to the running example, the configurations of the purchase order

process are shown in bold in Figure 2.1. The operational aspects of the managed

process represent the rest of activities. Indeed, in case of sales promotions, the con-

figuration represents the fragment consisting of five activities computing the discount

rate delimited with two gateways: Event based gateway and exclusive gateway.

2.1.2 The declarative approach

In declarative approaches, the operational aspects of the managed process are de-

scribed declaratively (rule-based). Alike, its configuration is described declaratively

based on rules. In fact, the configuration consists in adding, modifying or deleting

a rule in case of business environment change. The declarative approaches are then

purely based on rules.

In declarative approaches configuration may be described using many rule mod-

eling languages such as Semantics of Business Vocabulary and Business Rules [43],

Simple Rule Markup Language [41], Rewerse l1 Rule Markup Language [40], ECAPE-

L [58], etc.

Resuming with the running example reported in Section 1.2, Figure 2.2 shows

the activities of the purchase order process modeled based on rules according to the

ECAPE model of the ECAPE-L rule language [58]. For example, Rule 1 expresses

the policy of receiving an order. This rule is activated by ”begin process” event

that represents customer order. The execution of ”receive order” activity triggers

”order received” event. The latter will activate Rule 2 that expresses the policy of

checking availability (Figure 2.2). Hence, the activities ”Receive order” and ”check

availability” of the purchase order process are implemented by Rule 1 and Rule 2.

During a sales promotion, a discount rule (Rule 13) is added and the relationships

with the existing rules are established (Figure 2.2).



Types of business environment-aware management approaches 23

C
ho

o
se

sh
ip

p
er

C
om

pu
te

in
it

ia
l p

ri
ce

R
ec

ei
ve

o
rd

er
C

he
ck

av
ai

la
b

ili
ty

C
om

pu
te

to
ta

l
p

ri
ce

C
o

m
p

u
te

re
to

u
ch

p
ri

ce

Se
n

d
o

rd
er

 a
n

d
in

vo
ic

e

R
ec

ei
ve

d
el

iv
er

y
n

ot
if

ic
at

io
n

A
ll 

a
va

ila
bl

e?

ye
s

C
ho

o
se

su
p

p
lie

r

N
o

R
ec

ei
ve

p
ro

du
ct

s

C
on

ta
ct

su
p

p
lie

r
1

C
on

ta
ct

su
p

pl
ie

r
2

C
o

m
p

u
te

D
is

co
u

n
t

20
%

C
o

m
p

u
te

D
is

co
un

t
40

%

C
o

m
p

u
te

D
is

co
un

t
50

%

U
p

da
te

cr
it

er
ia

 li
st

:
d

is
ta

nc
e

U
p

da
te

cr
it

er
ia

 li
st

:
su

p
p

le
m

en
t

U
p

da
te

cr
it

er
ia

 li
st

:
q

u
an

ti
ty

C
o

m
p

u
te

re
to

u
ch

p
ri

ce
=0

D
is

co
un

t=
0

C
o

m
p

u
te

D
is

co
u

n
t

0
%

D
is

co
un

t>
0

C
o

m
p

u
te

sh
ip

p
in

g
p

ri
ce

C
o

m
p

u
te

sh
ip

p
in

g
p

ri
ce

=0
D

is
co

un
t=

0

D
is

co
un

t>
0

C
o

m
p

u
te

D
is

co
u

n
t

30
%

F
ig

u
re

2.
1:

Im
p

er
at

iv
e

ap
p

ro
ac

h
fo

r
m

an
ag

in
g

p
u

rc
h

as
e

or
d

er
p

ro
ce

ss
.



24 Business Environment-Aware Management approaches

R
u
le
1

O
N IF D
O

R
ai
se

B
eg

in
 p

ro
ce

ss

Tr
u

e

R
ec

ei
ve

 o
rd

er

O
rd

er
 r

ec
ei

ve
d

R
u
le
2

O
N IF D
O

R
ai
se

O
rd

er
 r

ec
ei

pt

Th
e 

or
de

r 
is

 v
al

id

C
he

ck
 a

va
la

b
ili

ty

C
he

ck
ed

 a
va

ila
bi

lit
y

R
u
le
3

O
N IF D
O

R
ai
se

C
he

ck
e

d
 a

va
ila

bi
lit

y

Su
ff

ic
ie

n
t 

q
u

an
ti

ty

A
va

ila
bi

lit
y 

is
 t

ru
e

Pr
od

u
ct

s
ar

e 
av

ai
la

bl
e

R
u
le
4

O
N IF D
O

R
ai
se

C
he

ck
e

d
 a

va
ila

bi
lit

y
an

d
/o

r 
cr

it
er

ia
 li

st
u

pd
at

ed

In
su

ff
ic

ie
n

t 
q

u
an

ti
ty

C
ho

o
se

 s
up

p
lie

r

Su
pp

lie
r 

is
 s

el
ec

te
d

R
u
le
5

O
N IF D
O

R
ai
se

Su
pp

lie
r 

is
 s

el
ec

te
d

Su
p

p
lie

r 
is

 c
o

nt
ac

te
d

R
ec

ei
ve

 p
ro

d
u

ct
s

Pr
od

u
ct

s 
ar

e
av

ai
la

b
le

R
u
le
6

O
N IF D
O

R
ai
se

Pr
od

u
ct

s 
ar

e 
av

ai
la

b
le

an
d

/o
r 

D
is

co
u

nt
 R

at
e

co
m

p
ut

ed
Tr

u
e

C
om

pu
te

 in
it

ia
l

p
ri

ce

In
it

ia
l p

ri
ce

co
m

p
ut

ed

R
u
le
7

O
N IF D
O

R
ai
se

Pr
od

u
ct

s 
ar

e
av

ai
la

b
le

Tr
u

e

C
ho

o
se

 s
hi

p
pe

r

Sh
ip

pe
r 

is
 s

el
ec

te
d

R
u
le
10

O
N IF D
O

R
ai
se

Sh
ip

pi
ng

 p
ri

ce
 a

nd
re

to
u

ch
 p

ri
ce

co
m

p
ut

ed
C

us
to

m
er

 a
gr

ee
s 

th
e

sh
ip

p
in

g 
da

te
C

om
pu

te
 t

h
e 

to
ta

l
p

ri
ce

To
ta

l p
ri

ce
co

m
p

ut
ed

R
u
le
9

O
N IF D
O

R
ai
se

In
it

ia
l p

ri
ce

 c
o

m
p

ut
ed

an
d

/o
r 

d
is

co
un

t 
R

at
e

co
m

p
ut

ed

Pr
od

u
ct

 n
ee

d
 r

et
o

uc
h

C
om

pu
te

 R
et

o
u

ch
p

ri
ce

R
et

o
uc

h
 p

ri
ce

co
m

p
ut

ed

R
u
le
11

O
N IF D
O

R
ai
se

To
ta

l p
ri

ce
co

m
p

u
te

d

Tr
u

e

Se
n

d 
or

de
r 

an
d

in
vo

ic
e

O
rd

er
 is

 d
el

iv
er

ed

R
u
le
13

O
N IF D
O

R
ai
se

Sa
le

s 
pr

om
ot

io
n

C
om

pu
te

 d
is

co
un

t
ra

te

D
is

co
u

n
t 

R
at

e
co

m
p

ut
ed

R
u
le
12

O
N IF D
O

R
ai
se

Fe
st

iv
e 

se
as

o
n

U
p

d
at

e 
cr

it
er

ia
lis

t

C
ri

te
ri

a 
lis

t 
u

p
d

at
ed

R
u
le
8

O
N IF D
O

R
ai
se

In
it

ia
l p

ri
ce

 c
o

m
p

ut
ed

an
d

/o
r 

d
is

co
un

t 
R

at
e

co
m

p
ut

ed

Sh
ip

pe
r 

is
 s

el
ec

te
d

C
om

pu
te

 s
hi

pp
in

g
p

ri
ce

Sh
ip

p
in

g 
p

ri
ce

co
m

p
ut

ed

Tr
u

e

Tr
u

e

F
ig

u
re

2.
2:

D
ec

la
ra

ti
ve

ap
p

ro
ac

h
fo

r
m

an
ag

in
g

p
u

rc
h

as
e

or
d

er
p

ro
ce

ss
.



Review of existing business environment-aware management approaches 25

2.1.3 The hybrid approach

Generally speaking, hybrid approaches combine declarative and imperative approaches.

Indeed, the operational aspects are described as an imperative process where some

activities are described declaratively based on rules.

The configuration of the managed process is then based on rules that are integrated

in some activities (called business rule tasks). Hence, the configuration consists in

adding, modifying or deleting business rules in business rule tasks.

The managed process is then described using for example BPMN 2.0, which in-

clude business rule task.

Figure 2.3 shows the purchase order process written in BPMN 2.0 such that certain

activities are described declaratively based on business rule tasks. Indeed, instead

of implementing five activities for computing the discount rate in the imperative

approach or adding a discount rule in the declarative approach, the activity ”compute

initial price” is performed by business rule task invoking a discount rule (Rule 2).

2.2 Review of existing business environment-aware man-

agement approaches

As today’s business environments keeps changing, there is a need for business pro-

cesses to be adaptive yet competitive. Unfortunately, the static nature of business

process definitions (imperative description) makes it impossible to configures them

at run-time and the redeployment of a modified process is required. On the other

hand, all the rule based approaches apply pure rule based methodology (declarative

approches) which can be time-consuming.

Therefore, different approaches try to add a dimension of flexibility while keeping

efficiency. This is done by using rules, variability, etc.

2.2.1 Rule-based approaches

Different approaches [18, 5, 11, 4] try to integrate these two techniques in a joint

approach by separating business logic (described by Business rules) and process logic

(described by imperative BP). This separation needs in turn an effort of BP and BR

integration.

Charfi et al. [25] focus on Aspect Oriented Programming(AOP) in order to inte-

grate Business rules and the process logic at run-time. Indeed, the business rules

are proposed to be implemented in an aspect-oriented extension of BPEL called

AO4BPEL. AO4BPEL is used to weave the adaptation aspects into the process at

run-time. Although they preserve BP standards, the weaving phase can strongly

limit the process efficiency at run-time since it can raise issues on maintainability



26 Business Environment-Aware Management approaches

R
ec

ei
ve

o
rd

er
C

h
ec

k
av

ai
la

b
ili

ty
A

ll
 a

v
ai

la
b

le
?

N
o

C
h

o
o

se
su

p
p

li
er

C
o

n
ta

ct
su

p
p

li
er

1

C
o

n
ta

ct
su

p
p

li
er

2

R
ec

ei
ve

p
ro

d
u

ct
s

ye
s

C
o

m
p

u
te

in
it

ia
l p

ri
ce

C
o

m
p

u
te

re
to

u
ch

 p
ri

ce

C
h

o
o

se
su

p
p

li
er

C
o

m
p

u
te

sh
ip

p
in

g 
p

ri
ce

C
o

m
p

u
te

to
ta

l p
ri

ce
Se

n
d

 o
rd

e
r

an
d

 in
vo

ic
e

R
ec

ei
ve

d
el

iv
e

ry
n

o
ti

fi
ca

ti
o

n

R
u

le
2

O
N IF D
O

R
ai

se

Sa
le

s 
pr

om
ot

io
n

C
om

pu
te

 d
is

co
un

t
ra

te

D
is

co
u

n
t 

R
at

e
co

m
p

ut
ed

R
u

le
3

O
N IF D
O

R
ai

se

D
is

co
u

n
t 

R
at

e
co

m
p

ut
ed

C
om

pu
te

 r
et

o
u

ch
p

ri
ce

R
et

o
uc

h
 p

ri
ce

co
m

p
ut

ed

Tr
u

e

R
u

le
4

O
N IF D
O

R
ai

se

D
is

co
u

n
t 

R
at

e
co

m
p

ut
ed

C
om

pu
te

 s
h

ip
p

in
g

p
ri

ce

Sh
ip

pi
ng

 p
ri

ce
co

m
p

ut
ed

Tr
u

e

R
u

le
1

O
N IF D
O

R
ai

se

Fe
st

iv
e 

Se
as

o
n

U
p

d
at

e 
Cr

it
er

ia
lis

t

C
ri

te
ri

a 
lis

t 
u

p
da

te
d

Tr
u

e
Tr

u
e

F
ig

u
re

2.
3:

H
y
b

ri
d

ap
p

ro
ac

h
fo

r
m

an
ag

in
g

p
u

rc
h

as
e

or
d

er
p

ro
ce

ss
b

as
ed

o
n

b
u

si
n

es
s

ru
le

s.



Review of existing business environment-aware management approaches 27

and transformation. The business rules actions and results are translated to business

process constructs and to so-called ”point-cuts” (statements to relate the aspect to

specific points in the code such as every assign activity). This requires a modified

BPEL engine to be able to cope with the additional aspects.

Ouyang et al. [11] introduce an ECA-based control-rule formalism to modularize

the monolithic BPEL process structure. Only one classification of rules is defined

that handle the control flow part of the composition linking activities together. In

this work, the designer should also take into account the defined ECA-control rule

and specifies his process accordingly.

Authors in [2], propose a hybrid solution presenting a modeling language that

integrates both rule- and process-oriented modeling perspectives. As shown in Fig-

ure 2.4, the language (Rule-based BPMN –rBPMN) is based on the integration of the

Business Process Modeling Notation with the REWERSE Rule Markup Language

(R2ML). The integration is based on the RuleGateway. This element is an extension

of the BPMN Gateway class and refers to one or more R2ML Rules. Thus, an R2ML

Rule can be placed into a process as a Gateway. Each rBPMN rule gateway might be

associated with more than one rule. In [59], authors use the rule patterns of this new

language to create flexible processes: control flow decision pattern, data constraints

and dynamic business process composition. Although this approach provides a di-

mension of flexibility and efficiency, proposing a new language remains a handicap for

companies that use existing business process standards.

In [3], Cheng et al. provided a bottom-up approach to integrate process models

and business rules models in both design and analysis stages (Figure. 2.5). This

approach is specific to integrate BPMN process models with SBVR rules models. It

used XPDL to translate the BPMN diagrams to text representation and then used

these tags to map the business rules models, and finally producing a new model that

includes both the process and the rules. The approach did not invent a new language.

It made use of XPDL and its ability to translate BPMN diagrams into XML tags. The

main contribution is providing a list of the main components of the process language

(BPMN) and the rules language (SBVR), and using XPDL to map these components

to each other. Nevertheless, the mapping phase might be time-consuming at run-time.

In [60], Zoet et al. aligns business process management with business rules. In-

deed, they propose business rule categorization that is aligned to the business process

management lifecycle. BRM formulates constraints based on descriptions and facts

while BPM addresses business operations from an activity approach. In this paper,

authors propose to synchronize them based on rule categorization. They distinguish

between: structural sequencing rule, Actor Inclusion rule, Outcome control rule.

Gong and Janssen introduce in [4] a combination between semantic services and

business rules in order to manage business processes at run-time. They create business

processes dynamically (Figure 2.7). Rules are mapped into decision services which are



28 Business Environment-Aware Management approaches

Figure 2.4: rBPMN meta-model [2].

orchestrated with the managed business process. This approach increases the flexi-

bility at run-time while the process efficiency decreases since services are composed

on the fly based on a domain ontology.

2.2.2 Variability-based approaches

Rule-based management/adaptation is not the only mechanism to provide flexibility

in a process-aware information system.

The service based business process can also be adapted by explicit variability

modeling [46].

Variability represents the key concepts of product-line technology which can be

used to make service-oriented applications more flexible. It allows among others

runtime flexibility.



Review of existing business environment-aware management approaches 29

Figure 2.5: Integration Framework for design and analysis [3].

Authors in [61] distinguish two categories of variability in service based systems:

variability inside a service and variability in the service based architecture (i.e. the

composition of services / service based business processes).

The first category focuses on the variability inside a service with services as re-

configurable units that can be adapted for different contexts. Going into more details

with variability inside a service, Galster et al. identify two main types: (1) variability

in parameters required by a service and (2) variability in parameter values. The first

type consists in varying the type of data sent at service invocation. For example, data

sent to a service might be a single variable or an array of variables. This type of vari-

ation is usually expressed in Web Service Definition Language (WSDL) documents.

The second type consists in varying the value of a parameter used at invocation. For

example, the discount rate of a product differs from one sales season to another.

The second category, variability in the service based architecture, consists of three

main types: logic variability, variability in the web service flow, and composition

variability.

Authors in [5], present an adaptation of BPEL language called VxBPEL. They

emphasize on the lack of flexibility and variability when deploying BPEL processes.

Thus, they propose to extend BPEL language by adding Variation Points and

Variants (Figure. 2.8). The former represents the places where the process can be

configured, while the latter defines the alternative steps of the process that can be

used. According to the running example, the VxBPEL fragment shown in Figure 2.8

could contain a Variation Points name="Discount Rate". This variation point

shows variability in the way dicount rate is determined. Variants for this variation



30 Business Environment-Aware Management approaches

Figure 2.6: Architecture for integrating BRs and SWSs [4].

point are Variants name="Fisrt Discount" and Variants name="Second Discount".

Based on the selected variant, either a service for First discount is envoked or the sec-

ond Discount service is processing. In this work, the variability is focused on BP

aspects written in VxBPEL language. The designers should consider this extension

and add their variation when designing the BP. VxBPEL supports service replace-

ment, different service parameters, and changing system composition.

Other approaches, such as [18, 5], address management issue by process variants.

When modeling process and their variants, one has to decide which control flow

alternatives are variant-specific and which ones are common for all process variants.

However, these process variants ought to be configured at configuration time which

leads to a static instance of the process model at run-time.

2.2.3 Synthesis

Table 2.1 summarizes the surveyed approaches and derives the following synthesis.

The defined criteria are rated as high level support (++), support (+), partial sup-



Review of existing business environment-aware management approaches 31

Figure 2.7: Relationship between decision services and assistant services [4].

port (+/-) and no support(-). We notice that efficiency and flexibility almost in all

approaches in the table are antagonistic. In fact, when increasing the flexibility, the

efficiency decreases accordingly and vice versa. Furthermore, none of approaches pre-

sented in [17, 18, 4] utilizes BPEL or any other process standard, which renders them

difficult to use.

For this sake, we recall the following challenges addressed in this thesis:

• How to conciliate between imperative and declarative techniques in an inte-

grated hybrid approach while aligning operational and business perspectives?

• How to develop a hybrid management approach that preserves industry stan-

dards to describe and systems to manage SBPs?

• How to minimize designers efforts?

Conclusion

As business environment changes keep increasing, enterprises are always seeking for a

balanced solution to manage their BPs. However, most research works have focused on

efficiency or flexibility using either imperative or declarative techniques. Therefore,

different approaches [18, 5, 11, 4] try to integrate these two techniques in a joint

approach by separating business logic (described by Business rules) and process logic

(described by imperative BP). In this chapter, we presented these different business

environment aware management approaches. We showed that existing approaches are

efficient or flexible. We also presented the differences between current approaches and

our targeted approach.



32 Business Environment-Aware Management approaches

Figure 2.8: Definition of a variation point in VxBPEL [5].

In the next chapter 3, we introduce an overview of our approch consisting in gen-

erating a management process connected to the managed process to be monitored and

configured. Besides, we present a semantic model which facilitates the management

process generation.



Review of existing business environment-aware management approaches 33

Approches Management phases and mechanisms Flexibility Efficiency Preserving
stan-
dards

Design
time

Deployment
time

Run
time

Rule-based configuration

Charfi et al
(2009)

*AO4BPEL
*Modify
BPEL
engine

weaveing
overhead

+ - -

Cheng et al.
(2011)

XPDL:
Mapping
overhead
between
BPMN &
SBVR

+ - +

Milanovic et
al (2011)

proposing
rBPMN:
BPMN &
R2ML

+ + -

Ouyang et
al. (2011)

Control
rule for
BPEL

- + +

Gong and
Janssen
(2011)

Describing
BR, se-
mantic
services

Creating
dynamic
BP

++ - +

Variability-based configuration

Gottschalk
et al (2008)

Specifying
variants
and con-
figure
them

static pro-
cesses

- + -

Koning et al
(2009)

proposing
VxBPEL,
variation
points,
variants

+ - +

Table 2.1: Review of existing business environment aware management approaches



34 Business Environment-Aware Management approaches



Part II

Contributions

35





Chapter 3

A hybrid approach for business

environment-aware management

of service-based business

processes

Introduction

This chapter presents our contributions for business environment-aware manage-

ment of service-based business processes (SBPs). The main idea is to manage SBPs

against business environment changes, while conciliating imperative and declarative

approaches, preserving business process standards and minimizing designers efforts.

Only a SBP and its corresponding domain ontology are the input of our contributions.

We do not ask process designers to re-model their processes. Hence, our approach is

based essentially on semantic descriptions.

In this chapter, we firsltly present our approach overview. Then, we detail our

propsed semantic model. The work of this chapter has been published in [63].

3.1 Approach overview

In our research work, we focus on SBPs where some activities are realized by services.

We consider that the management of a composition of services that offer management

operations (for their monitoring and configuration) can be realized through the com-

position of the offered management operations [63]. The enactments of management

operations are triggered by events that are captured from the business environment.

The integration of management operations and business environment events forms a

business process called the management process.

Indeed, for a given managed process, our approach generates the corresponding

management process. Figure 3.1 illustrates the purchase order process and its corre-

sponding generated management process.

37



38
A hybrid approach for business environment-aware management of service-based

business processes

In fact, to take into account the business environment changes into the managed

process, we use service properties that can be adjusted. Service properties allow for

the configuration of an implementation with externally set values. The value for a

service property is supplied to the implementation of the service each time the imple-

mentation is executed. In particular, the internal value of a property can be altered at

any time through business management operations which enable its monitoring and

configuration. The monitoring step reads properties while the configuration one up-

dates them if necessary. When altering the property value, the corresponding service

changes its behavior. For example, the service ”Compute initial price” (Figure 3.1)

has a property named ”DiscountRate” which can change its behavior by a setter

operation when a sales promotion is triggered. Besides, during a festive season the

execution path can vary when choosing suppliers in response to the higher demand

of clothes. In fact, the service ”Choose supplier” changes its behavior by updating

its property ”CriteriaList”.

As we already mentioned, when changing a service behavior, the corresponding

business process is reconfigured and its behavior is accordingly modified.

Thus, the first step towards the automation of the management operations com-

position is to identify the semantic concepts of service properties from the managed

business process. The issue is how to modify these properties and to follow which

order to compose management operations. To deal with this issue, we consider three

statements:

• Statement 1: Events represent the glue between business environments and

SBPs. Events may trigger the update of service properties. Hence, there is an

Environment-Service relationship.

• Statement 2: Service properties may depend on each others. Accordingly,

modifying a service property may engender changes of others depending on it.

Consequently, there is a Service-Service relationship.

• Statement 3: The structure of the managed business process may guide the

order of management operations that modify properties.

Based on these statements, we propose an algorithm for generating the man-

agement process. This latter is based on three main phases: (1) constructing sub-

processes based on Environment-Service relationships, (2) constructing sub-processes

based on Service-Service relationships, (3) connecting the resulting sub-processes into

the management process based on the structure of the managed business process.

As shown in Figure 3.1, the first phase builds sub-processes illustrated with dashed

rectangles. The second one generates sub-processes represented in dashed ellipses.

The third phase adds operators and connections shown in bold.



Semantic modeling of service-based business processes and business environment 39

In order to facilitate the management process generation, there is a need for (1)

an appropriate semantic model of business environments, business processes and rela-

tionships between them as well as (2) a dependency analysis of the managed business

process. The semantic model represents an upper management ontology, which corre-

lated with a domain ontology, depicts a declarative description of the company man-

agement strategy against dynamic change of the business environment. It involves

Environment-Service and Service-Service dependencies. In addition, the dependency

analysis aims at describing explicitly control dependencies between services of the

managed business process in order to deduce the composition of their corresponding

management operations [64].

More details for the proposed semantic model and the dependency analysis of the

managed process are given respectively in Section 3.2 and Chapter 4.

M
an

ag
e

m
en

t 
p

ro
ce

ss
P

u
rc

h
as

e
 O

rd
er

 p
ro

ce
ss

Choose
shipper

Compute
initial price

Compute
shipping

price

Receive
order

Check
availability

Compute
total price

Compute
retouch

price

Send order
and invoice

Receive
delivery

notification

Set(discount
rate)

Set(retouch
price)

Set(shipping
price)

Get(discount
rate)

All available?

yes

Choose
supplier

No

Receive
products

Contact
supplier 1

Contact
supplier 2

Set(Criteria
list)

Set(discount
rate)

Set(supplementary
discount rate)

DiscountRate

CriteriaList

DiscountRate

Figure 3.1: Purchase order process with its corresponding management process.

3.2 Semantic modeling of service-based business processes

and business environment

The management process generation requires semantic descriptions of business envi-

ronment, SBPs and relationships holding between them.

Indeed, as shown in Figure 3.2, there are three main actors in BEAM: business

environment, business process and services. The business process has a service com-

position which consists of activities and gateways. Activities are realized by services.

Services may have service properties and management operations. Services interact

with the business environment. This latter engenders events that trigger manage-

ment operations which act in turn on service properties. These three concepts

represented in grey ellipses in Figure 3.2 describe, at a high level of abstraction, the



40
A hybrid approach for business environment-aware management of service-based

business processes

main concepts of the management ontology.

In the following subsections, we start by depicting the upper management ontol-

ogy (section 3.2.1). Then, we describe the SBP by giving a semantic service model

(section 3.2.2).

Business
environment

Business
process Service

Interacts with
Interacts with

Process
Implementation

has-implementation

Service
composition

Service
Implementation

has-implementation

Technical
aspects

Operational
aspects

Technical
aspects

Business
operation

Management
operations

hashas

MonitoringConfiguration

Service
Property

Is_a Is_a

Gateway Activity

Node

has has

composed of

Is_a Is_a
Has target

Has source

Realized by

hashas

has

Event

trigger

trigger
act-on

Figure 3.2: BEAM meta-model.

3.2.1 Upper management ontology

Based on the BEAM meta-model (Figure 3.2), we define an upper management on-

tology (UMO) correlated with a domain ontology (Figure 3.3). Top-level ontologies

or Upper ontologies are models of the common objects that are generally applicable

across a wide range of domain ontologies. It contains a core glossary in whose terms

objects can be described. A domain ontology (or domain-specific ontology) models

a specific business domain, or part of the world (e.g. e-commerce domain, medical

domain, etc.). It represents the particular meanings of terms as they apply to that

domain.

The UMO correlated with the domain ontology, is used for annotating semantic

services and facilitating the management process generation as well. The UMO main



Semantic modeling of service-based business processes and business environment 41

concepts are events, properties and management operations. They represent an on-

tological modeling of the relationships between business environment, processes and

services. They are described against a domain ontology defined by domain experts.

The UMO includes also two main relationships:

• Environment-Service relationship (Event-based relationship): Events

trigger Actions (management operations) which act on services properties (e.g.

the ”Festive Season” event triggers ”SetCriteriaList” operation which updates

the ”CriteriaList” property).

• Service-Service relationship (Data-based relationship): Each service

property has service properties that may depend on it (e.g. ”ShippingPrice”

and ”RetouchPrice” service properties depend on ”DiscountRate” property).

In the following, we detail the main concepts of the upper management ontology

as well as their relationships.

3.2.1.1 Events

Events play a prominent role in BEAM, since they are the glue between situations

in the real world and SBPs. Thus, in the following, we detail event semantics and

definitions based on the expressiveness of BPMN 2.0 [23]. Events are used to model

something happening in the process lifetime (e.g. festive seasons, sales promotions).

They affect the flow of the process by catching a trigger or throwing a result. Event

definitions represent the semantics of events. In BPMN 2.0, there are 10 event defi-

nitions among them we use: Message, Signal, Timer and Conditional.

For instance, refering to Figure 3.3, the event ”FirstSalesPromotion” is composed

of two atomic events having respectively timer and message event definition. The

timer event ”PromotionTimeDate” is used to detect that the promotion time date

is reached. While, the message event ”DiscountRateMessage” is used to define a

discount rate message in order to catch the discount rate information.

Alike, the event ”FestiveSeason” consists of two atomic events having message and

timer event definitions. The timer event ”FestiveTimeDate” catches the beginning of

the festive season. The message event ”CriteriaListMessage” catches the criteria list

to choose the adequate supplier.

3.2.1.2 Service Properties

A single business service operation can have different behaviors depending on the

business context (e.g. the service ”choose supplier” selects supplier 1 or supplier 2

according to the existence or not of a festive season (Figure 3.1)). The more business

contexts increases, the more the variability of the service operation is crucial. When



42
A hybrid approach for business environment-aware management of service-based

business processes

specifying service operations, it is necessary to define the various contexts of use to

model variabilities. In this work, we define service properties which represent the

variability of services composing business processes. Once set, the operation is able

to take account of its business context to adapt its behavior.

Regarding the Service-Service relationship, services properties may or not depend

on each other . For example, both ”ShippingPrice” and ”RetouchPrice” service prop-

erties depend on the ”DiscountRate” service property. Whereas, ”ShippingPrice” and

”RetouchPrice” do not depend on each other (Figure 3.3). In case of dependency, we

can distinguish three types of relationships namely: sequence, mutuality and exclu-

sivity. For instance, a ”SupplementaryDiscountRate” property is applied sequencially

after the ”DiscountRate” property (Figure 3.3). A ”DiscountRate” property and a

”LoyalDiscount” property are exclusive and can not be combined in a public sales

promotion. These relationships can be identified from the ontology through RDF

containers such as RDF:Seq, RDF:Bag and RDF:Alt.

3.2.1.3 Management operations

Management operations represent actions triggered by business environment events

to alter or read service properties. They are means to perform the configuration

and the monitoring of services and business processes in turn. The management

operations are given by the service provider since they are related to the business of

the service. However, we can help the service provider to generate these operations

through semantic annotations. Nevertheless, in this thesis, we are limited to setter

and getter operations generated automatically.

The relationships with business operations represent the management operation

types:

• Transformation (Configuration): The management operation can configure

a service by updating the property (setter: set operation) (e.g. setDiscountRate,

setCriteriaList (Figure 3.3 and Figure 3.1)).

• Consultation (Monitoring): The management operation can also monitor

the service property (getter: get operation (e.g. getDiscountRate (Figure 3.3

and Figure 3.1)).

3.2.2 Semantic modeling of service-based business processes

Services represent the building block of SBPs. Hence, we start by presenting the

service model. Then, we introduce the business process model.



Semantic modeling of service-based business processes and business environment 43

M
an

ag
em

en
t 

o
p

er
at

io
n

s

Se
rv

ic
e 

Pr
op

er
ty

Ev
en

t

Ev
en

tD
ef

in
it

io
n

M
es

sa
ge

Ev
en

t
Si

gn
al

Ev
en

t
Ti

m
er

Ev
en

t

M
es

sa
ge

Xs
d

:s
tr

in
g

Si
gn

al

It
em

D
ef

in
it

io
n

ti
m

eD
at

e

ti
m

eC
yc

le

ti
m

eD
u

ra
ti

o
n

C
on

d
it

io
n

al
Ev

en
t

A
to

m
ic

 
Ev

en
t

C
om

po
si

te
 

Ev
en

t

Ev
en

t 
st

ru
ct

ur
e

Xs
d

:s
tr

in
g

Fi
rs

t
Sa

le
sP

ro
m

o
ti

o
n

D
is

co
u

n
tR

at
e

M
es

sa
ge

Pr
om

ot
io

n
Ti

m
eD

at
e

Se
tO

p
er

at
io

n

R
et

o
uc

h
Pr

ic
e

Sh
ip

pi
n

gP
ri

ce

D
is

co
u

n
tR

at
e

Upper Management Ontology Domain ontology

Fe
st

iv
e 

Se
as

o
n C
ri

te
ri

aL
is

t
M

es
sa

ge

C
ri

te
ri

aL
is

t
Se

tO
p

er
at

io
n

Fe
st

iv
eT

im
e

D
at

e

Su
pp

le
m

en
ta

ry
 

D
is

co
u

n
tR

at
e

R
d

f:
Se

q

D
is

co
u

n
t

Fi
rs

tD
is

co
u

n
t

Se
co

nd
D

is
co

u
n

t

R
d

f:
A

lt

Se
co

nd
Sa

le
sP

ro
m

o
ti

o
n

D
is

co
u

n
tR

at
e

/
Su

pp
le

m
en

ta
ry

R
at

e
M

es
sa

ge

Pr
om

ot
io

n
Ti

m
eD

at
e

Se
tO

p
er

at
io

n

F
ig

u
re

3.
3:

U
p

p
er

m
an

ag
em

en
t

on
to

lo
gy

.



44
A hybrid approach for business environment-aware management of service-based

business processes

3.2.2.1 Semantic Service model

A service has an implementation including its property, its technical aspects, and

operational aspects (Figure 3.2). In this work, a service S is mainly characterized by

its property p, which, being adjusted, changes the service behavior. A service property

has a name, a value, and is annotated with a concept from the domain ontology. The

technical aspects TA represent the set of: Inputs I, Outputs O, Pre-conditions Pre,

Post-conditions Post, Assumptions A and Effects E. The operational aspects OA

comprise the business operation Fp and its corresponding management operations

M . We distinguish two types of management operations: monitoring operations

Mm and configuration operations Mc. Furthermore, among management operations,

we generate automatically a setter and a getter for each service property. The other

management operations are set by the service provider. Thereby, changing the service

behaviour can be made by changing the value of its property p through management

operations which changes the behaviour of the business operation Fp (e.g. Fp=v1 ...).

Accordingly, a service is defined as follows:

Definition 1. Semantic Service Model. We refer to each service by a tuple

S = (p, TA,OA) such that:

• p = (name, value, concept) is the service property

• TA = (I,O, Pre, Post, A,E) are technical aspects where:

– I: set of Inputs

– O: set of Outputs

– Pre: set of Pre-conditions

– Post: set of Post-conditions

– A: set of Assumptions

– E: set of Effects

• OA = (Fp,M) connotes operational aspects

– Fp represents the business operation of S

Fp : A× I × Pre −→p O × Post× E
– M = (Mm,Mc) is the set of managing operations

3.2.2.2 Service-based business process model

A SBP is represented by a set of activities, gateways and possibly events. Certain

activities are realized by semantic services. The service composition of a SBP may be

described using a business process standard (e.g. Event-driven Process chains (EPC),



Semantic modeling of service-based business processes and business environment 45

Business Process Execution Language (BPEL), Business Process Modeling Notation

(BPMN), etc). Hence, we define a SBP as a process graph (Definition 2). Definition 2

is inspired from the business process graph definition given in [65].

Definition 2. Process graph. Let Γ1 be a set of node types. Let Θ1 be a set of node

labels. A process graph PG is represented by a tuple PG = (V1, E1, τ1, θ1) where:

• V1 is a set of vertices

• E1 is a set of edges modeling the control flow of the business process

• τ1 : V1 → Γ1 is a function that maps vertices to types.

• θ1 : V1 → Θ1 is a function mapping vertices to labels comprising <(vertex

type,vertex name), unique number in the business process>

Each vertex is annotated with a pair indicating the vertex type, name and its

corresponding unique number in the business process. As stated earlier, the available

types of vertices depend on the adopted business process standard notation. In this

thesis, we consider the BPMN notation which distinguishes between activities (’a’),

gateways (’g’), and events (’e’). There are also different types of BPMN gateways

and events.

Based on Definition 2, Figure. 3.4 shows the process graph of the purchase order

process (Figure 1.3). The activity name, the gateway type and the event type rep-

resent possible vertex labels (e.g. <(’a’, ’receive order’),1>, <(’g’,’AND-split’),11>,

<(’e’,’start event’),0> ).

Conclusion

In this chapter, we presented a novel hybrid approach for business environment-

aware management of service-based business processes. Our approach consists in

generating automatically a management process to monitor and configure a given

managed process. Indeed, automated composition of management operations and

business events is one of the most promising challenges in our approach for BEAM of

SBPs. The management process generation is performed thanks to a semantic model

of SBPs and business environments as well as a dependency analysis of the managed

process.

The semantic model involves an upper management ontology, describing rela-

tionships between SBPs and business environments. This ontology aligns business

processes, services and business environments. In order to evaluate the expressive-

ness and the semantic richness of our upper management ontology, we compare it

to existing business rules languages with respect to a representation theory. Details

about this qualitative evaluation are given in Chapter 7.



46
A hybrid approach for business environment-aware management of service-based

business processes

<(
e,

‘s
ta

rt
 e

ve
nt

’)
,0

>
<(

a,
‘r

e
ce

iv
e 

o
rd

e
r’

),
1>

<(
g,

‘O
R-

sp
lit

’)
,3

>
<(

a,
‘C

h
ec

k 
av

ai
la

b
ili

ty
’)
,2

>

<(
a,

‘c
h

oo
se

su
p

pl
ie

r’
),
4>

<(
g,

‘O
R

-s
p

lit
’)
,5

>

<(
a,

‘c
o

nt
ac

ts
u

p
pl

ie
r

1’
),
6>

<(
a,

‘c
o

nt
ac

t 
su

p
p

lie
r

2’
),
7>

<(
g,

‘O
R

-j
oi

n’
),
8>

<(
a,

‘r
e

ce
iv

e 
p

ro
d

u
ct

s’
),
9>

<(
g,

‘O
R

-j
oi

n’
),
10

>

<(
g,

‘A
N

D
-s

p
lit

’)
,1
1

>

<(
a,

‘c
o

m
p

u
te

 in
it

ia
l p

ri
ce

’)
,1
2

>

<(
e,

‘E
nd

 e
ve

n
t’

),
20

>
<(

a,
‘s

en
d 

or
d

er
 a

n
d 

in
vo

ic
e

’)
,1
8

>
<(

a,
‘c

o
m

p
u

te
 t

o
ta

l p
ri

ce
’)

,1
7

>

<(
a,

‘c
o

m
p

u
te

 r
et

o
u

ch
 p

ri
ce

’)
,1
3

>

<(
a,

‘c
o

m
p

u
te

 s
h

ip
pi

ng
 p

ri
ce

’)
,1
5

>
<(

a,
‘c

h
oo

se
 s

h
ip

pe
r’

),
14

>

<(
g,

‘A
N

D
-s

p
lit

’)
,1
6

>
<(

a,
‘R

e
ce

iv
e 

de
liv

er
y 

n
o

ti
fic

at
io

n’
),
19

>

F
ig

u
re

3.
4:

T
h

e
p

ro
ce

ss
gr

ap
h

of
th

e
p

u
rc

h
as

e
or

d
er

p
ro

ce
ss

.



Semantic modeling of service-based business processes and business environment 47

The dependency analysis explicits the structure of the managed process. This lat-

ter is based on identifying control and data dependencies to facilitate the organization

of the whole management process. In the next chapter, we present the dependency

analysis of a given managed process.



48
A hybrid approach for business environment-aware management of service-based

business processes



Chapter 4

Analysis of the structure of the

managed business process

Introduction

Control and data dependencies represent prominent information that supports busi-

ness process management. However, sequencing constraints described by the control

structures befog the true source of dependencies. Therefore, they are often not explic-

itly presented and are rather implicitly contained in the business process description.

A description of a SBP is written in a business process standard language such as

Business Process Execution Language (BPEL) [66], XML Process Definition Lan-

guage (XPDL) [28], etc.

Nowadays, there has been an increasing trend toward the direct execution of

business processes modeled in Business Process Modeling Notation (BPMN) [23] on

engines such as jBPM [67] and Activiti [6]. Indeed, more than 70 tools support

BPMN 2 (see www.bpmn.org). The purpose of BPMN 2 is twofold: (1) facilitating

the communication and decision making between domain analysts by enhancing the

expressiveness against the business environment (models can be as precise as required

by the business context), (2) executing these models directly without mapping prob-

lems. The first purpose targets business analysts since real world business processes

are able to be modeled directly using directed graphs.

However, there is neither tailored support nor implemented tool for dependency

analysis of such processes. In fact, most research works [68, 69, 70, 71, 72, 73, 74] de-

fine dependency information for BPEL programs. Indeed, BPEL is a structured, more

programming-like language having the same kind of logic and control structures [75].

Nevertheless, business analysts have to deal with the real world, which might be not

only unstructured but highly parallel. The fact is that there are parallel unstructured

SBPs that cannot be expressed directly into a parallel structured ones [76, 66, 77].

Hence, in general, data and control dependencies are dimensions solely for pro-

gramming (or programming-like) langages. However, we argue that the unstructured

and highly parallel real world processes written in BPMN render them inadequate

49



50 Analysis of the structure of the managed business process

which requires some adaptations. Thereby, in this chapter, we adapted and tailored

their dependency analysis strategy according to BPMN 2 requirements [78].

In order to explicitly describe the structure of a SBP written in BPMN, we analyze

its dependencies (section 4.1) and model them as a dependency graph (section 4.2).

The work of this chapter has been published in [64].

4.1 Dependency analysis

Dependency analysis identifies execution-order constraints between activities and ser-

vices in a business process program. Broadly speaking, an activity A2 depends on

A1 if A1 must be executed before A2. There are two main classes of dependencies:

control dependencies and data dependencies. In order to analyze control and data

dependencies in business process programs, we build on the process graph definition

(Definition 2) where nodes are labeled distinguishing node types.

In the following subsections, we conduct the example of the purchase order process

written in BPMN 2 (Figure 1.3) in order to illustrate the control and data dependen-

cies.

4.1.1 Control dependency analysis

The control dependency is a situation in which a program’s instruction executes if the

previous instruction evaluates in a way that allows its execution [78]. For example,

the activity ”choose supplier” is executed if some of the products are not available in

stock.

For each program, a control flow graph (CFG) is usually generated in order to

facilitate the dependency analysis. A CFG is a graphical representation of all paths

that might be traversed through a program during its execution [78]. However, such

CFG needs extensions for business process languages. Indeed, in BPMN programs

(similarly in BPEL programs as discussed in [68]) there are parallel executions as

well as synchronized executions which can obfuscate the true control dependency

that we call here ”common control dependency”. In particular, BPMN (real world)

processes present unstructured and highly parallel situations. Therefore, we propose

to model business process as process graphs (Definition 2) where nodes are labeled

distinguishing between gateway types.

Intuitively, given a PG, a node w is commonly control-dependent on a node u if

node u determines whether w is executed. Generally, the common control dependency

is defined in terms of post-dominance [78]. In fact, combining control flow and

dominance information produces control dependence information.

Definition 3. Post-Dominance [78]. Given a process graph PG, node B is said

to post-dominate node A if every path from A to exit contains B.



Dependency analysis 51

For example, in Figure 3.4 and Figure 1.3, node <(’a’,”Compute total price”),17>

post-dominates<(’a’,”Check availabilty”),2>. However, <(’a’,”receive products”),9>

doesn’t postdominate <(’a’,”Check availability”),2>.

Definition 4. Common Control dependency [78]. Let PG be a process graph.

Let X and Y be nodes in PG. Y is control dependent on X iff

• There exists a directed path P from X to Y with any Z in P post-dominated by

Y

• X is not post-dominated by Y

For example, Y =<(’a’,”receive products”),9> is control dependent onX =<(’g’,”OR-

split”),3> where the condition is the availability or not of the products order. A dire-

crt path P from X to Y contains: <(’a’,”choose supplier”),4>, <(’g’,”OR-split”),5>,

<(’a’,”contact supplier 1”),6>, <(’g’,”OR-join”),8>. Each Z in P is postdominated

by Y . X=<(’g’,”OR-split”),3> is not postdominated by <(’a’,”receive products”),9>

as illustrated in Definition 4.

Based on Definition 2, we can identify the parallel executions which represent

sub-graphs between (’g’, ”AND-split”) and (’g’, ”AND-join”) nodes in BPMN.

Example of Parallel subgraph: {<(’a’,”compute initial price”),12>, <(’a’,”compute

retouch price”),13>, <(’a’,”choose shipper”),14>, <(’a’,”compute shipping price”),15>,

<(’a’,”compute initial price”),12>,

<(’a’,”compute retouch price”),13>), (<(’a’,”choose shipper”),14>, <(’a’,”compute

shipping price”),15>}.
The control dependency graph (CDG) represents an explicit description of con-

trol dependencies between activities as well as their types. We distinguish three types

of control dependencies: ”common control-dependency”, ”parallel dependency” and

”synchronized-dependency”. As claimed in [68], the ”synchronized-dependency” con-

nects the first node of a parallel branch with the first node of the other. Similarly, it

connects the last nodes of parallel branches. Thereby, a CDG is defined as follows:

Definition 5. Control dependency graph. Let Ψ2 a set of edge types. Let Θ2

be a set of node labels and Ω2 a set of edge labels. A CDG is a labeled typed directed

graph CDG = (V2, E2, ψ2, θ2, ω2) with:

• V2 represents the nodes of PG graph

• E2 represent a set of edges

• ψ2 : E2 → Ψ2 is a function that maps edges to types: common-control depen-

dency, parallel dependency, synchronized dependency

• θ2 : V2 → Θ2 is a function that maps vertices to labels (numbering function)



52 Analysis of the structure of the managed business process

• ω2 : E2 → Ω2 is a function that maps edges to labels

Coming back to the purchase order process, its control dependencies are coherently

represented in Figure 4.1.

entry

1 2 3

4 5

6 7

8 9

10 11

12

13

14

15

16 17 18

Common control
dependency

Parallel
dependency

Synchronized
dependency

19 Exit

Figure 4.1: Control dependency graph of the purchase order process (1: Receive
order, 2: Check availability, 3: OR-split, 4: Choose supplier, 5: OR-split, 6: Contact
supplier 1, 7: Contact supplier 2, 8: OR-join, 9: Receive products, 10: OR-join,
11: AND-split, 12: Compute initial price, 13: Compute retouch price, 14: Choose
shipper, 15: Compute shipping price, 16: AND-join, 17: Compute total price, 18:
Send order and invoice, 19: Receive delivery notification)

4.1.2 Data dependency analysis

Data dependency analysis identifies the potential for a value returned from a service

to affect the computation in another. It is used to represent the relevant data flow

relationships of a business process program. Indeed, it arises between two activities

and/or services such that the first one is a data producer and the second is a data

consumer. This type of data dependency is called Definition-Use (Def-Use). It rep-

resents the dominant data dependency type in process programming. In this section,

we use the Def-Use graph in order to abstract data dependencies for business process

standards. Hence, we start by reviewing the concept of Def-Use relation as discussed

in [68, 78, 79]. Then, we illustrate data dependencies with respect to the BPMN

process illustrated in Figure 1.3.

Definition 6. Variable Definition [68]. The assignment of a value to a variable

x represents its definition: Def(x)

e.g. The node <(’a’,”compute initial price”),12> outputs the variable initialprice:

Def(initialprice)



Dependency analysis 53

Definition 7. Variable Use [68]. The use of a variable x represents the use of its

value: Use(x)

e.g. the node <(’a’,”compute retouch price”),13> uses the variable initialprice:

Use(initialprice)

Definition 8. Def-Use graph [79, 70]. The Def-Use graph is a labeled directed

graph DUG = (V,E, θ) such that:

• V is the set of process graph vertices (services)

• E is the set of edges

• θ : V → (n, l) is a function that maps vertices to ordered pair (n,l) where:

– l: a label illustrating the Def and/or Use of variables

– n: represents the corresponding node number in PG as defined in Defini-

tion 2

The Def-Use graph of the purchase order process is depicted in Figure 4.2. (e.g.

The node <(’a’,”compute initial price”),12> in PG has its corresponding number

n = 12 in DUG. It uses variable unitPrice and defines variable initialPrice. It is

then labeled with l = Use(unitPrice), Def(initialPrice).

Based on the Def-Use graph, the data dependency of two given nodes is defined

as follows:

Definition 9. Data dependency [68]. Let vu, vd ∈ DUG. vu is data dependent

on vd iff:

• there exists a variable x such that vd contains Def(x) and vu contains Use(x)

• there doesn’t exist variable redefinition of x within the path from vd to vu

For instance, node 13 is data dependent on 12. Indeed, there exists a variable

initialPrice such that node 12 contains Def(initialPrice) and node 13 contains

Use(initialPrice) (see Figure 4.2).

The data dependency relationships are recorded in the data dependency graph

defined as follows:

Definition 10. Data dependency graph. Let Ψ3 a set of edge types. Let Θ3 be

a set of node labels and Ω3 a set of edge labels. A DDG is a labeled typed directed

graph DDG = (V3, E3, ψ3, θ3, ω3) with:

• V3 ⊂ V1 represents a subset of PG nodes having data dependencies

• E3 represent a set of edges



54 Analysis of the structure of the managed business process

Use(unitPrice), Def(initialPrice)

Use(initialPrice), Def(RetouchPrice), Def(NetPrice)Use(meansofDelivery), Def(ShippingPrice)

12

1315

Def(meansofDelivery)14

Use(NetPrice), Use(ShippingPrice), Def(totalPrice) 17

entry

stop

Def(available) 2

1

3

Def(supplier) 4

5

Def(suppPrice) 6Def(suppPrice)7

8

Use(suppPrice), Def(unitPrice) 9

10

11

16

Use(meansofDelivery), Use(totalPrice), Def(Ack) 18

Use(Ack) 19

Figure 4.2: Def-Use graph of the purchase order process.

• ψ3 : E3 → Ψ3 is a function that maps edges to the type: data dependency

• θ3 : V3 → Θ3 is a function that maps vertices to labels (numbering function)

• ω3 : E3 → Ω3 is a function that maps edges to labels

Based on the DUG represented in Figure 4.2, the DDG of the purchase order

process is described in Figure 4.3.



Dependency graph generation 55

6 7

9 12

13

14

15

17 18 19

Data dependency

Figure 4.3: Data dependency graph.

4.2 Dependency graph generation

The results of data and control dependency analysis can be recorded in a directed

labeled graph that we call Dependency graph. If an edge of control dependencies

and/or data dependencies leads from one vertex to another in a dependency graph,

then there is a dependency between the activities represented by the vertices. The

dependency graph of the purchase order process is shown in Figure 4.4.

entry

1 2 3

4 5

6 7

8 9

10 11

12

13

14

15

16 17 18

Common control
dependency

Parallel
dependency

Synchronized
dependency

19 Exit

Data dependency

Figure 4.4: Dependency graph of the purchase order process (1: Receive order, 2:
Check availability, 3: OR-split, 4: Choose supplier, 5: OR-split, 6: Contact supplier
1, 7: Contact supplier 2, 8: OR-join, 9: Receive products, 10: OR-join, 11: AND-
split, 12: Compute initial price, 13: Compute retouch price, 14: Choose shipper, 15:
Compute shipping price, 16: AND-join, 17: Compute total price, 18: Send order and
invoice, 19: Receive delivery notification)



56 Analysis of the structure of the managed business process

4.2.1 Control dependency graph generation

CDG is generated according to Algorithm 1 which takes as input the PG of a given

business process. Indeed, given the PG of the purchase order process (Figure 3.4),

Algorithm 1 outputs the CDG illustrated in Figure 4.1.

This algorithm is inspired from [78, 68]. In the following, we detail its different

parts consisting in identifying (1) common control dependency (Line 1-6)(2) parallel

dependency (Line 7) and (3) synchronized dependency (Line 26-32).

As discussed in section 5, the first part is based on post-dominance. It comprises

in turn three steps which we detail in the following subsections: (a) computing post-

dominators (Line 1), (b) generating PDT, (c) computing S, L and Marked (Line 3-6).

In order to determine parallel dependencies, we search parallel sub-processes in PG

(Line7). Based on parallel sub-graphs, synchronized dependencies are identified as

stated in section 5.

The creation of CDG starts by adding the ”entry” node (Line 8). Based on the

resulting lists (marked nodes and their corresponding control dependent node), nodes

that do not depend on any other node is added to CDG and linked with ”entry” node

(Line 9-12). Similarly, the rest of nodes are created and added in CDG while dis-

tinguishing between ”parallel-dependency” and ”common control dependency” (Line

13-24). Finally, edges labeled ”synchronized-dependency” are added between: first

nodes and last nodes of parallel branching (Line 26-32).

1. Computing post-dominators: The first step towards identifying common

control dependencies consists in computing post-dominators of each node v in

PG. Based on Definition 4, the post-dominators of a node v represent the

intersection of all paths containing no cycles from v to exit node.

2. Generating post-dominators Tree: The second step creates the post-dominators

Tree PDT . PDT involves all descendants of a node that are immediately post-

dominated by this latter. As a consequence, the tree root is always the node

”exit”. In order to generate the PDT, we define Algorithm 2 taking as input the

list of post-dominators of each node. In each iteration, we remove the last added

node from Postdom list (Line 6,7). If the post-dominators of the corresponding

node are already added to PDT (Line 8), then it will be in turn added to the

vertex set of PDT and linked to the last erased node (Line 9-13). The running

node will be removed from nonDesigned and added to LastErased.

3. Computing S, L, Marked and CD: After constructing the PDT , we identify

the list of nodes Marked that are control dependent on CD. Prior to identify

these two sets, we compute S defined as the set of edges (A,B) in PG such that

B is not an ancestor of A in PDT . Algorithm 4 details these steps. We start by

identifying edges (i, j) in PG such that j is not an ancestor of i in PDT (Line



Dependency graph generation 57

Algorithm 1 GeneratingControlDependencyGraph
Require: Process Graph PG
Ensure: Control Dependence Graph CDG
1: Postdom←− ComputePostdoms(PG)
2: PDT ←− GeneratePDT (Postdom, V1(PG))
3: S ←− ConstructSLMarkedCD.S
4: L←− ConstructSLMarkedCD.L
5: CD ←− ConstructSLMarkedCD.CD
6: Marked←− ConstructSLMarkedCD.Marked
7: List SGs←− SearchSubgraphs(PG, (′g′, ”AND − Split”), (′g′, ”AND − Join”))
8: V2(CDG)←− V2(CDG) ∪ {”entry”}
9: V2(CDG)←− V1(PG)\

⋃
{marked(i)\CD(i)}

10: for all v ∈ V2(CDG) do
11: E2(CDG)←− E2(CDG) ∪ {(”entry”, v)}
12: end for
13: for all i ∈ CD do
14: if CD(i) ∈ V2(CDG) then
15: for all j ∈Marked(i) do
16: V2(CDG)←− V2(CDG) ∪ {j}
17: E2(CDG)←− E2(CDG) ∪ {(CD(i), j)}
18: if (j ∈ V (SG) | SG ⊂ SGs) then
19: CDG.ω2((CD(i), j)) = ”parallel − dependency”
20: else
21: CDG.ω2((CD(i), j)) = ”commoncontrol− dependency”
22: end if
23: end for
24: end if
25: end for
26: for all SG ∈ SGs do
27: {P1, P2} ←− Searchpaths(SG, (′g′, ”AND − Split”), (′g′, ”AND − Join”))
28: E2(CDG)←− (P1(0), P2(0))
29: CDG.ω2((P1(0), P2(0))) = ”synchronized− dependency”
30: E2(CDG)←− (P1(P1.length), P2(P2.length))
31: CDG.ω2((P1(P1.length− 1), P2(P2.length− 1))) = ”synchronized− dependency”
32: end for

Algorithm 2 GeneratingPDTGraph
Require: List Postdom, PG
Ensure: PDT
1: SetnonDesingned←− V (PG) \ {exit}
2: LastErased←− {exit}
3: while nonDesingned 6= ∅ do
4: for all i ∈ LastErased do
5: for all j ∈ nonDesingned do
6: if (i ∈ Postdom(j)) then
7: Postdom(j)←− Postdom(j) \ {i}
8: if (sizeof(Postdom(j)) = 0) then
9: nonDesingned←− nonDesingned \ {j}

10: V (PDT )←− V (PDT ) ∪ {(i), (j)}
11: E(PDT )←− E(PDT ) ∪ {(i, j)}
12: NV ←− NV ∪ {j}
13: end if
14: end if
15: end for
16: end for
17: LastErased←− NV
18: end while



58 Analysis of the structure of the managed business process

19

exit

18

17

11

1013

1412

15

9 3

2

1

entry

16

8

7 6 5

4

Figure 4.5: Post dominators tree of the purchase order process (1: Receive order, 2:
Check availability, 3: OR-split, 4: Choose supplier, 5: OR-split, 6: Contact supplier
1, 7: Contact supplier 2, 8: OR-join, 9: Receive products, 10: OR-join, 11: AND-
split, 12: Compute initial price, 13: Compute retouch price, 14: Choose shipper, 15:
Compute shipping price, 16: AND-join, 17: Compute total price, 18: Send order and
invoice, 19: Receive delivery notification)

4-9). Then, for each couple (A,B) in S (Line 12,13), we determine L the least

common ancestor of A and B in PDT (Line 14). By traversing the PDT from

B to L, each visited node is marked. L is marked only if L = A (Line 13-17).

In iteration i, all marked nodes are saved in Marked(i) (Line 18). Nodes of

Marked(i) are control dependent on CD(i) (Line 19).

4.2.2 Data dependency graph generation

The data dependency graph generation is based on both the process graph (Figure 3.4)

and the Def-Use graph (Figure 4.2). The DDG is created according to Algorithm 4

based on the data dependency definition (Definition 10) presented in section 4.1.2.

For each process variable x (Line 1), we find nodes in DUG such that their labels

contains Def(x) (Line 2). By the same way, we fetch nodes in DUG where labels

contains Use(x) (Line 3). Nodes labeled respectively Def(x) and Use(x) are added

in DDG if the corresponding number of the first is smaller than the corresponding

one of the second (Line 5,9).



Dependency graph generation 59

Algorithm 3 ConstructSLMarkedCD
Require: PDT, PG.

Ensure: S =
m⋃
i=1
{Si},Marked =

m⋃
i=1
{markedi}, CD =

m⋃
i=1
{CDoni}, L =

m⋃
i=1
{Li}

1: for all i ∈ NodeSet do
2: for all j ∈ PG.adjacentTo(i) do
3: if (6 Ancestor(pdt, j, i)) then
4: S ←− (i, j)
5: end if
6: end for
7: end for
8: for (i = 0→ sizeof(S)) do
9: A←− S(i)(0)

10: B ←− S(i)(1)
11: L(i)←− Least(A,B)
12: Bool inclus
13: if (L(i) = A) then
14: inclus←− true
15: else
16: inclus←− false
17: end if
18: Marked(i)←− mark(inclus, L(i), B)
19: CD(i)←− A
20: end for

Algorithm 4 GeneratingDataDependencyGraph
Require: List ProcessV ariables, DUG
Ensure: DDG
1: for all x ∈ ProcessV ariables do
2: Find {v1} ∈ V (DUG) such that v1.θ.l contains Def(x)
3: Find {v2} ∈ V (DUG) such that v2.θ.l contains Use(x)
4: end for
5: for all i ∈ {v2} do
6: Find j ∈ {v1} such that v1.θ.n < v2.θ.n and v1.θ.n =Max(v.θ.n)|v ∈ {v1}
7: V2(DDG)←− V2(DDG) ∪ {v1, v2}
8: E2(DDG)←− E2(DDG) ∪ {(v1, v2)}
9: end for



60 Analysis of the structure of the managed business process

Conclusion

Dependency analysis of SBPs provides relevant information for managing SBPs. In

this chapter, we presented control and data dependencies for BPMN processes which

describe explicitly their structure. BPMN 2.0, as a twofold-purpose language, can be

used to both model and execute these SBPs. However, there is no tailored support for

dependency analysis of such processes. Hence, we adopted and adapted definitions

and algorithms of dependency analysis of programming languages in order to generate

the dependency graph of a given SBP.

In order to validate these algorithms, we designed and implemented DAT, a de-

pendency analysis tool for SBPs written in BPMN. Details of this framework are

given in Chapter 6,

Given a managed process, DAT generates its corresponding dependency graph

which explicits its structure. This dependecny graph together with the semantic

model facilitates the management process generation. In the next chapter, we present

how to generate this management process.



Chapter 5

Management process generation
Introduction

In this chapter, we show how to generate a management process to handle a SBP

during its execution. We recall that properties of services that composed the man-

agement process frequently change due to business environment events. When a new

event occurs, the adequate properties should be updated. Therefore, the management

process consists in a composition of management operations that read and/or alter

services’ properties. To do this, we define a getter and a setter for each property (see

Section 3.2.1.3).

The construction of the management process (composition of management opera-

tions) is performed using semantic descriptions over domain ontology (see Section 3.2)

as well as the structure of the managed business process (see section 4.1). Thereby,

the construction of the composition comprises three main phases: (1) constructing

sub-processes based on the Environment-Service relationship, (2) constructing sub-

processes based on the Service-Service relationship and (3) connecting generated sub-

processes.

Algorithm 5 describes the statements executed for handling these phases which

we detail in the following illustrated by the running example.

Properties externalize service behaviors. Thus, the first step towards the automa-

tion of the management operations composition is to capture the semantic concepts of

services properties from the managed business process (Line 1). Each service property

can have possible events that trigger the update of its value (Line 3). Thus, Con-

structESR method (Line4) is called with p as parameter for building sub-processes

relating configuration operations with events (Algorithm 6 in Section 5.1). Configur-

ing a service property may engender the update of other properties related to it. Be-

sides, the service property can have other relationships with other service properties.

ConstructSSR (Line 5) is called in turn to build a sub-process connecting manage-

ment operations with each other (Algorithm 7 in Section 5.2). Finally, ConnectSP

(Line 7) is performed to connect resulting subprocesses based on both the structure

of the managed SBP and semantic relationships between properties (Algorithm 10 in

Section 5.3).

61



62 Management process generation

Doing so, we are based on the following BPMN patterns [80]:

• Basic control-flow patterns

– Sequence: the ability to depict a sequence of activities

– Parallel split: the divergence of a branch into two or more parallel

branches executed concurrently.

– Synchronization: the convergence of multiple parallel branches into a

single thread of control thus synchronising multiple threads.

– Exclusive choice: a decision point in a process process where one of

several branches is chosen.

– Simple merge: a point in a process where two or more alternative

branches come together without synchronisation.

• State-based pattern

– Deffered choice: a divergence point in a process where one of several

possible branches should be activated by the environment. In BPMN,

this pattern is supported via an event-based exclusive gateway followed by

either intermediate events using message-based triggers or receive tasks.

Algorithm 5 GeneratingManagementProcess
Require: Process Graph PG
Ensure: Managing Graph MG
1: List P ←− {S.p.concept, S ∈ V1(PG)}
2: for all Properties p ∈ P do
3: List L1 ←− FindEvents(p)
4: MG←− ConstructESR(p,MG,L1)
5: MG←− ConstructSSR(p,MG)
6: end for
7: MG←− ConnectSP(PG,MG)
8: return MG

5.1 Constructing sub-processes based on Environment-

Service relationship

In this first phase, the issue is to alter a service property based on the Environment-

Service relationship introduced in Section 3.2.1. Indeed, when an event occurs the

corresponding service property is updated according to dependencies between business

environment events and services.



Constructing sub-processes based on Service-Service relationship 63

In accordance with the running example, when a ”FestiveSeason” happens, the

criteria for choosing suppliers change. Subsequently, the property named ”CriteriaL-

ist” is altered. As stated in Section 3.2.1, the event ”FestiveSeason” is composed of

atomic events having event definitions: CriteriaListMessage and FestiveTimeDate.

In order to create sub-processes aiming at modifying a service property, Algo-

rithm 6 is performed. These subprocesses relate a service management operation

with possible events that can trigger it.

Figure 5.1(a) is the resulting sub-process for p=”CriteriaList”. Similarly, with

p=”DiscountRate” the sub-process described in Figure 5.1(b) is generated. Indeed,

when a ”Sales promotion” happens, there is a decrease in clothes prices (FirstDis-

count). Subsequently, the property named ”DiscountRate” is altered. As stated in

section 3.2.1, the event ”FirstSalesPromotion” is composed of atomic events having

event definitions: DiscountRateMessage and PromotionTimeDate.

The list of possible events as well as their definitions (input of Algorithm 6) result

from calling the procedure FindEvents(p) that executes the following SPARQL query:

SPARQL Query 1: ”SELECT ?atomicEvent ?eventdefinition WHERE { ?event :trigger ?action.

?action :act-on ?property. ?property rdf:type :p. ?event :hasEventstructure ?events. ?events :com-

posedOf ?atomicEvent. ?atomicEvent :hasEventDefinition ?definition. ?definition rdf:type ?eventdefinition.}”.

When an event occurs, the service property p will be altered automatically using

a set operation. A vertex (”a”, ”set(p)”) is added to the vertex-set of the managing

graph MG (Line 2). If the list of possible events that can modify the property

comprises only one event, we add this event to the set of vertices of MG graph (Line

4). A single edge between the event and the ”set” operation is also added (Line 5).

Otherwise, a node of gateway type labeled ”Event-based XOR” is added (Line 7).

Then, a node for each event and edges relating it to the gateway as well as the set

operation are identified (Line 9, 10, 11).

In case there are no event related to p (Line 14), the events related to its super-

ServiceProperty are identified (Line 15,16). Algorithm 6 is then recalled taking as

input the list of these events (Line 18).

5.2 Constructing sub-processes based on Service-Service

relationship

A service property may depend on others. Hence, updating a service property may

engender the modification of others depending on it. Therefore, in this second phase,

the concern is to properly identify the semantic relationship holding between service

properties.

For example, the service properties named ”ShippingPrice” and ”RetouchPrice”

depend on ”DiscountRate” property (Figure 3.3). Thus, if ”DiscountRate” is up-



64 Management process generation

Algorithm 6 ConstructESR(ServiceProperty p, Managing Graph MG, List L1)
Require: Managing Graph MG
Ensure: Managing Graph MG
1: if L1 6= ø then
2: V3(MG)←− V3(MG) ∪ {(”a”, ”set(p)”)}
3: if L1 = {l1} then
4: V3(MG)←− V3(MG) ∪ {(”e”, ”l1”)}
5: E3(MG)←− E3(MG) ∪ {((”e”, ”l1”), (”a”, ”set(p)”))}
6: else
7: V3(MG)←− V3(MG) ∪ {(”g”, ”Event− basedXOR”)}
8: for all l1 ∈ L1 do
9: V3(MG)←− V3(MG) ∪ {(”e”, ”l1”)}

10: E3(MG)←− E3(MG) ∪ {((”g”, ”Event− basedXOR”), (”e”, ”l1”))}
11: E3(MG)←− E3(MG) ∪ {((”e”, ”l1”), (”a”, ”set(p)”))}
12: end for
13: end if
14: else
15: String SuperServiceProperty ←− FindSuperClassServiceProperty(p)
16: SuperList←− FindEvents(SuperServiceProperty)
17: if SuperList 6= ø then
18: ConstructESR(p,MG, SuperList);
19: end if
20: end if
21: return MG

dated, both ”ShippingPrice” and ”Retouch price” should be updated. The corre-

sponding resulting subprocess is depicted in Figure 5.1(c).

In order to generate this subprocess, Algorithm 7 explores the different dependency

relationships between concepts of services’ properties from the domain ontology. Two

services properties have a relationship if they are related with ”depends-on” relation-

ship in the domain ontology. A SPARQL query is then sent to the domain ontology

to enquire for the sources of the property p :

SPARQL Query 2: ”SELECT ?sourceType WHERE ?source :depends-on ?a. ?a rdf:type :p.

?source rdf:type ?sourceType. ?sourceType rdfs:subClassOf :ServiceProperty.”.

The result of this query is performed by calling the procedure ServiceSourceOfDepends-

On(p) (Algorithm 3, Line 1). If p has properties that depend on it (Line 2), then the

get(p) operation is automatically invoked (Line 3). As a result, a setter for each

property depending on p is defined (Line 4-6). If there is only one property, then a

simple edge links its setter with get(p) (Line 7-8). Otherwise, the adequate gateway

relating properties setters with get(p) is identified using Algorithm 8. In this latter al-

gorithm, we rely on dependencies between services in the managed BP represented in

the control dependency graph (see section 3.2.2.2). For example, the services ”Com-

pute retouch price” and ”Compute shipping price” are synchronized according to the

dependency graph of the purchase order process (Figure 4.1). Therefore, a gateway



Connecting sub-processes 65

labeled (’g’,’AND-Split) is added. As for a well structured BP, when starting with a

gateway type, we finish by the same one (Line 14-17).

The relationship between services properties could be also clearly identified through

the ontology via RDF containers (see section 3.2.1.2). Indeed, sequence, exclusivity

and mutuality are described respectively via RDF:Seq, RDF:Alt, RDF:Bag. For ex-

ample, the property ”SecondDiscount” is composed of a sequence of ”DiscountRate”

and ”SupplementaryDiscountRate”. By calling ContainersRelationships(p), we ex-

ecute SPARQL Query 3 in order to identify all containers in which p represents a

member (Line 20). We identify the container type and the mother service prop-

erty ”MotherConcept” which includes container members among them p (Line 23,

24). The containers members other than the current property p are identified by

executing SPARQL Query 4 (Line 25). For each member concept, a new vertex rep-

resenting an activity calling the management operation set(l) (l=member concept) is

added (Line 26-28). According to the container type, we identify the connector type

by executing Algorithm 9. If the container type is RDF:Seq, the connector type will

be a sequence flow. The BPMN sequence pattern is then used in order to link the

management operations (Line 31-33). Otherwise, the corresponding gateway is added

and the links to the management operations are established (Line 37-39).

SPARQL Query 3: ”SELECT ?containerType ?MotherIndividual ?MotherConcept WHERE

{?container rdfs:member ?member. ?member rdf:type :p. ?container rdf:type ?containerType. ?Moth-

erIndividual rdf:object ?container. ?MotherIndividual rdf:predicate ?MotherConcept.}”.

SPARQL Query 4: ”SELECT ?memberType WHERE {?container rdfs:member ?member. ?mem-

ber rdf:type ?memberType. ?container rdf:type ?containerType. ?MotherIndividual rdf:object ?con-

tainer. ?MotherIndividual rdf:predicate :p.}”.

5.3 Connecting sub-processes

So far, a set of sub-processes are created. Indeed, for each property sub-processes

based on the Environment-Service and/or Service-Service relationship are built. How

to connect them? How to determine their order?

Resuming with the running example, till now, four sub-processes are built (see

Figure 5.1). In order to connect them aiming to generate the whole management

process (Figure 3.1), in this phase, we add necessary links and gateways based on

both the upper management ontology and the explicit dependency description of the

managed BP.

As a first step, we start by linking Event-based sub-processes according to the rela-

tionships between services properties. Hence, SPARQL Query 3 and 4 are respectively

executed in Algorithm 10 to identify (1) the RDF container which determine relation-

ships between these service properties (Line 4) and (2) container members (Line 5).



66 Management process generation

Algorithm 7 ConstructSSR(ServiceProperty p, Managing Graph MG)
Require: Managing Graph MG
Ensure: Managing Graph MG
1: List L2 ←− ServiceSourceOfDepends-On(p)
2: if L2 6= ø then
3: V3(MG)←− V3(MG) ∪ {(”a”, ”get(p)”)}
4: for all l ∈ L2 do
5: V3(MG)←− V3(MG) ∪ {(”a”, ”set(l)”)}
6: end for
7: if L2 = {l2} then
8: E3(MG)←− E3(MG) ∪ {((”a”, ”get(p)”), (”a”, ”set(l2)”))}
9: else

10: String GatewayType=ChooseGateway(L2, p)
11: V3(MG)←− V3(MG) ∪ {(”g”, GatewayType)}
12: E3(MG)←− E3(MG) ∪ {((”a”, ”get(p)”), (”g”, GatewayType))}
13: V3(MG)←− V3(MG) ∪ {(”g”, GatewayType)}
14: for all l2 ∈ L2 do
15: E3(MG)←− E3(MG) ∪ {((”g”, GatewayType), (”a”, ”set(l2)”))}
16: E3(MG)←− E3(MG) ∪ {((”a”, ”set(l2)”), (”g”, GatewayType))}
17: end for
18: end if
19: end if
20: CR←− ContainersRelationships(p)
21: if CR 6= ø then
22: for all cr ∈ CR do
23: Stringcontainer ←− cr.getElement().getKey()
24: StringcontainerServiceProperty ←− cr.getElement().getV alue();
25: List L = MemebersOfContainerServiceProperty(container) {Execute Query 4}
26: for all l ∈ L do
27: V3(MG)←− V3(MG) ∪ {(”a”, ”set(l)”)}
28: end for
29: String ConnectorType=ChooseConnector(container)
30: if ConnectorType = ”Sequenceflow” then
31: for all l ∈ L do
32: for all l1 ∈ L do
33: E3(MG)←− E3(MG) ∪ {((”a”, ”set(l)”), (”a”, ”set(l1)”))}
34: end for
35: end for
36: else
37: V3(MG)←− V3(MG) ∪ {(”g”, ConnectorType)}
38: for all l ∈ L do
39: E3(MG)←− E3(MG) ∪ {((”g”, GatewayType), (”a”, ”set(l)”))}
40: end for
41: end if
42: end for
43: end if
44: return MG



Connecting sub-processes 67

Algorithm 8 ChooseGateway(List L2, ServiceProperty p)
Require: Process graph PG
Ensure: String GatewayType
1: for all l ∈ L2 do
2: for all h ∈ L2 do
3: Let S1 ∈ V1(PG) such that S1.p.concept = l
4: Let S2 ∈ V1(PG) such that S2.p.concept = h
5: Let e ∈ V1(PG) such that e = (S1, S2)
6: if (ω1(e) = ”synchronized− dependency”) then
7: GatewayType=”AND-Split”
8: end if
9: if (ω1(e) = ”commoncontrol − dependency”) then

10: GatewayType=”OR-Split”
11: end if
12: end for
13: end for

Algorithm 9 ChooseConnector(String container)
Require: String container
Ensure: String ConnectorType
1: if (container = RDF : Alt) then
2: ConnectorType=”OR-Split”
3: end if
4: if (container = RDF : Bag) then
5: ConnectorType=”AND-Split”
6: end if
7: if (container = RDF : Seq) then
8: ConnectorType=”Sequence flow”
9: end if

Set(Criteria
list)

CriteriaList

(a) Result of phase 1
for p=”CriteriaList”

Set(discount 
rate)

DiscountRate

(b) Result of phase 1 for
p=”DiscountRate”

Set(retouch
price)

Set(shipping
price)

Get(discount
rate)

(c) Result of phase 2 for
p=”DiscountRate”

Set(discount
rate)

Set(supplementary
discount rate)

DiscountRate, SupplementaryDiscountRate

(d) Result of phase 2 for
p=”SupplementaryDiscountRate”

Figure 5.1: Result of phase 1 and phase 2



68 Management process generation

Finally, the corresponding sub-processes are linked by choosing the adequate gate-

way (Line 7-9). For example, both sub-processes in Figure 5.1(b) and Figure 5.1(d)

represent two discount strategies depicted in the domain ontology. These strategies,

represented by the service properties ”FisrtDiscount” and ”SecondDiscount”, are ap-

plied exclusively.

Figure 5.2 shows the resulting sub-process.

Set(discount
rate)

Set(discount
rate)

Set(supplementary
discount rate)

DiscountRate, SupplementaryDiscountRate

DiscountRate

Figure 5.2: Result of connecting subprocesses based on the upper management on-
tology.

Afterwards, we link the new list of sub-processes based on the control dependency

analysis of the managed BP. To do so, we adopted the following phases: (1) identifying

management process ends, (2) capturing their correspondings in the managed BP, (3)

determining control dependencies for each activity in order to add corresponding

gateways and (4) organizing results based on the control flow of the managed BP.

Formalisation of these phases is given in Algorithm 10. The first phase consists

in finding nodes having no targets (set operations) and nodes having no sources

(get operations) (Line 13). The second phase identifies nodes corresponding to these

activities having p as property in the process graph (Line 14). Afterwards, the control

dependency of each node is determined (Line 15). Control dependencies for each node

are then compared in order to identify the existence or not of control dependency

between sub-processes (Line 16-26). Then, according to control-flow relations between

activities in the process graph, the sub-processes are organized and control flow edges

are added to the managing graph (Line 28). Finally, nodes having no sources are

linked to the start event, and those having no targets are connected to the end event

(Line 31-35).

Resuming with the running example, in the first phase, the corresponding activ-

ities ”Choose supplier” and ”Compute initial price” of the management operations

(Set(CriteriaList), Set(DiscountRate), Get(DiscountRate)) are identified. Coming

back to the control dependency graph (Figure 4.1), ”choose supplier” is control de-

pendent on node 3. Thus, an ”OR-split” gateway is added to the management pro-

cess. By checking the non dependencies between both activities ”Choose supplier”



Connecting sub-processes 69

and ”Compute initial price”, an ”Or-join” gateway is added to the management pro-

cess. Then, based on the correspending unique numbers, we determine the order

of the management operations and we add links. Figure 3.1 depicts the resulting

management process.

Conclusion

In this chapter, we answer the following reseach question raised in Section 3.1: How to

modify service properties and which order to follow to compose management opera-

tions? To do so, we defined three main phases for automatically compose management

operations based on the semantic model and the dependency analysis of the managed

process. The first phase consists in building sub-rocesses based on Environment-

Service relationships. The second phase builds subprocesses based on the Service-

Service relationships. Finally, the third phase connects the resulting sub-processes

based on both the structure of the managed process and semantic description of

service properties and events.

To validate our work, we implemented a framework that monitors and configures

a given managed process. We also performed experiments using not only the run-

ning example but also BPMN control flow patterns. Details on implementation and

experiments are presented in Chapter 6 and Chapter 8, respectively.



70 Management process generation

Algorithm 10 ConnectSP(Process Graph PG, Managing Graph MG)
Require: Managing Graph MG, Process Graph PG
Ensure: Managing Graph MG
1: HashMap Subprocesses <serviceproperty, subprocess>
2: for all s in Subprocess do
3: String serviceproperty ←− s.getKey()
4: String containerType = FindContainerRelationships(serviceproperty)
5: List L = MemebersOfContainerServiceProperty(container)
6: for all serviceprop in L do
7: Subprocesssubprocess←− s.get(serviceprop)
8: String connector=chooseConnector(containerType)
9: V3(MG)←− V3(MG) ∪ {(′g′, connector)}

10: end for
11: end for
12: for all v ∈ V3(MG) do
13: if (S(v) = ∅ ∧MG.τ3(v) =′ a′) ∨ (T (v) = ∅ ∧MG.τ3(v) =′ a′) then
14: Find v1 in V1(PG) such that v1.p.concept = MG.θ3(v)
15: v2 ←− searchControldependencies(CDG, v1)
16: if PG.ω1((v1, v2)) = ”commoncontrol − dependency” then
17: V3(MG)←− V3(MG) ∪ {(′g′, ”OR− Split”)}
18: E3(MG)←− E3(MG) ∪ {((′g′, ”OR− Split”), PG.θ1(v1)}
19: end if
20: Map←−Map ∪ (v1, v2)
21: end if
22: end for
23: if

⋂
{Map(i)} = ∅ then

24: V3(MG)←− V3(MG) ∪ {(′g′, ”OR− Join”)}
25: E3(MG)←− E3(MG) ∪ {PG.θ1(v1), (′g′, ”OR− Join”)}
26: E3(MG)←− E3(MG) ∪ {(′g′, ”OR− Split”), (′g′, ”OR− Join”)}
27: end if
28: precedence(PG, n1, n2)
29: V3(MG)←− V3(MG) ∪ {((”e”, ”Startevent”), (”e”, ”Endevent”))}
30: for all v ∈ V3(MG) do
31: if S(v) = ∅ then
32: E3(MG)←− E3(MG) ∪ {((”e”, ”Startevent”),MG.θ3(v))}
33: end if
34: if T (v) = ∅ then
35: E3(MG)←− E3(MG) ∪ {(MG.θ3(v), (”e”, ”Endevent”))}
36: end if
37: end for
38: return MG



Part III

Implementation and evaluation

71





Chapter 6

Implementation

Introduction

To test the feasibility of our approach, we implemented a Business Environment-

Aware Management Framework BEAM4SBP 1. In the following subsections, we start

by presenting an overview of the BEAM4SBP architecture. Then, we present the

Dependency Analysis Tool (DAT), plug-in of BEAM4SBP framework. Afterwards,

we present the integration of BEAM4SBP into the Activiti process engine.

6.1 The BEAM4SBP framework

BEAM4SBP is a java library that enables to generate a management process con-

nected to the managed business process allowing for its monitoring and configuration.

Given the purchase order process (Figure. 1.3) and the purchase order ontology (Fig-

ure. 3.3), BEAM4SBP outputs the expected management process to connect to the

purchase order process (Figure. 3.1). In the following, we present the framework’s

architecture.

As shown in Figure. 6.1, the architecture of BEAM4SBP is composed of four main

components: (1) Process Graph Generator (2) Dependency Graph Generator (3) Jena

module (4) Managing Graph Generator.

The first component involves a BPMN Parser developed to enable the process

graph creation and takes as input a valid BPMN process (Section 3.2). It is developed

using EMF [81] to generate a Java Model for the BPMN 2.0 specification described

in XSD files. Indeed, EMF can easily generate a parser for any language specifica-

tion given its meta-model. Based on the BPMN java model, we extract events and

tasks. The extracted information are used to create the process graph (Definition. 2,

Chapter 3) based on the Jgrapht java library [82].

This latter represents the input of the Dependency Graph Generator component

which outputs its corresponding dependency graph (Figure. 4.4) allowing to get the

1BEAM4SBP can be found at http://www-inf.int-evry.fr/SIMBAD/tools/BEAM4SBP0.2/

Framework.

73



74 Implementation

Figure 6.1: Business environment-aware management framework for SBPs.

explicit dependencies between activities. This component is also based on the Jgrapht

library. It is implemented as a plug-in of BEAM4SBP (see Section 6.3).

The resulting dependency graph and the Jena module represent the inputs of the

Algorithm 5 implemented by the Managing Graph Generator. This latter module

outputs a managing graph representing the management process model (Section 3.2).

The Jena Module implements the procedures FindEvents and FindSourceofDepend-

sOn called, respectively, in Algorithm 6 and Algorithm 7.

The resulting managing graph is translated into a process description with flow

nodes by the Management Process Generator module. Finally, the BPMN Writer

outputs a BPMN file connecting the management process to the managed business

process (Figure 6.2).

6.2 The Dependency Analysis Tool (DAT)

In this section, we present the Dependency Analysis Tool (DAT) 2 which implements

the Dependency graph Generator component depicted in Figure 6.1. We start by

giving an overview of the DAT’s architecture (Section 6.2.1). Then, we present its

main functionalities (Section 6.2.2).

2DAT can be found at http://www-inf.int-evry.fr/SIMBAD/tools/DAT.



The Dependency Analysis Tool (DAT) 75

F
ig

u
re

6.
2:

T
h

e
ge

n
er

at
ed

B
P

M
N

fi
le

.



76 Implementation

6.2.1 Architecture overview

DAT is a java library aiming at generating a dependency graph for a given business

process. Given the BPMN business process, the DAT outputs the dependency graph

shown in Figure. 4.4. In the following, we present the framework’s architecture.

The architecture of DAT comprises six main modules: (1) Parser, (2) Process Graph

Generator, (3) Def-use Graph Generator, (4) Data Dependency Graph Generator, (5)

Control Dependency Graph Generator, (6) Dependency Graph Generator.

Figure 6.3: Dependency Analysis Tool (DAT) Architecture.

The first module implements a Parser taking as input a well formed executable

business process. The extracted information are used to create the process graph

as well as the Def-use graph based on the Jgrapht java library [82]. In this work,

we developed a BPMN parser. BPMN processes are syntactically verified under Ac-

tiviti 5.12 process engine [6]. The BPMN file purchaseorderprocess.bpmn20.xml as

well as a tutorial for creating executable BPMN processes are provided in the tab

DOWNLOADS of the DAT’s web site.

The Process Graph Generation module generates the process graph based on the

parsing results. In case of BPMN processes, the extracted information are events,

tasks, gateways, etc. The process graph involves event, gateway and task nodes (e.g.

(’e’, ”startevent”), (’e’, ”AND-split”)) (see Figure. 3.4).

The process graph represents the input of the Control dependency graph Gener-

ator module and outputs a control dependency graph allowing to get the explicit

dependencies between activities. This module implements Algorithm 1 and is also



Integrating BEAM4SBP into Activiti 77

based on the Jgrapht library. The resulting dependency graph involves labelled edges

representing the edge type: ”Common control dependency”, ”Parallel dependency”,

”Synchronized dependency”. We extended the Jgrapht library by defining labelled

edges inspiring from weighted edges. The identification of common control depen-

dencies is done with three modules Compte Post dominators, PDT generator and

Compute S, L and Marked that implements Algorithm 2 and Algorithm 5.

The third module outputs the Def-use graph which is created based on the ex-

tracted input/output of activities as well as the process graph. The created Def-use

Graph correlated with the process graph represents the input of the Data Dependency

Graph Generator module. This latter implements Algorithm 4.

6.2.2 DAT’s functionalities

The framework provides two main functionalies aiming at identifying (1) data and

control dependencies of one activity against all existing ones and particularly (2)

dependencies existing between two given activities.

Dependencies of an activity: Given the dependency graph, control and data

dependencies relationships of one activity can be determined. In fact the framework

takes as input an activity and outputs its different data and control dependencies.

This functionality can be used in slicing programs [68] as well as managing SBPs [83].

Dependencies between two given activities: Introducing two activities,

DAT provides control and data dependencies between them. This functionality can

be used in modeling and managing business processes [83].

6.3 Integrating BEAM4SBP into Activiti

BEAM4SBP is generic and may be integrated with any process engine developed in

Java (e.g. Activiti, jBPM, etc.). In order to test the resulting management pro-

cess and the configuration at run-time of the managed process, we integrated the

BEAM4SBP framework as a plug-in in the Activiti business process engine [6].

In the subsequent subsections, we present the Activiti engine, the integration as

well as a scenario of the process configuration.

6.3.1 Activiti Engine

Activiti [6] is a framework that provides an environment for designing, implementing,

deploying and running processes described in BPMN 2.0. It is an open source project

distributed under the Apache license. Activiti is written in java; hence its core is a

super-fast and rock-solid BPMN 2.0 process engine. The project of Activiti is funded

by Alfresco and established by jBPM founder Tom Baeyens [84].



78 Implementation

Figure 6.4 shows a general overview of the Activiti components which make the

whole framework.

 |P a g e  34   
 

4.3. Activiti Engine 

Activiti [37] is a framework that provides an environment for designing, implementing and 

running processes described in BPMN 2.0.  It is an open source project distributed under the 

Apache license. One of its strengths is that it is written in java; hence its core is a super-fast and 

rock-solid BPMN 2.0 process engine. The project of Activiti is funded by Alfresco and 

established by jBPM founder Tom Baeyens [36]. 

Figure 2 shows a general overview of the Activiti components which make the whole 

framework. (The figure is adopted from [41]) 

 

Figure 2: Activiti components 

As shown in Figure 2, Activiti is divided into different components. Activiti Modeler, Activiti 

Designer and Activiti Kickstart are applied to model BPMN 2.0 processes. For the management 

part, it is represented by Activiti Explorer and Activiti Rest. In the middle, in the runtime part, 

there is Activiti Engine which is the core component of the Activiti project. It performs the 

process engine functions [36] such as deploying the business processes, starting instances, 

creating and executing workflow tasks. 

In our work, the BEAM4SBP is accessible via Activiti Explorer as it provides an easy-to-use web 

interface. By definition, Activiti Explorer is a web-based application that can be simply used for 

various tasks in conjunction with Activiti Engine [36]. It is destined to both technical and non-

technical persons. From its interface, we can model a BPMN 2.0 process through the Activiti 

Modeler. We can also, deploy and run business processes thanks to the Activiti Engine.  

Technically, the Activiti Explorer is a war file that should be deployed in a web server. So, we 

select the Apache Tomcat [48] and it becomes accessed by using a web browser through: 

http://localhost:8080/activiti-explorer. 

Figure 6.4: Activiti components [6].

As shown in Figure 6.4, Activiti is divided into three different parts. Activiti

Modeler, Activiti Designer and Activiti Kickstart compose the modeling part applied

to design BPMN 2.0 processes. The management part consists of Activiti Explorer

and Activiti Rest. While, the runtime part comprises the Activiti Engine which is the

core component of the Activiti project. It performs the process engine functions [84]

such as deploying the business processes, starting instances, creating and executing

workflow tasks.

Our BEAM4SBP framework will be accessible via Activiti Explorer as it provides

an easy-to-use web interface. Activiti Explorer is a web-based application that can

be simply used for various tasks in conjunction with Activiti Engine. It is developed

to both technical and non-technical users. On one hand, they can model BPMN 2.0

processes through the Activiti Modeler. On the other hand, they can deploy and run

business processes thanks to the core component Activiti Engine.

Technically, the Activiti Explorer is a war file that can be deployed in a web server

such as Apache Tomcat [85]. Then, it is accessible through the following address:

http://localhost:8080/activiti-explorer.

6.3.2 The integration

First and foremost, we conducted a deep study of the source code of Activiti Explorer.

Then, we pointed out the files to be modified. The major challenge we encountered

was keeping the proper functioning of Activiti Explorer since some files have been

either changed or added.

In order to integrate BEAM4SBP into Activiti, we need the following software to

be installed:



Integrating BEAM4SBP into Activiti 79

• Eclipse [86]: is an integrated development environment (IDE). It is an extensible

plugin system for adapting the applications.

• The plugin m2eclipse [87]: manages Maven projects, executes Maven builds

via the Eclipse interface, and interacts with Maven repositories. It makes the

development easier with Eclipse IDE.

• Source code of Activiti: is downloadable from the following address: https:

//github.com/Activiti/Activiti/releases

• Apache Maven [88]: is a software project management and comprehension tool.

Based on the concept of a project object model (POM), Maven can manage a

project’s build, reporting and documentation from a central piece of informa-

tion.

• Apache Ant [89]: is a Java library and command-line tool whose mission is to

drive processes described in build files as targets and extension points dependent

upon each other. The main known usage of Ant is the build of Java applications.

• Apache Tomcat [85]: is an open source web server and servlet container devel-

oped by the Apache Software Foundation (ASF). It implements the Java Servlet

and JavaServer Pages technologies.

Details of the integration are described in a technical report for both developers

and users [90].

After having accomplished the integration, we generate a new war file for Activiti

Explorer called ”activiti-explorerM.war” including the BEAM4SBP framework. It

can be downloaded from the following address: http://www-inf.int-evry.fr/

SIMBAD/tools/BEAM4SBP0.2/Integration/download.html.

The user has to copy this file into the webapps directory of Tomcat server and run

the startup.bat from the bin folder. When Tomcat is started, Activiti Explorer be-

comes accessible via this new URL: http://localhost:8080/activiti-explorerM.

Then, the user logs in with Kermit/Kermit.

After clicking on the ”Manage” menu, the user should select the third sub-menu

item ”Upload with Business Management” from the ”Deployments” menu bar (See

Figure 6.5).

For example, supposing the file ”PurchaseOrderProcess.bpmn20.xml” is uploaded.

The purchase Order process is then deployed as shown in Figure 6.6.

At this step, instead of deploying this process lonely, the selected file will be

the input of the plug-in BEAM4SBP in order to generate the management process.

The output file of the plug-in is called ”sortie.bpmn20.xml” and includes the initial



80 Implementation

 

Figure 6.5: Upload with Business Management.

business process together with the management process. Then, this output file will

be deployed via Activiti Engine.

As depicted in Figure 6.7, in the ”Process Definitions” side, there are two process

”id” which represent, respectively, the managed process and the management process.

Finally, the user can run these processes through ”Start Process” in the ”Pro-

cesses” menu.

For more details, we developed a web site including informations about the BEAM4SBP,

the required tools and some instructions of how to use it. Also, we provide a demon-

stration video which could be found via this address: http://www-inf.int-evry.

fr/SIMBAD/tools/BEAM4SBP0.2/Integration/demo.html

6.3.3 A scenario of the process configuration

The generated management process includes timer events and catch message events

(Figure. 3.1). However, while deploying this process into Activiti, we noticed that

its current versions have not supported catch message events, yet. Hence, we replace

the catch message event by a catch signal event and a service task reading e-mail in

order to take into account the new values of the service properties. We modeled the

business environment as a SBP deployed in turn in the Activiti engine. The business

environment consists of a service task sending e-mails and signals to alert and throw

data to the management process.

The business environment is then deployed and started sending signals and e-

mails. The management process catches the corresponding signal triggering a business

environment event and reads an email containing the value of the event. A demo and

a real test can be found, respectively, in [91] and [92].

Conclusion

This chapter was dedicated to the implementation and validation of our approach of

business environment-aware management. We started by implementing the BEAM4SBP

framework executing the management process generation algorithms presented in



Integrating BEAM4SBP into Activiti 81

F
ig

u
re

6.
6:

P
u

rc
h

as
e

or
d

er
p

ro
ce

ss
.



82 Implementation

 

 

Figure 6.7: Deployment of the output file.

Chapter 5. Then, we implemented the DAT (Dependency Analysis Tool) plug-in for

BEAM4SBP. DAT outputs the dependency graph of the managed process. It imple-

ments algorithms introduced in Chapter 4. The whole framework is then integrated

into the Activiti business process engine. As a result, the BEAM4SBP framework

becomes accessible via the Activiti Explorer interface.

Doing so, we prepared the test bed for testing our approach. In order to assess the

efficiency and flexibility of our approach compared to the existing BEAM approaches,

we will prepare their specific execution environments in Chapter 8. In the next

chapter, we will assess these BEAM aproaches qualitatively.



Chapter 7

Qualitative assessment

Introduction

In Chapter 3, we presented our approach for business environement aware manage-

ment. We used an upper management ontology. In this chapter, we aim to assess

qualitatively our approach compared to the existing BEAM approaches presented in

Chapter 2. Indeed, we assess the expressiveness of each approach with respect to

the real world interactions. Each approach is based on a modeling technique (e.g.

business processes (BPs), business rules (BRs), etc.). The expressiveness evaluation

of a modeling technique is handled based on a representation theory. In the following

sections, we present the adopted representation theory. Then, we detail the adopted

evaluation methodology.

7.1 The BWW representation theory

According to zur Muehlen and Indulska [39], a representation theory can be used as a

benchmark to make predictions about the capabilities of a grammar to provide com-

plete and clear representations of real world interactions. In this study [39], authors

studied the following theories: Chisholm’s ontology [93], the Enterprise ontology [94]

and the Bunge-Wand-Weber ontology [95, 96].

They argued that the Bunge-Wand-Weber (BWW) is more adapted for Informa-

tion System (IS) domain. Indeed, the use of BWW is motivated and justified by:

(1) its considerable level of maturity [97], (2) its set of constructs that are consid-

ered as necessary and able to accurately describe the structure and behavior of the

real world, and (3) its success in the evaluation of over thirty analysis projects that

spanned various representational grammars [98]. Indeed, many of the most popular

modeling techniques have now been discussed in the light of their comparability with

respect to the BWW models [98]. Including but not limited to, we mention: Unified

Modeling Language (UML)([99]), Merise [97], Petri Nets [100], ebXML Business Pro-

cess Specification Schema (ebXML BPSS) [98], Web Service Choreography Interface

(WSCI) [98], etc.

83



84 Qualitative assessment

As for us, we use the BWW representation model (BWW model for short) to

evaluate the expressiveness of modeling techniques used in the mentioned BEAM

approaches (see Section 2.1). The BWW model defines a set of constructs which

can be clustered into four main groups represented by bold rectangles in Figure 7.1:

things and their properties, states of things, events and transformations occurring on

things, and systems structured around things.

Our objective is not to evaluate a management approach by comparing it to

BWW independently of other approaches. Our objective is rather to compare three

management approaches that use different modeling languages. To do so, we should

map the concepts of these languages into a common ontology. Since the concepts

of the considered approaches are not close enough to each other, we have to use a

rather generic ontology to allow such mapping and make the comparison possible

and feasible. In addition to that, BWW was used successfully for this purpose and

particularly to compare BPMN and rule-based languages [39]. Besides, results of

many BWW-based studies indicate that the model is good enough to be considered

as basis to study the representational capabilities of conceptual modeling languages

(for example, see [101, 102, 103, 104] among others).

7.2 The adopted evaluation methodology

In order to determine the expressive power of BEAM approaches, our evaluation

strategy consists of three phases. The first phase is the representational analysis of

each modeling technique used in the imperative and declarative BEAM approaches

presented in Chapter 2, Section 2.1. It consists in comparing the constructs of the

BWW model with the constructs of the considered modeling languages. The second

phase compares between the representation analyses of the adopted modeling tech-

niques (i.e. BPs, BRs and the Upper management ontology (UMO)). Based on the

obtained results, the third phase establishes an overlap analysis consisting in evaluat-

ing the conbination of modeling techniques used in declarative and imperative BEAM

approaches. Hence, we evaluate the expressiveness of hybrid BEAM approaches in-

troduced in Section 2.1.

7.2.1 Representational analysis

The aim of this step is to provide a rigorous evaluation of the expressiveness of a

modeling technique (e.g. BPMN, SBVR, UMO, etc.), used in imperative or declar-

ative approaches, with respect to the BWW model. To achieve this goal, we follow

the reference methodology proposed in [105] providing strategic guidelines. These

guidelines make more efficient the analysis procedure and increase objectivity.

As stated by Wand and Weber [95], two main evaluation criteria may occur after



The adopted evaluation methodology 85

a representational anaysis, ontological completeness and ontological clarity. On one

hand, the ontological completeness is violated if there exists a construct deficit. The

construct deficit happens once one construct in the BWW model does not have any

correspondence construct in the evaluated modeling technique. It represents one

to zero mapping (1:0). On the other hand, the ontological clarity is determined

by identifying the overload, redundancy and excess construct rates. The construct

overload occurs when two or more distinct constructs of the BWW model can be

compared to the same construct of the evaluated modeling technique. In other words,

one construct of the modeling technique can be used to represent many constructs of

the BWW model. It can be described by (m:1) relationship mapping. The construct

redundancy results when one construct of the BWW model can be compared to two

or more distinct constructs of the evaluated modeling technique. This means that

many constructs of the modeling technique can be used to represent one construct of

the BWW model. It depicts (1:m) relationship mapping. The construct excess results

when the BWW model has no constructs that can be compared to some constructs

of the evaluated modeling technique. It represents zero to one mapping (0:1).

In order to compare a modeling language to BWW model, the Rosemann’s method-

ology [105] consists in representing the modeling language and BWW model in meta-

models using a common meta-language (e.g. UML). This is done in order to overcome

the lack of understandability, lack of comparability, lack of guidance, lack of objec-

tivity, etc. Hence, by using a common meta-language, we are able to easily make

comparison between models constructs while increasing the rigor, the overall objec-

tivity and the level of detail of the representational analysis.

Figure 7.1 shows a meta-model of the BWW model [7]. It expresses the complete

representation model in the UML class diagram notation.

Based on both meta-models of BWW and the evaluated modeling technique, two

mappings must be created [95]:

• Representation mapping: maps each construct in the BWW model to its

corresponding construct in the evaluated modeling technique.

• Interpretation mapping: requires mapping each construct in the evaluated

modeling technique to its corresponding construct in the BWW model.

In order to evaluate the declarative and imperative approaches presented in Sec-

tion 2.1, we consider 7 corresponding modeling languages: 5 business rule modeling

languages (R2ML, SRML, PRR, SBVR, SWRL), the BPMN business process mod-

eling language and the upper management ontology (UMO).

In the following, we exemplify the representational analysis by considering UMO

as the evaluated modeling technique. We create a meta-model of the UMO using the

UML class diagram to facilitate the mapping (Figure 7.2). This meta-model is then

mapped with the BWW meta-model shown in Figure 7.1.



86 Qualitative assessment

F
ig
u
re

7.
1
:
B
W

W
m
et
a
-m

o
d
el

[7
].



The adopted evaluation methodology 87

 

F
ig

u
re

7.
2:

U
M

O
m

et
a-

m
o
d

el
.



88 Qualitative assessment

According to the two mappings carried out above, Table 7.1 summarizes our results

of ontological completeness and clarity for UMO expressed as rates. The results of

the mappings are as follows: the construct deficit of the UMO is 57.15% which means

that its completeness represents 42.85%. Indeed, 15 constructs among 28 of BWW

are in UMO. These constructs are enumerated in the grey column of Table 7.2. The

correspondence between BWW model constructs and the constructs in UMO are

rated as supported (+) or no supported (–). For the ontological clarity, despite the

high value of the construct excess (64.7%, i.e. 18 constructs in UMO over 28 do not

exist in BWW meta-model), it becomes balanced thanks to the low value of construct

redundancy (11.76%, i.e. 3 costructs in BWW are represented by many constructs

in UMO meta-model) and overload (35.29%, 9 constructs among 28 of BWW are

compared to one construct in UMO). Overall, these results show that the UMO has

an acceptable ontological expressiveness.

By the same way, the representational analyses of the considered modeling tech-

niques are handled. The mapping result is represented in Table 7.2. The correspon-

dence between BWW model constructs and the constructs of the evaluated technique

are rated as supported (+) or no supported (–). In the following subsection, we com-

pare these representational analyses in order to identify the BEAM approach with

the highest expressive power.

Ontological Completeness Ontological Clarity

Deficiency Deficit Redundancy Overload Excess

Rate 57.15% 11.76% 35.29% 64.7%

Table 7.1: Results of ontological completeness and clarity of the UMO.

7.2.2 Comparison of representational analyses of adopted modeling
techniques

In this section, we compare the representational analysis of adopted modeling tech-

niques (i.e. BPs, BRs and UMO). The comparison is based on previous representation

analyses conducted by different researchers. Most notably, we select the representa-

tional analyses of SRML 2001, PRR v1.0 and SBVR 2006 from [39]. The techniques

R2ML v0.5, SWRL v1.0 and BPMN v2.0 are adopted from [106]. Then, we compare

the findings of UMO to those of business rule languages and business process lan-

guages. This comparison is handled with respect to the BWW model (see Table 7.2).

Based on the results given in Table 7.2, BPMN v2.0 offers the highest completeness

value with a score of 19/28 such that 28 represents the number of constructs of BWW

(67.85%). In the second place, the UMO’s score is equal to 12/28 (42.85%) followed



The adopted evaluation methodology 89

by R2ML v0.5 and SRML 2001 with the same score of 10/28 (35.71%). After them,

PRR v1.0 and SBVR 2006 cover only of 7/28 (25%), and finally SWRL v1.0 with the

lowest score (21.42%) with respect to the analyzed languages.

Generally, all the representational analyses depicted in Table 7.2 on the following

page have scores which are so far away from the total which imply their incomplete-

ness. For this reason, we resort to the next phase consisting in the overlap analysis

(see Section 7.2.3).



90 Qualitative assessment

R2ML
v0.5

SRML
2001

PRR
v1.0

SBVR
2006

SWRL
v1.0

UMO BPMN
v2.0

THING + + – + + + +

PROPERTY + + + + + + +

CLASS + – + + + + +

KIND – – – – – – +

STATE + + – – – + –

CONCEIVABLE
STATE SPACE

– + – – + + –

LAWFUL STATE
SPACE

– + + – – – –

STATE LAW + + + + – – –

STABLE STATE – – – – – + –

UNSTABLE
STATE

– – – – – + –

HISTORY – – – – – – +

EVENT + + – – – + +

CONCEIVABLE
EVENT SPACE

+ – – – – + –

LAWFUL EVENT
SPACE

+ – – – – – –

EXTERNAL
EVENT

– – – – – + +

INTERNAL
EVENT

– – – – – + +

WELL DEFINED
EVENT

– – – – – – +

POORLY DE-
FINED EVENT

– – – – – – +

TRANSFORMATION + + – – + + +

LAWFUL TRANS-
FORMATION

+ + + – + – +

COUPLING – – – – – – +

SYSTEM – + + + – – +

SYSTEM ENVI-
RONMENT

– – – – – – +

SYSTEM COMPO-
SITION

– – + + – – +

SYSTEM DECOM-
POSITION

– – – + – – +

SYSTEM STRUC-
TURE

– – – – – – –

SUBSYSTEM – – – – – – +

LEVEL STRUC-
TURE

– – – – – – +

SCORE /28 10 10 7 7 6 15 19

COMPLETENESS
RATE

35.71% 35.71% 25% 25% 21.42% 42.85% 67.85%

Table 7.2: Summary of the representation analyses of R2ML, SRML, PRR, SBVR,
SWRL, UMO and BPMN



The adopted evaluation methodology 91

7.2.3 Overlap Analysis

In case none of the studied languages provides a complete representation capability

of the real world, the overlap analysis is performed [106]. In the previous section, we

argued that declarative and imperative approaches are not sufficient to express the

real world interactions. In this phase, our goal is to evaluate the expressiveness of

hybrid approaches presented in Section 2.1. We aim to identify the best combination

of business process modeling language, business rule modeling language and the upper

management ontology. We select BPMN v2.0 as a business process modeling language.

We combine BPMN with the 5 business rule modeling languages as well as UMO

presented in Table 7.2.

According to [107], two important characteristics are useful for evaluating these

combinations, with respect to the BWW model:

• Maximum Ontological Completeness (MOC): represents the maximum

ontological expressiveness afforded by a combination of modeling languagees.

• Minimum Ontological Overlap (MOO): occurs when a construct of BWW

model has a correspondence in both modeling languages that make the combi-

nation.

MOC and MOO are computed based on symmetric difference, intersection and

relative compliment as defined in [39].

BPMN v2.0
+

R2ML
v0.5

SRML
2001

PRR
v1.0

SBVR
2006

SWRL
v1.0

UMO

MOC 82.14% 82.14% 75% 71.42% 71.42% 85.71%

MOO 21.42% 21.42% 17.85% 21.42% 17.85% 25%

Table 7.3: Comparison of overlap analyses results

Based on the results shown in Table 7.3, the combination of BPMN v2.0 with

UMO offers the highest ontological completeness with a score of 24 from 28; that is

85.71%. Even though its MOO is the highest value, it remains quite comparable with

respect to the other combinations. Indeed, MOC is proportional to MOO.

Figure. 7.3 shows a synthetic histogram of the best modeling techniques in each

BEAM approach, according to their scores of completeness with respect to the BWW

model. The results shown herein are extracted from Tables 7.2 and 7.3.



92 Qualitative assessment

Figure 7.3: Completeness score of the assessed BEAM approaches.

According to the results shown in Figure. 7.3, the hybrid approaches offer the

highest scores. Then, the imperative approach followed by the declarative approach.

Conclusion

In this chapter, we conducted a qualitative evaluation comparing the expressivenes

of existing BEAM approaches. More precisely, we compare our approach to hybrid

approaches integrating business processes and business rules. Doing so, we answered

the following research question: which are more expressive the business rules or our

upper management ontology?

In the next chapter, we assessed our approach quantitatively with respect to the

presented BEAM approaches by experimenting their efficiency and studying their

flexibility.



Chapter 8

Quantitative assessment

Introduction

As companies are becoming much more involved in business environments, they hope

to become more aware of business impact of their decisions. Hence, choosing an

adequate BEAM approach to address critical business opportunities and challenges

facing companies remains arguably an awkward task. Indeed, with more competitive

markets (i.e. subdued demand, competitive pricing pressures and dynamic business

environment changes) companies must seek the efficiencies needed to protect them.

Flexibility is also fundamental to deliver high levels of customer service and satisfac-

tion. The problem with business process flexibility is that the changes required are

often unknown until the need for that change arises. Besides, companies aim to use

existing business process standards in order to be feasible in practical use.

Thereby, this chapter is dedicated to assess the efficiency and flexibility of our

approach compared to three other approaches: imperative, declarative and hybrid

approaches based on integrating rules in BPs. Although there are existing research

works in the area of variability in processes [18, 5, 11, 4, 25, 2, 3] that may be assessed

and we believe on their importance, the BEAM approaches discussed in this chapter

are complex enough in themselves to deserve separate treatment.

Our experimentation work was achieved in three stages: (8.1) preparing the test-

bed, (8.2) testing the efficiency of BEAM approaches and (8.3) studying their flexi-

bility.

8.1 Preparing the test-bed

In order to assess the BEAM approaches, a business process engine and a rule engine

are required. We are aware that the choice of these engines can influence the efficiency

values. However, we believe that this influence remains limited since it does not

radically change the ratio of comparisons between approaches. We opted for Activiti

process engine and Drools rule engine since they are available, open source and widely

used by companies [84, 108].

93



94 Quantitative assessment

On one hand, Activiti [6] is a framework that provides an environment for design-

ing, implementing and running processes described in BPMN 2.0. It is an open source

project distributed under the Apache license. On the other hand, Drools is a Busi-

ness Rules Management System (BRMS) based on forward and backward chaining

inference engine. It uses an optimized implementation of the Rete algorithm called

ReteOO (Rete algorithm for Object-Oriented systems).

Each BEAM approach requires a specific environment to be tested.

The suitable environment to test the imperative approach is a process engine.

Hence, we select the Activiti engine. We start by writing the business process in

BPMN then we deploy and execute it in Activiti. Then, we add to this process,

management actions and events in order to re-depoy and re-execute it.

For the declarative approach which is purely based on rules, we need a rule engine.

We choose the well-known Drools rule engine [109]. The project of Drools is an open

source written in Java. We use precisely Drools Workbench [110], a web application

composed of all Drools related editors, screens and services. It is equivalent to the

old Guvnor [111]. Drools Workbench includes Drools Expert (business rule engine)

and Drools Fusion (Complex Event processing features) representing an environment

to author, test and deploy rules. As shown in Figure 8.1, the rule engine applies

the rules to the facts. Hence, it takes as inputs: facts, a fact model and a set of

rules. The facts are the data records to be processed. The fact model tells the rule

engine how to interpret the facts. It contains data records as well as their setters and

getters. The rules use these facts to tell the rule engine what actions to take when

certain conditions are met. Hence, we start by creating the JAR file containing the

fact model consisting of Java classes used by rules. The JAR file is then uploaded

into the Drools Workbench. Afterwards, we create a set of rules written based on

the DRL (Drools Rule Language). Finally, we run the scenario by introducing facts

and expected rules. For example, for our running example we introduce values of

unitPrice and quantity. We also expect that the discount rule will be executed at

least once.

Finally, we test two different hybrid approaches: (i) The first one consists in

integrating business rules with business processes. Therefore, we need two engines

for running rules and processes at the same time. For this purpose, we integrate

Drools with Activiti. Doing so, we create a maven project in eclipse including the

business process written in BPMN, the fact model and the rules related to the business

rule tasks. Then, we test based on the Junit. (ii) The second one represents our

approach. We have already prepared our environment for testing our hybrid approach

by integrating the plug-in BEAM4SBP into Activiti (see Chapter 6).



Testing efficiency 95

Facts Rule engine
Actions or
outcomes

Fact Model

Business rules
Technical rules

Drools rule Language
(DRL)

POJO Deployed Package

Figure 8.1: The test environment for declarative approaches.

8.2 Testing efficiency

We characterize a given management approach as efficient when the management

overhead of the management on the process performance is limited. Consequently,

comparing the efficiency of two or more management approaches consists in comparing

their management overheads.

Hence, for each test we perform the following steps:

1. Step 1: Calculate two different execution times (t1 and t2): t1 is the execution

time of the initial BP without including the management time and t2 represents

the execution time of the whole process including the management time.

2. Step 2: Compute the Overhead using the values of t1 and t2

Overhead =t2 – t1

3. Step 3: Express the Overhead in form of percentage (Overheadp) relatively to

the whole execution time t2. The goal of this step is to provide a clear idea

about the rate of the time taken for the management.

Overheadp =
Overhead× 100

t2

In the following, we start by testing efficiency value of each BEAM approach using

the running example. Then, we compute efficiency values using control-flow BPMN

patterns.

8.2.1 Testing using the running example

The running example presented in Section 1.2 is implemented and experimented in

the four considered BEAM approaches.



96 Quantitative assessment

Figure 8.3 depicts a synthetic histogram representing the average value of overheadp
(called OverheadAV G) through running 20 tests while varying the input ”quantity”

value (we selected 5 values: 10, 30, 50, 70, 80, 90 (Figure 8.2)). It shows that the

value of the management spent in the imperative approach is equal to 9.35%, while,

the management in the declarative approach takes 45.10%. This value shows the

time-consuming problem with the declarative approach. The hybrid approaches in

which the configuration is described based on rules has an overheadp equal to 39.89%,

and the hybrid approach with a configuration based on management process has an

overheadp equal to 20.08%. The difference between these two latter values is signifi-

cant since the configuration of the second hybrid approach is described imperatively.

This leads to a better value of efficiency.

8.2.2 Testing using BPMN patterns

An obvious approach of experimentation consists in developping a set of real BPs of a

large public dataset (e.g. the dataset shared by the Business Integration Technologies

(BIT) research group at the IBM Zurich Research Laboratory 1). However, the results

based on these experimentations could be confusing since they depend on the manner

of implementation of these processes according to the four experimented approaches.

Hence, the efficiency value can come from the implementation of these processes rather

then the evaluated BEAM approaches.

As for us, we consider another way of testing these approaches based on the

following assumption: business processes can be built based on workflow patterns [80].

The result of comparision of BEAM approaches on these patterns based on their

behavior could be very close to the result of comparison of these approaches on a set

of processes which are compositions of patterns.

We have conducted 12 tests. Indeed, we experimented the three basic patterns

((1) sequence, (2) parallel split + synchronization and (3) exclusive choice + simple

merge) on the implementations of the four considered BEAM approaches based on the

purchase order ontology. In fact, these BPMN patterns are commonly used specially

with structured workflows [112]. Figure 8.4 shows results of these experimentations.

More details are given in the following web site: http://www-inf.int-evry.fr/

SIMBAD/tools/BEAM4SBP0.2/Experimentation/ontology1.html

Figure 8.4 illustrates the same shape as Figure 8.3. Indeed, the declarative ap-

proach represents always the higher overhead value: for the sequence pattern 70%,

for the parallel split and synchronization pattern 67.74%, for the exclusive choice and

simple merge 60.86%. The hybrid approach in which the configuration is described

based on rule represents the overhead values 39%, 40.65%, 36.86% respectively for the

sequence pattern, the parallel pattern and the exclusive choice pattern. Our hybrid

1http://www.research.ibm.com/labs/zurich/csc/



Testing efficiency 97

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

10
30

50
70

80
90

A
V

G

Overheadp

Q
u

an
ti

ty
 V

al
u

e 
V

ar
ia

ti
o

n

(a
) I

m
p

er
at

iv
e 

A
p

p
ro

ac
h

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

10
30

50
70

80
90

A
V

G

Overheadp

Q
u

an
ti

ty
 V

al
u

e 
V

ar
ia

ti
o

n

(b
) D

ec
la

ra
ti

ve
 A

p
p

ro
ac

h

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

10
30

50
70

80
90

A
V

G

Overheadp

Q
u

an
ti

ty
 V

al
u

e 
V

ar
ia

ti
o

n

(c
) H

yb
ri

d
 A

p
p

ro
ac

h
 : 

C
o

n
fi

gu
ra

ti
o

n
 b

as
ed

 o
n

 r
u

le
s

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

10
30

50
70

80
90

A
V

G

Overheadp

Q
u

an
ti

ty
 V

al
u

e 
V

ar
ia

ti
o

n

(d
) H

yb
ri

d
 A

p
p

ro
ac

h
: C

o
n

fi
gu

ra
ti

o
n

 b
as

ed
 o

n
m

an
ag

em
en

t p
ro

ce
ss

F
ig

u
re

8.
2:

H
is

to
gr

am
s

of
B

E
A

M
ap

p
ro

ac
h

es
.



98 Quantitative assessment

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Declarative
Approach

Hybrid Approach :
Configuration
based on rules

Hybrid Approach :
Configuration

based on
management

process

Imperative
Approach

O
ve

rh
ea

d
A

V
G

Figure 8.3: Histograms of BEAM approaches.

approach where the configuration is described by a management process has overhead

values of: 33.31% for the sequence pattern, 33.55% for the parallel split pattern and

33.39% for the exclusive choice pattern. Finally, the impearative approach represent

the best overhead values. In fact, for the sequence pattern we obtained 4%, while for

the parallel split pattern and exclusive choice pattern we get respectively 5.42% and

5.78%.

In addition to that, we conducted 12 tests based on the three basic BPMN pat-

terns mentioned above. These tests are based on the pathology ontology. More details

are given in the following web site: http://www-inf.int-evry.fr/SIMBAD/tools/

BEAM4SBP0.2/Experimentation/ontology2.html. Hence, we notice that both re-

sulting histograms based on the purchase order ontology and the pathology ontology

have similar shapes.

As a result, the lower the Overheadp value is, the more efficient the approach will

be. Therefore, as expected, the imperative approach is the most efficient one and the

declarative approach is the most time-consuming approach. The hybrid approaches

are classified between these two extremities. We recall that our hybrid approach,

describing its configuration based on the management process, represents a good

value of efficiency thanks to modeling the management process imperatively.

8.3 Studying flexibility

Flexibility is the second quantitative criterion upon which we assess the BEAM ap-

proaches. It is the ability to modify the process model at design, deployment and



Studying flexibility 99

0%

10%

20%

30%

40%

50%

60%

70%

80%

Declarative
Approach

Hybrid
Approach :

Configuration
based on rules

Hybrid
Approach :

Configuration
based on

management
process

Imperative
Approach

Sequence

Parallel Split + Synchronization

Exclusive Choice + Simple Merge

Figure 8.4: Histograms of BEAM approaches with respect to BPMN control flow
patterns.

run time. While implementing the four assessed BEAM approaches, we argue the

ascertainments summarized in Table 8.1.

Table 8.1: Flexibility results.

Declarative

approach

Hybrid approach Imperative

approachCBR CBMP

Design time + + + +

Deployment
time

+ +/- +/- –

Run time + +/- +/- –

The management in declarative approaches is made at design time, deployment

time or run time as it is based on inference on rules. Indeed, a business rule may be

added, modified or deleted at any time. Hence, declarative approaches have a high

level of flexibility.

As for the hybrid approaches where the configuration is described based on rules

(CBR), the management is implemented using rules that are integrated in some ac-

tivities (called business rule tasks) in the managed process. Then the management

consists in adding, modifying or deleting business rules in business rule tasks. After



100 Quantitative assessment

the design, this ability of modifying the management is limited to business rule tasks.

The management can affect neither non business rule tasks nor control flow in the

managed process.

Regarding the hybrid approach in which the configuration is based on a manage-

ment process (CBMP), the management consists in annotating BP using the upper

management ontology (UMO) and business (domain) ontology. Beside the design

time, in this approach, the management process is generated at deployment time. At

the run-time, it allow different scenarios of management (the different management

paths in the management process). Nevertheless, this way of management is not as

flexible as the one of declarative approaches since the management of this current ap-

proach consists in a limited set of management paths. In fact, declarative approaches

can deal with much more possibilities of rules.

In imperative approaches, the management consists in over-specifying BPs at

design time. When designed a managed process cannot be changes neither at deploy-

ment time nor at run-time.

8.4 Guidelines for choosing the adequate BEAM approach

Both efficiency experimentations and flexibility studies show that the declarative ap-

proach represents a high level of flexibility but it is very time consuming. On the

contrary, the imperative approach as intended is very efficient, however, it is very

rigid. Hence, hybrid approaches prove good opportunities in practical if conciliating

between flexibility and efficiency is a need.

We think that the choice of a BEAM approach should be based on the dependency

of the business process behavior, on one hand, and the frequency of changes in the

business environment, on the other hand.

The frequenter the change is, the higher the motivation to use a declarative ap-

proach. For example, a declarative approach would be adequate to manage social-

based business processes. In such processes, human intervenes frequently to enact

and change the behavior of processes based on the behavior of other human activ-

ities. Control flow and behaviors of activities of social business processes can be

changed frequently, which needs to adopt a declarative approach.

Contrary, an imperative approach is adopted when the business process tends to

be insensitive to the business environment change. Business processes of embedded

systems are a good example of processes where it is convenient to adopt an imperative

BEAM approach.

A hybrid approach, in which the configuration is described based on rules, is used

when the behavior of some activities could be modified, whereas the control flow

remains unchanged. It is the case of administrative processes where the control flow

is defined by law or decree and behaviors of activities depend on citizen situations.



Guidelines for choosing the adequate BEAM approach 101

Last but not least, a hybrid approach where the configuration is described by

a management process can be adopted when the management of control flow and

activities of business processes depends on business environment. It is the case of

hospital service processes where activities and control flow depend on the situation of

other hospital services and patients situations considered as business environments.

Conclusion

In this chapter, we experimented the efficiency and flexibility of our approach com-

pared to the imperative, declarative and hybrid BEAM approaches. To realize our

experimentations, we started by preparing the test bed of each BEAM approach.

The comparision of these approaches are based on a running example and control

flow BPMN patterns.

Hence, our quantitative evaluation offers to designers or system administrators,

guidelines that may help them to decide about the adequate modeling approach to

adopt for a given context or case. Indeed, we showed that there is not a best approach

that might be applied in any case and we provided guidelines to choose the suitable

approach for each case/context.



102 Quantitative assessment



Conclusion and future work
G

Conclusion

In this thesis, we proposed a novel hybrid approach for managing SBPs against highly

dynamic business environments. This approach conciliates between imperative and

declarative approaches while addressing the following issues: preserving standards

for describing SBPs and minimizing the designer efforts. Our approach consists in

generating, at deployment time, a management process for a managed BP connected

to it allowing its monitoring and configuration. The management process generation

is performed thanks to a semantic module and a control dependency analysis mod-

ule. The first module involves an upper management ontology describing relationship

between SBPs and business environments. While, the second module describes an ex-

plicit description of the managed BP by identifying control dependencies to facilitate

the organization of the whole management process. We also tested the feasibility of

our approach and experimented its efficiency and flexibility.

Indeed, meeting the market requirements within a highly dynamic business envi-

ronment remains a challenge for companies. Hence, choosing the adequate business

environment management approach represents a challenging issue. Therefore, we

handled, throughout this thesis, qualitative and quantitative evaluations of existing

types of business environment-aware management approaches. The qualitative evalu-

ation revealed the expressiveness of each approach based on the BWW representation

theory. As to the quantitative evaluation, we experimented the efficiency and stud-

ied the flexibility based on basic control-flow patterns. Furthermore, we verify the

feasibility of existing approaches in practical use by preserving or not the business

process standards. As a result, through this thesis, we argue that declarative ap-

proaches are very time consuming but are very flexible. Thus, declarative approaches

are suitable for highly frequent management changes (e.g. social based processes).

Imperative approaches, by contrast, are proved very efficient, however, they are too

rigid due to over-specifying processes at design time. It is then nearly infeasible to

change the management rules at run-time. Hence, the imperative approaches are

suitable when the business process is insensitive to the business environment (e.g.

processes of embedded systems). The evaluation, both qualitative and quantitative,

prove good opportunities for hybrid approaches in practical use. On one hand, the

hybrid approach where the configuration is described based on rules, is used in case

some activities change their behaviour by opting for business rule tasks (e.g. adminis-

trative processes). On the other hand, the hybrid approach in which the configuration

103



104 Quantitative assessment

is based on management process, is used if the behaviour of some activities as well as

the process control-flow vary (e.g. hospital service processes).

Future work

The upper management ontology details events and service properties. The manage-

ment operations are not yet detailed. Indeed, at this level, our approach involves only

getters and setters as managing operations. Thus, we plan to specify a composition

for managing operations given by the service provider. As for the experimentation,

we aim at testing other BPMN control-flow patterns. Besides, we foresee to test these

patterns based on a large ontology. As for long-term perspective, we aim at using

our approach for managing multi-tenant BPs. For a given modeled BPs having one

tenant, there is a dedicated management.



Bibliography
[1] Mohamed Boukhebouze. Gestion de changement et vérification formelle de

processus métier : une approche orientée règles. PhD thesis, L’Institut National

des Sciences Appliquées de Lyon, 2010.

[2] Milan Milanovic and Dragan Gasevic. Towards a language for rule-enhanced

business process modeling. In IEEE International Enterprise Distributed Object

Computing Conference, pages 64–73, 2009.

[3] Ran Cheng, Shazia Wasim Sadiq, and Marta Indulska. Framework for busi-

ness process and rule integration: A case of bpmn and sbvr. In International

Conference on Business Information Systems, pages 13–24, 2011.

[4] Yiwei Gong and Marijn Janssen. Creating dynamic business processes using

semantic web services and business rules. In ICEGOV, pages 249–258, 2011.

[5] Michiel Koning, Chang ai Sun, Marco Sinnema, and Paris Avgeriou. Vxbpel:

Supporting variability for web services in bpel. Information & Software Tech-

nology, 51(2):258–269, 2009.

[6] Activiti. http://www.activiti.org/.

[7] Ludmila Penicina. Choosing a BPMN 2.0 Compatible Upper Ontology. In

ThinkMind // eKNOW 2013, The Fifth International Conference on Informa-

tion, Process, and Knowledge Management, pages 89–96, 2013.

[8] Patrick Feldbacher, Peter Suppan, Christina Schweiger, and Robert Singer.

Business process management: A survey among small and medium sized enter-

prises. In S-BPM ONE - Learning by Doing - Doing by Learning - International

Conference, S-BPM ONE 2011, pages 296–312, 2011.

[9] Rafael Aschoff and Andrea Zisman. Qos-driven proactive adaptation of service

composition. In ICSOC, pages 421–435, 2011.

[10] Claudio Bartolini and Cesare Stefanelli. Business-driven it management. In

Integrated Network Management, pages 964–969, 2011.

[11] Bang Ouyang, Farong Zhong, and Huan Liu. An eca-based control-rule for-

malism for the bpel process modularization. Procedia Environmental Sciences,

11(1):511–517, 2011.

[12] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Mathias Weske.

Business process management: A survey. In International Conference Business

Process Management, pages 1–12, 2003.

105



106 Bibliography

[13] Dimitris Karagiannis. Business process management: A holistic management

approach. In Information Systems: Methods, Models, and Applications - 4th

International United Information Systems Conference, pages 1–12, 2012.

[14] Zibin Zheng. QoS management of web services. PhD thesis, The Chinese Uni-

versity of Hong Kong, 2011.

[15] Branimir Wetzstein, Zhilei Ma, and Frank Leymann. Towards measuring key

performance indicators of semantic business processes. In BIS, pages 227–238,

2008.

[16] Adela del Ŕıo-Ortega, Manuel Resinas, and Antonio Ruiz Cortés. Defining

process performance indicators: An ontological approach. In OTM Conferences

(1), pages 555–572, 2010.

[17] Mohamed Boukhebouze, Youssef Amghar, Aı̈cha-Nabila Benharkat, and Za-

karia Maamar. A rule-based modeling for the description of flexible and self-

healing business processes. In ADBIS, pages 15–27, 2009.

[18] Florian Gottschalk, Wil M. P. van der Aalst, Monique H. Jansen-Vullers, and

Marcello La Rosa. Configurable workflow models. Int. J. Cooperative Inf. Syst.,

17(2):177–221, 2008.

[19] Carlo Ghezzi and Sam Guinea. Run-time monitoring in service-oriented archi-

tectures. In Luciano Baresi and Elisabetta Di Nitto, editors, Test and Analysis

of Web Services, pages 237–264. Springer, 2007.

[20] Fabio Casati, Eric Shan, Umeshwar Dayal, and Ming-Chien Shan. Business-

oriented management of web services. Commun. ACM, 46(10):55–60, 2003.

[21] Konstantinos Bratanis, Dimitris Dranidis, and Anthony J. H. Simons. Towards

run-time monitoring of web services conformance to business-level agreements.

In TAIC PART, pages 203–206, 2010.

[22] Hans Weigand, Willem-Jan van den Heuvel, and Marcel Hiel. Business policy

compliance in service-oriented systems. Inf. Syst., 36(4):791–807, 2011.

[23] Business process model and notation 2.0.

http://www.omg.org/spec/BPMN/2.0/.

[24] Bpel: Who needs it anyway?, 2009. http://www.bpm.com/bpel-who-needs-

it.html.

[25] Anis Charfi, Tom Dinkelaker, and Mira Mezini. A plug-in architecture for self-

adaptive web service compositions. In ICWS, pages 35–42, 2009.



Bibliography 107

[26] The Workflow Management Coalition. Workflow management coalition termi-

nology & glossary, Février 1999.

[27] Riadh Ben Halima, Emna Fki, Khalil Drira, and Mohamed Jmaiel. A large-

scale monitoring and measurement campaign for web services-based applica-

tions. Concurrency and Computation: Practice and Experience, 22(10):1207–

1222, 2010.

[28] XPDL, 2009. http://www.xpdl.org/.

[29] OMG. Business Process Modeling Notation, Final Adopted Specification, 2014.

http://www.omg.org/spec/BPMN/2.0/PDF/formal-11-01-03.pdf.

[30] Nick Russell, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Petia

Wohed. On the suitability of UML 2.0 activity diagrams for business process

modelling. In Conceptual Modelling 2006, Third Asia-Pacific Conference on

Conceptual Modelling (APCCM 2005), Hobart, Tasmania, Australia, January

16-19 2006, pages 95–104, 2006.

[31] Workflow Management Coalition Specification. Process definition interface –

xml process definition language. Technical report, August 2012.

[32] Wil M. P. van der Aalst, Mathias Weske, and Dolf Grünbauer. Case handling: a

new paradigm for business process support. Data Knowl. Eng., 53(2):129–162,

2005.

[33] Marlon Dumas, Wil M. P. van der Aalst, and Arthur H. M. ter Hofstede. The

FLOWer Case-Handling Approach: Beyond Workflow Management, pages 363–

395. John Wiley & Sons, Inc., 2005.

[34] Maja Pesic and Wil M. P. van der Aalst. A Declarative Approach for Flexible

Business Processes Management. In Proceedings of the 2006 International Con-

ference on Business Process Management Workshops, BPM’06, pages 169–180.

Springer, 2006.

[35] Stijn Goedertier and Jan Vanthienen. Designing compliant business processes

with obligations and permissions. In Business Process Management Workshops,

BPM 2006 International Workshops, BPD, BPI, ENEI, GPWW, DPM, seman-

tics4ws, Vienna, Austria, September 4-7, 2006, Proceedings, pages 5–14, 2006.

[36] The Event-driven Process Chain, pages 105–125. Springer London, London,

2007.



108 Bibliography

[37] David Hay and Keri Anderson Healy. Defining Business Rules - What

Are They Really?. http://www.businessrulesgroup.org/first_paper/

BRG-whatisBR_3ed.pdf, 2000.

[38] Gerd Wagner. Rule Modeling and Markup. In Proceedings of the First Inter-

national Conference on Reasoning Web, pages 251–274. Springer, 2005.

[39] Michael zur Muehlen and Marta Indulska. Modeling Languages for Business

Processes and Business Rules: A Representational Analysis. Information Sys-

tems, 35(4):379–390, 2010.

[40] R2ML. The REWERSE I1 Rule Markup Language Working Group I1. http:

//oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=R2ML.

[41] SRML. Simple Rule Markup Language. http://xml.coverpages.org/srml.

html.

[42] OMG. Production Rule Representations. http://www.omg.org/spec/PRR/1.

0/PDF.

[43] SBVR. Semantics of Business vocabulary and Rules. http://www.omg.org/

spec/SBVR/1.2/PDF/.

[44] Chi P. T. Tran and Hanh Huu Hoang. A Combination of Business Rule

and Modeling Languages for Semantic Business Processes Modeling. In KES-

AMSTA, pages 444–453, 2013.

[45] Mike P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann.

Service-oriented computing: State of the art and research challenges. IEEE

Computer, 40(11):38–45, 2007.

[46] Raman Kazhamiakin, Salima Benbernou, Luciano Baresi, Pierluigi Plebani,

Maike Uhlig, and Olivier Barais. Adaptation of service-based systems. In Service

Research Challenges and Solutions for the Future Internet - S-Cube - Towards

Engineering, Managing and Adapting Service-Based Systems, pages 117–156,

2010.

[47] Ta Nguyen Binh Duong, Xiaorong Li, and Rick Siow Mong Goh. A framework

for dynamic resource provisioning and adaptation in iaas clouds. In IEEE 3rd

International Conference on Cloud Computing Technology and Science, Cloud-

Com 2011, Athens, Greece, November 29 - December 1, 2011, pages 312–319,

2011.



Bibliography 109

[48] J. Bi, Z. Zhu, R. Tian, and Q. Wang. Dynamic provisioning modeling for

virtualized multi-tier applications in cloud data center. In Cloud Computing

(CLOUD), 2010 IEEE 3rd International Conference on, pages 370–377, July

2010.

[49] R. Han, L. Guo, Y. Guo, and S. He. A deployment platform for dynamically

scaling applications in the cloud. In Cloud Computing Technology and Science

(CloudCom), 2011 IEEE Third International Conference on, pages 506–510,

Novembre 2011.

[50] Jon B. Weissman, Seonho Kim, and Darin England. A framework for dynamic

service adaptation in the grid: Next generation software program progress re-

port. In 19th International Parallel and Distributed Processing Symposium

(IPDPS 2005), CD-ROM / Abstracts Proceedings, 4-8 April 2005, Denver, CO,

USA, 2005.

[51] Mourad Amziani, Tarek Melliti, and Samir Tata. Formal modeling and evalua-

tion of stateful service-based business process elasticity in the cloud. In On the

Move to Meaningful Internet Systems: OTM 2013 Conferences - Confederated

International Conferences: CoopIS, DOA-Trusted Cloud, and ODBASE 2013,

Graz, Austria, September 9-13, 2013. Proceedings, pages 21–38, 2013.

[52] Kristof Hamann, Sonja Zaplata, and Winfried Lamersdorf. Process instance

migration: Flexible execution of distributed business processes. In First In-

ternational Workshop on European Software Services and Systems Research -

Results and Challenges, S-Cube 2012, Zurich, Switzerland, June 5, 2012, pages

21–22, 2012.

[53] Geetika T. Lakshmanan, Paul T. Keyser, Aleksander Slominski, and Francisco

Curbera. A business centric monitoring approach for heterogeneous service

composites. In IEEE SCC, pages 671–678, 2011.

[54] Jacques Philippe Sauvé, Claudio Bartolini, and Antão Moura. Looking at busi-

ness through a keyhole. In Integrated Network Management Workshops, pages

48–51, 2009.

[55] Branimir Wetzstein, Philipp Leitner, Florian Rosenberg, Schahram Dustdar,

and Frank Leymann. Identifying influential factors of business process perfor-

mance using dependency analysis. Enterprise IS, 5(1):79–98, 2011.

[56] Branimir Wetzstein, Philipp Leitner, Florian Rosenberg, Ivona Brandic,

Schahram Dustdar, and Frank Leymann. Monitoring and analyzing influen-

tial factors of business process performance. In EDOC, pages 141–150, 2009.



110 Bibliography

[57] Raman Kazhamiakin, Branimir Wetzstein, Dimka Karastoyanova, Marco Pis-

tore, and Frank Leymann. Adaptation of service-based applications based on

process quality factor analysis. In ICSOC/ServiceWave Workshops, pages 395–

404, 2009.

[58] Mohamed Boukhebouze, Youssef Amghar, Aı̈cha-Nabila Benharkat, and Za-

karia Maamar. Towards an approach for estimating impact of changes on busi-

ness processes. In CEC, 2009.

[59] Milan Milanovic, Dragan Gasevic, and Luis Rocha. Modeling flexible business

processes with business rule patterns. In IEEE International Enterprise Dis-

tributed Object Computing Conference, 2011.

[60] Martijn Zoet, Johan Versendaal, Pascal Ravesteyn, and Richard J. Welke.

Alignment of business process management and business rules. In European

Conference on Information Systems, 2011.

[61] Matthias Galster and Paris Avgeriou. Variability in web services. In Rafael

Capilla, Jan Bosch, and Kyo Chul Kang, editors, Systems and Software Vari-

ability Management, Concepts, Tools and Experiences, pages 269–278. Springer,

2013.

[62] Gary J. Nutt. The evolution towards flexible workflow systems. Distributed

Systems Engineering, 3(4):276–, 1996.

[63] Olfa Bouchaala, Samir Tata, and Mohamed Jmaiel. A hybrid approach for

business environment-aware management of service-based business processes.

In EC-Web, pages 68–79, 2013.

[64] Olfa Bouchaala, Mohamed Yangui, Samir Tata, and Mohamed Jmaiel. Dat:

Dependency analysis tool for service-based business processes. In International

Conference on Advanced Information Networking and Applications, 2014.

[65] Remco M. Dijkman, Marlon Dumas, and Luciano Garćıa-Bañuelos. Graph

matching algorithms for business process model similarity search. In BPM,

pages 48–63, 2009.

[66] Bpel: Who needs it anyway?, 2009. http://www.bpm.com/bpel-who-needs-

it.html.

[67] jbpm. http://www.jboss.org/jbpm/.

[68] Chengying Mao. Slicing web service-based software. In SOCA, pages 1–8, 2009.



Bibliography 111

[69] ZhangBing Zhou, Sami Bhiri, and Manfred Hauswirth. Control and data depen-

dencies in business processes based on semantic business activities. In iiWAS,

pages 257–263, 2008.

[70] Qinyi Wu, Calton Pu, Akhil Sahai, and Roger S. Barga. Categorization and

optimization of synchronization dependencies in business processes. In ICDE,

pages 306–315, 2007.

[71] Ivaylo Spassov, Valentin Pavlov, Dessislava Petrova-Antonova, and Sylvia Ilieva.

Ddat: Data dependency analysis tool for web service business processes. In

ICCSA (5), pages 232–243, 2011.

[72] Matthias Winkler, Thomas Springer, Edmundo David Trigos, and Alexander

Schill. Analysing dependencies in service compositions. In ICSOC/ServiceWave

Workshops, pages 123–133, 2009.

[73] Olaf Henniger and Hasan Ural. Test generation based on control and data

dependencies within multi-process sdl specifications. In SAM, pages 189–202,

2000.

[74] Geert Monsieur, Monique Snoeck, and Wilfried Lemahieu. Managing data

dependencies in service compositions. Journal of Systems and Software,

85(11):2604 – 2628, 2012.

[75] Chun Ouyang, Marlon Dumas, Wil M. P. van der Aalst, Arthur H. M. ter

Hofstede, and Jan Mendling. From business process models to process-oriented

software systems. ACM Trans. Softw. Eng. Methodol., 19(1), 2009.

[76] Pierre Vigneras. Why bpel is not the holy grail for bpm, 2008.

http://www.infoq.com/articles/bpelbpm.

[77] Luciano Garćıa-Bañuelos. Pattern identification and classification in the trans-

lation from bpmn to bpel. In OTM Conferences (1), pages 436–444, 2008.

[78] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program depen-

dence graph and its use in optimization. ACM Trans. Program. Lang. Syst.,

9(3):319–349, 1987.

[79] Judith A. Stafford. A Formal, Language-Independent, and Compositional Ap-

proach to Interprocedural Control Dependence Analysis. PhD thesis, University

of Colorado, 2000.

[80] Wil MP van der Aalst, Arthur HM ter Hofstede, and Nick Russell. Workflow

patterns, 2011. http://www.workflowpatterns.com/.



112 Bibliography

[81] Eclipse modeling framework project. http://www.eclipse.org/modeling/emf/.

[82] Jgrapht. http://jgrapht.org/.

[83] Olfa Bouchaala, Samir Tata, and Mohamed Jmaiel. A Hybrid Approach for

Business Environment-Aware Management of Service-Based Business Processes.

In E-Commerce and Web Technologies, pages 68–79. Springer, 2013.

[84] Tijs Rademakers and Ron van Liempd. Activiti in Action: Executable Business

Processes in BPMN 2.0. Manning Publications Company, 2012.

[85] Apache Tomcat. http://tomcat.apache.org/.

[86] Eclipse. https://www.eclipse.org/.

[87] Maven integration for Eclipse. https://www.eclipse.org/m2e/.

[88] Apache Maven. http://maven.apache.org/.

[89] Apache Ant. http://ant.apache.org/.

[90] Mouna Hadj Kacem and Olfa Bouchaala. Technical re-

port for beam4sbp integration, 2015. http://www-inf.int-

evry.fr/SIMBAD/tools/BEAM4SBP0.2/Integration/TechnicalReport.

[91] Integration demo, 2015. http://www-inf.int-

evry.fr/SIMBAD/tools/BEAM4SBP0.2/Integration/demo.html.

[92] Integration real test, 2015. http://www-inf.int-

evry.fr/SIMBAD/tools/BEAM4SBP0.2/Integration/download.html.

[93] Roderick M. Chisholm. The basic ontological categories. In Language, Truth

and Ontology, volume 51, pages 1–13, 1992.

[94] Mike Uschold, Martin King, Stuart Moralee, and Yannis Zorgios. The enterprise

ontology. Knowledge Eng. Review, 13(1):31–89, 1998.

[95] Y. Wand and R. Weber. On the ontological expressiveness of information sys-

tems analysis and design grammars. Inf. Syst. J., 3(4):217–237, 1993.

[96] Yair Wand and Ron Weber. On the deep structure of information systems. Inf.

Syst. J., 5(3):203–223, 1995.

[97] Jan Recker, Michael Rosemann, Marta Indulska, and Peter F. Green. Business

Process Modeling - A Comparative Analysis. Journal of the Association for

Information Systems, 10(4), 2009.



Bibliography 113

[98] Peter Green, Michael Rosemann, Marta Indulska, and Chris Manning. Can-

didate Interoperability Standards: An Ontological Overlap Analysis. Data &

Knowledge Engineering, 62(2):274–291, 2007.

[99] Andreas L. Opdahl and Brian Henderson-Sellers. Ontological Evaluation of the

UML Using the Bunge-Wand-Weber Model. Software and System Modeling,

1(1):43–67, 2002.

[100] Jan C Recker and Marta Indulska. An ontology-based evaluation of process

modeling with petri nets. IBIS-International Journal of Interoperability in Busi-

ness Information Systems, 2(1):45–64, 2007.

[101] Andreas L. Opdahl and Brian Henderson-Sellers. Ontological evaluation of

the UML using the bunge-wand-weber model. Software and System Modeling,

1(1):43–67, 2002.

[102] Peter F. Green and Michael Rosemann. Perceived ontological weaknesses of

process modeling techniques : Further evidence. In 10th European Conference

on Information Systems, Information Systems and the Future of the Digital

Economy, pages 312–321, 2002.

[103] Jan Recker, Marta Indulska, Michael Rosemann, and Peter F. Green. How

good is BPMN really? insights from theory and practice. In 14th European

Conference on Information Systems, pages 1582–1593, 2006.

[104] Jan Recker, Marta Indulska, Michael Rosemann, and Peter Green. Do process

modelling techniques get better? a comparative ontological analysis of bpmn.

In 16th Australasian Conference on Information Systems, 2005.

[105] Michael Rosemann, Peter F. Green, and Marta Indulska. A reference method-

ology for conducting ontological analyses. In ER, pages 110–121, 2004.

[106] Vid Prezel, Dragan Gasevic, and Milan Milanovic. Representational Analysis

of Business Process and Business Rule Languages. In 1st International Work-

shop on Business Models, Business Rules and Ontologies at 4th International

Conference on Web Reasoning and Rule Systems, 2010.

[107] Peter F. Green, Michael Rosemann, Marta Indulska, and Jan C. Recker. Com-

plementary Use of Modeling Grammars. Scandinavian Journal of Information

Systems, 23(1):59–86, 2011.

[108] Mark Proctor. Drools: A rule engine for complex event processing. In Andy

Schürr, Dániel Varró, and Gergely Varró, editors, Applications of Graph Trans-

formations with Industrial Relevance, volume 7233 of Lecture Notes in Com-

puter Science, pages 2–2. Springer Berlin Heidelberg, 2012.



114 Bibliography

[109] Mark Proctor, Michael Neale, Michael Frandsen, Sam Griffith Jr., Edson Tirelli,

Fernando Meyer, and Kris Verlaenen. Drools Documentation. Technical report,

2008.

[110] Drools workbench, 2014. http://docs.jboss.org/drools/release/6.2.0.CR4/drools-

docs/html/wb.Workbench.html.

[111] Paul Browne. JBoss Drools Business Rules. Packt Publishing, 2009.

[112] Bartek Kiepuszewski, Arthur H. M. ter Hofstede, and Christoph Bussler. On

structured workflow modelling. In Advanced Information Systems Engineering,

12th International Conference CAiSE 2000, Stockholm, Sweden, June 5-9, 2000,

Proceedings, pages 431–445, 2000.



Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France  

 

Titre : Gestion sensible au métier des processus métiers à base de services 

Mots clés : processus métier, environnement métier, efficacité et flexibilité 

Résumé : Face à un environnement métier très 
dynamique, les entreprises expriment un grand 
besoin de gestion de leurs processus métiers de 
point de vue métier. Il existe trois types 
d’approche de gestion sensible aux 
changements de l’environnement métier : à 
savoir les approches impératives, déclaratives et 
hybrides. Les approches déclaratives sont très 
flexibles. Cependant, elles sont très couteuses 
en termes de temps. Contrairement, les 
approches impératives sont très efficaces mais 
trop rigide. Les approches hybrides, à leur tour, 
essaient de concilier entre les approches 
impératives et déclaratives afin d’augmenter le 
niveau concurrentiel des entreprises. 
Néanmoins, elles nécessitent un effort 
d’alignement entre la logique métier et la  
logique du processus. En outre, nous constatons 
que certaines approches ne sont pas faisables en 
pratique puisqu’ils n’utilisent pas les standards 
des processus. 

De plus, l’efficacité et la flexibilité sont 
antagonistes. Par conséquent, dans cette thèse, 
nous nous intéressons à la gestion sensible au 
métier visant à : (1) concilier les techniques 
déclaratives et les techniques impératives en 
une approche hybride pour tirer profit de leurs 
avantages, (2) préserver les standards des 
processus, et (3) minimiser l'effort des 
concepteurs. Nous avons ainsi proposé une 
nouvelle approche hybride pour la gestion des 
processus métiers. Nous avons modélisé la 
gestion d’un processus métier par un processus 
de gestion connecté au premier qui permet de le 
superviser et le configurer. Ce processus de 
gestion est généré grâce à une modélisation 
sémantique des relations entre les processus 
métiers, les services et l’environnement métier.  
Nous avons également implémenté et évalué 
notre approche en comparaison avec les 
approches existantes de gestion sensible aux 
changements de l'environnement métier. 
 

 

 

Title : Business-aware management of service-based business processes 

Keywords : business processes, business environment, efficiency and flexibility 

Abstract: Continuous business environment 
changes urge companies to adapt their 
processes from a business environment point of 
view. Indeed, companies struggle to find a 
balance between adapting their processes and 
keeping competitiveness. While the imperative 
nature of business processes is too rigid to 
adapt them at run-time, the declarative one of 
the purely rule based business processes is, 
however, very time consuming. Hybrid 
approaches in turn try to reconcile between 
these approaches aiming to reach the market 
requirements. Nevertheless, they also need an 
effort for aligning business logic and process 
logic. Therefore, in this thesis, we focus on 
business environment-aware management of 
service-based business processes aiming at 
conciliating imperative and declarative 
approaches. 

Our challenge is to develop a hybrid 
management approach that preserves industry 
standards to describe and to manage SBPs as 
well as minimizes designers’ efforts. Based on 
a semantic modeling of business environment, 
business processes as well as their 
relationships, and a control dependency 
analysis of business processes, we are able to 
synthesize a controller, itself modeled as a 
process, connected to the business process to be 
monitored and configured at run-time. We also 
validated the feasibility of our management 
approach by implementing the framework 
Business Environment-Aware Management for 
Service-based Business processes 
(BEAM4SBP). Experimentations show the 
efficiency of our approach with respect to other 
BEAM approaches. 
 

 


