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Vérification d'automates temporisés: sûreté, vivacité et modélisation Résumé Cette thèse revisite les algorithmes standards pour les problèmes d'accessibilité et de vivacité des automates temporisés.

L'algorithme standard pour tester l'accessibilité consiste à utiliser l'inclusion de zones pour explorer efficacement un arbre de recherche abstrait. Cependant, l'ordre du parcours du graphe a une forte incidence sur l'efficacité de l'algorithme. Dans cette thèse nous introduisons deux stratégies, nommées ranking et waiting, et une combination des deux. De nombreux exemples montrent que la combination des deux strategies aide l'algorithme d'accessibilité à éviter des explorations non nécessaires.

Le problème de vivacité est couramment vérifiées par l'analyse des cycles dans l'automate temporisé. Contrairement à l'algorithme d'accessibilité, l'algorithme pour l'analyse de vivacité ne peut pas librement utiliser l'inclusion de zones. Par conséquent, il y a des situations où l'algorithme doit faire une longue exploration avant de conclure l'existence d'un cycle. Nous proposons une analyse accélérée des cycles, nommées ω-iterability checking, qui permet d'améliorer la performance de l'algorithme de vivacité des automates temporisés.

En plus, nous proposons une modélisation du mécanisme de démarrage du protocole FlexRay. La modélisation permet à vérifier le mécanisme dans configurations différents du réseau FlexRay. Nous présentons également un outil de visualisation qui aide à mieux comprendre le fonctionnement des algorithmes d'analyse.

théorique, permettant de construire des preuves de décidabilité, qui est inutilisable en pratique à cause du très grand nombre de régions. L'approche la plus efficace utilise des zones et des abstractions pour représenter symboliquement la sémantique d'un automate temporisé par un graphe fini, appelé graphe de zones. En conséquence, les algorithmes standards d'accessibilité et de vivacité des automates temporisés reposent essentiellement sur les algorithmes classiques de la théorie des graphes.

L'algorithme standard pour tester l'accessibilité se base sur un parcours classique, en profondeur d'abord ou en largeur d'abord, du graphe de zones.

Il incorpore cependant une optimisation importante basée sur l'inclusion de zones. Les zones étant des ensemble d'états de l'automate, l'algorithme n'a pas besoin de considérer les petites zones, c'est à dire celles qui sont incluses dans une zone déjà explorée. L'utilisation de l'inclusion de zones permet d'éviter l'exploration de nombreuses zones. Cependant, l'ordre du parcours du graphe de zones a une forte incidence sur l'efficacité de l'algorithme. Un parcours du graphe peut introduire beaucoup plus d'explorations qu'un autre, selon qu'il visite d'abord les petites zones (qui sont alors explorées) ou d'abord les grandes zones (qui permettent d'éviter l'exploration des petites zones qui seront découvertes ultérieurement). Dans cette thèse, nous introduisons deux stratégies, nommées ranking et waiting. Ces stratégies utilisent la structure de l'automate pour déterminer un parcours du graphe de zones qui conduit prioritairement aux grandes zones. De nombreuses expérimentations montrent qu'en combinant les deux stratégies, l'algorithme évite de très nombreuses petites zones, avec un gain significatif allant jusqu'à plusieurs ordres de magnitudes.

Dans une seconde partie, nous considérons la vérification de propriétés de vivacité des automates temporisés. Ces propriétés sont usuellement vérifiées en analysant les cycles du graphe de zones, par exemple en utilisant un algorithme nested-DFS ou de calcul de composantes connexes. L'optimisation consistant à éviter d'explorer les petites zones ne peut cependant pas être utilisée par ces algorithmes: le graphe de zones résultant n'est pas complet pour les propriétés de vivacité. Par conséquent, il y a des situations où l'algorithme doit faire une longue exploration avant de conclure l'existence d'un cycle. Nous proposons une analyse accélérée des cycles, nommée ω-iterability checking. Notre ωiterability checking analyse explicitement l'effet d'une séquence de transitions v pour conclure si la séquence peut être itérée infiniment depuis une zone donnée.

Les expérimentations montrent que notre technique permet d'améliorer significativement la performance de l'algorithme de vivacité des automates temporisés.

Dans la troisième partie de la thèse, nous proposons une modélisation du mécanisme de démarrage du protocole FlexRay. FlexRay est un protocole pour des contrôleurs automobiles. Le protocole est conçu pour fournir une communication temps-réel dur pour un réseau automobile. Une communication temps-réel dur demande que tous les messages échangés soient transmis et reçus en temps imparti. Pour cela, le protocole Flexray incorpore plusieurs mécanismes de synchronisation des horloges de chaque composants prenant part au réseau. Un de ces mécanismes est le protocole de démarrage. Dans cette thèse, nous proposons une modélisation du protocole de démarrage sous forme d'automates temporisés. Notre modèle permet de vérifier le mécanisme de synchronisation dans différentes configurations du réseau. Il permet en outre de tenir compte des imperfections de horloges matérielles mise en oeuvre dans les composants du réseau. Notre modèle nous a par ailleurs permis d'évaluer la performance des nos stratégies d'analyse d'accessibilité des automates temporisés.

Finalement, nous présentons une méthodologie d'analyse des algorithmes de model-checking. Les performances d'un algorithme peuvent être analysées à partir de valeurs statiques comme le nombre de noeuds explorés, le nombre de noeuds stockés qui représentent respectivement la durée de calcul et la mémoire utilisée par l'algorithme. Cependant, l'optimisation d'un algorithme requiert une compréhension plus fine qui se base sur des informations dynamiques de l'algorithme, comme son comportement dans des scénarios précis. Pour cela, il faut analyser des traces d'exécution de l'algorithme. Dans cette thèse, nous présentons une méthodologie qui utilise un outil de visualisation pour analyser des traces d'exécution d'un algorithme. Le méthodologie aide à mieux comprendre le fonctionnement des algorithmes de vérification. Nous avons utilisé cette méthodologie pour mettre au point les stratégies de parcours efficace du graphe de zones pour la vérification de propriétés d'accessibilité.

Chapter 1 Introduction

Among the systems people create and use each day, there is a class of systems called real-time systems. A real-time system is a system that has to respond to an input within a given time. It ranges from home equipment like a fire alarm, to critical systems like medical devices or automotive electronic controllers. Unlike other systems, real-time systems are required to satisfy not only functional specifications, but also temporal specifications. For instance, a fire alarm should alert within few seconds after smoke has been detected, an infusion pump must deliver a right amount of drug within a given time, and an automobile controller should deploy the airbag within few milliseconds after a collision. As real-time systems are complex, one needs tools to automatically verify their correctness.

A standard approach to the automatic verification of real-time systems is timed automata model checking [START_REF] Alur | A theory of timed automata[END_REF][START_REF] Edmund M Clarke | Model checking[END_REF][START_REF] Tawhid | A survey of timed automata for the development of real-time systems[END_REF]. It takes as input a real-time system and a specification modeled by timed automata. It then automatically analyzes the timed automata and decides if the specification is satisfied.

Timed automata model checking was introduced by Alur and Dill in [START_REF] Alur | A theory of timed automata[END_REF].

Since then, the approach has been improved by the introduction of more efficient data structures and techniques, including zones [START_REF] David | Timing assumptions and verification of finite-state concurrent systems[END_REF][START_REF] Daws | Model checking of real-time reachability properties using abstractions[END_REF][START_REF] Tripakis | Checking timed büchi automata emptiness on simulation graphs[END_REF], Difference Bound Matrices (DBM) [START_REF] David | Timing assumptions and verification of finite-state concurrent systems[END_REF] and abstractions [START_REF] Daws | Model checking of real-time reachability properties using abstractions[END_REF][START_REF] Behrmann | Lower and upper bounds in zone-based abstractions of timed automata[END_REF][START_REF] Tripakis | Checking timed büchi automata emptiness on simulation graphs[END_REF][START_REF] Li | Checking timed büchi automata emptiness using lu-abstractions[END_REF][START_REF] Herbreteau | Better abstractions for timed automata[END_REF]. As a result, timed automata model checking has been used to verify many real systems like the Fiber Distributed Data Interface (FDDI) protocol for data transmission in local area network [START_REF] Daws | The tool kronos[END_REF], the CSMA/CD protocol for Ethernet technology [START_REF] Tripakis | Analysis of timed systems using time-abstracting bisimulations[END_REF], or the FlexRay protocol for automotive controllers [START_REF] Malinskỳ | Verification of flexray start-up mechanism by timed automata[END_REF].

However, verifying real-time systems via timed automata, especially for huge models coming from industrial systems, confronts with the state-space explosion problem. The state-space explosion problem informally is the situation where the verification process requires too much memory and running time. Therefore, to verify more and more complex real-time systems, approaches to mitigate the state-space explosion problem are imperative.

In this thesis we present approaches that allow the state-of-the-art algorithms for analysis of timed automata avoid even exponentially many steps and in the result tackle, in some cases, the state-space explosion problem.

The remainder of this chapter will provide the reader an overview of the timed automata model checking techniques, the main challenges, the state-ofthe-art approaches, and the contributions of this thesis.

Timed automata

Timed automata are introduced by Alur and Dill in [START_REF] Alur | A theory of timed automata[END_REF]. Timed automata are finite automata extended with real valued variables, named clocks. All the clocks start with value zero and increase at the same rate. The clock value can be reset as well as checked in timed automata: Each transition of the timed automaton can be labeled by a reset action that sets the value of some clocks to zero, and by constraints on the clocks to be used as a guard. Accordingly, a transition is enabled only when the value of the clocks satisfy its guard, otherwise, the transition is disabled. With resets and constraints on clocks, timed automata can represent different time related behaviors and properties of systems like periodic actions, or simply a property that limits the execution time of an action.
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Figure 1.1: A timed automaton A 0 modeling an infusion pump that is required to inject a drug within three seconds.

For instance, consider an infusion pump. Suppose that we want to model a specification that requires the device to inject a drug within a given time, say three time units. The infusion pump and the specification could be modeled using a timed automaton with a clock, say x, like the automaton A 0 in Figure 1.1. In the automaton every time the injection begins (the state inject is entered), the clock x is reset to zero. Then the value of x is used to control the outgoing transitions of the inject state. The transition from the inject state to the ready state is enabled only if the value of the clock x is not bigger than three. Otherwise, only the transition to the error state is enabled.

The semantics of a timed automaton is a transition system where each configuration consists of a state of the automaton and values of all clocks. As timed automata model real-time systems, their semantics represents timed behaviors. Accordingly, given a timed automaton representing a system and some properties to check as input, a model checking tool can automatically prove that the system conforms to the given properties. More precisely, the tool automatically explores all possible runs in a finite symbolic semantics of timed automaton to determine if all of them satisfy the given properties. For instance, the tool can check whether an infusion pump satisfies the injection duration by checking for the reachability of the error state in the semantics of the timed automaton representing the infusion pump. Such a process is called a verification process.

The model checking approach can verify safety and liveness properties of real-time systems. A safety property asserts that a bad state of a system will never happen. On the other hand, a liveness property asserts that a system can repeatedly reach a good state. Note that in timed automata, these distinguished bad or good states can be modeled as accepting states. Consider the following two specifications of an infusion pump: the device must never inject the fluid for longer than the configured time, and the device can repeatedly alert users on fault conditions. They are respectively a safety property and a liveness property. Since safety and liveness properties are common specifications of real-time systems, in this thesis, we focus on algorithms for verifying those properties of timed automata.

Formally, the problem we address in this thesis is the problem of proving that in the semantics of a timed automaton all runs satisfy a property -safety or liveness.

Analysis of timed automata

In the last twenty years, the main topics of research on analysis of timed automata have concentrated on efficient handling of the semantics of timed automata.

The semantics of timed automata, as described in previous section, is a transition system in which each configuration is a pair of a state of the automaton and a clock valuation. Observe that there are only finitely many states in an automaton, but there are uncountably many values for clocks due to the denseness of time. Hence, the semantics of timed automata has an uncountably infinite state space.

In the following, we present approaches to handle the infinite state space of the semantics of timed automata. The first approach is to use regions, which are essentially used to prove the decidability of problems in timed automata. A more efficient approach is to use zones and abstractions. Finally, the stateof-the-art approach is to use zone inclusion on top of the abstract zone graph.

In the paper introducing timed automata [START_REF] Alur | A theory of timed automata[END_REF], Alur and Dill presented an approach to handle the infinite state space of the semantics of timed automata. It partitions the space of valuations into a finite number of regions.

As there are finitely many regions, the cross product of the regions and the states of the automata yields a finite symbolic semantics of timed automata called region graph. The definition of regions not only results in a finite number of regions, but also ensures that region graphs are sound and complete for safety and liveness properties [START_REF] Alur | A theory of timed automata[END_REF]. However, the number of regions grows exponentially with the number of clocks and the maximal constants in guards of the automata. The region graph approach turns out to be impractical.

A more efficient solution for the analysis of timed automata is to work with sets of valuations called zones. A zones is a convex set of valuations described by constraints between clocks. Zones can be efficiently represented and manipulated using Difference Bound Matrices (DBMs) [START_REF] David | Timing assumptions and verification of finite-state concurrent systems[END_REF]. Using zones, a symbolic semantics graph of timed automata, called zone graph, is defined. It has been proven that zone graphs preserve safety [START_REF] Daws | Model checking of real-time reachability properties using abstractions[END_REF] and liveness properties of the system [START_REF] Tripakis | Checking timed büchi automata emptiness on simulation graphs[END_REF].

A paradigm to analyze timed automata with zones is the forward analysis [START_REF] Bouyer | From qualitative to quantitative analysis of timed systems[END_REF]. A forward analysis algorithm starts from the initial state of the automaton with the initial zone. The algorithm then computes, for each outgoing transition from a state, the set of reachable valuations. Because those reachable valuations, again, can be represented by a zone, the algorithm can repeat the forward computation using zones to explore the semantics of the timed automaton. If such an exploration reaches an accepting state, the algorithm will stop and report that there is an accepting run. However, zone graphs can be infinite and the algorithm may not terminate [START_REF] Daws | Model checking of real-time reachability properties using abstractions[END_REF]. To solve this problem one introduces abstractions of zones.

An abstraction groups valuations together while preserving relevant properties of the system. Applying abstractions on zones, results in an abstract symbolic semantics of a timed automaton called abstract zone graph. The abstractions of zones are defined so that the resulting abstract zone graph is finite. Thus, by using zones and abstractions, one gets a finite abstract zone graph which reflects safety properties [START_REF] Daws | Model checking of real-time reachability properties using abstractions[END_REF][START_REF] Behrmann | Lower and upper bounds in zone-based abstractions of timed automata[END_REF][START_REF] Herbreteau | Better abstractions for timed automata[END_REF] and liveness properties [START_REF] Tripakis | Checking timed büchi automata emptiness on simulation graphs[END_REF][START_REF] Li | Checking timed büchi automata emptiness using lu-abstractions[END_REF] of the initial timed automaton.

The analysis of timed automata based on abstract zone graphs is further improved by using zone inclusion. This improvement was first proposed in [START_REF] Daws | Model checking of real-time reachability properties using abstractions[END_REF]. The zone inclusion is a relation between nodes in an abstract zone graph. Recall that in an abstract zone graph, each node is a pair of a state and a zone, and there are many nodes with the same state but different zones. Since zones are sets of valuations, if a node (q, Z) has the same state q as another node (q, Z ) but has a smaller zone, (Z ⊆ Z ), we say that (q, Z) is smaller than (q, Z ). Under certain circumstances considering only big nodes is sufficient for verification of properties of timed automata. From that observation, inclusion abstractions are introduced.

An inclusion abstraction is defined so that small nodes are abstracted by bigger nodes. Observe that with this formulation, on the same abstract zone (q 1 , y ≥ 0) (q 3 , y > 5) (q 2 , y ≥ 0) (q 3 , y ≥ 0) (q 4 , y ≥ 0) . . .

⊇

Figure 1.2: Using zone inclusion relation in algorithms for analysis of timed automata graph, there are many possible inclusion abstractions. An abstraction may abstract some nodes, another may abstract some other nodes, and a coarsest abstraction would abstract all small nodes by the biggest nodes. The more nodes we abstract, the smaller state space we get. The goal is hence to define an inclusion abstraction as coarse as possible while ensuring the correctness of the analysis. However, to exploit inclusion abstractions, it is not rational to compute the entire abstract zone graph, get all pairs of nodes having a zone inclusion relationship, and then define the correct coarsest abstraction prior the analysis of timed automata. The standard approach is to use the zone inclusion on-the-fly: to skip the exploration of a node when a bigger node is found.

For instance, consider an algorithm for reachability analysis of timed automata that uses zone inclusion on-the-fly. Figure 1.2 shows the moment when the algorithm reaches a new node (q 3 , y > 5). Moreover, there is a visited node (q 3 , y ≥ 0) that is bigger than the new node. The algorithm will then skip the exploration of (q 3 , y > 5) node, and remove it from memory. By doing this, the algorithm skips the exploration of the entire sub-tree of the removed node in the abstract zone graph. This makes zone inclusion a prominent tool to tackle the state-explosion problem. The algorithms using zone inclusion are used by the state-of-the-art tool UPPAAL [BDL + 06].

Therefore, in this thesis, we focus on the algorithms using zone inclusion in verification of safety and liveness properties for timed automata.

(q 1 , y ≥ 0) (q 3 , y > 5) (q 4 , y > 5) (q 2 , y ≥ 0) (q 3 , y ≥ 0) (q 4 , y ≥ 0) . . . . . .
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Figure 1.3: Explore (q 3 , y > 5) before (q 2 , y ≥ 0)

Algorithms for safety analysis

Verification of safety properties of real-time systems amounts to checking whether there may be an error during some execution of a system. Such verification can be done using timed automata analysis. The analysis takes as input a real-time system modeled by a timed automaton, in which error states are defined as accepting states. It then verifies whether an accepting state is reachable in the finite abstract zone graph of the timed automaton.

The state-of-the-art algorithm for reachability analysis is based on finite graph traversal algorithms, such as depth-first search (DFS) or breadth-first search (BFS), to look for accepting states in the abstract zone graph. The algorithm also uses zone inclusion on-the-fly to reduce the number of visited nodes and the number of stored nodes. For reachability analysis, the algorithm does not need to explore nor to store small nodes if a bigger node is found. Since a zone is a set of valuations, all states reachable from the small node are also reachable from the big node. In short, the state-of-the-art algorithm for safety analysis for timed automata uses zone inclusion to efficiently test for reachability of an accepting states in an abstract zone graph.

However, it has been observed in [Beh05, [START_REF] Behrmann | Distributing timed model checking -how the search order matters[END_REF][START_REF] Vıctor Braberman | Zeus: A distributed timed model-checker based on Kronos[END_REF] that the efficiency of algorithms using zone inclusion is affected by the search order used to explore the abstract zone graph. Let us look closer at an example. Suppose, the algorithm aims to explore only parts of the abstract zone graph by using zone inclusion on-the-fly. It means that for each node, the algorithm decides whether it needs to explore the node and its sub-tree by checking whether there exists a visited node that is bigger than the considered node. This implies that the order between the discovery of big nodes and the discovery of small nodes matters for the algorithm: a late discovery of big nodes will result in unnecessary exploration of small nodes. In fact, while the correctness of the above algorithm for reachability analysis does not depend on a search order, even a small change in the search order can seriously affect the performance of the algorithm.

For instance, consider the situation depicted in Figure 1.3 where the algorithm runs a depth-first search on the same automaton as in Figure 1.2, but visiting (q 3 , y > 5) before (q 2 , y ≥ 0). When reaching (q 3 , y > 5), the algorithm looks for nodes comparable with (q 3 , y > 5). At first there is no such node. The algorithm thus explores (q 3 , y > 5) and its entire sub-tree. After that, the algorithm backtracks to (q 1 , y ≥ 0), explores (q 2 , y ≥ 0), and then reaches (q 3 , y ≥ 0). It happens that there is a zone inclusion relationship between (q 3 , y ≥ 0) and (q 3 , y > 5) which has been previously visited. But since (q 3 , y ≥ 0) is bigger than (q 3 , y > 5), the algorithm has to visit the entire sub-tree of (q 3 , y ≥ 0). As a result, the exploration of the sub-tree of (q 3 , y > 5) turns out to be useless. We call such a situation mistake. More precisely, a mistake is a situation where the algorithm first visits a node, but later finds a bigger node. The mistakes at the sub-tree of (q 3 , y > 5) would have been avoided if the node (q 2 , y ≥ 0) had been visited first as in Figure 1.2. It is worth noting that this "bad" search order resulting in many mistakes happens not only in the algorithm running a depth-first search, but also in the algorithm using a breadth-first search.

In summary, the efficiency of the state-of-the-art algorithm for reachability analysis of timed automata is sensitive to the search order. A "bad" search order may result in exponentially many unnecessary explorations -mistakes.

Therefore, in this thesis, we develop strategies that minimize the number of mistakes for the state-of-the-art algorithm for reachability analysis of timed automata. Those strategies will then improve the efficiency of the algorithm.

Contributions of the thesis

Our strategies aim to guide the algorithms to reach big nodes before small nodes. As a result, the strategies can prevent the algorithms from making mistakes.

The idea behind our strategies is that most of the mistakes can be avoided by analyzing the structure of the automaton. Consider a situation where in an automaton, there are many paths with different lengths ending in the same state. If the longest path results in the biggest zone, an exploration of the automaton in DFS order is likely to make mistakes, and an exploration in BFS order certainly results in mistakes. Instead, the exploration should be guided toward the big nodes since early discovery of big nodes will avoid all mistakes at small nodes. Therefore, the strategies we develop leverage the structural information from automata and information collected during the 1. Introduction exploration, in order to guide the exploration so that mistakes are avoided.

We propose two kinds of strategies to reduce the number of mistakes. The first we call ranking strategy. Once a mistake is detected, i.e., a new node is reached and found to be bigger than an already visited node, our ranking strategy uses information collected during the exploration to give the big node priority over all the nodes in the sub-trees of smaller nodes. This prevents further mistakes. The second kind we call waiting strategy. It is based on the topological order between states of the automaton in order to finish exploration of all the paths leading into a state before starting to explore from that state. As neither of the two strategies is optimal, we develop a strategy that combines both the ranking and the waiting strategies to minimize the number of mistakes in different situations.

Experimental results show that our strategies do help to minimize the number of mistakes. Particularly, the algorithm combining the two strategies performs optimally -makes no mistakes -on most examples from the standard benchmarks for timed automata model checking tools. In consequence, the number of visited nodes and the number of stored nodes of the algorithm are reduced. In many cases, the number of visited nodes of our algorithms is many times smaller than the one of the current state-of-the-art algorithm.

Related work

The greedy strategy [START_REF] Edmonds | Matroids and the greedy algorithm[END_REF][START_REF] Thomas H Cormen | Introduction to algorithms[END_REF] for algorithms computing shortest paths is related to the idea behind our new search strategies. During explorations towards the target, if there are many choices, the greedy strategy always selects the locally best choice, i.e., an edge with the smallest weight. The hope is to finally get the best result, i.e., the shortest path. In analysis of timed automata, the greedy strategy can be implemented by giving the priority to nodes with the biggest zone during explorations. However, the implementation of the biggest zone first strategy is costly due to a huge amount of zone comparisons.

In a broader sense, the state-caching techniques, such as the "storeor-not-to-store" [START_REF] Behrmann | To store or not to store[END_REF], the covering states [START_REF] Kim | Efficient verification of real-time systems: compact data structure and state-space reduction[END_REF], the sweep-line technique [START_REF] Jensen | The sweep-line state space exploration method[END_REF], the termination detection tree [START_REF] Evangelista | Search-order independent state caching[END_REF] and the typeoriented strategy [START_REF] Godefroid | State-space caching revisited[END_REF], are related to our strategies. Our strategies and the state-caching techniques both reduce memory usage by removing some visited nodes, but with different approaches. The state-caching techniques reduce memory usage based on predictions telling whether a node is reachable again later in the exploration or not; all nodes that are not reachable again can be removed while guaranteeing termination of the algorithm. On the other hand, our strategies reduce memory based on the fact that a big node can replace many small nodes while guaranteeing termination. Our strategies therefore guide explorations to big nodes, and then remove small visited nodes without any risk of revisiting. In short, state-caching techniques can limit the number of stored nodes at the cost of exploring more nodes if the prediction may be incorrect. In contrast, though the memory reduction may be not as big as for state-caching techniques, our strategies reduce both memory usage and running time.

Algorithms for liveness analysis

Verification of liveness properties of a real-time system can be reduced to checking if a system has a run passing infinitely often through an accepting state. Such a property can be reduced to checking for reachability of a loop containing an accepting state in a finite abstract zone graph of the timed automata representing the system.

As abstract zone graphs are finite, algorithms for verification of liveness properties of timed automata are based on classical finite graph algorithms for finding accepting cycles. There are two classic algorithms for cycles analysis: the nested-DFS algorithm [START_REF] Courcoubetis | Memory-efficient algorithms for the verification of temporal properties[END_REF] which looks directly for cycles containing an accepting state, and the strongly-connected-components (SCCs) algorithm based on Tarjan's algorithm [START_REF] Tarjan | Depth-first search and linear graph algorithms[END_REF][START_REF] Couvreur | On-the-fly verification of linear temporal logic[END_REF] which looks for SCCs containing an accepting state. Since each approach has its own advantages [START_REF] Gaiser | Comparison of algorithms for checking emptiness on Büchi automata[END_REF], there exists two groups of algorithms for liveness analysis based on nested-DFS and SCCs, respectively.

Recently, Laarman et al. [LOD + 13] have extended the nested-DFS based algorithms for the liveness analysis of timed automata with zone inclusion. However, in order to be correct, the use of zone inclusion must be quite limited. In brief, the algorithm can ignore the exploration of a node n if there is a bigger node whose sub-tree is fully explored, or if there is a smaller node in the search path from the initial node to n. It is also worth mentioning that the search order of the algorithm for liveness properties analysis is strongly bound to be DFS. It is not easy to change the search order and still use the zone inclusion. Due to the limited use of the zone inclusion and the use of depth-first search order, there may be situations where the algorithm has to perform a long exploration of a cycle in a timed automaton before reporting the result. This can happen when there is a path from a node s to another node s 1. Introduction with the same state and the zone of s is not included in the zone of s as shown in Figure 1.4. The abstract zone graph of the automaton has 100 nodes due to the difference between y and x that gets bigger after each iteration of transition b. Due to abstractions, the zones obtained after x + 100 = y will become x + 100 < y, yielding cycle in the zone graph. In this simple case, the algorithm has to explore the transition b 100 times until the zone part repeats to conclude that there is a cycle in the abstract zone graph.

Therefore, in this thesis, we improve the algorithm for loop analysis by accelerating checking for cycles in timed automata. This will then improve the performance of the algorithm.

Contributions of the thesis

Our approach consists in using a dedicated algorithm to check the ω-iterability of a path in the abstract zone graph. By ω-iterability checking we mean checking if a given sequence of timed transitions can be iterated infinitely many times from a given zone.

The idea behind our approach is that there are patterns of guard and reset actions on clocks that make a path not ω-iterable: some patterns can be identified via static analysis of the sequence of transitions, some other patterns can be identified via analysis of the effect of the sequence. Therefore, we develop an approach to detect those patterns, and with the approach we can quickly determine the ω-iterability of paths.

We first show syntactic conditions implying that a sequence of transitions is not ω-iterable. Those are simple conditions to stop the exploration of a sequence of transitions. We later define transformation matrices which are zone like representation of the effect of a sequence of timed transitions. By analyzing patterns in the transformation matrices we show that n 2 iterations of the sequence are sufficient to determine the iterability, where n is the number of clocks in the automaton. Moreover, one can decide the iterability of the sequence by simply doing log(n 2 ) compositions of transformation matrices. Consequently, we integrate these tests into the algorithm for loop analysis to avoid unnecessary long exploration of loops.

To evaluate the gain of our approach, we perform a series of experiments on standard timed models. The experimental results show that the algorithm substantially reduces the number of visited nodes on some examples.

to assume that all clock variables are reset on the path. This has important consequences as variables that are not reset can act as counters ranging from 0 to the maximal constant M appearing in the guards. Indeed, since checking emptiness of flat automata is in Ptime, general purpose acceleration techniques need to introduce a blowup. By concentrating on a less general problem of ω-iterability, we are able to find a simpler and more efficient algorithm.

After completing our work, we have learned that technically similar analysis to ours have already been discovered by [START_REF] Jaubert | Quantitative robustness analysis of flat timed automata[END_REF]. But our work is applied for analysis of liveness properties.

The ω-iterability question is related to proving termination of programs. A closely related paper is [START_REF] Bozga | Deciding conditional termination[END_REF] where the authors study conditional termination problem for a transition given by a difference bound relation. The semantics of the relation is different though as it is considered to be over integers and not over non negative reals as we do here. The decision procedure in op. cit. uses policy iteration algorithm, and is exponential in the size of the matrix. Other related works on termination are [Tiw04, CGLA + 08, GHM + 08].

The already mentioned work of Laarman et al. [LOD + 13] examines in depth the problem of verification of liveness properties of timed systems with inclusion abstraction. It focuses on parallel implementation of a modification of the nested DFS algorithm.

Verification of FlexRay protocol

FlexRay [Con] is a protocol for automotive controllers. Since FlexRay is designed to support controlling systems in cars like steer-by-wire, brake-by-wire or drive-by-wire technologies, the correctness of FlexRay is crucial for automotive safety.

More precisely, the FlexRay protocol is designed to provide a hard real-time communication mechanism for automotive networks. Although the hard realtime communication requires that all exchanged messages in the network must always arrive on time, in an automotive network, there is no global clock but instead each node has a local digital clock. Moreover those local clocks are not initially synchronized and may be imperfect -they could sometimes go faster or slower than the designed speed. Therefore, to meet its specifications, the FlexRay protocol uses many different mechanisms. Among those mechanisms, the startup procedure is an important one as it synchronizes the clocks of the communicating nodes.

To verify and show the correctness of the startup procedure of FlexRay, a timed automata model for FlexRay startup protocol is proposed in [START_REF] Malinskỳ | Verification of flexray start-up mechanism by timed automata[END_REF]. However, the model simplifies the startup procedure, and addresses only a fixed configuration of the network. Therefore, a model that supports general and scalable configuration is needed.

Introduction

In this thesis we develop a scalable timed automata model for FlexRay startup procedure.

Contribution of the thesis

Our model for FlexRay startup procedure is based on the model proposed in [START_REF] Malinskỳ | Verification of flexray start-up mechanism by timed automata[END_REF], but it aims to represent more general configurations and more features described in the latest specification of FlexRay protocol [Con]. Indeed, our model allows to verify the correctness of the procedure on a FlexRay network for a scalable number of nodes with different configurations. Moreover, our model supports many faulty conditions of the network like clock imperfection, node failures, as well as node reintegration, and the clock correction procedure which are described in the FlexRay's specification [Con].

We later verify the FlexRay startup procedure with different algorithms: the state-of-the-art algorithm implemented in UPPAAL, and our new reachability algorithm. The experimental results show that our new algorithm for reachability analysis of timed automata performs significantly better than the standard algorithm in the verification of our model of FlexRay startup procedure.

Related work

We are aware of two models of the FlexRay startup protocol in [START_REF] Malinskỳ | Verification of flexray start-up mechanism by timed automata[END_REF][START_REF] Cranen | Model checking the flexray startup phase[END_REF]. However, those models are for a simplified situation of the startup procedure. Moreover, they only support a fixed configuration of the network. Our model, on the other hand, supports more general and scalable configuration of the network.

Our way of modeling clocks imperfection is closely related to the technique used for checking the robustness of timed automata [GHJ97, WDMR08, BLM + 11]. The technique consists in enlarging guards of transitions in timed automata by a small drift. We use the same technique, but the value for the drift is defined differently in our model. In the context of robustness of timed automata, the drift is independent from the system, and the algorithm will decide whether the system is still correct with a small drift. In contrast, in our model of FlexRay startup protocol, the drift is a part of the FlexRay protocol: it is the maximum supported clock imperfection defined in the FlexRay specification.

A methodology to analyze model checking algorithms

To deal with the state space explosion problem encountered during verification of timed automata, developers of model checking algorithms for timed automata need to evaluate their performance, to analyze their behavior, and hence improve their efficiency.

In order to evaluate the performance, one can use statistics upon termination like the number of visited nodes, the number of stored nodes or the number of mistakes we have described previously. But to analyze an algorithm, one needs to know how the algorithm behaves in different situations. One approach is to analyze the traces of execution of the algorithm. An execution trace can provide dynamic information of the exploration like unnecessary explorations, or exploration patterns of the algorithm. However, it is difficult to perform such an analysis on plain-text traces of an algorithm.

Therefore, in this thesis, we propose a methodology to analyze the performance of model checking algorithms through the analysis of their execution traces. To this end, we implement a visualization toolbox that can be used by developers of timed automata algorithms.

Contribution of the thesis

We present a toolbox that consists of visualization algorithms implemented on top of the Tulip framework [AMM + 10] to support three main algorithm analysis tasks.

First, the toolbox provides dedicated algorithms for highlighting and extracting information in execution traces of timed automata model checking algorithms. These highlighting algorithms allow to visually distinguish elements with respect to properties of nodes relative to zone inclusion, and to extract patterns in execution traces. Secondly, the toolbox provides algorithms to compare execution traces. Such a comparison gives new insights into the performance of algorithms by showing where and why one algorithm works better than the other. And last but not least, the toolbox provides an algorithm to display a trace step-by-step. This gives a better insight into an execution of the algorithm.

Accordingly, we describe a methodology to develop new algorithms for timed automata using our toolbox. The methodology has allowed us to discover mistake situations -situations where an algorithm first visits a node and only later a bigger node. With the help of our methodology we could identify causes of mistakes, and develop the ideas behind our algorithms described in previous sections. This is a concrete case where our methodology and visualization toolbox has been used to further improve the model checking tools.

Introduction

Related work

The standard visualization techniques and algorithms like the highlighting technique, or the Sugiyama tree layout algorithm [START_REF] Sugiyama | Methods for visual understanding of hierarchical system structures[END_REF] are the base of our toolbox. But unlike the standard algorithms that aim at general graph analysis, our toolbox is dedicated to the analysis of model checking algorithms of timed automata.

The tree comparison technique presented in [MGT + 03] and the one-tomany comparison technique presented in [START_REF] Di | Visual analysis of one-to-many matched graphs[END_REF] are related to our algorithms to compare execution traces. But our algorithms are customized for execution traces of timed automata model checking algorithms.

The Foresighted Layout technique described in [START_REF] Diehl | Preserving the mental map using foresighted layout[END_REF] that animates structural changes in graphs while preserving the "mental map" [START_REF] Misue | Layout adjustment and the mental map[END_REF] is closely related to our step-by-step visualization algorithm for execution traces.

Organization of the thesis

The thesis is organized as follows:

In Chapter 2, we formally define timed automata and their semantics. Then we describe standard approaches for reachability analysis of timed automata.

In Chapter 3, we present the state-of-the-art algorithm for reachability analysis, and show on concrete examples why search order influences the efficiency of the algorithm. We then present our three strategies to improve the reachability analysis. At the end of the chapter, we describe and discuss the experiments we have done to compare the performance of these new strategies with the state-of-the-art algorithm in the standard benchmarks.

In Chapter 4, we introduce the main theorem that allows to reduce the verification of liveness properties of timed automata to the problem of checking for accepting cycles in the abstract zone graph. We then show a standard algorithm for verifying liveness properties in timed automata.

In Chapter 5, the ω-iterability test for accelerating the standard liveness analysis algorithm is presented. The technique is based on the analysis of the syntactic structure, and the effect of sequences of transitions to accelerate the cycle detection. Later, an algorithm using this technique is presented, and the experiments to evaluate the gain of the new technique are described and discussed.

In Chapter 6, we present a scalable timed automata model for FlexRay startup procedure that can represent different configurations of a FlexRay network as well as different faulty situations in the network like clock imperfection and node failures. We then present and discuss experiments that compare our new strategies for reachability analysis from Chapter 5 with the state-of-the-art algorithm on the FlexRay startup models.

In Chapter 7, we present a visualization toolbox for analyzing model checking algorithms. We first present the algorithm for each function provided in the toolbox. Later, we describe how we have used the toolbox to analyze, and to improve the state-of-the-art algorithms.

In Chapter 8, we summarize our contributions and discuss directions for further research.

Chapter 2 Preliminaries

Real-time systems, like a fire alarm or an automobile controller, have to operate timely. For examples, a fire alarm should alert within few seconds after smoke has been detected or an automobile controller should deploy the airbag within few milliseconds after collision. These time constraints are commonly known as safety properties. As real-time systems are complex, it is important to have a tool that can automatically verify whether a system meets required properties.

A standard approach for automatic verification of real-time systems is to represent a real-time system and its properties as a timed automata model, then automatically analyze the model to verify the system's correctness. The approach is known as timed automata model checking [AD94, [START_REF] Edmund M Clarke | Model checking[END_REF][START_REF] Tawhid | A survey of timed automata for the development of real-time systems[END_REF].

Timed automata are finite automata extended with real variables, named clocks. Clocks can be reset as well as checked to disable or enable transitions in timed automata. With clocks and operations on clocks, timed automata can represent different temporal behaviors and properties of real-time systems. For instance, consider the safety property of a fire alarm which requires to alert within few seconds after smoke has been detected. That property could be modeled using a clock, named x, in such a way that every time smoke is detected, the clock x is reset to zero. In addition, the transition from the detected state to an alert state is enabled only if the value of the clock does not reach the maximum delay yet. Otherwise, only the transition to an error state is enabled.

Reachability analysis of a timed automata model of a real-time system can be used to verify safety properties of the system. For instance, one can check whether a fire alarm satisfies the maximum alert delay property by checking for the reachability of the error state in the timed automata model of the fire alarm. The main challenge in the analysis of timed automata is to effectively handle the uncountably infinite domain of clocks.

Symbolic representations are standard approaches to handle real valued clock domains. In symbolic representations, one does not work directly with every single state of the given automaton but rather works with a group of states which can be represented in an effective way.

An efficient approach for reachability analysis of timed automata is to work with sets of clock valuations called zones. Using zones, a symbolic semantics graph of timed automata, called zone graph, is defined. Since zone graphs, by definition, preserve reachability properties of the automaton, they could be used to check for safety properties of timed automata.

However, because zone graphs can be infinite, abstractions of zones are introduced. An abstraction of zones is a way to group even more states together. Indeed, an abstraction of zones is defined so that the resulting abstract symbolic semantics of timed automata, called abstract zone graph, is finite as well as correct for the reachability properties of the timed automata. Therefore, with zones and abstractions, the reachability problem in timed automata can be solved by a finite graph traversal algorithm.

Organization of the chapter

This chapter presents notions related to the reachability problem in timed automata. First, in Section 2.1 we formally define timed automata and its semantics. We introduce zones and zone graphs which symbolically represent the semantics of timed automata in Section 2.2. In Section 2.3, we define a zone abstraction operation and present a standard abstraction operator. Such an abstraction operator allows to define an abstract symbolic semantics of timed automata that is not only finite but also sound and complete for the reachability properties of the system. Finally, in Section 2.4 we present an algorithm for reachability analysis of timed automata.

Timed automata and the reachability problem

Let X = {x 1 , . . . , x n } be a set of clocks, i.e., variables that range over the nonnegative real numbers R ≥0 . A clock constraint φ is a conjunction of constraints x#c for x ∈ X, # ∈ {<, ≤, =, ≥, >} and c ∈ N. Let Φ(X) be the set of clock constraints over the set of clocks X. A valuation over X is a function v : X → R ≥0 . We denote by 0 the valuation that maps each clock in X to 0, and by R X ≥0 the set of valuations over X. A valuation v satisfies a clock constraint φ ∈ Φ(X), denoted v |= φ, when all the constraints in φ hold after replacing every clock x by its value v(x). For δ ∈ R ≥0 , we denote v + δ the valuation that maps every clock x to v(x)+δ. For R ⊆ X, [R]v is the valuation that sets x to 0 if x ∈ R, and that sets x to v(x) otherwise.

Definition 1 (Timed automata [START_REF] Alur | A theory of timed automata[END_REF]). A timed automaton (TA) is a tuple A = (Q, q 0 , F, X, Act, T ) where

q 0 q 1 q 2 q 3 q 4 y > 1 y ≤ 5 y < 3, {x} x < 2 (a) A timed automaton A 1 q 0 , 0, 0 q 0 , 1.2, 1.2 1.2 q 2 , 1.2, 1.2 q 2 , 2.1, 2.1 q 3 , 2.1, 2.1 q 4 , 0, 2.1 0.9 (b) A run of A 1 Figure 2.1: A timed automaton A 1 and a run of A 1 -Q is a finite set of states with initial state q 0 ∈ Q, -F ⊆ Q is a set of accepting states, -X is a finite set of clocks, -Act is a finite alphabet of actions, -T ⊆ Q × Φ(X) × 2 X × Act × Q is a finite set of transitions (q, g, R, a, q )
where g is a clock constraint, called a guard, R is the set of clocks that are reset, and a is the action of the transition going from q to q .

Remark: Timed automata we considered in this thesis have no diagonal constraints since they make the analysis algorithms more complicated but they do not add any expressiveness [START_REF] Bérard | Characterization of the expressive power of silent transitions in timed automata[END_REF][START_REF] Bouyer | Diagonal constraints in timed automata: Forward analysis of timed systems[END_REF]. In addition, the timed automata also have no invariants since invariants can be put on guards as far as reachability is considered [START_REF] Niebert | Adding invariants to event zone automata[END_REF].

Example 1. Figure 2.1a shows a timed automaton. There are five states, and two clocks x and y. These clocks are used to represent time constrains in the automaton. For instance, the transition from q 0 to q 2 has a guard y > 1 that enables the transition only when the value of clock y is bigger than 1. There is a guard and a reset action on the transition from q 3 to q 4 meaning that the transition is enabled when the value of y is smaller than 3 and after taking the transition, the value of the clock x is set to 0.

Definition 2 (Semantics of timed automata). The semantics of a TA A is given by a transition system whose states are configurations (q, v) ∈ Q × R X ≥0 . The initial configuration is (q 0 , 0). The transition relation → is the union of two kinds of transitions:

delay transitions (q, v) δ - → (q, v + δ) for δ ∈ R ≥0 , action transitions (q, v) a - → (q , v ) if there exists a transition (q, g, R, a, q ) ∈ T such that v |= g and v = [R]v.
We write (q, v)

a,δ -→ (q , v ) if there exists v ∈ R X ≥0 such that (q, v) a - → (q , v ) and (q, v ) δ - → (q , v ). We write (q, v) δ,a -→ (q , v ) if there exists v ∈ R X ≥0 such that (q, v) δ - → (q , v ) and (q, v ) a - → (q , v
). We denote by → * the reflexive and transitive closure of the transition relation →.

A run is a finite sequence of configurations (q 0 , v 0 ), (q 1 , v 1 ), . . . , (q n , v n ) such that (q 0 , v 0 ) is the initial configuration and for all i ∈ {0, . . . , n}, (q i , v i ) → (q i+1 , v i+1 ). Without loss of generality, we can assume that the first transition is a delay transition and that delay and action transitions alternate. A run is accepting if it ends in a configuration (q, v) with an accepting state q ∈ F .

Example 2. The Figure 2.1b shows an accepting run of the timed automaton in Figure 2.1a. The first transition (q 0 , 0, 0)

1.2 -→ (q 0 , 1.2, 1.
2) is a delay transition with δ = 1.2. Observe that clocks evolve synchronously: both, the value of x and of y are increased by 1.2 on the delay transition. From (q 0 , 1.2, 1.2) the transition to q 2 is enabled since the guard y > 1 evaluates to true. The run eventually reaches the configuration (q 3 , 2.1, 2.1). At that configuration, taking the transition q 3 → q 4 not only changes the control state from q 3 to q 4 , but also sets the value of clock x to 0. As q 4 is an accepting state, this run is then an accepting run.

Definition 3 (Reachability problem). The reachability problem is to decide if a given timed automaton has an accepting run.

The reachability problem for timed automata is known to be Pspacecomplete [START_REF] Alur | A theory of timed automata[END_REF].

Symbolic Semantics

The challenge in the reachability problem comes from the uncountable state space of the semantics graph of timed automata. A standard solution is to work with sets of valuations instead of individual valuations. There are different ways to group valuations together and one standard way to represent sets of valuations is using zones. In this section, we will present zones, operations on zones, and then present zone graphs -a symbolic semantics of timed automata.

Zones

A zone is a set of valuations that can be represented by simple formulas as follows:

Definition 4 (Zone [START_REF] David | Timing assumptions and verification of finite-state concurrent systems[END_REF][START_REF] Bengtsson | Timed automata: Semantics, algorithms and tools[END_REF]). A zone is a set of valuations described by a conjunction of two kinds of constraints:

x i #c x i -x j #c
where x i , x j ∈ X, c ∈ Z and # ∈ {<, ≤, =, ≥, >}.

For example, a zone such that the values of x and y are equal can be represented by the formula (x = y).

In the following, we denote by Z the set of zones. A zone can be represented by a Difference-Bound-Matrix (DBM) [START_REF] David | Timing assumptions and verification of finite-state concurrent systems[END_REF]. DBMs are defined below.

Let us first define some notions. For a set of clocks X, we denote by X + = X∪{x 0 } the set of clocks extended with a special variable x 0 representing the constant 0. For convenience we sometimes write 0 to represent the variable x 0 . A DBM is said to be canonical if none of its constraints can be strengthened without reducing the solution set. Given a DBM that has a non-empty solution set with n rows and n columns, the canonical DBM representing the same solution set can be calculated in time O(n 3 ) using Floyd-Warshall's algorithm for shortest paths [START_REF] David | Timing assumptions and verification of finite-state concurrent systems[END_REF][START_REF] Bengtsson | Timed automata: Semantics, algorithms and tools[END_REF].

Using the canonical DBMs, one can efficiently perform the following operations on zones.

Definition 6 (Operations on zones). Let g be a clock constraint, R be a set of clocks. For a given zone Z, the guard, the reset and the elapse operations on zones are defined by: guard Z ∧g = {v | v ∈ Z and v |= g}. The guard operation is the intersection of the zone Z with the set of valuations satisfying g.

reset [R](Z) = {[R]v | v ∈ Z}.
For all valuations in the zone Z, the reset operation sets the value of clocks in R to 0.

elapse elapse(Z) = {v + δ | v ∈ Z and δ ∈ R ≥0 }.
The elapse operation computes the set of valuations obtained from valuations in Z by delaying an arbitrary amount of time.

Lemma 7. [START_REF] Daws | Model checking of real-time reachability properties using abstractions[END_REF][START_REF] Bengtsson | Timed automata: Semantics, algorithms and tools[END_REF] The set of zones is closed under guard, reset, and elapse operations.

As zones are sets of valuations, it is relevant to know whether a zone Z is included in another zone Z . Lemma 8. [START_REF] Bengtsson | Timed automata: Semantics, algorithms and tools[END_REF] The inclusion testing operation Z ⊆ Z can be done in O(|X| 2 ) time on canonical DBMs of Z and Z .

In details, to compare DBMs, relations on bounds are defined as follows: To sum up, the guard, reset and elapse operations as well as inclusion testing on zones can be computed efficiently using DBMs.

-( 1 , n 1 ) is called equal to ( 2 , n 2 ) if 1 = 2 and n 1 = n 2 . -( 1 , n 1 ) is called stronger than ( 2 , n 2 ) if either n 1 < n 2 ,

Zone graphs

Using zones, a symbolic semantics of timed automata called zone graph is defined as follows:

Definition 9 (Zone graph [START_REF] David | Timing assumptions and verification of finite-state concurrent systems[END_REF][START_REF] Bengtsson | Timed automata: Semantics, algorithms and tools[END_REF]). The zone graph ZG(A) = (S, S 0 , Act, ⇒) of a timed automaton A = (Q, q 0 , F, X, Act, T ) is a transition system where:

-S is set of nodes in form (q, Z) where q ∈ Q and Z is a zone.

The initial node S 0 is (q 0 , Z 0 ) where

Z 0 = {0 + δ | δ ∈ R ≥0 }.
-For any two nodes (q, Z) and (q , Z ), there is a transition (q, Z) a ⇒ (q , Z ) if there exists a transition t = (q, g, R, a, q

) ∈ T such that Z = {v ∈ R ≥0 | ∃v ∈ Z, ∃δ ∈ R ≥0 : (q, v) a,δ -→ (q , v ), v |= g and v = [R]v + δ} and Z = ∅. -⇒ is union of all a ⇒.
Observe that Z 0 = elapse({0}) which is a zone. Similarly, from definition 2, we have by Lemma 7

Z = elapse([R](Z ∧ g)) which is also a zone.
Furthermore, since the guard, reset and elapse operations on zones can be computed efficiently using canonical DBMs, by computing the canonical DBM q 0 , (x = y) q 1 , (x = y) q 2 , (x = y > 1) q 3 , (x = y > 1) for each successors zone Z , the successor computation of zone graphs can also be efficiently computed using DBMs. We denote by ⇒ * the reflexive and transitive closure of the transition relation ⇒ on the zone graph ZG(A).

q 4 , (1 < y -x < 3) q 2 , (x = y) q 3 , (x = y) q 4 , (0 ≤ y -x < 3) . . . . . . . . . . . .
A part of the zone graph of the timed automaton in Figure 2.1a is shown in Figure 2.2.

Theorem 10 (Soundness and completeness of ZG(A) [START_REF] Bengtsson | Timed automata: Semantics, algorithms and tools[END_REF]). Given a timed automaton A and the associated zone graph ZG(A), the following properties hold.

Soundness If (q, Z) ⇒ * (q , Z ), then for every valuation v ∈ Z , there exists v ∈ Z such that (q, v) → * (q , v ).

Completeness Conversely, if (q, v) → * (q , v ) then for every zone Z such that v ∈ Z, there is a zone Z with v ∈ Z such that (q, Z) ⇒ * (q , Z ).

Proof. The proof is by induction on the length of the sequence of transitions. For soundness:

Initial step For a sequence of transitions with length zero, the property trivially holds.

Inductive step Assume for every sequence of transitions (q, Z) ⇒ * (q , Z ) of length n in ZG(A), and for every valuation v ∈ Z , there exists a valuation v ∈ Z such that (q, v) → * (q , v ). Consider a sequence of transitions of length n + 1 in ZG(A): (q, Z) ⇒ * (q , Z ) an ⇒ (q , Z ). Take the transition (q , Z ) an ⇒ (q , Z ) and any valuation v ∈ Z . By Definition 9, if v ∈ Z then there must exist a 2. Preliminaries v ∈ Z and a δ ∈ R ≥0 such that (q , v ) an -→ δ -→ (q , v ). Since v ∈ Z , by the inductive assumption, there exists a valuation v ∈ Z such that (q, v) → * (q , v ). Therefore, we have for every valuation v ∈ Z , a v ∈ Z such that (q, v) → * (q , v ).

For completeness property:

Initial step For a sequence of transitions with length zero, the property trivially holds.

Inductive step Assume for every sequence of transitions (q, v) → * (q , v ) of length n, and for every zone Z such that v ∈ Z, there is a sequence of transitions (q, Z) ⇒ * (q , Z ) with v ∈ Z .

Take a sequence of transitions of length n + 1. The (n + 1)th transition can be a delay transition or an action transition.

-If the (n + 1)th transition is a delay transition, take a sequence (q, v) → * (q , v ) δn -→ (q , v ). By definition of delay transitions, we have v = v + δ n . Therefore v belongs to Z for any δ n in R ≥0 . Thus, the property holds.

-If the (n+1)th transition is an action transition, take a the sequence (q, v) → * (q , v ) an -→ (q , v ). For the first n transitions (q, v) → * (q , v ), by the inductive assumption, there is a sequence of transition (q, Z) ⇒ * (q , Z ) with v ∈ Z and v ∈ Z in ZG(A). Consider the node (q , Z ). Since a v ∈ Z such that (q , v )

an -→ (q , v ) then Z = {v ∈ R ≥0 | ∃v ∈ Z ∃δ ∈ R ≥0 (q , v ) an -→ δ - → (q , v
)} is not empty. Therefore in ZG(A), for every zone Z such that v ∈ Z , there is a transition (q , Z ) an ⇒ (q , Z ) with v ∈ Z . Thus, for every zone Z such that v ∈ Z, there is a zone Z such that (q, Z) ⇒ * (q , Z ) with v ∈ Z .

Although the zone graph is sound and complete for reachability analysis of timed automata, it can be infinite [START_REF] Daws | Model checking of real-time reachability properties using abstractions[END_REF]. To see an example, consider the timed automaton A inf with two clocks x and y in Figure 2.3a. In the zone graph ZG(A inf ) depicted in Figure 2.3b, the initial node (q 0 , x -y = 0 ∧ y ≥ 0) has one successor (q 1 , x -y = 0 ∧ y ≥ 0). From (q 1 , x -y = 0 ∧ y ≥ 0), taking the self loop at q 1 results in a new node (q 1 , x -y = 1 ∧ y ≥ 0). At (q 1 , x -y = 1 ∧ y ≥ 0), the self loop is again enabled and the process continues. Finally the zone graph ZG(A inf ) has infinitely many nodes with the state q 1 ; namely there is one for every zone of the form: To solve this problem, an additional abstraction step is needed to obtain a finite transition system.

(x -y = k ∧ y ≥ 0) for all k ∈ N q 0 q 1 x := 0, y := 0 y = 1 y := 0 (a) Timed automaton A inf q 0 , (x -y = 0 ∧ y ≥ 0) q 1 , (x -y = 0 ∧ y ≥ 0) q 1 , (x -y = 1 ∧ y ≥ 0) q 1 , (x -y = 2 ∧ y ≥ 0) . . .

Abstract zone graphs

In the previous section we defined the zone graph, a symbolic semantics of a timed automaton. While zone graph is sound and complete for reachability analysis, it may be infinite. In this section we present a standard way to obtain a finite approximation of the zone graph which is sound and complete with respect to reachability. It is based on abstraction operators.

Definition 11 (Abstraction operator). An abstraction operator is a function a : Z → Z such that Z ⊆ a(Z) and a(a(Z)) = a(Z).

Remark: Abstractions can be defined on other sets of valuations than zones, but abstractions on zones are sufficient for problems discussed in this thesis.

We now define the abstract zone graph from the zone graph of an automaton and an abstraction a.

Definition 12 (Abstract zone graph). Given a timed automaton A = (Q, q 0 , F, X, Act, T ) and an abstraction operator a, the abstract zone graph ZG a (A) of A is a transition system where -the initial node is (q 0 , a(Z 0 )), -there is a transition (q, Z)

t ⇒ a (q , a(Z )) if a(Z) = Z and (q, Z) t ⇒ (q , Z ).
If a has a finite range, meaning that the set {a(Z) | Z ∈ Z} is finite, then ZG a (A) is a finite graph.

In order to solve the reachability problem for A from ZG a (A), the abstraction operator a should ensure that ZG a (A) is finite. Furthermore, every run of A should have a corresponding path in ZG a (A) (completeness) and conversely, every path in ZG a (A) should correspond to a run in A (soundness). Formally:

Soundness: if (q 0 , a(Z 0 )) ⇒ *
a (q, a(Z )) then there exists v ∈ a(Z ) such that (q 0 ,0) → * (q, v ) Completeness: if (q 0 ,0) → * (q, v ) then there exists Z such that v ∈ Z and (q 0 , a(Z 0 )) ⇒ * a (q, a(Z ))

Observe that from Definition 11, 0 ∈ a(Z 0 ). The completeness property comes directly from the definition of abstraction operators. Indeed, it can be easily verified that if an abstraction operator satisfies Z ⊆ a(Z) then ZG a (A) is complete. We are now interested in abstraction operators that can guarantee the soundness property.

It has been shown in [START_REF] Daws | Model checking of real-time reachability properties using abstractions[END_REF][START_REF] Behrmann | Lower and upper bounds in zone-based abstractions of timed automata[END_REF] that an abstraction operator that conforms to the time-abstract simulation relation is sound for reachability properties.

Definition 13 (Time-abstract simulation). A (state based) time-abstract simulation between two states of a transition system S A is a relation (q, v) t.a (q , v ) such that:

-q = q -for every transition t, if for some δ we have (q, v)

δ - → (q, v + δ) t - → (q 1 , v 1 ), then there exists a δ ∈ R ≥0 such that (q, v ) δ -→ (q, v + δ ) t - → (q 1 , v 1 ) satisfying (q 1 , v 1 ) t.a (q 1 , v 1 ).
For two valuations v, v , we say that v t.a v if for every state q of the automaton, we have (q, v) t.a (q, v ).

A time-abstract simulation compatible abstraction is defined as follows:

Definition 14 (Time-abstract simulation compatible abstraction). For a time abstract simulation relation t.a. , an abstraction a is called a time-abstract simulation compatible abstraction if for every zone Z, each valuation in a(Z) is simulated by a valuation in Z:

If v ∈ a(Z) then there exists v ∈ Z such that v t.a v .
Theorem 15. [DT98, BBLP06] Every time-abstract simulation compatible abstraction is sound and complete for reachability properties.

Proof. Regarding completeness, as mentioned before, an abstraction a is complete for reachability properties if Z ⊆ a(Z) for any zone Z. Because for any time-abstract compatible simulation abstraction a and any zone Z, we have Z ⊆ a(Z), every time-abstract simulation compatible abstraction is complete for reachability properties. We will prove the soundness. The idea is that by the definition of timeabstract simulation, if (q, v) t.a (q , v ), all the states reachable from (q, v) are reachable from (q , v ). Therefore, every time-abstract simulation compatible abstraction is sound for reachability properties.

Formally, given a time-abstract simulation abstraction a, we prove that if there is a path (q 0 , a(Z 0 )) ⇒ * a (q, a(Z)) then for every v ∈ a(Z) there exists v such that (q 0 , 0) → * (q, v ) and v t.a v .

We prove it by induction on the length of the path.

Initial step For a path with length zero, by Definition 14 the property trivially holds.

Inductive step Assume for every path (q 0 , a(Z 0 )) ⇒ a (q n , a(Z n )) of length n in ZG a (A), and for every valuation v n ∈ a(Z n ) there exists v n such that (q 0 , 0) → * (q, v n ) and v t.a v n .

Consider a path of length n + 1 in ZG a (A): (q 0 , a(Z 0 ))

⇒ * a (q n , a(Z n )) t ⇒ a (q n+1 , a(Z n+1 )). Take any valuation v n+1 ∈ a(Z n+1 ).
By Definition 14, since v n+1 ∈ a(Z n+1 ) there exists v n+1 ∈ Z n+1 such that v n+1 t.a v n+1 .

By Definition 12 of abstract zone graphs since there is a transition (q n , a(Z n ))

t ⇒ a (q n+1 , a(Z n+1 )), there must exist a transition (q n , a(Z n )) t ⇒ (q n+1 , Z n+1 ) in the unabstracted zone graph. Accordingly, as v n+1 ∈ Z n+1 , by Definition 9 we know that there exists

v n ∈ a(Z n ) and δ ∈ R ≥0 such that (q n , v n ) t,δ -→ (q n+1 , v n+1 ).
Since v n ∈ a(Z n ), by the inductive assumption, there exists v n such that such that (q 0 , 0) → * (q n , v n ) and v n t.a v n .

Since v n t.a v n , and (q n , v n ) t,δ -→ (q n+1 , v n+1 ), by Definition 13, there

exists δ ∈ R ≥0 such that (q n , v n ) δ ,t --→ (q n+1 , v n+1 ) and v n+1 t.a v n+1 .
Since v n+1 t.a v n+1 and v n+1 t.a v n+1 , we have v n+1 t.a v n+1 . Therefore, we have (q 0 , 0) → * (q n+1 , v n+1 ) such that v n+1 t.a v n+1 .

Abstraction operators in the literature [START_REF] Daws | Model checking of real-time reachability properties using abstractions[END_REF][START_REF] Behrmann | Lower and upper bounds in zone-based abstractions of timed automata[END_REF] are usually defined with respect to structural information from the automaton. More precisely, they are defined based on the maximum constants appearing in the guards in the automaton.

Preliminaries

For a clock x, the constraints on x in a guard can be categorized into two kinds:

-lower bound constraint of the form x > c or x ≥ c -upper bound constraint of the form x < c or x ≤ c Let us define two bound functions L and U that respectively assign to every clock x in A the maximum constant appearing in lower bound and upper bound constraints involving x.

Definition 16 (LU-bounds [START_REF] Behrmann | Lower and upper bounds in zone-based abstractions of timed automata[END_REF]). The L bound for an automaton A is the function L : X → N ∪ {-∞} assigning to every clock x the maximal constant that appears in a lower bound guard for x in A, that is, L(x) is the maximum over all c appearing in guards of the form x > c or x ≥ c. If there is no lower bound guard involving x, then L(x) is -∞. Similarly, the U bound is the function U : X → N ∪ {-∞} assigning to every clock x a maximal constant appearing in an upper bound guard for x in A (i.e., x < c or x ≤ c), or -∞ if x does not appear in such guards.

Based on L and U , we can define the LU -preorder: Definition 17. Let L, U : X → N ∪ {-∞} be LU -bounds. For any two valuations v, v over X, we define v LU v if for every clock x:

-if v (x) < v(x) then v (x) > L(x), and -if v (x) > v(x) then v(x) > U (x).
It has been shown in [START_REF] Behrmann | Lower and upper bounds in zone-based abstractions of timed automata[END_REF] that LU is a time-abstract simulation relation in a timed transition system of A. We introduce the Extra LU + abstraction that is compatible with LU . This abstraction operator has all the required properties above: it is finite, complete and sound.

Definition 18 (Extra LU + (Z) abstraction [START_REF] Behrmann | Lower and upper bounds in zone-based abstractions of timed automata[END_REF]). For a zone Z given by a DBM (Z xy ) x,y∈X + with Z xy = ( xy , c xy ), Extra LU + (Z) is the zone defined by the DBM (Z LU + xy ) x,y∈X + where

Z LU + xy =                (<, ∞) if c x,y > L(x), (<, ∞) if -c 0,x > L(x), (<, ∞) if -c 0,y > U (y), y = x 0 (<, -U (y)) if c 0,y > U (y), y = x 0 , Z xy otherwise
From the definition, one can observe that for any zone Z, Extra LU + (Z) is computed on DBMs and the coefficients of the DBM after extrapolation can take only a finite number of values. Thus, the Extra LU + abstraction is finite. In addition, Extra LU + is compatible with the time-abstract simulation LU . Indeed, it has been proved in [START_REF] Behrmann | Lower and upper bounds in zone-based abstractions of timed automata[END_REF] that for every zone Z:

Z ⊆ Extra LU + (Z) ⊆ {v | ∃v ∈ Z, v LU v }
By Theorem 15 we get that Extra LU + is sound and complete for reachability properties.

Lemma 19 ([BBLP06]). Extra LU

+ is finite, sound and complete for reachability analysis.

The Extra LU + abstraction is used in the state-of-the-art tool UPPAAL [BDL + 06].

Let us sum up the material of this section. We have introduced abstract zone graphs as finite abstractions of zone graphs. They are built by applying an abstraction operator on top of the zone graph. In order to solve the reachability problem with the help of an abstract zone graph, we need an abstraction that is sound, complete, and finite. Among known abstraction operators satisfying these requirements [START_REF] Daws | Model checking of real-time reachability properties using abstractions[END_REF][START_REF] Behrmann | Lower and upper bounds in zone-based abstractions of timed automata[END_REF], in this thesis we choose to use Extra LU + abstraction. This is an efficient abstraction used in the state-of-the-art tool UPPAAL, and is relatively easy to work with. Thus we will work with Extra LU + abstract zone graphs, ZG Extra LU + (A), to solve reachability problem of timed automata.

The theorem below states the correctness of the reduction of the reachability problem for A to the reachability problem in the finite graph ZG Extra LU + (A). Therefore, a standard algorithm for reachability problem in timed automata can be defined based on traditional graph algorithms on finite graphs.

Theorem 20 ([BBLP06]

). There is an accepting run in A iff there exists a path in ZG Extra LU + (A) from (q 0 , Extra LU + (Z 0 )) to some node (q, Z) with q ∈ F .

Furthermore ZG Extra LU + (A) is finite.

Reachability algorithm on finite abstract zone graphs

Algorithm 2.1 is a reachability algorithm for timed automata. It explores the finite abstract zone graph ZG Extra LU + (A) of an automaton A from the initial node until it finds an accepting node, or it explored the entire state-space of ZG Extra LU + (A). This algorithm maintains a set of waiting nodes W and a set of passed nodes P with the invariant: W ⊆ P .

Preliminaries

Algorithm 2.1: Reachability algorithm for timed automaton A. W := {(q 0 , Extra LU + (Z 0 ))} ; P := W // Invariant: W ⊆ P while (W = ∅) do take and remove a node (q, Z) from W i f ( q i s a c c e p t i n g )

return Yes

e l s e f o r each (q, Z) ⇒ Extra LU + (q , Z ) Algorithm 2.1 does not specify an exploration order. Different search orders -like BFS, DFS or any other policy -can be used depending on the implementation of line 10 of the algorithm.

i f (q , Z ) i s not i n P add (q , Z ) t
Algorithm 2.1 stops exploration of a node if it has been found already, i.e in P (line 15). Upon termination, P is the proof for the verification. If no accepting node is found, P contains all nodes of the abstract zone graph ZG Extra LU + (A) of the automaton A. Observe that although ZG Extra LU + (A) is a symbolic semantics of A, its size is normally many times bigger than the size of A. As there may be many paths to a control state of A, there may have many nodes in the abstract zone graph having the same control state but with different zones. Thus, if no accepting node is found, the number of passed nodes is rather big with respect to the size of the automaton.

In the rest of the thesis, we sometimes call a node in a ZG Extra LU + (A) by its status with respect to an execution of the reachability algorithm. A node that is in the waiting list W is called a waiting node. A node that is taken from the waiting list at line 10 is called visited. All nodes (q , Z ) that are added to the waiting list and the passed list at line 16 are called successors of (q, Z), and (q, Z) is called predecessor of (q , Z ).

All nodes that are visited by the reachability algorithm form an exploration tree. In such tree, the parent-child relation between nodes is the relation between predecessors and successors mentioned above. Accordingly, all nodes reachable from a node are called descendants of that node. A node together with all its descendants then form a sub-tree. The relations between subtrees are useful: they can be explored to get better algorithms for reachability analysis of timed automata.

To summarize, in this chapter we have introduced a standard approach for reachability problems in timed automata. The approach consists in using finite abstract zone graphs to symbolically represent the semantics of timed automata. The abstract zone graphs are defined such that they are finite as well as sound and complete for reachability properties. One of such abstract zone graphs is Extra LU + zone graphs. As a result, reachability problems in timed automata can be solved by using finite graph traversal algorithms. For example, one can adapt graph traversal algorithms, like BFS or DFS, to test for reachability of an accepting state in an Extra LU + zone graph.

Chapter 3

Improving search order for reachability algorithm

Reachability problem for timed automata is to determine if a given automaton has an execution reaching a final state. We have seen in the previous chapter that the reachability problem can be solved in the finite abstract zone graph.

While an abstract zone graph is finite, its size is still big. In particular, it may have many nodes with the same state but different zones. Some of these zones may be included in the others. It is rather direct to see that all states reachable from a zone are also reachable from any bigger zone. So it makes sense to consider only maximal zones with respect to inclusion. Formally, the relation based on zone inclusion between nodes in an abstract zone graph is called subsumption relation. Given two nodes (q, Z) and (q, Z ) having the same state q but Z is bigger than Z (i.e. Z ⊆ Z ), we then say (q, Z) is subsumed by (q, Z ), denoted by (q, Z) ⊆ (q, Z ). The use of subsumption significantly decreases the size of abstract zone graph.

However, the use of subsumption makes the reachability analysis algorithm on abstract zone graph quite sensitive to exploration order. Indeed, it may happen that a small zone is reached and explored before a bigger zone is reached; at this point we know that the exploration from a small zone was useless. We refer to such a situation as a mistake.

In this chapter, we first present the standard algorithm for reachability analysis of timed automata with subsumption. Next, we explain the mistake phenomenon in more details, and point out that it can lead to an exponential blowup in the search space. We present two heuristics to reduce the number of mistakes in the reachability analysis. We evaluate their performance on standard examples in comparison with related approaches. Based on these experimental results we propose a simple modification to the standard exploration algorithm that significantly improves the exploration order.

Reachability algorithm with subsumption

Algorithm 2.1 is sufficient to solve the reachability problem for timed automata, but the size of the abstract zone graph ZG Extra LU + (A) may still be big w.r.t the size of the timed automaton A. In fact, to check for reachability properties of timed automata, one does not need to consider all nodes in the abstract zone graph ZG Extra LU + (A).

Fact 21. In an Extra LU + abstract zone graph, if (q, Z) ⊆ (q, Z ), all states reachable from (q, Z) are also reachable from (q, Z ).

Proof. We prove that for two nodes (q, Z) and (q, Z ) in the abstract zone graph ZG Extra LU + (A), such that (q, Z) ⊆ (q, Z ), if we have (q, Z) ⇒ *

Extra LU + (q n , Z n ) then there exists (q, Z ) ⇒ * Extra LU + (q n , Z n ). Let (q, Z) t 1 ⇒ Extra LU + (q 1 , Z 1 ) t 2 ⇒ Extra LU + . . . tn ⇒ Extra LU + (q n , Z n ) be a path from (q, Z).
Since Extra LU + is sound for reachability properties (Lemma 19), we deduce that there exists valuations v, v 1 , . . . , v n such that (q, v)

t 1 ,δ 1 --→ (q 1 , v 1 ) t 2 ,δ 2 --→ . . . tn,δn ---→ (q n , v n ) is a path in A with v i ∈ Z i for all i ∈ {1, . . . , n}. Since Z is included in Z , Z ⊆ Z , the valuation v in Z must also be in Z .
As there exits a valuation v ∈ Z such that (q, v)

t 1 ,δ 1 --→ (q 1 , v 1 ), we know that Z 1 = {v 1 ∈ R X ≥0 | ∃v ∈ Z ∃δ ∈ R ≥0 (q, v ) t 1 ,δ
--→ (q 1 , v 1 )} is not empty; the valuation v 1 belongs to Z 1 . Therefore, by Definition 9 of ⇒, there exists (q , Z ) t 1 ⇒ (q 1 , Z 1 ). Accordingly, we know by Definition 12 of ⇒ Extra LU + that there exists (q , Z )

t 1 ⇒ Extra LU + (q 1 , Z 1 ) with Z 1 = Extra LU + (Z 1 ).
Since v 1 belongs to Z 1 , Z 1 is included in Extra LU + (Z 1 ), and Z 1 = Extra LU + (Z 1 ), we have v 1 belongs to Z 1 . Applying the same argument, we show that the valuation v i belongs to Z i for all v i ∈ {1, . . . , n}. As the result, there exists a path (q, Z )

t 1 ⇒ Extra LU + (q 1 , Z 1 ) t 2 ⇒ Extra LU + . . . tn ⇒ Extra LU + (q n , Z n ) in the Extra LU + abstract zone graph.
Using Fact 21, one can improve the reachability algorithm [START_REF] Daws | Model checking of real-time reachability properties using abstractions[END_REF]. During reachability analysis of automata via Extra LU + abstract zone graphs, stopping the exploration of small nodes w.r.t to ⊆ is sound and complete for reachability properties. Therefore, when the algorithm finds a node (q, Z) that is bigger than another node (q, Z ), i.e. (q, Z) ⊆ (q, Z ), it does not need to explore the small node. The small node is then called subsumed w.r.t to ⊆ by the big node.

The standard reachability analysis algorithm for timed automata with subsumption is shown in Algorithm 3.1. It uses subsumption to reduce the number W := {(q 0 , Extra LU + (Z 0 ))} ; P := W // Invariant: W ⊆ P while (W = ∅) do take and remove a node (q, Z) from W i f ( q i s a c c e p t i n g )

return Yes e l s e f o r each (q, Z) ⇒ Extra LU + (q , Z ) i f t h e r e i s no (q B , Z B ) ∈ P s . t . (q , Z ) ⊆ (q B , Z B ) f o r each (q S , Z S ) ∈ P such that (q S , Z S ) ⊆ (q , Z ) remove (q S , Z S ) from W and P add (q , Z ) t o W and t o P end return No of nodes that need to be visited. Modifications from Algorithm 2.1 are highlighted.

The algorithm with subsumption, Algorithm 3.1, uses zone inclusion instead of equality for termination. Zone inclusion is first used in line 15 to stop the exploration in (q , Z ) if there is a bigger node (q B , Z B ) in P . It is also used in line 16 to only keep the maximal nodes w.r.t. ⊆ in P and W . The algorithm with subsumption visits fewer nodes than Algorithm 2.1. It is because, subsumption stops the exploration of a node not only when the same node has been found but as well as a bigger node w.r.t to ⊆ has been found. In addition, the algorithm with subsumption also stores fewer nodes. While Algorithm 2.1 stores one instance of each visited node (q, Z), Algorithm 3.1 only stores the maximal nodes w.r.t ⊆ at each state q. The memory usage of Algorithm 3.1 is therefore smaller than that of Algorithm 2.1.

Search order matters

While Algorithm 3.1 does not specify any exploration strategy at line 10, like in Algorithm 2.1, the search order greatly influences the number of nodes visited by the algorithm and stored in the sets W and P . At first sight it may seem strange why there is a big difference between, say, BFS and DFS search

q 1 q 2 q 3 q 4 . . . . . . y > 1 y ≤ 5 (a) Timed automaton A 2 . (q 1 , Z 1 ) (q 3 , Z 3 ) (q 2 , Z 2 ) (q 3 , Z 3 ) (q 4 , Z 4 ) (q 4 , Z 4 ) . . . . . . ⊆ (b) q 1 → q 3 visited before q 1 → q 2 . (q 1 , Z 1 ) (q 2 , Z 2 ) (q 3 , Z 3 ) (q 3 , Z 3 ) (q 4 , Z 4 ) . . . ⊇ (c) q 1 → q 2 visited before q 1 → q 3 .
Figure 3.1: A timed automaton (a) and two exploration trees of its statespace. In exploration (b), the transition to q 3 is explored first, which results in exploring the sub-tree of q 3 twice. In exploration (c), the transition to q 2 is explored first and subsumption stops the second exploration as

Z 3 is included in Z 3 .
orders if there is no accepting node. The cause is the optimization due to subsumption. We now give concrete examples showing why exploration order matters.

Example 3.

Consider the timed automaton shown in Figure 3.1a, and assume that we perform a depth-first search (DFS) exploration of its state space. The algorithm starts in (q 1 , Z 1 ) where Z 1 = (y ≥ 0) is the set of all clock values. Assume that the transition to q 3 is taken first as in Figure 3.1b. The algorithm reaches the node (q 3 , Z 3 ) with Z 3 = (y > 1) and explores its entire sub-tree. Then, the algorithm backtracks to (q 1 , Z 1 ) and proceeds with the transition to q 2 reaching (q 2 , Z 2 ), and then (q 3 , Z 3 ) with Z 2 = Z 3 = (y ≥ 0). It happens that Z 3 ⊆ Z 3 : the node (q 3 , Z 3 ) is bigger than the node (q 3 , Z 3 ) which has been previously visited. At this point, the algorithm has to visit the entire sub-tree of (q 3 , Z 3 ) since the clock valuations in Z 3 \ Z 3 have not been explored. The net result is that the earlier exploration from (q 3 , Z 3 ) turns out to be useless since we need to explore from (q 3 , Z 3 ) anyway and Z 3 ⊆ Z 3 . If, by chance, our DFS exploration had taken different order of transitions, and first considered the transition from q 1 to q 2 as in Figure 3.1c, the exploration would stop at (q 3 , Z 3 ) since the bigger node (q 3 , Z 3 ) has already been visited and Z 3 ⊆ Z 3 . To sum up, in some cases DFS exploration is very sensible to the search order.

Several authors [START_REF] Behrmann | Distributing timed model checking -how the search order matters[END_REF][START_REF] Behrmann | Distributed reachability analysis in timed automata[END_REF] have observed that BFS exploration is often much more efficient than DFS for reachability checking in timed automata. This can be attributed to an empirical observation that often a zone obtained by a short path is bigger than the one obtained by a longer path. This is the opposite in our example from Figure 3.1a. In consequence, a BFS algorithm will also do unnecessary explorations. When (q 3 , Z 3 ) is visited, the node (q 4 , Z 4 ) is already in the queue (Figure 3.1b). Hence, while the algorithm realizes that exploring (q 3 , Z 3 ) is useless due to the bigger node (q 3 , Z 3 ), it will keep visiting (q 4 , Z 4 ) and all the sub-tree of (q 3 , Z 3 ). Indeed, in the standard BFS algorithm, there is no mechanism to remove (q 4 , Z 4 ) from the queue when (q 3 , Z 3 ) is reached. Again, considering the transition from q 1 to q 2 before the transition to q 3 as in Figure 3.1c, avoids unnecessary exploration. Yet, by making the path q 1 → q 2 → q 3 one step longer we would obtain an example where all choices of search order would lead to unnecessary exploration. Overall, the standard reachability algorithm for timed automata, be it DFS or BFS, is sensitive to the order between the discovery of big nodes and the exploration of small nodes.

q 1 q 2 q 3 q 4 q 5 . . . q 2n-1 q 2n q 2n+1 q f {y} y > 1, {y} {x 1 } {y} y > 1, {y} {x 2 } {y} y > 1,{y} {xn} (x 1 ≤ n) ∧ • • • ∧(xn ≤ n) ∧(n < y ≤ 5n)
Figure 3.2: Timed automaton with a racing situation.

Example 4.

One could ask what can be the impact of a pattern from Figure 3.1a, and does it really occur. The blowup of the exploration space can be exponential. One example is presented in Figure 3.2. It is obtained by iterating n times the pattern we have discussed above. The final state q f is not reachable because the transition q 2n+1 → q f is disabled regardless the path taken from q 1 to q 2n+1 . Indeed, the guard of the transition q 2n+1 → q f requires that the value of y is bigger than value of all clocks x 1 , . . . x n . But it cannot be true: at (q 2n+1 ) value of y cannot bigger than value of the clocks x i ; for i = 1, . . . , n. It is because the clock y is always reset after leaving q 1 , q 3 . . . , q 2n-1 while x i is either not reset and bigger than 1 if q i → q i+2 is taken, or reset after y if the sequence q i → q i+1 → q i+2 is taken. By a similar analysis we can show that both the BFS and DFS algorithms with the worst exploration order explore and store exponentially more nodes than needed. In the automaton there are 2 n different paths to q 2n+1 . The longest path q 1 , q 2 , q 3 , . . . , q 2n+1 generates the biggest zone, while there are about 2 n different zones that can be generated by taking different paths. For instance, from q 1 there are two paths to q 3 which are q 1 → q 2 → q 3 and q 1 → q 3 . Taking those paths results in two different zones at q 3 , and in turn, those two zones at q 3 give four different zones at q 5 , etc. If the DFS takes the worst exploration order, all these zones will be generated. If it chooses the short path half of the times, then about 2 n/2 zones will be generated. Similarly for BFS.

In the experiments section we show that, this far from optimal behavior of BFS and DFS exploration indeed happens in the model of FDDI protocol, a standard benchmark model for timed automata.

Improving search order

In this section we propose simple modifications of the exploration strategy to tackle the problem presented in the previous section. The main idea is to reduce mistakes -situations where the algorithm first visits a node and later reaches a node at the same state but with a bigger zone. We reduce mistakes by using structural information from the automaton and information collected during the exploration. We will first describe a ranking system that limits the impact of mistakes. Then we will propose a waiting strategy that avoids doing mistakes by taking into account the structure of the automaton. The experiments on standard benchmarks show that the two approaches are incomparable. Fortunately, they can be combined to fully avoid mistakes in most of the cases. Since this combination is easy to implement, we propose to use it instead of standard BFS for reachability checking.

Ranking system

In this section we propose an exploration strategy to address the phenomenon we have presented in the previous section. We want to stop the exploration of the sub-tree of a small node when a bigger node is reached. As we have seen, the late discovery of big nodes results in unnecessary exploration of small nodes and their sub-trees. In the worst case, the number of needlessly visited nodes may be exponential (cf. Example 4).

(q 1 , Z 1 ) (q 3 , Z 3 ) (q 2 , Z 2 ) (q 4 , Z 4 ) (q 3 , Z 3 ) mistake ⊆ Figure 3
.3: First mistake found during the BFS exploration of the automaton A 2 in Figure 3.1a (with q 1 → q 3 visited before q 1 → q 2 ) Our goal is to limit the impact of mistakes. Consider the moment when the first mistake is found in the BFS exploration of the automaton A 2 in Figure 3.1a. The exploration tree is shown in Figure 3.3. When the big node (q 3 , Z 3 ) is reached, we learn that exploring the small node (q 3 , Z 3 ) is unnecessary. We have discovered a mistake. However, since the node (q 4 , Z 4 ) is in the waiting list, the sub-tree of the small node (q 3 , Z 3 ) will still be explored. Our solution consists in giving a priority to (q 3 , Z 3 ) over (q 4 , Z 4 ). Exploring (q 3 , Z 3 ) yields a node (q 4 , Z 4 ) which subsumes (q 4 , Z 4 ). Thus (q 4 , Z 4 ) will be removed from waiting list. The exploration will then make only one mistake instead of unnecessarily visiting the sub-tree of (q 4 , Z 4 ) as in the standard algorithm with subsumption.

Hence, the key idea is to give priority to the big nodes over the waiting nodes in the sub-tree of small nodes. In the following, we present different approaches to implement this idea.

(q 0 , Z 0 ) (q 1 , Z 1 )
. . .

(q 1 , Z 1 ) ⊆ = Figure 3.4:
The sub-tree of a big node and the sub-tree a small node may have some identical nodes.

Erasing sub-trees of small nodes. The first approach is to erase the subtree of a node when the algorithm discovers a strictly bigger node. This prevents further exploration of the sub-tree of the small node. Consider part of the exploration tree shown in Figure 3.4. The big node (q 1 , Z 1 ) is reached when the small node (q 1 , Z 1 ) has been visited and its sub-tree has been partially developed. Since (q 1 , Z 1 ) ⊆ (q 1 , Z 1 ), the idea would be to remove all nodes in the sub-tree of the small node (q 1 , Z 1 ) and to explore from the big node (q 1 , Z 1 ). This approach is, however, too rudimentary. Indeed, it may happen that the sub-tree of the small node and the sub-tree of the big node have some identical nodes (as shown in the hatched parts in Figure 3.4). Thus erasing the whole sub-tree of (q 1 , Z 1 ) will lead to exploring those nodes twice. We have observed on standard benchmarks (see Section 3.4) that identical nodes are frequently found. While this approach is correct, it would result in visiting some nodes many times.

Delaying the exploration of the sub-tree of small nodes. In this approach when a mistake is found -a node has been explored and the algorithm reaches a bigger node -the algorithm would delay the exploration of the subtree of the small node by setting the lowest priority to all waiting nodes in its sub-tree. This would give priority to the big node over the sub-tree of the small node. The reason is that exploring the big node will generate nodes that are again bigger, w.r.t to ⊆, than the corresponding nodes in the small sub-tree. Hence, the small nodes in the small sub-tree will be stopped, and therefore would limit the impact of mistakes.

One can implement the delaying approach by assigning a flag pending for each node. The pending flag of a node is initialized to ⊥, and is set to on nodes whose exploration needs to be delayed. Nodes with flag ⊥ have priority over nodes with flag ; the algorithm will explore all nodes with a ⊥ pending flag before nodes with a pending flag. This priority policy can be implemented easily by using a priority queue or a sorted list for the waiting list W .

Algorithm 3.2 implements the delaying approach by modifying Algorithm 3.1 (modifications are highlighted). The Algorithm 3.2 specifies a search order (line 10) based on the value of the pending flag of nodes: ⊥ has priority over .

To manage pending flags, nodes in P are stored as a reachability forest →. Indeed, at the beginning, all nodes in P form an exploration tree and then every time a node s is removed from P (line 20), every sub-tree rooted at a successor of s becomes a separate exploration tree.

Using the reachability forest →, the algorithm will update the pending flags of nodes upon detection of node subsumption. If the newly created node is bigger than an existing node (line 18), the exploration of the sub-tree of that small node will be delayed. The algorithm will set the pending flag of all waiting nodes in the sub-tree of the small node to (line 19). Conversely, if the newly created node is identical to an existing node (line 22), the exploration of the sub-tree of the existing node will be resumed if it were delayed before: the algorithm will set the pending flag of all waiting nodes in the sub-tree of the existing node to ⊥ (line 23).

Algorithm 3.2 terminates and is correct because it only specifies a search order for Algorithm 3.1.

Delaying explorations of the sub-tree of small nodes is better than erasing sub-trees of small nodes as it takes into account the case of identical nodes between sub-trees.

However this delaying approach is not efficient. During the exploration process, when a mistake is found, the delaying approach will set the pending flag to for all waiting nodes in the sub-tree of the small node. Consequently, it requires to re-insert those nodes into the waiting list at the right places. It is a costly action. Moreover, the pending flag of nodes in the waiting list needs to be updated many times in the 'cross-covering' situation shown in Figure 3.5. In that situation, when the big node (q 1 , Z 1 ) is reached, the pending flag is set to for all waiting nodes below (q 1 , Z 1 ). Hence, (q 3 , Z 3 ) has a pending flag . Later, exploring (q 1 , Z 1 ) generates nodes (q 3 , Z 3 ) and (q 4 , Z 4 ) but the node (q 3 , Z 3 ) is removed since Z 3 = Z 3 and (q 3 , Z 3 ) has been visited first (it is in P ). Thus, the flag of (q 3 , Z 3 ) should be updated to ⊥ to give it back a normal priority. The node (q 3 , Z 3 ) should be re-positioned in the waiting list accordingly; it is same as removing and then re-inserting a node from and into a sorted list. In these situations, delaying the exploration of the sub-tree of Algorithm 3.2: Reachability algorithm with delaying approach for timed automaton A. The set P is stored as a reachability forest →. 

W := {(q 0 , Extra LU + (Z 0 ))} ; P := W while (W = ∅) do
take a node (q, Z) w.r.t to pending flags (⊥ has priority over ) i n W and remove (q, Z) from W i f ( q i s a c c e p t i n g ) then

return Yes

e l s e f o r each (q, Z) ⇒ Extra LU + (q , Z ) pending (q , Z ) := ⊥ i f t h e r e i s no (q B , Z B ) ∈ P s . t . (q , Z ) ⊆ (q B , Z B ) then f o r each (q S , Z S ) ∈ P s . t . (q S , Z S ) ⊆ (q , Z )
delay subtree(q S , Z S ) remove (q S , Z S ) from W and P add (q , Z ) t o W and add (q, Z) → (q , Z ) t o P e l s e i f t h e r e i s (q E , Z E ) ∈ P s . t . (q , Z ) = (q E , Z E ) then bring back subtree(q E , Z E ) end end return No function delay subtree ( q, Z ) pending(q, Z) := f o r each edge (q, Z) → (q , Z ) i n P delay subtree(q , Z ) function bring back subtree ( q, Z ) pending(q, Z) := ⊥ f o r each edge (q, Z) → (q , Z ) i n P bring back subtree(q , Z )

(q 0 , Z 0 ) (q 1 , Z 1 ) (q 3 , Z 3 ) . . . (q 1 , Z 1 ) (q 3 , Z 3 ) (q 4 , Z 4 ) ⊆ = Figure 3
.5: Cross-covering situation small nodes results in frequent resorting of the waiting list.

Ranking system. In this approach, instead of lowering the priority of small nodes, we increase the priority of big nodes. The big nodes will have a higher priority than the waiting nodes in the sub-tree of the small nodes. This priority policy is implemented by assigning a rank to every node. Algorithm 3.3 below is an extension of Algorithm 3.1 with ranking. The modifications are highlighted. Nodes are initialized with rank 0. In line 21, the rank of a node (q , Z ) is updated with respect not only to the ranks of of nodes (q S , Z S ) that are subsumed by (q , Z ), but also with respect to all nodes in the sub-tree of (q S , Z S ). Indeed, for each node (q S , Z S ) we compute the maximum rank r of all descendants of (q S , Z S ) that are in the waiting list W . Then we set rank(q , Z ) to max(rank(q , Z ), r + 1). Thus, the big node (q , Z ) has a higher priority than all waiting nodes in the sub-tree of the small node (q S , Z S ).

The function max rank waiting determines the maximal rank among waiting nodes below (q S , Z S ). To that purpose, the set of visited nodes P is stored as an exploration tree. Before a node (q S , Z S ) is removed in line 23, its parent node is connected to its child nodes to maintain reachability of waiting nodes in line 22 (if (q S , Z S ) is the initial node, a dummy node is used as its parent). Observe that the node (q , Z ) is added to the tree P in line 24 after its rank has been updated in line 21. This is needed in the particular case where (q S , Z S ) is an ancestor of node (q , Z ) in line 21. The rank of (q , Z ) will be updated taking into account the waiting nodes below (q S , Z S ). Obviously, (q , Z ) should not be considered among those waiting nodes. That is guaranteed since (q , Z ) does not belong to the tree yet. 

W := {(q 0 , Extra LU + (Z 0 ))} ; P := W init rank(q 0 , Extra LU + (Z 0 )) while (W = ∅) do take a node (q, Z) with highest rank i n W and remove (q, Z) from W i f ( q i s a c c e p t i n g ) then return Yes e l s e f o r each (q, Z) ⇒ Extra LU + (q , Z ) init rank(q , Z ) i f t h e r e i s no (q B , Z B ) ∈ P s . t . (q , Z ) ⊆ (q B , Z B ) then f o r each (q S , Z S ) ∈ P s . t . (q S , Z S ) ⊆ (q , Z )
i f (q S , Z S ) ∈ W then // implies not a leaf node in P rank(q , Z ) := max(rank(q , Z ), 1 + max rank waiting(q S , Z S ))

add → from the parent node of (q S , Z S ) to the child nodes of (q S , Z S ) to P remove (q S , Z S ) from W and P add (q , Z ) t o W and add (q, Z) → (q , Z ) t o P end end return No function max rank waiting ( q, Z ) i f (q, Z) i s i n W then // implies leaf node in P return rank(q, Z) e l s e r := 0 ;

f o r each edge (q, Z) → (q , Z ) i n P r := max(r, max rank waiting(q , Z ))

return r function init rank ( q, Z ) i f Z i s t h e true zone then rank(q, Z) := ∞ e l s e
rank(q, Z) := 0 depicted in Figure 3.6. When (q 1 , Z 1 ) is visited, both (q 3 , Z 3 ) and (q 2 , Z 2 ) are put into the waiting list W with rank 0. Recall that the worst exploration order is to explore (q 3 , Z 3 ) first. That adds (q 4 , Z 4 ) to the waiting list with rank 0. The exploration of (q 2 , Z 2 ) adds (q 3 , Z 3 ) to the waiting list. At this stage, since (q 3 , Z 3 ) is bigger than (q 3 , Z 3 ) which is visited (not in W), the rank of (q 3 , Z 3 ) is set to 1 to give (q 3 , Z 3 ) a higher priority than (q 4 , Z 4 ). The node (q 3 , Z 3 ) has the highest priority among all waiting nodes and is explored next. This generates the node (q 4 , Z 4 ) that is bigger than (q 4 , Z 4 ). Hence (q 4 , Z 4 ) is erased and the exploration proceeds from (q 4 , Z 4 ). One can see that, when a big node is reached, the algorithm stops the exploration not only of the smaller node but also of the nodes in its sub-tree. Figure 3.6 shows a clear improvement over Figure 3.1b. Priority to true-zone nodes. The intuition behind the use of ranks suggests one more useful heuristic. Ranks are used to give priority to exploration from some nodes over the others. Nodes with true zones are a special case in this context, since they can never be covered, and in consequence it is always better to explore them first. We implement this observation by simply assigning the biggest possible rank (∞) to such nodes (line 40 in Algorithm 3.3).

(q 1 , Z 1 ) (q 3 , Z 3 ) (q 2 , Z 2 ) (q 4 , Z 4 ) (q 3 , Z 3 ) (q 4 , Z 4 ) . . .
The experimental results show that giving the highest priority to true-zone nodes helps the ranking systems to avoid even more mistakes.

Biggest zone first.

A related approach to the ranking system is the biggestzone-first (w.r.t the zone inclusion) approach. The motivation behind this approach is to try to reach the big nodes before small nodes, and thus to avoid mistakes. This algorithm can be obtained from the standard Algorithm 3.1 by changing line 10 to take and remove from the waiting list W a node with biggest zone. The approach, however, is not efficient because finding a node with the biggest zone from W needs pair-wise comparisons of zones between all nodes in W which are costly. It is worth noting that giving the highest possible rank to the true zones nodes implements a part of the biggest zone first approach.

Comparisons

Above, we have presented three possible approaches to improve the search order once mistakes are found : the erasing, the delaying and the ranking approaches. The erasing approach, however, may visit some nodes many times because of identical nodes (as shown in Figure 3.4). On the other hand, the delaying and the ranking approaches not only ensure that the big node has a higher priority than all waiting nodes in the sub-tree of the small node but also take into account identical nodes. Therefore, only the delaying and the ranking approaches are really competitive and in the following, we will compare these two.

When a mistake is found, one can mitigate the effect of the mistake by either delaying the exploration of the sub-tree of the small node or by accelerating the exploration of the big node. This is in a nutshell the difference between delaying and ranking approaches.

The delaying approach and the ranking approach are in fact incomparable. We will now present two different situations: the better-then-best situation where the delaying approach performs better than the ranking approach and the good-path situation where the ranking approach works better.

(q 0 , Z 0 ) . . .

(q 1 , Z 1 ) . . .

(q 1 , Z 2 ) (q, Z) (q 1 , Z 3 ) . . . . . . . . . ⊇ ⊇ Figure 3.7: Better-then-best situation.
First let consider a situation named better-then-best where the delaying approach makes fewer mistakes than the ranking system. The situation is where there are many paths with different length to the same state and a longer path gives a better zone. For example, in the better-then-best situation shown in Figure 3.7, there are three paths to q 1 that give three nodes (q 1 , Z 1 ), (q 1 , Z 2 ) and (q 1 , Z 3 ), and (q 1 , Z 1 ) ⊆ (q 2 , Z 2 ) ⊆ (q 3 , Z 3 ). Assume (q 1 , Z 1 ) has been visited, and the algorithm, say using BFS, has reached first (q, Z), and later (q 1 , Z 2 ). The waiting list of the algorithm thus contains (q, Z), (q 1 , Z 2 ) and leaf nodes in the sub-tree of (q 1 , Z 1 ). Consider the ranking system. Since (q 1 , Z 1 ) ⊆ (q 1 , Z 2 ), it will give a higher priority to (q 1 , Z 2 ) than to all waiting nodes in the sub-tree of (q 1 , Z 1 ). But as a side effect, (q 1 , Z 2 ) also has a higher priority than (q, Z) and thus the node (q 1 , Z 2 ) will be explored before (q, Z). Exploring (q 1 , Z 2 ) is, however, another mistake since the biggest node is (q 1 , Z 3 ). On the other hand, when (q 1 , Z 2 ) is found and (q 1 , Z 1 ) ⊆ (q 1 , Z 2 ) the delaying approach would set the lowest priority to all waiting nodes in the sub-tree of (q 1 , Z 1 ), and would not change the priority of (q 1 , Z 2 ) and (q, Z). As (q, Z) is reached before (q 1 , Z 2 ), the algorithm would explore (q, Z) first and generate the biggest node (q 1 , Z 3 ) that removes (q 1 , Z 2 ) from the waiting list as (q 1 , Z 2 ) ⊆ (q 1 , Z 3 ). Thus, the delaying approach does not make any other mistake in the better-then-best situation.

The ranking system however works better than the delaying approach in a situation called good-path shown in Figure 3.8.

(q 0 , Z 0 ) (q 2 , Z 2 ) (q 1 , Z 1 ) (q 1 , Z 1 ) (q 3 , Z 3 ) (q 3 , Z 3 ) . . . . . . . . . ⊆ ⊇ Figure 3.8: Good-path situation.
In the good-path situation, assume that the node (q 1 , Z 1 ), (q 2 , Z 2 ) have been visited, and that the waiting list contains, in order of arrival, (q 3 , Z 3 ), leaf nodes in the sub-tree of (q 1 , Z 1 ) and (q 1 , Z 1 ). Consider the delaying approach. Since (q 1 , Z 1 ) ⊆ (q 1 , Z 1 ), it will delay the exploration of the small sub-tree of (q 1 , Z 1 ) by giving it the lowest priority. Because (q 3 , Z 3 ) is found before (q 1 , Z 1 ), the algorithm will continue by exploring (q 3 , Z 3 ) which however is a mistake. In contrast, the ranking system can avoid the mistake at (q 3 , Z 3 ) in this situation. Since (q 1 , Z 1 ) ⊆ (q 1 , Z 1 ), the ranking system will give a higher rank to (q 1 , Z 1 ) than to all waiting nodes in the sub-tree of (q 1 , Z 1 ). That also gives (q 1 , Z 1 ) a higher priority than (q 3 , Z 3 ). Hence, the node (q 1 , Z 1 ) will be explored before (q 3 , Z 3 ) and will generate a better node at q 3 : (q 3 , Z 3 ) ⊇ (q 3 , Z 3 ). In the end, the ranking system makes fewer mistakes than the delaying approach in the good-path situation.

The delaying approach however is not efficient in term of implementation and memory usage. Regarding the implementation, in order to delay the exploration of small sub-tree when a mistake is found or in the cross-covering situation (shown in Figure 3.5), the delaying approach needs to update the priority of nodes in the waiting list that requires to re-sort the waiting list. In contrast, with the ranking system in Algorithm 3.3, the rank of a node in the waiting list is unchanged. Thus the ranking system can handle mistakes and the cross-covering situation with no extra cost.

(q 0 , Z 0 ) (q 1 , Z 1 ) . . . (q b , Z b ) (q 2 , Z 2 ) . . . . . . . . . . . . (q, Z)
. . .

⊆ ⊇

Figure 3.9: Memory overhead situation in delaying approach.

Regarding the memory usage, during the exploration the delaying approach may need to store more nodes than the ranking approach. Consider a situation (shown in Figure 3.9) where the algorithm reaches a big node (q b , Z b ) that covers many small visited nodes, say (q 1 , Z 1 ) and (q 2 , Z 2 ). It means that the algorithm has explored sub-trees of many small nodes up to certain depth and has stored them in the passed list P . These sub-trees will be stored in the P until the sub-tree of the big node (q b , Z b ) has been explored up to the same depth of these sub-trees. In the delaying approach, the algorithm will only delay the exploration of these small sub-trees and continue to explore the state space in BFS order. For instance, the algorithm will first explore (q, Z) and later (q b , Z b ). By doing that, the algorithm will first add more nodes to P and later remove small nodes when the big node is explored. Thus the maximum number of stored nodes -the peak memory usage -will increase. In contrast, in the ranking approach, the algorithm will first explore the big node (q b , Z b ) and will later continue to explore the remaining state space. Consequently, the algorithm will first remove small nodes from P then add newly explored nodes into P . Therefore, the maximum number of stored nodes of ranking approach will be smaller than the one of the delaying approach.

From the above comparisons, one can see that the ranking system is a good compromise to mitigate affect of mistakes. In fact, the experimental results confirm that on standard benchmarks, the ranking system works better than the delaying approach.

Waiting strategy

We present a different exploration strategy that aims at reducing the number of mistakes: situations where a big node is discovered later than a small one. The ranking strategy from the previous section reduced the cost of a mistake by stopping the exploration from descendants of a small node when a big node is found. By contrast, the waiting strategy will not develop a node when it detects that a bigger node may be reached from a node that is currently in the waiting list. The waiting strategy is based on topological-like order on states of automata. Example 6.

Before we start, we explain what kind of phenomenon our strategy is capturing. Consider the part of a timed automaton depicted in Figure 3.10. There is a number of paths from state s to state t, not necessary of the same length. Suppose that the search strategy from (s, Z) has reached (t, Z 1 ) by following the path through v 1 . At this point it is reasonable to delay the exploration from (t, Z 1 ) until all explorations of paths through v 2 , . . . , v n finish. This is because some of these explorations may result in a bigger zone than Z 1 , and in consequence make an exploration from (t, Z 1 ) redundant.

The effect of such a waiting heuristic is clearly visible on our example from Figure 3.2. The automaton consists of segments: from q 1 to q 3 , from q 3 to q 5 , etc. Every segment is a very simple instance of the situation from Figure 3.10 that we have discussed in the last paragraph. There are two paths that lead from state q 1 to state q 3 . These two paths have different lengths, so with a BFS exploration one of the paths will reach q 3 faster than the other. The longer path (that one going through q 2 ) gives the bigger zone in q 3 ; but BFS will not be able to use this information; and in consequence it will explore first the small node and then the big node. In the end, that will generate exponentially many nodes on this example. The waiting heuristic will collect all the search paths at states q 3 , q 5 , . . . and will explore only the best ones, so its search space will be linear.

We propose to implement these ideas via a simple modification of the standard algorithm. The waiting strategy will be based on a partial order on the states of A. This order is then used to determine an exploration order by taking the minimal node w.r.t from the waiting list. The reachability algorithm Algorithm 3.4: Reachability algorithm with a waiting strategy for timed automaton A. 

W := {(q 0 , Extra LU + (Z 0 ))} ; P := W while (W = ∅) do
take and remove (q, Z) minimal w . r . t . from W i f ( q i s a c c e p t i n g )

return Yes e l s e f o r each (q, Z) ⇒ Extra LU + (q , Z )

i f t h e r e i s no (q B , Z B ) ∈ P s . t . (q , Z ) ⊆ (q B , Z B )
f o r each (q S , Z S ) ∈ P such that (q S , Z S ) ⊆ (q , Z ) remove (q S , Z S ) from W and P add (q , Z ) t o W and t o P end end return No for timed automata with waiting strategy is shown in Algorithm 3.4 where the modification from the standard algorithm (Algorithm 3.1) is highlighted.

In the rest of the section we will propose some simple ways to find a suitable for an acyclic timed automaton, for a timed automaton with cycles, and for a network of timed automata, respectively.

Waiting strategy for an acyclic timed automaton

The idea of the waiting strategy is to delay the exploration of nodes having a state to which other nodes are arriving. To implement that idea, the main issue is how to define a partial order which predicts whether a node could reach a state. In an acyclic timed automaton, a topological order topo of the graph of the automaton is exactly what we need for . Recall that the topological ordering topo of the graph of the automaton is any order such that for every transition q → q , q topo q .

Using topo , we now define the acyclic that is the for an acyclic timed automaton. For two nodes (q, Z) and (q , Z) in the abstract zone graph ZG Extra LU + (A) of an acyclic time automaton A we will write (q, Z) acyclic (q , Z ) if q topo q . Algorithm 3.5: Reachability algorithm with a waiting strategy for an acyclic timed automaton A. 

W := {(q 0 , Extra LU + (Z 0 ))} ; P := W while (W = ∅) do
take and remove (q, Z) minimal w . r . t . acyclic from W i f ( q i s a c c e p t i n g )

return Yes e l s e f o r each (q, Z) ⇒ Extra LU + (q , Z )

i f t h e r e i s no (q B , Z B ) ∈ P s . t . (q , Z ) ⊆ (q B , Z B )
f o r each (q S , Z S ) ∈ P such that (q S , Z S ) ⊆ (q , Z ) remove (q S , Z S ) from W and P add (q , Z ) t o W and t o P end end return No

Therefore, we have a reachability algorithm with a waiting strategy for acyclic timed automata as shown in Algorithm 3.5; Algorithm 3.5 is Algorithm 3.4 equipped with acyclic (the modification is highlighted).

Algorithm 3.5 terminates and is correct because it only specifies a search order for Algorithm 3.1.

Let us explain how Algorithm 3.5 realizes the waiting strategy.

Example 7.

Consider again the example in Figure 3.10 at the moment when there are (t, Z 1 ) and (v 2 , Z 2 ), . . . (v n , Z n ) in the waiting list. Since there is a path v i → . . . → t for all v i in {v 2 , . . . , v n }, we have v i topo t and hence (v i , Z i ) acyclic (t, Z 1 ). As the waiting strategy at each iteration chooses to explore a minimal node w.r.t acyclic from the waiting list, the node (t, Z 1 ) is explored only after all nodes (v i , Z i ) are taken from the waiting list. It means that the exploration of (t, Z 1 ) is delayed until all explorations of paths through v 2 , . . . , v n arrive in t. It is the search order that we expect.

Example 8. As an another example, consider the timed automaton Figure 3.11a. A topological order is computed from the graph is: q 1 topo q 2 topo q 3 topo q 4 . Let us see how topo helps Algorithm 3.4 to explore bigger nodes first. Starting from node (q 1 , true), Algorithm 3.1 adds (q 2 , true) and (q 3 , y > 1) to the waiting list. Since q 2 topo q 3 , the algorithm then explores

q 1 q 2 q 3 q 4 . . . . . . y > 1 y ≤ 5 1 2 3 4
(a) Timed automaton with topological order

(q 1 , true)

(q 3 , y > 1) 3 (q 2 , true) 2 1 (q 3 , true) 3 ⊆ (q 4 , true)
. . .
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(b) q 1 → q 3 taken before q 1 → q 2 Figure 3.11: Exploration of the timed automaton A 2 in Figure 3.1a with waiting strategy makes no mistake even when the small node at q 3 is generated first.

node (q 2 , true), hence adding node (q 3 , true) to the waiting list. The small node (q 3 , y > 1) is then erased, and the exploration proceeds from the big node (q 3 , true). Observe that the exploration of the node (q 3 , y > 1) is postponed until the second path reaches q 3 . Upon this stage, the zone inclusion relation helps to stop all explorations of smaller nodes; in our case: (q 3 , y > 1). Thus, the algorithm performs optimally on this example, no exploration step can be avoided.

Definition 22 (Optimal exploration). A reachability algorithm performs optimally on a timed automaton if no exploration step can be avoided; in other words, upon termination, all visited nodes are maximal w.r.t. ⊆.

From the above definition, for every reachability algorithm that stores only maximal nodes w.r.t ⊆, in order to know whether the algorithm has performed a verification optimally, one can check upon termination whether its number of visited nodes is equal to its number of stored nodes.

Waiting strategy for timed automata with cycles

Our waiting strategy is based on a partial order on states of a timed automaton. In the previous section, we have shown that topological order on states of an automaton is perfectly suitable for it. However a topological order does not exist in an automaton with cycles. In this section, we present a way to compute for an automaton A with cycles based on topological ordering of the infinite unfolding graph of A.

Figure 3.12b shows a timed automaton with cycles and a part of its infinite unfolding graph which is an acyclic graph. We now define a order on the q 0 q 1 q 2 q 3 q 4 q 5 . . .

x ≥ 2

x ≤ 3∧ y ≤ 3

x > 3 ∧ y > 3 y := 0

x := 0 y := 0 (a) Timed automaton A 3 with cycles (A) that reflects the topological order of the infinite unfolding graph of A. We proceed as follows:

q 0 q 1 q 3 q 2 q 4 q 5 . . . q 1 q 3 q 2 q 4 q 5 . . .
1. We find a subset of the transitions of A that gives a graph A DAG without cycles;

2. We compute a topological ordering topo of A DAG , 3. Then we assign a level counter for each node in the abstract zone graph ZG Extra LU + (A) such that level of the initial node is set to 0, -for each transition (q, Z)

t - → (q , Z ) in ZG(A), level(q , Z ) = level(q, Z) + 1 if q t - → q is in A and not in A DAG level(q, Z) otherwise.
Note that for a transition q t -→ q in A and not in A DAG , we have q topo q or q = q (denoted q topo q ). Thus level can be computed based on the topo order on A DAG . 

W := {(q 0 , Extra LU + (Z 0 ))} ; P := W level(q 0 , Extra LU + (Z 0 )) = 0
while (W = ∅) do take and remove (q, Z) minimal w . r . t . level from W i f ( q i s a c c e p t i n g ) then

return Yes e l s e f o r each (q, Z) ⇒ Extra LU + (q , Z )

i f t h e r e i s no (q B , Z B ) ∈ P s . t . (q , Z ) ⊆ (q B , Z B ) then i f q topo q then level(q',Z') = level(q,Z) +1
e l s e level(q',Z') = level(q,Z) Given an automaton A, a graph A DAG can be computed by running a depth-first search (DFS) from the initial state of A. While traversing A, we ignore all the transitions that lead to a state that is on the current search stack. At the end of the search, when all the states have been visited, the transitions that have not been ignored form a graph A DAG .

f o r each (q S , Z S ) ∈ P s . t . (q S , Z S ) ⊆ (q , Z ) remove (q S , Z S )
The level that is the order of two nodes (q, Z) and (q , Z ) in ZG Extra LU + (A) is defined as follows:

(q, Z) level (q , Z ) iff (level(q, Z) < level(q , Z )) or (3.1) (level(q, Z) = level(q , Z ) and q topo q ). This order is then used to determine the exploration order.

Algorithm 3.6 is a modified version of Algorithm 3.1 (modifications are highlighted) that uses level to determine the exploration order (line 11). The level of the initial node is set to 0 at the beginning of the exploration (line 8), and the level of other node is computed on-the-fly based on the topo ordering and the level of its parent node.

Algorithm 3.6 terminates and is correct because it only specifies a search order for Algorithm 3.1 Example 9.

As an example, consider the timed automaton A 3 in Figure 3.12a. The transitions from q 3 to q 1 and q 4 to q 1 are ignored when com-

(q 0 , Z 0 ) (q 1 , Z 1 ) (q 3 , Z 3 ) (q 2 , Z 2 ) (q 3 , Z 3 ) (q 4 , Z 4 ) (q 1 , Z 1a ) (q 5 , Z 5 ) (q 1 , Z 1b ) . . . . . . . . . . . . ⊆ ⊆ (a) BFS order (q 0 , Z 0 ) (q 1 , Z 1 ) (q 3 , Z 3 ) (q 2 , Z 2 ) (q 3 , Z 3 ) (q 4 , Z 4 ) (q 1 , Z 1a ) (q 5 , Z 5 ) (q 1 , Z 1b ) . . . . . . 0,2 0,3 0,3 0,0 0,1 0,4 0,5 1,1 1,1 ⊆ ⊆ level 0 level 1
(b) Exploration order using waiting strategy: saves memory and running time Figure 3.13: Exploration of a timed automaton with waiting strategy compared with BFS where l,t is the level and the topological order of a node puting A DAG starting from q 0 . A topological-like ordering is computed from the resulting graph: q 1 topo q 2 topo q 3 topo q 4 topo q 5 . Let us see how level defined in (3.1) helps Algorithm 3.6 to explore bigger nodes first. Starting from node (q 0 , Z 0 ) with Z 0 = (x = y), Algorithm 3.6 reaches (q 1 , Z 1 ) with Z 1 = (2 < x = y), then it adds (q 2 , Z 2 ) and (q 3 , Z 3 ) to the waiting list where Z 2 = (3 < x ≤ y) and Z 3 = (2 < x ≤ y). Since q 2 topo q 3 , the algorithm then explores node (q 2 , Z 2 ), hence adding node (q 3 , Z 3 ) with Z 3 = (2 < x ≤ y) and Z 3 ⊆ Z 3 to the waiting list. The small node (q 3 , Z 3 ) is then automatically erased, and the exploration proceeds from the big node (q 3 , Z 3 ). Continuing with (q 3 , Z 3 ), the algorithm adds (q 5 , Z 5 ) with Z 5 = (2 < x ≤ y), (q 4 , Z 4 ) with Z 4 = true, and (q 1 , Z 1a ) with Z 1a = (2 < x -y) to the waiting list. Since (q 1 , Z 1a ) is reached through the transition q 3 to q 1 which is not in A DAG , i.e. q 3 topo q 1 , the level of (q 1 , Z 1a ) is set to 1. That makes (q 4 , Z 4 ) level (q 1 , Z 1a ). The algorithm therefore explores node (q 4 , Z 4 ) and adds (q 1 , Z 1b ) with Z 1b = (0 ≤ x -y) and Z 1a ⊆ Z 1b to the waiting list. The small node (q 1 , Z 1a ) is then erased, and the exploration continues with the big node (q 1 , Z 1b ). The exploration graph of Algorithm 3.6 using the waiting strategy is depicted in Figure 3.13b. Observe that when there are many paths to a state like q 1 or q 3 , the exploration from a node with that state is delayed until all paths are explored. Upon this stage, the zone inclusion relation helps to stop all explorations of smaller nodes; in our case they are (q 3 , Z 3 ) and (q 1 , Z 1a ). Thus, the algorithm has avoided all unnecessary explorations at (q 3 , Z 3 ) and (q 1 , Z 1a ).

Remark:

The level counter can be stored in a boolean variable. Observe that the waiting strategy explores the abstract zone graph level by level. It means that a node in the waiting list belongs either to the current level or to the next level. Therefore, a binary level counter is sufficient to implement the waiting strategy.

Topological-like ordering for networks of timed automata

Real-time systems often consist of several components that interact with each other. In order to apply the same approach we need to find an ordering on a set of global states of the system. For this we will find an ordering for each component and then extend it to the whole system. We suppose that each component of a system is modeled by a timed automaton

A i = (Q i , q 0 i , F i , X i , Act i , T i ).
The system is modeled as the product A = (Q, q 0 , F, X, Act, T ) of the components (A i ) 1≤i≤k . The states of A are the tuples of states of A 1 , . . . ,

A k : Q = Q 1 × • • • × Q k with initial state q 0 = q 0 1 , . . . , q 0 k and final states F = F 1 × • • • × F k .
Clocks and actions are shared among the processes: X = 1≤i≤k X i and Act = 1≤i≤k Act i . Interactions are modeled by the synchronization of processes over the same action. There is a transition ( q 1 , . . . , q n , g, R, a, q 1 , . . . , q n ) ∈ T if -either, there are two processes i and j with transitions (q i , g i , R i , a, q i ) ∈ T i and (q j , g j , R j , a, q j ) ∈ T j such that g = g i ∧ g j and R = R i ∪ R j , and q l = q l for every process l = i, j (synchronized action)

-or there is a process i with transition (q i , g, R, a, q i ) ∈ T i such that for every process l = i, a ∈ Act l and q l = q l (local action).

The product above allows synchronization of two processes at a time (handshaking). Our work does not rely on a specific synchronization policy, hence other models of interactions (broadcast communications, n-ary synchronization, etc.) could be considered as well. Notice that the product automaton A is, in general, exponentially bigger than the sum of the sizes of the components.

The semantics of a network of timed automata (A i ) 1≤i≤k is defined as the semantics of the corresponding product automaton A. As a result, the reachability problem for (A i ) 1≤i≤k reduces to the reachability problem in A.

In order to apply the same approach as in Section 3.3.2, an ordering must be defined on the states of A which are tuples q = q 1 , . . . , q k of states of the component automata A i . One solution consists in computing the product automaton A, then applying the approach described in Section 3.3.2. However, computing A would not be reasonable since its size grows exponentially with the number of its components. We propose an alternative solution that consists in computing a topological-like ordering i topo for each component A i . To that purpose, we can apply the algorithm introduced in the previous section. Then, the ordering of tuples of states is defined point-wise: Definition 23 (Point-wise topological-like ordering). For q, q ∈ Q 1 ו • •×Q k , we have q lexical q if q i i topo q i for the first i where q i and q i differ.

We then use the point-wise topological-like ordering lexical to define the level ordering on states of networks of timed automata. Thus, we can apply our waiting strategy for networks of timed automata.

Related work. The sweep-line method [START_REF] Jensen | The sweep-line state space exploration method[END_REF] is related to our waiting strategies where the state space is explored layer by layer. More precisely, the sweep-line method assigns a progress measure for each state, hence divides the state space into layers of states with same progress measure. The algorithm then explores the state space layer by layer. The algorithm removes all the nodes that belong to a layer that has been entirely visited. Consequently, some part of the state space may be visited many times.

Combination of ranking and waiting strategies

The ranking system and the waiting strategy are designed to handle different situations. The two heuristics can be combined to complement each other. Let us show how the combination of the two could reduce even further the number of mistakes in the following two situations. First, consider the automaton A 4 in Figure 3.14 that is the timed automaton A 2 in Figure 3.1a with an extra transition q 3 → q 2 . It is a situation where the waiting strategy is sensitive to the topological ordering. The loop on q 2 and q 3 may lead to different topological orderings, for instance to q 1 topo q 2 topo q 3 topo q 4 , or to q 1 topo q 3 topo q 2 topo q 4 . These two choices lead to very different behaviors of the waiting algorithm. Once the initial node has been explored, the two nodes (q 3 , y > 1) and (q 2 , true) are in the waiting queue. The first ordering guides the algorithm to explore (q 2 , true) first and generates (q 3 , true) that cuts the exploration of the smaller node (q 3 , y > 1). However, with the second ordering (q 3 , y > 1) is visited first. As a result, (q 3 , true) is reached too late, and the entire sub-tree of (q 3 , y > 1) is explored unnecessarily. In such a situation, combining the ranking and the waiting strategies helps. Indeed, after (q 3 , y > 1) has been explored, the waiting queue contains two nodes (q 2 , true) and (q 4 , 1 < y ≤ 5). Since q 2 topo q 4 , the algorithm picks (q 2 , true), hence generating (q 3 , true). As a true-zone node, (q 3 , true) immediately gets a higher rank than every waiting node. Exploring (q 3 , true) generates (q 4 , y ≤ 5) that cuts the exploration from the small node (q 4 , 1 < y ≤ 5).

q 1 q 2 q 3 q 4 . . . . . . y > 1 y ≤ 5
Secondly, there is a situation called increasing-cycle where combining the ranking and the waiting strategies could help to reduce the number of mistakes. Consider again the automaton A 3 in Figure 3.12a, there is a cycle q 1 → q 2 → q 3 → q 4 → q 1 which generates a bigger zone after one iteration. For instance, in Figure 3.13b, executing that cycle from (q 1 , Z 1 ) gives a bigger node (q 1 , Z 1b ) ⊇ (q 1 , Z 1 ). With this kind of cycle, the waiting strategy may make some mistakes. Consider the node (q 5 , Z 5 ) in the same Figure 3.13b. Since (q 1 , Z 1 ) ⊆ (q 1 , Z 1b ), in the sub-tree of the big node (q 1 , Z 1b ) there is a node (q 5 , Z 5 ) such that Z 5 ⊆ Z 5 . If Z 5 is strictly bigger than Z 5 , the waiting strategy would make mistake at (q 5 , Z 5 ) since level(q 5 , Z 5 ) < level(q 1 , Z 1 b), thus (q 5 , Z 5 ) will be visited before (q 1 , Z 1 b). Observe that the ranking strategy can avoid the mistake in this case. Indeed, it gives a bigger rank to (q 1 , Z 1b ) than to (q 5 , Z 5 ) which is in the sub-tree of the covered node (q 1 , Z 1 ). Therefore it visits (q 1 , Z 1 ) first. This suggests that combining the ranking and the waiting strategies could help to reduce more mistakes.

We have tried several combinations of the two heuristics. This evaluation has led us to a way to embed rank into level. More precisely, when a mistake is found -a newly created node (q, Z ) is bigger than a visited node (q, Z) -we set level(q, Z ) = min(level(q, Z ), level(q, Z)). Doing this, we can implement the idea behind the ranking system. That is to give a higher priority to the big node than to the waiting nodes in the sub-tree of the small nodes. Consider any waiting node (q w , Z w ) in the sub-tree of (q, Z) and assume that level(q w , Z w ) has not changed since the creation of (q w , Z w ). As (q, Z) can reach (q w , Z w ), from the definition of topo and level, we have either q topo q w or level(q, Z) < level(q w , Z w ). Thus, by setting the level of the big node (q, Z ) to at most the level of (q, Z), we ensure that (q, Z ) level (q w , Z w ). It means that the waiting strategy will give a higher priority to (q, Z ) than to (q w , Z w ).

Finally, we arrive to a combining algorithm that uses the waiting strategy with priority to true zone and embeds rank into level. For each iteration, the algorithm selects a waiting node as follows:

-True-zone nodes are taken with the highest priority.

-If there is no true-zone node, the nodes are taken according to the waiting strategy, and then in BFS order.

The strategy described above gives the best results in terms of memory overhead and number of visited nodes in standard benchmarks. In terms of Algorithm 3.7: Reachability algorithm with a combination of waiting and ranking strategies for timed automaton A. 

W := {(q 0 , Extra LU + (Z 0 ))} ; P := W level(q 0 , Extra LU + (Z 0 )) = 0
while (W = ∅) do take and remove (q, Z) minimal w . r . t . t r u e -zone then from W i f ( q i s a c c e p t i n g ) then

return Yes e l s e f o r each (q, Z) ⇒ Extra LU + (q , Z ) i f t h e r e i s no (q B , Z B ) ∈ P s . t . (q , Z ) ⊆ (q B , Z B ) then i f q topo q then level(q',Z') = level(q,Z) +1

e l s e level(q',Z') = level(q,Z)

f o r each (q S , Z S ) ∈ P s . t . (q S , Z S ) ⊆ (q , Z ) i f (q S , Z S ) ∈ W then // i m p l i e s not a l e a f node i n P level(q , Z ) = min(level(q , Z ), level(q S , Z S ))

remove (q S , Z S ) from W and P add (q , Z ) t o W and t o P return No memory usage, while it implements the ranking strategy, it does not need to explicitly manage the exploration tree. Hence, the combination algorithm uses less memory than the ranking strategy, and there is no memory overhead in comparison with the waiting strategy. In addition, the experimental results show that it visit the fewest number of nodes in all benchmark models except one. Algorithm 3.7 presents an implementation of the algorithm outlined above. It is obtained by modifying Algorithm 3.1; modifications are highlighted.

Algorithm 3.7 terminates and is correct because it only specifies a search order for Algorithm 3.1.

Experimental evaluation

We present and comment the experimental results that we have performed. These results indicate that a combination of ranking and waiting strategies manages to avoid mistakes in most of the examples.

We have evaluated the ranking system (Section 3.3.1) and the waiting strategy (Section 3.3.2) on classical benchmark models from the literature1 : Critical Region (CR) [START_REF] Morbé | Fully symbolic model checking for timed automata[END_REF], Csma/Cd (C) [START_REF] Tripakis | Analysis of timed systems using time-abstracting bisimulations[END_REF], Fddi (FD) [DOTY96, UPPc], Fischer (Fi) [TY01, UPPb], Flexray (Fl-PL) [START_REF] Michael Gerke | Model checking the flexray physical layer protocol[END_REF] and Lynch (L) [START_REF] Lynch | Timing-based mutual exclusion[END_REF][START_REF] Mahata | Model checking parameterized timed systems[END_REF]. We have also tested our strategies on the BlowUp (B) example in Figure 3.2. These automata have no reachable accepting state, hence they force algorithms to visit the entire state space to prove unreachability.

Our objective is to avoid mistakes during exploration of the state space of timed automata. At the end of the run of the algorithm, the set of visited nodes P forms an invariant showing that accepting nodes are unreachable. Every node that is visited by the algorithm and that does not belong to P at the end of the run is useless to prove unreachability. This happens when the algorithm makes a mistake: it first visits a small node before reaching a bigger node. We aim at finding a search order that visits bigger nodes first, hence doing as few mistakes as possible. Notice that it is not always possible to completely avoid mistakes since the only paths to a big node may have to visit a small node first.

To evaluate the performance, for all algorithms we report on the number of visited nodes (visited), the number of mistakes (mist.), and the number of stored nodes (stored). Because the number of stored nodes may vary during a verification process, we report the final number of stored nodes (stored final) and the maximum number of stored nodes which is shown as an overhead from the final stored nodes (stored over.) The number of visited nodes gives a good estimate of the running time of the algorithm, while the maximal number of stored nodes gives a precise indication of the memory used for the set P .

In the following sections, we first present our experiments on the ranking system in comparison with related approaches discussed on Section 3.3.1. Then, we discuss the experimental results of the waiting strategy and its combination with the ranking system.

Experiment 1: Ranking systems

We compare five algorithms in Table 3.1: BFS the standard breadth-first search algorithm with subsumption2 (i.e. Algorithm 3.1), Erasing-BFS and Delaying-BFS which respectively implement the erasing approach and the delaying approach described in Section 3.3.1, Biggest-Zone-First-BFS the breadth-first search with priority to the nodes with biggest zone, and Ranking-BFS which implements a breadth-first search with priority to the highest ranked nodes (i.e. Algorithm 3.3).

The erasing approach performs impressively well on BlowUp, and Fddi.

The erasing approach makes fewer mistakes than the BFS algorithm on Flexray. It confirms that stopping exploration of the sub-tree of small nodes can reduce the impact of mistakes. However, the erasing approach visits a lot more nodes than the BFS algorithm. In some models, there are situations where the sub-tree of a big node and a small node have some identical nodes.

Erasing the sub-tree of small nodes in such situations is not a good approach.

The delaying approach visits fewer nodes than Erasing-BFS on Csma/cd, Fischer and Lynch where there are many identical nodes. The delaying approach also performs better than the BFS algorithm on BlowUp, Fddi, Csma/cd, Critical region and Flexray but not on other models. On the other hand, as discussed in Section 3.3.1 the delaying approach is not efficient. It stores more nodes than needed during the exploration: the maximum number of stored nodes is bigger than the number of stored nodes upon termination (over. > 0). The column "visited delaying" gives the number of nodes that the algorithm traverses to update the pending flag of nodes. This number is bigger than the number of visited nodes in several examples. This confirms that the delaying approach needs to update the pending flag of a node many times, specially in case of cross-covering situation (shown in Figure 3.5). Thus, these results show that stopping the exploration of the sub-tree of small nodes is not efficient to avoid mistakes.

The biggest-zone-first approach performs impressively well w.r.t the number of visited nodes on most models. It shows that greedy exploring from a node with the biggest zone could reach big nodes faster, and thus avoid mistakes. But the main drawback is that this approach requires a lot of zones comparisons. This results in time-out on Lynch-10 and Critical region-5.

The ranking system gives very good results on all models except Csma/Cd. It makes no mistakes on Fischer and Lynch. This is due to the highest priority given to true-zone nodes. Indeed, the column "visited ranking" shows that ranks are never updated, hence the nodes keep their initial rank. Ranking also performs impressively well on BlowUp, Fddi and Flexray, gaining several orders of magnitude in the number of mistakes. However, it makes more mistakes than BFS on Csma/Cd. Indeed, the ranking system is efficient when big nodes are reached quickly, as the example in Figure 3.6 shows. When the big node (q 3 , Z 3 ) is reached, the ranking system stops the exploration of the sub-tree of the small node (q 3 , Z 3 ) at (q 4 , Z 4 ). However, making the path q 1 → q 2 → q 3 longer in the automaton in Figure 3.1a leads to explore a bigger part of the sub-tree of (q 3 , Z 3 ). If this path is long enough, the entire subtree of (q 3 , Z 3 ) may be visited before (q 3 , Z 3 ) is reached. The ranking system does not provide any help in this situation. This bad scenario occurs in the Csma/Cd example.

The ranking strategy Ranking-BFS requires to keep a tree structure over the visited nodes. Using the classical left child-right sibling encoding, the tree can be represented with only two pointers per node. This tree is explored when the rank of a node is updated (line 21 in Algorithm 3.3). The column "visited ranking" in Table 3.1 shows that these explorations do not inflict any significant overhead in terms of explored nodes, except for Csma/Cd and Critical Region for which it has been noticed above that algorithm Ranking-BFS does not perform well. Furthermore, exploring the tree is inexpensive since the visited nodes, in particular the zones, have already been computed.

To sum up, the experiments show that the ranking system is a good compromise for the search order. It not only mitigates the impact of mistakes but also helps to reach big nodes faster by giving priority to true-zone nodes.

Table 3.1: Experimental results: BFS corresponds to Algorithm 3.1 with a BFS order on the waiting nodes, Erasing-BFS implements the erasing sub-tree of small nodes, Delaying-BFS implements the delaying approach, Biggest-Zone-First-BFS is the biggest zone first algorithm, and Ranking-BFS implement the ranking system on top of BFS algorithm (i.e. Algorithm 3.3). "visited" is the number of visited nodes, "mist." is the number of mistakes, "stored final" is the number of stored nodes upon termination, "stored over." is the difference between the maximum number of stored nodes during exploration and the number of stored nodes upon termination, "visited delaying" is the number of nodes that the algorithm traverses to update the pending flag of nodes, "visited ranking" is the number of visited nodes to update ranks. Experiment 2: Waiting strategies and its combination with ranking

BFS

In this experiment, we evaluate the waiting strategy and its combination with ranking on the standard benchmark models described at the beginning of this section. The results show that the combination of waiting and ranking makes no mistakes in all but two examples. We compare four algorithms in Table 3.2: BFS the standard breadth-first search algorithm with subsumption (i.e. Algorithm 3.1), Ranking-BFS which implements a breadth-first search with priority to the highest ranked nodes (i.e. Algorithm 3.3), Waiting-BFS which implements a breadth-first search with the waiting strategy (i.e. Algorithm 3.6) and TWR-BFS which combines the ranking system and the waiting strategy with embedded rank (i.e. Algorithm 3.7).

While the waiting strategy Waiting-BFS gives good results on BlowUp, Fddi and Csma/Cd, it makes as many mistakes as the standard BFS on Fischer, Lynch and Flexray. As shown in Table 3.2, TWR-BFS makes no mistake on all but two examples. Those two examples -Critical Region and Flexray -have unavoidable mistakes: big nodes that can only be reached after visiting a smaller node. For example, consider again the Figure 3.13b, the big node (q 1 , Z 1b ) can be reached only after visiting (q 1 , Z 1 ) and (q 1 , Z 1 ) ⊆ (q 1 , Z 1b ), thus (q 1 , Z 1 ) is an unavoidable mistake. The phenomenon is due to the cycle q 1 → q 3 → q 4 → q 1 which generates a bigger zone after one iteration.

We have also evaluated TWR-BFS using randomized versions of the models in Table 3.2. Randomization consists in taking the transitions in a non-fixed order, hence increasing the possibility of racing situations like in Figure 3.1. The experiments show that the TWR-BFS strategy is robust to such randomization, and the results on random instances are very close to the ones reported in the table.

Conclusions

In this chapter, we have presented strategies to minimize mistakes for algorithms for reachability analysis of timed automata. The idea behind our strategies is to guide the exploration of the algorithm towards big nodes before exploring smaller nodes.

We can consider our findings from a practical point of view of an implementation. The simplest strategy to implement would be to give priority to true zones. This would already give some improvements, but for example for Fddi there would be no improvement since there are no true zones. Ranking-BFS gives good results with a small overhead to manage the exploration tree. TWR-BFS strategy is relatively easy to implement and has very good performance on all models. This suggests that TWR-BFS could be used as a replacement for BFS. Table 3.2: Experimental results: BFS corresponds to Algorithm 3.1 with a BFS order on the waiting nodes, Ranking-BFS implements the ranking system on top of the BFS algorithm (i.e. Algorithm 3.3), Waiting-BFS implements the waiting strategy on top of the BFS algorithm (i.e. Algorithm 3.6) and TWR-BFS implements the combination of waiting and ranking strategy (i.e. Algorithm 3.7). "visited" is the number of visited nodes, "mist." is the number of mistakes, "stored final" is the number of stored nodes upon termination, "stored over." is the difference between the maximum number of stored nodes during exploration and the number of stored nodes upon termination. Chapter 4

Preliminaries for liveness analysis

A liveness property of real-time systems asserts that a system can repeatedly reach a good state. For instance, a specification of a fire alarm requiring that the device can repeatedly check for smoke is a liveness property. Liveness properties of real-time systems can be verified using timed automata model checking. Indeed, a model checking tool verifies the liveness properties of a real-time system by checking for reachability of cycles containing accepting states in a timed automata model of the system. As for reachability analysis, the main challenge for such cycle analysis of timed automata is to effectively handle the uncountably infinite domain of clocks.

The first approach to handle real valued clock domains is presented by Alur and Dill in the paper introducing timed automata [START_REF] Alur | A theory of timed automata[END_REF]. The approach consists in partitioning the clock domains into a finite number of regions. Accordingly, the cross product of the regions and the automata results in a finite symbolic semantics for timed automata. While the region graphs preserve liveness properties of the system, their size makes this approach impractical.

As for reachability analysis, using abstract zone graph is an efficient approach to handle the clock domains. Since abstract zone graphs can be defined so that they are finite as well as correct for liveness properties, one can check for liveness properties of timed automata using abstract zone graphs. Indeed, having finite abstract zone graphs representing the semantics of timed automata, a model checking tool can adapt algorithms for cycles analysis in finite graphs to verify liveness properties of timed automata.

Organization of the chapter

This chapter presents notions related to the liveness problem in timed automata. First, in Section 4.1 we formally define the liveness problem for timed automata. In Section 4.2, we then introduce regions and the region graph that forms a finite symbolic semantics of timed automata while preserving liveness properties. In Section 4.3, we recall the definition of abstract zone graphs and show that abstract zone graphs defined using time-abstract simulation compatible abstraction preserve liveness properties of the original semantics of timed automata. Finally, in Section 4.4 we present a standard algorithm for liveness properties of timed automata based on classical cycles analysis algorithms.

Timed Büchi automata and the emptiness problem

For liveness properties, we want to check whether a timed automaton can repeatedly reach an accepting state. These properties are reflected by infinite runs in timed automata that satisfy a condition named Büchi condition.

Let A = (Q, q 0 , F, X, Acc, T ) be a timed automata as in Definition 1 where F is interpreted as a set of Büchi accepting states.

An infinite run is an infinite sequence of configurations (q 0 , v 0 ), (q 1 , v 1 ), . . . starting from the initial state q 0 and the initial valuation v 0 = 0 where for all i ≥ 0, (q i , v i ) → (q i+1 , v i+1 ). Without loss of generality we can assume that the first transition is a delay transition and that delay and action transitions alternate.

(q 0 , v 0 )

δ 0 ,a 0 ---→ (q 1 , v 1 ) δ 1 ,a 1 ---→ . . .
Definition 24 (Büchi condition). An infinite run satisfies the Büchi condition if it infinitely often visits configurations whose state is a Büchi accepting state.

For liveness properties, we are interested in runs that not only satisfy the Büchi condition, but also have an infinite duration.

The duration of a run is the accumulated delay: i≥0 δ i . Based on duration, we define two types of infinite runs in timed automata: Zeno and non-Zeno.

Definition 25 (Zeno, non-Zeno). An infinite run is Zeno if it has a finite duration. Otherwise, the run is non-Zeno.

Checking liveness properties of a real-time system using timed automata is known as the Büchi non-emptiness problem.

Definition 26. The Büchi non-emptiness problem consists in deciding if a timed automaton A has a non-Zeno run satisfying the Büchi condition.

The Büchi non-emptiness problem for timed automata is known to be Pspace-complete [START_REF] Alur | A theory of timed automata[END_REF].

In the following, we refer to a timed automaton with Büchi accepting condition as a timed Büchi automaton (TBA). We sometimes say Büchi properties to refer to liveness properties.

Regarding Zeno runs, any TBA A can be transformed into, so called strongly non-Zeno automaton [START_REF] Tripakis | Checking timed büchi automata emptiness efficiently[END_REF], where all runs satisfying the Büchi condition are non-Zeno. In brief, in the transformed automaton, at least one time unit will elapse between two visits to an accepting state. Hence, A is Büchi non-empty iff the corresponding strongly non-Zeno automaton has a run satisfying the Büchi condition. With the remark above, from now on we assume that our TBA are strongly non-Zeno.

Furthermore, as for reachability problems, the TBA we consider do not have diagonal constraints nor invariants.

Regions

As for the reachability problem, the challenge in the Büchi non-emptiness problem comes from the infinite state space of the semantics of TBA. One standard approach is to use region equivalence over valuations to partition the state space into a finite number of regions. The cross product of the regions and the timed automaton forms a finite symbolic semantics, named the region graph. In this section, we first define region equivalence, regions, and region graphs. We then show that on region graphs, one can solve the Büchi nonemptiness problem of TBA.

The region equivalence [START_REF] Alur | A theory of timed automata[END_REF] is defined based on the observation that two valuations will satisfy the same guards if they have the same integral parts for all clocks and have the same ordering of the fractional parts for all clocks. In addition, for a clock x, let c be the maximal constant compared with x among all guards involving x, we know that all the valuations having x bigger than c satisfy the same guards on x. It means that they all satisfy, for instance, the guards checking for x bigger than c, and they all do not satisfy the guards checking for x smaller than c. Formally, we define the region equivalence based on the maximal bounds function of a TBA.

Definition 27 (Maximal bounds function [START_REF] Alur | A theory of timed automata[END_REF]). Given an automaton A, the maximal bounds function M : X → N ∪ {-∞} of A associates to each clock x the biggest constant appearing in a guard of the automaton that involves x. If there is no guard involving x, then M (x) is -∞.

For a real number r, we denote by r the integral part of r, and by {r} the fractional part of r. Based on the maximal bounds function M , the region equivalence is defined as follows:

Definition 28 (Region equivalence [START_REF] Alur | A theory of timed automata[END_REF]). Given a maximal bounds function M . Two valuations v, v ∈ R X ≥0 are region equivalent w.r.t M , denoted v ∼ M v iff for every x, y ∈ X:

-v(x) > M (x) iff v (x) > M (x); -if v(x) ≤ M (x), then v(x) = v (x) ; -if v(x) ≤ M (x), then {v(x)} = 0 iff {v (x)} = 0 ; -if v(x) ≤ M (x) and v(y) ≤ M (y) then {v(x)} ≤ {v(y)} iff {v (x)} ≤ {v (y)}.
In addition, it is worth noticing that if two valuations v and v satisfy the first three conditions in the above definition, then v and v satisfy the same guards. The last condition ensures that for every delay δ ∈ R ≥0 there is δ ∈ R ≥0 , such that the valuations v + δ and v + δ satisfy the same guards. This is shown in the following lemma.

Lemma 29. Let v, v be valuations such that v ∼ M v. Then, for all δ ∈ R ≥0 , there exists a δ ∈ R ≥0 such that v + δ ∼ M v + δ.
Proof. Take two valuations v, v such that v ∼ M v and a delay δ. We now select the value for δ such that v + δ ∼ M v + δ.

We will first select value for δ and then for {δ }.

Put δ = δ . Consider v int = v + δ and v int = v + δ . We have v int ∼ M v int because:
-v int and v int have same ordering of fractional parts since the fractional parts of v int and v int are same as those of v and v , respectively, -v int and v int have same integral parts.

We now select value for {δ } such that v int + {δ} and v int + {δ } have the same integral parts and have the same ordering of fractional parts for all clocks. Consider clocks x 1 , . . . , x k whose value is less than M in both valuations v int and v int . Assume that the ordering of fractional parts of those clocks in both v int and v int is

{v(x 1 )} ≺ 1 {v(x 2 )} ≺ 2 . . . ≺ k-1 {v(x k )}
where v denotes either v int or v int , and ≺ i denotes either < or =, for i ∈ {1, . . . k -1}.

Consider v int + {δ}. The valuation v int + {δ} might have some clocks whose integral value increased from v int after elapsing {δ}. Let those clocks be x j , x j+1 , . . . , x k . More precisely, we have:

v int (x m ) = (v int + {δ})(x m ) for m ∈ {1, . . . , j -1} v int (x n ) < (v int + {δ})(x n ) for n ∈ {j, . . . , k}.
We want to select a value for {δ } so that elapsing {δ } from v int has the same effect as described above. It means that the value for {δ } must satisfy the following constraints:

{v int }(x j-1 )+{δ } < 1 and {v int }(x j )+{δ } ≥ 1 That is 1 -{v int }(x j ) ≤ {δ } < 1 -{v int }(x j-1 )
As δ is a real variable, we can choose a value for {δ } that satisfies the above constraints. As a result, v int + {δ } has the same integral parts and the same ordering of fractional parts as v int + {δ}. Hence, with the selected value for δ , we have v + δ ∼ M v + δ.

From the region equivalence, a clock region is defined.

Definition 30 (Region [AD94]

). Given a maximal bound function M . A clock region for A is an equivalence class of ∼ M . We denote by [v] M the clock region to which a valuation v belongs.

[v] M = {v | v ∼ M v }
From Definition 28, it has been shown in [START_REF] Alur | A theory of timed automata[END_REF] that for a timed automaton there are only finitely many clock regions. Hence, using clock regions, we define a finite symbolic semantics of timed automata.

Definition 31 (Region graph [START_REF] Alur | A theory of timed automata[END_REF]). Given a timed automaton A = (Q, q 0 , F, X, Act, T ). Let M be the maximal bounds function of A. The region graph RG(A) = (S, S 0 , Act, E) of A is a transition system where:

-S is the set of nodes in form (q, r) where q ∈ Q and r is a region of A.

The initial node S 0 is (q 0 , [0] M ) where [0] M is the region to which the initial valuation 0 belongs.

-There is a transition (q, r)

t - → (q , r ) in E iff there are v ∈ r, δ ∈ R ≥0 and v ∈ r such that (q, v) δ,t -→ (q , v ).
We now show the correspondence between the runs in the timed automaton A and the paths in its region graph RG(A). The key property to establish the connection is the pre-stability of region graphs.

Lemma 32 (Pre-stability [START_REF] Tripakis | Checking timed büchi automata emptiness efficiently[END_REF]). Let A be an automaton and RG(A) be the region graph of A. For any transition (q, r) t -→ (q , r ) in RG(A) we have: for every valuation v ∈ r there is a δ ∈ R ≥0 and a valuation v ∈ r such that (q, v) δ,t -→ (q , v ).

Abstract zone graphs

We have seen in Chapter 2 that using abstract zone graphs is an efficient approach to solve the reachability problem in timed automata. In this section, we show that one can also use abstract zone graphs to solve the Büchi nonemptiness problem of TBA.

Recall that the zone abstraction is a way to group valuations together so that the abstract zone graph is finite, sound and complete for the problem in question -in this case, the Büchi non-emptiness problem. It has been proven in [START_REF] Li | Checking timed büchi automata emptiness using lu-abstractions[END_REF] that any time-abstract simulation compatible abstraction is sound and complete for Büchi non-emptiness problem.

Let us recall the Definition 14 of a time-abstract simulation compatible abstraction. Given a time-abstract simulation t.a , an abstraction a is called a time-abstract simulation compatible abstraction if for every zone Z, each valuation in a(Z) can be simulated by a valuation in Z:

If v ∈ a(Z) then there exists v ∈ Z such that v t.a v .
The next theorem shows that an abstract zone graph using time-abstract simulation compatible abstraction is sound and complete for Büchi nonemptiness problem.

In an abstract zone graph of a timed Büchi automaton A = (Q, q 0 , F, X, Act, T ), a Büchi accepting run refers to a run that visits infinitely often nodes whose state is in F .

Theorem 35 ([Li09]

). Given a TBA A and a time-abstract simulation compatible abstraction a, there is a run satisfying the Büchi condition in A iff there exists a Büchi accepting run in ZG a (A).

Proof. For (⇒). If in a TBA A there is a run satisfying the Büchi condition then there exists a Büchi accepting run in ZG a (A). The proof for this direction comes directly from the completeness of abstract zone graphs using time-abstract simulation compatible abstraction (Theorem 15).

For (⇐). Given a TBA A, if there is a Büchi accepting run in ZG a (A), then in A there exists a run satisfying the Büchi condition.

Let (q 0 , Z 0 ) ⇒ * a (q 1 , Z 1 ) ⇒ * a . . . be a Büchi accepting run in ZG a (A).

Let q be some repeating accepting state on the path. Since the number of regions of A is finite, from the accepting run, we can take a finite prefix in which the number of occurrences of q, say n, is more than the number of regions of A: function NDFS-emptiness-check ( A = (Q, q 0 , F, X, Acc, T ) )

(q 0 , Z 0 ) ⇒ * a (q, Z k+1 ) ⇒ * a (q, Z k+2 ) ⇒ * a . . . ⇒ * a (q, Z k+n )
Cyan:= Blue :=Red:=∅ ;

blueDFS ( (q 0 , Extra LU + (Z 0 )) ) ;

return No ; function redDFS ( (q, Z) )

Red:=Red ∪ {(q, Z)} ;

f o r each (q, Z) ⇒ Extra LU + (q , Z ) do i f (q, Z) ∈ Cyan then return Yes ;

i f (q, Z) / ∈ Red then redDFS ( (q , Z ) )

end function blueDFS ( (q, Z) ) Cyan:=Cyan ∪ {(q, Z)} ; f o r each (q, Z) ⇒ Extra LU + (q , Z ) i f (q , Z ) / ∈ Cyan ∧ (q , Z ) / ∈ Blue then blueDFS ( (q , Z ) ) end i f q ∈ F then redDFS ( (q, Z) ) )
Blue := Blue ∪ {(q, Z)} ;

Cyan:=Cyan \ {(q, Z)} ;

algorithm [START_REF] Courcoubetis | Memory-efficient algorithms for the verification of temporal properties[END_REF] which looks for cycles containing an accepting state; second, the strongly-connected-components (SCCs) algorithm based on Tarjan's algorithm [START_REF] Tarjan | Depth-first search and linear graph algorithms[END_REF][START_REF] Couvreur | On-the-fly verification of linear temporal logic[END_REF] which looks for SCCs containing an accepting state.

The two groups of algorithms based on nested-DFS and SCCs, respectively, are compared in [START_REF] Gaiser | Comparison of algorithms for checking emptiness on Büchi automata[END_REF]. It turns out that among those algorithms there is no best algorithm to solve Büchi non-emptiness problem in all situations.

For the purpose of this thesis, in this section we describe only one algorithm for the Büchi non-emptiness of timed automata that is based on the nested-DFS algorithm [LOD + 13]. The algorithm is shown in Algorithm 4.1.

Algorithm 4.1 starts from the initial node of the abstract zone graph and performs two DFS iterations: the blue-DFS and the red-DFS. The blue-DFS (from line 18 to line 29) is the main loop. It aims at finding accepting states. In the blue-DFS loop, cyan nodes are nodes that are on the current search path. Blue nodes are nodes that have been entirely visited. Inside the blue-DFS, when an accepting state s is found (line 26), the algorithm starts the red-DFS from s. The red-DFS aims at finding loops containing s which is an accepting loop. All encountered nodes in the red-DFS are marked as red. When the red-DFS finds a loop, the algorithm stops and reports successful (line 14). Otherwise, the blue-DFS continues until the entire abstract zone graph has been explored.

To sum up, we have presented a standard algorithm for Büchi nonemptiness problem for timed automata. The algorithm is based on the observation that in a finite Extra LU + abstract zone graph of timed automata, the Büchi non-emptiness problem can be solved by testing whether there is a cycle containing an accepting state. Accordingly, the algorithm is an adaptation of the nested-DFS algorithm for finding accepting cycles in the finite Extra LU + abstract zone graph of the timed automaton.

Chapter 5

Accelerated algorithm for Büchi non-emptiness

Introduction

This chapter reports on a joint work with Frédéric Herbreteau, Balaguru Srivathsan, and Igor Walukiewicz. This work is unpublished since we have learned that the main technical results of this work have already been discovered by [START_REF] Jaubert | Quantitative robustness analysis of flat timed automata[END_REF]. From that paper one can easily deduce Theorem 70. The application to testing Büchi properties of timed automata, the algorithm, its implementation and experiments, are novel. Büchi non-emptiness problems consist in checking whether a given timed automaton has an infinite path passing through an accepting state infinitely often. We have seen in the previous chapter that the Büchi non-emptiness problems can be solved by using zones and their abstractions [DT98, [START_REF] Behrmann | Lower and upper bounds in zone-based abstractions of timed automata[END_REF][START_REF] Herbreteau | Better abstractions for timed automata[END_REF].

It is worth reminding from Chapter 3 that zones and their abstractions are also the base of the algorithms for reachability problems. But, the algorithms for reachability have one further optimization. They use zone inclusion to reduce running time and memory usage. Reachability algorithms do not explore a node if a node with the same state and a bigger zone has already been explored. Moreover such algorithms need to store only nodes with maximal zones (with respect to inclusion). This gives an order of magnitude savings in time and space.

The fundamental problem in extending this approach to verification of Büchi properties is that it is no longer correct to keep only maximal zones with respect to inclusion. Let us examine what can happen if we freely use zone inclusion in verification of Büchi properties. The goal of the algorithm is to explore the state space to find a cycle containing an accepting state. Assume that the algorithm uses zone inclusion as reachability algorithms do. It means that the algorithm will skip the exploration of a small node if a bigger node 75 has been found. In the following example (shown in Figure 5.1), the algorithm will miss an accepting cycle. In this example, the algorithm first visits the node (q 0 , Z) with Z = true. Visiting (q 0 , Z) results in the node (q 0 , Z ) with Z = (x ≥ 1), and Z ⊆ Z. As (q 0 , Z ) ⊆ (q 0 , Z), the algorithm will stop the exploration of (q 0 , Z ). Finally, the algorithm will conclude that there is no accepting cycle, as shown in Figure 5.1c. However, it is not correct since there is an accepting cycle (q 0 , Z ) → (q 0 , Z ) in the abstract zone graph of A b as shown in Figure 5.1b.

q 0 q 1 x < 2 x ≥ 1 (a) Timed automa- ton A b q 0 , true q 0 , (x ≥ 1) q 1 , true (b) The zone graph of A b (q 0 , true) (q 0 , x ≥ 1) (q 1 , true)
Laarman et al. [LOD + 13] recently studied in depth when it is safe to use zone inclusion in nested depth first search algorithm. They show that in order to retain correctness, the use of zone inclusion has to be substantially limited. These limitations have a serious impact on the search space: it can simply get orders of magnitude larger, and this indeed happens on standard examples.

The second problem with verification of Büchi properties is the fact that it is more efficient to use DFS instead of BFS to detect cycles. It has been noted in numerous contexts that longer sequences of transitions lead generally to smaller zones [START_REF] Behrmann | Distributed reachability analysis in timed automata[END_REF]. This is why BFS would often find the largest zones first, while DFS will get very deep into the model and consider many small zones; these in turn will be made irrelevant later with a discovery of a bigger zone closer to the root (the mistake situations as described in Chapter 3). Once again, on standard examples, the differences in the size of the search space between BFS and DFS exploration are often significant [START_REF] Behrmann | Distributed reachability analysis in timed automata[END_REF], and it is rare to find instances where DFS is better than BFS.

In this chapter we propose an efficient test for checking ω-iterability of a path in a timed automaton. By this we mean checking if a given sequence of timed transitions can be iterated infinitely often. We then use this test to ease the bottleneck created by the two above mentioned problems. While we will still use DFS, we will invoke the ω-iterability test to stop exploration as early as possible. This approach will not provide any gain if there is no accepting loop, but if there is one, we will often discover it much quicker. A motivation for ω-iterability checking is presented in Figure 5.2. The abstract zone graph of the automaton has 100 states due to the difference between y and x that gets bigger after each iteration of transition b. As the maximum constant for y is 100, the zones obtained after x + 100 = y will get abstracted to x+100 < y, yielding a cycle in the abstract zone graph. Without iterability testing we need to take all these 100 transitions to conclude that b can be iterated infinitely often. In contrast, our iterability test applied to b transition can tell this immediately.

A simple way to decide if a sequence of timed transitions σ is iterable is to keep computing successive regions along σ till a region repeats. However one might have to iterate σ as many times as the number of regions. Hence the bound on the number of iterations given by this approach is

O(|σ| • M ! • 2 n )
where n is the number of clocks and M is the maximum constant occurring in the automaton. Using zones instead of regions does not change much: we still may need to iterate σ an exponential number of times in n.

Our solution uses transformation matrices which are zone like representations of the effect of a sequence of timed transitions. Such matrices have already been used by Comon and Jurski in their work on flattening of timed automata [START_REF] Comon | Timed automata and the theory of real numbers[END_REF]. By analyzing properties of these matrices we show that n 2 iterations of σ are sufficient to determine ω-iterability. Moreover, instead of doing these iterations one can simply do log(n 2 ) compositions of transformation matrices. As a bonus we obtain a zone describing all the valuations from which the given sequence of transitions is ω-iterable. The complexity of the procedure is O((|σ|

+ log n) • n 3 ).
One should bear in mind that n is usually quite small, as it refers only to active clocks in the sequence. Recall for example that zone canonicalisation, that is an O(n 3 ) algorithm, is anyway invoked at each step of the exploration algorithm. If we assume that arithmetic operations can be done in unit time, the complexity of our algorithm does not depend on M .

To test the theoretical gains of the ω-iterability mentioned above, we have performed a series of experiments. We have done a detailed examination of standard timed models as used, among others, in [LOD + 13]. We explain in Section 5.4 why when checking on these models for false Büchi properties that do not refer to time, the authors of op. cit. have observed almost immediate response. Our experiments show that even on these particular models, if we consider a property that refers to time, the situation changes completely. We present examples of timed Büchi properties where iteration check significantly reduces the search space.

In the following, Section 5.2 studies ω-iterability, and describes the transformation graphs that we use to detect ω-iterability. Certain patterns in these graphs characterize iterability as shown in Section 5.3. Finally, Section 5.4 gives some experimental results.

ω-iterability

As we have underlined in the introduction it is not possible to freely use zone inclusion to cut down the search space. When not using zone inclusion, it can very well happen that an exploration algorithm comes over a path that can be iterated infinitely often but it is not able to detect it since the initial and final zones on the path are different. In this section we show how to test, in a relatively efficient way, if a sequence of timed transitions can be iterated infinitely often (Theorem 70).

Consider a sequence of transitions σ of the form

t 1 -→ . . . t k
-→, and suppose that (q, Z) ⇒ σ (q, Z ). If Z ⊆ Z then after executing σ from (q, Z ) we obtain (q, Z ) with Z not smaller than Z . So we can execute σ one more time etc. The challenging case is when Z ⊆ Z . The procedure we propose will not only give a yes/no answer but will actually compute the zone representation of the set of valuations from which the sequence can be iterated infinitely many times. We will start by making the notion of ω-iterability precise.

An execution of a sequence σ of the form

t 1 -→ . . . t k
-→ is a sequence of valuations v 0 , . . . , v k such that for some δ 1 , . . . δ k ∈ R + we have

v 0 δ 1 ,t 1 --→ v 1 δ 2 ,t 2 --→ . . . δ k ,t k --→ v k We will write v 0 δ,σ -→ v k where δ = δ 1 + • • • + δ k . The sequence σ is executable from v if
there is a sequence of valuations v 0 , . . . , v k as above with v = v 0 . (For clarity of presentation, we choose not to write the state component of configurations (q, v) and instead write v alone, the state component can be anyway determined from the transition.) Definition 37. The sequence σ is ω-iterable if there is an infinite sequence of valuations v = v 0 , v 1 , . . . and an infinite sequence of delays δ 1 , δ 2 , . . . such that v 0

δ 1 ,σ --→ v 1 δ 2 ,σ --→ . . .
We also say that the sequence σ is ω-iterable from v 0 .

Using region abstraction one can observe the following characterization of ω-iterability in terms of finite executions. Observe that the lemma talks about ω-iterability and not about iterability from a particular valuation (that would give a weaker statement).

Lemma 38. A sequence of transitions is ω-iterable iff for every n = 1, 2, . . . the n-fold concatenation of σ has an execution.

Proof. Suppose a sequence of transitions σ is ω-iterable. Then, clearly every n-fold concatenation has an execution.

Suppose every n fold concatenation of σ has an execution. Let r be the number of regions with respect to the biggest constant appearing in the automaton. By assumption, the r-fold concatenation of σ has an execution:

v 0 δ 1 ,σ --→ v 1 δ 2 ,σ --→ v 2 . . . v r-1 δ r-1 ,σ ---→ v r
In the above execution, there exist i, j such that v i and v j belong to the same region R, thus giving a cycle in the region graph of the form R (j-i)σ ---→ R. By standard properties of regions, σ is ω-iterable from every valuation in R.

The above proof shows that σ is ω-iterable iff it is (r + 1)-iterable, where r is the number of regions, r = |X|! • 2 |X| • x∈X (2M x + 2) with X is the set of clocks in the automaton and M is the maximal bounds function (Definition 27). As r is usually very big, testing (r + 1)-iterability directly is not a feasible solution. Later we will show a much better bound than (r + 1), and also propose a method to avoid checking k-iterability by directly executing all the σ k transitions.

Our iterability test will first consider some simple cases where the answer is immediate. Later, using those simple cases, our iterability test will remove clocks that are not relevant. This preprocessing step is explained in the following two lemmas. We use X σ for the set of clocks appearing on a sequence of transitions σ, and X 0 for the set of clocks that are reset on σ. Let denote either < or ≤, and let stand for > or ≥.

Lemma 39. A sequence of transitions σ is not ω-iterable if it satisfies one of the following conditions:

-for some clock y ∈ X σ \ X 0 , we have guards y d and y c in σ such that either d < c, or (d = c and is <), or (d = c and is >),

-there exist clocks x ∈ X 0 and y ∈ X σ \ X 0 involved in guards of the form y d and x c such that c > 0, -for some clock x ∈ X 0 there is a guard x > 0 in σ and for some clock y ∈ X σ \ X 0 , we have both the guards y ≤ c and y ≥ c in σ.

Proof. If the first condition is true, it is clear that σ cannot be iterated even twice. In the second case, at least c > 0 time units need to be spent in each iteration. Since y is not reset, the value of y would become bigger than d after a finite number of iterations and hence the guard y d will not be satisfied.

In the third situation, the guard x > 0 requires a compulsory non-zero time elapse. However as y = c and y is not reset, a time-elapse is not possible and thus σ is not iterable.

Lemma 40. Suppose σ does not satisfy the conditions given in Lemma 39. If, additionally, σ has no guard of the form x c with c > 0 for clocks x that are reset, then σ is iterable.

Proof. Suppose no guard of the form x c is present for clocks x ∈ X 0 . As σ does not satisfy the conditions in Lemma 39, we can find for each y ∈ X σ \ X 0 , a value λ y that satisfies all guards involving y in σ. Set v(x) = 0 for x ∈ X 0 and v(y) = λ y for all y ∈ X σ \ X 0 . Consider an execution without time elapse from v. Constraints z k for clocks that are not reset are satisfied as we started with v(z) k, and v(z) has not changed. Constraints z k for clocks that are reset also hold as these clocks take the constant value zero. We get back to v after the execution, implying that σ is iterable from v. Suppose no guard of the form x c x with c x > 0 is present for the reset clocks x ∈ X 0 , but for some clock x ∈ X 0 the guard x > 0 appears in σ. This says that a compulsory time elapse is required. Again, as Conditions 1 and 3 of Lemma 39 are not met by σ, we can pick a λ y that satisfies all guards in σ that involve y. Set v(x) = 0 for x ∈ X 0 and v(y) = λ y for all y ∈ X σ \ X 0 . From among all clocks z ∈ X, we find the minimum constant out of k -v(z) where z has a guard of the form z k. In our execution we elapse time that is half of this minimum, after the reset. Constraints z > c for clocks that are not reset are satisfied. Constraints z < k for all clocks are satisfied by the way in which we choose our time delay. We obtain a similar valuation and can repeat this procedure to execute σ any number of times. We can conclude by Lemma 38.

The following proposition summarizes what can be deduced in simple cases.

Proposition 41. Let σ be a sequence of transitions. Then:

-if σ satisfies some condition in Lemma 39, then σ is not ω-iterable; -if σ does not satisfy Lemma 39 and does not contain a guard of the form x c with c > 0 for a clock that is reset, then σ is ω-iterable;

-if σ does not satisfy Lemma 39 and contains a guard of the form x c with c > 0 for some clock x that is reset, then σ is ω-iterable iff σ X 0 obtained from σ by removing all guards on clocks not in X 0 is ω-iterable.

Proof. The first two cases have been shown in Lemmas 39 and 40. For the third case, note that the transition sequence σ X 0 is the same as σ except for certain guards that have been removed. Hence if σ is iterable, the same execution is also an execution of σ X 0 . We will hence concentrate on the reverse direction. Suppose there exists a guard x c x with c x > 0 for a clock x ∈ X 0 . From Condition 2 of Lemma 39, all guards involving y ∈ X \ X 0 would be of the form y k. In other words, the upper bound guards involve only the clocks that are reset. Now, suppose σ X 0 is ω-iterable from a valuation v. Let ρ be this execution. We will now extend v to a valuation v over the clocks X. For all clocks x ∈ X 0 , let v (x) = v(x). For clocks y ∈ X σ \ X 0 , set v (y) to a value greater than maximum of k from among constraints y k. By elapsing the same amounts of time as in ρ, the sequence σ can be executed from v . From ρ, we know that all clocks in X 0 satisfy the guards. All clocks y ∈ X σ \ X 0 satisfy guards y c y by construction. As there are no other type of guards for y, we can conclude that σ is iterable.

We can thus eliminate all clocks that are not reset while discussing iterability. Our σ now only contains clocks that are reset at least once, and has some compulsory minimum time elapse in each iteration.

Transformation graphs

Recall that the goal is to check if a sequence σ of transitions

t 1 -→ . . . t k -→ is ω-iterable.
From the results of the previous section, we can assume that every clock is involved in a guard and is also reset in σ. In the normal forward analysis procedure, one would start with some zone Z 0 and keep computing the zones obtained after each transition:

Z 0 t 1 -→ . . . t k -→ Z k .
The zone Z 0 is a set of difference constraints between clocks. After each transition, a new set of constraints is computed. This new constraint set reflects the changes in the clock differences that have happened during the transition. Our aim is to investigate if certain "patterns" in these changes are responsible for non-iterability of the sequence. To this regard, we associate to every transition sequence what we call a transformation graph, where the changes happening during the transitions are made more explicit. In this subsection we will introduce transformation graphs and explain how to compose them.

We start with a preliminary definition. Fix a set of clocks X + = {x 0 , x 1 , . . . , x n }. The clock x 0 will be special as it will represent the reference point to other clocks. We will work with two types of valuations of clocks. The standard ones are v : X + → R + and are required to assign 0 to x 0 . A loose valuation v is a function v : X + → R with the requirement that v(x i ) ≥ v(x 0 ) for all i. In particular, by subtracting v(x 0 ) from every value we can convert a loose valuation to a standard one. Let norm(v) denote this standard valuation. Definition 42. A transformation graph is a weighted directed graph whose vertices are V = {0, . . . , k} × X + for some k, and whose edges have weights of the form (≤, d) or (<, d) for some d ∈ N.

We will say that a vertex (0, x) is in the leftmost column of a transformation graph and a vertex (k, x) is in the rightmost column. The graph as above has k + 1 columns. Figure 5.3 shows an example of a transformation graph with three columns.

(0, x 0 ) (0, x 1 ) (0, x 2 ) (1, x 0 ) (1, x 1 ) (1, x 2 ) (2, x 0 ) (2, x 1 ) (2, x 2 ) ≤ 0 ≤ 0 ≤ 0 ≤ 0 ≤ 0 ≤ 0 ≤ 0 ≤ 0 ≤ 0 ≤ 0 < 5 ≤ 0 ≤ 0 Figure 5.3: A transformation graph over the set of clocks {x 0 , x 1 , x 2 }.
Edges in a transformation graph represent difference constraints. For instance, in the graph from Figure 5.3, the edge from (1, x 0 ) to (1, x 2 ) with weight (<, 5) represents the constraint (1, x 2 ) -(1, x 0 ) < 5. We will now formally define what a solution to a transformation graph is.

Definition 43. Let G be a transformation graph with k+1 columns. A solution for G is a sequence of loose valuations v 0 , . . . , v k : X + → R such that for every edge from (p, x i ) to (q, x j ) of weight ( , d) in G we have v q (x j ) -v p (x i ) d.

Example 10. A solution to the transformation graph in Figure 5.3 would be the sequence v 0 , v 1 , v 2 where v 0 := -1.5, 5, 1 , v 1 := -3, 5, 1 , v 2 := -3, -3, 1 (we write the values in the order x 0 , x 1 , x 2 ). Check for instance that v 1 (x 2 ) -v 1 (x 0 ) < 5 according to the definition.

We will need to know when a transformation graph has a solution. For this we introduce an arithmetic over the weights ( , d) defined as follows [START_REF] Bengtsson | Timed automata: Semantics, algorithms and tools[END_REF].

Equality ( 1 , d 1 ) = ( 2 , d 2 ) if d 1 = d 2 and 1 = 2 . Addition ( 1 , d 1 ) + ( 2 , d 2 ) = ( 3 , d 1 + d 2 ) where 3 =< iff either 1 or 2 is <. Minus -( , d) = ( , -d).
Order

( 1 , d 1 ) < ( 2 , d 2 ) if either d 1 < d 2 or (d 1 = d 2 and 1 =< and 2 =≤).
With this arithmetic, a cycle in a transformation graph G is said to be negative if the sum of the weights of its edges it at most (<, 0); otherwise the cycle is non-negative.

Lemma 44. A transformation graph G has a solution iff it does not have a cycle of a negative weight.

Proof. A transformation graph G with no negative cycles is said to be in canonical form if the shortest path from some vertex x to another vertex y is given by the edge x → y itself. The Floyd-Warshall's all pairs shortest paths algorithm can be used to compute the canonical form.

We now prove the first direction of the lemma: If a transformation graph G has a solution, it does not have a cycle of negative weight.

Take a solution v 0 , . . . , v k of G. We create a new graph by replacing every edge (p, x i )

piqj d piqj ------→ (q, x j ) in G by (p, x i ) ≤d -→ (q, x j ) where d = v q (x j ) - v p (x i ).
(Observe that the weight can be a real number in this case, while our definition allowed only integers. Since real-numbered weights are used only in this argument we refrain from defining graphs with such weights separately.) As v 0 , . . . , v k is a solution of G, we have d piqj d piqj .

Since in the new graph, every cycle has value 0, every cycle in G is nonnegative.

For the other direction of the lemma, suppose that every cycle in G is non-negative. We will show that there is a solution of G.

Let G be the canonical form of G. Clearly, the constraints defined by G and by G are equivalent; G and G have the same set of solutions. And we also know that all cycles in G are non-negative.

We say that a variable (p, x i ) is fixed in G if in this graph we have edges

(0, x 0 ) ≤d pi --→ (p, x i ) and (p, x i ) ≤-d pi
---→ (0, x 0 ) for some constant d pi . These edges mean that every solution of G should assign (p, x i ) to

d pi + v 0 (x 0 ).
If all the variables in G except (0, x 0 ) are fixed then the value of every cycle in G is 0, and the solution assigning some value d 00 to (0, x 0 ), and d pi + d 00 to every variable (p, x i ) except (0, x 0 ) is a solution of G. Consequently, G has a solution.

Otherwise if there is a variable, say (q, y), that is not fixed in G. We will show how to fix it. Let us multiply all the constraints in G by 2. This means that we change each edge x 1 d -→ x 2 to x 1 2d --→ x 2 . Let us call the resulting graph H. Clearly, H is in canonical form since G is. Moreover, H has a solution iff G has a solution. The gain of this transformation is that for our chosen variable (q, y) we have in H edges (0, x 0 ) ≤ 0y d 0y ----→ (q, y) and (q, y)

≤ y0 d y0 ----→ (0, x 0 )
with d y0 + d 0y ≥ 2. This means that there is a natural number d such that (≤, d) ≤ ( 0y , d 0y ) and (≤, -d) ≤ ( y0 , d y0 ). Let H d be H with edges between (0, x 0 ) and (q, y) changed to (0, x 0 ) ≤d -→ (q, y) and (q, y) ≤-d --→ (0, x 0 ). This is a transformation graph where (q, y) is fixed. We need to show that there is no negative cycle in this graph.

Suppose that there is a negative cycle in H d . Clearly it has to pass through (0, x 0 ) and (q, y) since there is no negative cycle in H. Suppose that it uses the edge (0, x 0 ) ≤d -→ (q, y), and suppose that the next used edges is (q, y) yxdyx ----→ (p, x). The cycle cannot come back to (q, y) before ending in (0, x 0 ) since then we could construct another negative cycle without using (0, x 0 ) ≤d -→ (q, y). Hence all the other edges in the cycle come from H. Since H is in the canonical form, a path from (p, x) to (0, x 0 ) can be replaced by the edge from (p, x) to (0, x 0 ), and the value of the path will not increase. This means that our hypothetical negative cycle has the form (0, x 0 )

≤d -→ (q, y) yxdyx ----→ (p, x) x0 d x0
----→ (0, x 0 ). By canonicity of H we have ( yx , d yx )+( x0 , d x0 ) ≥ ( y0 , d y0 ). Putting these two facts together we get

(≤, 0) > (≤, d) + ( yx , d yx ) + ( x0 , d x0 ) ≥ (≤, d) + ( y0 , d y0 )
but this contradicts the choice of d which supposed that (≤, d) + ( y0, , d y0 ) is positive. The proof when the hypothetical negative cycle passes through the edge (q, y) ≤,-d ---→ (0, x 0 ) is analogous. Summarizing, starting from G that has no negative cycles we have constructed a graph H d that has no negative cycles, and has one more variable fixed. We also know that if H d has a solution then G has a solution. Repeatedly applying this construction we get a graph where all the variables except (0, x 0 ) are fixed and no cycle is negative. As we have seen above such a graph has a solution.

Definition 45. Given a transformation graph G and a pair of valuations v, v . We say that v, v can be extended to a solution of G if there exists a solution v 0 , . . . , v k of G where v 0 = v and v k = v .

Our aim is to construct transformation graphs that reflect the changes happening during a transition sequence. The following is the definition of what it means to reflect a transition sequence.

Definition 46. We say that a transformation graph G reflects a transition sequence σ if the following hold:

-For every solution v 0 , . . . , v k of G we have norm(v 0 )

δ,σ -→ norm(v k ) where δ = -v k (x 0 ) -v 0 (x 0 ).
-For every v 0 δ,σ -→ v k the pair of valuations v 0 , and (v k -δ) can be extended to a solution of G.

Consider Figure 5.3 again. It reflects a delay, followed by the single transition t :

x 2 <5, {x 1 } -------→ with the guard x 2 < 5 and the reset {x 1 }. Let us illustrate our claim with an example. For the solution v 0 , v 1 , v 2 given in Example 10, check that norm(v 0 ) 1.5,t --→ norm(v 2 ). Similarly, for every pair of valuations that satisfy v δ,t -→ v , one can check that v and v -δ can be extended to a solution of the graph in Figure 5.3.

We will now give the construction of the transformation graph for an arbitrary transition. Subsequently, we will define a composition operator that will extend the construction to a sequence of transitions.

Definition 47. Let t : g,R ---→ be a transition with guard g and reset R. The transformation graph G t for t is a 3 column graph with vertices {0, 1, 2} × X + . Edges are defined as follows:

Time-elapse + guard edges:

1. (0, x 0 ) ≤0 ---→ (1, x 0 ), 2. (0, x i ) ≤0 ---→ (1, x i ) and (1, x i ) ≤0 ---→ (0, x i ) for all x i = x 0 , 3. (1, x 0 ) c --→ (1, x i ) for every constraint x i c in the guard g, 4. (1, x i ) -c
---→ (1, x 0 ) for every constraint x i c in the guard g Reset edges:

5. (1, x i ) ≤0 ---→ (2, x i ) and (2, x i ) ≤0 ---→ (1, x i ) for all x i / ∈ R, 6. (1, x i ) ≤0 ---→ (2, x i ) for all x i ∈ R 7. (2, x i ) ≤0 ---→ (2, x 0 ) and (2, x 0 ) ≤0 ---→ (2, x i ) for all x i ∈ R.
The edges between the first two columns of G t describe the changes due to time elapse and constraints due to the guard. The edges between the second and the third column represent the constraints arising due to reset. Note that the only non-zero weights in the graph come from the guard. -------→. The edges between the first and the second column represent the constraints after time-elapse. The edge from (1, x 0 ) to (1, x 2 ) with weight (<, 5) represents the guard x 2 < 5. The edges between the second and the third column represent the constraints arising after reset x 1 .

The following lemma establishes that the definition of a transformation graph that we have given indeed reflects a transition according to Definition 46. The proof is by direct verification.

Lemma 48. The transformation graph G t of a transition t reflects transition t. Now that we have defined the transformation graph for a transition, we will extend it to a transition sequence using a composition operator.

Definition 49. Given two transformation graphs G 1 and G 2 we define its composition G = G 1 G 2 . Supposing that the number of columns in G 1 and G 2 is k 1 and k 2 , respectively; G will have (k 1 + k 2 )-columns. Vertices of G are {0, . . . , k 1 + k 2 -1} × X + . The edge between vertices (i, x) and (j, y) exists and is the same as in G 1 if i, j < k 1 ; it is the same as between (i -k 1 , x) and

(j -k 1 , y) in G 2 if i, j ≥ k 1 . Additionally we add edges of weight (≤, 0) from (k 1 -1, x) to (k 1 , x) and from (k 1 , x) to (k 1 -1, x).
By definition of composition, we get the following lemma.

Lemma 50. The composition is associative.

The following lemma is instrumental in lifting the definition of transformation graph from a transition to a transition sequence.

Lemma 51. If G 1 , G 2 are transition graphs reflecting σ 1 and σ 2 respectively, then G 1 G 2 reflects their composition σ 1 σ 2 .

Proof. Let G 1 , G 2 be transition graphs reflecting σ 1 and σ 2 . Let k 1 , k 2 be the number of columns of G 1 and G 2 , respectively. Consider the transformation graph G = G 1 G 2 . We will show that G reflects the composition σ 1 σ 2 .

From definition of composition, the first k 1 columns of G are the same as G 1 . Those columns reflect σ 1 . The edges of weight (≤, 0) from (k 1 -1, x) to (k 1 , x) and from (k 1 , x) to (k 1 -1, x) for every clock x represent that there is no change between the (k 1 -1)-th and k 1 -th columns. The last k 2 columns of G reflect σ 2 since they are the same as G 2 .

Therefore the transition graph G reflect σ 1 immediately followed by σ 2 . It is the concatenation σ 1 σ 2 .

The transformation graph for a sequence of transitions is therefore defined using the composition operation on graphs.

Definition 52. The transformation graph G σ for a transition sequence σ :=

t 1 -→ t 2 -→ . . . t k -→ is given by G 1 G 2 • • • G k where G i is the transformation graph of t i .
From Lemma 51, we get the following property.

Lemma 53. For every sequence of transitions σ, the graph G σ reflects σ.

We will make use of the transformation graph G σ to check if σ is ω-iterable.

The following two corollaries are a first step in this direction. They use Lemma 44 and Lemma 38 to characterize iterability in terms of transformation graphs.

Corollary 54. A sequence of transitions σ is executable iff G σ does not have a negative cycle.

Corollary 55. A sequence of transitions σ is ω-iterable iff for every n = 1, 2, . . . the n-th fold composition (G σ • • • G σ ) of G σ does not have a negative cycle.
Pick a transformation graph G with no negative cycles. It is said to be in canonical form if the shortest path from some vertex x to another vertex y is given by the edge x → y itself. Floyd-Warshall's all pairs shortest paths algorithm can be used to compute the canonical form. The complexity of this algorithm is cubic in the number of vertices in the graph. As the transformation graphs have many vertices, and the number of vertices grows each time we perform a composition, we would like to work with smaller transformation graphs.

Definition 56. Given a transformation graph G = (V, E) without negative cycles. Let k be the number of columns in G, X + be the set of clocks, and G = (V, E) be the canonical form of G. A short transformation graph, denoted [G] = (V , E ), is a transformation graph where ,d,(j,y) | (i, x), (j, y) ∈ V : (i, x), , d, (j, y) ∈ E} In words, for a transformation graph G without negative cycles, its short transformation graph [G] is a transformation graph obtained by restricting to leftmost and rightmost columns of the canonical form of G.

-V = {(i, x) | i ∈ {0, k}, x ∈ X + : (i, x) ∈ V } and -E = { (i, x),
To be able to reason about σ from [G σ ], we need the following lemma which says that [G σ ] reflects σ as well. The purpose of defining short transformation graphs is to be able to compute negative cycles in long concatenations of σ efficiently. The following lemma is important in this regard, as it will allow us to maintain only short transformation graphs during each stage in the computation.

Lemma 58. For two transformation graphs G 1 , G 2 without negative cycles, we have:

[[G 1 ] [G 2 ]] = [G 1 G 2 ] Proof. Given two transformation graph G 1 = (V 1 , E 1 ), G 2 = (V 2 , E 2 ) without negative cycles. Let k 1 , k 2 be the number of columns in G 1 and G 2 , respec- tively. Let G 1 ,G 2 and G 1 G 2 be the canonical form of G 1 , G 2 and G 1 G 2 ,
respectively. We will show that the vertices and edges of the transformation graph

[[G 1 ] [G 2 ]] and [G 1 G 2 ] are the same.
From the definition of short transformation graphs, it is clear that the vertices of

[[G 1 ] [G 2 ]] and [G 1 G 2 ] are the same.
We will show that the set edges of

[[G 1 ] [G 2 ]
] and [G 1 G 2 ] are identical. Let -x and y denote a vertex in the leftmost and a vertex in the rightmost column of G 1 G 2 , respectively, -x i k 1 -1 and x j k 1 for any i, j ≥ 1 denote a vertex in the (k 1 -1)-th column and k 1 -th column of G 1 G 2 , respectively, -→ * 1 and → * 2 denote the reflexive and transitive closure of the edges in E 1 and E 2 , respectively, -→ denote an edge between x i k 1 -1 and x j k 1 . For any pair of vertices x, y, every shortest path from x to y in G 1 G 2 has the form

x → * 1 x 1 k 1 -1 → x 1 k 1 → * 2 . . . → * 2 x i k 1 → x i k 1 -1 → * 1 . . . → * 2 y
In words, the shortest path from x to y can be decomposed into subpaths in one of the following three types: paths of edges in G 1 , paths of edges in G 2 , and an edge between the (k 1 -1)-th and the k 1 -th columns of the graph.

Since G 1 is the canonical form of G 1 , every paths → * 1 can be replaced by a corresponding edge in G 1 with the same weight. Similarly, every paths between → * 2 can be replaced by a corresponding edge in G 2 with the same weight. Therefore, for any pair of vertices x, y in V , every shortest path from

x to y in G 1 G 2 has a corresponding path in G 1 G 2 . Consequently, [[G 1 ] [G 2 ]] and [G 1 G 2 ] have the same set of edges. Thus [[G 1 ] [G 2 ]] = [G 1 G 2 ]
We finish this section with a convenient notation and a reformulation of the above lemma that will make it easy to work with short transformation graphs.

Definition 59. G 1 • G 2 = [G 1 G 2 ]. Lemma 60. G 1 • G 2 = [G 1 ] • [G 2 ].
In particular, operation • is associative.

Based on Definition 59, the transformation graph G σ for a transition sequence σ is in fact a two column graph (left column with variables of the form (0, x) and the right column with variables of the form (1, x)). In the next section, we will use this two column graph G σ to reason about the transition sequence σ.

A pattern making ω-iteration impossible

The effect of the sequence of timed transitions is fully described by its transformation graph. We will now define a notion of a pattern in a transformation graph that characterizes those sequences of transitions that cannot be ω-iterated. This characterization gives directly an algorithm for checking ωiterability.

For this section, fix a set of clocks X + . We denote the number of clocks in X + by n. Let σ be a sequence of transitions, and let G σ be the corresponding transformation graph. In words, left(G σ ) denotes the zone that is the restriction of G σ to the leftmost variables (0, x i ). Similarly for right(G σ ), but for the rightmost variables (1, x i ).

As G σ reflects σ, the zone left(G σ ) describes the maximal set of valuations that can execute σ once. Similarly, when we consider the i-fold composition using the composition operation in Definition 59, (G σ ) i , the zone left((G σ ) i ) describes the set of valuations that can execute σ i-times.

We want to find a constant κ such that if σ is ω-iterable, the left columns of (G σ ) κ and (G σ ) 2κ are the same. Note that as the number of regions is finite, we will eventually reach i and j such that left((G σ ) i ) and left((G σ ) j ) intersect the same set of regions. Moreover as the left column is not increasing, we would eventually get a κ that we want. However with this naïve approach we get a bound κ which is even exponential in the number of regions.

We will show that if σ is ω-iterable then κ ≤ n 2 . The trick is to study shortest paths in the graph (G σ ) i . To this regard, we will look at paths in this composition as trees, which we call p-trees. We begin with an illustration of a p-tree in Figure 5.4. It explains the definition of a p-tree (Definition 62) and shows the one-to-one correspondence between paths in a composition of G σ and p-trees. The weight of a path is the sum of weights in the tree. The weight of a p-tree is the sum of weights that appear in it. A p-tree is complete if all the leaves are labeled by .

(i, x) (i, y) (j, u) (j, z) (j, v) . . . . . . . . . . . . c d e G G (x, y) (u, v) (u, z) (z, v) c + d e
An (x, y)-(u, v) context is a p-tree with the root labeled (x, y) and all the leaves labeled except for one leaf that is labeled (u, v).

The definition of p-tree reflects the fact that each time the path in a graph G σ can either go to the left or to the right, or stay in the same column. Consider again Figure 5.4, the figure illustrates all three cases in the Figure 5.5. The node (z, v) is an example of the first case. It has one child since the path from z to v is a simple edge in the same column. The node (x, y) is an example of the second case. It has one child node (u, v) since the path from x to y is always to the right of x and y before it reaches back y. The node (u, v) is an example of the third case. It is because the path from u to v is clearly not in the form described by the first case, and it is also not in the form described by the second case since the path crosses the column containing u and v at z before it reaches v. By definition, the node (u, v) has two child nodes (u, z) and (z, v) meaning that the path from u to v is considered as a composition of two smaller path segments: from u to z, and from z to v.

With the definition of p-trees, we can establish the one-to-one correspondence between paths in a composition of G σ and p-trees. Every p-tree represents a path in an i-fold composition (G σ ) i and every path in (G σ ) i can be seen as a p-tree. Lemma 63. Take an i ∈ {1, 2, . . . } and consider an i-fold composition of G σ . For every pair of vertices (j, x) to (j, y) in the same column of G i σ : if there is a path of weight w from (j, x) to (j, y) then there is a complete p-tree of weight w with the root labeled (x, y).

Proof. Consider a path π from (j, x) to (j, y). We construct its p-tree by an induction on the length of π. If π is just an edge (j, x) e -→ (j, y), then the corresponding p-tree would have (x, y) as root and a single child labeled . The weight of the edge would be e.

Suppose π is a sequence of edges. We make the following division based on its shape.

Case 1: The path π could cross the j th column at some vertex (j, z) before reaching (j, y):

(j, x) - → • • • - → (j, z) - → • • • - → (j, y)
. By induction, there are complete p-trees for the paths (j, x) -→ • • • (j, z) and (j, z) -→ . . . (j, y). The p-tree for π would have (x, y) as root and (x, z) and (z, y) as its two children. The edge weights to the two children would be (≤, 0). The p-trees of the smaller paths would be rooted at (x, z) and (z, y).

Case 2: The path π never crosses the j th column before reaching (j, y). This means the path is entirely to either the left or right of the j th column. Let us assume it is to the right. The case for left is similar. So π looks like: → (j,y). Note that u cannot be equal to v since the path of the minimal weight must be simple (in the case when the path has exactly three nodes (j, x), (j + 1, v), (j, y), there is actually a direct edge from (j, x) to (j, y), as [G σ ] is in the canonical form). By induction, the smaller path segment from (j + 1, u) to (j + 1, v) has a p-tree. The p-tree for π would have (x, y) as root and a single child (u, v). The weight of this edge would be c + d. The p-tree for the smaller path would be rooted at (u, v). Lemma 64. If there is a complete p-tree with the root (x, y), weight w and height k then in G 2k σ the weight of the shortest path from (k, x) to (k, y) is at most w. x,y) and the only leaf that is not is (x, y) again. Moreover, the weight has to be negative.

(j, x) c - → (j + 1, u) • • • (j + 1, v) d -
Proof. For every level moved down in the p-tree, the corresponding path moves either one column left or one column right. As the height of the p-tree is bounded by k, there is a path that spans less than k columns. This path goes from (k, x) to (k, y) in the composition G 2k σ . Its weight is the weight of the tree. Therefore the smallest weight of a path from (k, x) to (k, y) is at most w. Now that we have established the correspondence between paths and ptrees, we are in a position to define a pattern in the paths that causes noniterability.

Definition 65. A pattern is an (x, y)-(x, y) context for some variables x and y, whose weight is negative (c.f. Figure 5.6). We say that σ admits a pattern if G σ has a pattern (notice that the definition of p-tree depends on σ).

The next proposition says that patterns characterize ω-iterability. Moreover, it ensures that we can conclude after n 2 iterations. For transformation graphs G 1 , G 2 , we will write

G 1 G 2 if left(G 1 ) = left(G 2 ) and right(G 1 ) = right(G 2 ).
Proposition 66. If σ admits a pattern then there is no valuation from which σ is ω-iterable. If σ does not admit a pattern, then for every i = 1, 2 . . . we have

(G σ ) n 2 (G σ ) n 2 +i .
Proof of the above proposition follows from Lemmas 67, 68, 69.

Lemma 67. If σ admits a pattern then there is no valuation from which σ is ω-iterable.

Proof. We will show that there is k such that there is a negative cycle in the k-th fold composition

G σ • • • G σ .
Suppose σ admits a pattern. Suppose we have clocks x, y such that x ≤ y is implied by σ. This means that the last reset of y happens before the last reset of x in σ. In consequence x ≤ y is an invariant at the end of every iteration of σ.

Consider a sufficiently long composition

G σ • • • G σ .
Since there is a pattern, for some i < j we have one of the two cases 1. there is a path (i, x) to (j, x) and from (j, y) to (i, y) whose sum of weights is negative.

2. there is a path (j, x) to (i, x) and from (i, y) to (j, y) whose sum of weights is negative.

Observe that since x ≤ y, we have an edge of weight at most (≤, 0) from y to x in every iteration.

Case 1 makes the edge y → x more and more negative when going to the right. Case 2 makes the leftmost edge y → x more and more negative depending on the number of iterations.

The second case clearly implies that an infinite iteration is impossible: in every valuation permitting ω-iteration the distance from x to y would need to be infinity.

The first case tells that in subsequent iterations the difference between x and y should grow. Since every variable is reset in every iteration, this implies that the amount of time elapsed in each iteration should grow too. But this is impossible since, as we will show in the next paragraph, the presence of the edge (j, y) to (i, y) of weight d implies that the value of y after each execution of σ is bounded by d. In consequence the difference between x and y is bounded too. A contradiction.

Figure 5.7: An edge from (2, y) to (1, y) gives a bound on delays It remains to see why the edge (j, y) to (i, y) of weight d implies that the value of y at the end of each iteration of σ is bounded. For simplicity of notation take i = 1 and j = 2, the argument is the same for other values. We will show that the last two resets of y in the consecutive executions of σ need to happen in not more than d time units apart. This implies that the value of y is bounded by d.

In Figure 5.7 we have pictured the composition of two copies of the transition graph G σ . The graph has k columns: numbered from 0 to k -1. The last reset of y is in the column i, so in the second copy it is in the column k +i. The black edges with weight 0 come from the definition of the transition graph. For example the horizontal weight 0 edges between y's are due to the fact that y is not reset between columns i and k -1. As we can see from the picture, the edge of weight d from (k, y) and (2k -1, y) induces an edge of weight d from (k + i, x 0 ) to (i, x 0 ). Take a valuation v satisfying the pictured composition of the two graphs G σ . The induced edge gives us v(i, x 0 ) -v(k + i, x 0 ) ≤ d. Recall that the value -v(i, x 0 ) represents the time instance when the column i "happens". Rewriting the last inequality as (-v(k + i, x 0 )) -(-v(i, x 0 )) ≤ d, we can see that between columns i and k + i at most d units of time have passed. So the value v(k -1, y) -v(k -1, x 0 ), that is the value of y at the end of the first iteration of σ is bounded by d.

The above lemma says that if there is a pattern, then σ cannot be iterated. We will now show that if there is no pattern, then the p-trees representing shortest paths are bounded by n 2 and hence n 2 iterations will be sufficient to conclude if the sequence is ω-iterable.

Lemma 68. If σ does not admit a pattern then for every (x, y) there is a complete p-tree of minimal weight and height bounded by n 2 whose root is (x, y).

Proof. In order to get a p-tree with minimal weight, observe that if we have a repetition of a label in the tree then we can cut out the part of the tree between the two repetitions. Moreover, we know that this part of the tree would sum up to a non-negative weight as by assumption σ does not have a pattern. Therefore, cutting out the part between repetitions gives another tree that has smaller height and does not have a bigger weight. The height of a p-tree with no repetitions is bounded by n 2 . Lemma 69. If σ does not admit a pattern, then for every i = 1, 2 . . . we have

G n 2 +i σ G n 2
σ . Proof. Due to Lemma 68, the shortest paths between any two variables in the leftmost column does not cross n 2 columns. Similarly the shortest path between any two variables in the rightmost column cannot go more than n 2 columns to the left. As this value is the same for both G n 2 σ and G n 2 +i σ , the lemma follows.

Based on Proposition 41, we get a procedure for checking if σ is ω-iterable.

Theorem 70. Let σ be a sequence of transitions and let n be the number of clocks. Following is a procedure for checking if σ is ω-iterable.

1. If σ satisfies Lemma 39, report σ is not ω-iterable. Otherwise, continue.

2. If there is no clock x that is both reset and is checked for x c with c > 0 in some guard, report σ is iterable. If there is such a clock, remove from σ all guards containing clocks that are not reset and continue.

3. Compute G 1 = G σ ; stop if it defines the empty relation.

Iteratively compute

G 2 k+1 = G 2 k • G 2 k ; stop if the result defines the empty relation, or 2 k > n 2 , or G 2 k+1 G 2 k .
If a result defines the empty relation or

2 k > n 2 then σ is not ω-iterable. If G 2 k+1 G 2 k then left(G 2 k )
is the zone consisting precisely of all the valuations from which σ is ω-iterable.

Proof. The first two steps are justified by Proposition 41. We discuss the third and fourth steps.

If at some moment the result of an operation is not defined then there is a negative cycle in G 2 k σ , so σ can be executed not more than 2 k times. Hence σ is not ω-iterable.

If 2 k > n 2 then there is a pattern and σ is not ω-iterable (c.f. Lemma 69).

If G 2 k+1 G 2 k , then it means that the left column will not change on further compositions. As G σ is the graph that reflects σ, we have that left(G 2 k ) is the set of valuations from which σ is ω-iterable.

The complexity of this procedure is O((|σ| + log n) • n 3 ). The graph G σ is built by incremental composition of the transitions in σ. Each transition in σ can be encoded as a transformation graph over 2n variables. The sequential composition of two transformation graphs over 2n variables uses a DBM over 3n variables (with n variables shared by the two graphs). The canonicalisation of this DBM is achieved in time O(3n) 3 and yields a transformation graph over 2n variables corresponding to the composition of the relations. Hence, G σ is obtained in time O(2|σ| • (3n) 3 ) assuming that each step in σ corresponds to a transition followed by a delay. Once G σ has been computed, (G σ

) n 2 is obtained in time O(2 log n • (3n) 3 ) using the fact that (G σ ) 2k = (G σ ) k • (G σ ) k for k ≥ 1.

Experiments

In this section we give some indications about the usefulness of the ω-iterability check. The example from page 77 shows that the gains from our ω-iteration procedure can be arbitrarily big. Still, it is more interesting to see the performance of ω-iterability check on standard benchmark models. For this we have taken the collection of the same standard models as in many other papers on the verification of timed systems and in particular in [LOD + 13].

In our tests we will verify properties given by Büchi automata on the standard timed models. To do this, we take the product of the model with a property automaton, and check for Büchi non-emptiness on this product. Algorithms for the Büchi non-emptiness problem can broadly be classified into two kinds: nested DFS-based [START_REF] Gerard J Holzmann | On nested depth first search[END_REF] and Tarjan-based decomposition into SCCs [START_REF] Couvreur | On-the-fly verification of linear temporal logic[END_REF]. Both these algorithms are essentially extensions of the simple DFS algorithm with extra procedures that help identify cycles containing accepting states. Currently, no algorithm is known to outperform the rest in all cases [START_REF] Gaiser | Comparison of algorithms for checking emptiness on Büchi automata[END_REF].

Restricting to weak Büchi properties

In order to focus on the influence of iterability checking we consider weak Büchi properties (all states in a cycle are either accepting or non-accepting). In this case, the simple modification of DFS is the undisputed best algorithm: to find an accepting loop, it is enough to look for it on the active path of the DFS [ ČP03]. In other words, it is nested DFS where the secondary DFS search is never started.

The algorithm, that we will call DFS with subsumption (DFSS), performs a classical depth-first search on the finite abstracted zone graph ZG Extra + LU (A). It uses the additional information provided by the zones to limit the search from the current node (q , Z ) in two cases:

1. If q is accepting, and on the stack there is a path σ from a node (q , Z ) to the current node with Z ⊆ Z then report existence of an accepting path.

2. If there is a fully explored node (q , Z ), i.e. a node not on the stack, with Z ⊆ Z then ignore the current node and return from the DFS call.

This is the algorithm one obtains after specialization of the algorithm of Laarman et al. [LOD + 13] to weak Büchi properties.

The justification for the first of the above two points is that the zone inclusion relation is a simulation relation. From chapter 3 we know that if Z ⊆ Z , all the paths (q , Z ) ⇒ * (p, Z p ) can be simulated by a corresponding path (q , Z ) ⇒ * (p, Z p ) such that Z p ⊆ Z p . In the considered case, since the algorithm found a path σ from (q , Z ) to (q , Z ) and Z ⊆ Z , we know that from (q , Z ) one can also execute the path σ to reach a node (q , Z 1 ) which is in turn bigger than (q , Z ); Z ⊆ Z 1 . Hence, the path σ can be executed again from (q , Z 1 ) and results in a bigger zone at q . Since the number of zones is finite, executing the path σ from (q , Z 1 ) will finally result in a node (q , Z k ) such that (q , Z k ) ⇒ σ (q , Z k ). It is an accepting cycle.

The second point is correct since the algorithm can ignore the exploration of the current node (q , Z ) because of the following two facts. Since we have Z ⊆ Z , from chapter 3 we know that the set of reachable nodes from (q , Z ) is included in the set of reachable nodes from (q , Z ). In addition, from the fact that (q , Z ) is fully explored, we know that all nodes reachable from (q , Z ) have been explored and no accepting cycle has been found. Therefore, we know that there is no accepting cycle reachable from (q , Z ). The algorithm does not need to explore the node (q , Z ). 

Cyan:=Cyan ∪ {(q, Z)} ; f o r each (q, Z) ⇒ Extra LU + (q , Z ) i f q ∈ F and (q , Z ) ∈ Cyan then s k i p // i g n o r e (q , Z ) i f q ∈ F then i f ∃(q , Z ) ∈ Cyan. Z ⊆ Z then report Yes ;
i f ∃(q , Z ) ∈ Cyan then // Cyan node with the same sate q l e t σ be t h e path (q , Z ) → (q , Z ) on t h e stack ; i f ω-i t e r a b l e ( σ ) then return Yes ; i f ∃(q , Z ) ∈ Blue. Z ⊆ Z then s k i p // i g n o r e (q , Z ) e l s e e x p l o r e ( (q , Z ) ) ;

end Blue := Blue ∪ {(q, Z)} ; Cyan:=Cyan \ {(q, Z)} ;
It is quite clear how to add ω-iterability check to this algorithm. We add a variant of case (1) above using ω-iterability check. When q is accepting but Z ⊆ Z we use ω-iterability check on σ. If σ is iterable from (q , Z ), we have detected an accepting path and we stop the search. We refer to this algorithm as iDFSS: DFSS with ω-iteration testing. Notice that when iDFSS stops thanks to ω-iteration check, DFSS would just continue its search.

Algorithm iDFSS is presented in Algorithm 5.1. This algorithm runs a depth-first search over the finite abstracted zone graph ZG Extra + LU (A) of a timed Büchi automaton A to check whether A has an accepting run. To that purpose, the algorithm maintains two sets of states. Blue contains fully visited states and Cyan consists in partially visited states that form the current search path.

Algorithm iDFSS uses the information provided by the zones to limit the search from the current node (q , Z ) in three cases:

1. if q is accepting and on the stack there is a path σ from a node (q , Z ) to the current node with Z ⊆ Z then report existence of an accepting path (line 17).

2. when q is accepting but Z ⊆ Z we use ω-iterability check on σ. If σ is iterable from (q , Z ), we have detected an accepting path and we stop the search (line 18).

3. if there is a fully explored node (q , Z ), i.e a node not on the stack, with Z ⊆ Z then ignore the current node and return from the DFS call (line 21).

In our experiments, we compare algorithm iDFSS to algorithm DFSS that does not use iterability check (i.e. with line 18 and the next two lines removed). This is the algorithm one obtains after specialization of the algorithm of Laarman et al. [LOD + 13] to weak Buchi properties.

Our aim is to test the gains of iDFSS over DFSS. One can immediately see that iDFSS is not better than DFSS if there is no accepting path. Therefore in our examples we consider only the cases when there is an accepting path, to see if iDFSS has an effect now.

We tried variants of properties from [LOD + 13] on the standard models (TrainGate, Fischer, FDDI and CSMA/CD). The results were not very encouraging: ω-iterability check was hardly ever used, and when used the gains were negligible. Based on a closer examination of these models, we argue that while these models are representative for reachability checking, their structure is not well adapted to evaluate algorithms for Büchi properties. We explain this in more detail below.

A note on standard benchmarks

In three out of four models (Fischer, TrainGate and CSMA/CD), on every loop there is a true zone (which is the zone representing the set of all possible valuations). Moreover, in Fischer and TrainGate, a big majority of configurations have true zones, and even more strikingly, the longest sequence of configurations with a zone other than true does not exceed the number of components in the system: for example, in Fisher-3 there are at most 3 consecutive nontrivial zones. As we explain in the next paragraph, in the case of CSMA/CD all the loops turn out to be almost trivial. Thus in all the three models one can as well ignore timing information for loop detection: it is enough to look at configurations with the true zone. This analysis explains the conclusion from [LOD + 13] where it is reported that checking for counterexamples is almost instantaneous. Indeed, checking for simple untimed weak Büchi properties on these models will be very fast since every repetition of a state q of the automaton will give a loop that is ω-iteratable in ZG Extra + LU (A). This loop will be successfully detected by the inclusion test (1) in DFSS algorithm since both zones will be true. The fourth model from standard benchmarks -FDDI -is also very peculiar. In this paper we are using Extra + LU abstraction for easy of comparison. Yet more powerful abstractions allow to eliminate time component completely from the model [START_REF] Herbreteau | Lazy abstractions for timed automata[END_REF]. This indicates that dependencies between clocks in the model are quite weak.

The case of CSMA/CD gives an interesting motivation for testing Büchi properties. CSMA/CD is a protocol used to communicate over a bus where multiple stations may emit at the same time. As a result, message collisions may occur and have to be detected. Figure 5.8 shows a model for this protocol. We assume that the stations and the bus synchronize on actions. In particular, the transition from state COLLISION to state IDLE in the bus automaton synchronizes on action cd i in all N stations. The model is parametrized by the propagation delay S on the bus and the time L needed to transmit a message which are usually set to L = 808 and S = 26 [START_REF] Tripakis | Analysis of timed systems using time-abstracting bisimulations[END_REF][START_REF]UPPAAL CSMA/CD model[END_REF]. It turns out that the busy i loop on state RET RY in the station automaton is missing in the widely used model [START_REF] Tripakis | Analysis of timed systems using time-abstracting bisimulations[END_REF][START_REF]UPPAAL CSMA/CD model[END_REF]. In consequence, in this model there is no execution with infinitely many collisions and completed emissions. Even more, once some process enters in a collision, no process can send a message afterward. This example confirms once more that timed models are compact descriptions of complicated behaviors due to both parallelism and interaction between clocks. Büchi properties can be extremely useful in making sure that a model works as intended: the missing behaviors can be detected by checking if there is a run where every collision is followed by an emission. Adding the busy i loop on state RET RY enables interesting behaviors where the stations have collisions and then they restart sending messages. In Figure 5.9 we graphically represent the reachability tree for CSMA/CD with 3 stations. After adding the transition there are no new states, but there are new behaviors. The new behaviors are marked in red. The intention of this figure is just to give a visual impression of what is the influence of the added transitions.

W AIT ST ART (x i ≤ L) RET RY (x i < 2S) cd i , {x i } begin i , {x i } busy i {x i } cd i , {x i } cd i , {x i } busy i , {x i } begin i , {x i } (x i < S) cd i {x i } (x i = L), end i , {x i } IDLE BU SY COLL. (y < S) begin i , {y} (y ≥ S), busy i end i , {y} (y < S) begin i {y} (y < S) {cd 1 , . . . , cd N } {y}
The other issue with CSMA/CD is that it has Zeno behaviors, and they appear precisely in the interesting part concerning collision. A solution we propose is to add the guard (x i ≥ 1) on the transitions busy i and begin i from state RET RY in the station automaton. The modified model has significantly more reachable states, but now all loops are non-Zeno.

To sum up the above discussion, due to the form of the benchmark models, we are led to consider Büchi properties that refer to time. This gives us a product automaton having zones with non-trivial interplay of clocks, and con-Figure 5.9: CSMA/CD model: after correcting the model we obtain new cycles marked in red. Leaf nodes are covered by some other node in the tree. sequently making the Büchi non-emptiness problem all the more challenging.

Models and properties

In our experiments we have used the following models:

-Train gate controller [YPD94, UPPa] -Fischer's Mutex protocol [TY01, UPPb] -CSMA/CD [TY01, UPPa] -FDDI [DOTY96, UPPc]
These models have been used as benchmarks to evaluate algorithms for safety and liveness [YPD94, DOTY96, TY01, HSW13, LOD + 13].

Figure 5.10 presents the property we have checked on the modified CS-MA/CD model. It checks if station 1 can try to transmit fast enough, and if it arrives to send a message, the delay is not too long. It also ensures that busy i events are not too close from each other to limit the state-space explosion due to the strongly non-Zeno construction applied to the model. Figures 5.11 presents the property we have checked for FDDI model. It checks if there can be infinitely often a round where all stations send asynchronous messages. We need to bound time delay between such rounds in order to express this as a weak Büchi property. The property checked for Fischer is presented in Figure 5.12. It checks if the first process can request frequently, but it can only enter the critical section in a certain time window. Figures 5.13 presents the property we have checked for Train gate controller. It checks if Train 1 can approach frequently but hardly ever stop to wait for other trains. Remark that for clarity, we use state invariants in the automata above.

An important point is that since the exploration ends as soon as it finds a loop, the order of exploration influences the results. For fairness of the comparison we have run numerous times the two algorithms using random exploration order, both algorithms following the same order each time. Hence all reported results (the number of visited nodes of all algorithms, and the number of iterability checks of iDFSS algorithm) are shown through three values: their minimal value (Min), their maximal value (Max ), and their average value (Mean) throughout all runs. The results of the experiments are presented in Table 5.1. All the examples have an accepting run.

Bottom-line. The table shows that there are quite natural properties of standard timed models where the use of ω-iteration makes a big difference. Of course, there are other examples where ω-iteration contributes nothing. Yet, when it gives nothing, ω-iteration will also not cost much because it will not be called often. Table 5.1: Benchmarks

(t 1 ≤ 3S) (t 1 < 3S), begin 1 , {t 1 } (t 2 < 2L), end 1 , {t 2 } (t 3 ≥ S) busy i {t 3 } (t 2 ≥ 2L) end 1 Figure 5
.10: Property checked on CSMA/CD.

Conclusions

We have presented a method for testing ω-iterability of a cycle in a timed automaton. Concentrating on iterability, as opposed to loop decomposition [START_REF] Comon | Timed automata and the theory of real numbers[END_REF], has allowed us to obtain a relatively efficient procedure, with the complexity comparable to zone canonicalisation. In order to focus on the influence of the iterability checking, we have performed experiments on the usefulness of this procedure for testing weak Büchi properties of standard benchmark models. This has led us to examine in depth the structure of these models. This structure explains why testing untimed Büchi properties turned out to be immediate. When we have tested for timed Büchi properties the situation changed completely, and we could observe substantial gains on some examples.

There is no particular difficulty in integrating our ω-iterability test in a tool for checking all Büchi properties. Let us just mention that we prefer methods based on Tarjan's strongly connected components since they adapt to multi Büchi properties, and allow to handle Zeno issues in a much more effective way than strongly non-Zeno construction [START_REF] Herbreteau | Efficient on-the-fly emptiness check for timed büchi automata[END_REF].

Although efficient in some cases, ω-iterability test does not solve all the problems of testing Büchi properties of timed automata. In particular, when there is no accepting loop in the automaton, the test brings nothing, and one can often observe a quick state blowup. New ideas are very much needed here.

o 1 ≤ U start o 1 ≤ U o 1 ≤ U not async 1 async 1 async 2 async 3 , {o 1 } sync 2 sync 3 o 1 ≥ U Figure 5
.11: Property for model FDDI with N = 3 stations and U = 150 * SA * N . The automaton checks if there can be infinitely often a round where all stations send asynchronous messages.

o 1 ≤ 15T start 10T ≤ o 2 < 15T ,enter 1 ,{o 2 } o 1 ≤ T ,req 1 ,{o 1 } o 2 ≥ 15T enter 1 Figure 5
.12: Property for model Fischer with N processes and T = K * N . The automaton checks if the first process can request frequently, but can only enter the critical section in a certain time window.

o 2 ≤ 30N start o 1 ≤ 300N o 2 ≤ 30N approach1 {o 2 } leave 1 o 1 ≥ 300N stop 1 {o 1 } o1 < 300N stop 1 leave 1 Figure 5
.13: Property for model Train Gate, with N trains. The automaton checks if Train 1 can approach frequently but hardly ever stop to wait for other trains.

Chapter 6

Verification of FlexRay protocol

Introduction

Nowadays, modern cars have more and more complex electronic systems. The automotive electronics provides not only entertainment systems but also control systems and safety systems in cars. Indeed, the electronic control systems in cars are realized by the x-by-wire technology. The x-by-wire technology allows to replace mechanical and hydraulic parts in cars by intelligent electronic systems. Some instances of the electronic controlling systems are steer-bywire, brake-by-wire and drive-by-wire. As those electronic controlling systems are crucial for the automotive safety, they require hard real-time communication. FlexRay is a standard real-time communication protocol for automotive electronic systems. FlexRay provides reliable real-time communication for distributed automotive networks via a Time Division Multiple Access (TDMA) scheme. The TDMA scheme controls the access to the medium based on the progression of time. It represents time as repeated consecutive communication cycles. Each communication cycle has a fixed duration, and is divided into communication slots (as shown in Figure 6.1). The TDMA scheme assigns each slot to a specific node in the network; all slot assignments form a communication schedule. Each node is thus periodically permitted to exclusively use the communication medium for a fixed amount of time.

FlexRay provides communication for a distributed network where there is no global clock but instead each node has a local clock. In order to use the Figure 6.1: FlexRay communication cycles 105 TDMA schema, FlexRay needs to perform a startup procedure to synchronize the clocks of all nodes in the network.

Therefore, the correctness and the reliability of the startup phase are crucial for the correctness of the FlexRay protocol.

In this chapter, we present a timed automata model of the startup mechanism in FlexRay. In [START_REF] Malinskỳ | Verification of flexray start-up mechanism by timed automata[END_REF] one such model is presented, but it considers only a single simplified configuration of the FlexRay network. Building on [START_REF] Malinskỳ | Verification of flexray start-up mechanism by timed automata[END_REF], we present a model of the FlexRay's startup mechanism that supports various configurations of the FlexRay network. In the second part of the chapter, we evaluate the performance of our verification algorithms proposed in the previous chapters for the verification of correctness properties of the startup mechanism.

FlexRay's startup protocol

In a FlexRay network, since there is no global clock, but only a local clock for each node, FlexRay performs the startup mechanism to align the beginning of communication cycles among all nodes. Although nodes have been aligned for the first cycles, due to clock imperfections (clock drifts), they may become misaligned in the following cycles. Hence, each node performs the clock synchronization procedure periodically while communicating. In the sequel, we present the startup mechanism and the clock synchronization mechanism in more details.

Startup mechanism

In a FlexRay network, all nodes are configured with the same communication schedule. The duration of the communication cycle and all communication slot assignments are common to all the nodes. However, the nodes cannot communicate yet because they do not know when the first communication cycle begins; the schedule is not aligned among the nodes. The startup mechanism is designed to initiate the first communication cycle, and to align the starting of the following cycles for all the nodes in the network.

The startup phase consists of two logical steps. In the first step, some configured nodes, named coldstart nodes, initiate the first communication cycles of the network. Then, the other nodes, named regular nodes, integrate in the network and align their cycles with the established communication cycles.

In the first step, only a subset of nodes called coldstart nodes are allowed to send messages to start a first communication cycle and to align the schedules of all coldstart nodes. In this step, a coldstart node can try to work as a leading coldstart node: it starts the first communication cycle, and checks whether other coldstart nodes agree with the established communication cycle. The coldstart nodes agreeing with the established communication cycle are called following coldstart nodes. In this step, there must be only one leading coldstart node. If more than one node works as a leading coldstart node, a collision is detected and all coldstart nodes restart the startup procedure.

In the startup phase, a coldstart node first listens to the network in order to detect any ongoing communication. If there is no communication in the network, the coldstart node broadcasts a Collision Avoidance Symbol (CAS), and starts the first communication cycle. This coldstart node is then called leading coldstart node. For the next four cycles, the leading node sends a startup message on its time slot. If there is more than one node sending a startup message in these four cycles, there is a collision, and all sending nodes restart the startup procedure. After these four cycles, other coldstart nodes join the communication with the established schedule.

On the other hand, if while listening, the coldstart node receives a CAS message or a startup message, it knows that there is already a leading coldstart node. It then integrates into the schedule of the leading coldstart node. Such a coldstart node is therefore called a following coldstart node. In the following cycles, the coldstart node sends its startup message on its time slot.

In the startup phase, a regular node listens to startup messages in the network to deduce when the communication cycle starts. In the following cycles, the regular node checks whether the coldstart nodes correctly send their messages with respect to the schedule. If it receives enough valid startup messages, it will leave the startup phase and enter the normal operation phase. Otherwise, it will restart the startup procedure.

Clock synchronization mechanism

Although in the first cycles of the startup phase, the communication cycles are aligned among all nodes, they can become misaligned in the following cycles because of clock imprecision. Therefore, FlexRay also performs a clock synchronization procedure throughout the communication, from the startup phase to the end of the communication in the network.

In order to perform the clock synchronization mechanism, some nodes are configured as reference nodes -called sync nodes. The messages that are sent by sync nodes are called sync messages. Note that all coldstart nodes are also sync nodes, and all startup messages are sync messages.

There is no global clock in a FlexRay network and each node has a local clock. FlexRay uses a time hierarchy to represent and adjust the clocks. The time hierarchy of FlexRay (shown in Figure 6.2) consists of cycles, macroticks and microticks. A cycle is composed of an integral number of macroticks. A macrotick is composed of an integral numbers of microticks. A microtick is derived directly from the local clock tick of each node.

With this time hierarchy, the FlexRay protocol represents time constraints Figure 6.2: FlexRay timing hierarchy [Con] in term of relations among cycles, macroticks and microticks. The FlexRay protocol requires that the duration of a communication cycle is almost the same for all nodes -only small drift is allowed. In every cycle of all nodes, the number of macroticks must be the same. However, for each macrotick, the number of microticks may be different between nodes because their local clock speed may be different. And in a node, number of microticks may differ between two macroticks. Due to clock imperfections, the time constraints between nodes could be violated; the duration of a communication cycle may differ between nodes. For instance, the frequency of the local clock of a node may be unstable, then the duration of a microtick may vary, thus the clock imperfections affect the duration of a communication cycle in the node. The FlexRay clock synchronization mechanism is therefore designed to observe those changes and apply corresponding corrections to keep all nodes synchronized.

The FlexRay clock synchronization process consists of two steps: clock deviation measurement, and clock correction.

The clock deviation measurement is performed by each node in the network. A node measures its clock deviation by observing sync messages in the network. As each node has the schedule for a whole communication cycle, it has the expected arrival time of all sync messages. Upon arrival of a sync message, the node computes a difference between the arrival time and the expected time of the message. The difference is the clock deviation between the node and the sync node that sent the message. By the end of a communication cycle, the node computes an average time deviation of all received sync messages using the fault-tolerant midpoint algorithm. In short, the fault-tolerant midpoint algorithm first sorts the list of time deviations in ascending order, then discards the first k and the last k entries where k is determined based on the number of entries in the list. Finally, the algorithm returns the average of the first entry and the last entry remaining in the list. The resulting average is the average time deviation of the local clock with respect to the clocks of all sync nodes. It is used to determine a correction to apply on the clock. If the average time deviation is too big, the node signals an error. Otherwise, it performs a clock correction procedure.

The FlexRay's clock correction mechanism considers two types of clock differences between nodes: a rate difference and an offset difference. Two nodes have an offset difference when their communication cycles have the same duration but one starts before the other. Two nodes have a rate difference when their communication cycles have different duration.

In brief, to fix these two types of clock differences, the clock correction modifies the number of microticks per cycle in each node near the end of a cycle.

For instance, consider an offset difference situation where a node has started a cycle later than the others. The clock correction procedure then decreases the number of microticks for the current cycle. Consequently, the node will finish the current cycle earlier than expected and catch the other nodes.

Similarly, consider a rate difference situation where a node has finished a cycle before the other nodes; the clock of the node is faster than the clock of others. The clock correction procedure therefore increases the number of microticks per cycle of the node. As a result, the duration of a cycle of the node will be lengthened, and the node will finish the following cycles at the same time as others.

Related work

A timed automaton model of the startup mechanism has been presented in [START_REF] Malinskỳ | Verification of flexray start-up mechanism by timed automata[END_REF], but it is for a simplified startup scenario of the FlexRay network. The model is for a startup scenario of a FlexRay network with two coldstart nodes and a regular node. The startup with two coldstart nodes however applies only to fault-free scenario. For a general scenario, the FlexRay specification says that if a network has less than or equal to three nodes, all nodes must be coldstart nodes. If a network has more than three nodes, there must be at least three coldstart nodes [Con]. In addition, the model of [START_REF] Malinskỳ | Verification of flexray start-up mechanism by timed automata[END_REF] does not consider the clock correction mechanism.

In this chapter, we present a timed automaton model of the FlexRay startup mechanism, based on [MN10] that -is scalable in term of number of coldstart and regular nodes, -models the clock drift situation at each node, -models the clock synchronization mechanism in FlexRay, -models the failure of a node during the startup phase, -and also models the reintegration of a node.

Abstractions and simplifications in our model of FlexRay's startup mechanism

In our model, we apply following abstractions and simplifications.

Time hierarchy. We do not model directly the time hierarchy of FlexRay.

It is because the modeling of microticks, macroticks and cycles counters results in discretization of time. Consequently, the discretization would lead to state-space explosion. In order to avoid the state-space explosion problem, we model each local clock as an analog clock.

Clock imperfection. As the FlexRay protocol takes into account the clock imperfections while representing time as microticks, macroticks and cycles counters, we also model clock imperfections on analog clocks. We model clock imperfections by assuming that the value of any analog clock is always read with a drift within [-D, +D] for a fixed constant D. In timed automata, this is modeled by enlarging the guards. For instance, a guard checking whether a clock x equals to 5 is enlarged to check whether x is between 5 -D and 5 + D.

Time deviation measurement.

In order to model the FlexRay's time deviation measurement -the computation of the average deviation at each node, one needs to store the deviation for all received messages. Direct modeling of this mechanism would lead to a state-space explosion problem due to the combination of all possible deviations of all received messages at each node. In our model, we simplify the computation of the average time deviation. Our simplification avoids the need to store all time deviations of received messages at each node. For each received message, our model checks for its time deviation and decides the timeliness of the message. If the deviation is too big, the message is considered as incorrect, and is ignored. Otherwise, the message is correct. By the end of a cycle, if no correct message is received, the node signals an error. Otherwise, it performs a clock correction procedure.

Clock correction. We also make an abstraction for the clock correction mechanism. We abstract the clock correction mechanism by allowing a node to non-deterministically lengthen or to shorten its cycle by a fixed amount C of time near the end of a cycle. This non-determinism covers all cases allowed by the deterministic model.

FlexRay's startup mechanism model

In our model, a FlexRay network consists of nodes communicating on a bus. The FlexRay bus is modeled by broadcast communications between automata. Since in the startup phase, the nodes in a FlexRay network exchange two types of messages -CAS and startup messages, we use cas and start frames [id] broadcast messages between automata to model the FlexRay bus, where id is the identifier of the sending node. The model of a FlexRay network is depicted in Figure 6.3. In following sections, we present the models for coldstart nodes and then the models for regular nodes. 

Behaviors of coldstart nodes

We model behaviors of coldstart nodes by a set of timed automata which consists of a timed automaton named coldstart controller as shown in Figure 6.5, and other auxiliary automata.

In the startup phase, a coldstart node first listens to the communication medium for two cycles to detect ongoing messages. The coldstart controller automaton is in state listen 1.

-If no message is received -it is signaled by the reception of cycle idle done[id] message in state listen 1, the node tries to startup the network by sending a collision avoidance symbol (CAS) in state CAS.

The node is then called leading coldstart node.

-If a message is received -a cas or a start frames[s] in state listen 1, the node tries to synchronize with the leading coldstart node. The node is then called following coldstart node.

We model the behaviors of coldstart nodes in the first two cycles including We now describe behaviors of the leading coldstart node in the following cycles after sending CAS. These behaviors are modeled by the states in orange ( ) on the right part of the controller automaton (Figure 6.5) In the next four cycles, the leading coldstart node sends a startup frame once per cycle. Note that as FlexRay uses TDMA protocol, a node can only send its frame in a predefined time slot (we denote the start of the time slot by TStart[id] where id is the identifier of the node).

We use a timed automaton named sender (Figure 6.7) to model the emission of a message by a node. In brief, each coldstart node is associated with a sender. At the beginning of each communication cycle, the sender receives a cycle done message. It then uses a local clock to detect the time slot of the node. Within a small drift [-D, +D] around the start of the time slot, the sender sends one startup frames[id] message with the associated node's id.

Since all coldstart nodes are allowed to startup the network, it may be the case that many nodes try to become a leading coldstart at the same time. In the cycles number four and five, other coldstart nodes begin to send their startup frames. The leading coldstart node collects and checks for the timeliness of these frames with respect to its schedule. It also begins to measure time deviation and apply clock correction. If the leading coldstart node has received at least one valid pair of startup frames, it leaves the startup phase and enters the normal operation phase. These behaviors are modeled by the states in white-orange ( ) in the controller automaton.

We model the frame checking process of a node by two auxiliary automata named validator (Figure 6.8) and receiver (Figure 6.9). The validator automaton will checks for the timeliness of each received message of a node. It uses a local clock to keep track of the expected arrival times of all messages. The validator considers a received message as valid if it arrives within a maximal allowed drift (MaxD) from the local expected time. For each valid message, the validator sends the type of the message to other automata of the associated node. On the other hand, the receiver automaton counts and reports the number of valid messages received in each communication cycle.

The clock correction process is modeled by the synchronizer automaton (Figure 6.10). The automaton uses a local clock to measure and inform other automata of the associated node the end of a communication cycle via the cycle done message. Indeed, to model the clock correction, the cycle done message is sent within C time units around the end of a cycle.

We now describe behaviors of the following coldstart nodes once they have detected a message in the network. These behaviors are modeled by the states in green ( ) on the left part of the controller automaton (Figure 6.5), and the auxiliary automata sender, receiver, validator and synchronizer.

After receiving a CAS message, a following coldstart node tries to receive a valid pair of startup frames to deduce the starting point of the communication cycles of the leading coldstart node. The whole integration process is modeled by a set of states in all-green ( ) in the controller automaton (Figure 6.5). In these states, the controller automaton uses the auxiliary automaton initializer to check for the timeliness of the received pair of startup frames and to align the starting point of the communication cycles with the leading coldstart node.

Once the integration process is done, signaled by the reception of the sync done[id] message, the following coldstart nodes then collect and check for the timeliness of all startup frames in the next two cycles. This phase is called integration coldstart checking phase. It also activates the time deviation measurement and clock correction procedures. These behaviors are modeled by the sender, receiver, validator and synchronizer automata.

If the following coldstart node received enough startup frames, it begins to send startup frames. Otherwise, it goes back to the listening state and tries to integrate into the network again. These behaviors of a following coldstart node are modeled by the states in green-white ( ) in the controller automaton.

If for the next three cycles, at least one other coldstart node is activeit has sent one valid startup frame per cycle, the following node leaves the startup phase and enters the normal operation phase. This stage is depicted by the states in white-green ( ).

In case of failure, a coldstart node can reintegrate into the network even after all other coldstart nodes have left the startup phase. The FlexRay protocol allows a following coldstart node in the listening phase to begin the integration procedure after receiving either a CAS or a startup frame of another coldstart node which is not necessary the leading coldstart node. The reintegration feature is modeled by the two possible outgoing edges of state listen 1 in the controller automaton (Figure 6.5).

Similarly, in the integration coldstart checking phase, a following coldstart node does not need to receive enough valid messages from the leading coldstart node. It can leave the integration coldstart checking phase as soon as it has received enough startup messages from other coldstart nodes. This support for the reintegration is modeled by the two possible edges from state check startup frames to state check wait cycle in the controller automaton (Figure 6.5).

Behavior of regular nodes

In the startup phase, a regular node first listens to the communication medium and tries to receive startup frames. As for coldstart nodes, we model behavior of regular nodes by a set of timed automata consisting of a regular controller (Figure 6.11), and auxiliary automata initializer, receiver, validator and synchronizer.

If frames are received, the node tries to synchronize with an active coldstart node. It tries to receive a pair of valid startup frames to deduce the starting point of the communication cycle of the coldstart node. These behaviors are modeled by the states in green ( ) in the controller automaton. In these states, the controller automaton uses the auxiliary automaton Initializer (Figure 6.6) to check for the timeliness and to synchronize to starting point of the communication cycles with the coldstart node.

In the next four cycles, the node checks whether there are at least two startup frames that fit into its own schedule. This phase is called integration consistency check. If this fails, the node aborts the integration and tries again. If this passes, the node leaves the startup phase and enters the normal opera- Observe that in case of failure, a regular node can reintegrate into the network even after all coldstart nodes have left the startup phase. The reintegration feature is done by allowing the node to synchronize with any coldstart node -not necessary a leading coldstart node. The reintegration feature is modeled by two outgoing edges from state listen 1 and by the two possible edges from state check startup frames to check cycle counter in the controller automaton (Figure 6.11).

Verification of FlexRay protocol

Experimental results

We have performed experiments to verify the correctness of the FlexRay's startup mechanism, and to evaluate the performance of the algorithms proposed in the previous chapters.

In our analysis, we fix the parameters for our model based on the FlexRay specification [Con]. The list of the parameters along with their meaning and their values are shown in Table 6.1.

In our experiments, we check for the following properties of the startup mechanism of FlexRay using TChecker.

P1. Is it possible to have two leading coldstart node elected? P2. Does the system run with deadlock? P3. Is it possible for all nodes to reach the normal operation phase? At the same time, to evaluate the performance of our algorithms proposed in the previous chapters, we verify the above properties using the standard algorithm (Algorithm 3.1) and the algorithm that combines the waiting and the ranking strategy (Algorithm 3.7). We refer to them as BFS, and TWR-BFS, respectively.

For each algorithm, we report the number of visited nodes (visited ), the number of mistakes (mist) -number of nodes that have been visited but later are subsumed by a bigger node. We also report the ratio between the number of mistakes and the number of visited nodes (mist ratio). The mist ratio reflects the percentage of unnecessary explorations. If an algorithm performs optimally in the verification, its mist ratio is zero.

Model checking the FlexRay startup mechanism

We verify the three properties above on various configurations of FlexRay networks. These configurations are selected based on the FlexRay specification [Con].

The FlexRay specification indicates that for a fault-free scenario, at least two coldstart nodes are necessary to startup the network. For a general scenario, there must be at least three coldstart nodes in a network with three or more nodes.

In addition, observe that during the startup phase, a regular node in the network just listens to the communication between coldstart nodes. It is therefore sufficient to check the three properties above for a network with one regular node.

Consequently, we verify the properties on the FlexRay networks that consist of some coldstart nodes and at most one regular node. We use nCS to denote a FlexRay network with n coldstart nodes, and use nCS+1R to denote a FlexRay network with n coldstart nodes and one regular node.

The first property to verify concerns the correctness of the collision resolution procedure in the startup phase.

P1. Is it possible to have two leading coldstart nodes elected?

One can check this property by checking for reachability of a state where there are two coldstart nodes in state check 1 of the coldstart controller automaton (Figure 6.5). Since regular nodes are not involved in the election of the leading coldstart node, it is sufficient to check the property for a FlexRay network with coldstart nodes only. We check the property P1 for a network with two coldstart nodes and three coldstart nodes, denoted by 2CS and 3CS, respectively.

We verified that the property P 1 is not true (Table 6.2). It means the collision resolution procedure in the startup mechanism of FlexRay works correctly.

The two other properties can also be verified using reachability analysis of timed automata. algorithms with BFS order. Therefore, in order to evaluate the performance of a reachability algorithm, we look at the mistakes ratio (Mist ratio) in the verification results of the algorithm. The mistakes ratio reflects the percentage of unnecessary explorations over the number of visited nodes in the verification process of a property. Accordingly, we evaluate and compare the performance of the TWR-BFS algorithms with the BFS algorithm via the mist ratio in the experimental results in table 6.2.

The experimental results in Table 6.2 show that there are mistakes -the situation where a node has been visited but later is subsumed by a bigger node -in the verification process of these two types of properties. The number of mistakes depends on the size of the state space.

For the small model (2CS ), the mistakes ratio of both BFS algorithm and TWR-BFS algorithm are similar in the verification of all properties.

For bigger models, the number of mistakes of both algorithms increases but the TWR-BFS algorithm makes significantly fewer mistakes than the BFS algorithm. It is the case for the verification of all three properties. Furthermore, the gain of using the TWR-BFS algorithm over the BFS algorithm increases significantly with the size of the model.

For instance, consider the experimental results of the verification property P2. For a network with three coldstart nodes (3CS ) the TWR-BFS algorithm performs about two times better than the BFS algorithm with respect to the number of mistakes. Then for a network with three coldstart nodes and a regular node (3CS+1R), the TWR-BFS performs more than three times better than the BFS algorithm.

Conclusions

In this chapter, we have presented a timed automata model of the startup mechanism of FlexRay based on the latest specification of FlexRay protocol. With this model, we have verified that the startup mechanism works without deadlock, provides a correct collision resolution, and can startup coldstart nodes and regular nodes for various configurations of a FlexRay network. Via the verification of the correctness properties of the FlexRay's startup mechanism, we have also evaluated the performance of the TWR-BFS algorithm proposed in the previous chapter.

The results show that the TWR-BFS algorithm makes substantially fewer mistakes than the standard BFS algorithm. Furthermore, the results show that the bigger the model size, the bigger the gain of the TWR-BFS algorithm over the standard BFS algorithm. These results thus suggest to use TWR-BFS algorithm as a replacement for the BFS algorithm in reachability analysis of timed automata.

Chapter 7

Visualization tools for analysis of model-checking algorithms

Introduction

Data visualization tools and techniques provide a great support for different domains from business to health care and science. In this chapter we describe how they can be used in analysis of timed models and in design of better model checking algorithms. Visualization tools can assist not only model designers but also developers of timed automata model checking tools.

Visualization tools, which are implemented in model checking tools like UP-PAAL, facilitate the process of designing systems, from creating input models to analyzing counterexamples.

Similarly, visualization tools can also help developers of model checking algorithms. In model checking of timed automata, state-space explosion still is the major problem. The number of states of a real-time system can be enormous. To deal with the state-space explosion problem we, as developers of model checking algorithms for timed automata, want to evaluate the performance, to analyze and to improve model checking algorithms for timed automata.

To evaluate the performance, one can look at the statistics upon termination like the number of visited nodes or the number of stored nodes. But to improve model checking algorithms, one needs to analyze the trace of their execution. Indeed, our objective is to analyze the execution of algorithms in order to identify dynamic information like unnecessary exploration, or patterns in the execution of the algorithms. Then we aim at designing new algorithms that take advantage of that information to reduce the search space. However, it is difficult to perform such analysis on plain-text traces of the algorithm. Tools to visualize execution traces of algorithms are needed.

While visualization tools for system designers have been integrated in many model checking tools, visualization tools for developers of model checkers rarely 125 exist. We therefore implement a visualization toolbox to analyze execution traces based on the Tulip visualization framework [AMM + 10].

The Tulip framework provides different graph visualization algorithms. It supports standard tree layout algorithms like the Sugiyama algorithm [START_REF] Sugiyama | Methods for visual understanding of hierarchical system structures[END_REF] and interactive functions like panning and zooming. It also provides functions to modify visual parameters of graph elements like nodes and edges. For instance, for each element, users can change its layout coordinate, its shape or its color. More importantly, Tulip supports plugins for custom algorithms. It allows us to implement a toolbox with specific visualization algorithms to analyze model checking algorithms. Our toolbox consists of algorithms to:

-highlight and extract elements in execution traces of algorithms, -visualize exploration trees step-by-step, -and compare executions of algorithms.

In this chapter, we first define execution traces of algorithms in TChecker, which is a timed automata model checking tool, in Section 7.2. Then we present our visualization toolbox in Section 7.3. Finally in Section 7.4 we describe our methodology that uses the toolbox to improve model checking algorithms for timed automata.

Execution traces of algorithms

Since we work with the TChecker model checking tool, let us first examine the structure of an execution trace of an algorithm in TChecker. A trace is an exploration tree (cf. Section 2.4 in Chapter 2 at page 29) extended with a covering relation between nodes. In this chapter we will use the following formal definition of exploration trees.

Definition 71 (Exploration trees). An exploration tree

T = (V, E, Σ, Λ, ) is defined by -a finite set of vertices V , -a finite set of edges E ⊆ V × V , -a set of labels Σ, -a labeling function Λ : {V ∪ E} → Σ,
-and a set of covering edges ⊆ V × V where (V, E) is a finite directed tree (i.e a finite, directed, connected graph such that the corresponding undirected graph is acyclic), and + is the covering relation.

In the following, for an exploration tree T , we use root(T ) to refer to the root node of T , and use u → v to denote an edge (u, v) ∈ E. A link refers to either an edge in E or a covering edge in between two nodes. Accordingly, a source of a link refers to the parent node or the covering node, and a target of a link refers to the child node or the covered node. We also use an element of an exploration tree to refer to a node or a link.

The labeling function Λ provides information related to a node. Depending on algorithms, the label of a node may provide attributes like the order of exploration (search order), local clock bounds of the node (clock bounds), or the tuple of the node (tuple). For example, for each node n, the tuple attribute represents the state q and the zone Z of the node tuple(n) = (q, Z).

In an exploration tree constructed by TChecker, each node is labeled by the pair of a state and a zone of the corresponding node (q, Z) in the abstract zone graph of the automata (cf. Definition 12 in Chapter 2 in page 17). The root node of a tree is labeled by the initial node of the abstract zone graph. Similarly, each edge in the tree corresponds to a transition in the abstract zone graph. That is if e = (u, v) ∈ E then (q, Z) a ⇒ (q , Z ) with (q, Z) ∈ Λ(u), (q , Z ) ∈ Λ(v), and trans(e) = a ∈ Λ(e).

The covering relation + represents the subsumption relation between nodes in the abstract zone graph discovered by the algorithm. Hence, for each a pair (n, n ) ∈ , tuple(n) = (q, Z), tuple(n) = (q , Z ) where q = q and Z ⊆ Z.

Figure 7.1 shows an exploration tree in black with covering edges in red. Each black edge goes from a parent node to a child node. Each red edge goes from a covering node to a covered node.

For an exploration tree T = (V, E, Σ, Λ, ) and a subset of vertices X, X ⊆ V , we denote by restrict(T, X) a restriction of the exploration tree to the vertices in X. Similarly, we use restrict for the set of edges E, the set of covering edges , and the labeling function Λ of exploration trees. Formally, we have restrict(T, X) = (V , E , Σ, Λ , ) where

-V = X, -E = restrict(E, X) = E ∩ (X × X), - = restrict( , X) = ∩ (X × X), -Λ = restrict(Λ, X) = {(x, l) | (x, l) ∈ Λ ∧ x ∈ {V ∪ E ∪ }}.
An algorithm in TChecker generates the exploration tree via logging. At the beginning, the algorithm logs the initial node. Each time the algorithm visits a node, it logs all successors and edges of the node. The algorithm also logs the detected covering relation between nodes. Upon termination, the whole log gives the exploration tree of the algorithm. During the analysis of exploration trees one may need to apply a visualization algorithm only to the nodes and the links having certain properties. To support it, the algorithms in our toolbox take predicates on elements as inputs. Formally, a predicate is a function P : {V ∪ E ∪ } → { , ⊥}. A predicate is defined over the labels of the elements in exploration trees. For example, a predicate to select all nodes having a state q and the true zone is defined as
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P t (n) = if n ∈ V ∧ tuple(n) = (q, true) ⊥ otherwise
It is worth noting that in Tulip, for the definition of predicates, one can only use syntactic comparisons on labels of elements like string comparisons or numeric comparisons. One cannot, for instance, check for inclusion between two zones, hence cannot select all nodes covering a given state using predicates.

Visualization toolbox

Based on the Tulip framework, we build a visualization toolbox to analyze model checking algorithms for timed automata.

Highlighting and extracting elements in exploration trees

Highlighting and extracting functions are used to single out a part of an exploration tree. These are the most basic visual analysis tools. Highlighting is used to visually distinguish elements with some properties, while extracting hides irrelevant part of an exploration tree. For analysis of exploration trees of timed automata we needed to implement dedicated functions taking into account specificity of our trees.

Highlighting. We have implemented a custom highlighting function that highlights elements satisfying a given predicate. Then we have instantiated this function with several relevant properties obtaining dedicated highlight functions.

Inputs of the custom highlight function are an exploration tree, a predicate and a highlighting, which contains the shape, the size and the color to display the matched elements. The function goes through each element, and checks for the selection matching. It then applies the highlighting for all matched elements by setting the appearance attribute of the elements. Formally, the custom highlight function has: -an exploration tree T = (V, E, Σ, Λ, ), -a predicate P : {V ∪ E ∪ } → { , ⊥}, -and a highlighting = (shape, size, color).

Inputs consisting of

Let X = {x | x ∈ {V ∪ E ∪ } ∧ P (x) = }
Output: the appearance of all matched elements have been set to highlighting -∀x ∈ X, appearance(x) = highlighting.

Algorithm 7.1 implements the custom highlight selection function. With this function, one can apply per-analysis highlighting such as highlighting nodes with a given state, or true-zone nodes.

On top of the custom highlight function, we have implemented a dedicated highlight function for analysis of timed automata algorithms. The dedicated highlight function uses the structure of exploration trees to classify and highlight their nodes and their links between nodes. The function classifies a link l between two nodes into one of the following three types: E1. parent-child if l is an edge, i.e., l ∈ E, E2. equally-covering if l is a covering edge and the source and the target of l have the same state that is l ∈ and tuple(source(l)) = tuple(target(l)), E3. strictly-covering if l is a covering edge and the source and the target of l have different states, i.e., l ∈ and tuple(source(l)) = tuple(target(l)).

The function classifies a node n into one of the following six types:

N1. incomparable if n is not a source nor a target of any covering edge.

N2. covering-and-covered if n is the source of a covering edge and also the target of a covering edge, N3. covered if n is the target of a strictly-covering link and is not a source of any covering edge, N4. equally-covered if n is the target of an equally-covering link and is not a source of any covering edge, The function highlights nodes and links in exploration trees by changing their size, their color and their shape. Table 7.1 shows the highlighting effect used by the basic highlight function for each type of links and nodes in exploration trees.

The dedicated highlight effects improve the analysis of exploration trees. For instance, a result of applying the dedicated highlight function to the exploration tree in Figure 7.1 is shown in Figure 7.2. In comparison with Figure 7.1, it is easier to see the distribution of covering and covered nodes. It hence reveals that there are some paths containing only covered nodes (only red nodes). Visiting those paths is irrelevant. Because from Chapter 3 we know that all states reachable from a covered nodes are also reachable from the covering nodes. An algorithm does not need to explore covered nodes to verify a reachability property. Therefore, the paths containing only covered nodes are unnecessary explorations of the algorithm.

Extracting. During the analysis of big exploration trees, one may need to visualize only parts of the tree related to nodes having given properties. Since Tulip has a function to extract all the paths between two nodes, one can define a predicate to select all interesting nodes and use the function to extract all paths from the root to all matching nodes. However, because the definition of predicates in Tulip is limited to syntactic comparison of labels, one cannot extract all paths leading either to a matching node or to a node covering a matching node. To overcome that limitation, we have implemented a dedicated path extraction function that uses both parent-child edges and covering edges of exploration trees. Given a predicate P , the function extracts all paths from the root to each node n satisfying P and all the to nodes covering n. With this intention, the function first uses covering edges in an exploration tree to get all the nodes that are identical to n or covering n. Then, it extracts all the paths from the root to n and to those nodes. Formally, the dedicated path extraction function has:

Inputs consisting of -an exploration tree T = (V, E, Σ, Λ, ), -and a predicate P : {V ∪ E ∪ } → { , ⊥}.

Let

- = ∪{(n, n ) | n n ∧ tuple(n ) = tuple(n)}, -X = {n | n ∈ V, ∃n ∈ V : P (n ) = ∧ n * n }, -V = {n | n ∈ V, ∃n ∈ X : root(T ) → * n → * n }.
Output: a restriction of T to V , T = restrict(T, V ).

For each node n satisfying the predicate P , the function gets all the nodes connected to n via equally-covering links or strictly-covering links in the exploration tree. Those nodes form the set X defined above. Finally, the function computes all the nodes on a path to a node in X.

The function first gets all the nodes connected to n via equally-covering links in the exploration tree. Those nodes have the same label as n, which forms the set V 0 . The function then computes V 1 the set of nodes that cover a node in V 0 . Observe that if a node n covers a node n then it also covers all other nodes with the same label as n .

Apart from the nodes in V 1 , there are other nodes that cover n. Consider Figure 7.3. All nodes n that are identical with nodes covering n, of course cover n. In addition, if n is covered by n , from Chapter 3 (page 33), we know that n and n have the same state but the zone of n is included in the zone of n . Consequently, if n is in turn covered by n , n is also covered by n . Thus, to get all nodes covering n, the function gets all nodes that are identical with a node in V 1 , and repeats the procedure for the newly found nodes. Since the number of nodes in an exploration tree is finite and the covering relation is acyclic -backtracking a path of strictly-covering links ends up in a node that is not covered, the function finally terminates. Accordingly, the function computes X, the smallest set containing nodes satisfying P and closed under taking nodes with the same label and covering nodes. Finally, the function computes the paths from the root to every node in X. The result is an exploration tree where each leaf node is either identical with n or covering n.

Algorithm 7.2 implements the function to extract all paths to nodes satisfying a given predicate P and to their covering nodes.

The combination of the extracting function and the dedicated highlighting function can speed up the analysis of exploration trees of model checking algorithms. For instance, while using dedicated highlight function (Figure 7.2) shows that there are some unnecessary paths, the result of the dedicated highlighting function and the extracting function (Figure 7.4) reveals more information: there are some paths to the same state q that are better than the others. For instance, the path with three consecutive green nodes (in the second branch from the left) is better than the path with three red boxes (in the leftmost branch) because its nodes respectively cover the nodes of the other path.

Comparison of exploration trees

While analyzing model checking algorithms, we need to compare exploration trees of several algorithms to know why and when one algorithm works better than the others. To find and highlight the differences between their exploration trees, tree comparison algorithms are needed. We implement in Tulip two comparison functions: symmetric difference and tree merging. Symmetric difference. The symmetric difference comparison function is designed to show the differences between exploration trees by displaying side by side the two trees.

The inputs of the function are two disjoint exploration trees The figure shows all paths to a node and to its covering nodes. In brief, red nodes are covered nodes, green nodes are covering nodes (see Table 7.1 for all legends). The figure reveals that there are paths that are better than the others to reach the same state from the initial state.

T 1 = (V 1 , E 1 , Σ 1 , Λ 1 , 1 ), T 2 = (V 2 , E 2 , Σ 2 , Λ 2 , 2 ),
For instance, the path with three consecutive green nodes, in the second branch from the left, is better than the path with three red boxes, in the leftmost branch, because its nodes respectively cover the nodes of the other path.

Figure 7.5: Highlighting symmetric differences of trees. The common parts are in gray while the different parts preserve theirs highlighting effects (Table 7.1). Each common node is linked (in pink) to its corresponding nodes in the other tree. One link between a pair of similar nodes is highlighted in blue.

P s : V 1 × V 2 → {
, ⊥} indicating whether two nodes from the two trees are similar.

The function first computes for each vertex v 1 in T 1 a subset M (v 1 ) = {v 2 | v 2 ∈ V 2 , P s (v 1 , v 2 ) = } which we call the cluster of v 1 in T 2 . Similarly, for each vertex v 2 in T 2 , the function computes the cluster of v 2 , M (v 2 ) in T 1 . Therefore, all nodes that have a non-empty cluster are the common parts of the two trees according to the similarity predicate P s .

The symmetric difference comparison of T 1 , T 2 results in a graph consisting of the two input trees and a set of edges linking each node to its cluster. Formally, the symmetric difference comparison function has:

Inputs consisting of -two disjoint exploration trees T 1 = (V 1 , E 1 , Σ 1 , Λ 1 , 1 ),
T 2 = (V 2 , E 2 , Σ 2 , Λ 2 , 2 ), and -a binary predicate on nodes P s : V 1 × V 2 → { , ⊥}.

Output: a graph G d = (V, E, E m , Σ, Λ) where

-V = V 1 ∪ V 2 , -E = E 1 ∪ E 2 , -E m = {(u, v) | u ∈ V 1 , v ∈ M (u)},
-Σ = Σ 1 ∪ Σ 2 , and -Λ = restrict(Λ 1 ∪ Λ 2 , V ∪ E).

The resulting graph (V, E) is displayed using Sugiyama algorithm [STT81] implemented in Tulip, and the edges in E m are drawn to link nodes and their cluster.

Algorithm 7.3 implements the symmetric differences comparison function. A result is shown in Figure 7.5. In the figure, all similar nodes between two trees are highlighted in gray, thus one can immediately identify the similarities and the differences between two trees. In addition, by following or highlighting the links between similar nodes (in pink), one can find the nodes corresponding to a given node.

Tree merging. The tree merging function has the same goal as the symmetric difference comparison, which is to compare exploration trees, but it uses a different approach. The function builds from the two disjoint trees a trie -also known as prefix tree. The trie allows to identify nodes where the two algorithms diverge.

Formally, given two disjoint exploration trees T 1 = (V 1 , E 1 , Σ 1 , Λ 1 , 1 ), T 2 = (V 2 , E 2 , Σ 2 , Λ 2 , 2 ), and a binary predicate on nodes P s : V 1 × V 2 → { , ⊥}. We define: Algorithm 7.3: The symmetric differences comparison function.

function sym compare trees ( T 1 = (V 1 , E 1 , Σ 1 , Λ 1 , 1 ), T 2 = (V 2 , E 2 , Σ 2 , Λ 2 , 2 ),

P s : V 1 × V 2 → { , ⊥}) V = V 1 ∪ V 2 ; E = E 1 ∪ E 2 ; Σ = Σ 1 ∪ Σ 2 ; Λ = restrict(Λ 1 ∪ Λ 2 , {V ∪ E}); E m := ∅ ; f o r each node v 1 ∈ V 1 fo r each node v 2 ∈ V 2 i f P (v 1 , v 2 ) = add edge (v 1 , v 2 ) t o E m ; G d = (V, E, E m , Σ, Λ) ; return G d ;
-the path from the root node to a node u in an exploration tree T j , σ(T j , u) = v 0 , . . . , v i , . . . , v k where -the set of nodes in the common prefix of the two trees:

-V 1p = {v 1 | v 1 ∈ V 1 , ∃n 2 ∈ V 2 : p(T 1 , n 1 ) = p(T 2 , n 2 )}, -V 2p = {v 2 | v 2 ∈ V 2 , ∃n 1 ∈ V 1 : p(T 1 , n 1 ) = p(T 2 , n 2 )}.
Accordingly, the tree merging function has:

Inputs consisting of -two disjoint exploration trees T 1 = (V 1 , E 1 , Σ 1 , Λ 1 , 1 ), T 2 = (V 2 , E 2 , Σ 2 , Λ 2 , 2 ),
-and a binary predicate on nodes P s : V 1 × V 2 → { , ⊥}.

Output: T = (V, E, Σ, Λ, ∅) with

-V = V 1 ∪ V 2 \ V 2p , -E = restrict(E 1 ∪ E 2 , V ),
-Σ = {tree 1 , tree 2 } ∪ Σ 1 ∪ Σ 2 , and -Λ = restrict(Λ 1 ∪ Λ 2 , V ∪ E) such that -(tree 1 , tree 2 ) ∈ Λ(v p ) for all v p ∈ V 1p , tree 1 ∈ Λ(v 1 ) for all v 1 ∈ (V 1 \ V 1p ), tree 2 ∈ Λ(v 2 ) for all v 2 ∈ (V 2 \ V 2p ).

Algorithm 7.4 implements the tree merging function. Upon termination of the algorithm, the resulting trie has three parts: the common prefix of the two input trees, and suffixes that only exist in the first tree or in the second tree. These parts are marked by their label: nodes in the common prefix have the label (tree 1 , tree 2 ), and those in the suffixes have either tree 1 or tree 2 . Figure 7.6 is a result trie that shows the differences and the nodes where two algorithms diverge.

Step-by-step visualization of exploration trees

During a verification, a model checking algorithm constructs an increasing sequence of exploration trees. The first exploration tree has one node -the initial node. After the algorithm visits a node, a new exploration tree is formed. The new exploration is built from the previous exploration tree by adding successors of the visited node as child nodes of the visited node, and by adding the newly found covering edges. We call this a step in the exploration process of the algorithm.

Observe that the exploration tree logged by an algorithm in TChecker upon termination is the final exploration tree of the increasing sequence of exploration trees. The last exploration tree includes all the nodes and the links of the previous steps. Therefore, given the final exploration tree and knowing the step at which each node and link are created, one can rebuild the whole sequence of exploration trees.

In order to have a better insight into the executions of algorithms, we have implemented a function to visualize exploration trees of algorithms step-bystep. Formally, the step-by-step visualization function has: Algorithm 7.4: Tree merging function.

function merge trees ( T 1 = (V 1 , E 1 , Σ 1 , Λ 1 , 1 ), T 2 = (V 2 , E 2 , Σ 2 , Λ 2 , 2 ) , P s : V 1 × V 2 → { , ⊥} )
T = (V, E, Σ, Λ, ∅) ; Σ = {tree 1 , tree 2 } ∪ Σ 1 ∪ Σ 2 ; Λ = Λ 1 ∪ Λ 2 ;

V := V 1 ; E := E 1 ; // copy T 1 i n t o T ; The edges that exist only in the first tree are highlighted in orange, and the edges that exist only in the second tree are highlighted in black.

f o r each v 1 i n V 1 add tree 1 t o Λ(v 1 ) ; f o r each v 2 i n V 2 add tree 2 t o Λ(v 2 ) ;
Inputs consisting of -an exploration tree T = (V, E, Σ, Λ, ) where for each element x ∈ {V ∪ E ∪ }, the value step(x) is the step at which x is created, -and a number of step n to visualize.

Output: T = [T 1 , . . . , T n ] where for i ∈ {1, . . . , n}

-V i = {v | v ∈ V, step(v) ≤ i}, -T i = restrict(T, V i ).
As the step-by-step visualization function is designed to show the evolution of the exploration tree during the verification process of an algorithm, it should preserve the user's mental map [START_REF] Misue | Layout adjustment and the mental map[END_REF]. In brief, the user's mental map is the relative position among all elements in a graph. For instance, assume that in step i, a node n was displayed on the right of a node n . To preserve the user's mental map, n must be displayed on the right of n in step i + 1.

In order to preserve the user's mental map in the step-by-step visualization of the exploration tree, the function first computes the positions to render all nodes and all edges of the input exploration tree T . Since each graph in T is a sub-graph of T , the function then applies the computed positions for the rendering of all exploration trees in T . In our step-by-step visualization function, we use the Sugiyama [START_REF] Sugiyama | Methods for visual understanding of hierarchical system structures[END_REF] algorithm implemented in Tulip to compute the positions of elements in the graph.

Algorithm 7.5 implements the step-by-step visualization function for exploration trees. Figure 7.7 shows three consecutive steps in an exploration of the BFS algorithm. The figure reveals that the two leftmost paths are explored in parallel but nodes in the last segment of the middle path are covering nodes in the last segment of the leftmost path. In other words, even after a small node is covered by a big node, the algorithm may still explore the sub-tree of the small node. It is unnecessary. An ideal algorithm would stop the exploration of all small nodes and their sub-trees once the big nodes are found.

Methodology

In this section, we present our methodology that uses the toolbox described in the previous section to improve model checking algorithms for timed automata.

Discovery of mistakes

With the aim to improve model checking algorithm, we looked for a metric to measure the performance of a reachability algorithm. We started from the standard metrics: the number of visited nodes and the number of stored Those are mistake nodes.

nodes of the algorithm upon termination which represent the running time and memory usage, respectively. Looking at these two values, we found an interesting information. The number of visited nodes is bigger than the number of stored nodes in most examples.

From Chapter 3, we know that in exploration trees, there is a covering relation between nodes having the same state but one's zone is bigger than the others. And once the algorithm found a bigger node, it does not need to store nor explore the small nodes. Ideally, only the big nodes should be explored and stored. Hence, the number of visited and the number of stored nodes should be the same. It was not clear why those two values could be different. In order to analyze the problem, we visualized exploration trees of algorithms and focused on the covering edges between nodes.

Given an exploration tree, we applied the dedicated highlight function presented in Section 7.3 which classifies and highlights nodes based on the covering edges in the exploration tree. Figure 7.8 shows a part of a highlighted exploration tree where for all covering edges, their source nodes (big nodes) are in green and their target nodes (small nodes) are in red. We found that there are non-leaf nodes that are covered. How a node that is covered by another node but still has successors? Those nodes are mistakes nodes -nodes that are visited but later are covered by a bigger node.

Thanks to visualization and the highlighting of the exploration trees of algorithms, we found that algorithms may unnecessarily explore some nodes, i.e., make mistakes. An ideal algorithm would make no mistake. Therefore, the number of mistakes can serve as a metric to measure the performance of an algorithm. nodes. Hence, the rightmost leaf node has the biggest zone. But among these three nodes, the rightmost node is the farthest from the initial node. Let us see how the standard algorithm (Algorithm 3.1) with BFS search order works in the above situation. Since the algorithm explores the state space layer by layer, the shortest path to the joint node is explored first, resulting in a node n 1 with a zone Z 1 . At that moment, other paths to the joint node have not been fully explored yet, there is no other node comparable with node n 1 . The algorithm then explores n 1 . It is however a mistake. Because, the algorithm will later fully explore the longest path to the joint node that results in the node with bigger zone than Z 1 .

This discovery suggests that to avoid mistakes, one should delay the exploration of nodes with a joint state until all paths to that state have been explored. It is the key idea behind the waiting strategy presented in Section 3.3.2 of Chapter 3 at page 47.

Analysis of new reachability algorithms

Based on the results of the analysis of mistakes, we have implemented different algorithms to improve the verification of timed automata. For instance, as discussed in Section 3.3.1 of Chapter 3 with the goal to give priority to the big nodes over the entire sub-tree of the small nodes, there are different approaches like delaying the exploration of small sub-trees or accelerating the exploration of big nodes. There are models where one algorithm performs better than the other. We then want to analyze the differences between those algorithms. One way to do that is to visualize the exploration trees of those algorithms and compare them as in Figure 7.5 and Figure 7.6.

Thanks to the visualization toolbox, we found that in situation named better-then-best shown in Figure 3.7 and described in Section 3.3.1 of Chapter 3, the delaying approach works better than the ranking system. Likewise, we found that in the situation named the-good-path shown in Figure 3.8 and described in Section 3.3.1 of Chapter 3, the ranking system works better than the delaying approach.

To sum up, by interactively comparing, highlighting and extracting interesting nodes in exploration trees we can identify the pros and cons of each algorithm. This in turn can guide us towards the design of an algorithm that unifies as much as possible the advantages of each approach. It is what we have done for the ranking system, the waiting strategy and the combined strategy presented in Chapter 3.

Discovery of a special structure in state spaces

In order to improve algorithms for model checking of timed automata, we analyzed the structure of the state space of standard benchmark models. For each model, we have asked the algorithm to explore the whole state space of the model. Then we have visualized the exploration tree of the algorithm, and applied the dedicated highlighting function to analyze the structure of the state space. In addition, we have also highlighted all true-zone nodes in the exploration tree.

The visualization of the state space revealed that in some models on every loop there is a node with a true-zone. Figure 7.9 shows one such exploration tree. This discovery is interesting because it suggests that one could design a new reachability algorithm that uses less memory than the current standard algorithm. Indeed, the current standard algorithm needs to store at least a node for each state of the automata to guarantee the termination of the algorithm. But if we know that every loop in the state space has a true-zone node, a reachability algorithm needs to store only these true-zone nodes, for termination. It is also worth mentioning that while the memory needed to represent a normal zone is proportional to the number of clocks used in the system, the true-zone can be represented as a constant independent from the number of clocks in the system.

Therefore, one could try to design a memory efficient reachability algorithm specialized to models where a true-zone node exist on very loop of the abstract zone graph of the model.

Conclusion

In this chapter we have presented a toolbox of visualization algorithms for the analysis of model checking algorithms. The combination of the visualization algorithms in the toolbox gives us unprecedented insights into the execution of model checking algorithms. These insights led us to the new reachability algorithms presented in previous chapters, particularly the TWR-BFS algorithm that performs optimally in most models of the standard benchmarks. The visualization is essential throughout the process of improving reachability algorithms for timed automata. From the identification of the problem where it helps to discover mistakes in exploration, to the mistakes analyzing phase where it helps finding the racing situation and the better-then-best situation at joint nodes, and eventually to the algorithm design phase where it helps to finalize the ranking, the waiting and the TWR-BFS algorithms. Furthermore, the visualization of exploration trees also helps to discover that in some models, there is a true-zone node on every loop. This suggests that one could design a more efficient reachability algorithm for timed automata. In conclusion, we suggest to use and extend our visualization toolbox for further analysis and improvement of model checking algorithms for timed automata.

Chapter 8 Conclusion 8.1 Summary

The verification of real-time systems via timed automata has got many improvements during the last few decades. As a result, the verification has been applied for many real systems. However, the application of the verification of real-time systems via timed automata, specially for huge models coming from industrial systems, confronts with the state-space explosion problem.

In order to tackle the state-space explosion problem, we have built approaches to improve the efficiency of algorithms for safety and liveness analysis of timed automata. In particular, for the state-of-the-art safety analysis algorithms, our approach tackles the search order problem. The search order can seriously affect the running time and the memory usage of reachability analysis algorithms. For the state-of-the-art liveness analysis algorithms, our approach tackles the consequence of its limited usage of the zone inclusion relation: the algorithm may explore a long path to conclude the existence of cycles.

For safety analysis algorithms, the focus of the thesis has been on developing strategies that reduce the number of visited nodes which reduces the running time and the memory usage of the algorithm. We have shown that the efficiency of algorithms using zone inclusion depends on the search order. Indeed, during the verification, late discovery of big nodes leads to unnecessary exploration of small nodes, which we called mistakes. The strategies we have presented rely on the observation that most of mistakes can be avoided by analyzing the structure of the timed automata. They take advantage of the structural information and the dynamic information collected during the verification to guide the algorithms to reduce mistakes.

Two strategies for reducing mistakes have been developed: ranking strategy and waiting strategy. The ranking strategy has been introduced to give priority to big nodes over small nodes and their sub-trees when mistakes are detected, so that the algorithm can avoid further mistakes. The waiting strategy on the other hand has been introduced to avoid mistakes by analyzing the structure of the timed automata. The two strategies have been compared with the breath-first-search order and with each other on different situations. Finally, we introduced a strategy that combines the two strategies so that they can complement each other.

For liveness analysis algorithms, the focus has been on developing a procedure to reduce the number of visited nodes.We have shown that the algorithm can save significantly many explorations by analyzing the sequence of transitions, which we called ω-iterability testing. The ω-iterability decides whether a sequence of transitions can be iterated from a given zone. We have presented a ω-iterability testing procedure based on syntax of the sequence and the impact of the sequence on a given zone. Accordingly, we have presented an algorithm for liveness analysis of timed automata that uses the ω-iterability testing.

Apart from the approaches to improve algorithms for the analysis of timed automata, the scalable model of the FlexRay's startup procedure, and its verification have been presented. The model allows to verify the startup procedure on different configurations of FlexRay networks. It also permits to evaluate the performance of our new strategies for safety analysis algorithms of timed automata on an industrial model.

A visualization toolbox that facilitates the analysis of timed automata algorithms has been presented. We have shown that the toolbox not only facilitates the analysis but also provides new insights into the execution of the algorithms. One could use the visualization toolbox for further improvement of algorithms for timed automata.

Finally, the strategies for safety analysis algorithm and the procedure for liveness analysis developed in the thesis have been implemented in the TChecker model checking tool. They have been tested on the standard benchmarks. Particularly, the strategies for safety analysis have been also tested on models of different components of the automotive communication protocol FlexRay. During the experiment for liveness properties, we have discovered an error in the CSMA-CD model in the standard benchmark. This model fails to represent almost all interesting behaviors of the real protocol. Despite of the extensive usage of the model for evaluating verification tools, the error has not been observed. It suggests that even if one is interested solely in verification of safety properties, it is important to test the model under consideration. The results of experiments show that the algorithm works better than the standard algorithm for the liveness analysis when an accepting cycle exists. By design though, the proposed algorithm with the ω-iterability procedure for liveness analysis gives no gain when there are no accepting cycles. This suggests that more work on improving liveness analysis of timed automata needs to be done. For our strategies to avoid mistakes in safety analysis algorithms, the experimental results show that the strategy that combines the waiting and the ranking strategy yields substantial improvements in the performance of the verification of safety properties. In most cases from the standard benchmarks the strategy performs optimally -the algorithm makes no mistakes. Moreover for the verification of different components of FlexRay, the combined strategy provides a significant reduction of mistakes with respect to standard BFS search order. It suggests that the combined of ranking and waiting strategies can be used instead of BFS search order in the state-of-the-art algorithm.

Future work

In this section, we outline some future research directions.

More subsumption in liveness analysis

During the liveness analysis, after reaching accepting states, the algorithm presented by Larsen et. al. in [LOD + 13] can use some subsumption, and our algorithm with ω-iterability checking procedure can give some further improvement. However, in a quite trivial case when there are no reachable accepting states, none of the mentioned approaches can use subsumption. It is also worth mentioning that in [LOD + 13], the authors show many situations where skipping the exploration of a node because of the existence of a bigger node is not correct. And in all those situations, the problem is that in the path from the initial node to the subsumed node, there is an accepting state. Therefore, it is worth studying how to improve the liveness analysis so that to use more subsumption, at least in the parts of the state space where there are no accepting states.

New state caching technique

In this thesis, the structural information of automata and the dynamic information from the exploration have been used only for guiding the exploration to big nodes. It is interesting to study how they can be used for other purposes like predicting whether a node is needed to be stored for termination. Such a prediction would give a state caching policy. For instance, we have observed that there are models where there is a true-zone nodes on every cycle. With such structural information, one can develop a state caching policy that stores only true-zone nodes while guaranteeing the termination of the algorithm. The challenge is that caching should not prohibitively increase the running time. Therefore, it is worth looking at structural information of automata as well as dynamic information of its exploration for more efficient state caching techniques.

Better search order for other analyses

Using subsumption is useful not only for the reachability analysis of timed automata but also for analysis of their extensions like priced timed automata [BFH + 01], or probabilistic timed automata [START_REF] Alur | Modelchecking for probabilistic real-time systems[END_REF]. We have shown that the performance of algorithms using subsumption with respect to zone inclusion relation can be significantly improved by a good search order. Therefore, adapting our strategies for reachability analysis of timed automata to other analyses, like liveness analysis, as well as to other variants of timed automata looks very promising.
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 14 Figure 1.4: Iterability of transition b in timed automaton (i) requires a long exploration in the abstract zone graph (ii).
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 5 Difference-Bound-Matrix [Dil89]). A DBM is a matrix (Z xy ) x,y∈X + in which each entry Z xy = ( xy , c xy ) represents the constraint x -y c xy where c xy ∈ Z and ∈ {≤, <} or ( xy , c xy ) = (<, ∞). The solution set of a DBM is a set of valuations satisfying all constraints represented in the DBM.
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 22 Figure 2.2: Part of the zone graph of the automaton A 1 in Figure 2.1a
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 2 Figure 2.3: A timed automaton and its infinite zone graph

  timed automaton A OUTPUT : Yes if A has an accepting run, No otherwise */ function reachability check ( A )

Algorithm 3. 1 :

 1 Standard reachability algorithm for timed automaton A with subsumption. timed automaton A OUTPUT : Yes if A has an accepting run, No otherwise */ function reachability check ( A )

  timed automaton A OUTPUT : Yes if A has an accepting run, No otherwise */ function reachability check ( A )

  Algorithm 3.3 terminates and is correct because it only specifies a search order for Algorithm 3.1 Example 5. Let us explain how Algorithm 3.3 works on an example. Consider again the automaton A 2 in Figure 3.1a. The final exploration tree is Algorithm 3.3: Reachability algorithm with ranking of nodes for timed automaton A. The set P is stored as an exploration tree →. /* Specifications: INPUT : a timed automaton A OUTPUT : Yes if A has an accepting run, No otherwise */ function reachability check ( A )

Figure 3 . 6 :

 36 Figure 3.6: Exploration tree for Algorithm 3.3 on the automaton in Figure 3.1a.
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 3 Figure3.10: Waiting strategy starts exploring from t only after all paths leading to t have been explored.

  INPUT : a timed automaton A OUTPUT : Yes if A has an accepting run, No otherwise */ function reachability check ( A )

  INPUT : a timed automaton A OUTPUT : Yes if A has an accepting run, No otherwise */ function reachability check ( A )

  Figure3.12: A cyclic timed automaton and a part of its infinite unfolding graph.

  Algorithm 3.6: Reachability algorithm with waiting strategy for timed automaton A. /* Specifications: INPUT : a timed automaton A OUTPUT : Yes if A has an accepting run, No otherwise */ function reachability check ( A )
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 3 Figure 3.14: Timed automaton A 4 .

  timed automaton A OUTPUT : Yes if A has an accepting run, No otherwise */ function reachability check ( A )

Algorithm 4. 1 :

 1 Standard algorithm for Büchi non-emptiness problem [LOD + 13]. timed automaton A OUTPUT : Yes if A has a run satisfying the Büchi condition, No otherwise */

⊆

  (c) An exploration graph of A b with zone inclusion
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 51 Figure 5.1: An example where the algorithm for analysis of Büchi properties that uses zone inclusion will miss an accepting cycle.
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 52 Figure 5.2: Iterability of b transition in timed automaton (i) requires a long exploration in the abstract zone graph (ii).

Example 11 .

 11 Consider again Figure 5.3. It is a transformation graph of a transition x 2 <5, {x 1 }

Lemma 57 .

 57 Let G be a transformation graph with no negative cycles. Every solution to the short transformation graph [G] extends to a solution of G. So if σ is a sequence of transitions, [G σ ] reflects σ too. Proof. Given a transformation graph G. Consider its short transformation graph [G]. As all edges in [G] come from the canonical form of G, every solution of [G] correspond to the first and the last loose valuations of a solution of G. Therefore, every solution of [G] can be extended to a solution of G.
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 61 Given a transformation graph G σ = (V, E), we define two zones left(G σ ) = (0,x) xy dxy ----→(0,y) ∈V (0, y) -(0, x) xy d xy right(G σ ) = (1,x) xy dxy ----→(1,y) ∈V (1, y) -(1, x) xy d xy
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 5 Figure 5.4: A path in a composition of G's and the corresponding p-tree.
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 55 Figure 5.5: Possible children of (x, y) in a p-tree
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 5 Figure5.6: Pattern: root is (x, y) and the only leaf that is not is (x, y) again. Moreover, the weight has to be negative.

  timed automaton A OUTPUT : Yes if A has a run satisfying the Büchi condition, No otherwise */ function iDFSS ( A = (Q, q 0 , X, T, F ) ) Cyan:= Blue :=∅ ; e x p l o r e ( (q 0 , Z 0 ) ) ; return No ; function e x p l o r e ( (q, Z) )
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 58 Figure 5.8: Model of the CSMA/CD protocol: station (left) and bus (right).
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 63 Figure 6.3: Model of a FlexRay network
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 6 Figure 6.4: A FlexRay node is modeled by a set of timed automata communicating with each other
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 65 Figure 6.5: Coldstart nodes controller
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 66 Figure 6.6: Initializer that controls coldstart nodes in the first two communication cycles.
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 67 Figure 6.7: Sender that waits for the start of its time slot and then sends a start frames message
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 69 Figure 6.9: Receiver that counts the number of valid messages received in each cycle
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 6 Figure 6.11: Regular nodes controller
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 71 Figure 7.1: An exploration tree (black) and a covering relation * (red).

Algorithm 7. 1 :

 1 Custom highlight function for exploration trees. function highlight ( T = (V, E, Σ, Λ, ), P : {V ∪ E ∪ } → { , ⊥}, highlighting = (shape, size, color) ) f o r each e l e m e n t x i n {V ∪ E ∪ } do i f P (x) = appearance(x):= highlighting;

Figure 7 . 2 :

 72 Figure 7.2: The use of dedicated highlighting to improve exploration trees analysis. This is the exploration tree in Figure 7.1 with dedicated highlight effects in Table 7.1; Red nodes are covered nodes, green nodes are covering nodes. The figure shows the distribution of covering and covered nodes. It hence reveals there are some paths containing only covered nodes -only red nodes. Those are unnecessary explorations performed by the algorithm.
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 73 Figure 7.3: Example of the subsumption relation ⊆ and its transitive property. Let n be covered by n . If n is identical to n then n is covered by n. If n is covered by n then n is covered by n .

  Figure7.4: The use of dedicated highlighting and paths extracting to improve exploration tree analysis. The figure shows all paths to a node and to its covering nodes. In brief, red nodes are covered nodes, green nodes are covering nodes (see Table7.1 for all legends). The figure reveals that there are paths that are better than the others to reach the same state from the initial state. For instance, the path with three consecutive green nodes, in the second branch from the left, is better than the path with three red boxes, in the leftmost branch, because its nodes respectively cover the nodes of the other path.

-

  j ∈ {1, 2}, v 0 = root(T j ), v k = u, -|σ(T j , u)| = k + 1, σ(T j , u)[i] = v i with 0 ≤ i ≤ k, σ(T j , u)[i] e = (v i , v i+1 ) ∈ E j with 0 ≤ i < k.-two paths are similar, σ(T 1 , n 1 ) = σ(T 2 , n 2 ), if and only if-P s (n 1 , n 2 ) = and -|σ(T 1 , n 1 )| = |σ(T 2 , n 2 )| = k and -P s σ(T 1 , n 1 )[i], σ(T 2 , n 2 )[i] = with 0 ≤ i < k and trans(σ(T 1 , n 1 )[i] e ) = trans(σ(T 2 , n 2 )[i] e ) with 0 ≤ i < k.

  Figure 7.6: Merged tree. The differences and the nodes where the two algorithms diverge are shown. The common prefix of the two input trees is in gray.The edges that exist only in the first tree are highlighted in orange, and the edges that exist only in the second tree are highlighted in black.
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 7 Figure 7.7: Step-by-step visualization of three consecutive steps of an exploration performed by the BFS algorithm. Black edges are parent-child edges, red edges are covering edges, green nodes are covering nodes, red nodes are covered nodes.

Figure 7 . 8 :

 78 Figure 7.8: Part of an exploration tree where black edges are parent-child edges, red edges are covering edges, green nodes are covering nodes, red boxes are covered nodes. The big red nodes are covered but also have successor(s). Those are mistake nodes.

Figure 7 . 9 :

 79 Figure 7.9: An exploration tree. Black edges are parent-child edges, green nodes are covering nodes, big green circles are true-zone and covering nodes, red nodes are covered nodes, big red rings are true-zone but are covered by an identical true-zone node.

  

  

  

  

  

  or n 1 = n 2 and 1 =< and 2 =≤. Hence, for two DBMs D and D in canonical form representing Z and Z , respectively, Z ⊆ Z iff D xy is equal or stronger than D xy for all clocks x, y ∈ X 0

Table 6 .

 6 2: Verification results of the correctness of the FlexRay's startup mechanism where BFS is an implementation of Algorithm 3.1; TWR-BFS is the implementation of Algorithm 3.7; Config is the network configuration; Prop is the property to verify; Reslt shows whether the property holds; Visited is the number of visited nodes; Mist is the number of mistakes, and Mist ratio is the ratio between the number of mistakes and the number of visited nodes.

	Config	Prop Reslt	Visited	BFS Mist Mist ratio Visited	TWR-BFS Mist Mist ratio
	2CS	P1	no	3467	134	4%	3451	118	3%
	3CS	P1	no	791238	95151	12%	733149	38708	5%
	2CS	P2	no	3 467	134	4%	3 451	118	3%
	3CS	P2	no	791238	95151	12%	733149	38708	5%
	3CS+1R P2	no 38843652 13083871	36%	26234681 2763792	11%
	2CS	P3	yes	1931	39	2%	1988	31	2%
	3CS	P3	yes	340871	31192	9%	189595	10571	3%
	3CS+1R P3	yes 14195479 2599742	18%	14580812 1191884	8%
	4CS	P3	yes 29178463 8059775	28%	31034428 1416993	5%

Table 7 .

 7 1: Basic highlighting effects for nodes and links in execution traces

		Types	Appearance
		E1. parent-child
	Links	E2. equally-covering
		E3. strictly-covering
		N1. incomparable
		N2. covering-and-covered
	Nodes	N3. covered N4. equally-covered
		N5. covering
		N6. only-equally-covering

N5. covering if n is not a target of any covering edge and is the source of a strictly-covering link, N6. only-equally-covering if n is not a target of any covering edges and all covering edges whose source is n, are equally-covering links.

Preliminaries

The models are available from http://www.labri.fr/perso/herbrete/tchecker.

Algorithm

3.1 is essentially the algorithm that is implemented in UPPAAL[BDL + 06].

Proof. Take any transition (q 1 , r 1 ) t -→ (q 2 , r 2 ) in RG(A) with t = (q 1 , g, R, q 2 ). From definition of the region graph, there are v 1 ∈ r 1 , δ ∈ R ≥0 and v 2 ∈ r 2 with (q 1 , v 1 ) δ,t -→ (q 2 , v 2 ). It means that v 1 + δ satisfies the guard g and v 2 = [R](v 1 + δ).

Consider any valuation v 1 ∈ r 1 . By Lemma 29, there exists a δ such that v 1 + δ and v 1 + δ are region equivalent. We know that two region equivalent valuations satisfy the same guards. As v 1 + δ satisfy the guard g, v 1 + δ also satisfies g.

Consider the valuations [R](v 1 + δ) and [R](v 1 + δ ). They have the same values for all clocks in R. They have the same integral parts and the same ordering for fractional parts for the clocks that are not in R, since v 1 + δ and v 1 + δ are region equivalent. Therefore, [R](v 1 + δ) and [R](v 1 + δ ) are in the same region.

From Lemma 32, we have the following lemma Lemma 33. Let RG(A) be the region graph of the timed automaton A. In RG(A) there is a path

Proof. The (⇒) comes from the Lemma 32. The (⇐) comes directly from the definition of region graphs (Definition 31).

The above lemma shows that the region graph is sound and complete for Büchi non-emptiness problem of TBA.

Theorem 34 ([AD94]

). The timed Büchi automaton A = (Q, q 0 , F, X, Act, T ) has a run satisfying the Büchi condition iff there exists a run in the region graph RG(A) that visits infinitely often nodes whose state is in F .

The above theorem gives an algorithm to solve the Büchi non-emptiness problem in region graphs. However, the approach with region graphs is impractical. The number of regions grows exponentially w.r.t to number of clocks and the maximal bounds of clocks [START_REF] Alur | A theory of timed automata[END_REF]. Indeed, the number of clock regions is bounded by |X|! • 2 |X| • x∈X (2M (x) + 2) [START_REF] Alur | A theory of timed automata[END_REF]. An alternative approach is to work with abstract zone graphs that in practice give a more compact representation of the state-space. with (q, Z k+1 ) is the first occurrence of q in the prefix.

By the soundness of ZG a (A) for reachability (Theorem 15), we know that there exists in A a run (q 0 , v 0 ) → * (q, v k+1 ) → * (q, v k+2 ) → * . . . → * (q, v k+n ) where v i ∈ Z i for all i ≥ 0.

Because in the above run there are more occurrences of q than the number of region equivalent classes in A, we know that among all the occurrences of q, at least two of them, say (q, v i ) and (q, v j ) with i < j, have valuations in the same region: v i ∼ M v j . Therefore, from Lemma 33 there is a cycle in the region graph of A (q, r) → * (q, r)

where r is the region to which v i and v j belong. Thus, by Theorem 34 there is a run satisfying the Büchi condition in A.

As the Extra LU + abstraction [BBLP06] is a time-abstract simulation compatible abstraction and also is a finite abstraction, we have the following theorem:

). In a TBA A, there is a run satisfying the Büchi condition iff there exists a Büchi accepting run in ZG Extra LU + (A). Furthermore,

Therefore, one can solve the Büchi non-emptiness problem of A by using a finite graph algorithm on ZG Extra LU + (A).

Algorithm for Büchi non-emptiness problem

In this section, we present a standard algorithm for the Büchi non-emptiness problem for timed automata. The Büchi non-emptiness problem for timed automata (Definition 26) consists in checking for an infinite run that visits an accepting state infinitely often in the semantics of timed automata. If the semantics of timed automata is represented by a finite symbolic semantics that preserves the Büchi non-emptiness problem, any infinite accepting run will be reflected by a cycle in that finite graph. Therefore, thanks to Theorem 36, the Büchi non-emptiness problem for a timed automaton A is reduced to the problem of finding accepting cycles -cycles that contain an accepting state -in the finite abstract zone graph ZG Extra LU + (A) of A. Accordingly, algorithms for the Büchi non-emptiness problem of timed automata are based on classical finite graph algorithms for finding accepting cycles. There are two classic algorithms for cycles analysis: first, the nested-DFS P2. Does the system have a deadlock? The property is checked by testing whether there is a state with no successor.

P3. Is it possible for all nodes to reach the normal operation phase? The property is checked by testing for reachability of a state where all nodes are in state normal 1.

Observe that in the startup phase, the start of a communication can be determined by any coldstart node. In other words, the leading coldstart node can be any one of the coldstart nodes. And from two consecutive valid messages of the leading coldstart node, the start of next communication cycle is always detectable (for more details, see the Initializer automaton in Figure 6.6). Knowing that the leading coldstart collision resolution works correctly (property P1 is not true), without losing generality, one can assume that the leading coldstart node is the first coldstart node.

We use the above observation on pre-choosing the leading coldstart node to reduce the number of visited nodes in verification of the property P2 and P3 of the FlexRay's startup mechanism in a network with four or more nodes. We have modified the coldstart controller to allow only the first coldstart node to become a leading coldstart node. It is done by adding to the transition from listen to CAS a guard checking that id is equal to 0.

Thus, for a FlexRay network with four or more coldstart nodes, we verify the properties P2, P3 with a pre-chosen leading coldstart node (the first coldstart node).

The results in Table 6.2 show that the startup mechanism of FlexRay works properly w.r.t. the three properties in our analysis.

Evaluating performance of the TWR-BFS algorithm

In this section, we evaluate the performance of the TWR-BFS algorithm by comparing its experimental results with the corresponding results of the BFS algorithm in the verification of the FlexRay's startup protocol.

It is worth noting that using the number of visited nodes is not enough to evaluate the performance of an algorithm. For the same model and the same property -especially for reachability properties where accepting states are reachable, the number of visited nodes of one algorithm may vary depending on the order in which outgoing transitions of a given nodes are taken. For instance, while verifying a reachability property that holds in the model like the property P3 of our analysis, if by chance an algorithm with DFS order always takes the transitions leading to the accepting state, the algorithm will terminate very soon as it reaches the accepting state by the shortest path. It means that the number of visited nodes of the algorithm will be very small with respect to the entire state space. The similar situation may happen for

Analysis of mistakes

Having the number of mistakes as a metric for the performance of algorithms, we wanted to find why and how to avoid those mistakes.

While looking at the number of mistakes upon termination of algorithms, we found that the search order matters. To check for the same property on the same model, the standard algorithm (Algorithm 3.1 with different search order) results in different number of mistakes. In order to identify nodes where the algorithms diverge, we used our visualization toolbox to visualize and compare the explorations tree of those algorithms. We then visualized step-by-step the exploration trees of the algorithms to analyze their exploration and to understand why they diverge. Moreover, to examine why one algorithm makes mistakes but not the other, we applied our path extracting function to those mistake nodes and looked for the corresponding paths in the other exploration tree.

The resulting visualization steps reveal two important facts about mistakes. The first one is a racing situation. It is revealed during the step-by-step visualization of exploration trees. The racing situation happens when the algorithm first found and visited a small node, then found a bigger node as shown in Figure 7.7a. In the figure, there is one covering edge from a green node to a red node. The green node is bigger than the red node. The red node has one successor meaning that it has been visited, while the green node is a leaf node meaning that it has been found and has not visited yet. Note that the figure shows the exploration of the standard BFS algorithm. Nodes are visited layer by layer from top to bottom and from left to right. From Chapter 3 we know that the successor of the big node is not smaller than the successor of the small node; but not the other way round, thus the exploration of the successor of the small node is unnecessary. However, in the situation depicted by Figure 7.7a, because the small successor was created and added into the queue before the big node, it will be visited before the big node; it is again another mistake as shown in Figure 7.7b. The situation then repeats, and results in two parallel sub-trees where one covers the other as shown in Figure 7.7c.

The racing situation suggests that the big node should have priority not only over the small node but also over the entire sub-tree of the small node. It is the key idea behind the ranking system presented in Section 3.3.1 of Chapter 3 at page 38.

Secondly, visualizing exploration trees reveals the reason of mistake situations. The visualized trees show that there are mistakes because there are many paths of different lengths to the same state (a joint state), and the longest path results in the biggest zone as shown in Figure 7.4. In the figure, the three bottom leaf nodes have the same state but with different zones. The middle node covers the leftmost node, and the rightmost node covers both