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Résumé. Ce travail fait partie du projet Marie-Curie ITN STEEP, dans le domaine des faisceaux
énergétiques. Nous étudions ici I'identification de paramétres pour un modéle générique d’usinage par
jet d’eau abrasif. Cela peut étre vu comme un probléme inverse mal posé.

L’étude de ce probléme trouve son origine dans les applications industrielles d’usinage, ou la
nécessité de modéliser et prédire la surface finale avec une trés grande précision est essentielle en
I’absence de connaissance des paramétres du modéle.

Nous proposons ici une méthode d’identification des paramétres du modéle basée sur la min-
imisation d’une fonction cotlit, mesurant la différence entre la solution numérique et les observations
expérimentales. L’approche variationnelle, basée sur le Lagrangien, permet de considérer I’adjoint, et
l'utilisation d’un logiciel de différentiation automatique (TAPENADE) conduit & une identification
rapide et précise des paramétres, quelles que soient la complexité et la taille du probléme étudié.

La qualité de l'identification peut étre fortement instable et dépendre largement des données
expérimentales en cas de bruit. Nous introduisons alors des termes de régularisation permettant de
gérer la présence d’erreurs de mesure et d’améliorer ’estimation des paramétres.

Plusieurs cas d’usinage par jet abrasif sont considérés: probléme stationnaire, jet qui se déplace a
vitesse constante, ou en accélérant, utilisation de données synthétiques ou réelles. L’étude de sensibilité
faite dans ces différents cas montre la robustesse de ’approche, qui permet d’obtenir de trés bons
résultats, a la fois acceptables d’un point de vue industriel, et permettant de prédire la surface avec
une grande précision.

Mots-clés: Equations aux dérivées partielles, Problémes inverses, Approche variationnelle, Opti-
misation, Identification de paramétres, Usinage par jet d’eau abrasif, Différentiation automatique,
TAPENADE, Prévision de surfaces.

Abstract. This work is part of STEEP Marie-Curie ITN project, covering the research in field of
energy beam processing. We focus on the identification of unknown parameters of the proposed generic
Abrasive WaterJet Milling (AWJM) model. This problem appears as an ill-posed inverse problem.

The necessity of studying this problem comes from the industrial milling applications where the
possibility to predict and model the final surface with high accuracy is one of the primary tasks in
the absence of any knowledge of the model parameters that should be used.

We propose the method of the model parameters identification by minimizing a cost function,
measuring the difference between experimental observation and numerical solution. The variational
approach based on corresponding Lagrangian allows to obtain the adjoint state and the involvement
of the automatic differentiation software tool (TAPENADE) leads to fast and efficient parameters
identification regardless the complexity and size of particular studied problem.

In fact the parameter identification problem is highly unstable and strictly depends on quality of
input data. Regularization terms could be effectively used to deal with the presence of measurement
errors and to improve the identification correctness.

Various cases of the AWJM process such as a stationary problem and moving with constant feed
speed or acceleration are studied based on both artificial and real experimental data. The sensitivity
study related to these particular problems demonstrates the strong capability of the proposed approach
to obtain acceptable results for manufacturing and to predict the required surface geometry with high
accuracy.

Keywords: Partial differential equations, Inverse problems, Variational approach, Optimization,
Parameters identification, Abrasive waterjet milling, Automatic differentiation, TAPENADE, Surface
prediction.






Résumé étendu

Ce travail s’inscrit dans le cadre du projet I'TN Marie Curie STEEP, qui porte sur
I’étude de faisceaux énergétiques, et plus particuliérement sur 'usinage par jet d’eau
abrasif (abrasive waterjet, AWJ).

L’usinage par jet d’eau abrasif (abrasive waterjet, AWJ) est un probléme industriel
pour lequel la théorie des problémes inverses n’a pas encore été trés étudiée et peut
apporter beaucoup. Cette problématique fait partie de la classe des procédés industriels
pour l'usinage mécanique de matériaux, ol la piéce a usiner est soumise a des forces
mécaniques spécifiques causées par I'impact de particules abrasives présentes dans le jet
d’eau. Ce proecessus d’usinage est réalisé a ’aide d’un jet d’eau a trés haute pression,
envoyé par une pompe dans un petit orifice de la téte d’usinage afin de réaliser un jet
a trés haute vitesse. Dans la chambre de mélange, un systéme de dépression permet
I’aspiration de particules abrasives. Cela résulte en un mélange d’eau et de particules
abrasives accéléré a trés haute vitesse, générant un panache agressif qui attaque la
surface du matériau et crée une empreinte.

Le principal objectif de ce travail est de mettre au point une méthode mathématique
permettant d’identifier les parameétres inconnus du modéle générique d’usinage par jet
d’eau abrasif. Ce modéle a été décrit et étudié dans [6, 31, 14, 36| et a été développé
pour tenir compte des contraintes industrielles pour la prévision des empreintes formées
par le jet d’eau. En supposant que les parameétres du modele et les termes sources sont
connus, on peut trouver la forme du profil de la tranche usinée. Il s’agit ici du probléme
direct, qui repose sur une EDP non-linéaire. L’identification des parameétres du modéle
est alors un probléme inverse.

Cette étude est motivée par les applications industrielles d’usinage, pour lesquelles
il est important de pouvoir modéliser et prédire avec une grande précision la forme
finale de la piéce usinée. Il est donc nécessaire de pouvoir fournir une information sur
les parameétres du modeéle & utiliser.

Le premier objectif de cette thése est de développer une méthode mathématique

pour l'identification de parameétres du modeéle d’usinage par jet d’eau abrasif considéré.
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Ce modéle a été précédemment développé dans le contexte industriel de I'usinage de

matériaux cassants par jet d’eau.

L’identification des parameétres inconnus du modéle est un probléme inverse. Notre
but est d’identifier ces paramétres, qui sont a priori inaccessibles a partir des don-
nées expérimentales, afin de pouvoir prédire 'usinage d’'une surface avant d’effectuer
des simulations de fabrication. Nous utilisons pour cela une approche variationnelle,
dans laquelle la minimisation d’une fonction cotit permet d’identifier les parameétres

optimaux (dans un sens a définir).

Il se trouve que dans ce cadre, l'identification de parameétres est fortement instable,
et dépend beaucoup de la qualité des données disponibles. Lorsque le probléme inverse
(d’identification des paramétres) est mal posé, la solution n’est pas unique - la fonction
colit peut présenter plusieurs minima - ou peut présenter une grande instabilité par
rapport aux données. Dans ce cas, une approche classique consiste a régulariser le
probléme, en apportant par exemple des informations supplémentaires. L’ajout de
termes de régularisation dans la fonction cotit & minimiser permet a priori de mieux

gérer le bruit dans les données et d’améliorer 1’identification des parameétres.

L’approche considérée consiste & minimiser une fonction cotit mesurant la différence
entre les données expérimentales et la solution numérique correspondante du modéle.
En introduisant le Lagrangien associé a la minimisation sous contrainte de modele dans
cette approche variationnelle, nous pouvons en déduire le modéle adjoint, nécessaire
pour effectuer la minimisation en un temps raisonnable. L’utilisation d’un algorithme
de différentiation automatique permet d’obtenir efficacement le modéle adjoint, et ainsi
de mener & bien la minimisation et I'identification des parameétres, méme lorsque la

taille du probléme est grande.

La minimisation numérique de la fonction cotlit peut étre faite par différents algo-
rithmes. Une approche classique repose sur des algorithmes itératifs de descente de
gradient. Nous utilisons ici I'une de ces méthodes, 'algorithme L-BFGS (Broyden-
Fletcher-Goldfarb-Shanno & mémoire limitée), mis en ceuvre numériquement dans la

routine N2QNT1 de la librairie de minimisation MODULOPT développée & INRIA.
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Le gradient de la fonction cotit, nécessaire pour la minimisation, peut étre vu comme
le multiplicateur de Lagrange associé a la contrainte de modéle, solution du modéle
adjoint. L’adjoint est obtenu numériquement & 'aide d'un logiciel de différentiation
automatique, TAPENADE, développé par 1’équipe Tropics d’'INRIA Sophia Antipolis.
Il s’agit d’'une des méthodes les plus efficaces et les moins cotiteuses pour obtenir
I'adjoint. En effet, ce logiciel génére automatiquement les codes tangent et/ou adjoint
a partir du code direct correspondant au modéle.

Notre étude a porté sur différents cas d’usinage par jet d’eau abrasif: probléme
stationnaire avec un jet immobile, déplacement du jet & vitesse constante ou non (ac-
célération / décélération du jet). L’identification de paramétres a été testée en utilisant
soit des données synthétiques, soit des données réelles expérimentales, pour chacun de
ces cas. Les données synthétiques ont été générées en utilisant le modéle numérique, et
ont permis de mettre au point et démontrer le potentiel de I’approche proposée. Afin de
faire le lien entre la technique développée et le processus industriel d’usinage, plusieurs
jeux de données réelles et de parameétres de machines d’usinage ont été étudiés.

Les techniques que nous avons utilisées pour identifier les parameétres inconnus du
modeéle et pour prédire 1’évolution géométrique de la surface ont d’abord été introduites
et testées dans le cas d’usinage stationnaire.

Le modéle proposé d’usinage par jet d’eau abrasif est le suivant:

0Z E(x,y)e*?

—_— = . 1
Ot (1 I ’VZ|2)I€/2 ( )

Dans un premier temps, nous étudions le cas stationnaire avec des données synthé-
tiques (générées par le modele), puis expérimentales. Nous présentons les résultats, a
la fois en ce qui concerne l'identification des paramétres du modéle, mais aussi pour
I’évolution de la surface usinée. Nous étudions ensuite particuliérement l'identification
de la fonction de vitesse de gravure (etching rate function) dans le cadre d’une analyse
de sensibilité par rapport au bruit dans les données.

Le bruit est considéré comme un parameétre du modéle, qui une fois identifié, permet

d’améliorer I'identification des autres parameétres. Nous présentons plusieurs résultats



6 Contents

numériques dans ce cadre. Nous étudions également la possibilité de modifier la fonc-
tion cotlit pour tenir compte de la disponibilité de plusieurs jeux de données bruitées
correspondant a la méme expérience. Cela apporte une flexibilité supplémentaire a
I’approche proposée, pour tenir compte des données disponibles, et surtout une efficac-

ité accrue pour l'identification de paramétres et la prédiction de 'usinage.

L’identification de paramétres a également été testée dans le cas de jets instation-
naires. Nous avons considéré deux sous-cas, avec une vitesse constante ou non du jet
d’eau abrasif. Les simulations numériques ont la aussi été faites avec des données syn-
thétiques générées par le modeéle, puis avec des données expérimentales réelles. Dans
le cas d’une vitesse constante, nous avons notamment étudié 1’identification simultanée

de tous les paramétres du modéle.

Enfin, I’étude se termine par une étude de sensibilité par rapport au bruit de mesure
dans le cas d’un jet qui se déplace de facon uniforme. Etant donné le cofit trés élevé des
simulations expérimentales sur des machines industrielles, nous n’avons pu traiter ici
que le cas de données synthétiques, générées par le modeéle. Les résultats numériques
confirment 'efficacité de la méthode, et démontrent que ’approche développée permet
de traiter des données issues de beaucoup de cas tests différents (jet stationnaire ou

non, vitesse du jet constante ou non, présence ou non de bruit de mesure, .. .).

Afin de pouvoir prévoir la surface usinée dans des conditions bruitées, nous avons
aussi mis en ceuvre une méthode d’identification dans laquelle le bruit est identifié seul,
indépendamment des autres paramétres du modéle. L’idée consiste alors a utiliser le
bruit identifié pour le retirer des données, puis a identifier les autres paramétres du
modele avec ces nouvelles données. Cela augmente la qualité de 'identification des
parameétres. Et les résultats numériques correspondants pour la surface usinée confir-
ment l'intérét de cette approche. Nous avons enfin présenté une approche d’identification
globale de tous les paramétres simultanément, afin de montrer ’étendue des capacités

de la méthode proposée.

Les études numériques proposées dans les cas stationnaire et instationnaire mon-

trent que la méthode que nous avons développée permet d’obtenir des résultats sat-
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isfaisants pour la fabrication industrielle, permettant d’identifier les paramétres du
modele et ainsi de prévoir la construction d’une surface souhaitée avec une grande

précision.






CHAPTER 1

Introduction (francais)

Le domaine des problémes inverses a connu un intérét grandissant et une expansion
a de nombreux nouveaux domaines ces derniéres années, suite a de nouveaux besoins
apparus aussi bien dans le monde industriel que scientifique. Une attention particuliére
a été portée aux problémes non-linéaires, notamment en raison de leurs applications
dans un contexte industriel.

Afin de mieux comprendre ce qu’est un probléme inverse, nous parlons tout d’abord
de probléme direct, qui se référe généralement a la phase de modélisation, par exemple
d’un phénomeéne physique. La résolution d’un probléme direct consiste alors a iden-
tifier une fonction qui décrit le processus physique en tout point et a chaque instant
d’un domaine prédéfini. Cela nécessite de connaitre a l'avance tous les paramétres
physiques nécessaires, comme par exemple des coefficients, ou des termes sources. La
résolution du probléme direct permet alors de prédire ’évolution du systéme & partir
de la connaissance de son état initial et des lois physiques qui le gouvernent. Dans le
probléme inverse, le but est de remonter aux parameétres (inconnus) du modeéle & partir
de données correspondant a ’état du systéme. Trés souvent, ces paramétres ne sont
pas directement reliés aux données, et doivent donc étre identifiés a partir des données
et du modéle.

Les problémes inverses sont devenus trés populaires et développés ces derniéres an-
nées, grace notamment au développement de méthodes numériques sophistiquées et a
I’augmentation de la puissance de calcul. La théorie et la mise en ceuvre numérique
des problémes inverses sont également fortement répandues dans la résolution de prob-
lémes industriels de grande complexité. Les domaines d’application recouvrent par

exemple la physique (mécanique quantique, acoustique), la géophysique (océanogra-
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phie, sismologie, volcanologie, étude du champ magnétique), la médecine (rayons X,
tomographie RMN, croissance tumorale), 1’écologie (qualité de Pair et de 'eau, agri-

culture), I’économie et la finance, ....

Les problémes inverses se décomposent en une multitude de cas différents, suivant
les domaines d’application et la nature du probléme posé. L’un de ces cas, crucial dans
un grand nombre d’applications, consiste a identifier les paramétres et termes sources
inconnus du modéle. Cela peut se faire en comparant les données expérimentales
(provenant des systémes réels) et les simulations numériques (calculées a partir des

modéles mathématiques).

Cependant, l'identification de parameétres est généralement un probléme inverse mal
posé 32, 43| lorsque par exemple il y a du bruit dans les données ou dans le modéle,
et cela méme si le probléme direct est bien posé. On parle de probléme mal posé
(par opposition & un probléme bien posé) lorsque la solution n’existe pas, ou n’est
pas unique, ou n’est pas stable (au sens ou une petite perturbation sur les données
d’entrée peuvent conduire a des écarts considérables dans la solution identifiée). Ce
dernier point représente d’ailleurs souvent l'une des plus grandes difficultés lors de la

résolution d’un probléme inverse mal posé.

Cet aspect peut néanmoins étre traité en utilisation des techniques de régularisation
[3, 45, 46], largement étudiées [44, 17, 29, 19|, et l'identification de paramétres peut
alors étre réécrite sous la forme stable d’un probléme de minimisation de la somme de

I’écart aux données et d'un terme de régularisation.

L’usinage par jet d’eau abrasif (abrasive waterjet, AWJ) est un probléme industriel
pour lequel la théorie des problémes inverses n’a pas encore été tres étudiée et peut
apporter beaucoup. Cette problématique fait partie de la classe des procédés industriels
pour l'usinage mécanique de matériaux, ol la piéce & usiner est soumise a des forces
mécaniques spécifiques causées par I'impact de particules abrasives présentes dans le jet
d’eau. Ce proecessus d’usinage est réalisé a ’aide d’un jet d’eau a trés haute pression,
envoyé par une pompe dans un petit orifice de la téte d’usinage afin de réaliser un jet

a trés haute vitesse. Dans la chambre de mélange, un systéme de dépression permet
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Abrasives

(a) microwaterjet machine (b) Example of milled trenches

Figure 1.1: Systéme d’usinage par jet d’eau abrasif (gauche) et exemples de tranches usinées

(droite).

I’aspiration de particules abrasives. Cela résulte en un mélange d’eau et de particules
abrasives accéléré a trés haute vitesse, générant un panache agressif qui attaque la
surface du matériau et crée une empreinte. L’illustration et les notations pour une
machine d’usinage par jet d’eau abrasif sont présentées en Figure 1.1 avec quelques
exemples de tranches usinées.

L’usinage par jet d’eau abrasif est une méthode industrielle non conventionnelle et
polyvalente d’usinage a moindre cotit, permettant de traiter presque n’importe quel
type de matériaux, sans se soucier de ses propriétés physiques ou chimiques. Le jet
d’eau abrasif est par exemple trés largement utilisé pour I'usinage de matériaux en acier,
titane, aluminium, verre, diamant polycristallin, céramique, carbure de silicium, ainsi
que pour différents composites [41, 7, 47|, et dans de nombreux domaines d’application

comme les technologies médicales, 1’électronique, 'industrie automobile, la bijouterie,
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I'industrie du verre, et méme en aéronautique et espace. En effet, I'un des avatanges
de l'usinage par jet d’eau abrasif est la possibilité de traiter des matériaux non ho-
mogoénes, fragiles, extrémement durs. D’autres avantages résident dans (i) l'utilisation
de forces physiques de découpage relativement faibles, permettant de réduire les risques
d’endommager la zone de travail; (ii) le fonctionnement de la machine a faible tem-
pérature et I’'absence de dommages causés par la chaleur; (iii) la possibilité de découper
des formes complexes en 3D grace a la 1égéreté de ’équipement.

De plus, le jet d’eau abrasif peut servir a différentes applications comme le dé-
coupage, 1'usinage, le forage, le polissage, ...d'une piéce. L’un des grands défis est
justement l'usinage avec une grande précision et une profondeur controllée. Comme
la technique met en jeu un grand nombre de processus physiques, avec plusieurs
paramétres comme la pression de la pompe, la vitesse d’alimentation du jet, le flux
de matiére abrasive, la distance entre le jet et la piéce, le diamétre de orifice, ..., il
est assez délicat de prédire la forme de la surface créée. Ainsi, la prévision du profil
géométrique de la surface a 'aide d’'un modéle mathématique devient nécessaire pour
contourner ces difficultés.

Ce travail s’inscrit dans le cadre du projet Européen Marie Curie ITN (Initial Train-
ing Network) STEEP, qui porte sur I’étude de faisceaux énergétiques. Ce projet intégre
des partenaires a la fois académiques et industriels, avec le but de mener a bien des
recherches pluri-disciplinaires, un programme de formation scientifique et des interac-

tions entre les universités et partenaires industriels et privés suivants:

e University of Nottingham

Université Nice Sophia Antipolis

University of Birmingham

Friedrich-Alexander University of Erlangen-Niirnberg

e Katholicke Universiteit Leuven

Swiss Federal Laboratories for Materials Science and Technology
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Le principal objectif de ce travail est de mettre au point une méthode mathématique
permettant d’identifier les parameétres inconnus du modéle générique d’usinage par jet
d’eau abrasif. Ce modeéle a été décrit et étudié dans [6, 31, 14, 36] et a été développé
pour tenir compte des contraintes industrielles pour la prévision des empreintes formées
par le jet d’eau. En supposant que les paramétres du modeéle et les termes sources
sont connus, on peut trouver la forme du profil de la tranche usinée. Il s’agit ici du
probléme direct, qui repose sur une EDP non-linéaire. L’identification des paramétres
du modéle est alors un probléme inverse, et certaines études de ce probléme inverse
portant uniquement sur un modeéle linéaire ont été présentées dans [13].

Notre but consiste a déterminer les paramétres du modeéle, qui sont a priori in-
accessibles a partir des données expérimentales, afin de prédire la construction de la
surface usinée, avant de réaliser la simulation industrielle. Nous considérons alors une
approche variationnelle, dans le but de déterminer les paramétres qui vont minimiser
une fonction objectif. Il est alors possible de reformuler le probléme sous la forme d’une
minimisation d’une fonction cotit mesurant la différence entre les données expérimen-
tales et la solution correspondante du modéle.

Lorsque le probléme inverse est mal posé, sa solution n’est pas unique, ou comme
indiqué précédemment, elle n’est pas stable par rapport aux données. Dans ce cas, la
fonction cott présente plusieurs minima locaux. De facon assez classique, une solution
consiste a utiliser des techniques de régularisation. Il est nécessaire d’ajouter des
informations supplémentaires (par exmeple de régularité) sur les paramétres a identifier,
afin de rendre le probléme bien posé.

La minimisation numérique de la fonction objectif peut étre réalisée avec un grand

nombre de méthodes. Nous avons considéré une approche classique, basée sur des



14 Chapter 1. Introduction (frangais)

algorithmes itératifs de descente de gradient qui convergent vers le minimum. Plus
particulierement, nous avons utilisé I’algorithme & mémoire limitée Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) [21, 35, 48], qui est au cceur de la routine N2QNT1 de la
librairie de minimisation MODULOPT développée a INRIA [22].

Le gradient de la fonction cotlt est obtenu numériquement grace au logiciel de dif-
férentiation automatique TAPENADE, développé par ’équipe Tropics & INRIA Sophia
Antipolis [27|. Le gradient peut étre vu comme un multiplicateur de Lagrange dans le
cadre de la minimisation sous contrainte de modéle, permettant d’introduire le modéle
adjoint [38, 34]. Nous avons sélectionné cette méthode qui se trouve étre particuliére-
ment efficace et peu cotiteuse en temps de calcul. Dans le but de calculer le gradient,
TAPENADE génére automatiquement les codes tangent et/ou adjoint a partir du code
direct. Le code adjoint généré comprend deux étapes générales: un mode direct ré-
solvant le code source original permettant de calculer la fonction coiit et de sauver
certaines informations au cours de la résolution, et un mode rétrograde, qui utilise ces
informations pour calculer les dérivées de la fonction cofit.

Cette thése est organisée sous la forme suivante:

e Chapitre 3

Ce chapitre présente le modéle mathématique proposé pour le procédé d’usinage
par jet d’eau abrasif et ses propriétés physiques. Puis nous introduisons les
principes généraux sur les problémes inverses et leurs applications & notre cas.
Nous présentons ensuite I’approche variationnelle basée sur le Lagrangien, perme-
ttant d’obtenir le gradient de la fonction cotit. Nous donnons ensuite une courte
description des méthodes de descente de gradient qui sont utilisées pour min-
imiser la fonction cotit. Le cas particulier d'un jet stationnaire est étudié a part
dans une section suivante afin de montrer 'efficacité de I’approche proposée. Ce

chapitre se termine avec la liste des étapes de notre algorithme d’identification.

e Chapitre 4

Dans ce chapitre, nous étudions tout d’abord l'identification de parameétres pour
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le probléme de jet stationnaire. Des résultats numériques sont donnés dans le
cas de données synthétiques (générées par le modeéle) ainsi que pour des données
expérimentales. Nous montrons ainsi la capacité de notre approche a identifier
les différents parameétres inconnus du modéle, ainsi que 'influence du bruit de

mesure et du terme de régularisation sur la prévision de formation de la surface.

Chapitre 5

Ce chapitre présente des résultats numériques pour la prévision de formation de
la surface dans le cas stationnaire, avec une étude de sensibilité par rapport aux
différents bruits de mesure. Nous comparons ensuite différentes modifications de
la fonction cotit lorsque plusieurs jeux de données sont disponibles. Nous pouvons
alors considérer le bruit comme un paramétre du modéle et nous présentons
des résultats numériques de l'identification. Le chapitre se termine par un cas

d’utilisation de mauvaises estimations initiales des parameétres.

Chapitre 6

Dans ce chapitre, nous étudions lidentification de paramétres du modeéle et
2 Pa P 7 : Y
présentons les résultats numériques correspondants dans le cas d'un jet d’eau
instationnaire, qui se déplace avec une vitesse fixe ou variable. Nous donnons
des résultats portant sur la prévision de reconstruction de la surface géométrique
dans les cas de données artificielles et expérimentales. Dans le cas d'un jet qui
se déplace de facon uniforme, nous présentons des résultats numériques pour

I'identification simultanée de tous les paramétres du modéle.

Chapitre 7

Ce chapitre présente une étude de sensitivité par rapport au bruit de mesure
pour le modeéle d’usinage par jet d’eau abrasif dans le cas d'un jet se déplagant
de facon uniforme. Nous étudions l'influence du bruit, et différentes approches
sont proposées pour améliorer l'efficacité de la méthode et la précision de la

surface prédite. L’avantage de pouvoir identifier le bruit comme un parameétre
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supplémentaire du modeéle nous permet d’améliorer la prévision de 1’évolution de
la surface usinée.
e Conclusions

Enfin, ce travail se termine par des conlusions et perspectives en rapport avec

Iidentification de paramétres pour un modéle d’usinage par jet d’eau abrasif.



CHAPTER 2

Introduction (english)

Caused by the growth of application needs and interest both in science and industry,
the area of inverse problems has undergone increasing interest and expansion in the last
years. A significant effort has been observed more strongly than before on nonlinear
problems due to high motivation of their application in manufacturing.

In order to better understand what an inverse problem is, we first note that a direct
problem is usually a problem of modeling of some physical process or phenomena.
The aim of solving a direct problem is to discover a function which describes this
physical process at any point and any time in the predefined domain. It is required
to know in advance all the involved physically relevant parameters such as coefficients
or sources characteristics to solve the direct problem and predict the evolution of the
described system from knowledge of its given state and governing physical laws. In the
inverse problem, the goal is to find the unknown functions or parameters used in the
formulation of a direct problem from the observations or input data. And very often
these parameters are totally unknown or inaccessible and have to be identified only
from experimental measurements.

The inverse problems became very popular and widely spread in the last years
with the development of sophisticated numerical techniques and powerful computing
capabilities. The theory and application of inverse problems is also widely used in solv-
ing applied and completely industrial problems on a level of high complexity. Different
types of inverse problems can be met in almost all fields of science such as physics (quan-
tum mechanics, acoustics), geophysics (oceanography, seismic exploration, volcanology,
electrical and magnetic phenomena), medicine (X-ray and NMR tomography, tumor

growth), ecology (air and water quality control, agriculture), economics and financial
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mathematics.

Inverse problems of mathematical physics can be divided into a wide range of differ-
ent groups depending either on fields of application or on the nature of their occurrence.
One of the crucial problems in this variety of inverse problems of natural, industrial
and economical phenomenas is the identification of unknown sources and model pa-
rameters by suitable comparison between the experimental observations referred to the

real systems and the simulations by the mathematical models.

However, parameter identification is generally an ill-posed inverse problem [32, 43|
under some considerations due to the measurement or modelling errors, even if the
direct problems are well-posed. The ill-posed problem is a problem which either does
not have or has many solutions, or the solution is not stable (small perturbations in
the input data may lead to serious discrepancies in the solutions). Exactly the last

point of instability brings the biggest difficulties in solving ill-posed inverse problems.

This kind of problems can be partially overcome by using regularization methods
[3, 45, 46], studied by many authors [44, 17, 29, 19|, and parameters identification could
be reformulated in a stable case as a minimization problem with a data mismatch and

a regularization term.

One of the industrial problems which is not widely studied by the inverse problems
theory and application, and where it can be efficiently used is the Abrasive waterjet
(AWJ) machining. It relates to the class of mechanical material removal machining
processes, where the workpiece is subject to some specific mechanical force caused
by impact of abrasive particles. The AWJ machining process is performed by a high
pressured water powered by a pump through the small orifice in the cutting head,
where it is generated to a high speed water jet. In the mixing chamber the abrasive
particles are entrained by creared vacuum inside the system. As a results, the highly
accelerated mixture of abrasives and water generates the aggressive jet plume, which
hits the target surface and generates a footprint. The illustration and notations of the

abrasive waterjet machine with the example of milled trenches are presented on Figure

2.1.
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(a) microwaterjet machine (b) Example of milled trenches

Figure 2.1: Abrasive microwaterjet machine system (left) and examples of the milled trenches

(right).
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AWJ machining is a fast-growing non-conventional and versatile material removal
technology that is capable to process almost any material regardless its properties and
keeping manufacturing costs low. AWJ is widely used in the machining of materials
such as steel, titanium, aluminium, glass, polycrystalline diamond, ceramics, silicon
carbide and different composites [41, 7, 47| for various fields of application as medical
technologies, electronics and automotive industry, jewelry and glass industry or even
aircraft and aerospace manufacturing needs. Thus, one of the main advantages of the
AWJ machining is the ability to proceed with the brittle/ultra-hard /non-homogenous
materials. Other important advantages are (i) the involvement of very low cutting
forces, hence reducing the risk to damage the workpiece; (i) no heat affected zones
and low machining temperatures; (iii) complex 3D shapes can be obtained due to the
facilities of the AWJ machine according to required surface geometry.

Moreover, AWJ machining can be used in a variety of applications such as cutting,
milling, drilling, polishing etc. One of the main challenges is the accurate shape and
depth-controlled milling, which plays an important role in the Abrasive waterjet milling
(AWJM) technology. Since there are a lot of independent process parameters as pump
pressure, jet feed speed, abrasive mass flow, stand-off distance, nozzle diameter, it
turns out difficult to predict the surface shape formation. Thus, a forecast of the
surface profile geometry by a mathematical model is essential to bypass most of issues.

This work is a part of European Marie Curie Initial Training Network project
STEEP covering the research in field of energy beam processing. This involves both
academia and industry in the multi-disciplinary scientific training, research and inter-

action between the full partners from universities and industrial and private companies:

e University of Nottingham
e Université Nice Sophia Antipolis
e University of Birmingham

e Friedrich-Alexander University of Erlangen-Niirnberg
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The main objective of this work is to present the mathematical method to iden-
tify unknown parameters of the proposed generic Abrasive Waterjet milling (AWJM)
model which was previously described and studied in [6, 31, 14, 36] and was developed
according to the industrial needs for waterjet footprints prediction. Assuming that
model parameters and source terms are known, one can find the shape of the milled
trench profile. In this context this is the direct problem that in our case involves a
nonlinear PDE. The identification of the model parameters is the inverse problem and
some studies of other linear AWJM inverse problems were previously presented in [13].

Our goal is to determine the model parameters inaccessible from the experiments
to predict the surface construction before performing the manufacturing simulations.
Following this requirement we base our work on the variational approach to find a
function or parameters the use of which will minimize the objective functional. The
problem may be reformulated as a minimization problem, that in its turn can be
presented as search of the minimum of a cost function measuring the difference between
the process observations and the corresponding model solution.

If the inverse problem is ill-posed, the solution of the inverse problem is not unique
or as it was mentioned above not stable. In this case, the cost function may have
several local minima. Commonly, these problems can partially be overcome by the use
of regularization techniques. It is necessary to consider some additional information

which can help to stabilize the problem.
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The numerical minimization of the objective functional can be realized by using
various methods, but the most common minimization techniques are gradient descent
algorithms which are iterative processes converging to the minimum. We use the one,
based on the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm
[21, 35, 48] underlying the N2QN1 minimization package from the INRIA MODULOPT
library [22].

The gradient vector is obtained numerically using the automatic differentiation
(AD) software TAPENADE developed by the Tropics team at INRIA Sophia-Antipolis
[27], which can be interpreted as the Lagrange multiplier of the model equations in
terms of adjoint problem [38, 34]. It was chosen as the most effective technique with
low computational costs. In order to compute the gradients, it automatically generates
the tangent and/or adjoint code from the direct source code. AD adjoint code consists
of two general steps: a forward mode running the original source code and remembering
certain information, and a backward mode, which uses this information to compute the
derivatives.

This thesis is organized as follows:

e Chapter 3

This chapter consists of representation of the proposed mathematical model de-
scribing the AWJM process and its physical properties. Further, the general
principles of the inverse problems and their application to given problem is ex-
plained, leading to a variational approach based on corresponding Lagrangian,
which is used to obtain the gradient of the cost function. Then the short descrip-
tion of gradient descent algorithms, which are used for the minimization problem,
and related adjoint approach are presented. The special case of stationary water-
jet problem is studied separately in the next section to demonstrate the proposed

method. This chapter ends up with the listing of the identification algorithm.

e Chapter 4

In this chapter the parameters identification starts with the case of stationary
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waterjet problem. Numerical results are given for both self-generated data and
averaged experimental measurements used as problem input. We demonstrate
the ability to identify different unknown model parameters and influence of con-
sidered measurement errors and regularization technique on the surface formation

prediction.

e Chapter 5

This chapter presents the numerical results in surface geometry prediction for
stationary jet problem, corresponding to the sensitivity study of the model in
case of various measurement errors. Further, comparison of the use of different
modifications of the cost function according to available input data and their
amount is given. Next, we show the appropriate numerical results by considering
the existing measurement noise as AWJM model parameter, and in the end of this

chapter the case of wrong initial estimation of the model parameters is studied.

e Chapter 6

In this chapter we present the model parameters identification and actual numer-
ical results for a moving waterjet with fixed and varied feed speed. Numerical
results of the surface geometry forecast are based on artificial and experimental
observations. In case of evenly moving waterjet setup we give the results of the

joint identification of all unknown model parameters.

e Chapter 7

This chapter presents the sensitivity study of the given AWJM model in case
of uniform waterjet movement, where the influence of the various measurement
noise is studied and several approaches to improve the accuracy in the surface
prediction are demonstrated. The opportunity to identify the measurement errors
from the input data leads to sufficient improvement in the prediction of the

evolution of the surface geometry.

e Conclusions
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Finally, this work ends up in this chapter with some conclusions and outcomes
about the possibilities in the parameters identification and surface prediction for

Abrasive waterjet milling model.
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Problem formulation and methods
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3.1 Introduction

We will introduce and explain the mathematical formulation of the physical problem
and will present the model, which describes the abrasive waterjet milling process and
surface geometry evolution. The goal is to propose, implement and study the mecha-
nism for the optimal model parameters identification in different cases and situations
close to the real experimental conditions. We will describe several techniques used
to formulate the adjoint problem and solve it numerically. Also, we will demonstrate
the possibility to avoid different difficulties related to the ill-posedness of the inverse

problem by the use of regularization methods.
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3.2 Physical model

Fundamentally, the Abrasive Waterjet milling process (AW JM) is based on a surface
evolution under the jet plume impact, whose characteristics (specific erosion rate)
depend on process parameters as water pressure, mass flow and abrasive particles.
During the milling process, a mixture of water and abrasive particles is pressured to
ultrahigh pressure through a small orifice, forming an intense cutting stream which hits
a target surface and generates the footprint (Figure 2.1).

The final form of the trench, which is described as a function Z(x,y,t), depends on
the different physical parameters such as pump pressure, abrasives mass flow, velocity
and waterjet nozzle diameter. These machine settings could be described and repre-
sented all together as set of model parameters u, defining the intensity of the jet impact.
Separately, the forces caused by the jet may be described as erosion rate function FE,
which includes the pressure, mass flow and particles velocity; and the scalar parameter
a describes the jets nozzle radius. The etching rate function reaches its maximum in
the center of the jet and decreases near its sides. The scalar parameter k describes the
dependence of the erosion rate and arrises from a cosine law for the jet impact angle
for brittle materials [42].

The intensity of the jets impact during the process strictly depends on the slopes of
the trench. When the trench become more deep, the efficiency of the impact decreases
due to the verticality of the slopes. This may be described by the cosine of the angle
between the jet stream and the normal 7 to the target surface and given by \/ﬁ.

The impact angle of the waterjet is defined as an angle between the jet vertical
axis and a tangent to the surface. For brittle materials, maximum of erosion occurs
when the jet is perpendicular to the workpiece. Thus, we consider only a case when
the impact occurs on the initially flat surface Z(x,y) = 0 at 90° impact angle. The
vertical position of the jet is fixed during the process relative to the zero-level of the
workspace, and the intensity of the jet impact continuously depends on the trench
depth. Other model components such as the exponent and the gradient of the surface

parametrization were included to consider these influences and model the process more
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precisely and believable.

The milling process perpetrated by Abrasive Waterjet machine is represented as a
nonlinear partial differential equation with initial and boundary conditions. To define
the problem we consider the time interval of the continuous milling process [0, 7] and
denote by € a bounded domain of R? where the process takes place.

The proposed Abrasive Waterjet Milling model introduced in [6, 31, 14| then is

given by:
A E aZ
0Z _ __E(@ye - in Q x [0, 7], (3.1)
ot (1+|vzP)
with initial and boundary conditions:
Z(x,y,t)=0 on 09,

Z(x,y,t) = Z at t=0,

where
e (z,y) €Q
o Z(x,y,t) € H)(Q,R") is the parametrization of the surface,
e a,k € RT are the model parameters,
o E(z,y) € L*(Q) is the Etching rate function which is also model parameter.

This model is well suitable for the abrasive waterjet milling process. It characterizes
the process of the trench surface formation by the jet impact on the workpiece and is
suitable for various jet feed speeds regardless of the target material properties. The
etching rate function E, which describes most of the machine settings, has strong
influence on the surface formation. The simple example of the surface geometries
obtained with the use of various Etching rate functions can be observed on Figure
3.1. For this demonstration scalar parameters a = 0.7 and k = 3 were chosen without

connection to real experimental settings.
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Variations of Etching rate function Related surfaces
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(a) Used Etching rate functions (b) Related surfaces

Figure 3.1: Example of the model outcome by the use of different Etching rate functions.

Further the AWJM model could be rewritten in general as:

aa—f =F(Z,VZ,x,y,t,u), (3.2)
where w = {a, k, E'} is a set of model parameters.

During the reporting time period jet moves in the y-direction with permanent or
varied feed speed what determines the final structure of the surface. The use of the
experimental data allows us to calibrate the Etching rate function E using the ex-
perimental data, because of its dependency on physical properties of the workpiece
material and waterjet machine parameters, described above.

Schematically AWJM process and jet footprint at some time moment ¢ € [0,7]
could be presented as on the Figures 3.2(a) and 3.2(b).

3.3 Inverse Problem

The modeling of the surface geometry knowing the values of model parameters is the
general direct problem. The prediction of the surface formation from some estimations
of the paramteres is also the direct problem, when we are interested in results of the
model by assuming some properties in advance. Lack of knowledge about the model

parameters initiates another problems called inverse problems.
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Figure 3.2: Schematic of the AWJM process and jet footprint.
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Figure 3.3: Demonstration of direct (top) and inverse problems (bottom).
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Schematically, it can be demonstrated as on Figure 3.3.

Suppose, that it is necessary to describe the behavior of some physical process. The
primary sources of information, based on which it is possible to study the process, are
observations and experiments. If in the observations only behavioral traits can be fixed,
the experiments allow to actively influence on the process and register the respond of
the system by changing the input properties. Mainly, in the inverse problems it is

necessary to determine the reasons of system behavior or effects.

Inverse problems are very active research fields in the applied science, with a fast
growing interest among the industry. Wide range of their application includes signal
and image processing [12, 51, 10], invsere scattering [16, 39|, tomography [37], inverse
heat conduction problems [20, 11|, parameters identification |8, 28] and many more
classes [19, 18, 23, 30, 9, 49]. One reason for this is that conditions and properties of

the physical processes underlying the actual results are usually not known.

Following David Colton, Heinz Engl et al. [15], inverse problems are concerned with
determining causes for a desired or an observed effect or calibrating the parameters of

a mathematical model to reproduce observations.

Generally, parameters identification problems face with the reconstruction and es-
timation of unknown functions or physical effects appearing in systems of differential
equations as coefficients, terms, boundary or initial conditions. This type of problems
requires some information about the process behavior or experimental observations
needed to estimate the unknowns which should be used in order to correctly forecast

the process outcome.

The abrasive waterjet techniques are used to produce extremely small elements in
the macro or micro areas for medical technologies, electronics and automotive industry,
jewelry and glass industry or even aircraft and aerospace manufacturing needs. In all
these directions, the main interest comes from the desire to predict the evolution of the
surface and to improve the quality of manufacturing. This milling process is difficult
to control due to the aggressive nature and high pressure of the jet. The use of the

correct simulation predictions of the surface formation can provide good opportunity
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to adjust the machining parameters in advance instead of performing the numerous of
expensive experiments to calibrate them.

In fact, we are interested in the identification of unknown model parameters, the
use of which in direct milling model will lead to the desired accuracy in the surface
reconstruction or further forecast. A common feature of most parameter identification
problems is their ill-posedness.

In the sense of Hadamard’s postulates [24, 25|, a mathematical problem is well-posed

if it satisfies the required conditions:

e A solution exists.
e The solution is unique.

e The solution’s behavior changes continuously with the problem parameters.

When one of these three conditions is not fulfilled, the problem called ill-posed.
It means that these problems might not have a strict solution either it can be not
unique or not depend continuously on the input data. Nevertheless such problems
are very common in engineering, physics and other areas and have to be studied and
solved numerically. In general, the most often case for applied problem is the failure
to comply the third condition.

Particularly in our problem, the dependencies on input model parameters and sensi-
tivity of the AWJM model on measurement or model errors effort the instability in the
surface prediction. Numerical simulation of the direct problem clearly demonstrates
that the use of different Etching rate functions leads to simillar trench profiles (Figure
3.4).

These simple implementations of the direct problem with difference only in one
model parameter E and fixed others demonstrates the absence of continuous depen-
dence on the input data in a stable way. Moreover, if the stability condition is ignored,
the numerical solution of the inverse problem is problematic even if the input data is

perfect.
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Etching rate function Related trench profile
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Figure 3.4: Example of ill-posedness of the problem. Different types of Etching rate function

lead to simillar trench surfaces.
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Detailed study and observation of these effects provides us the opportunity to see
which are there possibilities to reconstruct the required shape of the trench regardless

of the input data.

3.4 Variational approach

The main objective of the variational approach is to find the function or parame-
ters, the use of which will make the functional attain its the minimum or maximum
under the given constraints. Typically, the constrained variational problem focuses on
the minimization of the cost function that measures the distance between the given
observation and the predicted state.

Thus, the constrained variational problem is to find w* which minimizes the follow-

ing cost function:

Tw) =5 [ 12(0.9.T) = Zoy() Py, (53)

where the Z ., are the experimental measurements and Z is the predicted state of
the direct problem.
It means that in order to identify the optimal AWJM model parameters uw =

{a,k, E} we formulate the minimization problem:

J(u") = iﬂfJ(u). (3.4)

The goal is to identify the set of parameters acceptable for manufacturing process,
the use of which in direct model will fit the input data, in other words will lead to
correct surface reconstruction.

If the direct or even inverse problem are ill-posed, the solution of the inverse problem
may not be unique. In this case, the cost function J may have several local minimums,
and the minimization process may stop not only at the seddle point. It is possible

to partially overcome this problem by introducing the regularization techniques. It is
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necessary to consider additional information which can help to regularize the problem.

The additional Tikhonov’s regularization term can be added to the cost function.

The corresponding cost function J(u) takes next form, where the regularization
term generally can be chosen as difference with available background information about

the model parameters:

1 a
Tw =5 [ 12.0.7) = Zusy(o,)dady + G 1w - (3.5)
Q

subject to the model constraint that Z is the solution of the direct problem, obtained
with input set of parameters u € RT x RT x L2(Q, R*). We also assume that required

observations are available at every moment of each studied problem.

In the expression above (3.5) Z., are the process observations, by u, we denote
an a priori estimation of the set of AWJM model parameters w, and a > 0 is the
Tikhonov regularization coefficient [45]. Due to the available information or special
conditions, regularization term can be changed in order to better satisfy the problem
requirements. As this is the additional information, it can be varied to any applicable
form. In case of inaccessible background information about the Etching rate function,

we propose following variant with a gradient of unknown function E:

1 «
Tw =5 [12(.0.7) - Zug(a)dedy + § [ |VE ety (36)
Q Q

In terms of ill-posedness, regularization part plays an important role to overcome
the instability and reduce the inaccuracy in the identification of acceptable unknown
parameters. The type of the regularization term can be changed accordingly to exact
problem and requirements (e.g. when the sought unknown function has to be smooth,

one can use the gradient of it as a regularization part).
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3.5 Minimization process

One of the steps in the identification process is the minimization of the cost function,
which measures the difference between experimental measurements and estimated state
of the system. The numerical minimization of the cost function can be performed by
using various methods such as conjugate gradient methods or Newton/quasi-Newton
algorithms.

From the first order Taylor expansion of the cost function J () for any two iterations

u; and u;; we have:

J(uj1) = J(uy) + VI (u;)(wj — uy) +

+%(ua‘+1 — ;)" VAT () (w1 — u;). (3.7)

The objective function J(w) is minimized by solving VJ(u) = 0. Thus, it is
necessary to solve:
VI (u;) + VA () (w41 — ;) =0,

which yields

wjp1 = u; — H(u;) " VI (uy),

where H (u;) = V2J (u;) is the Hessian of the cost function J at iteration j.
The classical Newton’s type of minimization algorithms uses d; = —H (u;) " 'V.J (u;)
as the direction of descent.

The descent step-size p; is calculated so that:
J(u; + p;d;) < J(u;),
ensuring that d; is a descent direction:

d;VJ(u;) <0.
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The computation of p; is called line search, and this is usually an inner iterative
loop. It might be exact or inexact to adapt the stepsize by involving additional criterias
[2, 50].

Starting from the initial given position ug (which is defined from some background
estimation wy = wy), one has to compute the cost function J(u;) on each iteration

and its gradient VJ(u;) to shift to the next discretized step and update the solution:
Ujtr1 = Uj + pjdj.

However, the method requires computing the Hessian matrix at each iteration and
this is not always feasible due to the size of the problem. The sufficiently difficult
minimization of the functional is realized in fact with the use of quasi-Newton type
methods, which differ from the Newton type methods by the involvement of the ap-
proximations of the inverse of the Hessian functional at the current point and does not
demand the direct computation of it.

The most common minimization techniques are gradient descent algorithms which
are iterative processes converging to the minimum. The minimization of the cost
function could be realized in such a way, where the descent step is computed by quasi-
Newton’s type algorithms. In quasi-Newton’s type algorithms the Hessian does not
need to be computed and inverted, but it can be replaced by a symmetric positive
approximation (Q;) to H~'. Tt is much less expensive than implementation of the
real Hessian. Due to the limitation in memory facilities we use the limited-memory
algorithm which keeps only fixed amount information about the previous steps needed
to update the approximation of the Hessian.

Particularly, the inverse limited-memory minimization algorithm L-BFGS (Broyden-
Fletcher-Goldfarb-Shanno) [35] implemented in N2QN1 minimization algorithm from
"MODULOPT" library [22] was chosen as the most efficient and suitable. It is a BEGS
algorithm in the quasi-Newton’s family methods which uses an approximation of the
inverse Hessian, but with limited amount of memory: it stores only m last values of u;
and VJ(u;). During the minimization of the functional, it construct the approxima-

tion of the inverse Hessian. The update formulas for L-BFGS algorithm are presented
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in [21]. In practice, the minimization stops before the convergence in order to reduce

the calculation costs.

3.6 Adjoint model

Very often the size and complexity of the studied problem is such that it can not
likely be solved directly without reducing the amount of unknowns or simplifying the
initial model. An important point is to clearly express the dependence between the
variations of input data and the related variations of the cost function. In the other
words, it requires the computation of the gradient of cost function with respect to the
unknown parameters. A possible way to implement it is to perturb each component of
the set of unknowns separately and to integrate the model equations for each perturba-
tion. However, the numerical cost of this method is so high that it is almost impossible

to apply it for any practical problems.

From the other side, there is another approach, which allow to avoid several diffi-
culties in implementation, called the adjoint approach. In general, the optimal control
theory [34] provides the possibility to observe how the behavior of the process can be
controlled by changing the input process parameters. The adjoint technique gives the
efficient way to numerically compute the local gradient of a cost function included a
set of arguments. This gradient is further used to perform the descent minimization

algorithm to minimize the differnce to observations.

Depending on each particular case and size of the problem in our work, the time
consumption can be reduced in dozens or hundreds of times, needless to say about
the computational costs required for numerical implementation. In the simple case of
stationary jet, based on self-generated input data (see Chapter 4), the use of adjoint
technique allows to decrease the clear computational time (not including the prepara-
tion of each case and collecting the results) from 4 hours to approximately 1 minute.
Furthermore, in case of more complex problem of moving waterjet (notably with varied

jet’s feed speed), the gain in time is proportionally substantial.
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The minimization problem (3.4) could be regarded as an optimal control problem,
and the approach based on Lagrangian multipliers could be used to get the solution of
it [38, 34]. The solution of the optimal control problem can therefore be regarded as
the search of critical "points" of the Lagrangian functional L(u, Z, P) associated to

the constrained minimization, that we introduce as following:

L(u,Z,P) = J(u) + /T / P(t,z,y) @—f - F(Z,t,u)) dedydt,  (3.8)
0 Q

where P is called Lagrangian multiplier or adjoint variable associated to the constraint
that Z is a solution of (3.1) from the same space H}(2).

The minimum of cost function J(u) is given by the saddle point of functional L
when all partial derivatives of the Lagrangian are equal to zero.

We get the optimal system:

OL
P 0, (3.9)
OL
oL
— =0. A1
5~ ° (3.11)

Considering the general foundations of Lagrange parameters theory [43] we have
that 92 = F(Z,t,u), where Z is solution of the direct model from the (3.9):
g—;:%—f—F(Z,t,u)zo (3.12)
Adjoint equation can be found from the expression (3.10), where P has to be a
solution. To calculate the derivative of the Lagrangian with respect to Z, we can more
efficiently use the integration by parts, which will give us the derivative of P with
respect to t instead of the derivative of Z with respect to t.

Consequently, nulling of the derivative of L with respect to Z leads to the following

adjoint problem:

oP  (OF
0Z

o = —)TP+(Z—ZeXp)5(t—T), (3.13)
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P(z,y,T)=0,
P(z,y,t) [so = 0.

And finally the derivative of L with respect to w (3.11) gives us the gradient of the
cost function from the initial adjoint state P(0), in conditions that Z is a solution of
the direct problem (3.2), related to the set of AWJM model parameters w. This gives

us the following expression for the variational derivative of the cost function:

T
VI (u) = g—i _ —/P(t,x,y)g—i (Z.,t,w) dt + a(u—w), (3.14)
0

To solve the minimization problem and find an optimal solution u* the gradient
of the cost function VJ(u) is needed for the iterative gradient descent minimization
algorithms from the quasi-Newton family.

Thus, to calculate the gradient of the cost function, one has to integrate the adjoint
model backward in time with final conditions P(x,y,T) = 0 to obtain initial P(0). The
interest to use the adjoint method to calculate the gradient of J is the comparatively low
numerical cost needed when the number of unknowns is large. The usage of the adjoint
method requires only one adjoint model integration, while the standard implementation
of the evolution of the gradient will ask a number of model integrations equal to the

size of the control space.

3.7 Case of stationary jet

Considering the special case of stationary waterjet problem, when there is no move-

ment in the y-direction and %—f = 0, the general AWJM model (3.1) could be reduced

to:
aZ
aa_f _ E@e - inQ x [0,7], (3.15)
(1+2))
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with initial and boundary conditions:

Z(x)=0 on 09y,

Z(x)=0 at t=0.

In this case we define a symmetric domain Q; = {z : © € [—x1; 21|}, where z; always
depends on the actual experimental parameters or measurements, due to the changes of
the jets radius. Thereby, the cost function takes next form with the unknown Etching

rate function FE:

1 Q
1) =5 [12(.17) - Zuy(a)lPdz + 5 [ VB (3.16)
Ql Ql

Actually, the right side of announced model (3.15) can written as F(Z, Z,t, E) and
Lagrangian functional L(E, Z, P) associated to the constrained minimization takes
following form:

T

L(E,Z,P)=J(E)+ //P(t,a:) (aa—f _F(Z, Zx,t,E)) dzdt. (3.17)

By nulling of the derivative of L with respect to Z we obtain the following adjoint

problem for the linearized 2D case:

OP(x,t) <8F)Tp(x7t)+ (8F>T8P+

ot 0Z 0Z,) oz
o OF \"
<a—xazz> P(I,t) + (Z - Zexp) 6(t — T), (318)
P(z,T) =0,
P(x,t) ‘8(21 =0.

It is necessary to consider not the continuous but the discrete system to figure
out numerically with the optimal problem and to find its solution. Indeed we need

to minimize the discrete cost function what requires the gradient of the discrete cost
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function. Commonly the discretized adjoint statement comes from the discretized forms
of the Lagrangian and its discrete derivatives.

In the particular linearized case for the stationary waterjet it is possible to discretize
the direct problem (3.19), for example with a central difference scheme, and get the
adjoint problem of it (3.22), to obtain the gradient of the cost function and to perform
the minimization problem after. But again, the very important key point that the
gradient of the cost function has to be derived from the adjoint of the discrete direct

problem, not by the discretization of the continious problem (3.18).

3.7.1 Discretization of stationary problem

In the assumption that domain €2; is discretized into N points of regular grid with
a step Az, and the time interval [0,7] into M points with a step At, the numerical

scheme for the direct model is given as:

aZim Ez
7 = 7 — At ‘ 5 (3.19)
(1+ (Zﬁ—l_ziwi1>2)
2Ax
with initial and boundary conditions:
=23 =0 Ym € [1, M],
Z}:O Vi e [1,N].
The discrete cost function is:
N—1 N-1 2
1 2« Eio1—Ei
JE) =5 (2 = Ze) + 5D (—*Mw ) , (3.20)
i=2 i=2

where E = (E}, ..., Ey) and (Z}) is the solution of the direct problem (3.19) at final
time M.
Associated disctrete analog of the Lagrangian is obtained by the switching to the

summation from the integration and by discretizing it in the defined domain €2;:
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1 N—-1 o N—-1 2
L(E.Z.P) == ZM — Zop) 4 = i1 — B
( y &y ) 2;( 7 pz + 2 = ( +

N—-1M-1 m

m ZZ-erl — Z,Lm e“Zi Ez
+2 D P N 7 (3.21)
i=2 m=1 ip1—Zi"
<1 + ( JEA:E 1) )

The numerical scheme for the adjoint problem, which comes from the derivative of
the Lagrangian with respect to the Z, is solved backwards and for s = 2,... , N — 1

could be written as:

m
_1 ae*?" B,

2Ax

aZi’y p. mo__ gm
+ (1 - 512) AtP™, kz s 2_21 k/2+1 ZZ 4A:CZ21_2 -
(1 + (Ha) )
— (1 — 55\7_1) AtP™, keazw;fiﬂ k/2+1 Z%2A;2Zim

L+ (S2))

N-1

$0U (2~ Zw) (322
i=2

where 6 is the Kronecker’s delta and with initial and boundary conditions:
P"=P} =0 Vm € [1, M],
PM =0 Vi e [1,N].
Further, the gradient of the discrete cost function with respect to the unknown

model parameter Etching rate function F; at some point ¢ = 3,..., N — 2 could be

found using the following expression:

0.J pay ezl (2E; — Eis — E;_»)

= Az S AP — Z

oF, = A0 2 AP PPN 1822
m=1 1 + ( it+1 i— l) )

(3.23)

2Ax
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For i = 1, 2 this expression transforms to:

aJ M-1 caZl" (E; — Eyss)
=§2A AtP™ ek 3.24
o, "7 mzl (1 () T A (3:24)
+ ( 2Ax >
and for: =N — 1, N:
8. — ezl (B, — E;_»)
= §NTIA AtP™ L 3.25
or, " T mZ:1 Z z, -z 2\ T A 529
1 + ( : QA:UZ > )

In general case (3.1) it leads to enormous complication and moreover possible in-
ability to execute it manually. To implement it more efficiently and gain the time and
resource facilities we involve the automatic differentiation software (i.e. TAPENADE)
which is based on the techniques described above and provides the gradient of the
discretized cost function from the discrete realization of the direct problem. Once the
gradient is computed we can solve the minimization problem (3.4) using it. After that
suitable and optimal values of the model parameters can be found from only the trench

experimental measurements.

3.8 Identification algorithm

In manufacturing, the numerical prediction of the surface formation is based on a
good estimation of the model parameters which will be used to simulate the evolution
of the system. This estimation could be done with the use of the available observation
of the physical experiments done with appropriate machining tools.

The identification process consists of the search of unknown values of required
model parameters to be used for correct surface geometry prediction from only the
experimental observation used as input. The implementation of this process involves

several steps and techniques. Thus the identification algorithm is then the following:

e Numerical implementation of the direct problem accordingly to the predefined

domain Q x [0, 7.
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Specification of the unknwon AWJM model parameters w, which need to be

identified.

Formulation of the cost function and minimization problem related to the pa-

rameters u.

Calculation of the discrete gradient of the cost function with respect to u via the

discrete analog of the adjoint state by use of TAPENADE software package.

Selection of the available experimental observations to be used in the cost function

and as only input in the identification process.

Calculation of the model parameters via minimizing the functional J(w) with
N2QN1 minimizer from the "MODULOPT" library based on gradient descent
L-BFGS method.

Analysis and comparison of obtained results and adjustment of the regularization
term to improve accuracy in surface prediction and to achieve required properties

of unknowns and applicability in the manufacturing.

Finally, the evolution of the surface geometry can be predicted by the use of the

obtained correct model parameters.
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4.1 Introduction

This chapter introduces and presents the general principles of the parameter iden-
tification used in this thesis. The main objective here is to use the linearized model
corresponding to the case of steady AWJM model to demonstrate the possibility of
identification of unknown model parameters to predict the required surface formation.

Simple reminder how the AWJM model works and how the surface formation de-
pends on the input model parameters is given on Figure 4.1, where different examples
of surfaces is obtained with the use of different types of Etching rate function and fixed
scalar parameters a = 0.7 and k£ = 3.

The presented results may be devided into two parts: identification based on an
artificial input data, generated manually by ourselves, and involvement of the averaged

experimental observations as input.
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(a) Variations of Etching rate functions (b) Corresponding surfaces

Figure 4.1: Dependence of surface formation on input model parameters.

First, the results of the identification of scalar model parameters a and k from
the noisy data conditions and with the use of regularization term are presented. The
correctness and capability of the proposed approach are demonstrated and proved in
terms of this case. Inaccessibility of a priori information about the unknown Etching
rate function makes us to change the regularization term in order to meet predefined
requirements. Identification of function E is performed by the use of quasi-Newton’s
minimization method. Then, the use of the automatic minimization algorithm, real-
ized in the N2QN1 package from "MODULOPT" library, demonstrates the opportu-
nity to improve the speed and quality of the identification process in more complex
cases. The limited-memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm is
used to perform the minimization. During the minimization of the functional it builds
the approximation of the inverse Hessian. In both cases the appropriate results are
demonstrated. The work described in this chapter has been partially submitted for a

publication and is currently under review [4].

4.2 Identification based on self-generated surface profiles

Evolution of abrasive waterjet footprint is described by the nonlinear PDE (6, 31, 14|

with the set of model parameters which can not be obtained directly from an experiment
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or machine settings.

In this section we consider the particular non-moving abrasive waterjet formulation.
The jet strikes the initially flat surface at vertical impact angle. In this case we define
a symmetric domain Q; = {x : € [—x1; 2]}, where z; always depends on the actual
experimental parameters or measurements, due to the changes of the jets radius.

From equation (3.1) we get the AWJM model corresponding to steady problems,

with initial and boundary conditions:

0z E(z)e*%
T arz )

Z |i—0 =0,
Z o0, = 0.

Let us remind that scalar parameter a describes the radius of an abrasive waterjet
and scalar parameter k describes the dependence of the erosion rate. The Etching rate
function E(z) represents the energy characteristics of the blast of abrasive-laden water
stream.

Parameter identification problems usually bring many difficulties due to model and
measurement errors. First we assume that these kind of errors €.y, are random vari-
ables with a Gaussian probability density function and a zero mean, normalized to the
maximum depth of the trench.

We introduce the following model:
0Z E(x)e*?
92 ___B@e” e (4.2)
ot (1 + sz)lc/2
where A is the factor corresponding to the percentage of the errors. This model is also

used to generate the noisy input data.

4.2.1 Identification of the parameters a and k

Identification of the scalar model parameters a and k requires the modification of

the cost function:
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Figure 4.2: Initially used Etching rate function Ey.

_ 1 .
J(u) = §/HZ($,T)—Zexp($)!|2dw+§!\u—ub\\2, (4.3)
951

where the u = (a, k) is a pair of unknown AWJM model parameters.

For the first numerical experiments, "pseudo-experimental" surface profiles are gen-
erated with arbitrary values of model parameters u;, = (2, 3) and Etching rate function
Ey(z) (Figure 4.2) defined on ©; = {z : x € [—0.55;0.55]}. To discretize the domain
1, a regular grid of 228 points with a step Azxr = 0.0048mm is used and the time
period is taken as unit ¢ € [0, 1] with At = AT“J. In this particular case the standart
Newton method is used to find the minimum of the cost function.

In order to verify the correctness of the minimization process, we demonstrate the
behavior of the gradients of the cost function with respect to the parameters a and &
and the evolution of the parameters approximation on the Figures 4.3(a) and 4.3(b)
respectively. The continuous decreasing of the values shows us the proper work of the
minimization.

First we assume the clear case when there is no measurement errors in the input
data. Thus we are able to identify the required model parameters. The Figures 4.4(a)
and 4.4(b) present the influence of the selection of Tikhonov regularization coefficient
« on speed and precision of the identification. The reasonable choice of suitable values

allows to reduce the amount of minimization iterations in 4-5 times without sufficient
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Figure 4.3: Behavior of the gradients of cost function and approximation of the parameters a

and k during the minimization process.

lost in accuracy even with wrong first guess.

Next, we compare the capabilities to identify the required model parameters from
the noisy data. Numerical results of the identification of scalar parameters a and k are
listed on Figures 4.5(a) and 4.5(b), where the cases with assumed measurement errors
of levels 1%, 10% and 40% are compared with the identification based on original data.
It is possible to notice that the presence of the errors in data does not influence a lot
on the identification of parameter a. It is opposite with the case of parameter k, where
the identification process highly depends on the quality of input data. Moreover, the
identification process proceeds much slower in this case.

Further, we generated the noisy input data from the initial input surface by con-
sidering the measurement errors of different levels (10 and 30%), which is used for
identification of both model parameters a and k. A Tikhonov regularization term is
used with two different values of the factor « in order to demonstrate the improvement
either in noisy conditions. This allows us to neutralize problems in identification process
regarding the ill-posedness of the inverse problem and to accelerate the minimization
process.

Results and comparisons are shown on Figure 4.6. One can find that the background

estimation of the unknown model parameters accelerates the minimization process (in
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Figure 4.4: Influence of the regularization term on the identification of scalar model parame-

ters.
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Figure 4.5: Comparison of the identification capabilities of parameters a and k from the noisy

data.
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Figure 4.6: Results of the identification of model parameters a and k under the conditions of
noisy data with errors equal to 10% and 30%, using different values of Tikhonov regularization

coefficient.

compare with given results on Figure 4.5), but the higher the level of errors in the
input data the less accurate the identification results. Even with a high level of errors,
identification works properly and allows us to determine the unknowns being far enough
from the first estimations. The choice of the regularization coefficient plays a very

important role in the identification problem, especially dealing with noisy data.

In this particular case a = 0.1 gives the opportunity to identify initial model pa-
rameters within 8 and 15 iterations respectively, but with the value a = 0.01 it takes
more time to approach the required precision. The use of too large or small values may

prevent to identify the parameters at all.

Identified values of parameter a are always very close to the initial one and do not
lead to serious mismatch in the surface prediction. From the other side, the results of
the identification of parameter k from the data with 30% of the measurement errors
sufficiently differ according to different values of regularization factor . Comparison
of the reconstructed and original surfaces is presented on Figure 4.7. Regardless the
high level of the measurement errors, the mismatch between predicted forms of the
trench and original very small, what can be explained by little influence of parameter

k on surface formation.
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Figure 4.7: Numerical results of the trench surface reconstruction with identified values of

parameter k.

4.2.2 Identification of the Etching rate function

The milling process depends on the numerous of the factors and model parameters,
but the most significant effect of the impact in the material removal mechanism is
caused by the Etching rate function, which can not be clearly estimated from the
technical properties of the AWJ machine. This function should be determined from

the experimental observations to be used for the surface prediction.

Previous chapter describes the experiments, which only includes the identification
process corresponding to the cost function (3.5). The Etching rate function can be
considered as the set of parameters £ = Fi, ..., E,, in accordance with the discretized
domain Qy = {z : z € [-1;1]}. A regular grid of 200 points with a step Az = 0.0lmm
is used. Unlike the previous case, these parameters are not independent and relate to

the single function.

In principle, there is no a priori information about the behavior of unknown function

E | which can be obtained from real experiments and be used as background estimation.
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Moreover, in order to obtain a smooth solution (E(z) € H!(Q;) instead of L?(£2;)), we
now change the cost function and regularization term in it to the one with the gradient

of the Etching rate function:

I(B) =5 [ 120.7) = Zug(a)|Pds + 5 IVE? (4.4)

The improvement of the results, obtained by the use of another type of regularization
term can be clearly observed on Figure 4.8(a), where one of the identified Etching
rate functions (named "No regularization") belongs to the not regularized case of the
identification process. The form of the identified function F in this case does not satisfy
the required smoothness conditions, though, leads to the good surface prediction.

Because of the absence of the general solution for the problem, we use another
acceptable approach to estimate the values of regularization multiplier. For this par-
ticular problem, the closest to the optimal value of Tikhonov regularization term is
chosen as o« = 107%. It is obtained by L-curve method which was first applied by
Lawson and Hanson [33] and more recently by Hensen and O’Leary [26].

The main objective of this subsection is to correctly identify the Etching rate func-
tion F regardless the type of the unknown function, shape of the surface and difference
between first assumption and target. Firstly, it was used to generate the surface pro-
file in the perfect conditions without any noises or errors accounted in the model.
Obtained trench surface is recorded and used as input in the identification process
(Figure 4.8(b)). The other values of the model parameters a = 2,k = 3 are fixed.
Results of the identification are presented on Figure 4.8(a). The point of identifying
the Etching rate function is to focus on the most influential term of AWJM model and
to demonstrate the possibility to identify various parameters. In addition, this case
increases the number of unknowns in many times and lead to the complification of the
problem.

The numerical results shown on Figure 4.8(a) confirm the possibility to identify
unknown Etching rate function in the ideal situation even with a wrong and completely

free-form first estimation. Here the total number of unknowns is 200 which is the



54 Chapter 4. Model parameters identification for stationary problem

Identification of Etching rate function

5 T T T T T T T T
Initial guess —*—
No regularization —e—
Minimized —s—
45 Target —8— |
3 af 1
=
<
>
)
©
S
o
£
=
L
L
1 1 1 1 1 1 1 1 1
-1 08 06 04 02 0 0.2 04 0.6 0.8 1
Space mesh
(a) Identification of Etching rate function
Comparison between initial and reconstructed surfaces
O T T T T T T T T T
-0.05 g
01 F i
-0.15 - g
=
o)
3 o2} g
=
e o2sf .
2
F sl g
-0.35 g
Initial guess
041 No regularization ﬁ 1
Re onsLE_ucted ——
arget —B—
-0.45 1 1 1 1 1 1 1 1
-1 08 06 04 02 0 0.2 04 0.6 0.8 1

Space mesh

(b) Comparison of related surfaces
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initial conditions.
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number of mesh points. In case of a really wrong first assumption the minimization
process stops after 19 iterations by reaching the defined precission of the gradient equal
to 107*, what takes approximately 10 minutes, simply running on PC with 2.8GHz Intel
Core i7 and 16GB RAM on board without parallel usage of the cores.

More interesting is the case when the Etching rate function is not so smooth and
uniform, or evenmore is unknown, and the trench profile has some specialties caused

ratherish by measurement errors and physical effects, undescribed by the considered

AW JM model.

4.3 Real experiment measurements

The most interest of the model parameters identification and surface prediction
concerns the case of real experimental observations. Usually, the available data is not
perfectly smooth, noisy and has specialties. The milling process is very aggressive
towards the workpiece and provokes the deformations of the surface such as so-called
redeposition and damage of the material near the border of the trench. These actions
are not included in the AWJM model 3.2 and we have to not consider them.

Operating with the experimental measurements, we use the averaging of the numer-
ous of the cross-sections of the surface to obtain smooth and uniform trench profile.
Furthermore, assuming that the waterjet plume is symmetrical, the trench profile is
also symmetrical relative to the center. It allows us to state that identified unknowns
will satisfy the requirements in some average approximation in accordance with input
data.

For the simulation in this section, we use the measurements which were recorded
from experiments done in collaboration with STEEP project partners. This data cor-
responds to the abrasive waterjet milling process with a feed speed of 2000 mm /min,
and nozzle diameter of AWJ machine of 0.5 mm. This value is used as a background
estimation of model parameter a. The number of mesh points in this case equals

228 with the step Az = 0.0048 mm and €; is defined according the data by setting
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Figure 4.9: Results of the identification of Etching rate function and corresponding trench

profile in comparison with experimental measurements.

r; = 0.55mm.

To identify the Etching rate function we involve the N2QN1 minimizer from the
"MODULOPT" library, which bases on the L-BFGS algorithm, in order to speed up
the process and improve the precision. The minimization process is realized using the
regularization factor & = 107° that was obtained numerically by L-curve method. As
it was noticed before, the physical parameters of the set up, can not provide any infor-
mation about the behavior of the Etching rate function, and in lack of such knowledge
we start the identification from the zero assumption Eq = 0.

Further, we present the results of identification of the Etching rate function which
should be used in the direct AWJM model to be able to reproduce the required trench
profile, and comparison of the predicted surface with the observations.

The identified Etching rate function gives us the opportunity to simulate numeri-
cally the trench profile with an accuracy in terms of L? norm smaller than 3% (Figure

4.9), which was estimated as € in (4.5).

o (20) - Zen(0)ds
Vo, (Zewy(@)) do

Figures 4.10(a) and 4.10(b) show respectively the behavior of the cost function

(4.5)

and of the norm of its gradient during the minimization process. It shows that the
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Figure 4.10: Behavior of the cost function and its gradient in the minimization process,

corresponding to the real measurement data.

minimizer N2QN1 works properly. Using 15 minimization iterations, the Etching rate
function is identified with the accuracy of 4 x 1073.

The used mathematical model (3.1) has some limitations itself and can not cover
some effects on the edges of the trench which in practice is explained by redeposition of
the surface material. These secondary effects appearing as the result of high power of

the waterjet impact should be studied separately and are not considered in this work.
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5.1 Introduction

The basic definition of sensitivity analysis can be formulated as following: The study
of how uncertainty in the output of a model can be apportioned to different sources of
uncertainty in the model input [40]. Sensitivity analysis in parameters identification
problem of abrasive waterjet milling model is a key faeture, which can help to reduce
the model calibration uncertainty, and enhance the parameters estimation efficiency.

Unlikely the well-posed problem when several different approaches for studying
the sensitivity of the model could be used, we partially focuse on the variance-based
method and propose an outlook on the behavior of the accuracy of the surface predic-
tion depending on the level of errors in the data and wrong initial estimation of the

independent model parameters.
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In this chapter we propose the results of the identification of Etching rate function,
which is one of the most valuable parameters of Abrasive Waterjet Milling model.
The focus is on the capability to identify required information and accuracy of the
surface formation prediction in case of noisy input data. The linearized AWJM model
concerning to the steady problem is used to generate the input trench measurements.

The method using analysis of variance is used to understand how errors that arise
in the measurements and modeling phase impact the final surface geometry formation.
Sensitivity analysis demonstrate how the dependent variable of the process model and
observation errors reflects the accuracy of parameters identification and prediction of
the surface.

One of the significant roles in our problem play the measurement errors which
present in the experimental data. Study the influence of it on the identification process
could give us the opportunity to provide correct AWJM model parameters to reproduce
required shape of the trench.

Consideration of the measurement errors as model parameter demonstrates the
availability of the proposed approach to identify it a part from the other parameteres
and high improvement in the trench profile prediction. This chapter jointly with the

research presented in chapter 4 has led to a publication [4].

5.2 Variety of input measurements

The object of this section is to study the capacity of the approach, and to observe
the possibilities to identify model parameters even with high level of measurement
errors which are always present in the provided input data.

We assume the presence of the measurement errors in the input data. To generate
the required amount of diverse noisy trench profiles we use given AWJM model (4.2)
through which we simulate the initial smooth profiles with predefined values of E =
Ey a = ag, k = kg. Respectively to required conditions and according to depth of

the trench, we add random uncorrelated noise corresponding to different predefined
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levels up to 40% directly to the input data, to obtain new noisy inputs for the series
of identification. We also assume the normal distribution of the random values in

numerical implementation.

Further, we use these noisy profiles as the only input of the method and we try to
identify the Etching rate function that can be acceptable by the machining settings
and lead to the precise surface forecast. As this part of the study is based again on self-
generated input data, we use the same numerical parameters and initial assumptions
as in section 4.3. We also assume that initial Etching rate function E; has symmetrical
gaps corresponding to the edges of the trench. Abrasive waterjet has very powerfull
impact over the entire impact area, what causes the form of the Etching rate function

and jump of the values on the boundaries of the trench.

Initially our inverse problem is ill-posed and in order to identify the unknown pa-
rameters we use the regularization techniques. After shifting to the sensitivity analysis
we worsen the situation by adding the perturbation to the input data. Thus, we have
to adapt the regularization term for each particular case to make the Etching rate

function smooth.

Tikhonov regularization and its variations have a very strong influence on the re-
sults of the identification process. It allows us to handle the identification results
between accuracy and smoothness. We can then choose the optimal values that can
be acceptable and suitable in the real experiments and lead to reconstruction of the

surface profile with high precision at the same time.

The identification of the model parameter E is based only on the experimental data
which include the measurement errors. We simulate such data (Figure 5.1) by adding
to the initial surface profile a random Gaussian white noise with adjusting it to the
trench depth and predefined error level. The initial surface profiles are generated by

use of the Etching rate function named "Original" on Figures 5.2 - 5.4 and 5.6.

The goal of this part is to identify the unknown E the use of which in the AWJM
model (4.1) will form the closest trench to the initial one, named "Target" on Figures

52-5.4,56,5.58.
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Figure 5.1: Demonstration of self-simulated noisy data in compare to original profile according

to different levels of considered noise.
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Noise level 1% 2% 5% 10% 15% 20% 30% 40%

Precision  2.37x 1073 224 x 107 1.87x 1072 238x 1072 6.08x 1072 6.14x 1072 878 x 1072 0.272735

Table 5.1: Corresponding accuracy of "single input" surface prediction in dependence of the

noise level.

In order to obtain a smooth solution, we again use the cost function (4.4) with the
regularization term on the gradient. This will ensure the absence of high oscillations.
For each special case the regularization coefficient needs to be newly estimated through

a L-curve method due to the random distribution of the applied noise and its level.

The selection of the regularization parameters is very costly process and one has to
guarantee the correctness for all the cases, thus we demonstrate the numerical results
of the identification of Etching rate function and corresponding surface prediction for

a band of considered errors with levels from 1% to 40% (Figures 5.2(a) - 5.4(b)).

Figures 5.2(a) - 5.4(b) demonstrate the results of identification of the Etching rate
function FE in case of noise with levels of 1% - 40%, and comparison of reproduced

trenches with original profiles.

One could also notice that even with considering a very high level of errors in the
measurements, it is still possible to identify the model parameter E. Taking these
founded values, we can then model and forecast the shape of the surface, even if the
form and view of the founded function E is not perfectly matching. Summary of

detailed values of accuracy in the surface prediction are listed in Table 5.1.

Analyzing the obtained numerical results, we can conclude that the surface predic-
tion is very accurate for the case up to 10% of the measurement errors in the data. The
reconstructed surfaces are almost identical to the initial one. But, one can see that the
identified Etching rate functions for each case are different and not perfectly match the
original. It happens due to the ill-posedness of the inverse problem and not-uniqness
of the solution. Such issues are very often in the parameters identification problems
and nearly inevitable. Moreover, we notice the dependence that less the applied noise

to the initial input data less smooth the identified Etching rate function. It can be
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Figure 5.2: Results of numerical experiments in the identification the Etching rate functions
for AWJM model and reconstruction of the surface shapes based on single trench profiles for

the range of measurement errors of 1% - 5%.



5.2. Variety of input measurements

65

Identification of Etching rate. =210, A=10% Comparison original surface with obtained solution, A=10%
' ' . ' Identified —E— ' ' ' ' '
Otiginal —li— or 4
35
3 -0.02 |- B
1]
E]
T 2% %_ -0.04 - 1
> ©
2 ©
@ 2 5
8’ § -0.06 [ B
£ s o
5 =
i -0.08 B
s
0.5 -01 | n
Solution —l—
0 012 . . . . Target —O—
-0.6 0.4 -0.2 0 0.2 0.4 0.6 : 0.6 0.4 0.2 0 0.2 0.4 0.6
Space mesh Space mesh
(a) Single profile, 10% of noise
Identification of Etching rate. 0=2"10"%, A=15% Comparison original surface with obtained solution, A=15%
Identified —E=—
Otiginal —l— o 1
35 B
3 | -0.02 4
1723
E
5 25 R = 04l ]
g % 0.04
2 k]
E 2 7 ey
o O 006 B
£ s 1 o
g =
m -0.08 —
| ]
0.5 J 0.1 F 4
Solution —l—
0 L I 0.12 L I I Target —©
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.6 -0.4 -0.2 0 0.2 04 0.6
Space mesh Space mesh
(b) Single profile, 15% of noise
Identification of Etching rate. a=2*10'3, A=20% Comparison original surface with obtained solution, A=20%
45 T T T T T T T T T T
Identified —E=—
Otiginal —li— o J
1 0.02 | 4
1]
@ 4
% S o0l q
> Q
k) 1 S
«© =
o)) 4 “-:7 -0.06 |- 4
£ o
5 | =
o -0.08 - B
01 F —
Solution —l—
. . 012 . . . . Target —O—
-0.6 -0.4 -0.2 0.2 0.4 0.6 "os -0.4 -0.2 0.2 0.4 0.6

0
Space mesh

0
Space mesh

(c) Single profile, 20% of noise

Figure 5.3: Results of numerical experiments in the identification the Etching rate functions

for AWJM model and reconstruction of the surface shapes based on single trench profiles for

the range of measurement errors of 10% - 20%.
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explained by the impact of the regularization term and not the optimal choice of the
values of regularization factor «. used for these simulations, but despite this inaccuracy
we can achieve required results in the surface prediction even with not optimal model
parameters.

The tricky point that for the small level of errors the regularization terms is always
quite big and from time to time can even interfere with the minimization process.

Another predictable relation can be observed - with increase of the errors in the
measurements, the mismatch between original Etching rate function and identified
icreases and we lose in surface forecast accuracy. Finally, for the noise more than 20%
and especially for 40% we completely far with simulated profile from the initial form
and cannot figure out with high oscillations.

The question of the search of the optimal regularization parameters is open and very
difficult, because very often the minimization process cannot deal with the problem and
stuck in the local minimums.

These problems encouraged us to improve the identification mechanism by in-
volvemet of the several independant trench measurements and change the cost function

respectively.

5.3 Modifications of the cost function

Theoretically, the involvement of several measurements in cases of noisy input data
could give the opportunity to obtain more smooth and usable surface profile by aver-
aging of them. From the other side, the use of these measurements independently can
indicate where it is necessary to level the noise. Moreover, it can help to understand
which points are completely wrong and what can be reduced to improve the shape of
the trench. It works very nice and properly in the ideal situation with the thousands
or more of available measurements, what is nearly impossible in practise.

Assume now that we have more than one different measurements of exactly the

same experiment. As it is explained above, the difference between them is only in
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Figure 5.5: Simulation of the 2 independent trench measurements with the level of noise =

15%.

random noises that are present in measurements and influence the available input. We
generate such inputs for our identification problem and comparison of two independent
simulated inputs with applied noise of 15% is given on Figure 5.5 to show how they
differ from each other.

Consider for this part of the work only two available observations, and in this case

the cost function transforms to

1
IB) = [120.1) = Zug @) do +
Q
1 2 0% 2
+7 [126.7) = Zogs @) do + SIVEI 5.
Q

This form of the cost function presents the sum of separate calculations of the
difference between each numerical simulation and experimental input. To keep the
order of values the same, we devide each sum by half and use simillar regularization

factors.
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Figure 5.6: Results of numerical experiments in the identification the Etching rate functions
for AWJM model and reconstruction of the surface shapes based on two different measure-

ments of one trench profile in case the level of the measurement errors is 15%.

In case of 15% of the noise in measured profiles (Figure 5.5), it leads to the following

results for the identification process (Figure 5.6).

In the previous section of the identification simulations there was a very problematic
case when the noise was applied with the level of 40%. By considering actual changes
in the cost function, the most significant improvement is achieved exactly for this case.
The accuracy of the trench profile prediction rises up in four times. It is possible to
notice that identified Etching rate function still is not perfect and differs from the
original - more narrow at the bottom and top values are much higher, but it leads to

good trench profile reconstruction (Figure 5.7).

Also we mark that in general the obtained results are much more precise than in
the case with only one trench profile. Another improvement is the symmetry of the
identified function E obtained from very unclear measurements and increased accuracy

of the trench reconstruction.

More detailed information and summary is given in the Table 5.2. Mostly all the
cases confirm the reasonability of proposed approach, except the case of 20% of mea-
surement noise. It means that probably we were very lucky to obtain such accurate

results basing only on one input measurement.
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Figure 5.7: Results of numerical experiments in the identification the Etching rate functions
for AWJM model and reconstruction of the surface shapes based on two different measure-

ments of one trench profile in case the level of the measurement errors is 40%.

The joint use of more than one measurement of the only experimental data in theory
will provide some kind of averaging of the trench profiles that should lead to smoothing
of the input data. It might give higher opportunity to reconstruct the surface more
precisely. Based on that assumption we introduce the superposition of exactly the same
two different measurements for each case, which were used previously. It transforms

the cost function as follows:

J(E) = %/ HZ(x,T) - (Zexm(f”) +Zexm(:c)>

2
aQ 2
— E|“. 2
! ar+ SIVEP. (52

Here we take the average of two inputs and minimize the difference between it and
numerical solution. All the minimization procedure remains the same as in the previous
case.

As an example of these numerical implementations we demonstrate the view of the
input, obtained by superposition of two independent trench profiles with 15% of the
noise and final match between initial and reconstructed surfaces (Figure 5.8(a)).

Numerical results of this particular case show that the accuracy of the reconstruction
of the trench profile is also higher in comparison with the case where two trenches are

used independently (Figure 5.6). The whole description of the results is specified in
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the Table 5.2. Mostly the accuracy of the surface prediction is a bit higher or on the
same level as in case of independent measurements.

Considering some improvement above, we now include one more additional separate
experimental measurement. We introduce it independently from other measurements,

so that the corresponding cost function is:

3
J(E) = éz / |20, 7) ~ Z (@) + S IV, (5.3)
i=1 %

As before, we have the difference between the model solution and each of the ob-
servations, which we devide by the number of observations. We supplement the cost
function with the regularization term, multiplied by factor a which again has to be
determined by L-curve method.

Numerical results of this approach for the chosen case of 15% of noise are displayed
on the Figure 5.8(b), where one could see that mismatch between solution and "Target"
is still very low. Note that identified Etching rate function already keeps the smooth
and symmetric form. For all the range of applied noise, the identified form of the
function E does not visually differ from the previous cases.

Finally, all the three measurements used before can also be combined together
into the formation of the input for minimization process. They are involved into the
superposition of trenches to form the input for minimization process. This leads to the

following cost function:

2
dx +

58) =3 [ | 2t01) - (Zomle)t Benelt) = 2 )

e}
+§||VE||2. (5.4)

The results, presented on Figure 5.8(c), rely on the superposition of the three differ-
ent measurements of the same trench which takes corresponding averaged form. The
surface forecast is again very close to the previous cases and keeps the level of error

around 2% in terms of L? norm.
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Figure 5.8: Results of numerical experiments in the identification the Etching rate functions

for AWJM model and reconstruction of the surface shapes based on different variants of cost

functions in case the level of the measurement errors is 15%.
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Figure 5.9: Accuracy of matching the obtained solutions to original profiles for different cost

functions considering different levels of measurement errors.

The difference between using two and three measurements is not very impressive due
to random nature of the noise applied to the input, and could be strongly increased by
involving hundreds of experimental observations to reduce the influence of the errors.
Such strategy will turn out the returning back to the completely smooth averaged
input, which was used in section 4.3 of chapter 4.

But it is already possible to claim that use of three trench measurements instead of
two (what is still reasonable unlike the hundreds of them) mostly gives more close and
correct shape of the trench, and allows us to identify a more acceptable Etching rate
function in the manufacturing.

Figure 5.9 gives an overview of the results of involvement the different cost func-
tion depending on the level of noise. It demonstrate the significant improvement in
the several cases of identification achieved by introducing different approaches to de-
fine the cost function. Keeping the acceptable level of accuracy (less than 10%) in
terms of (4.5) in matching between experimental measurement and obtained solution,

introduction of more complex cost functions (5.1) and (5.3) gives us the opportunity
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Trenches 1% 2% 5% 10% 15% 20% 30% 40%

Single 237 x1073 224x1073 1.87x1072 238x1072 6.08x 1072 6.14x 1072 878 x 1072  0.272735

2 independent  2.23 x 1073 4.66 x 1072 1.15x 1072 2.30 x 1072 1.84 x 1072 9.08 x 1072 9.38 x 1072 6.46 x 1072

2 superposed 343 x 1073 1.12x 1072 1.19x 1072 256 x 1072 1.79 x 1072 8.64 x 1072 9.06 x 1072  6.43 x 102

3 independent 1.68 x 1073 3.66 x 1073 1.18 x 1072 1.84x 1072 1.92x 1072 894 x 1072 9.53x 1072 6.50 x 1072

3 superposed  1.68 x 1073 3.65 x 1073 1.18 x 1072 2.08 x 1072 1.92x 1072 897 x 102 9.86 x 1072 6.39 x 1072

Table 5.2: Comparison of the accuracy in the prediction of the trench profile, corresponding

to different cases of the cost functions and different levels of applied noise.

to identify more applicable and convenient AWJM model parameters. In general the
more trenches measurements are available the higher accuracy in the surface prediction
can be achieved due to elimination of the measurement errors by averaging the input
data. But it goes beyond our interest to be able to identify model parameters from

only one or couple of real measurements.

Cost functions (5.1) and (5.2) are not identical, but they theoretically have the same
gradient. However numerical implementation gives different results and flexibility to
find more suitable realization for each particular problem, what has to be taken into
account. The same situation is for the pair of cost functions (5.3) and (5.4). More

detailed results of comparison between all proposed approaches are presented in Table

5.2,

One could notice that in most of the results the use of several trenches instead of
only one can improve the accuracy in the parameters identification, leading to reducing
the errors in the prediction of the surface profile up to 20% in cases of low level of noise.
In cases of very noisy input data (see columns related to noise higher than 20%) the use
of several measurements plays strong role in decreasing the mismatch in reconstruction
of the trenches. This effect could be explained by nature of the distribution of the
applied noise. Certainly, it should be noted that sometimes only one measurement is
available, and it might be enough to obtain the model parameters required to recon-
struct the profile. Moreover, superposition of the trenches involved in the identification

process which can be interpreted as an average of the input experiments usually also
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leads to higher accuracy, but mostly on the "long distance" - the quantity of available
measurements.

It reaffirms that the use of two or three measurements of the noisy profile can not
ensure the strong improvement of the identification of unknowns due to the random
behavior of the noise. But it demonstrates that when there are only couple of data
measurements are available, the proposed approach is capable to identify acceptable
for machining model parameters, the use of which will predict the surface formation

very preciselly.

5.4 Noise as a model parameter

Identification of the AWJM model parameters in case of noisy input data is challeng-
ing and intractable problem due to the unclear form of the trench. As we demonstrated
in previous sections, it always depends on the level and exact distribution of the noise,
but in all the cases the accuracy of the surface prediction becomes lower with the in-
crease of the noise. It is obvious that the most accurate results are given by the most
clear and realistic measurements.

One of the possible solution to ameliorate the input for our task is to use the numer-
ous measurements to obtain the average. We demonstrated this approach previously.
Another proposition is to assume the noise as the independent unknown model pa-
rameter, which can be considered in the identification process, based on the following
model:

aZ
%—f = —% + Eexp - (5.5)
We propose to extend the number of unknown parameters u = {E, €qy,} which

need to be found. In this way, our cost function changes to the following:

B

1 o
Tw =5 [126.7) = Zog(@) Pde + SIVE + Jlewal’s  (56)
Q
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Figure 5.10: Coupled identification of the Etching rate function and applied noise with level
equal to 1%.

where (3 is the Tikhonov regularization coefficient corresponding to the measurement

errors.

The idea is to identify simultaneously the Etching rate function but apart from the
noise in the input data. When the noise can be determined correctly, it will lead to
the more precise identification of function E, and of course to more proper surface

forecast.

We generate again the artificial trench profiles for all the diapason 0 - 40% of noise,
applied to the initial clear surface. This set of numerical experiments contain the
identification based only on one available observation for each case. The regularization
parameters « and (8 have to be re estimated numerically for each simulation to fit the

values of the cost function.

Ivolvement of the measurement errors in the set of model parameters u increases
the number of unknowns to be idetified and influences on the time and costs of the min-
imization process. The minimization takes from 49 to limit of 200 iterations depending

on the each special case regardless the level of applied noise.

The numerical results of the joint identification of the Etching rate function and
measurement errors are presented on Figures 5.10 - 5.17 respectively to the level of

considered noise.
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Figure 5.11: Coupled identification of the Etching rate function and applied noise with level
equal to 2%.
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Figure 5.12: Coupled identification of the Etching rate function and applied noise with level

equal to 5%.
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Identification of Etching rate. a=2*10"%, B=0.1, A=10%
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Figure 5.13: Coupled identification of the Etching rate function and applied noise with level
equal to 10%.
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Figure 5.14: Coupled identification of the Etching rate function and applied noise with level
equal to 15%.
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Figure 5.15: Coupled identification of the Etching rate function and applied noise with level
equal to 20%.
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Figure 5.16: Coupled identification of the Etching rate function and applied noise with level
equal to 30%.
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Identification of Etching rate. (x=6*10'4, $=0.22, A=40% Identification of the applied noise, A=40%
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Figure 5.17: Coupled identification of the Etching rate function and applied noise with level
equal to 40%.

When the surface profile is not very noisy (less than 5%), we can observe the
small changes in compare with the initial approach. Moreover, depending on the exact
distribution of the noise, the attempt to include the measurement errors in the set
of model parameters can lead to decline of the accuracy in the surface prediction. It
can be explained by very small rank of the noise values which were used. When the
identification of the noise is not ideal, the wrong estimation of the values conversely
increase the difference between experimental geometry of the shape and numerical
solution, and moves us away from the target. But despite this, the form of the Etching

rate function E in these cases becomes much closer to the original.

We can either notice the improvement of the identification of applied noise with the
growth of its level, what in its turn improves the identification of the model parameter
E. Only one exception here is the case of 40% of the noise - either minimizer stucks in
the local minimum with the particular distribution or the influence of the noise is too
strong in general. Another reason can be the not optimal choice of the regularization
parameters « and 5. Furthermore, we can see how the wrong evaluation of the noise
influences on the values of the Etching rate function, what entails not symmetry and

some problems at the corresponding points during the identification.

Also, we observe much better identified form of the Etching rate function from the
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Method 1% 2% 5% 10% 15% 20% 30% 40%

Standard 2.37x 1073 224 x 1073 1.87x 1072 238 x 1072 6.08 x 1072 6.14x 1072 878 x 1072  0.272735

Noise - param  1.05 x 1072 1.11 x 1072 1.21 x 1072 3.34 x 1072 3.73x 1072 223 x1072 4.10x 1072 7.82x 1072

Table 5.3: Comparison of the accuracy in the prediction of the trench profile for standard

approach and considering the measurement errors as model parameter.
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Figure 5.18: "Noise as model parameter" case in comparison with previous results of the

surface prediction.

very noisy input data (30% and 40%) in compare with the results in the section 5.2.
The function is not compressed at the bottom and the width is found correctly, what

forms the remaining part more properly.

The results of the surface reconstruction and accuracy in its prediction are given
in the Table 5.3. The row named "Noise-param" complies the current variant of the
parameters identification, and the row "Standard" reminds the results obtained in the

section 5.2 with only single available measurement for the input.

The corresponding comparison of the results obtained before with the consideration

the measurement errors as model parameters is demonstrated on the Figure 5.18.
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For the most important cases with the high level of noise, when we confront with
the inaccuracy in the standard approach, we have very good improvement now. With
the highly noisy experimental measurements (more than 15% of the measurement er-
rors) the coupled identification of the noise and model parameter E gives the gain in
the surface prediction approximately in two or three times. For the rest of the cases
we still have very low level of the errors between the numerical solution and epxeri-
mental geometry of the surface. The cases with the level of noise less than 5% are
still very smooth and acceptable for the identification process with standard method.
The possibility to identify the applied noise helps the minimizer to focus on the missed

parameters - Etching rate function and strongly rises up the quality of the results.

5.5 Model errors caused by wrong initial estimation

The abrasive waterjet milling process can be done with different machining settings,
some of which are directly linked with the parameters of proposed AWJM model (3.1).
Thus, one of the parameters which has to be truly known before the identification and
surface prediction, is the diameter of the nozzle which was used in experiments. In our

model the scalar parameter a describes the radius of the AWJ nozzle.

When we base the parameters identification on the real experimental measurements,
some information about the machining settings can be unreachable or even one can
make a mistake with the provided information. We propose the case, when the wrong
initial estimation of the parameter a is used for the numerical simulation. For this
aspect of the model sensitivity study we suppose two variants - when the initial esti-
mation of the nozzle radius is bigger the actual a; > ag and otherwise a; < ag. This
type of mistakes usually is called as model errors.

Numerically we examine both smooth and noisy input data. The initial surface was
generated with the initial value ap = 0.25. First, we consider the case without any
errors in the measurements. We perform the search of unknown Etching rate function

and reconsstruction of the trench geometry for two wrong assumptions by choosing the
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Figure 5.19: Identification of the Etching rate and surface prediction with wrong estimation

a1 = 0.28.
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Figure 5.20: Identification of the Etching rate and surface prediction with wrong estimation

a; = 0.22.

values a; = 0.28 and a; = 0.22. Numerical results are presented on Figures 5.19 and

5.20 respectively, where the initial surface is named "Experimental".

The second step is to perform the same simulations using the noisy profile as input,
which was obtained by considering the noise of 10%. Appropriate results are given on

Figures 5.21 and 5.22.

Wrong initial estimation of the parameter a related to the AWJ nozzle diameter
leads to the essential mismatch in the trench profile forecast, even the mistake is quite

small. We can see that if the chosen value a; is higher than original one, the identified
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Figure 5.21: Identification of the Etching rate and surface prediction with wrong estimation

a1 = 0.28.
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Figure 5.22: Identification of the Etching rate and surface prediction with wrong estimation

a; = 0.22.
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Etching rate function differs not so much from the original, and we can obtain smooth
solution. The proposed method is able to partially addapt the sought unknown function
to the input requirements. By the selecting the value a; smaller than initial, we cut
the domain of the jets impact what gives completely wrong geometry of the surface.
As a temporary conclusion we can summarize that in lack of knowledge about the
real size of the nozzle diameter, it is more rational to approximate it from the width
of the measured trench with slightly bigger values to be able to identify the required

unknowns more precisely.
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6.1 Introduction

In this chapter we want to present the concept of more challenging problem of the
optimal parameters identification comprising the moving Abrasive Waterjet model.
The considered movement of the waterjet is always straightforward among the work-
piece (Figure 6.1). The feed speed can differ but be constant during the milling process
and moreover it can vary within the changing the position of the jet. The cases of the
linear acceleration and deceleration are studied in present work.

The identification of the model parameters in the 3D case comes from the sim-

ilar principles and results obtained for linearized 2D case. There several different



88 Chapter 6. Identification of Etching rate function for moving waterjet

workpiece

Figure 6.1: Schematic cross-view of the AWJM process and surface formation for moving

waterjet.

approaches are demonstrated to form the cost function and proceed the optimization
algorithm according to available input and their quantity.

As previously, the presented work of this chapter is possible to split into two parts:
identification based on an self-generated input data, and involvement of the real ex-
perimental measurements. Although, we introduce the use not only of the average
cross-sections (and surfaces obtained from it) but also the exact original measurements
of the part of the trench. A part of this chapter has been accepted for publication in

International Journal of Engineering Mathematics [5].

6.2 Evenly moving waterjet

6.2.1 Standing with self-generated data

Starting the work in the case of moving waterjet requires the conformation of the

possibility to operate with such problem and amount of unknowns. When the waterjet
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moves along a straight path regardless of the feed speed and its changes, the milled sur-
face becomes the trench. On one hand it is possible to consider the similar formulation
of the identification problem as in 2D case of stationary jet, but from the other - we
are interested in the identification of the complete form of the Etching rate function,
not only cross-section of it. It means that to identify the correct form of Etching rate
function we have to study the milling process and pose the minimization problem not
on the trench profile anymore. Instead of trench profile the part of the trench has to
be assumed now as an input. We measure some interval of any given trench, where we
pose our problem and perform the identification process.

Another aspect to change the type of the input is to consider the erosion effect
produced by the jet through each point of the workpiece. In terms of the discretized
formulation the spot of the beam impact is much bigger than the discretization step of
the domain, what leads to the multiple hitting the each point of the surface.

In case of evenly moving abrasive waterjet we use the proposed AWJM model (3.1)
which describes the evolution of the surface geometry by the impact of the waterjet
beam in the ideal conditions when no measurement errors or model errors are consid-
ered:

4 E(x,y)e*%

_ , 6.1
ot (1+ 2.2+ 2,2)" (6:1)

with initial and boundary conditions:

Z ’t:O = 07
VA |3Q1 = 0.

Here Z, and Z, stand for the partial derivatives of Z with respect to z and y
respectively.

In this subsection we study two different cases, when the input data are considered
as self-generated surfaces and as averaged experimental observations. For the first one
we generate the input surface with the fixed a priori known set of parameters w, which

we are going to identify later and see how is it possible. In the second case, we take
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the averaged trench profile used for 2D case in previous chapter 4 and extend it in the
y-direction among the movement of the jet.

There is no reason to start the identification for the real experimental measurements,
when we have no information about the right type and form of the model parameters,
which should be used in the direct simulations to reconstruct the surface geometry.
In order to state that proposed method is correct we first have to proove it with the
artificial input, and compare the obtained parameters with the initial.

For the numerical implementation we define a domain y = {(z,y) : © € [—x1; 1],y €
[0;41]}, where x; always depends on the actual experimental parameters or mea-
surements, due to the changes of the jets radius, and y; = 10 x z;. In fact, we
restrain the minimization problem to a squared part in the middle of the trench
Q= {(z,y) : v € [~zi;21],y € [% — 21, % + 21]} which is presented on Figure 6.2(b).
From the experiments done in collaboration with STEEP project partners, we set
x1 = 0.5472 mm. A regular grid of 228 x 1140 points with the steps Ax = Ay = 0.048
mm is chosen for discretizing {2; accordingly to available data. For both cases the time
interval is taken as unit ¢ € [0,1] with At = ATI? The general centered difference
approximation for several variables in space and forward difference in time is used for
the numerical implementation.

The "pseudo-experimental" surface was generated with arbitrary values of model
parameters a = 0.25, k = 0.1 and Etching rate function Ey(z,y) defined on Qy (Figure
6.2(a)).

In order to obtain a smooth solution (F(x,y) € H' () instead of L?(Q2)), we change
the regularization term in the cost function to the one with the gradient of Etching

rate function:

1 «Q
IB) =5 [ 12.0.7) = Zuy(a.y)|dady + 5|V (62)
Q2

The value of Tikhonov regularization multiplier o = 107 suitable for this concrete
problem was obtained by L-curve method [33, 26].

To overcome the possible increase of the computing costs and instability in behavior
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of the Etching rate function, we estimate it as the circularly symmetrical projection of

the centred vector by the cubic spline interpolation [1].

Based on the demonstrated correctness of the identification process reported in the

previously, the determined Etching rate function and comparison of the corresponding

trench profile with the single cross-section of input data are presented on Figure 6.3.

The minimization process is performed using N2QN1 minimizer from the "MODU-

LOPT" library [22].

From the obtained results shown on Figure 6.3 we can notice that due to the ill-
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posedness of the inverse problem the identified shape of the Etching rate function
differs from the original but suitable for AWJM model and leads to very high accuracy
in reconstruction the surface geometry in the ideal conditions under the consideration
that no measurement or model errors are included. These results allow us to conclude
that proposed approach is able to be used for the identification of unknown AWJM

model parameters in 3D case.

6.2.2 Extension of the averaged trench profile

Further, we base the search of the AWJM model erosion rate E on the trench surface
obtained from the real experimental measurements by extending the average cross-
section in the direction of the jet movement (Figure 6.4). This input data has some
peculiarity caused to some extent by specific of the milling process and corresponds to
milling process with a jet feed speed of 2000 mm/min, and nozzle diameter of AWJ
machine of 0.5 mm. This value was used as a background to estimate the model
parameter a. All the numerical settings stay the same as in the previous experiment
except the value of the Tikhonov regularization factor a;, which has to be re-estimated.

The selection of the regularization multiplier is very thorough process and should be
done very carefully for each particular problem. Even the small difference in the values
of o can provoke serious deviations in the form of Etching rate function, despite the
very high accuracy in the surface forecase. The comparison of identified functions E
in case of various wrong and choosen as optimal regularization factors is demonstrated
on Figures 6.5 - 6.9. It is possible to notice that almost all cases lead to accurate
surface prediction, except the case of relatively large value o = 1072, but the shapes
of the Etching rate function can not be assumed as acceptable. Moreover, we want
to mention that even very unsignificant difference in the regularization values lead to
completely wrong results of the identified parameters. It may be explained by the too
small or too high weight of the reguarization factor in compare to the values of the
cost function and values of the Etching rate function. The chosen « also influences not

only on the shape of the function E but on its scale as well. Due to the ill-posedness of
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Figure 6.4: Extended average cross-section profile to the trench surface.

the inverse problem the picking of optimal conditions plays one of the important roles
in obtaining the required results.

Unlike the previous occasion, we have no estimation of the Etching rate function
that was used in the produced experiment, thus we start the determination from the
zero assumption Ey = 0. Also in this situation we are not able to estimate the range of
values of the Etching rate function to determine the diapason of possible regularization
multipliers, thereby we have to study wide band of it and pick some close to the optimal.
The precision of the optimal value could be higher what will increase the accuracy in
surface prediction.

Here we provide the results of the identification of inaccessible from the experiments
AWJM model parameters which should be used in the direct simulation to reproduce
the required workpiece shape. The identified Etching rate function, which describes
the formation of the waterjet energy beam, takes acceptable uniform shape, where
the highest effect is focused in the centre of the beam. This type of the function E
was obtained with the regularization term o = 107% which was chosen as nearest to

the optimal. The use of these results in the direct simulation provides us reasonable
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Figure 6.5: Identified Etching rate function and surface prediction in case of not optimal

selection of regularization factor o = 1072.
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Figure 6.6: Identified Etching rate function and surface prediction in case of not optimal

selection of regularization factor a = 1075,
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Figure 6.7: Identified Etching rate function and surface prediction in case of good choice of

regularization factor o = 1076.
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Figure 6.8: Identified Etching rate function and surface prediction in case of not optimal

selection of regularization factor a = 107",
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Figure 6.9: Identified Etching rate function and surface prediction in case of not optimal

selection of regularization factor ov = 10719,

match between cross-section of the numerical solution and experimental measurements
(Figure 6.7). Thus, the required surface can be numerically predicted with an accuracy

e in terms of L? norm smaller than 6% by expression (6.3):

VI, (B~ Zey (o) dudy
Vo, (Zeay(w,9)? dady

One can observe the mismatch on the edges of the slopes of the trench, but this

(6.3)

aspect was not considered and modeled in the used AWJM model (3.1). In practice
these effects are explained by the redeposition of the target material and appear as the
result of high power of the waterjet impact. Finally, this subsection demonstrates the
ability to identify the unknown structure of the Etching rate function E which could
be used to predict the evolution of the surface geometry for AWJM process.

6.2.3 Joint identification of all unknown parameters

In the very special subcase when there is completely no information about the model
parameters, which was used in the experiments, it appears the necessity to identify all
of them. Here we demonstrate the numerical results of the combined identification of

set of unknown model parameters u = {a,k, E} in one run. From the given input
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data, we suppose only the background information for jets radius a, = 0.25. We use
the values ag = 0.5, kg = 4 and E(z,y) = 0 as initial estimation for the identification
process. According to available data we define the discretized squared domain €y by
setting the xy = 0.312 mm with the steps Ax = Ay = 0.024 mm.

In this case we change the cost function J(u) to include the possible regularization

terms.

1
Tw) =5 [1200.9.T) = Zu(o.) Py +
Qo

aq (0]
+7HVE”2+7HG—CZ{,H2 (64)

Final identified Etching rate function E is presented on Figure 6.10(a) while the
found scalar parameters are a = 0.263 and k = 4.12 x 107°. Regularization multipliers
a; = 1071% and oy = 0.1 were used. The use of all these values gives us very accurate
surface recontruction, demonstrated on Figure 6.10(b), where the "Target" is the cross-
section of input data and "Solution" is the cross-section of modelled trench. It is
important to note that sought value of parameter a was found very pricesly, whereas
the identified value of k is close to zero. This fact as well as the surface simulation
with the use of this value demonstrates not high influence of it on evolution of the
trench footprint. Moreover, wider freedom in adjustment of all model parameters leads
to much better surface formation forecast. The required surface in this case can be

numerically predicted with an approximate accuracy of 3% in terms of L? norm.

6.2.4 Experimental measurement based identification

Another side of our problem is the possibility to identify required model parameters
not from the average surface geometry which is quite smooth and monotonous, but
accepting the original measurements of the experimentaly produced trench. These
measurements highly depend on settings and type of the instruments are used for.
Being lucky we obtained not very roughly and noisy data, which we use as input for

the inverse problem (Figure 6.11).
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Figure 6.10: Joint identification of the AWJM model parameters and comparison of the
cross-sections of obtained solution and experimental measurements in case of evenly moving

waterjet.
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Figure 6.11: Original measurements of the part of the trench, milled by micro-waterjet ma-

chine.
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Accordingly to the considered mathematical model we still assume the constant
movement of the jet in straight direction with fixed physical parameters of the waterjet
machining tool.

Usually parameter identification problems induce various difficulties caused by model
errors and rather measurement ones. And working with the original observations of the
experiments it is necessary to consider it. To be able to search unknowns from rough
and noisy initial measurements we include in the AWJM model the error term eeyp,
which represents the errors as random variables with a Gaussian probability density
function and a zero mean, normalized in accordance with the maximum depth of the
trench. This inclusion allows us to add the variation to the shape of the surface. In
its turn it leads to higher flexibility of proposed approach to identify and adjust more
correctly desired model parameters.

For the numerical simulations we use the following model:

0Z E(x,y)e*%

= — + A exp (6.5)
ot (1+Zz2 +Zy2)k/2 p

where A is the factor corresponding to the percentage of the errors also describes
the presence of the measurement noise with the required level.

In this part of the work the available experimental measurements differ from the
previous ones and correspond to waterjet milling process with the jet feed speed of
3000 mm /min. Due to provided data we define the discretized squared domain €25 by
setting the 1 = 0.384 mm with the steps Ax = Ay = 0.024 mm related to the choosen
part of the milled trench, where we minimize the cost function.

Results of the determination of the Etching rate function and comparison of the
predicted surface ("Solution") with the original profile ("Target") are given on Figures
6.12(a) and 6.12(b) in case of jet feed speed equal to 3000 mm/min. We can notice
that respectively to the decrease of the density in the input measurements we have the
small lost in the smoothness of the final function shape what causes not significant lost
in the surface restoring precision. Despite this we still have very high accuracy in the

surface prediction using presented identification technique what is expressed as level of
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Figure 6.12: Identification of the Etching rate function and comparison of the cross-sections of
obtained solution ("Solution") and experimental measurements ("Target") in case of evenly

moving waterjet.

error (less than 5%) in terms of L? norm.

6.3 Waterjet feed speed variations

We propose another special case of the identification of Etching rate function for
the moving waterjet with not constant feed speed. To extend the possibility of the
application of demonstrated identification mechanism in the manufacturing, this par-
ticular problem belonging to the variations of the feed speed during the milling process
was studied.

The idea is to meet the practical capabilities of waterjet machine, because of what
we assume that it accelerates constantly during the movement from the initial position
to final. The case of deceleration of the waterjet is considered as opposite problem
and will not be studied separately. For the numerical implementation this problem
is described as a change of the time spent by jet beam on the each position of the
workpiece where we examine the problem. This assumption was done respectively to
the technical properties of the AWJM machine and the experimental measurements

provided by the partners of the project.
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Experimental measurements. Acceleration from 600 to 2000 mm/min
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Figure 6.13: Averaged experimental measurements of the trench, milled by micro-waterjet

machine with a feed speed change from 600 to 2000 mm /min.

The shape of the trench profile changes at each discretized point of observations
during all the time of jets movement owing to the variations of the jet feed speed. It
leads to the necessity of increasing the domain €2 to capture the most effective area.

We define the domain €2y by choosing x;1 = 0.396 mm accordingly to available
experimental measurements. As previously the regular grid with the steps Ax = Ay =
0.033 mm was used to discretize the domain €2; to satisfy numerical simulations with
the experimental measurements. The existing input data (Figure 6.13) correspond to
the abrasive milling process done with AWJ machine with permanent acceleration from
the feed speed of 600 mm/min to 2000 mm/min. In order to level and smooth the noisy
input data a noise filter was applied basing on the averaging of measurements of the
several trenches done with identical machining parameters. The real feed speed of the
waterjet was recorder and correspondingly adjusted to the numerical simulations.

A Tikhonov regularization factor a = 10~!* was chosen with a L-curve method for
this specific problem. The selection of the value a more predictable and suitable in case

of evenly moving jet, because of the similar form of the trench on each cross-section.
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Figure 6.14: Numerical results of the identification of the Etching rate function and compar-
ison of the cross-sections of obtained solution ("Solution") and experimental measurements

("Target") for the feed speed acceleration of the waterjet.

In case of jets feed speed variations the shape changes quickly, and the regularization
term in the cost function can become not optimal, but anyway it allows us to regularize
the solution in general and to accelerate the minimization process. With the use of
regularization we can achieve our requirements of smoothness and stable behavior of
the sought Etching rate function E.

Results of the identification and comparisons of central profiles of the simulated
trench with the experimnetal observations are shown on Figures 6.14(a) and 6.14(b)
respectively. These results confirm the possibility to identify the unknown Etching rate
function suitable for the AWJ machining and satisfying defined conditions. By the use
of it we are able to predict the trench surface in case of varied waterjet feed speed. Due
to the increase of complexity of the problem and changeability of the surface profile one
can observe some decrease of the accuracy in the surface forecast in comparison with
the results related to the evenly moving waterjet. Even so we still have the opportunity
to predict the shape formation with acceptable level of error around 7% in terms of L?

norm.
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7.1 Introduction

Sensitivity study in 3D case of constantly moving jet represents itself versatile prob-
lem due to the complexity of the model and random origin of the measurement errors.
The process usually is very routine and meticulous because of the numerous of unknown
parameters. The importance is contained in the influence of the data noise on the ac-
curacy in the parameters detection, when on the other hand successful recognition of
the noise in the input data helps to avoid mistakes in the trench surface anticipation.
Moreover it allows to deeply understand the behavior of the model and improve the
correctness of the identification process.

Because of the ill-posedness of the inverse problem we assume the variance-based

method for the identification procedure. Valuable changes in the identification ap-
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proach and in formulation of the minimization problem demonstrate the perspective
and not obvious numerical results.

In this chapter we deliver the comparison of different methods to build the cost
function to measure the difference between simulated trench and input noisy data,
which affect to the precision in the surface reconstruction. We make an overview of
the dependence between the noise level in the input data and the accuracy in surface
prognosis in respect with chosen variants.

An interesting fact about the hidden model errors is discovered by the joint iden-
tification of the measurement errors and Etching rate function. The outlook of the
obtained results demonstrates the imperfection of the proposed AWJM model and the
ways of post-improving of the numerical results in order to predict the trench geom-
etry formation more efficiently. The research and numerical results presented in this
chapter have been accepted for publication in International Journal of Engineering

Mathematics [5].

7.2 Variety of input measurements

In this section we demonstrate and compare the numerical results of the proposed
approach to identify the Etching rate function E under different levels of measurement
errors in the simulated data. The appearance of the noise is almost impossible to avoid
in real observations. This part of the study explains and demonstrates the capability
of the proposed approach to cope with wide range of the problem regardless on the
quality of the provided experimental information. Hence, the identification process
bases on the self-generated data obtained manually, which represents wide spectrum of
possible real situations. Using the given 3D AWJM model (6.5) we generated various
trench surfaces with predetermined parameters E = FEq,a = ag, k = ko. Respectively
to chosen numerical tests, we add random uncorrelated noise with different levels (from

1% to 40%) to obtain the set of input data for various cases of identification process.

Further these noisy trenches are used separately or in superposition as the only
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Figure 7.1: Self-generated surface measurements with 15% of applied noise and form of the

initial Etching rate function.

input of the suggested identification method to find out the unknown AWJM model
parameters suitable for the surface prediction requirements and machining process.
For the numerical implementation the same as in section 6.2.4 of chapter 6 initial
assumptions and parameters of the discretization are used except Az = Ay = 0.012 mm
which are used in order to increase the density of the grid and improve the accuracy. We
also assume that initial Etching rate function E, (Figure 7.1(b)) is circularly symmetric
and obtained by the cubic interpolation from the centred vector.

In this case our inverse problem is ill-posed again with the big number of unknowns
to be identified. The used Tikhonov regularization term plays strong improvement role
with proper choice of the values of factor .. In compare with the identification from
the smooth self-generated data or averaged one, we now include a lot of instability in
the input data and for each separate situation it is necessary to fit the regularization
terms.

As explained above, the simulated input data is obtained by adding a Gaussian
white noise of various levels of intensity to the initial trench surface (e.g. Figure 7.1(a)
demonstrates the case of 15% noise), generated by use of the Etching rate function E,
(Figure 7.1(b)).

The general purpose is to identify the unknown parameter E. The use of this values
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in the direct simulation with AWJM model (6.1) will produce the trench, which idealy
has to be the closest to the initial one. The middle cross-sections of the experimental

trenches are named "Target" on the figures in this chapter.

In order to find acceptable for production and smooth solutions, first we base the
minimization process on the cost function (6.2). The only one trench measurement
was used as input for each particular case according to the level of applied noise. The
use of Tikhonov regularization term on the gradient could bring the essential absence
of high oscillations in the identification output. Regularization coefficient has to be

re-estimated through a L-curve method because of the modification of the grid size.

Detailed results of the identification of the Etching rate function E based on a single
trench measurement for all the cases of applied noise with levels in range of 1 - 40%),
and comparison of the middle cross-sections of noisy ("Input"), original ("Target") and

predicted ("Solution") trenches are given on Figures 7.2(a) - 7.4(b).

It is possible to see the monotone modifications of the results with increase of the
noise level, applied to the initial data. The accuracy in the surface prediction gradually
declines, but the geometry of the simulated trench keeps similar form. In case of 20%
and more of considered measurement errors, the solution becomes significantly deeper
and wider. Such behavior is caused foremost by the identified Etching rate function E.
The evolution of the identified erosion rate from case to case shows that the influence
of the noise and its particular peaks grows and makes more difficult to fit the input

requirements. From the other side, the range of the Etching rate values stays the same.

The stability of these results indicates that it is still possible to find the unknown
AWJM model parameter E even from the measurements with very high level of the
noise. Also, it demonstrates that the nature of the noise is irrelevant for the identifi-

cation mechanism.

The use of these obtained values leads to high enough accuracy in the direct mod-
elling and prediction of the trench surface despite the not ideal matching of the iden-

tified function E to the initial one.

Further we assume that there are several different available experimental measure-
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Figure 7.2: Results of numerical identification of the Etching rate functions for 3D AWJM
model and prediction of the surface shapes ("Solution") based on single trench measurement
with applied noises of 1%, 2% and 5% respectively, compared with original trench profile

("Target") and noisy input ("Input").
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Figure 7.3: Results of numerical identification of the Etching rate functions for 3D AWJM
model and prediction of the surface shapes ("Solution") based on single trench measurement
with applied noises of 10%, 15% and 20% respectively, compared with original trench profile

("Target") and noisy input ("Input").
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Figure 7.4: Results of numerical identification of the Etching rate functions for 3D AWJM
model and prediction of the surface shapes ("Solution") based on single trench measurement
with applied noises of 30% and 40% respectively, compared with original trench profile (" Tar-

get") and noisy input ("Input").
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Figure 7.5: Diversity of the available input measurements for different cost functions in case

of 15% applied noise.

ments of exactly the same trench that can be used to identify the unknown AWJM
model parameters and to model the required surface. In lack of real experimental mea-
surement, to implement this situation we have to generate required amount of surfaces
with the same parameters.

The distribution of the noise is always random, so the difference between them is
only the random noise applied to the initial surface. In this way we simulate the case
of duplicating measurements of the milled trench. To diversify the study we assume
two different cases when there three or ten measurement input are available, which are
shown on Figures 7.5(a) and 7.5(b).

The cost function involved in the identification process has to be modified in accor-
dance with each considered case. When the identification bases on the minimization
of the distance between numerical solution and each of the experimental observation

separately, our cost function transforms to

1
1) =Y oo [1200.7) = Z (w0 oy + SIVE, (1)
i=1 O

where n = 3 either n = 10 depending on number of available inputs which are taken

into account.
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The use of several independent trench measurements leads to very similar numerical
results in the identification of the unknown function E and prediction the required
trench surface. The most significant improvement which brings to the better surface

reconstruction can be observed with high level of noise more than 30%.

On Figures 7.6(a) - 7.6(c) and 7.7(a) - 7.7(c) the appropriate results are shown.
Released results relate to the identification of Etching rate function in case of the use
of three and ten detached measurement input with noise levels of 5%, 15% and 40%
respectively. It is possible to sight that results are very close visually, but actually

small improvement exists and precision results are listed in the Table 7.1.

Given numerical results of the surface prediction demonstrate very similar accuracy
of matching the modeled surface to the original trench regardless of the use more inputs.
It is necessary to notice that this approach does not bring very high change in the
surface reconstruction precision. From the other side it means that our identification
approach allows to determine the AWJM model unknowns fairly truly even with only
one available input, despite the high oscillations in the data caused by the measurement

CITrors.

But looking more attentively on the identified Etching rate function E, smoothness
of the solution has been increased. This effect may be essential in the further realization
of the micro-waterjet milling process in the real manufacturing, where the form and
behavior of the beam energy parameters need to be strictly determined and suitable

for machine parameters.

Considering several independent trench measurements as input for the identification
process can be interpreted as the averaging of the surfaces in some sense. To clarify
this aspect we demonstrate the numerical results belonging to the another situation

when several trench measurements are superposed and used as only input.

Analytically, the gradients of the cost function with respect to the unknown model
parameter E have to be the same in both cases, but results in numerical implemen-
tations can differ. The point that discrete adjoint state is obtained from the discrete

direct formulation but not from the continious, and it leads to the discrepancy be-
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Figure 7.6: Results of identification of the Etching rate functions and reconstruction of the

surface shapes ("Solution") based on 3 independent trench measurements with 5%, 15% and

40% level of the measurement errors, compared with original trench profile ("Target").
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Figure 7.7: Results of identification of the Etching rate functions and reconstruction of the

surface shapes ("Solution") based on 10 independent trench measurements with 5%, 15% and

40% level of the measurement errors, compared with original trench profile ("Target").
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Figure 7.8: Results of identification of the Etching rate functions and surface prediction based

on superposition of 10 trench measurements with 40% level of the measurement errors.

tween numerical results in paramter identification. In theory the use of the average of
the noisy trenches will provide less rough and noisy input data and will lead to the
identification of model parameters more precisely, what in its turn implies the better
prediction of the required surface.

Based on that proposition we introduce the superposition of the ten experimental
observation, which are taken from the previous test and introduced in the cost function

as follows:

n

J(E) = %Q/ HZ(x,y,T) - (2?1 Zexpi“”’”) Hdedy+ SvER, (12

where n = 10 in accordance with the chosen case.

The results of the identification of Etching rate function and accuracy in trench
formation prediction are almost the same as in case of independent measurements
except the case of 40% of the noise (Figure 7.8 ). Suddenly, the surface geometry
forecast is less precise in this situation than previously, but still better than in case of
the use of one or three trenches as input.

A comparison of the accuracy in surface geometry prediction for various configura-

tions of the cost function is represented on Figure 7.9.
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Comparison of accuracy in trench prediction
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Figure 7.9: Comparison of the proposed constructions of the cost function, based on different

amount of the available experimental observations.

Holding the acceptable level of accuracy (less than 10%) in the surface reconstruc-
tion in comparison with the experimental measurements, using several input or either
of their average (7.1) and (7.2) provides better opportunity to match the required
trench profile. The use of the average of the input measurements demand in its turn
to adapt the regularization coefficient due to the change of the behavior of the input.

The difference between using one and several measurements is not very impressive
due to random nature of the noise applied to the input, and could be strongly increased
by involving hundreds of experimental observations to reduce the influence of the errors
and by adjusting the regularization coefficient according to the averaging of the input.
Given overview of the identification based on 1, 3 or 10 trenches shows us that from
the other side, we can identify unknowns with reasonable accuracy even with only one
trench measurement.

Cost functions (7.2) and (7.1) for n = 10 are not identical, but theoretically they
have the same gradient. Nevertheless numerical implementation of these two cases

shows the difference in obtained results and gives the flexibility to find more suitable



116 Chapter 7. Sensitivity study in case of uniform AWJ movement

Trenches 1% 2% 5% 10% 15% 20% 30% 40%

1 trench 3.74x 1072 3.92x1072 3.65x 1072 4.08x 1072 546 x 1072 7.62x 1072 0.118329 0.142537
3 trenches 3.75x 1072 3.95x 1072 3.61x1072 4.14x1072 6.02x 1072 7.73x 1072 0.115635 0.138153
10 trenches 3.75x 1072 3.97x 1072 3.61 x 1072 4.22x 1072 5.67x 1072 7.45x 1072 0.108759 0.100952

superposition of 10 3.75 x 1072 3.97 x 1072 3.54 x 1072 4.10 x 1072 5.67 x 1072 7.45x 1072 0.108724 0.115774

Table 7.1: Comparison of the accuracy in the ternch surface prediction, corresponding to

different cases of the cost functions and different levels of applied noise.

way for each particular problem. More detailed and precise results of the surface

prediction are given in Table 7.1.

The analysis of the obtained results induces to think about the particular random
distribution of the noise, applied with high level to the original input, which has very
high influence on the identification process. The trench surface simulated with the use
of the identified Etching rate function is quite close to the input (noisy or average of
several trenches) in all the cases, which were not alligned and fitted to the original
surface due to the fairly random distribution of the noise. It engenders the conclusion
that the use of much larger number of measurement can negotiate the noises or make
them more uniform, calibrate and fit by this the inputs to the original data and improve

the accuracy of the surface prediction.

Mostly the use of several trenches (and their average) instead of only one can essen-
tially improve the accuracy in the parameters identification, conducting to reduction
of the errors in the surface prediction up to 20% in cases of adverse available inputs.
Particularly, in case of high level of the applied noise (40%), the use of 10 separate
measurement allows to improve the surface prediction accuracy by 30%. Certainly, it
should be noted that sometimes only one measurement is available, and it might be

enough to obtain the model parameters required to reconstruct the profile.



7.3. Noise as model parameter 117

7.3 Noise as model parameter

7.3.1 Identification of the measurement noise

The identification of the unknown AWJM model parameter Etching rate function
FE in the previous section demonstrates a high straight dependency of the accuracy on
the level of the noise. The accuracy of the surface prediction always decreases with the
increase of the noise level reagardless of the proposed approach to construct the cost
funciton.

One of the possibilities to improve the quality in surface prediction and accuracy of
the identification process is to take into account and identify the measurement errors
by considering them as unknown model parameters in the AWJM model:

8_Z E(z,y)e*?

=— + Eexp - (7.3)
o (+z2+z)" T

We now assume that u = {E, €.y, } and we consider new following cost function:

Tw) =5 [12.0.T) = Zug(og)Pdsdy + SIVE + Jlewl®, (1)
Q2

where « stays the regularization multiplier for Etching rate function and § is the

Tikhonov regularization coefficient corresponding to the measurement errors.

To ensure first the correctness of this idea and possibility to identify the existing
noise in the input data, we firstly use the "true" values of Eq as the initial estimation of
the Etching rate function and focus on the identification of measurement errors, which
is represented as normaly distributed random values among all the working domain
5. Numerically it leads to the sufficient growth of the amount of unknowns and slows
down the minimization process. Here and in all the next numerical tests in this section
we use the same parameters and assumptions as in section 7.2.

Firstly, it is necessary to check if the minimizer is able to faithfully determine the

randomly distributed values of the model parameter. The initial noise applied to the
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Original applied noise, A=5% Original applied noise, A=30%
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Figure 7.10: Original generated noise of 5% and 30% level respectively.
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Figure 7.11: Identifiied noise related to the cases of 5% and 30% level respectively.

trench with the levels of 5% and 30% is shown on Figure 7.10. The numerical results
of the identification of the noise for both cases are given on Figure 7.11.

The main goal of these experiments is to show the availability of the announced
method to reliably identify acceptable values of the simulated measurement errors
regardless of error intensity.

The above illustrations clarify very strong capability to determine the measurement
errors from the unclear input data having correct information about all other AWJM
model parameters in advance. In compare with the original distribution of the noise

the mismatch is very negligible despite its behavior.
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Usually there is no information about the behavior and type of the Etching rate
function E that should be used to predict the right form of the surface. Moreover,
most of the available measurements are noisy and unclear. So we now face with the
problem when it is necessary to identify the unknown model parameter E and mea-
surement errors €ey, at the same time, in order to improve the quality of the surface

reconstruction.

Considering that we continue the identification process in the similar conditions
and with the same configuration as previously, we can use some assumptions about the
form of the Etching rate function E, which we have already obtained in section 7.2,
to simplify the continuation of identification process. The original clear surface of the
trench was generated with the same model parameters, and the only difference is the

random generation of the noise imposed on it.

Selected results of the combined identification of the Etching rate function and
measurment errors for the cases of 5% and 30% levels are presented on Figures 7.12
and 7.13. The forms of the found Etching rate function E are almost identical in both
demonstrated cases, and evenmore it keeps the same for all the range of studied noises.

It proves the correctness in the joint parameters identification.

In compare with the simple identification of the noise, the shapes of the noise
in these cases are not so perfect and demonstrate the dependence on other model
unknowns. The disparity of the results is more distinct with smaller values of the
measurement errors while in case of 30% the behavior of the identified noise is very

simillar to previous case.

The comparison of the central cross-sections of initial ("Target") and identified
("Solution") Etching rate functions and related trench prediction results for the 5%

noise case are given on Figure 7.14.

Considering the identification result for all the range of noise levels, we can note that
with the decrease of the measurement errors, their influence on the surface formation
decrease as well and become less significant. It leads to the modification of the form of

identified noise, what can be distinctly seen on Figure 7.12(a), where the noise takes in
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Identified noise, A=5% Identified Etching rate function, A=5%

(a) Identified measurement errors 5% (b) Identified Etching rate function in case of 5%

of noise

Figure 7.12: Jointly identified noise form and Etching rate function in case of 5% of applied

noise.
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Figure 7.13: Jointly identified noise form and Etching rate function in case of 30% of applied

noise.
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Figure 7.14: Numerical results of the Etching rate identification (identified is called "Solution"

and initial - "Target") and trench surface reconstruction with identified measurement noise

of 5%.

some sense the shape of the trench surface. It is possible to conclude, that during the
identification, the method tried to adjust the unknown model parameters to better fit
the given input and changed the form of more flexible one - noise.

This kind of results can be very useful to understand how the final identified form
of E (Figure 7.14(a)) should be actualized to reconcile the form of the noise and to
improve the accuracy in the surface prediction via direct simulation with the use of
optimal AWJM model parameters.

From the other side, when the measurement errors are much higher (e.g. 30% on
the Figure 7.13(a)) the values and influence of it greatly rise up in comparison with
Etching rate function E, and it turns into several problems for the minimizer to correct
the exact unknowns in the right ways and inability to adjust model parameters more
precisely. But even with actual results the level of errors in the surface prediction is

less than 4% in terms of L? norm.

7.3.2 Removing the measurement noise

One more interesting aspect of this work is the ability to improve the surface re-

construction by the improvement of the input data.
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Trench without the removed noise, A=5% Comparison of original cross-section with solution, A=5%
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Figure 7.15: Numerical results corresponding to the removed noise of 5% from the initial

measurements, and prediction ("Solution") of the milled trench.

The general idea is to find the possibility to use the identified noise in order to
improve the accuracy in surface prediction. As we demonstrated previously, proposed
identification of the model parameters is able to properly determine the measurement
noise from the input data. These obtained results can be used to improve the shape of
the input data by removing the supposed noise from it.

Assume now that we identified quite acceptable and useful values of the measure-
ment erros (e.g. Figure 7.11), which affect most strongly the identification of the
AWJM model parameter E and the accuracy of surface prediction. We can further use
this information to reduce the measurement errors, even if it is not ideally determined,
from the initial input and obtain much smooth and clear trench.

The set of numerical implementations of this approach is presented on Figures
7.15(a) - 7.18(a). To demonstrate the applications diversity of this approach in practice
the results are given for problems of 5%, 15%, 30% and 40% of the measurement noise.
For each of the cases the trench surface with removed noise is illustrated as well as
the comparison of the central cross-sections of the predicted ("Solution") and original
("Target") trenches.

By removing the noise from the input data we are able to obtain much better shape

of the trench for each case of the noise level. Moreover, by studying the improved
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Trench without the removed noise, A=15% Comparison of original cross-section with solution, A=15%
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Figure 7.16: Numerical results corresponding to the removed noise of 15% from the initial

measurements, and prediction ("Solution") of the milled trench.
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Figure 7.17: Numerical results corresponding to the removed noise of 30% from the initial

measurements, and prediction ("Solution") of the milled trench.



124 Chapter 7. Sensitivity study in case of uniform AWJ movement

Trench without the removed noise, A=40% Comparison of original cross-section with solution, A=40%
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Figure 7.18: Numerical results corresponding to the removed noise of 40% from the initial

measurements, and prediction ("Solution") of the milled trench.

surfaces we can notice that the identified noise is very close to the applied one, and as
smaller noise was in the measurements as more correct its determination.

After the use of such manipulation we can perform again the identification of the
unknown AWJM model parameter E as it was demonstrated in section 7.2. By such
decision we are able to reduce the influence of the measurement and model errors and
really enhance the accuracy of the surface prediction 7.15(b) - 7.18(b).

The complete description of the identification results for all the span of the error
levels is given in the Table 7.2. One could see that almost for all the cases our iden-
tification approach gives the very high accuracy in the surface prediction regardless
of the type of input record and let us to predict the surface in direct simulation with
level of error less than 3%. In cases of 15% and 20% of noise we have the increase of
the precision in more than two times, while for 30% and 40% of noise we improve the

accuracy of the surface prediction in more than four times.
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Measurement errors 1% 2% 5% 10% 15% 20% 30% 40%
Removed noise 2.87x 1072 294x 1072 254 x1072 298 x1072 257x1072 327 x 1072 2.66 x 1072 3.50 x 1072
Noisy input 3.74x 1072 3.92x 1072 3.65 x 1072 4.08 x 1072 546 x 1072 7.62x 1072  0.118329 0.142537

Table 7.2: Accuracy in the trench surface prediction, corresponding to different levels of

applied noise. 1 measurement as input.






CHAPTER 8

Conclusions et perspectives (frangais)

Conclusions

Le principal objectif de ce travail était d’étudier le comportement du modéle d’usinage
par jet d’eau abrasif en fonction des différents parameétres et de développer une méth-
ode permettant de prédire 1’évolution de la surface usinée par jet d’eau abrasif, mal-
gré la relative qualité des données expérimentales et le manque d’information sur les
parameétres d’usine des machines.

Nous avons étudié différents aspects de 'identification de paramétres pour le modeéle
d’usinage par jet d’eau abrasif, et les possibilités correspondantes de prédire la forme
des tranches usinées avec ’aide de ces paramétres. L’identification des paramétres de
ce modéle non-linéaire est particuliérement délicate lorsque les données sont bruitées,
rendant le probléme mal posé.

Dans ce travail, nous avons appliqué la théorie des problémes inverses, avec une ap-
proche variationnelle, & ce probléme concret et industriel. L’utilisation de la méthode
de 'adjoint et d’algorithmes de minimisation efficaces nous a permis d’identifier rapide-
ment et précisément les valeurs inconnues des paramétres du modeéle. L’identification
de ces parameétres permet alors de modéliser et prédire le profil des tranches usinées par
jet d’eau abrasif. L’utilisation de ’approche proposée a permis d’obtenir des prévisions
trés précises de la formation de la surface.

Les différentes idées pour identifier les parameétres ont d’abord été introduites dans le
cas de données générées par le modeéle, pour un jet d’eau stationnaire. Puis nous avons
procédé & l'identification de parameétres a partir de données expérimentales réelles,

permettant de relier notre approche a une application industrielle. Nous avons montré
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qu’'un niveau méme trés faible de bruit ou d’erreurs de mesure peut grandement influ-
encer l'identification et conduire a des erreurs considérables sur I'identification de la sur-
face prédite. L’utilisation de mauvaises valeurs d’ébauche pour les autres parameétres du
modéle conduit également & une moins bonne identification. L’utilisation de méthodes
efficaces comme l'algorithme L-BFGS pour la minimisation, et le logiciel TAPENADE

pour la différentiation automatique, a permis d’aborder ce type de probléme.

L’identification généralement trés précise des paramétres du modéle nous donne une
bonne opportunité de prédire et simuler la formation des tranches usinées, relativement

indépendamment de la qualité et densité des données expérimentales.

Dans le cas d’un déplacement uniforme ou non du jet d’eau, avec différentes vitesses,
I'identification devient un probléme nettement plus compliqué, en raison de 'augmentation
sensible du nombre d’inconnues, et encore de l'instabilité par rapport aux données.
Nous avons montré que 'approche proposée pouvait également résoudre ce probléme,
et ce, indépendamment du type et de la taille des données, de la profondeur de la
tranche usinée, de la vitesse d’alimentation du jet d’eau, du type de déplacement du
jet, et du niveau de bruit sur les données. De plus, l'identification simultanée de tous
les parameétres recherchés en une seule opération montre que le modéle est réaliste, et
qu’il possible de prédire avec une grande précision la surface en se focalisant sur les

paramétres les plus influents.

Nous avons également étudié 'identification dans le cas d’absence de connaissances
a priori sur les paramétres du modéle. En identifiant le bruit comme un paramétre
supplémentaire, l'identification des autres paramétres du modéle est alors toujours
possible avec une grande précision, méme lorsque les données expérimentales sont peu

nombreuses et imprécises.

Nous avons également comparé différentes reformulations de la fonction cott pour
tenir compte de la disponibilité de plusieurs jeux de données, permettant d’aboutir a
des améliorations notables de I'identification lorsque le bruit est tres élevé. Nous avons
considéré que le bruit faisait partie du modeéle, et nous avons introduit des termes de

régularisation de Tikhonov pour compenser sa présence. Nous avons montré qu'un
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niveau de bruit trés élevé pouvait complétement changer 'identification, et qu’il était
nécessaire d’ajuster les termes de régularisation en fonction de la structure et forme
des tranches usinées.

Afin de pouvoir prévoir la surface usinée dans des conditions bruitées, nous avons
aussi mis en ceuvre une méthode d’identification dans laquelle le bruit est identifié seul,
indépendamment des autres paramétres du modéle. L’idée consiste alors a utiliser le
bruit identifié pour le retirer des données, puis a identifier les autres paramétres du
modeéle avec ces nouvelles données. Cela augmente la qualité de 'identification des
parameétres. Et les résultats numériques correspondants pour la surface usinée confir-
ment l'intérét de cette approche. Nous avons enfin présenté une approche d’identification
globale de tous les paramétres simultanément, afin de montrer ’étendue des capacités

de la méthode proposée.

Perspectives

Cette étude a principalement porté sur I'identification de paramétres pour le mod-
éle d’usinage par jet d’eau abrasif, dans le cas de mouvements assez simples du jet,
impactant une surface initialement plane. Il y a donc plusieurs perspectives naturelles
d’extension de ces travaux:

Extension a des surfaces initiales non planes. Ce probléme peut étre abordé
en considérant un probléme de chevauchement ou recouvrement dans le processus
d’usinage, en séparant les cas transverse et longitudinal. Dans le cas de surfaces ini-
tialement non planes, le modéle doit étre recalibré pour tenir compte des variations de
la distance entre la piéce et l'orifice du jet, 'augmentation du diameétre du panache
et de la surface d’impact du jet, les modifications dans les forces mécaniques, ..., en
fonction des variations géométriques de la surface.

Déplacement non linéaire du jet. Dans le cas d'un jet qui ne se déplace pas en
ligne droite, il faut modifier le modéle numérique pour tenir compte des changements de

propriétés de 'impact du jet sur la surface. Cette perspective est sans doute cruciale



130 Chapter 8. Conclusions et perspectives (frangais)

d’un point de vue applicatif, afin de permettre la prévision de formes libres dans le
processus de fabrication industrielle.

Etude de différents types de bruits. Nous n’avons étudié ici que le bruit blanc
Gaussien additif. Mais il serait nécessaire d’étudier d’autres types de bruits, afin de
pouvoir traiter certaines données expérimentales plus réalistes.

Etude de sensibilité par rapport au bruit sur des données expérimentales
réelles. Nous n’avons pu étudier la sensibilité au bruit que dans le cas de données
synthétiques. En effet, les données expérimentales sont trés cotiteuses a obtenir. En
plus de l'intérét évident de cette étude, cela permettrait de considérer le cas de bruits
dont le niveau varie, impactant sérieusement le processus d’identification et de prévision

de formation de la surface usinée.
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Conclusions and perspectives (english)

Conclusions

The main objective of this work was to study the behavior of the Abrasive Wa-
terjet Milling model according to the physical machining system and to develop the
method allowing to predict the evolution of the surface geometry for the abrasive wa-
terjet milling process despite the quality of experimental observations and background
information about machine settings.

We studied different aspects of the optimal parameters identification for AWJM
model and possibilities to predict the shape of the milled trenches with the use of
these parameters. The identification of Abrasive Waterjet Milling model parameters
especially from the noisy data is a challenging problem because of its ill-posedness and
nonlinearity of the proposed direct model.

In this work we presented the application of inverse problems theory, based on varia-
tional approach, in the real production. The use of adjoint technique and minimization
methods allows to quickly and efficiently find unknown values of the required model
parameters with high accuracy. The identification of optimal model parameters indeed
gives a chance to model and predict the trench profile for AWJ machining. The use of
demonstrated techniques leads to very precise prediction of the surface formation.

The general ideas and methods which might be used in order to identify different
parameters of AWJM model were firstly demonstrated in case of self-generated input
data for stationary waterjet model. Further, the averaged experimental observations
were involved in the identification process in order to link this approach with real

manufacturing problems. We illustrated how an even small level of measurement errors
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or noise can influence on the identification results and occasionally leads to considerable
errors in surface forecast. Wrong background estimation of the initial values of model
parameters also decreases the accuracy of the numerical results and has to be carefully
verified in advance. The involvement of efficient approaches and techniques as L-BFGS
minimization method and automatic differentiation software TAPENADE shows their

capacity to be used for this type of a problem.

The general high precision of the AWJM model parameters identification provides
good opportunity to predict and simulate the milled trench surfaces regardless of the

quality and density of available experimental observations.

In case of uniform or uneven movement of the waterjet with varied feed speed, the
parameters identification problem turns out to be a more tough question due to increase
of the number of unknowns and instability of the input measurements. We showed the
capability of the proposed method to cope with different cases independently of type
and size of the input data, depth of the milled trench, micro-waterjet feed speed, kind of
the jet movement and level of the measurement noise. Furthermore, joint identification
of all sought model parameters in one run reveals the nonideality of the proposed AWJM
model, and gives the chance to highly improve the accuracy in the surface prediction
by focusing on the most active and possible neglecting of less important parameters in

surface formation.

We also presented a way to estimate the required surface profile in the lack of
knowledge of exact AWJM model parameters. Proposed model coupled with measure-
ment errors which were taken into account can precisely model the surface shape by
identifying optimal values of the model parameters even with very poor and inaccurate

experimental observations.

The comparison of different approaches of the cost function formulation in accor-
dance with various number of available data indicates several particular improvements
in cases of high level of measurement noise. We considered measurement errors that
were included in the mathematical model, which we tried to compensate by adding

Tikhonov regularization terms. Moreover, we explained how the high level of noise
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could completely change the identification process and why it is necessary to keep
the regularization terms adjusted for each particular problem to get a more precise
structure and shape of the reconstructed trench.

In order to control the surface prediction under the noisy conditions, we imple-
mented the technique to identify the measurement noise independently from the other
model parameters. The global idea is to use the found values to be removed from
the input data for the minimization problem, thereby to increase the quality of the
optimal parameters identification. Obtained numerical results confirm the necessity of
these manipulations by refining the quality of surface shape prediction. Also, the com-
bined identification of all the possible and not fixed model parameters was presented
in this work, to explain how widely this approach can be used regardless of available

input data.

Perspectives

This study is mainly focused on the identification of the AWJM model parameters
in the case of a straightforward movement of the waterjet impacting on initially plain
surface. Thus, several following possibilities to extend the research are proposed:

Extension to non planar initial surfaces. Thus, it generally might be formu-
lated as an overlapping problem for the waterjet milling process and can be splitted
to transversal and longitudinal cases. Involvement of the non flat initial surface of the
workpiece requires some calibrations in the proposed AWJM model due to the growth
of the stand-off distance of the jet, widening of the impact spot and changes of the jet
plume forces according to the variations of the surface geometry.

Non straightforward jet milling path. Consideration of this modification in
the waterjet milling process requires to calibrate again the AWJM model due to the
changes of the impact properties and surface geometry caused by the jets displacement.
This perspective of the work can highly increase the application of the proposed method

in the manufacturing in order to control the freeform milling process.
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Consideration of the different types of noise. In this work we only introduced
the measurement noise assumed as additive white Gaussian noise, but nonetheless other
types of the stochastic processes can be considered in the AWJM model in order to
operate with more realistic experimental data.

Sensitivity analysis based on the real experimental noisy data. This exten-
sion of the work can be very useful and important but remains very expensive due to
the experiment costs. Moreover, the level on the noise in the experimental input data
may vary and be not only of the fixed range, which in turn may affect the accuracy of

the surface geometry prediction.
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