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nada, solitaria, infinita, perfectamente inmóvil, armada de volúmenes preciosos, inútil,
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Abstract

Detection and classification of type Ia supernovae for cosmology in the

complete data set of SNLS

by Anais M¨

oller

In this work, I present improvements on the detection of transient events and the classi-

fication of supernovae (SNe) using supernova photometric redshifts in the SNLS deferred

analysis. Detection of transient events can provide numerous false detections, while the

photometric classification of type Ia SNe is usually contaminated by other types of SNe.

Reducing the number of false detections and the misclassified SNe while maintaining the

type Ia SN sample are important issues for both present and future surveys.

In order to reduce the artifacts that provide false detections, I developed a subtracted

image stack treatment to reduce the number of non SN-like events using morphological

component analysis. This technique exploits the morphological diversity of objects to be

detected to extract the signal of interest. At the level of our subtraction stacks, SN-like

events are rather circular objects while most spurious detections exhibit di↵erent shapes.

SNIa Monte-Carlo (MC) generated images were used to study detection e�ciency and

coordinate resolution. When tested on SNLS 3-year data this procedure decreases the

number of detections by a factor of two, while losing only 10% of SN-like events, almost

all faint ones. MC results show that SNIa detection e�ciency is equivalent to that of the

original method for bright events, while the coordinate resolution is slightly improved.

The deferred pipeline uses only photometric information to classify SNe. The advantages

of a photometric sample include larger number of events classified as type Ia, larger

redshift coverage and no need for spectroscopic observations. I present here a new

classification using photometric supernova redshifts optimized by a machine learning

classification strategy. This algorithm provides redshifts for all events with a better

average precision and lower catastrophic errors than the host galaxy photometric redshift

catalogue used in the SNLS3 analysis. I optimized the selection strategy using machine

learning techniques such as BDTs which increases e�ciency and purity of the SNIa

sample. This new photometric SN-redshift classification provides a type Ia SN sample

with a contamination of less than 10% according to Monte-Carlo studies.



Resumé

Détection et classification des supernovae de type Ia pour la cosmologie

dans l’ensemble des données de SNLS

par Anais MÖLLER

Dans cette thése, je présente des améliorations sur la détection d’evénements transitoires

et la classification des supernovae (SNe) en utilisant les redshifts photométriques de

supernova dans l’analyse diférré de SNLS. La détection des événements transitoires peut

fournir de nombreuses fausses détections, tandis que la classification photométrique des

SNe de type Ia est généralement contaminé par d’autres types de supernovae. Réduire

le nombre de fausses détections et les SNe malclassés tout en maintenant l’échantillon

du type Ia sont des questions importantes pour les investigations présentes et futures.

Afin de réduire les artefacts qui fournissent des fausses détections, j’ai développé un

traitement pour les stacks des images soustraites pour réduire le nombre d’événements

qui ne se ressamblent a SNe en utilisant Morphological Component Analysis. Cette

technique exploite la diversité morphologique des objets à détecter pour extraire le signal

d’intérêt. Au niveau de nos piles de soustraction, événements comme SN sont plutôt

circulaires alors que la plupart des détections parasites présentent des formes di↵érentes.

Images des SNe Ia générées par Monte-Carlo (MC) ont été utilisés pour étudier l’e�cacité

de la détection et la résolution des coordonees. Lors d’un essai sur le données SNLS des

3 ans cette procédure diminue le nombre de détections par un facteur de deux, tout

en ne perdant que 10 % d’événements qui se ressamblent au SNe, presque tous faibles.

Résultats des MC montrent que l’e�cacité de détection SNIa est équivalente à celle de la

méthode originale pour les événements lumineux, tandis que la résolution de coordonnées

est légèrement améliorée.

L’analyse di↵éré utilise uniquement des informations photométriques pour classer les

supernovae. Les avantages d’un échantillon photométrique comprennent plus grand

nombre d’événements classés comme de type Ia, la couverture de redshift plus grande et

pas besoin d’observations spectroscopiques. Je présente ici une nouvelle classification en

utilisant redshifts photométriques de supernovae optimisées par une stratégie de classi-

fication avec machine learning. Cet algorithme fournit des décalages vers le rouge pour

tous les événements avec une meilleure précision moyenne et inférieure erreurs catas-

trophiques que l’analyse avec photométrique redshifts de la galaxie hôte avec SNLS3.

J’ai optimisé la stratégie de sélection à l’aide des techniques de machine learning comme

BDTs que augmente l’e�cacité et la pureté de l’échantillon SNIa. Cette nouvelle clas-

sification photométrique SN-redshift fournit un échantillon des SNe type Ia avec une

contamination de moins de 10 % selon les études de Monte-Carlo.
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Chapter 1

Introduction

At the beginning of 20th century, our Universe was thought to be static, everlasting and

small. In 1915, when Einstein introduced his theory of General Relativity, he believed

that the Universe was static. Around 1920, measurements by Slipher and Hubble pointed

that the Universe was bigger than the Milky Way and it was dynamic. Cosmology was

born. In 100 years, our conception of the Universe has changed from a static and visible

matter universe, to a universe which is expanding and is composed of visible matter,

dark matter, radiation and dark energy.

Dark energy emerged as an explanation for the accelerated expansion of the Universe

revealed by studies of distant Supernovae of type Ia (SNe Ia) at the end of the XXth

century. Until now the nature of this component is unknown and a large scientific e↵ort

is being held to characterize it.

Supernova studies provide a robust measurement of the expansion of the Universe in

the form of a Hubble diagram, luminosity distance as a function of redshift. SNe Ia

possess rest-frame light curves which are observed to be similar. Moreover, the photons

from these SNe Ia are a↵ected mainly by the traveled distance, not depending on the

clustering of matter, providing us with ”standard candles”.

This work is based on data from the Supernova Legacy Survey (SNLS), a second gener-

ation experiment designed for detecting and measuring precisely SNe at high redshift,

in a range between 0.2 and 1, which is the interesting range for studying the expansion

of the Universe. SNLS collected 5 years of data from which only 3 have been completely

analyzed. The complete 5-year analysis is still ongoing in 2015.

1



Introduction 2

I worked on the deferred photometric pipeline of SNLS set up in Saclay. As its name

indicates, it is an independent pipeline and only uses photometric information to detect

and classify SNe Ia.

In the era of large future surveys, spectroscopic resources will be limited for candidate

follow-up and classification, which makes photometric pipelines interesting to study.

The SNLS deferred photometric pipeline provides a 100% photometric sample. The

advantages of a photometric sample include larger number of events classified as type

Ia, larger redshift coverage and no need for spectroscopic observations.

My work was based on improving the detection of transient events and the classification

of supernovae using supernova photometric redshifts in the SNLS deferred analysis.

This was done in the view of a complete 5-year SNLS photometric analysis. It must

be highlighted that the classification of SNe Ia using supernova photometric redshifts is

unprecedented.

The first step for detecting SNe events is to make a sample of transient events to be later

classified. Detection using only photometry with di↵erence images in one filter, where

a reference image is subtracted, provides a good approach. However, di↵erence images

are filled with various artifacts from instrumental defects and incomplete subtraction

of permanent objects. Disentangling real transient events from artifacts becomes an

important requirement especially for photometric only pipelines. This is also of interest

for future surveys which will process large amounts of data, such as LSST which expects

to detect one million SNe per year.

In the first part of this work, I will present a new approach for improving transient event

detection based on morphological component analysis for di↵erence image stacks in the

SNLS deferred processing. Our goal is to obtain a reduction of the number of detections

while limiting the loss of SNe Ia in the detection sample. We exploit the di↵erent

morphologies of objects in the stacks to separate transient objects from artifacts.

In the second part of this work, I will present the photometric classification of a SN-like

sample into type Ia and core-collapse supernovae. I explore a new classification using

photometric supernova redshifts and di↵erent classification strategies, from sequential

cuts to machine learning techniques.
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The improvements and new methods in this work were made in the view of a complete

5-year SNLS deferred photometric analysis that will provide a 100% photometric SNIa

sample at high redshift of the order of 1, 000 events.



Chapter 2

Physical Universe: cosmology and

acceleration of expansion

“Cosmology sits at the crossroads between theoretical physics and astronomy.”

Jean-Philippe Uzan

Cosmology, as the study of the Universe’s evolution and contents, is a field where there

is constant interaction between theory and observations. Based on physical laws, theo-

retical physics tries to describe nature’s components and their interactions. Meanwhile,

astronomical observations require introducing hypotheses in order to conciliate phenom-

ena with physical theories. In this chapter we will introduce both the theoretical part of

a cosmological model and observations that have contributed to modify these models.

To study the evolution of the Universe we need first to construct a cosmological model.

Basically, what we want is to have a set of equations describing the components of the

Universe and how they interact, and to solve them for a particular case which is our

Universe. The elements needed for constructing such a cosmological model are:

i. a gravitational theory,

ii. symmetry hypotheses for the large scales,

iii. a hypothesis on the topology of the Universe or its global structure,

iv. a description of the components of the Universe and their non-gravitational inter-

actions.

4
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Our current cosmological model is the ⇤CDM model which assumes the gravitational

theory to be General Relativity which will be introduced in Section § 2.1. For the

large scale hypothesis we assume the Copernican or Cosmological Principle presented

in Section § 2.2. In Section § 2.3 we will introduce the space we live in, its topology,

where it is assumed that spatial sections are simply connected. The components of our

Universe are treated in Section § 2.6, which are the Standard Model of particle physics

plus, added due to observational evidence, dark matter and dark energy. Finally, we

write the equations that describe the dynamics of our Universe in Section § 2.7.

2.1 Rise of General Relativity

To construct physical laws the first question that arises is: does every observer through-

out the Universe see the same phenomena? This question has motivated a postulate on

which every physical theory is based:

The postulate of relativity: “The laws of physics are invariant in all inertial reference

frames.”

In the 18th century Newton proposed his theory of gravitation where he defined special

reference frames, called “inertial frames”. To go from one inertial frame to another one

the Galilean transformation was used. Following the relativity postulate:

The principle of Galilean Relativity: the laws of motion under Galilean

transformations are invariant.

One century later, Maxwell presented his empirical theory of electrodynamics. A novelty

was that the statement that the velocity of light was constant. However, this theory did

not satisfy the principle of Galilean Relativity.

With these new laws, Einstein proposed in the early 1900’s to replace Galilean trans-

formations with Lorentz transformations. The latter left Maxwell equations invariant.

However, Newton’s gravitation theory did not fulfill this invariance. Einstein proposed

a modification of the laws of motion to make them Lorentz invariant. He proposed:
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The principle of special relativity: all physical equations must be invariant under

Lorentz transformations.

Under this principle he formulated the theory of special relativity which postulates that

for all observers, the speed of light in a vacuum is the same.

Then, in 1907 Einstein introduced one of the cornerstones of his theory:

The principle of equivalence of gravitation and inertia: “at a very space-time point in

an arbitrary gravitational field it is possible to choose a locally inertial coordinate

system such that, within a su�ciently small region of the point in question, the laws of

nature take the same form as in unaccelerated Cartesian coordinate systems in the

absence of gravitation” (pg. 68 [1]).

Finally, in 1916 Einstein published “The Foundation of the General Theory of Relativity”

where he described what is now our gravitation theory. The main principles behind

General Relativity (GR) are:

• the inertial and gravitational masses are equal,

• the inertial and gravitational forces are equivalent,

• special relativity laws without gravitation are valid in a local inertial frame.

General Relativity relates the presence of energy to distortions in the space-time metric.

This theory provides the following Einstein equations:

R
µ⌫

�

1

2
Rg

µ⌫

+ ⇤g
µ⌫

=
8⇡GT

µ⌫

c4
, (2.1)

where G is Newton’s gravitation constant, g
µ⌫

the metric, T
µ⌫

is the stress-energy tensor,

R
µ⌫

the Ricci tensor, R the Ricci scalar and ⇤ the cosmological constant.

A word about the cosmological constant:

At the beginning of the 20th century, the accepted view was that we lived in a static

Universe. To account for this Einstein introduced a cosmological constant in his equa-

tions. However, observations by Hubble in 1929 showed that the Universe was expanding

and there was no need for a cosmological constant that made the Universe static. A
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cosmological constant was introduced again at the end of the 20th century to account for

the accelerated expansion of the Universe. The latter is part of the current cosmological

model.

Einstein principles set up the basis for GR which is our current gravitational theory.

Solutions for Einstein’s equations can be found assuming some symmetries. In the

following, our symmetry hypotheses are presented.

2.2 Symmetry: Cosmological Principle

The main hypothesis on our theoretical cosmology is the “cosmological principle”:

The Universe appears the same to all observers at any epoch regardless their individual

location.

It implies that the Universe is spatially homogeneous and isotropic. This is a very strong

principle and one of the cornerstones of our cosmological model, it even determines the

structure of regions that cannot be observed. Since there are structures and astrophysical

objects such as stars and galaxies in our Universe, this principle is considered as valid

statistically (viewed on a large enough scale, that is above ⇡ 100Mpc). The cosmological

principle is linked to the “Copernican principle” that states that we do not live in a

special place or center of the Universe.

Statistical isotropy and homogeneity have been observationally supported by, for exam-

ple, measurements on the Cosmic Microwave Background (CMB) anisotropies [2] and

the large scale galaxy distribution. Two maps of the latter are shown in Figure 2.1.

2.3 Space: Manifolds and metric

The global structure of our Universe, our topology, is described by the way we define

distances. The first assumption is that spatial sections are simply connected.

The topological space we live on is a 4-dimensional manifold that resembles Euclidean

space near each point. To define distances between two events on this manifold we



Chapter 2. Physical Universe: cosmology and acceleration of expansion 8

(a)

(b)

Figure 2.1 Galaxy distribution from 2dFGRS [3] and SDSS [4]. In 2.1b galaxies are
colored by their star ages, the redder the older stars. The homogeneity and isotropy at
large scales are evidenced through these distributions.

require a coordinate system and a metric tensor. An event is described on a coordinate

system by a 4-vector with time and space components, x = (x0, x1, x2, x3). The metric

tensor g
µ⌫

(x), which allows to transform coordinates, is symmetrical by construction.

The interval between two events x and x+ dx, also called proper time, is given by:

ds2 = g
µ⌫

(x)dxµdx⌫ . (2.2)

The metric tensor can be dependent on the position where it is considered. In particular,

space can be curved and be locally Euclidean but not globally. The metric also allows

to incorporate gravity, not as an external force but curving or distorting space-time. In

spherical coordinates the proper time can be written as:

ds2 = dt2 � a(t)2
�
d�2 + f2(�)d⌦2

�
, (2.3)

where d⌦2 =
�
d✓2 + sin2(✓)d�2

�
and

f(�) =

8
>>>>><

>>>>>:

sin(�) 3-sphere with positive curvature

� plane with zero curvature

sinh(�) 3-hyperbola with negative curvature

(2.4)
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and a(t) is the scale factor that accounts for the Universe expansion. These three

choices for f(�) represent three types of homogeneous and isotropic universes. The 3-

sphere represents a closed universe with a finite volume while the 3-hyperbola is an open

universe with infinite volume.

Currently observational measurements show that we live in a flat universe. Data from

the Cosmic Microwave Background (CMB) by Wilkinson Microwave Anisotropy Probe

in 2003 [5],[6] and then by Planck in 2015 [2] combined with BAO data are consistent

with spatial flatness.

2.4 Dynamic universe: Friedmann-Lemâıtre-Robertson-Walker

Metric

To describe the dynamical universe we can derive the Friedmann-Lemâıtre-Robertson-

Walker metric using the metric on Equation 2.3 and the cosmological principle. The

cosmological principle requires homogeneity and isotropy at every time, then the metric

can vary with time. With the change of variable r = f(�) in equation 2.4 we obtain:

ds2 = dt2 � a(t)2
✓

dr2

1� kr2
+ r2d⌦2

◆
, (2.5)

with k of values +1 for a 3-sphere, �1 for an hyperbola and 0 for a plane. This is the

Friedmann-Lemâıtre-Robertson-Walker metric.

The scale factor a(t) sets the scale of the geometry of space. To quantify the change in

the scale factor we define the Hubble parameter:

H(t) =
ȧ(t)

a(t)
. (2.6)

The current Hubble constant is denoted H0 and can be written using Equation 2.6 with

the current time as t0. The convention is that for t0, a0 = 1.
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2.5 Expanding universe

The Universe has three possible states according to the sign of ȧ. If ȧ > 0 the Universe

is expanding, if ȧ = 0 it is static and if ȧ < 0 it is contracting.

At the beginning of the 20th century the Universe was thought to be static. However,

with the galaxy distance measurements by Hubble in 1929 the idea of an expanding and

changing universe was born. He measured the distances to “extra-galactic nebulae”,

that is galaxies, outside our Milky Way and compared them to their redshift [7]. At

that time, he associated the redshift to velocities through the Doppler formula. He found

a linear relation between these distances and velocities seen in Figure 2.2. This linear

relation is known as the Hubble law and is given by the expression:

v = H0d . (2.7)

The measurement by Hubble in 1929 yielded an approximate value ofH0 = 500kms�1Mpc�1

which was largely overestimated due to bad distance calibration. Note that Hubble’s

measurements were within a maximum redshift of z = 1000kms�1/c ⇡ 0.003. The value

of H0 has been estimated using di↵erent physical measurements with some disagree-

ments between determined values. Direct measurements by the Hubble Space Telescope

provided a measurement of H0 = 73.8 ± 2.4km/s/Mpc [8]. Indirect measurements, or

constraints in the ⇤CDM model, from combining data from WMAP9, SPT, ACT and

BAO gave a value of H0 = (69.6±0.7)km/s/Mpc [9], while Planck 2015 data provided a

value of H0 = (67.6±0.6)km/s/Mpc [2]. Comparisons between some H0 determinations

can be seen in Figure 2.3.
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Figure 2.2 Original diagram by Hubble in 1929 showing velocity versus distance for
galaxies. Due to bad distance calibration these measurements led to an overestimatted
Hubble constant. The original caption was: “Velocity-Distance Relation among Extra-
Galactic Nebulae. Radial velocities, corrected for solar motion, are plotted against
distances estimated from involved stars and mean luminosities of nebulae in a cluster.
The black discs and full line represent the solution for solar motion using the nebulae
individually; the circles and broken line represent the solution combining the nebulae
into groups; the cross represents the mean velocity corresponding to the mean distance
of 22 nebulae whose distances could not be estimated individually.”[7]

Figure 2.3 Comparison of H0 measurements from di↵erent data samples and tech-
niques. Errors are 1� estimates. [2]
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For higher redshifts as well, the most direct evidence of the expansion of the Universe is

given by the Hubble diagram. While measuring redshifts can be quite straight forward,

determining distances can be a challenge. Standard candles, objects with the same

intrinsic brightness, provide a way of measuring distances using what is called luminos-

ity distances. Examples of standard candles are Cepheid variable stars which intrinsic

brightness is related to their period and type Ia Supernovae which are the objects used

in this work and described in Chapter § 3. Brief definitions of cosmological redshift and

luminosity distance are presented in the following.

Cosmological Redshift

In an expanding universe, the traveling light frequency is modified by the changing

metric. This change is called redshift and can be defined as:

1 + z =
⌫
e

⌫
o

, (2.8)

where ⌫
e

is the frequency of light emitted and ⌫
o

is the observed one. Taking the FLRW

metric in Eq. 2.5, assuming that the scale factor changes negligibly during a single

period and that the redshift is only due to the Universe’s expansion:

1 + z =
a
o

a
e

, (2.9)

where a
o

is the scale at the observation time (usually taken as a
o

= 1) and a
e

the scale

at the emission time. Note that there is no dependence on the evolution of the scale

factor at intermediate times. The redshift depends only on the scale factor at the time of

emission and observation, it is a direct probe of the ratio of the scale factor at di↵erent

times.
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Luminosity distance

For an object with intrinsic luminosity L, the observed flux F can be expressed as:

F =
L

4⇡d2
, (2.10)

where the intrinsic luminosity (assuming the photons to have the same energy) is given

by:

L =
N⌫

dt
, (2.11)

with N is the number of photons, ⌫ their frequency and dt the infinitesimal emission

time span.

If the Universe was static, the d in Equation 2.10 would represent the radius of the sphere

for which the object with luminosity L would give a flux F . However, we know that the

Universe is not static and this equation should be transformed to a comoving shell. We

can write the flux observed as a function of the comoving spherical shell radius, f(�) as:

F =
L
o

4⇡f(�)2
, (2.12)

where L
o

is the observed luminosity. The observed luminosity can be related to the

emitted (or intrinsic) luminosity L taking into account the frequency change for a photon

by the changing metric in Equation 2.8 and the time dilation dt
o

= (1 + z)dt. The

observed luminosity L
o

can be expressed as:

L
o

=
L

(1 + z)2
(2.13)

Then, it is useful to define the luminosity distance as:

d
L

= (1 + z)f(�) , (2.14)

where f(�) = � if we are in a flat universe as in equation 2.4. Where the flux can be

expressed as:

F =
L

4⇡d2
L

. (2.15)

Luminosity distance depends on the energy content of the Universe and this dependence

will be seen in Section § 2.7.
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2.6 Universe’s content

In this section I will present our Universe’s di↵erent components of matter and energy,

equivalent due to the well known E = mc2 equation.

We can apply the first law of thermodynamics to our dynamic Universe of total energy

density ⇢, with pressure p. This gives the variation of energy dU of a system for an

adiabatic change of volume dV :

dU = �pdV . (2.16)

Rewriting 2.16 as a function of the scale factor and expanding the first derivative, we

obtain the equation of energy conservation in our expanding Universe:

d⇢

dt
= �3H(⇢+ p) . (2.17)

Note that for each component in the Universe this equation should be individually

treated. Each content can be simplified treating it as an e↵ective fluid and relating the

energy density of the fluid to its pressure through its state equation

p = !⇢ , (2.18)

where ! is the equation of state parameter.

Two big categories of contents can be defined, relativistic (radiation) and non-relativistic

matter which will be introduced in the following. However, recent evidence points to-

wards a third type of content which is due to the so called cosmological constant.

This is dark energy that will be introduced as a third category.

2.6.1 Matter: baryons and dark matter

Non-relativistic matter has no pressure and is denoted with the subscript m. From

Equation 2.18, this means that ! = 0. The energy density of matter is dominated by

its mass energy. Then, the energy conservation equation becomes:

d⇢
m

dt
= �3H⇢

m

, (2.19)
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when integrated there is an inverse proportionality between its density and the scale

factor as

⇢
m

/ a�3 . (2.20)

Originally, non-relativistic matter included only ordinary (baryonic) matter. However,

observations in the early 20th century by Zwicky and Smith [10] of the velocities of

galaxies in the Coma and Virgo clusters provided the first hints for another type of

non-relativistic matter. At that time, estimations of the total mass required to gravita-

tionally bind the galaxies were two orders of magnitude above Hubble’s estimation of the

galaxy mass. This led Zwicky to postulate the existence of an “invisible” matter that

interacts gravitationally. This matter is called dark because it doesn’t interact with

electromagnetic radiation. Probes like the CM, BAO and SNe also provide information

about a larger content of matter in the Universe than the one accounted by baryons [2]

[11]. However, no direct or indirect detection of dark matter has been accomplished till

the present date. Currently, this matter is thought to be cold, meaning that the veloc-

ities of the particles are too small to erase structure formation in the early Universe.

In the current cosmological model non-relativistic matter is composed of baryons and

cold dark matter (CDM).

2.6.2 Radiation

Particles which have velocities close to the speed of light c are considered as relativis-

tic matter or radiation. Radiation, denoted with the subscript r, is described by the

equation of state ⇢
r

= 3p
r

. The energy conservation equation for radiation is:

d⇢
r

dt
= �4H⇢

r

, (2.21)

integrating

⇢
r

/ a�4 . (2.22)

Radiation undergoes a loss of energy due to the expansion of the Universe but also an

additional loss proportional to a�1.

In the current model radiation is accounted for by photons and neutrinos.
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2.6.3 Dark energy as a homogeneous fluid

The e↵ect of the cosmological constant in Einstein’s equations can be reproduced by an

homogeneous fluid with pressure p⇤ = �⇢⇤ and

⇢⇤ =
⇤c4

8⇡G
, (2.23)

where c is usually taken to be 1 for simplification.

Dark energy is considered as an “exotic negative-pressure fluid that provides the impetus

for cosmic acceleration.” [12]. The introduction of such a fluid was motivated by the

accelerated expansion of the Universe. In 1998, two teams lead by Perlmutter, Riess

and Schmidt [13–15] found that the Universe was expanding in an accelerated way that

did not agree with a Universe composed only by matter (baryonic and dark matter) and

radiation under GR. The Hubble diagram from measurements by Perlmutter et al. can

be seen in Figure 2.4.

Figure 2.4 Hubble diagram showing data from the Supernova Cosmology Project with
multiple model lines to compare with data. Data require the addition of a cosmological
constant to General Relativity equations. [13]
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2.7 Friedmann equations

To express the dynamics of our cosmological model we have Friedmann’s Equations.

Taking the time component on Einstein field equation (Eq. 2.1) µ = ⌫ = 0 we obtain,

for our flat universe, the first Friedmann equation:

H2 =
8⇡G

3

✓
⇢+

⇤

8⇡G

◆
, (2.24)

where here ⇢ = ⇢
matter

+ ⇢
radiation

.

The second Friedmann equation can be obtained taking the trace of Einstein’s equa-

tions (Eq. 2.1)
ä

a
= �

4⇡G

3
(⇢+ 3p) +

⇤

3
, (2.25)

where p = p
matter

+ p
radiation

.

For both Friedmann equations we can introduce the cosmological constant as an energy

density ⇢⇤ = ⇤/8⇡G. Then we can define a total energy density ⇢
total

=
P
⇢
i

and a

total energy density p
total

=
P

p
i

where i stands for all components in the Universe.

We can define the critical energy density as the current energy density in our Universe:

⇢
c

(t) =
3H2

0

8⇡G
. (2.26)

For each component i, the normalized density parameter ⌦
i

is defined as:

⌦
i

(t) =
⇢
i

(t)

⇢
c

(t)
, (2.27)

when t = t0 we have ⌦0
i

.

As a function of the normalized density parameters ⌦
i

, the first Friedmann equation

(Eq. 2.24) can be written as:

✓
H

H0

◆2

= ⌦
k

a�2 + ⌦
m

a�3 + ⌦
r

a�4 + ⌦⇤ , (2.28)
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where ⌦
i

, a and H are functions of time. Using Equation 2.9 we obtain:

✓
H

H0

◆2

= ⌦
k

(1 + z)2 + ⌦
m

(1 + z)3 + ⌦
r

(1 + z)4 + ⌦⇤ , (2.29)

at t = t0 this equation becomes

⌦
r,0 + ⌦

m,0 + ⌦⇤,0 = 1� ⌦
k,0 , (2.30)

where only 3 of the 4 ⌦’s are independent. For our flat Universe we can also find that

the total energy density is equal to the critical density

⌦
r,0 + ⌦

m,0 + ⌦⇤,0 = 1 ) ⇢
r,0 + ⇢

m,0 + ⇢⇤,0 = ⇢
c

. (2.31)

Using Friedmann equations, luminosity distances in Eq. 2.14 can be expressed as a

function of the Hubble parameter which depends on the content of our Universe

d
L

=
c(1 + z)

H0

Z
z

0

dz0

H(z0)/H0
(2.32)

for a flat universe.

This is a very important result since it allows to constrain cosmological parameters,

⌦s, using an observable, the luminosity distance. Studying the luminosity distance of

a standard candle as a function of redshift, through a Hubble diagram, the di↵erent

cosmological models can be tested (see Figure 2.5).

2.8 ⇤CDM

This chapter provides all the ingredients of our current cosmological model, the so called

⇤CDM. I introduced our current gravitational theory, large scale symmetry hypotheses,

a hypothesis on the topology of the Universe and a description of the components of the

Universe.

Observations provide data to constrain the model’s parameters, the so-called cosmolog-

ical parameters. Observations are consistent with a spatially flat Universe (⌦
k

< 0.005

[2]) containing : baryonic matter, dark matter, radiation and dark energy. However, the

nature of either dark matter or dark energy is unknown motivating research on the area.
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Figure 2.5 Examples of di↵erent dark energy models with respect the expansion his-
tory H and luminosity distance dL as a function of redshift. Dark energy models with
di↵erent equation of state parameters are shown in red (! = �1.2), grey (! = �1) and
blue (! = �1.8). The brown curve is for an alternative gravity theory called Dvali-
Gabadadze-Porrati [16]. All models have the same matter density and assume spatial
flatness. Uncertainties in the non relativistic matter density are indicated through the
curve’s thickness [12].

A recent work using SNLS, SDSS-II, HST and several SNIa nearby data (JLA sample)

by Betoule et al. shows the ⇤CDM confidence contours in ⌦⇤ and ⌦
m

for SNe Ia and

other probes, see Figure 2.6.

⇤CDM is the simplest model that agrees with observations from the accelerated ex-

pansion of the universe (e.g. using type Ia supernovae), CMB and large scale structure

in the distribution of galaxies. It is the standard model of cosmology and the physical

context of my PhD work.
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Figure 2.6 ⌦⇤ vs. ⌦m confidence contours (68% and 95%) of the JLA analysis [11].
Contours are shown for type Ia supernovae (JLA with new calibration and all data,
C11 the previous compilation by Conley et al. [17]), CMB temperature data (Planck),
CMB polarization data (WP=WMAP) and Baryon Acoustic Oscillation data (BAO).
The dashed line corresponds to a flat universe.
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Cosmological Observable:

Supernovae of type Ia

To study the expansion of the Universe we need first to be able to measure distances.

For this, we require very homogeneous objects with known absolute magnitude, standard

candles, or objects whose absolute brightness is correlated with other observables, stan-

dardizable objects. They must be very bright objects that can be detected with current

technologies up to high redshift. Such objects are Supernovae of type Ia (SNeIa) which

will be described in this Chapter.

Supernovae are defined and classified empirically in Section § 3.1 since their physical

mechanisms are still uncertain. Then, in Section § 3.2 I describe SNeIa, their spectral and

photometric properties, why they are standardizable, their volumetric rate measurement

and model, and some of the proposed physical mechanisms behind them. Last, the

relation between SN Ia luminosity and distance is shown in Section § 3.3.

3.1 Supernovae

Supernovae (SNe) are very luminous stellar explosions that can last several weeks. They

have been long observed and studied, but their origins remain an open question. How-

ever, their observed properties are well known and can be used to classify them.

21
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The empirical classification of SNe is based both on their spectroscopic and photometric

properties. Spectroscopic properties are obtained from the absorption lines on the SNe

spectra. Photometric properties are defined through a light curve, which is the variation

of the measured flux with respect of time. Light curves can be drawn for one or many

broadband filters.

3.1.1 Empirical classification

Classification by spectroscopy of SNe is done around maximum light. This is due to the

evolution of SN spectra which makes easier to observe some features in this time period

and to the fact that for distant SNe (redshift above 0.3) the spectrum signal-over-noise

ratio is acceptable only around maximum light.

There are two main observational categories of SNe based on the presence or not of

hydrogen in their spectra. SNe of type II show hydrogen lines while type I lack them.

Di↵erent subtypes are found for each category. Further details on the SN spectral

classification can be found in [18].

• Type I : no hydrogen lines.

– Ia : presents silicium lines and no helium. They will be thoroughly described

in Section § 3.2.

– Ib : contains a line of helium.

– Ic : lacks lines of both helium and silicon.

• Type II : hydrogen lines present

– IIn: nominated by narrow lines of hydrogen.

– IIb: presents signatures of hydrogen in spectra which fade and are replaced

with helium features.

– II-P and II-L : no particular spectral features, P and L stand for plateau and

linear referring to the shape of the post maximum light curve.
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Figure 3.1 Left, schematic light curves of SNe Ia, Ib/c, II-P and II-L. Right, spectral
lines that allow to classify these types of SNe, from 1999 observations. [19]

Figure 3.2 Galaxy with SNIa 04D1dc light delivered after explosion on the left side
of its center.

3.2 Supernovae of type Ia

Type Ia SNe have very homogeneous spectral and photometric properties. Therefore

their light curves and spectra are rather reproducible. They are transient events which

last circa 60 days and their maximum luminosity is close to their host galaxy luminosity.

In Figure 3.2 a galaxy with a SNLS supernova is shown.

SNe Ia have quite homogeneous properties. However there is a dispersion of around

0.3 in magnitude for SNe Ia at the same redshift. We will show in subsection § 3.2.3

that this variability can be reduced by around a factor of two when using measurable

features in the SNIa light curves. There are also peculiar SNe Ia that can be identified
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by spectral properties and can be either sub or super luminous relative to the bulk of

the peak magnitude distribution.

3.2.1 Spectroscopic properties

As introduced in Section § 3.1, type Ia SNe possess no hydrogen nor helium lines. Their

spectra present lines of intermediate mass elements such as silicium, calcium, magnesium

iron and sulfur. Their spectral features, although homogeneous, show some diversity.

Normal SNe Ia like SN1996X [20] and SN1994D [21] have clear spectral features due to

Si II, Ca II, S II,O I and Mg II around maximum brightness and then develop lines of

Fe II. An example of a normal SNIa spectrum can be seen in Figure 3.3. Peculiar events

have a di↵erent spectral evolution with some extra features (e.g. stronger lines for some

elements or extra lines). More details can be found in [22].

Figure 3.3 SNIa spectrum for SN1981b [23].

The characterisitics of SNIa spectra are:
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• Helium and hydrogen absence.

• Silicon: absorption line of Si II at 4130Å. A second Si II line at 6100Å has varying

depth for some peculiar SNe Ia.

• Sulfur: a “W” shape can be seen due to the doublet of S II at 5649Å.

• Calcium: a doublet due to Ca II at 3934Å and 3968Å is present in all SNe Ia but

also in other SNe. In some peculiar SNe Ia this doublet is very weak.

3.2.2 Photometric properties

Type Ia supernovae have a varying luminosity that can be roughly modeled through

the ballistic expansion of a sphere. In that model the light curve luminosity is powered

by the radioactive decay of Ni56 and varies according to the opacity of the ejecta to

the decay products. This could explain that the luminosity of a supernova varies in

two main phases. At the beginning of the explosion, the emitted light is captured by

the star’s high matter density. Then, luminosity increases during circa 15 days (in the

object’s rest frame) when density decreases. This period is called the rising time. The

maximum flux can be as high as 4 ⇤ 109 solar luminosities in the blue band (this band

is centered on 4450Å and has a bandwidth of 940Å). Then, the luminosity starts slowly

to decrease during one month or more. A light curve of an SNIa as detected by SNLS,

where these two phases are seen, is shown in Figure 3.4.

Note that, for observations in the red and infrared filters, observed SNIa light curves

have a second small peak around 20 days after blue band maximum.

SNe Ia are not standard candles since there is a variability in magnitude for objects at the

same redshift. However, we will see that this variability is linked to other observables

and thus can be, to some extent, corrected for. I will introduce magnitudes in the

following.
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Figure 3.4 SNIa light curve from SNLS. Measurements are done in 4 di↵erent broad-
band filters and are indicated by points, squares and triangles. The lines correspond to
fits to measurements. A rising time is clearly seen between days 820 and 850 and then
a diming part until day 950.

Figure 3.5 27 SNIa light curves from the Calan Tololo survey in the V band. On top,
observed dispersion of absolute magnitudes in observed SNeIa. Below, the corrected
curves [24].
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Magnitudes

The observed magnitude, m, of an object is defined by:

m = �2.5 log10

✓
F

F
ref

◆
, (3.1)

where F is the measured flux and F
ref

a reference flux. Objects that are more luminous

have smaller magnitudes.

Measured magnitudes can be expressed as a function of the luminosity distance d
L

in

Equation 2.32 as:

m = �2.5 log10

"
L

✓
10pc

d
L

◆2
#
+ C , (3.2)

where L is the intrinsic object luminosity and C a constant.

Magnitudes can be expressed in color bands which are defined according to the survey

or standard. In particular, the bands in the UBV RI standard are:

• Ultraviolet band U : �
eff

= 360nm and �� = 50nm.

• Blue band B: �
eff

= 430nm and �� = 72nm.

• Green band V : �
eff

= 550nm and �� = 86nm.

• Red band R: �
eff

= 650nm and �� = 133nm.

• Infrared band I: �
eff

= 820nm and �� = 140nm.

One can define a rest-frame B magnitude (at peak luminosity for our SNe Ia) as:

m⇤
B

(z) = �2.5 log10

"
L

✓
10pc

d
L

◆2
#
+ C = 5 log10

d
L

(z)

10pc
+M

B

, (3.3)

where M
B

is the absolute B-band magnitude of the supernova. If all type Ia supernovae

were identical, this M
B

(for all SNeIa) and m⇤
B

(for same redshift SNeIa) should be

the same for these objects. However, we know there is an intrinsic absolute magnitude

dispersion to be accounted for. This will be addressed in the following.
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3.2.3 Standardizing SNeIa

SNeIa are not standard candles, however they can be standardized (estimate a common

intrinsic luminosity or absolute magnitude M
B

). For this, we can use correlations be-

tween photometric observables, or variability of the light curve, and the intrinsic luminos-

ity. The two main correlations are: the width-luminosity relation and the brighter-bluer

relation.

The variability of the light curve can be expressed using its stretch and color. Chro-

matic di↵erences are expressed through color, while stretch corresponds to the time span

of the curve. Light curves can be modeled using a luminosity parameter, a decline rate

parameter and a single color parameter. This parametrization will be treated in Section

§ 3.3.

The width-luminosity relation (also known as brighter-slower) shows that brighter

SNe Ia have broader light curves than fainter ones [25]. The equivalent is that brighter

SNe Ia have a slower decline rate than fainter ones (Figure 3.6a).

The brighter-bluer relation provides a correlation between color and SNe Ia luminos-

ity (Figure 3.6b). Apart from the intrinsic color, some authors attribute part of this

correlation to the reddening caused by dust in the host galaxies [26].

Using both correlations we are able to standardize SNe Ia and to use them as distance

indicators, as we will see in Section § 3.3. However, there is a remaining scatter in their

absolute peak magnitudes up to ⇡ 0.15 mag [28, 29].

Other correlations may be useful to reduce the remaining absolute magnitude dispersion.

For example, a correlation between SNIa stretch and their host-galaxy mass was found

in [30] using SNLS data as can be seen Figure 3.7. Also, it was proposed by [30] to split

the SNe Ia sample in two according to host-galaxy mass, due to a seen o↵set in Hubble

residuals for the two samples.

The search for other correlations to reduce the absolute magnitude dispersion is an

ongoing research field.



Chapter 3. Cosmological Observable: Supernovae 29

-

(a) Brighter-slower correlation. Residue on the
Hubble diagram for events after being corrected
for the brighter-bluer relation.

(b) Brighter-bluer correlation. Residue on the
Hubble diagram for events after being corrected
for the brighter-slower relation

Figure 3.6 SNe Ia properties correlations as seen by SNLS. Blue circles stand for
nearby events and black for distant ones [27].

Figure 3.7 Stretch and color of SNLS SNIa light curves as a function of their host
galaxy stellar mass. The weighted mean for stretch and color are shown as red points
[30].
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3.2.4 SN Ia rates

The SNIa rate is the number of SNe Ia occurring in a space region during a time frame

or equivalently in a given volume of the Universe. Measuring this rate and fitting it to

a model provides useful information that can constrain the physical mechanisms of SNe

Ia and their progenitor models.

The first attempt to measure the SN rate was done by Zwicky (1934-38): “The average

frequency of occurrence of supernovae is about one supernova per extra-galactic nebula

per six hundred years” for the local volume [31–33]. Recent surveys as SNLS, SDSS,

VIMOS, HST have also made e↵ort to measure the SNIa and core-collapse rates.

A very simple model for the SNIa rate was presented by Pritchet et al. [34] which we

will use to approximate the rate in Chapters § 7 and § 8. The authors argue that the

rate of SN Ia explosions is ⇡ 1% of the stellar death rate, independent of star formation

history. The SNIa rate is delayed respect to the star formation rate and is expressed as

a function of (1 + z)↵ where ↵ = 2 [35].

A second model called the two-component model, agrees very well with data at di↵erent

redshifts. Proposed by Scannapieco et al. [36], this model for SNeIa rate contains a

component dependent on the star formation rate (SFR) and another dependent on the

host galaxy mass:

r
V

(t) = AM
?

(t) +BṀ
?

(t) , (3.4)

where M
?

is the stellar mass of the host galaxy, Ṁ
?

is the SFR, A and B are constants

that can be fit on data and are respectively given by SNe Ia per year per unit mass and

SNe Ia per year per unit star formation [36].

High-redshift SNe Ia rates and properties were measured as a function of the stellar mass

and star formation in their host galaxies using SNLS data by Sullivan et al. [37]. Also for

SNLS data, Neill et al. in [38] computed the rate for a redshift around 0.5 providing theA

and B parameters in Equation 3.2.4. The authors in [39] later studied the rate evolution

for a larger sample of SNe Ia for three redshift bins between 0.2 < z < 0.75. Figure 3.8

shows the measured SNIa volumetric rate as measured by di↵erent experiments, among

which SNLS. The measurements are compared with the fit from the two component

model.
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Figure 3.8 Observed SN Ia volumetric rate evolution with fitted parameters for model
in Equation 3.2.4. SNLS rates are shown as filled blue squared for three redshift bins.
Other rates are shown for previously published SN Ia rates derived from samples primar-
ily confirmed by spectroscopy (filled circles), with only 50% spectroscopic confirmation
(open circles) and only confirmation through photometric methods (open triangles)
[39].

The two-component model implies that at higher redshift the SNIa rate is dominated

by star formation. Data at high redshift (z > 1) has higher systematics which prevents

an accurate SNIa rate to be measured and compared to the model. Until present time,

the two-component model remains the one that fits most data at high and low redshifts.

3.2.5 Proposed mechanisms

As previously mentioned, the possible mechanisms to explain SNe Ia are still debated.

SNe Ia are widely accepted to be thermonuclear explosions of a carbon-oxygen white

dwarf (CO WD). The explosion is produced when the CO WD approaches the mass

limit of Chandrasekhar. This is the mass at which the electron degeneracy pressure in

a WD (equivalent to thermal pressure in a main sequence star) is not enough to resist

gravitational collapse. A typical CO WD has a mass of up to 1.2M� and to acquire the

Chandrasekhar mass, 1.4M�, must accrete matter from another object [40].
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Since no SNIa progenitor system has been observed until now, based on the explosion’s

observables there are two main options for the companion object, either another CO

WD or a non-degenerate stellar companion (e.g. a main sequence star, a red giant).

The model with two WD is called double degenerate scenario (DD) while the one

with a WD and a companion star is called single degenerate (SD) scenario.

CO WD explosions are coherent with observations of SNIa spectra and light curves due

to:

• Similar event luminosities: explained by the similar critical mass required to trigger

the stellar explosion.

• Light curve timescale: consistent with the half life of Ni56 which is the end of the

carbon-oxygen fusion chain.

• Other elements found in the spectra: silicium, sulfur, calcium are products of the

carbon-oxygen fusion.

• Lack of helium and hydrogen lines: few stellar objects lack hydrogen and helium,

among which CO WD.

3.2.5.1 Single degenerate model (SD)

This model proposes a binary system consisting of one white dwarf and another less

compact star. The WD accretes mass from its companion until it approaches the Chan-

drasekhar mass where the Fermi degeneracy pressure can not sustain the non-rotating

matter. Some fine tuning is required since the accretion flow has to be self-regulated to

avoid self ignition of the material or a red-giant expansion of the WD [40]. When the

C-O fusion threshold is reached, the temperature of the star diverges and it explodes.

The bulk of the star goes through a runaway fusion reaction that converts C and O into

intermediate and heavy mass elements.

This scenario is questioned by astronomical observations and modeling due to:

• Required fine tuning of the self-regulation accretion flow.

• Lack of relevant evidence of spectral lines due to the accreted material: some

of the material of the companion star should be burnt during the explosion. For
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example, a H
↵

emission in spectra should be observed after the explosion but until

now no positive detection has been found [41]. However, for some events sodium

D absorption lines have been found in SNIa spectra favoring this model [40].

• No observation of the companion: most explosion models indicate that the com-

panion star should survive. In the case of the Tycho supernova remnant, which

is 400 years old, no object has been clearly identified as shown in [42]. For the

recent and nearby supernova SN 2011fr, no progenitor was detected by Li et al.

[43]. However it is argued that the progenitor may be to faint to be detected.

3.2.5.2 Double degenerate model (DD)

This model was motivated by the shortcomings of the SD one. It proposes that a binary

system of two WDs merge after losing angular momentum and energy into gravitational

waves. Since WDs are very compact objects, general relativity corrections to the orbits

are important. There are two possible outcomes for this system, either the merger (result

of the WDs merging) is over the Chandrasekhar mass and explodes, or a more massive

WD accretes material from its lighter companion, approaches the Chandrasekhar limit

and explodes.

Some studies argue that the merging of two WDs would evolve towards an accretion-

induced collapse and not to a SNIa [44][45]. Other studies advocate that under certain

conditions a SNIa would be possible [46] [47].

Measurements of SNIa rates are believed by some authors to be consistent with the DD

model as the dominant formation channel for long delay times in [48].

It must be highlighted that the agreement on a SNIa progenitor model is still under

debate.

3.3 Distance measurements with SNe Ia

In previous sections we have seen that SNe Ia can be standardized to a common ab-

solute magnitude thanks to the brighter-slower and brighter-bluer relations. We can

parametrize a SNIa light curve as a function of: a luminosity parameter, a color

parameter and a decline rate parameter as the stretch.



Chapter 3. Cosmological Observable: Supernovae 34

We also know that the apparent rest-frame B magnitude can be expressed as a function

of the luminosity distance and the absolute magnitude as in Equation 3.3. To account

for the brighter-slower and brighter-bluer relations we can define the distance modulus

as µ
B

:

µ
B

= m⇤
B

�M
B

+ ↵x1 � �C (3.5)

where M
B

is the absolute magnitude of any SNIa, m⇤
B

is the apparent magnitude defined

in Equation 3.3, x1 is the stretch parameter and c is the color. The last three parameters

are derived from a fit to the observed SNIa light curve. M
B

, ↵ and � can be constrained

during cosmological fits. Absolute luminosity to host-galaxy mass correlations can be

taken into account in Equation 3.5 by allowing two di↵erent M
B

for masses above and

below 1010M�.

Guy et al. in SALT 2 1 constructed an empirical model of SNIa light curves which

allows to measure distance moduli of these objects [29]. It is a model of the expected

SN flux which varies according to wavelength, decline-rate (equivalent to stretch) and

color. SALT2 was trained and tested on hundreds of well measured nearby and distant

SNIa spectra and light curves.

Using light curves in several passbands and a redshift assignment, SALT2 extracts for

each SN its intrinsic properties. It provides:

• the rest-frame B magnitude at peak m⇤
B

,

• the color parameter c defined as the di↵erence between the color in the B and V

bands (B � V ) and the average color B � V of SNe Ia,

• the stretch parameter x1,

• the date of maximum luminosity in the B band.

SALT2 also allows to derive photometric redshifts of distant Type Ia supernovae as

shown by Palanque-Delabrouille et al. in [49]. We mention this for the moment, and we

will take advantage of this application later in Chapter § 8.

Summarizing, we are now able to perform distance measurements using type Ia SNe

thanks to SALT2 that takes into account the correlations of an SNIa observed properties

1SALT stands for “Spectral Adaptive Lightcurve Template” and 2 represents the version described
in [29].
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with its distance modulus. Such measurements ultimately allow to constrain cosmologi-

cal parameters thanks to the relation between luminosity distance and the energy-matter

content of the Universe in Equation 2.32.



Chapter 4

SuperNova Legacy Survey

(SNLS)

In Chapter § 3, we introduced SNe Ia as standard candles and a suitable tool for the

study of the accelerated expansion of the Universe. We now need to detect, classify and

extract information from these objects. For this we need to perform high-quality sky

observations with a proper survey strategy.

The objective of this chapter is to present an overview of the SuperNova Legacy Survey

(SNLS). First, the instrument used for acquiring the survey images is described in Section

§ 4.1. Then in Section § 4.2, we introduce SNLS as the survey designed for detecting

hundreds of type Ia SNe using a specific observation strategy. Finally, we present the

two di↵erent and independent analyses sets for processing SNLS data, standard and

photometric, in Section § 4.3.

4.1 The instrument

The Canada-France-Hawaii observatory, shown in Figure 4.1, is located at the summit of

Mauna Kea, Hawaii, at 4, 200 m. This location provides excellent observing conditions

for the 3.6 m telescope hosted in the observatory (CFHT).

The wide-field optical imaging facility at CFHT is called MegaPrime/MegaCam (Figure

4.2). The imager, MegaCam [52], was developed by CEA/Irfu and at its inauguration in

36
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Figure 4.1 CFHT dome at the summit of Mauna Kea, Hawaii [50]

Figure 4.2 The MegaPrime instrument [51]

2003 was the world’s largest CCD camera with 340 million pixels. The camera consists

of a mosaic of 36 CCDs laid out in 4 rows with 9 columns each as can be seen in Figure

4.3. Electronics were designed in order to minimize the readout time by using two

amplifiers for each CCD. With this camera a large portion of the sky, almost 1 square

degree, can be imaged with a resolution of 0.187 arcsecond per pixel. The camera is

cooled down to �120�C to reduce thermal noise and obtain a good detection e�ciency.

For observations five broadband filters are available, denoted g
M

, r
M

, i
M

, z
M

and u⇤,

which span a wavelength range of 300 to 1000 nm as can be seen in Figure 4.4. Other

MegaCam technical specifications are shown in Table 4.1.

4.2 SNLS survey

The SNLS is an international collaboration with a primary goal of measuring the equa-

tion of state of Dark Energy with SNe Ia with an accuracy of 5% on !. The program was
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(a)

(b)

Figure 4.3 (A) Photo of the MegaCam imager [53] and (B) the corresponding number-
ing of the CCD mosaic. In the second image, letters A and B on each CCD correspond
to the 2 amplifiers used during readout [54]. North is at the top, East to the left.

CCD number 36
CCD size 2,048 x 4,612 pixels
Pixel size 13.5 µm
Pixel angular size 0.18700

Field of view 0.96 deg x 0.94 deg
Readout time ⇡ 35 seconds
Readout noise  5 electrons
Wavelength range 350-1000 nm

Table 4.1 MegaCam technical specifications [55].

designed for detecting hundreds of type Ia supernovae in a redshift range between 0.2

and 1. It is a second generation survey focused on more precise measurements than pre-

vious experiences. Other second generation surveys include ESSENCE [57] and SDSS-II

Supernova Survey projects [58]. Advantages of SNLS include a very good time sampling

and the use of four passbands while some surveys only used two.

SNLS is part of the CFHT Legacy Survey (CFHTLS) which included three di↵erent

surveys: the “very wide”, the “wide” and the “deep”. As their names show, each

survey was deeper and narrower than the one before. Over 2,300 hours of the telescope

time were allotted to the CFHTLS during a 5 year period, from 2003 to 2008. This

corresponds to about 450 nights of observations.

SNLS images come from the CFHTLS “deep” survey, which devoted around 202 nights

observing four di↵erent patches of one-squared-degree in the sky. These fields D1,D2,D3

and D4 were located high in the galactic plane (Figure 4.5) to minimize Milky Way
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Figure 4.4 MegaCam filter transmission curves measured 15 cm from the center. RE-
OSC measurements were done in 2002 by the manufacturer and CHFT measurements
were done in 2006. A widening of the passbands is seen for the i and r bands [56].

extinction, to avoid extremely bright stars and to have an overlap with other surveys to

provide complementary data, such as the SDSS survey. Each field is observable around

7 months in Hawaii and two fields are available simultaneously at any period of the year.

Figure 4.5 Full sky map with position of the deep and wide fields of CFHTLS. The
ecliptic plane is denoted as the dense red dotted line, the Galactic plane is the other
dotted line. NGP denotes the North Galactic Pole [59].
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From all the filters available on CFHT, only four were used in the SNLS analysis since

the u⇤ contribution is minimal to high redshift supernovae. The transmission bands of

the i
M

, r
M

, g
M

and z
M

filters (hereafter i,r,g,z bands for simplicity) can be seen in

Figure 4.6 where they are compared to SDSS filters.

Figure 4.6 MegaCam e↵ective passbands at the center of the focal plane in solid lines
compared to SDSS 2.5 m e↵ective passbands in dashed lines [60].

SNLS is a rolling search survey. In order to find transient events, SNLS targets the

same field every 3-4 days throughout 5 to 7 consecutive lunations, where a lunation

is the period of three weeks around a new moon. This allows to track simultaneous

events as can be seen in Figure 4.7. Since two fields are simultaneously observable at

any given time of the year, every other night the field is changed. For each night with

SNLS observations, several exposures in the i
M

and r
M

bands are taken (typically 5 to

7). Plus several exposures in either g
M

or z
M

band.

All images from MegaCam destined for the SNLS analysis were pre-processed at the

CFHT using the Elixir pipeline [62]. In this way, many instrumental defects can be

disentangled from science data. The pre-processing includes:

• Flat-fielding: for all CCDs in the mosaic the same zero point is obtained by map-

ping non uniformities in the photometric response of each CCD.

• Subtraction of fringes for the i and z band images.

• Assigning flags for defective pixels and cosmic rays.
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Figure 4.7 Light curves for SNLS SN Ia candidates. Three filters are shown here: i
(top), r (middle), and g (bottom). Light curve fits (continous lines) are drawn over
observed data (points) [61].

4.3 The pipelines

Two independent analysis pipelines process SNLS data. The first, the standard pro-

cessing relies on the spectroscopic follow-up of detected SN candidates [27]. My work

has been centered in the second, the photometric processing that will be thoroughly

discussed in the next Chapter § 5. The latter does not require spectroscopic resources

and allows to obtain other types of measurements as core-collapse supernovae rate.

Standard analysis

This processing is based on real-time detection of transient events and then spectro-

scopic follow-up for both classifying and analyzing SNe Ia. Spectroscopy provides high

precision measurements for studying the expansion of the universe but requires sizable

time resources.

The processing goes as follows. First, transient events are detected. Pre-processed

images from each night of observation are scanned for any sign of varying flux objects.
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Two independent transient events detection pipelines were set up, one based on the Alard

algorithm [63] and the other one based on a non-parametric approach. Candidates are

found comparing an image with a stack of earlier images and searching for excess of

flux compatible with a point source. The data processing showed that the overlap of

candidates between the two pipelines was over 90%. More details can be found in Astier

et al. [27].

Second, since spectroscopic resources are limited, a ranking of promising transient events

is done. Detections that are matched to known periodical events such as Active Galactic

Nuclei (AGNs) and variable stars are discarded. Photometric information from images

is used to fit a light curve model to partial light curves. Information from this fit allows

to better classify promising events but also to filter out events such as core-collapse

supernovae which, as we have seen in Chapter § 3, have distinguishable light curves in

most cases.

Third, candidates are sent to spectroscopic follow up for confirmation of SNe Ia type

and redshift determination. Four 8-10 m diameter-telescopes participated in this step,

the VLT in Chile, the Gemini Telescopes in Chile and Hawaii and the Keck Telescopes

in Hawaii. These telescopes provide very precise redshifts, with accuracy of 0.1% to

0.01%. It must be highlighted that the time necessary for spectroscopic follow-up is well

above that required at CFHT for photometry.

For the first 3 years of data from the SNLS (here forth SNLS3) the standard analysis

found 252 spectroscopically confirmed SNe Ia with redshifts between 0.15 and 1.1 [64].

Combining this data with low-z surveys, SDSS and high-z as HST yielded the best

current Hubble diagram to date which can be seen in Figure A.1. This high confidence

result was due to the large statistics collected by SNLS and the high quality of the data

selected to enter the Hubble Diagram.
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Figure 4.8 Hubble diagram using 472 SNeIa from SNLS3 and other low- and high-
redshift surveys from JLA with SALT2 parametrization [65]. The black curve shows a
⇤CDM model fitted to data. µ is given by Equation 3.5. ⇤CDM parameters from this
analysis include ⌦m = 0.303 ±0.012,⌦⇤ = �1.027 ±0.055 and H0 = 68.50± 1.27.



Chapter 5

SNLS deferred photometric

analysis

In this chapter I will introduce the deferred photometric analysis developed by the

Saclay SNLS group on which this work is based. The aim of my PhD was to optimize

this photometric pipeline set up for SNLS3 in view of SNLS5.

The photometric analysis detects and selects type Ia supernovae using only photometry.

It is independent of the previously presented real time pipeline (Section § 4.3). Therefore,

the image treatment, detection strategy and classification in this chapter are exclusive

of the deferred photometric analysis.

Our pipeline has two very interesting characteristics: first, it is based only on photom-

etry and second, it is deferred. The latter allows to optimize detection and selection

strategies at all times. The former means that we are able to detect and select SNe Ia

candidates without the use of any spectroscopic resource [66]. In the era of large future

surveys, spectroscopic resources will be limited for candidate follow-up and classification

which makes photometric pipelines particularly interesting to study. Other advantages

of a photometric pipeline include the possibility of detecting other type of SNe such as

core-collapse. For example, a study of the core-collapse SNe rate was published using

the data from this deferred pipeline in Bazin et al. [35].

This chapter will describe the SNLS3 pipeline. It will focus on how to go from survey

images to our sample of type Ia supernovae as done in G. Bazin’s PhD thesis [67] and

44
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Bazin et al. [66]. The starting point is the available data, pre-processed images from

CFHT, which are processed as shown in Section § 5.1. SNe are transient events, hence

a natural first step is to detect all objects with varying flux as explained in Section

§ 5.2. Since transient events include, but are not only SNe, in Section § 5.3 we present a

selection of those transient events which are more likely to be SNe. Once the SN sample

is assured, a final classification and selection must be done to obtain our desired object

sample, type Ia SNe, explained in Section § 5.4.

To conclude, I will point out changes on this pipeline that are being implemented for

the SNLS5 analysis in Section § 5.5. My work on the optimization of the photometric

pipeline, presented in this Chapter, will be detailed in Chapters § 7 and § 8.

5.1 Image Processing

5.1.1 Astrometry and resampling

At this stage, survey images have already been pre-processed at CFHT as shown in

Section § 4.2. This was the last step shared with other SNLS analysis pipelines. Now,

for our pipeline, we need to align the pixels of our images into the same spatial frame.

Basically we want to project our images into a common pixel grid. To this end, we first

need to define the transformation to be applied and then, we must do the actual image

alignment.

The transformation, so-called astrometric solution, is computed for the images of each

SNLS field. This is done using TERAPIX calibration tool SCAMP [68] that computes

the projection parameters from a catalogue of known objects, namely the USNO-B1.0

catalogue in our pipeline [69]. SCAMP computes these transformations taking into

account possible rotations, translations and deformations between images.

Alignment resolutions are provided by SCAMP comparing coordinates of bright objects.

First, an “absolute” resolution is computed between the positions of objects in the

external catalogue and positions in the aligned images. Second, an “internal” resolution

is found that shows the coordinate dispersion among all aligned images. It must be

highlighted that a threshold on matching distances between reference coordinates and
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retrieved image coordinates is imposed when computing resolutions. The default is 200

in SCAMP.

For SNLS3 the “external” resolution given by SCAMP is slightly above 0.400. For any

field, the internal resolution between images is found to be non homogeneous and field-

dependent. Note that to obtain a better alignment resolution it is highly recommendable

to use astrometric exposures from wide fields when available. Such is the case for fields

D1 and D3 which are encompassed by the CFHTLS wide fields W1 and W3 respectively.

When comparing “internal” resolutions, fields D2 and D4 obtained roughly ⇡ 0.200 while

for D1 and D3 resolutions were ⇡ 0.100.

The alignment of images, which includes resampling, is done using the TERAPIX tool

SWarp [70]. SWarp takes the computed transformation by SCAMP and projects the

images on the astrometric frame doing, if needed, pixel interpolation.

Once images are aligned, a cleaning procedure can be performed to tackle defects induced

by this step. For example, dead pixel lines and borders of CCD usually have a pixel

content of 0 ADU but when resampling this content is altered and pixels around these

regions can acquire very high and extreme values. The cleaning uses a median filter to

tackle empty zones and a Laplace filter for the borders of dead pixel lines, see G. Bazin’s

PhD thesis for more details [67].

Now, all images are in the same grid of pixels and the search for transient events can

start.

5.1.2 Subtractions

Supernovae are transient events and as such can be detected thanks to their varying

flux. Our pipeline takes advantage of this by using subtractions to detect them. The

idea is to compare “current” images to a “reference” image of the same sky area. In

Figure 5.1 a SNIa explosion is clearly seen in a galaxy and the subtraction procedure is

illustrated.

First, we need to produce reference images, for each field and filter. The same reference

images were used throughout the processing and were constructed using the SWarp tool.

Around 20 images with the best photometric quality, based on seeing and absorption,
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(a)

(b)

(c)

Figure 5.1 Example of using subtraction for detecting SNe Ia: (5.1a) Explosion of
an SNIa (04D1dc) in a galaxy. The image of the galaxy before explosion (5.1b) is
subtracted from the current image 5.1a to obtain an image of our transient object
(5.1c). The area shown here represents a very small fraction of the current image.

were chosen from the first and second season depending on the field. This set of images

were co-added to obtain a better signal-to-noise ratio but also to ensure complete field

coverage. They were also cleaned for resampling defects. An example of a reference

image can be seen in Figure 5.2.

Subtractions were done using the TRITON package [71] based on the algorithm by

Alard and Lupton [72]. To compare a current image to a reference image, it is necessary

to adapt the PSF of the reference image to the one of the current image. For each

image a determination of the sky background and a convolution kernel was performed.

The convolution kernel translates di↵erent PSFs: the shape adapts the seeing between

images, while the norm of kernel allows to adapt the flux scale between the two images.

The importance of adapting PSFs for subtractions is illustrated in Figure 5.3.

Both the sky background and the convolution kernel were computed independently on

eight non-overlapping tiles for each CCD. The number of tiles was determined taking

into account two criteria: the optimization of subtraction for spatial variations of the

background and kernel which requires small tiles and the necessity of a su�ciently large

number of bright events on a tile to compute the convolution kernel. These criteria

constrain the size, and therefore the number, of the tiles.

Bright objects were selected in both reference and current image tiles by applying a

detection threshold at 2� w.r.t. the sky background using the TERAPIX tool SExtractor

[73]. This utility extracts coordinates for detected objects as well other information as

flux and background estimations. The convolution kernel and sky background were then
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Figure 5.2 Reference image for field D1.

fitted in 59x59 pixel regions centered on each bright object present in both the reference

and current images. These objects were also required to be neither saturated nor too

close to a tile boundary. Regions around objects that had more than 20% overlap were

discarded. This procedure yielded around 100 object per tile at the average seeing of

0.7 arcseconds.

Once the sky background and the convolution kernel were determined, subtractions were

performed for each tile and filter. The use of the convolution kernel ensures that the

subtracted image flux scale is scaled to that of the reference. A subtraction is considered

valid only if the integral of the convolution kernel is above a filter-dependent threshold.

In the SNLS3 processing the rate of lost subtractions was only around a few percent.
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Figure 5.3 Image subtraction principle with a PSF adjustment. The reference image
(R) is to be subtracted from the current image (I). However, if a pixel by pixel subtrac-
tion is done the resulting image is the one on the lower left side which is clearly not
correct. If the reference is convoluted with a kernel (K) that transforms the reference
PSF to the current one, the subtraction is correct. [67]

As an approach for searching transient events, image subtraction is a quite common

choice. Although the idea behind it is simple, this procedure is more complex than

it appears due to variations on image quality and artifacts present in both reference

and current images in spite of the previously mentioned cleaning. We note this for the

moment and we will address it in Chapter § 7.

5.2 Detection of transient events

The next step is to detect transient events in subtracted images applying a signal-to-

noise threshold. This is done using the TERAPIX tool SExtractor [73]. Distant SNe in

SNLS have their maximum flux in the i
M

band, then the detection of transient events is

done in this filter. Since images are aligned, we assume that the coordinate of an object

found in the i
M

images will be the same in other filters.

We want to detect distant supernovae (m
i

⇡ 24). If we apply a signal-to-noise ratio on

subtracted images, the threshold should be set low in order to recover faint events (e.g.

1.2� [67]). However, requiring such a low threshold yields a large number of spurious

detections. Moreover, doing a detection map for each of the roughly 2 ⇤ 106 subtracted

images in SNLS3 requires handling a very large number of simultaneous maps at di↵erent

times.
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5.2.1 Lunation stacks

In order to increase the signal-over-noise ratio and to reduce the number of spurious

detections (since many of these occur at the same position in di↵erent images), a strategy

based on stacking was developed by Bazin in his PhD [67].

The idea is to co-add N images that cover the same patch of the sky. The theoretical

increase in signal-to-noise ratio is of order
p

N . However, since noise between subtracted

images is correlated due to resampling and the use of the same reference image in all

subtractions, this is only approximate.

Virtual CCDs represent common sky areas. These were defined by dividing each field

reference image in 36, the number of real CCDs in the mosaic. It must be noted that,

due to di↵erent pointings between exposures, the virtual CCDs are not aligned with the

same real CCDs. From now on, we will only refer to virtual CCDs.

The stacking, or co-addition, was done for subtracted images that belong both to the

same sky area and to the same observation period. This period was defined around a

new moon, hence the name lunation stacks. On average, 30 images entered each stack.

These stacks provided an improvement on S/N ratio of approximately a factor 5, for

SNLS3, according to Bazin [67].

5.2.2 Detection catalogues

Transient event detection catalogues can now be constructed for each lunation stack.

They are called lunation catalogues. This is done using SExtractor. It must be noted

that since we are dealing with subtracted image stacks values of flux and background are

only indicative to signal and noise levels. For each lunation stack, a detection required

at least 4 pixels with a signal of more than 2.5� w.r.t. sky background. In order to

prevent extracting one position for two di↵erent close-by objects deblending was also

required.

Since the same reference images are kept throughout the processing, some of the super-

novae have part of their signal included in the reference and when doing subtraction a

negative flux variation may appear. Therefore, both negative and positive flux variations

were detected.
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Lunation catalogues Final catalogues
Number of detections 975,563 302,987

Table 5.1 Number of detections in lunation and final catalogues for SNLS3 data.

For SNLS3, in each field around 30 lunation catalogues were constructed. A large number

of spurious detections were found in di↵erent lunation catalogues at close-by positions

(2-3 pixels) (e.g. due to bright star residuals which can be recurrent in time). Therefore,

the construction of a final CCD detection map was proposed to reduce the number of

spurious detections to be further treated.

To do so, final detection catalogues were obtained by merging all lunation catalogues for

each CCD and converting the result into an image where each detection was replaced by a

Gaussian of height 1 (to give the same weight to all detections) and width 1 (motivated

by the small distance between spurious detections). This image was processed with

SExtractor selecting only pixels with a content above a value of 0.01 and deblending

objects. In this way, any object detected on several lunations at the same position

(within a pixel) gave only one detection, with a position averaged over all lunation

stacks.

The result on the number of detections in the final detection catalogues compared to

the one of all lunation catalogues can be seen in Table 5.1. There is a clear reduction

of a factor three on the number of detected transient events. A sketch of the complete

transient event detection procedure (as done for SNLS3) can be seen in Figure 5.4.

Original 
Image stack

Lunation 
Catalogue

x 27 lunations x 27 lunations

Final 
Catalogue

gaussian coadding

SExtractor 
relative (S/N)

SExtractor 
absolute

Figure 5.4 Detection of transient events as in SNLS3 for each virtual CCD. Boxes
with continuous lines represent an image (fits) and boxes with dashed lines represent
catalogues (ascii).

5.2.3 Detection e�ciency for SNLS3

The detection e�ciency of this detection procedure was studied in Bazin et al. [66]. The

authors used Monte-Carlo generated artificial images produced by Ripoche with SNe Ia
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added for the D1 field in the i
M

filter [74].

The simulation was done in four stages which are summarized in the following:

• Generating SNIa coordinates and redshifts:

Host galaxies were identified from deep image stacks of the CFHT-LS Deep Fields

[75]. Using a two-dimensional gaussian for modeling the galaxies, SN positions

within their hosts were randomly generated up to a distance of 2� from the host

galaxy centers. This method provided compatible simulated and observed SN-host

galaxy angular distance distributions. The redshift assigned to each SN was that

of its host galaxy and was restricted to the range between 0.2 and 1.2. In the D1

field 216,000 SNe were generated over the 3 years of SNLS3.

• Simulating SNIa light curves based on a cosmological model:

For each SN the i
M

light curve was simulated according to the SN properties

(redshift, color, stretch) using SALT2 (introduced in Section § 3.3). The chosen

cosmological parameters were: ⌦
m

⇡ 0.25, ⌦⇤ ⇡ 0.70 and H0 = 67.9.

• Adding SNe to SNLS images:

Using the result from the previous step, the generated SN flux as deduced from

the light curve at each observation date was added to the corresponding raw image

on the assigned position in the host galaxy.

• The MC images were then processed by the Saclay deferred pipeline as real images.

This includes detecting transient events in the subtracted MC image stacks.

Detection e�ciency was defined as the fraction of recovered simulated supernovae at the

end of the processing. The e�ciency as a function of the generated SN peak magnitude in

i
M

is given in Figure 5.5. It is consistent with the one expected for a magnitude-limited

survey such as SNLS. The e�ciency is nearly magnitude independent with ✏
max

⇡ 0.97

up to m0i = 23.5 in the SNLS magnitude system 1, for the D1 field. Using an e�ciency

model, the e�ciency was determined in the other survey fields, D2, D3 and D4 which

had slightly di↵erent observing conditions.

1The SNLS magnitude system uses star BD +17 4708 as a flux standard.
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Figure 5.5 Detection e�ciency for SNe Ia as a function of the generated iM peak
magnitude in all survey fields.

5.3 Selection of SN-like events

5.3.1 Light curve reconstruction

To select those transient events that were more SN-like, we took the final detection

catalogue and constructed four-filter light curves for each candidate. Fluxes are a crucial

part on this analysis since their measurements must be properly calibrated and filtered

for residual e↵ects.

Calibration

Light curves were constructed from individual subtracted images. The i
M

position

obtained in the final detection catalogue was imposed for all photometric measurements

on all filters. At each detected position we applied TRITON di↵erential photometry

with PSF fitting.

The PSF was computed for each exposure and CCD. Bright events were detected on

each resampled image using SExtractor. Non saturated stars were used to define one

PSF per CCD by averaging star profiles computed in a seeing-dependent box.

In order to express all fluxes in the same common scale (the one of the reference image),

fluxes were normalized by the integral of the convolution kernel used previously during

subtractions.

The measured fluxes were calibrated using SNLS tertiary standards as defined in Reg-

nault et al. [76]. This was done by measuring the normalized fluxes of the tertiary

standards directly on current images with the same photometry algorithm and PSF as
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for transient events. Using the magnitudes of the tertiary standards, the tertiary fluxes

were converted into zero-points for each exposure and CCD. Zero-points that were above

5� with respect of the median value on each CCD were rejected.

Filtering

To ensure the quality of our flux measurements some filtering must be done.

1. Detections due to saturated stars, satellite trails and residuals of bad pixels or

cosmic rays were identified using SExtractor as bright objects with a 3� threshold

with respect to sky background. Photometric points whose PSF overlapped the

spatial extension of these objects were discarded.

2. Fluxes obtained under bad seeing conditions, above 1.200, were eliminated.

3. Fluxes measured in nights where all exposures were determined to be of bad qual-

ity, that is grade C from the TERAPIX visual image quality control, were also

eliminated.

4. Points with flux errors either too low or too high, with respect to the expected

flux uncertainty due to sky background were rejected.

5. Only fluxes within 3� from the night flux median value were kept.

6. Only nights with at least two exposures that met the above criteria were kept.

Light curves

Mean light curves in each filter were defined by taking weighted averaged flux mea-

surements within the same night. A common baseline was computed and subtracted

to account for a possible contribution of variable objects in the reference image. For

SNLS3 reconstructed fluxes were compared to the ones of spectroscopically identified

SNe Ia. Bazin et al. [66] showed that the flux reconstruction had a resolution of a few

percent and uncertainties below 2% on the absolute flux scale. They concluded that this

is accurate enough to set up a photometric detection.
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5.3.2 SN-like cuts

At this stage we want to use light curves to select all types of SNe while rejecting

spurious objects. To define cuts, both spectroscopically identified events and synthetic

SN Ia light curves were used.

The selection was done in four steps:

Figure 5.6 Di↵erence in the reduced �2 between iM light curve fits by a constant
and by an SN-like shape. All cuts preceding that illustrated here have been applied.
Black dots represent SNLS3 data (on top) and synthetic SN Ia events (bottom). In
both plots, green squares are spectroscopic SNe Ia and red triangles are core-collapse
SNe. Events above the curve are selected by the analysis. [66].

1. Significant flux variations:
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– For each light curve and filter significant flux variations were searched for.

A variation was said to start with a photometric point of positive flux and

significance above 1�. It ended when a point of negative flux had a significance

above 1�, or when two sucessive points of positive fluxes had significances

below 1� or at season ends.

– The most significant variations in the i
M

and r
M

light curves were required

to contain at least three points each and to have their maximum flux dates

within 50 days from one another.

2. SN-like variation: main variation (most significant variation) was required to

have a shape compatible to the one of SN-like events. The main variation in each

filter (k) was fitted independently with the phenomenological shape:

fk = Ak

exp�(t� tk0)/⌧
k

fall

1 + exp�(t� tk0)/⌧
k

rise

+ ck , (5.1)

where Ak sets the normalization of the variable signal, ⌧k
fall

(⌧k
rise

) define the

fall (rise) time of the variation, tk0 is related to the date of maximum as tk
max

=

tk0 + ⌧k
rise

ln(⌧k
fall

/⌧k
rise

� 1) and ck is constant. These parameters allow to make

cuts on data.

– To reduce contamination by long-term variable objects or by random fluctu-

ations, points away from the main variation were required to be compatible

with a constant flux. This was done computing an o↵-variation �2 defined

as:

�2
off

=
1P
k

N
k

X

k

X

j 62var

 
F j

k

� ck

�k
j

!2

, (5.2)

where F
j

is the measured flux at point j in the light curve with an error �
j

.

A cut was applied on this �2
off

as a function of the maximum flux observed

in i
M

.

– Consistency with the shape in Equation 5.1 was required in the i
M

filter. We

expect a significant signal on this filter for all redshift and types of SNe. This

cut is illustrated in Figure 5.6.

3. Star rejection: Variable or bright stars still contaminate the sample. To avoid

these events, known stars were rejected as well as events whose i
M

flux varied
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more than 70% between the day of maximum flux and the two closest epochs in

the same season.

4. Sampling requirements: light curves were required to have su�cient tempo-

ral sampling. In the i
M

and r
M

filters at least one epoch before and one after

maximum were required in an interval ranging from 30 days before the date of

maximum flux in each filter up to 60 days after that date. Finally the dates of

maximum, ti
max

and tr
max

from Equation 5.1 were required to be within 50 days of

each other.

Figure 5.7 SN-like selection cuts applied on SNLS3. The first column shows the
number of events that pass the cut. The second and third columns correspond to
spectroscopically confirmed type Ia and core-collapse SNe respectively. The last column
indicates the e�ciency of the cuts for bright SNe Ia, derived from synthetic SN Ia light
curves at low magnitudes (m0i < 23) [66].

The e↵ect of the SN selection cuts on SNLS3 data is shown in Figure 5.7. The reduction

by two orders of magnitude of the events, with respect to the small decrease in the

spectroscopically identified samples, points towards the presence of a large number of

spurious detections. This is obvious in the first three cuts shown in Figure 5.7 where

flux variations are required to be physical. To avoid reconstructing light curves of such

a large number of events, improvements on the transient event detection must be done

and this will be addressed on Chapter § 7.

5.4 SN classification: type Ia selection

Our goal is to obtain a sample of type Ia supernovae. At this point we have a sample that

contains both SNe Ia and core-collapse (CC) SNe and we must disentangle them. To

do so, four-band light curves are fitted simultaneously with SALT2 (Spectral Adaptive



Chapter 5. SNLS deferred photometric analysis 58

Lightcurve Template) [29] and events are classified using the variables obtained in this

fit.

In this Section we will show how to select type Ia SNe from the SN-like sample. However,

a selection of core-collapse SNe is also possible which was used to publish a core-collapse

rate in Bazin et al. [35].

5.4.1 SALT2 and photometric host-galaxy redshift

In order to fit light curves with SALT2 a redshift for each event must be provided. In the

SNLS3 analysis this redshift was assigned using host-galaxy photometric redshifts.

The selected SN-like events were matched with galaxies in the catalogue published by

Ilbert [75]. This catalogue provides photometric redshifts for more than 520,000 galaxies

with an AB magnitude brighter than 25 in i
M

. The match was considered valid if the

nearest galaxy to the event was found within a distance of 5r
gal

. The e↵ective galaxy

radius r
gal

was defined as the half-width of the galaxy in the direction of the event and

was derived from SExtractor applied on our reference images. Faint galaxies that could

not have their size measured were assigned a size of 1 pixel and were considered only

if no bright galaxy was found in the vicinity of the event. In SNLS3, when comparing

host-galaxy redshifts to spectroscopic ones, some host-galaxy redshifts departed by more

than 5� from the spectroscopic ones, that is �z/(1 + z) > 0.15. This can be attributed

either to incorrect SN-galaxy matching or to incorrect galaxy photometric redshifts.

According to Ilbert et al. 3.7% of galaxies with magnitudes below 24 in the iAB

M

are

expected to have �z/(1 + z) > 0.15.

Redshift assignments are of great importance since an incorrect assignment can generate

significant systematic biases in the classification and selection of SNe Ia. Incorrect

assignments mostly occur at redshifts z > 0.6 as shown in Bazin et al. [66]. The redshift

assignment e�ciency for SNLS3 was found to be 83%.

Each light curve was then given to SALT2 with its assigned redshift. Assuming that

the event is a SNIa, SALT2 derives the day of maximum light tB
max

, the color C, the

stretch-related parameter X1 and the rest frame B-band peak magnitude m⇤
B

. This fit

converged for 98% of SNLS3 SN-like candidates with an assigned host redshift.
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5.4.2 Light curve sampling requirements

To ensure that the parameters obtained with SALT2 were meaningful, some quality cuts

were performed. To do so, the event rest-frame was defined as:

⌧ =
t
obs

� tB
max

1 + z
gal

(5.3)

and this variable can be used to make meaningful cuts on sampling in the following way:

• To obtain a reasonable estimate of t
max

, and thus of the peak magnitude, at least

one measurement was required in the range �10 < ⌧ < +5 days.

• For a reasonable shape evaluation at least one measurement was required in the

range +5 < ⌧ < +20 days.

• For Ia/CC discrimination (when using color diagrams for establishing cuts as we

will do in the following) at least one color among (g � i), (r � z) and (i� z) was

required to have at least one measurement in each band in the range �10 < ⌧ <

+35.

For SNLS3, these cuts selected 1152 events from which 203 were spectroscopic SNe Ia

and 35 spectroscopic core collapse SNe [66].

5.4.3 Using SALT2 parameters for SNIa selection

We have now the parameters from the SALT2 fit on the four-band light curves. These

parameters include the magnitude at the date of B-band maximum light for each of

the bands, the �2 of the fit in each band used in the fit, the color C and the stretch-

related parameter X1. A set of complementary cuts may now be defined to disentangle

type Ia from remaining core collapse events. These cuts were set up using the SNLS3

spectroscopic samples and the SNIa light curve simulation as a guidance.

�2 requirements

Poorly fitted light curves can be rejected using reduced �2 cuts. The following criteria

were required to ensure proper fitting:

• For the g filter �2 < 10.
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• For r, i, z filters �2 < 8.

• For the overall fit of all bands �2 < 6.

For SNLS3 these cuts discarded 9 spectroscopic core-collapse events, all of SN II type.

However, 7 spectroscopic SNe Ia were also discarded. Two of these had an incorrect

host-galaxy redshift assignment while the others had noisy light curves.

Depending on their redshift, SNIa measurements have significant signal in all or a sub-

sample of color bands. SALT2 takes this into account by fitting only the relevant bands:

• g
M

is used only when z < 0.68.

• z
M

is used only for z > 0.26.

Outside these redshifts, type Ia SNe are expected to have no significant signal in the

corresponding bands. This information can be useful to reject other types of SNe when

comparing the flux in the unfitted bands to that corresponding to the SALT2 fit. Since

selection cuts to be applied will be looser in cases where not all bands are fitted, we

compensated by requiring tight cuts when using unfitted bands. A �2 is computed for

each unfitted band and it was required to be less than 6 in g
M

and less than 3 in z
M

.

For SNLS3, these cuts eliminated 4 spectroscopic CC and 10 SNe Ia. All eliminated SNe

Ia had an incorrect host-galaxy redshift assignment.

Stretch and color

A constraint between the fitted X1 and color C parameters was implemented as illus-

trated in Figure 5.8a. It was required:

✓
X1 � 0.2

1.4

◆2

+

✓
C

0.35

◆2

< 1 (5.4)

The upper bound in X1 discards long duration events among which spectroscopic SNe II.

This cut only removed a negligible fraction (1%) of synthetic SNe Ia. Core collapse had

in average a color of hCi = 0.3, then the color cut C < 0.35 rejected nine spectroscopic

CC. The color cut is helpful against SNIa events with incorrect redshift assignment.

This is illustrated in Figure 5.8b for those SNLS3 events that had both host-galaxy and
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(a)

(b)

Figure 5.8 SALT2 parameters plot for color and stretch. X1 vs. C is shown in 5.8a
and illustrate the way the X1-C cut was chosen (shown as a red ellipse). As an example
of the e↵ect of the color cut, the di↵erence between redshift assignement as a function
of C is seen in 5.8b with red lines showing the extreme value of color cuts. In both plots
synthetic SNe Ia (blue dots) and data (other symbols) are shown after sampling and
�2 constraints. Spectroscopically identified SNeIa are represented with green circles
and spectroscopically identified core collapse events with red triangles. For Figure 5.8b
pink crosses show events rejected by �2 cuts in unfitted bands [66].

spectroscopic redshifts.

Color-magnitude diagrams

The last criteria for rejecting core collapse events were based on color-magnitude dia-

grams. These can be seen in Figure A.2. Events entered these diagrams only when the

filters of interest were used in the fit.

• Figure A.2a contributed only in the range 0.16 < z < 0.68.

• Figure A.2b contributed only in the range 0.26 < z < 1.15.



Chapter 5. SNLS deferred photometric analysis 62

(a)

(b)

(c)

Figure 5.9 Color-magnitude diagrams using SALT2 fitted magnitudes for events that
passed all cuts up to color and stretch cuts. Spectroscopically identified SNeIa are
represented with green circles, core collapse events with red triangles and synthetic
SNe Ia as blue dots. Cuts are shown using red lines. Magnitude ranges (1�) are
indicated for 0.1 redshift bins centered in the given value (vertical location of segments
is arbitrary). [66].

• Figure A.2c contributed only in the range z > 0.26.

Since core collapse events have more g than SNe Ia, the (g � i) vs. g diagram proved

helpful in eliminating these.

It must be noted that all cuts were necessary to disentangle type Ia from core collapse

SNe. Results for SNLS3 data are presented in Figure 5.10. Using the MC, the core-

collapse contamination in the photometric sample was found to be of 4%. The average

SNIa e�ciency in the selection was 67% using well sampled light curves of bright SNe

Ia events as given by Bazin et al. [66]. To emphasize the e↵ect of redshift assignment

over the average e�ciency, if all events were assigned a host galaxy redshift the global

e�ciency for bright events would be 80%.
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Figure 5.10 E↵ect of the SNIa selection cuts on the data (second column), spectro-
scopic SNeIa (third column) and core-collapse SNe (fourth column) and e�ciency for
synthetic bright SNIa (m0i < 23) with well sampled light curves [66]. The asterix indi-
cates an event that was later revised and found to have the spectrum of an unrelated
object extracted which was identified as a core-collapse SN. After reprocessing it was
shown to be a SNIa.

5.5 5-year analysis changes

The pipeline as presented in this Chapter was the one used for processing SNLS3. In

the view of SNLS5, some changes have been already implemented by Vanina Ruhlmann-

Kleider at various stages in the pipeline before detection. Changes after detection are

under work.

First, during the last SNLS year the i
M

filter was damaged and a new filter commissioned

(i
M

2). During the time when no i
M

filter was at CFHT, our detection pipeline used the

r
M

filter in the lunation stacks to ensure continuity. Filter changes required computing

reference images for the new i
M

2 filter in order to perform subtractions.

Second, the astrometric solution was revised. A two step-procedure was implemented

to improve the alignment resolution. The first step consisted on creating an internal

reference catalogue for a subset of i
M

, r
M

and i
M

2 images of the whole survey and the

astrometric exposures. This catalogue was calibrated with respect the USNO-B1.0 using

a matching radius of 200 as in the SNLS3 processing. The second step was to compute

an astrometric solution in each filter using the internal catalogue, science exposures of

years 4 and 5 and astrometric exposures. The matching radius for this second step was

set to 0.500. The two step procedure improves internal resolution being at most 0.0400.

Also, within a field, filter’s resolutions have now a good uniformity.

Third, star photometry and zero points were recomputed after the more precise calibra-

tion presented in Betoule et al. [77]. Calibration and grid uniformity corrections were
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applied. Non-linearities in calibrated fluxes were found to be below 1.2 mmag on the

whole range of star fluxes, to be compared to 3 mmag in the SNLS3 processing.

Further changes are described in the next chapters and are based on my own work.

5.6 Summary

In this chapter I presented an overview of the SNLS deferred photometric pipeline for

selecting SNe Ia as applied to SNLS3 data by Bazin et al. [66].

The advantages of this pipeline are based on the possibility of selecting SNe Ia using no

spectroscopy. This allows a larger sample of SNe Ia to be selected over a larger redshift

span (Figure 5.11). However, spectra remains essential to achieve high level accuracy

for cosmological studies and as such this pipeline does not replaces the real-time one.

Another advantage of the SNLS deferred photometric pipeline is that it includes a se-

lection of SN-like events. This allows the study of non type Ia SNe. For example, the

rate of core-collapse was measured using this sample in Bazin et al. [35].

However, there is still room for improving this pipeline which I addressed during my

PhD.

First, SNLS3 processing showed that transient event detections were dominated by spuri-

ous objects, mostly from imperfectly subtracted objects such as bright stars, resampling

defects and masks. Processing light curves of such a large number of detections knowing

that 80% of those will be rejected by the early steps of the scientific analysis (see Figure

5.7) and do not contribute to science results represents a waste of time. In Chapter § 7 I

will present my work to improve the detection of transient events using signal processing

tools briefly introduced in Chapter § 6.

Second, I worked on a new classification of SNe Ia. The SNLS3 approach depends

on the matching of an event to a host galaxy and its photometric redshift, which had

an assignment e�ciency of 83%. An alternative is to use the algorithm presented in

Palanque-Delabrouille et al. [49] which determines SNIa photometric redshifts directly

from photometry. This is described in Chapter § 8 where I take advantage of machine

learning techniques.
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Figure 5.11 Distribution of host-galaxy photometric redshifts for photometrically se-
lected SNe Ia in the SNLS3 data. Events with (without) spectroscopic identification
are shown in green (black) [66].



Chapter 6

A brief introduction to signal

processing and sparsity

Using signal processing tools, I found a way to reduce the number of spurious objects

detected as transient events by cleaning the subtracted image stacks. In this Chapter,

I will briefly introduce some of the signal processing concepts and the Morphological

Component Analysis (MCA) algorithm. This is a reference chapter while the application

to SNLS data is presented in Chapter § 7.

A fundamental problem in signal and image processing is to be able to decompose an

image into its building blocks or superposed contributions from di↵erent sources. This

problem can be seen as a linear inverse problem: to recover a signal from measured data

that contains both the interesting signal, other signals and noise.

For my application I used the MCA algorithm by Starck et al. [78]. This framework

assumes that an observed image can be described as the sum of several components,

each exhibiting a distinct morphology. To actually perform this separation, MCA relies

on the theory of sparse representation of signals.

This Chapter is heavily based on the book Sparse Image and Signal Processing by J.-L.

Stark, F. Murtagh and J. Fadili [79] and A wavelet tour of signal processing by Stephane

Mallat [80] together with some supporting publications.

Basic signal-processing concepts are defined in Section § 6.1. Then, I introduce the

framework that allows treating images with di↵erent morphologies in Section § 6.2. The

66
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latter is the basis of the MCA algorithm presented in Section § 6.3. The MCA algorithm

relies on a choice of dictionaries to study di↵erent morphologies. The construction of

dictionaries is introduced in Section § 6.4.

6.1 Basic concepts: sparsity, atom, dictionary and scales

Any signal, x, can be represented in di↵erent finite-dimensional spaces or domains (e.g.

time domain, Fourier domain, wavelet domain) as a vector

x = [x[1], x[2], ..., x[N ]] (6.1)

where signal coe�cients exhibit di↵erent properties depending on the chosen domain.

One property of particular interest is the so called sparsity of the coe�cients, i.e. the

property that only a small number of coe�cients are non zero. If a signal is not sparse,

it may be sparsified using an appropriate domain transformation. As a general rule, the

coe�cients of the signal will be sparse when the basis functions of the domain (so called

atoms) are very similar to the signal itself.

Formally, an atom is an elementary signal-representing template. Example of atoms

are sinusoids, gaussians and diracs. A collection of ordered atoms of a given domain is

called a dictionary. A dictionary � = [�1, ...�T ] is a N x T matrix whose columns are

the atoms, �, and T is the number of atoms. A dictionary is ordered according to a

variable or index which is dictionary dependent, for example: frequency for the Fourier

dictionary and position for the Dirac dictionary.

In particular, the Fourier dictionary is composed by atoms that are sinusoids. This

dictionary is useful for the study of stationary signals or stationary periodic functions.

This type of signals have statistical properties that do not change over time, the functions

repeat themselves once per period, without modification. For example, a sine signal can

be sparsely represented using this dictionary. For this signal, the choice of the Fourier

dictionary is optimal from a sparsity standpoint since all information is contained in a

single coe�cient. An illustration can be found in Figure 6.1.

The Fourier transform studies the signal as a whole, it is a global analysis. However, we

are interested in studying signals that are localized and have di↵erent sizes. For this we
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can choose dictionaries that allow local analysis. Instead of ordering those dictionary

through frequencies, as in the case of the Fourier dictionary, it is useful to organize it

through scales. A scale represents the typical size of the atom. We will come back to

this in Section 6.4.

Introduction
3D Weak Gravitational Lensing

GLIMPSE: sparsity based 3D density reconstruction

Sparse regularisation of inverse problems
The GLIMPSE Algorithm
Assessing the performance of the algorithm

Example in the Fourier domain:

François Lanusse (Irfu-SAp) 3D mapping of the invisible universe 17/ 28
Figure 6.1 Example of di↵erent signals represented in the time domain (left) and in
the Fourier domain (right).

In general, let us denote ↵ the coe�cients of a signal x in a dictionary �:

x = �↵ =
X

i

�
i

↵
i

, (6.2)

If x is sparse in dictionary � then only a small number of coe�cients in ↵ are non zero.

Given a dictionary, two linear operations must be distinguished:

• Analysis: Associates each signal x with a vector of coe�cients ↵ on that dictionary.

Mathematically this means ↵ = �⇤x.

• Synthesis: Take the coe�cients and reconstruct the signal x by superimposing the

atoms of the dictionary x = �↵.

These are di↵erent operations which not necessarily have a unique result.
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In our case our signal of interest are images. Studied images are usually not strictly

sparse in a representation as in the previous example. However, they may be compressible

or weakly sparse which means one can neglect most coe�cients while remaining with

only a small fraction of them without much loss.

This sparsity property is extremely desirable as it can be used as a very powerful prior in

the regularization of a wide range of inverse problems. Some applications to astronomy

and astrophysics include denoising [81], deconvolution [82], blind source separation for

CMB analysis [83], weak gravitational lensing [84].

6.2 Morphological diversity

Usually, images are composed by structures with di↵erent morphologies. Then, a single

dictionary does not represent well the objects in it. However, we can assume that

the given image is a linear mixture of several source signals of a more coherent origin.

A framework of data modeling that allows to have a sparse representation while using

di↵erent dictionaries to decompose an image is calledmorphological diversity. There,

the image can be modeled as the sum of K morphologically di↵erent components as:

X =
KX

k=1

x
k

, (6.3)

where each x
k

is called morphological component and is assumed to be sparse in a given

dictionary �
k

.

Given image X defined in (6.3) as the sum of K di↵erent morphological components, let

us introduceK di↵erent dictionaries�
k

, each adapted only to the particular morphology

of component x
k

i.e. such that the ↵

k

coe�cients, {↵
ki

}, of x
k

in �
k

are sparse but

not the coe�cients of x
l

for l 6= k. The latter means that di↵erent dictionaries do not

represent the others behaviors or are very ine�cient at doing so. Such dictionaries are

also called incoherent.

The idea is to perform the separation in the di↵erent morphological components through

finding an optimal set of coe�cients ↵

k

maximizing the sparsity of the decomposition

of each component in the corresponding dictionary.
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6.3 Morphological Component Analysis

The Morphological Component Analysis (MCA) algorithm has been proposed by Starck

et al. [85] and uses the morphological diversity of the di↵erent features in data. Ob-

served images, Y , are assumed to be a combination of signals (morphologically di↵erent

components as in Equation 6.3), X, plus some noise, N :

Y = X +N , (6.4)

MCA is a practical way to perform the decomposition of a signal in di↵erent overcom-

plete dictionaries. Overcomplete dictionaries contain more atoms than their dimension

(T > N), thus are redundant, and have been proven to lead to more significant repre-

sentations allowing us to better extract information from images. However, the signal

decomposition in these dictionaries is not unique. Therefore, finding the proper coe�-

cients for a sparse representation is a non-trivial problem which is handled directly by

the algorithm.

When applying MCA a major role is played by the choice of dictionaries for the decom-

position. They must be mutually incoherent dictionaries that are well suited to represent

the images’ morphologies. Both dictionaries and associated scales must be chosen before

applying the MCA algorithm.

The MCA algorithm performs the signal decomposition as the solution of an `1 minimi-

sation problem, where `1 denotes the `1-norm. The `1-norm promotes the sparsity of

the decomposition of each component [86].

The decomposition algorithm solves iteratively the following optimization problem (anal-

ysis):

min
x1,...,xK

KX

k=1

k �⇤
x

k

k1 such that k Y �

KX

k=1

x

k

k2 � , (6.5)

where �⇤
x

k

= ↵

k

and � is the standard deviation of the noise contaminating the data,

assumed to be stationary and Gaussian distributed. At convergence, each morphological

component is obtained as:

x
k

= �
k

↵

k

(6.6)



Chapter 6. MCA 71

This component reconstruction (synthesis) can be restricted to a sub-sample of {↵
ki

},

for example to some size scales in a given dictionary.

6.4 Dictionaries

In this section I will briefly present the idea behind dictionaries, how they can be con-

structed and some applications. Although a very interesting topic, the mathematical

rigor required to treat them in depth is beyond the scope of my work.

A dictionary is a family of atoms spanning the space in which lives the signal. A

dictionary is equivalent to constructing a basis in a domain such as the Fourier one

(dictionary from sinusoids or the basis of Fourier transformations).

Here, I will sketch how to go from a dictionary composed by one-dimensional global

transformations to dictionaries which are localized, contain scale information and can

analyze 2-dimensional images. The latter are the ones used in the MCA algorithm to

treat our subtracted image stacks.

6.4.1 From Fourier to wavelet

I already introduced the Fourier dictionary. It is well known that for a given function

f(t) its transform into Fourier space is:

f̂(w) =

Z 1

�1
f(t)e�iwtdt (6.7)

where the basis of the Fourier dictionary is made by eiwt which are the so-called “sinu-

soidal atoms”.

The Fourier analysis is based on global information while we want to study local patterns.

In the Fourier case, we have functions defined as a function of time which are transformed

and analyzed in the frequency domain. To be able to study both frequency and time we

need to “localize” the transformation. For this we can use a sliding Gaussian window.

We introduce the short-time windowed Fourier transform (STFT) around time

point ⌧ as:

f̂(⌧, w) =

Z 1

�1
f(t)g(t� ⌧)e�iwtdt (6.8)
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where g(t � ⌧) is the window function for a given ⌧ . We can see that the STFT of a

signal is the inner product of the signal with an element of the set of basis functions

k
⌧,w

(t) = g(t� ⌧)eiwt (windowed sinusoids), which vary over frequency w and time ⌧ .

An equivalent transformation to the Fourier one that will be used in the following is the

wavelet transformation. The wavelet atoms can be seen as a new basis defined with

window size a, inversely proportional to w, and a positional parameter b equivalent to

the previous ⌧ . The wavelet atoms  
a,b

are defined as:

 
a,b

=
1
p

a
 ⇤
✓
t� b

a

◆
(6.9)

where  ⇤ is the complex conjugate of  . In general, a dictionary of wavelets consists of

the translations and dilations of a single real or complex valued function  , called the

analyzing wavelet (also known as the basic wavelet or mother wavelet). Translation is

the shift  (t) to  (t � b). Dilation of a function means a contraction or spread out of

the function, for example 1p
a

 ( t
a

) is a dilation of  .

Figure 6.2 Basis functions for STFT and wavelet transform. The STFT (a) places
a varying number of oscillations under the same envelope. The wavelet (b) keeps the
same number of oscillations and scales the amplitude.

The associated continuous wavelet transform (CWT) is:

Wf(a, b) =

Z 1

�1
f(t) 

a,b

(t)dt (6.10)

where  
a,b

(t) are the wavelet atoms defined in 6.9. The wavelet dictionary is ordered by

the a, b parameters and represents one-dimensional signals by time-scale images in (a, b).

As opposed to windowed Fourier atoms, wavelets have a time-frequency resolution that

changes, this can be seen in Figure 6.2.
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(a)

(b)

Figure 6.3 (A) Image of galaxy NGC2997, (B) starlet transform for di↵erent scales of
NGC2997. The co-addition of these six images reproduces exactly the original image
[87].

It must be noted that, to implement reconstructions based on dictionaries made from

continuous transformations an infinite number of computations is required. It is then

necessary to have discrete transformations which are constructed by tiling the fre-

quency space. Performing this discretization is far from trivial and I will not elaborate

on it. However, all following transformations are taken to be discrete.

6.4.2 Two-dimensional wavelets

Until now we have spoken of one-dimensional signals. However, we want to use dictio-

naries to decompose an image which is not one-dimensional. A two-dimensional wavelet

may be constructed directly on the two-dimensional plane, while other functions may

be constructed by combining di↵erent wavelets and functions using the tensor product

(e.g. directional wavelets obtained by rotating a single mother wavelet).

In the astronomical domain, the starlet transform is well known. It is also called

isotropic undecimated wavelet transform (IUWT) and its directly constructed in two-

dimensions. It is very well adapted to the detection of isotropic features (e.g. stars,

galaxies). An example of a decomposition with such a transform can be seen in Figure

6.3. The application of this transform to reconstruct a signal with noise as described in

Equation 6.4 is seen in Figure 6.4.
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Figure 6.4 Simulated Hubble Space Telescope image of a distant cluster of galaxies.
(a) original image, (b) aberrated image with noise, (c) wavelet reconstruction [87].

Other generalizations of the wavelet transform are the ridgelet and curvelet trans-

forms. They incorporate alignment information and they can describe non-isotropic ele-

ments. They are obtained by rotating, dilating, and translating elementary waveforms.

Curvelets include radial and angular windows which provide elliptical-like transforms

as can be seen in Figure 6.5. Ridgelets are extended transformations that include an-

gular orientation. They represent well linear-like morphologies (e.g. dead pixel columns)

as can be seen in Figure 6.6.

Figure 6.5 Example of curvelet (a). The rotation is expressed through ↵, u = (u1, u2)
represents the translation while j is the scale. (b) shows the so-called frequency support
which is the product (wedge) of a radial window with an angular window [80].

The complexity of the MCA algorithm and its dictionaries goes much deeper than intro-

duced in this Chapter. For example, decomposing an image with the discrete ridgelet

and curvelet transforms include multiple steps as can be seen in Figures 6.7 and 6.8. I

choose not to enter into details which, although of importance in the signal-processing
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Figure 6.6 Ridgelet example obtained from an implementation called fast slant stack
(left). The frequency support is shown in the right image [79].

field, are not vital for the understanding of my application. Such details are explained

in depth in references [79] and [80].

Figure 6.7 Flowchart of image decomposition in the discrete ridgelet dictionary. The
process includes Fourier (FFT), wavelet (WT) and Radon transforms [79].
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Figure 6.8 Decomposition flowchart of an image in the first-generation discrete
curvelet dictionary. The process starts with a 2-D wavelet (WT2D) decomposition
in di↵erent bands or scales, and then the ridgelet transform is applied. The latter
includes internal Fourier (FFT), wavelet (WT) and Radon transforms [79].



Chapter 7

Improving detection of transient

events

Based on the work done with François Lanusse and Jean-Luc Starck from SAp, CEA.

Published in JCAP 04(2015)041 [88] and http://arxiv.org/abs/1501.02110

In this Chapter I will present my work to improve the detection of transient events in

the deferred photometric pipeline of SNLS for the analysis of 5-year data sample. The

feasibility of detecting SNe Ia in this SNLS pipeline was already shown in Chapter 5.

The motivation behind this work is that transient event candidates in the SNLS 3-year

analysis were dominated by spurious objects due to bad subtractions. Allowing these

artifacts to be detected leads not only to a waste of resources but also to possible signal

coordinate contamination. Our goal is to reduce the number of transient event detections

while maintaining the sample of SN-like events.

This said, two main approaches can be used: changing the detection strategy or elim-

inating those spurious objects before detection, directly on the image stacks. In his

PhD work, Bazin studied thoroughly the detection strategy for the deferred photomet-

ric pipeline and optimized it [89]. Therefore, I decided to address artifacts at the level of

the subtracted image stacks (lunation stacks) which were defined in § 5.2.1. A two-step

procedure using morphological component analysis algorithms was proposed in order to

clean image stacks. After cleaning, I reviewed the detection procedure and adapted it

77
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to the cleaned image stacks. An important issue for the photometric analysis, namely

coordinate resolution, was also addressed.

In this Chapter, I present the problematic and common defects that yield spurious detec-

tions in Section § 7.1. In Section § 7.2, I explain how we chose dictionaries for separating

transient events from artifacts and how we implemented the two step procedure, first to

remove the main artifacts (§ 7.2.2) and then, to handle the non-stationary noise present

in our image stacks (§ 7.2.3). Finally, a new strategy for extracting signal coordinates

from our cleaned image stacks with a good resolution is introduced in Section § 7.3.

The performance of our treatment was studied using Monte Carlo (MC) artificial images.

However, the available MC had to be modified for obtaining a realistic redshift (§ 7.5.2)

and volume distributions of SNe Ia (§ 7.5.1). MC results for both detection e�ciency

and coordinate resolution are shown in Subsection § 7.5.3, while those for SNLS3 data

can be found in Section § 7.4.

7.1 Subtracted image stacks defects

Detection of transient events is done (as shown in Chapter § 5) using subtracted image

stacks in the i
M

filter. Reference images are constructed for each field from a set of best

quality images which are coadded. Each image of the survey has the reference image

subtracted using determination of the sky background and a convolution kernel which

allows the subtraction to be adapted to di↵erent observing conditions. Although it is

a very standard procedure in the pipeline, it is not perfect and many defects can be

present after subtraction.

We may say that there are mainly two types of artifacts. Those that can’t be subtracted

and those that are due to imperfect subtraction. While the latter may be reduced

through subtraction optimization, the former can not. For example, bright stars may

produce an optical ghost that can’t be subtracted and can be present in either or both

the reference and current images (e.g. Figure 7.1) leading to spurious detections ( Figure

7.2). Some surveys mask such image areas regardless that some SNe Ia may be present

in the vicinity.



Chapter 7. Improving transient detection 79

(a) (b)

Figure 7.1 Reference image for field D1 7.1a and a zoom of this same image 7.1b
where two saturated stars are clearly seen, with their di↵raction lines and the optical
ghost.

Figure 7.2 Detection map for field D4 in SNLS3. In this map, 90,971 detections are
represented. At the bottom right an optical ghost defect is clearly seen.

Our goal is not to study the origin of these artifacts but to reduce their impact on the

detection. Using SNLS3 D4 subtracted image stacks I searched for the most common

defects that yielded spurious detections in the detection maps.

The most common defects come from:

• Imperfect subtraction of bright stars (e.g. Figure 7.3a)

– Bright star residuals: part of the star’s light remains on the subtracted images.
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(a) (b) (c)

Figure 7.3 Di↵erent defects on the subtracted image stacks that yield spurious detec-
tions on large scale: (a) shows a saturated star with some areas masked by subtraction,
(b) a saturated star plus an optical ghost and (c) defects from sampling and dead pixel
lines (artificial color scale).

(a) (b)

Figure 7.4 Defects on the subtracted image stacks that yield spurious detections on
small scale: (a) and (b) dipoles from imperfect galaxy subtraction. These are adjacent
positive and negative areas on the stacks (artificial color scale).

– Masks: due to saturation there is a maximum value on each pixel content

of an image. When a saturated star is subtracted some pixels may have the

same value in both the reference and the current image. This produces a

region on the subtracted image which has pixels with zero-value.

• Optical ghost caused by reflections from the optical surfaces of the lenses in the

camera around a bright stars (e.g. Figure 7.3b)

• Resampling defects and dead pixel lines (e.g. Figure 7.3c)

• Imperfect galaxy subtraction, called dipoles since they are adjacent positive and

negative content areas on the stacks. They cover a smaller area than previous

defects (see Figure 7.4).
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(a)

(b)

Figure 7.5 Image stack for field D4, ccd 00 and lunation 10 with a bright star and op-
tical ghost in A.3a and its corresponding detection map in the SNLS3 deferred pipeline
A.3b. Multiple detections can be attributed to spurious objects.

These defects contribute to multiple spurious detections. For example, in Figure 7.5, a

saturated star with optical ghost can be seen in the image stack leading to numerous

detections in the map.
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7.2 Disentangling real transient events from artifacts

Morphological component analysis allows to disentangle artifacts from other signals and

can be adapted to treat subtracted image stacks in SNLS. First, the dictionaries are cho-

sen which characterize signal and artifacts distinctively at di↵erent size scales. Then, I

present a two-step treatment designed to extract interesting SN-like signals and eliminate

artifacts.

A sub-sample of SNLS3 data was used to characterize artifacts, see Section § 7.1, and to

assign the algorithm parameter values. Field D4 was chosen since it is a summer field

with very good observing conditions and a large number of transient detections and

events classified as SN-like candidates. These candidates were defined when applying

the SN-like cuts in Section § 5.3.2. In SNLS3 field D4 out of 90, 971 detections 362

events were selected as SN-like candidates among which 74 were later classified as SNe

Ia.

7.2.1 Choice of dictionaries

The aim of the filtering approach presented in this section is to separate the signal

of interest (SN-like events) from a complex background. The latter is constituted by

noise, defects that cannot be subtracted (e.g. Figure 7.3) and features from imperfect

subtractions (e.g. Figure 7.4).

A detection strategy based on applying a signal-over-noise cut does not reject many arti-

facts and yields a large number of spurious detections. Our aim is to leverage additional

morphological information to separate the signal of interest from artifacts and noise, by

exploiting their stark contrast in both shape and scale.

The MCA algorithm separates images into a number of morphological components,

using the sparsity level of each component in appropriate dictionaries as a discriminant.

Therefore, in the case of SNLS data, it is important to select, on one hand, a dictionary

adapted to the morphology of the signal of interest and, on the other hand, additional

dictionaries adapted to the artifacts we want to reject. More information on available

dictionaries can be found in Chapter 6.
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(a) SN 04D1c with its host-galaxy (b) SN 04D1c in subtracted image.

Figure 7.6 SN 04D1c with its host-galaxy and after subtraction.

(a) Starlet (b) Bi-orthogonal (c) Curvelet (d) Ridgelet

Figure 7.7 Typical atoms from the dictionaries used in the MCA algorithm. (a) starlet
atom representing circular-like signals, (b) bi-orthogonal wavelets for dipole features,
(c) curvelets for elliptical signals and (d) ridgelets representing line features (artificial
color scale).

Dictionaries can be used to probe features of di↵erent sizes. The latter are usually

represented by discrete scales j 2 J0, NK, where the number of scales, N , can be chosen.

Typically, atoms of these transforms at a scale j have a characteristic size in pixels of

2j , starting with the finest resolution with details at the pixel scale for j = 0. The

advantage of choosing di↵erent scales for each dictionary is that we are able to separate

small scale signals from large and small scale defects.

Signal

SN-like signals are small scale (r / 10 pixels) circular type shaped objects (specially on

subtracted images, see Figure 7.6). A wavelet based dictionary is suited to this kind of

morphology. We choose the starlet dictionary since it is composed of isotropic atoms,

especially e�cient for representing either positive or negative structures such as our SN

candidates. An example of a starlet atom is presented on Figure 7.7a.

Artifacts

For the small scale artifacts (usual size a couple of tenths of pixels) presented in Figure 7.4

we adopt a bi-orthogonal wavelet dictionary (Figure 7.7b). These artifacts result from
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improper subtraction of galaxies which lead to characteristic dipole features. The bi-

orthogonal dictionary has the advantage of representing such features more e�ciently

than the starlet, enabling us to discriminate these artifacts from the signal.

For large scale curved or line artifacts (spanning more than 100 pixels) such as the ones

in Figure 7.3, we adopt curvelet and ridgelet dictionaries. The curvelet dictionary is

composed of localized, elongated atoms which are known to provide a sparse representa-

tion for curved features, see Figure 7.7c. The ridgelet atoms are line of di↵erent widths

and orientations (see Figure 7.7d) which are perfect to represent the second type of

artifacts.

7.2.2 First treatment: removal of main artifacts

Until now, I have just described the di↵erent morphologies of our signal and artifacts

as well as the dictionaries that better represent them. Now, we can make use of a

robust tool that can decompose our subtracted image stacks e�ciently, that is the MCA

algorithm by J.L. Starck in [85]. This algorithm allows one to choose a set of dictionaries

and parameters to decompose an image. The latter were introduced in Chapter 6.

First, using SN-like objects and artifacts from the D4 SNLS3 test-sample, I chose which

scales and thresholds values were suitable for each dictionary. This was done by decom-

posing the signal or artifact using the algorithm and varying only one or two parameters

while searching the best decomposition.

• Thresholds : for a dictionary, the higher the threshold, the most adapted to the

dictionary an object must be to be assigned to it 1. After multiple trials and errors

the choice was set to 5.

• Scales for each dictionary:

– Starlet: three scales were required to account for small scale objects. SNe are

not punctual but extended objects, so I chose to eliminate the first scale 20.

– Bi-orthogonal wavelets, ridgelets, and curvelets: five scales (j = 1, ..., 5) to

account for small and large scale artifacts.

1This threshold is related to the initial � required in Equation 6.5
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(a) (b) (c)

(d) (e) (f)

Figure 7.8 MCA decomposition of a optical ghost (large scale): (a) the artifact in the
original subtracted image stack, (b) the starlet component, (c) the curvelet component,
(d) the ridgelet decomposition which represents very well the artifact, (e) the wavelet
component and (f) the residuals left after the decomposition (artificial color scale).

(a) (b) (c) (d)

Figure 7.9 MCA Decomposition of a SN Ia event: (a) shows the original subtracted
image stack centered on the SN event (yellow spot), (b) the starlet component, where
the SN signal (yellow spot) is surrounded by remaining galaxy residuals (green spots),
(c) the curvelet component and (d) the residuals left after the decomposition (artificial
color scale).
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Second, algorithm options related to the nature of our images, subtracted stacks, were

imposed. For example, both isotropic positive and negative signals were decomposed

since some SNe may have part of their flux included in the references, in which case

subtraction yields a negative valued signal. Also, when subtracting saturated pixels

(which have the threshold value), regions with zero values were created which are similar

to masks which must be indicated to the algorithm.

Other parameters in the algorithm were chosen from a trade-o↵ between reducing the

total number of detections and keeping most of the SN-like objects in the D4 test sample.

Another consideration was the computation time. Example of this was the number of

required iterations, a compromise between number of iterations and computation time

was achieved with 30 iterations for the decomposition. 2

The transforms associated to the algorithm’s dictionaries, especially that of the curvelet,

do not scale well with the image size and too much CPU time and memory would be

required for a SNLS subtracted image stack of 2176 by 4912 pixels. Therefore, we tiled

them, both to reduce time and memory resources and to allow parallel processing. For

reference, one SNLS subtracted image stack divided in 8 tiles requires on average 6 days

of HS06 CPU time and 500 Mb of virtual memory to be treated.

(a) (b) (c)

(d) (e) (f)

Figure 7.10 Varying noise: pixel content in a 50x50 pixels box at di↵erent locations in
a subtracted image stack before treatment. Histograms are normalized and axis scales
are kept fixed to illustrate variation from one location to the other.

2Other parameters include norm decrease and type of thresholding (hard or soft).
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The first treatment’s algorithm provides images in each dictionary. In our case, we have

images in the starlet, wavelet, curvelet and ridgelet dictionaries plus an image containing

the residuals. The latter contains mostly noise and other features not properly assigned

to any dictionary. Examples of artifacts and signal decompositions can be seen, for a

defect, in Figure 7.8 and, for a SN, in Figure 7.9.

The algorithm assumes a stationary and Gaussian noise in the input images which is

not the case for our subtracted image stacks ( coaddition of subtracted images spanning

several weeks of observations). Figure 7.10 shows di↵erent regions of a subtracted image

stack where it is clearly seen that the noise shape is not gaussian and has varying spread.

As a consequence, some SN signals were not properly decomposed and were partially in

the residuals, e.g. Figure 7.11.

Thus, at the end of the first treatment the interesting signal may be both in the starlet

component and in the residuals of our first treatment decomposition (e.g. components

(b) and (d) of Figure 7.9). In the following, I will call “output” of the first treatment the

combination of the starlet component and the residuals. An example of such an output

can be seen in Figure 7.12 where the reduction of artifacts is clearly seen. An example

of the varying noise still present after the first treatment is shown in Figure 7.13.

It must be noted that some of the signal can be also decomposed in the wavelet dictionary

but this dictionary is very e�cient at decomposing dipoles which are artifacts I want to

eliminate. Therefore, combining starlet, wavelet dictionaries and residuals is not a good

option.

(a) (b) (c)

Figure 7.11 MCA Decomposition of a SN Ia event where part of the signal leaks into
the residuals. (a) shows the original subtracted image stack, (b) the starlet component
and (c) the residuals after decomposition, containing part of the signal.
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(a)

(b)

Figure 7.12 Image stack for field D4, ccd 00 and lunation 10 before (a) and after (b)
first treatment. The optical ghost and part of the saturated star are eliminated in (b).

7.2.3 Second treatment: signal extraction with varying noise

Now, many of the artifacts on our subtracted image stacks are eliminated but there

are still some spurious artifacts and noise. To handle the non-stationary noise, it was

necessary to develop another utility based on the algorithm in [79]. It handles that

type of noise and exploits further morphological decomposition for extracting circular-

like signals. Once again, the method’s parameters were tested using the SNLS3 D4

subsample.
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(a) (b) (c)

(d) (e) (f)

Figure 7.13 Varying noise after first treatment: pixel content in a 50x50 pixels box at
di↵erent locations (same as in Figure 7.10). Histograms are normalized and axis scales
are kept fixed to illustrate variation from one location to the other.

Non-stationary noise requires varying the decomposition’s threshold for a given dictio-

nary depending on the position of the analyzed pixel. Such a feature can be easily

implemented in the starlet dictionary since it can handle actual noise maps (not the

case for other dictionaries like curvelets). The latter were computed using a sliding

window and a median absolute deviation estimator (MAD) to estimate noise dispersion.

The size of the box was chosen to be larger than an individual signal-like object. The

procedure was as follows: for each pixel in the noise map, a box of 50 x 50 pixels was

used to calculate the MAD and this value was assigned to that pixel. Then the box was

slid into the next pixel and the same procedure applied until a complete coverage was

done.

As in the first treatment, since some of the SNe may have part of their flux included

in the references, both positive and negative signals were treated. The nature of the

first treatment output di↵ers from the one of subtracted image stacks, which implied a

specific optimization of the decomposition algorithm parameters.

As previously, a D4 sub-sample was chosen to select visually some parameters of the

decomposition. Once again, the first scale of the decomposition was not taken into

account. I chose 7 scales since SN-like signals are bigger in the starlet reconstruction

than in the original image stack.
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The dipole issue: in-spite of the first treatment, at this stage there were still some

dipoles present in our cleaned image stacks. Several attempts were done to eliminate

them. Since dipoles are simply negative and positive adjacent areas, a first approach

was to select areas of positive or negative pixels, see if they were next to each other and

eliminate them. Several attempts were tried to set up criteria defining dipole artifacts

such as:

• Size: requiring sizes to be above and/or below a certain value.

• Absolute maximal value: requiring that the areas had extreme pixel values.

• Mix of the above criteria.

When applying constrains using these criteria there was a big loss of SN-like events in

the sample. Therefore, I decided to optimize the algorithm parameters without any

extra criteria to deal with dipoles.

The second treatment utility does not require tiling images since only the starlet dictio-

nary is used. One SNLS image output from the first treatment takes on average 3 hours

of HS06 CPU time and 100 Mb of virtual memory to be processed.

All signals present in the output image can be considered as morphologically compatible

with circular-like objects. An example of a decomposition of a SNIa event can be seen

in Figure 7.14, while an example of a cleaned subtracted image stack and its evolution

during the two-step procedure can be seen in Figure 7.15.

Now, I must note that this is a transformed and cleaned image where objects may be

larger and displaced slightly from their original position (e.g. size for SNIa example in

Figure 7.14). This fact will be very important for the detection procedure explained in

the next section.

7.3 New Detection strategy

A detection strategy includes both extracting events from an image and reconstructing

their coordinates. Event extraction depends on the image and its characteristics, e.g.

its local noise information. The TERAPIX tool SExtractor [73] was used for the whole
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(a)

(b)

Figure 7.14 A SNIa event shown in di↵erent lunations around maximum light in the
original subtracted image stack (a) and after both treatments of the cleaning procedure
(b).

(a)

(b)

(c)

Figure 7.15 Image stack for field D4, ccd 00 and lunation 10. Original subtracted
image stack is seen in (a), output of the first treatment in (b) and cleaned stack after
second treatment in (c).
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Figure 7.16 New detection strategy schema. Dotted lines represent catalogue ASCII
files while continuous lines stand for images.

detection strategy both in the original procedure and the new procedure, adjusting its

parameters accordingly.

Original detection strategy (see Chapter § 5):

In the previous work by Bazin et al. [66], the detection strategy consisted in constructing

lunation catalogues using SExtractor with deblending, requiring for each detection at

least 4 pixels with a flux of more than 2.5� w.r.t. sky background. A final detection

catalogue was obtained by merging all lunation catalogues obtained in three years and

converting the result into an image where each detection was replaced by a Gaussian of

height and width of 1. This image was processed with SExtractor selecting only pixels

with a content above a value of 0.01 and deblending objects. This was described on

Figure 5.4 and on the top part of figure 7.16.

Our two-step treatment outputs do not have the same properties as the original sub-

tracted image stacks. The noise has been removed. As transformed images they have

less objects but original object coordinates cannot be determined accurately from them.

I thus proposed a new detection strategy (see Figure 7.16 bottom) which also addresses

the degradation of coordinate resolution when using several years of data.

The new detection strategy can be divided in three steps as described with more detail

in the next sections. First, detections are validated using the cleaned lunation stacks.
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(a)

(b)

Figure 7.17 A SNIa event (center of the image) with galaxy residuals, shown in dif-
ferent lunations around maximum light in the original subtracted image stacks (a) and
after cleaning (b). In the original stacks, galaxy residuals are present in all lunations.
The cleaning removes them in some cases (artificial color scale).

Second, coordinates are assigned to these detections at the level of lunation catalogues.

Third, I propose a new way of stacking when considering many years of data.

7.3.1 Validating a detection

Lunation catalogs are constructed from our cleaned subtraction stacks using SExtrac-

tor. Deblending is imposed in order to separate adjacent objects. The values of the

SExtractor parameters were tuned using the SNLS3 test sample. They resulted from

a trade-o↵ between the reduction of the total number of detections and the number of

SN-like objects detected on the cleaned image stacks.

Since cleaned subtraction stacks have been already denoised, the pixel value threshold

can be set to an absolute, and low, value (no signal-over-noise ratio can be computed).

Hence, pixels are required to have a minimum value of 1 to be considered in the detection.

It must be noted that the pixel content of the cleaned stacks has no relation with the

flux value of the original subtracted image stacks.

Also, interesting objects were larger in the transformed images. Varying the number

of required pixels above threshold to detect an object in our test sample (see Figure

7.18), I decided to require at least 200 pixels with a signal value above one to confirm

an object. This number of required pixels allows an important reduction on the number

of detections to be achieved, while preserving SN-like objects in the sample.
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Figure 7.18 Percentage of SN-like events that were lost in the D4 SNLS3 test sample
with respect to the number of detections for di↵erent choices of the minimum value of
pixels required to validate a detection (before setting up the complete new detection
strategy).

7.3.2 Assigning coordinates

Once detections are validated I want to determine precisely their coordinates. This is

not possible directly in cleaned image stacks since objects can be slightly displaced or

deformed. However, detections from our cleaned stacks can be matched to coordinates

in the original procedure catalogues.

It is a very simple process. To each object detected in a lunation I assign the coordinates

of the closest detection in the same lunation catalogue of the original procedure. In this

way I maintain the reduced number of candidates while having precise coordinates.

It must be noted that when comparing this new strategy with the old one, no new

events are detected. I will show in the following sections that the number of detections

is strongly reduced for both data (Section § 7.4) and MC studies (Section § 7.5) while

keeping good detection e�ciency for SNe Ia (Section § 7.5).
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7.3.3 Improving coordinate resolution

In the original procedure coordinates were averaged over all lunations in the survey

period (e.g. 3-year survey). This can degrade signal coordinate resolution due to close-

by spurious detections. The latter are not always completely removed by cleaning as

seen in Figure 7.17b. When adding data from several seasons, the coordinate resolution

degradation becomes more important.

Physically, real SN Ia events can be present in at most three adjacent lunation catalogs

but not over several seasons. We can take advantage of this by only averaging lunations

which may have the same SN-like objects.

Hence, to address this in the new procedure we:

1. Build a catalogue for each season: as for the final catalogue in the original proce-

dure that is merging lunation catalogues obtained in a season and converting the

result into an image where each detection is replaced by a Gaussian of height and

width of 1. Then, this image is processed with SExtractor selecting only pixels

with a content above a value of 0.01 and deblending objects.

2. Build a final catalogue: merging all season catalogues and once again converting

this into an image with 1x1 Gaussians. Then SExtractor selects pixels with content

higher than 0.01 in the same way as before.

In this way, coordinate averaging is done first for a season where a transient object

can be present and then detections are added from other seasons. It is equivalent to

assigning a weight for a given detection taking into account that a SN will be detected

only during one season.

For the D4 SNLS3 test-sample the detection map using the new procedure is cleaner

compared to the original procedure map as can be seem in Figure 7.19. The advantage

of using season stacks can not be appreciated in such a map but it is seen in coordinate

resolution. The latter will be addressed in Section 7.5 using Monte-Carlo studies.
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(a) Original procedure: 90.971 detections.

(b) New procedure without season stacks.

(c) New procedure: 40,575 detections with clear reduction of de-
tections due to large scale defects.

Figure 7.19 Detection maps for field D4 in SNLS3.
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7.4 Results with SNLS3 data

SNLS3 data motivated this work since the di↵erence between detected transient events

and SN-like events was of two-orders of magnitude. Now, we are able to see the impact

of our new procedure in these data separated by fields which is summarized in Table

7.1.

First, let us present field D4 since it was the one used for tuning both algorithm and

detection parameters. Using the original procedure 90, 971 detections were found from

which 362 events were extracted as SN-like objects as described in Bazin et al [66]. After

our processing, the number of detections is reduced to 40, 575. This represents more than

a factor of 2 reduction on the number of candidates to be further processed. Loss of SN-

like candidates is less than 5% and all lost events are faint (observed magnitude at peak

in i
M

> 24.2). These faint events are usually not well measured, have a large magnitude

uncertainty, and therefore are not suitable for further cosmological analysis. It is known

that, for previous photometric pipeline SNLS studies, the magnitude uncertainty for

events with magnitude above 23.8 is larger than 0.1 mag which is the upper limit for

uncertainties in the SNLS spectroscopic cosmological analysis.

For all fields, the reduction of the number of detections is similar. The loss of SN-like

events is less than 5% in D3 and 15% in D1 and D2. It must be noted that D1 and D2

are the fall and winter fields which have less suitable weather conditions than D3 and

D4. All lost events are faint with the exception of one medium brightness event in D1

which is lost during our new detection procedure. This event is found on the output

images of the two-step treatment but the number of pixels above threshold is smaller

than our criteria to validate a detection.

In summary, when applied to real SNLS3 data, 10% of SN-like events are lost while the

number of detections is reduced by more than a factor of two. Almost all lost events are

faint with the exception of one medium brightness event which is lost in the detection

step.
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Old procedure New procedure
Field # detections # SN-like # detections # SN-like
D1 76,806 444 34,314 382
D2 64,763 300 28,627 258
D3 70,447 377 29,292 359
D4 90,971 362 40,575 346
All 302,987 1,483 127,808 1,345

Table 7.1 Number of detections and SN-like events for the original and new procee-
dures applied on SNLS3 data.

7.5 MC studies

As in the SNLS3 analysis presented in Section 5.2.3, the performance of our treatment

was studied using Monte Carlo (MC) artificial images in the i
M

filter for the D1 field .

The simulation was done in four stages summarized in Chapter § 5. In this case, sub-

tracted MC image stacks were processed by our optimized pipeline.

The MC was used for determining detection e�ciency and coordinate resolution for our

SNe Ia. In order to avoid biases in these measurements, I had to adapt the MC. For

example, the cleaning algorithms do not respond well in high signal density areas and

close-by SNe are physically very rare, therefore I proposed to apply an isolation criterion

in order not to bias detection e�ciency. For obtaining a realistic coordinate resolution

I also took into account a correction of the SN redshift and rate distributions.

7.5.1 Corrections: Isolation

SNe in the simulation are randomly distributed over a galaxy catalogue. Then it is

possible to obtain SNe very close by despite the requirement of a minimal distance of

0.7 arcseconds between simulated supernovae.

In real images, statistically superposed SNe are very rare but also close-by SNe. I

wanted to test our detection procedure in realistic subtracted image stacks. Moreover,

high density areas are not properly handled by our cleaning algorithms. Thus I decided

to put a tighter isolation on the SNe that enter the measurements.

This was done by selecting those MC SNe that were not in dense regions. A good

indicator of dense regions is the distance between two objects. To determine the isolation
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Figure 7.20 Detection e�ciency versus isolation distance for an early version of the
new detection procedure compared with the standard detection procedure.

criterion needed, I monitored the detection e�ciency for one year MC while varying the

minimum distance required, in pixels, between two SNe.

Figure 7.20 shows the detection e�ciency of an early version of the new detection pro-

cedure as a function of the imposed minimal distance between SNe. Detection e�ciency

increases with higher isolation, which is expected from a better performance of the clean-

ing algorithm until it reaches a plateau. I chose an isolation of 30 pixels to be on the

high-e�ciency plateau while keeping enough data. In order to have an equivalent in the

standard procedure I also isolated events but this time only 20 pixels were necessary to

be in the maximum-e�ciency plateau.

7.5.2 Corrections: Redshift and SNIa rate distributions

In the D1 field 216,000 SNe were generated by Ripoche. The random distribution over a

galaxy catalogue resulted in a redshift distribution of simulated SNe which is physically

unrealistic as shown in Figure 7.21. However, the redshift distribution should be coherent

with a comoving volume distribution and a typical SNIa rate.

To account for this distribution, I applied a weight on the results of our MC studies

depending on the SN redshifts. The weights take into account both comoving volume

and SNIa rate distributions.
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Figure 7.21 Redshift distribution of SNe Ia generated by MC in field D1.

The comoving volume in our flat Universe can be expressed as:

V =
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where H(z)/H0 can be taken from equation 2.28 using the a dependence in z from

equation 2.9. I am interested in a weight by redshift bin. Then, I want to express the

di↵erential comoving volume as a function of redshift. Since it is a weight, I may ignore

all constants and just take into account the redshift dependence. Then:
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For our study I approximated ⌦
m

⇡ 0.3 and ⌦⇤ ⇡ 0.7. The resulting comoving volume

distribution is shown in Figure 7.22.

Using the simple SNIa rate by Pritchet presented in Section § 3.2.4 and combining it

with the comoving volume for 100 bins in the simulation redshift range I obtained the

necessary weights for our analysis. The e↵ect of weights on the redshift distribution can

be seen in Figure 7.23.

In this sense, I can study the e�ciency of detection and coordinate resolution of our new

treatment using a weight for a correct SNe Ia distribution on redshift.

With corrections taken into account, I determined the coordinate resolution and e�-

ciency for the new and old procedures.
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Figure 7.22 Comoving volume distribution for our MC studies

Figure 7.23 Redshift distribution for MC after rate and comoving volume weights are
applied. Arbitrary normalization.
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7.5.3 MC coordinate resolution and e�ciency

Detection e�ciency

Detection e�ciency is defined as the fraction of simulated supernovae recovered at detec-

tion. For both the original and the new procedures I computed the detection e�ciency

for one year of simulated SNe Ia as a function of the generated SN peak magnitude in

the i
M

band as can be seen in Figure A.4. The e�ciency is nearly magnitude indepen-

dent up to m0i = 23.5 and then steeply declines at faint magnitudes. This is typical of

magnitude-limited surveys such as SNLS.

When compared to the old procedure, the new procedure corresponds to a loss of 0.5% in

the plateau e�ciency and a 0.2 downward shift of the magnitude corresponding to 0.50

e�ciency. The small reduction for events at higher magnitudes can be explained since

signal separation is not perfect and some SN-like signal may not be properly transformed.

Note that after the new procedure the e�ciency behavior as a function of magnitude is

close to the original one.

This MC result will allow us to correct the Malmquist bias of the 5-year photometric

sample to be derived from the new procedure in order to perform a cosmological analysis.

Figure 7.24 E�ciency of detection as a function of the generated peak magnitude in
iM . The new procedure (blue line) is compared to the original one (red line).

Coordinate resolution

Coordinate resolution is given by the RMS of the distance between the coordinates at
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Old procedure New procedure
No season stacks With season stacks

coordinate magnitude coordinate magnitude coordinate magnitude
Stack resolution bias resolution bias resolution bias

±0.002 ±0.0002 ±0.002 ±0.0002 ±0.002 ±0.0002

1-year 0.709 0.0334 0.698 0.0324 0.698 0.0324
3-year 0.725 0.0349 0.715 0.0340 0.710 0.0335
5-year 0.741 0.0365 0.731 0.0355 0.726 0.0350

Table 7.2 Coordinate resolutions (pixels) and corresponding magnitude bias of SNIa
detection original, new procedure with no season stacks or complete new procedure
with season stacks: for year 3 MC data (1-year stack), adding two additional years of
data (3-year stack) and adding 4 additional years of data (5-year stack). Uncertainties
shown here are from the statistics of generated SNIa.

generation and at detection. I studied resolutions for the corrected MC for both new

and old procedures as can be seen in Table A.1.

The changes on resolution are due to both the cleaning and the choice of season stacks.

This can be clearly seen by the improvement on coordinate resolution due to reducing

spurious detections with our cleaning procedure (Table A.1, column 2). There is a

further gain thanks to the modified detection strategy (Table A.1, column 3).

For one year simulated SNe Ia, the coordinate resolution was slightly improved with the

new procedure. The new resolution was found to be 0.698±0.002 pixels to be compared

to 0.709± 0.002 pixels in the original pipeline.

Since SNLS is a 5-year survey and the goal of this new procedure is to improve detection

for the 5-year analysis, I also studied the e↵ect of adding other years of survey data

(without simulated SN signal). For this, I constructed catalogues with two or 4 additional

years of pure real data.

First, a degradation of coordinate resolution is seen when adding additional data years.

This is expected since spurious detections can be in the vicinity of a SNIa detection and

they may displace SNe coordinates when being stacked. This degradation is stronger

when no season stacks are used.

As expected, for our new procedure a degradation of coordinate resolution is found.

However, the new procedure handles better many years of data than the original one.

This can be clearly seen in Figure 7.25. For a 5-year detection of transient events the

coordinate resolution using the new procedure is 0.726± 0.002 which is to be compared

with 0.741 ± 0.001 when remaining with the original one. With this procedure, we are
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Figure 7.25 Coordinate resolution vs. number of stack years.

able to maintain a coordinate resolution for a 5-year processing equivalent to the one

found for the 3-year processing by Bazin et al. [66] which was the aim in this study.

To check for a possible bias in the coordinate resolution with respect of the redshift,

I plotted the distance profile as a function of redshift (Figure 7.26). If the bin with

RMS larger than 0.8pix is eliminated, a linear fit provides a flat distribution. However,

if points outside the main bulk are eliminated in the fit, there is a slight tendency of

higher distance RMS at higher redshifts.

In SNLS, SNIa fluxes are measured in order to obtain luminosity distances. Coordinate

precision is crucial to obtain correct fluxes in PSF photometry. If flux and position of a

faint object are measured from the same data, position measurement inaccuracy leads

to underestimated fluxes because position shifts yield on average smaller PSF fluxes.

This result can be found in appendix B of SNLS-3 year sample by Guy et al. [64].

Using this appendix, I computed an indicative (upper limit) magnitude bias correspond-

ing to our coordinate resolution. Which is given by:

m
bias

=
d2
RMS

4�
seeing

(7.3)
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Figure 7.26 Profile of the coordinate resolution against redshift. Line fit yielded
0.0001686x+ 0.7114 when eliminating the bin with RMS larger than 0.8.

where d
RMS

is the distance RMS given in pixels, �
s

= 0.3500 = 1.94 pixels the RMS of

the PSF for the best seeing in SNLS3.

Thanks to the improved coordinate resolution, the new procedure applied on 5-year

stacks has similar performance to the old procedure applied on 3-year stacks. The latter

was found accurate enough for photometric typing for the SNLS3 in Bazin et al. [66].

As a summary, according to MC studies our new procedure e�ciently detects transient

events while improving coordinate resolution for both 3 and 5 years set of data.

7.6 SNLS and beyond...

Morphological component analysis has proven to be a useful approach for cleaning sub-

tracted image stacks such as the ones in the SNLS deferred processing. The choice of

algorithm was based on the availability of a robust tool that could decompose our sub-

tracted image stacks e�ciently and within our CPU and time resources. For adapting

the algorithms I had to use a two-step procedure which was not so clear at the beginning.

In the first step several dictionaries and scales were necessary to eliminate the various
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artifacts. Note that many of these defects came from the fact that this pipeline uses sub-

tracted image stacks that usually have many residuals. For the second algorithm the goal

was to handle non-stationary noise (typical from stacks) in addition to SN-like signals

which provided a natural choice of the starlet dictionary for the decomposition. Finally,

the choice of algorithm parameters (e.g. number of iterations) was heavily dependent

on the e�ciency and purity to be achieved and on required computing resources.

Besides improving the subtraction algorithm itself, eliminating artifacts at the level

of subtracted images instead of stacks can provide a higher reduction of the number

of detections. This could be valid for our deferred pipeline but it should be applied

at the beginning of the survey. For implementing such methods, a thorough analysis

must be done of the trade-o↵ between gain on signal extraction and removal of artifacts

with respect to the high computational and time costs of processing using dictionary

decomposition.

Future surveys like LSST may detect around ten thousands SNe Ia a year [90], which is

two orders of magnitude higher than in SNLS. Extrapolating what I experienced in the

deferred processing of SNLS, the anticipated number of detections in LSST may be as

high as 107 per year which is too large to process. To reduce the number of candidate

transient events to process further, cleaning images with a fast multi-resolution method

can be of interest. But due to the huge number of detections, additional multi-band

and temporal information will be necessary. The above arguments are valid for both

real-time and deferred processings, which will both face too large numbers of detections

to process. Di↵erences between the two approaches would a↵ect the choice of cleaning

algorithms and selection criteria based on multi-band and temporal information.

7.7 Summary

I improved the transient event detection procedure using morphological component anal-

ysis algorithms based on sparsity. I also reviewed the detection strategy, not only to

take into account the output of our cleaning process, but also to reduce the impact of

many years of data on coordinate resolution and e�ciency.

Morphological component analysis has proven to be a useful approach for cleaning our

subtracted image stacks. From my experience, the precise nature of the input images was
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a key point when choosing and adapting this type of algorithms. The choice of algorithm

was based on the availability of a robust tool that could decompose our subtracted image

stacks e�ciently and within our CPU and time resources.

In summary, this new procedure eliminates a large fraction of artifacts and extracts SN-

like objects. It achieves the goal of obtaining a reduction of the number of detections

while limiting the loss of SNe Ia.



Chapter 8

Classification of SNe Ia using

photometric redshifts

In this Chapter I present a new SN Ia classification based on photometric redshifts deter-

mined directly from light curves using the algorithm by Palanque-Delabrouille et al. [49].

In the SNLS3 pipeline, classification was done using assigned host-galaxy photometric

redshifts from an external catalogue. However, such a procedure had an assignment e�-

ciency of 83%. An advantage of this new classification is that SN photometric redshifts

can be obtained for all SN Ia events.

Classification, or typing, is performed over the sample of SN-like events obtained after

detecting transient events, constructing their light curves and performing SN-like cuts.

Classification requires a redshift determination and a SNIa light curve model fit (as in

the case of the SNLS3 analysis described in Section § 5.4 hereafter referred to as SNLS3)

or a general SN model fit. Using the redshifts and fit variables, it is then possible to

disentangle core-collapse and type Ia SNe. In this section we will address core-collapse

supernovae as “background” events, although they are an interesting sample by itself,

since our goal is to obtain a pure type Ia SN sample.

This chapter is structured as follows. In Section § 8.1, I introduce machine learning

techniques, the classification method (Boosted Decision Trees), the TMVA toolkit and

some general considerations in Section 8.2. Then, I present in Section 8.3 the possible

ways of classifying type Ia SNe in a purely photometric analysis. A first option is

presented in Section § 8.4.1 where I review the data classified using the SNLS3 approach

108
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with host-galaxy redshifts and sequential cuts on SALT2 fit variables. Then, I show the

feasibility of doing a BDT classification using the same variables as the former approach

in Section § 8.4.2. Finally, I implement the BDT SNIa photometric redshift classification

in Section § 8.5 using two possible light curve fits.

8.1 Machine learning and boosted decision trees

8.1.1 Principles

Our goal is to classify di↵erent types of SNe and particularly, select type Ia SNe. This

can be reduced into a problem of classifying signal and background events. For this, we

can take advantage of a subfield of computer science called machine learning. The

latter encompasses algorithms that can learn from and make predictions on data.

Tools for learning can be classified as supervised and unsupervised, we will center on

supervised learning for our application. Supervised learning methods usually work

in two steps called training and classification. First, known events are fed into the

algorithm which learns their characteristics, this is called training. Second, unidentified

data is provided and the algorithm classifies it based on what it learned during the

training phase, this is called classification.

Boosted Decision Trees (BDTs) are supervised classification methods. They o↵er

many advantages since they are simple to understand and interpret, perform well with

large data sets, are well adapted to classify high-dimensional data where boundaries are

non-linear and, above all, they can reduce a N-dimensional space of variables into a

1-dimensional space where the variable is the so-called BDT response. An illustration

of the advantage of decision trees against a classical approach can be seen for a two-

dimensional variable-space in Figure 8.1.

A decision tree makes successive rectangular cuts in the parameter space to classify

data. It is a process which has many similarities with human decision-making and is very

easy to understand. A graphical example of a decision tree can be seen in Figure 8.2. A

typical tree begins with a so-called “root-node” which includes all events or data. Binary

splits separate the data into subsamples (“leaf nodes”) which at the end of the tree are

given a probability of being classified as signal or background. The maximum number of
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Figure 8.1 Top row: a classification example in 2-D where the decision boundary is
linear (indicated by color regions). A classical approach is to assume a linear boundary.
In this case, such a boundary will outperform a decision tree illustrated on the top
right. Bottom row: when the decision boundary is non-linear, a decision tree (bottom
right) is more succesful than a linear model (bottom left) [91]. For multidimensional
cases the boundaries become more complex and decision tree approach is usually more
performant.

nodes (or subsamples) is called maximum depth and is fixed beforehand. At each split,

the algorithm determines the variable x
i

that gives the best separation to discriminate

between signal and background (in terms of classification error). The algorithm also

determines the cut value c
i

that separates the sample into two complementary subsets

{x
i

> c
i

} and {x
i

< c
i

}. When splitting data into di↵erent “leaf nodes”, to avoid

separating data into very small subsamples, a minimum node size can be set.

If the tree is too large it will make very specific cuts for each case and might not generalize

well, this is called overtraining. To avoid overtraining, it is important to separate the

training sample (which has known types) in two parts, one for the actual training of

the algorithm, and the second to test that the generalization is valid in an independent

sample.

When using a simple decision tree, some events may be misclassified. To reduce the

number of these events and to obtain better results, we can use a technique called

boosting. The idea is to combine “weak” classifiers, in this case trees, to get better

results. First, a simple decision tree is considered which misclassifies some events. The
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events are reweighted to put more emphasis on poorly classified events. Then, with the

reweighted data, the training is redone. This is an iterative procedure where the final

classification is averaged over all decision trees. There are many boosting techniques,

but I centered on AdaBoost which is a largely used boosting method.

Figure 8.2 Graphic representation of a simple decision tree. The root node contains
an event with all its information and is our starting point. A sequence of binary splits
using variables xi, xj , xk is applied to data. At each split, the variable that gives the
best separation is used to discriminate between signal and background. The end nodes
are labelled ”S” and ”B” for signal and background classifcation [92].

In order to train BDTs, one has to choose the algorithm’s hyperparameters. These

include the maximum depth of a tree, the number of trees used for boosting and the

minimum size of a node. Choices can be done using overtraining tests and applying

classification to independent known samples and studying their statistical evolution.

Moreover, data used for training (simulations) and application (data) must be prepro-

cessed to eliminate data overflows that may yield missclassifications.

Supervised learning methods can be implemented using di↵erent toolkits such as Python’s

scikitlearn and ROOT’s TMVA. Although I performed tests with both, my classifica-

tion is based on the TMVA toolkit. Possible extensions of this work include exploring

other packages as scikitlearn which can mix several supervised learning methods and

can optimize hyperparameters in an automatic way.
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Further information about multivariate analyses can be found in The elements of sta-

tistical learning by T.Hastie, R. Tibshirani and J.Friedman [93] and Introduction to

statistical learning by G. James, D. Witten, T. Hastie, R. Tibshirani [91].

8.1.2 TMVA

The Toolkit for Multivariate Analysis (TMVA) provides an environment for the applica-

tion of multivariate classification [92]. It is based on ROOT and written in C++ which

provides fast processing. In this toolkit, supervised learning algorithms such as BDTs

are available.

For our BDT analysis, we have the same structure as any supervised learning method.

The two-step procedure is implemented as follows:

• Training: signal and background samples are given to the multivariate methods.

The samples can be split randomly in half to perform training and crosschecks. An

automatic utility provides plots such as: background rejection vs. signal e�ciency

and classifier output distributions for both training and testing samples which are

part of an overtraining check.

• Application or classification: the trained method is used for the classification of

data with unknown signal and background decomposition. The output consists of

a BDT response variable which takes a value between minus one and one. If the

value is close to minus one, it is more likely to be a background event and if it

is closer to one it has higher probability of being a signal event. A cut on this

variable can later be set to obtain the sample of selected events.

All results in this work were done with ROOT version v5.34.23 and TMVA Version 4.2.0.

8.2 Considerations for our application

We have introduced supervised learning and the classification utility TMVA. We will

now set-up the generalities for our analyses. Results will be presented in Section 8.3.

Starting from a SN sample, our goal is to obtain a pure SN Ia sample. We consider

that our SN-like sample contains only core-collapse events and type Ia SNe. We must
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now recall that SNIa observed light curves vary depending of the object’s redshift (e.g.

a low redshift core-collapse SN can resemble a SNIa at high redshift). Therefore we are

interested only on type Ia SNe which have a correct redshift assignment and consider

core-collapse events and type Ia SNe with bad redshift as background.

In our di↵erent analyses, SNe Ia with bad redshift are due to incorrect SN-galaxy as-

sociations or wrong host-galaxy redshift in the catalogue or incorrect SN photometric

redshift (the last two are considered as catastrophic redshifts).

The following samples were used to set up the analyses ant to assess their performance:

• Light curves simulations: provide large and known samples of core-collapse

SNe and SNe Ia. We used the same simulation as the one used for determining

SNLS3 global e�ciency in Figure 5.10. This simulation is independent of the one

used in Chapter § 7 for transient event detection e�ciency. It consists of simulated

light curves for both type Ia and core-collapse SNe. Synthetic SN Ia light curves

were produced assuming a flat ⇤CDM cosmology using SALT2. Core-collapse

light curves were simulated using the general SN fit introduced in Equation 5.1

and spectroscopic core-collapse events for modeling parameters. The core-collapse

sample was divided in “type II” for those long lasting events as type II-P and

“type Ibc” for short lasting events. Further details can be found in Bazin et al.

[66].

In order to obtain an equivalent sample as the SN-like sample in data, simulated

events were introduced into the pipeline, after the detection step and submitted

to SN-like cuts. The number of events used for our training and testing is given

as “selected” events in Table 8.1.

• The SNLS3 sample: contains subsamples of known spectroscopic and photomet-

ric Ia and core-collapse SNe. The photometric samples of core-collapse and type

Ia SNe were determined in dedicated analyses described in Bazin et al. in [35]

and [66] respectively. In this work SNLS3 refers to the SNIa SNLS3 photometric

analysis.
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8.2.1 Samples used in the BDT set-up and analysis

A BDT analysis performance can be evaluated when classifying a known sample. How-

ever, the BDT algorithm needs first to be trained with an independent known sample

of signal and background events. In this subsection I present the di↵erent training and

classification sample options which are summarized in Figure 8.4.

• Training sample: two independent simulation samples were randomly created,

half of the simulation was used for training and the other half for testing. Before

performing the classification, the distributions of the SNIa signal and core-collapse

background can be seen in Figure 8.3 for half simulation sample. Each training

sample was divided in “signal” and “background” events as following:

– Signal: type Ia SN light curves with good photometric redshift assignment

(either host-galaxy or SN) when compared to generated redshift �z/(1+z) <

0.1 .

– Background: type IIp and Ibc SNe (core-collapse events) as well as type

Ia SNe with bad redshift assignment when compared to generated redshift

�z/(1 + z) > 0.15. The latter encompasses the so-called catastrophic red-

shifts.

To separate those type Ia SNe with good and bad redshift assignments, I decided to

perform cuts that clearly separate good and bad redshifts. I considered those SNe

Ia with redshift determination 0.1 < �z/(1 + z) < 0.15 as not clearly belonging

to either sample.

• Classification sample: the data to be classified. For the final application of this

work it will be the SNLS5 data, but for tests performed during my PhD I used

two samples:

– Half of the simulation: half of the simulation used for purity, e�ciency and

contamination estimations.
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– The SNLS3 sample: It is a limited sample of spectroscopic and photomet-

ric SNe Ia and core-collapse but is useful for comparing the SNLS3 orig-

inal analysis with BDT based ones and is very sensitive to BDT hyper-

parameter changes. SNe Ia with “bad redshift” are those where the as-

signed redshift (host-galaxy or SN) di↵ers from the spectroscopic redshift

as �z/(1 + z) > 0.15.

sample SNe Ia total SNe IIp SNe Ibc

original 20,000 20,000 20,000

selected 10.522 2,321 2,750

Table 8.1 Number of simulated events that were selected as SN-like candidates. Note
that the detection step is not included here. My goal is to train my BDT to classify
events that can be present in the SN-like sample independently of the detection e�-
ciency. In this way my training is more sensitive to type Ia faint events and I can also
profit of having a larger sample. Requiring detection reduces the number of simulated
events by an extra 10% for each sample. The small fraction of core-collapse SNe in
the selected sample is explained by the faintness of these events which are simulated
following the volumetric distribution of the survey (selection requires a significant flux
variation).

Figure 8.3 Distribution of the SNIa signal (blue line) and core-collapse background
(red line) events after SN-like and quality cuts (as defined in Section § 5.4.2) as a
function of generated redshift (gz) for half of the simulation. Not normalized.

For all these samples, summarized in Figure 8.4, light curve sampling requirements and

quality cuts, as presented in Subsection § 5.4.2, were applied for all analyses (host-galaxy

or photometric redshift).



Chapter 8. SNe classification 116

training classification

simulated SNe 
(half of the sample)

simulated SNe 
(the other half of the sample)

SNLS3 data
signal:  

Ia with correct z

background: 
Ia with incorrect z 
core-collapse SNe 

Figure 8.4 Samples involved in BDT training and classification

8.2.2 BDT analysis set-up

Now that the di↵erent sample options for our BDT analyses have been presented, we can

address the set-up of a BDT analysis. We need to select hyperparameters and variables

that will be used in a classification, as well determining our BDT response threshold for

classification. For this, we vary hyperparameters or input variables, train the algorithm

and assess the impact on the classifications of known samples such as the ones previously

presented and summarized in Figure 8.4.

8.2.2.1 Finding the appropiate hyperparameters

I varied each hyperparameter in a broad range of possible values and determined their

impact in our classification sample. I chose those parameters that had a better perfor-

mance.

For the simulation based tests, we need a metric that judges the prediction of our binary

problem (events are either signal or background). Such a metric is the AUC metric

which is commonly used as an evaluation method for dichotomic classifications. AUC

stands for Area Under Curve, where the curve is the ROC curve (Receiver Operating

Characteristic). The ROC curve illustrates the performance of a binary classifier by

plotting the true positive rate (signal e�ciency) against the false positive rate (back-

ground e�ciency) as in Figure 8.5. While the ROC curve represents the performance
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of a model in two-dimensions, the AUC simplifies this into an scalar. A perfect model

would score an AUC of 1.

It must be noted that the choice of hyperparameters must come from the best AUC

score available when the algorithm is not overtrained. To verify that no overtraining is

done, TMVA provides an automatic plot that divides half of the training sample and

uses half for training and half for testing. If both distributions coincide, there is no

overtraining. When the training and testing distributions do not coincide, like in Figure

8.6, there is overtraining, lack of classifier generalization.

The SNLS3 sample also proved to be useful to verify the tendency on statistics when

varying hyperparameters. However it is a restricted sample and must be used with

caution.

Figure 8.5 In blue, an example of ROC curve (true positive rate against false positive
rate). The dotted line represents random guess, good classificators are on the left side
of this line [91].
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Figure 8.6 Overtraining test of TMVA. Signal (background) events are in blue (red):
points are training sample and shadowed regions test samples. In this case we have
overtraining since both distributions do not coincide.

8.2.2.2 Choosing a set of classification variables

We must take into account that not all available variables are useful for our classification.

An advantage of the TMVA implementation is that it provides a ranking of the most

discriminant variables for a given set of hyperparameters. An example of such a ranking

for the host-galaxy photometric redshift analysis is seen in Figure 8.7. For those variables

poorly ranked we can consider eliminating them and observing the improvement, or not,

of our classifier.

Figure 8.7 Example of variable ranking in TMVA for the host-galaxy redshift analysis.
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8.2.2.3 Choice of the BDT response threshold

Finally, once the choice of hyperparameters and variables is done, we can classify our

SN events in di↵erent types. Our N-dimensional problem of classifying SNe is now

reduced to a 1-dimensional problem, represented by the BDT response. The

choice of a BDT threshold was done taking into account mainly the global SNIa e�ciency

and the purity of the SNIa sample. Two plots were specially useful for choosing a BDT

response cut: one giving the global e�ciency (including detection and classification)

versus purity of the SNIa sample at di↵erent BDT cut values and one providing the

ratio contamination-classification e�ciency as a function of the BDT response.

My main indicator is the e�ciency-purity plot since our goal is to obtain a large

SNIa sample with good purity. An example of such a plot can be seen in Figure 8.8.

The second plot I mentioned (shown in Figure 8.9), is very useful to find a cut when no

complete separation of signal and background can be obtained. However it must be read

with care when that is not the case. In our case, such a separation is obtained which

is given by a zero value on the ratio of contamination-classification e�ciency. Before

the complete separation (at low BDT response values) there is a slow decrease for the

ratio as a function of the BDT response which shows the approach toward the tail of

the contamination distribution. The ratio tends to infinity for BDT response values

corresponding to no signal left.

Figure 8.8 Example of a global e�ciency versus purity for di↵erent choices of the
BDT response cut.
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Figure 8.9 Example of a contamination-classification e�ciency ratio versus BDT re-
sponse plot. This plot would be particularly useful if no complete separation of signal
and background would be possible. Here the zeros in the ratio represent the complete
signal-background separation. However such a separation has as a price the loss of
e�ciency which can be clearly seen in Figure 8.8.

The exact definition of e�ciency and purities I used in this work are summarized in the

following.

SN rates and proportions

For computing purity, rates for both type Ia and core-collapse SNe must be taken into

account. In Section § 3.2.4 we mentioned that the SNIa rate can be expressed as a

function of (1+z)↵ where ↵ = 2 [34]. Core-collapse SNe are expected to reflect the SFR

and therefore should have ↵ = 3.6 [35]. In Table 8.2, measured values from SNLS data

for SN volumetric rates at di↵erent measured redshifts z
m

can be found.

SN type < z
m

> r
V

[10�4h�1
70 yr

�1Mpc�3] ↵

Ia 0.47 0.42 2

CC 0.3 1.63 3.6

Table 8.2 SN volumetric rates derived from SNLS data from Bazin et al. [35] and
Neill et al. [38]. rV is given for the zm in each case.

Although all core-collapse SNe are given the same rate, the proportion between short-

and long-term events di↵er. Long-term events as type IIp SNe (in this work called IIp)

have a contribution of 30% while short-term events, type Ibc and those type II not

plateau (in this work called Ibc) dominate with 70% as seen in SNLS data [35].
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Purity and e�ciency

The purity of our classified SNIa sample (or the degree of contamination by core-collapse

events mostly) can be estimated using simulated light curve events.

First, let’s define a normalized number of events for any type of SNe which take into

account the SN rate, the survey volumetric distribution and the initial distribution of

simulated events:

N =
X

z bins

r
V

(z
m

)
(1 + z)↵

(1+ < z
m

>)↵
�T

1 + z
V (z)

n(z)

N0(z)
, (8.1)

where (1+z)↵

(1+<zm>)↵ converts the rate at the redshift of the current bin, �T accounts for

the observation period and 1/(1 + z) converts observation time into rest-frame time,

V (z) is the volumetric distribution as shown in 7.5.2, n(z) is the distribution of events

that are classified, N0(z) is the distribution of simulated events before any cut. The

latter includes the volumetric rate, therefore we can simplify the previous equation into

N =
X

z bins

r
V

(z
m

)
(1 + z)↵

(1+ < z
m

>)↵
�T

1 + z

n(z)

N0
, (8.2)

where N0 is the number of simulated events as given in Table 8.1 in the “original” row.

Finally, the purity of our SN Ia sample is given by:

P
Ia

=
N true

Ia

N true

Ia

+N bad z

Ia

+N
Ibc

+N
IIp

=
N true

Ia

N
total

. (8.3)

The same procedure can be applied to obtain contamination from each core-collapse

species and from type Ia SNe with bad redshift assignment.

In this work we will cite “global e�ciency” as the e�ciency of detection, pre-selection

and classification. Global e�ciency can be expressed as a function of the redshift z as:

✏
Ia

=

P
z bins

r
V

(z
m

) (1+z)↵

(1+<zm>)↵
�T

1+z

nIa(z)
N0Ia(z)P

z bins

r
V

(z
m

) (1+z)↵

(1+<zm>)↵
�T

1+z

, (8.4)

where n
Ia

(z) are all the SNe Ia which are classified after being detected and pre-selected

and N0Ia(z) are the SNe Ia which are originally simulated.

For both e�ciency and purity we assumed binomial errors on n(z) and propagated those

errors in purity and e�ciency formulas 8.4 and 8.3.
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Now that I have introduced the technical details of a classification using BDTs we can

move towards a complete classification analysis.

8.3 Classification of SNe Ia using photometric redshifts

In order to classify SNe Ia we require: a redshift determination, a light curve model fit

and a strategy for disentangling core-collapse and type Ia SNe. In the following I will

present di↵erent possible classifications depending on the choice of these elements.

First, as we are in a purely photometric pipeline we require photometric redshifts.

Two types of photometric redshifts are used in this work:

• Host-galaxy photometric redshift (zgal): selected SN-like events are matched with

the photometric redshift catalogue introduced in Section 5.4.1.

• SN photometric redshift (zpho): redshifts can be estimated directly from SN light

curves using the algorithm by Palanque-Delabrouille et al. [49]. This procedure

uses the SALT2 light curve fitter to determine the redshift of Type Ia supernovae.

For the SNLS3 sample they found an average precision of ��z/1+z

= 0.022 up

to redshift of one and catastrophic errors under 1.4% for the SNLS3 sample and

only 0.4% when restricting the test sample to spectroscopically confirmed Type Ia

supernovae.

It must be highlighted that SNIa classification using SN photometric redshifts is an

unprecedented work.

Second, we require a light curve model fit to extract properties of our SNe. This fit

can be a general SN fit or a type Ia SN fit.

• SALT2: introduced in Section 3.3, SALT2 is a type Ia SN light curve fitter. It

requires a redshift input in order to extract SNIa intrinsic properties. It provides

magnitudes and reduced �2’s for each fitted filter, as well as the total fit �2 and

the SN color and stretch.

• General SN fit: it fits a SN phenomenological shape to the provided light curve.

The shape function was previously presented in Equation 5.1.
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Third, once we extracted variables that characterize our light curves we can classify

SNe. For this, we must set up a strategy such as:

• Sequential cuts: this is a set of complementary cuts on the light curve parame-

ters. They are defined by studying the variable distributions and magnitude-color

diagrams for spectroscopic data and simulations.

• BDT classification: such a machine learning method can be used to reduce our

N-dimensional problem (N=number of variables that characterize the curve) into

a 1-dimensional problem (choice of a BDT response cut).

My final goal is to present a new SN Ia classification based on photometric redshifts

determined directly from light curves using the algorithm by Palanque-Delabrouille et

al. However, I will show di↵erent possible analyses in order to check consistency and

compare results. A summary of the presented analyses can be seen in Table 8.3.

analysis redshift fitter classification

8.4.1 host-galaxy (zgal) SALT2 sequential cuts

8.4.2 host-galaxy (zgal) SALT2 BDT

8.5.1.1 SN (zpho) SALT2 sequential cuts

8.5.1.2 SN (zpho) SALT2 BDT

8.5.2 SN (zpho) general BDT

Table 8.3 Classification analyses presented in this work.

8.4 Host-galaxy photometric redshift analysis (zgal)

Host-galaxy redshifts have been previously used to classify type Ia SNe successfully. In

Section § 5.4 I described how classification was performed using this redshift, SALT2

and sequential cuts. In this section I reproduce these results and introduce a di↵erent

strategy, BDT, for a host-galaxy and SALT2 analysis.

Before classifying, as in the SNLS3 photometric analysis, we rejected in the classification

sample SALT2 fits that failed and applied quality and �2 requirements.
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8.4.1 zgal + SALT2 + sequential cuts: SNLS3

For consistency, I reprocessed statistics for the SNLS3 analysis. All results are in agree-

ment with published results [66] with the exception of the core-collapse contamination.

This triggered a reevaluation of results and we found a divergence due to an error in the

normalization procedure. Once corrected, the core-collapse contamination was reeval-

uated to be 5 ± 1% for the original analysis. Results for my computation are shown

in Table 8.4. The residual di↵erence may be attributed to host-extinction included in

the original analysis (to obtain the observed rate), while my computation takes the rate

corrected for extinction.

Simulation

purity contamination e�ciency

SNe Ia bad redshift SNe Ia core-collapse SNIa

94.4± 0.5% 0.65± 0.08% 4.9± 0.5% 29.9± 0.3%

SNLS3 data

# events # spectroscopic SNe Ia # spectroscopic CC # photometric CC

486 175 0 0

Table 8.4 SNLS3 analysis (zgal + SALT2 + sequential cuts): statistics for SNLS3
data and purities, e�ciencies from simulation. The indicated SNIa e�ciency is the
global e�ciency and includes weights and e�ciency of host-galaxy assignment. The
core-collapse photometric sample was determined by [35].

The purity and contamination distributions as a function of host-galaxy redshift can

be seen in Figure 8.10. The contamination of SNe Ia with bad redshift assignment

increases slightly with redshift but remains small (below 0.5%) whatever the redshift.

The core-collapse contamination is dominated by non-plateau events and decreases with

redshift. The contamination statistics is very low and therefore we can’t draw any

conclusion about the trends, those results are consistent with a flat distribution (within

error bars).
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Figure 8.10 SNLS3 analysis (zgal + SALT2 + sequential cuts): purity of classified
SNIa sample (red) and contamination (other colors) as a function of host-galaxy redshift
(zgal). Weights are applied for volumetric distribution and SN rates.

The global e�ciency as a function of generated redshift is shown in Figure 8.11. This

e�ciency takes into account the whole pipeline, including detection, redshift assignments

and classification. It is fully consistent with what was published in [66].

8.4.2 zgal + SALT2 + BDT analysis

In this section I will introduce a host-galaxy redshift classification using BDTs and based

on SALT2 fit variables. This analysis will serve as an introduction of a BDT analysis

and will also validate its implementation when comparing it to the SNLS3 sequential

cuts analysis just described.

For this analysis, data were selected using the previously mentioned quality criteria.

First, we need to set-up the BDT classification. The first step is to choose hyperparam-

eters such as maximum depth, number of trees and minimum node size.

Simulation tests provided di↵erent AUC scores when varying one by one the parameters,

as shown in Figure 8.12. However, these plots are only indicative since overtraining

indicators are not shown. The best choice of hyperparameters comes from the best
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Figure 8.11 SNLS3 analysis (zgal + SALT2 + sequential cuts): global SNIa e�ciency
(including detection and classification) as a function of generated redshift (gz).

AUC score that can be obtained without overtraining. For this I regularly checked

overtraining plots.

Although the AUC score increases for large number of trees (Figure 8.12), when the

number of trees was high (above 100), the classification was overtrained. 50 trees was a

good choice since it avoids overtraining but provides a good classification. The minimum

node size was indicated as percentage of the sample that must pass through a node to be

valid, I varied it between 0.5% and 1%, being 0.5% my final choice. The maximum depth

with the highest performance without overtraining was found to be 5. Overtraining

control plots for di↵erent hyperparameter choices can be seen in Figure 8.13.
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(a) (b)

Figure 8.12 zgal + SALT2 + BDT analysis: AUC score against di↵erent choices of
BDT hyperparameters. For subfigure 8.12a, above a maximum depth of 10 overtraining
occured. For subfigure 8.12b, overtraining occured close to 100 trees. From these plots
and overtraining tests, I chose a maximum depth of 5 and 50 trees for the BDT host-
galaxy analysis.

(a) (b)

Figure 8.13 zgal + SALT2 + BDT analysis: Overtraining tests for di↵erent hyperpa-
rameters choices (see Section 8.1). Taking fixed minimum node size 0.5% but varying
number of trees and maximum depth. In 8.13a overtraining is seen for ntrees = 100
and max depth= 10. In 8.13b the chosen parameters ntrees = 50 and max depth= 5
show no overtraining.

The second step is to choose those variables that can be useful for classifying SNe. SALT2

provides magnitudes and reduced �2 for each filter, the total fit �2, color and stretch. We

used these variables together with the host-galaxy redshift and, inspired by the SNLS3

analysis, added “colors” which are given by the magnitude di↵erences on filters (g � i),

(r � z) and (i � z). When testing the algorithm the color (i � z) did not provide a

good discrimination and was eliminated from the final analysis. Another variable that

was poorly ranked was the magnitude in the g
M

filter which I also eliminated from the

analysis. This can be seen in Figure 8.14.
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(a)

(b)

Figure 8.14 zgal + SALT2 + BDT analysis: ranking of variables for chosen hyper-
parameters min node size = 0.5%, ntrees = 50 and max depth = 5 (see Section 8.1).
“gal” stands for host-galaxy redshift analysis and “zgal” host-galaxy redshift. SALT2
parameters are given by: “cgal” color, “x1gal” stretch, “m(i,g,r,z)” magnitudes and
“c(i,g,r,z)” chi squared in iM ,gM ,rM ,zM filters respectively. In 8.14a the whole set of
SALT2 variables plus redshift is shown. In 8.14b the ranking is seen for all variables
except the gM magnitude.

Figure 8.15 zgal + SALT2 + BDT analysis: signal ( blue line ) and background
(red line) simulation distributions with respect to the BDT response. A complete
separation of the two samples is possible for BDT response > 0.5 but with a poor
e�ciency. Distributions are not normalized.

The classification was performed with the above set of hyperparameters and variables.

The problem was reduced to the choice of a BDT response threshold. The simulation

test-sample allows to verify that a separation between signal and background can be

obtained when cutting on the BDT response. Figure 8.15 shows the BDT response

distribution for signal and background events. A clear discrimination can be seen.
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Closely observing Figure 8.15 we see that the signal distribution has a small shoulder

at high BDT response. These events are low-redshift ones but with not very high

magnitudes in the i
M

filter (therefore bright events) within the bulk of the magnitude

distribution for SNe Ia as shown in 8.16.

(a)

(b)

(c)

Figure 8.16 zgal + SALT2 + BDT analysis: study of the signal shoulder in Figure
8.15. For BDT response > .6 events are shown to be bright in the iM filter 8.16a and
at close host-galaxy photometric redshift 8.16b. iM magnitudes of these events are in
the tail of the magnitude distribution for SNIa events 8.16c.

The choice of a BDT threshold was done taking into account the global SNIa e�ciency

and the purity of the SNIa sample using Figure 8.17. A compromise between the desired
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SNIa purity and the global e�ciency had to be taken, the natural place to search for

this was near the inflection point between good e�ciency and high purity. My choice

was to keep events above 0.1 BDT response.

Figure 8.17 zgal + SALT2 + BDT analysis: Global e�ciency of SNIa versus global
purity of SNIa classified sample. Colors indicate the value of the BDT response. The
red circle shows the chosen BDT cut value (0.1). A dashed line indicates SNIa purity
of 1. The gray cross indicates the e�ciency and purity values for the SNLS3 sequential
cuts analysis.

Cutting at BDT response > 0.1 I obtained the simulation and SNLS3 sample statistics

indicated in Table 8.5. The type Ia sample purity and the global e�ciency are slightly

higher than the ones in the SNLS3 analysis.

Since the global e�ciency of this analysis remains close to the one of the sequential cuts

SNLS3 analysis, it is surprising that the number of the photometrically selected events

is increased by ⇡ 15%. This fact is still under analysis.
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Figure 8.18 zgal + SALT2 + BDT analysis: Global e�ciency as a function of gener-
ated redshift (gz) for BDT cut 0.1.

Simulation

purity contamination e�ciency

SNe Ia bad redshift SNe Ia core-collapse SNIa

96.6± 0.6% 0.4± 0.1% 2.9± 0.6% 30.8± 0.8%

SNLS3 data

# events # spectroscopic SNe Ia # spectroscopic CC # photometric CC

524 175 0 0

Table 8.5 zgal + SALT2 + BDT analysis: Statistics for SNLS3 data and sim-
ulation purities for a BDT classification with ntrees = 50, max depth = 5 and
minimal node size = 0.5%. Only keeping events above BDT response > 0.1. The
core-collapse photometric sample was determined by [35].

The global e�ciency as a function of generated redshift is shown in Figure 8.18. It is

clearly seen that our e�ciency is more bell-shaped than in the SNLS3 sequential cut

analysis (Figure 8.11). The increase of e�ciency in the range 0.2 < gz < 0.6 from a

maximum of ⇡ 0.5 (sequential cuts) to a peak of ⇡ 0.6, is consistent with the global

e�ciency increase seen in Table 8.5.
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The purity of the SNIa sample as a function of the host-galaxy redshift is shown in

Figure 8.19. The SNIa purity is quite flat at all redshifts. Core-collapse contamination

remains small.

For the SNLS3 sample, Figure 8.20, illustrates the distribution of known SN (spectro-

scopic and photometric) samples versus BDT response after classification. This subsam-

ple distribution agrees with the expected one from the simulation results, validating our

procedure.

Figure 8.19 zgal + SALT2 + BDT analysis: Purity of classified SNIa sample (red)
and contamination by core-collapse events (other colors) versus host-galaxy redshift
(zgal). Weights are applied for volumetric distribution and SN rates.

In summary, it is possible to obtain a high purity and e�ciency classification of type Ia

SNe using BDTs. Since redshift assignment has an e�ciency of only 83%, we propose

to set up another analysis based on SN photometric redshifts.

8.5 SN photometric redshift analysis (zpho)

I implemented a new classification using photometric redshifts directly obtained from

SNIa light curves. The redshift was obtained using the algorithm by Palanque-Delabrouille

et al. [49] which uses the SALT2 light curve fitter to determine the redshift of Type Ia

supernovae.
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Figure 8.20 zgal + SALT2 + BDT analysis: SNLS3 data as a function of BDT
response. The complete sample is represented with a gray line, while the type Ia SNe
are in red and the core-collapse events in blue (crossed area) and green (vertical lines),
for photometric and spectrocopic samples respectivelly.

My goal was, using SN photometric redshifts, to classify type Ia SNe with good e�ciency

and purity. The redshift plays a crucial part on the classification but also variables that

characterize the SN light curves. For the latter, two choices were possible: using a

second time SALT2 fitter to obtain variables as in the previous analysis or using a

general light-curve fitter such as the one used for SN-like cuts in Equation 5.1.

The first choice, taking SALT2 variables implies using the same fitter for redshift deter-

mination and light curve fitting (although with di↵erent options). This is a dangerous

choice. I will address it in the following subsection to illustrate the results but no robust

classification should take twice the same fitter and make the hypothesis (also twice) that

events are SNIa-like.

The chosen method was to use a general fit since it provides information from an em-

pirical SN light curve shape. This method has the advantage that it doesn’t require a

redshift for each event in order to perform the fit. Also, it provides measurements of

physical features for all types of events.

The data were required to fulfill the quality and sampling cuts from 5.4.2. To ensure

proper photometric redshift determination we required the following for each event:
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• Photometric redshift was required to be above 0.1 as expected in our survey. This

allowed unreliable SN photometric redshifts to be removed.

• �2 of redshift determination < 4.

• Total �2 of redshift determination < 7.

• Color �2 of redshift determination < 7.

• Stretch �2 of redshift determination < 3

Finally, it must be highlighted that parameters for the photometric redshift classification

are highly correlated. An analysis based on sequential cuts as in SNLS3 would provide

high contamination (shown using SALT2 variables in subsection 8.5.1.1). This is a strong

motivation for implementing BDT classification which addresses well a classification with

highly correlated variables.

8.5.1 Classification using SALT2 twice (zpho+SALT2)

The photometric redshift was determined with the previously mentioned algorithm which

uses SALT2. For each event, this redshift, together with the event 4-band light curves

were given again to SALT2 (with di↵erent options). From this fitting a set of parameters

such as magnitude, �2 of the fit, stretch and color were obtained.

The analyses in this section are presented for completeness but must be taken with

caution since we assume twice that the events are SNIa-like when using SALT2 twice.

8.5.1.1 zpho + SALT2 + sequential cuts analysis

First, let’s explore the space parameter of the variables obtained. Figures 8.21 and 8.22

show the same variable plots as in the host-galaxy redshift analysis in Section § 5.4. The

distribution of objects in the parameter space is clearly harder to disentangle than in

the previous analysis. The core-collapse events have migrated towards the distribution

bulks. This is due to fitting the redshift under the assumption that events are SNe Ia.
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(a)

(b)

Figure 8.21 zpho + SALT2 + sequential cuts: parameters plot for color and stretch.
X1 vs. C is shown in 8.21a, in SNLS3 this plot motivated a cut based on an ellipse.
The di↵erence between redshift assignement as a function of C is seen in 8.21b. It
is clear that a cut in color would be particularly ine�cient to tag incorrect redshift
determination or core-collapse events. In both plots data are shown (as black points)
after sampling and �2 constraints. Spectroscopically identified SNeIa are represented
with green circles and spectroscopic (photometric) core collapse events with red (pink)
triangles.

As in SNLS3 analysis we can try to apply sequential cuts. Taking the sequential cuts

from Section § 5.4 we obtain the results shown in Table 8.6. If we were to continue

with such a sequential cut classification, these cuts should be optimized. However,

given the obtained contamination and the clear lack of separation between variables

in color-magnitude plots, I don’t believe that results could achieve a high degree of

purity. I show these results here only as reference and motivation to implement other

classification techniques.
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(a)

(b) (c)

Figure 8.22 zpho + SALT2 + sequential cuts: color-magnitude diagrams using SALT2
fitted magnitudes for events that passed all cuts up to color and stretch cuts. Spec-
troscopically identified SNeIa are represented with green circles, core collapse events
(photometric CC) in red (pink).

SNLS3 data

# events # spectroscopic SNe Ia # spectroscopic CC # photometric CC

676 189 6 13

Table 8.6 zpho + SALT2 + sequential cuts: statistics using sequential cuts to classify.
The core-collapse photometric sample was determined by [35].

8.5.1.2 zpho + SALT2 + BDT analysis

Now that I have stated the di�culties of applying sequential cuts to our photometric

redshift analysis using SALT2 variables, we can explore classifying events with BDTs.
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The hyperparameter space was explored as in the previous BDT case (host-galaxy clas-

sification). We obtained as best parameters ntrees = 100 (note that in this analysis

there is no overtraining with this number of trees), max depth = 5 for a given tree and

a min node size = 0.5%.

Using these hyperparameters, a classification can be done that disentangles the distri-

butions of signal and background as can be seen in Figure 8.23. When compared to the

signal-background distribution in the host-galaxy redshift BDT analysis (Figure 8.15)

we see that when using photometric redshifts the two samples are closer and harder to

disentangle using this BDT SALT2 classification. This may be attributed to the fact

that we use SALT2 twice to extract first redshift and then light curve parameters.

Figure 8.23 zpho + SALT2 + BDT analysis: signal (blue line) and background (red
line) distributions with respect to the BDT response. A complete separation of the two
samples is possible for BDT response > 0.5 but with low e�ciency. Distributions are
not normalized.

The study of the signal shoulder in 8.23 is illustrated in Figure 8.24. Events in the

shoulder are objects of relative low magnitude and at redshift < 0.6. Note that in

particular, very bright events migal < 21 mostly appear in this shoulder.

Once again, to determine the value of our BDT response cut we had to take into account

both SNIa e�ciency and purity of the sample. In Figure 8.25 the e�ciency and purity is

shown with indications of the BDT response. The chosen cut was to keep events above

a BDT response of 0.2.

For the simulation and SNLS3 data, this classification provided the global purity and

e�ciency shown in Table 8.7. The contamination is lower than that in the SNLS3



Chapter 8. SNe classification 138

(a)

(b)

(c)

Figure 8.24 zpho + SALT2 + BDT analysis: study of the signal shoulder in Figure
8.23. For BDT response > .55 events are shown not to be of high magnitude in the iM
filter (maximum ⇡ 23mag) 8.24a and at SN photometric redshift below 0.6 8.24b. The
iM magnitudes of these events are in the tail of the magnitude distribution for SNIa
events 8.24c. The magnitudes show less dispersion than those in the zgal shoulder in
8.16.

sequential cut analysis however, the price to pay lies in the SNIa e�ciency as it is clear

in Figure 8.25.

When comparing with the SNLS3 analysis, the number of spectroscopic core-collapse

events is higher, 2 events, than in the original analysis. I must highlight that the
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Figure 8.25 zpho + SALT2 + BDT analysis: Global e�ciency of SNIa against global
purity of SNIa classified sample. Colors indicate the value of the BDT response. The
chosen value for the BDT cut (0.2) is circled in red. Dashed line represents purity = 1.
The gray cross represents the e�ciency and purity values for the host-galaxy redshift
sequential cut analysis SNLS3.

spectroscopic core-collapse sample is not a complete sample and has very low statistics,

then these results are not necessarily conclusive of a higher contamination.

The number of spectroscopic SNe Ia in our sample is higher (+23 events representing

an increase of 13%) which agrees with higher e�ciency at low redshift (see Figure 8.28).

The number of events in the photometric sample is 3% higher than in the host-galaxy

redshift sequential cuts analysis which is in slight disagreement with the somewhat lower

e�ciency.
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Simulation

purity contamination e�ciency

SNe Ia bad redshift SNe Ia core-collapse SNIa

96.0± 0.8% 0.09± 0.06% 3.9± 0.8% 26.5± 0.8%

SNLS3 data

# events # spectroscopic SNe Ia # spectroscopic CC # photometric CC

499 198 2 0

Table 8.7 zpho + SALT2 + BDT analysis: Statistics for SNLS3 data and simulation
purities for a BDT classification with 100 trees, max depth=5 and minimal node size
= 0.5%. Only keeping events above BDT response variable 0.2. The core-collapse
photometric sample was determined by [35].

Figure 8.26 zpho + SALT2 + BDT analysis: Purity of classified SNIa sample (red) and
contamination by core-collapse (other colors) versus SN photometric redshift. Weights
are applied for volumetric distribution and SN rates.

Purity and contamination as a function of the photometric redshift are shown in Figure

Figure 8.26. The purity has a tendency to decrease at higher redshift due to a higher

core-collapse contamination. When comparing the purity of this analysis with that of

the host-galaxy redshift analysis, the contamination of core collapse is higher at large

redshifts for both sequential cuts and BDT analysis using SALT2 twice. This e↵ect is

still under study.
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Figure 8.27 zpho + SALT2 + BDT analysis: SNLS3 data as a function of BDT
response. The complete sample is represented with a gray line, while the type Ia SNe
are in red and the core-collapse in blue (crossed area) and green (vertical lines), for
photometric and spectrocopic samples respectivelly.

In this analysis, obtaining a pure SNIa sample is a challenge. For SNLS3 data the core-

collapse background is more extended in the BDT space as can be seen in Figure 8.27.

We see also that to obtain a higher purity sample, the global e�ciency is quite reduced.

This analysis is a↵ected by the recurrent assumption that we are dealing with SNe Ia,

when the case is that we have a sample of SNe and we want to classify them in di↵erent

types.

The e�ciency evolution as a function of simulation generated redshift is shown in Figure

8.28. It is, as the host-galaxy redshift BDT analysis, bell-shaped (with high e�ciency at

low redshifts) and it decreases fast at high redshifts. The jumpiness of the di↵erent bins

may be attributed to the varying dispersion of the SN photometric redshift determination

for type Ia SNe. For example at gz ⇡ 0.6 there is a lot of incorrect assignments as can

be seen in Figure 8.29.

8.5.2 zpho + general fit + BDT analysis

In this section I will present my classification using SN photometric redshifts and a

general SN fit. I used the fit in Equation 5.1 since it fits well all types of SNe which

allows extracting variables to di↵erentiate them.
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Figure 8.28 zpho + SALT2 + BDT analysis: Global e�ciency of SNIa classification
as a function of generated redshift (gz).

Figure 8.29 zpho + SALT2 + BDT analysis: dispersion of SN photometric redshift
as a function of generated redshifts (gz) for the simulated type Ia SNe. The algorithm
converges at small generated redshifts and then dispersion grows with some oscillations.
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To select the data, the quality cuts were the same as in Subsection 5.4.2 and the photo-

metric redshift requirements indicated at the beginning of this section. The algorithm’s

hyperparameter selection resulted on ntrees = 100 (note that for this analysis there was

no overtraining with this number of trees), 0.5% minimum node size and max depth = 5

for each tree.

The variables provided by the general fit are, for each filter: amplitude, fall and rise

times, the estimated date of maximum and a constant. Since both the constant and the

time of maximum do not provide relevant information for classification I chose not to

take them into account.

Now, we can start training the algorithm with the selected data and the chosen hyper-

parameters for our BDTs. If we use half of the simulation to train and half to test, we

obtain the signal and core collapse distributions as a function of BDT response shown in

Figure 8.30. When comparing with the photometric redshift analysis with SALT2 (Fig-

ure 8.23) we see that the maximum of signal and background distributions are further

away. We have then a stronger classifier than the one presented in the previous section

(with SALT2 twice).

Figure 8.30 zpho + general fit + BDT analysis: signal ( blue line ) and background
(red line) distributions with respect to the BDT response. A complete separation of the
two samples is possible for BDT response > 0.5 but with low e�ciency. Distributions
are not normalized.

To choose the cut to be applied in the BDT response variable, we examine the global

e�ciency and purity of SNIa in Figure 8.31. I chose to cut at BDT response > 0.2 to

obtain a good purity and e�ciency.
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Figure 8.31 zpho + general fit + BDT analysis: Global e�ciency of SNIa against
global purity of SNIa classified sample. Colors indicate the value of the BDT response.
The chosen BDT response cut (0.2) is indicated with a red circle. The dashed line is for
putiry equal to one. The gray cross indicate values for the SNLS3 host-galaxy redshift
sequential cut analysis.

Purity against redshift is shown in Figure 8.32. We see that the purity is almost uniform

in redshift (within error bars). The core-collapse contamination slightly increases with

redshift but remains below 5%.

The global purity can be seen in Table 8.8 and is found to be higher than the one obtained

using host-galaxy redshifts and sequential cuts (SNLS3 analysis). We also have a higher

global e�ciency with respect to all preceding analyses, including the SNLS3 host-galaxy

sequential cut one.

Finally I show the evolution of global e�ciency as a function of redshift for a BDT cut

of 0.2 in Figure 8.33. As before, the evolution is bell-shaped and there is an increase

of e�ciency at low redshifts. The decrease is softer at higher redshifts when compared

to the SN photometric redshift with SALT2 twice. This is in agreement with the high

global e�ciency shown in Table 8.8.

We obtain an equivalent number of photometric SNe Ia in this analysis as in the SNLS3
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Figure 8.32 zpho + general fit + BDT analysis: Purity of classified SNIa sample (red)
and contamination by core-collapse (other colors) against photometric redshifts (zpho).
Weights are applied for volumetric distribution and SN rates.

sequential cuts one. However, the number of spectroscopically confirmed SNe Ia is higher

in our sample. This is in agreement with the higher e�ciency at low redshift seen in

Figure 8.33. From the SNLS3 core-collapse events, there is one event in the border of

our cut and one other event well above the cut as can be seen in Figure 8.34. Here,

we see that the core-collapse background is more spread than in the host-galaxy BDT

analysis. Once again, the SNLS3 sample is a limited one and due to its low statistics is

not in contradiction with the low core-collapse contamination found using simulations.

Simulation
purity contamination e�ciency
SNe Ia bad redshift SNe Ia core-collapse SNIa

95.8± 0.8% 0.29± 0.08% 3.9± 0.7% 32.2± 0.8%

SNLS3 data
# events # spectroscopic SNe Ia # spectroscopic CC # photometric CC

482 187 1 1

Table 8.8 zpho + general fit + BDT analysis: Statistics for SNLS3 data and simulation
purities for a BDT classification with 100 trees, max depth=5 and minimal node size
= 0.5%. Only keeping events above BDT response variable 0.2. The core-collapse
photometric sample was determined in an independent analysis [35].

Finally, to illustrate the power of the BDTs analysis I show 2D-distributions of variables

(that we could have cut on to perform classification) for known types of SNLS3 data
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Figure 8.33 zpho + general fit + BDT analysis: Global e�ciency of SNIa classification
as a function of generated redshift (gz).

Figure 8.34 zpho + general fit + BDT analysis: BDT response for SNLS3 data. The
complete sample is represented with a gray line, while the type Ia SNe are in red and the
core-collapse in blue and green, for photometric and spectrocopic samples respectivelly.

and the BDT response for this analysis in Figures 8.35 and 8.36.
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(a) SNe Ia

(b) CC

Figure 8.35 zpho + general fit + BDT analysis: Example of the BDT response for
known events in the SNLS3 sample. In these parameter spaces, there is no obvious
cut to disentangle SNe Ia from core-collapse (CC) SNe. 8.35a (8.35b) SNe Ia (CC)
fitted amplitude in iM versus total �2 of photometric redshift fit. Gray points indicate
SNLS3 data, colored points the species with their BDT response score. The BDT
response tends toward -1 for background like events, while for signal-like events (SNe
Ia) it approaches one.



Chapter 8. SNe classification 148

(a) SNe Ia

(b) CC

Figure 8.36 zpho + general fit + BDT analysis: Example of the BDT response for
known events in the SNLS3 sample. In these parameter spaces, there is no obvious
cut to disentangle SNe Ia from core-collapse (CC) SNe. Stretch �2 of photometric
redshift versus color �2 of photometric redshift for SNe Ia 8.36a (CC 8.36b). Gray
points indicate SNLS3 data, colored points the species with their BDT response score.
The BDT response tends toward -1 for background like events, while for signal-like
events (SNe Ia) it approaches one.

8.6 Summary

I successfully implemented a classification of type Ia SNe based on SN photometric

redshifts. The advantages of such an analysis include that all events have an assigned

redshift and that there is no dependence on an external catalogue of host galaxy redshifts.



Chapter 8. SNe classification 149

Classification of events is a high-dimensional problem and as such, it can be addressed

using machine learning techniques. I showed that for the host-galaxy redshift analysis,

the classification could be improved to obtain slightly higher e�ciency and purity of

the SNIa sample using BDTs. This is of relevance since one of the main goals of a

photometric pipeline is to obtain large statistics over a broad redshift extension without

the need of spectroscopy.

For the SN photometric redshift analysis I encountered two main questions. First, which

fit to use to extract information from the light curves and, second, how to handle highly

correlated variables. The latter was very well addressed by supervised learning methods.

Regarding the fit to be used, once SALT2 is used for obtaining the photometric redshift,

an assumption about the nature of the object is already done: it is assumed to be a

SNIa. Then, it became natural to use a general fit that could extract information to

distinguish core-collapse events from type Ia ones. In this Chapter I presented both

analyses for completeness.

In general, the global e�ciency of the SN photometric redshift analysis is higher. This is

partially due to the fact that we have an assigned redshift for each of our selected events.

This was not the case for the host-galaxy redshift analysis, which had an assignment

e�ciency of 83%. Also, the use of supervised learning algorithms such as BDTs provide

good results in high dimensional problems such as ours.

The sample obtained using BDTs and the general fit proved of high purity (95.8%)

and higher than that of the SNLS3 data. The number of photometric candidates in

the SN photometric redshift analysis is equivalent to the one in the SNLS3 host-galaxy

redshift with sequential cuts. However, the number of spectroscopic events in our sample

increased by 7% with respect of the original analysis. This is in agreement with our

higher e�ciency at low redshift (Fig. 8.37). A summary of purity, contamination,

e�ciency and statistics is given in Table 8.9.

It must be highlighted that the core-collapse simulation has very low statistics at the

SN-like sample level (the starting point of our classification). Although we expect a low

number of core-collapse events at this stage, it would be advisable to have a smoother

distribution to be used as test. This is a limitation of the analysis presented here.



Chapter 8. SNe classification 150

Moreover, supervised learning methods, as BDTs, rely on signal and background samples

to train the algorithm. I provided core-collapse SNe and SNe Ia with bad redshift

assignment as backgrounds for training although there may be other background sources

that were not eliminated using SN-like cuts. To correct for this, other backgrounds must

be identified which will require to complete SN-like cuts. In the case some background

survive we will need to model them to generate simulated event samples for training

with large statistics.

I remind here, that this classification (and all my work presented in this PhD) has been

centered on a future application of these methods to the SNLS5 analysis.

Simulation
analysis purity contamination e�ciency

SNe Ia SNe Ia bad z core-collapse SNIa
zgal+SALT2+sequential(SNLS3) 94.4± 0.5% 0.65± 0.08% 4.9± 0.5% 29.9± 0.3%

zgal+SALT2+BDT 96.6± 0.6% 0.4± 0.1% 2.9± 0.6% 30.8± 0.8%
zpho+SALT2+BDT 96.0± 0.8% 0.09± 0.06% 3.9± 0.8% 26.5± 0.8%

zpho+general fit+BDT 95.8± 0.8% 0.29± 0.08% 3.9± 0.7% 32.2± 0.8%

SNLS3 data
# events # spec. SNe Ia # spec. CC # photo. CC

zgal+SALT2+sequential(SNLS3) 486 176 0 0
zgal+SALT2+BDT 524 175 0 0
zpho+SALT2+BDT 499 198 2 0

zpho+general fit+BDT 482 187 1 1

Table 8.9 Classification summary: statistics of di↵erent methods. The core-collapse
photometric sample was determined in an independent photometric analysis [35].
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Figure 8.37 Comparisson of global e�ciencies for simulation using the SNLS3 method
(red points) and the proposed SN photometric classification (blue points) against gen-
erated redshift.



Chapter 9

Conclusions

In this PhD work, I presented improvements on the detection of transient events and the

classification of supernovae using supernova photometric redshifts in the SNLS deferred

analysis.

The deferred photometric pipeline of SNLS provided me a unique opportunity to study

a complete and dedicated pipeline for a 100% photometric SNIa sample. In the view of

the limitations of spectroscopic resources, obtaining such a reliable and large sample is

of importance for SNIa studies.

The first part of my work consisted on improving the detection of transient events which

is the first step for detecting supernovae. Transient events are detected in di↵erence

images which are usually filled with various artifacts from instrumental defects and

incomplete subtraction of permanent objects. In order to eliminate those artifacts and

extract interesting events, I proposed a treatment to reduce the number of non SN-like

events using morphological component analysis. A new detection strategy was also set

up which handles better many years of data and improves coordinate resolution.

Using this new procedure I reached a reduction of spurious events of more than a factor

two while maintaining the interesting SN-like sample. Coordinate resolution was shown

to be su�cient for a photometric classification. However, there is big room for improving

this coordinate resolution. Possibilities to reduce the impact of stacking signal coordi-

nates and coordinates from spurious detections include extracting coordinates at the

level of a 3-week lunation stack or extracting them directly from the subtracted images.
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The former is at the moment under study, while I leave the later as a possibility since

it requires thorough study.

Morphological component analysis algorithms have shown to be very powerful for re-

ducing artifacts in our subtracted image stacks. However, possible improvements can

come from eliminating artifacts at the level of subtracted images instead of stacks. This

could be valid for our deferred pipeline but it should be applied at the beginning of the

survey. Other possibilities for deferred and real-time transient event detection pipelines

include cleaning images with a fast multi-resolution method and exploiting additional

multi-band and temporal information.

The second part of my work dealt with classifying SN-like events into type Ia and

core-collapse SNe. I presented here a new method of classification using supernova

photometric redshifts. These redshifts can be obtained for all SN-like events and do

not rely on a external catalogue. To exploit all available information I proposed to use

machine learning algorithms, in particular BDT.

I presented di↵erent classification options depending on the redshift, light curve fitter

and strategy used. In general, the global e�ciency and purity of the photometric redshift

analysis is higher than host-galaxy redshift analyses. We obtained a contamination of

the sample below 5% for this redshift analysis using BDTs. This represents an important

result since we are improving the quality of our 100% photometric sample using novel

algorithms.

This classification work can be improved by simulating larger samples of core-collapse

supernovae in order to assess the contamination levels with more accuracy. To take

advantage of our machine learning techniques we must study thoroughly the SN-like

sample to identify the residual non-SN backgrounds in order either to reject them or

to model them and include them in the training of the BDT algorithm. This is a

requirement before we can apply the BDT classification to SNLS5 data.
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Resumé du travail en francais

De 2003 à 2008, le SuperNova Legacy Survey (SNLS) a détecté un millier de supernovae

(SNe) distantes auprès du télescope CFH (Canda-France-Hawaii). L’analyse des trois

premières années de données a conduit à des publications majeures pour la cosmologie :

l’accélération de l’expansion de l’Univers est confirmée à un niveau de confiance supérieur

à 99.9% par les seules mesures sur les supernovae de type Ia (Fig. A.1). Ce résultat

s’appuie sur la statistique importante recueillie par SNLS et sur un contrôle poussé des

systématiques. Les données de SNLS constituent à ce jour le meilleur échantillon pour

les études cosmologiques à base de SNe.

Traditionnellement, les supernovae sont détectées par photométrie, grâce à l’observation

de leurs courbes de lumière (mesure du flux lumineux de la SN au cours du temps),

puis elles font l’objet d’observations spectrales pour mesurer leur décalage spectral et

déterminer leur type, soit thermonucléaire (type Ia), le seul utile pour la cosmologie,

soit gravitationnel (types Ib, Ic ou II) qui constitue un fond à éliminer.

Cette stratégie n’est pas envisageable pour les projets futurs dont les centaines de milliers

de SNe ne pourront toutes être observées en spectroscopie par manque de temps. Déjà,

aujourd’hui, 50% seulement des SNe potentielles peuvent être étudiées par spectroscopie.

Il faut donc envisager une procédure qui sélectionne les supernovae, identifie leur type et

mesure leur décalage spectral uniquement à l’aide de leurs courbes de lumière (sélection

dite photométrique), ce que propose cette thèse.

Au sein de SNLS, le groupe de l’Irfu/SPP est responsable de la sélection photométrique

des supernovae. Appliquée aux 3 premières années de données, cette analyse a abouti
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Figure A.1 JLA diagramme de Hubble avec 472 SNeIa de SNLS3 et des autres
expériences de supernovae. [65]. Modèle ⇤CDM represent’e en noir. µ est donnée
dans l’équation 3.5. ⌦m = 0.303 ±0.012,⌦⇤ = �1.027 ±0.055 et H0 = 68.50± 1.27.

à la sélection d’un lot de 485 SNe Ia situées dans des galaxies hôtes identifiées, de

décalage spectral connu ( la selection est basée sur des coupures sequentielles illustrées

dans Fig. A.2). L’e�cacité de la méthode est de 80% et la contamination du lot en

SNe gravitationnelles, évaluée par simulation rapide, est de 4%. Par rapport à l’analyse

traditionnelle, cette sélection permet d’enrichir de 50% le lot de supernovae de type Ia,

essentiellement à haut décalage spectral.

Plusieurs sujets ont été abordés grâce à cet échantillon, notamment un algorithme de

reconstruction directe du décalage spectral des SNe Ia d’après leurs courbes de lumière.

Ces résultats ont fait l’objet de trois publications de SNLS dont le groupe du SPP est

premier auteur. Ce travail est part d’une prochaine publication portant sur l’utilisation

de ce lot photométrique pour la cosmologie.

Mon travail porte sur des améliorations sur la détection d’événements transitoires et la

classification des supernovae (SNe) en utilisant les redshifts photométriques de supernova
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(a)

(b)

(c)

Figure A.2 Diagrammes couleur-magnitude (SALT2) pour les événements qui passent
les premières coupures de sélection. Données SNLS3 en noir, événements spectro-
scopiques type Ia (vert), core-collapse (rouge) et simulations en bleu. [66].

dans l’analyse di↵èré de SNLS. Ce travail va être appliqué dans le lot complet de données

de SNLS (5 ans) et sur l’utilisation de ces SNe Ia pour la cosmologie. Ce travail précède

la publication finale de SNLS sur le sujet.

La détection des événements transitoires peut fournir de nombreuses fausses détections,

tandis que la classification photométrique des SNe de type Ia est généralement con-

taminée par d’autres types de supernovae. Réduire le nombre de fausses détections

et les SNe mal classées tout en préservant l’échantillon du type Ia sont des questions

importantes pour les investigations présentes et futures.

Afin de réduire les artefacts qui fournissent des fausses détections (Fig. A.3), j’ai

développé un traitement pour les piles de soustractions pour réduire le nombre d’événements

qui ne ressemblent pas à des SNe en utilisant l’algorithme Morphological Component

Analysis. Cette technique exploite la diversité morphologique des objets à détecter pour

extraire le signal d’intérêt. Au niveau de nos piles de soustraction, événements comme
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Ancienne procédure Nouvelle procédure
No season stacks With season stacks

coordinate magnitude coordinate magnitude coordinate magnitude
Stack resolution biais resolution biais resolution biais

±0.002 ±0.0002 ±0.002 ±0.0002 ±0.002 ±0.0002

1 an 0.709 0.0334 0.698 0.0324 0.698 0.0324
3 ans 0.725 0.0349 0.715 0.0340 0.710 0.0335
5 ans 0.741 0.0365 0.731 0.0355 0.726 0.0350

Table A.1 Résolution des coordonnées en pixels (limite supérieure) avec le biais en
magnitude correspondant. Pour plusieurs années de données.

Ancienne procédure Nouvelle procédure
# detections # SN-like # detections # SN-like

302,987 1,483 127,808 1,345

Table A.2 Nombre des détections et événements qui se ressamblent au SNe dans les
données de SNLS3 pour l’ancienne et la nouvelle procedure.

SN sont plutôt circulaires alors que la plupart des détections parasites présentent des

formes di↵érentes.

Des images de SNe Ia générées par Monte-Carlo (MC) ont été utilisées pour étudier

l’e�cacité de la détection (Fig. A.4) et la résolution des coordonées (Table A.1). Lors

d’un essai sur le données SNLS des 3 années cette procédure diminue le nombre de

détections par un facteur de deux, tout en ne perdant que 10 % d’événements qui

ressemblent à des SNe, presque tous tenus (Table A.2). Les résultats des MC montrent

que l’e�cacité de détection SNIa est équivalente à celle de la méthode originale pour les

événements lumineux, tandis que la résolution des coordonnées est légèrement améliorée.

Par rapport aux analyses publiées sur les 3 premières années, j’ai généralisé la sélection

photométrique des SNe Ia au cas di�cile - mais plus proche de la problématique des

projets futurs - où le décalage spectral des supernovae n’est pas connu grâce à la galaxie-

hôte mais est déterminé à partir des courbes de lumière des supernovae elles-mêmes, tout

en contrôlant de manière plus précise la contamination de ce lot en SNe gravitationnelles.

L’analyse di↵érée utilise uniquement des informations photométriques pour classer les

supernovae. Les avantages d’un échantillon photométrique comprennent plus grand

nombre d’événements classés comme de type Ia, la couverture de redshift plus grande

et pas besoin d’observations spectroscopiques.
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(a)

(b)

Figure A.3 Pile de soustraction D4, ccd 00 et lunation 10 avec étoile brillante et
“optical ghost” dans A.3a et le plan de détection avec la méthode originale de SNLS3
A.3b. De nombreuses detections peuvent être attribuées à des artefacts.

Je présente ici une nouvelle classification en utilisant des redshifts photométriques de

supernovae optimisée par une stratégie de classification avec machine learning. Cet al-

gorithme fournit des décalages vers le rouge pour tous les événements avec une meilleure

précision moyenne et inférieure erreurs catastrophiques que l’analyse avec photométrique

redshifts de la galaxie hôte avec SNLS3. J’ai optimisé la stratégie de sélection à l’aide

des techniques de machine learning comme les BDTs qui augmentent l’e�cacité et la

pureté de l’échantillon SNIa. Cette nouvelle classification photométrique SN-redshift

fournit un échantillon des SNe type Ia avec une contamination de moins de 10 % selon
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Figure A.4 E�cacité de détection en fonction de la magnitude maximale générée dans
le filtre iM . L’ancienne procédure en rouge est à comparer avec la nouvelle en bleu.

les études de Monte-Carlo. L’e�cacité à bas redshifts pour cette méthode est meilleure

que celle de l’analyse SNLS3 (Fig. A.5).

Figure A.5 Comparaison des e�ciacités globales en fonction des redshifts générées
pour la procédure de SNLS3 (rouge) et la nouvelle méthode utilissant des redshifts
photométriques déterminées à partir des courbes de lumière des supernovae elles-mêmes.

L’étape suivante, avec les outils prêts et les critères testés sur les données des 3 années,
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est d’appliquer l’analyse à l’ensemble des données de SNLS et le lot photométrique

obtenu sera utilisé pour déterminer les paramètres cosmologiques (équation d’état de

l’énergie noire et densité de matière) et évaluer les systématiques propres à la sélection

photométrique (contamination, reconstruction photométrique du décalage spectral).
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C Lidman, J L Marshall, A Möller, A MMourao, J Neveu, R Nichol, M D Olmstead,

N Palanque-Delabrouille, S Perlmutter, J L Prieto, C J Pritchet, M Richmond, A G

Riess, V Ruhlmann-Kleider, M Sako, K Schahmaneche, D P Schneider, M Smith,

J Sollerman, M Sullivan, N A Walton, and C J Wheeler. Improved cosmological

constraints from a joint analysis of the SDSS-II and SNLS supernova samples.

Astronomy & Astrophysics, 568, January 2014.

[66] G Bazin, V Ruhlmann-Kleider, N Palanque-Delabrouille, J Rich, E Aubourg,

P Astier, C Balland, S Basa, R G Carlberg, A Conley, D Fouchez, J Guy, D Hardin,

I M Hook, D A Howell, R Pain, K Perrett, C J Pritchet, N Regnault, M Sullivan,

N Fourmanoit, S Gonzalez-Gaitan, C Lidman, S Perlmutter, P Ripoche, and E S



Bibliography 168

Walker. Photometric selection of Type Ia supernovae in the Supernova Legacy

Survey. Astronomy & Astrophysics, 534:A43, September 2011.

[67] Gurvan Bazin. PhD thesis: Analyse diférée des données du SuperNova Legacy
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thèse) Jacques Chauveau (président) Yannick Giraud-Héraud (rapporteur) Yannick
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uno de los mejores pedazos de Venezuela que llevo conmigo. Agradezco mucho a los

profesores que me transmitieron su pasión por la ciencia.

Por supuesto quisiera agradecer a mi familia que, aunque no siempre entendieron por qué
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