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Modélisation et discrétisation des écoulements diphasiques en mi-
lieux poreux avec réseaux de fractures discrètes

Résumé: les travaux de cette thèse portent sur la modélisation et la discrétisation
des écoulements diphasiques dans les milieux poreux fracturés. On se place dans le
cadre des modèles dits dimensionnels hybrides couplant l’écoulement dans la matrice
3D à l’écoulement dans un réseau de fractures modélisées comme des surfaces 2D. La
discrétisation s’appuie sur le cadre abstrait des schémas gradients. Les objectifs sont mo-
tivés par l’application cible de la thèse qui concerne les procèdès de récupération assistée
de gaz par fracturation hydraulique dans les réservoirs de très faibles perméabilités.

Le Chapitre 1 se concentre sur la définition du modèle monophasique dimensionnel
hybride pour des réseaux complexes de fractures planes, et sur sa discrétisation par les
schémas Vertex Approximate Gradient (VAG) et Volume Finis Hybride (HFV). Nous
étendons le modèle réduit dit à pression continu au cas de réseaux complexes de frac-
tures planes comportant des intersections, des fractures débouchantes et des fractures
non débouchantes et analysons la convergence des schémas dans le cadre général des
schémas gradients. Les résultats de densité de sous espaces de fonctions lisses dans les
espaces de pression et de flux présentés dans ce Chapitre sont essentiels afin d’établir la
convergence des schèmas numériques étudiés.
Au Chapitre 2, nous étendons le modèle dimensionnel hybride et les schémas VAG et
HFV décrits au Chapitre 1 au cas des écoulements diphasiques immiscibles. On utilise
pour cela une formulation implicite en pressions des phases qui est adaptée aux pressions
capillaires discontinues au sens où elle capte le saut des saturations aux interfaces entre
différents types de roches, en particulier à l’interface matrice fracture. Elle suppose en
revanche que les pressions capillaires sont strictement croissantes et ne peut donc pas
traiter le cas d’une pression capillaire nulle dans la fracture. Les schémas nodaux tels que
le schéma VAG ont l’avantage, par rapport aux schémas Control Volume Finite Element
(CVFE) d’éviter le mélange des milieux matrice et fracture dans les volumes de contrôle,
tout en conservant un coût du même ordre que les méthodes nodales sur des maillages
non structurés. On démontre la convergence du schèma VAG sous l’hypothèse que les
perméabilités relatives sont minorées par une constante strictement positive. Les tests
numériques présentés étudient le choix des volumes de contrôle aux interfaces matrice
fracture et comparent les schémas VAG et HFV.
Au Chapitre 3, nous proposons une nouvelle formulation des écoulements diphasique qui
repose sur une paramétrisation des graphes monotones des pressions capillaires pour les
rocktypes présents à l’interface. Cette nouvelle approche prend en compte des pressions
capillaires non strictement croissantes et nous permet de capturer le saut des saturations
aux interfaces entre différents types de roches et d’utiliser un nombre minimal d’inconnues
par degré de libertè à savoir deux inconnues dans le cas de notre modèle diphasique im-
miscible. Diffèrents cas tests incluant la simulation de la récupération de gaz dans des
réservoirs peu perméables par fracturation hydraulique sont présentés.



Mots-clés: écoulements diphasiques en milieu poreux, milieux fracturés, réseaux de frac-
tures discrètes, schéma volume fini, schémas gradients, analyse numérique, pressions capil-
laires discontinues



Modelization and discretization of two-phase flows in porous me-
dia with discrete fracture networks

Abstract: this thesis presents the work on modelling and discretisation of two-phase
flows in the fractured porous media. These models couple the flow in the fractures repre-
sented as the surfaces of codimension one with the flow in the surrounding matrix. The
discretisation is made in the framework of Gradient schemes which accounts for a large
family of conforming and nonconforming discretizations. The test cases are motivated
by the target application of the thesis concerning the gas recovery under the hydraulic
fracturing process in low-permeability reservoirs.
In Chapter 1 we introduce the hybrid dimensional single-phase flow model for the complex
network of plane fractures. We assume the case with continuous pressure at the interfaces
between the fractures and the matrix domain. The convergence analysis is carried out in
the framework of Gradient schemes which accounts for a large family of conforming and
nonconforming discretizations. The Vertex Approximate Gradient (VAG) scheme and the
Hybrid Finite Volume (HFV) scheme are applied to this model and are shown to verify
the Gradient scheme framework. The key result provides the density of smooth functions
subspaces in both the variational space and in the flux space of the model. These density
results are shown to hold for a general 3D network of possibly intersecting, immersed or
non immersed planar fractures.
In Chapter 2 we extend the hybrid dimensional model, VAG and HFV schemes described
in the Chapter 1 to the case of immiscible two-phase flows. In this context we use the
phase pressures formulation which allows to capture the saturation jump condition at
the interface between different rocktypes without introducing any additional unknowns
at these interfaces. On the other hand, it is limited to strictly increasing capillary pres-
sure curves and lacks robustness compared to pressure saturation formulations. Compared
with Control Volume Finite Element (CVFE) approaches, the nodal schemes as VAG have
the advantage to avoid the mixing of the fracture and matrix rocktypes at the interfaces
between the matrix and the fractures, while keeping the low cost of a nodal discretization
on unstructured meshes. The convergence of the scheme is proved under the assumption
that the relative permeabilities are bounded from below by a strictly positive constant.
This assumption is needed in the convergence proof in order to take into account discon-
tinuous capillary pressures in particular at the matrix fracture interfaces. The efficiency
of our approach compared with CVFE discretizations is shown on two numerical examples
of fracture networks in 2D and 3D.
In Chapter 3 we propose an elegant mathematical framework for two-phase flow in hetero-
geneous porous media resulting in a family of formulations, which apply to general mono-
tone capillary pressure/saturation relations and handle the saturation jumps at rocktype
interfaces. It also allows us to maintain the minimal number of primary unknowns per
degree of freedom and deal with arbitrary capillary pressures including multi-valued sat-
uration curves. This framework has been tested on a family of tight gas recovery test
cases and compared with the classical pressure-saturation formulation using the Vertex
Approximate Gradient scheme for gas liquid hybrid dimensional Darcy flows in the frac-



tured porous media.

Keywords: two-phase flows in porous media, fractured media, discrete fractures net-
work, finite volume scheme, gradient schemes, numerical analysis, discontinuous capillary
pressures
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(ma chère Alma Mater) où ”ils ne m’ont pas rendue plus intelligente mais m’ont appris à
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À toute ma grande famille.



Contents

Remerciements

Introduction 3

1 Hybrid Dimensional Single Phase Darcy Flows in Fractured Porous Me-
dia 15
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 Hybrid dimensional Darcy Flow Model in Fractured Porous Media . . . . . 18

1.2.1 Discrete Fracture Network and functional setting . . . . . . . . . . 18
1.2.2 Hybrid dimensional Darcy Flow Model . . . . . . . . . . . . . . . . 21

1.3 Gradient discretization of the hybrid dimensional model . . . . . . . . . . . 22
1.3.1 Gradient discretization . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.2 Application to the hybrid dimensional model . . . . . . . . . . . . . 25

1.4 Two examples of Gradient Discretizations . . . . . . . . . . . . . . . . . . 26
1.4.1 Vertex Approximate Gradient Discretization . . . . . . . . . . . . . 27
1.4.2 Hybrid Finite Volume Discretization . . . . . . . . . . . . . . . . . 30
1.4.3 Finite Volume Formulation of the VAG and HFV schemes . . . . . 35

1.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2 Hybrid Dimensional Two-Phase Darcy Flows in Fractured Porous Me-
dia 47
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2 Hybrid dimensional Two-Phase Darcy Flow Model in Fractured Porous

Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.1 Two-Phase Darcy Flows in Phase Pressures Formulation . . . . . . 50

2.3 Vertex Approximate Gradient Discretization . . . . . . . . . . . . . . . . . 52
2.4 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.1 A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.2 Estimates on the time and space translates . . . . . . . . . . . . . . 56
2.4.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5 Upwind flux formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.6 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

1



2.6.1 Oil migration in a 2D basin with one barrier and a fault . . . . . . 65
2.6.2 Oil migration in a basin with a random network of fractures . . . . 68
2.6.3 3D network of fractures . . . . . . . . . . . . . . . . . . . . . . . . 72
2.6.4 Comparisons between the VAG and HFV discretizations . . . . . . 75

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3 Two-phase Darcy flow model accounting for vanishing and discontinuous
capillary pressures 83
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.2 Parametrization of Saturation Curves at the Rocktype Interfaces . . . . . . 88
3.3 Implementation and Numerical Experiments . . . . . . . . . . . . . . . . . 89

3.3.1 Parametrizations for the pressure-saturation and variable-switch
formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3.2 Tight gas test case . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.3.3 Oil migration in a 2D basin . . . . . . . . . . . . . . . . . . . . . . 107

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Conclusions et perspectives 112

4 Appendices 116

2



Introduction

3



Contexte de l’étude et état de l’art

Les roches fracturées sont omniprésentes dans les milieux géologiques, on estime par ex-
emple que la moitié des réservoirs pétroliers sont fracturés. La Figure 1 présente quelques
exemples de tels milieux avec des échelles différentes de fractures. L’écoulement dans
ces milieux est dominé par la connectivité et la conductivité du réseau de fractures en
interaction avec le milieu matrice environnant. Leur modélisation numérique est donc
cruciale pour une meilleure gestion des ressources du sous sol. Elle représente un défi
du fait de la complexité et du caractère multiéchelle du réseau et du fait des très forts
contrastes d’échelles et de propriétés pétrophysiques et hydrodynamiques entre la matrice
et les fractures.

Il existe deux types de modèles pour représenter ces écoulements. Le premier con-
cerne les réseaux de fractures suffisamment connectés et uniformes pour que les frac-
tures puissent être homogéné̈ısées et représentées par un milieu poreux 3D équivalent
couplé au milieu poreux 3D matriciel environnant. Le modèle d’écoulement couple alors
les écoulements 3D de type Darcy dans chacun des milieux matrice et fracture couplés
par des termes sources d’échange entre le milieu matrice et le milieu fracture (voir les
travaux pionniers de Warren et Root [61] et de Kazemi [47] et la Figure 2 qui illustre
schématiquement ce modèle).

Le deuxième type de modèles, dits à dimension réduite ou dimensionnels hybrides
sur lequel se concentre la thèse, représente les réseaux de fractures explicitement comme
des surfaces de codimension 1 immergées dans la matrice (voir Figure 3). L’écoulement
couple alors un écoulement de Darcy 3D dans le milieu matriciel avec un écoulement 2D
dans le réseau de fractures, le couplage étant obtenu par les conditions de transmission
à l’interface matrice fracture. Dans le cadre de cette thèse on s’intéresse aux modèles de
fractures perméables permettant d’imposer la continuité de la pression comme condition
de transmission à l’interface matrice fracture. Ce type de modèle a été introduit dans [3]
pour des écoulements monophasiques. Ce choix se justifie par la motivation principale
de la thèse qui est l’application de ces modèles à la simulation de la récupération assistée
de gaz dans des réservoirs de très faible perméabilité par des méthodes de fracturation
hydraulique. Le cas dit à pressions discontinues des modèles prenant en compte les frac-
tures pouvant agir soit comme des drains soit comme des barrières est traité dans [39],
[49], [6], dans le cas d’écoulement monophasiques, par des conditions de transmission de
type Robin à l’interface matrice fracture autorisant les sauts de pression.
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Figure 1: Exemples de milieux poreux fracturés avec différentes échelles de fractures:
métrique (au dessus à gauche), hectométrique (au dessus à droite), kilométrique (en
dessous). Figures de J. R. de Dreuzy, Geosciences Rennes et équipe-projet Inria Sage.
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Figure 2: Illustration schématique par Warren et Root du modèle double milieu.

Figure 3: Représentation de milieux poreux fracturés par des réseaux de fractures discrètes
avec différentes échelles de longueurs. Figure de J. R. de Dreuzy, Geosciences Rennes et
équipe-projet Inria Sage.
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Afin d’introduire le principe de réduction de dimension du modèle présenté dans [3],
considérons un domaine Ω et une fracture plane traversante d’épaisseur df << diam(Ω)
dont le modèle volumique et le modèle à dimension réduite (ou dimensionnel hybride)
sont schématisés Figure 4.

Figure 4: Modèle de fracture volumique (à gauche) et modèle à dimension réduite ou
dimensionnel hybride (à droite).

Pour le modèle volumique on note u la pression et q le flux de Darcy définis sur Ω et
(

Λf 0
0 λf,n

)

le tenseur de perméabilité dans la fracture supposé aligné avec les directions longitudinale
τ et normale n de la fracture. Le flux de Darcy dans la fracture s’écrit dans ce système
de coordonnées

q = −Λf,τ∇τu− λf,n(∂nu)n,

où ∇τ = ∇− (∇ · n)n est le gradient tangentiel. Pour définir le modèle réduit on intégre
la pression et le flux dans l’épaisseur de la fracture, ce qui conduit à définir la pression
moyenne uf le long de la fracture

uf (τ) =
1

df

∫ df
2

− df
2

u(τ, n) dn,

et le flux longitudinal intégré dans l’épaisseur de la fracture

qf (τ) =

∫ df
2

− df
2

−Λf∇τu dn = −dfΛf∇τuf (τ).

On intégre ensuite l’équation de conservation div(q) = h dans l’épaisseur de la fracture
de façon à obtenir l’équation de conservation le long de la fracture suivante:

∫ df
2

− df
2

(
div(q)− h

)
dn = divτ (qf )− q(τ,

df
2
) · n− − q(τ,−df

2
) · n+ − dfhf = 0,
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en notant hf le terme source moyenné dans l’épaisseur de la fracture et divτ la divergence
tangentielle. La condition de transmission dans le cas d’une fracture perméable néglige
le saut de pression entre la matrice et le centre de la fracture en supposant la pression
moyenne uf dans la fracture égale aux deux pressions de part et d’autre de la fracture
coté matrice. En notant γ l’opérateur de trace sur la fracture on suppose donc que la
pression (toujours notée u par abus de notations) du modèle réduit est globalement dans
H1 et que uf = γu comme illustré sur la Figure 4. Le modèle de Darcy dimensionnel
hybride s’écrit alors: 




div(qm) = hm,
divτ (qf )− [[qm · n]] = dfhf
qf = −dfΛf∇τγu
qm = −Λm∇τu

où [[qm · n]] est le saut de la trace normale du flux matriciel qm et Λm le tenseur de
perméabilité dans la matrice. A noter que l’hypothèse de pression continue à l’interface
matrice fracture pour le modèle réduit est justifiée dès lors que

λf,n
df

>>
Λm

diam(Ω)
,

c’est à dire d’autant plus que la fracture est de faible épaisseur et de forte perméabilité.

La principale difficulté pour l’extension des modèles de Darcy dimensionnels hybrides
au cas diphasique repose sur la prise en compte des sauts de saturations aux interfaces
matrice fracture liés à la discontinuité des pressions capillaires entre le milieu matrice
et le milieu fracture. Le point de départ naturel sera donc les travaux [29], [20], [21]
sur la formulation mathématique des écoulements diphasiques traitant les interfaces en-
tre différents types de roches avec pressions capillaires discontinues. Le modèle proposé
dans [35] nous servira de point de départ. Il utilise les pressions des deux phases comme
variables primaires et exprime les saturations comme fonctions de la pression capillaire de
façon à capter les sauts des saturations aux interfaces entre différents types de roches. On
peut aussi mentionner les modèles formulés en pression globale proposés dans [11] dans le
cas simple milieu et dans [45] dans le cas de modèles dimensionnels hybrides à pressions
discontinues.

La discrétisation des modèles de Darcy dimensionnels hybrides avec pressions contin-
ues ou discontinues aux interfaces matrice fracture a fait l’objet de nombreux travaux.
Les auteurs proposent dans [46], [6] un schéma volume finis centré avec approximation
deux point des flux (Two Point Flux Approximation ou TPFA) qui suppose une condi-
tion d’orthogonalité du maillage et l’isotropie des perméabilités. Les schémas volume finis
centrés ont été étendus au cas de maillages généraux et de perméabilités anisotropes dans
[60], [57], [2] pour les modèles à pressions discontinues. Néanmoins ces schémas peuvent
manquer de robustesse dans le cas de mailles déformées et de fortes anisotropies du fait
de leur coercivité dépendante du maillage et de l’anisotropie. Ils sont aussi très coûteux
dans le cas de maillages tétraèdriques par comparaison à des discrétisations nodales.
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Dans [3], une méthode d’Eléments Finis Mixtes (EFM) a été introduite pour les modèles
monophasiques à pression continue. Pour les modèles monophasiques à pressions discon-
tinues, les EFM sont introduits dans [49] et les méthodes Mimetiques dans [7] et dans
[38]. L’extension au cas diphasique est traité dans [43] dans le cadre d’un schéma ImPES
(Implicite en Pression et Explicite en Saturation) en utilisant une méthode d’Eléments
Finis Mixtes Hybrides (EFMH) pour l’équation de pression et d’une méthode de Galerkin
Discontinue pour l’équation de saturation. Ces méthodes sont adaptées aux maillages
généraux et aux perméabilités anisotropes mais nécessitent un grand nombre de degrés de
liberté de l’ordre du nombre de faces du maillage. Les méthodes de type Control Volume
Finite Element (CVFE) proposées dans [54], [53] dans le cas diphasique ont l’avantage de
n’utiliser que des inconnues nodales ce qui conduit à un faible nombre de degré de liberté
dans le cas de maillages tétraèdriques. Néanmoins, ces méthodes ont l’inconvénient dans
le cas diphasique de mélanger les différents types de roches aux noeuds situés à l’interface
entre différents types de roches. Il est alors nécessaire de raffiner fortement le maillage à
l’interface matrice fracture pour éviter d’élargir artificiellement les drains que constituent
les fractures.

L’analyse de la convergence des schémas numériques pour ce type de modèles est
restreinte dans le cas monophasique au cas d’une unique fracture débouchante dans [3] et
[49] ou non débouchante dans [6]. Le cas de réseaux complexes de fractures s’intersectant,
débouchantes ou non débouchantes n’a pas à notre connaissance été étudié avant ces
travaux de thèse. Cette analyse nécessite notamment d’établir la densité de sous espaces
de fonctions lisses à la fois pour l’espace des pressions et pour l’espace des flux.

Dans le cas diphasique, aucun travaux avant cette thèse n’a porté à notre connaissance
sur l’analyse de convergence des schémas pour les modèles dimensionnels hybrides. Dans
le cas sans fractures, les premiers résultats de convergence par compacité vers une solution
faible d’un écoulement diphasique ont été obtenus dans [51] et [33] dans le cas d’un schéma
volume finis centré avec approximation TPFA des flux sur maillages orthogonaux. Dans
[33] la convergence du schéma est obtenue dans le cadre de la formulation de référence dans
l’ingénierie pétrolière basée sur les deux inconnues primaires pression et saturation et sur
le décentrage par phase des mobilités. Ce résultat très technique repose sur des fonctions
tests non linéaires et est restreint aux schémas TPFA sur maillages orthogonaux. Dans [51]
la convergence est établie toujours pour les schémas TPFA sur maillages orthogonaux dans
le cas plus simple d’une formulation en pression globale introduite dans [22] (voir aussi
[8]) en supposant une pression capillaire homogène. Dans le cadre de cette formulation en
pression globale pour une pression capillaire homogène, l’extension à des schémas volume
finis sur maillages généraux est étudiée dans [10] dans le cas des schémas Volume Finis
Hybride (HFV), dans [16] dans le cas du schéma Vertex Approximate Gradient (VAG) et
dans [37] dans le cadre général des schémas gradients introduit dans [31].

Dans le cadre de cette thèse, il nous faut prendre en compte une difficulté essentielle
liée à la discontinuité des pressions capillaires notamment à l’interface matrice fracture.
Ce problème est traité dans [11] en utilisant un schéma TPFA sur maillages orthogonaux
adapté aux discontinuités de la pression capillaire à l’aide d’inconnues d’interface. Une
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extension au cas de maillages polyèdriques généraux est proposée dans [35] dans le cadre
général des schémas gradients en utilisant une formulation en pressions des phases. Cette
formulation a l’avantage d’utiliser uniquement deux inconnues primaires par degré de lib-
erté, à savoir les pressions des deux phases. Contrairement aux résultats obtenus dans
[11] pour un schéma TPFA, la preuve de convergence nécessite une hypothèse restrictive
sur le plan physique de non dégénerescence des perméabilités relatives.

Les objectifs de la thèse sont motivés par l’application cible de la thèse qui concerne les
procédés de récupération assistée de gaz par fracturation hydraulique dans les réservoirs
de très faibles perméabilités. Les fractures seront supposées déjà formées et l’objectif est
de simuler les écoulements gaz liquide dans le milieu poreux fracturé modélisé par un
modèle de Darcy dimensionnel hybride. On souhaite prendre en compte des réseaux de
fractures de complexité moyenne, pouvant néanmoins comporter quelques intersections
entre les fractures issues de la fracturation hydraulique et des fractures naturelles. Un
point essentiel en terme de modélisation géométrique et physique est le très fort constraste
de perméabilités et de capillarités entre la matrice et les fractures. De ce fait, l’eau
injectée dans les fractures pénètre sur une très faible épaisseur dans la direction normale
aux fractures, quelques dizaines de centimètres à comparer à l’extension décamétrique
des fractures. Cette eau est retenue dans la matrice par effet capillaire ce qui contribue
à diminuer la mobilité du gaz lors de la phase de production, il est donc essentiel de la
modéliser avec précision. Afin de représenter cette géométrie et de capter l’échelle de
pénétration de l’eau au voisinage des fractures, le maillage comportera typiquement des
prismes pour le raffinement anisotrope au voisinage des fractures, et des tétraèdres pour
le raccord avec la frontière du réservoir (voir Figures 5 et 6). La discrétisation spaciale
devra donc être adaptée aux milieux anisotropes et aux maillages polyèdriques qui offrent
une grande souplesse en terme de représentation géométrique. En terme de modélisation,
l’accent sera mis sur la prise en compte précise des conditions de transmission à l’interface
matrice fracture et du fort constraste de capillarités entre la matrice et les fractures. On
souhaite en particulier pouvoir traiter des capillarités nulles dans les fractures et des
pressions d’entrée non nulles dans la matrice.
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Figure 5: Maillage prismatique autour de chaque fracture et couche de pyramide pour le
raccord avec le maillage tétraèdrique du réservoir. L’épaisseur des prismes a été aggrandie
pour une meilleure visibilité.

Figure 6: Maillage tétraèdrique du réservoir raccordé avec les couches de prismes au
voisinage des fractures à l’aide d’une couche de pyramides. L’épaisseur des prismes a été
aggrandie pour une meilleure visibilité.

Plan de la thèse

La thèse comporte trois Chapitres ainsi qu’un Appendice. Le premier Chapitre se con-
centre sur la définition du modèle monophasique dimensionnel hybride pour des réseaux
complexes de fractures planes, sa discrétisation par les schémas VAG et HFV et sur
l’analyse de la convergence des schémas dans le cadre général des schémas gradients.
Le second Chapitre porte sur le modèle diphasique en formulation pressions des phases
adaptée aux pressions capillaires discontinues et permettant de capter les sauts de sat-
urations aux interfaces entre différents types de roches notamment à l’interface matrice
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fracture. Les schémas VAG et HFV sont étendus à ce modèle dans le cadre d’une formu-
lation fully implicite et la convergence par compacité vers une solution faible est analysée
sous l’hypothèse de non dégénesrence des perméabilités relatives. Le troisième Chapitre
étend la formulation précédente du modèle diphasique de façon à pouvoir traiter no-
tamment des pressions capillaires nulles dans les fractures tout en captant les sauts de
saturations aux interfaces matrice fracture. Pour cela, un cadre général est introduit qui
repose sur la paramétrisation des graphes des pressions capillaires et maintient le nombre
minimal d’inconnues primaires par degré de liberté. Dans chacun des trois Chapitres, des
tests numériques principalement 3D illustrent la performance des méthodes numériques
introduites et les comparent. L’Appendice démontre quelques résultats techniques utilisés
dans les preuves de convergence des Chapitres 1 et 2, notamment les résultats de densités
de sous espaces de fonctions lisses pour les espaces de pression et de flux du modèle.

Chapitre 1: modèles monophasiques

Ce Chapitre présente le modèle d’écoulement monophasique dit dimensionnel hybride
couplant l’écoulement dans la matrice et celui dans le réseau de fractures représentées
comme des surfaces de codimension 1. On considère le cas de fractures perméables dont
le modèle à dimension réduite a été introduit dans [3]. Le premier objectif du Chapitre 1
est d’étendre ce modèle au cas de réseaux complexes de fractures planes comportant des
intersections, des fractures débouchantes et des fractures non débouchantes. Le cadre
fonctionnel est détaillé et on établit notamment des résultats de densité de sous es-
paces de fonctions lisses dans les espaces de pression et de flux dont les preuves sont
dans l’Appendice. Ces résultats sont essentiels afin d’établir la convergence des schémas
numériques étudiés dans ce Chapitre. Le deuxième objectif du Chapitre 1 est d’étendre
les discrétisations Vertex Approximate Gradient (VAG) et Volume Finis Hybride (HFV)
introduits dans [31] et [30] pour les problèmes de diffusion en milieu hétérogène anisotrope.
Le troisième objectif est d’étudier théoriquement et numériquement la convergence des
schémas VAG et HFV. On utilise pour leur analyse numérique, le cadre général abstrait des
schémas gradients introduit dans [31], [28], [26] pour analyser la convergence de méthodes
numériques pour des problèmes de diffusion linéaires et non linéaires. Ce cadre inclut de
nombreuses discrétisations conformes ou non conformes telles que les Eléments Finis, les
Eléments Finis Mixtes et Mixtes Hybrides, certains schémas volumes finis symétriques
comme les schémas MultiPoint Flux Approximation (MPFA), le schéma VAG, le schéma
HFV et les méthodes de différences finis mimétiques (MFD) faisant partie de la classe
plus générale des méthodes mixtes hybrides (HMM) [27].

Le plan du Chapitre 1 est le suivant: dans la Section 1.2 on introduit le cadre
géométrique pour les réseaux complexes de fractures planes, le cadre fonctionnel ainsi
que les formulations forte et variationnelle du modèle de Darcy monophasique dimen-
sionnel hybride. La Section 1.3 étend le cadre abstrait des schémas gradient à notre
modèle en définissant les opérateurs et en énonçant les hypothèses de coercivité, de con-
sistence, de conformité à la limite et de compacité qu’ils sont supposés satisfaire. Ensuite
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la discrétisation du modèle par le schéma gradient est définie et sa convergence établie
sous les hypothèses précédentes. La Section 1.4 étend les schémas VAG et HFV à notre
modèle et on montre que ces deux schémas satisfont le cadre des schémas gradient. La
Section 1.5 compare numériquement les deux schémas VAG et HFV sur des solutions ana-
lytiques 3D en milieu homogène ou hétérogène, isotrope ou anisotrope, et pour différentes
familles de maillages cartésiens, hexaèdriques ou tétraèdriques.

Chapitre 2: modèles diphasiques

Dans ce Chapitre nous étendons le modèle dimensionnel hybride décrit au Chapitre
précédent au cas des écoulements diphasiques immiscibles. On utilise pour cela une
formulation implicite en pressions des phases qui est adaptée aux pressions capillaires
discontinues au sens où elle capte le saut des saturations aux interfaces entre différents
types de roche, en particulier à l’interface matrice fracture. Elle suppose en revanche
que les pressions capillaires sont strictement croissantes et ne peut donc pas traiter le
cas d’une pression capillaire nulle dans la fracture qui sera considéré au Chapitre 3. Les
schémas VAG et HFV du Chapitre 1 sont étendus au cas d’un écoulement diphasique en
utilisant les flux du Chapitre 1 combinés à un décentrage par phase des mobilités. Une
difficulté essentielle pour les schémas nodaux tels que le schéma VAG réside dans le choix
des volumes de contrôle aux noeuds situés à l’interface matrice fracture. Ces volumes
de contrôle ne doivent pas mélanger les types de roches matrice et fracture afin d’éviter
d’élargir artificiellement les fractures ce qui conduirait à ralentir la propagation du front
dans les fractures. On propose une stratégie simple et efficace pour résoudre ce problème
qui est comparée numériquement à l’approche classique pour les schémas de type Control
Volume Finite Element (CVFE) sur des cas tests avec fort contraste de perméabilités
entre la matrice et les fractures. Les tests numériques incluent également, comme au
Chapitre 1, la comparaison des schémas VAG et HFV sur un cas test traceur et un cas
test diphasique 3D. L’analyse de convergence par compacité du schéma vers une solu-
tion faible est détaillée, pour fixer les idées, dans le cas du schéma VAG en formulation
variationnelle et sans décentrage des mobilités. Cette analyse s’étendrait sans difficultés
supplémentaires au cadre général des schémas gradient du Chapitre 1. Elle suppose, tout
comme dans [35], la non dégénerescence des perméabilités relatives. Il s’agit à notre con-
naissance de la première preuve de convergence pour ce type de modèle.

Le plan du Chapitre est le suivant. La Section 2.2 introduit le modèle en formulation
variationnelle et sa discrétisation par le schéma VAG fait l’objet de la Section 2.3. La
convergence du schéma vers une solution faible est étudiée dans la Section 2.4. La Section
2.5 présente la discrétisation VAG et HFV du modèle en formulation flux avec décentrage
par phase qui est celle utilisée dans les tests numériques du fait de sa plus grande robustesse
pour les régimes à convection dominante. Des tests numériques étudiant le choix des
volumes de contrôle aux interfaces matrice fracture et comparant les schémas VAG et
HFV sont présentés dans la Section 2.6.
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Chapitre 3: nouvelle formulation des modèles diphasiques

L’objectif du Chapitre 3 est d’étendre la formulation en pressions des phases du Chapitre
précédent de façon à prendre en compte des pressions capillaires non strictement crois-
santes et en particulier pouvant s’annuler dans les fractures. Cette extension se doit de
toujours capturer le saut des saturations aux interfaces entre différents types de roches
et d’utiliser le nombre minimal d’inconnues par degré de liberté à savoir deux inconnues
dans le cas de notre modèle diphasique immiscible. La méthodologie proposée repose sur
une paramétrisation des graphes monotones des pressions capillaires pour les rocktypes
présents à l’interface et peut être vue comme un cadre général rigoureux pour les méthodes
de type variable switch [53] .

Le plan du Chapitre est le suivant. La Section 3.2 présente le cadre méthodologique
de la paramétrisation et en déduit l’extension de la discrétisation VAG du Chapitre
précédent au cas général de pressions capillaires avec graphes monotones. La Section
3.3 teste la méthode en la comparant à une formulation en variables pression saturation
sur plusieurs cas tests incluant la simulation de la récupération de gaz dans des réservoirs
peu perméables par fracturation hydraulique.

14



Chapter 1

Hybrid Dimensional Single Phase
Darcy Flows in Fractured Porous
Media

15



Abstract: this Chapter deals with the discretization of hybrid dimensional Darcy flows
in fractured porous media. These models couple the flow in the fractures represented
as surfaces of codimension one with the flow in the surrounding matrix. The conver-
gence analysis is carried out in the framework of gradient schemes which accounts for a
large family of conforming and nonconforming discretizations. The Vertex Approximate
Gradient (VAG) scheme and the Hybrid Finite Volume (HFV) scheme are extended to
such models and are shown to verify the gradient scheme framework. Our theoretical
results are confirmed by numerical experiments performed on tetrahedral, Cartesian and
hexahedral meshes in heterogeneous isotropic and anisotropic porous media.

1.1 Introduction

This Chapter deals with the discretization of Darcy flows in fractured porous media for
which the fractures are modeled as interfaces of codimension one. In this framework,
the d− 1 dimensional flow in the fractures is coupled with the d dimensional flow in the
matrix leading to the so called hybrid dimensional Darcy flow model. We focus on the
particular case where the pressure is continuous at the interfaces between the fractures
and the matrix domain. This type of Darcy flow model introduced in [3] corresponds
physically to pervious fractures for which the ratio of the transversal permeability of the
fracture to the width of the fracture is large compared with the ratio of the permeability
of the matrix to the size of the domain. Note that it does not cover the case of fractures
acting as barriers for which the pressure is discontinuous at the matrix fracture interfaces
(see [39], [49], [6] for discontinuous pressure models). It is also assumed in our model that
the pressure is continuous at the fracture intersections. It corresponds to a high ratio
assumption between the permeability at the fracture intersections and the width of the
fracture compared with the ratio between the tangential permeability of each fracture
and its length. We refer to [40] for a more general reduced model taking into account
discontinuous pressures at fracture intersections in dimension d = 2.

The discretization of the hybrid dimensional Darcy flow model with continuous pres-
sures has been the object of several works. In [46] a cell-centered Finite Volume scheme
using a Two Point Flux Approximation (TPFA) is proposed assuming the orthogonality
of the mesh and isotropic permeability fields. Cell-centered Finite Volume schemes can
be extended to general meshes and anisotropic permeability fields using MultiPoint Flux
Approximations (MPFA) following the ideas introduced in [60], [57], and [2] for discon-
tinuous pressure models. In [3], a Mixed Finite Element (MFE) method is proposed, and
Control Volume Finite Element Methods (CVFE) using nodal unknowns have been intro-
duced for such models in [54] and [53]. A MFE discretization adapted to non-matching
fracture and matrix grids is also studied in [24].

The main goal of this Chapter is to extend the gradient scheme framework to the case
of hybrid dimensional Darcy flow models. This framework has been introduced in [31],
[28], [26] to analyse the convergence of numerical methods for linear and nonlinear second
order diffusion problems. As shown in [28], this framework accounts for various conforming
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and non conforming discretizations such as Finite Element methods, Mixed and Mixed
Hybrid Finite Element methods, and some Finite Volume schemes like symmetric MPFA,
Vertex Approximate Gradient (VAG) schemes [31], and Hybrid Finite Volume (HFV)
schemes [30].

The extension of the gradient scheme framework to the hybrid dimensional Darcy
flow model is defined by a vector space of degrees of freedom, two discrete gradient
reconstruction operators and two discrete function reconstruction operators in the matrix
and the fracture domains. The gradient discretization of the hybrid dimensional Darcy
flow model is then based on a primal non conforming variational formulation using the
previous operators. In the spirit of [31],[28] the well posedness and convergence of the
gradient scheme is obtained assuming that the gradient discretization satisfies the so-called
coercivity, consistency, and limit conformity assumptions.

Two examples of gradient discretization are given, namely we extend the VAG and
HFV schemes defined in [31] and [30] to the hybrid dimensional Darcy flow model. In
both cases, it is assumed that the fracture network is conforming to the mesh in the sense
that it is defined as a collection of faces of the mesh. The VAG scheme uses nodal and
fracture face unknowns in addition to the cell unknowns which can be eliminated without
any fill-in. It leads to a sparse discretization on tetrahedral or mainly tetrahedral meshes.
It has the advantage, compared with CVFE approaches to avoid the mixing of the control
volumes at the fracture matrix interfaces, which is a key feature for its application to
multiphase Darcy flows (see [13]). It will be compared to the HFV discretization using
face and fracture edge unknowns in addition to the cell unknowns which can be as well
eliminated without any fill-in.

The proof that both the VAG and HFV schemes satisfy the coercivity, consistency,
and limit conformity assumptions of the gradient scheme framework is based on a key
result providing the density of smooth functions subspaces in both the variational space
and in the flux space of the model. These density results are shown to hold for a general
3D network of possibly intersecting, immersed or non immersed planar fractures.

The outline of the Chapter is the following, in Section 1.2 we introduce the general
3D network of planar fractures, the function spaces, as well as the primal variational
formulation of the hybrid dimensional Darcy flow model. Section 1.3 defines the gradient
discretization framework stating the coercivity, consistency, limit conformity, and com-
pactness assumptions. Then, the gradient scheme is introduced for the hybrid dimensional
model and its well posedness and convergence is shown to hold under the coercivity, consis-
tency, and limit conformity assumptions. Section 1.4 extends the VAG and HFV schemes
to our model and prove that each of them satisfies the gradient scheme assumptions. Sec-
tion 4 proves the density of smooth functions subspaces in both the variational space and
in the flux space which is the key ingredient to show that the VAG and HFV schemes
satisfy the gradient scheme assumptions. Section 1.5 provides a numerical comparison of
the VAG and HFV schemes on 3D analytical solutions using Cartesian, hexahedral and
tetrahedral meshes. Both heterogeneous and anisotropic test cases are considered.
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1.2 Hybrid dimensional Darcy Flow Model in Frac-

tured Porous Media

1.2.1 Discrete Fracture Network and functional setting

Let Ω denote a bounded domain of Rd, d = 2, 3 assumed to be polyhedral for d = 3 and
polygonal for d = 2. To fix ideas the dimension will be fixed to d = 3 when it needs
to be specified, for instance in the naming of the geometrical objects or for the space
discretization in the next section. The adaptations to the case d = 2 are straightforward.

We consider the asymptotic model introduced in [3] where fractures are represented
as interfaces of codimension 1. Let I be a finite set and let Γ =

⋃
i∈I Γi and its interior

Γ = Γ \ ∂Γ denote the network of fractures Γi ⊂ Ω, i ∈ I, such that each Γi is a planar
polygonal simply connected open domain included in an oriented plane Pi of R

d. It is
assumed that the angles of Γi are strictly smaller than 2π and that Γi ∩ Γj = ∅ for all
i 6= j. For all i ∈ I, let us set Σi = ∂Γi, Σi,j = Σi ∩ Σj, j ∈ I \ {i}, Σi,0 = Σi ∩ ∂Ω,
Σi,N = Σi \ (

⋃
j∈I\{i} Σi,j ∪ Σi,0), and Σ =

⋃
(i,j)∈I×I,i 6=j Σi,j. It is assumed that Σi,0 =

Γi∩∂Ω. Let us define the following trace operator γΣi
: H1(Γi) → L2(Σi). We will denote

Figure 1.1: Example of a 2D domain with 3 intersecting fractures Γ1,Γ2,Γ3 and 2 con-
nected components Ω1, Ω2.

by dτ(x) the d − 1 dimensional Lebesgue measure on Γ. On the fracture network Γ,
we define the function space L2(Γ) = {v = (vi)i∈I , vi ∈ L2(Γi), i ∈ I}, endowed with the

norm ‖v‖L2(Γ) = (
∑

i∈I ‖vi‖2L2(Γi)
)
1
2 . Its subspaceH1(Γ) is defined as the space of functions

v = (vi)i∈I such that vi ∈ H1(Γi), i ∈ I with continuous traces at the fracture intersections
i.e. γΣi

vi = γΣj
vj on Σi,j for all i 6= j such that Σi,j has a non zero d−2 Lebesgue measure.

The spaceH1(Γ) is endowed with the norm ‖v‖H1(Γ) = (
∑

i∈I ‖vi‖2H1(Γi)
)
1
2 and its subspace

with vanishing traces on Σ0 =
⋃

i∈I Σi,0 is denoted by H1
Σ0
(Γ).

Let us also consider the trace operator γi from H1(Ω) to L2(Γi) as well as the trace
operator γ from H1(Ω) to L2(Γ) such that (γv)i = γi(v) for all i ∈ I.

On Ω, the gradient operator from H1(Ω) to L2(Ω)d is denoted by ∇. On the fracture
network Γ, the tangential gradient ∇τ acting from H1(Γ) to L2(Γ)d−1 is defined by

∇τv = (∇τivi)i∈I ,
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where, for each i ∈ I, the tangential gradient ∇τi is defined from H1(Γi) to L2(Γi)
d−1

by fixing a reference Cartesian coordinate system of the plane Pi containing Γi. We also
denote by divτi the divergence operator from Hdiv(Γi) to L

2(Γi).

The function spaces arising in the variational formulation of the hybrid dimensional
Darcy flow model are

V = {v ∈ H1(Ω) such that γv ∈ H1(Γ)},

and its subspace
V 0 = {v ∈ H1

0 (Ω) such that γv ∈ H1
Σ0
(Γ)}.

From Poincaré inequality on H1
0 (Ω) and the continuity of the trace operator γ, we deduce

the following inequality.

Proposition 1.2.1 There exists CP > 0 such that for all v ∈ V 0 one has

‖v‖L2(Ω) + ‖γv‖L2(Γ) ≤ CP‖∇v‖L2(Ω)d .

Thus, the space V 0 is endowed with the Hilbertian norm

‖v‖V 0 =
(
‖∇v‖2L2(Ω)d + ‖∇τγv‖2L2(Γ)d−1

)1/2
,

and the space V with the Hilbertian norm ‖v‖V =
(
‖v‖2V 0 + ‖v‖2L2(Ω) + ‖γv‖2L2(Γ)

)1/2
.

The following density result is proved in the Appendix.

Proposition 1.2.2 The spaces C∞(Ω) and C∞
c (Ω) are dense subspaces of respectively V

and V 0.

Let Ωa, a ∈ A denote the connected components of Ω \ Γ, and let us define the space
Hdiv(Ω \ Γ) = {qm = (qm,a)a∈A |qm,a ∈ Hdiv(Ωa)}. For all i ∈ I, we can define the two
sides ± of the fracture Γi and the corresponding unit normal vector n±

i at Γi outward to
the sides ±. Each side ± corresponds to the subdomain a

±
i ∈ A with possibly a

+
i = a

−
i .

For all qm ∈ Hdiv(Ω \ Γ), let qm,a±i
· n±

i |Γi
denote the two normal traces at the fracture

Γi and let us define the jump operator Hdiv(Ω \Γ) → D′(Γi) in the sense of distributions
by [[qm · ni]] = qm,a+i

· n+
i |Γi

+ qm,a−i
· n−

i |Γi
.

For all i ∈ I, we denote by nΣi
the unit vector normal to Σi outward (and tangent)

to Γi.
Let us define the function space H(Ω,Γ) by

H(Ω,Γ) =

{
qm = (qm,a)a∈A, qf = (qf,i)i∈I |qm ∈ Hdiv(Ω \ Γ),
qf,i ∈ L2(Γi)

d−1, divτi(qf,i)− [[qm · ni]] ∈ L2(Γi), i ∈ I

}
.
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It is an Hilbert space endowed with the scalar product

〈(pm,pf ), (qm,qf )〉H =
∑

a∈A

∫

Ωa

(pm,a · qm,a + div(pm,a)div(qm,a))dx

+
∑

i∈I

∫

Γi

(pf,i · qf,i +
(
divτi(pf,i)−[[pm · ni]]

)(
divτi(qf,i)−[[qm · ni]])

)
dτ(x).

and the norm
‖(qm,qf )‖H = 〈(qm,qf ), (qm,qf )〉1/2H .

On H(Ω,Γ) ×
(
L2(Ω) × L2(Γ) × L2(Ω)d × L2(Γ)d−1

)
we define the continuous bilinear

form

aΣ

(
(qm,qf ), (vm, vf ,gm,gf )

)
=
∑

a∈A

∫

Ωa

(qm,a · gm + div(qm,a)vm)dx

+
∑

i∈I

∫

Γi

(qf,i · gf + (divτi(qf,i)− [[qm · ni]])vf )dτ(x).
(1.1)

For all a ∈ A let us denote by C∞
b (Ωa) the set of functions ϕ such that for all x ∈ Ωa, there

exists r > 0 such that for all connected component ω of the domain {x ∈ Rd | |x| < r}∩Ωa,
one has ϕ|ω ∈ C∞(ω)d.

For all (qm,qf ) ∈ H(Ω,Γ) with qm,a ∈ C∞
b (Ωa), a ∈ A, and qf,i ∈ C∞(Γi)

d−1, i ∈ I,
and for all v ∈ V 0, it is readily checked that

aΣ

(
(qm,qf ), (v, γv,∇v,∇τγv

)
=

∫

Σ\Σ0

γv(
∑

i∈I
qf,i · nΣi

)dl(x)

+
∑

i∈I

∫

Σi,N

γv(qf,i · nΣi
)dl(x).

This lead us to the definition of the following closed Hilbert subspace of H(Ω,Γ)

HΣ(Ω,Γ)=

{
(qm,qf ) ∈ H(Ω,Γ) |
aΣ

(
(qm,qf ), (v, γv,∇v,∇τγv

)
= 0 for all v ∈ V 0

}
(1.2)

corresponding to impose in a weak sense the conditions

(i) the sum to zero of the output normal fluxes at fracture intersections
∑

i∈I qf,i ·nΣi
=

0 on Σ \ Σ0, assuming that the volume at the intersection can be neglected,

(ii) a zero normal flux boundary condition at the immersed boundaries of the fractures
qf,i · nΣi

= 0 on Σi,N , i ∈ I, assuming that the width at the tip of the fracture is
small compared to the lengh of the fracture.
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Finally let us define a subspace of smooth functions in HΣ(Ω,Γ) by

C∞
HΣ

(Ω,Γ)=





(qm,a)a∈A, (qf,i)i∈I |qm,a ∈ C∞
b (Ωa),qf,i ∈ C∞(Γi)

d−1,∑

i∈I
qf,i · nΣi

= 0 on Σ \ Σ0, qf,i · nΣi
= 0 on Σi,N , i ∈ I



 . (1.3)

The proof of the following density result is given in the Appendix.

Proposition 1.2.3 The space C∞
HΣ

(Ω,Γ) is a dense subspace of HΣ(Ω,Γ).

1.2.2 Hybrid dimensional Darcy Flow Model

In the matrix domain Ω \ Γ (resp. in the fracture network Γ), let us denote by Λm ∈
L∞(Ω)d×d (resp. Λf ∈ L∞(Γ)(d−1)×(d−1)) the permeability tensor such that there exist
λm ≥ λm > 0 (resp. λf ≥ λf > 0) with

λm|ξ|2 ≤ (Λm(x)ξ, ξ) ≤ λm|ξ|2 for all ξ ∈ Rd,x ∈ Ω,

(resp. λf |ξ|2 ≤ (Λf (x)ξ, ξ) ≤ λf |ξ|2 for all ξ ∈ Rd−1,x ∈ Γ).
We also denote by df ∈ L∞(Γ) the width of the fractures assumed to be such that

there exist df ≥ df > 0 with df ≤ df (x) ≤ df for all x ∈ Γ. Let us define the weighted
Lebesgue d−1 dimensional measure on Γ by dτf (x) = df (x)dτ(x). We consider the source
terms hm ∈ L2(Ω) (resp. hf ∈ L2(Γ)) in the matrix domain Ω \ Γ (resp. in the fracture
network Γ).

The strong formulation of the hybrid dimensional Darcy flow model amounts to find
u ∈ V 0 and (qm,qf ) ∈ HΣ(Ω,Γ) such that:





div(qm,a) = hm on Ωa, a ∈ A,
qm,a = −Λm∇u on Ωa, a ∈ A,

divτi(qf,i)− [[qm · ni]] = dfhf on Γi, i ∈ I,
qf,i = −df Λf∇τiγiu on Γi, i ∈ I.

(1.4)

The weak formulation of (1.4) amounts to find u ∈ V 0 satisfying the following varia-
tional equality for all v ∈ V 0:





∫

Ω

Λm(x)∇u(x) · ∇v(x)dx+

∫

Γ

Λf (x)∇τγu(x) · ∇τγv(x)dτf (x)

−
∫

Ω

hm(x)v(x)dx−
∫

Γ

hf (x)γv(x)dτf (x) = 0.
(1.5)

The following proposition is a direct application of the Lax-Milgram theorem and
Proposition 1.2.1.

Proposition 1.2.4 The variational problem (1.5) has a unique solution u ∈ V 0 which
satisfies the a priori estimate

‖u‖V 0 ≤ CP

min(λm, λfdf )

(
‖hm‖L2(Ω) + ‖dfhf‖L2(Γ)

)
.

In addition (qm,qf ) = (−Λm∇u,−dfΛf∇τγu) belongs to HΣ(Ω,Γ).
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1.3 Gradient discretization of the hybrid dimensional

model

In this section we extend the gradient scheme framework introduced in [31], [28] for elliptic
and parabolic problems to our hybrid dimensional Darcy flow model.

1.3.1 Gradient discretization

A gradient discretization D of (1.5) is defined by a vector space of degrees of freedom
XD, its subspace associated with homogeneous Dirichlet boundary conditions X0

D, and
the following set of linear operators:

• Two discrete gradient operators on the matrix and fracture domains:
∇Dm : XD → L2(Ω)d and ∇Df

: XD → L2(Γ)d−1.

• Two function reconstruction operators on the matrix and fracture domains:
ΠDm : XD → L2(Ω) and ΠDf

: XD → L2(Γ).

The vector space XD is endowed with the semi-norm

‖vD‖D =
(
‖∇DmvD‖2L2(Ω)d + ‖∇Df

vD‖2L2(Γ)d−1

) 1
2
,

which is assumed to define a norm on X0
D.

In the following, the gradient discretization of the hybrid dimensional model with
homogeneous Dirichlet boundary conditions will be denoted by the quintuplet

D =
(
X0

D,ΠDm ,ΠDf
,∇Dm ,∇Df

)
.

Next, we define the coercivity, consistency, limit conformity and compactness properties
for sequences of gradient discretizations. Note that the compactness property is useful
for the convergence analysis of nonlinear models and hence will not be used for the con-
vergence analysis of our model. Nevertheless, for the sake of completeness, it is stated in
this section and will be proved to be verified for the VAG and HFV schemes in section 1.4.

Coercivity: Let CD > 0 be defined by

CD = max
0 6=vD∈X0

D

‖ΠDmvD‖L2(Ω) + ‖ΠDf
vD‖L2(Γ)

‖vD‖D
. (1.6)

Then, a sequence of gradient discretizations (Dl)l∈N is said to be coercive if there exist
CP > 0 such that CDl ≤ CP for all l ∈ N.

Consistency: For all u ∈ V 0 and vD ∈ X0
D let us define

SD(u, vD) = ‖∇DmvD −∇u‖L2(Ω)d + ‖∇Df
vD −∇τγu‖L2(Γ)d−1

+ ‖ΠDmvD − u‖L2(Ω) + ‖ΠDf
vD − γu‖L2(Γ),

(1.7)
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and
SD(u) = min

vD∈X0
D

SD(u, vD). (1.8)

Then, a sequence of gradient discretizations (Dl)l∈N is said to be consistent if for all u ∈ V 0

one has liml→+∞ SDl(u) = 0.

Limit Conformity: For all (qm,qf ) ∈ HΣ(Ω,Γ) and vD ∈ X0
D, let us define

WD(qm,qf , vD) = aΣ

(
(qm,qf ), (ΠDmvD,ΠDf

vD,∇DmvD,∇Df
vD)
)

(1.9)

and

WD(qm,qf ) = max
0 6=vD∈X0

D

|WD(qm,qf , vD)|
‖vD‖D

. (1.10)

Then, a sequence of gradient discretizations (Dl)l∈N is said to be limit conforming if for
all (qm,qf ) ∈ HΣ(Ω,Γ) one has liml→+∞ WDl(qm,qf ) = 0.

Compactness: A sequence of gradient discretizations (Dl)l∈N is said to be compact if
for all sequences (vDl)l∈N with vDl ∈ X0

Dl for all l ∈ N such that there exists C > 0 with
‖vDl‖Dl ≤ C for all l ∈ N, then there exist um ∈ L2(Ω) and uf ∈ L2(Γ) such that one has
up to a subsequence

lim
l→+∞

‖ΠDl
m
vDl − um‖L2(Ω) = 0 and lim

l→+∞
‖ΠDl

f
vDl − uf‖L2(Γ) = 0.

The following proposition states a property of limit conforming and coercive sequences
of gradient discretizations.

Proposition 1.3.1 Regularity at the limit. Let (Dl)l∈N be a family of discretizations
assumed to be limit conforming and coercive. Let (vDl)l∈N with vDl ∈ X0

Dl for all l ∈ N be
a bounded sequence in the sense that there exists C such that ‖vDl‖Dl ≤ C for all l ∈ N.
Then, there exist v ∈ V 0 and a subsequence still denoted by (vDl)l∈N such that





ΠDl
m
vDl ⇀ v weakly in L2(Ω),

∇Dl
m
vDl ⇀ ∇v weakly in L2(Ω)d,

ΠDl
f
vDl ⇀ γv weakly in L2(Γ),

∇Df
vDl ⇀ ∇τγv weakly in L2(Γ)d−1.

Proof: From the boundedness of the sequence ‖vDl‖Dl , l ∈ N and the coercivity as-
sumption, there exist vm ∈ L2(Ω), vf ∈ L2(Γ), gm ∈ L2(Ω)d, and gf ∈ L2(Γ)d−1

such that ΠDl
m
vDl weakly converges to vm in L2(Ω), ΠDl

f
vDl weakly converges to vf in

L2(Γ), ∇Dl
m
vDl weakly converges to gm in L2(Ω)d, and ∇Dl

f
vDl weakly converges to gf

in L2(Γ)d−1. From the limit conformity it follows that aΣ

(
(qm,qf ), (vm, vf ,gm,gf )

)
= 0

for all (qm,qf ) ∈ HΣ(Ω,Γ). From Lemma 4.0.5, we deduce that v = vm ∈ V 0, vf = γv,
gm = ∇v and gf = ∇τγv. �

23



The following Lemma will be used in the next sections to prove the coercivity, con-
sistency, limit conformity and compactness of sequences of families of gradient discretiza-
tions.

Lemma 1.3.1 Let (Dl)l∈N be a sequence of gradient discretizations with Dl = (X0
Dl ,ΠDl

m
,ΠDl

f
,∇Dl

m
,∇Dl

f

and let for all l ∈ N, Π̃Dl
m
, Π̃Dl

f
be a couple of linear mappings from X0

Dl to L2(Ω) and

L2(Γ) respectively such that there exists a real sequence (ξDl)l∈N satisfying liml→∞ ξDl = 0
and

‖ΠDl
m
vDl − Π̃Dl

m
vDl‖L2(Ω) + ‖ΠDl

f
vDl − Π̃Dl

f
vDl‖L2(Γ) ≤ ξDl‖vDl‖Dl

for all vDl ∈ X0
Dl and all l ∈ N. Let us define the following new sequence of gradient

discretizations (D̃l)l∈N with D̃l = (X0
Dl , Π̃Dl

m
, Π̃Dl

f
,∇Dl

m
,∇Dl

f
). Then, each property (co-

ercivity or consistency or limit conformity or compactness) for the sequence (Dl)l∈N is

equivalent to the same property for the sequence (D̃l)l∈N.

Proof: By symmetry it suffices to show that each property for the sequence (Dl)l∈N
implies the same property for the sequence (D̃l)l∈N. Assuming the coercivity of (Dl)l∈N,

the coercivity property of the sequence (D̃l)l∈N derives from ‖vDl‖Dl = ‖vDl‖D̃l for all
vDl ∈ X0

Dl and from the estimate

‖Π̃Dl
m
vDl‖L2(Ω) + ‖Π̃Dl

f
vDl‖L2(Γ) ≤

(
CDl + ξDl

)
‖vDl‖Dl .

Let u ∈ V 0, for all vDl ∈ X0
Dl one has the estimates

‖vDl‖Dl ≤ ‖∇u‖L2(Ω)d + ‖∇τγu‖L2(Γ)d−1 + SDl(u, vDl),

and
SD̃l(u, vDl) ≤ ξDl‖vDl‖Dl + SDl(u, vDl).

We deduce that

SD̃l(u, vDl) ≤ ξDl(‖∇u‖L2(Ω)d + ‖∇τγu‖L2(Γ)d−1) + (1 + ξDl)SDl(u, vDl)

and hence the consistency of the sequence D̃l, l ∈ N derives from the consistency of the
sequence (Dl)l∈N.

For all (qm,qf ) ∈ HΣ(Ω,Γ) and all vDl ∈ X0
Dl , it follows from (1.9) that

WD̃l(qm,qf , vDl) ≤ WDl(qm,qf , vDl) + ξDl‖(qm,qf )‖H‖vDl‖Dl ,

from which we deduce that the limit conformity of the sequence (D̃l)l∈N derives from the
limit conformity of the sequence (Dl)l∈N.

Finally, using the following estimates

‖Π̃Dl
m
vDl − um‖L2(Ω) ≤ ‖ΠDl

m
vDl − um‖L2(Ω) + ξDl‖vDl‖Dl ,

‖Π̃Dl
f
vDl − uf‖L2(Γ) ≤ ‖ΠDl

f
vDl − uf‖L2(Γ) + ξDl‖vDl‖Dl ,

it is clear that the compactness of the sequence of gradient discretizations (Dl)l∈N implies

the compactness of the sequence of gradient discretizations (D̃l)l∈N. �
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1.3.2 Application to the hybrid dimensional model

The gradient discretization of the hybrid dimensional model (1.4) is based on the primal
variational formulation (1.5). It is defined by: find uD ∈ X0

D such that for all vD ∈ X0
D:

∫

Ω

Λm(x)∇DmuD(x) · ∇DmvD(x)dx+

∫

Γ

Λf (x)∇Df
uD(x) · ∇Df

vD(x)dτf (x)

−
∫

Ω

hm(x)ΠDmvD(x)dx−
∫

Γ

hf (x)ΠDf
vD(x)dτf (x) = 0.

(1.11)

Proposition 1.3.2 Let D be a gradient discretization of (1.5). Then (1.11) has a unique
solution uD ∈ X0

D satisfying the a priori estimate

‖uD‖D ≤ CD
min(λm, λfdf )

(
‖hm‖L2(Ω) + ‖dfhf‖L2(Γ)

)
.

Proof: For any solution uD ∈ X0
D of (1.11), setting vD = uD in (1.11), and using the

Cauchy Schwarz inequality, the definition (1.6) of CD, and the assumption that ‖.‖D
defines a norm on X0

D, we obtain the estimates

min(λm, λfdf )‖uD‖2D ≤
∫

Ω

hm(x)ΠDmuD(x)dx+

∫

Γ

hf (x)ΠDf
uD(x)dτf (x)

≤ CD
(
‖hm‖L2(Ω) + ‖dfhf‖L2(Γ)

)
‖uD‖D,

from which we deduce the a priori estimate and hence the uniqueness and existence of a
solution. �

Proposition 1.3.3 Error estimates. Let u ∈ V 0 be the solution of (1.5) and let us
set (qm,qf ) = (−Λm∇u,−dfΛf∇τγu) ∈ HΣ(Ω,Γ). Let D be a gradient discretization of
(1.5), and let uD ∈ X0

D be the solution of (1.11). Then, there exist C1, C2 depending only
on λm, λm, λf , λf , df , df , and C3, C4 depending only on CD, λm, λm, λf , λf , df , df such
that one has the following error estimates:





‖∇u−∇DmuD‖L2(Ω)d + ‖∇τγu−∇Df
uD‖L2(Γ)d−1

≤ C1SD(u) + C2WD(qm,qf ),

‖ΠDmuD − u‖L2(Ω) + ‖ΠDf
uD − γu‖L2(Γ) ≤ C3SD(u) + C4WD(qm,qf ).

Proof: Using the definition of WD and the definitions of the solution uD of (1.11) and of
the solution u, (qm,qf ) of (1.4), we obtain that for all vD ∈ X0

D

|
∫

Ω

(
Λm∇DmvD · (∇u−∇DmuD)

)
dx+

∫

Γ

(
Λf∇Df

vD · (∇τγu−∇Df
uD)
)
dτf (x)| ≤ ‖vD‖DWD(qm,qf ).
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Let us introduce wD ∈ X0
D defined as

wD = argminvD∈X0
D
SD(u, vD),

and let us set in the previous estimate vD = wD − uD. Applying the Cauchy Schwarz
inequality, we obtain the first estimate. In addition, from the definition of CD, we have
that

‖ΠDmwD − ΠDmuD‖L2(Ω) + ‖ΠDf
wD − ΠDf

uD‖L2(Γ) ≤ CD‖wD − uD‖D,
which proves the second estimate using the definition of wD. �

1.4 Two examples of Gradient Discretizations

Following [31], we consider generalised polyhedral meshes of Ω which allow for non planar
faces. Let us stress that this general definition is used for the VAG scheme introduced in
subsection 1.4.1 while the HFV scheme described in subsection 1.4.2 requires in addition
that the faces are planar and that the face center xσ is the center of gravity of the face σ.

Definition 1.4.1 (Polyhedral mesh) Let M be the set of cells that are disjoint open
polyhedral subsets of Ω such that

⋃
K∈MK = Ω. For all K ∈ M, xK denotes the so-called

“center” of the cell K under the assumption that K is star-shaped with respect to xK. We
then denote by FK the set of interfaces of non zero d− 1 dimensional measure among the
interior faces K ∩ L, L ∈ M \ {K}, and the boundary interface K ∩ ∂Ω, which possibly
splits in several boundary faces. Let us denote by

F =
⋃

K∈M
FK

the set of all faces of the mesh. Remark that the faces are not assumed to be planar, hence
the term “generalised polyhedral mesh”. For σ ∈ F , let Eσ be the set of interfaces of non
zero d − 2 dimensional measure among the interfaces σ ∩ σ′, σ′ ∈ F \ {σ}. Then, we
denote by

E =
⋃

σ∈F
Eσ

the set of all edges of the mesh. Let Vσ =
⋃

e,e′∈Eσ ,e 6=e′

(
e ∩ e′

)
be the set of vertices of σ.

For each K ∈ M we define VK =
⋃

σ∈FK
Vσ, and we also denote by

V =
⋃

K∈M
VK

the set of all vertices of the mesh. It is then assumed that for each face σ ∈ F , there exists a
so-called “center” of the face xσ ∈ σ\⋃e∈Eσ e such that xσ =

∑
s∈Vσ

βσ,s xs, with
∑

s∈Vσ
βσ,s =

1, and βσ,s ≥ 0 for all s ∈ Vσ; moreover the face σ is assumed to be defined by the union
of the triangles Tσ,e defined by the face center xσ and each edge e ∈ Eσ.

The mesh is also supposed to be conforming w.r.t. the fracture network Γ in the sense
that for each i ∈ I there exists a subset FΓi

of F such that Γi =
⋃

σ∈FΓi
σ. We will denote

by FΓ the set of fracture faces
⋃

i∈I FΓi
, and by EΓ the set of fracture edges

⋃
σ∈FΓ

Eσ.
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A tetrahedral sub-mesh of M is defined by

T = {TK,σ,e, e ∈ Eσ, σ ∈ FK , K ∈ M},

where TK,σ,e is the tetrahedron joining the cell center xK to the triangle Tσ,e (see Figure
1.2 for examples of such tetrahedra).

Let ρT denote the insphere diameter of a given tetrahedron T , hT its diameter, and
hT = maxT∈T hT . We will assume in the convergence analysis that the family of tetrahe-
dral submeshes T is shape regular. Hence let us set

θT = max
T∈T

hT
ρT
.

1.4.1 Vertex Approximate Gradient Discretization

The VAG discretization has been introduced in [31] for diffusive problems on heteroge-
neous anisotropic media. Its extension to the hybrid dimensional Darcy model is based
on the following vector space of degrees of freedom:

XD = {vK , vs, vσ ∈ R, K ∈ M, s ∈ V , σ ∈ FΓ}, (1.12)

and its subspace with homogeneous Dirichlet boundary conditions on ∂Ω:

X0
D = {vD ∈ XD | vs = 0 for s ∈ Vext}. (1.13)

where Vext = V ∩ ∂Ω denotes the set of boundary vertices, and Vint = V \ ∂Ω denotes the
set of interior vertices.

Figure 1.2: Degrees of freedom of the VAG scheme: cell unknowns vK , vL, fracture face
unknown vσ, and node unknowns vs, vs1 , vs2 , vs3 , vs4 . The fracture faces of FΓ are in bold.
The value of vσ′ is obtained by interpolation of the node unknowns vs1 , vs2 , vs3 , vs4 of the
face σ′ ∈ F \ FΓ while vσ is kept as an unknown for σ ∈ FΓ.

27



A P1 finite element discretization of V is built using the tetrahedral sub-mesh T of
M and a second order interpolation at the face centers xσ, σ ∈ F \ FΓ defined by the
operator Iσ : XD → R such that

Iσ(vD) =
∑

s∈Vσ

βσ,svs.

For a given vD ∈ XD, we define the function ΠT vD ∈ V as the continuous piecewise
affine function on each tetrahedron of T such that ΠT vD(xK) = vK , ΠT vD(xs) = vs,
ΠT vD(xσ) = vσ, and ΠT vD(xσ′) = Iσ′(vD) for all K ∈ M, s ∈ V , σ ∈ FΓ, and σ

′ ∈ F \FΓ.
The discrete gradient operators are obtained from this finite element discretization of V ,
setting

∇Dm = ∇ΠT and ∇Df
= ∇τγΠT . (1.14)

In addition to this conforming finite element discretization of V , the VAG discretization
uses two non conforming piecewise constant reconstructions of functions from XD into
respectively L2(Ω) and L2(Γ) based on a partition of the cells and of the fracture faces.
These partitions are respectively denoted, for all K ∈ M, by

K = ωK ∪
( ⋃

s∈VK∩Vint

ωK,s

)
∪
( ⋃

σ∈FK∩FΓ

ωK,σ

)
,

and, for all σ ∈ FΓ, by

σ = ωσ ∪
( ⋃

s∈Vσ∩Vint

ωσ,s

)
.

Then, the function reconstruction operators are defined by

ΠDmvD(x) =





vK for all x ∈ ωK , K ∈ M,
vs for all x ∈ ωK,s, s ∈ VK ∩ Vint, K ∈ M,
vσ for all x ∈ ωK,σ, σ ∈ FK ∩ FΓ, K ∈ M,

(1.15)

and

ΠDf
vD(x) =

{
vσ for all x ∈ ωσ, σ ∈ FΓ,
vs for all x ∈ ωσ,s, s ∈ Vσ ∩ Vint, σ ∈ FΓ.

(1.16)

It is shown below that the above VAG discretization defines a coercive, consistent, limit
conforming and compact gradient discretization whatever the choice of these partitions.

Properties of VAG discretization: we state without proof two results that can be
readily adapted from [16] Lemmas 3.4 and 3.7 noticing that the shape regularity of T
implies the shape regularity of the triangular submesh of Γ defined by T ∩ Γ.

Lemma 1.4.1 There exists C > 0 depending only on θT such that, for all vD ∈ XD, one
has the estimates

‖ΠDmvD − ΠT vD‖L2(Ω) ≤ ChT ‖∇DmvD‖L2(Ω)d ,
‖ΠDf

vD − γΠT vD‖L2(Γ) ≤ ChT ‖∇Df
vD‖L2(Γ)d−1 .
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For any continuous function ϕ ∈ C0(Ω), let us introduce the operator PD : C0(Ω) →
XD such that

(PDϕ)K = ϕ(xK), (PDϕ)s = ϕ(xs), (PDϕ)σ = ϕ(xσ)

for all K ∈ M, s ∈ V and σ ∈ FΓ.
We have the following classical finite element approximation result for the finite ele-

ment interpolation operator ΠT PD.

Proposition 1.4.1 For all ϕ ∈ C∞(Ω), there exists Cϕ > 0 depending only on ϕ, θT
such that one has the error estimates

‖ϕ− ΠT PDϕ‖L2(Ω) + ‖γϕ− γΠT PDϕ‖L2(Γ) ≤ h2T Cϕ,

and
‖∇ϕ−∇ΠT PDϕ‖L2(Ω)d + ‖∇γϕ−∇τγΠT PDϕ‖L2(Γ)d−1 ≤ hT Cϕ.

Let us now state our main result concerning the VAG discretization.

Proposition 1.4.2 (Main result on VAG) Let us consider a family of meshes (Ml)l∈N
as defined above. It is assumed that the family of tetrahedral submeshes T l of Ml is shape
regular in the sense that there exists θ > 0 such that θT l ≤ θ for all l ∈ N. It is also
assumed that hT l tends to zero when l → +∞. Then, the sequence of VAG discretizations
(Dl)l∈N with Dl = (X0

Dl ,ΠDl
m
,ΠDl

f
,∇Dl

m
,∇Dl

f
) defined by (1.13), (1.15), (1.16), (1.14) is

coercive, consistent, limit conforming and compact.

Proof: Let us denote by

DFE = (X0
D,ΠT , γΠT ,∇Dm ,∇Df

),

the conforming P1 finite element VAG discretization. It results from Lemma 1.2.1 that

‖ΠT vD‖L2(Ω) + ‖γΠT vD‖L2(Γ) ≤ CP‖∇DmvD‖L2(Ω)d (1.17)

for all vD ∈ X0
D. On the other hand for all (qm,qf ) ∈ HΣ(Ω,Γ) and all vD ∈ X0

D one has

WDFE
(qm,qf , vD) = 0. (1.18)

We deduce from (1.17) and (1.18) that the sequence of conforming gradient discretizations
(Dl

FE)l∈N is coercive and limit conforming. The consistency of (Dl
FE)l∈N results from

Proposition 1.4.1 and from the density of C∞
c (Ω) in V 0 given by Proposition 1.2.2. The

following estimates
‖ΠT vD‖H1(Ω) ≤ C1‖∇ΠT vD‖L2(Ω)d ,

and
‖γiΠT vD‖H1(Γi) ≤ C2

(
‖∇ΠT vD‖L2(Ω)d + ‖∇τγΠT vD‖L2(Γ)d−1

)

for constants C1 and C2 independent on the mesh and on vD ∈ X0
D are deduced from the

Poincaré inequality and the Trace theorem. Then, thanks to the Rellich Compactness
Theorem, one obtains the compactness of (Dl

FE)l∈N. From Lemma 1.3.1 and Lemma 1.4.1
we deduce that the sequence (Dl)l∈N is also coercive, consistent, limit conforming and
compact. �
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1.4.2 Hybrid Finite Volume Discretization

In this subsection, the HFV scheme introduced in [30] is extended to the hybrid dimen-
sional Darcy flow model. Let us recall that the HFV scheme of [30] has been generalised
in [27] as the family of Hybrid Mimetic Mixed methods which encompasses the family of
Mimetic Finite Difference schemes [19]. In the following, we focus on the particular case
presented in [30] for the sake of simplicity.

Let us recall that, for the HFV scheme, the faces σ ∈ F are assumed to be planar and
xσ is assumed to be the center of gravity of the face σ. We also denote by xe the center
of the edge e ∈ E . Let Fint ⊂ F (resp. Eint ⊂ E) denote the subset of interior faces (resp.
interior edges). The vector space of degrees of freedom XD is defined by

XD = {uK ∈ R, uσ ∈ R, ue ∈ R for all K ∈ M, σ ∈ F , e ∈ EΓ}, (1.19)

and its subspace X0
D is defined by

X0
D = {uD ∈ XD | uσ = 0, ue = 0 for all σ ∈ F \ Fint and e ∈ EΓ \ Eint}. (1.20)

For any continuous function ϕ ∈ C0(Ω), let us define its projection PDϕ onto XD such
that (PDϕ)K = ϕ(xK), (PDϕ)σ = ϕ(xσ), (PDϕ)e = ϕ(xe) for K ∈ M, σ ∈ F , e ∈ EΓ.

Figure 1.3: Degrees of freedom of the HFV scheme: cell unknowns uK , uL, fracture face
unknown uσ, matrix face unknown uσ′ and fracture edge unknown ue.

For each cell K and uD ∈ XD, let us define

∇KuD =
1

|K|
∑

σ∈FK

|σ|(uσ − uK)nK,σ,

where |K| is the volume of the cell K, |σ| is the surface of the face σ, and nK,σ is the unit
normal vector of the face σ ∈ FK outward to the cell K. We recall from [30] that ∇KuD
is exact on affine functions ϕ in the sense that ∇KPDϕ = ∇ϕ. Also note that ∇KuD
does not depend on uK since

∑
σ∈FK

|σ|nK,σ = 0. Hence a stabilised discrete gradient is
defined as follows:

∇K,σuD = ∇KuD +RK,σ(uD)nK,σ, σ ∈ FK ,
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with

RK,σ(uD) =

√
d

dK,σ

(
uσ − uK −∇KuD · (xσ − xK)

)
,

setting dK,σ = nK,σ ·(xσ−xK) which leads to the definition of the matrix discrete gradient

∇DmuD(x) = ∇K,σuD on Kσ for all K ∈ M, σ ∈ FK , (1.21)

where Kσ is the cone joining the face σ to the cell center xK . The fracture discrete
gradient is defined similarly by

∇Df
uD(x) = ∇σ,euD on σe for all σ ∈ FΓ, e ∈ Eσ, (1.22)

with
∇σ,euD = ∇σuD +Rσ,e(uD)nσ,e,

and

∇σuD =
1

|σ|
∑

e∈Eσ
|e|(ue − uσ)nσ,e,

Rσ,e(uD) =

√
d− 1

dσ,e

(
ue − uσ −∇σuD · (xe − xσ)

)
,

where nσ,e is the unit normal vector to the edge e in the tangent plane of the face σ and
outward to the face σ, dσ,e = nσ,e · (xe − xσ), and σe is the triangle of base e and vertex
xσ.

The matrix and fracture discrete gradients are both consistent in the sense that for
any affine function ϕ ∈ C0(Ω) one has ∇DmPDϕ = ∇ϕ, and for any function ϕ ∈ C0(Ω)
affine on the fracture Γi one has ∇Df

PDϕ = ∇τiϕ on Γi. We recall also from [30] that for
all uD ∈ XD one has

∑

σ∈FK

|σ|dK,σRK,σ(uD)nK,σ = 0 and
∑

e∈Eσ
|e|dσ,eRσ,e(uD)nσ,e = 0. (1.23)

The function reconstruction operators are piecewise constant on a partition of the cells
and of the fracture faces. These partitions are respectively denoted, for all K ∈ M, by

K = ωK ∪
( ⋃

σ∈FK∩Fint

ωK,σ

)
,

and, for all σ ∈ FΓ, by

σ = ωσ ∪
( ⋃

e∈Eσ∩Eint

ωσ,e

)
.

Then, the function reconstruction operators are defined for all vD ∈ XD by

ΠDmvD(x) =

{
vK for all x ∈ ωK , K ∈ M,
vσ for all x ∈ ωK,σ, σ ∈ FK ∩ Fint, K ∈ M,

(1.24)
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and

ΠDf
vD(x) =

{
vσ for all x ∈ ωσ, σ ∈ FΓ,
ve for all x ∈ ωσ,e, e ∈ Eσ ∩ Eint, σ ∈ FΓ.

(1.25)

As for the VAG scheme, it is shown below that the above HFV discretization defines a
coercive, consistent, limit conforming and compact gradient discretization whatever the
choice of these partitions.

Let us define the two piecewise constant mappings ΠM (resp. ΠF) from XD to L2(Ω)
(resp. L2(Γ)) such that for all vD ∈ XD

ΠMvD|K = vK for all K ∈ M (resp ΠFvD|σ = vσ for all σ ∈ FΓ). (1.26)

Following the proof of Lemma 4.1 from [30], one can obtain the following Lemma.

Lemma 1.4.2 There exists C > 0 depending only on θT such that for all uD ∈ XD one
has

‖ΠDmuD − ΠMuD‖L2(Ω) + ‖ΠDf
uD − ΠFuD‖L2(Ω) ≤ ChT ‖uD‖D.

Properties of HFV discretizations: Let us first consider the HFV discretization

D =
(
X0

D,ΠM,ΠF ,∇Dm ,∇Df

)
,

defined by the vector space X0
D from (1.20), the discrete gradient operators ∇Dm from

(1.21) and ∇Df
from (1.22), and the function reconstruction operators ΠM, ΠF from

(1.26). From Lemma 5.3 and Lemma 4.1 of [30] and Lemma 1.51 of [26], one has the
following discrete Poincaré estimates

‖ΠMuD‖L2(Ω) ≤ CD,m‖∇DmuD‖L2(Ω)d ,

‖ΠFuD‖L2(Γ) ≤ CD,f

(
‖∇DmuD‖L2(Ω)d + ‖∇Df

uD‖L2(Γ)d−1

)
,

(1.27)

for all uD ∈ X0
D with CD,m and CD,f depending only on θT .

It follows from Lemma 4.3 of [30] that for all ϕ ∈ C∞(Ω) there exists C > 0 depending
only on θT and ϕ such that

‖∇DmPDϕ−∇ϕ‖L2(Ω) + ‖∇Df
PDϕ−∇ϕ‖L2(Γ) ≤ ChT (1.28)

It is easy to show that for all ϕ ∈ C∞(Ω), there exists C > 0, depending only on ϕ and
θT such that

‖ΠMPDϕ− ϕ‖L2(Ω) + ‖ΠFPDϕ− ϕ‖L2(Γ) ≤ ChT . (1.29)

Proposition 1.4.3 Let (ϕm,ϕf ) ∈ C∞
HΣ

(Ω,Γ), there exist C depending only on (ϕm,ϕf )
and θT such that for all uD ∈ X0

D

WD(ϕm,ϕf , uD) ≤ ChT ‖uD‖D.
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Proof: Let us define ϕK = 1
|K|
∫
K
ϕmdx for all K ∈ M, and ϕK,σ = lim

ǫ→0+

1

|σ|

∫

σ

ϕm(x−
nK,σǫ)dτ(x) for all σ ∈ FK .

Let us define

AD
1 = AD

11 + AD
12 =

∫

Ω

∇DmuD ·ϕmdx,

with
AD

11 =
∑

K∈M

∑

σ∈FK

|σ|(uσ − uK)ϕK · nK,σ,

and

AD
12 =

∑

K∈M

∑

σ∈FK

RK,σ(uD)nK,σ ·
∫

Kσ

ϕmdx.

Using (1.23), one has

AD
12 =

∑

K∈M

∑

σ∈FK

RK,σ(uD)nK,σ ·
∫

Kσ

(ϕm −ϕK)dx.

We can deduce as in Lemma 4.2 from [30] that there exists C depending only on ϕm, θT
such that

|AD
12| ≤ ChT ‖∇DmuD‖L2(Ω)d . (1.30)

Let us consider the term AD
2 defined by

AD
2 =

∑

a∈A

∫

Ωa

(ΠMuD)div(ϕm,a)dx =
∑

K∈M

∑

σ∈FK

|σ|uKϕK,σ · nK,σ.

Adding and subtracting
∑

K∈M

∑

σ∈FK

|σ|uσϕK,σ · nK,σ to AD
2 and using that

∑

K∈Mσ

|σ|ϕK,σ ·

nK,σ = 0 for all σ ∈ F \ FΓ, leads to

AD
2 =

∑

K∈M

∑

σ∈FK

|σ|(uK − uσ)ϕK,σ · nK,σ +
∑

σ∈FΓ

∑

K∈Mσ

|σ|uσϕK,σ · nK,σ.

It results that

AD
11 + AD

2 −
∑

i∈I

∫

Γi

(ΠFuD)[[ϕm · ni]]dτ(x)

=
∑

K∈M

∑

σ∈FK

|σ|(uK − uσ)(ϕK,σ −ϕK) · nK,σ

(1.31)

Therefore, applying Cauchy-Schwartz inequality to (1.31), using the regularity of ϕm, and
the estimate (1.30), we deduce that there exists C depending only on ϕm, θT such that

∣∣∣∣∣
∑

a∈A

∫

Ωa

(∇DmuD ·ϕm,a + (ΠMuD)div(ϕm,a))dx−

∑

i∈I

∫

Γi

(ΠFuD)[[ϕm · ni]]dτ(x)

∣∣∣∣∣ ≤ ChT ‖∇DmuD‖L2(Ω)d .

(1.32)
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Next, we define for all σ ∈ FΓ and e ∈ Eσ

ϕσ =
1

|σ|

∫

σ

ϕfdτ(x) and ϕσ,e = lim
ǫ→0+

1

|e|

∫

e

ϕf (x− nσ,eǫ)dl(x).

Let us set

BD
1 = BD

11 +BD
12 =

∑

i∈I

∫

Γi

∇Df
uD ·ϕf,idτ(x),

with
BD

11 =
∑

σ∈FΓ

∑

e∈Eσ
|e|(ue − uσ)ϕσ · nσ,e,

and

BD
12 =

∑

σ∈FΓ

∑

e∈Eσ
Rσ,e(uD)nσ,e ·

∫

σe

ϕfdτ(x).

Using (1.23), one has

BD
12 =

∑

σ∈FΓ

∑

e∈Eσ
Rσ,e(uD)nσ,e ·

∫

σe

(ϕf −ϕσ)dτ(x).

We can deduce as in [30] that there exists C depending only on ϕf , θT such that

|BD
12| ≤ ChT ‖∇Df

uD‖L2(Γ)d−1 . (1.33)

Let us consider the term BD
2 defined by

BD
2 =

∑

i∈I

∫

Γi

(ΠFuD)div(ϕf,i)dτ(x) =
∑

σ∈FΓ

∑

e∈Eσ
|e|uσϕσ,e · nσ,e.

Adding and subtracting
∑

σ∈FΓ

∑

e∈Eσ
|e|ueϕσ,e · nσ,e to B

D
2 we obtain that

BD
2 =

∑

σ∈FΓ

∑

e∈Eσ
|e|(uσ − ue)ϕσ,e · nσ,e +

∑

σ∈FΓ

∑

e∈Eσ
|e|ueϕσ,e · nσ,e

Taking into account the definition of ϕf,i and the fact that ue = 0 for all e ∈ EΓ \ Eint we
conclude that ∑

σ∈FΓ

∑

e∈Eσ
|e|ueϕσ,e · nσ,e = 0.

It results that
BD

11 +BD
2 =

∑

σ∈FΓ

∑

e∈Eσ
|e|(uσ − ue)(ϕσ,e −ϕσ) · nσ,e,

from which we can deduce as in [30] and using (1.33) that there exists C depending only
on ϕf and θT such that

∣∣∣∣∣
∑

i∈I

∫

Γi

(
∇Df

uD ·ϕf,i + (ΠFuD)div(ϕf,i)
)
dτ(x)

∣∣∣∣∣ ≤ ChT ‖∇Df
uD‖L2(Γ)d−1 . (1.34)
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Combining the estimates (1.32) and (1.34) concludes the proof of Proposition 1.4.3. �

Proposition 1.4.4 (Main result on HFV) Let us consider a family of meshes (Ml)l∈N
as defined above. It is assumed that the family of tetrahedral submeshes T l of Ml is shape
regular in the sense that there exists a positive constant θ such that θT l < θ for all l ∈ N.
It is also assumed that hT l tends to zero when l → +∞. Then, the sequence of HFV
discretizations (Dl)l∈N with Dl = (X0

Dl ,ΠDl
m
,ΠDl

f
,∇Dl

m
,∇Dl

f
) defined by (1.20), (1.24),

(1.25), (1.21), (1.22) is coercive, consistent, limit conforming and compact.

Proof: The coercivity of the sequence of HFV discretizations
(
X0

Dl ,ΠMl ,ΠF l ,∇Dl
m
,∇Dl

f

)
l∈N
,

results from (1.27). Its consistency is obtained using (1.28), (1.29) and the density of
C∞

c (Ω) in V 0 given by Proposition 1.2.2. Its limit conformity is obtained by Proposition
1.4.3 and the density of C∞

HΣ
(Ω,Γ) inHΣ(Ω,Γ) given by Proposition 1.2.3. Its compactness

results from Lemma 5.6 of [30] and Lemma 1.57 of [26]. Then, the coercivity, consistency,
limit conformity and compactness of the sequence of HFV discretizations (Dl)l∈N results
from Lemma 1.3.1 and Lemma 1.4.2. �

Remark 1.4.1 The proofs of Propositions 1.4.2, 1.4.4 and of Lemma 1.3.1 show that for
solutions u ∈ V 0 and (qm,qf ) ∈ HΣ(Ω,Γ) of (1.4) such that u ∈ C2(K), qm ∈ (C1(K))d,
qf ∈ (C1(σ))d−1 for all K ∈ M and all σ ∈ FΓ, the VAG and HFV schemes are consistent
and limit conforming of order 1, and therefore convergent of order 1.

1.4.3 Finite Volume Formulation of the VAG and HFV schemes

Both the VAG and HFV schemes can be formulated as finite volume schemes. Moreover,
the definition of the fluxes and of the conservation equations for both schemes can be
unified using the following data structure which has been used in the practical implemen-
tation of the code. Let us define the set of degrees of freedom (d.o.f.)

dofD =

{
M∪V ∪ FΓ for VAG,
M∪F ∪ EΓ for HFV.

The subset of d.o.f. located at the boundary of Ω where Dirichlet boundary conditions
are imposed is denoted by dofDir and is defined by

dofDir =

{
Vext for VAG,
(F \ Fint) ∪ (EΓ \ Eint) for HFV.

For each cell K ∈ M let us also define the subset dof∂K of d.o.f. located at the boundary
of K with

dof∂K =

{
VK ∪ (FK ∩ FΓ) for VAG,
FK for HFV.
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Similarly, we define for each fracture face σ ∈ FΓ the subset dof∂σ of d.o.f. located at the
boundary of σ

dof∂σ =

{
Vσ for VAG,
Eσ for HFV.

Finally, the vector space XD is identified to RdofD and its subspace X0
D to RdofD\dofDir and

we denote by (eν , ν ∈ dofD) the canonical basis of XD.
Using these unified notations and following [13] Section 4 for the VAG scheme and [30]

Remark 2.7 for the HFV scheme, we can define for both schemes the matrix and fracture
fluxes which are exhibited in Figure 1.4 inside a cell K with a fracture face σ. The matrix
fluxes connect a cell K ∈ M to its boundary d.o.f. ν ∈ dof∂K and are defined for all
uD ∈ XD by

FK,ν(uD) = −
∫

K

Λm∇DmuD · ∇Dmeνdx =
∑

ν′∈dof∂K

T ν′

K,ν(uK − uν′),

with

T ν′

K,ν =

∫

K

Λm∇Dmeν′ · ∇Dmeνdx.

Similarly, the fracture fluxes connect a fracture face σ ∈ FΓ to its boundary d.o.f. ν ∈
dof∂σ and are defined for all uD ∈ XD by

Fσ,ν(uD) = −
∫

σ

dfΛf∇Df
uD · ∇Df

eνdτ(x) =
∑

ν′∈dof∂σ

T ν′

σ,ν(uK − uν′),

with

T ν′

σ,ν =

∫

σ

dfΛf∇Df
eν′ · ∇Df

eνdτ(x).

These fluxes are such that for all (uD, vD) ∈ XD ×XD one has

∫

Ω

Λm(x)∇DmuD(x) · ∇DmvD(x)dx+

∫

Γ

Λf (x)∇Df
uD(x) · ∇Df

vD(x)dτf (x)

=
∑

K∈M

∑

ν∈dof∂K

FK,ν(uD)(vK − vν) +
∑

σ∈FΓ

∑

ν∈dof∂σ

Fσ,ν(uD)(vσ − vν).

It follows that the variational formulation (1.11) is equivalent to the following finite
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Figure 1.4: Matrix (in blue) and fracture (in red) fluxes inside a cell K with a fracture
face σ (in bold) for the VAG (left) and HFV (right) schemes. The matrix fluxes FK,ν

connect the cell K to the d.o.f. ν ∈ dof∂K located at the boundary of K. The fracture
fluxes Fσ,ν connect the face σ to the d.o.f. ν ∈ dof∂σ located at the boundary of σ.

volume formulation: Find uD ∈ XD such that




∑

ν∈dof∂K

FK,ν(uD) =

∫

ωK

hm(x)dx, for all K ∈ M,

∑

ν∈dof∂σ

Fσ,ν(uD) +
∑

K∈Mσ

−FK,σ(uD)

=
∑

K∈Mσ

∫

ωK,σ

hm(x)dx+

∫

ωσ

hf (x)dτf (x), for all σ ∈ FΓ,

∑

K∈Mν

−FK,ν(uD) +
∑

σ∈FΓ,ν

−Fσ,ν(uD) =
∑

K∈Mν

∫

ωK,ν

hm(x)dx

+
∑

σ∈FΓ,ν

∫

ωσ,ν

hf (x)dτf (x), for all ν ∈ dofD \ (M∪FΓ ∪ dofDir),

uν = 0, for all ν ∈ dofDir,

(1.35)

with Mν = {K ∈ M| ν ∈ dof∂K} and FΓ,ν = {σ ∈ FΓ | ν ∈ dof∂σ}. Following [13],
when applying the VAG or HFV discretization to two phase Darcy flow models or to
the coupling of the Darcy flow equation with a tracer equation, the choice of the cells
and fracture faces partitioning defining the control volumes is done in order to avoid the
mixture of heterogeneous properties inside each control volume. In particular, at the
matrix fracture interfaces, one simply need to set ωK,ν = ∅ for all ν such that xν ∈ Γ.
Note also that, in practice for such models, one does not need to build the partitions but

only to choose the volume distribution ratios αK,ν =

∫
ωK,ν

dx

|K| , ν ∈ dof∂K \ dofDir, and

ασ,ν =

∫
ωσ,ν

dτf (x)

|σ| , ν ∈ dof∂σ \ dofDir.
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1.5 Numerical experiments

Let Ω denote a bounded domain in Rd, d = 3, and let us consider four non immersed
planar fractures splitting the domain Ω into four subdomains Ωa, a = 1, · · · , 4. Dirichlet
boundary conditions are imposed on both the boundary of the domain ∂Ω and on the
boundary of the fracture network ∂Γ = ∂Ω ∩ Γ = Σ0. The permeability of the fractures
is defined by Λf (x) = 100 Id and their width by df (x) = 0.01. In the matrix, the
permeability tensor Λm(x) is fixed to Λm,a on each subdomain Ωa, a = 1, · · · , 4 with two
choices of the subdomain permeabilities. The first choice considers isotropic heterogeneous
permeabilities setting Λm,a = λa Id with λ1 = 1, λ2 = 0.1, λ3 = 0.01, λ4 = 10. The second
choice corresponds to the anisotropic heterogeneous permeabilities defined by

Λm,1=



a1 b1 0
b1 c1 0
0 0 λ


,Λm,2=



a2 0 b2
0 λ 0
b2 0 c2


,Λm,3=



a3 b3 0
b3 c3 0
0 0 λ


,Λm,4=



λ 0 0
0 a4 b4
0 b4 c4


,

with aa = cos2 βa+ω sin2 βa, ba = (1 − ω)cos βa sin βa, ca = ω cos2 βa+sin2 βa, λ = 0.01,
β1 =

π
6
, β2 = −π

6
, β3 = 0, β4 =

π
6
and ω = 0.01.

Next, let us describe the two families of test cases that will be presented in this section.

Test cases: For the first test case Ω = (0, 1)3, the fracture network is defined by the union
of the two rectangles {(x, y, z) ∈ Ω | x = 0.5} and {(x, y, z) ∈ Ω | y = 0.5}, and the four
subdomains correspond to Ω1 = {(x, y, z) ∈ Ω | x < 0.5, y < 0.5}, Ω2 = {(x, y, z) ∈ Ω | x >
0.5, y < 0.5}, Ω3 = {(x, y, z) ∈ Ω | x > 0.5, y > 0.5} and Ω4 = {(x, y, z) ∈ Ω | x < 0.5, y >
0.5} (see the left picture of Figure 1.5). Let us define the functions t1(x) = y − x + z,
t2(x) = x + y + z − 1, t3(x) = x− y + z and t4(x) = 1− x− y + z. One can check that
the function u(x) = ecos(ta(x)), x ∈ Ωa, a = 1, · · · , 4, belongs to V , and that the fluxes
(qm,qf ) = (−Λm∇u,−dfΛf∇τγu) belongs to HΣ(Ω,Γ) since it satisfies

∑
i∈I qf,i ·nΣi

= 0
on Σ \ Σ0.

Figure 1.5: (Left): domain Ω = (0, 1)3 and fracture network for the first test case. (Right):
domain Ω = (−1.5, 1.5)× (−2, 2)× (0, 5) and fracture network for the second test case.
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For the numerical solutions using both the VAG and HFV schemes, three different
families of meshes are considered. The first family is defined by uniform Cartesian grid of
size n× n× n with n = 4, 8, 16, 32, 64, 128 (see Table 1.1). The second family of meshes
is obtained from the previous one by a perturbation of its nodes excluding the nodes on
the boundary of Ω and on the boundary of each fracture Γi, i ∈ I. The perturbation
is chosen randomly inside the ball of radius 1

4n
and of center the Cartesian mesh node.

The perturbation of a fracture node is done in the fracture plane. Note that it leads to
hexahedral cells with non planar faces and hence the HFV scheme is no longer consistent
on this family of meshes. Finally we consider a family of uniformly refined tetrahedral
meshes generated by TetGen[59] (see Table 1.2). Tables 1.1 and 1.2 provide respectively
for the Cartesian or randomly perturbated Cartesian meshes, and for the tetrahedral
meshes, as well as for both schemes, the number of degrees of freedom (d.o.f.), the number
of d.o.f. after elimination of the cell and Dirichlet unknowns (Reduced d.o.f.), and the
number of nonzero element in the linear system after elimination without any fill-in of
the cell and Dirichlet unknowns (Nonzero elts).

Vertex Approximate Gradient Discretization
Nb d.o.f. Reduced d.o.f Nonzero elts

1 221 59 839
2 1 369 471 9 403
3 9 521 3 887 90 947
4 70 753 31 839 802 003
5 544 961 258 239 6 738 419
6 4 276 609 2 081 151 55 247 923

Hybrid Finite Volume Discretization
Nb d.o.f. Reduced d.o.f. Nonzero elts

1 380 188 1 644
2 2 520 1 560 15 336
3 18 224 12 464 129 600
4 138 336 99 168 1 060 464
5 1 077 440 790 208 8 570 064
6 8 503 680 6 307 200 68 888 976

Table 1.1: For the first test case, the VAG and HFV schemes and the six Cartesian and
randomly perturbated Cartesian meshes: mesh number, number of d.o.f., number of d.o.f.
after elimination of the cell and Dirichlet unknowns, number of nonzero elements in the
matrix after elimination.

Vertex Approximate Gradient Discretization
Nb d.o.f. Reduced d.o.f. Nonzero elts

1 1 888 294 2 660
2 13 593 1 924 23 148
3 121 818 16 780 233 978
4 263 391 36 214 519 694
5 509 038 69 762 1 021 940
6 939 007 128 324 1 904 390
7 1 386 833 189 300 2 830 880
8 1 874 186 255 370 3 840 778
9 2 383 038 324 682 4 901 360
10 4 813 285 654 670 9 979 004

Hybrid Finite Volume Discretization
Nb d.o.f. Reduced d.o.f. Nonzero elts

1 4 569 2 661 17 677
2 34 150 21 409 146 147
3 311 261 201 748 1 395 908
4 675 298 440 798 3 058 868
5 1308 518 858 252 5 967 626
6 2 417 392 1 589 624 11 064 478
7 3 573 654 2 354 004 16 396 536
8 4 832 987 3 187 229 22 210 505
9 6 147 875 4 058 104 28 290 370
10 12 432 788 8 223 946 57 382 094

Table 1.2: For the first test case, the VAG and HFV schemes and the ten tetrahedral
meshes: mesh number, number of d.o.f., number of d.o.f. after elimination of the cell and
Dirichlet unknowns, number of nonzero elements in the matrix after elimination.
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The second test case considers the domain Ω = (−1.5, 1.5) × (−2, 2) × (0, 5) and the
fracture network defined by the union of two rectangles {(x, y, z) ∈ Ω | y = mx} and
{(x, y, z) ∈ Ω | y = −mx} with m = 8 (see the right picture of Figure 1.5). The domain Ω
is splitted into the following four subdomains: Ω1 = {(x, y, z) ∈ Ω |mx < y,mx < −y},
Ω2 = {(x, y, z) ∈ Ω |mx > y,mx < −y}, Ω3 = {(x, y, z) ∈ Ω |mx > y,mx > −y}
and Ω4 = {(x, y, z) ∈ Ω |mx < y,mx > −y}. In this test we set t1(x) = 2y + z,
t2(x) = 2mx + z, t3(x) = −2y + z and t4(x) = −2mx + z. It can be verified that
the function u(x) = ecos(ta(x)), x ∈ Ωa, a = 1, · · · , 4, belongs to V , and that the fluxes
(qm,qf ) = (−Λm∇u,−dfΛf∇τγu) belong to HΣ(Ω,Γ). For the numerical solutions using
the VAG and HFV schemes, a family of ten tetrahedral uniformly refined meshes is
generated by TetGen [59]. Table 1.3 gives for both schemes, the number of degrees of
freedom (d.o.f.), the number of d.o.f. after elimination of the cell and Dirichlet unknowns
(Reduced d.o.f.), and the number of nonzero element in the linear system after elimination
without any fill-in of the cell and Dirichlet unknowns (Nonzero elts).

Vertex Approximate Gradient Discretization
Nb d.o.f. Reduced d.o.f. Nonzero elts

1 12 930 2 081 24 687
2 62 177 9 280 123 096
3 132 712 19 321 265 709
4 251 969 36 103 510 459
5 463 906 65 850 949 882
6 1 002 529 140 712 2 070 638
7 1 366 875 190 979 2 832 163
8 1 934 904 269 381 4 022 379
9 2 342 305 325 513 4 877 093
10 4 542 801 627 526 9 501 798

Hybrid Finite Volume Discretization
Nb d.o.f. Reduced d.o.f. Nonzero elts

1 32 218 20 369 140 055
2 157 522 101 864 705 466
3 337 883 219 755 1 524 503
4 644 056 421 122 2 926 982
5 1 188 904 780 117 5 429 401
6 2 576 269 1 696 321 11 820 151
7 3 516 282 2 318 255 16 161 367
8 4 982 226 3 289 061 22 940 167
9 6 034 003 3 985 462 27 803 112
10 11 719 544 7 754 712 54 132 280

Table 1.3: For the second test case, the VAG and HFV schemes and the ten tetrahedral
meshes: mesh number, number of d.o.f., number of d.o.f. after elimination of the cell and
Dirichlet unknowns, number of nonzero elements in the matrix after elimination.

Numerical Results: All test cases are performed using the ΠDm and ΠDf
function recon-

struction operators obtained by setting ωK = K for allK ∈ M, and ωσ = σ for all σ ∈ FΓ.
To assess the error estimates of Proposition 1.3.3, we have computed the following relative
errors

Erru =
‖u− ΠDmuD‖L2(Ω)

‖u‖L2(Ω)

+
‖γu− ΠDf

uD‖L2(Γ)

‖γu‖L2(Γ)

,

for the function reconstructions in the matrix and in the fractures, and

Errg =
‖∇u−∇DmuD‖L2(Ω)d

‖∇u‖L2(Ω)d
+

‖∇γu−∇Df
uD‖L2(Γ)d−1

‖∇γu‖L2(Γ)d−1

for the gradient reconstructions in the matrix and in the fractures. These errors are
reported for both schemes in Figure 1.6 for the first test case, and in Figure 1.7 for the
second test case as function of the number of d.o.f. after elimination of the cell and
Dirichlet unknowns. The convergence rate between two successive meshes k and k + 1 is
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also provided and computed as follows:

CRk+1
u = d

ln
(

‖Erruk‖
‖Erruk+1‖

)

ln
(

#(Nbk+1
cells)

#(Nbkcells)

) , CRk+1
g = d

ln

(
‖Errgk‖

‖Errgk+1
grad‖

)

ln
(

#(Nbk+1
cells)

#(Nbkcells)

) .

It is reported for both schemes in tables 1.4 and 1.5 for the first test case, and in table 1.6
for the second test case. A second order convergence rate is observed on Cartesian meshes
for both the function and gradient reconstructions, which is a typical super convergence
behavior on such meshes. On randomly perturbated Cartesian meshes, the VAG scheme
exhibits a second order convergence rate for the function reconstructions and a first or-
der convergence rate for the gradient reconstructions. Since on randomly perturbated
Cartesian meshes the faces are no longer planar, the HFV scheme no longer converges
as expected, at least for the gradient reconstructions. On tetrahedral meshes a second
order of convergence is also obtained for the function reconstructions and a first order of
convergence is noticed for the gradient reconstructions for both test cases. This observed
second order of convergence for the function reconstructions is as usual better than the
first order estimate given by Remark 1.4.1, while the observed first order of convergence
for the gradient reconstructions confirms the estimate given by Remark 1.4.1. It is also
clear on both test cases that the HFV scheme is much less robust w.r.t. anisotropy than
the VAG scheme, especially on tetrahedral meshes.

In all test cases, the linear system obtained after elimination of the cell and Dirichlet
unknowns is solved using the GMRes iterative solver with the stopping criteria 10−10 and
a maximum Krylov subspace dimension fixed to 1000 (not attained in our tests). The
GMRes solver is preconditioned by ILUT [55], [56] using the thresholding parameter 10−4

chosen small enough in such a way that all the linear systems can be solved for both
schemes and for all meshes. In tables 1.4, 1.5 and 1.6, we report the number of GMRes
iterations It, the fill-in factor F of the ILUT factorization defined as the ratio between
the number of nonzero elements of the ILUT factorization by the number of nonzero
elements of the matrix. We also report the CPU time taking into account the elimination
of the cell and Dirichlet unknowns, the ILUT factorization, the GMRes iterations, and the
computation of the cell values. It can be noticed that, on topologically Cartesian meshes,
the CPU time is roughly speaking 4 times larger for the HFV scheme than for the VAG
scheme. This large difference is not due to the number of nonzero elements in the matrices
which is only slightly larger for the HFV scheme than for the VAG scheme. As can be
checked in table 1.4, this difference is due to a larger number of GMRes iterations and
to a higher fill-in factor of the ILUT factorization for the HFV scheme than for the VAG
scheme. On tetrahedral meshes, the CPU time for the computation of the HFV solution is
larger of a factor from 10 to 20 than the CPU time obtained with the VAG scheme. This
is due to a larger number of GMRes iterations, a larger fill-in factor for ILUT combined
with a 5 times larger number of nonzero elements in the matrix.
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Figure 1.6: First test case. For the 3 families of meshes (top: Cartesian meshes, middle:
randomly perturbated Cartesian meshes, and bottom: tetrahedral meshes), and for the
isotropic (left) and anisotropic (right) subcases: sum of L2 norm of the relative error in
the matrix and in the fracture for the function and its gradients reconstruction both for
VAG and HFV schemes as the function of the number of d.o.f. (after elimination of the
cell and Dirichlet unknowns).
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Figure 1.7: Second test case. For the 10 tetrahedral meshes and for the isotropic (left)
and anisotropic (right) subcases: sum of L2 norm of the relative error in the matrix and
in the fracture for the function and its gradients reconstruction both for VAG and HFV
schemes as the function of the number of d.o.f.(after elimination of the cell and Dirichlet
unknowns).
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Isotropic case, Cartesian Anisotropic case, Cartesian

Vertex Approximate Gradient Discretization
Nb It F Erru Errg CRu CRg CPU It F Erru Errg CRu CRg CPU
1 3 1.2 4.03·10−2 0.11 n/a n/a 9.6·10−4 3 1.2 3.8·10−2 8.5·10−2 n/a n/a 7.7·10−4

2 5 2.1 1.08·10−2 0.03 1.89 1.62 6.9·10−3 5 1.9 8.7·10−3 2.3·10−2 2.12 1.87 6.1·10−3

3 9 2.4 2.9·10−3 1.04·10−2 1.92 1.71 9.9·10−2 9 2.2 2.1·10−3 6.6·10−3 2.06 1.83 8.1·10−2

4 16 2.5 7.4·10−4 3.03·10−3 1.95 1.77 0.89 14 2.1 5.1·10−4 1.9·10−3 2.03 1.81 0.71
5 30 2.5 1.9·10−4 8.5·10−4 1.97 1.82 8.4 20 2.2 1.3·10−4 5.3·10−4 2.02 1.84 5.5
6 56 2.5 4.8·10−5 2.3·10−4 1.89 1.86 90 29 2.2 3.2·10−5 1.4·10−4 2.01 1.87 48

Hybrid Finite Volume Discretization
Nb It F Erru Errg CRu CRg CPU It F Erru Errg CRu CRg CPU
1 6 3.3 1.08·10−2 3.8·10−2 n/a n/a 1.3·10−3 4 2.5 1.3·10−2 0.16 n/a n/a 9.7·10−4

2 10 3.6 2.7·10−3 1.2·10−2 1.98 1.64 1.2·10−2 6 3.1 3.3·10−3 5.8·10−2 1.97 1.23 7.5·10−3

3 17 3.6 6.9·10−4 3.4·10−3 1.99 1.71 0.14 10 3.6 8.2·10−4 1.9·10−2 1.99 1.49 9.4·10−2

4 29 3.6 1.7·10−4 9.6·10−4 1.99 1.77 1.4 18 3.7 2.1·10−4 6.1·10−3 2.01 1.58 1.4
5 59 3.6 4.3·10−5 2.6·10−4 2 1.82 17.7 30 3.8 5.3·10−5 1.8·10−3 1.99 1.68 18
6 122 3.6 1.1·10−5 7.1·10−5 2 1.86 313 65 3.8 1.3·10−5 5.1·10−4 1.99 1.78 303

Isotropic case, Perturbated Cartesian Anisotropic case, Perturbated Cartesian

Vertex Approximate Gradient Discretization
Nb It F Erru Errg CRu CRg CPU It F Erru Errg CRu CRg CPU
1 4 1.2 4.03·10−2 0.11 n/a n/a 7.8·10−4 3 1.2 3.8·10−2 8.6·10−2 n/a n/a 7.8·10−4

2 5 2.1 1.08·10−2 3.4·10−2 1.92 1.34 6.3·10−3 5 1.9 8.7·10−3 2.3·10−2 2.14 1.44 5.8·10−3

3 9 2.4 2.8·10−3 1.03·10−2 1.92 1.69 9.8·10−2 8 2.2 2.1·10−3 6.6·10−3 2.02 1.61 7.6·10−2

4 16 2.5 7.4·10−4 3.02·10−3 2.06 -0.11 0.908 14 2.1 5.1·10−4 1.9·10−3 2.16 -0.43 0.64
5 29 2.5 1.9·10−4 8.5·10−4 1.87 0.91 8.4 20 2.3 1.3·10−4 5.2·10−4 1.85 0.97 5.6
6 56 2.5 4.7·10−5 2.3·10−4 1.96 2.11 85 29 2.3 3.2·10−5 1.4·10−4 1.95 1.81 48

Hybrid Finite Volume Discretization
Nb It F Erru Errg CRu CRg CPU It F Erru Errg CRu CRg CPU
1 5 3.3 1.1·10−2 7.4·10−2 n/a n/a 1.5·10−3 5 2.9 1.5·10−2 0.67 n/a n/a 1.4·10−3

2 9 3.6 2.8·10−3 3.4·10−2 1.99 1.12 1.6·10−2 8 3.4 5.2·10−3 0.48 1.52 0.48 1.7·10−2

3 16 3.6 6.9·10−4 1.1·10−2 2.01 1.58 0.15 11 3.7 1.3·10−3 0.17 2.01 1.47 0.17
4 27 3.6 2.7·10−4 7.3·10−2 1.35 -2.71 1.6 16 3.8 5.7·10−3 1.38 -2.14 -3.01 1.9
5 50 3.6 7.8·10−5 3.8·10−2 1.79 0.96 20 31 3.9 2.2·10−3 0.85 1.39 0.71 33
6 106 3.6 1.3·10−5 9.5·10−3 2.60 1.97 292 57 3.9 1.9·10−4 0.21 3.53 2.03 356

Table 1.4: First test case. For the isotropic (left) and anisotropic (right) subcases, the
VAG and HFV schemes and the six Cartesian meshes (above) and the six perturbated
Cartesian meshes (below): mesh number Nb, number IT of GMRES iterations precondi-
tioned by ILUT, fill-in factor F , sum of the L2 relative errors in the matrix and in the
fractures for the function (Erru) and for the gradient reconstruction (Errg), convergence
rates for the function (CRu) and for the gradient (CRg) reconstruction, CPU time in
seconds.
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Isotropic case Anisotropic case

Vertex Approximate Gradient Discretization
Nb It F ErrF Errg CRu CRg CPU It F ErrF Errg CRu CRg CPU
1 5 2.1 9.1·10−3 0.22 n/a n/a 3.6·10−3 5 2.1 5.7·10−3 0.21 n/a n/a 3.8·10−3

2 8 2.6 2.3·10−3 0.11 1.96 1.08 4.9·10−2 9 2.6 1.5·10−3 0.11 1.94 1.04 4.5·10−2

3 16 2.8 5.1·10−4 4.6·10−2 2.02 1.05 0.61 15 2.9 3.5·10−4 4.8·10−2 1.91 1.02 0.68
4 20 2.9 3.1·10−4 3.6·10−2 2.02 1.05 1.5 18 2.9 2.1·10−4 3.7·10−2 2.09 1.02 1.7
5 25 2.9 2.1·10−4 2.8·10−2 1.69 1.06 2.9 22 3 1.5·10−4 2.9·10−2 1.39 1.04 3.8
6 29 2.9 1.3·10−4 2.3·10−2 2.37 1.01 5.9 25 3 9.1·10−5 2.4·10−2 2.47 0.99 6.9
7 33 2.9 9.6·10−5 2.1·10−2 2.21 1.02 10 26 3 6.7·10−5 2.1·10−2 2.33 1.01 12
8 37 2.9 7.9·10−5 1.8·10−2 1.81 0.99 14 30 3 5.7·10−5 1.9·10−2 1.66 0.98 16
9 40 2.9 6.9·10−5 1.7·10−2 1.81 1.05 18 30 3 4.9·10−5 1.7·10−2 1.62 1.05 22
10 49 2.9 4.3·10−5 1.3·10−2 2.01 1.01 41 37 3 3.1·10−5 1.4·10−2 1.98 1.01 48

Hybrid Finite Volume Discretization
Nb It F ErrF Errg CRu CRg CPU It F ErrF Errg CRu CRg CPU
1 10 4.4 1.5·10−3 0.12 n/a n/a 1.7·10−2 15 4.6 3.3·10−2 1.7 n/a n/a 2.7·10−2

2 17 4.7 3.9·10−4 6.4·10−2 1.97 0.92 0.23 25 5.1 1.1·10−2 1.1 1.72 0.72 0.49
3 33 4.8 9.8·10−5 3.1·10−2 1.87 0.98 3.3 39 5.2 2.6·10−3 0.56 1.83 0.85 7.2
4 42 4.9 5.7·10−5 2.4·10−2 2.08 0.99 8.9 48 5.2 1.5·10−3 0.44 1.90 0.92 18
5 52 4.9 4.3·10−5 1.9·10−2 1.25 0.97 22 62 5.2 1.1·10−3 0.36 1.86 0.92 40
6 69 4.9 2.5·10−5 1.5·10−2 2.73 1.03 47 82 5.2 6.8·10−4 0.29 2.03 0.98 87
7 78 4.9 1.8·10−5 1.3·10−2 2.42 1.05 74 94 5.2 5.3·10−4 0.25 1.96 0.97 141
8 86 4.9 1.5·10−5 1.2·10−2 1.62 0.92 106 112 5.2 4.3·10−4 0.23 1.94 0.94 203
9 94 4.9 1.3·10−5 1.1·10−2 1.60 0.98 154 125 5.2 3.7·10−4 0.21 1.95 0.97 285
10 122 4.9 8.3·10−6 8.9·10−3 2.03 0.99 346 192 5.2 2.3·10−4 0.17 1.97 0.98 725

Table 1.5: First test case. For the isotropic (left) and anisotropic (right) subcases, the
VAG and HFV schemes and the ten tetrahedral meshes: mesh number Nb, number IT
of GMRES iterations preconditioned by ILUT, fill-in factor F , sum of the L2 relative
errors in the matrix and in the fractures for the function (Erru) and for the gradient
reconstruction (Errg), convergence rates for the function (CRu) and for the gradient (CRg)
reconstruction, CPU time in seconds.
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Isotropic case Anisotropic case

Vertex Approximate Gradient Discretization
Nb It F ErrF Errg CRu CRg CPU It F ErrF Errg CRu CRg CPU
1 11 2.5 4.1·10−3 0.61 n/a n/a 4.3·10−2 13 2.5 1.6·10−3 0.42 n/a n/a 4.8·10−2

2 32 2.7 1.5·10−3 0.38 1.96 0.91 0.34 20 2.8 7.2·10−4 0.26 1.52 0.91 0.31
3 51 2.8 8.6·10−4 0.29 2.28 1.06 0.77 52 2.8 4.7·10−4 0.21 1.60 0.92 0.83
4 51 2.8 5.7·10−4 0.23 1.94 1.05 1.5 51 2.9 3.5·10−4 0.17 1.38 0.89 1.7
5 51 2.9 3.8·10−4 0.18 2.07 1.04 3.1 51 2.9 2.7·10−4 0.14 1.35 0.89 3.4
6 51 2.9 2.2·10−4 0.13 2.08 1.06 7.9 51 2.9 1.8·10−4 0.11 1.53 0.98 7.9
7 51 2.9 1.8·10−4 0.12 1.88 0.97 9.8 51 2.9 1.6·10−4 9.9·10−2 1.37 0.88 11
8 52 2.9 1.5·10−4 0.11 2.12 1.12 14 53 2.9 1.3·10−4 8.8·10−2 1.73 1.08 18
9 60 2.9 1.3·10−4 9.7·10−2 1.95 1.03 19 56 2.9 1.2·10−4 8.3·10−2 1.41 0.95 22
10 78 2.9 8.2·10−5 7.4·10−2 2.04 1.03 40 72 3 8.4·10−5 6.7·10−2 1.48 0.97 48

Hybrid Finite Volume Discretization
Nb It F ErrF Errg CRu CRg CPU It F ErrF Errg CRu CRg CPU
1 51 4.7 1.08·10−3 0.43 n/a n/a 0.32 52 5.1 1.1·10−2 8.6 n/a n/a 0.54
2 51 4.8 3.7·10−4 0.22 1.91 1.02 1.9 84 5.2 3.4·10−3 4.7 2.09 1.09 3.9
3 53 4.8 2.3·10−4 0.16 1.96 1.09 4.8 97 5.2 2.2·10−3 3.7 1.73 0.89 9.8
4 71 4.9 1.4·10−4 0.12 2.07 1.08 11 108 5.2 1.5·10−3 3.1 1.68 0.86 22
5 88 4.9 9.1·10−5 9.5·10−2 2.07 1.07 25 146 5.2 1.1·10−3 2.6 1.84 0.91 50
6 114 4.9 5.1·10−5 6.9·10−2 2.05 1.06 67 248 5.2 6.5·10−4 2.1 1.80 0.89 155
7 132 4.9 4.1·10−5 6.1·10−2 1.98 1.01 104 532 5.2 5.4·10−4 1.9 1.72 0.84 387
8 146 4.9 3.2·10−5 5.3·10−2 2.06 1.05 162 530 5.2 4.4·10−4 1.7 1.83 0.88 565
9 165 4.9 2.8·10−5 4.9·10−2 1.99 1.01 216 312 5.2 3.9·10−4 1.6 1.80 0.90 477
10 196 4.9 1.8·10−6 3.8·10−2 2.02 1.03 498 748 5.2 2.6·10−4 1.3 1.89 0.94 906

Table 1.6: Second test case. For the isotropic (left) and the anisotropic (right) subcases,
the VAG and HFV schemes and the ten tetrahedral meshes: mesh number Nb, number
IT of GMRES iterations preconditioned by ILUT, fill-in factor F , sum of the L2 relative
errors in the matrix and in the fractures for the function (Erru) and for the gradient
reconstruction (Errg), convergence rates for the function (CRu) and for the gradient (CRg)
reconstruction, CPU time in seconds.

1.6 Conclusion

In this Chapter, the gradient scheme framework [28] is extended to hybrid dimensional
Darcy flow models in fractured porous media. Both the Vertex Approximate Gradient
and the Hybrid Finite Volume schemes are shown to satisfy, whatever the choice of the
control volumes, the coercivity, consistency, limit-conformity and compacity assumptions
of the gradient scheme framework. These properties ensures in particular the convergence
of the schemes to a weak solution of the model. One of the key ingredient to prove
that both schemes satisfy this framework is the density of smooth function subspaces for
both the solution and flux Hilbert spaces. This result is obtained for a general network
of polygonal fractures including intersecting, immersed or non immersed fractures. The
numerical experiments carried out on Cartesian, hexahedral and tetrahedral families of
meshes exhibit the convergence of both schemes except as expected for the HFV scheme
with non planar faces. The numerical results show that the VAG scheme is much cheaper
in terms of CPU time than the HFV scheme on tetrahedral meshes for a given mesh, but
on the other hand the HFV scheme is more accurate. It is also clear that the VAG scheme
is more robust than the HFV scheme regarding anisotropy.
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Chapter 2

Hybrid Dimensional Two-Phase
Darcy Flows in Fractured Porous
Media
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Abstract: this Chapter extends the Vertex Approximate Gradient (VAG) and Hybrid
Finite Volume (HFV) discretizations of Chapter 1 to two-phase Darcy flows in discrete
fracture networks taking into account the mass exchange between the matrix and the
fracture. As in Chapter 1, we consider the asymptotic model for which the fractures
are represented as interfaces of codimension one immersed in the matrix domain, leading
to the so called hybrid dimensional Darcy flow model. The pressures at the interfaces
between the matrix and the fracture network are continuous corresponding to a ratio
between the normal permeability of the fracture and the width of the fracture assumed to
be large compared with the ratio between the permeability of the matrix and the size of
the domain. To fix ideas, the convergence of the scheme to a weak solution is proved for
the VAG scheme. The proof holds under the assumption that the relative permeabilities
are bounded from below by a strictly positive constant. This assumption is needed in
the convergence proof in order to take into account discontinuous capillary pressures in
particular at the matrix fracture interfaces. The efficiency of our approach is assessed
on numerical examples of fracture networks in 2D and 3D. We show in particular that,
compared with Control Volume Finite Element (CVFE) approaches, the VAG scheme has
the advantage to avoid the mixing of the fracture and matrix rocktypes at the interfaces
between the matrix and the fractures, while keeping the low cost of a nodal discretization
on unstructured meshes.

2.1 Introduction

The objective of this Chapter is to extend the hybrid dimensional model and its dis-
cretization presented in Chapter 1 for single phase Darcy flow to two-phase Darcy flows.
As in Chapter 1, we focus on the particular case of permeable fractures for which the
pressure can be assumed continuous at matrix fracture interfaces. This type of hybrid
dimensional Darcy flow model has been introduced in [3] for single phase flows and in
[54], [53], [43] for two-phase Darcy flows. In the framework of two-phase Darcy flows in
fractured porous media, high contrasts of capillary pressures are expected in particular
between the matrix and the fractures. Hence, it is crucial to take into account, in the
model formulation, the saturation jumps at the matrix fracture interfaces. We refer to
[29], [20], [21] for mathematical formulations taking into account discontinuous capillary
pressures. In the present work, we employ the phase pressures formulation (see e.g. [35])
assuming that the capillary pressures are strictly monotone. Using the monotone graph
extensions of the inverse of the capillary functions, both phase pressures can be assumed
continuous at the matrix fracture interfaces. Hence, this is a good framework to capture
the saturation jump condition at the matrix fracture interfaces without introducing any
additional unknowns at these interfaces.

The discretization of the hybrid dimensional Darcy flow model with continuous pres-
sures has been the object of several works. In [46] a cell-centred Finite Volume scheme
using a Two Point Flux Approximation (TPFA) is proposed assuming the orthogonality
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of the mesh and isotropic permeability fields. Cell-centred Finite Volume schemes can
be extended to general meshes and anisotropic permeability fields using MultiPoint Flux
Approximations (MPFA) following the ideas introduced in [60] for discontinuous pressure
models. Nevertheless, MPFA schemes can lack robustness on distorted meshes and large
anisotropies due to the non symmetry of the discretization. They are also very expensive
compared with nodal discretizations on tetrahedral meshes. In [3], a Mixed Finite Element
(MFE) method is proposed for single Darcy flows. It is extended to two-phase flows in
[43] in an IMPES framework using a Mixed Hybrid Finite Element (MHFE) discretization
for the pressure equation and a Discontinuous Galerkin discretization of the saturation
equation. These approaches are adapted to general meshes and anisotropy but require
as many degrees of freedom as faces. Control Volume Finite Element Methods (CVFE)
[54], [53] have the advantage to use only nodal unknowns leading to much fewer degrees
of freedom than MPFA and MHFE schemes on tetrahedral meshes. On the other hand,
at the matrix fracture interfaces, the control volumes have the drawback to be shared
between the matrix and the fractures. It results that a strong refinement of the mesh is
needed at these interfaces in the case of large contrasts between the permeabilities of the
matrix and of the fractures.

In this Chapter we extend to two-phase flows the VAG and HFV schemes introduced
in Chapter 1 for single phase Darcy flows. For a single medium, the VAG scheme has been
introduced for the discretization of multiphase Darcy flows in [36] for immiscible flows
and in [32] for compositional models. The HFV scheme has been first introduced for two-
phase Darcy flows in [5] using a phase pressures formulation for a Black Oil type model,
and in [10] using a global pressure formulation for an immiscible flow. The VAG scheme
basically uses nodal unknowns like the CVFE method but it also keeps the cell-centred
unknowns, which are eliminated at the linear algebra level without any fill-in. Compared
with CVFE methods, it has the advantage to provide a large flexibility in the choice of
the control volumes in order to avoid mixing rocks with highly contrasted absolute per-
meabilities in a single control volume. In [35], using a phase pressures formulation, the
interface unknowns of the VAG (or HFV) scheme are exploited in order to capture the
saturation jumps at different rocktype interfaces. It is this latter approach that is used
in this Chapter for both the VAG and HFV discretizations and extended to the case of
the hybrid dimensional two-phase Darcy flows in fractured porous media.

The first convergence result for a finite volume discretization of single media two-
phase Darcy flow models has been obtained for cell-centred TPFA schemes on admissible
meshes in [51] and [33]. In [33] the convergence is obtained for the usual phase pressures
and saturations formulation using a phase by phase upwinding of the mobilities. In [51]
the convergence is obtained for the global pressure formulation introduced in [22] (see
also [8]). This latter convergence result has been recently extended in [16] to the case
of the VAG discretization. The convergence is shown to hold whatever the choice of the
volumes at the nodal unknowns. In the case of two-phase Darcy flows with discontinuous
capillary pressure, the convergence of a TPFA type discretization is obtained in [11]. The
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extension to general meshes is done in [35] assuming the non degeneracy of the relative
permeabilities in the framework of gradient scheme discretizations introduced in [31].

To our knowledge, there is not yet a proof of convergence for hybrid dimensional two-
phase Darcy flows. In this Chapter, we propose to extend the results obtained in [35] in
the particular case of the VAG scheme to the hybrid dimensional Darcy flow model. The
convergence of the VAG scheme to a weak solution is obtained assuming that the relative
permeabilities of both phases are bounded from below by a strictly positive constant, and
assuming that the family of meshes is shape regular. This result could be easily extended
to the gradient scheme framework of Chapter 1.

The outline of the Chapter is the following. In section 2.2, the two-phase Darcy flow
hybrid dimensional model is introduced and its discretization using the VAG scheme is
described in section 2.3. The convergence of the scheme is obtained in section 2.4 assuming
the non degeneracy of the relative permeabilities and whatever the choice of the volumes
at the nodal unknowns. Section 2.5 introduces the flux formulation of the VAG and HFV
discretizations using a phase by phase upwinding of the mobilities and the notations of
Subsection 1.4.3. 2D and 3D numerical tests are presented in section 2.6 using this flux
formulation and both the VAG and HFV schemes.

2.2 Hybrid dimensional Two-Phase Darcy Flow Model

in Fractured Porous Media

2.2.1 Two-Phase Darcy Flows in Phase Pressures Formulation

In the framework of two-phase Darcy flows in fractured porous media high contrasts of
capillary pressures are expected in particular at the interfaces between the matrix and the
fractures. Hence, it is crucial to take into account in the model formulation the saturation
jumps at these interfaces (see for example [20], [21] for the mathematical formulations of
two-phase Darcy flows with discontinuous capillary pressures). Our choice focuses on the
phase pressures formulation (see e.g. [35]) which is extended to the case of hybrid dimen-
sional two-phase Darcy flows in a variational formulation framework. The main advantage
of this formulation is to choose as primary unknowns the phase pressures which can be
assumed to be continuous at the interfaces between different rocktypes while the jump of
the saturation is captured using the inverse of the capillary pressure monotone graph for
each rocktype. An alternative choice using a global pressure approach is presented in [45].

Let u2 (resp. u1) denote the wetting (resp. non wetting) phase pressure, p = u1 − u2

the capillary pressure, and pini ∈ V the initial capillary pressure. For the sake of simplicity
in the convergence analysis, homogeneous Dirichlet boundary conditions are assumed for
u1 and u2 at the boundary ∂Ω, as well as at Σ0 for γu1 and γu2. The gravity is also not
taken into account in the model to simplify the analysis. The extension of the convergence
proof to the case with gravity and with non homogeneous Dirichlet boundary conditions
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can be done easily following the same ideas as in [35].

Let us denote by S1
m(x, p) (resp. S

1
f (x, p)) the inverses of the monotone graph exten-

sion of the capillary pressure curves in the matrix domain Ω (resp. in the fracture network
Γ), and let us set S2

m = 1− S1
m (resp. S2

f = 1− S1
f ).

In the matrix domain Ω (resp. in the fracture network Γ), let us denote by kαm(x, S
α
m)

(resp. kαf (x, S
α
f )), α = 1, 2, the phase mobilities, and by φm(x) (resp. φf (x)) the poros-

ity. As in Chapter 1, we denote by Λm(x) (resp. Λf (x)) the permeability tensor, by
df (x),x ∈ Γ the width of the fractures, and by dτf (x) the weighted Lebesgue d − 1 di-
mensional measure on Γ defined by dτf (x) = df (x)dτ(x).

Using the notations of Chapter 1, the strong formulation of our hybrid dimensional
two phase Darcy flow model amounts to find uα, (qα

m,q
α
f ) such that one has for α = 1, 2:





φm∂t

(
Sα
m(x, p)

)
+ div(qα

m,a) = hαm on Ωa, a ∈ A,
φfdf∂t

(
Sα
f (x, γip)

)
+ divτi(q

α
f,i)− [[qα

m · ni]] = dfh
α
f on Γi, i ∈ I,

−kαm(x, Sα
m(x, p))Λm∇uα = qα

m,a on Ωa, a ∈ A,
−dfkαf (x, Sα

f (x, γip))Λf∇τiγiu
α = qα

f,i on Γi, i ∈ I,
p|t=0 = pini, on Ω,

where the function hαm (resp. hαf ), α = 1, 2 stands for the source terms in the matrix
domain Ω (resp. in the fracture network Γ).

The corresponding weak formulation amounts to find u1, u2 ∈ L2(0, T ;V 0) satisfying
the following variational equalities for α = 1, 2, and for all ϕ ∈ C∞

c ([0, T )× Ω):





∫ T

0

∫

Ω

(
−φm(x)S

α
m(x, p)∂tϕ(x, t) + kαm(x, S

α
m(x, p))Λm(x)∇uα(x, t) · ∇ϕ(x, t)

)
dxdt

+

∫ T

0

∫

Γ

−φf (x)S
α
f (x, γp)∂tγϕ(x, t)dτf (x)dt

+

∫ T

0

∫

Γ

kαf (x, S
α
f (x, γp))Λf (x)∇τγu

α(x, t) · ∇τγϕ(x, t)dτf (x)dt

−
∫

Ω

φm(x)S
α
m(x, pini)ϕ(x, 0)dxdt−

∫

Γ

φf (x)S
α
f (x, γpini)ϕ(x, 0)dτf (x)dt

−
∫ T

0

∫

Ω

hαm(x, t)ϕ(x, t)dxdt−
∫ T

0

∫

Γ

hαf (x, t)γϕ(x, t)dτf (x)dt = 0.

(2.1)

As in [35], the following assumptions are made on the data:

(H1) φm is a measurable function from Ω to R with φm(x) ∈ [φmin, φmax], φmax ≥ φmin > 0.
φf is a measurable function from Γ to R with φf (x) ∈ [φmin, φmax]. The fracture
width df satisfies the same assumptions as in subsection 1.2.2.

(H2) The permeabilities Λm and Λf satisfy the same assumptions as in subsection 1.2.2.
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(H3) S1
m(x, p) ∈ [0, 1] for all (x, p) ∈ Ω×R with S1

m(x, p) = S1
m,j(p) for a.e. x ∈ Ωj and all

p ∈ R, where S1
m,j is a non decreasing Lipschitz continuous function with constant LS

and (Ωj)j∈Jm is a finite family of disjoint connected polyhedral open sets such that⋃
j∈Jm Ωj = Ω. S1

f (x, p) ∈ [0, 1] for all (x, p) ∈ Γ×R with S1
f (x, p) = S1

f,j(p) for a.e.

x ∈ Υj and all p ∈ R, where S1
f,j is a non decreasing Lipschitz continuous function

with constant LS and (Υj)j∈Jf is a finite family of disjoint connected polygonal open

sets such that
⋃

j∈Jf Υj = Γ.

(H4) kαm(x, s) (resp. k
α
f (x, s)) ∈ [kmin, kmax] for (x, s) ∈ Ω× [0, 1] (resp. (x, s) ∈ Γ× [0, 1]),

kmax ≥ kmin > 0 and kαm(·, s) (resp. kαf (·, s)) measurable, kαm(x, ·) (resp. kαf (x, ·))
continuous, α = 1, 2.

(H5) pini ∈ V , hαm ∈ L2(Ω× (0, T )), hαf ∈ L2(Γ× (0, T )), α = 1, 2.

Assumptions (H1-H5) are quite general, except for kmin > 0 of hypothesis (H4). This
assumption is needed in the mathematical part of this Chapter. Remark that it is not
needed in the implementation of the numerical scheme and will be dropped in the nu-
merical section. The influence of this parameter has already been studied numerically in
[35]. The hypothesis (H3) that the functions S1

m(x, p) and S
1
f (x, p) are defined by given

functions in a partition of the domain is classical and the index j corresponds to the so
called geological rocktypes.

2.3 Vertex Approximate Gradient Discretization

Let us consider the generalised polyhedral mesh of Definition 1.4.1 introduced in Subsec-
tion 1.4 as well as the VAG discretization of Subsection 1.4.1. Using the same notations,
let us define the P1 conforming finite element approximation of the space V by

VT = {ΠT v, v ∈ XD} ⊂ V

and its subspace with homogeneous Dirichlet boundary conditions on ∂Ω by

V 0
T = {ΠT v, v ∈ X0

D} = VT ∩ V 0.

The nodal basis of VT will be denoted by ηK , ηs, ησ, for K ∈ M, s ∈ V , σ ∈ FΓ.
The VAG discretization uses the finite element gradient operators ∇Dm in the matrix

domain and ∇Df
in the fracture network introduced in (1.14) as well as the function

reconstruction operators ΠDm in the matrix domain (resp. ΠDf
in the fracture network)

based on partitions of the cells (resp. the fracture faces) as defined in (1.15).
It is important to notice that in the particular case when the space discretization

is conforming with respect to the sets (Ωj)j∈Jm ,(Γj)j∈Jf and when the source term hαm
(resp. hαf ) is a cellwise (resp. facewise) constant function, the implementation of the
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VAG scheme does not require to build these partitions. In that case, it is sufficient to
define the matrix volume fractions

αK,s =

∫
ωK,s

dx
∫
K
dx

, s ∈ VK ∩ Vint, K ∈ M, αK,σ =

∫
ωK,σ

dx
∫
K
dx

, σ ∈ FK ∩ FΓ, K ∈ M,

constrained to satisfy αK,s ≥ 0, αK,σ ≥ 0, and
∑

s∈VK∩Vint
αK,s +

∑
σ∈FK∩FΓ

αK,σ ≤ 1, as
well as the fracture volume fractions

ασ,s =

∫
Σσ,s

dτf (x)∫
σ
dτf (x)

, s ∈ Vσ ∩ Vint, σ ∈ FΓ,

constrained to satisfy ασ,s ≥ 0, and
∑

s∈Vσ∩Vint
ασ,s ≤ 1. The convergence of the VAG

scheme will be shown to hold whatever the choice of these partitions or volume fractions.
As will be detailed in the numerical section, this flexibility is a crucial asset, compared
with usual CVFE approaches, in order to improve the accuracy of the scheme for highly
heterogeneous test cases.

In addition to Lemma 1.4.1 and Proposition 1.4.1, we state without proof a Lemma
that can be readily adapted from [16] noticing that the shape regularity of T implies the
shape regularity of the triangular submesh of Γ defined by T ∩ Γ.

Lemma 2.3.1 There exist C1, C2 > 0 depending only on θT such that for all u ∈ XD

‖ΠDmu‖L2(Ω) ≤ C1‖ΠT u‖L2(Ω) and ‖ΠDf
u‖L2(Γ) ≤ C2‖γΠT u‖L2(Γ). (2.2)

The VAG scheme has been introduced for the discretization of multiphase immiscible
Darcy flows in [36] and in [32] for compositional models. Its convergence has been proved
for two-phase flows using a global pressure formulation in [16]. In [35] it has been adapted
to take into account discontinuous capillary pressures using a phase pressures formulation
and the convergence proof is done in the general framework of gradient schemes. We
extend here this approach to the case of hybrid dimensional two-phase Darcy flows.

For N ∈ N∗, let us consider the time discretization t0 = 0 < t1 < · · · < tn−1 < tn · · · <
tN = T of the time interval [0, T ]. We denote the time steps by ∆tn = tn − tn−1 for all
n = 1, · · · , N while ∆t stands for the whole sequence (∆tn)n=1,...,N .

Let us denote by uα,n ∈ X0
D, α = 1, 2 the discrete phase pressures, and by pn =

u1,n − u2,n the discrete capillary pressure at time tn for all n = 1, · · · , N . Given an
approximation p0 ∈ XD of the initial capillary pressure pini, the VAG discretization of the

two-phase Darcy flow model in phase pressures formulation (2.1) looks for uα =
(
uα,n ∈

X0
D

)
n=1,··· ,N

, α = 1, 2, such that for α = 1, 2, and for all v ∈ X0
D one has
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∫

Ω

φm

Sα,n
Dm

− Sα,n−1
Dm

∆tn
ΠDmv dx +

∫

Ω

kα,nDm
Λm∇Dmu

α,n · ∇Dmv dx

+

∫

Γ

φf

Sα,n
Df

− Sα,n−1
Df

∆tn
ΠDf

v dτf (x) +

∫

Γ

kα,nDf
Λf∇Df

uα,n · ∇Df
v dτf (x)

=
1

∆tn

∫ tn

tn−1

(∫

Ω

hαmΠDmv dx+

∫

Γ

hαfΠDf
v dτf (x)

)
dt,

(2.3)

where the saturations and relative permeabilities are discretized using the piecewise con-
stant reconstruction operators

Sα,n
Dm

(x) = Sα
m(x,ΠDmp

n(x)), Sα,n
Df

(x) = Sα
f (x,ΠDf

pn(x)),

and
kα,nDm

(x) = kαm(x, S
α,n
Dm

(x)), kα,nDf
(x) = kαf (x, S

α,n
Df

(x)),

in order to capture the discontinuities at different rocktype interfaces.

2.4 Convergence Analysis

2.4.1 A priori estimates

Using the phase pressures as test functions in the discrete variational formulation (2.3),
we deduce the following a priori estimate.

Lemma 2.4.1 Assuming that hypotheses (H1− H5) hold, let uα, α = 1, 2, be a solution
to (2.3), then, there exists C5 > 0 depending only on the data and on θT such that

∑

α=1,2

N∑

n=1

∆tn‖ΠT u
α,n‖2V ≤ C5. (2.4)

Let us introduce the following notations. For all v ∈ XD we define the terms

Aα,n
Dm

(v) =

∫

Ω

φm

Sα,n
Dm

− Sα,n−1
Dm

∆tn
ΠDmv dx, Aα,n

Df
(v) =

∫

Γ

φf

Sα,n
Df

− Sα,n−1
Df

∆tn
ΠDf

v dτf (x),(2.5)

Bα,n
Dm

(v) =

∫

Ω

kα,nDm
Λm∇Dmu

α,n · ∇Dmv dx, Bα,n
Df

(v) =

∫

Γ

kα,nDf
Λf∇Df

uα,n · ∇Df
v dτf (x),(2.6)

Cα,n
Dm

(v) =
1

∆tn

∫ tn

tn−1

∫

Ω

hαmΠDmv dxdt, Cα,n
Df

(v) =
1

∆tn

∫ tn

tn−1

∫

Γ

hαfΠDf
v dτf (x)dt.(2.7)
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In order to prove Lemma 2.4.1, we first derive some estimates of the accumulation, gra-
dient and right hand side terms of in the following propositions.

Firstly, the following estimate of the accumulation terms is a straightforward adapta-
tion from Lemma 3.1 of [35].

Proposition 2.4.1 Let uα, α = 1, 2, be a solution of (2.3), then

N∑

n=1

∑

α=1,2

∑

j=m,f

∆tnAα,n
Dj

(uα,n) ≥ −φmaxLS

2

(
‖ΠDmp

0‖2L2(Ω) + dmax‖ΠDf
p0‖2L2(Γ)

)
.

Secondly, thanks to the assumptions (H2) and (H4) the following estimate readily
holds for the gradient terms.

Proposition 2.4.2 Let uα, α = 1, 2, be a solution of (2.3), then

N∑

n=1

∑

j=m,f

∆tnBα,n
Dj

(uα,n) ≥ kmin

N∑

n=1

∆tn
(
λm‖∇Dmu

α,n‖2L2Ω)d + dfλf‖∇Df
uα,n‖2L2(Γ)d−1

)
,

for all α = 1, 2.

Thirdly, we have the following straightforward estimate for the right hand side.

Proposition 2.4.3 Let uα, α = 1, 2, be a solution of (2.3), then there exists C > 0
depending only on dmax, CP and θT such that

N∑

n=1

∑

j=m,f

∆tnCα,n
Dj

(uα,n) ≤ C
(
‖hαm‖2L2(Ω×(0,T ))+dmax‖hαf ‖2L2(Γ×(0,T ))

)1/2( N∑

n=1

∆tn‖ΠT u
α,n‖2V

)1/2

for all α = 1, 2.

Proof of Lemma 2.4.1: To complete the proof of Lemma 2.4.1, it follows from (2.3)
that

N∑

n=1

∑

α=1,2

∑

j=m,f

∆tn
(
Aα,n

Dj
(uα,n) + Bα,n

Dj
(uα,n)− Cα,n

Dj
(uα,n)

)
= 0,

so that in view of Propositions 2.4.1, 2.4.2 and 2.4.3 there exists C > 0 depending only
on the data and on θT such that

∑

α=1,2

N∑

n=1

∆tn‖ΠT u
α,n‖2V ≤ C


1 +

(
∑

α=1,2

N∑

n=1

∆tn‖ΠT u
α,n‖2V

)1/2

 .

The estimate (2.4) is then obtained using Young’s inequality. �
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Lemma 2.4.2 Assuming that hypotheses (H1−H5) hold, there exists at least one solution
to the problem (2.3).

Proof: Let us consider the functions S1,θ
m = θS1

m + (1 − θ) and S1,θ
f = θS1

f + (1 − θ)

instead of S1
m and S1

f as well as the functions S2,θ
m = 1− S1,θ

m and S2,θ
f = 1− S1,θ

f instead
of S2

m and S2
f . The problem corresponding to θ = 0 reads : For each α = 1, 2 and for each

n = 1, . . . , N find uα,n ∈ X0
D satisfying





∫

Ω

k1m(x, 1)Λm∇Dmu
1,n · ∇Dmv dx+

∫

Γ

k1f (x, 1)Λf∇Df
u1,n · ∇Df

v dτf (x)

=
1

∆tn

∫ tn

tn−1

(∫

Ω

h1mv dx+

∫

Γ

h1fΠDf
v dτf (x)

)
dt ∀v ∈ X0

D,

∫

Ω

k2m(x, 0)Λm∇Dmu
2,n · ∇Dmv dx+

∫

Γ

k2f (x, 0)Λf∇Df
u2,n · ∇Df

v dτf (x)

=
1

∆tn

∫ tn

tn−1

(∫

Ω

h2mv dx+

∫

Γ

h2fΠDf
v dτf (x)

)
dt ∀v ∈ X0

D.

(2.8)

In view of Lemma 2.3.1 and the assumptions on the data one deduces from Lax-Milgram
theorem the existence and uniqueness of the solution to (2.8). We remark that the estimate
(2.4) holds for all θ ∈ [0, 1]. Therefore the existence of a solution for all θ ∈ [0, 1] can be
deduced from a classical topological degree argument. �

2.4.2 Estimates on the time and space translates

Proposition 2.4.4 Let T > 0, N ∈ N and (tn)n=0,...,N ∈ R such that 0 = t0 < t1 < . . . <
tN = T . Let v be a piecewise constant mapping from [0, T ] to some space X (endowed
with a semi-norm ‖ · ‖X) such that v(0) = v0 and v(t) = vn for all t ∈ (tn−1, tn]. Then,

∫ T−τ

0

‖v(t+ τ)− v(t)‖X ≤ τ
N∑

n=1

‖vn − vn−1‖X ∀τ ∈ [0, T ].

Proof: For all t ∈ [0, T ] we set

n∆t(t) =

{
0 if t = 0,
n if t ∈ (tn−1, tn],

so that ∫ T−τ

0

‖v(t+ τ)− v(t)‖Xdt ≤
∫ T−τ

0

n∆t(t+τ)∑

k=n∆t(t)+1

‖vk − vk−1‖Xdt.

We conclude the proof by applying Lemma 6.1 of [4]. �
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Let us set XD,∆t = (XD)N , and for all v = (vn)n=1,··· ,N ∈ XD,∆t let us define

ΠDm,∆tv(x, t) = ΠDmv
n(x) for all (x, t) ∈ Ω× (tn−1, tn],

ΠDf ,∆tv(x, t) = ΠDf
vn(x) for all (x, t) ∈ Γ× (tn−1, tn],

ΠT ,∆tv(x, t) = ΠT v
n(x) for all (x, t) ∈ Ω× (tn−1, tn].

We also define the functions

Sα
Dm,∆t(x, t) = Sα(x,ΠDm,∆tp(x, t)),

Sα
Df ,∆t(x, t) = Sα(x,ΠDf ,∆tp(x, t)).

Lemma 2.4.3 Assuming that hypotheses (H1− H5) hold, let uα, α = 1, 2, be a solution
to (2.3), then there exists C > 0 only depending on the data and on θT such that for all
τ > 0 one has
∑

α=1,2

‖Sα
Dm,∆t(·, ·+ τ)− Sα

Dm,∆t‖2L2(Ω×(0,T )) + ‖Sα
Df ,∆t(·, ·+ τ)− Sα

Df ,∆t‖2L2(Γ×(0,T )) ≤ C
√
τ ,

where we have set Sα
Dm,∆t(x, t) = Sα

Df ,∆t(x, t) = 0 for all t > T .

Proof: Let us denote by U the space L2(Ω) × L2(Γ) equipped with the scalar product
〈u, v〉U =

∫
Ω
φmumvmdx +

∫
Γ
φfufvfdτf (x). For all u = (um, uf ) ∈ U we also define the

dual semi-norm ‖u‖−1,D by

‖u‖−1,D = sup
v∈X0

D
,v 6=0

〈u, (ΠDmv,ΠDf
v)〉U

‖ΠT v‖V
.

Setting Sα,n
D = (Sα,n

Dm
, Sα,n

Df
) ∈ U , and using the assumptions (H1), (H2), (H4), (H5) on

the data, we deduce from (2.3) that there exists C > 0 depending only on the data and
on θT such that

∣∣∣∣
1

∆tn
〈Sα,n

D − Sα,n−1
D , (ΠDmv,ΠDf

v)〉U
∣∣∣∣

≤ C
(
‖ΠT u

α,n‖V +
1

∆tn

∫ tn

tn−1

(‖hm(., t)‖L2(Ω) + ‖hf (., t)‖L2(Γ))dt
)
‖ΠT v‖V

for all v ∈ X0
D. Therefore, one obtains the estimate

1

∆tn
‖Sα,n

D −Sα,n−1
D ‖−1,D ≤ C

(
‖ΠT u

α,n‖V +
1

∆tn

∫ tn

tn−1

(‖hm(., t)‖L2(Ω) + ‖hf (., t)‖L2(Γ))dt
)
.

Multiplying by ∆tn, summing over n = 1, . . . , N , and using Lemma 2.4.1, there exists
C > 0 depending only on the data and on θT such that

N∑

n=1

‖Sα,n
D − Sα,n−1

D ‖−1,D ≤ C. (2.9)
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Next setting p = u1 − u2 and Sα,n
D,∆t = (Sα

Dm,∆t, S
α
Df ,∆t) ∈ L2(U × (0, T )) we have

∫ T

0

‖Sα
D,∆t(t+ τ)− Sα

D,∆t(t)‖Udt

≤
√
LS

∫ T

0

‖Sα
D,∆t(t+ τ)− Sα

D,∆t(t)‖1/2−1,D ‖ΠT ,∆tp(t+ τ)− ΠT ,∆tp(t)‖1/2V dt

≤
√
LS

2
√
τ

∫ T

0

‖Sα
D,∆t(t+ τ)− Sα

D,∆t(t)‖−1,Ddt+

√
LS

√
τ

2

∫ T

0

‖ΠT ,∆tp(t+ τ)− ΠT ,∆tp(t)‖V dt.

In view of Proposition 2.4.4, the estimates (2.9), Lemma 2.4.1, and the assumption (H3),
there exists C > 0 depending only on the data and on θT such that

√
LS

2
√
τ

∫ T

0

‖Sα
D,∆t(t+ τ)− Sα

D,∆t(t)‖−1,Ddt ≤ C
√
τ ,

and ∫ T

0

‖ΠT ,∆tp(t+ τ)− ΠT ,∆tp(t)‖V dt ≤ C,

which implies that ∫ T

0

‖Sα
D,∆t(t+ τ)− Sα

D,∆t(t)‖Udt ≤ C
√
τ

with C > 0 depending only on the data and on θT . One concludes the proof using
0 ≤ Sα

m, S
α
f ≤ 1 . �

Lemma 2.4.4 It is assumed that hypotheses (H1− H5) hold. Let (D(m),∆t(m))m∈N be a
sequence of space-time discretizations such that there exists a positive constant θ satisfying
θT (m) ≤ θ for all m ∈ N and such that hT (m) → 0 as m → ∞. Let uα,(m), Sα

D(m)
m ,∆t(m)

and

Sα

D(m)
f ,∆t(m)

, α = 1, 2, be such that (2.3) holds for all m ∈ N.

1. Let ξ ∈ Rd and

T (m)
m (ξ) =

∑

α=1,2

‖Sα

D(m)
m ,∆t(m)

(·+ ξ, ·)− Sα

D(m)
m ,∆t(m)

‖L2(Rd×(0,T )),

where Sα

D(m)
m ,∆t(m)

is extended by 0 on
(
Rd\Ω

)
×(0, T ). Then, lim|ξ|→0 supm∈N T

(m)
m (ξ) =

0.

2. For all i ∈ I let τ(Pi) denote the vector subspace tangent to Pi, let ξ ∈ τ(Pi), and
let us set

T
(m)
f (ξ) =

∑

α=1,2

‖Sα

D(m)
f,i ,∆t(m)

(·+ ξ, ·)− Sα

D(m)
f,i ,∆t(m)

‖L2(Pi×(0,T )),

where Sα

D(m)
f,i ,∆t(m)

denotes the restriction of Sα

D(m)
f ,∆t(m)

to Γi, extended by 0 on
(
Pi \

Γi

)
× (0, T ). Then one has lim|ξ|→0 supm∈N T

(m)
f (ξ) = 0
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Proof: For each i ∈ I and for all ξ ∈ τ(Pi) let us define the set Γ
ξ
i = {x ∈ Γi,x+ ξ ∈ Γi}.

Since 0 ≤ Sα
Df,i

≤ 1 there exists a positive C depending only on the geometry of Γi and
on T such that

‖Sα

D(m)
f,i ,∆t(m)

(·+ξ, ·)−Sα

D(m)
f,i ,∆t(m)

‖2L2(Γi×(0,T )) ≤ C|ξ|+‖Sα

D(m)
f,i ,∆t(m)

(·+ξ, ·)−Sα

D(m)
f,i ,∆t(m)

‖2
L2(Γξ

i×(0,T ))
.

Denoting by ΠD(m)
f,i ,∆t(m)p

(m) the restriction of ΠD(m)
f ,∆t(m)p

(m) to Γi, one deduces from

Lemma 1.4.1 and Lemma 2.4.1 that

‖Sα

D(m)
f,i ,∆t(m)

(·+ ξ, ·)− Sα

D(m)
f,i ,∆t(m)

‖L2(Γξ
i×(0,T ))

≤ LS‖ΠD(m)
f,i ,∆t(m)p

(m)(·+ ξ, ·)− ΠD(m)
f,i ,∆t(m)p

(m)‖L2(Γξ
i×(0,T ))

≤ LS‖γiΠT (m),∆t(m)p(m)(·+ ξ, ·)− γiΠT (m),∆t(m)p(m)‖L2(Γξ
i×(0,T )) + 2LSC3

√
C5hT (m) .

Therefore, using Lemma 4.0.7 stated in the Appendix and Lemma B.2 of [34], we deduce
that

lim
ξ→0

sup
m∈N

‖Sα

D(m)
f,i ,∆t(m)

(·+ ξ, ·)− Sα

D(m)
f,i ,∆t(m)

‖L2(Pi×(0,T )) = 0 ∀i ∈ I.

One proves the first statement of the lemma using similar arguments. �

2.4.3 Convergence

In view of Lemma 2.4.3 and Lemma 2.4.4, the Kolmogorov-Fréchet theorem allows to
establish the following relative compactness result for the saturation.

Lemma 2.4.5 It is assumed that hypotheses (H1− H5) hold. Let (D(m),∆t(m))m∈N be a
sequence of space-time discretizations and uα,(m), Sα

D(m)
m ,∆t(m)

, Sα

D(m)
f ,∆t(m)

, α = 1, 2, be s.t

(2.3) holds for all m ∈ N. Then, for each α = 1, 2 one has the following result.

1. The sequence (Sα

D(m)
m ∆t(m)

)m∈N is relatively compact in L2(Ω× (0, T )).

2. For each i ∈ I the sequence (Sα

D(m)
f,i ,∆t(m)

)m∈N is relatively compact in L2(Γi× (0, T )).

The limit of the saturation can be identified thanks to the following result.

Lemma 2.4.6 It is assumed that hypotheses (H1− H5) hold. Let (D(m),∆t(m))m∈N be a
sequence of space-time discretizations such that there exist two positive constants θ and
γ satisfying θT (m) ≤ θ, γM(m) ≤ γ for all m ∈ N and such that hT (m) ,max∆t(m) → 0
as m → ∞. Let uα,(m), Sα

D(m)
m ,∆t(m)

and Sα

D(m)
f ,∆t(m)

, α = 1, 2, be s.t (2.3) holds for all

m ∈ N. Then, there exists a function pair (uα)α=1,2 ∈
(
L2(0, T ;V 0)

)2
such that up to a

subsequence

ΠT (m),∆t(m)uα,(m) ⇀ uα in L2(Ω×(0, T )) and γΠT (m),∆t(m)uα,(m) ⇀ γuα in L2(Γ×(0, T ))
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as m→ ∞; moreover setting p = u1 − u2, one has

Sα

D(m)
m ,∆t(m)

→ Sα
m(., p) in L

2(Ω× (0, T )) and Sα

D(m)
f ,∆t(m)

→ Sα
f (., γp) in L

2(Γ× (0, T ))

as m→ ∞.

Proof: The existence of the weak limit (uα)α=1,2 follows from Lemma 2.4.1 and Lemma
4.0.6 stated in the Appendix. In order to prove the second statement we remark that
it follows from Lemma 1.4.1 that ΠD(m)

m ,∆t(m)u
α and ΠD(m)

f ,∆t(m)u
α also converge weakly

to uα in L2(Ω × (0, T )) and to γuα in L2(Γ × (0, T ))) respectively. From Lemma 2.4.5,
there exist four functions sαm ∈ L2(Ω × (0, T )) and sαf ∈ L2(Γ × (0, T )), α = 1, 2, with
s1m + s2m = 1, s1f + s2f = 1, such that, up to a subsequence, Sα

D(m)
m ∆t(m)

converges strongly

to sαm in L2(Ω× (0, T )), and Sα

D(m)
f ∆t(m)

converges strongly to sαf in L2(Γ× (0, T )). Then,

one can conclude the proof using the Minty trick stated in Lemma 3.6 of [35] to show that
sαm = Sα

m(., u
1 − u2) and sαf = Sα

f (., γ(u
1 − u2)). �

Theorem 2.4.1 It is assumed that hypotheses (H1 − H5) hold. Let (D(m),∆t(m))m∈N be
a sequence of space-time discretizations such that there exist two positive constants θ and
γ satisfying θT (m) ≤ θ, γM(m) ≤ γ for all m ∈ N and such that hT (m) ,maxn ∆t

(m),n → 0
as m → ∞. Let uα,(m), Sα

D(m)
m ,∆t(m)

and Sα

D(m)
f ,∆t(m)

, α = 1, 2, be s.t (2.3) holds for all

m ∈ N. It is also assumed that ΠD(m)
m
p0,(m) converges strongly to pini in L2(Ω), and that

ΠD(m)
f
p0,(m) converges strongly to γpini in L2(Γ). Then there exists a weak solution (u1, u2)

to the problem (2.1) such that for each phase α = 1, 2

ΠT (m),∆t(m)uα,(m) ⇀ uα in L2(Ω×(0, T )) and γΠT (m),∆t(m)uα,(m) ⇀ γuα in L2(Γ×(0, T ))

up to a subsequence.

Proof: For all α = 1, 2 we denote by uα a weak limit of ΠT (m),∆t(m)uα,(m), whose existence
is stated by Lemma 2.4.6. We show below that (u1, u2) satisfies the variational formulation
(2.1). In order to simplify the notation we drop the index (m).

Let ψ be an arbitrary function from C∞
c (Ω× [0, T )) and ψ(t) the projection of ψ(., t)

to X0
D defined by ψν(t) = ψ(xν , t) for all ν ∈ M ∪ V ∪ FΓ. Taking v = ψ(tn−1) in (2.3)

for all n = 1, . . . , N and summing over n = 1, . . . , N we obtain that

N∑

n=1

∑

j=m,f

∆tn
(
Aα,n

Dj
(ψ(tn−1)) + Bα,n

Dj
(ψ(tn−1))

)
=

N∑

n=1

∑

j=m,f

∆tnCα,n
Dj

(ψ(tn−1)).

for each phase α = 1, 2.
Accumulation terms. Let us consider the term

∑N
n=1 ∆t

nAα,n
Dm

(ψ(tn−1)). Applying the
chain rule we obtain that

N∑

n=1

∆tnAα,n
Dm

(ψ(tn−1)) = −
N∑

n=1

∫ tn

tn−1

∫

Ω

φm Sα,n
Dm
∂tΠDmψ(t) dxdt−

∫

Ω

φm Sα,0
Dm

ΠDmψ(t
0) dx.
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Thanks to the strong convergence of the function Sα
Dm,∆t given by Lemma 2.4.6, to the

regularity of ψ, and to the convergence of ΠDmp
0, one deduces that

N∑

n=1

∆tnAα,n
Dm

(ψ(tn−1)) → −
∫ T

0

∫

Ω

φmS
α
m(., p)∂tψ dxdt−

∫

Ω

φmS
α
m(., pini)ψ(x, 0) dxdt.

Similarly we obtain that

N∑

n=1

∆tnAα,n
Df

(ψ(tn−1)) → −
∫ T

0

∫

Γ

φfS
α
f (., γp)∂tγψ dτf (x)dt−

∫

Γ

φfS
α
f (., γpini)γψ(x, 0) dτf (x)dt.

Diffusion terms. From Lemma 4.0.6 stated in the Appendix, Proposition 1.4.1, Lemma
2.4.6 and hypothesis (H4), we deduce that

N∑

n=1

∆tnBα,n
Dm

(ψ(tn−1)) →
∫ T

0

∫

Ω

kαm(x, S
α
m(., p))Λm∇u · ∇ψ dx

and
N∑

n=1

∆tnBα,n
Df

(ψ(tn−1)) →
∫ T

0

∫

Γ

kαf (x, S
α
f (., p))Λf∇τγu · ∇τγψ dτf (x).

Source terms. From Lemma 1.4.1 and Proposition 1.4.1, we deduce that

N∑

n=1

∆tnCα,n
Dm

(ψ(tn−1)) =
N∑

n=1

∫ tn

tn−1

∫

Ω

hαmΠDmψ(t
n−1) dxdt→

∫ T

0

∫

Ω

hαmψ dxdt

and

N∑

n=1

∆tnCα,n
Df

(ψ(tn−1)) =
N∑

n=1

∫ tn

tn−1

∫

Γ

hαfΠDf
ψ(tn−1) dτf (x)dt→

∫ T

0

∫

Γ

hαf γψ dτf (x)dt.

�

2.5 Upwind flux formulation

Let us consider the previous two-phase flow model extended to take into account the
gravity and with vanishing source terms hm = 0 and hf = 0. We denote by g the gravity
vector, by g its norm and we set on each fracture Γi, i ∈ I

gτi = g − (g · n+
i )n

+
i .

The mass densities of the phases are denoted by ρα for α = 1, 2. The two-phase flow
model with gravity amounts to find formally uα ∈ L2(0, T ;V 0), α = 1, 2, and (qα

m,q
α
f ) ∈
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L2(0, T ;HΣ(Ω,Γ)) such that one has for α = 1, 2:





φm∂t

(
Sα
m(x, p)

)
+ div(qα

m,a) = 0 on Ωa, a ∈ A,
φfdf∂t

(
Sα
f (x, γip)

)
+ divτi(q

α
f,i)− [[qα

m · ni]] = 0 on Γi, i ∈ I,

−kαm(x, Sα
m(x, p))Λm(∇uα − ραg) = qα

m,a on Ωa, a ∈ A,
−dfkαf (x, Sα

f (x, γip))Λf (∇τiγiu
α − ραgτi) = qα

f,i on Γi, i ∈ I,
p|t=0 = pini, on Ω,

with p = u1 − u2. In order to improve the stability of the scheme on coarse meshes for
convective dominant regimes, the implementation of the VAG or HFV schemes is based
on the flux formulation with upwinding of the mobilities rather than on the discrete varia-
tional formulation (2.3). We follow the notations introduced for the matrix and fractures
fluxes in Subsection 1.4.3 which account both for the VAG and HFV schemes.

The space discretization is assumed to be compatible with the rocktype partitions
(Ωj)j∈Jm for the matrix domain and (Υj)j∈Jf for the fracture networks (see the notations
of Assumption (H3)), that is to say, for all K ∈ M there exists jK ∈ Jm such that
K ⊂ ΩjK and for all σ ∈ FΓ there exists jσ ∈ Jf such that σ ⊂ Υjσ . In other words, jK
is the unique rocktype of cell K and jσ is the unique rocktype of the fracture face σ.

The matrix and fracture relative permeabilities are piecewise constant w.r.t. x on
the same partitions of the matrix and fracture network domains as the capillary pressure
curves. In the following, we will denote the mobilities (ratio of the phase relative perme-
ability to the phase viscosity) by kαm,j(s) in the matrix for each rocktype j ∈ Jm and by
kαf,j(s) in the fracture network for each rocktype j ∈ Jf .

As exhibited in Figure 2.1 for the VAG scheme, the definition of the saturations at
the matrix fracture interfaces takes into account the jump of the saturations induced by
the different rocktypes. More precisely, for pn = u1,n − u2,n ∈ X0

D, we set for α = 1, 2

{
Sα,n
K = Sα

m,jK
(pnK), K ∈ M,

Sα
K,ν = Sα

m,jK
(pnν ), ν ∈ dof∂K , K ∈ M,

(2.10)

and
{
Sα,n
σ = Sα

f,jσ
(pnσ), σ ∈ FΓ,

Sα,n
σ,ν = Sα

f,jσ
(pnν ), ν ∈ dof∂σ, σ ∈ FΓ.

(2.11)
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Figure 2.1: For the VAG scheme, saturations inside the cells K and L, the fracture face
σ and at the matrix fracture interfaces taking into account the saturation jumps induced
by the different rocktypes.

Let us also set

φK = (1−
∑

ν∈dof∂K\dofDir

αK,ν)

∫

K

φm(x)dx

and

φσ = (1−
∑

ν∈dof∂σ\dofDir

ασ,ν)

∫

σ

φf (x)dτf (x),

as well as

φK,ν = αK,ν

∫

K

φm(x)dx, ν ∈ dof∂K \ dofDir,

and

φσ,ν = ασ,ν

∫

σ

φf (x)dτf (x), ν ∈ dof∂σ \ dofDir.

which correspond to the porous volume distributed to the degrees of freedom or control
volumes.

Given p0 ∈ X0
D, the VAG or HFV upwind scheme looks for u1,n ∈ X0

D, u
2,n ∈ X0

D,
n = 1, · · · , N , such that for all α = 1, 2 and for all v ∈ X0

D one has:





∑

K∈M

( φK

∆tn
(Sα,n

K − Sα,n−1
K ) +

∑

ν∈dof∂K

kαm,jK
(Sα,n

K,ν,up)F
α
K,ν(u

α,n)
)
vK

+
∑

K∈M

∑

ν∈dof∂K\dofDir

(φK,ν

∆tn
(Sα,n

K,ν − Sα,n−1
K,ν )− kαm,jK

(Sα,n
K,ν,up)F

α
K,ν(u

α,n)
)
vν

+
∑

σ∈FΓ

( φσ

∆tn
(Sα,n

σ − Sα,n−1
σ ) +

∑

ν∈dof∂σ

kαf,jσ(S
α,n
σ,s,up)F

α
σ,s(u

α,n)
)
vσ

+
∑

σ∈FΓ

∑

ν∈dof∂σ\dofDir

(φσ,ν

∆tn
(Sα,n

σ,ν − Sα,n−1
σ,ν )− kαf,jσ(S

α,n
σ,ν,up)F

α
σ,ν(u

α,n)
)
vν = 0,

(2.12)
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with the phase fluxes definition

{
F α
K,ν(u

α) = FK,ν(u
α) + ραgFK,ν(Z), ν ∈ dof∂K , K ∈ M,

F α
σ,ν(u

α) = Fσ,ν(u
α) + ραgFσ,ν(Z), ν ∈ dof∂σ, σ ∈ FΓ,

setting Z =
(
zν

)
ν∈dofD

, and the upwinding of the mobilities

{
Sα,n
K,ν,up = Sα,n

K if F α
K,ν(u

α,n) ≥ 0,
Sα,n
K,ν,up = Sα,n

K,ν if F α
K,ν(u

α,n) < 0,

{
Sα,n
σ,ν,up = Sα,n

σ if F α
σ,ν(u

α,n) ≥ 0,
Sα,n
σ,ν,up = Sα,n

σ,ν if F α
σ,ν(u

α,n) < 0.
(2.13)

In the following numerical experiments, the volume fractions αK,ν , ασ,ν are chosen to
avoid the mixing of the fracture and matrix rocktypes. They are such that αK,ν = 0
if ν ∈ dof∂K belongs to the fracture network Γ, αK,ν = ωm otherwise, and such that
ασ,ν = ωf for ν ∈ dof∂σ.

To illustrate the importance of non mixing rocktypes with large permeability contrasts,
this choice denoted by VAG-1 (for the VAG scheme) will be compared with a second
choice denoted by VAG-2 for which we simply set αK,ν = ωm and ασ,ν′ = ωf for all
ν ∈ dof∂K , ν

′ ∈ dof∂σ. In order to roughly balance the volumes, the parameters ωm and
ωf are set in the following tests to ωm = 0.15 in 2D and 0.05 in 3D, and to ωf = 0.25 in
2D and 0.1 in 3D. Figure 2.2 exhibits an example of the control volumes at cells, fracture
face and nodes for both the VAG-1 and VAG-2 choices.

Figure 2.2: For VAG-1 (left) and VAG-2 (right), example of the choices of the control
volumes at cells, fracture face, and nodes, in the case of two cells K and L splitted by
one fracture face σ (the width of the fracture has been enlarged in this figure).

2.6 Numerical experiments

The nonlinear systems obtained at each time step are solved by a Newton Raphson algo-
rithm. The time stepping is defined by an initial time step, a maximum time step and the
following rule: if the Newton solver does not converge after 20 iterations, the time step is
chopped by a factor 2 and recomputed. The time step is increased by a factor 1.2 after
each successful time step until it reaches the maximum time step. The stopping criteria
on the relative residuals are fixed to 10−7 for the GMRes solver and to 10−6 for the New-
ton solver. A CPR-AMG right preconditioner [48], [58] is used in the GMRes iterative
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solver. Let us also stress that, using the two equations in each cell, the cell unknowns
are eliminated from the discrete linearized system at each Newton iteration without any
fill-in, reducing the Jacobian system to nodal and fracture face unknowns only.

In the following test cases, the inverse of the capillary pressure monotone graph will
be defined by the Corey law

S1
j (p) =

{
0 if p < pent,j,

(1− s2r,j)(1− e
pent,j−p

bj ) if p ≥ pent,j ,
(2.14)

and the mobilities of the two phases are given by the Corey laws

kαj (x, s
α) =





0 if s̄α < 0,
1
µα if s̄α > 1,
(s̄α)2

µα else,

(2.15)

for phase α = 1 (oil), and phase α = 2 (water) where s̄1 =
s1−s1r,j

1−s1r,j−s2r,j
, and s̄2 =

s2−s2r,j
1−s2r,j−s1r,j

are the reduced saturations, s1r,j, s
2
r,j are the residual saturations for both phases, pent,j is

the entry pressure, and µ1, µ2 are the viscosities of the phases.

2.6.1 Oil migration in a 2D basin with one barrier and a fault

We consider the simulation of the oil migration process, within the 2D cross section
Ω = (0, L) × (0, H) of a basin with H = L = 100 m (see Figure 2.3). Let us denote
by (x, y) the Cartesian coordinates of x and let us define the two points x1 = (50, 50)
and x2 = (50, 69.177). The basin includes an immersed fault Γ = (x1,x2), a barrier
Ω2 = {(x, y) ∈ Ω | 25 + x

2
< y < 35 + x

2
, x ∈ (0, 1)} \ Γ, and a drain Ω1 = Ω \ (Ω2 ∪ Γ).

The permeability Λm(x) is defined by the tensor

Λm(x) = λ1

(
0.82 −0.36
−0.36 0.28

)
.

for x ∈ Ω1, and by Λm(x) = λ1

100
Id for x ∈ Ω2, with λ1 = 10−12 m2. Note that the

eigenvalues of Λm(x) for x ∈ Ω1 are 0.1λ1 and λ1 and the corresponding eigenvectors are
( 1√

5
, 2√

5
), ( 2√

5
,− 1√

5
).

The permeability of the fault Γ is defined by Λf = 100λ1Id and its width is equal to
df = 0.1 m. The porosity is constant and equal to φm = φf = 0.1.

The inverse of the capillary pressure monotone graph in each subdomain Ωj, j = 1, 2
is exhibited in figure 2.3 and defined by (2.14) with the parameters pent,1 = 105 Pa,
pent,2 = 2 105 Pa, b1 = 102 Pa, and b2 = 104 Pa, s2r,1 = s2r,2 = 0. In the matrix S1

m(x, p)
is equal to S1

1(p) for x ∈ Ω1, and to S1
2(p) for x ∈ Ω2. In the fault, the inverse of the

capillary pressure is defined by S1
f (x, p) = S1

1(p) for x ∈ Γ. The mobilities of the two
phases are given by (2.15) with µ1 = 0.005 Pa.s and µ2 = 0.001 Pa.s and s1r = s2r = 0
both in the matrix and in the fracture.
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The migration occurs by gravity due to the lower density of the oil phase ρ1 = 850
Kg/m3 compared with the water phase ρ2 = 1000 Kg/m3. Phase 1 is injected at
the bottom boundary (0, 10) × {0} with imposed pressures u2 = 8 106 + ρ2gH Pa,
u1 = u2 + (S1

1)
−1(0.8) corresponding to an input phase 1 saturation s1 = 0.8. At the top

boundary the phase pressures are fixed to u2(x) = 8 106, and u1(x) = u2(x) + pent,1. The
remaining boundaries are assumed to be impervious as well as the boundaries of the fault.
At initial time the porous media is saturated with phase 2 with a hydrostatic pressure
u2ini(x) = 8 106 + ρ2g(H − y), and a phase 1 pressure defined by u1ini(x) = u2ini(x) + pent,j
for x ∈ Ωj, j = 1, 2, and u1ini(x) = u2ini(x) + pent,1 for x ∈ Γ.

The mesh is a nx×nx topologically Cartesian quadrangular grid which is refined below
the barrier as exhibited in figure 2.3. The simulation is done over 1800 days with an initial
time step equal to the maximum time step and fixed to 5 days. The VAG-1 choice of the
control volumes is fixed for all simulations of this test case.

Figure 2.4 exhibits the oil (phase 1) saturation at final time. We clearly see that the
oil phase rises by gravity along the direction of the highest permeability and accumulates
below the barrier. Due to the saturation jump condition at the barrier drain interface
given by the capillary pressure functions, oil can only cross the barrier through the fault.
Figure 2.4 exhibits the convergence of the oil saturation s1 at final time for the family
of meshes obtained with nx = 50, 100, 200, 400. Figure 2.5 plots the volume of oil below
the barrier, above the barrier, and in the fault function of time for this family of meshes.
In both cases, we observe the numerical convergence of the solution when the mesh is
refined.

Table 2.1 exhibits the numerical behavior of the simulation for the family of quadran-
gular meshes with a rather good scalability both in terms of linear and nonlinear solvers.

Mesh N∆t NChop NNewton NGMRes CPU (s)
50× 50 360 0 2.11 9.35 22.20
100× 100 364 2 2.34 11.75 106
200× 200 369 5 3.37 14.45 637
400× 400 392 17 4.41 17.84 3933

Table 2.1: For each mesh: number N∆t of successful time steps, number NChop of time step
chops, number NNewton of Newton iterations per successful time step, number NGMRes of
GMRes iterations by Newton iteration, CPU time in seconds.
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Figure 2.3: Inverses of the extended monotone graphs of the capillary pressures S1
1 (in

blue in subdomain Ω1 and in the fault Γf ) and S
1
2 (in red in subdomain Ω2). Mesh of the

basin with the barrier in red, the drain in blue, and the fault in cyan.

Figure 2.4: Discrete oil saturations at final time obtained for nx = 50, 100, 200, 400.
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Figure 2.5: Volume of oil above the barrier, below the barrier and in the fault function of
time for nx = 50, 100, 200, 400.

2.6.2 Oil migration in a basin with a random network of frac-
tures

We consider the migration of oil in the 2D cross section Ω = (0, L) × (0, H) of a basin
with H = L = 100 m. The basin comprises a random network of 927 fractures exhibited
in Figure 2.6. The permeability of the matrix Λm = λmId and the permeability of the
fractures Λf = λf Id are highly contrasted with λm = 10−15 m2, λf = 10−10 m2. The
width of the fractures is fixed to df = 0.01 m and their porosity to φf = 0.3. The porosity
of the matrix is set to φm = 0.1.

The inverses of the capillary pressure monotone graph in the matrix (j = m) and in
the fractures (j = f) are exhibited in Figure 2.6 and defined by the Corey law (2.14) with
the rocktype bm = 5 103 Pa, s2r,m = 0.2, s1r,m = 0 in the matrix and the rocktype bf = 102

Pa, s2r,f = s1r,f = 0 in the fractures. The mobilities are defined for j = m and j = f by
the Corey law (2.15) with µ1 = 0.005 Pa.s and µ2 = 0.001 Pa.s.

The densities of phases are fixed to ρ1 = 700 Kg/m3 for the oil phase and ρ2 = 1000
Kg/m3 for the water phase.

Phase 1 is injected at the bottom boundary (25, 75) × {0} with imposed pressures
u2(x) = 8.1 106 + ρ2gH Pa, u1(x) = u2(x) + (S1

f )
−1(0.999999) corresponding to an input

phase 1 saturation s1 = 0.999999 in the fractures. At the top boundary, the phase
pressures are fixed to u2(x) = 8 106 and u1(x) = u2(x). The remaining boundaries of the
basin are assumed to be impervious. The boundaries of the fracture network not located
at the top boundary of the basin nor at the bottom boundary (25, 75) × {0} are also
assumed impervious.
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At initial time the porous media is saturated with phase 2 with a hydrostatic pressure
u2ini(x) = 8 106 + ρ2g(H − y), and a phase 1 pressure defined by u1ini(x) = u2ini(x).

The mesh is a nx × nx topologically Cartesian quadrangular grid obtained by a uni-
form refinement of a given randomly distorted 30×30 Cartesian grid (see figure 2.6). The
simulation is fixed to 75 days with an initial time step of 0.01 day and a maximum time
step of 0.1 day. All the runs for this test case are performed on a laptop equipped with a
dual core 3GHz.

Figure 2.7 exhibits the discrete oil saturation at final time obtained with a topologically
Cartesian mesh of size nx = 480, and a non uniform refinement of the mesh with cell widths
away from the fracture equal to roughly 2.6, 4.1, 6.45, 10.1, 16.0, 25.2, 39.6, 62.4 cm (to be
compared with the width of say 21 cm obtained with the uniform mesh for nx = 480).
The choice of the volume fractions αK,ν , ασ,s is set to VAG-1. The numerical convergence
of this solution has been checked and it will be our reference solution for the comparison
of the VAG-1 and VAG-2 choices. The Figures 2.8, 2.9 compare the convergence of the
oil saturation on the family of uniformly refined meshes with nx = 60, 120, 240, 480, for
the two choices of the volume fractions. It is clear that the choice VAG-1 which avoids
to mix matrix and fracture volumes provides a much better convergence. It is explained
in Figure 2.10 exhibiting that the choice VAG-2 of the volume distribution yields a too
large volume of oil in the matrix and a too small volume of oil in the fractures due to the
enlarged volumes at the matrix fracture interfaces. This is a clear advantage of the VAG
scheme compared with usual CVFE approaches which cannot avoid the mixing of fracture
and matrix volumes due to the use of a dual mesh and the absence of cell unknowns.

The numerical behavior of the simulations for both choices of the distribution of the
volumes and for the family of meshes is exhibited in Table 2.2 showing the number of
successful time steps, the number of time step chops, the number of Newton iterations
by successful time steps, the number of GMRes iterations by Newton iteration, the CPU
time in seconds, and the maximum CFL number. This maximum CFL number is the one
obtained for the oil saturation Buckley Leverett equation (without the capillary diffusion)
discretized by an upwind monotone scheme and an Euler explicit time integration, and
using the total Darcy velocity and the buoyancy forces of the simulation.

In both cases a rather good scalability is obtained both in terms of nonlinear and
linear solvers although very large CFL numbers are observed in the fracture network.
The results are slightly better for VAG-2 due to the larger control volumes at the matrix
fracture interfaces as can be checked on the comparison of the maximum CFL numbers
in table 2.2.
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Figure 2.6: Network of 927 fractures and mesh obtained for nx = 60. Inverses of the
extended monotone graphs of the capillary pressures S1

m in the matrix, and S1
f in the

fractures.

Figure 2.7: Discrete oil saturation at final time obtained for nx = 480 with refinement at
the matrix fracture interfaces and the choice VAG-1 of the volumes.
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Figure 2.8: Discrete oil saturation at final time obtained for the family of uniformly refined
meshes nx = 60, 120, 240, 480, and the choice VAG-1 of the volumes.

Figure 2.9: Discrete oil saturation at final time obtained for the family of uniformly refined
meshes nx = 60, 120, 240, 480, and the choice VAG-2 of the volumes.
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Figure 2.10: Volume of oil in the fracture and in the matrix function of time for nx =
60, 120, 240, 480, and for the two choices VAG-1 and VAG-2 of the distribution of the
volumes.

Volumes nx N∆t NChop NNewton NGMRes CPU (s) CFL
VAG-1 60 759 0 2.62 8.08 164 210
VAG-1 120 759 0 2.90 8.84 535 420
VAG-1 240 777 14 3.94 9.44 2480 840
VAG-1 480 889 69 5.79 9.85 15062 1675

VAG-2 60 759 0 2.08 6.26 126 6.4
VAG-2 120 759 0 2.48 6.81 441 27
VAG-2 240 759 0 3.16 7.83 1868 106
VAG-2 480 788 21 4.98 8.53 11074 384

Table 2.2: For each choice VAG-1 and VAG-2 of the volume distribution and each mesh
size nx = 60, 120, 240, 480: number N∆t of successful time steps, number NChop of time
step chops, number NNewton of Newton iterations per successful time step, number NGMRes

of GMRes iterations by Newton iteration, CPU time in seconds, maximum CFL number.

2.6.3 3D network of fractures

This test case considers the migration of oil in a 3D basin Ω = (0, L) × (0, L) × (0, H)
with H = L = 100 m. Figure 2.11 exhibits the test case geometry where the fractures
in the cube are represented by parallelograms and are intersected with the top and the
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bottom of the basin. The family of tetrahedral meshes is generated using TetGen [59] in
order to be refined at the neighbourhood of the fracture network. Figure 2.11 shows the
coarsest mesh imesh = 1, and Table 2.3 defines for each mesh the number Nbcells of cells,
the number Nbnodes of nodes, the number NbFracF of fracture faces, the number of d.o.f.
Card(V ∪M∪FΓ) of the scheme (with two unknowns per d.o.f.), and the number of d.o.f.
Card(V�VD ∪ FΓ) of the linear system (with two unknowns per d.o.f.) after elimination
without fill-in of the cells and Dirichlet nodes, where VD is the set of Dirichlet nodes at
the boundary of Ω. It also specifies for each mesh the cubic root of the mean volume of
all cells at the matrix fracture interface, denoted by ρi, and defined by

̺i =
( 1

Card{K ∈ M|K ∩ Γ 6= ∅}
∑

K∈M|K∩Γ 6=∅
|K|
)1/3

. (2.16)

Figure 2.11: Geometry of the basin, fracture network, and coarsest three-dimensional
Delaunay mesh imesh = 1.

imesh Nbcells Nbnodes NbFracF ̺i scheme d.o.f. linear system d.o.f. θT
1 47 670 8 348 1 678 2.42 57 696 9 278 209
2 253 945 41 043 6 655 1.23 301 643 46 283 86
3 837 487 132 778 16 497 0.78 986 762 147 148 142
4 3 076 262 483 786 42 966 0.48 3 603 014 523 453 200

Table 2.3: For each mesh: number Nbcells of mesh cells, number Nbnodes of nodes, number
NbFracF of fracture faces, scheme and linear system number of d.o.f. (with 2 unknowns
per d.o.f), cubic root of the average cell volume at the matrix fracture interface ̺i, and
shape regularity θT .

We suppose again a high contrast between the permeability of the matrix Λm = λmId
and the permeability of the fractures Λf = λf Id with λm = 10−17 m2, λf = 10−11 m2.
The porosities, the phase densities, the mobilities and the capillary pressures are the same
than in the previous test case. The initial and boundary conditions are also the same ex-
cept that the oil phase is injected at the full bottom side of the domain. The simulation
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is run over a period of 10 years with an initial time step of 0.2 days, and a maximum time
step fixed to 5 days, except on mesh 4 for which a smaller maximum time step of 2.5 days
is used. All the numerical tests have been performed on the Cicada Cluster located at
the University Nice Sophia-Antipolis and which includes 1152 nodes equipped with two
eight-core Intel(R) E5-2670 processors. Figure 2.12 exhibits the oil saturation obtained
on the coarsest mesh imesh = 1 at final simulation time. We observe that the oil phase
injected at the bottom side in the domain initially saturated with water, quickly rises by
gravity along the faults and slowly penetrate in the matrix.

Figure 2.12: Discrete solution obtained by the VAG-1 scheme with the first mesh imesh = 1
at final simulation time: oil saturation in the fracture network and in the matrix using
the lower threshold in the matrix equal to 0.001.

Figure 2.13 compares the convergence of the oil saturation on the family of refined
meshes for the two choices of the volume fractions VAG-1 and VAG-2. It is clear, as in the
2D test case, for such high ratio of the fracture and matrix permeabilities, that VAG-1
provides a much better convergence than VAG-2 since it does not mix porous volumes
from the matrix and the fracture network. It illustrates again the advantage of the VAG
scheme compared with CVFE discretizations which cannot avoid such mixing of porous
volumes. Table 2.4 presents the numerical behavior of the simulations for both choices
of the distribution of the volumes and for the family of meshes. The results obtained
demonstrate the good robustness and scalability of the proposed numerical scheme both
in terms of Newton convergence, linear solver convergence and CPU time. As for the 2D
network test case, the robustness of the nonlinear solver is slightly better for VAG-2 due
to the larger control volumes at the matrix fracture interfaces for VAG-2 than for VAG-1.
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Figure 2.13: Volumes of oil in the fracture and in the matrix function of time for the
family of meshes imesh = 1, .., 4, and for both choices VAG-1 and VAG-2 of the volume
distribution.

Volumes imesh N∆t NChop NNewton NGMRes CPU (s)
VAG-1 1 384 6 2.20 10.05 588
VAG-1 2 390 10 3.08 15.11 5 898
VAG-1 3 415 21 4.02 15.93 31 806
VAG-1 4 784 30 3.37 16.75 209 485

VAG-2 1 373 0 1.87 6.94 482
VAG-2 2 373 0 2.42 13.05 4 452
VAG-2 3 375 1 3.02 14.56 21 645
VAG-2 4 747 13 2.92 16.55 172 946

Table 2.4: For each choice VAG-1 and VAG-2 of the volume distribution and for each
mesh imesh = 1, .., 4: number N∆t of successful time steps, number NChop of time step
chops, number NNewton of Newton iterations per successful time step, number NGMRes of
GMRes iterations by Newton iteration, CPU time in seconds.

2.6.4 Comparisons between the VAG and HFV discretizations

Tracer test case

In order to compare the accuracy of the VAG and HFV schemes, we first consider a
simple tracer problem with a single fracture for which we can derive an analytical so-
lution. This model can be obtained from the two-phase flow model assuming that
kαm(x, s) = kαf (x, s) = s and vanishing capillary pressures. In that case, the pressure
is solution of the hybrid dimensional single phase flow problem described in Chapter 1
and the saturation s1 denoted by c is solution of an hyperbolic equation (see [62] for
details).
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Let us set Ω = (0, 1)2, and denote by (x, y) the Cartesian coordinates of x. We
then define x1 = (0, 1

4
), θ ∈ (0, arctan(3

4
)), x2 = (1, 1

4
+ tan(θ)). Let Ω1 = {(x, y) ∈

Ω | y > 1
4
+ x tan(θ)}, and Ω2 = Ω \ Ω1. We consider a single fracture defined by Γ =

(x1,x2) = ∂Ω1∩∂Ω2 with tangential permeability Λf > 0, and width df > 0. The matrix
permeability is isotropic and set to Λm = 1, the matrix and fracture porosities are set to
φm = φf = 1, and the fluid viscosity is set to µ = 1. The pressure solution is fixed to
u(x, y) = 1 − x. In this case, the tracer model reduces to the following equations which
specifies our choice of the boundary and initial conditions:





∂tcm,a(x, y, t) + ∂xcm,a(x, y, t) = 0 on Ωa × (0, T ), a = 1, 2,
cm,a(x, y, 0) = 0 on Ωa, a = 1, 2,
cm,1(0, y, t) = 1 on (1

4
, 1)× (0, T ),

cm,2(0, y, t) = 1 on (0, 1
4
)× (0, T ),

cm,2(x,
1
4
+ x tan(θ), t) = cf (x, t) on (0, 1)× (0, T ),

Lcf (x, t) = βcm,1(x,
1
4
+ x tan(θ), t) on (0, 1)× (0, T ),

cf (0, t) = 1 on (0, T ),
cf (x, 0) = 0 on (0, 1),

(2.17)

where L = ∂t + k∂x + β with β = sin(θ)
df

and k = Λf cos
2(θ). It is assumed that k > 1.

This system can be integrated along the characteristics of the matrix and fracture velocity
fields leading to the following analytical solution:

cm,1(x, y, t) =

{
0 if t < x,
1 if t > x,

cf (x, t) =





0 if t < x
k
,

e−
β

k−1
(x−t) if x

k
< t < x,

1 if t > x,

cm,2(x, y, t) =





if y ∈ (0, 1
4
)

{
0 if t < x,
1 if t > x,

if y ∈ (1
4
, 1
4
+ tan(θ))

{
0 if t < x− 4y−1

4 tan(θ)
,

cf (
4y−1

4 tan(θ)
, t+ 4y−1

4 tan(θ)
− x) if t > x− 4y−1

4 tan(θ)
.

In the following numerical experiments the parameters are set to tan(θ) = 1
2
, Λf = 20

and df = 0.01. The mesh is a topologically Cartesian nx × nx grid. Figure 2.14 shows
an example of the mesh with nx = 20 as well as the analytical solution in the matrix
obtained at time tf = 0.5 chosen as the final time of the simulation.

The VAG and HFV finite volume discretizations of this model use the fluxes defined
in Subsection 1.4.3. Since the pressure is linear, the discrete pressure and fluxes are exact
for both the HFV and VAG schemes. The discretization in space of the tracer model uses
a first order upwind approximation of the concentration in the spirit of the two-phase
flow model discretization of Section 2.5. It is combined with an explicit time integration
using the time step defined by the maximum time step allowed by the CFL condition.
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Figure 2.15 compares the convergence of the L1 error for the discrete solutions at
final time tf = 0.5 obtained in the matrix domain and in the fracture for both the VAG
and HFV schemes. The numerical order of convergence is the same for both scheme but
the VAG scheme is slightly more accurate for this test case. This is confirmed by the
comparison of the discrete solutions in the fracture at final time tf = 0.5 exhibited in
Figure 2.16 for the VAG scheme and in Figure 2.17 for the HFV scheme.

Figure 2.14: Left: example of mesh with nx = 20 where the red line is the fracture. Right:
analytical solution of (2.17) at time tf = 0.5.
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Figure 2.15: Discrete L1 error for the solutions of the VAG and HFV schemes at time
tf = 0.5 in the matrix and in the fracture as a function of nx = 30, 50, 100, 200, 400, 800.
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Figure 2.16: Exact and discrete solutions in the fracture at time tf = 0.5 obtained with
the VAG scheme for nx = 30, 50, 100, 200, 400, 800.
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Figure 2.17: Exact and discrete solutions in the fracture at time tf = 0.5 obtained with
the HFV scheme for nx = 30, 50, 100, 200, 400, 800.

Two phase flow test case

We consider the test case of Subsection 2.6.3 and compare the discrete solutions obtained
by the VAG and HFV schemes as well as the numerical behavior of both schemes. The
comparison is done on three tetrahedral meshes with number of cells Nbcells = 47600
(47k), 124000 (124k) and 253945 (253k). For the larger mesh imesh = 3, the simulation
with the HFV scheme was too long (more than one week). Figure 2.18 compare the
volume of oil in the fracture and in the matrix obtained with the VAG and HFV schemes
with the 3 meshes. The reference solution is provided by the solution obtained with the
VAG scheme on the largest mesh imesh = 4 (3000k). It appears that the solutions obtained
with the VAG scheme is closer to this reference solution than the ones obtained with the
HFV scheme. The comparison in Table 2.5 of the CPU times obtained with both schemes
shows huge difference of CPU times, roughly speaking of a factor 10 to 20 for a given
mesh. Since the HFV scheme does not seem to be more accurate than the VAG scheme
due to the first order upwind approximation of the transport terms, it is clear that the
VAG scheme is much better than the HFV scheme on tetrahedral meshes for such fully
implicit discretization combined with a first order upwind approximation of the mobility
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terms.

Figure 2.18: Volumes of oil in the fracture and in the matrix function of time for the
tetrahedral meshes with NCells = 47k, 124k, 253k cells for the VAG and HFV schemes,
and for the tetrahedral mesh with NCells = 3000k for the VAG scheme. The distribution
of the volume is done following the VAG-1 type choice.
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Scheme NCells dof Nzeros N∆t NChop NNewton NGMRes CPU (s)
VAG 47k 9k 130k 384 6 2.2 10 590
VAG 124k 23k 338k 391 8 2.5 11 2000
VAG 253k 46k 686k 390 10 3.1 15 5900

HFV 47k 98k 682k 385 10 2.9 20 4900
HFV 124k 254k 1777k 413 20 3.9 34 25000
HFV 253k 517k 3628k 449 33 4.9 47 95000

Table 2.5: For the schemes VAG and HFV and for different tetrahedral meshes: number
NCells of cells, number dof of degrees of freedom after elimination of the cell unknowns,
number of nonzero connections in the Jacobian after elimination of the cell unknowns
(with a 2× 2 matrix per connection), number N∆t of successful time steps, number NChop

of time step chops, number NNewton of Newton iterations per successful time step, number
NGMRes of GMRes iterations by Newton iteration, CPU time in seconds.

2.7 Conclusion

This Chapter has introduced the VAG and HFV discretizations of hybrid dimensional
two-phase Darcy flows modelling discrete fracture networks with mass exchange between
the matrix and the fractures. Our discretization takes into account general polyhedral
meshes, general discrete fracture networks, the anisotropy of the matrix and of the fracture
permeability fields, and discontinuous rocktypes.

Compared with CVFE approaches, the numerical tests clearly exhibit that the VAG
scheme has the advantage to avoid the mixing of the fracture and matrix rocktypes at
the interfaces between the matrix and the fractures, while keeping the low cost of a nodal
discretization on unstructured meshes.

The numerical experiments also show that the HFV scheme is much more expensive
than the VAG scheme on tetrahedral meshes and do not provide a better accuracy due
to the first order upwind approximation of the mobility terms.

The convergence of the VAG scheme to a weak solution of the model has been proved
for arbitrary choices of the volumes at the nodal unknowns assuming the non degeneracy
of the relative permeabilities and a network of planar fractures. To our knowledge, this
is the first convergence result for this type of hybrid dimensional two-phase Darcy flow
model, and it also provides an existence result for such models. This proof can be readily
extended to cover any scheme which fit into the gradient scheme framework introduced
in Chapter 1.
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Chapter 3

Two-phase Darcy flow model
accounting for vanishing and
discontinuous capillary pressures
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Abstract: fully implicit time-space discretizations applied to the two-phase Darcy flow
problem lead to the systems of nonlinear equations, which are traditionally solved by some
variant of Newton’s method. The efficiency of the resulting algorithms heavily depends on
the choice of the primary unknowns since Newton’s method is not invariant with respect
to a nonlinear change of variable. In this regard the role of capillary pressure/saturation
relation is paramount because the choice of primary unknowns is restricted by its shape.
We propose an elegant mathematical framework for two-phase flows in heterogeneous
porous media resulting in a family of formulations, which apply to general monotone
capillary pressure/saturation relations and handle the saturation jumps at rocktype in-
terfaces. The presented approach is applied to the hybrid dimensional two-phase Darcy
flow model introduced in Chapter 2 using the phase pressure formulation. The new for-
mulation allows to extend this model in order to take into account more general capillary
pressure curves and also to provide a more robust nonlinear solver. The two-phase flow
model is discretized using the VAG scheme described in Chapter 2 in the case of the phase
pressure formulation. The discrete model requires as previously only two unknowns by
degree of freedom.

3.1 Introduction

In the framework of two-phase Darcy flows in fractured porous media, highly contrasted
capillary pressure curves are expected in particular between the matrix and the fractures.
Hence, it is crucial to take into account in the model formulation the saturation jumps at
the matrix fracture interfaces. In order to do so, as it has been stressed out in [21], the
capillary pressure curves have to be extended into the monotone graphs (see e.g. Figures
3.1).

In Chapter 2, the VAG discretization, employing phase pressures formulation, was
applied to model two-phase Darcy flows in heterogeneous porous media. In the context
of vertex-centered schemes the phase pressures formulation allows to capture the satura-
tion jump condition at the interface between different rocktypes without introducing any
additional unknowns at these interfaces. It is, however, limited to strictly increasing cap-
illary pressure curves and lacks robustness compared to pressure saturation formulations.
In this Chapter we extend the scheme introduced in Chapter 2 to the case of general
increasing capillary pressure curves. The same notations as in Chapter 2 are used and
some of them are recalled for conveniency.

In the matrix domain Ω (resp. in the fracture network Γ), we denote by φm(x)
(resp. φf (x)) the porosity and by Λm(x) (resp. Λf (x)) the permeability (resp. tangential
permeability) tensor. The thickness of the fractures is denoted by df (x) for x ∈ Γ. For
each phase α = 1, 2 (where α = 1 stands for the non wetting phase and α = 2 stands for the
wetting phase) we denote by kαr,m(x, s) (resp. k

α
r,f (x, s)), the phase relative permeabilities

and by S1
m(x, p) (resp. S

1
f (x, p)) the possibly set-valued inverses of the monotone graph

extension of the capillary pressure curves. For α = 1, 2, we will also denote by ρα the
phase densities and by µα the phase viscosities which for the sake of clarity are assumed
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constant.
We denote by uα the pressure of phase α = 1, 2 and by sαm (resp. sαf ) the saturation

of phase α = 1, 2 in the matrix (resp. the fracture network) domain. We define the water
saturations by

s1m = 1− s2m and s1f = 1− s2f .

The Darcy flux of phase α = 1, 2 in the matrix domain is defined by

qα
m = −k

α
r,m(x, s

α
m)

µα
Λm(∇uα − ραg),

where g = g∇z stands for the gravity vector. The flow in matrix domain is described by
the mass balance equation

φm∂ts
α
m + div(qα

m) = 0, (3.1)

and the macroscopic capillary pressure law

s1m ∈ S1
m(x, u

1 − u2). (3.2)

The Darcy flux of phase α = 1, 2 in the fracture Γi, i ∈ I integrated other the width of
the fracture is defined by

qα
f,i = −df

kαr,f (x, s
α
f )

µα
Λf (∇τiγiu

α − ραgτi),

with gτi = g − (g · n+
i )n

+
i . The flow in each fracture Γi is described by

dfφf∂ts
α
f + divτi(q

α
f,i)− [[qα

m · ni]] = 0. (3.3)

and
s1f ∈ S1

f (x, γiu
1 − γiu

2). (3.4)

The hybrid dimensional two-phase flow model looks for s1m, s
1
f , and (uα)α=g,w satisfying

(3.1)-(3.4). In addition to (3.1)-(3.4) we prescribe a no-flux boundary conditions at the
tips of the immersed fractures, that is to say on ∂Γ \ ∂Ω, and the mass conservation
and pressure continuity conditions at the fracture intersections. We refer to [13] for more
details on those conditions. Finally, one should provide some appropriate initial and
boundary data (see Chapter 2 for a more detailed description).

Remark that for a fixed x ∈ Ω (resp. x ∈ Γ) the functions S1
m and S1

f are, generally
speaking, set-valued, this is the case e.g. when the capillary pressure is neglected. Indeed,
in such situation the non wetting phase saturation takes any value in [0, 1] as long as
u1−u2 = 0. In addition, S1

m and S1
f depend on the space variable x and we will assume that

S1
m(x, ·) is piecewise constant and is defined with respect to a set of so-called rocktypes.

The following assumptions hold on S1
m and S1

f :

(A1) Assumption (H3) of Chapter 2 is reproduced in this Chapter, i.e. Ω can be decom-
posed into a set of disjoint connected open polyhedral sets (Ωj)j∈Jm with

⋃
j∈Jm Ωj =
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Ω, such that S1
m(x, p) = S1

m,j(x, p) for a.e. x ∈ Ωj and all p ∈ R. Similarly, we
suppose that there exists a family of disjoint connected polygonal open sets (Υj)j∈Jf
such that

⋃
j∈Jf Υj = Γ and such that S1

f (x, p) = S1
f,j(p) for a.e. x ∈ Υj and all

p ∈ R.

(A2)
(
S1
m,j

)
j∈Jm and

(
S1
f,j

)
j∈Jf

are maximal monotone graphs with domain R satisfying

S1
l,j(p) ⊂ [0, 1] for all p ∈ R and l = m, f , j ∈ Jl.

The matrix and fracture relative permeabilities are piecewise constant w.r.t. x on the same
partitions of the matrix and fracture network domains as the capillary pressure curves.
In the following, we will denote the mobilities (ratio of the phase relative permeability to
the phase viscosity) by kαm,j(s) in the matrix for each rocktype j ∈ Jm and by kαf,j(s) in
the fracture network for each rocktype j ∈ Jf .

In order to illustrate the difficulty of dealing with both heterogeneous and multi-valued
saturation curves S1

m and S1
f , let us admit for the moment that S1

m are S1
f do not depend

on x and that S1
m(p), S

1
f (p) are single-valued continuous increasing functions satisfying

for l = m, f
S1
l (p ≤ pent,l) = 0 and lim

p→+∞
S1
l (p) = 1

with pent,l ∈ R, l = m, f been an entry pressure. The figure 3.1a exhibits a typical form
of multi-valued capillary pressure curves corresponding to S1

m(p) are S
1
f (p).

When the system (3.1) - (3.4) is solved numerically it is desirable to reduce the number
of unknowns by eliminating the algebraic equations (3.2) and (3.4), in particular one may
expect to have as much as two unknowns by degree of freedom. Note that as long as the
functions S1

l , l = m, f , are single valued (which is the case when the capillary pressure
graphs do not have “horizontal” parts) it is possible to express s1m and s1f in terms of u1

and u2. In other words (u2, u1) is an admissible couple of primary unknowns. The other
admissible couple is (u2, s1f ) since u

1 and s1m can be expressed as

u1 = u2 + (S1
f )

−1(s1f ) and s
1
m = S1

m ◦ (S1
f )

−1(s1f ).

In contrast, unless pent,m is less or equal to pent,f , it is not possible to describe any possible
values of u1 and s1f at the matrix/fracture interface using the pair (u1, s1m). However this
formulation still can be applied “away” from Γ.

Let us remark that both (u2, u1) and (u2, s1f ) formulations lead, after a space-time
discretization of (3.1) and (3.3), to the equivalent systems of nonlinear algebraic equations.
Nevertheless, in practice, the performance of numerical algorithm would heavily depend
on the choice of primary variables. In particular it is well known that the use of the
formulation based on u1 and u2 has to be avoided when modeling imbibition in very dry
soil. This is explained by the the fact that applying Newton-Raphson method (or some
other linearization scheme) for solving nonlinear problems resulting from both formulation
breakes the equivalence.

Next, let’s assume that the capillary pressure is neglected in the fracture network
domain (see Figure 3.1b). In that case both S1

f and its inverse are set-valued, which
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(a) S1
m and S1

f are single-valued (b) S1
m is single-valued, S1

f is set-valued

Figure 3.1: Typical form of capillary pressure curves in matrix and fracture domains.

in particular implies that neither (u2, s1f ) nor (u2, u1) can be used as a pair of primary
variables for the whole range of values of saturation and capillary pressure. Instead one
may switch, as capillary pressure grows, from (u2, s1f ) to (u2, u1), and even possibly from
(u2, u1) to (u2, s1m) for u

1 − u2 ≥ pent,m. Note that if the capillary pressure in the fracture
domain is very small, but not strictly zero one cannot expect the numerical scheme based
on (u2, s1f ) formulation to be computationally efficient.

Finally, let us remark that there is no reason to restrict the choice of primary variables
to the set of natural variables, that is to say, to u2, u1, s1m and s1f . Consider the functions

P and (S1
l )l=m,f (3.5)

defined on an open convex set I ⊂ R such that P(I) = R+ and such that for τ ∈ I

S1
l (τ) ∈ S1

l (P(τ)) for all l = m, f (3.6)

Then the couple (u2, τ) is an admissible couple of primary unknowns with

u1 = u2 + P(τ) and s1l = S1
l (τ), l = m, f.

The map τ 7→ (P(τ),S1
l (τ)), l = m, f , can be seen as the parametrization of the curve

S1
l . The parametrization (3.5) is not uniquely defined by (3.6) even under some addi-

tional regularity assumptions (see Proposition 3.2.1) and hence one can try to choose the
functions P(τ) and S1

l (τ), l = m, f , in order to improve the convergence of the nonlinear
solver.

The remaining of this Chapter is organized as follows. In the next section we detail
the parametrization approach presented above and provide the extension of the VAG dis-
cretization accounting for general monotone capillary pressure graphs related to multiple
rocktypes, and finally we present numerical experiments, which aims to compare the clas-
sical pressure-saturation formulations with more advanced parametrizations following the
above ideas.
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3.2 Parametrization of Saturation Curves at the Rock-

type Interfaces

Assuming that S1
m(x, ·) and S1

f (x, ·) are single valued, the discretization of the two-phase
flow hybrid dimensional model using (u1, u2) as primary variables is presented in Subsec-
tion 2.5.

In this section, the upwind VAG or HFV finite volume discretization (2.12)-(2.10)-
(2.11)-(2.13) is extended to the case of the inverse capillary pressure graphs satisfying
(A2).

Let J = Jm ∪ Jf , for all K ∈ M we set

χK = {jK}.
For all σ ∈ FΓ we set

χσ = {jσ} ∪




⋃

{K |σ∈FK}
{jK}


 .

For all ν ∈ dof \ (M∪FΓ) we set

χν =




⋃

{K | ν∈dof∂K}
{jK}


 ∪




⋃

{σ | ν∈dof∂σ}
{jσ}


 .

Roughly speaking, for each ν ∈ dof the set χν ∈ 2J denote the collection of rocktypes
intersecting at the degree of freedom ν. We finally define

χD = {χν , ν ∈ dof},
where χD is seen as a subset of 2J .

The following proposition justifies the fact that a pair of unknowns is sufficient at any
degrees of freedom located on the rocktype intersection.

Proposition 3.2.1 Let χ ∈ χD and
(
S1
j

)
j∈χ be a finite family of maximal monotone

graphs with domain R and such that S1
j (p) ⊂ [0, 1] for all p ∈ R and j ∈ χ. Then there

exists a family of continuous piecewise differentiable functions Pχ and
(
S1
χ,j

)
j∈χ defined

on an open convex set I ⊂ R such that Pχ(I) = R and such that for τ ∈ I and j ∈ χ

S1
χ,j(τ) ∈ S1

j (Pχ(τ)); (3.7)

moreover they can be chosen such that the following non-degeneracy condition

∑

j∈χ

d

dτ

(
S1
χ,j(τ),Pχ(τ)

)
6= (0, 0) (3.8)

is satisfied for a.e. τ ∈ I. In addition, without loss of generality on can assume that
S1
χ,j

′
(τ),P ′

χ(τ) ≥ 0 for a.e. τ ∈ I.
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For all χ ∈ χD let Pχ and
(
S1
χ,j

)
j∈χ be some family of non decreasing functions

associated with the family of graphs
(
S1
j

)
j∈χ and satisfying (3.7) and (3.8).

The saturations are defined by




S1,n
K = S1

χK ,jK
(τnK), S2,n

K = 1− S1,n
K for all K ∈ M,

S1,n
σ = S1

χσ ,jσ(τ
n
σ ), S2,n

σ = 1− S1,n
σ for all σ ∈ FΓ,

S1,n
K,ν = S1

χν ,jK
(τnν ), S2,n

K,ν = 1− S1,n
K,ν for all K ∈ M, ν ∈ dof∂K ,

S1,n
σ,ν = S1

χν ,jσ(τ
n
ν ), S2,n

σ,ν = 1− S1,n
σ,ν for all σ ∈ FΓ, ν ∈ dof∂σ,

(3.9)

and the water pressures by




u2,nK = u1,nK + PχK
(τnK) for all K ∈ M,

u2,nσ = u1,nσ + Pχσ(τ
n
σ ) for all σ ∈ FΓ,

u2,nν = u1,nν + Pχν (τ
n
ν ) for all ν ∈ dof \ (M∪FΓ).

(3.10)

The new scheme consist in finding u1,n, τ 2,n ∈ X0
D, n = 1, · · · , N , satisfying (2.12),

(2.13) along with (3.9)-(3.10).

3.3 Implementation and Numerical Experiments

In this section we present numerical experiments which aims to compare the robustness
and efficiency of the classical pressure-saturation formulation with more advanced choices
of primary unknowns which are implemented using the graph parametrization approach
presented above. The pressure-pressure formulation is excluded from the comparison since
is has a very poor efficiency when dealing with dry (s1 close to 1) media. In practice, the
pressure-pressure formulation has also been tested and it failed to converge for matrix
fracture capillarity ratio bm

bf
larger than 10 (see below for the definition of this ratio).

We consider only two rocktypes, the matrix rocktype denoted by j = m and the
fracture (or fault) rocktype denoted by j = f . The phase mobilities are defined for both
rocktypes j = m, f and for α = 1, 2 by the following Corey law

kαj (s
α,x) =

kαj,max(s̄
α)n

α
j

µα
, (3.11)

where s̄2 =
s2−s2r,j

1−s2r,j−s1r,j
, and s̄1 =

s1−s1r,j
1−s1r,j−s2r,j

are the reduced saturations and µα is the phase

viscosity.
The capillary pressure/saturation relation are also given for the matrix (j = m) and

fracture (j = f) rocktypes by the following Corey law

S1
j (p) =

{
0 if p− pent,j < 0,

1− e
− p−pent,j

bj if p− pent,j ≥ 0,
(3.12)

where the parameter pent,j > 0 stands for the entry pressure. Both bj and pent,j depend on
the rocktype j = m, f . Figure 3.2 exhibits, the typical shape of the matrix and fracture
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capillary pressure graphs Pcm and Pcf , which are the multi-valued inverses of S1
m and

S1
f respectively. Remark that, when bj tends to 0, the graph of S1

j tends to the graph
of the multi-valued Heaviside function centered at p = pent,j. The following numerical
experiments will assess the efficiency of the different choices of primary unknowns for
different values of the parameters bj and pent,j, j = m, f .

Figure 3.2: The graphs of the capillary pressures Pcm in the matrix, and Pcf in the
fractures for bm = 105 Pa, bf = 104 Pa, pent,m = 105 Pa, pent,f = 0 (left) and bm = 105 Pa,
bf = 0, pent,m = 105 Pa, pent,f = 0 (right).

The following numerical experiments compare the pressure saturation formulation us-
ing non wetting phase pressure and the non wetting phase saturation as the primary
unknowns with some more advanced parametrizations inspired by variable switch tech-
niques. Since only one fracture and one matrix rocktypes are considered, the set χD is
equal to

χD = {{m}, {m, f}},
where χ = {m} corresponds to degrees of freedom located in the matrix only and χ =
{m, f} corresponds to degrees of freedom located at the matrix fracture interfaces. In the
following numerical experiments, the primary unknowns for χ = {m} are fixed for both
formulations to (u1, s1m) since this is an efficient and simple choice for a single rocktype.
The choices of parametrization at the matrix fracture interfaces i.e. for χ = {m, f} will
result in functions S1

m(τ), S1
f (τ), P(τ), which we define below for several types of capillary

pressures curves given by Corey law. We will distinguish the following five cases ordered
with increasing complexity:

(C1) bm > 0, 0 < bf < bm, pent,m = pent,f = 0;

(C2) bm > 0, bf = 0, pent,m = pent,f = 0;

(C3) bm > 0, 0 < bf < bm, pent,m > 0, pent,f = 0;

(C4) bm > 0, bf = 0, pent,m > 0, pent,f = 0;

(C5) bm = 0, bf = 0, pent,m > 0, pent,f = 0.
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The choices of the primary unknowns will be compared in terms numerical behavior of
the simulations based on the number of linear and nonlinear iterations and on the CPU
time.

3.3.1 Parametrizations for the pressure-saturation and variable-
switch formulations

C1 and C2 cases

In this case, the entry pressures are both set to zero i.e. pent,j = 0, j = m, f leading to
the following Corey laws

S1
j (p) =

{
0 if p < 0,

1− e
− p

bj if p ≥ 0,
(3.13)

and we assume that bm
bf
> 1. Figure 3.3 exhibits the capillary pressure graphs Pcm and

Pcf for bm = 105 Pa and the ratio bm
bf

= 10.

Figure 3.3: Pcm in the matrix, and Pcf in the fractures for bm = 105 Pa, bf = 104 Pa,
pent,m = pent,f = 0.

Pressure-saturation formulation: The formulation is defined by the following set of
functions





S1
m(τ) = τ

S1
f (τ) = Pc

−1
f (Pcm(τ)) = 1− (1− τ)

bm
bf

P(τ) = Pcm(τ) = −bm ln(1− τ)

(3.14)

with τ ∈ [0, 1).
When bm

bf
goes to infinity (i.e. when the capillary pressure in the fracture network

goes to zero), the function S1
f (τ) tends to the graph, which is multi-valued at τ = 0.

Numerically, this would lead to the lost of robustness for large values bm
bf
.
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The pressure-saturation formulation is compared to the variable switch (u1, s1f )/(u
1, s1m)

formulation picking the “steepest” saturation unknown, that is to say the one which has
a largest derivative with respect to the capillary pressure.

Variable-switch formulation: this formulation is obtained using the conditions (3.7)
in the framework of Proposition 3.2.1 to which we add the following conditions

max

(
dS1

m

dτ
,
dS1

f

dτ

)
= 1

and
S1
m(0) = S1

f (0) = 0.

The computations give (see Figure 3.4):

S1
f (τ) =

{
τ, τ ∈ [0, τ1),

Pc
−1
f (Pcm(τ − τ1 + Pc

−1
m (Pcf (τ1)))) = 1− (τ1 + (1− τ1)

bf
bm − τ)

bm
bf , τ ∈ [τ1, τ2),

(3.15)

S1
m(τ) =

{
Pc

−1
m (Pcf (τ)) = 1− (1− τ)

bf
bm , τ ∈ [0, τ1),

τ − τ1 + Pc
−1
m (Pcf (τ1)) = τ − τ1 + 1− (1− τ1)

bf
bm , τ ∈ [τ1, τ2),

(3.16)

P(τ) =

{
Pcf (S1

f (τ)) = −bf ln(1− τ), τ ∈ [0, τ1),

Pcm(S1
m(τ)) = −bm ln(τ1 + (1− τ1)

bf
bm − τ), τ ∈ [τ1, τ2),

(3.17)

where τ1 = 1−(
bf
bm
)

bm
bm−bf and τ2 = τ1+(1−τ1)

bf
bm . It is worth noticing that, by construction,

the derivatives of the functions S1
f (τ), S1

m(τ) and P(τ) are continuous at τ = τ1.
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Figure 3.4: S1
m(τ), S1

f (τ), and P(τ) curves for the pressure-saturation formulation (on
the top) and for variable switch formulation (at the bottom), obtained for bm = 105 Pa,
bf = 104 Pa, and pent,m = pent,f = 0.

When, for a fixed bm, the ratio
bm
bf

goes to infinity, the variable switch parametrization

tends to the following formulation (see Figure 3.5):

S1
f (τ) =

{
τ, τ ∈ [0, τ1),
1, τ ∈ [τ1, τ2),

(3.18)

S1
m(τ) =

{
0, τ ∈ [0, τ1),
τ − τ1, τ ∈ [τ1, τ2),

(3.19)

P(τ) =

{
0, τ ∈ [0, τ1),
(Pcm(S1

m(τ)) = −bm ln(1− (τ − τ1)), τ ∈ [τ1, τ2),
(3.20)

with τ1 = 1, τ2 = 2. Note that this limit case of a vanishing capillary pressure in the
fractures cannot be accounted for by the pressure-saturation formulation.
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Figure 3.5: S1
m(τ), S1

f (τ), and P(τ) curves for the variable switch formulation obtained
for bm = 105 Pa, bf = 0, and pent,m = pent,f = 0.

C3 and C4 cases

Next we consider the test cases with non zero entry pressure in the matrix pent,m > 0
and with zero entry pressure in the fractures pent,f = 0. The graphs of Pcj, j = m, f are
represented in Figure 3.2 for pent,m = 105 Pa, bm = 105 Pa, and bf = 104 Pa.

Pressure-saturation formulation: At the matrix fracture interfaces the capillary pres-
sure (see Figure 3.2) can not be expressed as a function of s1m for p < pent,m, but it is
however a function of s1f . Hence we choose s

1
f as primary unknown at the matrix fracture

interfaces, which leads to

S1
f (τ) = τ, Pm(τ) = (S1

f )
−1(τ) = −bf ln(1− τ),

and

S1
m(τ) =





0, τ < S1
f (pent,m) = 1− e

−pent,m
bf ,

Pc
−1
m (Pcf (τ)) = 1− e

pent,m
bm (1− τ)

bf
bm , τ ≥ 1− e

−pent,m
bf .

Remark that when bm
bf

goes to infinity the function Pc
−1
m (Pcf (τ)) becomes multi-valued

at τ = 1 which results in severe numerical instabilities. As a result, we were unable to
obtain the convergence of the nonlinear solver for bm

bf
> 10.

Variable-switch formulation: When bf = 0 it is clear that the capillary pressure is no
longer a function of the saturation for its values in the interval (0, pent,m). Actually, for
those values of capillary pressure the relevant pair of unknowns is (u2, u1). This leads to
the following formulation, which roughly speaking switches between the three unknowns
s1f , Pc, and s

1
m

S1
f (τ) =





τ, τ ∈ [0, τ1),

Pc
−1
f (pent,m(τ − τ1) + Pcf (τ1)) = 1− (1− τ1)e

− pent,m
bf

(τ−τ1)
, τ ∈ [τ1, τ2),

Pc
−1
f (Pcm(τ − τ2)) = 1− (1− (τ − τ2))

bm
bf e

−pent,m
bf , τ ∈ [τ2, τ3],

(3.21)
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S1
m(τ) =

{
0, τ ∈ [0, τ2),
τ − τ2, τ ∈ [τ2, τ3],

(3.22)

P(τ) =





Pcf (τ) = −bf ln(1− τ), τ ∈ [0, τ1),
pent,m(τ − τ1) + Pcf (τ1) = pent,m(τ − τ1)− bf ln(1− τ1), τ ∈ [τ1, τ2),
Pcm(τ − τ2) = pent,m − bm ln(1− (τ − τ2)), τ ∈ [τ2, τ3].

(3.23)

One can see that Pcf (τ1) < pent,m and the derivatives of the functions S1
f (τ), S1

m(τ), P(τ)

are continuous at τ = τ1, where τ1 = 1 − bf
pent,m

. Also we define τ2 = τ1 + 1 − Pcf (τ1)

pent,m
and

τ3 = τ2 + 1 such that P(τ2) = pent,m and S1
m(τ3) = 1. When the ratio bm

bf
goes to infinity

(see Figure 3.7) the following formulas are recovered

S1
f (τ) =

{
τ, τ ∈ [0, τ1),
1, τ ∈ [τ1, τ3),

(3.24)

S1
m(τ) =

{
0, τ ∈ [0, τ2),
τ − τ2, τ ∈ [τ2, τ3),

(3.25)

P(τ) =





0, τ ∈ [0, τ1),
pent,m(τ − τ1), τ ∈ [τ1, τ2),
Pcm(S1

m(τ) = −bm ln(1− (τ − τ2)) + pent,m, τ ∈ [τ2, τ3),
(3.26)

where τ1 = 1, τ2 = 2, and τ3 = 3.
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Figure 3.6: S1
m(τ), S1

f (τ), and P(τ) curves for the pressure-saturation formulation (on
the top) and variable switch formulation (at the bottom) for bm = 105 Pa, bf = 104 Pa,
pent,m = 105 Pa, pent,f = 0.

Figure 3.7: S1
m(τ), S1

f (τ), and P(τ) curves for variable switch formulation for bm = 105

Pa, bf = 0, pent,m = 105 Pa, pent,f = 0.

C5 case

We consider the case bm = bf = 0, and pent,m > 0, and pent,f = 0 (see Figure 3.8). This
test case can only be treated using the formulation involving multiple primary variable
switches.
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Figure 3.8: The capillary pressure curves Pcm in the matrix and Pcf in the fractures for
bm = bf = 0, pent,m = 105 Pa, and pent,f = 0.

In the spirit of the previous case we define the following parametrization:

S1
f (τ) =

{
τ, τ ∈ [0, τ1),
1, τ ∈ [τ1, τ3),

(3.27)

S1
m(τ) =

{
0, τ ∈ [0, τ2),
τ − τ2, τ ∈ [τ2, τ3],

(3.28)

P(τ) =





0, τ ∈ [0, τ1),
pent,m(τ − τ1), τ ∈ [τ1, τ2),
pent,m, τ ∈ [τ2, τ3],

(3.29)

with τ1 = 1, τ2 = 2, and τ3 = 3.

The curves S1
m, S1

f and P are exhibited in Figure 3.9.

Figure 3.9: S1
m(τ), S1

f (τ), and P(τ) curves for variable switch formulation for bm = bf = 0,
pent,m = 105 Pa, and pent,f = 0.
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3.3.2 Tight gas test case

The family of test cases presented here simulates the liquid gas two phase Darcy flow in
a tight gas reservoir. The liquid phase denoted by w corresponds to the wetting phase
2 and the gas phase denoted by g corresponds to the non wetting phase 1. The data
set is similar to Example 2 of [25] except for the choice of the capillary pressure curves.
The reservoir is defined by the domain Ω = (−500, 500) × (−250, 250) × (−100, 100) (in
meters). Three transverse fractures Γi, i = 1, 2, 3 of width df = 0.02 m are initiated
by hydraulic fracturing from a horizontal well. They are defined by the squares {xi} ×
(−50, 50)× (−50× 50) with x1 = −250, x2 = 0, x3 = +250. An horizontal well of radius
rw = 0.1 m is located along y = z = 0 and perforates each fracture Γi, i = 1, 2, 3 in a
triangular equilateral face of center xi, y = z = 0 and of edge size 1 m. During the water
injection phase, the water penetrates only a few tens of centimeters in the matrix due
to the low permeability of the reservoir. Therefore in order to obtain an accurate water
saturation in the neighbourhood of the fractures with a reasonnable number of cells,
a strong anisotropic refinement is needed in the normal direction in the neihbourhood
of each fracture. As exhibited in Figures 3.10 and 3.11 this anisotropic refinement is
obtained using prismatic meshes with triangular base. In order to match the boundaries
of these refined boxes with the surrounding tetrahedral mesh of the reservoir, a layer of
pyramids is added around each fracture box as exhibited in Figure 3.10. The tetrahedral
mesh matching the triangulation of the fracture box boundaries has been obtained using
TetGen [59]. Table 3.1 summarizes the characteristics of the resulting hybrid mesh that
will be used in the following numerical test cases. This mesh includes ten layers of prisms
of thickness 0.1 m on both sides of each fracture.

Figure 3.10: The prismatic meshes with their layer of pyramids for each refined box
around each fracture located at the center of each box (the thickness of the prisms and
pyramids has been enlarged for the sake of clarity).
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Figure 3.11: Connection of the prismatic mesh around one fracture with the surrounding
tetrahedral mesh using a layer of pyramids (the thickness of the prisms and pyramids has
been enlarged for the sake of clarity).

Ncells Nnodes NFracF Linear system d.o.f.
232 920 45 193 1 634 46 827

Table 3.1: Number Ncells of cells, number Nnodes of nodes, number NFracF of fracture faces
and number of d.o.f. in the linear system after elimination of the cell d.o.f. (2 physical
unknowns per d.o.f.).

In this test case the mobilities are defined by swr,m = 0.2, sgr,m = 0, kwm,max = 0.3,
kgm,max = 0.6, nw

m = 1.5, ng
m = 3 in the matrix, and by swr,f = sgr,f = 0, kwf,max = kgf,max = 1,

nw
f = ng

f = 1 in the fractures. The parameters of the Corey capillary pressures are fixed
to bm = 105 Pa for cases C1, C2, C3 and C4, and to pent,m = 105 Pa for cases C3, C4,
and C5. For cases C1 and C3 we will investigate the set of values bf = 1, 10, 102, 103, 104

Pa in the fractures.
The viscosities of the two phases are set to µw = 10−3 µg = 2.35 10−5 Pa.s, and

their densities are fixed to the constant value ρw = 1000 kg/m3 for the water phase, and
to the perfect gas density ρg(ug) = M

RT
ug kg/m3 for the gas phase with M = 0.016 Kg

corresponding to methane and R = 8.32 J·mol−1 ·K−1.The reservoir is initially at the
liquid pressure uw = 400 105 Pa, at the residual water saturation in the matrix and at
water saturation close to 0 in the fractures obtained by the continuity of the capillary
pressure at the matrix fracture interfaces. The permeability of the matrix is isotropic and
set to Λm = λmId with λm = 2 10−17 m2, very low compared with the permeability of
the fractures Λf = λf Id with λf = 2 10−12 m2. The porosity is equal to φm = 0.1 in the
matrix and to φf = 0.3 in the fractures.

The liquid is first injected at high hydraulic fracturing pressure 1000 105 Pa fixed at
each perforation during 1 day. This high pressure water injection phase mimics indeed the
invasion of the matrix by fracturing fluid during hydraulic fracturing operations. After
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injection, the well is closed during the next three days. The well is then put in production
at a constant bottom pressure of 300 105 Pa during the next 296 days. Only a part of the
invaded water will be back-produced in this early phase of production. The simulation
runs over a period of 300 days and the nonlinear systems obtained at each time step are
solved by a Newton-Raphson method. The time stepping is defined by an initial time
step of 0.001 hour and a maximum time step of 0.05 days during the water injection
period, of 0.1 days during the well closure, and of 5 days during the production period. If
the Newton method does not converge after 35 iterations, the time step is chopped by a
factor 2 and recomputed. The time step is increased by a factor 1.2 after each successful
time step until it reaches the maximum time step. The stopping criteria on the relative
residuals are fixed to 10−6 for the GMRes solver preconditioned by ILU0 and to 10−5 for
the Newton method.

The numerical behavior of the simulations for both the variable switch and pressure-
saturation formulations for cases C1 and C3, and for the variable switch formulation only
for cases C2,C4 and C5, is exhibited in Tables 3.2, 3.3 and 3.4. These tables exhibit the
number of successful time steps, the number of time step chops, the number of Newton
iterations by successful time steps, the number of GMRes iterations by Newton iteration,
and the CPU time.

The variable switch formulation turns out to be more efficient and more robust w.r.t.
the value of bm

bf
both in terms of number of Newton iterations and the number of time

step chops. Note that, as it can be expected, for bm
bf

= ∞ the variable switch formulation

performs similarly as for the case bm
bf

= 105. As shown in Table 3.3, in the case of the entry

pressure pent,m = 105 Pa, the pressure-saturation formulation fails to converge except for
very small ratios while the variable switch formulation is still robust w.r.t. the ratio bm

bf
.

Table 3.4 shows that the good performance of the proposed formulation is maintained for
the degenerate case C5 which confirms the efficiency of the proposed method. Note that,
for this test case, we have adapted the Newton solver such that if the Newton iterate for
the τ variable tries to jump from above to below the value τi = τ1, τ2 (or from below to
above), it is projected onto τ = τi + ǫ (τ = τi − ǫ correspondingly).
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pressure-saturation variable switch
bm
bf

N∆t NChop NNewton NGMRes CPU(s) N∆t NChop NNewton NGMRes CPU(s)

10 226 2 4.2 25.9 4 638 226 2 4.3 26.2 5 523
102 294 21 10.7 20.1 14 557 246 8 7.5 22.2 9 016
103 297 22 11.7 19.7 16 183 225 1 5.5 24.2 6 245
104 304 24 12.9 19.8 17 742 225 1 4.8 25.1 5 492
105 313 26 12.8 19.6 18 346 235 4 5.4 23.9 6 260
∞ n/a n/a n/a n/a n/a 235 4 5.3 23.9 6 448

Table 3.2: Numerical results for the pressure-saturation and variable switch formulations
for bm = 105 Pa, pent,m = pent,f = 0, and different values of the ratio bm

bf
: number N∆t of

successful time steps, number NChop of time step chops, number NNewton of Newton itera-
tions per successful time step, number NGMRes of GMRes iterations by Newton iteration,
and CPU time in seconds.

pressure-saturation variable switch
bm
bf

N∆t NChop NNewton NGMRes CPU(s) N∆t NChop NNewton NGMRes CPU(s)

2 221 0 3 29.2 3 937 221 0 3.1 28.9 4 479
10 398 52 9.9 20.2 23 400 262 13 6.8 22.7 10 378
102 n/c n/c n/c n/c n/c 269 14 9.9 20.8 14 185
103 n/c n/c n/c n/c n/c 285 18 8.9 20.1 13 740
104 n/c n/c n/c n/c n/c 242 6 6.9 22.8 9 067
105 n/c n/c n/c n/c n/c 276 16 7.5 21.3 11 516
∞ n/a n/a n/a n/a n/a 299 22 8.1 19.1 10 770

Table 3.3: Numerical results for the pressure-saturation and variable switch formulations
for bm = 105 Pa, pent,m = 105 Pa, pent,f = 0 and different values of the ratio bm

bf
: number

N∆t of successful time steps, number NChop of time step chops, number NNewton of New-
ton iterations per successful time step, number NGMRes of GMRes iterations by Newton
iteration, and CPU time in seconds.

variable switch
N∆t NChop NNewton NGMRes CPU(s)
221 0 5.8 26.3 5 948

Table 3.4: Numerical results for the pressure-saturation and variable switch formulations
for bm = bf = 0, pent,m = 105 Pa, and pent,f = 0: number N∆t of successful time steps,
number NChop of time step chops, number NNewton of Newton iterations per successful
time step, number NGMRes of GMRes iterations by Newton iteration, and CPU time in
seconds.

101



Figure 3.12: Water saturation in the perforated face in the fracture at x = 0 (blue) and
cut of the water saturation in the matrix (red) along the line y = z = 0 as a function of
the distance to the fracture at the end of each simulation period t = 1 day (top), t = 4
days (middle) and t = 300 days (bottom). The left plots (a) correspond to bm = 105

Pa, bf = 104 Pa, pent,m = pent,f = 0, and the right plots (b) to bm = 105 Pa, bf = 0,
pent,m = pent,f = 0
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(a) (b)

Figure 3.13: Water saturation in the perforated face in the fracture at x = 0 (blue) and
cut of the water saturation in the matrix (red) along the line y = z = 0 as a function of
the distance to the fracture at the end of each simulation period t = 1 day (top), t = 4
days (middle) and t = 300 days (bottom). The left plots (a) correspond to bm = 105 Pa,
bf = 0, pent,m = 105 Pa, pent,f = 0, and the right plots (b) to bm = bf = 0, pent,m = 105

Pa, pent,f = 0.
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Figure 3.14: On the top: instantaneous flow rates of water (left) and of gas (right) in
m3/day at the bottom: cumulated flow rates of water (left) and gas (right) in m3 as
a function of time, for the following four test cases. C1: bm = 105 Pa, bf = 104 Pa,
pent,m = pent,f = 0, C2: bm = 105 Pa, bf = 0, pent,m = pent,f = 0, C4: bm = 105 Pa, bf = 0,
pent,m = 105 Pa, pent,f = 0, C5: bm = bf = 0, pent,m = 105 Pa, pent,f = 0.

Figures 3.12 and 3.13 exhibit, at the end of each simulation period at t = 1 day, t = 4
days and t = 300 days, the water saturation in the perforated face in the fracture and
the cut of the water saturation in the matrix along the line y = z = 0 as a function
of the distance to the fracture. One clearly sees that the water phase fills the fractures
during the water injection period and penetrates the matrix less than one meter from
the fractures. At the end of the well closure period, water has been sucked by imbibition
from the fractures to the matrix. At the end of the simulation, the fractures are again
fully filled with the gas phase and the water phase above the residual saturation is only
partially removed during the production period due to the water retention by capillary
effect. Figure 3.14 exhibits the instantaneous and cumulated flow rates of water and gas
at the well with a positive value for production and a negative value for injection. It
can be checked in Figures 3.12, 3.13 and 3.14 that the larger the difference between the
capillary pressure in the matrix and in the fractures, the more water is retained by the
capillary effect into the matrix and at the same time the less water and the more gas are
produced.
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Figure 3.15: View of the topologically Cartesian refined mesh in the neighbourhood of
the 8 fractures. The mesh is refined along the normal directions of the fractures. The
quadrangular faces at the boundary of this refined mesh are cut into two triangles in
order to match this refined mesh with the tetrahedral mesh of the surrounding reservoir
domain.

Figure 3.16: Zoom of the refined mesh in the neighbourhood of the intersections between
the 2 hydraulic fractures and the natural fracture.

The next test case investigates the interaction between 7 hydraulic fractures and one
natural fracture (see Figures 3.15, 3.16) intersecting 2 among the 7 hydraulic fractures.
The reservoir is defined by the domain Ω = (−300, 850)× (−250, 250)× (−200, 200) (m).
In this case seven transverse fractures Γi, i = 1, 7 are initiated by hydraulic fracturing from
a horizontal well. The geometry of Γi, i = 1, 7 is defined as {xi}× (−50, 50)× (−50× 50)
with x1 = 0, x2 = −150, x3 = +150, x4 = +300, x5 = +450, x6 = +600, x7 = +750 . An
horizontal well is located along y = z = 0 and perforates each fracture Γi, i = 1, 7. The
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natural fracture Γi, i = 8 intersects the two hydraulic fractures Γi, i = 1, 2.
All the physical characteristics as well as the simulation parameters are the same as in
the previous test case.

Figure 3.17: Cut of the mesh at x = −149 showing the matching between the topologically
Cartesian refined mesh and the surrounding tetrahedral mesh.

To ease the construction of the refined mesh in the normal directions of the intersecting
fractures, a topologically Cartesian mesh is used in the neighbourhood of the 8 fractures
(see Figures 3.15, 3.16). The matching between this topologically Cartesian mesh and the
surrounding tetrahedral mesh is done by cutting the quadrangular faces at the boundary
of the refined mesh in two triangles, taking advantage of the ability of the VAG scheme
to deal with polyhedral cells (see Figures 3.17, 3.16). The construction is based on a non
uniform Cartesian discretization of each fracture, then 7 layers of uniform width hl = 0.14
m are extruded in the normal directions of the fractures at both sides of the fractures.
In a second step, each quadrangular face at the boundary of this refined zone is cut into
two triangles in order to connect this grid to the tetrahedral mesh generated during the
third step of the construction by TetGen [59]. As exhibited in Figure 3.16, the natural
Fracture Γi, i = 8 is refined in the neighbourhood of the intersections with the fractures
Γi, i = 1, 2. The main characteristics of this hybrid mesh are summarized in Table 3.5.

Nbcells Nbnodes NbFracF linear system d.o.f.
240 889 109 078 6 688 115 766

Table 3.5: Number Nbcells of cells, number Nbnodes of nodes, number NbFracF of fracture
faces and reduced linear system number of d.o.f. (with 2 unknowns per d.o.f).

The numerical behavior of the simulation for both the variable switch and pressure-
saturation formulations for case C1 is exhibited in Table 3.6. The variable switch formu-
lation turns out to be more efficient for the value of bm

bf
= 10 both in terms of number

of Newton iterations and number of time step chops which confirms the efficiency of the
proposed method. As it could be expected as a result of the very small volumes generated
by the combination of the intersections and of the refinement, the number of time step
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chops and of Newton iterations is larger than for the ones obtained with the previous test
case without intersections.

pressure-saturation variable switch
bm
bf

Ndt NChop NNewton NGMRes CPU(s) Ndt NChop NNewton NGMRes CPU(s)

10 292 27 9.23 39.81 25 859 268 19 8.35 43.54 22 482

Table 3.6: Zero entry pressures both in the matrix and in the faults - C1 case. Numerical
results for the pressure-saturation, and variable switch formulations for bm = 105 Pa,
pent,m = pent,f = 0, and ratio bm

bf
= 10: number N∆t of successful time steps, number

NChop of time step chops, number NNewton of Newton iterations per successful time step,
number NGMRes of GMRes iterations by Newton iteration, and CPU time in seconds.

3.3.3 Oil migration in a 2D basin

In this section we consider the oil migration in a faulted 2D basin exhibited in Figure
3.18 initially saturated with water. Note that, according to our previous notations, the
oil phase denoted by o stands for the non wetting phase α = 1 and the water phase
corresponds to the wetting phase 2 denoted here by w. The domain Ω is of extension
(0, 400)m× (0, 800)m and the fault width is assumed to be constantly df = 4m. The 2D
triangular mesh of the domain Ω exhibited in Figure 3.18 is extended to 3D by one layer
of prism since our code deals with 3D meshes. The characteristics of the resulting mesh
used in the following numerical test cases is exhibited in Table 3.7.

Figure 3.18: On the left: geometry of the basin Ω = (0, 400)m× (0, 800)m with the fault
network in red and the matrix domain in blue. On the right: coarse triangular mesh (with
2441 cells) of the 2D basin conforming to the fault network.
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Nbcells Nbnodes NbFracF linear system d.o.f.
16 889 17 226 176 17 284

Table 3.7: Prismatic mesh: number Nbcells of cells (equal to the number of triangles of
the 2D mesh), number Nbnodes of nodes, number NbFracF of fracture faces and reduced
linear system number of d.o.f. (with 2 unknowns per d.o.f).

Initially, the reservoir is saturated with the water phase (of constant density 1000
kg/m3 and viscosity 10−3 Pa.s), and the oil phase (of constant density 700 kg/m3 and
viscosity 5 10−3 Pa.s) is injected at the bottom boundary of the bottom fault, which is
managed by imposing non-homogeneous Neumann conditions at the injection location.
The oil then rises by gravity, thanks to it’s lower density compared to water and by the
overpressure induced by the imposed injection rate. Also, Dirichlet boundary conditions
are imposed at the upper boundary of the domain. Elsewhere, we have homogeneous
Neumann conditions.

We consider isotropic permeabilities in the matrix and in the faults set to Λm = λmId
with λm = 10−13 m2 and Λf = λf Id with λf = 10−10 m2. The parameters of the
Corey capillary pressures are fixed to bm = 106 Pa for cases C1, C2, C3 and C4, and to
pent,m = 106 Pa for cases C3, C4, and C5. For cases C1 and C3 we will investigate the
set of values bf = 1, 10, 104, 105 Pa in the faults. The porosity is equal to φm = 0.2 in the
matrix and to φf = 0.4 in the faults. The mobilities are given for both the matrix and fault
rocktypes j = m, f by the Corey laws (3.12) with swr,m = sgr,m = 0, kwm,max = kgm,max = 1,
nw
m = ng

m = 2 in the matrix, and by swr,f = sgr,f = 0, kwf,max = kgf,max = 1, nw
f = ng

f = 1 in
the faults. The simulation is run over a period of 5400 days with an initial time step of 1
day and a maximum time step fixed to 180 days.

The numerical behavior of the simulations for both the variable switch and pressure-
saturation formulations for cases C1 and C3, and for the variable switch formulation only
for cases C2,C4 and C5, is exhibited in Tables 3.8, 3.9 and 3.10. These tables exhibit the
number of successful time steps, the number of time step chops, the number of Newton
iterations by successful time steps, the number of GMRes iterations by Newton iteration,
and the CPU time. According to Table 3.8, the variable switch formulation turns out
to be more robust than the pressure-saturation formulation w.r.t. the value of the ratio
bm
bf

both in terms of number of Newton iterations and number of time step chops. The
difference of behavior between both formulations exhibited in Table 3.9 is much more
striking in the case of the nonzero entry pressure pent,m = 106 Pa. As previously, in that
case, the pressure-saturation formulation fails except for very small ratios bm

bf
while the

variable switch formulation is robust w.r.t. the ratio bm
bf
. Table 3.10 shows the good

performance of the variable switch formulation even for the degenerate case C5 both in
terms of time step chops and Newton iterations.
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pressure-saturation variable switch
bm
bf

N∆t NChop NNewton NGMRes CPU(s) N∆t NChop NNewton NGMRes CPU(s)

10 95 0 4.99 38.96 554 95 0 5.23 37.12 602
100 95 0 5.78 23.15 524 95 0 7.29 22.89 693
105 364 72 15.72 14.52 3791 110 4 13.47 29.26 1565
106 304 57 15.52 13.47 3311 110 4 13.41 19.23 1397
∞ n/a n/a n/a n/a n/a 102 2 12.74 20.79 1188

Table 3.8: Zero entry pressures both in the matrix and in the faults - C1 and C2 cases.
Numerical results for the pressure-saturation, and variable switch formulations for bm =
106 Pa, pent,m = pent,f = 0, and different values of the ratio bm

bf
: number N∆t of successful

time steps, number NChop of time step chops, number NNewton of Newton iterations per
successful time step, number NGMRes of GMRes iterations by Newton iteration, and CPU
time in seconds.

pressure-saturation variable switch
bm
bf

N∆t NChop NNewton NGMRes CPU(s) N∆t NChop NNewton NGMRes CPU(s)

10 102 2 6.07 30.67 707 95 0 5.62 28.49 572
100 n/c n/c n/c n/c n/c 95 0 7.38 26.37 727
105 n/c n/c n/c n/c n/c 121 7 12.76 23.89 1633
106 n/c n/c n/c n/c n/c 106 3 11.81 26.31 1277
∞ n/a n/a n/a n/a n/a 114 5 12.46 22.65 1321

Table 3.9: Nonzero entry pressure in the matrix - C3 and C4 cases. Numerical results for
the pressure-saturation and variable switch formulations for bm = 106 Pa, pent,m = 106

Pa, pent,f = 0 and different values of the ratio bm
bf
: number N∆t of successful time steps,

number NChop of time step chops, number NNewton of Newton iterations per successful
time step, number NGMRes of GMRes iterations by Newton iteration, and CPU time in
seconds.

variable switch
N∆t NChop NNewton NGMRes CPU(s)
185 17 14.28 25.92 2147

Table 3.10: Nonzero entry pressure in the matrix and in the faults - C5 case. Numerical
results for the pressure-saturation and variable switch formulations for bm = bf = 0,
pent,m = 106 Pa, and pent,f = 0: number N∆t of successful time steps, number NChop of
time step chops, number NNewton of Newton iterations per successful time step, number
NGMRes of GMRes iterations by Newton iteration, and CPU time in seconds.
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Figure 3.19: Oil saturation at t = 360 days (left), t = 2880 days (middle) and t = 5400
at the end (right) of simulation obtained for the C1 case with bm

bf
= 10 and the variable

switch formulation.

Figure 3.20 exhibits the volume of oil in the faults as a function of time for C1, C2, C4
and C5 test case solutions obtained with the variable switch formulation. As expected,
larger constrasts of capillary pressures between the matrix and the faults result in a larger
amount of oil in the fault up to the total pore volume and a quicker infill. Figure 3.19
shows the propagation of the oil saturation in the basin at times t = 360, 2880, 5400 days
for the C1 case with bm

bf
= 10 obtained with the variable switch formulation.

Figure 3.20: Amount of oil in the faults in m3 as a function of time for the following four
test cases. C1: bm = 106 Pa, bf = 105 Pa, pent,m = pent,f = 0, C2: bm = 106 Pa, bf = 0,
pent,m = pent,f = 0, C4: bm = 106 Pa, bf = 0, pent,m = 106 Pa, pent,f = 0, C5: bm = bf = 0,
pent,m = 106 Pa, pent,f = 0.
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3.4 Conclusions

This Chapter has introduced a general framework for the formulation of two phase Darcy
flows with discontinuous capillary pressure curves at rocktype interfaces. This framework
is based on the parametrization of the capillary pressure monotone graphs and it allows to
(1) capture the jumps of the saturations at the different rocktype interfaces, (2) maintain
the minimal number of primary unknowns per degree of freedom, (3) deal with arbitrary
capillary pressures including multi-valued saturation curves. This framework has been
tested on two families of test cases and compared with the classical pressure-saturation
formulation using the Vertex Approximate Gradient scheme for two-phase hybrid dimen-
sional Darcy flows in fractured porous media. The numerical results show clearly the
robustness and efficiency of our approach for a wide range of capillary pressures with
highly constrasted matrix and fracture rocktypes.
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Conclusions et perspectives
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Bilan des résultats obtenus

Au Chapitre 1 on a présenté le modèle dimensionnel hybride couplant l’écoulement dans
la matrice et celui dans le réseau de fractures représentées comme des surfaces de codi-
mension 1. On a montré que VAG et HFV sont des schémas de type gradient satisfaisant
les hypothèses de coercivité, de consistence, de conformité à la limite et de compacité. Les
résultats de densité établis en Annexe de sous espaces de fonctions lisses dans les espaces
de pression et de flux sont essentiels afin d’établir la convergence des schémas numériques
étudiés. Ces résultats sont obtenus pour le cas de réseaux de fractures s’intersectant,
débouchantes ou non débouchantes. Une etude comparative des deux schémas VAG et
HFV sur des solutions analytiques 3D en milieu homogène ou hétérogène, isotrope ou
anisotrope a été menée pour différentes familles de maillages cartésiens, hexaèdriques ou
tétraèdriques. Ce travail a donné lieu à la publication [12].

Le Chapitre 2 étudie un modèle d’écoulement diphasique immiscible dans les milieux
poreux prenant en compte les réseaux de fractures discrètes et les échanges entre le milieux
poreux environnant, la matrice, et le réseau de fractures. On a utilisé une formulation
implicite en pressions des phases qui est adaptée aux pressions capillaires discontinues au
sens où elle capte le saut des saturations aux interfaces entre différents types de roche,
en particulier à l’interface matrice fracture. Les résultats numériques confirment que
le schéma VAG a l’avantage, par rapport aux schémas Control Volume Finte Element
(CVFE) d’éviter le mélange des milieux matrice et fracture dans les volumes de contrôle,
tout en conservant un coût du même ordre que les méthodes nodales sur des maillages
non structurés à dominante tétraèdrique. La comparaison des schémas VAG et HFV sur
un cas test traceur et un cas test diphasique 3D montre que le schéma VAG est moins
coûteux à précision donnée que le schéma HFV pour le type de discrétisation en temps
fully implicite considéré dans ce chapitre.
On a démontré la convergence du schéma VAG sous l’hypothèse que les perméabilités rel-
atives sont minorées par une constante strictement positive. Ce résultat prend en compte
les pressions capillaires discontinues ce qui est particulièrement important aux interfaces
matrice fracture. Il s’agit à notre connaissance de la première preuve de convergence pour
ce type de modèle. Ce travail a donné lieu à la publication [13].

Au Chapitre 3 on a présenté une formulation des écoulements diphasiques prenant en
compte des pressions capillaires non strictement croissantes tout en permettant de cap-
turer le saut des saturations aux interfaces entre différents types de roches et d’utiliser
un nombre minimal d’inconnues par degré de liberté à savoir deux inconnues dans le
cas de notre modèle diphasique immiscible. La méthodologie proposée repose sur une
paramétrisation des graphes monotones des pressions capillaires pour les rocktypes présents
à l’interface. Différents cas tests incluant la simulation de la récupération de gaz dans
des réservoirs peu perméables par fracturation hydraulique sont présentés. Notre nou-
velle formulation, de type variable switch est comparée numériquement à une formulation
en variables pression et saturation sur plusieurs cas tests incluant la simulation de la
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récupération de gaz dans des réservoirs peu perméables par fracturation hydraulique. Les
résultats présentés montrent la robustesse et l’efficacité de cette nouvelle approche sur
des cas avec fort contraste de perméabilités entre la matrice et les fractures. Ce travail a
donné lieu à une publication dans les actes de la conférence internationale ECMOR XV
[17].

Perspectives

Comparaisons du modèle réduit au modèle volumique en diphasique. Les
modèles réduits ou dimensionnels hybrides ont été comparés aux modèles équi-dimensionnels
représentant les fractures comme des volumes pour des modèles monophasiques ou encore
dans le cas de traceurs (voir [2]). Dans le cas diphasique, cette comparaison reste à faire
afin de mieux comprendre les conditions de validité de la réduction de modèle.

Ordre 2 sur le transport dans la matrice. Les schémas étudiés dans cette thèse pour
les écoulements diphasiques reposent sur une discrétisation en temps implicite couplé
et une discrétisation par décentrage amont du premier ordre des termes de transport.
Cette approche a l’avantage d’être robuste et d’autoriser des grands nombres CFL ce qui
est important dans le contexte des milieux fracturés pour maintenir des pas de temps
raisonnables malgré les petits volumes générés par les fractures. En revanche, le schéma
amont d’ordre 1 sur le transport est très diffusif. Une alternative à étudier serait d’utiliser
pour le transport une schéma d’ordre 2 explicite dans la matrice tout en conservant un
schéma d’ordre 1 implicite dans les fractures dans le but de monter en précision tout en
maintenant un pas de temps suffisamment grand.

Réseaux 3D de grande taille. Une autre perspective est de pouvoir travailler avec les
géométries et géologies plus complexes. Dans le cadre de cette thèse on s’intèresse à la sim-
ulation de la récupération assistée de gaz dans des réservoirs de très faible perméabilité
par des méthodes de fracturation hydraulique. Il est alors nécessaire de raffiner forte-
ment le maillage à l’interface matrice fracture pour éviter d’élargir artificiellement les
drains que constituent les fractures. Les ressources mémoire et le temps de calcul sont
limités et les défis à relever pour traiter les gros réseaux de fractures concernent le maillage
(amélioration de la qualitè du maillage, raffinement anisotrope), la conception de schémas
de discrétisation robustes par rapport à la qualité du maillage, et de solveurs linéaires et
non linéaires robustes et parallèles.

Modèles à pressions discontinues pour traiter à la fois les drains et les barrières.
Dans cette thèse on étudie le cadre avec pression continue à l’interface modélisant unique-
ment les drains. L’une des principales perspectives de recherche concerne le cas dit à
pressions discontinues avec sauts de pression aux interfaces matrice fracture modélisant
à la fois les barrières et les drains. Ce type de modèle prenant en compte les fractures
pouvant agir soit comme des drains soit comme des barrières a été introduit dans [49] et
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[15] pour le cas d’écoulement monophasiques.
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Density results for the pressure and flux spaces

This section proves the density results stated in Propositions 1.2.2 and 1.2.3.

Smooth function subspace density result for the pressure space

We prove in this subsection Proposition 1.2.2 stating that the space C∞(Ω) is a dense
subspace of V . The density of C∞

c (Ω) in V 0 can be proved in the same way. We begin
with technical lemmas concerning the fractional Sobolev spaces.

Let s be a non-negative real number, for an non-empty open set Ω ⊆ Rd we denote
by Hs(Ω) the standard Sobolev space W s,p(Ω) with exponent p = 2. Note that for
0 ≤ s1 ≤ s2 one has H

s2(Ω) ⊂ Hs1(Ω), where H0(Ω) stands for L2(Ω). We also define the

spaces Hs
0(Ω) = C∞

c (Ω)
Hs(Ω)

and H̃s(Ω) = C∞
c (Ω)

Hs(Rd)
.

If Ω is a Lipschitz domain, then the trace operator γ∂Ω : C∞(Ω) → C∞(∂Ω) can be
continuously extended to γ∂Ω : Hs(Ω) → Hs−1/2(∂Ω) for all 1

2
< s < 3

2
; moreover the

trace operator is surjective and has a continuous right inverse [23, Lemma 3.6]. For s > 1
2

we define
Hs

∂Ω(Ω) = {u ∈ Hs(Ω) such that γ∂Ωu = 0}.
The following lemma summarizes some relations between the spacesHs(Ω), Hs

0(Ω), H̃
s(Ω)

and Hs
∂Ω(Ω) for Lipschitz domains.

Lemma 4.0.1 If Ω is a Lipschitz domain, then

(i) If s ≥ 0, then H̃s(Ω) ⊂ Hs
0(Ω); moreover if s− 1

2
/∈ Z, then H̃s(Ω) = Hs

0(Ω).

(ii) If 0 ≤ s ≤ 1

2
, then Hs

0(Ω) = Hs(Ω).

(iii) If
1

2
< s <

3

2
, then Hs

0(Ω) = Hs
∂Ω(Ω).

Proof: See [41, Theorems 1.4.4.5 and 1.4.2.4] for the proof of (i) and (ii). The proof of

(iii) for
1

2
< s ≤ 1 is also given in [50, Theorem 3.40], for 1 < s < 3

2
see [52]. �

Lemma 4.0.1 implies in particular that for 1
2
< s < 3

2
one has Hs

0(Ω) = H̃s(Ω) =
Hs

∂Ω(Ω) and that for any u ∈ Hs
0(Ω) its extension by zero belongs to Hs(Rn).

Let Ω be a Lipschitz domain, let l ∈ N and let
(
Ωi ⊂ Ω

)
i∈{1,...,l}

be a family of

Lipschitz domains satisfying
⋃

i∈{1,...,l}
Ωi = Ω and Ωi ∩ Ωj = ∅ for all i, j ∈ {1, . . . , l} with

i 6= j. Let
(
ui ∈ H1(Ωi)

)
i∈{1,...,l}

be a set of functions such that for all i, j ∈ {1, . . . , l}

satisfying ∂Ωi ∩ ∂Ωj 6= ∅, then
(
γ∂Ωi

ui

)
|∂Ωi∩∂Ωj

=
(
γ∂Ωj

uj

)
|∂Ωi∩∂Ωj

. For all i ∈ {1, . . . , l}
we denote by χΩi

the indicator function of the domain Ωi, it is classical that the function
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u =
∑

i∈{1,...,l}
uiχΩi

belongs to H1(Ω). The following lemma gives a similar result for

functions in Hs(Ω), with 1
2
< s < 1 and Ω being the boundary of a polyhedral domain.

Lemma 4.0.2 Let K be a bounded polyhedral domain in R3, let FK be the set of its
polygonal faces and EK the set of its edges. For all σ ∈ FK we denote by Eσ the set of
edges of σ and for all e ∈ EK by FK,e ⊂ FK the two faces containing e. Let 1

2
< s < 1,

for all σ ∈ FK and e ∈ Eσ we denote by γσ,e the trace operator from Hs(σ) to Hs− 1
2 (e).

Let u ∈ L2(∂K) such that u|σ ∈ Hs(σ) for all σ ∈ FK and such that for all e ∈ EK
with FK,e = {σ, σ′} one has γσ,e(u|σ) = γσ′,e(u|σ′). Then, u ∈ Hs(∂K).

Proof: Let e ∈ EK and FK,e = {σ, σ′}, we associate with e a couple of Lipschitz domains
(Dσ

e )σ∈FK,e
such that Dσ

e ⊂ σ and ∂Dσ
e ∩ ∂σ = e for all σ ∈ FK,e, and such that Dσ′

e is

obtained by a rotation of Dσ
e around e. We denote De = D

σ

e ∪D
σ′

e and De = De \ ∂De.

The function γσ,eu
σ
e is in Hs− 1

2 (e), implying in view of statements (i) and (ii) of Lemma

4.0.1 that its extension by zero on ∂Dσ
e belongs to Hs− 1

2 (∂Dσ
e ). The trace operator

γ∂Dσ
e
: Hs(Dσ

e ) → Hs− 1
2 (∂Dσ

e ) is surjective, therefore there exists uσe ∈ Hs(Dσ
e ) such that

γ∂Dσ
e
uσe =

{
γσ,euσ on e,
0 on ∂Dσ

e \ e.

We denote by ue the extension by symmetry of uσe to De. One can show that ue ∈ Hs
0(De),

implying that its extension by zero to the whole ∂K, denoted by ue, belongs to H
s(∂K).

Let us consider the function
vσ = u|σ −

∑

e∈Eσ
ue|σ.

Since vσ ∈ Hs
0(σ) it can be extended by zero to the whole ∂K; we denote this extension

by vσ. To complete the proof we remark that

u =
∑

σ∈FK

vσ +
∑

e∈EK
ue ∈ Hs(∂K).

�

Lemma 4.0.3 The trace operator γ is onto from V to H1(Γ).

Proof: Given u ∈ H1(Γ) we prove that there exists U ∈ V such that γU = u. We
focus on the case d = 3, the adaptation to the bidimensional setting is straightforward.
The proof relies on the definition of a polyhedral mesh which is slightly different from
Definition 1.4.1. More precisely in addition to Definition 1.4.1 it is assumed that all the
mesh faces σ ∈ F are planar. On the other hand the existence of cell (and face) “centers”
is not required. Such polyhedral partitioning of Ω \ Γ always exists. For example we can
define the set of cells M as the set of connected components of Ω\⋃i∈I Pi. In addition to
the previous notations, we will denote by Fe the set of faces sharing a given edge e ∈ E .
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For all e ∈ EΓ we denote by γe the trace operator acting from H1(Γ) to H
1
2 (e), and

for all e ∈ E we define

ue =

{
γeu if e ∈ EΓ,
0 else.

Let σ ∈ F \FΓ and let us denote by χe, e ∈ Eσ the indicator function of e defined on ∂σ.
In view of statements (i) and (ii) of Lemma 4.0.1 the function u∂σ =

∑
e∈Eσ χeue belongs

to Hs(∂σ) for any 0 < s <
1

2
.

For all σ ∈ F \FΓ there exists a function uσ ∈ Hs+ 1
2 (σ) having the trace on ∂σ equal

to u∂σ. For σ ∈ FΓ we denote by uσ ∈ H1(σ) the restriction of u on σ. Let χσ be the
indicator function of σ defined on

⋃
σ∈F σ, we set u∗ =

∑
σ∈F χσuσ. Lemma 4.0.2 implies

that for all K ∈ M the restriction of u∗ on ∂K belongs Hs+ 1
2 (∂K)

Finally, for all K ∈ M we denote by UK some lifting of u∗|∂K in Hs+1(K) and we

define U =
∑

K∈M
χKUK , where χK is the indicator function of a cell K. Then, it follows

that U ∈ H1(Ω) and that γU = u. �

Let us recall (see e.g. [18] Proposition 1.9) that the density of a linear subspace M of
V is equivalent to the fact that any linear form of V ′ vanishing on M is vanishing on V .

The caracterization of V ′ can be obtained from the Riesz theorem, implying that any
continuous linear form ζ on V writes ζ = ξ + γtτ where ξ ∈ (H1(Ω))′ and τ ∈ (H1(Γ))′.
Then, assuming that 〈ζ, ϕ〉 = 0 for all ϕ ∈ C∞(Ω) it results from Lemma 4.0.4 stated and
proved below that ζ = 0. Therefore the space C∞(Ω) is dense in V .

Lemma 4.0.4 Let ζ = ξ + γtτ where ξ ∈ (H1(Ω))′ and τ ∈ (H1(Γ))′ be such that
〈ζ, ϕ〉 = 0 for all ϕ ∈ C∞(Ω), then ζ = 0.

Proof: It is known that C∞
c (Ω \Γ), defined as the space of C∞(Ω) functions vanishing in

a neighbourhood of Γ, is a dense subspace of H1
Γ(Ω \Γ) defined as the space of H1(Ω \Γ)

functions vanishing on Γ. From the surjectivity and continuity of the trace operator γ
from V to H1(Γ), there exists a continuous lifting operator denoted by rΓ from H1(Γ) to
V . Using < ξ, ϕ >= 0 for all ϕ ∈ C∞

c (Ω \ Γ), and the density of C∞
c (Ω \ Γ) in H1

Γ(Ω \ Γ),
we deduce that < ξ, v >=< ξ, rΓ(γ(v)) > for all v ∈ V . It results that τ̃ = rtΓξ ∈ (H1(Γ))′

is such that ξ = γtτ̃ . Hence, we can assume in the remaining of the proof that ξ = 0.
Let us set E =

⋃
i∈I ∂Γi. We have E =

⋃
e∈EΓ ē where EΓ is the set of edges of Γ in

the mesh defined above. Let γE the trace operator from H1(Γ) to L2(E) and let us define

the space H
1
2 (E) as γE(H

1(Γ)). We also define the space H
1
2 (∂Γi) as the set of traces on

∂Γi of functions in H1(Γi). Then, it is easy to show that a function v ∈ L2(E) belongs

to H
1
2 (E) iff for all i ∈ I, the restriction vi of v to ∂Γi belongs to H

1
2 (∂Γi). The function

space H
1
2 (E) is endowed with the Hilbertian norm

‖v‖
H

1
2 (E)

=
∑

i∈I

(
‖vi‖2

H
1
2 (∂Γi)

) 1
2
.
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From the continuity and surjectivity of the trace operator γE from H1(Γ) to H
1
2 (E),

we deduce that there exists a continuous lifting operator denoted by rE from H
1
2 (E) to

H1(Γ). Let us denote by H1
E(Γ \E) the subspace of functions in H1(Γ) with a vanishing

trace on E. From the known density of C∞
c (Γ \E) in H1(Γ \E), we deduce as above that

l = rtEτ ∈ (H
1
2 (E))′ is such that τ = γtEl

Let us denote by VE the set of the vertices of E. For all φ ∈ C∞
c (E \ VE), there exists

ϕ ∈ C∞(Ω) such that φ = ϕ|E. Hence, l ∈ (H
1
2 (E))′ is such that < l, φ >= 0 for all

φ ∈ C∞
c (E \ VE). Since C∞

c (e) is dense in H
1
2 (e) for any edge e ([41] Theorem 1.4.2.4),

we can deduce that C∞
c (E \ VE) is dense in H

1
2 (E) and hence that l = 0, and then that

ζ = 0. �.

Smooth function subspace density result for the flux space

We prove in this subsection Proposition 1.2.3 stating that the space C∞
HΣ

(Ω,Γ) is a dense
subspace of HΣ(Ω,Γ).

Let us start by the following technical lemma.

Lemma 4.0.5 Let vm ∈ L2(Ω), gm ∈ L2(Ω)d, and vf ∈ L2(Γ), gf ∈ L2(Γ)d−1 be such
that

aΣ

(
(qm,qf ), (vm, vf ,gm,gf )

)
= 0 for all (qm,qf ) ∈ C∞

HΣ
(Ω,Γ), (4.1)

then vm ∈ V 0, vf = γvm, gm = ∇vm and gf = ∇τγvm.

Proof: It follows from (4.1) that
∑

a∈A

∫

Ωa

(vmdiv(qm,a) + qm,a · gm)dx = 0, for all qm ∈

C∞
c (Ω \ Γ)d, we classically deduce that vm ∈ H1(Ω \ Γ) and that gm = ∇vm. Next, let us

denote by γ±i : H1(Ω \ Γ) → L2(Γi) the trace operators on Γi from the sides ± of Ω \ Γ.
For any given i ∈ I, let us denote by ωΓi

any open ball of Γi. For any ϕi ∈ C∞
c (ωΓi

), one
can build a function qm,a+i

∈ C∞
b (Ω

a
+
i
) such that qm,a+i

·n+
i = ϕi on ωΓi

and qm,a−i
·n−

i = 0

on ωΓi
if a+i = a

−
i , qm,a+i

· n = 0 on ∂Ω
a
+
i
∩ ∂Ω, and qm,a±j

· n±
j = 0 on the sides ± of the

fractures i 6= j ∈ I such that a±j = a
+
i . It follows from (4.1) that

∫

ωΓi

(γ+i vm − vf )ϕidτ(x) = 0.

which implies that γ+i vm = vf |Γi
in L2(Γi) for all i ∈ I. Similarly, we can show that

γ−i vm = vf |Γi
in L2(Γi) for all i ∈ I, and vm = 0 on ∂Ω. Hence we deduce that vm ∈ H1

0 (Ω)
with vf = γvm. Next, for all i ∈ I and for all qf,i ∈ C∞

c (Γi)
d−1, one has

∫

Γi

(vfdivτi(qf,i) + gf · qf,i)dτ(x) = 0,

which implies that vf |Γi
∈ H1(Γi) with gf |Γi

= ∇τivf |Γi
. Next, for all (i, j) ∈ I × I, i 6= j,

such that Σi,j \Σ0 is of codimension 2 non zero measure, let us consider any open segment
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Li,j ⊂ Σi,j \ Σ0, ri,j ∈ C∞
c (Li,j) and its extension ri (resp. rj) by zero outside of Li,j on

Σi (resp. Σj). Then, one can build (0,qf ) ∈ C∞
HΣ

(Ω,Γ) such that qf,i · nΣi
= ri, and

qf,j · nΣj
= −rj and qf,l = 0 for all l ∈ I \ {i, j}. It follows from (4.1) that

∫

Li,j

(
(qf,i · nΣi

)γΣi
vf |Γi

+ (qf,j · nΣj
)γΣj

vf |Γj

)
dl(x)

=

∫

Li,j

ri,j(γΣi
vf |Γi

− γΣj
vf |Γj

)dl(x) = 0,

and hence that γΣi
vf |Γi

= γΣj
vf |Γj

on Li,j. Also, for all i ∈ I such that Σi,0 has a
non vanishing codimension 2 measure, let us consider any open segment Li,0 ⊂ Σi,0,
ri,0 ∈ C∞

c (Li,0) and its extension ri by zero outside of Li,0 on Σi. Then, one can build
(0,qf ) ∈ C∞

HΣ
(Ω,Γ) such that qf,i · nΣi

= ri and qf,l = 0 for all l ∈ I \ {i}. It results from
(4.1) that ∫

Li,0

(qf,i · nΣi
)γΣi

vf |Γi
dl(x) =

∫

Li,0

(γΣi
vf |Γi

)ri,0 dl(x) = 0,

and hence that γΣi
vf |Γi

= 0 on Li,0 which implies together with the previous properties
that vf ∈ H1

Σ0
(Γ) and concludes the proof. �

Let us now prove the density of C∞
HΣ

(Ω,Γ) in HΣ(Ω,Γ). Similarly as in the previous
subsection, it is equivalent to prove that any linear form in HΣ(Ω,Γ)

′ which vanishes on
the subspace C∞

HΣ
(Ω,Γ), vanishes on the whole space HΣ(Ω,Γ).

Since HΣ(Ω,Γ) is a closed Hilbert subspace of H(Ω,Γ), any continuous linear form
on HΣ(Ω,Γ) can be continuously extended to H(Ω,Γ). From the Riez representation
theorem, a continuous linear form ξ on H(Ω,Γ) writes for all (qm,qf ) ∈ H(Ω,Γ)

〈ξ, (qm,qf )〉 = aΣ

(
(qm,qf ), (vm, vf ,gm,gf )

)

with vm ∈ L2(Ω), gm ∈ L2(Ω)d, and vf ∈ L2(Γ), gf ∈ L2(Γ)d−1. It is assumed that
ξ vanishes on C∞

HΣ
(Ω,Γ). Then, it results from Lemma 4.0.5 that vm ∈ V 0, vf = γvm,

gm = ∇vm and gf = ∇τγvm. From the definition (1.2) of HΣ(Ω,Γ), we conclude that ξ
vanishes on HΣ(Ω,Γ) which proves the density of C∞

HΣ
(Ω,Γ) in HΣ(Ω,Γ).

Compactness lemmas

The following lemma states the weak compactness of bounded sequences in L2(0, T ;V 0).

Lemma 4.0.6 Let (v(m))m∈N be a sequence of functions in L2(0, T ;V 0) such that ‖v(m)‖L2(0,T ;V ) ≤
C for some positive C. Then, there exists v ∈ L2(0, T ;V 0) such that up to the same sub-
sequence

v(m) ⇀ v in L2(Ω× (0, T )) and γv(m) ⇀ γv in L2(Γ× (0, T ));

moreover

∇v(m) ⇀ ∇v in L2(Ω× (0, T ))d and ∇γv(m) ⇀ ∇γv in L2(Γ× (0, T ))d−1.
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Proof: First, let us recall that the normal trace operator γn : Hdiv(Ω) → H−1/2(∂Ω) is sur-
jective. Indeed, for any l ∈ H−1/2(∂Ω) we consider the unique weak solution u ∈ H1(Ω) of
−∆u+u = 0 on Ω with ∇u ·n = l on ∂Ω defined by 〈u, v〉H1(Ω) = 〈l, γ∂Ωv〉H−1/2(∂Ω),H1/2(∂Ω)

for all v ∈ H1(Ω), where γ∂Ω is the trace operator from H1(Ω) to H1/2(∂Ω). Hence the
function G := ∇u is in Hdiv(Ω) and satisfies γnG = l.

Next, from the Poincaré inequality and the continuity of the trace operators γi, the
sequence v(m) is bounded in L2(0, T ;H1(Ω)) and the sequences v

(m)
i = γiv

(m) are bounded
in L2(0, T ;H1(Γi)) for all i ∈ I. Hence, it is classical to show that there exist v ∈
L2(0, T ;H1

0 (Ω)) and vi ∈ L2(0, T ;H1
Σi,0

(Γi)) such that up to the same subsequence:





v(m) ⇀ v in L2(Ω× (0, T )),
∇v(m) ⇀ ∇v in L2(Ω× (0, T ))d,

v
(m)
i ⇀ vi in L2(Γi × (0, T )),

∇v(m)
i ⇀ ∇vi in L2(Γi × (0, T ))d−1,

for all i ∈ I, where H1
Σi,0

(Γi) is the subspace of H1(Γi with vanishing trace on Σi,0. It

remains to show that v ∈ L2(0, T ;V 0) with (γv)i = vi. Let us first show that γiv = vi.
We extend the fracture Γi in the direction of the plane Pi in order to reach ∂Ω and to
decompose the domain Ω into two subdomains, say Ωi and Ωi′ . Now let us introduce
ri ∈ L2(Γi) and a function l ∈ L2(∂Ωi) which is defined by

l =

{
ri on Γi,
0 otherwise.

Thus, since l ∈ L2(∂Ωi) ⊂ H−1/2(∂Ωi) and, thanks to the surjectivity of the normal trace
operator recalled above, there exists qi ∈ Hdiv(Ωi) such that qi · ni = l. Then, passing to
the limit in the equality

∫ T

0

∫

Ωi

(
qi(x)·∇v(m)(x, t)+v(m)(x, t)divqi(x)

)
ϕ(t)dxdt =

∫ T

0

∫

Γi

ϕ(t)ri(x)v
(m)
i (x, t)dτ(x)dt,

yields ∫ T

0

∫

Γi

ϕ(t)ri(x)(vi(x, t)− γiv(x, t))dτ(x)dt = 0,

for all ri ∈ L2(Γi) and ϕ ∈ L2(0, T ), hence vi = γiv. Next, let us introduce the following
trace operators

γi,j : H
1(Γi) → L2(Σi,j),

for each (i, j) ∈ I2Σ where I2Σ is the subset of I × I such that Σi,j has a non zero d − 2
dimensional Lebesgue measure. We will prove that γi,jvi = γj,ivj for all (i, j) ∈ I2Σ. Let
us introduce ri,j = −rj,i ∈ L2(Σi,j) and the function li and lj defined by

li =

{
ri,j on Σi,j,
0 on ∂Γi \ Σi,j,
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and

lj =

{
rj,i on Σi,j,
0 on ∂Γj \ Σi,j.

Thus, thanks again to the surjectivity of the normal trace operator, there exist qi ∈
Hdiv(Γi) and qj ∈ Hdiv(Γj) such that qi · ni = li and qj · nj = lj. Then, passing to the
limit in the equality

∫ T

0

ϕ(t)

∫

Γi

∇v(m)
i ·qi+v

(m)
i div(qi) dτ(x)dt+

∫ T

0

ϕ(t)

∫

Γj

∇v(m)
j ·qj+v

(m)
j div(qj) dτ(x)dt = 0,

we obtain that

∫ T

0

∫

Σi,j

ϕ(t)ri,j(x)
(
γi,jvi(x, t)− γj,ivj(x, t)

)
dl(x)dt = 0,

for all ri,j ∈ L2(Σi,j), ϕ ∈ L2(0, T ) which implies that γi,jvi = γj,ivj, and hence that
v ∈ L2(0, T ;V 0). �

The following Lemma states an estimate on the space translates for bounded sequences
in L2(0, T ;H1

0 (Ω)) or in L
2(0, T ;H1

0 (Γi)).

Lemma 4.0.7 Let d ∈ N∗, t > 0 and let Υ be an open polyhedral (d = 3) or polygonal
(d = 2) domain in Rd. Let (u(m))m∈N be a sequence of functions from L2(0, T ;H1

0 (Υ))
such that ‖u(m)‖L2(0,T ;H1(Υ)) < C for some positive C. Then, extending the functions u(m)

by 0 on (Rd \Υ)× (0, T ), one has

sup
m∈N

‖u(m)(·, ·+ ξ)− u(m)‖2L2(Rd×(0,T )) → 0 as |ξ| → 0.

Proof : It is sufficient to notice that for all ϕ ∈ Cc
∞(Rd × (0, T )) one has

‖ϕ(·+ ξ)− ϕ‖L2(Rd×(0,T )) = |ξ|‖∇ϕ‖(L2(Rd×(0,T )))d .

Therefore the result is deduced form the density of the set Cc
∞(Rd×(0, T )) in L2(0, T ;H1(Rd))

and from the fact that u(m) ∈ L2(0, T ;H1(Rd)). �
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