
HAL Id: tel-01461619
https://theses.hal.science/tel-01461619

Submitted on 15 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computational fluid-structure interaction with the
moving immersed boundary method

Shang-Gui Cai

To cite this version:
Shang-Gui Cai. Computational fluid-structure interaction with the moving immersed boundary
method. Mechanical engineering [physics.class-ph]. Université de Technologie de Compiègne, 2016.
English. �NNT : 2016COMP2276�. �tel-01461619�

https://theses.hal.science/tel-01461619
https://hal.archives-ouvertes.fr


 
 
 
 
 
 

Par Shang-Gui CAI 
 
 

 
 
 

 
 
 
Thèse présentée  
pour l’obtention du grade 
de Docteur de l’UTC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Computational fluid-structure interaction with the 
moving immersed boundary method 

Soutenue le 30 mai 2016 
Spécialité : Mécanique Avancée 

D2276 



Shang-Gui CAI

Computational fluid-structure interaction with

the moving immersed boundary method

Thèse présentée pour l’obtention du grade de Docteur de Sorbonne

Universités, Université de Technologie de Compiègne.

Membres du Jury :

Y. Hoarau Professeur, Université de Strasbourg Rapporteur
P. Pimenta Professeur, University of São Paulo Rapporteur
H. Naceur Professeur, Université de Valenciennes, UVHC Examinateur
J. Favier Maître de Conférences, Aix-Marseille Université Examinateur
A. Ibrahimbegovic Professeur, Université de Technologie de Compiègne Examinateur
E. Lefrançois Professeur, Université de Technologie de Compiègne Examinateur
P. Villon Professeur, Université de Technologie de Compiègne Invité
A. Ouahsine Professeur, Université de Technologie de Compiègne Directeur
H. Smaoui Chargé de Recherche, HDR, UTC-CEMERA Co-directeur



 
 
 
 
 
 
 
 

Computational fluid-structure interaction 
 

with the moving immersed boundary method 
 
 
 
 
 
 

Shang-Gui CAI 
 
 
 
 
 
 
 
 
 

Thesis submitted for the degree of Doctor  
 
 
 
 
 
 
 
 
 
 
 
 

Laboratory Roberval 
 

Sorbonne Universités, Université de Technologie de Compiègne 
 

Compiègne, France 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Defended - May 30, 2016 



I would like to dedicate this thesis to my loving family.





Acknowledgements

First of all, I would like to express my profound gratitude to my supervisor Prof.
Abdellatif OUAHSINE, for his continuous and patient guidance of my Ph.D. study
during the past three and a half years. He has been always encouraging me and
keeping me motivated along this academic journey. I am extremely thankful for the
resources he has introduced to me, which has helped me move forward greatly.
My sincere thanks goes to my co-supervisor Dr. Hassan SMAOUI, who has been
very supportive to me in developing numerical methods. I enjoyed stimulating dis-
cussions with him on fluid mechanics and mathematics. His immense knowledge
and rigorous attitude have inspired me to pursue high-quality research.
My research experience would not have been this fruitful without the help from
my laboratory members, especially, Prof. Adnan IBRAHIMBEGOVIC, Prof. Pierre
VILLON, Prof. Alain RASSINEUX, Prof. Emmanuel LEFRANCOIS and Dr. Pierre
FEISSEL, thanks to their precious and helpful comments on my research. I was
fortunate to be involved in the research group LHN, receiving very useful sugges-
tions and help from Dr. Philippe SERGENT, Dr. Nicolas HUYBRECHTS, Dr. Sami
KAIDI, Dr. Shengcheng JI, Florian LINDE, Peng DU and Hanqi ZUO.
I also would like to acknowledge the members in the Laboratory BMBI, namely
Prof. Dominique BARTHÈS-BIESEL, Dr. Anne-Virginie SALSAC and Dr. Badr
KAOUI for interesting discussions on the immersed boundary method.
Special thanks goes to Prof. Yannick HOARAU (Université de Strasbourg) for his
kind help in developing immersed boundary method and for the access of high per-
formance computing services in Strasbourg. Appreciation also goes to Prof. Her-
mann G. MATTHIES (Technische Universität Braunschweig), Dr. Julien FAVIER
(Aix-Marseille Université), Prof. Paulo PIMENTA (University of São Paulo) and
Prof. Hakim NACEUR (Université de Valenciennes et du Hainaut-Cambrésis) for
their valuable opinions.
I am grateful for the financial support provided by the China Scholarship Council
(CSC) and the UT-INSA program to study in France. The high performance com-
puting platform PILCAM2 at UTC is also greatly acknowledged. I thank all my
friends here for making my life very enjoyable during my study.
Finally, I would like to thank my family for all unconditional love and encourage-
ment in writing this thesis and in my life.





Abstract

In this thesis a novel non-body conforming mesh formulation is developed, called
the moving immersed boundary method (MIBM), for the numerical simulation of
fluid-structure interaction (FSI). The primary goal is to enable solids of complex
shape to move arbitrarily in an incompressible viscous fluid, without fitting the solid
boundary motion with dynamic meshes.
This novel method enforces the no-slip boundary condition exactly at the fluid-solid
interface with a boundary force, without introducing any artificial constants to the
rigid body formulation. As a result, large time step can be used in current method.
To determine the boundary force more efficiently in case of moving boundaries, an
additional moving force equation is derived and the resulting system is solved by
the conjugate gradient method. The proposed method is highly portable and can be
integrated into any fluid solver as a plug-in.
In the present thesis, the MIBM is implemented in the fluid solver based on the
projection method. In order to obtain results of high accuracy, the rotational incre-
mental pressure correction projection method is adopted, which is free of numerical
boundary layer and is second order accurate. To accelerate the calculation of the
pressure Poisson equation, the multi-grid method is employed as a preconditioner
together with the conjugate gradient method as a solver. The code is further paral-
lelized on the graphics processing unit (GPU) with the CUDA library to enjoy high
performance computing.
At last, the proposed MIBM is applied to the study of two-way FSI problem. For
stability and modularity reasons, a partitioned implicit scheme is selected for this
strongly coupled problem. The interface matching of fluid and solid variables is
realized through a fixed point iteration. To reduce the computational cost, a novel
efficient coupling scheme is proposed by removing the time-consuming pressure
Poisson equation from this fixed point interaction. The proposed method has shown
a promising performance in modeling complex FSI system.





Contents

Contents i

List of figures v

List of tables ix

Nomenclature xi

1 Introduction 1
1.1 Motivation and background . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 State of the art review 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Fluid governing equations . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Incompressible fluid solvers . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Non-primitive variable formulations . . . . . . . . . . . . . 7

2.3.2 Primitive variable formulations . . . . . . . . . . . . . . . . 11

2.4 Fluid-structure interaction methods . . . . . . . . . . . . . . . . . . 16

2.4.1 Boundary element method (BEM) . . . . . . . . . . . . . . 16

2.4.2 Arbitrary Lagrangian–Eulerian method (ALE) . . . . . . . 16

2.4.3 Meshfree methods . . . . . . . . . . . . . . . . . . . . . . 18

2.4.4 Extended finite element method (XFEM) . . . . . . . . . . 19

2.4.5 Overset grid/Chimera method . . . . . . . . . . . . . . . . 19

2.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Projection method for simulating incompressible fluid flow 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Derivation of the pressure Poisson equation . . . . . . . . . . . . . 24

3.3 Time discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 26

i



3.4 High order scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Projection methods . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Helmholtz-Hodge decomposition . . . . . . . . . . . . . . 29

3.5.2 First order accurate pressure-correction method . . . . . . . 30

3.5.3 Formally second order accurate pressure-correction method 31

3.5.4 Second order accurate pressure-correction method . . . . . 33

3.5.5 Issues of the projection methods . . . . . . . . . . . . . . . 35

3.5.6 Comparison with other projection methods . . . . . . . . . 36

3.5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Space discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6.1 Staggered grid . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6.2 Approximation of derivatives . . . . . . . . . . . . . . . . . 45

3.7 Implementation of boundary conditions . . . . . . . . . . . . . . . 49

3.8 Solving linear system . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8.1 Sparse matrix storage . . . . . . . . . . . . . . . . . . . . . 51

3.8.2 Linear system solvers . . . . . . . . . . . . . . . . . . . . . 53

3.8.3 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . 55

3.8.4 Parallel computing . . . . . . . . . . . . . . . . . . . . . . 57

3.9 Numerical validation . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.9.1 Taylor-Green vortices for convergence study . . . . . . . . 59

3.9.2 Kovasznay flow for stability study . . . . . . . . . . . . . . 61

3.9.3 Lid-driven cavity flow . . . . . . . . . . . . . . . . . . . . 63

3.9.4 Backward-facing step flow . . . . . . . . . . . . . . . . . . 67

3.10 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Moving immersed boundary method (MIBM) 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Mathematical formulation and discretization . . . . . . . . . . . . . 71

4.3 Evolution of immersed boundary methods . . . . . . . . . . . . . . 74

4.3.1 Continuous forcing methods . . . . . . . . . . . . . . . . . 74

4.3.2 Discrete forcing methods . . . . . . . . . . . . . . . . . . . 76

4.3.3 Non-primitive variable immersed boundary methods . . . . 84

4.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Moving immersed boundary method (MIBM) . . . . . . . . . . . . 85

4.4.1 Derivation of the moving force equation . . . . . . . . . . . 85

4.4.2 Implementation in the projection method . . . . . . . . . . 87

4.5 Interpolation techniques . . . . . . . . . . . . . . . . . . . . . . . . 90

ii



4.6 Comparison with different immersed boundary methods . . . . . . . 95

4.7 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.7.1 Convergence test . . . . . . . . . . . . . . . . . . . . . . . 98

4.7.2 Lid-driven cavity flow with an embedded cylinder . . . . . 100

4.7.3 Flow over a stationary circular cylinder . . . . . . . . . . . 103

4.7.4 In-line oscillating circular cylinder in a fluid at rest . . . . . 113

4.7.5 Transverse oscillation of a circular cylinder in a free-stream 117

4.7.6 Flow around a flapping wing . . . . . . . . . . . . . . . . . 120

4.8 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5 Modeling fluid-structure interaction with MIBM 125
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . 125

5.2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . 125

5.2.2 Immersed boundary formulation . . . . . . . . . . . . . . . 127

5.3 Coupling methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4 MIBM for strongly coupled FSI . . . . . . . . . . . . . . . . . . . 132

5.4.1 Numerical discretization . . . . . . . . . . . . . . . . . . . 132

5.4.2 Novel strongly coupled scheme . . . . . . . . . . . . . . . 134

5.5 Particulate flow modeling . . . . . . . . . . . . . . . . . . . . . . . 136

5.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.5.2 Collision model . . . . . . . . . . . . . . . . . . . . . . . . 138

5.6 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.6.1 Freely falling cylinder in a confined channel . . . . . . . . . 139

5.6.2 Freely falling and rising cylinder in an open domain . . . . 141

5.6.3 Rotating cylinder in a shear flow . . . . . . . . . . . . . . . 143

5.6.4 Rotating cylinder in a lid-driven cavity flow . . . . . . . . . 145

5.6.5 Elliptical particle sedimentation in a confined channel . . . 146

5.6.6 Flow around a rotating NACA0012 airfoil . . . . . . . . . . 148

5.6.7 Drafting-kissing-tumbling process of two settling particles . 151

5.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6 Conclusions and future work 155
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Bibliography 159

iii



Appendix A Stability analysis 175
A.1 Von Neumann stability condition . . . . . . . . . . . . . . . . . . . 175
A.2 Stability analysis for diffusion equation . . . . . . . . . . . . . . . 176

A.2.1 Explicit FTCS scheme . . . . . . . . . . . . . . . . . . . . 176
A.2.2 Implicit BTCS scheme . . . . . . . . . . . . . . . . . . . . 178

A.3 Stability analysis for convection equation . . . . . . . . . . . . . . 178
A.3.1 Explicit FTCS scheme . . . . . . . . . . . . . . . . . . . . 178
A.3.2 Explicit upwind scheme . . . . . . . . . . . . . . . . . . . 179
A.3.3 Implicit BTCS scheme . . . . . . . . . . . . . . . . . . . . 180

A.4 Stability analysis for convection-diffusion equation . . . . . . . . . 181
A.4.1 Explicit FTCS scheme . . . . . . . . . . . . . . . . . . . . 181
A.4.2 Explicit FTBSCS scheme . . . . . . . . . . . . . . . . . . 183
A.4.3 Explicit hybrid scheme . . . . . . . . . . . . . . . . . . . . 184
A.4.4 Implicit BTCS scheme . . . . . . . . . . . . . . . . . . . . 184

A.5 Stability analysis for Navier-Stokes equations . . . . . . . . . . . . 185

Appendix B Code description 187
B.1 Input file formats: XML, YAML . . . . . . . . . . . . . . . . . . . 188
B.2 Matrix manipulations and linear system solvers . . . . . . . . . . . 189
B.3 Parallel computing with GPU . . . . . . . . . . . . . . . . . . . . . 191

iv



List of figures

2.1 Mesh in Lagrangian and ALE formulations (Souli et al., 2000). . . . . 17

2.2 An illustrative example for the overset grid method (Deloze et al., 2012). 20

3.1 A schematic view of the fluid domain. . . . . . . . . . . . . . . . . . 23

3.2 Illustration of Helmholtz-Hodge decomposition. . . . . . . . . . . . . 29

3.3 The MAC staggered grid arrangement . . . . . . . . . . . . . . . . . 45

3.4 Grid stencil for u, v, p at cell (i, j) . . . . . . . . . . . . . . . . . . . 47

3.5 The matrix pattern resulting from finite difference discretization . . . 52

3.6 The computed vorticity and velocity fields of the decaying vortices
problem at t = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Temporal convergence of the decaying vortices problem . . . . . . . . 60

3.8 Spatial convergence of the decaying vortices problem. . . . . . . . . . 61

3.9 Computed streamlines of the Kovasznay flow problem. . . . . . . . . 62

3.10 Time histories of the x-component velocity L2 norm with different
time step sizes using the explicit scheme . . . . . . . . . . . . . . . . 62

3.11 Time histories of the x-component velocity L2 norm with different
time step sizes using the semi-implicit scheme . . . . . . . . . . . . . 63

3.12 Problem configuration of the lid-driven cavity flow. . . . . . . . . . . 63

3.13 Computed streamlines (left) and vorticity contours (right) at different
Reynolds number ranging from 1 to 5000 . . . . . . . . . . . . . . . 65

3.14 Comparison of velocity profiles at different Reynolds number ranging
from 100 to 5000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.15 Sketch of flow over a backward facing step. . . . . . . . . . . . . . . 67

3.16 Stream function contours at various Reynolds numbers from 100 to
1000 for the problem of flow over a backward facing step. . . . . . . . 68

3.17 Comparison of reattachment length as a function of Reynolds number 69

4.1 Illustration of the immersed boundary method. . . . . . . . . . . . . . 72

4.2 Schematic view of the immersed boundary method in a two-dimensional
computational domain Ωf . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Local velocity interpolation scheme of Fadlun et al. (2000). . . . . . . 77

v



4.4 Illustration of interpolation and spreading procedures of Uhlmann
(2005) and Kempe & Fröhlich (2012a) with a discrete delta function . 77

4.5 The lth element Xl and its associated surface ∆Vl ≈ h2 marked by a
shaded zone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Ghost-cell methodology of Mittal et al. (2008) . . . . . . . . . . . . . 82

4.7 Cut-cell immersed boundary method of Ye et al. (1999). . . . . . . . 83

4.8 Moving force coefficient matrix pattern. . . . . . . . . . . . . . . . . 87

4.9 Global structure of the moving immersed boundary method. . . . . . 89

4.10 Plots of discrete delta functions. . . . . . . . . . . . . . . . . . . . . 92

4.11 Contour of the scalar field after the immersed boundary forcing . . . . 97

4.12 Comparison of convergence between present MIBM with . . . . . . . 98

4.13 Maximum error of the velocity field u at t = 0.2 as a function of mesh
width h, for the Taylor-Green vortices problem . . . . . . . . . . . . 99

4.14 Mesh setup for the cavity flow with a fixed cylinder . . . . . . . . . . 100

4.15 Vorticity contours and streamlines of the lid-driven cavity flow with a
cylinder at Re = 1000 . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.16 Comparison of velocity profiles of the lid-driven cavity flow with a
cylinder at Re = 1000 . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.17 Sketch of the flow over a stationary circular cylinder. . . . . . . . . . 103

4.18 Definition of the characteristic wake dimensions for the steady flow
over a stationary circular cylinder. . . . . . . . . . . . . . . . . . . . 104

4.19 Streamlines, vorticity and pressure contours for the steady-state flow
around a circular cylinder . . . . . . . . . . . . . . . . . . . . . . . . 105

4.20 Drag and lift coefficients versus time for flow over a stationary cylin-
der at (a) Re = 30 and (b) Re = 40 . . . . . . . . . . . . . . . . . . . 107

4.21 Instantaneous vorticity contours of flow over a circular cylinder at (a)
Re = 100 and (b) Re = 200 . . . . . . . . . . . . . . . . . . . . . . 108

4.22 Instantaneous pressure contours of flow over a circular cylinder at (a)
Re = 100 and (b) Re = 200. . . . . . . . . . . . . . . . . . . . . . . 109

4.23 Flow variables on the immersed cylinder surface at Re = 40 and
Re = 100 as a function of the angle θ . . . . . . . . . . . . . . . . . 109

4.24 Time evolution of drag and lift coefficients for the flow over a station-
ary cylinder problem at (a) Re = 100 and (b) Re = 200. . . . . . . . 110

4.25 Instantaneous vorticity field of flow over a stationary cylinder atRe =

1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.26 Time evolution of drag and lift coefficients for the flow over a station-
ary cylinder problem at Re = 1000. . . . . . . . . . . . . . . . . . . 112

vi



4.27 Sketch of the oscillating circular cylinder in a fluid at rest. . . . . . . . 113

4.28 Comparison of the velocity profiles u (left) and v (right) at four dif-
ferent cross-sections and three phase positions . . . . . . . . . . . . . 114

4.29 Pressure and vorticity contours at four different phases . . . . . . . . 115

4.30 Comparison of the in-line force Fx in a period at Re = 100, KC = 5 . 116

4.31 Sketch of the transversely oscillating circular cylinder in free-stream. . 117

4.32 Instantaneous vorticity fields for the transversely oscillating circular
cylinder problem at Re = 185 . . . . . . . . . . . . . . . . . . . . . 118

4.33 Time history of the drag and the lift coefficients of the transversely
oscillating circular cylinder . . . . . . . . . . . . . . . . . . . . . . . 118

4.34 Influences of different discrete delta functions on the drag and lift
coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.35 Configuration for flow over a flapping wing. . . . . . . . . . . . . . . 120

4.36 Snapshots of the vorticity fields around a flapping wing at Re = 157 . 121

4.37 Time history of drag and lift coefficients for flow around a flapping
wing at Re = 157 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.1 Schematic representation of the fluid-structure interaction domain. . . 126

5.2 Fluid-structure coupling methods. . . . . . . . . . . . . . . . . . . . 129

5.3 Illustration of the monolithic approach and the partitioned approach . 130

5.4 Explicit coupling algorithm for fluid-structure interaction. . . . . . . . 131

5.5 Iterative implicit coupling algorithm for fluid-structure interaction. . . 131

5.6 Novel implicit coupling algorithm for fluid-structure interaction. . . . 135

5.7 Grid stencils of IBM for collision modeling . . . . . . . . . . . . . . 137

5.8 Collision model of Glowinski et al. (1999, 2001) . . . . . . . . . . . 138

5.9 Vorticity fields at different times t = 0.2 s, 0.4 s, 0.6 s, 0.8 s for the
freely falling cylinder in a confined channel problem. . . . . . . . . . 139

5.10 Time evolution of longitude position yc, velocity vc of the cylinder . . 140

5.11 Snapshots of vorticity fields for a freely falling cylinder in an open
domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.12 Time histories of the vertical and horizontal velocity for the freely
rising cylinder ρs/ρf = 0.99. . . . . . . . . . . . . . . . . . . . . . . 142

5.13 Sketch of the rotating cylinder in a shear flow. . . . . . . . . . . . . . 143

5.14 Pressure (left) and streamfunction (right) for a rotating cylinder in a
shear flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.15 Streamline (a) and vorticity contour (b) for the rotating cylinder in a
lid-driven cavity flow. . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.16 Computational domain of the elliptical particle sedimentation problem. 146

vii



5.17 Vorticity fields at different times . . . . . . . . . . . . . . . . . . . . 147
5.18 Particle trajectory and orientation of the elliptical particle . . . . . . . 147
5.19 Computational domain of the flow past a rotating NACA0012 airfoil. . 148
5.20 Instantaneous vorticity (a) and velocity (b) of the flow over a rotating

NACA0012 airfoil. . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.21 Time histories of the angle (a) and the angular velocity (b) of the

rotating NACA0012 airfoil. . . . . . . . . . . . . . . . . . . . . . . . 150
5.22 Computational domain of the drafting-kissing-tumbling case. . . . . . 151
5.23 Snapshots of disk positions and vorticity contours at three different

phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.24 Snapshots of the velocity fields of the sedimentation of two disks at

three different phases . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.25 Time history of vertical velocity for the drafting-kissing-tumbling case 153
B.1 Global structure of the code. . . . . . . . . . . . . . . . . . . . . . . 187

viii



List of tables

3.1 Comparison of stationary and non-stationary solvers on different grids
of 10× 10 and 20× 20 . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Comparison of Krylov subspace solvers on different grids of 100×100

and 400× 400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3 Comparison of preconditioners along with the CG solver on different

grids of 100× 100 and 400× 400 . . . . . . . . . . . . . . . . . . . 56
3.4 Time consummation and speed-up of the CPU and GPU paralleliza-

tion for solving the PPE on a 400× 400 grid . . . . . . . . . . . . . . 58
3.5 Comparison of different preconditioners in GPU parallelization with

the CUSP library . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6 Stream function, vorticity values and coordinates of primary vortex

center at different Reynolds numbers. . . . . . . . . . . . . . . . . . 66
4.1 Properties of various discrete delta functions. . . . . . . . . . . . . . 94
4.2 Comparison of the computational time and the velocity error with var-

ious immersed boundary methods. . . . . . . . . . . . . . . . . . . . 98
4.3 Comparison of vortices center positions for the proposed immersed

boundary method and the body-conforming mesh method . . . . . . . 102
4.4 Comparison of the steady-state wake dimensions and the drag coeffi-

cient for the flow over a stationary cylinder at Re = 30, 40 . . . . . . 106
4.5 Comparison of the drag, lift coefficients and the Strouhal number for

the flow around a stationary cylinder at Re = 100, 200 . . . . . . . . 110
4.6 Effects of different discrete delta functions on the drag, lift coeffi-

cients and the Strouhal number for the flow around a stationary cylin-
der at Re = 100 and 200. . . . . . . . . . . . . . . . . . . . . . . . . 111

4.7 Comparison of the drag, lift coefficients and the Strouhal number for
the flow around a stationary cylinder at Re = 1000 . . . . . . . . . . 112

4.8 Comparison of the mean, rms drag and lift coefficients for the cylinder
oscillating transversely in a free-stream. . . . . . . . . . . . . . . . . 119

5.1 The drag, lift coefficients and the Strouhal number for the freely falling
and rising circular cylinder in an open domain. . . . . . . . . . . . . . 143

ix



5.2 Terminal angular velocity at steady state for a rotating cylinder in a
shear flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.3 Vortices positions and the final angular velocity of the rotating cylin-
der in a lid-driven cavity flow . . . . . . . . . . . . . . . . . . . . . . 146

A.1 Stability conditions for different equations using different schemes. . . 185

x



Nomenclature

List of abbreviations

AB2 Second order Adams-Bashforth
ALE Arbitrary Lagrangian-Eulerian
AM Adams-Moulton
BDF Backward differentiation formula
CCS Compressed Column Storage
CFD Computational fluid dynamics
CFL Courant–Friedrichs–Lewy
CG Conjugate gradient
CN Crank-Nicolson
CRS Compressed Row Storage
DNS Direct numerical simulation
FD/DLM Fictitious domain/distributed Lagrange multiplier method
FSI Fluid-structure interaction
GAMG Geometric algebraic multi-grid
GPU Graphics processing unit
IBM Immersed boundary method
IBPM Immersed boundary projection method
IC Incomplete Cholesky
IFEM Immersed finite element method
IIM Immersed interface method
ILU Incomplete LU
MG Multi-grid
MIBM Moving immersed boundary method
MPI Message passing interface
NSE Navier-Stokes equations
PPE Pressure Poisson equation
RK Runge–Kutta

xi



List of symbols
Variables

t Time
σ Fluid stress tensor
ε Fluid strain tensor
u Fluid velocity
ρ Fluid density
p Fluid pressure
φ Fluid pseudo pressure
µ Fluid dynamic viscosity
ν Fluid kinematic viscosity
ω Vorticity
ψ Streamfunction
Ub Solid boundary velocity
F Boundary force in Lagrangian frame
f Boundary force in Eulerian frame
g Gravity vector
Re Reynolds number
St Strouhal number
KC Keulegan-Carpenter number
u∗ Fluid velocity from explicit prediction
û Fluid velocity from implicit viscous prediction
ũ Fluid velocity from immersed boundary forcing
un+1 Fluid velocity from projection
vs Solid translational velocity
ms Solid mass
ρs Solid density
Is Moment of inertial
ωs Solid angular velocity
xs Solid position vector at the interface
xc Solid gravity center position vector
r Solid position vector at the interface from the mass center
θc Solid rotational angle
n Unit normal vector
τ Unit tangent vector
εP Stiffness constant for particle-particle collision
εW Stiffness constant for particle-wall collision

xii



Operators

L Laplacian
N Convective
D Divergence
G Gradient
C Curl
R Rotation
M Moving force
T Interpolation
S Spreading

Domains

Ωf Fluid domain
Ωs Solid domain
Ω Combined fluid and solid domain
ΓN Neumann boundary
ΓD Dirichlet boundary
∂Ωi Fluid-structure interaction interface

xiii





Chapter 1

Introduction

1.1 Motivation and background

The fluid-structure interaction (FSI) problem is of considerable scientific and tech-
nological interest in a broad spectrum of disciplines, such as aerodynamics, biology,
hydrodynamics, civil engineering, etc. It occurs in a large scope of scales, ranging
from the airplanes to the microcapsules, from the ships to the blood flow in arteries.
The fundamental of FSI is the interaction between the solid structure and its internal
or surrounding fluid flow. Due to the strong non-linearity and the multidisciplinary
nature, the study of FSI problem is quite challenging.

For most FSI applications the analytical solutions are impossible to obtain, and
the experiments are generally limited in scope. Owing to the increasingly growing
powers of modern computers, numerical simulation becomes an important tool
to investigate the fundamental physics of FSI. It reduces or avoids the expensive
experiments and provides new insights into this complicated problem.

Due to such potential benefits, the development and application of numerical tech-
niques for FSI simulations have gained a lot of popularities over the past decades.
However numerical modeling of FSI problems is not an easy task. First, the motion
and the deformation of solid structures are the results of the surrounding fluid stress,
while the fluid flow in return is influenced by the solid movement. Therefore, a fully
coupled problem is formulated, which is difficult to solve. Secondly, the interface
of FSI is often complex and time-dependent. Representing such a complex interface
accurately and efficiently is also difficult.

Accuracy, robustness and efficiency are the most important characteristics to exam-
ine the numerical methods. The present thesis concentrates on a new formulation
for general FSI problems. Particular interest is devoted to the interaction between
the incompressible fluid flow with rigid solids undergoing arbitrarily large displace-
ments.

1



1.2 Objective of this thesis

The objective of this thesis is to develop a versatile numerical method for the FSI
simulations, which mainly includes

• A high order accurate fluid Navier-Stokes solver;

• An efficient method for tackling the complex moving interface;

• A strongly coupled scheme for the fluid-structure interaction;

• A parallel algorithm to enable high performance computing.

1.3 Outline of this thesis

This thesis is organized as follows:

– Chapter 2 gives a literature review of the incompressible fluid solvers and
the numerical methods for the fluid-structure interaction.

– Chapter 3 presents the projection method for the numerical solution of the in-
compressible fluid Navier-Stokes equations. High order time accurate scheme
is employed to discretize the governing equations. How to preserve this tem-
poral accuracy after the time splitting is discussed in detail. The staggered
mesh is presented to decouple the pressure and velocity in space. Efficient
linear system solvers and preconditioners are introduced for solving the dis-
cretized equations. Two parallel computing methods (CPU and GPU) are
considered to accelerate the calculations. Numerical examples are performed
in the end of this chapter to validate the current method.

– Chapter 4 is devoted to a novel implicit immersed boundary method, called
the moving immersed boundary method (MIBM), for the flows with complex
moving boundaries. The novel method is an extension of previous explicit im-
mersed boundary methods, to achieve better accuracy and higher efficiency.
To impose the desired boundary condition at the interface, an additional mov-
ing force equation is derived and solved with the conjugate gradient method
in this chapter. Comparison with previous models are made and numerical
simulations are performed to demonstrate the accuracy and the efficiency of
the proposed method.

2



– Chapter 5 presents a partitioned strongly coupled scheme for the fluid-structure
interaction. The fluid Navier-Stokes equations are linked to the rigid body
motion equations via the moving immersed boundary method. This coupling
is done implicitly through a fixed-point iteration. To save computational time,
a new coupling scheme is proposed to prevent from solving the pressure
Poisson equation repeatedly at each time step. The advantage of current par-
titioned strongly coupled method is highlighted. Numerous simulations with
simple and complex solid geometries are performed to validate the proposed
method.

– Chapter 6 gives some conclusions and suggestions for the future work.

3





Chapter 2

State of the art review

2.1 Introduction

This chapter is dedicated to a literature overview of the numerical methods related
to this thesis, which consists of two main topics:

• Numerical simulation of incompressible fluid flows. The fluid solvers re-
viewed here are classified into two groups: the primitive variable formu-
lation and the non-primitive variable formulation. The first group includes
the penalty method, the artificial compressibility method and the SIMPLE-
type methods. The second group contains the streamfunction-vorticity for-
mulation, the velocity-vorticity formulation and the lattice Boltzmann method
(LBM).

• Numerical solution of fluid-structure interactions. Five different methods
are discussed, namely the boundary element method (BEM), the arbitrary
Lagrangian-Eulerian method (ALE), the meshfree methods, the extended fi-
nite element method (XFEM) and the overset grid/Chimera method.

2.2 Fluid governing equations

To begin with, we will derive the governing equations for the fluid flow. The fluid
motion respects the Newton’s law. Under the continuum assumption the fluid flow
is governed by the Navier-Stokes equations (NSE), which read

∂

∂t
(ρu) +∇ · (ρu⊗ u) = ∇ · σ (2.1a)

∂ρ

∂t
+∇ · (ρu) = 0 (2.1b)

where u(x, t) is the fluid velocity vector, ρ the fluid density,σ the fluid stress tensor.
Here ⊗ designates the tensor product. (2.1a) and (2.1b) represent the conservation

5



of momentum and mass respectively. Under the Stokes assumption for a Newtonian
fluid, the fluid stress tensor is given by

σ = (−p+ λ∇ · u)I + 2µε (2.2)

where p designates the pressure, µ the dynamic viscosity, λ the bulk viscosity and I

the identity tensor. The strain tensor ε is written as

ε =
1

2
(∇u + (∇u)T) (2.3)

For the incompressible fluid (ρ = const), the governing equations become

∂u

∂t
+∇ · (u⊗ u) = −1

ρ
∇p+ ν∇2u (2.4a)

∇ · u = 0 (2.4b)

where ν = µ/ρ is the kinematic viscosity. This form of NSE is usually termed as
the primitive variable formulation, namely with the velocity u and the pressure p.

For studying physical problems in different scales, the aforementioned equations
are normalized to a dimensionless form. Considering L, U the reference length and
velocity, we have the following dimensionless quantities

x∗ =
x

L
, u∗ =

u

U
, t∗ =

t

L/U
, p∗ =

p

ρU2
(2.5)

Substituting these dimensionless variables into (2.4), we obtain(
U

L/U

)
∂u∗

∂t∗
+

(
U2

L

)
∇ · (u∗ ⊗ u∗) = −

(
ρU2

ρL

)
∇p∗ +

(
νU

L2

)
∇2u∗ (2.6a)(

U

L

)
∇ · u∗ = 0 (2.6b)

which can be rearranged to

∂u∗

∂t∗
+∇ · (u∗ ⊗ u∗) = −∇p∗ +

1

Re
∇2u∗ (2.7a)

∇ · u∗ = 0 (2.7b)

where Re = UL/ν designates the Reynolds number. By assuming that the problem
is appropriately scaled, the subscript is dropped for convenience. Therefore, the

6



non-dimensional incompressible viscous fluid NSE is written as

∂u

∂t
+∇ · (u⊗ u) = −∇p+

1

Re
∇2u (2.8a)

∇ · u = 0 (2.8b)

or in a non-conservative form as

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u (2.9a)

∇ · u = 0 (2.9b)

Directly solving the above NSE is very difficult for the following reasons:

• The equations are no-linear;

• There is no explicit equation for the pressure;

• The pressure and the velocity are coupled through the continuity (incompress-
ibility or divergence-free) condition (2.9b);

• The solution of the pressure is not unique and is determined up to an additive
constant, since the pressure presents itself in the momentum equation (2.9a)
in a gradient form (Gresho & Sani, 1987; Gresho, 1991).

2.3 Incompressible fluid solvers

2.3.1 Non-primitive variable formulations

Considering the difficulties in solving the NSE (2.9) directly, formulations that au-
tomatically satisfy the divergence free condition (2.9b) are favored in the literature.

2.3.1.1 Streamfunction-vorticity formulation

In the streamfunction-vorticity method, we apply the curl operator to the NSE (2.9a)

∇× (
∂u

∂t
+ u · ∇u) = ∇× (−∇p+ ν∇2u) (2.10)

then the vorticity transport equation (VTE) is obtained

∂ω

∂t
+ u · ∇ω = ν∇2ω (2.11)

7



In two dimensions, the vorticity ω is a scalar field, defined by

ω = ∇× u =
∂v

∂x
− ∂u

∂y
(2.12)

For satisfying the divergence-free condition automatically, the streamfunction ψ is
introduced

∂ψ

∂y
= u,

∂ψ

∂x
= −v (2.13)

Substitution of (2.13) into (2.12) yields an elliptic equation for the streamfunction

∇2ψ = −ω (2.14)

As a consequence, the pressure has been eliminated as a dependent variable com-
pletely. The resulting two equations (2.14) and (2.11) are coupled through the ve-
locity, which is actually the derivative of the streamfunction ψ.

The solution is then as follows. At each time step, given the initial velocity field, we
can obtain the initial vorticity using (2.12). With appropriate boundary conditions,
we advance the vorticity transport equation (2.11). Once the vorticity is calculated,
we update the streamfunction by solving the Poisson equation (2.14). The velocity
field can be obtained by the definition of streamfunction (2.13). If necessary, the
pressure can still be recovered.

The streamfunction-vorticity method is very attractive for two-dimensional simu-
lations, since it reduces the number of variables from three (u, v, p) to two (ψ, ω).
But its extension to three-dimension can lose this advantage. In three dimensions,
the vorticity and streamfunction become three-component vectors. This requires six
partial differential equations instead of four in the primitive variable formulation.

Moreover, the boundary conditions in the streamfunction-vorticity formulation are
not straightforward compared to the primitive variable formulation. For complicated
geometries, the vorticity at sharp corners is singular, which makes its evaluation
very difficult. Another problem with this formulation lies in the Poisson equa-
tion of the streamfunction. The value of the streamfunction at solid or symmetric
boundaries can be calculated only if the velocity is known, which however in return
depends on the streamfunction (Gresho, 1991; Ferziger & Peric, 2002; McDonough,
2007).

8



2.3.1.2 Velocity-vorticity formulation

Another method using the vorticity transport equation to solve NSE (2.9) is the
velocity-vorticity formulation, which can be summarized as

∂ω

∂t
+ u · ∇ω = ν∇2ω (2.15a)

ω = ∇× u (2.15b)

∇2u = −∇× ω (2.15c)

where the last equation is a Poisson equation for the velocity, which is obtained
by taking the curl to the second equation and using the identity ∇2u = ∇(∇ ·
u)−∇×∇×u along with incompressibility condition (2.9b). This formulation is
usually discretized in a Lagrangian frame in the particle (vortex) method (Chorin,
1973; Koumoutsakos & Leonard, 1995; Cottet & Koumoutsakos, 2000). Except for
the streamfunction, this formulation inherits other drawbacks of the streamfunction-
vorticity formulation.

2.3.1.3 Lattice Boltzmann method (LBM)

Instead of dealing with macroscopic Navier-Stokes equations, the lattice Boltzmann
method (LBM) is based on mesoscopic kinetic equations. LBM was originated
from the Ludwig Boltzmann’s kinetic theory. The essential idea is that the fluids
are considered as a collection of small particles moving with random motions. The
momentum and energy exchange are accomplished through particle streaming and
billiard-like collision. This process is governed by the Boltzmann transport equation

∂f

∂t
+ ξ · ∇f = Ω(f) (2.16)

where f(x, t) represents the particle distribution function, ξ the particle velocity
and Ω(f) the collision operator which is responsible for the rate of change of the
particle distribution. LBM simplifies this idea by reducing the number of particles
and confining them to the lattice nodes. The lattice Boltzmann equation (LBE) is
written as

fi(x + ei∆t, t+ ∆t) = fi(x, t) + Ωi (2.17)

where fi represents the particle density distribution function along ith direction and
ei is the discrete velocity. The lattice speed is defined as c = ∆x/∆t, where ∆x

and ∆t are the space and time increments respectively.

The macroscopic fluid variables, such as the density ρ and momentum ρu, can be

9



calculated at each node by

ρ =
∑
i

fi, ρu =
∑
i

fiei (2.18)

The pressure is computed directly from the density by the isothermal equation of
state

p = c2
sρ (2.19)

The fluid kinematic viscosity ν is recovered by

ν =
2τ − 1

6

∆x2

∆t
(2.20)

LBM is found very efficient in fluid flow simulations. This is mainly due to the
fact that it does not involve the pressure Poisson equation and the pressure is re-
covered by the equation of state. The flow is simply simulated by the streaming
and collision processes. This explicit time scheme makes it ideal for parallel com-
puting. The LBM has been successfully implemented in the commercial software
(e.g. PowerFlow, XFlow) and open source libraries (e.g. Palabos, OpenLB) for real
applications.

However, owing to the fact that LBM is a physically based method, it contains
some compressible effects in incompressible fluid flow simulations. It should also
be pointed out that the lattice Boltzmann equation can recover the incompressible
Navier-Stokes equations using the Chapman–Enskog expansion to the second order
in space and time (Chen & Doolen, 1998) with the following condition

Ma =
umax

c
� 1 (2.21)

where Ma is the Mach number and umax is the maximum fluid velocity.

Moreover, the boundary and initial conditions in LBM are treated differently from
the Navier-Stokes based methods, since the primitive variable in LBE is the particle
distribution function. The fluid density and velocity can be determined uniquely
from this distribution function but not vice versa. How to transform the initial and
boundary conditions from macroscopic variables to particle distribution functions
is a central issue in LBM developments. Accurate initial and boundary conditions
are crucial in LBM for simulating fluid flows (Guo & Shu, 2013).

10



2.3.2 Primitive variable formulations

The fluid solvers using the u − p formulation do not have the shortcomings of the
non-primitive variable formulations and thus are summarized here.

2.3.2.1 Penalty method

Considering that the pressure is not included in the continuity equation and only
appears in the momentum equation in a gradient form. There is no unique solution
for the pressure field and it is solved up to an additive constant. To overcome these
difficulties, the penalty method introduces a small term to contain the pressure in
the continuity equation (Témam, 1968), namely

εp+∇ · u = 0 (2.22)

where ε is an artificial small constant. Hence the pressure is computed by

p = −1

ε
∇ · u (2.23)

Substituting (2.23) into (2.9a) yields an equation for the velocity

∂u

∂t
+ u · ∇u =

1

ε
∇(∇ · u) +

1

Re
∇2u (2.24)

So one can solve (2.24) for the velocity and compute the pressure afterwards from
(2.23).

The penalty formulation can only recover to the original NSE when ε approaches
zero, otherwise the continuity equation is violated. Moreover, the appropriate value
of ε is not obvious. In practice it is chosen as small as numerically possible, but too
small value can make the system ill-conditioned.

2.3.2.2 Artificial compressibility method

The artificial compressibility method, first proposed by Chorin (1967), is very simi-
lar to the penalty method, which adds a time derivative of pressure to the continuity
equation

1

β

∂p

∂t
+∇ · u = 0 (2.25)

where β = ρc2. Here ρ, c designate the fluid density and the speed of sound
respectively. Larger value of β means that the fluid is more incompressible, but
too large β can make the equations very stiff numerically.

11



The two equations (2.9a) and (2.25) are advanced explicitly in time in Chorin
(1967). Explicit scheme is easy to be implemented but places a severe restriction
on the size of the time step. Since the time step in this case is limited by the inverse
of c2, for nearly incompressible flows (c → ∞) only an extremely small time step
is allowed. Since the artificial compressibility method is intended for steady flows,
implicit method should be employed and the resulting linear system can be solved
by iterative methods.

2.3.2.3 SIMPLE-type methods

The SIMPLE-type methods, such as SIMPLE, SIMPLER, SIMPLEC, PISO and
others, are frequently used in the commercial and open source software (e.g. FLU-
ENT, CFX, OpenFOAM, etc.). The fundamental idea of the SIMPLE-type methods
is using a predictor-corrector procedure. Although SIMPLE was initially aimed for
steady flow and PISO was originally used for unsteady compressible flow, they can
be extended to both steady and unsteady incompressible flow simulations. Follow-
ing Ni & Abdou (2004), the NSE is discretized in one cell as follows(

1

∆t
I + An

P

)
un+1
P =

∑
M

An
Mun+1

M −GP (pn+1) + Sn (2.26a)

DPu
n+1
P = 0 (2.26b)

where the superscript n+ 1 and n represent the current time level and the past time
level respectively. The subscript M denotes the neighbour nodes surrounding the
pole node P . GP and DP represent the gradient and divergence operators associ-
ated with the node P respectively. The explicit terms in the discretized momentum
equation, including the explicit temporal term unP/∆t, are incorporated into Sn.
The coefficient An contains the contribution of the implicit terms (The superscript
n indicates the contribution from the linearly implicit convection un · ∇un+1). For
steady flow simulations, the temporal term un+1

P /∆t is dropped in (2.26a).

(i) SIMPLE algorithm

The algorithm of SIMPLE (Semi-Implicit Method for Pressure Linked Equations)
was originally proposed by Patankar & Spalding (1972). Given a guessed pressure
field p∗, it predicts a velocity field by(

1

∆t
I + An

P

)
u∗P =

∑
M

An
Mu∗M −GP (p∗) + Sn (2.27)

12



By subtracting (2.27) from (2.26a), a velocity difference equation is then acquired(
1

∆t
I + An

P

)(
un+1
P − u∗P

)
=
∑
M

An
M

(
un+1
M − u∗M

)
−GP (p′) (2.28)

Donate u′P = un+1
P − u∗P , p′ = pn+1 − p∗ the velocity and pressure corrections,

therefore (
1

∆t
I + An

P

)
u′P =

∑
M

An
Mu′M −GP (p′) (2.29)

The main approximation of the SIMPLE algorithm is neglecting the term
∑

M An
Mu′M

in (2.29). By applying the continuity condition (2.26b) to (2.29), a pressure correc-
tion equation is then obtained

DP

[
(I + An

P∆t)−1GP (p′)
]

=

(
1

∆t
+ An

P

)
DPu

∗
P (2.30)

Once the pressure correction equation is solved, the velocity and pressure are cor-
rected by

u′P = −∆t(I + An
P∆t)−1GP (p′) (2.31)

pn+1 = p∗ + p′ (2.32)

un+1
P = u∗P + u′P (2.33)

Owing to the omission of neighbouring term, un+1 is not divergence-free with just
one single correction. Thus this predictor-corrector procedure is repeated at each
time step with (2.27), (2.30), (2.31), (2.32), (2.33) by setting p∗ = pn+1 at the end
of each sub-iteration until the convergence is achieved.

It should be noted that the pressure correction equation (2.30) in SIMPLE algo-
rithm is susceptible to divergence (Versteeg & Malalasekera, 2007). A remedy is
to use under-relaxation for this iterative process. However the optimum choice of
the under-relaxation factor is ad hoc and depends on the flow. Too large value may
lead to oscillation or even divergence. If the value is overly small, the convergence
becomes extremely slow.

(ii) SIMPLER algorithm

Considering that the omission of the term
∑

M An
Mu′M in the SIMPLE algorithm

requires under-relaxation to ensure the convergence, Patankar (1980) later proposed
the SIMPLER (SIMPLE-Revised) algorithm. In this improved version, a pressure
equation is used instead of the pressure correction equation. But the velocity cor-
rection is retained for correcting the velocity.

13



To illustrate the SIMPLER algorithm, the momentum equation (2.26a) is rearranged
as

un+1
P = ∆t (I + An

P∆t)−1

(∑
M

An
Mun+1

M + Sn

)
−∆t (I + An

P∆t)−1 GP (pn+1)

(2.34)

Given a guessed field u∗, a velocity is predicted to

ûP = ∆t (I + An
P∆t)−1

(∑
M

An
Mu∗M + Sn

)
(2.35)

Applying the incompressibility condition (2.26b) to (2.34) yields an equation of the
pressure

DP

[
(I + An

P∆t)−1GP (pn+1)
]

=
1

∆t
DP ûP (2.36)

Therefore the velocity is corrected by

u′P = −∆t(I + An
P∆t)−1GP (pn+1) (2.37)

un+1
P = ûP + u′P (2.38)

Since ûP is estimated by u∗M not un+1
M in (2.36), this predictor-corrector procedure

needs to be repeated at every time step until convergence with (2.35), (2.36), (2.37),
(2.38) by setting u∗ = un+1 at the end of each sub-iteration.

(iii) SIMPLEC algorithm

The SIMPLEC (SIMPLE-Consistent) algorithm introduced by Van Doormaal &
Raithby et al. (1984) follows the same steps as the SIMPLE algorithm. But instead
of omitting the terms

∑
M An

Mu′M in the derivation of the pressure correction equa-
tion, SIMPLEC approximates them with

∑
M An

Mu′P , namely(
1

∆t
I + An

P −
∑
M

An
M

)
u′P = −GP (p′) (2.39)

Applying the incompressibility condition (2.26b) gives

DP

[
(I + An

P∆t−
∑
M

An
M∆t)−1GP (p′)

]
=

1

∆t
DPu

∗
P (2.40)

Once the pressure correction equation is solved, the velocity correction is obtained

14



by using

u′P = −∆t

(
I + An

P∆t−
∑
M

An
M∆t

)−1

GP (p′) (2.41)

The velocity and pressure are updated by

pn+1 = p∗ + p′ (2.42)

un+1
P = u∗P + u′P (2.43)

Again this procedure is iterated for convergence at each time step, namely repeating
(2.27), (2.40), (2.41), (2.42), (2.43) with p∗ = pn+1 at the end of every sub-iteration.

(iv) PISO algorithm

Contrary to previous SIMPLE, SIMPLER, SIMPLEC methods, the PISO algorithm
(Pressure Implicit with Split Operator) originally developed by Issa (1985) is non-
iterative and aimed for transient flows. At every time step, the PISO algorithm only
involves one predictor step and two corrector steps.

In PISO method, the same predictor is used as in the SIMPLE method, for predicting
the velocity by a guessed pressure field. The first corrector follows

1

∆t
u∗∗P =

∑
M

An
Mu∗M −GP (p∗) + Sn (2.44)

A new pressure is determined such that the intermediate velocity is divergence-free
DPu

∗∗
P = 0. The corresponding pressure p∗ then is

DPGP (p∗) = DP

[∑
M

An
Mu∗M + Sn

]
(2.45)

The PISO method enhances the SIMPLE method with a further corrector step

1

∆t
u∗∗∗P =

∑
M

An
Mu∗∗M −GP (p∗∗) + Sn (2.46)

By enforcing DPu
∗∗∗
P = 0, the pressure p∗∗ is calculated by

DPGP (p∗∗) = DP

[∑
M

An
Mu∗∗M + Sn

]
(2.47)

The actual realization of the PISO algorithm follows (2.27), (2.45), (2.44), (2.47)
and (2.46) at each time step without repetition. Issa (1985) indicated that two cor-

15



rector steps are sufficient for approximating the final fields with pn+1 = p∗∗ and
un+1 = u∗∗∗, since the splitting errors for the velocity and pressure are of O(∆t4)

and O(∆t3) respectively.
Due to its non-iterative feature, the PISO algorithm is more efficient than the SIM-
PLE, SIMPLER and SIMPLEC methods for transient flows. But the time step size
should be kept small to maintain stability, since it is not a fully implicit method.
A combined PIMPLE (merged PISO-SIMPLE) algorithm, is promoted in the open-
FOAM library in order to enlarge the time step.

2.4 Fluid-structure interaction methods

2.4.1 Boundary element method (BEM)

The boundary integral method or boundary element method (BEM) provides an
efficient numerical tool of high precision for solving linear homogeneous partial
differential equations using Greens’ functions (Pozrikidis, 1992, 2002). Instead of
discretizating the governing equations on the whole physical domain, the BEM
formulates the equations into a boundary integral form and only solves for the
boundary distribution of the unknown function or one of its derivative. As a result,
the BEM decreases the geometric dimension of the physical problem by one and
consequently reduces the number of unknowns. The BEM is widely used in the
modeling of capsule motions in flow with very small Reynolds number. However,
the method is only valid for infinite and semi-infinite domains and for flows where
the inertial effects are negligible, i.e. Stokes flow. Therefore, it is extremely difficult
to be applied to complicated geometries at moderate and high Reynolds number
flow regime.

2.4.2 Arbitrary Lagrangian–Eulerian method (ALE)

For complicated flows, one can discretize the Navier-Stokes equations directly in
the full physical space and solve them with sophisticated techniques, such as the
finite element method, the finite volume method, etc.
The coordinate system is commonly described with two formulations, i.e. the La-
grangian description and the Eulerian description. In the Lagrangian formulation,
the coordinate system moves with the fluid. Thus it is very easy to track the material
interface. However it is essentially used for closed domains. Otherwise, any fluid
particle quitting the domain should be replaced by a new one (Lefrançois & Bouf-
flet, 2003). Another drawback of the purely Lagrangian method is that it suffers a

16



severe mesh distortion in the computational domain. The excessive mesh distortion
problem can be easily handled in the Eulerian formulation, where the coordinate
system is stationary and the fluid particles pass through a fixed region of space. The
major disadvantage of the purely Eulerian method is that it is unable to define sharp
interfaces.

The arbitrary Lagrangian–Eulerian (ALE) method provides a hybrid description of
the purely Lagrangian method and the purely Eulerian method (Hu et al., 1992; Hu,
1996; Hu et al., 2001). The coordinate system in ALE method is associated with
a moving imaginary mesh, allowing a smooth transition between the Lagrangian
method and the Eulerian method. ALE method enables us to use the Lagrangian
method in the zones where the mesh motion is small and to apply the Eulerian
method in the zones where it is not possible for the mesh to follow the fluid mo-
tion (see Figure 2.1 for example, where the ALE mesh undergoes less distortions
than the Lagrangian mesh). The unsteady incompressible NSE in an ALE frame of
reference is written as

∂u

∂t
+ (u− um) · ∇u = −∇p+

1

Re
∇2u (2.48a)

∇ · u = 0 (2.48b)

where um represents the imaginary mesh velocity.

(a) Lagrangian formulation (b) ALE formulation

Figure 2.1: Mesh in Lagrangian and ALE formulations (Souli et al., 2000).

17



Many successful FSI applications with the ALE method can be found in Souli et

al. (2000), Duarte et al. (2004) and Kassiotis et al. (2011). However establishing
a body-fitted grid of high quality is not an easy task, especially for the structured
mesh. The unstructured mesh is much easier to fit the complex geometries compared
to the structured one. This process requires the user’s experience and usually takes
most of the Computational Fluid Dynamic (CFD) time.

This body-conforming mesh method hits a bottleneck when applied to FSI prob-
lems, as the solid boundary changes over time. User intervention must be eliminated
and the automatic meshing is sought. For small geometrical changes, the deforming
mesh method is often adopted by moving mesh points to accommodate the bound-
ary motion. However for significant shape changes, simple mesh motion will lead
to extremely twisted meshes and finally breaks down the calculation. In this case
the mesh topology, resolution and connectivity should be adapted (Jasak, 2009).
This can be realised by re-meshing along with data mapping. The data mapping
is used for transferring the flow fields from the old mesh to the new one, which
however introduces numerical errors. Frequent re-meshing is certainly undesirable
since it slows down the computation. Even though the ALE approach reduces the
mesh distortion compared to the purely Lagrangian method, it is still difficult to
preserve the mesh quality when the solid boundary undergoes large displacements
or deformations.

2.4.3 Meshfree methods

The meshfree (or meshless) methods circumvent the mesh distortion problems by
discretizating the computational domain with only a set of nodal points without any
connections between nodes. The first meshfree method is introduced by Gingold
& Monaghan (1977) and Lucy (1977), called the smoothed-particle hydrodynamics
(SPH) method. Later other variants emerged such as the diffuse element method
(DEM) (Nayroles et al., 1992), the reproducing kernel particle method (RKPM)
(Liu et al., 1995a,b), the partition of unity method (PUM) (Babuska & Melenk,
1997), the element free Galerkin method (EFGM) (Belytschko et al., 1994), etc.

The SPH method was initially developed for astrophysical problems and later ex-
tended to FSI problems. Since the SPH method describes the fluid motion in a
Lagrangian framework, it is therefore very easy to simulate the FSI problems with
the free surface (Antoci et al., 2007; Canelas et al., 2015). The SPH method has
been implemented in the open source software SPHysics and the GPU-accelerated
library DualSPHysics (Crespo et al., 2015). Successful applications can be found

18



towards the simulation of wave impact on the coastal structures (Altomare et al.,
2015).

However the meshfree methods are not always superior to the mesh-based methods.
First, the imposition of essential (Dirichlet) boundary conditions is quite difficult for
meshfree methods, since they lack Kronecker delta property. Incorrect treatment
may degrade the convergence. Improvements can be made by using the penalty
method, Lagrange multiplier method, the augmented Lagrange multiplier method
and the Nitsche’s method. Moreover the calculation in meshfree methods is gen-
erally much slower than that in the mesh-based methods (Li & Liu, 2002; Fries &
Matthies, 2004; Nguyen et al., 2008; Monaghan, 2012).

2.4.4 Extended finite element method (XFEM)

The extended finite element method (XFEM) was initially developed by Belytschko
and co-workers (Belytschko & Black, 1999; Moës et al., 1999) for modeling crack
growth. The XFEM method enriches the shape functions to encompass the dis-
continuities, consequently alleviating the computational costs and projection errors
associated with re-meshing. It has been successfully extended to simulate fluid-
structure interaction problems (Wagner et al., 2001; Gerstenberger & Wall, 2008).
The XFEM relies on one specific space discretization, however the finite volume
discretization is more frequently used in CFD than the finite element method for the
reason of conservation properties and stabilities.

2.4.5 Overset grid/Chimera method

The overset grid method or Chimera method was pioneered by Benek et al. (1983)
and has subsequently been extended to various applications (Deloze et al., 2012;
Li et al., 2012; Shen et al., 2015). The overset grid method decomposes the com-
plex geometrical configuration into a set of simple, overlapping subdomains, such
that a boundary-conforming mesh can be established very easily on each subdo-
main, as shown in Figure 2.2. Consequently, the governing equations are solved
independently on each subdomain and the subdomains are connected through the
specification of interfacial boundary conditions.

The overset grid method is powerful since it allows for efficient clustering grids near
solid walls. This facilitates resolving the very thin boundary layers at high Reynolds
number. However a major difficulty in the implementation of overset grid method is
to specify boundary conditions for all flow variables at interfaces between adjacent
subdomains. Interpolations are generally used but special attention should be paid

19



Overset grid
HHH

HHj

Background grid�

Figure 2.2: An illustrative example for the overset grid method (Deloze et al., 2012).

to the global conservation of the flow quantities (Tang et al., 2003). Moreover, body
fitted grids are still used in the overset grid method. This is clearly inconvenient
for the cases with deforming bodies, where deforming-mesh and re-meshing are
required.

2.5 Concluding remarks

In this chapter, some principal methods have been reviewed towards the numerical
simulation of incompressible fluid flows and the fluid-structure interactions.

In incompressible fluid flow simulations, the major difficulty is that the pressure
and the velocity are coupled by the continuity condition. The primitive variable for-
mulations decouple the pressure and the velocity, by either violating the continuity
equation (the Penalty method and the artificial compressibility method) or iterating
the two fields (the SIMPLE, SIMPLER, SIMPLC methods). The non-primitive
variable formulations are very fast, since the pressure and the velocity have already
been decoupled before they are solved. But the imposition of boundary conditions
is not quite straightforward and sometimes difficult. In Chapter 3 the non-iterative
projection method will be presented for the pressure-velocity decoupling, which is
very efficient and does not contain any artificial constant.

For the fluid-structure interaction simulations, the BEM is highly accurate and ef-
ficient but only for Stokes flows and specific domains. The body-conforming mesh
method, ALE, can be applied to Navier-Stokes equations and general domains.
However it is limited to small displacements and deformations due to the mesh
distortion. The meshfree methods circumvent the mesh distortion difficulty but they
have problems of their own. The XFEM is confined to one space discretization,

20



thus it lacks generality. The overset grid/Chimera method is suitable for rigid body
simulations at high Reynolds number, but it is difficult to ensure the conservation
of flow quantities between adjacent meshes. In Chapter 4, a non-body conforming
mesh method, the moving immersed boundary method (MIBM), will be proposed
to simulate Navier-Stokes flows in general domains with arbitrary solid motions.

21





Chapter 3

Projection method for simulating
incompressible fluid flow

3.1 Introduction

In this chapter we will present the projection method for the pressure-velocity
decoupling in the numerical simulation of incompressible fluid flows.
The projection method splits the Navier-Stokes equations into two independent
equations for the pressure and the velocity and solves them separately. Whereas the
overall time accuracy could be decreased due to this time splitting. Various methods
will be presented in detail to the recovery of original time accuracy.
The time-discrete equations are then discretized on a staggered mesh in space. We
will compare different solvers for the solution of the resulting systems. The Parallel
computing is also considered in order to accelerate the calculation.

ΓNΓD Ω

∂Ω = ΓN ∪ ΓD

Dirichlet boundary Neumann boundary

Figure 3.1: A schematic view of the fluid domain.

To begin with, we recall the incompressible Navier-Stokes equations

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u (3.1a)

∇ · u = 0 (3.1b)

u|Γ = 0 (3.1c)

u(t = 0) = u0 (3.1d)

where initial and boundary conditions are assigned to the equations in order to close
the mathematical problem. We donate Ω ⊂ Rd (d = 2, or 3) the fluid domain and its

23



boundary Γ = ΓN ∪ ΓD = ∂Ω, as shown in Figure 3.1. For simple discussion, here
a homogeneous Dirichlet boundary condition (ΓN = ∅) is assumed for the velocity.

3.2 Derivation of the pressure Poisson equation

A mathematical observation towards the NSE (3.1) is that the pressure plays as
a Lagrange multiplier to enforce the incompressibility (or continuity, divergence-
free) constraint (3.1b) on the velocity field, since the continuity equation does not
contain the pressure explicitly. To derive an equation for the pressure, we apply
the divergence operator to (3.1a). Using the incompressibility condition (3.1b), the
pressure Poisson equation (PPE) is obtained

∇2p = −∇ · (u · ∇u) (3.2)

However, the boundary condition for the derived PPE is rather ambiguous. Taking
the inner product of (3.1a) with the unit normal vector n and the tangent vector τ at
Γ, we obtain

∂p

∂n
|Γ =

1

Re
n · ∇2u or

∂p

∂τ
|Γ =

1

Re
τ · ∇2u (3.3)

So both the Dirichlet and Neumann boundary conditions seem plausible for the
pressure. For the most natural choice with the Neumann boundary condition, it is
difficult to enforce this condition accurately and maintain the consistency between
this condition with the PPE in a discrete setting (E & Liu, 2003).

Moreover, solely replacing (3.1b) with this PPE does not result in a system equiva-
lent to NSE (3.1). Subtracting (3.2) from the divergence of (3.1a) gives

∇ ·
(
∂u

∂t
− 1

Re
∇2u

)
= 0 (3.4)

After commuting the operator, we obtain a transient equation for Θ ≡ ∇ · u

∂Θ

∂t
− 1

Re
∇2Θ = 0 (3.5)

As indicated by Gresho & Sani (1987) and Johnston & Liu (2004), to obtain an
equivalent system to (3.1) additional conditions need to be enforced with (3.5).
Some choices can be made as follows:

(i) Enforce a divergence-free boundary condition, either Dirichlet or Neumann type.
Since Θ is initially zero, it will remain zero (Θ ≡ 0 for t > 0). The additional

24



conditions are

Θ|Γ = 0 or
∂Θ

∂n
|Γ = 0 for t > 0 (3.6a)

Θ(t = 0) = 0 (3.6b)

In this case, a system equivalent to (3.1) consists of (3.1a), (3.2), (3.1c) and (3.6).

(ii) Retain the viscosity term in the PPE

∇2p = −∇ · (u · ∇u) +
1

Re
∇2(∇ · u) (3.7)

Then the additional conditions to be satisfied are

∂Θ

∂t
= 0 for t > 0 (3.8a)

Θ(t = 0) = 0 (3.8b)

In this case, a system equivalent to (3.1) consists of (3.1a), (3.7), (3.1c) and (3.8).
However, a third order derivative is formulated in (3.7), which increases the com-
plexity of discretization.

(iii) Write the viscous term in rotational form

∂u

∂t
+ u · ∇u = −∇p− 1

Re
∇×∇× u (3.9)

where∇2u = ∇(∇·u)−∇×∇×u and the incompressibility condition (3.1b) are
considered. In this case a system equivalent to (3.1) involves (3.9), (3.2), (3.8)
and (3.1c). This scheme is well suited for the explicit treatment of the viscous
term. However, implicit treatment would result in a coupled system involving all
the components of u, which is costly.

(iv) Enforce the following Neumann boundary condition for the pressure

∂p

∂n
= − 1

Re
n · (∇×∇× u) on Γ (3.10)

Then a system equivalent to (3.1) includes (3.1a), (3.2), (3.10) and (3.1c). To prove
this, we take the normal component of the momentum equation (3.1a) and use the
identity∇2u = ∇(∇ · u)−∇×∇× u for the viscous term, which yields

∂p

∂n
= − 1

Re
n · (∇×∇× u) +

∂(∇ · u)

∂n
on Γ (3.11)

25



Subtracting (3.11) from (3.10) gives

∂Θ

∂n
= 0 on Γ (3.12)

which goes back to the Neumann boundary condition of (3.6).
This boundary condition is first introduced by Orszag et al. (1986) and is referred
as an accurate pressure boundary condition to assess the accuracy of the pressure-
velocity decoupling methods presented in this thesis.

3.3 Time discretization

The governing equations (3.1) are discretized in time as follows

un+1 − un

∆t
+ up · ∇uq = −∇pn+1 +

1

Re
∇2uk (3.13a)

∇ · un+1 = 0 (3.13b)

un+1|Γ = 0 (3.13c)

where p, q, k are the time index for the convection and diffusion terms, respectively.
The pressure is treated implicitly in order to ensure the divergence-free condition at
the new time level. Some choices of these parameters can be made as follows

• Implicit formulation:

– Fully implicit formulation (non-linear) : p = q = k = n+ 1;

– Linearly implicit formulation: p = n, q = k = n+ 1;

• Explicit formulation: p = q = k = n;

• Semi-implicit formulation: p = q = n, k = n+ 1.

(i) Implicit formulation

If we set p = q = k = n + 1, the discretized equations are fully implicit and
always stable, which indicates that large time steps are allowed with this implicit
formulation. However it requires non-linear iterations. This could be expensive in
computation and the convergence is not always ensured.
One way to prevent non-linear iterations is to linearise the equations by setting
p = n (Braza et al., 1986; Dong & Shen, 2010). This results in a non-symmetric
coefficient matrix for the velocity, which can be solved with sophisticated Krylov

26



solvers like the bi-conjugate gradient stabilized (Bi-CGSTAB) method or the gener-
alized minimal residual (GMRES) method. However, the velocity coefficient matrix
needs to be re-computed every time step. It becomes very costly when the grid
number increases. Moreover, larger time step can cause bigger truncation errors in
the solution.

(ii) Explicit formulation

If we set p = q = k = n, the discretized equations are explicit and no iterations are
needed for the velocity. Explicit formulation seems to be very efficient. However,
the time step should be kept small enough to maintain stability. The constraints on
the time step in two dimensions are the diffusive stability condition

∆t 6
Re

2

(
1

∆x2
min

+
1

∆y2
min

)−1

(3.14)

and the convective stability condition of the usual CFL (Courant–Friedrichs–Lewy)
type

∆t 6 min

{
∆xmin

umax

,
∆ymin

vmax

}
(3.15)

Those conditions are obtained through the stability analysis (see Appendix A for
details). It is easy to see that the diffusive constraint is very severe, since reducing
the mesh size by half requires a four times smaller time step. It becomes more
severe as the dimension increases. At low Reynolds number regime, the time con-
straint due to (3.14) dominates (3.15). It might be thought that for moderate to high
Reynolds number flows, the diffusive stability condition is less restrictive. However
in practice, the grid spacing is usually kept small for high Reynolds number flows
to capture the small turbulence. This is true when performing the direct numerical
simulation (DNS) or the large eddy simulation (LES) (Fadlun et al., 2000).

(iii) Semi-implicit formulation

In present thesis, a compromised solution is employed by using a semi-implicit
scheme, namely the diffusive term is treated implicitly (k = n+ 1) for stability and
the convective term is treated explicitly (p = q = n) for simplicity. By doing so,
only the CFL condition needs to be satisfied for the overall scheme

∆t 6 min

{
∆xmin

umax

,
∆ymin

vmax

}
(3.16)

27



Note that the CFL condition is in general a necessary but not a sufficient condition
for the NSE.

3.4 High order scheme

Previous time discretization is only first order accurate in time. A large class of
time stepping schemes can be employed for achieving high order accuracy for the
semi-implicit formulation, such as

• Convective term: the Runge–Kutta methods (RK), the Adams-Bashforth meth-
ods (AB) or the extrapolation (EP);

• Diffusive term: the backward difference formula (BDF) or the Adams-Moulton
methods (AM);

The second order time stepping scheme is frequently used in the literature, for
example

• The RK3 for the convection and the Crank-Nicolson (CN or AM2) for the
diffusion (Fadlun et al., 2000; Uhlmann, 2005; Kempe & Fröhlich, 2012a).
With this combination a relative larger CFL number is found (CFL <

√
3);

• The AB2 for the convection and the CN for the diffusion (Kim & Moin, 1985;
Perot, 1993; Johnston & Liu, 2004);

• The BDF2 for the diffusion and EP2 for the convection (Guermond & Shen,
2003b).

The difference between the RK methods and the AB methods is that the former
requires more calculations within each time step but less storages, while the latter
needs more storages but less calculations. In the present work, the explicit sec-
ond order Adams-Bashforth (AB2) scheme with the implicit second order Crank-
Nicolson (CN) scheme are used, which yields a second order time accurate scheme
as follows

un+1 − un

∆t
+

[
3

2
N (un)− 1

2
N (un−1)

]
= −Gpn+1 +

1

2Re
L(un+1 + un) +O(∆t2)

(3.17a)

Dun+1 = 0 (3.17b)

un+1|Γ = 0 (3.17c)

28



where L,N , G,D represent the discrete Laplacian, convective, gradient, divergence
operators, respectively.

3.5 Projection methods

In the present thesis, the projection method (or fractional step method, time splitting
method) is employed for the pressure-velocity decoupling, which is non-iterative
and based on a mathematical foundation. The evolution of the velocity only consists
of two substeps at each time level, i.e., the prediction and the projection. We will
present this method in detail in the following contents along with the error analysis.

3.5.1 Helmholtz-Hodge decomposition

The projection method is based on the mathematical foundation of Helmholtz-
Hodge decomposition, which indicates that any smooth vector v can be decomposed
into a divergence-free component vd and a curl-free component vc (see Figure 3.2)

v = vd + vc (3.18)

where

∇ · vd = 0 (3.19a)

∇× vc = 0 (3.19b)

and the curl-free component can be further expressed as a gradient of a potential
field

vc = ∇φ (3.20)

vd
(∇ · vd = 0)

v
∇φ

Figure 3.2: Illustration of Helmholtz-Hodge decomposition.

The divergence-free component vd can be obtained by taking the divergence opera-
tor to (3.18) while using (3.19a) and (3.20)

∇2φ = ∇ · v (3.21a)

29



vd = v −∇φ (3.21b)

In projection methods, v is usually obtained in the prediction step and then projected
into the divergence-free field in the projection step.

3.5.2 First order accurate pressure-correction method

The first projection method is proposed by Chorin (1968) and Témam (1969), which
is performed in two substeps:

• Step 1, prediction for ûn+1

ûn+1 − un

∆t
+

[
3

2
N (un)− 1

2
N (un−1)

]
=

1

2Re
L(ûn+1 + un) (3.22a)

ûn+1|Γ = 0 (3.22b)

where the physical boundary condition is assigned to the intermediate velocity.

• Step 2, projection for un+1 and pn+1

un+1 − ûn+1

∆t
= −Gpn+1 (3.23a)

Dun+1 = 0 (3.23b)

un+1 · n|Γ = 0 (3.23c)

By applying the divergence operator to (3.23a) and using the incompressibility
condition, step 2 can be written as

Lpn+1 =
1

∆t
Dûn+1 (3.24a)

∂pn+1

∂n
|Γ = 0 (3.24b)

un+1 = ûn+1 −∆tGpn+1 (3.24c)

Note that (3.24c) can be written as

un+1 = PHû
n+1 (3.25)

where PH is the L2 projection onto the H space of solenoidal vector fields

H =
{
u ∈ L2(Ω)d : ∇ · u = 0,u · n|Γ = 0

}
(3.26)

This scheme is very attractive for its efficiency in simulating large scale problems.

30



At each time step, only a sequence of decoupled elliptic equations for the pressure
and velocity need to be solved.

However the overall scheme is found to be first order accurate after the time split-
ting, even though a second order scheme is applied to the original system (3.17).
To study the splitting error, we sum up the two split equations (3.22a) and (3.23a)
and compare to the original system (3.17a). The splitting error is found to be (Perot,
1993)

1

2Re
L(ûn+1 − un+1) =

∆t

2Re
LGpn+1 (3.27)

which is due to the time splitting scheme with the implicit treatment of the viscous
term. As mentioned before, explicit treatment of the viscous term would require
a very small time step to maintain stability. This error is irreducible, hence us-
ing a higher-order time stepping scheme will not improve the overall accuracy.
Furthermore, an artificial homogeneous Neumann boundary condition (3.24b) is
enforced on the pressure, compared to the exact pressure boundary condition (3.10).
This artificial Neumann boundary condition induces a numerical boundary layer
that prevents the scheme to be fully first order (E & Liu, 1995; Guermond et al.,
2006). In the review paper of Guermond et al. (2006) this first order accurate
method is termed as the non-incremental pressure-correction method and satisfies
the following error estimates:

||u− u∆t||l∞(L2(Ω)d) + ||u− û∆t||l∞(L2(Ω)d) 6 c(u, p, T )∆t

||p− p∆t||l∞(L2(Ω)d) + ||u− û∆t||l∞(H1(Ω)d) 6 c(u, p, T )∆t1/2
(3.28)

where (u∆t, p∆t) represents the numerical solution for the semi-discrete projection
method.

3.5.3 Formally second order accurate pressure-correction method

By observing that the pressure gradient is not used in (3.22a), we then add an known
old value of the pressure gradient in the prediction step to obtain a formally second
order accurate scheme. A large class of projection methods can be classified into this
group, such as the methods of Goda (1979), Van Kan (1986), Braza et al. (1986)
and Bell et al. (1989). The formally second order method can be expressed as

• Step 1, prediction for ûn+1

ûn+1 − un

∆t
+

[
3

2
N (un)− 1

2
N (un−1)

]
= −Gpn +

1

2Re
L(ûn+1 + un) (3.29a)

ûn+1|Γ = 0 (3.29b)

31



where the physical boundary condition is still assigned to the intermediate velocity.

• Step 2, projection for un+1 and pn+1

un+1 − ûn+1

∆t
= −Gφn+1 (3.30a)

Dun+1 = 0 (3.30b)

un+1 · n|Γ = 0 (3.30c)

where φ represents the pseudo pressure. By applying the divergence operator to
(3.30a) along with the divergence-free condition, the Step 2 can be written as

Lφn+1 =
1

∆t
Dûn+1 (3.31a)

∂φn+1

∂n
|Γ = 0 (3.31b)

un+1 = ûn+1 −∆tGφn+1 (3.31c)

where the homogeneous Neumann boundary condition is enforced on φ. The final
pressure is then updated by

pn+1 = pn + φn+1 (3.32)

To study the splitting error, we sum up (3.29a) and (3.30a) and then compare to the
original system (3.17a). Since the pseudo pressure is the approximation of φn+1 =

pn+1 − pn = ∆t∂p/∂t, the splitting error is second order in time (Perot, 1993;
Armfield & Street, 2002)

1

2Re
L(ûn+1 − un+1) =

∆t

2Re
LGφn+1 =

∆t2

2Re
LG ∂p

∂t
(3.33)

However the artificial Neumann boundary condition of φn+1 (3.31b) implies that

∂pn+1

∂n
|Γ =

∂pn

∂n
|Γ = · · · = ∂p0

∂n
|Γ (3.34)

is enforced on the final pressure. This pressure boundary condition is not physical
compared to the exact pressure boundary condition (3.10). Hence it introduces
a numerical boundary layer that prevents the scheme to be fully second order.
This error is irreducible, hence using a higher order time stepping scheme will
not improve the overall accuracy. This formally second order scheme is called the
standard incremental pressure-correction scheme in Guermond et al. (2006) and

32



satisfies the following error estimates:

||u− u∆t||l2(L2(Ω)d) + ||u− û∆t||l2(L2(Ω)d) 6 c(u, p, T )∆t2

||p− p∆t||l∞(L2(Ω)d) + ||u− û∆t||l∞(H1(Ω)d) 6 c(u, p, T )∆t
(3.35)

3.5.4 Second order accurate pressure-correction method

Timmermans et al. (1996) proposed a slightly modified algorithm to achieve a
second order accurate scheme. By considering the identity ∇2u = ∇(∇ · u) −
∇×∇× u, the error term (3.33) can be rewritten as

1

2Re
L(ûn+1 − un+1) =

1

2Re
G(Dûn+1) (3.36)

where ∇ × ∇ × ûn+1 = ∇ × ∇ × un+1 is used, which can be verified by the
Helmholtz-Hodge decomposition. Now the error term in this form is absorbed into
the pressure

pn+1 = pn + φn+1 − 1

2Re
Dûn+1 (3.37)

As a result, only an inexact tangential boundary condition is applied to the velocity
due to the splitting, i.e.,

un+1 · τ 6= 0 (3.38)

The pressure boundary condition is found to be consistent with (3.10). Inserting
(3.37) into (3.29a) and applying the boundary conditions gives

0 = n · Gpn = n · G
[
pn+1 − φn+1 +

1

2Re
Dûn+1

]
(3.39)

Considering the homogeneous Neumann boundary conditions (3.31b) for φ, we
have

∂pn+1

∂n
= − 1

2Re
n · G(Dûn+1) on Γ (3.40)

where n · Gpn+1 ≡ ∂pn+1/∂n. We donateRR the operator of∇×∇× and use the
identity Lu = G(Du)−RRu again

∂pn+1

∂n
= − 1

2Re
n · (Lûn+1 +RRûn+1) on Γ (3.41)

To recall that the physical boundary conditions are also assigned to the intermediate
velocity andRRûn+1 = RRun+1, then we obtain

∂pn+1

∂n
= − 1

2Re
n · RRun+1 on Γ (3.42)

33



which is consistent with (3.10) for the second order time discretization.

An alternative view of this method is that it solves a different form of the momentum
equation, namely

∂u

∂t
+ u · ∇u = −∇p− 1

Re
∇×∇× u (3.43)

In Guermond et al. (2006) this method is termed as the rotational incremental
pressure-correction method, because the operator ∇ × ∇× plays a key role. The
method satisfies the following error estimates

||u− u∆t||l2(L2(Ω)d) + ||u− û∆t||l2(L2(Ω)d) 6 c∆t2

||u− u∆t||l2(H1(Ω)d) + ||u− û∆t||l2(H1(Ω)d) + ||p− p∆t||l2(L2(Ω)d) 6 c∆t3/2

(3.44)

where (u∆t, p∆t) is the numerical solution for the semi-discrete projection method.

Moreover it is possible to generalize this method to r-th order, which can be sum-
marized as

• Step 1, prediction for ûn+1

ûn+1 − un

∆t
+N (u?) = −Gpn +

1

Re
Lû? (3.45a)

ûn+1|Γ = 0 (3.45b)

whereN (u?) andLû? are the non-linear terms with the r-th order Adams-Bashforth
methods and the linear terms with the r-th order Adams-Moulton methods respec-
tively, i.e.,

N (u?) =
r−1∑
k=0

γkN (un−k), Lû? = αkLûn+1 +
r−2∑
k=0

βkLun−k (3.46)

where αk, βk, γk are the suitable weights, for example

N (u?) =



N (un) for r = 1 (Forward Euler)
3

2
N (un)− 1

2
N (un−1) for r = 2 (AB2)

23

12
N (un)− 16

12
N (un−1) +

5

12
N (un−2) for r = 3 (AB3)

55

24
N (un)− 59

24
N (un−1) +

37

24
N (un−2)− 9

24
N (un−3) for r = 4 (AB4)

(3.47)

34



and

Lû? =



Lûn+1 for r = 1 (Backward Euler)
1

2
Lûn+1 +

1

2
Lun for r = 2 (Crank-Nicolson)

5

12
Lûn+1 +

8

12
Lun − 1

12
Lun−1 for r = 3 (AM3)

9

24
Lûn+1 +

19

24
Lun − 5

24
Lun−1 +

1

24
Lun−2 for r = 4 (AM4)

(3.48)

• Step 2, projection for un+1 and pn+1

un+1 − ûn+1

∆t
= −Gφn+1 (3.49a)

Dun+1 = 0 (3.49b)

un+1 · n|Γ = 0 (3.49c)

Applying the divergence operator to (3.49a) with the incompressibility condition
leads to

Lφn+1 =
1

∆t
Dûn+1 (3.50a)

∂φn+1

∂n
|Γ = 0 (3.50b)

un+1 = ûn+1 −∆tGφn+1 (3.50c)

pn+1 = pn + φn+1 − χ

Re
Dûn+1 (3.50d)

where χ = 1, 1/2, 5/12, 9/24 for the first order Adams-Moulton scheme (back-
ward Euler), the second order Adams-Moulton scheme (Crank-Nicolson), the third
order Adams-Moulton scheme (AM3) and the fourth order Adams-Moulton scheme
(AM4) respectively.

3.5.5 Issues of the projection methods

(i) Controversy may arise over which velocity is correct in the projection methods.
The final velocity un+1 is divergence-free but does not satisfy the correct tangential
boundary condition, while the intermediate velocity ûn+1 satisfies the boundary
condition but is not divergence-free. From the accuracy point of view, both veloci-
ties yield the same error estimates (Guermond et al., 2006). In practice, by simple al-
gebraic substitutions the velocity un+1 can be completely avoided for computation,
which is usually the case in the velocity-correction projection methods of Guermond

35



& Shen (2003b). The properties of the two velocity fields are summarized as follows

∇ · un+1 = 0, un+1 · n|Γ = 0, un+1 · τ 6= 0

∇ · ûn+1 6= 0, ûn+1 · n|Γ = 0, ûn+1 · τ = 0
(3.51)

(ii) Another important issue is that a Poisson equation is solved with the Neumann
boundary condition applied to all the boundaries at each time step. For a solution to
exist, the compatibility condition or the solvability condition must be satisfied. For
example, considering the Poisson equation

∇2φ = f in Ω

with ∇φ · n = 0 on Γ
(3.52)

To ensure the above problem has solutions, the following condition is needed∫
Ω

fdV =

∫
Ω

∇2φdV =

∫
Γ

∇φ · ndS = 0 (3.53)

where the divergence theorem is used. It is easy to confirm that this condition is
indeed satisfied in the projection methods, since∫

Ω

1

∆t
∇ · ûn+1dV =

∫
Γ

ûn+1 · ndS = 0 (3.54)

However the solution is not unique (up to a constant) for the Poisson equation with
all Neumann boundary conditions. To obtain a unique solution, we set a fixed value
(e.g. zero) at one node to remove the zero eigenvalue.
(iii) Although as mentioned before the scheme is stable under the necessary CFL
condition, it can suffer numerical instabilities when decreasing the time step arbi-
trarily (Guermond & Quartapelle, 1998). The time step is limited by a lower bound
of ∆t > c∆xl+1 provided that equal orders of interpolation are employed for the
pressure and the velocity, where c is a constant and l is the interpolation order of
velocity (l = 2 in the present work). Therefore, a relative larger time step is usually
selected in the present work based on the CFL condition.

3.5.6 Comparison with other projection methods

The problem associated with the projection methods lies on the fact that boundary
conditions are needed for the intermediate velocity and the pressure, which however
are quite ambiguous. Inconsistent boundary conditions can significantly decrease
the accuracy of the original system and lead to inconsistent solutions.

36



According to E & Liu (1995) and Brown et al. (2001), improvements towards the
fractional step methods can be made in three different ways: Using a pressure
incremental formulation, which is just described formerly; Applying an accurate
boundary condition for the intermediate velocity; Employing a correct pressure
boundary condition. One can also avoid the use of fractional step method, therefore
the splitting error and the inconsistent boundary conditions will not be generated.
In the following contents these methods are summarised.

(i) projection method with accurate intermediate velocity boundary condition

Kim & Moin (1985) introduced a second order fractional step scheme by deriving
an accurate boundary condition for the intermediate velocity. This method can be
summarized as

• Step 1, prediction for ûn+1 with a non-homogeneous boundary condition

ûn+1 − un

∆t
+

[
3

2
N (un)− 1

2
N (un−1)

]
=

1

2Re
L(ûn+1 + un) (3.55a)

ûn+1|Γ = ∆tGφn|Γ (3.55b)

Note that the correct boundary condition for the intermediate velocity requires the
pressure value. To avoid evaluating the pressure, φ is used instead of p, and the
boundary condition is still second order accurate since p = φ+O(∆t/Re).

• Step 2, projection for un+1 and pn+1

un+1 − ûn+1

∆t
= −Gφn+1 (3.56a)

Dun+1 = 0 (3.56b)

un+1 · n|Γ = 0 (3.56c)

which is realised by

Lφn+1 =
1

∆t
Dûn+1 (3.57a)

∂φn+1

∂n
|Γ =

∂φn

∂n
|Γ (3.57b)

un+1 = ûn+1 −∆tGφn+1 (3.57c)

The pressure is eliminated from the time evolution completely. Therefore, this scheme
is named as the pressure-free projection method in Brown et al. (2001). The pressure

37



can be related to φn+1 using

pn+1 = φn+1 − ∆t

2Re
Lφn+1 (3.58)

which can be interpreted as a time-centered value in order to obtain a second or-
der accurate pressure. As indicated by Guermond et al. (2006), the scheme of
Kim & Moin (1985) is equivalent to the rotational incremental pressure-correction
scheme after appropriate change of variables. However this scheme has been only
successfully implemented with spectral or finite difference approximations. It is
quite inconvenient for the finite element discretization, as it involves the trace of a
gradient as a Dirichlet condition in the prediction step.

(ii) projection method with accurate pressure boundary condition

Orszag et al. (1986) and Karniadakis et al. (1991) proposed the high-order splitting
schemes based on the accurate pressure boundary condition. This strategy is also
adopted in other velocity-correction projection methods (Guermond & Shen, 2003b;
Guermond et al., 2006). The main idea of the velocity-correction schemes is to
switch the role of the pressure and the velocity, namely, the projection in performed
in the first substep and the viscous term is treated implicitly in the second substep.
Similar to the pressure-correction schemes, the velocity-correction methods can be
implemented in a non-incremental, standard incremental or rotational incremental
way (Guermond et al., 2006). In Guermond & Shen (2003b) and Guermond et

al. (2006) the BDF scheme is used for the discretization, with no doubt we can
rewrite the rotational incremental velocity-correction method with the second order
the Adams-Bashforth scheme and the Crank-Nicolson scheme as follows

• Step 1, projection for un+1 and pn+1

ûn+1/2 − ûn

∆t
+

[
3

2
N (ûn)− 1

2
N (ûn−1)

]
= − 1

Re

[
3

2
RRûn − 1

2
RRûn−1

]
(3.59a)

un+1 − ûn+1/2

∆t
= −Gpn+1 (3.59b)

Dun+1 = 0 (3.59c)

un+1 · n|Γ = 0 (3.59d)

which is solved with the pressure Poisson equation in the form

Lpn+1 =
1

∆t
Dûn+1/2 (3.60a)

38



∂pn+1

∂n
|Γ =

1

∆t
n · ûn+1/2|Γ = −n · 1

Re

[
3

2
RRûn − 1

2
RRûn−1

]
|Γ (3.60b)

un+1 = ûn+1/2 −∆tGpn+1 (3.60c)

where the pressure boundary condition is consistent with (3.10) to the second order
accuracy.

• Step 2, correction for ûn+1

ûn+1 − un+1

∆t
=

1

2Re

(
Lûn+1 + Lûn

)
+

1

Re

[
3

2
RRûn − 1

2
RRûn−1

]
(3.61a)

ûn+1|Γ = 0 (3.61b)

Since the velocity-correction schemes can be viewed as the dual class of the pressure-
correction methods, the velocity-correction schemes share almost the same advan-
tages and disadvantages with the pressure-correction counterparts. But the eval-
uation of the pressure condition (3.60b) is not as convenient as in the pressure-
correction projection methods.

(iii) Generalized block LU decomposition method

Perot (1993) proposed a fractional step method based on the approximate block
LU decomposition. In this method, the boundary conditions on the intermediate
variables and the pressure are not required. The overall scheme is solved in an
algebraic manner. We rewrite the NSE (3.17) as(

A G
D 0

)(
un+1

pn+1

)
=

(
rn

0

)
+

(
bc1

bc2

)
(3.62)

where
A =

1

∆t
I − 1

2Re
L (3.63)

rn =
1

∆t
un +

1

2Re
Lun −

[
3

2
N (un)− 1

2
N (un−1)

]
(3.64)

and bc1, bc2 are the boundary conditions generated from the Laplacian and diver-
gence operators respectively. Solving this system directly is very difficult. Perot
(1993) applied the block LU decomposition to an approximate system as follows(

A (AB)G
D 0

)(
un+1

pn+1

)
=

(
rn

0

)
+

(
bc1

bc2

)
(3.65)

39



and then using the Schur Complement gives(
A 0

D −DBG

)(
I BG
0 I

)(
un+1

pn+1

)
=

(
rn

0

)
+

(
bc1

bc2

)
(3.66)

which is commonly written as

Aûn+1 = rn + bc1 (3.67)

DBGpn+1 = Dûn+1 − bc2 (3.68)

un+1 = ûn+1 − BGpn+1 (3.69)

where B is an approximate inverse of A−1, which determines the overall accuracy.
If B = A−1, the block LU decomposition is equivalent to the Uzawa method.
However, the Uzawa method involves nested iteration and many non-zero values
enter to A−1 even though A is sparse. Therefore, Uzawa method is usually avoided
in computation. To properly approximate A−1, we first consider the identity for
general matrix C and D

(C+D)−1 = C−1−C−1DC−1 +C−1DC−1DC−1−C−1DC−1DC−1DC−1 + · · ·
(3.70)

then we have

A−1 =

[
1

∆t
I + (− 1

2Re
L)

]−1

≈ ∆tI −∆tI(− 1

2Re
L)∆tI + ∆tI(− 1

2Re
L)∆tI(− 1

2Re
L)∆tI − · · ·

= ∆tI +
∆t2

2Re
L+

∆t3

(2Re)2
L2 + · · ·

(3.71)

B takes the N -th order approximation of A−1

A−1 ≈ B = ∆tI+
∆t2

2Re
L+

∆t3

(2Re)2
L2+· · ·+ ∆tN

(2Re)N−1
LN−1 =

N∑
j=1

∆tj

(2Re)j−1
Lj−1

(3.72)
Therefore the splitting error for the inexact factorization depends on the approxi-
mation order of B. For example, if N = 1 is used the scheme is only first order
accurate, and if N = 2 is chosen, the scheme is second order accurate.

The generalized block LU decomposition method has gained a lot of popularities
in the literature as it does not involve any artificial pressure boundary condition

40



explicitly. However, the method is only as accurate as the standard incremental
pressure-correction scheme and enforces weakly an artificial boundary condition
(Guermond et al., 2006).

(iv) Exact fractional step method

Chang et al. (2002) proposed an exact fractional step method by using the discrete
streamfunction s as the unknown variable, hence this method is also termed as the
discrete streamfunction or then nullspace approach. The discrete streamfunction s
is defined as

u = Cs (3.73)

where C is a curl operator, which is constructed with column vectors correspond-
ing to the basis of the nullspace of D. Therefore the operator D and C enjoy the
following relation

DC = 0 (3.74)

which implies that the divergence-free condition is satisfied automatically in this
method because Du = DCs = 0. Note that the divergence operator is the negative
transpose of the gradient operator in the staggered mesh, therefore the gradient
operator is the null space of another matrix operator R, since (DC)T = CTDT =

−RG = 0, whereR is the rotation matrix operator.
By pre-multiplying the momentum equation with CT, the pressure term is then
eliminated totally, since CTGp = −(DC)Tp = 0. Finally, the system is reduced
to a single equation for the discrete streamfunction

CTACsn+1 = R(rn + bc1) (3.75)

where bc1 represents the boundary conditions for the momentum equation.
Once the discrete streamfunction is solved, the velocity can be recovered by the
definition u = Cs. Even it shares some similarities with the streamfunction-vorticity
method, this method is more attractive for the reason that it contains only one
variable. As a result in two dimensions only one component needs to be solved.
In three dimensions, three components of the streamfunction are solved instead of
six components in the streamfunction-vorticity method.
Of course, since it uses the discrete streamfunction as the primary unknown, en-
forcing the boundary conditions is not straightforward, just like other non-primitive
variable formulations.

41



(v) Gauge method

The gauge method is developed by E & Liu (2003) through the gauge transforma-
tion. By replacing the pressure with a gauge variable φ and introducing an auxiliary
field a = u +∇φ, the fluid momentum equation is changed to

∂a

∂t
+ u · ∇u =

1

Re
∇2a (3.76)

with
∇2φ = ∇ · a (3.77)

Through comparing to (3.1), φ can be related to the pressure by

p =
∂φ

∂t
− 1

Re
∇2φ (3.78)

By doing so, we can take advantage of the gauge freedom to assign simple and
specific boundary conditions for the gauge field and the auxiliary variable, either

∂φ

∂n
= 0, a · n = 0, a · τ =

∂φ

∂τ
on Γ (3.79)

or
φ = 0, a · n =

∂φ

∂n
, a · τ = 0 on Γ (3.80)

Using the second order semi-implicit discretization and the Neumann boundary
conditions, the gauge formulation can be written as

an+1 − an

∆t
+

[
3

2
N (un)− 1

2
N (un−1)

]
=

1

2Re
L(an+1 + an) (3.81a)

an+1 · n = 0, an+1 · τ =
∂φn

∂τ
on Γ (3.81b)

Lφn+1 = ∇ · an+1 (3.82a)

∂φn+1

∂n
= 0 on Γ (3.82b)

un+1 = an+1 −∇φn+1 (3.83)

It is easy to see that the gauge method is not a fractional step method. Therefore
the splitting error and the numerical boundary layer that happen in some fractional

42



step methods will not be generated in the gauge method. Indeed full accuracy has
been proved in E & Liu (2003), for example the second order accuracy for the
velocity and pressure in this case. Notice that the explicit boundary conditions are
used in (3.81b), but this will not influence the accuracy as indicated by Wang &
Liu (2000). Another method proposed by Guermond & Shen (2003a), the consist
splitting scheme, is found to be equivalent to the gauge method after appropriate
change of variables. This method is quite attractive for its accuracy, however, it is
not as stable as the fractional step method when including open boundary conditions
(Guermond et al., 2006).

(vi) Method based on the explicit treatment of the pressure

Usually the pressure is discretized implicitly in order to ensure the velocity to be
divergence-free at the new time level. For this reason, the decoupling between the
pressure and velocity often requires time splitting, but this could result in incon-
sistency. Contrarily, Johnston & Liu (2004) observed that if the PPE is solved
correctly the divergence-free condition can be fulfilled accurately. This allows to
treat the pressure term explicitly in the momentum equation and hence the dynamic
and kinematic equations are decoupled completely. The most important feature is
that no additional time step constraints are established besides the standard CFL
condition, provided that the viscous term is treated implicitly and the convection
term is treated explicitly. Employing the AB2 discretization for both the convection
and pressure terms and the CN discretization for the viscous term, gives

un+1 − un

∆t
+

[
3

2
N (un) +

3

2
Gpn − 1

2
N (un−1)− 1

2
Gpn−1

]
=

1

2Re
L(un+1 + un)

(3.84a)

un+1|Γ = 0 (3.84b)

Then the PPE (3.2) is solved with the exact pressure boundary condition

Lpn+1 = −D
(
N (un+1)

)
(3.85a)

∂pn+1

∂n
|Γ = − 1

Re
n · RRun+1|Γ (3.85b)

This method also features the non fractional step method, therefore all flow vari-
ables achieve full second order accuracy in time. However, it is inconvenient to
evaluate the boundary condition (3.85b).

43



3.5.7 Summary

Various variants of the projection methods have been discussed for improving the
overall time accuracy. Almost each method has its virtues and drawbacks. The
rotational incremental projection methods should be always preferred over the stan-
dard incremental and the non-incremental versions, for both the pressure correction
and the velocity correction cases. Compared to the rotational velocity correction
scheme, the rotational pressure correction scheme is relatively easy to be imple-
mented, as the operatorRR is in fact not involved in the calculation. Therefore it is
chosen as the fluid solver in the present thesis. Its space discretization and validation
will be given in the following sections.

3.6 Space discretization

3.6.1 Staggered grid

For convenience, we rewrite the NSE as follows

∂u

∂t
+
∂(u2)

∂x
+
∂(vu)

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
(3.86a)

∂v

∂t
+
∂(uv)

∂x
+
∂(v2)

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
(3.86b)

∂u

∂x
+
∂v

∂y
= 0 (3.86c)

To discretize the above set of equations, numerous techniques can be employed,
such as the finite difference method, finite volume method, finite element method,
spectral method, meshless method, etc. The finite difference method is the simplest
but it has a lot of difficulties in dealing with complicated domains. In the present
work, we will show how this method can handle complicated geometries with the
aide of the immersed boundary method.

Therefore, the equations are simply discretized in a regular Cartesian grid using
finite difference approximations for the first and second derivatives. However, using
a collocated grid where all the variables are defined in the same positions will
arise an instability from the odd-even decoupling or spurious pressure mode. This
odd-even decoupling comes from the fact that the pressure depends on the first
derivatives of the velocity and vice versa. If central differences are used, the pressure
at odd or even nodes depends on the velocity at even or odd nodes. This is similar
for the velocity. Hence this decoupling leads to a checker-board effect.

44



To avoid the instability we employ the MAC staggered grid of Harlow & Welch
(1965), as shown in Figure 3.3. On the staggered grid all the scalar variables are
stored in the cell centers like the pressure, while the velcotiy components are placed
at cell faces. Consequently, not all extremal grid points lie on the boundary do-
main. For example the vertical boundaries have no v component and the horizontal
boundaries have no u component. To solve this problem, extra boundary cells or
ghost cells, are introduced, which are depicted in the shaded zones in Figure 3.3.
If the collocated grid is preferred, special interpolation schemes are needed, such
as the Rhie-Chow interpolation (Rhie & Chow, 1983) which is widely used in the
commercial software (e.g. FLUENT) and open source codes (e.g. OpenFOAM).

However in the present work, the MAC staggered grid is preferred, as we would like
to emphasize the non-body conforming features of the immersed boundary method.
In the staggered settings, the immersed solid boundary grid can never coincident
with the fluid grid, since the three variables are defined separately in space.

i = 0 1 2 3 · · · nx − 1 nx nx + 1

j = 0

1

...

ny − 1

ny

ny + 1

Figure 3.3: The MAC staggered grid arrangement for fluid cells of number nx × ny,
where the pressure and the velocity components are stored in different locations
(Harlow & Welch, 1965). The circles represent the pressure; The horizontal and
vertical lines designate the velocity components u and v respectively. The ghost
cells are depicted by the shaded zones. Note that the boundary points in the four
corners are never used.

3.6.2 Approximation of derivatives

In equation (3.86) the u component is calculated at the midpoint of the right edge
of cell (i, j) for i = 1, · · · , nx − 1 and j = 1, · · · , ny, shown in Figure 3.4a. Using

45



central differences, we have[
∂(u2)

∂x

]
i,j

=
1

∆x

(
(ui,j + ui+1,j)

2

(ui,j + ui+1,j)

2
− (ui−1,j + ui,j)

2

(ui−1,j + ui,j)

2

)
(3.87)

[
∂(vu)

∂y

]
i,j

=
1

∆y

(
(vi,j + vi+1,j)

2

(ui,j + ui,j+1)

2
− (vi,j−1 + vi+1,j−1)

2

(ui,j−1 + ui,j)

2

)
(3.88)[

∂2u

∂x2

]
i,j

=
ui+1,j − 2ui,j + ui−1,j

∆x2
(3.89)

[
∂2u

∂y2

]
i,j

=
ui,j+1 − 2ui,j + ui,j−1

∆y2
(3.90)

[
∂p

∂x

]
i,j

=
pi+1,j − pi,j

∆x
(3.91)

where ∆x and ∆y are the mesh sizes at x and y direction respectively. However,
at high Reynolds numbers or high velocities where convection dominates diffusion,
the central differences are unstable when the grid spacing is chosen too coarse. This
can cause unphysical oscillations in the solution. The reason for the instability lies
in the fact that the diffusion influences the flow along its gradients in all directions,
whereas the convection affects the flow only in the flow direction. If the grid size is
too large, certain properties of the continuous equation are no longer maintained by
the discrete equation. Consequently, central differences introduce a stringent upper
limit to the mesh size (Griebel, 1998; Versteeg & Malalasekera, 2007).

This instability can be avoided by using the upwind difference, namely one-side
difference. However, this lowers the approximation accuracy to be first order in
space and results in extra numerical diffusion or artificial viscosity which actually
aides the stability. One compromised solution is to use a weighted average of the
central difference and the upwind difference

γ · upwind difference + (1− γ) · central difference (3.92)

where γ is the weight coefficient. For γ = 0 we recover the central difference and
for γ = 1 the upwind difference is used. In present work, we use the following
expression

γ = min
{
α ·max

(
umax∆t

∆x
,
vmax∆t

∆y

)
, 1

}
(3.93)

46



ui,j ui+1,jui−1,j

ui,j+1

ui,j−1

pi,j pi+1,j

vi,j vi+1,j

vi,j−1 vi+1,j−1

(a) u

vi,jvi−1,j vi+1,j

vi,j+1

vi,j−1

pi,j+1

pi,j

ui−1,j+1 ui,j+1

ui−1,j ui,j

(b) v

ui,j

vi,j

pi,jui−1,j

vi,j−1

(c) p

Figure 3.4: Grid stencil for u, v, p at cell (i, j), which is depicted by the shaded zone.

where the factor α = 1.2 is taken from experience (Seibold, 2008). With this hybrid
scheme, the convection terms are finally discretized as[
∂(u2)

∂x

]
i,j

=
1

∆x

(
(ui,j + ui+1,j)

2

(ui,j + ui+1,j)

2
− (ui−1,j + ui,j)

2

(ui−1,j + ui,j)

2

)
+ γ

1

∆x

( |ui,j + ui+1,j|
2

(ui,j − ui+1,j)

2
− |ui−1,j + ui,j|

2

(ui−1,j − ui,j)
2

)
(3.94)[

∂(vu)

∂y

]
i,j

=
1

∆y

(
(vi,j + vi+1,j)

2

(ui,j + ui,j+1)

2
− (vi,j−1 + vi+1,j−1)

2

(ui,j−1 + ui,j)

2

)
+ γ

1

∆y

(
(|vi,j + vi+1,j|

2

(ui,j − ui,j+1)

2
− (vi,j−1 + vi+1,j−1)

2

(ui,j−1 − ui,j)
2

)
(3.95)

Even though other high-order schemes can be used for the same purpose, such as
the second order upwind, QUICK (Quadratic Upstream Interpolation for Convective
Kinematics) and TVD (Total variation diminishing) schemes, the hybrid scheme is

47



adopted in the present study as it provides good results.

Similarly, the v component is computed at the midpoint of the upper edge of cell
(i, j) for i = 1, · · · , nx and j = 1, · · · , ny − 1, shown in Figure 3.4b. Using the
hybrid scheme for the convection terms and central difference for the others, we
obtain

[
∂(uv)

∂x

]
i,j

=
1

∆x

(
(ui,j + ui,j+1)

2

(vi,j + vi+1,j)

2
− (ui−1,j + ui−1,j+1)

2

(vi−1,j + vi,j)

2

)
γ

1

∆x

( |ui,j + ui,j+1|
2

(vi,j − vi+1,j)

2
− |ui−1,j + ui−1,j+1|

2

(vi−1,j − vi,j)
2

)
(3.96)

[
∂(v2)

∂y

]
i,j

=
1

∆y

(
(vi,j + vi,j+1)

2

(vi,j + vi,j+1)

2
− (vi,j−1 + vi,j)

2

(vi,j−1 + vi,j)

2

)
+ γ

1

∆y

( |vi,j + vi,j+1|
2

(vi,j − vi,j+1)

2
− |vi,j−1 + vi,j|

2

(vi,j−1 − vi,j)
2

)
(3.97)

[
∂2v

∂x2

]
i,j

=
vi+1,j − 2vi,j + vi−1,j

∆x2
(3.98)

[
∂2v

∂y2

]
i,j

=
vi,j+1 − 2vi,j + vi,j−1

∆y2
(3.99)

[
∂p

∂y

]
i,j

=
pi,j+1 − pi,j

∆y
(3.100)

The continuity equation is evaluated at the centroid of cell (i, j) with central differ-
ence, as illustrated in Figure 3.4c

ui,j − ui−1,j

∆x
+
vi,j − vi,j−1

∆y
= 0 (3.101)

The other flow variables, such as the streamfunction ψ and vorticity ω, can be also
defined on the staggered mesh. To avoid tedious interpolations, these variables are
simply evaluated in the upper right corner of cell (i, j) instead of the cell centers.
Considering ∂ψ/∂y = u, we compute the discrete streamfunction by

ψi,j = ψi,j−1 + ui,j∆y for i = 1, · · · , nx, j = 1, · · · , ny (3.102)

48



where ψi,0 = 0. And the discrete vorticity ωi,j is calculated by

ωi,j =
vi+1,j − vi,j

∆x
− ui,j+1 − ui,j

∆y
for i = 1, · · · , nx, j = 1, · · · , ny (3.103)

3.7 Implementation of boundary conditions

To solve the discretized equations, boundary conditions are needed at the physical
boundaries. In the present work, five boundary conditions are considered, which are
inflow, no-slip, free-slip, outflow and periodic boundary conditions.

(i) Inflow boundary conditions u = U∞: The velocities are specified explicitly at
the boundaries. For the normal velocity, the values are fixed directly on the boundary
lines. For the tangent component, we average the values on both sides.

Left: u0,j = U∞, v0,j = 2V∞ − v1,j (3.104a)

right: unx,j = U∞, vnx+1,j = 2V∞ − vnx,j (3.104b)

for j = 0, · · · , ny + 1 and

Bottom: ui,0 = 2U∞ − ui,1, vi,0 = V∞ (3.104c)

Top: ui,ny+1 = 2U∞ − ui,ny , vi,ny = V∞ (3.104d)

for i = 0, · · · , nx + 1.

(ii) No-slip boundary conditions u = Ub: The Dirichlet boundary conditions are set
similarly.

Left: u0,j = Ub, v0,j = 2Vb − v1,j (3.105a)

right: unx,j = Ub, vnx+1,j = 2Vb − vnx,j (3.105b)

for j = 0, · · · , ny + 1 and

Bottom: ui,0 = 2Ub − ui,1, vi,0 = Vb (3.105c)

Top: ui,ny+1 = 2Ub − ui,ny , vi,ny = Vb (3.105d)

for i = 0, · · · , nx + 1.

(iii) Free-slip or symmetric boundary conditions: In this case, the fluid is allowed to
flow freely in the tangent direction but vanishes normal to the boundary. Therefore,

49



for stationary left and right boundaries, we set u = 0 and ∂v/∂x = 0.

Left: u0,j = 0, v0,j = v1,j, for j = 0, · · · , ny + 1 (3.106a)

right: unx,j = 0, vnx+1,j = vnx,j, for j = 0, · · · , ny + 1 (3.106b)

For stationary bottom and top boundaries, we require ∂u/∂y = 0 and v = 0.

Bottom: ui,0 = ui,1, vi,0 = 0, for i = 0, · · · , nx + 1 (3.107a)

Top: ui,ny+1 = ui,ny , vi,ny = 0, for i = 0, · · · , nx + 1 (3.107b)

(iv) Outflow or open boundary conditions: A large class of flows involve physically
unbounded domain, but the domain needs to be truncated artificially to a finite
size in order to perform numerical simulations. Imposing boundary conditions on
these boundaries is a challenging and open issue, since neither the pressure nor the
velocity is known physically or mathematically. Various types of open boundary
conditions and the comparison can be found in Jin & Braza (1993), Sani & Gresho
(1994), Dong et al. (2014), Dong (2015) and Dong & Shen (2015). In fact the
types and the ease of implementation of open boundary conditions are closely
associated with the spatial discretization. In the present study, two types of boundary
conditions are employed, namely the Neumann boundary condition (∂u/∂n = 0)
and the convective boundary condition (∂u/∂t + Ũ∂u/∂n = 0), where Ũ can be
taken from either the average value of the normal velocity at the outflow boundary
or just the inflow velocity. The convective boundary condition is found to be more
effective for allowing the generated vortices to leave the computational domain
freely.

For the Neumann type, the normal derivatives of both velocity components are set
to zero, which indicates that the total velocity does not change along the normal
direction. Therefore, the velocities on the boundaries can be realized by setting the
velocities at the boundary equal to the neighbouring values inside the domain.

Left: u0,j = u1,j, v0,j = v1,j, for j = 0, · · · , ny + 1 (3.108a)

right: unx,j = unx−1,j, vnx+1,j = vnx,j, for j = 0, · · · , ny + 1 (3.108b)

Bottom: ui,0 = ui,1, vi,0 = vi,1, for i = 0, · · · , nx + 1 (3.108c)

Top: ui,ny+1 = ui,ny , vi,ny = vi,ny−1, for i = 0, · · · , nx + 1 (3.108d)

The convective boundary conditions can be easily constructed by using the Neu-
mann boundary condition.

50



(v) Periodic boundary conditions: The flow quantities at these boundaries share the
same values. At left and right boundaries, the velocities and the pressure are set by

u0,j = unx−1,j, v0,j = vnx−1,j, v1,j = vnx,j (3.109a)

unx,j = u1,j, vnx+1,j = v2,j, p1,j = pnx,j (3.109b)

for j = 0, · · · , ny + 1. At the bottom and top boundaries,

vi,0 = vi,ny−1, ui,0 = ui,ny−1, ui,1 = ui,ny (3.110a)

vi,ny = vi,1, ui,ny+1 = ui,2, pi,1 = pi,ny (3.110b)

for i = 0, · · · , nx + 1. Note that in this discrete settings, the domain boundaries
overlap by one cell width which contrasts with the continuous case. Therefore, the
physical domain must be chosen one cell width longer (Griebel, 1998).

3.8 Solving linear system

The discretization of governing equations results in a series of linear systems to
be solved. Figure 3.5 shows the typical matrix pattern after the finite difference
discretization. These matrices are generally sparse and banded. For instance, for
a 100 × 100 grid, only 0.05% of the matrix elements are non-zero. Storing and
computing such matrices directly would cost huge memories and computational
resources.

Therefore, it is more efficient to compress the matrix and to store only the non-zero
elements. But accessing the individual elements becomes more complicated and
additional informations are needed to recover the original matrix.

3.8.1 Sparse matrix storage

Many storage formats exist for the sparse matrix, such as the COO (Coordinate),
CRS (Compressed Row Storage), CCS (Compressed Column Storage), DIA (Diag-
onal), ELL (ELLPACK) and HYB (Hybrid ELL with COO). The non-zero elements
are extracted into an array and auxiliary arrays are introduced to describe the loca-
tions of the non-zero elements. In present work, the CRS and CCS formats are used.

51



Figure 3.5: The matrix pattern resulting from finite difference discretization of a 5×3
physical cells. Squares represent the non-zero entries.

For instance, given the matrix 
10 11 0 12

0 13 14 0

0 0 15 0

16 17 0 18

 (3.111)

The CRS format stores it with three following arrays

row offsets = [0 3 5 6 9]

values = [10 11 12 13 14 15 16 17 18]

column indices = [0 1 2 1 2 2 0 1 3]

and the corresponding CCS format yields

column offsets = [0 2 5 7 9]

values = [10 16 11 13 17 14 15 12 18]

row indices = [0 3 0 1 3 1 2 0 3]

The most attracting feature of CRS and CCS formats is the ease of storing the
matrix transpose and manipulating operations between the original matrix and its
transpose. They are frequently used in solving the moving force equation derived in
Chapter 4.

52



3.8.2 Linear system solvers

To solve the linear system Ax = b, many methods can be employed, either directly
or iteratively. Direct methods are extremely inefficient for large scale problems.
In present work, we use the iterative methods. Following Barrett et al. (1994), we
classify the iterative methods into two groups:

• Stationary methods:

– Jacobi;

– Gauss-Seidel;

– SOR (Successive Over-Relaxation);

• Non-stationary methods:

– Conjugate Gradient (CG);

– Conjugate Gradient Squared (CGS);

– BiConjugate Gradient (BiCG);

– Bi-conjugate Gradient Stabilized (Bi-CGSTAB);

– Generalized Minimal Residual (GMRES);

– Minimum Residual (MINRES) and Symmetric LQ (SYMMLQ);

– Conjugate Gradient on the Normal Equations: CGNE and CGNR;

– Quasi-Minimal Residual (QMR);

– Richardson iteration;

– Chebyshev iteration.

To compare the efficiency of above methods, we perform several tests by solving
the two dimensional PPE with Neumann boundary conditions on different grids.
Table 3.1 shows the comparison of stationary and non-stationary methods. Clearly,
the non-stationary methods converge much more faster compared to the stationary
methods. For the stationary methods, the convergence speed follows SOR, Gauss-
Seidel, Jacobi. The Gauss-Seidel method is about two times quicker than the Jacobi
method. The SOR method reduces the computational time by two orders of mag-
nitude. However, when increasing the system dimension, the computational time
with the three stationary methods grows tremendously. This test is performed on
the HP Z420 workstation, with the CPU Intel Xeon E5-1607 3.00 GHz with 16 GB
of RAM.

53



The non-stationary methods, also termed as the Krylov subspace methods (Saad,
2003), are generally suitable for solving large systems. We perform the same test
on the HP Z420 workstation and compare the process time of various Krylov meth-
ods in Table 3.2. Apparently, the CG method shows the best convergence speed.
The BiCG and BiCGSTAB methods are twice times slower, which is reasonable
according their construction but they works well with non-symmetric matrices. The
algorithm for the CG method is shown in algorithm 1.

Algorithm 1: Conjugate gradient method

1 Initialize: r0 = b− Ax0, p0 = r0

2 for k = 0 to kmax do
3 αk = (rk, rk)/(Apk, pk)

4 xk+1 = xk + αkpk

5 rk+1 = rk − αkApk
6 βk = (rk+1, rk+1)/(rk, rk)

7 pk+1 = rk+1 + βkpk

8 if ||rk+1|| < tolerance then
9 break

10 else
11 k = k + 1

12 end
13 end

10× 10 20× 20

Iter. Time (s) Speed-up Iter. Time (s) Speed-up

Jacobi 16243 1.492× 100 1.00 78226 1.153× 102 1.00
Gauss-Seidel 8411 8.233× 10−1 1.81 40564 6.618× 101 1.74
SOR 330 3.396× 10−2 43.93 1229 1.914× 100 60.24

CG 43 1.934× 10−4 7714.58 94 1.221× 10−3 94430.79
CGNR 73 6.443× 10−4 2315.69 307 6.947× 10−3 16597.09
CGNE 70 4.631× 10−4 3221.76 302 5.781× 10−3 19944.65

Table 3.1: Comparison of stationary and non-stationary solvers on different grids of
10× 10 and 20× 20. The tolerance is set to 1× 10−10.

54



100× 100 400× 400

Iter. Time (s) Speed-up Iter. Time (s) Speed-up

CG 489 6.506× 10−1 1.00 1978 4.087× 101 1.00
Bi-CGSTAB 373 1.267× 100 0.51 1707 9.197× 101 0.44
MINRES 484 7.222× 10−1 0.90 2241 5.168× 101 0.79
SYMMLQ 489 7.368× 10−1 0.88 2786 6.287× 101 0.65
BiCG 489 1.297× 100 0.50 1978 8.448× 101 0.48

Table 3.2: Comparison of Krylov subspace solvers on different grids of 100 × 100
and 400× 400. The tolerance is set to 1× 10−10.

3.8.3 Preconditioning

The convergence rate of iterative methods relies on distribution of eigenvalues of the
coefficient matrix A. A simple indicator, known as the condition number, is defined
by

cond(A) = ||A|| ||A−1|| (3.112)

In general the pressure Poisson equation possesses a high condition number and the
system is ill-conditioned. The high condition number indicates that a small error in
b may cause a large error in x. Hence iterative methods are easy to diverge some-
times. To reduce the condition number, preconditioning is needed. We introduce a
preconditioner M that approximates the coefficient matrix A, such that

M−1Ax = M−1b (3.113)

has the same solution as the original system but with a more favourable condition
number forM−1A. However, adding preconditioners is a trade-off since it increases
extra cost for their construction and application (see the preconditioned Conjugate
Gradient method in algorithm 2 for example).

Several preconditioners can be employed, such as the Jacobi (or diagonal) precon-
ditioner, the ILU (Incomplete LU factorization) preconditioner, the IC (Incomplete
Cholesky factorization) preconditioner and the multigrid preconditioner. Table 3.3
shows the efficiency of different preconditioners. As discussed previously, adding
preconditioner can increase the computational time. This can be demonstrated by
using the diagonal preconditioner, as it contributes little towards the convergence
rate. The ILU and IC outperforms the others in this test. The multigrid method is
originally used as the solver, but it can achieve a better performance when used
as a preconditioner combined with the Krylov subspace solvers. Even thought the

55



Algorithm 2: Preconditioned conjugate gradient method

1 Initialize: r0 = b− Ax0, solve Mz0 = r0, p0 = r0

2 for k = 0 to kmax do
3 αk = (rk, zk)/(Apk, pk)

4 xk+1 = xk + αkpk

5 rk+1 = rk − αkApk
6 solve Mzk+1 = rk+1

7 βk = (rk+1, zk+1)/(rk, zk)

8 pk+1 = zk+1 + βkpk

9 if ||rk+1|| < tolerance then
10 break
11 else
12 k = k + 1

13 end
14 end

multigrid method, specifically the geometric algebraic multigrid (GAMG) method,
is less efficient than the incomplete factorization methods in this steady test, it
is found to be much more efficient in the unsteady projection method. Since in
the projection method, once the fluid coefficient matrices are formulated, the cor-
responding preconditioners are constructed only in the beginning and maintained
during the whole calculation. This can significantly improve the efficiency, which
is shown in Table 3.5 with respect to the application time.

100× 100 400× 400

Iter. Time (s) Speed-up Iter. Time (s) Speed-up

None 489 6.506× 10−1 1.00 1978 4.087× 101 1.00
Diagonal 490 7.232× 10−1 0.90 2415 5.211× 101 0.78
ILU 145 2.728× 10−1 2.38 587 1.521× 101 2.69
IC 145 1.771× 10−1 3.67 587 1.544× 101 2.65
GAMG 11 4.947× 10−1 2.45 15 2.921× 101 1.40

Table 3.3: Comparison of preconditioners along with the CG solver on different grids
of 100 × 100 and 400 × 400. The tolerance is set to 1 × 10−10. This test is also
performed on the HP Z420 workstation.

56



3.8.4 Parallel computing

In the past years the increasing power of computers has greatly accelerated the
numerical simulations. Numerous high-performance computing resources are avail-
able nowadays. To further improve this work, the programs are extended to allow
parallel computing. First we integrate our methods into the well-known PETSc
(Portable, Extensible Toolkit for Scientific Computation) software, which employs
the MPI (Message Passing Interface) for communications between the CPU cores.
Highly efficient Krylov subspace solvers and preconditioners have already been
implemented.

In the second model, we parallelize the programs on the GPU (Graphics Processing
Unit). In fact the CPU consists of a few cores optimized for sequential serial task,
while the GPU has massive smaller cores, which can be extremely efficient for
handling multiple tasks simultaneously. Therefore, we send the parallelable and
computational intensive parts of the application to the GPU and run the remainders
on the CPU. From the practical point of view, the hybrid CPU/GPU model runs
significantly fast.

Currently two languages are available for GPU programming: Nvidia CUDA and
OpenCL. In the present work, we use the Nvidia CUDA C++ language for acceler-
ating our work. The linear system is solved by the CUDA CUSP library where the
calculation and data are distributed to the GPU cores by the THRUST library.

Table 3.4 illustrates the performances of the two models in the test of solving the
PPE with the CG solver on a 400 × 400 grid. This test is done on the calculation
platform PILCAM2 with the CPU Intel Xeon X7542 2.67 GHz of 24 × 6 cores
and the graphic card of Quadroplex 2200 S4 with 240 cores. The process time
decreases by half when we double the cores of CPU from 1 to 16. Approximately
1.5-2.8 times’ acceleration have been found when the multigrid method is applied
as a preconditioner for the CPU parallelization. The parallelization of GPU greatly
accelerates the calculation up to 40 times when the multigrid preconditioner is used.
Different preconditioners, such as the diagonal preconditioner, the approximate
inverse (AINV) preconditioner (Chow & Saad, 1998) and the multigrid precondi-
tioner are compared in Table 3.5. The version of PETSc library tested here is 3.5.1
and the version of CUSP library is 0.2.0.

57



Parallelization Cores
CG CG+MG

Time (s) Speed-up Time (s) Speed-up

CPU 1 63.00 1.00 25.25 1.00
2 30.68 2.05 10.59 2.38
4 15.26 4.13 4.56 5.23
8 7.79 8.09 2.13 11.84
16 4.20 15.00 1.10 22.92
20 8.88 7.09 1.11 22.71

GPU 240 10.36 6.08 0.63 40.08

Table 3.4: Time consummation and speed-up of the CPU and GPU parallelization
for solving the PPE on a 400× 400 grid. The tolerance is set to 1× 10−10.

Preconditioner Construction time (s) Application time (s) Speed-up

None 0 10.36 1.00
Diagonal ≈ 0 10.87 0.95
AINV 1.26 6.52 1.59
GAMG 0.51 0.12 86.33

Table 3.5: Comparison of different preconditioners in GPU parallelization with the
CUSP library, where the CG solver is used for solving the PPE on a 400× 400 grid.
The tolerance is set to 1× 10−10.

3.9 Numerical validation

In order to validate the current method, various numerical simulations are performed
in this section. The results are compared against the analytical solution or the well
established experimental and numerical data sets. To facilitate the accuracy study,
the error norms, for example ||eu|| for the velocity component u, on a nx × ny grid
are computed by

||eu||2 =

[
1

nxny

nx∑
i=1

ny∑
j=1

(ui,j − uref
i,j )2

]1/2

(3.114)

||eu||1 =
1

nxny

nx∑
i=1

ny∑
j=1

|ui,j − uref
i,j | (3.115)

||eu||∞ = max
{
|ui,j − uref

i,j |
}

(3.116)

for i = 1, . . . , nx, j = 1, . . . , ny, where uref represents the reference value obtained
either from an exact solution or a refined solution and ui,j is the numerical solution.

58



3.9.1 Taylor-Green vortices for convergence study

To validate previous error estimations for the projection methods, we consider the
two-dimensional unsteady case of an array of decaying vortices with the following
analytical solution (Kim et al., 2001)

u = −cos(πx) sin(πy) e−2π2t/Re

v = sin(πx) cos(πy) e−2π2t/Re

p = −1

4
(cos(2πx) + sin(2πy)) e−4π2t/Re

(3.117)

This simulation is performed on a square domain Ω = [−1.5, 1.5] × [−1.5, 1.5].
The Reynolds number Re is prescribed to 10. The initial and boundary conditions
are provided by the exact solution. We advance the equations for 0 6 t 6 0.2. The
computed vorticity and velocity fields at t = 0.2 are shown in Figure 3.6.

(a) Vorticity (b) Velocity vector

Figure 3.6: The computed vorticity and velocity fields of the decaying vortices
problem at t = 0.2.

To study the splitting error on the temporal accuracy, we compare the results at
t = 0.2 to a reference solution obtained with a very fine time step ∆t = 1 × 10−4,
and the spatial resolution of ∆x = ∆y = 9.375×10−3. The L1, L2, L∞ error norms
are displayed in Figure 3.7 on a log-log plot. Figure 3.7b shows a second order tem-
poral accuracy for all the components of the fluid velocity, conforming previous er-
ror estimation analysis for the rotational incremental pressure-correction projection
method. Figure 3.7a displays that the non-incremental pressure-correction method
(Chorin-Témam projection method) only gives a first order accuracy, which is due
to the irreducible time splitting error of order one.
We also expect the second order accuracy in space since the second order central

59



10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

∆t

T
em

p
o
ra
l
er
ro
r

 

 

||eu||1
||eu||2
||eu||∞
||ev||1
||ev||2
||ev||∞
Order 1
Order 2

(a)

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

∆t

T
em

p
o
ra
l
er
ro
r

 

 

||eu||1
||eu||2
||eu||∞
||ev||1
||ev||2
||ev||∞
Order 1
Order 2

(b)

Figure 3.7: Temporal convergence of the decaying vortices problem: (a) results of the
non-incremental pressure-correction scheme (Chorin-Témam projection method);
(b) results of the rotational incremental pressure-correction scheme.

differencing scheme is used for all the derivatives in this case. We fix the time step
∆t = 1 × 10−4 and vary the computational grids (20 × 20, 40 × 40, 80 × 80,
and 160 × 160). The error is computed by comparing the results to the analytical
solution. The spatial error is shown in Figure 3.8, showing a second order spatial
accuracy for the velocity fields.

60



10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

∆x

S
p
a
ti
a
l
er
ro
r

 

 

||eu||1
||eu||2
||eu||∞
||ev||1
||ev||2
||ev||∞
Order 2

Figure 3.8: Spatial convergence of the decaying vortices problem.

3.9.2 Kovasznay flow for stability study

The steady Kovasznay flow is considered here as another test to study the stability
of the projection schemes (Dong & Shen, 2010). The exact solution for the velocity
and pressure fields is given by

u = 1− eλxcos(2πy)

v =
λ

2π
eλxsin(2πy)

p =
1

2
(1− e2λx)

(3.118)

where λ = Re/2−
√
Re2/4 + 4π2 and Re is prescribed to 40. The computational

domain is selected to be [−0.5, 1.0] × [−0.5, 0.5] and the boundary conditions are
provided by the exact solution. The computed final field is shown in Figure 3.9.

We compare the stability of the explicit scheme and the semi-implicit scheme in
Figure 3.10 and Figure 3.11. In the explicit scheme, both the convection and dif-
fusion terms are treated explicitly. The scheme is known to be free of splitting
error but with a severe limitation on the time step. Figure 3.10 shows that on the
coarse mesh the time step is at most 0.003, and a higher value of 0.0032 results
in divergence after a few time steps. In this case the diffusive constraint dominates
the CFL constraint, therefore the time step is limited by the diffusive constraint.
Refining the mesh by half requires a four times smaller time step for convergence,
which confirms the diffusive stability constraint.

61



Figure 3.9: Computed streamlines of the Kovasznay flow problem.

The semi-implicit scheme circumvents this severe diffusive constraint by treating
the diffusion term implicitly. The convection term is still treated explicitly for sim-
plicity, leaving a usual CFL constraint. Figure 3.11 shows that a much larger time
step can be used on the coarse mesh with the semi-implicit scheme compared to the
explicit scheme. Refining the mesh by half only requires a two times smaller time
step for convergence, which is controlled by the CFL constraint. Therefore, in the
present thesis the semi-implicit scheme is used.

0 2 4 6 8 10

10
−5

10
0

10
5

10
10

Time

||
e
u
||
2

 

 

∆t = 0.003
∆t = 0.0032
∆t = 0.004

(a) h = 1/40

0 2 4 6 8 10

10
−5

10
0

10
5

10
10

Time

||
e
u
||
2

 

 

∆t = 0.00075
∆t = 0.0008
∆t = 0.003

(b) h = 1/80

Figure 3.10: Time histories of the x-component velocity L2 norm with different time
step sizes using the explicit scheme: (a) the coarse mesh; (b) the fine mesh.

62



0 2 4 6 8 10

10
−5

10
0

10
5

10
10

Time

||
e
u
||
2

 

 

∆t = 0.01
∆t = 0.013
∆t = 0.02

(a) h = 1/40

0 2 4 6 8 10

10
−5

10
0

10
5

10
10

Time

||
e
u
||
2

 

 

∆t = 0.005
∆t = 0.007
∆t = 0.01

(b) h = 1/80

Figure 3.11: Time histories of the x-component velocity L2 norm with different time
step sizes using the semi-implicit scheme: (a) the coarse mesh; (b) the fine mesh.

3.9.3 Lid-driven cavity flow

In this case, the lid-driven cavity flow is simulated as a standard test. The physical
configuration and boundary conditions are shown in Figure 3.12. The flow is driven
by the top wall moving at a constant velocity. Inside the cavity several standing
vortices exist, whose position and size mainly depend on the Reynolds number.
At Re = 1 the flow is symmetric with two vortices at the corners. Increasing the
Reynolds number the main vortex center moves toward the downstream corner. At
Reynolds number above 1000, a third corner vortex is formed at the upper left corner
(see Figure 3.13). A uniform grid of 128 × 128 is employed in this test, as used in
Ghia et al. (1982).

u = 1, v = 0

u = 0, v = 0 u = 0, v = 0

u = 0, v = 0
0 1

1

Figure 3.12: Problem configuration of the lid-driven cavity flow.

63



To assess the accuracy of present results, the velocity components along the hori-
zontal and vertical centerlines are plotted in Figure 3.14 and compared to the well
established work of Ghia et al. (1982). Table 3.6 displays the stream function,
vorticity values and the coordinates at the center of primary vortex. Those values
agree well with results of Ghia et al. (1982), Kim & Moin (1985) and Bruneau et

al. (2006).

(a) Re = 1

(b) Re = 100

(c) Re = 400

(d) Re = 1000

64



(e) Re = 3200

(f) Re = 5000

Figure 3.13: Computed streamlines (left) and vorticity contours (right) at different
Reynolds number ranging from 1 to 5000. The contour levels are set from -10 to 10
with an increment of 1.

−0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

u

y

Re = 100

Re = 400

Re = 1000

Re = 3200

Re = 5000

 

 

Present

Ghia et al.

(a)

65



0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

x

v

Re = 100

Re = 400

Re = 1000

Re = 3200

Re = 5000

 

 

Present

Ghia et al.

(b)

Figure 3.14: Comparison of velocity profiles at different Reynolds number ranging
from 100 to 5000: (a) u along the line x = 0.5 and (b) v along the line y = 0.5. The
curves are shifted for visualisation.

Re

100 400 1000 3200 5000

ψc Present -0.103 -0.113 -0.118 -0.117 -0.115
Ghia et al. (1982) -0.103 -0.114 -0.118 -0.115 -0.119
Kim & Moin (1985) -0.103 -0.112 -0.116 -0.119 -0.112
Bruneau et al. (2006) - - -0.118 - -0.117

ωc Present -3.165 -2.288 -2.046 -1.890 -1.829
Ghia et al. (1982) -3.166 -2.295 -2.050 -1.989 -1.860
Kim & Moin (1985) -3.177 -2.260 -2.026 -1.901 -1.812
Bruneau et al. (2006) - - -2.051 - -1.860

xc Present 0.616 0.555 0.531 0.518 0.515
Ghia et al. (1982) 0.617 0.555 0.531 0.517 0.512
Bruneau et al. (2006) - - 0.469 - 0.484

yc Present 0.737 0.606 0.566 0.541 0.536
Ghia et al. (1982) 0.734 0.606 0.563 0.547 0.535
Bruneau et al. (2006) - - 0.563 - 0.539

Table 3.6: Stream function, vorticity values and coordinates of primary vortex center
at different Reynolds numbers.

66



3.9.4 Backward-facing step flow

In the final example, the flow over a backward-facing step at different Reynolds
number is simulated. The flow domain is taken as [0, 30h] × [0, 2h] where h is the
step height, as shown in Figure 3.15. A parabolic velocity profile is prescribed at the
inflow boundary on top of the step. Outflow boundary condition is assigned at the
downstream boundary. No-slip wall condition is applied to the other boundaries. A
101× 101 grid is employed in the present test as used in Kim & Moin (1985).

h

xr0 30h

2h

Outflow

No-slip walls

Parabolic inflow

Reattachment point

Dividing streamline

Figure 3.15: Sketch of flow over a backward facing step.

Figure 3.16 shows the streamlines at different Reynolds number ranging from 100 to
1000. At Re = 100 a small eddy is formed behind the step. The eddy size increases
and the main flow is drawn downward when increasing the Reynolds number. From
about Re = 400 a second eddy is generated at the upper boundary, whose size
grows considerably fromRe = 400 to 1000. The dimensionless reattachment length
xr/h is plotted as a function of the Reynolds number in Figure 3.17. To reveal
the accuracy of present method, the results are compared to the well documented
benchmark of Armaly et al. (1983), the data from Kim & Moin (1985) with the
projection method using an accurate boundary condition for the intermediate veloc-
ity, and the computation with the streamfunction-vorticity method Erturk (2008).
The reattachment length agrees well with the experimental data from Armaly et al.

(1983) up to around Re = 500. Increasing the Reynolds number, the results start
to deviate from the experimental data. Refining the mesh shows no differences.
This is due to the three-dimensional effect at this Reynolds number, as pointed out
by Armaly et al. (1983). The same trend has been found to the results of Kim &
Moin (1985) and Erturk (2008), indicating that this discrepancy is not caused by
numerical errors. The overlapped curves in Figure 3.17 demonstrates a very good
agreement of the present method with other methods of Kim & Moin (1985) and
Erturk (2008) towards the accuracy.

67



(a) Re = 100

(b) Re = 200

(c) Re = 300

(d) Re = 400

(e) Re = 500

(f) Re = 600

(g) Re = 700

(h) Re = 800

(i) Re = 900

(j) Re = 1000

Figure 3.16: Stream function contours at various Reynolds numbers from 100 to
1000 for the problem of flow over a backward facing step.

68



0 200 400 600 800 1000

2

4

6

8

10

12

14

Re

x
r
/h

Figure 3.17: Comparison of reattachment length as a function of Reynolds number.
"◦", experimental data from Armaly et al. (1983); "- - - -", computation of Armaly et
al. (1983); "− · −·", numerical data from Kim & Moin (1985); "· · · ·", computation
of Erturk (2008); "——", present results.

3.10 Concluding remarks

In this chapter, we have presented various projection methods as the incompressible
fluid solver. At each time step, the velocity and pressure fields are solved sequen-
tially without iterations between the two unknowns. The classical projection method
of Chorin-Témam decreases the original second order temporal accuracy to be only
first order (see Figure 3.7a). To prevent the accuracy loss after the time splitting,
we have employed the rotational incremental pressure-correction projection method
as our fluid solver. The numerical tests have shown the second accuracy for all
the velocity components (see Figure 3.7b). The implementation of this projection
method is very simple and no numerical boundary layers will be introduced during
the calculation.

We have discretized the fluid solver on a staggered mesh to avoid checker-board
effects. Second order spatial accuracy is also obtained with current fluid solver
(see Figure 3.8). Various boundary conditions have been implemented and highly
efficient Krylov subspace solvers have been tested for solving the resulting sys-
tems. Two parallel algorithms are integrated into the fluid solver to enable high
performance computing, by using the PETSc library for the parallelization of CPUs

69



and the CUSP library for the parallelization of GPUs. The GPU model has shown a
promising performance in terms of the speed-up.
The present fluid solver has been validated with a couple of canonic tests, such as
the lid-driven cavity flow and the backward-facing step flow. This solver will be
served as a basic framework for the immersed boundary method in the next chapter.

70



Chapter 4

Moving immersed boundary method
(MIBM)

4.1 Introduction

In this chapter we propose a new immersed boundary method, the moving immersed
boundary method (MIBM), for the flow simulation with prescribed solid motions.
The main goal of the novel method is to enforce exactly the boundary condition at
the immersed interface.
We first systematically investigate the existing immersed boundary methods (IBM)
in the literature, in order to highlight the improvements and the advantages of our
method. Section 4.4 gives the details about the derivation of the MIBM and the
comparison of performance with other immersed boundary methods. We then dis-
cuss different interpolation schemes and functions for the transfer of flow quantities
between the fluid and the solid meshes in Section 4.5. The proposed method is
validated in Section 4.7 with kinds of numerical examples.

4.2 Mathematical formulation and discretization

The fundamental idea of the IBM is to replace the solid domain with the surrounding
fluid, as shown in Figure 4.1. The influences of the immersed objects on the fluid
are reproduced by a boundary force. This force is added into the fluid momentum
equation as a source term to take effects.
Therefore, the fluid mesh does not need to conform to the solid geometry. The
two physical domains can use two independent meshes with their own favorite
discretization, namely the Eulerian discretization for the fluid and the Lagrangian
discretization for the solid. This greatly accelerates the solution procedure and elim-
inates issues associated with re-meshing or deforming-mesh, such as the mesh dis-
tortions and the mesh interpolation errors, which are the bottlenecks in the body-
conforming mesh method (e.g. ALE).

71



Ωs

Ωf
Γs

(a) Original domain

Ω′
f

Ω′′
f

Γs

f

Ωf = Ω′
f ∪ Ω′′

f

(b) Immersed domain

Figure 4.1: Illustration of the immersed boundary method.

The mathematical formulation of the immersed boundary method is written as

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u + f (4.1a)

∇ · u = 0 (4.1b)∫
Ωf

u(x, t)δ(x−X(s, t))dx = Ub (4.1c)

f(x, t) =

∫
Γs

F(s, t)δ(x−X(s, t))ds (4.1d)

in the domain Ωf , where

• Ub is the solid boundary velocity;

• δ designates the Dirac delta function;

• X(s, t) represents the solid boundary position;

• F(s, t) is the boundary force defined on the Lagrangian position X(s, t);

• f(x, t) is the corresponding force on the Eulerian frame.

It is easy to see that the boundary force acts as a Lagrange multiplier to satisfy the
no-slip wall condition (4.1c) at the immersed interface. This boundary force also
has a physical meaning that it represents the force exerted on the fluid by the solid.
It is an unknown that needs to be solved along with the velocity field. How it is
evaluated differs one immersed boundary method from another and determines the
accuracy of the overall scheme. Recent reviews towards the IBM can be found in
Iaccarino & Verzicco (2003), Mittal & Iaccarino (2005) and Sotiropoulos & Yang
(2014).

72



By employing previous time discretization schemes for the NSE (3.17) and using
the implicit scheme for the boundary force, the immersed boundary method can be
written as

un+1 − un

∆t
+

[
3

2
N (un)− 1

2
N (un−1)

]
= −Gpn+1 +

1

2Re
L(un+1 + un) + S(Fn+1)

(4.2a)

Dun+1 = 0 (4.2b)

T (un+1) = Un+1
b (4.2c)

where T and S are the interpolation and spreading operators respectively

SXn+1(Fn+1) =

∫
Γs

Fn+1δ(x−Xn+1)ds (4.3)

TXn+1(un+1) =

∫
Ωf

un+1δ(x−Xn+1)dx (4.4)

The above equations are solved on a very simple Cartesian mesh, as shown in Figure
4.2. The immersed boundary is represented with a set of Lagrangian points, where
we define the boundary force for the presence of the embedded solid. As the fluid
variables are defined separately in space in the staggered mesh, the boundary force
points can never coincide with the underlying fluid mesh.

Γs

Ωf

Figure 4.2: Schematic view of the immersed boundary method in a two-dimensional
computational domain Ωf . The immersed boundary Γs is represented by the
Lagrangian marker "�", where the boundary force F(s, t) is defined.

73



4.3 Evolution of immersed boundary methods

4.3.1 Continuous forcing methods

(i) Deformable boundary

The immersed boundary method was first introduced by Peskin (1972a,b) for sim-
ulating blood flows through a beating heart. In the original method, the immersed
elastic membrane is represented by a series of massless Lagrangian markers where
the boundary force is evaluated by using the constitutive law

F(X, t) =
∂(Tτ )

∂s
(4.5)

where T is the fibre tension and τ is the unit tangent to the fibre. This boundary
force is then distributed to the surrounding Eulerian fluid cells with a discrete delta
function δh

f(x, t) =

∫
s

F(X, t)δh(x−X(s, t))ds (4.6)

In the original method, the force is incorporated into the Navier-Stokes solver before
discretization. Thus this method is classified into the continuous forcing category in
the review paper of Mittal & Iaccarino (2005).

Despite its efficiency, the method suffers several drawbacks. First the method smears
out the sharp interface and decreases the spatial accuracy to be first-order for non-
smooth solutions (Peskin, 2002); Secondly the mass conservation is lost at a rate
proportional to the pressure difference across the interface (Peskin, 1993, 2002);
The explicit time-stepping scheme in the immersed boundary forcing part results in
a severe restriction on the time step (Peskin, 2002); At high Reynolds number this
method is less desirable compared to the body-conforming mesh method because
of the diffused interface (Peskin, 2002; Mittal & Iaccarino, 2005).

To recover the second order spatial accuracy and maintain a sharp interface, LeV-
eque & Li (1994) proposed the immersed interface method (IIM) for elliptic equa-
tions. It is further extended to the Navier-Stokes equations by imposing proper jump
conditions on the pressure to eliminate the discrete dipole of the forcing term (Li &
Lai, 2001; Lee & LeVeque, 2003). By employing the finite element technique, the
original method has been extended to the immersed finite element method (Wang
& Liu, 2004; Zhang et al., 2004; Wang et al., 2009) and the immersed continuum
method (Wang, 2007; Wang et al., 2009) for more general solid problems, by re-
placing the membrane with solid structures that occupy finite volumes.

74



However, the previous methods are only well suited for elastic boundaries. When
applied to rigid bodies, the stiffness is chosen to be very large. Too large value can
cause instabilities during the calculation. Therefore, the compromise must be taken
between extremely small time steps for negligible deformations or larger time steps
with mild deformations.

(ii) Rigid boundary

Considering that the constitutive laws are generally not well posed in the rigid limit,
Beyer & LeVeque (1992) and Lai & Peskin (2000) used a spring to attach the solid
to an equilibrium location Xe(s, t) with a restoring force given by

F(X, t) = κ(Xe(s, t)−X(s, t)) (4.7)

where κ is the stiffness coefficient. However, to impose the boundary condition
accurately, the value of κ needs to be very large as well. This can lead to stiff
equations and numerical difficulties. If a smaller value of κ is used, the solid can
excessively deviate from its equilibrium location.

Alternatively, Goldstein et al. (1993) and Saiki & Biringen (1996) employed an
feedback forcing strategy by using

F(X, t) = −α
∫ t

0

(U(X, τ)−Ub(X, τ)) dτ − β (U(X, t)−Ub(X, t)) (4.8)

where α � 1 and β � 1 are some large artificial constants whose dimensions
are 1/T 2 and 1/T . This approach behaves as a system of springs and dampers to
correct U(X, t) to Ub(X, t) in a feedback manner. The major shortcomings of the
feedback forcing approach are that big values of α and β can cause stiff equations
and the explicit forcing scheme results in a severe stability constraint with the
CFL = O(10−3 − 10−2) (Goldstein et al., 1993; Fadlun et al., 2000).

It is worth noting that other variants in this class have been proposed in the literature
for tackling rigid boundaries. For example, in Angot et al. (1999) and Khadra et al.

(2000) the flow is assumed in a porous medium and the Navier-Stokes/Brinkman
equations are solved with the extra force term of µ/Ku, with K being the perme-
ability defined as infinity for the fluid and zero for the solid. In practice, a large value
of K is chosen for the fluid and smoothed over the interface, which however can
lead to inaccuracies. Contrarily, Glowinski et al. (1994) constructed the fictitious
domain method or the distributed Lagrange multiplier method (FD/DLM), which
considers the solid as a fluid subject to a rigidity constraint.

75



To sum up, the continuous forcing immersed boundary method is attractive for
elastic boundaries, since it has a physical basis and is easy to be implemented. To
apply to rigid bodies, several remedies have been proposed. However, most of them
rely on artificial constants, which are ad hoc and can cause numerical instabilities.

4.3.2 Discrete forcing methods

(i) Direct forcing method

To overcome the drawbacks of previous continuous forcing immersed boundary
methods in simulating rigid boundaries, Mohd-Yosuf (1997) and Fadlun et al. (2000)
proposed the direct forcing immersed boundary method via modifying the discrete
momentum equation. This method is classified into the discrete forcing group in
Mittal & Iaccarino (2005). For simple discussion, the discrete fluid momentum
equation is rewritten as

un+1 − un

∆t
= RHSn+1 + fn+1 (4.9)

where RHS contains the viscous, convective and pressure gradient terms. To yield a
correct boundary condition at the interface Γs, the force term is then determined as

fn+1|Γs =

(
−RHSn+1 +

Un+1
b − un

∆t

)
|Γs (4.10)

which is zero elsewhere. By doing so, the desired velocity value is enforced directly
without any dynamical process. No more free constants are needed in this setting.
Most importantly, no additional constraints are introduced to the time step.
Unlike Peskin (1972b, 2002), the direct forcing method of Mohd-Yosuf (1997)
and Fadlun et al. (2000) employs a local velocity reconstruction to enforce the
boundary condition. Fadlun et al. (2000) compared several interpolation schemes
and achieved a second order accuracy using a linear interpolation. In Figure 4.3, the
velocity ui at the first grid point outside the solid is obtained by linearly interpolat-
ing the velocity V at the boundary and the velocity ui+1 at the second grid point.

This direct forcing immersed boundary method was made popular by the work of
Uhlmann (2005) for moving rigid boundaries. Uhlmann (2005) observed strong
oscillations of the boundary force with the local velocity reconstruction approach
and attributed this problem to insufficient smoothing. To obtain smooth results,
Uhlmann (2005) suggested to evaluate the force on the Lagrangian locations and

76



Figure 4.3: Local velocity interpolation scheme of Fadlun et al. (2000).

distribute the force to the fluid cells using the discrete delta function (see Figure
4.4), which inherits from the method of Peskin (1972b, 2002). Using the rotational
incremental pressure-correction projection method as the fluid solver, the direct
forcing immersed boundary method of Uhlmann (2005) can be summarized as

Xl

δh

Spreading

Interpolation

Figure 4.4: Illustration of interpolation and spreading procedures of Uhlmann (2005)
and Kempe & Fröhlich (2012a) with a discrete delta function. "�" represents the
solid node.

(1) Velocity prediction of all the explicit terms in the discretized momentum equa-
tion

u∗ = un + ∆t

{
−
[

3

2
N (un)− 1

2
N (un−1)

]
− Gpn +

1

2Re
Lun

}
(4.11a)

(2) Interpolate the predicted fluid velocity into the immersed interface with a dis-

77



crete delta function

U∗(Xl) =
nx∑
i=1

ny∑
j=1

u∗δh(xi,j −Xl)h
2 (4.11b)

(3) Evaluate the boundary force on the Lagrangian locations

Fn+1(Xl) =
Un+1
b (Xl)−U∗(Xl)

∆t
(4.11c)

(4) Spread the boundary force to the surrounding fluid cells using the same discrete
delta function

fn+1(xi,j) =

nb∑
l=1

Fn+1(Xl)δh(xi,j −Xl)∆Vl (4.11d)

where ∆Vl ≈ h2 is surface associated with the element Xl by setting the arc-length
δs approximate the uniform mesh width h, as shown in Figure 4.5.

Xl

δs
h

i i+ 1

j

j + 1

i = 1, . . . , nx

j = 1, . . . , ny

l = 1, . . . , nb

Figure 4.5: The lth element Xl and its associated surface ∆Vl ≈ h2 marked by a
shaded zone.

(5) Correct the fluid velocity with the boundary force to account for the immersed
objects

ũn+1 = u∗ + ∆tfn+1 (4.11e)

(6) Implicit treatment of the viscous term

1

∆t
ûn+1 − 1

2Re
Lûn+1 =

1

∆t
ũn+1 (4.11f)

78



(7) Project the fluid velocity into the divergence-free field and update the pressure

Lφn+1 =
1

∆t
Dûn+1 (4.11g)

un+1 = ûn+1 −∆tGφn+1 (4.11h)

pn+1 = pn + φn+1 − 1

2Re
Dûn+1 (4.11i)

Here u∗, ũn+1, ûn+1, un+1 represent the fluid velocities at different stages in the
fractional step method, i.e.,

• u∗ at the prediction step with explicit terms;

• ũn+1 at the immersed boundary forcing step;

• ûn+1 at the viscous prediction step;

• un+1 at the projection step.

This explicit scheme is favored in the literature as it is computationally inexpensive.
However, the correct boundary condition can never be achieved on the immersed
interface neither for the final velocity un+1 nor for the intermediate velocity ûn+1

fields. To enforce the boundary condition exactly, iteration of the whole system is
needed to have Un+1 instead of U∗ in the right hand side of (4.11c). This certainly
loses the advantage of the fractional step method. But it implies one way of reduc-
ing the error by choosing the closest value to the final velocity in the immersed
boundary forcing step.
Kempe & Fröhlich (2012a) suggested to perform the viscous prediction step first
and then use the intermediate velocity ûn+1 to compute the boundary force. To fur-
ther improve the accuracy, a forcing loop is added in the immersed boundary forcing
step. This additional loop is performed with 3 iterations without convergence. Even
though the error is considerably reduced, the method of Kempe & Fröhlich (2012a)
is still explicit. The exact no-slip boundary condition can never be satisfied. The
method of Kempe & Fröhlich (2012a) is summarized as
(1) Prediction of the explicit terms

u∗ = un + ∆t

{
−
[

3

2
N (un)− 1

2
N (un−1)

]
− Gpn +

1

2Re
Lun

}
(4.12a)

(2) Implicit viscous step

1

∆t
ûn+1 − 1

2Re
Lûn+1 =

1

∆t
u∗ (4.12b)

79



(3) Immersed boundary forcing loop

Loop for k = 1 to 3 with û(0) = ûn+1

Û(k)(Xl) =
nx∑
i=1

ny∑
j=1

û(k−1)δh(xi,j −Xl)h
2 (4.12c)

F(k)(Xl) =
Un+1
b (Xl)− Û(k)(Xl)

∆t
(4.12d)

f (k)(xi,j) =

nb∑
l=1

F(k)(Xl)δh(xi,j −Xl)∆Vl (4.12e)

ũ(k) = û(k) + ∆tf (k) (4.12f)

û(k) = ũ(k) (4.12g)

End loop

(4) Projection and update of the final fields

Lφn+1 =
1

∆t
Dũn+1 (4.12h)

un+1 = ũn+1 −∆tGφn+1 (4.12i)

pn+1 = pn + φn+1 − 1

2Re
Dûn+1 (4.12j)

If full convergence of the forcing loop is required more iterations are needed, such as
the multidirect forcing scheme of Luo et al. (2007) and Breugem (2012). However,
the convergence rate of this iteration becomes very slow after several iterations.
Therefore the number of iteration of the forcing loop is usually kept low for the
computational efficiency.

(ii) Immersed boundary projection method (IBPM)

To impose the no-slip boundary condition accurately, Taira & Colonius (2007)
proposed the immersed boundary projection method (IBPM). By considering that
the boundary force is a Lagrange multiplier for satisfying the no-slip boundary
condition on the immersed interface, the immersed boundary method combines
the two Lagrange multipliers, the pressure and the boundary force, into a modified
Poisson equation solved with the projection method of Perot (1993). The immersed

80



boundary projection method is written algebraically asA G S
D 0 0

T 0 0


un+1

pn+1

fn+1

 =

 rn

0

Un+1
b

+

bc1

bc2

0

 (4.13)

where A = 1
∆t

[I − ∆t
2Re
L]. Note that we have S = T T and D = −GT, the above

system is simplified to [
A Q
QT 0

](
un+1

λ

)
=

(
r1

r2

)
(4.14)

where λ = [p Fn+1]T, Q = [G,ST] and r1, r2 include the boundary conditions,
the explicit terms in the discretized momentum equation and the no-slip boundary
condition at the immersed interface. This system is solved by an approximate block
LU decomposition based on the Schur Complement[

A 0

QT −QTBQ

][
I BQ
0 I

](
un+1

λ

)
=

(
r1

r2

)
+

(
−∆tN

2N
LNQλ
0

)
(4.15)

where B is the N -th order Taylor series expansion of A−1

B = ∆tI +
∆t2

2Re
L+

∆t3

(2Re)2
L2 + · · ·+ ∆tN

(2Re)N−1
LN−1 =

N∑
j=1

∆tj

(2Re)j−1
Lj−1

(4.16)
In practice, this algebraic equation is usually solved in a fractional manner

Aûn+1 = r1 (4.17a)

QTBQλ = QT ûn+1 − r2 (4.17b)

un+1 = ûn+1 − BQλ (4.17c)

which just follows the fractional step method: prediction and projection. N = 3

is suggested in Taira & Colonius (2007) for achieving positive-definiteness of the
modified Poisson equation (4.17b).

The immersed boundary projection method is very accurate since it enforces the
divergence free condition and the no-slip boundary condition simultaneously in the
projection step. In spite of the mathematical rigour and completeness, the immersed
boundary method is less efficient for the following reasons. First a large matrix is
created towards the modified Poisson equation, which requires more storage and

81



iterations for a given tolerance. Since the boundary force is a vector, the dimension
of the modified Poisson equation increases significantly for three dimensional sim-
ulations. Secondly the condition number of the original PPE is undermined signif-
icantly due to the singular property of the interpolation and distribution functions,
which can lead to convergence problems (Ji et al., 2012). Moreover for moving
boundaries, the coefficient matrix of the modified Poisson equation is re-computed
and its preconditioner is re-evaluated at every time step, which increases the com-
putational time.

(iii) Ghost-cell immersed boundary method

Tseng & Ferziger (2003) and Mittal et al. (2008) extended the work of Mohd-
Yosuf (1997) and Fadlun et al. (2000) via a ghost-cell approach. The ghost-cell
IBM attempts to achieve a sharp representation of the immersed boundary and
to preserve a higher order spatial accuracy. The ghost-cell is defined inside the
immersed boundary, such that each ghost-cell has at least one neighbor in the fluid
(see Figure 4.6a). The local flow variable is then expressed in terms of polynomial
(linear or quadratic) and the ghost-cell value is weighted by the neighboring nodes
values.

(a) (b)

Figure 4.6: Ghost-cell methodology of Mittal et al. (2008): (a) Identification of the
ghost-cell (GC), the image point (IP), and the boundary intercept (BI); (b) The
emerged fresh cells due to boundary motion.

The ghost-cell IBM directly imposes the boundary condition at the precise location
of the immersed boundary, hence it is suitable for high Reynolds number flow
simulations. However, numerical instability may arise when the boundary point is

82



close to the fluid nodes, caused by large negative weighting coefficients. The image
method is used to circumvent this problem in Tseng & Ferziger (2003) and Mittal et

al. (2008), as shown in Figure 4.6a. The flow variable is evaluated at the image point
(IP) and transfered to the ghost cell (GC) by extrapolation. Another issue with the
ghost-cell method is the so-called "fresh-cell" problem (Mittal & Iaccarino, 2005;
Mittal et al., 2008). The fresh-cells are in the solid at one time step and emerge
into the fluid at the next time step because of the boundary motion (see Figure
4.6b). This leads to a temporal discontinuity on the fresh-cells. Mittal et al. (2008)
handled this problem by interpolating the fluid velocity from neighboring nodes.
Further, the identification of the boundary intercept (BI) point is complicated for
complex geometries in the ghost-cell IBM, although conceptually simple. Incorrect
BI can lead to divergence (Mittal et al., 2008).

(iv) Cut-cell immersed boundary method

None of the immersed boundary methods we have discussed so far satisfies the
underlying conservation laws in the vicinity of the immersed boundary. Ye et al.

(1999) proposed the cut-cell immersed boundary method on a collocated (non-
staggered) grid using the finite volume discretization for the conservation of mass
and momentum.

Figure 4.7: Cut-cell immersed boundary method of Ye et al. (1999). The fluid cells
are reshaped as shown in the shaded zone.

In the cut-cell IBM, the fluid cells that are cut by the immersed boundary are identi-
fied, and the intersection of the boundary with these cells is calculated. Next the cut-
cells whose center lies in the fluid side are reshaped or absorbed into neighboring

83



cells otherwise, as shown in Figure 4.7. This method retains the second order spatial
accuracy and yields a sharp interface. Moving boundaries have also been considered
in (Udaykumar, 2001). However, the extension to three dimensions is extremely
difficult. This due to the fact that the cut-cell procedure often yields complex poly-
hedral cells, which makes the discretization of the Navier-Stokes equations on these
cells very complicated (Mittal & Iaccarino, 2005).

Cheny & Botella (2010) extended the collocated cut-cell IBM to the MAC staggered
grid, called the LS-STAG method, by using the level-set function to represent the
irregular boundary. Super-linear convergence is found in this method and moving
boundaries can be also handled.

The cut-cell IBM has a clear advantage over other methods for the conservation
properties near the immersed boundary. But it comes at a price of increased com-
plexity in implementation, especially in three dimensions. Similar to previous ghost-
cell IBM, the fresh-cells are non-trivial in this sharp interface method (Mittal &
Iaccarino, 2005).

4.3.3 Non-primitive variable immersed boundary methods

It is worth noticing that the immersed boundary methods have also been success-
fully integrated into the fluid solvers in non-primitive variable formulations. Ren
et al. (2012) implemented the immersed boundary method in the streamfunction-
vorticity formulation. The desired boundary condition is achieved by the velocity
and vorticity correction. Mimeau et al. (2015) proposed a penalization immersed
boundary method in the velocity-vorticity fluid solver, where the fluid is assumed
to be porous medium and the Brinkman-Navier-Stokes equations are solved. The
immersed boundary method based on the discrete streamfunction fluid solver was
reported in Colonius & Taira (2008) and Wang & Zhang (2011). The combined
lattice Boltzmann method and immersed boundary method (LBM-IBM) has gained
a lot of popularities in Huang et al. (2007), Dupuis et al. (2008), and Favier et al.

(2014). The enforced boundary condition scheme in LBM-IBM has been considered
in Wu & Shu (2009), Wu & Shu (2010) and Wang et al. (2015). As mentioned
previously, despite the efficiency, the non-primitive variable formulations can suffer
from the difficulty of the boundary condition impositions.

4.3.4 Summary

Various immersed boundary methods have been investigated systematically in this
subsection. The first group of continuous forcing methods are suitable for deformable

84



boundaries but become numerically instable when extended to rigid boundaries. The
second group of discrete forcing methods do not need artificial constants to enforce
the boundary condition at rigid boundaries, and they are stable with larger time
steps. In the second IBM category, the sharp interface methods provides a better
boundary representation and a higher accuracy but increases the complexity of
implementation, compared to the diffused interface methods. Whereas the diffused
interface methods (e.g. the direct forcing method) are more easily to work with
moving boundary problems. There is no need to consider the cell identification and
the cell-trimming encountered by the sharp interface methods. Hence the diffused
interface methods are suitable for the simulation of fluid-structure interactions.

4.4 Moving immersed boundary method (MIBM)

Inspired by the direct forcing IBM of Uhlmann (2005) and Kempe & Fröhlich
(2012a), the multidirect forcing IBM of Luo et al. (2007) and Breugem (2012),
and the IBPM of Taira & Colonius (2007), we present a novel moving immersed
boundary method is this subsection. We hope the new method can maintain the
efficiency of the direct forcing IBM, but with an improved accuracy like that in the
multidirect forcing IBM and the IBPM.

4.4.1 Derivation of the moving force equation

To this end, we first take the immersed boundary forcing part from the explicit
method of Kempe & Fröhlich (2012a) for consideration, i.e., (4.12c), (4.12d), (4.12e)
and (4.12f). By dropping the temporal superscript n + 1 for convenience, the im-
mersed boundary forcing part is written as

Û = T û (4.18a)

F =
Ub − Û

∆t
(4.18b)

f = SF (4.18c)

ũ = û + ∆tf (4.18d)

We require that the interpolated velocity satisfies the no-slip wall boundary con-
dition on the immersed interface after the immersed boundary forcing, namely
T ũ = Ub, then

T (û + ∆tf) = Ub (4.19)

85



Substituting (4.18c) into (4.19) gives

T (û + ∆tSF) = Ub (4.20)

which can be rearranged in order to separate the boundary force

(T S)F =
Ub − T û

∆t
(4.21)

We donate M = T S the moving force coefficient matrix, since M is a function
of the solid position. As the solid moves it changes its value, so that the force is
redistributed just like the boundary force moves. The moving force equation can be
rewritten in a more concise form

MF = Fe (4.22)

where Fe = (Ub − T û)/∆t is exactly the explicit forcing value used by Kempe &
Fröhlich (2012a).

Compared to the modified Poisson equation in the IBPM of Taira & Colonius
(2007), the moving force equation (4.22) is much smaller in size and easier to work
with. At each dimension (x or y), the size of the moving force coefficient matrix is
nb × nb since T ∈ Rnb×nxny and S ∈ Rnxny×nb . Therefore, for moving boundaries,
its update is computational less expensive than the modified Poisson equation.

Note that S = (∆Vl/h
2)T T if the same function is used for interpolation and

spreading, where ∆Vl/h
2 ≈ 1 is the volume ratio between the fluid and the solid

cell. As a result, the moving force coefficient matrixM = (∆Vl/h
2)T T T is sym-

metric. It is also found thatM is positive-definite irrespective of the time step and
the approximation order as in the IBPM Taira & Colonius (2007). Moreover, the
moving force equation is well conditioned. It converges very quickly by using the
conjugate gradient method.

The matrixM ∈ Rnb×nb is in general sparse with most non-zero elements near the
diagonal position, thus it can be stored with any sparse matrix format like the CRS
in our present work. As for T and S, they are stored in the CRS and CCS formats
separately, which allows to manipulate their product very easily. Another reason is
that CCS can store the matrix transpose directly from CRS without changing the
vector values. Figure 4.8 shows the moving force matrix pattern resulted from the
lid-driven cavity flow with an immersed cylinder case (nb = 51) in Section 4.7.2.

86



0 10 20 30 40 50

0

10

20

30

40

50

Figure 4.8: Moving force coefficient matrix pattern.

4.4.2 Implementation in the projection method

In previous subsection, we have derived an additional moving force equation for
imposing the no-slip wall condition implicitly. Based on that, we can construct
a novel immersed boundary method, termed as the moving immersed boundary
method (MIBM) in this thesis. The greatest advantage of the moving force equation
is that it can be easily integrated into any fluid solver as a plug-in to play a role. In
the present work, we demonstrate this flexibility by incorporating the moving force
equation into the rotational incremental pressure-correction projection method. For
the sake of simplicity, we rewrite the governing equations (4.2) as

un+1 − un

∆t
= H + P + F (4.23a)

Dun+1 = 0 (4.23b)

T un+1 = Un+1
b (4.23c)

whereH, P and F are the operators defined as

H := −
[

3

2
N (un)− 1

2
N (un−1)

]
+

1

2Re
L(un+1 + un)− Gpn (4.24a)

P := −Gφn+1 (4.24b)

F := SFn+1 (4.24c)

To decouple the momentum equation (4.23a) from the divergence free condition

87



(4.23b) and the no-slip wall condition on the interface (4.23c), we perform the
following operator splitting algorithm:

(1) Prediction step by ignoring the immersed objects

ûn+1 − un

∆t
= H(ûn+1) (4.25)

(2) Immersed boundary forcing step for satisfying the no-slip wall condition on the
interface

ũn+1 − ûn+1

∆t
= F (4.26a)

T ũn+1 = Un+1
b (4.26b)

Applying (4.26b) to (4.26a) gives the moving force equation that we have defined
previously

MFn+1 =
Un+1
b − T ûn+1

∆t
(4.27a)

Once the boundary force is determined, we correct the fluid velocity with

ũn+1 = ûn+1 + ∆tSFn+1 (4.27b)

(3) Projection step for obtaining the divergence free velocity un+1 and the final
pressure pn+1

un+1 − ũn+1

∆t
= P (4.28a)

Dun+1 = 0 (4.28b)

Applying the divergence operator to (4.28a) and using the divergence free condition
(4.28b) gives

Lφn+1 =
1

∆t
Dũn+1 (4.29a)

un+1 = ũn+1 −∆tGφn+1 (4.29b)

In the rotational incremental pressure-correction projection method, the final pres-
sure is advanced by

pn+1 = pn + φn+1 − 1

2Re
Dûn+1 (4.30)

The overall scheme still follows the regular fractional step method, and the moving

88



immersed boundary forcing can be viewed as another operator splitting. The global
structure of the MIBM is shown in Figure 4.9.

In the moving immersed boundary method, the coefficient matrix of the pressure
Poisson equation is unchanged during the calculation. Therefore, convergence prob-
lems will not occur. Compared to the modified Poisson equation in the IBPM (Taira
& Colonius, 2007), the moving force equation is much easier to work with. Even
though the interface velocity condition is enforced before the projection step, we
have found that the velocity on the immersed boundary is essentially unchanged
after the projection step. The same observation has also been made by Kempe &
Fröhlich (2012a) and Fadlun et al. (2000).

It is worth noting that the present moving immersed boundary method recovers to
the explicit method of Kempe & Fröhlich (2012a) with one iteration in the forcing
loop, ifM is set to the identity matrix. However it is not the case, hence our method
is implicit.

Initialization at t = tn

Prediction for ûn+1

Moving immersed boundary forcing for ũn+1

Projection for un+1 and pn+1

Arrive at final time ?

Next time step n = n+ 1

End

Yes

No

Figure 4.9: Global structure of the moving immersed boundary method.

89



4.5 Interpolation techniques

Since the Lagrangian markers for representing the immersed boundary are not coin-
cident with the underlying fluid Eulerian grids, interpolation scheme is needed for
the transfer of quantities between the two meshes. Many different techniques are
available and they can be broadly classified into two groups: (a) Schemes that use
a local velocity reconstruction; (b) Schemes that spread the boundary force to the
fluid cells over the vicinity of the immersed boundary.
The first group includes the direct forcing IBM of Mohd-Yosuf (1997) and Fadlun
et al. (2000) and the ghost-cell IBM of Tseng & Ferziger (2003) and Mittal et

al. (2008). No spurious spreading of the boundary force into the fluid will occur.
High degree of accuracy can be obtained with certain local reconstruction schemes.
However in case of moving boundaries, spurious oscillating can occur towards the
force and deteriorates the solution in the direct forcing IBM. Special care has also
to be taken about the fresh cells in the ghost-cell IBM.
Current method is categorized into the second group. The boundary force is dis-
tributed by using a smoothed kernel function, such as the discrete delta function
(Peskin, 1972b; Beyer & LeVeque, 1992; Lai & Peskin, 2000; Uhlmann, 2005;
Taira & Colonius, 2007; Kempe & Fröhlich, 2012a), the reproducing kernel particle
method (RKPM) (Wang & Liu, 2004; Zhang et al., 2004; Pinelli et al., 2010), the
moving least squares method (MLS) (Vanella & Balaras, 2009) and the radial basis
function (RBF) (Toja-Silva et al., 2014). Even though the interface is diffused, they
are relatively easy to incorporate the boundary motion. As indicated by Beyer &
LeVeque (1992), original accuracy of the fluid solver can be retained if the discrete
delta function is carefully chosen.
We assume that the two-dimensional δh is given by a product of one-variable func-
tions which scale with the mesh size h as follows

δh(x) =
1

h2
φ(
x

h
)φ(

y

h
) (4.31)

Donate r = x/h or y/h, the discrete delta functions commonly have the following
properties:

• φ has narrow compact support so that the evaluation is cheap and better
boundary resolution is obtained. Donate 2M the support width, thus

φ(r) 6= 0, only if |r| 6Mh (4.32)

• φ is second-order accurate for smooth fields.

90



• φ satisfies the moment conditions, which guaranties the mass, force (m = 0,
i.e. partion of unity) and torque identities (m = 1) between Eulerian and
Lagrangian grids. If φ meets the moment conditions up to order m − 1, it is
then of moment order m.∑

j

φ(r − j) = 1 for all real r if m = 0 (4.33)

∑
j

(r − j)mφ(r − j) = 0 for all real r if m > 0 (4.34)

The most simplest form can be the 2-point hat function φ1 (Beyer & LeVeque, 1992)

φ1(r) =

{
1− |r| |r| < 1

0 1 6 |r|
(4.35)

which however is not smooth in the support domain. A smoother version is provided
in Peskin (2002) with four points width

φ2(r) =


1

4

(
1 + cos(

πr

2
)
)

|r| < 2

0 2 6 |r|
(4.36)

Roma et al. (1999) designed a 3-point-width function for the staggered mesh, which
is widely used in the literature

φ3(r) =


1

3

(
1 +
√
−3r2 + 1

)
|r| < 0.5

1

6

(
5− 3|r| −

√
−3(1− |r|)2 + 1

)
0.5 6 |r| < 1.5

0 1.5 6 |r|

(4.37)

Another popular function of 4-point-width φ4 constructed by Peskin (2002) is

φ4(r) =


1

8

(
3− 2|r|+

√
1 + 4|r| − 4r2

)
|r| < 1

1

8

(
5− 2|r|+

√
−7 + 12|r| − 4r2

)
1 6 |r| < 2

0, 2 6 |r|

(4.38)

It is often observed that the above versions lead to non-physical oscillations to
the boundary force in moving boundary simulations. Yang et al. (2009) attributed
this spurious oscillation to the lack of certain moment conditions of the discrete

91



−3 −2 −1 0 1 2 3
−0.1

0

0.5

1

(a) φ1(r)

−3 −2 −1 0 1 2 3
−0.1

0

0.5

1

(b) φ2(r)

−3 −2 −1 0 1 2 3
−0.1

0

0.5

1

(c) φ3(r)

−3 −2 −1 0 1 2 3
−0.1

0

0.5

1

(d) φ4(r)

−3 −2 −1 0 1 2 3
−0.1

0

0.5

1

(e) φ5(r)

−3 −2 −1 0 1 2 3
−0.1

0

0.5

1

(f) φ6(r)

−3 −2 −1 0 1 2 3
−0.1

0

0.5

1

(g) φ7(r)

−3 −2 −1 0 1 2 3
−0.1

0

0.5

1

(h) φ8(r)

−3 −2 −1 0 1 2 3
−0.1

0

0.5

1

(i) φ9(r)

−3 −2 −1 0 1 2 3
−0.3

0

0.5

1

(j) φ10(r)

−3 −2 −1 0 1 2 3
−0.1

0

0.5

1

(k) φ11(r)

−3 −2 −1 0 1 2 3
−0.1

0

0.5

1

(l) φ12(r)

Figure 4.10: Plots of discrete delta functions.

delta function derivatives. A smoothing technique is then proposed to improve the
moment condition

φ∗(r) =

∫ r+0.5

r−0.5

φ(r′)dr′ (4.39)

Using this technique, the above discrete delta functions are smoothed as follows

φ5(r) =


3

4
− r2 |r| < 0.5

9

8
− 3

2
|r|+ 1

2
r2 0.5 6 |r| < 1.5

0 1.5 6 |r|

(4.40)

which is the smoothed version of the 2-point hat function φ1. The smoothed 4-point
cosine function of φ2 is given by

φ6(r) =


1

4π

(
π + 2sin

(π
4

(2r + 1)
)
− 2sin

(π
4

(2r − 1)
))

|r| < 1.5

− 1

8π

(
−5π + 2π|r|+ 4sin

(π
4

(2|r| − 1)
))

1.5 6 |r| < 2.5

0 2.5 6 |r|
(4.41)

92



The smoothed 3-point version of φ3 is

φ7(r) =



17

48
+

√
3π

108
+
|r|
4
− r2

4
+

1− 2|r|
16

√
−12r2 + 12|r|+ 1

−
√

3

12
arcsin

(√
3

2
(2|r| − 1)

)
|r| < 1

55

48
−
√

3π

108
− 13|r|

12
+
r2

4
+

2|r| − 3

48

√
−12r2 + 36|r| − 23

+

√
3

36
arcsin

(√
3

2
(2|r| − 3)

)
1 6 |r| < 2

0 2 6 |r|
(4.42)

The smoothed 4-point version of φ4 is

φ8(r) =



3

8
+

π

32
− r2

4
|r| < 0.5

1

4
+

1− |r|
8

√
−2 + 8|r| − 4r2

− 1

8
arcsin

(√
2(|r| − 1)

)
0.5 6 |r| < 1.5

17

16
− π

64
− 3|r|

4
+
r2

8
+
|r| − 2

16

√
−14 + 16|r| − 4r2

+
1

16
arcsin

(√
2(|r| − 2)

)
1.5 6 |r| < 2.5

0 2.5 6 |r|
(4.43)

Yang et al. (2009) and Beyer & LeVeque (1992) compared the hat function with a
wider support of 4-point-width

φ9(r) =

{
0.5− 0.25|r| |r| < 2

0 2 6 |r|
(4.44)

Considering that the velocity usually has a kink at the interface where one or more
derivatives are discontinuous, Beyer & LeVeque (1992) constructed the φ10 by using
linear extrapolation on each side of the interface

φ10(r) =


1− r2 |r| < 1

2− 3|r|+ r2 1 6 |r| < 2

0 2 6 |r|
(4.45)

Griffith & Peskin (2005) improved the accuracy by using the smoothed delta func-

93



tions that satisfy four moment conditions, such as 4-point piecewise cubic function

φ11(r) =


1− 1

2
|r| − r2 +

1

2
|r|3 |r| < 1

1− 11

6
|r|+ r2 − 1

6
|r|3 1 6 |r| < 2

0 2 6 |r|

(4.46)

and the 6-point delta function

φ12(r) =



61

112
− 11

42
|r| − 11

56
r2 +

1

12
|r|3 +

√
3

336
(243 + 1584|r|

− 748r2 − 1560|r|3 + 500r4 + 336|r|5 − 112r6)1/2 |r| < 1

21

16
+

7

12
|r| − 7

8
r2 +

1

6
|r|3 − 3

2
φ12(|r| − 1) 1 6 |r| < 2

9

8
− 23

12
|r|+ 3

4
r2 − 1

12
|r|3 +

1

2
φ12(|r| − 2) 2 6 |r| < 3

0 3 6 |r|
(4.47)

Those functions are displayed in Figure 4.10 and their properties are summarized
in Table 4.1.

Support width Continuity Moment condition

φ1(r) 2 C0 1
φ2(r) 4 C1 0
φ3(r) 3 C1 1
φ4(r) 4 C1 1
φ5(r) 3 C1 1
φ6(r) 5 C2 1
φ7(r) 4 C2 1
φ8(r) 5 C2 1
φ9(r) 4 C0 1
φ10(r) 4 C2 1
φ11(r) 4 C3 4
φ12(r) 6 C3 4

Table 4.1: Properties of various discrete delta functions.

94



4.6 Comparison with different immersed boundary
methods

To demonstrate the accuracy and efficiency of present moving immersed boundary
method, we perform the following test

Given u0(x, y) = excos y − 2, 0 6 x, y 6 1

Find F such that u(x, y) = u0(x, y) + SF = Ub on Γs

where Γs is represented by a circle with a radius of 0.2 centered at (0.52, 0.54) and
Ub = 0. The domain is covered by 64× 64 nodes with around 81 Lagrangian points
defining the circle surface. ∆t is set to 1.

Algorithm 3: Explicit direct forcing IBM of Uhlmann (2005).

1 U = T u0

2 F = (Ub − U)/∆t

3 u = u0 + SF

Algorithm 4: Improved explicit forcing IBM of Kempe & Fröhlich (2012a).

1 u0 = u0

2 for k = 0 to 2 do
3 U (k) = T u(k)

4 F (k) = (Ub − U (k))/∆t

5 u(k+1) = u(k) + SF (k)

6 k = k + 1

7 end
8 u = u(k+1)

In this test, the fluid equations are not solved and only the immersed boundary
forcing part is considered. The initial field u0(x, y) can be seen as a predicted fluid
velocity component in one direction. This test is to examine different immersed
boundary forcing methods for imposing the desired velocity Ub at the interface Γs

via a boundary force F . The present MIBM (shown in Algorithm 6) is compared
to the explicit direct forcing IBM of Uhlmann (2005) (shown in Algorithm 3),
the improved explicit direct forcing IBM of Kempe & Fröhlich (2012a) (shown

95



Algorithm 5: Iterative implicit IBM of Luo et al. (2007) and Breugem (2012).

1 u0 = u0

2 for k = 0 to kmax do
3 U (k) = T u(k)

4 F (k) = (Ub − U (k))/∆t

5 u(k+1) = u(k) + SF (k)

6 if ||T u(k+1) − Ub|| < tolerance then
7 break
8 else
9 k = k + 1

10 end
11 end
12 u = u(k+1)

Algorithm 6: Present implicit MIBM.

1 ConstructM = (∆Vl/h
2)T T T

2 U = T u0

3 F e = (Ub − U)/∆t

4 SolveMF = F e

5 u = u0 + SF

in Algorithm 4), and the iterative implicit multidirect forcing IBM of Luo et al.

(2007) and Breugem (2012) (shown in Algorithm 5).

Figure 4.11a displays the result of the explicit direct forcing IBM of Uhlmann
(2005), where u is far away from zero over the immersed boundary compared to
Figure 4.11c. The accuracy is improved after 3 iterations with the method of Kempe
& Fröhlich (2012a), as shown in Figure 4.11b. Figure 4.11d reveals that the results
are nearly the same for present method with the iterative implicit multidirect forcing
IBM of Luo et al. (2007) and Breugem (2012).

Table 4.2 compares the computational time and velocity error on the interface in
these immersed boundary methods. The error is measured in L2-norm and the
tolerance is 1 × 10−15. The method of Uhlmann (2005) is the quickest due to its
explicit nature, but it suffers a large error of 3.01× 10−1 on the immersed interface.
The forcing loop of Kempe & Fröhlich (2012a) reduces the error by a factor of 4
with 3 iterations. However, the error of 7.41× 10−2 is still considered large.

The iterative implicit multiforcing IBM of Luo et al. (2007) and Breugem (2012) is
required to converge towards the machine precision, but it takes approximately 606

96



0

0.5

1

0

0.5

1

−4

−3

−2

−1

0

1

 

 x y

 

 u

−1

−0.5

0

0.5

(a)

0

0.5

1

0

0.5

1

−4

−3

−2

−1

0

1

 

 x y

 

 u

−1

−0.5

0

0.5

(b)

0

0.5

1

0

0.5

1

−4

−3

−2

−1

0

1

 

 x y

 

 u

−1

−0.5

0

0.5

(c)

0

0.5

1

0

0.5

1

−4

−3

−2

−1

0

1

 

 x y

 

 u

−1

−0.5

0

0.5

(d)

Figure 4.11: Contour of the scalar field after the immersed boundary forcing: (a) with
the explicit direct forcing IBM of Uhlmann (2005); (b) with the improved explicit
direct forcing IBM of Kempe & Fröhlich (2012a); (c) with the iterative implicit
multidirect forcing IBM of Luo et al. (2007) and Breugem (2012); (d) with present
MIBM.

times more additional computational effort than the explicit method of Uhlmann
(2005). Actually, the convergence rate in the iterative implicit method decreases
dramatically after about 10 iterations, as shown in Figure 4.12. In order to reduce
the error to 1× 10−6, around 1000 iterations are needed. 4443 iterations are needed
for the machine precision. Therefore the iteration number in the iterative implicit
multiforcing IBM is often kept low in practice (Breugem, 2012).

The present MIBM converges to the same machine precision only with 60 iterations
by using the conjugate gradient solver. The computation is not increased consider-
ably compared to the explicit method of Uhlmann (2005), as we can see that the
present method only takes twice the amount of computational time of the direct
forcing IBM of Uhlmann (2005). It worth noticing that present method is almost as
efficient as the explicit direct forcing IBM of Kempe & Fröhlich (2012a).

97



Time (s) Iter. Error

Uhlmann (2005) 6.02× 10−3 1 (fixed) 3.01× 10−1

Kempe & Fröhlich (2012a) 1.71× 10−2 3 (fixed) 7.41× 10−2

Luo et al. (2007) and Breugem (2012) 3.65× 101 4443 9.96× 10−16

Present 1.33× 10−2 60 8.29× 10−16

Table 4.2: Comparison of the computational time and the velocity error with various
immersed boundary methods. A fixed iteration is used in the methods of Uhlmann
(2005) and Kempe & Fröhlich (2012a), while the other methods are solved until
convergence under a tolerance of 1× 10−15.

Figure 4.12: Comparison of convergence between present MIBM with the iterative
implicit multidirect forcing IBM of Luo et al. (2007) and Breugem (2012).

4.7 Numerical examples

4.7.1 Convergence test

In order to assess the accuracy of present immersed boundary method, we re-consider
the two-dimensional decaying vortices problem with an cylinder immersed in the
flow. This case was also considered by Kim et al. (2001) and Uhlmann (2005). The
initial and boundary conditions for the flow domain are taken from the following
analytical solution

98



u(x, y, t) = −cos(πx)sin(πy)e−2π2t/Re

v(x, y, t) = sin(πx)cos(πy)e−2π2t/Re

p(x, y, t) = −1

4
(cos(2πx) + sin(2πy))e−4π2t/Re

(4.48)

The immersed cylinder with a radius of unity is fixed at the origin of the computa-
tional domain [−1.5, 1.5] × [−1.5, 1.5]. The Reynolds number Re is prescribed to
be 10. The time-dependent velocity boundary conditions at the embedded cylinder
surface are enforced by the present immersed boundary method. A small time step
is used with ∆t = 0.001 to ensure that the temporal truncation error is negligible
compared to the spatial one. The equations are advanced for 0 6 t 6 0.2. Then
the computed field inside the embedded cylinder at t = 0.2 is compared to the
analytical solution.

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

 h

||
e
u
||
∞

Figure 4.13: Maximum error of the velocity field u at t = 0.2 as a function of mesh
width h, for the Taylor-Green vortices problem: "�" with the embedded cylinder,
"•" without the embedded cylinder. The dashed lines are of second order.

Figure 4.13 shows the variation of the maximum error of velocity field in u as a
function of the mesh width h. The errors are taken from two situations: with the
immersed cylinder and without the immersed cylinder, i.e. without the immersed
boundary method. It is demonstrated from Figure 4.13 that the proposed method
retains the second order accuracy (with a slope of 2), which corresponds to the
interpolation properties of the discrete delta function for smooth fields.

99



4.7.2 Lid-driven cavity flow with an embedded cylinder

In this test, we compare the accuracy of present non-body conforming MIBM with
the body-conforming mesh method. The domain configuration and the boundary
conditions are taken the same as in the lid-driven cavity flow case, except that we
set up a fixed cylinder in the domain center. In order to compare with Vanella &
Balaras (2009), the diameter of the cylinder is set to D = 0.4L with L being the
cavity length. The Reynolds number is 1000 in this study based on the cavity length.
Figure 4.14 shows the mesh setup for present immersed boundary approach and
the body-conforming mesh method. A uniform mesh of 200 × 200 is employed
in the immersed boundary method, and the same mesh size is used for the body-
conforming mesh method for comparison.

(a) (b)

Figure 4.14: Mesh setup for the cavity flow with a fixed cylinder: (a) Immersed
boundary approach (the embedded cylinder is represented by the thick dashed line);
(b) Body-conforming mesh method. For better visualization, only 20 × 20 meshes
are shown here.

The flow reaches a final steady state as the time advances. The convergence criterion
is set to ||un+1 − un||2/||un+1||2 < 1 × 10−8. Figure 4.15 shows the vorticity
contours and streamlines for the flow at Re = 1000, which are similar to the results
of Vanella & Balaras (2009). As we can see, three vortices emerge in the flow. One
at the upper right position of the cylinder and two near the bottom at the left and the
right corners. It is noteworthy that the upper vortex is generated by the presence of
the fixed cylinder. The flow fields outside the cylinder are essentially the same for
both the immersed boundary method and the body-conforming mesh method. The
only difference is that there is a flow inside the cylinder in the immersed boundary
method, which however is the key idea of the immersed boundary method to replace

100



the solid domain with fluid. The velocity component u at the vertical midline x =

0.5 and the velocity component v at the horizontal midline y = 0.5 are plotted in
Figure 4.16. The velocity profiles of both methods match pretty well. The location
of the three vortices centers are also listed in Table 4.3. Very close results have been
obtained.

(a) (b)

(c) (d)

Figure 4.15: Vorticity contours and streamlines of the lid-driven cavity flow with a
cylinder at Re = 1000, where the vorticity contour value is varied from -3 (blue)
to 3 (red) with an increment of 0.4. Results of present MIBM are listed on the left;
Results of the body-conforming mesh method are on the right.

101



−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

u

y

(a)

0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

0.4

x

v

(b)

Figure 4.16: Comparison of velocity profiles of the lid-driven cavity flow with a
cylinder at Re = 1000: (a) Distribution of velocity component u along x = 0.5;
(b) Distribution of velocity component v along y = 0.5. "- - - -", result of body-
conforming mesh method; "—", result of present MIBM.

(x1, y1) (x2, y2) (x3, y3)

Present (0.6942, 0.6881) (0.0789, 0.0720) (0.8852, 0.1063)
Body-conforming mesh method (0.6906, 0.6872) (0.0791, 0.0721) (0.8849, 0.1063)

Table 4.3: Comparison of vortices center positions for the proposed immersed
boundary method and the body-conforming mesh method, where (x1, y1), (x2, y2),
(x3, y3) represent the centers at the upper right to the cylinder, at the lower left
corner and at the lower right corner respectively.

102



4.7.3 Flow over a stationary circular cylinder

The flow past a stationary circular cylinder is considered as a canonical test case to
validate current method, since a great amount of experimental and numerical studies
at different Reynolds numbers are available for comparison. The flow characteristics
depend on the Reynolds number Re = u∞D/ν, based on the inflow velocity u∞,
the cylinder diameter D = 1 and the fluid kinematic viscosity ν.
The simulation is performed in a rectangular domain, where the fluid flows from the
left to the right (see Figure 4.17). At left boundary, a uniform velocity of u∞ = 1

is imposed; The free slip boundary conditions are applied at lateral boundaries; At
outlet, the convective boundary condition ∂u/∂t + u∞∂u/∂x = 0 is employed for
reducing the reflection effects because of the finite artificially truncated domain.
The cylinder is placed at the center of the computational domain. The fluid domain
is covered with a uniform mesh, and the cylinder surface is represented by a set of
uniformly distributed Lagrangian points with δs ≈ h. For comparison the drag and
lift coefficients are defined as

CD =
FD

1
2
ρu2
∞D

, CL =
FL

1
2
ρu2
∞D

(4.49)

where the fluid density ρ is set to 1 here. FD, FL are the drag and lift forces on the
cylinder exerted by the fluid, calculated by(

FD

FL

)
= −

nb∑
l=1

F(Xl)∆Vl (4.50)

D

Inflow u∞ Convective outlet

Free-slip

Free-slip

Figure 4.17: Sketch of the flow over a stationary circular cylinder.

103



(i) Re = 30, 40

The flow presents a steady state at low Reynolds numbers Re = 30, 40 with a
recirculating region in the wake of the cylinder. The wake dimensions are described
by the length of the wake l, the stream-wise distance a from the vortex center to
the nearest point at the cylinder surface, the cross-wise distance b between two
vortices centers, and the angle θ of flow separation, as shown in Figure 4.18. The
computations are performed under different mesh resolutions to check the grid
sensitivity. Various domain sizes are also considered to ensure that the boundary
confinement effect does not influence the solution. We select the time step such that
the CFL condition is satisfied, and the current method yields a stable solution even
with a Courant number close to one. The 3-point-width discrete delta function φ3

of Roma et al. (1999) is used for the interpolation and spreading.

l

a

b
θ

Figure 4.18: Definition of the characteristic wake dimensions for the steady flow over
a stationary circular cylinder.

The streamlines, vorticity and pressure contours are shown in Figure 4.19, which
are in close agreement with those reported in the literature. Table 4.4 compares the
wakes dimensions and the drag coefficient against other numerical and experimental
results. Good agreements have been obtained. It can be concluded from Table 4.4
that narrow domain size leads to a larger value of the drag coefficient, which was
also observed in Uhlmann (2005), Lai & Peskin (2000) and Taira & Colonius
(2007). For example atRe = 30 the drag coefficient for the domain Ω = 30D×30D

is 3% higher than the value with the largest domain. By enlarging the domain size
to Ω = 40D × 40D, the drag coefficient is reduced by 2%. This confinement effect
is due to the finite distance of the lateral boundaries treated as slip walls. The time
histories of the drag and lift coefficients are shown in Figure 4.20.
Figure 4.23 shows the distribution of wall vorticity ωz and wall pressure coefficient
CP along the immersed cylinder surface at Re = 40. The wall pressure coefficient
is defined as CP = (p − p∞)/(1

2
ρu2
∞), where p∞ is the free-stream pressure.

104



The results with present method is found to be satisfactory compared to the well-
established work of Braza et al. (1986), especially for the stagnation and base
region.

(a) Streamlines

(b) Vorticity

(c) Pressure

Figure 4.19: Streamlines, vorticity and pressure contours for the steady-state flow
around a circular cylinder at Re = 30 (left) and Re = 40 (right). The contour level
for the vorticity field are from -3 to 3 with an increment of 0.4, where dashed line
represents the negative value.

105



l/D a/D b/D θ(◦) CD

Re = 30 Coutanceau & Bouard (1977)† 1.55 0.54 0.54 50.0 -
Tritton (1959)† - - - - 1.74
Pinelli et al. (2010) 1.70 0.56 0.52 48.1 1.80
Toja-Silva et al. (2014) 1.71 0.56 0.53 47.9 1.78
Present (Ω = 30D × 30D, h = 0.04D) 1.66 0.58 0.52 45.0 1.78
Present (Ω = 30D × 30D, h = 0.029D) 1.64 0.58 0.53 49.9 1.78
Present (Ω = 30D × 30D, h = 0.02D) 1.64 0.58 0.52 46.5 1.78
Present (Ω = 40D × 40D, h = 0.029D) 1.65 0.57 0.53 47.4 1.75
Present (Ω = 60D × 60D, h = 0.029D) 1.64 0.57 0.53 49.8 1.73

Re = 40 Coutanceau & Bouard (1977)† 2.13 0.76 0.59 53.8 -
Tritton (1959)† - - - - 1.59
Wang & Zhang (2011) 2.36 0.72 0.6 53.8 1.54
Taira & Colonius (2007) 2.30 0.73 0.60 53.7 1.54
Present (Ω = 30D × 30D, h = 0.04D) 2.38 0.77 0.59 52.0 1.58
Present (Ω = 30D × 30D, h = 0.029D) 2.34 0.76 0.62 54.5 1.58
Present (Ω = 30D × 30D, h = 0.02D) 2.36 0.77 0.60 53.1 1.59
Present (Ω = 40D × 40D, h = 0.029D) 2.36 0.75 0.62 52.1 1.56
Present (Ω = 60D × 60D, h = 0.029D) 2.34 0.76 0.62 54.5 1.54

Table 4.4: Comparison of the steady-state wake dimensions and the drag coefficient
for the flow over a stationary cylinder at Re = 30, 40. The experimental results are
marked with (†). φ3 is used for interpolation and spreading.

0 20 40 60 80 100
1.5

1.7

1.9

2.1

2.3

2.5

2.7

t

C
D

0 20 40 60 80 100
−1

−0.6

−0.2

0.2

0.6

1
x 10

−6

t

C
L

(a) Re = 30

(ii) Re = 100, 200

Increasing the Reynolds number to Re = 100 and 200, the flow becomes unsteady
and periodic shedding of vortices is found. The well-known von Kármán vortex

106



0 20 40 60 80 100
1.5

1.7

1.9

2.1

2.3

2.5

2.7

t

C
D

0 20 40 60 80 100
−1

−0.6

−0.2

0.2

0.6

1
x 10

−6

t

C
L

(b) Re = 40

Figure 4.20: Drag and lift coefficients versus time for flow over a stationary cylinder
at (a) Re = 30 and (b) Re = 40.

street is shown in figure 4.21. Figure 4.22 shows the corresponding pressure field.
The time evolution of the drag and the lift coefficients at Re = 100 and Re = 200

are plotted in figure 4.24. It should be pointed out that the oscillating frequency of
the drag is twice that of the lift, which is in fact the vortex shedding frequency fs,
which has also been noticed in Lai & Peskin (2000). The Strouhal number St =

Dfs/u∞ as well as the coefficients of drag, lift are summarized in Table 4.5. For
comparison, we list the well established experimental results of Williamson (1989)
and the numerical results with the body-fitted mesh methods of Braza et al. (1986)
and Liu et al. (1998). Results with other IBM variants are also included, e.g. the
explicit direct forcing immersed boundary method of Uhlmann (2005), the vortex
penalization method of Mimeau et al. (2015), the immersed interface method of Xu
& Wang (2006), the iterative direct forcing immersed boundary method of Ji et al.

(2012) and the immersed boundary projection method of Taira & Colonius (2007).
Good agreement has been obtained towards the flow quantities.

From Table 4.5 we can see that the current method yields an over-prediction of the
mean drag coefficient only with 2% error (compared to Liu et al. (1998)), while
Uhlmann (2005) over-predicted the mean drag coefficient value by approximately
11%. In this case we consider the same parameters as used in Uhlmann (2005),
namely the computational domain Ω = 30D × 30D with the mesh resolution h =

0.029D. This improved accuracy can be attributed to the exact imposition of the
no-slip boundary condition at the interface in current method. This error is further
reduced to 1% when we use an enlarged domain of Ω = 40D×40D while a relative
large error of 8% is still found in Uhlmann (2005).

Compared to the vortex penalization method of Mimeau et al. (2015) and the im-

107



mersed interface method of Xu & Wang (2006), our implementation does not intro-
duce artificial constants and thus is much suitable for flow with rigid bodies. Our
results are very close to those of the iterative direct forcing immersed boundary
method of Ji et al. (2012) and the immersed boundary projection method of Taira &
Colonius (2007). However, our method is non-iterative compared to Ji et al. (2012).
The original system is unchanged and only a small system is solved additionally
at each time step. Therefore the current method can be more efficient than Taira &
Colonius (2007).

The time-averaged values of the wall vorticity ωz and the wall pressure coefficient
CP are shown in Figure 4.23 for Re = 100. Good agreements have been found
compared to the results of Braza et al. (1986).

The effects of different discrete delta functions on the results are also tested in
Table 4.6 for Re = 100, 200. The domain of Ω = 30D× 30D is used and the mesh
resolution is set to h = 0.029D.

(a) Re = 100

(b) Re = 200

Figure 4.21: Instantaneous vorticity contours of flow over a circular cylinder at (a)
Re = 100 and (b) Re = 200, where the contour level is set from -3 to 3 with an
increment of 0.4.

108



(a) Re = 100

(b) Re = 200

Figure 4.22: Instantaneous pressure contours of flow over a circular cylinder at (a)
Re = 100 and (b) Re = 200.

0 30 60 90 120 150 180
−1.5

−1

−0.5

0

0.5

1

1.5

θ(
◦
)

C
P

Re = 40

Re = 100

(a)

0 30 60 90 120 150 180
−5

0

5

10

15

θ(
◦
)

ω
z

Re = 40

Re = 100

(b)

Figure 4.23: Flow variables on the immersed cylinder surface at Re = 40 and Re =
100 as a function of the angle θ: (a) wall pressure coefficient CP ; (b) wall vorticity
ωz, where θ = 0◦ and θ = 180◦ correspond to the stagnation point and the base
point, respectively. The values of CP and ωz at Re = 100 are time-averaged. The
lines of "——" and "- - - -" represent the results from Braza et al. (1986), and
present results are marked with "�" and "◦".

109



150 160 170 180 190 200
−1

−0.5

0

0.5

1

1.5

t

C
D

, 
C

L

 

 

C
D

C
L

(a)

150 160 170 180 190 200
−1

−0.5

0

0.5

1

1.5

t

C
D

, 
C

L

 

 

C
D

C
L

(b)

Figure 4.24: Time evolution of drag and lift coefficients for the flow over a stationary
cylinder problem at (a) Re = 100 and (b) Re = 200.

CD C ′D C ′L St

Re = 100 Williamson (1989)† - - - 0.164
Uhlmann (2005) 1.453 ±0.011 ±0.339 0.169
Ji et al. (2012) 1.376 ±0.010 ±0.339 0.169
Braza et al. (1986) 1.359 ±0.019 ±0.293 0.16
Liu et al. (1998) 1.350 ±0.012 ±0.339 0.165
Mimeau et al. (2015) 1.40 ±0.010 ±0.32 0.165
Xu & Wang (2006) 1.423 ±0.013 ±0.34 0.171
Present (Ω = 30D × 30D, h = 0.04D) 1.380 ±0.010 ±0.343 0.166
Present (Ω = 30D × 30D, h = 0.029D) 1.377 ±0.010 ±0.337 0.166
Present (Ω = 30D × 30D, h = 0.02D) 1.379 ±0.010 ±0.346 0.166
Present (Ω = 40D × 40D, h = 0.029D) 1.366 ±0.010 ±0.342 0.166
Present (Ω = 60D × 60D, h = 0.029D) 1.353 ±0.010 ±0.335 0.166

Re = 200 Williamson (1989)† - - - 0.197
Taira & Colonius (2007) 1.35 ±0.048 ±0.68 0.196
Ji et al. (2012) 1.354 ±0.044 ±0.682 0.20
Braza et al. (1986) 1.386 ±0.040 ±0.766 0.20
Liu et al. (1998) 1.31 ±0.049 ±0.69 0.192
Mimeau et al. (2015) 1.44 ±0.05 ±0.75 0.200
Xu & Wang (2006) 1.42 ±0.04 ±0.66 0.202
Present (Ω = 30D × 30D, h = 0.04D) 1.355 ±0.042 ±0.677 0.200
Present (Ω = 30D × 30D, h = 0.029D) 1.365 ±0.044 ±0.696 0.200
Present (Ω = 30D × 30D, h = 0.02D) 1.374 ±0.046 ±0.705 0.200
Present (Ω = 40D × 40D, h = 0.029D) 1.358 ±0.044 ±0.682 0.200
Present (Ω = 60D × 60D, h = 0.029D) 1.345 ±0.043 ±0.682 0.200

Table 4.5: Comparison of the drag, lift coefficients and the Strouhal number for the
flow around a stationary cylinder at Re = 100, 200. The experimental results are
marked with (†). φ3 is used for interpolation and spreading.

110



CD C ′D C ′L St

Re = 100 φ1 1.388 ±0.010 ±0.346 0.166
φ2 1.390 ±0.011 ±0.345 0.164
φ3 1.377 ±0.010 ±0.339 0.166
φ4 1.379 ±0.011 ±0.343 0.166
φ5 1.379 ±0.010 ±0.341 0.166
φ6 1.379 ±0.011 ±0.343 0.166
φ7 1.378 ±0.010 ±0.341 0.166
φ8 1.378 ±0.011 ±0.342 0.166
φ9 1.388 ±0.013 ±0.344 0.164
φ10 1.362 ±0.010 ±0.324 0.170
φ11 1.383 ±0.010 ±0.343 0.168
φ12 1.387 ±0.011 ±0.365 0.166

Re = 200 φ1 1.391 ±0.047 ±0.709 0.198
φ2 1.387 ±0.047 ±0.702 0.193
φ3 1.365 ±0.044 ±0.696 0.200
φ4 1.358 ±0.045 ±0.688 0.195
φ5 1.370 ±0.045 ±0.693 0.198
φ6 1.355 ±0.045 ±0.686 0.195
φ7 1.362 ±0.045 ±0.688 0.195
φ8 1.354 ±0.045 ±0.685 0.195
φ9 1.365 ±0.046 ±0.685 0.193
φ10 1.382 ±0.046 ±0.692 0.202
φ11 1.390 ±0.047 ±0.710 0.198
φ12 1.404 ±0.051 ±0.730 0.195

Table 4.6: Effects of different discrete delta functions on the drag, lift coefficients
and the Strouhal number for the flow around a stationary cylinder at Re = 100 and
200.

(iii) Re = 1000

We further extend our method to higher Reynolds number flow Re = 1000. At
this regime, the convection effects become predominant and the boundary layer
thickness decreases, which is estimated by δ ≈ D/

√
Re = 0.032. To capture the

thin boundary layer, a fine grid resolution of h = 0.01D is taken, as also used in
Mittal et al. (2008) and Apte et al. (2009). To compare with Mittal et al. (2008),
the computational domain is chosen to be [−20D, 20D] × [−20D, 20D]. The 2-
point-width hat function φ1 is employed for the interpolation and spreading, as it
provides the narrowest support domain and thus the force is less diffused. Note that
the grid resolution is only marginal for resolving the boundary layer at this Reynolds
number. Nevertheless, the results are satisfactory and the essential features of the

111



flow are well captured. Figure 4.25 shows the instantaneous vorticity field. The
the drag and lift coefficients are plotted in Figure 4.26 and compared in Table 4.7,
showing a good agreement.

Figure 4.25: Instantaneous vorticity field of flow over a stationary cylinder at Re =
1000.

200 210 220 230 240 250 260 270 280 290 300
−2

−1

0

1

2

3

 t

 C
D

, 
C

L

 

 

 C
D

 C
L

Figure 4.26: Time evolution of drag and lift coefficients for the flow over a stationary
cylinder problem at Re = 1000.

CD C ′D C ′L St

Re = 1000 Mittal & Kumar (2001) 1.48 ±0.21 ±1.65 0.250
Apte et al. (2009) 1.50 - - 0.238
Mittal et al. (2008) 1.48 - - -
Mimeau et al. (2015) 1.51 ±0.23 ±1.54 0.245
Present 1.55 ±0.22 ±1.46 0.240

Table 4.7: Comparison of the drag, lift coefficients and the Strouhal number for the
flow around a stationary cylinder at Re = 1000. φ1 is used for interpolation and
spreading.

112



4.7.4 In-line oscillating circular cylinder in a fluid at rest

We consider the flow induced by an oscillating circular cylinder as another test, in
order to demonstrate the ability of our method for handling moving boundaries. The
motion of the cylinder is described by a simple harmonic oscillation as follows

x(t) = −Asin(2πft) (4.51)

where x(t) is the streamwise location of the cylinder center. A and f are the ampli-
tude and the frequency of oscillation, respectively. Two key parameters determine
the flow characteristics: the Reynolds number Re = UmaxD/ν and the Keule-
gan–Carpenter number KC = Umax/fD, where Umax is the maximum velocity
of the oscillating cylinder, ν is the kinematic viscosity and D is the diameter of the
cylinder. The KC number can be related to the Strouhal number by KC = 1/St.
In the present study, Re is set to 100 and KC is set to 5, corresponding to the LDA
experiments and the numerical simulations of Dütsch et al. (1998).

x(t) = −Asin(2πft)

D

14D

14D OutflowOutflow

Outflow

Outflow

Figure 4.27: Sketch of the oscillating circular cylinder in a fluid at rest.

The computational domain is chosen to be 14D×14D, as shown in Figure 4.27. The
cylinder is initially located at the center of the computational domain. The outflow
boundary condition ∂u/∂n = 0 is applied at the domain contours. A uniform mesh
of 560× 560 is adopted for the fluid domain and the cylinder is represented by 126
points, such that δs ≈ h. The transient no-slip velocity boundary condition at the
cylinder surface is enforced by present MIBM at each time level

u(t) = −2πfA cos(2πft) (4.52)

113



−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

u

y

 

 

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

v

y

 

 

(a) φ = 180◦

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

u

y

 

 

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

v

y

 

 

(b) φ = 210◦

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

u

y

 

 

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

v

y

 

 

(c) φ = 330◦

Figure 4.28: Comparison of the velocity profiles u (left) and v (right) at four different
cross-sections and three phase positions: (a) φ = 180◦, (b) φ = 210◦, (c) φ =
330◦. The experimental results of Dütsch et al. (1998) are marked with "� " at x =
−0.6D, "N" at x = 0D, "•" at x = 0.6D, " " at x = 1.2D. The present results are
represented by "——" at x = −0.6D, "- - - -" at x = 0D, "· · · ·" at x = 0.6D,
"− · −·" at x = 1.2D.

114



(a) φ = 0◦

(b) φ = 96◦

(c) φ = 192◦

(d) φ = 288◦

Figure 4.29: Pressure and vorticity contours at four different phases: (a) φ = 0◦; (b)
φ = 96◦; (c) φ = 192◦; (d) φ = 288◦.

115



Figure 4.28 shows the profiles of the velocity components u and v at four different
stream-wise locations (x = −0.6D, 0D, 0.6D, 1.2D) for three phase (φ = 2πft =

180◦, 210◦, 330◦). The experimental results of Dütsch et al. (1998) by LDA mea-
surements are also plotted for comparison. The velocity profiles outside the cylinder
agree well those of Dütsch et al. (1998). The only discrepancy is the velocity inside
the cylinder. Since the present IBM treats the solid domain as fluid, the velocity is
non-zero inside the cylinder. From Figure 4.28 we can see that this treatment, how-
ever, does not influence the flow field outside the solid. Various internal treatments
of the body have been discussed in the work of Iaccarino & Verzicco (2003), such
as applying the force inside the body and thus changing the velocity distribution.
Iaccarino & Verzicco (2003) also concluded that for direct forcing IBM, there is
essentially no difference. Therefore, for simple implementation we just leave the
interior of the solid free to develop a flow without imposing anything.

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

t/T

F
x

 

 

Experimental results

present

Figure 4.30: Comparison of the in-line force Fx in a period at Re = 100, KC = 5.
The experimental results are taken from Dütsch et al. (1998).

The pressure and vorticity contours at four different phases (φ = 2πft = 0◦,
96◦, 192◦, 288◦) are shown in Figure 4.29, where two counter-rotating vortices are
formulated during the oscillation. The vortices contours are drawn from -3 to 3 with
an increment of 0.4, which display the same structure as in Dütsch et al. (1998). The
time history of the in-line force Fx in the oscillatory direction is shown in one period
in Figure 4.30, which agrees very well with the experimental results of Dütsch et al.

(1998). It should be noted that no spurious oscillation has been found towards the
in-line force in this case.

116



4.7.5 Transverse oscillation of a circular cylinder in a free-stream

Next, we consider the transversely oscillating cylinder subject to a free-stream, as
shown in Figure 4.31. This case has been extensively studied in the development
of immersed boundary methods (e.g. Uhlmann, 2005 and Yang et al., 2009), as it
provides a good test to examine the effects of the discrete delta functions on the
boundary force in moving boundary situations. The cylinder moves in the cross-
wise direction in a sinusoidal fashion as

y(t) = Asin(2πft) (4.53)

where y(t) is the cross-wise position of the cylinder center. The amplitude is set to
A = 0.2D with D = 1 being the cylinder diameter. The Reynolds number is set to
Re = 185 based on the cylinder diameter, in order to compare with Uhlmann (2005)
and Yang et al. (2009). The frequencies of f = 0.8fs and 1.0fs are considered
in this test, where fs is the natural shedding frequency for the stationary cylinder
(fs = 0.195 for Re = 185).

y(t) = Asin(2πft)

D

Inflow u∞ Convective outflow

Free-slip

Free-slip

Figure 4.31: Sketch of the transversely oscillating circular cylinder in free-stream.

The computational domain is [−15D, 15D]× [−15D, 15D] covered with a uniform
mesh of 1024 × 1024. The resulting mesh resolution is 0.029D, which is based on
the mesh independence study of the stationary cylinder case. Around 108 points are
used for describing the cylinder surface such that δs ≈ h. The boundary condition at
the inlet is set to be uniform (u = u∞ = 1, v = 0). The free slip boundary condition
(∂u/∂y = 0, v = 0) is applied at lateral boundaries. The convective boundary
condition (∂u/∂t+ u∞∂u/∂x = 0) is specified at outlet to allow vorticity to freely
exit the flow domain.
The instantaneous vorticity fields are shown in Figure 4.32, showing a periodic
vortex shedding. The time histories of the drag and the lift coefficients are plotted

117



in Figure 4.33. Table 4.8 compares the mean, rms drag and lift coefficients with the
literature. Good agreement has been found.

(a) (b)

Figure 4.32: Instantaneous vorticity fields for the transversely oscillating circular
cylinder problem at Re = 185 for (a) f/f0 = 0.8 and (b) f/f0 = 1.0.

100 120 140 160 180 200
−2

−1

0

1

2

t

C
D

, 
C

L

 

 

C
D

C
L

(a)

100 120 140 160 180 200
−2

−1

0

1

2

t

C
D

, 
C

L

 

 

C
D

C
L

(b)

Figure 4.33: Time history of the drag and the lift coefficients of the transversely
oscillating circular cylinder. (a) f/f0 = 0.8 and (b) f/f0 = 1.0.

The drag and lift coefficients in one period are plotted in Fig 4.34 as a function of the
cylinder’s position. With the discrete delta function φ4 of 4-point width of Peskin
(2002), oscillations have been observed towards the drag and lift coefficients, which
is also reported in Uhlmann (2005) and Yang et al. (2009). These oscillations reduce
as the mesh number increases. By employing a smoothed version φ8 of Yang et al.

(2009), the oscillations are significantly diminished with the same mesh resolution.
Hence we confirm the conclusion of Yang et al. (2009) that increasing the moment
condition of the discrete delta function can reduce this spurious oscillation.

118



CD (C
′
D)rms (C

′
L)rms

f/fs = 0.8 Present 1.229 0.036 0.235
Guilmineau & Queutey (2002) 1.194 0.038 0.074
Kim & Choi (2006) 1.235 0.037 0.068
Uhlmann (2005) 1.380 - 0.176
Yang et al. (2009) 1.290 0.043 0.070

f/fs = 1.0 Present 1.511 0.117 0.442
Guilmineau & Queutey (2002) 1.506 0.134 0.420
Kim & Choi (2006) 1.537 0.140 0.376

Table 4.8: Comparison of the mean, rms drag and lift coefficients for the cylinder
oscillating transversely in a free-stream.

−0.3 −0.15 0 0.15 0.3
1

1.1

1.2

1.3

1.4

1.5

y(t)/D

C
D

(a)

−0.3 −0.15 0 0.15 0.3
−0.5

−0.25

0

0.25

0.5

y(t)/D

C
L

(b)

−0.3 −0.15 0 0.15 0.3
1

1.1

1.2

1.3

1.4

1.5

y(t)/D

C
D

(c)

−0.3 −0.15 0 0.15 0.3
−0.5

−0.25

0

0.25

0.5

y(t)/D

C
L

(d)

Figure 4.34: Influences of different discrete delta functions on the drag and lift coef-
ficients, for the transversely oscillating cylinder in a uniform cross-flow problem at
Re = 185 with f/f0 = 0.8. (a) and (b) use the 4-point discrete delta function φ4 of
Peskin (2002); (c) and (d) use the corresponding smoothed version φ8 proposed by
Yang et al. (2009).

119



4.7.6 Flow around a flapping wing

In this example, we investigate the flow induced by a flapping wing, in order to
demonstrate the ability of current method for handling non-circular object in both
translational and rotational motions. The configuration of this problem is shown in
Figure 4.35. The hovering wing is a geometrical 2D ellipse with major axis c (chord
length) and minor axis b. The aspect ratio is defined as e = c/b. The wing is initially
located at the origin with an angle of attack of θ0, then shifts along a stroke plane
inclined at an angle β. The translational and rotational motions of the hovering wing
are described as follows

A(t) =
A0

2

[
cos(

2πt

T
) + 1

]
(4.54)

θ(t) = θ0

[
1− sin(

2πt

T
+ φ0)

]
(4.55)

where A0 is the translational amplitude, 2θ0 the rotational amplitude, T the flapping
period and φ0 the phase difference. The chord length c and the maximum velocity
Umax = πA0/T along the flapping path are used as the length and the velocity
scales, respectively. The Reynolds number is defined asRe = Umaxc/ν. We employ
the same parameters as used in Wang (2000), Xu & Wang (2006) and Yang & Stern
(2012): c = 1, e = 4, A0 = 2.5c, θ0 = π/4, T = πA0/c, β = π/3, φ0 = 0,
Re = 157.

x

y

o

θ0

β
A0

c

b

Figure 4.35: Configuration for flow over a flapping wing.

As suggested by Yang & Stern (2012), this simulation is performed on a large square
domain of [−24c, 24c]× [−24c, 24c] to obtain a better periodicity for the results. A
uniform mesh of 2400× 2400 is employed to cover the computational domain and
the mesh spacing around the wing is 0.02c. A larger time step is selected in the

120



present study (∆t = 0.01) based on the CFL number (CFLmax = 0.72), while
∆t = 0.001 is used in the immersed interface method of Xu & Wang (2006) to
reduce the body shape distortion. The time-dependent no-slip wall conditions on the
wing surfaces are enforced by present immersed boundary method. The smoothed
discrete delta function φ7 is used for interpolation and spreading.

(a) (b)

(c) (d)

Figure 4.36: Snapshots of the vorticity fields around a flapping wing at Re = 157 for
four different positions: (a) t = 0.25T ; (b) t = 0.44T ; (c) t = 0.74T ; (d) t = 0.99T .

Figure 4.36 shows the vorticity fields near the flapping wing in one flapping period

121



65 70 75 80 85 90 95 100 105 110 115
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

t

C
D

(a)

65 70 75 80 85 90 95 100 105 110 115
−1.5
−1
−0.5

0
0.5

1
1.5

2
2.5

3

t

C
L

(b)

Figure 4.37: Time history of drag and lift coefficients for flow around a flapping wing
at Re = 157. "—" for present method; "- · - ·" for the immersed boundary method
of Yang & Stern (2012); "- - - -" for the body-conforming mesh method of Wang
(2000); "· · · · " for the immersed interface method of Xu & Wang (2006).

at four different positions, which are very similar to those given in Wang (2000),
Xu & Wang (2006) and Yang & Stern (2012). A pair of leading and trailing edge
vortices of opposite rotation is formed into a dipole. The dipole moves downward,
generating the lift of the wing. The vortices shed from the wing by the self-induced
flow, without interfering the new vortices in the next cycle.

The time history of the drag and lift coefficients are plotted in Figure 4.37 and
compared to the results of Wang (2000) and Yang & Stern (2012). Good agreement
has been found. Note that in order to maintain the shape of the rigid body in IIM of
Xu & Wang (2006), a feedback control technique is employed and the time step is
kept small to reduce the shape distortion. The present immersed boundary method is
found to be much more satisfactory, since no additional springs for feedback control
are needed and the no-slip boundary condition is exactly imposed at the interface.

122



4.8 Concluding remarks

In this chapter we have developed a novel implicit immersed boundary method,
termed as the moving immersed boundary method (MIBM). The present MIBM is
an extension of the direct forcing IBM of Uhlmann (2005) and Kempe & Fröhlich
(2012a), the multidirect forcing IBM of Luo et al. (2007) and Breugem (2012),
and the immersed boundary projection method (IBPM) of Taira & Colonius (2007).
Inspired by the IBPM, we also consider the boundary force as a Lagrange multiplier
in the MIBM to satisfy the no-slip boundary condition at the interface. However,
the boundary force and the pressure are formulated into different linear systems and
solved separately. This allows us to retain the efficiency of the direct forcing IBMs.
Although our results are identical to the multidirect forcing IBM, the MIBM is non-
iterative and much fast. No artificial constants and additional time step constraint
are introduced compared to the continuous forcing immersed boundary variants.
In MIBM we have derived an additional moving force equation for the boundary
force, to impose the no-slip boundary condition accurately. The coefficient matrix
is constructed to be symmetric and positive-definite, such that the conjugate gradient
method can solve it quickly. The size of the moving force coefficient matrix is usu-
ally much smaller than that of the fluid matrices. Hence the MIBM is very suitable
for moving boundary problems. The overall method still follows the traditional
fractional step algorithm, namely the prediction, the immersed boundary forcing
and the projection. This allows us to integrate the MIBM into any fluid solver easily
as a plug-in.
The MIBM has been well validated with a series of numerical examples with pre-
scribed solid motions. The spatial accuracy of current method is found to be second
order accurate for smooth fields, which is in accord with the theory. The accuracy
of present MIBM is in a good agreement with the body-conforming mesh method.
Various discrete delta function have been tested and used to smooth the boundary
force. The MIBM proposed here will be extended to solve fluid-structure interaction
problems in the next chapter.

123





Chapter 5

Modeling fluid-structure interaction
with MIBM

5.1 Introduction

In previous chapter we have developed the moving immersed boundary method
and applied to the fluid flows over stationary and forced oscillating objects. In this
chapter we will couple the fluid Navier-Stokes equations with the rigid body motion
equations via the moving immersed boundary method for studying two way fluid-
structure interactions.
We will first recast the fluid-structure interaction problem into the immersed bound-
ary formulation in Section 5.2.2. To obtain stable solutions and reduce the computa-
tional cost, we construct a novel strongly coupled approach in Section 5.4 by taking
advantage of the projection method and the moving immersed boundary method.
Next we consider the particulate flow simulation by taking the particle collisions
into consideration. We then demonstrate the proposed method with various numer-
ical examples in Section 5.6.

5.2 Mathematical formulation

5.2.1 Governing equations

Figure 5.1 illustrates the physical domain of a general FSI problem, where the fluid
and the rigid body occupy the domain Ωf and Ωs respectively. The interaction takes
place at the their common boundary ∂Ωi = Ωf ∩Ωs. The whole system is subjected
to the gravitational acceleration g.
Note that the symbol u is often referred to the displacement in solid mechanics,
while it is frequently used as the velocity in the fluid dynamics. In this chapter we
will redefine the symbols for the fluid and the solid variables. In following context
the subscript f will be used for the fluid variables and the subscript s for the solid

125



Ωf

∂Ωf

Ωs

r

∂Ωi

g

vs

ωs

O
x

y
xs

xc

Figure 5.1: Schematic representation of the fluid-structure interaction domain.

variables. With these new notations, the Navier-Stokes equations can be rewritten
as

∂vf
∂t

+∇ · (vf ⊗ vf ) = ∇ · σf + g (5.1a)

∇ · vf = 0 (5.1b)

where vf is the fluid velocity vector and the fluid stress tensor σf is given by

σf = − p

ρf
I + ν(∇vf + (∇vf )T) (5.1c)

where p is the fluid pressure, ρf the fluid density, ν the fluid kinematic viscosity.
Appropriate initial and boundary conditions are assumed to the fluid Navier-Stokes
equations to ensure that the problem is well posed.

The solid equations are usually described in a Lagrangian framework in the ma-
terial domain Ωs. The motion of the rigid body is governed by the Newton-Euler
equations, which can be written as

ms
dvs
dt

= ρf

∫
∂Ωi

σf · nds+ms(1−
ρf
ρs

)g (5.2a)

Is
dωs
dt

= ρf

∫
∂Ωi

r× (σf · n) ds (5.2b)

where

• ms represents the solid mass;

• ρs is the solid density;

• Is designates the moment of inertia;

• vs is the translational velocity of solid;

126



• ωs is the angular velocity of solid;

• r represents the position vector of the surface point with respect to the solid
mass center (r = xs − xc);

• xs is the solid position vector at the surface;

• xc is the solid gravity center vector;

• n represents the outward-pointing normal vector to the surface ∂Ωi.

The position of the rigid body can be obtained by the integration of the following
kinematic equations, i.e.,

dxc
dt

= vs (5.3a)

dθc
dt

= ωs (5.3b)

where θc designates the rotation angle of the solid mass center.
On the fluid-structure interface ∂Ωi the following no-slip boundary condition

vf = vs + ωs × r (5.4)

needs to be satisfied in order to take the fluid-structure interaction into account.

5.2.2 Immersed boundary formulation

The immersed boundary method approximates the above fluid-structure interaction
problem by replacing the solid domain with the surrounding fluid. To account for
the presence of the immersed solid, a boundary force f is introduced and added into
the fluid momentum equation. Therefore the fluid is simply simulated in a fixed
domain Ω = Ωf (t) ∪ Ωs(t) irrespective to the movement of the immersed solid.
The incompressible fluid Navier-Stokes equations (5.1) in the immersed boundary
formulation can be written as

∂vf
∂t

+∇ · (vf ⊗ vf ) = − 1

ρf
∇p+ ν∇2vf + f in Ω (5.5a)

∇ · vf = 0 in Ω (5.5b)

vf = vs + ωs × r on ∂Ωi (5.5c)

where the effect of gravity in the fluid momentum equation is from now on incor-
porated into the pressure. The boundary force f here acts as a Lagrange multiplier

127



for satisfying the internal interface velocity condition (5.5c) from the mathematical
point of view. The force f has also a physical signification that it represents the
contact force between the fluid and solid.

By considering that the direct evaluation of the surface integrals in (5.2) would
require considerable numerical efforts, Uhlmann (2005) proposed a more efficient
way of evaluating the hydrodynamic force and the torque by using the Cauchy’s
principle as follows

ρf

∫
∂Ωi

σf · nds = −ρf
∫

Ωs

fdV +
d

dt

∫
Ωs

ρfvfdV (5.6a)

ρf

∫
∂Ωi

r× (σf · n) ds = −ρf
∫

Ωs

r× fdV +
d

dt

∫
Ωs

ρfr× vfdV (5.6b)

Uhlmann (2005) further assumed that the fluid inside ∂Ωi follows the rigid body
motion, thus

d

dt

∫
Ωs

ρfvfdV =
ρfms

ρs

dvs
dt

(5.7a)

d

dt

∫
Ωs

ρfr× vfdV =
ρfIs
ρs

dωs
dt

(5.7b)

Substituting (5.6), (5.7) into (5.2) yields

ms
dvs
dt

= − ρf
1− ρf/ρs

∫
Ωs

fdV +msg (5.8a)

Is
dωs
dt

= − ρf
1− ρf/ρs

∫
Ωs

r× fdV (5.8b)

However this scheme has a singularity problem when the fluid density is equal to
the solid density. Kempe & Fröhlich (2012a) recognized this problem and proposed
an alternative solution to calculate the volume integrals. For example in two dimen-
sions ∫

Ωs

vfdV =
∑
i,j

vf
i,jαi,j∆x∆y (5.9)

where αi,j is the solid volume fraction in an fluid cell. In Kempe & Fröhlich (2012a),
a level-set function Φ is employed to approximate the volume fraction

αi,j =

∑4
m=1−ΦmH(−Φm)∑4

m=1 |Φm|
(5.10)

where H is the Heaviside step function. Kempe & Fröhlich (2012a) advances this
equation using an explicit scheme. However implicit implement can be difficult,

128



since the fluid velocity should be evaluated simultaneously.
In the present work, we omit the fluid motion inside the solid and will show that the
results are not essentially changed. By doing so, we avoid the singularity problem
when ρf/ρs = 1.0 encountered by Uhlmann (2005). Now the entire fluid-structure
interaction problem in the immersed boundary formulation can be summarized as

∂vf
∂t

+∇ · (vf ⊗ vf ) = − 1

ρf
∇p+ ν∇2vf + f in Ω (5.11a)

∇ · vf = 0 in Ω (5.11b)

ms
dvs
dt

= −ρf
∫

Ωs

fdV +ms(1−
ρf
ρs

)g (5.11c)

Is
dωs
dt

= −ρf
∫

Ωs

r× fdV (5.11d)

vf = vs + ωs × r on ∂Ωi (5.11e)

5.3 Coupling methods

In general, the numerical procedures for solving the two-way fluid-structure inter-
action can be broadly classified into two groups: (i) the monolithic (direct) approach
and (ii) the partitioned (segregated) approach (see Figure 5.2).

Coupling method

Monolithic method: strongly coupled

Partitioned method

Staggering method: weakly coupled

Iterative method: strongly coupled

Figure 5.2: Fluid-structure coupling methods.

(i) Monolithic method

In the monolithic method, the subproblems are discretized in time and space in the
same way with no distinction between the fluid and the solid. The resulting large
system is solved simultaneously by a unified algorithm, as illustrated in Figure 5.3a.
A typical choice is to use the stabilized finite element method for the fluid combined
with the standard finite element method for the solid. Another option is to employ

129



the finite volume method for both subproblems, which however is less frequently
used in the literature.

The monolithic approach is very advantageous for such a multidisciplinary prob-
lem, both from the stability and accuracy point of view. The interface condition is
enforced directly, thus the monolithic approach is strongly coupled by construction.
However, it requires considerable efforts and expertise on the reformulations. More-
over it is difficult to maintain state-of-the-art schemes for each subproblem, and to
devise efficient global preconditioners.

F (tn)
S(tn)

F (tn+1)
S(tn+1)

Time

(a) Monolithic approach

F (tn) F (tn+1) Time

S(tn) S(tn+1) Time

Interface Interface

(b) Partitioned approach

Figure 5.3: Illustration of the monolithic approach and the partitioned approach (F:
fluid solver; S: solid solver).

(ii) Partitioned method

On the contrary, the partitioned method formulates the fluid equations and the solid
equations into different systems and solves them separately. The two physical do-
mains exchange data at the interface regularly through additional coupling schemes.
This procedure is shown in Figure 5.3b. The partitioned method has gained a lot of
popularities in recent years for the following reasons: It allows the two subprob-
lems to chose their own favorite discretization; Sophisticated solvers or software
that have already been developed for each subproblem can be used directly in the
partitioned method.

The partitioned approach can be further classified into two groups based on the
additional coupling scheme, namely the explicit coupling (weakly or loosely cou-
pled) and the implicit coupling (strongly or tightly coupled) (Matthies & Steindorf,
2002, 2003; Matthies et al., 2006; Hou et al., 2012), as shown in Figure 5.2. The
weak coupling is very efficient since it solves the two subproblems only once in
each time step in a sequential manner. Consider the example in Figure 5.4, the fluid

130



equations are solved at tn+1 with the solid information at tn, and the solid equations
are then computed at tn+1 with the updated fluid stresses. In spite of the efficiency,
the interface conditions can never be fulfilled in the weak coupling calculation. As a
result, spurious energy is generated at the interface and leads to unstable solutions,
which is often called the added mass effect. The stability criterion mainly depends
on the density ratio between the solid and the fluid. Below a certain threshold the
calculation diverges intermediately for any chosen time step for incompressible
fluids (Causin et al., 2005; Förster et al., 2007; Kassiotis et al., 2011).

tn tn+1

Fluid

Solid

1

2

3

Figure 5.4: Explicit coupling algorithm for fluid-structure interaction.

tn tn+1

Fluid

Solid

1
2

3

4

Figure 5.5: Iterative implicit coupling algorithm for fluid-structure interaction.

The interface conditions can be satisfied by employing an iterative approach be-
tween the fluid equations and the solid equations (see Figure 5.5), which implies
the implicit coupling (strongly or tightly coupled) method. The strongly coupled
method can be comparable to the monolithic method. The iteration is often per-
formed either with fixed-point methods or Newton–Raphson methods. The Gauss-
Seidel iterations are frequently used in the fixed-point methods (Kassiotis et al.,
2011), but they are often slow and sometimes lead to divergence. Using the Aitken
relaxation method or steepest descent method can accelerate the calculation (Küt-
tler & Wall, 2008), but convergence is not always guaranteed. Song et al. (2013)
enhanced the convergence of this iterative process by employing an added mass
compensation technique, which is proven to be unconditionally stable. The Newton-

131



Raphson methods improve the convergence of the FSI sub-iterations and possess a
quadratic convergence rate. However they need to compute the Jacobian matrix,
which is rather costly. Various methods have been developed to approximate the
Jacobian matrix (Matthies & Steindorf, 2002, 2003; Matthies et al., 2006).

5.4 MIBM for strongly coupled FSI

5.4.1 Numerical discretization

The governing equation (5.11) can be discretized as

Fluid:

vf
n+1 − vf

n

∆t
+ C = − 1

ρf
Gpn+1 +

ν

2
L(vf

n+1 + vf
n) + fn+1 (5.12a)

Dvfn+1 = 0 (5.12b)

vf
n+1 = vs

n+1 + ωs
n+1 × rn+1 on ∂Ωn+1

i (5.12c)

where

C =
3

2
N (vf

n)− 1

2
N (vf

n−1) (5.12d)

fn+1 = SFn+1 (5.12e)

Solid:

ms
vs

n+1 − vs
n

∆t
= −ρf

∫
Ωs

fn+1dV +ms(1−
ρf
ρs

)g (5.13a)

Is
ωs

n+1 − ωsn
∆t

= −ρf
∫

Ωs

r× fn+1dV (5.13b)

xc
n+1 − xc

n

∆t
= vs

n+1 (5.13c)

θc
n+1 − θcn

∆t
= ωs

n+1 (5.13d)

Uhlmann (2005) assumed that the total amount of force and torque are not changed
during the transfer between Lagrangian and Eulerian locations. Hence the solid

132



equations can be solved as follows

ms
vs

n+1 − vs
n

∆t
= −ρf

nb∑
l=1

Fn+1∆Vl +ms(1−
ρf
ρs

)g (5.14a)

Is
ωs

n+1 − ωsn
∆t

= −ρf
nb∑
l=1

r× Fn+1∆Vl (5.14b)

Therefore, provided the boundary force, the solid equations can be easily solved.
For the fluid part, we employ previous operator splitting scheme as

(1) Prediction step for v̂fn+1

v̂f
n+1 − vf

n

∆t
+ C = − 1

ρf
Gpn +

ν

2
L(v̂f

n+1 + vf
n) (5.15)

(2) Immersed boundary forcing step for imposing the no-slip wall condition at the
interface

ṽf
n+1 − v̂f

n+1

∆t
= SFn+1 (5.16a)

T ṽfn+1 = vs
n+1 + ωs

n+1 × rn+1 on ∂Ωn+1
i (5.16b)

Using the moving force matrix notation defined previously, we obtain

MFn+1 =
vs

n+1 + ωs
n+1 × rn+1 − T v̂fn+1

∆t
(5.17a)

ṽf
n+1 = v̂f

n+1 + ∆tSFn+1 (5.17b)

where the solid velocity and position are not known in advance and should be
evaluated along with the fluid fields simultaneously. The coupling strategies will
be presented in the next section.

(3) Projection step for obtaining a divergence free velocity vf
n+1

vf
n+1 − ṽf

n+1

∆t
= −Gφn+1 (5.18a)

Dvfn+1 = 0 (5.18b)

which is often performed as

Lφn+1 =
1

∆t
Dṽfn+1 (5.19a)

vf
n+1 = ṽf

n+1 −∆tGφn+1 (5.19b)

133



The final pressure is advanced by

pn+1 = pn + φn+1 − ν

2
Dv̂fn+1 (5.20)

5.4.2 Novel strongly coupled scheme

In this subsection, we will propose a novel coupling approach for the FSI based on
the extended MIBM. In viewing of previous discussions, the partitioned strongly
coupled method is preferred in the present work for the reason of modularity, sta-
bility and accuracy.
Mathematically speaking, the FSI problem of (5.11) is accomplished by the La-
grange multiplier method to joint two subdomains on a common boundary. The
unknowns of the entire system are (vfn+1, pn+1) for the fluid, (xsn+1, ẋsn+1) for
the solid, and Fn+1 for the interface condition. The conventional strongly coupled
method iterates those variables at each time step in order to match the interface
condition, as shown in Figure 5.5. Even it leads to accurate and stable solutions,
solving implicit coupling usually exhibits a prohibitive computational cost. This
becomes more unaffordable in ALE formulation, since the mesh and the associated
matrices have to be updated per time step.
Fernandez et al. (2007) proposed an efficient coupling method by taking advantage
of the projection method. The prediction (ALE-advection-viscous) step is ruled
out from the inner loop to reduce computational cost, so that the mesh and the
associated matrices are computed once at each time step. Finally only the projection
step is coupled implicitly to ensure stability. Fernandez et al. (2007) has shown
that this semi-implicit scheme is stable for a reasonable range of the discretization
parameters, compared to the explicit coupling approach.
We extend this idea to the immersed boundary method. However the projection
step usually is the most time-consuming part in the projection method. In spite of
various methods (e.g. Aitken relaxation) are available to accelerate the coupling
procedure, the computation cost still remains high. We also notice that in (5.14) the
solid is coupled to the fluid by the boundary force not the pressure, and in (5.17) the
boundary force is determined by the solid velocity and position.
Therefore, we can move out the time-consuming projection step from the inner
iteration and replace it with the immersed boundary forcing step. This novel cou-
pling scheme is illustrated in Figure 5.6. We would like to emphasize that unlike
the semi-implicit scheme of Fernandez et al. (2007), present method is strongly
coupled. The reason is that in ALE the prediction step requires the new fluid do-
main (solid position) and the interface velocity (solid velocity), while in IBM the

134



tn tn+1/2 tn+1

Fluid

Solid

1

2

3

4

5

Figure 5.6: Novel implicit coupling algorithm for fluid-structure interaction.

Algorithm 7: Novel implicit coupling scheme

1 Given: vfn, pn, xsn, ẋsn;
2 (Fluid) Predict the velocity ṽf

n+1 using (5.15);
3 Initialize values: (·)k=0,n+1 = (·)n, where (·) includes xs, ẋs,F;
4 for k = 0 to kmax do
5 (Fluid) Construct or update the interpolation operator matrix I(xs

k,n+1) and
the moving force coefficient matrixM(xs

k,n+1);
6 (Fluid) Interpolate the fluid velocity I(xs

k,n+1)ṽf
n+1;

7 (Interface) Solve the moving force equation (5.17a) for Fk+1,n+1 with ẋs
k,n+1;

8 (Solid) Compute the solid equations for (xsk+1,n+1, ẋsk+1,n+1) using (5.14);
9 if ||(·)k+1,n+1 − (·)k,n+1||/||(·)k+1,n+1|| < tolerance then

10 (·)n+1 = (·)k+1,n+1;
11 break;

12 else
13 k = k + 1;
14 end
15 end
16 (Fluid) Correct the fluid velocity to v̂f

n+1 with Fn+1 using (5.17b);
17 (Fluid) Solve the pressure Poisson equation and compute the final velocity vf

n+1

and the pressure pn+1 using (5.19a), (5.19b), (5.20).

prediction step is performed on a stationary combined domain and the boundary
force is not incorporated in this step for the solid effects. The prediction step will
not change the value if placed in the inner iteration and can be moved out. Note
that the moving force equation is considered as an implicit equation for the no-slip
boundary condition for the fluid at the interface. Therefore the implicit coupling
of the immersed boundary forcing step with the solid equations features an overall
strongly coupled method.

Note that the moving force equation is a non-linear equation, because the interpola-
tion, spreading operators and the boundary force are functions of the solid position

135



xs
n+1. Hence Mn+1Fn+1 = I(xs

n+1)S(xs
n+1)F(xs

n+1). We can linearize this
equation by treating the moving force coefficient matrix explicitlyM(xs

n), but this
will decrease the overall accuracy due to the time lag, as indicated by Lacis et al.

(2016) in the immersed boundary projection method. In order to preserve a high
accuracy, fully implicit implementation of the moving force equation is considered
in Algorithm 7.

5.5 Particulate flow modeling

5.5.1 Introduction

Particulate flows are of considerable interest in many engineering applications, such
as the fluidized bed, the blood flow and the sediment transport near river beds. The
traditional body-conforming mesh methods meets bottlenecks in those simulations,
as the topological changes of the fluid domain are so significant that it is extremely
difficult to adapt the mesh to fit the new domain. The deforming-mesh can lead to
inaccurate solutions and potentially catastrophic results. During approach of two
particles, the mesh cells in the gap are compressed. If the contact occurs, those cells
will collapse. In fact even before touching, the calculation explodes due to these
compressed meshes with negative volumes.

On the opposite direction for rebound, the meshes are expanded. If previously
there are no cell layers between the particles, i.e. they are strictly touched, the two
particles will always stick together or the particle will stick to the wall. Because
they share the same node that can not be divided. If they are not strictly touched,
namely there are few cell layers between them during contact, the meshes can get
hugely expanded when the solid movement is large.

In those situations re-meshing can be helpful by re-distributing the nodes and re-
ordering their connectivities. The unstructured mesh is more suitable for this pur-
pose compared to the structured one, since it is hard to fit arbitrary domain topology
with the structured mesh without user intervention. Sophisticated algorithms are
available to compute the unstructured mesh automatically, such as the Delaunay
method and the advancing front method. However, re-meshing has to map the flow
fields from the old mesh to the new mesh while deforming-mesh does not need to.
This procedure can introduce undesired numerical errors. In strongly coupled FSI,
it becomes a heavy burden as the mesh solver is called and the fluid matrices are
computed every inner iteration in one time step. Computational cost can be saved
by employing a local re-meshing, where only several nodes are added and removed

136



in the zone of interest. In any case maintaining a good mesh quality dynamically
has always been a central issue in the body-conforming mesh methods.

The immersed boundary method has successfully circumvented the dynamic mesh
problem, showing a great capacity in modeling particulate flows (Glowinski et al.,
1999, 2001; Uhlmann, 2005; Wan & Turek, 2006; Kempe & Fröhlich, 2012a).
In this section we will extend the MIBM to such flow simulations. However the
IBM may have a problem when the particles come close or a particle is close to a
wall. This is because the partition of unity property of the discrete delta function is
violated in these situations (Kempe & Fröhlich, 2012a).

Figure 5.7a shows the grid stencil of IBM when two particles are close. The two
particles will spread two different forces to the same Eulerian points. It is rather am-
biguous about which force value should be taken at the overlapping points (Vanella
& Balaras, 2009). Therefore the sum of the discrete delta functions at the Eulerian
grid is no longer equal to one. When a particle comes to a wall, as shown in Figure
5.7b, the force is spread to wall nodes and hence is lost with respect to the fluid. On
the other hand, it is not clear which velocity should be assigned to the wall nodes in
order to obtain a correct interpolated velocity.

Overlapping point

Particle 1

Particle 2

(a)

Particle

Wall

(b)

Figure 5.7: Grid stencils of IBM for collision modeling: (a) two close particles; (b)
one particle close to a wall. The supported Eulerian points for interpolation and
spreading are included by the shaded zone.

Collisions in particulate flows also pose other difficulties in numerical simulations.
For example, during the collision of two particles, a very thin lubrication layer is
formed. The fluid is squeezed out of their gap when they approach or is pushed back
into the gap when they rebound. To fully resolve the flow in the narrow gap requires
significantly refined spatial and temporal resolutions, which makes the computation

137



unaffordable for many particles (Kempe & Fröhlich, 2012b).

5.5.2 Collision model

In this work we employ the collision model of Glowinski et al. (1999, 2001),
which is widely used in the literature (Feng & Michaelides, 2004; Uhlmann, 2005;
Kempe & Fröhlich, 2012a; Favier et al., 2014). This model attempts to prevent solid
particles from overlapping by a repulsive force, when the gap between two particles
exceeds a given threshold. The expression of the repulsive force for particle-particle
collision is given by

FP
i,j =

 0, di,j > Ri +Rj + ξn

1

εP
(Xi −Xj)(Ri +Rj + ξn − di,j)2, di,j < Ri +Rj + ξn

(5.21)

where di,j = |Xi − Xj| is the distance between the centers of the i-th and j-th
particles, whose radius are Ri and Rj respectively (see Figure 5.8a). ξn is the force
range or the threshold, which is often chosen to be ξn = 2h ∼ 3h. εP is a small
positive stiffness parameter.

Similarly the repulsive force between a particle and a wall is given by

FW
i,j =

 0, d′i,j > 2Ri + ξn

1

εW
(Xi −X′j)(2Ri + ξn − d′i,j)2, d′i,j < 2Ri + ξn

(5.22)

where di,j = |Xi−X′j| is the distance between the centers of the i-th particle and an
imaginary particle with respect to the wall, as shown in Figure 5.8b. εW is a another
small positive stiffness parameter. Glowinski et al. (2001) provided the justification
and discussed how to choose these stiffness values.

Xi Xj

di,j

(a)

Xi X′j
d′i,j

(b)

Figure 5.8: Collision model of Glowinski et al. (1999, 2001): (a) particle-particle
collision and (b) particle-wall collision.

138



Now the repulsive force is added as an external force into the total force in the
particle motion equation

ms
dvs
dt

= ρf

∫
∂Ωi

σf · nds+ms(1−
ρf
ρs

)g + F′i (5.23)

where

F′i =
N∑

j=1,j 6=i

FP
i,j +

4∑
j=1

FW
i,j (5.24)

5.6 Numerical examples

5.6.1 Freely falling cylinder in a confined channel

We first investigate the motion of a circular cylinder falling freely between two par-
allel walls in a quiescent fluid. The width and height of the computational domain
are chosen to be 2 cm and 6 cm. The circular cylinder with a diameter of D = 0.25

cm is released initially from the position (1 cm, 4 cm) and falls down because of
gravity. The density of the cylinder and the surrounding fluid are ρs = 1.25 g/cm3

and ρf = 1.0 g/cm3 respectively. The fluid dynamic viscosity µ is set to 0.1 g/(cm·s).

(a) t = 0.2 s (b) t = 0.4 s (c) t = 0.6 s (d) t = 0.8 s

Figure 5.9: Vorticity fields at different times t = 0.2 s, 0.4 s, 0.6 s, 0.8 s for the freely
falling cylinder in a confined channel problem. The contour levels are set from -15
(blue) to 15 (red) with an increment of 1.

139



The calculations are carried out on two different uniform meshes, i.e. h = 1/48 and
h = 1/96, to check the mesh sensitivity. The time step is chosen to be ∆t = 0.001 s
and the resulting maximum CFL number is reported to be 0.46. The vorticity around
the falling cylinder is shown in Figure 5.9 at different times t = 0.2 s, 0.4 s, 0.6 s,
0.8 s. The cylinder quickly reaches a uniform falling velocity until it hits the bottom
of the channel. We plot the flow quantities as a function of time in Figure 5.10,
including the longitude position yc of the cylinder center, the vertical velocity vc,
the Reynolds number Re and the translational kinetic energy ET . Here Re and ET
are defined as Re = (ρsD

√
u2
c + v2

c )/µ and ET = 0.5ms(u
2
c + v2

c ) respectively,
where uc is the horizontal velocity component. For comparison, the results of Wan
& Turek (2006) are included in Figure 5.10, taken from h = 1/96. Good agreements
have been obtained.

0 0.2 0.4 0.6 0.8
0

1

2

3

4

t(s)

y
c
(
c
m
)

 

 

Results of Wan and Turek

 h=1/48

 h=1/96

(a)

0 0.2 0.4 0.6 0.8
−6

−5

−4

−3

−2

−1

0

t(s)

v
c
(
c
m
/
s
)

(b)

0 0.2 0.4 0.6 0.8
0

5

10

15

t(s)

R
e

(c)

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

t(s)

E
T
(
g
·
c
m

2
/
s
2
)

(d)

Figure 5.10: Time evolution of longitude position yc, velocity vc of the cylinder
center, the Reynolds number Re and the translational kinetic energy ET for the
freely falling cylinder in a confined channel problem. "◦", result of Wan & Turek
(2006); "—", present result with h = 1/96; "- - - -", present result with h = 1/48.

140



5.6.2 Freely falling and rising cylinder in an open domain

Next we consider an object freely falling and rising in an open domain as another
test. This phenomenon happens frequently in nature and a large amount of work
can be found in the literature. Here we compare our numerical results with the
data of Namkoong et al. (2008) and Lacis et al. (2016). Namkoong et al. (2008)
performed the simulation using a body-fitted ALE formulation while Lacis et al.

(2016) employed the immersed boundary projection method.
Two density ratios are considered in this study, i.e. ρs/ρf = 1.01 for the falling
case and ρs/ρf = 0.99 for the rising simulation. A large computational domain is
taken as [−5D, 5D] × [−70D, 70D] with free-slip boundary conditions applied at
all the exterior boundaries, where D = 0.5 cm is the cylinder diameter. A uniform
mesh is employed to cover the computational domain, and the mesh resolution is
kept to 0.04D in order to compare with Lacis et al. (2016). Initially the cylinder
is located at ±65D, depending on the situation (65D for the falling case, −65D

for the rising case). The Reynolds number Re = VtD/νf here is 156, where Vt
is the terminal velocity. Note that the Reynolds number depends on the Galileo
number G = (|ρs/ρf − 1|gD3)1/2/νf (the gravity force divided by the viscous
force, G = 138) and the density ratio ρs/ρf .

(a) tVt/D = 10 (b) tVt/D = 50 (c) tVt/D = 90

Figure 5.11: Snapshots of vorticity fields for a freely falling cylinder in an open
domain . The contour level is set from -6 (blue) to 6 (red) with an increment of 0.4.

The instantaneous vorticity fields are presented in Figure 5.11 for the falling cylin-
der case. Initially symmetric vortex pair forms behind the cylinder in the beginning
of falling. After that the numerical error accumulates and breaks the symmetry.
At around tVt/D = 40, the flow becomes unsteady and periodic vortex shedding

141



(a)

0 20 40 60 80 100 120
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

tVt/D

u
c
/
V
t

(b)

Figure 5.12: Time histories of the vertical and horizontal velocity for the freely rising
cylinder ρs/ρf = 0.99.

occurs. The time histories of the velocity of the cylinder are plotted in Figure 5.12.
Table 5.1 shows the Strouhal number St = fD/Vt (f is the shedding frequency) and
the coefficients of drag and lift. Present results are compared to those of Namkoong
et al. (2008) and Lacis et al. (2016). Good agreements have been obtained.

142



CD max|CL| St
ρs/ρf = 1.01 Present 1.35 0.10 0.189

Lacis et al. (2016) 1.29 0.14 0.17185
Namkoong et al. (2008) 1.23 0.15 0.1684

ρs/ρf = 0.99 Present 1.35 0.10 0.189
Lacis et al. (2016) 1.29 0.14 0.17188
Namkoong et al. (2008) - - 0.1687

Table 5.1: The drag, lift coefficients and the Strouhal number for the freely falling
and rising circular cylinder in an open domain.

5.6.3 Rotating cylinder in a shear flow

To further validate the angular velocity calculation, we consider a circular particle
subjected to a shear flow between two walls, as shown in Figure 5.13. The compu-
tational domain is [0 cm, 6 cm]× [0 cm, 4 cm] with the cylinder located at (3 cm, 2
cm). The top and bottom walls are supposed to move horizontally with an opposite
velocity Uwall = ±0.02 cm/s. Periodic boundary conditions are assigned at left and
right boundaries. Hence without the particle, the flow would become a linear shear
flow between the top and bottom walls with a uniform vorticity of -0.01 s−1. If the
particle size is small enough, the angular velocity of the particle is −5× 10−3 rad/s
(Wan & Turek, 2006). Three radius of the particle are considered here, i.e., R = 0.2
cm, 0.4 cm, 1.0 cm. The cylinder is allowed to rotate freely around its mass center.
A uniform mesh of 300× 200 is used to cover the computational domain. The fluid
kinematic viscosity is set to 0.01 cm2/s. The density ratio of the fluid and the solid
is ρf/ρs = 1.0.

Periodic Periodic

Moving top wall

Moving bottom wall

Uwall = 0.02 cm/s

Uwall = −0.02 cm/s

Figure 5.13: Sketch of the rotating cylinder in a shear flow.

143



The flow fields of the pressure and the streamfunction are shown in Figure 5.14. The
terminal angular velocity at the steady state is compared to the results of Wan &
Turek (2006) in Table 5.2, showing a good agreement. As the radius of the circular
particle decreases, the terminal angular velocity approaches the value of −5× 10−3

rad/s.

(a) R = 0.2 cm

(b) R = 0.4 cm

(c) R = 1.0 cm

Figure 5.14: Pressure (left) and streamfunction (right) for a rotating cylinder in a
shear flow.

144



R = 0.2 cm R = 0.4 cm R = 1.0 cm

Present −4.9818× 10−3 −4.9167× 10−3 −4.3878× 10−3

Wan & Turek (2006) −4.9584× 10−3 −4.8697× 10−3 −4.3148× 10−3

Table 5.2: Terminal angular velocity at steady state for a rotating cylinder in a shear
flow.

5.6.4 Rotating cylinder in a lid-driven cavity flow

In this simulation, we place a cylinder in a lid-driven cavity flow, where the cavity
length L is set to 1 cm and the cylinder radius R is 0.2 cm. The cylinder center
is fixed at (0.5L, 0.5L) and is free to rotate due to the hydrodynamic force. The
moving wall velocity is 1 cm/s. The fluid density is ρf = 1.0 g/cm3 and the solid
density is ρs = 1.1 g/cm3. The viscosity of the fluid is set to µ = 0.01 g/(cm·s).

The calculation is performed on three different meshes, i.e., h = 1/128, h =

1/256 and h = 1/512. The time step is selected based on the CFL number. Figure
5.15 shows the vorticity contour and streamline at final steady state. Clearly three
vortices are formed. The vortices center coordinates and the final angular velocity
are reported in Table 5.3. We also plot the time history of the rotation angle and
the angular velocity in Figure 5.15. Since there is no available experimental and
computational data for comparison, we provide this data as a benchmark for future
testing.

(a) (b)

Figure 5.15: Streamline (a) and vorticity contour (b) for the rotating cylinder in a
lid-driven cavity flow.

145



(x1, y1) (x2, y2) (x3, y3) ωs
h = 1/256 (0.7182,0.8263) (0.0247,0.0246) (0.9748,0.0253) -0.4001
h = 1/128 (0.7221,0.8296) (0.0247,0.0245) (0.9752,0.0250) -0.3994
h = 1/64 (0.7251,0.8320) (0.0233,0.0230) (0.9768,0.0237) -0.3973

Table 5.3: Vortices positions and the final angular velocity of the rotating cylinder in
a lid-driven cavity flow. (x1, y1) for the upper right vortex, (x2, y2) for the lower left
vortex, (x3, y3) for the lower right vortex.

5.6.5 Elliptical particle sedimentation in a confined channel

In this example, we consider the sedimentation of an elliptical particle in a nar-
row channel, to demonstrate the ability of current FSI algorithm for handling non-
circular object. This example was studied previously by Xia et al. (2009) for the
boundary effects on the sedimentation mode. Five distinct modes of sedimentation
have been found ranging from oscillating, tumbling along the wall, vertical sedi-
mentation, horizontal sedimentation to an inclined mode. In their work, a multi-
block lattice Boltzmann method is used and compared to the traditional ALE for-
mulation.

L

a

b

θ

g

Figure 5.16: Computational domain of the elliptical particle sedimentation problem.

To compare with Xia et al. (2009), the computational domain is selected to be
[0, L] × [0, 7L] with L = 0.4 cm, as shown in Figure 5.16. The aspect ratio of
the ellipse is α = a/b = 2, where a and b are the major and minor axes respectively.
The blockage ratio is defined as β = L/a = 4. The density ratio is ρs/ρf = 1.1.
The kinematic viscosity of fluid is set to ν = 0.01 cm2/s. The particle starts falling
in a quiescent fluid from the centroid at (0.5L, 6L) with an initial angle of π/4 to
break the symmetry.

146



(a) (b) (c) (d) (e) (f)

Figure 5.17: Vorticity fields at different times: (a) t = 0.1 s ; (b) t = 0.3 s; (c) t = 0.5
s; (d) t = 1.0 s; (e) t = 1.5 s; (f) t = 2.0 s. The contour levels are set from -15 to
15.

0.35 0.4 0.45 0.5 0.55
0

1

2

3

4

5

6

x/L

y
/
L

−0.1 0 0.1 0.2 0.3
0

1

2

3

4

5

6

y
/
L

θ/π

Figure 5.18: Particle trajectory and orientation of the elliptical particle. "—", present
results; "◦", results of Xia et al. (2009).

147



No-slip boundary conditions are applied at four boundaries. A uniform mesh is
employed with a gird resolution of 0.0027 cm. The time step is chosen such that
the CFL condition is satisfied. Figure 5.17 shows the vorticity fields at different
times at t = 0.1 s, 0.3 s, 0.5 s, 1.0 s, 1.5 s, 2.0 s. The trajectory and orientations are
compared to the results of Xia et al. (2009) in Figure 5.18. Good agreements have
been obtained.

5.6.6 Flow around a rotating NACA0012 airfoil

The rigid objects simulated in this chapter so far have been the circular or ellip-
tical particles. In this example, we consider the incompressible viscous flow over
a NACA0012 airfoil to demonstrate the capacity of current MIBM for handling
complicated geometries. The shape of the NACA0012 airfoil is given by

Y = ±0.6 · (0.2969
√
X−0.1260X−0.3516X2 + 0.2843X3−0.1015X4) (5.25)

where X ∈ (0, 1.009) cm. The characteristic length, i.e. the airfoil length, is 1.009
cm. Following Glowinski et al. (2001) and Wan & Turek (2006), we select a compu-
tational domain of [-4 cm,16 cm] × [-2 cm, 2cm] with the airfoil centered at (0.42
cm,0), as shown in Figure 5.19.

ωs

u = 1
v = 0

u = 1
v = 0

u = 0, v = 0

u = 0, v = 0

Figure 5.19: Computational domain of the flow past a rotating NACA0012 airfoil.
The dashed lines represent the initial position of the airfoil.

The airfoil is fixed at its mass center and is free to rotate due to hydrodynamic
forces. The density of fluid is taken as ρf = 1.0 g/cm3 and the density of solid

148



is ρs = 1.1 g/cm3 in this simulation. The viscosity of the fluid is νf = 0.01 cm2/s.
Initial angular velocity and incident angle of the airfoil are set to zero. The boundary
conditions of flow are given as u = (0, 0) at y=-2 cm, 2 cm and u = (1, 0) cm/s at
x = -4 cm, 16 cm. Those boundary conditions are used in Glowinski et al. (2001)
and are adopted here in order to compare the results of two methods. The Reynolds
number is around 101 based on airfoil length and the maximum inflow speed.
This flow is quite challenging as the leading edge of the airfoil has very small
radius of curvature. To resolve the flow near the leading edge, a good resolution
of the Cartesian mesh is required. Two sets of grids are chosen here to test the grid
sensitivity, namely h = 1/96 and h = 1/64. The same time step is used in both
cases (∆t = 0.002 s). The resulting CFL numbers are 0.40 and 0.25 respectively.

(a)

(b)

Figure 5.20: Instantaneous vorticity (a) and velocity (b) of the flow over a rotating
NACA0012 airfoil.

The flow fields are shown in Figure 5.20. The airfoil keeps a stable position with
its broadside perpendicular to the in-flow direction in the beginning and finally
reaches a periodic motion of oscillation. The time histories of the rotational angle
and the angular velocity are plotted in Figure 5.21. The results are pretty smooth.
For comparison, we also include the results of Glowinski et al. (2001) in Figure
5.21 obtained by the distributed Lagrange multiplier method. Presents results match
well those of Glowinski et al. (2001). We observe that the direction of oscillation

149



depends on the numerical errors. The oscillating direction changes over different
calculation parameters. An opposite oscillating case can be found in Wan & Turek
(2006). Present direction of oscillation is in accord with Glowinski et al. (2001).

0 5 10 15 20
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

t

θ
c

(a)

0 5 10 15 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t

ω
s

(b)

Figure 5.21: Time histories of the angle (a) and the angular velocity (b) of the rotating
NACA0012 airfoil. h = 1/96, solid line; h = 1/64, dashed line. The measures are
in rad and rad/s respectively. The results of Glowinski et al. (2001) are marked with
circles.

150



5.6.7 Drafting-kissing-tumbling process of two settling particles

This numerical test consists of two disks with identical density and radius falling
freely in a viscous fluid due to gravitation. The two disks are initially at rest in a
vertical channel, as shown in Figure 5.22. They are placed at the same horizontal
position but have a vertical distance of one disk diameter. The leading (lower)
disk creates a pressure drop in its wake, as it falls down. Consequently the trailing
(upper) disk falls faster due to the reduced resistance from the fluid and catches up
with the leading one. Once in contact, the two disks act as an elongated body falling
in a viscous fluid. The elongated body has a tendency to rotate such that the broad
side is perpendicular to the flow direction. But the assemblage of two disks are not
stable and they separate at a later stage. This phenomenon is well documented as the
drafting-kissing-tumbling in the literature (Glowinski et al., 2001; Uhlmann, 2005;
Wan & Turek, 2006).

-1 1
-6

0

Leading disk

Trailing disk

g

Figure 5.22: Computational domain of the drafting-kissing-tumbling case.

To compare with available data, the physical parameters of the problem are chosen
as follows:

• The Computational domain is [-1 cm, 1 cm] × [-6 cm, 0 cm];

• The diameter of the disks is D = 0.25 cm;

• The initial location of the leading disk is (0, -2.0 cm) and (0, -1.5 cm) for the
trailing disk;

151



Figure 5.23: Snapshots of disk positions and vorticity contours at three different
phases: the drafting (left), the kissing (middle) and the tumbling (right). The contour
levels are set from -200 to 200 with 28 steps.

Figure 5.24: Snapshots of the velocity fields of the sedimentation of two disks at three
different phases: the drafting (left), the kissing (middle) and the tumbling (right).

• The fluid density is ρf = 1.0 g/cm3 and the solid density is ρs = 1.5 g/cm3;

• The fluid viscosity is ν = 0.01 cm2/s;

• The gravitational acceleration is g = (0,−981) cm/s2.

152



The maximum values of the Reynolds number are approximately 480 and 430,
respectively. The computational parameters are the following:

• The collision parameter εP is 1× 10−5 and εW is 5× 10−6;

• The force range is 2h;

• The mesh size is h = 1/256, i.e. D/h = 64;

• The time step is 1× 10−4 s.

Figures 5.23 and 5.24 show the snapshots of vorticity and velocity fields. Good
agreement has been obtained compared to Glowinski et al. (2001). For the vertical
velocity, as shown in Figure 5.25, we observe a very close agreement with previous
results up to the direct interaction of particles. Discrepancy however is found after
the collision, which was also experienced by Uhlmann (2005) and Favier et al.

(2014). This discrepancy was explained by the intensity of the repulsive force in
Favier et al. (2014), which is a pre-chosen constant just to prevent from overlapping
particles.

0 0.05 0.1 0.15 0.2
−25

−20

−15

−10

−5

0

t

v
s

Figure 5.25: Time history of vertical velocity for the drafting-kissing-tumbling case.
"—", present results; "- - - -", results of Glowinski et al. (2001); "· · · ·", results of
Uhlmann (2005).

153



5.7 Concluding remarks

In this chapter, we have extended the moving immersed boundary method for the
study of two-way fluid-structure interaction. To maintain the flexibility of discretiza-
tion for each subproblem, the fluid and the solid have been solved differently in
their own solvers. We note that this partitioned approach is not stable for certain
situations. Therefore, we have employed the implicit coupling approach for the
fluid-solid interface matching.
The interface matching process has been realised though a fixed point iteration in
this chapter. We have considered that solving the pressure Poisson equation is very
expensive during interface matching. To reduce the computational time, we have
proposed a novel efficient coupling scheme by taking advantage of the projection
method. The interface matching only consists of the moving force equation and the
solid motion equation, while the pressure Poisson equation is released from this
subiteration. The proposed method has been validated through a couple of numeri-
cal examples, ranging from circular disk to highly complicated NACA airfoil. The
numerical results and the performance efficiency are very satisfactory.
We have also considered the particulate flow in this work, where the interaction hap-
pens not only between the fluid and the solid, but also among the particles. We have
employed the potential repulsive model to prevent solid bodies from overlapping by
using a repulsive force in the normal direction. We have tested this model with the
classical drafting-kissing-tumbling case and the results are in good agreement with
previous studies.

154



Chapter 6

Conclusions and future work

6.1 Conclusions

A new formulation of the immersed boundary method, termed as the moving im-
mersed boundary method (MIBM), has been developed in this thesis for the inter-
action of incompressible viscous fluid with solids undergoing large displacements.
This novel method can be viewed as an extension of the direct forcing immersed
boundary methods of Uhlmann (2005) and Kempe & Fröhlich (2012a), the multidi-
rect forcing immersed boundary method of Luo et al. (2007) and Breugem (2012),
and the immersed boundary projection method of Taira & Colonius (2007).
The projection/fractional step method has been employed as the fluid solver in
present thesis in Chapter 3. The original projection method was found to be only
first order time accurate (see Figure 3.7a). We have analyzed the splitting error
and then introduced several improved versions to achieve a second order accuracy.
The rotational incremental pressure correction projection method was found very
satisfactory among the variants of projection methods. It is second order time ac-
curate (see Figure 3.7b), free of artificial boundary layer and very simple to be
implemented. It was discretized on a staggered mesh to avoid checker-board effects.
Second order spatial accuracy was obtained (see Figure 3.8).
Further various linear system solvers and preconditioners have been tested for solv-
ing the discretized equations. Best performance has been obtained when using the
conjugate gradient solver with the multi-grid preconditioner. To run the simulation
in parallel on high performance computers, we have considered the CPU paral-
lelization with MPI and the GPU parallelization with CUDA. The GPU algorithm
has shown an outstanding performance (see Table 3.4).
We have implemented the novel MIBM in the framework of the fractional step
method as another operator splitting in Chapter 4. An additional moving force
equation has been derived in order to determine the boundary force. Compared to
past methods, the MIBM was found very advantageous for the following numerical
aspects:

155



• Accuracy. Compared to the explicit direct forcing IBM of Uhlmann (2005)
and Kempe & Fröhlich (2012a), the no-slip boundary condition in MIBM is
exactly satisfied at the fluid-solid interface (see Table 4.2).

• Efficiency. Compared to the multidirect forcing IBM of Luo et al. (2007) and
Breugem (2012), the MIBM is non-iterative and hence efficient. The moving
force equation in MIBM is formulated to be symmetric and positive-definite.
Many efficient linear system solvers can be used to solve it quickly, like
the conjugate gradient method in this thesis (see Figure 4.12 and Table 4.2).
Compared to the IBPM of Taira & Colonius (2007), the size of the coefficient
matrix is much smaller in MIBM. For moving boundaries, the computation
of the coefficient matrix is much less expensive.

• Stability. The boundary force is determined implicitly without any constitu-
tive laws for the rigid body formulation. Large time step hence is allowed
in MIBM, compared to the continuous IBMs of Peskin (1972a,b), Goldstein
et al. (1993) and Saiki & Biringen (1996). The coefficient matrix of the
moving force equation is well conditioned and the system is easy to converge,
compared to modified Poisson equation in the IBPM of Taira & Colonius
(2007).

• Flexibility. Compared to the implicit IBPM of Taira & Colonius (2007), the
implicit MIBM can be easily integrated into any fluid solver as a plug-in
without reformulating the fluid system.

We have employed the discrete delta function for the field transfer in MIBM. Second
order spatial accuracy was found for smooth fields (see Figure 4.13). Different
discrete delta functions have been tested for their influences on the results, and
we have found that the smoothed functions can effectively suppress unphysical
oscillations (see Figure 4.34).
To deal with two-way fluid-structure interaction, the fluid Navier-Stokes equations
were coupled to the rigid body dynamic equations through the MIBM in Chapter 5.
We have selected the strongly coupled partitioned method for the interface matching
with a fixed point iteration. To reduce the computational time, we have removed
the pressure Poisson equation from this fixed point iteration. We have shown the
ability of present method with numerous cases involving highly complicated solid
geometries, as well as solid collisions.

156



6.2 Future work

Several possible improvements of the present immersed boundary method are sum-
marized as follows.

– First the discrete delta function used in the present thesis will undermine
the spatial accuracy of the original fluid solver, in case of flows with dis-
continuities at the interface. It would be desirable to improve this accuracy
by considering alternative interpolation and spreading operators, such as the
reproducing kernel particle method (Pinelli et al., 2010), or the moving least
square method (Vanella & Balaras, 2009).

– Secondly, many engineering FSI problems occur with the free surface, for
example the ocean wave energy conversion. The present work can be ex-
tended to these simulations by encompassing the free surface models, such
candidates can be the volume of fluid method, or the level set method, or the
phase of field method. Three-dimensional implementation is also desirable
for real applications with complicated body surface.

– Further, the finite element method can be incorporated into present immersed
boundary method, for the simulation of fluid interaction with deformable
structures. This has been considered in the immersed finite element method
(Wang & Liu, 2004) and the immersed continuum method (Wang, 2007).

– Moreover, to consider multi-body interactions with complex geometry is de-
sirable for the study of particle suspensions. This can be realized by coupling
the current immersed boundary method with the discontinuous deformation
analysis.

– Finally, the turbulence modeling of the FSI problems with the immersed
boundary method is in urgent demand, especially for the RANS models (e.g.,
k− ε, k−ω, v2−f , etc.). The direct numerical simulation and the large eddy
simulation are too expensive for general engineering problems.

With those improvements, it is hoped that the proposed immersed boundary method
will be a competitive tool for solving complex FSI problems.

157





Bibliography

Altomare, C., Crespo, A.J.C., Domínguez, J.M., Gómez-Gesteira M., Suzuki T.,
and Verwaest T. (2015): Applicability of Smoothed Particle Hydrodynamics for
estimation of sea wave impact on coastal structures. Coastal Engineering, Vol.
96, pp. 1-12.

Angot, P., Bruneau, C.H. and Fabrie, P. (1999): A penalization method to take into
account obstacles in incompressible viscous flows. Numerische Mathematik, Vol.
81, pp. 497-520.

Antoci, C. and Gallati, M. and Sibilla, S. (2007): Numerical simulation of fluid-
structure interaction by SPH. Computers & Structures, Vol. 85, pp. 879-890.

Apte, S.V., Martin, M. and Patankar, N.A. (2009): A numerical method for fully
resolved simulation (FRS) of rigid particle–flow interactions in complex flows.
Journal of Computational Physics, Vol. 228, pp. 2712–2738.

Armaly, B.F., Durst, F., Pereira, J.C.F., and Schönung, B. (1983): Experimental
and theoretical investigation of backward-facing step flow. Journal of Fluid

Mechanics, Vol. 127, pp. 473-496.

Armfield, S. and Street, R. (2002): An analysis and comparison of the time accuracy
of fractional-step methods for the Navier-Stokes equations on staggered grids.
International Journal for Numerical Methods in Fluids, Vol. 38, pp. 255-282.

Babus̆ka, I. and Melenk, J.M. (1997): The partition of unity method. International

Journal for Numerical Methods in Engineering, Vol. 40, pp. 727-758.

Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V.,
Pozo, R., Romine, C., and Vorst, H. van der (1994): Templates for the solution
of linear systems: Building blocks for iterative methods. SIAM, ISBN: 978-0-
89871-328-2.

Bell, J.B., Colella, P., and Glaz, H.M. (1989): A second order projection method for
the incompressible Navier-Stokes equations. Journal of Computational Physics,
Vol. 85, pp. 257-283.

159



Belytschko, T. and Black, T. (1999): Elastic crack growth in finite elements
with minimal remeshing. International Journal for Numerical Methods in

Engineering, Vol. 45, pp. 601-620.

Belytschko, T., Lu, Y.Y., and Gu, L. (1994): Element-free Galerkin methods.
International Journal for Numerical Methods in Engineering, Vol. 37, pp. 229-
256.

Benek, J., Steger, J., and Dougherty, F.C. (1983): A flexible grid embedding
technique with application to the Euler equations. AIAA Paper, pp. 83-1944.

Beyer, R. P. and LeVeque, R. J. (1992): Analysis of a one-dimensional model for
the immersed boundary method. SIAM Journal on Numerical Analysis, Vol. 29,
pp. 332-364.

Braza, M., Chassaing, P., and Ha Minh, H. (1986): Numerical study and physical
analysis of the pressure and velocity fields in the near wake of a circular cylinder.
Journal of Fluid Mechanics, Vol. 165, pp. 79-130.

Breugem, W.-P. (2012): A second-order accurate immersed boundary method for
fully resolved simulations of particle-laden flows. Journal of Computational

Physics, Vol. 231, pp. 4469-4498.

Brown, D.L., Cortez, R., and Minion, M.L. (2001): Accurate projection methods for
the incompressible Navier-Stokes equations. Journal of Computational Physics,
Vol. 168, pp. 464-449.

Bruneau, C.-H. and Saad, M. (2006): The 2D lid-driven cavity problem revisited.
Computers & Fluids, Vol. 35, pp. 326-348.

Canelas, R.B., Dominguez, J.M., Crespo, A.J.C., Gómez-Gesteira, M., and Ferreira,
R.M.L. (2015): A smooth Particle Hydrodynamics discretization for the mod-
elling of free surface flows and rigid body dynamics. International Journal for

Numerical Methods in Fluids, Vol. 78, pp. 581-593.

Causin, P., Gerbeau, J.F., and Nobile, F. (2005): Added-mass effect in the design
of partitioned algorithms for fluid-structure problems. Computer Methods in

Applied Mechanics and Engineering, Vol. 194, pp. 4506-4527.

Chang, W., Giraldo, F., and Perot, B. (2002): Analysis of an exact fractional step
method. Journal of Computational Physics, Vol. 180, pp. 183-199.

Chen, S. and Doolen, G.D. (1998): Lattice Boltzmann method for fluid flows.
Annual Review of Fluid Mechanics, Vol. 30, pp. 329-364.

160



Cheny, Y. and Botella, O. (2010): The LS-STAG method: A new immersed
boundary/level-set method for the computation of incompressible viscous flows
in complex moving geometries with good conservation properties. Journal of

Computational Physics, Vol. 229, pp. 1043–1076.

Chorin, A. J. (1967): A numerical method for solving incompressible viscous flow
problems. Journal of Computational Physics, Vol. 2, pp. 12-26.

Chorin, A. J. (1968): Numerical solution of the Navier-Stokes equations. Mathe-

matics of Computation, Vol. 22, pp. 745-762.

Chorin, A. J. (1973): Numerical study of slightly viscous flow. Journal of Fluid

Mechanics, Vol. 57, pp. 785-796.

Chow, E. and Saad, Y. (1998): Approximate inverse preconditioners via sparse-
sparse iterations. SIAM Journal on Scientific Computing, Vol. 19, pp. 995-1023.

Colonius, T. and Taira, K. (2008): A fast immersed boundary method using a
nullspace approach and multi-domain far-field boundary conditions. Computer

Methods in Applied Mechanics and Engineering, Vol. 197, pp. 2131–2146.

Cottet, G.-H. and Koumoutsakos, P.D. (2000): Vortex Methods: Theory and
Practice. Cambridge University Press, ISBN: 9780521061704.

Coutanceau, M. and Bouard, R. (1977): Experimental determination of the main
features of the viscous flow in the wake of a circular cylinder in uniform
translation. Part 1. Steady flow. Journal of Fluid Mechanics, Vol. 79, pp. 231-
256.

Crespo, A.J.C., Domínguez, J.M., Rogers, B.D., Gómez-Gesteira, M., Longshaw,
S., Canelas, R., Vacondio, R., Barreiro, A., and García-Feal, O. (2015): Du-
alSPHysics: Open-source parallel CFD solver based on Smoothed Particle
Hydrodynamics (SPH). Computer Physics Communications, Vol. 187, pp. 204-
216.

Deloze, T., Hoarau, Y., and Dus̆ek, J. (2012): Transition scenario of a sphere freely
falling in a vertical tube. Journal of Fluid Mechanics, Vol. 711, pp. 40-60.

Deriaz, E. (2012): Stability conditions for the numerical solution of convection-
dominated problems with skew-symmetric discretizations. SIAM Journal on

Numerical Analysis, Vol. 50, pp. 1058-1085.

Dong, S. (2015): A convective-like energy-stable open boundary condition for
simulations of incompressible flows. Journal of Computational Physics, Vol.

161



302, pp. 300-328.

Dong, S., Karniadakis, G.E., and Chryssostomidis, C. (2014): A robust and accurate
outflow boundary condition for incompressible flow simulations on severely-
truncated unbounded domains. Journal of Computational Physics, Vol. 261, pp.
83-105.

Dong, S. and Shen, J. (2010): An unconditionally stable rotational velocity-
correction scheme for incompressible flows. Journal of Computational Physics,
Vol. 229, pp. 7013-7029.

Dong, S. and Shen, J. (2015): A pressure correction scheme for generalized form
of energy-stable open boundary conditions for incompressible flows. Journal of

Computational Physics, Vol. 291, pp. 254-278.

Duarte, F., Gormaz, R., and Natesan, S. (2004): Arbitrary Lagrangian-Eulerian
method for Navier-Stokes equations with moving boundaries. Computer Methods

in Applied Mechanics and Engineering, Vol. 193, pp. 4819-4836.

Dupuis, A., Chatelain, P. and Koumoutsakos, P. (2008): An immersed boundary-
lattice-Boltzmann method for the simulation of the flow past an impulsively
started cylinder. Journal of Computational Physics, Vol. 227, pp. 4486-4498.

Dütsch, H., Durst, F., Becker, S., and Lienhart, H. (1998): Low-Reynolds-number
flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers.
Journal of Fluid Mechanics, Vol. 360, pp. 249-271.

E, W. and Liu, J.-G. (1995): Projection method I: Convergence and numerical
boundary layers. SIAM Journal on Numerical Analysis, Vol. 32, pp. 1017-1057.

E, W. and Liu, J.-G. (2003): Gauge method for viscous incompressible flows.
Communications in Mathematical Sciences, Vol. 1, pp. 317-332.

Erturk, E. (2008): Numerical solutions of 2-D steady incompressible flow over a
backward-facing step, Part I: High Reynolds number solutions. Computers &

Fluids, Vol. 37, pp. 633-655.

Fadlun, E.A., Verzicco, R., Orlandi, P., and Mohd-Yusof, J. (2000): Combined
immersed boundary finite-difference methods for three-dimensional complex
flow simulations. Journal of Computational Physics, Vol. 161, pp. 35-60.

Favier, J., Revell, A. and Pinelli, A. (2014): A Lattice Boltzmann-Immersed
Boundary method to simulate the fluid interaction with moving and slender
flexible objects. Journal of Computational Physics, Vol. 261, pp. 145-161.

162



Feng, Z.-G. and Michaelides, E.E. (2004): The immersed boundary-lattice
Boltzmann method for solving fluid–particles interaction problems. Journal of

Computational Physics, Vol. 195, pp. 602-628.

Fernández, M.A., Gerbeau, J.-F. and Grandmont, C. (2007): A projection semi-
implicit scheme for the coupling of an elastic structure with an incompressible
fluid. International Journal for Numerical Methods in Engineering, Vol. 69, pp.
794-821.

Ferziger, J.H. and Peric, M. (2002): Computational methods for fluid dynamics.
3rd. Springer, ISBN 978-3-642-56026-2.

Förster, C., Wall, W.A., and Ramm, E. (2007): Artificial added mass instabilities in
sequential staggered coupling of nonlinear structures and incompressible viscous
flows. Computer Methods in Applied Mechanics and Engineering, Vol. 196, pp.
1278-1293.

Fries, T.-P. and Matthies, H. G. (2004): Classification and overview of meshfree
methods. Technical University Braunschweig.

Gerstenberger, A. and Wall, W. A. (2008): An eXtended Finite Element Method-
/Lagrange multiplier based approach for fluid-structure interaction. Computer

Methods in Applied Mechanics and Engineering, Vol. 197, pp. 1699-1714.

Ghia, U., Ghia, K.N., and Shin, C.T. (1982): High-Re solutions for incompressible
flow using the Navier-Stokes equations and a multigrid method. Journal of

Computational Physics, Vol. 48, pp. 387-411.

Gingold, R. A. and Monaghan, J. J. (1977): Smoothed particle hydrodynamics
- Theory and application to non-spherical stars. Monthly Notices of the Royal

Astronomical Society, Vol. 181, pp. 375-389.

Glowinski, R., Pan, T.-W., and Périaux, J. (1994): A fictitious domain method
for external incompressible viscous flow modeled by Navier-Stokes equations.
Computer Methods in Applied Mechanics and Engineering, Vol. 112, pp. 133-
148.

Glowinski, R., Pan, T.-W., Hesla, T.I. and Joseph, D.D. (1999): A distributed
Lagrange multiplier/fictitious domain method for particulate flows. International

Journal of Multiphase flow, Vol. 25, pp. 755-794.

Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.D., and Périaux, J. (2001): A
fictitious domain approach to the direct numerical simulation of incompressible
viscous flow past moving rigid bodies: application to particulate flow. Journal of

163



Computational Physics, Vol. 169, pp. 363-426.

Goda, K. (1979): A multistep technique with implicit difference schemes for
calculating two- or three-dimensional cavity flows. Journal of Computational

Physics, Vol. 30, pp. 76-95.

Goldstein, D., Handler, R., and Sirovich, L. (1993): Modeling a no-slip flow
boundary with an external force field. Journal of Computational Physics, Vol.
105, pp. 354-366.

Gresho, P.M. (1991): Incompressible fluid dynamics: Some fundamental formula-
tion issues. Annual Review of Fluid Mechanics, Vol. 23, pp. 413-453.

Gresho, P.M. and Sani, R.L. (1987): On pressure boundary conditions for the
incompressible Navier-Stokes equations. International Journal for Numerical

Methods in Fluids, Vol. 7, pp. 1111-1145.

Griebel, M. (1998): Numerical simulation in fluid dynamics: A practical introduc-
tion. SIAM, ISBN: 978-0-89871-398-5.

Guermond, J.L., Minev, P., and Shen, J. (2006): An overview of projection
methods for incompressible flows. Computer Methods in Applied Mechanics

and Engineering, Vol. 195, pp. 6011-6045.

Guermond, J.-L. and Quartapelle, L. (1998): On stability and convergence of
projection methods based on pressure Poisson equation. International Journal

for Numerical Methods in Fluids, Vol. 26, pp. 1039-1053.

Guermond, J.L. and Shen, J. (2003a): A new class of truly consistent splitting
schemes for incompressible flows. Journal of Computational Physics, Vol. 192,
pp. 262-276.

Guermond, J.L. and Shen, J. (2003b): Velocity-correction projection methods for
incompressible flows. SIAM Journal on Numerical Analysis, Vol. 41, pp. 112-
134.

Guilmineau, E. and Queutey, P. (2002): A numerical simulation of vortex shedding
from an oscillating circular cylinder. Journal of Fluids and Structures, Vol. 16,
pp. 773-794.

Guo, Z. and Shu, C. (2013): Lattice Boltzmann method and its applications in
engineering. Vol. 3. Advances in computational fluid dynamics. World scientific.

Harlow, F.H. and Welch, J.E. (1965): Numerical Calculation of Time-Dependent
Viscous Incompressible Flow of Fluid with Free Surface. Physics of Fluids, Vol.

164



8, pp. 2182-2189.

Hirsch, C. (2007): Numerical computation of internal and external flows. Volume 1
Fundamentals of numerical discretization. Elsevier, ISBN: 978-0-471-92385-5.

Hou, G., Wang, J., and Layton, A. (2012): Numerical methods for fluid-structure
interaction - A review. Communications in Computational Physics, Vol. 12, pp.
337-377.

Hu, H.H., Joseph, D.D. and Crochet, M.J. (1992): Direct simulation of fluid particle
motions. Theoretical and Computational Fluid Dynamics, Vol. 3, pp. 285-306.

Hu, H.H. (1996): Direct simulation of flows of solid-liquid mixtures. International

Journal of Multiphase Flow, Vol. 22, pp. 335-352.

Hu, H.H., Patankar, N.A., and Zhu, M.Y. (2001): Direct Numerical Simulations
of Fluid-Solid Systems Using the Arbitrary Lagrangian-Eulerian Technique.
Journal of Computational Physics, Vol. 169, pp. 427-462.

Huang, W.-X., Shin, S.J., and Sung, H.J. (2007): Simulation of flexible filaments
in a uniform flow by the immersed boundary method. Journal of Computational

Physics, Vol. 226, pp. 2206-2228.

Iaccarino, G. and Verzicco, R. (2003): Immersed Boundary technique for turbulent
flow simulations. Applied Mechanics Reviews, Vol. 56, pp. 331-347.

Issa, R.I. (1985): Solution of the implicitly discretised fluid flow equations by
operator-splitting. Journal of Computational Physics, Vol. 62, pp. 40-65.

Jasak, H. (2009): Dynamic mesh handling in OpenFOAM. 47th AIAA Aerospace

Sciences Meeting including the New Horizons Forum and Aerospace Exposition.

Ji, C., Munjiza, A., and Williams, J. J. R. (2012): A novel iterative direct-
forcing immersed boundary method and its finite volume applications. Journal

of Computational Physics, Vol. 231, pp. 1797-1821.

Jin, G. and Braza, M. (1993): A nonreflecting outlet boundary condition for
incompressible unsteady Navier-Stokes calculations. Journal of Computational

Physics, Vol. 107, pp. 239-253.

Johnston, H. and Liu, J.-G. (2004): Accurate, stable and efficient Navier-Stokes
solvers based on explicit treatment of the pressure term. Journal of Computa-

tional Physics, Vol. 199, pp. 221-259.

Karniadakis, G.E., Israeli M. and Orszag, S.A. (1991): High-order splitting methods
for the incompressible Navier-Stokes equations. Journal of Computational

165



Physics, Vol. 97, pp. 414-443.

Kassiotis, C., Ibrahimbegovic, A., Niekamp, R., and Matthies, H. G. (2011): Non-
linear fluid-structure interaction problem. Part I: implicit partitioned algorithm,
nonlinear stability proof and validation examples. Computational Mechanics,
Vol. 47, pp. 305-323.

Kempe, T. and Fröhlich, J. (2012): An improved immersed boundary method with
direct forcing for the simulation of particle laden flows. Journal of Computational

Physics, Vol. 231, pp. 3663-3684.

Kempe, T. and Fröhlich, J. (2012): Collision modelling for the interface-resolved
simulation of spherical particles in viscous fluids. Journal of Fluid Mechanics,
Vol. 709, pp. 445-489.

Khadra, K., Angot, P., Parneix, S., and Caltagirone, J.P. (2000): Fictitious domain
approach for numerical modeling of Navier-Stokes equations. International

Journal for Numerical Methods in Fluids , Vol. 34, pp. 651-684.

Kim, J., Kim, D., and Choi, H. (2001): An immersed-boundary finite-volume
method for simulations of flow in complex geometries. Journal of Computational

Physics, Vol. 171, pp. 132-150.

Kim, D., and Choi, H. (2006): Immersed boundary method for flow around an
arbitrarily moving body. Journal of Computational Physics, Vol. 212, pp. 662-
680.

Kim, J. and Moin, P. (1985): Application of a fractional-step method to incom-
pressible Navier-Stokes equations. Journal of Computational Physics, Vol. 59,
pp. 308-323.

Koumoutsakos, P. and Leonard, A. (1995): High-resolution simulations of the flow
around an impulsively started cylinder using vortex methods. Journal of Fluid

Mechanics, Vol. 296, pp. 1-38.

Küttler, U. and Wall, W. A. (2008): Fixed-point fluid-structure interaction solvers
with dynamic relaxation. Computational Mechanics, Vol. 43, pp. 61-72.

Lacis, U., Taira K. and Bagheri, S. (2016): A stable fluid-structure-interaction solver
for low-density rigid bodies using the immersed boundary projection method.
Journal of Computational Physics, Vol. 305, pp. 300-318.

Lai, M.-C. and Peskin, C.S. (2000): An immersed boundary method with formal
second-order accuracy and reduced Numerical viscosity. Journal of Computa-

166



tional Physics, Vol. 160, pp. 705-719.

Lee, L. and LeVeque, R.J. (2003): An immersed interface method for incompress-
ible Navier-Stokes equations. SIAM Journal on Scientific Computing, Vol. 25,
pp. 832-856.

Lefrançois, E. and Boufflet, J.-P. (2003): An introduction to fluid-structure
interaction: Application to the piston problem. SIAM Review, Vol. 52, pp. 747-
767.

LeVeque, R.J. (2007): Finite difference methods for ordinary and partial differential
equations: Steady-state and time-dependent problems. SIAM, ISBN: 978-0-
89871-629-0.

LeVeque, R.J. and Li, Z. (1994): The immersed interface method for elliptic
equations with discontinuous coefficients and singular sources. SIAM Journal

on Numerical Analysis, Vol. 31, pp. 1019-1044.

Li, S. and Liu, W.K. (2002): Meshfree and particle methods and their applications.
Applied Mechanics Reviews, Vol. 55, pp. 1-34.

Li, Y., Paik, K.-J., Xing, T., and Carrica, P.M. (2012): Dynamic overset CFD
simulations of wind turbine aerodynamics. Renewable Energy, Vol. 37, pp. 285-
298.

Li, Z. and Lai, M.-C. (2001): The immersed interface method for the Navier-Stokes
equations with singular forces. Journal of Computational Physics, Vol. 171, pp.
822-842.

Liu, C., Zheng, X., and Sung, C. H. (1998): Preconditioned Multigrid Methods for
Unsteady Incompressible Flows. Journal of Computational Physics, Vol. 139,
pp. 35-57.

Liu, W.K., Jun, S., Li, S., Adee, J., and Belytschko, T. (1995a): Reproducing kernel
particle methods for structural dynamics. International Journal for Numerical

Methods in Engineering, Vol. 38, pp. 1655-1679.

Liu, W.K., Jun, S., and Zhang, Y.F. (1995b): Reproducing kernel particle methods.
International Journal for Numerical Methods in Engineering, Vol. 20, pp. 1081-
1106.

Lucy, L. B. (1977): A numerical approach to the testing of the fission hypothesis.
Astronomical Journal, Vol. 82, pp. 1013-1024.

Luo, K., Wang, Z., Fan, J., and Cen, K. (2007): Full-scale solutions to particle-laden

167



flows: Multidirect Forcing and immersed boundary method. Physical Review E,
Vol. 76, p. 066709.

Matthies, H. G., Niekamp, R., and Steindorf, J. (2006): Algorithms for strong
coupling procedures. Computer Methods in Applied Mechanics and Engineering,
Vol. 195, pp. 2028-2049.

Matthies, H. G. and Steindorf, J. (2002): Partitioned but strongly coupled iteration
schemes for nonlinear fluid-structure interaction. Computers & structures, Vol.
80, pp. 1991-1999.

Matthies, H. G. and Steindorf, J. (2003): Partitioned strong coupling algorithms for
fluid-structure interaction. Computers & Structures, Vol. 81, pp. 805-812.

McDonough, J.M. (2007): Lectures in computational fluid dynamics of incompress-
ible flow: Mathematics, algorithms and implementations.

Mittal, S. and Kumar, V. (2001): Flow-induced vibrations of a light circular cylinder
at Reynolds numbers 103 to 104. Journal of Sound and Vibration, Vol. 245, pp.
923-946.

Mittal, R., Dong, H., Bozkurttas, M., Najjar, F.M., Vargas, A., and von Loebbecke,
A. (2008): A versatile sharp interface immersed boundary method for incom-
pressible flows with complex boundaries. Journal of Computational Physics,
Vol. 227, pp. 4825-4852.

Mittal, R. and Iaccarino, G. (2005): Immersed boundary methods. Annual Review

of Fluid Mechanics, Vol. 37, pp. 239-261.

Mimeau, C., Gallizio, F., Cottet, G.-H. and Mortazavi, I. (2015): Vortex penalization
method for bluff body flows. International Journal for Numerical Methods in

Fluids, Vol. 79, pp. 55-83.

Moës, N., Dolbow, J., and Belytschko, T. (1999): A finite element method for
crack growth without remeshing. International Journal for Numerical Methods

in Engineering, Vol. 46, pp. 131-150.

Mohd-Yosuf, J. (1997): Combined immersed Boundary/B-spline methods for
simulation of flow in complex geometries. Annual Research Briefs, pp. 317-327.

Monaghan, J. J. (2012): Smoothed particle hydrodynamics and its diverse applica-
tions. Annual Review of Fluid Mechanics, Vol. 44, pp. 323-346.

Namkoong, K., Yoo, J.Y., and Choi, H.G. (2008): Numerical analysis of two-
dimensional motion of a freely falling circular cylinder in an infinite fluid.

168



Journal of Fluid Mechanics, Vol. 604, pp. 33-53.

Nayroles, B., Touzot, G., and Villon, P. (1992): Generalizing the finite element
method: Diffuse approximation and diffuse elements. Computational Mechanics,
Vol. 10, pp. 307-318.

Nguyen, V.P., Rabczuk, T., Bordas, S., and Duflot, M. (2008): Meshless methods:
A review and computer implementation aspects. Mathematics and Computers in

Simulation, Vol. 79, pp. 763-813.

Ni, M.-J. and Abdou, M.A. (2004): Temporal second-order accuracy of SIMPLE-
type methods for incompressible unsteady Flows. Numerical Heat Transfer, Part

B, Vol. 46, pp. 529-548.

Orszag, S.A., Israeli, M., and Deville, M.O. (1986): Boundary conditions for
incompressible flows. Journal of Scientific Computing, Vol. 1, pp. 75-111.

Patankar, S.V. and Spalding, D.B. (1972): A calculation procedure for heat, mass
and momentum transfer in three-dimensional parabolic flows. International

Journal of Heat and Mass Transfer, Vol. 15, pp. 1787-1806.

Patankar, S.V. (1980): Numerical heat transfer and fluid flow. CRC Press, ISBN:
0-89116-522-3.

Perot, J.B. (1993): An Analysis of the Fractional Step Method. Journal of

Computational Physics, Vol. 108, pp. 51-58.

Peskin, C.S. (1972a): Flow patterns around heart valves: A digital computer method
for solving the equations of motion. PhD thesis. Albert Einstein College of

Medicine, Yeshiva University.

Peskin, C.S. (1972b): Flow patterns around heart valves: A numerical method.
Journal of Computational Physics, Vol. 10, pp. 252-271.

Peskin, C.S. (1993): Improved volume conservation in the computation of flows
with immersed elastic boundaries. Journal of Computational Physics, Vol. 105,
pp. 33-46.

Peskin, C.S. (2002): The immersed boundary method. Acta Numerica, Vol. 11, pp.
479-517.

Griffith, B.E. and Peskin, C.S. (2005): On the order of accuracy of the immersed
boundary method: Higher order convergence rates for sufficiently smooth prob-
lems. Journal of Computational Physics, Vol. 208, pp. 75-105

Pinelli, A., Naqavi, I. Z., Piomelli, U., and Favier, J. (2010): Immersed-boundary

169



methods for general finite-difference and finite-volume Navier-Stokes solvers.
Journal of Computational Physics, Vol. 229, pp. 9073-9091.

Pozrikidis, C. (1992): Boundary integral and singularity methods for linearized
viscous flow. Cambridge University Press, ISBN: 0-521-40502-5.

Pozrikidis, C. (2002): A practical guide to boundary element methods with the
software library BEMLIB. CRC Press, ISBN: 1-58488-323-5.

Pozrikidis, C. (2011): Introduction to theoretical and computational fluid dynamics.
Oxford University Press, ISBN: 978-0-19-975207-2.

Rhie, C.M. and Chow, W.L. (1983): Numerical study of the turbulent flow past an
isolated airfoil with trailing edge separation. AIAA Journal, Vol. 21, pp. 1525-
1532.

Ren, W.W., Wu, J., Shu, C. and Yang, W.M. (2012): A stream function-vorticity
formulation-based immersed boundary method and its applications. International

Journal for Numerical Methods in Fluids, Vol. 70, pp. 627-645.

Roma, A. M., Peskin, C.S., and Berger, M. J. (1999): An adaptive version of the
immersed boundary method. Journal of Computational Physics, Vol. 153, pp.
509-534.

Saad, Y. (2003): Iterative methods for sparse linear systems. Second edition. SIAM,
ISBN: 978-0-89871-534-7.

Saiki, E.M. and Biringen, S. (1996): Numerical Simulation of a Cylinder in Uniform
Flow: Application of a Virtual Boundary Method. Journal of Computational

Physics, Vol. 123, pp. 450-465.

Sani, R.L. and Gresho, P. (1994): Resume and remarks on the open boundary
condition minisymposium. International Journal for Numerical Methods in

Fluids, Vol. 18, pp. 983-1008.

Seibold, B. (2008): A compact and fast Matlab code solving the incompressible
Navier-Stokes equations on rectangular domains. MIT.

Shen, Z., Wan, D., and Carrica, P.M. (2015): Dynamic overset grids in OpenFOAM
with application to KCS self-propulsion and maneuvering. Ocean Engineering,
Vol. 108, pp. 287-306.

Song, M.D., Lefrançois, E., and Rachik, M. (2013): A partitioned coupling scheme
extented to structures interacting with high-density fluid flows. Computers &

Fluids, Vol. 84, pp. 190-202.

170



Sotiropoulos, F. and Yang, X. (2014): Immersed boundary methods for simulating
fluid-structure interaction. Progress in Aerospace Sciences, Vol. 65, pp. 1-21.

Souli, M., Ouahsine, A., and Lewin, L. (2000): ALE formulation for fluid-structure
interaction problems. Computer Methods in Applied Mechanics and Engineering,
Vol. 190, pp. 659-675.

Taira, K. and Colonius, T. (2007): The immersed boundary method: A projection
approach. Journal of Computational Physics, Vol. 225, pp. 2118-2137.

Tang, H.S., Jones, S.C., and Sotiropoulos, F. (2003): An overset-grid method for
3D unsteady incompressible flows. Journal of Computational Physics, Vol. 191,
pp. 567-600.

Témam, R. (1968): Une méthode d’approximation de la solution des équations
de Navier-Stokes. Bulletin de la Société Mathématique de France, Vol. 96, pp.
115-152.

Témam, R. (1969): Sur l’approximation de la solution des équations de Navier-
Stokes par la méthode des pas fractionnaires (II). Archive for Rational Mechanics

and Analysis, Vol. 33, pp. 377-385.

Thompson, H.D., Webb, B.W., and Hoffman, J.D. (1985): The cell Reynolds
number myth. International Journal for Numerical Methods in Fluids, Vol. 5,
pp. 305-310.

Timmermans, L.J.P., Minev, P.D., and Van De Vosse, F.N. (1996): An approximate
projection scheme for incompressible flow using spectral elements. International

Journal for Numerical Methods in Fluids, Vol. 22, pp. 673-688.

Toja-Silva, F., Favier, J., and Pinelli, A. (2014): Radial basis function (RBF)-based
interpolation and spreading for the immersed boundary method. Computers &

Fluids, Vol. 105, pp. 66-75.

Tritton, D.J. (1959): Experiments on the flow past a circular cylinder at low
Reynolds numbers. Journal of Fluid Mechanics, Vol. 6, pp. 547-567.

Tseng, Y.-H. and Ferziger, J. (2003): A ghost-cell immersed boundary method for
flow in complex geometry. Journal of Computational Physics, Vol. 192, pp. 593-
623.

Udaykumar, H.S., Mittal, R., Rampunggoon, P. and Khanna, A. (2001): A sharp
interface Cartesian grid method for simulating flows with complex moving
boundaries. Journal of Computational Physics, Vol. 174, pp. 345-380.

171



Uhlmann, M. (2005): An immersed boundary method with direct forcing for the
simulation of particulate flows. Journal of Computational Physics, Vol. 209, pp.
448-476.

Van Doormaal, J.P. and Raithby, G.D. (1984): Enhancements of the SIMPLE
method for predicting incompressible fluid flows. Numerical Heat Transfer, Vol.
7, pp. 147-163.

Van Kan, J. (1986): A second-order accurate pressure-correction scheme for viscous
incompressible flow. SIAM Journal on Scientific and Statistical Computing, Vol.
7, pp. 870-891.

Vanella, M. and Balaras, E. (2009): A moving-least-squares reconstruction for
embedded boundary formulations. Journal of Computational Physics, Vol. 228,
pp. 6617-6628.

Versteeg, H.K. and Malalasekera, W. (2007): An introduction to computational fluid
dynamics: The finite volume method. Second edition. Pearson Education, ISBN:
978-0-13-127498-3.

Wagner, G.J., Moës, N., Liu, W.K. and Belytschko, T. (2001): The extended finite
element method for rigid particles in Stokes flow. International Journal for

Numerical Methods in Engineering, Vol. 51, pp. 293-313.

Wan, D. and Turek, S. (2006): Direct numerical simulation of particulate flow
via multigrid FEM technique and the fictitious boundary method. International

Journal for Numerical Methods in Fluids, Vol. 51, pp. 531-566.

Wang, C. and Liu, J.-G. (2000): Convergence of gauge method for incompressible
flow. Mathematics of Computation, Vol. 69, pp. 1385-1407.

Wang, S. and Zhang, X. (2011): An immersed boundary method based on discrete
stream function formulation for two- and three-dimensional incompressible
flows. Journal of Computational Physics, Vol. 230, pp. 3479-3499.

Wang, Z.J. (2000): Two dimensional mechanism for insect hovering. Physical

Review letters, Vol. 10, pp. 2216-2219.

Wang, X.S. (2007): An iterative matrix-free method in implicit immersed bound-
ary/continuum methods. Computers & Structures, Vol. 85, pp. 739-748.

Wang, X.S., Zhang, L.T., and Liu, W.K. (2009): On computational issues of
immersed finite element methods. Journal of Computational Physics, Vol. 228,
pp. 2535-2551.

172



Wang, Y., Shu, C., Teo, C.J., Wu, J. (2015): An immersed boundary-lattice
Boltzmann flux solver and its applications to fluid-structure interaction problems.
Journal of Fluids and Structures, Vol. 54, pp. 440-465.

Wang, X. and Liu, W.K. (2004): Extended immersed boundary method using FEM
and RKPM. Computer Methods in Applied Mechanics and Engineering, Vol.
193, pp. 1305-1321.

Williamson, C.H.K. (1989): Oblique and parallel modes of vortex shedding in
the wake of a circular cylinder at low Reynolds numbers. Journal of Fluid

Mechanics, Vol. 206, pp. 579-627.

Wu, J. and Shu, C.(2009): Implicit velocity correction-based immersed boundary-
lattice Boltzmann method and its applications. Journal of Computational

Physics, Vol. 228, pp. 1963-1979.

Wu, J. and Shu, C.(2010): An improved immersed boundary-lattice Boltzmann
method for simulating three-dimensional incompressible flows. Journal of

Computational Physics, Vol. 229, pp. 5022-5042.

Xia, Z., Connington, K.W., Rapaka, S., Yue, P., Feng, J.J., and Chen, S. (2009):
Flow patterns in the sedimentation of an elliptical particle. Journal of Fluid

Mechanics, Vol. 625, pp. 249-272.

Xu, S and Wang, Z.J. (2006): An immersed interface method for simulating the
interaction of a fluid with moving boundaries. Journal of Computational Physics,
Vol. 216, pp. 454–493.

Yang, X., Zhang, X., Li, Z. and He, G.-W. (2009): A smoothing technique
for discrete delta functions with application to immersed boundary in moving
boundary simulations. Journal of Computational Physics, Vol. 228, pp. 7821-
7836.

Yang, J. and Stern, F. (2012): A simple and efficient direct forcing immersed
boundary framework for fluid-structure interactions. Journal of Computational

Physics, Vol. 231, pp. 5029-5061.

Ye, T., Mittal, R., Udaykumar, H.S. and Shyy, W. (1999): An accurate Cartesian grid
method for viscous incompressible flows with complex immersed boundaries.
Journal of Computational Physics, Vol. 156, pp. 209-240.

Zhang, L., Gerstenberger, A., Wang, X., and Liu, W.K. (2004): Immersed finite
element method. Computer Methods in Applied Mechanics and Engineering,
Vol. 193, pp. 2051-2067.

173





Appendix A

Stability analysis

It is necessary to assess the stability of a numerical scheme in order to ensure that the
calculation will not explode. The stability of a numerical scheme is closely linked to
the numerical error. A finite difference scheme is stable if the error remains bounded
as the calculation continues.

The von Neumann method provides a good tool for investigating the stability condi-
tions of linear problems with constant coefficients (Hirsch, 2007). We first investi-
gate the stability of simple equations, such as the diffusion equation, the convection
equation and the transport (convection-diffusion) equation, and then extend the
conclusion to the Navier-Stokes equations.

A.1 Von Neumann stability condition

Let uni be the computed solution of the difference equation with a finite precision at
time level n at node i, which can be decomposed into the Fourier series in space, on
a interval [−L,L], as

uni =
M∑

m=−M

En
me

Ik·i∆x (A.1)

where I =
√
−1, M = L/∆x. k = πm/L, En

m are the wave number and the
amplitude of the k-th harmonic respectively. Therefore, the numerical scheme is
stable if the amplitude of any harmonic En does not increase in time, i.e.,

|G| ≡
∣∣∣∣En+1

En

∣∣∣∣ 6 1 (A.2)

where G ≡ En+1/En is the amplification factor.

175



A.2 Stability analysis for diffusion equation

A.2.1 Explicit FTCS scheme

First we consider the one-dimensional diffusion equation

∂u

∂t
= a

∂2u

∂x2
(A.3)

where a is a constant. Applying the explicit forward in time, central in space (FTCS)
scheme gives

un+1
i − uni

∆t
= a

uni+1 − 2uni + uni−1

∆x2
(A.4)

Considering one single harmonic EneIk·i∆x for uni , we have

En+1 − En

∆t
eIk·i∆x = a

EneIk·(i+1)∆x − 2EneIk·i∆x + EneIk·(i−1)∆x

∆x2
(A.5)

Dividing by EneIk·i∆x,

G− 1

∆t
= a

eIk∆x + e−Ik∆x − 2

∆x2
(A.6)

or

G = 1 +
a∆t

∆x2
(eIk∆x + e−Ik∆x − 2)

= 1 +
a∆t

∆x2
(2cos(k∆x)− 2)

= 1 +
a∆t

∆x2
(−4sin2(

k∆x

2
))

= 1− 4a∆t

∆x2
sin2(

k∆x

2
)

(A.7)

The stability condition |G| 6 1 implies that the FTCS scheme is stable under the
condition

a∆t

∆x2
6

1

2
(A.8)

or
∆t 6

∆x2

2a
(A.9)

For the two-dimensional problem

∂u

∂t
= a(

∂2u

∂x2
+
∂2u

∂y2
) (A.10)

176



The FTCS scheme yields

un+1
i,j − uni,j

∆t
= a(

uni+1,j − 2uni,j + uni−1,j

∆x2
+
uni,j+1 − 2uni,j + uni,j−1

∆y2
) (A.11)

Again we perform the same analysis as in the one-dimensional case and the ampli-
fication factor is found to be

G = 1 +
a∆t

∆x2
(eIk∆x + e−Ik∆x − 2) +

a∆t

∆y2
(eIk∆y + e−Ik∆y − 2)

= 1− 4a∆t

∆x2
sin2(

k∆x

2
)− 4a∆t

∆y2
sin2(

k∆y

2
)

(A.12)

Requiring |G| 6 1

−1 6 1− 4a∆t

∆x2
sin2(

k∆x

2
)− 4a∆t

∆y2
sin2(

k∆y

2
) 6 1 (A.13)

then we have

a∆t

∆x2
sin2(

k∆x

2
) +

a∆t

∆y2
sin2(

k∆y

2
) 6

1

2
(A.14)

Since

a∆t

∆x2
sin2(

k∆x

2
) +

a∆t

∆y2
sin2(

k∆y

2
) 6

a∆t

∆x2
+
a∆t

∆y2
(A.15)

the stability condition now becomes

a∆t

∆x2
+
a∆t

∆y2
6

1

2
(A.16)

or
∆t 6

1

2a
(

1

∆x2
+

1

∆y2
)−1 (A.17)

We can further extend to the N -dimensional problem, and the stability condition is

N∑
p=1

a∆t

∆x2
p

6
1

2
(A.18)

or

∆t 6
1

2a
(
N∑
p=1

1

∆x2
p

)−1 (A.19)

177



If the same mesh size h is used in all directions, then we have

∆t 6
h2

2aN
(A.20)

We can conclude that this stability condition becomes more restrictive as the dimen-
sion increases. Halving the mesh size means that the time step should be reduced
by a factor of four in all cases.

A.2.2 Implicit BTCS scheme

This stability condition can be eliminated by using the backward in time, central in
space (BTCS) scheme. The one-dimensional discretized equation is then written as

un+1
i − uni

∆t
= a

un+1
i+1 − 2un+1

i + un+1
i−1

∆x2
(A.21)

The amplification factor is found to be

G =

(
1 + 4

a∆t

∆x2
sin2(

k∆x

2
)

)−1

6 1 (A.22)

In other words, the BTCS implicit scheme is unconditionally stable. This conclusion
holds for the N -dimension, since

G =

(
1 +

N∑
p=1

4
a∆t

∆x2
p

sin2(
k∆xp

2
)

)−1

6 1 (A.23)

A.3 Stability analysis for convection equation

A.3.1 Explicit FTCS scheme

In this subsection we consider the one-dimensional convection equation

∂u

∂t
+ c

∂u

∂x
= 0 (A.24)

where c is a constant here, which can be related to the convection velocity. The
FTCS scheme yields

un+1
i − uni

∆t
+ c

uni+1 − uni−1

2∆x
= 0 (A.25)

178



The resulting amplification factor is

G = 1− c∆t

2∆x
(eIk∆x − e−Ik∆x)

= 1− I c∆t
∆x

sin(k∆x)

(A.26)

It is easy to find that

|G|2 = 1 +

(
c∆t

∆x

)2

sin2(k∆x) > 1 (A.27)

Hence the FTCS scheme for the convection equation is always unstable. This con-
clusion holds for the N -dimension, since

G = 1− I
N∑
p=1

cxp∆t

∆xp
sin(k∆xp) (A.28)

and

|G|2 = 1 +

[
N∑
p=1

cxp∆t

∆xp
sin(k∆xp)

]2

> 1 (A.29)

A.3.2 Explicit upwind scheme

To overcome this problem, we apply the explicit upwind scheme, specifically the
explicit forward in time backward in space (FTBS) scheme in this case

un+1
i − uni

∆t
+ c

uni − uni−1

∆x
= 0 (A.30)

The amplification factor now becomes

G = 1− c∆t

∆x
(1− e−Ik∆x)

= 1 +
c∆t

∆x
(cos(k∆x)− 1)− I c∆t

∆x
sin(k∆x)

(A.31)

Therefore,

|G|2 = 1 + 2
c∆t

∆x
(cos(k∆x)− 1) +

(
c∆t

∆x

)2

(cos(k∆x)− 1)2 +

(
c∆t

∆x

)2

sin2(k∆x)

= 1− 4
c∆t

∆x
(1− c∆t

∆x
)sin2(

k∆x

2
)

(A.32)

179



Provided c > 0, the von Neumann stability condition |G| 6 1 implies that

C =
c∆t

∆x
6 1 (A.33)

where C is the Courant number. This condition means that the flow quantity can
travel at most one grid spacing in a single time step, which is also known as the
Courant–Friedrichs–Lewy (CFL) condition. Note that this condition only holds for
c > 0. If c is negative, this constraint is no longer guaranteed and the FTBS scheme
is unconditionally unstable. In that case the forward in time forward in space (FTFS)
scheme should be used and a similar condition can be found

− 1 6 C < 0 (A.34)

But the FTFS scheme is unstable when c > 0. In other words, we should apply the
FTBS scheme when c is positive and use the FTFS scheme when c is negative. In
both cases, the following condition should be satisfied

|C| 6 1 (A.35)

The upwind scheme is very effective for circumventing numerical oscillations, but
it is only first order accurate in space and introduces numerical diffusion or arti-
ficial viscosity to the solution (LeVeque, 2007; Pozrikidis, 2011). This numerical
diffusion is a non-physical damping that aides the stability, compared to the uncon-
ditionally unstable FTCS scheme. However it smears out the sharp gradients and
distinguishes the result from the exact solution.

A.3.3 Implicit BTCS scheme

To achieve an unconditionally stable scheme, we turn to the implicit BTCS scheme,
which yields

un+1
i − uni

∆t
+ c

un+1
i+1 − un+1

i−1

2∆x
= 0 (A.36)

The corresponding amplification factor is

G =
1

1 + ICsin(k∆x)

=
1− ICsin(k∆x)

1 + C2sin2(k∆x)

=
1

1 + C2sin2(k∆x)
− I Csin(k∆x)

1 + C2sin2(k∆x)

(A.37)

180



This unconditional stability is confirmed by considering that

|G|2 =
1

1 + C2sin2(k∆x)
6 1 (A.38)

This conclusion holds for N -dimension, since

|G|2 =
1

1 +
(∑N

p=1Cxpsin(k∆xp)
)2 6 1 (A.39)

A.4 Stability analysis for convection-diffusion equa-
tion

A.4.1 Explicit FTCS scheme

Now we consider the one-dimensional convection-diffusion (transport) equation

∂u

∂t
+ c

∂u

∂x
= a

∂2u

∂x2
(A.40)

and we assume c > 0 henceforth. The amplification factor for the explicit FTCS
scheme is

G = 1− 2D (1− cos(k∆x))− ICsin(k∆x) (A.41)

where
D =

a∆t

∆x2
(A.42)

The stability condition |G| 6 1 gives

|G|2 = (1− 2D(1− cos(k∆x)))2 + C2sin2(k∆x)

= (1− 2D(1− cos(k∆x)))2 + C2
(
1− cos2(k∆x)

)
= (1− 2D(1− q))2 + C2

(
1− q2

)
6 1

(A.43)

where q = cos(k∆x). This is equivalent to finding C, D such that

y(q) = (1− 2D(1− q))2 + C2
(
1− q2

)
− 1

= (4D2 − C2)q2 + (4D − 8D2)q + (4D2 + C2 − 4D)

6 0

(A.44)

is satisfied for −1 6 q 6 1. Therefore we can find the following expression for C

181



and D (Thompson et al., 1985; Hirsch, 2007; Pozrikidis, 2011)

C2 6 2D 6 1 (A.45)

which corresponds to the following criteria

∆t 6
∆x2

2a
(A.46)

and
∆t 6

2a

c2
(A.47)

It is easy to find that the scheme becomes unconditionally unstable when a ap-
proaches zero. This is just the case for the FTCS scheme used in the pure convection
equation. Hence the presence of diffusion stabilizes the discretization. The same
conclusion has been found to the upwind scheme in the pure convection case where
numerical diffusions are added automatically.

Most importantly, the CFL condition C 6 1 can be implied by (A.45) but is only
necessary and certainly not sufficient (Hirsch, 2007).

The condition (A.47) can be also rewritten as

RecC 6 2 (A.48)

whereRec ≡ C/D = c∆x/a is the cell Reynolds number if a refers to the viscosity.
The cell Reynolds number is equivalent to the Péclet number if a takes the thermal
diffusivity.

Next we consider the two-dimensional problems

∂u

∂t
+ cx

∂u

∂x
+ cy

∂u

∂y
= a

∂2u

∂x2
+ a

∂2u

∂y2
(A.49)

By performing the stability analysis for FTCS scheme, the amplification factor is
found to be

G = [1 + 2Dx (cos(θx)− 1) + 2Dy (cos(θy)− 1)]− I [Cxsin(θx) + Cysin(θy)]

(A.50)
where θx = k∆x and θy = k∆y. Assuming θ = θx = θy, the von Neumann stability
condition implies that

|G|2 = [1 + 2(Dx +Dy) (cosθ − 1)]2 + (Cx + Cy)
2(1− cos2θ) 6 1 (A.51)

182



is true for all values of θ. By analogy to (A.45), the resulting stability condition is

0 6 (Cx + Cy)
2 6 2(Dx +Dy) 6 1 (A.52)

which indicates that
0 6 2(Dx +Dy) 6 1 (A.53)

and
0 6 C2

x/2Dx + C2
y/2Dy 6 1 (A.54)

or in terms of time step

∆t 6

(
2a

∆x2
+

2a

∆y2

)−1

(A.55)

and

∆t 6

(
c2
x

2a
+
c2
y

2a

)−1

(A.56)

The generalization to N -dimension can be made analogously (Pozrikidis, 2011)

∆t 6

(
N∑
p=1

2a

∆x2
p

)−1

and ∆t 6

(
N∑
p=1

c2
xp

2a

)−1

(A.57)

Notice that the condition is obtained by assuming θx = θy. This simplification leads
to a necessary condition that is generally not sufficient (Thompson et al., 1985).

A.4.2 Explicit FTBSCS scheme

Assuming c is positive, we use the explicit forward difference in time, backward
difference for the convection and centered difference for the diffusion (FTBSCS),
which gives

un+1
i − uni

∆t
+ c

uni − uni−1

∆x
= a

uni+1 − 2uni + uni−1

∆x2
(A.58)

Performing the von Neumann method, we derive the amplification factor

G = 1− (C + 2D) + (C + 2D)cosθ + ICsinθ (A.59)

To ensure stability, the following condition has to be satisfied

C2 6 C + 2D 6 1 (A.60)

183



If c is negative, the FTFSCS scheme should be used. For both cases, the method is
stable if

C2 6 |C|+ 2D 6 1 (A.61)

is satisfied. However, the numerical diffusion associated with the upwind difference
can be significant and the overall method can be only first order accurate in space.
The stability condition in two dimensions can be found in Pozrikidis (2011).

A.4.3 Explicit hybrid scheme

By combining the upwind scheme and central difference scheme for the convection,
we obtain

un+1
i − uni

∆t
+

1

2
c

[
(1 + β)

uni − uni−1

∆x
+ (1− β)

uni+1 − uni
∆x

]
= a

uni+1 − 2uni + uni−1

∆x2

(A.62)
where β controls the weight between upwind difference and central difference. If
β = 0, the FTCS scheme is recovered. Setting β = 1 when c > 0 and β = −1

when c < 0 we obtain the FTBSCS and FTFSCS schemes respectively. Performing
the von Neumann analysis, we find the stability condition

C2 6 βC + 2D 6 1 (A.63)

which is consistent with previous results for β = 0,−1, 1 (Pozrikidis, 2011).

A.4.4 Implicit BTCS scheme

Similarly, we can expect the discretization to be unconditionally stable when using
an implicit method. For the one-dimensional convection-diffusion equation, the
corresponding amplification factor is

G =
1

1− 2D (cosθ − 1) + ICsinθ
(A.64)

whose magnitude is always smaller than 1

|G|2 =
1[

1 + 4Dsin2(
θ

2
)

]2

+ C2sin2θ

6 1 (A.65)

184



hence the method is unconditional stable (Pozrikidis, 2011). This conclusion holds
for N -dimension, since

G =
1

1−∑N
p=1

[
2Dxp

(
cosθxp − 1

)]
+ I

∑N
p=1Cxpsinθxp

(A.66)

and it is easy to verify that its magnitude is smaller than 1

|G|2 =
1[

1 +
∑N

p=1 4Dxpsin
2(
θxp
2

)

]2

+
(∑N

p=1Cxpsinθxp

)2
6 1 (A.67)

A.5 Stability analysis for Navier-Stokes equations

As demonstrated previously, the von Neumann stability analysis is very effective
for linear equations. For non-linear problems, such as the Burgers’ equation or the
Navier-Stokes equations, it can be extremely difficult to derive the exact expression
of stability. One solution is to linearise the equations and perform a local stability
analysis. In general, the stability obtained in the linear cases is only a necessary, but
not sufficient, condition for the corresponding non-linear equations (Hirsch, 2007;
Deriaz, 2012).

Equation
Diffusion scheme Convection scheme

Stability
Time Space Time Space

Diffusion Explicit Centered Conditionally stable
Implicit Centered Unconditionally stable

Convection Explicit Centered Unconditionally unstable
Explicit Upwind Conditionally stable
Implicit Centered Unconditionally stable

Transport Explicit Centered Explicit Centered Conditionally stable
Explicit Centered Explicit Upwind Conditionally stable
Explicit Centered Explicit Hybrid Conditionally stable
Implicit Centered Implicit Centered Unconditionally stable

NSE Explicit Centered Explicit Centered Conditionally stable
Implicit Centered Explicit Centered Conditionally stable
Implicit Centered Implicit Centered Unconditionally stable

Table A.1: Stability conditions for different equations using different schemes.

185



Therefore, if the convective term is treated explicitly in NSE, it requires a necessary
CFL condition to maintain stability. Recently a more restrictive stability condition
than the CFL condition is derived by Deriaz (2012). If the explicit Euler scheme
for the convection is used, the time step should be chosen smaller than (h/umax)2.
Increasing the temporal order of the scheme will improve the stability. When the
second order Runge–Kutta or the second order Adams–Bashforth scheme is applied
to the convection, ∆t needs to be smaller than (h/umax)4/3.
To sum up, Table A.1 lists all the stability conditions discussed previously for
different equations using different schemes.

186



Appendix B

Code description

The code of this thesis is built from zero using the objective oriented language
C++ based on the CUDA platform, with less than 10,000 lines in total. The global
structure of the code is shown in Figure B.1. The version evolution is controlled by
the "git" system, which is found more efficient than the "svn" software. Now the
code is backed up to the website Bitbucket "https://bitbucket.org/".

MIBM

main.cu

readYaml.h

init.h

bc.h

constant.h

setMatCoeff.h

prediction.h

projection.h

movingIB.h

weight.h

rigidBodyDynamic.h

output.h

· · ·

Utilities

Utilities

iterSolver.cu

iterSolver.h

matrix.cu

matrix.h

sparseMatrixCompCol.cu

sparseMatrixCompCol.h

sparseMatrixCompRow.cu

sparseMatrixCompRow.h

timer.h

vector.cu

vector.h

Figure B.1: Global structure of the code.

187



B.1 Input file formats: XML, YAML

In order to well organize the input data, we have considered the formats of XML
(Extensible Markup Language) and YAML (YAML Ain’t Markup Language). Com-
pared to the pure text input, they are more human-readable and machine-readable.
Moreover it is very convenient to add, remove or reorder entries with those formats
without changing the code.

Listing B.1 shows a sample XML input file for the flow over a stationary cylinder
case. The elements in the XML file are well documented and marked up with "<>"
and "</>". The entries are read into the program through "pugixml version 1.2", a
light-weight C++ XML library from "http://pugixml.org/".

The YAML format is data-oriented, rather than document markup. The same exam-
ple in YAML format is shown in Listing B.2. Entries do not require enclosure in
quotations. Therefore YAML is more compact and user-friendly compared to the
XML format. In present work, we select the YAML format instead of XML for
the input file. To read the YAML file format, the "yaml-cpp version 0.3.0" from
"https://github.com/jbeder/yaml-cpp/releases/tag/release-0.3.0" is used.

Listing B.1: Short sample XML input file.

1 // Input file "flowOverCylinder.xml"

2 <?xml version="1.0" encoding="UTF-8" ?>

3 <case>

4 <caseName>flowOverCylinder</caseName>

5 <timeSettings>

6 <dt>0.1</dt>

7 <tf>500</tf>

8 <saveInterval>1000</saveInterval>

9 </timeSettings>

10 </case>

Listing B.2: Short sample YAML input file.

1 // Input file "flowOverCylinder.yaml"

2 - caseName : flowOverCylinder

3 timeSettings :

4 - dt : 0.01

5 tf : 500

6 saveInterval : 1000

188



B.2 Matrix manipulations and linear system solvers

Note that C++ does not provide matrix-vector manipulations by default. We build
a library to allow for various operations between vector, matrix and sparse matrix,
which turns out to be comparable to the open source libraries such as "IML++",
"Armadillo", "Eigen", "Blitz", etc. We also would like to use MATLAB syntax
in C++ for compact code programming and optimized execution performance. To
this end, we redefine the C++ array indexing from [i][j] to (i, j) through operator
overloading. The most frequent operations are coded into the "utilities" package
using template programming, such as "vector.cu", "matrix.cu", "sparseMatrixCom-
pCol.cu" with CCS storage and "sparseMatrixCompRow.cu" with CRS storage.
With this, we are able to construct the fluid matrix and the moving force coefficient
matrix easily and freely.
Listing B.3 illustrates the main solution procedures of the immersed boundary forc-
ing in MIBM, including interpolation, solution and spreading. To solve the linear
systems, we build the solver "iterSolver.cu" that only contains matrix-vector manip-
ulations. The conjugate gradient code for solving the moving force equation in CPU
is shown in Listing B.4. The "iterSolver.cu" is also built with template program-
ming, thus it can be used to any other linear systems directly without modifications.

Listing B.3: Solve moving force equation.

1 // Construct interpolation matrices Tu, Tv with CRS

2 (......)

3 // Construct spreading matrices Su, Sv with CCS

4 Su = Tu.transpose() * volumeFactor;

5 Sv = Tv.transpose() * volumeFactor;

6 // Construct moving force coefficient matrices

7 Mu = Tu * Su;

8 Mv = Tv * Sv;

9 // Given boundary velocities Uxd, Uyd and construct RHS vector

10 bu = ( Uxd - Tu * u ) / dt;

11 bv = ( Uyd - Tv * v ) / dt;

12 // Solve moving force equation

13 iterSolver.cg(Mu,fxb,bu,maxIter,tolerance);

14 iterSolver.cg(Mv,fyb,bv,maxIter,tolerance);

15 // Spread the boundary force

16 fx = Su * fxb;

17 fy = Sv * fyb;

189



Listing B.4: Conjugate gradient code.

1 // Template programming for conjugate gradient method

2 template<typename T>

3 int iterSolver<T>::cg(spMatCompRow<T>& A, vec<T>& x, vec<T>& b,

int maxIter, double tol)

4 {

5 flag = 1;

6 x.zeros(b.rows());

7
8 vec<T> r;

9 vec<T> rn;

10 vec<T> p;

11 double alpha;

12 double beta;

13
14 r = b - A * x;

15 p = r;

16
17 if( b.norm("2") == 0 )

18 return flag;

19
20 for( iter=0; iter<maxIter; iter++ )

21 {

22 alpha = ( r * r ) / ( A * p * p );

23 x += p * alpha;

24 rn = r ;

25 r -= A * p * alpha;

26 beta = ( r * r ) / ( rn * rn );

27 p = r + p * beta;

28
29 resid = r.rms();

30 if( resid < tol )

31 {

32 flag = 0;

33 break;

34 }

35 }

36
37 return flag;

38 }

190



B.3 Parallel computing with GPU

Present code is parallelized with CUDA library of version 3.2 for GPU computing
on the HPC platform PILCAM2. Listing B.5 shows the solution procedure of the
pressure Poisson equation in GPU. Usually we assemble the coefficient matrix and
the RHS vector in CPU (host) and copy them to the GPU (device). The precondi-
tioner and solver are called in the device for solving the linear system, with the help
of "CUSP" library of version 0.2.0 from "https://code.google.com/archive/p/cusp-
library/". Finally the solution is copied back from GPU to CPU. The "THRUST"
library of version 1.3.0 from "https://thrust.github.io/" is used for parallelizing the
data and the calculation.

Listing B.5: Parallel computing with GPU.

1 // Assemble coefficient matrix in the host

2 (......)

3 // Copy coefficient matrix and RHS vector from host to device

4 A_device = A_host;

5 b_device = b_host;

6 // GAMG preconditioner

7 cusp::precond::aggregation::smoothed_aggregation<int,float,cusp::

device_memory> M(A_device);

8 // Set up convergence criterion

9 cusp::default_monitor<float> monitor(b_device,maxIter,tolerance);

10 // Solve the system by conjugate gradient method

11 cusp::krylov::cg(A_device,x_device,b_device,monitor,M);

12 // Copy the solution from device to host

13 x_host = x_device;

191



192


	PDT CAI
	Soutenue le 30 mai 2016

	thèse_finale_2016_CAI
	Contents
	List of figures
	List of tables
	Nomenclature
	Introduction
	Motivation and background
	Objective of this thesis
	Outline of this thesis

	State of the art review
	Introduction
	Fluid governing equations
	Incompressible fluid solvers
	Non-primitive variable formulations
	Primitive variable formulations

	Fluid-structure interaction methods
	Boundary element method (BEM)
	Arbitrary Lagrangian–Eulerian method (ALE)
	Meshfree methods
	Extended finite element method (XFEM)
	Overset grid/Chimera method

	Concluding remarks

	Projection method for simulating incompressible fluid flow
	Introduction
	Derivation of the pressure Poisson equation
	Time discretization
	High order scheme
	Projection methods
	Helmholtz-Hodge decomposition
	First order accurate pressure-correction method
	Formally second order accurate pressure-correction method
	Second order accurate pressure-correction method
	Issues of the projection methods
	Comparison with other projection methods
	Summary

	Space discretization
	Staggered grid
	Approximation of derivatives

	Implementation of boundary conditions
	Solving linear system
	Sparse matrix storage
	Linear system solvers
	Preconditioning
	Parallel computing

	Numerical validation
	Taylor-Green vortices for convergence study
	Kovasznay flow for stability study
	Lid-driven cavity flow
	Backward-facing step flow

	Concluding remarks

	Moving immersed boundary method (MIBM)
	Introduction
	Mathematical formulation and discretization
	Evolution of immersed boundary methods
	Continuous forcing methods
	Discrete forcing methods
	Non-primitive variable immersed boundary methods
	Summary

	Moving immersed boundary method (MIBM)
	Derivation of the moving force equation
	Implementation in the projection method

	Interpolation techniques
	Comparison with different immersed boundary methods
	Numerical examples
	Convergence test
	Lid-driven cavity flow with an embedded cylinder
	Flow over a stationary circular cylinder
	In-line oscillating circular cylinder in a fluid at rest
	Transverse oscillation of a circular cylinder in a free-stream
	Flow around a flapping wing

	Concluding remarks

	Modeling fluid-structure interaction with MIBM
	Introduction
	Mathematical formulation
	Governing equations
	Immersed boundary formulation

	Coupling methods
	MIBM for strongly coupled FSI
	Numerical discretization
	Novel strongly coupled scheme

	Particulate flow modeling
	Introduction
	Collision model

	Numerical examples
	Freely falling cylinder in a confined channel
	Freely falling and rising cylinder in an open domain
	Rotating cylinder in a shear flow
	Rotating cylinder in a lid-driven cavity flow
	Elliptical particle sedimentation in a confined channel
	Flow around a rotating NACA0012 airfoil
	Drafting-kissing-tumbling process of two settling particles

	Concluding remarks

	Conclusions and future work
	Conclusions
	Future work

	Bibliography
	Appendix Stability analysis
	Von Neumann stability condition
	Stability analysis for diffusion equation
	Explicit FTCS scheme
	Implicit BTCS scheme

	Stability analysis for convection equation
	Explicit FTCS scheme
	Explicit upwind scheme
	Implicit BTCS scheme

	Stability analysis for convection-diffusion equation
	Explicit FTCS scheme
	Explicit FTBSCS scheme
	Explicit hybrid scheme
	Implicit BTCS scheme

	Stability analysis for Navier-Stokes equations

	Appendix Code description
	Input file formats: XML, YAML
	Matrix manipulations and linear system solvers
	Parallel computing with GPU


	Pages de thèse_finale_2016_CAI

