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Introduction

In the past few decades, composite materials have enjoyed wide use within the Aeronautical industry for their high structural performance and low weight. As new industries, such as Automotive, start to deploy composites in their products, these useful materials will have to meet a different set of requirements and constraints. Until now, materials and processes have been built around the flawless quality required for aeronautic applications, where failures are potentially catastrophic. Other industrial sectors, however, have less stringent safety requirements and can tolerate imperfections to meet cost and production time goals. To achieve these, both materials and manufacturing processes will have to be redesigned. From the point of view of the material, thermosetting resins that are in common use for structural applications can be replaced with thermoplastic matrices. The latter are easier to recycle and manufacture at medium-to-large scale. By adding continuous fibre reinforcements, the strength needed for structural components can be achieved together with fast manufacturing.

Unfortunately, these faster but less accurate processes increase the frequency and severity of flaws and imperfections, which have a strong effect on the structural safety of composites. The Aeronautic industry can afford to manage these issues by throughly checking and fixing each artifact according to strict defect tolerance rules. However, the long time and high costs required to sustain such level of control during and after manufacturing make this approach unsuitable for low-cost applications [START_REF] Haddad | Study of trimming damages of cfrp structures in function of the machining processes and their impact on the mechanical behavior[END_REF].

Instead, the critical change that will enable low-cost applications of composites is the switch from a defect-avoiding to defect-tolerant design. Besides the obvious structural design implications of this choice, one critical aspect is how to detect the large variety of flaws that may affect continuous long fibres composites. Ultrasounds, radiography, and thermography are widespread non-destructive techniques (NDT) that yield the precise data used for process tune-up, even in the case of low-cost materials [MAGMAT 2006;[START_REF] Cantwell | The significance of damage and defects and their detection in composite materials: a review[END_REF]. However, cost and operational complexity precludes these tools from in-service inspections of the low-cost composites that will gain in popularity in the near future. This is exactly the challenge that this thesis looks to address: Is it possible to detect and estimate the effect of defects without resorting to complex and time-consuming NDT techniques?

The techniques developed in this thesis focus on cost and ease-of-use, while delivering sufficient measurement accuracy to ensure the safety and performance of upcoming low-cost composite structures.

More specifically, this work explores the combination of classical mechanical tests and full-field techniques such as Digital Image Correlation (DIC) and Integrated Digital Image Correlation (IDIC). DIC and IDIC provide the data needed to solve the inverse problem, i.e. the estimation of geometric and mechanical properties of macro defects. Experimentally, the measured mechanical response of the component is compared to its known flawless counterpart under known loading conditions. To carry out a systematic analysis, two important choices are needed.

The first choice concerns the type of loading to apply during testing. Buckling tests are especially suited for this task, since the presence of imperfections is known to significantly alter the response of the component under a compressive load [START_REF] Bažant | Stability of structures: elastic, inelastic, fracture and damage theories[END_REF][START_REF] Koiter | The stability of elastic equilibrium[END_REF]]. Furthermore, geometrical instability is a prominent design constraint in many fields, such as Aeronautics and Biomedical applications, and yet buckling inverse problems are relatively scarce in literature [START_REF] Kaminski | Analyse de la nocivité des défauts induits de type impact sur les performances résiduelles des structures composites[END_REF][START_REF] Elishakoff | Inverse buckling problem for inhomogeneous columns[END_REF][START_REF] Catellani | Apparently first closed-form solutions of semi-inverse buckling problems involving distributed and concentrated loads[END_REF]]. The main strength of compressive test is also 4 its biggest drawback: the heightened sensibility to defects makes it harder to separate the effects of different kinds of flaws and may also produce qualitative changes in mechanical behavior [START_REF] Greenhalgh | The effect of defects on the performance of post-buckled cfrp stringer-stiffened panels[END_REF][START_REF] Guz | Composites with interlaminar imperfections: substantiation of the bounds for failure parameters in compression[END_REF]].

The second choice concerns the kind of manufacturing defect to consider. According to the literature, there are two main families of such flaws. Material defects are local variations in material properties, such as fibre waviness and porosity. Geometric defects are global flaws, like crookedness, that are specific to each manufactured artifact.

The choice of the analysis approach has been driven by the need for accurate localization of the flaw without a priori knowledge of its position or size. Indeed, not all inverse techniques are guaranteed to converge under such conditions, [START_REF] Bonnet | Inverse problems in elasticity[END_REF][START_REF] Mottershead | Model updating in structural dynamics: a survey[END_REF]. Due to its good localization performance in vibration tests, it was decided to work with and extend the Modified Error in Constitutive Relation (MCRE) approach to the case of buckling.

In fact, one of the most important research questions in this thesis has been the extension of approaches to inverse problems from vibration to compression loading. More specifically, using the MCRE for buckling tests required a completely new formulation, since the eigenvalue solutions that can be computed analytically and experimentally under vibrating load do not extend to the buckling case. In the latter case, however, the analytical eigenvalue solution obtained for a perfect body does not fit the experiments, even for nearly flawless specimens. The reduction of such non-linear large deflection behavior to the equivalent eigenvalue problem is one of the main issues tackled in this work.

Furthermore, the Southwell plot is introduced as a tool to separate the effect of material and geometrical defects in the case of beam-like structures [START_REF] Southwell | On the analysis of experimental observations in problems of elastic stability[END_REF]]. Later, [START_REF] Spencer | Critique of southwell plots with proposals for alternative methods[END_REF] extended this technique to other types of structures. Using the Southwell plot, it is possible to determine the first buckling load of a structure, as if geometrically perfect, using the experimental values of the load and out-of-plane displacement of a point of the structure during the buckling test. Nevertheless, its precision decreases when experiments cannot be correctly approximated by the linearized buckling theory.

Other loading conditions were also examined to complete the evaluation of the extended MCRE relation. Tension, three points bending and vibration experiments were all simulated via finite elements (FE) to compare the resulting defect characterization with the compression tests.

Outline of the work

The work is organized as follows:

• The first chapter contains an literature overview on four relevant topics: manufacturing defects, inverse problems, instability in compression and digital image correlation.

1.1 Defects presents an evaluation of defects, specifically the most dangerous ones. This content was instrumental in the choice of the type of flaw to focus on throughout the remainder of the work;

1.2.5 Inverse problems investigates inverse problems and their solution strategies in the context of flaw identification. Following this analysis, MCRE was chosen as the most appropriate algorithm;

1.3 Instability in compression deals with the effects of buckling on perfect and flawed structures and introduces the linearized theory for beams and the Southwell plot.

1.4 Digital Image Correlation outlines the StereoDIC, the three dimensional surface DIC employed as a post-processing tool to measure full-field displacements during tests;

• The second chapter presents the first theoretical contribution of this work: the MCRE extension to linearised buckling. Its defect localization and characterization performance is then validated using a Finite Element (FE) simulation of defective specimens;

• The third and fourth chapters explore the effect of different parameters on the identification procedure. Chapter 3 presents the algorithm that uses eigenvalues and eigenmodes. Chapter 4 describes a complete simulation of a defective specimen;

• The fifth chapter evaluates the performance of buckling-based identification tests against the corresponding tension, 3-point-bending, and vibration approaches;

• The sixth and last chapter describe the experimental procedures, including manufacturing, testing, data post-processing. Finally, the linearized buckling MCRE method is used to identify fibre waviness on a real specimen.

Introduction to composites

Every material that is composed by at least two constituents is a composite. Of course scale matters and today, with the trend to work more and more at small scales, every material can be considered as a composite. The focus is here set on the ones composed by a resisting element, the reinforcement, and a joining element, the matrix, and in particular on continuous fibre reinforced polymers (FRP). The two constituents act in synergy to achieve properties that could not be obtained by any of the original constituent alone. The interest in composite materials lies on the possibility of manufacturing stiff and strong elements with low weight. Compared to metals, as steel and aluminium, composites present higher stiffness-to-weight and strength-to-weight ratios, better endurance to fatigue and corrosion.

As counterpart, they present, for laminate based structures, lower compressive strength, bad impact behaviour and high sensitivity to humidity and pollution. The main reasons for which structural composite are avoided in many application are their cost and slow and expensive manufacturing processes.

The better properties of composites over metals are justified by the following consideration. When dealing with a material, there is a certain probability that a defect is present in the analysed piece, which increases with the dimensions. Along with a reduction in volume also the probability to find a flaw decreases. Therefore a single fibre, which has a small volume, is a lot more resistant. As long as only the reinforcement is involved, fibres have better properties than metallic materials. As counterpart, the reinforcement is bounded by a resin matrix which has low strength and stiffness.

For isotropic materials, as traditional metals, the properties are basically unaffected by the direction. For fibre reinforced polymer matrix composites instead, high stiffness and strength are found along the principal axis of the fibres and low ones in the direction where the matrix properties dominate. As consequence, composites carry also the advantage of design flexibility. According to the the loading conditions, the optimal reinforcement alignment is chosen to follow the stress and strain direction. For complex components, an articulate stacking sequence can be chosen to optimize the design.

The properties of the composite components are not the design ones of the fibres: variations of fibres alignment from the desired direction and the presence of the matrix result in lower properties. Since the load-carrying capability is responsibility of the reinforcement, these two issues can influence strongly the behaviour of the entire element.

The more common reinforcement used for structural components of FRP are made of glass or carbon or kevlar, a Dupont's patent, which has better impact resistance. The matrix has three fundamental roles: to keep the fibres aligned, to distribute the load between fibres and to protect them from the outer environment, e.g. UV rays, humidity, moisture. Numerous types of resins are available: these differ in terms of operational temperature, level of viscosity... Some of these parameters can be opportunely altered to obtain characteristics near to the ones needed. Two big families of FRP matrices exist: thermosetting resins (TS) and thermoplastic (TP) resins. More commonly used for structural parts is the first type. Nevertheless, the thermoplastic resins are enjoying a great rise in popularity thanks to some intrinsic features, such as being recyclable, suffering less from pollution and above all their suitability to fast automatized process, which make this type of composites an appealing alternative to metals in the fields where they were previously not exploited for cost and time reasons.

The difference between thermosetting and thermoplastic stands on a chemical level. TS resins are rigid 3D networks organized in an amorphous structure. The forming process involves a exothermic chemical reaction of polymerisation, usually called curing, where temperature and eventually pressure are applied for a certain time, necessary for the chemical reaction to take place. Instead, TP resins are crystalline or amorphous structures kept together by Van der Waals forces, which can be repeatedly melted and solidified by increasing or decreasing the temperature. Since no chemical reaction takes place, the time required is related to the melting and solidifying process.

The forming procedures for thermosetting and thermoplastic composites are conceptually alike, however, since at room temperature thermoplastic resins are solid, these need to be heated before any process is undertaken. The opposite happens for thermosetting resins: the product is initially soft and is solidified by the curing. This process is irreversible and can be enhanced, by temperature along with pressure, but not interrupted.

For instance, this difference, deriving from the micro-structure, can be exemplified for the case of prepregs (a sheet of fibres impregnated by the resin). TS prepregs have a limited shelf life since the curing process starts with the impregnation and can not be interrupted. The process can only be slowed down by storing at low temperature. TP prepregs, on the contrary, can be stored indefinitely at ambient temperature, since no curing is needed. Furthermore, a related advantage is the possibility to remelt if any error occurred in the manufacturing. This characteristic justifies the possibility to recycle.

The design of composite components is fundamentally different from that of metallic components. While for metallic materials the behaviour is commonly isotropic, the presence of the reinforcement introduces anisotropy. Since the reinforcement is in charge of the load-carrying capability, the design of a piece should mandatorily consider the direction of the stresses. For this reason, unlike continuous media for which the choice of material and the design are pursued independently, for composite material the procedures of design and sizing of the structure are set jointly. The design step is a highly articulated one: it consists in the choice of the reinforcement, the resin and also the forming technique. In addition, the constraint of the particular application play and important role. For the automotive sector for instance, important parameters to account for are: resistance, good performance, low cost, possibility to automatize the process and high rates of production. It is important to note that not all the manufacturing technique are suited for all combinations of reinforcement and resins and that they depend also on the component desired shape.

Types of reinforcement and semi-finished products

The terminology used for reinforcements comes from the textile tradition: a single fibre is a filament, a bunch of fibres produced simultaneously is a strand or a end and, when rolled together as a tape, they become rovings or tows or, if twisted and stranded, yarns. Both roving and yarns can be woven into woven rovings and clothes which can be webbed in a variety of shapes. As function of the number of weft, filaments in the transverse direction, and warp, filaments in longitudinal direction, the production ranges from unidirectional, with the minimum number of wefts necessary to keep the weave together, to the case of equal number of filament in weft and warp. The types and number of intersection between weft and warp and the angle of intersection (for some particular application it can vary from 90 • ) lead to different performances of the formed piece: the weaving technique influences the behaviour.

The fibres can either be continuous fibres or they can be chopped into short fibres. Continuous fibres have the advantage of higher resistance but are more difficult to manufacture. For our application, that is the production of structural components, only continuous fibres are considered.

The fibres can be bought in the form of dry reinforcements or in the form of semi-finished products, which already include the matrix, used as they are or can be impregnated by the resin to form semifinished products. A wide range of continuous fibre semi-finished composites with thermoplastic matrices exist:

• Already compacted plate

• Co-laminate bonding: composite sheet where the matrix has already permeated the majority of the fibres

• Co-mixed: mixture of reinforcing fibres and matrix fibres

• Powder: usually woven reinforcement on which matrix in powder form is agglomerated on one or both sides of the surface Going from top to bottom, the manufacturing time increases, but the cost of the material decreases: the choice is thus a compromise between these two factors. More specifically, the first type of semifinished product only needs to be laid out, whereas a dry reinforcement requires complete impregnation before consolidation.

Overview on manufacturing process for thermoplastic composites

The manufacturing techniques differ according to the type of reinforcement, continuous of short fibres, the resin, thermosetting or thermoplastic, the geometry, see [START_REF] Mazumdar | Composites manufacturing: materials, product, and process engineering[END_REF]]. In Fig. 1.1, the thermoplastic composites manufacturing techniques are summarized. The techniques highlighted are the one commonly employed for thermoplastic resins reinforced by continuous fibres as lay-up, compression moulding, with the addition of thermoforming, process typical of thermoplastic composites. Our interest is set on the latter, which we will detail in the following. Among the other existing techniques, one founds pultrusion, conceptually similar to extrusion, and filament winding, where impregnated tapes are wounded onto a tool which replicates the internal shape of the object. This last technique is used to produce structures of evolution, for example storage tanks.

The thermoforming process consists in applying pressure and heat to a part, pre-heating is also possible. Standard applications involve a female mould and a vacuum membrane. The advantage is the low time, 120-180 seconds may suffice, the low tooling cost and the speed. The parameters influencing the results are: the heating period and rate, the mould temperature, the forming rate and the cooling rate. 

Material and design of the composite of interest

The requirements of structural parts produced by fast automatized processes favours continuous fibres made of glass or carbon embedded in thermoplastic matrices manufactured using thermoforming type methods. The technique analysed by CETIM are the so called thermocompression and transfert. The two, conceptually alike, differ in terms of heating. For the first, both temperature and pressure are provided inside the press, while for the latter, the material is heated outside the press using IR rays before moulding inside the press.

In the first case, after stacking the plies, the laminate is put into the press. The machine features two heated plates, the upper one moves downwards applying the desired compression. The problem of the thermocompression process lays in the long time required to homogeneously heat the composite plate in order to achieve good infiltration of the matrix between the fibres. If the heating period is shorter than 30', then the compression should be continued during cooling, but such a requirement is not suitable for an automatized industrial process. Moreover, coupling heating and compression seems more likely to promote porosity and to reduce the impregnation of the surfaces. This is why the second fabrication technique is introduced. Plies are pre-heated before compression using infrared rays (outside the machine) to shorten the heating and compression times. Since excessive heat would burn the material, the required time is between 5 and 7 minutes. The material is heated to a temperature higher than the fusion temperature of the matrix in order to ensure complete melting of the resin in the stack. To monitor the temperature, a thermocouple is inserted between the element and one of the plates. Even if this technique is suited for prepregs and the five minute requirement is satisfactory for industrial application, as the automotive sector, the procedure is not applicable to powder composites. In this case, limiting the process time to 5' results in an excessive level of porosity, above 10%. Therefore the production time for this type of semi-product has to be increased.

Manufacturing parameters such as time, temperature and pressure influence strongly the quality of the product. Fixing a material and a manufacturing technique, the quality of the manufactured product varies considerably. In [START_REF] Hou | Manufacturing process and mechanical properties of thermoplastic composite components[END_REF]], the micro structure of the cross section of a laminate obtained by compression moulding is observed at different stages of the consolidation. The consolidation process of the laminate may be split in two different stages, i.e. compaction and impregnation. It is found that each of the two steps is strongly influenced by the aforementioned manufacturing parameters. First, increasing either applied pressure or holding time enhances the quality of the laminates. Second, the time needed to reach the same consolidation quality reduces dramatically once higher pressure is applied. It is obvious that temperature has also a strong effect: if the processing temperature is reduced, the time and pressure needed to obtain complete impregnation increase.

General considerations about defects

To detail the concept of defect, it is necessary to define the framework and the composite materials. We focus here on laminated or 2D woven continuous long fiber composites. This type of material can be described at different scales: the micro-scale, the scale of the constituents, the meso-scale, the scale of the ply or of the Representative Volume Element of the fabrics, and the macro-scale, the scale of the component. Analogously, flaws exist at many scale: uncertainties and what we normally call defects.

In the thesis, it is implicitly assumed that defects existing at the micro-scale and meso scale can be described at the meso-scale as a variability of the material properties. This idea is for example supported by the study of [START_REF] Casari | Analyse de la variabilité du comportement de stratifiés à usage marin: approche probabilisée à l'échelle du pli[END_REF]] on marine composites. Those micro or small meso defect will be call uncertainties. The second category (which we call defect), including for example large fibre waviness and associated matrix porosity, often involve not only the ply level but also a part of the stacking sequence.

A peculiarity of composite materials is the necessity to jointly pursue the design of the geometry and of the manufacturing process, which depends on the loadings. The presence and the type of defects are intrinsic to the manufacturing method. Flaws should therefore be taken into account when evaluating the properties of the component; issues related to manufacturing, e.g fibre reorientation following resin injection, influence the mechanical properties of the part [START_REF] Deléglise | Modeling of high speed rtm injection with highly reactive resin with on-line mixing[END_REF][START_REF] Eck | Multi-objective composite part mechanical optimization enhanced by a process estimator[END_REF].

Two type of manufacturing related issues exist: one group gathering all flaws that appear systematically depending on the manufacturing process, the features, and another group which include all flaws caused by an error in the manufacturing, the defects.

Defects vs. features Now, to analyse and characterize flaws, the introduction of a new concept is fundamental: the concept of feature, to juxtapose, or better to associate, to the concept of defect [START_REF] Potter | Variability, fibre waviness and misalignment in the determination of the properties of composite materials and structures[END_REF]. Features gather every 'defect' that is not attributable to poor manufacturing but that is instead a signature of the selected manufacturing process. More accurate manufacturing is useless; only by changing the process the feature can be eliminated. To clarify the idea, let us expound the example of the draping around a corner, shown in Fig. 1.2. Depending on the draping process, the results and the quality of the finished product varies, for example in terms of the angle formed by the fibres and of the mass per unit area. All the eventual fibres orientation, variations in thickness and cut plies observed are features, which can only be modified by modifying the design.

This case exemplifies the difference between features and defect and let an important matter arises: to establish when, due to improper design, features become defects. In this latter category fall design procedures that lead to excessive deviation from the correct behaviour, for which a re-thinking of the manufacturing procedure becomes imperative.

The concept of quality More generally, it is common to introduce the term 'quality', relative to the absence of flaws. This concept is a rather vague and shallow one, as for composite materials the indetermination begins with the as-supplied material. Studies on prepregs, [START_REF] Potter | Variability, fibre waviness and misalignment in the determination of the properties of composite materials and structures[END_REF], show: deviations in mass properties from the specification for single measures, variations depending on the position across the roll and presence of localized fibre misalignment. One might conclude that quality depends on the one of raw materials, however it is not so straightforward.

Taking again the example of the manufacture of a corner, one can show how pre-existing waviness might be responsible of an increase in quality of the finished product. In absence of pre-existing waviness new undulation are created, more localized and coherent through the thickness, hence more harmful. On the other hand, if an area of wavy fibres pre-exists, the waviness just undergoes a sharpening, with less impact on the behaviour. Therefore, whether lower quality in the as-supplied material means a loss in quality of the component depends on the specific situation.

For large series structural applications, a definition is even harder to give since quality is not any more the sole constraint, but, as important, the requirement of reduced time and cost of production arises. For this reason, the focus is here set in understanding whether the already present defects Figure 1.2: Four different draping solutions [START_REF] Potter | Variability, fibre waviness and misalignment in the determination of the properties of composite materials and structures[END_REF] are acceptable or whether their effects are too detrimental for the properties and a rethinking of the manufacturing process is not considered an available opportunity.

Even the concept of defect and features depend on the imposed constraints. If the quality is the predominant one, one focuses on the elimination of all defects, leaving only the features. If instead, as here, time and cost are added to the aforementioned constraint as governing requirements, the presence of defects in addition to the features is accepted, if they are not too dangerous.

Categorization of defects [START_REF] Potter | Understanding the origins of defects and variability in composites manufacture[END_REF]] outlines more than 160 manufacturing defects that can occur. Not all however are to be considered hazardous in the same way.

Manufacturing defects can be in the fibre architecture, e.g. fibre misalignment, irregular fibre distribution and broken fibres, in the matrix, e.g. voids, and in the interfacial regions, e.g. debonding and delaminations. Other categorizations exist, for instance in [START_REF] Adams | A review of defect types and nondestructive testing techniques for composites and bonded joints[END_REF] the inservice defect group is added. The last category groups the defect deriving from in-service damage, e.g. impact, and will not be considered here, since they do not belong to manufacturing defects.

The present study does not aim at investigating all possible flaws deriving from fabrication; only the ones that are considered the most dangerous will undergo further study. For the purpose, Cetim has proposed a taxonomy that classifies the defect in term of three criteria: frequency, detectability and harmfulness. This analysis highlights: porosity, fibre waviness, ply rotation and ply drops as the more hazardous flaws.

All such defects share an aspect: the effect of changing locally the material properties. For instance, fibre waviness, as ply rotation on a wider scale, engender the variation of Young's Moduli E 11 and E 22 . Broken fibres cause a change in fibre-resin ratio and inhibits the correct load transmission. Equivalent effects have an abruptly ended ply, which can be in part recovered by imposing a partial superposition of the plies.

Following these consideration, it is here proposed to subdivide flaws into two categories: material defects and geometric defects. To the first family belong all the defects previously defined as harmful: flaws that cause a variation of material properties at the ply' s scale. However, local changes in properties are not the only issues. Manufactured composite components may be affected by a phenomenon, the residual stress, defined in [START_REF] Parlevliet | Residual stresses in thermoplastic compositesa study of the literaturepart i: Formation of residual stresses[END_REF]] as a stress that persists in a material that is free of external forces or temperature gradients, that for thermoplastic composites has mainly thermal origins. Its main effect is a loss of flatness of the area, e.g. a crookedness (see Fig. 1.3). This is the reason why the second category, the geometric defects, is introduced. These flaws depend on the particular specimen and on the experimental set-up. The aim of this work is to identify material defects, at first disregarding the geometric ones. Nevertheless, neglecting them is not a possible way. Due to their strong influence on the behaviour of the specimen, they require special attention. A technique, linked to buckling, to make the response partially independent from their presence is presented in the third section of this chapter, devoted to buckling.

The rest of this section is dedicated to a description of the harmful material defects selected, their origin and their effects. The flaws are catalogued geographically, according to the area of the composite structure they affect, into: defects in the matrix, defects in the fibre architecture and defects in the interface regions. The summary, gathering informations acquired from a state of the art analysis, aims at answering a certain number of questions for each defect: what is it, its origins and its effects.

Defects in the matrix

Porosity

Porosity can be found in virtually all composite components, as, even following a really accurate manufacturing, the void content can be reduced but never completely eliminated.

A void consists in an empty pocket inside the material. Several are the possible causes: air trapped at the interface between the plies during the lay-up or even, for thermosetting composites, evaporation of water and volatile substances present inside the prepreg during the curing process.

In [START_REF] Summerscales | Manufacturing defects in fibre-reinforced plastics composites[END_REF]], the creation of voids and their evolution during manufacturing is outlined [START_REF] Binetruy | Tow impregnation model and void formation mechanisms during rtm[END_REF][START_REF] Gourichon | Dynamic void content prediction during radial injection in liquid composite molding[END_REF]. Pores are considered to be generated either by mechanical means, as broken fibres and entrapped air bubbles, or by homogeneous and heterogeneous nucleation.

Once the void has nucleated, when not pre-existent, it evolves due to: changes in the pressure gap between the void and the material, thermal expansion caused by temperature gradients, changes in vapour-mass or vapour transfer across the interface between void and material.

In general many parameters control void formation, e.g pressure and temperature, resin viscosity. Among others, pressure is found to play an important role. It is believed by [START_REF] Stringer | Optimization of the wet lay-up/vacuum bag process for the fabrication of carbon fibre epoxy composites with high fibre fraction and low void content[END_REF]Wood and Bader 1994a,b] that the application of pressure during specific windows of resin viscosity minimise the voids content, inducing the air bubbles to dissolve into the matrix.

Also void position varies with the manufacturing techniques and the type of resin. For laminates, porosity is more likely to occur between plies due to air remaining trapped during the lay-up procedure.

Porosity manifests itself in different forms: as macro-pores, more dangerous but commonly easily detectable and simple to eliminate (on the right hand-side of Fig. 1.4) or as distributed micro-pores (on the left hand-side of Fig. 1.4) or as lack of impregnation of fibres (Fig 1.5a) and between plies (Fig. 1.5b). Responsible for this last issue is wrong manufacturing related to the viscosity of the resins, indeed lack of impregnation is common for thermoplastic resins due to their higher viscosity. Lack of impregnation entails three main problems. First, it leads to a failure in displacing all the air during manufacturing. Second, the local absence of matrix causes a less efficient load transfer between fibres, taking place through friction. Last, the lack of adhesion between plies entails lower product properties and may be the onset of delaminations. Non-destructive techniques can be used to characterize porosity. Optical imaging analysis can characterize void content, together with density measurement and ultrasonic attenuation.

Mechanical effects of porosity An important point is the effects of the presence of porosity on properties. To describe the effects of voids on the performances, many models exist in literature. Although qualitatively the results are good, quantitatively large discrepancies are found. For instance, [START_REF] Huang | Effects of void geometry on elastic properties of unidirectional fiber reinforced composites[END_REF] highlight a luminous example: taking the case of of shear strength, for a void content of 1% the reductions documented in the literature range between 5 and 15%. The reasons of these discrepancies are multiple, mainly set in the number of parameters used for the description and in the assumption taken for modelling.

Among the problems related to the number of parameters used for the void description, exemplary is the case of void geometry: commonly, as parameter, the emphasis is put on the voids content, disregarding shape, size and distribution. Given the origins of the pores, by air trapped during the manufacturing process, the voids do not evolve in an equivalent manner in all directions. In particular, the expansion is preferential in the direction parallel to the fibres and is rather limited in the two perpendicular directions, due to the stiffness of the fibres acting as a constraint to the expansion. The result is a void cigar-shaped in the fibre's direction, presenting a flat elliptical cross-section with the short axis in the direction of the laminate thickness, as found by [START_REF] Hsu | A morphological study of porosity defects in graphite-epoxy composites[END_REF] from optical imaging of consecutive section. From these coupons sections the dimensions can be reconstructed. The values variations found within each sample are broad; instead, the average dimensions remain consistent between samples. The numerical values can be found in [START_REF] Hsu | A morphological study of porosity defects in graphite-epoxy composites[END_REF], see Table 1.1. The standard description of spherical or elliptical voids, having the same size and being evenly distributed is not sufficient for a good description. Reality is different.

In addition, of common use is a wrong modelling: treating pores as air inclusion by removing both resin and fibres. See for instance the extension to inclusion theory in [START_REF] Berryman | Role of porosity in estimates of composite elastic constants[END_REF]]. The real phenomenon is more complex: the vacuum, acting as a sort of inflated balloon, only replaces the matrix, while the fibres remain present and tend to bundle the one towards the other causing a local variation of the fibre-resin ratio. As a result, the variations of the elastic properties predicted by the two theories are different. While with the first description a similar change in the two directions is detected, with the second theory the variation of the elastic modulus is lower in the fibre direction and is higher in the perpendicular direction [START_REF] Olivier | Effects of cure cycle pressure and voids on some mechanical properties of carbon/epoxy laminates[END_REF]].

Defects in fibre architecture

Ply misalignment

A ply misalignment is a variation in the orientation of one or more plies from the design specification, which is due to insufficient attentions during manufacture and to the process itself. Its frequency is expected to decrease for automated procedures.

Since the design of composite components takes into account the stress and strain direction, it is evident how errors in ply alignment have certain effects on real properties and can completely change the stresses on the part. To begin, the case of a single ply loaded in fibres direction is taken [START_REF] Summerscales | Manufacturing defects in fibre-reinforced plastics composites[END_REF]]. An error in the orientation of the fibres of less than 10 • results in small elastic properties degradation. Instead, a misalignment between 10 and 20 • adds, to direct compression-tension, a shear load acting on the weakest interface. This effect is even more extreme for a misalignment over 20 • , where the fibre-matrix interface is loaded directly in compression-tension and the fibres properties are poorly used, see Fig. 1.6. For complex lay-ups, one or more plies with a wrong orientation have effects on the properties. For instance in bending, the most critical are the surface plies. At the same time, a wrong alignment of the inner plies of a complex structure is really difficult to detect by non destructive testing.

To evaluate the effect of a variation of the fibres alignment on the material properties of a ply the Kirchhoff-Love theory, or Classical Laminate Theory (CLT), can be used. This theory also enables the calculation of stress and strain distributions on a plate composed of multiple plies with a complex stacking sequence. For a preliminary analysis of the effects of ply misalignment, the theory of plates (presented in Appendix A) can be used to estimate the percentage loss in Young's Modulus due to errors in plies orientation. For instance, in Fig. 1.6 is plotted the reduction of the Young's Modulus with the variation in fibre orientation on an angular plot.

Fibre Waviness

Fibre waviness could be considered as a local fibre alignment defect that has consequences on the mechanical properties of the component. It can be defined as a region of material with different amplitude to wavelength ratio embedded in regions of straight fibre material.

It appears both globally, when the undulations affect an entire ply, and locally. It is denoted as in-plane when it involves cooperative undulations of fibres in the plane of the lamina and as out-ofplane when it involves multiple plies through the thickness of the laminate, the two cases are shown The origins of this flaw are multiple. As a feature, this is the result of manufacturing of complex geometries, as the case of draping around a corner of Figs. 1.8a and b. As a defect, it is considered to be related to the as-supplied material variability. For instance for prepregs, those considered to be the causes of wavy fibres are: a pre-existing waviness, Fig. 1.8c, and a difference in length between inner and outer ply, Fig. 1.8d, deriving from the necessity to roll the material for transportation and storage [START_REF] Potter | Variability, fibre waviness and misalignment in the determination of the properties of composite materials and structures[END_REF]. When the undulations are not already present in the prepreg, they tend to be coherent on adjacent plies, which is a more harmful case.

Concerning the non-destructive techniques used to detect fibre waviness, optical microscopy is employed as experimental technique to characterize this defect in unidirectional laminates [START_REF] Joyce | A technique for characterizing process-induced fiber waviness in unidirectional composite laminates-using optical microscopy[END_REF]]. In addition, ultrasound can be used for detecting fibre waviness as well as porosity and delaminations. The drawback is the impossibility to determine which one of these flaws is identified: since each of these have different detrimental influence on properties, ultrasound results can not be employed to forecast the effects of their presence. In [START_REF] Zardan | Study of induced ultrasonic deviation for the detection and identification of ply waviness in carbon fibre reinforced polymer[END_REF], the ultrasonic deviation parameter is proposed to both detect and identify regions of wavy fibres through the thickness of carbon reinforced polymers.

Mechanical effects of fibre waviness It is necessary to inspect the effects of undulations on the overall behaviour. For this purpose, the way of modelling waviness should be analysed. Commonly, the mean fibre orientation keeps parallel to the desired direction, reason why fibre waviness is frequently ignored. However, the effects are non-negligible since this flaw is the main responsible of a transition from fibre dominated behaviour to matrix dominated one. If wavy areas are ignored in finite element simulations, i.e. when the properties of straight fibre material are imposed everywhere on a component displaying undulations, the results are not conservative. The underestimation is even more stressed for laminates with a strong preferred alignment, where its presence is particularly detrimental for the performances [START_REF] Summerscales | Manufacturing defects in fibre-reinforced plastics composites[END_REF]].

The error committed by neglecting and the impossibility to avoid manufacturing induced fibre waviness have made necessary many analytical studies and simulations to predict the property variation due to reinforcement undulations. Many different modelling strategies exist. Often, for a better estimation of its effects, properties are introduced at the constituents level. The micro-mechanics is studied by modelling a volume element of wavy fibre, which are commonly idealised and modelled as sinusoidal. Notwithstanding the accuracy of the model, some assumption are made which may decrease the quality of the results; for instance imposing periodic boundary conditions, that is considering an entirely wavy element, see Fig. 1.9a, results in an over-estimation of the effects. In Fig. 1.9b, c and d, some more realistic models are proposed where both periodic and localized waviness are considered.

In [START_REF] Garnich | Localized fiber waviness and implications for failure in unidirectional composites[END_REF], the four examples of waviness of Fig. 1.9 are used to evaluate how the elastic constants of an unidirectional (UD) are affected by local and global waviness. For the simulations, the amplitude to wavelength ratio is fixed at 0.04 and the undulation is considered either local or global, i.e. continuous. According to whether the flaw is modelled as continuous or localized, cfr. for instance a and b in Fig. 1.9, the drop of Young's Modulus in fibre direction encountered varies strongly, being of 10% for the localized waviness and of 30% for the continuous undulation.

Various parameters influencing wavy fibres are used for the description: usually amplitude and wavelength are employed, sometimes replaced by their ratio. In addition, the maximum misalignment angle can be considered. Also the distribution of waviness is proven to play an important role, expounded in [START_REF] Tsai | The effect of inclusion waviness and waviness distribution on elastic properties of fiber-reinforced composites[END_REF] via Monte Carlo simulations. Another factor that affects the performances is the intensity of wrinkling: strength can reduce up to 50% in compression and 70% in tension for the most intense wrinkles [START_REF] Potter | Variability, fibre waviness and misalignment in the determination of the properties of composite materials and structures[END_REF]]. Furthermore, fibre waviness is acknowledged to be the cause, both in compression [START_REF] Wisnom | Analysis of shear instability in compression due to fibre waviness[END_REF]] and pure bending [START_REF] Wisnom | The effect of fibre waviness on the relationship between compressive and flexural strengths of unidirectional composites[END_REF]], of a shear instability mechanism believed to be responsible for kinking. As the load increases, the shear stress resulting from misalignment causes the fibres to rotate and therefore increase the misalignment angle. The reduction in shear tangent modulus with increasing shear strain leads to instability with further rotation occurring without any increase in applied load. Microstructure imperfections, as fibre misalignments and matrix plasticity, are believed to be the cause of the microbuckling mechanism which leads to kinking bands and complete failure, detailed and modelled among many others in [START_REF] Guimard | Statistical energy and failure analysis of cfrp compression behavior using a uniaxial microbuckling model[END_REF]]. In addition, in [START_REF] Feld | Micro-mechanical prediction of ud laminates behavior under combined compression up to failure: influence of matrix degradation[END_REF]] the critical influence of fibre waviness on kinking and failure is supported. It is stated that the group of fibres with the largest realistic waviness are the first to fail and propagate through the whole sample. It also derives that undulations in fibres cause a reduction of the load for which instability in compression occurs.

A small parenthesis on out-of-plane misalignment follows, even if it affects angled geometries, cylindrical and thick elements that are not treated in this work. The out-of-plane wrinkling plays a significant role in developing spring-in angles. For angled section, this feature manifests itself as a reduction of the enclosed angle. The origins are: thermoelastic and non-thermoelastic distortions. The first is generated by a difference between in-plane and through-thickness expansion coefficients. It can be predicted easily, although the presence of wavy fibres and resin rich areas lead to a variability in the level of distortion. The latter is due to resin shrinkage and tool-part interactions, relatively easily predicted, or to the impact of bridging, more difficult to predict and measure.

Layer waviness is found to play an important role in compression fatigue, [START_REF] Adams | Effects of layer waviness on the compression fatigue performance of thermoplastic composite laminates[END_REF] shows that, for carbon reinforced thermoplastic composites with a waved layer, a one and a half decade loss is encountered compared to the fatigue behaviour of wave-free control specimen. In addition, the stress state at 10 6 cycles run out is only the 45% of the static compression strength for a non-waved specimen.

Defects in the interface regions

Ply drops

Composites materials offer a unique structural tailoring capability. The possibility to optimise the design of a component requires the gradual reduction of the thickness with the decrease in load carrying [START_REF] Potter | Variability, fibre waviness and misalignment in the determination of the properties of composite materials and structures[END_REF] The presence of dropped plies cause internal and local stress concentrations, consequences of geometric discontinuities. The main issue with this feature is that, under both static and fatigue loading, small cracks or delaminations often appear. These propagate when the stress exceeds a certain threshold, linked to the energy release rate. The architectural choices are therefore intended to reduce the stress in order to prevent the propagation.

The factors influencing the quality of the drop are multiple: stacking sequence, thickness, design and manufacturing consideration [START_REF] Cairns | Design and manufacturing considerations for ply drops in composite structures[END_REF]] are some of them. Regarding these last two points, clarifications have to be made. The geometry of the ply drop shown in Fig. 1.10 is the ideal one. Commonly, as results of a very accurate manufacturing, the geometry obtained resembles the one of Fig. 1.11a. For simplicity of production, the dropped plies present a straight knife cut, which results in resin rich areas. The small triangular patches of matrix accumulated at the tips of the ply drops act as points of weakness, behaving as potential sites of initiation for cracks and, due the complex stresses, as early onsets of delamination under applied loading.

The manufacturing of ply drop is another breakpoint. Ply drops are in general better labelled as features. Nevertheless, following inaccurate manufacturing flaws may appear, such as misplaced ply ends, voids, bridging and wrinkling, as shown in Fig. 1.11b. The main issue is related to the frequent occurrence of cracks and delaminations and to their propagation. Some design choices emerge as a method to reduce or eliminate the problem. Different geometries can be obtained depending on the method chosen, in general ply drops can be external or internal, the latter are to be preferred. It is best practice not to interrupt multiple plies all in the same spot. Even though this method is advantageous in terms of the speed of production, it induces severe weakness in the part [START_REF] Cairns | Design and manufacturing considerations for ply drops in composite structures[END_REF] and it is proven to increase crack nucleation. Strategies exist to successfully avoid propagation: adding adhesive layers, employing the staircase arrangement and interleaving dropped plies between continuous ones. This last technique entails a more difficult manufacturing, which requires planning and layout. In [START_REF] Khan | Suppression of delamination at ply drops in tapered composites by ply chamfering[END_REF]], an alternative technique is proposed, consisting in putting a chamfer on the edges of the plies to be dropped, by abrading the extra material. A comparison with the classical method of straight cut edges, Fig. 1.12b shows a solution which approaches better the ideal one of Fig. 1.10 and which solves almost completely the problem of cracks and delaminations.

A perfect ply drop is a feature and its presence is a priori known as it is a part of the design strategy. 

Conclusion on defects in composite materials

The definition of defect is a highly articulated one. Considering different scales, which defect is present and its effects vary [START_REF] Casari | Analyse de la variabilité du comportement de stratifiés à usage marin: approche probabilisée à l'échelle du pli[END_REF]]. Here we focus only on fairly large defects that can not be treated in an homogenized way, as a variability of the material. The effects on material properties shall instead be taken into account independently and separately introduced into the model. Four manufacturing flaws are described, as considered to be harmful: porosity, ply misalignment, fibre waviness and ply drops. Their comparative study allows, in Chapter 6, the choice of one type, the most dangerous, to induce during manufacturing and to characterize.

From the present overview stems also the consideration that different types of defects often appear in conjunction. For example, a void often involves a local variation of orientation of the surrounding fibres and a packing of the same. Particularly interesting is the choice of [START_REF] Czichon | Determination of local fiber undulation caused by void inclusions in carbon fiber reinforced polymers using computational fluid dynamics[END_REF] to model the fibres, following fluid dynamics principles, as flow lines around an obstacle, embodying the pore. Equivalently, an empty air pocket may nucleate in a zone of broken fibres or resin-rich areas, voids and fibre undulations involve zones where for design considerations a ply drop is introduced.

These considerations justify a description of the cluster of defects as a single entity and the choice to simulate, in the followings, these clusters of defects affecting the material as a local change in the material properties.

Inverse problem

Often in solid mechanics it is required to evaluate or identify physical quantities that governs the system of interest. At times, the sought-after quantities (for example the Young's modulus) are not directly evaluable. One can thus think to exploit other quantities, measurable, such as displacements or strains. The same question arises in the detection of defects: the occurrence of a defect corresponds to a local change in properties (for example a flaw of material type can be seen as a drop in Young's Moduli), the sought-after parameters are the ones modelling the material in correspondence of the flaw.

The problem we face in this thesis belongs to the large class of inverse problems. This category of problems is common to nearly every aspect of science. In the following we first address some general considerations concerning inverse problems. Then we present some basic aspects of leastsquare minimization for solving inverse problem, a general approach used in nearly every domain. Finally, we discuss some more specialized methods used in the context of identification or model updating, focusing on the framework of materials and structures mechanical problems.

General consideration regarding inverse problems

Inverse problems are ill-posed and when it does not directly appear, it is because, in one way or another, a regularization has been used. Thus, a key for the solution of any inverse problem lays in the regularization used to transform an intrinsically ill posed problem into a well-posed one. But what does ill-posedness means? This concept was clarified by Hadamard as follows. A problem is ill-posed if one of the following conditions are not verified:

1. non-existence of the solution caused by overdetermined data on ∂ uf Ω, unless ũ ũ ũ and f f f are compatible with the constitutive relation 2. non-uniqueness of the solution due to lack of data in certain region of the boundary, ∂ 0 Ω 3. lack of continuity for instance related to high sensitivity of the solution to a data perturbation.

Regularization techniques

Several approaches have been introduced to regularize ill posed-problems.

The methodology to solve an ill-posed problem is to transform it into a well-posed one. Multiple actions exist, suited to fix the different ill-posedness reasons, [START_REF] Azzouna | Identification à partir de mesures de champs: application de l'erreur en relation de comportement modifiée[END_REF]].

Existence

• enlarge the set of parameters

• reformulate as a minimization problem, so that the response of the model resembles the most the measurements (according to an opportunely chosen criterion)

Uniqueness

• define a choice criterion

• reformulate the problem in order to favour certain solutions over others by adding additional (a priori ) informations

• modelling the solution as a density of probability (Bayesian approach) of the multiple existing solution

• rethink the tests to make them discriminant

Continuity of data

• truncation: reduce the size of the parameters' space

• regularization: introduction a term of energy minimization or distance from a reference value of the sought after physical quantities.

Among the most commonly used techniques, frequently favoured for identification problems, is that of Tikhonov [START_REF] Tikhonov | Solutions of ill-posed problems[END_REF], which, in the field of inverse variational approaches, consists in adding a so-called regularization term to the functional to be minimized. This term is typically a measure of the distance from a reasonable value of the sought-after quantities or a term imposing some regularity, for example the norm of the derivative of the desired fields.

To balance the two terms, a regularization parameter is added: if too small, the problem is too close to the original ill-posed one, while, if too big, the solved problem has little connection to the original one.

Classical least squares method

Thanks to their versatility, the least squares approaches have been used for a great variety of identification problems. Among the fields of application, one can find control theory and shape optimization, as well as mechanics. The least square approaches treat the identification as an optimization problem. Identifying becomes therefore minimizing (through a least squares algorithm) the difference between the system, represented by measurements, and a the model of the system, to optimize the system's parameters so that they fit at best the experimental data.

To introduce the principle of the classical least square method and understand its limits, let us employ the formulation for parameter identification in control theory or data assimilation, [START_REF] Stoica | Optimal instrumental variable estimation and approximate implementations[END_REF]. Consider a dynamic system, written as:

y(t) + a 1 y(t -1) + ... + a na y(t -n a ) = b 1 u(t -1) + .... + b n b u(t -n b ) + n(t) (1.1)
introducing a backward shift operator q -1 , q -1 u(t) = u(t -1) it becomes

A(q -1 )y(t) = B(q -1 )u(t) + n(t) (1.2)
where A(q -1 ) = 1 + a 1 q -1 + ...a na q -na and B(q -1 ) = b 1 q -1 + ...b n b q -n b and n denotes the noise. It can be equivalently written as:

y(t) = φ φ φ T θ θ θ + e(t) (1.3)
where φ φ φ T = {-y(t -1)y(t -2) ... ), y(2), ..., y(N )] are available, supposedly known or measured. To determine the parameters vector θ θ θ, one should minimize the norm L 2 of the error equation, which becomes, for this formulation, the sum of the square of the errors:

J N (θ) = 1 N N t=1 e(t)e T (t) = 1 N N t=1 y(t) -φ φ φ T (t)θ θ θ y(t) -φ φ φ T (t)θ θ θ T = 1 N N t=1 e 2 (t) = 1 N N t=1 y(t) 2 - 2 N N t=1 y(t)φ φ φ T (t) θ θ θ + θ θ θ T 1 N N t=1 φ φ φ(t)φ φ φ T (t) θ θ θ (1.4)
Therefore the estimated value θ θ θ of the parameter vector is computed from:

∇J N (θ) = 0 =⇒ θ θ θ = 1 N N t=1 φ φ φ(t)φ φ φ T (t) -1 2 N N t=1 y(t)φ φ φ T (t) (1.5)
This method, in its basic form, is efficient for the determination of parameters from measurements affected by white noise in many fields. It was also extended to recursive [START_REF] Plackett | Some theorems in least squares[END_REF]], open and closed loop problems. One of the drawbacks of the method is that it is inefficient in presence of correlated noise. To overcome this problem, other techniques of the same family are employed, as the instrumental variables method [START_REF] Stoica | Optimal instrumental variable estimation and approximate implementations[END_REF][START_REF] Söderström | Instrumental variable methods for system identification[END_REF] or the generalized least square method.

The first, the instrumental variable method (IVM), is defined in [START_REF] Young | An instrumental variable method for real-time identification of a noisy process[END_REF]] as a compromise between largely deterministic procedure and statistical methods. This technique, a generalization of the classic method, is introduced to overcome the malfunctioning caused by correlated noise. The first application of the technique to the field of identification is probably attributable to [START_REF] Joseph | Plant identification in the presence of disturbances and application to digital adaptive systems[END_REF]]. The method treats the parameters to identify by asymptotically setting to zero the bias generated by the noisy observation matrix. Technically this consists in using a vector of measurement of an instrumental variable of noise components.

The second, the generalised least square method, belongs to the family of techniques introduced to solve the identification problems caused by coloured noise. This technique consists in whitening the residuals to get a least square estimation free of bias. For this purpose, the noise is written as the contribution of a white noise, uncorrelated, multiplied by a correlating function. The two terms are separated by introducing a proper filter, which technically consists in introducing an appropriate weight matrix.

A common regularization technique: the Tikhonov method

Let us denote with A A A the matrix to be inverted in Eq. (1.5):

A A A = 1 N N t=1 φ φ φ(t)φ φ φ T (t) (1.6)
Even if the matrix is non-singular, it often happens that A A A is ill-conditioned. This consists in transposing in a space of finite dimensions the fact that the original problem is ill-posed due to a lack of continuity with respect to the data. To explain the problem let b be the vector of data affected by a noise ǫ.

Problem to be solved:

θ θ θ from A A Aθ θ θ = b b b (1.7)
The problem that characterizes the true solution being θ θ θ ex

A A Aθ θ θ ex = b b b -ǫ (1.8)
with θ θ θ -→ θ θ θ ex as the noise ǫ -→ 0.

If A A A is ill-conditioned, the value of θ θ θ strongly depends on the noise.

In the Tikhonov method [START_REF] Tikhonov | Solutions of ill-posed problems[END_REF], the approximate solution θ θ θ(r L ) is defined as the unique minimizer of the cost function:

C L = A A Aθ θ θ -b b b 2 2 +r L C C Cθ θ θ -d d d 2 2 (1.9) with C C Cθ θ θ -d d d 2 2
the regularisation term and r L the regularisation parameter.' The Tikhonov regularisation technique is thus based on an a priori assumption on the value of the sought parameters embedded in the regularization term. The matrix obtained by minimization must present properties that guarantee that the initial matrix A A A is modified to be no more ill-conditioned. But more precisely, how to chose the weighting ? L-curve technique A possible technique, called the L curve [START_REF] Ahmadian | Regularisation methods for finite element model updating[END_REF]], is one of the methods commonly used to estimated the weight given to the regularization term, used of the for the treatment of ill-conditioned noisy-problem. To explain the methodology, let us describe this technique in the context of the Tikhonov regularisation.

The solution that minimise the cost function C L is the one that produces a small residual 1.2.5 Inverse problems in the context of the identification of mechanical properties of materials and structures

We focus now on inverse problems in the context of the identification of mechanical properties of material and structures. A large and thorough overview on the question and the methods in this domain can be found in [START_REF] Bui | Inverse problems in the mechanics of materials: an introduction[END_REF]], some complementary mathematical properties on inverse problem being available in Chapter 12 of [START_REF] Bui | Fracture mechanics: inverse problems and solutions[END_REF]]. Moreover, in the context of the thesis, indicators of the intensity of defects in elasticity is sought. An overview of a number of methods for solving inverse problems in elasticity can be found in [START_REF] Bonnet | Inverse problems in elasticity[END_REF]]. It appears that the majority of the techniques developed so far concerns elasto-dynamics, which are not the most common type of tests performed to characterize materials.

Direct and Inverse problems in the context of materials and structures mechanical problems

Let us consider a structure occupying the volume Ω of boundary ∂Ω, see Fig. 1.14, which depends on a set of parameters p p p outlining: geometry, material properties... and subjected to known loadings.

The direct problem consists in determining the response of the body to the known loadings in terms of displacements or strain fields. The solution of a direct problem possesses some properties:

1. existence: u u u(x, t) exists ∀x ∈ Ω, ∀t ∈ [0, T ] 2. uniqueness: u u u(x, t) is unique 3. continuity: u u u(x, t) depends continuously on ũ ũ ũ and f f f which make it well-posed in the sense of Hadamard [START_REF] Hadamard | Sur les problèmes aux dérivées partielles et leur signification physique[END_REF]].

Let us now introduce the same body Ω subjected to the known loadings, the same as above. This time, consider the response of the body to be known, e.g. measured; but the parameters p p p unknown. The inverse problem consists here in determining the unknown parameters p p p from their influence on the response of the body.

For sake of clarity, an example of an inverse problem in the framework of the thesis is represented in Fig. 1.15, the reason of ill-posedness being here related (among other reasons) to: unknown material properties, redundant measured responses, either Neumann or Dirichelt on the boundaries ∂ f Ω and ∂ u Ω respectively, and an eventual lack of information on the remaining part of ∂Ω, denoted as ∂ 0 Ω.

The possible reasons for the ill-posedness of an inverse problem are multiple. For instance, for a problem as the one shown in Fig. 1.15, the ill-posedness may be caused by the non correspondence of the redundant measurements and the lack of informations on the boundary ∂Ω. For this problem to be well posed it is required

∂Ω = ∂ u Ω ∪ ∂ f Ω ≡ ∂ 0 Ω = ∅ and ∂ uf Ω = ∂ u Ω ∩ ∂ f Ω = ∅.
Eventually incomplete or noisy data may also contribute. However those are not the only reasons.

To conclude the comparison, some possible differences between direct and inverse problems are recapitulated in Table 1.2 for an inverse problem of the type of interest. Over the years, many techniques have been developed in literature to solve inverse problems that exploit these rules. An overview is here proposed. In the following, we focus only on the techniques commonly used for material parameters identification. Initially, the focus is set on identification techniques, model updating methods follow. A review on parameter identification methods can be found in [START_REF] Bonnet | Inverse problems in elasticity[END_REF]]. These techniques have the purpose to retrieve the distribution of the sought-after parameters of the problem. This characteristic makes them suited in many fields other than mechanics such as, but not limited to, biomedical [START_REF] Barbone | Elastic modulus imaging: on the uniqueness and nonuniqueness of the elastography inverse problem in two dimensions[END_REF] and geophysical problems [START_REF] Menke | Geophysical data analysis: discrete inverse theory[END_REF][START_REF] Plessix | Waveform inversion of reflection seismic data for kinematic parameters by local optimization[END_REF][START_REF] Tarantola | Inverse problem theory and methods for model parameter estimation[END_REF]]. In mechanics, the common use is the identification of material parameters and the reconstruction of concealed geometrical objects such as cracks, cavities or inclusions. The common methodology to treat identification problems takes its inspiration from optimization techniques.

Both direct and indirect methods exist. [START_REF] Mottershead | Model updating in structural dynamics: a survey[END_REF]] reports Natke's definition of direct to describe the identification of a system without updating. Following this definition, the other family of techniques, the model updating, is an indirect system identification methodology. An extensive review of model updating methods is found in [START_REF] Mottershead | Model updating in structural dynamics: a survey[END_REF][START_REF] Modak | Comparative study of model updating methods using simulated experimental data[END_REF]. Model updating methods focus on correcting a finite element model, when its predictions are in contrast with the test results, by processing the experimental response. Two categories exist. The first groups the so-called direct methods [START_REF] Baruch | Optimal correction of mass and stiffness matrices using measured modes[END_REF][START_REF] Berman | Improvement of a large analytical model using test data[END_REF][START_REF] Kaouk | Structural damage assessment using a generalized minimum rank perturbation theory[END_REF][START_REF] Zimmerman | Eigenstructure assignment approach for structural damage detection[END_REF]. Commonly applied to dynamic problems, the objective is to correct the stiffness and eventually the mass matrices of the model. In this way, no physical meaning is assigned to the corrections. Methods based on minimum norm correction are employed for the updating. The drawback is the narrow field of applicability: the validity of the correction is usually limited to the configuration under study. The second category groups the so-called indirect or parametric methods, [START_REF] Ladevèze | Méthodes de recalage de modèles de structures en dynamique: approche par réaction dynamique, approche par la notion d'erreur en relation de comportement[END_REF][START_REF] Farhat | Updating finite element dynamic models using an element-byelement sensitivity methodology[END_REF][START_REF] Piranda | Parametric correction of finite element models by minimization of an output residual: Improvement of the sensitivity method[END_REF][START_REF] Lammens | Application of a frf based model updating technique for the validation of finite element models of components of the automotive industry[END_REF]. The correction depends, for this category, on the physical parameters of the problem. The approach consists in building a functional, usually named cost function, which represents the distance between the numerical model and the test data. The most common form involves the minimization of a L 2 -norm between the available measured response and their simulated counterparts. Nonetheless the preference is often set on the use of an energy functional.

In the general framework of identification, one can feel intuitively that some insight into the problem can be gained by introducing the discrepancy between the actual response of the body with defects and that of the healthy body of the same characteristics. The classical approach to this type of problems consists in parametrizing the sought-after variables and the unknowns in a vector p p p, in choosing the entry, one of the overdetermined data (e.g. displacements or loads), and in building, through a direct problem, a field w w w(p p p), admissible with respect to the measured values on the boundary, to be compared to the measurements. For the comparison, commonly a least square algorithm can be used. However this is not the unique solution, as in general the methods of least squares do not give information on the identifiability, namely whether the data available on the boundary are sufficient in amount to determine uniquely the parameters. Instead, if one disposes of a superabundant quantity of data on the domain, other methods can be used as the reciprocity gap method, the virtual field method or the equilibrium gap method. These techniques belongs to the number of approaches, which exploit the knowledge of an operator describing the physical phenomena to write the inverse problem. The convenience of these techniques lies in the reduced computational cost if compared to an inverse approach, direct methods in fact do not require an update. Nevertheless, the presence of certain terms, such as in dynamics the inertia term, complicates the relation between physical phenomenon and measurements, making these techniques sometimes inefficient. A situation of over-specified data applies when disposing of both applied forces and measured displacements or mathematically said, when both Dirichelet and Neumann conditions are available. Also another technique exists, which to minimize the gap make use of energy functionals: the constitutive relation error.

Before proceeding to the description of each technique, let us introduce a general reference problem, resembling the one of interest.

General reference problem Let us consider a structure occupying the volume Ω of boundary ∂Ω, see Figure 1.14, which depends on a set of parameters p p p outlining: geometry, material properties... The reference problem consists in studying the evolution of the structure occupying the volume Ω of boundary ∂Ω (see Figure 1.14) in a time interval t ∈ [0, T ] and can be defined as:

Find the displacements u u u(x, t) ∈ U KA (ũ ũ ũ) and stresses σ σ σ(x, t) ∈ S SA,DA ( f f f ) ∀t ∈ [0, T ], ∀x ∈ Ω verifying the following relations: .11) where in Eq. (1.10) the body forces are neglected, p p p is the set of parameters of the model describing the structural properties, for instance material or geometry, σ σ σ(x, t) denote the stress field and ε ε ε(u u u(x, t)) the strain field.

• Equilibrium Equation -ρü u u(x, t) + div(σ σ σ(x, t)) = 0 (1.10) • Constitutive Relation σ σ σ(x, t) = K K K(p p p)ε ε ε(u u u(x, t), p p p) (1 
In addition, U (ũ ũ ũ) is a space of admissible displacement fields and S( f f f ) is a space of admissible stress fields defined as:

U KA (ũ ũ ũ) = {u u u(x, t) s.r. |u u u(x, t) = ũ ũ ũ for x ∈ ∂ u Ω and u u u(x, 0) = u u u 0 , u u u(x, 0) = u u u 0 } S SA,DA ( f f f ) = {σ σ σ(x, t) s.r. |σ σ σ(x, t) • n n n = f f f for x ∈ ∂ f Ω} (1.12)
where s.r. denotes sufficiently regular function defined on Ω of bounded strain and kinetic energy for u u u(x, t) and square-integrable for σ σ σ(x, t) and where n n n is the normal vector to the surface ∂ f Ω. U KA denotes the set of kinematically admissible fields and S SA,DA the set of either statically or dynamically admissible fields [START_REF] Alarcon Cot | A combined Kalman Filter and Error in Constitutive Relation approach for system identification in structural dynamics[END_REF]. The tilde superscript denotes the measured values. The solution of the reference problem gives the structural response, in the dynamic case for this particular formulation. It can be conveyed to statics by removing the dependence from t and thus also the first term of the equilibrium equation (1.10).

Some of the following techniques, as the reciprocity gap method, employ for the identification the knowledge of an operator describing the physical problem: the principle of virtual work. Written in the weak form for the reference body, it is:

- Ω σ σ σ(x x x, t) : ε ε ε(w w w) dΩ + ∂Ω (σ σ σ(x x x, t) • n n n) • w w w(x x x) d∂Ω = Ω ρ(x)ü u u(x x x, t) • w w w(x x x) dΩ (1.13)
where n n n denotes the unit normal located at the point x ∈ Ω and w w w indicates an arbitrary virtual field.

An overview on these techniques, not meant to be exhaustive, is hereafter proposed. To give an aperçu on different methodologies of solving inverse problem of material parameter identification type, the most common techniques are proposed:

1. Least-square approaches [START_REF] Mahnken | A unified approach for parameter identification of inelastic material models in the frame of the finite element method[END_REF] 2. Reciprocity gap method [START_REF] Andrieux | Identification of planar cracks by complete overdetermined data: inversion formulae[END_REF] 3. Virtual fields method [START_REF] Grédiac | Principe des travaux virtuels et identification[END_REF] 4. Equilibrium gap method [START_REF] Claire | A finite element formulation to identify damage fields: the equilibrium gap method[END_REF] 5. Constitutive relation error method [START_REF] Ladevèze | Error estimate procedure in the finite element method and applications[END_REF] extended later on to inverse problem [START_REF] Ladevèze | A localization method of stiffness errors for the adjustment of fe models[END_REF] giving rise to the MCRE method.

Least squares method for material identification problems

Even in mechanics, the vocabulary used for material identification is borrowed from optimization problems, [START_REF] Mahnken | A unified approach for parameter identification of inelastic material models in the frame of the finite element method[END_REF]: the sought-after parameters p p p become therefore design variables.

Let us therefore introduce the sought-after parameters p p p, which are named design variables, and the observation space Ũ , where the experimental data belong, ũ ũ ũ ∈ Ũ . This data are commonly incomplete and an operator Π Π Π is introduced to map the displacement trajectory of the dependent variables u u u(x, t, p p p) ∈ U, accessible, to points of the observation space: Π Π Π : U -→ Ũ .

The inverse problem, ill-posed, can be tackled by an optimal approach strategy based on the least square functional as shown below.

Find p p p : Π Π Π(u u u(x, t, p p p)) = ũ ũ ũ. Let us introduce the least square functional:

J(p p p) = 1 2 Π Π Π(u u u(x, t, p p p)) -ũ ũ ũ 2 = 1 2 n data i=1 (u u u(x, t, p p p) -ũ ũ ũ) T (u u u(x, t, p p p) -ũ ũ ũ) (1.14)
where u u u(p p p) corresponds to the values associated with the solution of the direct mechanical problem, often by Finite Element, for the given values of the parameters. The minimization of J(p p p) gives the set of optimal parameters: Denoting by * the true state, two types of error may occur:

• a measurement error: Π Π Π(u u u * (x, t, p p p)) = ũ ũ ũ,

• a model error: u u u * (x, t, p p p) = u u u(x, t, p p p * ) For what concerns the first, the problem is the presence of correlated noise affecting the measurements. Equivalently, the solution of this problem passes necessarily from enhancements of the method, as the instrumental variable and the generalized least square methods, which can be declined for the mechanical problem of identification of material parameters.

To reduce the latter type of error, a possible choice is to use a more complex description of the model. However a careful balance is needed, since a more precise model, described by a higher number of parameters, is more sensitive to instability problems.

These methodologies have a main drawback, namely poor stability properties: to small data biases correspond large errors in the solution. This is often either due to a high number of parameters almost linearly dependent or to an inadequate experiment which does not activate some of the parameters. To amend this function, i.e. to stabilize the numerical results, a regularization term of Tikhonov type is introduced aiming at searching the best set of parameters in the vicinity of what is consider as sensible parameters value.

Reciprocity gap method [START_REF] Bonnet | Inverse problems in elasticity[END_REF] details the efficiency of virtual work based approaches, focusing on the reciprocity gap, both for the identification of distributed elastic moduli and cracks. This method consists in writing a term, the reciprocity gap, based on the reciprocity principle.

Before providing details on how the method works, information on the reciprocity principle shall be given. This principle, named after Maxwell-Betti in elastostatic or Rayleigh in harmonic elastodynamics and which for example leads to the property of symmetry of the stiffness matrix in finite element methods, can be mathematically formulated for elliptic operators as follow, [START_REF] Andrieux | Identification of planar cracks by complete overdetermined data: inversion formulae[END_REF]:

Find u ∈ H such that: a(u, v) = L(v) ∀v ∈ H (1.16)
where H is an Hilbert space, a is a bilinear form, symmetric, coercive and continuous in H × H and L is a continuous linear form defined in H.

Let L 1 and L 2 be two linear continuous forms and consider the solution of the variational problems

a(u i , v) = L i (v) with i = 1, 2 ∀v ∈ H (1.17)
Then choosing v = u 1 for i = 2 and v = u 2 for i = 1, one can see that, thanks to the symmetry of the bilinear form a:

L 1 (u 2 ) = L 2 (u 1 ) (1.18)
This is the reciprocity principle.

In the field of mechanics, this properties states that, taken a body subjected to two distinct loadings f f f 1 and f f f 2 and therefore presenting two different responses ū u u 1 and ū u u 2 , the work of stresses related to the loading f f f 1 on the response ū u u 2 equals the one linked to the loading f f f 2 on the response ū u u 1 .

The idea of the reciprocity gap method is to write Eq. (1.18), using as linear form the work of surface stresses associated to the boundary conditions, as written in Eq. (1.16) employing a weak formulation. The reciprocity principle applies between the field in the real solid and any field in equilibrium in the healthy solid, i.e. a fictitious body occupying the same volume but exhibiting none of the sought-after elements (no cracks, no inclusions, with an a priori guess on material parameters...). The principle relies on the fact that the reciprocity property is not verified. The value, different from zero, of the scalar difference is the reciprocity gap and provides a measure of the discrepancy between the real and the healthy systems.

For sake of generality, in [START_REF] Constantinescu | Méthode de l'écart à la réciprocité[END_REF] the Maxwell-Betti reciprocity theorem is declined for: elasticity, harmonic elastodynamics, thermal or electric conductivity and harmonic acoustics (Helmholtz equation). Only the formulation for parameter identification in elasticity is here proposed.

Consider two bodies, subjected to the same force f f f , both occupying the volume Ω. Let them be described by two distinct elastic moduli, K * and K, and by two displacement fields u u u * and w w w, fulfilling static equilibrium and constitutive equation, with w w w being a virtual field. The available data on the boundary ũ ũ ũ and f f f verify u u u * = ũ ũ ũ and σ σ σ • n n n = f f f on ∂Ω. The reciprocity gap R(•) is written as:

R(K * -K, u u u * , w w w) = ∂Ω {w w w • f f f -ũ ũ ũ • (K : ε ε ε(w w w) • n n n)}δ∂Ω = Ω E(u u u * ) E(u u u * ) E(u u u * ) : (K * -K) : E(w w w) E(w w w) E(w w w)δΩ (1.19)
The first equivalence in Eq. (1.19) reveals a linear form that can be computed by integration over the boundary since only known quantities intervene [START_REF] Constantinescu | Méthode de l'écart à la réciprocité[END_REF]].

To retrieve the sought-after parameters, a set of virtual field is required; not all virtual fields are considered. Of interest are solely those in equilibrium with the external surface forces. It is the proper choice of the virtual fields that brings informations on the unknowns. A couple may exists whose values on the boundary coincide with the over-determined measured dataset.

The advantage of the reciprocity gap method lies in the fact that no direct problem has to be solved if the virtual field can be analytically computed. This determines outstanding rapidity and efficiency. However, since no systematic methods exist to determine the virtual fields, a main drawback is in their choice. In addition, requiring continuity on the boundary complicates the procedure.

Virtual fields method

The virtual field methods (VFM), first introduced in [START_REF] Grédiac | Principe des travaux virtuels et identification[END_REF]], is a direct method used to solve identification inverse problems, adopted: in the event of unavailable observation equations [START_REF] Grédiac | Special virtual fields for the direct determination of material parameters with the virtual fields method. 1--principle and definition[END_REF][START_REF] Promma | Application of the virtual fields method to mechanical characterization of elastomeric materials[END_REF], to obtain the constitutive relations from full-field measurements [Grédiac et al. 2006] and in the framework of crack detection, for single cracks [START_REF] Andrieux | Identification of planar cracks by complete overdetermined data: inversion formulae[END_REF] and for multiple cracks [START_REF] Bryan | A uniqueness result concerning the identification of a collection of cracks from finitely many electrostatic boundary measurements[END_REF] in electrostatic.

It has been applied to identify the constitutive parameters from experiments, employing for instance digital image correlation techniques. It has been used for linear elastic materials [START_REF] Grédiac | Principe des travaux virtuels et identification[END_REF][START_REF] Grédiac | Special virtual fields for the direct determination of material parameters with the virtual fields method. 1--principle and definition[END_REF]Grédiac et al. , 2006;;[START_REF] Avril | Identification of viscoplastic parameters using dic and the virtual fields method[END_REF], elastic-plastic materials [START_REF] Pannier | Identification of elasto-plastic constitutive parameters from statically undetermined tests using the virtual fields method[END_REF]Grédiac and Pierron 2006] and visco-plastic materials [START_REF] Avril | Identification of viscoplastic parameters using dic and the virtual fields method[END_REF]]. [START_REF] Sutton | Identification of heterogeneous constitutive parameters in a welded specimen: uniform stress and virtual fields methods for material property estimation[END_REF] proposes the technique to identify stresses in weld zones. [START_REF] Grédiac | Special virtual fields for the direct determination of material parameters with the virtual fields method. 1--principle and definition[END_REF] highlights its interest in the cases where the analytical relationship between measured data and sought-after parameters is unknown. This technique is also based on the principle of virtual works, Eq. (1.13) properly rewritten by introducing the constitutive relation Eq. (1.11): 1.20) this latter depends on the unknowns p p p in K K K. For sake of simplicity, the explanation on how the method works features an homogeneous material with a linear constitutive relation, as in [START_REF] Grédiac | Special virtual fields for the direct determination of material parameters with the virtual fields method. 1--principle and definition[END_REF]]'s example.

- Ω K K K(p p p) : ε ε ε(u u u) : ε ε ε(w w w) dΩ + ∂Ω (σ σ σ(x x x, t) • n n n) • w w w(x x x) d∂Ω = Ω ρ(x)ü u u(x x x, t) • w w w(x x x) dΩ ( 
In this case, K K K is not space-dependent and can therefore be extracted from the integral. With this simplification, it is easily noticeable that any virtual field provides a linear equation. The VFM consists therefore in writing the linear equation for as many virtual fields as possible, to obtain a linear system. Since a sufficient degree of independence of the equation has to be guaranteed, the bottleneck of the methodology is anew the choice of the virtual fields. Many reasons may influence the dependence, one is the sensitivity of the parameters to noise, unavoidable part of the measures. Therefore, the optimal virtual fields are the ones that generate partially uncoupled equations. In many works, this is guaranteed trough a trial-and-error procedure. In [START_REF] Grédiac | Special virtual fields for the direct determination of material parameters with the virtual fields method. 1--principle and definition[END_REF], a procedure is proposed to systematise the choice to directly obtain uncoupled equations. As advantage, an intuitive guess for the fields is not needed and increased stability is obtained, due to the independence.

The choice of virtual fields is not only the bottleneck but also the potential of the method. Given that an infinite number exists, the problem of lack of experimental information on the load is solved. As additional advantage, only the type of constitutive relation is needed, no a priori informations are required on the displacement, stress or strain fields.

Equilibrium gap method

The equilibrium gap method (EGM) is born as a method to match displacement measurements, e.g. obtained by digital image correlation, with finite elements simulation [START_REF] Claire | A finite element formulation to identify damage fields: the equilibrium gap method[END_REF]]. It uses displacements (rather than strains) as measurements and therefore can be directly used as a postprocessing technique of finite element simulation.

The original fields of application are the determination of the elastic properties of a material and of its evolution during an experiment, thus it has been for example used to determine damage evolution [START_REF] Roux | Digital image mechanical identification (dimi)[END_REF][START_REF] Claire | Identification of a damage law by using full-field displacement measurements[END_REF]. In this case, to determine the parameters, as additional requirement an a priori knowledge of the damage law is needed, [START_REF] Roux | Digital image mechanical identification (dimi)[END_REF][START_REF] Périé | Digital image correlation and biaxial test on composite material for anisotropic damage law identification[END_REF][START_REF] Azzouna | On the identification and validation of an anisotropic damage model using full-field measurements[END_REF].

The principle of the method is the following: the sought-after parameters are the ones for which the measurements comply at best the internal equilibrium. Since it is based on Finite Elements, verifying the equilibrium corresponds to minimizing the nodal residual forces of the finite element, computed as the sum of the residual forces of each surrounding element in the mesh. For the identification of the material parameters for an orthotropic material, a higher number of unknowns is sought after with respect to the isotropic case. Additional equations can be written while accounting for the equilibrium of internal elements and inner corner nodes, [START_REF] Crouzeix | An orthotropic variant of the equilibrium gap method applied to the analysis of a biaxial test on a composite material[END_REF]]. The correction of the stiffness parameters may result from the comparison between the finite element model and the measurements. An iterative calculation is required for a good concordance between the two [START_REF] Crouzeix | An orthotropic variant of the equilibrium gap method applied to the analysis of a biaxial test on a composite material[END_REF].

It has to be noted that all the variables of the problem are considered reliable, also the measurements. This carries a main drawback: the necessity to impose noisy measurements on the borders as boundary conditions. In addition, if the borders do not belong to the measured area, reliable informations on the boundary are lost. Nevertheless, the method is globally robust towards noisy measurements as the cost function is chosen as the gap between the displacements [START_REF] Roux | Digital image mechanical identification (dimi)[END_REF], rather than dependent on the stiffness matrix, whose presence may amplify the noise [START_REF] Claire | A finite element formulation to identify damage fields: the equilibrium gap method[END_REF]].

Last, it is worth noting that the equilibrium gap method can also be used to regularize digital image correlation. This technique was used for extended Q4-DIC [START_REF] Réthoré | An extended and integrated digital image correlation technique applied to the analysis of fractured samples: The equilibrium gap method as a mechanical filter[END_REF]] and T3-DIC [START_REF] Tomičević | Mechanics-aided digital image correlation[END_REF]].

The use of the constitutive relation error (CRE) in the context of identification

The constitutive relation error (CRE) was initially proposed in [START_REF] Ladeveze | Comparison of models of continuum media[END_REF]] in the framework of the estimation of the quality of a given simplified model (of a plate or a shell) with respect to its 3D counterpart. It has then be applied to the field of verification for estimating the error between the mathematical model and the solution provided by a numerical model [START_REF] Ladevèze | Error estimate procedure in the finite element method and applications[END_REF][START_REF] Ladevèze | Nonlinear computational structural mechanics: new approaches and nonincremental methods of calculation[END_REF]. In linear elasticity and in the hypothesis of small deformation, the error in constitutive relation is expressed as: 1.21) This concept has been used in the context of identification [START_REF] Rota | An inverse approach for identification of dynamic constitutive equations[END_REF][START_REF] Bonnet | Exploiting partial or complete geometrical symmetry in 3d symmetric galerkin indirect bem formulations[END_REF][START_REF] Constantinescu | On the identification of elastic moduli from displacement-force boundary measurements[END_REF] in the case of superabundant data, as the one of Fig. 1.15. The redundancy of boundary conditions makes the problem ill-posed, in general admitting no solution, unless the constitutive law is compatible with the boundary conditions. To identify the constitutive law with superabundant data, the admissible fields u u u and σ σ σ must respectively verify all kinematic and static data. It is chosen the couple (u opt u opt u opt , σ opt σ opt σ opt ), which, for fixed values of K, minimizes:

E(u u u, σ σ σ, K K K) = T 0 Ω (σ σ σ -K K K : ε(u u u)) : K K K -1 : (σ σ σ -K K K : ε(u u u)) ∂Ω ( 
E(K) = min (u,σ) E (u, σ, K) (1.22)
Finally, K opt identified is the one minimizing the constitutive relation error with respect to K:

K opt = argmin K E(K) (1.23)
The error evaluated with the couple (u opt u opt u opt , σ opt σ opt σ opt ) goes to zero only when the boundary conditions are consistent with the constitutive relation. In the case, the model updating is obtained by employing the bias of the minimization of the incompatibility between the admissible fields and the constitutive law.

It is to be noted that it seems that the method has been introduced independently in [ [START_REF] Kohn | Determining conductivity by boundary measurements[END_REF], where it is employed for the estimation of the electrical conductivity from measurements of the borders. It also been applied to identify elastic isotropic material properties through data within the domain [START_REF] Geymonat | Identification of elastic parameters by displacement field measurement[END_REF], to identify heterogeneous elastoplastic or elastic behaviours [START_REF] Latourte | Identification des paramètres d'une loi élastoplastique de Prager et calcul de champs de contrainte dans des matériaux hétérogènes[END_REF]], to determine the internal distribution of elastic moduli of inhomogeneous structure from simultaneous measurements of forces and displacements on its edges [START_REF] Constantinescu | On the identification of elastic moduli from displacement-force boundary measurements[END_REF]] and to optimize the identifiability of material parameters of an elastic orthotropic material [START_REF] Bonnet | Exploiting partial or complete geometrical symmetry in 3d symmetric galerkin indirect bem formulations[END_REF][START_REF] Constantinescu | On the identification of elastic moduli from displacement-force boundary measurements[END_REF].

Modified constitutive relation error (MCRE)

This aspect of the bibliography is more detailed than the other techniques because, for reason indicated in the introduction, this is the one chosen as the starting base in this thesis.

The he MCRE is based on a key aspect of the CRE, as introduced in [START_REF] Ladevèze | Error estimate procedure in the finite element method and applications[END_REF], which is to include both kinematic and stress fields, the latter satisfying the equilibrium equation independently, a priori, of any constitutive equation. The equilibrium equation being reliable, the error concerns the constitutive equation, thus explaining the name given to the method.

Then an extension has followed, to deal with model updating, which consists in adding to the error term an additional term relative to the discrepancy between the measurement and the corresponding quantities associated to the model. As such, the method is a mixed one; however by dualisation it is possible to obtain a formulation involving two displacement fields, one corresponding to the equilibrated stress field.

The method has been successfully applied to dynamics and statics [START_REF] Florentin | Identification of the parameters of an elastic material model using the constitutive equation gap method[END_REF][START_REF] Moussawi | The constitutive compatibility method for identification of material parameters based on full-field measurements[END_REF]], both in model updating and identification. Applied at first to frequencydomain dynamics, vibrational problems based on the measurements of eigenfrequencies and eigenmodes [START_REF] Ladevèze | A localization method of stiffness errors for the adjustment of fe models[END_REF]], the method is protagonist of extensions towards forced vibration problems [START_REF] Ladevèze | Error on the constitutive relation in dynamics[END_REF], damping [START_REF] Ladevèze | A modelling error estimator for dynamic structural model updating[END_REF]] and applications to complex structures [START_REF] Deraemaeker | Reduced bases for model updating in structural dynamics based on constitutive relation error[END_REF]]. In addition it has proven to be robust even in presence of highly corrupted measurements in transient dynamics [START_REF] Allix | Identification strategy in the presence of corrupted measurements[END_REF][START_REF] Feissel | Modified constitutive relation error identification strategy for transient dynamics with corrupted data: the elastic case[END_REF][START_REF] Feissel | Vers une stratégie d'identification en dynamique rapide pour des données incertaines[END_REF], with an extension to the non-linear case [START_REF] Nguyen | A robust identification strategy for rate-dependent models in dynamics[END_REF] and to 3D problems [START_REF] Bonnet | Three-dimensional transient elastodynamic inversion using an error in constitutive relation functional[END_REF]. Equally important in elastodynamics, as well as for parameter updating, the method is applied with success to identification problems [START_REF] Banerjee | Large scale parameter estimation problems in frequency-domain elastodynamics using an error in constitutive equation functional[END_REF][START_REF] Warner | Inverse material identification in coupled acoustic-structure interaction using a modified error in constitutive equation functional[END_REF]] and defect detection [START_REF] Bonnet | Inverse problems in elasticity[END_REF].

Derivation of the founding principle of the MCRE The basis of the methodology consists in dividing the features of the problem into two sets: reliable and non-reliable. An equation is judged reliable if it is not influenced by the unknowns. To the second category belong instead the equations and variables that are influenced by the unknowns, the sought-after parameters.

It is necessary to state that, according to the application, some features may shift from one category to the other. The features considered reliable and non-reliable vary, according to the problem treated.

For instance, when dealing with defects, or equivalently with local changes in material properties, the Hooke's tensor is non-reliable since it is function of the sought-after parameters. Indeed K K K(p p p) is known except for the presence of a local variation the parameters. Thus a modelling error is present, given by the fact that an a priori value is chosen for p p p, e.g. it is assumed that the local variation does not exists. The error in the pre-estimation of the Hooke's tensor makes it a non-reliable term.

Let us also take the emblematic example of the boundary conditions. Whilst considered reliable in common application, a particular formulation was proposed for non-reliable boundary condition in order to update them [START_REF] Feissel | Modified constitutive relation error identification strategy for transient dynamics with corrupted data: the elastic case[END_REF]].

An additional reason for which a variable of the problem may be considered non reliable is the presence of noise affecting the measurements.

The reliable and non-reliable features are taken into account differently. In writing the problem, errors terms are introduced with respect to the non-reliable equations, while the reliable ones are fulfilled exactly through constrains. A possible drawback of the method is to have to mix several error terms, sometimes of different nature, if not paying attention. This also leads to introduce weighting coefficients, whose values have to be chosen or optimized. As such, the problem could also be ill-posed and a regularization strategy has to be chosen.

The constitutive relation error has been mostly used in dynamics. In that case, a pair consisting in a kinematically admissible displacement field u u u KA ∈ U KA (ũ ũ ũ) and a stress field σ σ σ DA ∈ S DA ( f f f ), satisfying the principle of virtual power, is introduced. The stress field in this case is called dynamically admissible. Then this pair is used to defined the constitutive error term measuring a discrepancy in the constitutive relations between the two fields.

CRE(u u u KA , σ σ σ DA , K K K) = T 0 Ω (σ σ σ DA (x, t) -K K K : ε(u u u KA (x, t))) : K K K -1 : (σ σ σ DA (x, t) -K K K : ε(u u u KA (x, t))) ∂Ω∂t
(1.24) For the static case, only the space integral is left and the dynamically admissible stress field should be replaced by a statically admissible one σ σ σ SA ∈ S SA ( f f f ). To the model error term, one adds the one concerning the measures, which can be be either displacements, forces or both:

• Displacement term: a term measuring the discrepancy between the kinematically admissible field and the measured one d u (u u u KA , ũ ũ ũ) in statics

• Force term: a supplementary term measuring the discrepancy between the dynamically admissible field and the measured one

d f (σ σ σ DA , f f f ) in dynamics.
The modification term commonly presents itself as a L 2 norm (referring to Eq. ( 1.25), the weight matrix W W W being equal to the identity I I I) or in the form of an energy functional (the weight matrix W W W of Eq. ( 1.25) is chosen as a combination of the elements governing the problem: Hooke tensor, damping and mass matrices). For instance, the term d u (u u u KA , ũ ũ ũ), and equivalently d f , can be written as:

d u (u u u KA , ũ ũ ũ) = Π Π Πu u u KA -ũ ũ ũ 2 Wu Wu Wu = (Π Π Πu u u KA -ũ ũ ũ) T W u W u W u (Π Π Πu u u KA -ũ ũ ũ) (1.25)
where Π Π Π is an operator which resizes the vector when its dimensions differ from the ones of the measurement data. The error modification term M E measures the distance between the experimental informations and the model.

E 2 m = CRE + r 1 -r M E (1.26)
Choice of the weighting factor Depending on the particular problem addressed, the two error terms in Eq. ( 1.26) can have different importance, for instance in the case of measurement noise.

To this end, a scalar weighting factor r 1-r , is added to adjust the influence of the two contributions according to the degree of confidence a priori assigned to the measurements. A study concerning the choice of r was undertaken in [START_REF] Warner | Inverse material identification in coupled acoustic-structure interaction using a modified error in constitutive equation functional[END_REF][START_REF] Deraemaeker | Model validation in the presence of uncertain experimental data[END_REF]]. For instance, if the measurements are known to be corrupted or noisy, the influence of the second error term is reduced by setting a value of r lower than 0.5. Where it has not been stated otherwise, the weighting factor is set at r = 0.5.

The scalar weighting factor plays an important role in the solution of the inverse problem. In real application, measurements are affected by noise, therefore the accuracy of the solution is dependent on the noise value, that is why often regularization techniques are introduced to lower these effects.

The parameter r 1-r defines the balance between minimizing the model error and matching the experimental data. Its choice depends strongly on the problem treated, as the weighting term decide for a better satisfaction of the constitutive error, with eventually loosing important informations contained in the measured data, or a best fitting of the measurements, with an eventual enhancement of the noise, for r values below or above 0.5 respectively. In [START_REF] Warner | Inverse material identification in coupled acoustic-structure interaction using a modified error in constitutive equation functional[END_REF], the weighting factor is defined as a trade-off between over-smoothing the solution and over-fitting noisy experimental data and two techniques are proposed for its evaluation. The first, based on Morozov's discrepancy principle, requires an a-priori knowledge of the noise level δ, the second, suited for unknown noise levels, selects the parameter as an error-balance between the terms in the converged MCRE. Comparison between the two methods show better results when the first method is applied, where the advantage of the second is set in the independence from the noise level.

In our application, the method for r weight estimation used, proposed for instance in [START_REF] Chamoin | Synergies between the constitutive relation error concept and pgd model reduction for simplified v&v procedures[END_REF][START_REF] Deraemaeker | Model validation in the presence of uncertain experimental data[END_REF], is based on the L-curve [START_REF] Ahmadian | Regularisation methods for finite element model updating[END_REF]].

In our context, where the cost function to minimize is the E 2 m of Eq. ( 1.26), the optimum value r opt can be obtained as the r value for which the maximum curvature at the corner of the plot of CRE vs. M E occurs (respectively Eqs. (1.24) and(1.25)), examples will be given in Chapter 3 and 4.

In both [START_REF] Chamoin | Synergies between the constitutive relation error concept and pgd model reduction for simplified v&v procedures[END_REF][START_REF] Deraemaeker | Model validation in the presence of uncertain experimental data[END_REF]], a similar approach is employed by plotting on the same graph CRE and M E terms as function of r.The value retained for the weigthing factor corresponds to the intersection between the two curves, where the balance between the two terms is obtained.

Regularization procedure in the context of the MCRE To obtain a well posed problem it is possible to introduce a regularization term of the Tikhonov type [START_REF] Tikhonov | Solutions of ill-posed problems[END_REF]. This strategy is nevertheless not the one mostly used, at least in the work conducted in Cachan. Indeed, the method being first developed in model updating, no a priori information on the value of the parameters is known. The regularization strategy in this case consists in reducing the space of parameters to be used by first proceeding to a localization step that makes use of the local errors contribution to decide, thanks to a threshold value, which parameter should be taken into account in the next minimization step.

Practically the problem is solved using the Finite Element method. The contribution to the error is computed on each element constituting the finite element model. Each finite element is selected, whose error density overpasses a threshold which should be fixed (too high no correction could occur, too low no sufficient regularization is introduced). Those selected element are the ones prone to correction, either individually or possibly globally when they are connected. More precisely, let us define the set containing all the defective finite elements with Ω def and the set gathering the healthy ones with Ω unh . For the i -th element ω i , the local value of the error density is denoted η 2 m i . Naming η 2 mmax the maximum value of the local density of error, corresponding to the most erroneous element, one has: .27) where e th is the threshold value. All the elements verifying the first condition, the ones who belong to Ω def , compose the defects. Each connected sub-domain of Ω def is then defined as a separate defect. Once the erroneous areas, which need correction, are localized, the parameter updating step follows. This consists in determining the value of the sought-after parameters. Commonly, for parameter identification, a gradient method of steepest descent type is chosen. It is fundamental to stress the fact that only the areas localized at the preceding step undergo the updating of the parameters. Limiting the correction to the zones with higher local error reduces the computational cost of the step and, even more important, guarantees strong regularization by reducing the ill-posedness of the problem. Since the steps are two well separated ones, one can choose different functional to solve the two separate problem: the cost function used for parameter identification is not necessarily the error functional used in the localization step. For instance, [START_REF] Feissel | Vers une stratégie d'identification en dynamique rapide pour des données incertaines[END_REF][START_REF] Nguyen | A robust identification strategy for rate-dependent models in dynamics[END_REF] propose to use the CRE term as cost function, while the error functional is the combination of CRE and ME terms.

   η 2 m i η 2 mmax ≥ e th ω i ∈ Ω def else ω i ∈ Ω unh    . ( 1 
To summarize, the MCRE at each iteration involves two steps:

• a localization step (regularization through the selection of the parameter to be updated)

• parameter updating step

In order to illustrate the different aspect of the MCRE in the paragraphs following, the formulation of the modified constitutive relation error is expounded for dynamic loadings and in particular for vibrational tests. Formulations exist also for static loadings, [START_REF] Chamoin | Goal-oriented updating of mechanical models using the adjoint framework[END_REF]] and time-based dynamic loadings, among many others see for instance [START_REF] Feissel | Vers une stratégie d'identification en dynamique rapide pour des données incertaines[END_REF][START_REF] Alarcon Cot | A combined Kalman Filter and Error in Constitutive Relation approach for system identification in structural dynamics[END_REF][START_REF] Banerjee | Large scale parameter estimation problems in frequency-domain elastodynamics using an error in constitutive equation functional[END_REF].

Example of formulation: MCRE for frequency-domain dynamics

To overcome the prohibitive computational expense of the time-domain problem, the frequency-domain formulation is proposed as it can be easily applied to linear finite-element industrial problem, due to its reduced computational cost. It carries also the advantage that a high number of experimental informations, namely frequencies and mode, are available. These two advantages have made it an extremely interesting technique. This method, studied in the FE case in [START_REF] Chouaki | Recalage de modèles dynamiques de structures avec amortissement[END_REF]] is then adopted for high DOFs case in [START_REF] Deraemaeker | Sur la maîtrise des modèles en dynamique des structures à partir de résultats d'essais[END_REF][START_REF] Deraemaeker | Reduced bases for model updating in structural dynamics based on constitutive relation error[END_REF].

Let us consider the solutions of Eqs. (1.10) and (1.11) in the form:

ℜ(u u u(x)e iωt ), ℜ(σ σ σ(x)e iωt ) (1.28)
where ℜ(•) indicate the real part of a complex number. While the constitutive relation is unchanged, the equilibrium equation (1.10) becomes:

-ω 2 ρu u u(x) + div(σ σ σ(x)) = 0 (1.29)
where ω is the angular frequency 2πf , with f = 1 T . Hence, the modified constitutive relation error for a frequency-domain dynamic problem is:

Find the kinematically admissible field u u u KA (x) ∈ U KA (ũ ũ ũ) and the dynamically admissible field σ σ σ DA (x) ∈ D DA ( f f f , u u u) that minimize :

E 2 m (u u u KA , σ σ σ DA , p p p) = Ω (σ σ σ DA -K K K : ε ε ε(u u u KA )) : K K K -1 : (σ σ σ DA -K K K : ε ε ε(u u u KA )) dΩ + ∂uΩ d u (u u u KA , ũ ũ ũ) d∂ u Ω + ∂ f Ω d f (σ σ σ DA , f f f )d∂ f Ω (1.30)
under the constraint:

∀u * u * u * ∈ U KA (0) Ω σ σ σ DA • ε ε ε(u * u * u * )dΩ = ω 2 Ω ρu u u KA • u * u * u * dΩ (1.31)
An alternative formulation is possible, where three admissible fields are introduced: one kinematically admissible field and two dynamically admissible fields, one related to the Hooke' s tensor and the damping matrix and the other related to inertial forces. The constitutive relation accounts for the damping matrix C C C, non-reliable, substituting K K K with K K K + iωC C C in Eq. ( 1.11) and for the inertia forces Γ = -ρω 2 u u u. The error E 2 m (1.30) is written accordingly. This last case is not developed further as it will not be used.

Conclusions

In this section different methods for solving identification and model updating problems are presented. Each technique presents its own advantages, disadvantages and preferred fields of applications, for instance the reciprocity gap method for cracks detection, or the least square methods for material parameters identification. Among other possible formulations, energetic ones, namely the MCRE, is chosen. The reason is that in the dynamic case the method has proven its efficiency for model updating [START_REF] Deraemaeker | Model validation in the presence of uncertain experimental data[END_REF]] and defect detection [START_REF] Bonnet | Inverse problems in elasticity[END_REF], two domains where the question of localization of badly modelled areas is crucial. A main question is to know whether and under which conditions such method could be efficient in case of static tests. It seems to us that this could be possible. The gamble of the thesis is that it should be possible thanks to the large amount of data provided by Digital Image Correlation.

In particular, for treating flaws identification in the case of compression tests, a new formulation based on buckling is presented in Chapter 2. The formulation is inspired to the frequency-domain formulation of the MCRE for dynamic problems, with appropriate modifications, necessary to face some complications arising from buckling. In fact, while vibration tests give directly the eigenfrequencies and the corresponding modes, this is not the case for tests where instability in compression occurs. The response of a structure in compression in case of geometric imperfections is non-linear directly from the beginning of the experiments, cfr. Section 1.3. No critical load or eigenmode are experimentally encountered, therefore a post processing of the data is needed, which is detailed again in Chapter 2.

Instability in compression

Different states of equilibrium exist: stable, neutral and unstable, which can be defined with simplicity as follows. Taken a body subjected to a deviation, its equilibrium is stable if the body tends to return to its initial state, neutral if it remains in equilibrium and unstable if forces develop which increase its deviation. A slender structure, i.e. a body presenting one of the dimensions sensibly greater than the others, subjected to a compressive load, passes from a stable state of equilibrium to an unstable one. This instability phenomenon is called instability in compression or buckling and, when it occurs, the structure fails not for the crushing of the material but due to a deflection to the side.

Three possibilities exists to study structural stability properties: first order theory, linearised small-deflections theory and large deflections theory.

First order theory gathers all the cases in which the equilibrium is studied in the non-deformed configuration. Within this theory, instability can not be studied, since the only two conditions prescribed would be either nothing happening or the breaking of the piece.

The linearised theory can be used to study buckling problems, the theory is then valid only for the bifurcation analysis (buckling) of perfect structures and is able to describe the behaviour of structures affected by small imperfections in the vicinity of the critical load, i.e. in the field of small deflections.

Instability in compression, in reality, is a phenomenon which involves large out-of-plane deflections and a post-buckling behaviour. The only theory which allow the description of this cases is the large deflection theory. The general large deflections formulation is the only method which allows to describe a real test: it is necessary for describing the behaviour of a real structure in compression. This will be detailed in Chapter 2.

The linearised theory can be seen as a particular case of the general theory. Since in the following, beam-type specimens are employed, the linearised theory is sufficient to describe the behaviour for small deflection in the vicinity of the buckling load. This formulation carries two main advantages: the reduced complexity and the slimmer formulation. These reasons make it a good choice for the new formulation of the MCRE inverse approach for buckling, as it will be seen in Chapter 2.

Perfect and imperfect structures

A strong distinction exists in term of behaviour between perfect and imperfect structures.

For this reason, in the present paragraphs, we treat comparatively the behaviour of perfect and imperfect structures, highlighting also the gap that exists between theoretical solution and real performances.

Post-critical analysis for perfect structure

Let us now consider the general case. If the general theory is applied, the post-buckling behaviour can be studied. The performances of a perfect structure after the bifurcation point vary according to the type of structure considered, [START_REF] Koiter | The stability of elastic equilibrium[END_REF]]. For instance, for a beam P > P cr is possible, while for a shell, as the compression continues, the load P starts to decrease.

Determining the type of post bifurcation behaviour derives from energy considerations. Some criteria on the stability of the post-buckling state are given in [START_REF] Koiter | The stability of elastic equilibrium[END_REF]], from the analysis of the energy surface near the bifurcation point. It has been proven that, if the load P of adjacent equilibrium states is higher than the bifurcation load, the post-critical equilibrium states are stable and the structure is imperfection insensitive. If instead a state exists for which P of adjacent equilibrium states is lower than P cr , the equilibrium at the critical state for the perfect structure is unstable and the structure is imperfection sensitive. A structure is defined imperfection sensitive if, at increasing imperfection, the critical load decreases. If β > 0 the bifurcation is stable and the structure is imperfection insensitive, if β < 0 the bifurcation is unstable and the structure has an imperfection sensitivity, which becomes higher with the increase of β . A very strong imperfection sensitivity is characterized by a decrease in both P and w.

Post-critical analysis in presence of imperfections

The post-critical analysis has been here-above detailed for perfect structures. It is important to note that imperfections are responsible of a decrease in the load at which the instability occurs, meaning that the structure with imperfections becomes unstable for P < P cr . In the following, some cases of instability are shown, taken from [START_REF] Hutchinson | Postbuckling theory[END_REF], both for a perfect structure (solid line) and for its imperfect counterpart (dashed line), see Figs. 1.17,1.18 and 1.19. In Fig. 1.17, the stable case is shown: the structure can support load in excess, over the bifurcation load P cr (here denoted by P c ). Fig. 1.18 reports the case of a structure for which the post-buckling Case II [START_REF] Hutchinson | Postbuckling theory[END_REF] behaviour can be both stable or unstable, with P increasing or decreasing following bifurcation. If positive buckling occurs (w > 0), the limit load is P s < P c . It is the initial imperfection that prejudices the deflection one way or the other. The last case of Fig. 1.19 presents an unstable symmetric equilibrium. The equilibrium curve emanating from the bifurcation point decreases symmetrically with the displacement. 

Influence of imperfections on buckling behaviour

From a practical viewpoint, buckling is an important design criterion for many components, for instance in aeronautics and aerospace. The interest is often set on cylindrical shell and stiffened panels, which lately are manufactured in composite material for weight reduction reasons. The need for weight reduction conflicts with the necessity to define very high safety factors due to the variability of behaviour resulting from the presence of imperfections. A probabilistic study of the effect of imperfections on compressive behaviour can be found for instance in [START_REF] Hühne | Robust design of composite cylindrical shells under axial compressionsimulation and validation[END_REF][START_REF] Kriegesmann | Semi-analytic probabilistic analysis of axially compressed stiffened composite panels[END_REF]]. The effort to better understand the compressive behaviour faces the attempt to reduce safety factors in order to move towards a less conservative design, and thus reduce weight.

Figure 1.20: Load-deflection behaviour for stiffened panels [START_REF] Kriegesmann | Semi-analytic probabilistic analysis of axially compressed stiffened composite panels[END_REF] Stiffened panels in compression theoretically behave as follows: first a local buckling load occurs, where the skin buckles, after this the load can still be increased until the stiffeners undergo lateral buckling, the so-called global buckling load. Following this instability, the entire structure undergoes a loss in stiffness, which, for perfect structure, corresponds to a drop of the load value, see Fig. 1.20. A third load value is of design importance: the onset of degradation load, corresponding to the value for which material damage starts to occur.

The results of the sensitivity analysis undertaken in [START_REF] Kriegesmann | Semi-analytic probabilistic analysis of axially compressed stiffened composite panels[END_REF], run thanks to multiple Monte Carlo simulation, prove that geometric imperfection, radius and wall-thickness influence strongly the first buckling, the global buckling and the degradation's offset loads. In particular, the behaviour of an imperfect structure varies from its perfect counterparts and the drop, used to define the value of the global load, disappears, see Fig. 1.21, where perfect and imperfect panels are considered. 

Linearised theory for perfect and imperfect beams

For the purpose of a defect characterization study, the focus can be set on simple shaped structures, as struts or beams.

According to the linearised theory, for a straight beam in elasticity P cr is never obtained and the structure fails for P < P cr , an analytical solution exists for this case. In the following, the linearised theory for perfect and imperfect beams is detailed.

Bifurcation analysis for perfect beams

Consider the body of Fig. 1.22a, a simply supported pin-ended beam subjected to a compressive dead load P at one end. The present analysis, which follows the considerations of [Southwell 1932a], can be equivalently found in [START_REF] Bažant | Stability of structures: elastic, inelastic, fracture and damage theories[END_REF]. Let the Euler Bernoulli' s beam theory apply, i.e. the cross sections of the beam remain plane and orthogonal to the beam axis during loading and the transverse normal stresses are neglected. Under this hypothesis, the linearised bifurcation analysis results can be recalled by writing the equilibrium of the bending moments in the deformed configuration, see Fig. 1.22b:

M = -P w(x) (1.32)
where w(x) is the deflection, namely the out-of-plane displacement in the z-axis direction. Naming EI the bending rigidity, E being the Young' s modulus and I the moment of inertia, the beam behaviour can be introduced by writing

EIw ′′ (x) = M = -P w(x) (1.33)
Considering the first and the last term of the equation, an ordinary differential equation is obtained:

w ′′ (x) + k 2 w(x) = 0 with k 2 = P EI (1.34)
Under the assumption of k 2 constant (P = const, EI = const), which is particularly restrictive since it does not include variation of the bending stiffness along the beam, and applying the boundary conditions w = 0 at the extremities x = 0 and x = L, the solution is found in the form:

     w(x) = A sin(k 2 x) + B cos(k 2 x) w(x = 0) = 0 -→ B = 0 w(x = L) = 0 -→ A sin(k 2 L) = 0 (1.35)
It is easy to note that the last condition admits a non-zero deflection for P > 0 only if k 2 L = π, 2π, ....nπ which yields to the bifurcations loads:

P crn = n 2 π 2 L 2 EI (1.36)
The first (n = 1) of the critical buckling loads is called Euler load P E and is the failure load only for a perfect elastic column.

To the n-th eigenvalue P crn corresponds a deflected mode:

w n (x) = q n sin nπx L (1.37)
where q n is an arbitrary constant, which means that the deformed shape is of undetermined amplitude.

It is evident that when P reaches the critical values, two possible equilibrium conditions exist: the initial and the deflected ones, and the solution ceases to be unique. The non-deformed shape is an equilibrium configuration for all loads. At critical loads, also adjacent equilibrium states are possible, the deflected shapes.

Following considerations on the critical stress, the slenderness ratio l ρ , with ρ radius of gyration ρ 2 A = I, derives. The minimum value for buckling to occur, below which the beams tends to fail due to crushing, is l ρ = π E σy with σ y the yield stress.

Instability for imperfect beams

The perfect beam is just an idealized theoretical model. In reality, all the structures are affected by imperfections of many type. This can be due to what we name geometric defect, as a crookedness, i.e. a non-planarity of the axis, or to tests conditions, such as imperfect end-supports, eccentricity in the load or additional forces and moments. The presence of imperfections of any of these types provokes a strong change in behaviour. Since the effects on the behaviour are equivalent, an initial geometric defect of the beam, a crookedness z 0 , is considered, see Fig. 1.23a.

Writing once again the bending moment equilibrium in the deformed configuration of Fig. 1.23b, one obtains: where M is the bending moment introduced by a change in curvature, w(x) = z(x)z 0 (x) is the deflection from the initial imperfect configuration z 0 (x) and z(x) is the out-of-plane displacement from the ideal perfect position. The differential equation is

EIw ′′ (x) = M = -P z(x) (1.38)
z ′′ (x) + k 2 z(x) = z ′′ 0 (x) (1.39)
with boundary conditions of simple support, z(0) = 0 and z(L) = 0. Thanks to the boundary conditions, the initial imperfect configuration of the beam can be described by a Fourier's sine series expansion:

z 0 (x) = ∞ n=1 q 0n sin nπx L , q 0n = L 0 z 0 (x) sin nπx L dx L (1.40)
Likewise, it is possible to seek the solution in terms of sine series:

z(x) = ∞ n=1 q n sin nπx L , q n = L 0 z(x) sin nπx L dx L (1.41)
Substituting into Eq. 1.39, it gives:

∞ n=1 - nπ L 2 q n + k 2 q n + nπ L 2 q 0n sin nπx L = 0 (1.42)
the bracketed term must vanish, since the equation should be satisfied for any value of x and since the sine functions are linearly independent. This provides:

q n = q 0n 1 1 -P/P crn (1.43)
From a practical viewpoint, the first critical load is the most important one. In fact, from Eq. 1.43, when P → P cr 1 the deflection tends to infinity. Therefore, the first buckling load is the one for which the column fails. In addition, it derives that values of P higher than P cr 1 can not be reached. Therefore, as the initial imperfection tends to zero, the load-deflection diagram tends asymptotically to that of the perfect column with a bifurcation point at P cr , see Fig. 1.24.

The Southwell Plot for separation of defects sources

For both real tests and pseudo-experiments, the specimens used are slender and can be treated, with sufficient accuracy for the small-deflection range of response, with the linearised theory for beams. In Section 1.3.2, imperfect beams are treated and it is demonstrated that the first critical load is the most important. Accordingly, it can be easily proven that the q 0 1 , first term of the Fourier's series describing the initial imperfection, is the coefficient that gives the highest contribution for values of P approaching P cr 1 . The demonstration is proposed in [START_REF] Bažant | Stability of structures: elastic, inelastic, fracture and damage theories[END_REF]. This usage of only the first term of the Fourier expansion in the description of a beam with an initial imperfect geometry corresponds to considering the initial crookedness in the form of a half-sine wave.

Bearing in mind this result, let us consider Eq. ( 1.43). The deflection in any point x ∈]0, L[ can be thus written as:

z = z 0 + w = z 0 1 -P/P cr -→ w P = 1 P cr w + z 0 P cr (1.44)
which is the equation of a straight line in the (w, w P )-plane, where for sake of clarity, the subscript 1 in P cr is dropped. The equation applies for x ∈ [0, L], in the following it is chosen to take as measurement point x = L/2, central point of the beam, but any other x ∈]0, L[ can be employed. The plot of w versus w Pcr is called the Southwell plot. It has a strong importance in the post-processing of experimental results. In fact, unlike z, the deflection w can be easily measured during a test, even when z 0 is unknown, and so is P . Some assumptions are made to obtain Southwell's straight line equation, which limits the interval of validity. If experimental data are taken, in addition to the omnipresent scatter, deviations are found for lower and higher values of the deflection. The first is due to the fact that the Fourier series is truncated: for small value of P/P cr , the effects of the successive terms of the imperfection are not negligible. For higher values of w, instead, large deflections are reached and the assumptions of the linearised theory are invalid. This trend is shown in Fig. 1.25. L 2 EI and the intercept with the ordinates is z 0 Pcr , directly proportional to the amplitude of the initial imperfection, the geometric defect. The result of [Southwell 1932a] is an extremely valuable tool for treating experimental and pseudo-experimental results. It is to be noted that the first buckling load is the load for which the perfect structure bifurcates, therefore it does depend only on the material via the bending stiffness EI, see Eq. (1.36), and not on the geometric defect. The latter influences the intercept, via the amplitude of the initial deformation.

For our application, two important results derive. First, concerning defects, this separation of the terms influenced by material defects, the slope, and by geometric defects, the intercept, allow a distinction of the two sources of flaws, which the load-displacement diagram does not allow. Second, the P cr computed is the one issued from the bifurcation analysis, that can not be obtained from a non-linear test. This permits to tackle an equivalent eigenvalue problem even in presence of an imperfect structure.

In the following, a strong importance is given to the load term, since the imperfection term has multiple origins. Not only the crookedness, but also imperfect test conditions and the eventuality of a non-symmetric material defect (for instance, in a composite, if the fibre waviness affects only a certain number of flaw through the thickness) contribute to this term.

The Southwell Plot and its results: the possibility to retrieve an equivalent eigenvalue problem and the distinction between defect sources, as formulated above, are applicable only to slender beam-like structures. Nevertheless, extensions to large deflections and to plates are proposed, for instance in [START_REF] Spencer | Critique of southwell plots with proposals for alternative methods[END_REF]].

Limits of the Southwell plot and literature proposal for an extension to plates

An interesting overview of the extension of the Southwell methods is given in [START_REF] Singer | On the applicability of the southwell plot to plastic buckling[END_REF]] which focus on plastic buckling. This result plays a marginal role for the current application, as for composites plasticity is not a major issue. Nevertheless, it gives a hint on the interest historically set on the Southwell plot and on its reasons and possible extensions.

Even if applicable with success, in its basic form, only to sufficiently slender struts in the elastic domain, many have been tempted to investigate further and widen the field of applicability of the Southwell plot. The main reason for this interest has to be searched in the simplicity of use and in the property of 'smoothing' experimental data by removing most of the imperfections effects (geometric imperfections, load eccentricities and minor variations in stress distribution) related to the specific specimens, as pointed out by Bridget et al 1943[START_REF] Bridget | Some new experiments on buckling of thin wall construction[END_REF]. Extensions involve, between many others, inelastic and plastic buckling, short columns, lateral instability, plates [START_REF] Horton | Applicability of the southwell plot to the interpretation of test data obtained from stability studies of elastic column and plate structures[END_REF].

The assumption made for deriving the Southwell plot method narrows its range of applicability. In [START_REF] Spencer | Critique of southwell plots with proposals for alternative methods[END_REF], the conditions for which the Southwell plot is not a straight line appear at low loads and at high loads. The first was remarked by Southwell himself when plotting Karman's column data: for the graphical estimation of the critical load all the data below 0.8 P cr were rejected. The second is for instance typical of plates. In Fig. 1.3.4a the load-deflection curves for varying imperfection amplitudes are shown. According to the Southwell plot hypothesis, the correspondent data on the w -w P plane should present an equal slope, however, as visible in Fig. 1.3.4b, this is not the case. The Southwell plot, as it is, is not suited for plates. The extension of the Southwell plot proposed to plates by [START_REF] Spencer | Critique of southwell plots with proposals for alternative methods[END_REF] is presented in the following, since the possibility of an extension to buckling of plates can be an interesting perspective for the study.

Taking into account a rectangular plate with small imperfection, for a variety of loadings and boundary conditions it applies:

w h 2 - z 0 h 2 = Aψ + Bψ 3 where ψ = P P cr -1 + z 0 w (1.45)
This approximation is valid into the post-critical range. A and B are constants and h is the thickness. Under some assumptions, for a simply supported square plate uni-axially loaded, B is an order of magnitude smaller than A. Therefore, the second term on the right side of the inequality can be neglected for small deflections and P ≃ P cr . Thus the equation, found by Donnel [START_REF] Spencer | Critique of southwell plots with proposals for alternative methods[END_REF], becomes:

P P cr w = 1 w + z 0 + A -2 w + 2z 0 h 2 (1.46) with A -2 = 3 8 (1 -γ 2 ).
Having taken a pair of experimental data ( w, P ), called pivot point, one can write Eq. ( 1.46) replacing w and P by w and P and therefore eliminating A from the equation, results in:

H 2 = (P cr F 1 )H 1 z 0 (1.47)
where H 2 (w, P, w, P , F 1 , F 2 ) as follows:

                                                     H 2 = (P w2 -P w 2 ) φ H 1 = ( w2 -w 2 ) φ φ = P w 3 + w w -P w 3 + w w F 2 F 1 = 1 + 3 z 0 w + w F 2 = P 3 w + w2 w + G * -P 3w + w 2 w + G P 3 w + w2 w -P 3w + w 2 w G * = z 0 2 + 3 w + 2z 0 w G = z 0 2 + 3w + 2z 0 w (1.48)
To evaluate the critical load, the method proposed is to initially assume F 1 = F 2 = 1 and plot the data on the (H 2 -H 1 ) plane. If these follow a straight line, it is possible to compute the slope and the intercept, z 0 and therefore to estimate the correction factor F 1 to compute P cr , see Fig. 

Conclusions on instability in compression

In the present section, buckling theory is detailed both in its linearised version. This theory is employed in the formulation of the inverse approach. For sake of simplicity and rapidity of the algorithm, it has been chosen to employ the eigenvalue problem resulting from the linearised theory to identify defects via the modified constitutive relation error approach. Last but not least, the linearised theory and its tool, the Southwell Plot, are used in the following chapters to post-process the non-linear experimental results.

Digital Image Correlation

Several optical techniques to retrieve qualitatively and/or quantitatively full-field experimental data exist, such as: photoelasticity, moir interferometry (employed for stiffened panels buckling in [START_REF] Boni | Post-buckling behaviour of flat stiffened composite panels: Experiments vs. analysis[END_REF]), holography, topography and others. Among these, digital image correlation (DIC) covers an important role, since it provides quantitative results in the form of scalar values of displacements or strain. In addition, the tool is particularly versatile: it is in theory applicable to a wide range of scale, from microscopy to satellite images.

After the technique was first introduced, [START_REF] Peters | Digital imaging techniques in experimental stress analysis[END_REF], many developments have followed [START_REF] Chu | Applications of digital-image-correlation techniques to experimental mechanics[END_REF][START_REF] Sutton | Determination of displacements using an improved digital correlation method[END_REF][START_REF] Hild | Digital image correlation: from displacement measurement to identification of elastic properties-a review[END_REF], also thanks to the technological improvements in the domain of digital imaging. For instance, high speed cameras have made measurements possible (through DIC) for conditions in which gauges could not be employed.

In addition to the above mentioned characteristics, the fact of being a contactless technique, the richness of acquired data and the possibility to dialogue with finite elements to identify material properties make DIC an extremely interesting technique applicable to a wide field of application. Obviously, some limitations exist, in particular a compromise has to be found between image resolution and spatial resolution.

For our application, DIC in its 3D surface form enables the obtaining of a rich displacement filed, necessary as input of the MCRE inverse approach for defect localization.

Principle of DIC

In its basic form, DIC makes use of a distinctive pattern on the observed surface to measure the displacements between two or more recorded images. The pattern can either be the natural texture or black and white speckles obtained from the application of spray paint. The displacement at a given moment t can be tracked by comparing a reference image, defined by the grey level function f (x x x) and a distorted image at time t, defined by g(x x x, t), where x x x denotes any pixel in the region of interest (ROI).

Introducing the displacement u u u(x x x, t), it is possible to define the residual image series by

r(x x x, t) = |g(x x x + u u u(x x x, t), t) -f (x x x)| (1.49)
The measurement of the displacement field relies on the premise of conservation of the gray level in the examined domain. In reality, this assumption drops due to the presence of noise. The problem of recovering the displacement field from the conservation of the gray level becomes thus ill-posed and is solved as an optimization problem. The optimum displacement u u u(x x x, t) is selected as the one minimizing the cost function:

ξ 2 (t) = 1 |Ω| Ω (g(x x x + u u u(x x x, t), t) -f (x x x)) 2 (1.50)
where Ω is the so called region of interest.

Besides the estimation of the quality of the displacement fields, the maps of residuals provide further informations. For instance, a local increase in the residuals can be the symptom of the non continuity of the fields and may be used to detect the presence of a crack and its evolution. In fact, when a crack occurs, the hypothesis of continuity of the displacements is not fulfilled anymore. This technique, born as an academic one, has gained the interest of industrials. Most commercial codes commonly use the so-called local DIC, [START_REF] Sutton | Determination of displacements using an improved digital correlation method[END_REF][START_REF] Chu | Applications of digital-image-correlation techniques to experimental mechanics[END_REF][START_REF] Schreier | Systematic errors in digital image correlation due to undermatched subset shape functions[END_REF]. The local approach consists in dividing the ROI in sub-images which are evaluated independently. A global DIC approach has been introduced to reduce the uncertainties in the measures displacement field, [START_REF] Broggiato | Adaptive image correlation technique for full-field strain measurement[END_REF][START_REF] Sun | Finite element formulation for a digital image correlation method[END_REF][START_REF] Besnard | finite-element displacement fields analysis from digital images: application to portevin-le châtelier bands[END_REF]]. In addition, it allows a multiscale approach that works as follows; first the global displacement is identified using super-elements, then, when convergence is reached, the value at the borders of the elements can be used to initialise the estimation at lower scales. The interest of the multi-scale approach, which gain information from multiple scales and therefore multiple and different DIC meshes, is to collect the informations coming from cameras with different resolutions, [START_REF] Passieux | Multiscale displacement field measurement using digital image correlation: Application to the identification of elastic properties[END_REF]].

StereoDIC

To recover out-of-plane displacements, as required by bening tests or compressive tests when instability occurs, a 3D description of the field is necessary. Some of the existing contactless methods, which allow the evaluation of 3D deformations, are: fringe projection, laser scanner and photogrammetry. In addition a 3D surface DIC method exists, commonly called stereoDIC or stereocorrelation. To do so, at least two cameras are needed to provide two reference images and two deformed pictures of the observed surface with the appropriate texture.

At least two declination of stereocorrelation exist: the standard stereoDIC, where the surface is described by a cloud of points and a CAD based stereoDIC, which makes use of a continuous description in a freeform framework via a Non Uniform Rational Basis Spline (NURBS) representation. This last method, which has the advantage of being a global approach to stereocorrelation, is that applied to the compressive tests performed and therefore detailed hereafter [START_REF] Dufour | Cad-based displacement measurements with stereo-dic[END_REF]].

The multiview system required (multiple cameras observing a surface) necessitates of a supplementary procedure in comparison to 2D DIC: the transition from 3D coordinates to the description in the pictures reference system. The supplementary procedure consists in a calibration step, where the intrinsic and extrinsic parameters of the camera are evaluated, and a surface correction step, where the theoretical surface employed in the beginning is corrected to stick to the real one.

For the calibration, different solutions are available. Bidimensional or tridimensional targets can be used, in Figure 1.28 an example of the latter, an open book target, is shown. The advantage of the latter is that just a couple of images are required for the calibration (more can be used for redundancy), while the latter requires multiple pairs of images with different position of the target. An alternative is the self-calibration. The solution of using as target the object itself is effective but is responsible of a slight loss in precision. In this case, the theoretical CAD surface is employed. The surface description uses NURBS, defined by shape parameters: order, control points and related weight and a knot vector.

The calibration is undertaken on the first photo of the series or with a target photo. The intrinsic and extrinsic parameters of the camera are defined through from the determination of transformation matrices; these convert the coordinate of the 3D space into the bi-dimensional coordinates of the pictures reference system. Practically, it is necessary to provide the space coordinate of some points (at least six for each image).

The second step is the definition of the observed surface metrology. As input, the theoretical CAD surface is employed. By varying the position and weight of the control point it is possible to modify the NURBS surface in order to approach the real one.

Each of the two steps, calibration and surface correction, is iterated to reach the global minimum of the correlation residuals. The two steps are repeated until no detectable changes are observed neither in the transport matrix nor in the shape of the surface. Then the procedure of evaluating the displacement field begins.

Taken a number n c of cameras, for each camera C i , with i = 2, 3, ...n c , the displacement is estimated by computing the minimum of Eq. (1.50). The NURBS formulation results in the dependence of the cost function from the control points. Analogously, the displacement appears in the form of the optimal deformed surface, obtaining from the variation of the control points.

Conclusions on DIC

The digital image correlation appears as an extremely powerful tool to have a quantitative estimation of the displacement fields at given times through the test. This make the technique particularly useful, in our framework, to determine the inputs of the inverse approach. It is at the same time true that, in this work, not all the potentials of the methodology are exploited but we will profit only from its postprocessing characteristics. One of the declination of DIC is to be an material parameter identification methodology.

Conclusions on the state of the arts

Four topics are treated in this state of the art overview. Even if they seem completely uncorrelated or only partially correlated, all together contribute to the developement of this work.

The purpose being defect identification, on the one hand it is fundamental to gain an insight on manufacturing defect and on their effects to provide decisional tools for defining the most dangerous ones. On the other hand, the flaw characterization itself should be treated. Having chosen an inverse approach, the literature overview on identification and model updating techniques helps selecting the technique suited for both defining the intensity of the flaw, its shape and position: the modified constitutive relation error.

Defect characterization has to be practically made possible. Buckling theory is therefore introduced both to enable a specific formulation of the MCRE methods and to provide the tools to post-process the experimental results, together with DIC, so that they can be employed as inputs of the inverse problem.

All the instruments are now available to develop a defect characterization technique, to test its accuracy and to discuss possible enhancements.

Chapter 2

Modified Constitutive Relation Error: extension to buckling

Introduction

As previously explained, buckling tests have caught our interest since, at least nominally, they are more sensitive to defects and imperfections than other types of loading. A possibility for formulating the MCRE problem for buckling tests would be to employ a general geometrical non-linear theory (in fact a large displacement and large rotation ones). In this case, material non-linearities should also be considered.

Nevertheless, for most industrial applications, the design of the specimens is made only on the basis of an estimation of the first buckling load. Moreover, the development of a full inverse approach for material and geometrical non-linearities would lead to a complex and costly procedure, which is better to avoid in order to obtain a fast and cheap identification procedure.

Therefore we decided to see whether a formulation based on the linearised theory of buckling could be efficient. Indeed the linearised theory of buckling can lead to a correct approximation of the response of a structure in the vicinity of the buckling load.

Several questions are associated with this approximation, when dealing with experimental information:

• the fact that, in presence of geometrical imperfections, the experimental response in terms of load-deflection curve is non-linear from the beginning of the test.

• the fact that theoretical first buckling load is usually not reached in experiments.

These two questions impact the formulation of the MCRE that we propose. Considering those different aspects this chapter is organized as follows:

• first the background of the linearised theory of buckling is presented in the context the classical hypereleastic theory,

• then the proposed formulation, the extension of the Modified Constitutive Relation Error in the framework of the linearised buckling theory, is developed and discussed together with its numerical treatment,

• simple examples are then presented in order to clarify a number of practical aspects associated with the formulation.

Classical hyper elastic theory

Let consider a body initially occupying the volume Ω 0 of boundary ∂Ω 0 , naming ∂ u Ω 0 the portion of the boundary where the displacements (boundary conditions) are imposed, ∂ f Ω 0 the part of the boundary subjected to a compressive dead load -P F d 0 such that

∂ f Ω 0 F d 0 d∂Ω 0 = 1 (2.1)
with the scalar loading parameter P > 0 and ∂ c Ω 0 the complementary part of the boundary

∂ c Ω 0 = ∂Ω 0 -(∂ u Ω 0 ∩ ∂ f Ω 0
) that corresponds to free edges. Consider the transformation of gradient F F F, that brings the body from the initial configuration to a deformed one Ω 0 -→ Ω (to denote the final configuration, the subscript 0 is dropped) and is characterized by a displacement u u u(x) of the points x of the body. Introducing the Boussinesq stress tensor B B B = F F FΠ Π Π where Π Π Π is the Piola-Kirchhoff stress tensor, the local form of the equilibrium can be written in the initial configuration as:

div 0 B B B = 0 for x ∈ Ω 0 B B B • n 0 = 0 for x ∈ ∂ c Ω 0 B B B • n 0 = -P F d 0 for x ∈ ∂ f Ω 0 (2.2)
We consider an elastic constitutive relation which in its simple form is expressed as:

Π Π Π = K K KE E E(u u u) (2.3)
binding, via the Hooke tensor K K K, the Piola-Kirchhoff stress tensor to the Green-Lagrange strain tensor E E E(u u u) with:

E E E(u u u) = 1 2 ∂u u u ∂M 0 M 0 M 0 + t ∂u u u ∂M 0 M 0 M 0 + t ∂u u u ∂M 0 M 0 M 0 ∂u u u ∂M 0 M 0 M 0 (2.4)
where M M M 0 denotes the initial position of all the points of the body. The previous formulation can equivalently be derived starting from the following potential energy E p :

E p (u u u) = 1 2 Ω 0 T r K K KE E E(u u u)E E E(u u u) dΩ 0 + P ∂ f Ω 0 F d 0 u u u d∂Ω 0 (2.5)
where u u u belongs to the space of kinematically admissible fields U KA (ũ ũ ũ), defined as:

U KA (ũ ũ ũ) = {u u u ∈ H 1 (Ω 0 )|u u u(x) = ũ ũ ũ for x ∈ ∂ u Ω 0 } (2.6)
A displacement belonging to the space of the kinematically admissible fields and verifying homogeneous boundary conditions U KA (0) is denoted as kinematically admissible to zero. By taking δu δu δu, infinitesimal admissible variation of u u u, one obtains the following equilibrium equation:

∀δu δu δu ∈ U KA (0) Ω 0 T r Π Π ΠL u L u L u (δu δu δu) dΩ 0 + P ∂ f Ω 0 F d 0 δu δu δu d∂Ω 0 = 0 (2.7)
where

L u L u L u (v v v) corresponds to the infinitesimal strain tensor related to v v v on the deformed configuration associated with u u u L u L u L u (v v v) = 1 2 ∂v v v ∂M 0 M 0 M 0 + t ∂v v v ∂M 0 M 0 M 0 + t ∂v v v ∂M 0 M 0 M 0 ∂u u u ∂M 0 M 0 M 0 + t ∂u u u ∂M 0 M 0 M 0 ∂v v v ∂M 0 M 0 M 0 (2.8)
Equation (2.7) governs the full non-linear response of the structures. For a perfect structure, a bifurcation analysis can be employed to describe the behaviour. The corresponding formulation of the buckling problem, which is adopted for the identification, can be retrieved as follows. Consider the first derivative in u u u of the potential energy E p evaluated in the δu δu δu direction. The solution u u u(P ) verifies:

∀δu δu δu ∈ U KA (0) < E ′ P (u u u), δu δu δu > = Ω 0 T r K K KE E E(u u u)L u L u L u (δu δu δu) dΩ 0 + P ∂ f Ω 0 F d 0 δu δu δu d∂Ω 0 = 0 (2.9)
and is unique for P < P cr . The solution (u u u(P ), P < P cr ), often called the fundamental solution, ceases to be unique when the second derivative of E p loses its definite character. This leads to the non-linear eigenvalue problem, of first buckling mode v v v and first eigenvalue P cr > 0, following:

Find v v v = 0 ∈ U KA (0) and P cr such that:

∀δu δu δu ∈ U KA (0) < E ′′ P (v v v, δu δu δu) >= 0 = Ω 0 T r K K KL u L u L u (v v v)L u L u L u (δu δu δu) dΩ 0 + Ω 0 T r K K KE E E(u u u(-P cr )) t ∂v v v ∂M 0 M 0 M 0 ∂δu δu δu ∂M 0 M 0 M 0 dΩ 0 (2.10)

Linearised buckling formulation

When dealing with stiff materials as long fibre composites, buckling arises for ∂u u u

∂M 0 M 0 M 0 ≪ 1.
Some assumption can therefore be made:

L u (v v v) ≃ ε ε ε(v v v) = 1 2 ∂v v v ∂M 0 M 0 M 0 + t ∂v v v ∂M 0 M 0 M 0 (2.11) and E E E(u u u) ≃ ε ε ε(u u u) (2.
12)

The fundamental solution u u u can then be simply determined by a linear elastic problem and

K K KE E E(u u u) ≃ K K Kǫ ǫ ǫ(u u u(-P )) = -PK K Kǫ ǫ ǫ(u u u(1)) = -PΣ Σ Σ 0 (2.13)
The problem to solve for buckling becomes a classical linear eigenvalue problem associated with the pre-stress tensor Σ Σ Σ 0 :

Find v v v = 0 ∈ U KA (0) and P cr such that:

∀δu δu δu ∈ U KA (0) Ω 0 T r K K Kǫ ǫ ǫ(v v v)ǫ ǫ ǫ(δu δu δu) dΩ 0 = P cr Ω 0 T r Σ Σ Σ 0 t ∂v v v ∂M 0 M 0 M 0 ∂δu δu δu ∂M 0 M 0 M 0 dΩ 0 (2.14)
This result is valid for a perfect structure. The linearised theory handles also bodies affected by small imperfections in the small-deflection domain, see Section 1.3.2.

In the context of the MCRE, which is in fact a mixed formulation, it has to be noted that this equation is an equilibrium equation expressed in displacements, when the constitutive relation is fully fulfilled. As it is not the case in this application, we introduce a stress σ σ σ satisfying the following equilibrium equation:

∀δu δu δu ∈ U KA (0), Ω 0 T r σ σ σǫ ǫ ǫ(δu δu δu) dΩ 0 = P cr Ω 0 T r Σ Σ Σ 0 t ∂v v v ∂M 0 M 0 M 0 ∂δu δu δu ∂M 0 M 0 M 0 dΩ 0 (2.15)

Modified Constitutive Relation Error Formulation for linearised buckling

The founding principle, specific of the method, is to part the informations into reliable and non-reliable sets, and especially to consider the equilibrium equation as reliable. Table 2.1 presents the subdivision we made for a linearised buckling based inverse problem for defect characterization.

Table 2.1 shall be analysed, as it sets the basis for the entire formulation. The choices made concerning which features are considered reliable and which are not and the reason behind them are here described in detail. To ease the discussion, a Roman number is given to each of the blocks of the .

Block I Two equations are here considered reliable:

• the kinematic compatibility

• the equilibrium.

Both are intrinsic to the buckling formulation presented above and in particular to the use of the linearised formulation. Concerning the first, the kinematic compatibility is considered reliable due to the use of kinematically admissible displacement fields, which verify the kinematic boundary conditions. Some other works exist where the boundary conditions are considered non-reliable, for instance [START_REF] Feissel | Vers une stratégie d'identification en dynamique rapide pour des données incertaines[END_REF], here instead we asses them as being reliable. Regarding the second equation, the buckling equilibrium of Eq. (2.15) is considered.

Block II For a defect of material type, the unknowns are set in the variation of material property caused by the defect. This means that the parameters of the Hooke's tensor K K K and therefore of the constitutive relation may be incorrect, thus are non-reliable. For example, considering the simplified defect model presented in the preceding chapter, a set of parameters p p p is introduced to describe the local variation of material properties as

p i = E i E i 0
. The unknowns of the inverse problem are therefore the local values of the Young' s Moduli at the defect location. Since no a priori guess is made to attribute the value of the Young' s Modulus to the defective elements, the nominal value of the healthy material is used to initialize the procedure. At each step, the value of the material parameters attributed to the defective elements is updated. This is the reason why the knowledge of the parameter of the Hooke' s tensor, and therefore the constitutive relation, shall be considered non-reliable.

Block III Some of the experimental features are considered reliable in this work, namely the critical load P cr obtained from measured data and the initial geometry. The reason for considering both features reliable depends on the use of the Southwell plot and the related formulation. For beam-like structures, the data traced on a w-w/P plot follow a linear trend in their central portion, where the assumption of the linearised theory are valid. The regression line computed using the data of the straight portion brings two informations: the critical load of the structure without geometric defects and the amplitude of the initial imperfection.

Let first discuss the reason behind the reliability of P cr . The critical load obtained as the inverse of the slope of the regression line provides with extreme accuracy the first buckling load. This is documented in Section 1.3.2, where the value of the P cr provided by an eigenvalue FE calculation is compared to the value obtained from the Southwell plot computed on pseudo-experimental data obtained from a non-linear FE computation of the same specimen. The error in the estimation of the P cr is below 0.5%. This finding justifies the choice of considering reliable the 'experimentally-obtained' buckling load.

Let us now discuss the reasons behind the choice of considering the configuration without geometric defects reliable. The eigenvalue solution is referred to a perfect structure, i.e. a structure without imperfections, as a specimen without initial crookedness. The possibility to reconstruct, from the experimental non-linear data, the equivalent eigenvalue problem acts if as we could transfer the features, e.g. the material defects, of the structure with geometric defects, the one experimentally tested, into a 'perfect' version of the same structure lacking initial imperfection. Contribution to the z 0 term, proportional to the intercept of the w/P axis of the Southwell plot, are given either by a defect in the initial geometry (a crookedness) and by an imperfection in the boundary conditions. The Southwell plot indeed purge the P cr from the geometric defects that are instead all gathered into z 0 , the amplitude of the initial imperfection. Thanks to the possibility to separate the two effects, it has been decided to take the configuration lacking geometric defects Ω 0 as reliable initial geometry and in addition to consider also the boundary conditions reliable.

Block IV The experimental measurements of the deformed shape can be considered non reliable for multiple reason. One of the most common is the presence of noise affecting the measurements. In our case this is not the motivation; since the deflected shape is reconstructed using full-field measurement through StereoDIC, the measured data are affected by a low level of noise. Thus the reason of the unreliability has different origins. In particular the reason has to be searched in the need to reconstruct the buckling problem from non-linear experimental measurements, related to the use of the linearised formulation.

For what concerns the critical load, the discussion above has already highlighted the extreme precision of the estimation of the first buckling load provided by Southwell. Instead, an unique way to obtain the modal shape form the deformed shape obtained during the experiment does not exist. While for an eigenvalue problem, once the critical load reached, the mode maintains the same shape (with only the amplitude varying), during the experiment the behaviour is non-linear, meaning that to each value of the load a deformed shape corresponds. The non-uniqueness of the deflected shape force us to make a choice on which deformed shape to use (the initial ones, in the same range of validity of the Southwell plot) and introduce also a non-reliability of the measured data. To sum up, measured data are not considered reliable, as the deformed shape experimentally obtained is not equivalent to the buckling mode of the eigenvalue problem.

To this difference contributes also the decision, explained in the paragraph above, to consider both the geometry lacking geometric flaws and the boundary conditions reliable. As a matter of facts, both the presence of geometric defects and imperfection in the boundary conditions contribute to the deformed shape experimentally obtained. Therefore, if the possibility existed to perfectly reconstruct the eigenmode of the bifurcation analysis, no problem would arise. Instead, the use of an experimental deformed shape is the reason for considering the measurements of the modal shape non-reliable.

The subdivision in reliable and non-reliable features has the following purpose: the non-reliable equations are taken into account by means of the modified error in constitutive relation and are therefore minimized and verified at best, while the reliable ones are fulfilled exactly. In the following section, let mathematical problem be detailed.

Mathematical formulation

The modified constitutive relation error problem for buckling can be written as follows:

Find the kinematically admissible field u u u(x) ∈ U KA (ũ ũ ũ) and the statically admissible field σ σ σ(x) ∈ S SA ( f f f , P, Σ 0 Σ 0 Σ 0 ) that minimize :

E 2 m (u u u, σ σ σ, p p p) = Ω (σ σ σ -K K K(p p p) : ε ε ε(u u u)) : K K K(p p p) -1 : (σ σ σ -K K K(p p p) : ε ε ε(u u u)) dΩ + r 1 -r Π Π Πu u u -ũ ũ ũ 2 K K K (2.16)
under the constraint:

∀u * u * u * ∈ U KA (0) Ω 0 T r σ σ σǫ ǫ ǫ(δu δu δu) dΩ 0 = Pcr Ω 0 T r Σ Σ Σ 0 t ∂u u u ∂M 0 M 0 M 0 ∂u * u * u * ∂M 0 M 0 M 0 dΩ 0 (2.17)
where the tilde refers to the measured data. The use of kinematically and statically admissible fields would lead for an elasticity problem to the first integral going to zero. The dependence on the nonreliable informations, nested in the constitutive relation with the dependence on p p p of K K K, cause the model error, first term of Eq. ( 2.16), to assume a positive value.

In the second term of Eq. (2.16), distance between measurements and model responses, the operator Π Π Π is introduced to enable the correspondence between measurement points and correspondent nodes of the FE mesh. This is a key term for applications where the number of experimental data is low. Employing StereoDIC to reconstruct the measured displacements provides a huge amount of experimental information and makes this term substantially useless. In this work, as the mesh creation and the uploading of the full-field measurements are undertaken at the same step, using the same grid, the operator Π Π Π is discarded.

Requiring the fulfilment of Eq. ( 2.17) corresponds to imposing the linearised buckling equilibrium equation, refer to Eq. (2.15).

Before proceeding to the formulation, let us make a remark. The material parameter identification problem could globally be solved by minimizing Eq. (2.16) with the appropriate choice of the admissible fields. Nevertheless imposing the stationarity of a problem of this type would bring to strong non-linearities. For this reasons, once the formulation of the problem completed, we proceed to the two steps iterative procedure already outlined in Section 1.2.8. It is interesting to highlight that this formulation resembles the ones using Kohn-Vogelieus' s cost function but with two major differences. First, a coupling between displacements and stresses exists, as derives from the equilibrium, and it is not possible to decouple the two. Second, a term evaluating the discrepancy between measurements and model is introduced in the MCRE to account for the non-reliability of the experimental data.

Let us now continue to detail the complete solution of the problem.

As it can be easily seen, the problem written above is a mixed one. Defining a statically admissible stress field is an hard task and in addition, it is needed to make the problem suitable for a classical resolution by Finite Elements (in the totality of this work Cast3M is employed, [Cast3M 2000]). To ease the solution, the mixed formulation is transformed into a pure displacement one. For this purpose, the constrained minimization problem in Eq.( 2.17) is recast as follows.

Let an admissible variation δσ σ σ being considered, which satisfies:

Ω 0 T r δσ σ σε ε ε(u * u * u * ) dΩ 0 = 0 ∀u * u * u * ∈ U KA,0 (2.18)
Thus partial variations δσ σ σ are statically admissible to 0. Taking into account this property, the stationarity of the error with respect to σ σ σ leads to

Ω 0 T r K K K -1 (σ σ σ -K K Kε ε ε(u u u)) δσ σ σ dΩ 0 = 0 ∀δσ σ σ ∈ σ SA,0 (2.19)
which can be solved as:

∃ w w w ∈ U KA (0) for which

K K K -1 σ σ σ -ε ε ε(u u u) = ε ε ε(w w w) ⇐⇒ σ σ σ = K K Kε ε ε(u u u + w w w) = Kε ε ε(v v v) =⇒ v v v = (u u u + w w w) ∈ U KA (2.20)
A pure displacement formulation is obtained by replacing σ σ σ with v v v ∈ U KA (ũ ũ ũ), kinematically admissible. The problem to solve to estimate the error becomes:

Find the kinematically admissible fields (u u u(x), v v v(x)) ∈ U KA (ũ ũ ũ) that minimize:

E 2 m (u u u, v v v, p p p) = 1 2 Ω 0 T r K K Kε ε ε(u u u -v v v)ε ε ε(u u u -v v v) δΩ 0 + r 1 -r Πu u u -ũ ũ ũ 2 K K K (2.21)
under the constraint:

∀u * u * u * ∈ U KA (0) Ω 0 T r K K Kε ε ε(v v v)ε ε ε(u * u * u * ) δΩ 0 = Pcr Ω 0 T r Σ Σ Σ 0 t ∂u u u ∂M 0 M 0 M 0 ∂u * u * u * ∂M 0 M 0 M 0 δΩ 0 (2.22)
with:

U KA (ũ ũ ũ) = {u u u(x) s.r. |u u u(x) = ũ ũ ũ for x ∈ ∂ u Ω} (2.23)
It is to be noted that in the formulation Pcr is known. This imply that the equilibrium equation is no more associated to an eigenvalue problem. The solution of the linear elastic problem of a structure loaded in compression is required to determine the pre-stress operator Σ Σ Σ 0 . Meaning that, although the linearised buckling problem of Eq. (2.22) is an eigenvalue one, the MCRE problem is solved without needing the eigenvalue computation, i.e. no eigenvalue problem is solved. This increases the simplicity and reduces the computational cost.

After discretisation over a FE subspace, the classical finite element formulation results. Let us neglect the discretisation error and denote by U, V the kinematically admissible nodal displacements vectors, with V being issued from the statically admissible problem, by [K] the stiffness matrix, by [G ũ] the block of [K] computed on the nodes which correspond to the measurement points [G ũ] = Π T K Π and by [K σ ] the pre-stress matrix, obtained from the second term of Eq. (2.22). The discrete form of the MCRE of Eq. ( 2.21), named E 2 m is:

E 2 m (U, V, p p p) = 1 2 {U -V} T [K(p p p)]{U -V} + 1 2 r{U -Ũ} T [G ũ(p p p)]{U -Ũ} (2.24)
and of the constraint condition, discrete form of the linearised buckling equilibrium, is: Find the kinematically admissible nodal displacements U and V V V that minimize:

[K(p p p)]{V} = Pcr [K σ (p p p)]{U} ( 
E 2 m (U, V, p p p) = 1 2 {U -V} T [K(p p p)]{U -V} + 1 2 r 1 -r {U -Ũ} T [G ũ(p p p)]{U -Ũ} (2.26)
under the constraint:

[K(p p p)]{V} = Pcr [K σ (p p p)]{U} (2.27)
In the next three section, the defect characterization procedure is described and each step is detailed. This iterative procedure in two steps, typical of the MCRE, is substantially the same for any kind of test, in statics and dynamics.

Treatment of the problem

To tackle how the problem is treated, a general scheme of the procedure is presented in Fig. 2.1. The MCRE procedure consists of two steps: the localization step and the parameter updating step. The entire iterative procedure is continued until a stop criterion is met, for instance at convergence or, as in Fig. 2.1, when the error functional descend beyond a certain threshold. Only the area localized at this step are treated in the parameter updating step. This consists in a correction of the parameter using a gradient steepest descent method, employing an opportunely chosen cost function, as will be detailed in Section 2.3.4.

An equivalent strategy would be to correct all the material parameters of the model. The choice here made, to limit the correction only to the defective areas and thus to reduce the number of parameters to identify, diminish the ill-posedness of the identification problem and ensure the solvability. Using two steps and reducing the number of sought-after parameters has strong regularizing effects and ease the solution of the inverse problem.

The present section is introduced to once again present the approach as a whole and stress the modularity and the regularization properties given by the introduction of the two separate steps. Now, the problem formulation will be presented in detail for each step.

The localization step

The aim of this step is to determine the geometric support of the defect from the localization of the most erroneous elements of the FE model.

Determination of U and V

The first action of the localization step is the computation of the admissible displacements fields of the finite element problem. U and V are solutions of the constrained minimization problem (Eqs. (2.26), (2.27)). This is solved by introducing a Lagrange multiplier Λ Λ Λ. For the sake of simplicity, the dependence on the sought-after parameters p p p is implied in the next steps. The corresponding Lagragian writes:

L(U, V, Λ Λ Λ) = 1 2 {U -V} T [K]{U -V} + 1 2 r{U -Ũ} T [G ũ]{U -Ũ}+ {Λ Λ Λ} T ([K]{V} -Pcr [K σ ]{U}) (2.28)
where the lagrangian multipliers Λ Λ Λ are introduced as an additional vector of unknowns, which is computed, together with the other two unknown nodal displacements, by imposing the stationarity of L:

δL ={δU -δV} T [K]{U -V} + r{δU} T [G ũ]{U -Ũ}+ {Λ Λ Λ} T ([K]{δV} -Pcr [K σ ]{δU }) + {δΛ Λ Λ} T ([K]{V} -Pcr [K σ ]{U}) = 0 ∀ δU, δV ∈ U KA (∀ δΛ Λ Λ) (2.29)
From Eqs. (2.28) and ( 2.29) stems that, if P cr was unknown, the equations would have been nonlinear. Thanks to the critical load been known, a linear system is obtained to solve Eq. ( 2.29) with respect to the three unknowns (U, V, Λ Λ Λ).

     δU : [K]{U -V} + r[G ũ]{U -Ũ} -Pcr [K σ ]{Λ Λ Λ} = 0 δV : -[K]{U -V} + [K]{Λ Λ Λ} = 0 δΛ Λ Λ : [K]{V} -Pcr [K σ ]{U} = 0 (2.30)
By elimination of the Lagrange multipliers, Λ Λ Λ using the second equation, yields:

[K] + r[G ũ] -Pcr [K σ ] -[K] + Pcr [K σ ] -Pcr [K σ ] [K] U V = r[G ũ] Ũ 0 (2.31)
where it is easily noticed that U and V are coupled.

Technique of resolution of the coupled problem In the thesis we implement the method in the Finite Element code Cast3M. This finite element software allows for the solution of linear and non-linear systems but does not provide the possibility to invert or assembly matrices in block, e.g. the one of Eq. (2.31). The resolution of the coupled problem in a Finite Element code is therefore not straigthforward. A simple solution allowing to use classical Cast3M operator is to solve the system (2.31) iteratively with an initial guess of one of the displacement fields. The iterative procedure, for the j-th iteration, is the following:

• At iteration j set V to the value Vj 1. Compute Ūj from [[K] + r[G ũ] -Pcr [K σ ]] Ūj = r[G ũ] Ũ + [[K] -Pcr [K σ ]] Vj 2.
Obtain the updated value of Vj+1 from

[K] Vj+1 = Pcr [K σ ] Ūj • Repeat until | Vj+1 -Vj |< 10 -7 and | Ūj+1 -Ūj |< 10 -7
Two initial values V0 have been tested: V0 = Ũ and V0 = 0. In both cases, U and V converge fast to the proper values.

Localization of defects It is important to discuss how the knowledge of the displacement fields is exploited for deciding which zones have to be corrected. If the material is homogeneous, the parameters are global and they can be updated as a whole. Since we deal here with an heterogeneous material, the parameters are associated to a position and the parameters relative to the most erroneous zone are corrected.

Let us introduce a local value of the error η 2 m i , relative to the element i of the finite element model, computed from Eq. (2.26) using only the nodal displacements of element i and a global value of the error, relative to the entire structure

E 2 g = n el i=1 η 2 m i (2.32)
.

Once the nodal displacement U, V are available, thanks to Eq. ( 2.26) it is possible to compute the local errors η 2 m i on each one of the n el elements (or substructure) of the FE model and the global error E 2 g . To tackle the issue of localizing the defects areas, i.e. determining the geometric support, let us first focus on the local error η 2 m i . Computing Eq. ( 2.26) on each element provides a map of the error distribution. By normalizing with respect to the maximum value of the entire distribution η 2 max , a map of the error density distribution over the entire structure is obtained. This map commonly show areas where the error value is low and peaks of error on some elements. After fixing the threshold value e th , see Section 1.2.8, some high-error elements are isolated. These high-error elements are the geometric support of the defects, the areas which undergo correction in the parameter updating step.

A remark should be made also on the global error E 2 g , which can be employed as stop criterion for the procedure. The global identification procedure is interrupted either when the minimum of global error is reached or when the error values between two subsequent iterations evolve less than the chosen tolerance

T OL, | E g (k+1) -E g (k) |< T OL,
where k is the iteration counter. The residual error at the end of the identification procedure, M CRE min , can be exploited as an indication of the overall quality of the updated model.

Having reduced the number of parameters, which undergo updating, by defining the erroneous areas, let us detail now the parameter correction procedure.

The parameter updating step

The goal of the step is to determine the intensity of the defects by updating the parameters of the model. The strategy used is of error minimization type: the parameters are corrected in a way to reduce the discrepancy between the model and the real system.

Since the intensity of the flaw is investigated, only the parameters relative to the erroneous area localized at the previous step undergo updating. With respect to the parameters at the previous step k, the updated values are computed by employing an optimization algorithm of gradient steepest descent type:

p (k+1) = p (k) + α (k) g (k) (2.33)
where α (k) is the step length, an objective manner to estimate its value is give by the Armijo rule,

g (k) = ∇J(p p p (k)
) is the search direction, with J(p p p) being the cost function. The good set of parameters minimizes the cost function. Multiple choices are possible, e.g. in [START_REF] Feissel | Modified constitutive relation error identification strategy for transient dynamics with corrupted data: the elastic case[END_REF] the CRE model error term is taken as it guarantees robustness of the correction. In the present work, the cost function equals the modified form of the error J = E 2 m . This option eases the computation, thanks to the stationarity properties of (U, V V V , Λ Λ Λ):

∂J = dE 2 m = ∂E 2 m ∂U dU + ∂E 2 m ∂V dV + ∂E 2 m ∂Λ Λ Λ dΛ Λ Λ + ∂E 2 m ∂p i dp i (2.34)
Therefore computing ∇J(p p p) in the form:

∂J ∂p i = 1 2 {U -V} T ∂K ∂p i {U + V} + 1 2 r{U -Ũ} T ∂G ũ ∂p i {U -Ũ} -Pcr {U -V} T ∂K σ ∂p i {U} (2.35)
needs only the calculation of the gradients of the stiffness and the pre-stress matrices. For p i in the form

E i
E 0 , the relation between the parameters and the Hooke's tensor is linear, so that the gradients [∂K/∂p i ] [∂G ũ/∂p i ] can be computed analytically. Since the relation between p p p and the pre-stress operator is not easily determined, [∂K σ /∂p i ] requires a numerical computation. Therefore, the presence of this last term increases the computational cost and the overall complexity of the step, since the pre-stress operator needs to be updated with the p p p change at each step. Two methods, giving rise to different forms of the cost function's gradient, are proposed:

• Method A: the dependence of K σ on p p p is neglected, K σ ( ✁ p p p)

• Method B: the dependence K σ (p p p) is accounted for.

This results in the different formulations proposed in Table 2.2.

Table 2.2: Variants of the parameter updating method

Method A K σ ( ✁ p p p) ∂J A ∂p i = 1 2 {U -V} T ∂[K] ∂p i {U + V} + 1 2 r{U -Ũ} T ∂[G ũ] ∂p i {U -Ũ} (2.36) Method B K σ (p p p) ∂J B ∂p i = 1 2 {U -V} T ∂[K] ∂p i {U + V} + 1 2 r{U -Ũ} T ∂[G ũ] ∂p i {U -Ũ} -Pcr {U -V } T ∂[K σ ] ∂p i {U} (2.37)
The first, Method A, implies the hypothesis that the presence of defects does not influence strongly the fundamental problem and therefore K σ , the influence of the flaws affecting only the buckling behaviour. Since the only problem solved is the fundamental one, this approximation is justified. Furthermore, it allows an analytical computation of ∇J A , since there is no need to update the prestress is found, as it does not change with the parameters.

Method B, though computationally more expensive, is expected to give more accurate results.

Overview on the localization algorithm

To ease the understanding of the results that are presented in the following chapters, let us now detail the choices of the algorithm behind localization and updating. The parameter updating step has been defined as a highly regularizing step, where the localized connected elements are treated as a unique entity, a flaw, and corrected accordingly.

The choice that lays behind is a macro definition of the defects, justified by the fact that different defects appear simultaneously. Let us just think for instance about a macro-pore which displaces and pack the fibres: a coupling of macro-pore and fibre waviness is occurring in this case.

Focusing on the micro-structure, it would be possible to characterize each defect separately, however, for the purpose of this work -a technique to localize and characterize defects -treating the different defects as a unique flaw is sufficient.

This flaw definition carries some advantages, related to simplification and robustness through a lower detailing of the flaw, whose intensity is defined by a mean value of the components.

In the following paragraph we detail the algorithm for the distinction of the flaws and for the evaluation of the averaged intensity of the defects. Some of the algorithm choices are very much dependent on the FE software used: Cast3M.

Behind the localization: distinction between different defects

The localization of the erroneous elements derives from considerations on the modified constitutive relation error functional: namely, every element whose local error value overpasses the chosen threshold e th belongs to the defective area, composed by all the different non-connected flaws. Nonetheless this flawed zone is detected as a ensemble; it is therefore necessary to subdivide it into the different defects, in order to associate to each flaw its proper intensity. A step is required to subdivide all the localized elements into the flaw they belong to. From the point of view of the algorithm, to solve the problem of distinction between the multiple flaws localized simultaneously, fundamental for being able to correct each defects differently, one has to sort the localized elements into the flaw they belong.

Dealing with Cast3M, no easy ways have been found to directly work with the connectivity matrix; another way was found. It consists in going through all the localized elements, treated as geometrical features, and gather together the ones that share at least one or more nodes. An appropriate function is available on Cast3M. By iterating, it is possible to build the defects one by one.

Behind the correction: an averaged defect intensity

As stated multiple times, each defect localized is corrected as a unique entity. This is winning in terms of robustness of the algorithm but carries some difficulties.

First, it may happen that some elements are re-localized at successive steps. At the moment of correction, these overlapping elements starts from a value of intensity, of the parameters p, different from the other elements. Correcting them all as a unique entity may cause an overcorrection of the overlapping areas. Sometimes the second updating bring to a mathematical correction of p that does not have physical sense, for instance negative values (let us remind that the parameters are the normalized value of the Young's Modulus: a negative E is meaningless).

To overcome this issue, an additional step is introduced in the algorithm before the updating, where the elements belonging to the same flaw are subdivided into fictitious flaws according to their initial p values. This different groups are then updated independently. The fictitious increase in the number of defects is not detrimental to the robustness of the code.

Nevertheless, this choice brings another addition to the algorithm. The decision of treating the defects as macro-ones, average of the different components, carries the necessity of computing a mean over the elements composing the flaw (through all the iterative steps).

This consists in:

• verify which elements are connected between all the elements localized during the entire procedure

• compute the mean of the p of all the adjacent elements

In addition, all the elements whose estimated intensity is too close to p = 1 are excluded from the computation of the mean.

Inputs of the buckling based MCRE procedure

Before proceeding to test the accuracy of the linearised buckling based modified constitutive relation error technique to identify material defects, it is necessary to obtain the experimental input required: the critical load and the correspondent deformed shape.

In order to understand the behaviour of the buckling based MCRE technique and to evaluate the influence of the different input parameters on the identification results, pseudo-experimental data obtained by FEM simulations will be used here and in Chapter 3 to 5. In particular, two kinds of computations will be carried out:

• an eigenvalue computation, which yields directly the critical load and the deformed shape of the considered specimen

• a geometrically non-linear computation, which simulates a real experimental response and which will be post-processed via the Southwell plot in order to obtain the pseudo-experimental critical load and deformed shape.

In this section, the specimens and their defects are described, their behaviour (eigenvalue and non-linear buckling) is simulated, and the post-processing of the pseudo-experiments is detailed. It should be underlined that the procedure undertaken for pseudo-specimens is exactly the same one that is later employed for treating real experimental results.

Pseudo-experimental specimen description

A manufacturing defect, such as the ones described in the first chapter, is not likely to appear alone. For this reason, the macro description of the defect is here proposed. Describing the micro-structure of a material defect goes beyond the scope of the present work, it was instead decided to follow to the letter the definition of material defect, i.e. a flaw that varies locally the properties of the material, and to model it by a local change in Young's Moduli.

In the defective areas, values of the Young's Moduli different from the unharmed material ones is imposed. For instance, to a change in fibre orientation of 10 • corresponds a drop of 50% of the Young's Modulus in the fibre direction and almost no changes of the one in the direction transverse to the fibres. Indeed, from the laminate plate theory these values derive: E def 11 = 0.5E 0 11 and E def 22 ≃ E 0 22 , which are used to simulate the defects.

The specimens are modelled to resemble the actual ones, which will be described in the following chapter. They are of rectangular plate-like shape of in-plane dimensions 200 × 20 mm 2 and 2 mm thickness. An orthotropic material model is employed. To have the possibility to impose a local variation of material properties, the specimens are created by assembling fifty rectangular regions, i.e. shell elements each having 9 nodes, as shown in Fig 2 .3. The choice of the meshing derives form a convergence study of the eigenvalue problem. This 21 × 11 nodes mesh guarantees the convergence and do not require an high computational time.

Since in this work we deal with fairly big defects, it is decided to choose elementary regions whose length is approximately ten time the thickness of the specimen. Regions of smaller dimensions may intensities. Nevertheless, the one near the border is expected to be less easily detectable due to its position and according to the boundary conditions chosen, namely of simple support, for which the bending moment goes to zero at the extremities. Also the fixed ends case will be inspected, in this case the less detectable areas are assumed to corresponds to the flexural point of the deformed shape, where the bending moment goes to zero.

Knowing the influence on the behaviour of the presence of a geometric defect, this category is not disregarded. For sake of simplicity, geometric imperfections will be modelled as an initial crookedness in the form of an half sine wave, z(x) = z 0 L/2 sin πx L of maximal amplitude z 0 L/2 , represented in Fig. 2.5. Two cases are considered: a small geometric defect, z 0 L/2 = 0.01 mm = 0.05 thickness, and a big one, z 0 L/2 = 1 mm = 0.5 thickness.

Figure 2.5: Initial geometric configuration

These specimens with geometric and material defects will be used as samples to test the accuracy of the identification methods. The simplicity of modelling of the flaw does not want to be detrimental to the generality of the method, a more complex description could be chosen.

Pseudo-experimental simulations and post-processing of the results

The eigenvalue solution can not be obtained experimentally. Finite element codes, on the other hand, allow for a linearised buckling eigenvalue computation. Both eigenvalue and non-linear simulations are here performed and presented.

The eigenvalue is not influenced by the presence of geometric imperfections of these intensities, therefore in both cases, having chosen boundary conditions of simple support, the value obtained is P cr = 326.8 N. The correspondent mode is concurrently obtained. These couples of data, eigenvalues and eigenmodes, can be injected directly in the identification procedure without pre-treatment.

To properly simulate an experimental tests, a non-linear compressive calculation should be undertaken. The output of the procedure, in terms of load-deflection curve, is plotted for both initial geometries in Fig. 2.6. The behaviour is in this case strongly influenced by the presence of geometric imperfections. The results thus obtained, load and corresponding deflected shape, must be post-processed to obtain critical load and deformed shape to be used as input of the procedure.

The critical load As detailed in Section 1.3.3, the equivalent P cr can be obtained form the Southwell Plot. The values computed are compared in Table 2.3 to the reference ones obtained form the finite element eigenvalue computation, together with the error committed in the estimation. For what concerns the buckling load, the estimation is extremely accurate, the error being below 0.5%. Instead, the evaluation of z 0 is not as good and the error is respectively 6% for the bigger geometric defect and 73% in the other case. A better estimation of the initial imperfection, error below 10%, can be obtained by varying the interval of data considered. On the contrary, this is slightly detrimental for P cr , evaluated with a 2% error. Even if in the simulated case, the Southwell data appear to follow everywhere a linear trend, for experimental data the two zones of data falling out of the assumption are easily recognizable.

Since for the moment, the parameter z 0 is disregarded, we will not focus on its estimation and the error committed. What derives is that the critical load is estimated in all cases with a really high accuracy, thanks to the Southwell's method.

The modal shape The evaluation of the equivalent first buckling mode is, on the other hand, more tricky. There is not a unique criterion for compression tests to select the deflected shape that best approximates the eigenmode. In vibrations, the Modal Assurance Criterion (MAC) is employed for this purpose.

In order to check whether the deflected configuration includes relevant information about the first buckling mode, an equivalent of the MAC is employed here. Naming U e the first buckling mode, resulting from the eigenvalue problem, and Ũ the measured deformed shape, resulting from the geometric non-linear simulation, two MAC measures are defined. One makes use of the stiffness matrix, MAC K, the other of the pre-stress tensor, MAC Σ 0 : In Figs. 2.7, the MAC K (blue circular markers) and the MAC Σ 0 (black rectangular markers) are plotted together. From the MAC Σ 0 curve, one may conclude that the first buckling mode is indeed a component of the deflected shape with geometric defects. Nevertheless, as can be seen from the computation of the MAC K, this deflected shape is also strongly affected by the initial geometric defects. The reason for this very different behaviour of the two MAC measures (which in the case of vibrations would lead to the same type of response) is that K σ is in general not positive defined.

MAC K = U t e K Ũ U t e KU e Ũ t K Ũ (2.38)
= U t e K σ Ũ U t e K σ U e Ũ t K σ Ũ (2.
For identification purposes this leads to the following question: which is the best deflected shape, among all the possible choices, that is the one which would minimize the effect of geometric imperfection in an inverse problem based on a linearised buckling theory? For this an indicator is defined, called GDII( Ũ ) (Geometric Defect Influence Indicator). The latter is a measure of the satisfaction of the equation (2.27) by the deflected shape with respect to the first buckling mode: .8 displays the evolution of this indicator. It appears, for the small geometric defect case, in line with the MAC K and the MAC Σ 0 curves, that this indicator increases during the first step of the loading. In this case instead, it decreases afterwards. For the big amplitude geometric defect case, it decreases continuously. For this reason, no very precise tendency can be drawn. It has to be stated that this indicators are not available in real experiments, as the eigenvalue deformed modal shape U e is not known.

GDII( Ũ ) = P cr K σ Ũ -
To conclude this analysis, it has to be underlined that none of these techniques give unique and ready-to -use results, apart from highlighting that the initial steps of the tests are the most appropriate ones. In the following, when non-linear pseudo-measurements are employed, the deformed shape corresponding to the first loading steps, in the same linear range of applicability of the Southwell plot, is taken as modal response of the specimen for the identification procedure. However the question of the choice of the "best" deflected shape remains largely open.

Verification of the defect identification procedure: comparison of the updating techniques, Methods A and B

The purpose of this part is to analyse how the method behaves in the ideal case where no geometrical imperfections are introduced. The situation is an ideal one: the eigenvalue problem is solved for the specimen with material defects through a finite element eigenvalue calculation, whose outputs (the first buckling load and the correspondent mode) are used as experimental inputs of the identification procedure. The two methods: A without the pre-stress update and B with the pre-stress update are compared.

An important feature for the application is also introduced. Elements which are detected as part of a defect and which are geometrically connected are prone to a uniform correction. The motivation for this is double:

• the first one is to provide a rough estimate of the defect by means of global indicators

• the second one is to enforce a strong regularization of the otherwise ill-posed problem in the correction step.

Moreover a high value of the error threshold is introduced (whose effects will be studied more in detail in the following paragraph). This is first due to the fact that what is called a defect should be characterize by large errors, but it is also to avoid some pollution error effect, namely the fact that around a defect some element could be affected by the diffusion of the error.

The two possible cost function options, Method A and B, are inspected.

Ideal case: Identification results for the two updating methods

The parameters, measuring the drop in Young's Moduli from the healthy value E 0 11 and E 0 22 , in charge of describing the defective material are p = 1, where the superscript is used to denote either one of the two flaws: defect 1 for the one adjacent to the border, defect 2 for the central one.

Having more than one defect introduces some complexities. First, for generality, if two nonoverlapping areas are detected, the requirement for the algorithm is to define the defects as separate ones. In addition, the two should be updated separately, since the two flaws may not have the same intensity.

The first step of the procedure consists in localizing the defective areas. Fig. 2.9a is taken as reference to show the defective finite elements elements, composing defect 1 and defect 2. Fig. 2.9b presents the error density map at the beginning of the procedure. The values are really low except for the elements corresponding to the flaws, both characterized by an increase in the local error compared to the surroundings, which is higher for defect 2 than for defect 1. Due to the choice of fixing the threshold e th = 0.7, only the central defect is localized at the first step. Since the error distribution in correspondence to the other defect is lower than e th , this is disregarded during the first identification steps. The area first localized as defective undergoes the step of parameter updating. In Table 2.4, the results of the procedure are displayed for successive identification steps. For each iterative step, the identified flaw area and the updated parameters p def are reported in the 2 nd column. The figures aim at showing where the variations of material properties occurs (position of defects), in terms of Young's Modulus E 11 , after each updating of the model. For readability, it has been decided to not report in the table the value of the parameter relative to E 22 , which is close to 1. In the 3 rd column, the value of the global error indicator GEI is displayed. This consists in a normalization of the CRE and M E error terms, which provides a dimensionless quality indicator:

GEI(U, V, p p p) = CRE + r 1-r M E CRE 0 + r 1-r M E 0 (2.42)
used to check when the minimum of the procedure is attained. CRE 0 and M E 0 are the initial error values before correction. From observation of Table 2.4 derives that two complete identification steps are required for defect 1 to be localized. Its position is determined only when the central defect is completely corrected. In Considering Table 2.4 for Method A, the global error indicator has a minimum at the fourth iteration, Step 4. The localization of the defects is almost perfect, as only one element of defect 1 lacks localization. The estimation of the parameters is perfect for the central defect, while p def 1 1 is overestimated by almost 20%. The value of E 22 for both flaws is evaluated with accuracy, being p def 1 2 = 0.9982 and p def 2 2 = 0.9975. For Method B instead, the complete identification requires one extra step. Nevertheless, both defects are perfectly localized and the intensities are evaluated with more precision compared to the other method: p def 1 1 and p def 2 1 are estimated with an error below 2%. Analogously, the inaccuracy in E 2 values is low, below 0.05%, against the 0.2% of the other method.

Another important consideration can be made from the observation of the outputs of the identification procedure, for example Step 6 of Table 2.4. With regard to Method A, a 20 % error is encountered in the estimation of the defect adjacent to the edge, while for Method B, defect 1 is well estimated with just a 0.4% imprecision.

Contrariwise, the central defect is perfectly detected and estimated by Method A, while the other method provide a good detection but an overestimation of 2 %. One can draw the residual error map, local error density distribution over the elements after correction, as in Fig. 2.11. Due to the different accuracy in the characterization of the defects, the two residual error density maps are substantially different, as expected. For Method A in fact, the peak corresponds to defect 1 's position, due to the fat that a defective element is not localized and the correspondent poorer estimation of the intensity. For the second method, between the two flaws, defect 2 is the one less accurately corrected, therefore the maximum local residual error affect the central portion of the specimen (defect 2 and the surrounding elements). The difference in the two residual error maps is not limited to the position of the peak, but also to its maximum value of the local error, cfr Fig. 2.11a with Fig. 2.11b. Obviously, due to the different quality of the correction (20 % and 2% error in the estimation of the intensity for methods A and B respectively) the value of the local maximum varies, being of 10 -4 for Method B and of an order of magnitude higher for the first method. The same effects is also reported for the global error indicator: being 1.6 • 10 -2 the MCRE of Method A and 3.7 • 10 -3 that of Method B. It is also important to note that, with the exclusion of these zones, the residual error is practically negligible. This is due to the fact that the condition is ideal (eiegnvalue solution) and the geometrical defect is known.

Parenthesis on the parameter updating

To detail the step of parameter updating, we show here the iterative procedure for the estimation of the intensity of the defect for Method B. The corrected set of set parameters is the one which minimize the cost function chosen, in this case J B . In Fig. 2.12 The value of the cost function J B for iteration fro 5 to 7 is really close. These corresponds to a p def 2 1 of 0.5, 0.492 and 0.484 respectively. Limiting the number of iteration to five gives in this case a good balance between computational time and quality of the correction; the risk with such a limited number of iterations is that, if the parameters are not properly corrected, another iteration (localization and updating) is needed to evaluate the intensity. This situation is not encountered, however its occurrence would lead to an overall increase is computational time, related to the additional step of localization. The same procedure, with absolutely comparable results, is undertaken for Method A.

Figure 2.12: Iteration for the parameter updating step 1

Conclusions

The MCRE formulation based on linearised buckling has been presented and tested on a validation case. Since the accuracy of the results in the ideal case have been proven, in the following chapter, the procedure is applied to pseudo-experimental measurements obtained from non-linear simulations.

The two choices of cost function, Method A and B are compared in terms of quality of the identification. The results obtained with the two methods are comparable. Nevertheless even in this idealized example only method B allows a complete localization of the defects.

On this example the CPU time is around 80s for Method A and 110s for Method B. For more complex models this gap lowers. This difference appears therefore only minors. Being also more consistent, in the rest of the thesis, the Method B, with an update of the pre-stress, will be systematically used.

Two issues will be studied in the next chapter. The first one is the effect of the choice of the threshold. The second one is the effect of the presence of geometrical defects inducing a non-linear response from the beginning of the test, while the formulation used is a linearised one.

Chapter 3

Analysis and behavioural effects of the MCRE method: eigenvalue measurements

Introduction

The results obtained by the MCRE approach previously described, apart from the experimental data, depends a priori on two main parameters: the weighting term r 1-r and the threshold e th . In the case where a high sensibility of the results to these factors is encountered, a method, where those factors were not tuned for each case, would not be robust. However in practice tuning these factor for each application would not be not an easy task, if possible. Other aspects may influence the results: as the type of boundary conditions or an improper evaluation of the critical load. The latter verifying itself for instance in the case of complex structures, where one may cannot rely on the Southwell procedure.

In this chapter we examine those different aspects separately and regardless of geometrical imperfections. This chapter is organized as follows.

• The weighting term r 1-r is in charge of attaching importance to one of the two error terms rather than the other. For r = 0.5, CRE and ME are equally reliable, for r < 0.5 the error in the measurements is supposed to be larger than the error in the model and for r > 0.5 it is the opposite.

Different methods exist to evaluate the optimum value of r. When no a priori knowledge is available on the quality of the model and the measurements, a method, such as the L-curve and the CRE -ME vs. r plot, can be employed, see Section ??. This technique is here inspected and the optimum r obtained with this means is compared to the value r = 0.5, which is used when no a priori information is available.

The L-curve and the CRE -ME vs. r plot are shown in Fig. 3.1 for the case of eigenvalue measurements of the specimen of Section 2.4.1, affected by two material defects of intensity p The value of r using the L-curve is here made after the first iteration and fixed along the following ones. At the first iteration, the optimum value of the weighting term, i.e. the one that corresponds to the intercept between CRE(r) and ME(r) on the CRE and M E vs. r plot or equivalently to the r of the point of the L-curve nearest to the origin, is r = 0.33, this corresponds to reduce by two the weight of the error in measurement.

In Table 3.1, the identification results for the optimum r = 0.33 and for the r = 0.5 value are compared. The identification results are in both cases absolutely comparable in terms of number of iterations and quality of the defect characterization. The intensity is slightly better evaluated by giving the same reliability to the two error terms, namely r 1-r = 1. The fact that the final error level is lower for r = 0.5 is surprising at first. In fact this corresponds to the fact that this parameter should be updated along the iterations and that, for the following iterations, r = 0.33 is no more the optimal value. Obtaining the L-Curve requires, for each point of the curve, to solve the minimization problem and is therefore very costly, in particular if this has to be repeated for each iteration. Considering the result obtained in this example and when not otherwise stated, the weighting term will be fixed at r = 0.5.

Influence of the choice of the threshold e th

As previously described the threshold value is a key parameter in the regularization procedure of the proposed inverse methodology. It has to be noted that this value is a relative one for each iteration, namely that at each iteration it is used to decide which part of the model should be corrected.

To stop the procedure one should either use a global indicator as the relative value of the MCRE or stop the procedure when no more improvement on the results can be obtained. It is this latter the method used in the thesis, even if debatable.

Another important aspect need to be considered, due to the peculiar way we proceed to the correction of the parameter. For sake of simplicity, once a defect is detected, it is corrected globally and we do not introduce the possibility to decrease its size. This can lead, if one use a too low value of the threshold, to an artifact effect: to introduce, at a certain iteration, a defect with a too large extension, extension which cannot be reduced afterwards.

To summarize, in the procedure it is necessary to employ a quite high value of the threshold, which could induce a number of iterations higher than the one which would be necessary otherwise.

The specimen of Section 2.4.1 is simulated, with two material defects of intensity p It can easily be stated that, for every e th < 0.4 a wrong localization will take place. A non negligible number of healthy elements are detected in the vicinity of defect 2 mainly. As those elements will be corrected globally and as the extension of the defect cannot be reduced, those values of the threshold will lead to a wrong correction of the model. Table 3.2 presents the identification results for values of e th in the interval [0.1, 0.9]. Table 3.2 shows for each threshold value the initial localization and the identification results: number of iterations needed, flaws position and intensity and the final residual global error after correction. It can be noticed that, increasing the threshold, a higher number of iteration is required, the identification accuracy increases and the residual error lowers. From e th > 0.5, the procedure identifies correctly the flaws with and error in the estimation oscillating from 0.2 % to 2.3 %. Another evidence is given by the small values of the global residual error, close to each other for e th > 0.5. In Table 3.3,the complete identification procedure is shown for three values of the threshold, respectively e th = 0.1, 0.5 and 0.9. For the simple support case, it can be stated that every threshold above 0.5 provide the same results. To a lower threshold corresponds less iterations. As this case is the simplest one, only value equal or above 0.5 will be considered in the continuation of the thesis.

Influence of the boundary conditions: the fixed ends case

The identification when fixed boundary conditions are employed is here treated, being of interest for the experiments as commonly clamped ends are easy to obtain while simple support requires a specific design and manufacturing of the grips. The results obtained are here compared to the simply supported case. The type of boundary conditions employed is supposed not to influence the identifiability, nevertheless, the results obtained for fixed ends appear to behave differently than the simply supported case, due to the fact that the zones are loaded differently. In particular, the performances with respect to the threshold change: for a correct localization a higher e th is required.

Considering Table 3.4, where the identification results are presented for 0.1 ≤ e th ≤ 0.9, the first value of the threshold for which a proper identification is obtained is e th = 0.7, while it was of e th = 0.5 for simple support. The possible cause of this behaviour can be the deformed shape, which shows a stronger curvature, with an inflection point at one fourth of the length from each end, position where the bending moment goes to zero.

The error map of Fig. 3.3 at the beginning of the procedure shows a really high gap between the defective elements, above 0.6 and the rest of the specimen, below 0.4. The evidence of this finding is also given by the second column of Table 3.4, which represent the initial localization. This appears to 3.5, for the same threshold as for the simply supported case in Table 3.3.

Considering Table 3.5 for e th = 0.5, it seems that the identification of defect 1 is harder. From the beginning, an additional element in the vicinity (towards the center) is localized even if it is in reality non-defective.

If the results in Table are confronted to the ones of the simply supported case, Table 3.2, it is noticeable that even if the threshold required is higher, e ss th > 0.5 for simple support while e f e th > 0.7 for fixed ends, the parameters p

def 1,2 1
are estimated with more accuracy, with a percentage inaccuracy in the range 2% -0.6% and convergence is reached in a comparable number of iterations. The initial error is map shows that the elements with the highest error values are grouped in defect 2 area and in its vicinity. Evidence is given of the non-detection of defect 1. For the lowest threshold, the localization is erroneous directly from the beginning of the procedure. For e th = 0.5, the detection of defect 2 starts at Step 3, however the flaw amplitude is overestimated, with three elements in the vicinity wrongly detected. This over-localization is also responsible of the poor estimation of the intensity: as a larger area is detected, both defective and unharmed elements undergo the updating, resulting in a loss of accuracy of the estimation of almost 30%. For the high threshold of e th = 0.9, eight iterations are needed for the convergence. The position and the intensity are perfectly evaluated, the inaccuracy in p def 2 1 is only 0.6 %. A choice of the threshold equal to e th = 0.5, even if not catastrophic, would give less accurate results both in terms of localization and estimation of the intensity (for what concerns defect 1 ). Following these considerations, in the rest of the examples, unless differently stated, the threshold e th = 0.7 will be retained, as it appears a good compromise between computational time and results accuracy both for the fixed ends and the simply supported case.

Influence of the defect intensity

The influence of the defect intensity on the identification is here inspected:

p def 1,2
1 design ranging from 0.1 to 0.9 are considered. The results are in all cases accurate, as shown in Table 3.6.

The performance is almost uninfluenced by the flaw intensity value. The only difference is given by the higher number of iteration required for the identification for high intensity defect (p def 1, 21 design < 0.3), see Table 3.6. This can be made equivalent by imposing a higher number of iterations for the minimization of the gradient cost function in the parameter updating step.

The initial error map does not depend on the defects' intensity, cfr. Table3.6, due to the manner in which the local error density is normalized. Equivalently, the localization output, as well as the accuracy in the updating, are alike. The inaccuracy in the estimation of the parameters fluctuates from 0.2% to 9%. For defect of higher intensity both the initial global error and the residual error after correction are higher. This is logical as a stronger defect produce a bigger discrepancy from the healthy model. In all cases, between the initial and final steps, the global MCRE indicator reduces of two orders of magnitudes.

Influence of an error in P cr

In this section, the case of an inaccurate knowledge of P cr is taken into account. It has been shown that the Southwell plot estimates the first critical load value with an accuracy of 99.5% when pseudoexperimental measurements are employed. Experimental data can be less accurate, therefore an higher imprecision in the estimation of the critical load is possible. The error in the estimation of P cr using the Southwell-plot is very low, but for more complex structures than beam-like or plate-like structures the equivalent of the Southwell plot remains to be derived. Thus it is decided to inspect six cases: 0.5%, 1%, 5%, 10%, 30%, 50% error made in the calculation of the first buckling load, considered lower than is actual value. The identification results are shown in Table 3.7.

Before analysing the localization and correction outputs, a question needs to be answered: what is the P cr used for?

In this work the P cr is an indicator of the material defect and of the material properties. The buckling load decreases for lower material properties or, equivalently, for defects of higher intensity. As a general fact, it is possible that two specimens, one with material defects and one with lower values of the material properties, have the same value of the first buckling load. In defect identification, the deformed shape contributes strongly to detecting the position of the defects, while the value of the critical load contributes more to defining the intensity of the flaws. Thus, it is expected that for reasonable values of P cr error, the effects are on the correction rather than on the localization. For higher error values, instead, it works as if the initial model is globally erroneous, as if the wrong material value is imposed, and it starts to affect the quality of the identification.

Evidence of these considerations can be found when observing the identification results in Table 3.7, that are now discussed in detail. For all cases, the first two steps are alike in terms of localization: defect 2 is perfectly determined in shape and position. The evaluation of the intensity varies deeply: as the error increases, the defect is corrected as if its intensity was higher than the design value. It is considered to be responsible of a stronger drop in properties due to the lower value of P cr used as input. In Table 3.8, the error in the estimation of the defect intensity is associated to the corresponding error in the critical load.

In Fig. 3.4, the error maps governing the localization of Step 3 are shown. For all cases, a peak in correspondence of defect 1 is visible, but from 5% error, an increase in the the local error density appears in the central. For 5% and 10% cases, it is negligible, instead it is preponderant for 30% and 50% cases, where it overpass the value at defect 1 's actual position.

For the first two cases, the identification is correct both in terms of position and intensity. For the two intermediate cases, P cr error in the 5-10% range, the procedure reaches its minimum at Step 4 and 3 respectively, indeed at the successive steps healthy zones are detected. For the last two cases, the identification is wrong since large healthy areas are localized. For the 30% case, considering once again the error map of Fig. 3.4c, a higher threshold e th would guarantee the possibility to localize defect 1 and not have spurious detection in the vicinity of the central defect. Still, the fact that the intensity of the defect is widely overestimated persists. For the 50% case, instead, the element with higher error densities are the ones in the vicinity of defect 2, therefore by no means the correct detection is possible.

From this simple example, it can be concluded that a correct estimation of the first buckling load without geometrical defect, let say with an error not greater than 5 to 10 percent, is mandatory for the MCRE formulation based on the theory of buckling to be efficient. A precise study on the testing conditions allowing such an estimation remains to be discussed with experimenter.

Conclusions

Some of the parameters of the algorithm and the features of the experimental procedure are inspected singularly to evaluate their effect on the identification procedure, namely the threshold e th , the boundary conditions, the defect intensity.

Even if the fact of employing the eigenvalue solution as input, both for P cr and mode, make these examples academic ones, disconnected from the experimental reality, the conclusions drawn can be used at first to analyse experimental and pseudo-experimental results. Among the parameters of the algorithm, the threshold value e th influences the localization. This is mainly due to the simplification we have introduced in the correction step. For low values, many healthy areas are identified as erroneous, with a low quality of the detection. Above a certain value, the identification results are almost unchanged, only the number of iteration needed increases with the threshold, as less defective elements are localized at each step. The value for which the behaviour changes is e th = 0.5 for the simply supported case and e th = 0.7 for the fixed ends case. The higher threshold value found for the latter is probably due to the load distribution and the deformed shape, which presents two inflection points. Among the parameters characterizing the experiments, one may wonder if a stronger defect is easier to identify than a one with lower intensity. In Section 3.5, a complete independence of the results from the intensity of the flaw is found. Nevertheless, the fact of providing a lower 'signal' would make the identification more sensitive to the presence of other errors.

Also an error in the estimation of P cr is considered. Due to its formulation, this acts as a modelling

Error in P cr estimation of 30% error involving the material. In fact, for the same geometry, a lower value of the critical load is obtained either when the material defects have higher intensity or when the material properties of the overall structure are lower. Indeed, for realistic underestimations of the P cr , the defects are detected and but the intensity is overestimated. Above a certain value instead, the healthy areas are localized as defective, indicating a global error of the model, as if the wrong material properties were imposed.

The next chapter is devoted to the investigation of the effects of employing non-linear measurements Chapter 4

Analysis and behavioural effects of the MCRE method: non-linear measurements

Introduction

In this section we consider a more realistic situation, the one where the synthetic measurements are obtained by non-linear geometric computations. Two levels of geometric defect are considered for the specimen of The case of amplitude 5% of the thickness is representative of a case with nearly no-geometrical defect, the case of amplitude 50% of the thickness correspond to a quite large defect easily visible to the eyes. Those cases are used to investigate several questions through two main studies.

For the first study, the geometrical defects are supposed to be known; meaning that the initial configuration used in the MCRE approach is the one with geometrical defect. This configurations is used:

• for the amplitude of 5%, to determine the limitation induced by a formulation based on linearised buckling by comparing the results with those obtained in the previous chapter where the first buckling mode is used as synthetic data.

• for the amplitude of 50%, to see whether the procedure could still be effective for large geometrical defect if those defect were known.

. For the second study, the geometric defects are supposed to be unknown. Meaning that, the initial configuration used in the MCRE approach is the one without geometrical defect. This study serves to determine whether material defects could be localized and broadly characterize without the need to identify geometrical defects. The optimal value retained in the followings is the one given by the CRE and M E terms, in this case r = 0.5, meaning that the two terms are considered equally reliable.

Known geometrical defect

For justifying the choice, the identification results for the two r values are compared in Table 4.1.

The identification results are absolutely comparable in all terms. The minimum of the global error value is attained at the end of Step 3, see Table 4.1. Once again as was observed in Chapter 3 the influence of the value of the weighting term is very weak.

What can be highlighted for the case where non-linear measurements are employed is that the localization is satisfying, even if an element is missing from defect 1. The main difference, compared to the case of Chapter 3, where the first buckling mode is used as pseudo-experimental data, is that the evaluation of the intensities of the defect is not very precise any more, even if still satisfactory. The initial error map presents a sort of plateau, all the element having a local error above 0.1 of the maximal value. The two defective areas are easily discernible from the rest, the local error being above 0.5 for all element composing defects 1 and 2.

A summary is presented in Table 4.2. The first columns show the localization maps for different values of e th , the last columns show the identification results (global error indicator and defects position and intensity) and the number of iterations needed. The results are similar to what is found in the previous chapter for the eigenvalue case: the correct localization is possible for e th > 0.5. In this case, where non-linear measurements are employed, the situation is not as straightforward and it is detailed hereafter.

For e th > 0.5, the elements localized as defectives are the correct ones, even if some extra elements, adjacent to the defects are localized. A certain variability is encountered depending on the threshold used.

Compared to the cases where the first buckling mode is taken as measurements, one can notice that the defects' intensity vary depending of the value of e th , with the tendency to drop towards low values. The reason of this is unclear. A first hypothesis is that, along the iteration, both the size of the flaw and the values of the parameters are corrected, when both defects are well localized but the intensities are lower than the reference values.

To check further whether this is due to some possible minimization problems or whether it is As expected, the intensities estimated from the identification procedure are in concordance with the values of the parameters corresponding to the minimum of the GEI surface, p def 1 1 = p def 2 1 = 0.1: defect 2 shows an intensity of 0.13, while defect 1 presents an higher value, probably due to the correction of non-defective elements, which tends to increase the estimated value of the intensity. = 0.1. This is due to the specific problem; the introduction of a small geometric defect makes it close to a perfect structure, therefore probably inducing some singularity. For the big defect case in fact, this tendency is not found any more and the minimum is reached for p def 1 1 = p def 2 1 = 0.5. These findings support the assumption that the non-linear measurements are the cause of the convergence of the parameters to a value different from the reference one. 

Results in case a known large geometric defect

For all the examples following, we make use of the more or less optimized values determined in the previous chapter, as well as in this chapter for known geometrical defect, that are: r equal to 0.5 and, e th = 0.7. The latter value is taken in order to avoid an overestimation of the size of the defect, without inducing to much iterations. The results for this case are shown in Table ??. Four iterative steps are needed to reach the minimum. The localization is good, even if two additional elements in the vicinity of defect 2 are detected. For what concerns defect 1, the size of the defect is identified properly.

The initial error density map of Fig 4 .8 shows that a faster localization of the defect would have been here possible if the threshold e th was set to a lower value.

The identification Table 4.4 shows that the minimum of the global error indicator results to be attained at Step 4. Nevertheless the difference in the global MCRE indicator between Step 3 and 4 is small, the first being just 1.67% higher. In Step 3, the two flaws are almost perfectly identified, 

Influence of the presence of an unknown geometric defect

In this section, the second study is treated, where we want to inspect the possibility to identify material defects on a specimen affected by a geometric defect. Again, the two cases of geometric defects of amplitude z 0 /t = 5% and z 0 /t = 50% are tackled.

Unknown geometric defect of 5% of the thickness

The initial local error distribution is shown in Fig. 4.10: two peaks above the 0.6 threshold are clearly visible. The error density of the non defective areas overpasses the threshold of 0.1 of the maximum local error value, comparable to what is found for a known geometric defect, see Fig. 4.4.

The identification results of Table 4.5 show the same trend as the case lacking geometric defect. Nevertheless no local minimum is encountered this time. After Step 8, defect 1 is over-detected, i.e. two non-defective elements in its vicinity are considered as flawed. The error density map at the It has been observed that the identification is not possible when the geometric defect amplitude overpasses the 20%. This case, presenting z 0 /t of 50% makes no difference, evidence is given in Table 4.7, where the entire procedure is displayed. The identification in this case can be therefore interrupted at the first step. The only possibility to overcome and have a satisfying characterization would be to introduce a step of correction of the initial geometry.

Table 4.7 displays the identification, resulting from the procedure for a chosen threshold of e th = 0.9.

Just two elements are localized and corrected, due to the high e th value. Even when a lower threshold is set, there is no possibility to localize the defects.

To conclude, the first geometric defect, of small amplitude, is demonstrated to weakly influence the localization and the correction, the defects being slightly overestimated. The second instead completely counterfeits the results making the detection impossible. 

Conclusions

In this chapter, the effects of the influence of geometric defects are evaluated. In the case where geometrical defect are known, the procedure gives satisfactory results even if the formulation makes use of the linearised theory of buckling. When geometrical defect are unknown, the identification remains possible only in case of small geometrical defect. This could motivate a study where both material and geometrical defect have to be identified. However such a procedure remain to be proposed and developed.

Chapter 5

Comparison of MCRE for different loading conditions

Introduction

The final purpose of this work is to propose simple mechanical test allowing the detection and a broad characterization of defect. Even if buckling tests are appealing they also raise a number of questions, as the sensitivity to geometrical imperfections. In this chapter we aim at looking at other possible mechanical tests.

For this reason, the modified constitutive relation error method, applied to defect identification, is tested for various loading conditions: traction, bending and vibrations. The problem for statics and frequency domain dynamics is formulated, in the FE framework, at the beginning of the devoted sections. Concerning the procedure, writing of the FE problem and of the localization and updating steps, is identical to the one expounded for the linearised buckling problem detailed in Section 2.3.3. It is necessary to note that, while the error functional remain unchanged, for each loading the constraint condition varies, resulting in different expressions of U, V and of the cost function.

The chapter is organized as follows.

• The pseudo experimental results are illustrated for tension, bending and vibrations in case of a small and large geometrical defects

• The results of tension tests are presented, depending whether the geometrical defect are known or unknown

• The same is done for bending and then for vibration tests

• At last, a comparison of the results obtain with the different testing procedures, including the one of the previous chapter concerning buckling, are presented and discussed.

The pseudo-experiments framework

The specimen considered is again the slender plate with two material flaws of intensity p def 1,2 1 = 0.5 and p def 1,2 2 = 1, shown in Fig. 5.1. Like in the previous chapter, two initial crookedness of the specimen are considered as geometric defects: the smaller z 0 (L/2) = 0.05 t and the more ample one z 0 (L/2) = 0.5 t.

The test configurations, loading and boundary conditions, similar for all the four cases, are schematically shown in Fig. 5.2. Concerning the three static tests: tension, three point bending, a non-linear simulation is performed to obtain the pseudo-experimental responses. The results are shown in Fig. 5.3 for both geometric defects. Concerning vibration tests, frequencies and the relative modes are directly obtained as outputs of the tests. To increase the similarity to real tests, the FE computed modal displacement could be perturbed by introducing noise. In the following, it has been decided to keep the measures noise-free, thanks to the accuracy of the data given by digital image correlation. Fig. 5.3 shows the longitudinal displacement vs. load curve for tension test (Fig. 5.3a), the transversal displacement vs. load curves for three point bending (Fig. 5.3b).For tension and bending, the shapes at the same value of 20 N for the loading are taken as measurements, as it was previously done for buckling. The outputs of the vibration tests are a set of frequencies and the correspondent modes, hence no post-processing is needed.

z 0 L /2 = 5% t z 0 L /2 = 50% t (a)
From the curves of Fig. 5.3, it is noticeable that the non-linearity increases with the amplitude of the geometric defect. Only for the three point bending pseudo-experimental test no clear differences are visible, because only out-of-plane displacements are plotted.

Traction

Let first the case of traction be treated. The non-linear pseudo-experimental curves for the two specimen of Fig. 5.1, are shown in Fig. 5.4. It displays the end-displacement vs. load curve for the two values of the crookedness, z 0 (L/2) = 0.05 t and z 0 (L/2) = 0.5 t. The effects of the amplitude of the geometric defect are discernible, the non-linearity of the behaviour is stronger for the curve relative to the bigger initial imperfection (blue markers). It is therefore expected that the identifiability is harder in presence of a non-modelled geometric defect, as have already been demonstrated for buckling in the previous chapter.

z 0 L /2 = 5% t z 0 L /2 = 50% t

MCRE formulation for static tests

Before treating the identification results, let us present the MCRE problem in FE formulation for the static case.

Find the kinematically admissible nodal displacements U and V V V that minimize:

E 2 m (U, V, p p p) = 1 2 {U -V} T [K(p p p)]{U -V} + 1 2 r 1 -r {U -Ũ} T [G ũ(p p p)]{U -Ũ} (5.1) under the constraint: [K(p p p)]{V} = {F} (5.2)
where F are the nodal imposed forces, in this case tensile forces.

The procedure is the same detailed in Chapter 2, where the two iterative steps, the localization step and the updating step, are pursued.

Once the formulation of the identification problem presented, it is possible to proceed to detail the defects characterization results for the three examples.

Example a: known big geometric defect

Let us present the example a, where we aim at characterizing the material defects of the specimen of Fig. 5.1 with an initial modelled crookedness of z 0 /t = 0.5.

The complete identification results are shown in Table 5.1. In three iterative steps the defects are perfectly localized and their intensity is well estimated.

The error map at the beginning of the procedure is presented for traction in Fig. 5.5, together with the reference case, showing the flawed elements of the FE model. Having fixed the threshold e th are estimated with a 4.6% and of 1.2% error. The error map of the updated model (Step 4), see Fig. 5.6, shows a lower error density, being around 10 -4 of the initial value. A higher value is found in correspondence to the defects position due to the slight error committed in the evaluation of the parameters. The second example accounts for the presence of a small geometric defect of 5% of the thickness, unknown and therefore non-modelled.

In Table 5.2, the entire procedure is presented. Compared to the previous case, the presence of an unknown geometric defects is responsible of poorer localization results. The parameter correction is instead comparable. The initial error density map localizes the two flaws areas as defective, while the values in the other zones are sensibly lower, Fig. 5.7. Nevertheless, fixing the threshold at 0.7 forces to disregard defect 1 for updating at Step 1. Considering Table 5.2, the procedures terminates at Step 3, where the minimum of the global indicator is reached. Defect 1 is localized with accuracy, the intensity is determined with an error around 4%. Contrariwise, defect 2 is estimated almost perfectly in intensity (0.2 % imprecision) but is overestimated in terms of dimensions, as an extra healthy element is detected.

The map after correction shows a residual error value of one order of magnitude lower, Fog. 5.8. The peak is in correspondence of the element that is wrongly localized. The assumption made for correction, i.e. that a newly localized element in contact with a flawed area belongs to the same defect and is corrected together as a unique entity, inhibits the tendency of the algorithm to re-correct the intensity backwards (return to a value close to the real one).

Example c: unknown big geometric defect

Let us consider the case where a big geometric defect of 50% of the thickness affects the specimen. The identification of material defects in this case is strongly influenced by the presence of such an initial crookedness. For such a big geometric defect, the identification has been demonstrated, in Chapter 4, to be not possible for buckling. Alike, for the traction procedure, displayed in Table 5.3, the characterization of the two material flaws is impossible.

Referring to the density map of Fig. 5.9, it is noticeable that a high value of the error is encountered on the zone adjacent to the ends. The error density distribution is elevated everywhere, but fixing again the threshold at 0.7, the two defects are initially localized, even if without precision. For defect 1, an healthy element in contact with the flaw is detected as defective and for defect 2 an element is missing. In addition, on the right end, one extra area is detected as flawed. Evidence is found in Table 5.3, Step 1.

Even though the defects are initially localized, the correction is not accurate, the defect intensity being overestimated in both areas.

To conclude, traction proves well when either small or no geometric defect is present. In presence of a z 0 /t of 50%, the identification is not possible any more, even if the first error map in Fig. 5.9b 

Bending

In this section, the case of a three-points-bending test is analysed. For the two geometric defect configurations, the non-linear behaviour is presented in Fig. 5.10. The formulation of the modified constitutive relation error is the one common to all static tests, shown in the previous section for traction, Eqs. (5.3) and (5.2). What changes are the boundary conditions and the vector of imposed nodal forces F, in this case the ones of bending, see Fig. 5.2b.

The identification results for the three cases are detailed hereafter.

Example a: known big geometric defect

For a specimen affected by a known big geometric defect, the identification is shown in Table 5.4. The minimum is again reached at Step 3. The intensity estimation is better than for traction but the localization is less satisfying, since a zone of defect 1 is not detected. The behaviour of the local MCRE distribution for bending is a little different from the buckling one, see Fig. 5.11. The erroneous elements are the ones corresponding to defects 2 position, while the error distribution of defects 1 's elements is below 20% and concerns only the portion of flaw not adjacent to the border. Referring to the identification Table 5.10 Bending, at Step 3, where the global error indicator MCRE is reached, it is possible to notice that while defects 2 is perfectly estimated both in shape and intensity (p def 2 1 error is below 0.2 %), the same can not be said for defect 1. In fact only the part of the latter far from the border is localized and the parameter is estimated with an error around the 3%.

In Step 4, an attempt to complete the localization of defect 1 is present, however p def 1 1 is estimated with an error above 50% and concurrently a healthy area adjacent to defect 2 is wrongly detected as flawed. This contributes to increase the global error indicator value.

This evidence results also from the error density map of Step 4 after correction, see Fig. 5.12. It is possible to notice that the error distribution is higher in correspondence of the part of defect 1 close to the border and in the erroneously detected area. After correction a higher error density remains, distributed all over the model, due to the not complete defect identification. The reason is related to the fact that bending does not give a uniform loading distribution, the region close to the boundary is nearly not loaded.

Figure 5.12: Final error density map for bending

Example b: unknown small geometric defect

Let us present the defect characterization procedure in presence of a small geometric defect, not known, in Table 5.5. The localization is absolutely equivalent to the previous case, the estimation of the intensity is instead better: the parameters are almost perfectly identified. The initial bending error map Fig. 5.13 displays a peak in correspondence of defect 2. This 5.13 Bending, where only half of defect 1 is localized. The minimum of the global error indicator is observed at Step 3. The first localized defect is perfectly determined in shape and dimensions but only a part of the other (far from the borders) is detected. The intensity estimate is extremely accurate, with no inaccuracy for defect 1 and just a 0.4% imprecision for the second flaw. The error map after correction, Fig. 5.14, validates the findings, displaying a peak in correspondence of the elements of defect 2 lacking correction. Concurrently, an high value of the distribution on both ends is found, which overpasses the threshold of 0.7. The error localization for Step 4 in Table 5.13 Bending follows, where the two defects are overestimated in shape and underestimated in intensity, resulting in a higher value of the global error indicator compared to the previous step. 

Example c: unknown big geometric defect

Alike what is found for traction and buckling, also for bending it is not possible to identify the material defects when a geometric defect of z 0 /t = 0.5 is present and is not modelled. For bending the phenomenon is even more significant, even the first localization is completely incorrect. The initial error density map shows a higher local value not in correspondence of the flaws but at the two ends of the specimens, Fig. 5.15.

As it is noticeable from Table 5.6, the minimum is observed at the second iteration (Step 2). The real flaws are not localized, as results from comparison with the reference, in the last row of the table. 

Vibrations

Last, the vibration test is presented.

Vibration is an eigenvalue problem. Both the frequencies, eigenvalues, and the corresponding modes, eigenvectors, are obtained experimentally. The formulation of the buckling based approach derives from an adaptation of the MCRE for vibrations. Therefore many common points are found, with less difficulties, namely in not necessitating to post-process experimental results. Before proceeding to the study cases, let us present the discrete finite element formulation for the dynamic problem of vibration.

MCRE formulation for dynamic tests

This sections presents the MCRE approach applied to dynamic problems. This case have been made the object of extensive literature, among many others [START_REF] Deraemaeker | Model validation in the presence of uncertain experimental data[END_REF][START_REF] Feissel | Modified constitutive relation error identification strategy for transient dynamics with corrupted data: the elastic case[END_REF][START_REF] Ladevèze | Error on the constitutive relation in dynamics[END_REF]]. In this case, a certain number of couples frequency-mode can be directly obtained form experiments. For the following defects characterizations, we consider, for each example, the first eigenvalue-eigenvector couple to be known and we employ it as input of the identification procedure.

The vibration problem in the framework of the discrete formulation can be seen as follows.

Find the kinematically admissible nodal displacements U and V V V that minimize:

E 2 m (U, V, p p p) = 1 2 {U -V} T [K(p p p)]{U -V} + 1 2 r 1 -r {U -Ũ} T [G ũ(p p p)]{U -Ũ} (5.3) under the constraint: [K(p p p)]{V} = ω 2 [M ]{U} (5.4)
where K is the stress matrix, non-reliable, and M the mass matrix, reliable. With ω, the frequencies, eigenvalues of the problem, are denoted Again the iterative procedure in two steps applies.

Let us now present the three identification example for the vibration case.

Example a: known big geometric defect

Let us present in Table 5.7 the identification for a specimen with two material defects and a small geometric defect, taken into account. As for buckling, for step are needed to stagnate. The localization and the correction are, in the vibration case, really accurate. Vibration is also experimentally an eigenvalue problem, meaning that as test outputs a set of eigenfrequencies and eigenmodes is obtained. For this reason the FEM pseudo-experimental computation is carried out as an eigenvalue problem. The error map of Fig. 5.16 shows a higher level of the error for defect 2, as encountered also in the other cases. Following the identification Table 5.10 Vibrations, the , the higher values of the error density map are condensed on defect 2 area, see Fig. 5.17.

Figure 5.17: Final error density map for vibrations

Example b: unknown small geometric defect

The identification results for the MCRE procedure for vibrations is shown for an unknown small geometric defect in Table 5.8. It is interesting to notice that two minima are encountered during the identification procedure. The first local minimum corresponds to the third iteration, where a portion of defect 1 is not detective. Two steps later, the global minimum is found; in this case an extra element is detected and updated. The intensity estimation is nevertheless quite accurate for vibration. Vibrations behaves similarly to bending. Considering Fig. 5.18, a peak is found in defect 2 position, while for the other zones the values are sensibly lower. Only defect 2 is in fact localized at Step 1, see Table 5.13 Vibrations. Referring to Table 5.13 Vibrations, a first local minimum of the global error indicator is reached at Step 3. The central defect is here completely localized and only half of the other is detected. The intensity is instead well estimated with no inaccuracy for defect 1 and a 2.4% error for defect 2. At Step 5 another minimum is encountered. Defect 1 missing elements are localized The error map after correction, of Fig. 5.19, features an higher value of the error density at both ends. The localization and updating of these two areas at Step 6 results in an increase of the global error indicator, see Table 5.13 Vibration.

Example c: unknown big geometric defect

As for the other three loadings type, for vibration the identifiability is not possible in presence of a geometric defect with an amplitude of 50% of the thickness. The identification is nevertheless shown in Table 5.9.

The vibration case responds similarly to the two preceding ones. In Fig. 5.20 the distribution is higher at the two ends and decreases approaching the center of the model. The error value diminishes and the minimum is found at Step 2, Table 5.16Vibration.

Focusing on the first two examples, it is noticed that vibration perform slightly poorer when an unknown geometric defects is present, albeit of small amplitude. This has not been encountered for the other load cases where the performances are equivalent or even better (see for instance the intensity estimation for traction and the localization for buckling). 

Comparison of the identification results and conclusions

The aim of this section is to compare the identification results and understand what are the possible strengths and limits of each technique. It has been decided to present the comparison for each of the three example separately and to end with some global closing remarks.

Comparison of the MCRE results for case a, known initial geometry

Let us focus on the first case, example a. The two defects specimen considered is affected by an initial crookedness in the form of a half sine wave of maximal amplitude in the center of 50% the thickness.

In this first analysis, the finite element model is simulated considering the real initial geometry. The choice to treat the big amplitude crookedness defect, is justified by the fact of proposing a different example than the one already proposed for buckling in Chapter 4. The possibility to identify the defects in this case, validate the assumption that defect characterization is possible when the initial geometry is known (by StereoDIC or thanks to an updating of the geometry).

The identification results have been discussed separately for each loading conditions. To ease the comparison of the identification steps, the sub-tables showing the localization and the updating outputs are grouped in a unique table, Table 5.10. To sum up the results in the case where the geometric defect is known, the behaviour of the MCRE method applied to the different types of test is compared in Table 5.11 and 5.12. The first shows the beginning of the procedure, the initial error map and the first localization. The second instead presents the identification outputs: the position and intensity of the defects together with the error density map after correction.

Table 5.11 features the beginning of the procedure for the different loadings. In all cases, at Step 1, a partial localization of defect 2 is observed and the results are comparable. It is interesting to note that the global error values are comparable, except the one of buckling, which is almost one order of magnitude higher.

While the initial results are similar, the same does not apply at the end of the procedure, where a Comparing the results obtained for the different loading conditions, one may notice that the localization is more accurate for traction and buckling while the correction behaves better for bending and vibration. For buckling based MCRE, the parameters are over-corrected, probably due to the use of strongly non-linear data. This section treats the identification of a specimen affected by an unknown geometric defect of small entity. The procedure proves its ability to identify defects even in presence of an imperfection. The process results are shown for the different tests in Table 5.13 In presence of a small unknown geometric defect, the procedure works well for all the loading cases analysed, see Table 5.13.

The first identification step for all methods is summarized in Table 5.14. The global error indicator of the healthy model and its error map are shown and the resulting localization and updating are reported. Due to the small dimension of the geometric defect, the identification is similar to what is found in the first example, in the event of known geometric imperfection, see Table 5.11. Only the buckling based MCRE results vary. In fact, the error map displays a value overpassing 0.5 in both flawed zones. Fixing the threshold at 0.7 entails the localization of elements on both areas: the entire defect 2 and one element of defect 1. 5.15 displays the final results of the identification for unknown small geometric defect. Concerning the present example, the fastest technique is the one based on buckling, which also gives the best localization results. Instead, the parameters are still over-corrected. This is supposed to be due to the strong effects of geometrical non-linearity of the compressive test which are used as input of a technique formulated employing the linearised buckling theory.

The other three methods need a higher number of iterations: one more for traction and bending and three more for vibration. For all these techniques the localization is poorer but the updating is more accurate, with the best results obtained for bending.

Similar results for localization and updating are observed for the identification results when the initial geometry is known and in presence of a small geometric imperfection, cfr. Tables 5.12 and 5.15. Nevertheless, the presence of an unknown crookedness, albeit small, induces a higher value of the global error indicator and of the residual error density after correction, meaning that the procedure recognizes the presence of a modelling error. 

Comparison of the MCRE results for case c, unknown large geometric defect

Compared to the others, this example is particularly restrictive. A geometric defect of this intensity strongly changes the behaviour, as it can be observed from the load-displacement curves of Fig. 5.3.

A presentation of the different identification results is here proposed. The identification tables are again grouped to ease the comparison of the results, see Table 5.16. The identification procedure is not able to handle the presence of a big geometric defect. A possibility would be either to reconstruct the initial geometry thanks to the digital image correlation or to introduce in the procedure a step of geometry correction. In this eventuality, buckling would bring an advantage as the Southwell plot computed z 0 can serve as aid for geometry reconstruction.

Since no proper identification results are found in this case, only the table comparing the initial step for the different tests is proposed. After inspection of the first error density maps in Table 5.17, one may notice that in all cases the defective areas are not clearly detected. Instead two wider zones, adjacent to the boundaries, are the ones containing a higher error.

In terms of localization, traction is the better behaving one, however, this is not sufficient to make it the preferred way as the global error indicator decreases until the almost complete correction of the model, giving false results.

Referring to the complete identification procedure, buckling is the only technique that warns the user of the wrong updating: through the iterations the global error indicator increases to signal that 

Conclusions

In this section the effectiveness of the identification procedure is inspected for different experimental tests. In this simple case of unidirectional material with the defect affecting the whole thickness, all the methods show, for the case of known and small unknown geometric defect, the capability to accurately identify and correct the flaws. The best results in terms of parameter estimation are obtained for bending and in terms of localization are retrieved for buckling. The fact of employing non-linear results is responsible of the poorer updating buckling updating results. It is also important to state that, in presence of intense geometric defect, none of these techniques is suited, without introducing a step of geometry updating.

As perspective, two points should be assessed. First, one may want to inquire how the four techniques reacts when a more complex description of the defect is proposed, namely in presence of a laminate with a general stacking sequence and a flaw affecting only some plies through the thickness. One aspect to take into account is also the simplicity of the test. In that case tension and bending are particularly appealing.

Chapter 6

Experimental case: from manufacturing to identification

Introduction

The final part of this manuscript is devoted to testing the buckling based MCRE identification procedure on a real case. For this purpose, specimens, defective and healthy, should be manufactured, tested and the results post-processed before being able to perform the identification of the flaws. The first two sections are dedicated to all the aspects ranging from specimen manufacturing to the post-processing of the experimental results.

The first subsection is devoted to the choice of the defect to induce on the parts during manufacturing. The choice is justified and the manufacturing of the composites plates with controlled defects is detailed. Then the testing procedure is described and the raw results presented. To employ them as inputs of the identification procedure, it is necessary to post-process them, e.g. via the Southwell plot and StereoDIC. The third subsection is devoted to describe these operation before treating the identification.

Finally, everything is ready to launch, in Section 6.5, the characterization of defect on real experimental data, measures of the response of a defective specimen affected by localized fibre waviness.

Choice of the defect

An overview of the most dangerous defects and their effects was made in Chapter 1. The analysis highlighted porosity, ply misalignment, fibre waviness and ply drop to be the most harmful. For identification of defect on parts, one is selected to be induced on the specimens which will undertgo identification. The criteria for the choice are: frequency, detectability and harmfulness. To help the choice of the most interesting, unavoidable and hazardous, in Table 6.1 a summary of the most harmful, with a short description is proposed.

From the point of view of simulations, the choice is easy. A possible generalized modelling, the one used in Chapter 2, of a material flaw, is to vary locally the properties of the material, as suggested by the given definition of material defect itself.

From a manufacturing point of view, complexities arise. It is decided to choose one single type of flaw to undergo further analysis, this controlled defect is induced on plates during manufacturing. Nevertheless, the defect is not likely to appear alone. It will instead appear in conjunction with other defects, as a cluster (e.g. fibre waviness surrounding a macro pore). On the top of it, again, one should be aware of the presence of other features that will appear in conjunction, for instance geometric defects.

In Table 6.1, the defects considered harmful by CETIM and already treated in the first chapter are listed. The purpose is to favour one type to retain for further analysis. In the following an attempt to justify the best choice is proposed.

Porosity, at the beginning of the project one of the favoured due to its problematic nature and its strong impact on performances, is excluded since the introduction of a simple adjustment during Ply drop is also disregarded. The reason is twofold. First, since its position is known and can be visually tracked, it is possible to decide straight away for the acceptance or the rejection according to the use the manufactured part is devoted to. Second, ply drops are used in the optimization of a part while the focus of this work is set on the characterization of defects in general and is not confined to a particular geometry or component.

Hence, the choice fell on the defects involving the reinforcement. Among the three: ply misalignment, in-plane and out-of-plane waviness, errors in ply alignment are initially neglected, since the purpose is to go towards an automated manufacturing, which reduces the occurrence of this defect. Fibre waviness is therefore elected as the defect of interest. In particular, in-plane fibre misalignment is chosen as defect to induce on manufactured specimens since it is more harmful and frequent if compared to the out-of-plane one. In addition, it is responsible of eventual instability phenomena. Undulation is a feature typical of the manufacturing of continuous fibres elements thus unavoidable no matter the care put in the manufacturing. More specifically, in-plane undulation of a set of fibres is considered responsible for a drop in resistance since the carrying capability is entrusted uniquely on the fibres (while the matrix has the fundamental function of joining together the structural elements). In addition, the production of an automotive component, a suspension triangle, at CETIM has shown fibre waviness as an issue commonly affecting car structural parts. This alternative also carries the advantage that, when it affects the surface plies, it can be visually tracked easily. This is particularly useful in the framework of this work, as one can verify if the localization proposed by the technique is realistic.

The first step consisted in designating the favoured defect. The successive step has to be tackled: the following section deals with the manufacturing of specimens with controlled defects and the related issues.

Specimens' manufacturing

In this subsection the manufacturing of the specimens is addressed. Two types of plates are manufactured: those with material defect of fibre undulation-type and the reference ones, nominally perfect, to use as basis of comparison. In reality, the perfect plates, ideally lacking defects, present a certain variability as well.

The material is a thermoplastic composite, carbon fibre reinforced PA66 polyammide matrix. The manufacturing campaign took place at Cetim Laboratories, in Nantes and Mulhouse. It involves the fabrication of rectangular plates of 250×175 and 3 mm thickness for a total of 21 plies. For compaction, thermoforming is used. This consists in imposing both temperature and pressure through a press. This technique guarantees a short cycle time and the possibility of large series production.

The production of the plate and the flaw are detailed hereafter. The complexity of the task is nested in the manufacturing of the defects. Certain aspects of the manufacturing are shown. Evidence is given of the occurrence of geometric defects in addition to the induced material flaws.

In the following, the manufacturing of the plate (Table 6.2) and of the defect (Table 6.3) are presented separately. Inducing controlled and repeatable manufacturing defects is a particularly complex task. Many attempts where necessary to obtain satisfactory results.

Manufacturing of the plates

The manufacturing technique for thermoforming of thermoplastic composite plates from prepregs is detailed hereafter. The procedure is described in Table 6.2 and is common for both defective and healthy components.

Manufacturing of the fibre orientation defect

The technique to produce wavy fibres areas has required some adjustment with respect to the technique presented for nominally perfect plates. The final method, detailed in Table 6.3, guarantees better control and choice of the undulation position and amplitude and allows a certain repeatability. The manufacturing of the fibre waviness defect is here described. The defect does not affect all the ply through the thickness, indeed the controlled flaw is manufactured only on five plies next to the surface. Some steps of the manufacturing process are in common with the fabrication of perfect plates. These will not be detailed again. The plies are cut from the prepreg drum

2.

The sheets are piled to create the desired stacking sequence

3.

The lay-up is placed in the mould and clamped at both ends by a joint which prevents the resin from flowing 4.

The mould is closed and positioned inside the press for thermoforming

5.

Thermoforming cycle: both pressure and temperature are imposed 6.

The parts are cooled inside the press to prevent the plates from deformation resulting from thermal residual stresses

7.
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I

The sheets that will become the defective plies are cut a few millimetres longer

II

A longer sheet (defective ply) is welded on the adjacent regular-size sheet (non-defective ply) so that the edges coincide. This forms a bump whose amplitude can be controlled by approaching or moving away the two welding sides.

III

The material corresponding to the bump is heathen, using ultrasonic waves, and flattened, using a spatula.

IV

The procedure is repeated for the number of the defective plies, by welding the new defective ply to the previous one (either defective or non-defective) paying careful attention to stacking sequence.

V

The elastic joints, which prevent the resin from flowing during the thermoforming process, are glued to the extremities of the plate-to-be and the ensemble is positioned in the mould 3-6 (Table 6 Following plates manufacturing, some considerations are made on the specimens and their characteristics.

The specimens to be tested are obtained by cutting the manufactured plates. The cutting process may provoke the release of residuals stresses that might be present in the plates due to the thermoforming process. Therefore, some specimens, issued from a perfectly flat plate, may present an initial crookedness.

Commonly, the intensity of this initial curvature of the axis is small enough to permit the identification of the material defect without taking into account the specimen's initial geometry. However, some extreme cases have also been encountered, mainly in the first plates manufactured, as can be observed in Fig. 6.1. The ample crookedness that affects some of the specimens, justifies the identifiability study of Chapters 3 and 4, where the possibility to detect the material defect is related to the amplitude of the intensity z 0 of the geometric defect. Another aspect that deserves attention is the appearance of conglomerates of defects. Evidence can be given of multiple flaws appearing in conjunction, both from surface visual observation and from tomographic imaging.

• the plies below the in-plane wavy fibres (Fig. 6.2a) present an out-of plane undulation (Fig.

6.2b)

• the fibres tends to lose their straight direction in correspondence of a pore

• in correspondence of the waviness, resin inclusions are encountered (Fig. 6.3)

In Figs. 6.2, tomographic observation show the surface (Fig. 6.2a) of an internal ply and a through the thickness subsection (Fig. 6.2b). The presence of an out-of-plane movement of the plies underneath a group of non-straight fibres is visible in the latter. 

Testing and experimental results

After the manufacturing of the specimens, it is possible to proceed with the compressive test. The classical set-up of an experimental campaign is shown in Figs. 6.4. The test is displacement driven, the upper part of the machine moves downward at a velocity of 0.01 mm/s, compressing the specimen, which is clamped at both ends.

The two images show the front and the back view of the testing rigs, composed of a 10 tons Instron machine, the related equipment and the measurement system. Two measurement systems are employed: StereoDIC, which provides full-field measures of the specimen displacement field, and a Linear Variable Differential Transducer (LVDT) to measure the out-of-plane displacement, the deflection, of a single point on the specimen. The advantage of this technique is to provide ready-to-use deflection data, necessary for instance for plotting the load-deflection curves or the Southwell plot.

Both sides of the set-up are shown to detail the specific features of the experimental campaign and data acquisition.

The front side, Fig. 6.4a, is devoted to the full-field measurement system, therefore it comprises the cameras and the lighting necessary to the StereoDIC.

The set-up to obtain full-field measurements consists in two Canon EOS 70D cameras with a 50mm objective and three light sources: two spotlights and a low temperature light (in blue on the bottom left of Fig. 6.4a). The use of multiple cameras is inherent to the type of testing and to the desired output. A compressive test involves large out-of-plane displacements, of the order of the centimetres at breakage. One camera is able to reconstruct only in-plane 2D displacement. To track out-of-plane displacement fields, at least two cameras are required. In addition, for a proper reconstruction of the full-field measurements, the two photos should be take simultaneously. In order to do so, the trig is a 5V signal provided by the testing machine. Moreover, the test velocity of 0.01 mm/s is chosen to guarantee a number of images sufficient for the reconstruction of the displacement fields through DIC. The total time for acquiring the picture and uploading the image is in total 6 s, therefore each photo corresponds to a 0.06 mm displacement.

The back side, Fig. 6.4b, consists in an linear variable differential transducer providing backup measures of the out-of-plane displacement (together with the system to keep it in position). Using two measurement means also allows a feedback on the accuracy, through a comparison between the output of the LVDT and the deflection measured through StereoDIC.

Experimental results

Some experimental results are here presented. Fig. 6.5 shows the load-deflection curves for four of the tested elements: two defective specimens and two reference ones. The others are here disregarded due to the high value of z 0 , not being interesting for defect identification purposes.

A different trend is visible: the healthy specimens reach a higher value of the load, while the ones affected by fibre waviness buckle before. In addition, for all the four cases, it is possible to suppose that the geometric defect is of small amplitude. To verify these results, the Southwell plot is proposed in Fig. 6.6. The computed critical load and initial imperfection values are reported in Table 6.4. The two healthy specimen present a comparable value of the critical load and of the initial imperfection. Evidence of better manufacturing is also given by the lower amplitude of the geometric defect For the two defective specimens, the z 0 value is higher, probably due to the process of defect manufacturing, which is quite invasive.

6.5 Identification procedure for a specimen affected by fibre waviness

In this section, the buckling based MCRE identification procedure is tested on the experimental results discussed in Section 6.4. A defective specimen is treated to have a defect to identify; the fibre waviness affects one of the surfaces to have the possibility to visually verify the identification. For the purpose, the defective specimen 4 has been chosen. In the beginning, the specimen is described in detail and the experimental results are post-processed to obtain the inputs required for the identification. Once the P cr and the deflected shape are obtained, the identification can be started.

The last section is therefore devoted to the presentation of the MCRE results. Compared to the simulated case, for real specimen no reference is available, it is therefore complex to judge the quality of the defect detection. An attempt is made and a discussion on the possible limits is proposed. A final section is also devoted to treating a nominally perfect specimen.

Defective specimen and experimental behaviour

This subsection is divided into two parts. The first part is devoted to the description of the specimen and the features visible on the surface, to enable an analysis on the quality of the identification results. The second part concerns the experimental results and the post-processing to obtain the critical load and the deflected shape, inputs of the MCRE procedure for buckling.

Description of Specimen 4

Both sides of the specimen under study are shown in Fig. 6.7. In both images a rectangle has been added, this delimits the useful area of the specimen from that inserted inside the grips. The surface used to reconstruct the displacement fields through Stereo Correlation is covered by black and white speckles, Fig. 6.7a. The other face, the one where the defect is clear, is intentionally left natural so that the flaw is completely visible, Fig. 6.7b. Focusing on the bare surface, some flaws can be highlighted. To help the description, a schematic image of the specimen is presented in Fig.

6.8

Fibre waviness affects almost entirely the left part of the specimen, from the border to the center. Two different waves are discernible: one on the left, of smaller wavelength, and a central one, affecting a wider area. In addition, a zone with poor surface quality is highlighted near the border on the right hand side, as well as in the wavy area.

Moreover, some through the thickness informations are included. Concerning the left side, it seems that the ply interested by fibre undulation are affected by a higher level of porosity, together with an out-of-plane undulation. Evidence of the occurrence of an out-of-plane ply waviness in correspondence with in-plane waviness is given by tomographic imaging, cfr. Fig. 6.2b, which unluckily does not refer Figure 6.8: Defective specimen, details on the useful length (grips excluded) to this specimens. This specimen appears to have a defectiveness above average, a probable reason is the technique used to manufacture the fibre waviness defects.

From additional observation of the thickness, a sort of notch can be seen on the right side near the opposite surface, the one with the surface treatment. No information are available concerning its depth. It is therefore difficult to state if it is part of a pre-existing delamination of the plate or if it has been induced by the cutting process. Unluckily, the fact that tomographic images of this specimen are not available, makes impossible to detail further the specimen quality and discuss about flaws eventually affecting inner plies.

Concluded the description, it is now possible to present the complete post-processing procedure for the defective specimen.

From experimental results to MCRE procedure inputs

The raw outputs of the test are the load and displacement values together with the deflection of a point given by the LVDT. This enables to plot the longitudinal displacements and the tranversal displacements vs. load, shown in Figs. 6.9 (called respectively load-displacement and load-deflection curves). As expected, the load tends to a limit value, before an almost sudden drop, corresponding to the breakage of the specimen. The successive data, differentiated in the plots through lighter-colour markers, do not describe the compressive behaviour, but shows the onset of degradation.

The raw output data enable also the computation of the critical load, through the Southwell Plot. P cr cannot be directly obtained from the load-displacement curves, in fact, the maximum load reached during the experiment is influenced by the presence of geometric defects and is therefore lower than the first buckling load. The computation of the real P cr is proposed in the next paragraph. In the following one, the method for obtaining the deformed shapes is detailed. It requires a more complex and computationally expensive post-processing, involving SteroDIC.

The critical load To proceed to the evaluation of the critical load, let the load-deflection data be plotted on the Southwell plane. In Fig. 6.10a, the totality of the data is reported on the (w, w/P)plan. A nearly-linear central portion is clearly discernible, with deviations at the ends. Limiting the The Southwell method is applied to the data these data. The critical load obtained is P cr = 6083 N, see Fig. 6.10b.The estimated value of the initial imperfection is z 0 ≃ 0.125 mm, approximately 4% of the thickness, therefore sufficiently small not to have a strong influence on the identification procedure.

The Southwell plot for specimen 4 has already been presented in in Fig. ??, where the behaviour of defective and nominally perfect specimens is compared. The number of (w, w/P) data used for the calculation was higher. The results in terms of critical load and initial imperfection are nonetheless absolutely comparable, i.e. the P cr is just 4 N lower and the z 0 difference 84 nm. The vicinity of the estimation proves a certain stability of the method.

Two other load values exist: the maximum experimental load and the theoretical critical value of the specimen with nominal material properties obtained from eigenvalue simulations. The P cr value is placed in between these two loads.

The first load is lower than the buckling load, as the maximum value experimentally reached is 5646.9 N, cfr. Figs. 6.9, due to the presence of geometric imperfections. If this load is erroneously used as input of the identification procedure, an error in the P cr of 7% is made. Referring to Chapter 3, where the effects of an error in P cr are evaluated, this would correspond to an overestimation of the defect intensity of 15-20%.

An estimate of the theoretical critical load can be obtained by a simulation of the eigenvalue Figure 6.11: Zoom on the defect problem on Cast3M. This is undertaken by considering as specimen's dimensions the ones between the grips, delimited in Fig. 6.7 by the red rectangle. In addition, as material properties, the ones of the healthy material are taken. This last choice engenders an error, which is supposed to increase with the flaw extent and intensity. A zoom on the fibre waviness area, Fig. 6.11, allows a visual estimation of the defect. The P cr estimated by eigenvalue Finite Element analysis is equal to 9899.6 N, higher than the real buckling load. The error if this value was used in the identification procedure is higher than the previous case and would probably affect not only the estimation of the defect intensity but also the localization, again referring to the results obtained in Chapter 3 for a wrong estimation of the buckling load above 50%.

Deflected shape To obtain a shape close to the buckling mode of the eigenvalue problem, one of the experimental deformed shapes at the early stages of buckling should be employed, approximately in the same linear range of applicability of the Southwell plot. The deflection at the real beginning must be disregarded, since the noise level can be of the same order of magnitude of the displacements. To detail the procedure and show the potential of StereoDIC, the full-field measurements are reconstructed during the whole experiment, before breakage (blue circular markers in Fig. 6.13a).

StereoDIC provides a deflected shape for each (w,P) couple for which one of the n pairs of photos have been taken. The results are n+1 NURBS surfaces (B-spline): an initial reference surface when the specimen is unloaded and n deformed surfaces during the experiment. This is equivalent to having n displacement fields, obtained by subtracting from the deformed surfaces the reference surface, that of the unloaded specimen. To report some of the outputs, Fig. 6.12 shows color maps of the displacements, spaced in time, in order to give an idea of the evolution of the instability in compression throughout all the experiment. To to clarify the chronological sequence, every displacement field is indicated by the number of photos and the corresponding value of the maximum deflection.

Since each photo corresponds to a precise out-of-plane displacement value in the experiment, for sake of clarity, in the following we will discuss in terms of photo number or equivalently of deformed surface number rather than deflection value.

A verification of the accuracy of correlation results can be done by estimating the noise affecting the measures. The procedure requires to undertake the StereoDIC on a certain number of initial pictures, all of them showing the unloaded specimen, i.e. before the beginning of the experiment. The displacements are supposed to be zero, nevertheless, the color maps of the fields show some perturbation, see Fig. 6.15. The noise value obtained (the non-zero value of the displacements) amounts to ±4 • 10 -3 mm, that is in the following taken as precision.

Additionally, it is decided to verify the quality of the experimental data by evaluation of the discrepancy between the LVDT data and the results obtained from imagery, since they can be distorted by inaccuracies and errors of different types. The method chosen is to compare the displacement values, employing the load-deflection curves, which are plotted together in Fig. 6.13a (in black the LVDT data and with blue circular markers the 3D-DIC outputs) and by computing the percentage error, Before analysing the plots, a remark is fundamental. The coordinates of the point used for the LVDT measures are not known with precision. Referring to Fig. 6.13a, it is is possible to notice that the two curves follow the same trend. Nonetheless, the error present high initial fluctuating values, probably due to the low w, and soon stagnates at around 5%. Not knowing with precision the coordinates of the LVDT position justifies the not complete overlap of the curves and the correspondingly high value of the error. It is also remarked that probably the percentage error is not the most accurate indicator for this application, as none of the two values is completely reliable.

The strong resemblance between the two curves obtained with different means proves a certain reliability of the experimental data. The results of StereoDIC are therefore considered accurate and the deformed shape obtained can be employed as input of the identification.

It was decided to take into account the noise value in the process of deciding which deflected shape is taken as measurements. In Fig. 6.14 the ten initial (w, P) couples are shown. Regarding the first two times steps, the maximal deflection is below this noise value; these deflected shape are therefore not to be trusted completely. The shape that can be use as input to the identification procedure is therefore chosen starting photo 3, whose maximum out-of-plane displacement 1 • 10 -2 mm overpasses the noise value. The definition of the upper limit of the interval is not so straightforward. It is necessary to keep the displacement out of the large deflection range. Since, apart from this rather vague requirement, no unique rule exists, it was decided to show the identification results for the measurements relative to the photo numbers belonging to the interval [START_REF]et l'intensité du défaut sont connues a priori, dans le cas réel aucune information précise n'est disponible sur le défaut[END_REF]11]. As it is shown in the section devoted to identification, the results are fairly similar in terms of localization.

From NURBS to Cast3m The entire identification algorithm is coded on the finite element software Cast3M, [Cast3M 2000]. The reason of this choice is nested in the operational freedom provided by this CEA free software: it is possible to directly treat matrices and vectors to solve linear systems in loco, without employing third parties (e.g. MatLab). Nonetheless, the displacement fields obtained from SteroDIC should be uploaded and this process requires some caution. Some difficulties arise at the moment of inputting the experimental data and in particular the NURBS deformed surfaces, due to the different philosophies behind MatLab (StereoDIC) and Cast3M (FE simulation and identification algorithm).

As the MCRE procedure consists in comparing the response of a model of the specimen to the experimental data, on Cast3M first the FE model is created then the discrepancy between its response and the experimental data is evaluated by implementing the equations of Chapter 2 (Section 2.3.3). It has been decided to unify the creation of the mesh of the FE model and the uploading of the measured displacements. Let this point be clarified.

Since Finite Elements and NURBS treat surfaces in a substantially different manner, a problem of node correspondence between the mesh and the imported displacement may arise. Indeed, NURBS surfaces work with control points, which usually do not lay on the surface they describe, and present a higher order continuity. For the present application, ten control points are used and a C 4 continuity is guaranteed.

For guaranteeing the continuity between FE mesh and the uploaded displacements, computed as difference between the NURBS deformed surface and the initial unloaded surface, the points selected are used to create the mesh of the initial model. This is made possible by the fact that the NURBS provide both the coordinates of the initial unloaded surface and the related displacement values. Let the procedure on Cast3M be detailed.

On Cast3M, the displacement fields are treated as 'field by points' CHPOINT (champ par points) elements which, for their existence, require to be created with respect to a geometric support, a mesh or a portion of a mesh, and do not exist independently (as a vector or a matrix). Operations between CHPOINT elements are possible only if all are supported by the same mesh. To fulfil this requirement, the mesh used for the measured displacements data must coincide or must correspond to a sub-mesh (for instance a coarser version is possible) of the one used for simulating the healthy model response. This is the reason why it was decided to associate the step of creation of the FE model mesh with the uploading of the experimental data. This is enabled by the way the NURBS surfaces (initial and deformed ones) are created and are provided as output.

The NURBS surfaces are handled as continuous surfaces which can be transformed into a grid, whose size N pt is chosen by the user. The discrete NURBS surface is given as a N pt × 6 matrix: the first three columns corresponds to the coordinates of of each one of the N pt point of the deformed surface and the other three provide the displacement, as the difference between the actual deformed surface and the initial one. These scalar values are reported on a .txt file which is loaded into Cast3M. Since the displacement is provided as difference form the initial surface, the first .txt file display the coordinates of the unloaded surface and a zero displacement field.

The procedure of importing the experimental value begins therefore with the creation of the mesh of the FE model. This is undertaken by importing from the first .txt file the coordinates of the initially unloaded structure's NURBS surface. Once all the coordinates are imported, for our application, the mesh is built by assembling rectangular shell elements. This gives the possibility, during the identification procedure, to localize and correct potentially every element, i.e. no a priori knowledge on the flaw position is required. The size of the elements undergoing updating can be chosen, depending obviously on the application; big sub-structures do not guarantee precise results and too small ones increase the computational time.

Once the geometry is created, the displacement field at a given time t > 0 can be imported. The method to reconstruct a displacement field consists in associating to each point on the mesh the relative scalar values of the displacement components, for doing so an iteration over each point of the mesh is employed.

Identification results

As already discussed, no exact rule exist to decide which deflected shape should be used as input of the identification procedure. In the previous section, we have restrained the interest to 8 surface, in the interval between the third and the eleventh photo. For justifying the choice of the deformed surface employed and before detailing every step of the identification for this surface, we have decided to perform an initial analysis enlarged to all the 8 surfaces in [START_REF]et l'intensité du défaut sont connues a priori, dans le cas réel aucune information précise n'est disponible sur le défaut[END_REF]11].

As general statement, the focus in the framework of experimental measurements is set on the localization results rather than the precise values of the correction. Too many parameters may influence latter. Non-linear measurements, nominal value of the material parameters not perfectly known, a ply misalignment of some degrees or an imprecision in the estimated P cr , all contribute to vary the estimated p def 1 from the real value. The position is instead more stable, problem arise only when a big modelling error is made. For these reasons, the discussion following focuses on defect shape and position.

Table 6.5 shows the initial error map, the results in terms of localization and global error indicator evolution (initial and residual MCRE at Step 8) for the different deflected shapes inputs. Concerning the intensity of the correction, refer to the color bar at the beginning of Table 6.5.

For sake of clarity each deflected shape will be referred to as 'surface' followed by the photo number. A common trend is easily recognizable in the detected position of the defect, evidence is found both in the initial error maps and in the final localization results. The similarities are strong until surface 9, then the behaviour changes. In terms of error map, initially, a hill is visible in the center if the specimen, located to the left hand-side on the upper free-end. The position remains almost unchanged until surface 7. For surface 8, it is almost equivalently distributed on a diagonal from side to side trough the width. For the remaining surfaces, the maximum tend to migrate towards the lower free-end.

Focusing on the localization results, three areas are detected: a central area, results of the localization of the hill observed in the initial error maps, one next to the left border (defect 1 ) and a small area adjacent to the right border (defect 3 ). The third area is always detected, except for surface 6. It is systematically localized from surface 7 and updated from surface 8. In the same interval, between surfaces 7 and 8, the first two areas tends to gather and from surface 9 are detected as a unique defect.

Consideration regarding the three defect areas are made, for the sake of clarity refer to the specimen scheme in Fig. 6.8. The reason behind the localization of the zone occupied by defect 1 may be triple. Due to the high local error values and the tendency to not be systematically localized (see for instance the initial error density of 5, where just one corner element present a high error value), this might be due to a problem in imposing the boundary condition (ideal fixed ends type is used in the model) or equivalently to the non complete convergence of the DIC algorithm in the vicinity of the border.

It is true at the same time that the area interested by the undulations occupy practically the entire left part of the specimen's surface and this may alternatively be one of the causes of the localization.

Whether the reason of the detection is one of the three or whether they act symbiotically, it is hard to determine; nonetheless the opinion is that all the three have an effect on the updating, even if the two first hypothesis are backed by the fact that the peak of the initial error density on the left corner is isolated.

The same conclusion may be drawn defect 3. However, in this case a smaller zone is detected, which coincides precisely with the area of poor surface quality. Concerning defect 2, it falls exactly in the wavy fibres area and in particular in the area of larger wavelength, there are therefore no doubt on the reason of the localization. At the same time, the detected area would be expected to be larger, developing more towards the left hand side. Through the thickness observations would be required to understand the real causes of the detection of this area, e.g. a resin reach area, macro pores, broken fibres or similar features.

Although an unambiguous rule for choosing the deformed surface does not exist yet, the consistency of the results in this interval of w ∈ [0.009, 0.03] mm is reassuring. The identification does not change dramatically for the first three surfaces and also from 6 onwards the trend is respected but it seems as if an over-localization is taking place. This issue is partially solved by increasing the threshold e th above 0.7.

Following these founding and the deriving considerations, it is decided to choose surface 5 and detail the identification results obtained from the deflected shape relative to photo 5, w ≃ 0.013 mm. As common rule, at first the initial localization map is proposed, see Fig. 6.17a. A peak of local error is visible in the central part of the specimen, next to the top free end. At the borders, some isolated elements present a high local error.

The identification is presented step by step in Table 6.6. For each iterative step, both the parameter maps relative to E 11 and E 22 are displayed. To evaluate the intensities represented, the colorbar is shown above the table. 
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Step 1 0.991
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Step 10 0.917
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Apart from two elements on the opposite corners, a main central flawed area is detected. This corresponds to the bigger amplitude wave in the fibre undulation area and extends towards the smaller wavelength one, that more proximate to the left border.

To clarify which area is localized, in Fig. 6.16, the localization map is shown superposed to the photo of the specimen surface. The direction of the fibres can be glimpsed below the color map showing the correction. The localized and updated zone, in orange and yellow, extends exactly in correspondence with the wavy fibres area. The undulation has a relatively big wavelength: the intensity p def F W 1 ≃ 0.4 and p def F W 2 ≃ 0.4 (see second and third columns of 6.6) corresponding to an angle formed by the fibres of 10-15 • , conforms the state of the surface.

For what concerns the p def 2 updating in the third column, an intensity different from the initial value is attributed only to the two elements localized on the opposing end corners. This argues in favour of the hypothesis that, at least for the left end element, the high value of the local error corresponds to locally perturbed or non-converged displacement values. The residual error map, shown in Fig. 6.17b, displays a local density of error which is quite uniform, except for the borders. The central hill, visible in the initial one Fig. 6.17a, has mostly disappeared, meaning that it has been properly updated. A quite high residual error remain, issue that have already been seen when using non-linear pseudo-experimental measurements. The problems encountered, the possible causes and the eventual solutions are hereinafter discussed. What derives from the observation of the identification results in Table 6.5 is that errors in the modelling may affect the boundary conditions and the material properties. For what concerns the boundary conditions, it has been decided to impose the ideal condition of fixed ends, even if experimentally the boundary conditions are not perfect. This choice is justified by an assumption based on the buckling theory: imperfect boundary conditions play the role of geometric defect. For this reason, since for this test the z 0 value is low, it is supposed that the effects of imperfect boundary conditions do not strongly affect the results.

Regarding the material properties, the initial properties are the ones provided by the Cetim, obtained from the experimental characterization of the material. As ply orientation, the design one is employed. This last choice is considered satisfactory, since the method, tested in presence of a ply misalignment, has proved to be robust until an error of 6 • . In addition such high degrees can be visually tracked.

The rest of the subsection is devoted to considerations on the improvements that can be made on the code to partially solve these issues.

Concerning the unreliable boundary conditions, a formulation of the MCRE exists that takes into account non-reliable boundary conditions, see for instance [START_REF] Feissel | Modified constitutive relation error identification strategy for transient dynamics with corrupted data: the elastic case[END_REF]. Regarding the verification of the material properties and ply orientation, the global correction of the specimen material characteristic can be introduced in the parameter updating step, to make it work together with the defect correction. 
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Step 4 0.931 measurements. The fact that the algorithm necessary localizes a zone brings to the updating of Step 4 in Table 6.7. At this step almost the entire surface is updated and an increase in the global residual error indicator MCRE follows, synonym of a incorrect updating. The resulting error map, Fig. 6.20b, shows therefore an increase in the local error in the areas that have been mistakenly localized and corrected. Following the application of the identification procedure on an healthy specimen, some new points arise. Even if again, there aren't any informations available of the quality of the specimen through the thickness, the high value of P cr and the low value of the geometric imperfection allow us to assume that the specimen is actually substantially defects-free. The defect characterization, or better said, the fact that no defects are characterized, is a sign that the linearised buckling based MCRE is a valid tool in this framework. In addition, two positive points can be underlined. The first is the updating of the border, which is a valid warning of an error in the definition of boundary conditions. The second is the increase in the MCRE when a wrong correction is pursued.

All this features help proposing some enhancements to the method. Concerning the latter, as already stated, a backwards correction can be foreseen, namely to go back to the preceding step when areas are mistakenly updated and the global indicator increases. In addition, also a different definition of the threshold parameter e th can solve some of the issues highlighted by this case.

Influence of an overall ply misalignment

Something that may happen due to manufacturing is that the ply does not have the nominal direction but is instead tilted of some degrees. The effect on the identification of this issue are presented here for 3 • , 6 • and 15 • overall misalignment. This is simulated by imposing in the orthotropic material model an orientation equal to the angle of ply disorientation. A possibility to fix the problem is to introduce in the algorithm a correction of the ply orientation. This eventuality is not treated at the moment as the purpose is to inspect the limits of the methodology. The first two cases inspected are the ones of practical sense, a misalignment of 15 • is not acceptable for the majority of the applications.

Before proceeding to showing the identification results in Table 6.8, a comment is necessary. A ply misalignment is equivalent to having a material with different properties than the ones expected. Considering a 0 • unidirectional, a ply misalignment causes the material properties, i.e. E 11 , to be lower than the nominal ones. Until a certain angular value, the global error in material properties remains as a higher residual and the defects are considered to have stronger intensity, since, compared to the nominal value, the Young's Modulus drop is due to the defect, 50 %, and to an additional drop due to the fibres angle. Above a certain angular misalignment, the material is less stiff and the behaviour, together with the deformed shape changes completely, therefore, the localization is not possible any more.

A consideration similar to the one for an error in the critical value can be made; in this case, the critical load considered is the one computed for higher material properties.

The first two cases inspected are the one more likely to occur. For a 3 • ply misalignment, the results of the identification are satisfactory. At Step 4, only two elements of defect 1 are not localized and the parameters are evaluated with 25% and 11% inaccuracy, due to the fact that with respect to FE model, simulated with a the ply oriented at 0 • , a 3 • misalignment is encoutered, which corresponds to a drop in Young's Modulus around 20%, that is superimposed to the material defect p def 1,2 1 = 0.5. For the 6 • misalignment, the performance is less adequate: one element of defect 2 is missing and just half of defect 1 is detected. As expected, the defect intensity is again 'overestimated' of 40% as it accounts for the drop in Young's Modulus due to the defect and the contribution of the misalignment angle. Let the error map deriving from the correction be considered, Fig. 6.21. The error density is everywhere high and no specific trend can be recognized. For what concerns a ply misalignment of 15 • , the localization is wrong from the beginning, even if the two defect areas are approximately guessed. The reason is that the model error is too high, the defect identification tends to be replaced by a more global material parameters identification. This also means that the updating strategy could be in this case adapted. 0.539 0.09 -0.17 0.15 -0.33 Reference 0.5 0.5

Conclusions

This chapter shows an example of identification of defects of a real specimen. The aim of the first part of the chapter is to show the whole experimental process, from the specimens' design to manufacturing and then testing. The purpose is to display in part the gap between the simulations and the real case, where a certain number of features, not expected, arise. The last section of the chapter focuses on the identification of flaws on real specimens through the MCRE method based on buckling.

Let us now focus on this last part and on the identification results. The first hurdle is represented by the choice of the modal input; nonetheless, in the range of interest, the results have a commonality of features. As a general rule, in the following we propose to employ directly the surfaces presenting a maximum out-of-plane displacement, overpassing the noise value. For this application, the surface employed has a maximum w ≃ 2• noise value, which appears as a correct choice for displacement obtained from StereoDIC. Some code enhancements are possible. In particular, a different correction of p def 1 and p def 2 from ply to ply can be easily introduced with an obvious increase in computational time and in ill-posedness of the problem. The interest is set in the possibility to provide through the thickness information, to distinguish between the effects of the cluster of defects and other issues, for instance the notch observed, cfr Fig. 6.8. In addition, a different definition of the threshold parameter e th would probably solve some of the issues arising, as mistakenly localized areas. Moreover, a correction of the boundary conditions, for instance by introducing an additional error term in the MCRE, would solve some localization problems, as found for the nominally perfect specimen analysed.

At last, to comment the results of the identification, the defect localization is considered satisfactory, the quality of the parameter updating is harder to judge, nonetheless p def F W 1 and p def F W 2 show plausible values, relative to an angle formed by the fibres of approximately 15 • . It is necessary to state that the specimen on which fibre waviness has been induced are highly defective. Even from the observation of the defective specimen in Fig. 6.7, is is easily discernible that more of the half of the surface is flawed. In this sense, the localization obtained is considered appropriate. Analogously, for the nominally perfect specimen, the identification results, namely the fact that no flaws have been localized, is in agreement with the observation of the specimen surface in Fig. 6.18. rule: every specimen whose z 0 overpasses these value can not be used, unless an additional step of updating of the geometry is introduced in the procedure or the StereoDIC is used to reconstruct the initial geometry.

The identification procedure was then repeated for tension, three-points-bending and vibration, with identical geometrical defects and under the same boundary conditions. The MCRE-based algorithm detected the defects in all four cases. Buckling gave the best localization results in the presence of an unknown geometric defect. However, the other methods provided a more accurate estimation of the defect intensity, possibly due to the strong non-linearities in buckling. None of the loading conditions allowed for identification in the case of high initial crookedness.

Besides these experimental results, choosing among these tests should also take into account the broader industrial process they will embedded within. For instance, existing material or final product characterization tests are bound to affect the viability of either choice.

The actual experiment

Finally, actual manufactured specimens were analyzed under compressive loading. The full workflow, including post-processing with the Southwell plot and StereoDIC, is reported in this thesis. The MCRE approach was applied to both a nominally perfect specimen and a known-defective one. For the first sample, the procedure correctly reported the absence of defects. More importantly, the algorithm also performed well on the defective specimen, reporting a defect in the area affected by the longer-wavelength undulations. The measured flaw intensity also appeared consisted with the orientation angle of the fibres. Both cases showed slight corrections at the boundary, sign of either imperfect StereoDIC convergence or incorrect boundary conditions.

Future perspectives

It would be undoubtedly useful to specify a more complex defect description, for instance a drop in Young's Modulus affecting only some plies through the thickness, to be tested for all the four loadings.

Given the boundary corrections seen during experiments, buckling-based MCRE could be extended to the case of unreliable boundary conditions following [START_REF] Feissel | Modified constitutive relation error identification strategy for transient dynamics with corrupted data: the elastic case[END_REF].

Another avenue for future work would be to add a global identification step. By estimating the material parameters, the ply alignment and an initial geometry correction (in addition to the reconstruction computed by StereoDIC) the method would become more widely applicable.

Finally, a non-linear MCRE formulation is expected to improve the performance of the linearized buckling model used throughout this thesis. This would leave more freedom in the choice of the geometry, as the Southwell plot only applies to beam-like structures and plates. Moreover, this extension would fit within existing work on the effect of flaws on non-linear geometrical problems, unlocking the full sensitivity of the buckling test for both mechanical and geometrical flaws.

Appendix A

Plate Theory

The effect of a ply misalignment To evaluate the effect of a variation in ply orientation on the material properties of the ply, the Kirchhoff-Love theory or Classical Laminate Theory (CLT) is a useful tool. In the following the formulation is proposed.

In the plane stress hypothesis, which means:

      
σ 33 = σ 13 = σ 23 = 0 ε 13 = ε 23 = 0

ε 33 = 1 E 3 (-ν 31 σ 13 -ν 32 σ 22 ) (A.1)
the material behaviour con be expressed in a reduced form as follows:

ε ε ε m = K K K -1 m σ σ σ m =   ε 11 ε 22 2ε 12   =        1 E 1 - ν 12 E 1 0 - ν 21 E 2 1 E 2 . . . 0 0 1 G 12          σ σ σ 11 σ σ σ 22 σ σ σ 12   (A.2)
Defining two coordinates system: a global one (x,y,z ) relative to the composite plate as a whole and a local one [START_REF]'algorithme: identification ayant à disposition la charge critique et le mode propre L'éprouvette simulée est montrée en Figure 1. Elle présente deux défauts de type matériau, défauts qui provoquent le changement des propriétés matérielles[END_REF][START_REF]Identification des défauts à partir des pseudo-mesures non linéaires[END_REF][START_REF]et l'intensité du défaut sont connues a priori, dans le cas réel aucune information précise n'est disponible sur le défaut[END_REF] relative to the material (1-axis in the direction of the fibres, 2-axis and 3-axis in the in-plane and out-of-plane transverse directions respectively). A matrix rotation can be defined to make possible to compute stress and strain in both reference systems. Calling θ the angle between the x-axis and the 1-axis, is then possible to define a matrix T T T relative to the rotation: .3) where c = cos θ and s = sin θ are necessary to pass from σ m and ε m and K K K m on material coordinates to σ p and ε p and K K K p on plate coordinates. Therefore, the obtained behaviour in global coordinates is written as: σ p = K K K p ε p where K K K p = T T T t K K K m T T T (A.4) . As the coefficients of the fit and the related error are determined, in correspondence of the abscissa x new of a new point it is possible to predict:

T T T =   c 2 s 2 cs s 2 c 2 -cs -2cs 2cs c 2 -s 2   (A
• the estimated value of the regression line relative to the abscissa ŷ = a estim + b estim x new

• the indetermination of that value s ŷ (due to the indetermination on the knowledge of the parameters of the line)

• ŷ confidence interval obtained multiplying s ŷ by a coefficient t p related to the probability chosen for the interval, this is by default set at p = 95% but can be defined by the user on the code realized.

The tolerance is thus assumed to be toll = t p s ŷ.

Obviously, the more the data result scattered around the fitting line the higher the tolerance since deviations from the trend are less acceptable.

The procedure wants to be an aid on the choice of the point which define the fitting line, a control of the plots is necessary to grant the acceptability of the automatized choice.

Since the implementation of the algorithm request the application of fitting statistical procedures, a concise overview on the procedure and the adopted formula is needed.

Estimation of the coefficients of the regression line

Lets consider two variables between which a linear relation in the form Y = α + βX is supposed to exist. Given a data sample (x i , y i ), i = 1, 2, ..., n, it is desired to estimate â, b parameters of the linear relation; this could be obtained for instance using the least square method, which permits also to consider different weights w i for each different couple of values (x i ,y i ), where W denotes the weight matrix, with W = diag(w i ) (i = 1, , n). It consists in minimizing the quadratic form: 2) The LS method provides also the indeterminacy to be associated to the estimates of the coefficient, using the following variance matrix:

Σ a ≡ σ 2 a σ ab σ ab σ 2 b = σ 2 1 ∆ n i=1 w i x 2 i -n i=1 w i x i -n i=1 w i x i n i=1 w i (B.3)
where ∆ = n i=1 w i n i=1 w i x 2 i -( n i=1 w i x i ) 2 and s 2 is an estimate of the multiplicative constant σ 2 calculated from the residuals ν i :

s 2 = n i=1 w i (y i -â -bx i ) 2 (n -2) (B.4)
Making explicit a and b variances and their covariance, it applies:

s 2 a = σ 2 n i=1 w i x 2 i n i=1 w i n i=1 w i x 2 i -( n i=1 w i x i ) 2 s 2 b = σ 2 n i=1 w i n i=1 w i n i=1 w i x 2 i -( n i=1 w i x i ) 2 s ab = σ 2 -n i=1 w i x i n i=1 w i n i=1 w i x 2 i -( n i=1 w i x i ) 2
(B.5)

Vers la localisation et la caractérisation des défauts par la méthode de l'erreur en relation de comportement modifiée : exploitation des essais de flambage et comparaison avec d'autres types d'essais.

Le champ d'application des matériaux composites s'étend aujourd'hui hors du domaine de l'aéronautique. Des marchés nouveaux, comme celui de l'automobile, impose de nouvelles contraintes, coûts réduits et procédés autorisant des temps de production réduits. Des procédés rapides augmentent les possibilités de défauts impliquant le contrôle des pièces.

Les techniques de contrôle non-destructif utilisées en aéronautiques sont également coûteuses et longues. Dans ce contexte la question que nous nous sommes posés est la suivante : est-il possible de détecter les défauts et d'estimer leur nocivité en évitant le recours aux techniques de contrôle classiques ? Une réponse acceptable pourrait impliquer à une précision moindre tout en fournissant des informations pratiques suffisantes pour les applications.

La voie explorée dans cette thèse est celle de l'exploitation d'essais mécaniques classiques par corrélation d'image numérique pour essayer, par approche inverse, de localiser et de caractériser d'éventuels défauts macroscopiques. Les essais de flambage ont été chois a priori du fait de leur sensibilité supposée aux défauts. Parmi les approches inverses nous avons choisis d'étendre la méthode de l'erreur en relation de comportement modifiée (MCRE) au cas du flambage car cette méthode a montré par le passé de très bonnes propriétés de localisation dans le cas d'essais de vibrations impliquant l'excitation de plusieurs fréquences propres.

La formulation proposée, basée sur la théorie linéarisée du flambage, demande un post-traitement de la réponse non-linéaire expérimentale. La méthode de Southwell est employée pour déterminée la première charge critique théorique du problème de flambage linéarisé, c'est à dire la charge critique associée à une éprouvette avec défauts matériaux mais sans défauts géométriques. Les déformées expérimentales simulées ou mesurées par corrélation d'image numérique stéréo sont utilisés comme approximation du mode de flambage associé.

La méthode est évaluée par comparaison aux résultats obtenus par la méthode de l'erreur en relation de comportement modifiée pour d'autres types d'essais : traction, flexion et vibration. Dans le cas de mesures simulées, l'approche basée sur les essais de flambage analysés par une théorie linéarisée donne de bons résultats au moins dans le cas d'imperfections géométriques modérées.

Enfin la méthode a été appliquée sur des essais expérimentaux à la fois sur une éprouvette considérée comme sans défauts et sur une éprouvette avec défauts correspondants à une ondulation des fibres localisée. Les déformées expérimentales mesurées par corrélation d'image numérique stéréo sont utilisés comme approximation du mode de flambage associé. Alors que dans le cas de l'éprouvette sans défauts la méthode n'en localise aucun, la zone détectée pour l'éprouvette avec défauts est en bon accord avec la zone affectée par les ondulations.

Résultats: caractérisation des défauts

La méthode étant expliquée en détail dans le Chapitre 2, on se concentrera ici sur les résultats d'identification des défauts, et à partir des mesures simulées et réelles, fournis par l'erreur en relation de comportement. En utilisant des mesures non linéaires, la technique n'est pas si simple: il est en effet nécessaire de post-traiter les données expérimentales pour obtenir les entrées linéarisées: la charge critique et le mode équivalent. La première est obtenue à partir de la droite de Southwell avec une précision vraiment élevée. La seconde ne peut pas être obtenue directement et la forme déviée non linéaire au début du flambage est employée. L'utilisation de ce champ de déplacement non linéaire est à l'origine de la précision réduite dans l'identification des défauts.

L'éprouvette utilisé est la même, en Figure 1. Pur pouvoir traiter le cas non-linéaire un défaut géométrique est introduit sous forme d'une imperfection de la géométrie initiale: l'éprouvette est initialement fléchie. Deux cas sont considérés: une imperfection initiale z 0 petite, d'amplitude maximale le 5% de l'épaisseur t, et une plus grande, z 0 /t de 50%. L'analyse de la distribution de l'erreur locale montre des maxima qui ne correspondent pas à la position des défauts (comme été pour les cas précédents) mais qui sont décalés vers les deux extrémités de l'éprouvette. Ce résultat n'est pas étonnant, car il s'agit d'un défaut géométrique de grande amplitude qui provoque un changement complet de la réponse structurelle en compression.

Pour pouvoir caractériser les défauts matériau dans un cas comme le présent, il est nécessaire soit de connaître la géométrie initiale soit d'introduire une étape de correction de la géométrie dans l'algorithme. Cependant en présence d'imperfections géométriques les essais de flambage présente un avantage. En effet, après le traitement des données expérimentales à l'aide du tracé de Southwell, deux paramètres: la charge critique (proportionnelle à la pente de la droite) et l'amplitude de l'imperfection initiale z0 (ordonnée à l'origine) sont obtenus. Cette dernière valeur peut être utilisée pour savoir si l'identification est possible; sur la base de nos travaux pour z 0 < 20% l'identification est possible alors que pour z 0 > 20% la localisation et donc l'identification des défauts est impossible. Cependant en présence de défauts géométriques modérés la méthode aura tendance à surestimer l'intensité des défauts matériaux.

Eprouvettes réelles: identification à partir de test de flambage

Deux types d'éprouvettes ont été produites : des éprouvettes de référence aussi parfaites que possible parfaites et des éprouvette sur lesquelles un défaut d'ondulation des fibres est introduit. 

Résultat d'identification pour une éprouvette nominalement parfaite

Dans ce cas, l'algorithme ne détecte pas de défaut mais indique une certaine erreur dans l'application des conditions aux limites expérimentales supposées correspondre à un encastrement parfait. Les spécimens réels testés en compression sont traités dans le Chapitre 6: chaque étape qui apporte à l'identification, comme l'expérience et le post-traitement des données expérimentales avec Southwell plot et StereoDIC, est détaillée. L'approche MCRE basée sur le flambage pour la caractérisation des défauts est appliquée à un échantillon nominalement parfait et à un échantillon défectueux. Dans le premier cas, aucun défaut n'est détecté. Seuls quelques éléments de la frontière gauche sont corrigés, symptôme d'une mauvaise définition des conditions aux limites. Au contraire, pour l'éprouvette défectueuse, une zone est localisée correspondant à la zone sur l'échantillon affectée par l'ondulation des fibres et en particulier où les ondulations avec une plus grande longueur d'onde apparaissent. Également la valeur de l'intensité du défaut apparaît conforme à l'angle d'orientation des fibres. Encore une fois, certains éléments de frontière sont corrigés, signe soit d'une convergence non parfaite du StereoDIC sur les frontières, soit de conditions de limites non parfaitement définies. Une formulation du MCRE existe où les conditions aux limites sont considérées peu fiables, l'introduction de cette variation au MCRE basé sur le flambage serait également intéressante.

De plus, une étape globale d'identification des paramètres matériels, de l'alignement des plis et d'une correction de la géométrie initiale (à ajouter à la reconstruction proposée par le StereoDIC) élargirait le champ d'application de la méthode.

Un autre point intéressant, pour résoudre certains des problèmes du MCRE linéarisé à flambage, serait d'introduire une formulation de l'erreur en relation de comportement modifiée pour le flambage non linéaire. Cela laisserait plus de liberté dans le choix de la géométrie, car pour le moment la droite de Southwell ne s'applique qu'aux structures qui peuvent être traité comme des poutres. De plus il permettrait également d'employer les nombreux travaux traitant des effets des défauts pour un problème géométrique non linéaire, permettant de tirer pleinement profit de la sensibilité de ces essais, tant pour les défauts matériels que géométriques. 
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 11 Figure 1.1: List of manufacturing process for thermoplastic composites [Campbell 2010]
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 13 Figure 1.3: Lack of planarity of the specimen caused by residual stresses

Figure 1 .

 1 Figure 1.4: Example of macro-void (source CETIM)

  Figure 1.5: Examples of lack of impregnation (source CETIM)

Figure 1 .

 1 Figure 1.6: Change in modulus with a angular ply orientation

Figure 1 . 7 :

 17 Figure 1.7: Example of fibre waviness (source CETIM)

Figure 1 . 8 :

 18 Figure 1.8: Example of fibre waviness (source CETIM)

Figure 1

 1 Figure1.9: Example of fibre waviness[START_REF] Garnich | Localized fiber waviness and implications for failure in unidirectional composites[END_REF] 

  requirements. Stiffness variations through changes in thickness are accomplished by dropping plies along the length to match with the varying in plane and bending loads, Fig 1.10.

Figure 1 .

 1 Figure 1.10: Example of ply drops[START_REF] Potter | Variability, fibre waviness and misalignment in the determination of the properties of composite materials and structures[END_REF] 

Figure 1 .

 1 Figure 1.11: Real examples of ply drops[START_REF] Potter | Variability, fibre waviness and misalignment in the determination of the properties of composite materials and structures[END_REF] 

Figure 1 .

 1 Figure 1.12: Comparison between common solution and chamfering[START_REF] Khan | Suppression of delamination at ply drops in tapered composites by ply chamfering[END_REF] 

  ..y(tn a ) u(t -1) ..... u(tn b )} and the sought-after parameters are θ θ θ = {a 1 a 2 ..... a na b 1 ..... b n b } T . For t ∈ [0, N ], the input signal [u(1), u(2), ..., u(N )] and the outputs [y(1

  A A Aθ θ θ(r L )b b b 2 2 and contemporaneously a moderate value of the side constraint C C Cθ θ θ(r L )d d d 2 2 . The balance of the two terms is given by the size of the regularisation parameter r L : if too small, the problem is too close to the original ill-posed one, while, if too big, the solved problem has little connection to the original one. To choose an optimum value of the parameter, r opt L , this technique proposes to plot A A Aθ θ θ(r L )b b b 2 2 vs. C C Cθ θ θ(r L )d d d 2 2 for various values of r L . The curve obtained presents a corner near r opt L , see Fig. 1.13, from which the name L-curve derives.

Figure 1 .

 1 Figure 1.13: Example of L-curve given in[START_REF] Ahmadian | Regularisation methods for finite element model updating[END_REF] 

Figure 1 .

 1 Figure 1.14: Studied domain occupying volume Ω of boundary ∂Ω

Figure 1 .

 1 Figure 1.15: Reference structure for the inverse problem

Figure 1 .

 1 Figure 1.16: Post-bifurcation diagram [Bažant and Cedolin 2010] from Koiter imperfection theory

Figure 1 .

 1 Figure1.17: Load-deflection post-buckling diagrams. Case I[START_REF] Hutchinson | Postbuckling theory[END_REF] 

Figure 1 .

 1 Figure 1.18: Load-deflection post-buckling diagrams. Case II[START_REF] Hutchinson | Postbuckling theory[END_REF] 

Figure 1 .

 1 Figure 1.19: Load-deflection post-buckling diagrams. Case III[START_REF] Hutchinson | Postbuckling theory[END_REF] 

Figure 1 .

 1 Figure 1.21: Behaviour of perfect and imperfect panels in compression (example of panel P12 [Kriegesmann et al. 2012])

Figure 1 .

 1 Figure 1.22: Perfect pin-ended beam in compression

Figure 1 .

 1 Figure 1.23: Pin-ended beam with imperfection in compression

Figure 1 .

 1 Figure 1.24: Load-displacement diagram for perfect and imperfect beams

Figure 1 .

 1 Figure 1.25: Load-displacement diagram for perfect and imperfect beams

  Figure 1.26: Load-deflection data and Southwell plots for uniaxially compressed simply supported plates[START_REF] Spencer | Critique of southwell plots with proposals for alternative methods[END_REF] 

  1.3.4. 

Figure 1 .

 1 Figure 1.27: "Southwell plot" for data in Fig. 1.3.4

Figure 1 .

 1 Figure 1.28: 3D Targets: open-book

Figure 2 . 1 :

 21 Figure 2.1: Schema of the MCRE procedureThe defect characterization is tackled by two subsequent steps. The first allow to treat the problem for a fixed value of the parameters (set, at the beginning of the procedure, at the nominal value of the healthy material), parameters that are sought-after in the successive one. The first, the localization step, consists first of all in computing the nodal values of the kinematically admissibile displacement field. This consists in solving the constrained minimization given by Eqs.(2.26) and(2.27). This allows the knowledge of the error value. Then,the error values on each element of the FE model are employed to determine the position of the flaws. The mathematical formulation for obtaining the displacement fields and the error values is detailed in Section 2.3.3.Only the area localized at this step are treated in the parameter updating step. This consists in a correction of the parameter using a gradient steepest descent method, employing an opportunely chosen cost function, as will be detailed in Section 2.3.4.An equivalent strategy would be to correct all the material parameters of the model. The choice here made, to limit the correction only to the defective areas and thus to reduce the number of parameters to identify, diminish the ill-posedness of the identification problem and ensure the solvability. Using two steps and reducing the number of sought-after parameters has strong regularizing effects and ease the solution of the inverse problem.The present section is introduced to once again present the approach as a whole and stress the modularity and the regularization properties given by the introduction of the two separate steps. Now, the problem formulation will be presented in detail for each step.

Figure 2 . 2 :

 22 Figure 2.2: Schematic presentation of the distinction between defects To make it visually clear, let us refer to Fig. 2.2. Element 1 is isolated and constitutes therefore a flaw by himself, defect 1. The other elements, sharing at least one node, constitute the second flaw, defect 2.

  (a) Regions composing the FE Model (b) Mesh of the FE Model

Figure 2 . 3 :

 23 Figure 2.3: Specimen composed of 50 assembled rectangular regions and meshing

Figure 2 . 6 :

 26 Figure 2.6: Pseudo-experimental load deflection curves

Figure 2

 2 Figure 2.7: MAC K and MAC Σ 0 for the choice of the mode

Figure 2 . 8 :

 28 Figure2.8: GDII for the choice of the mode Figure2.8 displays the evolution of this indicator. It appears, for the small geometric defect case, in line with the MAC K and the MAC Σ 0 curves, that this indicator increases during the first step of the loading. In this case instead, it decreases afterwards. For the big amplitude geometric defect case, it decreases continuously. For this reason, no very precise tendency can be drawn. It has to be stated that this indicators are not available in real experiments, as the eigenvalue deformed modal shape U e is not known.To conclude this analysis, it has to be underlined that none of these techniques give unique and ready-to -use results, apart from highlighting that the initial steps of the tests are the most appropriate ones. In the following, when non-linear pseudo-measurements are employed, the deformed shape corresponding to the first loading steps, in the same linear range of applicability of the Southwell plot, is taken as modal response of the specimen for the identification procedure. However the question of the choice of the "best" deflected shape remains largely open.
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 29 Figure 2.9: Error density map at the beginning of the procedure
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Fig. 2 .

 2 10, the error distribution at the beginning of Step 3, where the localization of defect 1 starts, is displayed for the two methods. All error density maps are normalized with respect to the maximum local value at Step 0.

Figure 2 .

 2 Figure 2.10: Error density maps at Step 3, after correction of the central defect No significant difference is found between the two, Figs. 2.10a and b. In fact, as output of Step 2, defect 2 is completely localized for both methods A and B. The updated parameter for Method B is estimated with an error of 2%, whereas for Method A p def 2 1 is perfectly evaluated. This difference of estimation of p def 2 1 was expected to be visible on the error density maps at Step 3, 2.10. Instead, the error of 2% in estimation of method A does not provoke any discernible error perturbation, as the two maps do not show any visible discrepancy, cfr. Fig. 2.10a with Fig. 2.10b. The error maps 2.10 perfectly justify the defect identification of Step 3. The local error value overpasses the threshold on

Figure 2 .

 2 Figure 2.11: Residual error density map at the end of the iterative procedure (Step 7)

  Study of the influence of of the weighting term by means of the L-curve • Study of the influence of the choice of the threshold e th • Influence of the boundary conditions: example of fixed ends case • Influence of the defect intensity • Influence of an error in the estimation of P cr • Conclusion 3.2 Influence of the weighting term r 1-r

1 = 1

 11 and lacking geometric defect.

Figure 3 . 1 :

 31 Figure 3.1: Optimal r values for non linear measurements

Figure 3 . 2 :

 32 Figure 3.2: Initial error map In Fig. 3.2, the initial error density map is plotted. The colorbar reports the e th values, thus can be used as visual verification for understanding which elements are localized following the threshold choice. A gap between the element with a high local error density and the others is visible: the majority of the elements has a normalized error value below 0.4, while just the elements belonging to the central defects overpass this value.It can easily be stated that, for every e th < 0.4 a wrong localization will take place. A non negligible number of healthy elements are detected in the vicinity of defect 2 mainly. As those elements will be corrected globally and as the extension of the defect cannot be reduced, those values of the threshold will lead to a wrong correction of the model. Table3.2 presents the identification results for values of e th in the interval [0.1, 0.9]. Table3.2 shows for each threshold value the initial localization and the identification results: number of iterations needed, flaws position and intensity and the final residual global error after correction.

Figure 3 . 3 :

 33 Figure 3.3: Initial error map Again, three examples of buckling based CRE are shown in Tables3.5, for the same threshold as for the simply supported case in Table3.3.Considering Table3.5 for e th = 0.5, it seems that the identification of defect 1 is harder. From the beginning, an additional element in the vicinity (towards the center) is localized even if it is in reality non-defective.If the results in Table are confronted to the ones of the simply supported case, Table3.2, it is noticeable that even if the threshold required is higher, e ss th > 0.5 for simple support while e f e th > 0.7 for fixed ends, the parameters p

Figure 3

 3 Figure 3.4: Error density map of Step 3

  Fig. 4.1: crookedness of amplitude 5% and 50% of the thickness. The corresponding load-deflection curves are shown in Fig. 4.2. The post-processing of compression results have already been treated in Section 2.4.2. Here again, the P cr is computed via the Southwell plot and the deformed shape relative to a load of 20 N is used as measurements.

FigureFigure 4 . 2 :

 42 Figure 4.1: Material defects' configuration

4. 2 . 1

 21 Influence of the weighting factor r 1-r : case of 5% geometrical defectTo decide for the optimal value of r, the technique of the L-curve explained in Section ?? is here used. It consists in finding the value of r for which the model error and the measurement error give the same contribution, that is finding the intercept of the CRE(r) and M E(r) curve on a CRE and ME vs. r plot. Equivalently, the optimal r can be obtained from the L-curve by selecting the value of the weighting term corresponding to the point on the CRE vs. M E curve which has the minimal distance from the origin. In addition to the CRE, ME vs. r plot, for all cases also the L-curve is plotted.The variation of model and measurement errors with r are computed and plotted, together with the L-curve, in Fig.??a and b, for the case of a known 5% geometric defect (a) CRE vs ME (b) CRE and ME vs. r

Figure 4 . 3 :

 43 Figure 4.3: Optimal r values for non linear measurements

  In this section, the identification procedure is shown for nine values of e th in the interval [0.1, 0.9]. Before proceeding with the identification results, the initial density of error is shown in Fig.4.4.

Figure 4 . 4 :

 44 Figure 4.4: Initial error map

1 .

 1 It consists in a parametric minimization, where the parameter are manually forced to range the interval [0.1, 1] to find the minimum of the error surface. and plot the error surfaces. For comparison, also the values relative to the eigenvalue solution are plotted. What is obtained are the surfaces of Fig. 4.6. The first, Fig. 4.6a, is relative to the eigenvalue measurements: the minimum of the global error indicator is encountered for p def 1,2 1 = 0.5, the reference value. For non-linear data, instead, the minimum of the global MCRE correspond to values of the parameters which are not the reference ones, the minimum being attained for p def 1 1 = 0.1 and p def 2 1 = 0.1, see the surface of Fig. 4.6b.
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 45 Figure 4.5: Error maps after correction for the two minima

Figure 4 1 = p def 2 1

 412 Figure 4.6: Global error indicator surfaces

  Figure 4.7: Global error indicator curve

Figure 4 . 8 :

 48 Figure 4.8: Initial error density map for buckling

Figure 4 . 9 :

 49 Figure 4.9: Final error density map for a large known geometric defect

Figure 4 .

 4 Figure 4.10: Initial error map for a small geometric defect, z 0 /t = 0.05

  Fig. 4.11a, justifies the finding as the maxima corresponds to the elements of defect 1 and the adjacent ones. The final error density map in Fig.4.11b shows an almost uniform error distribution, which is quite high compared to the eigenvalue case (where the residual error values in presence of a geometric defect range around 10 -2 of the initial maximum against the 10 -1 of the present non-linear case).

Figure 4

 4 Figure 4.11: Error maps at different stages of correction for a small geometric defect, z 0 /t = 0.05

Figure 4 .

 4 Figure 4.12: Initial error map for buckling

FigureFigure 5 . 2 :

 52 Figure 5.1: Material defects' configuration

Figure 5 . 3 :

 53 Figure 5.3: Non-linear results of the pseudo-experiments for the static loading

Figure 5

 5 Figure 5.4: Non-linear results of the pseudo-experiment for a tension test

Figure 5

 5 Figure 5.5: Initial error density map for traction

Figure 5 . 6 :

 56 Figure 5.6: Final error density map for traction

Figure 5

 5 Figure 5.7: Initial error map for traction

Figure 5

 5 Figure 5.9: Initial error map for traction

Figure 5

 5 Figure 5.10: Non-linear results of the pseudo-experiment for a three-points-bending test

Figure 5

 5 Figure 5.11: Initial error density map for bending

Figure 5

 5 Figure 5.13: Initial error map for bending justifies the results of identification of Step 1 in Table5.13 Bending, where only half of defect 1 is localized. The minimum of the global error indicator is observed at Step 3. The first localized defect is perfectly determined in shape and dimensions but only a part of the other (far from the borders) is detected. The intensity estimate is extremely accurate, with no inaccuracy for defect 1 and just a 0.4% imprecision for the second flaw.The error map after correction, Fig.5.14, validates the findings, displaying a peak in correspondence of the elements of defect 2 lacking correction. Concurrently, an high value of the distribution on both ends is found, which overpasses the threshold of 0.7. The error localization for Step 4 in Table5.13 Bending follows, where the two defects are overestimated in shape and underestimated in intensity, resulting in a higher value of the global error indicator compared to the previous step.

Figure 5 .

 5 Figure 5.14: Final error maps for bending

Figure 5

 5 Figure 5.15: Initial error map for bending

Figure 5 .

 5 Figure 5.16: Initial error density map for vibrations minimum (and the convergence) occurs at Step 4. The two defects are perfectly corrected in shape, an error of 0.8% and 2% respectively is made in the intensity estimation. Since the update is less accurate for pdef21

Figure 5

 5 Figure 5.18: Initial error map for vibrations

Figure 5 .

 5 Figure 5.19: Final error maps for vibrations

Figure 5

 5 Figure 5.20: Initial error map for vibrations

  error in the overall alignment of a ply In-plane fibre waviness: local undulation of a group of fibres in a ply Out-of-plane fibre waviness: local coherent undulation of multiple plies through the thickness Defect in the interface region Ply drops: interruption of one or multiple plies for design reasons manufacturing (a rubber joint preventing the resin from flowing, cfr. the figure in row 3 of Table.6.2) dropped the level of porosity of the plates manufactured at CETIM from 8-15% to a level below 2%.
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 61 Figure 6.1: Geometric defect, initial crookedness of the specimens

  Figure 6.2: Tomographic observations

  Figure 6.4: Experimental set-up

Figure 6 Figure 6

 66 Figure 6.5: Load-Deflection curves for defective and healthy specimens

  Side where the defect is visible

Figure 6

 6 Figure 6.7: Defective specimenThe face used to reconstruct the displacement fields through StereoDIC is covered by black and white speckles, Fig.6.7a. In all the following images, the outer zones, not visible during the test, are deliberately neglected.The surface used to reconstruct the displacement fields through Stereo Correlation is covered by black and white speckles, Fig.6.7a. The other face, the one where the defect is clear, is intentionally left natural so that the flaw is completely visible, Fig.6.7b. Focusing on the bare surface, some flaws can be highlighted. To help the description, a schematic image of the specimen is presented in Fig.6.8Fibre waviness affects almost entirely the left part of the specimen, from the border to the center. Two different waves are discernible: one on the left, of smaller wavelength, and a central one, affecting a wider area. In addition, a zone with poor surface quality is highlighted near the border on the right hand side, as well as in the wavy area.Moreover, some through the thickness informations are included. Concerning the left side, it seems that the ply interested by fibre undulation are affected by a higher level of porosity, together with an out-of-plane undulation. Evidence of the occurrence of an out-of-plane ply waviness in correspondence with in-plane waviness is given by tomographic imaging, cfr. Fig.6.2b, which unluckily does not refer

Figure 6

 6 Figure 6.9: Machine and LVDT data: compressive test of a defective specimen

  Figure 6.10: Southwell Plot

Figure 6

 6 Figure 6.13: Comparison between the LVDT and DIC results

Figure 6

 6 Figure 6.15: Colour maps for noise evaluation

Figure 6 .

 6 Figure 6.16: Identification map over the specimen surface

Figure 6 .

 6 Figure 6.17: Initial and final error maps

  Figure 6.20: Residual error maps

Figure 6 .

 6 Figure 6.21: Error map after correction for a 6 • ply misalignment

  Fig. A.1 plots the variation of Young's Modulus, blue curve, with the angle of orientation of the fibre, presented in the form of an angular plot. It shows that the value of the Young's Modulus decrease fast for small misalignment angles.

Figure A. 1 :

 1 Figure A.1: Change in modulus with a angular ply orientation

  ν ν ν t Pν ν ν = n i=1 w i (y iâ -bx i ) 2 with ν j = y j -(â + bx j ) = y jŷj (B.1)where ν i are the residuals or the difference between the experimental value y i and the predicted value ŷi of the line correspondent to x i . The estimated parameters of the regression line are given by the relationx 2 i -( n i=1 w i x i ) 2 (B.

Table 1

 1 Identification dans le cas des mesures obtenues par simulation d'un problème aux valeurs propres On peut en conclure que l'erreur de relation constitutive basée sur le flambage linéarisé fonctionne parfaitement dans le cas idéal où une solution synthétique basée sur cette théorie est utilisée. Il montre également que l'algorithme fonctionne. Par conséquent, après cette première validation, des cas plus réalistes ont été testés. 2a. Cas simulée d'une éprouvette ayant une réponse non-linéaire associés à la présence de défauts géométriques.

Tableau 2

 2 Résultats d'identification dans des conditions presque réelles Le Tableau 2 montre les résultats d'identification pour une petite imperfection initiale. Il apparaît clairement que l'identification est possible et que la localisation (position et dimension) est précise. Par contre l'intensité est fortement surestimée : le valeur de référence du défauts matériels est p=0.5, tandis qu'ici l'algorithme tend à des valeurs inférieures du Module d'Young, environ le 30% de la valeur nominale. Dans le cas d'une imperfection initiale de grande amplitude, l'identification s'avère impossible avec la méthode simplifiée proposée comme le montre la carte d'erreur présentée figure 2.

Figure 2

 2 Figure 2 Densité de l'erreur locale sur l'éprouvette avec imperfection initiale de 50% de l'épaisseur

2b.

  Comparaison avec d'autre type d'essais, mesures non-linéaires obtenues par simulation d'essais de traction, de flexion et vibratoires La méthode de l'erreur en relation de comportement modifiée peut être déclinée, avec différents degrés de complexité, pour n'importe quel cas type d'essai. Aussi avons nous cherché à comparer les résultats obtenus pour différent type de chargement tests statiques de traction ou de flexion et essais vibratoires. Une comparaison de l'identification des défauts est proposée pour l'éprouvette de la Figure 1 avec défaut géométrique (imperfection initiale de 5% et de 50% de l'épaisseur). Dans le cas d'un petit défaut géométrique le Tableau 3 montre la comparaison des résultats d'identification pour les quatre cas de chargement: tension, flexion trois points, et flambage.Tableau 3 Comparaison des résultats d'identification dans le cas d'un petit défaut géométriqueLa position et les dimensions des défauts sont bien estimées pour tous les cas de chargement. L'estimation de l'intensité est précise, sauf pour le flambage, où la sensibilité aux défauts géométriques empêche une estimation précise.Dans le cas de grands défauts géométriques aucune des approches ne donnent de résultats satisfaisant comme le montre, pour les quatre types de chargement, la carte de densité d'erreur.

Tableau 4

 4 Comparaison des la première étape d'identification dans le cas d'un grand défaut géométrique

Figure 3

 3 Figure 3 Eprouvettes réelles La charge critique est déterminée à partir des données expérimentales de déflexion et de charge grâce à la courbe de Southwell. La déformée est obtenue à partir de la reconstruction du champ de déplacement obtenu à partir de stéréo-corrélation d'image numérique (StereoDIC).

Figure 4

 4 Figure 4 Donnée expérimentales et post-traitement (exemple d'une éprouvette avec défaut) Résultat d'identification pour une éprouvette avec défaut Dans ce cas, il est possible de vérifier visuellement la qualité de l'identification, étant donné que l'ondulation des fibres affecte la surface.

Figure 5

 5 Figure 5 Identification pour une éprouvette avec défaut

Figure 6

 6 Figure 6 Identification pour une éprouvette sans défaut

Titre:

  Vers la localisation et la caractérisation des défauts par la méthode de l'erreur en relation de comportement modifiée : exploitation des essais de flambage et comparaison avec d'autres types d'essais. Mots clefs : Problèmes inverses, Erreur en Relation de Comportement Modifiée, Flambage, Défauts Résumé : Des nombreuses industries composites cherchent à étendre le champ d'application des composites structuraux à fibres continues pour d'autre marché que l'aéronautique. Etre compétitif sur ces marchés potentiels, tel l'automobile, implique de se conformer à des contraintes différentes; de coût, de temps de mise en oeuvre, de trace écologique. Dans ce cadre les résines thermodurcissables sont remplacées par des résines thermoplastiques permettant des temps de cycle cours. Ces temps de cycle cours favorisent l'apparition de défauts potentiellement important et un question récurrente dans ce cadre est: Comment traiter des défauts? Un des aspects de cette question est celui de la détection et de la caractérisation des défauts. L'approche actuelle est celle des techniques non destructives. Celles ci sont longues, coûteuses et complexes et apparaissent donc mal adaptées aux contraintes de coûts et de temps caractéristique de la plupart des produits grands diffusions. Ce problème a motivé ce travail de thèse: est-il possible de détecter et d'estimer l'effet des défauts sans avoir recours à des techniques d'essais non destructifs complexes et fastidieuses? Une réponse acceptable pourrait conduire à moins de précision, mais devrait fournir des informations quantitatives suffisantes pour les applications. La voie étudiée dans cette thèse est celle de l'exploitation par approches inverse d'essais mécaniques statiques suivis par mesure de champs par corrélation d'images numériques. Seuls la localisation et la caractérisation de grands défauts est visée. Des essais de flambement ont été choisis en raison de leur sensibilité supposée aux défauts. Parmi les approches inverses, nous nous sommes concentrés sur la méthode de l'erreur en relation de comportement modifiée (MCRE). En effet cette méthode a, par le passé, montrée de très bonnes propriétés de localisation dans le cas d'essais de vibrations couvrant plusieurs fréquences propres. Les intérêts et les limites de la méthodologie sont discutés sur la base d'essais numériques et l'essai flambage est comparé aux essais de traction, flexion ou de vibration. Il est montré que l'exploitation d'essais de flambage par l'approche proposée est efficace au moins dans le cas d'imperfections géométriques modérées. Finalement la méthode est exploitée dans le cas d'essais expérimentaux à la fois pour un spécimen presque parfait et pour une pièce défectueuse, où une zone d'ondulation de la fibre est introduite. Les résultats obtenus sont encourageants.

  

  

  

  

  

Table 1 .

 1 1: Void dimensions as measured by[START_REF] Hsu | A morphological study of porosity defects in graphite-epoxy composites[END_REF] 

		Length	Width	Height
	Values	0.1 -several mm 10 µm -1 mm 5 -100 µm
	Average	0.3 -1 mm	30 -100 µm	8 -20 µm

Table 1 . 2 :

 12 Comparison between well and ill-posed problems

		Reference problems	Inverse problems
	Knowns	Geometry	Geometry
		Boundary and loading conditions Force resultant
		Material parameters	Stress/Strain/Displacement field
	Unknowns Stress/Strain/Displacement field Material/Geometric Parameters
	1.2.7 Techniques for solving inverse problems for material parameters identifica-
	tion		

Table 2 . 1 :

 21 Fundamentals of the constitutive relation error formulation

		Reliable	Non reliable
		• Elasticity	Parameters of the Hooke's
	Theoretical		tensor
		• Equilibrium	K K K(p p p)
		Due to Southwell Plot:	
		• Pcr	Measurements of the modal
	Experimental	• Initial shape Ω 0 (configuration without	shape ũ ũ ũ
		geometric defects)	
	II Non-reliable equations (Theoretical Non-reliable)	
	III Reliable experimental informations (Experimental Reliable)
	IV Non-reliable experimental informations (Experimental Non-reliable)

  2.25) which is the discrete form of the linearised buckling equilibrium of Eq. (2.15). The discrete form of the MCRE problem of Eqs. (2.21) and (2.22) is:

Table 2 .

 2 

							3: Southwell Plot results
				Small geometric defect				Big geometric defect
			•10 -2						•10 -2
	deflection/load w P (mm/N)	0 1 2 3	0	2 P cr = 325.3N 4 z 0 = 0.173mm	6 Best-fit straight line 8 10 experimental data	P (mm/N) deflection/load w	0 1 2 3	0	2 P cr = 326.3N 4 z 0 = 1.061mm	6 Best-fit straight line 8 10 experimental data
					deflection w( L 2 ) (mm)					deflection w( L 2 ) (mm)
		eigenvalue non-linear	error %		eigenvalue non-linear	error %
	P cr			326.8	325.3	0.45%	P cr			326.8	326.3	0.15%
	z 0			0.1	0.173	73%	z 0			1	1.061	6%
						MAC Σ 0			

Table 2 .

 2 

			Method A				Method B
	Iteration	Extent and p def 1,2	GEI	Iteration	Extent and p def 1,2	GEI
	Step 0			1	Step 0		1
		1	1			1	1
	Step 1			0,676	Step 1		0,671
		1	0.531			1	0.500
	Step 2			0,371	Step 2		0,370
		1	0.500			1	0.490
	Step 3			0,134	Step 3		0,134
		0.531	0.500			0.531	0.490
	Step 4			0,103	Step 4		0,056
		0.594	0.500			0.502	0.490
	Step 5			0,103	Step 5		0,023
		0.594	0.500			0.502	0.490
	Step 6			0,103	Step 6		0,023
		0.594	0.500			0.502	0.490
	Reference				Reference	
		0.5	0.5			0.5	0.5

4: Buckling based CRE -Comparison between Methods A and B

Table 3 .

 3 

	Weighting term	Step	Final localization	p def 1 1	p def 2 1	MCRE
	r = 0.33	5		0.509	0.482	0.022
	r = 0.5	5		0.509	0.496	0.014

1: Effects of the choice of r optimal value on the identification

Table 3 . 2 :

 32 Influence of the choice of e th on identification for a simply supported specimen

		Beginning	Identification results		
	e th	Initial localization	Steps nb. Final localization	p def 1 1	p def 2 1	MCRE
	0.1		1	0.911	0.733	0.573
	0.2		1	0.820	0.644	0.438
	0.3		2	0.625	0.592	0.246
	0.4		2	0.578	0.531	0.240
	0.5		3	0.516	0.500	0.015
	0.6		4	0.513	0.501	0.013
	0.7		5	0.502	0.490	0.023
	0.8		6	0.513	0.497	0.014
	0.9		10	0.512	0.497	0.013

Table 3 . 3 :

 33 Identification for e th = 0.1, 0.5 and 0.9

		Threshold Effect e th =0.1
	Iteration	Extent and p def 1,2	GEI
	Step 0			1.000
		1.000	1.000
	Step 1			0.573
		0.911	0.733
	Step 2			0.643
		0.934	0.766
	Step 3			0.657
		0.934	0.775
	Reference		
		0.5	0.5
		Threshold Effect e th =0.5
	Iteration	Extent and p def 1,2	GEI
	Step 0			1.000
		1.000	1.000
	Step 1			0.371
		1.000	0.500
	Step 2			0.134
		0.531	0.500
	Step 3			0.015
		0.516	0.500
	Step 4			0.015
		0.516	0.500
	Step 5			0.015
		0.516	0.500
	Step 6			0.015
		0.516	0.500
	Reference		
		0.5	0.5

Table 3 .

 3 4: Influence of the choice of e th on identification for a clamped specimen

		Beginning	Identification results		
	e th	Initial localization	Step Final localization	p def 1 1	p def 2 1	MCRE
	0.1		1	0.835 -0.943 0.793 -0.835 0.632
	0.2		1	0.681	0.531	0.446
	0.3		2	0.856	0.525	0.367
	0.4		3	0.795	0.503	0.267
	0.5		5	0.644	0.494	0.120
	0.6		4	0.631	0.500	0.108
	0.7		5	0.496	0.502	0.006
	0.8		6	0.501	0.502	0.004
	0.9		8	0.500	0.503	0.006

be the same for [0.4, 0.6] and [0.7, 0.9]

Table 3 .

 3 5: Influence of fixed ends for e th = 0.1 Boundary Effect: Fixed ends e th =0.1 Iteration Extent and p def 1,2

	GEI

Table 3 .

 3 6: Influence of the intensity of the defects p

	def 1,2

Table 3 .

 3 7: Comparison of the effects of P cr errors

		Error in P cr estimation of 0.5%
	Iteration	Extent and p def 1,2	GEI
	Step 0			1.000
		1.000	1.000
	Step 1			0.671
		1.000	0.500
	Step 2			0.370
		1.000	0.484
	Step 3			0.136
		0.531	0.484
	Step 4			0.059
		0.500	0.484
	Step 5			0.028
		0.496	0.484
	Step 6			0.028
		0.496	0.484
	Reference		
		0.5	0.5
		Error in P cr estimation of 1%
	Iteration	Extent and p def 1,2	GEI
	Step 0			1.000
		1.000	1.000
	Step 1			0.671
		1.000	0.484
	Step 2			0.371
		1.000	0.480
	Step 3			0.139
		0.531	0.480
	Step 4			0.063
		0.492	0.480
	Step 5			0.035
		0.490	0.480
	Step 6			0.209
		0.490	0.555
	Step 7			0.175
		0.490	0.505
	Reference		
		0.5	0.5

Table 3 .

 3 8: Errors in the estimation of the intensity of defect 2 for different errors in the P cr

Table 4 . 1 :

 41 Effects of the choice of r "optimal" value on the identification Threshold Effect e th =0.8 Iteration Extent and p def 1,2 Influence of the threshold: case of a 5% geometrical defect

	GEI

Table 4 . 2 :

 42 Effects of the choice of e th on the identification

		Localization	Identification results		
	e th	First localization map	Step Final localization	p def 1 1	p def 2 1	GEI
	0.1		1	0.61	0.61	0.783
	0.2		1	0.53	0.53	0.758
	0.3		1	0.19	0.79	0.832
	0.4		1	0.67	0.03	0.808
	0.5		1	0.49	0.04	0.790
	0.6		2	0.34	0.25	0.769
	0.7		3	0.37	0.03	0.802
	0.8		3	0.09	0.12	0.760
	0.9		6	0.48	0.13	0.789

Table 4 . 3

 43 

	GEI

: Complete identification procedure for e th = 0.9 Threshold Effect e th =0.9 Iteration Extent and p def 1,2 related to employing non-linear measurements in the framework of the linearised theory, it has been decided to compute the global error indicator for different values of p def 1 1 and p def 2

Table 4

 4 

			Buckling
	Iteration	Extent and p def 1 ,2	GEI
	Step 0			1
		1	1
	Step 1			0.926
		1.	0.375
	Step 2			0.855
		0.483	0.868
	Step 3			0.809
		0.245	0.310
	Step 4			0.815
		0.371	0.483
	Step 5			0.815
		0.371	0.483
	Reference		
		0.5	0.5

.4: Identification results for buckling, case a of known initial geometry

Table 4 .

 4 5: Complete identification procedure for a small geometric defect, z 0 /t = 0.05

		Geometry Effect e th =0.9
	Iteration	Extent and p def 1,2	GEI
	Step 0			1.000
		1.000	1.000
	Step 1			0.976
		1.000	0.688
	Step 2			0.946
		0.797	0.531
	Step 3			0.924
		0.658	0.599
	Step 4			0.896
		0.605	0.495
	Step 5			0.866
		0.573	0.391
	Step 6			0.848
		0.488	0.391
	Step 7			0.822
		0.417	0.287
	Step 8			0.805
		0.407	0.287
	Step 9			0.786
		0.381	0.203
	end of Step 7, see		

Table 4 .

 4 6: Initial localization for a big geometric defect, z 0 /t = 0.5

		Localization
	e th	First localization map
	0.1	
	0.2	
	0.3	
	0.4	
	0.5	
	0.6	
	0.7	
	0.8	
	0.9	

Table 4

 4 

	GEI

.7: Results of the procedure for a big geometric defect, z 0 /t = 0.5

Geometry Effect e th =0.9 Iteration Extent and p def 1,2

Table 5 . 1 :

 51 Identification results for traction, case a of known initial geometry

			Traction
	Iteration	Extent and p def 1 ,2	MCRE
	Step 0			1
		1	1
	Step 1			0.588
		1	0.476
	Step 2			0.418
		0.539	0.476
	Step 3			0.039
		0.523	0.494
	Step 4			0.039
		0.523	0.494
	Step 5			0.039
		0.523	0.494
	Reference		
		0.5	0.5

Table 5 . 2 :

 52 Identification results for traction, case a of an unknown small geometric defect

			Traction
	Iteration	Extent and p def 1 ,2	MCRE
	Step 0			1
		1	1
	Step 1			0.697
		1	0.4375
	Step 2			0.401
		0.5	0.4375
	Step 3			0.326
		0.521	0.501
	Step 4			0.326
		0.521	0.501
	Step 5			0.326
		0.521	0.501
	Reference		
		0.5	0.5

Table 5 . 3 :

 53 Identification results for traction, case a of an unknown big geometric defect

			Traction
	Iteration	Extent and p def 1 ,2	MCRE
	Step 0			1
		1	1
	Step 1			0.782
		0.433	0.437
	Step 2			0.621
		0.158	.28 -.42
	Step 3			0.459
		.24 -.83	.55 -.24
	Step 4			0.331
		0.236	0.437
	Step 5			0.437
		0.236	0.236
	Reference		
		0.5	0.5

Table 5 .

 5 

			Bending
	Iteration	Extent and p def 1 ,2	MCRE
	Step 0			1
		1	1
	Step 1			0.684
		1	0.539
	Step 2			0.433
		1	0.499
	Step 3			0.265
		0.516	0.499
	Step 4			0.725
		0.758	0.699
	Step 5			0.725
		0.758	0.699
	Reference		
		0.5	0.5

4: Identification results for bending, case a of known initial geometry

Table 5 .

 5 5: Identification results for bending, case a of an unknown small geometric defect

			Bending
	Iteration	Extent and p def 1 ,2	MCRE
	Step 0			1
		1	1
	Step 1			0.794
		1	0.547
	Step 2			0.654
		1	0.498
	Step 3			0.579
		0.5	0.498
	Step 4			0.779
		0.785	0.811
	Step 5			0.646
		0.785	0.573
	Reference		
		0.5	0.5

Table 5 .

 5 6: Identification results for bending, case a of an unknown big geometric defect

			Bending
	Iteration	Extent and p def 1 ,2	MCRE
	Step 0			1
		1	1
	Step 1			0.826
		0.441	0.375
	Step 2			0.818
		0.441	0.259
	Step 3			0.818
		0.441	0.259
	Step 4			0.818
		0.441	0.259
	Step 5			0.818
		0.441	0.259
	Reference		
		0.5	0.5

Table 5 .

 5 7: Identification results for vibrations, case a of known initial geometry

			Vibration
	Iteration	Extent and p def 1 ,2	MCRE
	Step 0			1
		1	1
	Step 1			0.678
		1	0.531
	Step 2			0.382
		1	0.490
	Step 3			0.137
		0.531	0.490
	Step 4			0.033
		0.504	0.490
	Step 5			0.033
		0.504	0.490
	Reference		
		0.5	0.5

Table 5 .

 5 8: Identification results for vibrations, case a of an unknown small geometric defect

			Vibration
	Iteration	Extent and p def 1 ,2	MCRE
	Step 0			1
		1	1
	Step 1			0.759
		1	0.531
	Step 2			0.571
		1	0.488
	Step 3			0.466
		0.532	0.488
	Step 4			0.497
		0.799	0.488
	Step 5			0.430
		0.519	0.488
	Reference		
		0.5	0.5

Table 5 .

 5 9: Identification results for vibrations, case a of an unknown big geometric defect

			Vibration
	Iteration	Extent and p def 1 ,2	MCRE
	Step 0			1
		1	1
	Step 1			0.813
		0.708	0.379
	Step 2			0.755
		0.673	0.194
	Step 3			0.755
		0.673	0.194
	Step 4			0.755
		0.673	0.194
	Step 5			0.755
		0.673	0.194
	Reference		
		0.5	0.5

Table 5 .

 5 10: Comparison of the results for the four loading conditions, case of known initial geometry

			Traction				Bending
	Iteration	Extent and p def 1 ,2	MCRE	Iteration	Extent and p def 1 ,2	MCRE
	Step 0			1	Step 0		1
		1	1			1	1
	Step 1			0.588	Step 1		0.684
		1	0.476			1	0.539
	Step 2			0.418	Step 2		0.433
		0.539	0.476			1	0.499
	Step 3			0.039	Step 3		0.265
		0.523	0.494			0.516	0.499
	Step 4			0.039	Step 4		0.725
		0.523	0.494			0.758	0.699
	Step 5			0.039	Step 5		0.725
		0.523	0.494			0.758	0.699
	Reference				Reference	
		0.5	0.5			0.5	0.5
			Buckling				Vibration
	Iteration	Extent and p def 1 ,2	MCRE	Iteration	Extent and p def 1 ,2	MCRE
	Step 0			1	Step 0		1
		1	1			1	1
	Step 1			0.926	Step 1		0.678
		1.	0.375			1	0.531
	Step 2			0.855	Step 2		0.382
		0.483	0.868			1	0.490
	Step 3			0.809	Step 3		0.137
		0.245	0.310			0.531	0.490
	Step 4			0.815	Step 4		0.033
		0.371	0.483			0.504	0.490
	Step 5			0.815	Step 5		0.033
		0.371	0.483			0.504	0.490
	Reference				Reference	
		0.5	0.5			0.5	0.5

Table 5 .

 5 11: Comparison of the results for the four loading conditions: initial step

	Initial Error Map	First localization	First p def 1 1	First p def 2 1
	Traction		1	0.476
	Bending		1	0.539
	Buckling		1	0.375
	Vibration		1	0.531
	higher variability is encountered.			

Table 5 .

 5 12: Comparison of the results for the four loading conditions: final step Comparison of the MCRE results for case b, unknown small geometric defect

		Final localization	Updated p def 1 1	Updated p def 2 1	Residual Global Error	Error Map after correction
	Traction	Step 3	0.523	0.494	0.039
	Bending	Step 3	0.516	0.499	0.255
	Buckling	Step 4	0.371	0.483	0.815
	Vibration	Step 4	0.504	0.490	0.033
	5.4.2				

Table 5 .

 5 13: Comparison of the results for the four loading conditions, case of unknown initial geometry

			Traction				Bending
	Iteration	Extent and p def 1 ,2	MCRE	Iteration	Extent and p def 1 ,2	MCRE
	Step 0			1	Step 0		1
		1	1			1	1
	Step 1			0.697	Step 1		0.794
		1	0.4375			1	0.547
	Step 2			0.401	Step 2		0.654
		0.5	0.4375			1	0.498
	Step 3			0.326	Step 3		0.579
		0.521	0.501			0.5	0.498
	Step 4			0.326	Step 4		0.779
		0.521	0.501			0.785	0.811
	Step 5			0.326	Step 5		0.646
		0.521	0.501			0.785	0.573
	Reference				Reference	
		0.5	0.5			0.5	0.5
			Buckling			
	Iteration	Extent and p def 1 ,2	MCRE		
	Step 0			1			Vibration
		1	1		Iteration	Extent and p def 1 ,2	MCRE
	Step 1			0.902	Step 0		1
		0.592	0.375			1	1
	Step 2			0.822	Step 1		0.759
		0.307	0.375			1	0.531
	Step 3			0.852	Step 2		0.571
		0.538	0.531			1	0.488
	Step 4			0.785	Step 3		0.466
		0.461	0.234			0.532	0.488
	Step 5			0.778	Step 4		0.497
		0.453	0.202			0.799	0.488
	Step 6			0.768	Step 5		0.430
		0.390	0.202			0.519	0.488
	Step 7			1.266	Reference	
		0.501	0.202			0.5	0.5
	Reference					
		0.5	0.5			

Table 5 .

 5 14: Comparison of the results for the four loading conditions, initial step

	Initial Error Map	First localization	First p def 1 1	First p def 2 1
	Traction		1	0.4375
	Bending		1	0.547
	Buckling		0.592	0.375
	Vibration		1	0.531
	Table			

Table 5 .

 5 15: Comparison of the results for the four loading conditions, final step

		Final localization	Updated p def 1 1	Updated p def 2 1	Residual Global Error	Error Map after correction
	Traction	Step 3	0.521	0.501	0.326
	Bending	Step 3	0.5	0.498	0.579
	Buckling	Step 2	0.307	0.375	0.768
	Vibration	Step 5	0.519	0.488	0.430

Table 5 .

 5 16: Comparison of the results for the four loading conditions, case of unknown initial geometry

			Traction				Bending
	Iteration	Extent and p def 1 ,2	MCRE	Iteration	Extent and p def 1 ,2	MCRE
	Step 0			1	Step 0		1
		1	1			1	1
	Step 1			0.782	Step 1		0.826
		0.433	0.437			0.441	0.375
	Step 2			0.621	Step 2		0.818
		0.158	.28 -.42			0.441	0.259
	Step 3			0.459	Step 3		0.818
		.24 -.83	.55 -.24			0.441	0.259
	Step 4			0.331	Step 4		0.818
		0.236	0.437			0.441	0.259
	Step 5			0.437	Step 5		0.818
		0.236	0.236			0.441	0.259
	Reference				Reference	
		0.5	0.5			0.5	0.5
			Buckling				Vibration
	Iteration	Extent and p def 1 ,2	MCRE	Iteration	Extent and p def 1 ,2	MCRE
	Step 0			1	Step 0		1
		1	1			1	1
	Step 1			0.978	Step 1		0.813
		0.787	0.4375			0.708	0.379
	Step 2			0.976	Step 2		0.755
		0.742	0.265			0.673	0.194
	Step 3			0.976	Step 3		0.755
		0.742	0.265			0.673	0.194
	Step 4			0.976	Step 4		0.755
		0.742	0.265			0.673	0.194
	Step 5			0.976	Step 5		0.755
		0.742	0.265			0.673	0.194
	Reference				Reference	
		0.5	0.5			0.5	0.5

Table 5 .

 5 17: Comparison of the results for the four loading conditions, initial step

	Initial Error Map	First localization	First p def 1 1	First p def 2 1
	Traction		0.433	0.437
	Bending		0.441	0.375
	Buckling		0.787	0.4375
	Vibration		0.708	0.379
	correction carried on is incorrect.			

Table 6 . 1 :

 61 Table of harmful defects

Table 6 . 2 :

 62 Manufacturing of a composite plate 1.

Table 6

 6 

			.4: Southwell Plot results
		Specimen	P cr P cr P cr (N)	z 0 /t z 0 /t z 0 /t (%)
	1	healthy	7935	2.1%
	2	healthy	7976	1.55%
	3	defective	6170	3.41%
	4	defective	6083	4.15%

Table 6 .

 6 5: Effects of the deflected shape used as input on the identification: surfaces[START_REF]et l'intensité du défaut sont connues a priori, dans le cas réel aucune information précise n'est disponible sur le défaut[END_REF][4][5][6][7][8][9][10][11] 

		Defect intensity colorbar	
	Localization	Identification results (Step 8)
	Initial error map	Final updating E 11	MCRE
			Step
	3		8:
			0.822
			Step
	4		8:
			0.935
			Step
	5		8:
			0.926
			Step
	6		8:
			0.882

Table 6 .

 6 6: Results of the identification for surface 5

		Photo Number 5
	Iteration	Extent and p def 1,2

Table 6 .

 6 7: Results of the identification for the nominally perfect specimen

		Photo Number 10
	Iteration	Extent and p def 1,2

Table 6 .

 6 8: Influence of ply misalignment with e th = 0.7 Ply misorientation of 3 • Iteration Extent and p def 1,2

	GEI

Trois cas principaux ont été affrontés, présentant un niveau de difficulté croissant :1. Identification des défauts à partir des pseudo-mesures de flambage, en utilisant la solution aux valeurs propres, obtenues à l'aide du software éléments finis Cast3M.

.12: Colour maps of the displacement at successive instants during the experiment 6.6 Identification procedure for a nominally perfect specimen

In this section, the defect characterization procedure is shown for a nominally perfect specimen, to verify how the method behaves in the theoretical absence of defects. The healthy specimen 2, shown in Fig. 6.18, whose load-deflection curve and Southwell plot are shown in Fig. 6.6b, is considered.

The choice has fallen on this particular specimen as it is the one without any visible flaw and that present a smaller geometric defect, z 0 = 0.04 mm or 1.5% of the thickness. In Fig. 6.18, the specimen surface is presented.

Figure 6.18: Nominally perfect specimen

The post-processing of the experimental data is the one already detailed. As outputs are computed: the P cr = 7976 and the deformed shape correspondent to w ≃ 2• noise value, which is of the same order of magnitude as the previous case between -2 • 10 -3 and 7 • 10 -3 . This are used as inputs of the identification procedure detailed hereafter. Figure 6.19: Initial error map for specimen 2 Some comments can be made directly from the observation of the initial error map in Fig. 6.19. Indeed, the healthiness of the specimen is confirmed by the local error density: the local error is almost uniform on the whole surface of the specimen, except for a zone near the left end, where the procedure detects that a problem exists in the definition of the boundary conditions.

The majority of the elements are affected by a error density of 0.35 of the maximum error value, value which can be considered 'low' since a higher residual error is always present when employing non-linear measurements. Having fixed the threshold e th = 0.7, only the boundaries are detected. Following these consideration, it can be concluded that the specimen is free of material flaws and the procedure can be interrupted. It has been decided nevertheless to detail the identification procedure, which is shown in Table 6.7.

Evidence of what is noticed observing the initial error maps are found in steps 1 to 3 of Table 6.7. During these three updating steps, only elements on the left boundary are localized and corrected. Things change between steps 3 and 4. The error map governing the localization at Step 4 is shown in Fig. 6.20a. Before proceeding with the analysis of the error distribution, a comment is necessary. The localization is piloted by the parameter e th , defined as the ratio between the local error and the maximum local value at the same step. Meaning that, at each step an area is detected even if the error value is low.

This is what happens at Step 4, see Fig. 6.20a. The error density is uniform on the whole specimen, symptom of a lack of material defects (or that the existing ones have been perfectly corrected) and of the fact that only the residual error remains, deriving from wrong modelling, e.g. non-linear

Conclusions and perspectives

The main research objective in this thesis has been the use of inverse of inverse problem together with DIC measurements techniques for the localization and broad characterization of defects. Given the strong results we achieved, it seems to us that this ideas are worth pursuing in the future.

More specifically, the first decision made was to focus on buckling tests, for which we developed an extension to the MCRE. There are two reasons behind this choice. First, instability in compression is highly sensitive to defects and imperfections whose presence substantially changes the behaviour of the structure. In addition, buckling formally is an eigenvalue problem. This guarantees a more compact MCRE formulation with a lower computational cost than a fully geometrically non-linear problem.

As a matter of fact, these theoretical advantages of buckling tests also lead to their shortcomings. In fact, compressive behavior is strongly affected by the presence of defects. This means that the characterization of material defects is inevitably linked to geometric flaws (such as initial crookedness) that are impossible to avoid in real samples. The second issue concerns the impossibility of obtaining an eigenvalue solution during experiments, due to the non-linear behavior at instability.

The Southwell plot proved to be effective in overcoming these issues. This tool separates the effects of geometric and material defects, and thus provides an equivalent eigenvalue problem given non-linear experimental data. The critical load and experimental deflected shape obtained with the Southwell plot are then used as input to the modified constitutive relation error based on linearized buckling.

The method was tested for three different cases:

• eigenvalue simulation, directly providing P cr and the modal shape

• pseudo-experimental simulation, where the non linear data obtained from FE computation are post-processed via the Southwell plot

• real experiments, where the P cr is obtained thanks to the Southwell plot and the deformed shape is reconstructed using StereoDIC.

The eigenvalue simulation

The first case was used to validate the methods and measure the precision of the algorithm in reference conditions. Furthermore, some simplified situations were also considered to evaluate the role of algorithm parameters. For instance, the effects of defect intensity, the presence of a geometric defect, of a wrongly estimated P cr , of an overall ply misalignment were inspected together with the influence of the boundary conditions and the threshold e th for the localization. This study also provided some rule of thumbs to better understand the results of the following experiments.

The pseudo-experimental case

The pseudo-experimental case was used to test the technique in the presence of the reference specimen, and to further refine the algorithm parameters. An important result was that using non-linear measurements within linearized buckling does not degrade the localization performance. On the other hand, defect intensity tends to be over-estimated. This experiment also lead to an important consideration about the amplitude of geometric defects. The identification of material flaws turned out to be possible only if the geometric defect, taken in the form of an initial crookedness, has an amplitude below 10% of the thickness. This gives a practical 149 Appendix B

Statistical procedure used for computing the Southwell plot fitting line

The experimental data must clearly be arranged and organised in a load-deflection curve. In addition, a Southwell plot is also be produced to define a trend in the stability equilibrium; indeed this plot shows a significant amount of information: the slope of the curve is related to the value of the critical loadP cr , and the intercept of the y-axis is function of the initial imperfection z 0 .

To acquire these informations, the results need to be appropriately rearranged. As already stated, the w Pw plot follows a straight line (with the obvious deviation) in the central part and it diverges in the upper and lower ones. This suggests the use of a least-square regression to obtain trustworthy results, once the data at the extremes of the curve have been discarded.

The Southwell plot foresees the presence of a straight portion in the central zone, the fitting line enables the evaluation of the critical load (the inverse of the slope of the straight line) and the maximum initial imperfection (the ratio of the coefficients). The experimental data are distributed around the ideal line: their dispersion derives both from measurement errors and from the lack of linearity at the two extremes of the linear interval, thus it is necessary to evaluate which points have to be chosen for computing the fitting of the line and which, on the other hand, is better to exclude.

In order to render less subjective and automatize the choice of the data points used to determine the regression line, an algorithm has been developed: 1 in the straight portion a starting point and an interval of values around it are chosen. 2 the fitting line is computed 3 the next point outside the interval on the right hand-side is considered and it is evaluated if its deviation from the estimated line keeps inside a certain tolerance a if the point stays inside the tolerance interval, then it is joined to the previous and a new fitting line is defined b if the point is out of tolerance then it is excluded and the procedure is interrupted (on the right hand-side)

4 the procedure of step 3 is repeated for the point on the left hand-side of the range, data gradually approaching the origin 5 if the point is out-of tolerance also on the left hand-side the procedure is interrupted.

In this way, the data points that represent the straight central portion of the Southwell plot are automatically and rather objectively defined. Therefore, it is possible to proceed to the estimation of the critical load and the initial imperfection z 0 .

It is obvious that the value chosen for the tolerance is of primary importance since it means either the acceptance or the rejection of a new point. For this purpose the procedure chosen is the following.

Uncertainty of the expected value of the ordinate for a given abscissa

The value that could be estimated for the ordinate corresponding to a generic value x of the abscissa and thus belonging to the regression line, could be expressed as:

This value is computed by the estimate of the parameters, which are random variables affected by errors, thus also this is affected by a variance σ 2 y i that could be obtained applying the variance propagation law :

The calculation of ŷ standard deviation is possible with the formula:

The variable ŷ follows a Student distribution t with n -2 degrees of freedom, then a confidence range associated to a probability p (and then to a significativity level α = 1p) is given by

Since in the present application, the Southwell plot regression line, we are interested by the critical load P cr and the initial imperfection z 0 , it is appropriate to compute the indetermination of these two parameters. Since the estimate of the parameters of the line is affected by error, the errors associated to P cr and z 0 could be as well estimated, which are function of the parameters:

by the application of the propagation of variance:

Since the necessity to exclude some data in producing the regression, the MatLab sheet code implements an iteration that automatically computes the number of data to be use for plotting, considering the change in slope.

Appendix C

Modified Constitutive Relation Error Formulation for static loadings

The same formulation can be used for both traction and tension. Many examples can be found in literature, among others [START_REF] Bonnet | Inverse problems in elasticity[END_REF][START_REF] Chamoin | Goal-oriented updating of mechanical models using the adjoint framework[END_REF], where MCRE is employed in static tests.

Table C.1 presents the relaible and non-reliable features for static loading conditions. Again, the Hooke's tensor together with the measurements are considered non-reliable.

Table C.1: Fundamentals of the constitutive relation error formulation

Reliable

Non reliable

Theoretical

• Elasticity

• Equilibrium (σ σ σ 0 )

Parameters of the Hooke's tensor K K K(p p p)

Experimental

• Load value Measurements of the shape ũ ũ ũ

The static loading problem

In the definition of the constrained minimization problem, the same considerations made in Section 2.3 apply. For this reason, what follows is the pure displacement formulation. What changes is the constraint condition employed, the equilibrium for static loading. Naming F d F d F d the forces acting on the surface and neglecting body forces, the pure displacement problem is written as follows:

APPENDIX C. MODIFIED CONSTITUTIVE RELATION ERROR FORMULATION FOR STATIC LOADINGS

The finite element form of the constraint condition becomes:

where what is left undefined is the vector F of imposed loads (either tensile or bending).

The localization step

To begin the actual process of identification, it is needed to calculate the values of the error (both local and global). To this end, U, V must be computed. The procedure begins by writing the Lagrangian, where a new set of unknowns, the Lagrange's multipliers Λ Λ Λ, is added.

The imposition of the stationarity gives:

from which a linear system in three unknowns, U, V and Lagrange multipliers Λ Λ Λ is obtained.

To compute U and V, the system of three equations is written in matrix form, where only the equations depending form the statically and kinematically admissible displacement fields are kept.

Once the system is solved, the global error indicator can be computed and local error density over each element can be evaluated.

The parameter updating step

The areas determined as defective by error density means, undergo here the step of correction.

The gradient methods of steepest descent used requires the definition of a cost function J. The choice of setting the cost function equal the error functional, together with the stationarity properties of U, V and Λ Λ Λ, gives again the equivalence of Eq. (2.34).

The gradient of the cost function can be written as follows:

therefore it can be computed analytically, following the choice to set the parameters p p p proportional to the Young's Modulus.

The evaluation of the new set of p p p at iteration k+1, cfr. Eq (2.33), allows the updating of the FE model and therefore the determination of the defects' intensities.

Appendix D Modified Constitutive Relation Error Formulation for dynamics

This sections presents the MCRE approach applied to dynamic problems. This case have been made the object of extensive literature, among many others [START_REF] Deraemaeker | Model validation in the presence of uncertain experimental data[END_REF][START_REF] Feissel | Modified constitutive relation error identification strategy for transient dynamics with corrupted data: the elastic case[END_REF][START_REF] Ladevèze | Error on the constitutive relation in dynamics[END_REF].

Vibration is an eigenvalue problem. Both the frequencies, eigenvalues, and the corresponding modes, eigenvectors, are obtained experimentally. The formulation of the buckling based approach derives from an adaptation of the MCRE for vibrations. Therefore many common points are found, with less difficulties, namely in not necessitating to post-process experimental results.

Many versions exists, according to the variables which are considered non-reliable. For instance, not only the Hooke's tensor but also the mass matrix can be considered so. In the present case a simpler method is used. The reliable and non-reliable features are reported in Table D.1, where only the Hooke's tensor belongs to the latter category. The dynamic problem

The constrained minimization problem can be written in a pure displacement form as:

where the eigenvalue problem is employed as constraint. With ω, the frequencies, eigenvalues of the problem, are denoted. Body and external forces are neglected.

The discretized form of the constrain condition is the following:

where K is the stress matrix, non-reliable, and M the mass matrix, reliable. Together with Eq. ( 2.26), Eq. (D.2) enables the process of identification in a finite element framework.

The localization step

Combining Eq. ( 2.26) and Eq. (D.2) by intriducing a new set of unknowns Λ Λ Λ, the Lagrangian is written as:

The stationarity is imposed to compute the three unknowns: U, V and Λ Λ Λ, the lagrangian multipliers.

A linear system is obtained, which the following form, similar to buckling's one.

This similarity is even more glaring for the system written in matrix form.

[

The dependence on Λ Λ Λ is made explicit, since the interest is set in the computation of the other two unknowns, required for determining the areas of the FE model which requires an updating.

The displacements fields can now be computed to determine the areas on which the FE model will be updated and the global error indicator indicator.

The parameter updating step

The cost function for the updating, still taken in the form of the error can be written as follows:

where the stationarity properties of U, V and Λ Λ Λ are applied.

The term employing the derivative of the mass matrix is set to zero since [M ] is considered reliable and therefore it is not updated during the procedure.

Title : Towards the localization and characterization of defects based on the Modified error in Constitutive Relation: focus on the buckling test and comparison with other type of experiments.

Keywords : Inverse problems, Modified Constitutive Relation Error, Buckling, Defects Abstract : Composite materials are nowadays extending their operational field to industrial applications other than aeronautics. New potential markets, such as automotive, imply the need to comply with different constraints; reduced cost and production time become more binding, taking the lead over the complete absence of defects. The drawback to fast automatized procedure is the higher defectiveness of the components produced, a deeper control of the part is therefore needed. Non-destructive techniques are expensive both in terms of cost and time and therefore the main question we tried to answer in this thesis is: is it possible to detect and estimate the effect of defects without resorting to the complex and time-consuming NDT techniques?

The thesis aims at exploring possibilities to use classical mechanical test combined with Digital Image correlation and inverse procedure to localize and characterized possible (large) defects. Buckling tests have been chosen at first due their supposed sensitivity to defects. Among the possible inverse technique, we have chosen to extend the so-called Modified Error in Constitutive Relation to the case of buckling because, in the case of vibration tests performed with several frequencies, the MCRE proved to have very good localization properties. The interests and limits of the methodology are discussed notably through the comparison of numerical results using the MCRE in case of traction, bending or vibration tests. It is shown that the linearised buckling based MCRE technique proves well for pseudo-experimental measurements at least for moderate geometrical imperfections. In addition, first experiments have been performed; the defects are characterized from real experimental specimens, both for a nominally perfect specimen and for a defective one, where a zone of fibre waviness is induced. While on the first one no defects are detected, on the flawed specimen the localized area is in reasonable agreement with the area affected by fibre undulations.
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