Hamid Dehghani 
  
Patrick Poulet 
  
Alice Anthony 
  
Amir Daniel 
  
Cdd : François 
  
Ophélie Yann 
  
Mathieu, Thomas Vincent… Cédric 
  
  
  
  
  
  
  
  
  
  
  
  
  
RECONSTRUCTION ALGORITHM FOR TIME-RESOLVED DOT 29 IN REFLECTANCE AT SHORT SOURCE-DETECTOR SEPARATION

Keywords: 3D, three-dimensional ADC, analog to digital converter APD, avalanche photodiode CCD, charge-coupled device CEA, commissariat à l'énergie atomique CFD, constant fraction discriminator diffusion approximation DOT, diffuse optical tomography IRF, instrument response function Mellin-Laplace transform NIR, near-infrared PMT, photomultiplier tube SNR, signal to noise ratio SPAD, single-photon avalanche diode variable optical attenuator

Ce travail de thèse a été réalisé au Laboratoire d'Images et Systèmes d'Acquisition (LISA) du DTBS au CEA-LETI, sous la direction de Jacques Derouard, de l'Université de Grenoble.

Ces trois années de thèse m'ont permis de confirmer mon envie de poursuivre ma carrière professionnelle dans la recherche et le développement de nouvelles techniques pour des applications biomédicales. A cet égard, je dois beaucoup aux personnes avec qui j'ai travaillé au LISA ou au cours de collaborations et je souhaite les remercier ici.

Je tiens avant tout à remercier mon encadrante au CEA-LETI : Anne Koenig, mon directeur de thèse : Jacques Derouard ainsi que mon chef de laboratoire : Jean-Marc Dinten, de m'avoir confié ce sujet de thèse et de m'avoir conseillée tout au long de ce travail. A travers nos discussions, vous m'avez transmis votre passion pour la recherche ainsi que votre esprit critique et votre rigueur d'analyse.

Je remercie également mon jury de soutenance,

Introduction INTRODUCTION 1

Introduction

Since the first X-ray image of a hand in 1895 by Wilhelm Röntgen, medical imaging techniques have been intensively developed and have enabled a considerable progress in medicine in various fields of applications like diagnostic, assisted surgery and medical research. X-ray radiography, X-ray computed tomography, magnetic resonance imaging, ultrasound imaging and nuclear medicine are currently the most spread modalities at the clinics. Nevertheless, given the variety of human biological tissues and relevant information for understanding all pathologies, a unique imaging technique answering all questions remains a utopia. Each modality can provide specific information and the images from different techniques are often exploited for medical diagnostics. Nowadays, new medical imaging techniques are still sought to address unmet clinical needs.

Optical imaging of biological tissues has been emerging since the 1980's. The field of biomedical optics is now very broad and embodies various imaging techniques enabling to visualize biological tissues at different scales, from the cell to the organ, and to collect diverse information dealing with tissue composition or structure. The common approach to most of these techniques is to shine light onto a biological sample, tissue or organ, and to analyze the output light in order to extract information on this sample. Why using light? Mainly because the major constituents of biological tissues like water, lipids and hemoglobin in its oxygenated and deoxygenated forms possess different absorption spectra in the band of the electromagnetic spectrum ranging from the visible to the near-infrared. Additionally, in this band called the "therapeutic window", the absorption coefficients of all these endogenous chromophores are lower than in the neighboring spectral band, which allows looking deeper in the tissues. With this respect, optical imaging can bring new information, not available with other techniques up to now. This modality also encompasses other advantages like being non-ionizing contrary to X-ray and nuclear techniques and allowing compact imaging devices compatible with bed-side monitoring. These points become attractive for clinical applications requiring frequent imaging followups or measurements on weakened patients. Nevertheless, challenges arise when imaging tissues with light, the main ones being the penetration depth and the loss of spatial resolution due to the diffusion of light by the cells and other biological structures.

The emblematic applications of optical imaging at the scale of the organ, called diffuse optical imaging, are breast and brain imaging [START_REF] Durduran | Diffuse optics for tissue monitoring and tomography Reports[END_REF]. Whereas X-ray mammography remains the gold standard for cancer detection, research has been carried out in the past ten years in order to determine which complementary information optics could bring. Clinical studies have revealed different optical properties between normal tissue and malignant breast tumors [START_REF] Cerussi | In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy[END_REF] and suggested the possibility to use optical spectroscopic measurements to assess breast cancer risk [START_REF] Taroni | Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy[END_REF]. Currently, different research teams investigate the possibility to follow, with diffuse optical imaging, the response to a breast cancer therapy called "neoadjuvant therapy" [START_REF] Zhou | Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy[END_REF], [START_REF] Cerussi | Frequent Optical Imaging during Breast Cancer Neoadjuvant Chemotherapy Reveals Dynamic Tumor Physiology in an Individual Patient[END_REF], [START_REF] Busch D R | Optical malignancy parameters for monitoring progression of breast cancer neoadjuvant chemotherapy[END_REF]. Optical imaging is also relevant for brain activation measurements because it enables to quantify the amount of hemoglobin in its oxygenated and deoxygenated forms, signatures of oxygen consumption. Many clinical studies investigate this possibility (Montcel et al 2006), [START_REF] Wabnitz | Time-Resolved Near-Infrared Spectroscopy and Imaging of the Adult Human Brain Oxygen Transport to Tissue[END_REF], [START_REF] Kirilina | The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy[END_REF]. In this context, optics competes with magnetic resonance imaging and promises more compact and portable devices. Other reported applications for diffuse optical imaging for example deal with peripheral arterial disease [START_REF] Khalil | Dynamic diffuse optical tomography imaging of peripheral arterial disease[END_REF] and prostate imaging [START_REF] Jiang | Trans-rectal Ultrasound-coupled Spectral Optical Tomography of Total Hemoglobin Concentration Enhances Assessment of the Laterality and Progression of a Transmissible Venereal Tumor in[END_REF]. Even if the optical modality is not yet used in routine at the clinics, all these recent clinical results encourage further improvements of this technique.

Among different techniques for diffuse optical imaging, diffuse optical tomography (DOT) provides three-dimensional maps of the distribution of optical coefficients of absorption and diffusion inside an organ. These maps are obtained thanks to non-invasive measurements by placing sources of light and detectors around the organ and analyzing the collected light. These maps are calculated by tomographic reconstruction algorithms: based on a direct model of light propagation in diffuse media, they propose maps of optical properties inside the organ predicting at best the measurements. Most DOT instruments consist in spherical or cylindrical configurations of sources and detectors all around the organ to image, for the brain and the breast. Nevertheless, for some organs, the anatomy does not allow this geometry, like for the prostate. In other cases, for practical reasons, a compact instrument, easy to install on the patient can be preferred to one featuring a large number of optical fibers to attach all over the imaged organ. An alternative is an "optical probe": it consists in a combination of optical fibers for illumination and detection distributed on a few cm² and enabling reflectance measurements at short source-detector separation. Such a probe can be positioned at the surface of an organ and image locally its optical properties.

The scope of this PhD work is to propose an approach for DOT in the configuration of reflectance measurements at short source-detector separation, and to study the performances of such an optical probe.

Conceiving an optical probe for DOT providing useful clinical information is not straightforward. Indeed, such devices allowing only reflectance measurements at short source-detector separation are generally limited by their depth sensitivity. Spatial resolution and accurate quantification of absorption and diffusion coefficients are other important challenges. Currently, the most spread approach for DOT, called continuous wave, consists in using continuous light sources and detectors. However, in this case the measurements are very sensitive to shallow layers of the organ. A few probes for continuous wave DOT have been developed, either for prostate imaging or for breast imaging. In the first case, the results have shown limited depth sensitivity [START_REF] Xu | Trans-rectal ultrasoundcoupled near-infrared optical tomography of the prostate[END_REF], in the second case, long source-detector distances have been included in the probe design to increase depth sensitivity [START_REF] Gonzalez | Hand-held optical imager (Gen-2): improved instrumentation and target detectability[END_REF].

To tackle the challenge of depth sensitivity, the laboratory LISA of CEA-LETI has preferred a time-resolved approach. The principle is very intuitive: when a short pulse of light (a few picoseconds) is sent in a diffusive medium, most photons which stayed in the shallow layers are detected fast at the surface because they have undergone few diffusion events. On the contrary, the photons which have reached deep layers and come back to the surface again have stayed longer in the medium and are detected at the surface later (a few nanoseconds). Therefore, these so-called "late photons" carry the depth information. The bottleneck is that they are very few of them, as most photons reaching deeper layers are absorbed. Combining a pulsed light source and a time-resolved detection chain enables to select the photons depending on their time-of-flight and to be specifically sensitive to shallow and deep layers in the biological tissue.

Time-resolved DOT was pioneered at the University College of London in the 1990's, by Dr. Arridge and Dr. Hebden for algorithmic and instrumental aspects. They have issued the first software package for time-resolved DOT reconstructions (TOAST) and realized the first corresponding instrument (MONSTIR). Since then, different research teams have published studies on the improved depth sensitivity with time-resolved DOT [START_REF] Selb | Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution Opt[END_REF], [START_REF] Liebert | Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model[END_REF], [START_REF] Ducros | Fluorescence diffuse optical tomography: Time-resolved versus continuous-wave in the reflectance configuration[END_REF]. In the field of spectroscopy, the null source-detector approach was developed at Politecnico di Milano, and showed improved contrast in depth with time-resolved measurements at short interfiber-distances [START_REF] Torricelli | Time-Resolved Reflectance at Null Source-Detector Separation: Improving Contrast and Resolution in Diffuse Optical Imaging[END_REF], [START_REF] Bianco | Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation[END_REF]. All this work has motivated our choice of a time-resolved approach to tackle the challenge of DOT in reflectance at short source-detector separation. However, it will be further justified with our own method in this manuscript. This PhD work aims at studying the potential of optical probes for DOT, in the light of new developments of the algorithms and instruments. On the first point, the optimal choice of the pieces of information extracted from the time-resolved measurements has not yet been specifically optimized for DOT in reflectance at short interfiber distances. About the instrument, new time-resolved detectors are now available, like hybrid photomultipliers and single-photon avalanche diodes, and their contribution was not quantified yet for DOT in reflectance. Our goal is to develop a global time-resolved approach encompassing the optimal choices both at the algorithm level and for the instrument in order to determine the best performances currently achievable by DOT with optical probes.

This work is restricted to DOT images in absorption acquired at a single wavelength. The developed method should be applied to multispectral measurements in the future.

This manuscript starts with a description of the physics of diffuse optics and an introduction to diffuse optical tomography in order to position this PhD work and uncover its challenges (Chapter 1).

A simulation framework is then put in place to quantify the limits in detection of absorption contrast in depth under different noise conditions (Chapter 2). Different "datatypes", pieces of information extracted from the time-resolved measurements, are compared and we study the importance of their choice in order to optimize the robustness of detection in depth. In this chapter, we also introduce the time-resolved DOT (TR-DOT) reconstruction algorithm developed at our laboratory and propose a method to optimize its use for time-resolved measurements acquired in reflectance at short source-detector separation. The simulation work of Chapter 2 confirms the need to increase the dynamic range of time-resolved measurements so as to better measure the late-photons and increase the imaged depth range of an optical probe. This motivates the search of corresponding experimental implementations.

A first experimental setup is proposed in Chapter 3, involving free-running singlephoton detectors and a time-correlated single-photon counting (TCSPC) electronics. We discuss the choices made to optimize this setup and more specifically investigate the impact of the temporal response of the detector on the performance of TR-DOT. This study is based on two existing single-photon detectors offering significantly different temporal responses: a classical and a hybrid photomultipliers. This two-step study, with a simulation part and an experimental demonstration, shines a light on the importance of a fast temporal response of the detector in order to optimize the performance of TR-DOT in reflectance at short source-detector separation.

A second experimental setup is then proposed in order to acquire faster time-resolved measurements with a large dynamic range (Chapter 4). This approach is based on the timegating of the single-photon detectors associated to TCSPC electronics. A technical implementation of this concept based on fast-gated single photon avalanche diodes

Chapter 1: Diffuse optical imaging and tomography

In this first chapter, we introduce the basic notions of diffuse optical imaging and tomography required to understand the research work presented in the following chapters of this manuscript.

We first present the basic physical interactions between near-infrared light and biological tissues and mention the different existing models describing light propagation in scattering media.

In a second section, we present the medical imaging technique studied in our research work: diffuse optical tomography. After mentioning recent clinical results in this field, we discuss the need of optical probes to perform diffuse optical tomography for certain clinical applications. We conclude this chapter by introducing the challenges associated to an optical probe for diffuse optical tomography and our specific approach to tackle them.

Diffuse optical imaging and tomography

For the first time in 1895, looking inside the human body without cutting it open becomes possible. Experimenting with X-rays, Wilhelm Röntgen discovers that they are strongly absorbed by bones and much less by flesh. The first image formed with X-rays, transmitted through the hand of Röntgen's wife, assesses this very clearly (Figure 1-1).

Since more than one century now, the field of medical imaging has considerably grown and plays a crucial role for diagnostic and therapy. The X-ray radiography was considerably improved to provide structural images with an excellent spatial resolution. 3D images of the human body can now be obtained by X-ray computed tomography.

Other techniques have arisen, involving other physical interactions between energy and matter. Ultrasound imaging works on the same principle as radars: sound waves are reflected at the interface between different tissues which allows seeing structural contrast. It has the advantage of requiring a relatively simple instrumentation, enabling bed-side monitoring.

Magnetic resonance imaging is based on the interaction between the magnetic field and matter, and more precisely with protons present in water molecules. This technique is very powerful to image structurally soft tissues and can be used to detect tumors inside an organ. It also encompasses another modality, the BOLD signal (blood-oxygen-level dependent), which can follow variations of the paramagnetic deoxygenated haemoglobin and give indirect information on the oxygenation of tissues. This functional technique is widely used for brain studies.

Another functional imaging technique is nuclear medicine. The patients receive an injection of tracers specifically bonding to some tissues and localized thanks to associated radioactive agents emitting gamma rays. Optical imaging is an emerging technique exploiting another part of the electromagnetic spectrum: the near-infrared range (NIR) (Figure 1-2). These electromagnetic waves are less energetic than X-rays, therefore non-ionizing and harmless for patients. They interact differently with biological tissues: they are absorbed by tissues and above all strongly scattered. This is why the scientific field studying optics in tissues is also called « diffuse optics ». In the following section, we describe the main interactions of NIR light with tissues to uncover the additional information about tissues that NIR images can provide. 

. Optical properties of biological tissues

In the NIR range, biological tissues behave as diffuse media. The main interactions between matter and light are absorption and elastic scattering. Other phenomena can occur like emission of light called fluorescence, inelastic scattering like Raman scattering, and nonlinear interactions. However, these phenomena are less preponderant and neglected in the context of diffuse optical tomography so they will not be further discussed here. We will now introduce the three main quantities used to describe optics in diffusive media: refractive index, absorption coefficient and scattering coefficient.

Refractive index

The refractive index of a medium is defined as the ratio between the speed of light in vacuum and its speed in the medium. In water, =1.33, whereas it can reach 1.5 in pure fat. Biological tissues contain structures of different natures, with different values of refractive index. Therefore an average value is used to describe it. Depending on their composition, the refractive index of biological tissues can range from = 1.35 to 1.45 [START_REF] Bolin | Refractive index of some mammalian tissues using a fiber optic cladding method[END_REF]). We will use the value of = 1.4 in our work.

Absorption

The absorption of light by matter is described by quantum physics. The energy of a photon is absorbed by an atom which can excite one of its energy level thanks to the energy of the photon. This absorption event can be followed by an emission of light (fluorescence) for certain molecules or the energy can simply be dissipated by thermal effect. x At the macroscopic level, the absorption in a non-scattering medium is described by the Beer-Lambert law. If we consider a tissue of thickness x illuminated by a collimated beam of intensity I 0 at wavelength λ (Figure 1-3), the output intensity I is express as follows:

(1-1) is the absorption coefficient which depends on the wavelength λ and is expressed in cm -1 . The inverse of the absorption coefficient is the average path of the photon in the medium before being absorbed.

The constituents of the tissues absorbing light are called chromophores. Each chromophore is characterized by its molar extinction coefficient in mol -1 .L.cm -1 which links its absorption coefficient to its concentration C in mol.L -1 in the medium:

(1-2)

In a medium containing a mix of n chromophores homogenously distributed, the absorption coefficient can be calculated as follows:

(1-3)

The main chromophores of human tissues are: -Water: it is the major constituent of biological tissues, which can reach up to 80% in certain organs like the brain. Water absorbs strongly wavelengths in the infrared, above 900 nm. -Hemoglobin: this protein located inside red blood cells ensures the transport of oxygen in the body. It is present under two main forms: the oxyhemoglobin (HbO 2 ) saturated with oxygen molecules and the deoxyhemoglobin (Hb) desaturated with oxygen molecules. These two forms having different absorption spectra in the NIR range, it is possible to deduce their relative concentrations from a measurement at multiple wavelengths. This is the working principle of commercially available pulse oximeters. A measure of oxygenation of blood is oxygen saturation SO 2 [START_REF] Hillman | Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications[END_REF]:

(1-4)

-Lipids: similarly to water, these molecules strongly absorb light above 900 nm.

-Melanin: this biological pigment is strongly absorbing molecule in the NIR but only present in the epidermis (few µm thick). Whereas it is crucial to take it into account when probing small volumes like for skin spectroscopy, it becomes less preponderant for probing larger ones, like in tomography. Figure 1-4 displays the NIR absorption spectra of the main chromophores of tissues. The wavelength range 700-900 nm, between the absorption peak of hemoglobin and the absorption peaks of water and lipid, is commonly called the "therapeutic window".

For illustrative purpose, we show the image of a human hand seen in reflectance at λ=850 nm (Figure 12345). The veins are very dark, due to the strong absorption of hemoglobin. This image illustrates that information provided by NIR in biological tissues is different from X-ray (compare with Figure 1-1).

Figure 1-4 Absorption spectra of the main constituents of biological tissues in the NIR. The range between 700 and 900 nm is commonly called the "therapeutic window". Data extracted from http://omlc.ogi.edu/spectra. Figure 1-5 A human hand seen in reflectance with a NIR wavelength of λ=850 nm (false color). Image extracted from [START_REF] Becker | The bh TCSPC Handbook[END_REF].

Scattering

Scattering of light in biological tissues originates from the mismatch of refractive index between the different biological entities like cells, their nuclei, their membranes etc. There are different types of scattering regimes, depending on the relative size of the scattering object and the wavelength of the electromagnetic wave interacting with this object. The Rayleigh theory describes the isotropic scattering of light by particles significantly smaller than the wavelength. The Mie scattering encompasses the previous regime and the regime in which the sizes of particles are comparable to the wavelength. The latter regime generally produces anisotropic forward scattering. Finally, for objects larger than the wavelength, the laws of diffraction can be used. µ s I 0 I

x A scattering coefficient is determined similarly to the absorption coefficient. If we consider a homogenous non-absorbing medium with a thickness x (Figure 1-6), the scattering coefficient links the measured output intensity I for a given incident collimated beam of wavelength λ and intensity I 0 :

(1-5) is then the mean path of the photon before undergoing a scattering event.

The scattering coefficient perfectly describes isotropic scattering. However, most biological tissues have a preferential scattering direction and tend to scatter light forward. To describe this, the phase function is introduced: it gives the probability for a photon of an incident direction to be scattered in the direction . This problem is generally simplified by assuming that the phase function only depends on the angle between and (Figure 1234567).

Figure 1-7 Scattering of light by a particle (in grey) with an angle

The anisotropy of scattering is then defined as the mean value of weighted by the phase function :

(1-6)

In an isotropic medium, , whereas for pure forward scattering. Typically, the value of g ranges from 0.7 to 0.99 in biological tissues [START_REF] Tuchin | Tissue optics: light scattering methods and instruments for medical diagnosis[END_REF]). We will use a value of in our work. The directional effects of scattering can be included in the reduced scattering coefficient which can be interpreted as an equivalent isotropic scattering coefficient:

(1-7) Propagation of light in absorbing and scattering media using these physical properties will be detailed in a following section (1.1.2). In particular, the model used in the rest of our work, the diffusion equation, involves the coefficients and .

Values of optical properties in biological tissues

Depending on the concentration of chromophores present in a biological tissue and its own structure, the bulk optical properties can vary very importantly from one tissue to another in θ s s'

the human body. This can be seen on Table 1-1, gathering some values of and reported in literature for the most studied organs of the human body with diffuse optical imaging. 

Physical models for light propagation in diffusive media

In this section, we detail the models describing light transport in diffusive media, and therefore in biological tissues. We first present the most rigorous model of the radiative transport and secondly introduce the diffusion approximation, a simplified model most often used for diffuse optical imaging as it enables faster computation.

Radiative transfert equation (RTE) Definition

The radiative transfert equation (RTE), also called the Boltzmann equation, mathematically describes phenomena of diffusion. It has first been used in astrophysics [START_REF] Chandrasekhar | Radiative Transfer[END_REF]) and for the diffusion of neutrons [START_REF] Case | Linear transport theory[END_REF] before being applied to diffuse optics [START_REF] Ishimaru | Wave propagation and scattering in random media[END_REF]).

The RTE is a differential equation describing the radiance and taking into account the conservation of energy inside an elementary volume of a diffusive medium [START_REF] Splinter | An introduction to biomedical optics[END_REF].

Before stating the RTE, let us first explain the radiance . It is defined by the light power incident on a cross-sectional area flowing within a solid angle at a given time t. It is expressed in W.sr -1 .m -2 . In these notations, is the position at which radiance is evaluated, the direction vector and t the time (Figure 12345678). Let us now state the RTE, before detailing the meaning of each terms involved in this equation:

(1-8)

With : -speed of light in the medium defined as , being the speed of light in vacuum and the refractive index of the medium and are the absorption and scattering coefficients at the point is the phase function, giving the probability for a photon of an incident direction to be scattered in the direction .

Without going into further details about RTE, we will just mention here the meaning of the five main terms of this energy balance:

-Term 1: temporal variations of radiance, -Term 2: radiance lost through the boundaries of the elementary volume, -Term 3: radiance lost due to absorption and diffusion into another direction, -Term 4: recovery of radiance into the original direction as a result of scattering from direction into , -Term 5: angular and spatial distribution of the light source at time t, expressed in W.m -3 .sr -1 .

Resolution

Analytical solutions of the RTE exist, but only from simple medium geometries (Patterson et al 1991). Monte-Carlo simulations can numerically compute solutions of the RTE in complex media, by using a statistical approach [START_REF] Wilson | A Monte Carlo model for the absorption and flux distributions of light in tissue[END_REF]. Monte-Carlo simulations are a gold standard extensively used in the field of biomedical optics (Wang et al 1995), [START_REF] Sassaroli | Equivalence of four Monte Carlo methods for photon migration in turbid media[END_REF]. Different versions of Monte-Carlo codes can be downloaded from the website of the Oregon Medical Laser Center at http://omlc.ogi.edu/software/mc/. The bottleneck of this approach is still its high computation time, required to have a good statistics. However, strategies are currently proposed to speed it up by using parallelization on graphic processing units (GPU) [START_REF] Alerstam | Nextgeneration acceleration and code optimization for light transport in turbid media using GPUs[END_REF].

Still, RTE and Monte-Carlo simulations are hardly used for diffuse optical tomography. A different model is preferred for being much faster: it is the diffusion equation, detailed in the next section. 

Definition

The diffusion equation (DE) is obtained after making successive approximations to the RTE. The calculation steps to deduct the DE from the RTE can be found in several references like [START_REF] Arridge | Optical tomography in medical imaging Inverse Probl[END_REF]). We will not detail them here but only give the formulation of the DE and stress the various approximations made to deduct the DE from the RTE.

Like RTE, the diffusion equation is also a differential equation. However, it does not describe the radiance but the photon density in W.m -2 defined as the integral of the radiance over the solid angle 4 𝜋:

𝜔

(1-9)

The different crucial approximations which are made to deduct the DE from the RTE are the following:

-The phase function only depends on the diffusion angle θ. -The temporal variations of the flux or current density (defined below) are negligible. This hypothesis is true only if .

𝜔 (1-10)

-The light source is isotropic (which means that the non-isotropic terms are not taken into account) and expressed in W.m -3 .

Under all these approximations, the diffusion equation describes the photon density as a function of space and time t as follows:

𝜕 𝜕 • 𝑎 (1-11)
With: -the photon density, is the Green's function of this differential equation. -is the spatial and temporal distribution of the light source. -is the spatial distribution of the absorption coefficient in the medium. -is the spatial distribution of the diffusion coefficient in the medium, which depends both on and on :

(1-12)

When looking at the diffusion equation, one can make various observations. First, by removing the angular dependence , only four variables are now necessary to compute it (coordinates x, y, z and t). Second, neither the phase function nor the anisotropy factor g is present. The DE assimilates the medium to an isotropic medium of scattering coefficient .

Limitations

The DE is a useful model for computational reasons. Nevertheless, it is important to keep in mind its limitations, derived from the various approximations made to deduct it from the RTE. First, the hypothesis is true in many biological tissues but not in all of them. It was demonstrated that when is 100 larger than and the medium is large, RTE and DE give similar results [START_REF] Hielscher | Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues[END_REF]. Second, the propagation distances have to be large with respect to to consider isotropic scattering. This is not necessarily true for small volumes like fingers. For the same reason, continuous wave measurements at short source-detector distances are not well described by the DE, because most detected photons have only undergone few diffusion events. For time-resolved measurements in this configuration, the early times are poorly estimated by the DE for the same reason but the error decreases for late times.

Resolution

Analytical solutions of the DE exist for specific cases, in simple media and can be used to some extent in biological tissues. We can cite the solution for a spatially punctual and temporally brief light source in a homogenous infinite medium [START_REF] Jacques | Tutorial on diffuse light transport[END_REF]:

𝜋

(1-13)

By adding boundary conditions to this solution, other solutions can be expressed in semi-infinite infinite homogenous medium [START_REF] Laidevant | Effects of the surface boundary on the determination of the optical properties of a turbid medium with time-resolved reflectance[END_REF] or slabs (Patterson et al 1989), [START_REF] Contini | Photon migration through a turbid slab described by a model based on diffusion approximation[END_REF] or multi-layer media [START_REF] Liemert | Light diffusion in N-layered turbid media: frequency and time domains[END_REF].

Otherwise if the shape is complex and the medium heterogeneous, with layers and inclusions, the DE can solved with numerical methods like finite-elements methods [START_REF] Jacques | Tutorial on diffuse light transport[END_REF], finite difference or finite volumes. We use the latter method in our work.

Boundary conditions

When considering a non-infinite medium, boundary conditions have to be added to the model. Different types have been proposed in literature, the three main ones being partial current boundary condition (PCBC), zero boundary condition (ZBC), and extrapolated boundary conditions (EBC), all described in [START_REF] Haskell | Boundary conditions for the diffusion equation in radiative transfer[END_REF]. [START_REF] Hielscher | The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues[END_REF] have compared these three conditions and concluded that PCBC and EBC fit best the solutions obtained with Monte-Carlo in reflectance. We describe here the principle of the EBC, used in the rest of this work.

For the EBC, the photon density is extrapolated to be null at a distance from the surface of the medium. This distance is expressed as follows (Moulton 1990):

(1-14) With (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15) being the coefficient of Fresnel reflection between 2 media.

NIR imaging techniques in biological tissues

Review of existing NIR imaging techniques

The field of biomedical optics is very broad, and encompasses many aspects including imaging but also microscopy, spectroscopy, etc. We briefly introduce here the main NIR imaging techniques.

Surprisingly, the first reported medical study using NIR images was carried out in the 1930's. Max Cutler observed breast tissues with light in transillumation and noticed different contrasts depending on the content of fat, fibrous tissue, epithelial elements, and blood [START_REF] Cutler | Transillumination of the breast[END_REF]. He also pointed the possibility to observe breast tumors (Figure 123456789). Nevertheless his reports already mention some of the main difficulties inherent to this technique: obtaining a homogeneous illumination, interpreting images, etc. [START_REF] Cutler | Transillumination of the breast[END_REF]. The veins and a vascularized tumor are darker than surrounding tissues.

Since then, technological developments in light sources (lasers, diodes), detectors (charged coupled devices, avalanche photodiodes) and in computers have strongly pushed forward NIR imaging techniques, allowing better measurements and physical modeling. Since the 1980's, various imaging techniques have emerged, we mention here those imaging at the scale of an organ (> cm).

Diffuse optical tomography (DOT) provides three-dimensional maps of the distribution of optical coefficients of absorption and diffusion inside an organ. This contrast is called endogenous as produced by chromophores and structures naturally present in tissues. These 3D maps are obtained thanks to non-invasive measurements by placing sources of light and detectors around the organ and analyzing the collected light. They are calculated by tomographic reconstruction algorithms involving a model of light propagation in tissues. The contrast can be enhanced by adding exogenous fluorescent agents emitting light at a different wavelength from the excitation. This modality is called fDOT or fluorescence molecular tomography (FMT).

Diffuse correlation spectroscopy (DCS) enables a point measurement of blood flow (and of the contributions of oxy and deoxyhemoglobin). It is used to follow oxygenation of the brain [START_REF] Durduran | Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation[END_REF] and the muscle. Tomographic images of blood flow can be obtained with diffuse correlation tomography (DCT) [START_REF] Durduran | Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods[END_REF]).

To finish, photoacoustic imaging of biological tissues has appeared in the 2000's and is now quickly developing [START_REF] Xu | Photoacoustic imaging in biomedicine[END_REF]. It combines optical excitation of tissues and detection of ultrasonic waves emitted after the absorption of photons by chromophores. The advantage is a better spatial resolution allowed by the ultrasound detection, not degraded by diffusion like for light detection.

In this work, we focus on endogenous DOT, providing intrinsic information on the tissue and potentially the chromophore composition thanks to multispectral measurements. In the next paragraph, we introduce the working principle of DOT, highlight some clinical results and introduce our approach in this context.

Diffuse optical tomography (DOT) 1.2.2.1 How to make DOT images?

Tomography refers to forming images of sections inside an object. In the context of medical imaging this is done with non-invasive measurements obtained with waves penetrating inside the tissue, generally by irradiating the tissue from one side and measuring on the other side.

For DOT, we proceed as follows. Light sources and detectors are positioned all around the object to image. The measurements of collected light for each excited source provide different "views" on the object. Each source-detector pair probes a certain volume inside the organ and the associated measurement is affected by the optical properties within this volume. Overlapping measurements provide complementary information from overlapping regions in the observed tissue. This set of measurements from all source-detector pairs carries the information on the distribution of the optical properties in terms of absorption and diffusion within the observed tissue.

Concretely, the mathematical link between these measurements and the 3D images of and in the object is done by a tomographic reconstruction algorithm. The latter numerically calculates the maps predicting the measurements at best.

The prediction of measurements for a given distribution of optical properties requires the knowledge of the so-called direct model, describing light propagation in tissues (section 1.1.2). Proposing maps of and explaining at best the measurements requires solving an inverse problem.

The basis of DOT algorithms was developed in the 1990's and many approaches have been proposed. We mention here the most common method described as the "perturbation approach" [START_REF] Arridge | Optical imaging in medicine: II. Modelling and reconstruction[END_REF]), which will be further detailed in Chapter 2. It mathematically links with a linear system Y=WX:

-Y: the differences between the measurements and the predicted measurements for a given map of optical properties, -X: the variations in optical properties (absorption or diffusion), -W: the sensitivity matrix (jacobian). We have to stress that the inverse problem is difficult to solve for DOT. It is an illposed problem, which means that the measurements only are not enough to determine all the parameters. Different algorithms can be used to solve the inverse problem: gradient descent, conjugate gradient method, singular value decomposition, algebraic reconstruction technique, etc.

Possible techniques and instruments

In the previous section, we have described DOT in a generic way. There are actually three possible implementations of this technique: continuous wave (CW), time-resolved (TR) and intensity modulated (Figure 1-10).

a) b) c)

Figure 1-10 Three approaches for DOT: a) continuous wave (CW), b) time-resolved (TR), c) intensity modulated. Adapted from [START_REF] Delpy | Quantification in tissue near-infrared spectroscopy[END_REF] Continuous wave (CW) uses a continuous light source and detector and registers differences in intensity. Time-resolved uses a pulse of light (typically faster than 100 ps) and records the broadening of this pulse when passing through a diffusive medium with time-resolved detectors (gated cameras, photomultipliers and time-correlated single-photon counting electronics). The third approach consists in modulating light and recording the amplitude M of the modulated intensity and its phase φ, at the output of the medium.

Formally, the CW approach is described as the integral over time of the time resolved approach. The link between this latter approach and the intensity modulated one is given by the Fourier transform.

The information content is potentially richer with time-resolved and frequency-domain approaches, compared with CW. In theory, the measurements at all frequencies offer the same information content of the full time-of-flight distribution of photons. However, timeresolved instruments are very sensitive to low photon counts. We will detail this aspect later.

The description of the direct and inverse problems can be found for these three approaches in literature. DOT software packages are now available online for the 3 methods. For frequency domain and CW, the software Nirfast was developed at Dartmouth College. The University College of London has created the software TOAST for timeresolved DOT. In Chapter 2, we will detail the formalism of the direct (2.1.1) and inverse problem (2.1.2) for the time-resolved approach.

Clinical applications

Since the 1990's, various clinical studies with DOT have been reported. A recent review paper on diffuse optical imaging and tomography summarizes them [START_REF] Durduran | Diffuse optics for tissue monitoring and tomography Reports[END_REF]. We highlight here some results obtained for the two most common applications for DOT, breast and brain imaging, and two other applications showing promising clinical results.

Breast

Numerous clinical studies of the breast with DOT have been reported [START_REF] Choe | Diffuse optical tomography and spectroscopy of breast cancer and fetal brain[END_REF], [START_REF] Durduran | Diffuse optics for tissue monitoring and tomography Reports[END_REF]. DOT is relatively easy in the breast thanks to its simple internal structure (compared to the brain) and its low absorption. Nevertheless, in the context of breast cancer detection, X-ray mammography remains the gold standard. The trend is now to investigate further which information can be brought by NIR images and not by methods like X-ray and MRI. Multispectral DOT, allowing chromophore decomposition is gaining interest. Practically, different studies investigate the possibility to follow breast cancer treatment with CW or frequency-domain DOT monitoring [START_REF] Zhou | Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy[END_REF], [START_REF] Cerussi | Frequent Optical Imaging during Breast Cancer Neoadjuvant Chemotherapy Reveals Dynamic Tumor Physiology in an Individual Patient[END_REF], [START_REF] Busch D R | Optical malignancy parameters for monitoring progression of breast cancer neoadjuvant chemotherapy[END_REF]. In this context, DOT has the advantage of being non-ionizing and allowing bed-side measurement.

Brain

DOT was naturally applied to brain imaging for its potential to distinguish oxy and deoxy hemoglobin and provide information on oxygenation, often correlated to brain activity. However, these measurements are very challenging: the head is a highly heterogeneous multi-layered medium with non-diffusive layers. Moreover, there are 1 to 2 cm between the surface of the head and the cortex. So measuring functional activity requires good depth sensitivity. In this context, both continuous and time-resolved approaches have been developed for DOT in the brain.

The brain of premature infants has also been imaged with DOT in order to detect potential lesions. In this context, DOT has the advantage of offering a bed-side solution, compared to MRI. We can cite the clinical studies with TR-DOT carried out at the University College of London [START_REF] Austin | Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain[END_REF]. Figure 1-11 shows 2D images of a premature infant with a hemorrhage. Its hemorrhage is distinguished by a larger blood volume (yellow in Figure 1 showing (a) regional blood volume, (b) regional oxygen saturation, and (c) corresponding cranial ultrasound scan. There is an increase in regional haemoglobin concentration and decrease in regional oxygen saturation in the area corresponding to the intraventricular haemorrhage and haemorrhagic parenchymal infarct. The lesion is outlined in the ultrasound scan." Extracted from [START_REF] Austin | Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain[END_REF].
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Figure 1-12 Helmet of optical fibers developed for TR-DOT measurements on the head of premature infants at University College of London. Extracted from [START_REF] Hebden | Three-dimensional optical tomography of the premature infant brain[END_REF].

Prostate

Prostate cancer detection still lacks an adapted imaging modality. Not all tumors can be detected with ultrasound and numerous blind biopsies are often performed. Some research team are investigating the possibility to detect tumors in the prostate with CW DOT probes [START_REF] Xu | Trans-rectal ultrasoundcoupled near-infrared optical tomography of the prostate[END_REF]. However, the strong absorption of the prostate is challenging [START_REF] Svensson | In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy[END_REF]. Recently, a CW DOT study has shown changes in total volume of hemoglobin associated with development of a rapidly growing tumor in the canine prostate [START_REF] Jiang | Trans-rectal Ultrasound-coupled Spectral Optical Tomography of Total Hemoglobin Concentration Enhances Assessment of the Laterality and Progression of a Transmissible Venereal Tumor in[END_REF].

Peripheral artery disease

DOT has recently been applied to study the perfusion of the foot in patients with peripheral artery disease [START_REF] Khalil | Dynamic diffuse optical tomography imaging of peripheral arterial disease[END_REF]. In this case, DOT measurements were done dynamically: before and after the occlusion of the foot. The obtained DOT images enabled to visualize differences in hemoglobin concentration between the two states (Figure 1 -13). This work concluded on different spatial patterns between healthy subjects and patients with peripheral artery disease. [START_REF] Khalil | Dynamic diffuse optical tomography imaging of peripheral arterial disease[END_REF].

A probe for DOT?

Clinical motivations

Current clinical systems for DOT involve the use of multiple optical fibers for illumination and detection, positioned all around the organ, as it is often done for imaging the breast and the brain. Whereas this configuration has the advantage of imaging the entire organ, it has some drawbacks. First, for practical aspects, positioning all these optical fibers in contact with the organ and knowing their precise position are tedious tasks. It is even more complicated for weakened patients having undergone surgery or being injured (e.g. brain measurements in intensive care). It is also the case for measurements on the head of premature infants. Secondly, incorrect estimation of the positions of sources and detectors causes errors on the reconstructed images.

Of course, this configuration of sources and detectors is unavoidable when the full image of the organ is required. However, when a small volume of interest is enough, a different approach based on a compact probe can be preferred. A probe of a few centimeters wide can be imagined, gathering a bundle of illumination and collection fibers. For breast measurements, some probes are actually being developed to account for these earlier mentioned problems [START_REF] Gonzalez | Hand-held optical imager (Gen-2): improved instrumentation and target detectability[END_REF] Such an approach also makes sense for internal organs like the prostate where in any case a large probe is impossible.

Technical challenges

Such optical probe implies measurements in reflectance, which means that the source and detectors are placed on the same side of the object. It also restricts the measurements to short source-detector separations.

The main challenge of this source-detector configuration is the depth sensitivity. Other important challenges are the absolute quantification of optical properties and the spatial resolution of images. In particular, the proper quantification of the absorption coefficient is crucial for a multispectral approach aiming at chromophore decomposition.

Choice of a time-resolved approach

In reflectance, time-resolved measurements allow a depth selection in the medium by performing a time-selection of detected photons. This can be easily understood. When a short pulse of light (a few picoseconds) is sent in a diffusive medium, most photons which stayed in the shallow layers are detected fast at the surface because they have undergone few diffusion events. On the contrary, the photons which have reached deep layers and come back to the surface again have stayed longer in the medium and are detected at the surface later (a few nanoseconds). Therefore, these so-called "late photons" carry the depth information. The bottleneck is that they are very few of them, as most photons reaching deeper layers are absorbed. Combining a pulsed light source and a time-resolved detection chain enables to select the photons depending on their time-of-flight and to be specifically sensitive to shallow and deep layers in the biological tissue.

The CW approach consists in integrating all photons: it is therefore most sensitive to the surface as the majority of measured photons are early ones.

With this respect, we have selected the time-resolved approach to tackle the challenge of depth sensitivity. Moreover, recent work in the field of spectroscopy has demonstrated that depth sensitivity is dependent on time-of-flight of photons but not on source-detector separation [START_REF] Bianco | Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation[END_REF]. Additionally, other work has shown that theoretically, contrast to noise in the presence of an absorbing inclusion in depth is higher at short sourcedetector separation [START_REF] Torricelli | Time-Resolved Reflectance at Null Source-Detector Separation: Improving Contrast and Resolution in Diffuse Optical Imaging[END_REF]. In DOT, studies have also demonstrated a better depth detection and localization with TR-DOT than with CW [START_REF] Selb | Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution Opt[END_REF]. All this work has motivated our choice of time-resolved measurements.

The work presented in the following chapters consists in proposing a complete TR-DOT approach optimizing the detection of absorption contrast in depth in diffusive media. It encompasses methodological aspects linked to the processing of measurements by TR-DOT algorithms and instrumental aspects in order to acquire measurements with the largest dynamic range possible. Having developed this method, an applicative study finally investigates the spatial resolution allowed by different optical probes.

We want to mention different restrictions to our work. First, we focus on DOT reconstructions of the absorption coefficients. Second, we consider simple objects to image, including a homogenous background with punctual absorbing inclusions. Third, the optical properties of this background are fixed at = 0.1 cm -1 and = 10 cm -1 , average values between coefficients measured for breast and brain in the NIR range (Table 1-1). Finally, for experimental studies, measurements are carried out on optical phantoms, mimicking optical properties of absorption and diffusion in biological tissues.

Summary

In this first chapter, we have introduced the main physical interactions between nearinfrared light and biological tissues: absorption and scattering. Different models can mathematically describe light propagation in scattering media. Whereas the radiative transfer equation is the most accurate, it can be simplified by the diffusion approximation to obtain a less computationally intense model. The latter model, the diffusion equation, is broadly used for diffuse optical imaging but is accurate only under certain conditions.

We have presented the technique further studied in this research work: diffuse optical tomography. This imaging modality provides 3D maps of absorption and scattering coefficients inside an organ from non-invasive measurements. The multispectral approach can also retrieve 3D maps of chromophores. We presented recent clinical results showing the interest of the information brought by near-infrared light.

We finished this chapter by discussing the need for optical probes with limited sizes to acquire local images of diffuse optical tomography in some organs. The biggest challenge of this technique is its depth sensitivity. Other challenges are accurate quantification of optical properties and spatial resolution.

The next four chapters will present our time-resolved approach to optimize the performances of optical probes for diffuse optical tomography.

Chapter 2: Reconstruction algorithm for time-resolved DOT in reflectance at short source-detector separation

In the previous chapter, we explained briefly how tomographic images could be obtained in diffusive media: it involves solving the direct and inverse problem. We have introduced this concept generally, without specifying which kind of measurement was done. Then, we have introduced the idea that time-resolved measurements provided a way to probe a diffusive medium at different depths and to increase the contrast in depth compared to a continuous wave approach.

This chapter now investigates how to reconstruct diffuse optical tomography (DOT) images with time-resolved measurements and how to optimize this reconstruction in the configuration of DOT in reflectance at short source-detector separation.

In a first section, we focus on the specificity of time-resolved DOT algorithms. We present the problem of the choice of "datatypes", time-filters extracting information of the time-resolved measurements. In particular, we first study which datatype (Mellin, Laplace or Mellin-Laplace transforms) is more relevant in order to robustly detect the deepest absorption contrast. For this purpose, we have put in place a methodological framework based on simulations of measurements and addition of statistical noise representative of experiments. This proposed method enables to draw conclusions independently of any reconstruction algorithm.

In a second section, we introduce the main features of a versatile algorithm developed at the laboratory LISA of CEA-LETI for processing time-resolved data with the Mellin-Laplace transform. This algorithm was used for reconstructing all DOT images presented in this manuscript.

In a third and last section, we study how to best process time-resolved measurements depending on the available dynamic range or signal to noise ratio. We conclude on the performance in terms of detection and localization in depth of a single absorbing inclusion, in a given medium depending on the dynamic range of the measurement. This method developed on simulated measurements will be used in the next three chapters to process real measurements. [START_REF] Schweiger | Application of the finite element method in infrared image reconstruction of scattering media[END_REF]) and [START_REF] Hillman | Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications[END_REF].

Other research teams have proposed evolutions to this approach. Among the most active groups in the area of time-domain DOT reconstructions we can cite:

-in the USA: the group of Dr. D. In this section, we will introduce in general the direct and inverse problem for timedomain DOT. We will detail the key question of the so-called datatypes extracting information from the time-resolved measurements for DOT reconstruction. Finally, we will present an original study carried out to determine the optimal datatype to use for reflectance measurements at short source-detector separation.

Direct problem

Diffusion approximation

Most of the reconstruction algorithms for time-resolved DOT are developed under the diffusion approximation (DA). This model was adopted because it is less computationally intensive than other more accurate models like the radiative transport equation (RTE) or Monte-Carlo simulations (MC) (section 1.1.2). Recently hybrid methods combining RTE and DA were proposed to increase the accuracy of the direct model [START_REF] Tarvainen | Image reconstruction in diffuse optical tomography using the coupled radiative transport-diffusion model[END_REF]. However, in this work, we consider only turbid media fulfilling the condition and therefore develop our method only for the DA.

Time-resolved diffusion equation and boundary conditions

The diffusion approximation describes the photon density as a function of space and time t as follows:

𝜕 𝜕 ∇ • ∇ 𝑎 (2-1)
With:

the photon density, is the Green's function of this differential equation is the spatial and temporal distribution of the light source -𝑎 and are the spatial distributions of the absorption and diffusion coefficients in the medium -c the speed of light in the medium The solution to this differential equation for a Dirac source at position and time t = 0 ns (

) is called the Green's function . As mentioned earlier in section 1.1.2.2, different types of boundary conditions can be considered to obtain this solution.

Solving the direct problem

For simple geometries, analytical solutions of the direct problem were formulated in the time-domain (1.1.2.2). For more complex geometries, a numerical solving has to be done. The finite-element method was introduced for time-resolved DOT in the 1990's and is now widely used [START_REF] Arridge | Photon-measurement density functions. Part 2: Finiteelement-method calculations[END_REF], [START_REF] Schweiger | Direct calculation with a finite-element method of the Laplace transform of the distribution of photon time of flight in tissue[END_REF], [START_REF] Gao | Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography[END_REF].

A code was developed by Dr. L. Hervé at the laboratory LISA of CEA-LETI for solving the direct problem in 2D and 3D based on finite-volumes [START_REF] Hervé | Time-domain diffuse optical tomography processing by using the Mellin-Laplace transform[END_REF]. The code is implemented in Matlab®. The boundaries of media are accounted for with the extrapolated boundary conditions.

This tool was used to simulate the measurements, compute the Green's functions and the sensitivity matrices for all the work presented in this manuscript.

Time-resolved measurements

Measured quantity

We consider that the measured signal is proportional to the photon density. This timeresolved measurement is called a time-point spread function (TPSF). This acronym is used in this manuscript, but another naming can be found in literature: distribution of time-offlight (DTOF).

Instrument Response Function (IRF)

Existing sources and detectors do not have an instantaneous temporal response. Therefore, in the case of a real measurement, the TPSF is broadened by the real temporal response of all components (source, optical fibers, detector, etc.). In general, in a time-resolved measurement chain, the time-convolution (operator ) of the temporal responses of all components is called the instrument response function (IRF).

The broadening of the TPSF due to the instrument can be modeled by time-convolving the IRF to the simulated TPSF for a Dirac source (i.e. the Green's functions of the diffusion equation). This is schematically illustrated in Figure 2-1. 

Inverse problem

General perturbation approach for DOT

Different approaches have been described for formulating the problem of time-resolved DOT [START_REF] Arridge | Optical imaging in medicine: II. Modelling and reconstruction[END_REF]. The majority of the reported results in literature were obtained by using the perturbation approach. It links the differences of measurements obtained on two objects with the same geometry but with small differences in the spatial distribution of their optical properties (absorption and/or scattering).

The vector of variations of measurements and the vector of differences of optical coefficients between the two objects are linked through a sensitivity matrix (or jacobian) as follows:

(2-2)

By knowing

and estimating , solving this inverse problem enables to estimate the change in optical properties between the two states. This method is therefore always based on a difference measurement.

Formulating the inverse problem for time-resolved DOT

In the perturbation approach, is a vector containing values of variations of the considered optical coefficient for each point (pixel or voxel according to the chosen 2D or 3D geometry) of the medium; it is therefore independent of the type of measurements. Let us see now how and are formulated for the time-resolved approach if contains the spatial variations of the absorption coefficient.

In this manuscript, we focus on the reconstruction of the absorption coefficient. Therefore, the reconstruction method and all other studies presented here are done to obtain maps of only. The equations to retrieve can be found in literature, for example in [START_REF] Arridge | Photon-measurement density functions Part I: Analytical forms[END_REF] and [START_REF] Arridge | Photon-measurement density functions. Part 2: Finiteelement-method calculations[END_REF]. 

Measurement

The perturbation approach for time-resolved measurements with the diffusion equation was formulated by Dr. S.R. Arridge [START_REF] Arridge | Photon-measurement density functions Part I: Analytical forms[END_REF]. If we only consider the absorption coefficient (assuming that the diffusion coefficient is constant), the perturbation approach can be expressed as follows:

•

(2-3)

Where: -A or B are two different media whose distribution of absorption coefficients differ with (see Figure 2-2), -and are the Green's functions, solutions of the time-resolved diffusion equation with the source terms , i = s or d relates to the position of the source and detector respectively, and is the Dirac function, -is the position in the medium, is an elementary vector in the medium, -t is time and is the convolution operator with respect to the time variable, -is the Dirac function. Let us note that the time-dependence of is indicated for mathematical concerns, but the absorption coefficient is considered constant in time in our experiments.

We will use the following notation in the rest of the manuscript: S is a light source located a point s and D is a detector located at point d. The source-detection separation is referred to as "SD". remains constant between the two media.

Let us explain the parallel between the generic formalism of the perturbation approach in equation (2-2) and the corresponding formalism for time-resolved measurements stated in equation (2-3):

-: in both cases is the same vector, expressing the differences of the spatial distribution of optical coefficients between media A and B.

-: in the time-resolved approach, it corresponds to variations at time t between the Green's functions in media A and B for a given pair of a source S and a detector D.

-: in the time-resolved approach, the sensitivity matrix is expressed as the timeconvolution product between the Green's function for a source located at and a detector placed at in medium A and the Green's function for a source located at and a detector placed at in medium B. Equation (2-3) is commonly used in the field of time-resolved DOT [START_REF] Arridge | Photon-measurement density functions Part I: Analytical forms[END_REF].
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The common configuration for DOT is that B, the medium to image, is supposed to differ slightly from medium A. A is a reference medium whose optical properties are known. The sensitivity matrix is computed for medium A and therefore , unknown, is approximated by . If A and B differ too much, it is recommended to employ an iterative process calculating again and at each new estimation of .

Datatypes

Definition

Equation (2-3) indicates that a sensitivity matrix can be calculated for each couple of source and detector and at each time t. However, most of the time, the inverse problem is not formulated by calculating the sensitivity matrix and expressing the measurements differences at any time step t. Proceeding like this would be very computationally intensive.

Additionally, it would be sensitive to experimental noise since it would consider each measured time channel as a single measurement.

So, instead of solving Equation (2-3) for each time t, most of the algorithms developed for time-resolved DOT employ temporal integrals of this equation. These integral forms, also called "datatypes" or "temporal filters" in the literature were first introduced by the group of S.R. Arridge at University College of London [START_REF] Arridge | Photon-measurement density functions Part I: Analytical forms[END_REF] and [START_REF] Arridge | Photon-measurement density functions. Part 2: Finiteelement-method calculations[END_REF] and further developed and extended in other reported work [START_REF] Schweiger | Application of temporal filters to time resolved data in optical tomography[END_REF], [START_REF] Hillman | Calibration techniques and datatype extraction for time-resolved optical tomography[END_REF], [START_REF] Gao | Improvement of image quality in diffuse optical tomography by use of full time-resolved data[END_REF], [START_REF] Hervé | Time-domain diffuse optical tomography processing by using the Mellin-Laplace transform[END_REF].

In theory any datatype is possible; in practice a satisfying datatype should obey all the following criteria:

-be sensitive to the contrast to image, -enable processing the direct model and inverse problem in limited calculation steps (in particular without requiring any time-discretization), -have a good signal to noise ratio, -extract all relevant pieces of information from the TPSFs to reconstruct the best image of the object under study. The choice of the datatype is highly important for DOT: it is the processed information. If the processed information is either corrupted by noise or not sensitive to the contrast on the image, the algorithm is not able to image the studied object. Therefore, before optimizing the algorithm, the first point to consider is the choice of a relevant datatype.

The most reported datatypes in literature are: -Mellin transform also called moments, -normalized moments (moments divided by the intensity I), -central moments (moments centred on the mean time of flight ), -normalized central moments (moments centred on the mean time of flight and divided by the intensity I), -Laplace transform, -Mellin-Laplace transform. These datatypes are summarized in Table 2-1. They were defined in [START_REF] Schweiger | Application of temporal filters to time resolved data in optical tomography[END_REF]. The formulation of the Mellin-Laplace transform is taken from [START_REF] Hervé | Time-domain diffuse optical tomography processing by using the Mellin-Laplace transform[END_REF]. 

Central normalized moments

Laplace transform

Mellin-Laplace transform

Time-filtering

It is important to understand which information content is carried by the datatypes, in order to choose which one to use. All presented datatypes perform a temporal filtering on the TPSF and therefore extract different content of information depending on the chosen values for the parameters p and n.

In the next paragraphs, the profiles of these time-filters and the profiles of their product with a TPSF will be presented. This latter representation is added to visualise at which time value of the TPSF the weight of the time-filter is put. For a clear visualisation, the profiles are normalized by their maximum for each order.

The profiles are not shown for normalized datatypes as they are similar to nonnormalized ones (as divided by a constant).

First, let us mention that the TPSF is simulated by using our code for solving the direct model (2.1.1). It is generated in reflectance at short source-detector separation (SD = 5 mm) in a semi-infinite 2D medium of µ a = 0.1 cm -1 and µ' s = 10 cm -1 with time steps of dt = 3 ps over a range of 5 ns (Figure 2-3). 

Moments

Figure 2-4 displays the profiles of the time filters performed by moments for different orders. For orders n > 0, moments are more sensitive to late photons than to early photons. The higher the order the more weight is given to late photons compared to first photons. This is visible on Figure 2-5 showing the product of the time-filters by the TPSF . 

Central moments

Central moments are moments centred on the mean time-of-flight . There is a different behaviour between even (variance with n = 2, and kurtosis with n= 4) and uneven (skew with n = 3) central moments. The former add the contribution of first photons whereas the later subtract it. However, they obey a similar trend as moments: the higher the order n, the more weight is put on late photons (Figure 2-6 and Figure 234567). 

Comparison between moments and central moments

The only difference between moments and central moments is the following: the temporal filter is transferred along time by the value of (Figure 2345678). However, the trend is the same: the higher the order, the more weight is put on late photons (Figure 23456789). 
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Laplace transform

The Laplace transform enables to isolate the first photons and is therefore sensitive to absorption changes very close to the sources and the detectors. ). As is can be seen on the zoom on early photons of Figure 2-12, for p = 0 ns -1 , the Laplace transform is similar to the intensity of the signal. When p increases, the filter puts more and more weight on early photons. 

Mellin-Laplace transform

For the Mellin-Laplace, the larger weight is given to a different time channel for each combination of p and n. The parameter p (a real positive in ns -1 ) corresponds to the number of extracted transforms per nanosecond. When setting a value for p, information on late photons can be extracted by calculating high orders, as it can be done with moments.

A complete study on the MLT for DOT is detailed in [START_REF] Hervé | Time-domain diffuse optical tomography processing by using the Mellin-Laplace transform[END_REF]. We just illustrate here the different time-filters which can be obtained by tuning p and n and discuss the comparison between MLT and moments on one hand and MLT and the full timeresolved analysis on the other hand.

Tuning the Mellin-Laplace transform with p

The figures below show the time filters performed by the MLT and their normalized product with at different orders for p = 1 ns -1 (Figure 2 For a given order n, the weight is put on larger times with p = 1 ns -1 than with p = 3 ns -1 . More values of MLT can be extracted from a given time interval with a large p. 

Mellin-Laplace transform and moments

The Mellin-Laplace filter is the product of the Laplace filter by the Mellin filter and by a constant depending on n and p. If p is small and approaches zero, we have seen on Figure 2-10 that the Laplace filter approaches y = 1. Therefore, the MLT filter approaches the product of y = 1 by the Mellin filter. So, for a small p, the Mellin-Laplace transform performs a similar filtering as moments.

Figure 2-17 shows this trend on the normalized product of the TPSF and the time filter for moments and Mellin-Laplace transform for different values of p. When p = 1 ns -1 , this normalized product clearly differs for each order (Figure 2-17 a)). However, when p = 0.01 ns -1 , the normalized product for both datatypes overlaps for each order (Figure 2-17 b)). For a large p (p=1 ns -1 ), the time-filtering differs between MLT and moments (no overlap between the lines and doted lines with rounds for a given colour). On the contrary, when p is small (p = 0.01 ns -1 ),the time-filtering performed by MLT and moments is similar at each order (overlap between the lines and doted lines with rounds for a given colour).

Mellin-Laplace and full time-resolved analysis

For a high p value, the MLT is similar to a full time-resolved analysis with timediscretization. This relation is described in detail in [START_REF] Hervé | Time-domain diffuse optical tomography processing by using the Mellin-Laplace transform[END_REF]. At each order, the MLT can be seen as a time window centred on the mean time . The following graph illustrates how the different orders of the Mellin-Laplace transform of a TPSF plotted versus their mean time approach the profile of the same TPSF when p increases (Figure 2-18). 

Conclusion

Moments, central moments and Mellin-Laplace transform enable to select the so-called "late photons" of the TPSF and to tune the time receiving more weight depending on the calculated order. Central moments and moments behave similarly with respect to this purpose.

The Mellin-Laplace transform offers a versatile formalism which enables to easily switch between different datatypes. Order zero is the Laplace transform. It becomes equivalent to moments when setting p close to zero. Finally, it approaches the value of the TPSF at time t when setting a large value for p.

Computational aspects

One of the main interests of datatypes deals with the computational aspects. They enable to extract information most sensitive to different time-of-flights without having to compute the direct and inverse problem with full time-discretization.

Direct model

Applying time-integrals to the time-resolved diffusion equation enables to obtain a continuous form of this equation with some modified terms. We detail below why it is interesting to proceed like this, rather than implementing full time-discretization of the DE.

Recall of the time-resolved diffusion equation:

𝜕 𝜕 ∇ • ∇ 𝑎 (2-4)
CW diffusion equation:

∇ • ∇

(2-5)
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Université Joseph Fourier / Université Pierre Mendès France / Université Stendhal / Université de Savoie / Grenoble INP Applying the Mellin transform to equation (2-4), we obtain an equation similar to the CW equation with the order n of the Mellin transform of replacing (Equation (2-6)). Compared to the real CW equation (2-5), there is a modified source term containing the value of the Mellin transform of at the order n-1. This relation is demonstrated in [START_REF] Arridge | Photon-measurement density functions. Part 2: Finiteelement-method calculations[END_REF] and [START_REF] Gao | Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography[END_REF]. The crucial point is that successive orders n of the Mellin transform of can be calculated recursively. There is therefore no need to do time-discretization of the DE to access to the information on different time-of-flights.

∇ • ∇

(2-6)

Applying the Mellin-Laplace transform to (2-4), we obtain also an equation similar to the CW one, but now with , the MLT of instead of (Equation (2-7). Compared to the real CW equation, there are also a modified absorption term 𝑎 and a modified source term containing the value of the MLT transform at order n-1. This is demonstrated in [START_REF] Hervé | Time-domain diffuse optical tomography processing by using the Mellin-Laplace transform[END_REF]. Similarly to moments, successive orders n of the Mellin-Laplace transform of can be calculated recursively.

∇ • ∇

(2-7)

Inverse problem

The datatypes also enable to express the sensitivity matrix, and therefore formulate the inverse problem, without time-discretization.

For moments:

(2-8)

With:

the coefficient of the sensitivity matrix of the Mellin transform for order n, at a point in the medium.

the Mellin transform at order j of the Green's functions, solutions of the timeresolved DE. i = s or d relates to the position of the source or detector respectively, is a point in the medium.

Similarly, for the Mellin-Laplace transform [START_REF] Hervé | Time-domain diffuse optical tomography processing by using the Mellin-Laplace transform[END_REF]:

(2-9)
With: -the coefficient of the sensitivity matrix of the MLT for order n and at a point in the medium.

the MLT at order j of the Green's functions, solutions of the time-resolved DE. i = s or d relates to the position of the source or detector respectively, is a point in the medium.

Signal to noise ratio

Another interest of the datatypes is that they perform averaging of the measurements, which enables to obtain an equation system more robust to noise.

Measurements are corrupted by photonic noise. This noise source is described by a Poisson distribution: its variance is equal to the number of counted photons. Even if it is dependent on the involved detection chain for counting photons, in general, for short times where many early photons are counted, there is a good signal to noise ratio (SNR), but this ratio decreases when the time of flight increases. For time-resolved acquisitions, the SNR is therefore dependent on the time of flight. As each datatype performs different time filtering, the SNR is different between datatypes and between different orders of the same datatype. In particular, for moments and Mellin-Laplace transform, as the higher the order, the more weight is put on late photons, the worse the SNR.

We illustrate it below by estimating the SNR on datatypes for different orders calculated on a simulated TPSF to which photonic noise is added. We do multiple noise draws in order to estimate the standard deviation of the different orders of the datatypes and calculate their SNR.

Simulating photonic noise

To produce TPSFs with noise consistent with experimental conditions, we proceed as follows:

1) We first convert the simulated TPSF ( of Figure 2-3) to a realistic number of counted photons per time channel. For this, we multiply all time channels by a constant so that the integral is equivalent to a realistic number of counted photons in total. In this case, we target a total of 10 6 photons (Figure 2345678910111213141516171819) 2) We add Poisson noise per time channel by using the function poissrnd in Matlab®.

This function generates random numbers following a statistical Poisson distribution. 3) We repeat this operation 100 times to simulate 100 noise draws (one example of noise draw is shown in Figure 2-20). We consider that this number of draws is enough to assess reliably the standard deviation. 

Calculating the SNR for different datatypes

For each datatype and each order, a value is calculated for each of the 100 noise draws. We define SNR as mean of the 100 values divided by their standard deviation. The calculated values of SNR are reported in Figure 2-21 for moments, central moments and Mellin-Laplace transform for 2 values of p.

Figure 2-21 shows that more orders of MLT can be extracted than moments and central moments for a given limit SNR. If p decreases, less order of the MLT can be extracted. By tuning p, one can tune the amount of extracted pieces of data from the TPSF for a given limit in SNR. 

Information content

The analysis of TPSFs with datatypes opens the debate of the content of information carried by the TPSFs and relevant to include in DOT algorithms. In particular, some studies indicate a high correlation between moments of different orders and low signal to noise ratio on late orders [START_REF] Ducros | A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part I[END_REF], which would suggest that the information content of these orders is poor.

Other studies have shown the interest of using the full temporal information of the TPSF instead of moments [START_REF] Gao | Improvement of image quality in diffuse optical tomography by use of full time-resolved data[END_REF] or the benefit of choosing multiple gates or points of the TPSF versus a few moments only (Nouizi et al 2011).

Mainly, this literature shows that the answer to this question depends highly on the studied geometry, targeted application and reconstructed coefficients (µ a or µ' s or both). As shown in the previous study on SNR , the Mellin-Laplace transform offers the possibility to choose the number of pieces of information extracted from a given TPSF by tuning the value of p. Therefore, the content of information is potentially richer with MLT than with moments.

We have explained intuitively earlier that, in reflectance, a temporal selection of photons corresponds as well to a "depth selection" in the medium: back-scattered photons with large time of flight have a higher chance to have passed through deep layers of the medium.

Consequently, because they give a high weight to late photons, high orders of moments and MLT have a higher sensitivity in depth than first orders. The relation between temporal and spatial filtering becomes very clear when showing the spatial representation of the sensitivity matrix W for absorption for the different orders of the datatypes. Figure 2-22 a) shows the value of the coefficient of the sensitivity matrix W for different orders of moments in a 2D medium for a given source-detector pair. For first orders, the sensitivity to superficial layers is high. For higher orders, the sensitivity increases in depth. Figure 2-22 b) shows the same data but for different orders of MLT, for p = 5 ns -1 . A similar trend as for moments is revealed. One can find almost similar maps between moments and MLT, but at different orders (e.g. moments n = 4 is similar to MLT n = 12). ). The source is at (-0.5, -0.1) and the detector at (0.5, 0), in cm. Each map is normalized by its maximal value. For moments and MLT the trend is the same: the depth sensitivity increases with the order n.

Conclusion

Moments and Mellin-Laplace transforms are good candidates for DOT in reflectance at short source-detector separation:

-their high orders enable sensitivity to late photons and therefore to absorption variations in deep layers of the medium (compared to the Laplace transform for example), -their high orders can be computed recursively without solving the time-resolved diffusion equation. The Mellin-Laplace transform is the only datatype which enables to tune the number of extracted features from the TPSF for a given SNR. It potentially offers richer information content.

However, the optimal choice of datatype has to be done for the configuration of interest. We propose to carry out a study investigating precisely the optimal datatype to reach our objective: detect the deepest absorbing inclusion with a reflectance measurement at short source-detector separation. In most reported studies, the datatypes used for DOT are intensity, mean time and variance (for example: [START_REF] Hillman | Calibration techniques and datatype extraction for time-resolved optical tomography[END_REF], [START_REF] Gao | Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography[END_REF], [START_REF] Hebden | Three-dimensional optical tomography of the premature infant brain[END_REF], , [START_REF] Liebert | Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model[END_REF]). To our knowledge, published studies carried out to optimally choose datatypes were targeting the best separation between µ a and and were realized in cylindrical geometries ( [START_REF] Schweiger | Application of temporal filters to time resolved data in optical tomography[END_REF], (Nouizi et al 2011)). So, most reported studies have dealt with optimizing the choice of datatypes in other configurations than our targeted application: to map the absorption coefficient in depth with probes featuring only short source-detector separations. We therefore first carried out a study to investigate the interest of including in the reconstruction algorithm the high orders of moments on one hand and of MLT on the other hand. This study is independent on the choice of the reconstruction algorithm; it is just based on statistical considerations on sensitivity and signal to noise ratio (SNR) of datatypes extracted from TPSFs. The goal is to see, for a given noise condition on a simulated TPSF, which datatypes enable to detect the deepest absorbing inclusion in a reliable way. We will also show that depending on the available dynamic range for the TPSF, different sets of datatypes should be considered.

Method

Direct model

For a simple probe made of a single source-detector pair separated by 5 mm, we simulated the TPSF measured in a homogeneous semi-infinite medium and then the one measured in the same medium with an absorbing inclusion located below the excitation and collection fibers . Different depths were considered for the inclusion (10 to 35 mm with steps of 5 mm). The TPSFs were obtained as described previously in 2.1.3.2.

For this study, the optical properties of the background of the medium are set to µ a = 0.1 cm -1 and µ' s = 10 cm -1 and to µ a = 0.6 cm -1 and µ' s = 10 cm -1 for the inclusion. The inclusion was modelled as a disk of 1 cm diameter. Figure 2-23 depicts the simulation geometry and the chosen optical properties of the medium. 5 mm µ a = 0.1 cm -1 µ' s = 10 cm -1 µ a = 0.6 cm -1 µ' s = 10 cm -1 Figure 2-24 below depicts the simulated TPSFs in the homogeneous 2D medium without the absorbing inclusion and in the medium featuring the absorbing inclusion at different depths. From these TPSFs, we can calculate a contrast to the inclusion in % and per time channel as follows:

𝑎 (2-10)
Where -𝑎 is the contrast in % at time t to the absorbing inclusion at a given depth is the value of the TPSF in the homogeneous medium at time t is the value of the TPSF in medium featuring the absorbing inclusion at a given depth at time t The different profiles of contrast for different depths of the inclusion are gathered in Figure 2-25. One can see that the larger the flight time t, the larger the contrast, at all depths. At any time t we can see that the deeper the inclusion the lower the contrast. In practice, increasing the contrast enables to be robust and not too much influenced by other instrumental variations (typically in the order of magnitude of a few %). 

Adding noise

As described previously in section 0 "Simulating photonic noise", the simulated TPSFs were converted to a total number of counted photons and Poisson noise was added independently on each time channel. For each case (homogeneous and with the inclusion at all tested depths), we did 100 noise draws in order to evaluate the sensitivity of each datatype to photonic noise. This procedure was carried out for two total numbers of counted photons: 10 6 and 10 8 to simulate two different dynamic ranges or SNR (Figure 2-26). 

Evaluating the robustness of contrast on datatypes

Once all the noisy TPSFs were generated we calculated the value of orders of the different datatypes for each case (homogeneous and with the inclusion). For each depth, each datatype and each of the 100 noise draws, we calculated the contrast on each order (Equation (2-10)). We then computed the mean value and the standard deviation of the contrast for each order at each depth so as to conclude on the possibility to robustly detect the inclusion at a given depth with a given datatype.

We propose the following criterion for a robust detection: the error bars of the contrast should not cross the line y= 0 (null contrast).

In the following paragraph (2.1.4.3), the different datatypes are compared based on this criterion to conclude on the best suited datatype for detecting the deepest inclusion for a given dynamic range of the TPSF. To better discriminate which depth should be robustly detected, each depth is separately plotted in Figure 2-29 below. The possibility of detection is a trade-off between the mean contrast and standard deviation. For all depths, the higher the order, the higher the contrast, and the larger the error bars.

Figure 2-29 shows that the limit in detection with moments is 30 mm in these conditions (10 6 photons per TPSF). At 35 mm, no robust contrast can be obtained as all error bars cross the line y = 0. For the most superficial depths (10 to 25 mm), the contrast is robust on first orders and tends to become noisy on higher orders.

The behavior is different for the deepest inclusions (30 and 35 mm). Figure 2-30 below shows a zoom on the contrast obtained on first orders. For the depth of 30 mm, order n = 0 and n = 1 do not provide a robust positive contrast. Order n = 2 is the lowest order providing robust contrast. This means that an analysis based only on order n = 0 (intensity) and order n = 1 cannot not detect this inclusion at 30 mm whereas an analysis including higher orders can.

For the depth of 35 mm, no order provides robust contrast with this SNR of 10 6 photons. Logically, increasing the SNR of the TPSFs does not modify the mean value of contrast but reduces the standard deviation, which makes the contrast more robust to photonic noise. Figure 2-31 below shows the contrast obtained for 10 8 photons per TPSF for 30 and 35 mm (to be compared with the same graphs obtained for 10 6 photons on Figure 2-29). On Figure 2-32 below, the zoom on first orders indicates that with 10 8 photons, for 30 mm, even order n = 0 and n = 1 provide a robust contrast while it was not the case with the lower SNR of 10 6 photons. For 35 mm, order n = 0 does not provide a contrast robust to noise but n = 1 and 2 do. By looking separately at these contrast profiles for each depth, we can see that central moments have a slightly higher contrast than moments at all orders, but this is counterbalanced by a larger standard deviation (for example at the depth of 30 mm on Figure 2-34). For the SNR of 10 6 photons, the limit in detection in depth with central moments is found at 30 mm, similarly as with moments. For the Mellin-Laplace transform the detection limit is also at the depth of 30 mm, as with moments and central moments.

The zoom on first orders for the depths of 30 mm in Figure 2-37 shows that a robust contrast is obtained only for orders n > 6.

We have the same conclusions about the need for high orders and same detection limit in depth for a given SNR with MLT as with moments. 

Mellin-Laplace versus moments

We can compare more carefully the contrast profiles obtained with moments and MLT in order to appreciate if one these datatypes should be preferred. The example of the depth of 30 mm is depicted in Figure 2-38 for p = 3 ns -1 and in Figure 2-39 for p = 1 ns -1 . For p = 3 ns -1 , at a given mean value of contrast, the error bar is systematically slightly smaller for MLT than for moments. This is illustrated in Figure 2-38: the dotted red line plots the level of 18 % contrast: the error bar obtained with MLT for this contrast value (at order 17) is overlapped to the error bar obtained with moment for this contrast value (order 8). Additionally, a larger number of orders give a robust contrast with MLT than with moments. In Figure 2-38, we point the orders which provide a robust contrast to this inclusion (7 orders in total for moments and 14 orders for MLT).

For p = 1 ns -1 (Figure 2-39), the same conclusions can be drawn but the behavior of the MLT is closer to moments than with p = 3 ns -1 . This confirmed what we mentioned earlier: the MLT tend to the same time-filtering as moments when p decreases .

Similar conclusions were drawn on the comparison between MLT and central moments (data not shown here). 

Conclusions

We have carried out a study to investigate the most robust datatype to detect contrast of absorption in depth with reflectance measurements at short source-detector separation and in the presence of photonic noise. The proposed method does not depend on any reconstruction algorithm; we focused instead on the robustness of contrast to statistical noise.

This study has enabled to draw the following conclusions:

-Even if moments and MLT of different orders are correlated between each other, there is an interest to use high orders. Indeed, in some cases, these orders are necessary to detect robustly a deep absorbing inclusion which could not be robustly detected with only first orders.

-In particular, this study also confirms the need of a time-resolved analysis over CW in reflectance at short source-detector separation. Indeed, it shows that moment n = 0 (intensity) can "miss" information which can be retrieved by higher orders. These conclusions are coherent with studies based on a full time-resolved analysis that concluded on the interest of this method over CW for deep detection of absorption contrast in reflectance [START_REF] Selb | Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution Opt[END_REF] [START_REF] Ducros | Fluorescence diffuse optical tomography: Time-resolved versus continuous-wave in the reflectance configuration[END_REF]. -In the following chapters, we will work with the Mellin-Laplace transform. We make this choice as this formalism is versatile and would enable to easily work with Laplace transform, moments or a full time-resolved analysis. Whereas the MLT offers about the same robustness to noise as moments for a given contrast, it enables to extract more pieces of information from the TPSF for a given limit of SNR. We will pursue this work with MLT and p = 3 ns -1 , which is a compromise between extracting more information than moments and reasonable computation times.

Discussion

In the previous study, the interest of using high orders of moments and MLT was shown for a given set of optical properties and a given interfiber distance. Similar conclusions were drawn in other configurations (not shown here). However, when changing the optical properties and the interfiber distance, not the same order are found to offer a robust contrast to noise, for the same conditions of SNR.

In the next chapters, we will only consider background optical properties of = 0.1 cm -1 and = 10 cm -1 . However, we will consider different interfiber distances ranging from 5 to 15 mm. We briefly show here that the choice of orders depends on this distance by presenting results obtained in the same conditions as the above study but for SD = 15 mm. With this SNR at SD = 15 mm we obtain a robust detection of the inclusion at all tested depths. The same trends as identified at SD = 5 mm are observed: the need of high orders for detection in depth and the possibility to extract more orders of MLT than moments.

The time-resolved DOT algorithm developed at CEA-LETI

A versatile algorithm for time-resolved DOT was developed by Dr. L. Hervé at the laboratory LISA of CEA-LETI. This algorithm can be used for any geometry of the medium and configuration of sources and detectors (cylindrical, spherical, and planar), in 2D and 3D. It takes into account the non-ideal IRF of the instrumental setup and treats the data with the Mellin-Laplace transform.

We describe here these main features, as this algorithm is used to process the data presented in all chapters of this manuscript.

Including a non-ideal IRF

Real experimental IRF

This algorithm is based on the perturbation approach under the diffusion approximation, exactly as presented at the beginning of this chapter in 2.1.2. This approach described earlier with Equation (2-3) links to variations between the Green's functions of two media. However, the Green's functions are not accessible experimentally: the measurements correspond to these functions convolved by the IRF. In order to approach based on variations between measurements acquired in two media, one needs to take into account the real IRF.

Indeed, the laser sources used for DOT have a time spread (from a few hundreds of femtoseconds to a few picoseconds), the detectors like photomultipliers tubes (PMT) or single-photon avalanche diodes (SPAD) have typical responses in the order of a few hundreds picoseconds full width at half maximum, and the optical fibers guiding the light cause time-spread of the signal as well. Moreover, these behaviours can be slightly different depending on each detector and fiber and change in time with instrumental drifts (mainly due to temperature). These points will be detailed later in chapter 3.

The real IRF needs to be accounted for in the reconstruction scheme: it needs to be considered separately for each couple of source and detector and calibrated as often as possible to account for the time drifts.

State-of-the art

This issue has been largely studied in the past ten years and many strategies were developed.

One solution is to measure directly the IRF by placing each source in front of each detector but it has the drawback of being time-consuming [START_REF] Austin | Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain[END_REF].

A second solution is to calibrate in situ the IRF by measuring its reflection on the surface of the object under study [START_REF] Hebden | Assessment of an in situ temporal calibration method for time-resolved optical tomography[END_REF]. This solution was performed with success in vivo on the head of newborn infants [START_REF] Hebden | Diffuse optical imaging of the newborn infant brain 9th[END_REF].

Another solution is to use a reference phantom to calibrate the IRF, so as to work with relative and not absolute datatypes [START_REF] Yusof | Validation of the use of homogeneous reference phantoms for optical tomography of the neonatal brain Proc[END_REF]. This solution has two requirements: the reference phantom should have the same geometry as the object to study but it should also have the same optical properties as its background so that the use of relative datatypes is allowed.

Approach developed at CEA-LETI

The developed approach requires a measurement on a reference phantom with known properties, but these properties do not have to be exactly similar to the background of the object under study, as the analysis is not based on relative datatypes. The method consists in applying the Mellin-Laplace transform (MLT) on a combination of the reference measurement and the measurement of the object, without having to explicitly deconvolve the IRF at any time.

The reconstruction process requires the TPSFs measured for all couples of sources s and detectors d in a reference medium A and the TPSFs measured in the medium B under study. The whole iterative process is summarized in Figure 2-44.

The crucial relations and steps of this process are the following. If and are the ideal TPSFs in media A and B for Dirac sources and for couples of sources s and detectors d, the measured TPSFs are their time convolution with the IRF for each couple of source s and detector d:

(2-11) Due to convolution properties, the following equation can then be deduced from Equation (2-11):

(2-12)

An iterative process can be carried out to reconstruct the absorption coefficients of all points r in medium B (see Figure 2-44) so that verifies Equation (2-12). Let be the absorption coefficient map in medium B estimated at iteration step k. With this map we solve numerically the diffusion equation to get the Green's functions . Then, the true TPSFs with the real set of coefficients can be approached by the estimation given by the perturbation approach of Equation (2-3):

• (2-13)
with and and respectively the theoretical TPSFs from source s or detector d to a point r in medium B, at iteration k.

At iteration k, we can therefore link the measures and the estimated TPSFs with variations in the absorption map by combining Equations (2-12) and (2-13):

• (2-14)
and get .

We added colours to clarify this complex equation involving different contributions. The terms in red are the measurements whereas the terms in blue indicate the Green's functions computed by the direct model. Finally, the term in magenta is the unknown of this equation: the map of variations of the absorption coefficient.

As mentioned earlier, we avoid solving the time-resolved system of Equation (2-14) in order to limit the computation steps. We will now explain how to apply the Mellin-Laplace transform to this equation to finally obtain a system of equations (one equation per sourcedetector pair and per order of MLT).

Applying the Mellin-Laplace transform

Instead of discretizing Equation (2-14) with time steps dt which would be computationally intense, the MLT is applied to it (as defined in Table 2-1). To simplify the calculations, we use its property over a convolution of functions (demonstrated in (Hervé et (2-16) Equation (2-16) has the form of a linear matrix equation Y=WX where X contains the (in magenta) that yields an estimation of the map of absorption coefficients in medium B.

At the iteration step k, the MLT of the measurements (in red) in the reference medium and in the medium to study are therefore linked to the MLT of the computed Green's functions (in blue) and in these media at this iteration, and to . Vector Y is constructed by concatenating all MLT orders (N MLT in total) for each couple of source (N s in total) and detector (N d in total), its dimension is . The jacobian matrix W is obtained similarly and has a dimension of with N x the number of pixels defined in the medium.

Solving the inverse problem

At each step k we minimize the 2-norm using a gradient descent. R is the right preconditioner, providing spatial regularization. Its role is to increase the weight of pixels located far from the sources and detectors, in order to counterbalance the high sensitivity of the optical measurement close to sources and detectors. We chose a diagonal matrix whose elements R mm correspond to the square of the distance between the pixel m and the set of source and detector locations.

L is the left preconditioner. Its role is to attribute different weights to the different orders of MLT for each pair of source and detector, depending on their noise. The idea is to avoid exploiting the noisiest datatypes when solving the inverse problem. L is a diagonal matrix whose diagonal elements estimate the inverse of the variance on each order of the MLT (Y vector). We then obtain X by a matrix multiplication by R with . Different criteria for convergence are used. They will be detailed in each case. (p,i) and B sd
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Optimal use of our algorithm for DOT in reflectance at

short source-detector separation: a simulation study

Objectives

This work consists in showing how to best use the versatile algorithm for the specific case of DOT in reflectance at short source-detector separation and then to show the performance for different cases of SNR. This study was done with two restrictions:

-An ideal IRF (Dirac function). This choice was made to evaluate the best performance achievable with our DOT reconstruction scheme. In chapter 3, we will see how these performances are degraded with a non-ideal IRF. -A 2D geometry for the direct and inverse problems.

The questions to answer with this study are very practical: 1)

Which time-window should be used to calculate the MLT of the simulated noisy TPSFs? 2)

How many orders of the MLT orders should be included to process DOT reconstructions? 3)

Which performances can be reached with this algorithm in terms of detection and localization of a single absorbing inclusion in depth?

We will consider these different questions under different conditions for noise added to the simulated TPSFs. This work was carried out on simulations to gain a clear understanding of the algorithm in presence of statistical noise and to avoid being corrupted by less predictable experimental sources of error present in experimental data.

In the first place we will describe the methodological framework put in place to determine the best use of the algorithm. In a second place, we will analyse the results obtained under different choices and conclude on the optimal ones. To finish, we will study the performances of this algorithm when used with the defined procedure.

Some results presented in the following section were published in (Puszka et al 2013a).

Method

Numerical phantom and probe

The numerical phantom is the same as in the study of datatypes in section 2.1.4.2 (same 2D geometry, same optical properties).

The numerical probe has a different configuration. To mimic a real probe with multiple pairs of sources and detectors, it is made of 2 excitation fibers and 2 detection fibers. The (x, z) coordinates in mm of the source points are [S1 (-5, -1); S2 (+5, -1)] and of the detection points are [D1 (-10, 0); D2 (+10, 0)]. To comply with the hypothesis of the isotropic point source, the sources are placed at 1/μ' s = 0.1 cm inside the medium .

For the following analysis, only the couples S1D2 and S2D1, distant by 1.5 cm will be used. These two couples will enable the localization of the inclusion in the x direction below the probe. The inclusion being placed exactly in the middle of the two sources, the contrast measured by the couples S1D2 and S2D1 should be similar unless noise becomes preponderant, which would cause an error in the x localization of the inclusion. With this compact geometry, the probe has a width of 2 cm only and enables localization in the x direction.

Figure 2-45 Numerical 2D phantom and probe (crosses: sources "S", circles: detectors "D", large grey disc: absorption inclusion). The mesh is represented only in 1 cm². Only the couples S1D2 and S2D1 are used for the analysis. For the background: µ a = 0.1 cm -1 and μ' s = 10 cm -1 . For the inclusion: µ a = 0.6 cm -1 and μ' s = 10 cm -1 .

Simulating experimental signals

Generation of TPSFs

The reference measurement is taken in the homogeneous medium without the inclusion and the other measurement is taken in the same medium with the inclusion. The TPSFs are simulated as described before in section 2.1.3.2. One TPSF is simulated per couple of source and detector and per tested depth of the inclusion.

Testing different noise conditions

We carried out this optimization with a simulation study including the main sources of statistical noise present in experiments like photonic noise and the offset caused by dark count rate (DCR) of the detectors. Other experimental sources of error like detector efficiency fluctuations or laser power drifts were not considered in this study. That leads to two configurations:

1) Photonic noise only The TPSF is converted to a total number of photons and degraded by Poisson noise as described in 0 "Simulating photonic noise".

2) Photonic noise and dark count rate (DCR) The DCR is due to thermal photogeneration of charges in the detector: on the measured TPSFs, it concretely consists in an offset present in all time channels. The value of this offset depends on the type of detector and temperature. DCR is a non-negligible contribution for dynamic range reduction in experimental signals. More details on the noise of detectors will be given in Chapter 3. Here, we just consider the impact of this type of noise contribution on the signals.

To simulate the contribution of the DCR, we add 100 photons per time channel to the TPSF converted in a number of photons and then we add photonic noise independently to each channel. 

Pre-processing the noisy TPSFs

DCR correction

DCR is an offset. It therefore corresponds to non-convolved noise. This offset should be removed of the TPSFs [START_REF] Hillman | Calibration techniques and datatype extraction for time-resolved optical tomography[END_REF]. Before processing the simulated signals, we remove the offset caused by DCR by calculating its mean value on a flat portion of the signal (between 6 and 8 ns here).

Time-windowing

The beginning of the time-window to calculate the MLT is set at t 0 = 0 ns but the choice of the end of the window is less obvious. Indeed, the last channels carrying the information on depth are heavily affected by all sources of noise: photonic noise, the presence of DCR or not and the efficiency of the DCR correction. The use of late time channels corrupted by noise might degrade the detection in depth and the reconstructed images. The importance of the time-window was already pointed in [START_REF] Hillman | Calibration techniques and datatype extraction for time-resolved optical tomography[END_REF] and was discussed in the PhD work [START_REF] Hillman | Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications[END_REF] in section 2.1.3.2 "Techniques for removal of non-convolved noise".

The point is to find the good comprise between keeping all time channels and risking corrupting the datatypes with noise or removing the noisiest channels from the calculation of datatypes but risking losing contrast.

To guide this choice in our configuration, we will compare different possibilities of time-window on a concrete case: detection of an inclusion at the depth of 25 mm (see Figure 2-46):

(1) keeping all time channels available (9 ns) (2) keeping only time channel > DCR level (2.7 ns) (3) keeping less time channels than (2). (1.5 ns) 

Reconstruction

The reconstruction process is the same as described previously in 2.2. Only some specific points are detailed below.

Reconstruction geometry

The 2D maps of µ a are reconstructed on the same grid as used for the direct model and depicted in Figure 2-45. 

Weighting noise

As mentioned earlier, our algorithm requires the estimation of the variance present on all orders of MLT to attribute different weights to them (so as to avoid a reconstruction driven by noisy orders). Concretely, it enables to calculate the coefficients of the left preconditioner matrix involved to solve the inverse problem (section 2.2.3). We evaluate the variance on each time channel as the number of photons per time-channel before the DCR correction. We then calculate the MLT of the variance.

Convergence

We notice that convergence is reached after less than 10 iterations in all the tested cases of this study. Our criterion is that the reconstructed depth of the absorbing inclusion is stabilized. All the results presented in this chapter are taken from the 15 th iteration.

Analysis of 2D reconstructed images

Objective criteria are calculated from the reconstructed images in order to assess the performance of the method. These criteria include localization of the inclusion in x and z directions and reconstructed µ a mean value.

From the reconstructed image of µ a , we consider as belonging to the absorbing inclusion the pixels whose δµ a value with respect to the background is at least 50% of the maximum value of δµ a in the image. We chose the threshold of 50 % because the reconstructed absorbing spots are very large, due to the choice of minimizing the 2-norm when solving the inverse problem. We then calculate the x and z position of the center of mass of the absorption coefficient in this 50% spot and the mean value of the reconstructed µ a in this spot (Figure 2-47). 

Results

Choice of the time-window to calculate the MLT

We illustrate here the importance of the choice of the time-window to calculate the MLT in the presence of noise. We then propose a method to follow in order to pre-process experimental TPSFs before DOT reconstruction. We will mainly show how the values of contrast on the orders of MLT are affected by the time-window, depending on the type of noise added to the TPSF. To illustrate it, we consider the case of the depth of 25 mm with a total of 10 6 photons per TPSF (Figure 2 

Photonic noise only

On Figure 2-48 a), we can see that when only photonic noise is present without DCR, the largest time-window possible should be used. Indeed, the contrast obtained with window (1) of 9 ns (in red on the graph) overlaps the theoretical values obtained without noise (black line). Shorter windows ( 2) and ( 3) show an underestimated mean value at all orders but smaller error bars.

Photonic noise + DCR

We will consider different efficiencies of correction of DCR.

Exact correction of the offset caused by DCR

In some experimental cases, the mean value of DCR can be efficiently corrected and no offset remains in all time channels. These cases correspond to a flat DCR in the whole measurement window with a large time-interval available to calculate the mean value of DCR. The first point can be achieved with some detectors only and the second point is reached when a very clean signal is obtained at the output of the whole time-resolved chain (no reflections and bumps). We will study in detail the corresponding setups in chapters 3 and 4. In these conditions, we can see on Figure 2-48 b) that compared to the case of photonic noise only, the error bars at all orders increase. In particular, the error bars of the larger window (1) dramatically increase compared with window (2): all orders are corrupted by the noise that is integrated by the MLT window on late photons. As expected, the shortest window (3) is almost not affected by adding DCR.

Bias in the correction of the DCR offset

In some other experimental cases, it is not possible to efficiently remove the contribution of DCR. This occurs either when the level of DCR is not flat in the whole measurement window or when reflections or bumps impede of finding a flat region to calculate it. In these cases, an offset is left and this offset can be important compared with the real value of the TPSF where the level of counted photons is low (i.e. late photons). Therefore, it does have an impact on the calculated orders of MLT.

We have simulated an imperfect correction of DCR as follows: when removing the mean calculated value of DCR of all time channels, we have left an offset of either 1 photon or 10 photons per time channel. The corresponding contrast profiles are shown respectively in Figure 2-48 c) and Figure 2-48 d).

As expected, the presence of a bias in the DCR correction diminishes the value of contrast at all orders for all time-windows. The shortest window (3) is again almost not affected and its contrast values are still really underestimated at all orders. It is interesting to compare window (1) of 9 ns and window (2) of 2.7 ns in these cases. Because the largest window (1) integrates more time channels where the level of DCR is important compared with the number of counted photons, the mean value of contrast is more affected by an imperfect correction of DCR than with a smaller window like (2). We can see on Figure 2-48 d) that on all orders -even on first orders-the contrast is more underestimated with window (1) than with window (2) and error bars are larger. So in the case of an imperfect correction of DCR, it seems more reliable to remove late time-channels with few photon counts from the window to calculate the MLT. This analysis reveals that, in this situation, there is a trade-off to make between these two trends:

-A short time-window lowers the contrast and its error bars at all orders. This happens because the time zone where the contrast is the highest -at the end of the TPSF-is not included in the calculation of MLT orders. By lowering the contrast in this way, we can expect to produce artifacts in the reconstruction process. -A large time-window includes the time-channel having the maximum contrast but includes as well many time channels with a bias. This bias being high compared to the relevant signal of late time channels of the TPSF, the contrast on these channels decreases. By including all these time channels in the calculation of MLT, all orders of the MLT are affected by an underestimated contrast. This effect is dominating on late orders but is also visible on first orders. For example, on Figure 2-48 d) the mean value of contrast for orders n > 7 are clearly higher with window (2) than (1). A good compromise between these two trends seems to be the selection of the time channels of the TPSF which are above the DCR level, like window (2) on the previous graphs.

Conclusion: proposed time-window

To adapt to experimental conditions, we propose to continue with a time-window including only the time-channels above the level of DCR. 

Choice of MLT orders used for the reconstruction

We propose to investigate the impact on DOT images of the choice of the orders of MLT kept in the reconstruction process.

We will analyze here the case of a TPSF degraded by photonic noise and DCR, because it is the case encountered with most detection chains. We will consider only the case of a well corrected DCR.

To show that the optimal number of MLT orders to keep for reconstruction depends on the SNR of the TPSF, we will test two cases:

-10 6 photons + 100 photons of DCR -10 8 photons + 100 photons of DCR.

The time-window suggested in the previous paragraph (keeping only channels above the level of DCR) was applied. These windows were respectively from 0 to 2.7 ns for 10 6 photons and 0 to 4.3 ns for 10 8 photons (Figure 2-49). 

Contrast analysis

The contrast on the different orders of MLT (p = 3 ns -1 ) is calculated as described previously in Equation (2-10). Figure 2-50 depicts the contrast on the MLT orders calculated for each depth of the inclusion and one couple of source and detector, both for 10 6 and 10 8 photons.

For 10 6 photons, inclusions at depths between 10 and 25 mm give contrast values clearly above the noise level, for orders n = 0 to n = 30 for 10, 15 and 20 mm and only for orders n = 0 to n = 20 for 25 mm. At depths larger than 30 mm, the contrast due to the inclusion is not statistically relevant, so we cannot expect to detect these inclusions.

For 10 8 photons, the contrast is above the noise level up to 35 mm included. Figure 2-50 therefore suggests that the contrast is statistically relevant on higher orders of MLT when using a higher signal dynamics. 

Reconstruction analysis

As it is not possible to present all reconstructed images, the obtained results are summarized in Figure 2-51. For each signal dynamics and each depth of the inclusion, separated reconstructions were carried out for the 10 noise draws. We analysed the resulting images with the criteria described in 2.3.2.4 "Analysis of reconstructed images". We tested different choices of maximum MLT orders for solving the inverse problem. The importance of this maximum order is revealed. For a given precision p, the quality of the reconstructions is very sensitive to the choice of the maximum orders of MLT included for solving the inverse problem. Whereas the optimum choice enables the best detection and localization of the inclusion allowed by the algorithm, including too few orders causes low sensitivity to deep inclusions and strong underestimation of depth. High orders are more subject to photonic noise so that their use in the reconstruction degrades the results.

For example, as it can be seen in Figure 2-51, for 10 6 photons, including only orders n = 1 to 5 in the analysis causes a large underestimation of depth from 10 to 25 mm. Adding orders up to n = 15 yields a more accurate estimation of the depth. However, adding even more orders (up to n = 30) degrades again the localization of the inclusion (increased error bars). The phenomenon is similar with 10 8 photons, were the optimum maximum order to include is n = 30. These results are consistent with the analysis of the contrast graphs of Figure 2-50. Figure 2-52 c)). These artifacts tend to show areas less absorbing than the background. This is due to the contribution of noisy orders but also to the fact that the contrast is slightly underestimated at high orders because of the choice of the reduced time-window (cf 2.3.3.1). 

Performances of the algorithm for different SNR

The performances of the algorithm are here analyzed for the SNR conditions and timewindowing described in the previous paragraph (2.3.3.2):

-10 6 photons + 100 photons of DCR, -10 8 photons + 100 photons of DCR, both after the optimized correction of DCR.

Reconstructed images for one noise draw are presented in Figure 2-53. They were obtained for the optimum configurations deduced from Figure 2-51, including orders n = 1 to 15 for 10 6 photons and n = 1 to 30 for 10 8 photons. These images enable to determine the limit of the proposed method depending on the signal dynamics that is given by the number of detected photons. In the range 10 mm to 15 mm, reconstructed images are similar for both signal dynamics. From 20 mm to 25 mm, the inclusion is detected for both cases but the estimated value of µ a and depth are more accurate with 10 8 photons. From 30 mm to 35 mm, only the larger dynamics enables to detect the inclusion but its depth is underestimated, as we could already see in Figure 2-51. Let us note as well that the deeper the inclusion, the larger the size of the reconstructed spot and the lower the estimated µ a . This underestimation of µ a in depth could be limited by improving the spatial resolution of the image, for example by multiplying the number of sources and detectors or at the algorithm level by using spatial prior information.
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1.9 2.9 3.9 4.9 Figure 2-53 depicts the results obtained for one noise draw so it cannot reflect the variability of results due to photonic noise. Figure 2-54 summarizes the performance of the method for the two studied dynamic ranges, with error bars obtained from the 10 noise draws. For all studied parameters (depth, x and µ a ) and both signal dynamics, error bars increase with depth. They are however always larger for 10 6 photons than for 10 8 photons. For 10 6 photons, the mean reconstructed depth does not increase after 25 mm: reconstructions are driven by photonic noise and not by the presence of the inclusion. From 15 mm to deeper positions, the depth is always better estimated with 10 8 photons than with 10 6 photons. Increasing the signal dynamics enables not only to detect deeper inclusions but also to estimate better their depth. However, from 20 mm to deeper, the depth is underestimated even with 10 8 photons. This effect was already observed with time-resolved reflectance DOT in [START_REF] Selb | Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution Opt[END_REF] starting from the depth of 25 mm for an interfiber distance of 25 mm. 

Conclusions

We have proposed a method for pre-processing TPSFs before calculating the MLT. We have shown the importance of appropriately choosing the orders of MLT used by our reconstruction algorithm. These choices were done under noise conditions chosen to be consistent with experimental conditions. This method can therefore now be employed to process real experimental data.

The study on the performance algorithm has shown the importance of the SNR or dynamic range of the data to optimize these performances in terms of detection and localization in depth of a single absorbing inclusion.

Summary

This chapter has enabled to put in place a methodology to optimally process time-resolved measurements for DOT in reflectance at short source-detector separation. This procedure will be applied to real measurements in the following three chapters.

The first aspect of this method is the choice of datatype extracted from the timeresolved measurements. After a study based on the analysis of the robustness of contrast to statistical noise, we have concluded that moments and MLT of high orders are both best suited for this work. As the MLT offers the possibility to extract more pieces of information from the TPSF, we have chosen to continue with this datatype for the rest of the work.

Secondly, we have introduced the original features of the DOT reconstruction algorithm developed at CEA-LETI which is used to process all the data presented in this manuscript.

Thirdly, we have shown how to best use this algorithm for detecting and localizing a single deeply embedded absorbing inclusion, depending on different noise conditions and dynamic ranges of the TPSFs. We have put the light on the importance of pre-processing the TPSFs: removing offsets, selecting the proper time-window to calculate the MLT. We have also demonstrated the importance of choosing the number of orders of MLT to include in the reconstruction. To finish, we have also shown that these points should be tuned depending on the dynamic range of the TPSF, in order to make the best use of the measurements.

These conclusions on optimal use of the DOT algorithm were drawn in 2D but should logically be applicable to a 3D medium. The comparison between 2D and 3D reconstructions was already addressed for time-resolved DOT in [START_REF] Hillman | Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications[END_REF]) and (Hillman et al 2000) so we will not further discuss it. We have done this study with an ideal IRF (Dirac function), so the performances are the best which can be obtained. In Chapter 3, we will see how they are degraded by a non-ideal IRF and consider the requirements on a detector for DOT in reflectance at short sourcedetector separation.

We have also shown that the SNR and dynamic range of the TPSF is crucial to detect and localize properly absorption contrast in depth. Chapter 4 will propose a new experimental solution to increase the dynamic range of the TPSFs.

Chapter 3: Time-resolved acquisition chain with free-running single-photon detectors

In Chapter 2, we have studied the performances of a time-resolved DOT algorithm with simulated TPSFs considering an ideal temporal response of the instrument. In Chapter 3, we now aim at acquiring experimentally the TPSFs and evaluating the performances which can be achieved in this situation.

After reviewing the state-of-the-art of time-resolved DOT instruments, we propose a setup to acquire experimental TPSFs. We consider the different possible options and justify the choice of a setup based on a free-running single-photon detector and a TCSPC acquisition board. The term "free-running" is used to specify that the detector is constantly active, contrary to time-gated detectors which will be used in Chapter 4 and Chapter 5.

In a second part, we detail the elements of the acquisition chain put in place and insist on its critical components. We consider two possible technologies of single-photon detectors: a classical photomultiplier tube and a hybrid photomultiplier, offering different temporal responses.

In a third part, we investigate in a simulation study the impact of the temporal responses of our two detectors versus an ideal response. The performances of these three options are compared by analysing contrast values and DOT images, under comparable noise conditions (methodology of Chapter 2).

To finish, we propose an experimental protocol to compare fairly the two detectors. This study aims at validating the conclusions obtained on simulations. It shines a light on the importance of the temporal profile of the detector's response to optimize the performances in detection and localization of deep absorption contrast with reflectance measurements at short source-detector separation.

WITH FREE-RUNNING SINGLE-PHOTON DETECTORS

Time-resolved acquisition chain with free-running single-photon detectors

The direct measurement of the distribution of time-of-flight of photons is very intuitive and easy to understand. It requires a pulsed light source sending photons in a medium in very short time intervals. The photons leaving the medium after having travelled through it are collected by a detector. The detector and the source are connected to an electronic system enabling to measure the time difference between the source and the detection. The major difference between the existing chains relies on the way that photons are counted and on the way that they are "time-tagged", therefore on the detection and the electronics.

The specificity of time-resolved DOT systems is that they require the acquisition of many measurements for different pairs of sources and detectors in order to multiply the views on the object to image and provide the richest set of information possible to the reconstruction algorithm.

The state-of-the-art, the choice and complete optimization of a time-resolved acquisition chain for reflectance measurements at short source-detector separation are discussed in this chapter. Since the 1990's, the main developments of the time-resolved instruments for DOT have dealt with improving laser sources (pulse width and wavelength range), detectors (noise and temporal response) and counting electronics (time performances, parallelization of measurements).

State-of-the-art of time-resolved instruments for DOT

Recent developments have extended the spectral band to longer wavelengths beyond 900 nm for better tissue characterization with multispectral measurements ( [START_REF] Taroni | First in vivo spectral characterization of breast up to 1300 nm[END_REF] and [START_REF] Bargigia | Time-Resolved Diffuse Optical Spectroscopy up to 1700 nm by Means of a Time-Gated InGaAs/InP Single-Photon Avalanche Diode[END_REF]). These instruments involve the use of super continuum pulsed lasers and single-photon detectors sensitive to infrared light. Other researches target the "optical biopsy" by retrieving the optical properties of tissue at short or null sourcedetector separation, by increasing the dynamic range of the time-resolved measurement [START_REF] Alerstam | Single-fiber diffuse optical time-of-flight spectroscopy[END_REF]. This technique has also been applied to detect brain activation in vivo (Pifferi et al 2008).

Finally, the main drawback of time-resolved instruments is their complexity and this was identified by many research teams as a major obstacle to their clinical transfer. Therefore, in the past years, a strong effort was done to design compact robust instruments enabling an automatized measurement with limited acquisition time. This new generation of time-resolved instruments for DOT is now emerging [START_REF] Hebden | Diffuse optical imaging of the newborn infant brain 9th[END_REF], (Poulet et al 2013), [START_REF] Selb | Functional brain imaging with a supercontinuum time-domain NIRS system[END_REF].

Choice of a time-resolved acquisition chain

Our previous description of a time-resolved acquisition considers a direct measurement of the time-of-flight of photons. In the past decade, indirect methods have also emerged, enabling to retrieve the distribution of time-of-flight of photons from speckle interferometry [START_REF] Tualle | Time-resolved measurements from speckle interferometry[END_REF]. However, in this work, we consider only the direct method, currently more mature and spread for DOT.

Existing time-resolved acquisition chains

Two main techniques can be considered to retrieve experimentally the TPSF. The first one consists in counting and time tagging the photons one by one. This is called time-correlated single-photon counting (TCSPC) (3.2.1.1). The second one consists in summing all photons arriving in a given time interval during which the detector is active and repeating this for many time intervals. This technique involves the use of time-gated cameras (3.2.1.2).

A third option, the use of streak cameras was reported for DOT ((Zint et al 2003) [START_REF] Poulet | Comparison of two timeresolved detectors for diffuse optical tomography: photomultiplier tube--timecorrelated single photon counting and multichannel streak camera[END_REF]) but it is much less spread and corresponds to a more bulky and expensive instrument. These cameras convert incoming photons in electrons and deflect them with different angles depending on time-of-flight. They offer an excellent timing resolution but a low dynamic range compared to the two others techniques considered here. We will not study this option in more details.

Single-photon detectors and TCSPC

Principle of TCSPC TCSPC consists in counting and time tagging the photons one by one so as to build a histogram of time-of-flight of photons (Figure 3-1). The source power is adjusted so that less than one photon reaches the detector for each emitted laser pulse. For each counted photon, an electronic card connected to the detector and the laser retrieves the time delay between the detection of the photon and the emission of the laser pulse. After many cycles of this measurement, a histogram is appearing: this is the measured TPSF.

Single-photon detection

TCSPC is intrinsically associated to the use of a single-photon detector. Many technologies exist but the principle is based on the photoelectric effect and amplification of electrons: the absorption of a photon generates the production of an electron which is then amplified in multiplying stages of the detector. Therefore for the input of 1 photon a measurable electrical current is generated. Existing technologies for single-photon detectors and associated characteristics will be discussed in detail in 3.3.7 when choosing detectors suiting our acquisition chain. 

Detecting pulses of the detector and the reference

At the detector level, the output signal due to the detection of a photon varies in amplitude due to the random mechanism of amplification in the detector (3.3.7). Therefore, a detection based on a threshold would induce time jitter due to amplitude jitter (Figure 3-2). Instead, a constant fraction discriminator (CFD) is used in TCSPC boards to be insensitive to these amplitude fluctuations. The time value is retrieved from the zero crossing of the difference of the signal and the same signal slightly delayed. The zero crossing is then independent on the amplitude of the signal (Figure 3-2). The same approach is used for the synchronization signal (SYNC) coming from the source. 

Time-to-amplitude conversion

The time conversion relies on a "reversed start-stop" method. When a pulse is issued by the detector (start), the time-to-amplitude converter (TAC) of the TCSPC generates a linear voltage ramp which is stopped when a pulse issued by the synchronization signal arrives (stop). The output voltage of the TAC is therefore linearly dependent on the temporal position of the photon. This signal is then converted to a digital signal by the analog-digital converter (ADC). The method of "reversed start-stop" is particularly relevant at high repetition rates: it avoids launching the TAC at each cycle even when no photon is detected.

Count rate limitations

With this strategy, only one photon can be counted per cycle. Indeed, if two photons arrive in the same cycle, only the first one will be counted and at high count rates the number of late photons will be underestimated ("pile-up" effect). Therefore, TCSPC can retrieve correctly the TPSF only up to a limit count rate and this limit is dictated by the frequency of the source. In conclusion, to acquire fast a correct TPSF, a pulsed source with the highest frequency compatible with the TCSPC card should be chosen. It is also important to make sure that the detector can withstand this count rate.

It is recommended not to exceed the probability of counting 0.1 photon per cycle to ensure that the probability of counting 2 photons per cycle is negligible [START_REF] Becker | The bh TCSPC Handbook[END_REF].

To conclude, the strong point of TCSPC cards is their temporal performances. There are not limited by the temporal width of the detector's output (much larger than the final time resolution) but by the precision of the counting board and by the jitter of the temporal width of the detector's output. The latter is induced by the fact the amplification of the electrons due to the detection of a photon is not physically the same in all cases and this causes jitter in the process (3.3.7).

An exhaustive reference document on TCSPC is provided by the manufacturer Becker & Hickl GmbH [START_REF] Becker | The bh TCSPC Handbook[END_REF] and can be downloaded for free on their website (http://www.becker-hickl.com/).

Main published work of DOT with TCSPC

The first reported instrument for time-resolved DOT was the MONSTIR (Multi-channel Opto-electronic Near-infrared System for Time-resolved Image Reconstruction) developed by the research team of Dr J. Hebden at UCL. This instrument involved a multi-channel TCSPC board [START_REF] Schmidt | A 32-channel time-resolved instrument for medical optical tomography[END_REF] and was tested on in vivo measurements for example on the arm [START_REF] Hillman | Time resolved optical tomography of the human forearm[END_REF] and to image the brain of premature infants in clinical settings [START_REF] Hebden | Three-dimensional optical tomography of the premature infant brain[END_REF]. A new generation of this instrument also based on TCSPC has been proposed recently [START_REF] Hebden | Diffuse optical imaging of the newborn infant brain 9th[END_REF].

Other TR-DOT instruments (and sometimes also for fluorescence DOT) with TCSPC were reported (non-exhaustive list):

-for brain imaging (Montcel et al 2006) and preclinical imaging (Nouizi 2011), -for fluorescence imaging [START_REF] Kacprzak | Time-resolved imaging of fluorescent inclusions in optically turbid medium -phantom study Opto-Electron[END_REF], -for mammography [START_REF] Grosenick | Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients[END_REF], -for small animal scanning [START_REF] Lapointe | A multi-view time-domain non-contact diffuse optical tomography scanner with dual wavelength detection for intrinsic and fluorescence small animal imaging[END_REF].

Time-gated intensified cameras

Principle of time-gated intensified cameras

Intensified camera

As for single photon detectors, the first stage of an intensified camera is made of a photocathode from which electrons are ejected for each received photons. For intensified cameras, these electrons are multiplied in a multichannel plate (MCP). The crucial difference with TCSPC is that now the electrons are not measured through an electronic but are visualized by hitting a phosphor screen, converting these numerous electrons into photons. A usual camera (for example charge-coupled devices (CCD)) can now be placed behind this screen to record the image.

Thanks to the MCP, this system can maintain the spatial information and produce an image. Indeed, this component is structured in little tubes: the amplification of one electron is done inside a small tube only (Figure 3-3). This is a big advantage for DOT when it is necessary to acquire many detection points in parallel (e.g. for brain imaging). If optical fibers are used, the whole bundle of the detection fibres can be placed at the input of the image intensifier and the spatial information is kept on the output image of the CCD. 

Time-gating

This image intensifier can be time-gated by reversing the potential between the photocathode and MCP. Classical devices used for TR-DOT can produce time-gates between 200 ps and few ns which can be swept with smaller steps of a few ps by applying an electronic delay (for example the High Rate Imager (HRI) of Kentech Instruments Ltd. in [START_REF] Boutet | Localisation d'inclusions fluorescentes dans les milieux diffusants à l'aide de techniques laser[END_REF]).

The TPSF is then extracted from the analysis of the different images of the CCD at different gate delays.

Main published work of DOT with time-gated intensified cameras

Several instruments for TR-DOT using this technique were reported. The majority of them are developed for in vivo brain imaging where multi-channels fast acquisitions are necessary:

- 

Choice of an acquisition chain

Let us summarize the pros and cons of both techniques (Table 3-1).

The strong point of the TCSPC is its fine time resolution. Moreover, this technique enables to acquire at the same time the full TPSF. As the detectors are free-running, so always active, there is no "loss" of photons: each received photon at the photocathode is counted. To finish, there is also no need to build the TPSF from different portions, which guarantees a very accurate measurement. But on the other hand, TCSPC also suffers from some drawbacks. The compatible detectors are "point detectors", no matrix or camera is possible. As many single detectors as detection points are necessary, it leads to a complex and expensive instrument when many channels are needed. There is also a drawback at acquiring the TPSF at once: the count rate is limited by the most numerous photons at early times and it is difficult to obtain a good signal on late photons with this technique.

Time-gated intensified cameras enable the parallel measurement of multiple channels. Up to a certain limit, thanks to time-gating, they also enable to increase the count rate on late photons by staying non active when early photons hit the detector. However, the main drawback of these cameras lies in their time resolution. A fast acquisition with a few large gates causes a poor time-resolution. To increase it, smaller gates and time steps have to be employed but this dramatically increases acquisition time. In this case, many photons are "wasted", meaning that they are not counted whereas they hit the detector. To finish, acquiring the TPSF by gates requires recovering it afterwards; this step might introduce errors. We finally chose the option of TCSPC. Indeed, as we want to maximize the information extracted from the TPSFs with the MLT, it is obvious to first measure the TPSFs with the best time resolution possible. Moreover, to first test our reconstruction algorithm on experimental data, we prefer to work with the most accurately measured TPSF, not influenced by any intermediate reconstruction step. To finish, the main advantage of timegated image intensifier is the parallelization of the measurement but in the case of a probe with only few pairs of sources and detectors, it is not a strong point.

However, the choice of TCSPC leads to a drawback for our setup: the count rate will be limited by first photons and long acquisition times will be necessary to acquire a good signal to noise ratio on late photons. Nonetheless, this point is crucial for measurements at short source-detector separation. In Chapter 4, we will propose an alternative to the common operation of TCSPC in order to tackle this technological challenge. 

Laser

The main requirement on the source deals with its pulse width. This value should be negligible compared to measured time-of-flights of photons in the diffusive medium. Another important criterion is the repetition rate of the source: the higher it is, the faster the measurement. Nowadays, one can find on the market several picosecond sources (lasers, laser diodes, or super continuum lasers) and femtosecond laser like the Ti-Sapphire emitting in the therapeutic window with satisfying repetition rates of tens of MHz. An additional criteria for choosing a light source can be its compactedness and ease of use when consider a clinical transfer of the technique.

As a pulsed light source, we use a femtosecond Ti-Sapphire laser (Chameleon Ultra family, Coherent Inc.) (Figure 345). Its repetition rate is 80 MHz, its pulse width 140 femtosecondes and its tunable range from 680 to 1080 nm (Figure 3-6) (data provided by the manufacturer). We use the wavelength of λ = 780 nm for the experiments presented in this chapter. 

LASER

Optical attenuators

The output power of our laser is around 4 W at 780 nm. As we only need a few mW to carry out our experiments, we reduce the power by several attenuation stages. There are multiple reasons to attenuate the power:

-Eye safety -To avoid damaging the optical fibers and other optical components -Not to overload the detectors and the TCSPC board.

To attenuate the output pulse at around 4 W, we prefer not to use a solution based on absorption because this high power can damage such a component. We choose a first attenuation stage based on a polarization-based selection made of a half-wave plate and a polarizer (Figure 34567). Once adjusted, this stage is not adjusted during an experiment.

After this first stage, we add a motorized variable optical attenuator (VOA) which consists in a variable neutral density with an optical density ranging from 0 to 4 (NDC-100C-4, Thorlabs) (Figure 34567). This enables to adjust easily the input power to reach exactly the maximum count rate allowed during an experiment, for example when changing from one source-detector separation to the other.

Synchronization signal

A fast photodiode (PHD-400-N, Becker & Hickl) collects a reflection of the main laser beam thanks to a glass plate (Figure 34567). The output electrical signal of this photodiode is used as a synchronization signal for the TCSPC board. 

Optical fibers

The laser beam is focused into an optical fiber by using an objective. This fiber is multimode with a core of 62.5 µm. A length of 6 m was chosen in order to bring the beam to the probe and medium to image, located a few meters away from the laser.

We have experimentally verified that the temporal broadening of the IRF due to this optical fiber was negligible. For this, we have measured the IRF of the system with the TCSPC setup (settings described later in 3.3.6.2) and a photomultiplier (PMC-100-20, see 3.3.8.1) either at the output of the VOA, before the injection into the 6 m fiber or after the 6 m fiber. Figure 3-8 overlapping both IRFs confirms that the temporal broadening due to this optical fiber is very limited. This 6 m fiber is then connected to the source fiber of the probe (same core as the 6 m fiber) via an FC/PC connector. In general, reflections of the laser pulse can happen when connecting two optical fibers. A reflection is then a secondary laser pulse delayed in time with respect to the main pulse (the time delayed being proportional to the length of the fiber). It appears as a secondary peak on the measured TPSF. So, by changing the length of the fiber in which travels the reflection, the secondary peak can be moved away from the TPSF.

A last optical fiber is used to collect light at the surface of the diffusing medium and bring it to the active surface of the single-photon detector.

TCSPC board

Characteristics

Our TSCPC board is a SPC-130 (Becker & Hickl, Germany). Its technical specifications are available in the Appendix 7.1. We can mention its saturated count rate of 10 MHz. All acquisitions are done with the provided software SPCM or home-made Labview® programs incorporating drivers from Becker & Hickl. The resolution of the ADC is 12 bits (4096 time channels).

Settings

The complete procedure for adjusting the settings of the TCSPC board (CFD, TAC and ADC) is provided by the manufacturer in [START_REF] Becker | The bh TCSPC Handbook[END_REF].

We can mention here the choice of a TAC gain of 4 resulting in the smallest time channels possible of 3 ps.

Other important adjustments deal with the CFD. First, the "limit low" enables to reject parasite electrical signals. Second the "zero crossing" adjusts the level of trigger for constant fraction discrimination. It slightly moves and enlarges the TPSF but can remove some eventual parasite peaks. These two parameters of the CFD have to be adapted to each detector (3.3.8).

Count rate

The maximum recommended count rate to avoid distortion is 10% of the source repetition frequency. With a laser at 80 MHz, this maximum would be 8.10 6 photons per second. For the rest of this work, to be on the safe side, we will keep the generally reported value of a maximum count rate of 10 6 photons per second.

Single-photon detectors for TCSPC

Working principle

A single-photon detector is designed to detect low light powers and count photons one by one. Compared to other types of detectors, the specificity is that one photon event only can generate an output electric current with sufficient amplitude to be measured. The pitfall is that these detectors cannot withstand high input power which can cause their degradation.

Different technologies exist and we will detail them below. However existing singlephoton detection techniques always involve a two-step process:

1) the conversion of a photon into an electron, 2) the amplification of this "photoelectron" into secondary electrons until a measurable current is obtained. 

Wavelength range

The wavelength range in which the detector is sensitive depends on the material involved in the photon-electron conversion. Depending on the conduction bands of this material, a photon with a given energy will be absorbed with a given quantum efficiency. The choice of this material is therefore crucial to maximize the quantum efficiency of the detection for an application.

Typically, silicium (Si) and gallium arsenide (GaAs) enable to detect photons with satisfying quantum efficiency in the NIR or therapeutic window (500-900 nm). To observe longer wavelengths in the IR (> 900 nm), other materials have to be chosen like indium gallium arsenide (InGaAs). They were initially developed for telecommunications but now the interest is growing for the biomedical optics community [START_REF] Bargigia | Time-Resolved Diffuse Optical Spectroscopy up to 1700 nm by Means of a Time-Gated InGaAs/InP Single-Photon Avalanche Diode[END_REF].

Temporal response

The electrical response following the absorption of a photon is not instantaneous. Indeed, the multiplication of electrons has to occur between the emission of the photoelectron and the issue of the electrical pulse at the output of the detector. This electrical pulse is therefore emitted after a so-called "transient time" and has a given shape, generally with a fast rise time and a slower decay. The time-spread of this pulse is due to the different paths of the numerous secondary electrons in the multiplying stages. Figure 3456789) shows a typical shape of the electrical pulse issued after the detection of a single photon.

The issued electrical pulse is not exactly the same for different events of photon absorption and this is also explained by the physics of the detection. Depending on where the photon is absorbed and how exactly the electrons are amplified, the resulting electrical pulses are slightly different, in amplitude and also in time [START_REF] Seitz | Single-photon imaging[END_REF]. Therefore, the transient time has a certain "jitter". Figure 3456789) schematically illustrates the different pulses which can be measured for different events of photon absorption.

A major concern for time-resolved photon detection is to reduce this time jitter. For this, different technologies and designs have been proposed. We will mention them below.

When using a single-photon detector for TCSPC, the transient time is not a major issue because TCSPC a relative measurement between the SYNC and the detection pulse. However, the jitter of the transient time is important for another reason: it broadens the measured TPSF. Concretely, this jitter is the contribution of the detector to the broadening of the IRF. 

Noise

We mention here the three main contributions of noise in time-resolved detectors.

Photonic noise

This contribution, already introduced in Chapter 2 is present on all single-photon detectors.

Dark current

The dark current is a thermally generated current inside the detector. Due to temperature, charges are generated and amplified in the absence of an incident photon. The generated current is then interpreted as a photon detection event even if not resulting from it. This noise contribution exists in all technologies with different dark count rates (DCR) and is a major source of diminution of the dynamic range. This noise is not correlated in time and results in a flat background in time-resolved measurements.

Afterpulse

After a multiplying cascade caused by a real photon detection event, it can happen that one created charge launches itself a new cascade of amplification. In this case, the resulting current is not the signature of photon detection and it therefore considered as noise called "afterpulse". Originated by earlier photon detection, it is dependent on the count rate of photons. Depending on the detection technology, the afterpulse phenomena has different time constants. They are generally much higher than the few ns considered for DOT measurements. Afterpulse appears as a flat background on the measured TPSFs with TCSPC. Afterpulse also limits the dynamic range of the measurement.

Possible detectors

Photomultiplier tube (PMT)

The photomultiplier tube (PMT) is the first single-photon detector created (in the 1930's). Different technologies have been proposed, we describe here the most spread option today (Figure 3-10). An incident photon hits a photocathode which then emits a photoelectron (photoelectric effect). This electron is then accelerated by a high voltage in vacuum and focused on an electron multiplier. This succession of dynodes maintained at increasing potentials enable to multiply the number of electrons (secondary emission) to finally obtain a measurable Because other versions of PMTs exist nowadays (see below), we will refer to this technique as "classical PMT" in this manuscript.

Microchannel plate PMT (MCP-PMT)

For a MCP-PMT, the electron multiplier is different than for a PMT: it is not a succession of dynodes but a structure of microchannel plates with a difference of potential between its two sides (also mentioned earlier for image intensifiers and showed on Figure 3-3). In this case, the MCP-PMT is not used to form an image. The interest of the microchannel plates is to offer a faster time response. Indeed, the electrons are multiplied in a restricted area of the multiplier material: in one tube . We have seen before that the spatial dispersion of the multiplication phenomena is the reason of temporal broadening. Therefore using MCP for multiplying electrons effectively reduces the broadening of the temporal response. Similarly as with the PMT, the voltages used for MCP-PMT are in the order of magnitude of the kV. photodiode (APD) (Figure 3-12) with a two-step process: first the photoelectron generates a few electrons when hitting the APD and then these electrons are significantly amplified in the avalanche region of the APD [START_REF] Seitz | Single-photon imaging[END_REF]. The photocathode is also polarized with a few kV and the APD with a hundreds of volts.

Whereas hybrid PMTs have a higher DCR than classical PMTs, they are known for their fast response and for being almost free of afterpulse.

Single-photon avalanche diode (SPAD)

The SPAD is the only existing full "solid-state" single-photon detector. Contrary to other detectors, it does not contain any photocathode: the conversion of photons into charges happens in the semiconductor itself.

A SPAD is a reverse biased p-n junction (junction of a p doped semiconductor and an n doped one). Its working principle can easily be understood when considering the different behaviors of a p-n junction depending on the applied bias voltage. These regimes are described below and summarized in the intensity-voltage characteristics of Figure 3-13.

Figure 3-13 I-V characteristics of a p-n junction for different incident light powers (P1 and P2

). V is the bias voltage applied to the p-n junction and I is the measured current at the output. P: P-doped region of the semiconductor, N: N-doped region, V: bias voltage of the junction, V B : breakdown voltage, V O : operational voltage above breakdown for the SPAD. In the reverse-bias mode, 3 regimes are observed depending on the value of the bias voltage V: photodiode, APD and SPAD. For the 2 first modes, the output current is proportionnal to the incident light power, whatever the bias voltage V<V B (curves for P1 and P2 are parallel). For the last mode,the SPAD, it is not the case anymore. Because this last mode generates a well timedefined electrical current with a measurable amplitude, it can be used for time-resolved singlephoton counting.

When the bias voltage is lower than the so-called breakdown voltage (V B ), the p-n junction operates as a photodiode. In this regime, the absorption of 1 photon gives rise to a constant number of electron-hole pairs, independently on the bias voltage. Therefore, for a given incident light power, the output electrical current I is the same, whatever the bias voltage V. If the bias voltage is increased close to the breakdown (a few tens or hundreds of V depending on the design of the p-n junction), but lower, then the photodiode is called an avalanche photodiode (APD). Because of the high electrical field, the charges generated by the initial absorption of 1 photon are able to generate secondary charges. This multiplication or amplification process also called the gain is however stopped by itself. So at a given bias voltage, the output current is proportional to the incident light. The closer the bias is to V B , the higher the gain (i.e. the higher the output current for a given incident light flux). APDs are very spread photon detectors, as their high gains allow measuring a very low light flux. However, they cannot be used for time-resolved single photon detection because the absorption of a photon cannot generate a well-defined macroscopic current.

SPAD V I -V B -V B -V O APD P N V + - P N V - + Photodiode P1 P2

Forward bias Reverse bias

SPADs are APDs polarized above the breakdown voltage (-V<-V B ). In this regime, the charges generated by the initial absorption of 1 photon are also able to generate secondary charges but contrary to the APD, the avalanche is self-sustained. A special "quenching circuit" has to stop this avalanche to avoid the destruction of the SPAD. In this regime, the output current is not proportional to the incident light anymore. The SPAD can be used for time-resolved single photon counting as the generated macroscopic current is well resolved in time and high enough in amplitude to be measured [START_REF] Mora | Fast-gated single-photon avalanche diodes and applications[END_REF]. This operating mode is also called Geiger mode in analogy with the counters for radiation measurements.

The technological challenge with SPADs is the avalanche which can cause the destruction of the detector if not stopped in time. Quenching circuits are designed in order to stop this avalanche and bring back the detector in its original state so that a next photon can be safely detected [START_REF] Seitz | Single-photon imaging[END_REF]. The low voltages (a few V) involved for biasing some optimized SPADs offer a real advantage compared to other devices. In particular, they enable fast switching between ON and OFF states for time-gating. We will go back to this in detail in Chapter 4. In general, the involved physical phenomena for the multiplication of charges in SPADs allow faster responses than PMTs.

A current drawback of this emerging technology is a considerable dark count rate and afterpulse level compared to photomultiplier-based techniques. In general, manufacturers propose SPADs with very small active areas (a few 100 of µm in diameter is the extreme maximum) in order to reduce this noise. Time-gating is also used to reduce noise, when a synchronization signal is available. To increase the active areas, manufacturers have proposed silicon photomultipliers (SiPM) which are matrices of SPADs. In this case, the matrix is not used as an imager but as single point detection.

The silicon SPADs are sensitive in the visible and NIR (400-1000 nm) whereas materials like InGaAs can be used to detect longer wavelengths in the IR (900-1700 nm). Among all possible single-photon detectors, we compare in this chapter two PMTs offering different IRFs. In Chapter 4, we will propose a setup for DOT with time-gated SPADs.

IRF measurements

We have tested 2 detectors on this setup: a classical PMT and a hybrid PMT. The PMTs and their cooling system are controlled by the DCC-100 detector controller card (Becker & Hickl, Germany). A collimator is placed between the output of the detection fiber and the entrance of the detector in order to maximize the collection on the active surface of the detector.

Classical PMT

The classical PMT is the PMC-100-20 (Becker & Hickl, Germany) (Figure 3-15 a)). Its data sheet is provided in Appendix 7.2 and its relevant characteristics are reported in Table 3-2.

Hybrid PMT

The hybrid PMT is the HPM-100-50 (Becker & Hickl, Germany) (Figure 3-15 b)). It combines in one compact housing a R10467-50 GaAs hybrid detector tube (Hamamatsu, Japan) with the preamplifier and the generators for the tube operating voltages. The cathode material, GaAs, offers a good sensitivity up to 900 nm. The data sheet is provided in Appendix 7.3 and its relevant characteristics are reported in 

Comparison of performances

Information provided by the manufacturer Table 3-2 gathers the most relevant values to select a single-photon detector for TCSPC.

Both detectors operate in the proper wavelength range for DOT. They have comparable detection efficiency in this range. Anyway, as a large number of photons can be counted at short source-detector separation, the detection efficiency is not a discriminating parameter.

On this table, the performances of the two photomultipliers differ on two main points:

-Dark count rate: the classical PMT has a lower dark count rate -Full width at half maximum (FWHM) of IRF: the hybrid PMT has a thinner IRF.

For the two detectors, the maximum count rate allowed is larger than the maximum count rate allowed to be obeying the statistics of TCSPC (8 MHz). The latter is therefore the limiting factor. For the after pulse, no value is given on the datasheets. It is difficult to give numbers as it depends on factors like the count rate. An indication is given in the application note in Appendix 7.4: a background (after pulse + DCR) 20 times lower was measured with the HPM-100-50 than with the PMC-100-20.

Information extracted from our measurements

We have measured both IRFs in the same conditions (Figure 3-16) and compared their width at different ratios of the maximum (Table 3-3: full width at 1/10 of the maximum is written FW1/10M, etc.). The hybrid PMT clearly offers a thinner IRF than the "classical" PMT, not only on the criteria of the FWHM but at all ratios from the maximum. 3.4. Choice of a single-photon detector: a simulation study

Objective of the study

Even if we take into account the broadening of the signals with the IRF in the reconstruction scheme (2.2.1), we hypothesize that at the measurement level, the IRF of the detector can have an effect on the robustness of the detection of absorption contrast in depth.

As detailed previously in Chapter 2 (2.1.4), the reason why time-resolved measurements perform better than continuous wave measurements for detection of absorption contrast in depth is that they offer a good contrast to noise ratio on late photons. Indeed, by selecting late photons, they indirectly select information on deep layers of the medium. This reasoning was done considering an ideal IRF -infinitely short-similar to a Dirac function. On the contrary, we have seen that CW measurements (intensity or moment n = 0) did not offer such a good contrast to noise ratio because they mix the information of numerous early photons which do not provide contrast on depth with the information of a few late photons.

Now, a non-ideal IRF means that there will be a mix of information between first and late photons to some extent. It is indeed an intermediate situation between a time-resolved measurement with an ideal IRF and a CW measurement. Therefore, with a real IRF, one can expect a degradation of the performances in robustness of contrast for deep inclusions. In the documentation of the manufacturer of our detectors (Becker and Hickl), an application note comparing two single-photon detectors for DOT suggests that a thin IRF would improve results in DOT but it is not quantified (Appendix 7.4). Very recently, the impact of the IRF when fitting properties of deep layers in multilayers media was studied [START_REF] Diop | Improving the depth sensitivity of time-resolved measurements by extracting the distribution of times-of-flight[END_REF]. To our knowledge, the precise consequences of a real IRF versus an ideal IRF on DOT reconstructions at short source-detector separation were not reported.

We propose to first evaluate these consequences with a simulation study, to pursue the study of Chapter 2 with an ideal IRF. Simulations enable to isolate different factors which are not easily separable from each other in experiments (temporal shape of IRF, dark count rate, after pulse, etc.). We consider here the IRFs obtained either with the classical or the hybrid PMT. After drawing first conclusions from these simulations, we will pursue with an experimental study in section 3.5.

Method

The followed method consists in convolving the TPSFs obtained for the direct model with real IRFs. Once this time convolution is done, the usual steps followed to add noise and process the TSPFs are the same as those mentioned earlier with an ideal TPSF. Figure 3-17 below summarizes these steps. The following paragraphs discuss in detail some of these steps, in particular the direct model in 3D and the preparation of the IRF for timeconvolution. 

Direct model

In this section, we consider a 3D geometry. This choice is made to be consistent with an experimental data set acquired with a punctual inclusion (3.5). Indeed, this situation is better described in 3D than in 2D. We therefore change from 2D to 3D simulation framework but apply the conclusions drawn in 2D in Chapter 2 on the optimal way to preprocess the TPSFs and to use the DOT reconstruction algorithm.

The medium is similar to the one described previously in 2.3.2.1 but adapted to a 3D geometry (Figure 3-18). The inclusion is now a sphere of 1 cm diameter. Again, different depths are considered for the inclusion, ranging from 10 to 35 mm. The optical properties are the same:

=0.1 cm -1 and =10 cm -1 for the background and =0.6 cm -1 and =10 cm -1 for the inclusion. The probe still features two pairs of source and detector distant of 1.5 cm (S1D2 and S2D1).

Contrary to the 2D case, a regular Cartesian mesh is not used here for calculating the direct model. We use tetrahedrons instead in order to optimize the 3D calculations. A total of 10 000 tetrahedrons is used for this medium of , to keep a reasonable computation time.

Time-convolution with IRFs

Preparing the IRFs For each PMT, the IRFs are measured with a good SNR in order to obtain smooth temporal profiles (acquisition of 200 s with a count rate of 10 6 photons/s). We extend the slopes before and after the peak of the IRF with exponential fits in order to cover the same time range as the simulated TPSFs (0 to 9 ns). Figure 3-19 below shows the final extrapolated IRF for each PMT and overlaps the exponentials fits obtained to enlarge the IRF over the whole time range. 

Time-convolution

The TPSFs simulated either in the homogenous case or for different depths of the inclusion are all convolved by the different IRFs. Figure 3-20 shows how the obtained TPSFs depend on the IRF (logically, the broader the IRF, the broader the final TPSF). 

Adding noise

After time convolution, we convert the TPSFs to a realistic number of counted photons (10 6 ), add DCR (100 photons per channel) and add photonic noise. We repeat the procedure for 100 draws of noise. The DCR level is then corrected by averaging a flat portion of the signal.

Time-window

The time-window is adapted to each considered IRF. The final time (t f ) of the window is chosen based on the criteria mentioned previously in 2.3.3.1: when the TPSF reaches the background level.

The question of choosing the initial time (t 0 ) arises when considering a non-ideal IRF. We proceed as follows: t 0 is extracted from the IRF measurement by looking at the time value of the IRF before the peak, 4 decades smaller than the peak (same dynamic range as the final noisy TPSFs). The pre-processed TPSFs are presented in Figure 3-21. 

Reconstruction

The reconstruction is done in the same 3D volume and with the same set of tetrahedrons as for computing the direct model (Figure 3-18). For each case (each IRF and each depth), the reconstruction is carried for 10 noise draws, to assess variability. All results are extracted from the 15 th iteration of the algorithm.

Analysis

Contrast

A first step of the analysis is to calculate the contrast per time channel and per order of MLT with the same method as in 2.1.4.2.

Reconstruction: analysis of 3D images

The output of the reconstruction algorithm is now a 3D map of the µ a coefficients, in the same volume as for the direct model (Figure 3-18).

Figure 3-22 shows cut views in 3 orthogonal planes in the reconstructed 3D volume, for one reconstruction example (an ideal IRF with the inclusion at the depth of 15 mm and the maximum order of MLT for reconstruction is N = 15). The reconstructed shape of the inclusion in the plane (X, Z) is similar to the ones presented in Chapter 2 in 2D for a similar depth of the inclusion (e.g. Figure 2-53). The shape of the inclusion is different in the plane (Y, Z): it is larger along the Y axis than it is along the X axis, and in the shape of a "banana". The first point -a larger shape along Y-can be attributed to a lower spatial resolution in this axis as the two pairs of sources and detectors are located at the same position on this axis. The second point -the banana shape-can be attributed to the chosen As we did in 2D to analyze reconstruction results (2.3.2.4), we extract objective criteria from the 3D images. We do it after applying a threshold at 50 %, as we also did in 2D (selection of the reconstructed volume with a value of µ a higher than the background value + 50% of the maximum dµ a reconstructed in the total volume). Figure 3 As for 2D images, the values extracted from these volumes after applying a threshold are:

-The (x,y,z) coordinates of the center of mass in µ a -The mean µ a in the volume. All these criteria are calculated for all cases (each IRF and each depth) and for 10 noise draws. The variations on these criteria will be indicators of their sensitivity to noise. It will enable to objectively assess the importance of the IRF on DOT reconstructions at short source-detector separation and possibly select a preferred IRF.

Results

Contrast

Contrast on time-channels

On Figure 3-24, we can see the profiles of contrast per time channel for each depth and each IRF. The hybrid PMT and the ideal IRF have very similar profiles. On the contrary, the classical PMT shows a different trend than the ideal IRF: whereas the contrast first increases with time, it then tends to decrease (for example after 2 ns for the depths of 10 and 15 mm). This might be an effect of the increase of slope of the IRF of the classical PMT around 2 ns. Therefore, the contrast decreases because many first photons are rejected after this time and become dominating with respect to the few late detected photons.

For all tested IRFs, a contrast is clearly visible for the depths of 10 and 15 mm (Figure 3-24 a) and b)). At these depths, it is clear that the maximum values of contrast reached with the classical PMT are lower than with the ideal IRF and the hybrid PMT.

On these graphs, it is difficult to visually detect contrast for deeper positions of the inclusion for all three IRFs. 

Contrast on MLT

The trends observed on time-channels become even clearer on the MLT: the hybrid PMT and the ideal IRF have similar contrast profiles increasing with the order n. On the contrary, the classical PMT shows decreasing values after a certain order (around n > 10) (Figure 3-25). 
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-Hybrid PMT: its contrast profile is indeed very similar to the one of the ideal IRF; however, at each order its mean values of contrast and error bars are slightly lower. A robust detection of the absorbing inclusion seems to be possible down to 20 mm (error bars above the null contrast line).

-Classical PMT: at any order, its mean contrast values are lower than for the ideal IRF and the hybrid PMT. For example, at the depth of 10 mm, its maximum of 30 % is reached at order 10 whereas the contrast is around 50 % at this order for the two other IRFs. However, the error bars are lower as well. At the limit depth of 20 mm, even if the mean values of contrast are very low (around 1%), the error bars do not cross the null contrast line. Therefore, it should be possible to detect this inclusion. Nevertheless, it is important to keep in mind that such low contrasts will be difficult to exploit in experiments. Indeed, fluctuations of source power and detection efficiency are in the order of magnitude of a few % so they could overwhelm such low contrasts. This question will be approached in the section on experimental results (3.5). 

Reconstruction

We optimize the reconstruction results separately for each detector. In particular we choose the optimal set of MLT orders based on the criteria of localization accuracy in z (depth) and x (axis of the pairs of sources and detectors). For this, we analyze the results obtained at each depth for 10 noise draws considering different sets of MLT orders.

After this, we compare the results obtained in the optimal case for each IRF and conclude on the IRF offering the best localization performances.

Ideal IRF

Figure 3-27 gathers the mean values of localization in x and z and their error bars. For the most superficial depths of 10 and 15 mm, similar results are obtained with all tested choices of maximum order. At the depth of 20 mm, the localization in z is less underestimated with the maximum orders n= 15 or 20. However, the error bar is larger with n = 20. Including the noisy high orders n > 15 seems to add variability to the reconstruction results. We will therefore continue using the MLT orders n = 0 to 15 for the ideal IRF. At the depth of 25mm, the localization error in x is very high: we can consider that the inclusion is not robustly detected.

To illustrate the variability which can be seen on reconstructed images, Figure 3-28 shows cut views of the reconstructed 3D images in the plane (X,Z), for 3 noise draws (and using order n= 0 to 15). Whereas the 3 images are similar for the depths of 10 and 15 mm, the variability becomes visible by eye at 20 mm. At 25 mm, the reconstruction seems to reflect only photonic noise. 

Hybrid PMT (HPM-100-50)

With the same reasoning, we deduct from Figure 3-29 that the orders n= 0 to 15 are optimal for reconstruction with the hybrid PMT.

Similarly as with the ideal IRF, we can see on the reconstructed images a robust detection of the inclusion for the depths of 10 and 15 mm with the hybrid PMT and a limit at 20 mm (Figure 3-30). 

Classical PMT (PMC-100-20)

With the same reasoning again, we deduct from Figure 3-31 that the orders n= 0 to 15 are optimal for reconstruction with the classical PMT.

Similarly as with the ideal IRF and the hybrid PMT, we can see a robust detection of the inclusion for the depths of 10 and 15 mm with the classical PMT and a limit at 20 mm . At this stage, it is difficult to draw a conclusion on the comparison between the IRFs just based on a visual analysis of a few noise draws. 

Comparison between the 3 IRFs

As it is tedious to draw a conclusion on the comparison between the IRFs just based on a visual analysis, we will base our comparison on the analysis of the objectives criteria (localization in x, z and mean µ a ) extracted from the 10 noise draws (Figure 3-33).

The performances of the hybrid PMT are very similar to the ones of the ideal IRF. On the contrary, the classical PMT shows worse performances for detection and localization in depth. This is very clear at the depth of 20 mm: the localization in z is more underestimated and the error bars are larger with the classical PMT (Figure 3-33 b)). There are not significant differences in the mean reconstructed absorption coefficient (Figure 3-33 c)). 

Conclusions

These simulations indicate that the shape of the IRF has an effect on the detection in depth when measuring in reflectance at short source-detector separation.

With a method based on simulations, we have been able to isolate the effect of the shape of the IRF from other effects which are not easily controlled in experiments like background noise of the detector (DCR and afterpulse), the power drift of the source or the efficiency of the detector.

We have compared 2 different technologies of single-photon detectors -a classical and a hybrid PMT-versus an ideal IRF. The hybrid technology is reputed for its fast response. We have shown that it enables to obtain temporal contrast profiles close to the ideal case. On the contrary, the tested classical PMT has shown degraded performances compared to the ideal case: the obtained values of contrast are significantly lower in all cases.

The conclusions drawn here are just based on the robustness of contrast and DOT reconstructions to photonic noise. In experiments, other factors will have an influence on the robustness of detection. In particular low contrast values might be overwhelmed by the presence of fluctuations of the source power or the detection efficiency. Whereas these fluctuations were not present in this simulation study, they will inherently occur during experiment and certainly have an impact on experimental results.

Discussion

The problem of reflections of the laser pulse in the optical chain is somehow similar to the one of the real IRF. When a reflection is present, early photons are rejected at late times and degrade the contrast in depth by overwhelming late photons. The impact of reflections on DOT images could therefore be simulated with the same methodology as shown here. 

. Objective of the study

The previous simulations have concluded on a major influence on DOT of the temporal response of the detector. In order to verify these conclusions on real experimental data, we propose to set up a measurement study involving our two single-photon detectors: the classical and the hybrid PMTs. Concretely, we aim at comparing these two detectors with a valid experimental protocol for DOT in reflectance at short interfiber distance.

For this, we have designed a two-step experiment. First, we propose to investigate the contrast to an absorbing inclusion in depth with a punctual measurement. This measurement will be repeated in order to measure the variability of the contrast. Second, we propose to realize 2D scans of a single source-detector pair at the surface of the object in order to obtain a set of measurements for realistic 3D DOT reconstructions. Such a scan is long to it is repeated fewer occurrences than the punctual measurement. We carry out these two experiments at the three source-detector separations of 5, 10 and 15 mm, all compatible with probe geometry.

However, contrary to simulations, now the IRF is not the only modified parameters between both detectors. Indeed, DCR and after pulse are also differing. So, contrary to simulations, the experiment consists more in comparing two detectors for time-resolved DOT than really isolating the influence of the IRF itself.

We first describe the measurement, from the optical phantom to the mechanical setup and the acquisition protocol. Then we will explain the analysis tools put in place and conclude on the comparison between the 2 detectors from the obtained results.

Measurement protocol

Optical phantom

We have chosen to work with a solid inclusion moved in a liquid turbid background. This type of phantom offers flexibility: multiple positions of the absorbing inclusion can easily be considered.

Whereas the biomedical optics community is currently aiming at a standard for optical phantoms, no standard is recognized yet. In this context, we have chosen to use commonly reported materials (Pogue and Patterson 2006) that suited our choice of liquid/solid for preparing our phantoms.

The liquid background is made of distilled water (matrix), Intralipid® for adjusting the diffusion and of black Ink (Rotring) for setting the absorption. The solid inclusions are made of resin (matrix), Ti0 2 particles for diffusion and black ink (Rotring) for the absorption. The recipe and characterization of the phantom are detailed in Appendix 7.5 for liquid phantoms and in Appendix 7.6 for solid phantoms.

In this experiment, the liquid phantom is prepared to reach µ a = 0.1 cm -1 and µ' s = 10 cm -1 and the inclusion µ a = 0.8 cm -1 and µ' s = 10 cm -1 at λ = 800 nm. Note that now, the absorption of the inclusion is a bit higher than in simulations (where µ a = 0.6 cm -1 ). To mimic punctual perturbations, the solid inclusions are molded in the shape of a cylinder of 0.8 cm diameter and 1.2 cm height (Figure 3 -34). 1;0.4;0.8; 1.2 cm -1 (at λ = 800 nm) (for all µ' s =10 cm -1 ). The inclusion µ a = 0.8 cm -1 is the only one used in this experiment.

Another choice than a solid/liquid phantom could have been made. Indeed, a solid inclusion in a solid background was also feasible. However, we have discarded it because of its low flexibility: we wanted to test multiple positions of the inclusion and in particular to have small steps in depth and well controlled relative positions between different depths. This would have required first a large set of solid phantoms and second a very accurate preparation process. Our choice has the drawback of presenting a jump of refractive index between the solid inclusion and the liquid background, which is not taken into account with our reconstruction algorithm. However, in all the work presented in this manuscript, the phantom measurements are used for comparing different measurement configurations (here classical versus hybrid PMT, in Chapter 4 gated versus non-gated detector, in Chapter 5 different probe designs) and not to obtain "absolute" conclusions. Therefore, we considered this source of error as having a minor impact on our conclusions.

Mechanical setup and control

Punctual contrast measurements

The probe is made of a source fiber and a detection fiber supported by a holder (Figure 3-35 b)). The inclusion is held by a needle covered with diffusing white paint fixed onto a Teflon holder. The latter is attached to a metallic pole (Figure 3-35 a). A distance of 10 cm between the inclusion and the metallic pole ensured that the measurement was not influenced by this pole. The distance of 3.7 cm between the inclusion and the white holder was chosen to minimize the influence of the holder. A control measurement was done in order to verify that the presence of this inclusion holder did not have an impact on the contrast (not shown here).

The probe is fixed and the inclusion is moved along the z axis (the exact position is set with a translational stage). The homogeneous case is obtained like this: the inclusion is positioned as low as possible (5 cm from the surface of the phantom), the "reference" position.

The volume of the liquid phantom is 18 x 21 x 11 cm 3 . For these punctual measurements, the inclusion and the probe are positioned in the middle of the phantom tank, to limit the influence of the borders.

Figure 3-36 this experimental configuration. During the measurement, the whole setup was covered with black sheets to minimize the collected background light. 

2D scans for 3D DOT

The same setup is used for holding the inclusion for 2D scans. A smaller holder is employed for the probe to facilitate the scan in 2D at the surface of the medium (Figure 3-37). The homogeneous case is acquired similarly as for punctual measurements. A selfmade Labview® program controls the full sequence of acquisition: TCSPC measurements and movements in the 3 axes with the translation stage. 

Geometrical configurations for acquisition

The punctual measurements and the 2D scans are done by using three source-detector separations: 5 mm, 10 mm, and 15 mm (Figure 3 

Measurement protocol

Punctual contrast measurements

The measurement protocol was thought of in order to allow a fair comparison between the two tested detectors. The settings of the constant fraction discriminator of the TCSPC board were adapted to each detector, as recommended by the manufacturer. The dynamic range was optimized individually with each detector at each interfiber distance. For this, the setup 
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was covered with the same black sheet to reduce the background light and the variable optical attenuator (VOA) was adjusted in order to reach the count rate of 9.5 x 10 5 photons.

We had to cope with drifts of the instrument (source and detection efficiency). So the procedure was to adjust the count rate with the VOA until the counts became stable around the fixed value, before starting the measurement. However, we have still observed some drifts during the different measurements. The effective counts retrieved from the TPSFs in the homogeneous case ("reference") are plotted in Figure 3-39 for each interfiber and each PMT. Maximum fluctuations of counts of about 3% were observed during the measurement session for a single detector. In order to reduce the influence of this instability, the measurement sequence was organized like this (for one detector and one SD):

-Acquisition of 10 references of 1s -Acquisition of 10 measurements of 1s with the inclusion at depth 1 -Acquisition of 10 references of 1s -Acquisition of 10 measurements of 1s with the inclusion at depth 2 -etc.

a) b) c) Figure 3-39 Punctual measurements: total counts per reference for each case (interfiber distance, PMT and reference occurrence). Error bars calculated from the 10 repetitions fit in the symbols on these graphs.

2D scans for 3D DOT

The same procedure was applied for 2D scans. As the measurements last longer (81 points were acquired), the drifts are more important over a whole scan for each PMT and each SD (Figure 3-40). They can reach about 10 % in some cases. This is why a reference measurement is acquired at each X-Y position of the scan. This procedure reduces dramatically the impact of the power drifts. Therefore, the measurement sequence is organized like this:

- 

Data analysis

Punctual contrast measurements

Figure 3-41 shows the pre-processed TPSFs and the chosen time-windows. The TPSFs have a slightly larger dynamic range than in simulations (Figure 3-21) because the background noise is in average lower than the simulated 100 photons per channel, for both detectors.

From these data, the contrast per time channel and per order of the Mellin-Laplace Transform (MLT) is calculated as described in Chapter 2 (2.1.4.2). 

2D scans for 3D DOT

The pre-processed TPSFs for the 2D scans are similar to the ones for the punctual measurements (Figure 3-41).

Contrast maps

The amount of collected data for 2D scans is large: 9 x 9 points of measurements and 5 repetitions of TPSFs of 4096 time channels for each depth. This representation is often used to display contrast on time gates in time-resolved analysis and enables to visualize spatially the main features of the imaged object (e.g. [START_REF] Sawosz | Application of timegated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimics local changes in oxygenation of the brain tissue Opto-Electron[END_REF]). The contrast obtained on late windows is attributed to deeper layers in the medium. In our case, as we image a simple object -a single absorbing inclusionthese maps of contrast give an idea of the robustness of the contrast with respect to noise. Ideally, we should obtain a centrosymmetric map. The higher the sensitivity to noise, the more the map will diverge from this ideal case. 

Reconstruction

We have proceeded with the same method as in simulations (3.4.3.2) to choose the optimal MLT order to include in the reconstruction for each case. For conciseness, we do not display these data here but base our comparisons between the PMT on the optimal results obtained in each case.

3D image analysis

The 3D images are analyzed the same way as explained for simulations (section 3.4.2.6).

Results

Impact of IRF on the contrast in depth

The same differences as on simulations in the trends of contrast profiles between the two PMTs are observed with experimental data on time-channels (Figure 3-43) and on orders of . At all tested interfiber distances and depths, the maximum contrast values are lower with the classical PMT than with the hybrid one. When looking at individual depths for "limit cases", it becomes clear that the hybrid PMT can offer a more robust detection (Figure 3-45). So, in conclusion, these profiles are the same as on simulations (Figure 3-25 and Figure 3-26) and at all interfiber distances, the hybrid PMT should detect deeper inclusions than the classical one. 

Impact of IRF on DOT images in depth SD = 15 mm

We propose to detail the results for this interfiber distance by discussing the obtained contrast on 2D maps and to finish with an analysis of the reconstruction results by looking at DOT images and at statistical results extracted from them. To avoid repetition, for other interfiber distances, we will just display the contrast maps and comment the statistical results extracted from final DOT images.

2D maps of contrast

For a depth of 15 mm (Figure 3-46), the contrast increases with the order n with the hybrid PMT but also becomes noisier. The behavior is different for the classical PMT: the mean values do not increase and also become noisier. However, in the 2 cases we can clearly picture the inclusion at its proper location, at x = 0 and y = 0. For a deeper inclusion, at 25 mm (Figure 3-47), no inclusion can be distinguished on the contrast map of the order n = 5 with the hybrid PMT (Figure 3-47 a)). At order n = 15, some pixels with high contrast appear in the centre (Figure 3-47 b)) but the "image" of the inclusion is much noisier than at the depth of 15mm (Figure 3 -46). So, at 25 mm with the hybrid PMT, we can expect a detection of the inclusion but a less accurate estimation of its shape than at 15 mm and more variability between results obtained for different repetitions of the measurement. With the classical PMT, no inclusion can be clearly seen at the centre of this 2D contrast map, at any order (Figure 3-47 c) and d)). We can expect to fail at detecting and localizing robustly the inclusion in this case.

Reconstruction results

Figure 3-48 shows one example of results obtained for one repetition of the 2D scan. We can appreciate the higher quality of reconstructions in depth with the hybrid PMT compared with the classical PMT. At 20 mm, the volume is more symmetric with the hybrid PMT (Figure 3-48 d) compared to c)). At 25 mm, the inclusion is well localized in x and y with the hybrid PMT but not at all with the classical one (probably just an effect of noise) (Figure 3-48 e) compared to f)). This is consistent with the analysis previously done on 2D contrast maps. On the examples of three repetitions of the measurements at the depth of 20 mm (Figure 3-50), we can see more variability between the obtained images with the classical PMT and recognize that depth and µ a are even more underestimated than with the hybrid PMT. However, the inclusion is robustly detected in both cases. At the depth of 25 mm (Figure 3-51) the inclusion is not robustly detected by the classical PMT anymore. It is still detected with the hybrid PMT but the background of the image starts to be noisy as well (appearance of non-existing less absorbing spots changing with the measurement repetition). We have detailed all the steps of the analysis in order to show the coherence of reconstruction results with 2D contrast maps. For the two other tested source-detector separations we will focus on the 2D contrast maps at the "limit depth" and reached performance for each detector, analysing only the reconstruction results.

SD = 10 mm

For concision, we present here only the results obtained at the limit depth of 20 mm for detecting the inclusion with the hybrid PMT. Contrast is visible on late orders of MLT only with the hybrid PMT (Figure 3-52 a)). The inclusion at the depth of 20 mm seems more robustly detected on DOT images reconstructed with the hybrid PMT (Figure 3-53). 

Conclusions

The simulation results are confirmed: the IRF of the detector influences the contrast profiles in the presence of a deeply embedded absorbing inclusion and this has consequences on the robustness of its detection.

The gap in performance between the hybrid and the classical PMT seems to be even more important in experiments. This can be explained in different ways. First, as mentioned before, the hybrid PMT offers a lower background noise than the classical one, because of its lower after pulse. Second, on simulations we had not included the effect of power drifts. So when very low values of contrast were reached with the classical PMT, the inclusion was detected as long as the error bars due to photonic noise were small. However, in experiments, such low contrasts are overwhelmed by power drifts and the inclusion cannot be detected anymore.

In the best case -with the HPM-we have found that it is possible to detect our inclusion with 1s acquisitions down to 20 mm for SD = 5 mm and SD = 10 mm and down to 25 mm for SD = 15mm.

Discussion

As simulated in Chapter 2, the only way to detect deeper inclusions is to count more late photons. With this TCSPC setup, the only possibility is to acquire longer. However, long acquisition times are not compatible with in vivo measurements for many reasons: movement of the patient, discomfort. Moreover, the problem with a long measurement is the system drift, which counterbalances the interest of increasing acquisition time. Other solutions will have to be proposed to increase the image depth range (Chapter 4).

Summary

In this chapter, we have presented the state-of-the-art TR-DOT instruments and explained the working principle of the two most spread acquisition techniques: TCSPC and timegated intensified cameras. We have chosen to work with single-photon detectors and TCSPC, offering the most accurate measurement of the TPSF and the finest timeresolution.

Then, we have exposed the components of our TR-DOT acquisition chain and justified these choices. We have considered two different technologies of single-photon detectors -a classical photomultiplier tube and a hybrid one-and characterized this chain by measuring the instrument response function (IRF) with each of them. We have also introduced our test objects: optical phantoms based on a homogeneous liquid background and solid inclusions providing absorption contrast. These experimental techniques and tools will be used in the rest of the manuscript.

In general, the results presented in this chapter provide an experimental validation of the method presented in Chapter 2. However, the key point of this chapter is to shine light on the importance of the IRF on performances of TR-DOT in reflectance and to quantify it. This study is based on the two IRFs of our detectors, the hybrid PMT being reputed for its fast response and the classical PMT having a larger response with a "tail" on late photons.

This study is first carried out on simulations in order to isolate the effect of the IRF from other factors like background noise. It has demonstrated the degradation of contrast values for the deepest inclusions at all time-of-flights for a non-ideal IRF. This degradation is very slight for the hybrid PMT but considerable with the classical one. We have also seen that DOT reconstruction results are affected by the IRF. With the fast IRF of the hybrid PMT we can reach the same performances as with an ideal IRF. Therefore, the choice of the detector based on this criterion is crucial to achieve the best performances with TR-DOT in reflectance at short source-detector separation. The reference criterion of the FWHM often mentioned in literature seems not to be enough to qualify an IRF for our application.

On experimental results, we have seen a clear increase of contrast values and reconstruction quality with the hybrid PMT, at all tested interfiber distances. In this case, it can be explained by a double factor: a thinner IRF and a lower background than the classical PMT. High contrast values obtained with the hybrid PMT also enable to be robust to unavoidable instrumental drifts. With measurements of 1 second per TPSF with the hybrid PMT, we have reached the depth of 25 mm with the interfiber distance of 15 mm and the depth of 20 mm with interfiber distances of 10 and 5 mm. These results are encouraging for the feasibility of optical probes with limited sizes.

A more general conclusion can be drawn from this chapter. A TR-DOT setup has to be carefully optimized to really bring superior information to CW setups. This happens at the detector level -temporal shape of the IRF-but also at the level of each and every component of the setup. Temporal broadening and reflections of the source pulse can consequently degrade the measurement quality. From the author's point of view, this point is the main obstacle to the robustness of TR-DOT setups and therefore to a possible transfer of this technique in a clinical environment.

Having optimized the IRF of a TR-DOT setup, the dynamic range of the measurement is limited by the maximum count rate allowed. In this configuration, the only way to increase the dynamic range is to acquire longer times, which is not compatible with in vivo measurements. To tackle this problem, we propose in Chapter 4 an alternative use of TCSPC for TR-DOT involving the use of fast-gated detectors.

Chapter 4: Enhanced dynamic range for time-resolved DOT with fast-gated SPADs

In Chapter 2, we have shown with simulations that TPSFs with a large dynamic range are required for DOT in reflectance at short interfiber distances. With the experimental setup involving a free-running detector and TCSPC introduced in Chapter 3, the only possibility to increase the dynamic range is to increase the acquisition time. In Chapter 4, we now propose an alternative approach. We will show that, for a given acquisition time, fast-gated single-photon avalanche diodes (SPADs) enable to acquire a larger dynamic range than conventional methods using free-running detectors.

In the first place, we introduce the concept of TCSPC with fast-gated detectors and discuss its advantages compared to other approaches. Then, we determine the specifications required for this fast-gated approach in order to benefit to our precise application: DOT in reflectance at short source-detector separation. Following this, we list possible technological approaches and evaluate if they can meet our needs. We finally select the option of fast-gated SPADs, best suiting our specifications and present its working principle in detail.

We carry out an experimental study implementing a fast-gated SPAD with TCSPC for DOT. This proof-of-principle study aims at showing the potential of fast-gated detectors for imaging deep absorbing inclusions. In particular, the protocol was designed in order to allow a fair comparison between the gated and non-gated approaches. This experimental work was carried out at Politecnico di Milano and the presented results were published in (Puszka et al 2013b).

We will close this chapter by discussing the limitations and perspectives of the presented fast-gated approach. 

Enhanced dynamic range for time-resolved DOT with fast-gated SPADs

The inherent limit of TCSPC, the count rate limited by early photons, is an obstacle to deep imaging with DOT in reflectance at short source-detector separation. Whereas time-gated cameras offer the possibility to optimize the count rate for each gate their low timeresolution remains a major drawback. The ideal solution would be a gated detector associated to TCSPC: the counted rate could be adapted for each time gate by adjusting the collected light power and a fine time resolution of the TPSF would be allowed in the gate. This chapter investigates this technical option for DOT and proposes a proof-of-concept study with one possible implementation.

Principle of TCSPC with a time-gated detector

TCSPC can benefit from time-gated detectors only when an important luminous flux is collected and has to be attenuated to avoid damaging the detectors and saturating the counting electronics. When temporally moving the gate in a region where few photons are available, one can increase the collected light power until the maximum count rate is reached again. Consequently, a good signal to noise ratio can be reached very fast in this time gate. This approach is relevant in reflectance at short source-detector distance (a few mm) where an important luminous flux is typically collected in biological tissues. More detail is given about this in Appendix 7.7, where we estimate the number of collected photons depending on the source-detector separation in a medium of interest.

TCSPC with a time-gated detector should operate as illustrated in Figure 4-1: -Step 1: the temporal gate is positioned at the start of the TPSF in order to acquire the time portion of early photons. In this case, the count rate is limited by the numerous early photons, as with free-running detectors. The gate should be "opened" meaning in the ON state when first photons of the TPSF hit the detector. For this application, the time width of the gate and therefore its closing time are not critical. -Step 2: the gate is temporally moved towards higher times so that it efficiently cuts-off the peak of early photons. The collected luminous flux can then be increased (for example by increasing the source power) until the maximum count rate is reached again. Obviously, in average, the counted photons per time channel are therefore multiplied by the factor of power increase. The temporal position of the opening of the gate is crucial.

As we want to recover the full TPSF, a certain overlap between the portions of the TPSF measured with gate 1 and 2 has to occur. On the given example of Figure 4-1, there are very few counts at the end of gate 1 (t f,1 ) so the opening of gate 2 (t i,2 ) is positioned before the end of gate 1 in order to acquire the time portion between t f,1 and t i,2 with a good SNR. -Step 3: the last operation is to recover the TPSF from the gated measurements. For this, the measurement of gate 2 is rescaled with respect to the factor of power increase between gate 1 and 2. The final TPSF can then be recovered. In the simplified example of Figure 4-1, the increase in dynamic range is in the same order of magnitude of the power increase (2 decades). Note that with this acquisition process, the dynamic range is larger after the main peak of the TPSF than before this peak.

For instructive purpose, we have described the acquisition process with two time-gates. Of course, more can be used, especially if more source power is available. However, in the case of an in vivo measurement, the safety limit for tissue illumination will restrain this source power.

Step 1)

Step 2)

Step 3) Figure 4-1 TCSPC with a time-gated detector, Step 1) measuring with gate 1, Step 2), increasing the source power (factor 100 here) and measuring with gate 2, Step 3) recovering the full TPSF from the measurements of gates 1 and 2. t i,N : initial time the gate N, t f,N : final time of gate N.

Requirements on the time-gating operation

Time-gating single-photon detectors is also of interest in other fields than biomedical optics, like for example in laser detection and ranging (LIDAR) [START_REF] Wilkinson | High speed Pockels cell shutter and the Herstmonceux MCP-PMT detector Proceedings of the 16th International Workshop on Laser Ranging[END_REF]. We can imagine different implementations of time-gating: optical or mechanical shutter before the detector, electronic gate at the detector. These solutions will be detailed in section 4.3. However, it is important to first define the required technical specifications for time-gating in order to identify potential solutions. In particular, these specifications have to be described for our precise application: DOT in reflectance at short source-detector separation.

Rise time of the gate

The rise time is the time lapse between the OFF and ON states of the gate. It is a critical parameter and its maximum tolerated value clearly depends on the time spread of the TPSF to be measured. We illustrate this on Figure 4-2 with a TPSF measured with the hybrid PMT of Chapter 3 (HPM-100-50, Becker & Hickl) for 1s at the interfiber distance of 5 mm in a medium of µ a = 0.1 cm -1 and µ' s = 10 cm -1 . This corresponds to the most critical case The time-spread of the TPSF obviously depends on the dynamic range of the measurement, linked to the background noise of the detector and the acquisition time. In our limit case, we can see that the time spread of the TPSF is around 2 ns (blue lines on Figure 4-2).

If the rise time is in the same order of magnitude of this time spread, the benefit of time gating will be minimal (Figure 4-2 a)). Indeed, some of the numerous early photons will be detected during the opening of the gate having two consequences: a possible damage of the detector and a count rate limitation of the TCSPC. Moving the gate towards larger times will not help: the measurement in the gate will not overlap the measurement of the initial part of the TPSF and the time-gating might be useless if the available light source power does not enable to significantly increase the count rate in this time-portion (Figure 4-2 b)).

On the contrary, a rise time significantly smaller than the time-spread of the TPSF would enable an efficient cut-off and maximize the benefit of time-gating (Figure 4-2 c)).

In conclusion, for our targeted application, the rise time should be significantly smaller than 2 ns. A value of a few hundreds of picoseconds is desirable in order to optimize the acquisition procedure. The gate of a) is moved towards higher times in order to avoid measuring first photons, c)A rise time significantly smaller than the spread of the TPSF is used and the ON state is reached at the end of the TPSF. In this last case, the cut-off of early photons and measurement of late photons are optimized. Blue line: TPSF measured with the HPM for 1s at the interfiber distance of 5 mm in a medium of µ a = 0.1 cm -1 and µ' s = 10 cm -1 , corresponding to the left y axis. Red line: state of the time-gate corresponding to the right y axis. 

Flatness of the gate

The temporal response of the detection should be the same inside the gate i.e. an IRF measured at the beginning, in the middle or at the end of the gate should be exactly the same. This point is crucial because our whole reconstruction method relies on the use of time-convolution products of functions with the IRF (Chapter 2 section 2.2). However, in our hypothesis, this IRF is time-invariant. This hypothesis breaks down if the response of the detector is not stable inside the gate. We have not stressed this point when working with free-running PMTs in Chapter 3 because this property is acquired for this technology. However, mostly in the case of electronically gated detectors, this crucial hypothesis is not necessarily true. We will detail why later (4.4.2).

On Figure 4-3 a), we show the response of a gated InGaAs SPAD (Aurea Technology, France) to continuous ambient light. This measurement was done with our TCSPC setup, with the settings described in Chapter 3. Clearly, the response of the gate is not flat. These fluctuations mean that the gain changes inside the gate and suggest that the IRF is not timeinvariant. In comparison, we show the flat response of the hybrid PMT to ambient light on Figure 4-3 b).

We have also measured the response of the gated InGaAs SPAD to our Ti-Sapphire femtosecond laser pulse for different temporal positions of the gate (the gate width and all other settings are the same for all acquisitions). Figure 4-4 a) shows the measurements obtained with the same time-gate delayed by step of 2 ns. On Figure 4-4 b), where these responses are overlapped, it becomes clear that the IRF is not time-invariant: its profile changes depending on where it was measured inside the gate.

To conclude, the flatness of the gate is a crucial parameter which has to be validated before choosing a solution for time-gating. 

Limited impact of early photons

It is important to choose a time-gating solution reducing the impact of early photons to the maximum. For example, with an electronic gate, a kind of « persistence » of early photons can be observed on the measurements. Some photons hitting the detector in the OFF state happen to trigger the multiplication of charges later when the gate is switched ON. The consequence is a rise of the background noise. Of course, this phenomenon is not desirable because it can severely limit the dynamic range of the measurement.

To finish, like all detectors, the chosen solution should have a large active area to collect the maximum light flux at the output of the collection fiber. It should also enable good detection in the therapeutic window (650 -900 nm) and be compatible with TCSPC boards. The IRF of the involved detector should be as thin as possible, as discussed in Chapter 3.

Considered solutions for time-gating the detector

Many technical options can be considered for time-gating a photon detector. Solutions based on mechanical, optical or acousto-optic effects are often used to modulate light sources but they could also be considered for time-gating the light reaching a detector. Applying an electronic gate at the detector level is also an option. Here, we briefly discuss the ability of these solutions to suit our application. 
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Mechanical shutters

Mechanical shutters like spinning disks or tuning forks choppers are usually used to modulate light sources. However, the fastest working frequency of these devices is around a few KHz, much lower than the 80 MHz of our pulsed light source.

Optical shutters

Different types of optical shutters are worth considering.

A liquid crystal display (LCD) can be used to modulate the light. This device is made of two layers, the first one containing liquid crystals which polarize the light differently depending on the applied voltage and the second one being made of a grid transmitting only the light polarized in one direction. With this arrangement, light can me modulated by changing the voltage applied to the first layer. However, the transition times for LCDs are in the order of magnitude of the microsecond, so much higher than the maximum rise time required for our application (< 1ns).

Another type of optical shutter is the Pockels cell, often used for Q-switching lasers. The working principle of the Pockels cell for light modulation is similar to the LCD: the first step is to polarize the light through a crystal and the second step is to select only one direction of polarization. The difference with LCD is that the polarization inside the crystal occurs thanks to the Pockels effect, an electro-optic effect producing birefringence in a crystal in the presence of a high electric field. This electro-optic shutter is able to switch from ON to OFF in a few nanoseconds but involves high voltages (kV). Additionally, like all polarization-based solutions, the transmission is limited to 50 % in the ON state.

Electro-optic modulators used in telecommunications also rely on the Pockels effect. Because of their small and compact design they allow to operate at lower voltages than bulky Pockels cells and therefore to achieve faster switching times (GHz). Electro-optic modulators are now available for the wavelength of 800 nm (Photline Technologies, France). However, they generally involve single-mode polarization maintaining light guides. Used at the detection level in our DOT setup, they would collect much less power than our 1 mm core collection optical fibres. In this case, the benefit of time-gating is null.

Acousto-optic modulation

An acousto-optic modulator is a Bragg cell: it uses the acousto-optic effect to diffract and shift the frequency of light using sound waves. By modulating the applied sound wave, one can modulate the light collected at the first diffracted order. However, this modulation is limited by time constants larger than the nanosecond.

Electronic gate at the detector

A last possibility is to directly apply an electronic gate to the detector. Two types of detectors offer this possibility with short rise-times.

First, some microchannel plates photomultipliers (MCP-PMT) can be time-gated with very short rise-times [START_REF] Wilkinson | High speed Pockels cell shutter and the Herstmonceux MCP-PMT detector Proceedings of the 16th International Workshop on Laser Ranging[END_REF]. For example the R5916U-64 (Hamamatsu, Japan) offers a rise time of 1 ns and an IRF of 110 ps FWHM. However, its GaAsP photocathode only gives a good spectral response from 280 to 720 nm, so limiting the detection at the end of the NIR range. The PMT210 (Photek, United Kingdom) provides a rise-time of 2 ns and an IRF of 110 ps FWHM with a sensitivity spectral range extended up to 900 nm.

Second, the single-photon avalanche diodes (SPADs) can be time-gated with even faster rise times. In particular, our literature search indicated that the silicon SPADs developed at Politecnico di Milano offer a rise time smaller than 200 ps with a very thin IRF and good sensitivity in the NIR range ( [START_REF] Tosi | Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements[END_REF] and [START_REF] Boso | Fast-gating of single-photon avalanche diodes with 200ps transitions and 30ps timing jitter[END_REF] rise times with SPADs than with PMTs can be explained by the different orders of magnitudes of the voltages to switch ON and OFF for time-gating. In the first case, only a few volts have to be applied above or below a constant bias voltage equal to the breakdown voltage V B of the device (3.3.7.5). In the case of PMTs, the voltages are in the order of magnitude of hundreds of volts. The time-gated SPADs of Politecnico di Milano have been optimized for the application of time-resolved spectroscopy where a large dynamic range is also necessary to obtain a fine estimation of the absolute optical properties of biological tissues [START_REF] Mora | Fast-Gated Single-Photon Avalanche Diode for Wide Dynamic Range Near Infrared Spectroscopy[END_REF]. In particular, the flatness of the optical gate has also been optimized. We will detail this in the next paragraph.

To conclude, among all the considered solutions, the time-gated SPADs seem to best suit our requirements: they offer the shortest rise time, a good sensitivity in the NIR range, a very thin IRF and a reasonably flat gate. We will pursue our work with this solution, and more especially with the fast-gated SPADs developed at Politecnico di Milano. First, we will explain the working principle of the chosen fast-gated SPAD and then we will present an experimental study of DOT with this detector.

Choice of single-photon avalanche diodes (SPADs) for fastgating

We present here only the silicon fast-gated SPAD and corresponding electronics developed at Politecnico di Milano (Dipartimento di Elettronica, Informazione e Bioingegneria). We detail the characteristics of the detector itself and the electronic module enabling the fastgating and avalanche quenching. We conclude on the IRF measured with this SPAD module.

The SPAD detector: general characteristics

The tested SPAD detector was extracted from the same production run as the SPAD described in [START_REF] Tosi | Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements[END_REF] and shows similar properties. We will only mention here the most important characteristic of this detector with respect to our application in DOT. This detector is a planar silicon SPAD of 100 µm of diameter. Its structure is illustrated later in Figure 4-8. Its breakdown voltage V B is 22 V. Its quantum efficiency is around 60 % at 550 nm, 20 % at 800 nm and 4 % at 950 nm [START_REF] Tosi | Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements[END_REF], so it can be used for measurements in the NIR range. Considering noise, its DCR is in the order of magnitude of a thousand counts per second. In the free-running mode, this SPAD is characterized by a very thin IRF of only 35 ps FWHM.

Electronic module for fast-gating

Fast-gating the SPAD requires applying an excess bias above V B to the gate. However, this operation generates strong electrical signal (called "spurious spikes") because of capacitance effects [START_REF] Mora | Fast-Gated Single-Photon Avalanche Diode for Wide Dynamic Range Near Infrared Spectroscopy[END_REF]. This phenomenon is illustrated in Figure 45. Therefore, the challenge of fast-gating a SPAD lies in discriminating the avalanche signal due to the absorption of a photon from the signal of the spurious spikes. Stabilizing the changing optical response of the gate due to oscillations in the electrical circuit is a second challenge.

The strategy chosen at Politecnico di Milano is to use passive-quenching of the avalanche with an active reset [START_REF] Tosi | Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements[END_REF]. In a simplified way, it consists in generating a dummy signal reproducing only the spurious spikes. A differential sensing (comparator) between the signals of the SPAD and the dummy enables to specifically detect the avalanche and not the spurious spikes. Additionally, the developed electronics enables a reasonably flat optical gate (black curve in Figure 456).

Currently the width of the SPAD gate can be tuned between a few hundreds of picoseconds and 10 ns with a 10 ps resolution [START_REF] Boso | Fast-gating of single-photon avalanche diodes with 200ps transitions and 30ps timing jitter[END_REF]. A programmable delay line sets a time delay in the range of 0 to 10 ns, also with steps of 10 ps.

The final electronic board comprising these functionalities and its compact housing are depicted in Figure 4567. 

IRF of the fast-gated SPAD

The small FWHM of the IRF of a SPAD (here 35 ps) is due to the absorption of electrons in the high-filed depletion layer of the p-n junction. This generates a fast avalanche. However, a second phenomenon generates a slow contribution to this IRF. This is the case of electrons which are absorbed in the neutral region of the SPAD. The generate electronhole pairs which slowly diffuse -because the electrical field is low-and can trigger an avalanche when reaching the depleted region. These two phenomena and their impact on the measured IRF are illustrated in (Figure 4-8) extracted from [START_REF] Tosi | Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements[END_REF]. Depending in the design of the SPAD, different time-constant of the IRF can be obtained. As demonstrated in Chapter 3, the smaller the time constant, the more performing the detector for TR-DOT.

It is worth noting that with a given SPAD the IRF measured in fast-gated mode is slightly larger than in free-running mode because different threshold have to be applied to robustly detect the avalanche. We have measured the IRF of this SPAD at 820 nm with a large dynamic range by using fast-gating. The precise acquisition procedure and recovery of the IRF are the same as detailed later in 4.5.3.

On Figure 4-9, we display the recovered IRF of the SPAD (FWHM of 70 ps) in order to compare it with the one measured with the hybrid PMT in Chapter 3. This SPAD offers an IRF with comparable width and slope as the hybrid PMT. Moreover, this slope is almost not changing for about 6 decades. In Chapter 3, we have concluded that the IRF of the hybrid PMT allowed good performances for DOT at short source-detector separation; similarly this SPAD should enable a good detection in depth. 

DOT with fast-gated SPADs: a proof of principle study

We present here a proof-of-concept study of DOT with fast-gated SPADs.

This experimental work was carried out at Politecnico di Milano thanks to funding from LASERLAB-EUROPE (grant agreement n° 284464, EC's Seventh Framework Programme). The author wishes to mention the support and active participation of L. Di Sieno, A. Dalla Mora, D. Contini, A. Pifferi from Dipartimento di Fisica and G. Boso and A. Tosi from Dipartimento di Elettronica, Informazione e Bioingegneria, all from Politecnico di Milano. The acquisition chain was mounted by the researchers from Dipartimento di Fisica; the contribution of the author was in the design of the experimental protocol and acquisition procedure and in the signal processing for DOT reconstructions.

Objective of the study

It was recently demonstrated that the fast-gated SPADs used with a TCPSC setup enable the acquisition of the full TPSF with a large dynamic range in limited acquisition time and with a time sampling of a few picoseconds [START_REF] Mora | Fast-Gated Single-Photon Avalanche Diode for Wide Dynamic Range Near Infrared Spectroscopy[END_REF]. The interest of this setup was already shown for tissue spectroscopy [START_REF] Mora | Fast-Gated Single-Photon Avalanche Diode for Wide Dynamic Range Near Infrared Spectroscopy[END_REF] and [START_REF] Alerstam | Single-fiber diffuse optical time-of-flight spectroscopy[END_REF]) and for the detection of an absorbing heterogeneity in turbid media (Mazurenka et al 2011). However, despite great potential of the high dynamic range gated SPAD acquisitions for reflectance DOT requiring short source-detection separation, the use of this approach for DOT has never been demonstrated before.

In this study we show that the signals acquired with fast-gated SPADs combined with TCSPC enable the reconstruction of maps of µ a coefficients in the medium by using our analysis method requiring the full TPSF and using the Mellin-Laplace transform. Additionally, we demonstrate that for a given acquisition time, operating the SPADs in the fast-gated mode enables better detection and localization of deeper absorbing inclusions than without gating. We first describe the experimental setup including a pulsed laser source, a fast-gated SPAD, a TCPSC acquisition board and an optical probe featuring the source-detector separations of 5 and 15 mm. We detail the acquisition protocol designed to compare the performance of the acquisition in non-gated mode and in gated mode. We explain how the acquired signals are pre-processed and the followed scheme for image reconstruction. Finally, we analyze the obtained results for each interfiber distance, demonstrating the potential of the gated approach versus the non-gated one for reflectance DOT.

This proof-of-concept study was carried out while the reconstruction algorithm was only available in 2D. Therefore, the results presented here were obtained with the direct and inverse models in 2D. The experimental configuration, especially the probe and phantom geometries, were adapted to limit the error due to this constraint (see 4.5.2.1). Results in 3D obtained with the same setup but for another study will be shown later in Chapter 5.

The results presented in this section were published in (Puszka et al 2013b).

Experimental setup

Probe and phantom

Pseudo 2D configuration

We have adapted the experimental configuration in order to minimize the error which can rise from a 2D DOT image reconstruction of a real measurement in 3D. The chosen acquisition geometry is illustrated in Figure 4-10. Instead of using a point inclusion, we have used a long cylindrical inclusion positioned below a line of sources and detectors. Like this, the inclusion can be considered as infinite in the direction perpendicular to the line of sources and detectors and the reconstruction plane (x,z) for the 2D image. Similar pseudo 2D configurations were reported in literature, for example in [START_REF] Hebden | Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data[END_REF] and in [START_REF] Hillman | Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications[END_REF]. In general, they have shown to allow good localization of inclusions but poor quantification of the optical properties.

Probe

The measurements were performed for 6 pairs of sources and detectors positioned as described in Figure 4-10, with relative distances of 5 and of 15 mm. All sources and detectors were aligned. The 6 measurements were performed sequentially, as our experimental system featured only one source and one detector at a time. We permanently positioned a rigid bar with regular holes separated by 5 mm center to center in order to allow exact repositioning of the sources and detectors at the surface of the medium. Each time the fibers were positioned, we ensured that a proper optical contact was achieved between the phantom and the optical fibers to avoid degrading the measurement with reflections of light from the tip of the fibers.

Phantom

We used a similar phantom as described in Chapter 3 (3.5.2.1). For the liquid background, the concentrations of black ink and Intralipid® were adapted to reach µ a = 0.1 cm -1 and µ' s = 10 cm -1 at 820 nm. Similarly, the solid inclusion was prepared to obtain µ a = 0.6 cm -1 and µ' s = 10 cm -1 . It was moulded in a cylinder of 8 mm diameter and 6 cm length.

During the measurement, the inclusion was always placed at the center of the probe, below S2, at x = 0, in parallel to the y axis. The inclusion was only moved along the z axis at different depths (from 10 to 37 mm). This depth is defined as the distance between the surface of the liquid phantom and the center of the inclusion. 

Source and optical chain

A fiber based 4-wave mixing laser (Fianium, UK), provides pulses of 26 ps FWHM at λ = 820 nm at the repetition rate of 40 MHz. A home built variable optical attenuator (VOA) was positioned at the output of the laser in order to control the incident power injected in the excitation fiber . In order to exploit the measurements at different gate delays, we need to know precisely the values of attenuation provided by the VOA. It was calibrated at the beginning of the measurement and these values were an input for pre-processing the measured signals . After attenuation by the VOA, the laser beam was injected into a 400 µm core optical fiber of 2 m long. The maximum power at the output of the excitation fiber was 55 mW. The diffused light was collected by a 1 mm core fiber 2.1 m long. The length of the fibers was specifically chosen in order to avoid round-trip reflections superimposed on the TPSFs. 

.3 SPAD detector

The fast-gated SPAD module (detector and electronics) was described previously in section 4.4. The opening and closing of the SPAD gate was controlled by a delayer synchronized to the laser source and the output of the SPAD module was connected to a TCSPC board .

The SPAD module was operated in two different ways. First, in "non-gated" mode the SPAD is ON (i.e. the gate is opened) before the first diffused photons reach the detector and is turned off only after the last photons are collected. In this mode the full TPSF temporally fits in the gate comparable to a measurement performed with a free running detector. With the second "gated" mode the TPSF is acquired portion by portion while the gate of the SPAD is successively delayed. This acquisition mode is performed in order to increase the incident source power without exceeding the maximum count rate associated with the first photons. Whereas the first mode is commonly used for DOT the second "gated" mode is new.

The same temporal width of the SPAD gate was used for gated and non-gated acquisitions. A temporal width of 5 ns was chosen so that the TPSFs could fit in the gate for the non-gated measurements, at both tested interfiber distances.

Measurement procedure

Choice of gates

For non-gated measurements, a gate width of 5 ns was used to contain the full TPSF without falling in the distorted portions of the curve at the opening and closing of the gate.

For gated acquisitions, the first gate was the same as the one chosen for non-gated measurements in order to obtain once the TPSF without distortion on early photons. After this first acquisition, the measurements at different gate delays were performed. The choice of the delays is important in order to achieve a good reconstitution of the full TPSF from the different gated measurements. The ideal situation would be to use the minimum number of delays in order to limit the acquisition time. However, the presence of a distorted temporal zone of a few hundreds of picoseconds at the opening of the gate has to be discarded from the analysis .

Once all measurements are acquired, they can be rescaled with respect to values of attenuation used during the acquisition, the full TPSF is reconstituted portion by portion from the gated measurements as explained in Figure 4-15. The principle is simple: the temporal portion of the signal from gate n+1 is kept to build the TPSF once it crosses the curve measured in gate n, and so on. In order to optimize the choice of gates and obtain a smooth reconstitution of the full TPSF, we proceeded as follows. For a given interfiber distance, we performed successive acquisitions of 1 s measurement time with a delay increasing by steps of 100 ps. For each delay, the VOA was automatically set in order to reach the limit count rate of 10 6 photons per second. This optimal VOA position per delay was stored to be used in the rest of the measurements. This procedure was stopped once the maximum amount of achievable power was reached. Indeed, at this point, no further advantage of time-gating is gained. We applied our TPSF reconstitution method described in Figure 4-15 to different combinations of the series of gates measured at delay steps of 100 ps in order to determine the minimum necessary gates to reconstitute a smooth TPSF with the largest dynamic range possible.

Finally, 9 gates were used for SD = 15 mm; the source power was increased by a factor of 4.6 x 10 2 between the first and the 9 th gate. 7 gates were used for SD = 5 mm with a maximum power increase of a factor of 4.7 x 10 3 . For SD = 15 mm, the power increase with respect to the first gate is smaller than for SD = 5 mm because at this larger interfiber distance, the first gate required more power to reach the maximum count rate. For both interfiber distances, the last gate was measured at the maximum available power that is to say for the smallest attenuation delivered by the VOA. In this condition, we measured a power of 55 mW at the tip of the source fiber.

Acquisition protocol

The protocol was designed to compare fairly, for a given acquisition time, the performance obtained with non-gated and with gated acquisitions. For each pair of sources and detectors, series of gated and non-gated measurements were performed for different depths of the inclusion.

As mentioned earlier, our reconstruction algorithm requires the use of a reference measurement in a known medium in order to take into account the IRF (2.2.1). In this work, we used the measurement in the phantom without the inclusion as a reference (homogeneous measurement). For practical reasons, the inclusion was not taken out of the tank but moved at 6 cm depth, outside the limits of the optical probe. Instead of performing only one reference acquisition during the measurement, we chose to acquire a reference between two successive acquisitions with the inclusion at different depths (heterogeneous measurements) in order to minimize the time lapse between a reference and its associated heterogeneous measurement, to account for possible drifts (laser power fluctuations, phantom settling, etc.).

For gated acquisitions, we set the gate delay and carried out the measurements for different depths of the inclusion. For each gate and each case (homogeneous and heterogeneous) acquisitions of 1 s were performed and the VOA was positioned to reach a count rate of 10 6 photons per second (average of 1/40 photon per cycle). This optimal position of the VOA per gate delay was known from the preliminary measurements performed at delay steps of 100 ps which enabled a rapid positioning of the VOA during the acquisition and decreased the total duration of each measurement.

Non-gated acquisitions were performed within the same acquisition time as used for gated measurements, for fair comparison of both modes. So for example, when 7 gates of 1s were acquired for the gated measurements at 5 mm interfiber distance, 7 repetitions of 1s of non-gated measurements were carried out. Thus the two acquisition modes had the same effective photon-counting time. The measurements represented 7 seconds of effective acquisition for each interfiber distance of 5 mm and 9 seconds for each interfiber distance of 15 mm, for each homogeneous and heterogeneous measurement. 

Non-gated signals

For a given pair of source and detector and a given measurement, all the repetitions of nongated measurements were summed, channel by channel. The average offset provoked by the DCR on one time channel was then removed to all time channels of all TPSFs.

Gated signals

The pre-processing of gated measurements is more complex than for non-gated ones since:

1) An additional noise source called the memory effect can be present on gated measurements.

2) The full TPSF has to be built from portions measured at different gates.

The memory effect is a background noise source occurring when numerous photons impinge the SPAD when it is in the OFF state. This phenomenon is extensively described in (Dalla Mora et al 2012). Whereas we did not observe it for any gate at the interfiber distance of 15 mm, the memory effect became visible at SD = 5 mm for the 4 last measured gates (Figure 4-16 b)). We removed the memory effect from each affected gate by selecting a time-portion to calculate its average level and then subtracting it from all time channels of this gate (coloured areas on the 2 nd graph from the top of Figure 4-16 b)). This was done separately for homogeneous and heterogeneous measurements as this noise source depends on the number of photons impinging the detector in the OFF state and this number varies depending on the depth of the inclusion. After correcting DCR and memory effect, a rescaling by the attenuation value was done for each gate. The curve was then reconstituted with the method explained in Figure 4-14 and Figure 4-15. The sequence of all the preprocessing steps for gated measurements is summarized in Figure 4-16 in the following page. 

Estimated variance on the TPSFs

Considering that the measurements are affected by photonic noise only, the variance of each time channel can be estimated by the number of photons measured in this time channel.

Non-gated signals

For non-gated signals, the variance is estimated by the number of photons per time channel before the DCR correction.

Gated

With the gated mode, it is necessary to take into account the power increase with which each portion was measured. The variance on the final TPSF is calculated separately for portions extracted from different gates. If the value in the pre-processed TPSF at time t was extracted from gate G measured with a power increase of F G with respect to the first gate, as the variance on can be calculated as follows: . The profiles of the variance curves are depicted in Figure 4-17. Each steep change of variance corresponds to a change of gate.

Signal to noise ratio per time-channel

The signal to noise ratio (SNR) per time-channel is calculated as follows:

. It is represented in Figure 4-17. For non-gated measurements, it exponentially decreases with time. The trend is different for gated measurements: inside the portion of the TPSF recovered from one gate it also exponentially decreases, but when switching to the portion extracted from the following gate, it steeply increases. By using fast-gating, we can maintain a high SNR in a larger time range. 

Reconstruction method

The reconstruction method is the same as described in 2D in Chapter 2 (section 2.2 and more precisely section 2.3.2.4 for implementation of the algorithm and image analysis). The forward and direct models are computed in 2D.

The algorithm is initialized by a homogeneous map with the estimated value of the background medium (µ a = 0.1 cm -1 ). We ran separate reconstructions including only the pairs of sources and detectors at distances of 5 and 15 mm to evaluate independently the performance of the setup for each interfiber distance. WITH FAST-GATED SPADS Université Joseph Fourier / Université Pierre Mendès France / Université Stendhal / Université de Savoie / Grenoble INP 4.5.6. Results

Dynamic range

Figure 4-17 above shows the pre-processed TPSFs obtained without and with gating for a reference measurement in a homogeneous medium of µ a = 0.1 cm -1 and µ s ' = 10 cm -1 , for SD = 15 mm and SD = 5 mm and underlines the gain in dynamic range with gating.

For SD = 15 mm, using gating provides a gain of 2 decades of dynamic range and the measurement of photons with flight times up to 6.6 ns (starting from a t 0 set before the peak of the TPSF) whereas the maximum was 3.8 ns without gating (Figure 4-17) (from the same t 0 ). For SD = 5 mm, we observed an increase of 2 decades with gating, which allowed the detection of photons up to 3.2 ns with respect to 2.2 ns which was achieved without gating. The interest of the gated mode for detecting deep absorbing inclusions is directly visible on the pre-processed TPSFs . For SD = 15 mm, whereas it is only possible to distinguish the curves acquired for depths between 10 to 22 mm from others without gating, depths from 10 to 28 mm can be differentiated following gated measurements (Figure 4-18 a)). Similar effects are observed for SD = 5 mm (Figure 4-18 b)). Moreover, the perfect overlap of all homogeneous measurements at both interfiber distances for non-gated and gated acquisitions confirms that the differences between TPSFs measured for different depths of the inclusion are due to the position of the inclusion and not due to experimental drifts. Figure 4-18 also shows that the TPSFs reconstructed from gated measurements are not completely smooth but can present steps due to imperfect calibration of the VOA.

The TPSFs of Figure 4-18 are used to calculate the MLT and are processed by our DOT reconstruction algorithm in the following section.

Contrast

The contrast on the orders of the Mellin-Laplace transform (MLT) of the TPSFs is calculated as previously explained in Chapter 2 (section 2.1.4.2).

Figure 4-19 shows the obtained contrasts for orders n = 1 to n = 30 of the MLT of the TPSFs calculated with p = 3 ns -1 . These contrasts are depicted only for one pair of source and detector per interfiber distance but the trends described here were similar for all pairs at the same interfiber distance. The error bars were obtained from only 2 different values: by calculating the contrast using the heterogeneous measurement with either the homogeneous measurement acquired before or the one acquired after.

Figure 4-19 demonstrates that for both interfiber distances, whereas the contrast is similar for the first orders, it always reaches higher values for the higher orders of MLT for gated measurements. This suggests that more orders of MLT can be included in the reconstruction algorithm for this acquisition mode. 

Gated versus non-gated

Figure 4-22 summarizes the comparison between the non-gated and gated acquisitions for the criteria of the mean reconstructed depth, for SD = 15 mm (Figure 4-22 a)) and SD = 5 mm (Figure 4-22 b)). As stated before, for both interfiber distances, it is clear that the gated mode has a considerable increased detection range in depth. Additionally, the gated mode has also improved the depth localization within this range. 
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However, our algorithm does not exactly retrieve the real position in depth. For SD = 15 mm, the depth is underestimated when the inclusion is deeper than 25 mm. Such behaviour has already been observed on simulations in 2D (in Chapter 2 Figure 2-54 a)). For SD = 5 mm, the depth of the most superficial inclusions is overestimated. In the reconstruction algorithm, other preconditioners for spatial regularization (see 2.2.3) should be explored to improve the proper localization over the full detection range.

Finally, for gated and non-gated measurements, the deeper the inclusion, the larger the reconstructed inclusion and the greater the underestimated mean µ a in the inclusion (Figure 4-20 and Figure 4-21). However, this underestimation seems intrinsic to our method as it is consistent with simulation results (in Chapter 2 Figure 2-54 c)). An additional error comes from the fact that 2D reconstructions were done from 3D measurements. A more exhaustive work should be carried out to improve the quantification potential of this method in the future.

Conclusions

We have demonstrated the feasibility of DOT on phantoms at short interfiber distance using fast-gated SPAD acquisition. DOT algorithms requiring the full TPSF, like methods based on the Mellin-Laplace transform, can provide relevant maps of absorption coefficients. For the two interfiber distances of 5 and 15 mm, we showed that gated acquisitions not only enable an increase in the detection range in depth as compared to non-gated acquisition and previous work [START_REF] Selb | Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation[END_REF] [START_REF] Kacprzak | Time-resolved optical imager for assessment of cerebral oxygenation[END_REF], but also enlarge the depth range within which the algorithm can localize a single absorbing inclusion. This approach can be one solution to image deeper biological tissues with optical probes in a limited acquisition time which would be compatible with medical diagnostics.

Discussion

Signal pre-processing

The proposed experimental setup with a fast-gated SPAD and the associated protocol has provided measurements which could be successfully processed with a DOT reconstruction algorithm requiring the recovery of the full TPSF. Even if the pre-processed TPSFs were not completely smooth, similar trends on contrast as those expected from simulations could be observed and relevant maps of µ a could be reconstructed.

However, we have observed that the obtained maps of µ a slightly change depending on the chosen portions of gates to recover the final TPSF (not shown here). The recovery process is therefore inducing errors in our DOT reconstruction scheme. Likewise, we have seen that slight errors in the calibration of the VOA induce changes of slope of the TPSF and therefore modifications in the recovered map of µ a . To provide good results, the VOA has to be stable in time and perfectly calibrated.

Another error factor relies in the removal of the signal generated by the memory effect. We have presented a simple correction based on the estimation of an average level of memory effect per gate. However, this noise source does not exactly generate a flat background increase as DCR, but an exponential decrease (Dalla Mora et al 2012). Therefore, other corrections, like an exponential regression could be used. Specific experiments should be carried out to effectively define the optimal correction method.

To finish, exploiting the distorted zone present at the opening of the gate would improve the processing method and the acquisition. Indeed, using this portion would enable the use of fewer gates because less overlap between the gates would be necessary, which would decrease acquisition time and increase the useful collected signal.

Performance of the setup

We have seen that the dynamic range of the SPADs is limited by the appearance of an additional background noise, the memory effect, when numerous early photons hit the detector while the gate is not opened yet. In our experiments, this effect has limited the dynamic range of the measurements at the interfiber distance of 5 mm, but not at 15 mm. A detector free from this noise source could therefore enable better performance for detection in depth at short source-detector separation.

Another point limiting the performance of this experiment is the available source power. For both interfiber distances, we have used the maximum power available (55 mW) for the latest measured gate. However, a source providing more power would have enabled to detect even better late photons and possibly increase the imaged range in depth.

While increase in power is restricted by safety regulations when dealing with in vivo measurements, improved detection could be implemented by using SPADs with larger active areas or multiple SPADs. In this experiment, the optical coupling between the collection fiber and the SPAD was optimized but we know that there were optical losses. In this context, the development of SPADs with larger active areas or arrays of gated SPADs would enable to increase the collected power without increasing the source power. Increasing the active area of the SPAD is a challenge, mainly for noise considerations, but it is technically feasible, and great improvements can be expected in the future.

Comparison with other setups

Depth sensitivity is one of the main features of time-domain near infrared spectroscopy and tomography. This capability was already explored using both single [START_REF] Steinbrink | Determining changes in NIR absorption using a layered model of the human head[END_REF] and multi-distance measurements [START_REF] Liebert | Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation[END_REF]. Time-gated instruments can improve this intrinsic features of time-domain techniques [START_REF] Selb | Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation[END_REF].

A recent study reports the non-contact measurements in reflectance at short sourcedetector distance (minimum 2 mm) with a time-gated intensified camera [START_REF] Sawosz | Application of timegated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimics local changes in oxygenation of the brain tissue Opto-Electron[END_REF]. Maps of contrast showed a possible detection of absorbing inclusions down to the depth of 20 mm. However, it is not straightforward to compare the performances of this setup with ours as the phantoms, the acquisition times and procedures are completely different.

In our case, we have chosen a time-gated instrument based on a solid state detector, thus able to efficiently reject early photons. We have exploited this capability by increasing the injected power to maximize the count rate per time window. This procedure is rarely reported in literature for DOT. This has enabled to perform DOT images in depth at short source-detector distances (minimum 5 mm). It would be interesting to try to achieve similar performances with a time-gated camera. Leaving the time-resolution to the side (much lower with a time-gated camera than with TCSPC) a comparison on the measured contrast and its robustness between a time-gated camera and a SPAD would be relevant, if done with the same phantom and comparable acquisition times. The difference will be in the maximum achievable dynamic range, governed by the background noise of the detector and possible persistence of early photons.

Limits and perspectives of DOT with fast-gated SPADs

Our experimental study has shown a clear benefit of using time-gating for DOT in reflectance at short interfiber distance. Nevertheless, it is important to analyse the limitations of the technique (inherent ones or linked to the current implementation).

Limits

Limit of the fast-gating paradigm

There is an inherent limit to the fast-gating paradigm: it is beneficial to acquire a good SNR on late photons compared to the free-running option only if the collected light flux can be increased. This possibility is limited by the efficiency of detection and the available source power. In our phantom experiment, we have exploited our source power to the maximum, reaching a power of 55 mW. However, when considering a clinical transfer of this technique, one has to respect the safety limitations for tissue illumination.

In Europe, the norm EN 60825-1 is providing the maximum power density allowed (in W.m -2 ) called the "maximum permissible exposure" (MPE) to respect for a light source for eye and skin exposure. The MPE depends on the type of exposed tissue, the wavelength, exposure time and the type of source (continuous or pulsed). In any case, the calculation of the MPE has to be done for a well-defined application: known tissue, measurement protocol, etc. As the MPE dictates a maximum power density, one strategy to fall below this limit can be to increase the surface of the illuminated area, for example by choosing larger optical fibers. However, in the case of DOT, one has to be careful because the hypothesis of a punctual source can break down.

When the maximum allowed light power is reached, the only way to optimize the effect of time-gating is to optimize the collection efficiency. The different levers are: the quantum efficiency of the detector, the size of the active area of the detector, the size and numerical aperture of the collection optical fibers. Enlarging these fibers would have to be taken into account in the DOT reconstruction algorithm.

Limits of the implementation with fast-gated SPADs

We have implemented time-gating with SPADs associated to TCSPC. This choice has clearly showed an improvement compared to the non-gated approach, however, it also has its own limitations.

Using an electronic gate provokes the distortion of the measurement at the opening of the gate. In post-processing, we had to reject this part of the signal, therefore losing the portion of the curve where most photons were counted. An optical or mechanical gate would not have had this effect but as we have seen before, such solution is not available with a satisfying rise time.

The SPADs have clearly enabled to gain a few decades of dynamic range. However, this gain was limited by the rise of a background noise, the memory effect, at short sourcedetector separation. This noise source might be attributed to the persistence of early photons [START_REF] Mora | Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon singlephoton avalanche diode[END_REF].

Compared to a PMT or an MCP-PMT, the SPAD has a small active area (diameter < 1 mm). Consequently, there are optical losses when coupling the output of the 1 mm diameter collection fiber with the SPAD.

To finish, the IRF is also enlarged because of the "diffusion tail. Similarly to the behaviors described in Chapter 3, this enlargement has limited the performances at the short interfiber distance. 

Perspectives

Different developments could improve the interest of SPADs for DOT. Among them, we can think of larger active areas or maybe matrices of SPADs to optimize light collection from the optical fibers. Integrating the counting electronics into the SPAD itself to possibly avoid the use of a TCSPC board would be a great step to simplify, miniaturize a TR-DOT probe and facilitate its introduction in the clinic. In this case, a clear study on the minimal required time-resolution would be necessary.

Summary

In this chapter, we have tackled the challenge of increasing the dynamic range of TCSPC measurements for DOT without dramatically increasing acquisition times. We have focused on the option of time-gating the single-photon detector associated to TCSPC.

We have formulated the basic requirements on this time-gating for the crucial properties of rise-time of the gate, flatness of the optical response inside the gate and limited persistence of early photons.

We have considered the different options of mechanical, optical, acousto-optic and electronic gate. Among them, fast-gated single-photon avalanche diodes appeared as the best candidates. This technology developed at Politecnico di Milano offers a rise time of only 200 ps, a sufficient flatness of the gate and a thin IRF. These performances are achieved thanks to specific semiconductor design and optimized electronics to stabilize the gate after its opening.

We have presented an experimental proof-of-principle study of DOT with these fastgated SPADs. For the two interfiber distances of 5 and 15 mm, we showed that gated acquisitions not only enable an increase in the detection range in depth as compared to nongated acquisition but also enlarge the depth range within which the algorithm can localize a single absorbing inclusion. This approach can be one solution to image deeper biological tissues with optical probes in a limited acquisition time which would be compatible with medical diagnostics.

Obviously, this setup has its own limitations. Its robustness could be improved to enable the better recovery of the TPSF and a more accurate reconstruction of µ a maps. However, its main limit lies in the source power limitation and detection efficiency. This setup with fast-gated SPADs is now optimized for the detection and localization of deep absorbing inclusions for DOT at short source-detector distance. We will continue with it in Chapter 5 to study the spatial resolution which can be achieved with optical probes, for different configurations of sources and detectors.

Chapter 5: Spatial resolution in depth of time-resolved DOT with optical probes

The goal of the work presented in this manuscript is to study the feasibility of optical probes for performing DOT in biological tissues. Using a probe implies the use of reflectance measurements only. Within this work, we have considered only probes with small dimensions -few cm wide-to allow the access to internal organs or to enable a handheld scanning of the probe over an external organ. In this context, we have restricted ourselves to the source-detector separation of 15 mm at most.

The previous three chapters of this manuscript have tackled the challenge of depth sensitivity with optical probes and have proposed a time-resolved approach for increasing it. In particular, in chapter 2 we have shown that processing optimally the TPSFs enabled to increase the imaged depth range and localization accuracy within this range. Chapters 3 and 4 have dealt with proposing experimental approaches enabling the optimal performance for depth detection.

Having optimized the depth sensitivity, we now propose to study more precisely the imaging performances of such optical probes. In particular, we want to investigate the spatial resolution enabled by these probes and understand the influence of the probe geometry on these performances. Far from being exhaustive, the approach of this last chapter is to first answer some fundamental questions thanks to simulations. For a given probe design, is the spatial resolution changing in depth? How is it influenced by the signal to noise ratio? Do measurements at small interfiber distances enable a better spatial resolution in depth than measurements at larger ones? Is the spatial resolution influenced by the position of the object below the probe?

After having studied this problem on simulations, we will illustrate some of these questions with experimental results. This last experimental study was carried out on the optimized setup presented in Chapter 4. Indeed, by allowing the fast acquisition of TPSFs with a large dynamic range, this setup enables to investigate experimentally the spatial resolution in depth with measurements at short source-detector separation. This study was carried out at Politecnico di Milano thanks to a scholarship of Région Rhône-Alpes (France). OF TIME-RESOLVED DOT WITH OPTICAL PROBES

Spatial resolution in depth of time-resolved DOT with optical probes

A comparative study has shown a better spatial resolution of DOT with time-resolved measurements than with the continuous wave approach [START_REF] Selb | Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution Opt[END_REF]. This study compared both modalities for a given configuration of sources and detectors but the influence of this last parameter was not further investigated. Now that we have put in place experimental setups enabling measurements at short interfiber distances, down to 5 mm, we can wonder if they enable a better spatial resolution for TR-DOT. This is indeed suggested by a simulation study comparing the spatial profiles of contrasts measured at the surface of a medium containing an absorption perturbation for different interfiber distances [START_REF] Torricelli | Time-Resolved Reflectance at Null Source-Detector Separation: Improving Contrast and Resolution in Diffuse Optical Imaging[END_REF]. This work concluded on a better spatial resolution with a null interfiber distance than with a separation of 3 cm.

In this chapter we propose to concretely evaluate the impact of different configurations of pairs of sources and detectors on the spatial resolution of tomographic images. The approach is to answer some fundamental questions on the parameters influencing the spatial resolution by using case studies. This empirical approach aims at evaluating concretely the expected spatial resolution in the medium of interest and considered probe geometries. We will evaluate the influence of parameters like the depth of the object, the signal to noise ratio, the interfiber distance, the spatial density of measurements and positions of the probe with respect to the object.

In a second part, experimental results obtained with the optimized setup of Chapter 4 will be presented to validate the conclusions drawn from simulations.

Simulation study on the spatial resolution of optical probes

Objectives

The aim of the simulation study is to understand which factors influence the spatial resolution in depth for DOT with optical probes. Therefore, this study is designed to answer some specific questions, applied to our geometry of interest, with a specific case study. The considered questions are the following:

-For a given probe design, how is the spatial resolution changing in depth? -How is this trend influenced by the signal to noise ratio? -Do measurements at short source-detector separation enable a better spatial resolution in depth than measurements at larger ones? -How to choose the good compromise between the size of the imaged area and the spatial resolution for a given number of measurements?

Method

Specific case studies are used to estimate the influence of the different factors on the spatial resolution. We describe here the imaged objects, simulated acquisition geometries (positions of pairs of sources and detectors). We briefly mention the analysis tools used to draw conclusions.

Object to image

We image an object made of 2 absorbing inclusions located at the same depth. We choose this object to have a straightforward look on changes of the spatial resolution: depending on it, these 2 inclusions will be separated or interpreted as a single one by the reconstruction algorithm. The 2 inclusions are spheres of 10 mm diameter, separated by D i = 14 or 20 mm, depending on the case study.

A complementary approach would be to use a single absorbing inclusion and analyze the spread of the reconstructed inclusion as done in [START_REF] Selb | Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution Opt[END_REF].

Acquisition geometry

We define as "acquisition geometry" all the positions of the pairs of sources and detectors with respect to the object to image. Obviously, the possible acquisition geometries are unlimited for DOT.

To answer to our specific questions on the spatial resolution with TR-DOT, we propose to set a generic acquisition geometry and modify some parameters one by one. The proposed acquisition geometry is defined by the experimental setup used for the following experimental validation (section 5.2) and similar to the one presented in Chapter 4. As it features only one source and one detector, we can only perform scans of this pair of source and detector at the surface of the object in order to mimic different positions of optodes.

So, in the simulated case studies, we consider simple acquisition geometries involving the use of a single interfiber distance per reconstructed image. The parameters which can be modified are:

-the interfiber distance, -the scanning step in (x and y directions), -the position of the scan origin with respect to the object to image (in the y direction) This generic acquisition geometry and its variables are illustrated in Figure 5-1.

In this study, we will focus on the spatial resolution in one direction, along the y axis, and analyze changes in this direction only when modifying one parameter of the acquisition geometry. This is why the two inclusions will be aligned along the y axis and centered on x = 0 mm. It is the same for the central source-detector pair of the 2D scan. 

Simulating TPSFs

The TPSFs are generated in 3D (see Chapter 3 section 3.4.2.1). In major cases no noise is added. The specific influence of the signal to noise ratio on the spatial resolution we will illustrated with the case study 2, in section 5.1.3.2.

Pre-processing data and reconstruction

In the absence of noise, all the µ a maps are reconstructed with the first 25 orders of the Mellin-Laplace transform (MLT) (with p = 3 ns -1 ), for all interfiber distances. In the study case in which noise is added to the TPSFs (case 2), less orders will be used in order not to corrupt the reconstruction with noise.

All images presented here were extracted from the 15 th iteration of the algorithm.

Analysis

The tools for analyzing the results are similar to those introduced in Chapter 3 for 3D DOT (3.4.2.6 and 3.5.3.2): 2D maps of contrast on different orders of MLT and cut views of the 3D images. To better assess the possibility to separate two inclusions we add profiles of µ a along the y axis at different depths and compare them to the expected profiles.

Case studies

5.1.3.1 Case 1: For a given probe design, is the spatial resolution changing in depth?

Objective

We could directly answer "yes" to this question by looking at the previous results obtained with a single inclusion in Chapters 2, 3 and 4. Indeed, they showed that the size of the reconstructed single inclusion is always larger when positioned in depth. However, we illustrate it here with the two spherical inclusions moved together at different depths in the medium. Additionally, we discuss the origin of this loss of spatial resolution by analyzing 2D maps of contrast on different orders of the Mellin-Laplace transform.

Acquisition geometry

The object under study is constituted of the two spherical inclusions at both located the same depth and distant of D i = 20 mm. Depending on the tested configuration, these two inclusions can be positioned at different depths in the medium (Figure 5 

Results

Figure 5-3 gathers the 2D maps of contrast on different orders of MLT for 2 different depths of the inclusions. As we study the spatial resolution along the y axis, we will specifically analyze the contrast along the y axis at x = 0 mm. More particularly, we seek the presence of maxima of contrast at y = + D i /2 and -D i /2 and a local minimum at y = 0 mm, suggesting the possibility to separate the 2 inclusions.

For the most superficial position of the inclusions (10 mm), 2 local maxima of contrast at +10 and -10 mm along the y axis indicate the presence of 2 inclusions on the maps of contrast for order n = 5 (Figure 5-3 a)). On the contrary for a higher order of MLT (n = 15), all contrast values are higher but the contrast profile along the y axis is different than for order n = 5. Now there is a single maximum of absorption centered on y = 0. This map of contrast does not suggest the presence of 2 inclusions anymore (Figure 5-3 b)). A similar trend is seen for orders n= 5 and n= 15 for a deeper position of the inclusion of 20 mm (Figure 5-3 c) and d)). These maps of contrast suggest a conservation of the spatial information for low orders of MLT, so that favors the detection of objects close to the . This result is consistent with the 2D contrast maps: the spatial information of the low orders of MLT was used to reconstruct the inclusions at the surface. On the contrary, for deeper positions of the inclusions, like the depth of 20 mm, µ a maps show a single inclusion centered on y=0 and localized at the depth of 20 mm (Figure 5-4 c)). This result suggests that the information of higher orders having higher contrast values was used by the algorithm to properly localize the inclusion but the spatial information present in the low orders was not used. Figure 5-5 showing the profiles of µ a along the y axis at different depths demonstrates the loss of spatial resolution in depth. For the shallowest position of the inclusions (10 mm), a local minimum is present at y = 0 mm between the depths of 5 and 20 mm in the medium (blue lines on Figure 5-5). When the inclusions are positioned at the depth of 15 mm, this local minimum is visible only down to 14 mm and then the 2 inclusions cannot be distinguished (green lines on Figure 5-5). For the deepest positions of 20 and 25 mm, the µ a profiles suggest the presence of a single inclusion located at y = 0 at all depths (red and cyan lines on Figure 5-5). Figure 5-6 depicts the volumes with a threshold of 50% of the difference between the maximum µ a and the µ a = 0.1 cm -1 of the background. We can see that this analysis method would enable to separate the two inclusions only for the most superficial position. This method does not enable to use the information contained in the µ a maps and the µ a profiles. 

Conclusion

We have confirmed that the spatial resolution decreases in depth for a given probe configuration. This can be easily linked to a loss of spatial information on late times of the TPSFs or high orders of MLT because of a large number of diffusion events. This should correspond to a widening of sensitivity maps at high orders of MLT for a given sourcedetector separation.

5.1.3.2 Case 2: How is the spatial resolution influenced by the signal to noise ratio?

Objective

On the previous study case, we have studied the spatial resolution obtained in depth for a given configuration of acquisition. We have obtained it without adding noise to the simulated TPSF. To evaluate the impact of noise on the spatial resolution, we reproduce the previous case by adding noise to the simulated TPSFs.

Acquisition geometry

The simulated acquisition geometry is the same as for the previous case (5.1.3.1). We add Poisson noise to the TPSFs for a total of 10 6 photons per TPSF and 100 photons of dark counts per channel (offset corrected afterwards), as we have done it Chapter 2 (2.3.2.2 "Simulating experimental signals"). To optimize the reconstruction results with this signal to noise ratio, we run the image reconstruction with the 15 first orders of MLT (p = 3 ns -1 ) (as shown for this SNR in 2.3.3.2). The reconstructions are carried out for 5 noise draws to evaluate the variability of the results.

Results

The 2D maps of contrast obtained for one noise draw are shown in Figure 5 We compare the reconstruction results obtained with and without noise by analyzing the profiles of µ a along the y axis at different depths. When the inclusions are localized at the depth of 10 mm (Figure 5-8), the profiles of µ a with and without noise are almost overlapping. For a deeper position of the inclusions (e.g. 20 mm on Figure 56789), the profiles are also similar in both cases but the values of µ a are significantly smaller at depths > 17mm for the reconstructions with noise. This can be explained by the fact that less high orders are used in this case (a total of 15 orders for the reconstruction with noise versus 25 orders without (cm -1 ) depth: 29 mm noise). The comparison is not presented for deeper positions of the inclusion as this SNR does not enable to detect them. For the most superficial depths (5 to 14 mm), the profiles of µ a obtained with and without noise overlap. For depths > 17 mm, the profiles are similar but have smaller values for the reconstruction with noise.

Conclusion

The spatial resolution is not severely impacted by noise. The trend of the spatial resolution to decrease in depth is inherent to the method and driven by the broadening of the sensitivity maps. The noise slightly increases the error bars but the profiles of µ a in depth are not significantly affected. A high SNR is useful to detect deep inclusions but unfortunately will not increase the spatial resolution in depth.

Case 3: Do measurements at short source-detector separations enable a

better spatial resolution in depth than measurements with larger ones?

Objective

The spatial resolution of DOT is linked to the sensitivity maps of the pairs of sources and detectors involved in the reconstruction. In a given medium, these maps change with the source-detector separation. For time-resolved DOT, these maps also vary for a given source-detector separation depending on the time-of-flight. We have already seen in Chapter 2 that these maps were different depending on the order of the Mellin-Laplace transform .

With DOT, the less spread the sensitivity maps, the higher the expected spatial resolution. We want to see how the spatial resolution concretely changes for DOT in our medium of interest (µ a = 0.1 cm -1 and µ' s = 10 cm -1 ) and with source-detector separations ranging from 5 to 15 mm. In particular we want to assess these changes depending on the depth of the object to image.

The influence of the interfiber distance on the spatial resolution of contrast to a deep inclusion with time-resolved reflectance measurements has been studied in [START_REF] Torricelli | Time-Resolved Reflectance at Null Source-Detector Separation: Improving Contrast and Resolution in Diffuse Optical Imaging[END_REF]. With a theoretical and general approach, this simulation study compares the profiles of contrast of time-resolved measurements at null source-detector separation versus a separation of 3 cm. This study provides a general and rigorous approach to the question of the role of the interfiber distance on the spatial resolution. Our approach is more empirical: it only enables to draw conclusions in the precise case of tomographic reconstructions with the considered imaged object and considered source-detector separations. We will discuss the coherence of the results obtained with the two approaches at the end of this section.

Acquisition geometries

We propose the following method to solely evaluate the impact of the interfiber distance on the quality of tomographic reconstructions. A scan of a single pair of source and detector is performed at the surface of the medium to image. The object to image is constituted of the 2 inclusions described earlier located at the same depth and distant by D i = 14 mm. The scanning positions (barycenter of the pair of source and detector) are the same, only the interfiber distance changes. We will test the 2 interfiber distances of 15 and 5 mm.

Figure 5-10 summarizes the pairs of sources and detectors used for the reconstruction for the cases of SD = 15 and 5 mm. Let us note that we chose to have the same number of pairs of sources and detectors for the reconstruction. Therefore, the area covered by the scan is slightly smaller along the y axis for SD = 5 mm and then for SD = 15 mm. However, this is not a crucial difference as our analysis will be focused on the possibility to separate the 2 inclusions, so on the profiles of µ a recovered at the center of the y axis.

This simulation is run without noise to obtain the optimal spatial resolution achievable for each interfiber distance. 

Results

Depth = 10 mm

At the most superficial tested depth (10 mm), the 2D maps of contrast obtained for different orders of MLT reveal a different trend depending on the interfiber distance. In Figure 5-11, we can see that for an early order (n = 5), the contrast is maximum at the center of the image for SD = 15 mm (Figure 5-11 a)) but not for SD = 5 mm (Figure 5-11 c)). In this latter case, the contrast reaches its maximum value when the barycenter of the sourcedetector pair is located either at +5 or at -5 mm along the y axis but has a local minimum in between at y= 0. This suggest that SD = 5 mm should enable to distinguish the 2 inclusions from each other whereas SD = 15 mm will assimilate the two inclusions to a single one located at the barycenter of the 2 inclusions.

If we now look at a higher order of MLT (n = 15), we can see that both maps of contrast (Figure 5-11 b) and d)) become very similar for both interfiber distances, which would suggest a similar spatial resolution in depth. On the cut view in the plane (y, z) of the 3D reconstructed maps, we can notice slight differences between the obtained images for the two interfiber distances (Figure 5-12). The profiles of µ a along the y axis at different depths reveal more clearly these differences (Figure 5-13). At the depths of 8 and 11 mm, there is a clear local minimum in the µ a profile at y =0 only for SD = 5 mm, showing a separation of the 2 inclusions. However, there is a perfect overlap for SD = 15 and 5 mm when looking at the profiles at larger depths (from 17 to 29 mm) and no local minimum at y=0. This is consistent with the fact that the maps of contrast were very similar for both cases at high orders of MLT, the most sensitive to depth. Similar results were observed at the depth of 15 mm (not shown here). 

Depth = 20 mm

The maps of contrast obtained for a deeper position of the inclusions like 20 mm reveal a different trend than for superficial positions . For small orders of MLT (n = 5) and high orders (n = 15), no local minimum is observed, neither with SD = 15 mm nor with SD = 5 mm. The profiles of µ a in depth along y are very similar for both interfiber distances . None of them seems to enable to distinguish the two inclusions. We notice that the shortest interfiber distance underestimates slightly more the µ a in depth (> 17 mm). Figure 5-15 Profiles of µ a along the y axis at different depths in the medium (small graphs), for the inclusions depth of 20 mm. The dotted lines delimit the width of the two inclusions I1 and I2 along the y axis. None of the interfiber distances enables to separate the two inclusions in this case. Our results show that a slightly better separation of the two inclusions is obtained with the interfiber distance of 5 mm than 15 mm, but only for a superficial position of the inclusions (10 mm and 15 mm). For deeper positions of the 2 inclusions, the µ a profiles recovered by each source-detector distances are similar at all depths. This is coherent with the 2D maps of contrast extracted from the simulated measurements.

Discussion

The theoretical and simulation work reported in [START_REF] Torricelli | Time-Resolved Reflectance at Null Source-Detector Separation: Improving Contrast and Resolution in Diffuse Optical Imaging[END_REF] concluded on a better spatial resolution with a null or small source-detector separation at all depths and all times. The tested source-detector separations were more extreme than those presented here (SD = 0 and SD = 3 cm) and the studied medium was twice less absorbing (µ a =0.05 cm -1 and µ' s = 10 cm -1 ). Nevertheless the work of [START_REF] Torricelli | Time-Resolved Reflectance at Null Source-Detector Separation: Improving Contrast and Resolution in Diffuse Optical Imaging[END_REF] showed that the difference in spatial resolution is striking for shallow inclusions (5 mm) but significantly decreases for deeper inclusions (depth > 15 mm), to become almost null at the depth of 25 mm. Even if the configurations (optical properties of the medium, source-detector separations) are different, we can conclude that the two approaches lead to a similar conclusion: with time-resolved measurements the spatial resolution at the surface can be improved by using short source-detector separations. However, this parameter becomes less influent for the deepest layers of the medium. Another important point to mention is that the reconstructed maps of µ a presented and analyzed here are dependent on the chosen reconstruction algorithm. In particular, the use of other spatial regularization approaches could affect the reconstructed µ a maps obtained for each source-detector separation. However, the 2D maps of contrast are completely independent of the algorithm. Here, they have clearly shown the possibility to distinguish two inclusions at the surface for first orders of MLT with SD = 5 and not with SD = 15 mm (Figure 5-11).

Case 4:

How to find the good compromise between the size of the imaged area and the spatial resolution for a given number of measurements?

Objective

In the previous case study, we have considered measurements with different interfiber distances carried out with the same scanning step at the surface of the medium. This acquisition geometry was used to find out the specific influence of the interfiber distances on the spatial resolution. Nevertheless, optical probes are generally conceived differently.

In most cases, the source fibers and detection fibers are different, fixed inside the probe and specifically connected either to the detector or to the light source. This makes it impossible to use alternatively the same fiber for excitation or collection. Therefore, the design of an optical probe has to take this constraint into account. [START_REF] Selb | Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution Opt[END_REF].

Again, in these conditions, there are an unlimited number of possible acquisition geometries. A simple configuration often used in TR-DOT consists in regularly alternating a source and a detection fiber. This type of probe is used in the study on spatial resolution of TR-DOT versus CW-DOT reported in (Selb et al 2007) (Figure 5-16). We propose to focus on this type of probe and study their spatial resolution depending on the choice of the distance between the source and the detector.

Acquisition geometries

We can reproduce the geometry of Figure 5-16 with our generic acquisition geometry ( Figure 5-1) by choosing the same value for the interfiber distance and the scanning step.

We propose to analyze the change in spatial resolution for probes with source-detector separations of 10 and 15 mm. We consider the same number of measurements (9) in both cases. Figure 5-17 shows the two tested probes. The imaged object is the same in both cases: the two spherical inclusions separated by D i = 20 mm. These two inclusions are aligned along the y axis and centered on x = 0 mm. Both probes are centered on the origin of the (x, y) plane. The maximum depth at which the two inclusions can be separated with SD=step=10mm is 20 mm, as it can be seen on the reconstructed images (Figure 5-20) and the profiles of µ a in depth (Figure 5-21). Two maxima of absorption located at the positions of the inclusions are still present on the reconstructed image but more or less blurred by a third maximum. 

Conclusion

The probe featuring the smallest source-detector separation enables the best spatial resolution at all depths. However, for a given number of measurements, this probe enables to image only a small area in the tissue.

The design of an optical probe for TR-DOT is a compromise between the size of the imaged area and the spatial resolution for a given number of measurements. The acquisition time will be proportional to the number of measurements and chosen in agreement with the targeted depth in the medium. Whereas a probe with a large interfiber distance enables to image a large area, the spatial resolution is poor.

For imaging an internal organ (e.g. the prostate), the size of the probe is intrinsically limited by the access to the organ. On the contrary, for external organs like the breast or the brain, larger probes are conceivable. One could imagine a 2-step procedure:

-A first measurement with a large probe to roughly define where it is relevant to image the organ more precisely (e.g. suspected presence of a tumor). -A second measurement with a smaller probe to obtain the image of the region of interest with a better spatial resolution.

Discussion

The use of small optical probes to image an external organ can also be interesting because it is a compact handheld device, easy to manipulate. In this case, one can consider imaging the organ by scanning the probe manually at its surface. It can also be preferred to a large probe in order to better follow the curvature of an organ (e.g. the skull). However, given the acquisition times of a few seconds, this scan would not be continuous as it can be done with ultrasounds for example.

We have simulated the scan of the small probe with SD = step = 10 mm (Figure 5-17 b)) in order to conclude on the potential of this modality. Figure 5-22 illustrates the 3 different positions of the probe above the object and the obtained images of µ a at the depths of 10 and 20 mm. The first position corresponds to the probe centered on y = 0 mm (Figure 5-22 a)). In the second and third positions, the probe is shifted of 5 mm (Figure 5-22 c)) and 10 mm (Figure 5-22 c)) along the y axis.

For a shift of 5 mm, the separation between the two inclusions is degraded with respect to a null shift, for the 2 depths of 10 mm (Figure 5-22 e)) and 20 mm (Figure 5-22 h)). Moreover, the reconstructed absorption spot is slightly shifted towards negative y.

For a shift of 10 mm, only the inclusion directly below the probe is detected, at the two tested depths (Figure 5-22 f) and i)). It is now correctly localized (better than with the shift of 5 mm). Nevertheless, the presence of the second inclusion next to the probe influences the reconstruction of the inclusion below the probe: the spot is not symmetrical but slightly distorted towards the other inclusion. This effect is visible at the 2 tested depths of 10 and 20 mm (Figure 5-22 f) and i)).

To conclude, the scan of a small probe above the object to image is an interesting option but some distortions can appear due to the surroundings of the probe. These distortions should be taken into account when interpreting the images obtained with a scan. 

General conclusions

The spatial resolution of TR-DOT images is intrinsically linked to the sensitivity maps of the pairs of sources and detectors involved in the reconstruction algorithm. It inexorably decreases in depth because these maps broaden with the time of flight.

The signal to noise ratio of the measurement does not have a major impact on the spatial resolution. Improving it enables to detect robustly deeper inclusions but will not enable to improve the limit spatial resolution allowed by a given acquisition geometry.

The different study cases have enabled to illustrate the influence on the spatial resolution of some parameters of the acquisition geometry. Short interfiber distances enable to increase the spatial resolution but only for shallow layers of the object to image. For deeper layers (> 15 mm in the studied medium), the spatial resolution was found almost identical with interfiber distances between 5 and 15 mm. To conclude, the design of an optical probe is a compromise between the size of the imaged area and the spatial resolution for a given number of measurements (and therefore a given acquisition time). We have illustrated it with two probes having exactly the same geometry but a different scale factor. The largest probe enables a large view of the object but a low spatial resolution. It is the other way round with the smallest probe. Scanning a small probe enabling a good resolution is also an option to have a handheld instrument to image an organ. However, we have seen that the obtained images have to be carefully interpreted because of the influence of the properties of the object around the probe.

In the last part of this chapter, we will illustrate some of these conclusions with experimental results obtained with the same setup as described in Chapter 4.

Experimental study

In order to investigate experimentally the spatial resolution in depth allowed by different probe geometries, we selected the setup which provided the largest dynamic range. We discuss here the results of 3D DOT obtained with fast-gated SPADs. The considered acquisition geometries are similar to the one studied with simulations in the first part of this chapter. This experimental study was realized at the Department of Physics of Politecnico di Milano in collaboration with L. Di Sieno, A. Dalla Mora, D. Contini and A. Pifferi. This collaboration was supported by a scholarship of Région Rhône-Alpes.

In this second and last section of Chapter 5, we first describe the setup, the acquisition protocol and quickly recall the method for data processing and DOT reconstruction. We finish by analyzing the experimental results obtained with different acquisition geometries and discuss the coherence with simulations.

Setup and measurement protocol

The experimental setup is the same as in Chapter 4. The fast-gated SPADs were chosen to obtain the largest dynamic range possible and to study the spatial resolution in depth. Only the probe and phantoms are different from those described in Chapter 4, in order to allow 3D DOT with 2 small inclusions.

Measurement chain

The whole optical chain (laser, variable optical attenuator, optical fibers for excitation and detection) has been described in Chapter 4 in section 4.5.2.2. The measurements are carried out at λ = 800 nm. The detection chain (SPAD module, delayer, and TCSPC board) is also the same as in Chapter 4 (section 4.5.2.3).

Phantom and probe

Phantom

The optical phantom is similar to the one of Chapter 4 (liquid background with solid inclusions) except that we now work with two inclusions in order to study the possibility to separate them, as it has been previously explained in simulations.

The two inclusions are the same as in Chapter 3 with µ a = 0.8 cm -1 and µ' s = 10 cm -1 , in the shape of a cylinder of 0.8 cm diameter and 1.2 cm height (Figure 3 -34). They are held by the system presented in Chapter 3 including a Teflon plate and two white needles to which the inclusions are attached (Figure 3-35 a)). In the experiment presented here, we test OF TIME-RESOLVED DOT WITH OPTICAL PROBES Université Joseph Fourier / Université Pierre Mendès France / Université Stendhal / Université de Savoie / Grenoble INP different separation distances between the inclusions (D i = 14 and 20 mm). The liquid phantom is prepared to reach µ a = 0.1 cm -1 and µ' s = 10 cm -1 at λ = 800 nm.

Probe

The measurements are carried out with a single pair of source and detector. In order to maintain a good optical coupling between the liquid phantom and the optical fibers, we do not move the pair of source and detector at the surface of the phantom. Instead, we fix it and scan the object to image (the two inclusions) in the background liquid.

The rigid bar holding the optical fibers allows the interfiber distances of 5, 10 and 15 mm. We could position 2 detection fibers to have one source-detector pair along the y axis and the other one along the x axis. However, in the results presented here, we only use the measurements acquired with the source-detector pair along the Y axis, to study the spatial resolution along the Y axis only, as in simulations. The inclusions are also aligned along the Y axis and centered on x = 0 mm, as in simulations (Figure 5-1).

A picture of the setup in Figure 5-23 illustrates the configuration of the probe. 

Acquisition protocol

The measurements are done for all positions of the inclusions in the x-y scan and repeated for different depths of the inclusions. In order to minimize the impact of experimental drifts, we proceed as follows: 1) We fix the interfiber distance by positioning the optical fibers in the rigid bar.

2) We align the center of the two inclusions with the center of the source-detector pair along the y axis.

3) We bring the two inclusions to the first position of the x-y scan 4) We acquire the measurements at all gates for the first depths of the inclusions. We then repeat it for the other tested depths and for the "reference" or "homogeneous" position (inclusions at the depth of 5 cm).

We repeat step 4) for all other positions of the x-y scan.

As in chapter 3, we chose to acquire a "homogeneous" measurement at each x-y position of the scan to minimize the influence of the experimental drifts (laser power, detection efficiency, phantom settling). Depending on the total number of measurements points, the scans presented in this section lasted between 20 minutes and 3 hours.

In step 4), for the measurements at different gates, we proceed exactly as described in Chapter 4 for choosing the gates and adjusting the incident power for the measurements at different gate delays (4.5.3.2).

Data processing and DOT reconstruction

A similar data processing method as in Chapter 4 is put in place for the recovery of the TPSFs from gated measurements (4.5.3.1) and for the correction of the offsets due to the dark count rate and the "memory effect" (4.5.4). The same methodology is also used for DOT reconstruction (4.5.5). For each interfiber distance, we choose the optimum number of orders of MLT to use in the reconstruction algorithm. For SD = 15 and 10 mm, we used the first 15 orders of MLT (p= 3 ns -1 ) but only 10 for SD = 5 mm.

Results

We focus here on the experimental validation of two results obtained with simulations:

-The influence of the interfiber distance on the spatial resolution for superficial layers (case 3 in simulations: 5.1.3.3) -The differences in spatial resolution in depth obtained with the same probe designed with two different scale factors (case 4 in simulations: 5.1.3.4).

Influence of interfiber distance on the spatial resolution

We reproduce the case study 3 of simulations (5.1.3.3) with experiments. The acquisition geometry consists in an x-y scan with steps of 5 mm in the two directions. Three interfiber distances are tested: SD = 5, 10 and 15 mm. The scanned area is larger than in simulations: we now have 9 x 7 measurement points for the 3 interfiber distances (Figure 5-24).

In this section, we discuss results for a superficial position of the 2 inclusions (15 mm) and a deeper one (20 mm). We reproduce the measurement with two distances between inclusions (D i = 14 and 20 mm) and discuss the coherence with results of simulations.

Figure 5-24 Acquisition geometry for the 3 interfiber distances. The source-detector pair and the 2 inclusions are aligned along the y axis and centered on x = 0 mm. There are 9 measurements points along the y axis; the positions in y of the barycenters of the source-detector pair are [-20; -15; -10; -5; 0; 5; 10; 15; 20] in mm. There are 7 points along x: their positions are [-15; -10; -5; 0; 5; 10; 15] in mm. Total of 9 x 7 = 63 measurement points.

Inclusion depth = 15 mm

Distances between the two inclusions D i = 14 mm

We analyze the 2D maps of contrast on different orders of MLT as we did for simulations: we focus on the column along the y axis at x = 0 mm and seek the possibility to distinguish the two inclusions (suggested by a local minimum at y = 0 mm).

For SD = 15 mm, the presence of a maximum at y = 0 mm at all orders of MLT (Figure 5-25 a), b) and c)) suggests the detection of a single inclusion at the center of the scanned area.

For SD = 10 mm, the map of contrast is noisy for order N =5 (Figure 5-25 d)) and difficult to interpreter. For higher orders, there is also a maximum at y = 0 mm (Figure 5-25 e) and f)).

For SD = 5 mm, the map of contrast is also noisy for order 5 (Figure 5-25 g)) but for order 10 it shows a local minimum at y = 0 mm (Figure 5-25 h)) which suggests the possible separation of the 2 inclusions. However, for higher orders (Figure 5-25 i)), a local maximum appears at this position. On the reconstructed DOT images (Figure 5-26), we can see differences between the results obtained for the 3 interfiber distances. For SD = 15 mm (Figure 5-26 a)) and SD = 10 mm (Figure 5-26 b)), the reconstructed object shows a single inclusion and its size is slightly smaller than the actual spatial extent of the two inclusions. For SD = 5 mm (Figure 5-26 c)), a single inclusion seems to be detected but the size of the reconstructed spot is more similar to the real object.

Looking at the profiles of µ a along the y direction at different depths in the medium (Figure 5-27), we can clearly see the presence of a local minimum at the surface (depth = 10 mm) for SD = 5 mm only. This is consistent with the presence of a local minimum at y = 0 mm on the map of contrast for order N = 10 (Figure 5-25 h)). Deeper in the medium (depth = 15 and 20 mm), the profile of µ a does not show this local minimum anymore and is more spread than the profiles obtained with SD = 10 and 15 mm. The profiles for these 2 interfiber distances are similar at all depths but they have lower absolute values of µ a for SD = 10 mm.

These results suggest a slight difference of spatial resolution for the most superficial layers of the medium depending on the interfiber distance. 

Distances between the two inclusions D i = 20 mm

In order to verify the conclusions of the previous results, we have reproduced the same measurement with the inclusions separated by D i = 20 mm. The 2D maps of contrasts on orders of MLT for the 3 interfiber distances are shown in Figure 5-28. For SD = 15 mm, there is clearly a local minimum at y = 0 mm at orders N = 5 (Figure 5-28 a)) and N = 10 (Figure 5-28 b)) but not anymore at order N = 15 (Figure 5-28 c)). For SD = 10 mm (Figure 5-28 d) to f)) and SD = 5 mm (Figure 5-28 g) to i)), this local minimum at y = 0 mm is present at all orders. However, the relative difference between the maximum and the minimum contrast on these maps is larger with SD = 5 mm than with SD = 10 mm (compare the color scales on Figure 5-28 g) and d)). We expect to distinguish the inclusions with the 3 interfiber distances but might obtain a better separation with the smallest one. The reconstructed images show 2 distinct inclusions with all interfiber distances (Figure 5-29). However, the separation seems clearer with the smallest ones (SD = 10 and 5 mm). This is confirmed by the analysis of the profiles of µ a in depth (Figure 5-30). Superficially, SD = 5 mm offers the best separation (black arrow in Figure 5-30). Deeper in the medium (> 15 mm), the profiles are similar for SD = 5 and 10 mm.

To conclude, these experimental results obtained with fast-gated SPADs confirm a slight improvement of the spatial resolution at the surface when using small interfiber distances. This trend was identified on simulations in the previous section (5.1.3.3) and was verified here experimentally with two inter-inclusion distances. 

Inclusion depth = 20 mm

We look now how the spatial resolution changes in depth depending on the interfiber distance. We realize this experiments for the two inter-inclusion distances D i = 14 mm and 20 mm.

Distances between the two inclusions D i = 14 mm

Now that the inclusions are localized deeper, the contrast values are lower than at the depth of 15 mm (Figure 5 Whereas the 2D contrast maps with SD = 5 mm show high contrast values (> 20% for order N= 15), we could not obtain a correct convergence of the DOT algorithm in this case. Therefore, we compare only the results obtained at SD = 10 and 15 mm to conclude on the spatial resolution in depth.

On the DOT images (Figure 5-32), no separation of the 2 inclusions seems possible, neither for SD = 10 mm nor for SD = 15 mm. So, with this respect, we confirm that there is a similar spatial resolution in depth with both interfiber distances. However, the obtained results are different: the reconstructed absorption spot is smaller with SD = 15 mm than with SD = 10 mm. This trend was not observed on simulations and should be better understood in the future. The graph of profile of µ a confirmed that in both cases no separation of the inclusions could be seen (not shown here). A single inclusion centered on y = 0 mm is reconstructed with both interfiber distances.

Distances between the two inclusions D i = 20 mm

We reproduced the previous experiment with a larger inter-inclusion distance (D i = 20 mm). On the 2D maps of contrast, we can see that the contrast on order N =5 is too noisy to carry spatial information for SD = 10 mm (Figure 5-33 d)) and 5 mm (Figure 5-33 g)). On the contrary, for SD = 15 mm it already shows the presence of the 2 inclusions (Figure 5-33 a)). At order N = 10, the 2 inclusions can be distinguished with the 3 interfiber distances (Figure 5-33 b), e), and h)). It is also the case at order N = 15, but only for SD = 5 mm (Figure 5-33 i)).

As for D i = 14 mm at the inclusion depth of 20 mm, we could not reconstruct DOT images with SD = 5 mm. We therefore comment the results obtained for SD = 15 and 10 mm. The reconstructed images are very similar in both cases (Figure 5-34 a) and b)). On the profiles of µ a the separation of the two inclusions seems possible for the most superficial depths with SD = 10 mm (black arrow on Figure 5-35). However, similar profiles are obtained deeper (15 and 20 mm) for both interfiber distances. We conclude on a slightly better spatial resolution with SD = 10 mm than with SD = 15 mm, but only visible at the shallowest layers of the medium (depth < 15 mm). For deeper layers, the same spatial resolution is obtained in both cases. x (cm)
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Conclusion

This measurement set aimed at investigating the influence of the interfiber distance on spatial resolution in depth. The use of fast-gated SPADs has enabled to acquire the TPSFs with a large dynamic range with interfiber distances ranging from 5 to 15 mm. This analysis has shown a better spatial resolution at the surface (depth in the medium < 15 mm) when using the smallest interfiber distances. This result was reproduced with 2 inter-inclusion distances. On the contrary, these experimental results suggest that the impact of the interfiber distance on the spatial resolution is limited for deeper layers (depth in the medium > 15 mm). These conclusions are consistent with simulations (5.1.3.3).

Discussion

On these experiment results, we have observed a few points that were not raised by simulations. One example is the fact that the reconstructed absorption spot is smaller for objects at depth of 20 mm with SD = 15 mm than with SD = 10 mm for D i = 14 mm . This point needs to be reproduced and better understood.

One needs to keep in mind that the changes in spatial resolution obtained for different interfiber distances are very slight, as seen on simulations. Moreover, our measurements could have been degraded by system drifts due to long acquisition times required by the scans. Additional errors occur when recovering the TPSF from gated measurements. Therefore, it could be that these multiple error sources affect the slight differences observed in spatial resolution. ) depth: 20 mm

Same optical probes with different scale factors

In this section, we aim at reproducing experimentally the case study 4 of simulations (5.1.3.4). The goal is to analyze the spatial resolution in depth obtained with a probe featuring the same configuration of sources and detectors, but with a different scale factor. The 2 tested acquisition geometries for SD = 15 and 10 mm are the same as in case study 4 (Figure 5-17) and recalled here: In this last section, we propose to illustrate these differences in spatial resolution for 2 cases. The first case, similar to all cases mentioned earlier, consists in positioning the 2 inclusions at the same depth. The second case is more challenging and consists in shifting the inclusion located on the left (y = -10 mm) 5 mm deeper than the inclusion on the right (y = +10 mm).

Two inclusions at the same depths

To investigate this case, we consider a single inter-inclusion distance (Di = 20 mm). We use the same set of measurements as exploited previously (5.2.3.1) but include only the 9 measurements of the considered source-detector pairs shown in Figure 5-17 for the analysis and the reconstruction.

Inclusion depth of 15 mm

For SD = 15 mm, the 2D map of contrast shows a slight local minimum at y = 0 mm for order N=5 (Figure 5-36 a)) but for higher orders, a maximum is located at y = 0 mm (Figure 5-36 b) and c)). For SD = 10 mm, a local minimum is clearly present at y = 0 mm at all orders (Figure 5-36 d), e) and f)). There should be a good separation of the 2 inclusions in this case. The DOT images obtained with the 2 probes are significantly different. The separation and localization of the 2 inclusions is clearly better with the smallest probe (SD = 10 mm). It is striking on the reconstructed image (Figure 5-37 b)) and on the profiles of µ a in depth .

On the contrary, with the largest probe (SD = 15 mm), the 2 inclusions are not localized at their real positions but below the center of the 2 source-detector pairs at the extremity of the probe (y = -15 mm and +15 mm). There is also an artifact showing a third local maximum at y = 0 mm. This is visible on the reconstructed image (Figure 5 

Inclusion depth of 20 mm

The 2D maps of contrast for the largest probe do not show the presence of 2 distinct inclusions at any order (Figure 5 

Conclusion

These experimental results confirm a trend seen on simulations (5.1.3.4). The probe with the smallest scale factor enables a better spatial resolution for superficial layers (15 mm).

For deeper positions of the inclusions, neither the large probe not the small one can separate the inclusions. However, the spread of the inclusions is more overestimated with the largest probe. 

Left inclusion 5 mm deeper than right inclusion

To conclude this experimental session, we have tested a more extreme case than tested on simulations: the two inclusions not located at the same depth. This case is more challenging because the algorithm inherently tends to detect and localize the shallowest inclusions.

In the tested configurations, the inter-inclusion distance is set at D i = 20 mm and one of the inclusions is 5 mm deeper than the other. The acquisition geometry is the same as in Figure 5-17. In this case, more iterations of the reconstruction algorithm (20) are used in order to properly reconstruct the deepest inclusion.

Depth of 10 mm for the right inclusion and 15 mm for the left one

The obtained DOT images show the same trends as seen with the 2 inclusions at the same depth. With the smallest probe (Figure 5-44 b)) the 2 inclusions are better localized in y and z and separated than with the largest one (Figure 5-44 a)). Additionally, we can see that the µ a of the lowest inclusion is less underestimated with the smallest probe. These remarks are confirmed by the profiles of µ a in depth (Figure 5-45). The localization in y of the 2 inclusions is correct with the smallest probe (magenta arrows) but erroneous with the largest one (blue arrows). The latter also causes an artefact at y = 0 mm (red arrow).

Depth of 15 mm for the right inclusion and 20 mm for the left one

Similar results as previously are obtained when shifting the 2 inclusions 5 mm deeper as it can be seen on the images (Figure 5-46). 

Conclusion

These measurements with the two inclusions not located at the same depth have confirmed that the smallest probe enables a better spatial resolution in depth than the largest one.

These results also show that our DOT algorithm can identify a deep inclusion in the presence of another one at the surface. However, more iterations of the algorithm are needed in order to see the lowest inclusion on the DOT image. In any case, the lowest inclusion is reconstructed with a lower µ a than the superficial inclusion. Further algorithms developments should tackle this problem of object located at different depths.

Summary

In this last chapter, the spatial resolution of TR-DOT probes was investigated on a few concrete study cases, with simulations and experiments. This approach enabled to identify parameters influencing the spatial resolution of obtained DOT images.

The spatial resolution is governed by the configuration of source-detector pairs in the probe ("acquisition geometry") and is intrinsically degraded in depth. This can be explained by a broadening of the sensitivity maps with time-of-flight of photons. We have seen that the signal to noise ratio (SNR) of the measurements slightly affects the spatial resolution. An excellent SNR cannot enable a better spatial resolution in depth than the limit allowed by the acquisition geometry but will only enable to detect robustly deep absorption contrast (as demonstrated in Chapter 2, 3 and 4).

In this chapter, we have proposed a study case to investigate the influence of the interfiber distance on the spatial resolution in depth with TR-DOT in reflectance. Three interfiber distances were tested: 5, 10 and 15 mm. Simulations and experiments have shown a slightly better spatial resolution for superficial layers of the medium with the smallest interfiber distances (< 15 mm). However, these differences were not visible on deeper layers.

After identifying the impact of the interfiber distance on the spatial resolution with a case study, we have considered concrete designs of more realistic probes. In particular, we have focused on a commonly reported probe featuring a single interfiber distance with a regular alternation of excitation and detection fibers. We have investigated the spatial resolution obtained with this probe realized with different scale factors. In particular, we have compared DOT images obtained with this probe alternating sources and detectors separated by either 15 mm or 10 mm. Simulations and experiments have shown that whereas the largest probe enables to image a larger volume in the object, the spatial resolution is poor, contrary to the smallest probe.

The design of an optical probe for TR-DOT is not a straightforward task. Nevertheless, this chapter aimed at giving a few landmarks to tackle it. In general, the perfect optical probe does not exist and its design is a compromise between size of the imaged area, imaged depth, and number of measurement points, desired spatial resolution and acquisition time. The required imaged depth sets a minimum signal dynamics and smallest limit interfiber distance for a given detection chain. The maximum allowed measurement time will lead a maximum of measurement points and therefore to a compromise between field of view and spatial resolution. The optimization of these parameters requires certain knowledge on the object to image like its nature (vein, tumor, etc.), its size, its depth, etc. This prior input should enable the appropriate design of a TR-DOT probe to image a heterogeneous biological tissue in depth.

Conclusion and perspectives
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Conclusions

The objective of this research work was to propose a time-resolved approach for optimizing diffuse optical tomography (DOT) in reflectance at short source-detector separation, in the perspective of making tomographic optical probes for clinical diagnostic. The main goal was to tackle the challenge of depth sensitivity of DOT probes.

The proposed approach is two-fold, featuring methodological and instrumental aspects. It includes the recent developments on calculation methods for time-resolved DOT and new technologies for time-resolved measurements, in particular for single-photon detectors.

At the methodological level, we have focused on two main aspects. These two points were investigated with simulations including realistic noise conditions and realized thanks to a code of the direct model developed at the laboratory LISA. The object to image was constituted of a homogenous diffusive background with a deeply embedded absorbing inclusion. First, we have shown that the choice of the datatypes, the pieces of information extracted from the TPSFs and processed by the DOT reconstruction algorithm, is crucial to optimize DOT performance for measurements in reflectance at short source-detector separation. Both for the most commonly used datatype, the moments, and for the datatype proposed at LISA, a set of orders of the Mellin-Laplace transform, high orders have to be included in the analysis to detect the deepest absorbing inclusions robustly. With this respect, we have confirmed that the use of the first moment only, equivalent to the continuous wave approach, is not optimal. We have found that the Mellin-Laplace transform allows a slightly better contrast to noise ratio than an approach based on moments and above all allows the extraction of more pieces of information from the measurement for a given signal to noise ratio, so we have selected it. The second part of this methodological work was to propose optimal pre-processing of measurements for optimizing DOT reconstructions in our configuration of interest, by using the algorithm developed at LISA by Dr Hervé. To finish, this simulation work has concluded on the need of measurements with a large dynamic range, which motivated the instrumental aspects of this work.

At the experimental level, the work was organized in two parts, each one investigating a specific setup. First, we have started with a common setup for DOT involving singlephoton detectors associated to time-correlated single-photon counting. In this case, the detectors were operated in free-running mode, meaning that they were always ON, ready to detect an incident photon. We selected this setup versus another common setup for DOT, the time-gated cameras, for its finest time resolution. After optimizing the measurement chain, we have focused on the impact of the temporal response of the detector. Particularly, we compared the performance obtained with two different photomultipliers, a classical one with a broadened response and a hybrid one with a very fast response. We have demonstrated with simulations and experiments that a large temporal response degrades the detection in depth of deep absorbing inclusions. In particular, the contrasts on late photons decrease because there is a mix of information between early and late photons. Moreover, we have shown that it affects DOT reconstructed images for deep inclusions: they are more corrupted by noise with a broad response. To our knowledge, this effect of the detector's response on DOT images was not reported before in literature. This work proves that the criterion of the full width at half maximum is not sufficient for choosing a detector for DOT in reflectance. Instead, the profile of the temporal response on a large dynamic range has to be considered.

Even with a fast response of the detector, there is a bottleneck to the previous setup with free-running detectors: the count rate is saturated by numerous early photons and long acquisition times are necessary to count late photons. An alternative approach was proposed at Politecnico di Milano, involving fast-gated single-photon avalanche diodes (SPADs), turned in the "ON state" after the arrival of early photons, and being compatible with our counting electronics. The second part of our experimental work consisted into testing the possibility to perform DOT reconstructions with measurements obtained with the fast-gated SPADs. This proof-of-concept study realized in collaboration with Politecnico di Milano has confirmed that it is indeed possible. Additionally, it has demonstrated an important gain in dynamic range and increased imaged depth by using fast-gating. With the interfiber distances of 5 and 15 mm, we have shown an increase of more than 50 % of the imaged depth. With measurements times of less than 10 seconds per source-detector pair, we could reach depth ranges of 25 mm and 30 mm respectively with the interfiber distances of 5 mm and 15 mm. These results are very encouraging for the feasibility of TR-DOT probes.

Once this time-resolved approach for DOT probes was put in place at the methodological and instrumental levels, we have better investigated the performances allowed by these probes, and focused on the spatial resolution. However, this broad question could not be treated exhaustively. Instead, we aimed at identifying different factors influencing it in order to provide guidelines to design a real optical probe. With simulations, we have shown that for a similar density of measurement points at the surface of an object, the separation distance of the source-detector pair (between 5 and 15 mm) does not severely affect the spatial resolution. At the surface, spatial resolution is slightly improved with short source-detector separation but these differences disappear in depth. To finish, we have shown by simulations and experiments that the design of an optical probe is a compromise between the number of measurement points, the size of the imaged volume and the spatial resolution. A certain prior knowledge of the depth, the spread and shape of the object to image is necessary in order to observe it with an appropriate probe and provide useful information for a medical diagnostic.

Limitations

This research work has also raised questions on the two aspects of the proposed timeresolved approach.

About the method, we have seen a spread of the reconstructed size of the object in depth associated to an important underestimation of the absorption coefficient. This could compromise the information content on the tissue brought by DOT. Methods using prior knowledge on the size of the object could certainly improve this. This information could be extracted from ultrasound, X-ray or MRI images. However, when coupling DOT with methods like X-ray and MRI, the possibility of bed-side monitoring is lost.

Another question deals with the convergence of the algorithm and the criteria for stopping the iterations. In the presented work, as we worked on a simplified object featuring a single absorbing inclusion, we have systematically stopped the iterations after a constant number of iterations. This choice was made because we focused on the detection and localization in depth and we observed that the reconstructed depth of the inclusion was stabilized after less than 10 iterations in all cases. However, the very last experimental results obtained with 2 inclusions at different depths in the medium have opened the question of an objective criterion to stop the iterations. Indeed, we have seen that the superficial inclusion appeared in first iterations and only after around 10 iterations the second one showed up. When imaging an unknown object like a biological tissue, objective criteria will have to be put in place to stop the iteration at the good time and to decide whether this type of secondary inclusion is considered as noise or as a real heterogeneity of the tissue. We consider this point as a major challenge to tackle now.

We also want to stress that the object constituted of a homogenous medium with a distinct absorbing inclusion has largely simplified our method. Indeed, it enabled a good initialization of the algorithm with a homogenous map of known optical properties of absorption and scattering. In the case of a heterogeneous background with unknown distribution of properties, the initialization of the algorithm will be a harder task.

To finish on the methodological aspects, we point another restriction of our work, linked to the "reference measurement", always acquired in the homogeneous background, without the inclusion. Of course, this procedure is not feasible on a biological sample or an organ. We recall here that we need this measurement for two reasons. First, because our method is based on a differential approach and second because it indirectly characterizes the instrument response function. Other strategies will have to be considered to obtain this "reference" in the context of a measurement on a real biological tissue. We will further discuss them in the perspectives (section 6.3).

We can also mention several limitations to our instrumental approach. The solution which enabled the largest imaged depth range is the setup with fast-gated SPADs. However, it required to increase the incident source power. In the context of measurements on biological tissues, the maximum limit in power will have to be defined for the specific application, not to damage tissues. However, the increase in source power could also be compensated by an improved efficiency of detection and optical coupling with the detectors, not perfectly optimized yet. Another real obstacle to the clinical transfer of our instrument is that the tested SPADs are not commercially available. To finish, we want to mention the challenge of transferring a time-resolved DOT setup in a clinical context. This challenge is now tackled by almost all laboratories in the field of TR-DOT, aiming at robust and compact setups. The laboratory LISA currently addresses it through the conception of a prototype for fluorescence DOT.

Perspectives

The viability of our method for a clinical diagnostic relies on the possibility to acquire the "reference" measurement in this context. We can cite three options for acquiring it. First, the reference can be spatial, so measured at another location on the imaged organ. Second, it can be temporal, measured at the same location but at a different time. This option makes sense only when the optical properties of the organ are expected to change in time. It is clearly appropriated for functional applications, like brain activation studies. However, the required acquisition times for DOT might not be compatible with observing changes occurring in less than one second. However, DOT with a temporal reference has already been used when performing occlusion of arteries. In this case, DOT could be performed as this type of occlusion leaves more time for the measurement. To finish, in the third option, the reference can be spectral. In a few words, it means that the measurement at one wavelength can be used as a reference for the measurement at a second wavelength. However, more sophisticated approaches can be conceived to do it more accurately.

The recent clinical results of DOT presented in Chapter 1 have shown that the clinical useful information is not carried by the maps of absorption coefficients but by the maps of 200 chromophores (oxy and deoxy-hemoglobin, water, and lipids). This means that the multispectral approach is a must for a DOT optical probe aiming at a medical diagnostic. This direction is now taken at the laboratory LISA. The approach developed in this PhD work at one wavelength can be transposed to optimize depth sensitivity at multiple wavelengths. However a whole new approach at the algorithm level is now developed at LISA to perform the chromophore decomposition from multi-wavelength measurements and address the issue of the spectral reference.

The application targeted at LISA for the TR-probe is now the follow-up of tissue oxygenation after post-cancer breast reconstruction surgery. This follow-up aims at predicting the success or failure of the breast reconstruction, and allowing a fast response of the surgeon in case of failure. In this context, an optical probe offers many advantages. The first one, associated to the optical measurement, is the possibility to perform frequent bedside measurements. The second one deals with the probe itself: it is a simple measurement tool, easy to apply on a tissue which has undergone surgery. For this application, the probe is acceptable as a limited area of interest is identified in the breast.

Liquid phantoms

We describe here the liquid phantoms used as background medium for the experimental work presented in this manuscript.

Composition

The liquid phantoms are composed of:

1) Matrix: distilled water 2) Absorbing agent: black ink (Art. 591017, Rotring) 3) Diffusing agent: Intralipid® (concentration: 20%) Fabrication 1) Calculation of volume of phantom to prepare and % of water and Intralipid® to use in order to obtain the desired reduced scattering at the wavelength of interest. For this, we use tabulated values (http://omlc.ogi.edu/spectra/intralipid). 2) Sonication of the ink 3) The ink is added to the water to reach the desired µa (taking into account the dilution which will occur when adding the Intralipid®). This is controlled by a direct measurement of absorbance at the spectrometer and is possible because the liquid is not yet diffusive. 4) Addition of Intralipid®.

Characterization 1) Absorption coefficient: directly measured at the spectrometer at the proper wavelength. 2) Reduced scattering coefficient: Quantity of Intralipid® to add thanks to tabulated values.

This procedure was validated once at the wavelength of interest by a fit with timeresolved measurement and diffusion approximation. The method developed at the laboratory LISA consists in doing the measurement with 2 fibers in the conditions of an infinite medium and fitting the measured curve with the diffusion model by adjusting and µ a with the least square method [START_REF] Laidevant | Méthodes optiques résolues en temps pour la tomographie optique de fluorescence dans les milieux diffusants[END_REF].

The Intralipid® is a very reproducible between batches and stable when kept for less than one month in the fridge (Ninni et al 2011). Reproducing the measurement for every phantom is not necessary. For example at r = 15 mm, we have a detection of 5.10 12 photons. Even if we consider a quantum efficiency of 1% of the detector, we could potentially count 5.10 10 photons per second, a much higher value than then limit count rate of 10 6 photons per second. In this situation, there is clearly a benefit in using time-gating. The benefit of time-gating is inversely proportional to the interfiber distance.

Obviously, in a more absorbing medium, using time-gating is meaningless for shorter interfiber distance. We show below a comparison of the photons reaching the detector in a medium with µ a = 0.5 cm -1 and µ' s = 10 cm -1 (properties representative of the prostate tissue). 
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 11 Figure 1-1 First medical image: X-ray of a hand by Wilhelm Röntgen in 1895. We can distinguish in dark the dense matter absorbing X-rays: bones and a metal ring. The flesh around is hardly visible.
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 12 Figure 1-2 The near-infrared range (NIR) in the electromagnetic spectrum
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 13 Figure 1-3 Absorption of light for a collimated beam in a non-scattering medium
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 16 Figure 1-6 Scattering of light for a collimated beam in a non-absorbing medium
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 18 Figure 1-8 Formalism in which we describe the radiative transfert equation (RTE)
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 1 Figure 1-9 "Opacity on transillumination of a solid tumor of the breast"[START_REF] Cutler | Transillumination of the breast[END_REF]. The veins and a vascularized tumor are darker than surrounding tissues.

  -11a) and a local low oxygen saturation (purple in Figure 1-11 b)). The helmet of optical probes designed to perform such measurements is shown in Figure 1-12.
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 1 Figure 1-11 Images of DOT from the head of a premature infant having an haemorrhage produces with the TR-DOT system of the University College of London. "A coronal section from infant 11showing (a) regional blood volume, (b) regional oxygen saturation, and (c) corresponding cranial ultrasound scan. There is an increase in regional haemoglobin concentration and decrease in regional oxygen saturation in the area corresponding to the intraventricular haemorrhage and haemorrhagic parenchymal infarct. The lesion is outlined in the ultrasound scan." Extracted from[START_REF] Austin | Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain[END_REF].
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 1 Figure1-13 Left: anatomy of the cross-section of a foot. Right: changes in haemoglobin volumes before and after occlusion of the foot. Extracted from[START_REF] Khalil | Dynamic diffuse optical tomography imaging of peripheral arterial disease[END_REF].
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 21 Figure 2-1 The measurement M sd (t)is the time-convolution of the theoretical TPSF in the turbid medium (for a source S at position s and detector D at position d) by the real temporal response of the source S(t) and the detector D(t).

  photon counts
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 2 Figure 2-2 Media A and B differing by local small variations in absorption coefficient. S: source, D: detector, and r a point in the medium.remains constant between the two media.
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 2 Figure2-3 TPSF f(t) simulated in 2D in reflectance in a semi-infinite medium of µ a = 0.1 cm -1 and µ' s = 10 cm -1 at the interfiber distance of SD = 5 mm with dt = 3 ps.
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 2 Figure 2-4 Moments: temporal filtering for different orders n

  Figure 2-6 Central moments: temporal filtering for different orders

  on short times for temporal filtering of: a) Moments, b) Central moments.

  (M) vs central moments (M C ): temporal filters multiplied by the TPSF and normalized by their maximum for different orders: a) n = 2, b) n =3, c) n =4, d) n =5.
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 2 Figure 2-10 and Figure 2-11 show the time filters obtained for different values of p (a real positive in ns -1). As is can be seen on the zoom on early photons of Figure2-12, for p = 0 ns -1 , the Laplace transform is similar to the intensity of the signal. When p increases, the filter puts more and more weight on early photons.

Figure 2 -

 2 Figure 2-10 Laplace transform: temporal filtering for different values of p (in ns -1 )

  -13 and Figure 2-14) and p =3 ns -1 (Figure 2-15 and Figure 2-16).

Figure 2 -

 2 Figure 2-13 Mellin-Laplace transform: temporal filtering for p= 1 ns -1 and different orders n

Figure 2 -

 2 Figure 2-17 Comparison of the Mellin-Laplace transform (MLT) (symbol -o-) and moments (line -) for different values of p. The temporal filters are multiplied by the TPSF and normalized by their maximum. Each colour corresponds to the same order n. a) p= 1 ns -1 , b) p= 0.01 ns -1 .For a large p (p=1 ns -1 ), the time-filtering differs between MLT and moments (no overlap between the lines and doted lines with rounds for a given colour). On the contrary, when p is small (p = 0.01 ns -1 ),the time-filtering performed by MLT and moments is similar at each order (overlap between the lines and doted lines with rounds for a given colour).

Figure 2 -

 2 Figure 2-18 Comparison of the TPSF and the values of the MLT of this TPSF for different values of p.In red: the TPSF (Green's function in the infinite homogeneous 2D case, for µ a = 0.05 cm -1 , μ' s = 10 cm -1 and SD = 4 cm). Grey lines with circles: profiles obtained when linking the values of the different orders of the MLT of the TPSF, for a given value of p. Extracted from[START_REF] Hervé | Time-domain diffuse optical tomography processing by using the Mellin-Laplace transform[END_REF] "The larger the value of p, the best it compares with the analytical solution."

Figure 2 -

 2 Figure 2-19 Simulated number of counted photons per time channel for the TPSF of Figure 2-3 (for a total of 10 6 counted photons).

Figure 2 -

 2 Figure 2-20 Example of one noisy TPSF after one draw of Poisson noise.

Figure 2 -

 2 Figure 2-21 SNR for different datypes as a function of the order n (M: moments, MC: central moments, MLT: Mellin-Laplace transform). These SNR values were calculted for a total of 10 6 photons per TPSF and 100 draws of Poisson noise.

Figure 2 -

 2 Figure 2-22 Sensitivity matrices W depicting the spatial sensitivity of the different orders of datatypes to vairations in absorption, in a 2D medium (µ a = 0.1 cm -1 and µ' s = 10 cm -1 ) for a reflectance measurement at SD = 1 cm. a) Moments, b) Mellin-Laplace transform (p = 5 ns -1). The source is at (-0.5, -0.1) and the detector at (0.5, 0), in cm. Each map is normalized by its maximal value. For moments and MLT the trend is the same: the depth sensitivity increases with the order n.

Figure 2 -

 2 Figure 2-23 Simulation mesh in 2D, "probe" geometry and optical parameters of the simulated medium.

Figure 2 -

 2 Figure2-24 Simulated TPSFs for different depths of the absorbing inclusion('hom': homogeneous case) 

  Figure 2-26 Noisy TPSFs for different depths of the absorbing inclusion ('hom': homogeneous case) (one noise draw only), a) 10 6 photons, b) 10 8 photons.

Figure 2 -

 2 Figure2-27 below shows the contrast per time channel for one noise draw for both tested dynamics. As expected, the contrast increases with the time of flight. At any time t, this contrast is less noisy when the dynamic range increases.

  photon counts

Figure 2 -

 2 Figure 2-28 Moments: Mean value of calculated contrast in % (rounds) and standard deviation (error bars) as a function of order n for different depths of the absorbing inclusion.(SNR: photons per TPSF)

  Figure 2-29 Moments: contrast per depth. Values of contrast calculated without noise (lines), mean value of the 100 noise draws (rounds) and standard deviation (error bars), zero contrast (red line), a) 10 mm, b) 15 mm, c) 20 mm, d) 25 mm, e) 30 mm, f) 35 mm. (SNR: 10 6 photons per TPSF)

  Figure 2-30 Zoom on first orders of moments of Figure 2-29. a) 30 mm, b) 35 mm. (SNR: 10 6 photons per TPSF)

  Figure 2-31 Moments: contrast per depth. Values of contrast calculated without noise (full lines), mean value of the 100 noise draws (rounds) and standard deviation (error bars), zero contrast (red line), a) 30 mm, b) 35 mm. (SNR: 10 8 photons per TPSF)

  Figure 2-32 Zoom on first orders of moments of Figure 2-31. a) 30 mm, b) 35 mm. (SNR: 10 8 photons per TPSF)

Figure 2 -

 2 Figure 2-33 Moments(M) vs central moments (M C ): Mean value of calculated contrast in % for moments (*) and central moments (o) and standard deviation (error bars) as a function of order n for different depths (colours) of the absorbing inclusion.(SNR: 10 6 photons per TPSF)

  34 Moments (M) vs central moments (M C ): contrast for the depth of 30 mm. Mean value of the 100 noise draws for moments (o blue) and central moments (* black) and standard deviation in error bars for moments (blue) and central moments (black), zero contrast (red line), a) full scale, b) zoom. (SNR: 10 6 photons per TPSF) Mellin-Laplace transform Figure 2-35 gathers all profiles of mean contrast on orders of the Mellin-Laplace transform (MLT) and standard deviation at all depths. For an easier visual analysis, Figure 2-36 plots these profiles separately for each depth of the inclusion.

Figure 2 Figure 2

 22 Figure 2-35 MLT: Mean value of calculated contrast in % (symbol o) and standard deviation (error bars) as a function of order n for different depths of the absorbing inclusion.(SNR: 10 6 photons per TPSF)

  Figure 2-37 Zoom on first orders of MLT of Figure 2-36. a) 30 mm, b) 35 mm. (SNR: 10 6 photons per TPSF)

Figure 2 -

 2 Figure 2-39 Moments versus MLT: contrast for the depth of 30 mm. Values of contrast calculated without noise (full lines), mean value of the 100 noise draws (symbol o) and standard deviation (error bars), zero contrast (red line), left: moments, right: MLT with p = 1 ns -1 . (SNR: 10 6 photons per TPSF)
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Figure 2 -

 2 Figure 2-40 Noisy TPSFs for different depths of the absorbing inclusion for SD = 15 mm ('hom': homogeneous case) (one noise draw only) (10 6 photons).

  photon counts
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Figure 2 -

 2 Figure 2-44 Summary of the employed reconstruction algorithm developed by Dr. L. Hervé at LISA.
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Figure 2 -

 2 Figure 2-46 Different time-windows tested to calculte the MLT. The depicted TPSF was simulated for S1D2 in the homogeneous case, for 10 6 photons and 100 photons of DCR per channel. It is shown here after DCR correction.

  photon counts
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 2 Figure 2-47 An example of 2D reconstructed map of µ a in the medium, b) The 50% spot and the extracted parameters: x and z position of its center of mass and the mean µ a in this spot.

  Figure 2-48 Contrast on MLT (p = 3 ns -1 ) obtained for the 3 considered time-windows and under different noise conditions and quality of correction (a to d) (total of 10 6 photons per TPSF in all cases). The black line is the theoretical value of contrast obtained without noise.

  49 Simulated noisy TPSFs for the different depths for S1D2 and time-window, a) 10 6 photons + 100 photons of DCR (well corrected), b) 10 8 photons + 100 photons of DCR (well corrected).

Figure 2 -

 2 photon counts

Figure 2 -

 2 Figure 2-51 Reconstructed depth versus true depth for different choices of maximum orders of MLT included for the reconstruction, a) 10 6 photons, b) 10 8 photons (error bars obtained from the 10 noise draws).
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 2 Figure 2-52 below shows the obtained reconstructed images depending on the number of orders included in the reconstruction algorithm, for one example (depth of 25 mm and SNR of 10 6 photons + 100 photons of DCR well corrected). The inclusion is localized the deepest when using orders n = 0 to 15 in the reconstruction (Figure 2-52 b)). Using only orders n = 0 to 5 causes a more pronounced underestimation of depth (Figure 2-52 a).Using only orders n = 0 to 30 causes also an underestimation of the depth of the inclusion and artifacts below the inclusion (Figure2-52 c)). These artifacts tend to show areas less absorbing than the background. This is due to the contribution of noisy orders but also to the fact that the contrast is slightly underestimated at high orders because of the choice of the reduced time-window (cf 2.3.3.1).

  52 Reconstructed images for the depth of 25 mm (SNR: 10 6 photons + 100 photons of DCR well corrected) depending on the maximum number of orders of MLT included in the reconstruction algorithm, a) orders n = 0 to 5, b) orders n = 0 to 15, c) orders n = 0 to 30.

Figure 2 -

 2 Figure 2-53 Reconstructed images of µ a for 10 6 photons and 10 8 photons (for one noise draw). The red dotted circle depicts the true position and size of the absorbing inclusion.The scale in µ a is the same for both SNR conditions at each depth.

  Figure 2-54 Summarized reconstruction performances for 10 6 and 10 8 photons for 10 noise draws, a) reconstructed depth, b) x localization, c) Mean reconstructed µ a .

  Time-resolved acquisition chains for DOT were introduced in the 1990's by the group of Dr J. Hebden at the University College of London (UK). Now, several research teams are active in this domain, proposing new concepts and testing them clinically. We can cite the groups of: -Dr D. Boas at the Massachusetts General Hospital and Harvard Medical School (USA) -Dr R. MacDonald at Physikalisch-Technische Bundesanstalt (PTB) (Germany) -Dr P. Poulet at University of Strasbourg (France), -Dr A. Liebert at Institute of Biocybernetics and Biomedical Engineering (Poland) -Dr Y. Bérubé-Lauzière at Université de Sherbrooke (Canada) Other research groups have initiated major developments of time-resolved instruments for biomedical applications, more oriented towards spectroscopy, like the group of Dr R. Cubeddu at Politecnico di Milano (Italy) and the research of Dr S. Svanberg at the University of Lund (Sweden).
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 31 Figure 3-1 Principle of TCSPC (extracted from (Becker 2012))

Figure 3 - 2

 32 Figure 3-2 Extracted from (Becker 2012): "Leading-edge triggering (left) and constant-fraction triggering (right)

  card

Figure 3 - 3

 33 Figure 3-3 Photograph of a MCP at the scanning electron microscope (SEM)[START_REF] Seitz | Single-photon imaging[END_REF] 

  WITH FREE-RUNNING SINGLE-PHOTON DETECTORS Université Joseph Fourier / Université Pierre Mendès France / Université Stendhal / Université de Savoie / Grenoble INP3.3. Setup of a TCSPC acquisition chain3.3.1. Global view of the setupA schematic representation of our setup is shown in Figure3-4. The role of each component, the existing options and the final choice are detailed in the paragraphs below.

Figure 3 - 4

 34 Figure 3-4 Diagram of the time-resolved acquisition chain with TCSPC. Thin red lines: laser beam in air, thick red lines: laser beam in optical fibers, thick black lines: electrical signal. Red component: light source, blue: light detector, grey: optics, purple: electronics and informatics.

  PhotodiodeSingle-photon detector

  Figure 3-7 Photograph of the optical path of the laser beam from the output of the laser head to the injection into the optical fiber. The added red arrows show the paths of the laser beam.

Figure 3

 3 Figure 3-8 IRFs measured before injecting the laser into the fiber ("no fiber") and at the output of the fiber of 6 m (both IRFs were aligned in time and normalized by their maximum in postprocessing).

  3-9 Timing characteristics of a pulse issued by a single photon detector: a) a single photon even, b) multiphoton events(each color is the response to one photon event). In red: source pulse.

Figure 3 -

 3 Figure 3-10 Working principle of a classical PMT(e -is an electron)

  photon

Figure 3 -

 3 Figure 3-11 Working principle of a MCP-PMT

Figure 3 -

 3 Figure 3-14 Quenching of an avalanche in a SPAD (V: bias voltage of the junction, V B = breakdown voltage, V O = operational voltage)

  photon

  Figure 3-15 Two tested photomultipliers: a) classical PMT: PMC-100-20, b) hybrid PMT: HPM-100-50. The black tube between the detectors and the fiber contains the collimator and the neutral optical densities.

Figure 3 -

 3 Figure 3-16 IRFs obtained with the two tested photomultipliers: classical PMT (PMC-100-20) and hybrid PMT (HPM-100-50) (aligned in time and normalized by the maximum in post-processing).
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 3 Figure 3-17 Followed steps to simulate measurements with a real IRF and a set of ideal TPSFs.

Figure 3

 3 Figure3-18 3D simulated geometry: medium and probe.The background is set to =0.1 cm -1 and =10 cm -1 , the inclusion to =0.6 cm -1 and =10 cm -1 . Only the pairs S1D2 and S2D1 are used in the analysis.

  19 Extrapolated IRFs (full blue line) and exponential fits (o), a) classical PMT, b) hybrid PMT. / Université Pierre Mendès France / Université Stendhal / Université de Savoie / Grenoble INP

Figure 3 -

 3 Figure 3-20 TPSFs simulated in the 3D configuration of Figure 3-18 for differents IRFs. Example shown for the homogeneous measurements only (no noise). Each TPSF is normalized by its maximum.

  21 Final pre-processed TPSFs corrected from the offset of DCR and selected in the chosen time-window (one noise draw) for different depths ('hom' is the homogeneous case), a) ideal IRF, b) classical PMT, c) hybrid PMT.

  photon counts

  Figure 3-23 A reconstructed 3D image with a threshold of 50 % of maximum dµ a (example of an ideal IRF, depth of 15 mm, maximum order of MLT: N = 15) (images obtained with Paraview)

  24 Contrast on time-channels for one noise draw for the 3 considered IRFs for different depths of the inclusion: a) 10 mm, b) 15 mm, c) 20 mm, d) 25 mm, e) 30 mm, f) 35 mm. (HPM is the hybrid PMT and PMC is the classical PMT, ideal is the Dirac IRF).

  Figure 3-25 Contrast on the orders of MLT (p = 3 ns -1 ), a) ideal IRF, b) classical PMT: PMC-100-20, c) hybrid PMT: HPM-100-50. Errorbars are calculated from the 100 noise draws.When looking at each individual depth and zooming in the y scale (Figure3-26), we can analyze the profiles more carefully:

  Figure 3-26 Zoom on individual depths for contrast on the orders of MLT (p = 3 ns -1 ) of Figure 3-25. Errorbars are calculated from the 100 noise draws. (classical PMT: PMC, hybrid PMT: HPM).

Figure 3 -

 3 Figure 3-27 Ideal IRF : localization accuracy of the reconstructed inclusion for different sets of MLT orders (orders 0 to the maximum order N indicated), a) localization in x, b) localization in z. Error bars are calculated from 10 noise draws.

  Figure 3-29 Hybrid PMT : localization accuracy of the reconstructed inclusion for different sets of MLT orders (orders 0 to the maximum order N indicated), a) localization in x, b) localization in z. Error bars are calculated from 10 noise draws.

Figure 3 -

 3 Figure 3-30 Hybrid PMT: Examples of cut views in the plane (X,Z) obtained for 3 noise draws, for reconstructions with orders n= 0 to 15. Color scale: µ a in cm -1 . The black circle depicts the true inclusion.

Figure 3

 3 Figure 3-31 Classical PMT : localization accuracy of the reconstructed inclusion for different sets of MLT orders (orders 0 to the maximum order N indicated), a) localization in x, b) localization in z. Error bars are calculated from 10 noise draws.

Figure 3 -

 3 Figure 3-32 Classical PMT: Examples of images obtained for 3 noise draws, for reconstructions with the maximum order N = 15. Color scale: µ a in cm -1 . The black circle depicts the true inclusion.

  33 Objective criteria extracted from the 10 noise draws for the 3 tested IFRs: a) localization accuracy in x, b) localization accuracy in z, c) mean µ a . (classical PMT: PMC, hybrid PMT: HPM)
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Figure 3 -

 3 Figure3-34 Photos of the prepared small absorbing inclusions. From left to right: µ a =0.1; 0.4; 0.8; 1.2 cm -1 (at λ = 800 nm) (for all µ' s =10 cm -1 ). The inclusion µ a = 0.8 cm -1 is the only one used in this experiment.

  35 Photos of the experimental setup: a) Inclusion and its holding system before immersion, b) Fiber holder (in black) with source fiber (thin) and detection fiber (large) positioned at SD = 5 mm. 36 Setting up the experiment: a) inclusion and its holder (in "reference" position), b) aligning the inclusion and the fiber holder, c) adding the liquid phantom.
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Figure 3 -

 3 Figure for the 2D scan. To realize the scan, the inclusion is fixed and the holder is moved in 2D at the surface at the phantom.

  -38). During the scan, the inclusion is positioned at x= 0 mm and y = 0 mm. It depth varies between different scans. The 2D scans are done with steps of 5 mm in the x and y directions for all source-detector separations (covered area: 2 x 2 cm²) (Figure 3-38 b).

  38 Acquisition geometry for different source-detector separations (SD): a) Punctual measurements, b) 2D scans. Red dot: source, blue dot: detector, black dots: positions of the barycenter of the source and detector during the 2D scan.

  X-Y position 1 o acquisition of 5 references of 1s o acquisition of 5 measurements of 1s with the inclusion at depth 1 o acquisition of 5 measurements of 1s with the inclusion at depth 2 o etc. -X-Y position 2 o acquisition of 5 references of 1s o acquisition of 5 measurements of 1s with the inclusion at depth 1 o acquisition of 5 measurements of 1s with the inclusion at depth 2 o etc. -etc. up to 81 positions.
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 3 Figure 3-41 Pre-processed TPSFs for each source-detector separation and PMT (1 repetition only).

  photon counts

  42 a) Plots of contrast on MLT orders (p=3ns -1 ) per (X,Y) position. For each small graph per (X,Y) position: x axis: order n, y axis: contrast in %. b) Extracted 2D map of contrast on MLT at order n = 20. A value of contrast of 1 pixel of the 2D contrast map is extracted at a given order from the curve of the small graphs of a) corresponding to this (X,Y) position.
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 3 Figure 3-43 Contrast per time channel on pre-processed TPSFs

  45 Zoom on "limit" depths: contrast per MLT order (p = 3 ns -1 ) for each tested PMT, a) SD = 5mm, b) SD = 10 mm, c) SD = 15 mm.

  47 Depth of 25 mm (color scale: contrast in %)

  48 3D reconstructions with 2D scans at SD = 15 mm, for the 2 PMTs at different depths (N = 20, 10 iterations, 1 repetition) (red volume: threshold at 50%) (PMC: classical PMT, HPM: hybrid PMT) However, it is more reliable to draw conclusions from multiple repetitions of the measurement. Results extracted from the 5 repetitions of the measurement are presented in Figure 3-49. Let us first focus on the critical depth of 25 mm. For the localization along the x axis, there is a clearly higher variability with the classical PMT (Figure 3-49 a)). This indicates that the detection of this inclusion is not robust with the classical PMT. If we now WITH FREE-RUNNING SINGLE-PHOTON DETECTORS Université Joseph Fourier / Université Pierre Mendès France / Université Stendhal / Université de Savoie / Grenoble INP consider all depths, the localization along the z axis clearly shows that in all cases, there is a variability and stronger underestimation of depth with the classical PMT than with the hybrid one (Figure 3-49 b)).

  49 Analysis of the 5 repetitions for 2D scans for SD = 15 mm.

  Figure 3-50 Cut views in the plane (Y,Z) at the limit depth of 20 mm for the hybrid PMT (HPM) and the classical one (PMC). SD = 15 mm, 3 repetitions of the measurement. Color scale: µ a in cm -1 .

  Figure 3-51 Cut views in the plane (Y,Z) at the limit depth of 25 mm for the hybrid PMT (HPM) and the classical one (PMC). SD = 15 mm, 3 repetitions of the measurement. Color scale: µ a in cm -1 .

Figure 3

 3 Figure 3-52 2D maps of contrast for the depth of 20 mm for SD = 10 mm (1 repetition only) (color scale: contrast in %)

  examples of rise times and positions of the gate. a) A rise time in the order of magnitude of the spread of the TPSF, the ON state of the gate is reached at the end of the TPSF b)

  Figure 4-3 Comparison of the flatness of responses of two different detectors to continuous ambient light a) Gated InGaAs SPAD (Aurea Technology, France), gate width of 10 ns, b) Free-running hybrid PMT Becker&Hickl). Note that these two responses were measured at different acquisition times so they cannot be compared on amplitude.

Figure 4

 4 Figure 4-5 "Electrical signal the comparator, with 200 ps rise/fall gate transitions and a gate voltage amplitude of 5.5 V. The spurious rising-edge peak is three times higher than the avalanche pulse and always triggers the comparator, thus hiding any photon detection with standard singleended pick-up circuits."(Dalla Mora et al 2010)

Figure 4

 4 Figure 4-7 SPAD module of Politecnico di Milano: left the electronic board (the SPAD detector is located below the red optical fiber), right: the housing of the electronic board and detector. Picture extracted from[START_REF] Boso | Fast-gated single-photon detection module with 200 ps transitions running up to 50 MHz with 30 ps Université Joseph Fourier[END_REF] 

Figure 4

 4 Figure 4-8 "(Left) Schematic representation of the two contributions to photon absorption, either within the high-field depleted region or in the neutral (small electric field) region of the active volume, (Right) Typical SPAD response to a narrow (10 ps FWHM) laser pulse. A photon absorbed in the neutral regions generates an electron-hole pair that slowly and randomly diffuses before the electron reaches the depleted region, thus contributing to the exponential tail decay." (Tosi et al 2011).
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 49 Figure 4-9 Comparison of the IRFs measured with the SPAD with fast-gating and with the hybrid PMT of Becker & Hickl.
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 4 Figure 4-10 Schematic representation of the probe and phantom. A total of six pairs of sources and detectors are included in the probe with 2 possible interfiber distances: 5 mm for S1D1, S2D1, S2D2 and S3D2 and 15 mm for S1D2 and S3D1. The absorbing inclusion is positioned below S2 and moved at different depths. The 2D DOT images are reconstructed in the plane (x,z).

  Université Joseph Fourier / Université Pierre Mendès France / Université Stendhal / Université de Savoie / Grenoble INP

Figure 4 -

 4 Figure 4-11 Experimental setup with a picosecond pulsed laser, a variable optical attenuator (VOA), a SPAD and a TCSPC board. An electronic synchronization signal at the output of the laser is sent to the delayer and the TCSPC board.

Figure 4 -

 4 Figure 4-12 The variable optical attenuator and the illumination optical fiber.

Figure 4 -

 4 Figure 4-13 Calibration curve of the variable optical attenuator (VOA) (2 repetitions of the measurement).The angular positions of the VOA used in our experiments range from 150 to 250.
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 4 Figure 4-14 Reconstitution of the full TPSF from gated measurements : zoom on gates 1 and 2: illustration of the distorted zone on gate 2 and relevant portions to keep from gate 1 and 2 to reconstitute the final TPSF. (x axis: time, y axis: photon counts)

Figure 4 -

 4 Figure 4-16 Pre-processing of one TPSF in the gated mode, (a) SD= 15 mm, (b) SD= 5 mm. "DCR": time-channels used to calculate the level of DCR. "ME": time-channels to calculate the level of memory effect on gates affected by this noise source.
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 4 Figure 4-17 Comparison between non-gated and gated modes on acquired TPSFs, estimated variance and signal to noise ratio. (a) SD = 15 mm (data from S1D2), (b) SD = 5 mm (data from S2D1). The horizontal blue arrows indicated the temporal portion of the TPSFs used in the analysis for each interfiber distance and each acquisition mode.

Figure 4 -

 4 Figure 4-18 Pre-processed TPSFs: references (homogeneous), inhomogeneous measurements for different depths of the inclusion and zoom on a late window of the inhomogeneous measurements, (a) SD = 15 mm (data from S1D2), (b) SD = 5 mm (data from S2D1). The horizontal blue arrows indicated the temporal portion of the TPSFs used in the analysis for each interfiber distance and each acquisition mode.
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 4 Figure 4-19 Contrast on MLT orders (p = 3 ns -1 , orders n = 1 to n = 30) depending on the depth of the absorbing inclusion for non-gated and gated modes, (a) SD = 15 mm (S1D2), (b) SD = 5 mm (S2D1).
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 4 Figure 4-20 Reconstructed maps of µ a at iteration 15 for each depth of the inclusion, for non-gated and gated modes including all pairs of source and detector at SD =15 mm (S1D2 and S3D1). The red dotted circle depicts the true position and size of the absorbing inclusion. At each depth of the inclusion, the scale in µ a is the same for the non-gated and gated mode.SD = 5 mmWithout gating, the inclusion can be reconstructed only down to 16 mm. Images obtained for deeper positions, from 19 to 25 mm, reflect only noise (Figure4-21). The gated mode enables to detect the inclusion down to 25 mm, which represents an increase of around 65% in the depth range detection compared with non-gated mode. Images for depths between 28 and 37 mm are not shown as they only reflect noise.

Figure 4 -

 4 Figure 4-21 Reconstructed maps of µ a at iteration 15 for each depth of the inclusion, for non-gated and gated measurements including all pairs of source and detector at SD =5 mm (S1D1, S2D1, S2D2 and S3D2). The red dotted circle depicts the true position and size of the absorbing inclusion.At each depth of the inclusion, the scale in µ a is the same for the non-gated and gated mode.

Figure 4 -

 4 Figure 4-22 Reconstructed depth versus true depth for the non-gated and gated modes, (a) SD = 15 mm, (b) SD = 5 mm.
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 51 Figure5-1 Generic acquisition geometry for the different case studies and its variables (in red): interfiber distance, scanning step (in x and y), position of the scanning origin (in y) with respect to the object.

  Figure5-2 a) Geometries of 2D scans at the surface of the phantom. b) Pairs of sources and detectors involved in the reconstruction of µ a maps (SD = 15 mm). Red and blue cirles: sources and detectors. Black circles: barycenters of the source and detector pairs. Grey rounds: cut view of the inclusions. Semi-transparent pink ellipses: schematical illustration of the "banana" shapes between the considered pairs of sources and detectors.

  ) OF TIME-RESOLVED DOT WITH OPTICAL PROBES Université Joseph Fourier / Université Pierre Mendès France / Université Stendhal / Université de Savoie / Grenoble INP surface of the medium. On the contrary, for high orders of MLT, this information is lost. This can be explained by the broadening of the sensitivity maps with time for a given source-detector separation. a) n=5 depth = 10 mm b) n=15 depth = 10 mm c) n=5 depth = 20 mm d) n=15 depth = 20 mm Figure 5-3 Maps of contrast at different orders of MLT (p=3 ns -1 ) for different depths of the inclusions. Color scale: contrast in %.
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 5 Figure5-4 depicts the maps of µ a reconstructed in the plane (y, z) for the different depths of the 2 inclusions. The image obtained for the most superficial depth of 10 mm clearly shows 2 distinct inclusions well localized in y and z (Figure5-4 a)). This result is consistent with the 2D contrast maps: the spatial information of the low orders of MLT was used to reconstruct the inclusions at the surface. On the contrary, for deeper positions of the inclusions, like the depth of 20 mm, µ a maps show a single inclusion centered on y=0 and localized at the depth of 20 mm (Figure5-4 c)). This result suggests that the information of higher orders having higher contrast values was used by the algorithm to properly localize the inclusion but the spatial information present in the low orders was not used.

  Figure 5-4 Maps of µ a in the plane (y, z) for different depths of the inclusions. a) 10 mm, b) 15 mm, c) 20 mm, d) 25 mm. Note that the colour scale of µ a (cm -1 ) is different at all depths because the deeper the inclusion, the more underestimated the µ a . Black circles: real sizes and positions of the 2 inclusions.
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 55 Figure 5-5 Profiles of µ a (cm -1 ) along the y axis at different depths in the medium (each graph), for different inclusion depths (each line colour). The dotted lines delimit the width of the two inclusions I1 and I2 along the y axis.

  : 20 mm d) Depth: 25 mm Figure 5-6 Images in 3D thresholded at 50 % for the two inclusions at different depths. View parallel to the plane (y,z).

  medium: 14 mm Depth in the medium: 17 mm Depth in the medium: 20 mm Depth in the medium: 23 mm Depth in the medium: 26 mm Depth in the medium: 29 mm

  Figure 5-7 Maps of contrast at different orders of MLT (p=3 ns -1 ) for different depths of the inclusions. Color scale: contrast in %. Same as Figure 5-3 but with noise added.
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 58 Figure5-8 Profiles of µ a (cm -1 ) along the y axis at different depths in the medium (each graph). Depth of the inclusion: 10 mm. The dotted lines delimit the width of the two inclusions I1 and I2 along the y axis. The blue error bars, extracted from the reconstructions obtained for the 5 noise draws, are hardly visible. The profiles of µ a obtained with and without noise are almost overlapping at all depths in the medium.

Figure 5 - 9

 59 Figure5-9 Profiles of µ a (cm -1 ) along the y axis at different depths in the medium (each graph). Depth of the inclusion: 20 mm. The dotted lines delimit the width of the two inclusions I1 and I2 along the y axis. The blue error bars were extracted from the reconstructions obtained for the 5 noise draws. For the most superficial depths (5 to 14 mm), the profiles of µ a obtained with and without noise overlap. For depths > 17 mm, the profiles are similar but have smaller values for the reconstruction with noise.
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  Figure 5-10 a) Geometries of 2D scans for both tested source-detector separations. Black circles: barycenters of the source and detector pairs. Red and blue cirles: sources and detectors. b) and c): Pairs of sources and detectors involved in the reconstruction of µ a maps depending on the considered source-detector separations: b) for SD = 15 mm, c) for SD = 5mm. Grey rounds: cut view of the inclusions. Semi-transparent pink ellipses: schematical illustration of the "banana" shapes between the considered pairs of sources and detectors.

  Figure 5-11 2D maps of contrast on different orders of MLT (p = 3 ns -1 ) for the depth of 10 mm. Color scale: contrast in %.

  Figure 5-12 Reconstructed images in the plane (y, z) for the depth of 10 mm. Color bar: µ a in cm -1 . Black circles: size and location of the absorbing inclusions.

Figure 5 -

 5 Figure5-13 Profiles of µ a along the y axis at different depths in the medium (small graphs), for the inclusions depth of 10 mm. The dotted lines delimit the width of the two inclusions I1 and I2 along the y axis. A separation of the two inclusions can be seen at the depths of 8 and 11 mm only for SD = 5 mm.

  Figure 5-14 2D maps of contrast on the order of MLT (p = 3 ns -1 ) for the depth of 20 mm. Color scale: contrast in %.

Figure 5 -

 5 Figure 5-16 «(a) 3D representation of the modeled medium and probe. (b) Probe geometry. » «Only nearest neighbor source-detector pairs are taken into account for the reconstructions.» Caption, quotation and picture extracted from[START_REF] Selb | Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution Opt[END_REF].

Figure 5

 5 Figure 5-17 Pairs of sources and detectors involved in the 2 considered probes: source-detector separation of a) 15 mm, b) 10 mm. Red and blue cirles: sources and detectors. The red areas schematically depict the banana shapes of the pairs used for the reconstruction in each case.

Figure 5 -

 5 Figure 5-19 Profiles of µ a along the y axis at different depths in the medium, for the inclusions at the depth of 10 mm. The dotted lines delimit the width of the two inclusions I1 and I2 along the y axis.The probe featuring the smallest source-detector distance (10 mm) enables to localize more accurately the 2 inclusions in y and clearly shows the presence of 2 distinct inclusions at this depth.

  Figure 5-20 Reconstructed images in the plane (y, z) for the depth of 20 mm. a) SD = 15 mm, b) SD = 10 mm. Color bar: µ a in cm -1 . Black circles: size and location of the absorbing inclusions.

Figure 5 -

 5 Figure 5-21 Profiles of µ a along the y axis at different depths in the medium, for the inclusions at the depth of 20 mm. The dotted lines delimit the width of the two inclusions I1 and I2 along the y axis.

  Figure 5-22 Top row: view of the acquisition geometries for the 3 positions of the probe with respect to the object. Black dots: positions of the probe for shift = 0 mm. Middle and lower rows : reconstructions in the plane (y, z) for the depth of 10 mm and 20 mm for the 3 positions of the probe. Color scale: µ a in cm -1 . Black circles: size and location of the absorbing inclusions. A shift of the probe can provoke distorsions in the reconstructed image and localization errors.

Figure 5 -

 5 Figure 5-23 Experimental setup for the study on spatial resolution in 3D with fast-gated SPADs. All fibers are fixed onto a rigid bar during the measurements. The source fiber and detection fiber 1 are aligned along the y axis. Source fiber 1 is connected to SPAD 1. The vertical metallic pole holds the inclusions (not visible on this photo but it is the same system as shown in Figure 3-35 a)) and can be moved in 3 directions with a X-Y-Z translational stage. The detection fiber 2 and SPAD 2 shown here were not used to obtain the results presented in this chapter.

  Figure 5-25 2D maps of contrasts on different orders N of MLT (p = 3 ns -1 ) for the inclusions separated by D i = 14 mm and the depth of 15 mm. Colorbar: contrast in %. Only SD = 5 mm at order N = 10 features a local minimum at x = 0 mm and y = 0 mm which suggests a possible separation of the 2 inclusions.

  Figure 5-26 Reconstructed images in the plane (y, z) for the inclusions separated by D i = 14 mm and the depth of 15 mm. a) SD = 15 mm, b) SD = 10 mm, c) SD = 5 mm. Color bar: µ a in cm -1 . Black rectangles: size and location of the absorbing inclusions.

Figure 5 -

 5 Figure5-27 Profiles of µ a along the y axis at different depths, for the inclusions separated by Di = 14 mm, at the inclusion depth of 15 mm. The dotted lines delimit the width of the two inclusions I1 and I2 along the y axis. The presence of 2 distinct inclusions is suggested only on the profile with SD = 5 mm at the depth of 10 mm in the medium (black arrow).

Figure 5 -

 5 Figure 5-28 2D maps of contrasts on different orders N of MLT (p = 3 ns -1 ) for the inclusions separated by D i = 20 mm and the inclusion depth of 15 mm. Colorbar: contrast in %. The 2 inclusions can be distinguished with the 3interfiber distances thanks to the presence of two local maxima at x = 0 mm and y =+/-10 mm and a local minimum at y = 0 mm.

  Figure 5-29 Reconstructed images in the plane (y, z) for the inclusions separated by D i = 20 mm and the depth of 15 mm. a) SD = 15 mm, b) SD = 10 mm, c) SD = 5 mm. Color bar: µ a in cm -1 . Black rectangles: size and location of the absorbing inclusions.The 2 inclusions are separated with the 3 interfiber distances. However, the separation seems better with SD = 5 mm.

Figure 5 -

 5 Figure5-30 Profiles of µ a along the y axis at different depths, for the inclusions separated by Di = 20 mm, at the inclusion depth of 15 mm. The dotted lines delimit the width of the two inclusions I1 and I2 along the y axis. Superficially, SD = 5 mm offers the best separation (black arrow). Deeper in the medium (>15mm), the profiles are similar for SD = 5 and 10 mm.

  -31). The contrast maps of order N = 5 are noisy for SD = 5 (Figure5-31 d)) and 10 mm (Figure5-31 g)), and do not seem to carry spatial information. All other maps at all orders and interfiber distances show a local maximum at y = 0 mm (Figure5-31 a, b, c, e, f, h, i): it seems impossible to distinguish the 2 inclusions at this depth, in any case. Whereas it was possible to identify the 2 inclusions on the 2D map of contrast for (Figure5-25 h)) with the inclusions at the depth of 15 mm, it is not the case at the depth of 20 mm. This confirms a similar spatial resolution in depth with the 3 interfiber distances. It shows a different trend than seen before for a more superficial position of the object (depth of 15 mm).

Figure 5 -

 5 Figure 5-31 2D maps of contrasts on MLT (p = 3 ns -1 ) for the inclusions separated by D i = 14 mm and the inclusion depth of 20 mm. Colorbar: contrast in %.For the 3 interfiber distances, no separation of the 2 inclusions seems possible: a maximum is visible at y = 0 mm in all cases.

  Figure 5-32 Reconstructed images in the plane (y, z) for the inclusions separated by D i = 14 mm and the inclusion depth of 20 mm. a) SD = 15 mm, b) SD = 10 mm. Color bar: µ a in cm -1 . Black rectangles: size and location of the absorbing inclusions. A single inclusion centered on y = 0 mm is reconstructed with both interfiber distances.

Figure 5

 5 Figure 5-33 2D maps of contrasts on different orders N of MLT (p = 3 ns -1 ) for the inclusions separated by D i = 20 mm and the inclusion depth of 20 mm. Colorbar: contrast in %. The 2 inclusions should be distinguished with the 3 interfiber distances.

  Figure 5-35 Profiles of µ a along the y axis at different depths, for the inclusions separated by Di = 20 mm, at the inclusion depth of 20 mm. The dotted lines delimit the width of the two inclusions I1 and I2 along the y axis. The 2 inclusions are better separated at the surface with SD = 10 mm (black arrow).The profiles become similar in depth (> 15 mm).

  17 Pairs of sources and detectors involved in the 2 considered probes: source-detector separation of a) 15 mm, b) 10 mm. Red and blue cirles: sources and detectors. The red areas schematically depict the banana shapes of the pairs used for the reconstruction in each case.

  Figure 5-36 2D maps of contrasts on different orders of MLT (p = 3 ns -1 ) for the inclusions separated by D i = 20 mm and at the same depth (depth of 15 mm). Colorbar: contrast in %. The separation of the 2 inclusions is clearer with the smallest probe (SD = 10 mm).

  Figure 5-37 Reconstructed images in the plane (y, z) for the inclusions separated by D i = 20 mm and at the same depth (depth of 15 mm). a) largest probe (SD = 15 mm), b) Smallest probe (SD = 10 mm). Color bar: µ a in cm -1 . Black rectangles: size and location of the absorbing inclusions. The 2 inclusions are clearly better localized and separated with the smallest probe (SD = 10 mm).

Figure 5 -

 5 Figure 5-38 Profiles of µ a along the y axis at different depths, for the inclusions separated by Di = 20 mm, at the same depth (depth of 15 mm). The dotted lines delimit the width of the two inclusions I1 and I2 along the y axis. With the smallest probe (SD = 10 mm), the inclusions are well separated (black arrows) and localized (magenta arrows). On the contrary, with the largest probe (SD = 15 mm), there is a localization error of the inclusions (blue arrows) and an artefact at y = 0 mm (red arrow).

  Figure 5-39 2D maps of contrasts on different orders N of MLT (p = 3 ns -1 ) for the inclusions separated by D i = 20 mm and at the same depth (depth of 20 mm). Colorbar: contrast in %.

  Figure 5-40 Reconstructed images in the plane (y, z) for D i = 20 mm and the depth of 20 mm. a) largest probe (SD = 15 mm), b) Smallest probe (SD = 10 mm). Color bar: µ a in cm -1 . Black rectangles: size and location of the absorbing inclusions.

Figure 5 -

 5 Figure 5-41 Profiles of µ a along the y axis at different depths, for the inclusions separated by Di = 20 mm, at the same depth (depth of 20 mm). The dotted lines delimit the width of the two inclusions I1 and I2 along the y axis. The 2 probes do not enable to separate clearly the 2 inclusions. The profiles of µ a are more spread in depth (> 15mm ) with the largest probe (SD = 15 mm) (black arrows).

  Figure 5-42 2D maps of contrasts on MLT (p = 3 ns -1 ) for the inclusions separated by D i = 20 mm and at the same depth (depth of 25 mm). Colorbar: contrast in %.

Figure 5 -

 5 Figure 5-44 Reconstructed images in the plane (y, z) for the inclusions separated by D i = 20 mm and the depth of 15 mm for I1 (left inclusion) and 10 mm for I2 (right inclusion). a) Largest probe (SD = 15 mm), b) Smallest probe (SD = 10 mm). Color bar: µ a in cm -1 . Black rectangles: size and location of the absorbing inclusions.

  Figure 5-46 Reconstructed images in the plane (y, z) for D i = 20 mm and the depth of 20 mm for I1 (left inclusion) and 15 mm for I2 (right inclusion). a) largest probe (SD = 15 mm), b) Smallest probe (SD = 10 mm). Color bar: µ a in cm -1 . Black rectangles: size and location of the absorbing inclusions.
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Figure 7

 7 Figure 7-1 Blue: µ a =0.1cm -1 and µ' s =10 cm -1

Figure 7 -

 7 Figure7-2 Blue: µ a =0.1 cm -1 and red: µ a =0.5 cm -1 , both: µ' s =10 cm -1

  

  

  

  

  

  

Table 1 -

 1 1 Optical properties of bulk biological tissues commonly imaged with diffuse optics.

	Tissue	µ a (cm -1 )	µ' s (cm -1 )	λ (nm)	Reference
	Breast	0.041 +/-0.025	8.5 +/-2.1	786	(Durduran et al 2002)
	Brain (cortex)	> 0.2	10	674	(Bevilacqua et al 1999)
	Prostate	0.4 +/-0.1	7.1 +/-1.6	786	(Svensson et al 2007)

IN REFLECTANCE AT SHORT SOURCE-DETECTOR SEPARATION 2. Reconstruction algorithm for time-resolved DOT in reflectance at short source-detector separation 2.1. Reconstruction algorithms for time-resolved DOT The

  first algorithms for time-resolved (or time-domain) DOT were developed in the group of Dr. S.R. Arridge at the University College of London. In particular, this research group has implemented major elements for time-domain DOT like computation by finiteelements, introduced the concept of datatypes, and proposed different methods accounting for the real instrument response of the experimental system. All these developments happened in the 1990's and materialized in a DOT reconstruction software package called TOAST. Among many publications of this group, two PhD theses describe in detail this research work:

  Boas at the Massachusetts General Hospital and Harvard Medical School -in Europe: the group of Dr. P. Poulet at University of Strasbourg (France), the group

of Dr. R. MacDonald at Physikalisch-Technische Bundesanstalt (Germany) and the group of Dr. A. Liebert at Institute of Biocybernetics and Biomedical Engineering (Poland) -in Asia: Dr. Feng Gao (China) and Dr. Yukio Yamada (Japan)
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Table 2 -

 2 1 Definition of most reported datatypes for time-resolved DOT. f(t) is a time-resolved function, p (in ns -1 ) is a real positive and n is a positive or null integer.

	Datatype	Definition
	Mellin transform	
	or moments	
	Normalized moments	
		with
	Central moments	
		with	and
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									Function (p n /n!).t n .e -pt .f(t)
								1				
							amplitude	8		p = 1 ns -1	n=0 n=1 n=2
												n=3
							normalized					n=4 f(t)
										t (ns)		
			Function (p n /n!).t n .e -pt			Function (p n /n!).t n .e -pt .f(t)
		1										
								1				
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2.1.4. Choice of datatypes: a statistical approach 2.1.4.1 Objectives

  

left: moments, right: MLT with p = 3 ns -1

  

	Figure 2-38 Moments versus MLT: contrast for the depth of 30 mm. Values of contrast calculated
	without noise (thick blue lines), mean value of the 100 noise draws (symbol o) and standard
	deviation (error bars), zero contrast (red line), . (SNR:
	10 6 photons per TPSF)

  al 2012)):By applying this time convolution property of the MLT to Equation (2-14), the following linear system is obtained:

	𝑎	𝑎	(2-15)

IN REFLECTANCE AT SHORT SOURCE-DETECTOR SEPARATION Université Joseph Fourier / Université Pierre Mendès France / Université Stendhal / Université de Savoie / Grenoble INP

IN REFLECTANCE AT SHORT SOURCE-DETECTOR SEPARATION Université

  

Joseph Fourier / Université Pierre Mendès France / Université Stendhal / Université de Savoie / Grenoble INP

  group of Dr Boas at the Massachusetts General Hospital and Harvard Medical School ((Selb et al 2006) for the first generation of instrument and (Selb et al 2013) for the second one). -group of Dr P. Poulet at Université de Strasbourg, developing a compact ICCD camera (Poulet et al 2013) -group of Dr A. Liebert at Institute of Biocybernetics and Biomedical Engineering, for in vivo measurements (Sawosz et al 2010) and contactless measurements

[START_REF] Sawosz | Application of timegated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimics local changes in oxygenation of the brain tissue Opto-Electron[END_REF] 

-at CEA-LETI (France), for imaging the brain of premature infants (Planat-Chrétien et al 2013).

Table 3 -

 3 1 Summary of pros and cons for the two possible acquisition chains

		TCSPC + single-photon detector	Time-gated intensified camera
	Advantages	-Fine temporal resolution	-Parallel acquisition of many channels
		-Acquisition of the full TPSF at once	-Adaptation of count rate per gate
	Drawbacks	-No parallel acquisition	-Low temporal resolution
		-Limited count rate	-Recovery of the TPSF needed
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Table 3 -

 3 2.

Table 3 -

 3 2 Most relevant characteristics of single-photon detectors for TCSPC, values provided by the manufacturer(Becker and Hickl, Germany) 

		PMC-100-20	HPM-100-50
		Classical PMT	Hybrid PMT
	Wavelength range (nm)	300 -900	400 -900
	IRF FWHM (ps)	< 200	130
	DCR (s -1 )	200 -500	500 -3000
	Maximum count rate (MHz)	100	15

Table 3 -

 3 3 Comparison of the width of the IRF measured with the two PMTs (values extracted from Figure 3-16). FWHM is full width at half maximum, FW1/10M full width at 1/10 of maximum, etc.

		PMC-100-20	HPM-100-50
		Classical PMT	Hybrid PMT
	FWHM (ps)	228	140
	FW1/10M (ps)	506	361
	FW1/100M (ps)	1830	687
	FW1/1000M (ps)	4640	993

ENHANCED DYNAMIC RANGE FOR TIME-RESOLVED DOT 123 WITH FAST-GATED SPADS Université

  Joseph Fourier / Université Pierre Mendès France / Université Stendhal / Université de Savoie / Grenoble INP studied in our work, being the shortest source-detector distance tested. Measurements at even shorter distances would lead to more drastic constraints on the rise time.

	CHAPTER 4:						
		Power						Power x 100
	counts	gate 1				counts	gate 2
	10 3	OFF	ON	OFF			10 3	OFF	ON	OFF
	10 2						10 2
	10 1						10 1
	10 0						10 0
		t i,1	t f,1	t (ns)					t i,2	t f,2	t (ns)
				counts	from gate 1	from gate 2	
				10 3				
				10 2			Recovered TPSF	
				10 1				
				10 0				
				10 -1	t i,1	t i,2	t f,1	t (ns)
				10 -2			t f,2	
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WITH FAST-GATED SPADS

Université Joseph Fourier / Université Pierre Mendès France / Université Stendhal / Université de Savoie / Grenoble INP SD = 15 mm. Looking at each individual contrast profile per depth of the inclusion, one can see that contrast is above noise level from 10 mm to 22 mm only for the non-gated mode but for the gated mode, depths of 25, 28 and 31 mm can also be distinguished. This contrast analysis suggests that the detection range in depth can be increased from 22 to 31 mm for SD = 15 mm by using the gated mode. SD = 5 mm. The contrast profiles indicate that the increase in depth range is even more pronounced for SD = 5 mm. Whereas measurements at depths from 10 to 16 mm are above the noise level from non-gated acquisitions, depths from 10 to 28 mm can be detected with gating. For SD = 5 mm, the contrast profiles for high orders for gated acquisitions differ from those obtained at SD = 15 mm: we do not observe a steep decrease of contrast with the order n and no increase of error bars. We hypothesize that this phenomenon is due to the presence of the memory effect. It can also be due to a broadened IRF at such a high dynamic range of 6 decades, similarly to what we have observed in Chapter 3 at lower dynamic range with the classical PMT (section 3.5.4.1).

DOT reconstructions

We separately ran reconstructions for all pairs of sources and detectors at each interfiber distance and obtained 2D maps of the absorption coefficients in the plane (x, z). The number of MLT orders included in the analysis was adapted for each interfiber distance and each acquisition mode to optimize results. For each depth and for each mode, two reconstructions were carried out separately with the references acquired before and after the heterogeneous measurement in order to evaluate the sensitivity of the results to photonic noise. Figure 4-20 and Figure 4-21 show the obtained results only for the references acquired before the heterogeneous measurements for SD = 15 mm and SD = 5mm.

SD = 15mm

Reconstructed images of Figure 4-20 corroborate the contrast analysis of 4.5.6.2. At SD = 15 mm with the non-gated mode, the inclusion can be detected down to 22 mm only. For deeper positions, the images obtained are dependent on photonic noise, which results in different images according to the choice of the reference (images not shown here). With the gated mode, the inclusion can be robustly detected down to 31 mm. Therefore, by operating the SPAD in the gated mode, the detection range increases in depth by nearly 50%. Results for the depths of 34 and 37 mm are not shown as the images reflect noise for both acquisition modes. 

Solid phantoms

We describe here the solid phantom used as inclusions for the experimental work presented in this manuscript.

Composition

The solid inclusions are composed of:

1) Matrix : epoxy resin (resin and hardener Surf Clear, Sicomin) 2) Absorbing agent : black ink (Art. 591017, Rotring) 3) Diffusing agent : particles of titanium dioxide (TiO 2 ) (ref 14027, Sigma Aldrich)

Fabrication

The fabrication with an epoxy resin requires the use of a hardener. The manufacturer indicates the following proportions: 2/3 of the volume for resin and 1/3 of the volume for the hardener. We summarize here the main steps of fabrication of the solid inclusions: 1) We calculate the volume of inclusion to make and the corresponding volumes of resin and hardener. 2) We place the black ink in an ultrasonic bath for 20 minutes: this sonication breaks the aggregations of ink particles. 3) We mix the desired quantity of ink in the hardener. This procedure can be controlled by an absorbance measurement at the spectrometer because the hardener is not diffusing. This measurement allows a precise and direct quantification of the absorption coefficient of the prepared inclusion (taking into account the dilution occurring when adding the volume of resin later). 4) We add the necessary quantity of TiO 2 particles to reach the desired value of at the wavelength of interest. The required quantity of TiO 2 is calculated following tabulated values (see below «characterization »). In our case, as we want to observe only absorption contrast, we target the same as the liquid phantom used for background. 5) We proceed to the sonication of the mix of hardener + ink + TiO 2 to ensure a homogeneous spread of the TiO 2 particles (visual control). 6) Finally we add the required volume of resin and mix by manual agitation. 7) The obtained liquid is poured in molds and left to dry for 2 days before mechanical removal.

Characterization 1) Absorption coefficient: it is directly measured in the mix of hardener + ink at the spectrometer, before adding the TiO 2 and the resin. The dilution occurring when adding the resin is taken into account. 2) Reduced scattering coefficient: it is not directly characterized during the fabrication of these inclusions. We refer to tabulated values published in (Montcel 2005) with similar TiO 2 particles. The following reduced scattering coefficient (cm -1 ) is expected for a concentration of 10 mg of TiO 2 per ml :

with λ in nm and the anisotropy coefficient: . We make the assumption that the value of at a given wavelength is proportional to the concentration of TiO 2 . APPENDIX 212

Estimation of the number of collected photons at the detector in an infinite homogeneous medium

We present here an estimation of the number of photons reaching the detector depending on the source-detector distance, in a given medium infinite medium with the following optical properties: µ a = 0.1 cm -1 and µ' s = 10 cm -1 .

We consider here the simplified case of a homogeneous infinite medium. Because we aim at knowing the total number of photons reaching the detector per second to estimate the expected count rate, we work with a continuous expression of the direct model. In continuous mode, the photon density (in W.m -2 ) at a distance r from the source is expressed as follows [START_REF] Svensson | In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy[END_REF]:

𝜋

With:

-P 0 the illumination power (W) -. For a given distance and a given illumination power, the calculation of gives a value of power per surface unit. In order to access to the power (in W) reaching the detector, we need to estimate its surface S (in m 2 ):

For a collecting optical fiber with a diameter D, the collection surface is: 𝜋

To obtain the number of photons from this power calculation, one needs to take into account the energy of a single photon E (in J) given by the equation With:

-c the speed of light in the medium: and the speed of light in vacuum and n the refractive index of the medium -h the Planck constant, h = 6,62606957×10 -34 J.s λ the wavelength of photons

The number of collected photons is therefore: