
HAL Id: tel-01466754
https://theses.hal.science/tel-01466754v1

Submitted on 13 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approches vers des modèles unifiés pour l’intégration de
bases de connaissances

Maria Koutraki

To cite this version:
Maria Koutraki. Approches vers des modèles unifiés pour l’intégration de bases de connais-
sances. Intelligence artificielle [cs.AI]. Université Paris Saclay (COmUE), 2016. Français. �NNT :
2016SACLV082�. �tel-01466754�

https://theses.hal.science/tel-01466754v1
https://hal.archives-ouvertes.fr

NNT : 2016SACLV082

THESE DE DOCTORAT
DE

L’UNIVERSITE PARIS-SACLAY
PREPAREE A

UNIVERSITE DE VERSAILLES-SAINT-QUENTIN-EN-YVELINES

ECOLE DOCTORALE N°580
Sciences et technologies de l'information et de la communication

Spécialité de doctorat : Informatique

Par

Mme Maria Koutraki

Approches vers des modèles unifiés pour l'intégration de bases de connaissances

Thèse présentée et soutenue à Versailles, le 27ème septembre 2016 :

Composition du Jury :

M. Amann Bernd, Professeur, Université Pierre & Marie Curie, Président du Jury
M. Vodislav Dan, Professeur, Université Cergy-Pontoise, Co-directeur de thèse
Mme Preda Nicoleta, Maître de Conférences, UVSQ, Co-encadrant de thèse
Mme Zeitouni Karine, Professeure, UVSQ, Directrice de thèse
M. Christophides Vassilis, Professeur, Université de Crète, Rapporteur
Mme Rousset Marie-Christine, Professeure, Université de Grenoble, Rapporteur
M. Goasdoué François, Professeur, Université de Rennes 1, Examinateur
Mme Saïs Fatiha, Maître de Conférences, Université Paris-Sud, Examinatrice

To my family, for their eternal love and support ...

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Titre : Approches vers des modèles unifiés pour l’intégration de bases de connaissances

Mots clés : intégration de données, Web sémantique, service Web, alignement de relations
dans les ontologies

Résumé : L’avènement du World Wide Web, en particulier le Web 2.0, a conduit à des
changements drastiques dans la façon dont l’information est créée et consommée sur le
Web. À l’heure actuelle, il y a plus de 3 milliards d’utilisateurs sur le Web, qui, de façon
explicite ou implicite, contribuent à la création de contenu. Ce contenu reflète la
dynamique et l’hétérogénéité des utilisateurs et des applications Web utilisées pour le
produire (par exemple des réseaux sociaux, des blogs, des pages Web, etc.). Les
estimations indiquent que le nombre de pages est de l’ordre des trillions. Le contenu
résultant prend la forme d’ensembles de données disparates, dont les principales
caractéristiques sont: (i) le volume de données, (ii) le domaine représenté, (iii) les
schémas et autres moyens de représenter le contenu, et (iv) la dynamique et la nature
évolutive des données.
Différents domaines de recherche se sont intéressés à l’exploitation de la richesse du
contenu du Web 2.0, qui constitue une tâche non triviale. Le Web sémantique, avec sa
vision du paysage Web où les données sont uniformément interprétables et partagées
entre les applications, est l’une de directions de recherche majeures. Pourtant, depuis sa
création, il reste encore un grand nombre de défis sur la façon d’intégrer les différentes
sources d’information dans un paysage de données unifié. Des initiatives récentes,
comme le Linked Open Data, comptent des milliers de jeux de données contenant plus de
30 milliards de faits, exprimés sous forme de données structurées suivant le modèle du
Web sémantique. Toutefois, la manière décentralisée de publier ces données soulève
d’autres problèmes tels que la diversité et la redondance des schémas utilisés pour les
représenter, menant à une grande hétérogénéité de ces ensembles de données au niveau
du schéma.
De plus, dans de nombreux cas, les données sont accessibles à la demande, à travers des
interfaces de programmation (API) tels que les services Web, qui codent des opérations
complexes exécutées sur des sources de données spécifiques. Il existe aujourd’hui des
dizaines de milliers de services Web, leur nombre étant en augmentation continue,
chaque service fournissant une multitude d’opérations avec des caractéristiques spéci-
fiques en termes de paramètres d’entrée / sortie. L’accès aux fonctionnalités et aux don-
nées fournies à travers ces services Web représente un challenge à cause de
l’hétérogénéité des formats de sortie et des représentations utilisées par les différents
services.
Dans cette thèse, nous identifions plusieurs défis liés au Web sémantique (Linked Data)
et aux services Web, plus précisément à la difficulté d’utilisation de toute la richesse du
Web 2.0, notamment les sources de données Linked Data et celles exposées par le biais
de services Web. Par conséquent, nous adressons deux problèmes principaux, qui
correspondent aux contributions de cette thèse: (i) DORIS, une méthode de traduction
automatique des résultats d’appels de services Web, et (ii) SOFYA, une approche pour
l’alignement automatique de relations dans les ontologies.
DORIS. Dans la première partie de cette thèse, nous abordons le problème de l’ in-
tégration de services Web, à savoir l’intégration des résultats d’appels d’opérations de
services Web par le biais d’un schéma global. A cet effet, nous proposons des approches
qui infèrent automatiquement le schéma des résultats d’appels de services, en exploitant

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

l’intersection de ces résultats d’appels avec les instances de bases de connaissances du
monde réel, telles que DBpedia ou YAGO.
Plus précisément, nous modélisons une opération de service Web comme une view with
binding patterns sur le schéma global de la base de connaissances. A cet effet, nous
présentons des approches automatiques qui infèrent la définition de cette vue sur le
schéma global. Ensuite, nous montrons comment produire les fonctions de transformation
des résultats d’appels de service dans ce schéma. Nos expérimentations sur plus de 50
services Web du monde réel montrent que nous pouvons automatiquement déduire le
schéma avec une précision de 81% -100%.
SOFYA. Dans la deuxième partie de cette thèse, nous abordons le problème de l’
alignement de relations dans les ontologies Linked Data. Etant donnée une relation dans
l’ontologie d’une source de données Linked Data, nous trouvons les relations de
l’ontologie d’une autre source de données cible, qui subsument notre relation de départ.
De plus, étant donnés les problèmes de passage à l’échelle en nombre de sources et vol-
ume de données, ainsi que d’évolution constante du contenu de ces sources, nous avons
considéré l’alignement de relations dans un cadre online, où l’accès aux sources se fait
par des appels de services à travers des points d’accès SPARQL. Pour assurer l’efficacité
de notre approche, nous procédons à l’alignement en extrayant de petits échantillons à
partir des sources de données considérées. L’approche SOFYA se base sur un modèle
d’apprentissage supervisé, utilisant un ensemble de caractéristiques d’alignement qui in-
clut des règles d’association en termes d’instances des relations candidates, la similitude
lexicale des noms de relation, ainsi que et d’autres statistiques sur les instances des rela-
tions. Nous effectuons une évaluation approfondie de notre approche sur trois bases de
connaissances, DBpedia, YAGO et Freebase. Nous montrons que nous pouvons effectuer
l’alignement avec une précision moyenne de 82% et un maximum de 100%. En outre,
l’approche peut être appliquée en temps réel, puisque la surcharge introduite en termes de
temps d’exécution et de bande passante est minime.
En conclusion, les contributions de cette thèse peuvent être utilisées pour intégrer des
services Web et interroger d’une manière uniforme un grand nombre de sources Linked
Data. Ceci permet une intégration transparente des deux principaux types de sources de
données structurées dans le Web 2.0.

Title : Approaches Towards Unified Models for Integrating Web Knowledge Bases

Keywords : data integration, semantic Web, Web services, ontology alignment

Abstract : The advent of World Wide Web, especially Web 2.0, has lead to drastic
changes on how information is created and consumed on the Web. Currently, there are
more than 3 billion Web users, who either through explicit or implicit means contribute to
content creation. The content reflects the dynamics and heterogeneity of the users and
Web applications used to generate such content (e.g. social networks, blogs, Web pages
etc.). With estimates showing the number of pages being in trillions. The resulting
content resides in disparate datasets, and some of the key features are: (i) scale of the
data, (ii) domains, (iii) schemas and means of representing content, and (iv) dynamics
and evolving nature of the data.

To harness the wealth of content in Web 2.0 is non-trivial task, and such it has gathered
attention from different research fields. Semantic Web is one of the research directions,
with its core vision of Web landscape where data is uniformly interpretable and shared
across applications boundaries. Yet, since its invention, there are still a large number of

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

open challenges on how to integrate the different sources of information into a unified
data landscape. Recent initiatives, like the Linked Open Data, count more than thousands
of datasets with more than 30 billions of statements, that are expressed as structured data
following the Semantic Web vision. However, considering the decentralized way of
publishing linked data, additional problems are encountered such as diversity and
redundancy on schemas used to represent such datasets, hence, leaving a disintegrated
landscape of datasets at schema level.
Furthermore, in many cases, data is accessible on demand through application
programmable interfaces API, such as Web services. Web services, encode complex
operations that are executed over specific data sources. Similarly, in the case of Web
services, their number is in the tens of thousands and ever increasing, and with each
service providing a multitude of operations, who have specific requirements in terms of
input/output parameters. Accessing the functionalities and data exposed through such
Web services is in particular challenging due to the heterogeneity of the output formats
and representations used from the different services.
In this thesis, we identify several challenges in terms of linked data and Web services,
which hinder end-users to make use of the full wealth of Web 2.0, namely data sources
expressed as linked data, and those exposed through Web services. Consequentially, we
consider two main problems which we address, thus, resulting as contributions of this
thesis: (i) DORIS a framework for mapping output from Web service operation calls, and
(ii) SOFYA an approach for ontological relation alignment.

DORIS. In the first part of this thesis, we address the problem of Web service
integration, namely integrating output from Web service operation calls by means of
global schema. For this purpose, we propose approaches that infer the schema of the
output from
Web service operation call by exploiting the intersection of the output with instances
from real-world knowledge bases like DBpedia or YAGO. Specifically, we model a Web
service operation as a view with binding patters over the global schema. For this purpose,
we present automated approaches which infer the view definition of an operation into the
global schema. Next, we show how to compute transformation functions that can trans-
form API call results into this schema. Our experiments on more than 50 real-world Web
services show that we can automatically infer the schema with a precision of 81%-100%.
SOFYA. In the second part of this thesis, we address the problem of ontological relation
alignment for linked datasets. Given a relation from a source dataset, we find relations in
a target dataset that subsume our starting relation. Furthermore, accounting for the
scalability of such a process e.g. large number of linked datasets, and the evolving nature
datasets, we set up the relation alignment in an online setting. To ensure the efficiency of
our approach, we perform the alignment by taking small samples from the datasets un-
der consideration. The approach in SOFYA corresponds to a supervised machine learning
model, which we learn on a set of features that consider association rules in terms of
overlapping statements between relation alignment candidate pairs, lexical similarity of
relation names, and other statistics we gather from the instances assigned to the specific
relations. We perform an extensive evaluation of our approach on three real-world
knowledge bases, DBpedia, YAGO and Freebase. We show that we can perform the
alignment with high accuracy with an average precision of 82% and a maximum of
100%. Furthermore, the approach can be applied during query execution as the
introduced overhead in terms of time and network bandwidth is minimal.
Finally, the contributions of this thesis, can be used to integrate Web services and query
in an uniform manner the large number of linked datasets. Thus, allowing for seamless
integration of two major data sources in Web 2.0.

v

Acknowledgments

First of all, I would like to express my sincere thanks to my advisors, Prof. Dan
Vodislav, Associate Prof. Nicoleta Preda and Prof Karine Zeitouni for their support
throughout the years of my PhD studies. Especially to Dan and Nicoleta, their enthusi-
asm and desire for perfection was an inspiration for me. This thesis would not be possible
without their insistence, help and guidance.

I am grateful to Marie-Christine Rousset and Vassilis Christophides for thoroughly
reading my thesis and for their valuable feedback. Further, I would like to thank Bernd
Amann, François Goasdoué, and Fatiha Saïs for being part of my examining committee;
I am very honored.

I would also like to give many thanks to all my colleagues and friends in DAVID Lab
and in ETIS Lab for their support and help. To Dimitris, Claudia, Hanane, Tici, Dai-Hai,
Raef, Ali, Twiza, Kenza, Mariam, Amelie, Abdul .. Thank you! Throughout this thesis
I received financial support from the foundation for cultural heritage (PATRIMA) and I
would like to thank them for the research grant and for the opportunity to obtain my PhD.

In this point I want to thank my advisors in my internship in LRI Nathalie Pernelle
and Fatiha Saïs. They are the reason I came to Paris and also for starting this PhD.

This thesis would not be possible without my friends helping get through the difficult
times. I would like to thank them for their emotional support, for all the happy moments
we had together and for caring for me all this time. Thank you for everything Stam,
Jim, George B, Fab, George M, Vincent, Tasos, Vasia, Alexandra, Sejla, Juan, Carmen,
Damian, Jesus, Foivos.

Especially to my girls, Katerina, Nelly, Ioanna, Danai, Dimitra, Sofia, you are the
friends one needs. Thank you for always being there, for your support, for the hours we
spent discussing research and personal issues, for all the happy moments we had and for
those that will come. Thank you for being my friends (especially after these four years of
PhD ;))!

Further, I wish to thank a lot my uncle Stelios and Xenia who did this long trip for
being present in my defense and support me in this special day of my life.

Words cannot always express the feelings for special persons that give meaning in your
life, stands next to you in difficult personal moments and being happy for your happiness.
Special thanks to Nik for believing in me, for his unconditional support, encouragement
and his patience. He has been my source of strength, confidence and energy.

Finally, I dedicate this thesis to my family. My brother Nikos, always had the way to
cheer me up and encourage me. My mom Maria, my very first friend, my person. My
dad Orestis, my greatest supporter. They raised me, loved me, trusted me, supported me
and being always there for me since the very first day of my life. To them, thank you for
everything.

vi

Contents

1 Introduction 1
1.1 Context and Objectives . 1

1.1.1 Linked Data . 2
1.1.2 Web Services . 5

1.2 Contributions . 7
1.3 Thesis Outline . 8

2 Background and State-of-the-art 11
2.1 Knowledge Bases . 11

2.1.1 RDF Data . 11
2.1.2 Query language . 15
2.1.3 Knowledge Base Paths . 17

2.2 Web Services . 18
2.2.1 REST Architecture . 18
2.2.2 Call Results . 19
2.2.3 DataGuides . 21
2.2.4 Querying Call Results . 22
2.2.5 Transforming Call Results . 23

2.3 Data Integration Model . 23
2.4 State-of-the-art . 25

2.4.1 Schema and Ontology Matching Approaches 25
2.4.2 SOFYA: Related Literature . 26
2.4.3 DORIS: Related Literature . 34

3 DORIS 41
3.1 Problem Description . 41
3.2 Observations and Assumptions . 45
3.3 Web service Schema Discovery . 46

3.3.1 Overview . 46
3.3.2 Web service Probing . 47
3.3.3 Path Discovery . 47
3.3.4 Path Alignment . 50
3.3.5 View and Transformation Function 52

3.4 Baseline Approach . 55

vii

viii CONTENTS

3.5 Prototype . 56
3.6 Experimental Evaluation . 58
3.7 Discovering I/O Dependencies . 63

3.7.1 Problem Statement . 64
3.7.2 Approach . 64
3.7.3 Experimental Evaluation . 66

3.8 Summary . 66

4 SOFYA 69
4.1 Introduction . 69
4.2 Problem Statement . 70
4.3 Relation Alignment Model . 71

4.3.1 Candidate Generation . 72
4.3.2 Features . 74
4.3.3 Relation Alignment Supervised Models 81

4.4 Online Relation Alignment . 85
4.4.1 Sampling Strategies . 85

4.5 Experimental Setup . 88
4.5.1 Datasets . 89
4.5.2 Online Relation Alignment Setup: Sampling Strategies 90
4.5.3 Ground-Truth Construction . 91
4.5.4 Evaluation Metrics . 91
4.5.5 Learning Framework: Relation Alignment Models 92
4.5.6 Baselines . 92

4.6 Results and Discussion . 93
4.6.1 Relation Alignment Model Performance 93
4.6.2 Efficient Relation Alignment . 97
4.6.3 Generalizing Relation Alignment Models 99
4.6.4 Coverage . 100
4.6.5 Query-Execution Overhead . 101

4.7 Conclusion . 103

5 Conclusion and Perspectives 105
5.1 Thesis Summary . 105
5.2 Future Work . 106

Bibliography 108

List of Figures

1.1 Linked Open Data Cloud in 2014. 5
1.2 Application example: automatic computation of vacation plans. 6
1.3 EDOP project basic architecture. 7

2.1 Knowledge base example: graph representation (upper part) and the triple
set representation (lower part). 13

2.2 Example SPARQL query Q1. 16
2.3 Result of SPARQL query Q1. 16
2.4 Example SPARQL query with VALUES Q2. 17
2.5 REST Web service architecture. 19
2.6 Example XML document: XML encoding (left) and abstract tree repre-

sentation of the same document (right). 20
2.7 DataGuide for the X M L document in Figure 2.6 22
2.8 Process flow of Extensible Stylesheet Language Transformations (XSLT). 23
2.9 A classification of schema matching approaches proposed in [94]. 26
2.10 Ontology Matching example between two ontologies. The matching prob-

lem as the 4-uple, 〈id, e1, e2, r〉. Where e1 and e2 are any two classes or
properties, whereas r represents the typed alignment, that is, equivalence,
disjointness, more general, subsumption holding between e1 and e2. 27

3.1 A REST Web service . 42
3.2 A call result for getAlbumsByArtist with input value “Frank Sinatra" . . . 43
3.3 RDF (fragment). 44
3.4 View with binding patterns for the Web service getAlbumsByArtist. 44
3.5 Call result of getAlbumsByArtist in the global schema 44
3.6 Overview of DORIS’s processing steps. 47
3.7 DataGuide of a call result. 48
3.8 Results of the path alignment step for getAlbumsByArtist 53
3.9 New path alignments and their associated variables for getAlbumsByArtist. 53
3.10 The tree-like hierarchy of paths in XML of Figure 3.9. 54
3.11 XSLT Code for tree-like hierarchy of Figure 3.10. 56
3.12 DORIS: Main Interface. 57
3.13 DORIS: Alignment Interface. 58
3.14 DORIS: Transformation Interface. 59
3.15 Average performance of Path Alignment. 60

ix

x LIST OF FIGURES

3.16 I/O Dependencies between the Web services of musicbrainz API. 63
3.17 Aligning fI and fO. 66

4.1 Selection of (x ′, y ′) entities constituting the SrS
set. 72

4.2 Relations in KBT that hold between one or more instances of SrS
set. 73

4.3 The average F1 score of the baselines pca and cwa. In x–axis we show
the different threshold cut-offs (pca and cwa scores), which we use to
determine whether a relation alignment pair (if its above a predetermined
threshold) is cor rect or incor rect. 93

4.4 The average precision and recall scores for the baselines pca and cwa.
In x–axis we show the different threshold cut-offs (pca and cwa scores),
which we use to determine whether a relation alignment pair (if its above
a predetermined threshold) is cor rect or incor rect. 93

4.5 Feature ablation for the relation alignment model trained with logistic
regression. The scores for precision/recall and F1 are averaged across the
different KB pairs. The results are shown for the different feature groups. . 96

4.6 Time statistics in milliseconds for the different sampling strategies of Sec-
tion 4.4, for different sample sizes. Averaged through all the KB pairs. . . 102

4.7 Bandwidth usage statistics in bytes for the different sampling strategies of
Section 4.4, for different sample sizes. Averaged through all the KB pairs. 103

List of Tables

3.1 Alignments discovered only by the subsumption strategy of Section 3.3.4. 61

3.2 Path Alignment on the YAGO KB. 61

3.3 Class & Atom Alignment on the YAGO KB. 62

3.4 Average Performance of Alignments . 62

3.5 I/O Dependencies Discovery . 67

4.1 The set of computed features for the relation alignment model. 75

4.2 Statistics for the individual KBs, number of relations and the total number
of triples. 89

4.3 Number of owl:sameAs links per pair of KBs. 90

4.5 Comparison of Linear Regression (LR) and Voted Perceptron (VP) mod-
els for the relation alignment problem learned with only the top–5 fea-
tures selected through the feature selection algorithm based on Informa-
tion Gain. We evaluate the models using 5-fold cross-validation for all
KB pairs. 95

4.6 The performance of the relation model trained using the logistic regres-
sion model for the different sampling strategies and entity sample in-
stances. We average the results across all KB pairs and for the varying
amount of training data we use to train our models, we limit here the
training amount of information up to 50%. We select the best configu-
ration (marked in bold) from the above sampling strategies and sampled
instances taking into account the highest P and where the R score is rea-
sonably high. 98

4.7 Comparison of the best relation alignment models under the different
sampling strategies with varying percentage of training instances from the
full set of relation alignment candidates. The results are average across
all KB pairs for comparison purposes. 98

4.8 The results for the individual KB pairs computed based on the LR model
for stratified sampling (level–3 and with 50 sampled entity instances)
when using 30% for training and the rest for evaluating the performance
of the models. 99

xi

xii LIST OF TABLES

4.9 The models correspond to the best configuration (stratified–level-3 with
50 sampled entity instances) which we train on one KB pair, 〈KBS, KBT 〉,
with a specific number of training instances, and evaluate on the remain-
ing KB pairs. The results show the Avg(P) score across all KB pairs, and
emphasize how well these models generalize across KB pairs. 100

4.10 Coverage of the relations for each KB pair. 101

Chapter 1

Introduction

1.1 Context and Objectives

Web 2.0. The advent of the World Wide Web, especially Web 2.0, has led to drastic
changes on how information is created and consumed. Information is accessible online
and in a decentralized manner. To a large extent, the content is provided by Web users
explicitly in platforms like Wikipedia, blogs, Social Media etc. The content creation is
usually centered around entities, or subjects/topics that represent users’ expertise.

Recent statistics show an increasing number of users on the Web [7], with rough esti-
mates of more than 3 billion. Inherently, these users come from very diverse demograph-
ics, backgrounds, level of expertise etc. As a consequence the created content reflects
such diversity, and with one of the most prevalent features representing a highly dynamic
space [42, 9], with content constantly changing. Additionally, apart from content changes,
the structure of such pages varies greatly [9] (e.g. HTML or XML structure which is used
to represent the content).

The successful growth of Web 2.0 is mainly attributed to the interaction between users
and Web applications, creating an online ecosystems, with users being active providers of
emerging and new information online. Notable examples, include Wikipedia 1, as one of
the largest online encyclopedias that is collaboratively created by Web users. It consists
of representation of entities in 283 languages, with varying degree of completeness, with
English Wikipedia being the largest collection. Other examples like IMBD 2 consisting of
movies and user reviews about movies. As such they represent highly dynamic datasets
with content and structural changes.

Furthermore, more advanced scenarios include Web services, which represent appli-
cations hosted on remote servers that support complex operations executed over datasets,
hence, providing dynamic and on demand access for Web users or other Web applications.
For example, well-known services like Amazon Web services 3, eBay 4, or MusicBrainz 5,

1. Wikipedia is in top–10 ranking of most visited pages based on ALEXA [6]
2. http://www.imdb.com
3. https://aws.amazon.com
4. https://go.developer.ebay.com
5. http://musicbrainz.org

1

http://www.imdb.com
https://aws.amazon.com
https://go.developer.ebay.com
http://musicbrainz.org

2 CHAPTER 1. INTRODUCTION

represent large-scale datasets, in the case of Amazon and eBay, with product information
coming from single users and large retailers, whereas in the case of MusicBrainz, with a
constantly evolving dataset about music in general. The operations that provide dynamic
and on-demand access in this case are necessary for multiple reasons, i.e., prices of prod-
ucts change, availability of products varies, and in the case of MusicBrainz, artists publish
new records etc.

The wealth of the Web, respectively its applications and user base has gathered much
attention from major Internet companies like Google, Microsoft or Yahoo!. For example,
Google, has already incorporated a vast number of Web services (e.g. flights, calendar
etc.). Furthermore, integrating many entity-centric sources like Wikipedia and IMDB,
who provide information in the form of facts about an entity (e.g. birthdate of a movie
producer), related information (e.g. all movies of a producer) [38]. As such these are
noted as linked data or also referred as structured data.

However, as to now, apart from few use cases that have integrated only specific
sources, there are no means on accessing such wealth of Web sources in a unified man-
ner. The problem of integrating Web sources remains an open challenge. The challenges
arise due to the scale and dynamics, in terms of changes in content and schema used to
represent such sources. Other challenges are the limited access to such sources (e.g. Web
services have limited calls per user, and linked datasets return only a limited number of
triples for a query), and in many cases accessing the full content is expensive in terms
of time, storage, and network bandwidth. In the following subsections, we describe the
challenges associated with two types of sources, namely linked data and Web services.

1.1.1 Linked Data
Functionalities as the ones provided by Google or other major industry players, are

preceded by research in fields like Semantic Web. The main vision of Semantic Web [17]
is to represent the Web content as structured data, and to provide a reasoning framework
on this data, where, the meaning of a specific piece of information on the Web is formally
represented in RDF. RDF data is machine readable and interpretable by both humans and
machines (e.g. Web applications).

A successful example of the Semantic Web is the Linked Data (LD) initiative, which
states four rules on how to represent formally content on the Web [20]. Those rules are: (i)
one should use URIs as names for things, (ii) URIs should be represented through HTTP
so that people can look up those names, (iii) useful information should be provided on URI
looks up by using the standards (RDF, SPARQL), (iv) include links to other related URIs
so that one can discover more things. Since the advent of LD, there has been a major shift
on how information is published on the Web. Individual data providers (i.e. governmental
organizations, individuals) expose their data following the linked data principles. This
has led to successful projects like Linked Open Data 6 (LOD), with thousands of datasets
and billions of facts, from various domains like government, health, education etc.

However, some of the most prominent datasets exposed as linked data, are knowledge
bases like DBpedia [13] and YAGO [103]. These represent knowledge bases that are

6. http://lod-cloud.net/

http://lod-cloud.net/

1.1. CONTEXT AND OBJECTIVES 3

extracted automatically from Wikipedia using Information Extraction techniques. Fur-
thermore, apart from Wikipedia alone, other Web sources like WordNet [5] (a dataset
consisting of different senses of English words) are fused into such knowledge bases. In
order to maintain the accuracy of extracted facts from Wikipedia, these approaches ex-
tract information only from a small subset of Wikipedia, namely its infoboxes and the
Wikipedia category structure. Such limitations in terms of sources used to construct real-
world knowledge bases, impact greatly the completeness of knowledge bases. Recent
work in [96] propose the use of Web tables for knowledge base augmentation.

The multitude of automatically constructed knowledge bases has shown the impor-
tance of fields like entity resolution (ER) [27]. The aim of ER is to determine the multiple
representation of an entity from different Web sources or Knowledge Bases. These aspects
are especially important in the case of Linked Datasets, where the data is decentralized
and no dataset has full coverage of facts regarding an entity. For instance, in Freebase
75% of entities of type Person do not have a nationality attribute, or 71% without a place
of birth [22].

Therefore, approaches that align linked datasets at the schema level can be seen as
complementary to the field of ER, and consequentially address the problem of coverage,
completeness, and relevance of linked datasets in general 7. However, as argued in [27],
existing ontology matching approaches are not applicable at Web scale. Hence, important
aspects like the efficiency of state-of-the-art approaches need to be addressed in order to
be applied at Web scale. The advantages of such alignments apart from the coverage and
completeness can be seen as precursors for instance matching [45].

Finally, apart from the automatically extracted knowledge bases, other approaches
rely on collaborative efforts on constructing knowledge bases. For instance, Freebase[2]
is one prominent example of a collaboratively created knowledge base. Nowadays, this
has gathered much attention with initiatives like Wikidata [4], with more than 19 million
(entities and other concepts) and a editor base of more than 2 million users.

Objective. Yet, despite the progress on publishing data following the LD principles,
there are still challenges which hinder the fulfillment of the main vision of Semantic Web
for an interconnected data landscape. The main unresolved challenge, yet to be addressed,
deals with the heterogeneity of schemas used to represent content in such datasets. In this
thesis, we address the problem of aligning linked datasets, namely relation alignment in
disparate schemas in Chapter 4. Relation alignment for linked data, allows for query
rewriting by rewriting relation atoms of a query, from a source dataset into the aligned
(subsumed) relations of another dataset. Hence, allowing access to information about a
specific relation across linked datasets through the computed alignments, and furthermore,
without the need of class alignment.

7. The nationality attribute of an entity of type Person from Freebase can be complemented by the facts
coming from DBpedia.

4 CHAPTER 1. INTRODUCTION

Challenges

Schema Heterogeneity. Figure 1.1 shows the LOD, where the connections between
datasets consist of common entity instances. While alignment of linked datasets at in-
stance level is largely addressed, alignment at schema level remains largely unresolved.
In LOD there are roughly 650 schemas [125] used to represent the datasets. In many
cases, there are multiple definitions for the same classes/concepts at different schemas.
The differences are in two aspects: (i) linguistic, where data providers use different nam-
ing for the same concept, e.g. Car vs Vehicle or in the case of relations gender vs.
genderOf, and (ii) structural, differences at representation level, e.g., a relation describing
gender, in one case can have a literal value and in another a concept defining gender.

In a study [30], the authors analyze a specific category of linked datasets, namely
that of education. An interesting observation is the heterogeneity of schemas used to
represent educational information, in many cases, there were found multiple schemas
defining similar concepts. In majority of cases these were not properly aligned. Hence, the
problem of schema or ontology alignment has attracted attention from research in the field
of ontology and schema matching [94, 99]. The proposed approaches to a large extent
have made use of schema and instances to perform ontology alignment. Yet, relation
alignment still remains an open challenge.

Dataset Accessibility. Exposing data as Linked Data, providers should give means of
accessing the data. There are several approaches to expose RDF data in LOD, that are
mostly subject to the preferences of data providers. Some of the most common access
methods used at the moment in LOD are: (i) RDF Dumps where users can download
and store locally entire datasets. Nevertheless, such a solution where data is stored lo-
cally does not scale up and raises the problem of freshness of the data, and (ii) SPARQL
endpoints allowing for greater flexibility for data access through SPARQL queries.

The means to access linked datasets poses a significant challenge on carrying out tasks
like schema matching, specifically in our case relation alignment. Due to the fact that
there has been an exponential increase on the number of datasets exposed as linked data,
such tasks cannot be applied on dataset snapshots for two reasons: (i) linked datasets in
LOD nowadays count more than 30 billion triples [3], and (ii) datasets constantly evolve,
hence, alignments created at one snapshot might not hold on a different version of a
dataset.

Therefore, in Chapter 4 we address such efficiency issues and perform the task of
relation alignment in an online setting. We query the datasets through their SPARQL
endpoints and extract small samples of the data with the main objective of maximizing the
coverage of discovered relation alignments, while performing the task with high accuracy
and efficiency.

8. http://lod-cloud.net/versions/2014-08-30/lod-cloud_colored.
png

http://lod-cloud.net/versions/2014-08-30/lod-cloud_colored.png
http://lod-cloud.net/versions/2014-08-30/lod-cloud_colored.png

1.1. CONTEXT AND OBJECTIVES 5

Figure 1.1: Linked Open Data Cloud in 2014. 8.

1.1.2 Web Services
While through linked datasets applications and users are able to inter-link information

about entities and specific topics across different datasets, a large number of data providers
choose to make their data accessible through Web services. This presents an additional
valuable set of resources which are up to date and are accessible on demand.

In recent years, several important content providers such as Amazon, MusicBrainz,
IMDB, GeoNames, Google, and Twitter have chosen to export their data through Web ser-
vices. These services cover a large variety of domains: books, music, movies, geographic
databases, transportation networks, social media, even personal data. This trend gained
momentum thanks to the Open Data Initiative, the success of mash-up applications, and
new initiatives that grant users programmatic access to their personal data. Users can
access the data by invoking services, but they can hardly copy the entire content of the
remote source. Hence, a Web service seems to be a sweet-spot in the trade-off between
data sharing and protection. Currently there are more than 15,000 [41] content provider
who choose Web services as a way to share the data.

The wealth of data exported through Web services presents opportunities for the de-
velopment of new intelligent applications which seamlessly integrate multiple services.
Consider a personalized application that proposes vacation plans. A detailed example is
explained below.

Example 1. Consider a personalized application, a trip planner (depicted in Figure 1.2).
A user wants to use this application to organize a trip to a musical event. The applications
combines several Web services. First of all, based on user’s music preferences, which is
extracted from from a social Web service like Facebook API or Twitter API; it further
retrieves offers for concert tickets from a ticketing Web service like EventIm. Ideally,
based on the retrieved musical artist or band profile from the Web service MusicBrainz,
it checks the newest records or albums, and further filters the concert tickets accordingly.
Dependent on the location of the user, it calculates the best route to the closest concert

6 CHAPTER 1. INTRODUCTION

Traveling	Related	Books	
Web	Services	API	

Flights		
Web	Services	API	

Countries,	Ci>es,	Airports,	Train	Sta>ons	

Web	Services	API	

Singers,	Albums,	Songs	

Social	Media	

Web	Services	API	

Tickets		

Web	Services	API	

Web	Services	API	

Figure 1.2: Application example: automatic computation of vacation plans.

venue from GeoNames.

Objective. In this thesis in Chapter 3, we envision the integration of Web services, such
that the output from any possible operation call from an arbitrary Web service can be in-
terpreted uniformly through a global schema from real-world knowledge bases like DB-
pedia or YAGO. For each operation call, we construct a view with binding patterns over
the global schema. The immediate advantages allow applications as the one envisioned in
Example 1 to exploit the wealth of existing Web services.

Challenges

However, considering the wealth of Web services, a fundamental issue, namely the
integration of Web services still remains. Despite the research progress in Web service
representation [85, 10, 58, 58, 101] and discovery [40, 100, 24]; integration is mainly hin-
dered by the lack of explicit schemas for the output of Web service operations. Failing to
fully integrate Web services at the output level leaves the landscape largely disintegrated,
with the applications being developed only for specific services.

The challenging factors in integration output from REST Web services is that they do
not provide information about the schema use to represent the output. Furthermore, we
focus on REST Web services as they represent one of the most common Web services in
contrast to its competing standard SOAP [41].

1.2. CONTRIBUTIONS 7

Other challenges we encounter from the large number of services, is the heterogeneity of
output representation, and in many cases, the limited number of Web service calls.

1.2 Contributions

The contributions of this thesis is a framework that provides a unified model for ac-
cessing the wealth of linked data and Web services. It is part of a project called EDOP
of the foundation for cultural heritage (PATRIMA 9). The aim of this project is to design
and create a cultural heritage dataspace from RDF knowledge bases or Web services.

As part of our contributions, we address two issues related to Web services and linked
data: (i) mapping of Web Service output into a global schema, and (ii) online relation
alignment of RDF datasets. Both are combined under the scope of EDOP project. Fig-
ure 1.3 shows an overview of the architecture of this project composed of the individual
components from the systems developed as part of our contributions.

Figure 1.3: EDOP project basic architecture.

DORIS: Discovering Ontological Relations In Web Services. The first contribution
of this thesis is our approach, called DORIS, on mapping the output of Web services
into a global schema. It enables uniform access to the data encoded by Web services
using the REST architecture. In this way we are able to integrate different Web services,
respectively their output.

In DORIS, to map the output of Web service calls, we adopt an an instance-based
schema mapping approach due to the fact that Web services using the REST architecture
do not provide schema information. We follow the intuition where exploit the intersection
of Web service call results and literals in a knowledge base. In this way, we automatically
model a Web service as a view with binding patterns over a global RDF schema (ex-
tracted from a knowledge base). Finally, we provide a transformation function in order to
transform the output from a Web service call into the specific global schema.

9. http://www.sciences-patrimoine.org/index.php/homepage.html

http://www.sciences-patrimoine.org/index.php/homepage.html

8 CHAPTER 1. INTRODUCTION

SOFYA: Online Relation Alignment for Linked Datasets. The second contribution
is an online instance-based relation alignment approach for RDF knowledge bases, called
SOFYA. Unlike most of the ontology alignment approaches we focus on relation align-
ment (instead of class alignment) which can be used directly on query rewriting for data
integration. For a given relation from a knowledge base, we uncover relations from a tar-
get knowledge base that can be aligned. We consider a specific case of alignment, namely
that of relation subsumption, hence, a relation from a target knowledge base should sub-
sume our starting relation.

We propose a supervised machine learning relation alignment model, which we setup
in an online setting. Specifically, we do not need local access on the data, all the compu-
tations are made on data that are queried from the knowledge bases.

For our approach to be efficient in an online setting, we sample for entity instances
with the objective of improving the efficiency in terms of query-execution overhead (time
and network bandwidth usage) and coverage of candidate relations.

We carry out an extensive experimental evaluation on three real-world knowledge
bases: DBpedia, YAGO, and Freebase, we assess our approach for its effectiveness and
efficiency of uncovering relation alignments.

1.3 Thesis Outline

In the following, we provide an overview on the structure of the thesis, and outline the
main contributions in each Chapter.

Chapter 2 This chapter presents the necessary background information that is required
in the context of this thesis. Furthermore we define notions that are used throughout this
thesis. In the second part of this chapter we provide an analysis of the state-of-the-art
approaches in the area of schema matching as well as in related to data extraction from
Web services areas.

Chapter 3 This chapter describes the first contribution of this thesis, our approach on
mapping the output of Web services into a global schema, called DORIS. This chapter
is based on the articles published at top-tier conference CIKM 10 [60] and the respective
national conference publication [63]. The DORIS system was demonstrated in a national
[61] and at the international conference ISWC 11 [62]. The contributions in this chapter
are:

– An algorithm that provides a formal description of the output of a given Web service
in terms of a given global schema.

– A transformation function, as a script, that will transform the output of a Web ser-
vice in terms of a global schema.

10. http://www.cikm-2015.org
11. http://iswc2015.semanticweb.org

http://www.cikm-2015.org
http://iswc2015.semanticweb.org

1.3. THESIS OUTLINE 9

– An algorithm that discovers Input/Output dependencies between Web services of
the same API.

– An extensive experimental evaluation on real Web services coming from four dif-
ferent domains and on three real RDF knowledge bases (DBpedia, Yago and BNF),
validating the performance of our approach.

Chapter 4 This chapter describes the second contribution of this thesis. Part of this
chapter follows the international conference publication EDBT 12 [59]. More specifically
the contributions in this chapter are:

– An instance-base relation alignment algorithm that discovers subsumpsion relation-
ships between knowledge base relations.

– A supervised machine learning model that combines a set of light-weight features
to decide if the subsumption relationship is correct or incorrect.

– An efficient version of the algorithm that uses a small sample of the data (samples)
to produce the subsumptions.

– An extensive experimental evaluation of our method on three well-know knowledge
bases DBpedia, YAGO, and Freebase.

Chapter 5 Concludes and provides a discussion about possible future directions as well
as some ongoing work.

12. http://edbticdt2016.labri.fr

http://edbticdt2016.labri.fr

10 CHAPTER 1. INTRODUCTION

Chapter 2

Background and State-of-the-art

In this Chapter, we describe the background information needed to present the work
in this thesis, and further review state-of-the-art approaches that are related with the con-
tribution in this thesis.

The Chapter is organized as following. Section 2.1 discusses the Resource Descrip-
tion Framework (RDF) [120] data model which is used to represent knowledge bases.
Furthermore, it is one of the core concepts in Semantic Web. In addition, we describe
SPARQL query language functionalities [117], which we use as means to access and
query RDF data. Section 2.2 introduces an abstraction of a Web service and Web service
APIs, and explain their usage in this work. Additionally, we define a language that is used
to query and transform the results from a Web service. Section 2.3 presents the integration
model we use in Chapter 3, where we present our approach on mapping the output of Web
services into a global schema.

Finally, in Section 2.4 we present a detailed review of related literature on the two
main research contributions in this thesis with respect to the approaches in Chapter 3 and
Chapter 4.

2.1 Knowledge Bases
We see a knowledge base (KB) as a structured dataset represented in RDF. In this sec-

tion we present an abstraction of the RDF data model, that is used to represent knowledge
bases. Furthermore, we describe the features of SPARQL 1.1 query language, which we
use to query KBs or RDF datasets through their respective SPARQL endpoints. As it will
become evident in the next sections (see Chapter 4), we will use SPARQL endpoints to
perform the task of ontology relation alignment for any given KB pair.

2.1.1 RDF Data
The Resource Description Framework (RDF) [120] is a graph data model proposed

by W3C as the standard for knowledge representation on the Semantic Web. In the RDF
data model, we assume a set of entities, a set of literals, a set of binary relations and a set
of classes, that are described as follows:

11

12 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

– Resources (R): A resource is a real-world entity such as a person, an organization, a
book, or an abstract concept. In RDF, a resource is uniquely identified by a Uniform
Resource Identifier (URI). We will refer to a resource also using the term entity.

– Literals (L): A literal is a value like a string, a date, or a number.

– Relations (P): A relation (or property) holds between two entities or between an
entity and a literal. An element of a relation is called fact, and we write r(x , y) to
say that the entity with URI x stands in the relation r with the entity or the literal
y . RDF data is organised in triples of form 〈subject, predicate, object〉 where the
subject x is in a relation r to object y . The domain of a relation is the class from
which all the first arguments of its facts are taken. Analogously, the range is the
class of the second argument.

– Classes (C): A class corresponds to a set of entities, such as the class of Singers
or the class of Cities. This class membership is expressed as facts of the relation
rdf:type, which is part of the RDF specification. The classes can be organised
in a hierarchy using the RDFS [121] relation rdfs:subClassOf. By infer-
ence, the set of instances of a class includes the set of instances of its sub-classes,
defined in Equation 2.1

∀x , c1, c2 :

rdfs:subClassOf(c1, c2)∧ rdf:type(x , c1)
⇒ rdf:type(x , c2) (2.1)

Definition 2.1.1 (Knowledge Base (KB)). Given a set of resources R, a set of relations
P and a set of literals L, a knowledge base KB(R, P, L) is a set of triples 〈x r y〉 from
R× P × (R∪ L)

Whenever R, P and L are understood from the context, we will simply write KB instead
of KB(R, P, L).

Graph Representation. Conceptually, an RDF knowledge base can be represented as
a directed graph, where the arguments of the facts map to nodes and the facts to directed
edges. More precisely, each fact r(x , y) maps to a directed edge where x is the source
node, y is the target node, and r the relation name is the label of the edge.

2.1. KNOWLEDGE BASES 13

rest:hasName(rest:rest_1, “Chilli’s”) rest:hasOwner(rest:rest_1, rest:owner_1)
rest:phone(rest:rest_1, “55 12 34”) rdf:type(rest:owner_1, rest:Person)
rest:menu(rest:rest_1, “Burger”) rest:hasName(rest:owner_1, “Smith”)
rdf:type(rest:rest_1, rest:Restaurant)
rdfs:subClassOf(rest:Restaurant, rest:Building)

Figure 2.1: Knowledge base example: graph representation (upper part) and the triple set
representation (lower part).

Example 2. Figure 2.1 shows an example RDF knowledge base containing data about
restaurants in New York City. The upper part shows the graph abstraction. The circled
nodes represent resources (or entities), while the rectangles represent classes. The literal
nodes are encoded in quotation marks. The labeled edges represent the relations holding
between the entities or the entities and the literals of the knowledge base.

In the bottom part of the figure, the knowledge base is shown as a set of triples. Note
that the dotted blue arrow (standing for the triplerdf:type(rest:rest_1, rest:Building),
does not appear in this set. Yet, the fact can be inferred from the inference rule (Equation
1.1) and the facts rdf:type(rest:rest_1, rest:Restaurant) and rdfs:subClassOf
(rest:Restaurant, rest:Building).

Entity-Entity vs. Entity-Literal Relations. We can classify the relations depending on
the type of the objects in their statements. While we can have only entities (R) as subjects,
the objects can be either entities or literals (R ∪ L). In this work, we assume that for any
relation, the range is either a set of entities or a set of literals and not a combination of

14 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

both entities and literals. Based on this, we consider the following classification:

Definition 2.1.2 (EE and EL Relations). Given a knowledge base KB(R, P, L) and a rela-
tion r ∈ R, we say that r is an entity-entity relation, or simply ree, if ∀r(x , y) ∈ KB ⇒
y ∈ R. r is an entity-literal relation (rel) if ∀r(x , y) ∈ KB⇒ y ∈ L.

Additionally, we define for every entity-entity relation r, the inverse relation r− , as fol-
lows.

Definition 2.1.3 (Inverse Relation). A relation is called the inverse of a relation r, written
r−, if ∀x , y : r(x , y)⇔ r−(y, x).

In this work, we assume that any knowledge base stores for every entity-entity relation r,
all the facts of the inverse relation r− that are obtained from the facts of r by swapping
the subject and the object. The new facts conform to the RDF constraint of having entities
on subject positions.

Relation Functionality. A relation is functional if there are no two facts of the relation
that share the same subject and have different object values. However, real-world KBs are
noisy, and may erroneously store more than one distinct facts of a functional relation for
one subject. Therefore, in line with [102], we define the functionality, as follows:

f unc(r) :=
#x : ∃y : r(x , y)
#(x , y) : r(x , y)

(2.2)

where the value in the nominator, #x , is the number of values for x for relation r, whereas
the denominator represents the number of statements or facts for all the subjects x . A
perfect functional relation will have a functionality of 1 (if the knowledge base does not
contain wrong facts).

Equivalent Resources. In RDF, specifically, the definition of URI from the sets R, P are
meant to be global. This means that the same URI can be used by different KBs to define
identical resources or relations. Conversely, two different resources can refer to the same
real world object. For example, US and USA can both refer to the United States of Amer-
ica. Such resources are called equivalent. In structured data, the equivalence between
two resources or entities is expressed through owl:sameAs statements. Hence, we can
write owl:sameAs(US, USA). For simplicity, in this work, we write US ≡ USA.

The two entities do not necessarily belong to the same knowledge base. Usually,
different URIs representing the same real world entity occur mostly in cases where the
entity is part of different knowledge bases that have been constructed independently from
one another. In this way owl:sameAs represents the statements that connect different
knowledge bases that are part of the Linked Open Data 1 project. According to [97],
owl:sameAs is the most frequently used linking predicate in the majority of the topical
domains in the Linked Open Data.

1. http://lod-cloud.net/

http://lod-cloud.net/

2.1. KNOWLEDGE BASES 15

2.1.2 Query language
The standard for querying RDF datasets is SPARQL [117]. It was proposed in 2008,

and since then it is a W3C standard. Since then SPARQL has evolved (SPARQL 1.1 [118])
by supporting new features that brings it closer to complex relational query languages like
SQL. SPARQL can be used to query both data and schema.

A SPARQL expression can take one of the following forms:

– SELECT: Returns row data bindings to the variables which participate in the query.
A variable in SPARQL is not bound to any predefined value but is subject to the
result of the query (e.g. ?birthDate)

– CONSTRUCT: Returns an RDF graph constructed by the the result triples that
match the query.

– DESCRIBE: Return an RDF graph that describes the resources that match.

– ASK: Returns a boolean value whether the query pattern matches or not.

In this work we consider only SELECT SPARQL queries.
SPARQL is based on the concept of matching graph patterns. In this thesis we con-

sider a subset of SPARQL named basic graph pattern (BGP) queries. BGP consists of a
set of simple graph patterns, specifically the triple patterns. A triple pattern is similar to
an RDF triple, with the distinction that variables are allowed on each of the three posi-
tions, that is, the subject, predicate or object positions. A variable in SPARQL has as a
prefix the symbol ‘?’. More formally we define a triple pattern as:

Definition 2.1.4 (Triple Pattern). Let U be a set of URIs, L be a set of literals and V be a
set of variables, a triple pattern is a tuple (s p o) from (U ∪ V)× (U ∪ V)× (U ∪ L ∪ V).

Using the previous definition of a triple patter we define the BGP query as following:

Definition 2.1.5 (BGP Query). A BGP query is a conjunctive query of the form

SELECT ?x1. . .?xm WHERE { t1∧t2∧. . .∧tn }

where t1. . .tn are triple patterns and ?x1. . .?xm are distinguished variables appearing
in t1. . .tn.

The SELECT clause specifies the variables whose bindings should appear in the result.
SRPARQL engines can be used to query at once several graphs (KBs) stored in an RDF
store. The FROM clause is used to specify the graph that will be used to answer the query.
If the FROM clause does not exist, then the query will be executed over all triples in a
given RDF store. The WHERE clause contains all the triple patterns, which represent the
conjunction of conditions that must be met in order to obtain the desired result. We will
refer to the set of the triples patterns as using the term graph pattern.

Let an embedding of the graph pattern be a subgraph of the KB such that every variable
in the query is bound to a resource, predicate or literal. For every embedding of the
graph pattern, a tuple consisting of the bindings of the variables in the SELECT clause is
returned as solution. Hence, the query result is an ordered list of tuple bindings.

16 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

PREFIX rest: <http://restaurants_new_york.com/>
SELECT ?x ?y
WHERE {

?x rdf:type rest:Restaurant
?x rest:hasOwner ?y

}

Figure 2.2: Example SPARQL query Q1.

?x ?y
rest:rest_1 rest:owner_1

Figure 2.3: Result of SPARQL query Q1.

Example 3. For example, consider the query depicted in Figure 2.2. The execution of the
query over the knowledge base of Figure 2.1, leads to the result shown in Figure 2.3. The
result set is illustrated in a tabular form. Each solution is shown as one row in the table.

To enforce a specific ordering or sorting of the result set, SPARQL provides several
modifiers. These modifiers range from simple sorting, distinct solutions in the result set,
and to finally specifying the desired amount of answers. The Solution Sequence Modifiers
used in this thesis are the following:

– DISTINCT: Ensures that the returned solutions in the sequence are unique.

– ORDER BY: Puts the solutions in specific order.

– LIMIT: Restricts the number of the returned solutions.

– OFFSET: Causes that the returned solutions will start after a specific number of
solutions. When the offset is zero the returned solutions will start from the first
solution.

VALUES Construct. An interesting feature provided by SPARQL 1.1 which we use
in Chapter 4 is the VALUES construct. Using VALUES, data can be directly written in
a graph pattern and added to a query. In this way we can JOIN in-line data with the
results of a BGP query executed over a given KB. This is a useful construct when we the
results of two BGP queries need to be joined and are executed by two remote SPARQL
engines. In order to reduce the data transfers, the results of one query can be included in
the second query. An example query using the VALUES feature is depicted in Figure 2.4.
In this example the result solutions for the variable ?x will be joined with the values
of ?y provided in the VALUES clause.

FILTER Constraint. SPARQL also gives the capability for adding constraints to the
variables included in the graph pattern using the FILTER clause. In this way, answers are

2.1. KNOWLEDGE BASES 17

PREFIX rest: <http://restaurants_new_york.com/>
SELECT ?x ?y
WHERE {
VALUES (?y) {

rest:owner_1
rest:owner_2

}
{ SELECT ?x ?y WHERE {

?x rdf:type rest:Restaurant
?x rest:hasOwner ?y }

}
}

Figure 2.4: Example SPARQL query with VALUES Q2.

restricted to those which result in evaluating the filter expression to true. The constraints
that can be included in the FILTER clause may assign a specific value to a resource or to
introduce arithmetic constraints to literals or string similarity functions.

In the rest of the thesis we will use the terms SPARQL query or simply query, refer-
ring to the SPARQL fragment described by Definition 2.1.5 along with all the described
constraints / features.

2.1.3 Knowledge Base Paths

In this work, we are interested in the sequence of relation names that labels a path
linking two entities or an entity to a literal. While the source entity is always given, the
target entity (or literal) might be required to be returned. If the two entities are given, then
we talk about boolean KB paths, defined as follows:

Definition 2.1.6 (Boolean KB Path). Given a knowledge base KB(R, P, L), and the rela-
tions r1, . . . , rn ∈ P, we write r1.rn(x , y) to say that there is a path in KB with relation
names r1, ..., rn between node x and node y that does not visit any node twice:

∃x1, ..., xn−1 : r1(x , x1)∧ ...∧ rn(xn−1, y)∧ |{x1, ..., xn−1}|= n− 1

Definition 2.1.7 (KB Path). We write r1.rn(x) := {y : r1.rn(x , y)} to indicate all
entities or literals reachable by the path from x .

For simplicity, we will use p for a Boolean KB path or a KB path of one or several relation
names.

This gives us a simple language, compatible with SPARQL, that can express paths
both in the Web service call result (Section 2.2.4) and in the knowledge base.

18 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

2.2 Web Services
According to W3C, a Web service (WS) [109] is a software system designed to support

interoperable machine-to-machine interaction over a network. This interaction usually
concerns the exchanging of data between applications or systems.

In 2002, the W3C Web service Architecture working group defined a Web service
architecture where a Web service interacts with other systems using SOAP messages. and
the input as well as the output of the Web service is formally described in an XML-based
machine-processable format namely WSDL (Web Services Description Language).

In 2004, the W3C [111] proposed a new category of Web services, the REST-compliant
Web services. The purpose of REST Web services is to manage Web resources represen-
tations by using a set of operations. REST uses standard HTTP which is much simpler
than SOAP thus, REST has better performance and scalability. Major e-commerce and
Internet-related companies like Amazon, eBay, Yahoo and Google are in favor of REST
Web services. Moreover, 80% of the Web services [41] use the REST architecture.

In this work we consider only REST Web services, from now on whenever we refer
to Web services or WS.

2.2.1 REST Architecture
A REST Web service follows a standard client-server architecture. Figure 2.5 illus-

trates a request-response communication between a Client and a Service Provider where
the client sends a call request to the service provider. The call takes the form of the pa-
rameterized URL that includes the values of the input parameters. More precisely, the
URL is a case insensitive string of form:

scheme://host:port/path?queryString#fragment

Where:

– scheme is the protocol, usually HTTP, but it can also be FTP or HTTPS;

– host is either a DNS name or a IP address;

– port is the port. If missing, the default port is 80 when the scheme is HTTP;

– path is a set of text segments delimited by the “/”;

– queryString is a list of parameters represented as name=value pairs, separated by
the character &;

– fragment is an identifier used to point to a particular place in the document.

Example 4. Consider the URL depicted in Figure 2.5. The scheme, the host and the path
are “HTTP”, “www.musicbrainz.org”, and “ws/2/artist/” respectively. The port is not
given, hence it is considered to be the default port 80. The URL consists of only one
parameter: “query=Madonna”.

We define a Web service call as following:

2.2. WEB SERVICES 19

Figure 2.5: REST Web service architecture.

Definition 2.2.1 (WS call). Given a Web service f a Web service call is a parameterized
URL that is sent from the Client to the Service Provider through HTTP.

Following the request (WS call) from the Client, the Service Provider computes a call
result for the given call and sends back to the client an encoding of it according to (1) a
language (typically, XML or JSON) and (2) a schema (typically, unknown). As encoding
language, we consider only XML. This is without loss of generality as we will show next
JSON fragments can be translated into XML documents. In this work, we assume that the
Web service encodes all its results using the same schema.

Furthermore, we deal only with Web services that provide means on accessing the
underlying data sources, e.g. MusicBrainz. These services can be seen as the execution
of a predefined parameterized query over the remote source. Note that, with a Web service
one cannot execute any query on the remote source. Only parametrized and predefined
queries for a Web service can be executed. In order to address this limitation, Web sources
typically publish not one but several Web services that form what is called a Web service
API.

2.2.2 Call Results
The Web services implementing the REST architecture are not constrained to follow a

specify language for encoding their results. However, most of them are using XML [116]
or JSON [119]. The two languages are similar as the underlying model for both of them
is an abstract tree.

XML. EXtensible Markup Language (XML) is a markup language for encoding Web
documents in human and machine readable format. XML is a W3C standard [116] and is
considered as the de facto standard for data exchange across the Web. The wide adoption
of XML is due to its simple, flexible and generic data model. Moreover, since the data
is easily interpretable by both humans and machines due to its semi-structured nature, as

20 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

<root>
<Restaurant>
<Name>Chili’s</Name>
<Entree>Burger</Entree>
<Phone>555-1234</Phone>
<Owner>Smith</Owner>

</Restaurant>
<Restaurant>
<Manager>Smith</Manager>
<Name>Darbar</Name>
<Entree>Lamb Curry</Entree>
<Entree price="23">Beef Curry
</Entree>

</Restaurant>
<Bar>Rose & Crown</Bar>
</root>

Figure 2.6: Example XML document: XML encoding (left) and abstract tree representa-
tion of the same document (right).

such it makes it a natural choice for representing and integrating data that do not obey
strict schema definitions.

In this work we are not interested in the full functionality that XML language provides.
Subsequently we present a subset of XML functionalities that are used in this thesis.

XML is organized in documents and the encoded data forms a tree structure. In line
with the W3C standards, in this thesis, we represent an XML document as a rooted,
labeled tree. In XML documents, each node can be an element, a text node, or an attribute.
An XML element node may contain a list of (sub-)elements, text nodes and/or attributes
as children. A textual node contains text encoded in Unicode format and can be of any
arbitrary length, and an attribute node has a label and a value assigned for it.

We make the distinction between two kind of nodes. We call the elements or the
attributes of an XML document structure nodes, and the attribute values or the contents
of elements text nodes.

For every well-structured XML document there is exactly one root or a parent node
that contains all other nodes or child nodes. Since the data forms a tree structure, each
child node in an XML document has exactly one parent node, consequently a parent node
can have multiple child nodes.

Example 5. Figure 2.6 presents an example of an XML document (left) encoding meta-
data about Restaurants and Bars in New York. The corresponding XML tree is
shown in the right part of the figure, where the structure nodes are depicted as circles
while text nodes are shown in quotation marks.

JSON. JavaScript Object Notation (JSON) [119] is a lightweight data-interchange text
format. Easy for both humans and machines to read and generate. The basic structures
used in JSON to encode data are object, array, and value. An object is an unordered set
of name-value pairs beginning with left brace ({) and ending with a right brace (}). Each
name is followed by colon (:) and the name-value pairs are separated by comma (,). An
array is an ordered collection of values where a value can be a string, a number, an object,
an array or one of the values: true, false or null.

2.2. WEB SERVICES 21

The basic transformation rules that allow JSON data structures to be translated to
XML documents are the following:

– JSON names become XML element names

– JSON object members and arrays become XML elements, and

– Simple values become XML text nodes

Example 6. Consider the following JSON document:
{
“city”: “Paris”,
“country”: “France”
}

After the translation to XML will have the following result:

<root type=“object”>
<city>Paris</city>
<country>France</country>
</root>

For uniformity, in this work we assume that call results in JSON are transformed to
XML documents. This can be done by standard tools that consider the aforementioned
transformation rules.

2.2.3 DataGuides
One of the reasons of the widespread of XML, is that it does not enforce strict schemas

over XML documents. Often, XML is referred to as a semi-structured data model, due
to the absence of a fixed schema. Hence, in many cases XML documents might miss a
formal definition of a schema. This main characteristic of XML along with the lack of a
formal description for REST Web services prompted us to use DataGuides.

To account for the missing schemas and the advantages of having a formally de-
fined schema over an XML document, Goldman and Widom [48] introduce the notion
of DataGuides. A DataGuide is a concise, accurate and convenient structural summary of
an XML document. More precisely, based on [48], in this work, we define a DataGuide
as following:

Definition 2.2.2 (DataGuide). A DataGuide for a source XML tree s is an XML tree d
such that every label path of s has exactly one label path instance in d, and every label
path of d is a label path of s.

Where a labeled path is defined as:

Definition 2.2.3 (labeled path). A labeled path of an XML node o is a sequence of one
or more dot-separated labels, l1.l2. . . . ln such that we can traverse a path of n edges
(e1 . . . en) from o where edge ei has label li.

22 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

Figure 2.7: DataGuide for the X M L document in Figure 2.6

Example 7. Figure 2.7 shows an example of a DataGuide for the XML document pre-
sented in Figure 2.6. A label path of the XML tree starting from root node in Figure 2.6
is root.Restaurant.Name.

Through XPath [114] expressions over a DataGuide we can check whether a path
exists in the XML document. Hence, we can assert whether certain structural nodes
exist in the document, or a specific ordering as parent–child nodes is possible in an XML
document.

2.2.4 Querying Call Results
Given a Web service f , we refer to the root of the call result for x by λ f (x). We will

omit the subscript f if it is clear from the context. We label an edge in the call result
with the label of the target node of the edge. In Figure 2.6, e.g., the topmost edge will be
labeled with “root”. If an edge leads to a text node, we label the edge with the generic
label τ.

Definition 2.2.4 (Boolean WS Path). We write p(x , y) to say that there is a path l1/.../ln(x , y)
in the call result, with edge labels l1, ..., ln between node x and node y .

Definition 2.2.5 (WS Path). We write p(x) := {y : l1/.../ln(x , y)} to mean all nodes
reachable by that path from x .

2.3. DATA INTEGRATION MODEL 23

Figure 2.8: Process flow of Extensible Stylesheet Language Transformations (XSLT) 2.

This gives us a simple language that can express paths in the call result. This language
is compatible with XPath (the language for querying XML documents), and with XSLT
[115] (the language used for our transformation functions). To distinguish paths in the
call result from paths in the KB, we use “/" for XML and “." for RDF data.

2.2.5 Transforming Call Results
The WS paths defined above, are used to create the transformation function which is

provided by our system. More precisely, the transformation functions are expressed in
Extensible Stylesheet Language Transformations (XSLT) [115], a declarative language
based on XPath expressions. XSLT is used to transform XML-like documents to other
XML-like documents. The original document remains unchanged and a new document is
created using the content of the original one. The transformation process is presented in
Figure 2.8.

2.3 Data Integration Model
Views With Binding Patterns. In one of the best known integration models, in LAV
(local-as-view), a local schema is defined as a view (query) over the global schema. In
our approach, on mapping the output of Web services into a global schema (DORIS –
Chapter 3), the global schema is a given knowledge base and the local is a Web service.
For this specific case of source with restricted access, we use the formalism of views with
binding patterns described in [50].

Formally, a view with binding patterns is a conjunctive query of the form

qā(x̄)← r1(x̄1), r2(x̄2), . . . , rn(x̄n)

where r1, . . . , rn are relation names from the global KB and q is a new relation name.
The tuples x̄1, x̄2, . . . x̄n contain either variables or constants. The query must be safe,

2. https://en.wikipedia.org/wiki/XSLT

https://en.wikipedia.org/wiki/XSLT

24 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

i.e. x̄ ⊆ x̄1, x̄2, . . . x̄n (every variable in the head must appear also in the body). Every
variable is adorned in ā with a letter. We use i for input-output variables, and o for output
variables. By input-output variable we mean that the result might return new bindings for
that variable.

Example 8. Consider a Web service encoding information related to restaurants and as
global schema the knowledge base of the Figure 2.1. The Web service can be written as
the following conjunctive query over a global schema:
getRestaurant In f oioo(x1, x2, x3)← hasOwner(x1, x2), menu(x1, x3)

The aforementioned query defines how the Web service provider computes the func-
tion getRestaurantInfo. From the caller’s point of view, the adornment ioo states that
getRestaurantInfo can be called only if a value for x1 is provided. The evaluation of
the function call binds the variables x2 and x3 to the values that satisfy the conditions
hasOwner(x1, x2) and menu(x1, x3).

2.4. STATE-OF-THE-ART 25

2.4 State-of-the-art
In this section, we review related literature on state-of-the-art, relevant to the two

problems we address in this thesis:

– DORIS. Mapping of Web service output into a global RDF schema

– SOFYA. Online alignment of ontological relations

In Section 2.4.1 we provide an overview of schema matching approaches. Schema
matching is used in both parts of our contributions, namely in Chapter 3 and Chapter 4. In
Chapter 3, we propose a schema matching approach to map the output from Web service
operation calls into a global RDF schema, whereas in Chapter 4 we propose an online
approach for ontological relation alignment.

Section 2.4.2 presents a detailed overview of schema matching approaches that are
related to SOFYA approach in Chapter 4. Finally, in Section 2.4.3 we present related
work for the approach in DORIS in Chapter 3. The related work is grouped into the
following categories: (a) schema matching in Web services, (b) Query Discovery, (c)
Wrapper induction, (d) Web service representation, and (e) Web service discovery.

2.4.1 Schema and Ontology Matching Approaches

In the following subsections we present an overview of the notions of schema match-
ing and ontology matching. We introduce some of the main commonalities found across
schema and ontology matching research, and their respective categorization (e.g. schema
vs. instance based approaches.). These represent one of the largest corpora of related
work that are closely related to the approaches in DORIS and SOFYA, Chapter 3 and
Chapter 4, respectively.

Overview of Schema Matching

Rahm and Bernstein [94, 18] present one of the most comprehensive reviews of the
early schema matching approaches. They identify the application fields of schema match-
ing, with most notable applications in schema integration, data warehousing, e-commerce
and semantic query processing. A common task usually tackled is the alignment of
schema elements from a source schema to a target schema.

From [94, 18] a common ground from schema matching approaches is their depen-
dency towards the source and target schemas for alignment, and the underlying instances.
This further influences the choice of matchers that are set in place to determine whether
two schema elements are equivalent, to the nature of the matching approach, namely in-
stance or schema based.

We guide the analysis of the related work on schema matching and position the work
in this thesis, specifically, Chapter 4 based on the taxonomy proposed in [94]. Figure 2.9
shows the taxonomy of schema matching approaches. The proposed schema matching
approach for relation alignment in Chapter 4 belongs to the group of instance-based ap-
proaches. Similar is the matching approach we use in Chapter 3.

26 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

Figure 2.9: A classification of schema matching approaches proposed in [94].

Overview of Ontology Matching

Nowadays, apart from the traditional schema matching that is done in relational and
XML databases, a particular subfiled that is closely related to the work in this thesis is on-
tology matching. This is mostly attributed to the increase of availability of Web Data, es-
pecially Linked Data. In [99] it is important to note some significant differences between
ontology matching and traditional schema matching. The definition of ontology match-
ing is that of matching classes or properties from any two ontologies (see Figure 2.10).
Work in the ontology matching field is closely related to the contributions in Chapter 3
and Chapter 4.

Furthermore, the notion of alignment has different interpretations. The authors of the
survey in [99] have encountered that alignment may stand for one of the four relationships:
subsumption, equivalence, disjointness, more general, although for a vast majority of
works, alignment means the discovery of equivalence relationships. In our work, we aim
at discovering relationships of subsumptions between relations. For us, the relationship
of equivalence may be expressed as the two-way subsumption of two relations.

In this thesis, we address two problems that are related to ontology matching ap-
proaches. First, we address the problem of aligning output from Web services into a global
RDF schema. Second, we propose an online relation alignment approach for knowledge
bases, where for any two relations we find subsumption alignments in the 4-uple definition
in [99].

2.4.2 SOFYA: Related Literature

The approach in SOFYA performs ontological relation alignment where for a given
source relation we find target relations in which our source relation is subsumed. There-
fore, we review related literature on schema mapping approaches, namely schema-based
and instance-based.

2.4. STATE-OF-THE-ART 27IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY 201X 2

knowledge, (iv) matcher selection, combination and
tuning, (v) user involvement, (vi) explanation of
matching results, (vii) social and collaborative match-
ing, (viii) alignment management: infrastructure and
support.

This article is an expanded and updated version
of an earlier invited conference paper [17]. The first
contribution of this work is a review of the state of
the art backed up with analytical and experimental
comparisons. Its second contribution is an in-depth
discussion of the challenges in the field, of the recent
advances made in the areas of each of the challenges,
and an outline of potentially useful approaches to
tackle the challenges identified.

The remainder of the paper is organized as follows.
Section 2 presents the basics of ontology matching.
Section 3 outlines some ontology matching applica-
tions. Sections 4 and 5 discuss the state of the art
in ontology matching together with analytical and
experimental comparisons. Section 6 overviews the
challenges of the field, while Sections 7–14 discuss
them in detail. Finally, Section 15 provides the major
conclusions.

2 THE ONTOLOGY MATCHING PROBLEM

In this section we first discuss a motivating exam-
ple (§2.1) and then we provide some basics of ontol-
ogy matching (§2.2).

2.1 Motivating example
In order to illustrate the matching problem let us use
the two simple ontologies, O1 and O2, of Figure 1.
Classes are shown in rectangles with rounded corners,
e.g., in O1, Book being a specialization (subclass) of
Product, while relations are shown without the latter,
such as price being an attribute defined on the integer
domain and creator being a property. Albert Camus: La
chute is a shared instance. Correspondences are shown
as thick arrows that link an entity from O1 with an
entity from O2. They are annotated with the relation
that is expressed by the correspondence: for example,
Person in O1 is less general (⊑) than Human in O2.

Assume that an e-commerce company acquires an-
other one. Technically, this acquisition requires the
integration of their information sources, and hence,
of the ontologies of these companies. The documents
or instance data of both companies are stored ac-
cording to ontologies O1 and O2, respectively. In
our example these ontologies contain subsumption
statements, property specifications and instance de-
scriptions. The first step in integrating ontologies is
matching, which identifies correspondences, namely
the candidate entities to be merged or to have sub-
sumption relationships under an integrated ontology.
Once the correspondences between two ontologies
have been determined, they may be used, for instance,
for generating query expressions that automatically

Product

Book

CD

price
title
doi
creator
. . .

author

integer string

Person

Monograph

Essay

Literary critics

Politics

Biography

. . .

Literature

isbn
. . .

title

subject

Human

Writer

Albert Camus: La chute

⊒

⊒

=

⊒

⊒

⊑

O1 O2

Fig. 1: Two simple ontologies and an alignment.

translate instances of these ontologies under an inte-
grated ontology [18]. For example, the attributes with
labels title in O1 and in O2 are the candidates to be
merged, while the class with label Monograph in O2
should be subsumed by the class Product in O1.

2.2 Problem statement

There have been different formalizations of the match-
ing operation and its result [11, 14, 19–21]. We follow
the work in [2] that provided a unified account over
the previous works.

The matching operation determines an alignment A′

for a pair of ontologies O1 and O2. Hence, given a pair
of ontologies (which can be very simple and contain
one entity each), the matching task is that of finding an
alignment between these ontologies. There are some
other parameters that can extend the definition of
matching, namely: (i) the use of an input alignment A,
which is to be extended; (ii) the matching parameters,
for instance, weights, or thresholds; and (iii) external
resources, such as common knowledge and domain
specific thesauri, see Figure 2.

O1

O2

A matching A′

parameters

resources

Fig. 2: The ontology matching operation.

We use interchangeably the terms matching oper-
ation, thereby focussing on the input and the result;
matching task, thereby focussing on the goal and the
insertion of the task in a wider context; and matching
process, thereby focussing on its internals.

Figure 2.10: Ontology Matching example between two ontologies. The matching problem
as the 4-uple, 〈id, e1, e2, r〉. Where e1 and e2 are any two classes or properties, whereas r
represents the typed alignment, that is, equivalence, disjointness, more general, subsump-
tion holding between e1 and e2.

Schema-based Approaches

From the taxonomy in Figure 2.9, we see that there are three main distinctions in
schema matching approaches. In the first group that of schema based, the approaches
make use only of information gathered from the schema elements (e.g. an attribute and
attribute properties from a table). We review work on schema-based approaches as they
can be seen as complementary approaches towards our proposed approach in SOFYA.
However, as it will become evident throughout the comparison with existing work, their
applicability in our use-case in Chapter 4 has short-comings which we address.

A non-exhaustive list of schema-based approaches is: [68, 70, 69, 35, 36, 77, 76,
82, 84, 83, 26, 74]. Some common techniques used for schema matching in the afore-
mentioned approaches consider the following: (i) constraints enforced by a definition of
a schema element, (ii) lexical similarity based on the schema element names (through
synonyms, hypernyms, or dictionaries), and (iii) graph-based similarity measures like
neighborhood similarity measures between two schema elements in disparate schemas.

Below we present a detailed comparison of schema-based related approaches with
respect to the contributions in this thesis.

COMA++ [14] is a successor of COMA [34] prototype. COMA++ is one of the most
well-known schema matching systems, and it can be safely assumed it is representative
of many other schema-based approaches due to its choice of matchers. The approach
in COMA++ combines several matchers (or matching algorithms) in order to produce
the mapping between two given schemas. Furthermore, COMA++ supports schemas and
ontologies written in different languages like SQL, XSD, and OWL. The mapping process

28 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

follows three main steps described below.

1. Component Identification. In this step it is determined the type of schema compo-
nents for matching, i.e., nodes, paths, child nodes.

2. Matcher Execution. Here, multiple matchers are executed in order to compute the
similarity between schema components. There are more than 15 matchers, who
consider mostly linguistic and structural similarities. A recent matcher added in
COMA++ is an instance based matcher (in support of OWL ontologies) and pro-
duces mappings between concepts/classes.

3. Similarity Combination. The similarities computed from the different matchers are
combined into a unified model to derive correspondences between schema compo-
nents.

In contrast to our work, COMA++ is a schema based approach for ontology alignment.
It focuses on matching ontological concepts (classes in RDF datasets) between two on-
tologies. The main difference between this work and the contributions in our approach
SOFYA are the following. Contrary to COMA++, in SOFYA we consider ontological re-
lation alignment, furthermore, our approach is instance-based. Despite that, the nature
of relation alignment is quite different when compared to classes/concept alignment in
two schemas. A relation in knowledge bases is characterized by its domain and range
(allowed concepts and literals to be assigned to a relation), hence, an alignment with
schema-based approaches is unlikely to work due to the fact that often concepts belong to
different taxonomies and follow different naming conventions.

In our case, the objective is to find if a relation is subsumed into a target relation,
matchers need to determine the subsumption at the instance level, namely a match in
terms of domain and range. Additionally, an argument of the applicability of schema-
based approaches could be the alignment of the concepts from the domain and range of
relations. Yet, this goes beyond any existing schema-based approach and can be regarded
as a future and different direction to explore for relation alignment where both the domain
and range are concepts.

Peukert et al. [88] propose an automated schema matching framework that for a given
mapping problem, automatically tune the different matchers and order of executed oper-
ators in a matching process. The framework mimics the use of schema matching frame-
works by expert users or database administrators.

In order to automatically tune the framework for a given mapping problem, the authors
in [88] do the following. For a given set of matching operators, and any given pair of
source and target schemas, they compute two groups of features that are used to construct
rules to guide the mapping process. In the first feature group they compute schema-level
features, such as data type information of a specific concept in a schema, frequency of
elements for a concept etc. In the second group, they analyze the intermediate results
that are produced by the matching operators. Finally, from the computed features a set
of matching rules are constructed. A matching rule which represent expert knowledge
has several attributes such as, where it can be applied in the mapping process (selection,
aggregation, mapping etc.), the action it will undertake, i.e. addition of two similarity

2.4. STATE-OF-THE-ART 29

matrices produced by different matchers, and finally, it has a relevance score indicating
the usefulness of a such a rule.

The rules are mainly of three types, starting rules (applied usually in the beginning
of a process), aggregation rules (combine the output of different matchers), rewrite rules
(e.g. change the order on how the operators are executed), or selection which picks the
most probable schema-elements for alignment.

In summary, the introduction of the different features, and the matching rules has the
advantage on self-tunning matching algorithms w.r.t to a given mapping problem. In com-
parison to our system SOFYA, the differences are in that we perform relation alignment
(contrary to class alignment) with features computed from instances extracted from re-
lations under comparison. An alignment in our case is considered relevant iff a target
relation in a schema subsumes the source relation. Furthermore, the approach in SO-
FYA is a supervised machine learning model, which automatically adapts to the different
knowledge base pairs by selecting the optimal subset of features, and as such it is related
to the selection of matchers in related work.

Similarly, Albagli et al. [11] propose the iMatch schema matching approach; a system
that produces matches between two given ontologies by using the structure of the ontolo-
gies and the type information between classes. iMatch produces matches between classes
through models which represent Markov Networks [87]. In this work the authors do not
tackle the relations matching problem, which is the focus of our work in Chapter 4.

Doan et al. [35] proposes a schema matching approach where the source data is in
XML and the source and target schemas are in DTD. The approach is supervised, where
the user of the tool provides manual mappings between the two schemas. From the pro-
vided mappings, the systems learns several base learners (based on different matchers)
between the two equivalent concepts in the two schemas, and finally combine them into
a meta-learner that predicts the relevance of a mapping. Furthermore, to avoid incorrect
mappings, the user has to add examples of what should not be aligned, e.g. house-ID
should not mapped with a num-beds.

In contrast to our ontological relation alignment, SOFYA in Chapter 4, were we con-
sider similarly a supervised approach, the differences are the following. In our approach
in SOFYA, value distributions or expected values from a specific attribute in a schema do
not apply as we consider entity relations. Finally, such an approach is not applicable in
our setting as it requires users to provide exclusion rules from the mapping process that
prohibit two specific attributes to be aligned in disparate schemas.

Madhavan et al. [73] propose a schema matching approach that use pre-aligned XML
schemas to estimate what are possible matches between the different schema elements. Fi-
nally, they propose only possible matches between classes/concepts for any two schemas,
however, they do not consider the actual mapping.

30 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

Instance-based Approaches

The second major category of schema matching approaches are instance-based. They
rely on actual instances from the corresponding schemas. The difference here lies that
approaches not only use the schema information and schema element definitions, but also
consider instances from them. The advantages over schema-based approaches is that
when the schema definitions provide limited information for the different matchers set
in place to perform the alignment. Hence, through the instances one can analyze for a
specific schema element the distribution of values, the data types etc., and accordingly
perform a mapping between schema elements.

Approaches like in [68, 70, 69, 35, 36] rely on textual similarity from the actual in-
stances, or use the distribution of possible values from a schema element, correspondingly
from its instances to compute the mapping between two schemas. Below we compare in-
dividual instance-based approaches to our approach in SOFYA.

Doan et al. [37] propose GLUE a semi-automated machine learning framework for the
ontology mapping problem. The mapping problem is defined as matching a node from
one ontology into the node of another ontology. The mapping is done only for the case of
one-to-one mappings. GLUE has three main components.

For two ontologies U1 and U2 and concepts A and B, learn a classifier for A as fol-
lowing. Instances that exist in A are labeled as positive instances, and those that exist in
B (but not in A) as negative. Then the classifier is applied to concept B, and labels the
individual instances. The features are extracted from instance attributes, such as the name
or the content. Finally, the mapping between A and B is done under the following as-
sumption ‘if all children of a node X match node Y, then X also matches Y’. That is, in the
case where instances from B are classified mostly as positive instances from a classifier
learned for A, then the corresponding concepts should be aligned.

In contrast to our work, GLUE focuses on matching ontological concepts (classes in
RDF datasets) between two ontologies, while in our case as part of SOFYA we discover
relations alignments. Furthermore, such a model proposed by GLUE would not be appli-
cable in our case, as we would need to train classifiers for the individual relations (step
(1) and (2)). This presents a major drawback in applying it for relation alignment, where
such models would be highly likely to overfit to the specific relations.

Wang [124] et al. propose an instance based ontology matching approach. The ap-
proach uses machine learning to distinguish between correct mappings of any given pair
of concepts/classes from two ontologies. The features are computed from the instances
that belong to corresponding concepts. The features are mainly of two groups. The first
group is represented as a bag-of-words with terms coming from the textual literals from
the instances and the corresponding frequency of each term when aggregated at the con-
cept level. The second group, considers features extracted from the metadata from the
concepts.

Finally, a classifier a Markov Random Field, is trained on the computed cosine simi-
larity on the bag-of-words extracted from the literals and metadata.

2.4. STATE-OF-THE-ART 31

The approach is evaluated on very limited collections of digitized books collection,
and on a collection of multimedia documents. The differences with our work in Chap-
ter 4, namely the system SOFYA, is that we consider ontological relation alignment. Fur-
thermore, such an approach is tailored to its specific domain of book collections, where
bag-of-words similarities are likely to work. Unlike in our case where we consider entity
relations where the amount of text that can be used is insufficient.

Qian [92] propose a sample-driven schema mapping. In the approach, the users play a
central role by providing sample instances which are then used to find possible mappings
to target databases. The process is iterative, in the way that the more samples are provided
by the users, the more accurate are the produced mappings.

It must be noted here that the scenario is somewhat different from traditional schema
mappings approaches between a given source and target schema. In this case, the user
wants to aggregate multiple databases or schemas into a single one (the target schema).
Hence, without formally specifying the attributes of the target schema but instead provid-
ing only sample instances the mappings are generated w.r.t the source schemas.

The approach in [92] is similar to our work in Chapter 4 only at one point. We sample
for entity instances that are associated with a relation, which we want to align in a target
knowledge base. Dependent on the sample size, our approach will be affected in terms of
coverage. On the other hand in [92], the impact is demonstrated at the attribute level that
can be mapped to a target schema given the provided samples. Yet, we are different in the
sense that our approach extracts the samples automatically, and that we consider relation
alignment, instead of class alignments.

Similar to the work by Qian [92], Miller et al. [75] rely on samples on how specific val-
ues in source schema should be mapped to a target schema. The samples are provided by
database administrators, and they show how a mapping in a target schema is constructed,
e.g., salary = PayRate * WorkHours.

They follow a strategy where they construct correspondences showing how a value
from a target database can be constructed from the executed queries on the source database.
However, such an approach proposed in [75] requires samples about how example values
from a schema should be mapped into a target schema added by a database administrator.

In the case of SOFYA we have significant differences in that we consider relation
alignment, where such correspondences in [75] do not apply. Furthermore, our approach
is performed in an online setting without any intervention from a user.

In ROSA [46], the authors consider similar to the work in this thesis, namely Chap-
ter 4, the relation alignment problem. However, in this thesis, we consider the proposed
approaches in [46] as our baseline, and further propose new measures for relation align-
ment. The pca measure used in [46] represents one of the features of our supervised
learning module. Our experiments on 6 cases of KB alignments have showed that our
approach outperforms significantly the proposed approach in [46]. On average, for all
6 cases of KB alignments, in terms of precision we achieve a gain of more than 55%,
whereas in terms of F1 measure, with 41%. A detailed comparison is shown in Table 4.4.

32 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

Galárraga et al. [45] propose an approach to map OpenIE knowledge bases like NELL [25]
to structured knowledge bases like Freebase. The approach consists of two steps: (i) map-
ping entity mentions in facts from NELL into the equivalent entity instances in Freebase,
and (ii) mapping the predicates or verbal phrases from a fact in NELL into relations in
Freebase. In more details, our approach of ontological relation alignment in SOFYA in
Chapter 4 is related only to the second step in [45].

In [45], verbal phrases from a fact in the NELL KB are clustered together based on the
computed equivalences based on the AMIE approach [47]. In this case a prerequisite is
that the subject/object entity mentions in a fact in NELL are already resolved to Freebase
entity instances. Next, the verbal phrases within a cluster are canonicalized into one of
the Freebase relations [46] based on the common entities that serve as subject/object in
fact in the NELL KB, and respectively in Freebase.

In contrast to [45], in this thesis, specifically in the SOFYA approach we deal with
ontological relations, where relations within a KB are considered to be unique. Whereas
for the mapping of ontological relations across disparate KBs we use the approach in
AMIE as our baseline and address its major shortcomings explained in Chapter 4.

In [54] authors suggest a rule learning approach for ontology matching. The rules are
learned by means of analyzing instances of a given pair of ontologies. Similar to our
approach proposed in SOFYA, they limit the set of instances for the learning process, to
instances that have identical URIs or are linked with owl:sameAs for an ontology pair.

In the ontology matching process they distinguish between two main use cases. In
the first use case, they perform 1:1 mappings between concepts/classes. The features
used to learn the rules conform to boolean indicators w.r.t the presence of a particular
rdf:type (which represent classes or concepts in an ontology) for an instance. The
instances are represented into a high dimensional feature space, where each instance has
98k features. The features corresponds to the attribute-value pairs extracted from the
instance. Finally, the rule learning process follows the intuition that classes that co-occur
in a large set of instances are likely to be aligned.

In the second use case, the matching process considers relations from an ontology
pair. Here, the rule learners analyze all instances that have a relation that are not mapped
to a target ontology, and the features correspond to attribute-value pairs. For each relation
a separate ruleset is learned. The mapping of relations in two disparate ontologies is done
by analyzing the similarity of the rulesets. Rulesets that are similar indicate that two
relations are equivalent.

In this thesis we similarly tackle the problem of relation alignment. The differences lie
in the fact that we consider a more realistic scenario where the relations are not likely to
be equivalent but rather one subsumes the other. We note this especially in the considered
datasets in [54], namely YAGO and DBpedia. In which case, relations from DBpedia
are more likely to be subsumed by their counterparts in YAGO. Furthermore, we per-
form the alignment process during query-execution and operate with a minimal amount
of instances from the ontologies. Additional advantages of our approach is the minimal
overhead in query-execution, hence, making it a realistic framework that can be applied
in an online setting.

2.4. STATE-OF-THE-ART 33

Finally, contrary to [54] where one needs to find the similarity of rulesets in order to
align to relations, in our setting we perform this in automated manner. Furthermore, if one
considers as features the actual attribute-value pairs, the learned rulesets are specific to an
ontology and relation pair, hence, the need to re-learn such rules. Contrary, we compute
features that generalize well across relations and ontologies.

In [105] authors propose a system called ONARM. It is an ontology mapping technique
where given two ontologies is able to map concepts (classes) of these two ontologies by
extracting association rules. The proposed approach exploits the structure of the input
ontologies and more specifically the hierarchy of concepts in order to determine the map-
ping between them. It applies linguistic similarity on the labels of concepts along with a
structural similarity technique.

Summary

Bernstein et al. [18] provide a thorough overview of schema matching approaches,
the applications, and future applications of schema matching on the web. It is noteworthy,
that our use of schema matching on mapping Web service output into a global schema and
the use of relation alignment online through minimal samples of instances from a given
pair of datasets present real-world use cases and emphasize the importance of schema
matching on the Web and Web data in general. This is inline with their view of schema
matching approaches and their use cases.

We depict two main factors for ontology matching that apply in our relation alignment
problem in Chapter 4. The first factor deals with the choice of matchers that are used in the
ontology matching task, which is dependent on the datasets under consideration. In our
work, we perform feature selection for our machine learning model for the alignment task,
hence, choosing the appropriate matchers for which our alignment model has optimal
performance. The second factor that we see as common point in [99] and our work, is
the choice of training individual classifiers for the different datasets under consideration.
That is to say that for any pair, alignment models might be generalizable and work for any
arbitrary pair, however, optimal performance is achieved when the models are fine tuned
w.r.t the datasets under consideration.

Finally, the discussed related work focus on mappings between classes in ontologies,
whereas in our work we consider subsumption alignment between relations. Furthermore,
one major drawback and difference with our approach in SOFYA is that related work
requires full-access of the datasets under considerations. In our case, we propose an
efficient approach that performs the alignment in an online setting with minimal samples
from the datasets. Lastly, through relation alignment we enable end-users to access the
wealth of LOD through query-rewriting and without requiring pre-aligned datasets at the
class/concept level.

34 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

2.4.3 DORIS: Related Literature

In this subsection, we review related work that is closely related to our approach
DORIS on mapping the output of Web services into a global schema in Chapter 3. We or-
ganize the related work into the different topics that deal with: discovery, representation,
orchestration and wrapper induction. Below we describe a related work that is closely
related to our contribution in DORIS.

Schema Matching for Web Services

Determining the description of a Web service in terms of a global schema can be
seen as a special case of schema mapping or ontology alignment. This is the problem of
matching the concepts and the relations of one schema to the concepts and relations of
another schema. Several approaches have been developed to this end.

Similar to our work DORIS, Karma [104] proposes to integrate REST services into a
target RDF KB given as input, by describing them in terms of the target schema. Unlike
DORIS, Karma assumes that there is an obvious translation of the XML call results into
tables. The challenge in Karma is to assign semantic types to data columns. To this end,
a supervised machine learning algorithm based on the conditional random field (CRF)
model [65] is proposed. By design, user intervention is required during the mapping
process. The user might be asked to specify the appropriate semantic type for some
columns. The CRF model is then re-trained using the new corrected types assigned by the
user. Unlike Karma, DORIS does not rely on a standard translation of the call results into
tables. Actually, one of the challenges that we face is to discover how the descriptions
of the different types of entities returned by the service are nested in the call results.
Furthermore, our approach is fully-automatic and it does not require the intervention of
the user during the mapping process.

Several approaches use the overlap of instances to compute the alignment between two
KBs [102, 55]. For us, the instances of the one “KB” is a tree (the call result of the WS) in
which some nodes may correspond to entities, and other nodes are just intermediate nodes.
The tree does not tell us which nodes are entities and which are not. One solution is to
convert every possible path of the tree into a fact. However, as we will see in Section 3.6,
this solution does not work well for Web services. The reason is twofold: First, a node in
the tree may actually combine the properties of several entities, which leads the approach
ad absurdum. Second, a fact from the call result may correspond to a join of several
relations in the KB. State-of-the-art approaches for KB alignment, however, expect a one-
to-one mapping.

Works such as [98, 123, 52, 128] aim to bootstrap a global schema. In [98] e.g., the
authors show how the schema of a new ontology can be bootstrapped by using as input

2.4. STATE-OF-THE-ART 35

the WSDL schema 3 descriptions of the Web Services using the SOAP protocol 4. In our
scenario, we target the REST protocol, which provides no such information. Rather, our
goal is to map services into an existing schema.

Delobel et al.[32] map XML data sources into a uniform schema. The mappings from
the XML data sources into the mediated schema are based on semantic and structural
similarities. However, here the difference to our work is the mapping is carried from
XML to XML, whereas we map the output of Web services into a global RDF schema.

Related work [71, 107] on a slightly different setup, where HTML Web tables are
further enriched with semantics, e.g. columns in a Web tables are associated to entity
types in existing knowledge bases, and pairs of columns are associated to relations.

In our case, contrary to Web tables, we deal with XML documents, namely XML paths
which are our target of associating them to entities or relations in a target knowledge base
schema. The main issue here is the different nature of our data, where the data is a tree
and there are multiple paths from the root to the leaf nodes, and such approaches for
annotations are not applicable. For example, questions that arise are what is the depth
level that we should consider to map paths to relations? Furthermore, in some cases at
specific depths we map the path to an entity rather than to a relation in a KB.

Query Discovery

In Section 2.4.2 we presented a review of the work by Miller et al. [75] on a schema
matching approach that relies on queries from a source database to map in target schema,
and furthermore uses query constraints to construct correspondences between a target
and source database. Specifically, they show how a value from a target database can be
constructed from the executed queries on the source database. Such an approach requires
samples about how example values from a schema should be mapped into a target schema
which are added by an database administrator.

In this thesis our schema matching approaches differ significantly. For our system
DORIS, the schema matching is considered under the scenario where we have only one
KB which represents at the same time our target schema, and a Web service which has no
formal schema. Even after we call the service, we do not necessarily get information about
the schema of the Web service. This is because the output of the service usually contains
only vacuous node labels and no concept names. Therefore, schema based approaches
cannot be applied in our setting.

A closely related work to DORIS is [126]. It addresses the problem of transforming
XML data to RDF triples that conform to a target schema. However, they adopt a Global-
as-View approach where the schema is expressed in terms of the input data sources, while
in our approach we construct a Local-as-View approach, where we have a global schema
and the data sources, in this case, output from Web services is mapped accordingly.

3. http://www.w3.org/TR/wsdl
4. http://www.w3.org/TR/soap/

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap/

36 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

Wrapper induction

Wrapper induction algorithms [33, 44, 93, 122] are concerned with automatically con-
structing information extraction rules (“wrappers”) for Web pages. However, wrapper
induction does not map the sources to a global target schema. Our work, in contrast,
translates the schema of the WS into the classes and the relations of the KB.

Web Service Representation

Following the vision of Semantic Web, several approaches have been proposed for
describing services using semantic formalisms. Notable approaches like WSDL-S [113],
OWL-S [110] (the successor of DAML-S [67, 86]), and WSMO [112] are already W3C
standards. The first standard, WSDL-S [113], proposes semantically enriched WSDL
documents for SOAP Web services. In contrast, the Web services that we address in this
work do not expose WSDL descriptions for their input and output types. The other two
standards, WSMO [112] and OWL-S [110] share the purpose of representing semantic
information for Web services in order to enable automatic service discovery, composition
and execution. Both specifications are based on description logic languages. In contrast,
the Web service descriptions that we aim at computing are views with binding patterns
[95], a special case of Datalog rules [8]. The two languages are not equivalent. In [23], it
is shown that the Description Logic language DL-Lite can be embedded in an extension
of the Datalog language. The major extension allows existentially qualified variables in
the heads of the rules. Furthermore, we are not aware of systems that automatically derive
Web service descriptions expressed in the above description logic languages.

In [85] authors propose a framework that provides descriptions of REST Web services
with main goal the Web service discovery. In this work WSDL files are not required.
They search for extra information concerning a Web service in provider documentation
Web pages (e.g. ProgrammableWeb.com) or in third-party Web sources like wikis or Web
APIs repositories. They introduce semantics in the final description of the service by
extracting ontological entities from text by using named-entity recognition(NER) tools
[79]. The NER process is performed on the properties of a Web service which contains
values like the description, operations etc.

A recent survey [108] summarizes the different means to describing Web services.
Similar to our understanding, in this survey, the authors emphasize the rationale of the
several Web Service descriptions approaches, mainly attributed to the limited take up of
standards like WSDL and WADL. The argumentations goes inline with the widespread of
micro-formats for describing structured data on the Web.

It is worth noting that in majority of the cases the descriptions are provided mainly to
the operations and the corresponding input and outputs provided by a Web Service. For
example, hRESTS [58] provides an annotated description through micro-formats such as
XHTML for a description of an Web Service provided in natural language. In [58] they
focus on describing the allowed operations, the input parameters, and the output format.

2.4. STATE-OF-THE-ART 37

Speiser and Harth [101] propose an Linked Data Services (LIDS) to describe formally
through RDF and SPARQL the input and description of a Web Service. The input param-
eters of a Web Service operation are binded to specific ontologies. Similarly the output of
a Web Service is mapped to a triple pattern in SPARQL with variables linked to an ontol-
ogy. These so called LIDS descriptions for the input and output of an operation, however
need to be generated manually on a case by case basis. This provides a major drawback
of LIDS and this is not explained in [101] how one could further generalize this into an
approach that can be applied to any Web Service.

Similarly, Krummenacher et al.[64] propose a conceptual model for describing Web
services as Linked Open Services (LOS). For an LOS the input and output of an oper-
ation are described as RDF graphs. Specifically, the input parameters are RDF triples,
consequentially the output of LOS is an RDF graph. Being a conceptual model, this pro-
posal fails to address the problems with existing Web services, which in majority of cases
do not provide well formed descriptions. From a statistics provided in [41], nearly 44%
of Web services communicate in JSON which does not imply any structured description
of input parameters nor output formats.

Summary. In summary, related research on Web service representation [85, 108, 58,
101, 64] has focused on providing representations mainly for the operations and their
respective parameters. Furthermore, in many cases, the representations is not structured.

In contrast, the approaches we propose in DORIS provide a global RDF schema for the
output of any Web Service without requiring any additional information. Hence, allowing
to combine output from multiple Web services seamlessly due to the global RDF schema,
and hence infer additional knowledge.

Orchestration and Mash-ups

Web service orchestration is concerned with joining several Web services in order to
reply to a query [15, 91, 16, 90]. This work does not map services to a common schema.
On the contrary, it requires that mapping as input. Other work proposes a new semantic
model for representing Web services or mash-ups [89, 106]. Our work, in contrast, aims
to represent Web services in the standard model of views with binding patterns [50].

Web Service Discovery

The process of finding suitable Web services for a given task is called Web service Dis-
covery. For this purpose, the Web services are automatically annotated with the concepts
for which they can return instances.

A typical scenario in Web service discovery is the following: A user provides the
description or definition of the Web service that she would like to use along with the
query that she wants to answer using the Web service to a repository of existing Web
services. As a result the corresponding system identifies the most suitable Web service to
user’s need. There has been extensive research in Web service discovery, however, in this
section we focus on the most important works.

38 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

In [40] authors propose a system called Woogle which focuses on similarity search
for Web service operations. Woogle works with SOAP Web services whose associated
WSDL files are accessible and contain information about their functionality description,
inputs and outputs parameters. Woogle computes similarity between different Web ser-
vices by combining multiple sources of evidences. As evidences they use the score ob-
tained after the application of traditional string similarity techniques(e.g. bag of words
similarity) to the names of Input/Output parameters, and to the description of the Web
service. Apart from the traditional string similarity they make an other step. They propose
clustering algorithm that groups names of parameters (inputs and outputs) into semanti-
cally meaningful concepts. These clusters are used later on to determine the similarity
between the Input/Output parameters.
The different types of similarities are combined using a linear function, with weights
assigned manually after the experimental evaluation.

In [100] authors proposed an approach of ranking the top-k most relevant Web services
according to user’s need under multi-criteria matching.

In this work authors assume that the description of a Web service is already given in
a WSDL file. They proceed in two steps. First, they use a matchmaker, similar to OWLS-
MX [56] in order to match the Input-Output (I/O) parameters of a service coming from the
WSDL file, to user’s request. The matching is made by exploiting different techniques
like logic-based reasoning, bag-of-words similarity, or Jensen-Shannon information di-
vergence. For a request R and a similarity measure, the system calculates the matching
score between the parameters in R and parameters in candidate Web services (S), which
is used to generate a top-k list of ranked services.

Cardoso [24] propose an approach to find matching Web services for a given Web ser-
vice request. In the proposed scenario, the request and the advertisement Web services
are already pre-described with ontologies. Namely, their input, output, operations, re-
quirements, etc., specifically the concepts used to describe these operations are already
aligned to an ontology. Furthermore, they distinguish two main use cases. In the first use
case, the descriptions from the request and advertisement Web services come from the
same ontology, and in the second use case they are from different ontologies.

The matching of a request Web service to a target advertisement Web service is done
by considering the overlap in terms of properties from the concepts that are in common
between the two, where the properties correspond to attributes pre-defined in the ontol-
ogy. In the second use case, as similar concepts are considered those that have a string
similarity (e.g. Levenshtein) over a given threshold β .

Alacron et al.[10] propose an approach for Web Service discovery by distinguishing
between two main attributes of a Web Service. The first attribute is the so called seman-
tic layer which captures the semantics of the parameters, resources, and the actions of
a Web Service, and the activity layer that models the interaction between the different
components of a Web Service.

2.4. STATE-OF-THE-ART 39

The descriptions are provided as Microdata or Micorformats, allowing a smooth inte-
gration of the description into the Web pages where these services reside. The discovery
process assumes that the user is aware of the schemas used to represents the descriptions
(in their case schema.org), and allows them to query for different functionalities in SQL
like syntax. The output can be any of the defined concepts in the semantic layer.

A disadvantage here is that the users are supposed to be aware of the concepts in
schema.org and manually find operations that allow them to do a certain task. In com-
parison to our contribution, this work does not provide any information regarding the
possible schema of the produced output by a Web Service operation.

Summary. In contrast to our contribution in DORIS in Chapter 3, work in Web service
discovery differs significantly. In our case we are interested in describing the output of a
Web service in a global RDF schema. Furthermore, we compute views with binding pat-
terns that map the entire call result to the target knowledge base. A fundamental difference
is that the works in [40, 24, 100] either assume existence of already formal descriptions
of the Web services in the form of ontologies or WSDL, or lack experimental evalua-
tion of the proposed approaches. Finally, some of the proposed approaches, e.g. [10] are
complementary to our work in DORIS and would further help users to find services.

40 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

Chapter 3

DORIS: Discovering Ontological
Relations In Services

In this chapter we present DORIS (Discovering Ontological Relations In Services).
The approach in DORIS deals with the problem of mapping the output from Web service
operation calls into a global RDF schema.

The importance of mapping the output of Web service operations is further supported
by the large number of Web services that are exposed as REST APIs [41]. REST APIs do
not provide access to the schema that is used to represent such output, even though, such
a schema might be explicitly stated in its source. Therefore, such problem is seen as a
major hindrance towards the full integration of Web service, and furthermore to uniformly
interpret the output from different operations and services.

We propose the approach DORIS, where we construct mappings from Web service
operation calls to a global RDF schema. We present new algorithms for inferring the
view definitions of Web service in this global schema automatically. We also show how
to compute transformation functions that can transform Web service call results into the
global schema. The key idea of our approach is to exploit the intersection of Web service
call results with instances from a knowledge base and other call results.

The rest of this section is structured as follows: Section 3.1 describes the problem that
this chapter tackles. Section 3.2 lists the assumptions we make after a thorough analysis
of the Web service landscape. Section 3.3 presents all the steps of our algorithm about
discovering Web service’s schema using a global schema. Section 3.4 shows a base-
line approach to our subject. Section 3.5 presents the prototype of our DORIS systems.
Section 3.6 presents the experimental evaluation of our approach. Finally, Section 3.7
describes our algorithm for discovering I/O dependencies between Web services, before
Section 3.8 concludes our findings.

3.1 Problem Description
Modeling Web Services. A Web service is essentially a parameterized query over a
remote source. In this work, we concentrate on REST Web services, motivated by the
fact that more than 80% [41] of Web services use the REST architecture (see Section

41

42 CHAPTER 3. DORIS

Web service url:
http://www.last.fm/api/getAlbums?query=artist
Parameters:
artist (Required): The artist name

Figure 3.1: A REST Web service

2.2.1). These services work by accessing a parameterized URL. For example, Last.fm
offers a Web service which, given an artist as input entity, returns the birth date, the
gender, and the albums of the artist. Figure 3.1 shows how this service is presented on
the Last.fm Web page. We say that artist is the input type of this Web service. In other
words, we use the term input type to refer to the class of real entities that a Web service
expect as input in order to return valid and meaningful output. Typical input types may
include Artist, Writer, City, Movie etc. To call the Web service of Figure 3.1,
the user has to replace the string “artist” by an input entity, e.g. “Frank Sinatra” and
access the URL. The server responds by sending the results of the request, which are
usually in a semi-structured format like XML or JSON. Figure 3.2 shows the result of
our example call. It contains the albums of “Frank Sinatra” with their title, release date,
an internal identifier given by the Web service provider and all their singers, including
Sinatra himself. For each singer, apart from the name, the results include the gender, the
birth date, and death date in case the singer has passed away. The challenge is now to
make this output interoperable with the results from other Web services.

Global Schemas. In order to make the service interoperable with other services, the
state of art solution [49] is to assume a common global schema. Then, the Web services
are represented as parameterized conjunctive queries (i.e., views with binding patterns)
over this global schema. In this work the role of the global schema represents a schema
from existing well-known knowledge bases. Knowledge bases such as YAGO [103] or
DBpedia [13] provide a schema, a taxonomy of classes with their instances and millions
of facts in that schema. The instances can be used to probe the Web service. The facts can
be used to guess the schema of the Web service. An example of such a knowledge base is
depicted in Figure 3.3. Here the global schema contains relations such:

– created: for an artist who released an album;

– label: for the relationship between an entity and its name;

– birthdate: for the relationship between an artist and her birth date;

– hasChild: for the parent-child relationship between two entities;

– date: for the release date of an album;

– diedOnDate: for the death date of an artist;

– gender: for the relationship between an entity and its gender entity.

http://www.last.fm/api/getAlbums?query=artist

3.1. PROBLEM DESCRIPTION 43

getAlbumsByArtist(“Frank Sinatra")

“My Way" “1969" “123"

“Frank
Sinatra"

“male"

“12-12-
1915"

“14-05-
1998"

“The World
We Knew"

“1967" “456"

“Frank
Sinatra"

“male"

“12-12-
1915"

“14-05-
1998"

“08-06-
1940"

“Nancy
Sinatra"

“female"

r

a a

t d

s

id t d

s s

id

l n
g l n

g l
n

g

b e b e b

Figure 3.2: A call result for getAlbumsByArtist with input value “Frank Sinatra"

Expressed in this global schema, the service becomes the query shown in Figure 3.4.
Such a view is essentially a parameterized conjunctive query as was described in section
2.3. Every variable in the head of the view is adorned with i, for input-output variables or
o, for output variables respectively. More precisely, y4 is the input parameter (the name
of the artist) and all the other arguments are output parameters (the birth date, the gender,
the album, and the release date of the album). It is common to distinguish between an
entity and its name. For example, while the g will be some internal identifier for a gender,
the y5 will be the label of that gender, such as, e.g., “female”. In this view definition, the
result of our Web service becomes a set of tuples (Figure 3.5).

The goal is to have all Web services expressed as views over the same global schema.
In this way, applications can uniformly reason about Web services in the terms of that
common global schema.

44 CHAPTER 3. DORIS

uri1

“14-05-
1998"

uri2

“male"
“Frank
Sinatra"

“12-12-
1915"

uri3

“The
World We

Knew"
“1967"

uri14

uri15

“female"
“Nancy
Sinatra"

“08-06-
1940"

di
ed

O
nD

at
e

datela
be

l

created

gender

la
be

l

birthdate

label

gender

la
be

l

birthdate

label

created

hasChild

Figure 3.3: RDF (fragment).

getAlbumsByArtistioooo(y4, y1, y2, y3, y5, y6)←label(x , y4), birthdate(x , y3), gender(x , g),
label(g, y5), created(x , z), label(z, y1),
date(z, y2), diedOnDate(x , y6)

Figure 3.4: View with binding patterns for the Web service getAlbumsByArtist.

(Frank Sinatra, My Way, 1969, 12-12-1915, male, 14-05-1998)
(Frank Sinatra, The World We Knew, 1967, 12-12-1915, male, 14-05-1998)
(Nancy Sinatra, The World We Knew, 1967, 8-6-1940, female, -)

Figure 3.5: Call result of getAlbumsByArtist in the global schema

Problem Statement. The central challenge with global schemas is that each Web ser-
vice has to be mapped into this global schema. While the orchestration of Web services
has received much attention lately, the transformation of services into the global schema
is often done manually. Our goal is to deduce the schema fully automatically. More

3.2. OBSERVATIONS AND ASSUMPTIONS 45

precisely, our goal is the following.

Given:
- the URL and the input type of a Web service (Figure 3.1)
- a global schema (Figure 3.3), where we decide to use existing knowledge bases
Compute:
- the view of the Web service in the global schema (Figure 3.4)

The URL of the Web service and the input type can be found by a non-expert user on the
Web page of the Web service (as in Figure 3.1). No knowledge of the output schema of
the Web service is required. On the contrary, our goal is to deduce this output schema
automatically.

This problem is challenging for several reasons. First, the node labels in the call
results are usually vacuous and do not give away any semantics. In the example (Figure
3.2), they are just “r”, “a”, and “t”. Second, it is not clear which nodes in the call result
correspond to entities in the global schema. In the example, one can guess that the nodes
labeled with “s” correspond to singers. However, the nodes labeled with “l” correspond
to nothing in particular. Third, relations in the global schema can correspond to paths of
different length in the call result. For example, the gender of an “s” node is 1 hop away,
but the birth date is 2 hops away. Finally, the goal is to transform a call result (Figure 3.2)
into tuples in the global schema.

3.2 Observations and Assumptions
A Web service returns information about the input entity. The problem is that this

information can be expressed in a multitude of ways in the call results. This is because
XML and JSON do not define a special syntax for encoding semantic relationships. For
example, the labels of the tree nodes do not have to correspond to relationship names, let
alone to relationship names from our KB. JSON even allows creating nodes that have no
label at all. Furthermore, XML schemata can contain an arbitrary number of intermediate
nodes between two entities. For example, the XML tree in Figure 3.2 separates the name
of the album (“The World We Knew”) by 3 intermediate nodes from the singer of that al-
bum (s), while the KB in Figure 3.3 uses 2 intermediate nodes. However, we have noticed
that in practice, Web service call results follow a number of common sense principles.
We will now describe these principles, and use them as assumptions for our work.

I. The KB and the WS overlap. If the Web service and the knowledge base are from
the same thematic domain e.g. music, or if the knowledge base is a general purpose
knowledge base e.g. DBpedia, then we expect to have an overlap between the entities that
the knowledge base knows and the entities that the Web service knows.

II. The call result is connected to the input entity. A Web service call always contains
data related to its input entities. Hence, we expect that the entities contained in the call
result appear in the KB and that they are connected to the input entities by paths that do
not exceed a certain length. In practice, this length is not larger than three [81].

46 CHAPTER 3. DORIS

III. Mapping from entities to nodes. Whenever a call result contains an entity (of the
knowledge base), this entity is usually represented as a structured node with sub-nodes.
For example, in Figure 3.2, every album is represented by a subtree that is rooted in an
a-node. Hence, we assume that for every entity in call result (XML tree), there is at least
one structured node that is shared by no other entity of the same class. We call this node
an entity node.

IV. Relations correspond to linear path queries. We observe that typically, a relation
between two entities is encoded as a path between the entity nodes and that the sequence
of path labels is used consistently, i.e., it always expresses the same relation.

For instance, the relation created(x , y) for singers and their albums in the KB corre-
sponds to the WS path /r/a(x , y) in the call result in Figure 3.2. Here, we use x to denote
both the root of the call result and the input entity from the KB (Observation II). We use
y to denote both the album entities from the KB and the nodes in the result. Similarly, the
relation label(y,z) for albums and their titles corresponds to the WS path t/τ(y,z) at album
nodes y .

We note that the same observation applies to the properties of the entities. For in-
stance, the path /r/a/t/τ selects the titles of the albums released by the input entity x . In our
KB, such relationships are expressed as the conjunction of two facts of from created(x ,
y). label(y , z).

V. Text nodes map to literals in the KB. We have noticed that text nodes typically
correspond to literals in the KB. Using a simple string similarity function, we can map a
text node to an equivalent literal in the KB in the vast majority of cases.

3.3 Web service Schema Discovery

3.3.1 Overview

The algorithm requires as input (1) a KB, (2) the URL of the WS, and (3) the input
type of the WS. We assume that the input type is given as a class of the KB. Our algorithm
proceeds in 4 steps, also sketched in Figure 3.6:

1. Probing: We call the WS with several entities from the KB and obtain sample call
results (Section 3.3.2).

2. Path Discovery: We discover paths in the call results from the root to literals (Sec-
tion 3.3.3).

3. Path Alignment: We align the paths in the call results with paths in the KB (Section
3.3.4).

4. View & Transformation Function Construction: Based on the aligned paths, we
build the view and the transformation function (Section 3.3.5).

We will now detail these steps.

3.3. WEB SERVICE SCHEMA DISCOVERY 47

Figure 3.6: Overview of DORIS’s processing steps.

3.3.2 Web service Probing

Our schema discovery algorithm requires a number of sample call results from the
WS. To generate these, we make use of the input type of the WS: We call the WS with in-
stances of the input type from the KB. For example, if the input type is given as Singer,
we call the WS with instances of the class Singer from the KB.

Not every instance of the input type in the KB will return a valid call result from the
WS. The WS may not know all instances. However, it is likely that the WS stores data
for known entities such as famous actors, acclaimed books, or big cities. Our intuition
is that the KB, on the other hand, will likely contain more facts about such “important”
entities (Observation I). Therefore, we rank the entities of the input type by the descending
number of facts about them, and call the WS with the top k of them. In our experiments
(Section 3.6), we show that a number of k = 100 samples is usually sufficient. This
corresponds to less than 0.01% of the data that the tested APIs contain.

Some WSs have more than one input. If we encounter a WS with input types t1, ..., tn,
we first find “important” entities of t1. Then we find in the KB the entities of t2, ..., tn

that are connected to entity of type t1. Finally, we probe the WS with these n entities. In
what follows, we treat the call results as if they were call results about the single input
entity from t1. This will not hurt our mapping algorithm, since the other input entities are
connected in the KB. If they are present in the call results, they will be discovered.

The probing gives us a set of input entities for which the calls have been executed and
the results have been materialised. We call such entities sample entities.

3.3.3 Path Discovery

Given a sample entity x , our goal is to align paths in the call result that originate at
the root λ(x) with paths in the KB that originate at the input entity x . For example, for
the call result in Figure 3.2, we want to find that the path r/a/t/τ connects the root to
the title of an album. So we want to align the path r/a/t/τ in the call result with the
path created.label in the KB. In the following, we assume a fixed sample input entity
x , and we write (r/a/t/τ, created.label) for our path alignment. To find these path
alignments, we first generate all paths in the call result from the root to a literal, and all
paths in the KB from the input entity x to a literal, and then align these paths (Observation
V).

48 CHAPTER 3. DORIS

r

a*

tdid

s*

“knew the
we world"

“my way"
“1969" “1967"

“123" “456"

n

“frank
sinatra"

“nancy
sinatra"

g

“male"“female"

l

e

“05 14
1998"

b

“12 12
1915"

“06 08
1940"

Figure 3.7: DataGuide of a call result.

Generating WS Paths. We first enumerate the paths from the root λ(x) to text nodes.
The result is a set of pairs of a path p and a text node y , (p, y), s.t. p(λ(x), y) (Defi-
nition 2.2.4). This set is easily computed in a depth first traversal of the XML tree by
constructing a summary of its data paths in the form of a DataGuide. A DataGuide, as
it is presented in section 2.2.3, is a data structure that summarizes the data paths in one
or several XML trees. The construction of the DataGuide is linear in the size of the call
result. The DataGuide allows us to iterate through all the paths from the root to a text
node. In Figure 3.7 is presented the DataGuide extracted from the example call result of
Figure 3.2.

Generating KB Paths. Next, we generate the paths in the KB from x to literals. We
compute the pairs of a path p′ and a KB node y ′ (p′, y ′), s.t. y ′ ∈ p′(x , y ′) and y ′ is a
literal (Definition 2.1.6). As per Observation I I , we limit the search to paths of length
smaller or equal to three [81]. Hence, the results can be computed in a depth first traversal
of the KB graph originating at x .

However, even short paths may lead to a huge number of results. For instance,
livesIn.hasNationality− connects a person to all the other persons who have the nationality
of the country where the person lives. Hence, the path connects “unrelated" entities via the
very general concept Country. Our goal is to exclude relationships with an absurdly
high number of outgoing edges such as hasNationality−, hasYearOfBirth−, hasGender−.
For this purpose, we discard paths with relations whose functionality is below a threshold
α. In our experimental evaluation we present that by assigning a very small number in

3.3. WEB SERVICE SCHEMA DISCOVERY 49

this threshold (less than 10%) proved to be safe as no results were lost.

Path Pairs. The next step generates path pairs that are candidates for the alignment.
Two paths are candidates if they select at least one value in common. Given the results of
the previous steps for the sample, it computes pairs of form

(p, p′) s.t. p(λ(x), y), p′(x , y ′) : y = y ′ (3.1)

This means that we implicitly align the input entity x with the root λ(x) (Observation I I).

String normalization. Note that we need to check the equality of two strings (y = y ′).
However, caution is needed when comparing text values extracted from the XML result to
literals in the KB, because the two sources may use different writings. For example, the
XML result may contain the string “Sinatra, Frank”, while the KB may contain the string
“Frank Sinatra”. The alignment of strings across such differences is a well-studied field
of research. In our implementation, we considered a version of bag-of-words model. Two
strings are considered as equal if they share the same words, independent of punctuation
signs, word ordering, and word capitalization style. For this purpose, we normalise the
values by lowercasing the string, reordering the words in alphabetical order, and omitting
punctuation. Let norm be the normalisation function. If we apply the norm to the song
title "The World We Knew" we will get:

norm(“The World We Knew”) = “knew the we world”

Hence, in Equation (3.1), the equality y = y ′ is replaced by norm(y) = norm(y ′).

Aligning Paths with Common Values. A simple pairwise comparison of text nodes in
the call result to literals in the KB can be highly inefficient, since the number of pairs can
be very high. Thanks to our normalisation, however, a pairwise comparison for similarity
is no longer necessary: two strings are either identical or not considered similar.

For every sample entity, we construct two inverted indexes: one for the WS paths
(extracted from the call result) and one for the KB path originating at the input entity.

For the index of the call result, a key is the normalized value of a text node, and the
value is the list of paths from the root that select this key. For instance, for “knew the we
world", the entry in the index (p, y) is:

({/r/a/t/τ}, “knew the we world")

Similarly, the inverted index on the KB side will have as key the normalized value of
a literal returned as a result, and as values the list of all KB paths that return this key. For
instance, for “knew the we world", the index (p′, y ′) contains the following entry:

({created.label, hasChild.created.label}, “knew the we world")

Note the same literal is selected by the KB path created.created−.created.label. In fact,
the results of this path subsume the results of the path hasChild.created.label. This is

50 CHAPTER 3. DORIS

because, unlike call results, KBs may contain cycles. The presence of cycles represents
a subtle problem. One solution could be to eliminate all the paths with subpaths of form
r.r-. However, this would result in missing interesting mappings such as coauthor =
created.created−. Our solution is to eliminate only the KB paths that include cycles in the
level of data. To this purpose, inequality constrains are added to the body of the KB path
so that we do not consider KB paths that visit the same entity twice.

Therefore, we can use a merge-join algorithm over the two indexes. We sort each of
the two sets of pairs (p, y) and (p′, y ′), produced in the previous steps by the normalised
value of the second component (y and y ′ respectively). Then we can merge the two lists
in order to produce the results. The complexity is O (nlog(n)) where n is the cumulated
size of the two lists. This yields a set of pairs of the form (p, p′), where p is a path from
the call result and p′ is a path from the KB and both lead to the same value. These are our
candidates for the path alignment.

3.3.4 Path Alignment

For a set of samples S, and a candidate pair of paths (p, p′), we need to compute a confi-
dence score for the alignment of p and p′ with respect to S. We present two strategies to
this end.

Overlapping

Method. The simplest method to align a WS path p with a KB path p′ is to use the
overlapping of the results. We say that p′ overlaps with p, if

∃x ∈ S ∃y : p(λ(x), y)∧ p′(x , y)

For simplicity, we use y to denote a literal and a text node with the same (normalised)
value. An overlap can be stronger or weaker, depending on the proportion of samples that
overlap. We compute the confidence of the overlap as the number of samples for which
their results overlap, divided by the total number of samples:

con f ((p, p′)) :=
#x : ∃y : p(λ(x), y)∧ p′(x , y)

|S|

Weaknesses of the Method. Although this simple method leads to remarkably good
results, some alignments are lost. For instance, consider the alignment:

r/a/s/l/t/e/τ diedOnDate

Since we divide with the number of samples S, if the living singers represent more than
half of the input entities selected for sampling, then this alignment is lost. Hence, we also
experimented with a second strategy for path alignment, which is based on subsumption.

3.3. WEB SERVICE SCHEMA DISCOVERY 51

Subsumption

Method. The subsumption strategy aligns two paths if the results of one are included in
the results of the other. We are interested in mining KB paths subsumed by WS paths and
vice-versa, WS paths subsumed by KB paths. Let p and p′ be two paths. We say that p′

subsumes p, if

∀x , y : p(x , y)⇒ p′(x , y)

Again, x denotes the input entity and the root to which it is initially mapped in the call
result, and y denotes both a literal and the equivalent text node. For instance, consider
the following path pair:

/r/a/s/n/τ label

The WS path selects the name of the input entity for which albums are returned as
well as the names of the other persons who released the respective albums. However, the
KB path selects only the name of the input entity. Hence we have:

label⇒ /r/a/s/n/τ

Confidence. There are different ways to compute the confidence of such rules [78, 31,
47]. The problem in our case is that our data on both sides is incomplete: When the KB
does not contain a certain fact, the WS can still return it, and vice versa. Hence, we opted
to use the PCA confidence, a measure developed in [47]. This measure is particularly
suited for incomplete relations. The measure assumes that a source knows either all or
none of the p-attributes of some x . Under this assumption, the formula counts as counter-
examples for a rule p(x , y)⇒ p′(x , y) only those instances x for which the query paths
p return an answer, but where y is not among these answers. The number of counter-
examples is computed, as following:

counter(p⇒ p′) := #(x , y) : p(x , y)∧ ∃y2, y2 6= y : p′(x , y2)∧¬p′(x , y)

This yields the following confidence measure:

pcacon f (p⇒ p′) :=
#(x , y) : p(x , y)∧ p′(x , y)

#(x , y) : ∃y2 : p(x , y)∧ p′(x , y2)
(3.2)

The numerator is the number of instantiations shared in common by p and p′:

overlap(p ∧ p′) := #(x , y) : p(x , y)∧ p′(x , y)

However, the denominator represents the sum between the number of counter-examples
and the overlap. Hence, pcacon f can be also written as follows:

pcacon f (p⇒ p′) :=
overlap(p ∧ p′)

overlap(p ∧ p′) + counter(p⇒ p′)
(3.3)

52 CHAPTER 3. DORIS

This formula gives high confidence even if the alignments have small overlap. For
instance, in our experiments, we found that the alignment

diedOnDate⇒ r/a/s/l/e/τ

achieves the highest confidence (pcaconf= 1). Hence, we can use pcaconf to spot pos-
sible alignments even if there is very small overlap. In such cases, the alignment is very
risky. Hence, we have to validate such alignments through more probing. This works as
follows: Whenever a path alignment achieves high PCA confidence, we select for prob-
ing, entities for which the newly discovered KB property is defined. Then we re-probe
the WS with these entities.

The result of the path alignment is a set of pairs of the form (p, p′), where p is a path
in the call result and p′ is a path in the KB. Figure 3.8 shows the alignment for our running
example.

3.3.5 View and Transformation Function
Branching Points. The path alignment has given us pairs of WS paths and KB paths
that overlap in their query results. Now, we wish to align portions of the WS path to
relations in the KB.

In the first step, we annotate the WS paths and the KB paths with branching points
(symbolized by the symbol ‘∗’ in Figure 3.8). A branching point in a path means that
there are several outgoing edges in the graph starting from that point of the path that are
labeled with the same name.

For example, following the path r/a/t/τ in the call result of Figure 3.2, we encounter
several edges labeled with a. Hence, a is a branching point.

Formally, we say that li is a branching point for the WS path /l1/l2 . . . /li−1/li . . . /ln iff

∃x ∈ S, z, y1, y2 : /l1 . . . /li−1(λ(x), z)∧
∧ li(z, y1)∧ li(z, y2)∧ y1 6= y2

We use a path summary in the form of a DataGuide tree, as it is described in chapter 2.2.3,
to keep track of the nodes that occur under the same path and that have siblings labeled
with the same name. The DataGuide is constructed for the call results of all the samples.
Its construction requires only a depth first traversal of each sample tree and its size is
small because it summarises only paths that consist of structure nodes. Then, we annotate
with ‘∗’ the nodes of the DataGuide that are embeddings for two or several sibling nodes.

For the KB paths, we insert branching points whenever a relation is not a function.
Some KBs explicitly declare their functions. If that is not the case, we compute the
functionality for each relation (Equation 2.2). Since KBs may contain some noise, we
insert branching points at a relation only if its functionality is lower than a threshold β .

Cut and Align. Once the KB path and the WS path are annotated with branching points,
we want to align the path segments of the WS path with the segments of the KB path. Our
input are the path alignments produced by the previous step, annotated with branching

3.3. WEB SERVICE SCHEMA DISCOVERY 53

/r/a*/t/τ created*.label
/r/a*/d/τ created*.date
/r/a*/s*/l/b/τ birthdate
/r/a*/s*/l/e/τ diedOnDate
/r/a*/s*/n/τ label
/r/a*/s*/g/τ gender.label

Figure 3.8: Results of the path alignment step for getAlbumsByArtist

(r/a*, created) z
(r/a*/s*,) x
(r/a*/t/τ, created*label) y1

(r/a*/d/τ, created*date) y2

(r/a*/s*/l/b/τ, birthdate) y3

(r/a*/s*/n/τ, label) y4

(r/a*/s*/g/τ, gender.label) y5

(r/a*/s*/l/e/τ, diedOnDate) y6

Figure 3.9: New path alignments and their associated variables for getAlbumsByArtist.

points, and our output will be more path alignments. The clue of our algorithm is the
insight that if we have a path of functional relations on the KB side, then this path has to
be aligned to a (sub-)path with no branching points on the XML side. This means that the
rightmost ‘∗’ annotation of one path is aligned with the right most ‘∗’ of the other path in
the pair. Let us write P ∗ p to denote a path such that P∗ ends in a branching point or it
is the empty path, and p has no branching points. Then we generate new path alignments
by recursively applying the following rule:

(P ∗ p, P ′ ∗ p′) (P, P ′)

For the path alignments in Figure 3.8, this gives rise to the new alignments in the Fig-
ure 3.9.

Weakness of the Method. The annotation with branching points on the WS paths is
biased by the set of WS call result samples. For example, if all call results return only
singers that have released a single album, then our method will not annotate /s as a branch-
ing point.

Duplicate Elimination. The previous step may result in associating the same KB path
to different WS paths. This means that the same relationship appears multiple times in the
call result. If this happens, we select the alignment that was generated from the pair with
the highest confidence. Also, it may happen that several KB paths map to the same WS
path. If the KB paths select literals, we use the same approach. If not, then they concern
relationships between complex entities. For instance, we may have as candidates created

54 CHAPTER 3. DORIS

/

z

xy1 y2

y4y5 y3 y6

r/a

st d

ng l/b l/e

Figure 3.10: The tree-like hierarchy of paths in XML of Figure 3.9.

and bornIn.producedIn−. In that case, we select the path where the maximal functionality
of its relations is minimal.

View Definition. We now want to deduce the view definition from our path alignments.
We introduce a new variable for each path alignment (shown in Figure 3.9). Now, the
view definition is simply the join of the KB paths with the appropriate variables. More
precisely, let us write P ′→ v, if some alignment (P, P ′) is associated to a variable v. Then,
we construct the body of the view definition with the following rules:

P∗ → v1

P ∗ p→ v2

�

 p(v1, v2)

P∗ → v1

P ∗ P ′∗ → v2

6 ∃P ′′∗ → v, P ′′′ : P ∗ P ′′ ∗ P ′′′ = P ∗ P ′∗

 P ′(v1, v2)

The resulting atoms are added to the body of the view definition. The head atom of the
view definition is the name of the WS. It contains only the variables that correspond to
literals. This is because the entity identifiers used by the KB cannot be obtained by calling
the WS. For our running example, we obtain exactly the view definition of Figure 3.4.

Transformation Function. We have shown how to derive automatically the view def-
inition of a WS in the global schema. Now, we turn to the question of how we can
transform a concrete call result into tuples of this view definition. Our idea is to use an
XSLT script for this purpose. Given a call result of a WS, the script will extract bindings

3.4. BASELINE APPROACH 55

for the variables in the head of the view definition of the WS. We now explain how to
derive this script automatically from our path alignments.

We first organise the WS paths of the path alignment as a tree. The root of the tree
is labeled with “/", and the other nodes represent variables. Edges are labeled with path
queries. In the example of Figure 3.9, this leads to the tree shown in Figure 3.10.

Algorithm 1 transforms such a tree into an XSLT script. Figure 3.11 shows the re-
sult of the algorithm on the example tree. It requires as input the root node of the tree.
We assume that the functions isRoot(), isLeaf(), getChildren(), and pathFromParent() are
available for every node. Let pathFromParent() return the path query on the edge between
the node and its parent. For leaf nodes, the function omits the last part “text()" (τ). For
instance, y1.pathFromParent()=t. Our algorithm performs a depth-first search on the tree,
and outputs a variable assignment for each edge of the tree.

Algorithm 1: makeXSLT(TreeNode v)

1

if v.isRoot() then
print <xsl:template match=“/">
for v′ : v.getChildren() do

makeXSLT(v′)
end for
print </xsl:template>

end if
if v.isLeaf() then

print {v:<xsl:for-each select=“v.pathFromParent()">
{<xsl:value select=“." >} </xsl:for-each>}

else
print {<xsl:for-each select=“v.pathFromParent()">
for v′ : v.getChildren() do

makeXSLT(v′)
end for
print </xsl:for-each>}

end if

The output of this algorithm is an XSLT script, like the one depicted in Figure 3.11.
This script is generated only once per WS. Each time a client calls the WS, the client
has to execute the XSLT script on the call results, which will yield tuples in the view
definition of the WS. We remark that this gives us an end-to-end solution for integrating
Web services into a global schema: Given a schema and a WS, we can automatically
derive a view definition of the WS, and a method to map the call results into that view
definition.

3.4 Baseline Approach
We have presented an end-to-end solution for the mapping of a Web service into a

global schema. We will now present a baseline solution to this problem, which is based

56 CHAPTER 3. DORIS

<xsl:template match=“/">
<xsl:for-each select=“r/a"> {
{y1: <xsl:for-each select=“t">

{<xsl:value-of select=’.’/>}} </xsl:for-each>
{y2: <xsl:for-each select=“d">

{<xsl:value-of select=’.’/>}} </xsl:for-each>
<xsl:for-each select="s" >{

{y4: <xsl:for-each select=“n">
{<xsl:value-of select=’.’/ >}} </xsl:for-each>

{y3: <xsl:for-each select=“l/b">
{<xsl:value-of select=’.’/ >}} </xsl:for-each>

{y5: <xsl:for-each select=“g">
{<xsl:value-of select=’.’/ >}} </xsl:for-each>

</xsl:for-each>} </xsl:for-each>
</xsl:template>

Figure 3.11: XSLT Code for tree-like hierarchy of Figure 3.10.

on wrapper induction. We adopt the approach that [81] has developed for mapping Deep
Web forms into a KB. The approach creates a wrapper that extracts a pseudo-KB on the
result pages of the Deep Web form. This pseudo-KB is then aligned with the reference
KB using the PARIS ontology alignment algorithm [102]. A similar approach has been
presented in [29] for mapping XML documents to RDF ontologies.

In the spirit of wrappers, we construct entities for repetitive structures. In our case,
these are subtrees rooted at nodes that can have sibling nodes labeled with the same name.
In our running example (Figure 3.2), these are the nodes labeled with a and s. We use
an XSLT script to implement this wrapper. Conveniently, we can use Algorithm 1 to
generate this script. As input, we use the DataGuide that we computed for our samples.
The branching points and the leaf nodes are annotated with variables. Two XML paths
with the same labels are mapped to the same relation in the pseudo-KB. Running this
script on the call results will yield a pseudo-KB, much like in [81]. Then, we use PARIS
to align this pseudo-KB with the reference KB.

Although this solution may seem reasonable, our experimental evaluation shows that
it does not lead to good results. One problem with this approach is that two entities in
the reference KB may map to the same entity node in the pseudo-KB. Another problem
is that a single relation in the pseudo-KB may correspond to an entire path of relations in
the reference KB. This derails KB alignment approaches such as PARIS, which assume
that a single relation in one KB corresponds to a single relation in the other KB.

3.5 Prototype
In this section, we provide a description of the interface of our DORIS system. Using

the graphical interface, the user will be able to trace every step that DORIS takes. The

3.5. PROTOTYPE 57

Figure 3.12: DORIS: Main Interface.

interface illustrates a suite of strategies that we have investigated, and the design decisions
we made.

The very first interface that the user interacts with is shown in the Figure 3.12. First,
the user selects a target KB from the pop up menu. Our demo currently supports DBpedia,
YAGO, and the KB of the French National Library, BNF. Next, the user chooses a WS
that she wishes to map to a KB. This can be any WS that the user came across albeit the
KB must stores facts for the topic of the WS. As shown in Figure 3.12, DORIS requires
as input the URL of the WS and the type of the input. For instance, let us also consider
the service with URL:

ht tp : //www.musicbrainz.or g/ws/2/release/?quer y = ar t istname

and let the type of the input be the class Singer from the target KB. After the selection
of the input type, and the target KB, in the text area of the interface appears the query that
is addressed to the target KB in order to get the input type values (i, x) which are used to
probe the Web service. These input values are presented in the pop up menu and they are
available for the user to revise.

Compute Alignments! and Transform WS to KB!. The first one allows the user to in-
vestigate the path alignment step that aligns classes and relations. The second option will
use the alignment of classes and relations and will illustrate the computed parameterized
query and XSLT script that transforms the call result in terms of the KB.

In more details, the interface that demonstrates the computation of alignments is pre-
sented in Figure 3.13. Here, the user may select the threshold she wants to apply for the
overlapping and the subsumption methods. After the selection of the thresholds from the

58 CHAPTER 3. DORIS

Figure 3.13: DORIS: Alignment Interface.

user, the system allows her to investigate the results of the algorithm for path alignment.
In the first text area appear the aligned paths between the knowledge base and the Web
service along with the scores for the two methods. Overlap for the overlapping method
and KB→ WS, WS→ KB correspond to the both ways subsumption method.

Apart from the paths alignment, in the same interface (Figure 3.13) is provided to
the user the Class and Atom alignment result in two different ways. User may select
between graphical representation and textual representation. By clicking on Graphical,
the graph is maximized and the user may observe in details how the two sources are
aligned. The two sources are depicted with different colors, in cycles are presented the
variables assigned by the algorithm after the Cut and Align step. Blue arrows connect the
nodes that represent entities of the aligned classes. If the user selects Text, will get the
same result in textual format this time.

After the computation of the alignments, the user can pass to the next interface pre-
sented in Figure 3.14. Here, the user is observing the view (upper part of the interface)
and the transformation function in the form of an XSLT script (lower part of the interface).
Both are computed using the alignments of the previous step.

3.6 Experimental Evaluation
Our algorithms are fully implemented in a system called DORIS (Discovering Onto-

logical Relations In Services), presented above.

Data Sources. We have tested DORIS on more than 50 real-world WSs provided by
more than 10 APIs. The data exported by the WSs cover four domains: music, movies,
books, and geographic data. Table 3.2 shows the WS APIs that we considered, grouped

3.6. EXPERIMENTAL EVALUATION 59

Figure 3.14: DORIS: Transformation Interface.

by thematic domain. The first column shows the APIs. The third column shows the Web
services offered by these APIs. Several APIs can provide the same Web service. For
example, both book APIs support getAuthorInfoByName. Therefore, the second column
shows how many APIs support a given WS.

We have conducted experiments for three target KBs: YAGO [103] and DBpedia [13]
(which are extracted from Wikipedia), and BNF (bnf.fr) (a KB from the domain of books
curated by the National Library of France). We probed each Web service for 100 samples.

Platform. Our system is implemented in Java (JVM 1.7). We use standard Java libraries
to parse the XML and JSON call results. We use the Jena 2.11 library to store the KBs,
and the Jena SPARQL functionality to query them. We ran all experiments on a personal
laptop (2,9 GHz Intel Core i7, 8GB). Our method takes roughly 2 minutes to derive the
schema of a WS (Path Alignment and Class & Atom Alignment).

Path Alignment
Our first series of experiments concerns the path alignment (Section 3.3.1). We probed

each WS with instances of the input domain from the YAGO knowledge base. As a gold
standard, we designed the correct path alignments manually for each WS of each API.

http://www.bnf.fr/fr/acc/x.accueil.html

60 CHAPTER 3. DORIS

 0.5

 0.6

 0.7

 0.8

 0.9

0.3 0.4 0.5 0.6 0.7

F
-m

e
a

s
u

re

Threshold

100 Samples 20 Samples

Figure 3.15: Average performance of Path Alignment.

Our first goal is to determine the right threshold for the overlapping algorithm. We
examine the performance of our method with respect to different threshold values. Fig-
ure 3.15 shows the average F-measure across all WSs for the alignment under different
thresholds. The threshold 0.5 produces the best results when was tested on 20 samples
and 100 samples, hence we use it for what follows.

Then, we ran experiments for both alignment strategies: the overlapping and the sub-
sumption strategy. For the subsumption, we checked whether the results of the KB path
are subsumed by the results of the WS path (KB → WS), and vice-versa (WS → KB).
Table 3.2 shows the precision and the recall for each WS (averaged over the APIs that
provide the WS).

Our experiments show that the overlapping strategy (Overlap columns) can align paths
with a precision (P) of 57%-100%. In the vast majority of cases, the precision is over 80%.
Recall (R), likewise, is well over 90% in the majority of cases.

The subsumption strategy performs slightly worse. The main reason is that the PCA
confidence does not penalise alignments that have the support of a small number of sam-
ples. This yields many spurious matches. On the other hand, this allows aligning paths
with incomplete relations that are otherwise lost. For instance, we have correct align-
ments for the following relations: diedOnDate, wasCreatedOnDate, hasLongitude, and
hasLatitude. Table 3.1 shows the alignments that only rule mining can find for all the API
we have tested. In order to find these alignments also with the overlapping method, more
samples would be needed.

Class and Atom Alignment

We refer to the bindings of a variable in the view using the term class. By atom
we mean an atom of the view. We say that a class or an atom are correctly aligned if the
transformation function extracts correct values for them. In order to evaluate the class and
atom alignment, we first generated the ideal class and atom alignment manually. Then,
we ran our alignment algorithm and compared the results to this gold standard. As input,

3.6. EXPERIMENTAL EVALUATION 61

Relation Method API

diedOnDate getArtistInfoByName

music_brainz
diedOnDate getArtistInfoById
diedOnDate getReleasesByArtistId
wasCreatedOnDate getReleasesByName

hasLongitude getCityByName
geonames

hasLatitude getCityByName

diedOnDate getActorInfoById themoviedb

Table 3.1: Alignments discovered only by the subsumption strategy of Section 3.3.4.

we used the path alignments computed by the overlapping strategy.

Duplicate Elimination. We first wanted to see whether duplicate elimination helps pre-
cision and recall for the class and atom alignment (see Section 3.3.5). Hence, we ran the
alignment with and without duplicate elimination and measured precision and recall. Our
experiments show that the technique helps: By removing the duplicates, the average pre-
cision across all Web services for YAGO relations rises from 45% to 91%. At the same
time, recall is almost the same. It decreases from 95% for the algorithm that allows dupli-
cates to 93% for the one that removes them. The precision and recall for classes remains
unchanged. Therefore, we decided to remove duplicates in what follows.

API No WS
Path Alignment

Overlapping KB→WS WS→KB
P R P R P R

G
eo

D
at

a

¦

geonames 1
1

getCityByName (Cit y)
getCountryByName (Count r y)

1
0.62

0.73
0.71

0.17
0.25

0.33
0.2

0.0
0.0

0.0
0.0

B
oo

ks

�

isbndb
library_thing

2
2
2

getAuthorInfoById (Id)
getAuthorInfoByName (Author)
getBookInfoByTitle (Book)

1
0.97
0.84

1
0.97
1

0.29
0.32
0.85

0.49
0.48
0.72

0.35
0.23
0.5

0.89
0.5
0.5

M
ov

ie
s

¦

themoviedb
1
1
1

getActorInfoById (Id)
getActorInfoByName (Actor)
getMoviesByActorId (Id)

1
1
0.88

0.8
1
1

0.33
0.33
0.27

0.8
0.67
0.43

0.23
0.25
1

1
1
0.57

M
us

ic

music_brainz
musixmatch
last_fm
echonest
deezer
discogs

6
1
6
4
4
1
2
1
4
2
4

getArtistInfoById (Id)
getArtistInfoByMBID (Id)
getArtistInfoByName (Singer)
getAlbumByTitle (Al bum)
getAlbumsByArtistId (Id)
getAlbumsByArtistMBID (Id)
getAlbumsByArtist (Singer)
getTopTracksByArtistId (Id)
getTrackByTitle (Song)
getTracksByArtistId (Id)
getTracksByArtist (Singer)

0.82
0.57
0.9
0.84
0.94
1
0.85
1
0.81
0.88
0.91

0.89
1
0.97
0.75
0.99
1
0.91
0.93
1
1
0.94

0.32
0.2
0.33
0.87
0.22
0.33
0.29
0.33
0.94
0.17
0.29

0.49
0.5
0.49
0.17
0.2
0.2
0.31
0.13
0.53
0.22
0.29

0.33
0.19
0.46
0.2
0.46
0.5
0.67
0.6
0.25
0.17
0.52

0.81
0.75
0.31
0.12
0.57
0.6
0.38
0.6
0.12
0.33
0.41

Table 3.2: Path Alignment on the YAGO KB.

62 CHAPTER 3. DORIS

API No WS
Classes Atoms
DORIS DORIS PARIS

P R P R P R

G
eo

D
at

a

¦

geonames 1
1

getCityByName (Cit y)
getCountryByName (Count r y)

1
1

1
1

1
1

0.67
1

0.31
0.1

0.67
0.33

B
oo

ks

�

isbndb
library_thing

2
2
2

getAuthorInfoById (Id)
getAuthorInfoByName (Author)
getBookInfoByTitle (Book)

1
1
1

1
1
1

1
1
1

1
1
1

0.33
0.41
0.29

0.37
0.62
0.5

M
ov

ie
s

¦

themoviedb
1
1
1

getActorInfoById (Id)
getActorInfoByName (Actor)
getMoviesByActorId (Id)

1
1
1

1
1
1

1
1
1

0.67
1
1

0.4
0.33
0.25

0.67
1
0.67

M
us

ic

music_brainz
musixmatch
last_fm
echonest
deezer
discogs

6
1
6
4
4
1
2
1
4
2
4

getArtistInfoById (Id)
getArtistInfoByMBID (Id)
getArtistInfoByName (Singer)
getAlbumByTitle (Al bum)
getAlbumsByArtistId (Id)
getAlbumsByArtistMBID (Id)
getAlbumsByArtist (Singer)
getTopTracksByArtistId (Id)
getTrackByTitle (Song)
getTracksByArtistId (Id)
getTracksByArtist (Singer)

0.89
1
0.89
1
1
1
0.88
1
0.79
0.88
0.83

0.78
1
0.94
1
1
1
1
1
1
1
1

0.83
1
0.84
1
1
1
0.88
1
0.86
0.88
0.81

0.73
1
0.9
1
1
1
1
1
1
1
0.95

0.38
0.33
0.28
0.09
0.29
0.5
0.24
0.33
0.3
0.25
0.23

0.72
1
0.72
0.15
0.37
0.5
0.33
0.25
0.32
0.66
0.32

Table 3.3: Class & Atom Alignment on the YAGO KB.

YAGO. The results of aligning the Web services to the YAGO knowledge base are pre-
sented in Table 3.3. We report that our system achieves a perfect precision and a perfect
recall on nearly all WSs. Only very few WSs could not be mapped entirely correctly. We
reckon that this is the first time that the result of WSs can be mapped fully automatically
to the schema of a target KB.

Other KBs. We have also tested our algorithm on DBpedia and BNF. For DBpedia, we
used all 50 WSs. For BNF, which is a domain-specific KB, we ran only the WSs from the
Books domain. We present an average of the precision and recall of our class and atom
alignment in Table 3.4. Since the BNF contains data that overlaps a lot with the WS, we
obtain a perfect precision and recall for this KB. The other alignments are also of very
respectable quality, with recall and precision values well over 90%.

Precision Recall
Classes Atoms Classes Atoms

YAGO 0.92 0.91 0.96 0.93
DBpedia 0.91 0.92 0.98 0.95
BNF 1 1 1 1

Table 3.4: Average Performance of Alignments

3.7. DISCOVERING I/O DEPENDENCIES 63

Comparison to Baseline. In Section 3.4, we introduced a baseline approach to the prob-
lem of WS alignment. This approach transforms the WS call results into a pseudo-KB,
and uses a state-of-the-art alignment approach (PARIS [102]) to align the pseudo-KB to
the reference KB.

We ran PARIS with exactly the same data as DORIS. PARIS computes a confidence
score for each alignment. We used a threshold of 0.6 on this score to determine the final
output, which was the value for which PARIS performed best. The results of this approach
are shown in the last two columns of Table 3.3. As we see, DORIS outperforms PARIS
by a huge margin. DORIS achieves near-perfect alignment. In the case of PARIS, the
precision and recall scores are in the range between 30%-60%. The poor performance
of PARIS is explained by the fact that it in order to perform well, the schemas of the
two ontologies need to be similar. However, this is not the case at all in our problem.
Moreover, PARIS cannot discover complex relations alignments like hasGender.label,
while DORIS discovers them.

searchArtistByName

getAlbumsByArtistId

getSongsByAlbumId

searchAlbumsByTitle

getSongBySongId

searchSongsByTitle

artistId

albumId

albumId

songId

songId

artistName

albumTitle songTitle

artistName

artistId

albumId
artistName

Figure 3.16: I/O Dependencies between the Web services of musicbrainz API.

3.7 Discovering I/O Dependencies
Apart from the global schema, the input values one needs to call the Web services can

be found in other sources. These sources can be the Web in general, or even the same
API that provides the Web service. In this case the input values can be encoded in the call
result of another Web service. For example, one Web service delivers singers, another
Web service could use this output in order to find the albums of these singers. We call this
dependency between services I/O dependency.

A specific category of I/O dependencies is the one concerning identifiers (IDs). Many

64 CHAPTER 3. DORIS

API providers use internal IDs rather than names to identify entities. IDs avoid ambiguity
and provide users with an easy navigation mechanism. Since IDs are internal to the API,
they can almost never be obtained from external sources (such as the KB). However, if
they are contained in the result of some Web service of the same API, they can be inferred
by joining the data of the two Web services.

Figure 3.16 shows the I/O dependencies of some of the services in the MusicBrainz
API. Each node represents a WS where the incoming edges to a WS are labeled with its
input type. Some of the types are unknown to the KB. Quite possibly, some I/O depen-
dencies were deliberately designed to unveil the data only gradually, so that an exhaustive
mirroring of the data is prevented. In our example, three calls are necessary to retrieve the
songs of a given singer. First, we have to call searchArtistByName to obtain the ID of the
singer. Then, we have to use this ID to call getAlbumsByArtistId. This gives us the IDs of
the albums by this singer. Finally, we can call getSongsByAlbumId with the each of the
album IDs, so that we can obtain the songs on each album.

While some Web services may be joinable, other may be incompatible. For example, it
does not make sense to use the output of a Web service that delivers albums id as inputs to
a Web service that expects movies id. We will now show that our approach for mapping
Web services into a global schema can also be used to determine the I/O dependences
between Web services of the same API.

3.7.1 Problem Statement
Let ρ f be a function that maps a variable in the view of a WS f to its bindings in our

samples of f . We consider the following problem: Given a WS fO that has been mapped
to the KB, and given another WS fI with only one input of unknown type, compute I/O
dependencies of the form:

(fO, x , p, fI)

Here, x is variable in the view of fO. p is an WS path such that ∀x ′ ∈ ρ fO(x), p(x ′) has
values for the input of fI and fI returns data relevant to x ′.

Example 1. Let fO=getAlbumsByArtist and let fI be a WS that returns songs by album-id.
We aim to discover the following I/O dependency: (fO, z,id/τ, fI). Here, z is the variable
used for album entities in the view in Figure 3.4. In the call result depicted in Figure 3.2,
z had as bindings the two nodes labeled with a. Note that the path id/τ selects exactly the
ids of the respective albums.

3.7.2 Approach
Mini-KB Extraction. The interesting aspect of our example I/O dependency is that it
concerns paths in fO that were not yet mapped to KB relations (namely id/τ). Our goal
is now to extend our view definition and our transformation function to these unmapped
paths. For each variable x in the view of fO, and for each WS path p′ s.t. ∃x ′ ∈ ρ fO(x)∧
p′(x ′) 6= ;, we add a new relation name to the schema of the KB, and we map p′ to that
new relation name. The XSLT script for fO is updated accordingly. Let mini-KB(x) be a

3.7. DISCOVERING I/O DEPENDENCIES 65

KB computed by applying the updated XSLT script to every call result in our sample for
fO.

Generating candidates. A candidate I/O dependency of the form (fO, x , p, fI) is com-
puted for every variable x from the view of fO and every path p in fO where

(#x ′ : x ′ ∈ ρ fO(x)∧ p(x ′) 6= ;)> θ

In our experiments, we set θ = 20. For probing fI , we extract from mini-KB(x) tuples of
the form:

(x k, l) : ∃x ′ ∈ ρ fO(x)∧σ
′
fO
(x ′) = x k ∧ p(x ′, l)

where l serves to call fI , but we see x k as the input entity of that respective call. σ′fO is
a function that gives the entity that corresponds to a node x ′ from a call result of fO. We
now discuss when we keep a candidate I/O dependency (fO, x , p, fI).

Step 1: Catch Error Messages. If fI returns systematically an error message, we dis-
card the candidate. However, some WSs will not return an error message if fed with a bad
input entity. Instead they will return results for all entities whose names or other attributes
are similar to the input entity. Therefore, our first step cannot filter out all bad candidate
I/O dependencies.

Step 2: Checking Input’s Position in the Output. If the call is valid, then it should
return information about the input value. This value should consistently appear under
the same path(s) from the root (Observation IV). Assume that we discover that the input
value occurs always under the path pi in the call results of fI . Then, we can filter out
every candidate (fO, x , p, fI) that did not discover pi as being the path with the inputs.

Step 3: Align fI and the mini-KB. Finally, we use the path alignment algorithm from
Section 3.3.1 to align label paths in the outputs of fI with path relations in mini-KB(x).
We rank the candidates between fI and fO according to the number of paths produced by
the alignment. The intuition is that fI should return some of the properties of x returned
also by fO. We select as solution the top candidate, meaning, the path p that leads to the
highest overlap.

Example 9. Consider again our Web service fO = getAlbumsByArtist. Let z be the class
of albums (denoted also with z in our example) and p=id/τ be the path query selecting the
ids of the respective albums. Assume now that the selected values are injected as inputs
to fI = getSongsByAlbumId. If, among others, the new function returns also the title,
the release date, and the singer of the album, then the path alignment algorithm would
produce the alignments shown in Figure 3.17.

66 CHAPTER 3. DORIS

fO=getAlbumsByArtist
p=id/τ

fI =getSongsByAlbumId

z l4

l1

l2

a

d

t

/ l4

l1

l2

overlap = 3 relations

p1

p2

p3

Figure 3.17: Aligning fI and fO.

Discovering Types for WS Inputs. Let our candidate (fO, x , p, fI) be a I/O dependency.
Hence, fI returns data relevant to x . Thus, we can say that the input of fI has as type the
class of x k (or x) in the KB. However, the relation that links x k to l in the KB might not
be the default relation label. Hence, the input of fI is annotated with the class of x k (its
input entity) and the (new) relation to which p is mapped to. With this, fI is now ready to
be mapped to the target KB.

3.7.3 Experimental Evaluation
Our algorithm for discovering I/O dependencies is implemented in the same platform

used for DORIS system and described in Section 3.6. The 50 real Web services that were
used for the evaluation of this algorithm are provided by more than 10 APIs and cover
four domains: music, movies, books, and geographic data.

Discovering I/O Dependencies Here we evaluate our algorithm for discovering I/O
dependencies for WSs whose input type is hidden. For each API, we determined the
dependencies manually. Then, we ran our algorithm for each API, and compared the
results to the true ones. Table 3.5 shows the precision and the recall for several variants
of the algorithm: S1 and S2 implement Step 1 and Step 2 respectively. S23 implements
Steps 2 and 3 together. We find that Step 1 sometimes excludes good answers, which leads
to a drop in recall. The good news is that all strategies have a very high recall, which is
almost perfect for S2 and S23. Furthermore, S23 achieves a precision that is consistently
over 80%. Hence, our method is able to discover I/O dependencies and input types fully
automatically with high accuracy.

3.8 Summary
In this chapter, we have shown how to map the results of a Web service fully auto-

matically into the schema of a knowledge base. Our approach aligns the call results of

3.8. SUMMARY 67

API
Precision Recall

S1 S2 S23 S1 S2 S23

deezer 0.21 0.67 0.95 0.77 1 1
discogs 0.27 0.83 0.81 1 1 1
echonest 0.78 1 1 1 1 1
isbndb 0.48 0.82 0.82 1 1 1
last_fm 0.24 1 1 1 1 1
library_thing 0.57 0.6 1 1 1 1
music_brainz 0.1 0.84 0.84 0.93 0.93 0.93
musixmatch 0.11 0.55 0.83 1 1 1
themoviedb 0.19 0.78 0.89 1 1 1

Table 3.5: I/O Dependencies Discovery

the Web service to relations of the KB, it derives a view definition of the service in the
schema of the KB, and it produces an XSLT script that transforms the call result in the
terms of the KB. Our experiments show that our approach produces near-perfect results
on over 50 real Web services in a variety of domains.

Moreover, we have shown how to discover I/O dependencies between different Web
services of the same API by using our approach on mapping services to a global KB
schema. Especially in REST services where the absence of description for the input
and output parameters of a service is habitual, discovering the type of the input that a
specific Web service expects is really crucial. With this work we take a step further from
making a single service inter-operable and we give the potential to the users to explore
the maximum that an API can give by accessing all its Web services.

We hope that our techniques can provide a bridge between different data providers,
and thus help the rise of tomorrow’s knowledge-centric applications.

68 CHAPTER 3. DORIS

Chapter 4

SOFYA: Online Relation Alignment for
Linked Datasets

4.1 Introduction
Since the invention of Linked Data, the number of datasets exposed as linked data

have been growing exponentially. The analysis in [1], estimates that currently there are
more than 1000 datasets, with roughly 30 billion facts in the form of triples.

These datasets, span across multiple domains. Based on [1], the majority of datasets
fall into the Governmental and Social Web domains, with 18% and 51%, respectively,
followed by Publications, Cross-domain and Life sciences. Most of those datasets have
different schemas and vocabularies to represent the information they embed. From the
thousands of datasets, in LOD there are approximately 650 vocabularies used to repre-
sent their data [1]. However, based on [97], only a small percentage of roughly 2% of
schemas are aligned across the different datasets. Finally, these datasets usually are ex-
posed through SPARQL endpoints.

The diversity and richness in information available in LOD has led to some very suc-
cessful examples. Some of the most prominent examples like the Google Knowledge
Graph [39] used to provide factual information for entity search. A similar initiative
is exploited by the project EntityCube-Renlifang at Microsoft Research [80], or a com-
parable initiative at Yahoo! [21]. The common intuition and motivation across all such
projects is the combination of multiple LOD, like IMBD 1, DBpedia [13], Freebase 2, etc.,
into a coherent knowledge graph which serves as a backbone for Web search.

However, integrating and combining multiple datasets from the LOD is challenging.
One of the main challenges for such integration is the diversity in terms of schemas. This
has led to a very active research initiative, namely Ontology matching with the aim of
mapping classes/concepts defined across disparate schemas. A recent survey [99] shows
a large number of approaches that mostly deal with the alignment of classes/concepts
from schemas. Yet, the problem of aligning relations (i.e. predicates) has not seen much
progress. Furthermore, disregarding the distinction between class and relation alignment

1. http://www.imdb.com
2. http://www.freebase.com

69

http://www.imdb.com
http://www.freebase.com

70 CHAPTER 4. SOFYA

for linked datasets, one crucial challenge that is not addressed by previous works, is the
applicability of such approaches when there is limited access to data sources. Existing
approaches require full-access to the datasets, and the algorithms are performed on a
dataset snapshot.

In this Chapter, we address the problem of relation alignment for linked datasets. We
assume an online setting, where the access to a remote and knowledge base (e.g. DBpedia,
Freebase, or YAGO) is only possible through a SPARQL endpoint. Hence, knowledge
bases can only be queried through SPARQL expressions. Given a relation from a source
knowledge base, e.g. wasBornIn (describing the birth location of a person), our goal is
to find target relations in which wasBornIn is subsumed in a target knowledge base.

We propose a supervised machine learning approach for relation alignment. We learn
the models by computing features on data samples which we extract from the KBs through
their SPARQL endpoints. The features fall into three main categories, namely, measure
the overlap in terms of triples between two relations, the relation name similarity and
other general statistics such as the type distribution from the subjects or objects of the
respective relations.

One main advantages of the proposed approach in SOFYA, is that one does not need
to download and store locally the knowledge bases. All the computations are made on
data that is extracted though querying the datasets. Furthermore, our approach can be
used even if the data transfers from the respective knowledge bases are further limited.
We propose a sampling strategy that carefully selects a small data sample from the two
knowledge bases which guide the alignment process. Hence, our method accounts for the
efficiency of the relation alignment process. Furthermore, by performing the alignment
online, we compute the alignments on the fly and thus account for the evolving nature of
the datasets.

The remaining of this chapter is organised as follows. Section 4.2 formally describes
the problem that we tackle in this Chapter. Section 4.3 details our approach on how
to discover relation alignment candidates for a relation from a source knowledge base
in which the relation is subsumed in a target knowledge base. In Section 4.4 we show
the efficiency precautions we undertake in our approach. In Section 4.5 we present the
experimental setup for the relation alignment approach and in Section 4.6 we carry out
an extensive experimental evaluation, where we assess the efficiency and effectiveness of
our approach, before we conclude in Section 4.7.

4.2 Problem Statement
In this section, we define the problem setup for the relation alignment. In the re-

maining of this chapter, we will consider a pair of knowledge bases (KB), a source
KBS(RS, PS, LT) and a target KBT (RT , PT , LT), which can be queried through their re-
spective SPARQL endpoints. Specifically, each KB is represented by a set of triples
〈sub jec t, predicate, ob jec t〉 (a detailed description is provided in Section 2.1.1), which
constitute the set {R, P, L}.

We assume that for KBS and KBT , there exist equivalences between entity instances
common in both KBs, and that are explicitly stated and materialized in the form of

4.3. RELATION ALIGNMENT MODEL 71

owl:sameAs statements. For simplicity, we assume that each KB stores the state-
ments indicating the equivalences between its instances and the instances of the other
KB. More precisely, given two equivalent instance es ≡ et , the first from KBS and the
second from KBT , we assume that, KBS stores the fact owl:sameAs(es, et) and KBT

the fact owl:sameAs(et , es).

Definition 4.2.1 (Relation Subsumption). Given two relations rS and rT , we say that rS

is subsumed by rT or rT subsumes rS and we write rS ⊆ rT or rS ⇒ rT iff

∀x , y, rS(x , y) is true→ rT (x , y) is also true.

Example 10. Given the following relations rS = dbp:locationCountry and rT =
yago:location, we can establish that rS is a sub-relation or that it is subsumed in rT .
This is because rT represents and contains all information that can be encoded through
rS.

Goal: The goal of our work is to solve the following problem: Given two knowledge
bases, a source KBS(RS, PS, LT) and a target KBT (RT , PT , LT), and a relation rS ∈ PS,
find the relations rT ∈ PT s.t. rS ⊆ rT . We note that equivalence is a particular case of
subsumption. Indeed, rS ≡ rT iff rS ⊆ rT and rT ⊆ rS. Hence, we support the computation
of both relationships: subsumption and equivalence.

Note that according to our definition, the notion of subsumption is independent of
the particular extensions of the two relations that are stored in some KBs. However, we
can only rely on the facts stored in the KBs to learn subsumption relationships between
relations. If the two KBs do not contain errors, and if indeed rS ⊆ rT then

∀x , x ′, y, y ′, s.t. x ≡ x ′ ∧ y ≡ y ′ ∧ rS(x , y) ∈ KBS ⇒ rT (x
′, y ′) ∈ KBT

For simplicity, in what follows we will use the same variable to denote an entity and
its equivalent in another KB. In this work we consider only entity-entity relations, and
leave the entity-literal relations as future work (see Definition 2.1.2).

4.3 Relation Alignment Model
In this section, we describe the relation alignment model, which we propose to find

subsumption relation alignment between two KBs.
Consider again the knowledge bases KBS(RS, PS, LT) and KBT (RT , PT , LT) and an

entity-entity relation rS ∈ PS. Our method is two fold:
(1) compute the set of super-relation candidates C(rS) = {rT | rT ∈ PT}
(2) for every pair 〈rS, rT 〉 where rT ∈ C(rS), check if rS ⊆ rT and output correct if the

relationship holds and incorrect otherwise based on a supervised machine learning
model.

In the following, we describe the process on generating candidate relations from a
target KBT , namely 〈rS, rT 〉 in Section 4.3.1. Next, we describe the individual features
we compute for our alignment model in Section 4.3.2 and the learning framework in
Section 4.3.3.

72 CHAPTER 4. SOFYA

Figure 4.1: Selection of (x ′, y ′) entities constituting the SrS
set.

4.3.1 Candidate Generation

Here we describe the process of generating the relation candidate pairs for alignment.
For a given source relation rS from PS, we generate the tuple pairs 〈rS, rT 〉 with rT ∈ PT .

Considering a relation rS from our source KBS. We collect entity pairs (x , y) ∈ R2
S

for which rS holds, that is, 〈x , rS, y〉 ∈ KBS. We are interested only to those entity pairs
for which the corresponding owl:sameAs statements exist and link them to our target
KBT . The entity instances are extracted from the corresponding SPARQL endpoint of the
source and target KBs. The process of extracting entity pairs for rS is depicted in Figure
4.1 and is defined in Equation 4.1.

SrS
= {(x ′, y ′) ∈ R2

T | ∃x , y ∈ RS, x ≡ x ′, y ≡ y ′, rS(x , y) ∈ KBS} (4.1)

To extract the set of instances SrS
, respectively the set of x ′, y ′ entities, we use the

following query Q1.

Q1: SELECT DISTINCT ?x ′ ?y ′ FROM <KBS>
WHERE { ?x rS ?y .

?x owl:sameAs ?x ′.
?y owl:sameAs ?y ′.

}

Next, we use the SrS
, respectively the entities (x ′, y ′) to generate candidate relations

rT from KBT , such that rT is a relation associated with (x ′, y ′), 〈x ′ rT y ′〉 ∈ KBT or
rT (x ′, y ′) ∈ KBT . The set of candidate relations rT ∈ RT is defined in Equation 4.2, the
process is shown in Figure 4.2.

C(rS) = C+(rS)∪ C−(rS) (4.2)

4.3. RELATION ALIGNMENT MODEL 73

Figure 4.2: Relations in KBT that hold between one or more instances of SrS
set.

In the set of relations C(rS) we consider direct and inverse relations given by they
following two sets:

C+(rS) = {rT ∈ PT | ∃(x ′, y ′) ∈ SrS
∧ rT (x

′, y ′) ∈ KBT} (4.3)

C−(rS) = {rT ∈ PT | ∃(x ′, y ′) ∈ SrS
∧ rT (y

′, x ′) ∈ KBT} (4.4)

The intuition of an inverse relation (Definition 2.1.3) is explained in the following
example:

Example 11. Consider the relation rS = dbp:author, specifically the triple
〈 dbp:Oliver_Twist dbp:author dbp:Charles_Dickens 〉.

The relation in the KBT that encodes similar information and should be a candidate rela-
tion is rT = yago:created. Here is an example triple of the relation:
〈 yago:Charles_Dickens yago:created yago:Oliver_Twist 〉.

It is obvious that we would not be able to uncover this rT if we would expect it to
have the same domain and range as the rS. But if we swap the domain and range then
yago:created will be in the set with the candidate rT relations.

Therefore, we consider as relation candidates the inverse relations, in which case r−T
would have the same domain and range definitions as rS.

To construct the set C(rS), taking into account direct and inverse relations, we use the
following SPARQL query Q2. We issue such query against the target KBT , and obtain the
rT relations for a specific SrS

set of entities of a given relation rS.

74 CHAPTER 4. SOFYA

Q2: SELECT ?rT ?d FROM <KBT> WHERE {
VALUES (?x’ ?y’) {

x1 y1

. . .
xn yn

}
{ SELECT ?x’ ?rT ?y’ ?d WHERE{

?x’ ?rT ?y’. VALUES ?d {“direct”}
}
UNION
{ SELECT ?x’ ?rT ?y’ ?d WHERE{

?y’ ?rT ?x’. VALUES ?d {"inverse”} }
}
}

We are not interested in the whole content of the KBT , but only to those entities of
rS that are in a owl:sameAs relation to entities from KBT a.k.a the entity instances of
SrS

set. We use the VALUES SPARQL construct to directly add the (x ′, y ′) values form
SrS

into the query, here the x i and yi represent real values. In this way we combine in-
line data with the result of the query execution by a JOIN operation. We use UNION
to combine data from two queries. The two queries are to check both directions of the
possible rT , that is direct and inverse relations.

4.3.2 Features
In this section, we describe the process of computing features for a relation pair

〈rS, rT 〉 (generated in the previous step), which we use to learn the relation alignment
models to determine whether rS is subsumed in rT . We consider a set of light-weight
features for the relation alignment process, grouped into three main categories. Firstly,
we consider inductive logic programming (ILP) rule mining approaches, which work un-
der the open and closed world assumptions. In the second group, we look into general
relation statistics (GRS) for the pair 〈rS, rT 〉, that specifically rely on the set of entity in-
stances which are associated through rS and rT . Finally, in the third group, we consider
the lexical similarity between the relation names from the pair 〈rS, rT 〉. We present an
overview of the feature list in Table 4.1.

In the following, we describe in details the individual features.

ILP – Features

Closed World Assumption – CWA. The first feature, cwa, is a measure that was pro-
posed in [31]. It is used to mine association rules and was first used in a similar con-
text for relation alignment between to KBs in [102]. The cwa measure works under the
closed world assumption, where the KBs are assumed to be complete, hence there are no
missing statements. Missing statements for an entity in two KBs are regarded as counter-
examples. In cwa we measure the overlap in terms of the number of instantiations that

4.3. RELATION ALIGNMENT MODEL 75

id feature description group

f1 cwa closed world assumption
(ILP)f2 pca partial completeness assump-

tion
f3 pia partial incompleteness

assumption

f4 func relation functionality

(GRS)

f5 WJ weighted jaccard similarity
f6 WJD weighted jaccard relation dis-

similarity
f7 p(cor rect|pca) prior probability of pca score
f8 p(cor rect|cwa) prior probability of cwa score
f9 p(cor rect|pca, cwa) joint likelihood of pca and

cwa score for a relation pair
being relevant

f10 λ(rS, rT) lexical similarity for the rela-
tion pair 〈rS, rT 〉

(Lexical)

Table 4.1: The set of computed features for the relation alignment model.

are common to rS and rT , normalised by the number of instantiations of rS. Formally, the
metric is defined, as following:

cwa(rS ⇒ rT) :=
#(x , y) : rS(x , y)∧ rT (x , y)

#(x , y) : rS(x , y)
(4.5)

where the number in the nominator #(x , y) corresponds to the number of pairs (x , y) that
fulfill rS(x , y) ∧ rT (x , y). Whereas, in the denominator, the number corresponds to all
instantiations of rS(x , y). Note that the pairs (x , y) that are instantiations of rS but not of
rT , are regarded as counter-examples for the rule rS ⇒ rT . To compute the cwa score we
count the instances where the two relations overlap, and the counter-examples, through
SPARQL queries on KBS and KBT .

Example 12. Consider the candidate alignment:

yago:bornIn⇒ dbpedia:birthPlace

Assume that the KBS contains the fact yago:bornIn(Victor_Hugo, Besançon), but the
KBT does not contain the fact dbpedia:birthPlace(Victor_Hugo,
Besançon); the instance (Victor_Hugo, Besançon) is regarded as a counter-example for
the alignment. Hence, it contributes 0 to the numerator and 1 to the denominator of cwa.

The cwa measure works well when the relations are complete (i.e., KBs have the
complete set of statements for a given relation). However, this is not usually the case
for KBs extracted from the Web, using information extraction algorithms. This for two

76 CHAPTER 4. SOFYA

main reasons: (i) KBs are constructed from different sources of information (e.g. DBpe-
dia is generated from Wikipedia, while YAGO is constructed by merging Wikipedia and
WordNet), and (ii) entity co-references are not canonicalized to a global URI or are not
linked explicitly through owl:sameAs statements, hence, not being able to interpret the
different entity URIs as the same.

Partial Completeness Assumption – PCA. The second feature, pca, is an ILP mea-
sure proposed in [47] with the purpose of mining Horn rules for an input KB. The pca
measure is able to handle incompleteness in KBs. It is designed to work under the par-
tial completeness assumption. For a relation r and instance x , it is assumed that the KB
contains either all or none of the r-triples having x as a subject. Note that a particular
case that this assumption holds is the relations that are functions i.e. for which f unc = 1
(according to Equation 2.2). Under this assumption, we can count as counter-examples
for the alignment rS ⇒ rT , any pair (x , y) that is an instantiation of rS but not of rT ,
more specifically for rT we have statements where x exists as a subject but not y , that
is, y2 6= y , respectively rT (x , y2). The number of counter-examples is computed, as
following:

counter(rS ⇒ rT) := #(x , y) : rS(x , y)∧ ∃y2, y2 6= y : rT (x , y2)∧¬rT (x , y) (4.6)

This yields the following confidence measure:

pca(rS ⇒ rT) :=
#(x , y) : rS(x , y)∧ rT (x , y)

#(x , y) : ∃y2 : rS(x , y)∧ rT (x , y2)
∈ [0, 1] (4.7)

Like for the cwa, the numerator is the number of instantiations shared in common by rS

and rT :
overlap(rS ∧ rT) := #(x , y) : rS(x , y)∧ rT (x , y) (4.8)

However, the denominator represents the sum between the number of counter-examples
and the overlap. Hence, pca can be also written as follows:

pca(rS ⇒ rT) :=
overlap(rS ∧ rT)

overlap(rS ∧ rT) + counter(rS ⇒ rT)
(4.9)

To compute the pca score we count the instances where the two relations overlap accord-
ing to the Equation 4.8, and the counter-examples according to the Equation 4.6, through
SPARQL queries on KBS and KBT .

Note that unlike cwa, pca measure does not penalize the relation alignment pair if the
target KBT does not store for some instance (x , y) of rS any rT fact for x .

Example 13. Consider again the Example 12. The instance (Victor_Hugo, Besançon) is
regarded as a counter-example only if the target KB contains a fact dbpedia:birthPlace
(Victor_Hugo, Y) other than dbpedia:birthPlace(Victor_Hugo, Besançon).

4.3. RELATION ALIGNMENT MODEL 77

We remark that pca can have maximal score even when the overlap between the in-
stantiations of the two relations consists of few tuples with no counter-examples. This is
helpful in detecting alignments with a small overlap in the two KBs. On the other hand,
it increases the likelihood of getting false positives. These are caused by erroneous facts,
incomplete data and overlapping relations.

However, one way to circumvent the shortcomings of cwa and pca is considering
them jointly as features. This has the effect of regularizing each other, where for high
pca score but low cwa score the chance of having a correct alignment is low, and vice-
versa. We will make use of this assumption and compute a joint likelihood score for a
relation pair being correct by considering the scores of pca and cwa.

Partial Incompleteness Assumption – PIA. The partial completeness assumption may
hold for functional relations (see definition of relation functionality in Section 2.1.1), but
is less probable for one-to-many relations. Indeed, the intuition is that if the average
number of rS-triples per subject is high, then it is more likely that not all the rS–triples
of some subject x have been extracted. The same observation holds also for the triples
of rT . Note, that we have yet to prove that rS is subsumed in rT . Hence, the counter-
examples of less functional relations should be weight less than the counter-examples of
more functional relations. To this end, we propose the pia score, defined as follows:

pia(rS ⇒ rT) :=
overlap(rS ∧ rT)

overlap(rS ∧ rT) + (counter(rS ⇒ rT)× func(rS))
(4.10)

where, f unc(rS) measured as the probability that a counter example may not exist.

General Relation Statistics (GRS) – Features

The features in the ILP group are concerned with entity statements for any two re-
lations under consideration. Here, in the general relation statistics feature group, we
propose features that take into account the cardinality of the two relations, and their do-
mains and ranges, correspondingly the entity types extracted from entity instances in the
respective domains and ranges of a relation.

Functionality of Relations. The first feature in the GRS feature group is the relation
functionality. We consider the correlation of the relation functionalities (see Equation 2.2)
from the pair 〈rS, rT 〉.

A relation is considered to be highly functional, if for a subject entity we have one
object entity. On the other hand, when the functionality of a relation is very small, for a
given subject entity the relation has many object entities.

Following this intuition, we assume that if a relation rS is subsumed by a relation rT

then the number of rS facts per subject entity should be lower than the number of rT facts
per subject entity. In other worlds, the functionality of rS should be grater or equal to the
functionality of rT . Therefore, we desire the following relationships between the relation

78 CHAPTER 4. SOFYA

functionalities rS and rT :

i f rS ⇒ rT → f unc(rS)¾ f unc(rT)

The feature that we consider in this setting is the difference of the two functionalities.

f uncdi f f := f unc(rS)− f unc(rT) ∈ (−1,1)

Weighted Jaccard Similarity. In this feature, we measure the similarity of the entity
type distributions D(·) between the relation pairs 〈rS, rT 〉.

We gather such statistics from the rS and rT concerning the entity type distribution,
specifically the type distributions of subjects entities, in other words the type distribu-
tion of the domains of the relations. We denote the following relation statistics, Ds(rS)
and Ds(rT), as the type distribution for entities as subject values for relations rS and rT ,
respectively.

The distributions represent a set of entity types, where for each entity type we have
the proportion of entities (out of the total entities for a relation) that belong to that type.
For example, Ds(rS) = {〈t ype1, 0.5〉, 〈t ype2, 0.2〉, . . .}.

Since the two KB that we consider use different schemas, for uniformity, we pick
one of the two type taxonomies used to represent the entity instances and compute the
statistics for the types distribution. We are able to bring the entity type representation
into one specific type taxonomy due to our restriction where we consider only entities
that are explicitly linked across KBs through owl:sameAs statements. We provide a
detailed description in our experimental evaluation regarding the choice of KBs and the
taxonomies used for this feature in Section 4.5.2.

For the time being, lets assume we pick the type taxonomy of the KBS to represent the
types for both rS and rT . For rS we have:

rS(x , ·)∧ rdf:type(x , t ype1)→ t ype1 ∈ Ds(rS) (4.11)

For rT we have:

rT (x
′, ·)∧ x ′ ≡ x : x ∈ RS ∧ rdf:type(x , t ype1)→ t ype1 ∈ Ds(rT) (4.12)

Considering that items in the respective entity type distributions are scored based on
the proportions of entities belonging to that type for a relation and KB. In this case we can
use several similarity measures (e.g. cosine, weight jaccard, we opt for weighted jaccard
as a similarity metric without loss of generality.

W J(D(rS),D(rT)) =

∑

t∈D(rS)∧D(rT)
min(σ(tS),σ(tT))

∑

t∈D(rS)∧D(rT)
max(σ(tS),σ(tT))

(4.13)

where, D(·) represents either the type distribution for the subject or object values based
on that if the relation is a direct or inverse relation. The function σ(t) represents the score
of an entity type in the distribution for a given relation.

4.3. RELATION ALIGNMENT MODEL 79

The intuition behind the weighted jaccard similarity is the following. Due to the
fact that we want to find if rS is subsumed in a target relation rT , the respective type
distributions D(rS) and D(rT), should be similar, or D(rS) should be entailed in D(rT).
In other words, the target relation rT , should be able to represent entity instances from rS,
namely through its domain entity type definition 3.

This feature is best explained through a concrete example.

Example 14. Consider the following distributions:
D(rS) = {〈Movie, 0.8〉, 〈Book, 0.1〉, . . .},
D(rT) = {〈Book, 0.8〉, 〈Movie, 0.05〉, . . .}.

The corresponding W J score would be low, that is, relation rT is unlikely to subsume rS

due to the fact that based on its entity type representation, type Movie represents only
5% of the total instances while in rS is the 80% of the total instances.

Therefore, we assume, that for a relation to subsume another, the respective type distri-
bution need to be closely similar. Finally, by taking into consideration the proportion of
entity instances belonging to a type, in this feature we can compare relations that have
varying number of entity instances (due to the inherent size of a KB).

Weighted Jaccard Dissimilarity. Similarly as for the weighted jaccard similarity, which
is computed on the overlapping types between the two entity type distributions D(rS) and
D(rT), in this case, we compute the weighted dissimilarity score (WDS) between rS and
rT . Specifically, if a specific entity type from rS does not exist in rT , this accounts for
a dissimilarity between the two relations, and lowers the likelihood of rT subsuming rS.
The W DS score is computed as following.

W DS(D(rS),D(rT)) =

∑

t∈D(rS)∧t /∈D(rT)
σ(tS)

|D(rS) \D(rT)|
(4.14)

The intuition behind this feature is that even if the W J score is high (computed on
the overlapping types), in case rT cannot represent specific entity types from rS, those
account for a dissimilarity score. Respectively, the chance of rS being subsumed by rT is
decreased. The higher the W DS score is the less possible is the relationship rS ⇒ rT to
hold.

Example 15. Consider the following distributions:
D(rS) = {〈Movie, 0.3〉, 〈Book, 0.2〉, 〈Painting, 0.5〉 . . .},
D(rT) = {〈Book, 0.2〉, 〈Movie, 0.3〉, . . .}

In the case where the common types of the relation pairs have similar distribution, the
W J score will be high. However, if there is a type in the rS namely, Painting which
does not exist in rT , that is not taken into account in the computation of W J . This type
represents the 50% of the entities in rS. That means, the relation rT is unlikely to subsume
rS and this is discovered by the W DS score which is going to have the value W DS = 0.5

3. Each relation in a RDFS schema has two properties denoting the domain and range.

80 CHAPTER 4. SOFYA

ILP Score Relevance Likelihood. Recent work and survey on ontology matching ap-
proaches [99] has shown that dependent on the dataset pair under consideration, the choice
of matchers varies, in our case, the features we compute for our relation alignment model.
Furthermore, the computed values for the individual features are dependent on the KB
pair.

This is especially true for the ILP features. If we consider pca or cwa, a scores that is
not nearly perfect is likely to be a good indicator for subsumption if the overlap in terms
of statements is high in absolute numbers. Yet, we can achieve high scores even with a
low overlap of statements in absolute numbers, hence, as such it will not guarantee the
subsumption of a relation in target KB.

For the first case, if we have a score of pca = 0.8, with a high number of overlapping
statements, that is the set of (x , y) represents a large number of entities being in common
and having sufficiently complete set of facts. Such a score is a strong indicator of sub-
sumption. Now, consider the second case where we get a score of pca = 1.0, for (x , y)
pairs, the relations overlap completely, however, the statements come from a single entity
x , such a score will be unlikely to guarantee a relation subsumption.

Therefore, in this feature group, we assess the likelihood of the specific scores being
indicators of subsumption for a relation pair. It is obvious that the probability distribu-
tions are measured only on a training sample of relation alignment candidates, whereas
for testing instances we simply asses their scores against the computed probability distri-
butions.

For this purpose, we discretize the computed pca and cwa score into the ranges with
a cut-off point of 0.1, {0, 0.1, . . ., 1.0}, and compute the likelihood of a relation alignment
being correct given a specific pca, cwa or the joint pca and cwa score.

We will denote with 〈rS, rT 〉c the set of relation alignment candidates that are correct,
and with 〈rS, rT 〉 the complete set of relation alignment candidates.

PCA Prior. Here, we compute simply the priors of a specific pca score, from the
aforementioned range, respectively for which the pair 〈rS, rT 〉c. The pca prior is computed
as following.

p(cor rect|pca) =
#〈rS, rT 〉c : pca(rS ⇒ rT) = pca

#〈rS, rT 〉 : pca(rS ⇒ rT) = pca
(4.15)

In the numerator we count the #〈rS, rT 〉c pairs that are correct for a given pca score.
Where in the denominator we count all the pairs 〈rS, rT 〉 (correct or incorrect) that have
the given pca score. In summary, the p(cor rect|pca) simply measures the ratio of the
number of cases where for a given discretized pca score the subsumption alignment holds
divided by the total relation pairs having a given pca score. Note that, we learn these
probabilities on a given set of training instances (see Section 4.5).

CWA Prior. Similarly as for the computed probability pca score, we compute a the
p(cor rect|cwa) score for the discretized cwa scores. The computation and intuition
is the same as for p(cor rect|pca), we compute p(cor rect|cwa) as following in Equa-
tion 4.16.

p(cor rect|cwa) =
#〈rS, rT 〉c : cwa(rS ⇒ rT) = cwa

#〈rS, rT 〉 : cwa(rS ⇒ rT) = cwa
(4.16)

4.3. RELATION ALIGNMENT MODEL 81

Joint PCA & CWA Likelihood. As mentioned in the beginning of this section, there
are advantages and disadvantages from the pca and cwa scores, respectively. In this
measure, we compute the joint likelihood that for a given pca and cwa score, the relation
pair 〈rS, rT 〉 is correct. Similarly, we first discretized the scores and compute the joint
relevance likelihood as in Equation 4.17.

p(cor rect|pca, cwa) =
#〈rS, rT 〉c : pca(rS ⇒ rT) = pca ∧ cwa(rS ⇒ rT) = cwa

#〈rS, rT 〉 : pca(rS ⇒ rT) = pca ∧ cwa(rS ⇒ rT) = cwa
(4.17)

where for a given pca and cwa score we simply count the number of relation pairs whose
scores match and the corresponding alignment is relevant, over the total number of rela-
tion pairs with the respective pca and cwa scores. We expect this feature to be sparse,
hence, we use the simple priors as fall-back features.

Lexical Relation Similarity

In this feature group, we simply measure the lexical similarity between the relation
names for the pair 〈rS, rT 〉. This presents a standard feature used in ontology matching
approaches [99]. In order to compute the lexical similarity features, we remove the base
URL of each relation and split the relation names based on the capitalization of the relation
name letters, i.e., hasPrize={has, Prize}. Finally, we lowercase all the resulting
tokens.

The score of the feature λ(rS, rT) corresponds simply to the Levenshtein [66] distance
between the relation names.

It is worth noting that, in this feature group one can use external dictionaries like
WordNet, to map the individual terms in a relation to a multidimensional vector of possi-
ble synsets (e.g. Prize = {prize, award, trophy, . . .}). This allows for more
expressive representation of the relation names, hence, the computed similarity will be
more representative. However, we leave such implementation for future work and con-
sider the simple lexical similarity.

Finally, from all the computed features, we train supervised machine learning models,
who combine the individual features into a model which we use to assess the relevance of
the proposed subsumption relation alignments.

4.3.3 Relation Alignment Supervised Models

In this section, we provide an intuition behind our decision on combining the afore
mentioned features. As presented above as part of our intuition, the individual features,
which serve as matchers for our relation alignment problem do not yield optimal per-
formance when applied separately. For example, if we consider the ILP feature group,
namely, the cwa and pca scores, if applied separately, they are either too restrictive (in
the case of cwa measure) causing too many false negatives, or too relaxed (pca measure)
allowing for too many false positive relation alignments. Hence, the intuitive approach

82 CHAPTER 4. SOFYA

here is to combine the features in a supervised machine learning model. Through super-
vised models, we learn automatically the importance of features and as a consequence are
able to predict accurately the label for the pairs 〈rS, rT 〉 → {correct, incorrect}.

One minor drawback of using supervised models is the need for ground-truth data.
In order to train such models, we need to create ground-truth data for which we know
the correct label for the relation pairs, that is, 〈rS, rT 〉, which we use as training data.
However, as we will see later in our experimental evaluation in Section 4.6, the amount of
training data we need for our models to converge is minimal. In Section 4.5.3 we discuss
approaches and how we construct our ground-truth for learning the relation alignment
models.

In the following, we describe two main aspects of our model, namely, the choice of
the supervised models and a feature selection algorithm, which we use to select a subset
of features used for training.

Supervised Models

We propose a non-exhaustive list of possible supervised models that can be trained
to predict the relevance of a relation alignment for a given pair 〈rS, rT 〉. We learn a bi-
nary classification model where we distinguish between correct and incorrect relation
alignment pairs.

We mainly focus on models whose complexity is linear, O (n). We hypothesize that a
linear combination of our features places the relation pairs in a linearly separable space.
Therefore, in the following we discuss two well known, linear supervised models that we
use in our approach and later on evaluate in Section 4.5. For both models used in this
work we are based on the implementation provided by Weka [51], a widely used machine
learning framework.

Voted Perceptron. The first model we consider for learning the relation alignments is
the Voted Perceptron (VP) algorithm [43]. It combines features into a linear model by
weighing them based on the impact they have on predicting accurately the label of the
candidate pair 〈rS, rT 〉.

The VP algorithm is based on the Perceptron (PC) algorithm. The objective of the VP
algorithm (this holds for the PC algorithm too) is to find an optimal set of weights for the
individual features such that the number of miss-classifications is minimized.

What sets VP apart from PC is that it stores additional information during the learning
process. In VP the model keeps a set of feature weight sets (in PC a feature is weighted
by one specific value), more specifically, the individual weights from this set of feature
weights are weighted proportionally to the number of correct predictions.

In more details, for a given set of training instances and a maximum number of it-
erations the following steps are undertaken. Lets denote the set of training instances
{(〈r1

S , r1
T 〉, y1), . . . , (〈rm

S , rm
T 〉, ym)}. Each training instance 〈rS, rT 〉 is constituted by the

individual feature values f (〈rS, rT 〉) (see Table 4.1 for the complete set of features), and
the corresponding label y ∈ {+1,−1} for correct and incorrect alignment respectively.

4.3. RELATION ALIGNMENT MODEL 83

In the initialization step of the VP algorithm, the weights of the individual features are
assigned to a random value between [0, 1] or zero, w= 0.

Next, for each individual training instance 〈rS, rT 〉, the VP model with the current state
of the feature weights w predicts the label of the instance as ŷ = sign(w · f (〈rS, rT 〉)).
In case the function ŷ under the current state of weights w predicts the wrong label, then
the weights are adjusted according to w = w + y · α · f(〈rS, rT〉). In more details, the
individual weights for each feature are adjusted by adding or subtracting the feature value
multiplied with a pre-specified learning rate α (usually a value α < 1.0), if we miss-
classify the positive or negative class, respectively. Here with f (〈rS, rT 〉) we denote the
specific feature value for the training instance 〈rS, rT 〉. Finally, the weights w are not
changed in case the prediction by ŷ corresponds to the real label of a training instance.

As mentioned in the beginning of this section, the VP algorithm keeps a set of weight
sets W = {w1, . . . ,wn}, and each weight set has a score c that corresponds the number of
correctly labeled instances.

The VP algorithm halts when the learning process has converged, that is, when the
model does not miss-classify any of the training instances, or in the case where the maxi-
mal number of iterations is reached.

Finally, from the set of all weighted feature weights, we predict the label of a relation
pair through a weighted majority voting, with votes having higher weights proportional
to the feature weights (weights assigned based on the number of instances they predict
accurately). The classification model is formally defined in Equation 4.18.

ŷ = sign

k
∑

i=1

ci ∗ si gn(wi · f (〈rS, rT)))

!

(4.18)

Logistic Regression Model. Logistic Regression (LR) represents a linear supervised
model [19]. Given our training instances and the respective feature values f (〈rS, rT 〉), we
learn the function ŷcor rect (for a binary classification task, the incorrect class is computed
as 1− ŷcor rect). The advantage of the logistic model is that it is a linear expression, and
thus, the achieved prediction labels are easily explainable. The model is computed as in
Equation 4.21, where we show the likelihood of the relation pair 〈rS, rT 〉 being a correct
alignment. The other case is the pair being an incorrect alignment, ŷincor rect , can be simply
computed through 1− ŷcor rect .

In LR, the prediction of the labels, namely the functions, ŷcor rect and ŷincor rect , can
be represented as conditional probabilities, specifically, P(y = 0| f (〈rS, rT 〉) and P(y =
1| f (〈rS, rT 〉), respectively. It simply states that under the LR model what is the likelihood
that for a given set of feature values one of the labels to hold, i.e. y = 1.

In the LR, the model that is used to compute the likelihood of a label given the training
data, we first need to estimate the parameters w, which represents feature weights from
the feature set f (〈rS, rT 〉). The weights are estimated such that for a given set of training
instances, the LR model is optimal and thus the number of miss-classifications is minimal.
A standard approach to achieve this is through maximum likelihood principle (MLP) (see
Equation 4.19). In MLP, the parameter W is considered a free parameter for which we

84 CHAPTER 4. SOFYA

find values that maximize the performance of the LR model, that is, the number of miss-
classification is minimal.

W ← argmax
W

∏

i

P(yi| f (〈rS, rT 〉), W) (4.19)

From the Equation 4.19 we can deduce a function L (W) in Equation 4.20 which
we use to estimate the weights. A common approach to obtain weights that maximize
the likelihood function in Equation 4.19 is through gradient ascent. The principle of
gradient ascent is similar to the adjustments of weights in the VP model. It iteratively
adjusts the weights for a given set of training instances. Detailed analysis of the gradi-
ent ascent parameter estimation approach is provided in [19], where it is shown that the
weights computed for L (W) are optimal and thus maximize the likelihood principle in
Equation 4.19.

L (W) =
∏

i

�

yi P(yi = 1| f (〈rS, rT 〉), W) + (1− yi)P(yi = 0| f (〈rS, rT 〉), W)
�

(4.20)

Finally, after estimating the weights W for the individual features, we can predict the
label of relation alignment pairs through the Equation 4.21. It must be noted that the label
of an instance is determined based on which score is higher, that is ŷcor rect > ŷincor rect ,
for correct, and vice-versa for incorrect.

ŷcor rect =
1

1+ ex p

�

w0+
n
∑

i=0
wi ∗ f (〈rS, rT 〉)i

� (4.21)

Feature Selection

An important aspect that we consider for our supervised model, is the choice of fea-
tures we use for training such models. As evidenced in related work [99], dependent on
the datasets, the choice of features (matchers as referred in the ontology matching litera-
ture) that would have optimal performance will vary. Hence, we consider feature selection
when learning our relation alignment models.

The advantages of feature selection are two fold: (i) through feature selection we
choose the features that optimize our model on predicting accurately the relation pairs
under consideration, and (ii) our models are more generalizable by choosing only the
top-performing features, hence, avoiding over-fitting to the training instances.

Here we present one approach we use for feature selection that is based on information
gain (IG) measures [127]. The IG feature selection approach measures the information
gain we get from a specific feature in our feature set f (〈rS, rT 〉) in predicting the label of
the relation pair, i.e. 〈rS, rT 〉. The computation of IG for a feature is done as following.

IG(fi) = H(Y)−H(Y | fi) =−
∑

y∈{−1,+1}

P(y) log P(y)+
n
∑

k=1

∑

y∈{−1,+1}

P(y| f k
i) log P(y| f k

i)

(4.22)

4.4. ONLINE RELATION ALIGNMENT 85

where IG(fi) measures the information gain for feature fi, where fi = { f 1
i , f 2

i , . . . , f n
i } is

a set of discretized feature values for fi for a given set of training instances. In our case,
the values correspond to scores as computed by the individual features in Table 4.1.

The gain takes into account the individual feature values and the information gain for
each value for a given class, which is represented as a conditional probability P(y| f k

i) on
predicting y given f k

i . The score P(y| f k
i) simply measures if the specific feature value is

a good indicator on predicting the labels y ∈ {−1,+1} in our training set. The IG score
is computed for each individual feature.

We compute the step of feature selection before learning our supervised models. The
feature selection, namely the IG scores are computed on the training instances. We exper-
iment with different cut-offs of top–k features and find the optimal set of features, namely,
a small subset of features for which our models will be optimal in predicting correctly the
labels of the relation alignment pairs.

4.4 Online Relation Alignment

In the previous section we described the proposed approach for relation alignment.
However, as argued in Section 4.1, the ever increasing number of available linked datasets,
and their evolving nature of the data make such a problem inefficient when considering
approaches that require full access of the datasets. In many cases these datasets are avail-
able only through a SPARQL endpoint, thus, providing only a subset of data by placing
limitations in the number of triples one can query at each SPARQL request. Furthermore,
even when full access is provided, downloading and analyzing the full data is expensive
(in terms of time and used network bandwidth) and does not scale. Lastly, alignments
computed on a specific dataset snapshot might not be valid in another version.

Here we suggest sampling strategies which aim at addressing two main issues: (i)
overcome the expensive step where the full dataset is required, and (ii) sample a minimal
and representative set of instances that are used to build our relation alignment models,
specifically compute the features. The sampling strategies take into account the nature
of the datasets, respectively their set of relations, consequentially the sampled instances
aim at maximizing the evidence that is provided for determining the correct label for a
pair, and additionally being representative of the general population of entities that are
associated with a specific relation.

We refer the reader to the problem description in Section 4.2, and in the following we
introduce three sampling strategies described below.

4.4.1 Sampling Strategies

We propose three sampling strategies for entity instance selection, which we use to
generate relation alignment candidates. Given our source KBS and query relation rS the
main objective is to sample for a minimal set of entity instances SrS

. For example, a
relation that has as a domain narrow concepts (e.g. Politician), representing very
homogeneous information, the assumption is that a small sample size is required. While

86 CHAPTER 4. SOFYA

for relations that have as a domain broad concepts (e.g. Person), then we need to sample
for a larger number of instances.

In summary, the sampling step in our approach produces the set of entity instances SrS
,

which contains a set of representative entity instances, while keeping a minimal overhead
during the query–execution, in terms of time and network bandwidth usage. Moreover,
through SrS

we ensure that we have high coverage of alignments for rS in a target knowl-
edge base KBT .

First–N Sampling

The first sampling strategy is first–N , which we use to extract samples in SrS
, namely

the entities (x ′, y ′) for relation rS in KBS. This represents a highly efficient query, it
introduces a minimal overhead in the query-execution time. We execute the following
SPARQL query Q3, which returns the first–N entity samples (x ′, y ′).

Q3: SELECT DISTINCT ?x ′ ?y ′

WHERE { ?x rS ?y .
?x owl:sameAs ?x ′.
?y owl:sameAs ?y ′.

} LIMIT N

One drawback of selecting first–N entity samples for SrS
as shown in Q3, is that it violates

the assumptions of constructing a representative sample. Query Q3 is subject to factors
that do not conform to a controlled environment. For instance, we might end up with a
skewed sample distribution based on how the triples are added into a KB.

Another major issue with samples extracted through the first–N approach, is that in
the samples (x ′, y ′), x ′ might not be distinct in SrS

. That is, in case we sample for 100
statements, and each statement belongs to a single entity x ′, we end up with very bi-
ased and not representative sample. Such samples are not representative, and the relation
alignment model built upon such samples will have low coverage and is likely to overfit
because of two main reasons.

First, for samples (x ′, y ′) in KBS and KBT and for a common x ′, the set of statements
in both KBs might be complementary, that is, the features we compute for our models
will assign low scores for the relation alignment pair. Second, in the case where (x ′, y ′)
overlap completely in both KBs, the model would overfit to the specific x ′, hence failing
to generalize and similarly such scores would not be representative for a larger sample of
x ′.

Yet, this represents a baseline to show the impact of sampling strategies on generating
accurate relation alignments.

Random Sampling

A natural way to construct representative samples for SrS
is to randomly sample over

entities associated with relation rS in KBS. SPARQL 1.1 provides support for the function

4.4. ONLINE RELATION ALIGNMENT 87

RAND() 4 which sorts the matching triples in a random order. It produces a different
random sample every time the RAND() function is invoked. We execute query Q4 to get
a random sample of N entity pairs (x ′, y ′) associated with rS.

Q4: SELECT DISTINCT ?x ′ ?y ′

WHERE { ?x rS ?y .
?x owl:sameAs ?x ′.
?y owl:sameAs ?y ′.

} ORDER BY RAND() LIMIT N

Through random sampling we ensure that SrS
consist of representative sample of entities

(x ′, y ′). However, ordering the matching triples through the RAND() function is ex-
pensive and introduces a significantly higher overhead in the query-execution time when
compared to the first–N query Q3.

Another issue one can encounter on constructing SrS
through Q4 is that in case we are

dealing with a relation that has a range of broad concepts, then our samples will be biased
towards the entities belonging to the more abstract classes. For example, the relation
rS =creatorOf can have as a domain entities of type Artist, Architect, Writer
etc. Depending on the sample size, the finer grained entity types might not be included in
our samples, therefore, having an impact on the possible candidate relations that we can
align in KBT which are specific to those types.

Stratified Sampling

To account for the possibility of missing candidate relations from KBT , due to their
domain/range being specialized entity types, i.e., Illinois_lawyers (an entity type
associated with Barack_Obama), we employ our third sampling strategy, namely the
stratified sampling technique [28]. Here, the main objective is to have better coverage in
terms of uncovered relation alignments by taking into account the entity types associated
with the subject/objects of a relation rS.

The idea of stratified sampling is to divide members of the population into homo-
geneous groups (called strata) before sampling. In our case a strata is defined by the
entity types from the subject entities x ′ associated with relation rS. We extract the en-
tity type of x ′ from the triple 〈x ′ rdf:type Politician〉. For instance, from x ′,
we can infer the coarser grained types from a type taxonomies present in a KB, e.g.
〈x ′ rdf:type Person〉.

In this way we can express the strata based on types at different levels in the taxon-
omy. The higher in the taxonomy, our stratified sampling will be similar to the random
sampling, whereas the deeper we go in the taxonomy, we will have higher number of
strata, hence, increasing the coverage of aligned relations in KBT . By varying the depth
level in a type taxonomy we can find the optimal depth level such that the coverage in

4. http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

88 CHAPTER 4. SOFYA

terms of rT is maximal. The intuition is that the generated samples (x , y) from rS con-
tain very representative instances from all possible entity types, hence, maximizing the
coverage and accuracy of the discovered candidates rT .

The size of the sample in each stratum is taken in proportion to the size of the stratum.
This is called proportional allocation and we compute the size N of each strata as

N = #st ratum ∗
#sample

#totalSt rataSize
(4.23)

where #st ratum is the number of subject entities that are instances of the specific entity
type in a specific type taxonomy, #sample is our desired number of entities we want to
sample, and #totalSt rata is the number of subject entities belonging to all entity types
for the relation rS. Finally, we sample for (x ′, y ′) for the different strata as in query Q5.

Q5: SELECT DISTINCT ?x ′ y ′

WHERE { ?x rS ?y .
?x owl:sameAs ?x ′.
?y owl:sameAs ?y ′.
?x rdf:type ?t ype.

} ORDER BY RAND() LIMIT N

Since our strata consist of entity types, and considering that the entities are associated
with types and their transitive closure, this way of defining the strata violates one of the
first assumptions of stratified sampling of disjoint items.

For example, for an entity 〈e rdf:type Actor〉, entity e will be part of all the
strata that correspond to the transitive closure of Actor, i.e 〈Actor subClassOf
Person〉 → 〈Person subClassOf Human_Being〉. However, by constructing the
strata at specific depth levels in the type taxonomy we can associate an entity to its most
specialized type, thus, ensuring disjointness.

4.5 Experimental Setup

In this section we present the experimental evaluation of our proposed approach for
relation alignment. Our evaluation was carried on the following computing infrastructure.
We implement our approach in Java (JVM 1.7), for hosting of our evaluation datasets we
rely on the Virtuoso Universal Server 5 with SPARQL 1.1 support. All our experiments
are carried on a server with Intel(R) Xeon(R) CPU E5-2420 v2 @ 2.20GHz and 50GB of
main memory.

In the following subsections we describe in details the specific points in our experi-
mental setup.

5. http://virtuoso.openlinksw.com

http://virtuoso.openlinksw.com

4.5. EXPERIMENTAL SETUP 89

4.5.1 Datasets
We evaluate the proposed relation alignment approach on three real-world knowledge

bases, YAGO [103], DBpedia [13], and Freebase 6. We host these individual KBs in our
RDF triple-store (Virtuoso). These represent the most common and well-established KBs.
Further, they represent a real-world scenario as they are the most commonly used KBs and
are general purpose datasets.

YAGO (Y). From the YAGO2 dataset we use the core facts 7, excluding the entity
labels. We exclude the labels given that we consider only entity–entity relations. Ad-
ditionally, we have the entity type information, where we use the transitive types. This
amounts to approximately 900MB of triples.

DBpedia (D). In the case of DBpedia, we use the English version 3.9 8. Specifically,
we consider the entity types (here too we have the transitive closure of types) and the
subset of DBpedia, namely the mapping-based properties 9. This amounts to 5.5GB of
triples.

Freebase (F). Due to the large size of Freebase, we take a subset of Freebase dataset 10,
that corresponds to entities that have owl:sameAs links to DBpedia. In the end, this
amounts to 30GB of data.

Finally, from the aforementioned KBs, we extract all possible entity-entity re-
lations, ree. We filter out relations that do not have more than 50 triples 11. Table 4.2
presents some of the statistics for our datasets. In the first column is shown the total
number of relations for each KB, whereas in the second column is shown the number of
relations after filtering. In the third column we show the total number of triples in our
datasets.

relations ≥ 50 triples #triples

ree rel ree rel

YAGO 37 41 36 38 139,630,953
DBpedia 688 690 563 565 64,600,376
Freebase 5855 2910 1666 861 220,339,399

Table 4.2: Statistics for the individual KBs, number of relations and the total number of
triples.

Entity Links owl:sameAs: Since in this work we focus on entity-entity ree

relation alignment, we make use of the owl:sameAs links between entities across the

6. http://www.freebase.com
7. The groups as indicated on the YAGO download page.
8. http://wiki.dbpedia.org/services-resources/datasets/

data-set-39/downloads-39
9. Mapping-based properties in DBpedia represent statements about entities that are extracted from

Wikipedia Infoboxes.
10. https://developers.google.com/freebase/data
11. We exclude relations below this threshold since they are not suitable for learning and cannot be

included in the sampling process.

http://www.freebase.com
http://wiki.dbpedia.org/services-resources/datasets/data-set-39/downloads-39
http://wiki.dbpedia.org/services-resources/datasets/data-set-39/downloads-39
https://developers.google.com/freebase/data

90 CHAPTER 4. SOFYA

three KBs. Since in our datasets we have only owl:sameAs links between the pairs
DBpedia and YAGO, and DBpedia and Freebase, we infer the owl:sameAs links be-
tween YAGO and Freebase through the DBpedia links. That is, for two entities in YAGO
and Freebase we can infer the owl:sameAs link between them through the following
transitivity rule.

eY owl:sameAs eD ∧ eD owl:sameAs eF −→ eY owl:sameAs eF

Table 4.3 shows the number of owl:sameAs links between entities for the different KB
pairs.

KB YAGO – DBpedia YAGO – Freebase DBpedia – Freebase

#owl:sameAs 2,886,308 2,730,652 3,873,432

Table 4.3: Number of owl:sameAs links per pair of KBs.

4.5.2 Online Relation Alignment Setup: Sampling Strategies
One main efficiency aspect which allows us to carry the relation alignment process in

an online setting are the sampling strategies. We evaluate the efficiency and respectively
the effectiveness of our approach by computing features and generating relation alignment
candidates from a set of sampled entity instances. A detailed description of the sampling
strategies is provided in Section 4.4.

In order to measure the right amount of information we need from a source KB such
that our models are optimal in terms of performance and efficiency, we consider a varying
set of sample sizes, namely {50, 100, 200, 500, 1000}.

In our setting we have three sampling strategies, first–N, random, and stratified. In
the case of stratified, where we need to compute the different strata for a given relation rS

from KBS which relies on entity types that come from the domain of rS.
Here, the entity types will correspond to types in the DBpedia type taxonomy 12. We

take advantage of the fact that all sampled entities from the various KBs have equivalent
entities in DBpedia. We opt for the DBpedia taxonomy due to the fact that the types form
a hierarchy, contrary to type taxonomies from other KBs, where the type structure forms
a directed-acyclic-graph (DAG). This presents a pre-condition for the stratified sampling
where the strata must consist of disjoint sets of entities, while such constraint cannot be
enforced in DAGs where one cannot determine the highest depth in the type structure for
an entity.

Since we sample entities that are explicitly connected through owl:sameAs state-
ments, we can choose the type representation from any of the KBs by simply extracting
statements for relation rdf:type from a desired KB. It must be noted that in the case
of the KB pair 〈YAGO, F reebase〉 we extract the owl:sameAs links, by using the
DBpedia entities as proxy which has owl:sameAs links to both KBs.

12. http://mappings.dbpedia.org/server/ontology/classes/

http://mappings.dbpedia.org/server/ontology/classes/

4.5. EXPERIMENTAL SETUP 91

4.5.3 Ground-Truth Construction
We construct manually the ground-truth for the relation alignment process with the

help of experts. The ground-truth is constructed for each KB pair, thus resulting in a total
of 6 pairs. To guide the ground-truth construction process, for each relation pair 〈rS, rT 〉
we compute pca and cwa features in Section 4.3.2 on the full set of entities. Giving those
results as a bases to the experts is initialized the process of the ground-truth construction.
However, this by no means represent the single rule that is used for annotation, in many
cases, high pca and cwa scores have results on the relation alignment pair being irrelevant.
Therefore, we manually check based on the relation names, the entities associated with
such relation to come up with the judgments. In our ground-truth we keep only the pairs
for which rS ⇒ rT holds.

4.5.4 Evaluation Metrics
We evaluate our relation alignment model on two main aspects: (i) accuracy and (ii)

efficiency. In terms of accuracy, we compute standard evaluation metrics like precision,
recall and F1 score. While, for efficiency we measure the introduced overhead in the
query-execution process, which we measure in terms of time and network bandwidth us-
age. Below we describe in details the individual metrics.

– Precision – P: Is the ratio of correctly labeled relation alignments (that conform to
the labels in our ground-truth) over the total of relation pairs predicted as ‘correct’
by our model. More formally, precision is computed based on the formula:

P =
true positives

true positives+ false positives
(4.24)

– Recall – R: Is the ratio of the correctly labeled relation alignment by our classifier
over the total of possible correct alignments in our ground-truth. More formally
precision is computed based on the formula:

R=
true positives

true positives+ false negatives
(4.25)

– F1 Score – F1: It is the harmonic mean of precision and recall scores. Given by
the formula:

F1= 2×
P × R

P + R
(4.26)

– Time – t: Here we measure the amount of time taken to sample for SrS
.

– Network Bandwidth Usage – b: It is measured as the total number of bytes it
requires for the different sample sizes in SrS

.

92 CHAPTER 4. SOFYA

4.5.5 Learning Framework: Relation Alignment Models
Here we describe the learning framework for our relation alignment models. In Sec-

tion 4.3.3 we described two supervised machine learning models, namely, Voted Percep-
tron (VP) and Logistic Regression (LR).

We are interested on evaluating and assessing the following aspects:
1. Which supervised model yields the optimal performance (in terms of P/R/F1) for

the relation alignment problem?
2. What are the most influential feature groups for the relation alignment models?
3. Which is the best performing sampling strategy?
4. How much training data do we need in order for our alignment models to converge?
5. How does a relation alignment model generalize across different KB pairs?
In terms of (1) we assess the performance of the VP and LR for all KB pairs in our

experimental setup. We evaluate the models on the full set of relation alignment candi-
dates and consider a 5-fold cross-validation [57] 13. This is done in order to assess the real
performance of the models and determine the optimal model (either VP or LR).

For (2), we ran the feature selection algorithm as described in Section 4.3.3, and
choose the corresponding top–k that provide optimal performance for the trained models,
and the choice of top–k ranked features for the different KB pairs in our experimental
evaluation.

In the case of (3) and (4), we show which sampling strategy has the best performance,
and analyze the amount of training instances (relation alignment pairs) required for the
models to converge. We analyse this aspect for the best model as addressed in (1).

Finally, in (5) we consider how well our models generalize across different KB pairs.
We consider if a model learned on a specific KB pair will perform well on other KB
pairs, hence, we analyze the implications of such aspect and the impact it has on the
performance of our relation alignment models.

4.5.6 Baselines
Our approach is evaluated and compared to two baseline approaches on the domain of

relation alignment using rule based techniques. The first one is a system called PARIS[102]
implementing cwa measure and the second one is a system called ROSA[46] implement-
ing pca measure.

We implemented independently pca and cwa and run the same experiments as to our
approach. In order to be fair with the methods we run the experiments with their best
configuration. We run an experiment to figure out which is the threshold where pca and
cwa perform the best. Figure 4.3 presents the average F1 while in Figure 4.4 is shown the
averaged precision and recall.

13. The k–fold cross–validation technique is done as following. The original set of results is randomly
partitioned into k (5 in our case) equal size sets (folds). One of the k folds is used as the validation data
to test the model and the remaining k-1 subsets are used to train the model. The cross-validation process
is repeated k times, and the results from the k iterations are averaged produce the final estimation of the
model.

4.6. RESULTS AND DISCUSSION 93

��

����

����

����

����

����

����

��� ��� ��� ��� ��� ��� ��� ��� ���

�
�

�
�
�
�
��

���������

����������������
����������������

�������������������������

�������������������������
��������������
��������������

Figure 4.3: The average F1 score of the baselines pca and cwa. In x–axis we show the
different threshold cut-offs (pca and cwa scores), which we use to determine whether a
relation alignment pair (if its above a predetermined threshold) is cor rect or incor rect.

����

����

����

����

����

����

����

����

��� ��� ��� ��� ��� ��� ��� ��� ���

�
��
�
��
��
�

���������

����������������
����������������

�������������������������

�������������������������
��������������
��������������

(a) avg. Precision

��

����

����

����

����

����

����

����

����

��� ��� ��� ��� ��� ��� ��� ��� ���

�
�
�
�
��

���������

����������������
����������������

�������������������������

�������������������������
��������������
��������������

(b) avg. Recall

Figure 4.4: The average precision and recall scores for the baselines pca and cwa. In
x–axis we show the different threshold cut-offs (pca and cwa scores), which we use to
determine whether a relation alignment pair (if its above a predetermined threshold) is
cor rect or incor rect.

4.6 Results and Discussion
In this section, we present the results of our experimental evaluation and discuss the

implications of the individual factors performance and efficiency factors we encode in our
online relation alignment model. Specifically, we address the main points we single out
in our learning framework in Section 4.5.5.

4.6.1 Relation Alignment Model Performance
Here we evaluate the different supervised machine learning models, respectively their

performance for the relation alignment problem. In more details, in this section, we ad-

94 CHAPTER 4. SOFYA

dress the following questions.

– Question–1: Which supervised model yields the best performance for the relation
alignment problem?

– Question–2: What are the most influential feature groups for the relation alignment
models?

Best Model: Question–1. In Section 4.3.3 we introduce two different linear supervised
models: voted perceptron (VP) and logisitic regression (LR). We train such models on the
feature set in Table 4.1.

Table 4.4 shows a comparison of the results we achieve for V P and LR. We train these
models on the full set of entity instances for all KB pairs under comparison. Furthermore,
we learn the models based on the complete set of features and assess their performance
with 5 fold cross-validation. The aim here is to single out the best performing model.

It is evident from Table 4.4 that the results computed based on the LR model are sig-
nificantly better when compared to V P for all KB pairs. The same holds when compared
against our baselines.

In Table 4.4 we show as well the results of our baselines pca and cwa presented in Sec-
tion 4.5.6. We apply these two measure are already used in ROSA [46] and PARIS [102]
systems for relation alignments, which are produced using the full set of entities. To
ensure a fair comparison, for both measures we use their best configuration, namely the
thresholds we extract for the averaged F1 score as shown in Figure 4.3. For pca we con-
sider the relation alignments with pca score above 0.3, whereas for cwa we consider the
relation alignments with cwa score above 0.1.

LR cwa 0.1 pca 0.3 VP

KBS KBT P R F1 P R F1 P R F1 P R F1

Y D 0.92 0.73 0.81 0.27 0.48 0.35 0.06 0.56 0.11 0.83 0.33 0.48
D Y 0.57 0.49 0.53 0.33 0.34 0.34 0.18 0.33 0.24 0.36 0.26 0.30
Y F 0.82 0.82 0.82 0.40 1.00 0.57 0.03 1.00 0.05 0.73 0.73 0.73
D F 0.69 0.38 0.49 0.31 0.65 0.42 0.05 0.85 0.09 0.05 0.03 0.04
F Y 0.69 0.74 0.71 0.73 0.60 0.66 0.61 0.86 0.71 0.56 0.44 0.49
F D 0.87 0.66 0.75 0.72 0.57 0.64 0.34 0.93 0.50 0.60 0.50 0.54

average 0.76 0.64 0.69 0.46 0.61 0.49 0.21 0.75 0.28 0.52 0.38 0.43

Table 4.4: Comparison of Logistic Regression (LR) and Voted Perceptron (VP) models
for the relation alignment problem. Comparison with the baselines cwa and pca on the
full dataset. a

a. Please note that we replaced the full names of the knowledge bases for spacing reasons. Y = YAGO,
D = DBpedia, and F = Freebase.

4.6. RESULTS AND DISCUSSION 95

Feature Selection: Question–2. One precaution we need to take into consideration is
over-fitting. It is evident that the higher the number of features our supervised models
will perform better on the training instances, however, this poses a risk of over-fitting if
the number of features is too high, and thus failing to generalize over unseen instances.
Hence, we consider a standard mechanism for supervised learning, namely feature selec-
tion in Section 4.3.3.

In this question we consider which features are most influential for the problem of
relation alignment. Namely, we consider the impact of individual features on the per-
formance of our models, and the performance of our models when we use the top–5
performing features. We take only top–5 features as this represents roughly 50% of the
computed features in Table 4.1.

In Table 4.5 we show the results similar to those in Table 4.4, however, by training the
supervised models on the top–5 features. We select the top features through the introduced
feature selection algorithm in Section 4.3.3. The algorithm relies on the information gain
each individual feature provides to the model on classifying correctly the relation pairs
〈rS, rT 〉, consequentially ranks them according to that score.

It is evident that by considering top–5 features for learning our models, the results are
highly similar. In terms of F1 score, we achieve the same results. The advantages from
such results are two-fold: (i) we reduce the complexity of our models, hence, generalizing
well on unseen relation pairs, and (ii) we do not lose in terms of performance.

LR VP

KBS KBT P R F1 P R F1

YAGO DBpedia 0.90 0.66 0.76 0.87 0.46 0.60
DBpedia YAGO 0.56 0.45 0.50 0.3 0.34 0.32
YAGO Freebase 0.81 0.81 0.81 0.66 0.72 0.69
DBpedia Freebase 0.58 0.32 0.41 0.014 0.009 0.01
Freebase YAGO 0.70 0.59 0.64 0.69 0.68 0.68
Freebase DBpedia 0.79 0.55 0.65 0.50 0.366 0.42

average 0,72 0,56 0,63 0,50 0,43 0,45

Table 4.5: Comparison of Linear Regression (LR) and Voted Perceptron (VP) models for
the relation alignment problem learned with only the top–5 features selected through the
feature selection algorithm based on Information Gain. We evaluate the models using
5-fold cross-validation for all KB pairs.

Feature Ablation. An important aspect we consider in our experimental setup is the
impact of the different feature groups for the relation alignment models. We show the
impact of the individual features for the models trained based on the LR model. We
evaluate the models based on the 5 fold cross-validation approach, and by computing the
feature values based on the full set of entity instances for a relation rS.

96 CHAPTER 4. SOFYA

Figure 4.5 shows the feature ablation results for the different feature groups in Ta-
ble 4.1 for the relation alignment problem.

We note that, the highest impact is attributed to the GRS feature group. This follows
our intuition where we hypothesized that for a relation to be subsumed in a target relation,
one of the important factors is to be able to represent the entity instances, namely the
entity types for a given relation should be similar. Furthermore, the next assumption we
made was that ILP feature scores, depending on the KB pairs, sometimes are insufficient
(see Section 4.3.2), hence, the corresponding likelihood scores of the ILP measures can
provide additional information on predicting correctly the label of a relation pair.

In the next group, that of ILP features, we note that they have a significantly lower
performance as measured through our performance metrics. We acknowledge here that
some of the features are correlated (e.g. pca and p(cor rect|pca)), however, in the previ-
ous group the respective scores are contextualized in terms of likelihood measures for the
specific KB pairs.

Finally, we notice that some of the features like the lexical similarity may not provide
much additional gain in terms of performance. That is, due to the naming conventions and
names of the relations in the different KB pairs. However, this presents a general purpose
feature which will provide additional performance gain in cases where the KB pairs under
consideration will have some form of similarity in the naming convention of the relations.

In summary, we see that the combination of all the features yields the best perfor-
mance of our model on the full datasets, with the GRS feature group providing the most
contribution in terms of performance, whereas the remainder of the features contributes
to an improvement of up to 5%.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

P R F1

Feature	Ablation

ALL GRS ILP LEX

Figure 4.5: Feature ablation for the relation alignment model trained with logistic regres-
sion. The scores for precision/recall and F1 are averaged across the different KB pairs.
The results are shown for the different feature groups.

4.6. RESULTS AND DISCUSSION 97

4.6.2 Efficient Relation Alignment

One main challenge that we address in this Chapter deals with the efficiency of our ap-
proach. Efficiency aspects present one of the main drawbacks of related work in ontology
matching, given the scale and the large number of datasets.

In this section we answer the following questions that deal with the efficiency of our
approach. It is worth noting that the relation alignment models here correspond to those
learned through the LR approach and using the top–5 features.

– Question 3: Which is the best performing sampling strategy?

– Question 4: How much training data do we need in order for our alignment models
to converge?

The first precaution we take into account for the efficiency of our approach, is through
sampling of entity instances that have as a relation rS from our relation alignment pair
〈rS, rT 〉. We introduced three sampling strategies in Section 4.4.

Sampling Configurations: Question–3. Here we show which of the sampling strate-
gies achieves the best results for the relation alignment problem. Here we show the results
only for the best performing model trained based on LR model.

The features in this case are computed based on samples of entity instances (contrary
to the previous section where we compute the features based on the full set of entity
instances for rS). As parameters in Table 4.6 we vary the number of entity samples (for
{50,100, 500,1000}), and the strategies first–N, random and stratified (with different
configurations on how we construct the strata).

Through sampling we ensure that we require minimal access to the respective KBs for
which we want to align the relations. From Table 4.6 we see that the best configuration is
the stratified sampling strategy with strata constructed with entity types from the DBpedia
taxonomy up to level 3 14. Furthermore, the best results are achieved with a minimal
sample of entity instances, namely, 50 entity instances that are connected to rS.

In addition, we train and evaluate the models for the different sampling configurations.
Since at this point we are interested on only finding the best performing sampling strategy,
we vary the amount of training instances (5%, 10%, . . ., 50%) we use to learn our models,
with up to a maximum of 50% instances for training. Here the results are averaged across
the different KB pairs and for the varying percentage of instances used for training our
models.

We do this, in order to find the best configuration with the following parameters: (i)
sampling strategy, and (ii) entity samples.

Furthermore, it is interesting to note that we do not achieve significant improvement
with the increase of entity samples. With already 50 entity samples, the models for the
different sampling strategies seem to converge. However, we note an insignificant oscil-
lation of results across the different entity sample sizes.

14. Strata computed at level 3 represents entity types from DBpedia taxonomy with a depth of at most 3
from the root of the type taxonomy.

98 CHAPTER 4. SOFYA

Sampling 50 100 500 1000

P R F1 P R F1 P R F1 P R F1

firstN 0.77 0.61 0.67 0.78 0.59 0.66 0.80 0.54 0.63 0.73 0.51 0.59
random 0.78 0.62 0.68 0.82 0.55 0.65 0.77 0.45 0.55 0.77 0.50 0.59
str.lvl–2 0.72 0.58 0.62 0.81 0.54 0.63 0.76 0.56 0.63 0.77 0.54 0.62
str.lvl–3 0.81 0.59 0.67 0.78 0.59 0.65 0.76 0.49 0.59 0.75 0.53 0.62
str.lvl–4 0.74 0.53 0.60 0.76 0.52 0.60 0.77 0.55 0.62 0.74 0.53 0.59
str.lvl–5 0.75 0.51 0.60 0.76 0.55 0.63 0.82 0.53 0.63 0.77 0.49 0.57
str.lvl–6 0.72 0.52 0.58 0.72 0.55 0.62 0.82 0.59 0.66 0.80 0.59 0.67

Table 4.6: The performance of the relation model trained using the logistic regression
model for the different sampling strategies and entity sample instances. We average the
results across all KB pairs and for the varying amount of training data we use to train our
models, we limit here the training amount of information up to 50%. We select the best
configuration (marked in bold) from the above sampling strategies and sampled instances
taking into account the highest P and where the R score is reasonably high.

Model Convergence: Question–4. Here, we show the amount of training instances
required for the models to converge and achieve the best performance. Table 4.7 shows
the best relation alignment models, and the convergence of the models with the increasing
amount of training instances used for learning the models. We see that our best relation
alignment model based on stratified sampling strategy, achieves the best performance
with only 10% of training instances. In terms of precision, the best results are achieved
by using 30% of instances for training.

train % firstN-100 random-100 str.lvl-3-50

P R F1 P R F1 P R F1

5% 0.69 0.59 0.60 0.69 0.59 0.60 0.73 0.63 0.66
10% 0.77 0.60 0.64 0.77 0.60 0.64 0.81 0.62 0.70
20% 0.79 0.61 0.67 0.79 0.61 0.67 0.85 0.58 0.68
30% 0.83 0.55 0.66 0.83 0.55 0.66 0.85 0.59 0.69
40% 0.83 0.60 0.69 0.83 0.60 0.69 0.82 0.56 0.66
50% 0.80 0.62 0.69 0.80 0.62 0.69 0.78 0.56 0.64

Table 4.7: Comparison of the best relation alignment models under the different sampling
strategies with varying percentage of training instances from the full set of relation align-
ment candidates. The results are average across all KB pairs for comparison purposes.

Finally, from Table 4.7 we found out that the best model and configuration to use for
the relation alignment problem, is when we use the stratified sampling with 50 samples of
entity instances, and learning the LR model with 30% of instances for training (one could
opt for the highest F1 scores, hence, use only 10% for training).

4.6. RESULTS AND DISCUSSION 99

The corresponding results for the individual KB pairs are shown in Table 4.8. We see
that, we have significantly higher performance for most of the KB pairs when compared
to our baselines. For some cases like 〈YAGO, DBpedia〉, 〈F reebase, DBpedia〉, etc., we
have better performance scores for both precision and recall. In the case of baselines,
we note that as argued in Section 4.3, the models based on pca allow for too many false
positives, and due to its relaxed constraints regarding relation subsumption. In the case of
cwa the recall scores are worse than pca.

LR pca cwa
KBS KBT P R F1 P R F1 P R F1

DBpedia Freebase 0.79 0.33 0.47 0.10 0.67 0.18 0.31 0.5 0.40
DBpedia YAGO 0.87 0.70 0.77 0.30 0.72 0.43 0.70 0.66 0.68
Freebase DBpedia 0.93 0.53 0.68 0.27 0.79 0.41 0.65 0.65 0.65
Freebase YAGO 0.70 0.58 0.64 0.22 0.39 0.28 0.42 0.37 0.39
YAGO DBpedia 1.00 0.66 0.79 0.17 0.75 0.28 0.71 0.66 0.68
YAGO Freebase 0.83 0.77 0.80 0.11 0.78 0.20 0.55 0.59 0.57

Table 4.8: The results for the individual KB pairs computed based on the LR model for
stratified sampling (level–3 and with 50 sampled entity instances) when using 30% for
training and the rest for evaluating the performance of the models.

Noteworthy is the comparison of the average performance scores for the best perform-
ing model in Table 4.8 and the results we achieve in Table 4.4. In terms of F1 the results
are the same, and with better recall in the case of the models trained on the full data.
However, in terms of precision we note a difference of 6%, we believe such difference
might be an artifact of the followed evaluation strategies. Since in the first case we are
interested in finding the best supervised machine learning model, and thus are not inter-
ested in optimizing for efficiency, we considered the k-fold cross validation. Contrary to
the second case where our aim is efficiency (in terms of training data, sampling strategy
etc.) and effectiveness of our approaches, hence, we evaluate the models by splitting them
into train/test instances.

4.6.3 Generalizing Relation Alignment Models

In the previous sections, we presented results based on models that were computed
for specific KB pairs. It is evident from the datasets descriptions in Section 4.5.1 that
they are inherently different, in terms of the number of relations and entities they contain.
Here we answer the question on how well a model trained on a specific KB pair will
generalize on other KB pairs. That is, if we train on 〈KBS, KBT 〉 for a specific number
of training instances, how well do the models perform on assessing the relevance of the
relation alignment pairs for other KB pairs.

– Question–5. How do relation alignment models generalize across KB pairs?

100 CHAPTER 4. SOFYA

Model Generalization: Question–5. Table 4.9 shows the results we achieve when
training on the KB pairs, and evaluating on the remaining KB pairs (inclusive of the
one KB pair we use for training). We use a fairly small amount of relation alignment pair
instances, namely from 50 up to 200 for training. The results show the average precision
across all KB pairs used for the evaluation.

The results show that our model generalize well and do not overfit if trained on a
specific KB pair. Furthermore, we see that the drop in terms of performance is not sig-
nificant. That is, if we take the KB pair 〈DBpedia, F reebase〉, with a small amount of
training instances we perform reasonably well across the remaining KB pairs.

In conclusion, this shows that the decision we undertake towards constructing the rela-
tion alignment models, such as the choice of features, the feature selection, and lastly the
efficiency approaches through sampling, we can compute with high accuracy the relation
subsumption across KBs.

KBS KBT #Instances Avg(P)

50 100 200

DBpedia Freebase 0.86 0.82 0.96 0.88
DBpedia YAGO 0.77 0.85 0.80 0.81
Freebase DBpedia 0.25 0.29 0.83 0.46
Freebase YAGO 0.25 0.85 0.79 0.63
YAGO DBpedia 0.73 0.67 0.79 0.73
YAGO Freebase 0.70 0.75 0.75 0.73

Table 4.9: The models correspond to the best configuration (stratified–level-3 with 50
sampled entity instances) which we train on one KB pair, 〈KBS, KBT 〉, with a specific
number of training instances, and evaluate on the remaining KB pairs. The results show
the Avg(P) score across all KB pairs, and emphasize how well these models generalize
across KB pairs.

It is interesting to note that the models that are trained with Freebase as the source
knowledge base fail to generalize over other KB pairs. We hypothesize that this poor
generalization might be attributed to the fact that the nature of relations in Freebase is
significantly different from other KBs. In Freebase, relations are sparse, meaning they
have a low number of statements and thus the computed features scores will differ when
computed for other pairs. Hence, the models trained on those scores will not perform well
in other pairs. However, for models that are trained on other KB pairs like DBpedia or
YAGO, they generalize well across all KB pairs.

4.6.4 Coverage
Table 4.10 shows the portion of ree relations from a source KBS that are subsumed in a

target relation in KBT . We denote this portion as the coverage of ree relations from KBS in
KBT . We measure the coverage based on the constructed ground-truth (see Section 4.5.3),
which consists of relations that are aligned by our expert annotators (aligned relations

4.6. RESULTS AND DISCUSSION 101

from a source KBS to a target knowledge base KBT). The coverage is the ratio of the
number of distinct aligned relations rS over the total distinct number of relations in KBS.
The total number of relations in KBS, and the coverage of relations from KBS into KBT is
shown in the third and fourth column in Table 4.10.

The main aim of the coverage measure is to show the impact on aligning knowledge
bases, respectively their ree relations. It is evident from Table 4.10 that the coverage
varies across the different KB pairs. We attribute such variation in coverage mainly to
two factors: (i) quality of a KB, and (ii) the granularity of relations in a KB.

For (i), we notice that in the case of Freebase the number of relations is significantly
higher in comparison to YAGO and DBpedia. The reason for this is that Freebase is a
collaboratively created KB, including the relations and the corresponding facts for such
relations. This leads to a large number of relations, where different relations describe
similar concepts. This has several implications, where some of the relations will have a
low number of facts associated and in some cases these facts are erroneous, and therefore,
have low overlapping facts with other KBs.

In the case of (ii), we notice that depending on the target KB, the coverage will vary.
For instance, if our target knowledge base is Freebase, we see that the coverage is low.
This is due to the fact that, the relations in Freebase are fine grained and as such do
not subsume more coarse grained relations coming from YAGO or DBpedia. It becomes
clearer when DBpedia is the target KB, in which case the coverage is significantly higher.

Finally, in the fifth column in Table 4.10 we show the coverage of our approach on
aligning subsumed relations for a given KB pair. The coverage is measured relative to the
coverage of aligned relations based on our ground-truth. We note that in majority of the
cases we perform reasonably well with an average coverage of 0.78. This is inline with
the recall scores we achieve in Table 4.4. However, in the case of recall we measured w.r.t
all possible target relations for a given source relation, whereas in the case of coverage, if
a source relation is aligned to at least one target relations then we mark it as covered in
the target knowledge base KBT .

KBS KBT ree in KBS ree - aligned between KBs ree - aligned by SOFYA

YAGO DBpedia 36 0.75 1
YAGO Freebase 36 0.33 1
DBpedia YAGO 563 0.23 0.78
DBpedia Freebase 563 0.19 0.79
Freebase YAGO 1666 0.08 0.5
Freebase DBpedia 1666 0.44 0.61

Table 4.10: Coverage of the relations for each KB pair.

4.6.5 Query-Execution Overhead
Here, we evaluate one important aspect of our relation alignment model, namely, the

efficiency aspects of our approach. These represent important features considering that

102 CHAPTER 4. SOFYA

0

500

1000

1500

2000

2500

3000

3500

50 100 500 1000

m
ill
ise

co
nd
s

Sample	size

Time

firstN

random

strat-2

strat-3

strat-4

strat-5

strat-6

strat-7

Figure 4.6: Time statistics in milliseconds for the different sampling strategies of Sec-
tion 4.4, for different sample sizes. Averaged through all the KB pairs.

our relation alignment is setup in an online setting. We evaluate for two main efficiency
metrics as introduced in our evaluation metrics in Section 4.5.4, we measure the overhead
in terms of time and network bandwidth usage.

In our approach we introduce an overhead on the query-execution (taking into account
that our relation alignment is performed in an online setting), namely, in the entity instance
sampling process and the amount of extra bandwidth we use by transferring the entity
samples through the network.

Query-Execution: Time overhead. With respect to time efficiency factor, Figure 4.6
shows the amount of time (in milliseconds) it takes to perform the different sampling
strategies, and for the varying amount of entity samples. It is evident that the most efficient
sampling strategy is first–N taking the least amount of time. This is intuitive as we select
the first matching statements for relation rS. In contrast to the other approaches, we see a
significant increase on the amount of time it takes to produce the desired set of samples.
For instance, the stratified sampling strategy requires the most amount of time, with a
maximum of 3 seconds. This in comparison to other sampling strategies is significantly
higher, however, considering response time of SPARQL endpoints, such an overhead does
not represent a huge overhead on their response time.

Query-Execution: Network bandwidth overhead. In Figure 4.7 we present the sec-
ond efficiency factor, namely the amount of overhead introduced in terms of bandwidth.
Similarly as for time overhead, here too, we compare all sampling strategies. Understand-
ably the amount of overhead in terms of bandwidth is uniformly distributed across the
different sampling strategies. That is, considering that we sample for the same amount
of entity instances. The highest amount of bandwidth overhead is introduced when we

4.7. CONCLUSION 103

0

20000

40000

60000

80000

100000

120000

140000

160000

50 100 500 1000

By
te
s

Sample	Size

Bandwidth	Usage

firstN

random

strat-2

strat-3

strat-4

strat-5

strat-6

strat-7

Figure 4.7: Bandwidth usage statistics in bytes for the different sampling strategies of
Section 4.4, for different sample sizes. Averaged through all the KB pairs.

sample for 1000 entity instances for rS, with a maximum 140 kb.
However, in the performance evaluation of our relation alignment model in Table 4.7,

we found that the best results are achieved with entity sample instances ranging between
50 and 100, for stratified and first–N, random, respectively. In terms of bandwidth over-
head, this results into a maximum of 20 kb, which represents a reasonably low overhead
in terms of bandwidth.

4.7 Conclusion

In this chapter, we presented a relation alignment approach for knowledge bases. For
a given source relation rS from a source knowledge base KBS, we find candidate relations
rT in a target knowledge base KBT , and assess whether for 〈rS, rT 〉 it holds that rS is
subsumed by the target relation rT , that is, rS ⇒ rT .

For the relation alignment process we employ supervised machine learning models,
namely Voted Perceptron and Logistic Regression, which we learn on a set of features
that make use ILP measures, namely pca and cwa for the pair 〈rS, rT 〉. In addition, we
consider general relation statistics that exploit the landscape of the relations in terms of
entity type distributions and the corresponding relation name similarity between a relation
pair. Finally, given that for different KB pairs under consideration, the feature values
may vary, hence, we additionally consider the likelihood of specific ILP feature values
predicting the relevance of relation pair alignment.

Furthermore, we address one of the main drawbacks of existing work in ontology
matching, namely the efficiency of such approaches. We perform the relation alignment

104 CHAPTER 4. SOFYA

process in an online setting, where for rS we sample a minimal set of entity instances from
KBS which we use to discover candidate relations for assignment in KBT . For this purpose
we employ three different sampling strategies, namely, first–N, random and stratified. The
sampling process is geared towards improving the coverage of target relations in KBT

while maintaining the efficiency of our alignment models.
Finally, we perform an extensive evaluation on three real-world knowledge bases, DB-

pedia, YAGO, and Freebase. We test the following factors in our experimental evaluation.

1. Performance of Supervised Models. We find out that the best performance is
achieved through the logistic regression, which proves to be better in our case due
to its optimal weighting scheme of the features.

2. Feature Impact. We find out that the highest impact is achieved through the GRS
feature group.

3. Optimal Sampling Strategies. In terms of sampling, we find out that stratified
sampling with strata constructed at the depth level 3 in the DBpedia type taxonomy
provides the optimal coverage and performance.

4. Convergence of Relation Alignment Models. The models which we train with the
best configuration (logistic regression with stratified sampling) we find out that they
converge with as nearly as 10% used for training from the relation pair candidates.

5. Generalization of Relation Alignment Models. We assess how well our models
generalize across the KB pairs. That is, we train a model by taking only 50 or 100
relation pairs as training instances from a specific KB pair and evaluate on all the
other KB pairs.

6. Query-Execution Overhead. The last factor we assess is the introduced overhead
in terms of query-execution for our relation alignment model. The amount of time
required to perform the sampling is highest for stratified sampling, while the band-
width overhead is uniform across the different sampling strategies. We conclude
that at worst we introduce 3 seconds, which for the existing Linked Open Data
infrastructure does not present a high delay in query execution.

Chapter 5

Conclusion and Perspectives

In this thesis, we identified several challenges that deal with the integration of Web
services and linked datasets. The challenges we address deal with the mapping of output
from Web service operation calls into an RDF global schema, in our case coming from
real-world knowledge bases like YAGO or DBpedia. Next, we address the problem of
ontological relation alignment in linked datasets. We performed such process in an online
setting, addressing some of the shortcoming of related work that deal with schema align-
ment at class level, namely, the full access to datasets, and relation alignment (a problem
largely untouched so far by related work).

The outcomes and contributions of the approaches proposed in DORIS and SOFYA are
the following. Through the mapping of output to global schemas, we allow for seamless
integration of services into mashups, where the output is interpreted uniformly through
the schema. Whereas, with the alignment of relations, we allow users access to multiple
datasets for a given relation through query rewriting, hence, allowing for a more complete
view of existing information from the large number of linked datasets.

Finally, the approaches in DORIS and SOFYA, leads towards a model for uniformly
accessing and integrating data coming from different datasets with heterogeneous struc-
tures, i.e. RDF datasets or Web service APIs.

In the following, we summarize the contributions in the individual chapters and then
discuss about future lines of work.

5.1 Thesis Summary
Mapping of Web service output into a global RDF schema. We presented DORIS,
a method that automatically generates a mapping of REST Web service output into the
terms of a given global schema, with the following contributions:

– An algorithm that formally describes the output of a given Web service in terms of
a global schema, as a view with binding patterns over that schema.

– Exploit instances from real-world knowledge bases to obtain output from a specific
operation from a Web service. Finally, exploit the intersection between instances
from a KB and the output from an operation call for the mapping process.

105

106 CHAPTER 5. CONCLUSION AND PERSPECTIVES

– Transformation functions as XSLT scripts, which transform the output of a Web
service in terms of a global schema.

– Approaches to discover Input/Output dependencies between Web services within
the same API, particularly useful for Web services that use identifiers for input.

– Extensive experimental evaluation on real-world Web services from four different
domains and on three real-world RDF knowledge bases (DBpedia, Yago and BNF).

Online Relation Alignment for Linked Datasets. We presented SOFYA, an ontolog-
ical relation alignment approach for knowledge bases, for which we make the following
contributions:

– An instance-base relation alignment approach that discovers subsumpsion relation-
ships for a relation rS from a source knowledge base to a relation rT in a target
knowledge base.

– Supervised machine learning models which combine features that exploit associ-
ation rule mining measures, general statistics about the relation pair, and lexical
similarity of relation names, to label as either correct or incorrect the subsumption
alignment between a relation pair 〈rS, rT 〉.

– An efficient relation alignment approach, which uses a small sample of the data to
compute subsumption alignments between relations.

– Extensive experimental evaluation on three real-world RDF knowledge bases (DB-
pedia, YAGO and Freebase).

5.2 Future Work
In this section, we outline possible avenues for future work. We start by giving short-

term plans for future works and continue with more long-term plans.

Automatic discovery of the input type in DORIS. In the current implementation of
our approach DORIS, we assume that the type of the input of a Web service is given.
Especially, in the case when we first deal with an API we did not align before in order to
apply the approach for discovering I/O dependencies.

The plan for future work is to provide an automatic or semi-automatic way to discover
the input type of Web services. A possible direction is to use knowledge bases and con-
tinuously probe the Web service with entities from different classes until we find the one
that leads to meaningful call results.

Extend the experimental evaluation in DORIS. To this level, we evaluated our DORIS
system using Web services that expect only one value as input. As future work we plan to
extend the evaluation of our system with Web services that use more than one input value.

5.2. FUTURE WORK 107

Entity-literal relations. For the moment the approach in SOFYA considers only entity-
entity relations (ree) between knowledge bases. As future work we aim at extending it
further and consider entity-literal relations (rel). This adds an extra challenge since in the
rel relations the owl:sameAs relation holds only for the subject entities, since objects
are literals. A possible direction to overcome such an obstacle is to apply string similarity
techniques and compare the literals between the relations.

Additional Features One of the task that we would like to investigate more is what
other possible features (matchers) could be used to improve the already sufficiently well-
performing relation alignment models. As for the already existing features we already
mentioned in Section 4.3.2, that a future direction is to further enrich lexical similarity
features with external dictionaries or thesaurus to match the relation names.

Relation alignment for complex relations. At this stage of our work, we compute
1 − 1 relation submsumption alignments. That is, we consider one relation from the
source knowledge base and we search for the relation in which it is subsumed in the target
knowledge base. For future work, we aim at extending our approach in order to be able
handle subsumption relationships between compositions of m− n relations. For instance,
subsumption alignments with the composition of two relations may take the following
form:

rS1(x , y)∧ rS2(y, z)⇒ rT (x , z)

rS(x , z)⇒ rT1(x , y)∧ rT2(y, z)

Use relation alignment for query rewriting. Another future perspective is to be able
to compute at query time subsumptions of type: rS⇐ rT . In this way for a given SPARQL
conjunctive query QS over a given KBS, and another KBT , we will be able to find a rewrit-
ing QT of QS over KBT at query time. In this rewriting, each atom relation of QS is
rewritten in a atom relation in QT .

108 CHAPTER 5. CONCLUSION AND PERSPECTIVES

Bibliography

[1] Datasets by topical domain. http://linkeddatacatalog.dws.
informatik.uni-mannheim.de/state/.

[2] https://developers.google.com/freebase/. https://developers.
google.com/freebase/.

[3] The linked open data cloud. http://lod-cloud.net.
[4] Wikidata a collaboratively edited knowledge base. https://www.

wikidata.org/wiki/.
[5] Wordnet lexical database for the english language. http://wordnetweb.

princeton.edu.
[6] Alexa. http://www.alexa.com/topsites, 2016.
[7] Internet users in the world. http://www.internetlivestats.com/

internet-users/, 2016.
[8] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,

1995.
[9] E. Adar, J. Teevan, S. T. Dumais, and J. L. Elsas. The web changes everything:

understanding the dynamics of web content. In R. A. Baeza-Yates, P. Boldi, B. A.
Ribeiro-Neto, and B. B. Cambazoglu, editors, Proceedings of the Second Interna-
tional Conference on Web Search and Web Data Mining, WSDM 2009, Barcelona,
Spain, February 9-11, 2009, pages 282–291. ACM, 2009.

[10] R. Alarcón, R. Saffie, N. Bravo, and J. Cabello. REST web service description
for graph-based service discovery. In P. Cimiano, F. Frasincar, G. Houben, and
D. Schwabe, editors, Engineering the Web in the Big Data Era - 15th Interna-
tional Conference, ICWE 2015, Rotterdam, The Netherlands, June 23-26, 2015,
Proceedings, volume 9114 of Lecture Notes in Computer Science, pages 461–478.
Springer, 2015.

[11] S. Albagli, R. Ben-Eliyahu-Zohary, and S. E. Shimony. Markov network based
ontology matching. J. Comput. Syst. Sci., 78(1):105–118, 2012.

[12] P. M. G. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. T.
Snodgrass, editors. VLDB 2001, Proceedings of 27th International Conference on
Very Large Data Bases, September 11-14, 2001, Roma, Italy. Morgan Kaufmann,
2001.

[13] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G. Ives. DBpedia:
A Nucleus for a Web of Open Data. In ISWC, 2007.

109

http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
https://developers.google.com/freebase/
https://developers.google.com/freebase/
http://lod-cloud.net
https://www.wikidata.org/wiki/
https://www.wikidata.org/wiki/
http://wordnetweb.princeton.edu
http://wordnetweb.princeton.edu
http://www.alexa.com/topsites
http://www.internetlivestats.com/internet-users/
http://www.internetlivestats.com/internet-users/

110 BIBLIOGRAPHY

[14] D. Aum"uller, H.-H. Do, S. Massmann, and E. Rahm. Schema and ontology match-
ing with COMA++. In Proc. ACM SIGMOD Conference, 2005.

[15] V. Bárány, M. Benedikt, and P. Bourhis. Access patterns and integrity constraints
revisited. In W. Tan, G. Guerrini, B. Catania, and A. Gounaris, editors, Joint
2013 EDBT/ICDT Conferences, ICDT ’13 Proceedings, Genoa, Italy, March 18-
22, 2013, pages 213–224. ACM, 2013.

[16] M. Benedikt, B. ten Cate, and E. Tsamoura. Generating low-cost plans from proofs.
In R. Hull and M. Grohe, editors, Proceedings of the 33rd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS’14, Snowbird, UT,
USA, June 22-27, 2014, pages 200–211. ACM, 2014.

[17] T. Berners-Lee, J. Hendler, O. Lassila, et al. The semantic web. Scientific american,
284(5):28–37, 2001.

[18] P. A. Bernstein, J. Madhavan, and E. Rahm. Generic schema matching, ten years
later. PVLDB, 4(11):695–701, 2011.

[19] C. M. Bishop. Pattern recognition and machine learning, volume 1. springer,
2006.

[20] C. Bizer, T. Heath, and T. Berners-Lee. Linked data-the story so far. Semantic
Services, Interoperability and Web Applications: Emerging Concepts, pages 205–
227, 2009.

[21] R. Blanco, B. B. Cambazoglu, P. Mika, and N. Torzec. Entity recommendations in
web search. In H. Alani, L. Kagal, A. Fokoue, P. T. Groth, C. Biemann, J. X. Par-
reira, L. Aroyo, N. F. Noy, C. Welty, and K. Janowicz, editors, The Semantic Web
- ISWC 2013 - 12th International Semantic Web Conference, Sydney, NSW, Aus-
tralia, October 21-25, 2013, Proceedings, Part II, volume 8219 of Lecture Notes
in Computer Science, pages 33–48. Springer, 2013.

[22] A. Bordes and E. Gabrilovich. Constructing and mining web-scale knowledge
graphs: KDD 2014 tutorial. In Macskassy et al. [72], page 1967.

[23] A. Calì, G. Gottlob, and T. Lukasiewicz. Datalog±: a unified approach to ontolo-
gies and integrity constraints. In Database Theory - ICDT 2009, 12th International
Conference, St. Petersburg, Russia, March 23-25, 2009, Proceedings, 2009.

[24] J. Cardoso. Discovering semantic web services with and without a common ontol-
ogy commitment. In SCW, pages 183–190. IEEE Computer Society, 2006.

[25] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr., and T. M. Mitchell. To-
ward an architecture for never-ending language learning. In M. Fox and D. Poole,
editors, Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAI Press, 2010.

[26] S. Castano, V. D. Antonellis, and S. D. C. di Vimercati. Global viewing of hetero-
geneous data sources. IEEE Trans. Knowl. Data Eng., 13(2):277–297, 2001.

[27] V. Christophides, V. Efthymiou, and K. Stefanidis. Entity Resolution in the Web of
Data. Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan
& Claypool Publishers, 2015.

BIBLIOGRAPHY 111

[28] W. G. Cochran. Sampling Techniques. John Wiley, 1953.

[29] I. F. Cruz, H. Xiao, and F. Hsu. Peer-to-peer semantic integration of xml and rdf
data sources. In G. Moro, S. Bergamaschi, and K. Aberer, editors, AP2PC, volume
3601 of Lecture Notes in Computer Science, pages 108–119. Springer, 2004.

[30] M. d’Aquin, A. Adamou, and S. Dietze. Assessing the educational linked data land-
scape. In Web Science 2013 (co-located with ECRC), WebSci ’13, Paris, France,
May 2-4, 2013, pages 43–46, 2013.

[31] L. Dehaspe and H. Toivonen. Discovery of frequent datalog patterns. Data Mining
and Knowledge Discovery, 3(1):7–36, 1999.

[32] C. Delobel, C. Reynaud, M. Rousset, J. Sirot, and D. Vodislav. Semantic integration
in xyleme: a uniform tree-based approach. Data Knowl. Eng., 44(3):267–298,
2003.

[33] N. Derouiche, B. Cautis, and T. Abdessalem. Automatic extraction of structured
web data with domain knowledge. In A. Kementsietsidis and M. A. V. Salles,
editors, IEEE 28th International Conference on Data Engineering (ICDE 2012),
Washington, DC, USA (Arlington, Virginia), 1-5 April, 2012, pages 726–737. IEEE
Computer Society, 2012.

[34] H. Do and E. Rahm. COMA - a system for flexible combination of schema match-
ing approaches. In Proceedings of the 28th VLDB Conference, Hong Kong, China,
2002.

[35] A. Doan, P. M. Domingos, and A. Y. Halevy. Reconciling schemas of disparate data
sources: A machine-learning approach. In S. Mehrotra and T. K. Sellis, editors,
Proceedings of the 2001 ACM SIGMOD international conference on Management
of data, Santa Barbara, CA, USA, May 21-24, 2001, pages 509–520. ACM, 2001.

[36] A. Doan, P. M. Domingos, and A. Y. Levy. Learning source description for data
integration. In WebDB (Informal Proceedings), pages 81–86, 2000.

[37] A. Doan, J. Madhavan, P. M. Domingos, and A. Y. Halevy. Ontology match-
ing: A machine learning approach. In S. Staab and R. Studer, editors, Handbook
on Ontologies, International Handbooks on Information Systems, pages 385–404.
Springer, 2004.

[38] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann,
S. Sun, and W. Zhang. Knowledge vault: a web-scale approach to probabilistic
knowledge fusion. In Macskassy et al. [72], pages 601–610.

[39] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann,
S. Sun, and W. Zhang. Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In Proceedings of the 20th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 601–610. ACM, 2014.

[40] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang. Similarity search for
web services, 2004.

[41] A. DuVander. 7,000 apis: Twice as many as this time last
year. http://www.programmableweb.com/news/

http://www.programmableweb.com/news/7000-apis-twice-many-time-last-year/2012/08/23
http://www.programmableweb.com/news/7000-apis-twice-many-time-last-year/2012/08/23

112 BIBLIOGRAPHY

7000-apis-twice-many-time-last-year/2012/08/23,
2012.

[42] D. Fetterly, M. Manasse, M. Najork, and J. L. Wiener. A large-scale study of the
evolution of web pages. In Hencsey et al. [53], pages 669–678.

[43] Y. Freund and R. E. Shapire. Large margin classification using the perceptron
algorithm. Machine Learning, 37(3):277–296, 1999.

[44] T. Furche, G. Gottlob, G. Grasso, X. Guo, G. Orsi, C. Schallhart, and C. Wang.
DIADEM: thousands of websites to a single database. PVLDB, 7(14):1845–1856,
2014.

[45] L. Galárraga, G. Heitz, K. Murphy, and F. M. Suchanek. Canonicalizing open
knowledge bases. In J. Li, X. S. Wang, M. N. Garofalakis, I. Soboroff, T. Suel,
and M. Wang, editors, Proceedings of the 23rd ACM International Conference on
Conference on Information and Knowledge Management, CIKM 2014, Shanghai,
China, November 3-7, 2014, pages 1679–1688. ACM, 2014.

[46] L. A. Galárraga, N. Preda, and F. M. Suchanek. Mining rules to align knowl-
edge bases. In F. M. Suchanek, S. Riedel, S. Singh, and P. P. Talukdar, editors,
AKBC@CIKM, pages 43–48. ACM, 2013.

[47] L. A. Galárraga, C. Teflioudi, K. Hose, and F. M. Suchanek. Amie: association rule
mining under incomplete evidence in ontological knowledge bases. In D. Schwabe,
V. A. F. Almeida, H. Glaser, R. A. Baeza-Yates, and S. B. Moon, editors, WWW,
pages 413–422. International World Wide Web Conferences Steering Committee /
ACM, 2013.

[48] R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and Opti-
mization in Semistructured Databases. In VLDB, pages 436–445, Athens, Greece,
1997.

[49] A. Halevy. Answering queries using views - a survey. The VLDB Journal,
10(4):270–294, 2001.

[50] A. Y. Halevy. Answering queries using views: A survey. VLDB J., 10(4):270–294,
2001.

[51] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The
weka data mining software: an update. ACM SIGKDD explorations newsletter,
11(1):10–18, 2009.

[52] B. He and K. C. Chang. Statistical schema matching across web query interfaces.
In A. Y. Halevy, Z. G. Ives, and A. Doan, editors, Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, San Diego, Califor-
nia, USA, June 9-12, 2003, pages 217–228. ACM, 2003.

[53] G. Hencsey, B. White, Y. R. Chen, L. Kovács, and S. Lawrence, editors. Pro-
ceedings of the Twelfth International World Wide Web Conference, WWW 2003,
Budapest, Hungary, May 20-24, 2003. ACM, 2003.

[54] F. Janssen, F. Fallahi, J. Noessner, and H. Paulheim. Towards rule learning
approaches to instance-based ontology matching. In J. Völker, H. Paulheim,

http://www.programmableweb.com/news/7000-apis-twice-many-time-last-year/2012/08/23
http://www.programmableweb.com/news/7000-apis-twice-many-time-last-year/2012/08/23
http://www.programmableweb.com/news/7000-apis-twice-many-time-last-year/2012/08/23

BIBLIOGRAPHY 113

J. Lehmann, and M. Niepert, editors, Proceedings of the First International Work-
shop on Knowledge Discovery and Data Mining Meets Linked Open Data, Herak-
lion, Greece, May 27, 2012, volume 868 of CEUR Workshop Proceedings, pages
13–18. CEUR-WS.org, 2012.

[55] T. Kirsten, A. Thor, and E. Rahm. Instance-based matching of large life science
ontologies. In DILS Workshop, 2007.

[56] M. Klusch, B. Fries, and K. P. Sycara. OWLS-MX: A hybrid semantic web service
matchmaker for OWL-S services. J. Web Sem., 7(2):121–133, 2009.

[57] R. Kohavi. A Study of Cross-Validation and Bootstrap for Accuracy Estimation
and Model Selection. In IJCAI, pages 1137–1145, 1995.

[58] J. Kopecký, K. Gomadam, and T. Vitvar. hrests: An HTML microformat for de-
scribing restful web services. In 2008 IEEE / WIC / ACM International Conference
on Web Intelligence, WI 2008, 9-12 December 2008, Sydney, NSW, Australia, Main
Conference Proceedings, pages 619–625. IEEE Computer Society, 2008.

[59] M. Koutraki, N. Preda, and D. Vodislav. Sofya: Semantic on-the-fly relation align-
ment. In E. Pitoura, S. Maabout, G. Koutrika, A. Marian, L. Tanca, I. Manolescu,
and K. Stefanidis, editors, EDBT, pages 690–691. OpenProceedings.org, 2016.

[60] M. Koutraki, D. Vodislav, and N. Preda. Deriving intensional descriptions for web
services. In J. Bailey, A. Moffat, C. C. Aggarwal, M. de Rijke, R. Kumar, V. Mur-
dock, T. K. Sellis, and J. X. Yu, editors, CIKM, pages 971–980. ACM, 2015.

[61] M. Koutraki, D. Vodislav, and N. Preda. DORIS: Discovering Ontological Rela-
tions in Services. In BDA’15 - Journées de Bases de Données Avancées, Ile de
Porquerolles, France, 2015.

[62] M. Koutraki, D. Vodislav, and N. Preda. Doris: Discovering ontological relations
in services. In S. Villata, J. Z. Pan, and M. Dragoni, editors, International Semantic
Web Conference (Posters & Demos), volume 1486, 2015.

[63] M. Koutraki, D. Vodislav, and N. Preda. Mapping Web Services to Knowledge
Bases. In BDA’15 - Journées de Bases de Données Avancées, Ile de Porquerolles,
France, 2015.

[64] R. Krummenacher, B. Norton, and A. Marte. Towards linked open services and
processes. In A. Berre, A. Gómez-Pérez, K. Tutschku, and D. Fensel, editors,
Future Internet - FIS 2010 - Third Future Internet Symposium, Berlin, Germany,
September 20-22, 2010. Proceedings, volume 6369 of Lecture Notes in Computer
Science, pages 68–77. Springer, 2010.

[65] J. Lafferty. Conditional random fields: Probabilistic models for segmenting and
labeling sequence data. pages 282–289. Morgan Kaufmann, 2001.

[66] V. Levenshtein. Binary Codes Capable of Correcting Deletions and Insertions and
Reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[67] L. Li and I. Horrocks. A software framework for matchmaking based on semantic
web technology. In Proceedings of the World-Wide Web conference, 2003.

114 BIBLIOGRAPHY

[68] W. Li and C. Clifton. Semantic integration in heterogeneous databases using neural
networks. In J. B. Bocca, M. Jarke, and C. Zaniolo, editors, VLDB’94, Proceedings
of 20th International Conference on Very Large Data Bases, September 12-15,
1994, Santiago de Chile, Chile, pages 1–12. Morgan Kaufmann, 1994.

[69] W. Li and C. Clifton. SEMINT: A tool for identifying attribute correspondences in
heterogeneous databases using neural networks. Data Knowl. Eng., 33(1):49–84,
2000.

[70] W. Li, C. Clifton, and S. Liu. Database integration using neural networks: Imple-
mentation and experiences. Knowl. Inf. Syst., 2(1):73–96, 2000.

[71] G. Limaye, S. Sarawagi, and S. Chakrabarti. Annotating and searching web tables
using entities, types and relationships. PVLDB, 3(1):1338–1347, 2010.

[72] S. A. Macskassy, C. Perlich, J. Leskovec, W. Wang, and R. Ghani, editors. The
20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014. ACM, 2014.

[73] J. Madhavan, P. A. Bernstein, A. Doan, and A. Y. Halevy. Corpus-based schema
matching. In K. Aberer, M. J. Franklin, and S. Nishio, editors, Proceedings of the
21st International Conference on Data Engineering, ICDE 2005, 5-8 April 2005,
Tokyo, Japan, pages 57–68. IEEE Computer Society, 2005.

[74] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with cupid.
In Apers et al. [12], pages 49–58.

[75] R. J. Miller, L. M. Haas, and M. A. Hernández. Schema mapping as query dis-
covery. In A. E. Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel,
G. Schlageter, and K. Whang, editors, VLDB 2000, Proceedings of 26th Inter-
national Conference on Very Large Data Bases, September 10-14, 2000, Cairo,
Egypt, pages 77–88. Morgan Kaufmann, 2000.

[76] T. Milo and S. Zohar. Using schema matching to simplify heterogeneous data
translation. In A. Gupta, O. Shmueli, and J. Widom, editors, VLDB’98, Proceed-
ings of 24rd International Conference on Very Large Data Bases, August 24-27,
1998, New York City, New York, USA, pages 122–133. Morgan Kaufmann, 1998.

[77] P. Mitra, G. Wiederhold, and M. L. Kersten. A graph-oriented model for articula-
tion of ontology interdependencies. In Advances in Database Technology - EDBT
2000, 7th International Conference on Extending Database Technology, Konstanz,
Germany, March 27-31, 2000, Proceedings, pages 86–100, 2000.

[78] S. Muggleton. Learning from positive data. In Selected Papers from the 6th In-
ternational Workshop on Inductive Logic Programming, pages 358–376. Springer-
Verlag, 1997.

[79] D. Nadeau and S. Sekine. A survey of named entity recognition and classification.
Linguisticae Investigationes, 30:3–26, 2007.

[80] Z. Nie, Y. Ma, S. Shi, J.-R. Wen, and W.-Y. Ma. Web object retrieval. In Proceed-
ings of the 16th WWW, pages 81–90, 2007.

BIBLIOGRAPHY 115

[81] M. Oita, A. Amarilli, and P. Senellart. Cross-fertilizing deep web analysis and
ontology enrichment. In M. Brambilla, S. Ceri, T. Furche, and G. Gottlob, editors,
VLDS, volume 884 of CEUR Workshop Proceedings, pages 5–8. CEUR-WS.org,
2012.

[82] L. Palopoli, D. Saccà, G. Terracina, and D. Ursino. A unified graph-based frame-
work for deriving nominal interscheme properties, type conflicts and object cluster
similarities. In Proceedings of the Fourth IFCIS International Conference on Co-
operative Information Systems, Edinburgh, Scotland, September 2-4, 1999, pages
34–45. IEEE Computer Society, 1999.

[83] L. Palopoli, D. Saccà, and D. Ursino. An automatic techniques for detecting type
conflicts in database schemes. In Proceedings of the 1998 ACM CIKM Interna-
tional Conference on Information and Knowledge Management, Bethesda, Mary-
land, USA, November 3-7, 1998, pages 306–313, 1998.

[84] L. Palopoli, D. Saccà, and D. Ursino. Semi-automatic techniques for deriving
interscheme properties from database schemes. Data Knowl. Eng., 30(3):239–273,
1999.

[85] L. Panziera and F. D. Paoli. A framework for self-descriptive restful services.
In L. Carr, A. H. F. Laender, B. F. Lóscio, I. King, M. Fontoura, D. Vrandecic,
L. Aroyo, J. P. M. de Oliveira, F. Lima, and E. Wilde, editors, WWW (Companion
Volume), pages 1407–1414. International World Wide Web Conferences Steering
Committee / ACM, 2013.

[86] M. Paolucci, T. Kawmura, T. Payne, and K. Sycara. Semantic matching of web
services capabilities. In First Int. Semantic Web Conf., 2002.

[87] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.

[88] E. Peukert, J. Eberius, and E. Rahm. Rule-based construction of matching pro-
cesses. In C. Macdonald, I. Ounis, and I. Ruthven, editors, Proceedings of the
20th ACM Conference on Information and Knowledge Management, CIKM 2011,
Glasgow, United Kingdom, October 24-28, 2011, pages 2421–2424. ACM, 2011.

[89] D. L. Phuoc, A. Polleres, M. Hauswirth, G. Tummarello, and C. Morbidoni. Rapid
prototyping of semantic mash-ups through semantic web pipes. In J. Quemada,
G. León, Y. S. Maarek, and W. Nejdl, editors, Proceedings of the 18th International
Conference on World Wide Web, WWW 2009, Madrid, Spain, April 20-24, 2009,
pages 581–590. ACM, 2009.

[90] N. Preda, G. Kasneci, F. M. Suchanek, T. Neumann, W. Yuan, and G. Weikum.
Active knowledge: dynamically enriching RDF knowledge bases by web services.
In A. K. Elmagarmid and D. Agrawal, editors, Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2010, Indianapolis,
Indiana, USA, June 6-10, 2010, pages 399–410. ACM, 2010.

[91] N. Preda, F. M. Suchanek, W. Yuan, and G. Weikum. SUSIE: search using services
and information extraction. In C. S. Jensen, C. M. Jermaine, and X. Zhou, editors,
29th IEEE International Conference on Data Engineering, ICDE 2013, Brisbane,
Australia, April 8-12, 2013, pages 218–229. IEEE Computer Society, 2013.

116 BIBLIOGRAPHY

[92] L. Qian, M. J. Cafarella, and H. V. Jagadish. Sample-driven schema mapping.
In K. S. Candan, Y. Chen, R. T. Snodgrass, L. Gravano, and A. Fuxman, editors,
Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 73–84. ACM,
2012.

[93] S. Raghavan and H. Garcia-Molina. Crawling the hidden web. In Apers et al. [12],
pages 129–138.

[94] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-
ing. VLDB J., 10(4):334–350, 2001.

[95] A. Rajaraman, Y. Sagiv, and J. D. Ullman. Answering queries using templates with
binding patterns. In PODS, 1995.

[96] D. Ritze, O. Lehmberg, Y. Oulabi, and C. Bizer. Profiling the potential of web
tables for augmenting cross-domain knowledge bases. In J. Bourdeau, J. Hendler,
R. Nkambou, I. Horrocks, and B. Y. Zhao, editors, Proceedings of the 25th Inter-
national Conference on World Wide Web, WWW 2016, Montreal, Canada, April 11
- 15, 2016, pages 251–261. ACM, 2016.

[97] M. Schmachtenberg, C. Bizer, and H. Paulheim. Adoption of the linked data best
practices in different topical domains. In The Semantic Web–ISWC 2014. 2014.

[98] A. Segev and Q. Z. Sheng. Bootstrapping ontologies for web services. IEEE Trans.
Services Computing, 5(1):33–44, 2012.

[99] P. Shvaiko and J. Euzenat. Ontology matching: State of the art and future chal-
lenges. IEEE Trans. Knowl. Data Eng., 25(1):158–176, 2013.

[100] D. Skoutas, D. Sacharidis, A. Simitsis, V. Kantere, and T. K. Sellis. Top-k dom-
inant web services under multi-criteria matching. In M. L. Kersten, B. Novikov,
J. Teubner, V. Polutin, and S. Manegold, editors, EDBT, volume 360 of ACM In-
ternational Conference Proceeding Series, pages 898–909. ACM, 2009.

[101] S. Speiser and A. Harth. Integrating linked data and services with linked data ser-
vices. In G. Antoniou, M. Grobelnik, E. P. B. Simperl, B. Parsia, D. Plexousakis,
P. D. Leenheer, and J. Z. Pan, editors, The Semantic Web: Research and Appli-
cations - 8th Extended Semantic Web Conference, ESWC 2011, Heraklion, Crete,
Greece, May 29-June 2, 2011, Proceedings, Part I, volume 6643 of Lecture Notes
in Computer Science, pages 170–184. Springer, 2011.

[102] F. M. Suchanek, S. Abiteboul, and P. Senellart. PARIS: Probabilistic Alignment of
Relations, Instances, and Schema. PVLDB, 5(3):157–168, 2011.

[103] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A Core of Semantic Knowl-
edge. In WWW, 2007.

[104] M. Taheriyan, C. A. Knoblock, P. A. Szekely, and J. L. Ambite. Rapidly integrat-
ing services into the linked data cloud. In P. Cudré-Mauroux, J. Heflin, E. Sirin,
T. Tudorache, J. Euzenat, M. Hauswirth, J. X. Parreira, J. Hendler, G. Schreiber,
A. Bernstein, and E. Blomqvist, editors, International Semantic Web Conference
(1), volume 7649 of Lecture Notes in Computer Science, pages 559–574. Springer,
2012.

BIBLIOGRAPHY 117

[105] C. Tatsiopoulos and B. Boutsinas. Ontology mapping based on association rule
mining. In J. Cordeiro and J. Filipe, editors, ICEIS (3), pages 33–40, 2009.

[106] P. Traverso and M. Pistore. Automated composition of semantic web services into
executable processes. In S. A. McIlraith, D. Plexousakis, and F. van Harmelen,
editors, The Semantic Web - ISWC 2004: Third International Semantic Web Con-
ference,Hiroshima, Japan, November 7-11, 2004. Proceedings, volume 3298 of
Lecture Notes in Computer Science, pages 380–394. Springer, 2004.

[107] P. Venetis, A. Y. Halevy, J. Madhavan, M. Pasca, W. Shen, F. Wu, G. Miao, and
C. Wu. Recovering semantics of tables on the web. PVLDB, 4(9):528–538, 2011.

[108] R. Verborgh, A. Harth, M. Maleshkova, S. Stadtmüller, T. Steiner, M. Taheriyan,
and R. Van de Walle. Survey of semantic description of rest apis. In rest: Advanced
Research Topics and Practical Applications, pages 69–89. Springer, 2014.

[109] W3C. Web services architecture. https://www.w3.org/TR/2002/
WD-ws-arch-20021114/, 2002.

[110] W3C. Owl-s: Semantic markup for web services. https://www.w3.org/
Submission/OWL-S/, 2004.

[111] W3C. Web services architecture. https://www.w3.org/TR/
ws-arch/, 2004.

[112] W3C. Web service modeling ontology (wsmo). https://www.w3.org/
Submission/WSMO/, 2005.

[113] W3C. Web service semantics - wsdl-s. https://www.w3.org/
Submission/WSDL-S/, 2005.

[114] W3C. Xml path language (xpath) 2.0. https://www.w3.org/TR/
xpath20/, 2007.

[115] W3C. Xsl transformations (xslt) version 2.0. https://www.w3.org/TR/
xslt20/, 2007.

[116] W3C. Extensible markup language (xml) 1.0. https://www.w3.org/TR/
REC-xml/, 2008.

[117] W3C. SPARQL query language for RDF. http://www.w3.org/TR/
rdf-sparql-query/, 2008.

[118] W3C. SPARQL 1.1 query language for RDF. http://www.w3.org/TR/
sparql11-query/, 2013.

[119] W3C. A json-based serialization for linked data. https://www.w3.org/
TR/json-ld/, 2014.

[120] W3C. RDF 1.1 concepts and abstract syntax. http://www.w3.org/TR/
rdf11-concepts/, 2014.

[121] W3C. RDF schema 1.1. http://www.w3.org/TR/rdf-schema/,
2014.

[122] J. Wang and F. H. Lochovsky. Data extraction and label assignment for web
databases. In Hencsey et al. [53], pages 187–196.

https://www.w3.org/TR/2002/WD-ws-arch-20021114/
https://www.w3.org/TR/2002/WD-ws-arch-20021114/
https://www.w3.org/Submission/OWL-S/
https://www.w3.org/Submission/OWL-S/
https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/ws-arch/
https://www.w3.org/Submission/WSMO/
https://www.w3.org/Submission/WSMO/
https://www.w3.org/Submission/WSDL-S/
https://www.w3.org/Submission/WSDL-S/
https://www.w3.org/TR/xpath20/
https://www.w3.org/TR/xpath20/
https://www.w3.org/TR/xslt20/
https://www.w3.org/TR/xslt20/
https://www.w3.org/TR/REC-xml/
https://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/json-ld/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf-schema/

118 BIBLIOGRAPHY

[123] J. Wang, J. Wen, F. H. Lochovsky, and W. Ma. Instance-based schema match-
ing for web databases by domain-specific query probing. In M. A. Nascimento,
M. T. Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley, and K. B. Schiefer, edi-
tors, (e)Proceedings of the Thirtieth International Conference on Very Large Data
Bases, Toronto, Canada, August 31 - September 3 2004, pages 408–419. Morgan
Kaufmann, 2004.

[124] S. Wang, G. Englebienne, and S. Schlobach. Learning concept mappings from
instance similarity. In A. P. Sheth, S. Staab, M. Dean, M. Paolucci, D. Maynard,
T. W. Finin, and K. Thirunarayan, editors, The Semantic Web - ISWC 2008, 7th
International Semantic Web Conference, ISWC 2008, Karlsruhe, Germany, Octo-
ber 26-30, 2008. Proceedings, volume 5318 of Lecture Notes in Computer Science,
pages 339–355. Springer, 2008.

[125] Linked open vocabularies. http://lov.okfn.org/dataset/lov/.

[126] H. Xiao and I. F. Cruz. Integrating and exchanging XML data using ontologies.
4090:67–89, 2006.

[127] Y. Yang and J. O. Pedersen. A comparative study on feature selection in text cate-
gorization. In Proceedings of the Fourteenth International Conference on Machine
Learning, ICML ’97, pages 412–420, San Francisco, CA, USA, 1997. Morgan
Kaufmann Publishers Inc.

[128] Z. Zhang, B. He, and K. C. Chang. Understanding web query interfaces: Best-
effort parsing with hidden syntax. In G. Weikum, A. C. König, and S. Deßloch,
editors, Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, Paris, France, June 13-18, 2004, pages 107–118. ACM, 2004.

	Introduction
	Context and Objectives
	Linked Data
	Web Services

	Contributions
	Thesis Outline

	Background and State-of-the-art
	Knowledge Bases
	RDF Data
	Query language
	Knowledge Base Paths

	Web Services
	REST Architecture
	Call Results
	DataGuides
	Querying Call Results
	Transforming Call Results

	Data Integration Model
	State-of-the-art
	Schema and Ontology Matching Approaches
	SOFYA: Related Literature
	DORIS: Related Literature

	DORIS
	Problem Description
	Observations and Assumptions
	Web service Schema Discovery
	Overview
	Web service Probing
	Path Discovery
	Path Alignment
	View and Transformation Function

	Baseline Approach
	Prototype
	Experimental Evaluation
	Discovering I/O Dependencies
	Problem Statement
	Approach
	Experimental Evaluation

	Summary

	SOFYA
	Introduction
	Problem Statement
	Relation Alignment Model
	Candidate Generation
	Features
	Relation Alignment Supervised Models

	Online Relation Alignment
	Sampling Strategies

	Experimental Setup
	Datasets
	Online Relation Alignment Setup: Sampling Strategies
	Ground-Truth Construction
	Evaluation Metrics
	Learning Framework: Relation Alignment Models
	Baselines

	Results and Discussion
	Relation Alignment Model Performance
	Efficient Relation Alignment
	Generalizing Relation Alignment Models
	Coverage
	Query-Execution Overhead

	Conclusion

	Conclusion and Perspectives
	Thesis Summary
	Future Work

	Bibliography

