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Prof. Gersende Fort, Institut Mathématiques de Toulouse Examinatrice
Prof. Mérouane Debbah, Chaire LANEAS - CentraleSupélec Directeur de Thèse
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Abstract: In recent years, interest has been
growing in research of different autonomous sys-
tems. From the self-driving car to the Internet
of Things (IoT), it is clear that the ability of
automated systems to make autonomous deci-
sions in a timely manner is crucial in the 21st
century. These systems will often operate un-
der strict constraints over their resources. In
this thesis, an information-theoretic approach
is taken to this problem, in hope that a fun-
damental understanding of the limitations and
perspectives of such systems can help future en-
gineers in designing them.
Throughout this thesis, collaborative dis-
tributed binary decision problems are consid-
ered. Two statisticians are required to declare
the correct probability measure of two jointly
distributed memoryless processes, denoted by
Xn = (X1, . . . , Xn) and Yn = (Y1, . . . , Yn), out
of two possible probability measures on finite al-
phabets, namely PXY and PX̄Ȳ . The marginal
samples given by Xn and Yn are assumed to
be available at different locations.
The statisticians are allowed to exchange lim-
ited amounts of data over a perfect channel
with a maximum-rate constraint. Through-
out the thesis, the nature of communication
varies. First, only unidirectional communica-
tion is allowed. Using its own observations,
the receiver of this communication is required
to first identify the legitimacy of its sender by
declaring the joint distribution of the process,
and then depending on such authentication it
generates an adequate reconstruction of the ob-
servations, satisfying an average per-letter dis-
tortion. The performance of this setup is inves-
tigated through the corresponding rate-error-

distortion region describing the trade-off be-
tween: the communication rate, the error ex-
ponent induced by the detection and the dis-
tortion incurred by the source reconstruction.

In the special case of testing against indepen-

dence, where the alternative hypothesis im-
plies that the sources are independent, the
optimal rate-error-distortion region is charac-
terized. The case of “general hypotheses” is
also investigated. A new achievable rate-error-
distortion region is derived based on the use of
non-asymptotic binning, improving the quality
of communicated descriptions. It is shown that
the error exponent is further improved through
the introduction of a new approach. Bene-
fits of the proposed methods are demonstrated
through numerical analysis.
A different scenario is then considered, by which
the statisticians are required to reach a con-
clusion through a bidirectional link. This al-
lows for the consideration of multiple rounds of
interactions, which differs from previous work.
A single round of interaction is considered be-
fore the result is generalized to any finite num-
ber of communication rounds. A feasibility re-
sult is shown, guaranteeing the achievability
of an error exponent for general hypotheses,
through information-theoretic methods. The
special case of testing against independence is
revisited as being an instance of this result for
which also an unfeasibility result is proven, thus
proving optimality, at least for one round of
communication. A second special case is stud-
ied where zero-rate communication is imposed,
for which it is shown that interaction does not
improve asymptotic performance.
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Chapter 1

Introduction

1.1 Overview

The field of hypothesis testing (HT) is comprised of di↵erent problems, in which the goal is
to determine the probability measure (PM) of one or more random variables (RVs), based
on a number of available observations. Considering binary HT problems, it is assumed
that this choice is made out of two possible hypotheses, denoted the null hypothesis H0

and the alternative hypothesis H1. Each of the hypotheses implies a di↵erent probabil-
ity distribution, usually denoted P0 and P1, respectively. An overview of di↵erent HT
problems and the approaches to their solutions can be found in [1].

The problem of Binary HT is formally defined by two types of error events, formally
known as Type I and Type II. Denote by ↵n the probability of error of Type I, defined to
be the event that H1 is chosen despite H0 being true. The probability of an error event
of type II, defined to be the event that H0 is chosen despite H1 being true, is denoted
by βn. Clearly, there is a trade-o↵ between these two probabilities - enforcing ↵n = 0,
for example, can be done easily if we are willing to contend with βn = 1. One common
way of investigating that trade-o↵, which will be considered throughout this thesis, is to
examine the exponential rate of decay of the error probability of the second type, i.e.,
− lim

n!1
1
n

log βn(✏), while imposing a fixed constraint over the error probability of the first

type, i.e., ↵n  ✏ (✏ > 0).

Let {Xi}1i=1 be an independent and identically distributed (i.i.d) process, commonly
refereed to as a memoryless process, taking values in a countably finite alphabet X
equipped with probability measures P0 or P1 defined on the measurable space (X ,BX ),
where BX = 2X . Denote Xn = (X1, . . . , Xn) the finite block of the process following the
product measures P n

0 or P n
1 on (X n,BXn). Let us denote by P(X ) the family of prob-

ability measures in (X ,BX ), where for every µ 2 P(X ), fµ(x) := dµ

dλ
(x) = µ({x}) is a

short-hand for its probability mass function (pmf). The optimal error exponent for the
Type II error probability of the binary HT problem is well-known and given by Stein’s

1



1.1. Overview

Lemma [1–3] to be:

− lim
n!1

1

n
log β?

n(✏) = D(P0kP1) , (1.1)

(see Lemma 11), where P0 and P1 are the probability distributions implied by hypotheses
H0 and H1, respectively, and D(·k·) is the Kullbeck-Leiber divergence satisfying that the
measure P0 is absolutely continuous with respect to (wrt) P1, P0 ⌧ P1 (i.e., P0(a) = 0
for every a 2 X such that P1(a) = 0). Note that in this case, the optimal error-exponent
of the probability of error of Type II does not depend on the constraint ✏, imposed upon
the probability of error of Type I. This characteristic is referred to as a strong property.
It is discussed thoroughly in Section 1.4 of this introduction.

In many scenarios, the realizations of di↵erent parts of a random process are available
at di↵erent physical locations (with di↵erent statisticians) in the system (see Fig. 2.1).
If it were possible to transmit all signals to some central location with negligible cost
and delay, then the previous theory is in principle applicable. However, due to practical
considerations such as energy cost, reliability, survivability, communication bandwidth,
compartmentalization, there is never total centralization of information in practice [4]. In
this thesis, we focus on the problem of distributed hypothesis testing where it is assumed
that realizations of di↵erent memoryless sources are observed at di↵erent physical loca-
tions and thus, nodes are subject to satisfy di↵erent types of communication constraints.
In this case, a new question arises –for di↵erent types of constraints over the data ex-
change between the nodes, what is the optimal error exponent to the error probability
of Type II, under a fixed constraint over the error probability of Type I? This work at-
tempts a modest step in the direction of a theory for distributed testing based on lossy
data compression, which seems to o↵er a formidable mathematical complexity (see [5] and
references therein).

In this thesis, we compose together two stories. One is from statistics concerning
binary HT originating in the works of Wald [6, 7]. The other story is from information
theory concerning the case of unidirectional data exchanges where only one statistician
can share information with the other one, due to [8, 9]. The problems in HT we choose
to focus on di↵er both in the nature of communication which is imposed, as well as the
task the statisticians are required to complete. In the first problem, only unidirectional
communication is allowed, from node A to node B. In this case, node B can be thought
of as the statistician, while node A performs as a “helper”. Having received the com-
munication from the helper, the statistician is required to both detect (by declaring the
correct hypothesis) and estimate the vector of realizations seen by the helper. Note that
while the metric by which the performance of the detection step is assessed is its error
exponent, the assessment of the estimation step is done through the average distortion of
the signal [10]. By making this choice we allow ourselves to explore the trade-o↵s between
two demands of di↵erent nature –a timely decision and an average distortion.

In many practical cases, the scenario discussed above can be thought of as one where
the decoder is required to perform user authentication before estimating the information
sent from the encoder. Consider for example the case where two users (known in literature
as “Alice” and “Bob”) attempt to agree on a common key by using a perfect public channel

2



1.1. Overview

and correlated sources (see e.g., [11–15] and references therein). Assume now that, unlike
in most cases in literature, the attacker “Eve” tries to masquerade as Alice, and send Bob
information over the channel, such that she establishes a private key with Bob, instead of
Alice. Eve may hold realizations of a source that is also correlated with Bob’s (although
more loosely than Alice’s), or none at all (which would correspond to the special case of
testing against independence, discussed throughly in this thesis. In this case, Eve may use
the same marginal distribution as Alice, however she cannot artificially create a correlation
with Bob’s realizations). The model presented here answers the question: How quickly
can Bob declare he is being contacted by an imposter, while still being able to establish
a common key with Alice, in case the transmission originated from her? This threat of
compromise of the receiver’s authentication data is motivated by situations in multiuser
networks –such as automatic fault diagnosis– where the receiver is often the system itself,
and which cannot be treated by conventional cryptography, requiring recourse to new
techniques (e.g., image authentication [16,17] and smart grids [18,19]).

The second scenario discussed in this thesis involves bidirectional collaborative binary
HT. In this scenario (see Figure 4.1), the two nodes are assumed to be connected by
a perfect bidirectional link with a sum-rate constraint. It is further assumed that the
available resources for interaction can be divided between the statisticians in any way that
would benefit performance, and that without loss of generality no importance is given to
the location at which the decision is made – as the decision can always be transmitted
with sub-exponential resources. First, we concentrate on a special case where only one
“round of interaction” (only a query and its reply) is allowed between the statisticians,
i.e., a decision is made after each statistician communicates one statistics, which will be
commonly referred to as a message. This scenario was first studied in [20] for a special
case called testing against independence. While the scenario studied in this thesis borrows
ideas from [20], the mathematical tools are fundamentally di↵erent since these rely on the
method of types [21], as it was the case to deal with general hypotheses in [9]. The results
are then extended for any finite number of interaction rounds.

Much like in the case of unidirectional communication in Chapter 3, optimality can
be shown here for the special case of testing against independence. Interestingly, we can
only show optimality for one round of communication. While it cannot be said that
the strategy proposed in Chapter 4 is necessarily suboptimal when testing over multiple
rounds, it can be shown that the tools used to prove optimality for a single round of
communication do not suffice for the more general case of any finite number of rounds.
Intuitively, it can be said that after the first round of communication is completed, the
information available at each of the sides of the system is no longer independent, even
under hypothesis 1, which assumes independent sources. Thus, it is easy to accept that
optimality should remain allusive for this case, as long as it is not shown for the case of
general hypotheses.

The bidirectional scenario, while apt to continue to constitute a model for questions
in secret key distribution (this time over a perfect bidirectional public channel) as de-
scribed above, may also be used as a model for complex automatic decision-making in
a timely manner. The Internet of Things (IoT) (see e.g., [22–24] and references therein

3



1.2. Summary of Related Works

for an overview of the subject) emerges recently as a practical “playground” for relevant
scenarios. [25], for example, focuses on emergency response systems (ERS), which may
assist governments’ capability in responding to severe events. The importance of timely
decisions is clear in this case, while constraints on the resources are mostly due to limited
funds. Naturally, the well-established field of wireless sensor networks (WSN, see e.g.,
[26–29]), along with work on HT, may be critical in modeling such practical scenarios.

1.2 Summary of Related Works

Some of the first contributions on binary HT are due to Wald [6, 7], where an optimal
course of action is given, by which a sequential probability ratio test (SPRT) is used. It
was shown that the expected number of observations required to reach a conclusion is
lower than any other approach, when a similar constraint over the probabilities of error
is enforced.

Definition 1 (SPRT, [7]). A sequential probability ratio test of two hypotheses H0 and
H1, implying probability distributions P0 and P1, respectively, is defined with the aid of
two positive numbers A? > 1 and B? < 1, as follows: Write the probability

Pij =

j
Y

k=1

Pi(xk) , (1.2)

with xk being the k-th argument of the vector x being tested. We say that the number
of necessary realizations n = j if j is the lowest natural number such that

P1j

P0j
> A? or

P1j

P0j
< B?. If

P1j

P0j
> A? hypothesis H1 is accepted, and if

P1j

P0j
< B? hypothesis H0 is

accepted.

As stated above, the SPRT is the optimal test, in the sense that out of all the tests
that lead to the same probabilities of error, the SPRT would do so with the least amount
of realizations (or, equivalently, the “quickest”).

Among the first works that started enforcing constraints on the basic HT problem,
which are independent from the statistical nature of the data, are references [30,31]. The
single-variable HT is considered, and the enforced constraint is related to the memory of
the system, rather than to communication between di↵erent locations. It is assumed that a
realistic system cannot hold a large number of observations for future use, and thus at each
step a function must be used that would best encapsulate the“knowledge”gained from the
new observation, combined with the compressed representation of previous observations.
Namely, assuming that after each observation the data must be summarized by an m-
valued statistic Tn 2 {1, 2, . . . ,m}, updating this statistic is done through a function
Tn+1 = f(Tn, Xn+1). By presenting an algorithm and defining the two probabilities of
error discussed above, ↵n and βn, the author of [30] shows that a 4-valued statistic is
enough in order to bring these two values to zero as n ! 1. This problem was then
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1.2. Summary of Related Works

revisited in [32,33], which are motivated by new scenarios in which memory efficiency is an
important aspect, such as satellite communication systems. [33] explores the possibilities
of simultaneous exponential decays for both error probabilities.

Stein’s Lemma (see e.g., [1, 2]) is the first result that takes an information-theoretic
approach to the subject of HT. By considering the limit where the number of observations
n ! 1, it is shown that the optimal error exponent for the error probability of Type II,
under any fixed constraint over the error probability of Type I, is given by the Kullback-
Leiber (KL) divergence. Later [34] proves an important property by which when ↵n ⌘
exp(−nc) ! 0 as n! 1, then βn ! 0 or βn ! 1, exponentially depending on the rate of
decay c > 0. Blahut [35] investigates a similar scenario where both error probabilities are
required to decrease exponentially with n, and proposes a function e(c), non-increasing
and convex, such that ↵n  exp{−ne(c)} and βn  exp{−nc} are simultaneously satisfied,
for n large enough. The function e(c) is defined through the KL-divergence (referred to
in [35] as the discrimination) as follows:

Definition 2. Let P0 and P1 be two probability distributions in P(X ), where X is assumed
to be a finite alphabet. Let

D(P0||P1) =
X

a2X
P0(a) log

P0(a)

P1(a)
(1.3)

be the KL-divergence (or discrimination) between the two probability distributions. The
function e(c), mentioned above, is defined as follows:

e(c) = min
P̃2Pc

D(P̃ ||P1) , (1.4)

where
Pc = {P̃ 2 P(X ) : D(P̃ ||P0)  c} . (1.5)

An information-theoretic approach becomes a natural choice when communication
constraints are introduced to the model. Distributed HT with communication constraints
was the focus of the seminal works [8, 9]. Both of these works investigated binary deci-
sions in presence of a helper, i.e., unidirectional communication, and propose a feasible
error exponent for βn while enforcing a strict constraint over ↵n. Although both of these
approaches achieve optimality for the case of testing against independence, where it is as-
sumed that under the alternative hypothesis H1 the samples from (X, Y ) are independent
with the same marginal measures implied by H0, optimal results for the case of general
hypotheses remain allusive until this day. As both of these works are eminent for the re-
search performed throughout this thesis, we discuss the result presented in them in depth
in Chapter 2. In [36] a similar scenario is considered for parameter estimation with unidi-
rectional communication. Here, the mean square-error loss in estimating the parameter ✓
was considered instead of exponential decay of the error probability. A Cramér-Rao type
bound is established, and its asymptotic achievability is proven under certain conditions,
in case of a finite alphabet X , for the realizations observed by the helper.
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Improving upon the results of [8, 9] by using further randomization of the codebooks,
referred to as “random binning”, was first briefly suggested in [37], but never fully an-
alyzed in the general case, to the best of our knowledge. [38] proposes binning as an
optimal approach in a special case called testing against conditional independence. Here,
it is assumed that given a third RV Z (available at the decoder), (X, Y ) are independent
under hypothesis H1. [38] is also the first paper that discusses the “dangers” of employing
binning in problems in HT. Since the binning process may also induce errors, it is unclear
if the benefits of using this method outweigh the losses, when the error exponent is con-
cerned. That is because reliable decoding of the “bin index” is required in the presence of
side information uncertainty (e.g., similarly to problems under channel uncertainty [39]).
We discuss this trade-o↵ thoroughly in Chapter 3. Note that despite proving optimal-
ity in the special case of testing against conditional independence, it is still not clear
whether examples exist or not, in which binning is strictly beneficial, when compared to
the traditional non-binning approach.

A special case referred to as HT under “complete data compression” was studied in [9].
In this case, it is assumed that node A is allowed to communicate with node B by sending
only one bit of information. A feasible scheme was proposed and its optimality proved.
The much broader scenario, by which codebooks are allowed to grow with n, but not
exponentially fast, was studied in [40]. Interestingly, it was shown that this scenario
does not o↵er any advantage with relation to complete data compression, in terms of the
error-exponent of βn. This setting, referred to as zero-rate communication, was recently
revisited in [41], where both ↵n and βn are required to decrease exponentially with n.

As was mentioned above, the task in Chapter 3 is comprised of two parts. First, the
statistician at node B needs to declare the correct probability distribution governing the
pair of RVs, and then he is required to reproduce the vector of realizations seen by node
A, with maximum average distortion D. This problem is closely connected to the case of
successive refinement for the Wyner-Ziv problem [42]. Here, the Wyner-Ziv problem for
source estimation with side information at the decoder [43] is investigated for a system
with multiple decoders, each having di↵erent side information. The problem presented in
this thesis can be thought of as a complication of this problem – not only does the encoder
needs to encode to satisfy both requirements as before, but the decoder himself also does
not know the “value” of its own realizations and the correct way to use them, before
communication starts. Unfortunately, even for the simpler case of successive-refinement
for the Wyner-Ziv problem, optimality results remain allusive [42, 44, 45]. Optimality
can be achieved, however, for the special case where side information may be absent
[46, 47]. In this case, similar to the joint problem of testing against independence and
source reconstruction investigated in this thesis, out of the two decoders, one holds side
information, while the other does not. Still, each decoder knows its “identity”, which
di↵ers from our problem. The optimal region in this case is given by:

Lemma 1 (Rate-distortion when side information may be absent [46]). Let (X, Y, P (x, y))
be a discrete memoryless 2-source with generic RVs X and Y . for i 2 {0, 1} let X̂i be the
construction alphabet and let

di : X ⇥ X̂i ! [0,1) (1.6)
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be a distortion measure. The expected distortion D = (D0, D1) for a given code (consisting
in this case of an encoding function and two decoding functions) is given by

Di = Edi(X, X̂i) = E
1

n

nX

k=1

di(xk, x̂ik) , i = {0, 1} . (1.7)

The rate-distortion function in this case is

R(D) = min
P(D)

[I(X;W ) + I(X;U |WY )] , (1.8)

where the minimum is over the set P(D) of all the RVs (W,U) 2 W⇥U , jointly distributed
with the generic RVs (X, Y ) such that (W,U) − X − Y form a Markov chain and there
exist functions X̂0(W,U, Y ) and X̂1(W ) such that Eidi(X, X̂i)  Di for i 2 {0, 1}. The
cardinalities of the alphabets of the auxiliary RVs satisfy the conditions |W|  |X | + 2,
|U|  (|X | + 1)2.

Proof. Refer to reference [46].

In Lemma 1, the term“rate-distortion function”signifies the rate R(D) is the minimum
rate that achieves the vector of distortions D. Note that this result is an asymptotic one,
which di↵ers from the nature of the results discussed above, studying the error exponent
as a function of the block-length. The tension between non-asymptotic and asymptotic
performance measures is one of the main points of interest of Chapter 3. [47] adds to
this result the case where the side information may also be available at the encoder’s
end. Benefits of successive refinement for testing against independence are studied in [48].
Another special case studied in literature was the one of joint vector-Gaussian source and
side information (at both decoders), under mutual information and distortion constraints,
to be found in [49].

Hypothesis testing with interactive communication has unfortunately seen less treat-
ment in literature, for the best of our knowledge. Interactive communication was consid-
ered for the problem of distributed binary HT within the framework of testing against
independence in [20]. An achievable strategy was proposed for the case of single-round of
communication (in which each node sends one statistic, before a decision is made), based
on a coding scheme inspired by the seminal work of Kaspi [50]. In addition, it was claimed
that the performance achieved by this strategy is optimal. Unfortunately, the proof of
converse turned out to be problematic. We revisit this proof and show optimality for
the case of single-round interaction against independence in this work. [51] attempted an
extension of previous results to a scenario of multi-round testing against independence.
Despite the claims of [51], it is still unclear if optimality in this case is possible. We try
to explain the reasons for this in this thesis.

Another interesting branch of HT problems is the one focusing on tests of more than 2
hypotheses, commonly known as M -ary tests (see e.g., [52,53] for centralized scenarios and
[54,55] for distributed ones). [56] points to an interesting connection between Bayesian M -
ary tests and non-Bayesian binary ones, as studied in this thesis. The Bayesian framework
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assumes that a probability distribution, referred to as the prior can be associated with
the di↵erent hypotheses:

Definition 3. Let Hi, i 2 {0, . . . ,M − 1} be M hypotheses, each implying a different
probability distribution Pi 2 P(X ). Let Qi 2 P({0, . . . ,M − 1}) be a prior distribution
of the hypotheses, i.e., the probability that hypothesis Hi is the correct one is Qi. Finally,
given a specific strategy f(·), operating on vectors x of length n, define the probabilities of
erroneous detection to be

✓ni = Pr{Ĥ 6= Hi|Hi} =
X

x2Xn

Pi(x) Pr{f(x) 6= i} , (1.9)

where Ĥ denotes the hypothesis chosen by the system, and the conditioning means that
Hi is the true hypothesis in effect. The smallest average error probability for testing over
vectors of length n is

✓̄n = min
f

"
M−1X

i=0

Qi✓
n
i

#

. (1.10)

Clearly, if M = 2 calculating the probabilities of error ↵n and βn as defined above
easily leads to the Bayesian average error, in case the priors Qi are known. The opposite,
however, is not true. In the case of [56], an equivalence was shown between Bayesian
M -ary HT problems to non-Bayesian binary ones as follows:

Lemma 2. Let an M-ary hypothesis testing problem be defined by M probability distri-
butions Pi 2 P(X ). Define the RV V with alphabet V = {0, . . . ,M − 1}, denoting the
true hypothesis in affect. Thus, the probability distribution PV (v) is the prior. Let any
test be defined by a (possibly random) transformation PV̂ |X : X ! V, where V̂ denotes
the RV associated to the test output. Denote the average error probability of the test
as ✓̄(PV̂ |X).Minimizing over all possible conditional distributions PV̂ |X gives the smallest
average error probability, namely

✓̄ = min
P
V̂ |X

✓̄(PV̂ |X) . (1.11)

The minimum error probability can be expressed as

✓̄ = max
QY

↵( 1
M

)(PV Y , QV ⇥QY ) = max
QY

sup
γ≥0

(

Pr


PV Y (V, Y )

QY (Y )
 γ

]

− γ

)

. (1.12)

Here, ↵( 1
M

)(PV Y , QV ⇥QY ) denotes the optimal error probability of Type I, such that the
error probability of Type II is at most 1

M
. QV (v) , 1

M
, 8v 2 V, and the probability is

computed with respect to PV Y . Moreover, a maximizing distribution QY is given by

Q?
Y (y) =

1

µ
max
v0

PV Y (v0, y) , (1.13)

where µ =
P

y max
v0

PV Y (v0, y) is a normalizing constant.
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Proof. Refer to reference [56].

Through Lemma 2 it becomes clear that a good understanding of binary HT problems
can be beneficial to the understanding of Bayesian M -ary HT problems. Specifically,
a connection with problems in binary HT against independence is apparent. Recently,
[57] investigated the error probabilities of M-ary tests (in contrast to previous work, that
usually focus on error exponents [58,59], and as is the case also in this thesis).

Other works in recent years evolve the problem of HT in many di↵erent directions. A
few interesting examples are [60] (see references therein), which assumes a tighter control
by the statistician throughout the process, allowing him to choose and evaluate the testing
procedure through past information, and [61–63] which investigate HT in the framework of
quantum statistical models. [64] considers an interesting distributed model, very di↵erent
from the one considered in this thesis, by which the network grows with the number
of realizations n. In this case, each node only sees a small part of the realizations, all
belonging to a single RV. Here, detection is done through one-bit quantization at each
node.

1.3 Related Problems

Before finishing the literary review, we would like to take a look at a few seemingly
unrelated problems, which turn out to be surprisingly linked to the problem of distributed
hypothesis testing. In this section we present two such problems, and attempt to explain
the connection to the problem of HT, which may seem unintuitive at a first glance.

1.3.1 The Information Bottleneck

The information bottleneck (IB) was first introduced under this name by Tishbi et al. in
[65] (see also [66]). Given some joint distribution PXY (x, y), the basic idea was to search
for some compact description of X that maximally preserves the information about Y . In
other words, Y can be thought of as the RV that represents the characteristics of X, which
we would like to maintain through the compression process. As the joint distribution of
X and Y is known (a fact which stands in contrast to the case of HT), the information
bottleneck method proposes to compress X through a new RV U , such that U −X − Y
form a Markov chain (i.e., given X, U is independent of Y ) and R ≥ I(U ;X). Note that
in this problem there is no transmission of information over a link. We use R to denote
the constraint over the compression because of conventions in information theory, and
not necessarily in order to denote the rate of communication. In order to maintain the
maximum amount of information over the characteristics Y , under the constraints defined
above, we set the goal as the maximization of I(U ;Y ). Thus, the information bottleneck
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problem can be summarized as follows:

maximize
PU|X

I(U ;Y )

subject to I(U ;X)  R

U −X − Y .

(1.14)

As the Markov chain U −X − Y enforces the following inequality through the chain rule:

I(U ;Y )  I(U ;X) , (1.15)

the name information bottleneck becomes clear.

Note that the information bottleneck approach di↵ers from traditional rate-distortion.
Specifically, when feature extraction is the desired goal as described above, it may be very
difficult to define a suitable distortion measure. Taking the compression of photos as an
example, rate-distortion can be a very successful approach when trying to transmit the
photo over a link (or simply saving it to memory) under rate constraints, with the intent
of reconstructing the photo for a later use. In that case, the rate-distortion approach may
result in some noise (as a function of the available rate), but in most cases the photo
could be reconstructed quite successfully. In some cases, however, the goal may not be
reconstructing the photo. Instead, consider a case where the end-user is only interested in
some characteristic of the photo, such as the types of objects in the picture (cars, animals,
trees, people, etc.), the type of location (city, field, forest, etc.) or anything else. In such
a case, it is very hard to define a distortion measure that would yield the desired result.
This is one reason for the abundance of work on the information bottleneck in fields such
as image representation ([67–69]), video ([70]), text classification ([71–73]), deep learning
([74]) and more.

Surprisingly, the formulation of the information bottleneck problem in (1.14) is identi-
cal to the solution of the distributed HT against independence problem with unidirectional
communication (as seen in [8, 9] and in Chapter 3 of this thesis). At a first glance, this
connection is hard to explain –The IB problem can be classified as a non-binary cluster-
ing problem, which stands in contrast to the very specific nature of a binary hypothesis
testing problem against independence. We try to explain this connection intuitively here:
Presented with a “list” (represented by a vector of realizations x), the goal, as defined by
the IB problem, is to be able to create a new list (represented by the vector u), which
represents, as best as possible, some characteristic of the data. In other words, the list u
is highly connected to a third list, y, which is hidden. When testing against independence
over a distributed system, the two lists, x and y already exist. The question is –does the
list y represent, with relation to the list x, the characteristic we are interested in? Note
that since we discuss the problem of testing against independence, the answer can only be
either “yes” (dependent) or “no” (independent). Since both lists don’t exist in the same
physical place, and a rate constraint is imposed upon the communication from node A to
node B, it is only natural that a solution that was good in order to represent y from x in
the IB problem (where y is hidden) should also be good in order to check if y is related
to x in the HT case.
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Having clarified the relationship between the two problems, it is clear that the un-
derstanding of both could benefit from this result. The HT problem provides informa-
tion theoretic formalism to the IB approach, which defined the problem directly through
single-letter expressions. HT against independence gains through the progress achieved in
understanding the information bottleneck problem by the signal processing community,
such as efficient algorithms for producing the auxiliary RV U [65, 75–77].

1.3.2 The Ahlswede-Gacs-Körner Bound

In [78], the authors investigate the following statistical problem: Consider a sequence
(Xi, Yi) of independent identically distributed pairs of RVs. For any pair of events {Xn 2
A} and {Yn 2 B} satisfying Pr{Yn 2 B|Xn 2 A} ≥ 1 − ✏, and for non-negative real c,
how small can Pr{Yn 2 B} be, in case Pr{Xn 2 A} > exp{−nc}? In order to present
the solution to this problem, we need the following definitions:

Definition 4. Let X and Y be alphabets of the RVs X and Y , respectively, and let W (y|x)
be the transition probabilities for x 2 X , y 2 Y. For the n-th Cartesian power of X and
Y define

Wn(yn|xn) =
nY

i=1

W (yi|xi) . (1.16)

The set B 2 Yn is said to ✏-decode the vector x 2 X n if Wn(B|x) ≥ 1−✏. Let  ✏(B) 2 X n

be the set of all the xs which are ✏-decoded by B.
Let PX be the measure given on X and PY the measure given on Y , both assumed to

be i.i.d when vectors of length n are considered. Define

Sn(c, ✏) , − 1

n
log min

− 1
n
logPn

X(Ψ✏(B))≥c
P n
Y (B) . (1.17)

Lemma 3.

lim
n!1

Sn(c, ✏) = sup
I(X;U)c
U−X−Y

I(U ;Y ) . (1.18)

Proof. Refer to reference [78].

For a second time, it turns out that a problem, which seems quite di↵erent from testing
against independence over a distributed system with a unidirectional link, turns out to be
closely related to it. In fact, by looking closely, the two problems have many similarities
and some di↵erences. Here, for every set B 2 Yn, we want to find a corresponding set
A 2 X n, such that two statements are simultaneously true:

Pr{Yn 2 B|Xn 2 A} ≥ 1 − ✏ , (1.19a)

Pr{Xn 2 A} > exp{−nc} . (1.19b)
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Under these two constraints, we would like to find the smallest Pr(Yn 2 B) possible. In
fact, it could be said that we are looking for a good code for the problem of HT against
independence, as discussed in [8]. If we succeed, we might be able to divide X n into sets
(representing codewords), such that the probability of each set is non-negligible (1.19b).
Under hypothesis 0, the probability of error ↵n is smaller then ✏ (1.19a), and under
hypothesis 1, the probability of error βn is as small as possible (minimizing Pr{Yn 2 B}).
Thus, the similarity of the two problems seems less surprising.

Nevertheless, note that there are indeed some di↵erences between the two problems.
Specifically, one could say that the approach here is to look at the trees (each codeword
separately) but never at the forest (the codebook). We are not required to span X n with
the union of all sets Ai (in fact, there are no sets Ai, only one set A). Thus, a situation
can be imagined, where while for each B a set A can be found that fulfills the constraints
above, but many xn 2 X do not belong to any of these sets, and thus cannot be encoded
when considering the problem of HT against independence. If the probability of such
sequences xn does not become negligible with n, this indeed constitutes a problem for the
HT case. Such small di↵erences account for the single di↵erence in the formula, namely
that in [78], |U|  3 is enough. This stands in contrast to the case of HT (see Chapter 3).

1.4 Strong vs. Weak in Hypothesis Testing

In information theory, it is common to distinguish between two types of converse claims
for any theorem. Consider as an example the channel coding theorem [79], which claims
that communication of information over a channel is possible with vanishing probability of
error Pe ! 0 when the block-length n grows if and only if it is done below the capacity of
the channel. A weak converse to this theorem [80] shows that if the capacity of the channel
is surpassed, the probability of error cannot be brought to 0 (Pe 6! 0). A strong converse,
however, shows that necessarily in this case Pe ! 1. While the di↵erence between the
two seems negligible, it is in fact significant –through the strong converse we know that
surpassing the capacity of the channel is never a good idea, even if we are willing to accept
some finite probability of error. In other words, the strong converse proves that working
with a code that does not have a vanishing probability of error is pointless, as necessarily
if such a code exists, there also exists a code with a vanishing error probability and the
same rate.

Strong converse proofs exist in literature for both of the two main branches of point-
to-point information theory –channel coding ([81]) and source coding (see [82]). Strong
converses to some cases of source coding with a fidelity criterion (rate-distortion) can be
found in [83, 84]. Strong converse proofs in network information theory are harder to
find (as indeed all converse proofs are). One such example is the strong converse to the
multiple access channel (MAC) in [85].

In the field of HT, the definitions of weak and strong converse proofs must be adjusted,
in order to fit this di↵erent scenario. Throughout this thesis, we define the two probabil-
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ities of error (of Type I and Type II) with their respective probabilities (↵n and βn) as
defined above. The goal throughout the di↵erent scenarios is to find the error exponent
of βn, while ↵n is kept below some threshold ✏ 2 (0, 1). To this end, a weak converse is
defined to be a proof that lim

n!1
− 1

n
log βn  E as long as ↵n  [✏ for n large enough, and

the union is over the range ✏ 2 (0, 1) (i.e., ↵n ! 0 with n). A strong converse is a proof
that lim

n!1
− 1

n
log βn  E, for any constraint ↵n  ✏, with ✏ 2 (0, 1).

Note that the significance of a strong converse here is di↵erent from the usual infor-
mation theoretic case. By proving a strong converse to a HT problem, the conclusion is
that if a strategy is found, such that the error exponent of βn is E and ↵n ! 0, there
is nothing to gain, in terms of error exponent, by looking for another strategy such that
↵n  ✏ 6! 0. In other words, for any case where a strong converse has been proven, the
existence of a strategy such that ↵n  ✏ and the error exponent of βn is E implies that
there also exist a strategy with the same error exponent and ↵n ! 0.

Remark 1. Throughout this thesis, we occasionally abuse notation by stating that ✏! 0.
The meaning of this is of course that ↵n ! 0, and thus it can be said that ↵n  ✏ for any
✏ and n large enough.

As was mentioned above, Stein’s Lemma is a strong property. We show a proof for
this, originating in tutorials of the subject [3], in Appendix A.1. [8] proves the strong
property of a multi-letter expression, for distributed HT problems with a unidirectional
link and general hypotheses. Note that a single-letter converse (of any kind) still alludes
us for this case. [8] shows us that this single-letter expression, if ever found, cannot be
dependent on ✏. [48] shows a similar property (as well as a single-letter expression) for
the problem of successive refinement of testing against independence over a unidirectional
link.

1.5 Thesis Outline and Contributions

In this thesis, we focus mainly on two problems in distributed HT under communication
constraints. The first problem, treated in Chapter 3, consists of a unidirectional commu-
nication link. Throughout most of the chapter, the statistician, assumed to be located
at node B in this scenario, is required to both detect (i.e., declare the true hypothesis
in e↵ect) and estimate the realizations seen by node A. The second problem, which is
the focus of Chapter 4, assumed a bidirectional communication link between the nodes.
In the most general case, it is assumed that the communication resources can be divided
freely between the two participants, in any way that would benefit performance.

Before diving into the scenarios of interest, we dedicate Chapter 2 to definitions and
tools that would prove necessary in subsequent chapters. First, notation conventions are
discussed in Section 2.1, that would be used throughout the thesis. Section 2.2 gives a
general model for the system of interest. This model is then adjusted in each subsequent
chapter to fit the specific scenario of reference. Finally, Section 2.3 details important tools
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that are in use in this work, including important results on the method of types, typicality
and in hypothesis testing.

Chapter 3 (unidirectional communication link) is divided into three main parts. In
the first part (Section 3.2), we focus on the case of testing against independence where
the alternative hypothesis H1 is a disjoint “version” of H0 that leads to Xn and Yn being
independent from each other while sharing the same marginal distributions as under
H0. By relying on the techniques introduced in [8], we o↵er an achievable (single-letter)
expression for the trade-o↵ between the encoding rate, the error exponent and the average
per-letter distortion, referred to as rate-error-distortion region. In this setting, we simply
assume that reconstruction is only attempted when H0 is decided, since no e↵ective side-
information is available at the decoder when H1 is the true hypothesis.

Interestingly, it is shown that the optimal rate-error-distortion region is attained by
using successive refinement coding where the first layer performs HT, and the second
layer uses well-known results for source coding with side information at the decoder [43],
while ignoring the information received by node B at the HT stage. This result is quite
surprising, as in general there is no reason to believe that such a separation between the
two aspects of the problem should be optimal. Indeed, this approach leads to significant
losses in subsequent sections of this chapter, when general hypotheses are considered. We
explicitly evaluate the rate-error-distortion region for uniform Binary Sources where a
Binary Symmetric Channel (BSC) is assumed between X and Y , and plot the resulting
trade-o↵s between the three quantities of interest.

In the second part (Section 3.3), we derive an achievable rate-error-distortion region
for the same system, under no specific assumptions on the two hypotheses. To this end, we
allow the use of binning not only for source reconstruction but also for testing purposes.
The resulting rate-error-distortion achievable region is in fact a quadruplet in this case,
comprised of the rate of communication, the error exponent for an error of the second
type, subject to a maximum probability of error of first type, and the average distortion
corresponding to each hypothesis. The techniques required for this analysis are inspired
by previous work on distributed HT [9] and recent work [86] on the study of the error
exponent for the problem of lossy source coding with side information at the receiver. It
should be mentioned here that although the use of binning for HT was first suggested
in [37] as a possible approach to improve performance, the benefits of this were never
demonstrated.

In the third part of Chapter 3 (Section 3.4), we concentrate on distributed HT without
reconstruction constraints. We show that for the case of two general hypotheses, unlike
the case of testing against independence, our previous two-stage coding approach leads
to significant loss in performance. We do so by suggesting a new approach for testing
without requiring the decoding of the involved descriptions. This approach turns out to
be superior to the previous one in terms of error exponent, but prevents the decoder from
providing a lossy reconstruction of the source. Thus, the separability principle, discussed
above for the case of testing against independence, is no longer true in the general case.
We use the example of the BSC again (where under both hypotheses the sources are
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assumed to be correlated, this time) in order to compare both proposed approaches with
each other, as well as with the performance attained by previous art.

Chapter 4 (bidirectional communication link) is also divided into several parts. In
the first part (Section 4.3) the main result of this chapter is presented. Considering a
distributed system with a bidirectional link of sum-rate constrain R, we give an achievable
error-exponent for the error of type II, under a fixed constraint over the error of type I,
when only one round of communication is allowed (i.e., each node is allowed to send one
message before a decision must be taken). We use methods inspired by [9] in order to
prove the achievability of this error exponent. Section 4.4 extends the result of Section 4.3
to include any finite number of communication rounds between the nodes. Note that both
of the error exponents of Section 4.3 and Section 4.4 are given through a minimization over
some set, which is called L . Interestingly, it turns out that the choice to allow multiple
communication rounds results in more degrees of freedom (by giving the statisticians
a choice regarding the right way to distribute resources through the set L ) while not
changing the expression being minimized. This choice is expressed through the apparition
of “new” RVs, that adhere to “new” Markov chains.

After establishing an achievable error exponent for interactive communication and
general hypotheses in the previous sections, Section 4.5 revisits the special case of testing
against independence, studied in [20,51]. First, it is shown that the known achievable error
exponent in this case can also be achieved through our proposed result of Section 4.3, when
testing against independence is assumed. This is not a trivial result, as the approach of
Section 4.3 neglects to count some possible “successes”, which are counted in the approach
of [20]. Then, a weak converse is proven for the case of testing against independence over
one communication round, in order to establish optimality, at least in a weak sense, of the
error exponent in this case. We try to explain why, despite being achievable, an extension
of this error exponent to multiple communication rounds is probably not optimal.

Section 4.6 focuses on the case of distributed HT with a bidirectional link and zero-rate
communication. Note that this does not mean that no communication is allowed between
the participants, but only that the size of the codebook cannot grow exponentially with
the number of observed realizations n. [9] gave an optimal error exponent in this case,
when only one bit communication is allowed, from node A to node B. We show, through
an approach similar to the one proposed in [40], that this result is in-fact optimal whenever
zero-rate communication is assumed, even when it is not limited to one bit, and allowed
to also be bidirectional. We do so by proving a strong converse statement for this case.

Finally, concluding remarks are given in Chapter 5, where directions for possible future
work are also outlined. Throughout this manuscript, proofs are generally relegated to the
appendices.
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Chapter 2

Definitions and Tools

2.1 Notation

We use upper-case letters to denote random variables (RVs) and lower-case letters to
denote realizations of RVs. Vectors are denoted by boldface letters, with their length as a
superscript, emitted when it is clear from the context. Let Xj

i denote the vector X, from
position i to position j, i.e., Xj

i = (Xi, Xi+1, . . . , Xj−1, Xj). Sets, including alphabets of
RVs, are denoted by calligraphic letters. Throughout this work we assume all RVs have
an alphabet of finite cardinality. PX 2 P(X ) denotes a probability measure (PM) for
the RV X 2 P(X ) defined on the measurable space (X ,BX ), that belongs to the set of
all possible PMs over X ; X − Y − Z denotes that X, Y and Z form a Markov chain.
We shall use tools from information theory. Notations generally comply with the ones
introduced in [21]. Thus, for a RV X, distributed by X ⇠ PX(x), the entropy is defined
to be H(X) = H(P ) := − P

x2X
PX(x) logPX(x). Similarly, the conditional entropy :

H(Y |X) = H(V |P ) := −
X

x2X

X

y2X
PX(x)V (y|x) log V (y|x)

for a stochastic mapping V : X 7! P(Y). The conditional Kullback-Leiber (KL) divergence
between two stochastic mappings PY |X : X 7! P(Y) and QY |X : X 7! P(Y), is:

D(PY |XkQY |X |PX) :=
X

x2X

X

y2Y
PX(x)PY |X(y|x) log

PY |X(y|x)

QY |X(y|x)
, (2.1)

satisfying that PY |X ⌧ QY |X a.e. with relation to PX (i.e., for every x 2 X such that
PX(x) > 0, PY |X(y|x) > 0 implies that QY |X(y|x) > 0). For any two RVs, X and Y , whose
measure is controlled byXY ⇠ PXY (x, y) = PX(x)PY |X(y|x), the following is defined to be
the mutual information between them: I(X;Y ) = I(PX ;PY |X) := D(PXY kPXPY ). Given
a vector x = (x1, . . . , xn) 2 X n, let N(a|x) be the counting measure, i.e., the number of
times the letter a 2 X appears in the vector X. The type of the vector x, denoted by Qx, is
defined through its empirical measure: Qx(a) = n−1N(a|x) with a 2 X . Pn(X ) denotes
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2.2. System Model and Definitions

Node A Node B

R

Xn Yn

Figure 2.1: General distributed hypothesis testing model with two nodes.

the set of all possible types (or empirical measures) of length n over X . We use type
variables of the form X(n) 2 Pn(X ) to denote a RV with a probability measure identical
to the empirical measure induced by x. The set of all vectors x that share this type is
denoted by T (Qx) = T[Qx]. Main definitions of δ-typical sets and some of their properties
are given in the following short tutorial. We denote the scalar convolution function by
a ? b , a(1 − b) + b(1 − a). All exponents and logarithms are assumed to be of base 2.

2.2 System Model and Definitions

In a system comprising two statisticians, as depicted in Fig. 2.1, each of them is assumed
to observe the i.i.d. realizations of one RV. Let XnYn = (X1, Y1), . . . , (Xn, Yn) be inde-
pendent random variables in (X n⇥Yn,BXn⇥Yn) that are jointly distributed in one of two
ways, denoted by hypotheses H0 and H1, with probability measures as follows:

(

H0 : P0,XY (x, y) , PXY (x, y) , 8 (x, y) 2 X ⇥ Y ,

H1 : P1,XY (x, y) , PX̄Ȳ (x, y) , 8 (x, y) 2 X ⇥ Y .
(2.2)

It is assumed that the two nodes of the system are connected through a perfect link, con-

strained by a sum-rate constraint R
h

bits
symbol⇥node

i

. That is, if each node sees n realizations

of its respective RV, 2nR bits are allowed to pass on the link. No errors are introduced by
the link to the transmitted information, as long as the rate constraint is respected.

Throughout this thesis, several problems in distributed hypothesis testing will be faced.
Each of these problems will be defined by the task the statisticians are required to com-
plete, as well as the nature of communication. In all cases, the statisticians will be
required to declare the correct probability distribution controlling the observed RVs, out
of the two possible options. We define two error events, with their respective probabilities,
in accordance to the literature on the subject:

(

↵n , Pr(H1 is declared |XY ⇠ P0,XY ) = PXY (Ac) ,

βn , Pr(H0 is declared |XY ⇠ P1,XY ) = PX̄Ȳ (A) .
(2.3)
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Here, A is assumed to be the acceptance region, comprising pairs of vectors of length n,
which prompts the statisticians to declare H0. ↵n and βn are the probabilities of error
of types I and II, respectively, when the statisticians see n realizations of their respective
RVs.

2.3 Tools

The rest of this chapter is consecrated to a short tutorial on the di↵erent tools that will
be in use throughout this thesis. We start with an overview of the method of types (see
e.g., [21] for a more complete tutorial on the subject) and its relation with the notion of
typicality, which plays a major role in the field of Information Theory in general, as well
as in this thesis. Next, some important results in the field of Hypothesis Testing (both
centralized and distributed) are discussed.

2.3.1 Types and Typicality

Definition 5 (Types [82]). The type of a sequence x 2 X n is the measure P̂X on X
defined by

P̂X(a) :=
1

n
N(a|x) , 8a 2 X , (2.4)

where N(a|x) is the counting measure of the letter a in x. The joint type of a pair
(x,y) 2 X n ⇥ Yn is the empirical measure P̂XY on X ⇥ Y such that

P̂XY (a, b) :=
1

n
N(a, b|x,y) , 8(a, b) 2 X ⇥ Y , (2.5)

where N(a, b|x,y) is the joint counting measure of the pair (a, b) in (x,y).

Definition 6 (Conditional Types [82]). The vector y 2 Yn is said to have conditional
type V : X 7! Pn(Y) given x 2 X n if

N(a, b|x,y) = N(a|x)V (b|a) , 8(a, b) 2 X ⇥ Y , (2.6)

where V is a stochastic mapping.

The definition of types (and typicality, to be discussed later) is crucial to the field of
Information Theory. When drawing n times independently from a probability distribution
PX , note that the probability of obtaining any sequence x 2 X n is dependent only on its
type. Specifically, this probability can be expressed as follows:

P n
X(x) =

nY

i=1

PX(xi) =
Y

a2X
PX(a)N(a|x) . (2.7)

Here, xi denotes the i-th component of the vector x. As mentioned above, the set of all
vectors in X that have the same type as x is denoted by T[Qx]. As the type of x, Qx
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fulfills all the requirement to being a probability distribution itself, we may treat it as
such. For a given vector x, we denote the corresponding type variable, which is a RV with
probability distribution Qx, by X(n).

The following important properties of types will be used throughout this thesis:

Lemma 4 (Type Counting). Let Pn(X ) be the set of all possible types of sequences in
X n. Then,

|Pn(X )|  (n+ 1)|X | . (2.8)

Proof. For every a 2 X , N(a|x) can take up to (n+ 1) di↵erent values (see reference [82,
Lemma 2.2]).

Lemma 5. For any type P̂ 2 Pn(X ) of sequences in X n, denote by T[P̂ ] the set of all
sequences with this type. Then,

(n+ 1)−|X | exp
⇥
nH(P̂ )

⇤
 |T[P̂ ]|  exp

⇥
nH(P̂ )

⇤
. (2.9)

In a similar fashion, for every x 2 X n and stochastic mapping V : X 7! Pn(Y), let T[V ](x)
be the set of all sequences y 2 Yn with the conditional type V given x. Then,

(n+ 1)−|X ||Y| exp
⇥
nH(V |P̂ )

⇤
 |T[V ](x)|  exp

⇥
nH(V |P̂ )

⇤
, (2.10)

where H(V |P̂ ) is the conditional entropy function,

H(V |P̂ ) =
X

x2X
P̂ (x)H(V (·|x)) . (2.11)

Proof. Refer to reference [82, Lemma 2.3, Lemma 2.5].

Lemma 6 (Inaccuracy). Let P̂ 2 Pn(X ) be the type of x 2 X n (X(n) ⇠ P̂ is referred to
as the type variable). Then, for any RV X on (X ,BX , PX),

P n
X(Xn = x) = exp

n

−n
h

H(P̂ ) + D(P̂kPX)
io

,

(n+ 1)−|X | exp
n

−nD(P̂kPX)
o

 P n
X(T[P̂ ])  exp

n

−nD(P̂kPX)
o

.
(2.12)

Similarly, for every x 2 X n and stochastic mappings V : X 7! Pn(Y), W : X 7! Pn(Y)
such that T[V ](x) is non-void,

W n(y|x) = exp
n

−n
h

H(V |P̂ ) + D(V kW |P̂ )
io

(2.13)

if y 2 T[V ](x), and

(n+ 1)−|X ||Y| exp
n

−nD(V kW |P̂ )
o

 W n
X(T[V ](x)|x)  exp

n

−nD(V kW |P̂ )
o

(2.14)

Proof. Refer to reference [9, Lemma 3],[82, Lemma 2.6].
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Note the following important conclusion of the last three lemmas: For a RV X, drawn n
times independently out of the same probability distribution PX(x), the number of possible
types grows sub-exponentially with n, while the “size” of each type (i.e., the number of
vectors in X n that have the same type) grows exponentially with n. The probability of
seeing a particular type after n draws diminishes exponentially with n, unless the type in
question is identical to the probability distribution PX . These facts will come in handy
in proofs throughout this thesis.

Definition 7 (δ-Typicality [9]). Let δ > 0. An n-sequence x is called δ-typical, if |N(a|x)
n

−
PX(a)|  δ, 8a 2 X , and P̂X ⌧ PX . The set of all δ-typical sequences x is denoted by
T[PX ]δ = T[X]δ . The set of jointly δ-typical sequences T[XY ]δ is defined in a similar manner.

Remark 2. Note that the δ-typical set can be expressed as a union of types in the following
manner:

T n
[X]δ

=
[

|P̂ (a)−PX(a)|δ ,8a
P̂⌧PX

T n

[P̂ ]
(2.15)

Definition 8 (Conditional Typicality [9, 82]). Let δ > 0 and X, Y be two RVs, jointly
distributed according to PXY (x, y). An n-sequence y is called conditionally δ-typical, with

relation to a vector x, if |N(a,b|x,y)
n

−PY |X(b|a)Qx|  δ, 8(a, b) 2 X⇥Y, and N(a, b|x,y) ⌧
PY |X(b|a), for every a 2 X such that Qx > 0. The set of all δ-typical sequences y with
relation to the vector x is denoted by T[Y |X]δ(x).

Remark 3. Note in particular that T[Y |X]δ(x) = ? for any x /2 T[X]δ .

The concept of typicality has been essential to information theory from the beginning.
We bring forth a few properties that will prove useful throughout this thesis:

Lemma 7. Let T[X]δ , T[XY ]δ and T[Y |X]δ denote the sets of typical, jointly typical and
conditionally typical sequences, respectively. For any x 2 T[X]δ and y 2 T[Y |X]δ0

, then
(x,y) 2 T[XY ]δ+δ0

. Moreover, y 2 T[Y ]δ00
, with δ00 := (δ + δ0)|X |.

Proof. Refer to reference [82].

Remark 4. Note that the opposite direction is simpler. By definition, if (x,y) 2 T n
[XY ]δ

,

then x 2 T n
[X]δ

, y 2 T n
[Y ]δ

, x 2 T n
[Y |X]δ

(x) and y 2 T n
[X|Y ]δ

(y).

Lemma 8 (Generalized Markov Lemma). Let pUXY 2 P (U ⇥ X ⇥ Y) be a probability
measure that satisfies: U − X − Y . Consider (x,y) 2 T n

[XY ]✏0
and random vectors Un

generated according to:

Pr
n

Un = u
∣
∣Un 2 T n

[U |X]✏00
(x),x,y

o

=
1

n

un 2 T n
[U |X]✏00

(x)
o

∣
∣T n

[U |X]✏00
(x)
∣
∣

. (2.16)

For sufficiently small ✏, ✏0, ✏00 > 0,

Pr
n

Un /2 T n
[U |XY ]✏(x,y)

∣
∣
∣Un 2 T n

[U |X]✏00
(x),x,y

o

⌘ O
(
c−n
)

(2.17)

holds uniformly on (x,y) 2 T n
[XY ]✏0

where c > 1.
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Proof. Refer to reference [93].

Lemma 9. For every probability measure PX 2 P(X ) and stochastic mapping W : X 7!
P(Y), there exist sequences ("n)n2N+ , ("

0
n)n2N+ ! 0 as n! 1 satisfying:

∣
∣
∣
∣

1

n
log |T[X]δ | −H(X)

∣
∣
∣
∣
 "n ,

∣
∣
∣
∣

1

n
log |T[Y |X]δ(x)| −H(Y |X)

∣
∣
∣
∣
 "n , (2.18)

for each x 2 T[X]δ where "n ⌘ O(n−1 log n), and

P n
X

(
T[X]δ

)
≥ 1 − "0n , W

n
(
T[Y |X]δ(x)|Xn = x

)
≥ 1 − "0n , (2.19)

for all x 2 X n where "0n ⌘ O
(

1
nδ2

)
, provided that n is sufficiently large.

Proof. Refer to reference [82, Lemma 2.13].

Thus, while the size of the δ-typical set gets (in the single variable case, for example)
arbitrarily close to exp{nH(X)}, which may be much smaller than the amount of all
possible sequences of length n, |X |n, the probability of the δ-typical set gets arbitrarily
close to 1 as n grows. This observation is essential to many results in information theory
in general, and in this thesis specifically.

Finally, the following lemma will prove useful in Chapter 3:

Lemma 10 (Set of sequences with small empirical entropy [86]). For any pair of strings
of length n, denoted by (xn,yn), let

S(x,y) =
n

(x̃, ỹ) 2 X n ⇥ Yn
∣
∣H(x̃, ỹ)  H(x,y)

o

, (2.20)

with H(x,y) being the empirical entropy of the sequences,

H(x,y) = −
X

a2X ,b2Y
Qxy(a, b) logQxy(a, b) . (2.21)

Then

|S(x,y)|  (n+ 1)|X ||Y| exp
⇥
nH(x,y)

⇤
. (2.22)

In addition, let

S(x|y) =
n

x̃ 2 X n |H(x̃|y)  H(x|y)
o

, (2.23)

then

|S(x|y))|  (n+ 1)|X ||Y| exp
⇥
H(x|y)

⇤
. (2.24)

Proof. Refer to reference [86].
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2.3.2 Results in Hypothesis Testing

We now present some important known results in hypothesis testing, both in the context
of a centralized scenario as well as a distributed scenario. We start with a fundamental
result in centralized hypothesis testing, mentioned in the introduction:

Lemma 11 (Stein’s Lemma). Let X1, X2, . . . , Xn be independently drawn from P 2 P(X ).
Consider the hypothesis test

(

H0 : P = P0 ,

H1 : P = P1 .
(2.25)

Assume that D(P0||P1) < 1, and let An be an acceptance region for hypothesis H0. Let
the probabilities of error be as defined above, ↵n(An) = P n

0 (Ac
n) and βn(An) = P n

1 (An).
For ✏ 2 (0, 1) define

β?
n(✏) = min

An✓Xn
{βn(An)|↵n  ✏} . (2.26)

For every ✏ 2 (0, 1),

lim
n!1

− 1

n
log β?

n(✏) = D(P0||P1) . (2.27)

Proof. Many proofs exist in literature for Stein’s Lemma (also referred to in some places
as the Cherno↵-Stein Lemma). The problem is that in many cases these proofs are not
strong. While [2] mentions that Stein’s Lemma is a strong property, the proof only shows
that

D(P0||P1) − ✏  lim
n!1

− 1

n
log βn  D(P0||P1) + ✏ , (2.28)

with ✏ > 0 being the constraint put over the error probability of Type I. Clearly, these
bounds are dependent on ✏, and are only tight if ✏ is arbitrarily small. We choose to
present a di↵erent proof, common in tutorials on the subject and taken specifically from
[3], that demonstrates the strong property of Stein’s Lemma. This proof can be found in
Appendix A.1.

Consider now a two-node distributed system with two RVs, as depicted in Figure 2.1.
A similar model, in which only unidirectional communication is allowed, from node A to
node B (see Figure 3.1), was first presented and analyzed in [8]. For the general case,
a strong property was demonstrated for a multi-letter expression, as summarized in the
following lemma:

Lemma 12. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be pairs independently drawn from P 2
P(X ⇥ Y). Consider the hypothesis test

(

H0 : P = PXY ,

H1 : P = PX̄Ȳ ,
(2.29)
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over a distributed system with a unidirectional communication link of rate R, as depicted
in Figure 3.1. Let

✓n(R) = sup
f

n 1

n
D(Pf(X)Y||Pf(X̄)Ȳ) : log |f |  nR

o

, (2.30)

where |f | is the number of different values the function f(·) can present, and let

✓(R) = sup
n

✓n(R) . (2.31)

Defining the error events and their probabilities as above, the following is true:

lim
n!1

1

n
β?
n(R, ✏) = −✓(R) , (2.32)

where β?
n(R, ✏) denotes the optimal error exponent of type II, under constraint ✏ 2 (0, 1)

over the error probability of type I and rate-constraint R.

Proof. Refer to reference [8].

Clearly, Lemma 12 constitutes a strong quality for the error exponent of Type II, as
it is not dependent on the constraint ✏. Note that this result leads to a simple but impor-
tant conclusion: When unidirectional communication is considered for binary distributed
HT problems, the problem boils down to the choice of a good encoding strategy f(·).
Given this choice, the optimal approach is to apply Stein’s Lemma to the entirety of the
information available at node B, namely (f(x),y).

The multi-letter expression of Lemma 12 was calculated explicitly in a single-letter
form in the same paper, for the case of testing against independence, as summarized in
the following lemma.

Lemma 13. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be pairs independently drawn from P 2
P(X ⇥ Y). Consider the hypothesis test

(

H0 : P = PXY ,

H1 : P = PXPY ,
(2.33)

over a distributed system with a unidirectional communication link of rate R, as depicted
in Figure 3.1. For every R ≥ 0,

✓(R) = max
U

n

I(U ;Y ) : U −X − Y, I(U ;X)  R, |U|  |X | + 1
o

. (2.34)

Proof. The proof, based on the Ahlswede-Körner solution to the problem of source coding
with side information [78,94], can be found in [8].

In [9], a new achievable error exponent was proposed for the same distributed system
with a unidirectional link, for the case of general hypotheses, through the method of types
[21]:
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Lemma 14. Under the assumptions of Lemma 12, define the two following sets:

S (R) = {U : I(U ;X)  R ,U −X − Y } ,
L (U) = {ŨX̃Ỹ : PŨX̃(u, x) = PUX(u, x), PŨ Ỹ (u, y) = PUY , 8(u, x, y) 2 U ⇥ X ⇥ Y}

(2.35)
and define the RV Ū so as to satisfy conditions Ū − X̄ − Ȳ and PŪ |X̄ = PU |X , where the
range U of U is over all finite sets. Ū is uniquely determined by these conditions when a
U 2 S (R) is given. Furthermore, define the non-decreasing function

✓L(R) = sup
U2S (R)

inf
ŨX̃Ỹ 2L (U)

D(PŨX̃Ỹ ||PŪX̄Ȳ ) . (2.36)

Let ✓(R) be the error exponent of type II as defined in Lemma 12, then

✓(R) ≥ ✓L(R) . (2.37)

Proof. Refer to reference [9].

While the methods used in [9] di↵er from the ones in [8], it is straight-forward to see
that the result of Lemma 13 for the case of testing against independence can be retrieved
from the general achievable result of Lemma 14 as follows:

✓L(R) = sup
U2S (R)

inf
ŨX̃Ỹ 2L (U)

D(PŨX̃Ỹ ||PŪX̄Ȳ ) (2.38a)

≥ sup
U2S (R)

inf
ŨX̃Ỹ 2L (U)

D(PŨ Ỹ ||PŪ Ȳ ) (2.38b)

= sup
U2S (R)

D(PUY ||PŪ Ȳ ) (2.38c)

= sup
U2S (R)

D(PUY ||PUPY ) = sup
U2S (R)

I(U ;Y ) (2.38d)

Here, (2.38b) is due to the chain rule for KL divergence, (2.38c) is due to the definition
of the set L (U), and (2.38d) stems from the assumption of testing against independence.
The fact that the optimal result for testing against independence can be achieved through
the approach of Lemma 14 gives hope that this approach may lead to good performance
in general, even if not necessarily optimal in the general case. [37] briefly proposes random
binning as an approach to improve on the result of Lemma 14. This approach was never
thoroughly investigated, to the best of our knowledge. We do so in Chapter 3.

Very few works are available in the literature for the case of bidirectional (interactive)
communication. One such work is [20], where testing against independence is considered,
with one round of communication. In this scenario, it is assumed that node A sends a
message, which is then answered with a message from node B. At the end of this process
a decision must be taken. The achievability result proposed in [20] is brought forth in the
following lemma:
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Lemma 15. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be pairs independently drawn from P 2
P(X ⇥ Y). Consider the hypothesis test

(

H0 : P = PXY ,

H1 : P = PXPY ,
(2.39)

over a distributed system with one-round communication. Assume that the communication
from nodes A and B is restricted by rate-constraints RA and RB, respectively. Let

✓2(RA, RB, ✏) = lim
n!1

− 1

n
log β?

n(RA, RB, ✏) (2.40)

be the optimal error-exponent of Type II under the rate-constraints as defined above and
the constraint ↵n  ✏ for the error of Type I. Then

✓2(RA, RB, ✏) ≥ max
PU|X ,PV |UY

RA≥I(U ;X)
RB≥I(V ;Y |U)

I(U ;Y ) + I(V ;X|U) . (2.41)

Proof. Refer to reference [20].

Remark 5. In the same paper, it is also claimed that the expression for ✓2(RA, RB, ✏)
above constitutes a weak converse to the performance. Unfortunately, an error has fallen
in the proof of this claim. We revisit it in Chapter 4.

Remark 6. In this work, whenever considering interactive communication, we will focus
on constraints on the sum-rate, and assume that the participants are allowed to divide the
rate as they see fit in order to benefit performance. It is easy to see that in such a case,
the expression for ✓2 changes to:

✓2(R, ✏) ≥ max
PU|X ,PV |UY

R≥I(U ;X)+I(V ;Y |U)

I(U ;Y ) + I(V ;X|U) . (2.42)

The achievable result of [20] was extended by the same authors in [51] to include the
case of interactive communication over multiple rounds.
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Chapter 3

Joint Detection and Estimation with
Unidirectional Communication

3.1 Overview

In this chapter, based on the work published in [87, 89, 90, 92], we focus on the case of
unidirectional communications, as seen in Figure 3.1. We start by considering the joint
problem of testing against independence and estimation in Section 3.2. Here, node B,
which can be referred to as the decoder in the case of unidirectional communication, is
required to estimate the vector of realizations seen by node A, xn. It does so with average
distortion lower than some threshold D, and only under the condition that the detection
phase concluded H0 is the true hypothesis. Note that the distortion is measured under the
assumption that the right decision has been made, as the “penalty” for erroneous detection
is already embodied in the resulting detection error exponent.

In Section 3.3 we consider a similar scenario of joint detection and estimation, for the
case of general hypotheses. Here, estimation is done irrespective of the decision taken
during the detection phase. However, the distortion allowed under each decision may
be di↵erent. Thus, the rate-exponent-distortion region, which is represented by a triplet
(R,E,D) in the case of testing against independence, is represented by a quadruplet

Node A Node B
R

Xn Yn

H0/H1

X̂n

Figure 3.1: Joint detection and estimation model, with unidirectional communication.
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(R,E,D0, D1) in the case of general hypotheses. Nevertheless, the distortion in this case
is still calculated under the assumption of correct detection.

Finally, the case of general hypotheses is revisited for the case where no estimation is
required. A di↵erent strategy is proposed for this case in Section 3.4. It is shown that
significant gains can be achieved in some cases of testing with general hypotheses, when
the requirement for source estimation is relaxed. This stands in contrast to the separation
principal when testing against independence, as brought forth in Section 3.2.

3.2 Joint Detection and Estimation - Against Inde-

pendence

3.2.1 System Model

Let X and Y be two finite sets. Nodes A and B observe sequences of random variables
(Xi)i2N? and (Yi)i2N? respectively, which take values on X and Y , resp. For each i 2 N

?,
random samples (xi, yi) are distributed according to one of two possible joint distributions:

(

H0 : p0(x, y) = PXY (x, y) ,

H1 : p1(x, y) = PX̄Ȳ (x, y) = PX(x)PY (y) .
(3.1)

on X ⇥Y , and PX(x) =
P

y2Y PXY (x, y) is the marginal distribution of X (and similarly
for Y ), according to hypothesis 0. Moreover, they are independent across time i.

Let d : X ⇥X̂ ! [0 ; dmax] be a finite distortion measure i.e., such that 0  dmax <1.
We also denote by d the component-wise mean distortion on X n ⇥ X̂ n, i.e., for each
(xn, x̂n) 2 X n ⇥ X̂ n, d(xn, x̂n) , 1

n

Pn

i=1 d(xi, x̂i). We assume that node A can send
information to node B over an error-free link with rate R bits per source-symbol. Having
received the information from node A, node B is then required to make a decision (user
authentication) between the two possible hypotheses. After having decided between the
two hypotheses, node B attempts to reconstruct the sequence x, with minimum distor-
tion, for some additive distortion measure, in case H0 was concluded to be the correct
hypothesis. While recovering the sequence seen by node A under hypothesis H1 may
still be possible, it becomes less relevant, as in this case the sequence seen by node B is
completely independent and does not constitute as side information. Furthermore, it is
very likely that in realistic cases where testing against independence arises, deciding H1

implies that the information seen by node A is irrelevant to node B. Thus, for the case of
testing against independence, we assume node B attempts to decode only if it has decided
H0.

Definition 9 (Code). An (n,R)-code (also referred to as “strategy” throughout this thesis)
for testing against independence in this setup is defined by

• An encoding function at node A denoted by fn : X n ! {1, . . . , kfnk} ;
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3.2. Joint Detection and Estimation - Against Independence

• A decision region An ⇢ {1, . . . , kfnk} ⇥ Yn, such that if (fn(xn),yn) 2 An the
decoder declares H0 and otherwise H1 ;

• A reconstruction function at node B denoted by gn : {1, . . . , kfnk} ⇥ Yn ! X̂ n .

Definition 10 (Rate-exponent-distortion region). A tuple (R,E,D, ✏) 2 R
4
+ is said to

be achievable if, for any δ > 0 and for n large enough, there exists an (n,R + δ)-code
(fn,An, gn) such that:

n−1 log kfnk  R + δ ,

E0

⇥
d
(
Xn, gn(fn(Xn),Yn

0 )
)⇤

 D + δ ,

− 1

n
log βn(An) ≥ E − δ ,

↵n(An)  ✏ ,

(3.2)

where βn(An) = Pr
(
An|XY ⇠ p1(x, y)

)
and ↵n(An) = Pr

(
Ac

n|XY ⇠ p0(x, y)
)
, and

distortion is measured under the condition that node B correctly decides H0. The set of all
such achievable tuples is denoted by R? and is referred to as the rate-exponent-distortion
region.

In [8] and later on in [9], the authors show that when testing against independence,
the optimal approach at node B is to apply Stein’s Lemma over the common distribution
of Yn and the encoded descriptions fn(Xn). More specifically, by optimizing over all
decision regions An ⇢ {1, . . . , kfnk} ⇥ Yn, the smallest probability of error of the second
type βn asymptotically behaves as: βn ⇡ exp (−nE(R)) with n large enough, for a fixed
constraint on the error probability of the first type ↵n  ✏, and the exponent E(R)
satisfies [8, Lemma 1.a]:

E(R) = sup
n≥1

En(R) , (3.3)

where

En(R) = sup
fn

⇢
1

n
I (fn(Xn);Yn)

∣
∣
∣ log kfnk  nR

}

. (3.4)

This asymptotic equivalence implies a strong converse property that, much like in the
single-node HT setup, the optimal exponential decay of βn is not dependent upon the
chosen constraint 0 < ✏ < 1 on the error probability of the first type ↵n (e.g. see [48] for a
proof based on image sets). Exploiting this equivalence the optimal rate-error-distortion
region of the system depicted in Fig. 3.1 can be expressed through the following multi-
letter characterization.

Lemma 16 (Multi-letter characterization [8]). The rate-error-distortion region R? when
testing against independence is described by the set of tuples (R,E,D) 2 R

3
+ satisfying:

lim sup
n!1

1

n
log kfnk  R , (3.5a)

lim inf
n!1

1

n
I (fn(Xn);Yn

0 ) ≥ E , (3.5b)

lim sup
n!1

E0

h

d
(
Xn, X̂n = gn(fn(Xn),Yn

0 )
)i

 D , (3.5c)
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for some sequence of encoding and decoding mappings (fn, gn).

Remark 7. Region R? is closed and convex.

3.2.2 Single-Letter Rate-Error-Distortion-Region

We now state the optimal rate-error-distortion region for testing against independence,
which provides a single-letter expression for that in Lemma 16:

Theorem 1 (Rate-error-distortion region). A tuple (R,E,D) 2 R
3
+ is achievable for

the two-node detection and reconstruction problem when testing against independence, as
defined in Definition 10, if and only if two random variables U 2 U and V 2 V, as well
as a reconstruction mapping g : U ⇥ V ⇥ Y ! X̂ , can be found, such that

I(U ;X) + I(V ;X|UY )  R , (3.6a)

I(U ;Y ) ≥ E , (3.6b)

E0

⇥
d
(
X, g(UV Y )

)⇤
 D , (3.6c)

with (U, V ) being two random variables satisfying U − V −X − Y form a Markov chain
with (X, Y ) ⇠ p0(x, y), and kUk  kXk + 2, kVk  kXkkUk + 1.

Proof. The proof of Proposition 1 is given in Appendix B.1.

Remark 8. Observe that on one hand, the expression for the rate can be evaluated as
follows:

R ≥ I(U ;X) + I(V ;X|U) − I(V ;Y |U)

= I(U ;Y ) + [I(V ;X) − I(V ;Y )] ,
(3.7)

where the final equality stems from the Markov chain formed by the RVs, and on the other
hand, from the fact that U − V −X − Y form a Markov chain, it is easy to see that

E0

⇥
d
(
X, g0(V Y )

)⇤
 E0

⇥
d
(
X, g(UV Y )

)⇤
 D , (3.8)

for some mapping g0 and any g. Note that the rate can now be seen as comprised of two
different parts. The first part of the resulting expression in (3.7) is dedicated to detection
since it only affects the error exponent, and is in fact identical to the expression of the
error exponent given in (3.6b) in agreement with previous results [8,9]. The second part of
the rate is dedicated only to source reconstruction and therefore, the rate-error-distortion
region can be seen as being equivalent to two uncoupled problems that share a common
rate. In the following sections, we will see that this is not the case when general hypotheses
are considered.

Remark 9. Note that while the assumption that distortion is only measured in case the
detection of hypothesis H0 is convenient, it is not necessary. As we assume that the

30
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distortion measure is bounded from above, the distortion under the decision H0 (which
may or may not be correct) may be expressed as follows:

E0

⇥
d
(
X, g(UV Y )

)
|“no assumption”

⇤
(3.9a)

= E0

⇥
d
(
X, g(UV Y )

)
, “correct detection”

⇤
Pr{“correct detection”}

+ E0

⇥
d
(
X, g(UV Y )

)
, “incorrect detection”

⇤
Pr{“incorrect detection”} (3.9b)

 E0

⇥
d
(
X, g(UV Y )

)
, “correct detection”

⇤
+ βndmax , (3.9c)

where dmax is assumed to be that maximal value that the distortion function d(·, ·) takes.
As βndmax ! 0 when n ! 1 the relaxation of the assumption that the distortion is
only measured under correct detection does not change the optimal rate-error-distortion
region. Note that the assumption that estimation is only done under the decision H0 was
not relaxed, only the fact that distortion is not measured under incorrect detection.

3.2.3 Binary Symmetric Source

In some cases, the region defined by Theorem 1 can be calculated analytically. We present
such an example here. Consider the following statistical model:

X ⇠ Bern

✓
1

2

◆

,

(

H0 : Y = X + Z, Z ⇠ Bern(p)

H1 : Y ⇠ Bern
(
1
2

)
? X ,

(3.10)

with Bern(p) being a Bernoulli RV with probability p for being 1, and ? signifying that X
and Y are independent of each other. Under both hypotheses, the marginal distributions
of both X and Y are equal. Thus, a decision (or user identification) can be reached only
through cooperation between the nodes. In the next theorem, the rate-error-distortion
region for this problem is characterized by optimizing over all involved random variables
in Theorem 1.

Theorem 2 (Rate-Error-Distortion region for Binary Symmetric Sources). The rate-
error-distortion region for binary symmetric sources (BSS) and testing against indepen-
dence is given by

R ≥ 1 −H2 (↵ ? β ? p) + ✓ [H2 (↵ ? p) −H2 (↵)] , (3.11a)

E  1 −H2 (↵ ? β ? p) , (3.11b)

D ≥ ✓↵− (1 − ✓) p , (3.11c)

for any 0  ↵, β  1
2
, 0  ✓  1. Here H2(·) is the binary entropy function.

Proof. The proof is given in Appendix B.2.
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Figure 3.2: Numerical results of the optimal average distortion as a function of the desired
error exponent of the second type, for di↵erent amounts of available rate and for p = 0.25,
and testing against independence.

3.2.4 Numerical Results

We now present numerical results for the Binary Symmetric Source (BSS) case of testing
against independence. Fig. 3.2 shows six curves, each representing the trade-o↵ between
user authentification and source reconstruction, expressed by the desired error exponent
(second type) and the resulting average distortion of the source estimation, for a fixed
value of available rate and for p = 0.25. Unsurprisingly, all curves are non-decreasing,
meaning that when the probability of error is exponentially smaller, the amount of rate
left for source reconstruction is smaller, resulting in a more crude estimation.

Assuming that both sources Xn and Yn are available at a single location, Stein’s
Lemma yields an error exponent Emax = I(X;Y ) = 1 −H2(p) ⇡ 0.1887. Obviously, this
value constitutes an upper bound –uniform over the rate– on the achievable exponent in
the distributed setup presented here. It can be seen that when R < Emax, the average
distortion reaches its maximal value Dmax = p = 0.25 for some E < Emax. Any exponent
bigger than the value for which this happens is unachievable with this rate, since the
desired exponent would demand more rate than available. When R > Emax, further
enlarging the rate allows for better distortion, for the same values of error exponent.

Note especially the curves for the rate values: R = 0.9 and R = 1 for which the
rates comply with R > H2(p). According to Slepian-Wolf coding (see e.g. [2]), this rate
is enough to transmit xn to node B without distortion, when no detection is necessary.
Indeed, it can be seen that for any choice of error exponent that ensures enough available
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3.3. Joint Detection and Estimation - General Hypotheses

rate for estimation, zero-distortion is achievable. The curve for R = 1 is thus almost invis-
ible, as in this case enough rate is available for source reconstruction, for any achievable
choice of error exponent.

3.3 Joint Detection and Estimation - General Hy-

potheses

We now focus on the general case, where both hypotheses can be general distributions
of two variables. Note that now, unlike the case of testing against independence, the
performance of the system is measured by four quantities, namely the rate, the error ex-
ponent and two distortions, as source reconstruction is attempted under both hypotheses.
Nevertheless, distortion is still measured under the assumption that the detection step
was completed successfully. Unlike the case of testing against independence, optimality
results for general distributed HT remain allusive. An achievable region [9] was inspired
by the approach taken for testing against independence. We propose here an achievable
region for the general hypothesis testing problem with source reconstruction constraints
that makes use of binning for both purposes. The proposed region, while not necessarily
optimal in general, aims at improving on known results for the testing part while also
adding the reconstruction of the source.

3.3.1 System Model

As before, we suppose that the statistician observes Yn samples directly and can be
informed about Xn samples indirectly, via an encoding function fn : X n ! {1, . . . , kfnk}
of rate n−1 log kfnk  R. The code definition remains the same as in Definition 9 with
two reconstruction functions gn,i : {1, . . . , kfnk} ⇥ Yn ! X̂ n

i . However, for each i 2 N
?,

random samples (xi, yi) are distributed according to one of two general joint distributions:

(

H0 : p0(x, y) = PXY (x, y) ,

H1 : p1(x, y) = PX̄Ȳ (x, y) ,
(3.12)

on X ⇥ Y . Moreover, these samples are independent across time i = {1, . . . , n}, and we
assume throughout this chapter that PX(x) = PX̄(x) and PY (y) = PȲ (y), 8(x, y) 2 X⇥Y .

Definition 11 (Rate-exponent-distortion region). A tuple (R,E,D0, D1, ✏) 2 R
5
+ is said

to be achievable if, for any δ > 0, there exists an (n,R + δ)-code (fn,An, gn,0, gn,1) such
that:

n−1 log kfnk  R ,

Ei

⇥
di
(
Xn, gn,i(fn(Xn),Yn)

)⇤
 Di + δ , i = 0, 1

− 1

n
log βn(An) ≥ E − δ ,

↵n(An)  ✏ ,

(3.13)
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where βn(An) = Pr
(
An|XY ⇠ p1(x, y)

)
and ↵n(An) = Pr

(
Ac

n|XY ⇠ p0(x, y)
)
, and

distortion is measured under the condition that node B correctly detects the correct hy-
pothesis. The set of all such achievable tuples is denoted by R? and is referred to as the
rate-exponent-distortion region.

Remark 10. Note the slight abuse of notation in the distortion argument of Defini-
tion 11: Conditioning on the hypothesis, along with the fact that we assume the dis-
tortion is measured only in case the detection phase was completed correctly, means
that for each distortion argument the “correct” RVs are assumed to be used. Thus,
E0

⇥
d0
(
Xn, gn,0(fn(Xn),Yn)

)⇤
 D0 + δ is the correct expression for the distortion un-

der H0, while E1

⇥
d1
(
X̄n, gn,1(fn(X̄n), Ȳn)

)⇤
 D1 + δ is the corresponding expression

under hypothesis 1.

3.3.2 Achievable Rate-Error-Distortion Region

We now state our main result for the general joint distributed detection and reconstruction
problem, which is a new achievable rate-error-distortion region. This region is inspired by
the one o↵ered for the special case of testing against independence. In a similar manner to
the approach taken in Theorem 1, we derive an achievable region based on the separation
of two distinguishable steps, namely user authentication and source reconstruction. The
statistician first decodes the description needed to perform testing, and then reconstructs
the samples sent by the encoder. However, the decision step requires two phases, as
summarized in the corresponding constraints present in the error exponent of the next
proposition.

Proposition 1 (Achievable rate-error-distortion region). A tuple (R,E,D0, D1) 2 R
4
+,

is achievable for the distributed joint detection and reconstruction problem with general
hypotheses, if there exists a positive rate R0 satisfying:

R ≥ R0 + I
(
PX|UY ;PV0|XUY |PUY

)
+ I
(
PX̄|Ū Ȳ ;PV1|X̄Ū Ȳ |PŪ Ȳ

)
, (3.14a)

E  inf
QX2P(X )

sup
Q?

U|X
(QX)2P(U)

inf
QY 2P(Y)

inf
QUXY 2P(U⇥X⇥Y)

QU|X=Q?
U|X

n

min
⇥
G(QUXY , QX , QY , R

0),

min
ŨX̃Ỹ 2L(Q?

UX ,Q?
UY )

D
(
PŨX̃Ỹ kPŪX̄Ȳ

)⇤o

(3.14b)

D0 ≥ E0

h

d0
(
X, X̂0(UY V0)

)i

, (3.14c)

D1 ≥ E1

h

d1
(
X̄, X̂1(Ū Ȳ V1)

)i

. (3.14d)

Here, U and Ū are auxiliary RVs such that QU |X(u|x) = QŪ |X̄(u|x) , 8(u, x) 2 U ⇥X , V0
and V1 are auxiliary random variables verifying the Markov chains U − V0 −X − Y and
Ū − V1 − X̄ − Ȳ (along with U and Ū respectively); L(Q?

UX , Q
?
UY ) is the following set of
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random variables:

L(Q?
UX , Q

?
UY ) =

n

PŨX̃Ỹ 2 P(U ⇥ X ⇥ Y)
∣
∣PŨX̃(u, x) = Q?

UX(u, x),

PŨ Ỹ (u, y) = Q?
UY (u, y), 8(u, x, y)

o

,
(3.15)

where Q?
UX , Q

?
UY are joint distributions implied by QX and the chosen maximizer Q?

U |X ,
and

G(QUXY , QX , QY , R
0) =

8

<

:

min
i={0,1}

D
(
QUXY ||PUXYi

)
+
⇥
R0 − I

(
QX ;QU |X

)
+ I
(
QY ;QU |Y

)⇤+
I
(
QX ;QU |X

)
> R0

+1 else ,

(3.16)
with PUXYi

defined to be PUXY0 , PUXY = PXYQU |X in the case of hypothesis 0 and

PUXY1 , PŪX̄Ȳ = PX̄ȲQŪ |X̄ in the case of hypothesis 1.

Proof. The proof is relegated to Appendix B.3.

We emphasize that when a binning approach is taken, the expression (3.14b) for the
error exponent E encapsulates the innate tension between two error events: decoding the
description and testing based on it. Provided that a good representation un of the observed
samples xn at node A is reliably decoded at node B, the statistician is able to perform
detection with a very large probability of success. However, such a good representation
would also induce a very large size for the codebook which, for a given rate, would cause
each bin to be very large in order to satisfy the rate constraint, making likely errors will
appear during the decoding process of the right sequence from the specific bin. On the
other hand, when a crude description is chosen, the codebook is smaller and thus so is
each bin –if binning is at all necessary. The binning process is therefore not likely to
significantly hurt performance, whereas the retrieved representation is much less valuable
for the sake of performing the test because of the crude nature such description supplies
about the samples xn.

In order to ensure the achievability of the error exponent introduced in Proposition 1,
we take a “worst-case” approach. The minimization and maximization operators in the
expression for E can thus be read as follows: For every possible type of vector xn, the
encoder is allowed to choose its strategy of transmission (this is achieved by taking the
supremum over Q?

U |X). Having chosen the distribution to generate the codebook, the
proposed approach should apply for any type of observed vector yn, as well as for any
joint type (un,xn,yn), as long as Q?

U |X is respected. Much like the case of testing against
independence, achievability is proven by dividing the problem into two distinct parts:
hypothesis testing and source reconstruction. First, a common message –designed to
allow detection– is communicated from node A to node B and is then used regardless
of the probability distribution in e↵ect which is still unknown at this stage. In order
to do so, we choose a decoder based on the empirical entropy, similar to the Empirical
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Mutual Information (MMI) decoder used in compound models (e.g. see [39] and references
therein). Two private messages are then transposed upon this common message, each
intended to be used (together with the common message) under each of the possible
hypotheses. It should be emphasized that dividing the communication in two di↵erent
phases may well be a suboptimal choice. However, we will see that even under such a
choice, gains in the error exponent can be had.

Remark 11. Much like in the case of testing against independence (see Remark 9), the
assumption that distortion is only measured when correct detection has occurred is conve-
nient but not necessary for the achievability of the region proposed in Proposition 1.

3.3.3 Binary Symmetric Source

Having proposed a new approach for hypothesis testing with general hypotheses, based
on binning, it is still not clear if this approach o↵ers strict benefits in performance, when
compared to the non-binning approach of [9]. As was demonstrated in Section 3.2, binning
for testing is not necessary to achieve optimality in the case of testing against indepen-
dence. One may further argue that as binning introduces additional error events, it is not
clear weather or not it would be beneficial at all in the case of general hypotheses.

In the following, we investigate the benefits of binning through a Binary Symmetric
Source (BSS). For the sake of simplicity, we consider the following lower bound over the
performance, throughout the following numerical analysis [9]:

min
ŨX̃Ỹ 2L(Q?

UX ,QUY )
D(PŨX̃Ỹ kPŪX̄Ȳ ) ≥ D(PUY kPŪ Ȳ ) . (3.17)

Consider the following statistical model:

X ⇠ Bern

✓
1

2

◆

,

(

H0 : Y = X + Z0, Z0 ⇠ Bern(p)

H1 : Y = X + Z1, Z1 ⇠ Bern(q) ,
(3.18)

where 1
2
> q > p > 0. Note that while H1 does not imply independence between X

and Y , the marginal distribution of Y is equal for both hypotheses, making a decision
without cooperation impossible. This model was studied first in Wyner-Ziv [43] for source
reconstruction. The optimal rate-distortion region (asymptotic regime) was shown to be

(
R(D) = inf

✓,δ
[✓ (H2(p ⇤ δ) −H2(δ))] ,

D = ✓δ + (1 − ✓)p ,
(3.19)

where p is the crossover probability between the source X and the side information Y ,
and p ? δ is the binary convolution of p and δ. The parameters satisfy 0  ✓  1 and
0  δ  1

2
. The achievability of this region was shown by using time-sharing between two

strategies – in the first the auxiliary RV U is the result of passing X through a BSC with
transition probability δ, while in the second U is degenerate.
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Figure 3.3: Error exponents for both error events in the BSC case with p = 0.1, q = 0.2,
R = 0.4, under the strategy implied by Proposition 1. The resulting error exponent for
each δ is the minimum between the two. Performance with a non-binned codebook is
represented by a dashed line.

We now apply Proposition 1 to this setup, we choose to consider only distributions
in which QX is a BSS, and U is the result of passing X through a BSC with crossover
probability δ. While this is not necessarily an optimal choice, it can be justified as an
optimal approach for the asymptotic regime, at least. To evaluate the resulting error
exponent, we need to calculate two values. The first is given by:

inf
QY

inf
QUXY

QU|X=Q?
U|X

G(QUXY , R) , (3.20)

as a function of Q?
U |X (which, under our assumptions, boils down to be a function of δ).

This expression encapsulates the error exponent of the event where the wrong sequence
is chosen from the bin. The second quantity to calculate is given by:

min
ŨX̃Ỹ 2L(U)

D(PŨX̃Ỹ |PŪX̄Ȳ ) ≥ D(PUY kPŪ Ȳ ) , (3.21)

also as a function of Q?
U |X . This expression represents the error exponent of the event

where, while using the right sequence, an error occurs during the detection process. Having
calculated these two functions, we can pick Q?

U |X such that the minimum between the
two is maximized.

A visualization of the results achieved by the approach of Proposition 1, for the above
discussed statistical model, is depicted in Figure 3.3. We choose to consider only distri-
butions in which QX is a BSS and Q?

U |X represents a BSC with transition probability δ,

37



3.4. Revisiting the Detection of General Hypotheses

as explained above. The “hypothesis testing” curve represents the error exponent of the
probability of the event where a mistake is made in detection, when the correct sequence
is used from the bin. The blue curve represents the event where a wrong sequence was
erroneously selected from the bin (function G). The performance achieved by the optimal
choice of δ, under the assumptions of the approach of Proposition 1 and the ones detailed
above, is marked with a black dot.

The interesting tension that exists between the two error events is represented by the
worst case (minimum) between those curves. when δ is very small, a sequence un can be
found with high probability, such that xn is very well described, and the codebook contains
many sequences un. Thus, given the right sequence un, the error event during the test is
not likely, and the error exponent of the event where the test fails is high. However, since
the rate of communication is fixed, each bin has to contain many sequences in case δ is
small, increasing the error probability in decoding the right sequence. When δ grows, the
accuracy of the description of xn by un is lower, making the probability of error of the
test, while using the correct sequence, higher. The codebook, however, is smaller, making
the task of choosing the right sequence in the bin easier. Note that the error exponent
for choosing the sequence from within the bin has a threshold, under which it is zero.
This threshold in this case is roughly δ ⇡ 0.08, which is the value implied by [43] as the
minimal value for the binning approach, in the asymptotic regime.

In addition, a lower bound can be found in Fig. 3.3. We emphasize that this bound is
not drawn as a function of δ but rather depicts the best possible performance under the
assumptions detailed above, when binning is not performed, as was done in [9]. Thus, δ
is chosen to be the smallest possible, such that the size of the codebook would not exceed
the available rate of communication. A trivial upper bound is also drawn by providing
xn to node B and then applying Stein’s Lemma.

3.4 Revisiting the Detection of General Hypotheses

In this section, we focus on the detection part of the problem only, while still assuming
general hypotheses. Although it was shown that gains in performance can be obtained by
introducing binning as suggested in Proposition 1, we next show that the performance of
detection can be further improved if source reconstruction is not required by the statis-
tician. We start with the following proposition that uses a di↵erent approach for testing
without source reconstruction.

Proposition 2 (Improved error exponent for general hypotheses). A pair (R,E) is an
achievable rate and exponent pair for general hypothesis testing, without source recon-
struction, provided that:

E  sup
Q?

U|X
2P(U)

n

min
{
Ĝ(QUXY , R) , min

ŨX̃Ỹ 2L(Q?
UX , Q?

UY )
D
(
PŨX̃Ỹ kPŪX̄Ȳ

) o

, (3.22)

where
Ĝ(QUXY , R) = R−

⇥
I
(
PX ;Q?

U |X
)
− I
(
PY ;Q?

U |Y
)⇤

(3.23)
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and the set L(Q?
UX , Q

?
UY ) is defined by (3.15). It is worth emphasizing that I

(
PY ;Q?

U |Y
)

in (3.22) is a direct consequence of the choice Q?
U |X . Moreover, the probability distribution

Q?
UY is derived from Q?

U |X and PXY .

Proof. The proof of this proposition is relegated to Appendix B.4.

The proof is very similar to that of Proposition 1. We basically derive the probability of
error for a specific triplet of sequences (xn,yn,un), and then calculate the total probability
of error by summing over all possible types and corresponding sequences included within
each type. The main di↵erence is that now source reconstruction is not required. Thus,
instead of first selecting a sequence from within the bin and only then performing the
test, we let node B operate over the entirety of the bin. The chosen strategy consists of
going over all sequences within the bin. For each sequence un

i in the bin, we assume it is
the correct one and perform the test by checking the typicality of the pair (un

i ,y
n) with

relation to the hypothesis H0. If a sequence is found in a bin such that (un
i ,y

n) 2 T n
[UY ]δ,

the decoder declares H0. Otherwise, if no such sequence is found it declares H1.

As was the case in Proposition 1, Proposition 2 implies that the resulting error expo-
nent is the output of a trade-o↵ between the exponents of the probabilities of two error
events. In this case, the trade-o↵ that controls βn ⇡ exp(−nE) is between: the probabil-
ity of erroneous detection while using the right sequence; and the probability of having
a di↵erent sequence in the bin that is jointly typical with yn and thus would make the
decoder declare H0. It turns out, that this trade-o↵ is much preferable to the one o↵ered
by Proposition 1, as we can bound the set of sequences that might “confuse” the decoder
in a manner that is not dependent on the type of yn. For instance, the minimizations
over QX , QY and QUXY (as seen in Proposition 1) are not longer necessary. This issue
has a positive e↵ect on behavior of the error exponent. As a matter of fact, the fact that
the original sequence sent by the encoder is not retrieved implies that this strategy is not
adapted for the joint problem of detection and source reconstruction.

Remark 12. Another advantage of this strategy over the one given in Proposition 1 is
that while knowledge over the probability distribution implied by PX̄Ȳ is required in order
to analyze performance, such knowledge is not needed in order to perform the test. This
stems from the fact that here, the system only tests if H0 is true or not rather than testing
H0 against H1. In addition, we do not need to assume that PX = PX̄ nor PY = PȲ .

3.4.1 Binary Symmetric Source

Having proposed two new approaches for distributed testing with general hypotheses, one
that allows source reconstruction (Proposition 1) and the other that does not (Proposi-
tion 2), it is interesting to compare the performance in detection achieved under each of
the approaches. In the following, we use the BSS example, presented in Section 3.3.3, in
order to compare the two approaches.
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0 5 · 10−2 0.1 0.15
0

5 · 10−2

0.1

0.15

0.2

δ

hypothesis testing error exponent

G (Proposition 1)
hypothesis testing without binning

Ĝ (Proposition 2)
“Stein” Upper Bound

Figure 3.4: Error exponents for both error events in the BSC case with p = 0.1, q = 0.2,
R = 0.4, under the strategies implied by Propositions 1 and 2. The resulting error
exponent for each δ is the minimum between the two error events. Performance with a
non-binned codebook is represented by a dashed line.

The results implied by Proposition 2 can be calculated in a very similar fashion to the
calculation performed above for the performance under Proposition 1. In this case, the
trade-o↵ is between the curve representing the error while using the correct sequence as
was mentioned in (3.21), and the curve implied by Ĝ, representing the event of an error
caused through the testing of a di↵erent sequence. A visualization of the performance
achieved by each of the proposed methods for general hypotheses in the case of a BSS is
plotted in Fig. 3.4. As before, we choose to consider only distributions in which QX is a
BSS and Q?

U |X represents a BSC with transition probability δ.

The trade-o↵ between the two error events represented by Proposition 2 is apparent
through the curve of the error exponent related to the testing error while testing the
correct sequence, along with the “binning error exponent” denoted by the curve Ĝ. Now,
the additional error event –other than committing an error while using the correct sequence
which turns out to be the same as before– is the event where a di↵erent sequence in the
bin “confuses” the decoder by being jointly typical with yn. While this curve is lower
bounded by the curve representing G for all cases, it can be seen that in the present
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3.4. Revisiting the Detection of General Hypotheses

case this approach is largely superior. As under both approaches we are allowed to select
the strategy Q?

U |X (in this specific case δ) freely, the optimal approach under each of
the propositions would be to choose the corresponding intersection point between the
curve representing G or Ĝ and the curve entitled “Hypothesis Testing Error Exponent” in
Fig. 3.4. These two points are marked with black dots.

3.4.2 Assessing the Gain in Performance

In this section we show that the performance gain shown for the specific example of
binary symmetric sources is in fact general for many cases. In order to do so, we choose
to examine a “cross-section” of the performance gain, at the point where R = I(Ū ; X̄|Ȳ ).
This cross-section is illustrated for the BSC example in Fig. 3.4 by a black dashed line. We
choose this point because of its importance to problems where both detection and source-
estimation are required at the receiver, as seen in previous sections. When R < I(Ū ; X̄|Ȳ )
joint detection and estimation cannot be assured for both hypotheses, under any of the
approaches presented in this work. It can be seen in Fig. 3.4, that it is at this point that
the curve of G[QUXY , R] leaves 0. This is in fact general for all cases, and is implied by
the decoding approach of Proposition 1, where a single sequence must first be chosen,
before detection is performed.

In the example presented above, at the same point, the curve for Ĝ[QUXY , R] is above
the one representing the ‘hypothesis testing error exponent’ while using the intended
sequence (seen in black in Fig. 3.4). This implies that at this point, performance is not
limited by the binning approach. We now check if this observation is true in general:

h

Ĝ[QUXY , R] −D(PUY ||PŪ Ȳ )
i∣
∣
∣
R=I(Ū ;X̄|Ȳ )

(3.24a)

= [R− I(U ;X) + I(U ;Y ) −D(PUY ||PŪ Ȳ )]|R=I(Ū ;X̄|Ȳ ) (3.24b)

= [R− I(U ;X|Y ) − D(PUY ||PŪ Ȳ )]|R=I(Ū ;X̄|Ȳ ) (3.24c)

= I(Ū ; X̄|Ȳ ) − I(U ;X|Y ) −D(PUY ||PŪ Ȳ ) (3.24d)

= I(Ū ; X̄Ȳ ) − I(Ū ; Ȳ ) − I(U ;XY ) + I(U ;Y ) −D(PUY ||PŪ Ȳ ) (3.24e)

= I(U ;Y ) − I(Ū ; Ȳ ) −D(PUY ||PŪ Ȳ ) (3.24f)

, (⇤) . (3.24g)

Here, (3.24c) stems from the Markov chain U − X − Y , while (3.24f) stems from the
same Markov chain, as well as Ū − X̄ − Ȳ . In addition, in this equality it is assumed
that PX = PX̄ (this is not a supplementary assumption, as this needs to be assumed at
least for the sake of Proposition 1, as explained above). Through the chain rule for KL
divergence we get that:

(⇤) = H(Ȳ |Ū) −H(Y |U) −D(PY |U ||PȲ |Ū |PU) , (3.25)
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where D(PY |U ||PȲ |Ū |PU) is the conditional KL-divergence, defined as:

D(PY |U ||PȲ |Ū |PU) =
X

y2Y
u2U

PUY (u, y) log
PY |U(y|u)

PȲ |Ū(y|u)
. (3.26)

In order to check if the performance at this point is not limited by the binning approach
of Proposition 2, we would like to check if this expression is positive, or equivalently if

H(Ȳ |Ū) −H(Y |U) ≥ D(PY |U ||PȲ |Ū |PU) . (3.27)

This is a conditional version of Theorem 3 in [95]. A sufficient (but not necessary) con-
dition for this inequality to hold is thus that Ȳ is majorized by Y , for any choice of
U :

Definition 12 ([95]). Consider discrete probability distributions P = {pi} and Q = {qi}
defined on the positive integers labeled in decreasing probabilities, i.e.,

pi ≥ pi+1 ,

qi ≥ qi+1 .
(3.28)

Q is majorized by P if for all k = 1, 2, . . .

kX

i=1

qi 
kX

i=1

pi . (3.29)

Lemma 17 ([95]). If Q is majorized by P , then

H(Q) −H(P ) ≥ D(P ||Q) . (3.30)

Proof. Refer to reference [95].

When considering the conditional case, as we are required to do here, it is enough
to verify the majorization condition in Lemma 17 for the average of Y (respectively, Ȳ )
over U . Nevertheless, we will restrict ourselves further by demanding that (Ȳ |Ū = u)
is majorized by (Y |U = u) for each u 2 U . A sufficient (but not necessary) condition
for this constraint to be met is that (Ȳ |X̄ = x) is majorized by (Y |X = x) for any
x 2 X . In such a case, there will always be a strategy Q?

U |X (not necessarily unique) that
achieves the maximum in Proposition 2, and such that the majorization constraint holds.
Thus, performance is not limited by our proposed binning approach of Proposition 2,
for any setting that complies with this condition, at our chosen reference point R =
I(Ū ; X̄|Ȳ ). Comparing this to the approach in Proposition 1, where at the same reference
point binning reduces the error exponent of interest to zero, the benefits of the approach
presented in Proposition 2 are clear.

Remark 13. While at a first glance enforcing the majorization condition for each x 2
X might seem unnecessarily strict, in fact it still includes many interesting problems,
including settings in which H0 and H1 imply the same channel from X to Y , with the
difference that the channel implied by H1 is noisier. This is in fact the case of the BSS
example above.
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3.5 Closing Remarks

In this chapter, the problem of joint detection and source estimation over a unidirectional
link was studied. This scenario may arise, for example, when an authentication system
aims to prevent the unauthorized injection of messages into a public channel, assuring
the receiver of a message of the legitimacy of its sender. In this setup a user (referred to
as node A) is required to communicate a lossy description of a memoryless source to a
statistician (referred to as node B) whose task is to verify that the encoding user is the
individual he claims to be and then according to its identity to reconstruct the message
based on the adequate distortion measure, much like in [46, 47]. However, in the setup
considered here the receiver is unaware of the value of its information as well, which leads
to a two-step approach where first a decision has to be made about the identity of node
A before source reconstruction can take place.

When testing against independence, this two-step approach turns out to be optimal.
In this case, detection can be performed optimally as in [8], while source reconstruction is
performed à la Wyner-Ziv [43], and the two-step approach does not induce performance
degradation. When testing with general hypotheses, a similar, albeit more involved, ap-
proach produced a new achievable rate-error-distortion region. Here, optimality may be
hard to reach, as optimality results stay allusive even in the case where the receiver is
aware of the value of the side information (see [42] and references therein). Neverthe-
less, we showed that the two-step approach, which was optimal in the case of testing
against independence, induces in the general case a significant loss in performance. It was
shown that when source reconstruction is not required, valuable information for testing
can be compressed much further than in the opposite case, improving significantly the
performance of detection.
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Chapter 4

Interactive Distributed Hypothesis
Testing

4.1 Overview

In this chapter, based on work published in [88, 91], we broaden our view of the binary
distributed hypothesis testing problem to include interactive communication. While still
considering a two-node system, the link connecting the nodes is assumed to be bidirec-
tional (see Figure 4.1 for a visual depiction of the system) and constrained by a sum-rate
constraint, which the participants are free to allocate in any way to improve performance.
In addition, it is assumed that the location in which the decision is made is unimportant.
Note that this assumption is not very stringent, as sharing a binary decision is a zero-rate
task.

We start this chapter by considering the case where only one“round”of communication
is permitted (i.e., without loss of generality, we assume that node A sends the first message,
which is then replied with a message from node B. A decision must be reached after these
two messages). We propose an achievable error-exponent for the error of the second type
in this case, under a fixed constraint over the error of the first type. This exponent is
inspired by the one proposed in [9] for the case of unidirectional communication. We then

Node A Node B
R

Xn Yn

H0/H1

Figure 4.1: Cooperative Hypothesis Testing model, with interactive communication.
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use similar methods in order to extend this result to any finite number of communication
rounds between the participants.

The case of testing against independence is then revisited. When only one round
of communication is allowed, we show that a known achievable error-exponent [20] can
indeed be attained through our general error-exponent, when testing against independence
is assumed. We proceed to show that this exponent is in fact optimal by proving a converse
theorem. While an extended version of this exponent is shown to be achievable when more
than one round of communication is allowed, we discuss the reasons that this exponent is
no longer optimal.

Finally, we discuss the case of interactive hypothesis testing with zero rate. We show
that the asymptotic performance in this case is equivalent to the performance under a
much stricter one-bit communication constraint.

4.2 System Model

In the bidirectional communication scenario two statisticians are assumed to observe the
i.i.d. realizations of two RVs, X and Y respectively, as depicted in Figure 4.1. The two
RVs are jointly distributed in one of two ways, as was the case in the previous chapter:

(

H0 : p0(x, y) = PXY (x, y) ,

H1 : p1(x, y) = PX̄Ȳ (x, y) .
(4.1)

Communication between the two statisticians is assumed to be done in rounds, with
node A starting the interaction. These interactions are limited, however, by a total
(exponential) rate R bits per symbol. That is, if each of the nodes sees n realizations, the
total amount of bits allowed to exchange data between the nodes before the decision is
made is exp(nR). The data exchange is assumed to be perfect, meaning that within the
rate limit no errors are introduced by the communication. It is assumed that the total rate
can be distributed by the two statisticians in any way that is beneficial to performance.
Moreover, we assume that it does not matter where the decision is finally made, as its
transmission can be done at no cost.

The definition of the two error events, of Type I and Type II, and their respective
probabilities, stays the same as before. The task of the statisticians remains to declare
the true probability distribution out of the two options while minimizing the probability
of error. In a similar fashion to the unidirectional case, as analyzed in Chapter 3, the goal
is to find the exponential rate: − 1

n
log βn (n being the number of samples) s.t. βn ! 0 as

n ! 1, while fixed constraints are enforced on ↵n and the total exchange rate R. The
participants employ a K-round strategy, which is defined as follows:

Definition 13 (K-round collaborative HT). A K-round decision code for the two node
collaborative hypothesis testing system, when each of the statisticians is allowed to observe
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Xn and Yn realizations of X and Y , respectively, is defined by a sequence of encoders and
a decision mapping:

f[k] : X n ⇥
k−1Y

i=1

{1, . . . , |g[i]|} −! {1, . . . , |f[k]|} , k = [1 : K] (4.2)

g[k] : Yn ⇥
kY

i=1

{1, . . . , |f[i]|} −! {1, . . . , |g[k]|} , k = [1 : K] (4.3)

φ : X n ⇥
KY

i=1

{1, . . . , |g[i]|} −! {0, 1} , (4.4)

where f[k] and g[k] are encoder mappings with image sizes satisfying log |f[i]| ⌘ O(n) and
log |g[i]| ⌘ O(n), respectively, while φ is the decision mapping. The corresponding Type I
and II error probabilities are given by

↵n(R |K) := Pr
⇥
φ
(
Xn, g[1:K]

)
= 1 |XnYn ⇠ PXY

⇤
, (4.5)

βn(R |K) := Pr
⇥
φ
(
Xn, g[1:K]

)
= 0 |XnYn ⇠ PX̄Ȳ

⇤
. (4.6)

An exponent E to the error probability of Type II, constrained to an error probability
of Type I to be below ✏ > 0 and a total exchange rate R, is said to be feasible, if for any
" > 0 there exists a code satisfying:

− 1

n
log βn(R, ✏ |K) ≥ E − " , (4.7)

1

n

KX

k=1

log
(
|g[k]||f[k]|

)
 R + " , ↵n(R |K)  ✏ , (4.8)

provided that n is large enough. The supremum of all feasible exponents for given (R, ✏)
is defined to be the optimal error exponent.

4.3 Collaborative Hypothesis Testing with One Round

In this section, we present a feasible error exponent − 1
n

log βn(R, ✏ |K = 1) to the error
probability of Type II, under any fixed constraint ✏ > 0 on the error probability of Type
I for a total exchange rate R. Here, we only consider one round of exchange whereby
each of the nodes exchanges one statistics (or message) before a decision is made. The
extension to the case with multiple exchanging rounds is relegated to the next section.

Proposition 3 (Sufficient conditions for one round of interaction). Let S (R) ⇢ P(U⇥V)
and L (U, V ) ⇢ P(U⇥V⇥X ⇥Y) denote the sets of probability measures defined in terms
of corresponding RVs:

S (R) :=
{
UV : I(U ;X) + I(V ;Y |U)  R (4.9)

U −X − Y , V − (U, Y ) −X , |U|, |V| < +1
 
,

L (U, V ) :=
{
Ũ Ṽ X̃Ỹ : PŨ Ṽ X̃ = PUV X , PŨ Ṽ Ỹ = PUV Y

 
. (4.10)
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A feasible error exponent to the error probability of Type II, when the total exchange rate
is R (bits per sample), is given by

lim
✏!0

lim inf
n!1

− 1

n
log βn(R, ✏ |K = 1) ≥ (4.11)

max
UV 2S (R)

min
Ũ Ṽ X̃Ỹ 2L (U,V )

D
(
PŨ Ṽ X̃Ỹ ||PŪ V̄ X̄Ȳ

)
.

Proof. The proof of Proposition 3 is given in Appendix C.1.

The proposed region of Proposition 3 constitutes an extension of the region given in [9],
for the case of testing general hypotheses with unidirectional communication. By setting
the resources allocated to the message of node B to zero (V ⌘ 0), the region of [9] is
retrieved immediately. Note that the equivalent strategy of unidirectional communication
from node B to node A is also contained in this result, by setting U ⌘ 0.

Remark 14. The error-exponent proposed for the error of type II by Proposition 3, under
a fixed constraint over the error probability of type I can be further improved by using
binning, as discussed in Chapter 3, for unidirectional communication.

4.4 Collaborative Hypothesis Testing with Multiple

Rounds

We now allow the statisticians to exchange data over an arbitrary but finite number of
exchange rounds, and investigate the extension of Proposition 3 to this more general case.
The corresponding result is stated below.

Proposition 4 (Sufficient conditions forK-rounds of interaction). Let S (R) and L
(
U[1:K], V[1:K]

)

denote the sets of probability measures defined in terms of corresponding RVs:

S (R) :=
n

U[1:K]V[1:K] : R ≥
KX

k=1

⇥
I(X;U[k]|U[1:k−1]V[1:k−1]) (4.12)

+ I(Y ;V[k]|U[1:k−1]V[1:k−2])
⇤
,

U[k] −
(
X,U[1:k−1], V[1:k−1]

)
− Y , |U[k]| < +1 ,

V[k] −
(
Y, U[1:k], V[1:k−1]

)
−X , |V[k]| < +1 , 8 k 2 [1 : K]

o

,

L
(
U[1:K], V[1:K]

)
:=
n

Ũ[1:K]Ṽ[1:K]X̃Ỹ : (4.13)

PŨ[1:K]Ṽ[1:K]X̃
= PU[1:K]V[1:K]X , PŨ[1:K]Ṽ[1:K]Ỹ

= PU[1:K]V[1:K]Y

o

,

where U[1:k] := (U[1], . . . , U[k]) and V[1:k] := (V[1], . . . , V[k]) represent the exchanged data
between nodes A and B until round k. A feasible error exponent to the error probability
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of Type II, when the total (over K-rounds) exchange rate is R (bits per sample), is given
by

lim
✏!0

lim inf
n!1

− 1

n
log βn(R, ✏|K) ≥ (4.14)

max
S (R)

min
L

(
U[1:K],V[1:K]

)D
⇣

PŨ[1:K]Ṽ[1:K]X̃Ỹ

∣
∣
∣
∣PŪ[1:K]V̄[1:K]X̄Ȳ

⌘

.

Proof. The proof of Proposition 4 is given in Appendix C.2.

This proposition is very clearly an extension of Proposition 3 to allow multiple rounds
of interaction. The implication of this result is as follows. Given a limited budget of rate
R for data exchange, which the nodes can divide as they choose into any finite number of
K exchange rounds, the gain of interaction attained through the di↵erent characteristics
of the underlying Markov process between the RVs comes at no cost in terms of the form
of the expression for the error exponent.

Remark 15. For reasons of brevity and clarity, we chose in this work to concentrate on
scenarios where the interaction begins and ends at node A. However, it is easy to see
that this does not necessarily need to be the case. The process could start or end at node
B, implying that the final round of exchange is in fact only half of a round, without any
significant changes to the theory or our proofs.

4.5 Collaborative Testing Against Independence

We now concentrate on the special problem of testing against independence, where it is
assumed that underH1 the n observed samples of the RVs (X, Y ) defined on (X⇥Y ,BX⇥Y)
are distributed according to a product measure:

(

H0 : PXY (x, y) , 8 (x, y) 2 X ⇥ Y ,

H1 : PX̄Ȳ (x, y) = PX(x)PY (y) , 8 (x, y) 2 X ⇥ Y ,
(4.15)

where PX(x) and PY (y) are the marginal probability measures implied by PXY (x, y).
Testing against independence in a cooperative scenario was first studied in [20], for the
case of a single round of interaction. It was shown that a feasible error exponent to the
error probability of Type II is given by

lim
✏!0

lim inf
n!1

− 1

n
log βn(R, ✏|K = 1) ≥ E(R) (4.16)

subject to a total available exchange rate R, where:

E(R) := max

PU |X : X 7! P(U)

PV |UY : U ⇥ Y 7! P(V)

s.t. I(U ;X) + I(V ;Y |U)  R

⇥
I(U ;Y ) + I(V ;X|U)

⇤
. (4.17)
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While the proof of feasibility inspired the approach taken in Proposition 3 for general
hypotheses, unfortunately, the auxiliary RVs identified in the weak unfeasibility proof
in [20] do not match the required Markov chains to lead to a feasible exponent (the reader
may refer to [50,96] for further details).

In this section, we revisit the problem of characterizing the reverse inequality in (4.16).
We prove a weak unfeasibility result, determining necessary and sufficient conditions to the
optimality of the error exponent (4.17) satisfying ↵n  ✏ for any 0 < ✏ < 1 (i.e., we prove
that the exponent in (4.17) is optimal in the case where we constrain ↵n to go to 0 with
n). We first show that Proposition 3 implies the feasibility part, i.e., inequality (4.16), and
then follow with a new proof for the unfeasibility (for ✏ arbitrarily small) of any higher
exponent.

Theorem 3 (Necessary and sufficient conditions for testing against independence with
K = 1). The optimal error exponent to the error probability of Type II for testing against
independence is given by

lim
✏!0

lim inf
n!1

− 1

n
log βn(R, ✏|K = 1) := E(R) , 8 0 < ✏ < 1 , (4.18)

where E(R) is defined in (4.17), and R denotes the available rate of interaction between
the statisticians and ✏ is the error probability of Type I.

Proof. In order to show the feasibility to the exponent (4.17) through the general result
stated in Proposition 3, it is convenient to use an intermediary form of the exponent for
general hypotheses, which appears in the final steps of the proof (see (C.17g)):

lim inf
n!1

− 1

n
log βn(R, ✏|K = 1) ≥ (4.19)

max
UV 2S (R)

min
Ũ Ṽ X̃Ỹ 2L (U,V )

h

D(PŨX̃Ỹ ||PŪX̄Ȳ ) + I(X̃; Ṽ |Ũ Ỹ )
i

.

We analyze each of these components separately:

D(PŨX̃Ỹ ||PŪX̄Ȳ ) = D(PŨ Ỹ ||PŪ Ȳ ) + D(PX̃|Ũ Ỹ ||PX̄|Ū Ȳ |PŨ Ỹ ) (4.20a)

= I(U ;Y ) + D(PX̃|Ũ Ỹ ||PX̄|Ū |PŨ Ỹ ) (4.20b)

= I(U ;Y ) + D(PX̃|Ũ Ỹ ||PX̃|Ũ |PŨ Ỹ ) + D(PX̃|Ũ ||PX̄|Ū |PŨ) (4.20c)

≥ I(U ;Y ) + D(PX̃|Ũ Ỹ ||PX̃|Ũ |PŨ Ỹ ) , (4.20d)

where (4.20a) is due to the chain rule and D(PX̃|Ũ Ỹ ||PX̄|Ū Ȳ |PŨ Ỹ ) is the conditional KL-
divergence; 4.20b stems from the assumption of testing against independence, as well as
the Markov chain Ū − X̄− Ȳ and the fact that PŨ Ỹ = PUY ; and (4.20d) is due to the fact
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that the KL-divergence is non-negative. To conclude the analysis, we note that:

D(PŨX̃Ỹ ||PŪX̄Ȳ ) ≥ (4.21)

I(U ;Y ) +
X

(u,x,y)2U⇥X⇥Y
PŨX̃Ỹ (u, x, y) log

 

PX̃|Ũ Ỹ (x|u, y)

PX̃|Ũ(x|u)

!

= I(U ;Y ) +
X

(u,x,y)2U⇥X⇥Y
PŨX̃Ỹ (u, x, y) log

 

PX̃Ỹ |Ũ(x, y|u)

PX̃|Ũ(x|u)PỸ |Ũ(y|u)

!

= I(U ;Y ) + I(X̃; Ỹ |Ũ) .

As for the second term in (4.19), we express it as follows:

I(Ṽ ; X̃|Ũ Ỹ ) = I(Ṽ Ỹ ; X̃|Ũ) − I(X̃; Ỹ |Ũ) ≥ I(Ṽ ; X̃|Ũ) − I(X̃; Ỹ |Ũ) . (4.22)

This allows us to conclude through (4.19) that

lim inf
n!1

− 1

n
log βn(R, ✏ |K = 1) ≥ max

UV 2S (R)
min

Ũ Ṽ X̃Ỹ 2L (U,V )

h

I(U ;Y ) + I(Ṽ ; X̃|Ũ)
i

= max
UV 2S (R)

[I(U ;Y ) + I(V ;X|U)] ,
(4.23)

which completes the proof of feasibility through Proposition 3. The proof of converse is
given in Appendix C.3

Remark 16. In a similar manner to Theorem 3, a feasible error exponent to the error
probability of Type II with K rounds is given by

lim
✏!0

lim inf
n!1

− 1

n
log βn(R, ✏|K) ≥ (4.24)

max
U[1:K]V[1:K]2S (R)

KX

k=1

⇥
I
(
U[k];Y |U[1:k−1]V[1:k−1]

)
+ I

(
V[k];X|U[1:k]V[1:k−1]

)⇤
.

The proof of the feasibility of (4.24) follows largely the same path as the one for the
feasibility part provided for Theorem 3. However, for K > 1 our unfeasibility proof does
not hold and this feasible exponent result may not longer be optimal. The reasons for this
are explained in Appendix C.4.

4.6 Collaborative Hypothesis Testing with Zero Rate

We now consider another special case of Proposition 4, whereby testing is done over two
general hypotheses, but the total exchange rate is zero. It is worth mentioning that zero-
rate does not mean that no information exchange is possible, but rather that the size of
the codebook grows slower than exponentially with the blocklength n, as stated in the
following theorem.
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Theorem 4 (Necessary and sufficient conditions under zero-rate). Let PXY and PX̄Ȳ be
any probability measures such that supp(PX̄Ȳ ) = supp(PXY ) = X ⇥ Y. Assume the total
exchange rate R = 0, that is:

KX

k=1

log |f[k]| +
KX

k=1

log |g[k]| ⌘ o(n) , (4.25)

the optimal error exponent to the probability of Type II is given by

lim
n!1

− 1

n
log βn(R = 0, ✏ |K) = (4.26)

min
X̃Ỹ 2L0(X,Y )

D(PX̃Ỹ kPX̄Ȳ ) := E(R = 0) , 8 0 < ✏ < 1 ,

where L0(X, Y ) :=
{
X̃Ỹ : PX̃ = PX , PỸ = PY

 
.

Proof. The proof is given in Appendix C.5.

It is worth mentioning that the same expression (4.26) was proven in [9] to be feasible
based on unidirectional one bit exchange, i.e., |f[1]| = 2, |g[1]| = 0. This observation implies
that when zero-rate is enforced, not only does interactive data exchanges not help, but
only one bit of unidirectional exchange is enough. In addition, note that this is a strong
unfeasability result, as the optimal exponent for βn is not dependent on the constraint ✏
over the error probability of Type I.

4.7 Closing Remarks

In this chapter we focused on the problem of binary hypothesis testing over a bidirectional
link. Much like the case of a unidirectional link discussed in the previous chapter, problems
of this type can arise in cases user authentication is necessary, for example. In fact, the
bidirectional link scenario adds difficulty for a potential imposter, as it would have to
continue to come up with messages that correspond to jointly typical sequences at every
round of communication. Moreover, this scenario may constitute a theoretical base for
cases where automatic decision-making is needed in real-time and with few resources, as
may be the case is IoT or smart-home applications.

When considering the general case, the approach proposed by [9] was extended to
include cooperative communication, first over one round, and then to any finite number
of communication rounds. The result achieved through this extension showed that in
fact, by allowing cooperative communication we do not change the basic form of the error
exponent, but at the same time allow ourselves to “play” with the Markovian relations
between the auxiliary RVs, in a way that may improve performance.

The special case of testing against independence was revisited in this chapter. Al-
though this case was already investigated in [20,51], some holes in the theory remained to
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be filled. This was accomplished in this chapter by first reestablishing the achievability
result through our result for general hypotheses, and then proving a weak converse for
this special case when one round of communication is permitted. Unfortunately, while the
achievability result can be extended to multiple rounds of communication, it was shown
that extending the converse is a non-trivial task. This is unsurprising in some sense, as
after the first round of communication, the total amount of information that is present
at both sides is no longer independent, even under H1.

Finally, a strong converse property was demonstrated for the case of interactive com-
munication with zero rate. Note that while assuming zero rate prevents the codebooks to
grow exponentially with the number of realizations n, it does not mean that no commu-
nication is allowed between the nodes. This strong converse turned out to be compatible
with an achievable scheme that only allows unidirectional communication of one bit, which
implies that under a zero-rate constraint only one bit is necessary in order to achieve the
optimal result.

53



4.7. Closing Remarks

54



Chapter 5

Conclusions and Outlook

5.1 Concluding Remarks

In this work, the performance of distributed systems was studied, under di↵erent com-
munication constraints, for di↵erent tasks in hypothesis testing. Focusing on a two-node
distributed model with binary HT, a model which was used in literature extensively (see
e.g., [8,9,20] and more), the communication constraints imposed on the system, as well as
the required task, di↵ered throughout the thesis. While di↵erent methods were used for
each case specifically, some tools rose as universally indispensable in this subject. These
were mainly tools from the method of types [21], which allow a type-by-type analysis of
performance, and may prove to be more precise in some cases then methods of typicality.

The first problem we focused on, in Chapter 3, consisted of the joint problem of
distributed detection and lossy compression with side information. This scenario arises
when an authentication system prevents the unauthorized injection of messages into a
public channel, assuring the receiver of a message of the legitimacy of its sender. In this
setup a user (referred to as node A) is required to communicate a lossy description of a
memoryless source to a statistician (referred to as node B) whose task is to verify that
the encoding user is the individual he claims to be and then, according to its identity, to
reconstruct the message based on the adequate distortion measure, much like in [46, 47].
However, in the setup considered here the receiver is unaware of the value of its information
as well, which leads to a two-step approach where first a decision has to be made about
the identity of node A, before source reconstruction can take place.

When testing against independence, this two-step approach turns out to be optimal.
In this case, detection can be performed optimally as in [8], while source remonstration is
performed à la Wyner-Ziv [43], and the two-step approach does not induce performance
degradation. An application example to a binary symmetric source was also shown for
which the optimal region was explicitly derived, emphasizing an interesting tension be-
tween the error exponent corresponding to the Type II error probability and the average
distortion measure.
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When testing with general hypotheses, a similar, albeit more involved, approach pro-
duced a new achievable rate-error-distortion region. Here, optimality may be hard to
reach, as optimality results remain allusive even in the case where the receiver is aware
of the value of the side information (see [42] and references therein). Nevertheless, we
showed that the two-step approach, which was optimal in the case of testing against inde-
pendence, induces in the general case a significant loss in performance. It was shown that
when source reconstruction is not required, valuable information for testing can be com-
pressed much further than in the opposite case, improving significantly the performance
of detection.

The second problem, presented and analyzed in Chapter 4, focuses on tasks in HT
only, while allowing interactive communication between the statisticians of the system.
This scenario was studied for the special case of testing against independence in [20, 51],
although many questions still remained unanswered, even for this special case. The more
general case, where both hypotheses can induce any common distribution of the source
RVs, was never analyzed, to the best of our knowledge. The interest in this scenario goes
beyond problems in source authentication (although these too may benefit from interactive
communication) to problems involving automated decision-making. This is especially true
when the communication is assumed to be made over an open channel, into which each
of the participants can tap in order to broadcast to the other participants. One field in
which the theoretic work done in this thesis can constitute a background to interesting
practical scenarios is the IoT (see e.g., [22,23]) –a field that has seen increasing academic
interest in recent years.

An achievable error-exponent for the Type II error event, constrained by a fixed con-
straint for the Type I error probability, was given in Chapter 4, based on methods de-
veloped for a unidirectional communication link in [9]. Interestingly, it seems that the
cooperative approach allows for gains in terms of degrees-of-freedom (by allowing the
users to divide resources over di↵erent RVs, which have di↵erent characteristics) while
not changing the basic form of the expression being minimized. This fact gives hope that
interaction can lead to considerable gains in performance in some practical scenarios. The
same observation was shown to stay true in a subsequent section of the work, when any
finite number of communication rounds between the nodes was assumed to be allowed.

Revisiting the special case of testing against independence, the previously developed
achievable error exponent of [20] was shown to also be achievable through our result for
general hypotheses. This distinction becomes important as we were able to show that
this error exponent was in fact optimal, at least in a weak sense, when testing against
independence is considered over one round of communication. Optimality could not be
shown for testing against independence over multiple rounds. The reason for this was
explained in this thesis. The fact that the totality of the information available at each
node after the first round is not independent between the nodes, even under hypothesis
H1, makes the fact that optimality is hard to achieve in this case very conceivable.

Finally, the special case of interactive hypothesis testing with zero-rate communica-
tion was also investigated. A specific error-exponent, showed in [9] to be achievable with
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unidirectional one-bit communication was shown to be strongly optimal, even with code-
books that may grow (sub-exponentially) with the number of realizations n, as well as
bidirectional communication.

Weaknesses: Some basic assumptions of the research presented in this thesis raise
questions about its possible applicability to real-world systems. First and foremost, it
seems unlikely that the probability distributions implied by both hypotheses would be
available to the statisticians. It is far more likely that these distributions would have to
be observed and assessed out of observations, or that information about them would be
missing. This angle of the problem can conceivably be attacked through methods related
to universal source coding (see e.g., [97] and references therein).

Another problematic aspect of the assumptions made in this thesis may be the fact
that it is assumed that the probability distribution controlling the RVs does not change
throughout the detection process, even when the number of observations n may be very
large. Recently, the interesting work in [98] addressed the need to detect possible changes
in the correct hypothesis, that may occur during the process of collecting the observations.
Likewise, [99, 100] consider the case of transient changes, where it is assumed that the
system starts and finishes at the same state, and only transits through another one at
some point.

The rest of this chapter is dedicated to open problems and prospects of future research,
related to the progress made in this thesis.

5.2 Outlook

The final remarks of this work are dedicated to a brief outlook of possible future directions
of research in the subject of distributed HT with communication constraints.

5.2.1 The Benefit of Interaction when Testing Against Indepen-
dence

In Chapter 4, a (weakly) optimal error-exponent was given for the error probability of
Type II, under a fixed constraint over the error probability of Type I, for testing against
independence over one round of interaction. It was shown that the error-exponent that
was shown to be achievable in [20] is also achievable through the general error-exponent
of Proposition 3. In addition, Theorem 3 proved the (weak) optimality of this result. We
now focus on this case and pose the following question –when testing against independence
over one round, is interaction beneficial?

In [20], an example is given to the possible benefit in performance, when comparing
interactive communication to unidirectional communication from node A to node B. This
example consists of a common distribution PXY that assumes that X and Y are connected
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Figure 5.1: Two equivalent representations of the Z-channel controlling X and Y under
hypothesis 0, in the example of Xiang and Kim. Probabilities are marked in red and
transition probabilities are marked in blue.

through a Z-channel, with the following joint probabilities:

PXY (0, 0) =
1

2
, PXY (0, 1) = 0 , (5.1a)

PXY (1, 0) =
1

4
, PXY (1, 1) =

1

4
. (5.1b)

A visual description of this channel can be seen in Figure 5.1, both as a Z-channel from
X to Y as well as the backwards Z-channel from Y to X. Probabilities are in red and
conditional probabilities (or transition probabilities) are in blue. Naturally, it is assumed
that hypothesis 1 implies the same marginal probabilities for X and Y , while keeping
them independent. The following was shown to be true:

Lemma 18. Given the test against independence defined above, where a Z-channel is
assumed between the sources X and Y under hypothesis 0, implying the joint probability
in (5.1), full interaction leads to a gain in performance, in terms of error-exponent of
Type II under a fixed constraint over the error probability of Type I, when compared to a
unidirectional scenario, from node A to node B. In other words, when computed for the
example given above,

max

PU |X : X 7! P(U)

PV |UY : U ⇥ Y 7! P(V)

s.t. I(U ;X) + I(V ;Y |U)  R

⇥
I(U ;Y ) + I(V ;X|U)

⇤
≥ max

PW |X : X 7! P(W)

s.t. I(W ;X)  R

⇥
I(W ;Y )

⇤
. (5.2)

Proof. Refer to reference [20].

While Lemma 18 is indeed proved in [20], only the expression for unidirectional com-
munication is evaluated. As calculating the expression for bidirectional communication is
complicated, the authors choose to use a lower bound, consisting of allocating all resources
to the communication of node B. While indeed this shows that bidirectional communica-
tion beats the unidirectional option, when node A acts as the transmitter, the question
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Figure 5.2: Numerical results for the Z-channel example presented by Xiang and Kim,
compared with cooperative communication.

that arises is, are there cases in which real cooperative communication (i.e., when some
resources are allocated to both sides) beats both unidirectional options?

Taking the same example and calculating the error exponent achieved by cooperative
communication numerically, we found that it does not beat, in this case, unidirectional
communication from node B to node A. These results can be seen in Figure 5.2. While
the results of the numerical calculations are not smooth, as the larger alphabets, which
become necessary, o↵er substantial numerical complexity, it is clear that the performance
when “real” interaction is allowed matches the one of unidirectional communication from
node B in this case. In other words, when the channel from X to Y is not identical to the
reverse channel from Y to X, the benefit in interaction may be the result of the superiority
of one of these channels, for the sake of HT against independence, with relation to the
other. We feel that this could in fact be a general phenomena, as summarized in the
following conjecture:

Conjecture 1. When testing against independence over a bidirectional channel, coopera-
tive communication does not lead to a gain in performance, in terms of error exponent of
Type II, when the error of Type I is constrained to diminish with the number of realizations
n (↵n ! 0), when compared to a choice between the two possible options of unidirectional
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communication:

max

PU |X : X 7! P(U)

PV |UY : U ⇥ Y 7! P(V)

s.t. I(U ;X) + I(V ;Y |U)  R

⇥
I(U ;Y ) + I(V ;X|U)

⇤

= max

(

max

PW |X : X 7! P(W)

s.t. I(W ;X)  R

⇥
I(W ;Y )

⇤
, max

PZ|Y : Y 7! P(Z)

s.t. I(Z;Y )  R

⇥
I(Z;X)

⇤

)

.

(5.3)

Note that the constraint ↵n ! 0 is to compare both expressions in the setting of
a weak converse, as we don’t know that the expression for interactive testing against
independence is optimal in the strong sense. Intuitively, this conjecture can be explained
as follows: It is conceivable that one side may be more apt to sending relevant information
to the other, for the sake of testing against independence. In case such directionality exists,
there could never be a “reason” to allocate some of the resources to the other side. In
other words, the benefit of creating “real” interaction cannot compensate for the choice to
allocate some resources to the inferior side. In the case where both sides are equivalent,
there is still no gain to be had from dividing the resources between the nodes. This can
be seen for the BSS example, as was treated in the case of testing against independence
and unidirectional communication in Section 3.2.3, in Figure 5.3.

We propose this conjecture for proof (or a counter-example) in future work on the
subject. Such a conclusion could lead to great simplification in real-life systems.

5.2.2 Strong Converse for Interactive Hypothesis Testing

In [8], a strong property is proven for distributed hypothesis testing over a unidirectional
link, for any two hypotheses. Thus, while we do not have a single-letter expression for the
optimal error-exponent for the error event of Type II, we do know that such an optimal
exponent cannot be dependent on the constraint enforced upon the error probability of
Type I. We propose a similar approach as a direction for future research. While the
interest in such a result is naturally quite clear, we try to explain in this section why
proving a strong property for testing with interactive communication is a formidable task.

The proof of [8] relies heavily on the blow-up lemma (Lemma 25, see Appendix C.5).
The main idea is that given a strategy such that βn  exp{−nE} and ↵n  ✏ is achieved
for n large enough, a new strategy can be devised such that βn  exp{−nE} and ↵n ! 0.
Thus, while the actual expression for the optimal error exponent is not known, it is clear
it cannot depend on the constraint ✏.
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Figure 5.3: Numerical results for the BSC example with transition probability p = 0.4,
comparing unidirectional and cooperative communication.

Trying to implement a similar approach for a bidirectional channel (even when testing
over one round of communication) raises some major difficulties. Here, three types of sets
need to be defined in the following manner:

A(n)
i = {xn 2 X n : f(x) = i} , (5.4a)

B(n)
ij = {yn 2 Yn : g(i,y) = j} , (5.4b)

C(n)
j = {xn 2 X n : φ(j,x) = 0} . (5.4c)

Here, f(·) : X n ! {1, 2, . . . , exp{nRA}} is the encoding function of node A, taking the
vector x to message i, g(·, ·) : {1, 2, . . . , exp{nRA}} ⇥ Yn ! {1, 2, . . . , exp{nRB}} is the
encoding function at node B, taking the received message i and the vector y to a message
j, and φ(·, ·) : {1, 2, . . . , exp{nRB}} ⇥ X n ! H0/H1 is the decoding function, taking the
received message and the vector x to a final decision. The desired property now could
be referred to as a “conditional” blow-up lemma. Unfortunately, this property does not
exist, as summarized in the following lemma:

Lemma 19. Let PX|Y : Y ! P(X ) be any given conditional probability distribution on
finite sets X and Y. Assume that

Pr(Cn|Xn 2 An, Y
n = y) ≥ exp(−n✏n) , (5.5)
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for each n, and some sets An, Cn ✓ X n and for some sequence ✏n ! 0. It cannot be said
in general that

Pr(ΓlnCn|Xn 2 An, Y
n = y) ≥ ⌘n , (5.6)

for some pair of sequences such that ln = o(n) and ⌘n ! 1 as n ! 1, and the operator
Γln as defined in Lemma 25.

Proof. We need to show a counter-example. Neglecting y, as it is of no consequence to
the result, let X = {0, 1} with PX(0) = PX(1) = 1

2
. Let the sets An and Cn be defined as

follows:

An =
{
xn : x1 = x2 = · · · = xbn

2
c = 0 or x1 = x2 = · · · = xbn

2
c = 1

 
,

Cn =
{
xn : x1 = x2 = · · · = xbn

2
c = 0

 
.

(5.7)

That is, An is the set of all the vectors such that the first bn
2
c entries are identical (either

0 or 1), while Cn is the set of all vectors such that the first bn
2
c entries are equal to 0.

Clearly, while both P n
X(An) =

(
1
2

)bn
2
c−1

and P n
X(Cn) =

(
1
2

)bn
2
c

approach 0 exponentially,
P n
X(Cn|An) = 1

2
does not.

Considering the set ΓlnC, it can be defined as follows:

ΓlnCn =
{
xn : x1 = x2 = · · · = xbn

2
c = 0 except for up to ln times

 
. (5.8)

In order for a sequence γn ! 0 to exist, such that P n
X(ΓlnCn|An) ≥ 1 − γn, ln must at

least approach n
2
, thus not complying with ln

n
! 0.

While this example shows that the property above is not always true, the number of
examples that still turn out to fulfill it is quite amazing. It is straight-forward to show
that the desired property is true whenever the probability of the set An can be bounded
from below (there exist a constant ⌘ > 0 such that P n

X(An) ≥ ⌘, 8n), for example. Other
examples also turn out to fulfill this property quite often.

While the existence of a strong property for hypothesis testing with cooperative com-
munication is not dependent on the existence of a “conditional blow-up lemma”, we do feel
that in some sense the blow-up lemma captures the essence of the strong property, and
the lack of a conditional version puts this property in doubt for the cooperative case. An
interesting direction for future research could be to investigate weather such a property
exists in general for HT with interactive communication. In case it does not exist in gen-
eral, what are the mathematical constraints on the sets An, Cn such that a “conditional”
blow up lemma exists? Are those constraints enough to also prove a strong property in
HT?

5.2.3 Other directions

Except for the two directions proposed above, research in distributed HT can advance in
many other directions. Clearly, the question of optimality stays open in the general case,
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for any type of communication constraint. Even the relatively simple case of unidirectional
communication is open –not only in terms of optimality, but for any non-trivial upper
bound. As the work in this thesis shows that finally, the expressions in the bidirectional
case are similar to the ones of the unidirectional case (at least in terms of an achievable
error exponent), this gives hope that any method that would work for one case could be
adapted to the other.

Another direction, proposed briefly in Chapter 4, is the exploration of random binning
with the goal of improving the Type II error exponent in the bidirectional case. This
direction seems to be quite clearly one that could improve the proposed error exponent of
Proposition 3. However, as the binning approach leads to a trade-o↵ between two error
events, and this for each step of the cooperative communication, the resulting expression
risks being highly non-compact and thus contributing little to the general understanding
of the problem. Additionally, as the binning approach takes advantage of the randomness
of the side information, available at the decoder, in order to improve performance, we
believe that the benefit of applying it would decrease with every additional round of
communication, as each side “learns” about the realizations seen by the other side.

Finally, finding ways to calculate the formulas discussed throughout this thesis would
be very interesting. As in most cases the achievable error exponent is the result of a
minimum operator taken over some set, this task could pose quite a challenge. Specifi-
cally –how to evaluate the correct error exponent while making sure it is not surpassed?
Possible approaches to this question could potentially be found in works on iterative al-
gorithms such as the Blahut-Arimoto algorithm ([101, 102], see also the connection with
the information bottleneck problem in the introduction).
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Appendix A

Useful Results

A.1 Proof of Lemma 11 (Stein’s Lemma)

While many di↵erent proofs of Stein’s Lemma exist in literature (for example in [1,2]), the
proof we choose to present here has the advantage of demonstrating the strong property
of Stein’s Lemma. This proof, while common in tutorials on the subject (see e.g., [3]), is
hard to come by in an official publication, to the best of our knowledge.

A.1.1 Proof of Achievability

Consider the decision regions

Bn = {x : D(Qx||P0)  δn} , (A.1)

where QX is the type of the vector x and δn = 1p
n
. In this case we can calculate

↵n(Bn) = P n
0 (Bc

n) = P n
0 ({x : D(Qx||P0) > δn}) =

X

x:D(Qx||P0)>δn

P n
0 (x) (A.2a)

=
X

P̂2Pn(X ):D(P̂ ||P0)>δn

X

x2T[P̂ ]

P n
0 (x) =

X

P̂2Pn(X ):D(P̂ ||P0)>δn

P n
0 (T[P̂ ]) (A.2b)


X

P̂2Pn(X ):D(P̂ ||P0)>δn

exp{−nD(P̂ ||P0)} 
X

P̂2Pn(X ):D(P̂ ||P0)>δn

exp{−nδn} (A.2c)

=
X

P̂2Pn(X ):D(P̂ ||P0)>δn

exp{−p
n}  (n+ 1)|X | exp{−p

n}  ✏ . (A.2d)

Here, (A.2b) is the result of changing the order of summation to be over types first and
over sequences within each type second. (A.2c) is due to Lemma 6 and then to the
definition of the chosen acceptance sets Bn. (A.2d) stems from the choice of δn and the
bound over the number of possible types of length n (see Lemma 4). Finally, the resulting
expression is lower than ✏ when n is large enough.
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A.1. Proof of Lemma 11 (Stein’s Lemma)

Estimating the error of Type II, we have

βn(Bn) = P n
1 (Bn)  (n+ 1)|X | exp{−nD(P ?||P1)} (A.3)

by Sanov’s Theorem (see e.g., [2, 103]), with

P ? = argmin
P̂ :D(P̂ ||P0)δn

D(P̂ ||P1) . (A.4)

As δn ! 0 and D(P̂ ||P0) = 0 if and only if (i↵) P̂ = P0, the optimizer P ? converges to
P0, i.e.,

P ?(a) ! P0(a) , 8a 2 X . (A.5)

Hence,
βn(Bn)  (n+ 1)|X | exp{−n(D(P0||P1) + o(1))} , (A.6)

which completes the proof of achievability.

A.1.2 Proof of Converse

We now prove that for any choice of strategy,

βn(✏) ≥ exp{−nD(P0||P1)} . (A.7)

Note that this exponent does not depend on the constraint over the Type I error proba-
bility, ✏. To do so, we first establish the following lemma:

Lemma 20. Let Dn ⇢ X n be a subset satisfying

P n
0 (Dn) > 1 − ✏ , (A.8)

where ✏ 2 (0, 1). Then for any 0 < δ < 1 − ✏ and n large enough, we have

P n
1 (Dn) > (1 − ✏− δ) exp{−n(D(P0||P1) + δ)} . (A.9)

Proof. Fix δ 2 (0, 1 − ✏), Define the relative entropy typical set:

En =
n

x : −δ  1

n
log

P n
0 (x)

P n
1 (x)

−D(P0||P1)  δ
o

. (A.10)

By the weak law of large numbers, P n
0 (En) > 1 − δ for all n large enough. Furthermore,

by the union bound

P n
0 (Ec

n [ Dc
n)  P n

0 (Ec
n) + P n

0 (Dc
n)  δ + ✏ , (A.11)

so
P n
0 (En \ Dn) ≥ 1 − (δ + ✏) . (A.12)
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A.1. Proof of Lemma 11 (Stein’s Lemma)

Now consider

P n
1 (Dn) ≥ P n

1 (Dn \ En) ≥
X

x2Dn\En

P n
1 (x) (A.13a)

≥
X

x2Dn\En

P n
0 (x) exp{−n(D(P0||P1) + δ)} (A.13b)

= exp{−n(D(P0||P1) + δ)}P n
0 (Dn \ En) (A.13c)

≥ (1 − δ − ✏) exp{−n(D(P0||P1) + δ)} , (A.13d)

where (A.13b) uses the definition of the relative entropy typical set En, and (A.13d) stems
from (A.12).

Having proven Lemma 20, the proof of a strong converse to Stein’s Lemma becomes
quite simple: For any “legal” acceptance region An, we have the property P n

0 An  ✏.
Thus, using Dn = Ac

n in the premises of Lemma 20, we get immediately that

lim
n!1

1

n
log βn(✏) ≥ −D(P0||P1) − δ + lim

n!1
log(1 − ✏− δ) . (A.14)

As the final term obviously vanishes to 0, along with the fact that this claim is true for
any δ 2 (0, 1 − ✏), this proves that

lim
n!1

1

n
log βn(✏) ≥ −D(P0||P1) (A.15)

as desired.
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Appendix B

Hypothesis Testing with
Unidirectional Communication

B.1 Proof of Theorem 1

In this appendix, we prove the achievability and converse to Theorem 1.

B.1.1 Proof of Achievability

In order to prove achievability, we propose an encoding and decoding strategy, based on
a two-tier approach. We then analyze the probabilities of error in detection, as well as
the average distortion, in order to guarantee that the performance implied by Theorem 1
is achieved.

Codebook generation: Fix a conditional probability distributionQV U |XY = QV |UXQU |XPXY

such that U − V − X − Y form a Markov chain. Let QU(u) =
P

x2X PX(x)QU |X(u|x)
and QV |U(v|u) =

P

x2X QV |UX(v|u, x). Let the total available rate of communication R
be divided into two, such that the parts are dedicated to U and V , which represent the
di↵erent parts of the message. Denote the rate dedicated to the transmission of U by R̂,
while the rate dedicated to the transmission of V is denoted by R0. Randomly and inde-
pendently generate exp(nR̂) sequences u through the i.i.d. pmf QU(u), with replacement,
such that u(s1) 2 T[U ]δ, 8s1, with s1 2 [1 : exp(nR̂)]. For each codeword u(s1), randomly
and independently generate exp(nS2) sequences denoted by vn(s1, s2) and indexed with
s2 2 [1 : exp(nS2)] by using the conditional pmf QV |U(·|u(s1)), with replacement, such
that v(s1, s2) 2 T[V |U ]δ(u(s1)). Divide theses sequences into exp[nR0] bins, such that each
bin contains roughly exp[n(S2 −R0)] sequences.

Encoding: Assuming that the source sequence xn is produced from X, look for the
first codeword in U ’s codebook such that (un(s1),x

n) 2 T n
[UX]δ. Then, look for the first

codeword vn(s1, s2) s.t. (vn(s1, s2),x
n) 2 T n

[V X|U ]δ(u(s1)). Let b be the bin of vn(s1, s2).

Send the message f(xn) = (s1, b) to node B.
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Decoding: Given u(s1), b and yn, the decoder first checks if (un(s1),y
n) 2 T n

[UY ]δ.
If so, it declares H0 and otherwise it declares H1. If the decoder decides H0, it then
attempts to decode the message (with average distortion D) based on v(s1, s2). This
codeword is first recovered by looking in the bin b for the unique codeword such that
vn(s1, s2) 2 T n

[V |UY ]δ(u(s1),y
n). Then, a per-letter function g(·) is applied over the entire

available information (U, V and Y ) in order to produce a reconstruction of the source.

Error events and constraints: We start with the HT part, and the relation between
the expression I(U ;X) and the achievable error exponent. Denoting by B0 the event
“an error occurred during encoding” (of the HT part U), we expend its probability as
Pr(B0)  Pr(B1) + Pr(B2) with:

Pr(B1) , Pr{Xn /2 T n
[X]δ} ,

Pr(B2) , Pr{@s1 s.t. (u(s1),X
n) 2 T n

[UX]δ|Xn 2 T n
[X]δ} ,

(B.1)

being the probabilities that the source X produces a non-typical sequence, and that
(for a typical source sequence) the codebook doesn’t contain an appropriate codeword,

respectively. From the Asymptotic Equipartition Property (AEP), Pr(B1)  ⌘
(1)
n −!

n!1
0.

As for Pr(B2):

Pr(B2) =
(
Pr{(Un,Xn) /2 T n

[UX]δ|Un 2 T n
[U ]δ,X

n 2 T n
[X]δ}

)exp(nR̂)
(B.2a)

=
(
1 − Pr{(Un,Xn) 2 T n

[UX]δ|Un 2 T n
[U ]δ,X

n 2 T n
[X]δ}

)exp(nR̂)
(B.2b)

 exp[− exp(nR̂)Pr{(Un,Xn) 2 T n
[UX]δ|Un 2 T n

[U ]δ,X
n 2 T n

[X]δ}] (B.2c)

 exp[− exp(nR̂) exp−n

(
I(U ;X)+⌘

(2)
n

)

] (B.2d)

= exp{− exp[−n
(
I(U ;X) − R̂ + ⌘(2)n

)
]} . (B.2e)

Here, inequality (B.2c) is due to the inequality (1 − a)n  exp(an) [2]. Since ⌘
(2)
n −!

n!1
0,

Pr(B2) ! 0 if R̂ > I(U ;X).

Analysis of ↵n: Calculating the probability of error of the first type, ↵n, boils down
to the following:

↵n = Pr(H1|XY ⇠ PXY ) (B.3a)

 Pr(B0) + Pr{(Un,Yn) /2 T n
[UY ]δ|Un 2 T n

[U ]δ, (U
n,Xn) 2 T n

[UX]δ, XY ⇠ PXY } (B.3b)

 Pr(B0) + ⌘(3) . (B.3c)

Here, (B.3b) is due to the fact that when calculating the probability of error of Type
I, we may assume that the true distribution controlling the RVs is the one implied by
hypothesis 0. (B.3c), with ⌘(3) ! 0, is due to the Generalized Markov Lemma (see
Lemma 8 in Chapter 2). Thus, it may be concluded that ↵n ! 0 when n! 1, and thus
↵n  ✏ for any constraint ✏ > 0 and n large enough.
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Analysis of βn: Next, we look at the achievable error exponent of Type II with the
proposed encoding scheme, by following steps similar to [104, Lemma 6]:

1

n
I (f(Xn);Yn|C) =

1

n
[H(Yn|C) −H(Yn|f(Xn), C)] = H(Y ) − 1

n
H(Yn|f(Xn), C) .

(B.4)
Here, C denotes the chosen codebook, which is known to all parties. The second term
here can be evaluated by defining the RV

Ŷn =

(

Yn if (un(s1),Y
n) 2 T n

[UY ]δ

; else
, (B.5)

and writing

1

n
H(Yn|f(Xn), C)  1

n
H(Yn|s1) (B.6a)

=
1

n

exp(ns1)X

j=1

H(Yn|s1 = j)Pr(s1 = j) (B.6b)

=
1

n

exp(ns1)X

j=1

H(YnŶn|s1 = j)Pr(s1 = j) (B.6c)

=
1

n

exp(ns1)X

j=1

0

B
@H(Ŷn|s1 = j)
| {z }

(⇤)

+H(Yn|Ŷn, s1 = j)
| {z }

(⇤⇤)

1

C
APr(s1 = j) . (B.6d)

Here, the inequality in (B.6a) stems from the fact that f(Xn) contains (but is not limited
to) the information s1, and side information makes entropy smaller. (B.6c) stems from
the fact that Ŷ is a function of Y, and (B.6d) is due to the chain rule. We bound this
expression further by treating each part separately:

(⇤) =
1

n

exp(nS1)X

j=1

H(Ŷn|s1 = j)Pr(s1 = j) (B.7a)

 1

n

exp(ns1)X

j=1

log
(
||T n

[Y |U ]δ(u
n(j))|| + 1

)
Pr(s1 = j) (B.7b)


exp(ns1)X

j=1

(
H(Y |U) + ⌘(3)n

)
Pr(s1 = j) = H(Y |U) + ⌘(4)n , (B.7c)

where (B.7b) is due to the fact that uniform distribution maximizes entropy and (B.7c)
stems from bounding the size of the typical set T n

[Y |U ]δ(u
n(j)), as can be found in Sec-
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tion 2.3.

(⇤⇤) =
1

n

exp(nR̂)
X

j=1

H(Yn|Ŷn, s1 = j)Pr(s1 = j) (B.8a)

 1

n

exp(nR̂)
X

j=1

⇣

1 + Pr{Yn 6= Ŷn|s1 = j} log |Y|n
⌘

Pr(s1 = j) (B.8b)

 1

n
+

exp(nR̂)
X

j=1

Pr{(un(s1),Y
n) /2 T n

[UY ]δ|s1 = j} log |Y|Pr(s1 = j) (B.8c)

 1

n
+ (Pr(B1) + Pr(B2)) log |Y| . (B.8d)

Here, (B.8b) stems from Fano’s inequality [2]. As was already shown, if R̂ > I(U ;X)
both Pr(B1) and Pr(B2) go to 0 when n! 1. Thus

H(Yn|Ŷn, s1 = j)Pr(s1 = j)  ⌘(5)n −!
n!1

0 . (B.9)

All in all:
1

n
H(Yn|s1)  H(Y |U) + ⌘(4)n + ⌘(5)n , (B.10)

and

1

n
I(f(Xn);Yn) ≥ H(Y ) −H(Y |U) − ⌘(4)n − ⌘(5)n = I(U ;Y ) − ⌘(4)n − ⌘(5)n . (B.11)

Thus, if I(U ;Y ) ≥ E so is 1
n
I(f(Xn);Yn) and the achievability of the error exponent is

complete.

Analysis of the Estimation Phase: Finally, we show that given a (correct) decision
H0, the RV V can be used to decode Xn with the desired distortion: Denoting by B3 the
event “an error occurred during encoding or decoding” (of V ), we expend its probability
as follows Pr(B3)  Pr(B4) + Pr(B5), with Pr(B4) being the probability that no codeword
v(s1, s2) could be found in the codebook for the given sequence xn and the chosen code-
word u(s1), and Pr(B5) being the probability that a di↵erent codeword in the same bin b
is compatible with yn and u(s1).

Pr(B4) , Pr{@s2 s.t. (vn(s1, s2),x
n) 2 T n

[V X|U ]δ(u
n(s1))}

=
⇥
Pr{(Vn,Xn) /2 T n

[V X|U ]δ(u(s1))|V n 2 T n
[V |U ]δ(u(s1)),X

n 2 T n
[X]δ(u(s1))}

⇤exp(nS2)

 exp
n

− exp(nS2) exp[−n
(
I(V ;X|U) + ⌘(6)n

)
]
o

= exp
n

− exp[−n
(
I(V ;X|U) − S2 + ⌘(6)n

)
]
o

.

(B.12)
Thus, Pr(B4) −!

n!1
0 if S2 > I(V ;X|U). Finally,

Pr(B5) , Pr{9s02 2 b s.t. vn(s1, s
0
2) 2 T n

[V |UY ]δ(u
n(s1),y

n)} , (B.13)
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with b being the bin sent to node B.

Pr(B5)  exp[n (S2 −R0 + ✏)]Pr{Vn 2 T n
[V |UY ]δ(u

n(s1),y
n)|V n 2 T n

[V |U ]δ(u
n(s1))}

 exp[n (S2 −R0 + ✏)] exp[−n
(
I(V ;Y |U) + ⌘(7)n

)
]

= exp
h

−n
(
I(V ;Y |U) − (S2 −R0) + ⌘(7)n − ✏

)i

.

(B.14)
Thus, Pr(B5) −!

n!1
0 if S2 −R0 < I(V ;Y |U), or equivalently

R0 > S2 − I(V ;Y |U) > I(V ;X|U) − I(V ;Y |U) (B.15a)

= I(V ;XY |U) − I(V ;Y |U) = I(V ;X|UY ) , (B.15b)

where equality (B.15b) stems from the Markov chain U − V − X − Y . Thus, since the
total rate R is composed of R̂ and R0, we conclude that our scheme is achievable if
R > I(U ;X) + I(V ;X|UY ).1

We now know that our scheme allows the decoding of vn with high probability when
the rate is large enough. It remains to be shown that V (together with U and Y , which
are also known at node B) is enough to recover X with average distortion D. We choose
a (possibly suboptimal) decoder, that decodes xi only from (ui, vi) and yi:

d
(
xn, x̂n(un,vn,yn)

)
=

1

n

nX

i=1

d
(
xi, x̂(ui, vi, yi)

)
(B.16a)

=
X

8(x,u,v,y)
d
(
x, x̂(u, v, y)

)
Qxnunvnyn(x, u, v, y) (B.16b)

E

h

d(X, X̂(UV Y ))
i

+
X

8(x,u,v,y)
|Qxnunvnyn(x, u, v, y) − p(x, u, v, y)| (B.16c)

E0

h

d(X, X̂(UV Y ))
i

+ dmax|X ||U||V||Y|δn , (B.16d)

where the summation in (B.16b) and (B.16c) is over all the possible letters in the respective
alphabets of the RVs (x, u, v, y) 2 X ⇥ U ⇥ V ⇥ Y and inequality (B.16d) holds since

(xn,un,vn,yn) 2 T n
[XUV Y ]δ. Since δn −!

n!1
0, the condition D > E0

h

d
(
X, X̂(UV Y )

)i

is

sufficient to achieve distortion D+ ✏ at node B. This concludes the proof of achievability.

1We explicitly ignored an additional error event, which is that yn is not typical. The probability of
this event goes to 0 much like Pr(B1), thanks to the AEP.
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B.1.2 Proof of Converse

Denote by W = f(Xn) the message sent from node A to node B. The rate can be bounded
as follows:

nR ≥ I(W ;Xn) (B.17a)

= I(W ;Xn,Yn) = I(W ;Yn) + I(W ;Xn|Yn) (B.17b)

=
nX

i=1

I(W,Yi−1;Yi) +
nX

i=1

I(W ;Xi|Yn,Xi−1) (B.17c)

=
nX

i=1

I(W,Yi−1;Yi) +
nX

i=1

I(W ;Xi|Yi,Yn
i+1,Y

i−1,Xi−1) (B.17d)

=
nX

i=1

⇥
I(W,Yi−1;Yi) + I(W,Yn

i+1,Y
i−1,Xi−1;Xi|Yi)

⇤
(B.17e)

=
nX

i=1

⇥
I(W,Yi−1;Yi) + I(W,Yi−1;Xi|Yi) + I(Yn

i+1,X
i−1;Xi|Yi,Yi−1,W )

⇤
(B.17f)

=
nX

i=1

⇥
I(W,Yi−1;Yi, Xi) + I(Yn

i+1,X
i−1;Xi|Yi,Yi−1,W )

⇤
(B.17g)

=
nX

i=1

⇥
I(W,Yi−1;Xi) + I(Yn

i+1,X
i−1;Xi|Yi,Yi−1,W )

⇤
. (B.17h)

Here, (B.17b) and (B.17h) are due to the Markov chains W −Xn −Yn and W −Xi − Yi,
respectively. (B.17e) stems from the fact that both sources X and Y are assumed to be
jointly i.i.d. Defining Ui , (W,Yi−1) and Vi , (Ui,Y

n
i+1,X

i−1) the Markov chain Ui−Vi-
−Xi − Yi is satisfied since the sources X and Y are assumed to be jointly i.i.d, and the
bound over the rate becomes

R ≥ 1

n

nX

i=1

[I(Ui;Xi) + I(Vi;Xi|Ui, Yi)] = I(U ;X) + I(V ;X|UY ) , (B.18)

with U and V defined through time-sharing as is subsequently shown in (B.21).

The error exponent can now be expressed as follows:

I(W ;Yn) =
nX

i=1

I(W,Yi−1;Yi) =
nX

i=1

I(Ui;Yi) = nI(U ;Y ) , (B.19)

with the same definition of Ui. Thus, the converse over the error exponent is proved with
equality.

Finally, the distortion at node B can be bounded as follows. Define the function X̂i

as the i-th coordinate of the estimate in node B:

X̂i(Ui, Vi, Yi) , gi(W,Y
i−1, Yi,Y

n
i+1) . (B.20)
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The component-wise mean distortion thus verifies

D + ✏ ≥ E0

⇥
d
(
Xn, g(W,Yn)

)⇤
=

1

n

nX

i=1

E0

h

d
(
XQ, X̂Q(UQ, VQ, YQ)

)
|Q = i

i

= E0

h

d
(
XQ, X̂Q(UQ, VQ, YQ)

)i

= E0

h

d
(
X, X̂(U, V, Y )

)i

.

(B.21)

For the sake of this calculation, we use the fact that any Ui and Vi, as they were defined
for this converse, contain the entire message W , as well as the past and future of Y . This
concludes the converse proof in Proposition 1.

B.1.3 Cardinality bounds

It remains to establish that the cardinality bounds specified by the conditions in Theorem 1
do not a↵ect the minimization. Toward that end we invoke the support lemma [82, p.
310] in order to deduce that U must have kXk − 1 letters in order to ensure preservation
of p(x|u) plus three more to preserve the constraints on D, I(U ;X) and I(U ;Y ), so
kUk  kXk + 2 suffices. Similarly, V must have kXkkUk − 1 letters in order to ensure
preservation of p(x, u|v) plus two more to preserve D, and I(X;V |UY ). Thus, it suffices
to have kVk  kXkkUk + 1.

B.2 Proof of Theorem 2

B.2.1 Proof of Achievability

In order to achieve the region proposed in Theorem 2, choose V as the output of a Binary
Symmetric Channel (BSC) with cross-over probability ↵ when the input is X. Choose U
as the output of another BSC, with cross-over probability β, when the input is V :

V = X +W1, W1 ⇠ Bern (↵) ,

U = V +W2, W2 ⇠ Bern (β) .
(B.22)

Calculating the expression for the error exponent, U and Y can be thought of as connected
through a BSC with cross-over probability ↵ ? β ? p, which yields:

I(U ;Y ) = H(U) −H(U |Y ) = 1 −H2(↵ ? β ? p) . (B.23)

This complies with the expression proposed in Theorem 2. The relation between the
second term in the expression for the rate and the amount of distortion expected can be
calculated through the following two steps, inspired by the approach taken in [43], for the
case of source estimation with side information, jointly distributed according to a BSC
(without uncertainty in the probability distribution of the sources):
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a) Setting X̂ = g(Y, V ) = V , we have E

h

d(X, X̂)
i

= ↵. Note that all expectations

henceforth are taken over the distribution imposed by H0, and under the assumption that
the decision H0 was correct. Y and V can be thought of as being connected through a
BSC with cross-over probability ↵ ? p. Thus (3.7) results in

Ra = I(U ;Y ) + [I(V ;X) − I(V ;Y )] = 1 −H2(↵ ? β ? p) + [H2(↵ ? p) −H2(↵)] .
(B.24)

b) In this part, we let V be degenerate and X̂ = g(Y, V ) = Y . We then have

E

h

d
⇣

X, X̂
⌘i

= p. Since in this case I(V ;X) − I(V ;Y ) = 0, we have

Rb = I(U ;Y ) = 1 −H2(↵ ? β ? p) . (B.25)

Now let 0  D  p be given and say that ✓, ↵ are such that D = ✓↵+ (1 − ✓)p. Since
R(D) is convex (for a given error exponent E),

R(E,D) = R(✓↵ + (1 − ✓)p)  ✓R(↵) + (1 − ✓)R(p)

= ✓Ra + (1 − ✓)Rb  1 −H2(↵ ? β ? p) + ✓ [H2(↵ ? p) −H2(↵)] .
(B.26)

Thus, any triplet (R,E,D) that complies with Theorem 2 is achievable through this
scheme, and the proof of achievability is complete.

B.2.2 Proof of Converse

Theorem 1, along with the development in (3.7), implies that the optimal region, for any
specific example of hypothesis testing against independence, is comprised of two RVs, such
that the Markov chain U − V −X − Y is respected. Moreover, it implies that with these
optimal auxiliary RVs, the required rate is comprised of two independent parts – one part
dedicated to detection and the other to estimation. Thus, the proof of the converse to
Theorem 2 can be divided, much like the proof of achievability, into two separate parts -
one defining the trade-o↵ between the rate and the error exponent, while the other defines
the trade-o↵ between the rate and the distortion.

Starting with the relation between the rate and the error exponent, Theorem 1 implies
that

E  I(U ;Y ) = H(Y ) −H(Y |U) = 1 − A , (B.27)

while

R ≥ 1 − A+ ✓ [I(V ;X) − I(V ;Y )] , (B.28)

with A defined as A , H(Y |U). Ignoring the second term in the expression for the rate,
the trade-o↵ between rate and error exponent is clear, and is given through A. Obviously,
A  H(Y ) = 1. In addition,

A ≥ H2

(
H−1

2 (H(X|U)) ? p
)
, (B.29)
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which stems from Ms. Gerber’s Lemma (see e.g. [105]). In order to allow the exploration
of the entire region defined by the bounds over A, we define γ , H−1

2 (H(X|U)). Thus,
the trade-o↵ between rate and error exponent becomes

E  1 −H2(γ ? p) ,

R ≥ 1 −H2(γ ? p) + ✓ [I(V ;X) − I(V ;Y )] .
(B.30)

In the second part of the proof, it needs to be demonstrated that, once the decision H0

has been (correctly) made, the optimal estimation region, defined by the rate-distortion
relation min

E[d(X,X̂)]D
[I(V ;X) − I(Y ;X)], is in agreement with Theorem 2. This proof

has already been given in [43] and is thus omitted from this work. Defining V as the
output of a BSC with cross-over probability ↵ when X is in the input of the channel,
as was shown to be optimal in [43], and keeping in mind the Markov chain implied by
Theorem 1, it is clear that γ = H−1 (H(X|U)) ≥ ↵. Thus, γ can be expressed as γ = ↵?β
for some 0  β  1

2
, which completes the proof.

B.3 Proof of Proposition 1

We now prove the achievability of the region o↵ered in Proposition 1 for the joint detection
and lossy compression problem, with general hypotheses. We start by describing the
codebook, as well as encoding and decoding strategies, and follow by an analysis of error
events under the proposed strategy.

B.3.1 Encoding and decoding strategy

Codebook Construction: For a given block-length n we operate on a type-by-type basis.
For each type QX 2 Pn(X ), fix a conditional type Q?

U |X(QX) 2 Pn(U). Randomly and

uniformly choose a set of codewords denoted by Cn
U(QX), from the resulting marginal type

class T n
Q?

U
(QX) which is induced by QX and Q?

U |X(QX). The size of Cn
U(QX) is an integer

satisfying:
exp

⇥
nI
(
QX ;Q?

U |X(QX)
)⇤

+(|U||X | + 2) log(n+ 1)

 |Cn
U(QX)| 

exp
⇥
nI
(
QX ;Q?

U |X(X)
)⇤

+(|U||X | + 4) log(n+ 1) ,

(B.31)

where Cn
U(QX) is the codebook of the common message for source type QX . Define fU :

T n
QX

! Cn
U(QX), i.e., a function fU(xn) that determines the codeword sent by the encoder

(node A) to the decoder (node B), as subsequently explained. We define Un , fU(Xn).
In addition, assign an index: k(QX) : Pn(X ) ! {1, . . . , (n+ 1)|X |} to each of the possible
types of vectors xn 2 X n.

As a second step, let V0 and V1 be two RVs, designed to transmit a private message to
the decoder, depending on the actual distribution in e↵ect (i.e., if it is decided that H0 is
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the true hypothesis V0 is used and otherwise V1 is used) such that U − V0 −X − Y and
Ū − V1 − X̄ − Ȳ .

For each codeword un 2 Cn
U , randomly pick exp [nS0] sequences vn

0 (s0), indexed
with s0 = [1 : exp (nS0)], and exp [nS1] sequences vn

1 (s1), indexed with s1 = [1 :
exp (nS1)], from the conditional typical sets T n

[V0|U ]δ(u
n) and T n

[V1|Ū ]δ
(un), respectively.

Divide them into exp (nR0) (respectively exp (nR1)) bins, such that each bin contains
roughly exp [n(S0 −R0)] (respectively exp [n(S1 −R1)]) sequences. In the remainder of
this proof we only treat source reconstruction in case hypothesis H0 was chosen, as the
complementary case is completely symmetric.

Encoding: Given a sequence xn 2 T n
QX

, search for a sequence un 2 Cn
U(Qxn), i.e., in

the codebook that belongs to the type Qxn , such that (un,xn) 2 T n
[UX]δ. As a second

step, look for a codeword vn
0 (s0) such that (vn

0 (s0),x
n) 2 T n

[V0X|U ]δ(u
n) with the typicality

measured according to the distribution induced by hypothesis H0. Let B0(v
n
0 (xn,un))

denote the element (or “bin”) to which vn
0 is mapped. Perform the same steps for the case

where H1 is the chosen hypothesis.

The encoder’s message then consists of four parts:

M1 = {1, 2, . . . ,M1 , exp (nR0)} ,
M2 =

{
1, 2, . . . ,M2 , (n+ 1)|X | ,

M3 = {1, 2, . . . ,M3 , exp (nR0)} ,
M4 = {1, 2, . . . ,M3 , exp (nR1)} ,
M = M1 ⇥M2 ⇥M3 ⇥M4 .

(B.32)

The encoder sends the type of xn which requires |M2| values but with zero rate, and also
F (fU(xn)), as well as the respective bins for both private messages, B0(v

n
0 (xn,un)) and

B1(v
n
1 (xn,un)), to be defined subsequently. There are two cases to consider:

1 log |Cn
U(Qxn)| < nR0, in which case we can map each member of Cn

U(Qxn) to an
element of M1 in a one-to-one manner.

2 log |Cn
U(Qxn)| ≥ nR0, in which case we assign each distinct member of Cn

U(Qxn) to
M1 uniformly at random.

Let F (fU(xn)) denote the element to which fU(xn) is mapped. The encoder can be
expressed mathematically as

 (x) =
(
F (fU(xn)), k(Qxn), B0(v

n
0 (xn,un)), B1(v

n
1 (xn,un))

)
, (B.33)

for each xn 2 T n
Qxn

.

Decoding: The decoder first attempts to discover the word un, by using the information
sent from the encoder and the observation vector yn:

• If log |Cn
U(Qx)| < nR0 the codeword can be decoded without error;
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• Otherwise log |Cn
U(Qx)| ≥ nR0 the decoder receives a bin index and uses side infor-

mation yn to pick the best un in the bin. Given the bin number, the type Qxn and
the side information yn, the decoder uses a minimal empirical entropy decoding 2

that is:
φ(F (fU(xn)), Qxn ,yn) = ûn , (B.34)

if H(ũn|yn) > H(ûn|yn) for ûn 2 F (fU(xn)) and all ũn 2 F (fU(xn)) with ũn 6= ûn,
where

H(ûn|yn) , −
X

a2U ,b2Y
Qûnyn(a, b) logQûn|yn(a|b)

is the empirical entropy of the vector ûn given the vector yn.

As a second step, the decoder uses the private message –either vn
0 or vn

1– destined
for the case of the current hypothesis in order to estimate xn, with distortion D0 or
D1, respectively. Assume hypothesis H0 is in e↵ect, it searches for a single sequence
v̂n
0 2 B0(v

n
0 (xn,un)) such that v̂n0 (s0) 2 T[V0|UY ]δ(u

nyn). If it finds no such sequence it
declares an error during the reconstruction. If it finds more than one, it chooses one
sequence at random.

B.3.2 Error probability of the testing step

We now show that, for the detection part, the exponential rate of decay of the error of
the second type, under a fixed constraint over the error of the first type, is not smaller
than the value claimed by Proposition 1. The analysis of possible errors at the encoder’s
side stays identical to the one done in the proof of Theorem 1 in Appendix B.1 (note that
we assume the PX(x) = PX̄(x), without which the analysis of the encoder’s side, with an
emphasis on the codebook construction, might become more involved. Such an analysis
can be found in proofs related to Chapter 4, where a similar assumption is not made).
Note also that when a problem does arise during encoding, our proposed scheme calls
for an error message which prompts node B to declare H1. Thus, the influence of such
errors is only on the error probability of Type I, and not on the error exponent of Type
II. We concentrate in this analysis on possible errors at the decoder’s side. Define two
error events: First, let

B6 , {un 6= F (fU(xn))} (B.35)

be the event that the chosen sequence from the bin at the decoder is di↵erent from the
original sequence sent by the encoder. Then, define B7 to be the event of erroneous
detection despite using the correct sequence. We denote the probabilities of events B6

and B7 by P
(n)
r and P

(n)
d , respectively. Using the union bound, the probability of error in

detection can be bounded by
P (n)
e  P (n)

r + P
(n)
d . (B.36)

2Note that since our chosen test is over empirical entropies, it does not matter at this stage which
hypothesis is the true one, for the sake of choosing the sequence from the bin. After having retrieved
a single sequence from the bin, the decoder can continue to perform HT by discarding the rest of the
sequences in the bin and only using the chosen sequence.
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Evaluation of P
(n)
r : We evaluate the probability that node B chooses the wrong se-

quence from the bin under the suggested encoding and decoding schemes. Our evaluation
is reliant on the method of types [21], and is specifically inspired by the techniques used

in [86, Appendix C]. We first evaluate P
(n)
r for a finite block-length n and then use a

continuity argument to show that in the limit of n! 1,

− 1

n
logP (n)

r  G(QUXY , QX , QY , R
0) =

8

<

:

min
i={0,1}

D
(
QUXY kPUXYi

)
+
⇥
R0 − I

(
QX ;QU |X

)
+ I
(
QY ;QU |Y

)⇤+
I
(
QX ;QU |X

)
> R0

1 else.

.

(B.37)

Since choosing the wrong sequence can only happen in case binning is used, we are
only interested in the following subset of the set of all possible sequences:

An =
n

(un,xn,yn) 2 Un ⇥X n ⇥ Yn
∣
∣un 2 T n

Q?
U|X

(Qxn) , log |Cn
U(Qxn)| ≥ nR

o

. (B.38)

We first evaluate the probability of choosing the wrong sequence within the set An by
using the following lemma.

Lemma 21. Let (un,xn,yn) 2 An and let B8 be the event that un 6= φ( (xn),yn). If
log |Cn

U(Qxn)| ≥ nR then

Pr (B8|Un = un,Xn = xn,Yn = yn)  exp
⇥
− n (R− J(Qunxnyn) − δn)

⇤
, (B.39)

with

J
(
Qunxnyn

)
, I
(
Qxn ;Q?

U |X(Qxn)
)
− I
(
Qun|yn ;Qyn

)
(B.40)

and

δn ,
1

n
log(n+ 1)|U|(1+|X |+|Y|)+4 . (B.41)

The probability in (B.39) is taken over the choice of the codebook in use.

Proof. Let S(un|yn) be the set that includes all sequences ũn, such that ũn has the same
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type as u and H(ũn|yn)  H(un|yn). Then

Pr (B8|Un = un,Xn = xn,Yn = yn)


X

ũn2S(un|yn)
ũn 6=un

Pr
(
ũn 2 Cn

U(Qxn), {F (ũn) = F (un)}|Un = un,Xn = x,Yn = y
)

(B.42a)


X

ũn2S(un|yn)
ũn 6=un

Pr
(
ũn 2 Cn

U(Qxn)|Xn = xn,Yn = yn
)
Pr
(
{F (ũn) = F (un)}

)
(B.42b)


X

ũn2S(un|yn)
ũn 6=un

(n+ 1)|U|(1+|X |)+4 exp
⇥
n
(
I(Qxn ;Q?

U |X(Qxn)) −H(Qun)
)⇤ 1

M1

(B.42c)

 (n+ 1)|U||Y| exp
⇥
nH(Qun|yn |Qyn)

⇤ 1

M1

(n+ 1)|U|(1+|X |)+4⇥ (B.42d)

⇥ exp
⇥
n
(
I(Qxn ;Q?

U |X(Qxn)) −H(Qun)
)⇤

= (n+ 1)|U|(1+|X |+|Y|)+4 exp
⇥
−n
(
R−H(Qun|yn |Qyn) +H(Qun) − I(Qxn ;Q?

U |X(Qxn))
)⇤

(B.42e)

= (n+ 1)|U|(1+|X |+|Y|)+4 exp
⇥
− n

(
R + I(Qun|yn ;Qyn)) − I(Qxn ;Q?

U |X(Qxn))
) ⇤

(B.42f)

, (n+ 1)|U|(1+|X |+|Y|)+4 exp
⇥
− n (R− J(Qunxnyn))

⇤
(B.42g)

 exp
⇥
− n (R− J(Qunxnyn) − δn)

⇤
, (B.42h)

with δn as defined above. Here, the probability Pr (ũn 2 Cn
U(Qxn)) is over the choice

of the codebook. Inequality (B.42b) stems from the codebook construction, which di-
vides sequences into bins randomly and independently. Inequality (B.42c) is due to
[86, Lemma 12], which applies here without change, and to the upper bound over the
size of Cn

U(Qxn), given in (B.31). Inequality (B.42d) is due to Lemma 10. Finally,
equality (B.42e) is due to the definition of M1 and (B.42h) stems from the fact that
Pr (B8|Un = un,Xn = xn,Yn = yn)  1 and the definition of δn.

We now bound the probability of error in choosing the right sequence in the bin P
(n)
r ,

for a finite block-length n:

P (n)
r = Pr ({un 6= F (fU(xn))}) (B.43a)


X

(un,xn,yn)2An

Pr (B8|Un = u,Xn = x,Yn = y) Pr (U = u,X = x,Y = y) (B.43b)


X

(un,xn,yn)2An

exp
⇥
−n (R− J(Qunxnyn) − δn)

⇤
P n
XY (xn,yn)

1

|T n
Q?

U|X
(Qxn)| . (B.43c)

Here, claim (B.43c) is derived from Lemma 21. Note the slight abuse of notation here,
where P n

XY (xn,yn) in (B.43c) refers to the real distribution controlling the RVs, and can
thus actually be, according to the true hypothesis, wither P n

XY (xn,yn) or P n
X̄Ȳ

(xn,yn).
The probability of choosing a specific sequence un given both source sequences xn and yn
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stems from averaging over the code. We can now change the expression to sum first on
types and then on sequences within each type class. In order to transform our summation
over a set of sequences An into a summation over a set of types (and only then over the
sequences within each type) we define the following set of types:

D(QX , QY ) =
{
QUXY 2 Pn(U ⇥ X ⇥ Y) : QU |X = Q?

U |X(QX) , log |Cn
U(QX)| ≥ nR

 
.

(B.44)
The probability of error in selecting the sequence can thus be bound by:

P (n)
r 

X

QX ,QY

2

4
X

QUXY 2D(QX ,QY )

X

(un,xn,yn)2T n
QUXY

P n
XY (xn,yn)

|T n
Q?

U|X
(Qxn)| exp

⇥
−n
(
R− J(Qunxnyn) − δn

)⇤

3

5 .

(B.45)

In the case of distributed HT, the probability of the source sequences (xn,yn) is
unknown, since the sequences can be created by one of two possible distributions. We
thus bound the probability of the observed sources by

P n
XY (xn,yn)  max{PXY (xn,yn), PX̄Ȳ (xn,yn)}

= max
i={0,1}

{
exp

⇥
−n (D(QXY kPXYi

) +H(QXY ))
⇤ 

= exp



−n
✓

min
i={0,1}

D(QXY kPXYi
) +H(QXY )

◆]

,

(B.46)

where, in accordance to the notation of Proposition 1, we use the subscript i in order to
di↵erentiate between PXY and PX̄Ȳ . Using the following facts detailed in Lemma 5,

|T n
QUXY

|  exp
⇥
n(H(QUXY ))

⇤
 exp

(
n log |U||X ||Y|

)
, (B.47a)

|T n
QU|X

| ≥ (n+ 1)−|U||X | exp
⇥
n
(
H(QU |X |QX)

)⇤
, (B.47b)

we obtain that

P (n)
r 

X

QX2Pn(X )

X

QY 2Pn(Y)

2

4
X

QUXY 2D(QX ,QY )

exp



−n
✓

min
i={0,1}

D(QXY kPXYi
) +H(QXY )

◆]

⇥

(n+ 1)|U||X | exp
⇥
nH(QU |X |QX)

⇤
⇥ exp

⇥
nH(QUXY )

⇤
exp

⇥
−n (R− J(QUXY ) − δn)

⇤


X

QX2Pn(X )

X

QY 2Pn(Y)

X

QUXY 2D(QX ,QY )

exp
⇥
−n (Γ +R− J(QUXY ) − δn)

⇤
,
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with Γ satisfying:

Γ = min
i={0,1}

D(QXY kPXYi
) +H(QXY ) +H(QU |X |QX) −H(QUXY )

= min
i={0,1}

D(QXY kPXYi
) +H(QU |X |QX) −H(QU |XY |QXY )

= min
i={0,1}

X

x2X
y2Y

QXY (x, y) log
QXY (x, y)

PXYi
(x, y)

−
X

u2U
x2X

QUX(u, x) log
QUX(u, x)

QX(x)

+
X

u2U
x2X
y2Y

QUXY (u, x, y) log
QUXY (u, x, y)

QXY (x, y)

= min
i2{0,1}

(
X

u2U
x2X
y2Y

QUXY (u, x, y) log
QXY (x, y)

PXYi
(x, y)

QX(x)

QUX(u, x)

QUXY (u, x, y)

QXY (x, y)

)

= min
i={0,1}

(
X

u2U
x2X
y2Y

QUXY (u, x, y) log
QUXY (u, x, y)

PXYi
(x, y)QU |X(u|x)

)

= min
i={0,1}

D(QUXY kPXYi
QU |X) .

(B.48)

The probability of error in bin decoding can thus be concluded to satisfy

P (n)
r 

X

QX2Pn(X )

X

QY 2Pn(Y)

X

QUXY 2D(QX ,QY )

exp



−n
✓

min
i={0,1}

D(QUXY kPXYi
QU |X) +R− J(QUXY ) − δn

◆]

.

(B.49)

We may now upper bound the summations by maximizing over the types and optimizing
over the choice of the of the test channel Q?

U |X . We optimize to then obtain:

P (n)
r  |Pn(X )|max

QX

min
Q?

U|X

|Pn(Y)|max
QY

|Pn(U⇥X⇥Y)| max
QUXY

QU|X=Q?
U|X

exp
n

−nGn [QUXY , QX , QY , R]
o

.

(B.50)
Thus,

1

n
logP (n)

r  − min
QX2Pn(X )

max
Q?

U|X
(QX)

min
QY 2Pn(Y)

min
QUXY

QU|X=Q?
U|X

Gn [QUXY , QX , QY , R]

⇥ log (|Pn(X )||Pn(Y)||Pn(U ⇥ X ⇥ Y)|)
with the function Gn [QUXY , QX , QY , R] defined as follows:

Gn [QUXY , QX , QY , R] =

8

><

>:

min
i={0,1}

D(QUXY kPXYi
QU |X)

+
⇥
R− I(QX ;Q?

U |X) + I(QY ;Q?
U |Y )

⇤ I(QX ;Q?
U |X) > R

+1 else .

(B.51)
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The cardinalities can be absorbed inside the exponent and become insignificant as n! 1.
From continuity arguments under discrete alphabets, it is made clear that [86, Lemma
14]:

P (n)
r  inf

QX2P(X )
sup

Q?
U|X

(QX)2P(U)

inf
QY 2P(Y)

inf
QUXY 2P(U⇥X⇥Y)

QU|X=Q?
U|X

G [QUXY , QX , QY , R] , (B.52)

where all the optimization steps are now being taken over probability distributions, and G
is as defined in Proposition 1.

Evaluation of P
(n)
d : We now study the Type II error probability of detection, under

the assumption that the right sequence has been correctly extracted from the bin. The
probability that, given the right sequence un, node B makes a wrong decision was inves-
tigated in detail in [9], using the method of types [21], as well as properties of types and
typical sequences, detailed in Chapter 2 of this thesis. That result, however, is dependent
on a specific codebook, conceived to allow detection with high probability. As we use a
random codebook in our scheme, it is essential to adapt the method of [9]. We give here
a general description of this adaptation. The complete proof of the error exponent while
using the right sequence is a special case of the proof given in Appendix C.1 for hypothesis
testing with cooperative communication.

We propose here a slight modification to [9]. Intuitively, since we investigate the
exponential decay of βn while only enforcing a fixed upper bound on ↵n, we show that
the penalty of replacing the codebook construction in [9] with random coding can be fully
absorbed into ↵n, leaving the error exponent result of βn unmodified. Nevertheless, ↵n

can still be shown to approach 0 as n grows, which indicates that any constraint ↵n  ✏
can be fulfilled, for n large enough and ✏ > 0. For the given codebook, define

L(Q?
UX , Q

?
UY ) =

n

PŨX̃Ỹ 2 P(U ⇥ X ⇥ Y) :PŨX̃(u, x) = Q?
UX(u, x),

PŨ Ỹ (u, y) = Q?
UY (u, y), 8 (u, x, y)

o

,
(B.53)

to be the set of all triplets of auxiliary RVs such that the marginal distribution of each
pair (U,X) and (U, Y ) is maintained. Similarly to [9], it is not difficult to show that, for
the codebook described above,

✓L(R) , min
ŨX̃Ỹ 2L(Q?

UX ,Q?
UY )

D(PŨX̃Ỹ kPŪX̄Ȳ ) (B.54)

provides a lower bound to the error probability of the second type, after the correct
sequence has been recovered from the bin, and under a fixed error probability of the first
type.

From the construction of the codebook (specifically the size of the set Cn
U(Qxn)), it

can be seen that the number of sequences in the codebook per type of X complies with
M = exp

⇥
n(I(Qxn ;Q?

U |X(Qxn)) + ⌘)
⇤
. Given a sequence xn, search for a sequence ui in

the codebook that belongs to the type of xn, such that (un
i ,x

n) 2 T n
[UX]δ and send its
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index (or bin number, depending on the type of xn) to the receiver. As we only consider
here the error event where the wrong hypothesis is chosen despite the correct sequence
is used, we ignore errors in choosing the correct sequence from the bin, in case binning
has occurred, for the sake of this analysis. If there is more than one such sequence choose
randomly. If there is no such sequence in the codebook, send an error message. At the
decoder (node B), if (un

i ,y
n) 2 T n

[UY ]δ (notice that typicality here is checked only under
hypothesis H0) declare H0. In any other case (including the case an error message was
received) declare H1. This choice allows us to “push” the penalty of not using the code
proposed in [9, Lemma 4] into ↵n (which, when n! 1 can still be bounded by any fixed
✏ > 0), thus leaving the evaluation of βn unchanged, as shown subsequently.

Evaluation of ↵n: An error of the first type occurs if for n i.i.d. samples (xn,yn) ⇠
PXY (x, y) (hypothesis H0 holds) the decoder declares H1. According to the proposed
coding schemes, two possible events can induce the decoder to such an error. The first is
given by

(i) B9 , {@ i such that (un
i ,x

n) 2 T n
[UX]δ} . (B.55)

Assuming without loss of generality that the sequence un
1 was chosen and sent from node

A, the second relevant error event is:

(ii) B10 , {H0 is true and (un
1 ,y

n) /2 T n
[UY ]δ} . (B.56)

From the union bound, it is obvious that:

↵n  Pr(B9) + Pr(B10 \ Bc
9) . (B.57)

Through the AEP it is easy to conclude that both of these probabilities approach zero
when n! 1. Thus, for n large enough one can conclude that ↵n  ✏ for any fixed ✏ > 0.

Evaluation of βn: The error of the second type can be defined by a single event:

B11 , {H1 is true and (un
1 ,y

n) 2 T n
[UY ]δ} . (B.58)

The analysis of βn is identical to what was done in [9]. One important di↵erence, however,
is that by defining

Ci ,

n

xn 2 X n : (un
i ,x

n) 2 T n
[UX]δ

o

, (B.59)

the sets Ci are not necessarily disjoint. This, however, does not change the calculations
by following same steps as in [9]. Readers are invited to consult Appendix C.1 for a full
analysis of the error exponent of Type II in a bidirectional distributed system through
random codes, of which the unidirectional scenario is a private case.

B.3.3 Source reconstruction

As a final step, we demonstrate the achievability of the estimation part in Proposition 1,
for the case where hypothesis H0 is chosen (the case of hypothesis H1 is symmetric).
Denoting by B12 the event “an error occurred during encoding or decoding, under the
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correct decision H0”, we expend its probability as follows: Pr(B12)  P 0 + P 00, with P 0

being the probability that no codeword vn
0 (s0) could be found in the codebook for the given

sequence xn and the chosen sequence un, and P 00 being the probability that a di↵erent
codeword in the same bin is compatible with yn and un.

Using standard arguments, both error probabilities can be bounded as follows:

P 0 , Pr{@ s0 = [1 : exp (nS0)] s.t. (Vn
0 (s0),X

n) 2 T n
[V0X|U ]δ(u

n)}
 Pr{(V n

0 , X
n) /2 T n

[V0X|U ]δ(u
n)|V n 2 T n

[V0|U ]δ(u
n), Xn 2 T n

[X|U ]δ(u
n)}exp (nS0)

 exp
{
− exp [nS0] exp

⇥
− n(I(PX|U ;PV0|XU |PU) + ⌘(1)n )

⇤ 

= exp
{
− exp

⇥
− n

(
I(PX|U ;PV0|XU |PU) − S0 + ⌘(1)n

)⇤ 
.

(B.60)

Thus, P 0 ! 0 provided that S0 > I(PX|U ;PV0|XU |PU). Next,

P 00 , Pr
{
9ŝ0 2 [1 : exp (nS0)] s.t. Vn

0 (ŝ0) 2 T n
[V0|UY ]δ(u

nyn), B0

(
vn
0 (s0)

)
= B0

(
vn
0 (ŝ0)

) 

 exp [n(S0 −R0 + ✏)] Pr{(Vn
0 ,Y

n) 2 T[V0Y |U ]δ(u
n)|Vn

0 2 T[V0|U ]δ(u
n) , Yn 2 T[Y |U ]δ(u

n)}
 exp [n(S0 −R0 + ✏)] exp

⇥
−n
(
I(PY0|U ;PV0|Y0U |PU) + ⌘(2)n

)⇤

= exp
{
−n
⇥
I(PY0|U ;PV0|Y0U |PU) − (S0 −R0) + ⌘(2)n − ✏

⇤ 
.

(B.61)
Here, B0(v

n
0 (s0)) denotes the bin vn

0 (s0) belongs to, as defined as part of the encoding
strategy. R0 is the rate consecrated to the estimation part, for the case that H0 was
chosen as the correct hypothesis. Defining R1 equivalently for hypothesis H1, the total
available rate can be said to be divided, under the proposed achievable scheme, to three
parts, such that R = R0 + R0 + R1. Thus, P 00 ! 0 if S0 − R0 < I(PX|U ;PV0|XU |PU), or
equivalently

R0 > S0 − I(PY0|U ;PV0|Y0U |PU)

> I(PX|U ;PV0|XU |PU) − I(PY0|U ;PV0|Y U |PU)

= I(PXY |U ;PV0|XY U |PU) − I(PY |U ;PV0|Y U |PU)

= I(PX|UY ;PV0|UXY |PUY ) .

(B.62)

Thus, the probability of error related to source reconstruction goes to zero provided that
S0 > I(PX|U ;PV0|XU |PU) and R0 > I(PX|UY ;PV0|XUY |PUY ). Combining this result with
the symmetric case of H1 and the result for the detection step, the required total rate of
communication reads

R > R0 + I(PX|UY ;PV0|XUY |PUY ) + I(PX̄|Ū Ȳ ;PV1|X̄Ū Ȳ |PŪ Ȳ ) . (B.63)

We now know that our scheme allows the decoding of either v0 and v1, depending
on the case, with high probability, when n ! 1. It remains to be shown that using
the sequence vn

0 , it is possible to recover xn with distortion D0. We choose a (possibly

96



B.4. Proof of Proposition 2

suboptimal) decoder, that reconstructs xn only from (un,yn,vn
0 ):

d(xn,x̂n(un,yn,vn
0 )) =

1

n

nX

i=1

d
(
xi, x̂i(u

n, yn, vn0 )
)

=
1

n

X

8(x,u,y,v0)
d
(
x, x̂(u, y, v0)

)
N(x, u, y, v0|xnunynvn

0 )

 E0

h

d
(
X, X̂(UY V0)

)i

+
X

8(x,u,y,v0)

∣
∣
∣
∣

1

n
N(x, u, y, v0|xnunynvn

0 ) − p(x, u, y, v0)

∣
∣
∣
∣

 E0

h

d
(
X, X̂(UY V0)

)i

+ dmax|X ||Y||U||V0|δn ,
(B.64)

where the summation is over all the possible letters in the respective alphabets of the
RVs, and the final inequality holds since (xn,yn,un,vn

0 ) 2 T n
[XY UV0]δ

. Since δn ! 0 when

n! 1, any distortion D0 can be achieved, as long as D0 > E0

h

d
(
X, X̂(UY V0)

)i

.

B.4 Proof of Proposition 2

We now prove the achievability of the error exponent o↵ered in Proposition 2, for the case
where source reconstruction is not required. As the proof is in many ways similar to the
proof of Proposition 1, given in Appendix B.3, we concentrate mainly on the di↵erences.

B.4.1 Codebook generation and encoding strategy

Both the codebook generation and the encoding strategy in this case are very similar to
what was done in the proof of Proposition 1, in the part consecrated to detection. The only
di↵erence is that now we choose to only work with δ-typical sequences, for some arbitrary
δ. When node A sees a non-typical sequence x, it sends an error message. In the opposite
case, encoding is done as before. Note that while we only work with δ-typical sequences,
there are still di↵erent codebooks for each type within the set of δ-typical sequences.

B.4.2 Decoding strategy

In case an error message is received, the decoder declares H1. This strategy implies that
any probability of the error event caused by the encoder not seeing a δ-typical sequence
is allocated to ↵n, rather than βn. The probability of this event, however, goes to zero
when n ! 1 thanks to the AEP, implying that ↵n  ✏ for any ✏ > 0, for n ≥ n0(✏, δ),
thus satisfying the constraint over ↵n.

When the encoder does not send an error message, the decoder operates on the entire
bin in order to make a decision. Going over the sequences in the bin one by one, the
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decoder checks for each un
i if (un

i ,y
n) 2 T n

[UY ]δ. If a sequence in the bin is found, which
is jointly typical with yn, the decoder declares H0. If no such sequence is found, the
decoder declares H1. Note that under this strategy, the decoder does not attempt to find
the original sequence sent by the encoder. Specifically, when the decoder declares H1 it
is completely oblivious to the original codeword.

B.4.3 Probability of error

The analysis of the probability of error in detection under this new strategy is very similar
to the analysis given in Appendix B.3. We separately bound the corresponding error
probabilities on the two possible error events.

Analysis of ↵n: When analyzing ↵n(An) = Pr
(
Ac

n|XY ⇠ p0(x, y)
)
, we assume

throughout that the probability measure in e↵ect is p0. Two scenarios can lead to an
event where the decoder erroneously declares H1:

B13 ,
{
@ i 2 Cn

U(Qxn)
∣
∣ (xn,un

i ) 2 T n
[UX]δ

 
,

B14 ,
{
@ i 2 F (f(xn))

∣
∣ (un

i ,y
n) 2 T n

[UY ]δ

 
.

(B.65)

In the first event, an error message is sent, as there is no fitting codeword within the
codebook for the observed sequence xn. Whereas for the second event, there is no sequence
in the bin that prompts the decoder to decide H0, despite it being the true hypothesis.
The probability of event B13 goes to zero with n, thanks to the AEP and the size of the
codebook. As for event B14, assume without loss of generality, that the encoder intended
to send the first word in the bin un

1 , i.e., un
1 = f(xn). The probability that the decoder

declares H1 can be upper-bounded by

Pr(B14) = Pr
{
@ i 2 F (f(Xn))

∣
∣ (Un

i ,Y
n) 2 T n

[UY ]δ

 
 Pr{(Un

1 ,Y
n) /2 T n

[UY ]δ} , (B.66)

where typicality is measured over the probability measure p0 = PXY . As was already
discussed above, this probability tends to 0 with the number of available realizations
n. This result is attributed to the AEP, by which x and y are jointly typical with high
probability, and to the generalized Markov Lemma (Lemma 8). Thus, any fixed constraint
over the probability of error of the first type ↵  ✏ (✏ > 0), may be satisfied when n is
large enough.

Analysis of βn: As we now turn to analyzing the probability of error of the second
type, we assume throughout this part that the real hypothesis is H1. As was the case
in Appendix B.3, the resulting error exponent is the result of a trade-o↵ between two
error events. While the analysis of the event where the correct sequence prompts a wrong
decision (i.e. in this case is (f(xn),yn) 2 T n

[UY ]δ) stays the same, the second error event is
now di↵erent. We thus concentrate in this appendix on calculating the probability of the
event that some sequence in the bin un 6= f(xn) prompts the decoder to declare H0. We
start by presenting the following lemma:
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Lemma 22. Let An be the set of triplets, such that a binned codebook is necessary:

An =
n

(un,xn,yn) 2 T n
Q?

U|X
⇥X n ⇥ Yn

∣
∣ log |Cn

U(Qxn)| ≥ nR
o

. (B.67)

Let (un,xn,yn) 2 An and denote by B15 the event indicating that (un,yn) 2 T n
[UY ]δ, for

some un 6= f(xn) in the bin. Then,

Pr (B15|Un = un,Xn = xn,Yn = yn)  exp
h

−n
⇣

R− Ĵ(Qunxnyn) − δn

⌘i

, (B.68)

with

Ĵ(Qunxnyn) , I
(
Qxn ;Q?

U |X
)
−H(Qun) +H

(
QU |Y |PY

)
(B.69)

and

δn ,
1

n
log(n+ 1)|U|(1+|X |+|Y|)+4 + ✏n (B.70)

with ✏n ! 0 when n! 1. Moreover, the probability in (B.68) is taken over the choice of
the codebook in use.

Proof. The proof of Lemma 22 is very similar to the one given for Lemma 21. The
di↵erence is that now the set of sequences that “confuses” the decoder is simply Ŝ(yn) =
T n
[U |Y ]δ(y

n). Bounding the set of conditionally typical sequences by [105]:

∣
∣T n

[U |Y ]δ(y
n)
∣
∣  (n+ 1)|U||Y| exp

⇥
n(H(QU |Y |PY ) + ✏n)

⇤
, (B.71)

for each yn 2 T n
[Y ]δ, completes the proof.

Remark 17. Note that unlike J(Qunxnyn), the quantity Ĵ(Qunxnyn) is not dependent on
the observed yn. The quantity H(QU |Y |PY ) can be analytically calculated when the type
of xn and the chosen strategy QU |X is known, without knowing neither the specific sent
sequence un nor the observed sequence yn.

Using Lemma 22 and summing over all involved types and sequences within each type
as was done in Appendix B.3, the probability of the event where an unintended sequence
in the bin causes an error can be bounded by

lim
n!1

− 1

n
log Pr(B15) ≥

min
QX2Pn(X )

max
Q?

U|X
(QX)2Pn(U)

min
QY 2Pn(Y)

min
QUXY 2Pn(U⇥X⇥Y)

n

D(QUXY kPŪX̄Ȳ ) +R− Ĵ(QUXY )
o

= min
QX2Pn(X )

max
Q?

U|X
(QX)2Pn(U)

min
QY 2Pn(Y)

min
QUXY 2Pn(U⇥X⇥Y)

n

D(QUXY kPŪX̄Ȳ ) +R

− I(QX ;Q?
U |X) + I(Q?

U |Y ;PY )
o

.
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As in this case we only work with δ-typical x-sequences, we may choose δ to be any value,
as long as it is strictly positive. Thus, we may force QX to be arbitrarily close to PX by
taking δ ! 0+. The error exponent in question thus becomes

lim
n!1

− 1

n
log Pr(B15)

≥ max
Q?

U|X
2P(U)

n

R− I(PX ;Q?
U |X)

+ I(PY ;Q?
U |Y ) + min

QY 2P(Y)
min

QUXY 2P(U⇥X⇥Y)
D(QUXY kPŪX̄Ȳ )

o

+ ✏̂

= max
Q?

U|X
2P(U)

n

R− I(PX ;Q?
U |X) + I(PY ;Q?

U |Y )
o

+ ✏̂ ,

with ✏̂ ! 0 as δ ! 0. This, along with an analysis of the complementary error event
similar to the one given for Proposition 1, completes the proof of Proposition 2.
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Appendix C

Hypothesis Testing with
Bidirectional Communication

C.1 Proof of Proposition 3

We start by describing the random construction of codebooks, as well as encoding and
decision functions. By analyzing the asymptotic properties of such decision systems, we
aim at implying a feasibility (existence) result of interactive functions and decision regions
that satisfy, for any given ✏, " > 0, the following inequalities:

1

n
log
(
|f[1]||g[1]|

)
 I(U ;X) + I(V ;Y |U) + " , ↵n(R |K = 1)  ✏ , (C.1)

− 1

n
log βn(R, ✏ |K = 1) ≥ min

Ũ Ṽ X̃Ỹ 2L (U,V )
D
(
PŨ Ṽ X̃Ỹ ||PŪ V̄ X̄Ȳ

)
− " , (C.2)

provided that n is large enough and for any given pair of random variables (U, V ) 2 S (R),
where |f[1]| and |g[1]| denote the number of codewords in the codebooks used for interaction
(note that feasibility is defined in the information-theoretic sense which implies the random
existence of interactive and decision functions with desired properties).

Codebook generation. Without loss of generality, we assume that node A is the first to
communicate. Fix a conditional probability PUV |XY (u, v|x, y) = PU |X(u|x)PV |UY (v|u, y)
that attains the maximum in Proposition 3. Let

PU(u) ⌘
X

x2X
PU |X(u|x)PX(x) , PV |U(v|u) ⌘

X

y2Y
PV |UY (v|u, y)PY (y). (C.3)

For this choice of RVs, set the rates (RU , RV ) to be

I(U ;X) + ✏(δ) := RU , I(V ;Y |U) + ✏(δ0) := RV (C.4)

with ✏(δ) ! 0 as δ ! 0. By the definition of the set S (R), it is clear that RU + RV 
R + ✏(δ) + ✏(δ0). Randomly and independently draw 2nRU sequences u = (u1, . . . , un),
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each according to
Qn

i=1 PU(ui). Index these sequences by mU 2 [1 : MU := 2nRU ] to form
the random codebook Cu :=

{
u(mU) : mU 2 [1 : MU ]

 
. As a second step, for each word

u 2 Cu, build a codebook Cv(mU) by randomly and independently drawing 2nRV sequences
v, each according to

Qn

i=1 PV |U(vi|ui(mU)). Index these sequences by mV 2 [1 : MV :=
2nRV ] to form the collection of codebooks Cv(mU) :=

{
v(mU ,mV ) : mV 2 [1 : MV ]

 
for

mU 2 [1 : MU ].

Encoding and decision mappings. Given a sequence x, node A searches in the codebook
Cu for an index mU such that (u(mU),x) 2 T n

[UX]δ
(note that this notation denotes the

δ-typical set with relation to the probability measure implied by H0). If no such index
is found, node A declares H1. If more than one sequence is found, node A chooses one
at random. Node A then communicates the chosen index mU to node B, using a portion
RU bits of the available exchange rate. Upon receiving the index mU , node B checks if
(u(mU),y) 2 T n

[UY ]δ0
. If not, node B declares H1. If the received sequence u and y (the

observed sequence at node B) are jointly typical, node B looks in the specific codebook
Cv(mU), for an index mV such that

(
u(mU),v(mU ,mV ),y

)
2 T n

[UV Y ]δ0
. If such an index

is not found, node B declares H1. If node B finds more than one such index, it chooses
one of them at random. Node B then transmits the chosen index mV to node A. Upon
reception of the index mV , node A checks if

(
u(mU),v(mU ,mV ),x

)
2 T n

[UV X]δ00
. If so,

it declares H0 and otherwise, it declares H1. The relation between δ, δ0 and δ00 can be
deducted from Lemma 7. It is, however, important to emphasize that δ0(δ) ! 0 as δ ! 0,
and δ00(δ0) ! 0 as δ0 ! 0 with n! 1.

Analysis of ↵n (Type I). The analysis of ↵n is identical to the one proposed in [20], for
the case of testing against independence. We give here a short summary of the analysis
available in [20]. Assuming that the measure that controls X and Y is PXY , and denoting
the chosen indices at nodes A and B by mU and mV respectively, the error probability of
the Type I can be expressed as follows

↵n ⌘ Pr(E1 [ E2 [ E3)  Pr(E1) + Pr(Ec
1 \ E2) + Pr(Ec

1 \ Ec
2 \ E3) , (C.5)

where E1, E2 and E3 represent the following error events:

E1 ⌘
{

(U(mU),X) /2 T n
[UX]δ 8mU 2 [1 : MU ]

 
, (C.6a)

E2 ⌘
{

(V(mU ,mV ),U(mU),Y) /2 T n
[V UY ]δ0

8mV 2 [1 : MV ] (C.6b)

and the specific mU selected at node A
 
,

E3 ⌘
{

(V(mU ,mV ),U(mU),X) /2 T n
[V UX]δ00

, (C.6c)

for the specific mU and mV previously chosen
 
.

Analyzing each of the probabilities in (C.5) separately, Pr(E1) ! 0 as n ! 1 by the
covering lemma [105], provided that RU ≥ I(U ;X) + ✏(δ), with ✏(δ) ! 0 as δ ! 0.
Pr(Ec

1 \ E2) ! 0 when n ! 1 by the conditional typicality lemma [105], in addition to
the covering lemma, provided that RV ≥ I(V ;Y |U) + ✏(δ0). Finally, the third term in
(C.5) can be shown to tend to zero through the use of the Markov lemma (see Lemma 8),
as well as Lemma 6 and Lemma 7 in Chapter 2. Thus, as all three components tend to
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zero with large n, we may conclude that ↵n  ✏ for any constraint 0 < ✏ < 1 and n large
enough.

Analysis of βn (Type II). The error probability of Type II is defined by

βn(R, ✏ |K = 1) ⌘ Pr
(
decide H0|XY ⇠ PX̄Ȳ

)
. (C.7)

Thus, we assume that PX̄Ȳ controls the measure of the observed RVs throughout this
analysis. We use similar methods to what was done in [9], although we choose to work
with random codebooks. The influence of this choice is on the analysis of ↵n only, as seen
above, and not on βn.

For a given pair of sequences (x,y) with type variables X(n)Y (n) 2 Pn(X ⇥ Y), we
count all possible events that lead to an error. We notice first, that given a pair of vectors
(x,y) 2 X n ⇥ Yn the probability that these vectors will be the result of n i.i.d. draws,
according to the measure implied by H1, is given by Lemma 6 to be:

Pr{X̄nȲ n = (x,y)} = exp
⇥
−n
(
H(X(n)Y (n)) + D(X(n)Y (n)||X̄Ȳ )

)⇤
, (C.8)

where X(n)Y (n) 2 Pn(X ⇥ Y) are the type variables of the realizations (x,y) (see Chap-
ter 2). For each pair of codewords ui 2 Cu and vij 2 Cv(i), we define the set:

Sij(x) := {ui} ⇥ {vij} ⇥ Gij ⇥ {x} , (C.9)

where Gij ✓ Yn is the set of all vectors y that, given the received message ui, will result
in the message vij being transmitted back to node A. Denoting by Kij(x) the number of
elements (ui,vij,x,y) 2 Sij(x) whose type variables coincide with U (n)V (n)X(n)Y (n), we
have by Lemma 5 that:

Kij(x)  exp
⇥
nH(Y (n)|U (n)V (n)X(n))

⇤
. (C.10)

Let K(U (n)V (n)X(n)Y (n)) denote the number of all elements:

(u,v,x,y) 2 Sn :=

MU[

i=1

MV[

j=1

[

x2T n
[X|UV ]δ00

(uivij)

Sij(x)

that have type variable U (n)V (n)X(n)Y (n) 2 Pn(U ⇥ V ⇥ X ⇥ Y), then

K(U (n)V (n)X(n)Y (n)) 
MUX

i=1

MVX

j=1

exp
⇥
nH(Y (n)|U (n)V (n)X(n))

⇤∣
∣T n

[X|UV ]δ00(uivij)
∣
∣

 exp
⇥
n
(
H(Y (n)|U (n)V (n)X(n))

+ I(U ;X) + I(V ;Y |U) +H(X|UV ) + µn

⌘i

,

(C.11)

where MU and MV are the sizes of the codebooks Cu and Cv(·). The first and second
additional terms in the final expression come from the size of the codebooks and the third
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is a bound over the size of the delta-typical set (see Lemma 9). The resulting sequence
µn is a function of δ, δ0, δ00 that complies with µn ! 0 as n ! 1. The error probability
of Type II satisfies:

βn(R, ✏ |K = 1) 
X

U(n)V (n)X(n)Y (n)2Sn

exp
⇥
−n
(
k(U (n)V (n)X(n)Y (n)) − µn

)⇤
, (C.12)

where the function k(U (n)V (n)X(n)Y (n)) is defined by

k(U (n)V (n)X(n)Y (n)) := H(X(n)Y (n)) + D(X(n)Y (n)||X̄Ȳ )

−H(Y (n)|U (n)V (n)X(n)) −H(X|UV )

− I(U ;X) − I(V ;Y |U) .

(C.13)

Note that we deliberately made an abuse of notation in (C.12) to indicate that the sum
is taken over all possible type-variables U (n)V (n)X(n)Y (n) 2 Pn(U ⇥ V ⇥ X ⇥ Y) formed
by empirical probability measures from elements (u,v,x,y) 2 Sn.

From the construction of Sn, it is clear that if (u,v,x,y) 2 Sn, then at least
(u,v,x) 2 T n

[UV X]δ00
and (u,v,y) 2 T n

[UV Y ]δ0
. Thus, the summation in (C.12) is only

over all types satisfying:

|PU(n)V (n)X(n)(u, v, x) − PUV X(u, v, x)|  δ00 ,

|PU(n)V (n)Y (n)(u, v, y) − PUV Y (u, v, y)|  δ0 ,
(C.14)

for all (u, v, x) 2 supp(PUV X) and (u, v, y) 2 supp(PUV Y ). In addition, it follows by
Lemma 4 from the total number of types of length n that:

βn(R, ✏ |K = 1)  (n+ 1)|U||V||X ||Y|

⇥ max
U(n)V (n)X(n)Y (n)2Sn

exp
⇥
−n
(
k(U (n)V (n)X(n)Y (n)) − µn

)⇤
.

(C.15)

By (C.14) and the continuity of the entropy function as well as the KL divergence, we
can conclude that

k(U (n)V (n)X(n)Y (n)) = H(X̃Ỹ ) + D(X̃Ỹ ||X̄Ȳ ) −H(Ỹ |Ũ Ṽ X̃) (C.16)

−H(X̃|Ũ Ṽ ) − I(Ũ ; X̃) − I(Ṽ ; Ỹ |Ũ) + µ0
n ,

with Ũ Ṽ X̃Ỹ 2 L (U, V ) and µ0
n ! 0 when n! 1. We can further simplify the expression

of k(U (n)V (n)X(n)Y (n)) by observing that:

k(U (n)V (n)X(n)Y (n)) = H(X̃Ỹ ) + D(X̃Ỹ ||X̄Ȳ ) −H(Ỹ |Ũ Ṽ X̃) (C.17a)

−H(X̃|Ũ Ṽ ) − I(Ũ ; X̃) − I(Ṽ ; Ỹ |Ũ) + µ0
n (C.17b)

= H(X̃Ỹ ) + D(X̃Ỹ ||X̄Ȳ ) −H(X̃Ỹ |Ũ Ṽ ) − I(Ũ ; X̃) − I(Ṽ ; Ỹ |Ũ) + µ0
n (C.17c)

= I(X̃Ỹ ; Ũ Ṽ ) + D(X̃Ỹ ||X̄Ȳ ) − I(Ũ ; X̃) − I(Ṽ ; Ỹ |Ũ) + µ0
n (C.17d)

= I(X̃Ỹ ; Ũ) + I(X̃Ỹ ; Ṽ |Ũ) + D(X̃Ỹ ||X̄Ȳ ) − I(Ũ ; X̃) − I(Ṽ ; Ỹ |Ũ) + µ0
n (C.17e)

104



C.2. Proof of Proposition 4

= D(ŨX̃Ỹ ||ŪX̄Ȳ ) + I(X̃Ỹ ; Ṽ |Ũ) − I(Ỹ ; Ṽ |Ũ) + µ0
n (C.17f)

= D(ŨX̃Ỹ ||ŪX̄Ȳ ) + I(X̃; Ṽ |Ũ Ỹ ) + µ0
n , (C.17g)

where equality (C.17f) stems from the identity (see [9]):

I(X̃Ỹ ; Ũ) + D(X̃Ỹ ||X̄Ȳ ) − I(Ũ ; X̃) = I(Ũ ; Ỹ |X̃) + D(X̃Ỹ ||X̄Ȳ ) (C.18)

= D(ŨX̃Ỹ ||ŪX̄Ȳ ) . (C.19)

Note that the following Markov chain: X − (U, Y )−V holds under both hypotheses (i.e.,
the same chain can be written with a bar over all variables), but not for the auxiliary RVs,
marked with a tilde.

Finally, we conclude our development of k(U (n)V (n)X(n)Y (n)) as follows:

k(U (n)V (n)X(n)Y (n)) = D(ŨX̃Ỹ ||ŪX̄Ȳ ) + I(X̃; Ṽ |Ũ Ỹ ) + µ0
n (C.20a)

=
X

8(u,v,x,y)
PŨ Ṽ X̃Ỹ (u, v, x, y)⇥

⇥ log

 

PŨX̃Ỹ (u, x, y)

PŪX̄Ȳ (u, x, y)

PX̃Ṽ |Ũ Ỹ (x, v|u, y)

PX̃|Ũ Ỹ (x|u, y)PṼ |Ũ Ỹ (v|u, y)

!

+ µ0
n (C.20b)

=
X

PŨ Ṽ X̃Ỹ (u, v, x, y)⇥

⇥ log

 

PŨX̃Ỹ (u, x, y)

PŪX̄Ȳ (u, x, y)
⇠

⇠
⇠
⇠
⇠
⇠
⇠⇠

PX̃|Ũ Ỹ (x|u, y)PṼ |ŨX̃Ỹ (v|u, x, y)

⇠
⇠
⇠
⇠
⇠
⇠
⇠⇠

PX̃|Ũ Ỹ (x|u, y)PṼ |Ũ Ỹ (v|u, y)

!

+ µ0
n (C.20c)

=
X

8(u,v,x,y)
PŨ Ṽ X̃Ỹ (u, v, x, y) log

✓
PŨ Ṽ X̃Ỹ (u, v, x, y)

PŪX̄Ȳ (u, x, y)PV̄ |Ū Ȳ (v|u, y)

◆

+ µ0
n (C.20d)

=
X

8(u,v,x,y)
PŨ Ṽ X̃Ỹ (u, v, x, y) log

✓
PŨ Ṽ X̃Ỹ (u, v, x, y)

PŪ V̄ X̄Ȳ (u, v, x, y)

◆

+ µ0
n (C.20e)

= D(Ũ Ṽ X̃Ỹ ||Ū V̄ X̄Ȳ ) + µ0
n , (C.20f)

where the sums are over the supp(PŨ Ṽ X̃Ỹ ); and (C.20d) is due to the definition of the set
L (U, V ) that implies PṼ |Ũ Ỹ (v|u, y) = PV |UY (v|u, y). In addition, as coding (at each side)
is performed before a decision is made, it is clear it is done in the same way under both
hypotheses. Thus, while PUV Y (u, v, y) 6= PŪ V̄ Ȳ (u, v, y), it is true that PV̄ |Ū Ȳ (v|u, y) =
PV |UY (v|u, y) = PṼ |Ũ Ỹ (v|u, y). As µn, µ

0
n are arbitrarily small, as a function of the choices

of δ and δ0 provided that n is large enough, this concludes the proof of Proposition 3.

C.2 Proof of Proposition 4

The proof of Proposition 4 is very similar to the one presented above for Proposition 3.
Codebook construction, as well as encoding and decision mappings remain similar. At each
round, a codebook is built based on any possible combination of the previous messages.
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Given previous messages, each node chooses a message in the relevant codebook and
communicates its index to the other statistician. The process continues until a message
cannot be found, which is jointly typical with all previous messages as well as the observed
sequence, in which case H1 is declared. Otherwise, until the end of round K in which
case H0 is declared, provided that all the messages are jointly typical with the observed
sequence. We next provide a sketch of the proof to this simple extension.

The analysis of ↵n applies similarly to the previous case, as long as a finite number of
rounds is considered. Regarding the analysis of βn, the following important changes are
needed:

• The set Sij(x) is now defined by using all exchanged messages:

Sij(x) := {u[1],i1} ⇥ {v[1],i1j1} ⇥ · · · ⇥ {u[K],iK} ⇥ {v[K],iKjK} ⇥ Gij ⇥ {x} , (C.21)

where (i, j) := (i1, j1), . . . , (iK , jK) and u[k],ik is the ik-th message in the codebook
Cu[k]

, similarly for the other random variables.

• Similarly, Sn is now defined by the union over the codewords of all auxiliary RVs.

• The bound over Kij (analogues to expression (C.10) before) writes:

Kij(x)  exp
h

nH
(
Y (n)|U (n)

[1:K]V
(n)
[1:K]X

(n)
)i

. (C.22)

• Finally, K
(
U

(n)
[1:K]V

(n)
[1:K]X

(n)Y (n)
)
, i.e., see (C.11), is now calculated through the sum-

mation over the codebooks of all messages, considering the cardinality of the condi-
tional set:

∣
∣T n

[X|u[1:K],iv[1:K],ij]δ

∣
∣.

• As more steps are performed, each of which requires encoding, we also need to define
new δ’s for each of these steps. We refrain from this for the sake of readability, as
all of these δ’s go to 0 together, as was seen in the case of a single round.

Considering these di↵erences, after k rounds of interactions, k
(
U

(n)
[1:k]V

(n)
[1:k]

)
can be shown

to be equal to (e.g. see (C.13)):

k
(
U

(n)
[1:k]V

(n)
[1:k]

)
= D

(
PŨ[1:k−1]Ṽ[1:k−1]X̃Ỹ ||PŪ[1:k−1]V̄[1:k−1]X̄Ȳ

)
(C.23)

+ I(Ỹ ; Ũ[k]|Ũ[1:k−1]Ṽ[1:k−1]X̃) + I(X̃; Ṽ[k]|Ũ[1:k]Ṽ[1:k−1]Ỹ ) + µ0
n .

By continuing in the same manner as in (C.20a), we show:

k
(
U

(n)
[1:k]V

(n)
[1:k]

)
− µ0

n =
X

8
PŨ[1:k−1]Ṽ[1:k−1]X̃Ỹ log

PŨ[1:k−1]Ṽ[1:k−1]X̃Ỹ

PŪ[1:k−1]V̄[1:k−1]X̄Ȳ

(C.24a)

+
X

8
PŨ[1:k]Ṽ[1:k−1]X̃Ỹ log

PŨ[k]Ỹ |Ũ[1:k−1]Ṽ[1:k−1]X̃

PŨ[k]|Ũ[1:k−1]Ṽ[1:k−1]X̃
PỸ |Ũ[1:k−1]Ṽ[1:k−1]X̃
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+
X

8
PŨ[1:k]Ṽ[1:k]X̃Ỹ log

PṼ[k]X̃|Ũ[1:k]Ṽ[1:k−1]Ỹ

PṼ[k]|Ũ[1:k]Ṽ[1:k−1]Ỹ
PX̃|Ũ[1:k]Ṽ[1:k−1]Ỹ

=
X

8
PŨ[1:k]Ṽ[1:k]X̃Ỹ log

"
PŨ[1:k]Ṽ[1:k]X̃Ỹ

PŪ[1:k−1]V̄[1:k−1]X̄Ȳ PŨ[k]|Ũ[1:k−1]Ṽ[1:k−1]X̃
PṼ[k]|Ũ[1:k]Ṽ[1:k−1]Ỹ

#

(C.24b)

=
X

8
PŨ[1:k]Ṽ[1:k]X̃Ỹ log

"
PŨ[1:k]Ṽ[1:k]X̃Ỹ

PŪ[1:k−1]V̄[1:k−1]X̄Ȳ PŪ[k]|Ū[1:k−1]V̄[1:k−1]X̄
PV̄[k]|Ū[1:k]V̄[1:k−1]Ȳ

#

(C.24c)

=
X

8
PŨ[1:k]Ṽ[1:k]X̃Ỹ log

"
PŨ[1:k]Ṽ[1:k]X̃Ỹ

PŪ[1:k]V̄[1:k]X̄Ȳ

#

(C.24d)

= D
(
PŨ[1:k]Ṽ[1:k]X̃Ỹ ||PŪ[1:k]V̄[1:k]X̄Ȳ

)
, (C.24e)

where all sums are over all the alphabets of the relevant RVs. Here, (C.24c), much like in
the case of single-round exchange above, is due to the definition of the set L (U[1:k], V[1:k])
and to the fact that encoding occurs without knowledge of the PM controlling the RVs,
and thus behaves the same under each of the hypotheses. Thus,

PŨ[k]|Ũ[1:k−1]Ṽ[1:k−1]X̃
= PU[k]|U[1:k−1]V[1:k−1]X = PŪ[k]|Ū[1:k−1]V̄[1:k−1]X̄

,

and similarly for the messages V[k] at node B. Pursuing this until round K, the proposition
is proved.

C.3 Proof of Converse for Theorem 3

In this appensix, we complete the proof of Theorem 3 by proving a weak unfeasibility
(converse) property. We start by proposing a multi-letter expression that constitutes an
upper bound over performance in this case, as summarized in the following lemma:

Lemma 23 (Multi-letter representation for testing against independence with K = 1
[20]). The error exponent to the error probability of Type II for testing against indepen-
dence with one round satisfies:

lim
✏!0

lim inf
n!1

− 1

n
log βn(R, ✏|K = 1)  1

n

⇥
I(IA;Yn) + I(IB;Xn|IA)

⇤
, (C.25)

R ≥ 1

n

⇥
I(IA;Xn) + I(IB;Yn|IA)

⇤
, (C.26)

where IA := f1(X
n) and IB := g1

(
f1(X

n),Yn
)
for any mappings (f1, g1), as given in

Defintion 13.

Proof. For block-length n, given a code characterized by the encoding mappings f[1], g[1]
at nodes A and B respectively, and a decoding mapping φ at node A, let the acceptance
region be denoted by

An :=
{

(x, j) 2 X n ⇥ {1, . . . , |g[1]|} : g[1]
(
y, f[1](x)

)
= j, y 2 Yn, φ

(
x, j
)

= 0
 
. (C.27)
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Let P and Q denote the probability measures on X n ⇥ {1, . . . , |g[1]|} induced by H0 and
H1, respectively. From the log-sum inequality [82], we have:

D (PXnIAIBkQXnIAIB) = D (PXnIBkQXnIB)

≥ (1 − ↵n) log
1 − ↵n

βn(R, ✏ |K = 1)
+ ↵n log

↵n

1 − βn(R, ✏ |K = 1)
,

(C.28)

where IA := f[1](X
n), IB := g[1](IA,Y

n), ↵n(R|K = 1) := P (Ac
n)  ✏ and βn(R, ✏ |K =

1) := Q(An). Through some algebra this yields:

D (PXnIAIBkQXnIAIB) ≥ (1 − ↵n) log
1

βn(R, ✏ |K = 1)
−H2(↵n) , (C.29)

where H2(⇢) := −⇢ log ⇢−(1−⇢) log(1−⇢) is the binary entropy function. By assumption
✏ ! 0 as n! 1, one concludes that for n large enough

− 1

n
log βn(R, ✏ |K = 1)  1

n
D (PXnIAIBkQXnIAIB) − δn , (C.30)

with δn ! 0 as n! 1. Using the chain rule, we continue to get:

D
(
PXnIAIBkQXnIAIB

)
= I(IB;Xn|IA) + D

(
PIB |IAkQIB |IA |PIA

)
(C.31a)

 I(IB;Xn|IA) + D (PYnIAIBkQYnIAIB) (C.31b)

= I(IB;Xn|IA) + D (PYnIAkP n
Y PIA) (C.31c)

= I(IB;Xn|IA) + I(IA;Yn) . (C.31d)

Here, (C.31a) and (C.31b) stem from the chain rule for the KL-divergence, and (C.31c)
is due to the fact that we consider the case of testing against independence. With this,
the weak unfeasibility proof of a multi-letter expression is completed.

From Lemma 23, it follows that:

lim
✏!0

lim inf
n!1

− 1

n
log βn(R, ✏|K = 1) (C.32)

 lim sup
n!1

1

n
[I(IA;Yn) + I(IB;Xn|IA)] := lim sup

n!1
∆n ,

where IA is the message sent from node A while IB is its reply from node B. In order to
derive a single-letter expression, we expand (C.32) as follows:

∆n =
1

n

nX

i=1

⇥
I(IA;Yi|Yn

i+1) + I(IB;Xi|IAXi−1)
⇤

(C.33a)

=
1

n

nX

i=1

⇥
I(IAY

n
i+1;Yi) + I(IBY

n
i+1;Xi|IAXi−1) − I(Yn

i+1;Xi|IAIBXi−1)
⇤

(C.33b)

=
1

n

nX

i=1

⇥
I(IAX

i−1Yn
i+1;Yi) − I(Xi−1;Yi|IAYn

i+1) + I(Yn
i+1;Xi|IAXi−1) (C.33c)
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+I(IB;Xi|IAXi−1Yn
i+1) − I(Yn

i+1;Xi|IAIBXi−1)
⇤

=
1

n

nX

i=1

h

I(Ûi;Yi) + I(Vi;Xi|Ûi) − I(Yn
i+1;Xi|IAIBXi−1)

i

, (C.33d)

where Xi denotes the first i samples and Xn
i = (Xi, . . . , Xn); (C.33a) stems from the chain

rule and (C.33b) from the assumed i.i.d. nature of the sources. In (C.33d), the following
identity is used [82]:

nX

i=1

I(Ai−1;Bi|C,Bn
i+1) =

nX

i=1

I(Bn
i+1;Ai|C,Ai+1) , (C.34)

where C can be arbitrarily dependent to the vectors A and B, as long as it does not change
with i, and the following auxiliary RVs are defined on measurable spaces (Ui ⇥Vi,BUi⇥Vi

)
by setting:

Ûi := (IA,X
i−1,Yn

i+1) and Vi := IB , 8 i = [1 : n] . (C.35)

It is important to emphasize that the required Markov chains in (4.17) are verified for
each i = [1 : n]. this is proved at the end of this appendix. Let Q be a RV uniformly
distributed over [1 : n], then:

∆n  I(ÛQ;YQ|Q) + I(VQ;XQ|ÛQ, Q) − 1

n

nX

i=1

I(Yn
i+1;Xi|IAIBXi−1)

, I(U ;Y ) + I(V ;X|U) − T ,

(C.36)

where U := (ÛQ, Q).

We now bound the required rate, from the size of the mappings, we have

nR ≥ I(IA;Xn) + I(IB;YnIA) ≥ I(IA;Xn) + I(IB;Yn|IA) . (C.37)

For convenience, we analyze each of these terms separately:

I(IA;Xn) =
nX

i=1

I(IAX
i−1;Xi) (C.38a)

=
nX

i=1

⇥
I(IAX

i−1Yi+1n ;Xi) − I(Yn
i+1;Xi|IAXi−1)

⇤
, (C.38b)

where (C.38a) is due to the i.i.d nature of samples. The second term writes as:

I(IB;Yn|IA) =
nX

i=1

⇥
I(IBX

i−1;Yi|IAYn
i+1) − I(Xi−1;Yi|IAIBYn

i+1)
⇤

=
nX

i=1

⇥
I(Xi−1;Yi|IAYn

i+1) + I(IB;Yi|IAXi−1Yn
i+1) − I(Xi−1;Yi|IAIBYn

i+1)
⇤

=
nX

i=1

⇥
I(IB;Yi|IAXi−1Yn

i+1) + I(Xi;Y
n
i+1|IAXi−1) − I(Xi−1;Yi|IAIBYn

i+1)
⇤
,

(C.39)
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where the final step is due to identity (C.34). These inequalities lead to

nR ≥
nX

i=1

⇥
I(IAX

i−1Yn
i+1;Xi) + I(IB;Yi|IAXi−1Yn

i+1) − I(Xi−1;Yi|IAIBYn
i+1)
⇤
. (C.40)

Using the same definitions for the auxiliary RVs as above, this result can be expressed as
follows:

R ≥ I(ÛQ;XQ|Q) + I(VQ;YQ|ÛQ, Q) − T , (C.41)

and thus, the following region is an outer bound:
(

∆n  I(U ;Y ) + I(V ;X|U) − T ,

R ≥ I(U ;X) + I(V ;Y |U) − T ,
(C.42)

where (U, V ) are auxiliary RVs that respect the required Markov chains in (4.17). It is
left to show that (C.42) is equivalent or stricter than:

(

∆n  I(U ;Y ) + I(V ;X|U) ,

R ≥ I(U ;X) + I(V ;Y |U) .
(C.43)

That is, all pairs (R,∆n) that are forbidden in the region in (C.42) are also forbidden
in (C.43). In order to do so we use Fourier-Motzkin elimination [106] over T ≥ 0.

By removing T , we get:
(

∆n  I(U ;Y ) + I(V ;X|U) ,

R ≥ I(U ;X) + I(V ;Y |U) − I(U ;Y ) − I(V ;X|U) + ∆n ,
(C.44)

and using the Markovian relations between the different RVs we obtain:
(

∆n  I(U ;Y ) + I(V ;X|U) ,

R ≥ I(U ;X|Y ) + I(V ;Y |UX) + ∆n .
(C.45)

In order to show the equivalence between the two regions, we need to check the extremal
points. The point where ∆n = 0 is trivial, as R = 0 is optimal under both regions. When
checking ∆n = I(U ;Y ) + I(V ;X|U) we have:

R ≥ I(U ;X|Y ) + I(V ;Y |UX) + I(U ;Y ) + I(V ;X|U) (C.46)

= I(U ;X) + I(V ;Y |U) ,

which completes the proof of the weak unfeasibility.

C.3.1 Proving the Required Markov Chains

In order to complete the proof of converse, we need to show that the required Markov
chains are indeed respected. Two Markov chains are necessary:

(

Ûi −Xi − Yi , 8 i = [1 : n]

Vi − (Ûi, Yi) −Xi , 8 i = [1 : n].
(C.47)
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Using the chosen RVs from (C.35), these Markov chains are represented by

(

(IA,X
i−1,Yn

i+1) −Xi − Yi , 8 i = [1 : n]

IB − (IA,X
i−1,Yn

i ) −Xi , 8 i = [1 : n].
(C.48)

In order to check this, we use the next lemma.

Lemma 24. Let A1, A2, B1, B2 be RVs with joint probability measure PA1A2B1B2 = PA1B1PA2B2

and assume that {f i}ki=1, {gi}ki=1 are any collection of P -measurable mappings with domain
structure given by:

f 1(A1, A2); f
2(A1, A2, g

1); . . . ; fk(A1, A2, g
1, . . . , gk−1) , (C.49)

g1(B1, B2, f
1); g2(B1, B2, f

1, f 2); . . . ; gk(B1, B2, f
1, . . . , fk) . (C.50)

Then,
I(A2;B1|f 1, f 2, . . . , fk, g1, g2, . . . , gk, A1, B2) = 0 . (C.51)

Proof. Refer to reference [50, Lemma 1].

In order to prove the first Markov chain, we simply let:

(

A1 := Xi, B1 := Yi ,

A2 := (Xi−1,Xn
i+1,Y

n
i+1) , B2 := Yi−1 .

(C.52)

It can be easily verified that PA1A2B1B2 = PA1B1PA2B2 , which stems directly from the i.i.d.
nature of the samples. Thus, according to Lemma 24:

0 = I(Xi−1Xn
i+1Y

n
i+1;Yi|XiY

i−1)

= I(Xi−1Xn
i+1Y

i−1Yn
i+1;Yi|Xi) − I(Yi−1;Yi|Xi)

= I(Xi−1Xn
i+1Y

i−1Yn
i+1;Yi|Xi) ,

(C.53)

which shows the Markov chain:

(Xi−1,Xn
i+1,Y

i−1,Yn
i+1) −Xi − Yi , 8 i = [1 : n]. (C.54)

As IA := f[1](X
n), the following Markov chain is also true:

(IA,X
i−1,Yn

i+1) −Xi − Yi , 8 i = [1 : n] (C.55)

which proves the first Markov chain in (C.48).

As for the second one, we let:

(

A1 := Xi−1 , B1 := Yi−1 ,

A2 := (Xi,X
n
i+1) , B2 := (Yi,Y

n
i+1) .

(C.56)
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Under this choice, IA := f[1](A1, A2) and thus,

I(XiX
n
i+1;Y

i−1|IAXi−1YiY
n
i+1) = 0 , 8 i = [1 : n]. (C.57)

The later identity proves the following Markov chain:

(Xi,X
n
i+1) − (IA,X

i−1, Yi,Y
n
i+1) −Yi−1 , 8 i = [1 : n]. (C.58)

As IB := g[1](IA, Y
n), it also holds that:

Xi − (IA,X
i−1, Y n

i ) − IB , 8 i = [1 : n] (C.59)

which yields the desired Markov chain.

C.4 Explanation of Remark 16

Having proven the optimality (at least in the weak sense) of the region proposed in
Theorem 3 for the problem of cooperative testing against independence over one round of
communication, we discuss the case of multiple communication rounds in this appendix.
As mentioned in Remark 16, the achievability of (4.24) can be shown through the result
for the error exponent with general hypotheses of Section 4.4, in much the same way as
was the case for a single round of communication.

In [51] the special case of testing against independence is explored, over multiple
rounds of communication. While our achievability result (acquired through the general
error exponent), matches the one in [51], the authors of that work unfortunately missed
a significant detail in attempting to prove a converse, similar to the one proved in Ap-
pendix C.3. In fact, an equivalent to the multi-letter expression of Lemma 23 cannot be
shown to constitute a multi-letter converse for the case of multiple rounds of communica-
tions, making the passage from a multi-letter to a single-letter expression a moot point.
We show this in this appendix.

Consider as an example a two-round scenario. As was done as part of the proof of
Lemma 23, let P andQ denote the probability measures on X n⇥{1, . . . , |g1|}⇥{1, . . . , |g2|}
induced by H0 and H1, respectively. It is straight-forward to show that

− 1

n
log βn(R, ✏|K = 2)  1

n
D(P

Xn,I
(1)
A I

(1)
B I

(2)
A I

(2)
B

||Q
Xn,I

(1)
A I

(1)
B I

(2)
A I

(2)
B

) − δn , (C.60)

where I
(j)
A and I

(j)
B are the messages sent from nodes A and B, respectively, at round j.

In the case of a single round of communication it was shown that

D(P
Xn,I

(1)
A I

(1)
B

||Q
Xn,I

(1)
A I

(1)
B

)  I(I
(1)
A ;Yn) + I(I

(1)
B ;Xn|I(1)A ) , (C.61)

thus proving the multi-letter version of the converse. When two rounds of communication
are allowed, the expression in (C.60) can be expressed through the chain rule for KL-
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divergence as follows:

D(P
Xn,I

(1)
A I

(1)
B I

(2)
A I

(2)
B

||Q
Xn,I

(1)
A I

(1)
B I

(2)
A I

(2)
B

) =

= D(P
Xn,I

(1)
A I

(1)
B I

(2)
A

||Q
Xn,I

(1)
A I

(1)
B I

(2)
A

) + D(P
I
(2)
B |Xn,I

(1)
A I

(1)
B I

(2)
A

||Q
I
(2)
B |Xn,I

(1)
A I

(1)
B I

(2)
A

|P
Xn,I

(1)
A I

(1)
B I

(2)
A

)

(C.62)

Analyzing each of the two arguments of (C.62) separately, the first one can be ex-
pressed as follows:

D(P
Xn,I

(1)
A I

(1)
B I

(2)
A

||Q
Xn,I

(1)
A I

(1)
B I

(2)
A

) (C.63a)

= D(P
Xn,I

(1)
A I

(1)
B

||Q
Xn,I

(1)
A I

(1)
B

) + D(P
I
(2)
A |Xn,I

(1)
A I

(1)
B

||Q
I
(2)
A |Xn,I

(1)
A I

(1)
B

|P
Xn,I

(1)
A I

(1)
B

) (C.63b)

= D(P
Xn,I

(1)
A I

(1)
B

||Q
Xn,I

(1)
A I

(1)
B

) (C.63c)

 I(I
(1)
A ;Yn) + I(I

(1)
B ;Xn|I(1)A ) . (C.63d)

Here, (C.63b) is due to the chain rule (C.63c) stems from the fact that under both hy-

potheses I
(2)
A = f[2](X

n, I
(1)
B ) with the same function f[2], and (C.63d) is the result demon-

strated for the first round in the proof of Lemma 23. The second argument in (C.62) can
be expressed as follows:
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Here, all the sums are over the super-alphabet of the x-sequence, X n, as well as the
messages in each of the codebooks for I

(1)
A , . . . , I

(2)
B . The arguments of the probabilities

within the sums were excluded for convenience of notation. (C.64e) is due to the fact that
we are considering testing against independence. Thus, under probability distribution Q,
the message I

(2)
B is independent of x, given all previous messages. Taking a closer look at

the KL-divergence in (C.64e), it can be shown to comply with
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Here, (C.65b), (C.65c) and (C.65e) are due to the chain rule, (C.65d) to the fact that I
(2)
B

is a function of Yn and all previous messages (unchanged under both hypotheses), and
(C.65f) to the fact we are testing against independence.

Reassembling all of the expressions above, we conclude that a multi-letter upper bound
to the error exponent of Type II is:

− 1

n
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(C.66)

It can be seen that this bound does include the extension to Lemma 23 we would have
liked to have for cooperative communication over multiple rounds, but it adds to it another
expression. This expression could be thought of as a quantification of the di↵erence in the
correlation of the two messages, between the two hypotheses. While this does not prove
that the desired expression does not constitute a converse to the error exponent of Type II,
it does show that the multi-letter step of the proof is non-trivial, and cannot be ignored.
Moreover, it seems at least intuitively, that the added expression D(P

I
(1)
A I

(1)
B

||Q
I
(1)
A I

(1)
B

)

should be significant, as the opposite suggests that the message of node B depends only
on the received message from node A, and not at all on its observed sequence Yn.

C.5 Proof of Theorem 4

From the expression of the error exponent in (4.26), it is clear that it is enough to show the
result for K = 1, since it is feasible with one round and the extension of the unfeasibility
proof is straightforward. We start by proving the feasibility of the error exponent in
(4.26), and then we prove the unfeasibility result using methods similar to the ones in [40]
for the case of a unidirectional exchanges.

C.5.1 Proof of Achievability

As the error exponent in (4.26) is feasible with single-side exchange, we use Proposition 3
setting V = φ. Thus, a feasible error exponent for zero-rate, as defined in Theorem 4:

lim inf
n!1

− 1

n
log βn(R = 0, ✏ |K) ≥ max

S (R=0)
min

L (U,X,Y )
D(PŨX̃Ỹ ||PŪX̄Ȳ ) , (C.67)
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where S and L are the sets defined in Proposition 3. Using the chain rule for KL
divergence, this exponent can be bounded as follows:

max
S (R=0)

min
L (U,X,Y )

D(PŨX̃Ỹ ||PŪX̄Ȳ )

= max
S (R=0)

min
L (U,X,Y )

h

D(PX̃Ỹ ||PX̄Ȳ ) + D(PŨ |X̃Ỹ ||PŪ |X̄Ȳ |PX̃Ỹ )
i

= max
S (R=0)

min
L0(X,Y )



D(PX̃Ỹ ||PX̄Ȳ ) + min
P
Ũ|X̃Ỹ

D(PŨ |X̃Ỹ ||PŪ |X̄Ȳ |PX̃Ỹ )

]

≥ min
L0(X,Y )

D(PX̃Ỹ ||PX̄Ȳ ) .

(C.68)

Here, the minimum over PŨ |X̃Ỹ is such that ŨX̃Ỹ 2 L (U,X, Y ), L0(X, Y ) is as defined
in Theorem 4 and the final inequality is due to the non-negativity of the KL divergence.

C.5.2 Proof of Strong Converse

We now prove the optimality of Theorem 4, by showing that the error exponent of βn(R =
0, ✏) does not depend on ✏ 2 (0, 1), and that (4.26) cannot be beaten. We follow a similar
approach to [40], which addressed this proof for the case of unidirectional exchanges.

Let f[1] : X n ! {1, . . . , |f[1]|} and g[1] : Yn ⇥ {1, . . . , |f[1]|} ! {1, . . . , |g[1]|} be the
encoding functions at node A and B, respectively, and let φ

(
Xn, g[1](Y

n, f[1](X
n))
)
2

{0, 1} be the decoding function at node A. Define sets:

Cij :=
{
x 2 X n : f[1](x) = i and φ(x, j) = 0

 
, Ci :=

|f[1]|
[

i=1

Cij ,

Fij :=
{
y 2 Yn : g[1](y, i) = j

 
, (i, j) 2 {1, . . . , |f[1]|} ⇥ {1, . . . , |g[1]|} .

(C.69)

Note that Cij (respectively, Fij) cannot be said to be pairwise disjoint in X n (respectively,
Yn) while the sets Ci are pairwise disjoint. Similarly, for each index i0, the sets Fi0j are
disjoint. The acceptance set of H0 can be expressed by

An :=

|f[1]|
[

i=1

|g[1]|
[

j=1

Cij ⇥Fij . (C.70)

That is, if (x,y) 2 An, φ
(
x, g[1](y, f[1](x))

)
= 0 and otherwise, the result is H1. By the

definition, P n
XY (Ac

n)  ✏, or equivalently

P n
XY (An) = P n

XY

0

@

|f[1]|
[

i=1

|g[1]|
[

j=1

Cij ⇥Fij

1

A > 1 − ✏ . (C.71)
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Since the sets Bi :=
|g[1]|S

j=1

Cij ⇥ Fij are disjoint, by relying on (C.71) and on the size |f[1]|,
there exists an index i0 such that

P n
XY

0

@

|g[1]|
[

j=1

Ci0j ⇥Fi0j

1

A ≥ 1 − ✏

|f[1]|
. (C.72)

As the sets Fi0j are disjoint, there exists an index j0 such that

P n
XY (Ci0j0 ⇥Fi0j0) ≥

1 − ✏

|f[1]||g[1]|
. (C.73)

Letting C ⌘ Ci0j0 and F ⌘ Fi0j0 , we rewrite this as:

P n
XY (C ⇥ F) ≥ 1 − ✏

|f[1]||g[1]|
⌘ exp(−nδn) , (C.74)

with δn ⌘ 1
n

log
(
|f[1]||g[1]|

)
− 1

n
log(1− ✏). As the log-function is monotonic and both |f[1]|

and |g[1]| are non-negative, expression (4.25) implies that log |f[1]| = o(n) and log |g[1]| =
o(n) and thus δn = o(1).

Having shown that there exist sets C and F , such that C⇥F 2 An, and the probability
PXY (C ⇥F) does not approach 0 exponentially with n, the rest of the proof follows along
the lines in [40]. We finish it here, for the sake of completeness. We now evoke the
“Blowing-Up” Lemma:

Lemma 25 (Blowing-up Lemma). Let Yn = (Y1, . . . , Yn) be independent random variables
in (Yn,BYn) distributed according to W n(Yn|Xn = x) for some fixed vector x 2 X n and
a stochastic mapping W : X 7! P(Y) and let δn ! 0 be a given sequence. There exist
sequences kn ⌘ o(n) and γn ⌘ o(1), such that for every subset An ⇢ Yn:

W n(An|Xn = x) ≥ exp(−nδn) implies W n
(
ΓknAn|Xn = x

)
≥ 1 − γn (C.75)

where ΓknAn denotes the Γkn-neighborhood of the set An defined by

ΓknAn :=

⇢

ŷ 2 Yn : min
y2An

⇢n(ŷ,y)  kn

}

, (C.76)

where ⇢n(ŷ,y) :=
nP

i=1

1{ŷi 6= yi} and 1{ŷ 6= y} = 1 if ŷ 6= y or = 0 otherwise.

Proof. Refer to references [78, 107]

As P n
XY (C ⇥ F) ≥ exp(−nδn), clearly P n

X(C) ≥ exp(−nδn) and P n
Y (F) ≥ exp(−nδn).

Using the non-conditional version of Lemma 25, there exist sequences kn = o(n) and
γn = o(1) s.t.:

P n
X

(
ΓknC

)
≥ 1 − γn , P n

Y

(
ΓknF

)
≥ 1 − γn , (C.77)
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where kn, γn only depend on |X |, |Y| and δn, but not on PXY . Equation (C.77) holds true
if we change PX to PX̃ and PY to PỸ , for some X̃Ỹ 2 L0. As we wish to analyze the
error probability for fixed n, during most of this proof we take the liberty to dismiss the
subscript n from kn, for the sake of readability.

Using the fact Pr(A \ B) ≥ Pr(A) + Pr(B) − 1 and (C.77), we obtain:

P n

X̃Ỹ

(
ΓkC ⇥ ΓkF

)
≥ P n

X̃

(
ΓkC

)
+ P n

Ỹ

(
ΓkF

)
− 1 ≥ 1 − 2γn . (C.78)

Consider the set of ⌘-typical sequences defined by PX̃Ỹ . By Lemma 9,

P n

X̃Ỹ
(T[X̃Ỹ ]⌘) ≥ 1 −O

✓
1

n⌘2

◆

= 1 −O
⇣

n− 1
3

⌘

, (C.79)

where the last equality is a result of the choice ⌘ ⌘ ⌘n := n− 1
3 . Combining (C.78) and

(C.79), it is clear that for sufficiently large n,

P n

X̃Ỹ

(
(ΓkC ⇥ ΓkF) \ T[X̃Ỹ ]⌘

)
≥ 1

2
. (C.80)

By the definition of the ⌘-typical set (see Definition 7 and in particular Remark 2), we
have:

T[X̃Ỹ ]⌘
=

[

P
X̂Ŷ

2Pn(X⇥Y)

|P
X̂Ŷ

−P
X̃Ỹ

|⌘ , P
X̂Ŷ

⌧P
X̃Ỹ

T[X̂Ŷ ] , (C.81)

where |PX̂Ŷ − PX̃Ỹ |  ⌘ refers to the maximum over all the arguments in X ⇥ Y . As all
elements of T[X̂Ŷ ] are equiprobable under an i.i.d measure, (C.80) can be rewritten as

X

P
X̂Ŷ

2Pn(X⇥Y)

|P
X̂Ŷ

−P
X̃Ỹ

|⌘ , P
X̂Ŷ

⌧P
X̃Ỹ

P n

X̃Ỹ

(
T[X̂Ŷ ]

) |(ΓkC ⇥ ΓkF) \ T[X̂Ŷ ]⌘
|

|T[X̂Ŷ ]⌘
| ≥ 1

2
. (C.82)

As P n

X̃Ỹ
(T[X̂Ŷ ])  1, by using the bound over the size of the set Pn(X ⇥ Y) in Lemma 4,

there must be at least one type T[X̂Ŷ ], for which

|(ΓkC ⇥ ΓkF) \ T[X̂Ŷ ]⌘
|

|T[X̂Ŷ ]⌘
| ≥ 1

2
(n+ 1)−|X ||Y| =

1

2
exp(−n✏n) , (C.83)

with ✏n = O(n−1 log(n+ 1)) ! 0 as n! 1. The equiprobability property is also true for
the probability measure implied by H1, that is PX̄Ȳ . Thus,

P n
X̄Ȳ

(
ΓkC ⇥ ΓkF

)
≥ P n

X̄Ȳ

(
(ΓkC ⇥ ΓkF) \ TX̂Ŷ

)

= P n
X̄Ȳ (TX̂Ŷ )

|(ΓkC ⇥ ΓkF) \ TX̂Ŷ |
|TX̂Ŷ |

≥ 1

2
exp(−n✏n)P n

X̄Ȳ (TX̂Ŷ ) ,

(C.84)
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where the final inequality stems from (C.83).

Consider now an arbitrary element (u,v) 2 ΓkC ⇥ ΓkF . By definition, there exist an
element (x,y) 2 C ⇥ F , such that (ui, vi) 6= (xi, yi) at most in 2k locations. Thus,

P n
X̄Ȳ (u,v) =

nY

i=1

PX̄Ȳ (ui, vi)  ⇢−2k

nY

i=1

PX̄Ȳ (xi, yi) = ⇢−2kP n
X̄Ȳ (x,y) , (C.85)

with ⇢ = min
(x,y)2X⇥Y

PX̄Ȳ (x, y), and we assume that ⇢ > 0 (which complies with the prelim-

inaries of Theorem 4). As (u,v) range over ΓkC ⇥ ΓkF , each element (x,y) 2 C ⇥F will
be chosen as the closest neighbor at most |Γk(x)| ⇥ |Γk(y)| times. Thus,

P n
X̄Ȳ

(
ΓkC ⇥ ΓkF

)
 ⇢−2k|Γk(x)| ⇥ |Γk(y)|P n

X̄Ȳ (C ⇥ F) . (C.86)

From [82, Lemma 5.1] we have:

|Γk
n(x)|  exp



n

✓

h2

✓
kn
n

◆

+
kn
n

log |X |
◆]

⌘ exp(n⇣ 0n) , (C.87)

with h2(·) being the binary entropy function and ⇣ 0n ! 0 as n! 1. This implies that

P n
X̄Ȳ

(
ΓkC ⇥ ΓkF

)
 exp(n⇣n)P n

X̄Ȳ (C ⇥ F) , (C.88)

with ⇣n := 2h2
(
kn
n

)
+ kn

n
log(|X |Y|)− 2kn

n
log ⇢ ! 0 as n! 1. Combining this with (C.84),

we finally get

P n
X̄Ȳ (C ⇥ F) ≥ exp(−n⇣n)P n

X̄Ȳ

(
ΓkC ⇥ ΓkF

)
(C.89)

≥ 1

2
exp [−n(⇣n + ✏n)]P n

X̄Ȳ (TX̂Ŷ )

≥ (n+ 1)|X |Y|

2
exp

⇥
−n
(
D(PX̂Ŷ kPX̄Ȳ ) + ⇣n + ✏n

)⇤

≥ exp
⇥
−n
(
D(PX̂Ŷ kPX̄Ȳ ) + µn

)⇤
,

and µn ⌘ µn(⇢, ✏,Mn, Nn, |X |, |Y|) ! 0 as n! 1.

The previous conclusion is true for some type PX̂Ŷ over the range of all types that are
⌘-typical for the measure PX̃Ỹ . As the divergence functional D(·k·) is convex and bounded,
it is also uniformly continuous. It follows that we can find a sequence µ0

n ⌘ µ0
n(⇢, |X |, |Y|)

such that |PX̂Ŷ − PX̃Ỹ |  ⌘ = o(n− 1
3 ) implies that |D(PX̂Ŷ kPX̄Ȳ ) −D(PX̃Ỹ kPX̄Ȳ )|  µ0

n.
Hence

P n
X̄Ȳ (C ⇥ F) ≥ exp

⇥
−n
(
D(PX̃Ỹ kPX̄Ȳ ) + µn + µ0

n

)⇤
, (C.90)

and consequently

− lim inf
n!1

1

n
logP n

X̄Ȳ (An) = − lim
n!1

1

n
log βn(R = 0, ✏ |K = 1) (C.91)

 D(PX̃Ỹ kPX̄Ȳ ) ,

and the RVs X̃Ỹ are chosen from the set L0, which concludes the proof.
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Appendix D

Résumé

Ces dernières années, l’intérêt scientifique porté aux di↵érents aspects des systèmes au-
tonomes est en plein croissance. Des voitures autonomes jusqu’à l’Internet des objets,
il est clair que la capacité des systèmes à prendre des décisions de manière autonome
devient cruciale. De plus, ces systèmes opèreront avec des ressources limitées. Dans cette
thèse, ces systèmes sont étudiés sous l’aspect de la théorie de l’information, dans l’espoir
qu’une compréhension fondamentale de leurs limites et de leurs utilisations pourra aider
leur conception par les futurs ingénieurs.

Dans ce travail, divers problèmes de décision binaire distribuée et collaborative sont
considérés. Deux participants doivent “déclarer” la mesure de probabilité de deux vari-
ables aléatoires, distribuées conjointement par un processus sans mémoire et désignées
par Xn = (X1, . . . , Xn) et Yn = (Y1, . . . , Yn). Cette décision est prise entre deux mesures
de probabilité possibles sur un alphabet fini, désignées PXY et PX̄Ȳ . Les prélèvements
marginaux des variables aléatoires, Xn et Yn sont supposés disponibles aux di↵érents
sites.

Il est permis aux participants d’échanger des quantités limitées d’information sur un
canal parfait avec une contrainte de débit maximal. Durant cette thèse, la nature de cette
communication varie. D’abord, seule une communication unidirectionnelle est permise.
Le récepteur de cette communication doit, en utilisant également sa propre information,
identifier d’abord la légitimité de son expéditeur, en déclarant la distribution conjointe
des processus. Il peut ensuite devoir, selon cette authentification, générer une reconsti-
tution adéquate des observations de l’émetteur, qui satisfait une contrainte de distorsion
moyenne. La performance de cette configuration est étudiée via la région réalisable de
débit-erreur-distorsion, qui décrit le compromis entre: le débit de communication, la prob-
abilité d’erreur en détection et la distorsion attendue de la reconstitution de la source.

Nous séparons le cas général d’un cas spécial où il est supposé que le test est fait contre
l’indépendance. Dans ce cas, nous supposons que l’hypothèse H1 implique l’indépendance
statistique entre les variables X et Y , qui conservent leur distributions marginales re-
spectives: PX̄Ȳ = PXPY . Il s’avère que dans ce cas la région débit-erreur-distorsion
réalisable est aussi optimale. Dans le cas général, tandis qu’une théorème d’optimalité
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reste illusoire, nous présentons deux nouvelles approches au problème. Ici, une stratégie
de groupage aléatoire de mots de code (“binning”) s’avère très bénéfique pour la perfor-
mance du système, même si elle parâıt risquée au premier regard. Nous démontons ce
fait à travers un exemple, et continuons à prouver que la relaxation de la demande de
reconstitution au récepteur est bénéfique en général, ce qui di↵ère du cas de test contre
l’indépendance.

Un scénario di↵érent est étudié ensuite, dans lequel les participants peuvent utiliser
un lien bidirectionnel pour arriver à leur conclusion. Un tel scénario permet la considéra-
tion de multiples tours d’interactions, un choix qui diverge des études précédentes. Un
tour unique de communication est d’abord considéré, avant que le résultat soit généralisé
pour inclure un nombre indéfini (mais non pas infini) de tours. Un résultat de faisabil-
ité est démontré pour le cas général de chaque hypothèse. Le cas spécial de test contre
l’indépendance, où il est supposé que l’hypothèse alternative implique des sources indépen-
dantes, est revisité comme une instance du cas général. Il est démontré que le résultat
général conduit au résultat connu pour ce cas spécial. Un résultat de non-faisabilité est
démontré pour le cas spécial, prouvant par conséquent l’optimalité de ce résultat, au
moins dans le cas d’un seul tour de communication. In est expliqué pourquoi ce résultat
de non-faisabilité (et donc d’optimalité) n’est pas généralisable pour un scénario de mul-
tiples tours de communication. Un autre cas spécial est considéré, où la communication
est faite avec débit nul, pour lequel il est démontré que l’interaction n’améliore pas les
performances.
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