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Summary

This work deals with an extension of the classical construction of reduced-order models (ROMs) that are obtained through modal analysis in computational linear structural dynamics. It is based on a multilevel projection strategy and devoted to complex structures with uncertainties. Nowadays, it is well recognized that the predictions in structural dynamics over a broad frequency band by using a finite element model must be improved in taking into account the model uncertainties induced by the modeling errors, for which the role increases with the frequency. In such a framework, the nonparametric probabilistic approach of uncertainties is used, which requires the introduction of a ROM. Consequently, these two aspects, frequency-evolution of the uncertainties and reduced-order modeling, lead us to consider the development of a multilevel ROM in computational structural dynamics, which has the capability to adapt the level of uncertainties to each part of the frequency band. In this thesis, we are interested in the dynamical analysis of complex structures in a broad frequency band. By complex structure is intended a structure with complex geometry, constituted of heterogeneous materials and more specifically, characterized by the presence of several structural levels, for instance, a structure that is made up of a stiff main part embedding various flexible sub-parts. For such structures, it is possible having, in addition to the usual global-displacements elastic modes associated with the stiff skeleton, the apparition of numerous local elastic modes, which correspond to predominant vibrations of the flexible sub-parts. For such complex structures, the modal density may substantially increase as soon as low frequencies, leading to high-dimension ROMs with the modal analysis method (with potentially thousands of elastic modes in low frequencies). In addition, such ROMs may suffer from a lack of robustness with respect to uncertainty, because of the presence of the numerous local displacements, which are known to be very sensitive to uncertainties. It should be noted that in contrast to the usual long-wavelength global displacements of the low-frequency (LF) band, the local displacements associated with the structural sub-levels, which can then also appear in the LF band, are characterized by short wavelengths, similarly to high-frequency (HF) displacements. As a result, for the complex structures considered, there is an overlap of the three vibration regimes, LF, MF, and HF, and numerous local elastic modes are intertwined with the usual global elastic modes. This implies two major difficulties, pertaining to uncertainty quantification and to computational efficiency. The objective of this thesis is thus double. First, to provide a multilevel stochastic ROM that is able to take into account the heterogeneous variability introduced by the overlap of the three vibration regimes. Second, to provide a predictive ROM whose dimension iv is decreased with respect to the classical ROM of the modal analysis method. A general method is presented for the construction of a multilevel ROM, based on three orthogonal reduced-order bases (ROBs) whose displacements are either LF-, MF-, or HF-type displacements (associated with the overlapping LF, MF, and HF vibration regimes). The construction of these ROBs relies on a filtering strategy that is based on the introduction of global shape functions for the kinetic energy (in contrast to the local shape functions of the finite elements). Implementing the nonparametric probabilistic approach in the multilevel ROM allows each type of displacements to be affected by a particular level of uncertainties. The method is applied to a car, for which the multilevel stochastic ROM is identified with respect to experiments, solving a statistical inverse problem. The proposed ROM allows for obtaining a decreased dimension as well as an improved prediction with respect to a classical stochastic ROM.

Short summary

For some complex dynamical structures exhibiting several structural scales, numerous local displacements can be intertwined with the usual global displacements, inducing an overlap of the low-, medium-, and high-frequency vibration regimes (LF, MF, HF). Hence the introduction of a multilevel reduced-order model (ROM), based on three reduced-order bases (ROBs) that are constituted of either LF-, MF-, or HF-type displacements. These ROBs are obtained using a filtering method based on global shape functions for the kinetic energy. First, thanks to the filtering of local displacements, the dimension of the multilevel ROM is reduced compared to classical modal analysis. Second, implementing the nonparametric probabilistic approach in the multilevel ROM allows each type of displacements to be affected by a particular level of uncertainties. The method is applied to a car, for which the multilevel stochastic ROM is identified with respect to experiments, solving a statistical inverse problem. v

Résumé

Ce travail de recherche présente une extension de la construction classique des modèles réduits (ROMs) obtenus par analyse modale, en dynamique numérique des structures linéaires. Cette extension est basée sur une stratégie de projection multi-niveau, pour l'analyse dynamique des structures complexes en présence d'incertitudes. De nos jours, il est admis qu'en dynamique des structures, la prévision sur une large bande de fréquence obtenue à l'aide d'un modèle éléments finis doit être améliorée en tenant compte des incertitudes de modèle induites par les erreurs de modélisation, dont le rôle croît avec la fréquence. Dans un tel contexte, l'approche probabiliste non-paramétrique des incertitudes est utilisée, laquelle requiert l'introduction d'un ROM. Par conséquent, ces deux aspects, évolution fréquentielle des niveaux d'incertitudes et réduction de modèle, nous conduisent à considérer le développement d'un ROM multi-niveau, pour lequel les niveaux d'incertitudes dans chaque partie de la bande de fréquence peuvent être adaptés. Dans cette thèse, on s'intéresse à l'analyse dynamique de structures complexes caractérisées par la présence de plusieurs niveaux structuraux, par exemple avec un squelette rigide qui supporte diverses sous-parties flexibles. Pour de telles structures, il est possible d'avoir, en plus des modes élastiques habituels dont les déplacements associés au squelette sont globaux, l'apparition de nombreux modes élastiques locaux, qui correspondent à des vibrations prédominantes des sousparties flexibles. Pour ces structures complexes, la densité modale est susceptible d'augmenter fortement dès les basses fréquences (BF), conduisant, via la méthode d'analyse modale, à des ROMs de grande dimension (avec potentiellement des milliers de modes élastiques en BF). De plus, de tels ROMs peuvent manquer de robustesse vis-à-vis des incertitudes, en raison des nombreux déplacements locaux qui sont très sensibles aux incertitudes. Il convient de noter qu'au contraire des déplacements globaux de grande longueur d'onde caractérisant la bande BF, les déplacements locaux associés aux sous-parties flexibles de la structure, qui peuvent alors apparaître dès la bande BF, sont caractérisés par de courtes longueurs d'onde, similairement au comportement dans la bande hautes fréquences (HF). Par conséquent, pour les structures complexes considérées, les trois régimes vibratoires BF, MF et HF se recouvrent, et de nombreux modes élastiques locaux sont entremêlés avec les modes élastiques globaux habituels. Cela implique deux difficultés majeures, concernant la quantification des incertitudes d'une part et le coût numérique d'autre part. L'objectif de cette thèse est alors double. Premièrement, fournir un ROM stochastique multi-niveau qui est capable de rendre compte de la variabilité hétérogène introduite par le recouvrement des trois régimes vibratoires. Deuxièmement, fournir un ROM prédictif de dimension réduite par rapport à celui vi de l'analyse modale. Une méthode générale est présentée pour la construction d'un ROM multi-niveau, basée sur trois bases réduites (ROBs) dont les déplacements correspondent à l'un ou l'autre des régimes vibratoires BF, MF ou HF (associés à des déplacements de type BF, de type MF ou bien de type HF). Ces ROBs sont obtenues via une méthode de filtrage utilisant des fonctions de forme globales pour l'énergie cinétique (par opposition aux fonctions de forme locales des éléments finis). L'implémentation de l'approche probabiliste non-paramétrique dans le ROM multi-niveau permet d'obtenir un ROM stochastique multi-niveau avec lequel il est possible d'attribuer un niveau d'incertitude spécifique à chaque ROB. L'application présentée est relative à une automobile, pour laquelle le ROM stochastique multi-niveau est identifié par rapport à des mesures expérimentales. Le ROM proposé permet d'obtenir une dimension réduite ainsi qu'une prévision améliorée, en comparaison avec un ROM stochastique classique.

Résumé court

Pour des structures dynamiques complexes comportant plusieurs échelles structurales, de nombreux déplacements locaux peuvent être entremêlés avec les déplacements globaux habituels, induisant un recouvrement des régimes vibratoires basses, moyennes et hautes fréquences (BF, MF, HF). D'où l'introduction d'un modèle réduit (ROM) multi-niveau, basé sur trois bases réduites (ROBs) constituées de déplacements de type BF, MF ou bien HF. Ces ROBs sont obtenues via une méthode de filtrage utilisant des fonctions de forme globales pour l'énergie cinétique. Grâce au filtrage de déplacements locaux, la dimension du ROM multiniveau est réduite, comparée à l'analyse modale classique. Un modèle probabiliste non-paramétrique permet d'obtenir un ROM stochastique multi-niveau avec un niveau d'incertitudes spécifique pour chacune des ROBs. La méthode est appliquée à une voiture, pour laquelle le ROM stochastique multi-niveau est identifié expérimentalement, en résolvant un problème statistique inverse.

Chapter 1 Introduction 1.1 Context of the research

This work deals with an extension of the classical construction of reduced-order models (ROMs) that are obtained through modal analysis in computational linear structural dynamics, an extension that is based on a multilevel projection strategy, for complex structures with uncertainties. Nowadays, it is well recognized that the predictions in structural dynamics over a broad frequency band by using a computational model, based on the finite element method [START_REF] Bathe | Finite element procedures[END_REF][START_REF] Hughes | The Finite Element Method: Linear Static and Dynamic Finite Element Analysis[END_REF][START_REF] Zienkiewicz | The Finite Element Method[END_REF], must be improved in taking into account the model uncertainties induced by the modeling errors, for which the role increases with the frequency. This means that any model of uncertainties must account for this type of frequency evolution. In addition, it is also admitted that the parametric probabilistic approach of uncertainties is not sufficiently efficient for reproducing the effects of modeling errors. In such a framework, the nonparametric probabilistic approach of uncertainties can be used, but in counter part requires the introduction of a ROM for implementing it. Consequently, these two aspects, frequency-evolution of the uncertainties and reduced-order modeling, lead us to consider the development of a multilevel ROM in computational structural dynamics, which has the capability to adapt the level of uncertainties to each part of the frequency band. This is the purpose of the thesis.

In structural dynamics, the low-frequency (LF) band is generally characterized by a low modal density and by frequency response functions (FRFs) exhibiting isolated resonances. These are due to the presence of long-wavelength displacements, which are global (the concept of global displacement will be clarified later).
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In contrast, the high-frequency (HF) band is characterized by a high modal density and by rather smooth FRFs, these being due to the presence of numerous short-wavelength displacements. The intermediate band, the medium-frequency (MF) band, presents a non-uniform modal density and FRFs with overlapping resonances [START_REF] Soize | Medium frequency linear vibrations of anisotropic elastic structures[END_REF]. For the LF band, modal analysis [START_REF] Bathe | Numerical methods in the finite element method[END_REF][START_REF] Meirovitch | Dynamics and Control of Structures[END_REF][START_REF] Argyris | Dynamics of Structures[END_REF][START_REF] Geradin | Mechanical Vibrations, Second edition: Theory and Applications to Structural Dynamics[END_REF][START_REF] Ohayon | Structural acoustics and vibration[END_REF][START_REF] Craig | Fundamentals of Structural Dynamics[END_REF][START_REF] Bathe | The subspace iteration method -revisited[END_REF][START_REF] Casciati | Quantity vs. quality in the model order reduction (MOR) of a linear dynamical system[END_REF][START_REF] Rumpler | Performance of a restrainedinterface substructuring FE model for reduction of structural-acoustic problems with poroelastic damping[END_REF][START_REF] Rumpler | A residue-based mode selection and sorting procedure for efficient poroelastic modeling in acoustic finite element applications[END_REF] is a well-known effective and efficient method, which usually provides a smalldimension ROM whose reduced-order basis (ROB) is constituted of the first elastic modes (i.e. the first structural vibration modes). Energy methods, such as statistical energy analysis [START_REF] Lyon | Theory and Application of Statistical Energy Analysis[END_REF][START_REF] Langley | A hybrid method for the vibration analysis of complex structural-acoustic systems[END_REF][START_REF] Lebot | Energy transfer for high frequencies in built-up structures[END_REF][START_REF] Maxit | Extension of SEA model to subsystems with non-uniform modal energy distribution[END_REF][START_REF] Langley | Response variance prediction in the statistical energy analysis of built up systems[END_REF][START_REF] Langley | On the diffuse field reciprocity relationship and vibrational energy variance in a random subsystem at high frequencies[END_REF][START_REF] Cotoni | A statistical energy analysis subsystem formulation using finite element and periodic structure theory[END_REF][START_REF] Ragnarsson | Subcomponent modelling of input parameters for statistical energy analysis by using a wave-based boundary condition[END_REF][START_REF] Besset | A coupled BEM and energy flow method for mid-high frequency internal acoustic[END_REF][START_REF] Cotoni | High-frequency radiation of Lshaped plates by a local energy flow approach[END_REF][START_REF] Sui | Prediction of vibroacoustics energy using a discretized transient local energy approach and comparison with TSEA[END_REF], are commonly used for the HF band analysis. Various methods have been proposed for analyzing the MF band. A part of these methods are related to deterministic solvers devoted to the classical deterministic linear dynamical equations [START_REF] Soize | Medium frequency linear vibrations of anisotropic elastic structures[END_REF][START_REF] Morand | A modal hybridization method for vibroacoustic studies at medium frequencies[END_REF][START_REF] Ladevèze | A new computational approach for structure vibrations in the medium frequency range[END_REF][START_REF] Soize | Reduced models in the medium frequency range for general dissipative structural-dynamics systems[END_REF][START_REF] Ohayon | Structural acoustics and vibration[END_REF][START_REF] Ladevèze | The variational theory of complex rays for the calculation of medium-frequency vibrations[END_REF][START_REF] Farhat | A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime[END_REF][START_REF] Bel | Forced vibrations in the medium frequency range solved by a partition of unity method with local information[END_REF][START_REF] Ladevèze | A new computational method for transient dynamics including the low-and the medium-frequency ranges[END_REF][START_REF] Shorter | Vibro-acoustic analysis of complex systems[END_REF][START_REF] Zhang | The discontinuous enrichment method for elastic wave propagation in the medium-frequency regime[END_REF][START_REF] Ji | A mode-based approach for the mid-frequency vibration analysis of coupled longand short-wavelength structures[END_REF]. A second part are devoted to stochastic linear dynamical equations that have been developed for taking into account the uncertainties in the computational models in the MF band (which plays an important role in this band), see for instance [START_REF] Soize | A model and numerical method in the medium frequency range for vibroacoustic predictions using the theory of structural fuzzy[END_REF][START_REF] Sarkar | Mid-frequency structural dynamics with parameter uncertainty[END_REF][START_REF] Gagliardini | Virtual SEA: Mid-Frequency Structure-Borne Noise Modeling Based on Finite Element Analysis[END_REF][START_REF] Ghanem | Reduced models for the medium-frequency dynamics of stochastic systems[END_REF][START_REF] Soize | Uncertain dynamical systems in the mediumfrequency range[END_REF][START_REF] Capiez-Lernout | Robust updating of uncertain damping models in structural dynamics for low-and medium-frequency ranges[END_REF][START_REF] Kassem | Structural partitioning of complex structures in the medium-frequency range. An application to an automotive vehicle[END_REF][START_REF] Ohayon | Advanced Computational Vibroacoustics -Reduced-Order Models and Uncertainty Quantification[END_REF].

In order to illustrate the definitions of the LF, MF, and HF bands, a typical FRF is shown in Fig. 1.1.
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Position of the research

In this work, we are interested in the dynamical analysis of complex structures in a broad frequency band. By complex structure is intended a structure with complex geometry, constituted of heterogeneous materials and more specifically, characterized by the presence of several structural levels, for instance, a structure that is made up of a stiff main part embedding various flexible sub-parts. For such structures, it is possible having, in addition to the usual global-displacements elastic modes associated with their stiff skeleton, the apparition of numerous local elastic modes, which correspond to predominant vibrations of the flexible subparts. In Figs. 1.2 and 1.3 are depicted the mode shapes of respectively the first and the third elastic modes of a car body structure. The gray intensity is related to the level of amplitude of the displacements (the greater amplitude is the lighter). Throughout this document, any other plot of deformation shape will follow the same rule. The first elastic mode (involving a localized deformation of a flexible part at the front-right of the car) is considered as local whereas the other one is considered as a global elastic mode (involving a global torsion of the car). For such complex structures, which can be encountered for instance in aeronautics, aerospace, automotive (see for instance [START_REF] Durand | Structural-acoustic modeling of automotive vehicles in presence of uncertainties and experimental identification and validation[END_REF][START_REF] Arnoux | Stochastic reduced order computational model of structures having numerous local elastic modes in low frequency dynamics[END_REF][START_REF] Arnoux | Reducedorder computational model for low-frequency dynamics of automobiles[END_REF][START_REF] Gagliardini | Dispersed vibroacoustic responses of industrial products: What are we able to predict?[END_REF]), or nuclear industries, two main difficulties arise from the presence of the local displacements. First, the modal density may substantially increase as soon as low frequencies, leading to high-dimension ROMs within modal analysis (with potentially thousands of elastic modes in low frequencies). Second, such ROMs may suffer from a lack of robustness with respect to uncertainty, because of the presence of the numerous local displacements, which are known to be very sensitive to uncertainties. It should be noted that, for such a complex structure, the engineering objectives may consist in the prediction of the global displacements only, that is to say on predicting the FRFs of observation points belonging to the stiff parts.

There is not much research devoted to the dynamic analysis of structures characterized by the presence of numerous local elastic modes intertwined with the global elastic modes. In the framework of experimental modal analysis, techniques for the spatial filtering of the short wavelengths have been proposed [START_REF] Bucher | Left eigenvectors: Extraction from measurements and physical interpretation[END_REF], based on regularization schemes [START_REF] Hansen | The truncated SVD as a method for regularization[END_REF]. In the framework of computational models, the Guyan condensation technique [START_REF] Guyan | Reduction of stiffness and mass matrices[END_REF], based on the introduction of master nodes at which the inertia is concentrated, allows for the filtering of local displacements.

The selection of the master nodes is not obvious for complex structures [START_REF] Bouhaddi | A method for selecting master DOF in dynamic substructuring using the Guyan condensation method[END_REF]. Filtering schemes based on the lumped mass matrix approximations have been proposed [START_REF] Belytschko | Flexural wave-propagation behavior of lumped mass approximations[END_REF][START_REF] Chan | Convergence studies of dynamic analysis by using the finite element method with lumped mass matrix[END_REF][START_REF] Jensen | High convergence order finite elements with lumped mass matrix[END_REF], but the filtering depends on the mesh and cannot be adjusted. In [START_REF] Langley | A hybrid method for the vibration analysis of complex structural-acoustic systems[END_REF] a basis of global displacements is constructed using a coarse mesh of a finite element model, which, generally, gives big errors for the elastic energy. In order to extract the long-wavelength free elastic modes of a master structure, the free-interface substructuring method has been used [START_REF] Ji | A mode-based approach for the mid-frequency vibration analysis of coupled longand short-wavelength structures[END_REF]. Other computational methods include image processing [START_REF] Hahn | Identification of global modeshape from a few nodal eigenvectors using simple free-form deformation[END_REF] for identifying the global elastic modes, the global displacements as eigenvectors of the frequency mobility matrix [START_REF] Guyader | Characterization and reduction of dynamic models of vibrating systems with high modal density[END_REF], or the extrapolation of the dynamical response using a few elastic modes [START_REF] Guyader | Modal sampling method for the vibration study of systems of high modal density[END_REF]. In the framework of slender dynamical structures, which exhibit a high modal density in the LF band, simplified equivalent models [START_REF] Noor | Continuum models for beam-and platelike-lattice structures[END_REF][START_REF] Planchard | Vibrations of nuclear fuel assemblies: A simplified model[END_REF] using beams and plates, or homogenization [START_REF] Sigrits | Dynamic analysis of a tube bundle with fluid-structure interaction modelling using a homogenisation method[END_REF] have been proposed. Using these approaches, the construction of a simplified model is not automatic, requires an expertise, and a validation procedure remains necessary. In addition, these approximations are only valid for the LF band.

For a complex structure for which the elastic modes may not be either purely global elastic modes or purely local elastic modes, the increasing of the dimension of the ROM that is constructed by using the classical modal analysis can be troublesome. The methodology that would consist in sorting the elastic modes according to whether they be global or local cannot be used because the elastic modes are combinations of both global displacements and local displacements. In addition, due to the large amplitude of the local displacements in comparison to the global displacements, it is difficult to distinguish the global displacements based on the mode shapes (this becomes even more difficult for higher frequencies). In Fig. 1.4, we present a mode shape of an elastic mode found in the LF band, which is representative of the regular mode shapes that can be observed for the considered complex structure in this band. It allows for illustrating the fact that in general the elastic modes are not either global or local. Indeed, such mode is constituted of a global deformation of the structure assorted with local deformations of distinct structural levels (the roof, the flexible part in the left back). In Fig. 1.5, we present a mode shape of an elastic mode found in the MF band, which is representative of the regular mode shapes that can be observed for the car body structure in this band. It allows for illustrating the fact that, as the frequency increases, the global displacements within the elastic modes are becoming less and less perceptible: most of the mode shapes are dominated by large-amplitude local displacements that are irregularly distributed over the structure. Another solution would consist in using substructuring techniques for which reviews can be found in [START_REF] Craig | A review of time domain and frequency domain component mode synthesis method in combined experimental-analytical modeling of dynamic structural systems[END_REF][START_REF] De Klerk | General framework for dynamic substructuring: History, review, and classification of techniques[END_REF][START_REF] Leung | Dynamic stiffness and substructures[END_REF] and for which a state of the art has recently been done in [START_REF] Ohayon | Variational-based reduced-order model in dynamic substructuring of coupled structures through a dissipative physical interface: Recent advances[END_REF]. A brief summary is given hereinafter. The concept of substructures was first introduced by Argyris and Kelsey in 1959 [START_REF] Argyris | The analysis of fuselages of arbitrary crosssection and taper: A DSIR sponsored research program on the development and application of the matrix force method and the digital computer[END_REF] and by Przemieniecki in 1963 [START_REF] Przemieniecki | Matrix structural analysis of substructures[END_REF] and was extended by Guyan and Irons [START_REF] Guyan | Reduction of stiffness and mass matrices[END_REF][START_REF] Irons | Structural eigenvalue problems -elimination of unwanted variables[END_REF]. Hurty [START_REF] Hurty | Vibrations of structural systems by component mode synthesis[END_REF][START_REF] Hurty | Dynamic analysis of structural systems using component modes[END_REF] considered the case of two substructures coupled through a geometrical interface. Finally, Craig and Bampton [START_REF] Craig | Coupling of substructures for dynamic analyses[END_REF] adapted the Hurty method. Improvements have been proposed with many variants [START_REF] Bathe | On nonlinear dynamic analysis using substructuring and mode superposition[END_REF][START_REF] Farhat | On a component mode synthesis method and its application to incompatible substructures[END_REF][START_REF] Meirovitch | On the substructure synthesis method[END_REF][START_REF] Meirovitch | Rayleigh-Ritz based substructure synthesis for flexible multibody systems[END_REF][START_REF] Voormeeren | Generalized methodology for assembly and reduction of component models for dynamic substructuring[END_REF], in particular for complex dynamical systems with many appendages considered as substructures (such as a disk with blades) Benfield and Hruda [START_REF] Benfield | Vibration analysis of structures by component mode substitution[END_REF]. Another type of methods has been introduced in order to use the structural modes with free geometrical interface for two coupled substructures instead of the structural modes with fixed geometrical interface (elastic modes) as used in the Craig and Bampton method and as proposed by MacNeal [START_REF] Neal | A hybrid method of component mode synthesis[END_REF] and Rubin [START_REF] Rubin | Improved component-mode representation for structural dynamic analysis[END_REF]. The Lagrange multipliers have also been used to write the coupling on the geometrical interface [START_REF] Markovic | Reduction of substructural interface degrees of freedom in flexibility-based component mode synthesis[END_REF][START_REF] Ohayon | Dynamic substructuring of damped structures using singular value decomposition[END_REF][START_REF] Park | Partitioned component mode synthesis via a flexibility approach[END_REF][START_REF] Rixen | A dual Craig-Bampton method for dynamic substructuring[END_REF].

The substructuring techniques would require to discard the component modes associated with flexible sub-parts, hence removing their associated local displacements. Unfortunately, for the complex structures considered, there is no clear separation between the skeleton and the substructures for which the displacements would be local. For instance, with fixed thickness, the curvatures of a shell can lead to stiffened zones with respect to the rigidity of the flat zones. Consequently, in addition to the various embedded equipments within the structure, the complex geometry of the structure is responsible for the fact that there can be no separation of the several structural levels, but rather a continuous series of structural levels. In such conditions, the notion of local displacement is relative. 
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ture, in which it can be seen that a stiff skeleton emerges among several structural levels. In addition, there are numerous flexible parts spread over the whole structure (not only well identified components such as the roof or the floor panels, but also erratically distributed flexible parts, see for instance the parts located at the front of the car). It allows for illustrating the fact that no clear boundary can be defined between the structural scales. It should be noted that, in contrast to the usual long-wavelength global displacements of the LF band, the local displacements associated with the structural sub-levels, which can then also appear in the LF band, are characterized by short wavelengths, similarly to HF displacements. As a result, for the complex structures considered, there is an overlap of the three vibration regimes, LF, MF, and HF.

Concerning the taking into account of uncertainties in the computational model, the probabilistic framework is well adapted to construct the stochastic models, for the stochastic solvers, and for solving the associated statistical inverse problems for the identification of the stochastic models, for the finite dimension and for the infinite dimension. Hereinafter, we present a brief background that is limited to the probabilistic framework for uncertainty quantification. As a function of the sources of uncertainties in the computational model (model-parameter uncertainties and model uncertainties induced by modeling errors) and of the variabilities in the real dynamical system, several probabilistic approaches can be used. (i) Output-predictive error method. Several methods are currently available for analyzing model uncertainties. The most popular one is the standard outputpredictive error method introduced in [START_REF] Beck | Updating models and their uncertainties -I: Bayesian statistical framework[END_REF]. This method has a major drawback because it does not enable the ROM to learn from data. (ii) Parametric probabilistic methods for model-parameter uncertainties. An alternative family of methods for analyzing model uncertainties is the family of parametric probabilistic methods for the uncertainty quantification. This approach is relatively well developed for model-parameter uncertainties, at least for a reasonably small number of parameters. It consists in constructing prior and posterior stochastic models of uncertain model parameters pertaining, for example, to geometry, boundary conditions, material properties, etc [START_REF] Ibrahim | Parametric Random Vibration[END_REF][START_REF] Ghanem | Stochastic Finite Elements: A Spectral Approach[END_REF][START_REF] Soize | Physical systems with random uncertainties: Chaos representation with arbitrary probability measure[END_REF][START_REF] Mace | Uncertainty in Structural Dynamics[END_REF][START_REF] Schuëller | Computational methods in stochastic mechanics and reliability analysis[END_REF][START_REF] Schuëller | Uncertainties in Structural Mechanics and Analysis -Computational Methods[END_REF][START_REF] Schuëller | Developments in stochastic structural mechanics[END_REF][START_REF] Deodatis | 5th International Conference on Computational Stochastic Mechanics[END_REF][START_REF] Schuëller | Uncertain linear systems in dynamics: Retrospective and recent developments by stochastic approaches[END_REF][START_REF] Maitre | Spectral methods for uncerainty quantification with applications to computational fluid dynamics[END_REF][START_REF] Soize | Stochastic modeling of uncertainties in computational structural dynamics -Recent theoretical advances[END_REF][START_REF]Handbook of Uncertainty Quantification[END_REF][START_REF] Schevenels | The Green's functions of a vertically inhomogeneous soil with a random dynamic shear modulus[END_REF]. This approach was shown to be computationally efficient for both the computational model and its associated ROM (for example, see [START_REF] Bui-Thanh | Parametric reduced-order models for probabilistic analysis of unsteady aerodynamic applications[END_REF][START_REF] Degroote | Interpolation among reducedorder matrices to obtain parameterized models for design, optimization and probabilistic analysis[END_REF]), and for large-scale statistical inverse problems [START_REF] Marzouk | Stochastic spectral methods for efficient Bayesian solution of inverse problems[END_REF][START_REF] Galbally | Non-linear model reduction for uncertainty quantification in large scale inverse problems[END_REF][START_REF] Lieberman | Parameter and state model reduction for large scale statistical inverse problems[END_REF][START_REF] Nouy | Random fields representations for stochastic elliptic boundary value problems and statistical inverse problems[END_REF][START_REF] Cui | Data-driven model reduction for the Bayesian solution of inverse problems[END_REF][START_REF] Soize | Random vectors and random fields in high dimension. Parametric model-based representation, identification from data, and inverse problems[END_REF]. However, it does not take into account neither the model uncertainties induced by modeling errors introduced during the construction of the computational model, nor those due to model reduction. (iii) Nonparametric probabilistic approach for modeling uncertainties. For modeling uncertainties due to more general modeling errors, a nonparametric probabilistic approach was introduced in [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF], in the context of linear structural dynamics. The methodology is in two steps. For the first one, a linear ROM of dimension n is constructed by using the linear computational model with m degrees of freedom (DOFs) and a ROB of dimension n. For the second step, a linear stochastic ROM is constructed by substituting the deterministic matrices underlying the linear ROM with random matrices for which the probability distributions are constructed using the Maximum Entropy (MaxEnt) principle [START_REF] Shannon | A Mathematical Theory of Communication[END_REF][START_REF] Jaynes | Information Theory and Statistical Mechanics[END_REF]. The construction of the linear stochastic ROM is carried out under the constraints generated from the available information such as some algebraic properties (positiveness, integrability of the inverse, etc.) and some statistical information (for example, the equality between mean and nominal values). This nonparametric probabilistic approach has been extended for different ensembles of random matrices and for linear boundary value problems [START_REF] Mignolet | Nonparametric stochastic modeling of linear systems with prescribed variance of several natural frequencies[END_REF][START_REF] Soize | Random matrix models and nonparametric method for uncertainty quantification[END_REF]. It was also experimentally validated and applied for linear problems in composites [START_REF] Chen | Probabilistic approach for model and data uncertainties and its experimental identification in structural dynamics: Case of composite sandwich panels[END_REF], viscoelasticity [START_REF] Capillon | Uncertainty quantification in computational linear structural dynamics for viscoelastic composite structures[END_REF], dynamic substructuring [START_REF] Soize | Random uncertainties model in dynamic substructuring using a nonparametric probabilistic model[END_REF][START_REF] Mignolet | Nonparametric stochastic modeling of structures with uncertain boundary conditions / coupling between substructures[END_REF][START_REF] Arnst | A non-parametric probabilistic model for ground-borne vibrations in buildings[END_REF], vibroacoustics [START_REF] Durand | Structural-acoustic modeling of automotive vehicles in presence of uncertainties and experimental identification and validation[END_REF][START_REF] Ohayon | Advanced Computational Vibroacoustics -Reduced-Order Models and Uncertainty Quantification[END_REF], robust design and optimization [115], etc. More recently, the nonparametric approach has been extended to take into account some nonlinear geometrical effects Introduction in structural analysis [START_REF] Mignolet | Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems[END_REF][START_REF] Capiez-Lernout | Post-buckling nonlinear static and dynamical analyses of uncertain cylindrical shells and experimental validation[END_REF], but it does not hold for arbitrary nonlinear systems, while the work recently published [START_REF] Soize | Uncertainty quantification of modeling errors for nonlinear reduced-order computational models using a nonparametric probabilistic approach[END_REF] allows for taking into account any nonlinearity in a ROM.

In addition, the real systems exhibit variabilities: for a given design of a structure, the associated manufactured objects exhibit variations, which result in dispersed FRFs. It can be explained by the manufacturing process and by the small differences in the design configurations. It should be noted that, in general, the variability of the real system increases with the frequency. Figure 1.8 presents a set of 20 trajectories obtained measuring, under the same conditions, the FRF (modulus in log scale of the acceleration at a given location) of 20 nominally identical automobiles. One can see that the dispersion increases with the frequency. 

Objectives of the research

As previously explained, for the complex structures considered, numerous local elastic modes are intertwined with the usual global elastic modes. The resulting high modal density and overlap of the LF, MF, and HF vibration regimes (presence of small-wavelength HF-type displacements with the usual large-wavelength global displacements of the LF band) induces two major difficulties, pertaining to uncertainty quantification and to computational efficiency.

Strategy of the research

The objective of this thesis is thus double. First, to provide a multilevel stochastic ROM that is able to take into account the heterogeneous variability introduced by the overlap of the three vibration regimes. Second, to provide a predictive ROM whose dimension is decreased with respect to the classical ROM constructed by using the modal analysis method. Both these objectives are to be fulfilled by means of efficient methods that are non-intrusive with respect to commercial software.

Strategy of the research

Recently, a new methodology [START_REF] Soize | Stochastic reduced-order model in low-frequency dynamics in presence of numerous local elastic modes[END_REF] has been proposed for constructing a stochastic ROM devoted to dynamical structures having numerous local elastic modes in the low-frequency range. The stochastic ROM is obtained by implementing the nonparametric probabilistic approach of uncertainties within a novel ROM whose ROB is constituted of two families: one of global displacements and another of local displacements. These families are obtained through the introduction, for the kinetic energy, of a projection operator associated with a subspace of piecewise constant functions. The spatial dimension of the subdomains, in which the projected displacements are constant, and which constitute a partition of the domain of the structure, allows for controlling the filtering between the global displacements and the local displacements. These subdomains can be seen as macro-elements, within which, using such an approximation, no local displacement is permitted. It should be noted that the generation of a domain partition for which the generated subdomains have a similar size (that we call uniform domain partition), necessary for obtaining a spatially uniform filtering criterion, is not trivial for complex geometries. Based on the Fast Marching Method [START_REF] Sethian | A fast marching level set method for monotonically advancing fronts[END_REF][START_REF] Sethian | Computing Geodesic Paths on Manifolds[END_REF], a general method has been developed in order to perform the uniform domain partition for a complex finite element mesh, and then implemented for the case of automobile structures [START_REF] Arnoux | Stochastic reduced order computational model of structures having numerous local elastic modes in low frequency dynamics[END_REF][START_REF] Arnoux | Reducedorder computational model for low-frequency dynamics of automobiles[END_REF]. Published papers related to the methodology are given in [START_REF] Soize | Stochastic reduced-order model in low-frequency dynamics in presence of numerous local elastic modes[END_REF][START_REF] Arnoux | Stochastic reduced order computational model of structures having numerous local elastic modes in low frequency dynamics[END_REF][START_REF] Arnoux | Reducedorder computational model for low-frequency dynamics of automobiles[END_REF][START_REF] Batou | Uncertainty quantification in low-frequency dynamics of complex beam-like structures having a high-modal density[END_REF][START_REF] Batou | Reduced-order computational model in nonlinear structural dynamics for structures having numerous local elastic modes in the low-frequency range. Application to fuel assemblies[END_REF]. Related to a part of these papers, a former PhD thesis [START_REF] Arnoux | Réduction des modèles numériques en dynamique linéaire basse fréquence des automobiles[END_REF] was defended in 2012. In the present thesis (see [START_REF] Ezvan | Multilevel reduced-order computational model in structural dynamics for the lowand medium-frequency ranges[END_REF][START_REF] Ezvan | Multilevel model reduction for uncertainty quantification in computational structural dynamics[END_REF][START_REF] Ezvan | Reduced-order model for the dynamical analysis of complex structures with a high modal density[END_REF][START_REF] Ezvan | Stochastic reduced-order model for the dynamical analysis of complex structures with a high modal density[END_REF][START_REF] Ezvan | Global reduced-order model adapted to the low-and medium-frequency analysis of complex dynamical structures[END_REF][START_REF] Ezvan | Réduction de modèle adaptée à la dynamique basse et moyenne fréquence des structures complexes[END_REF][START_REF] Ezvan | Multilevel stochastic reduced-order model in linear structural dynamics for complex structures[END_REF]), the filtering methodology is generalized through the introduction of a computational framework for the use of any arbitrary approximation subspace for the kinetic energy, in place of the piecewise constant approximation. In particular, polynomial shape functions (with support the whole domain of the structure) are used for constructing a global-displacements ROM for an automobile. This generalization allows for carrying out an efficient convergence of the global-displacements ROM with respect to the so-defined filtering Introduction (in contrast, constructing several uniform domain partitions of different characteristic sizes can be, in practice, very time-consuming). In addition, a multilevel ROM is introduced, whose ROB is constituted of several families of displacements, which correspond to the several structural levels of the complex structure. More precisely, a multilevel ROM whose ROB is constituted of three families, namely the LF-, MF-, and HF-type displacements (successively, using several filterings), is presented. The multilevel ROM allows for implementing a probabilistic model of uncertainties that is adapted to each vibration regime. This way, the amount of statistical fluctuations for the LF-, MF-, and HF-type displacements can be controlled using the multilevel stochastic ROM that is obtained. An alternative construction of a multilevel stochastic ROM has been proposed in [START_REF] Ezvan | Stochastic reduced-order model for the dynamical analysis of complex structures with a high modal density[END_REF], but for which the implementation by using the non-intrusive algorithm proposed in this thesis would not be possible. It should be noted that multilevel substructuring techniques can be found in the literature [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF][START_REF] Bennighof | An automated multilevel substructuring method for eigenspace computation in linear elastodynamics[END_REF][START_REF] Gao | An implementation and evaluation of the AMLS method for sparse eigenvalue problems[END_REF], but for which the purpose is to accelerate the solution of large-scale generalized eigenvalue problems.

Manuscript layout

The thesis is organized as follows. In Chapter 2, the reference computational model is introduced, followed by the classical construction of the ROM that is performed by using modal analysis, on which the classical stochastic ROM is then implemented by using the nonparametric probabilistic approach of uncertainties. In Chapter 3, the methodology devoted to the filtering of the global and of the local displacements is presented, which is then used in Chapter 4 for defining the multilevel ROM. In this chapter, the numerical procedure is also detailed and the construction of the multilevel stochastic ROM is given. Finally, in Chapter 5, the proposed methodology is applied to an automobile, for which the multilevel stochastic ROM is identified by using experimental measurements, and for which its results are compared to those of the classical stochastic ROM.

Chapter 2 Classical reduced-order model

In this chapter, in addition to the reference computational model, we present the very well known modal analysis method as well as the construction of the associated stochastic ROM that is obtained by using the nonparametric probabilistic approach of uncertainties [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF]. This way, basic notions that will be reused later are introduced. In addition, the multilevel stochastic ROM proposed in this work will be compared to latter classical stochastic ROM.

Reference computational model

The vibration analysis is performed over a broad frequency band -denoted as B -by using the finite element method. Let m denote the dimension (number of DOFs) of the finite element model. For all angular frequency ω belonging to B = [ω min , ω max ], the m-dimensional complex vector U(ω) of displacements is the solution of the matrix equation,

( -ω 2 [M] + iω[D] + [K] ) U(ω) = F(ω) , (2.1) 
in which F(ω) is the m-dimensional complex vector of the external forces and where, assuming the structure is fixed on a part of its boundary, [M], [D], and [K] are the positive-definite symmetric (m × m) real mass, damping, and stiffness matrices.

In practice, dimension m of the reference (or high-fidelity) computational model can be very high (millions of DOFs). Nevertheless, matrices [M], [D], and [K] are sparse. However, Eq. (2.1) has to be solved for the frequency sampling and possibly, for several external loadings. In addition, whole this computation must Classical reduced-order model be done several times for implementing the Monte-Carlo method for uncertainty quantification and also, for instance, in the context of a robust design, for which a sampling of the design parameters has to be considered. In this context and for complex structures, the introduction of ROMs is necessary for making such computation tractable. In this thesis, we consider ROMs that are defined upon their projection basis (that is to say their ROB), and which consist in using this projection basis in order to project the equations associated with the reference computational model. The ROB has to be constructed so that the associated vector subspace consists of a good representation of the solution of the dynamical problem. The steps for constructing the ROM are often referred to as the offline stage, and the stage during which the ROM is used for performing the actual simulation (including design optimization, stochastic analysis, etc.) is referred to as the online stage. It should be noted that, in this context, the reduction of the computational effort devoted to the offline stage is not of the greatest concern. Instead, the reduction of the computational effort devoted to the online stage, made possible through the use of a small-dimension ROM, is of great interest for handling large-scale simulations (independently of the computational effort required for the construction of the ROM). In next Section 2.2, the classical ROM, for which the ROB is constituted of the first elastic modes, is presented. For complex structures exhibiting numerous local elastic modes as soon the LF band, the solution of the generalized eigenvalue problem associated with the conservative linear dynamical system, for which the eigenvectors are the elastic modes, can involve a great computational effort (corresponding to the offline stage), due to the high modal density resulting from the presence of the local elastic modes. It should be noted that this increased computational effort for the offline stage is negligible compared to the increased computational effort induced by the use of a high-dimension ROM for the online stage (high dimension due to the presence of numerous local elastic modes in the ROB). In Chapter 3, a methodology for the construction of a small-dimension ROM is presented, based on the use of a ROB that is constituted of global displacements.

Classical nominal reduced-order model

For all α = 1, . . . , m the elastic modes ϕ α with associated eigenvalues λ α are the solutions of the generalized eigenvalue problem,

[K]ϕ α = λ α [M]ϕ α . (2.2)
The first n eigenvalues verify 0 < λ 1 ≤ λ 2 ≤ . . . ≤ λ n < +∞ and the normalization that is chosen for the eigenvectors is such that

[Φ] T [M][Φ] = [I n ] , (2.3) 
in which [Φ] = [ϕ 1 . . . ϕ n ], and where [I n ] is the identity matrix of dimension n. Such a normalization with unit generalized mass is always adopted in this document, in which several generalized eigenvalue problems are introduced. In practice, only the first n elastic modes with n m (associated with the lowest eigenvalues or lowest eigenfrequencies f α = √ λ α /2π in Hz) are calculated. The (m × n) real matrix [Φ] is the ROB of the classical nominal reduced-order model (C-NROM). The vector subspace spanned by the ROB of the C-NROM is denoted by S c . Using the C-NROM, displacements U(ω) belong to S c and we have

U(ω) [Φ]q(ω) = n α=1 q α (ω) ϕ α , (2.4) 
where the n-dimensional complex vector of generalized coordinates q(ω) = (q 1 (ω) . . . q n (ω)) is the solution of the reduced-matrix equation,

( -ω 2 [M] + iω[D] + [K] ) q(ω) = f(ω) , (2.5) 
in which f(ω) = [Φ] T F(ω), [D] = [Φ] T [D][Φ]
is, in general, a full matrix, and where diagonal matrices [K] and [M] are such that

[K] = [Φ] T [K][Φ] = [Λ] , [M] = [Φ] T [M][Φ] = [I n ] , (2.6) 
in which [Λ] is the matrix of the first n eigenvalues.

Classical stochastic reduced-order model

The classical stochastic reduced-order model (C-SROM) is constructed by using the nonparametric probabilistic approach of uncertainties [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF] within the C-NROM. In this nonparametric approach, each nominal reduced matrix of dimension n, say

[A] (= [M], [D], or [K]), is replaced by a random matrix, [A] (= [M], [D], or [K]
), whose probability distribution has been constructed by using the maximum entropy principle [START_REF] Shannon | A Mathematical Theory of Communication[END_REF][START_REF] Jaynes | Information Theory and Statistical Mechanics[END_REF] under the following constraints:

• Matrix [A] is with values in the set of all the positive-definite symmetric (n × n) real matrices.

• E{[A]} = [A]
, with E the mathematical expectation: the mean matrix is Classical reduced-order model chosen as the nominal matrix.

•

E{||[A] -1 || 2 F } < +∞ , with ||.
|| F the Frobenius norm, for insuring the existence of a second-order solution of the stochastic ROM.

The construction of random matrix [A] is given by

[A] = [L A ] T [G n (δ A )][L A ] , (2.7) 
where, using the Cholesky factorization

[A] = [L A ] T [L A ] with upper-triangular [L A ], the random matrix [G n (δ A )] ,
whose construction is given in [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF], is positivedefinite almost surely, with mean value [I n ], and is parameterized by a dispersion parameter δ A that is defined by

δ 2 A = 1 n E{||[G n (δ A )] -[I n ]|| 2 F } . (2.8)
Hyperparameter δ A of random matrix [G n (δ A )] has to verify 0 < δ < δ max , with δ max given by

δ max = n + 1 n + 5 . (2.9) 
The construction of [G n (δ A )] proceeds from the application of the maximum entropy principle under the following constraints:

• Matrix [G n (δ A )
] is with values in the set of all the positive-definite symmetric (n × n) real matrices.

• E{[G n (δ A )]} = [I n ] . • E{||[G n (δ A )] -1 || 2 F } < +∞ .
We now give the results for the random generation of matrix

[G n (δ A )]. It can be written as [G n (δ A )] = [L G (δ A )] T [L G (δ A )] , in which the (n × n) upper-triangular random matrix [L G (δ A )
] is defined through its components as:

for i < j [L G (δ A )] ij = δ A (n + 1) -1/2 U ij , (2.10 
)

for i = j [L G (δ A )] ij = δ A (n + 1) -1/2 2V i , (2.11) 
in which the random variables {U ij } ij are independent copies of a standard Normal random variable and where the random variables {V i } i are independent and are such that V i is a Gamma random variable with shape parameter

α i = 2δ 2 A /(n + 1 + δ 2 A (1 -i))
depending on i and with rate parameter β = 1. The expression for the gamma distribution f G is the following,

f G (x; α, β) = β α x α-1 e -xβ Γ(α) , (2.12) 
in which gamma function Γ(α) is given by

Γ(α) = +∞ 0 t α-1 e -t dt . (2.13)
Using the Monte-Carlo simulation method [START_REF] Rubinstein | Simulation and the Monte Carlo Method[END_REF], the C-SROM allows for computing the random displacements U(ω) associated with U(ω),

U(ω) = [Φ]Q(ω), (2.14) 
in which the random complex vector Q(ω) of the generalized coordinates is obtained by solving the random matrix-equation,

( -ω 2 [M] + iω[D] + [K] ) Q(ω) = f(ω) . (2.15) 
The Monte-Carlo simulation method consists in performing the calculation several times using realizations of the random variables involved in the probabilistic model. In Eq. (2.15), it allows for propagating uncertainties from the system matrices [M], [D], [K] to the output FRFs U(ω).

The classical ROM presented in this Section 2 is built upon the use of the elastic modes that are present in frequency band of analysis B (or a little further). In this manner, the size of the model is reduced while preserving its accuracy for this band. For the complex structures under consideration, numerous local displacements are intertwined with the global displacements. As a result, among the elastic modes present in B, many have little contribution to the robust dynamical response of the stiff skeleton of the structure that is provided by the C-SROM. Consequently, we present the construction of an adapted ROM that is based on a ROB from which some local displacements have been filtered.

Chapter 3

Global-displacements reduced-order model

In this chapter, we present the construction of a new ROM that is based on the use of a global-displacements ROB, instead of the classical ROB of elastic modes, susceptible to include numerous local displacements. In Section 3.1, we present the construction of an unusual mass matrix that is associated with a reduced kinematics for the kinetic energy. In Section 3.2, we use this mass matrix for obtaining unusual eigenvectors that constitute the global-displacements ROB (this unusual mass matrix is not used as the mass matrix for computing the response of the dynamical system). In section 3.3, an efficient and nonintrusive algorithm is proposed for implementing the ROB. Finally, in Section 3.4, we give the construction of a ROB that is constituted of the complementary local displacements that are neglected in the global-displacements ROM.

Reduced kinematics for the kinetic energy

In order to filter local displacements, a reduced kinematics is introduced for the mass matrix. This reduced kinematics is intended to be such that the local displacements cannot be represented. Instead of using local shape functions within the usual finite elements, we propose the use of r global shape functions, which span a vector subspace, S R , and which constitute the columns of a (m × r) real matrix, [B]. It should be noted that the support of these shape functions is the whole domain of the structure and that they are approximated within the finite element basis. In this work, the reduced kinematics used consists of polynomial shape functions.

Construction of the polynomial basis

The objective of this section is the construction of basis matrix [B] of subspace S R . For all m-dimensional vector v belonging to S R , there exists a r-dimensional real vector, c , such that

v = [B] c . (3.1)
In the work initialized in [START_REF] Soize | Stochastic reduced-order model in low-frequency dynamics in presence of numerous local elastic modes[END_REF], the construction of the reduced kinematics is based on a uniform domain partition of the struture, Ω, into N s subdomains Ω 1 , . . . , Ω Ns .

For complex finite element models, such domain partitioning is not a straightforward task. In [START_REF] Arnoux | Stochastic reduced order computational model of structures having numerous local elastic modes in low frequency dynamics[END_REF][START_REF] Arnoux | Reducedorder computational model for low-frequency dynamics of automobiles[END_REF], uniform domain partitions of the finite element mesh of automobiles were performed using an algorithm [START_REF] Arnoux | Stochastic reduced order computational model of structures having numerous local elastic modes in low frequency dynamics[END_REF] based on the Fast Marching Method [START_REF] Sethian | A fast marching level set method for monotonically advancing fronts[END_REF][START_REF] Sethian | Computing Geodesic Paths on Manifolds[END_REF]. In this thesis, the use, for the kinematics reduction, of more accurate approximations (compared to the piecewise constant approximation), allows for avoiding such a domain partitioning.

Polynomial reduced kinematics

In this work, we propose a polynomial approximation of maximum degree d over the entire domain Ω of the structure. To do so, N µ multivariate orthogonal polynomials p α (µ) are used, where for µ = 1, . . . , N µ multi-index α (µ) belongs to some set K d that is defined as follows. Let K d be the set of vectors α = (α 1 , α 2 , α 3 ) for which integers α 1 , α 2 , and α 3 verify

α 3 ≤ α 2 ≤ α 1 ≤ d . (3.2) 
It can be deduced (number of possible combinations) that,

N µ = (d + 1)(d + 2)(d + 3)/6 . (3.3) 
The orthogonality for the polynomials is defined with respect to mass matrix [M] . Denoting as N f the number of free nodes of the finite element model, the approximate displacement v j γ of node γ ∈ {1, . . . , N f } following direction j is written as

v j γ = Nµ µ=1 p α (µ) (x γ ) c j µ , (3.4) 
in which c j µ are the polynomials coefficients and where x γ = (x γ , y γ , z γ ) is the position vector of node γ at which the polynomials are evaluated. In matrix form, the N f equations associated with Eq. (3.4) can be rewritten as

v j = [ p ] c j , (3.5) 
in which v j is the sub-vector of v constituted of the N f displacements v j γ , c j is the sub-vector of c constituted of the N µ coefficients c j µ , and where the (N f × N µ ) real matrix [ p ] is constituted of the values, at each of the N f mesh nodes, of each of the N µ polynomials p α (µ) . It should be noted that the same N µ polynomials are used for every direction j. Basis matrix [B] of subspace S R , which is such that v = [B] c, is then assembled using [ p ]. This assembly is such that only the 3 translational directions are considered for constructing the reduced kinematics. In order to make explicit the assembly, we give an example. Considering a given node γ of the finite element mesh for which we suppose there are 6 DOFs, namely the 3 translations and the 3 rotations, and for which the numerotation in the finite element model is such that the 3 rotations come after the 3 translations, the intersection, with the 3 columns associated with the number-µ polynomial p α (µ) , of the 6 rows in matrix [B] that are associated with node γ , is the following sub-matrix,

[ T µ γ ] =          p α (µ) (x γ ) 0 0 0 p α (µ) (x γ ) 0 0 0 p α (µ) (x γ ) 0 0 0 0 0 0 0 0 0          . (3.6)
As a consequence, for a three-dimensional dynamical system, the column dimension of matrix [B] is r = 3N µ (which is the dimension of subspace S R , associated with the reduced kinematics).

The definition for the multivariate orthogonal polynomials p α (µ) is now given. For this, using the same notation as for p α (µ) , the values, at the mesh nodes, of each of the associated multivariate monomials, m α (µ) , can be written as

m α (µ) (x γ ) = x α 1 -α 2 γ y α 2 -α 3 γ z α 3 γ . (3.7)
Similarly to the definition of matrix [ p ], let [ m ] be the (N f × N µ ) real matrix that is constituted of the N f values, at the mesh nodes, of each of the N µ monomials m α (µ) . Matrix [ m ] of the discrete monomials being introduced, the explicit construction for [ p ] is the following. Matrix [ p ] is constructed as an orthonormalization of [ m ], with respect to mass matrix [M]. To do so, a QR decomposition Global-displacements reduced-order model is performed.

Remark 1 For the case of the use of a diagonally-lumped approximation for mass matrix [M] (approximation for which we suppose the nodal mass is independent of the translational direction), the computation of matrix [ p ] is carried out by performing the thin QR decomposition of the (

N f × N µ ) real matrix [ a ] = [m ] 1/2 [ m ], in which [m ]
is the diagonal matrix constituted of the N f nodal masses. The QR decomposition is written as

[ a ] = [ q ][ r ] , (3.8) 
in which [ r ] is a (N µ × N µ ) real matrix and where [ q ] is a (N f × N µ ) real matrix, which verifies

[ q ] T [ q ] = [I Nµ ] . (3.9) 
Matrix [ p ] can then be obtained by using

[ p ] = [m ] -1/2 [ q ]
. Pre-multiplying latter equation by [m ] 1/2 and using Eq. (3.9) yields the orthogonality property for the multivariate polynomials,

[ p ] T [m ][ p ] = [I Nµ ] . (3.10) 
It should be noted that, in practice, the computation of [ p ] is not necessary (which allows the inversion of diagonal matrix [m ] to be circumvented, useful if some diagonal terms in [m ] were to be zero). Instead, in order to construct the mass matrix corresponding to the polynomial approximation, which will be defined in next Section 3.1.2, only the product [m ] 1/2 [ q ] is required.

Remark 2 The use of orthogonal polynomials allows for obtaining an orthonormalized basis matrix [B], which verifies

[B] T [M][B] = [I r ] . (3.11) 
It should be noted that this step (the orthogonalization) is important with respect to the effectiveness of the method. In Section 3.1.2.1, the inversion of the reduced matrix in Eq. (3.11) is involved in the construction of a projector (orthogonal-projection matrix) that is used for the kinematics reduction of the mass matrix. Without the orthogonalization step, round-off errors would lead to an ill-conditioned reduced matrix (or even a rank-deficient one) and/or to large errors.

Deformation shapes via orthogonal projections onto polynomial bases

In order to illustrate the effect of using such a polynomial approximation, which we recall to be devoted to the filtering of local displacements, we consider the orthogonal projection, onto the polynomial basis (represented by matrix [B]), of a regular low-frequency elastic mode of a car body structure. This elastic mode, depicted in Fig. 

Alternative reduced kinematics

The proposed reduced kinematics, which is presently applied to whole domain Ω, can also be applied for each subdomain Ω 1 , . . . , Ω Ns of a partition of Ω. If such a partition is introduced, and if the maximum degree d of the polynomial approximation is chosen, for each subdomain, as d = 0 (which corresponds to a constant displacement field by subdomain), we then obtain the formulation introduced in [START_REF] Soize | Stochastic reduced-order model in low-frequency dynamics in presence of numerous local elastic modes[END_REF]. In such a case, for the continuous formulation, a projection operator h r of the displacement field u onto the subspace of constant functions by subdomain is, for all x in Ω , written as

{h r (u)} (x) = Ns j=1 1 Ω j (x) 1 m j Ω j ρ(x )u(x )dx , (3.12) 
in which 1 Ω j (x) = 1 if x ∈ Ω j and is zero otherwise, where m j = Ω j ρ(x)dx is the mass of subdomain Ω j , and where ρ is the mass density. In [START_REF] Soize | Stochastic reduced-order model in low-frequency dynamics in presence of numerous local elastic modes[END_REF], the finite element discretization [H r ] of h r is used for obtaining the mass matrix associated with the reduced kinematics,

[M r ] = [H r ] T [M] [H r ].
On the other hand, if the maximum degree d of the polynomial approximation is chosen, for each subdomain, as d = 1, then the reduced kinematics is very close to a rigid-body displacements field by subdomain as proposed in [START_REF] Ezvan | Reduced-order model for the dynamical analysis of complex structures with a high modal density[END_REF].

Figure 3.6 presents the case of a heterogeneous plate for which two distinct structural levels can be defined: the first one consists of a stiff skeleton and the second one of 12 flexible panels that are attached to the stiff skeleton. For this structure, numerous local displacements (associated with isolated vibrations of the flexible panels) are intertwined with the global displacements (associated with long-wavelength vibrations of the stiff skeleton). In order to filter the local displacements, a uniform domain partition of the structure is introduced. Two different approximations are used: a piecewise constant approximation and a piecewise linear approximation. For an elastic mode including both global and local displacements, both of these reduced kinematics allow the associated orthogonal projections to get rid of the local displacements of the flexible panels. In addition, for this case, it can be seen that, in comparison to the piecewise constant approximation, the piecewise linear approximation allows for obtaining a better approximation of the original deformation shape of the stiff skeleton, while the local displacements of the flexible panels remain filtered. Global-displacements reduced-order model

Reduced-kinematics mass matrix

It should be noted that in the case where both the kinetic and elastic energies were to be calculated using this polynomial approximation, the associated mass and stiffness matrices would be of reduced dimension (r × r) and given by [B] T [M] [B] and by [B] T [K] [B], respectively (which corresponds to a Galerkin projection, as used throughout all the document). In the present work, the strategy employed consists in approximating the kinetic energy while keeping the elastic energy exact. The construction of an unusual mass matrix, corresponding to the reduced kinematics, and which is compatible with keeping [K] as the stiffness matrix, is given. In the following, such an unusual mass matrix will be referenced as the reduced-kinematics mass matrix.

Definition

First, the kinetic energy E k (V(t)) associated with any time-dependent real velocity vector V(t) of dimension m is given by

E k (V(t)) = 1 2 V(t) T [M]V(t) . (3.13)
Let then V r (t) be the orthogonal projection of V(t) onto subspace S R , with respect to the inner-product defined by matrix [M]. It can be written as

V r (t) = [B] c opt (V(t)) , (3.14) 
in which c opt (V(t)) is the unique solution of the optimization problem,

c opt (V(t)) = arg min c ∈ R r (V(t) -[B] c) T [M] (V(t) -[B] c) , (3.15) 
and which can be shown to be given by

c opt (V(t)) = ( [B] T [M] [B] ) -1 [B] T [M] V(t) . (3.16)
Assuming the columns of [B] to be orthonormalized with respect to [M] (see Eq. (3.11)), the projector [P] that is such that V r (t) = [P]V(t) is therefore written as

[P] = [B][B] T [M] , (3.17) 
3.1 Reduced kinematics for the kinetic energy 29 the latter being a (m × m) real matrix of rank r ≤ m . As a result, the reduced kinetic energy, defined as E r k (V(t)) = E k (V r (t)), can be written as

E r k (V(t)) = 1 2 V(t) T [M r ]V(t) , (3.18) 
in which the m-dimensional reduced-kinematics mass matrix,

[M r ] = [P] T [M][P] , (3.19) 
is of rank r ≤ m , and can be written, using Eqs. (3.11), (3.17), and (3.19), as

[M r ] = [M][B][B] T [M] .
(3.20)

Positiveness and null space

Since matrix [M] is positive definite, from Eq. (3.19) it can be deduced that the null space of [M r ] is equal to the null space of [P] . The null space of [P] , which we denote as S ⊥ R , is the orthogonal complement of subspace S R of R m , with respect to the inner-product given by matrix [M]. In other words, for all m-dimensional real vector x , we have The notion of orthogonal complement will be involved again later. Since dimension r of S R is such that r ≤ m, matrix [M r ] is positive semidefinite.

x = x r + x c , ( 3 

Residual kinetic energy minimization

From Eqs. (3.13), (3.14), (3.15) and (3.22), it can be deduced that the construction proposed is such that the residual kinetic energy,

E k (V) -E k (V r ), verifying E k (V) -E k (V r ) = E k (V -V r ) , (3.23) 
is minimum.

Mass conservation

Let m tot be the positive number such that m tot = 1 3 1 T [M] 1, in which the mdimensional vector 1 is constituted of ones for the translation DOFs and of zeros Global-displacements reduced-order model for the rotation DOFs (if there exist in the computational model). Quantity m tot represents approximately the mass of the structure (the mass located on the fixed boundary conditions is not taken into account). If 1 belongs to S R (in which case [P] 1 = 1), then the mass m tot,r = 1 3 1 T [M r ] 1 is such that m tot,r = m tot . Since vector 1 is spanned by the 3 columns of matrix [B] corresponding to polynomial p α (1) (order-0 polynomial with multi-index α (1) = (0, 0, 0)), it can be deduced that for any maximum degree d of the polynomial approximation, the mass is conserved within the kinematics reduction.

Global-displacements reduced-order basis

In order to span the global-displacements space, denoted by S g (and which is a subspace of R m ), mass matrix [M] is replaced by [M r ] for obtaining the generalized eigenvalue problem (that differs from the one used for computing the elastic modes and that cannot be used for computing them),

[K]ψ g α = σ g α [M r ]ψ g α , (3.24) 
in which the eigenvectors ψ g α consist of global displacements and where σ g α are the associated eigenvalues. The first r eigenvalues are such that 0 < σ g 1 ≤ σ g 2 ≤ . . . ≤ σ g r < +∞ and the eigenvalues of rank greater than r are all infinite, their associated eigenvectors being orthogonal to vector subspace S R .

It should be noted that (i) the r eigenvectors ψ g α are not orthogonal with respect to mass matrix [M] and (ii) they will be used for the projection of the computational model defined by Eq.(2.1), which involves mass matrix [M] and not [M r ]. Let us introduce the (m × ν) real matrix, [Ψ g 

] = [ψ g 1 . . . ψ g ν ],
in which ν is a given truncation order such that ν ≤ r .

(3.25)

The global-displacements ROB is then defined by the first eigenvectors of the dynamical system, which are constrained to belong to the vector space spanned by the ν columns of the (m × ν) real matrix [Ψ g ]. The global-displacements ROB is denoted by [Φ g ] whose columns ϕ g α are thus written as

ϕ g α = [Ψ g ]r α , (3.26) 
in which r α are the eigenvectors of the small-dimension generalized eigenvalue 3.2 Global-displacements reduced-order basis 31 problem,

([Ψ g ] T [K][Ψ g ]) r α = λ g α ([Ψ g ] T [M][Ψ g ]) r α . (3.27)
The eigenvalues verify 0 < λ g 1 ≤ λ g 2 ≤ . . . ≤ λ g ν < +∞ . Introducing the matrix [R] such that [R] = [r 1 . . . r ng ], in which n g is a given truncation order that will be defined hereinafter, matrix [Φ g ] can be rewritten as

[Φ g ] = [Ψ g ][R] , (3.28) 
which, using Eq. (3.27) and recalling our choice of a unit generalized mass normalization, yields

[Φ g ] T [K][Φ g ] = [Λ g ] , [Φ g ] T [M][Φ g ] = [I ng ] , (3.29) 
with [Λ g ] the diagonal matrix of the first n g eigenvalues λ g α . Only the first n g eigenvectors (associated with the lowest frequencies

f g α = √ λ g α /2π) are kept for constituting [Φ g ] = [ϕ g 1 . . . ϕ g ng ].
Dimension n g of global-displacements subspace S g is deduced from a cutoff frequency, f c , for which n g verifies

f g ng ≤ f c . (3.30) 
In addition, n g satisfies the inequality,

n g ≤ ν . (3.31)
Cutoff frequency f c is a data that must be chosen greater or equal to the upper bound ω max /2π of frequency band B and that must be adjusted through the analysis of the FRFs. It should be noted that truncation order ν cannot directly be deduced from the value √ σ g ν /2π because the eigenvalues σ g α are not the eigenfrequencies of the dynamical system. For ν ≤ r, the following inequality can be shown,

λ g ν ≤ σ g ν , (3.32) 
for which, in addition, the difference between λ g ν and σ g ν can be significant.

For brevity, no notation is introduced for the equations related to the globaldisplacements ROM, which would be similar to Eqs. (2.4) and (2.5) and which, anyway, would not be used.

Global-displacements reduced-order model

Numerical implementation

As the mass matrix [M r ] is a full (m × m) matrix, this matrix is not assembled.

In addition, the eigenvalue problem defined by Eq. (3.24) requires the knowledge of matrices [M] and [K], which can involve problems for the commercial software. The purpose of this section is to present an efficient method for the construction of the global-displacements ROB.

Let [M ] be the diagonal matrix that is a lumped approximation of mass matrix [M]. For avoiding the use of [M], the following approximation of [M r ] is introduced,

[M r ] [M ][B ][B ] T [M ] , (3.33) 
in which [B ] is constructed as [B] (see Section 3.1) but is such that

[B ] T [M ][B ] = [I r ].
The projector [P] defined by Eq. (3.17) is then approximated by

[P] [B ][B ] T [M ] . (3.34) 
As the reduced kinematics is based on the use of polynomial shape functions defined over the whole domain, and as a lumped approximation of [M] can be obtained by using constant shape functions within each element of the finite element model, the error induced by the approximation defined by Eq. (3.33) can be considered negligible.

A double projection method is presented, which allows the knowledge of matrix [K] to be avoided. It consists in projecting Eq. (3.24) onto subspace S c that is associated with the classical ROB made up of the elastic modes. Latter subspace is supposed to provide, upon the use of a sufficiently large value of the number n of elastic modes, an accurate representation within frequency band B. Then, without loss of fidelity, such a projection can be obtained by writing

S g ⊆ S c (3.35)
that is satisfied if ψ g α is written as

ψ g α = [Φ]s α , (3.36) 
in which s α is a n-dimensional real vector that has to be calculated as follows. By using Eq. (3.36), the projection of Eq. (3.24) yields the following reduced- 

([Φ] T [K][Φ]) s α = σ g α ([Φ] T [M r ][Φ]) s α . (3.37) 
The matrix [Φ] T [K] [Φ] is the diagonal matrix [Λ] defined in Eq. (2.6), which is available. By using Eq. (3.33), the full matrix [Φ] T [M r ][Φ] can be computed as

[Φ] T [M r ][Φ] [N ][N ] T , (3.38) 
in which the (n × r) real matrix [N ] that is defined by

[N ] = [Φ] T [M ][B ] (3.39)
is also available. Introducing [S] = [s 1 . . . s ν ] and using Eq. (3.36), matrix [Ψ g ] can be written as

[Ψ g ] = [Φ][S] . (3.40) 
Denoting as [Σ g ] the diagonal matrix of the first ν eigenvalues σ g α and recalling our choice of a unit generalized mass normalization, it can then be deduced that the reduced matrices involved in Eq. (3.27) are such that 

[Ψ g ] T [K][Ψ g ] = [Σ g ] , [Ψ g ] T [M][Ψ g ] = [S] T [S] . ( 3 
[Φ] T [M r ][Φ] = [Φ r ] T [M][Φ r ] . (3.42) 
The following interpretation for Eq. (3.37) can be given. While reduced stiffness matrix [Φ] T [K] [Φ] is the projection of stiffness matrix [K] onto the basis [Φ] of the elastic modes (including both global and local displacements), the reduced mass matrix

[Φ r ] T [M][Φ r
] is the projection of mass matrix [M] onto displacements represented by matrix [Φ r ], which belong to subspace S R , and in which some local displacements are filtered.

Remark 2. Computational efficiency It should be noted that the numerical rank, R , of [N ][N ] T is such that R ≤ r and R ≤ n, and that, similarly to Eq. (3.25), truncation order ν must satisfy the inequality ν ≤ R. For computing the generalized eigenvalue problem given by Eq. (3.37), three cases are considered.

• For r < n, a thin SVD (see [START_REF] Golub | Matrix Computations[END_REF]) of the (n × r)

real matrix [Λ] -1/2 [N ] is
Global-displacements reduced-order model performed for a lower cost.

• For r n, R = n is verified and matrix [N ][N ] T is positive definite. For this case, the usual algorithms are used.

• For the intermediate case for which R is close to n, in order to obtain a good accuracy, the SVD approach is more efficient.

Local-displacements reduced-order basis

In the rest of the document, it is assumed that the above numerical implementation of the global-displacements ROB explicited in Section 3.3 is used. In this section, we present the construction of a local-displacements ROB. The vector subspace associated with the local-displacements ROB, denoted by S , is the orthogonal complement of subspace S g of S c , with respect to the inner-product defined by matrix [M]. In particular, S c is the orthogonal direct sum of S g with S , and we write

S c = S g ⊕ S . (3.43) 
Thanks to this definition of S , its ROB, denoted by [Φ ], satisfies the orthogonality condition,

[Φ g ] T [M][Φ ] = [0], (3.44) 
as well as the equality

[Φ ] = [Φ][Q ], (3.45) 
in which [Q ] is the (n × n ) real matrix of the coordinates in the basis defined by [Φ], and where the dimension n is such that The local-displacements ROB represented by matrix [Φ ] is then defined by the first eigenvectors of the dynamical system, which are constrained to belong to the vector space spanned by the n columns of the (m × n ) real matrix [Φ][Z]. The columns ϕ α of [Φ ] are thus written as

n = n -n g . (3.46) Let [Q g ] be the (n × n g ) real matrix such that [Q g ] = [S][R] . ( 3 
ϕ α = [Φ][Z]u α , (3.52) 
in which, thanks to Eqs.(2.6) and (3.50), it can be deduced that the columns u α of [U ] are the eigenvectors of the following standard eigenvalue problem of reduced dimension,

([Z] T [Λ][Z])u α = λ α u α , (3.53) 
in which the associated eigenvalues λ α verify 0 < λ 1 ≤ λ 2 ≤ . . . ≤ λ n < +∞ . In this Chapter 3, a general method has been presented for obtaining a globaldisplacements ROM, for which the construction of the associated ROB depends on the choice of parameters d (maximum degree of the polynomial approximation), ν (truncation order), and f c (cutoff frequency). The dimension n g of the ROM results from the values of these parameters. Suitable values of d and ν must be tuned in order to obtain a smaller dimension n g ≤ n while preserving the fidelity of the computational model. As higher frequencies are characterized by vibrations of shorter wavelength, the choice of the values for d and ν strongly depend on the value of frequency f c . The construction of a ROB made up of local displacements, which is complementary to the global-displacements ROB, has also been proposed, Global-displacements reduced-order model and will be useful for the construction of a multilevel ROM.

Chapter 4

Multilevel reduced-order model

Formulation of the multilevel reduced-order model

In this section, the previous developments are used in the construction of a multilevel ROM, for which three ROBs associated with the low-, medium-, and highfrequency bands (LF, MF, HF) are introduced. In contrast to the HF band, the LF band is associated with long-wavelength global displacements, while the MF band is a combination of global and local displacements with more or less short wavelength. For the complex structures considered, there is an overlap of the three vibration regimes. For instance, numerous local elastic modes can be found in low frequencies. The previously introduced filtering strategy is therefore used in order to separate the LF-, MF-, and HF-type displacements. The filtering methodology presented in Sections 3.3 and 3.4 can be condensed into the following mapping,

F 1 : (S c ; d, ν, f c ) -→ (S g , S ) , (4.1) 
which will be used for defining the multilevel ROM. Like the classical ROM, the multilevel ROM is devoted to the vibration analysis over whole band B, which can be decomposed into three bands, such that

B = B L ∪ B M ∪ B H . (4.2) 
We now present the basic ideas concerning the construction of the multilevel ROM, based on the introduction of three successive filterings, which are defined through mapping F 1 .

Introducing the cutoff frequency, f c H , associated with the upper bound of B H , the (global-displacements) vector subspace, S t , which includes the totality of the remaining considered displacements and which is associated with the multilevel ROM, is given by

(S t , S ⊥ t ) = F 1 (S c ; d H , ν H , f c H ) , (4.3) 
in which the values of the parameters d H and ν H are tuned in order to obtain a decreased dimension while preserving the fidelity of the ROM up to frequency f c H . It should be recalled that subspace S c is assumed to be associated with an accurate classical ROM over band B. The (local-displacements) vector subspace S ⊥ t , verifying S c = S t ⊕ S ⊥ t , is not used (the local displacements spanning this subspace are discarded in order to decrease the dimension of the proposed ROM). For carrying out the next filterings, similarly to the double projection method associated with Eq. (3.35), the computational model is now projected onto subspace S t , which is supposed to be associated with a sufficiently accurate representation.

Similarly, introducing the cutoff frequency, f c M , associated with the upper bound of B M , the (local-displacements) vector subspace, S H , associated with the HF vibration regime, is given by

(S LM , S H ) = F 1 (S t ; d M , ν M , f c M ) , (4.4) 
where S LM is the complementary (global-displacements) subspace belonging to S t . The values of the parameters d M and ν M are tuned such that the ROB associated with S LM yields an adequate representation up to frequency f c M . We have the decomposition,

S t = S LM ⊕ S H . (4.5) 
Finally, introducing the cutoff frequency, f c L , associated with the upper bound of B L , the (global-displacements) vector subspace, S L , associated with the LF vibration regime, is given by

(S L , S M ) = F 1 (S LM ; d L , ν L , f c L ) , (4.6) 
where S M is the complementary (local-displacements) subspace belonging to S LM . The values of the parameters d L and ν L are tuned such that the ROB associated with S L , expected to mainly consist of global displacements, yields an adequate representation up to frequency f c L . It should be noted that, similarly to before, the proposed construction makes the assumption that subspace S LM , which is as-4.2 Implementation of the multilevel nominal reduced-order model 39 sociated with a higher polynomial degree having been tuned for covering a wider frequency band (LF ∪ MF), is associated with a sufficiently accurate representation (for the LF band). Finally, we have the decomposition,

S LM = S L ⊕ S M , (4.7) 
and consequently, using Eqs. (4.5) and (4.7), we obtain

S t = S L ⊕ S M ⊕ S H . (4.8)
4.2 Implementation of the multilevel nominal reduced-order model

Numerical procedure

In this section, no new concept is introduced, but only details useful for the numerical implementation. The steps seen in Sections 3.3 and 3.4, devoted to the construction of the global-displacements ROB and of the local-displacements ROB, are summarized. Similarly to Eq. (4.1), the procedure is then compacted in a mapping, F 2 , which allows for defining the algebraic quantities associated with the multilevel ROM formulated in Section 4.1. In the following, the steps for calculating the outputs of mapping F 2 are given.

For this, it is assumed that maximum degree d of the polynomial approximation, truncation order ν, and cutoff frequency f c are given and in addition, some new notations are now introduced in order to generalize the numerical procedure. Let [Λ 0 ] be a diagonal matrix of dimension n 0 whose diagonal elements are strictly positive. Let [Q 0 ] be a (n 1 × n 0 ) real matrix for which n 1 ≥ n 0 and such that

[Q 0 ] T [Q 0 ] = [I n 0 ]. Let [N 0 ] be a (n 1 × r max ) real matrix for which r max ≥ r , with r = (d + 1)(d + 2)(d + 3)/2 . (4.9)
These three matrices are the input parameters of mapping F 2 in addition to the filtering parameters, d, ν, and f c . The outputs of mapping F 2 will allow us to define the construction of all the matrices involved in the multilevel ROM. It should be noted that, aside from the multilevel ROM, mapping F 2 allows for constructing the global-and the local-displacements ROBs defined in Section 3 by using, as inputs:

[Λ 0 ] = [Λ], [Q 0 ] = [I n ] with n 1 = n 0 = n, and [N 0 ] = [N ].
The matrix [N 0 ] is associated with a reduced kinematics for which the maximum degree of the polynomials is greater or equal to d, and which may already have been used during a previous filtering. Let [N 0 r ] be the (n 1 × r) matrix constituted of the first r columns of [N 0 ]. In addition, the latter possible previous filtering is associated with a change of basis defined by matrix [Q 0 ]. Let [N r ] be the (n 0 × r) real matrix defined by

[N r ] = [Q 0 ] T [N 0 r ] . (4.10) 
The eigenvectors s α and associated eigenvalues σ g α are calculated, similarly to Eq. (3.37), as

[Λ 0 ] s α = σ g α ([N r ][N r ] T ) s α . (4.11)
Using [S] = [s 1 . . . s ν ] and [Σ g ] the matrix of the eigenvalues σ g α , eigenvectors r α and associated eigenvalues λ g α are calculated, similarly to Eq. (3.27), as

[Σ g ] r α = λ g α ([S] T [S])r α . (4.12)
Dimension n g of the global-displacements ROB is the maximum integer α verifying

f g α ≤ f c , with f g α = √ λ g α /2π. Then, matrix [Λ g ] is made up of the first n g eigenvalues λ g α . In addition, matrix [R] = [r 1 . . . r ng ] is obtained, from which matrix [Q g ] = [S][R] is constructed. Introducing [C] = [Q g ] T , the following SVD is performed, [C] = [U C ][Σ C ][V C ] T , (4.13) 
from which the columns of [V C ] associated with the n zero singular values in [Σ C ] allow for obtaining the (n 0 × n ) real matrix [Z] with n = n 0 -n g . Finally, the eigenvectors u α and the associated eigenvalues λ α are calculated, similarly to Eq. (3.53), as

([Z] T [Λ 0 ][Z])u α = λ α u α , (4.14) 
which allows for obtaining the matrix [U ] = [u 1 . . . u n ] and the diagonal matrix [Λ ] of the n eigenvalues λ α , followed by the construction of matrix

[Q ] = [Z][U ].
The procedure just summarized allows the following mapping to be constructed, 

([Λ g ], [Q g ], [N r ], [Λ ], [Q ]) = F 2 ([Λ 0 ], [Q 0 ], [N 0 ]; d, ν, f c ) , ( 4 
[Q g ] T [Q g ] = [I ng ], [Q ] T [Q ] = [I n ], [Q g ] T [Q ] = [0] . ( 4 
([Λ t ], [Q t ], [N t ], ∼, ∼) = F 2 ([Λ], [I n ], [N ]; d H , ν H , f c H ) , (4.17) in which [N ] = [Φ] T [M ][B ]
. The symbol ∼ indicates that the corresponding output variables are not calculated. The ROB [Φ t ] associated with S t is given by

[Φ t ] = [Φ][Q t ] , (4.18) 
in which, thanks to Eq. (4.16), [Q t ] verifies

[Q t ] T [Q t ] = [I nt ] . (4.19)

Second filtering

In Eq. (4.4), vector subspaces S LM and S H have their ROB defined through the following outputs of mapping F 2 ,

([Λ LM ], [Q LM ], [N LM ], [Λ H ], [Q H ]) = F 2 ([Λ t ], [Q t ], [N t ]; d M , ν M , f c M ) , (4.20) 
in which ν M ≤ n t and where, similarly to Eq. (4.16), the following properties are verified, 

[Q LM ] T [Q LM ] = [I n LM ], [Q H ] T [Q H ] = [I n H ], [Q LM ] T [Q H ] = [0] , ( 4 
[Φ LM ] = [Φ t ][Q LM ] , [Φ H ] = [Φ t ][Q H ] . (4.22)

Third filtering

In Eq. (4.6), vector subspaces S L and S M have their ROB defined through the following outputs of mapping F 2 ,

([Λ L ], [Q L ], ∼, [Λ M ], [Q M ]) = F 2 ([Λ LM ], [Q LM ], [N LM ]; d L , ν L , f c L ) , (4.23) 
in which ν L ≤ n LM and where, similarly to Eq. (4.16), the following properties are verified, 

[Q L ] T [Q L ] = [I n L ], [Q M ] T [Q M ] = [I n M ], [Q L ] T [Q M ] = [0] , ( 4 
L ] = [Φ LM ][Q L ] and [Φ M ] = [Φ LM ][Q M ] , which yields [Φ L ] = [Φ t ][Q LM ][Q L ] , [Φ M ] = [Φ t ][Q LM ][Q M ] . (4.25)

Construction of the reduced-order models 4.2.3.1 Scale-S reduced-order model

For S = t , S = LM , S = H , S = L , or S = M , when using the scale-S ROM, displacements U(ω) belong to the subspace S S that is defined as the space spanned by the columns of matrix [Φ S ]. That is, they are approximated as

U(ω) [Φ S ]q S (ω) , (4.26) 
where the n S -dimensional complex vector of generalized coordinates q S (ω) is the solution of the reduced-matrix equation, 

( -ω 2 [M S ] + iω[D S ] + [K S ] ) q S (ω) = f S (ω) . ( 4 
f S (ω) = [Φ S ] T F(ω) , [M S ] = [Φ S ] T [M][Φ S ] = [I n S ] , [D S ] = [Φ S ] T [D][Φ S ] , [K S ] = [Φ S ] T [K][Φ S ] = [Λ S ] . (4.28)
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Multilevel nominal reduced-order model

Introducing the (m × n t ) ROB, [Ψ], of the multilevel nominal ROM (ML-NROM), which is given by

[Ψ] = [ [Φ L ][Φ M ][Φ H ] ] , (4.29) 
displacements U(ω) are approximated, using the ML-NROM, as

U(ω) [Ψ]q(ω) = [Φ L ]q L (ω) + [Φ M ]q M (ω) + [Φ H ]q H (ω) , (4.30) 
in which q(ω) = (q L (ω), q M (ω), q H (ω)) with q L (ω) in C n L , q M (ω) in C n M , and q H (ω) in C n H . Complex vector q(ω) is the solution of the reduced-matrix equation,

( -ω 2 [M ] + iω[D] + [K] ) q(ω) = f(ω) , (4.31) 
in which )}can be written as

f(ω) = [Ψ] T F(ω) , [M ] = [Ψ] T [M][Ψ] , [D] = [Ψ] T [D][Ψ] , [K] = [Ψ] T [K][Ψ] . (4.32) Introducing [W L ] = [Q LM ][Q L ] , [W M ] = [Q LM ][Q M ] ,
[A] =   [ A LL ] [ A LM ] [ A LH ] [A ML ] [A MM ] [A MH ] [ A HL ] [ A HM ] [ A HH ]   , (4.33) 
for which the matrix blocks are defined as follows. For I and J in {L, M, H}, the (n I × n J ) real matrix [A IJ ] is given by

[A IJ ] = [W I ] T [A t ][W J ] , (4.34) 
where, using Eq. (4.18), we have

[A t ] = [Q t ] T [A][Q t ] with [A] = [Φ] T [A][Φ] .
Moreover, Eqs. (4.19), (4.21), and (4.24) yield 

[W I ] T [W I ] = [I n I ] , [W I ] T [W J ] = [0] if I = J , ( 4 

Multilevel stochastic reduced-order model

Similarly to the C-SROM, the multilevel stochastic ROM (ML-SROM) is based on the nonparametric probabilistic approach of uncertainties. This approach allows for taking into account both the model-parameter uncertainties and the model uncertainties induced by the modeling errors. The ML-NROM previously presented is based on the use of three orthogonal ROBs represented by the matrices

[Φ L ], [Φ M ]
, and [Φ H ], which are constituted of LF-, MF-, and HF-type displacements, respectively. For instance, as explained in Section 4.1, the LF-type displacements consist of long-wavelength global displacements, in contrast to the short-wavelength local displacements associated with the HF regime. When a small design change is performed in the structure, the local displacements that exist in the modified part of the structure are likely to vary a lot, whereas the shape of the global displacements is not really modified. Subsequently and as it is well known, the local displacements are more sensitive to uncertainties than the global displacements.

For a given random matrix [A] representing [M], [D] or [K] of the ML-SROM, which is associated with the corresponding deterministic matrix [A] representing [M ], [D] or [K] of the ML-NROM, three dispersion hyperparameters, δ L

A , δ M A , and δ H A are introduced. These parameters are intended to allow each type of displacements to be affected by a particular level of uncertainties. For S equal to L, M or H, the dispersion hyperparameter δ S A is such (see Eq. (2.8)) that

(δ S A ) 2 = 1 n S E{||[G n S (δ S A )] -[I n S ]|| 2 F } . (4.36)
The random matrix [G A ] with values in the set of all the positive-definite symmetric (n t × n t ) real matrices, is written as

[G A ] =   [ G n L (δ L A ) ] [ 0 ] [ 0 ] [ 0 ] [G n M (δ M A )] [ 0 ] [ 0 ] [ 0 ] [ G n H (δ H A ) ]   , (4.37) in which the random matrices [G n L (δ L A )], [G n M (δ M A )], and [G n H (δ H A )], with di- mensions (n L × n L ), (n M × n M )
, and (n H × n H ), are statistically independent and are constructed similarly to the (n

× n) random matrix [G n (δ A )] involved in Eq. (2.

7). Performing the Cholesky factorization [A] = [L

A ] T [L A ], in which [L A ]
is an upper-triangular matrix, the random matrix [A] is constructed as

[A] = [L A ] T [G A ][L A ] .
(4.38)
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The ML-SROM allows the random displacements U(ω) associated with U(ω) to be obtained as

U(ω) = [Ψ]Q(ω), (4.39)
in which the C nt -valued random variable Q(ω) is the solution of the random matrix-equation, For each car, the same excitation force is applied at one of the engine fasteners and the acceleration (following a given direction) is measured at two locations referenced as the observation 1 that is far away from the excitation force and as the observation 2 that is close to the excitation force.

( -ω 2 [M] + iω[D] + [K] ) Q(ω) = f(ω) . ( 4 

Computational model

The finite element model is very dense and complex, including several kinds of elements (springs, bars, beams, plates, shells, volume elements), rigid bodies and constraint equations, with a total of m = 7,872,583 DOFs. A view of the finite element model is displayed in Fig. 5.1.

Statistical inverse identification of the multilevel stochastic reduced-order model: application to an automobile An intensive computational effort has been carried out for calculating the 24,578 elastic modes that are in the frequency band [0 , 2200] Hz. The graph of the modal density corresponding to these 24,578 elastic modes is displayed in Fig. 5.2.

From this calculation, it can be seen that there are 7,258 elastic modes in frequency band B. There are several possible definitions of the frequency bands B L , B M , and B H for a complex dynamical system. The definitions greatly depend on the use that is made of the bands defined. In the present framework devoted to the construction of a multilevel model reduction in structural vibrations, we choose the approach proposed in [START_REF] Ohayon | Advanced Computational Vibroacoustics -Reduced-Order Models and Uncertainty Quantification[END_REF], which is based on the analysis of the graph of the unwrapped phase as a function of the frequency in logarithmic scale for the observation 1 that is far away from the excitation force and consequently, for which the propagation follows a long path. It is recalled that the unwrapped phase corrects the radian phase angles by adding multiples of ± 2π when absolute jumps between two consecutive sampled frequencies are greater than or equal to the jump tolerance of π radians. It is known that in the LF range, the phase rotates of π around an eigenfrequency while, in the HF band, the unwrapped phase decreases quasi-linearly. Hz is quite high for the LF band of such a structure. This unusual feature is due to the presence of numerous local displacements in addition to the usual global displacements. For higher frequencies, the density of local elastic modes keeps increasing, which yields a large number of elastic modes for the modal analysis.

Damping model for the automobile

The provided finite element model does not include a damping matrix, [D], and consequently, the damping model is introduced at the ROM level. For each ROM constructed in this application, the physical damping is introduced through the use of a modal damping model. In the LF band and in the MF band, a multiparameter modal damping model is fitted by using the experimental FRFs. In the HF band, a one-parameter modal damping model is identified by using the experimental FRFs, for which the parameter is denoted by c H . For the deterministic ROMs, three cases have to be considered in order to properly define the damping model, depending on which ROM is used.

• The damping matrix of the C-NROM involved in Eq. (2.5) is defined by

[D] = 2[Ξ(c H )][Λ] 1/2
, in which the diagonal matrix [Λ] is defined by Eq. (2.6) and where [Ξ(c H )] is a (n × n) diagonal matrix of modal damping rates, which depend on parameter c H that has to be identified with respect to the experimental measurements, in a deterministic framework. In such a case, Eq. (2.5) consists of a diagonal matrix-equation.

• The damping matrix of the scale-S ROM involved in Eq. (4.27) is defined by

[D S ] = 2[Ξ S (c H )][Λ S ] 1/2
, with [Λ S ] the diagonal matrix involved in Eq. (4.28) and where [Ξ S (c H )] is a (n S × n S ) diagonal matrix of damping rates, which depend on parameter c H that has to be identified with respect to the experimental measurements, in a deterministic framework. In such a case, Eq. (4.27) consists of a diagonal matrix-equation.

• Concerning the ML-NROM, reduced stiffness matrix [K] involved in Eq. (4.31) is a full matrix. In order to solve latter matrix equation, one possibility is to perform a change of basis in order to diagonalize reduced matrices [K] and [M ]. Doing so leads us back to scale-t ROM, for which the definition of the damping matrix [D t ] is given in the item before.

The modal damping rate number α of the classical ROM is given by

[Ξ(c H )] αα = ξ(ω α ; c H ) , (5.1) 
in which ω α = [Λ] 1/2
αα and where the modal damping function (ω; c) → ξ(ω; c H ) is defined as follows. In the LF and MF bands, modal damping function ξ is independent of damping parameter c H . Concerning the rest of the band, the value of function ξ reaches the value of c H for the maximum angular frequency ω n . Figure 5.4 displays the graphs of this function for three distinct values of damping parameter c H . Similarly, the damping rate number α of scale-S ROM is given by

[Ξ S (c H )] αα = ξ S (ω S α ; c H ) , (5.2) 
in which ω S α = [Λ S ] 1/2
αα and where damping function (ω; c) → ξ S (ω; c H ) is defined as follows. In the LF and MF bands, the damping function ξ S is the same as ξ. Concerning the rest of the band, it is similar to ξ: the value of function ξ S reaches the value of c H for the maximum angular frequency ω S n S . For the stochastic ROMs, two cases have to be considered in order to properly define the random matrix of the damping model, depending on which stochastic ROM is used.
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• The definition given in Eq. (2.7) to random damping matrix [D] of the C-SROM involved in Eq. (2.15) is not used. In order to solve Eq. (2.15), the random generalized eigenvalue problem associated with random reduced matrices [K] and [M] is solved, which yields the diagonal matrix, [Λ], of the random eigenvalues and the matrix, [Φ], of the associated random eigenvectors. Equation (2.15) is then projected onto the stochastic ROB [Φ]. In order to obtain a diagonal matrix-equation, random damping matrix [D] of the C-SROM is then constructed similarly to deterministic damping matrix [D] of the C-NROM given hereinbefore, except that diagonal matrix [Λ] is replaced by the diagonal random matrix [Λ] constituted of the random eigenvalues. The parameter c H has to be identified with respect to the experimental measurements, in a stochastic framework.

• The definition given in Eq. (4.38) to random damping matrix [D] of the ML-SROM involved in Eq. (4.40) is not used. In order to solve Eq. (4.40), the random generalized eigenvalue problem associated with random reduced matrices [K] and [M] is solved, which yields the diagonal matrix, [Σ], of the random eigenvalues and the matrix, [Ψ], of the associated random eigenvectors. Equation (4.40) is then projected onto the stochastic ROB [Ψ]. In order to obtain a diagonal matrix-equation, random damping matrix [D] of the ML-SROM is then constructed similarly to deterministic damping matrix [D] of the ML-NROM given hereinbefore, except that diagonal matrix [Λ t ] is replaced by the diagonal random matrix [Σ] constituted of the random eigenvalues. The parameter c H has to be identified with respect to the experimental measurements, in a stochastic framework.

Definition of the observations

Let U (1) (ω), . . . , U (n j ) (ω) be the n j scalar observations that are made up of DOFs or of combinations of DOFs of the displacement vector U(ω) involved in Eq. (2.1).

In this application, we have n j = 2 (corresponding to the two experimental observations). For each j, the computed observation is defined as the modulus ω → u c j (ω) in dB scale,

u c j (ω) = 20 log 10 |U (j) (ω)| , (5.3) 
in which |.| is the modulus of a complex number. The counterpart for the experimental measurements of the k = 1, . . . , n e cars (with n e = 20) is denoted by ω → u e j,k (ω) whose definition is the same as the definition of u c j (ω).

Defining the objective function used for the convergence analyses of the deterministic computational ROMs

In order to define a distance between the computed deterministic FRFs and the experimental FRFs, an objective function, J d , is defined by

J 2 d = 1 n j n j j=1 1 n e ne k=1 1 |B| B (u c j (ω) -u e j,k (ω)) 2 dω , (5.4) 
in which |B| = ω max -ω min . It should be noted that the construction of J d would remain unchanged if, in Eq. (5.4), the displacements were replaced by their corresponding accelerations.

Defining the objective function used for the identification of the stochastic computational ROMs

The parameters of the stochastic computational ROMs have to be identified with respect to the experimental measurements (solving a statistical inverse problem).

Let U e j (ω) be the real-valued random variable for which u e j,1 (ω), . . . , u e j,ne (ω) are n e independent realizations. Let U c j (ω) be the real-valued random variable corresponding to the deterministic quantity u c j (ω). The following objective function, J s , is introduced

J s = 1 n j n j j=1 J s,j , (5.5) 
in which the objective function J s,j associated with observation j = 1, . . . , n j is written as

J s,j = 1 |B| B OVL (U c j (ω), U e j (ω)) dω . (5.6) 
In Eq. (5.6), the function (

X, Y ) → OVL (X, Y ) is defined by OVL (X, Y ) = 1 - 1 2 R |p X (x) -p Y (x)| dx , (5.7) 
in which X and Y are real-valued random variables, for which p X and p Y are the probability density functions. Function OVL is known as the overlapping coefficient [START_REF] Inman | The overlapping coefficient as a measure of agreement between probability distributions and point estimation of the overlap of two normal densities[END_REF]. For all j = 1, . . . , n j and all ω in B, n sim realizations of random Statistical inverse identification of the multilevel stochastic reduced-order model: application to an automobile variable U c j (ω) are computed by using the Monte-Carlo simulation method. The probability density functions are estimated by using the kernel density estimation method. It can easily be proved that the values of J s , of J s,j for j = 1, . . . , n j , and of the OVL function, are between 0 and 1 (with 1 meaning a perfect match).

Classical nominal ROM and classical stochastic ROM

In a first step, the dimension n of the C-NROM (deterministic) is calculated by performing a convergence analysis of J d as a function of n. For this value of n, the C-NROM is used for computing the deterministic FRFs that are compared to their experimental counterparts. In a second step, for the value of n determined in the first step, the hyperparameters of the C-SROM (stochastic) are identified by maximizing the objective function J s . Using the identified values of the hyperparameters, the C-SROM is used for estimating the confidence regions of the random FRFs, which are compared to the experimental measurements.

First step: C-NROM

Convergence analysis of J d as a function of n

The C-NROM is obtained by using Eqs. (2.4) and (2.5). A convergence analysis of the C-NROM is performed with respect to its dimension n and to parameter c H that controls the damping model. For each value of n, the optimal value, c H (n), of c H is identified, in minimizing J d . For each pair (n , c H (n)), Fig. 5.5 displays the graph of J d as a function of n and shows that convergence is reached starting from n = 7,000. Nevertheless, we choose n = 8,450 (for which f n = 1,000 Hz), in order (1) to have subspace S c sufficiently rich for the construction of subspace S t ⊆ S c of the multilevel ROM and (2) to have a classical ROM associated with eigenfrequencies covering more than whole band B for obtaining a satisfactory stochastic ROM. 

Deterministic FRFs and experimental comparisons

The FRFs provided by the C-NROM, associated with observation 1 (acceleration related to the displacement ω → u c 1 (ω)) and with observation 2 (acceleration related to the displacement ω → u c 2 (ω)), are plotted in Figs. 5.6 and 5.7 and are compared to the n e = 20 experimental FRFs (accelerations related to displacements ω → u e j,k (ω) with k = 1, . . . , n e ). These figures clearly show that

• the experimental variabilities strongly increase with the frequency (it should be noted that the relative important experimental variabilities in the LF band for observation 1 that can be seen in Fig. 5.6 is due to measurement noise).

• significant differences between the prediction of the computational model and the experimental measurements can be observed, in particular in the MF band.

• the big experimental variabilities cannot be represented by a simple deterministic prediction, which would require the prediction of confidence regions with a stochastic model. 

.2.1 Experimental identification of the C-SROM

The C-SROM is obtained by using Eqs. (2.14) and (2.15) for which the dispersion hyperparameters and damping parameter c H must be identified with respect to the experimental measurements, by solving a statistical inverse problem. The random damping matrix [D] of the C-SROM is the one defined in Section 5.1.4 and consequently, there is no dispersion hyperparameter δ D . The statistical inverse problem consists in computing the optimal values δ opt M , δ opt K , and c opt H of the optimization problem defined as the maximization of the objective function J s with respect to the three parameters δ M , δ K , and c H in the set of their admissible values. The optimization problem is not convex and a trial method is used by introducing a fine grid of the admissible set with an non-homogeneous distribution of the sampling points (that can be viewed in Fig. 5.8). For each point (δ M , δ K ) in the grid, c H → J s (δ M , δ K , c H ) is maximized yielding the optimal value c H (δ M , δ K ). Figure 5.8 displays the graph of function (δ M , δ K ) → J s (δ M , δ K , c H (δ M , δ K )) calculated at the sampling points of the grid. It can be seen there is a quasi-symmetry with respect to δ M = δ K axis. It can then be deduced the optimal solution, for which δ opt M = 0.13 and δ opt K = 0.11. Statistical inverse identification of the multilevel stochastic reduced-order model: application to an automobile Concerning the calculation of the objective function, for each sampling point of the grid, the value of the objective function J s is estimated using n sim Monte-Carlo simulations. Figure 5.9 presents the convergence of the objective function J s as a function of n sim evaluated at the optimal point (δ opt M , δ opt K , c opt H ). It can be seen that, for a reasonable precision of J s (of about 0.01), convergence is reached quite fast for n sim = 40, which can be considered as a good compromise between the numerical cost and the accuracy (it would make little sense to carry out a very fine statistical estimation if not exploring the parameter space with a sufficiently fine grid -and vice versa). Concerning the computational cost, for each independent realization of random matrices [M] and [K] in Eq. (2.15), the matrix equation is diagonalized (solving the generalized eigenvalue problem of reduced dimension associated with the conservative dynamical system) for obtaining an efficient resolution over (1) the frequency sampling and (2) the sampling of parameter c H . Statistical inverse identification of the multilevel stochastic reduced-order model: application to an automobile

Confidence regions of the random FRFs and experimental comparison

The confidence region (corresponding to a probability level of 95%) of each FRF is computed by using the identified C-SROM. A convergence analysis of the confidence region with respect to the number n sim of realizations in the Monte-Carlo simulation method has been performed. A good convergence of the confidence region is reached for n sim = 10,000. The corresponding values of objective functions J s,1 and J s,2 for the identified C-SROM are J s,1 = 0.62 and J s,2 = 0.56, which yields J s = 0.59 (the statistical estimation is done with n sim = 10,000). The results for observation 1 and observation 2 are displayed in Figs. 5.10 and 5.11.

On each figure it can be seen the confidence region, the 20 experimental measurements, and the OVL function, ω → OVL(U c j (ω), U e j (ω)), defined by Eq. (5.7) and plotted between two horizontal lines: the lower horizontal line corresponds to the value 0 and the upper one to the value 1. In Figs. 5.10 and 5.11, it can be seen that, due (1) to the discrepancies of the C-NROM with respect to the experiments and (2) to too narrow confidence regions provided by the C-SROM in the LF band (and to a lesser extent in the MF band), the C-SROM does not perfectly represent most of the experimental FRFs in the LF and MF bands, as it can be seen in Figs. 5.12 and 5.13 that present a zoom of Figs. It can be seen that OVL function confirms the not perfectly correct prediction of the C-SROM in the LF and MF bands. The reason why such a one-level stochastic model of uncertainties is not sufficient for predicting the confidence regions in all the frequency band is that the effects of uncertainties on the FRFs are not homogeneous in the frequency band. It should be noted that, with this one-level stochastic ROM, if one would want to obtain broader confidence regions in the LF band, one could use greater values for the dispersion hyperparameters but in such a case, one would consequently obtain too broad confidence regions in the HF band. The introduction of a multilevel stochastic ROM allows for improving the prediction as demonstrated in the next section.

Multilevel nominal ROM and multilevel stochastic ROM

In a first step, a deterministic analysis is carried out in order to find suitable filtering parameters, which affect the reduction of the dimension of the model. In fact, this deterministic analysis is not sufficient in itself, as the final objective is the experimental identification of the ML-SROM. Consequently, in a second step, all the filtering parameters defining the multilevel ROB and all the dispersion hyperparameters are simultaneously identified. To this end, first, a temporary choice of filtering parameters defining the ML-NROM is done, based on the de-terministic analysis. Then, a sensitivity analysis with respect to the dispersion hyperparameters allows for decreasing the number of dispersion hyperparameters to be identified. Based on this assumption, a 3D coarse grid allows for finding initial values for the dispersion hyperparameters. All the other parameters being fixed, the filtering parameters of the HF band and the dispersion hyperparameter of the HF band are simultaneously identified in a precise way. Finally, defining the values of the other filtering parameters independently of the global optimization problem, the remaining dispersion hyperparameters are identified at a low cost.

Using the identified ML-SROM, the confidence regions of the random FRFs are statistically estimated and are then compared to the experimental measurements. it allows for defining a sub-region in which the global identification (taking into account the coupling of the dispersion hyperparameters with the filtering parameters) of the ML-SROM will be restrained. Concerning the computational cost, one sampling point involves solving an eigenvalue problem of dimension ν H (associated with Eq. (3.27) or Eq. (4.12)). In addition, it implies solving, for each value of the maximum degree d H of the polynomials, an eigenvalue problem of dimension n (associated with Eq. (3.37) or Eq. (4.11)), which can be solved at a lower cost if d H (and thus column dimension r H of matrix [N t ] in Eq. (4.17)) is low, through a SVD (as explained in Remark 2 of Section 3.3). Furthermore, for each value of maximum degree d H of the polynomials, the matrix [N t ], which is constructed in Eq. (4.10) within the use of mapping F 2 in Eq. (4.17), can be obtained by extracting the first r H columns of a matrix [N t ] associated with a reduced kinematics of dimension r H,max that satifies r H,max ≥ r H for all considered r H . This way, the construction of matrix [B ] and the matrix product with (m × n) matrix [Φ] are done once and for all. 

Deterministic FRFs and experimental comparisons

Construction of a first version of the ML-NROM

First, from the numerical exploration of parameters (d H , ν H ) in a deterministic framework as described in latter section 5.3.1.1 (see also Fig. 5.16), a first version of the scale-t ROM, given by d H = 20 and ν H = 3,900, is chosen. Then, successive numerical explorations of the parameters (d M , ν M ) and (d L , ν L ) are carried out in a similar manner by using scale-LM and scale-L ROMs (these ROMs were introduced in Section 4.2.3). These explorations yield (d M = 12, ν M = 800) and (d L = 6, ν L = 275). It should be noted that the coupling with the dispersion hyperparameters to be identified is, at this step, not taken into account.

Sensitivity analysis of the ML-SROM with respect to the dispersion hyperparameters

A sensitivity analysis of the ML-SROM associated with latter definition of the ML-NROM is carried out. It shows that for a given scale S equal to L, M or H, the influence of parameters δ S M and δ S K (associated with the statistical dispersion of the reduced mass and stiffness matrices) is roughly identical. Therefore, only 3 dispersion hyperparameters δ L , δ M , and δ H have to be identified:

δ L = δ L K = δ L M , δ M = δ M K = δ M M , and δ H = δ H K = δ H M .
Statistical inverse identification of the multilevel stochastic reduced-order model: application to an automobile 5.3.2.4 First identification of the hyperparameters of the ML-SROM using a coarse 3D grid A first identification is carried out using a coarse δ L × δ M × δ H grid, for which the boundaries are deduced from the previous sensitivity analysis. The 3D grid is constituted of 540 sampling points, defined by the cartesian product of the following sets δ L × δ M × δ H : As for the C-SROM, only n sim = 40 Monte-Carlo simulations are used for estimating the objective function J s associated with each sampling point. The optimal point found is δ L = 0.25 , δ M = 0.25 , δ H = 0.11 , which is sufficiently far from the grid boundaries. Concerning the computational cost, similarly to the C-SROM, for each independent realization of random matrices [M] and [K] of Eq. (4.40), the matrix equation is diagonalized, by solving an eigenvalue problem of dimension n t . In addition, damping parameter c H is identified for each sampling point. It should be noted that, compared to dimension n = 8,450 of the classical ROM, the final dimension n t = 4,232 of the identified multilevel ROM allows for obtaining a non-negligible computational time gain of about a factor of ten (the complexity of the algorithms for computing all the eigenvalues and eigenvectors of a full matrix being approximately cubic).

δ L = ( 0.

Precise and simultaneous identification of the filtering parameters of the HF band and of the dispersion hyperparameter of the HF band

We are now interested in adjusting the choice for parameters (d H , ν H ) that induce the construction of subspace S t of the ML-NROM of dimension n t . Supposing these filtering parameters are sufficiently big, the choice of their values does not influence the random FRFs in the LF and MF bands (which have already converged with respect to them). The influence of parameter δ M (and especially of parameter δ L ) is not preponderant for the random response in the HF band. Consequently, fixing the values of δ L and δ M that have been identified in the coarse 3D grid, the ML-SROM is identified with respect to filtering parameters (d H , ν H ) and to dispersion hyperparameter δ H , simultaneously. It should be noted that the identification does not consist, at this step, in picking the parameters that maximize the objective function J s . Rather, it consists in finding a set of parameters for which J s is close to its maximum but under the constraint of a reasonably small dimension n t for the ROM. It should be recalled that J s is only estimated using n sim = 40 realizations and, in addition, the identification is subjected to approximations. In such a context, between ML-SROMs with similar values for J s , one should pick the ML-SROM for which the dimension n t is the smallest, since, anyway, the value of J s suffers from approximations. This step completed, the parameters that are chosen are the following: d H = 34, ν H = 4,250, and δ H = 0.078. ) outside the global stochastic identification problem of the ML-SROM. Then, parameters δ L and δ M of the ML-SROM are identified by estimating objective function J s over the sampling points of a given 2D grid, the other parameters being fixed. After this final stage, the identified values are δ L = 0.4 and δ M = 0.22. For the identified ML-SROM, the values of objective functions J s,1 and J s,2 evaluated by using, again, n sim = 10,000 realizations, are J s,1 = 0.65 and J s,2 = 0.64, hence J s = 0.65, which constitutes a non-negligible improvement with respect to the C-SROM.

Confidence regions of the random FRFs and experimental comparisons

The confidence regions obtained using the identified ML-SROM are estimated using n sim = 10,000 realizations and are plotted in Figs. 5.20 and 5.21. It can be seen that, despite the discrepancies of the ML-NROM (which are similar to those of the C-NROM), the ML-SROM is able to represent most of the experimental FRFs (unlike the C-SROM). This improvement is due to the increased flexibility of the ML-SROM with respect to the C-SROM, particularly concerning the capability to adapt the level of uncertainties to each frequency band. It should be Statistical inverse identification of the multilevel stochastic reduced-order model: application to an automobile noted that, in general, on one hand the variability of the real system is low in the LF band and that, on the other hand, the robustness of the computational models is better in this band. In the present case, in the LF and MF bands, the modeling errors are more important than the level of variabilities of the real system, hence the large confidence intervals provided by the ML-SROM in these bands. Chapter 6

Conclusions and future prospects Conclusions

A general method has been developed for the construction of a multilevel stochastic ROM devoted to the robust dynamical analysis of complex systems over a broad frequency band. The complex systems considered are constituted of several structural scales which, for instance, induce the presence in the low-frequency range of numerous short-wavelength local displacements in addition to the usual long-wavelength global displacements.

The proposed multilevel ROM is based on the construction of three orthogonal ROBs whose displacements are either LF-, MF-, or HF-type displacements, associated with the overlapping LF, MF, and HF vibration regimes. The construction of these ROBs relies on a filtering strategy that is based on the introduction of global shape functions for the kinetic energy (in contrast to the local shape functions of the finite elements). In parallel to the fact that the local displacements are more sensitive to uncertainties than the global displacements, implementing the nonparametric probabilistic approach of uncertainties within the multilevel nominal ROM, each ROB of the obtained multilevel stochastic ROM can be endowed with a specific level of uncertainties through the values given to the dedicated dispersion hyperparameters.

The numerical analysis and the algorithms have carefully been developed in order to deal with large-scale finite element models. The complete methodology has been implemented in a dedicated software (written in MATLAB language), for which the inputs are the eigenfrequencies, the elastic modes, and a lumped mass matrix of the finite element model, which are exported from any commercial software. Consequently, the approach proposed is nonintrusive with respect to commercial software.

Several applications have been carried out in order to work out the method, the numerical analysis, and the algorithms. All these applications are published in the papers by the author and referenced in the introduction. These applications are not reproduced in the thesis, in order not to complicate the presentation. These applications concern a heterogeneous plate with two structural levels, a heterogeneous plate with three structural levels, and a car body structure with a large-scale finite element model (different from the one presented in the thesis).

The experimental validation has been given and the capability of the methodology proposed has been demonstrated, for a multilevel stochastic ROM constructed for a complex dynamical system consisting of an automobile, which has been identified with respect to experimental measurements, and which allows for obtaining a decreased dimension as well as an improved prediction with respect to a classical stochastic ROM.

Future prospects

A first development would consist in extending the current framework devoted to the filtering between the global and the local displacements by introducing an adaptive reduced kinematics for the kinetic energy.

A second point would be to test the capability of the methodology for other complex structures and also for vibroacoustic systems.

A third point would consist in substituting the nonparametric probabilistic approach based on the random matrix theory by the nonparametric probabilistic approach recently proposed [START_REF] Soize | Uncertainty quantification of modeling errors for nonlinear reduced-order computational models using a nonparametric probabilistic approach[END_REF] and based on the use of a stochastic ROB for constructing the stochastic ROM.
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 11 Figure 1.1: Typical FRF including the LF, MF, and HF bands: modulus in dB scale with respect to the frequency.
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 1213 Figure 1.2: Mode shape of a local elastic mode of a car body structure (eigenfrequency 24 Hz).
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 14 Figure 1.4: Mode shape of a regular low-frequency elastic mode of a car body structure (eigenfrequency 72 Hz).
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 15 Figure 1.5: Mode shape of a regular medium-frequency elastic mode of a car body structure (eigenfrequency 262 Hz).
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 116 Figure 1.6: Computational model of a car body structure, in which the gray intensity is related to the level of rigidity (the darker is the stiffer).
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 17 Figure 1.7: Computational model of a car body structure, in which the gray intensity is related to the level of rigidity (the darker is the stiffer).

2 )Figure 1 . 8 :

 218 Figure 1.8: Experimental measurements of 20 FRFs on a broad frequency band performed on PSA cars of the same type [119].

  3.1, includes displacements of several structural scales, including (i) a global deformation of the body structure, (ii) a local deformation of the roof, and (iii) a highly local deformation of a flexible part that is located at the left back. The polynomial approximation is parameterized by the maximum degree d used for the polynomials. The filtering is thus controlled by the value of d. For different values of d, namely d = 5, d = 10, d = 15, and d = 20, the orthogonal projection of the low-frequency elastic mode is performed. The results are plotted in Figs. 3.2 to 3.5. It can be seen that, for the orthogonal projection given by d = 5, both scales of local displacements have been filtered. For the orthogonal projection given by d = 15, the first scale of local displacements, associated with the roof, is recovered. Finally, for the orthogonal projection given by d = 20, the original mode shape is recovered (including all the scales of displacements).

Figure 3 . 1 :

 31 Figure 3.1: Mode shape of a regular low-frequency elastic mode of a car body structure (eigenfrequency 72 Hz).

Figure 3 . 2 :

 32 Figure 3.2: Deformation shape of the orthogonal projection, onto the polynomial basis of maximum degree d = 5, of the elastic mode shown in Fig. (3.1).

Figure 3 . 3 :

 33 Figure 3.3: Deformation shape of the orthogonal projection, onto the polynomial basis of maximum degree d = 10, of the elastic mode shown in Fig. (3.1).

Figure 3 . 4 :

 34 Figure 3.4: Deformation shape of the orthogonal projection, onto the polynomial basis of maximum degree d = 15, of the elastic mode shown in Fig. (3.1).

Figure 3 . 5 :

 35 Figure 3.5: Deformation shape of the orthogonal projection, onto the polynomial basis of maximum degree d = 20, of the elastic mode shown in Fig. (3.1).

Figure 3 . 6 :

 36 Figure 3.6: Case of a heterogeneous plate including two structural scales (with a stiff main frame supporting 12 flexible panels): undeformed configuration (topleft), an elastic mode exhibiting both global and local displacements (top-right), its orthogonal projection onto a subspace of piecewise constant functions (bottomleft), and its orthogonal projection onto a subspace of piecewise linear functions (bottom-right).

. 21 )

 21 in which vectors x r = [P] x ∈ S R and x c = ([I m ] -[P]) x ∈ S ⊥ R verify x c T [M] x r = 0 . (3.22)

3. 3

 3 Numerical implementation 33 dimension generalized eigenvalue problem,

. 41 ) 1 .

 411 Remark Physical interpretation of the filtering strategy Introducing the (m × n) real matrix [Φ r ] = [P][Φ], we obtain

. 47 ) 35 From

 4735 Using Eqs.(3.28),(3.40), and (3.47) yields[Φ g ] = [Φ][Q g ] .(3.48) 3.4 Local-displacements reduced-order basis Eqs. (2.3), (3.44), (3.45), and (3.48), the following orthogonality property can be deduced,[Q g ] T [Q ] = [0] . (3.49) Let [Z] be the (n × n ) real matrix whose columns are the right-singular vectors associated with the n zero singular values of the SVD of [Q g ] T (and which, consequently, constitute an algebraic basis of the null space of [Q g ] T ). By construction, matrix [Z] verifies [Z] T [Z] = [I n ] . (3.50) Equation (3.49) is satisfied for [Q ] expressed as [Q ] = [Z][U ] , (3.51) in which [U ] is a (n × n ) real matrix of coordinates in the basis defined by [Z].

. 24 )

 24 in which n L = dim(S L ) and n M = dim(S M ) . The ROBs [Φ L ] and [Φ M ] of respectively subspaces S L and S M are given by [Φ

  and [W H ] = [Q H ] , from Eqs. (4.22), (4.25), and (4.29), it can be deduced that a block-writing of reduced matrix [A] = [Ψ] T [A][Ψ] -for ([A], [A]) ∈ {([M ], [M]), ([D], [D]), ([K], [K]

. 35 )

 35 from which it can be deduced that[M ] = [I nt ] .

. 40 ) 1

 401 For all ω in B, the random equation defined by Eq. (4.40) is solved with the Monte-Carlo simulation method. Experimental measurements (excitation force and observation points) and frequency band of analysis Experimental measurements of some FRFs have been carried out for n e = 20 nominally identical cars over a broad frequency band, B = 2π × [10 , 900] Hz.

Figure 5 . 1 :FrequencyFigure 5 . 2 :

 5152 Figure 5.1: View of the finite element model of the automobile.

Figure 5 . 3 :

 53 Figure 5.3: Graph of the unwrapped phase as a function of the frequency in logarithmic scale for the observation 1. Computational model (thick line) and 20 experimental measurements performed on the PSA cars of the same type [119] (thin lines).

Figure 5 .

 5 3 displays the graph of the unwrapped phase obtained with the computational model, which is compared to the 20 graphs that correspond to the experimental measurements. The analysis of this figure allows application to an automobile for defining the following frequency bands B L = [10, 70] Hz, B M =]70, 300] Hz, and B H =]300, 900] Hz. There are 159 elastic modes in low-frequency band B L , 1,202 elastic modes in medium-frequency band B M , and 5,897 elastic modes in high-frequency band B H , or, in average, about 2.5 modes per Hz in B L , 5 modes per Hz in B M , and 10 modes per Hz in B H . A modal density of 2.5 modes per

Figure 5 . 4 :

 54 Figure 5.4: Modal damping function (ω; c H ) → ξ(ω; c) plotted, with respect to the frequency in Hz, for: c H = 0.0275 (bottom line), c H = 0.03 (middle line), and c H = 0.04 (top line).
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 255 Figure 5.5: Convergence of the C-NROM with respect to its dimension: value of J d for several values of n (black crosses). Horizontal light-gray line: value of J d for n = 8,450.

2 )Figure 5 . 6 :

 256 Figure 5.6: Observation 1: experimental FRF measurements performed on the PSA cars of the same type [119] (black lines), deterministic FRF using the C-NROM (gray line).

2 )Figure 5 . 7 :

 257 Figure 5.7: Observation 2: experimental FRF measurements performed on the PSA cars of the same type [119] (black lines), deterministic FRF using the C-NROM (gray line).
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 25722 Classical nominal ROM and classical stochastic ROM Second step: C-SROM 5.2

Figure 5 . 8 :

 58 Figure 5.8: Plot of function (δ M , δ K ) → J s (δ M , δ K ) for the identification of hyperparameters δ M and δ K of the C-SROM. Black dots: sampling points, black cross: optimal point.

Figure 5 . 9 :

 59 Figure 5.9: Convergence of objective function J s (black line), of J s,1 (dark-gray line), and of J s,2 (light-gray line) with respect to number of simulations n sim .

Figure 5 . 10 :

 510 Figure 5.10: Observation 1: experimental FRF measurements performed on the PSA cars of the same type [119] (black lines), random FRF using the identified C-SROM (gray region), and overlap function OVL (black line underneath).

Figure 5 . 11 :

 511 Figure 5.11: Observation 2: experimental FRF measurements performed on the PSA cars of the same type [119] (black lines), random FRF using the identified C-SROM (gray region), and overlap function OVL (black line underneath).

Figure 5 . 13 :

 513 Figure 5.13: Observation 2, zoom into band B L ∪ B M : experimental FRF measurements performed on the PSA cars of the same type [119] (black lines), random FRF using the identified C-SROM (gray region), and overlap function OVL (black line underneath).

Figure 5 . 14 :

 514 Figure 5.14: Observation 1, zoom into band B L : experimental FRF measurements performed on the PSA cars of the same type [119] (black lines), random FRF using the identified C-SROM (gray region), and overlap function OVL (black line underneath).

Figure 5 . 15 :

 515 Figure 5.15: Observation 2, zoom into band B L : experimental FRF measurements performed on the PSA cars of the same type [119] (black lines), random FRF using the identified C-SROM (gray region), and overlap function OVL (black line underneath).

  5.10 and 5.11 into band B L ∪ B M , and in Figs. 5.14 and 5.15 that present a zoom of Figs. 5.10 and 5.11 into band B L .

Figures 5 . 2 )Figure 5 . 18 : 2 )Figure 5 . 19 :

 525182519 Figures 5.18 and 5.19 show the deterministic FRFs obtained using the ML-NROM with d H = 34 and ν H = 4,250, which are the optimal values found solving the global stochastic optimization problem presented in the next section. It can be seen that the ML-NROM, with reduced dimension n t = 4,232, yields a satisfacory

Figure 5 . 20 :

 520 Figure 5.20: Observation 1: experimental FRF measurements performed on the PSA cars of the same type [119] (black lines), random FRF using the identified ML-SROM (gray region), and OVL function (black line underneath).

Figure 5 . 21 :

 521 Figure 5.21: Observation 2: experimental FRF measurements performed on the PSA cars of the same type [119] (black lines), random FRF using the identified ML-SROM (gray region), and OVL function (black line underneath).

Figure 5 . 22 :

 522 Figure 5.22: Observation 1, zoom into band B L ∪ B M : experimental FRF measurements performed on the PSA cars of the same type [119] (black lines), random FRF using the identified ML-SROM (gray region), and OVL function (black line underneath).

Figure 5 . 23 :

 523 Figure 5.23: Observation 2, zoom into band B L ∪ B M : experimental FRF measurements performed on the PSA cars of the same type [119] (black lines), random FRF using the identified ML-SROM (gray region), and OVL function (black line underneath).

Figure 5 . 25 :

 525 Figure 5.25: Observation 2, zoom into band B L : experimental FRF measurements performed on the PSA cars of the same type [119] (black lines), random FRF using the identified ML-SROM (gray region), and OVL function (black line underneath).

Figures 5. 22

 22 Figures 5.22and 5.23 display a zoom of Figs. 5.20 and 5.21 into band B L ∪B M and Figs. 5.24 and 5.25 display a zoom of Figs. 5.20 and 5.21 into band B L . It can be seen that the OVL function confirms the improved prediction of the ML-SROM in the LF and MF bands.

  Figures 5.22and 5.23 display a zoom of Figs. 5.20 and 5.21 into band B L ∪B M and Figs. 5.24 and 5.25 display a zoom of Figs. 5.20 and 5.21 into band B L . It can be seen that the OVL function confirms the improved prediction of the ML-SROM in the LF and MF bands.

1

 1 Deterministic analysis of the contribution of each of the ROBs In order to put into evidence the individual contribution of each ROB, [Φ L ], [Φ M ] or [Φ H ], the deterministic FRFs are calculated by using either scale-L, scale-M, or scale-H ROM (of dimensions n L = 81, n M = 414, and n H = 3,737, respectively). Figures 5.26 and 5.27 present the FRFs (modulus in log scale of the accelerations of observations 1 and 2) given by these three ROMs, in addition to the experimental measurements. For comparison, three ROMs are introduced, for which the associated ROBs are (i) the first 159 elastic modes, (ii) the next 1,202 elastic modes, and (iii) the following 7,089 elastic modes. The same FRFs are computed by using these ROMs and are depicted in Figs. 5.28 and 5.29. It can be seen that, in contrast to the FRFs given by the different ROBs of elastic modes, the ROBs constituted of the constructed LF-, MF-, and HF-type displacements yield FRFs for which the dynamical contents overlap in frequency. It should be noted that the scale-L ROM does not contribute beyond f c L = 70 Hz, neither does the scale-M ROM beyond f c M = 300 Hz. This is explained by latter cutoff frequencies, which have been used for constructing these ROMs.

2 )Figure 5 . 26 : 2 )Figure 5 . 27 :

 25262527 Figure 5.26: Observation 1: experimental FRF measurements performed on the PSA cars of the same type[START_REF] Bouvet | Mesures de dispersion acoustique sur 208 en sortie d'usine[END_REF] (black lines), deterministic FRF using the scale-L ROM (blue line), deterministic FRF using the scale-M ROM (green line), and deterministic FRF using the scale-H ROM (red line).

2 )Figure 5 . 28 :

 2528 Figure 5.28: Observation 1: experimental FRF measurements performed on the PSA cars of the same type[START_REF] Bouvet | Mesures de dispersion acoustique sur 208 en sortie d'usine[END_REF] (black lines), deterministic FRF using the 159 LF elastic modes (blue line), deterministic FRF using the 1,202 MF elastic modes (green line), and deterministic FRF using the 7,089 HF elastic modes (red line).

2 )Figure 5 . 29 :

 2529 Figure 5.29: Observation 2: experimental FRF measurements performed on the PSA cars of the same type[START_REF] Bouvet | Mesures de dispersion acoustique sur 208 en sortie d'usine[END_REF] (black lines), deterministic FRF using the 159 LF elastic modes (blue line), deterministic FRF using the 1,202 MF elastic modes (green line), and deterministic FRF using the 7,089 HF elastic modes (red line).

5. 4 . 2

 42 Stochastic sensitivity analysis 5.[START_REF] Soize | Medium frequency linear vibrations of anisotropic elastic structures[END_REF].2.1 Proposed ML-SROMA sensitivity analysis of the ML-SROM with respect to the dispersion hyperparameters is presented. Using the identified parameters of the ML-SROM and successively setting to zero 2 dispersion hyperparameters out of the 3 hyperparameters δ L , δ M , δ H allow for quantifying the individual contribution of each scale L , M , H of displacements in the random responses. The confidence regions obtained using the proposed ML-SROM are estimated using n sim = 10,000 Monte-Carlo realizations. The confidence regions are obtained by using the identified ML-SROM and by setting, successively, δ M = δ H = 0 (see Fig. 5.30 for observation 1 and Fig. 5.33 for observation 2), δ L = δ H = 0 (see Fig. 5.31 for observation 1 and Fig. 5.34 for observation 2), and δ L = δ M = 0 (see Fig. 5.32 for observation 1 and Fig. 5.35 for observation 2). In each figure, the vertical lines indicate the boundaries between the LF, MF, and HF bands. Figures 5.32 and 5.35 show, for instance, that adding uncertainties to the HF-type displacements yields the presence of uncertainties in the LF and MF bands. It is explained by the fact that, since d H is greater than d M , some HF-type displacements are likely to be present in the LF and MF bands. However, despite the absence of MF-type displacements in the HF band (it is recalled that f c M = 300 for the construction given in either Eq. (4.4) or (4.20)), Figs. 5.31 and 5.34 show, for instance, that adding uncertainties to the MF-type displacements yields the presence of uncertainties in the HF band. This is due to the fact that the LF-, MF-, and HF-type displacements are not orthogonal with respect to the stiffness matrix.

Figure 5 . 30 :

 530 Figure 5.30: Observation 1: random FRF using the identified ML-SROM but for which δ M = δ H = 0 is imposed.

Figure 5 . 31 :

 531 Figure 5.31: Observation 1: random FRF using the identified ML-SROM but for which δ L = δ H = 0 is imposed.

Figure 5 . 32 :

 532 Figure 5.32: Observation 1: random FRF using the identified ML-SROM but for which δ L = δ M = 0 is imposed.

Figure 5 . 33 :

 533 Figure 5.33: Observation 2: random FRF using the identified ML-SROM but for which δ M = δ H = 0 is imposed.

Figure 5 . 38 :

 538 Figure 5.38: Observation 1: random FRF using the naive ML-SROM for which δ L = δ M = 0 is imposed.

Figure 5 . 39 :

 539 Figure 5.39: Observation 2: random FRF using the naive ML-SROM for which δ M = δ H = 0 is imposed.

Figure 5 . 40 :Figure 5 . 41 :

 540541 Figure 5.40: Observation 2: random FRF using the naive ML-SROM for which δ L = δ H = 0 is imposed.

  

  In Eq.(4.3), vector subspace S t is obtained by the projection onto S c in which d H , ν H , and f c H are the filtering parameters. Denoting by n t the dimension of the multilevel ROM and setting r H = (d H + 1)(d H + 2)(d H + 3)/2, we define the real matrices [Λ t ], [Q t ], and [N t ], respectively of dimensions (n t × n t ), (n × n t ), and (n × r H ) , as the first three outputs of mapping F 2 , such that

	.16)
	4.2.2 Construction of the reduced-order bases
	4.2.2.1 First filtering

  .21) in which n LM = dim(S LM ) and n H = dim(S H ) . The ROBs [Φ LM ] and [Φ H ] of subspaces S LM and S H are given by

  Convergence analysis of J d as a function of dimension n t deduced from a first filtering For constructing the multilevel ROM, the first step consists in defining the filtering of local displacements that is devoted to the reduction of the final dimension n t of the proposed ROM. This step corresponds to either Eq. (4.3) or Eq. (4.17). It depends on the maximum degree d H of the polynomials of the reduced kinematics of mass matrix[M r ], on truncation order ν H that is indirectly related to the upper bound of the frequency band (through the value σ t ν H /2π in which σ t α is the eigenvalue of rank α in Eq.(4.11), involved in the mapping F 2 in Eq. (4.17)) and to the cutoff frequency f c H . It should be noted that since by construction one has S t ⊆ S c , the frequency f t nt = λ t nt /2π verifies the inequality f t nt ≤ f n . Therefore, choosing f c H = f n = 1,000 Hz would automatically yield n t = ν H . We choose to set f c H as f c H = 925 Hz. It should be noted that scale-t ROM given by Eqs. (4.26) and (4.27) yields the same response as the ML-NROM (by construction). By abuse of terminology, we thus say that exploring the possible values of parameters d H and ν H allows the construction of the ML-NROM to be adjusted. It is recalled that λ t ν H ≤ σ t ν H . For fixed d H , some sampling points are explored in a segment in which parameter ν H verifies Figure 5.16 presents a plot of function J d with respect to parameters d H and ν H , with d H ranging from 2 to 40 and with the corresponding values of ν H deduced from Eq.(5.8). It can be seen that for ν H ≥ 4,000, the value of J d is only subjected to small fluctuations. It should also be noted that, in general, for a fixed ν H between 2,500 and 4,000, the value of J d is larger (i.e. is less good) for a larger value of d H . This is due to the fact that for an increasing value of d H , the Statistical inverse identification of the multilevel stochastic reduced-order model: application to an automobile value of ν H has to increase in order that the quantity σ t ν H /2π reach the upper bound of the frequency band. Indeed, a larger maximum degree d H means an increasing presence of local displacements, which means more basis vectors kept in the construction of the ROM. Figure.5.17 shows the convergence of the ML-NROM with respect to its dimen-Figure5.16: Plot of function J d with respect to parameters d H and ν H (lighter gray level meaning higher J d ) sion n t . For this, the value of J d is plotted as a function of n t for several ROMs (all the sampling points). Likewise, the convergence of the C-NROM is given on the same figure, in order to put into evidence the faster convergence of the ML-NROM towards a value corresponding to a reasonable accuracy, compared to the C-NROM. This is explained by the fact that the ML-NROM lacks local displacements (and thus has a lower dimension), which are not really important for representing the dynamical responses. For a low maximum degree d H of the polynomials (and for a low truncation order ν H ), the lower dimension n t that is obtained for the ROM is associated with more important modeling errors. For constructing the ML-NROM, a good compromise between the value of n t and the accuracy associated with the value of J d is sought. In fact, the purpose of the multilevel ROM is to better represent the variabilities of the experimental measurements in the frequency band (i.e. to obtain random FRFs that are able to represent the experimental measurements) and consequently, the identification of parameters d H and ν H depends on the values taken by the dispersion hyperparameters of the ML-SROM (coupled problem). The previous exploration of the possible values of parameters d H and ν H is thus not sufficient. Nevertheless, Figure5.17: For the C-NROM, graph of n → J d (n) (black crosses) and graph of n → J d (8,450) (horizontal light-gray line). For the ML-NROM, graph of n t → J d (n t ) (gray dots).
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  15 , 0.20 , 0.25 , 0.30 , 0.35 , 0.40 , 0.45 , 0.50 , 0.55 , 0.60 ) , δ M = ( 0.10 , 0.15 , 0.20 , 0.25 , 0.30 , 0.35 , 0.40 , 0.45 , 0.50 ) , (5.9) δ H = ( 0.05 , 0.07 , 0.09 , 0.11 , 0.13 , 0.15 ) .

  5.3.2.6 Final stage for the global identification of the ML-SROMParameters (d L , ν L ) , (d M , ν M ) , δ L ,and δ M remain to be identified. In order to avoid a 6-dimensional costly optimization problem, the 4 filtering parameters are left unchanged. It should be noted that these parameters control the overlap of subspaces S L , S M , and S H of the multilevel ROM, associated with LF-, MF-, and HF-type displacements. Also, if parameters (d L , ν L ) and (d M , ν M ) were to tend towards infinity, there would be no overlap of subspaces S L , S M , and S H . Qualitatively, subspace S L is supposed to be composed of long-wavelength global displacements, without the numerous local displacements. Therefore, based on these physical considerations, it is more suitable to force the values of filtering parameters (d L , ν L ) and (d M , ν M

Classical reduced-order model

Acknowledgments

Statistical inverse identification of the multilevel stochastic reduced-order model: application to an automobile Figure 5.34: Observation 2: random FRF using the identified ML-SROM but for which δ L = δ H = 0 is imposed. It can be seen that, for this naive ML-SROM, the introduction of uncertainties for one given vector basis induces the presence of uncertainties for the corresponding frequency band, while practically none elsewhere. This stochastic ROM is thus not well adapted for modeling uncertainties of complex dynamical systems for which the LF, MF, and HF vibration regimes overlap.