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Résumé

Dans cette thèse nous considérons une population branchante générale où les individus vivent et
se reproduisent de manière i.i.d. La durée de vie de chaque individu est distribuée suivant une
mesure de probabilité arbitraire et chacun d’eux donne naissance à taux exponentiel. L’arbre
décrivant la dynamique de cette population est connu sous le nom de splitting tree. Ces arbres
aléatoires ont été introduits par Geiger et Kersting en 1997.
Dans un premier temps nous nous intéressons au processus stochastique qui compte le nombre
d’individus vivants à un instant donné. Ce processus est connu sous le nom de processus de
Crump-Mode-Jagers binaire homogène, et il est connu que ce processus, quand correctement
renormalisé, converge presque sûrement en temps long vers une variable aléatoire (non dégénérée
dans le cas surcritique). Grâce à l’étude du splitting tree sous-jacent à la population via les
outils introduit par A. Lambert en 2010, nous montrons un théorème central limite pour cette
convergence p.s. dans le cas surcritique.
Dans un second temps, nous supposons que les individus subissent des mutations à taux exponen-
tiel sous l’hypothèse d’infinité d’allèles. Cette procédure mène à une partition de la population à
un instant donné par familles de même type. Nous nous intéressons alors au spectre de fréquence
allélique de la population qui compte la fréquence des tailles de familles dans la population à un
instant donnée. A l’aide d’un nouveau théorème permettant de calculer l’espérance de l’intégrale
d’un processus stochastique contre un mesure aléatoire quand les deux objets présentent une
structure particulière de dépendance, nous obtenons des formules pour calculer tout les moments
joints du spectre de fréquence. En utilisant ces formules, et en adaptant la preuve de la première
partie, nous obtenons également des théorèmes centraux limites en temps long pour le spectre
de fréquence.
Une dernière partie, indépendante des autres, s’intéresse à des questions statistiques sur des
arbres de Galton-Watson conditionnés par leurs tailles. L’idée de base est que les processus de
contours devraient être utilisés pour faire des statistiques sur des données hiérarchiques dans la
mesure où ils ont déjà prouvés leur efficacité dans des cadres plus théoriques. Ce travail est un
premier pas dans cette direction. Le but est ici d’estimer la variance de la loi de naissance rendue
inaccessible par le conditionnement. On utilise le fait que le processus de contour d’un arbre de
Galton-Watson conditionné converge vers une excursion Brownienne quand la taille de l’arbre
grandit afin de construire des estimateurs de la variance à partir de forêts. On s’attache ensuite à
étudier le comportement asymptotique de ces estimateurs. Dans une dernière partie, on illustre
numériquement leurs comportements.

Mots-clés: Splitting trees, processus de branchement, processus de Crump-Mode-Jagers

Abstract

In this thesis we consider a general branching population. The lifetimes of the individuals are
supposed to be i.i.d. random variables distributed according to an arbitrary distribution. More-



over, each individual gives birth to new individuals at Poisson rate independently from the other
individuals. The tree underlying the dynamics of this population is called a splitting tree. This
class of random tree was introduced by Geiger and Kersting in 1997
In a first part we are interested in the population counting process of the tree (i.e. the process
which count the number of alive individuals at given times). These processes are known as bi-
nary homogeneous Crump-Mode-Jagers processes. Moreover, these processes are known, when
properly renormalized, to converge almost surely to some random variable (which is non degen-
erate in the supercritical case). Thanks to the study of the underlying splitting tree through the
tools introduced by A. Lambert in 2010, we show a central limit theorem associated to this a.s.
convergence.
In a second part, we suppose that individuals undergo mutation at Poisson rate under the
infinitely many alleles assumption. This mechanism leads to a partition of the population by
type. We are mainly interested in the so called allelic frequency spectrum which describes the
frequency of sizes of families (i.e. sets of individuals carrying the same type) at fixed times.
Thanks to a new theorem allowing to compute the expectation of the integral of some random
process with respect to a random measure when both objects present a particular dependency
structure, we are able to compute every joints moments of the frequency spectrum. These enable
us to get central limit theorems for the frequency spectrum by adapting the proof of the first
part.
In a last part, we study some statistical problems for size constrained Galton-Watson trees. The
idea is that contour processes should be used to perform statistics on tree shaped datas, since
such processes proved to be particularly powerful in the theoretical study of trees. Our goal is to
estimate the variance of the birth distribution. This is not an easy task since conditioning killed
the independence and the homogeneity of the laws of the numbers children of the individuals.
Using that the contour process of a size constrained Galton-Watson tree converges to a Brownian
excursion as the size of the tree growth, we construct estimators of the variance of the birth
distribution. Then, we study the asymptotic behaviour of our estimators. To end, we stress our
methods on simulated datas.

Keywords: Splitting trees, branching processes, Crump-Mode-Jagers processes
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Chapitre 1

Introduction

Cette thèse porte sur l’étude de certains d’objets aléatoires utilisés en dynamique et génétique
des populations.

La dynamique des populations s’intéresse essentiellement à l’étude des variations des effectifs
d’individus dans une population au cours du temps. L’utilisation des mathématiques en dyna-
mique des populations remonte au moins à 1826 lorsque Thomas Malthus les utilise dans son
livre “Essay on the principle of population” [72]. Pour défendre sa thèse : “I said that a popu-
lation, when unchecked, increased in a geometrical ratio”, il introduit un modèle très simple :
un+1 = 2un. Le terme croissance Matlhusienne viens de là. Quelques années plus tard, en 1838,
à la suite des travaux de Malthus, Pierre François Verhulst introduit le modèle de croissance
logistique [88] afin de prendre en compte les contraintes environnementales. Depuis, la variété
des modèles et leurs complexités n’a cessé de croître, et en faire l’inventaire serait un travail qui
dépasse le cadre de cette introduction. Une sophistication naturelle fut dès lors de prendre en
compte l’aléa qui influe notamment dans de petites populations. Le modèle probabiliste le plus
souvent cité en exemple est bien sûr le processus de Bienaymé-Galton-Watson [39, 4] qui, bien
qu’introduit il y a plus de 150 ans, est encore un sujet d’étude aujourd’hui.

La génétique des populations, quant à elle, s’intéresse à l’apparition ou à la variation de la
fréquence d’allèles au sein d’une population. Les modèles mathématiques pour la génétique des
populations [29, 27] adoptent un point de vue légèrement différent de ceux utilisés en dynamique
des populations. En considérant souvent des populations de tailles fixées, ce domaine s’intéresse
par exemple aux probabilités de fixation d’un allèle au sein de la population. On pourra penser
au modèle de Wright-Fisher [91, 31] dont le pendant en temps rétrograde, le modèle de Kingman
[55, 56] a permis d’obtenir une expression explicite pour la loi du spectre de fréquence de la
population échantillonnée connu sous le nom de formule d’échantillonage d’Ewens [28]. Ceci
permet par exemple de construire des estimateurs pour le taux de mutation de la population. En
biologie, le spectre de fréquence a également été utilisé pour détecter une sélection positive d’un
gène dans une population en croissance [84, 85].

Dans cette thèse nous considérons un modèle plus sophistiqué que celui de Bienaymé-Galton-
Watson afin de prendre en compte le temps et les durées de vies des individus. Nous considérons
une population branchante générale. Comme dans le modèle de Galton-Watson, les individus
vivent et se reproduisent de manière indépendante les uns des autres. Cependant, nous supposons
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Chapitre 1. Introduction

que leurs durées de vies sont distribuées suivant une loi de probabilité fixée PV . Ensuite, chaque
individu donne naissance à de nouveaux individus à taux fixé b durant sa vie, chaque nouvelle
naissance donnant un unique nouvel individu (contrairement à d’autres modèles où des naissances
simultanées sont possibles). En fonction des valeurs de b et de

∫
R+
x PV (dx), il est connu [60]

que la population montre plusieurs régimes de croissance différents. Si b
∫
R+
x PV (dx) = 1 (cas

critique) ou b
∫
R+
x PV (dx) < 1 (cas sous-critique) alors la population s’éteint presque sûrement.

Si b
∫
R+
x PV (dx) > 1 (cas surcritique), alors, avec un probabilité positive, la population ne

s’éteindra jamais. De plus, en cas de non extinction, la croissance de la population se fait à vitesse
exponentielle. Dans ce dernier cas, on peut montrer l’existence d’une constante α strictement
positive, appelée paramètre Malthusien, correspondant au taux de croissance exponentiel de la
population.

Le modèle décrit plus haut est plus fin que celui de Galton-Watson (ou que son pendant Marko-
vien en temps continu) car il prend en compte le vieillissement éventuel des individus. Il présente
cependant deux défauts importants du point de vu biologique :

— Les naissances sont Poissoniennes (donc “sans mémoire”).
— Il n’y a pas d’interactions entre les individus.

Une telle population peut naturellement être assimilée à un arbre dans lequel chaque branche
représente un individu et dont la longueur représente la durée de vie de l’individu correspon-
dant. Les branchements représentent alors les événements de naissances. L’arbre décrivant la
dynamique de la population décrite plus haut est appelé un splitting tree [35].

Comme souvent dans l’étude des arbres, il est commode de construire un opérateur inversible
qui transforme l’arbre en une fonction réelle car ce sont des objets bien plus aisés à manipuler
que les arbres. Les exemples les plus connus concernent les arbres de Galton-Watson (bien qu’ils
soient définis pour n’importe quel arbre discret). On pourra penser au processus de Harris [78]
ou encore à la marche de Łukasiewicz [32]. Dans le cas des splitting trees, il a été montré par A.
Lambert en 2010 [60] qu’il existe une transformation d’un splitting tree “fini” en un processus
càdlàg possédant la très commode propriété d’être un processus de Lévy tué en zéro. Dans le cas
d’un arbre infini, l’étude est permise par la troncature de l’arbre en deçà d’une date fixée.

Ce point de vue a donné lieu à de nombreux travaux [20, 67, 62, 64, 66], par exemple sur
l’inférence ancestrale sous le modèle des splitting trees [63, 61]. D’autre travaux s’intéressent aux
splitting trees avec mutations arrivant soit à la naissance des individus [82, 83, 22, 23] soit de
manière Poissonienne durant la vie des individus [13, 14]. En particulier, cet outil s’est avéré
utile dans l’étude du comportement asymptotique des processus de branchement construits à
partir des splitting trees. Le plus simple d’entre eux est le processus (Nt, t ∈ R+) qui compte le
nombre d’individus Nt vivants dans l’arbre à l’instant t. Ce processus est connu sous le nom de
processus de Crump-Mode-Jagers binaire homogène. Dans le cas surcritique, il a été montré [82]
que la quantité

Nt

E [Nt | Nt > 0]
(1.1)

converge presque sûrement quand t tend vers l’infini. M. Richard [81] a également étudié à l’aide
de ces mêmes outils des processus branchement associés à des splitting trees avec immigration. Il
montre notamment la convergence presque sûre du processus qui compte la population vivante
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à un instant t vers une variable aléatoire de loi gamma. De même, il regarde le comportement
asymptotique des ratios des populations migrantes par rapport à la population totale sous divers
modèles d’immigrations. Là encore, il obtient des lois des grands nombres. Bien que de nombreux
résultats de convergence presque sûre aient été montrés, il semble qu’aucun théorème central
limite associé à l’une de ces loi des grands nombres n’apparaisse dans la littérature. L’un des
apports de cette thèse est un théorème central limite pour la convergence presque sûre du ratio
(1.1). Une perspective pourrait être de regarder ces fluctuations dans le cadre des résultats de
Mathieu Richard ou dans un cadre plus général. En effet, la preuve de ce théorème central limite
semble pouvoir s’étendre à d’autres processus de branchements construit à partir de splitting
trees.

Dans cette thèse, nous étudions également un modèle avec mutations. Nous supposons que les
individus vivants subissent des mutations à taux exponentiel θ sous l’hypothèse d’infinité d’allèles.
Cette hypothèse suppose que chaque mutation remplace le type de l’individu touché par un type
entièrement nouveau. Par ailleurs les types sont supposés se transmettre de parents à enfants. Ce
mécanisme mène à une partition de la population par types. On note alors A(k, t) le nombre de
familles (c’est-à-dire les ensembles d’individus partageant le même type) de taille k à l’instant t.
La suite d’entiers (A(k, t))k≥1 est appelée spectre de fréquence de la population au temps t. Cet
objet, bien connu en biologie (c’est celui étudié par la formule d’échantillonnage d’Ewens [28]),
a été introduit dans le cadre des splitting trees par N. Champagnat et A. Lambert dans [13] où
ils obtiennent une expression explicite pour

E
[
A(k, t)uNt

]
, ∀u ∈ (0, 1).

Ils obtiennent ensuite la convergence presque sûre du spectre de fréquence quand correctement
renormalisé. Dans un second travail [14], ils s’intéressent à la taille des plus grandes familles
et à l’âge des plus anciennes. Mathieu Richard s’est également intéressé à des splitting trees
avec mutations mais dans son modèle, il suppose que les mutations ont lieu à la naissance des
individus. Il obtient le même type de résultats dans son cadre [83]. Dans cette thèse nous obtenons
des formules permettant de calculer tout les moments (joints ou non) du spectre de fréquence dans
le modèle à mutations Poissoniennes. Ceci est fait à l’aide d’un nouveau théorème permettant de
calculer l’espérance de l’intégrale d’un processus stochastique contre un mesure aléatoire quand
les deux objets présentent une structure particulière de dépendance. Par ailleurs, ces formules
nous permettent d’étendre la preuve du théorème central limite obtenu pour Nt afin d’en obtenir
un pour le spectre de fréquence.

Dans cette thèse nous nous sommes également intéressé à un problème statistique sur des arbres
de Galton-Watson conditionnés par leurs tailles. Les problèmes statistiques portant sur des don-
nées arborescentes sont en général délicats car l’espace dans lequel vivent ces objets est très
grand. Ce travail repose sur l’idée que les processus de contours devraient être utilisés pour faire
des statistiques sur ce type de donnée car ces outils ce sont déjà révélé efficace dans l’étude
théorique des arbres aléatoires. Un arbre de Galton-Watson peut servir à décrire la généalogie
d’une population. On suppose donnée une mesure de probabilité µ sur N de variance finie et
on considère une population démarrant d’un unique individu. Puis on suppose que cet individu
donne naissance à un nombre aléatoire d’enfants distribué selon µ. Alors chacun de ces enfants
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Chapitre 1. Introduction

donne lui-même naissance à des nouveaux individus selon le même mécanisme indépendamment
des autres. Notre but est d’estimer la variance de µ pour des arbres conditionnés par leurs tailles.
Si le problème est simple dans le cadre des arbres de Galton-Watson non conditionnés [47], il est
beaucoup plus délicat dans le cadre des arbres conditionnés. En effet, le conditionnement remet
en cause l’indépendance et l’homogénéité (des lois) des variables aléatoires correspondants aux
nombres d’enfants de chaque individus. On peut par exemple montrer qu’il n’est pas possible
d’estimer (à partir d’un seul arbre ou d’une forêt) la moyenne de la loi µ (problème d’identifia-
bililté). De plus, d’autres résultats suggèrent qu’il n’est pas possible d’estimer σ à partir d’un
seul arbre conditionné (par exemple [50]). Dans ce chapitre, nous construisons des estimateurs de
σ−1 à partir d’une forêt F = (τ1, . . . , τN ) d’arbres indépendants telle que chaque arbre τi est un
arbre de Galton-Watson conditionné à avoir ni nœuds. Dans des travaux récents [9], les auteurs
cherchent également a estimer σ−1 mais sans utiliser les processus de contour pour construire
des estimateurs.

Le présent document est découpé en 6 chapitres, chaque chapitre étant centré sur une unité
thématique. Les deux premiers chapitres ne contiennent pas de contributions originales. Ils sont
dévoués à des introductions aux outils utilisés dans la suite. Le Chapitre 4 introduit des outils ori-
ginaux utilisés dans la suite. Le chapitre 5 concerne l’étude des processsus de Crump-Mode-Jagers
binaires homogènes. Le chapitre 6 s’intéresse au spectre de fréquence allélique d’un splitting tree
avec mutations Poissonienne neutre. La première section du Chapitre 4 ainsi que le Chapitre 5
sont issus de la prépublication [40]. Les deux dernières sections du Chapitre 4 ainsi que le Cha-
pitre 6 sont issus de la publication [12] en collaboration avec Nicolas Champagnat. Le dernier
chapitre concerne des questions statistiques sur des arbres de Galton-Watson conditionnés. C’est
une travail en collaboration avec Romain Azaïs (Nancy) et Alexandre Genadot (Bordeaux).

1.1 Chapitre 2

Ce chapitre ne contient pas de contribution originale. C’est une introduction pédagogique à la
théorie des fluctuations des processus de Lévy sans sauts négatifs. Un processus de Lévy est
défini comme un processus (Yt, t ∈ R+) càdlàg à valeurs réelles tel que, pour toutes suites de
temps 0 ≤ t1 < t2 < · · · < tn, les accroissements de Y , Yt2 − Yt1 , Yt3 − Yt2 , . . . , Ytn−1 − Ytn , sont
des variables aléatoires indépendantes dont les lois ne dépendent respectivement que des écarts
t2− t1, . . . , tn− tn−1. Le principal but du chapitre est d’obtenir les identités de fluctuations pour
les processus de Lévy sans sauts négatifs utilisées dans la suite de ce manuscrit de manière aussi
simple et directe que possible.

Plus précisément, étant donnés a < b deux nombres réels, on note

τ+
b = inf{t ≥ 0 | Yt > b} et τ−a = inf{t ≥ 0 | Yt < a}.

Le but final est d’arriver à des expressions les plus explicites possibles pour des quantité du type
Px
(
τ−a < τ+

b

)
et pour la loi du couple (Yτ+b −

, Yτ+b
) (car Y est susceptible de sortir de l’intervalle

(a, b) en sautant).

Finalement, une courte partie à la fin du chapitre rappelle quelques résultats classiques de théorie
du renouvellement utilisés dans cette thèse.
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1.2 Chapitre 3

Ce chapitre ne contient pas de contribution originale. Dans le même esprit que le chapitre précé-
dent, ce chapitre a pour but d’introduire des outils importants utilisés dans cette thèse. Dans un
premier temps, on y présente les splitting trees. Comme indiqué dans la section précédente, cette
classe d’arbres puise son intérêt dans le fait qu’ils modélisent de manière relativement générale
une population biologique.

Pour nous, ces arbres sont très intéressants car les processus de branchement étudiés dans cette
thèse peuvent s’écrire comme des fonctionnelles ces arbres. Par exemple, si T est un splitting tree
et Nt est le nombre d’individus présents dans l’arbre au temps t, alors le processus stochastique
(Nt, t ∈ R+) est un processus de Crump-Mode-Jagers binaire homogène. L’étude de ces processus
fait l’objet du Chapitre 5.

Cependant les splitting trees ne sont pas l’outil essentiel introduit dans ce chapitre. Comme
souvent avec les arbres, il est plus commode de les transformer en objets plus simples à manipuler
mais contenant toute l’information contenue dans l’arbre. Par exemple, c’est le cas du processus
de contour pour les arbres de Galton-Watson. Dans le cadre des splitting trees, il existe aussi un
processus de contour introduit par A. Lambert [60]. Si la population s’éteint presque sûrement,
celui-ci a la particularité d’être un processus de Lévy tué en 0 dont l’exposant de Laplace est
donné par

ψ(λ) = λ−
∫
R+

(1− e−λx)bPV (dx). (1.2)

Dans le cas où la population ne s’éteint pas, l’étude est conduite en considérant la troncature de
l’arbre en deçà d’une date fixé.

Un autre objet important introduit dans le Chapitre 4 est le processus ponctuel de coalescence
(CPP). La relation de cet objet avec les splitting trees est similaire à celle qu’entretient le
coalescent de Kingman avec le modèle de Wright-Fisher dans le sens qu’il décrit les relations
généalogiques entre le individus vivants dans l’arbre à un instant donnée.

1.3 Chapitre 5

Le Chapitre 5 est dévolu à des résultats préliminaires qui sont relativement déconnectés théma-
tiquement des chapitres suivants et qui présentent, selon nous, un intérêt particulier qui justifie
qu’ils soient mis dans un chapitre différent. Il est découpé en trois parties.

La première partie concerne l’étude du comportement asymptotique de la fonction d’échelleW du
contour d’un splitting tree surcritique, c’est à dire d’un processus de Lévy sans sauts négatifs dont
l’exposant de Laplace est donné par (1.2). La fonction d’échelle est une fonction intervenant dans
l’étude des fluctuations du processus de Lévy [59]. Celle-ci est caractérisée par sa transformée de
Laplace : ∫

R+

W (s)e−βs ds =
1

ψ(β)
.

11



Chapitre 1. Introduction

Plus précisément, dans [14], Champagnat N. and Lambert A. montrent, dans le cas surcritique,
l’existence d’une constante positive γ telle que

e−αtψ′(α)W (t)− 1 = O
(
e−γt

)
.

Le but de cette partie est d’obtenir des estimées plus fines sur ce O
(
e−γt

)
. Plus précisément, on

montre le résultat suivant.

Proposition 1.3.1 (Comportement asymptotique deW ). Il existe une fonction positive décrois-
sante càdlàg telle que

W (t) =
eαt

ψ′(α)
− eαtF (t), t ≥ 0,

satisfaisant

lim
t→∞

eαtF (t) =

{
1

bEV−1 if EV <∞,
0 sinon.

La preuve de ce résultat est basée sur le fait que la fonction W peut se réécrire en fonction de la
mesure de potentiel du subordinateur d’échelle ascendante (ascending ladder process) d’une légère
modification de notre processus de Lévy. Dans notre cas particulier, il est possible d’effectuer des
calculs explicites concernant la loi de ce subordinateur, ce qui permet d’étudier plus précisément
la fonction W . Ce résultat est fondamental pour démontrer les résultats du Chapitre 5.

La seconde partie s’intéresse au calcul de l’espérance d’une intégrale du type∫
X
Xs N (ds), (1.3)

où X est un espace polonais, (Xs, s ∈ X ) est un processus continu (ou càdlàg quand X est,
par exemple, R+), et N est une mesure aléatoire. Bien sûr le résultat est évident quand N et
(Xs, s ∈ X ) sont indépendants. Notre but est d’obtenir un théorème permettant de calculer
cette espérance lorsque (Xs, s ∈ X ) et N présente une structure particulière de dépendance.
Les théorèmes que l’ont obtient ont des applications très importantes dans le Chapitre 6 de cette
thèse. On obtient par exemple les résultats suivants.

Theorem 1.3.2. Soit X un processus stochastique continu de X dans R+. Soit N une mesure
aléatoire sur X d’intensité finie µ. Si X est localement indépendant de N , c’est à dire, pour tout
x ∈ X , il existe un voisinage Vx de x tel que Xx soit indépendant de N (Vx ∩ ·). Si on suppose,
de plus, qu’il existe une variable aléatoire intégrable Y telle que

|Xx| ≤ Y, ∀x ∈ X , a.s.

et
E [YN (X )] <∞.

Alors
E
∫
X
Xx N (dx) =

∫
X
E [Xx] µ (dx) .

Dans le cas càdlàg, on obtient également.
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Theorem 1.3.3. Soit X un processus stochastique de [0, T ]×X dans R+ tel que X.,x est càdlàg
pour tout x et Xs,. est continu pour tout s. Soit N une mesure aléatoire sur [0, T ]×X d’intensité
µ finie. Si, pour tout s de [0, T ], la famille (Xs,x, x ∈ X ) est indépendante de la restriction de N
sur [0, s], et s’il existe une variable aléatoire intégrable Y telle que

|Xs,x| ≤ Y, ∀x ∈ X , ∀s ∈ [0, t], a.s.

et
E [YN (X )] <∞.

Alors,

E
∫

[0,T ]×X
Xs,x N (ds, dx) =

∫
[0,T ]×X

E [Xs,x] µ (ds, dx) .

Ce résultat est utilisé dans le Chapitre 6 où il permet d’étudier les moments du spectre de
fréquence.

L’idée de ces théorèmes est la suivante. À une mesure aléatoire N sur X , on peut associer une
famille de mesures de probabilité (Px)x∈X . La mesure Px est appelé mesure de Palm en x associée
à N . La formule de Campbell [18], permet d’exprimer la moyenne de l’intégrale (1.3) en fonction
de l’intensité de N et de la moyenne sous Px de X :

E
[∫
X
Xx N (dx)

]
=

∫
X
EPx [Xx] µ (dx) ,

où EPx est l’espérance sous Px.
Dans la cadre des mesures ponctuelles, on peut penser à Px comme à P conditionné à ce que N
ait un atome en x (P(· | N ({x}) > 0). Dès lors, si X vérifie les hypothèse du Théorème 1.3.2,
alors sa loi sous Px est la même que sous P et le théorème est démontré. Cependant, il n’est
pas possible de donner un sens au conditionnement P(· | N ({x}) > 0). Par exemple, pour une
mesure ponctuelle de Poisson, il faudrait que µ ait un atome en x, ce qui est déjà très restrictif.

La dernière partie concerne l’introduction d’une nouvelle construction du processus ponctuel de
coalescence. Le processus ponctuel de coalescence (CPP) est le processus de coalescence associé
au modèle des splitting trees, comme le coalescent de Kingman l’est au modèle de Wright-Fisher.
Le CPP représente les relations généalogiques entre les lignées des individus vivants à un temps
t fixé dans le splitting tree. On parlera de CPP arrêté au temps t. Il a été montré [60] qu’on
pouvait le définir comme une suite (Hi)i≥0 de variables aléatoires telle que H0 = t et que la
famille (Hi)i≥1 soit i.i.d. de loi donnée par

P (Hi > t) =
1

W (t)
,

arrêtée au premier Hi > t. Chaque variable aléatoire Hi est alors associée à un individu et la
première coalescence de cette lignée est supposée avoir lieu au bout du temps Hi avec la lignée
de l’individu j vérifiant (voir Figure 1.1)

j = max{k < i | Hk > Hi}.

La dernière partie du Chapitre 4 est dévolue au résultat suivant qui donne une construction d’un
CPP par recollement de CPP indépendants sur un autre CPP (voir Figure 1.2).
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Chapitre 1. Introduction

Proposition 1.3.4. Soit
(
P(i)

)
i≥1

une suite i.i.d. de CPP de fonction d’échelle W au temps a,
et soit

(
N i
a

)
i≥1

leurs tailles respectives. Soit P̂ un CPP, indépendent de la famille précédente, de
fonction d’échelle

Ŵ (t) :=
W (t+ a)

W (a)
,

au temps t− a, et soit N̂t−a sa taille. Posons S0 := 0 et

Si :=
i∑

j=1

N j
a , ∀i ≥ 1.

Alors le vecteur aléatoire
(
Hk, 0 ≤ k ≤ SN̂a−1

)
défini, pour tout k ≥ 0, par

Hk =

{
P(i+1)
k−Si si il existe i ≥ 0 tel que Si < k < Si+1,

P̂i + a si il existe i ≥ 0 tel que k = Si,

est un CPP de fonction d’échelle W au temps t.

0 1 2 3 4 5 6 7 8 9 10 12 13 14 15

Figure 1.1 – Processus ponctuel de coalescence à 16 individus. Les pointillés horizontaux
représentent les coalescences.

Ce résultat trouve deux applications. Dans le chapitre 5, il est utile dans la preuve de la loi des
grands nombres associée au processus Nt et dans la chapitre 6 il trouve son utilité dans les calculs
des moments du spectre de fréquence.

1.4 Chapitre 5

Le Chapitre 5 concerne les processus de Crump-Mode-Jagers binaires homogènes surcritiques.
Dans ce chapitre nous nous intéressons au comportement en temps long du processus (Nt, t ∈
R+). Le théorème (déjà connu) suivant établit que, correctement renormalisé, le processus Nt

converge presque sûrement vers une variable aléatoire dont la loi est exponentielle conditionnel-
lement à la non-extinction de la population.
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Figure 1.2 – Recollement de CPP.

Theorem 1.4.1. Dans le cas surcritique (α > 0), il existe une variable aléatoire E telle que

Nt

W (t)
−→
t→∞

E , presque sûrement et dans L2.

De plus, conditionnellement à la non-extinction, E suit une loi exponentielle de paramètre 1.

La preuve de ce résultat peut être trouvée dans la thèse de Mathieu Richard [82, Proposition 2.1].
Elle repose sur un critère de convergence presque sûre pour les processus de Crump-Mode-Jagers
généraux établis par Nerman, O. [74] dans les années 80. Dans ce chapitre nous donnons une
nouvelle preuve élémentaire de la convergence presque sûr de Nt

W (t) . Cette preuve a été publié
dans [12].

L’apport essentiel de ce chapitre concerne l’étude des fluctuations dans la convergence établie par
le théorème précédent. Plus précisément, nous y établissons le théorème central limite suivant
pré-publié dans [40].

Theorem 1.4.2. Dans le cas surcritique (α > 0), conditionnellement à la non-extinction, la
quantité √

W (t)

(
Nt

W (t)
− E

)
converge en loi, quand t tends vers l’infini, vers une loi de Laplace de moyenne nulle et de
variance 2− ψ′(α).

Dans l’état actuel de nos connaissances, c’est la première fois qu’un théorème central limite est
établi pour un processus de Crump-Mode-Jagers général alors que des lois de grands nombres
pour ces processus sont l’objet de nombreux travaux. La preuve de ce théorème repose sur l’idée
suivante :

— Une décomposition de Nt comme la somme des contributions des lignées des différents
individus vivants à un instant antérieur.

— Un contrôle des dépendances entre chacune de ces lignées.
— Une expression explicite pour l’erreur quadratique moyenne E

[
( Nt
W (t) − E)2

]
grâce à des

méthodes de renouvellement.
— Un contrôle fin des erreur du type E

[
( Nt
W (t) − E)n

]
(n = 1, 2, 3) grâce à des estimées

précises sur la fonction W (t).
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Chapitre 1. Introduction

Par ailleurs, la preuve de ce théorème étant assez souple, elle peut s’étendre à des cas plus
complexes de processus de branchements comptés par caractéristiques aléatoires dès lors que
l’arbre support est un splitting tree. Dans la Chapitre 6, nous démontrons grâce à cette méthode
des théorèmes central limite pour ce type de processus dans le cas particulier du spectre de
fréquence.

1.5 Chapitre 6

Dans ce chapitre, nous considérons que notre population subit également des mutations. Les mu-
tations sont supposées arriver de manière Poissonienne à taux θ indépendamment d’un individu à
l’autre. On suppose de plus que chaque nouvelle mutation remplace le type de l’individu qu’elle
touche par un type totalement nouveau (hypothèse d’infinité d’allèles). Par ailleurs, les types
sont supposés se transmettre de parents à enfants. Finalement, on suppose que les mutations
n’ont pas d’influence sur la généalogie de la population (mutations neutres).

Ce mécanisme de mutations mène à une partition de la population vivante à un instant t en
familles de même type (ou allèle). Notre but est d’étudier la fréquence des tailles de familles.
Plus précisément, on note A(k, t) le nombre de familles de taille k au temps t. La suite d’entiers
A(1, t), A(2, t), . . . est appelée spectre de fréquence de la population vivante au temps t.

Dans l’étude de ce spectre de fréquence, un rôle important est joué par la famille clonale. Cette
famille est définie à un instant t comme l’ensemble des individus vivants à cet instant et possédant
le type que possédait l’ancêtre à l’instant 0. On note Z0(t) le nombre d’individus clonaux à
l’instant t. Cet objet a été très étudié par N. Champagnat et A. Lambert dans [13, 14]. Pour
étudier cette quantité, une idée est de considérer le splitting tree dit clonal. Dans ce nouvel arbre
on considère que les individus sont tués dès qu’ils subissent une mutations. De cette manière, la
loi de (Z0(t), t ∈ R+) dans un splitting tree avec mutations est la même que la loi du processus
qui compte la population dans un splitting tree clonal. Il facile de se rendre compte que la loi
de la durée de vie d’un individu dans le splitting tree clonal est la loi du minimum entre une
variable aléatoire exponentielle E de paramètre θ et une variable aléatoire V de loi PV . On
appelle alors Wθ la fonction d’échelle associée au splitting tree clonal. Dans le cas où θ > α,
on dit que l’arbre est clonal sous-critique signifiant que le famille ancestrale s’éteindra presque
sûrement. Respectivement, si α = θ on parlera de cas clonal critique et si θ < α de cas clonal
surcritique (dans ce cas la famille clonale ne s’éteint pas avec probabilité positive).
Ce chapitre est découpé en deux grandes parties. La première étudie les moments du spectre de
fréquence à l’aide d’une nouvelle représentation du spectre sous forme intégrale. Plus précisément,
on formalise l’apparition de mutations à l’aide d’une mesure aléatoire de Poisson N sur l’arbre.
On a alors

A(k, t) =

∫
[0,t]×N

1Bi,k(a) N (da, di),

où Bi,k(a) est l’événement : le ième individus (pour un certain ordre) vivant dans l’arbre au temps
a à k descendants clonaux (i.e. de même type) au temps t. On remarque alors la chose suivante :
si une mutation apparaît dans l’arbre (ou de manière équivalente sur le CPP) à un instant a,
le nombre d’individus au temps t portant cette mutation ne dépend que des points/mutations
qui arrivent par la suite (et non des mutations passées, voir Figure 1.3). On montre en utilisant
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Figure 1.3 – Le futur d’une mutation ne dépend que d’un sous-arbre et des autres mutations
qui s’y déroulent.

cette idée que le processus (Bi,k(a), (a, i) ∈ [0, t]× N) satisfait les hypothèse du Théorème 1.3.3
démontré au Chapitre 4, ce qui permet de calculer son espérance.

E[A(k, t) | Nt > 0] = W (t)

∫ t

0

e−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1

da.

Plus encore, cela permet d’obtenir des formules récursives pour tout les moments du spectre de
fréquence. Par exemple nous obtenons le théorème suivant.

Theorem 1.5.1. Pour tout entier positive n et k, on a

E
[(
A(k, t)

n

)
| Nt > 0

]

= E


∫ t

0
θN

(t)
t−a

∑
n1+···+n

N
(t)
t−a

=n−1

E
[(
A(k, a)

n1

)
1Z0(a)=k | Na > 0

]N(t)
t−a∏

m=2

E
[(
A(k, a)

nm

)
| Na > 0

]
da

 ,

où N (t)
t−a suit une loi géométrique de paramètre W (a)

W (t+a) .

La preuve de ce résultat repose sur les mêmes idées que le calcul de E [A(k, t) | Nt > 0]. En effet,
on peut par exemple montrer que

(
A(k, t)

2

)
=

∫
[0,t]×N

1Bi,k(a)

N(t)t−a∑
n=1

A(n)(k, a) N (da, di),

où A(n)(k, a) est le nombre de famille de taille k au temps t dans le sous-arbre induit par le nème
individu vivant au temps t−a, et N (t)

t−a est le nombre d’individus vivant au temps t−a ayant une
descendance vivante au temps t. En appliquant à nouveau le Théorème 1.3.3 et en déterminant
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Chapitre 1. Introduction

les lois de N (t)
t−a et A(n)(k, a), on arrive alors a obtenir le résultat. De la même manière, nous

obtenons des formules pour les moments du type

E

[
N∏
i=1

(
A(ki, t)

ni

)
| Nt > 0

]
et

E

[
N∏
i=1

(
A(ki, t)

ni

)
1Z0(t) = ` | Nt > 0

]
,

ce qui permet de fermer les formules. L’étude de ces moments est l’objet de la publication [12]
en collaboration avec Nicolas Champagnat.

La seconde partie du chapitre s’intéresse au comportement en temps long du spectre fréquence.
Premièrement, nos formules sur les moments nous permettent de donner une preuve élémen-
taire de la loi des grand nombres pour le spectre de fréquence qui est originalement due à N.
Champagnat et A. Lambert.

Theorem 1.5.2. Dans le cas surcritique (α > 0), pour tout entier strictement positif k,

A(k, t)

W (t)
−→ ckE presque sûrement,

quand t tend vers l’infini, avec

ck =

∫ t

0

e−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1

da.

Pour finir, nos formules sur les moments nous permettent d’étendre la preuve du théorème central
limite du précédent chapitre pour obtenir le même type de résultats pour le spectre de fréquence.
On obtient par exemple le théorème suivant.

Theorem 1.5.3. Si θ > α > 0 et
∫

[0,∞) e
(θ−α)vPV (dv) > 1 . Alors, conditionnellement à la

non-extinction, on a la convergence en loi suivante :(
e−α

t
2
(
ψ′(α)A(k, t)− eαtckE

))
k∈N∗

(d)

−→L
t→∞

(0,K) ,

où L (0,K) est la loi de Laplace infinie dimensionnelle de covariance K et moyenne nulle.

Ce théorème n’est pas d’un usage très pratique car la variable aléatoire limite E est inaccessible.
De plus, nous n’obtenons pas d’expression explicite pour la matrice covariance K. Les idées
de la preuve sont essentiellement les mêmes que pour le Théorème 1.4.2 mais des difficultés
supplémentaires apparaissent :

— Il n’est pas possible pour l’instant d’obtenir des expressions explicites pour les moments
du type E

[(
ψ′(α)A(k, t)− eαtckE

)2]. Cela complique l’analyse et empêche d’obtenir un
expression explicite pour la matrice de covariance K.

— Une mutation peut potentiellement avoir beaucoup de représentant dans l’arbre (surtout
si elle est âgé), ce qui complique l’étude des dépendances entre les différentes parties de
l’arbre.
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Nous obtenons également un autre résultat, potentiellement plus intéressant pour les applications.
Il permet d’approcher (en temps long) le spectre de fréquence par une fraction de la population
totale.

Theorem 1.5.4. Si θ > α, alors on a la convergence en loi suivante conditionnellement à la
non-extinction,

ψ′(α)
(
e−α

t
2 (A(k, t)− ckNt)

)
k∈N∗

(d)−→
t→∞
L (0,M) .

L’avantage dans ce contexte est que les méthodes développées pour calculer les moments du
spectre de fréquence s’étendent très bien au calcul des erreurs du type E [(A(k, t)− ckNt)

n], ce
qui était un point délicat dans le résultat précédent. Ceci nous permet d’avoir une expression
explicite pour la matrice de covariance M .

1.6 Chapitre 7

Le Chapitre 7 est quelque peu déconnecté du reste du manuscrit. Il s’agit d’un travail en col-
laboration avec Romain Azaïs et Alexandre Genadot. Dans ce chapitre nous nous intéressons
à un problème de statistique pour des arbres de Galton-Watson conditionnés par leurs tailles.
Note but est d’estimer σ−1, l’inverse de la variance de la loi de naissance µ, à partir d’une forêt
F = (τ1, . . . , τN ) d’arbres indépendants telle que chaque arbre τi est un arbre de Galton-Watson
conditionné à avoir ni nœuds. L’étude statistique d’arbre aléatoire semble être un problème natu-
rel car de nombreuses données peuvent naturellement être représentée par des arbres (systèmes
sanguins en biologie, ficher XML en informatiques,....). En particulier, les arbres de Galton-
Watson conditionné apparaissent dans le nombreux problèmes [24, 51]. Par exemple, ce modèle
particulier à récemment été étudié avec des applications en cancérologie [9].

Nos estimateurs sont basés sur l’adéquation des contours des arbres de la forêt avec leur contour
(Harris path) limite moyen. Soit τ(n) un arbre de Galton-Watson conditionné à avoir n nœuds.
Si on note H[τ(n)](t) le processus de contour (Harris path) de τ(n), il est bien connus (voir [1])
que H[τ(n)] converge en loi vers une excursion Brownienne ( 1

σet, t ∈ [0, 1]).

Theorem 1.6.1 (Aldous, 1991). Quand n tend vers l’infini,(
H[τ(n)](2nt)√

n
, t ∈ [0, 1]

)
(d)−→

(
2

σ
et, t ∈ [0, 1]

)
,

dans C([0, 1],R) où (et, t∈R+) est une excursion Brownienne renormalisée.

Dans ce travail nous introduisons deux estimateurs : le premier λ̂ls est basé sur l’adéquation, au
sens L2, du contour de la forêt (la concaténation des contours de chaque arbres) avec le contour
limite moyen. Plus précisément, λ̂ls est définie par

λ̂ls = argminλ∈R+
‖H[F ](·)− λH‖2L2([0,N ]),

avec

H[F ](t) =
N∑
i=1

1
√
ni
H[τi](2ni(t− i+ 1))1[i−1,i)(t), ∀ 0 ≤ t ≤ N,
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et
H(t) = Ee(t−btc),∀ 0 ≤ t ≤ N,

où b·c est la partie entière inférieure.

Un second estimateur est construit de la manière suivante. Pour chaque arbre de la forêt τi, on
considère la quantité

λ̂[τi] =
〈H[τn](·),E [e·]〉L2([0,1])

‖E[e·]‖L2([0,1])
,

où 〈·, ·〉L2([0,1]) est le produit scalaire dans L2([0, 1]). De cette manière, λ̂[τi] est la projection de
H[τi] sur le sous espace de L2[0, 1] engendré par E[e·]. Cette quantité mesure l’adéquation du
contour de τi avec son contour limite moyen. L’estimateur est alors construit comme le paramètre
λ qui minimise l’écart (au sens de Wasserstein) entre la loi attendue à la limite, celle de la v.a.

λ
〈e·,E [e·]〉L2([0,1])

‖E[e·]‖L2([0,1])
=: λΛ∞

et la mesure empirique

P =
1

N

∑
i

δ
λ̂[τ ini ]

.

Plus précisément,
λ̂W = argminλ>0dW (PλΛ∞ ,P) ,

où PλΛ∞ est la loi de λΛ∞. dW est la distance de Wasserstein L2 définie, pour toutes mesures de
probabilité µ et ν sur R par

dW (µ, ν) = inf

{√∫
R2

|x− y|2 γ(dx, dy) | γ ∈M1(R2), π1γ = µ, π2γ = ν

}
,

oùM1(R2) est l’ensemble des mesures de probabilité sur R2, πi est la projection suivant la ième
coordonnée, et πiγ est la mesure image de γ par πi.

Les principaux résultats théoriques sur nos estimateurs sont l’absence de biais asymptotique ainsi
qu’une convergence presque sûre du type suivant.

Theorem 1.6.2. Soit (un)n≥1 une suite d’entier et F = (τn)n≥1 une famille infinie d’arbre de
Galton-Watson conditionnés de taille respective un et de loi de naissance commune µ. Alors,

∀ ε > 0, ∃A ∈ N,
(

min
n≥1

un > A⇒ P
(

lim sup
N→∞

∣∣∣λ̂·[FN ]− σ−1
∣∣∣ < ε

)
= 1

)
,

où λ̂·[FN ] peut être arbitrairement λ̂ls[FN ] ou λ̂W [FN ].

La première difficulté pour obtenir ces résultats est de démontrer que la variable aléatoire Λ∞
possède une densité par rapport à la mesure de Lebesgue. Pour ce faire on utilise le calcul
de Malliavin. Par la suite, on utilise la théorie des opérateurs de Bernstein-Kantorovich (qui
apparaissent naturellement dans les calculs) et des méthodes standards sur les distances de
transport.

La dernière partie du chapitre est consacrée à des tests numériques sur nos estimateurs ainsi qu’à
la comparaison de nos résultats avec des estimateurs concurrents [9].
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Chapitre 2

Preliminaries I : Fluctuation of Lévy
processes in a nutshell

The purpose of this chapter is to introduce the fluctuation theory of Lévy processes. Our motiva-
tion is that, in Chapter 3, the contour process of a splitting tree (which describes our population
dynamics) is almost a Lévy process with no negative jumps. Since this process gives many in-
formations on the underlying tree, it follows that many properties of the splitting trees can be
deduce thanks to the tools provided by the theory of Lévy processes.

The theory of Lévy processes is rich and the reader may object that a regular nutshell may not be
large enough to contain a complete account on the fluctuations of Lévy processes. It is true, and
the present chapter is not designed to be an exhaustive or fully rigorous treatment of this theory.
Our goal is rather to give an intuitive treatment of it. It is designed to go as straightforward as
possible to the fluctuation identities used in the sequel of this manuscript. That is why, most of
the proofs are only sketched and many technical difficulties, which are not of core importance,
are evaded.
The following text is based on two excellent references by Jean Bertoin [7] and Andreas E.
Kyprianou [59]. We refer the readers interested in a full and rigorous treatment of this theory to
these two books.

Section 2.1 is devoted to recall some elementary properties of Poisson random measures. Such
measures naturally appear when working with Lévy processes. The results recalled in Section
2.1 play a central role in the other sections of this chapter, in particular the useful compensation
formula. Section 2.2 recalls basic facts on Lévy processes which are essential to go further. Section
2.3 explains the link between fluctuations of Lévy processes and excursions of Markov processes.
Section 2.4 is an quick introduction to the theory of the excursions of Markov processes. This
theory was developed by Itô in his famous work [45, 44]. His approach appeared to be fruitful
in many domains of probability. See for instance [77] for applications in the study of Brownian
motion and its functional or [68] with applications in the study of scaling limits of random trees.
The interested reader can take a look to [89] or [10] for introductions to the subject. Section 2.5
introduces the main tools used in order to study fluctuations of Lévy processes : the so-called
ascending and descending ladder processes. Their study is another example of application of Itô’s
theory. The celebrated Wiener-Hopf factorization is the main result of Section 2.5. It allows to
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express the law of the ladder processes in terms of the law of the underlying Lévy process. This
result comes back to [36]. Section 2.6 presents the main fluctuation identities used in the other
chapters of this manuscript and shows how the ladder processes can be used to solve fluctuation
problems. The last part, Section 2.7, is quite independent from the rest of the chapter and is
devoted to a quick reminder on renewal theory which is used in this thesis.

2.1 Some results on Poisson random measure

In this section we present two important results on Poisson random measure. The first one allows
to characterize whether a random measure is Poissonian or not. The second is the celebrated
compensation formula which allows computing the expectation of the integral w.r.t. a Poisson
random measure.

We recall that a random measure is simply a random variable taking values in some measure
space. Our first interest in such object comes from the fact that, in the second part of the
manuscript, we use it to model the mutation mechanism in a biological population. In the sequel,
(E, E , η) refers to a measured space such that η is σ-finite. For a measurable subset A and a
random measure N , N (A) is a real valued random variable. In the sequel, σ(N (A∩ ·)) refers to
the σ-field generated by the restriction of N on the subset A. One can easily show that

σ (N (A ∩ ·)) = σ ({N (A ∩B) | B ∈ E}) .

The interested reader can find a very good introduction to random measure in [18].

Important examples of random measures are Poisson random measures. Such measures naturally
appears in the theory of Lévy processes which is the main subject of this chapter. Let us recall
the definition.

Definition 2.1.1. A Poisson random measure on E with intensity η is a random measure sa-
tisfying

— for any measurable set A of E, N (A) has Poisson distribution with parameter η(A),
— for any disjoint and measurable sets A1 and A2, the random variables N (A1) and N (A2)

are independent.

The interested reader can find in [59] (Chapter 2) a quick introduction on Poisson random
measure. A more exhaustive reference is [17].

We begin by recalling some useful basic results. These can be found in [59], Theorem 2.7.

Lemma 2.1.2. Let N be a Poisson random measure on E with intensity η. Let f be a real-valued
measurable function on E. Then, the integral∫

E
f(x) N (dx)

is almost surely finite if and only if ∫
E

1 ∧ |f(x)| η(dx)
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is finite. In addition, if f is positive, we have, for any positive real number λ,

E
[
e−λ

∫
E f(x) N (dx)

]
= exp

(
−
∫
E

(
1− e−λf(x)

)
η(dx)

)
. (2.1)

The next result provides a tool to show that a given random measure is Poissonian. This result
plays an important role in the theory of excursions of Markov processes.

Proposition 2.1.3 (Poisson processes characterization of space-time Poisson random measure).
Let N be a random measure on R+ × E. Let Ft be the σ-field generated by N ([0, t]× E ∩ ·).
Then, N is a Poisson random measure if and only if the family of counting processes (NA, A ∈
E), defined by

NA
t = N ([0, t]×A), ∀t ∈ R+, ∀A ∈ E ,

satisfies
— for any measurable set A,

(
NA
t , t ∈ R+

)
is a Poisson process which is Markovian with

respect to (Ft)t∈R+
.

— for any two disjoint and measurable sets B1 and B2, the processes
(
NB1
t , t ∈ R+

)
and(

NB2
t , t ∈ R+

)
never jump simultaneously (almost surely).

The proof of this proposition lies on the fact that Poisson processes such as those above are
independent. A statement of this fact can be found in [7], Section O.4 and a proof can be found
in [80], Section XII.1.

To end this section, we recall, as stated in [59], the celebrated compensation formula for functio-
nals of Poisson random measures. This formula appears to be extremely important in the theory
of Lévy processes.

Theorem 2.1.4. Let ϕ : R+ × R× Ω→ R+ be a measurable function such that
— for any t ≥ 0, (ω, x) 7→ ϕ(t, x, ω) is measurable with respect to σ(N ([0, t]×R∩ ·))⊗B(R).
— for any x ∈ R+, t 7→ ϕ(t, x, ω) is left continuous for P-almost all ω. Then, for any positive

real number t,

E

[∫
[0,t]×R

ϕ(t, x) N (dt, dx)

]
=

∫
[0,t]×R

E [ϕ(t, x)] bds η(dx). (2.2)

In Chapter 4, we show Theorem 4.2.2 which might be seen as an extension of the compensation
formula for any random measure under, as expected, more restricting hypothesis on ϕ. The
compensation formula can then be obtained as a simple corollary of this result. Unfortunately,
in this corollary, a.s. continuity of x 7→ ϕ(t, x) is required for all fixed t. In that sense, Theorem
4.2.2 is not a generalisation of the compensation formula.

2.2 A quick reminder to Lévy processes

Before going further, let us recall some basic facts about Lévy processes. Here, we say that
a process (Xt, t ∈ R+) is a Lévy process if it is a càdlàg random process with stationary and
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independent increments. From this definition, it is easily seen that the law of Xt (for any positive
t) is infinitely divisible (i.e. it can be written as the nth convolution power of another probability
measure). It is also easy to see that the quantity E0

[
eiλX1

]
characterizes the law of the process.

Remark 2.2.1. In the sequel, we use the convention that P refers to the measure associated to
the process started from 0. In any other case, it is denoted Px.

Since the law of X1 is infinitely divisible, the Lévy-Khintchine representation theorem for infini-
tely divisible distribution tells us that there exists a triple (a, σ,Π) where a is a real number, σ
a positive real number, and Π is a measure supported by R\{0} satisfying∫

R
1 ∧ x2 Π(dx) <∞,

such that
E
[
eiλXt

]
= e−tΨ(λ), ∀t ∈ R+,

with

Ψ (λ) = iλa+ σ2λ2 +

∫
|x|≥1

(
1− eiλr

)
Π(dr) +

∫
|x|<1

(
1− eiλr + iλr

)
Π(dr). (2.3)

Ψ is called the characteristic exponent of X. The interested reader can find a statement of this
theorem in [59] (Theorem 1.3), and a proof in [86].
There exists a more precise and powerful result. Indeed, the celebrated Lévy-Ito decomposition
theorem gives an interpretation of the triple (a, σ,Π) in terms of the paths of the process X.
More precisely, it can be showed that the law such a Lévy process is the law of the sum of three
simpler independent Lévy processes X(1), X(2) and X(3), where

— X(1) is a drifted Brownian motion with drift a and diffusion coefficient σ,
— X(2) is a compound Poisson process with rate Π (R\(−1, 1)) and jump law given by the

probability measure
Π (· ∩ R\(−1, 1))

Π (R\(−1, 1))
,

— X(3) is a square integrable martingale.
Each of the three terms in (2.3) correspond to the characteristic exponents of each of these three
processes. The Lévy-Ito decomposition is the subject of Chapter 2 in [59].

In the particular case where X is spectrally positive, meaning that the process never experiences
negative jump, the exponential moments,

E
[
e−βX1

]
,

are finite for all positive β. In such case, one can consider the so-called Laplace exponent of the
process, denoted by ψ here, and defined by

ψ(β) = logE
[
e−βX1

]
, ∀β ≥ 0.

For this, we refer to [59], Section 3.3.
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Figure 2.1 – The Lévy process X and its excursions (in colours) below its running maxima.
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t1 t2 t

Figure 2.2 – The reflected process Y .

2.3 Fluctuations

The idea which allows to handle fluctuation problems is to decompose the path of X in terms
its excursions below its running maxima and above its running minima (see Figure 2.1). Let X
be the running supremum of X, i.e. the process defined by

Xt = sup
s∈[0,t]

Xs, ∀t ∈ R+.

It appears that this process remains constant as soon as X experiences an excursion below its
maximum. Hence, the process Y defined by

Yt = Xt −Xt, ∀t ∈ R+,

only contains the informations of these excursions (see Figure 2.2). The key fact is that this
process remains Markovian when X is Lévy (see Proposition IV.1 in [7]). From this, it follows
that studying the excursions of X below its running maxima boils to study the excursions of Y
from 0 (see Figures 2.1 and 2.2).

2.4 Excursions of a Markov process away from zero

In this section, we consider a Markov process Y (which plays the role of our reflected process).
We are interested in studying its excursions from 0. Usually, such study begins with a discussion
about the behaviour of the process around 0. Since such discussion leads to technicalities which
are not central, we completely avoid this question. We refer the reader to [7] to find a treatment
of these problems, in particular Section IV.1. In the sequel, we denote by (Gt)t∈R+

the natural
filtration of Y . θt denotes the canonical shift operator for random processes.

The first step is to be able to quantify the time spent by the process in 0 up to a time t. However,
in many cases, one cannot be able to quantify it through the Lebesgue measure since the time
spent in 0 by the process is likely to be of measure 0 (think about Brownian motion, for instance).
It follows that we need to measure the time spent in 0 through a different time scale, which is
called “local time”. This takes the form of a random process.
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t

s

Lt1
= Lt2

t1 t2

Figure 2.3 – The local time L.

Proposition 2.4.1 (local time at 0). There exists a non-decreasing process L (unique up to a
renormalizing constant) with a.s. càdlàg paths, such that

1. the Stieljes measure associated to L has support the closure of {t ∈ R+ | Yt = 0},
2. for any stopping time T such that YT = 0 on {T <∞},

LP(·|T<∞)

(
(Y ◦ θT , L ◦ θT − LT )

)
= LP ((Y,L)) .

Moreover, conditionally on {T <∞}, (Y ◦ θT , L ◦ θT − LT ) is independent of GT .

We do not prove this result. The interested reader can find a proof in [7], Section IV.2, using
martingale methods.
With this idea in mind, we could roughly say that Lt (for a positive real number t) is the amount
of local time spent by Y in 0 up to t regular time. We can now introduce the first quantity of
great importance which is the right inverse of L,

L−1
s = inf {t ≥ 0 | Lt > s} . (2.4)

L−1 is also called the ascending ladder time process associated to X. In the same manner as L,
L−1
s can be interpreted as the quantity of regular time spent up to s local time. In other words,

if someone wants to get s local time, he needs to wait L−1
s regular time, that is LL−1

s
= s.

An important property of this process is the following : let t1 < t2 two positive real numbers and
suppose that Y experiences an excursion between those two times, that is

Yt1 = Yt2 = 0 and ∀t ∈ (t1, t2), Yt > 0.

Hence, Lt is constant on (t1, t2). Hence, the quantity of regular time one needs to wait to get
Lt1 local time is t1, but to get Lt1 + ε (for any positive ε) is at least t2. Hence, L−1 experiences
a jump at time Lt1 (see Figures 2.3 and 2.4). Moreover, since the local time increases again at
time t2, the size of the jump is equal to t2 − t1.
It follows that the jumps of the inverse local time L−1 correspond exactly to the excursions of
the reflected process Y and their amplitudes are the durations of the corresponding excursions
(see Figure 2.4).
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t1 = L−1
Lt1

−

t2 = L−1
Lt1

Lt1 s

t

Figure 2.4 – The inverse local time L−1.

Of course, such remarks would be pointless if the law of the inverse local time was intractable.
But it appears that L−1 is a nice process.

Proposition 2.4.2. The inverse local time L−1 is a (possibly killed) non-decreasing Lévy process
(i.e. a subordinator). Hence, it can be written as

L−1
s =

{
ds+

∫
[0,s]×R+

x J (dv, dx), if s ≤ E ,
∞ else,

where J is a Poisson random measure with some intensity J(dx)ds, d is a positive real number,
and E is an independent exponential random variable.

Remark 2.4.3 (Killing). The parameter of the random variable E is related to the probability of
occurrence of an infinite excursion. Indeed, if an infinite excursion occurs, then the local time L
remains constant from the beginning of this excursion. This implies that L−1 jumps to infinity.
In such case L−1 is said to be killed. Actually, E is the time of the first infinite excursion of Y .
In the case where the probability of occurrence of an infinite excursion is zero, then L−1 is a
(unkilled) subordinator which simply writes

L−1
s = ds+

∫
[0,s]×R+

x J (ds, dx), ∀s ∈ R+.

Sketch of proof of Proposition 2.4.2. The proof simply gets back to the definition of a Lévy pro-
cess in terms of its increments. We need to show that they are homogeneous in law and inde-
pendents. We assume that L−1

s < ∞ a.s. This means that the random variable E in the above
statement equals infinity almost surely. The converse may happen when 0 is transient for Y
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which means that the local time never reaches s. In this case, L−1 is a killed subordinator and
{∞} is the cemetery state.

First note that it follows from (2.4) of the inverse local time that L−1
u is the hitting time of

(u,∞) by L. In particular, L−1
u is a stopping time with respect to the natural filtration of Y .

Now, using point (ii) of Definition 2.4.1, we have that(
LL−1

s +t − s, t ≥ 0
)

d
= (Lt, t ≥ 0) , ∀s ∈ R+.

Since, the right inverse of the process in the l.h.s. of the last equality is given by(
L−1
u+s − L−1

s , u ∈ R+

)
,

it follows that
L−1
u+s − L−1

s
d
= L−1

u ,

which gives the homogeneity of the increments. The independence is deduced from the fact that(
LL−1

u +t − s, t ≥ 0
)
is independent from GL−1

u
(Definition 2.4.1, point (ii)).

Remark 2.4.4 (Laplace exponent of a killed subordinator). The Laplace exponent of a killed
subordinator takes a particular form. Indeed, assume that (Zt, t ∈ R+) is a subordinator with
triple (a, 0,Π). This implies that its Laplace exponent is given by

γ(β) = −aβ −
∫
R?+

(
1− e−βx

)
Π(dx), ∀β ∈ R+.

A first remark is that γ(0) equals 0 in any case. Now, let ep be an independent exponential random
variable with parameter p. The Laplace exponent of Z killed at rate p is given by

γκ(β) = − logE
[
e−βZ11ep>1

]
= −p+ γ(β).

Now, −γκ(0) = p which is the death rate of the killed version of Z.

We can now make some remarks on L−1. First, the drift part corresponds to the case where Y
remains in 0 on a set of positive measure, in which case the local time is passing at a proportional
speed w.r.t. to the regular time. On another side, the jump measure J already allows to get
some informations about the excursions of Y . For instance, J ([0, s]× (a,∞)) is the number of
excursions with duration greater than a and its law is Poissonian (Definition 2.4.2). Hence, using
that

P (J ([0, s]× (a,∞)) = 0) = e−sJ((a,∞)),

we have that the time of first excursion longer than a is exponentially distributed (which is not
really a surprise). Another interesting example is the following : let Sa be the (local) time of first
excursion with duration greater than a. Hence, L−1

Sa− is the time (in the usual time scale) where
this excursion begins. It follows that the number of excursions with duration greater than b < a

before the first excursion with length greater than a is given by J ((0, Sa)× (b, a)). Now, since Sa
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is measurable with respect to the σ-field generated by J ({R+ × (a,∞)} ∩ ·), Sa is independent
from J ((0, s)× (b, a)), for all s > 0. This implies that

P (J ((0, Sa)× (b, a)) = k) =

∫
R+

J ((a,∞)) e−sJ((a,∞))P (J ((0, s)× (b, a)) = k) ds

=
J ((a,∞))

J ((b,∞))

(
1− J ((a,∞))

J ((b,∞))

)k
. (2.5)

The next step is to show that the excursions themselves arrive according to a point process in
some function space. First, note that the law of the path

(
Yt+L−1

Sa−
, t ∈ R+

)
defines a probability

measure, say ηa, on the space E(a) of the excursions with length greater than a. More precisely,

E(a) = {f ∈ D[0,∞) | f(0) = 0, ∀t ∈ (0, a) f(t) 6= 0} ,

endowed with the Skorohod topology of D[0,∞). Now, if one wants to define a measure on the
whole space of excursions ∪a>0E(a) using the family (ηa)a>0, he only needs some compatibility
conditions (similar to those of Kolmogorov theorem). More precisely, for each ηa, its restriction
to a subspace E(b) needs to agree with ηb. This family of measure does not satisfy this condition.
However, a slight modification of this family,

η̃a := J ((a,∞)) ηa, ∀a ∈ R+,

does the trick.
Indeed, let a > b and A ∈ B

(
E(a)

)
, then

ηb (A) = P
((

Yt+L−1
Sb−

, t ∈ R+

)
∈ A, L−1

Sb
− L−1

Sb− > a

)
= P

((
Yt+L−1

Sa−
, t ∈ R+

)
∈ A, L−1

s − L−1
s− < b, ∀s ∈ (0, Sa)

)
.

= P
((
Yt+L−1

Sa−
, t ∈ R+

)
∈ A, J ((0, Sa)× (b,∞)) = 0

)
.

But the event
{
L−1
s − L−1

s− < b, ∀s ∈ (0, Sa)
}

belongs to GL−1
Sa−

. Hence, the two events in the
above probability are independent conditionally on YL−1

Sa−
which is almost surely equal to 0.

Finally, from (2.5),

ηb (A) =
J ((a,∞))

J ((b,∞))
ηa(A).

Hence, there exists a measure denoted η on E := ∪a>0E(a) such that its restriction on each
subspace E(a) coincides with η̃a.
Now, the main result is the following.

Proposition 2.4.5. There exists a Poisson random measure H on R+ × E with intensity λ⊗ η
such that, for all s > 0, we have

H ({{s} × E} ∩ ·) = δθ
L−1
s−
Y 1L−1

s−−L
−1
s >0.
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2.5. Ladder processes and their Laplace exponents

Sketch of proof. It is easily seen that H : B(R+)⊗ B
(
E(a)

)
→ R+, defined by

H ([0, t]× A) = Card
{
s ∈ [0, t] | L−1

s− − L−1
s > 0 and

(
YL−1

s−+t, t ∈ R+

)
∈ A

}
,

∀A ∈ B (E) , t ∈ R+,

defines a random measure on R+×E . This measure is the number of excursions of Y up to time
t that lie in A. In order to show that H is Poissonian, we use Theorem 2.1.3. For any measurable
set A of B (E), the proof of the Poissonian nature of the counting process

NA
t = H ([0, t]×A) , ∀t ∈ R+

lies on the same arguments as the proof of Theorem 2.4.2. More precisely, we use that a pure
jump Lévy process making only jumps of size 1 is a Poisson process. Moreover, it is quite clear
from the construction that (NA

t , t ∈ R+) and (NB
t , t ∈ R+) never jump simultaneously as

soon as A is disjoint of B. This implies through the application of Theorem 2.1.3 that H is a
Poissonian random measure.

As usual, the behaviour at 0 of Y leads to technical difficulties which are, as usual, eluded (see
[7], theorem IV.10).

2.5 Ladder processes and their Laplace exponents

In the preceding section, we have seen how the excursions of a Lévy process from its maximum can
be described through a Poisson random measure H. This was done using the excursions from 0 of
the reflected process. However, the knowledge of H is not enough to recover the whole trajectory
of X. Indeed, it does not describe the behaviour of X when it reaches its maximum. Hence, we
need the couple

(
H, X

)
to characterize X. Moreover, it appears that a slight modification of X

makes it more user-friendly. Indeed, the time changed supremum process
(
XL−1

s
, s ∈ R+

)
is also

almost a subordinator. The only problem lies in the fact that, if the reflected process experiences
an infinite excursion, L−1 jumps to infinity. This implies that XL−1 remains constant which is
inconsistent with its Lévy nature. This is the motivation of the definition of the ascending height
process H defined by

Hs =

{
XL−1

s
if L−1

s <∞,
∞ else,

for all s in R+. Indeed, we have that the 2-dimensional process ((L−1
s , Hs), s ∈ R+) is also a

(eventually killed) subordinator. This process is usually called the ascending ladder process. The
proof of this fact lies on the same ideas as the proof Proposition 2.4.2. We do not write this proof
here but the interested reader can find it in [7] (Lemma 2, p.157).

Now, the core point is that, in the case of Lévy processes with non negative jumps, the Laplace
exponent of the ladder process can be explicitly expressed through the Laplace exponent of X.
To prove that, we need to introduce the so-called descending ladder processes which plays a
symmetric role as the ascending one but with the idea to decompose the path of X through the
excursions from its minimum. More precisely, let ((L̂−1

s , Ĥs), s ∈ R+) be the ascending ladder
process of −X. This bivariate subordinator is called the descending ladder process of X.

31



Chapitre 2. Preliminaries I : Fluctuation of Lévy processes in a nutshell

We are now able to state the main theorem of this chapter which links the characteristic exponent
of X with the Laplace exponent of ((L̂−1

s , Ĥs), s ∈ R+) and ((L−1
s , Hs), s ∈ R+). This is the

celebrated Wiener-Hopf factorization.

Theorem 2.5.1. (Wiener-Hopf factorization) Let Ψ the characteristic exponent of X. Let κ and
κ̂ be the Laplace exponents of

(
L−1, H

)
and

(
L̂−1, Ĥ

)
(respectively). Then, for all p ∈ R+,

p

p− iθ + ψ(λ)
=

κ(p, 0)

κ(p− iθ,−iλ)

κ̂(p, 0)

κ̂(p− iθ,−iλ)
. (2.6)

Note that in order to give a sense to the above equality, the function κ and κ̂ needs to be analy-
tically extended to {z | =z ≤ 0}.

Sketch of proof. Let ep be an exponential random variable with parameter p ∈ R+ independent
of X. Now, easy calculations show that

E
[
eiθep+iλXep

]
=

p

p− iθ + ψ(λ)
.

On the other hand, let Gt be the time of last supremum of X up to time t, that is

Gt = sup
{
s < t | Xs = Xs

}
.

Now we use that (Gep , Xep) and (ep − Gep , X − Xep) are independent random variables (see
Lemma VI.6 in [7]). This leads to

E
[
eiθep+iλXep

]
= E

[
eiθGep+iλXep

]
E
[
eiθep−Gep+iλXep−Xep

]
.

However, the duality Lemma for Lévy processes (see [59], Lemma 3.4) tells us that the time
reversed process (XT−t −XT , t ∈ [0, T ]) has the law of (−Xt, t ∈ [0, T ]). Hence,

E
[
eiθep+iλXep

]
= E

[
eiθGep+iλXep

]
E
[
e
iθGep+iλXep

]
,

where G and X are defined from −X as G and X are defined from X. It remains to show that

E
[
eiθGep+iλXep

]
=

κ(p, 0)

κ(p− iθ,−iλ)
.

We work by path decomposition. We have that

E
[
eiθGep+iλXep

]
= E

∫ ∞
0

qe−qteiθGt+iλXtdt

= E
∫ ∞

0
qe−qteiθGt+iλXt1Xt=Xt

dt+ E
∫ ∞

0
qe−qteiθGt+iλXt1Xt 6=Xt

dt.

We treat the two terms in the last equality independently and begin with the second term. Now,
assume we have two times t1 and t2 satisfying

Xt1 = Xt1 , Xt2 = Xt2 , and ∀t ∈ (t1, t2), Xt 6= Xt,
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2.5. Ladder processes and their Laplace exponents

meaning that X experiences an excursion from its maximum on the interval (t1, t2). Hence, for
all t in (t1, t2), Gt is constant and equal to L−1

Lt1−
(see all the Figures above). Similarly, Xt equals

XL−1
Lt1
−
. From this, one can see that

eiθGt+iλXt1Xt 6=Xt
=

∫
R+×E

1L−1
s−<t<L

−1
s
e
iθL−1

s−+iλX
L−1
s−H(ds, de).

Using this, one has∫ ∞
0

qe−qteiθGt+iλXt1Xt 6=Xt
dt =

∫ ∞
0

qe−qt
∫
R+×E

1L−1
s−<t<L

−1
s
e
iθL−1

s−+iλX
L−1
s−H(ds, de)dt

=

∫
R+×E

e
iθL−1

s−+iλX
L−1
s−
(
e−qL

−1
s− − e−qL

−1
s

)
H(ds, de)

=

∫
R+×E

e
(iθ−q)L−1

s−+iλX
L−1
s−
(

1− e−qL(e)
)
H(ds, de),

where L(e) denotes the length of the excursion e (that is L−1
s −L−1

s−). From this, the compensation
formula for Poisson functional (2.2) implies that

E
[∫ ∞

0
qe−qt

∫
R+×E

1L−1
s−<t<L

−1
s
e
iθL−1

s−+iλX
L−1
s−H(ds, de)dt

]
=

∫
R+×E

E
[
e

(iθ−q)L−1
s−+iλX

L−1
s−

](
1− e−qL(e)

)
ds η(de). (2.7)

Now, one has on one side,
E
[
e−qL

−1
s

]
= esκ(q,0).

But on the other side,

E
[
e−qL

−1
s

]
= E

[
e
−qds−q

∫
[0,s]×R+

x J (ds,dx)
]

= E
[
e
−qds−q

∫
[0,s]×E L(e) H(ds,de)

]
.

Hence, using formula (2.1), one has

E
[
e−qL

−1
s

]
= e−qds exp

(
−
∫
E

(
1− e−sL(e)

)
η(de)

)
.

Finally, ∫
E
(1− e−qL(e)) η(de) = −κ(q, 0)− qd.

This, in conjunction with (2.7), entails

E
[∫ ∞

0
qe−qteiθGt+iλXt1Xt 6=Xt

dt

]
=

∫
R+

E
[
e

(iθ−q)L−1
s−+iλX

L−1
s−

]
ds (κ(q, 0)− qd)

=

∫
R+

etκ(q−iθ,−iλ)ds (−κ(q, 0)− qd) =
−κ(q, 0)− qd
κ(q − iθ,−iλ)

.
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Chapitre 2. Preliminaries I : Fluctuation of Lévy processes in a nutshell

Concerning the first term, it is easily seen that Gt = L−1
Lt− and Gt = t when Xt = Xt. This

implies that

E
∫ ∞

0
qe−qteiθGt+iλXt1Xt=Xt

dt = E
∫
R+

q exp
(

(iθ − q)L−1
Lt

+ iλXL−1
Lt

)
1L−1

Lt−
=L−1

Lt

dt

= E
∫
R+

q exp
(

(iθ − q)L−1
s + iλXL−1

s

)
1L−1

s−=L−1
s
dL−1

s ,

where we use that dL−1 is the push-forward measure of the Lesbegue measure by L to obtain
the last equality. But on the set

{
s ∈ R+ | L−1

s− = L−1
s

}
, dL−1

s = dds, hence

E
∫
R+

q exp
(

(iθ − q)L−1
s + iλXL−1

s

)
1L−1

s−=L−1
s
dL−1

s = dE
∫
R+

q exp
(

(iθ − q)L−1
s + iλXL−1

s

)
ds

=
qd

κ(q − iθ,−iλ)
.

Finally,

E
[
eiθGep+iλXep

]
=

−κ(p, 0)

κ(p− iθ,−iλ)
. (2.8)

Using the same computation on −X leads to

E
[
e
iθGep+iλXep

]
=

−κ̂(p, 0)

κ̂(p− iθ,−iλ)
. (2.9)

The Wiener-Hopf factorization for spectrally positive Lévy processes

Here, we focus on spectrally positive Lévy processes which is the type of processes that appear
in the sequel of this manuscript. A spectrally positive Lévy process is supposed to satisfy the
condition Π(R−) = 0 meaning that the path of the process does not experience negative jumps.
In this case, the Wiener-Hopf factorization of Theorem 2.5.1 takes a simpler form. Indeed, first
note that when X is a spectrally positive Lévy process, −X satisfies the definition of a local time
at 0 for the reflected process at the minimum. This implies, since

L̂−1
s = inf {t ≥ 0 | Xt < −s} ,

that the descending ladder process L̂−1 is nothing more than the hitting time of (−∞,−s] by
X. It follows then, using the fact that the process(

e−αXt−tψ(α), t ∈ R+

)
is a martingale and Doob’s optimal stopping theorem at the stopping time L̂−1

s that

E
[
e−ψ(α)L̂−1

s

]
= eαs.

Finally, since X
L̂−1
s

= s (using that X decreases only continuously), we have that

E
[
e−αL̂

−1
s −βĤs

]
= e−s(−φ(α)+β), (2.10)
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2.6. Fluctuation problems for spectrally positive Lévy processes

where φ is the right inverse of ψ. Hence, κ̂(α, β) = β − φ(α). Now, (2.6) entails that

κ(p+ α, β)

κ(p, 0)
=
φ(p)

p

ψ(β)− (α+ p)

φ(α+ p)− β
.

Finally,

κ(α, β) =
ψ(β)− α
φ(α)− β

. (2.11)

2.6 Fluctuation problems for spectrally positive Lévy processes

The purpose of this section is to use the ladder processes in order to solve fluctuation problems.

2.6.1 Large time behaviour

In this section, we are interested in studying the asymptotic behaviour of X. In particular, does
X drifts to ±∞ or not ? A first necessary condition for our Lévy process to drift to ∞ is that
Ht drifts to ∞ as t grows. It is clear from the homogeneity of its increments that a subordinator
always drifts to infinity unless it is constant or killed. Hence, it follows that the finiteness of the
overall supremum of X depends of the killing of H. This last fact can be seen from the value at
0 of its Laplace exponent. We know from (2.11) that the Laplace exponent of H is given by

− ψ(β)

β − φ(0)
, (2.12)

where we recall that ψ is the Laplace exponent of X and φ its right-inverse. Using that

ψ(β) = −aβ +
1

2
σ2β2 −

∫
R?+

(
1− e−βx + βx1x<1

)
Π(dx),

it is easily seen that ψ is twice differentiable on R+\{0}. One can then use this to show that
ψ is convexe. Using its convexity, ψ has a positive zero if and only if ψ′(0+) < 0. In that case,
according to (2.12), the Laplace exponent of H takes value 0 at 0 (since φ(0) > 0). When,
ψ′(0+) ≥ 0, κ(0, 0) equals to ψ′(0+). It follows, that H is a killed subordinator only when
ψ′(0+) > 0.

Suppose, for now, that ψ′(0+) > 0. We show that X drifts to −∞. From the remarks above,
ψ′(0+) > 0 implies that the overall maximum of X, say X∞, is a.s. finite (since H is killed).
On the other hand, it follows from (2.10) that κ̂(0, 0) equals 0 meaning that Ĥ drifts to infinity.
Hence,

sup
t≥0

Xt <∞ a.s. and inf
t≥0

Xt = −∞ a.s.

Now, let x be a positive real number, we have

P
(

lim sup
t→∞

Xt ≥ −
x

2

)
≤ P

 sup
t>τ−−x

Xt ≥ −
x

2

 ,

where
τ−a = inf {t ≥ 0 | Xt < a} , ∀a ∈ R.
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But, by the strong Markov property, we have

P

 sup
t>τ−−x

Xt ≥ −
x

2

 = E
{
PX

τ−−x

(
X∞ ≥ −

x

2

)}
≤ P−x

(
X∞ ≥ −

x

2

)
,

since Xτ−−x
≤ −x. Using the properties of the increment of X, the r.h.s. of the last inequality

equals
P
(
X∞ ≥

x

2

)
.

To end, note that, since X∞, is a.s. finite, this last probability tends to 0 as x increases. Hence,
P(lim supt→∞Xt ≥ −x

2 ) equals 0.

Using a similar method, on can show that X drifts to −∞ if ψ′(0+) < 0, and oscillate if
ψ′(0+) = 0, that is

lim sup
t→∞

Xt =∞ and lim inf
t→∞

Xt = −∞, almost surely.

Note that this last property gives no information on the recurrence of the process X.

2.6.2 Exit problems for spectrally negative Lévy process

Now, we are interested in the exit time of X from an interval. Let

τ+
a = inf {t > 0 | Xt > a} and τ−a = inf {t > 0 | Xt < a}

the exit times upward and downward.
Let a > b, we are interested, for any x ∈ (b, a), in the evaluation of the probability

Px
(
τ−b < τ+

a

)
.

By the properties of homogeneity of the Lévy process, this boils to study the case b = 0. Moreover,
we have

Px
(
τ−0 < τ+

a

)
= Px−a

(
τ−−a < τ+

0

)
.

Now we use that the probability that the overall maximum X∞ is lower than 0 starting from
x − a is equal to the probability to hit −a before 0 and then that X∞ is greater than 0. More,
precisely

Px−a
(
X∞ ≤ 0

)
= E

{
PX

τ−−a

(
X∞ ≤ 0

)
1τ−−a<τ

+
0

}
= Px−a

(
τ−−a < τ+

0

)
P−a

(
X∞ ≤ 0

)
.

Hence, we have that

Px
(
τ−0 < τ+

a

)
=

Px−a
(
X∞ ≤ 0

)
P−a

(
X∞ ≤ 0

) .
On the other hand,

E
[
e−αX∞

]
=

∫ ∞
0

αe−αsP
(
X∞ ≤ s

)
ds =

∫ ∞
0

αe−αsP−s
(
X∞ ≤ 0

)
ds.
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Its now time to use what we know about the ascending ladder process. Let H be a subordinator
with Laplace exponent given by κ(0, β)−κ(0, 0). This means that H has the same law as H with
the difference that it is not killed. Let also E be an independent exponential random variable
with parameter ψ′(0+). Since H took at its killing time is equal to the overall supremum of the
process X, we have

E
[
e−αX∞

]
= E

[
e−αHE

]
=

∫ ∞
0

ψ′(0+)e−ψ
′(0+)tE

[
e−αHt

]
dt

=

∫ ∞
0

ψ′(0+)e−ψ
′(0+)tetκ(0,β)dt

= ψ′(0+)
α

ψ(α)
.

Finally, P−s
(
X∞ ≤ 0

)
satisfies∫ ∞

0

e−αs

ψ′(0+)
P−s

(
X∞ ≤ 0

)
ds =

1

ψ(α)
.

The function x 7→ 1
ψ′(0+)P−x

(
X∞ ≤ 0

)
is called the scale function of X and is denoted W .

Now, we want to go a little further. Let τ be the exit time of the interval (−a, 0). We are
interested in the law of the couple (Xτ−, Xτ ). As usual, there is no restriction in taking (−a, 0),
but there are two reasons for this choice. First, it is in that case that the law of the couple is
the easier to write. Second, our real interest lies in the overshoot and undershoot of the Lévy
process (see Figure 2.5) over a fixed level which has exactly the law of (−Xτ−, Xτ ) when the
chosen interval is (−a, 0) (this follows again from the homogeneity of X). Of course, since X is
spectrally positive we have Xτ− = Xτ = −a almost surely on the event

{
τ−−a < τ+

0

}
. It is more

interesting to see what happens when τ+
0 < τ−−a because X can cross the border by jumping

above. Now let A and B be two Borel sets such that A ⊂ (−a, 0) and B ⊂ [0,∞). We have, for
x in [0, a),

P−x (Xτ− ∈ A, Xτ ∈ B) = E−x

[∫
[0,∞)×R

1Xt≤0, Xt≥−a
1Xt−∈A1Xt−+y∈B N (dt, dy)

]
.

Now, the compensation formula (2.2) entails that

P−x (Xτ− ∈ A, Xτ ∈ B) =

∫
[0,∞)×R

E−x
[
1Xt≤0, Xt≥−a

1Xt−∈A1Xt−+y∈B

]
dt Π(dy)

=

∫
[0,∞)

E−x [1τ>t1Xt∈AΠ(B −Xt)] dt

=

∫
A

Π(B − y) U(−x, dy),

where U is the mean occupation measure of X up to its first exit of (−a, 0). That is the measure
defined by

U(x,A) =

∫
R+

Px (Xt ∈ A, τ > t) dt, ∀A ∈ B ((−a, 0]) .

Moreover, we have, for a positive real number x,
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−a

0 {
}Overshoot

Undershoot

Xτ

Xτ−

Figure 2.5 – Undershoot and overshoot of the process X at the exit time τ of the interval
(−a, 0).

∫
R+

P−x (Xt ∈ A, τ > t) dt

=

∫
R+

P−x
(
Xt ∈ A, Xt ≤ 0

)
− P−x

(
Xt ∈ A, Xt < −a, Xt ≤ 0

)
dt. (2.13)

But the probability P−x
(
Xt ∈ A, Xt ≤ 0, Xt < −a

)
rewrites

P−x
(
Xt ∈ A, Xt ≤ 0, Xt < −a

)
= P−x

(
τ−−a < τ+

0

)
P−a

(
Xt ∈ A, Xt ≤ 0

)
=

W (x)

W (a)
P−a

(
Xt ∈ A, Xt ≤ 0

)
. (2.14)

From this point, we focus on the probability in the r.h.s of the last equality. Now, as in the proof
of Theorem 2.5.1, let ep be an exponential random variable with parameter p > 0 independent
of X. We have∫

R
e−ptP−x

(
Xt ∈ A, Xt ≤ 0

)
dt =

1

p
P−x

(
Xep ∈ A, Xep ≤ 0

)
=

1

p
P−x

(
Xep −Xep +Xep ∈ A, Xep ≤ 0

)
.

Now, using again the elements given in the proof of Theorem 2.5.1, Xep − Xep and Xep are
independent. Moreover, Xep −Xep has the law of Xep , which is exponential with parameter φ(p)
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according to (2.9) and (2.10). Hence, denoting by PXep
the law of Xep , we get∫

R
e−ptP−x

(
Xt ∈ A, Xt ≤ 0

)
dt =

∫
R−

φ(p)

p
eφ(p)y

∫
R
1y+z−x∈A1z−x≤0PXep

(dz)dy.

Now, using (2.8) and (2.11), we have that φ(p)
p PXep

converges weakly, as p goes to zero, to a

measure whose Laplace transform is given by β−φ(0)
ψ(β) . This corresponds to the measure

W (dz)− φ(0)W (z)dz,

where W (dz) the Stieljes measure associated to W . Consequently,

∫
R
P−x

(
Xt ∈ A, Xt ≤ 0

)
dt =

∫
R+

eφ(0)y

∫
R
1y+z−x∈A1z−x≤0 (W (dz)− φ(0)W (z)dz) dy.

A simple change of variable leads to∫
A
eφ(0)y

∫
[x+y,x]

e−φ(0)(x+z) (W (dz)− φ(0)W (z)dz) dy.

Now, integrating by parts entails

P−x
(
Xt ∈ A, Xt ≤ 0

)
=

∫
A
eφ(0)yW (x)−W (x+ y)dy.

Using this last equality in conjunction with (2.13) and (2.14) leads to

U(−x,A) =

∫
A

W (x)W (a+ y)

W (a)
−W (x+ y)dy,

and to

P−x (Xτ− ∈ A, Xτ ∈ B) =

∫
A

Π(B − y)

(
W (x)W (a+ y)

W (a)
−W (x+ y)

)
dy.

We summarize these results in the following Theorem.

Theorem 2.6.1. Let X be a spectrally positive Lévy process with Laplace exponent given by ψ.
Let W be the unique increasing function satisfying∫

R+

e−βtW (t) dt =
1

ψ(β)
, ∀β ∈ R+.

Then,

Px
(
τ+
a < τ−0

)
=
W (x− a)

W (a)
, ∀a ∈ R+, x ∈ (0, a).

In addition, if τ = τ+
a ∧ τ−0 . The law of the overshoot O+ and the undershoot O− of the process

when crossing level a is given by

Px
(
O− ∈ A, O+ ∈ B

)
=

∫
A

Π(B + y)

(
W (a− x)W (a− y)

W (a)
−W (a− x− y)

)
dy, ∀x > 0,

for any A in B((0, a]) and B in B(R+).
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2.7 Reminder on renewal theory

The purpose of this part is to recall some facts on renewal equations borrowed from [30]. Let
h : R → R be a function bounded on finite intervals with support in R+ and Γ a probability
measure on R+. The equation

F (t) =

∫
R+

F (t− s)Γ(ds) + h(t),

called a renewal equation, is known to admit a unique solution finite on bounded interval.
Here, our interest is focused on the asymptotic behavior of F . We said that the function h is
DRI (directly Riemann integrable) if for any δ > 0, the quantities

δ
n∑
i=0

sup
t∈[δi,δ(i+1))

f(t)

and

δ

n∑
i=0

inf
t∈[δi,δ(i+1))

f(t)

converge as n goes to infinity respectively to some real numbers Iδsup and Iδinf , and

lim
δ→0

Iδsup = lim
δ→0

Iδinf <∞.

In the sequel, we use the two following criteria for the DRI property :

Lemma 2.7.1. Let h a function as defined previously. If h satisfies one of the next two conditions,
then h is DRI :

1. h is non-negative decreasing and classically Riemann integrable on R+,
2. h is càdlàg and bounded by a DRI function.

We can now state the next result, which is constantly used in the sequel.

Theorem 2.7.2. Suppose that Γ is non-lattice, and h is DRI, then

lim
t→∞

F (t) = γ

∫
R+

h(s)ds,

with

γ :=

(∫
R+

s Γ(ds)

)−1

,

if the above integral is finite, and zero otherwise.

Remark 2.7.3. In particular, if we suppose that Γ is a measure with mass lower than 1, and
that there exists a constant α ≥ 0 such that∫

R+

eαtΓ(dt) = 1,

then, one can perform the change a measure

Γ̃(dt) = eαtΓ(dt),

in order to apply Theorem 2.7.2 to a new renewal equation to obtain the asymptotic behavior of
F . (See [30] for details). This method is also used in the sequel.
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Preliminaries II : Splitting trees

The purpose of this chapter is to present splitting trees in a user-friendly fashion. Almost all
the results presented in this chapter come from [60]. A splitting tree is a kind of planar rooted
random tree which can be used to describe the dynamics of a biological population. In contrary
with the well known Galton-Watson trees which only take into account the genealogical structure
of the population, the splitting trees contain informations on the lifetimes of the individuals. For
this purpose, individuals are not represented by the nodes of the tree but by its branches. A
branch is supposed to have a length equal to the lifetime of the corresponding individual. Hence,
the splitting trees describe in a more robust way the dynamics of the population through time.

These trees have been introduced by Geiger and Kersting in [35]. In their work, the authors
introduce a contour process which can be roughly described as a height process in a depth-first
exploration of the tree. The purpose of their paper is then to study this process and its links to
Poisson point processes. Their method allows one of the authors to study splitting trees under
various conditioning [34].

Later, in [60], A. Lambert introduced a new contour process which appears to be (almost) a
Lévy process. His new method appeared to be fruitful to derive properties of the splitting trees
and their functionals (for instance on some particular Crump-Mode-Jagers processes). Many of
the results of this thesis were obtained thanks to the tools introduced in [60].

In Section 3.1, we describe a construction of the splitting trees based on the one given in [60].
Section 3.2 is dedicated to the construction of the contour process introduced in [60]. Note that,
in contrary with [60], we do not consider trees which can be “locally infinite”. This leads to some
simplifications. In Section 3.3, the contour process is used to derive basic properties of binary
homogeneous Crump-Mode-Jagers processes used in the next chapters. Section 3.4 introduces
the backward model associated to splitting trees. In any model of population dynamics, it is
interesting to understand the links between the lineages of individuals alive at a fixed time. This
is especially true for population genetics. For instance, the Kingman’s famous coalescent model is
derived from the Wright-Fisher model of population dynamics. The backward model associated
to a splitting tree is the so-called coalescent point process. Its law is, once again, studied through
the contour process.
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3.1 Construction

The purpose of this section is to give the mathematical formalism underlying the theory of
splitting trees. The first part describes in which space of trees a splitting tree belongs. The
second part gives a characterization of the law of a splitting tree. The construction is based on
Lambert [60].

The Ulam-Harris-Neveu set and the discrete genealogy
From the mathematical point of view, a splitting tree is a random variable with value in a set of
trees with branch length. This set is a subset of P(U × R) where

U :=
⋃
n≥0

Nn,

where N0 equals {∅}. U is the well known Ulam-Harris-Neveu set which means to describe the
genealogical structure of the individuals in the tree.

In the sequel, for any σ ∈ U , we denote, for any non-negative integer k, σk the kth last ancestor
of σ. That is

∀k ∈ N, σk = (σ1, . . . , σn−k) .

In this manner, σ0 equals σ and σ1 is the parent of σ. By the way, if σ = (σ1, . . . , σn) belongs
to Nn, for some integer n, and if k ≥ n, we assume that σk equals ∅. ∅ is called the ancestor
individual.

Let PU (resp. PR) be the canonical projection from U ×R onto U (resp. R). For a tree T, PU (T)

can be thought of as the underlying discrete genealogical tree. In the sequel, we denote by G
this discrete genealogy. In order to be admissible as a tree, a subset T of U × R needs to have a
discrete genealogy G satisfying some compatibility conditions.

Compatiblity conditions on the discrete genealogy G :

— The ancestor belongs to the tree : ∅ ∈ G.
— If an individual belongs to the tree, so does its parent :
∀σ ∈ G, σ1 ∈ G.

— Individuals are well-ordered : ((σ1, . . . , σn) ∈ G and σn > 1)⇒ ((σ1, . . . , σn − 1) ∈ G).
Now, we introduce the canonical order relation on a discrete tree in order to characterize the
relationship between individuals. Let δ and σ be two elements of U , we write δ � σ if δ is an
ancestor of σ. That is

(δ � σ)⇐⇒
(
∃k ∈ N, σk = δ

)
.

This relation defines a partial order on U . We also denote

δ ∧ σ = sup�
{
{η ∈ G | η � σ} ∩ {η ∈ G | η � δ}

}
,

which is the last common ancestor of δ and σ. Note that this last supremum is well-defined since
if η1 and η2 are two elements of {η ∈ G | η � σ}, then there exist two non-negative integers n1

and n2 such that η1 = σn1 and η2 = σn2 . Hence η1 � η2 if and only if n1 ≤ n2.

Chronological trees
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We now describe more accurately the set of admissible trees. We desire to introduce a time
structure. In the previous part, we described how the discrete genealogy of a subset T of U × R
must be to make T admissible as a tree. We, now, describe the "time compatibility conditions".

Time compatibility conditions :

— Individuals are alive for all time between their birthdate and their date of death :

∀σ ∈ G, ∃Bσ, Dσ ∈ R+, Bσ < Dσ and (Bσ, Dσ] = PR ({t ∈ R+ | (σ, t) ∈ T}) .

Bσ is its birth date while Dσ is its date of death.
— Individuals are born during the lifetime of their parents : ∀σ ∈ G\{∅}, Bσ ∈ (Bσ1 , Dσ1).
— Individuals are born in the right order :

((σ1, . . . , σn) ∈ G and σn > 1)⇒
(
B(σ1,...,σn−1) < Bσ

)
.

— The ancestral individual born at time 0 : B∅ = 0.

The set of subsets T of U × R+ satisfying these compatibility conditions as well as those on the
discrete genealogy is called the set of admissible trees and is denoted by T .

Figure 3.1 – Graphical representation of a Splitting tree. The vertical axis represents the bio-
logical time and the horizontal axis has no biological meaning. The vertical lines represent the
individuals, their lengths correspond to their lifetimes. The dashed lines denote the filiations
between individuals.

3.1.1 Chronological trees as measured metric spaces

The purpose of this section is to give more structure to chronological trees. This allows us to
define, for instance, Poisson random measures on a tree T.
Topology on T
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Here we define a topology on the tree through a metric. The natural distance one may expect
between two points of the tree is the length of the "shortest path" between these two points (see
Figure 3.2). To do so we need to define the divergence point between points (δ, t) and (σ, s) of
T. This point, denoted (δ, t) ∧ (σ, s), is defined by the relations (see Figure 3.1){

PU ((δ, t) ∧ (σ, s)) = δ ∧ σ,
PR ((δ, t) ∧ (σ, s)) = inf

{
Bσi , Bδj | i, j ∈ N, σ ∧ δ ≺ σi and σ ∧ δ ≺ δj

}
.

Now, for two points (δ, t) and (σ, s), we set

d ((δ, t), (σ, s)) = t+ s− 2PR ((δ, t) ∧ (σ, s)) .

The function d defines the desired distance on the tree.

x

y

Figure 3.2 – Geodesic path connecting x to y

Lebesgue measure on T

Now, we define a Lebesgue measure on T. It is easy to see that, for each individual σ in PU (T),
there is a natural isometry ϕσ from {(δ, t) ∈ T | δ = σ} to (Bσ, Dσ]. Now, let O be an open set
of T, and set

λ(O) =
∑

σ∈PU (T)

λ(ϕσ(L(σ) ∩O)),

where L(σ) denotes the slice of the tree corresponding to σ, that is

L(σ) = {σ} × (Bσ, Dσ].

It is easy to see that λ defines a σ-additive functional on the topology of T, which uniquely
extend to a measure on B(T). This defines a Lebesgue measure λ on T.
These two objects (the metric and the measure) are useful to construct the contour process of
the tree (see Section 3.2).
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3.2. The contour process of a Splitting tree is a Lévy process

3.1.2 The law of a splitting tree

Let b a positive real number and PV be a probability measure on (0,∞]. The purpose of this part is
to introduce a probability measure PT on T . This measure is called the law of a splitting tree with
lifespan measure bPV . Let us roughly describe this law through the dynamics of the population
described by a splitting tree. The population start with a single individual. This individual gives
births at exponential rate b. Each child is assumed to have a lifetime distributed according to
PV , independent of its parent or its brotherhood. To end, children give birth according to the
same mechanisms (and independently from the other individuals) and so on.

More precisely, let E : U × T 7→ T be the application defined by

E(i,T) = {((σ2, . . . , σn), t−Bi) | ((σ1, . . . , σn), t) ∈ T and σ1 = i} , ∀i ∈ N\{0}, ∀T ∈ T .

This application returns the subtree of T induced by the ith child of the ancestor individual.
Note that if i does not belong to G, E(i,T) equals ∅.

Now, the law PT of a splitting tree T, with lifetime distribution PV and birth rate b, is the unique
distribution such that

— D∅ is distributed according to PV ,
— conditionally on D∅, the random measure on (0, D∅] defined by∑

i∈N
i∈G

δBi

is a Poisson random measure with rate b,
— for all i ∈ N ∩ G, the law of E(i,T) is PT.

The readers interested in more details should look at [60].

A very important consequence of this last point is that a splitting tree presents a renewal struc-
ture. Indeed, any of the subtrees induced by the children of the roots is itself a splitting tree.

3.2 The contour process of a Splitting tree is a Lévy process

A very common method in trees analysis is to transform trees into more convenient objects. In
the Galton-Watson case, for instance, one may think of the Harris path or the height process.
This allows transforming a tree into a real-valued function which is easier to manipulate. Our
purpose in this section is to introduce the same kind of object for spitting trees. This will reveal
particularly powerful in the study of the properties of the splitting trees. In particular because
the contour process appears to have a nice behaviour. The ideas and results come again from
[60].

In order to go further, we need to introduce an exploration process of the tree. To do that, we
must choose an order to explore the tree.
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3.2.1 The contour process of a finite tree

Let T be an element of T which is finite in the sense that λ(T) is finite. Assume also that the
total number of individuals is finite. This last hypothesis is not a restriction since a splitting tree
with finite length must have a finite number of individuals (because lifetimes are i.i.d.).

Exploring chronological trees
We define a total order relation on a chronological tree by setting, for two elements (σ, t) and
(δ, s) of T,

(σ, t) ≤ (δ, s)⇔


δ � σ and PR((δ, s) ∧ (σ, t)) ≥ s (C1)

or
∃n ∈ N?, σn � δ and t > Bσn . (C2)

In a more informal way, the point of birth of the lineage of (δ, s) during the lifetime of the root
split the tree in two connected components, then (σ, t) ≤ (δ, s) if (σ, t) belongs to the same
component as (δ, s) but is not an ancestor of (δ, s) (see Figure 3.3).

x

Figure 3.3 – In blue and red, the set {y ∈ T | y ≤ x}. The blue part corresponds to condition
(C1) while the red part corresponds to condition (C2).

Now, we have the tools needed to introduce the exploration process. Let ϕ, be the application
defined by

ϕ : T → [0, λ (T)),

x 7→ λ ({y | y ≤ x}) .

The main result is the following.

Proposition 3.2.1 (Lambert, [60]). ϕ is an increasing bijection.

We give a new proof of this result which was hopped to be simpler... but just appears to be
different.

46
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Proof. In order to get the result, we prove it for a slight modification of ϕ. More precisely, in
this proof we assume that ϕ is defined on T̃ = T ∪ {(∅, 0)} as follow :

ϕ : T̃ → [0, λ (T)],

x 7→

{
λ ({y | y ≤ x}) if y 6= (∅, 0),

λ(T) else.

The proof follows these steps :
— ϕ is strictly increasing (similar to the proof in [60]).
— ϕ is continuous with respect to the order topology on T̃ induced by ≤.
— T̃ is connected w.r.t. the order topology.
— The range of ϕ is [0, λ(T)].

Let (δ, t) < (σ, s), then there exists ε > 0 such that

{y ∈ T̃ | y ≤ (σ, s)}\{y ∈ T̃ | y ≤ (δ, t)} ⊃ B((σ, t+ ε), ε), if t 6= Dσ,

and
{y ∈ T̃ | y ≤ (σ, s)}\{y ∈ T̃ | y ≤ (δ, t)} ⊃ B((σ1, t+ ε), ε), if t = Dσ.

These imply that ϕ is strictly increasing (from the definition of λ).

Let us consider from this point (and until the end of this proof) that T̃ is endowed with the order
topology induced by ≤. This topology is different from the topology induced by the distance d.
We begin by showing that ϕ is continuous with respect to the order topology (which is trivially
not the case with respect to d).

Continuity of ϕ

Let (σ, t) in T̃. Assume that (σ, t) is a branching point. That is there exists δ in G such that δ1

equals σ and Bδ = t. Let ε be a positive real number. Now, consider the segment

((σ, t− ε), (δ,Bδ + ε)) = {(δ, s) | s ∈ (Bδ, Bδ + ε)} ∪ {(σ, s) | s ∈ (t− ε, t)} .

The last equality holds for ε small enough. From this equality, it is easily seen that (for ε small
enough),

ϕ {((σ, t− ε), (δ,Bδ + ε))} = B(ϕ(σ, t), 2ε).

Since {((σ, t− ε), (δ,Bδ + ε)), ε > 0} is a complete neighbourhood system of (σ, t), ϕ is conti-
nuous at the branching points of the tree (we recall that this continuity holds only w.r.t. to the
order topology). The other cases (leaf or simple point) are left to the reader.

Connectedness of T̃

Let A be a subset of T̃. We want to show that A admits a supremum. Define for all σ in G,

Mσ = inf (PR (A ∩ {σ} × (Bσ, Dσ])) .

Now, according to hypothesis made in the beginning of this section we have that G is finite.
Hence, the set

{(σ,Mσ) | σ ∈ PU (A), Mσ > Bσ} ∪
{

(σ1,Mσ) | σ ∈ PU (A), Mσ = Bσ
}

47



Chapitre 3. Preliminaries II : Splitting trees

is a totally ordered finite set which, hence, has a maximum (σ∗, t∗). We claim that (σ∗, t∗) is a
supremum of A. This means that T̃ is a complete lattice w.r.t. ≤.

Moreover, if (σ, t) < (δ, s), it is easily seen (by considering for instance (σ, t − ε) or (δ, s + ε))
that there exists a third point x in T̃ such that : (σ, t) < x < (δ, s) (continuum property). This
fact, in conjunction with the fact that T̃ is a complete lattice, implies that T̃ is connected w.r.t.
the order topology (see [90]).

This is the end

Finally, using that ϕ((∅, D∅)) = 0 and ϕ((∅, 0)) = λ(T), we have, since ϕ is continuous and T̃ is
connected,

ϕ(T̃) = [0, λ(T)].

Note that the hypothesis that G is finite is fundamental to make things work. Indeed, as one
can see in [60], in the general case the bijection holds only with the local closure of T. A way to
adapt this proof to the general case would require to use a compacification of the tree T (this is
more or less what is done in [60] ).

The exploration process is now defined as the inverse of ϕ (see Figure 3.4).

0 λ(T)

Figure 3.4 – A graphical representation of the exploration process. The one-to-one correspon-
dence is represented by corresponding colours.

The contour of a finite tree
We can now define the contour of a finite tree. Informally speaking, the contour process is a
real valued process which can be seen as this : it begins at the top of the root and decreases
with slope −1 while running back along the life of the root until it meets a birth. The contour
process then jumps at the top of the life interval of the child born at this time and continues its
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exploration as before. If the exploration process does not encounter a birth when exploring the
life interval of an individual, it goes back to its parent and continues the exploration from the
birth-date of the just left individual (see Figure 3.5).

From the mathematical point of view, the contour process is just the height in the tree (that is
the biological time) of the exploration process at time t. More precisely, the contour process Y
is defined by

Ys = PR(ϕ−1(s)), ∀s ∈ [0, λ(T)].

Figure 3.5 – The contour process of the finite tree of Figure 3.1.

A useful feature is that the tree T is in bijection with the graph of the contour process. Indeed,
let (s, Ys) be a point of the graph, then the unique corresponding point in the tree is ϕ−1(s) (see
Figure 3.6).

3.2.2 The law of the contour process of a splitting tree

We recall that a splitting tree is a tree describing a population where individuals with (inde-
pendent) lifetimes distributed according to a distribution PV experience birth at rate b. Moreover,
the birth processes of different individuals are supposed independents. In this section, we are in-
terested in the law of the contour process of a splitting tree T (see Section 3.1.2 for a more precise
definition).

The first problem is that a splitting tree may not have a finite length λ(T). This implies that
the above definition does not apply. That is why we define, for all positive real number t, the
contour Y (t) of the truncated tree at time t. More precisely, let

T(t) = T ∩ U × [0, t],

the truncated tree at level t. This means that all parts of the tree above level t are removed.
Now, since the number of children of each individual before time t must be finite (because a
Poisson random measure with finite rate b is locally finite), then the total length of the tree must
be finite. This implies that the contour process Y (t) associated to T(t) is well-defined. Now, the
main result of this chapter is the following.

49



Chapitre 3. Preliminaries II : Splitting trees

Figure 3.6 – One-to-one correspondence between the tree and the graph of the contour repre-
sented by corresponding colours.

Theorem 3.2.2 (Lambert [60]). Let (Xi)i≥1 be a sequence of i.i.d. Lévy processes with Laplace
exponent

ψ(x) = x−
∫

(0,∞]

(
1− e−rx

)
bPV (dr), x ∈ R+, (3.1)

such that X1
0 = t ∧ V almost surely and Xi

0 = t almost surely, for all i > 1. Set

τ it = inf{s > 0 | Xi
t > t},

and

Si =
i∑

j=1

τ it .

Then, the process X defined by

Xt =
∑
i≥1

Xt−Si−11Si−1≤t<Si , ∀t ∈ R+,

killed at its first hitting of 0 has the same distribution as the process Y (t).

We say that Y (t) is a spectrally positive Lévy process started from V ∧ t, reflected below t and
killed at its first hitting of 0. Moreover, its Laplace exponent is given by (3.1).
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3.3 The population counting process

In this section, we introduce the population counting process which is the subject of Chapter 5.
We first give its definition. Then, we show how to use the contour process in order to derive its
first properties. As in the previous section, the results come from [60].

Definition 3.3.1 (Binary homogenous CMJ process). Let (Nt, t ∈ R+) the process defined by

Nt = ] {T ∩ U × {t}} , ∀t > 0.

This process is known as binary homogenous Crump-Mode-Jagers process.

The unidimensional marginal of (Nt, t ∈ R+)

From Section 3.2.1, we easily see that

Nt = ]{Y (t)
s = t | s ∈ R+}.

Finally,This remark allows to get, thanks to the theory of Lévy processes, a first information on
the process (Nt, t ∈ R+). Indeed, let τt (resp. τ0) be the hitting time of t (resp. of 0) by the
contour process Y (t). Now, for any positive integer k, the strong Markov property entails that

P (Nt = k | Nt > 0) = E
{
Pt∧V

(
]{Y (t)

s = t | s ∈ R+} = k | τt < τ0

)}
= Pt

(
]{Y (t)

s = t | s > 0} = k − 1
)
.

Once again, the strong Markov property gives

Pt
(
]{Y (t)

s = t | s > 0} = k − 1
)

= Pt (τt < τ0)Pt
(
]{Y (t)

s = t | s > 0} = k − 2
)

= Pt (τt < τ0)k−1 Pt
(
]{Y (t)

s = t | s > 0} = 0
)

= Pt (τt < τ0)k−1 Pt (τ0 < τt) .

Now, by Theorem 2.6.1 (see also Theorem 8.1 in [59]), we have that

Pt (τt < τ0) = 1− 1

W (t)
,

where W is the scale function of the Lévy process whose Laplace exponent is given by (3.1). We
recall that W is characterized by its Laplace transform,

TLW (t) =

∫
(0,∞)

e−rtW (r)dr =
1

ψ(t)
, ∀t > α, (3.2)

where α is the largest root of ψ.

P (Nt = k | Nt > 0) =
1

W (t)

(
1− 1

W (t)

)k−1

, ∀k ∈ N\{0}. (3.3)

According to this, Nt is geometrically distributed (conditionally on non-extinction) with para-
meter W (t). In particular

E [Nt | Nt > 0] = W (t). (3.4)

Hence, it would be worth to know the asymptotic behaviour of W in large time in order to get
some hints on the behaviour of (Nt, t ∈ R+). To this goal, one can use Tauberian theorems for
Laplace transform (see [59], Section 7.6). The results are the following
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Lemma 3.3.2. Lambert, [60]
— if ψ′(0+) > 0, then W (t) ∼ 1

ψ′(0+) ,
— if ψ′(0+) = 0, then W (t) ∼ 2t

ψ′′(0+) ,

— if ψ′(0+) < 0, then W (t) ∼ eαt

ψ′(α) .

According to Champagnat-Lambert [13], one can even go further and get

Lemma 3.3.3. Champagnat-Lambert, [13, Thm. 3.21] If ψ′(0+) < 0, then, there exist a positive
constant γ such that,

e−αtψ′(α)W (t)− 1 = O
(
e−γt

)
.

In Proposition 4.1.1, we characterize the O
(
e−γt

)
term of this Lemma.

In the sequel we refer to the supercritical case (resp. critical, subcritical) when ψ′(0) < 0 (resp.
ψ′(0) = 0, ψ′(0) > 0). Remark that, differentiating ψ in (3.1), this is equivalent to have bE[V ] > 1

(resp. bE[V ] = 1 , bE[V ] < 1 ).

Extinction

Let t be a positive real number, we have

P (Nt = 0) = E {Pt∧V (τt > τ0)} ,

which is equal, according to Theorem 2.6.1, to

E
[
W (t− t ∧ V )

W (t)

]
=

∫
[0,t]

W (t− v)

W (t)
PV (dv).

Hence,

P (Nt > 0) = 1− W ? PV (t)

W (t)
, (3.5)

and
ENt = W (t)−W ? PV (t), (3.6)

Moreover, it is easily seen that

P (Extinction) = lim
t→∞

P (Nt = 0) .

Using this with Lemma 3.3.3, one can get in the critical and subcritical cases,

P (Extinction) = 1.

Similarly, using again Lemma 3.3.3, we have, in the supercritical case,

lim
t→∞

∫
[0,t]

W (t− v)

W (t)
PV (dv) =

∫
R+

e−αtPV (dv).

But according to (3.1), one has∫
R+

e−λvPV (dv) = 1 +
ψ(λ)− λ

b
. (3.7)
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Finally,
P (Extinction) = 1− α

b
, (3.8)

and
P (NonEx) =

α

b
. (3.9)

Using the convexity of ψ, one can easily see that α > 0 if and only if ψ′(0) < 0. In short, the
only case where the population does not almost surely extinct is the supercritical one.

3.4 Backward model : coalescent point process

The purpose of this section is to analyse the genealogical model associated to splitting trees.
Some previous works (for instance [13, 14, 15]) show that some properties of a splitting tree are
easier to study using the tree describing the genealogical relation between the lineages of the
individuals alive at a time t. This is true in particular when one wants to study the genotype of
individuals in the population (if we add mutations to the model). Indeed, the difference between
two individuals in terms of genotype should depend only on the time past since their lineages
has diverged. Hence, this particular genealogical tree, known as coalescent point processes (CPP),
contains the essential informations to study, for instance, the allelic partition. In order to derive
the law of that genealogical tree, we need to characterize the joint law of the times of coalescence
between pairs of individuals in the population, which are the times since their lineages have split.

In the sequel, let It = {T ∩ U × {t}} denotes the set of individuals alive at fixed time t. This
set is naturally ordered through the total order on T. We may refer to the ith individual in this
order as the ith individual alive at time t (provided i ≤ Nt). This individual is denoted It(i).

Before defining the divergence time between the lineages of two individuals, let us define what a
lineage is.

Definition 3.4.1 (Lineage). The lineage of an individual alive at time t, or equivalently of a
point (σ, t) in T, is defined by the set (see Figure 3.7)

Lin((σ, t)) = (∪n≥1 {(σn, s) | s ≤ Bσn−1}) ∪ {(σ, s) | s ≤ t} . (3.10)

We refer the reader to Section 3.1 for the definition of σn. The set Lin((σ, t)) corresponds to the
set of successive (in the intuitive sense) points linking (σ, t) to (∅, 0)(see Figure 3.7). The time
of coalescence Ci,j between individuals i and j is the amount of time spent since their lineages
have diverged (see Figure 3.8). It can be defined by

Ci,j = t− supPR {Lin((It(i), t)) ∩ Lin((It(j), t))} .

But one can show, for two individuals i and j (such that i ≤ j), that (see also Figure 3.9)

Ci,j = sup {Ck,k+1 | k ∈Ki, jK} .

Hence, all the coalescence times are characterized by the coalescence times of adjacent individuals.
In the sequel, Ci,i+1 is denoted Hi. The so-called coalescent point process (CPP) is defined as the
sequence (Hi)0≤i≤Nt−1. The CPP of the population is indeed described by this sequence, saying
that a lineage coalesces with the first deeper branch on its left (see Figure 3.9).
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x

Figure 3.7 – The lineage of point x.

3.4.1 The law of the CPP

In order to derive the law of the sequence (Hi)0≤i≤Nt−1, we use once again the contour process
of the splitting tree. The first step is to reword the coalescence times in terms of the contour.
Its appears that the coalescence time Hi between two adjacent individuals i and i + 1 is equal
in distribution to the depth of the excursion of the contour below t between the visit of these two
individuals.

Let (σ, t) and (δ, t) be, respectively, the ith and (i+1)th individuals alive at time t (we assume that
they exist). Now, the branching point (σ, t)∧ (δ, t) between the lineages of these two individuals
can be obtain as

sup {Lin((σ, t))\Lin((δ, t))} .

We are interested in the points explored by the exploration process between (σ, t) and (δ, t).
These points are given by

ϕ−1 ([ϕ((σ, t)), ϕ((δ, t))])

= Lin((σ, t))\Lin((δ, t))
⊎
{x ∈ T | sup {Lin((σ, t))\Lin((δ, t))} < x ≤ (δ, t)} ,

where ϕ denotes the exploration process defined in Subsection 3.2.1 and ] denotes the union of
disjoint sets.
Now let x in T such that

sup {Lin((σ, t))\Lin((δ, t))} < x < (δ, t).

Hence, we must have δ ∧ σ � PU (x) and

PR(x) > PR (sup {Lin((σ, t))\Lin((δ, t))}) .

Otherwise, we would have x ≥ (δ, t) (see the definition of the order relation).
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t
0 3

C0,3

Figure 3.8 – Coalescence time between individuals 0 and 3 represented as an arrow.

This implies that

PR (sup {Lin((σ, t))\Lin((δ, t))}) ≤ PR(ϕ−1(s)), ∀s ∈ [ϕ((σ, t)), ϕ((δ, t))].

But the right hand side of the last inequality is the contour process. Finally, we get that the
diverging time of the lineages of (σ, t) and (σ, t) is given by

min
{
Y (t)
s | s ∈ [ϕ((σ, t)), ϕ((δ, t))]

}
.

This also implies that the coalescence time between those two individuals is the depth of the
excursion of the contour process on the time interval [ϕ((σ, t)), ϕ((δ, t))].

Now, let H be the depth of an excursion below t of a Lévy process with Laplace exponent given
by (3.1). It is easily seen that

P (H > s) = Pt
(
τ−s < τ+

t

)
, ∀s ∈ R+,

where τ−s and τ+
t were defined in the beginning of Section 2.6.2. But Theorem 2.6.1 (see also

[59, 7]) gives

Pt
(
τ−s < τ+

t

)
=

1

W (s)
,

where W is the scale function of our Lévy process. Finally, we have

Proposition 3.4.2. Let (Xi)i≥1 be an i.i.d. family of random variables with law given by

P (X1 > s) =
1

W (s)
, ∀s ≥ 0.
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0 1 2 3 4 5 6 7 8 9 10 12 13 14 15

Figure 3.9 – A coalescent point process for 16 individuals, hence 15 branches.

Let
N = inf{i ≥ 1 | Xi > t}.

Finally, set X0 equals t. Then,

(Hi)0≤i≤Nt−1
d
= (Xi)0≤i≤N−1 .

56



Chapitre 4

On some auxiliary results

The purpose of this chapter is to state and prove three preliminary results which are crucial for
the two forthcoming chapters. Since they are not only related to splitting trees and that they
have their own mathematical interest, we decided to dedicate a chapter to these results.

Section 4.1 gives precise asymptotic estimates on the scale function of the contour of a splitting
tree. Some weaker results were already stated in [60, 13]. This original result can be found in
[40]. Section 4.2 is devoted to the proof of an extension of the Campbell formula concerning
the expectation of the integral of a random process with respect to a random measure when
both objects present some local independence properties. These results can also be seen as
extension of the well known compensation formula for Poisson functional (see 2.1.4). These
two formulas enable us to use a very elegant formalism to model the frequency spectrum of a
splitting with neutral Poissonian mutations. This also allows us to obtain formulas for moments
for the frequency spectrum in Chapter 6. The results of Section 4.2 can be found in [12]. Finally,
Section 4.3 is devoted to an alternative construction of the CPP which plays an important role
in the computation of the moments of the frequency spectrum (see Chapter 6).

4.1 Asymptotic behavior of the scale function of the contour pro-
cess

Before stating and proving the result of this section, we make some reminders from Chapter 2
adapted in the context of our particular Lévy process. First, we recall that the law of a spectrally
positive Lévy process (Yt, t ∈ R+) is uniquely characterized by its Laplace exponent ψ,

ψY (λ) = logE
[
e−λY1

]
, λ ∈ R+,

which in our case take the form of (3.1) :

ψY (λ) = x−
∫

(0,∞]

(
1− e−rx

)
bPV (dr), λ ∈ R+.

We also assume that ψ′(0+) < 0, so that the greatest zero of ψ is positive. Let α be this zero. This
corresponds to the supercritical case for the splitting tree. In this section, we suppose that Y0 = 0.

57



Chapitre 4. On some auxiliary results

For a such Lévy process, the local time at the reflected process (see Chapter 2) (Lt, t ∈ R) can
be chosen as

Lt =

nt∑
i=0

ei, t ∈ R+,

where
(
ei
)
i≥0

is a family of i.i.d. exponential random variables with parameter 1, and

nt := Card{0 < s ≤ t | Ys = sup
u≤s

Yu},

is the number of times Y reaches its running maximum up to time t. We recall that the ascending
ladder process associated to Y is defined as

Ht = YL−1
t
, t ∈ R+,

where
(
L−1
t , t ∈ R+

)
is the right-inverse of L. It is easily seen that H is a subordinator whose

values are the successive new maxima of Y .
Conversely, in our case, the process (infs≤t Ys, t ∈ R+) can be chosen as descending ladder time
process

(
L̂t, t ∈ R+

)
. The descending ladder process Ĥ is then defined from L̂ as H was defined

from L.
The Wiener-Hopf factorization, given in Theorem 2.5.1, allows us to connect the characteristic
exponent ψY of Y with the characteristic exponents of the bivariate Lévy processes ((Lt, Ht), t ∈
R+) and ((L̂t, Ĥt), t ∈ R+), respectively denoted by κ and κ̂. In our particular case, where Y is
spectrally negative, we have {

κ(γ, β) = γ−ψY (β)
φY (γ)−β , γ, β ∈ R+,

κ̂(γ, β) = φY (γ) + β, γ, β ∈ R+,

where φY is the right-inverse of ψY . Taking γ = 0 allows us to recover the Laplace exponent ψH
of H from which we obtain the relation,

ψY (λ) = (λ− φY (0))ψH(λ). (4.1)

We have now all the notation to state and prove the main result of this section.

Proposition 4.1.1 (Behavior of W ). In the supercritical case (α > 0), there exists a positive
non-increasing càdlàg function F such that

W (t) =
eαt

ψ′(α)
− eαtF (t), t ≥ 0,

and

lim
t→∞

eαtF (t) =

{
1

bEV−1 if EV <∞,
0 otherwise.

Proof. Let Y ] be a spectrally negative Lévy process with Laplace exponent given by

ψ](λ) = λ−
∫
R+

(
1− e−λx

)
e−αxb PV (dx).
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It is known that Y ] has the law of the contour process of the supercritical splitting tree with
lifespan measure PV conditioned to extinction (see [60]). In this case the largest root of ψ] is
zero, meaning that the process Y ] does not go to infinity and that φY ](0) = 0. Elementary
manipulations on Laplace transform show that the scale function W ] of Y ] is related to W by

W ](t) = e−αtW (t), t ∈ R+.

Let H] be the ascending ladder subordinator associated to the Lévy process Y ]. In the case
where φY ](0) = 0, and in this case only, the scale function W ] can be rewritten as (see [59] or
use Laplace transform),

W ](t) =

∫ ∞
0

P
(
H]
x ≤ t

)
dx. (4.2)

In other words, if we denote by U the potential measure of H],

W ](t) = U [0, t].

Now, it is easily seen from (4.1) that the Laplace exponent ψH] of H] takes the form,

ψH] (λ) = ψ′(α)−
∫

[0,∞]

(
1− e−λr

)
Υ(dr),

where
Υ(dr) =

∫
(r,∞)

e−αvbPV (dv)dr = E
[
e−αV 1V >r

]
bdr.

Moreover,
Υ(R+) = 1− ψ′(α),

which means that H] is a compound Poisson process with jump rate 1−ψ′(α), jump distribution

J(dr) :=
E[e−αV 1V >r]

1−ψ′(α) dr, and killed at rate ψ′(α). It is well known (or elementary by conditioning

on the number of jumps at time x), that the law P
H]
x
of H]

x (x ∈ R+) is given

P
H]
x
(dt) = e−ψ

′(α)x
∑
k≥0

e−(1−ψ′(α))x ((1− ψ′(α))x)k

k!
J?k(dt).

Some calculations now lead to,
U(dx) =

∑
k≥0

Υ?k(dx).

From this point, since Υ is a sub-probability, U(x) := U [0, x] satisfies the following defective
renewal equation,

U(x) =

∫
R+

U(x− u)Υ(du) + 1R+(x).

Finally, since ∫
R+

eαxΥ(dx) = 1,

and since, from Lemma 2.7.1,
t→ U(t,∞),
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is clearly a directly Riemann integrable function as a positive decreasing integrable function.
Hence, as suggested in Remark 2.7.3,

eαx (U(R+)− U(x)) −→
x→∞

1

αµ
,

with
µ =

∫
R+

reαrΥ(dr) =
1

α
(bEV − 1) ,

if V is integrable. In the case where V is not integrable, the limit is 0.
To end the proof, note using relation (4.2) and the fact that H] is killed at rate ψ′(α) that,

W ](t) =
1

ψ′(α)
− U(t,∞).

4.2 A formula to compute the expectation of an integral with
respect to a random measure

In this section, we use notation and vocabulary from [18].
Let X a be Polish space. We recall that a random measure is a measurable mapping from a
probability space to the spaceMb (X ) of all boundedly finite measures on X , i.e. such that each
bounded set has finite mass.
The purpose of this section is to prove an extension of the Campbell formula (see Proposition
13.1.IV in [18]), giving the expectation of an integral with respect to a random measure when
the integrand has specific “local" independence properties w.r.t. to the measure.
For this purpose, we need to introduce the notion of Palm measure related to a random measure
N . So let N be a random measure on X with intensity measure µ. Let also (Xx, x ∈ X ) be
a continuous random process with value in R+. Since this section is devoted to prove relations
concerning only the distributions of N and X, we can assume without loss of generality that our
random elements X and N are defined (in the canonical way) on the space

C (X )×Mb (X ) ,

where C(X ) denotes the space of continuous function on X . This space is Polish as a product of
Polish spaces. We denote by F the corresponding product Borel σ-field.
For the random measure N , the corresponding Campbell measure CN is the measure defined on
σ (F × B (X )) by extension of the following relation on the semi-ring F × B (X ),

CN (F ×B) = E [1FN (B)] , F ∈ F , B ∈ B (X ) .

It is straightforward to see that CN is σ-finite and for each F in F the measure CN (F × ·) is
absolutely continuous with respect to µ. Then, from Radon-Nikodym’s theorem, for each F ∈ F ,
there exist y ∈ X 7→ Py (F ) in L1 (µ) such that,

CN (F ×B) =

∫
B
Py (F ) µ (dy) ,
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uniquely defined up to its values on µ-null sets.
Since our probability space is Polish, P can be chosen to be a probabilistic kernel, i.e. for all F
in F ,

y ∈ X 7→ Py (F ) is mesurable,

and for all y in X ,
F ∈ F 7→ Py (F ) is a probability measure.

The probability measure Py is called the Palm measure of N at point y. Since X is continuous,
it is B (X )⊗F measurable, and it is easily deduced from this point that

E
∫
X
Xx N (dx) =

∫
X
EPx [Xx] µ(dx), (4.3)

where EPx denotes the expectation w.r.t. Px. Formula (4.3) is the so-called Campbell formula.
We can now state, the main results of this section which are the aforementioned extensions of
the above formula.

Theorem 4.2.1. Let X be a continuous process from X to R+. Let N be a random measure
on X with finite intensity measure µ. Assume that X is locally independent from N , that is, for
all x ∈ X , there exists a neighbourhood Vx of x such that Xx is independent from N (Vx ∩ ·).
Suppose moreover that there exists an integrable random variable Y such that

|Xx| ≤ Y, ∀x ∈ X , a.s.

and
E [YN (X )] <∞.

Then we have
E
∫
X
Xx N (dx) =

∫
X
E [Xx] µ (dx) . (4.4)

However, the continuity condition of the preceding theorem is too restrictive for our purposes.
We need a more specific result.

Theorem 4.2.2. Let X be a process from [0, T ] × X to R+ such that X.,x is càdlàg for all x
and Xs,. is continuous for all s. Let N be a random measure on [0, T ] × X with finite intensity
measure µ. Assume that, for each s in [0, T ], the family (Xs,x, x ∈ X ) is independent from the
restriction of N on [0, s], that there exists an integrable random variable Y such that

|Xs,x| ≤ Y, ∀x ∈ X , ∀s ∈ [0, t], a.s.

and that
E [YN (X )] <∞.

Then we have
E
∫

[0,T ]×X
Xs,x N (ds, dx) =

∫
[0,T ]×X

E [Xs,x] µ (ds, dx) . (4.5)
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Let J1, nK denotes the set N ∩ [1, n]. Before going further, we recall that a dissecting system
is a sequence {An,j , j ∈ J1,KnK}n≥0 of nested partitions of X , where (Kn)n≥0 is an increasing
sequence of integers, such that

lim
n→∞

max
j∈J1,KnK

diam An,j = 0.

In the spirit of the works of Kallenberg on the approximation of simple point processes, the proof
of Theorems 4.2.1 is based on the following Theorem which can be find in [53] or in [73] (Section
WIII.9).

Theorem 4.2.3 (Kallenberg [53]). Let µ and ν be two finite measures on the Polish space X ,
such that µ is absolutely continuous with respect to ν. Let f be the Radon-Nikodym derivative of
µ w.r.t. ν. Then, for any dissecting system {An,j , j ∈ J1,KnK}n≥0 of X , we have

lim
n→∞

Kn∑
j=1

µ (An,j)

ν (An,j)
1s∈An,j = f(s), for µ-almost all s ∈ X .

We can now prove our results.

Proof of Theorem 4.2.1. Let {An,j , j ∈ J1,KnK}n≥0 be a dissecting system of X . We denote by
An(x) the element of the partition (An,j)1≤j≤Kn which contain x. Let also T be a denumerable
dense subset of X . We use lower and upper approximations of X. More precisely, let for all
positive integer k and for all a un X ,

X(k)
x : = inf {Xs|s ∈ T ∩Ak(x)} =

Kk∑
j=1

χ(k)
j
1x∈Aj,k ,

X
(k)
x : = sup {Xs|s ∈ T ∩Ak(x)} =

Kk∑
j=1

χ
(k)
j 1x∈Aj,k ,

with
χ

(k)
j = sup {Xs|s ∈ Aj,k ∩ T} and χ(k)

j
= inf {Xs|s ∈ Aj,k ∩ T} .

Note that the supremum and infinimum are taken on T ∩ Ak(a) to ensure that X(k)
j and X̄(k)

j

are measurable, but the set T could be removed by continuity of X. We remark that, for any j,
k, the measure

E
[
χ

(k)
j N (•)

]
is absolutely continuous with respect to µ and it follows from Campbell’s formula (4.3) that the
Radon-Nikodym derivative is

EPx
[
χ

(k)
j

]
.

Thus, it follows from Theorem 4.2.3 that, µ-a.e.,

EPx
[
χ

(k)
j

]
= lim

n→∞

E
[
χ

(k)
j N (An(x))

]
µ (An(x))

.
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Then, since X(k) and X(k) are finite sums of such random variables,

EPx
[
X

(k)
x

]
= lim

n→∞

E
[
X

(k)
x N (An(x))

]
µ (An(x))

,

and

EPx
[
X(k)
x

]
= lim

n→∞

E
[
X

(k)
x N (An(x))

]
µ (An(x))

,

outside a µ-null set which can be chosen independent of k by countability. Now, since

X(k)
x ≤ Xx ≤ X

(k)
x ,

it follows that

EPx
[
X(k)
x

]
≤ lim inf

n→∞

E [XxN (An(x))]

E [N (An(x))]
≤ lim sup

n→∞

E [XxN (An(x))]

E [N (An(x))]
≤ EPx

[
X

(k)
x

]
, µ− a.e..

Now, since X is continuous,

X
(k)
x −→

k→∞
Xx and X(k)

x −→
k→∞

Xx,

it follows, from Lebesgue’s Theorem, that

EPx [Xx] = lim
n→∞

E [XxN (An(x))]

E [N (An(x))]
, µ− a.e..

Now, since An,j is a dissecting system, there exists an integer N such that, for all n > N ,
An(x) ⊂ Vx. That is, for n large enough,

E [XxN (An(x))]

E [N (An(x))]
= EXx.

Finally,
EPx [Xx] = E [Xx] , µ− a.e..

And the conclusion comes from (4.3).

Proof of Theorem 4.2.2. Clearly, we may assume without loss of generality that T = 1. Define,
for all integer M ,

XM
s,x =

M−1∑
k=0

X k+1
M

,x1s∈[ kM , k+1
M ).

Since X.,x is càdlàg, this sequence of processes converges pointwise to (Xs,x, s ∈ [0, 1]) for all ω.
Then, by Lebesgue’s theorem,

E

[∫
[0,1]×X

Xs,x N (ds, dx)

]
=

∫
[0,1]×X

EPs,x [Xs,x] µ(ds, dx),

= lim
M→∞

M−1∑
k=0

∫
[0,1]

1s∈[ kM , k+1
M )×X EPs,x

[
X k+1

M
,x

]
µ(ds, dx).
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Clearly, for fixed k, (s, x) 7→ X k+1
M

,x is continuous on [ kM ,
k+1
M ] × X . Hence, Theorem 4.2.1 can

be applied to [
k
M ,

k+1
M

]
×X → R+,

(s, x) 7→ X k+1
M

,x,

to conclude the proof.

4.3 A recursive construction of the CPP

The purpose of this section is to given an alternative construction of the CPP. This construction
comes from the joint work with N. Champagnat [12]. We recall that a CPP at time t can be seen
as sequence (Hi)0≤i≤Nt−1 where (Hi)i≥1 is an i.i.d. sequence of random variables with distribution
given by

P (Hi > s) =
1

W (s)
,

stopped at its first value Nt greater than t, and H0 equals to t. We also recall that W is the scale
function of the contour process of a splitting tree (see Section 3.2).
The motivation of the construction given above comes from the fact that if a mutation (in a mo-
del with mutation) occurs on an individuals at some time, the future of the family carrying this
mutation does not depend on the whole tree but only on the subtree induced by this individual.
This fact can be equivalently studied through the CPP rather than in the tree directly. Here,
we consider the CPP at some time t and we introduce a construction of this CPP which under-
lines this independence. Suppose we are given a sequence

(
P(i)

)
i≥1

of coalescent point processes
stopped at time a with scale function W . Then, take an independent CPP P̂, where the law of
the branches corresponds to the excess over a of a branch with scale function W conditioned to
be higher than a. As stated in the next proposition, the tree build from the grafting of the P(i)

above each branch of P̂ is also a CPP with scale function W stopped at time t (see Figure 4.1).

0

t

a

P(1) P(2) P(3) P(4)

Figure 4.1 – Grafting of trees.

Proposition 4.3.1. Let
(
P(i)

)
i≥1

be an i.i.d. sequence of coalescent point processes with scale
function W at time a, and let

(
N i
a

)
i≥1

be their respective population sizes. Let P̂ be a coalescent

64



4.3. A recursive construction of the CPP

point process, independent of the previous family, with scale function

Ŵ (t) :=
W (t+ a)

W (a)
,

at time t− a, and let N̂t−a denotes its population size. Let S0 := 0 and

Si :=

i∑
j=1

N j
a , ∀i ≥ 1.

Then the random vector
(
Hk, 0 ≤ k ≤ SN̂a−1

)
defined, for all k ≥ 0, by

Hk =

{
P(i+1)
k−Si if Si < k < Si+1, for some i ≥ 0,

P̂i + a if k = Si, for some i ≥ 0,

is a CPP with scale function W at time t.

Proof. Note that H0 = P̂0 + a. To prove the result, it is enough to show that the sequence
(Hk)k≥1 is an i.i.d. sequence with the same law as H, given by

P (H > s) =
1

W (s)
, ∀s > 0.

The independence follows from the construction. We details the computation for the joint law
of (Hl, Hk) and leave the easy extension to the general case to the reader. Let k > l be two
positive integers, and let also s1, s2 be two positive real numbers. We denote by S the random
set {Si, i ≥ 1}. Hence,

P (Hk < s1, Hl < s2) =P (H < s1 | H < a)P (H < s2 | H < a)P (l /∈ S, k /∈ S)

+ P
(
a+ Ĥ < s1

)
P (H < s2 | H < a)P (l /∈ S, k ∈ S)

+ P (H < s1 | H < a)P
(
a+ Ĥ < s2

)
P (l ∈ S, k /∈ S)

+ P
(
a+ Ĥ < s1

)
P
(
a+ Ĥ < s2

)
P (l ∈ S, k ∈ S) ,

where Ĥ denotes a random variable with the law of the branches of P̂, i.e. such that

P
(
Ĥ > s

)
=

W (s)

W (s+ a)
, ∀s > 0.

Now, since the random variables Si are sums of geometric random variables, we get

P (Hk < s1, Hl < s2) =
(
pP (H < s1 | H < a) + (1− p)P

(
a+ Ĥ < s1

))
×
(
pP (H < s2 | H < a) + (1− p)P

(
a+ Ĥ < s2

))
,
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with p = P (k ∈ S). Moreover we have,

P (Hk ≤ s) =
∑
i≥1

{
P (Hk ≤ s | k ∈KSi−1, SiJ)P (k ∈KSi−1, SiJ)

+ P (Hk ≤ s | k = Si)P (k = Si)
}

=P (H ≤ s | H < a)P

⋃
i≥1

{k ∈KSi−1, SiJ}


+ P (H ≤ s | H > a)P

⋃
i≥1

{k = Si}

 .

Since the Si’s are sums of geometric random variables of parameters Ŵ (t − a)−1, they follow
binomial negative distributions with parameters i and Ŵ (t− a)−1. Hence, since

P (Si = k) =

 0, if k < i,(
i− 1

k − 1

)
Ŵ (t− a)−i

(
1− Ŵ (t− a)−1

)k−i
, else,

some elementary calculus leads to

P

⋃
i≥1

{k = Si}

 = P (H > a) , ∀k ∈ N.

which ends the proof.
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Chapitre 5

On the population counting process
(a.k.a. binary homogeneous CMJ

processes)

5.1 Introduction

In this chapter, we consider the population counting process Nt (giving the number of living
individuals at time t) of a splitting tree. This process is a binary homogeneous Crump-Mode-
Jagers (CMJ) process. Crump-Mode-Jagers processes are very general branching processes. Such
processes are known to have many applications. For instance, in biology, they have recently been
used to model spreading diseases (see [76, 6]) or for questions in population genetics ([13, 14]).
Another example of application appears in queuing theory (see [65] and [38]).
In the supercritical case, it is known that the quantity e−αtNt, where α is the Malthusian pa-
rameter of the population, converges almost surely. This result has been proved in [82] using
Jagers-Nerman’s theory of general branching processes counted by random characteristics. One
of our goals in this chapter is to give a new proof of this result using only elementary probabilistic
tools and relying on fluctuation analysis of the process. This proof comes from a joint work with
Nicolas Champagnat on the frequency spectrum of a splitting tree [12] (see also Chapter 6).
The other goal of this chapter is to investigate the behaviour of the error in the aforementioned
convergence. This study comes from the preprint [40]. Many papers studied the second order
behaviour of converging branching processes. Early works investigate the Galton-Watson case.
In [41] and [42], Heyde obtains rates of convergence and gets central limit theorems in the case of
supercritical Galton-Watson when the limit has finite variance. Later, in [3], Asmussen obtained
the polynomial convergence rates in the general case. In our model, the particular case when
the individuals never die (i.e. PV = δ∞, implying that the population counting process is a
Markovian Yule process) has already been studied. More precisely, Athreya showed in [5], for a
Markovian branching process Z with appropriate conditions, and such that e−αtZt converges to
some random variable W a.s., that the error

Zt − eαtW√
Zt

,
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converges in distribution to some Gaussian random variable.
In the case of general CMJ processes, there was no similar result except a very recent work
of Iksanov and Meiners [43] giving sufficient conditions for the error terms in the convergence
of supercritical general branching processes to be o(tδ) in a very general background (arbitrary
birth point process). Although our model is more specific, we give more precise results. Indeed, we
give an exact rate of convergence, e

α
2
t, and characterize the limit. Moreover, we believe that our

method can also apply to other general branching processes counted by random characteristics,
as soon as the birth point process is Poissonian.

Section 5.2 is devoted to the statement of the law of large numbers for Nt and the associated
central limit theorem. Section 5.3 is devoted to the new proof of the law of large numbers. Finally,
the central limit theorem is proved in Section 5.4.

5.2 Statement of the limit theorems

We recall that we consider a general branching population where individuals live and reproduce
independently. The lifetimes of the individuals are i.i.d. random variables distributed as a random
variable V with law PV . Moreover, individuals give birth at a Poissonian rate b. We refer the
reader to Chapter 3 for the details about the model. Let us also recall that the Laplace distribution
with zero mean and variance σ2 is the probability distribution whose characteristic function is
given by

λ ∈ R 7→ 1

1 + 1
2σ

2λ2
.

It particular, it has a density given by

x ∈ R 7→ 1

2σ
e−
|x|
σ .

We denote this law by L
(
0, σ2

)
. We also recall that, if G is a Gaussian random variable with zero

mean and variance σ2 and E is an exponential random variable with parameter 1 independent
of G, then

√
EG is Laplace L

(
0, σ2

)
.

In the sequel of this chapter (as well as in Chapter 6) we denote by Pt the probability measure
P(· | Nt > 0). Similarly, we denotes by P∞ the measure P(· | Non-extinction).

We can now state the main results of the chapter. First, let us recall the law of large number for
Nt.

Theorem 5.2.1. In the supercritical case, that is bE [V ] > 1, there exists a random variable E,
such that

e−αtNt →
t→∞

E
ψ′(α)

, a.s. and in L2.

In addition, under P∞, E is exponentially distributed with parameter one.

Section 5.3 is devoted to a new proof of this theorem.

In this chapter, we also prove the following theorem on the second order properties of the above
convergence.
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Theorem 5.2.2. In the supercritical case, we have, under P∞,

e−
α
2
t
(
ψ′(α)Nt − eαtE

) (d)−→
t→∞

L
(
0, 2− ψ′(α)

)
.

The proof of this theorem is the subject of Section 5.4. Note that, according to (3.2), we have

ψ′(x) = 1−
∫
R+

xe−xv bPV (dv), ∀x ∈ R+, (5.1)

which implies that

2− ψ′(α) = 1 +

∫
R+

ve−αv bPV (dv) > 0.

Note that one can also see using (3.2) and the fact that we are in the supercritical case that∫
R+

e−αvPV (dv) = 1− α

b
. (5.2)

5.3 An alternative proof of the law of large numbers

The purpose of this section is to show the law of large numbers for Nt. We recall once again that
we are in the supercritical case (α > 0). This last hypothesis implies thatW (t) ∼ eαt

ψ′(α) . The goal
of this section is to prove the almost sure convergence of the population counting process. We
first show that the convergence holds in probability, using the convergence of the process which
counts at time t the number N∞t of individuals having infinite descent. More formally, recalling
that a splitting tree is a subset of

(
∪k≥0Nk

)
× R+ (see Section 3.1), an individual (u, t) in the

tree T is said to have infinite descent at time t if for any T > t there exist ũ in
⋃
n≥0 Nn such

that (uũ, T ) belong to T.
Finally, to obtain the almost sure convergence, we show in Theorem 5.2.1 that Nt can not
fluctuate faster than a Yule process.

Proposition 5.3.1. Let (N∞t , t ∈ R+) be the number of alive individuals at time t having infinite
descent. Then, under P∞, N∞ is a Yule process with parameter α.

Proof. Let T, t ∈ R+. Let, for T < t, N (T )
t be the number of individuals at time t who have alive

children at time T . We extend this notation to t > T by setting N (T )
t = 0 in this case. Fix S a

positive real number, we consider the quantity,

sup
t≤S

∣∣∣N (T )
t −N∞t

∣∣∣ .
There exists a (random) finite time TS such that N (TS)

S = N∞S . This means that the progeny
of all the individuals alive at time S who have finite descent are extinct at time TS . Moreover,
N

(TS)
t = N∞t for all t < S, since, otherwise, there would exist an individual at time t who has

alive descent at time TS but which does not have an infinite descent.
Hence, for all T > TS , supt≤S

∣∣∣N (T )
t −N∞t

∣∣∣ = 0. In particular, as T → ∞, N (T ) converges to
N∞ a.s. for the Skorokhod topology of D [0,∞) and N∞ is a.s. càdlàg.
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Now, it remains to derive from N (T ) the law of the process N∞. A first remark is that N (T )
t is the

number of alive individuals in the upper CPP in the construction given in Chapter 4, Section 4.3.
Hence, applying Proposition 4.3.1, with a = T−t, gives that N (T )

t is the number of individuals in
the CPP P̂ (according to the notation of Proposition 4.3.1). Hence, it is geometrically distributed
with parameter W (T )

W (T−t) .

Now, we recursively apply this property on a sequence 0 < s1 < s2 < · · · < sn < T . By a
recursive use of Proposition 4.3.1, we see that, under PT , the process

(
N

(T )
sl , 1 ≤ l ≤ n

)
is a

time inhomogeneous Markov chain with geometric initial distribution with parameter

Pt (H > T | H > T − s1) ,

and the law of N (T )
sl given N

(T )
sl−1 is the law of a sum of N (T )

sl−1 i.i.d. geometric random variable
with parameter

pl = P (H > T − sl−1 | H > T − sl) ,

i.e. a binomial negative with parameters N (T )
sl−1 and 1− pl. Hence,

Pt
(
N (T )
s1 = m1, . . . , N

(T )
sn = mn

)
= p1 (1− p1)m1−1

n∏
i=2

(
mi +mi−1 − 1

mi

)
p
mi−1

i (1− pi)mi−1 .

Moreover, we have, by Lemma 3.3.3,

p1 =
W (T − s1)

W (T )
−→
t→∞

e−αs1 ,

and
pl =

W (T − sl)
W (T − sl−1)

−→
t→∞

e−α(sl−sl−1).

This leads to,

Pt
(
N (T )
s1 = m1, . . . , N

(T )
sn = mn

)
−→
t→∞

e−αs1
(
1− e−αs1

)m1−1
n∏
i=2

(
mi +mi−1 − 1

mi

)
e−αmi−1(sl−sl−1)

(
1− e−α(sl−sl−1)

)mi−1
.

Since the right hand side term corresponds to the finite dimensional distribution of a Yule process
with parameter α, this concludes the proof.

Because N∞ is a Yule process, e−αtN∞t converges a.s. (under P∞) to an exponential random
variable of parameter 1, denoted E hereafter, when t goes to infinity (see for instance [4]).

Remark 5.3.2. Let N be a integer valued random variable. In the sequel we say that a random
vector with random size (Xi)1≤i≤N form an i.i.d. family of random variables independent of N ,
if and only if

(X1, . . . , XN )
d
=
(
X̃1, . . . , X̃N

)
,

where
(
X̃i

)
i≥1

is a sequence of i.i.d. random variables distributed as X1 independent of N .

We are now able to prove the law of large numbers for Nt.
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t

O1
O2 O3 O4

O5

Figure 5.1 – Reflected (below t) contour process with overshoot over t.

Proof of Theorem 5.2.1. We first look at the quantity,

Et
[
e−2αt

(
N∞t − ψ′(α)Nt

)2]
.

First note that N∞t can always be written as a sum of Bernoulli trials,

N∞t =

Nt∑
i=1

B
(t)
i , (5.3)

corresponding to the fact that the ith individual has infinite descent or not.
Now, by construction of the splitting tree, the descent of each individual alive at time t can
be seen as a (sub-)splitting tree where the lifetime of the root follows a particular distribution
(that is the law of the residual lifetime of the corresponding individual). We denote by Oi the
residual lifetime of the ith individual which correspond to the ith overshoot of the contour process
above t (see Figure 5.1). In particular, these subtrees are dependent only through the residual
lifetimes (Oi)1≤i≤Nt of the individuals. Hence, the random variables

(
B

(t)
i

)
i≥2

are independent

conditionally on the family (Oi)1≤i≤Nt . In addition, the family (Oi)1≤i≤Nt has independence
properties under Pt. This is the subject of the following lemma which is proved at the end of this
section.

Lemma 5.3.3. Under Pt, the family (Oi, i ∈ J1, NtK) forms a family of independent random
variables, independent of Nt, and, except O1, having the same distribution.

The proof of this lemma is postponed at the end of this section. Hence, it follows that, under
Pt, the random variables (B

(t)
i )1≥i≥Nt are independent and identically distributed for i ≥ 2 (in

the sense of Remark 5.3.2). Let us denote by p̂t the parameter of B(t)
1 , and by pt the common

parameter of the others i.i.d. Bernoulli random variables. It follows from (5.3) that

Et [N∞t ] = pt (W (t)− 1) + p̂t

and from the Yule nature of N∞ under P∞ (Proposition 5.3.1) that E∞ [N∞t ] = eαt.

71



Chapitre 5. On the population counting process (a.k.a. binary homogeneous CMJ processes)

Now, since

E∞ [N∞t ] = Et [N∞t ]
P (Nt > 0)

P (Non-ex)
,

we have

eαt = (pt (W (t)− 1) + p̂t)
P (Nt > 0)

P (Non-ex)
.

We recall from Section 3.3 (see also [60]) that,

P (Non-ex) = E
[
e−αV

]
,

and
P (Nt > 0) = E

[
W (t− V )

W (t)

]
,

where V is a random variable with law PV (i.e. the lifetime of a typical individual). It then
follows, from Lesbegue’s Theorem that,

P (Nt > 0)

P (Non-ex)
− 1 = O

(
e−βt

)
, (5.4)

with β = α ∧ γ where the constant γ is given by Lemma 3.3.3. Hence,

pte
−αtW (t) = 1 +O

(
e−βt

)
. (5.5)

Now, using (5.3), we have

Et [N∞t Nt] = Et [Nt (Nt − 1)] pt + p̂tEtNt = 2W (t)2pt +O
(
eαt
)
, (5.6)

where the second equality comes from the fact thatNt is geometrically distributed with parameter
W (t)−1 under Pt.
Recalling also that N∞t is geometrically distributed with parameter e−αt under P∞, it follows
that

Et
[(
N∞t − ψ′(α)Nt

)2]
= 2e2αtP (Non-ex)

P (Nt > 0)
− 4ψ′(α)W (t)2pt + 2ψ′(α)2W (t)2 +O

(
eαt
)
.

Hence, it follows from (5.5), (5.6), (5.4) and Lemma 3.3.3, that

Et
[
e−2αt

(
N∞t − ψ′(α)Nt

)2]
= O

(
e−βt

)
. (5.7)

Let us define now, for all integer n, tn = 2
β log n. Then, by the previous estimation, it follows

from Borel-Cantelli lemma and a Markov-type inequality that,

lim
n→∞

e−αtnNtn = ψ′(α)E , a.s., (5.8)

on the survival event.
From this point, we need to control the fluctuation of N between the times (tn)n≥1. The births
can be controlled by comparisons with a Yule process, but the deaths are harder to control. For
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this, we use that, by (5.8), e−αtn+1Ntn+1 − e−αtnNtn is small, for n large. It then follows that if
the quantity

inf
s∈[tn,tn+1]

e−αtnNtn − e−αsNs,

takes very low negative values, then

sup
s∈[tn,tn+1]

e−αsNs − e−αtn+1Ntn+1 ,

must take very high positive value. More precisely,

Ptn

(
sup

s∈[tn,tn+1]

∣∣e−αtnNtn − e−αsNs

∣∣ > ε

)
≤ Ptn

(
sup

s∈[tn,tn+1]
e−αsNs − e−αtnNtn > ε

)

+ Ptn

(
e−αtnNtn − e−αtn+1Ntn+1 + sup

s∈[tn,tn+1]
e−αtn+1Ntn+1 − e−αsNs > ε

)

≤ Ptn

(
sup

s∈[tn,tn+1]
e−αsNs − e−αtnNtn > ε

)
+ Ptn

(
sup

s∈[tn,tn+1]
e−αtn+1Ntn+1 − e−αsNs > ε

)
+ Ptn

(
e−αtnNtn − e−αtn+1Ntn+1 > ε

)
Now, there exists a Yule process Y with parameter b such that Y0 = Ntn and for all s in
[0, tn+1 − tn],

Ntn −Ns ≤ Ys−tn − Y0, a.s. (5.9)

This Yule process can be constructed from the population at time tn by extending the lifetimes
of all individuals to infinity, and constructing births from the same Poisson process as in the
splitting tree. This leads to

Ptn

(
sup

s∈[tn,tn+1]

∣∣e−αtnNtn − e−αsNs

∣∣ > ε

)
≤ Ptn

(
sup

s∈[tn,tn+1]
Ys−tn − Y0 > ε eαtn

)

+ Ptn

(
sup

s∈[tn,tn+1]
Ytn+1−tn − Ys−tn > ε eαtn

)
+ Ptn

(
e−αtnNtn − e−αtn+1Ntn+1 > ε

)
≤ 2 Ptn

(
Ytn+1 − Ytn > ε eαtn

)
+ Ptn

(
e−αtnNtn − e−αtn+1Ntn+1 > ε

)
.

Since Markov inequalities are not precise enough to go further, we need to compute exactly the
probability,

Ptn
(
Ytn+1−tn − Y0 > ε eαtn

)
.

From the branching and Markov properties, Ytn+1−tn − Y0 is a sum of a geometric number, with
parameter W (tn)−1, of independent and i.i.d. geometric random variables supported on Z+ with
parameter e−b(tn+1−tn). Hence, Ytn+1−tn − Y0 is geometric supported on Z+ with parameter

e−b(tn+1−tn)

W (tn)
(

1− e−b(tn+1−tn)
(

1− 1
W (tn)

)) ,
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and, we have

Ptn
(
Ytn+1−tn − Y0 ≥ k

)
=

(
1− 1

W (tn)
(
eb(tn+1−tn) − 1

)
+ 1

)k
.

Using
W (tn) = O

(
eαtn

)
= O

(
n

2α
β

)
,

we have
W (tn)

(
eb(tn+1−tn) − 1

)
= O

(
n
α
2β
−1
)
.

Finally,

Ptn
(
Ytn+1−tn − Y0 > εeαtn

)
≤
(

1− 1

1 + Cn
α
2β
−1

)n α
2β

,

for some positive real constant C. Borel-Cantelli’s Lemma then entails

lim
n→∞

sup
s∈[tn,tn+1]

∣∣e−αtnNtn − e−αsNs

∣∣ = 0, almost surely,

which ends the proof of the almost sure convergence.
Now, for the convergence in L2, we have that

Et
[(
ψ′(α)e−αtNt − E

)2] ≤ 2Et
[
e−2αt

(
N∞t − ψ′(α)Nt

)2]
+ 2Et

[(
e−αtN∞t − E

)2]
.

The first term in the right hand side of the last inequality converges to 0 according to (5.7). For
the second term, since N∞t and E vanish on the extinction event, we have

lim
t→∞

Et
[(
e−αtN∞t − E

)2]
= lim

t→∞
E∞

[(
e−αtN∞t − E

)2]
.

The conclusion comes from the fact that
(
e−αtN∞t , t ∈ R+

)
is a martingale uniformly bounded

in L2.

In the preceding proof, we postponed the demonstration of the independence of the residual
lifetimes of the alive individuals at time t. We give its proof now, which is quite similar to the
Proposition 5.5 of [60].

Proof of Lemma 5.3.3. Let
(
Y (i)

)
0≤i≤Nt be a family of independent Lévy processes with Laplace

exponent

ψ(x) = x−
∫

(0,∞]

(
1− e−rx

)
Λ(dr), x ∈ R+,

conditioned to hit (t,∞) before 0, for i ∈ {0, . . . , Nt − 1}, and conditioned to hit 0 before (t,∞)

for i = Nt. We also assume that,
Y

(0)
0 = t ∧ V,

and
Y

(i)
0 = t, i ∈ {1, . . . , Nt} .
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Now, denote by τi the exit time of the ith process of (0, t) and

Tn =
n−1∑
i=0

τi, n ∈ {0, . . . , Nt + 1} .

Then, the process defined for all s ∈ [0, TNt ] by

Ys =

Nt∑
i=0

Y
(i)
s−Ti1Ti≤s<Ti+1 ,

has the law of the contour process of a splitting tree cut under t. Moreover, the quantity Y (i)
τi −Y

(i)
τi−

is the lifetime of the ith alive individual at time t. The family of residual lifetime (Oi)1≤i≤Nt
has then the same distribution as the sequence of the overshoots of the contour above u. Thus,
the independence of the Lévy processes Y (i) ensures us that (Oi, i ∈ J2, NtK) is an i.i.d family of
random variables, and that O1 is independent of the other Oi’s.

5.4 Proof of Theorem 5.2.2

In this section, we prove the central limit theorem associated to the law of large numbers for
Nt. The first step of the method is to obtain informations on the moments of the error in the
a.s. convergence of the process. Using the renewal structure of the tree and formulae on the
expectation of a random integral, we are able to express the moments of the error in terms
of the scale function of a Lévy process. This process is known to be the contour process of the
splitting tree as constructed in [60]. The asymptotic behaviours of the moments are then precisely
studied thanks to the precise asymptotic results obtained on the scale function W in Proposition
4.1.1. The second ingredient is a decomposition of the splitting tree into subtrees whose laws
are characterized by the overshoots of the contour process over a fixed level. Finally, the error
term can be decomposed as the sum of the error made in each subtrees. Our controls on the
moments ensure that the error in each subtree decreases fast enough compared to the growth of
the population (see Section 5.4.2).
The first section is devoted to the introduction of a useful lemma used in this work on the
expectation of a random integral. Section 5.4.2 details the main lines of the method. Theorem
5.2.2 is finally proved in Section 5.4.3.

5.4.1 Preliminaries : A lemma on the expectation of a random integral with
respect to a Poisson random measure

The purpose of this part is to state and prove a lemma concerning the expectation of a random
integral.

Lemma 5.4.1. Let ξ be a Poisson random measure on R+ with intensity θλ(da) where θ is
a positive real number and λ the Lebesgue measure. Let also

(
X

(i)
u , u ∈ R+

)
i≥1

be an i.i.d.

sequence of non-negative càdlàg random processes independent of ξ. Let also Y be a random
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variable independent of ξ and of the family
(
X

(i)
u , u ∈ R+

)
i≥1

. If ξu denotes ξ ([0, u]), then, for
any t ≥ 0,

E
∫

[0,t]
X(ξu)
u 1Y >u ξ(du) =

∫ t

0
P (Y > u) θEXudu,

where (Xu, u ∈ R+) =
(
X

(1)
u , u ∈ R+

)
. In addition, for any t ≤ s, we have

E

[∫
[0,t]

X(ξv)
v 1Y >v ξ(dv)

∫
[0,s]

X(ξu)
u 1Y >u ξ(du)

]
=

∫ t

0
θE
[
X2
u

]
P (Y > u) du

+

∫ t

0

∫ s

0
θ2EXuEXvP (Y > u, Y > v) dudv.

Proof. Since the proof of the two formulas lies on the same ideas, we only give the proof of the
second formula.
First of all, let f : R2

+ → R+ be a positive measurable deterministic function. We recall that,
for a Poisson random measure, the measures of two disjoint measurable sets are independent
random variables. That is, for A,B in the Borel σ-field of R+, ξ(A ∩ Bc) is independent from
ξ(B), which leads to

E [ξ(A)ξ(B)] = Eξ(A)Eξ(B) + Varξ(A ∩B).

Using the approximation of f by an increasing sequence of simple function, as in the construction
of Lebesgue’s integral, it follows from the Fubini-Tonelli theorem and the monotone convergence
theorem, that

E
∫

[0,t]×[0,s]
f(u, v) ξ(du)ξ(dv) =

∫ t

0
θf(u, u) du+

∫ t

0

∫ s

0
θ2f(u, v) dudv.

Since the desired relation only depends on the law of our random objects, we can assume
without loss of generality that ξ is defined on a probability space (Ω,F ,P) and the family(
X

(i)
s , s ∈ R+

)
i≥1

is defined on an other probability space
(

Ω̃, F̃ , P̃
)
. Then, using a slight abuse

of notation, we define ξ on Ω× Ω̃ by ξ(ω,ω̃) = ξω, and similarly for the family X.
Then, by Fubini-Tonneli Theorem, with the notation ξvω = ξω ([0, v]),

E

[∫
[0,t]×[0,s]

X(ξv)
v X(ξu)

u ξ(du)ξ(dv)

]

=

∫
Ω×Ω̃

∫
[0,t]×[0,s]

X(ξvω)
v (ω̃)X(ξuω)

u (ω̃) ξω(du)ξω(dv) P⊗ P̃ (dω, dω̃)

=

∫
Ω

∫
[0,t]×[0,s]

[∫
Ω̃
X(ξvω)
v (ω̃)X(ξuω)

u (ω̃)P̃ (dω̃)

]
ξω(du)ξω(dv) P(dω).

But since the X(i) are identically distributed and ξ is a simple measure (purely atomic with mass
one for each atom) we deduce that, if u and v are two atoms of ξω, ξvω = ξuω if and only if u = v,
which implies that∫

Ω̃
X(ξvω)
v (ω̃)X(ξuω)

u (ω̃)P̃ (dω̃) =

{
EXuEXv, u 6= v,

EX2
u, u = v,

ξω − a.e.

The result follows readily, and the case with the indicator function of Y is left to the reader.
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5.4.2 Strategy of proof

Now, we detail the main lines of the proof. Let (Gn)n≥1 be a sequence of geometric random
variables with respective parameter 1

n , and (Xi)i≥1 a L2 family of i.i.d. random variables with
zero mean independent of (Gn)n≥1. It is easy to show that the characteristic function of

Zn :=
1√
n

Gn∑
i=1

Xi, (5.10)

is given by

EeiλZn =
1 + on(1)

1 + λ2EX2
1 + on(1)

, (5.11)

from which we deduce that Zn converges in distribution to L(0,EX2
1 ).

If we suppose that the population counting process N is a Yule Markov process, it clearly follows
from the branching and Markov properties that, for s < t,

Nt =

Ns∑
i=1

N i
t−s, (5.12)

where the family
(
N i
t−s
)
i≥1

is an i.i.d. sequence of random variables distributed as Nt−s and
independent of Ns. Moreover, since Ns is geometrically distributed with parameter e−αs, taking
the renormalized limit leads to,

lim
t→∞

e−αtNt =: E = e−αs
Ns∑
i=1

Ei,

where E1, . . . , ENs is an i.i.d. family of exponential random variables with parameter one, and
independent of Ns. Hence,

Nt − eαtE =

Ns∑
i=1

(
N i
t−s − eα(t−s)Ei

)
,

is a geometric sum of centered i.i.d. random variables. This remark and (5.10) suggest the desired
CLT in the Yule case.

However, in the general case, we need to overcome some important difficulties. First of all,
equation (5.12) is wrong in general. Nevertheless, a much weaker version of (5.12) can be obtained
in the general case. To make this clear, if u < t are two positive real numbers, then the number
of alive individual at time t is the sum of the contributions of each subtrees T (Oi) induced by
each alive individuals at time u (see Figure 5.2). Provided there are individuals alive at time u,
we denote by (Oi)1≤i≤Nu the residual lifetimes (see Figure 5.2) of the alive individuals at time u
indexed using that the ith individual is the ith individual visited by the contour process. Hence,

Nt =

Nu∑
i=1

N i
t−u (Oi) , (5.13)

where
(
N i
t−u (Oi)

)
i≤Nu denote the population counting processes of the subtrees T(Oi) induced

by each individual. The notation refers to the fact that each subtree has the law of a standard
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u
O1

T(O1)

O2

T(O2) T(O3)

O3

T(O4)

O4

t

Figure 5.2 – Residual lifetimes with subtrees associated to living individuals at time u.

splitting tree with the only difference that the lifelength of the root is given by Oi. More precisly,
we define, for all i ≥ 1 and o ∈ R+, N i

t−u(o) the population counting process of the splitting
tree constructed from the same random objects as the ith subtree of Figure 5.2, where the life
duration of the first individual is equal to o. Hence, from the independence properties between
each individuals,

(
N i
t−u (o) , t ≥ u, o ≥ 0

)
i≥1

is a family of independent processes, independent
of (Oi)1≤i≤Nu , and

(
N i
t−u(o), t ≥ u

)
has the law of the population counting process of a splitting

tree but where the lifespan of the ancestor is o. Note that the lifespans of the other individuals
are still distributed as V . From the discussion above, it follows that the family of processes(
N i
t−u (Oi) , t ≥ u

)
1≤i≤Nu are dependent only through the residual lifetimes (Oi)1≤i≤Nu and the

law of (Nt (Oi) , t ∈ R+) under Pu is the law of standard population counting process of splitting
tree where the lifespan of the root is distributed as Oi under Pu.
Unfortunately, the computation of (5.11) does not apply to (5.13). This issue is solved by the
following lemma which is an improvement of Lemma 5.3.3 and whose proof is similar to one of
Proposition 5.5 of [60].

Lemma 5.4.2. Let u in R+, we denote by Oi for i an integer between 1 and Nu the residual
lifetime of the ith individuals alive at time u. Then under Pu, the family (Oi, i ∈ J1, NuK) form
a family of independent random variables, independent of Nu, and, expect O1, having the same
distribution, given by, for 2 ≤ i ≤ Nt,

Pu(Oi ∈ dx) =

∫
R+

W (u− y)

W (u)− 1
bP (V − y ∈ dx) dy. (5.14)

Moreover, it follows that the family (Ns(Oi), s ∈ R+)1≤i≤Nu is an independent family of process,
i.i.d. for i ≥ 2, and independent of Nu.

Proof. Let
(
Y (i)

)
0≤i≤Nu a family of independent Lévy processes with Laplace exponent

ψ(x) = x−
∫

(0,∞]

(
1− e−rx

)
Λ(dr), x ∈ R+,
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t

O1

O2 O3 O4

O5

Figure 5.3 – Reflected JCCP with overshoot over t. Independence is provided by the Markov
property.

conditioned to hit (u,∞) before hitting 0, for i ∈ {0, . . . , Nu − 1}, and conditioned to hit 0 first
for i = Nu. We also assume that,

Y
(0)

0 = u ∧ V,

and
Y

(i)
0 = u, i ∈ {1, . . . , Nu} .

Now, denote by τi the exit time of the ith process out of (0, u) and

Tn =

n−1∑
i=0

τi, n ∈ {0, . . . , Nu + 1} .

Then, the process defined, for all s, by

Ys =

Nu∑
i=0

Y
(i)
s−Ti1Ti≤s<Ti+1 ,

has the law of the contour process of a splitting tree cut above u. Moreover, the quantity Yτi−Yτi−
is the lifetime of the ith alive individual at time t. The family of residual lifetimes (Oi)1≤i≤Nu
has then the same distribution as the sequence of the overshoots of the Y above u. Thus, the
Markov property ensures us that (Oi, i ∈ J2, NuK) is an i.i.d. family of random variables. The
Markov property also ensures that O1 is independent of the other Oi’s.
It remains to derive the law of Oi. Let Y be a Lévy process with Laplace exponent ψ. We denote
by τ+

u the time of first passage of −Y above u and τ−0 the time of first passage of −Y below 0.
Then, for all i ≥ 2,

Pu (Oi ∈ dx) = P0

(
−Yτ−0 ∈ dx | τ

−
0 < τ+

u

)
.
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On the other hand, Theorem 2.6.1 gives for any measurable subsets A ⊂ [0, u], B ⊂ (0,−∞),

P0

(
−Yτ−0 ∈ B,−Yτ−0 − ∈ A

)
=

∫
A
P−V (B − y)

W (u− y)

W (u)
dy.

The result follows easily from

P
(
τ−0 < τ+

u

)
= 1− 1

W (u)
.

Remark 5.4.3. It is important to note that the law of the residual lifetimes of the individuals
considered above depends on the particular time u we choose to cut the tree. That is why, in the
sequel, we may denote O(u)

i for Oi when we want to underline the dependence in time of the law
of the residual lifetimes.

In addition, as suggested by (5.11), we need to compute the expected quadratic error in the
convergence of Nt,

E
[(
ψ′(α)Nt − eαtE

)2]
,

which implies to compute ENtE .
Although this moment is easy to obtain in the Markovian case, the method does not extend
easily to the general case. One idea is to characterize it as a solution of a renewal equation in
the spirit of the theory of general CMJ processes.
To make this, we use the renewal structure of a splitting tree : the splitting trees can be construc-
ted (see Chapter 3) by grafting i.i.d. splitting tree on a branch (a tree with a single individual) of
length V∅ distributed as V . Therefore, there exists a family

(
N

(i)
t , t ∈ R+

)
i≥1

of i.i.d. population

counting processes with the same law as (Nt, t ∈ R+), and a Poisson random measure ξ on R+

with intensity b da such that

Nt =

∫
[0,t]

N
(ξu)
t−u 1V∅>u ξ(du) + 1V∅>t, a.s., (5.15)

where ξu = ξ ([0, u]).
Another difficulty comes from the fact that, unlike (5.10), the quantities summed in (5.13) are
time-dependent, which requires a careful analysis of the asymptotic behaviour of their moments.
The calculus and the asymptotic analysis of these moments is made in Section 5.4.3 : In Lemma
5.4.4, we compute ENtE , and then with Lemmas 5.4.5 and 5.4.7, we study the asymptotic be-
haviour of the error of order 2 and 3 respectively. The second part of Section 5.4.3 is devoted to
the study of the same questions for the population counting processes of the subtrees described
in Figure 5.2 (when the lifetime of the root is not distributed as V ). Finally, Section 5.4.4 is
devoted to the proof of Theorem 5.2.2.
One of the difficulties in studying the behaviour of the moments is to get better estimates on
the scale function W than those of Lemma 3.3.3. This is the subject of the next section.
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5.4.3 Preliminary moments estimates

We begin the proof of Theorem 5.2.2 by computing moments, and analysing their asymptotic
behaviours. A first part is devoted to the case of a splitting tree where the lifetime of the root is
distributed as V whereas a second part study the case where the lifespan of the root is arbitrary
(for instance, as the subtrees described by Figure 5.2).
This section is devoted to the calculus of the expectation of

(
Nt − eαtE

)2. We start with the
simple case where the initial individual has life-length distributed as V . Secondly, we study the
asymptotic behavior of these moments. In the second part of this section, we prove similar result
for arbitrary initial distributions.
The expectations above are given with respect to P, however since Nt and E vanish on the event
{Nt = 0}, we can easily recover the results with respect to Pt by using (3.9) and (3.5) (see
Corollary 5.4.6).

Case V∅
d
= V

We start with the computation of ENtE .

Lemma 5.4.4 (Join moment of E and Nt). The function t → E [NtE ] is the unique solution
bounded on finite intervals of the renewal equation,

f(t) =

∫
R+

f(t− u)be−αuP (V > u) du

+ αbE [N·] ?

(∫
R+

e−αvP (V > ·, V > v) dv

)
(t)

+ α

∫
R+

e−αvP (V > t, V > v) dv, (5.16)

and its solution is given by(
1 +

α

b
− e−αt

)
W (t)−

(
1− e−αt

)
W ? PV (t).

Proof. As explained in Section 5.4.2,

Nt =

∫
[0,t]

N
(ξu)
t−u 1V∅>u ξ(du) + 1V∅>t,

where ξ a Poisson point process with rate b on the real line,
(
N (i)

)
i≥1

is a family of independent
CMJ processes with the same law as N and V∅ is the lifespan of the root. Moreover, the three
objects N (u), ξ and V∅ are independent.
It follows that, for s > t

NtNs =

∫
[0,t]×[0,s]

N
(ξu)
t−uN

(ξv)
s−v1V∅>u1V∅>v ξ(du)ξ(dv)

+

∫
[0,t]

N
(ξu)
t−u 1V∅>u ξ(du)1V∅>s +

∫
[0,s]

N
(ξu)
s−u1V∅>u ξ(du)1V∅>t + 1V∅>t1V∅>s,
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and, using Lemma 5.4.1,

ENtNs =

∫
[0,t]

bE [Nt−uNs−u] P (V > u) du

+

∫
[0,t]×[0,s]

b2E [Nt−u]E [Ns−v]P (V > u, V > v) du dv

+ P (V > s)

∫
[0,t]

bE [Nt−u] du+

∫
[0,s]

bE [Ns−u]P (V > u, V > t) du+ P (V > s) .

Then, thanks to the estimateW (t) = O
(
eαt
)
(see Lemma 3.3.3 or 4.1.1) and the L1 convergence

of W (s)−1NtNs to NtE as s goes to infinity (since, by Theorem 5.2.1, Ns
W (s) converge in L2 and

using Cauchy-Schwarz inequality), we can exchange limit and integrals to obtain,

lim
s→∞

ENt
Ns

W (s)
= ENtE︸ ︷︷ ︸

:=f(t)

=

∫
[0,t]

E [Nt−uE ] e−αu P (V > u) b du︸ ︷︷ ︸
=:f?G(t)

+

∫
[0,t]×[0,∞)

αbE [Nt−u] e−αvP (V > u, V > v) du dv︸ ︷︷ ︸
=:ζ1(t)

+

∫
[0,∞]

αe−αvP (V > v, V > t) dv︸ ︷︷ ︸
=:ζ2(t)

,

where we used that lim
t→∞

W (t)−1ENt = α
b .

Now, we need to solve the last equation to obtain the last part of the lemma. To do that, we
compute the Laplace transform of each part of the equation. Note that, since W (t) = O

(
eαt
)
, it

is easy to see that the Laplace transform of each term of (5.16) is well-defined as soon as λ > α

(using Cauchy-Schwarz inequality for the first term). Now, using (3.7),

TLe
α·G(λ) = b

∫
R+

e−λtP (V > t) dt = b

∫
R+

e−λt
∫

(t,∞)
PV (dv) dt

=
1

λ

∫
R+

(
1− e−λv

)
bPV (dv) = 1− ψ(λ)

λ
. (5.17)

So,

TLG(λ) = 1− ψ(λ+ α)

λ+ α
.

Then,

TLζ1(λ) = αTLEN.(λ)TL

(
b

∫
R+

e−αvP (V > ·, V > v) dv

)
(λ)

=

(
λ

ψ(λ)
− 1

)
TL

(
α

∫
R+

e−αvP (V > ·, V > v) dv

)
(λ)︸ ︷︷ ︸

=Lζ2(λ)

.
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and, using (5.17), we get

TLζ2(λ) = α

∫
R+

e−λt
∫
R+

e−αvP (V > t, V > v) dv dt =
1

b

(
ψ (λ+ α)

λ
− ψ(λ)

λ

)
.

Finally, we obtain,

TLf(λ)

= TLf(λ)

(
1− ψ(λ+ α)

λ+ α

)
+

(
λ

ψ(λ)
− 1

)
1

b

(
ψ (λ+ α)

λ
− ψ(λ)

λ

)
+

1

b

(
ψ (λ+ α)

λ
− ψ(λ)

λ

)
.

Hence,

TLf(λ) =
λ

b

(
1

ψ(λ)
− 1

ψ(λ+ α)

)
.

Finally, using (3.2) and

bTL (W ? PV ) (λ) =
(ψ(λ)− b+ λ)

ψ(λ)
,

allows to inverse the Laplace transform of f and get the result.

Lemma 5.4.4 allows us to compute the expected quadratic error.

Lemma 5.4.5 (Quadratic error in the convergence of Nt). Let E the a.s. limit of ψ′(α)e−αtNt.
Then,

lim
t→∞

e−αtE
(
ψ′(α)Nt − eαtE

)2
=
α

b

(
2− ψ′(α)

)
.

Proof. Let
µ := lim

t→∞
eαtF (t),

where F is defined in Proposition 4.1.1. We have, using Proposition 4.1.1 and (5.2),∫
[0,t]

W (t− u)PV (du)

=
eαt

ψ′(α)

(
1− α

b

)
− µ− eαt

ψ′(α)

∫
(t,∞)

e−αuPV (du) +

∫
[0,t]

(
µ− eα(t−u)F (t− u)

)
PV (du)

=
eαt

ψ′(α)

(
1− α

b

)
− µ+ o(1).

Hence, the expression of ENtE given by Lemma 5.4.4 can be rewritten, thanks to Lemmas 4.1.1,
as

ENtE =
2αeαt

bψ′(α)
− α

b

(
1

ψ′(α)
+ µ

)
+ o(1), (5.18)

Using (3.3) and (3.5) in conjunction with Proposition 4.1.1, we also have

e−αtEN2
t = 2

αeαt

bψ′(α)2
− 2αµ

bψ′(α)
− α

bψ′(α)
+ o(1). (5.19)
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Hence, it finally follows from (5.18) and (5.19) that

e−αtE
(
ψ′(α)Nt − eαtE

)2
= ψ′(α)2e−αtEN2

t − 2ψ′(α)ENtE +
2αeαt

b

= −2
αµ

b
ψ′(α)− αψ′(α)

b
+ 2

α

b

(
1 + ψ′(α)µ

)
+ o(1)

=
α

b

(
2− ψ′(α)

)
+ o(1).

It is worth noting that, using (3.5) and the method above, we have the following result.

Corollary 5.4.6. We have

1

P (Nt > 0)
=
b

α
− bµψ′(α)

α
e−αt + o(e−αt), (5.20)

which leads to

EtNtE =
2eαt

ψ′(α)
− 1

ψ′(α)
− 3µ+ o(1). (5.21)

Our last estimate is the boundedness of the third moments.

Lemma 5.4.7 (Boundedness of the third moment). The third moment of the error is asympto-
tically bounded, that is

E
[∣∣∣e−α2 t (ψ′(α)Nt − eαtE

)∣∣∣3] = O (1) .

Proof. We define for all t ≥ 0, N∞t as the number of individuals alive at time t which have an
infinite descent. According to Proposition 5.3.1, N∞ is a Yule process under P∞.
We have

E

[∣∣∣∣ψ′(α)Nt − eαtE
e
α
2
t

∣∣∣∣3
]
≤ 8E

[∣∣∣∣ψ′(α)Nt −N∞t
e
α
2
t

∣∣∣∣3
]

+ 8E

[∣∣∣∣N∞t − eαtEe
α
2
t

∣∣∣∣3
]
.

Now, we know according to the proof of Theorem 5.2.1 (and this is easy to prove using the
decomposition of Figure 5.2) that N∞ can be decomposed as

N∞t =

Nt∑
i=1

B
(t)
i ,

where
(
B

(t)
i

)
i≥1

is a family of independent Bernoulli random variables, which is i.i.d. for i ≥ 2,

under Pt. Hence,

Et

[∣∣∣∣ψ′(α)Nt −N∞t
e
α
2
t

∣∣∣∣3
]
≤ e−

3
2
αtEt

( Nt∑
i=1

(
ψ′(α)−B(t)

i

))4
 3

4

.
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Since, it is known from the proof of Theorem 5.2.1 that

EB(t)
2 = ψ′(α) +O

(
e−αt

)
,

it is straightforward that

Et

[∣∣∣∣ψ′(α)Nt −N∞t
e
α
2
t

∣∣∣∣3
]

is bounded.
On the other hand, we know that a Yule process is a time-changed Poisson process (see for
instance [4], Theorem III.11.2), that is, if Pt is a Poisson process independent of E under P∞,

E

[∣∣∣∣N∞t − eαtEe
α
2
t

∣∣∣∣3
]

= E∞

∣∣∣∣∣PE(eαt−1) − eαtE
e
α
2
t

∣∣∣∣∣
3
P(NonEx).

Now, using Hölder inequality, it remains to bound

E∞

(PE(eαt−1) − eαtE
e
α
2
t

)4
 = e−2αt

∫
R+

E∞
[(
Px(eαt−1) − eαtx

)4]
e−xdx.

Finally, for a Poissonian random variable X with parameter ν, straightforward computations
give that E

[
(X − ν)4

]
= 3ν2 + ν, which allows us to end the proof.

Case with arbitrary initial distribution PV∅

In order to study the behavior of the sub-splitting trees involved in the decomposition described
in Figure 5.2, we investigate the behaviour of a splitting tree where the ancestor lifelength is not
distributed as V , but follows an arbitrary distribution. Let Ξ be a random variable in (0,∞],
giving to the life-length of the ancestor and by N(Ξ) the associated population counting process.
Using the decomposition of N(Ξ) over the lifespan of the ancestor, as described in Section 5.4.2,
we have

Nt(Ξ) =

∫
R+

N
(ξu)
t−u 1Ξ>u ξ(du) + 1Ξ>t, (5.22)

where
(
N i
)
i≥1

is a family of i.i.d. CMJ processes with the same law as N independent of Ξ and
ξ, as described in section 5.4.2. Let, for all i ≥ 1, Ei be

Ei := lim
t→∞

ψ′(α)e−αtN i
t , a.s, (5.23)

and, let E (Ξ) be the random variable defined by

E (Ξ) :=

∫
[0,∞]

E(ξu)e
−αu1Ξ>u ξ(du). (5.24)

Lemma 5.4.8 (First moment). The first moment is asymptotically bounded, that is

E
(
ψ′(α)Nt(Ξ)− eαtE(Ξ)

)
= O(1),

uniformly with respect to the random variable Ξ.
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Proof. Using Lemma 5.4.1, (5.22) and (5.24) with have

E
(
ψ′(α)Nt(Ξ)− eαtE(Ξ)

)
=

∫
[0,t]

(
ψ′(α)ENt−u − eα(t−u)EE

)
e−αuP (Ξ > u) bdu,

which leads using (3.6) and (3.9) to

E
(
ψ′(α)Nt(Ξ)− eαtE(Ξ)

)
=

∫
[0,t]

(
ψ′(α)W (t− u)− ψ′(α)W ? PV (t− u)− α

b
eα(t−u)

)
︸ ︷︷ ︸

=:It−u

e−αuP (Ξ > u) bdu. (5.25)

We get using Proposition 4.1.1 and (5.2),

Is =eαs − ψ′(α)eαsF (s)− eαs
(

1− α

b

)
+ ψ′(α)

∫
[0,s]

eα(s−v)F (s− v)PV (dv) + eαs
∫

(s,∞)
e−αvPV (dv)− α

b
eαs

=eαs
∫

(s,∞)
e−αvPV (dv) + o(1).

Hence, (Is)s≥0 is bounded. The result, now, follows from (5.25).

Lemma 5.4.9 (L2 convergence in the general case). ψ′(α)e−αtNt(Ξ) converge a.s. and in L2 to
E (Ξ), and

lim
t→∞

e−αtE
(
ψ′(α)Nt(Ξ)− eαtE(Ξ)

)2
=
α

b

(
2− ψ′(α)

) ∫
R+

e−αsP (Ξ > s) bds,

where the convergence is uniform with respect to Ξ in (0,∞]. In the particular case when Ξ follows
the distribution of O(βt)

2 given by (5.14), we have, for 0 < β < 1
2 ,

lim
t→∞

eαtEβt
(
e−αtψ′(α)Nt(O

(βt)
2 )− E(O

(βt)
2 )

)2
=
(
2− ψ′(α)

)
ψ′(α).

Proof. From (5.22) and (5.24), we have

(
e−αtψ′(α)Nt(Ξ)− E(Ξ)

)2
=

[∫
R+

(
e−α(t−u)ψ′(α)N

(ξu)
t−u − E(u)

)
e−αu1Ξ>u ξ(du) + e−αt1Ξ>t

]2

(5.26)
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and, using Lemma 5.4.1,

E
(
ψ′(α)e−αtNt(Ξ)− E(Ξ)

)2
=E

(∫
R+

(
ψ′(α)e−α(t−u)N

(ξu)
t−u − E(u)

)
e−αu1Ξ>u ξ(du)

)2

+ e−2αtP (Ξ > t) + 2e−αtE1Ξ>t

∫
R+

(
ψ′(α)e−α(t−u)N

(ξu)
t−u − E(u)

)
e−αu1Ξ>u ξ(du),

=

∫
R+

E
[(
ψ′(α)e−α(t−u)N

(ξu)
t−u − E(u)

)2
]
e−2αuP (Ξ > u) bdu

+

∫
R+

E
(
ψ′(α)e−α(t−u)N

(ξu)
t−u − E(u)

)
E
(
ψ′(α)e−α(t−v)N

(ξv)
t−v − E(v)

)
× e−α(u+v)P (Ξ > u,Ξ > v) bdu dv

+ e−2αtP (Ξ > t) + 2e−αt
∫
R+

E
(
ψ′(α)e−α(t−u)N

(ξu)
t−u − E(u)

)
e−αuP (Ξ > u,Ξ > t) bdu.

Moreover, since,
ψ′(α)Ee−αtNt − E = O

(
e−αt

)
,

this leads, using Lemma 5.4.8, to

lim
t→∞

eαtE
(
e−αtψ′(α)Nt(Ξ)− E(Ξ)

)2
=
α

b

(
2− ψ′(α)

) ∫
R+

e−αuP (Ξ > u) bdu.

Now, we have from (5.14) and Lemma 3.3.3,

lim
u→∞

Pu (O2 > s) = lim
u→∞

∫
R+

W (u− y)

W (u)− 1
P (V > s+ y) bdy =

∫
R+

e−αyP (V > s+ y) bdy.

It follows then from Lebesgue theorem that,

lim
t→∞

∫
R+

e−αsPβt (O2 > s) bds =
bψ′(α)

α
.

Lemma 5.4.10 (Boundedness in the general case.). The error of order 3 in asymptotically
bounded, that is

e−
3
2
αtE

∣∣ψ′(α)Nt(Ξ)− eαtE(Ξ)
∣∣3 = O (1) ,

uniformly w.r.t. Ξ.

Proof. Rewriting N(Ξ) and E (Ξ) as in the proof of Lemma 5.4.9, we see that,

e−
3
2
t E
∣∣ψ′(α)Nt(Ξ)− eαtE(Ξ)

∣∣3
= e−

3
2
t E

∣∣∣∣∣
∫

[0,t]

(
ψ′(α)N

(ξu)
t−u − eα(t−u)E(u)

)
1Ξ>u ξ(du) + ψ′(α)1Ξ>t

∣∣∣∣∣
3


≤ 8E

∣∣∣∣∣
∫

[0,t]
e−

3
2

(t−u)
(
ψ′(α)N

(ξu)
t−u − eα(t−u)E(u)

)
e−

1
2
u1Ξ>uξ(du)

∣∣∣∣∣
3

+ 8ψ′(α)e−
1
2
tP (Ξ > t)3
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We denote by I the first term of the r.h.s. of the last inequality, leading to

I ≤ 8E
∫

[0,t]3

3∏
i=1

∣∣∣e− 1
2

(t−si)
(
ψ′(α)N

(ξsi )
t−si − e

α(t−si)E(si)

)∣∣∣ e− 1
2
si1Ξ>siξ(ds1)ξ(ds2)ξ(ds3)

≤ 8E
∫

[0,t]3

3∑
j=1

∣∣∣∣e− 1
2

(t−sj)
(
ψ′(α)N

(ξsj)
t−sj − e

α(t−sj)E(sj)

)∣∣∣∣3 3∏
i=1

e−
1
2
si1Ξ>siξ(ds1)ξ(ds2)ξ(ds3)

≤ 24E
∫

[0,t]

∣∣∣e− 1
2

(t−u)
(
ψ′(α)N

(ξu)
t−u − eα(t−u)E(u)

)∣∣∣3 e−
1
2
u1Ξ>uξ(du)

(∫
[0,t]

e−
1
2
uξ(du)

)2

≤ 24E
∫

[0,t]

∣∣∣e− 1
2

(t−u)
(
ψ′(α)N

(ξu)
t−u − eα(t−u)E(u)

)∣∣∣3 e−
1
2
u1Ξ>u µ(du),

with

µ(du) =

(∫
[0,t]

e−
1
2
sξ(ds)

)2

ξ(du).

Now, since µ is independent from the family
(
N (i)

)
and

(
E(i)

)
, an easy adaptation of the proof

of Lemma 5.4.1, leads to

e−
3
2
t E
∣∣ψ′(α)Nt(Ξ)− eαtE(Ξ)

∣∣3
≤ 24E

∫
[0,t]

E
[∣∣∣e− 1

2
(t−u)

(
ψ′(α)Nt−u − eα(t−u)E

)∣∣∣3] e−
1
2
u1Ξ>u µ(du) + 8ψ′(α)e−

1
2
tP (Ξ > t)

Using Lemma 5.4.7 to bound

E
∣∣∣e− 3

2
(t−u)

(
Nt−u − eα(t−u)E

)∣∣∣3 ,
in the previous expression, finally leads to

e−
3
2
t E
∣∣ψ′(α)Nt(Ξ)− eαtE(Ξ)

∣∣3 ≤ C (E(∫
R+

e−
1
2
uξ(du)

)3

+ 1

)
,

for some real positive constant C.

5.4.4 Proof of Theorem 5.2.2

We fix a positive real number u. From this point, we recall the decomposition of the splitting tree
as described in Section 5.4.2 (see also Figure 5.2). We also recall that, for all i in {1, . . . , Nu}, the
process

(
N i
s (Oi) , s ∈ R+

)
is the population counting process of the (sub-)splitting tree T (Oi).

As explained in Section 5.4.2, it follows from the construction of the splitting tree, that, for all
i in {1, . . . , Nu}, there exists an i.i.d. family of processes

(
N i,j

)
j≥1

independent from Nu with
the same law as (Nt, t ∈ R+), and an i.i.d. family

(
ξ(i)
)

1≤i≤Nu of random measure independent
from Nu and from

(
N i,j

)
j≥1

the family with same law as ξ, such that

N i
t (Oi) =

∫
[0,t]

N i,j
t−u1Oi>u ξ

(i)(du) + 1Oi>t, ∀t ∈ R+, ∀i ∈ {1, . . . , Nu} . (5.27)
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As in (5.24), we define, for all i in {1, . . . , Nu},

E (Oi) :=

∫
[0,t]
E
i,ξ

(i)
u
e−αu1Oi>u ξ

(i)(du), (5.28)

where Ei,j := lim
t→∞

ψ′(α)e−αtN i,j
t .

Hence, it follows from Lemma 5.4.9, that e−αtN i
t (Oi) converges to E (Oi) in L2.

Note also that, from Lemma 5.4.2, the family
(
N i
t (Oi) , t ∈ R+

)
2≤i≤Nu is i.i.d. and independent

from Nu under Pu, as well as the family (E (Oi))2≤i≤Nu (in the sense of Remark 5.3.2). Note that
the law under Pu of the processes of the family

(
N i
t (Oi) , t ∈ R+

)
2≤i≤Nu is the law of standard

population counting processes where the lifespan of the root is distributed as O2 under Pu (except
for the first one).

Lemma 5.4.11 (Decomposition of E). We have the following decomposition of E,

E = e−αu
Nu∑
i=1

Ei (Oi) , a.s.

Moreover, under Pu, the random variables (Ei (Oi))i≥1 (defined by (5.28)) are independent, in-
dependent of Nu, and identically distributed for i ≥ 2.

Proof. Step 1 : Decomposition of E.
For all t in R+, we denote by N∞t the number of individuals alive at time t which have an infinite
descent. For all i, we define, for all t ≥ 0, N∞t (Oi) from T (Oi) as N∞t was defined from the
whole tree. Now, it is easily seen that

N∞t =

Nu∑
i=1

N∞t−u (Oi) .

Hence, if e−αtN∞t (Oi) converges a.s. to E (Oi), then

lim
t→∞

e−αtN∞t = lim
t→∞

e−αu
Nu∑
i=1

e−α(t−u)N∞t−u (Oi) = e−αu
Nu∑
i=1

E (Oi) .

So, it just remains to prove the a.s. convergence to get the desired result.
Step 2 : a.s. convergence of N∞ (Oi) to E (Oi).
For this step, we fix i ∈ {1, . . . , Nu}.
In the same spirit as (5.27) (see also Section 5.4.2), it follows from the construction of the
splitting tree T (Oi), that there exists, an i.i.d. (and independent of Nu) sequence of processes(
N j,∞
s , s ∈ R+

)
j≥1

with the same law as (N∞t , t ∈ R+) (under P), such that

N∞t (Oi) =

∫
[0,t]

N ξ
(i)
u ,∞
t−u 1Oi>u ξ

(i)(du) + 1Oi=∞, ∀t ≥ 0.

Now, it follows from Theorem 5.2.1, that for all j,

lim
t→∞

e−αtN j,∞
t = Ei,j , a.s.,
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where Ei,j was defined in the beginning of this section. Let

Cj := sup
t∈R+

e−αtN j,∞
t , ∀j ≥ 1,

and
C := sup

t∈R+

e−αtN∞t .

Then, the family (Cj)j≥1 is i.i.d., since the processes
(
N j,∞)

j≥1
are i.i.d, with the same law as

C. Hence, ∫
[0,t]

e−α(t−u)N ξ
(i)
u ,∞
t−u e−αu1Oi>u ξ

(i)(du) ≤
∫

[0,t]
C
ξ
(i)
u
e−αu1Oi>u ξ

(i)(du). (5.29)

It is easily seen that E [C] = P (NonEx)E∞ [C]. Now, since, from Proposition 5.3.1, N∞t is a
Yule process under P∞ (and hence e−αtN∞t is a martingale), Doobs’s inequalities entails that
the random variable C is integrable. Hence, the right hand side of the (5.29) is a.s. finite, and we
can apply Lesbegue Theorem to get

lim
t→∞

e−αtN∞t (Oi) =

∫
[0,t]
E
i,ξ

(i)
u
e−αu1Oi>u Γ(du) = E (Oi) , a.s.,

where the right hand side of the last equality is just the definition of E (Oi).

We have now all the tools needed to prove the central limit theorem for Nt.

Proof of Theorem 5.2.2. Let u < t, two positive real numbers. From Lemma 5.4.11 and Section
5.4.2, we have

Nt =

Nu∑
i=1

N
(i)
t−u (Oi)

and

eαtE =

Nu∑
i=1

eα(t−u)Ei (Oi) .

Then,
ψ′(α)Nt − eαtE

e
α
2
t

=

Nu∑
i=1

ψ′(α)N
(i)
t−u (Oi)− eα(t−u)Ei (Oi)

e
α
2

(t−u)e
α
2
u

. (5.30)

Using Lemma 5.4.2, we know that, under Pu,
(
N i
t−u(Oi), t > u

)
1≤i≤Nu are independent processes,

i.i.d. for i ≥ 2 and independent of Nu. Let us denote by ϕ and ϕ̃ the characteristic functions

ϕ(λ) := E

[
exp

(
iλ

(
ψ′(α)N2

t−u (O2)− eα(t−u)E2 (O2)

e
α
2

(t−u)

))]
, λ ∈ R

and

ϕ̃(λ) := E

[
exp

(
iλ

(
ψ′(α)N1

t−u (O1)− eα(t−u)E1 (O1)

e
α
2

(t−u)

))]
, λ ∈ R.
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It follows from (5.30) and Lemma 5.4.2 that,

Eu
[
exp

(
iλ
ψ′(α)Nt − eαtE

e
α
2
t

)]
=
ϕ̃
(

λ

e
α
2 u

)
ϕ
(

λ

e
α
2 u

)Eu [ϕ( λ

e
α
2
u

)Nu]

Since Nu is geometric with parameter W (u)−1 under Pu,

Eu
[
exp

(
iλ
ψ′(α)Nt − eαtE

e
α
2
t

)]
=
ϕ̃
(

λ

e
α
2 u

)
ϕ
(

λ

e
α
2 u

) W (u)−1ϕ
(

λ

e
α
2 u

)
1− (1−W (u)−1)ϕ

(
λ

e
α
2 u

)
Using Taylor formula for ϕ, we obtain,

Eu
[
exp

(
iλ
ψ′(α)Nt − eαtE

e
α
2
t

)]
= ϕ̃

(
λ

e
α
2
u

)
1

D(λ, t, u)

where,

D(λ, t, u) = W (u)

− (W (u)− 1)

(
1 + iλE

[
ψ′(α)N i

t−u (O2)− eα(t−u)E2 (O2)

e
α
2

(t−u)e
α
2
u

]

− λ2

2
E

(ψ′(α)N i
t−u (O2)− eα(t−u)E2 (O2)

e
α
2

(t−u)e
α
2
u

)2
+R(λ, t, u)

)

= 1− iλW (u)− 1

e
α
2
u

E

[
ψ′(α)N i

t−u (O2)− eα(t−u)E2 (O2)

e
α
2

(t−u)

]

+
λ2

2

W (u)− 1

eαu
E

(ψ′(α)
N i
t−u (O2)− eα(t−u)E2 (O2)

e
α
2

(t−u)

)2


− (W (u)− 1)R(λ, t, u),

with, for all ε > 0 and all λ in (−ε, ε),

|R(λ, t, u)| ≤ sup
λ∈(−ε,ε)

∣∣∣∣ ∂3

∂λ3
ϕ(λ)

∣∣∣∣
≤ E

∣∣∣∣∣
(
ψ′(α)N i

t−u (O2)− eα(t−u)E2 (O2)

e
α
2

(t−u)

)∣∣∣∣∣
3
 ε3e− 3

2
αu

6
≤ Cε3e−

3
2
u, (5.31)

for some real positive constant C obtained using Lemma 5.4.10.
From this point, we set u = βt with 0 < β < 1

2 . It follows then from the Lemmas 5.4.9 and 5.4.2,
that

lim
t→∞

Eβt

(ψ′(α)N i
t−βt (O2)− eα(t−βt)E2 (O2)

e
α
2

(t−βt)

)2
 = ψ′(α)

(
2− ψ′(α)

)
. (5.32)

Moreover, we have from Lemma 5.4.8, and since β < 1
2 ,

lim
t→∞

W (βt)e−
α
2
tE
[
ψ′(α)N i

t (O2)− eαtE2 (O2)
]

= 0. (5.33)
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Finally, the relations (5.31), (5.32) and (5.33) lead to

lim
t→∞

Eβt
[
exp

(
iλ
Nt − eαtE

e
α
2
t

)]
=

1

1 + λ2

2 (2− ψ′(α))
.

To conclude, note that,∣∣∣∣Eβt [exp

(
iλ
Nt − eαtE

e
α
2
t

)]
− E∞

[
exp

(
iλ
Nt − eαtE

e
α
2
t

)]∣∣∣∣
=

∣∣∣∣∣E
[
e
iλ
ψ′(α)Nt−e

αtE

e
α
2 t

(
1Nβt>0

P (Nβt > 0)
− 1NonEx

P (NonEx)

)]∣∣∣∣∣ ≤ E
[∣∣∣∣ 1Nβt>0

P (Nβt > 0)
− 1NonEx

P (NonEx)

∣∣∣∣]
goes to 0 as t goes to infinity. This ends the proof of Theorem 5.2.2.
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Chapitre 6

On the frequency spectrum of a
splitting tree with neutral Poissonian

mutations

6.1 Introduction

The purpose of this chapter is to study splitting trees with neutral Poissonian mutations. We
consider the same model as in the previous chapter, but we assume that individuals also ex-
perience mutations at Poisson rate. Each mutation leads to a totally new type replacing the
previous type of the individual, this is the infinitely-many alleles assumption. Every time an
individual gives birth to new individual, it transmits its type to his child. This mutation process
is a way to model the occurrence of a new type in a population (such as a new species or a new
phenotype in a given species). Our study concerns the allelic partition of the living population at
a fixed time t, which is characterized by the frequency spectrum (A(k, t))k≥1 of the population,
where each integer A(k, t) is the number of families represented by k alive individuals at time t.
A famous example is the Ewens sampling formula which gives the distribution of the frequency
spectrum when the genealogy is given by the Kingman coalescent [29]. Other works studied si-
milar quantities in the case of Galton-Waston branching processes (see [8] or [37]). The purpose
of this chapter is to obtain explicit formulas for the moments of the frequency spectrum and
then to use this formulas in order to extend the central limit theorem proved in Chapter 5 to
the frequency spectrum.

The model with Poissonian mutations was studied in Champagnat and Lambert [13, 14], where
many properties of the frequency spectrum and the clonal family (the family who carries the type
of the first individuals at time 0) were obtained. The population counting process (Nt, t ∈ R+)

and the frequency spectrum (A(k, t))k≥1 belong to the class of general branching processes
counted by random characteristics. This class of processes has been deeply studied by Jagers
and Nerman, who give, for instance, criteria for the long time convergence of such processes
[46, 74, 48, 49, 87]. Using these tools, Richard and Lambert [60, 82] shown the almost sure
convergence of Nt, properly renormalized, to an exponential random variable in the supercritical
case. The almost sure convergence of the ratios A(k,t)

Nt
was proved in [13] using similar tools. From
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this, one can easily deduce the a.s. convergence of A(k,t)
W (t) where we recall that W (t) is the average

number of individuals at time t conditionally on Nt > 0. This result was stated without proof in
[15].

An important tool is the so called coalescent point process (CPP) : given the individuals alive
at a fixed time, the coalescent point process at time t is the tree describing the relation between
the lineages of all individuals alive at time t. Here, the term lineage of an individual refers to
the succession of individuals, from child to parent, backward in time until the ancestor of the
population. Roughly speaking, the CPP is the genealogical tree of the lineages of the individuals.
This tool goes back to Aldous and Popovic [2] who introduced it for a Markovian model. Later
in [60], Lambert showed the general link between coaslescent point processes and the splitting
trees.

In this work, we use the representation of the CPP of a splitting tree as an i.i.d. sequence of
random variables (Hi)i≥1. More precisely, we use the new construction of the coalescent point
process given in Chapter 4, and thanks to Theorem 4.2.2, this allows us to obtain explicit
recursive formulas for the moments of the frequency spectrum, valid for any parameter of the
model. As an application, we prove the almost sure convergence of the frequency spectrum
avoiding the use of the theory of general branching processes counted by random characteristics
in the supercritical case. Of course, these moment formulas can also provide many valuable
informations. For instance, on the error in the aforementioned convergence. Another application
is then to prove central limit theorems for the frequency spectrum (such as the one of Chapter
5).

Section 6.2 is dedicated to the description of the models and the introduction of anterior results
(essentially from [60, 13]) used in the sequel. In Section 6.3, we state results (Theorems 6.3.1 and
6.3.2) giving explicit formulas for the factorial moments of the frequency spectrum (A(k, t))k≥1

expressed in terms of the lower order moments. A first example of the method in Subsection
6.3.1 focusing on the expectation of A(k, t). Although, the computation of this expectation was
already known from [13], we give here a much more simple proof. Subsection 6.3.2 is dedicated to
the proofs of Theorems 6.3.1 and 6.3.2. We give the asymptotic behaviour of higher moments in
Subsection 6.3.5. All these sections come from a joint work with Nicolas Champagnat published
in [12]. In Section 6.4, we state the same kind of limit theorems as those for Nt stated in Section
5.2. The following sections are devoted to the proofs of these results. Section 6.5 gives a new
proof of the already known law of large numbers for the frequency spectrum (originally obtained
in [13]). Sections 6.6, 6.7 and 6.8 give the proof of the various CLT stated in Section 6.4.

6.2 Splitting trees with neutral Poissonian mutations

Here we define what we call a splitting tree with neutral mutation. Since a splitting tree T is a
measured space (with a σ-finite measure λ), one can define on T a Poisson random measure with
intensity λ. Hereafter we call mutations every atoms of this measure on T. However, since the
only observable mutation at time t are the one which occurred on the lineage of the individuals
alive at this time, we can define the occurrence of mutations directly on the CPP. So, let P be
a Poisson random measure on (0, t)×N with intensity measure θλ⊗C where λ is the Lebesgue
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measure on (0, t) and C is the counting measure on N. The mutation random measure on the
CPP is then defined by

N (da, di) = 1Hi>t−a1i<NtP (di, da) , (6.1)

where an atom at (a, i) means that the ith branch of the CPP experiences a mutation at time
t− a.

We assume that each mutation gives a totally new type to its holder (infinitly-many alleles model)
and that the types are transmitted to offspring. This rule yields a partition of the population by
type at a given time t. The distribution of the frequency of types in the population is called the
frequency spectrum and is defined as the sequence (A(k, t))k≥1 where A(k, t) is the number of
types carried by exactly k individuals in the alive population at time t (or, for short, the number
of families of size k at this time) excluding the family holding the original type of the root. In
the study of the frequency spectrum, an important role is played by the family carrying the type
of the root.The type of the ancestor individual at time 0 is said clonal. Moreover, at any time t,
the set of individuals carrying this type is called the clonal family. We denote by Z0(t) the size
of the clonal family at time t.

To study this family it is easier to consider the clonal splitting tree constructed from the original
splitting tree by cutting every branches beyond mutations. This clonal splitting tree is a standard
splitting tree without mutations where individuals are killed as soon as they die or experience a
mutation. The new lifespan law PVθ is then the minimum between an exponential random variable
of parameter θ and an independent copy of V . As a splitting tree, one can study its contour
process whose Laplace exponent is given, using simple manipulations on Laplace transforms, by

ψθ(x) = x−
∫

(0,∞]

(
1− e−rx

)
bPVθ(dr) =

xψ(x+ θ)

x+ θ
.

In the case where α − θ > 0 (resp. α − θ < 0, α − θ = 0) the clonal population is supercritical
(resp. sub-critical, critical), and we talk about clonal supercritical (resp. sub-critical, critical)
case.
We denote by Wθ the scale function of the Lévy process induced by this new tree, related to ψθ
as in (3.1). This leads to

P (Z0(t) = k | Z0(t) > 0) =
1

Wθ(t)

(
1− 1

Wθ(t)

)k−1

.

Moreover, E [Nt] satisfies the renewal equation

f(t) = P (V > t) + b

∫ t

0
f(t− s)P (V > s) ds,

which, applied to the clonal splitting tree, allows obtaining after some easy calculations,

P (Z0(t) > 0)

P (Nt > 0)
=
e−θtW (t)

Wθ(t)
,

from which one can deduce

P (Z0(t) = k | Nt > 0) =
e−θtW (t)

Wθ(t)2

(
1− 1

Wθ(t)

)k−1

, ∀k ≥ 1, (6.2)
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and

P (Z0(t) = 0 | Nt > 0) = 1− e−θtW (t)

Wθ(t)
.

The main idea underlying our study is that the behaviour of any family in the CPP is the same
as the clonal one but on a smaller time scale.
For the rest of this chapter, unless otherwise stated, the notation Pt refers to P (· | Nt > 0) and
P∞ refers to the probability measure conditioned on the non-extinction event, denoted Non-Ex
in the sequel.
Finally, we recall the asymptotic behaviour of the scale functions W (t) and Wθ(t), which is
widely used in the sequel.

Lemma 6.2.1. (Champagnat-Lambert [14]) Assume α > 0, there exists a positive constant γ
such that

e−αtψ′(α)W (t)− 1 = O
(
e−γt

)
.

In the case that θ < α (clonal supercritical case),

Wθ(t) ∼
t→∞

ψ′θ(α− θ)−1e(α−θ)t.

In the case that θ > α (clonal sub-critical case),

Wθ(t) =
θ

ψ(θ)
+O

(
e−(θ−α)t

)
.

In the case where θ = α (clonal critical case),

Wα(t) ∼
t→∞

αt

ψ′(α)
.

From this lemma, one can obtain that the probability that the clonal family reaches a fixed size
at time t decreases exponentially fast with t.

Corollary 6.2.2. In the supercritical case (α > 0), for any positive integer k,

Pt (Z0(t) = k) = O
(
e−δt

)
,

where δ is equal to θ (resp. 2α− θ) in the clonal critical and sub-critical cases (resp. supercritical
case).

Remark 6.2.3. Note that Lemma 6.2.1 implies in particular that, for any positive integer k,

tW (t)k−1 = o
(
W (t)k

)
.

6.3 Moments formulas of the frequency spectrum

For two positive real numbers a < t, we denote byN (t)
t−a the number of individuals alive at time t−

a who have descent alive at time t. In the CPP of the individuals alive at time t, N (t)
t−a corresponds

to the number of branches higher than t− a, that is ] {Hi | i ∈ {0, . . . , Nt − 1}, Hi > t− a}.
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In the sequel, we use the following notation for multi-indexed sums : let K,N be two positive
integers and `1, . . . , `K some non-negative integers, then the notation∑

n1:K
1 +···+n1:K

N =`1:K

refers to the sum ∑
n1
1+···+n1

N=`1
...

nK1 +···+nK
N

=`K

.

In order to lighten notation, we also use the convention that for any integer n and any negative
integer k, (

n

k

)
= 0.

We recall that Pt is the conditional probability on the event {Nt > 0} and that Et is the corres-
ponding expectation. In the both following theorem, we know, according to Proposition 4.3.1,
that the random variable N (t)

t−a is geometrically distributed with parameter W (t+a)
W (a) under Pt. We

can now state the main theorems of this section.

Theorem 6.3.1. For any positive integers n and k, we have,

Et
[(
A(k, t)

n

)]

= Et


∫ t

0
θN

(t)
t−a

∑
n1+···+n

N
(t)
t−a

=n−1

Ea
[(
A(k, a)

n1

)
1Z0(a)=k

]N(t)
t−a∏

m=2

Ea
[(
A(k, a)

nm

)]
da

 .

We also have a similar result for the joint moments of the frequency spectrum.

Theorem 6.3.2. Let n1, . . . , nN and k1, . . . , kN be positive integers. We have

Et

[
N∏
i=1

(
A(ki, t)

ni

)]

=

N∑
l=1

Et

{∫ t

0
θN

(t)
t−a

∑
n1:N
1 +···+n1:N

N
(t)
t−a

=n1:N−δ1:N,l

Ea

[
N∏
i=1

(
A(ki, a)

ni1

)
1Z0(a)=kl

]

×
N

(t)
t−a∏

m=2

Ea

[
N∏
i=1

(
A(ki, a)

nim

)]
da

}
, (6.3)

where δ refers to the Kronecker symbol.

In Subsection 6.3.3, we also give formulas for moments like Et
[(
A(k, t)

n

)
1Z0(t)=`

]
.
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6.3.1 An example : the expectation of A(k, t)

Before going further, we point out that this section uses the recursive construction of the CPP
given in Section 4.3. A nice application of this construction is the derivation of the expectation of
A(k, t). Indeed, suppose that a mutation occurs on branch i at a time a. Then, by construction of
the CPP, the future of this family depends only on what happens on the branches (Hj , i ≤ j < τ)

(see Figure 6.1), where
τ = inf {j > i | Hj ≥ a} .

In fact, this set of branches is also a CPP with scale function W stopped at a (we talk about
sub-CPP), and the number of individuals carrying the mutation at time t is the number of clonal
individuals in this sub-CPP. We recall that this expectation was first calculated in [13], with a

0

t

a

0 1 2 3 4 5 6 7 8 9 10 12 13 14 15

Figure 6.1 – The future of a mutation only depends on a sub-tree of the genealogical tree.

much more complicated proof.

Theorem 6.3.3. ([13, Cor. 3.4]) For any positive integer k, we have

Et [A(k, t)] = W (t)

∫ t

0

θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1

da.

Proof. Since A(k, t) is the number of types represented at time t by k individuals, it is equivalent
to enumerate all the mutations and ask if they have exactly k clonal children at time t. This
remark leads to the following integral representation of A(k, t) :

A (k, t) =

∫
[0,t]×N

1Zi0(a)=k N (da, di) , (6.4)

where N is defined in (6.1), and Zi0(a) denotes the number of alive individuals at time t carrying
the same type as the type carried at time t− a on the ith branch of the CPP of the individuals
alive at time t (the notation comes from the fact that Zi0(a) corresponds to the size of the
clonal family in the sub-CPP induced by the ith individual at time t− a, see Figure 4.1). From
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Proposition 4.3.1, it follows that 1Zi0(a)=k satisfies the conditions of Theorem 4.2.2, so

Et [A (k, t)] =

∫ t

0
θ Pa (Z0(a) = k)EtN

(t)
t−a da = W (t)

∫ t

0

θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1

da,

using (6.2).

6.3.2 Proof of Theorems 6.3.1 and 6.3.2

Let a and t be two positive real numbers such that a < t, and n a positive integer. We call
k-mutation, a mutation represented by k alive individuals at time t in the splitting tree. Let(
A(i)(k, a)

)
k≥1

be the frequency spectrum in the i-th subtree of construction provided by Pro-
position 4.3.1.
To count the number of n-tuples in the set of k-mutations, we look along the tree and seek for
mutations in the CPP. For each k-mutation encountered, we count the number of (n− 1)-tuples
made of younger k-mutations. The (n − 1)-tuples should be enumerated by decomposition in
each subtree in order to exploit the independence property of the subtrees of Proposition 4.3.1.
Suppose that a mutation is encountered at a time a, then the number of (n− 1)-tuples made of
younger mutations is given by

∑
n1+···+n

N
(t)
t−a

=n−1

N
(t)
t−a∏

m=1

(
A(m)(k, a)

nm

)
.

So the number
(
A(k, t)

n

)
of n-tuples of k-mutations is given by

(
A(k, t)

n

)
=

∫
[0,t]×N

1Zi0(a)=k

∑
n1+···+n

N
(t)
t−a

=n−1

N
(t)
t−a∏

m=1

(
A(m)(k, a)

nm

)
N (da, di), (6.5)

=
∑
`≥1

∫
[0,t]×N

1Zi0(a)=k

∑
n1+···+nl=n−1

∏̀
m=1

(
A(m)(k, a)

nm

)
1
N

(t)
t−a=`

N (da, di),

where Zi0(a) was defined in the proof of Theorem 6.3.3. Finally, using the independence provided
by Proposition 4.3.1, it follows from Theorem 4.2.2 applied to all the integrals with respect to
the random measures 1

N
(t)
t−a=k

N (da, di), that

Et
[(
A(k, t)

n

)]

= Et
∫

[0,t]×N

∑
n1+···+n

N
(t)
t−a

=n−1

Ea
[(
A(k, a)

n1

)
1Z0(a)=k

]N(t)
t−a∏

m=2

Ea
[(
A(k, a)

nm

)]
N (da, di) .
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Finally, using that the N (da, di) = 1Hi>t−a1i<NtP(di, da) where P independent from the CPP
(and, hence, from N

(t)
t−a), it follows that

Et
[(
A(k, t)

n

)]
= Et

∫
[0,t]

∑
n1+···+n

N
(t)
t−a

=n−1

Ea
[(
A(k, a)

n1

)
1Z0(a)=k

]

×
N

(t)
t−a∏

m=2

Ea
[(
A(k, a)

nm

)]∫
N
1Hi>t−a1i<Nt C(di)θda,

= Et
∫

[0,t]
θN

(t)
t−a

∑
n1+···+n

N
(t)
t−a

=n−1

Ea
[(
A(k, a)

n1

)
1Z0(a)=k

]N(t)
t−a∏

m=2

Ea
[(
A(k, a)

nm

)]
da, (6.6)

which ends the proof of Theorem 6.3.1.
The proof of Theorem 6.3.2 follows exactly the same lines, and we leave it to the reader.

6.3.3 Joint moments of the frequency spectrum and 1Z0(t)=`

In order to compute the terms of the form

Et

[
N∏
i=1

(
A(ki, t)

ni

)
1Z0(t)=`

]

involved in (6.3), we need to extend the representation (6.5) of
(
A(k,t)
n

)
to take into account the

indicator function of {Z0(t) = `}. To do this, when integrating w.r.t. N (da, di), we need to ask
that the sum of the number of clonal individuals in each subtree for which the type at time t−a
is the ancestral type, is equal to k. We begin with the case

E
[
A(k, t)1Z0(t)=`

]
in order to highlight the ideas. In this case, we have the following result.

Proposition 6.3.4.

Et
[
A(k, t)1Z0(t)=`

]
=Et

∫ t

0

(
N

(t)
t−a − Z

(t)
0 (a)

)
Pa (Z0(a) = k)

∑
`1+···+`

Z
(t)
0 (a)

=`

Z
(t)
0 (a)∏
i=1

Pa (Z0(a) = `i) θda

+ Et
∫ t

0
Z

(t)
0 (a)Pa (Z0(a) = k)

∑
`1+···+`

Z
(t)
0 (a)−1

=`

Z
(t)
0 (a)−1∏
i=1

Pa (Z0(a) = `i) θda. (6.7)

Proof. Recalling that N (t)
t−a refers to the size whole population in the lower tree P̂ of the construc-

tion of Proposition 4.3.1, we similarly define Z(t)
0 (a) as the size of the clonal population in the
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same tree (with the convention that mutations that occur at time t− a, i.e. on the leaves of the
tree P̂, do not affect Z(t)

0 (a)). It follows that

A(k, t)1Z0(t)=`

=

∫
[0,t]×N

1
Zj0(a)=k(

Z
(t)
0 (a)−Bj

)
!

∑
σ∈I

1σ is ancestral
∑

`1+···+`
Z
(t)
0 (a)−Bj

=`

Z
(t)
0 (a)−Bj∏
i=1

1Zσi0 (a)=`i
N (da, dj),

(6.8)

where I is the set of injections from
{

1, . . . , Z
(t)
0 (a)−Bj

}
to
{

1, . . . , N
(t)
t−a

}
, Bj is the indicator

function of the event
{the jth individual at time t− a is clonal} ,

and "σ is ancestral" denotes the event that the individuals σ1, . . . , σZ(t)
0 (a)−Bj

at time t− a have
the ancestral type. Now, using the same method as in the proof of Theorem 6.3.1 leads to

Et
[
A(k, t)1Z0(t)=`

]
= Et

∫
[0,t]×N

Pa (Z0(a) = k)
∑
σ∈I

1σ is ancestral
∑

`1+···+`
Z
(t)
0 (a)−Bj

=`

Z
(t)
0 (a)−Bj∏
i=1

Pa (Z0(a) = `i)
N (da, dj)(

Z
(t)
0 (a)−Bj

)
!

= Et
∫

[0,t]×N
Pa (Z0(a) = k)

∑
`1+···+`

Z
(t)
0 (a)−Bj

=`

Z
(t)
0 (a)−Bj∏
i=1

Pa (Z0(a) = `i) N (da, dj)

= Et
∫

[0,t]×N
Pa (Z0(a) = k)

∑
`1+···+`

Z
(t)
0 (a)−Bj

=`

Z
(t)
0 (a)−Bj∏
i=1

Pa (Z0(a) = `i) 1Hj>t−a1j<NtP(da, dj).

Now, Z(t)
0 (a) is not independent from P, but we have that Z(t)

0 (a) is independent from P ([a, T ] ∩ ·)
for all a < T . Hence, Theorem 4.2.2 applies to X̃a := Z

(t)
0 (t−a) and P̃ defined for all measurable

set A ⊂ [0, t] by
P̃ (A) = P (t−A) ,

and, as in (6.6),

Et
[
A(k, t)1Z0(t)=`

]
= Et

∫
[0,t]×N

Pa (Z0(a) = k)
∑

`1+···+`
Z
(t)
0 (a)−Bj

=`

Z
(t)
0 (a)−Bj∏
i=1

Pa (Z0(a) = `i) 1Hj>t−a1j<Ntθda C(dj).

Finally, integrating with respect to C(dj) leads to the result.
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This last proposition in not exactly a closed formula since its involves the law of the couple
(N

(t)
t−a, Z

(t)
0 (a)). To close the formula, we need an explicit formula for the joint generating function

of N (t)
t−a and Z(t)

0 (a). Let

F (u, v) = Et
[
uN

(t)
t−avZ

(t)
0 (a)

]
, u, v ∈ [0, 1],

which is given, thanks to Proposition 4.1 of [13], by

F (u, v) = u
Ŵ (t− a, u)

Ŵ (t− a)

(
1− e−θ(t−a)Ŵ (t− a, u)

v
1−v + Ŵθ(t− a, u)

)
, (6.9)

where Ŵ is the scale function of the lower CPP, P̂, defined in Proposition 4.3.1,

Ŵ (t, u) :=
Ŵ (t)

Ŵ (t)− u
(
Ŵ (t)− 1

) ,
and

Ŵθ(t, u) := e−θtŴ (t, u) + θ

∫ t

0
Ŵ (s, u)e−θs ds.

Proposition 6.3.5. For all k ≥ 1 and l ≥ 0,

Et
[
A(k, t)1Z0(t)=`

]
=

∫ t

0
Pa (Z0(a) = k)

l∑
j=1

(
l − 1

j − 1

)
1

j!

(
1− 1

Wθ(a)

)l−j ( e−θaW (a)

Wθ(a)2P (Z0(a) = 0)

)j
Hj

(
1, 1− e−θaW (a)

Wθ(a)

)
θda

+

∫ t

0
Pa (Z0(a) = k)

l∑
j=1

(
l − 1

j − 1

)
1

j!

(
1− 1

Wθ(a)

)l−j ( e−θaW (a)

Wθ(a)2P (Z0(a) = 0)

)j
Gj

(
1− e−θaW (a)

Wθ(a)

)
θda,

where
Hj(u, v) := vj∂jv∂uuF (u, v)− vj+1∂j+1

v

{
vE
[
vZ

(t)
0 (a)

]}
,

and
Gj := vj−1∂jvEt

[
vZ

(t)
0 (a)

]
.

Proof. Let A1 and A2 denote the two terms of the r.h.s. of (6.7). We detail the computations of
A1. The case A2 is similar.

A1 = Et
∫ t

0

(
N

(t)
t−a − Z

(t)
0 (a)

)
Pa (Z0(a) = k)

×
Z

(t)
0 (a)∧l∑
j=1

(
Z

(t)
0 (a)

j

) ∑
`1+···+`j=`

`j>0

j∏
i=1

Pa (Z0(a) = `i)Pa (Z0(a) = 0)Z0(a)−j θda.

Since, from (6.2),

j∏
i=1

Pa (Z0(a) = `i) =

j∏
i=1

e−θaW (a)

Wθ(a)2

(
1− 1

Wθ(a)

)`i−1

=

(
e−θaW (a)

Wθ(a)2

)j (
1− 1

Wθ(a)

)l−j
,
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we get

A1 =Et
∫ t

0

(
N

(t)
t−a − Z

(t)
0 (a)

)
Pa (Z0(a) = k)

Z
(t)
0 (a)∧l∑
j=1

(
Z

(t)
0 (a)

j

)(
l − 1

j − 1

)

×
(
e−θaW (a)

Wθ(a)2

)j (
1− 1

Wθ(a)

)l−j
Pa (Z0(a) = 0)Z0(a)−j θda

=

∫ t

0
Pa (Z0(a) = k)

l∑
j=1

(
l − 1

j − 1

)
1

j!

(
1− 1

Wθ(a)

)l−j ( e−θaW (a)

Wθ(a)2Pa (Z0(a) = 0)

)j
× Et

[(
N

(t)
t−a − Z

(t)
0 (a)

)(
Z

(t)
0 (a)

)
(j)

Pa (Z0(a) = 0)Z
(t)
0 (a)

]
θda

Finally, if we define, for all integer j,

Hj(u, v) := vj∂jv∂uuF (u, v)− vj+1∂j+1
v

{
vE
[
vZ

(t)
0 (a)

]}
,

and

Gj := vj−1∂jvEt
[
vZ

(t)
0 (a)

]
,

we get

Et
[
A(k, t)1Z0(t)=`

]
=

∫ t

0
Pa (Z0(a) = k)

l∑
j=1

(
l − 1

j − 1

)
1

j!

(
1− 1

Wθ(a)

)l−j ( e−θaW (a)

Wθ(a)2P (Z0(a) = 0)

)j
Hj

(
1, 1− e−θaW (a)

Wθ(a)

)
θda

+

∫ t

0
Pa (Z0(a) = k)

l∑
j=1

(
l − 1

j − 1

)
1

j!

(
1− 1

Wθ(a)

)l−j ( e−θaW (a)

Wθ(a)2P (Z0(a) = 0)

)j
Gj

(
1− e−θaW (a)

Wθ(a)

)
θda.

These ideas also lead to the following formula, which is proved similarly.

Corollary 6.3.6. Let n1, . . . , nN and k1, . . . , kN be positive integers. Let ` be a positive integer.
We have
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Et

[
N∏
i=1

(
A(ki, t)

ni

)
1Z0(t)=`

]

=

N∑
κ=1

Et
∫

[0,t]

(
N

(t)
t−a − Z

(t)
0 (a)

) ∑
n1:N
1 +···+n1:N

N
(t)
t−a

=n1:N−δ1:N,l

`2+···+`
Z
(t)
0 (a)+1

=`

N
(t)
t−a∏

m=Z
(t)
0 (a)+2

Ea

[
N∏
i=1

(
A(ki, a)

nim

)]

×
Z

(t)
0 (a)+1∏
m=2

Ea

[
N∏
i=1

(
A(ki, a)

nim

)
1Z0(a)=`m

]
Ea

[
N∏
i=1

(
A(ki, a)

ni1

)
1Z0(a)=kκ

]
θda

+

N∑
κ=1

Et
∫

[0,t]
Z

(t)
0 (a)

∑
n1:N
1 +···+n1:N

N
(t)
t−a

=n1:N−δ1:N,l

`2+···+`
Z
(t)
0 (a)+1

=`

N
(t)
t−a∏

m=Z
(t)
0 (a)+1

Ea

[
N∏
i=1

(
A(ki, a)

nim

)]

×
Z

(t)
0 (a)∏
m=2

Ea

[
N∏
i=1

(
A(ki, a)

nim

)
1Z0(a)=`m2

]
Ea

[
N∏
i=1

(
A(ki, a)

ni1

)
1Z0(a)=kκ

]
θda.

Proof. According to Section 6.3.2, we have the following integral representation.

N∏
i=1

(
A(ki, t)

ni

)
=

N∑
l=1

∫
[0,t]×N

1
Zj0(a)=kl

∑
n1:N
1 +···+n1:N

N
(t)
t−a

=n1:N−δ1:N,l

N
(t)
t−a∏

m=1

N∏
i=1

(
A(ki, a)

njm

)
N (da, dj).

Now, using this equation in conjunction with the decomposition of 1Z0(t)=` used in Section 6.3.3,
we have

N∏
i=1

(
A(ki, t)

ni

)
1Z0(t)=` =

N∑
l=1

∫
[0,t]×N

1
Zj0(a)=kl

∑
σ∈I

1σ is ancestral

×
∑

n1:N
1 +···+n1:N

N
(t)
t−a

=n1:N−δ1:N,l

`1+···+`
Z
(t)
0 (a)−Bj

=`

N
(t)
t−a∏

m1=1

N∏
i=1

(
Am1(ki, a)

nim1

) Z
(t)
0 (a)−Bj∏
m2=1

1
Z
σm2
0 (a)=`m2

N (da, dj)(
Z

(t)
0 (a)−Bj

)
!
.

We refer the reader to the proof of Proposition 6.3.4 for the definitions of I,Bj , and the event
{σ is ancestral}. The definitions of A(m)(k, a) and Z(m)

0 (a) can be found in the beginning of this
section.
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Now, we take the expectation in the last equality. Thanks to the method used in the proof of
Proposition 6.3.4, we have

Et

[
N∏
i=1

(
A(ki, t)

ni

)
1Z0(t)=`

]

=
N∑
κ=1

Et

{∫
[0,t]×N

∑
σ∈I

1σ is ancestral
∑

n1:N
1 +···+n1:N

N
(t)
t−a

=n1:N−δ1:N,l

`1+···+`
Z
(t)
0 (a)−Bj

=`

N
(t)
t−a∏

m1=1
m1 6=σ,m1 6=i

Ea

[
N∏
i=1

(
Am1(ki, a)

nim1

)]

×
Z

(t)
0 (a)−Bj∏
m2=1

Ea

[
N∏
i=1

(
Aσm2 (ki, a)

niσm2

)
1
Z
σm2
0 (a)=`m2

]
Ea

[
N∏
i=1

(
Ai(kj , a)

nji

)
1
Zj0(a)=kκ

]
N (da, dj)(

Z
(t)
0 (a)−Bj

)
!

}
,

where m1 6= σ means that m1 /∈ σ
({

1, . . . , Z
(t)(a)
0 −Bj

})
. Now, following, as above, we get

Et

[
N∏
i=1

(
A(ki, t)

ni

)
1Z0(t)=`

]

=
N∑
κ=1

Et

{∫
[0,t]×N

∑
σ∈I

1σ is ancestral
∑

n1:N
1 +···+n1:N

N
(t)
t−a

=n1:N−δ1:N,l

`1+···+`
Z
(t)
0 (a)−Bj

=`

N
(t)
t−a∏

m1=Z
(t)
0 (a)−Bi+1

Ea

[
N∏
i=1

(
A(ki, a)

nim1

)]

×
Z

(t)
0 (a)−Bi+1∏
m2=2

Ea

[
N∏
i=1

(
A(ki, a)

nim2

)
1Z0(a)=`m2

]
Ea

[
N∏
i=1

(
A(k1, a)

n1
i

)
1Z0(a)=kκ

]
1Hi>t−a1j<Ntθda C(di)(

Z
(t)
0 (a)−Bj

)
!

}
.

Then, the sum with σ can be removed since there is no term depending on σ. Finally, integrating
with respect to C(di) leads to the result.

Together with Theorems 6.3.1 and 6.3.2 and using the joint law of N (t)
t−a and Z

(t)
0 (a) given in

(6.9), these formulas give explicit recursion to compute each factorial moment of the frequency
spectrum.

Remark 6.3.7. Although, these formulas are quite heavy, an important interest lies in the method
used to compute them. Indeed, this method should work to obtain the joint moments of A(k, t)

with any quantity which can be expressed, at any time a, as the sum of contributions of each
subtrees. For instance, since

Nt =

N
(t)
t−a∑
i=1

N i
a, ∀a ∈ [0, t],

where N i
a is the number of individuals of the i-th subtrees at time a, we are able to compute the

joint moments of Nt and (A(k, t))k≥1. For example, using the integral representation (6.4) of
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A(k, t) and following the proof of Theorem 6.3.3 , we have that

Et [A(k, t)Nt]

= Et
∫

[0,t]×N

N
(t)
t−a∑
j=1

N j
a1Z(i)

0 (a)=k
N (da, di)

=

∫
[0,t]

θEt
[
N

(t)
t−a

(
N

(t)
t−a − 1

)]
Ea [Na]Pa (Z0(a) = k) da+

∫
[0,t]

θEt
[
N

(t)
t−a

]
Ea
[
Na1Z0(a)=k

]
θda

=

∫
[0,t]

W (t)2

(
1− W (a)

W (t)

)
θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1

da+W (t)

∫
[0,t]

θ
Ea
[
Na1Z0(a)=k

]
W (a)

θda.

(6.10)

6.3.4 Application to the computation of the covariances of the frequency
spectrum

A quantity of particular interest is the limit covariance between two terms of the frequency
spectrum.

Proposition 6.3.8. Suppose that α > 0. Let k and l two positive integers, then,

Covt (A (k, t) , A (l, t)) = W (t)2ckcl + o
(
W (t)2

)
,

where

ck :=

∫ ∞
0

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)k−1

ds, ∀k ∈ N\{0}.

Proof. In order to show how quantities in Theorem 6.3.2 can be manipulated, we detail the proof.
Using Theorem 6.3.2, we obtain

Et [A(k, t)A(l, t)] =

∫ t

0
θEt

[
N

(t)
t−a

(
N

(t)
t−a − 1

)]
(Pa (Z0(a) = k)Ea [A(l, a)] + Pa (Z0(a) = `)Ea [A(k, a)]) da

+

∫ t

0
θEtN

(t)
t−a
(
Ea
[
A(l, a)1Z0(a)=k

]
+ Ea

[
A(k, a)1Z0(a)=`

])
da.

Recalling, from Proposition 4.3.1, that N (t)
t−a is geometrically distributed with parameter W (a)

W (t)

under Pt,

Et
[
N

(t)
t−a

]
=
W (t)

W (a)
and Et

[
N

(t)
t−a

(
N

(t)
t−a − 1

)]
= 2

W (t)2

W (a)2

(
1− W (a)

W (t)

)
.

Since
E
[
A(k, a)1Z0(a)=`

]
≤ E [A(k, a)] = O(W (a)),

it follows by Lemma 3.3.3 and Theorem 6.3.3, that

Et [A(k, t)A(l, t)] = 2

∫ t

0
θ
W (t)2

W (a)2

{
Pa(Z0(a) = `)Ea [A(k, a)] + Pa(Z0(a) = k)Ea [A(l, a)]

}
da+O (tW (t)) .
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By Theorem 6.3.3 and (6.2), the r.h.s. is equal to

2W (t)2

∫ t

0

θe−θa

Wθ(a)2

((
1− 1

Wθ(a)

)k−1 ∫ a

0

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)l−1

ds

+

(
1− 1

Wθ(a)

)l−1 ∫ a

0

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)k−1

ds

)
da+O (tW (t))

=2W (t)2

∫ t

0

θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1

da

∫ t

0

θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)l−1

da+O (tW (t)) .

The proof ends thanks to Remark 6.2.3.

6.3.5 Asymptotic behaviour of the moments of the frequency spectrum

In this part, we study the long time behaviour of the moments of the frequency spectrum. From
this point and until the end of this chapter, we suppose that the tree is supercritical, that is
α > 0.

Proposition 6.3.9. For any positive multi-integers n and k in NN ,

Et

[
N∏
i=1

(
A (ki, t)

ni

)]
=
W (t)|n||n|!∏N

i=1 ni!

N∏
i=1

cniki +O
(
tW (t)|n|−1

)
, (6.11)

where the cki’s are as defined in Proposition 6.3.8.

Proof. Step 1 : Preliminaries and ideas.
The proposition is proved by induction.
Using the symmetry of the formula provided by Theorem 6.3.2, we may restrict to the study of
the term l = 1 in (6.3). Hence, we want to study

Et
∫ t

0
θN

(t)
t−a

∑
n1:N
1 +···+n1:N

N
(t)
t−a

=n1:N−δ1:N,1

Ea

[
N∏
i=1

(
A(ki, t)

ni1

)
1Z0(a)=k1

]N(t)
t−a−1∏
m=2

Ea

[
N∏
i=1

(
A(ki, a)

nim

)]
da.

(6.12)
We recall that the terms of the multi-sum in the above formula correspond to the ways of
allocating the mutations in the subtrees. The analysis relies on the fact that the growth of each
term depends on the repartition of the mutations. In particular, the main term correspond to
the case where all mutations are allocated to different subtrees.
To capitalize on this fact, let M

N
(t)
t−a

the subset of M(Nt
t−a−1)×N (N) (the space of matrices of

size
(
N

(t)
t−a − 1

)
×N with coefficients in N), such that each n inM

N
(t)
t−a

satisfies the relation

N
(t)
t−a−1∑
m=1

nim = ni − δi,1, ∀i ∈ N. (6.13)
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The notations nm and ni refer to the multi-integers
(
n1
m, . . . , n

N
m

)
and

(
ni1, . . . , n

i

N
(t)
t−a

)
respec-

tively. To simplify the analysis, we highlight three cases of interest :

C1 :=

{
n ∈M

N
(t)
t−a
| ∀i, ni1 = 0, ∀i ≥ 1,∀m ≥ 2, nim ≤ 1, and

(
nim = 1⇒ nkm = 0,∀k 6= i

)}
.

This set corresponds to the case where all the mutations are taken in different subtrees and are
not taken in the tree where a mutation just occurs. In fact, this corresponds to the dominant term
of (6.12) because as N (t)

t−a tends to be large, the mutations tend to occur in different subtrees.
Let also

C2 :=

{
n ∈M

N
(t)
t−a
| ∀i, ni1 = 0

}
\C1.

Finally, let

C3 :=

{
n ∈M

N
(t)
t−a
|
N∑
i=1

ni1 > 0

}
.

Step 2 : Uniform bound on the number of tuple of mutations in the subtrees.
Assuming that the relation of Lemma 6.3.9 is true for any multi-integer n? such that |n?| = |n|−1,
we have

N
(t)
t−a∏

m=1

Ea

[
N∏
i=1

(
A(ki, a)

nim

)]
=

N
(t)
t−a∏

m=1

(
W (a)|nm||nm|!∏N

i=1 n
i
m!

N∏
i=1

c
nim
ki

+O
(
aW (a)|nm|−1

))
. (6.14)

(6.15)

Since there are at most |n| − 1 multi-integers nm such that |nm| > 0 (because of the condition
(6.13)), we can assume without loss of generality, up to reordering the indices, that nim = 0, for
all m ≥ |n|, and so all the terms with m > |n| in the product of (6.14) are equal to one. Hence,

N
(t)
t−a−1∏
m=1

Ea

[
N∏
i=1

(
A(ki, a)

nim

)]
≤ CnW (a)|n|−1, (6.16)

for some constant Cn depending only on the choice of n inM|n|.
Moreover, sinceM|n| is finite, then

N
(t)
t−a∏

m=1

Ea

[
N∏
i=1

(
A(ki, a)

nim

)]
≤ CW (a)|n|−1. (6.17)

Step 3 : Analysis of C1.
For n ∈ C1, and in this case only, the product

N∏
i=1

(
A(ki, a)

nim

)
has only one term different from 1, and it follows from Theorem 6.3.3, that

N
(t)
t−a−1∏
m=1

E

[
N∏
i=1

(
A(ki, a)

nim

)]
= W (a)|n|−1

N∏
i=1

(∫ a

0

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)ki
ds

)ni−δi,1
.
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The corresponding contribution in (6.12) is

I1

:=

∫ t

0
θW (a)|n|−1Pa (Z0(t) = k1)

N∏
i=1

(∫ a

0

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)ki
ds

)ni−δi,1
Ea
[
N

(t)
t−aCard(C1)

]
da.

Now, Card(C1) is the number of way we can choose |n|−1 subtrees among the N (t)
t−a−1 possible

subtrees and choosing a way to allocate to each chosen subtree a mutation sizes k1, . . . , kN , i.e.

Card(C1) =

(
N

(t)
t−a − 1

|n| − 1

)
(|n| − 1)!∏N

i=1 (ni − δi,1)!
.

Finally,

I1 =

∫ t

0
θW (a)|n|−1Pa (Z0(t) = k1)

N∏
i=1

(∫ a

0

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)ki
ds

)ni−δi,1 Ea
[(
N

(t)
t−a

)
(|n|)

]
∏N
i=1 (ni − δi,1)!

da,

where (x)(|n|) is the falling factorial of order |n|. Since, N (t)
t−a is geometrically distributed under

Pt with parameter W (t)
W (a) , it follows that

I1 =
|n|!W (t)|n|∏N
i=1 (ni − δi,1)!

∫ t

0
θ
e−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k1−1 N∏
m=1

(∫ a

0

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)ki
ds

)ni−δi,1
da

+O
(
tW (t)|n|−1

)
Step 4 : Analysis of C2.
We denote

I2 := Et
∫ t

0
N

(t)
t−a

∑
n∈C2

Pa (Z0(a) = k1)

N
(t)
t−a−1∏
m=1

Ea

[
N∏
i=1

(
A(ki, a)

nim

)]
da. (6.18)

Now, since

Card(C2) = O
((

N
(t)
t−a

)|n|−2
)
,

we have using estimation (6.17),

I2 ≤
∫ t

0
N

(t)
t−a

∑
n∈C2

CW (a)|n|−1da

≤ C̃
∫ t

0

(
N

(t)
t−a

)|n|−1
W (a)|n|−1da,

for some positive real constant C̃. Using that N (t)
t−a is geometrically distributed with parameter

W (t)
W (a) , it follows that there exists a positive real number Ĉ such that

I2 ≤ Ĉ
∫ t

0

(
W (t)

W (a)

)|n|−1

W (a)|n|−1da.
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Which imply that,
I2 = O

(
tW (t)|n|−1

)
.

Step 5 : Analysis of C3.
In the case where there is a positive ni1 (C3 case), using that

Ea

[
N∏
i=1

(
A(ki, a)

ni1

)
1Z0(a)=kl

]
≤ Ea

[
N∏
i=1

(
A(ki, a)

ni1

)]
,

we have,

∫ t

0
N

(t)
t−a

∑
n∈C3

Ea

[
N∏
i=1

(
A(ki, a)

ni1

)
1Z0(a)=kl

]N(t)
t−a∏

m=2

Ea

[
N∏
i=1

(
A(ki, a)

nim

)]
da,

≤
∫ t

0
N

(t)
t−a

∑
n∈C3

Ea

[
N∏
i=1

(
A(ki, a)

ni1

)]N(t)
t−a∏

m=2

Ea

[
N∏
i=1

(
A(ki, a)

nim

)]
da,

which is very similar to the the other steps. This term is O
(
tW (t)|n|−1

)
because the condition∑

i n
i
1 > 0 reduces the number of terms in the multi-sum. Indeed,

Card(C3) =

n1:N−δ1:N,1∑
j1:N=0 s.t.

∑
i ji>0

∑
ni2+···+ni

N
(t)
t−a

=ni−δi,l−ji

1

=

n1:N−δ1:N,1∑
j1:N=0 s.t.

∑
i ji>0

N∏
i=1

∏N
i=1

(
N

(t)
t−a − 1 + ni − δi,1 − ji

)
(ni−δi,1−ji)∏N

i=1 (ni − δi,1 − ji)!

≤C
n1:N−δ1:N,1∑

j1:N=0 s.t.
∑
i ji>0

(
N

(t)
t−a

)|n|−1−
∑
ji
.

Then, the expectation of the last quantity gives a polynomial of degree |n| − 1 in W (t)
W (a) . Using

the same study as I2 shows that this part is of order O
(
tW (t)|n|−1

)
.

Finally, summing over l ends the proof since the leading term is

N∑
l=1

|n|!W (t)|n|∏N
i=1 (ni − δi,1)!

∫ t

0
θ
e−θa

Wθ(a)2

(
1− 1

Wθ(a)

)kl−1 N∏
m=1

(∫ a

0

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)km
ds

)nm−δm,1
da,

while the rest is a finite sum of O
(
tW (t)|n|−1

)
-terms. By Lemma 6.2.1,

ck =

∫ t

0

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)k−1

ds+O
(
e−γt

)
,

where γ is equal to θ (resp. 2α− θ) in the clonal critical and subcritical cases (resp. supercritical
case). Hence, we deduce (6.11).
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Remark 6.3.10. Taking the behavior of P (Z0(a) = k) into account and using the Cauchy-
Schwartz inequality for E

[
A(k, a)1Z0(a)=`

]
one could actually prove that the error term in (6.11)

is of order O
(
W (t)|n|−1

)
in the clonal sub-critical and super-critical cases, and O

(
log t W (t)|n|−1

)
in the clonal critical case.

Corollary 6.3.11. We have, conditionally on the nonextinction,

lim
t→∞

(
A(k, t)

W (t)

)
k≥1

= E (ck)k≥1 in distribution,

where E is an exponential random variable with parameter 1.

Proof. From Lemma 6.3.9, we have

lim
t→∞

W (t)−|n| Et

[
K∏
i=1

A (ki, t)
ni

]
= |n|!

N∏
i=1

cniki .

Since the finite dimensional law of a process with form E (ck)k≥1 is fully determined by its
moments, it follows from the multidimensional moment problem (see [57]) and from the fact the
events {Nt > 0} increase to the event of nonextinction, that we have the claimed convergence.

6.4 Limit theorems for the frequency spectrum

The purpose of this section is to state the same kind of limit theorem as those obtained for Nt

in Chapter 5. We begin by the law of large number. This result was proved in [13].

Theorem 6.4.1. We have,

e−αt (A (k, t))k≥1 −→t→∞
E

ψ′(α)
(ck)k≥1 , a.s. and in L2,

where E is the same random variable as in Theorem 5.2.1, and ck was defined in Proposition
6.3.8.

Now, we can state central limit theorems related to this convergence. It can take several forms
by before we recall that the Laplace distribution with zero mean and covariance matrix K is the
probability distribution whose characteristic function is given, for all λ ∈ Rn by

1

1 + 1
2λ
′Kλ

We denote this law by L (µ,K). We also recall that, if G is a Gaussian random vector with
zero mean and covariance matrix K and E is an exponential random variable with parameter 1

independent of G, then
√
EG is Laplace L (µ,K).

We can now state the first CLT.

Theorem 6.4.2. Suppose that θ > α and
∫

[0,∞) e
(θ−α)vPV (dv) > 1 . Then, we have, under P∞,

lim
t→∞

(
e−α

t
2
(
ψ′(α)A(k, t)− eαtckE

))
k∈N

d
= L (0,K) ,

where K is some covariance matrix and the constants ck are defined in Proposition 6.3.8.
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The proof of this result can be found in Section 6.6.

Remark 6.4.3. We are not able to compute explicitly the covariance matrix K in the general
case due to our method of demonstration. However, all our other results give explicit formulas.
In particular, the case where PV is exponential is given by the next theorem. The Yule case is also
covered in the following theorem for d = 0 although it does not satisfy the hypothesis of Theorem
6.4.2.

Theorem 6.4.4. Suppose that V is exponentially distributed with parameter d ∈ [0, b). In this
case, α = b− d. We still suppose that α < θ, then

lim
t→∞

(
e−α

t
2
(
ψ′(α)A(k, t)− eαtckE

))
k∈N

d
= L (0,K) , w.r.t. P∞,

where K is given by

Kl,k = Ml,k + ckcl
α

b

(
1− 6

d

α

)
,

and

Ml,k =

2ψ′(α)

∫ ∞
0

θe−θa

Wθ(a)2

((
1− 1

Wθ(a)

)l−1

(Ea [A(k, a)]− ckW (a)) +

(
1− 1

Wθ(a)

)k−1

(Ea [A(l, a)]− clW (a))

)
da

− ψ′(α)

∫ ∞
0

θW (a)−1Ea
[
(A(k, a)− ckNa)1Z0(a)=l + (A(l, a)− clNa)1Z0(a)=k

]
, (6.19)

where W , Wθ, ψ′(α) are defined in the Section 6.2.

The proof of this result can be found in Section 6.8. Note that an explicit formula for EtA(k, t) is
given by 6.3.3. Explicit formulas for Et

[
A(k, t)1Z0(t)=l

]
are given by 6.3.5, and Et

[
Na1Z0(t)=k

]
by 6.10.

Remark 6.4.5. The condition on V in Theorem 6.4.2 is required only to ensure controls of
the moments of the considered quantities. However, although the Yule case does not satisfy this
condition (V =∞ p.s.) it is included in this last theorem (d=0). This suggests that the condition
on V may not be needed.

The next theorem concerns the error between A(k, t) and ckNt. This case is easier to treat and
we have an explicit expression of the covariance matrix of the limit.

Theorem 6.4.6. Suppose that θ > α, then

lim
t→∞

ψ′(α)
(
e−α

t
2 (A(k, t)− ckNt)

)
k∈N

d
= L (0,M) , w.r.t. P∞,

where M is defined in relation (6.19).

The proof of this result can be found in Section 6.7.
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6.5 Proof of Theorem 6.4.1

Proof. Using (6.10) and the bound E
[
Na1Z0(a)=k

]
≤ E [Na], it follows that

Et
[
(ckNt −A(k, t))2

]
= 2W (t)2

(∫ ∞
t

θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1

da

)2

+O (W (t)) .

Finally, it follows from Lemma 6.2.1 that

Et
[
e−2αt (ckNt −A(k, t))2

]
∼

t→∞
Ce−γt,

where γ is equal to θ (resp. 2α−θ) in the clonal critical and sub-critical cases (resp. supercritical
case).
From this point we follow the proof of Theorem 5.2.1, except that the Yule process used in (5.9)
must be replaced by another Yule process corresponding to the a binary fission every time an
individual experiences a birth or a mutation, i.e. the new Yule process has parameter b + θ.
Indeed, the process A(k, t) can make a positive jump only in two cases : the first corresponding
to the birth of an individual in a family of size k − 1, the other one correspond to a mutation
occurring on an individual in a family of size k + 1.

6.6 Proof of Theorem 6.4.2

The proof of this theorem follows the same structure as Section 5.4. We refer the reader to this
section for the details. It begins by some estimate on moments.

6.6.1 Preliminary moments estimates

We start by computing the moment in the case of a standard splitting tree.

Case V∅
L
= V

One of the main difficulties to extend the preceding proof to the frequency spectrum is to get
estimates on

E
[(
ψ′(α)A(k, t)− eαtckE

)n]
, for n = 2 or 3.

We first study the renewal equation satisfied by EA(k, t)E similarly as in Lemma 5.4.4.

Lemma 6.6.1 (Joint moment of E and A(k, t)). E [A(k, t)E ] is the unique solution bounded on
finite intervals of the renewal equation,

f(t) =

∫
R+

f(t− u)be−αuP (V > u) du

+ αE [A(k, .)] ? b

(∫
R+

e−αvP (V > ., V > v) dv

)
(t)

+ αE [EXt] , (6.20)

with Xt the number of families of size k alive at time t whose original mutation has taken place
during the lifetime of the ancestor individual.
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Proof. We recall that A(k, t) is the number of non-ancestral families of size k at time t. Similarly
as for Nt, A(k, t) can be obtained as the sum of the contributions of all the trees grafted on the
lifetime of the ancestor individual in addition to the mutations which take place on the ancestral
branch, that is,

A(k, t) =

∫
[0,t]

A(k, t− u, ξu)1V∅>uξ(du) +Xt,

where (A(k, t, i), t ∈ R+)i≥1 is a family of independent processes having the same law as A(k, t).
Now, taking the product A(k, t)Ns and using the same arguments as in the proof of lemma 5.4.4
to take the limit in s leads to the result. In particular, the last term is obtained using that

lim
s→∞

E
[
Xt

Ns

W (s)

]
= E [XtE ] .

The result of Lemma 6.6.1 is quite disappointing since the presence of the mysterious process Xt

prevents any explicit resolution of equation (6.20). However, one may note that equation (6.20) is
quite similar to equation (5.16) driving ENtE , so if the contribution of Xt in the renewal structure
of the process is small enough, one can expect the same asymptotic behaviour for EA(k, t)E as
for ENtE . Moreover, we clearly have on Xt the following a.s. estimate,

Xt ≤
∫

[0,t]
1
Z

(u)
0 (t−u)>0

1V >uξ(du), (6.21)

where Z(i)
0 denote for the ancestral families on the ith trees grafted on the ancestral branch.

Hence, if we take θ > α and we suppose V <∞ a.s., one can expect that Xt decreases very fast.
These are the ideas the following Lemma is based on. Moreover, as it is seen in the proof of the
following lemma, the hypothesis V <∞ a.s. can be weakened.

Lemma 6.6.2. Under the hypothesis of Theorem 6.4.2, for all k ≥ 1, there exists a constant
γk ∈ R such that,

lim
t→∞

ENtEck − EA(k, t)E = γk. (6.22)

Proof. Combining equations (5.16) and (6.20), we get that,

ENtEck − EA(k, t)E =

∫
R+

(ENt−uEck − EA(k, t− u)E) be−αuP (V > u) du

+ αb (ckEN. − E [A(k, .)]) ?

(∫
R+

e−αvP (V > ., V > v) dv

)
(t)︸ ︷︷ ︸

:=ξ
(k)
1 (t)

+ ckP (V > t)− αE [XtE ]︸ ︷︷ ︸
:=ξ

(k)
2 (t)

,

which is also a renewal equation. On one hand, using equations (3.4) and Theorem 6.3.3 imply
that

Et [ckNt −A(k, t)] = W (t)

∫ ∞
t

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)k−1

ds,
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which leads using Lemma 6.2.1, to

ξ1(t) =α

∫
R+

(ckENt−u − E [A(k, t− u)])

∫
R+

e−αvP (V > u, V > v) dvdu

≤ C
∫

[0,t]
e(α−θ)t−uP (V > u) du

∫
[0,∞)

e−αudu

≤ C
α
e−(θ−α)t

∫ t

0
e(θ−α)uP (V > u) du, (6.23)

for some positive real constant C.
The derivative of the r.h.s. of (6.23) is given by

C
α
e−(θ−α)t

(
e(θ−α)tP (V > t)− (α− θ)

∫ t

0
e(θ−α)uP (V > u) du

)
, t > 0, (6.24)

which is equal to
C
α
e−(θ−α)t

(
1−

∫
[0,t]

e(θ−α)sPV (ds)

)
, t > 0,

using Stieljes integration by parts. Now, since,∫
[0,∞)

e(θ−α)sPV (ds) > 1,

this shows that the right hand side of (6.23) is decreasing for t large enough. Moreover, it is
straightforward to shows that the r.h.s. of (6.23) is also integrable. This implies that ξ(k)

1 is DRI
(see Section 2.7 for the definition of DRI) from Lemma 2.7.1. On the other hand, it follows from
(6.21) that

XtE ≤ E
∫

[0,t]
1
Z

(u)
0 (t−u)>0

1V >tξ(du). (6.25)

Then, we obtain using Cauchy-Schwarz inequality, that

E [XtE ] ≤
√

2α

b
E

(∫
[0,t]

1
Z

(u)
0 (t−u)>0

1V >tξ(du)

)2
1/2

.

It follows that we need to investigate the behavior of

E

(∫
(0,t)

1
Z

(u)
0 (t−u)>0

1V >tξ(du)

)2
 ,

which is equal to∫ t

0
P (Z0(t− u) > 0)P (V > t) bdu+

∫
[0,t]2

P (Z0(t− v) > 0)P (Z0(t− u) > 0)P (V > u, V > v) b2du dv,

using Lemma 5.4.1. Then, since, from (6.2) and Lemma 6.2.1,

Pt−u (Z0(t− u) > 0) =
e−θ(t−u)W (t− u)

Wθ(t− u)
= O(e−(θ−α)(t−u)),
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it follows, using that the right hand side of (6.23) is DRI and Lemma 2.7.1, that ξ(k)
2 is DRI.

Finally, it comes from Theorem 2.7.2, that

lim
t→∞

ENtEck − EA(k, t)E =
α

ψ′(α)

∫
R+

ξ
(k)
1 (s) + ξ

(k)
2 (s)ds. (6.26)

Using the preceding lemma, we can now get the quadratic error in the convergence of the fre-
quency spectrum.

Lemma 6.6.3 (Quadratic error for the convergence of A(k, t).). Let k and l two positive integers.
Then under the hypothesis of Theorem 6.4.2, there exists a family of real numbers (ak,l)l,k≥1 such
that,

lim
t→∞

e−αtE
[(
ψ′(α)A(k, t)− eαtEck

) (
ψ′(α)A(l, t)− eαtEcl

)]
=
α

b
ak,l,

where the sequence (ck)k≥1 is defined in Proposition 6.3.8.

Proof. Now, noting

ck(t) :=

∫ t

0

θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1

da, (6.27)

we have, from the proof of Proposition 6.3.8 and Lemma 4.1.1,

ψ′(α)2Et [A(k, t)A(l, t)] = 2e2αtck(t)cl(t) + eαt
(

4ψ′(α)eαtF (t)ck(t)cl(t) +
R

ψ′(α)

)
+O (1) ,

(6.28)
with

R :=− ψ′(α)

∫ ∞
0

2θ
e−θaW (a)

Wθ(a)2

(
1− 1

Wθ(a)

)l−1 ∫ a

0

e−θs

Wθ(s)2

(
1− 1

Wθ(a)

)k−1

dsda

− ψ′(α)

∫ ∞
0

2θ
e−θaW (a)

Wθ(a)2

(
1− 1

Wθ(a)

)k−1 ∫ a

0

e−θs

Wθ(s)2

(
1− 1

Wθ(a)

)l−1

dsda

+ ψ′(α)

∫ ∞
0

θW (a)−1
(
Et
[
A(k, t)1Z0(a)=l

]
+ Et

[
A(l, t)1Z0(a)=k

])
da,

and F , µ are defined in Lemma 4.1.1. Now, using (5.20), we have

EtE2 − 2 = −2µψ′(α)e−αt + o(e−αt),

which leads to

Et
[(
e−αtψ′(α)A(k, t)− Eck

) (
e−αtψ′(α)A(l, t)− Ecl

)]
=Et

[
e−2αtψ′(α)2A(k, t)A(l, t)

]
− clEt

[
e−αtψ′(α)A(k, t)E

]
− ckEt

[
e−αtψ′(α)A(l, t)E

]
+ 2ckcl − 2ckclµψ

′(α)e−αt + o(e−αt),

=2 (ck(t)− ck) (cl(t)− cl)− 4µψ′(α)ckcle
−αt +Re−αt

−
(
2ck(t)cl + 2cl(t)ck − 2ckclψ

′(α)e−αtEtNtE
)

+ ψ′(α)cle
−αtEt [(ckNt −A(k, t)) E ] + ψ′(α)cke

−αtEt [(clNt −A(l, t)) E ] + o(e−αt),
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Since, by Lemma 6.2.1
ck(t) = ck +O(e−θt) = ck + o(e−αt),

it follows, combining (6.26), (5.21), and Lemma 6.6.2, that

eαtEt
[(
e−αtψ′(α)A(k, t)− Eck

) (
e−αtψ′(α)A(l, t)− Ecl

)]
=ψ′(α) (ckγl + clγk) + ckcl

(
2eαt − 2ψ′(α)EtNtE

)
+R− 4µψ′(α)ckcl + o(1)

=ψ′(α) (ckγl + clγk) + ckcl

(
1

ψ′(α)
+ 3µ

)
+R− 4µψ′(α)ckcl + o(1).

The result follows readily from the fact that P (Nt > 0) ∼ α
b .

Lemma 6.6.4 (Boundedness of the third moment). Let k1, k2, k3 three positive integers, then

E

[
3∏
i=1

∣∣∣e−α2 t (ψ′(α)A(ki, t)− eαtEcki
)∣∣∣] = O (1) .

Proof. We have,

E

[∣∣∣∣∣
3∏
i=1

(
ψ′(α)A(ki, t)− eαtEcki

)
e
α
2
t

∣∣∣∣∣
]
≤

3∏
i=1

E

∣∣∣∣∣
(
ψ′(α)A(ki, t)− eαtEcki

)
e
α
2
t

∣∣∣∣∣
3
 1

3

.

Hence, we only have to prove the Lemma for k1 = k2 = k3 = k. Hence,

E

∣∣∣∣∣
(
ψ′(α)A(k, t)− eαtEck

)
e
α
2
t

∣∣∣∣∣
3
 ≤ 8E

[∣∣∣∣ψ′(α)A(k, t)− ckNt

e
α
2
t

∣∣∣∣3
]

+ 8ckE

[∣∣∣∣ψ′(α)Nt −N∞t
e
α
2
t

∣∣∣∣3
]

+ 8ckE

[∣∣∣∣N∞t − eαtEe
α
2
t

∣∣∣∣3
]
.

The last two terms have been treated in the proof of Lemma 5.4.7, and the boundedness of

E

[∣∣∣∣ψ′(α)A(k, t)− ckNt

e
α
2
t

∣∣∣∣3
]
,

follows from the following Lemma 6.6.5 and Hölder’s inequality.

Lemma 6.6.5. For all k ≥ 1,

E

[(
A(k, t)− ckNt

e−
α
2
t

)4
]
,

is bounded.

Due to technicality, the proof of this lemma is postponed to the end of this chapter.
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Arbitrary initial distribution case

The following Lemmas are the counter part of Lemmas 5.4.8, 5.4.9, and 5.4.10. They play the
same role in the proof of Theorem 6.4.2. In the sequel, we denote by (A(k, t,Ξ))k≥1, the frequency
spectrum of the splitting tree where the lifetime of the ancestral individual is Ξ, in the same
manner as for Nt (Ξ) in the previous section.

Lemma 6.6.6 (L2 convergence in the general case). Consider the general frequency spectrum
(A(k, t,Ξ))k≥1, then, for all k, ψ′(α)e−αtA(k, t,Ξ) converge to E (Ξ) (see 5.24) in L2 as t goes
to infinity and

lim
t→∞

e−αtE
[(
ψ′(α)A(k, t,Ξ)− eαtE(Ξ)ck

) (
ψ′(α)A(l, t,Ξ)− eαtE(Ξ)ck

)]
=
α

b
ak,l

∫
R+

e−αuP (Ξ > u) bdu,

where the convergence is uniform w.r.t. the random variable Ξ. In the case where Ξ is distributed
as O(βt)

2 , for 0 < β < 1
2 (see section 5.4.2), we get

lim
t→∞

e−αtE
[(
ψ′(α)A(k, t, O

(βt)
2 )− eαtE(O

(βt)
2 )ck

)(
ψ′(α)A(l, t, Oβt2 )− eαtE(O

(βt)
2 )ck

)]
= ψ′(α)ak,l.

Lemma 6.6.7 (First moment). The first moments are asymptotically bounded, that is, for all
k ≥ 1,

E
(
ψ′(α)A(k, t)(Ξ)− eαtckE(Ξ)

)
≤ O(1),

uniformly with respect to the random variable Ξ.

Lemma 6.6.8 (Boundedness in the general case.). Let k1, k2, k3 three positive integers, then

E

[∣∣∣∣∣
3∏
i=1

(
ψ′(α)A(ki, t)− eαtEcki

)
e
α
2
t

∣∣∣∣∣
]

= O (1) ,

uniformly with respect to the random variable Ξ.

We do not detail the proofs of these results since they are direct adaptations of the proofs of
Lemmas 5.4.8, 5.4.9 and 5.4.10.

6.6.2 Proof of the theorem

The following result is based on the fact that, in the clonal sub-critical case, the lifetime of a
family is expected to be small. It follows that, in the decomposition of Figure 5.2, one can expect
that all the family of size k live in different subtrees as soon as t >> u. This is the point of the
following lemma.

Lemma 6.6.9. Suppose that α < θ. If we denote by Γu,t the event,

Γu,t = {"there is no family in the population at time t which is older than u"} ,

then, for all β in (0, 1− α
θ ), we have

lim
t→∞

Pβt (Γβt,t) = 1.
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Proof. The proof of this Lemma, as the calculation of the moments of A(k, t) relies on the
representation of the genealogy of the living population at time t as a coalescent point process
(see Section 3.4). Moreover, we denote by Ñ (t)

u the number of living individuals at time u who
have alive descent at time t. According to Proposition 4.3.1, under Pt, Ñ

(t)
u is geometrically

distributed with parameter W (t−u)
W (t) .

Now, 1Γu,t can be rewritten as

1Γu,t =

Ñ
(t)
u∏
i=1

1{Zi0(t−u)=0},

where Zi0(t − u) denotes the number of individuals alive at time t descending from the ith
individual alive at time u and carrying its type (the clonal type of the sub-CPP). Moreover,
using again Proposition 4.3.1, we know that that under Pt, the family Z

(i)
0 (t − u) is an i.i.d.

family of random variables distributed as Z0(t − u) under Pt−u, and Ñ
(t)
u is independent of

Z
(i)
0 (t− u) (still under Pt).

Then,

Pt (Γt,u) = Et
[
Pt−u (Z0(t− u) = 0)Ñ

(t)
u

]
=

Pt−u (Z0(t− u) = 0) W (t−u)
W (t)

1− Pt−u (Z0(t− u) = 0)
(

1− W (t−u)
W (t)

) .
Using (6.2), some calculus leads to,

Pt (Γt,u) = 1− 1

1 + Wθ(t−u)

e−θ(t−u)W (t)

(
1− e−θ(t−u)W (t−u)

Wθ(t−u)

) .
Now, since,

Pt (Γt,u) = Pu (Γt,u)
P (Nu > 0)

P (Nt > 0)
+

P (Γt,u, Nt = 0, Nu > 0)

P (Nt > 0)
,

taking u = βt, we obtain, using Lemma 6.2.1 and

P (Nt = 0, Nβt > 0) = P (Nβt > 0)− P (Nt > 0) →
t→∞

0,

the desired result.

Proof of Theorem 6.4.2. Fix 0 < u < t. Note that the event Γu,t of Lemma 6.6.9 can be rewritten
as

1Γu,t =

Nu∏
i=1

1{Zi0(t−u,Oi)=0}, (6.29)

where Zi0(t − u,Oi) denote the number of individuals alive at time t carrying the same type as
the ith alive individual at time u, that is the ancestral family of the splitting constructed from
the residual lifetime of the ith individual (see Section 5.4.2).
Let K be a multi-integer, we denote by L(K) (resp. A(K, t)) the random vector

(
Lk1 , . . . ,LkN

)
(resp. (A(k1, t), . . . , A(kN , t))) with

Lkit =
ψ′(α)A(k, t)− ckeαtE

e
α
2
t

.
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On the event Γu,t, we have a.s.,

A(kl, t) =

Nu∑
i=1

A(i)(kl, t− u,Oi), ∀l = 1, . . . , N,

where the family
(
A(i) (kl, t− u,Oi)

)
i≥1

stand for the frequency spectrum for each subtree, which
are independent from Lemma 5.3.3 (see also Section 5.4.2 and Figure 5.2). Hence, using Lemma
5.4.11,

Lklt =

Nu∑
i=1

ψ′(α)A(i)(kl, t− u,Oi)− eα(t−u)Ei(Oi)ckl
e
α
2
ue

α
2

(t−u)
.

By Lemma 5.3.3, that the family
(
Ai(kl, t− u,Oi)

)
2≤i≤Nu is i.i.d. under Pu.

In the sequel, we denote, for all l and i ≥ 1,

Ã(i) (kl, t− u,Oi) =
ψ′(α)A(i) (kl, t− u,Oi)− eα(t−u)Ei(Oi)ckl

e
α
2

(t−u)
.

As in the proof of Theorem 5.2.2, let

ϕK (ξ) := E
[
exp

(
i < Ã (K, t− u,O2) , ξ >

)
1Z2

0 (t−u,O2)=0

]
,

ϕ̃K (ξ) := E
[
exp

(
i < Ã (K, t− u,O1) , ξ >

)
1Z1

0 (t−u,O1)=0

]
.

From this point, following closely the proof of Theorem 5.2.2, with β in
(
0, 1

2 ∧ (1− α
θ )
)
, the only

difficulty is to handle the indicator function 1Z0(t−u,Oi)>0 in the Taylor development of ϕK . We
show how it can be done for one of the second order terms, and leave the rest of the details to
the reader.
It follows from Hölder’s inequality that

E

(ψ′(α)A(i) (kl, (1− β)t, Oi)− eα((1−β)t)Ei(Oi)ckl
e
α
2

((1−β)t)

)2

1Z2
0 ((1−β)t,O2)>0


≤ E

(ψ′(α)A(i) (kl, (1− β)t, Oi)− eα(1−β)tEi(Oi)ckl
e
α
2

(1−β)t

)3
 2

3

P
(
Z2

0 ((1− β)t, O2) > 0
) 1

3 , (6.30)

from which it follows, using Lemma 6.6.8, that the r.h.s. of this last inequality is

O
(
P
(
Z2

0 (t− u,O2) > 0
) 1

3

)
.

Now, using (6.29) and Lemma 6.6.9, it is easily seen that

lim
t→∞

P
(
Z2

0 ((1− β)t, O2) > 0
)

= 0.

Finally, using Lemma 6.6.3, we get

lim
t→∞

E

(ψ′(α)A(i) (kl, t− u,Oi)− eα(t−u)Ei(Oi)ckl
e
α
2

(t−u)

)2

1Z2
0 (t−u,O2)=0

 = ψ′(α)ak,k.
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These allow us to conclude that

lim
t→∞

Eβt
[
ei<L

(K)
t ,ξ>1Γt

]
=

1

1 +
∑N

i,j=1Mi,j ξiξj
,

where Ki,j is given by
Mi,j := ψ′(α)aKi,Kj ,

with K is the multi-integer (k1, . . . , kN ), and the al,ks are defined in Lemma 6.6.3.
To end the proof, note that,∣∣∣E∞ [ei<L(K)

t ,ξ>
]
− Eβt

[
ei<L

(K)
t ,ξ>1Γβt,t

]∣∣∣ ≤ E
[∣∣∣∣ 1NonEx

P (NonEx)
−
1Nβt>01Γβt,t

P (Nβt > 0)

∣∣∣∣] →t→∞ 0,

thanks to Lemma 6.6.9.

6.7 Proof of Theorem 6.4.6

Since all the ideas of the proof of this theorem have been developed in the last two section, we
do not detail all the proof. The only step which needs clarification is the computation of the
covariance matrix of the Laplace limit law M. According to the proof of Theorem 6.4.2, it is
given by

Mi,j := lim
t→∞

W (βt)

eαβt
E

[(
ψ′(α)A(i) (ki, (1− β)t, Oi)− ψ′(α)ckiN(1−β)t

e
α
2

((1−β)t)

)

×

(
ψ′(α)A(i) (kj , (1− β)t, Oi)− ckjN(1−β)t

e
α
2

((1−β)t)

)
1Z2

0 ((1−β)t,O2)>0

]
,

which is equal, thanks to (6.30) and an easy adaptation of Lemma 5.4.9, to

Mi,j = lim
t→∞

bψ′(α)

α

W (βt)

eαβt
eαtE

[(
e−αtA(ki, t)− ckie

−αtNt

) (
e−αtA(kj , t)− ckje

−αtNt

)]
.

So it remains to get the limit of

eαtE
[(
e−αtψ′(α)A(k, t)− ψ′(α)cke

−αtNt

) (
e−αtψ′(α)A(l, t)− cle−αtψ′(α)Nt

)]
,

as t goes to infinity. We recall that using the calculus made in the proof of Theorem 6.4.2, we
have

EtA(k, t)Nt

= 2W (t)2ck(t)− 2W (t)

∫
[0,t]

θPa (Z0(a) = k) da+W (t)

∫
[0,t]

θW (a)−1Ea
[
Na1Z0(a)=k

]
da.

(6.31)

Moreover, (6.28) entails

ψ′(α)2EtA(k, t)A(l, t) = 2W (t)2ck(t)cl(t) +RW (t) + o(e−αt),
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with

R :=− ψ′(α)

∫ ∞
0

2θW (a)−1Pa (Z0(a) = k)Ea [A(l, a)] da

+ ψ′(α)

∫ ∞
0

2θW (a)−1Pa (Z0(a) = l)Ea [A(k, a)] da

+ ψ′(α)

∫ ∞
0

θW (a)−1
(
Et
[
A(k, t)1Z0(a)=l

]
+ Et

[
A(l, t)1Z0(a)=k

])
da.

These identities allow us to obtain

Et [(A(k, t)− ckNt) (A(l, t)− clNt)] = 2W (t)2ck(t)cl(t) + e−αtR+ o(e−αt),

− 2clck(t)W (t)2 + 2clW (t)

∫
[0,t]

θPa (Z0(a) = k) da− clW (t)

∫
[0,t]

θW (a)−1Ea
[
Na1Z0(a)=k

]
da

− 2ckcl(t)W (t)2 + 2clW (t)

∫
[0,t]

θPa (Z0(a) = l) da− ckW (t)

∫
[0,t]

θW (a)−1Ea
[
Na1Z0(a)=l

]
da

+ ckclW (t)2

(
2− 1

W (t)

)
= 2W (t)2 (ck(t)− cl) (cl(t)− ck) + e−αt

R

ψ′(α)
+ o(e−αt),

+ 2clW (t)

∫
[0,t]

θPa (Z0(a) = k) da− clW (t)

∫
[0,t]

θW (a)−1Ea
[
Na1Z0(a)=k

]
da

+ 2clW (t)

∫
[0,t]

θPa (Z0(a) = l) da− ckW (t)

∫
[0,t]

θW (a)−1Ea
[
Na1Z0(a)=l

]
da

− ckclW (t).

Taking the limit as t goes to infinity leads to

Mk,l := lim
t→∞

ψ′(α)2e−αtEt [(A(k, t)− ckNt) (A(l, t)− clNt)] = R

+ 2ψ′(α)cl

∫
[0,∞]

θPa (Z0(a) = k) da− ψ′(α)cl

∫
[0,∞]

θW (a)−1Ea
[
Na1Z0(a)=k

]
da

+ 2ψ′(α)cl

∫
[0,∞]

θPa (Z0(a) = l) da− ψ′(α)ck

∫
[0,∞]

θW (a)−1Ea
[
Na1Z0(a)=l

]
da

− ψ′(α)ckcl. (6.32)

Finally, since P (Nt > 0) ∼ α
b ,

Mi,j = Mki,kj .

6.8 Markovian cases

Theorem 5.2.2 for the Markovian case is already well known (see [4]), however the allelic partition
for such model has not been studied. We can get more information on the unknown covariance
matrix K in the case where the life duration distribution is exponential. Our study also cover the
case PV = δ∞ (Yule case), although it does not fit the conditions required by the Theorem 6.4.2.
The reason comes from our method of calculation for E [A(k, t)E ]. Let us consider the filtration
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(Ft)t∈R+
, where Ft is the σ-field generated by the tree truncated above t and the restriction of

the mutation measure on [0, t).
Then Nt is Markovian with respect to Ft and for all positive real numbers t ≤ s,

E [A(k, t)Ns | Ft] = A(k, t)NtE [Ns−t] .

So that,

E [A(k, t)Ns] = E [A(k, t)Nt] (W (s− t)− PV ? W (s− t)) .

By making a renormalization by e−αs and taking the limit as s goes to infinity, we get,

E [A(k, t)E ] = ψ′(α)e−αtE [A(k, t)Nt] ,

since, in the Markovian case, it is known from [15] that

α

b
= ψ′(α).

Suppose first that d > 0. It follows that,

E
[(
ψ′(α)A(k, t)− eαtckE

) (
ψ′(α)A(l, t)− eαtclE

)]
= ψ′(α)2Et [A(k, t)A(l, t)]P (Nt > 0)

− ckψ′(α)2Et [A(l, t)Nt]P (Nt > 0)− clψ′(α)2Et [A(k, t)Nt]P (Nt > 0)

+ 2ψ′(α)e2αtckcl

By (5.20),
P (Nt > 0) = ψ′(α) + ψ′(α)2µe−αt + o(e−αt),

so

E
[(
ψ′(α)A(k, t)− eαtckE

) (
ψ′(α)A(l, t)− eαtclE

)]
= P (Nt > 0)ψ′(α)2Et [(A(k, t)− ckNt) (A(l, t)− clNt)]+ckclψ

′(α)
(
2e2αt − ψ′(α)Et

[
N2
t

]
P (Nt > 0)

)
.

Finally, since, using Proposition 4.1.1,

lim
t→∞

e−αt
(
2e2αt − ψ′(α)Et

[
N2
t

]
P (Nt > 0)

)
= ψ′(α) (1− 6µ) ,

it follows from (6.32),

lim
t→∞

E
[(
ψ′(α)A(k, t)− eαtckE

) (
ψ′(α)A(l, t)− eαtclE

)]
= ψ′(α)Mk,l + ckclψ

′(α)2 (1− 6µ) = ψ′(α)Mk,l + ckclψ
′(α)2

(
1− 6

d

α

)
,

using that µ = 1
bEV−1 . In the Yule case, an easy adaptation of the preceding proof leads to

lim
t→∞

E
[(
ψ′(α)A(k, t)− eαtckE

) (
ψ′(α)A(l, t)− eαtclE

)]
= Mk,l + ckcl.
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6.9 Postponed estimates

6.9.1 Formula for the fourth moment of the error

Lemma 6.9.1.

Et
[
(A(k, t)− ckNt)

4
]

= 4

∫
[0,t]

θ
W (t)

W (a)
Ea
[
1Z0(a)=k (A(k, a)− ckNa)

3
]
da

+ 48

∫
[0,t]

θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Ea
[
1Z0(a)=kNaA(k, a)

]
Ea [(ckNa −A(k, a))] da

+ 24

∫
[0,t]

θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Ea
[
1Z0(a)=kN

2
a

]
Ea [(A(k, a)− ckNa)] da

+ 24

∫
[0,t]

θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Ea
[
1Z0(a)=kA(k, a)2

]
Ea [(A(k, a)− ckNa)] da

+ 8

∫
[0,t]

θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Pa (Z0(a) = k)Ea

[
(A(k, a)− ckNa)

3
]
da

+ 48

∫
[0,t]

θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Ea
[
1Z0(a)=kA(k, a)

]
Ea
[
(A(k, a)− ckNa)

2
]
da

+ 72

∫
[0,t]

θ
W (t)3

W (a)3

(
1− W (a)

W (t)

)2

Ea
[
1Z0(a)=k (A(k, a)− ckNa)

]
Ea [(A(k, a)− ckNa)]

2 da

+ 72

∫
[0,t]

θ
W (t)3

W (a)3

(
1− W (a)

W (t)

)2

Pa (Z0(a) = k)Ea
[
(A(k, a)− ckNa)

2
]
Ea [A(k, a)−Nack] da

+ 96

∫
[0,t]

θ
W (t)4

W (a)4

(
1− W (a)

W (t)

)3

Pa (Z0(a) = k)Ea [(A(k, a)− ckNa)]
3 da+ c4

kEtN4
t

Proof. The proof of this Lemma lies on the calculation of the expectation of each term in the
development of

(A(k, t)− ckNt)
4 .

We begin by computing

Et
[
A(k, t)4

]
.
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Using the formulas for the moments, we have

A(k, t)4 =4

∫
[0,t]×N

1Zi0(a)=ki

N
(t)
t−a∑

u1:3=1

3∏
j=1
i6=j

A(uj)(k, a)N (da, di)

=4

∫
[0,t]×N

1Zi0(a)=kA
i(k, a)Ai(k, a)Ai(k, a)N (da, di)

+ 4

∫
[0,t]×N

1Zi0(a)=k

N
(t)
t−a∑

j1,j2,j3=1
j1 6=j2 6=j3 6=i

Aj1(k, a)Aj2(k, a)Aj3(k, a)N (da, di)

+ 12

∫
[0,t]×N

1Zi0(a)=kA
i(k, a)Ai(k, a)

N
(t)
t−a∑

j=1,j 6=i
Aj(k, a)N (da, di)

+ 4

∫
[0,t]×N

1Zi0(a)=k

N
(t)
t−a∑

j=1,j 6=i
Aj(k, a)3N (da, di)

+ 12

∫
[0,t]×N

1Zi0(a)=kA
i(k, a)

N
(t)
t−a∑

j1,j2=1,j1 6=j2 6=i
Aj1(k, a)Aj2(k, a)N (da, di)

+ 24

∫
[0,t]×N

1Zi0(a)=kA
i(k, a)

N
(t)
t−a∑

j1=1,j1 6=i
Aj1(k, a)Aj1(k, a)N (da, di)

+ 12

∫
[0,t]×N

1Zi0(a)=k

N
(t)
t−a∑

j1,j2=1,j1 6=j2 6=i
Aj1(k, a)2Aj2(k, a)N (da, di). (6.33)

The decomposition of the sum in form

N
(t)
t−a∑

u1:3=1

,

has then been made to distinguish independence properties in our calculation. Actually, as soon
as, i 6= j, Ai(k, a) is independent from Aj(k, a). It is essential to note that the expectation of
these integrals with respect to the random measure N are all calculated thanks to Theorem 4.2.2.
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So, taking the expectation now leads to,

Et
[
A(k, t)4

]
=4

∫
[0,t]

θEa
[
N

(t)
t−a

]
Ea
[
1Z0(a)=kA(k, a)3

]
θda

+ 4

∫
[0,t]

θPa (Z0(a) = k)Ea
[(
N

(t)
t−a

)
(4)

]
Ea [A(k, a)]3 da

+ 12

∫
[0,t]

θEa
[
1Z0(a)=kA(k, a)2

]
Ea
[(
N

(t)
t−a

)
(2)

]
Ea [A(k, a)] da

+ 4

∫
[0,t]

θPa (Z0(a) = k)Ea
[(
N

(t)
t−a

)
(2)

]
Ea
[
A(k, a)3

]
da

+ 12

∫
[0,t]

θEa
[
1Z0(a)=kA(k, a)

]
Ea
[(
N

(t)
t−a

)
(3)

]
Ea [A(k, a)]2 da

+ 24

∫
[0,t]

θEa
[
1Z0(a)=kA(k, a)

]
Ea
[(
N

(t)
t−a

)
(2)

]
Ea
[
A(k, a)2

]
da

+ 12

∫
[0,t]

θPa (Z0(a) = k)Ea
[(
N

(t)
t−a

)
(3)

]
Ea
[
A(k, a)2

]
Ea [A(k, a)] da.

Using the same method for all the other terms and that, for any positive real number a lower
than t,

Nt =

N
(t)
t−a∑
i=1

N (i)
a ,

we get Lemma 6.9.1 by reassembling similar terms together. The last term is obtained using the
geometric distribution of Nt under Pt.

6.9.2 Boundedness of the fourth moment

Lemma 6.9.2. We begin the proof of the boundedness of the fourth moment by some estimates.

Et [(A(k, t)− ckNt)] = O
(
e−(θ−α)t

)
, (i)

Et
[
(A(k, t)− ckNt)

3
]

= O
(
W (t)2

)
, (ii)

Et
[
(A(k, t)− ckNt)

2
]

= O (W (t)) , (iii)

EtNn
t = O(enαt), n ∈ N∗, (iv)

Pt (Z0(t) = k) = O(e(α−θ)t). (v)

Proof. Relation (i) is easily obtained using the expectation of Nt and A(k, t) and the behaviour
of W provided by Proposition 4.1.1. The relation (iii) has been obtained in the proof of Theorem
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5.2.1. The two last relations are easily obtained from (3.3), (6.2) and Lemma 6.2.1. The relation
(ii) is obtained using the following estimation,∣∣∣Et [(A(k, a)− ckNa)

3
]∣∣∣ ≤ Et

[
Na (A(k, a)− ckNa)

2
]
.

We begin the proof by computing the r.h.s. of the previous inequality using the same techniques
as before.

E
[
A(k, t)2Nt

]
= 2

∫ t

0
θ
W (t)

W (a)
E
[
NaA(k, a)1Z0(a)=k

]
da

+4

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
E
[
Na1Z0(a)=k

]
E [A(k, a)] da

+4

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
E
[
A(k, a)1Z0(a)=k

]
E [Na] da

+4

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Pa (Z0(a) = k)E [A(k, a)Na] da

+12

∫ t

0
θ
W (t)3

W (a)3

(
1− W (a)

W (t)

)2

Pa (Z0(a) = k)E [A(k, a)]E [Na] da.

2E
[
A(k, t)N2

t

]
= 2

∫ t

0
θ
W (t)

W (a)
E
[
N2
a1Z0(a)=k

]
da

+8

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
E
[
Na1Z0(a)=k

]
E [Na] da

+4

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Pa (Z0(a) = k)E

[
N2
a

]
da

+12

∫ t

0
θ
W (t)3

W (a)3

(
1− W (a)

W (t)

)2

Pa (Z0(a) = k)E [Na]
2 da.

Finally,

E
[
Nt (A(k, t)− ckNt)

2
]

= 2

∫ t

0
θ
W (t)

W (a)
E
[
Na (A(k, a)− ckNa)1Z0(a)=k

]
da

+4

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
E
[
Na1Z0(a)=k

]
E [A(k, a)− ckNa] da

+4

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
E
[
(A(k, a)− ckNa)1Z0(a)=k

]
E [Na] da

+4

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Pa (Z0(a) = k)E [Na (A(k, a)− ckNa)] da

+12

∫ t

0
θ
W (t)3

W (a)3

(
1− W (a)

W (t)

)2

Pa (Z0(a) = k)E [Na]E [A(k, a)− ckNa] da

+c2
kEtN3

t .

Now, an analysis similar to the one of Lemma 6.6.5 leads to the result.
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Proof of Lemma 6.6.5. The ideas of the proof, is to analyses one to one every terms of the
expression of

Et
[
(A(k, t)− ckNt)

4
]
,

given by Lemma 6.9.1 using Lemma 6.9.2 to show that they behave as O
(
W (t)2

)
. Since the

ideas are the same for every terms, we just give a few examples.
First of all, we consider ∫

[0,t]

W (t)

W (a)
Ea
[
1Z0(a)=k (A(k, a)− ckNa)

3
]
da.

Using Lemma 6.9.2 (ii), we have∫
[0,t]

W (t)

W (a)
Ea
[
1Z0(a)=k (A(k, a)− ckNa)

3
]
da = O

(
W (t)2

)
.

Now take the term ∫
[0,t]

W (t)2

W (a)2
Ea
[
1Z0(a)=kN

2
a

]
Ea [(A(k, a)− ckNa)] da,

we have from Lemma 6.9.2 (i) and (iv),∫
[0,t]

W (t)2

W (a)2
Ea
[
1Z0(a)=kN

2
a

]
Ea [(A(k, a)− ckNa)] da ≤

∫
[0,t]

W (t)2

W (a)2
Ea
[
N2
a

]
e−(θ−α)ada = O

(
W (t)2

)
.

Every term in W (t) or W (t)2 are treated this way. Now, we consider the term in W (t)4 which is

I := 96

∫
[0,t]

W (t)4

W (a)4
Pa (Z0(a) = k)Ea [(A(k, a)− ckNa)]

3 da+ 24W (t)4c4
k,

since Nt is geometrically distributed under Pt, and that

EtN4
t = 24W (t)4 − 36W (t)3 +O(W (t)2). (6.34)

On the other hand, using the law of Z0(t) given by (6.2) and the expectation of A(k, t) given by
Theorem 6.3.3 (under Pt), we have,

96

∫
[0,t]

W (t)4

W (a)4
Pa (Z0(a) = k)Ea [(A(k, a)− ckNa)]

3 da

= −96W (t)4

∫ t

0

θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1
(∫ a

0

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)k−1

ds

)3

da

= −24W (t)4

(∫ t

0

θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1

da

)4

.
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Finally,

I = 24W (t)4

(∫ ∞
t

θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1

da

)4

= O
(
W (t)4e−4θt

)
= o(1).

The last example is the most technical and relies with the term in W (t)3, which is, using (6.34)
and Lemma 6.9.1,

J :=72

∫
[0,t]

W (t)3

W (a)3
Ea
[
1Z0(a)=k (A(k, a)− ckNa)

]
Ea [(A(k, a)− ckNa)]

2 da

+ 72

∫
[0,t]

W (t)3

W (a)3
Pa (Z0(a) = k)Ea

[
(A(k, a)− ckNa)

2
]
Ea [A(k, a)−Nack] da

− 288

∫
[0,t]

W (t)3

W (a)3
Pa (Z0(a) = k)Ea [(A(k, a)− ckNa)]

3 da− 36c4
kW (t)3.

On the other hand, using the calculus made in the proof of Theorem 6.4.2, we have

Ea
[
(A(k, a)− ckNa)

2
]

=4

∫
[0,a]

W (a)2

W (s)2

(
1− W (s)

W (a)

)
Ps (Z0(s) = k)Ea (A(k, s)− ckNs) ds

+ 2

∫
[0,a]

W (s)

W (a)
Ea
[
1Z0(s)=k (A(k, s)− ckNs)

]
ds+ c2

kW (a)2

(
2− 1

W (a)

)
.

Substituting this last expression in J leads to

J = −144

∫
[0,t]

W (t)3

W (a)3
Ea
[
1Z0(a)=k (A(k, a)− ckNa)

] ∫
[a,∞]

P (Z0(a) = k)

W (s)2
Ea [(A(k, s)− ckNs)] dsda

+ 144W (t)3

∫
[0,t]

1

W (a)
Ea
[
1Z0(a)=k (A(k, a)− ckNa)

] ∫
[a,t]

1

W (s)2
Ps (Z0(s) = k)Ea [A(k, s)−Nsck] da

− 144c2
k

∫
[0,t]

W (t)3

W (a)
Pa (Z0(a) = k)Ea [A(k, a)−Nack] da

+ 144

∫
[0,t]

W (t)3

W (a)3
P (Z0(a) = k)Ea [A(k, a)−Nack]

3 da

− 288

∫
[0,t]

W (t)3

W (a)2
Pa (Z0(a) = k)

∫
[0,a]

1

W (s)
Ps (Z0(s) = k)Ea (A(k, s)− ckNs) dsEa [A(k, a)−Nack] da

+ 72

∫
[0,t]

W (t)3

W (a)
Pa (Z0(a) = k) c2

k

(
2− 1

W (a)

)
Ea [A(k, a)−Nack] da

− 288

∫
[0,t]

W (t)3

W (a)3
Pa (Z0(a) = k)Ea [(A(k, a)− ckNa)]

3 da− 36c4
kW (t)3.
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Using many times that,∫
[0,t]

θP (Z0(a) = k)

W (s)2
Ea [(A(k, s)− ckNs)] ds

=−
∫

[0,t]

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)k−1 ∫
[s,∞]

θe−θu

Wθ(u)2

(
1− 1

Wθ(u)

)k−1

duds

=
c2
k

2
− 1

2

(∫
[t,∞]

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)k−1

ds

)2

,

thanks to (6.2), Theorem 6.3.3, and (3.6), we finally get

J =− 144
(
c2
k − ck(t)2

) ∫
[0,t]

W (t)3

W (a)3
Ea
[
1Z0(a)=k (A(k, a)− ckNa)

]
da

+ 36W (t)3

c2
k

(∫
[t,∞]

W (t)3

W (a)3
Ea [A(k, a)−Nack]

3 da

)2

−

(∫
[t,∞]

W (t)3

W (a)3
Ea [A(k, a)−Nack]

3 da

)4


+ 144 (ck − ck(t))2
∫

[0,t]

W (t)3

W (a)
Ea [A(k, a)−Nack] da

+ 36W (t)3 (ck − ck(t))4 .

This shows that J is O
(
W (t)2

)
.
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Chapitre 7

On the inference for size constrained
Galton-Watson trees

This chapter is dedicated to a joint work with Romain Azais from team Bigs (Inria Nancy) and
Alexandre Genadot from team CQFD (Inria Bordeaux). It originally arose from the idea that
contour processes should be used in order to perform statistics on tree shaped data. Indeed, such
objects proved to be powerful in the theoretical study of trees, and are often more convenient to
manipulate than trees.

Many data are naturally modelled by an ordered tree structure : from blood vessels in biology to
XML files in computer science [92] through the secondary structure of RNA in biochemistry. The
statistical analysis of a dataset of hierarchical records is thus of a great interest. In particular,
detecting differences in large tree structures is a complex and challenging issue. This question
may be tackled via an editing distance that is the minimum number of elementary operations
(insert or delete a node for example) that must be done to transform a tree into another. As a
consequence, one may compute the distance matrix of a given tree dataset and thus apply any
appropriate clustering method which should solve the initial statistical problem. Nevertheless,
this kind of strategy is not well-adapted to exhibit the evolution of a tree structure. The space
of ordered trees can not be represented in a Euclidean state space and visualizing the main
differences appearing in the history of a tree data over time is often difficult. Of course, there
are classical and easily-computable indicators to at least partially sum up the dynamic of a tree
data : number of nodes, height, outdegree, number of leaves, etc. Each of them may be adapted
to a given application. However, they all increase with the size of the tree and not really model
the main structure of the data. The aim of this work is to introduce a real-valued quantity that
describes the key structure of an ordered tree independently of its size.

In probability theory, we often encounter trees that have been generated from independent and
identically distributed numbers of offsprings, which leads to the so-called Galton-Watson trees
(sometimes also referred to as Bienaymé-Galton-Watson trees). Of course, these stochastic trees
have random sizes. However, in many practical applications we are faced to random trees with
a given size. We thus consider the class of Galton-Watson trees conditioned on having a certain
number of nodes. This class is referred to as conditioned Galton-Watson trees. It is well-known
that several classes of random trees can be seen as conditioned Galton-Watson trees [24, 51] :
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Motzkin trees from the uniform offspring distribution on the set {0, 1, 2}, Catalan trees from
the offspring distribution (0.25, 0.5, 0.25) on {0, 1, 2}, Cayley trees from the Poisson offspring
distribution, etc. We also refer the reader to [9, 3.1 Galton-Watson trees] for an enumeration
of some specific parameterizations. In other words, conditioned Galton-Watson trees model a
large variety of random hierarchical structures. In this paper we focus on conditioned critical
Galton-Watson trees, that is to say that the expectation of the offspring distribution is 1.

Conditioned Galton-Watson trees are simple critical Galton-Watson trees which are conditioned
to have a fixed size. Our main goal is to estimate the variance of the birth distribution. As
for the discrete genealogy of a splitting tree, the node of a Galton-Watson tree can be labelled
according to the Ulam-Harris-Neveu notation (see Chapter 3). In standard Galton-Watson trees,
the number of children of each node is distributed according to a probability measure µ on N.
Moreover, if we denote by ζu the number of children of individual u in ∪n≥0Nn, then the family
(ζu)u∈∪nNn is assumed to be i.i.d. in the case of classical Galton-Watson trees. Hence, inferring
the variance of the birth distribution is easy using for instance the empirical variance. However,
in the size constrained case, one cannot expect to make estimations through standard statistic
methods since the independence and homogeneity properties of the family ζu have been broken
up by the conditioning. Such problem has already been studied in a recent work by Bharath et
al. [9], in which the authors use the knowledge of the asymptotic distribution of the height an
uniformly sampled node in order to make inferences from a forest of trees. Here we introduce two
new estimators based on the contour processes of a forest of Galton-Watson trees which appear
to have a better behaviour.

Section 7.1 is devoted to an introduction about Galton-Watson trees conditioned on having a fixed
size and its contours. For discrete trees, there are many different contour processes which can be
constructed from a tree. In this work we focus on the well known Harris path. Subsection 7.1.2
gives the definition of the Harris path. Subsection 7.1.3 recalls the well known limit theorem
which describes the asymptotic behaviour of the Harris path as the number of nodes in the
tree increases. Section 7.2 is devoted to the introduction and the study of our estimators. The
estimators are introduced in Subsection 7.2.2. Subsection 7.3.2 and 7.3.3 are dedicated to the
theoretical study of our estimators. Finally, in Section 7.4 we apply our methods on simulations
of conditioned Galton-Watson trees.

7.1 Basics on size-constrained Galton-Watson trees

This section is devoted to an introduction to size constrained Galton-Watson trees. The next
subsection simply recalls the definition. Subsection 7.1.2 gives the definition of the Harris path.
Subsection 7.1.3 recalls the well known limit theorem which describes the asymptotic behaviour
of the Harris path as the number of nodes in the tree increases.

7.1.1 Definition

Intuitively, a Galton-Watson tree can be seen as a tree encoding the dynamic of a population
generated from some offspring distribution µ on N. A Galton-Watson tree τ with offspring dis-
tribution µ is a random rooted tree constructed recursively as follows.
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— The number of children ζ∅ emanating from the root is a random variable with law µ. The
first generation consists thus in ζ∅ vertices.

— Assume that the nth generation of children has been constructed and consists in a set of
vertices Vn ⊂ Nn (with the Ulam-Harris-Neveu labelling). Then, the generation n + 1 is
constructed such that {ζv : v ∈ Vn} is a collection of independent random variables with
law µ.

In the sequel, we use the notation GW(µ) for the law of a Galton-Watson trees with offspring
distribution µ. The asymptotic behavior of Galton-Watson trees may exhibit different regimes
depending on the average number of offsprings per capita,

µ =
∑
k≥0

kµ(k).

— The subcritical case : µ < 1. In this case, the number of vertices is almost-surely finite
with finite expectation. This means that the population almost-surely extincts and has a
finite expected number of individuals.

— The critical case : µ = 1. The fact that the offspring distribution µ is critical also ensures
the almost-sure finiteness of a critical Galton-Watson tree, except when µ(1) = 1. When
µ(1) < 1, in contrary to the sub-critical case, the expected number of individuals is infinite.

— The supercritical case : µ > 1. In this case, the number of vertices explodes with positive
probability.

Then, we write GWn(µ) for the law of Galton-Watson trees conditioned on having n vertices. We
always state our results assuming critical Galton-Watson processes. However, this is not really
a restriction since, as noted in [78, 6.3 Brownian asymptotics for conditioned Galton-Watson
trees], the measure GWn(µ) is the same as GWn(µθ) where, for an arbitrary θ > 0 such that
g(θ) =

∑
µ(k)θk is finite, µθ(k) = µ(k)θk/g(θ). Therefore, in some sense, conditioned non-critical

Galton-Watson trees are critical ones.

Remark 7.1.1. An important consequence of this last remark is that we cannot estimate the
mean of the distribution µ from a conditioned Galton-Watson tree (or from a forest of such
trees).

7.1.2 From ordered trees to Harris paths

In graph theory, a tree τ is a graph G = (V, E) that satisfies these two conditions : G is connected
and has no cycles. In addition, a rooted tree is a tree in which one node has been distinguished
as the root, denoted here by r(τ) (always drawn at the bottom of the tree in this chapter). In
this case, the edges are assigned a natural orientation, away from the root towards the leaves.
One obtains a directed rooted tree in which there exists a parent-child relationship : the parent
of a node v is the first vertex met on the path to the root starting from v. The length of this
path (in number of nodes) is called the height h(v) of v. The set c(v) of children of a vertex v
is the set of nodes that have v as parent. An ordered or plane tree is a rooted tree in which an
ordering has been specified for the set of children of each node, conventionally drawn from left to
right. We recall from Chapter 3 that the Ulam-Harris-Neveu labelling provides a natural order.

Tree structures can be traversed in many different ways, for example using the order introduced
in Chapter 3. A depth-first search algorithm traversing a tree in this order is given in Algorithm
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0 141

Figure 7.1 – Construction of the Harris path (right) from 0 to 2n = 14 as the contour of an
ordered tree (left) with n = 7 nodes.

1 below (where for a node v of τ , t[v] denotes the subtree containing v and its children). This
algorithm is a particular feature of the classical depth-first search algorithm. Indeed it is a version
that returns to parent when all the descendants of a given child of the node have been visited.
In this case, each node v appears ζv + 1 times. The result is thus a sequence of length∑

v∈V
(ζv + 1) = #V +

∑
v∈V

ζv = 2#V − 1,

because the root is the only vertex not to be counted.

The Harris walk H[τ ] of an ordered rooted tree τ is defined from both the depth-first search
returning to parent algorithm and the notion of height of nodes. H[τ ] is defined as a sequence of
integers indexed by the set {0, . . . , 2#V} as follows :

— H[τ ](0) = H[τ ](2#V) = 0,
— for 1 ≤ k ≤ 2#V, H[τ ](k) = h(v) + 1 where v is the kth node in pre-order (returning to

parent) traversal of τ .
The Harris process is then defined as the linear interpolation of the Harris walk (see example in
Figure 7.1). Note that, as displayed in Figure 7.2, the tree can be recovered from the contour
such that the correspondence is one to one. In the sequel, we denote by (H[τ ](t), t ∈ [0, 2]V])

the linear interpolation of the Harris walk.

Function DFS(τ , l = ∅):
Data: an ordered tree τ
Result: vertices of τ in depth-first order
add r(τ) to l
for v in c(r(τ)) do

if r(t[v]) is not in l then
call DFS (t[v],l)
add again r(τ) to l

return l

Algorithm 1: Recursive depth-first search.

7.1.3 Asymptotic behaviour of the Harris path

We consider a tree τn with distribution GWn(µ) where µ is some critical offspring distribution
whose variance is denoted by σ2. We focus on the asymptotic behavior of the Harris process
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Figure 7.2 – The ordered tree of Figure 7.1 in its Harris path (left) : each vertical axis represents
a node of the original structure (right), (See [79]). A common picture helping to see how to recover
the tree from the contour is to imagine putting glue under the contour and then crushing the
contour horizontally such that the inner parts of the contour which face each others are glued.

H[τn](2n·) when n tends to infinity. The convergence in distribution has been stated and proved
by Aldous [1, Theorem 23].

Theorem 7.1.2. When n goes to infinity, we have(
H[τn](2nt)√

n
, t ∈ [0, 1]

)
(d)−−−→

n→∞

(
2

σ
et, t ∈ [0, 1]

)
,

where e is a standard Brownian excursion, the convergence holding in law in the space C([0, 1],R).

Let us simply recall that a standard Brownian excursion is a Brownian motion conditioned (for
instance in the sense of h-transform) on being positive and to taking the value 0 at time 1. The
density of et, for 0 ≤ t ≤ 1, is given in [80, XI. 3. Bessel Bridges] and writes

fet(x) =

√
2

π

x2√
t(1− t)3 exp

(
− x2

2t(1− t)

)
1R+(x). (7.1)

From this, we can compute some simple functionals of the excursion. For instance, we have,

∀ 0 ≤ t ≤ 1, E[et] =
4√
2π

√
t(1− t) and E

[
e2
t

]
= 3t(1− t). (7.2)

In the sequel, we denote by (Et, t ∈ [0, 1]) the expectation of a normalized Brownian excursion,
that is

Et = E[et], ∀t ∈ [0, 1].

The easiest way to simulate a Brownian excursion certainly is from its identity in law with
a three-dimensional Bessel bridge, which simply is the Euclidean norm of a three-dimensional
Brownian bridge,

(et, t ∈ [0, 1])
(d)
=


√√√√ 3∑

i=1

(
B

(i)
t − tB

(i)
1

)2
, t ∈ [0, 1]

 (7.3)

where B(1), B(2) and B(3) are three independent Brownian motions.

The convergence presented in Theorem 7.1.2 also holds in expectation [25, Theorem 1].

Theorem 7.1.3. When n goes to infinity, we have,

∀ 0 ≤ t ≤ 1, E
[
H[τn](2nt)√

n

]
−−−→
n→∞

2

σ
Et.

Note that the quantity appearing in this theorem is σ−1. For this practical reason, we decided
to estimate σ−1.
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7.2 Inferring σ−1 from a forest

In this section we propose two methods in order to get estimations on σ−1. After what, we study
the behaviour of our estimators. Let τn be a size-constrained Galton-Watson tree, and H[τn] its
Harris path. As usual, the idea should be to construct some operator T : C([0, 1]) 7→ R+ such
that, as n increase, TH[τn] becomes close to σ−1 in some sense. However, the weak convergence
given by Theorem 7.1.2 does not enabled us to expect a strong convergence. Worst, it appears
according to [50] that one cannot construct on a same probability space a couple (τn, τn+1) such
that τn is a subtree of τn+1. This suggest that we cannot hope to construct an estimator of σ−1

from only one tree. Our purpose is then to construct an efficient estimator of σ−1 from a forest.

7.2.1 Adequacy of the Harris path with the expected contour

Let τn ∼ GWn(µ) with µ = 1. We assume that the offspring distribution µ is unknown. By
virtue of Theorem 7.1.3, the asymptotic average behavior of the normalized Harris process
(n−1/2H[τn](2nt), 0 ≤ t ≤ 1) is given by (2σ−1Et, 0 ≤ t ≤ 1), where σ−1 is obviously also
unknown. We propose to estimate σ−1 by minimizing the L2-error defined by

λ 7→
∥∥∥∥H[τn](2n·)√

n
− 2λE

∥∥∥∥2

2

.

The solution of this least-square problem is well-known and is given by

λ̂[τn] =
〈H[τn](2n·), E〉

2
√
n‖E‖22

. (7.4)

Corollary 7.2.1. When n goes to infinity, we have

λ̂[τn]
(d)−→ σ−1Λ∞,

where the real random variable Λ∞ is defined by

Λ∞ =
〈e, E〉
‖E‖22

.

Proof. The result directly follows from Theorem 7.1.2 because the functional x 7→ 〈x,E〉 is
continuous on C([0, 1]). 2

Remark 7.2.2. The convergence in distribution stated in Corollary 7.2.1 seems quite unsatis-
factory because this means that λ̂[τn] is not a consistent estimator of σ−1 and the least-square
strategy thus looks like inadequate. Nevertheless, one can not expect a stronger convergence from
the observation of only one stochastic process within a finite window of time. This is why one
may only focus on the estimation of the parameter of interest σ−1 from a forest of conditioned
Galton-Watson trees. This statistical framework is also considered in [9].

Computing λ̂[τn] is only a first step in the estimation of the inverse standard deviation from a
large number of conditioned Galton-Watson trees. As a consequence, the distribution of the limit
variable Λ∞ is of first importance.
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Proposition 7.2.3. The random variable Λ∞ admits a density fΛ∞ with respect to the Lebesgue
measure. Furthermore,

E[Λ∞] = 1. (7.5)

Proof. The existence of a density was already known [70, 71] for the random variable
∫ 1

0 esds. In
these papers the study is performed thanks to the analysis of the double Laplace transform

λ 7→
∫ ∞

0
exp(−λt)E

[
exp

(
−t
∫ 1

0
esds

)]
dt.

Thanks to the Feynmann-Kac formula, the authors express this quantity in terms of Airy func-
tions. Then, they inverse the Laplace transform via analytical methods. Unfortunately, their
method does not extend to our case. Indeed, in their case, an expression of the double Laplace
transform given above is derived from the Feynmann-Kac formula for standard Brownian motion
which tells us that the function

u(t, x) = Ex
[
f(Bt) exp

(∫ t

0
Bsds

)]
, ∀(t, x) ∈ R+ × R,

is the solution of the PDE{
∂tu(t, x) = 1

2∆u(t, x) + xu(t, x) ∀x ∈ R, t ∈ R+,

u(0, x) = f(x) ∀x ∈ R.

In this case, taking the Laplace transform in time of u leads to an ODE whose solution can be
express in term of Airy functions (see [52]). In our case, the PDE becomes inhomogeneous in time
which makes such transformation useless. As a consequence, one cannot obtain informations by
this method.

That is why we propose a new method using Malliavin calculus and the representation of the
Brownian excursion as a three-dimensional Bessel bridge (7.3) to show that Λ∞ admits a density.
We consider the probability space (C([0, 1],R3),F ,W), where C([0, 1],R3) is endowed with the
topology of uniform convergence, F is the corresponding Borel σ-field and W is the Wiener
measure. Let T be the continuous linear operator defined by

T : C([0, 1],R3) → (C([0, 1],R3),

ϕ 7→ (Tϕ(s) = ϕs − sϕ1) .

Let also Γ be the following function,

Γ : ϕ 7→
∫ 1

0
‖ϕ(s)‖3Esds.

where ‖x‖ denotes the Euclidian norm on R3. With these notations and (7.3), we have that the
pushforward measure of W through the application

F : ϕ 7→ Γ(Tϕ),
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is the law of ‖E‖22Λ∞. In other words, the random variable F is equal in distribution to ‖E‖22Λ∞.
Now for every ϕ in C([0, 1],R3) such that Leb

(
{t ∈ R+ : ϕ(t) = 0}

)
= 0, we have that Γ is

Frechet differentiable at point ϕ (where Leb denotes the Lebesgue measure). Indeed, set

DϕΓ : (C([0, 1],R3) → R,
h 7→

∫ 1
0
〈ϕ(s),h(s)〉
‖ϕ(s)‖ Es ds.

Then, some straightforward manipulations give

∫ 1

0

[
‖ϕ(s) + h(s)‖ − ‖ϕ(s)‖ − 〈ϕ(s), h(s)〉

‖ϕ(s)‖

]
ds =

∫ 1

0

‖h(s)‖2 + 〈ϕ(s), h(s)〉
(

1− ‖ϕ(s)+h(s)‖
‖ϕ(s)‖

)
‖ϕ(s) + h(s)‖+ ‖ϕ(s)‖

ds.

Now, Cauchy-Schwarz inequality entails

∣∣∣∣∫ 1

0

[
‖ϕ(s) + h(s)‖ − ‖ϕ(s)‖ − 〈ϕ(s), h(s)〉

‖ϕ(s)‖

]
ds

∣∣∣∣ ≤ ∫ 1

0


‖h(s)‖2 + ‖h(s)‖

∣∣∣∣∣‖ϕ(s)‖ − ‖ϕ(s) + h(s)‖

∣∣∣∣∣
‖ϕ(s) + h(s)‖+ ‖ϕ(s)‖

ds

≤ ‖h‖∞
∫ 1

0

‖h(s)‖+

∣∣∣∣‖ϕ(s)‖ − ‖ϕ(s) + h(s)‖
∣∣∣∣

‖ϕ(s) + h(s)‖+ ‖ϕ(s)‖

ds.

Now, since ∫ 1

0

‖h(s)‖+

∣∣∣∣‖ϕ(s)‖ − ‖ϕ(s) + h(s)‖
∣∣∣∣

‖ϕ(s) + h(s)‖+ ‖ϕ(s)‖

ds

is well-defined (because the integrand is bounded by 2) and goes to zero as ‖h‖∞ goes to zero, this
prove that DϕΓ is the Frechet derivative of Γ at point ϕ. Now, since T is linear, we have that F is
Frechet differentiable at every ϕ such that Leb

(
{t ∈ R+ : ϕ(t) = 0}

)
= 0 and DϕF = DTϕΓ◦T .

We now show that F belongs to the Malliavin-Sobolev space D1,2 (see [75, p. 25-27] for the
definition of this space). Let h be an element of L2([0, 1],R3), it is easily seen that∣∣∣∣F (ω +

∫ ·
0
hsds)− F (ω)

∣∣∣∣ ≤ ∫ 1

0

{∥∥∥∥∫ t

0
hsds

∥∥∥∥+ t

∥∥∥∥∫ 1

0
hsds

∥∥∥∥}Etdt.
But in the right hand side of the last inequality, we have, using Jensen’s inequality,

∫ 1

0


√√√√ 3∑

i=1

(∫ t

0
h

(i)
s ds

)2

+ t

√√√√ 3∑
i=1

(∫ 1

0
h

(i)
s ds

)2
Etdt ≤

∫ 1

0

√√√√ 3∑
i=1

(∫ 1

0
(h

(i)
s )2ds

)
(1 + t)Etdt

=

∫ 1

0
‖h‖L2([0,1],R3)(1 + s)Esds.
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From this, using the results of [75, p. 35], we have that F belongs to the space D1,2.

Before going further let us recall some facts on Malliavin derivative. When, working with the
probability space (C([0, 1],R3),F ,W), its is known (see Section 1.2.1 in [75]) that there exists
strong connexions between Malliavin derivative and Frechet derivative for a random variable G
of D1,2 defined from (C([0, 1],R3),F ,W) to R. Since, the Frechet derivative DωG at point ω of G
is a continuous linear form from C([0, 1],R3) into R, it can be identified to a triple (µω1 , µ

ω
2 , µ

ω
3 )

of σ-finite measures on R such that

DϕGh =
3∑
i=1

∫
[0,1]

his µ
ω
i (ds), ∀h ∈ C([0, 1],R3).

In such case, the Malliavin derivative of G is random process belonging to L2([0, 1],R3) given by

{(µω1 (u, 1], µω2 (u, 1], µω3 (u, 1]) , u ∈ [0, 1]} .

In our case, since

DϕFh =

∫ 1

0
hs

{
ϕs − sϕ1

‖ϕs − sϕ1‖
Es ds−

[∫ 1

0

v(ϕv − vϕ1)

‖ϕv − vϕ1‖
Ev dv

]
δ1(ds)

}
,

it follows that the Malliavin derivative of F is given by

DF =

(∫ 1

0

(ωs − sω1)Es
‖ωs − sω1‖

(1s>u − s)ds, u ∈ [0, 1]

)
∈ L2([0, 1],R3).

Now, since DF is W-almost everywhere not zero (in L2([0, 1],R3)), we have using [75, Theorem
2.1.2] the existence of a density for the push-forward measure of W by F with respect to the
Lebesgue measure.

2

It should be noted that the weak limit of λ̂[τn] has mean equal to σ−1 by (7.5). Moreover, it
can be showed that the random variable Λ∞ is square integrable. Indeed, since the function E
is bounded, we have

0 ≤ Λ∞ ≤ C
∫ 1

0
etdt,

for some positive constant C. Now, its is known that the random variable
∫ 1

0 etdt admit moments
at all order (see for instance [71]).

The variance of Λ∞ can then be evaluated numerically in order to compare our methods with
other estimators. We use Monte-Carlo simulations to produce a sample with same law as Λ∞ to
achieve this task. This lead to

Var(Λ∞) ' 0.0690785.

At this point, it is quite interesting to compare our approach to the one developed in [9]. As in
the present paper, the authors of [9] construct estimators for the inverse standard deviation of the
offspring distribution of a forest of conditioned critical Galton-Watson trees. Their strategy relies
on the distance to the root of a uniformly sampled vertex v of the considered tree τn ∼ GWn(µ),

δ̂[τn] =
h(v)√
n
,
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where we recall that h(v) is the height of v in the tree. Using Theorem 7.1.2, it has been shown
that δ̂[τn] converges in law, when the number of nodes n goes to infinity, towards σ−1∆∞ where
the random variable ∆∞ follows the Rayleigh distribution with parameter scale 1 [9, Proposition
4] with density,

∀x ∈ R+, f∆∞(x) = x exp

(
−1

2
x2

)
.

This was not noticed in [9], but we emphasize that δ̂[τn] is somehow biased because E[∆∞] =√
π
2 6= 1. Nevertheless, one may avoid this issue by considering the quantity

δ̂[τn] =

√
2

π
δ[τn]

which converges to σ−1
√

2
π∆∞ which is σ−1 on average. As a consequence, λ̂[τn] and δ̂[τn] are

two quantities directly computable from the tree τn and that may be used to estimate the inverse
standard deviation. We propose to compare them from their respective asymptotic dispersion. A
first comparison may be done by computing the variances of Λ∞ and

√
2
π∆∞. One has

Var

(√
2

π
∆∞

)
' 0.2732395 and Var(Λ∞) ' 0.0690785.

This difference in the dispersions is quite apparent in Figure 7.3 where the densities of
√

2
π∆∞

and Λ∞ have been displayed. Consequently, one may expect better results in terms of dispersion
from our strategy.

7.2.2 Estimation strategies

In this section, we detail two ideas in order to estimate σ−1 from a forest of conditioned Galton-
Watson trees. A forest is define as a tuple a trees. Let N be a positive integer. In this section,
we consider a forest F made of N independent trees τ1, . . . , τN with respective sizes n1, . . . , nN
and respective laws GWn1(µ), . . . , GWnN (µ).

Least-square estimation

This first strategy lies on the goodness of fit between the Harris path of the forest with the
expected limiting contour. This adequacy is measured thanks to an L2 norm.
More precisely, we denote by (H[F ](t), t ∈ [0, N ]) the Harris path of the forest F . This process
is defined by

∀ 0 ≤ t ≤ N, H[F ](t) =

N∑
i=1

1
√
ni
H[τ i](2ni(t− i+ 1))1[i−1,i)(t),

the Harris path of a forest being the concatenation of the Harris path of each tree, in the natural
order. We propose to estimate σ−1 by λ̂ls[F ] that minimizes the L2 error

‖H[F ](·)− λH(· − b·c)‖2L2 .
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7.2. Inferring σ−1 from a forest

That is
λ̂ls[F ] = argminλ∈R+

‖H[F ](·)− λH(· − b·c)‖2L2 .

As aforementioned in (7.4), λ̂ls[F ] can be explicitly computed. Indeed, on can check that

λ̂ls[F ] =
〈H[F ](·), H(· − b·c)〉
‖H(· − b·c)‖2L2

. (7.6)

Interestingly, λ̂ls[F ] is only the average of the quantities λ̂[τ i] (defined in (7.4)),

λ̂ls[F ] =
1

N

N∑
i=1

λ̂[τ i].

Thus, according to Theorem 7.2.1 and 7.1.3, one can expect that λ̂ls[F ] tends to σ−1 in some
sense, when both N and ni go to infinity, by virtue of the law of large numbers.

Estimation by minimal Wasserstein distance

In the preceding method, we did not use our knowledge of the limiting distribution of the random
variable of type λ[τn]. In order to take this into account, one may want to test the goodness of
fit between the empirical measure P̂ defined by

P̂ =
1

N

N∑
i=1

δ
λ̂[τ i]

. (7.7)

and the law of Λ∞. Using Wasserstein metrics to align distributions is rather natural since it
corresponds to the transportation cost between two probability laws. In particular, this feature
appears to be useful in a statistical framework [16, 33]. In our case, P̂ is expected to look like
(in some sense) σ−1Λ∞ in the limit of an infinite forest of infinite trees. That is why, we propose
to estimate σ−1 with the real number λ which minimizes the distance between P̂ and the law of
λΛ∞, denoted PλΛ∞ . More precisely, our estimator λ̂W [F ] is defined by

λ̂W [F ] = argminλ>0dW

(
P̂ , PλΛ∞

)
, (7.8)

where dW denotes the Wasserstein distance of order 2.

The Wasserstein distance of order 2, denoted dW (ν1, ν2), between two probability measures ν1

and ν2 can be defined (see for instance [21]) from their cumulative distribution functions F1 and
F2 as follows,

dW (ν1, ν2) =

√∫ 1

0

(
F−1

1 (t)− F−1
2 (t)

)2
dt. (7.9)

Let F̂ be the cumulative function of the empirical measure P̂, while FλΛ∞ stands for the cumu-
lative function of the random variable λΛ∞. As a consequence of (7.9), one has

dW

(
1

N

N∑
i=1

δ
λ̂[τ i]

, PλΛ∞

)2

=

∫ 1

0

(
F̂−1(s)− F−1

λΛ∞
(s)
)2

ds

=

∫ 1

0

(
F̂−1(s)− λF−1

Λ∞
(s)
)2

ds,
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thanks to the fact that F−1
λΛ∞

= λF−1
Λ∞

. It follows that minimizing the Wasserstein distance boils
down to solve a least-square minimization problem. Hence, it comes that

λ̂W [F ] =
〈F̂−1, F−1

Λ∞
〉

‖F−1
Λ∞
‖2L2

=
1

‖F−1
Λ∞
‖2L2

N∑
i=1

λ̂[τ (i)]

∫ i
N

i−1
N

F−1
Λ∞

(s)ds,

where (λ̂[τ (i)])1≤i≤N denotes the order statistic associated to the family (λ̂[τ i])1≤i≤N .

Remark 7.2.4. We point out the fact that there is no problem of definition in the above quantities
because both F̂−1 and F−1

Λ∞
belong to L2([0, 1]). In the first case, this follows from the fact that

F̂−1 is bounded (because P̂ has compact support). For F−1
Λ∞

, this comes from the uniform sampling
principle which entails that ∫ 1

0
F−1

Λ∞
(u)2 du = E[Λ2

∞].
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Figure 7.3 – Densities of
√

2
π∆∞ (full line) where ∆∞ follows the Rayleigh distribution given

by f(x) = π
2x exp

(
−πx2

4

)
for x ∈ R+ and of Λ∞ (dashed line) estimated from 100 000 simulated

Brownian excursions.

7.3 Main results

7.3.1 Asymptotic regimes

In this section, we study the asymptotic properties of our estimators. Before going further, let
us introduce some notations. In the sequel, the set of integer sequences is denoted S. For any
positive real number A, we denote by SA the subset of S defined by

SA =

{
u ∈ S | min

i≥1
ui ≥ A

}
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In addition, for any sequence u in S and any positive integer N , ~uN is the multi-integer made of
the N first components of u, that is

~uN = (u1, . . . , uN ) .

Moreover, for any multi-integer n in ∪n≥1Nn, we denote by `(n) its number of components and
by m(n) its minimal value, that is

m(n) = min
1≤i≤`(n)

ni.

Somehow, in the forests we are about to consider, m(n) refers to the size of the smallest tree
whereas `(n) refers to the size of the forest.

Now, let us introduce our probabilistic framework. Let (τkn)n,k≥1 be a family of conditioned
Galton-Watson trees such that, for a given n, the family (τkn)k≥1 is i.i.d. GWn(µ). From this
family, we define, for any mutli-integer n = (n1, . . . , nN ), the random forest Fn made of the trees
(τ1
n1
, . . . , τNnN ).

The idea of this construction is to consider increasing (in the sense of inclusion) sequences of
random forests. Indeed, assume we are given a sequence (un)n≥1 of integer (corresponding to the
size of our trees), then the N first trees of the forest F~uN+1

are the same as the trees of the forest
F~uN .

To be crystal clear, let us precise what we mean by saying that something converges as m(n)

(or `(n)) goes to infinity. Let f be an application from ∪n≥1Nn into some metric space (E , d)

(of course, what we are about to say trivially extend to any topological space). We say that f
converges to some element e of E as m(n) (`(n), respectively) goes to infinity if

∀ε > 0, ∃A ∈ R+, ∀n ∈ ∪n≥1Nn, m(n) > A (`(n) > A, respectively) ⇒ d(f(n), e) < ε.

In this section, two asymptotic regimes are considered : when `(n) goes to infinity (infinite forest
regime) and when m(n) goes to infinity (infinite trees regime). In the following section Corollary
7.10 and Proposition 7.3.5 are concerned with the infinite trees regime (m(n) → ∞) whereas
Proposition 7.3.3, Lemma 7.3.6, and Proposition 7.3.7 are concerned with the infinite forest
regime (`(n)→∞).

7.3.2 Least square estimation

This first result focuses on the regime of large trees.

Corollary 7.3.1. When m(n) goes to infinity, we have

λ̂ls[Fn]
(d)−→ σ−1 1

`(n)

`(n)∑
i=1

Λ∞,i, (7.10)

where the Λ∞,i’s are N independent copies of Λ∞. Furthermore, when `(n) is fixed and m(n)

goes to infinity, we have
E
[
λ̂ls[Fn]

]
−→ σ−1.
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Proof. The first convergence is a direct consequence of the independence properties of the family
(τ ini)1≤i≤l(n) and the fact that each one converges to a random variable with law Λ∞ by Corollary
7.2.1. Now, its remains to prove the second statement. Since the family (τ ini)1≤i≤`(n) is made of
independent random variables its follows from Theorem 7.1.3 and the definition (7.4) of λ̂[τni ]

that the proof of this last statement boils down to prove that∫ 1

0
E
[
H[τn](2ns)√

n

]
Es ds −→

n→∞

2

σ

∫ 1

0
E2
s ds,

where τn is some tree with law GWn(µ). Its is known from [25, Lemma 4] that, for any positive
integer n and real number 0 < t < 1,

∀x ∈ R+, P
(
H[τ in](2nt)√

n
> x

)
≤ C

t
exp

(
−Dx√

t

)
. (7.11)

From this last estimate, one can easily shows that E
[
H[τn](2ns)√

n

]
is uniformly bounded (w.r.t. n)

by t 7→ C
D
√
t
which is integrable on [0, 1]. Finally, the result follows from Theorem 7.1.3 and the

dominated convergence Theorem. 2

Remark 7.3.2. It is worth noting that the limit appearing in the right hand side of (7.10) is
unbiased, that is

E

σ−1 1

`(n)

`(n)∑
i=1

Λ∞,i

 = σ−1.

Moreover, (7.5) and the law of large numbers entails that this same limit converges a.s. to σ−1

as `(n) goes to infinity.

The following result states a stronger convergence when `(n) goes to infinity before m(n). The
spirit of this result is that, given an increasing sequence of random forest, the least square
estimator cannot be too far from σ−1 as soon as the size of the trees are large enough. It
particular, due to the results of [50], one cannot expect a stronger convergence.

Proposition 7.3.3. We have,

∀ ε > 0, ∃A ∈ N, ∀u ∈ SA, P
(

lim sup
N→∞

∣∣∣λ̂ls[F~uN ]− σ−1
∣∣∣ < ε

)
= 1.

Proof. We begin the proof by showing that the family
(
λ̂[τkn ]

)
n,k∈N

has uniformly bounded fourth

moments. On one hand, we know from [25, Lemma 4] that, for any positive integers i,n and real
number 0 < t < 1,

∀x ∈ R+, P
(
H[τ in](2nt)√

n
> x

)
≤ C

t
exp

(
−Dx√

t

)
. (7.12)

On the other hand, by Jensen’s inequality, there exists a positive constant c such that

E
[(
λ̂[τ in]

)4
]
≤ c

∫ 1

0
E

[(
H[τ in](2ns)√

n

)4
]

ds

= 4c

∫ 1

0

∫
R+

x3 P
(
H[τ in](2ns)√

n
> x

)
dx ds.
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Finally, using (7.12) gives the desired bound,

E
[
λ̂[τ in]4

]
≤ 12cC

D4
. (7.13)

From this point we consider a sequence u of integers. This sequence corresponds to the sizes
of the trees in our increasing sequence of random forests (F~uN )N≥1. We recall according to the
definitions given in the beginning of this section that the random forest F~uN is composed of the
trees (τ1

u1 , . . . , τ
N
uN

).

Let mi
ui be the expectation of λ̂[τ iui ]. It is worth noting that this expectation depends only on

the integer ui. Now, using the uniform bound on the fourth moment, it is easy to show using
standard methods that

1

N

N∑
i=1

(
λ̂[τ iui ]−m

i
ui

)
a.s.−−→ 0, (7.14)

when N goes to infinity. Moreover, using Theorem 7.1.3, we have that mi
ui converges to σ

−1 as
ui goes to infinity, form which it follows that for any ε > 0, there exists an integer A such that∣∣mi

ui − σ
−1
∣∣ < ε (7.15)

whenever ui > A. Finally, letting all the ui’s be greater than A, we have that there exists a
measurable set Ωu , with mass 1, such that, using (7.14) and (7.15), for all ω in this set,

lim sup
N→∞

∣∣∣∣∣ 1

N

N∑
i=1

λ̂[τ iui ](ω)− σ−1

∣∣∣∣∣ ≤ lim sup
N→∞

1

N

∣∣∣∣∣
N∑
i=1

λ̂[τ iui ](ω)−mi
ui

∣∣∣∣∣+ lim sup
N→∞

1

N

N∑
i=1

∣∣mi
ui − σ

−1
∣∣ ≤ ε.

2

Remark 7.3.4. According to the proof the preceding theorem, it would be very interesting to
have estimates on the rate of convergence in the result stated in Theorem 7.1.3. Indeed, this
would enable us to have estimate on the error in the convergence stated in Proposition 7.3.3
given in terms of the smallest trees in the increasing sequence of random forests.

7.3.3 Estimation by minimal Wasserstein distance

As in the preceding section, we begin by looking at the convergence in m(n).

Proposition 7.3.5. When m(n) goes to infinity (and `(n) is fixed), we have

λ̂W [Fn]
(d)−−→ 1

σ‖F−1
Λ∞
‖22

`(n)∑
i=1

Λ∞,(i)

∫ i
`(n)

i−1
`(n)

F−1
Λ∞

(s)ds,

where the Λ∞,(i)’s are N independent copies of Λ∞ sorted in increasing order. In addition, the
limit is asymptotically unbiased, in the sense that, when `(n) goes to infinity,

1

σ‖F−1
Λ∞
‖22

E

`(n)∑
i=1

Λ∞,(i)

∫ i
`(n)

i−1
`(n)

F−1
Λ∞

(s)ds

 −→ 1

σ
.
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Proof. The convergence in distribution is straightforward from Corollary 7.2.1 and standard
methods on order statistics. We now prove that the estimator is asymptotically unbiased. In
order to lighten the notation, let us set

N = `(n).

It is well known, since Λ∞ has a density, that, for any 1 ≤ i ≤ N , one has (see for instance [19])

E
[
Λ∞,(i)

]
= N

(
N − 1

i− 1

)∫ ∞
0

xFΛ∞(x)i−1(1− FΛ∞(x))N−ifΛ∞(x)dx.

Hence,

E

[
N∑
i=1

Λ∞,(i)

∫ i
N

i−1
N

F−1
Λ∞

(s)ds

]

= N

∫ ∞
0
xfΛ∞(x)

N∑
i=1

(
N − 1

i− 1

)
FΛ∞(x)i−1(1− FΛ∞(x))N−i

∫ 1
N

0
F−1

Λ∞

(
s+

i− 1

N

)
ds dx.

This rewrites thanks to the right inverse sampling principle as

E

[
N∑
i=1

Λ∞,(i)

∫ i
N

i−1
N

F−1
Λ∞

(s)ds

]
=

∫ 1

0
F−1

Λ∞
(x)Kn

(
F−1

Λ∞

)
(y) dy,

where Kn is defined for all function f in L2([0, 1]) by

Kn (f) (y) =

N∑
i=1

(
N − 1

i− 1

)
yi−1(1− y)N−i

∫ 1
N

0
f

(
s+

i− 1

N

)
ds, ∀y ∈ [0, 1].

The operators Kn are known as Bernstein-Kantorovich operators which were introduce in 1930
by Kantorovich in order to extend the properties of Bernstein polynomials to non-continuous
functions (see [54]). In particular, it is known that, for all f in L2([0, 1]), Kn(f) converges
strongly to f in L2([0, 1]) (see [69] for an old but practical reference).

Now, according to Cauchy-Schwarz inequality we have that∣∣∣∣∫ 1

0
F−1

Λ∞
(x)Kn

(
F−1

Λ∞

)
(y) dy −

∫ 1

0
F−1

Λ∞
(y)2 dy

∣∣∣∣ ≤ ‖F−1
Λ∞
‖2L2

∫ 1

0

∣∣Kn(F−1
Λ∞

)(y)− F−1
Λ∞

(y)
∣∣2 dy.

But since, Kn(F−1
Λ∞

) converges to F−1
Λ∞

in L2([0, 1]), we finally obtain

E

[
N∑
i=1

Λ∞,(i)

∫ i
N

i−1
N

F−1
Λ∞

(s)ds

]
−→
N→∞

‖F−1
Λ∞
‖2L2 ,

leading to the result. 2

In addition, we have the same kind of strong convergence result for this estimator. Its lies on
the fact that the empirical measure P̂ defined in (7.7) must be close (in Wasserstein distance)
to the law of σ−1Λ∞ as soon as the trees are large enough. More precisely, we have the following
lemma.
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Lemma 7.3.6. Let P be the law of σ−1Λ∞. Let also Pn be the empirical distribution defined for
any multi-integer n by

Pn =
1

`(n)

`(n)∑
i=1

δ
λ̂[τ ini ]

.

Then, the following statement holds,

∀ ε > 0, ∃A ∈ N, ∀u ∈ SA, P
(

lim sup
N→∞

dW (P~uN ,P) < ε

)
= 1.

Proof. Let n be a multi-integer. Let Πδ being the canonical projection of R on [−δ, δ], for a
positive real number δ. We have

dW (Pn (ω) ,P) ≤ dW (Pn (ω) ,ΠδPn (ω)) + dW (ΠδPn (ω) ,ΠδP) + dW (P,ΠδP) , (7.16)

where Πδµ denotes the image measure of µ by Πδ. To obtain the desired result, we need to control
each of the three terms in the right hand side of (7.16).

— Third term. First, it is clear, for any probability measure µ, that Πδ is a transport of
µ on Πδµ which needs not to be optimal [11, 2. Generalities on Kantorovich transport
distances]. Hence,

dW (µ,Πδµ) ≤

√∫
R
|x−Πδ(x)|2 µ(dx).

It follows, since x→ x2 is integrable with respect to P, that δ can be chosen in order to
have

dW (P,ΠδP) ≤
√
E
[
(Λ∞)2 1|Λ∞|>δ

]
<
ε

3
. (7.17)

— First term. On the other hand, following the same lines as in the proof of Proposition
7.3.3, one can shows that

∀ ε > 0, ∃A ∈ N, ∀u ∈ SA, P

(
lim sup
N→∞

∣∣∣∣∣ 1

N

N∑
i=1

λ̂[τ iui ]
21|λ̂[τ iui ]|>δ

− E
[
Λ2
∞1|Λ∞|>δ

]∣∣∣∣∣ < ε

)
= 1.

(7.18)
This bound allows us to control the first term in the right hand side of (7.16) since

dW (Pn (ω) ,ΠδPn (ω)) ≤

√∫
R
|x−Πδ(x)|2 Pn(ω)(dx)

≤

√√√√ 1

N

N∑
i=1

λ̂[τ ini ](ω)21|λ̂[τ ini ](ω)|>δ.

Hence, it remains to control the second term.
— Second term. Since ΠδPn (ω) and ΠδP are compactly supported measure, for any multi-

integer n, we have the following duality formula for the first order Wasserstein distance
(which we denote W1),

W1 (ΠδP~n (ω) ,ΠδP) = sup
φ∈Lip1([−δ,δ])

{∣∣∣∣∫
R
φ(x)(ΠδPn (ω) (dx)−ΠδP(dx))

∣∣∣∣} ,
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where Lip1 ([−δ, δ]) denotes the set of 1-Lipschitz continuous function on [−δ, δ]. Since,
[−δ, δ] is compact, Lip1 ([−δ, δ]) is separable endowed with the uniform topology. This
implies the existence of a countable family (fk)k≥1 which is dense. Using again the method
of the proof of Proposition 7.3.3, one can show

∀ ε > 0, ∃A ∈ N, ∀u ∈ SA, P
(

lim sup
N→∞

|P~uN fk − Pfk| < ε

)
= 1, (7.19)

where Pf denotes
∫
R f(x)P(dx). Now, the density of (fk)k≥1 entails that for any function

f in Lip1 ([−δ, δ]), one can finds a function fk such that ‖fk−f‖∞ < ε, for any positive ε.
Hence, (7.19) holds for any function in CK on the same event. Moreover, since ΠδPn (ω)

and ΠδP are compactly supported measures,

dW (ΠδPn (ω) ,ΠδP) ≤ C
√
W1 (ΠδPn (ω) ,ΠδP),

which implies

∀ ε > 0, ∃A ∈ N, ∀u ∈ SA, P
(

lim sup
N→∞

dW (ΠδP~uN (ω) ,ΠδP) < ε

)
= 1. (7.20)

Finally, using (7.17), (7.18) and (7.20) in (7.16) leads to the result. 2

Proposition 7.3.7. We have,

∀ ε > 0, ∃A ∈ N, ∀u ∈ SA, P
(

lim sup
N→∞

∣∣∣∣λ̂W [F~uN ]− 1

σ

∣∣∣∣ < ε

)
= 1.

Proof. By the Cauchy-Schwarz inequality, the convergence of this estimator follows from the
convergence of the Wasserstein distance in the following manner,

∣∣∣∣λ̂W [Fn]− 1

σ

∣∣∣∣ =

∣∣∣〈F̂ [Fn]−1 − σ−1F−1
Λ∞
, F−1

Λ∞
〉
∣∣∣

‖F−1
Λ∞
‖22

≤

∥∥∥F̂ [Fn]−1 − σ−1F−1
Λ∞

∥∥∥
2

∥∥F−1
Λ∞

∥∥
2

‖F−1
Λ∞
‖22

=
dW (Pn , P)

‖F−1
Λ∞
‖2

.

The result finally arises from the preceding Lemma. 2

7.4 Numerical simulations

7.4.1 Simulation of conditioned Galton-Watson trees

In order to test our estimation techniques on Galton-Watson forests, we need to make some nu-
merical experiment. However, simulation of conditioned Galton-Watson tree is a difficult problem
of independent importance. In this section, we briefly present an algorithm due to Devroye [24]
allowing to achieve this aim. Note that, it is (with a direct rejection method) the only known (in
the best of our knowledge) algorithm allowing to simulate size constrained Galton-Watson trees.
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The main idea of the algorithm is the following : assume that µ is supported on {0, . . . ,K},
for an integer K. If N0 denotes the number of individuals with no children, N1 the number of
individuals with 1 children and so on... Then, the sequence (N0, . . . , NK) is distributed following
a multinomial distribution with parameter n and (µk)0≤k≤K conditioned to have

k∑
i=0

iNi = n− 1.

— Simulation of numbers of children. The multinomial distribution of parameters
(µk)0≤k≤K and n may be defined by its probability mass function,

P(N0 = n0, . . . , NK = nK) =


n!

n0! . . . nK !
µn0

0 . . . µnKK if
K∑
k=0

nk = n,

0 else.

Simulation of the multinomial distribution presents no difficulty. By rejection sampling, we
simulate multinomial random variables until obtaining a sequence (N0)0≤k≤K satisfying

K∑
k=0

kNk = n− 1.

We define the sequence (ζi)1≤i≤n from

(ζi)1≤i≤n = (0, . . . , 0︸ ︷︷ ︸
N0

, 1, . . . , 1︸ ︷︷ ︸
N1

, . . . , K, . . . ,K︸ ︷︷ ︸
NK

).

Let (ξi)1≤i≤n be a sequence obtained as a random permutation of (ζi)1≤i≤n. A suitable
technique for random shuffling is presented in [58, Algorithm P (p.139)]. The sequence
(ξi)1≤i≤n represents the vertices’s numbers of children in the depth-first search order.

— Computation of Łukasciewicz walk. Let L be the process defined by L(0) = 0 and,

∀ 0 ≤ k ≤ n− 2, L(k + 1) = L(k) + ξk+1 − 1.

Set l = 1 + argmin {L(k) : 0 ≤ k ≤ n − 1}. Then there exists a tree τn with n nodes
whose Łukasciecwicz walk is defined by

L[τn](k) =

{
L(l + k) + minL− 1 if 0 ≤ k ≤ n− 1− l,
L(k − n+ l) + minL− 1 if n− l ≤ k ≤ n− 1.

The computation of L[τn] from L is illustrated in Figure 7.4.
— From Łukasiewicz walk to height process. Now, we compute the corresponding

height process [26, eq.(2)],

∀ 0 ≤ k ≤ n− 1, H[τn](k) = #

{
0 ≤ j ≤ k − 1 : L[τn](j) = min

j≤l≤n
L[τn](l)

}
.
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0 71 0 71

Figure 7.4 – Illustration of the re-arrangement procedure.

— From height process to contour process. Let (bk)0≤k≤n−1 be the sequence defined
from bk = 2k − H[τn](k) if 0 ≤ k ≤ n − 1 and bn = 2(n − 1). Then the bi’s are sorted in
increasing order. The contour process C[τn](k) is defined for any 0 ≤ k ≤ 2n − 2 by [26,
eq.(1)]

C[τn](k) =


H[τn](i)− (k − bi) if ∃ 0 ≤ i ≤ n− 2, bi ≤ k < bi+1 − 1,

k − bi+1 + H[τn](i+ 1) if ∃ 0 ≤ i ≤ n− 2, bi+1 − 1 ≤ k < bi+1,

H[τn](bn−1)− (k − bn−1) if bn−1 ≤ k ≤ bn.

— From contour process to Harris path. The Harris path is only a small modification
of the contour process, defined by H[τn](0) = H[τn](2n) = 0 and

∀ 1 ≤ k ≤ 2n− 1, H[τn](k) = C[τn](k − 1) + 1.

7.4.2 Inference for a forest of binary size-constrained Galton-Watson trees

The aim of this section is to analyze the finite-sample behavior of both estimators introduced in
this chapter by means of numerical experiments. The theoretical study achieved in Section 7.3
shows that we can expect to obtain good numerical results, at least for large trees and/or a large
forest. To this goal, we consider a forest of independent conditioned Galton-Watson trees with
common critical birth distribution µ such that µ(k) = 0 for k ≥ 3. In such case, µ is entirely
characterized by its variance σ2. Simulations of Galton-Watson trees GWn(µ) are performed
with the method provided in Subsection 7.4.1.

Let F = (τ i)1≤i≤N be a forest ofN independent trees such that, for any 1 ≤ i ≤ N , τ i ∼ GWni(µ)

for some integer ni. From the Harris process of each tree τ i, one first computes the quantity

λ̂
[
τ i
]

=
〈H[τ i](2ni·), E〉

2
√
ni‖E‖22

,

where E is known and defined in (7.2). Then, we propose to estimate σ−1 in the two following
ways.

Least Squares Wasserstein

λ̂ls[F ] =
1

N

N∑
i=1

λ̂
[
τ i
]

λ̂W [F ] =
1

‖F−1
Λ∞
‖22

N∑
i=1

λ̂
[
τ (i)
] ∫ i

N

i−1
N

F−1
Λ∞

(s)ds
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Remark 7.4.1. In order to compute λ̂W [F ], we need to be able to perform computations using
the function F−1

Λ∞
. Unfortunately, in view of the theoretical study of Λ∞ made in Subsection 7.2.1,

one cannot expect to have an explicit expression for this function. In the following of this section,
we use a numerical estimation of F−1

Λ∞
by Monte Carlo simulations. To achieve this goal, we

perform simulations of Λ∞ by simulating Brownian excursion thanks to (7.3). In order to ensure
that the error made on F−1

Λ∞
does not propagate too much in our results, F−1

Λ is estimated with
an important sample of simulations of Λ∞ (exactly 106 simulations).

The theoretical investigations of Section 7.3 establish that our estimators are unbiased in the
“infinite trees” regime m(n)→∞. Nevertheless, the problem is not as simple when working with
finite trees. A clear illustration of this comes from the numerical evaluations of the average Harris
processes of finite trees. Indeed, the numerical study of Figure 7.5 shows that the average Harris
processes of small trees seem to be lower than the limiting Harris process. Hence, the quantities
λ̂[τ i] are expected to underestimate the target σ−1. But any estimator based on the asymptotic
behavior of conditioned Galton-Watson trees is expected to present such a bias. In particular,
we state in our numerical experiments that the estimator proposed in [9] presents the same bias.

The natural question arising from the preceding comments is : how is the bias of a conditioned
Galton-Watson tree related to its size and/or the unknown parameter σ ? The numerical study
presented in Figure 7.6 shows that the quantity η(n) = σ−1E[λ̂[τn]]−1, where τn ∼ GWn(µ),
seems close to be uncorrelated to σ at least when σ is large enough. This allows us to construct
a bias corrector independent on the unknown standard deviation σ. In addition, the dependency
on n may be modeled by the relation η(n) = 1 − (a

√
n + b)−1 . The coefficients appearing in η

may be estimated from simulated data,

η̂(n) = 1− (0.504273
√
n+ 0.9754839)−1

(see Figure 7.6 again). The correction is obviously expected to be better for large values of σ.
Finally, we construct the following corrected versions of the estimators λ̂ls[F ] and λ̂W [F ].

Corrected Least Squares Corrected Wasserstein

λ̂cls[F ] =
1

N

N∑
i=1

η̂(#τ i)λ̂
[
τ i
]

λ̂cW [F ] =
1

‖F−1
Λ∞
‖22

N∑
i=1

η̂
(

#τ (i)
)
λ̂
[
τ (i)
] ∫ i

N

i−1
N

F−1
Λ∞

(s)ds

Computing the estimators proposed in this chapter is not an easy task. According to Remark
7.4.1, this needs to perform an important number of simulations of Λ∞ in order to get an
accurate approximation of F−1

Λ∞
. Moreover, to be able to correct the bias highlighted above, one

needs to perform many simulations of finite trees. Together with this work, we propose a Matlab
toolbox which already includes these preliminary computations and allows to directly compute
our estimators for a forest. This toolbox as well as its documentation and the scripts used in this
chapter are available at the page : http ://agh.gforge.inria.fr.

The study of Figure 7.7 shows that for values of σ greater than 0.5, the bias correction works
properly. Moreover, it also shows that the estimator developed in [9] present the same kind of
bias as ours, which can also be corrected. In the case of small parameter σ, the bias correction
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Figure 7.5 – Mean contours of binary conditioned Galton-Watson trees with size n and σ = 0.7

calculated from 2000 trees for each values of n.

is not as accurate. This was expected because the bias corrector does not fit as well to the bias
curve for small small values of sigma as its does for greater values of σ.

Since we have an estimation procedure which seems to work, the natural further study is to see
how the quality of our estimators vary as the characteristics of the forest change. We begin by
looking at the variations when the size of the trees increase. A priori, the sizes of the trees in
the considered forest should not have influence on the dispersion of the estimators. Indeed, our
estimation strategy is based on the approximation of the Harris path of a finite tree by its limit.
As a consequence, the size parameter only governs the quality of this approximation. Whatever
the sizes of the trees, the dispersion will be given by the variance of the limit distribution Λ∞.
As expected Figure 7.8 shows that the dispersion of the estimators does not change as the sizes
of the trees change when σ takes great values. Similarly, as shown in Figure 7.9, for small values
of σ, the sizes of the trees do not influence the dispersion of the estimator. However, Figure 7.9
also shows that the sizes of the trees have a positive influence of the bias of the estimators.
Finally, Figure 7.10 shows the variation of the quality of the Least-square estimator as the size
of the forest changes. It appears to be consistent with the theoretical fluctuation intervals given
by the central limit theorem.
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Figure 7.6 – Bias of the least-square estimator for different values of σ with a fitted bias corrector
function.
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Figure 7.7 – Estimation and bias correction for forests of 10 trees with 20 nodes for σ equals
to 0.3 (top, left) 0.5 (top, right), 0.7 (bottom, left) and 0.9 (bottom right).
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Figure 7.8 – Variation of the size of the tree for small σ (equal to 0.9) : tree sizes varying from
20 nodes (left), 50 nodes (center), to 100 nodes (right). Forests of 50 trees.
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20 nodes (left), 50 nodes (center), to 100 nodes (right). Forests of 50 trees.
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