
HAL Id: tel-01459859
https://theses.hal.science/tel-01459859

Submitted on 7 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reactive navigation of a fleet of drones in interaction
Osamah Saif

To cite this version:
Osamah Saif. Reactive navigation of a fleet of drones in interaction. Other [cs.OH]. Université de
Technologie de Compiègne, 2016. English. �NNT : 2016COMP2269�. �tel-01459859�

https://theses.hal.science/tel-01459859
https://hal.archives-ouvertes.fr

Par Osamah SAIF

Thèse présentée
pour l’obtention du grade
de Docteur de l’UTC

Reactive navigation of a fleet of drones in interaction

Soutenue le 23 mars 2016
Spécialité : Technologie de l’Information et des Systèmes

D2269

Reactive Navigation of a Fleet of Drones
in Interaction

Osamah SAIF

Thèse soutenue le 23 mars 2016 devant le jury composé de :

Rapporteurs:
Mohamed BOUTAYEB Nicolas MARCHAND
Professeur des universités Directeur de Recherche CNRS
Université de Lorraine GIPSA-lab, Université de Grenoble

Examinateurs:
Philippe BONNIFAIT Dominique LUZEAUX

Professeur des universités Ingénieur général de l’armement HDR
Université de Technologie de Compiègne DIRISI, Ministère de la Défence

Olivier SIMONIN Paolo ROBUFFO GIORDANO
Professeur des universités Chargé de recherche CNRS

INSA Lyon - CITI-Inria Lab Irisa - Inria

Directrice de Thèse:
Isabelle FANTONI

Directrice de Recherche CNRS
Heudiasyc, Université de Technologie de Compiègne

Université de Technologie de Compiègne

Laboratoire Heudiasyc UMR CNRS 7253

23 - 03 - 2016

Contents

Table of Contents i

List of Figures v

Publications ix

Résumé xi

Abstract xiii

Introduction 1

1 State of the art 5
1.1 Introduction . 5
1.2 System of Systems . 5
1.3 Flight Formation Control . 6

1.3.1 Formation control structures 6
1.3.1.1 Leader-follower structure 6
1.3.1.2 Virtual structure . 7
1.3.1.3 Behavioral-based structure 7

1.3.2 Formation control architectures 9
1.3.2.1 Centralized control architecture 9
1.3.2.2 Distributed control architecture 10
1.3.2.3 Decentralized control architecture 11

1.4 Flocking in literature . 11
1.5 Quadrotor Modeling and Control . 14

1.5.1 Quadrotor modeling . 14
1.5.1.1 Quadrotor configurations 16
1.5.1.2 Torques and thrust 18

1.5.2 Quadrotor control . 20
1.5.2.1 General nested control loop of quadrotor 20
1.5.2.2 Classification of quadrotor existing control laws . . . 21

i

ii Contents

1.6 Conclusion . 22

2 Flocking by trajectory generation 25
2.1 Introduction . 25
2.2 Simplified dynamics of multiple UAVs 26
2.3 Linear quadratic control . 27

2.3.1 Regulator problem . 27
2.3.2 Trajectory following problem 28

2.4 Aggregation behavior . 29
2.5 Flocking by trajectory generation . 31

2.5.1 Average strategy . 33
2.5.2 Sum strategy . 35
2.5.3 Navigational behavior . 36

2.6 Modeling and flocking of Multiple quadrotors 37
2.6.1 Control of quadrotor internal dynamics 37
2.6.2 Flocking of multiple quadrotors by trajectory generation . . . 40

2.7 Simulation results . 41
2.7.1 Aggregation behavior . 41
2.7.2 Navigation . 42

2.8 Conclusion . 43

3 Flocking by consensus algorithms 45
3.1 Introduction . 45
3.2 Preliminaries . 45
3.3 Flocking control with tuning gains . 48
3.4 Flocking with distributed integral control 54
3.5 Robust Flocking . 55

3.5.1 Linearizing and Decoupling control 55
3.5.2 Robust control law . 57

3.6 Conclusion . 63

4 Simulation and Real-Time Results 65
4.1 Introduction . 65
4.2 Simulator of Multiple UAVs . 65
4.3 Simulation results . 70

4.3.1 Flocking by trajectory generation 70
4.3.1.1 Sum Strategy . 70
4.3.1.2 Average Strategy . 73

4.3.2 Consensus-based Flocking . 79

Contents iii

4.3.2.1 Flocking control with tuning gains 79
4.3.2.2 Flocking with distributed integral control 83

4.4 Real-Time Experiments . 87
4.4.1 Average Strategy . 89
4.4.2 Consensus-based Flocking . 90

4.4.2.1 Flocking control with tuning gains 90
4.4.2.2 Flocking with distributed integral control 91

4.5 Conclusion . 95

5 Conclusion and prospects 97
5.1 Working methodology . 97
5.2 Lessons learned . 98
5.3 Difficulties . 99
5.4 Prospects . 100

Bibliography 103

List of Figures

1.1 Centralized control architecture of multiple systems 9
1.2 Distributed control architecture of multiple systems 10
1.3 Decentralized control architecture of multiple systems 11
1.4 Four quadrotors in an undirected graph 13
1.5 Representation of a quadrotor with the global inertial and the body-

fixed frames . 15
1.6 Plus and X configurations of quadrotor in hovering mode. The rotors

have the same angular velocity. Bx axis is the frontal direction 16
1.7 Controlling the yaw angle in the Plus and X configurations. The width

of the arrows is proportional to the rotors angular velocity. 17
1.8 Controlling the pitch angle in the Plus and X configurations 17
1.9 Controlling the roll angle in the Plus and X configurations 18
1.10 Forces and drag moments on a quadrotor 19
1.11 Global structure of quadrotor control 21
2.1 Fragmentation problem in flocking algorithm 1 of [Olfati-Saber, 2006] . 30
2.2 Unit vector representation. 32
2.3 Control architecture of quadrotor in a flocking perspective. Internal dy-

namics are controlled separately from the x−y translation and flocking
dynamics . 38

2.4 multi-UAVs aggregation snapshots (Average strategy). No fragmenta-
tion in the flock, even if there is no rendezvous point. 42

2.5 multi-UAVs navigation snapshots. The algorithm ensures the aggrega-
tion and the navigation. 43

3.1 Block diagram of the decoupled translational dynamics of quadrotor . . 58
4.1 Architecture of the simulator of fleet of UAVs 66
4.2 High level commands in the based-station GUI 67
4.3 Graphs of measurements in the GUI . 68
4.4 Parameters and gains introduction in the GUI 69
4.5 Trajectories of 4 UAVs in aggregation and navigation scenario using

Sum strategy . 71

v

4.6 Interdistances between 4 UAVs in aggregation and navigation scenario
using Sum strategy . 72

4.7 Trajectories of 4 UAVs in an aggregation scenario using Sum control
with urgent landing in UAV 2 . 72

4.8 Interdistances between 4 UAVs in an aggregation scenario using Sum
control with urgent landing in UAV 2 73

4.9 Trajectories of 4 UAVs in a circular navigation scenario using Sum
control with urgent landing in UAV 2 74

4.10 Interdistances between 4 UAVs in a circular navigation scenario using
Sum control with urgent landing in UAV 2 74

4.11 Trajectories of 4 UAVs in aggregation and circular navigation scenario
using Average control strategy . 75

4.12 Interdistances between 4 UAVs in aggregation and circular navigation
scenario using Average control strategy 76

4.13 Trajectories of 4 UAVs in an aggregation scenario using Average control
with urgent landing in UAV 2 . 76

4.14 Interdistances between 4 UAVs in an aggregation scenario using Average
control with urgent landing in UAV 2 77

4.15 Trajectories of 4 UAVs in a circular navigation scenario using Average
control with urgent landing in UAV 2 77

4.16 Interdistances between 4 UAVs in a circular navigation scenario using
Average control with urgent landing in UAV 2 78

4.17 Trajectories of 6 UAVs in aggregation and circular navigation scenario
using tuning gains control strategy . 79

4.18 Interdistances between 6 UAVs in aggregation and circular navigation
scenario using tuning gains control strategy 80

4.19 Trajectories of 6 UAVs in an aggregation scenario using tuning gains
control with urgent landing in UAV 2 81

4.20 Interdistances between 6 UAVs in an aggregation scenario using tuning
gains control with urgent landing in UAV 2 81

4.21 Trajectories of 6 UAVs in circular a navigation scenario using tuning
gains control with urgent landing in UAV 2 82

4.22 Interdistances between 6 UAVs in a circular navigation scenario using
tuning gains control with urgent landing in UAV 2 82

4.23 Trajectories of 6 UAVs in aggregation and circular navigation scenario
using distributed integral strategy . 83

4.24 Interdistances between 6 UAVs in aggregation and circular navigation
scenario using distributed integral control strategy 84

4.25 Trajectories of 6 UAVs in an aggregation scenario using distributed
integral control with urgent landing in UAV 3 85

4.26 Interdistances between 6 UAVs in an aggregation scenario using dis-
tributed integral control with urgent landing in UAV 3 85

4.27 Trajectories of 6 UAVs in a circular navigation scenario using dis-
tributed integral control with urgent landing in UAV 3 86

4.28 Interdistances between 6 UAVs in a circular navigation scenario using
distributed integral control with urgent landing in UAV 3 86

4.29 Quadrotor Parrot ArDrone2 . 87
4.30 Architecture of the experimental platform. The arrows indicate the

communication links between the different components. Discontinuous
arrows means occasional communications 88

4.31 Trajectories of 4 UAVs in a direct navigation scenario using Average
control strategy . 89

4.32 Interdistances between 4 UAVs in a direct navigation scenario using
Average control strategy . 90

4.33 Trajectories of 4 UAVs in an aggregation scenario using tuning gains
control strategy . 91

4.34 Interdistances between 4 UAVs in an aggregation scenario using tuning
gains control strategy . 92

4.35 Trajectories of 4 UAVs in a direct navigation scenario using distributed
integral strategy . 92

4.36 Interdistances between 4 UAVs in a direct navigation scenario using
distributed integral control strategy . 93

4.37 Trajectories of 4 UAVs in an aggregation scenario using distributed
integral strategy . 94

4.38 Interdistances between 4 UAVs in an aggregation scenario using dis-
tributed integral control strategy . 94

Publications

1. Saif, O., Fantoni, I., and Zavala-Rio, A. (2015). Real-time flocking of multiple-
quadrotor system of systems. In IEEE System of Systems Engineering (SOSE),
San Antonio, TX, USA.

2. Saif, O., Fantoni, I., and Zavala-Rio, A. (2014). Flocking of multiple unmanned
aerial vehicles by lqr control. In IEEE International Conference on Unmanned
Aircraft Systems (ICUAS), Orlando, USA, pages 222-228.

3. Saif, O. and Fantoni, I. (2013). Commande lqr d’une flotte de multiples
véhicules aériens. In Journées Doctorales / Journés Nationales MACS (JD /
JNMACS), Strasbourg, France.

4. Saif, O., Hou, Z., Fantoni, I., and Sanahuja, G. (2013). Simulateur de flotte de
drones. In Journées Démonstrateurs en Automatique, Angers, France.

ix

Résumé

De nos jours, les applications utilisant des quadrirotors autonomes sont en plein
essor. La surveillance et la sécurité de sites industriels ou sensibles, de zones géogra-
phiques pour l ?agriculture par exemple sont quelques-unes des applications les plus
célèbres des véhicules aériens sans pilote (UAV). Actuellement, certains chercheurs
et scientifiques se concentrent sur le déploiement multi-drones pour l’inspection et
la surveillance de vastes zones. L’objectif de cette thèse est de concevoir des algo-
rithmes afin de réaliser une commande de vol en formation distribuée/décentralisée
de multi-UAVs en temps réel dans une perspective de systèmes de systèmes.

Tout d’abord, nous avons passé en revue certains travaux récents de la littérature
sur la commande de vol en formation et la commande de quadrirotors. Nous avons
présenté une brève introduction sur les systèmes de systèmes, leur définition et leurs
caractéristiques. Ensuite, nous avons introduit la commande de vol en formation
avec ses structures les plus utilisées dans la littérature. Nous avons alors présenté
quelques travaux existants traitant du flocking (comportement de regroupement
en flotte), les méthodes de modélisation les plus utilisés pour les quadrirotors et
quelques approches de commande les plus utilisées pour stabiliser des quadrirotors.

Deuxièmement, nous avons utilisé la structure de la commande comportemen-
tale pour réaliser un vol en formation de plusieurs UAVs. Nous avons conçu un
comportement pour réaliser le vol en formation de multi-UAVs sans fragmentation.
Le comportement proposé traite le problème flocking dans une perspective globale,
c’est-à-dire, nous avons inclus une tendance dans chaque drone pour former une
formation.

Les défis des Systèmes de systèmes nous a motivés à chercher des algorithmes de
flocking et de consensus introduits dans la littérature qui peuvent être utiles pour
répondre à ces défis. Cela nous a amenés à proposer quatre lois de commande en
visant à être compatibles avec le modèle non linéaire des quadrirotors et pouvant être
expérimentés sur des plates-formes réelles. Les lois de commande ont été exécutées
à bord de chaque quadrirotor dans la formation et chaque quadrirotor interagit avec
ses voisins pour assurer un vol en formation sans collision.

Enfin, nous avons validé nos lois de commande par des simulations et des expé-
riences en temps réel. Pour la simulation, nous avons utilisé un simulateur de multi

xi

quadrirotors développé au laboratoire Heudiasyc. Pour les expériences, nous avons
mis en œuvre nos lois de contrôle sur des quadrirotors ArDrone2 évolués dans un
environnement intérieur équipé d’un système de capture de mouvement (Optitrack).

Mots clés : Commande de vol en formation, Flocking et algorithmes de consen-
sus, Commande LQR, Commande comportementale, Véhicules aériens sans pilote
(UAV).

Abstract

Nowadays, applications of autonomous quadrotors are increasing rapidly. Surveil-
lance and security of industrial sites, geographical zones for agriculture for example
are some popular applications of Unmanned Aerial Vehicles (UAVs). Nowadays,
researchers and scientists focus on the deployment of multi-UAVs for the inspection
and the surveillance of large areas. The objective of this thesis is to design algo-
rithms and techniques to perform a real-time distributed/decentralized multi-UAVs
flight formation control, from a system of systems perspective.

Firstly, we reviewed recent works of the literature about flight formation control
and the control of quadrotors. We presented a brief introduction about systems
of systems, their definition and characteristics. Then, we introduced the flight for-
mation control with its most used structures in the literature, some existing works
dealing with flocking. Finally, we presented the most used modeling methodologies
for quadrotors and some control approaches that are used to stabilize quadrotors.

Secondly, we used the behavioral-based control structure to achieve a multiple-
UAV flocking. We conceived a behavior intending to address the control design
towards a successful achievement of the flocking task without fragmentation. The
proposed behavior treats the flocking problem from a global perspective, that is, we
included a tendency of separated UAVs to form a flock.

System of systems challenges motivated us to look for flocking and consensus
algorithms introduced in the literature that could be helpful to answer to these chal-
lenges. This led us to propose four flocking control laws aiming at being compatible
with the nonlinear model of quadrotors and at being implemented on experimen-
tal platforms. The control laws were run aboard each quadrotor in the flock. By
running the control law, each quadrotor interacts with its neighbors to ensure a
collision-free flocking.

Finally, we validated our proposed control laws by simulations and real-time
experiments. For the simulation, we used a PC-based simulator of flock of multi-
ple quadrotors which was developed at Heudiasyc laboratory. For experiments, we
implemented our control laws on ArDrone2 quadrotors evolved in an indoor envi-
ronment equipped with an Optitrack motion capture system.

Key Words: Flight formation control, Flocking and consensus algorithms, LQR

xiii

control, Behavioral-based control, Unmanned Aerial Vehicles (UAV).

Introduction

Recently, relatively cheap Unmanned Aerial Vehicles (UAV), equipped by sensing
and actuation capabilities, are emerging rapidly. Moreover, with the miniaturization
revolution, these devices are able to perform local decision-making as well as short-
range communications. These novelties motivate scientists and researches to raise
different questions about the techniques that could be introduced to coordinate and
control these devices. One of the biggest challenges in this new field of research is
to define local interaction rules, between these devices, that lead to a global desired
behavior, in other word, "Think globally, act locally". A global desired behavior
could be any objective or mission achieved by one device, for instance, surveillance,
inspection, transportation, etc. However, this objective, if it is done by one device,
could be expensive in terms of time, reliability and computational power. Therefore,
the question could be reformulated to be "How should the interaction rules and the
control algorithms be designed to efficiently achieve the global desired objective?"

"System of Systems Engineering" (SoSE) is one of the recent research fields that
seeks finding answers of the previous question. In fact, SoSE seeks to propose
methodologies to optimize the interactions of stand-alone systems in order to
satisfy a global objective. Several challenges are addressed and raised in this field,
such as, operational and managerial independence of systems, emergent behaviors,
heterogeneity, scalability, etc.

Before technological systems scientists, the study of collective behaviors of
animals that lead to a global objective, was inaugurated by biologists. They studied
flocks of birds, swarms of insects, herds of quadruped and schools of fish. They
tried to understand the secret of free-collision, harmonic and collective motion of
individuals. Moreover, they searched to discover motivations that lead animals to
aggregate in groups like flocks of birds. Detailed discussions and studies could be
found in [Partridge, 1982] [Couzin, 2009].

In robotics and control theory, scientists and researches were interested in
imitating the collective behavior of animals using autonomous terrestrial robots,
UAVs and submarine robots. From swarm robotics to flight formation, techniques
and structures are proposed, such as, leader-followers, virtual structures and
behavioral-based control. The most appropriate control structure, that can answer

1

2

SoSE challenges, is the behavioral-based control, since it is biologically inspired and
defines local rules for robots to achieve a global objective.

However, since more questions leads to more knowledge and vice versa, we try in
this work, based on works in the literature, to seek initial answers to the following
questions:

• How to control and navigate a fleet of UAVs taking into account model
nonlinearities and collision avoidance?

• What are the effects of model uncertainties and exogenous perturbations on
the System of Systems?

• How can individuals achieve local rules in a precise and robust way?

• While a System of Systems is supposed to be scalable, is it fault tolerant?

To answer all or some of these questions, we design algorithms and techniques
to perform a real-time distributed multi-UAVs system of systems that can navigate
in a collective motion. These algorithms are applied on a simulator of fleet of UAVs
developed at Heudiasyc laboratory. Moreover, based on the results obtained in the
simulator, we improve our algorithms and apply them on an experimental platform
of multiple quadrotors and a motion capture system "Optitrack". We believe that,
at the end of the simulation and experimental work, we can find some answers of
the raised questions.

This thesis was carried out in the framework of the Labex MS2T, which was
funded by the French Government, through the program "Investments for the
future" managed by the National Agency for Research (Reference ANR-11-IDEX-
0004-02). The device Labex (Laboratories of Excellence) aims to provide the
best national laboratories with international visibility and significant resources to
enable them to compete with their foreign counterparts, to attract researchers
and academics of international renown and build a political integrated research,
training and development of high level. The Labex MS2T (Control of Technological
Systems-of-Systems) is a multi-disciplinary scientific problem that targets a scope of
application that may be very large. Backed by the experience of the three partner
laboratories, Labex MS2T will make significant progress on three significant social
issues : Transport and Mobility, Security, Health (ICT and Health Engineering).1

The work in this thesis is organized as the following:
In the first chapter, we review different recent works of the literature about

System of Systems, flight formation control and the control of quadrotors. Firstly,
1https://www.hds.utc.fr/labex-ms2t-484

3

we present a brief introduction about systems of systems, their definition and
characteristics. Then, we introduce the flight formation control with its different
structures that are found in the literature. After that, we introduce the most used
modeling methodologies for quadrotors. We present some control approaches that
are used to stabilize quadrotors. Finally, we present some existing works dealing
with flocking.

In the second chapter, we use the behavioral-based control structure to achieve
a multiple-UAV flocking. We conceive a behavior intending to address the control
design towards a successful achievement of the flocking task without fragmentation.
The proposed behavior treats the flocking problem from a global perspective, that
is, we include a tendency of separated UAVs to form a flock.

In the third chapter, we are interested in performing real-time flocking of multiple
UAVs in the context of system of systems. We propose control methods that are
based on the flocking and consensus algorithm introduced in the literature. We
propose four improved control laws aiming at being compatible with the nonlinear
model of quadrotors and experimental works. The control laws are run aboard each
quadrotor in the flock. By running the control law, each quadrotor interacts with
its neighbors to ensure a collision-free flocking.

In the last chapter, we show our simulation and experimental results of our
proposed control laws. For the simulation, we use a PC-base simulator of flock of
multiple quadrotors which is developed at Heudiasyc laboratory. For experiments,
we show the results of the implementation of our control laws on a platform of
ArDrone2 quadrotors evolved in an indoor environment of Optitrack motion capture
system.

Finally, a general conclusion redraws the essential points of this thesis, presents
the lessons learned , the difficulties faced during our work, as well as research
prospects.

Chapter 1

State of the art

Contents

1.1 Introduction . 5

1.2 System of Systems . 5

1.3 Flight Formation Control 6

1.4 Flocking in literature . 11

1.5 Quadrotor Modeling and Control 14

1.6 Conclusion . 22

1.1 Introduction

In this chapter, we review different recent works of the literature about System of
Systems, flight formation control and the control of quadrotors. Firstly, we present
a brief introduction about systems of systems, their definition and characteristics.
Then, we introduce the flight formation control with its different structures that
are found in the literature. After that, we present some existing works dealing with
flocking. Finally, since our interest is to design an autonomous SoS of multiple
UAVs, we introduce the most used modeling methodologies for quadrotors as well
as some control approaches that are used to stabilize quadrotors.

1.2 System of Systems

A system is a set of interacting or interdependent component parts forming a
complex/intricate whole [Wikipedia,]. When independent systems are networked
together to achieve a common goal, we talk then about "System of Systems" (SoS).
In the literature, there are several definitions of SoS depending on the context and
the field of subsystems, for instance, enterprise, information, transportation, etc.

5

6 CHAPTER 1. STATE OF THE ART

A global definition of a SoS is given in [Jamshidi, 2008]: systems of systems are
large-scale integrated systems which are heterogeneous and independently operable
on their own, but are networked together for a common goal.

Several characteristics of networked systems render them a SoS, for instance,
operational and managerial independence, geographical distribution, etc. Opera-
tional independence means that the subsystems are individually functional, while
managerial independence means that the subsystems are not managed by a central
system [Jamshidi, 2008]. Combining the two previous characteristics leads to a self-
organizing SoS.

Air vehicles, airport operations, mobile robotics, military defense systems, swarm
robotics, etc., are some examples of System of Systems. All of these systems and
their characteristics are discussed in details in [Jamshidi, 2008]. In this work, our
interest is to design an autonomous SoS of multiple UAVs.

1.3 Flight Formation Control

Autonomous formation control is a field that addresses the control of multiple robots
in order to realize geometrical patterns. Inspired from biology, these geometrical
patterns could be regular, such as the V-shape seen in migratory birds, lattice or
irregular as seen in a flock of birds. The Flight Formation Control field uses and
develops techniques of autonomous formation control and applies them on aircraft
and multiple aerial robots [Guerrero and Lozano, 2012]. We try in the following
subsections to classify different structures and architectures used in autonomous
formation control.

1.3.1 Formation control structures

In the existing literature, we can distinguish three formation control structures:
Leader-follower, Virtual structure and Behavioral-based. In the following, we
describe these structures with their main advantages and drawbacks.

1.3.1.1 Leader-follower structure

In the leader-follower structure, individuals in the formation follow one agent (or
airplane) which is designated as a leader. A formation flight mission trajectory
is loaded in the leader and the followers track their leader. Moreover, different
strategies have been implemented in this structure, for instance leader mode or
front mode [Giulietti et al., 2000]. In the leader mode strategy, all the followers
follow directly the leader. However, in the front mode strategy, each agent in the

1.3. FLIGHT FORMATION CONTROL 7

formation follows its preceding, or neighboring agent and so on until reaching the
leader, which drive the whole formation [Hou and Fantoni, 2015].

This structure is simple and widely implemented in multi-agent formation
[Guerrero and Lozano, 2012], [Chiaramonti et al., 2006]. Moreover, stability anal-
ysis, of systems using this structure, is relatively simple. Experimental work was
conducted in [Vasarhelyi et al., 2014] using this control structure. However, this
control structure reveals some drawbacks. One of them is that the entire formation
depends on one agent, so if there is a problem with the leader, the whole formation
will be affected. Moreover, error propagation and non self-organization formation
are some disadvantages of this structure.

Solutions of some of these drawbacks are found in [Shi et al., 2006] and
[Hou and Fantoni, 2015]. In [Shi et al., 2006], the leader in the formation is replaced
by a virtual one. In fact, the virtual leader is a reference trajectory sent to all
the agent in the formation. This solution resolves the reliability problem when
depending on a physical leader as well as the problem of error propagation. In
[Hou and Fantoni, 2015], a multiple leader solution is proposed to solve the problem
of one leader dependency. However, the self-organization problem is still persistent
in this structure.

1.3.1.2 Virtual structure

In the virtual structure, each agent in the formation has its own trajectory to follow.
The overall trajectories form the desired formation. Trajectories are calculated in
a central computer and sent to agents in the formation. Generally, no interactions
between agents are considered. Examples of experimental works of such control
strategy can be found in [Kushleyev et al., 2013] and [Schollig et al., 2010].

This structure exhibits some drawbacks. In fact, since there is no interaction
between agents in the formation, collisions could not be avoided in the presence
of perturbations. Moreover, the centralized control of this structure increases the
computational and communication cost.

1.3.1.3 Behavioral-based structure

In the behavioral-based structure, each agent follows some rules to achieve the
formation. The objective of the formation control is, therefore, broken down into
small rules (or behaviors). In fact, this structure is inspired from the collective
motion of animals. Among the first technical work on this structure is the distributed
behavioral model introduced by Reynolds [Reynolds, 1987]. Although Reynolds was
specialized in computer graphics, his work inspired researchers in control theory and

8 CHAPTER 1. STATE OF THE ART

robotics in the way of applying Reynolds’ rules in a theoretical and experimental
framework. Reynolds inspired his rules from biologists’ studies of collective motion
of animals. He considered that each individual in a formation should follow these
rules in order to perform a behavioral-based structure. These rules are: 1) Collision
Avoidance; 2) Velocity Matching, and 3) formation Centering.

In the collision avoidance rule, each agent in the formation should ensure a
predefined security distance with its neighboring agents. This could be done by
an embedded controller on each agent. This controller is responsible to generate a
repulsion force if the distance with the neighboring agent is less than the security
distance.

The velocity matching rule is sometimes called velocity consensus or velocity
alignment. In this rule, each agent attempts to match its velocity with nearby
agents. This could be ensured by a controller that regulates the relative velocities
to zero with respect to the neighboring agents.

In the formation centering rule or also called formation cohesion, each agent
tries to stay close to nearby agents. This is achieved by a controller that generates
an attraction force toward the neighboring agents. Moreover, each agent should
converge to a global objective of the formation. This objective could be a rendezvous
point or a reference trajectory known by all the agents in the formation.

This structure is found in the literature, for example in the work
of [Olfati-Saber, 2006], [Tanner et al., 2007] and [Antonelli et al., 2010]. In
[Olfati-Saber, 2006], two flocking algorithms are introduced with Lyapunov stability
analysis. The author proved analytically that these algorithms embed the rules
of Reynolds. In [Tanner et al., 2007], a nonsmooth analysis is used to prove the
stability of a group of agents applying the rules of Reynolds. [Antonelli et al., 2010]
introduce a Null-Space-based behavioral control laws to follow the rules of Reynolds.

The main advantages of the behavioral-based structure are the self-organization
aspect of agents in the formation, scalability and their distributed control. A
behavioral-based structure is easily self organized since each agent has to follow
a set of rules and knows the objective trajectory or destination. The scalability
feature is seen when increasing or decreasing the number of agents in the formation.
Since each agent interacts only with neighbors, its computational capabilities are not
affected. The interaction with neighbors shows also the distributed control aspect.

One of the main disadvantages of this structure is that we cannot ensure a fixed
geometrical pattern of the formation. Patterns such as V-shape, rectangles could
not be guaranteed. Only lattice patterns with fixed inter-agent distances could be
formed. Moreover, stability analysis, of systems using this structure, is relatively
difficult.

1.3. FLIGHT FORMATION CONTROL 9

1.3.2 Formation control architectures

In the formation control, we can distinguish three types of architectures: centralized,
decentralized and distributed. In the following, we try to summarize these three
architectures and show their main advantages and drawbacks.

1.3.2.1 Centralized control architecture

In this architecture, agents in the formation are controlled by one centralized
controller. This controller senses the states of all the agents, calculates the
appropriate control inputs to each of them, and send the controlling signals to
agents. Figure 1.1 illustrates the centralized control architecture. The location of
this controller could be in a ground base station or aboard an agent in the formation,
for instance, the leader agent.

Figure 1.1 – Centralized control architecture of multiple systems

In the literature, we can find several works such as [Bellingham et al., 2002]
and [Richards and How, 2002]. This kind of architecture is clearly identified in
the aforementioned virtual structure. Moreover, a centralized control architecture
could be implemented in the leader-follower structure, especially in the leader
mode. [Kushleyev et al., 2013] and [Schollig et al., 2010] show experimental works
that used the centralized control architecture.

The main asset of this control architecture is the global knowledge of the state
of all agents in the formation. This global knowledge is beneficial in designing a
controller to achieve an optimal path planning and self organization. However, this
control architecture needs high computational and communication power. Moreover,
the scalability problem could be easily identified on this architecture, since the
computational cost depends on the number of agents in the formation. In addition,
the centralized control renders this architecture unreliable, i.e. if there is a problem
in the central controller, the whole formation will be affected.

10 CHAPTER 1. STATE OF THE ART

1.3.2.2 Distributed control architecture

The distributed control architecture is the most used and successful architecture
for autonomous flight formation control. In this architecture, each agent in the
formation has its own aboard controller that uses its own states and informations
from neighbors. The informations from neighboring agents could be their positions,
velocities, ranges from the agent, etc. The informations from neighbors could be
gathered through sensing, using on board sensors such as cameras or LIDAR, or
through communication. Figure 1.2 shows the distributed control architecture of
multiple systems.

Figure 1.2 – Distributed control architecture of multiple systems

In the literature, we can find several works that used the distributed control ar-
chitecture in the autonomous formation control. In the works of [Olfati-Saber, 2006]
and [Tanner et al., 2007], distributed controllers were designed to control multiple-
dynamical agents. In [Hou and Fantoni, 2015], a distributed control architecture is
used to ensure a formation of a leader-follower structure of multiple UAVs. Several
works in autonomous and flight formation control, use the name "decentralized
control" to indicate distributed control architecture, for instance, [Zhang, 2006],
[Roberson and Stilwell, 2006] and [Vasarhelyi et al., 2014].

The distributed control architecture has several advantages. Since the interaction
between agents in the formation is limited only to neighbors, this architecture is
the most scalable one. The reliability is also one of the main advantages of this
architecture. However, the optimality of achieving an optimal path planning and
self organization of the formation are deteriorated. This drawback is caused by the
fact that the controller on each agent only uses informations from neighbors.

1.4. FLOCKING IN LITERATURE 11

1.3.2.3 Decentralized control architecture

This control architecture is mainly used in interconnected subsystems [Bakule, 2008].
The interconnections between subsystems are principally mechanical, for instance,
springs. Each system will have its own controller. The controller only measures
and controls the states of the system where it is implemented [Jovanovic, 2004]. In
other word, the only knowledge a controller in a subsystem has is the state of the
subsystem itself. Figure 1.3 illustrates the decentralized control architecture.

Figure 1.3 – Decentralized control architecture of multiple systems

Since the controller in the decentralized control architecture has no knowledge
about the states of the other subsystems, this architecture could not be applied for
autonomous flight formation control. However, the wide use of name "Decentralized
control" in some formation control literature, for instance the works of [Zhang, 2006],
[Roberson and Stilwell, 2006] and [Vasarhelyi et al., 2014], could be conflicted with
the distributed architecture as mentioned before. In fact, the authors claim the
development of decentralized controllers, while in their articles they mentioned that
the controller on each agent uses informations from neighbors.

This conflict could be explained by the fact that multiple-robot systems
are studied by researchers from different specialties, for example, information
technology, sensor network, robotics and control theory, etc. In this work, we choose
the "distributed architecture" as a name of our control strategies.

1.4 Flocking in literature

In biology, flocking is the collective, harmonic and collision-free motion of birds
toward a common objective. In control theory and autonomous formation control,
it could be defined as the convergence of the pose and velocity of multiple agents to
a common objective. The objective could be a rendezvous point or a trajectory. In
the steady state, the agents achieve a velocity consensus, and their positions form

12 CHAPTER 1. STATE OF THE ART

a cohesive lattice around the objective, [Dimarogonas and Kyriakopoulos, 2006],
[Olfati-Saber, 2006].

Flocking could be in fact characterized as a behavioral-based control structure. In
addition to achieving the rules of Reynolds, authors in the literature include graph
theory tools to model the multiple-agent systems. Moreover, stability analysis is also
included in the design of algorithms and control laws that ensure the flocking. In the
literature we can find several works that deal with the flocking problem, for instance,
[Tanner et al., 2005], [Olfati-Saber, 2006], [Dimarogonas and Kyriakopoulos, 2006],
[Tanner et al., 2007] and [Valbuena Reyes and Tanner, 2015].

In this thesis, we try to develop and apply flocking algorithms on multiple
quadrotors in real-time experiments. In the following, we summarize some
preliminaries of graph theory that is used to model and analyze flocking of multiple
agents.

Preliminaries in graph theory

Graph theory is used to describe the topology of a multi-quadrotor system. A multi-
quadrotor system is represented by an undirected graph G = (V , E), where V is a
set of nodes V = {1, 2, ...,M}, and E is a set of edges E ⊆ {(i, j) : i, j ∈ V , i 6= j}.
Every node represents a quadrotor and edges depict the sensing between quadrotors.

An adjacency matrix A is an M ×M matrix with elements aij = 1 if (i, j) ∈ E
and ai,j = 0 otherwise. Connected quadrotors with a quadrotor i in the graph
can be modeled by a set γi = {j ∈ V : ai,j 6= 0}. We assume that every quadrotor
has an omni-directional detection capability, i.e. it can detect in all directions.
This capability of each quadrotor means that there is a mutual detection between
connected quadrotors. The adjacency matrix is then symmetric AT = A. Therefore,
our graph is undirected. For more information about graph theory, the reader can
refer to [Diestel, 2005].

Figure 1.4 shows a multi-quadrotor system of four quadrotors represented as an
undirected graph.

Before working on the dynamics of quadrotors, we need to represent our multi-
quadrotor system in the Euclidean space. Therefore, to every node i in the graph,
a position vector qi ∈ Rf is associated, where f is the dimension of the space
(example: f = 2, 3). The configuration of all nodes of the graph is defined by the
vector q = col(q1, ..., qn) ∈ RfM .

A set of spacial neighbors of a quadrotor i is defined by:

Ni = {j ∈ V : ‖qj − qi‖ < c} (1.1)

1.4. FLOCKING IN LITERATURE 13

2 3

1

4

Figure 1.4 – Four quadrotors in an undirected graph

where ‖.‖ is the Euclidean norm, and c is the interaction range. A position-induced
graph G(q) = (V , E(q)) is called a proximity net and is defined by V and the set of
edges E(q) = {(i, j) ∈ V × V : ‖qj − qi‖ < c, j 6= i}.

The desired conformation of multiple quadrotors in a flock could be written as
follows:

‖qj − qi‖ = d ∀j ∈ Ni(q) (1.2)

where d is the desired inter-distance. A proximity net that ensures the objective
in (1.2) is defined as an "α-Lattice". However, implicit inaccuracies give rise to
an α-Lattice with some edge-length uncertainty. This type of proximity net is
called a "quasi-α-Lattice" [Olfati-Saber, 2006], and it is described by the following
inequality:

−δ < ‖qj − qi‖ − d < δ ∀(i, j) ∈ E(q) (1.3)

where δ is the edge-length uncertainty.

14 CHAPTER 1. STATE OF THE ART

1.5 Quadrotor Modeling and Control

Quadrotors are aerial robots that have been extensively used in the last decades.
Together, in research and industrial fields, quadrotors seem to be a promising
platform. They are type of Unmanned Aerial Vehicles (UAV) that have useful
properties comparing with fixed-wing airplanes and helicopters.

A quadrotor is a flying robot with four rotors, controlled by a CPU (Control
Processing Unit), which uses sensors, such as Inertial Measurement Unit and
Ultra Sound Range Finder to measure its altitude and orientations. GPS (Global
Positioning System), motion capture systems (ex: Vicon or Optitrack) or vision
sensors, are used to precisely estimate poses and velocities. The CPU then uses
these information to control the poses and the velocities through the actuation of
the four rotors.

The simple structure and the ease of use of quadrotors render them an ideal plat-
form for inspection and surveillance missions. They are recently used in surveillance
of manifestations and sport events [ScienceEtVie, 2014]. Moreover, their ability of
Vertical TakeOff and Landing (VTOL) makes them efficient in the inspection of
monuments, buildings, large-scale infrastructures, etc [ScienceEtVie, 2014].

1.5.1 Quadrotor modeling

A quadrotor is modeled as a rigid body that evolves in 3D space. Several studies
dealt with the modeling of quadrotors as in [Lozano, 2010], [Mahony et al., 2012],
[Fresk and Nikolakopoulos, 2013] and [Bouabdallah and Siegwart, 2007]. A quadro-
tor is composed of four rotors and motors located at corners of a square. We begin
by defining the frames of reference. Let I = (Ix, Iy, Iz) be the global inertial frame,
and let B = (Bx, By, Bz) be the body-fixed frame, see Figure 1.5.

The nonlinear model of a quadrotor is given as follows:

ξ̇ = ν (1.4a)

m ξ̈ = G+ RU (1.4b)

η̇ = WΩ (1.4c)

J Ω̇ = −Ω× JΩ + τ (1.4d)

where ξ = [x, y, z]T is the position of the center of mass of the quadrotor in the I
frame, ν = [νx, νy, νz] is the vector of linear velocities in the I frame, η = [φ, θ, ψ]T

is the vector of Euler angles named as Roll, Pitch and Yaw respectively. Ω =

[wBx , wBy , wBz]
T is the vector of the angular velocities in the B frame, m is the

1.5. QUADROTOR MODELING AND CONTROL 15

Figure 1.5 – Representation of a quadrotor with the global inertial and the body-fixed
frames

mass of the quadrotor, G = [0, 0,−g]T with g is the gravitational acceleration,
U = [0, 0, F]T is the thrust vector and τ = [τφ, τθ, τψ]T is the torque vector.

J is the moment of inertia matrix given as follows:

J =

Jx 0 0

0 Jy 0

0 0 Jz

 (1.5)

The J matrix is diagonal because we suppose that the quadrotor structure is
symmetric. This symmetry implies that Jx = Jy. W is a transformation matrix
between the angular velocities and the derivatives of Euler angles, and is given by
the following expression:

W =

1 sφtθ cφtθ

0 cφ −sφ
0

sφ
cθ

cφ
cθ

 (1.6)

where c, s, and t refer to cos, sin, and tan functions respectively.

R is the rotation matrix from the B frame to the I frame, which is given as
follows:

R =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 (1.7)

The detailed nonlinear model of a quadrotor is then given as follows:

16 CHAPTER 1. STATE OF THE ART

ẋ = νx (1.8a)

ẏ = νy (1.8b)

ż = νz (1.8c)

v̇x = (1/m)(cφsθcψ + sφsψ)F (1.8d)

v̇y = (1/m)(cφsθsψ − sφcψ)F (1.8e)

v̇z = −g + cφcθF (1.8f)

φ̇ = wBx + sφtθwBy + cφtθwBz (1.8g)

θ̇ = cφwBy − sφwBz (1.8h)

ψ̇ =
sφ
cθ
wBy +

cφ
cθ
wBz (1.8i)

ẇBx = (
Jy − Jz
Jx

)wBywBz + (
1

Jx
)τφ (1.8j)

ẇBy = (
Jz − Jx
Jy

)wBxwBz + (
1

Jy
)τθ (1.8k)

ẇBz = (
1

Jz
)τψ (1.8l)

1.5.1.1 Quadrotor configurations

A quadrotor could be constructed in two configurations. The first one is the Plus-
configuration and the second is the X-configuration. In the Plus-configuration, see
figure 1.6a, the arms of the quadrotor are aligned with the Bx and the By axis of the
body-fixed frame. However, in the X-configuration, see figure 1.6b, the quadrotor
has the Plus-configuration rotated by 45◦ about the Bz axis.

(a) Plus configuration (b) X configuration

Figure 1.6 – Plus and X configurations of quadrotor in hovering mode. The rotors have
the same angular velocity. Bx axis is the frontal direction

1.5. QUADROTOR MODELING AND CONTROL 17

In both configurations, two rotors rotate clockwise and the others rotates counter
clockwise to compensate yaw torque. Moreover, the front of the quadrotor is on the
Bx axis.

To control the altitude z, also known as hovering mode, the four rotors are
actuated by the same angular velocities, as illustrated in figure 1.6. Figure 1.7
shows the control of the yaw angle in both configurations. We decrease the angular
velocities of the rotors that turn in the same direction and we increase the others.

(a) Turning counter clockwise (b) Turning clockwise

Figure 1.7 – Controlling the yaw angle in the Plus and X configurations. The width of the
arrows is proportional to the rotors angular velocity.

To tilt the pitch angle, we increase the angular velocity of the rear rotor (or
rotors in the X-configuration) and we decrease the one of the front rotor, see figure
1.8. The same principle is applied to tilt the roll angle, see figure 1.9.

(a) (b)

Figure 1.8 – Controlling the pitch angle in the Plus and X configurations

18 CHAPTER 1. STATE OF THE ART

(a) (b)

Figure 1.9 – Controlling the roll angle in the Plus and X configurations

We control the x and y translations through the control of the pitch and yaw
angles. A fixed tilt in the pitch angle will lead the quadrotor to move in the x
direction. The same principle is used to control the y displacement through roll
tilting.

1.5.1.2 Torques and thrust

According to the type of configuration, we can define a relation between the angular
velocities of rotors in one hand and the torques and the thrust in the other hand.
We recall the relation between the angular velocity ωi of one rotor and the generated
vertical force or thrust Fi on the rotor plan:

Fi = Ktω
2
i (1.9)

where Kt is a constant that contains aerodynamic parameters of the blade.
Moreover, a drag moment is induced on each rotor due to aerodynamic forces. The
direction of the drag moment is opposite to the rotation of the rotor. This moment
is given by the following formula:

τi = Kgω
2
i (1.10)

The aerodynamic parameters relating the angular velocities and the drag moment
are included in the constant Kg. Figure 1.10 illustrates the different forces and drag
moments on a quadrotor.

The overall thrust generated by the four rotors is given as follows:

1.5. QUADROTOR MODELING AND CONTROL 19

Figure 1.10 – Forces and drag moments on a quadrotor

F =
4∑
i=1

Fi = Kt

4∑
i=1

ω2
i (1.11)

The subscript i indicates the rotor number as shown in figure 1.6. The relation
(1.11) is valid for the X and Plus configurations.

In the Plus configuration, the relation between control torques, forces and drag
moments could be given as follows:

τ =

 τφ

τθ

τψ

 =

 l(F2 − F4)

l(F3 − F1)

(τ1 + τ3)− (τ2 + τ4)

 (1.12)

In the X configuration, however, the relations in (1.12) will be modified as follows:

τ =

 τφ

τθ

τψ

 =

 l
√
2
2

((F1 + F2)− (F3 + F4))

l
√
2
2

((F2 + F3)− (F1 + F4))

(τ1 + τ3)− (τ2 + τ4)

 (1.13)

Equations (1.11), (1.12) and (1.13) could be written in a matrix form as follows:

- Plus configuration
F

τφ

τθ

τψ

 =


Kt Kt Kt Kt

0 lKt 0 −lKt

−lKt 0 lKt 0

Kg −Kg Kg −Kg



ω2
1

ω2
2

ω2
3

ω2
4

 (1.14)

- X configuration
F

τφ

τθ

τψ

 =


Kt Kt Kt Kt√
2
2
lKt

√
2
2
lKt −

√
2
2
lKt −

√
2
2
lKt

−
√
2
2
lKt

√
2
2
lKt

√
2
2
lKt −

√
2
2
lKt

Kg −Kg Kg −Kg



ω2
1

ω2
2

ω2
3

ω2
4

 (1.15)

20 CHAPTER 1. STATE OF THE ART

1.5.2 Quadrotor control

Quadrotors received a great attention from researchers in control theory and robotics
all over the world. As a cheap and easy assembled platform, a quadrotor represents
an ideal platform to test, validate and improve different control laws and algorithms.
Hence, it is difficult to find and limit an exhaustive list of control techniques and
algorithms used for quadrotors.

In this part, we will introduce the General nested control loop of quadrotor
system. Then we will classify the existing works on controlling quadrotors.

1.5.2.1 General nested control loop of quadrotor

A quadrotor is an under-actuated system, i.e., it possesses less control actuators than
controlled degrees of freedom. In a quadrotor, we have four rotors (four actuators)
and six degrees of freedom (three translations x, y, z and three rotations roll φ,
pitch θ and yaw ψ). To control such system, we need three nested-control-closed
loops, see figure (1.11).

The first is the outer loop. It is used to control the translational states
x, y, z, ẋ, ẏ, ż, where their dynamics are represented by equations (1.4a) and (1.4b).
The inputs of this control loop is a desired translational trajectory rd and its time
derivatives. The output of this loop is the thrust F , and the desired roll (φd) and
pitch (θd) angles.

The second loop is responsible of the control of the rotational states
φ, θ, ψ, φ̇, θ̇, ψ̇. The dynamics of these states are modeled in equations (1.4c) and
(1.4d). The inputs of this control is the desired (φd) and (θd) angles as well as the
desired yaw angle ψd and its time derivative. The outputs of this control are the
roll, pitch and yaw torques τφ, τθ, τψ.

We can use any of the control techniques mentioned in the subsection (1.5.2.2) to
control the translational and the rotational dynamics. The outputs F, τφ, τθ, τψ will
be used to generate the desired rotors angular velocities, ω1d, ω2d, ω3d, ω4d, by using
matrix equations (1.14) or (1.15) depending on the quadrotor configuration. For
example, in the X-configuration we get the squares of the desired angular velocities
as follows:


ω2
1d

ω2
2d

ω2
3d

ω2
4d

 =


Kt Kt Kt Kt√
2
2
lKt

√
2
2
lKt −

√
2
2
lKt −

√
2
2
lKt

−
√
2
2
lKt

√
2
2
lKt

√
2
2
lKt −

√
2
2
lKt

Kg −Kg Kg −Kg


−1 

F

τφ

τθ

τψ

 (1.16)

1.5. QUADROTOR MODELING AND CONTROL 21

In the internal loop, we control the rotors, which are generally blades mounted
on DC brushless motors. The idea is to have an angular velocity tracking controller
on each rotor, often called drivers. This controller ensures the tracking of the desired
angular velocities in (1.16).

Figure 1.11 – Global structure of quadrotor control

1.5.2.2 Classification of quadrotor existing control laws

In this section, a classification of control laws applied on quadrotor systems is
introduced. It is important to note that in the last decade, the literature of
quadrotor control has been exploded of articles. In fact, since quadrotors are low-
cost experimentation, they have become the most appropriate platform in navigation
and control strategies. Therefore, it is difficult to give an exhaustive list of existing
controlling methods in the literature. However, we try, in the following, to give a
variety of the most well-known works on the control of quadrotors systems, to the
best of our knowledge.

We can classify the control laws of quadrotors in two major types, linear and
nonlinear. For linear control, the model in (1.4) is firstly linearized. Then a
linear control technique is used, such as, PID, Linear Quadratic, or H∞, etc. For
nonlinear control, techniques such as, backstepping, sliding mode, nested saturation,
or Lyapunov redesign are used. These techniques could be associated, or not, with
a feedback or feedforward linearization [Formentin and Lovera, 2011]. Theoretical
principles of these techniques could be found in [Khalil, 2002] and [Hespanha, 2009].

In linear control techniques, we can find works of [Bouabdallah et al., 2004b]
and [Bouabdallah et al., 2004a] where PID and LQ controllers are proposed, as well
as linear control based on Lyapunov functions. The authors validated their results
by simulations and experimental works on a quadrotor platform. Moreover, PD
control is used in [Erginer and Altug, 2007]. They used simulations to validate their

22 CHAPTER 1. STATE OF THE ART

proposed control law. In [Bouffard et al., 2012], a learning-based model predictive
control is proposed to control a quadrotor in real-time.

In nonlinear techniques, [Castillo et al., 2004] and [Kendoul et al., 2007] applied
nested saturation controllers to stabilize the attitude of a quadrotor and they
validated their work on a real-time platform. Moreover, the nested saturation control
with a quaternion-based feedback was used in [Guerrero-Castellanos et al., 2011] to
stabilize the attitude of a real quadrotor. Backstepping and sliding-mode techniques
are used in [Bouabdallah and Siegwart, 2005] and [Madani and Benallegue, 2006]
with simulation and experimental validations. In addition, [Tayebi and McGilvray, 2006]
proposed and tested experimentally a control scheme for attitude stabilization of
quadrotor based on quaternions. In [Lee et al., 2010], a geometric tracking technique
is proposed to control a quadrotor on the special Euclidean group SE(3). The work in
[Lee et al., 2010] has been improved in [Lee, 2013] with a more robust and adaptive
controller and experimental tests on a real quadrotor.

Recently, a bio-inspired biomimetic-based output feedback control was intro-
duced in [Guerrero Castellanos et al., 2015], in order to stabilize the attitude of
a quadrotor. This control was validated by theoretical and experimental works.
An event-triggered nonlinear control to stabilize the attitude of quadrotor was
introduced in [Guerrero Castellanos et al., 2014]. It was proved experimentally
that this control law reduce by 80% the communications of the embedded system
without deteriorating the performance of the whole system. A feedback linearization
approach to design a quadrotor controller to perform a trajectory following was
introduced in [Ghandour et al., 2014]. The proposed approach is used to tolerate a
rotor failure, so the quadrotor enter a stable spin around its vertical axis.

1.6 Conclusion

In this chapter, we tried to summarize a state of the art on System of Systems, on
flight formation control strategies and on quadrotors modeling and control.

In the beginning, we gave a brief introduction on the concept of System of
Systems. Then, formation control structures were also introduced in this chapter.
We mainly focused on the most used control structures in flight formation control.
Moreover, we summarized advantages and drawbacks of these control structures.
In addition, formation control architectures were recalled. We tried to clarify
ambiguities of some of them and to show their main advantages and disadvantages.

After that, We summarized the definition of the flocking behavior in the
literature. Preliminaries on graph theory tools used in flocking algorithms in the
literature were introduced. These preliminaries will be used in the following chapters

1.6. CONCLUSION 23

to introduce our control algorithms of multiple quadrotor system of systems.
Finally, We introduced the dynamical model of quadrotor that will be used in the

following chapters of this thesis. In the control of quadrotors, we tried to mention
the existing control laws in the literature. Moreover, we introduced the general
nested control loops that is usually used in quadrotors.

Chapter 2

Flocking by trajectory generation

Contents

2.1 Introduction . 25

2.2 Simplified dynamics of multiple UAVs 26

2.3 Linear quadratic control 27

2.4 Aggregation behavior . 29

2.5 Flocking by trajectory generation 31

2.6 Modeling and flocking of Multiple quadrotors 37

2.7 Simulation results . 41

2.8 Conclusion . 43

2.1 Introduction

In this chapter, we use the behavior-based control structure to achieve a multiple-
UAV flocking. We conceive a behavior intending to address the control design
towards a successful achievement of the flocking task without fragmentation. The
proposed behavior treats the flocking problem from a global perspective, that is, we
include a tendency of separated UAVs to form a flock.

We propose a new control strategy to achieve the rules of Reynolds and the
new proposed behavior. This strategy is based on the LQR control. Moreover, this
strategy allows us to design an LQR controller, for each UAV, which is independent
of the number of UAVs within a flock. In fact, we consider the flocking as a problem
of trajectory (or reference) generation, rather than an issue of control design. The
desired trajectory for each UAV is generated by using the measured states of the
UAVs in its field of view. Furthermore, we expand our control strategy to perform
a navigation behavior.

25

26 CHAPTER 2. FLOCKING BY TRAJECTORY GENERATION

In this chapter, we suppose that UAVs have simple linear dynamics (double
integrator), in a similar manner as the work in [Olfati-Saber, 2006]. Nonlinear
models will be treated in an upcoming chapter.

2.2 Simplified dynamics of multiple UAVs

In this chapter, the proposed dynamical model of UAV is a double integrator.
Furthermore, we assume that the body of a UAV is a particle in the Euclidean
framework. Equation (2.1) is a state-space representation model of a UAV i in a
flock. {

ẋi = Ai xi +Bi ui

yi = Ci xi
(2.1)

where xi = [qi q̇i]
T , xi ∈ Rl is the state vector with qi ∈ Rf and f is the dimension

of the space (example: f = 2, 3), ui ∈ Rf is the control input and yi ∈ Rl is the
system output, with (l = 2f). In this paper, we consider yi = xi. The state-space
matrices are:

Ai =

(
0f If

0f 0f

)
Bi =

(
0f

If

)

Ci = Il

where, If and Il are f ×f and l× l identity matrices and 0f is an f ×f zero matrix.
This system is, therefore, controllable and observable.

Now, we can formulate the state-space model of multiple UAVs. Let us consider,
as in [Olfati-Saber, 2006], q = col (q1, ..., qM) ∈ Rf×M the position configuration of
all nodes in the multiple UAVs graph, where M is the number of UAVs. Moreover,
all the states, the outputs, and the control inputs of the multiple UAVs system
are written as x = col (x1, ...,xM) ∈ Rl×M , y = col (y1, ...,yM) ∈ Rl×M and u =

col (u1, ...,uM) ∈ Rf×M respectively. Thus, we can write the multiple UAVs state-
space system as follows: {

ẋ = Ax + Bu

y = Cx
(2.2)

where, A = IM⊗Ai, B = IM⊗Bi, and C = IM⊗Ci, with ⊗ being the Kronecker
product.

We define xjηi = [qj q̇j]
T , ∈ Rl, with j ∈ γi, as the state of a neighboring UAV

j measured by a UAV i. Then, the measured states of all the neighbors could be
written as the vector xηi = col

(
x1
ηi
, ...,xqηi

)
∈ Rl×N where N = |ηi| is the number of

2.3. LINEAR QUADRATIC CONTROL 27

neighbors.

2.3 Linear quadratic control

A linear quadratic control is a class of modern control schemes known as op-
timal control methods. It aims to find a linear control law that stabilizes a
linear plant in the best possible way compared to systems of particular types
[Anderson and Moore, 1990]. One of the main advantages of linear quadratic
control, compared with some classical schemes such as pole placement, is that it
gives a systematic method to calculate the state feedback control gain [Ogata, 2010].
The linear quadratic control could be employed on several control problems, such
as, time-variant, time-invariant, infinite and finite-time regulation and trajectory
following. In this work, we consider the simple infinite time-invariant regulation
and trajectory following problem. Although this control problem is considered as
suboptimal, [Anderson and Moore, 1990] and [Lewis and Syrmos, 2012], we still can
benefit from the systematic methodology of linear quadratic control for designing
the control law. More details about the other problems could be found in
[Anderson and Moore, 1990].

2.3.1 Regulator problem

In the infinite-time-invariant regulator problem, the LQR (Linear Quadratic Reg-
ulator) objective for a dynamical system such as (2.1) is to find the control input
ui(t) that drives the nonzero initial state vector xi(0) to zero, while minimizing the
following quadratic cost function:

JLQR =

∫ ∞
0

xTi (t) Q xi(t) + uTi (t) R ui(t) dt (2.3)

where xi is the controlled state vector, Q and R are symmetric positive-definite
matrices of dimensions l × l and f × f respectively. The quadratic cost function,
also named quadratic performance index, is used as a measure of the performance
specifications of the control input bounds. In fact, the two matrices Q and R are
weighting matrices used to design the control law in order to respect the performance
specifications of the controlled system.

In one hand, the matrix R is used to constrain the control inputs. If the elements
of this matrix are small, we get a large control input and vice versa. In the other
hand, the matrix Q is used to constrain the output signal. If the elements of Q
are small, the output signal response will be fast, and vice versa. It is up to the

28 CHAPTER 2. FLOCKING BY TRAJECTORY GENERATION

user to choose the values of the matrices Q and R depending on the performance
specifications [Hespanha, 2009].

In this chapter, we suppose that the state vector xi is available or completely
measurable, that is, yi = xi. If it is not the case, a state estimator could be used to
retrieve the state vector from the available output vector.

The control input ui, which minimizes JLQR and which stabilizes the controlled
output to zero, is then given by:

ui = −Kxi (2.4)

where K is the LQR gain matrix:

K = R−1BT
i P (2.5)

with P is a symmetric positive-definite matrix and the solution of the following
Algebraic Riccati Equation [Hespanha, 2009].

ATi P + PAi +Q− PBiR
−1BT

i P = 0 (2.6)

2.3.2 Trajectory following problem

In the trajectory following problem, the output of the system yi needs to track or
to follow a desired trajectory r(t) in some optimal sense. Moreover, the trajectory
should be bounded and feasible , i.e., the trajectory must be an equilibrium solution
of the closed-loop system, [Anderson and Moore, 1990] [Murray, 2010]. In this case,
the cost function is written as follows:

JLQR =

∫ ∞
0

(Cixi − r)T Q (Cixi − r) + uTi (t) R ui(t) dt (2.7)

The control input is then written as the sum on two terms: state feedback control
and a feedforward control as the following:

ui = −Kxi +R−1BT
i ud (2.8)

with K is given as in equation (2.5) and ud is the output of the following system:

u̇d = −(Ai −BiK)Tud − CT
i Qr(t) (2.9)

The equation (2.9) could be approximated by considering u̇d = 0. Therefore, the
expression of ud will be written as follows:

2.4. AGGREGATION BEHAVIOR 29

ud = −[(Ai −BiK)T]−1CT
i Qr(t) (2.10)

Therefore, the tracking control law in (2.8) will be written as follows:

ui = −Kxi +Kr r(t) (2.11)

with Kr = −R−1BT
i [(Ai −BiK)T]−1CT

i Q.
In this case, the trajectory r(t) should be slowly varying [Anderson and Moore, 1990].

The development of the previous equations and more details about the trajec-
tory following problem in a linear quadratic optimal control could be found in
[Anderson and Moore, 1990] and [Lewis and Syrmos, 2012].

2.4 Aggregation behavior

Several studies on flocking and schooling behavior discuss a behavioral tendency
in the individuals [Partridge, 1982] [Couzin, 2009]. In [Partridge, 1982], a crucial
question was: What makes fish gather in a school? The answer to this question
reveals a tendency in the individuals to join and to stay within a school for different
reasons, like hunting or protection.

In the technological side of dealing with flocking or schooling phenomena,
scientists focus on a local problem. They try to answer the question: How do
individuals avoid collision and align themselves? They supposed that individuals
are already in a flock. A global problem is to consider, in addition to the local
problem, the trend to form a flock from scattered individuals or small flocks.

The consideration of the flocking local problem is clear in the rules of Reynolds
[Reynolds, 1987]. The rules of Reynolds focus on collision avoidance, velocity match-
ing, and flock centering, which are local flocking problems. In [Olfati-Saber, 2006],
the algorithm 1 of Olfati-Saber embodied the rules of Reynolds. This algorithm
failed to perform the flocking, as emphasized by the author, since it leads to a
fragmented flock. Moreover, in the second algorithm of Olfati-Saber, a rendezvous
point was defined to attract the individuals through a navigational feedback in order
to form a flock.

From a robotics and control theory point of view, flock formation should be
autonomous. Therefore, no rendezvous point should be predefined to form a flock.
However, a rendezvous point could be defined if we want the flock achieving a
navigational task toward a destination.

In fact, defining an attracting rendezvous point and restricting the neighboring
region limit the computational cost due to the increase of connections between

30 CHAPTER 2. FLOCKING BY TRAJECTORY GENERATION

agents. This limitation of neighboring region leads to a fragmentation phenomenon,
which appeared in the simulations results of Olfati-Saber without a rendezvous point
[Olfati-Saber, 2006], see Figure (2.1). The same considerations are also found in
[Antonelli et al., 2010].

Figure 2.1 – Fragmentation problem in flocking algorithm 1 of [Olfati-Saber, 2006]

The limitation of neighboring regions is useful to fix distances between agents
and to reduce computational cost on each agent since the number of neighboring
agents will be limited. However, naturally, the distances between flock or school
individuals are not fixed [Partridge, 1982]. In this work, we prefer to follow the
natural phenomenon of flocking and consider variable security distances between
agents.

In this work, we introduce a new behavior, which views the flocking problem from
a global perspective. We suppose that individuals in a flock are not yet grouped.
This behavior is the Aggregation behavior.

Definition 2.1. (Aggregation behavior) It is the trend of individuals or sub-flocks
to join each other, in their range of sight, in order to form a flock.

To model such behavior in a flock of UAVs, we propose a new set for each
UAV. This set includes all the individuals in a UAV range of sight. It is defined as
Γi = {νj ∈ V : ‖qj − qi‖ < b}, where b is the UAV range of sight and b > c (c is the

2.5. FLOCKING BY TRAJECTORY GENERATION 31

neighboring region).

Unlike the works of Olfati-Saber in [Olfati-Saber, 2006] and G. Antonelli et al
in [Antonelli et al., 2010], there is no need for a rendezvous point to gather UAVs
in a flock. Moreover, we realize that the fragmentation problem, issued in the two
aforementioned works, is overcome by implementing this behavior in the individuals
of the flock.

2.5 Flocking by trajectory generation

The problem of multiple agents (or vehicles) is that the computational cost and
the control design complexity increase with the raise of the number of agents and
the connectivity between them [Olfati-Saber and Murray, 2002]. In this section, we
introduce a new strategy of multiple UAVs control that shows the independence (or
slight-dependence) of control design on the number of UAVs and on the connectivity.
Moreover, we assume that each UAV can measure the states of all the agents in its
range of sight.

The most crucial part of our work is the trajectory generation. By trajectory
generation, we mean that on each UAV, we generate an on-line trajectory to be
followed. This trajectory is computed (or generated) aboard each UAV by using the
measured states of neighboring agents. We emphasize here that the idea of trajectory
generation is different from the well-known trajectory planning concept in robotics.
In fact, in this chapter, we claim that the flocking is a trajectory generation problem
rather than a control design issue. The desired trajectory for each UAV is generated
by using the measured states of the UAVs in its field of view.

Drawing inspiration from Reynolds [Reynolds, 1987], one of the objectives of
multi-UAVs flocking control is to ensure a collision-free region between the flock
individuals. The control objective could be written as follows:

‖qj(t)− qi(t)‖ → d , t→∞ , ∀j ∈ ηi,∀i ∈ V (2.12)

This objective could be written in a vectorial form as:

qj(t)− qi(t)→ dnij(t) , t→∞, ∀j ∈ ηi,∀i ∈ V (2.13)

where d is a security distance or the radius of the collision-free region, with d < c.
nij is the unit vector indicating the direction from UAV i to UAV j. This vector

32 CHAPTER 2. FLOCKING BY TRAJECTORY GENERATION

could be represented by two different ways, as in following equations.

nij =
qj − qi
‖qj − qi‖

(2.14)

nij = [cos θij sin θij]
T (2.15)

where θij is the orientation angle. The representation in equation (2.15) is given in
figure 2.2, with f = 2.

Moreover, another objective of multi-UAVs flocking is the velocity matching
or consensus of all the UAVs in the flock. This objective could be represented
mathematically as follows:

q̇j(t)− q̇i(t)→ 0 , t→∞, ∀j ∈ ηi,∀i ∈ V (2.16)

x

y

xi

yi

pi

pj

θ ij

nij

Figure 2.2 – Unit vector representation.

Let us consider the simple case of two UAVs i and j that detect each other
and aggregate to form a flock. We deal with this problem as a trajectory tracking
problem. The error system in UAV i could be, therefore, written by using equations
(2.13) and (2.16), as the following:

eij =

(
qi − qj + dnij

q̇i − q̇j

)
= xi − rij (2.17)

where rij is considered as the state of the desired trajectory. In other words, it is
the desired relative state of UAV i. In fact, rij is the state of UAV j, shifted by a
security distance d. rij is written as follows:

rij = xj − xdij (2.18)

2.5. FLOCKING BY TRAJECTORY GENERATION 33

where xdij is a shifting state defined as:

xdij =

(
dnij
0

)
∈ Rl (2.19)

According to the linear quadratic control discussed in previous section, and using
equation (2.11), the control law, in the UAV i, that ensures the convergence of UAVs
and the control constraint in (2.13) is written as follows:

uij = −Kxi +Kr rij (2.20)

We calculate the control law of UAV j by the same way.

In the problem of multiple UAVs, we define the vector of shifting states of a UAV
i as xdi = col(xdi1, ...,xdiN) ∈ Rl×N ∀j ∈ ηi. Moreover, we can obviously see that
each UAV in a flock has more than one neighbor. Therefore, the dimensions of the
vector of the neighboring states xηi and the state xi of a UAV i are not compatible.
This problem could be solved by mapping xηi to be compatible with the dimensions
of xi.

Let ξ : Rl×N → Rl be a differentiable function that is used to generate the
trajectory of a UAV i in the flock in order to achieve a desired behavior. Then ri

could be written as:
ri = ξ(xηi ,xdi) (2.21)

The function in (2.21) means that the flocking problem is focused on the reference
generation rather than the control design. Moreover, it is not necessary to design
multiple controllers for each UAV. This method decreases the computational cost.

2.5.1 Average strategy

Different ways could be proposed to generate a trajectory from the measured states
of the neighboring agents. In the following, we propose a strategy for flocking of
multiple UAVs based on averaging. We define the average function of a vector
z = col(z1, ..., zn) as follows:

Aven(z) =
1

n

n∑
j=1

zj (2.22)

Now, we are ready to present our first control strategy in the following
proposition.

34 CHAPTER 2. FLOCKING BY TRAJECTORY GENERATION

Proposition 2.1. (Average control strategy) Consider q UAVs that tend to form a
flock. The following control law of UAV i ∈ V

ui = −Kxi +Kr ξavg(xηi ,xdi) (2.23)

ensures the aggregation behavior. The function ξavg(xηi ,xdi) is written as follows:

ξavg(xηi ,xdi) = AveN(xηi − xdi) (2.24)

Proof. The LQR control law in (2.20) stabilizes the UAV i and ensures the
aggregation of two UAVs. For N UAVs ∈ ηi, we need q control laws. Then, we
have:

ui1 = −Kxi +Kr ri1
...

...
...

uiN = −Kxi +Kr riN

(2.25)

A solution to decrease the number of controllers is to calculate the average of the N
control laws and apply the output of the average to the system. We obtain:

ui =
1

N

N∑
j=1

uij (2.26)

Using (2.25) in (2.26) we get:

ui = −Kxi +
Kr

N

N∑
j=1

rij (2.27)

Replacing rij by its expression in (2.18), then we get the resultant control law given
by equation (2.23).

Remark 2.1. The design of the control law in (2.23) is independent of the number
of UAVs. Moreover, the linear nature of the LQR control is one of the main
characteristics that allowed us to develop this strategy.

Remark 2.2. The security distance d is user-defined and it is dependent on the
number of UAVs. Gaps between flock individuals will converge to distances around
d. The security distance should be set higher when the number of UAVs increases.
The distance d should be determined carefully in order to avoid collision, since the
state of each UAV converges to an average vector.

2.5. FLOCKING BY TRAJECTORY GENERATION 35

Conjecture 1. Consider q UAVs that tend to form a flock. The control law in
(2.23) asymptotically stabilizes the flock formation.

This conjecture is validated by simulation and experimental work, see chapter 4.
However, we will seek an analytical proof of this conjecture in our future works.

2.5.2 Sum strategy

Another way of trajectory generation from the measured states of neighboring agents
is proposed in the following proposition. We define the sum function of a vector
z = col(z1, ..., zn) as follows:

Sumn(z) =
n∑
j=1

zj (2.28)

Proposition 2.2. (Sum control strategy) Consider N agents that tend to form a
flock. The following control law of an agent i ∈ V

ui = −N K xi + Kr ξsum(xηi ,xdi) (2.29)

ensures the aggregation behavior. The function ξsum(xηi ,xdi) is written as the
following:

ξsum(xηi ,xdi) = SumN(xηi − xdi) (2.30)

Proof. Similar to the proof of proposition 2.1, another solution is proposed by
calculating the sum of the N control laws and applying the output of the sum
to the system, we obtain:

ui =
N∑
j=1

uij (2.31)

Therefore, the resultant control law is given by equation (2.29).

Remark 2.3. Remarks 2.1 and 2.2 are still valid in the sum strategy. The difference
is that one part of the control law is weighted by N . N has to be known and updated
from measurements.

Conjecture 2. Consider q UAVs that tend to form a flock. The control law in
(2.29) asymptotically stabilizes the flock formation.

This conjecture is validated by simulation and experimental work, see chapter 4.
However, we will seek an analytical proof of this conjecture in our future works.

36 CHAPTER 2. FLOCKING BY TRAJECTORY GENERATION

2.5.3 Navigational behavior

In this section, we introduce a navigational behavior that allows a flock of multiple
UAVs to navigate from initial positions toward a destination. The destination is
predefined by the user and stocked in the memory of UAVs. The navigation of a
multi-UAVs flock is in a free space, i.e. there are no obstacles. In this section, no
obstacles are faced in the path of the navigation.

The control strategy used to perform the navigational task is similar to the
average strategy. It consists in defining a navigational vector that contains the
position and the velocity of the destination. It could be written as xnav =

[qnav q̇nav]
T ∈ Rl. The destination could be also a trajectory to be followed by

the whole fleet of UAVs.

Now, we define the following function to achieve the aggregation and the
navigation behaviors:

ξavg(xηi ,xdi,xnav) = AveN+1(col(xηi − xdi,xnav)) (2.32)

Therefore, the control law that allows the multi-UAVs system to make the
aggregation and the navigation behaviors is given as the following:

ui = −Kxi +Krξavg(xηi ,xdi,xnav) (2.33)

A physical interpretation of this strategy could be explained by the fact that we
consider the navigational vector as a state of a virtual agent that is detected by all
the agents in the flock.

We can perform the navigational behavior in the sum strategy by adding a
dedicated navigational feedback. In this case, we will have two control objectives,
the first one is the performance of aggregation behavior and the second one is the
navigation toward a predefined rendezvous point or trajectory defined by the user
and known by all the UAVs. These could be resumed in the following control law:

ui = −N K xi + Kr ξsum(xηi ,xdi) + unavi (2.34)

where

unavi = −Kn (xi − xnav) (2.35)

with Kn is a constant gain matrix.

2.6. MODELING AND FLOCKING OF MULTIPLE QUADROTORS 37

2.6 Modeling and flocking of Multiple quadrotors

In chapter 1, we introduced the modeling and the control of a quadrotor as
a special type of UAVs. We distinguish two dynamics: rotational and trans-
lational dynamics. This type of dynamics makes the control of quadrotors
in the context of flocking of a special particularity. Recently, researchers in
robotics performed several experimental works on multiple-quadrotor control as in
[Kushleyev et al., 2013], [Schollig et al., 2010] and [Franchi et al., 2012]. The works
in [Kushleyev et al., 2013] and [Schollig et al., 2010] consider multiple-quadrotor
control as a problem of trajectory planning. Each quadrotor follows a collision-
free trajectory, which is computed in a central base station. In the presence
of disturbances, it is not clear that a collision-free formation could be ensured.
Moreover, we believe that multiple-quadrotor control could be more challenging if
it is implemented aboard quadrotors and if it considers interactions between them.
On the other hand, the work in [Franchi et al., 2012] did not deal with the nonlinear
model of quadrotors. Instead, it uses a high-level control that deals with an ideal
double-integrator model, and the smooth output of this model is used to drive
stabilized quadrotors. In the sequel of our work, we try to deal directly with the
nonlinear model of quadrotors, and then we apply the proposed control laws aboard
the quadrotors to stabilize and navigate the flock.

In this work, we introduce a new architecture to control multiple quadrotors
in the flocking context. We separate the control problem of multiple UAVs in two
parts. The first part is the control of internal dynamics of each UAV. We mean by
internal dynamics, the altitude z and the rotational dynamics of each UAV. This
part will not be involved in the algorithm of flocking. The second part is the control
of the x, y translation and flocking dynamics of multiple UAVs.

In fact, we specify a fixed desired altitude z and heading ψ. Moreover, outputs of
x−y translation and flocking controllers are feedforwarded to the inputs of controllers
of roll and pitch φ− θ angles. Figure 2.3 shows the overall control architecture.

2.6.1 Control of quadrotor internal dynamics

Before starting the description of the control strategy of a UAV in a flocking
perspective, we begin by linearizing the nonlinear model (1.4) about the origin
(ξ = 0, ξ̇ = 0, η = 0, η̇ = 0, F = 0, τ = 0).

We remind here that for a nonlinear system of the form:

ẋ = f(x, u)

38 CHAPTER 2. FLOCKING BY TRAJECTORY GENERATION

Quadrotor 𝑖
Dynamics

𝜙 and 𝜃

Control

𝜓 Control

𝑧 Control

𝑥 and 𝑦

Flocking

Control

𝑟𝑧 , 𝑟 𝑧 , 𝑟 𝑧

𝑧, 𝑧

𝐹

𝑥 , 𝑥 , 𝑦, 𝑦 , 𝑧, 𝑧

𝜙 , 𝜙 , 𝜃, 𝜃 , 𝜓, 𝜓

𝜓,𝜓

𝜙 , 𝜙 , 𝜃, 𝜃

𝑢𝑖

𝑥 , 𝑥 , 𝑦, 𝑦

𝑟𝜓, 𝑟 𝜓, 𝑟 𝜓

𝑞𝑟 , 𝑝𝑟

𝑞𝑗 , 𝑝𝑗 ,

 ∀ 𝑗 ∈ 𝑁𝑖

𝜏𝜙

𝜏𝜃

𝜏𝜓

Figure 2.3 – Control architecture of quadrotor in a flocking perspective. Internal dynamics
are controlled separately from the x− y translation and flocking dynamics

with x = [x1, ..., xn]T is the state of the system, u = [u1, ..., um] is its control
input, and f(.) = [f1(.), ..., fn(.)]T , the linearization of this system about its origin
(x = 0, u = 0) is given by the linear system:

ẋ = Ax+Bu

where

A =


∂f1
∂x1

(x, u)
∣∣∣
x=0,u=0

. . . ∂f1
∂xn

(x, u)
∣∣∣
x=0,u=0

...
∂fn
∂x1

(x, u)
∣∣∣
x=0,u=0

. . . ∂fn
∂xn

(x, u)
∣∣∣
x=0,u=0


and

B =


∂f1
∂u1

(x, u)
∣∣∣
x=0,u=0

. . . ∂f1
∂um

(x, u)
∣∣∣
x=0,u=0

...
∂fn
∂u1

(x, u)
∣∣∣
x=0,u=0

. . . ∂fn
∂un

(x, u)
∣∣∣
x=0,u=0


We recall here the nonlinear model of quadrotor as in (1.8) which is given as

2.6. MODELING AND FLOCKING OF MULTIPLE QUADROTORS 39

follows:

ẋ = νx (2.36a)

ẏ = νy (2.36b)

ż = νz (2.36c)

v̇x = (1/m)(cφsθcψ + sφsψ)F (2.36d)

v̇y = (1/m)(cφsθsψ − sφcψ)F (2.36e)

v̇z = −g + cφcθF (2.36f)

φ̇ = wBx + sφtθwBy + cφtθwBz (2.36g)

θ̇ = cφwBy − sφwBz (2.36h)

ψ̇ =
sφ
cθ
wBy +

cφ
cθ
wBz (2.36i)

ẇBx = (
Jy − Jz
Jx

)wBywBz + (
1

Jx
)τφ (2.36j)

ẇBy = (
Jz − Jx
Jy

)wBxwBz + (
1

Jy
)τθ (2.36k)

ẇBz = (
1

Jz
)τψ (2.36l)

The result of linearization about the origin is given as follows:

ẋ = νx (2.37a)

ẏ = νy (2.37b)

ż = νz (2.37c)

v̇x = (1/m)θ (2.37d)

v̇y = −(1/m)φ (2.37e)

v̇z = F (2.37f)

φ̇ = wBx (2.38a)

θ̇ = wBy (2.38b)

ψ̇ = wBz (2.38c)

ẇBx = (1/Jx)τφ (2.38d)

ẇBy = (1/Jy)τθ (2.38e)

ẇBz = (1/Jz)τψ (2.38f)

Equations (2.37a) through (2.37f) represent the translational dynamics of the
UAV and equations (2.38a)-(2.38f) represent the rotational dynamics.

The control of the UAV will be as follows. Firstly, we use PID controllers
to control the z dynamics (equations (2.37c) and (2.37f)) and the ψ dynamics
(equations (2.38c) and (2.38f)). The control inputs of these two subsystems are
given by the general expression of a PID controller in a tracking perspective, as
follows:

40 CHAPTER 2. FLOCKING BY TRAJECTORY GENERATION

F = r̈z + kpz(rz − z) + kdz(ṙz − ż) + kiz

∫
(rz − z) dt (2.39)

τψ = r̈ψ + kpψ(rψ − ψ) + kdψ(ṙψ − ψ̇) + kiψ

∫
(rψ − ψ) dt (2.40)

where rz and rψ are the desired altitude and heading of the UAV, and the constants
k(.) > 0 are controlling gains to be defined by the user.

Secondly, the remaining equations represent the x−y translational dynamics and
the φ−θ rotational dynamics. To control these dynamics we use an approach, which
is introduced in chapter 1, similar to the backstepping technique. This approach is
widely used in the control of quadrotors [Bouabdallah and Siegwart, 2007]. First,
we consider φ and θ in equations (2.37d) and (2.37e) as virtual control inputs of the
translational dynamics. Then, we design a controller for the rotational dynamics
(equations (2.38a)-(2.38f)), which has a double-integrator form. For this purpose,
we use the nested saturation approach [Teel, 1992], [Johnson and Kannan, 2003],
[Sanahuja, 2010] and [Kendoul et al., 2007]. Hence, the control inputs that stabilize
the φ− θ rotational dynamics are given as follows:

τφ = −Satφ1
(
kφ1φ̇+ Satφ2

(
kφ2φ̇+ kφ1kφ2 (φ− rφ)

))
(2.41)

τθ = −Satθ1
(
kθ1 θ̇ + Satθ2

(
kθ2 θ̇ + kθ1kθ2 (θ − rθ)

))
(2.42)

where Satα(x) = sign(x)min(|x|, α) is a saturation function, with αi being a real
positive constant. The constants k(.) are tuning gains. rφ and rθ are desired
references, which are the outputs of the x− y position controllers.

2.6.2 Flocking of multiple quadrotors by trajectory genera-

tion

In this part, we apply the average and the sum strategies, introduced in the previous
section, to achieve a flocking of multiple quadrotors. As aforementioned, in this
work, we apply the flocking control on the x−y translational dynamics of quadrotors.
Using the translational and flocking dynamics in (2.37a, 2.37b, 2.37d, 2.37e), we can
write their state-space linear system, as in (2.1), as follows:

{
ẋi = Ai xi +Bi ui (2.43)

where xi = [x, y, νx, νy]
T and u = [θ, φ]T . The matrices Ai and Bi are given as

follows:

2.7. SIMULATION RESULTS 41

Ai =

(
02 I2

02 02

)
Bi =


0 0

0 0

(1/m) 0

0 −(1/m)


with 02 is a 2× 2 zeros matrix, and I2 is a 2× 2 identity matrix.
Therefore, all that remains to be done now is to apply our proposed control

strategies, (2.23), (2.29) or (2.33), in the flocking or in the navigation perspective of
multiple quadrotors. We emphasize here that we should choose Q and R matrices
appropriately. Then, the references rθ and rφ of the θ − φ control, in equations
(2.42) and (2.41), will be replaced by the output of the flocking strategy, that is,
[rθ, rφ]T = ui .

2.7 Simulation results

In this section, we illustrate simulations of the multi-UAVs system. We simulate both
behaviors, presented in the previous section, by using MATLAB. The simulation
is done in a two-dimensional space. The initial positions of UAVs are generated
randomly by using the normal distribution function. Moreover, the initial velocities
of UAVs are set at zeros. The step size of the simulation is 0.01s. The weighting
matrices are: Q = I4 and R = 10−3 × I2. The matrix K is calculated by using
the lqr MATLAB function [Hespanha, 2009]. Furthermore, UAVs are represented
as red circles, where the real position of a UAV is the center of the circle. For clarity
purposes, the size of UAVs is chosen greater than simulation scales, which could
yield to ambiguous separation distances.

2.7.1 Aggregation behavior

In this part, we simulate the aggregation of 5 UAVs. The variance and the mean
of the initial positions are set at 21 and 0, respectively. The range of the two-
dimensional simulation plan is the x y position square [−20, 20]. The flocking
parameters are defined as the following: d = 5, c = 30. Therefore, we suppose
that the range of sight of each UAV covers the entire simulation plan. Moreover, we
suppose that each UAV can measure the states of all the other UAVs in its range of
sight.

Figure 2.4 shows six snapshots of running simulation over time. This simulation
is performed by using the average control strategy (2.23). The UAVs start scattered
in the simulation plan. By analyzing the simulation, each UAV performs a repulsion

42 CHAPTER 2. FLOCKING BY TRAJECTORY GENERATION

action when there are some UAVs in its collision-free region. This action ensures
a security distance between UAVs. Moreover, each UAV activates the aggregation
behavior when a UAV or more are in its range of sight. Therefore, UAVs start
to converge to each other to form a flock. The convergence is performed without
collision. After a sufficient time, a flock of UAVs is formed and stabilized. In this
simulation, we do not define a rendezvous point, and there is no fragmentation in the
flock. Moreover, we can see clearly security distances between individuals. These
security distances ensure collision-free flock.

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

X

Y

Agents

(a) a

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

X

Y

Agents

(b) b

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

X

Y

Agents

(c) c

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

X

Y

Agents

(d) d

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

X

Y

Agents

(e) e

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

X

Y

Agents

(f) f

Figure 2.4 – multi-UAVs aggregation snapshots (Average strategy). No fragmentation in
the flock, even if there is no rendezvous point.

2.7.2 Navigation

In this part, we illustrate the navigation of 8 UAVs in a free space. The variance
of initial positions is 21 and the mean is −30. The simulation plan is expanded to
be the x y position square [−60, 60]. The flocking parameters are defined as the

2.8. CONCLUSION 43

following: d = 12, c = 30. The desired destination is the position (40, 40), so the
navigation vector is [40 40 0 0]T .

Fig. 2.5 shows six snapshots of the navigation behavior realized by using the
control law in (2.33), which is applied in each UAV in the flock. The flock performs
the aggregation behavior while navigating toward the desired destination. Safety
distances are kept throughout the navigation path. Finally, the flock is uniformly
formed and stabilized at the destination position.

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

X

Y

DesiredDestination

Agents

(a) a

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

X

Y

DesiredDestination

Agents

(b) b

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

X

Y

DesiredDestination

Agents

(c) c

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

X

Y

DesiredDestination

Agents

(d) d

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

X

Y

DesiredDestination

Agents

(e) e

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

X

Y

DesiredDestination

Agents

(f) f

Figure 2.5 – multi-UAVs navigation snapshots. The algorithm ensures the aggregation and
the navigation.

2.8 Conclusion

In this chapter, we addressed the control problem of multiple Unmanned Aerial
Vehicles (UAVs) flocking by using a behavior-based strategy. We conceived a
behavior intending to address the control design towards a successful achievement

44 CHAPTER 2. FLOCKING BY TRAJECTORY GENERATION

of the flocking task without fragmentation. Moreover, through its implementation
in UAVs, no rendezvous point was needed to perform flocking. We designed an LQR
control law, which is independent of the number of UAVs in the flock. Our proposed
strategy dealt with the flocking problem from a trajectory generation perspective.
Simulation results showed the efficiency of our strategy in the aggregation and in
the navigation of multi-UAVs flocking in a free space.

Chapter 3

Flocking by consensus algorithms

Contents

3.1 Introduction . 45

3.2 Preliminaries . 45

3.3 Flocking control with tuning gains 48

3.4 Flocking with distributed integral control 54

3.5 Robust Flocking . 55

3.6 Conclusion . 63

3.1 Introduction

Our interest in this chapter is to perform a real-time flocking of multiple UAVs in
the context of system of systems. We propose control methods that are based on the
flocking and consensus algorithm introduced by Olfati-Saber in [Olfati-Saber, 2006].
The flocking control law in [Olfati-Saber, 2006] was mainly proposed for double-
integrator linear system. In this chapter, we propose four improved versions of this
control law aiming at being compatible with the nonlinear model of quadrotors and
experimental works. The control laws are run aboard each quadrotor in the flock.
By running the control law, each quadrotor interacts with its neighbors to ensure a
collision-free flocking.

3.2 Preliminaries

The design of the x − y controllers will be similar to the flocking algorithm in
[Olfati-Saber, 2006]. In addition, we use our architecture proposed in chapter 2
(cf. 2.6). In equations (2.37a), (2.37b), (2.37d), (2.37e), we take qi = [x y]T ,
pi = [νx νy]

T , and ui = [1
m
θ −1

m
φ]T . Therefore, the flocking dynamics could be

written as follows:

45

46 CHAPTER 3. FLOCKING BY CONSENSUS ALGORITHMS

q̇i = pi

ṗi = ui
(3.1)

In this section, we discuss the control of such double-integrator translation
system from a flocking perspective. We begin by introducing the basic principles
of controlling a multi-agent system. The controlling algorithm is introduced by
Olfati-Saber in [Olfati-Saber, 2006].

In section (1.4), we have introduced the preliminaries of modeling multi-agent
flocking using graph theory. A symmetric adjacency matrix was introduced to
represent an undirected graph of agents. This matrix is used in graph theory to
describe topological connections between agents, that is, it does not depend on the
positions of agents. Hence, we need to define another type of matrix to depict the
position-based connections between agents in the flock. To introduce this type of
matrix, two functions need to be defined: "σ-norm" and a bump function.

A "σ-norm" is a map Rn → R+ of a vector z ∈ Rn, defined as:

‖z‖σ =
1

ε

[√
1 + ε‖z‖2 − 1

]
(3.2)

where ε > 0 and R+ is the set of non-negative real numbers. The gradient of
σ-norm is defined by:

σε(z) , ∇z‖z‖σ =
z√

1 + ε‖z‖2
=

z

1 + ε‖z‖σ
(3.3)

In fact, σ-norm is not a norm but its importance is that it is differentiable
everywhere, unlike the Euclidean norm that is not differentiable at z = 0.

The bump function ρh : R+ → [0, 1] with h ∈ (0, 1) is defined as:

ρh(z) =


1 if z ∈ [0, h)
1
2

[
1 + cos

(
π z−h

1−h

)]
if z ∈ [h, 1]

0 otherwise
(3.4)

ρh(z) is a smooth and scalar function that varies between 0 and 1. Using this
bump function in corporation with the σ-norm we can define the spacial adjacency
matrix A(q) = [aij(q)] where aij(q) are its elements given as follows:

aij(q) =

{
0 if i = j

ρh(‖qj − qi‖σ/‖c‖σ) if j 6= i
(3.5)

A smooth collective potential function is used to design the flocking algorithm
of multiple quadrotors. This function is given as follows:

3.2. PRELIMINARIES 47

V (q) =
1

2

∑
i

∑
j 6=i

Ψα(‖qj − qi‖σ) (3.6)

where

Ψα(z) =

∫ z

dα

Φα(s)ds (3.7)

Φα is defined by:

Φα(z) = ρh(z/cα)Φ(z − dα)

Φ(z) = 1
2
[(a+ b)σ1(z + e) + (a− b)]

(3.8)

with σ1(z) = z/
√

1 + z2. The function Φ(z) is uneven and sigmoidal, with
0 < a ≤ b and e = |a− b|/

√
4ab that ensures Φ(0) = 0.

It follows from the above formulas that Ψα(z) is a smooth pairwise repul-
sive/attractive potential function. It has a minimum at z = dα = ‖d‖σ, and it has a
finite cut-off at cα = ‖c‖σ. The finite cut-off feature of this function is a fundamental
source of scalability of the flocking algorithm [Olfati-Saber, 2006]. Moreover, every
local minimum of V (q) is an α-lattice.

An important matrix in graph theory and flocking control is the graph Laplacian.
In our graphG = (V , E) withM UAVs, the graph LaplacianM×M matrix is defined
as follows:

L = D(A(q))−A(q) (3.9)

with A(q) being the spacial adjacency matrix and D(A(q)) being a diagonal
matrix called, degree matrix of the graph G, and

∑M
j=1 aij(q) being its diagonal

elements. This matrix is positive semidefinite. The eigenvalues of the Laplacian
matrix could be organized as :

λ1 < λ2 < ... < λM

The Laplacian matrix has always the eigenvector of 1M = (1, ..., 1) which is
associated with the eigenvalue λ1 = 0.

The Laplacian matrix satisfies the following properties [Godsil and Royle, 2001]
and [Olfati-Saber, 2006]:

• sum-of-Square (SOS) property

ST LS =
1

2

∑
(i,j)∈E

aij(Sj − Si)2 , S ∈ RM (3.10)

48 CHAPTER 3. FLOCKING BY CONSENSUS ALGORITHMS

• In a connected graph we have:

λ2(L) = min
ST LS

‖S‖2
> 0, S ⊥ 1M (3.11)

An f-dimensional graph Laplacian is defined as follows:

L̂ = L⊗ If (3.12)

where ⊗ being the Kronecker product and If being an f × f identity matrix. The
property in (3.10) could be then written for L̂ as the following:

ST L̂S =
1

2

∑
(i,j)∈E

aij‖Sj − Si‖2 ,S ∈ RfM (3.13)

where S = col(S1, S2, ..., SM) and Si ∈ Rf .
The control law introduced in [Olfati-Saber, 2006], which is applied on each

agent with linear dynamics, such as in (3.1), and that ensures an α-lattice flock and
navigation, is given as follows:

ui =
∑
j∈Ni

[Φα(‖qj − qi‖σ)nij + aij(q)(pj − pi)]

+ fγi (qi, pi, qr, pr)

(3.14)

where fγi (qi, pi, qr, pr) = −c1(qi−qr)−c2(pi−pr), c1, c2 > 0, and nij = σε(qj−qi)
as in equation (3.3).

This control law is composed of three terms. The first is the gradient-based term,
which ensures the regulation of the relative interdistance vector between agents.
The second is the velocity consensus term, which is analog to a derivative controller
in a conventional PD control law. The last term fγi (.) is the navigational or the
translational feedback control, with qr and pr being the desired position and velocity
to be tracked. Moreover, the first and the second terms ensure the aggregation of
every agent with its neighbors and the conservation of a collision-free flocking. The
navigational feedback leads the whole flock to track a predefined objective trajectory
or destination point. The objective trajectory is known by every agent in the flock,
which ensures a fragmentation-free flocking.

3.3 Flocking control with tuning gains

We have applied the controller (3.14) in simulation (chapter 4), and we have observed
that this control law could not be applied directly on nonlinear systems, such as

3.3. FLOCKING CONTROL WITH TUNING GAINS 49

quadrotors. In fact, the simulation results of this control law on the nonlinear
dynamics of quadrotors show oscillating movement of distances between quadrotors.
This could be explained by the fact that the control law in (3.14) was applied on
double-integrator linear models without considering uncertainties. We believe that,
the elegant control law in (3.14) could be applied on nonlinear systems if we add
some tuning gains to its gradient-based and velocity consensus terms. The additional
gains will compensate for uncertainties of the nonlinear model. The modified control
law is given in the following equation:

ui =
∑
j∈Ni

[
KpΦα(‖qj − qi‖σ)nij +K

′

paij(q)(qj − qi)

+Kdaij(q)(pj − pi)
]

+ fγi (qi, pi, qr, pr) + ṗr

(3.15)

whereKp, K
′
p, Kd > 0 are constant scalar tuning gains and their values depend on

the quadrotor device. Kp and Kd are user defined. They give a relative freedom to
the user to apply the control law on different quadrotor devices. ṗr is the acceleration
of the objective trajectory. We have added it in our control law since it was omitted
in the control law of [Olfati-Saber, 2006].

To prove the efficiency of our control law, we introduce a perturbation term,
δi ≡ δi(qi, pi), to the agent model as follows:

q̇i = pi

ṗi = ui + δi
(3.16)

For the system in (3.16), we introduce the following lemma and assumption.

Assumption 3.1. The perturbation term δi is an unknown function, but it has a
known upper bound such that, ‖δi‖ ≤ κ and κ > 0.

This assumption is realistic, since in practical and real-time problems we cannot
estimate perturbation signals. Instead, we prefer to define an upper bound of
perturbations that we hope the system can tolerate.

Lemma 3.1. [Olfati-Saber, 2006](Spatial-Order): Every local minima of V (q) is an
α-lattice and vice versa.

Before analyzing the stability of the multiple-UAV system that applies our
control law in (3.15), we need to introduce a moving frame [Olfati-Saber, 2006],
[Li et al., 2011]. As in [Li et al., 2011], the moving frame has its origin in (qr), that
is, the position of the desired trajectory or the destination point being followed
by the agents of the flock. Then, the velocity of the origin of the moving frame
will be (pr). The importance of the moving frame comes from the fact that it

50 CHAPTER 3. FLOCKING BY CONSENSUS ALGORITHMS

will be easy to prove that the solutions of the multiple-UAV system are bounded
[Olfati-Saber, 2006].

Positions and velocities of UAVs in the moving frame are represented as follows:

qri = qi − qr; pri = pi − pr

It easy to see that the relative positions and velocities are the same in both the
inertial and the moving frames. That is:

qrj − qri = qj − qi
prj − pri = pj − pi

Hence, V (q) = V (qr), and the agent model in (3.16) will be written:

q̇ri = pri

ṗri = uri + δri
(3.17)

with uri = ui(q
r
i , p

r
i)− ṗr.

The configuration of all UAVs in the new reference frame is qr = col(qr1,, q
r
M) ∈

RfM . Therefore we have, pr = col(pr1,, p
r
M) ∈ RfM , ur = col(ur1,, u

r
M) ∈ RfM ,

and δr = col(δr1,, δ
r
M) ∈ RfM . By applying the control law in (3.15) we get the

following collective dynamics of multiple UAVs :

q̇r = pr

ṗr = −Kp∇qri
V (qr)−KdL̂ p

r − c1qr − c2pr + δr
(3.18)

Moreover, we remind here the theorem 3.1 of boundedness and ultimate boundedness
in [Khalil, 2002] for the system:

ẋ = f(t, x) (3.19)

where f : [0,∞)×D → Rn is piecewise continuous in t and locally Lipschitz in
x on [0,∞)×D, and D ⊂ Rn is a domain that contains the origin. It is important
to emphasize here that the notations in the following theorem have no relation with
the notations used in this thesis.

Theorem 3.1. (boundedness and ultimate boundedness)[Khalil, 2002]: Let D ⊂ Rn

be a domain that contains the origin and V : [0,∞) × D → R be a continuously
differentiable function such that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖)

3.3. FLOCKING CONTROL WITH TUNING GAINS 51

∂V

∂t
+
∂V

∂x
≤ −W3(x), ∀‖x‖ ≥ µ > 0

∀t ≥ 0 and ∀x ∈ D, where α1 and α2 are class K functions andW3(x) is a continuous
positive definite function. Take r > 0 such that Br ⊂ D and suppose that

µ < α−12 (α1(r))

Then, there exists a class KL function β and for every initial state x(t0),
satisfying ‖x‖ ≤ α−12 (α1(r)), there is T ≥ 0 (dependent on x(t0) and µ) such
that the solution of (3.19) satisfies

‖x‖ ≤ β(‖x(t0)‖, t− t0), ∀t0 ≤ t ≤ t0 + T (3.20)

‖x‖ ≤ α−11 (α2(µ)), ∀t ≥ t0 + T (3.21)

Moreover, if D = Rn and α1 belongs to class K∞, then (3.20) and (3.21) hold
for any initial state x(t0), with no restriction on how large µ is.

When the system (3.19) is not explicitly dependent on t, such as our multiple-
UAV system, we consider only the boundedness of the solution and not the ultimate
boundedness, and we drop the time dependence in the theorem.

Now we are ready to present our proposition.

Proposition 3.1. Consider the multiple-UAV dynamical system in (3.18) that
applies the distributed control law in (3.15). Suppose that the perturbation satisfies
assumption (3.1), then the solution of the multiple-UAV dynamical system (3.18) is
bounded.

Proof. In the beginning, we consider the collective system in (3.18) without
perturbations. Taking inspiration from the backstepping technique [Khalil, 2002],
we distinguish two subsystems in cascade in (3.18). In the first subsystem:

q̇r = pr (3.22)

we consider pr = U1 as a virtual input. Taking the following Lyapuov candidate
function:

V1 =
1

2
‖qr‖2 (3.23)

then with U1 = −K1q
r, the derivative of the Lyapunov function is:

V̇1 = −K1‖qr‖2 ≤ 0 (3.24)

52 CHAPTER 3. FLOCKING BY CONSENSUS ALGORITHMS

then the solutions of the subsystem (3.22) are asymptotically stable.
Now, considering the second subsystem, without taking in consideration the

expression of the control law ur and the perturbations:

ṗr = ur (3.25)

Taking the change of variables

Z = pr − U1 (3.26)

and applying it to the two subsystems in (3.22) and (3.25), then we get the
following system:

q̇r = −K1q
r + Z

˙Z = ur −K2
1q

r +K1Z
(3.27)

Now, let H(qr,Z) be a Lyapunov function defined as follows:

H(qr,Z) =
1

2
‖qr‖2 +

1

2
‖Z ‖2 +KpV (qr) (3.28)

The time derivative of H gives:

Ḣ = −K1‖qr‖2 + qrTZ + Z Tur

−K2
1Z

T qr +K1‖Z ‖2

−KpK1∇qrV (qr)qr +Kp∇qrV (qr)Z

(3.29)

choosing ur such that:

ur = −Kp∇qrV (qr)−KdL̂Z

−(1−K2
1)qr − (K1 +K2)Z

(3.30)

we get :

Ḣ = −K1‖qr‖2 −K2‖Z ‖2 −KpK1∇qrV (qr)qr −Kd Z T L̂Z (3.31)

Now, in the presence of perturbations, that is, ur ≡ ur + δr, we get:

Ḣ = −K1‖qr‖2 −K2‖Z ‖2 −KpK1∇qrV (qr)qr

−Kd Z T L̂Z + Z T δr
(3.32)

since L̂ is positive semi-definite, then

Ḣ ≤ −K1‖qr‖2 −K2‖Z ‖2

+KpK1‖∇qrV (qr)‖‖qr‖+ ‖Z ‖κ
(3.33)

3.3. FLOCKING CONTROL WITH TUNING GAINS 53

with κ is the upper bound of the perturbation vector δ. Then, for 0 < b < 1 and
0 < h < 1 we can write:

Ḣ ≤ −(1− b)K1‖qr‖2 − bK1‖qr‖2

−(1− h)K2‖Z ‖2 − hK2‖Z ‖2

+KpK1‖∇qrV (qr)‖‖qr‖+ ‖Z ‖κ
(3.34)

Therefore,

Ḣ ≤ −(1− b)β‖qr‖2 − (1− h)K2‖Z ‖2

∀‖qr‖ ≥ Kp‖∇qrV (qr)‖
b

, ∀‖Z ‖ ≥ κ

hK2

(3.35)

Using the expression of Z in (3.26) and replacing it in the control law in (3.30)
we get the control law used in the collective dynamics (3.18) with:

K
′
p = KdK1

c1 = K1K2 + 1

c2 = K1 +K2

(3.36)

Moreover, since H is a decreasing function (as confirmed by 3.35), then H ≤
H0 = H(qr(0),Z (0)), with (qr(0),Z (0)) are finite initial conditions that respect
the conditions in (3.35). Therefore, we can find

H(qr,Z) ≤ c4‖Λ‖2 (3.37)

with Λ = [qrT Z T]T , and c4 is a positive constant and c4‖Λ‖2 is a class K function
verifying that c4‖Λ‖2 ≥ H0.

In addition, from (3.28), we have:

H(qr,Z) ≥ 1

2
‖qr‖2 +

1

2
‖Z ‖2

so we can find:
c3‖Λ‖2 ≤ H(qr,Z) (3.38)

with c3‖Λ‖2 is a class K function and c3 is a positive constant. From (3.37) and
(3.38) we have:

c3‖Λ‖2 ≤ H(qr,Z) ≤ c4‖Λ‖2 (3.39)

Therefore, using the inequalities (3.39), (3.35) and the theorem (3.1) of
boundedness and ultimate boundedness, we infer that the solution of the multiple-
UAV dynamical system (3.18) is bounded.

We emphasize here that our proposed control law, in the presence of perturba-

54 CHAPTER 3. FLOCKING BY CONSENSUS ALGORITHMS

tions, ensures a bounded solution of the multiple-UAV system. In other word, the
solution of multiple-UAV system will converge to a "quasi-α-Lattice" (cf. equation
(1.3)).

3.4 Flocking with distributed integral control

In the previous section, we proposed a modified version of Olfati-Saber flocking
control law. This control law was tested in a real-time experimental setup and
showed good results, as it will be shown in chapter 4. However, real-time applications
always suffer of perturbations that could not be eliminated easily, and need more
effective control laws. Perturbations are generally caused by the wind flown from
the rotors of quadrotors and by unmodeled dynamics. In real-time experiments,
we noticed steady-state errors in the distances between quadrotors. Therefore, in
this section, we present an alternative version of (3.15), intended to eliminate the
steady-state errors.

In control theory, one of the ways used to eliminate steady-state errors is to add
an integral action to the control law [Khalil, 2002]. For ordinary systems, we start
by augmenting the system equations with a state that represents the integral of
regulation error. However, for our system of systems, we deal with the regulation of
the relative interdistance vectors with several neighboring UAVs, which renders the
introduction of integral actions challenging.

To overcome this problem, we define the distributed regulation error of a single
UAV as follows:

ei =
∑
j∈Ni

Φα(‖qj − qi‖σ) nij (3.40)

Then, we augment the single UAV flocking dynamics in (3.1) by the following
equation:

ϑ̇ = ei (3.41)

Therefore, the overall augmented system will be written as follows:

ϑ̇ = ei

q̇i = pi

ṗi = ui

(3.42)

Therefore, our control law will be written as follows:

3.5. ROBUST FLOCKING 55

ui =
∑
j∈Ni

[
KpΦα(‖qj − qi‖σ)nij +K

′

paij(q)(qj − qi)

+Kdaij(q)(pj − pi)
]

+Ki

∫
ei dt

+fγi (qi, pi, qr, pr) + ṗr

(3.43)

where Ki is the integral-action gain, which is tuned by the user. This alternative
control law shows good results in real-time experiments, which complements Olfati-
Saber approach. In fact, the steady-state errors are efficiently reduced, and then the
solutions of the multiple-UAV system converges to an "α-Lattice".

3.5 Robust Flocking

In this section, we consider the nonlinear model of quadrotor with perturbations
in the translational dynamics. Our control method in this section is decomposed
in two parts. The first part consists of introducing a control law that linearizes
the translational dynamics of quadrotors and decouples their control inputs. In
the second part, we propose a flocking control law on the x − y dynamics that is
robust to perturbations. This control law is based on the Lyapunov redesign method
[Khalil, 2002].

3.5.1 Linearizing and Decoupling control

The quadrotor nonlinear model, with perturbations on the translational dynamics,
is given as follows:

ξ̇ = ν (3.44a)

m ξ̈ = G+ R(U + ∆) (3.44b)

η̇ = WΩ (3.44c)

J Ω̇ = −Ω× JΩ + τ (3.44d)

∆ ∈ R3 is a perturbation vector which could represent model uncertainties or
exogenous perturbations. In this work we assume that the perturbation is bounded
with ‖∆‖ < µ.

The quadrotor nominal translational dynamics, that is, without perturbations is
given as follows:

56 CHAPTER 3. FLOCKING BY CONSENSUS ALGORITHMS

ẋ = νx

ẏ = νy

ż = νz

ẍ = (cφsθcψ + sφsψ)(F/m)

ÿ = (cφsθsψ − sφcψ)(F/m)

z̈ = −g + cφcθ(F/m)

(3.45)

To simplify the control of this part, we consider φ◦ ≡ φ and θ◦ ≡ θ as
intermediate virtual control inputs, which is generally the case in quadrotor control.
In addition, ψ is considered as a parameter of the system. To simplify the calculation
in the beginning, we consider ψ = 0. Then, we apply a transformation of inputs as
follows:

v1 = (cφ◦sθ◦)(F/m) (3.46a)

v2 = (−sφ◦)(F/m) (3.46b)

v3 = −g + cφ◦cθ◦(F/m) (3.46c)

After some computations we can find:

F = m
√
v21 + v22 + (v23 + g)2 (3.47a)

φ◦ = arcsin
(−v2√

v21 + v22 + (v3 + g)2

)
(3.47b)

θ◦ = arctan
(v1
v3 + g

)
(3.47c)

Now, if we consider ψ 6= 0, the last three equations in (3.45) could be written as:

ẍ = v1cψ − v2sψ
ÿ = v1sψ + v2cψ

z̈ = v3

(3.48)

By applying another transformation of the new inputs, we choose:

v∗1 = v1cψ − v2sψ (3.49a)

v∗2 = v1sψ + v2cψ (3.49b)

v∗3 = v3 (3.49c)

3.5. ROBUST FLOCKING 57

and we can find:

v1 = v∗1cψ + v∗2sψ (3.50a)

v2 = −v∗1sψ + v∗2cψ (3.50b)

v3 = v∗3 (3.50c)

Finally, the translational system is completely decoupled and we can write it as
follows:

ẋ = νx (3.51a)

ẏ = νy (3.51b)

ż = νz (3.51c)

ẍ = v∗1 (3.51d)

ÿ = v∗2 (3.51e)

z̈ = v∗3 (3.51f)

Figure 3.1 shows the architecture of quadrotor control with decoupled trans-
lational inputs. In this figure, we have F = fF (v1, v2, v3) as in equation (3.47a),
f(v1, v2, v3) represents the values of φ◦ and θ◦ in equations (3.47b) and (3.47c)
respectively, while the function fv(v∗1, v∗2, v∗3) is given by the equations in (3.50).

Concerning the quadrotor rotational dynamics, according to [Kendoul et al., 2007]
and [Sanahuja, 2010], we can use the feedback linearization technique to decouple
the control inputs. The rotational dynamics could then be written as follows:

φ̈ = τ̃φ (3.52a)

θ̈ = τ̃θ (3.52b)

ψ̈ = τ̃ψ (3.52c)

3.5.2 Robust control law

To control the UAVs in the flocking perspective, we use our architecture introduced
in section (2.6). The internal dynamics, that is, the altitude z and the rotational
dynamics, will be controlled as in equations (2.39)- (2.42) with some modifications on
the φ and θ controller as in [Zavala-Río et al., 2003] and [López-Araujo et al., 2010].
Therefore, the control laws of internal dynamics are given as follows:

58 CHAPTER 3. FLOCKING BY CONSENSUS ALGORITHMS

Quadrotor

Dynamics

Attitude

Control

𝑓𝐹(𝑣1, 𝑣2, 𝑣3)
𝐹

𝜙 , 𝜙 , 𝜃, 𝜃 , 𝜓, 𝜓

𝜓

𝑣1

𝜏𝜙

𝜏𝜃

𝜏𝜓

𝑓(𝑣1, 𝑣2, 𝑣3)

𝑣2

𝑣3

𝜙°

𝜃°

𝑣1
∗

𝑣2
∗

𝑣3
∗

𝑓𝑣(𝑣1
∗, 𝑣1

∗, 𝑣1
∗, 𝜓)

𝑟𝜓, 𝑟 𝜓, 𝑟 𝜓

Figure 3.1 – Block diagram of the decoupled translational dynamics of quadrotor

v∗3 = r̈z + kpz(rz − z) + kdz(ṙz − ż) + kiz

∫
(rz − z) dt (3.53)

τ̃ψ = r̈ψ + kpψ(rψ − ψ) + kdψ(ṙψ − ψ̇) + kiψ

∫
(rψ − ψ) dt (3.54)

τ̃φ = Satφ1(φ̈
◦)− Satφ2

(
kφ1φ̇− Satφ3(φ̇◦)

+Satφ4

(
kφ2φ̇− Satφ5(φ̇◦) + kφ1kφ2eφ

)) (3.55)

τ̃θ = Satθ1(θ̈
◦)− Satθ2

(
kθ1 θ̇ − Satθ(θ̇◦)

+Satθ4

(
kθ2 θ̇ − Satθ5(θ̇◦) + kθ1kθ2eθ

)) (3.56)

with eφ = φ− φ◦ and eθ = θ − θ◦

We assume here, that the controller in (3.53) is capable to reject the perturbation
of the altitude dynamics z. This assumption could be explained by the fact that
the altitude reference is constant and we use a controller with integral action which
makes it robust to perturbations [Khalil, 2002].

The design of the x − y controllers will be as follows. In equations ((3.51a),
(3.51b), (3.51d), (3.51e)), we take qi = [x y]T , pi = [νx νy]

T , and ui = [v∗1 v∗2]T .

3.5. ROBUST FLOCKING 59

Moreover, we take into consideration the perturbation vector in the x−y directions.
Therefore, the translational dynamics could be written as follows:

q̇i = pi

ṗi = ui + ∆xyi

(3.57)

with ∆xyi ∈ Rf being the perturbation vector.
The representation of perturbations in a single system could be given by an

unknown bounded function with a known bound. However, in a system of systems,
another challenge arises in order to represent perturbations. In fact, the presence
of interactions between UAVs in the multiple-UAV system of systems causes a
propagation of perturbations. In other word, if we have a perturbation in a single
UAV, its effect will be propagated as a wave toward the other UAVs in the system.
To model such phenomenon, we define the perturbation term in (3.57) as follows:

∆xyi = Ξi +
∑
j∈Ni

aij(q) Ξj (3.58)

with Ξi being a local and a direct perturbation on the UAV i, and Ξj being a
perturbation propagated from a neighboring UAV j.

Assumption 3.2. Every perturbation term Ξi ∀i ∈ V is an unknown function, but
it has a known upper bound such that, ‖Ξi‖ ≤ µi and µi > 0.

Lemma 3.2. If assumption (3.2) holds, then the overall perturbation ∆xyi is also
bounded.

Proof. The proof of this lemma is obvious, since from (3.58), ∆xyi is the sum of
bounded perturbations terms. Then we can infer that ‖∆xyi‖ ≤ µxyi with

µxyi = µi +
∑
j∈Ni

µj (3.59)

if we assume that all the perturbation terms have the same upper bound, that
is, µi = µj ∀i, j ∈ V , then we get:

µxyi = (|Ni|+ 1)µi (3.60)

with |Ni| being the cardinality of the neighboring set Ni.

Now we are ready to present our distributed control law, applied on each UAV,
that ensures the flocking and the navigation of multiple UAVs, as well as the stability
of the flock in the presence of perturbations, as follows:

60 CHAPTER 3. FLOCKING BY CONSENSUS ALGORITHMS

ui =
∑
j∈Ni

[
KpΦα(‖qj − qi‖σ)nij

+Kdaij(q)(pj − pi)
]

+βi + fγi (qi, pi, qr, pr) + ṗr

(3.61)

with βi being the Lyapunov redesign control term defined as follows:

βi = −µxyi
pi
‖pi‖

(3.62)

To prove the efficiency of the control law in (3.61), we start by writing the
collective dynamics of all the multiple-UAV system in the moving frame, as
introduced in (3.3). Then the collective dynamics will be written as follows:

q̇r = pr

ṗr = −Kp∇qri
V (qr)−KdL̂ p

r − c1qr − c2pr + βr + ∆r
xy

(3.63)

with βr = col(βr1 , . . . , β
r
M) and ∆r

xy = col(∆r
xy1
, . . . ,∆r

xyM
).

Now we are ready to present our proposition.

Proposition 3.2. Consider the multiple-UAV dynamical system in (3.63) where
every UAV applies the control law in (3.61). Suppose that the assumption (3.2)
holds and taking in consideration lemma (3.2), then the solutions of the multiple-
UAV dynamical system converge asymptotically to an α−lattice.

Proof. Consider the Lyapunov function H(qr, pr) defined as:

H(qr, pr) = KpV (qr) +
1

2

∑
i∈V

‖pri‖2 +
c1
2
qrT qr (3.64)

Taking the time derivative of H we get:

Ḣ = Kp∇qrV (qr)pr + prT ṗr + c1q
rTpr (3.65)

By replacing ṗr by its expression in (3.63), we get:

Ḣ = −Kd p
rT L̂pr − prT c2pr + prTβr + prT∆r

xy (3.66)

In the previous equation we have:

prTβr + prT∆r
xy =

∑
i∈V

(pri
Tβri + pri

T∆r
xyi

)

≤
∑
i∈V

(pri
Tβri + ‖pri‖µxyi)

replacing βri by its expression in (3.62), we find that

3.5. ROBUST FLOCKING 61

prTβr + prT∆r
xy ≤ 0

We infer that Ḣ < 0 ∀pr 6= 0. Taking Ωc = {Λ : H(Λ) ≤ c} as a level set of
H. Following the proof in [Olfati-Saber, 2006], from LaSalle’s invariance principle,
every solution starting in Ωc converges to the largest invariant set in O = {Λ ∈
Ωc : Ḣ = 0}. For Ḣ = 0, we have pr = 0, hence, every solution of the system
(3.63) asymptotically converge to the equilibrium configuration Λ∗ = (qr∗,0) with
qr∗ being the minima of 1

2
KpV (qr) + c1

2
qrT qr, that is, an α−lattice.

The proposed control law in (3.61), is based on the Lyapunov redesign method.
The βi term in this controller reveals an important theoretical and practical problems
since it is a discontinuous function of pi [Khalil, 2002]. In one hand, the division by
zero, the existence and the uniqueness of solutions are some theoretical problems
with this kind of control. In the other hand, the problem of chattering is one of the
main practical drawbacks of such discontinuous controller.

A practical solution of these problems is to relax the definition of βi to be
continuous and defined at zero. Thus, we redefine βi in (3.62) as follows:

βi =


−µxyi

pi
‖pi‖

if µxyi‖pi‖ ≥ ς

−µ2
xyi

pi
ε

if µxyi‖pi‖ < ς

(3.67)

with ς > 0.
What we can get from this control law is a multiple-UAV dynamical system with

bounded solutions. This result is shown in the following proposition.

Proposition 3.3. Consider the multiple-UAV dynamical system in (3.63) where
every UAV applies the control law in (3.67). Suppose that the assumption (3.2)
holds and taking in consideration lemma (3.2), then the solution of the multiple-
UAV dynamical system is bounded.

Proof. Taking again the Lyapunov function H(qr, pr), proposed in (3.64), and its
time derivative:

H(qr, pr) = KpV (qr) +
1

2

∑
i∈V

‖pri‖2 +
c1
2
qrT qr

Ḣ = −Kd p
rT L̂pr − prT c2pr + prTβr + prT∆r

xy (3.68)

for µxyi‖p
r
i‖ ≥ ς in βri (represented in the moving frame), we have the same

result as in proposition (3.2).

62 CHAPTER 3. FLOCKING BY CONSENSUS ALGORITHMS

However, for µxyi‖pi‖ < ς, we have:

prTβr + prT∆r
xy ≤

∑
i∈V

(−µ2
xyi

‖pri‖
2

ε
+ µxyi‖p

r
i‖) (3.69)

Then, −µ2
xyi

‖pri ‖
2

ε
+ µxyi‖p

r
i‖ ≤ 0 when ‖pri‖ ≥ ς

µxyi
.

Therefore,

Ḣ < 0, ∀‖pri‖ ≥
ς

µxyi
(3.70)

Moreover, since H is a decreasing function, then H ≤ H0 = H(qr(0), pr(0)),
with (qr(0), pr(0)) are finite initial conditions that respect the condition in (3.70).
Therefore, we can find

H(qr, pr) ≤ b4‖Π‖2 (3.71)

with b4 is a positive constant, Π = [qrT prT]T and b4‖Π‖2 is a class K function
verifying that b4‖Π‖2 ≥ H0.

In addition, from (3.64), we have:

H(qr, pr) ≥ 1

2

∑
i∈V

‖pri‖2 +
c1
2
qrT qr

so we can find:

b3‖Π‖2 ≤ H(qr, pr) (3.72)

with b3‖Π‖2 is a class K function and b3 is a positive constant. From (3.71) and
(3.72) we have:

b3‖Π‖2 ≤ H(qr, pr) ≤ b4‖Π‖2 (3.73)

Therefore, using the inequalities (3.73), (3.70) and theorem (3.1) we infer that
the solution of the multiple-UAV dynamical system (3.63) is bounded.

When ς is too small, the solutions of our multiple-UAV system will approach a
neighborhood of the origin, that is an α-lattice. However, the control law in (3.67)
will approach the discontinuous control in (3.62) and then we will get the chattering
phenomenon. Therefore, by using the relaxed control law in (3.67) with ς not too
small, we get a quasi-α-lattice.

3.6. CONCLUSION 63

3.6 Conclusion

In this chapter, we have proposed four control laws to control multiple-UAV
system in the flocking perspective. The control laws were based on the work
of [Olfati-Saber, 2006]. Our interest was to improve the control algorithm in
[Olfati-Saber, 2006] in order to be compatible with the nonlinear dynamics of UAV.
During this chapter, we worked on a linear approximation as well as a full-nonlinear
model of UAV.

The design of the first two control laws were based on the linearization about
the origin of the UAVs dynamics. We then proposed our first modification, on the
flocking algorithm proposed in [Olfati-Saber, 2006], by introducing tuning gains. We
proved analytically that our controller is robust to perturbations in contrast to the
flocking algorithm in [Olfati-Saber, 2006]. Then, we improved our control law by
introducing a distributed integral action in order to obtain a zero-steady-state error,
that is, an α-lattice configuration of multiple UAVs.

In the two other control laws, we worked on a complete nonlinear model of UAV.
We started by applying a control law that linearizes the translational dynamics
of UAV. Then, we used the Lyapunov redesign technique to design a robust
flocking control law. Finally, we enhanced this control law to avoid the chattering
phenomenon.

Chapter 4

Simulation and Real-Time Results

Contents

4.1 Introduction . 65

4.2 Simulator of Multiple UAVs 65

4.3 Simulation results . 70

4.4 Real-Time Experiments . 87

4.5 Conclusion . 95

4.1 Introduction

In this chapter, we present simulation and experimental results of the control
laws proposed in the precedent chapters. For the simulation, we use a PC-based
simulator of flock of multiple UAVs. This simulator is developed by Guillaume
Sanahuja, PhD and research engineer at Heudiasyc laboratory, with the context of
ROBOTEX project. For experiments, we show the results of the implementation
of our control laws on ArDrone2 quadrotors from Parrot. The UAVs evolved in an
indoor environment where an Optitrack motion capture system is used.1

4.2 Simulator of Multiple UAVs

As a part of ROBOTEX project, Heudiasyc laboratory is equipped by a fleet of UAVs
in order to carry out scientific researches on flight formation control. However, flight
formation control could be risky, that why the laboratory developed a simulator of
fleet of UAVs. The goal of this simulator is to run on a computer, a code identical
to that used in the real UAVs, to perform all the program development steps safely.

1The installation, operation, support and maintenance of the experimental platform equipments
(quadrotors, Optitrack system and the wireless network) are ensured by the technical assistants
team and research engineers of Heudiasyc laboratory.

65

66 CHAPTER 4. SIMULATION AND REAL-TIME RESULTS

For this purpose, the PC is run under Linux as in the real UAVs. In the simulator,
virtual sensors and actuators are connected to a discrete nonlinear model of UAV as
in (1.4). As a result, all UAVs’ states are calculated at each instant of time. Each
UAV in the fleet simulator is an independent computer process. Moreover, UAVs
evolve in a 3-D virtual environment, thanks to Irrlicht engine. The program in
the simulator is connected to a Graphical User Interface (GUI) base-station control
program. The base station records and draws measurements. Moreover, it is used
to start and end simulations and to set the parameters of UAVs and control laws.
Figure 4.1 shows the architecture of the simulator.

Joystick

UAV1 Aboard
 Control Program

UAV2
 Control Program

UAV3 Aboard
 Control Program

UAV4 Aboard
 Control Program

Simulator

Inter-process
Communication

Inter-process
Communication

PC Base Station GUI

Figure 4.1 – Architecture of the simulator of fleet of UAVs

In the following, we present the base-station GUI, used together in the simulator
and in the experimental platform. Figure 4.2 shows the base-station GUI where
high-level commands could be sent to one or all UAVs. The same interface is used
for real time. Graphs of measured states and useful information such as control laws
outputs could be visualized on the GUI, see figure 4.3. GUI is also used to modify
parameters and to tune gains on line and send them to the simulated or the real

4.2. SIMULATOR OF MULTIPLE UAVS 67

quadrotors, see figure 4.4.

Figure 4.2 – High level commands in the based-station GUI

68 CHAPTER 4. SIMULATION AND REAL-TIME RESULTS

Figure 4.3 – Graphs of measurements in the GUI

4.2. SIMULATOR OF MULTIPLE UAVS 69

Figure 4.4 – Parameters and gains introduction in the GUI

70 CHAPTER 4. SIMULATION AND REAL-TIME RESULTS

4.3 Simulation results

In this section, we present different simulation results of our proposed control laws.
The simulations are performed in the simulator of the fleet of UAVs, introduced
in the previous section. All the tests are performed using a nonlinear model of
quadrotors. To show the efficiency of our control laws, different scenarios, such as
aggregation and direct or circular navigation of multiple UAVs, are tested with a
different number of UAVs. Moreover, we test the scalability, the self-organization
and the fault-tolerant properties of our control laws by introducing a sudden accident
on a UAV during the flight scenario. This accident consists in a sudden forced urgent
landing of a UAV, introduced by the simulator user using the GUI.

In all the scenarios, the UAVs takeoff from their initial positions to a predefined
fixed altitude. The yaw angles desired values all over in the scenarios are equal to
zero. Then, a flight formation control strategy, that is one of our control laws, is
activated and a flight formation scenario is performed. In this work, we have three
flight formation scenarios: aggregation, direct navigation and circular navigation.

In the aggregation scenario, the UAVs move and gather around the origin
(x = 0, y = 0). In direct navigation scenario, the UAVs move toward a predefined
rendezvous fixed point different from the origin. Finally, the circular navigation
consists in UAVs tracking a predefined circular trajectory. In all the scenarios, the
predefined trajectory or the rendezvous point is known by all the UAVs.

4.3.1 Flocking by trajectory generation

4.3.1.1 Sum Strategy

In this part, we apply the sum control strategy, introduced in sections (2.5.2)
and (2.5.3), on 4 UAVs. First, we show the simulation of 4 UAVs performing an
aggregation scenario followed by a circular navigation flight scenarios. Then, we
present two separated aggregation and circular navigation scenarios with a simulated
urgent landing of one UAV.

Figure 4.5 shows 4 UAVs performing an aggregation and a circular navigation.
The UAVs start at their initial position marked by diamonds. Then they aggregate
toward the origin to ensure the collision-free formation. After that, the UAVs follow
a circular trajectory and then return back to aggregate around the origin. The final
positions of UAVs is depicted in the figure by black squares. The overall scenario is
performed in a collision-free formation with yaw angles equal to zero.

In order to see clearly the collision-free flight formation, we illustrate in figure
4.6 the interdistances between UAVs during the simulation. The reference desired

4.3. SIMULATION RESULTS 71

X pose

-15 -10 -5 0 5 10 15

Y
 p

o
se

-15

-10

-5

0

5

10

15

Quadrotor1

Quadrotor2

Quadrotor3

Quadrotor4

Figure 4.5 – Trajectories of 4 UAVs in aggregation and navigation scenario using Sum
strategy

interdistance between every two neighboring UAVs is fixed to d = 1.5m. This
reference interdistance is depicted by a black line in the figure. As shown in the
figure, in the beginning the interdistances are constant, since the UAVs are still in
their initial positions. Once the sum control strategy is activated, the interdistances
between UAVs converge to the desired value. We notice in the figure that we have
some interdistances less than the desired value, for example the distance between
UAVs 3 and 4. This result is known in control theory under the name of "steady-
state error" and it appears here in the formation control problem. This steady-state
error is a drawback of the sum control strategy which will be overcome by another
control law that has been proposed and will be presented in the sequel.

In Figure 4.7, we have the result of simulating the aggregation of 4 UAVs
while during the simulation, we introduced an urgent landing of UAV 2. At
the beginning, the UAVs aggregate toward the origin and constitute a formation
with safe interdistances. Then when the UAV 2 lands, the other UAVs reorganize
themselves and continue the aggregation separately.

While it is difficult to see the self-organization property in figure 4.7, the sudden
interdistances variations between UAVs, in figure 4.8, illustrates more clearly this
emergent behavior at time ≈ 44s.

In figure 4.10, we present the fault-tolerant and the self-organization property
of the Sum strategy. 4 UAVs start an aggregation and a circular navigation when

72 CHAPTER 4. SIMULATION AND REAL-TIME RESULTS

Time (s)

0 20 40 60 80 100 120 140

D
is

ta
n
ce

 (
m

)

0

5

10

15
Dynamic of Separation Distances between Agents

d12

d13

d14

d23

d24

d34

Reference

Figure 4.6 – Interdistances between 4 UAVs in aggregation and navigation scenario using
Sum strategy

X pose

-5 -4 -3 -2 -1 0 1 2 3 4 5

Y
 p

o
se

-5

-4

-3

-2

-1

0

1

2

3

4

5

Quadrotor1

Quadrotor2

Quadrotor3

Quadrotor4

Figure 4.7 – Trajectories of 4 UAVs in an aggregation scenario using Sum control with
urgent landing in UAV 2

4.3. SIMULATION RESULTS 73

Time (s)

0 10 20 30 40 50 60 70

D
is

ta
n

ce
 (

m
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Dynamic of Separation Distances between Agents

d12

d13

d14

d23

d24

d34

Reference

Figure 4.8 – Interdistances between 4 UAVs in an aggregation scenario using Sum control
with urgent landing in UAV 2

suddenly the UAV 2 is forced to land. The 3 remaining UAVs continue the navigation
and reorganize themselves. We remind here that the initial positions are marked by
diamonds and the final positions by black squares.

Figure 4.10 shows clearly the variations of interdistances when the accidental
urgent landing happened between 70 and 80 seconds. Since UAV 2 has landed and
stopped, the distances between it and the other moving UAVs continue to increase.

4.3.1.2 Average Strategy

In this part, we apply the average control strategy, introduced in sections (2.5.1)
and (2.5.3), on 4 UAVs. As in the sum strategy, we show the simulation of 4 UAVs
performing an aggregation scenario followed by a circular navigation flight scenarios.
Then, we present two separated aggregation and circular navigation scenarios with
a simulated urgent landing of one UAV.

In figures 4.11 to 4.16 that show the aggregation and the navigation of 4 UAVs
in normal and accidental (with urgent landing) flight, we notice approximately the
same results obtained with the sum strategy. The Average strategy succeeded in
performing a collision-free formation in the aggregation and the navigation scenarios,
figures 4.11 and 4.12. The same drawback of "steady-state error" in interdistances is
also noticed in the average strategy. Moreover, in accidental scenarios, the average
strategy succeeded in performing self-organized and fault-tolerant aggregation and

74 CHAPTER 4. SIMULATION AND REAL-TIME RESULTS

X pose

-15 -10 -5 0 5 10 15

Y
 p

o
se

-15

-10

-5

0

5

10

15

Quadrotor1

Quadrotor2

Quadrotor3

Quadrotor4

Figure 4.9 – Trajectories of 4 UAVs in a circular navigation scenario using Sum control
with urgent landing in UAV 2

Time (s)

0 20 40 60 80 100

D
is

ta
n

ce
 (

m
)

0

5

10

15
Dynamic of Separation Distances between Agents

d12

d13

d14

d23

d24

d34

Reference

Figure 4.10 – Interdistances between 4 UAVs in a circular navigation scenario using Sum
control with urgent landing in UAV 2

4.3. SIMULATION RESULTS 75

navigation.
The only difference that we have noticed when we compared the results of the

sum and the average strategy is the smoothness of the UAVs interdistances variation
in the average strategy. While in the sum strategy, we can see rapid variations
and oscillations when we start the formation, we notice a smoother convergence of
interdistances to the desired value in the average strategy (certainly with a steady-
state error). This could be explained by the fact that, in the average strategy, each
UAV follows an average reference of shifted states (cf. section 2.5) rather than a
sum reference. The average operation smooths the large difference between shifted
states unlike the sum operation.

X pose

-15 -10 -5 0 5 10 15

Y
 p

o
se

-15

-10

-5

0

5

10

15

Quadrotor1

Quadrotor2

Quadrotor3

Quadrotor4

Figure 4.11 – Trajectories of 4 UAVs in aggregation and circular navigation scenario using
Average control strategy

76 CHAPTER 4. SIMULATION AND REAL-TIME RESULTS

Time (s)

0 20 40 60 80 100 120 140

D
is

ta
n

ce
 (

m
)

0

5

10

15
Dynamic of Separation Distances between Agents

d12

d13

d14

d23

d24

d34

Reference

Figure 4.12 – Interdistances between 4 UAVs in aggregation and circular navigation
scenario using Average control strategy

X pose

-15 -10 -5 0 5 10 15

Y
 p

o
s
e

-15

-10

-5

0

5

10

15

Quadrotor1

Quadrotor2

Quadrotor3

Quadrotor4

Figure 4.13 – Trajectories of 4 UAVs in an aggregation scenario using Average control with
urgent landing in UAV 2

4.3. SIMULATION RESULTS 77

Time (s)

0 10 20 30 40 50 60 70

D
is

ta
n

ce
 (

m
)

0

5

10

15
Dynamic of Separation Distances between Agents

d12

d13

d14

d23

d24

d34

Reference

Figure 4.14 – Interdistances between 4 UAVs in an aggregation scenario using Average
control with urgent landing in UAV 2

X pose

-15 -10 -5 0 5 10 15

Y
 p

o
se

-15

-10

-5

0

5

10

15

Quadrotor1

Quadrotor2

Quadrotor3

Quadrotor4

Figure 4.15 – Trajectories of 4 UAVs in a circular navigation scenario using Average control
with urgent landing in UAV 2

78 CHAPTER 4. SIMULATION AND REAL-TIME RESULTS

Time (s)

0 20 40 60 80 100 120 140

D
is

ta
n

ce
 (

m
)

0

5

10

15
Dynamic of Separation Distances between Agents

d12

d13

d14

d23

d24

d34

Reference

Figure 4.16 – Interdistances between 4 UAVs in a circular navigation scenario using
Average control with urgent landing in UAV 2

4.3. SIMULATION RESULTS 79

4.3.2 Consensus-based Flocking

In this section, we show simulation results of multiple UAVs using the flocking
control with tuning gains and with distributed integral laws as in (3.15) and (3.43)
respectively. In the following simulations, the desired value of interdistances between
UAVs is 1.5m and the interaction range of each UAV is 2m. As in the precedent
sections, we illustrate several simulations showing the scalability, the precision and
the fault-tolerant properties of these control laws.

4.3.2.1 Flocking control with tuning gains

Figure 4.17 shows an aggregation and circular navigation of 6 UAVs using the
flocking control with tuning gains. The UAVs start in their initial positions, marked
by diamonds, and converge firstly toward the origin. When the formation is stable,
a new phase is activated and the UAVs start to track a circular trajectory whilst
maintaining the formation. Finally, after a certain time, the UAVs quit the circular
trajectory and return back to aggregate around the origin by forming a pentagonal
quasi-α lattice pattern, with one UAV at the center.

X pose

-15 -10 -5 0 5 10 15

Y
 p

o
se

-15

-10

-5

0

5

10

15

Quadrotor1

Quadrotor2

Quadrotor3

Quadrotor4

Quadrotor5

Quadrotor6

Figure 4.17 – Trajectories of 6 UAVs in aggregation and circular navigation scenario using
tuning gains control strategy

The formation of a quasi-α lattice pattern is confirmed in figure 4.17. The
distances between neighboring UAVs approach the desired interdistances value
1.5m. We can notice that the interdistances do not reach completely the desired

80 CHAPTER 4. SIMULATION AND REAL-TIME RESULTS

reference which means that this control strategy suffers also from a steady-state
error drawback.2 However, the scalability of this control law could be seen in figure
4.17. For example, the distance between UAV 5 and 6 does not converge to 1.5m,
since it is greater than the interaction range 2m. This means that, using this control
law, we can add as much as UAVs to the fleet and the computational power of each
UAV will not be affected, since each UAV interacts with a limited number of UAVs
in its neighboring range.

Time (s)

0 20 40 60 80 100 120 140 160

D
is

ta
n

ce
 (

m
)

0

5

10

15
Dynamic of Separation Distances between Agents

d12

d13

d14

d15

d16

d23

d24

d25

d26

d34

d35

d36

d45

d46

d56

Reference

Figure 4.18 – Interdistances between 6 UAVs in aggregation and circular navigation
scenario using tuning gains control strategy

In figures 4.19 to 4.22, we illustrate the aggregation and the navigation of 6
UAVs in the presence of a faulty UAV. The control law shows a self-organization
and fault-tolerant behavior. In figure 4.21, the 6 UAVs perform an aggregation and
a navigation toward a circular trajectory, and when UAV 2 is landed, the other 5
UAVs continue the tracking mission and return back to aggregate around the origin
with a different formation pattern.

2In fact, since the maximum initial interdistance between UAV 5 and 6 is approximately 14m,
we cannot see clearly the "steady-state error", but if we zoom the figure, we can see it clearly.

4.3. SIMULATION RESULTS 81

X pose

-6 -4 -2 0 2 4 6

Y
 p

o
se

-6

-4

-2

0

2

4

6 Quadrotor1

Quadrotor2

Quadrotor3

Quadrotor4

Quadrotor5

Quadrotor6

Figure 4.19 – Trajectories of 6 UAVs in an aggregation scenario using tuning gains control
with urgent landing in UAV 2

Time (s)

0 20 40 60 80 100 120 140

D
is

ta
n

ce
 (

m
)

0

5

10

15
Dynamic of Separation Distances between Agents

d12

d13

d14

d15

d16

d23

d24

d25

d26

d34

d35

d36

d45

d46

d56

Reference

Figure 4.20 – Interdistances between 6 UAVs in an aggregation scenario using tuning gains
control with urgent landing in UAV 2

82 CHAPTER 4. SIMULATION AND REAL-TIME RESULTS

X pose

-15 -10 -5 0 5 10 15

Y
 p

o
se

-15

-10

-5

0

5

10

15

Quadrotor1

Quadrotor2

Quadrotor3

Quadrotor4

Quadrotor5

Quadrotor6

Figure 4.21 – Trajectories of 6 UAVs in circular a navigation scenario using tuning gains
control with urgent landing in UAV 2

Time (s)

0 20 40 60 80 100 120 140 160 180

D
is

ta
n
ce

 (
m

)

0

5

10

15
Dynamic of Separation Distances between Agents

d12

d13

d14

d15

d16

d23

d24

d25

d26

d34

d35

d36

d45

d46

d56

Reference

Figure 4.22 – Interdistances between 6 UAVs in a circular navigation scenario using tuning
gains control with urgent landing in UAV 2

4.3. SIMULATION RESULTS 83

4.3.2.2 Flocking with distributed integral control

In the previous simulations with different control laws, the main drawback was the
"steady-state errors" in the interdistances between neighboring UAVs. In this part,
we present the same previous scenarios with the distributed integral control. We
keep the same desired interdistance value 1.5m and the same interaction range 2m to
ensure the scalability of this control law. As we will see in the figures, the distributed
integral control law overcome the "steady-state errors" problem and ensures, almost,
an α−lattice pattern together in an aggregation and in a navigation scenarios.

Figure 4.23 shows an aggregation and a circular navigation scenario of 6 UAVs.
As seen before, the UAVs perform an aggregation toward the origin and form
an α−lattice pattern. Then, they follow a circular trajectory while keeping the
formation. Finally, they quit the circular trajectory go back in direct navigation
toward the origin. We observe here that the final formation, also formed after the
aggregation phase, is different from the one seen in figure 4.17 that used the tuning
gains control, even if we have the same initial positions. We could say that the
presence of integral action renders the interactions between the UAVs more powerful,
which prohibits a UAV to go through the other UAVs and to form a pentagonal
pattern. However, this observation still needs more study, and the best that we can
say is that the observed phenomenon is an emergent unpredictable behavior.

X pose

-15 -10 -5 0 5 10 15

Y
 p

o
s

e

-15

-10

-5

0

5

10

15

Quadrotor1

Quadrotor2

Quadrotor3

Quadrotor4

Quadrotor5

Quadrotor6

Figure 4.23 – Trajectories of 6 UAVs in aggregation and circular navigation scenario using
distributed integral strategy

In figure 4.24, we note the precision of this control law. In fact, all the

84 CHAPTER 4. SIMULATION AND REAL-TIME RESULTS

interdistances between neighboring UAVs converge to the desired value. This
precision continue to persists during different phases of aggregation and navigation
scenario. The steady-state errors are completely eliminated and the scalability
property is still present as we can see in interdistances between UAVs 5 and 6,
and 4 and 5.

Figures 4.25 to 4.28, shows the application of the distributed integral control law
in accidental scenarios. From the figures, this control law proves its capability to
perform a self-organized and fault-tolerant aggregation and navigation of multiple
UAVs, while keeping the precision property.

Time (s)

0 20 40 60 80 100 120 140

D
is

ta
n

c
e
 (

m
)

0

5

10

15
Dynamic of Separation Distances between Agents

d12

d13

d14

d15

d16

d23

d24

d25

d26

d34

d35

d36

d45

d46

d56

Reference

Figure 4.24 – Interdistances between 6 UAVs in aggregation and circular navigation
scenario using distributed integral control strategy

4.3. SIMULATION RESULTS 85

X pose

-15 -10 -5 0 5 10 15

Y
 p

o
se

-15

-10

-5

0

5

10

15

Quadrotor1

Quadrotor2

Quadrotor3

Quadrotor4

Quadrotor5

Quadrotor6

Figure 4.25 – Trajectories of 6 UAVs in an aggregation scenario using distributed integral
control with urgent landing in UAV 3

Time (s)

0 10 20 30 40 50 60 70 80

D
is

ta
n

ce
 (

m
)

0

5

10

15
Dynamic of Separation Distances between Agents

d12

d13

d14

d15

d16

d23

d24

d25

d26

d34

d35

d36

d45

d46

d56

Reference

Figure 4.26 – Interdistances between 6 UAVs in an aggregation scenario using distributed
integral control with urgent landing in UAV 3

86 CHAPTER 4. SIMULATION AND REAL-TIME RESULTS

X pose

-15 -10 -5 0 5 10 15

Y
 p

o
s

e

-15

-10

-5

0

5

10

15

Quadrotor1

Quadrotor2

Quadrotor3

Quadrotor4

Quadrotor5

Quadrotor6

Figure 4.27 – Trajectories of 6 UAVs in a circular navigation scenario using distributed
integral control with urgent landing in UAV 3

Time (s)

0 20 40 60 80 100 120 140

D
is

ta
n

c
e

 (
m

)

0

5

10

15
Dynamic of Separation Distances between Agents

d12

d13

d14

d15

d16

d23

d24

d25

d26

d34

d35

d36

d45

d46

d56

Reference

Figure 4.28 – Interdistances between 6 UAVs in a circular navigation scenario using
distributed integral control with urgent landing in UAV 3

4.4. REAL-TIME EXPERIMENTS 87

4.4 Real-Time Experiments

In the following experimental results, our platform is the quadrotor ArDrone2 from
Parrot [ParrotArdrone2,], see figure 4.29. Using an SDK provided by Parrot, this
platform is designed to be controlled, either from a smartphone, a PC through WiFi,
or directly by running a program on the UAV via socket. The utilization of SDK
prevents us to use our control laws to stabilize the UAV, since the drone has its own
control laws designed by Parrot.

Figure 4.29 – Quadrotor Parrot ArDrone2

We solved this problem through the work of teams from TU Delft University on
ArDrone 2 and their autopilot Paparazzi [TUDelft,]. They managed to decode the
communication protocols between the main processor of the UAV and its sensors
and motors. With these protocols, it is possible to directly control the UAV and
read the raw data from each sensor. By incorporating these protocols into our own
software framework for UAVs, we managed to replace the programs of manufacturer
by our own control laws.

The ArDrone 2 is thus mainly used for its material part, whose characteristics are:
1GHz 32 bit ARM Cortex A8 processor, 128 MB RAM, 128MB Flash, WiFi, 3 axis
accelerometer, 3 axis gyroscope, 3 axis magnetometer, Pressure sensor, Ultrasound
sensors (altitude < 6m) and 4 brushless motors. The inertial sensors are used in a
complementary filter [Mahony et al., 2008] to estimate the orientation of the UAV.

Experiments are performed in an indoor environment using Optitrack motion
capture system [Optitrack,]. The system senses the pose of UAVs at 100 Hz. This
information is sent to the UAVs through a Cisco router. Each UAV, then, knows
the poses of all UAVs in the flock and can then estimate the velocities. In all
experiments, we use the Optitrack frame of reference as our global frame I. Figure
4.30 shows the architecture of our Multiple UAVs platform.

88 CHAPTER 4. SIMULATION AND REAL-TIME RESULTS

PC Base Station GUI

Joystick

PC Optitrack
GUI

Broadcast

Router UAV1 Aboard
 Control Program

UAV2 Aboard
 Control Program

UAV3 Aboard
 Control Program

Optitrack camera

Figure 4.30 – Architecture of the experimental platform. The arrows indicate the com-
munication links between the different components. Discontinuous arrows
means occasional communications

4.4. REAL-TIME EXPERIMENTS 89

We emphasize here that our control laws are run aboard the UAVs. Moreover, our
control laws only need the relative distances and directions to the neighboring UAVs.
Since we do not have sensors that measure the relative distances to neighbors, we use
the Optitrack system as an alternative to extract relative interdistance vectors with
neighbors. Thus, we calculate the relative distances, aboard on, by using received
positions. Moreover, the aij(.) function in (3.5) is used to limit the interaction range
of UAVs.

4.4.1 Average Strategy

In this experiment, 4 UAVs perform a direct navigation scenario. The UAVs start
from their initial positions and navigate to a predefined rendezvous point (-1,1).
Figure 4.31 shows the trajectories of the 4 UAVs. Initial and final positions of UAVs
are marked by diamonds and black square, respectively.

X pose

-5 -4 -3 -2 -1 0 1 2 3 4 5

Y
 p

o
s
e

-5

-4

-3

-2

-1

0

1

2

3

4

5

Quadrotor1

Quadrotor2

Quadrotor3

Quadrotor4

Figure 4.31 – Trajectories of 4 UAVs in a direct navigation scenario using Average control
strategy

Figure 4.32 shows the interdistances between UAVs during the experiment as
well as the desired interdistance value: 2.5m. The interdistances between UAVs
converge to the desired value but not reach it. Since the average control strategy
has a "steady-state-error" problem, as seen in the simulation results, we preferred
to increase the desired interdistance in order to avoid any collision between UAVs.

90 CHAPTER 4. SIMULATION AND REAL-TIME RESULTS

Time (s)

0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n

ce
 (

m
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Dynamic of Separation Distances between Agents

d12

d13

d14

d23

d24

d34

Reference

Figure 4.32 – Interdistances between 4 UAVs in a direct navigation scenario using Average
control strategy

4.4.2 Consensus-based Flocking

In this section, we present real-time experiments of multiple-UAV flocking. We show
the results of three experiments using the control laws in (3.15) and (3.43).

In all of the following experiments, UAVs takeoff from their initial positions to
the same defined altitude rz = 1m. The desired yaw angles are set to rψ = 0 for the
whole experiment duration. The formation control law is then launched to form the
desired conformation. Finally, the UAVs land after sufficient time.

4.4.2.1 Flocking control with tuning gains

In the first experiment, we use four UAVs to form a quasi -α-lattice. We apply our
first improved control law in (3.15). The destination point is defined as the origin
of the frame I, qr = [0 0]T . In this experiment, we set Kp = 0.25, Kd = 0.3, c1 =

0.1, c2 = 0.2, ε = 0.1, h = 0.2, c = 2, the desired distance between neighbors is
d = 1.5 and the parameters a = b = 1.

Figure 4.34 shows the result of using the first complemented control law in (3.15)
in the first real-time experiment. The figure exhibits the distances between UAVs
over the time. In the experiment, the performance of this control law is improved
compared to the one in (3.14). We note, however, a steady-state error in the
interdistances between UAVs, i.e. the desired interdistances are not completely
reached. This steady-state error could be explained by the presence of continuous

4.4. REAL-TIME EXPERIMENTS 91

perturbations in the real-time experiment. One of the sources of these perturbations
is the downwash of rotor blades.

Figure 4.34 shows the trajectories of UAVs of this experiment. UAVs start at their
initial positions designated as black diamonds. Then, they start moving toward the
desired destination while they avoid collision with their neighbors. A quasi -α-lattice
is finally formed.

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

X pose

Y
 p

o
se

Quadrotor1

Quadrotor2

Quadrotor3

Quadrotor4

Figure 4.33 – Trajectories of 4 UAVs in an aggregation scenario using tuning gains control
strategy

4.4.2.2 Flocking with distributed integral control

In the second experiment, we apply our control law in (3.43). The destination
point is designated to be qr = [1 1]T . The parameters of this control law is set as
Kp = 0.25, Kd = 0.3, Ki = 0.09, c1 = 0.1, c2 = 0.2, ε = 0.1, h = 0.2, c = 2, the
desired distance between neighbors is d = 1.5 and the parameters a = b = 1.

Figure 4.35 shows the result of the second experiment using the control law (3.43).
The UAVs go toward the destination point, and the distances between neighbors
converge to the desired value. In this experiment, steady-state errors are eliminated,
thanks to the integral action in the alternative control law (3.43). The distance
between UAVs 1 and 4 is greater than d = 1.5 because this distance exceeds the
interaction range c = 2m. Figure 4.36 shows the trajectories of the UAVs navigating
to the destination point during the experiment.

92 CHAPTER 4. SIMULATION AND REAL-TIME RESULTS

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (s)

D
is

ta
n
ce

 (
m

)

Dynamic of Separation Distances between Agents

d12

d13

d14

d23

d24

d34

Reference

Figure 4.34 – Interdistances between 4 UAVs in an aggregation scenario using tuning gains
control strategy

X pose

-5 -4 -3 -2 -1 0 1 2 3 4 5

Y
 p

o
s
e

-5

-4

-3

-2

-1

0

1

2

3

4

5

Quadrotor1

Quadrotor2

Quadrotor3

Quadrotor4

Figure 4.35 – Trajectories of 4 UAVs in a direct navigation scenario using distributed
integral strategy

4.4. REAL-TIME EXPERIMENTS 93

Time (s)

0 10 20 30 40 50 60

D
is

ta
n

ce
 (

m
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Dynamic of Separation Distances between Agents

d12

d13

d14

d23

d24

d34

Reference

Figure 4.36 – Interdistances between 4 UAVs in a direct navigation scenario using dis-
tributed integral control strategy

In the third experiment, we apply the distributed integral control law on 4 UAVs.
The objective is to perform an aggregation scenario. As we can see in Figures 4.37
and 4.38, this control law achieves a collision-free aggregation scenario and ensures
precise interdistances between UAVs.

94 CHAPTER 4. SIMULATION AND REAL-TIME RESULTS

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

X pose

Y
 p

o
se

Quadrotor1

Quadrotor2

Quadrotor3

Quadrotor4

Figure 4.37 – Trajectories of 4 UAVs in an aggregation scenario using distributed integral
strategy

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (s)

D
is

ta
n
ce

 (
m

)

Dynamic of Separation Distances between Agents

d12

d13

d14

d23

d24

d34

Reference

Figure 4.38 – Interdistances between 4 UAVs in an aggregation scenario using distributed
integral control strategy

4.5. CONCLUSION 95

4.5 Conclusion

In this chapter, we show different simulation and experimental results of multiple-
UAV flocking by using our proposed control laws in the previous chapters. For the
simulation, we use a PC-based simulator of fleet of multiple UAVs. By implementing
our control laws on this simulator, we managed to show and to understand the
different properties of our control laws. Moreover, the simulator helped us to detect
drawbacks in our control laws, such as, "steady-state errors" in the interdistances
between UAVs. This important informations guided us to choose the best control
law parameters in the experimental work.

The most important properties of our control laws, we noticed in simulation
results, are the collision-free formation, the self-organization, the scalability and
the fault tolerance. The control law with distributed integral gathers all these
properties in addition to a zero-steady-state errors in the interdistances between
UAVs. On the contrary, the other control laws share the same drawback of the
imprecision of interdistances between UAVs. Moreover, we can conclude from the
several simulations of the fault-tolerant property that the distributed architecture
and the behavioral-based control used in this work are naturally fault tolerant.

Chapter 5

Conclusion and prospects

Contents

5.1 Working methodology . 97

5.2 Lessons learned . 98

5.3 Difficulties . 99

5.4 Prospects . 100

In the future, multiple UAVs will be probably widespread as smartphones
nowadays. They will be more autonomous, intelligent and cognitive, and present
in surveillance, transportation, security and defense, as well as in hobby activities.
They could serve in hospitals, police, supermarkets, zoos, and certainly in airports.
To make these dreams come true, intensive researches in System of Systems and
multiple-UAV control should be carried out. We believe that robustness, fault
tolerance, scalability and self organization are some characteristics that researchers
have to improve in multiple-UAV system of systems.

In this chapter, we conclude this thesis by reminding the methodology, the lessons
learned and their answers, and the difficulties faced during our work. Moreover, we
raise the prospects to be continued hoping them will be helpful for our future work
and for researchers.

5.1 Working methodology

The objective of this thesis is to design algorithms and techniques to perform a
real-time distributed multiple-UAV flight formation control. In the beginning, we
have started by literature review of existing works. As a result, theoretical works
have been classified and organized. This has allowed us to choose the most useful
techniques for our work that we could start with.

In a second time, algorithms have been proposed and simulated based on linear
and nonlinear models of quadrotors. In these algorithms, we have focused on the

97

98 CHAPTER 5. CONCLUSION AND PROSPECTS

aggregation and the navigation problems where a flock of multiple UAVs is self-
organized to ensure a mission. Unlike the proposed strategies in the literature, our
algorithms reduce the complexity of the control law design by proposing a unique
control law independent of the number of agents, and dependent only on a generated
trajectory issued from neighboring measurements. We also proposed a new behavior
which deals with the aggregation of UAVs from a global point of view.

Motivated by the challenges of system of systems, we spotted flocking and
consensus algorithms introduced in the literature that could overcome these
challenges. Based on these algorithms, we proposed four improved control laws
aiming at being compatible with the nonlinear model of quadrotors and experimental
works. Moreover, we provided theoretical stability analysis of the collective multiple-
UAV system using these control laws and proved their robustness in the presence of
perturbations. The control laws have been designed to be run aboard each quadrotor
in the flock. By running the control law, each quadrotor has interacted with its
neighbors to ensure a collision-free flocking.

During this work, we tested and validated our proposed control laws in simulation
and experimental platforms of Heudiasyc laboratory. For simulations, we used a PC-
based simulator of flock of multiple quadrotors. For experiments, we implemented
our control laws on ArDrone2 quadrotors, which evolved in an indoor environment
of Optitrack motion capture system.

5.2 Lessons learned

In this thesis, we sought to answer different questions raised at the beginning. After
performing this work, we believe that we can give initial answers to these questions.
In the following, we remind the raised questions and propose some answers:

1. The first raised question was, "How to control and navigate a fleet of UAVs
taking into account model nonlinearities and collision avoidance?" In fact,
controlling a fleet of UAVs was not an easy task in this work. With linear
model of UAVs, sophisticated control methods are found in the literature.
In one hand, with model nonlinearities, two solutions could be considered.
The first solution is to linearize the UAV model about its origin, and then
propose a control law for this linearized system. The second solution is to
use linearization methods, such as feedback or feedforward linearization, and
similarly apply appropriate control laws for these linearized systems. In the
other hand, collision avoidance between UAVs are solved in this thesis, either
by following an average or a sum of shifted state reference, or by using potential

5.3. DIFFICULTIES 99

functions.

2. The second question was, "What are the effects of model uncertainties and
exogenous perturbations on the System of Systems?" The answer of this
question is found in the stability analysis of the collective dynamical model of
multiple UAVs, see chapter 3. In fact, since system of systems are networked
and interactive between them, a local perturbation in one subsystem could
propagate to the overall system. This propagation of perturbations could
violate the stability of the system of systems, if this issue is not taking in
account in the control laws.

3. The third question was, "How can individuals achieve local rules in a precise
and robust way?" As seen in the simulation and experimental results, the main
drawback of the most proposed control laws in this work was the "steady-
state errors" in the interdistances between UAVs. This problem was solved by
introducing a distributed integral control law.

4. The last question was, "While a System of Systems is supposed to be scalable,
is it fault tolerant?" The distributed architecture and the behavioral-based
control structure used in this work are fault tolerant by nature, as it is shown
in the simulation and experimental results. Thus, for a SoS to be fault tolerant,
it is preferable to use these techniques. However, we believe that this question
still needs more study, since the tested cases covered only a special fault, that
is, urgent landing of one UAV in the fleet. We believe that SoS characteristics
could be improved by employing advanced fault-tolerant techniques.

5.3 Difficulties

Final results are usually seen as convenient and promising, but they hide a lot of
difficulties. In the following, we present the most important difficulties we faced
during our work:

• Communications: In our multiple-UAV system, communications were a
crucial issue. For example, to make UAVs responding to global high level
command, such as, "takeoff all UAVs", "landing all UAVs" and "Start
formation", these commands are broadcast through socket messages from one
principle UAV to the fleet. A failure in receiving these messages leads to a
failure in the mission, and sometimes leads to accidents, hence the necessity
of employing advanced fault-tolerance techniques.

100 CHAPTER 5. CONCLUSION AND PROSPECTS

• Gains tunning: In average and sum control strategies, it was relatively
easy to deploy a fleet of quadrotors in formation. In fact, it was sufficient
to ensure that the controller of each quadrotor can track a given reference,
to employ then one of these control strategies. However, with consensus-
based algorithms, gains tunning was a difficult task in the simulation and
experimental work. We had to start by tunning the gains of one quadrotor,
retuning for two and then for three quadrotors to get better results for a
number of quadrotors greater than three. Moreover, even if we have the same
type of quadrotors, we still need to tune the non flocking gains (gains to
stabilize altitude or orientation) for some quadrotors.

• Power consumption: We could conclude after a lot of experiments done
during this thesis that flocking algorithms are power consuming. A quadrotor
in a flocking test, with a battery of 1000 mAh, consumes at least 3 times the
consumption of one quadrotor in an ordinary test.

5.4 Prospects

In the following, we present some potential future research prospects in continuation
of this thesis:

• Outdoor experiment: In this work, real-time experiments were performed
in a perfect localization environment. The relative positions of quadrirotors
are obtained through fixed and centralized system "Optitrack". A more
challenging work will be to develop a fleet of multiple UAVs for outdoor
and unknown environment. Thus, for instance, we need to embed, on
each quadrotor, sensors capable of providing proprioceptive and exteroceptive
information. Examples of such sensors are a GPS, cameras or a laser
rangefinder. We believe that the test of SoS algorithms on such a system will
reveal more knowledge and questions. It is important to mention here that,
at the end of this thesis, we began a first step in this direction by working on
an image-based flocking algorithm. However, this work was not yet mature.

• Flocking of nonholonomic UAVs: In this thesis, we worked on a type
of UAVs that is considered as holonomic robots. However, developing and
testing a system of nonholonomic UAVs, like fixed-wing airplane, and taking
into account nonholonomic constraints in the flocking control, will be more
challenging.

5.4. PROSPECTS 101

• Fault-tolerant in multiple UAVs: As mentioned in this thesis, the
fault-tolerance case tested in this work does not cover all possible faults.
Communication failure, perturbations, sudden accident in one or more UAV
in the flock, etc., are problems that should encourage researchers to employ
and to develop advanced fault-tolerance techniques in multiple-UAV system
of systems.

• Obstacle avoidance: An important problem raised in UAV field is "sense
and avoid autonomously", that is for one UAV. A promising research topic
could be the navigation and obstacle avoidance of multiple UAVs.

Bibliography

[Anderson and Moore, 1990] Anderson, B. D. O. and Moore, J. B. (1990). Optimal
Control: Linear Quadratic Methods. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA.

[Antonelli et al., 2010] Antonelli, G., Arrichiello, F., and Chiaverini, S. (2010).
Flocking for multi-robot systems via the null-space-based behavioral control.
Swarm Intelligence, 4(1):37–56.

[Bakule, 2008] Bakule, L. (2008). Decentralized control: An overview. Annual
Reviews in Control, 32(1):87 – 98.

[Bellingham et al., 2002] Bellingham, J., Tillerson, M., Alighanbari, M., and How,
J. (2002). Cooperative path planning for multiple uavs in dynamic and uncertain
environments. In Proceedings of the 41st IEEE Conference on Decision and
Control, volume 3, pages 2816–2822.

[Bouabdallah et al., 2004a] Bouabdallah, S., Murrieri, P., and Siegwart, R. (2004a).
Design and control of an indoor micro quadrotor. In IEEE International
Conference on Robotics and Automation (ICRA), volume 5, pages 4393–4398.

[Bouabdallah et al., 2004b] Bouabdallah, S., Noth, A., and Siegwart, R. (2004b).
Pid vs lq control techniques applied to an indoor micro quadrotor. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), volume 3,
pages 2451–2456.

[Bouabdallah and Siegwart, 2005] Bouabdallah, S. and Siegwart, R. (2005). Back-
stepping and sliding-mode techniques applied to an indoor micro quadrotor.
In Proceedings of the 2005 IEEE International Conference on Robotics and
Automation (ICRA), pages 2247–2252.

103

104 Bibliography

[Bouabdallah and Siegwart, 2007] Bouabdallah, S. and Siegwart, R. (2007). Full
control of a quadrotor. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), California, USA, pages 153–158.

[Bouffard et al., 2012] Bouffard, P., Aswani, A., and Tomlin, C. (2012). Learning-
based model predictive control on a quadrotor: Onboard implementation and
experimental results. In IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 279–284.

[Castillo et al., 2004] Castillo, P., Dzul, A., and Lozano, R. (2004). Real-time
stabilization and tracking of a four-rotor mini rotorcraft. IEEE Transactions
on Control Systems Technology,, 12(4):510–516.

[Chiaramonti et al., 2006] Chiaramonti, M., Giulietti, F., and Mengali, G. (2006).
Formation control laws for autonomous flight vehicles. In 14th Mediterranean
Conference on Control and Automation. MED ’06, pages 1–5.

[Couzin, 2009] Couzin, I. D. (2009). Collective cognition in animal groups. Trends
in Cognitive Sciences, 13(1):36 – 43.

[Diestel, 2005] Diestel, R. (2005). Graph Theory, volume 173 of Graduate Texts in
Mathematics. Springer-Verlag, Heidelberg, third edition.

[Dimarogonas and Kyriakopoulos, 2006] Dimarogonas, D. and Kyriakopoulos, K.
(2006). A connection between formation control and flocking behavior in
nonholonomic multiagent systems. In Proceedings 2006 IEEE International
Conference on Robotics and Automation. ICRA 2006., pages 940–945.

[Erginer and Altug, 2007] Erginer, B. and Altug, E. (2007). Modeling and pd
control of a quadrotor vtol vehicle. In IEEE Intelligent Vehicles Symposium,
2007, pages 894–899.

[Formentin and Lovera, 2011] Formentin, S. and Lovera, M. (2011). Flatness-based
control of a quadrotor helicopter via feedforward linearization. In 2011 50th IEEE
Conference on Decision and Control and European Control Conference (CDC-
ECC), pages 6171–6176.

[Franchi et al., 2012] Franchi, A., Secchi, C., Ryll, M., Bulthoff, H., and Giordano,
P. (2012). Shared control : Balancing autonomy and human assistance with a
group of quadrotor uavs. IEEE Robotics Automation Magazine, 19(3):57–68.

Bibliography 105

[Fresk and Nikolakopoulos, 2013] Fresk, E. and Nikolakopoulos, G. (2013). Full
quaternion based attitude control for a quadrotor. In 2013 European Control
Conference (ECC),, pages 3864–3869.

[Ghandour et al., 2014] Ghandour, J., Aberkane, S., and Ponsart, J.-C. (2014).
Feedback linearization approach for standard and fault tolerant control: Ap-
plication to a quadrotor uav testbed. Journal of Physics: Conference Series,
570(8):082003.

[Giulietti et al., 2000] Giulietti, F., Pollini, L., and Innocenti, M. (2000). Au-
tonomous formation flight. IEEE Control Systems, 20(6):34–44.

[Godsil and Royle, 2001] Godsil, C. and Royle, G. (2001). Algebraic graph theory,
volume 207 of Graduate Texts in Mathematics. Springer-Verlag, New York.

[Guerrero and Lozano, 2012] Guerrero, J.-A. and Lozano, R. (2012). UAV flight
formation control. John Wiley-ISTE.

[Guerrero-Castellanos et al., 2011] Guerrero-Castellanos, J.-F., Marchand, N.,
Hably, A., Lesecq, S., and Delamare, J. (2011). Bounded attitude control of
rigid bodies: Real-time experimentation to a quadrotor mini-helicopter. Control
Engineering Practice, 19(8):790–797. hal-00568075.

[Guerrero Castellanos et al., 2015] Guerrero Castellanos, J. F., Rifai, H., Marchand,
N., Cruz-José, R., Mohammed, S., Guerrero Sanchez, W. F., and Mino-Aguilar,
G. (2015). Biomimetic-based output feedback for attitude stabilization of rigid
bodies: Real-time experimentation on a quadrotor. Micromachines, 6(8):993–
1022. hal-01184073.

[Guerrero Castellanos et al., 2014] Guerrero Castellanos, J.-F., Téllez-Guzmán,
J. J., Durand, S., Marchand, N., Álvarez Muñoz, J., and González-Díaz, V.
(2014). Attitude stabilization of a quadrotor by means of event-triggered nonlinear
control. Journal of Intelligent and Robotic Systems, 73:123–135. hal-00860840.

[Hespanha, 2009] Hespanha, J. P. (2009). Linear Systems Theory. Princeton Press,
Princeton, New Jersey. ISBN13: 978-0-691-14021-6.

[Hou and Fantoni, 2015] Hou, Z. and Fantoni, I. (2015). Distributed leader-follower
formation control for multiple quadrotors with weighted topology. In 10th System
of Systems Engineering Conference (SoSE), 2015, pages 256–261.

106 Bibliography

[Jamshidi, 2008] Jamshidi, M. (2008). Systems of systems engineering: principles
and applications. CRC press.

[Johnson and Kannan, 2003] Johnson, E. and Kannan, S. (2003). Nested saturation
with guaranteed real poles. In Proceedings of the 2003 American Control
Conference, Colorado, USA, volume 1, pages 497–502 vol.1.

[Jovanovic, 2004] Jovanovic, M. R. (2004). Modeling, Analysis, and Control of
Spatially Distributed Systems. PhD thesis, University of California Santa Barbara.

[Kendoul et al., 2007] Kendoul, F., Lara, D., Fantoni, I., and Lozano, R. (2007).
Real-time nonlinear embedded control for an autonomous quadrotor helicopter.
Journal of Guidance, Control, and Dynamics, 30:1049–1061.

[Khalil, 2002] Khalil, H. K. (2002). Nonlinear Systems. Prentice Hall.

[Kushleyev et al., 2013] Kushleyev, A., Mellinger, D., Powers, C., and Kumar, V.
(2013). Towards a swarm of agile micro quadrotors. Autonomous Robots, 35:287–
300.

[Lee, 2013] Lee, T. (2013). Robust adaptive attitude tracking on so(3) with
an application to a quadrotor uav. IEEE Transactions on Control Systems
Technology, 21(5):1924–1930.

[Lee et al., 2010] Lee, T., Leoky, M., and McClamroch, N. (2010). Geometric
tracking control of a quadrotor uav on se(3). In 49th IEEE Conference on Decision
and Control (CDC), pages 5420–5425.

[Lewis and Syrmos, 2012] Lewis, F. L. and Syrmos, V. L. (2012). Optimal control.
J. Wiley, New Jersey.

[Li et al., 2011] Li, Z., Hovakimyan, N., and Stipanovic, D. (2011). Distributed
multi-agent tracking and estimation with uncertain agent dynamics. In American
Control Conference (ACC), pages 2204–2209.

[Lozano, 2010] Lozano, R. (2010). Unmanned Aerial Vehicles Embedded Control.
John Wiley-ISTE Ltd.

[López-Araujo et al., 2010] López-Araujo, D., Zavala-Río, A., Fantoni, I., Salazar,
S., and Lozano, R. (2010). Global stabilisation of the pvtol aircraft with lateral

Bibliography 107

force coupling and bounded inputs. International Journal of Control, 83(7):1427–
1441.

[Madani and Benallegue, 2006] Madani, T. and Benallegue, A. (2006). Backstep-
ping control for a quadrotor helicopter. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 3255–3260.

[Mahony et al., 2008] Mahony, R., Hamel, T., and Pflimlin, J.-M. (2008). Nonlinear
complementary filters on the special orthogonal group. IEEE Transactions on
Automatic Control, 53(5):1203–1218.

[Mahony et al., 2012] Mahony, R., Kumar, V., and Corke, P. (2012). Multirotor
aerial vehicles: Modeling, estimation, and control of quadrotor. IEEE Robotics
Automation Magazine, 19(3):20–32.

[Murray, 2010] Murray, R. M. (2010). Optimization-Based Control. California
Institute of Technology.

[Ogata, 2010] Ogata, K. (2010). Modern Control Engineering. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 5th edition.

[Olfati-Saber, 2006] Olfati-Saber, R. (2006). Flocking for multi-agent dynamic
systems: algorithms and theory. IEEE Transactions on Automatic Control,
51(3):401–420.

[Olfati-Saber and Murray, 2002] Olfati-Saber, R. and Murray, R. M. (2002). Dis-
tributed cooperative control of multiple vehicle formations using structural
potential functions. In IFAC World Congress.

[Optitrack,] Optitrack. Optitrack motion capture systems. https://www.

naturalpoint.com/optitrack/.

[ParrotArdrone2,] ParrotArdrone2. http://ardrone2.parrot.com/.

[Partridge, 1982] Partridge, B. (1982). The structure and function of fish schools.
Scientific American, 246(06):114–123.

[Reynolds, 1987] Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed
behavioral model. In Computer Graphics, pages 25–34.

https://www.naturalpoint.com/optitrack/
https://www.naturalpoint.com/optitrack/
http://ardrone2.parrot.com/

108 Bibliography

[Richards and How, 2002] Richards, A. and How, J. (2002). Aircraft trajectory
planning with collision avoidance using mixed integer linear programming. In
Proceedings of the American Control Conference, volume 3, pages 1936–1941 vol.3.

[Roberson and Stilwell, 2006] Roberson, D. and Stilwell, D. (2006). Decentralized
control and estimation for a platoon of autonomous vehicles with a circulant
communication network. In American Control Conference.

[Sanahuja, 2010] Sanahuja, G. (2010). Commande et localisation embarquée d’un
drone aérien en utilisant la vision. PhD thesis, Université de technologie de
compiègne.

[Schollig et al., 2010] Schollig, A., Augugliaro, F., Lupashin, S., and D’Andrea, R.
(2010). Synchronizing the motion of a quadrocopter to music. In IEEE Inter-
national Conference on Robotics and Automation (ICRA), Anchorage, Alaska,
pages 3355–3360.

[ScienceEtVie, 2014] ScienceEtVie (2014). Science et vie. Nř 1160.

[Shi et al., 2006] Shi, H., Wang, L., and Chu, T. (2006). Virtual leader approach
to coordinated control of multiple mobile agents with asymmetric interactions.
Physica D: Nonlinear Phenomena, 213(1):51 – 65.

[Tanner et al., 2005] Tanner, H., Jadbabaie, A., and Pappas, G. (2005). Flocking in
teams of nonholonomic agents. In Kumar, V., Leonard, N., and Morse, A., editors,
Cooperative Control, volume 309 of Lecture Notes in Control and Information
Science, pages 229–239. Springer Berlin Heidelberg.

[Tanner et al., 2007] Tanner, H., Jadbabaie, A., and Pappas, G. (2007). Flocking
in fixed and switching networks. IEEE Transactions on Automatic Control,
52(5):863–868.

[Tayebi and McGilvray, 2006] Tayebi, A. and McGilvray, S. (2006). Attitude
stabilization of a vtol quadrotor aircraft. IEEE Transactions on Control Systems
Technology, 14(3):562–571.

[Teel, 1992] Teel, A. R. (1992). Global stabilization and restricted tracking for
multiple integrator with bounded control. Systems and Control Letters, 18:165–
171.

Bibliography 109

[TUDelft,] TUDelft. http://wiki.paparazziuav.org/wiki/AR_Drone_2/

getting_started.

[Valbuena Reyes and Tanner, 2015] Valbuena Reyes, L. and Tanner, H. (2015).
Flocking, formation control, and path following for a group of mobile robots.
IEEE Transactions on Control Systems Technology, 23(4):1268–1282.

[Vasarhelyi et al., 2014] Vasarhelyi, G., Viragh, C., Somorjai, G., Tarcai, N.,
Szorenyi, T., Nepusz, T., and Vicsek, T. (2014). Outdoor flocking and formation
flight with autonomous aerial robots. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3866–3873.

[Wikipedia,] Wikipedia. System: https://en.wikipedia.org/wiki/system.

[Zavala-Río et al., 2003] Zavala-Río, A., Fantoni, I., and Lozano, R. (2003). Global
stabilization of a pvtol aircraft model with bounded inputs. International Journal
of Control, 76(18):1833–1844.

[Zhang, 2006] Zhang, X. (2006). An output feedback nonlinear decentralized
controller design for multiple unmanned vehicle coordination. In American
Control Conference.

http://wiki.paparazziuav.org/wiki/AR_Drone_2/getting_started
http://wiki.paparazziuav.org/wiki/AR_Drone_2/getting_started

	PDT SAIF
	OsamahSAIF_Thesis
	Table of Contents
	List of Figures
	Publications
	Résumé
	Abstract
	Introduction
	State of the art
	Introduction
	System of Systems
	Flight Formation Control
	Formation control structures
	Leader-follower structure
	Virtual structure
	Behavioral-based structure

	Formation control architectures
	Centralized control architecture
	Distributed control architecture
	Decentralized control architecture

	Flocking in literature
	Quadrotor Modeling and Control
	Quadrotor modeling
	Quadrotor configurations
	Torques and thrust

	Quadrotor control
	General nested control loop of quadrotor
	Classification of quadrotor existing control laws

	Conclusion

	Flocking by trajectory generation
	Introduction
	Simplified dynamics of multiple UAVs
	Linear quadratic control
	Regulator problem
	Trajectory following problem

	Aggregation behavior
	Flocking by trajectory generation
	Average strategy
	Sum strategy
	Navigational behavior

	Modeling and flocking of Multiple quadrotors
	Control of quadrotor internal dynamics
	Flocking of multiple quadrotors by trajectory generation

	Simulation results
	Aggregation behavior
	Navigation

	Conclusion

	Flocking by consensus algorithms
	Introduction
	Preliminaries
	Flocking control with tuning gains
	Flocking with distributed integral control
	Robust Flocking
	Linearizing and Decoupling control
	Robust control law

	Conclusion

	Simulation and Real-Time Results
	Introduction
	Simulator of Multiple UAVs
	Simulation results
	Flocking by trajectory generation
	Sum Strategy
	Average Strategy

	Consensus-based Flocking
	Flocking control with tuning gains
	Flocking with distributed integral control

	Real-Time Experiments
	Average Strategy
	Consensus-based Flocking
	Flocking control with tuning gains
	Flocking with distributed integral control

	Conclusion

	Conclusion and prospects
	Working methodology
	Lessons learned
	 Difficulties
	Prospects

	Bibliography

