
HAL Id: tel-01466764
https://theses.hal.science/tel-01466764

Submitted on 13 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Classification des logiciels malveillants basée sur le
comportement à l’aide de l’apprentissage automatique

en ligne
Abdurrahman Pektaş

To cite this version:
Abdurrahman Pektaş. Classification des logiciels malveillants basée sur le comportement à l’aide de
l’apprentissage automatique en ligne. Machine Learning [cs.LG]. Université Grenoble Alpes, 2015.
English. �NNT : 2015GREAM065�. �tel-01466764�

https://theses.hal.science/tel-01466764
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial : 7 août 2006

Présentée par

Abdurrahman PEKTAŞ

Thèse dirigée par Jean Claude Fernandez
et codirigée par Tankut Acarman

préparée au sein du laboratoire Verimag
et de Ecole Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Behavior based malware classifi-
cation using online machine learn-
ing

Thèse soutenue publiquement le 10th December 2015,
devant le jury composé de :

Prof. Nicolas Halbwachs
University Grenoble Alpes, France, Président
Prof. Bernard Levrat
University of Angers, France, Rapporteur
Prof. Jean-Yves Marion
Ecole des Mines de Nancy, France, Rapporteur
Prof. Sylvain Hallé
The Université du Québec à Chicoutimi, Canada, Examinateur
Prof. Jean Claude Fernandez
University Grenoble Alpes, France, Directeur de thèse
Prof. Tankut Acarman
Galatasaray University, Turkey, Co-Directeur de thèse

To all my family especially,
to Elif for her endless love and support...

Abstract

Recently, malware (short for malicious software) has greatly evolved and has be-

came a major threat to the home users, enterprises, and even to the governments.

Despite the extensive use and availability of various anti-malware tools such as anti-

viruses, intrusion detection systems, firewalls etc., malware authors can readily evade

these precautions by using obfuscation techniques. To mitigate this problem, malware

researchers have proposed various data mining and machine learning approaches for

detecting and classifying malware samples according to the their static or dynamic

feature set. Although the proposed methods are effective over small sample sets, the

scalability of these methods for large data-sets is under investigation and has not been

solved yet.

Moreover, it is well-known that the majority of malware is a variant of previously

known samples. Consequently, the volume of new variants created far outpaces the

current capacity of malware analysis. Thus developing a malware classification to

cope with the increasing number of malware is essential for the security community.

The key challenge in identifying the family of malware is to achieve a balance be-

tween increasing number of samples and classification accuracy. To overcome this

limitation, unlike existing classification schemes which apply machine learning algo-

rithms to stored data, (i.e. they are off-line algorithms) we propose a new malware

classification system employing online machine learning algorithms that can provide

instantaneous update about the new malware sample by following its introduction to

the classification scheme.

To achieve our goal, firstly we developed a portable, scalable and transparent mal-

ware analysis system called VirMon for dynamic analysis of malware targeting the

Windows OS. VirMon collects the behavioral activities of analyzed samples in low ker-

nel level through its developed mini-filter driver. Secondly, we set up a cluster of three

machines for our online learning framework module (i.e. Jubatus), which allows to

handle large scale data. This configuration allows each analysis machine to perform

its tasks and delivers the obtained results to the cluster manager.

III

IV

Essentially, the proposed framework consists of three major stages. The first stage

consists of extracting the behavior of the sample file under scrutiny and observing its

interactions with the OS resources. At this stage, the sample file is run in a sand-

boxed environment. Our framework supports two sandbox environments: VirMon

and Cuckoo. During the second stage, we apply feature extraction to the analysis re-

port. The label of each sample is determined by using Virustotal, an online multiple

anti-virus scanner framework consisting of  engines. Then at the final stage, the

malware dataset is partitioned into training and testing sets. The training set is used

to obtain a classification model and the testing set is used for evaluation purposes.

To validate the effectiveness and scalability of our method, we have evaluated our

method by using , recent malicious files including viruses, trojans, backdoors,

worms, etc., obtained from VirusShare, and our experimental results show that our

method performs malware classification with % of accuracy.

Keywords: Malware classification, dynamic analysis, online machine learning, be-

havior modeling

Résumé

Les malwares, autrement dit programmes malicieux ont grandement évolué ces

derniers temps et sont devenus une menace majeure pour les utilisateurs grand pub-

lic, les entreprises et même le gouvernement. Malgré la présence et l’utilisation in-

tensive de divers outils anti-malwares comme les anti-virus, systèmes de détection

d’intrusions, pare-feux etc ; les concepteurs de malwares peuvent significativement

contourner ses protections en utilisant des techniques d’obfuscation. Afin de limiter

ces problèmes, les chercheurs spécialisés dans les malwares ont proposé différentes

approches comme l’exploration des données (data mining) ou bien l’apprentissage au-

tomatique (machine learning) pour détecter et classifier les échantillons de malwares

en fonction de leurs propriétés statiques et dynamiques. De plus les méthodes pro-

posées sont efficaces sur un petit ensemble de malwares, le passage à l’échelle de ses

méthodes pour des grands ensembles est toujours en recherche et n’a pas été encore

résolu.

Il est évident aussi que la majorité des malwares sont une variante des précédentes

versions. Par conséquent, le volume des nouvelles variantes créées dépasse grande-

ment la capacité d’analyse actuelle. C’est pourquoi développer la classification des

malwares est essentiel pour lutter contre cette augmentation pour la communauté en

sécurité. Le challenge principal dans l’identification des familles de malware est de

réussir à trouver un équilibre entre le nombre d’échantillons augmentant et la pré-

cision de la classification. Pour surmonter cette limitation, contrairement aux sys-

tèmes de classification existants qui appliquent des algorithmes d’apprentissage au-

tomatique pour sauvegarder les données ; ce sont des algorithmes hors-lignes ; nous

proposons une nouvelle classification de malwares en ligne utilisant des algorithmes

d’apprentissage automatique qui peuvent fournir une mise à jour instantanée d’un

nouvel échantillon de malwares en suivant son introduction dans le système de classi-

fication.

Pour atteindre notre objectif, premièrement nous avons développé une version

portable, évolutive et transparente d’analyse de malware appelée VirMon pour analyse

V

VI

dynamique de malware visant les OS Windows. VirMon collecte le comportement des

échantillons analysés au niveau bas du noyau à travers son pilote mini-filtre développé

spécifiquement. Deuxièmement, nous avons mis en place un cluster de  machines

pour notre module d’apprentissage en ligne (Jubatus);qui permet de traiter une quan-

tité importante de données. Cette configuration permet à chaque machine d’exécuter

ses tâches et de délivrer les résultats obtenus au gestionnaire du cluster.

Notre outil consiste essentiellement en trois niveaux majeurs. Le premier niveau

permet l’extraction des comportements des échantillons surveillés et observe leurs in-

teractions avec les ressources de l’OS. Durant cette étape, le fichier exemple est exé-

cuté dans un environnement sandbox. Notre outil supporte deux sandbox: VirMon et

Cuckoo. Durant le second niveau, nous appliquons des extractions de fonctionnalités

aux rapports d’analyses. Le label de chaque échantillon est déterminé à l’aide de Virus-

total, un outil regroupant plusieurs anti-virus permettant de scanner en ligne et consti-

tué de moteurs de recherches. Enfin au troisième niveau, la base de données de mal-

ware est divisée en ensemble de test et d’apprentissage. L’ensemble d’apprentissage est

utilisé pour obtenir un modèle de classification et l’ensemble de test est utilisé pour

l’évaluation.

Afin de valider l’efficacité et l’évolutivité de notre méthode, nous l’avons évalué

avec une base de   fichiers malicieux récents incluant des virus, trojans, back-

doors, vers etc, obtenue depuis VirusShare. Nos résultats expérimentaux montrent

que notre méthode permet la classification de malware avec une précision de %.

Mots-clé: Classification de malware, analyse dynamique, l’apprentissage machine

en ligne, la modélisation du comportement

Acknowledgments

First of all, I would like to thank my advisors Prof. Dr. Jean-Claude Fernandez and

Prof. Dr. Tankut Acarman for believing in me and giving me the chance to work on the

malware research. Without their excellent assistance and contributions throughout my

research, it would not have been possible to complete this work. Moreover, I’m grateful

to Dr. Yliès Falcone for taking care of many administration issues and allowing me to

fully focus on my research activities.

Special thanks go to my colleagues at the The Scientific and Technological Research

Council of Turkey (TUBITAK), for their invaluable feedback, discussions and collabo-

ration. In particular, I would like to thank Necati Ersen Şişeci, Bakir Emre, Hüseyin

Tirli and Osman Pamuk.

Lastly, I would like to thank my wife Elif for her love and support. I would also

like thank my parents and my sisters for everything they have done for me and for

supporting me throughout my life.

VII

Table of Contents

Dedication I

Abstract III

Résumé V

Acknowledgments VII

 Introduction 
. Problem Statement . 
. Contributions . 
. Dissertation Overview . 

 Background 
. Common Types of Malware . 

.. Virus . 
.. Worm . 
.. Trojan . 
.. Backdoor . 
.. Adware . 
.. Botnet . 
.. Spyware . 
.. Rootkits . 
.. Ransomware . 

. A Quick Look at the History of Malware 
. Malware Infection Methods . 

.. Exploiting Vulnerabilities . 
.. Social Engineering . 
.. Misconfiguration . 

IX

X TABLE OF CONTENTS

. Hacker Utilities . 
.. Exploit Kits . 
.. Remote Access Tools (RAT) . 
.. Metasploit Framework . 
.. Social Engineering Toolkit . 

. Anti-Malware Analysis Techniques . 
.. Code Obfuscation Techniques . 
.. Anti-Virtual Machine Techniques 

... Hardware Fingerprinting 
... Registry Check . 
... Memory Check . 
... VMware Communication Channel Check 
... File & Process Check . 

.. Anti-debugging . 
.. Anti-Disassembly Techniques . 
.. Packing . 

. State-of-the Art Malware Analysis Methods 
.. Static Analysis . 
.. Dynamic Analysis . 

... Overview of Existing Dynamic Analysis Techniques . . 
... Limitations of Dynamic Analysis 

.. Manual Analysis . 
. Summary . 

 Related Work 
. Malware Modeling Techniques . 

.. N-gram . 
.. Control-Flow . 
.. Application Programming Interface 
.. Abstraction . 

. Dynamic Malware Analysis Tools . 
.. Anubis . 
.. CWSandbox . 
.. Cuckoo . 
.. Capture-BAT . 
.. Norman Sandbox . 
.. Dynamic Malware Analyzer . 

. Discussion and Conclusion . 

TABLE OF CONTENTS XI

 VirMon: A Virtualization-Based Automated Dynamic Malware Analysis

System 
. Network Virtualization Infrastructure 

.. Sensor Device . 
.. VPN Server . 

. Design of VirMon . 
.. The Components of Analysis Machine 

... Windows Callback versus API Hooking 
... Process Monitoring . 
... Registry Monitoring . 
... File System Monitoring 

.. Network Components . 
... Virtualization Infrastructure 
... DNS Server . 
... IPDS Frameworks . 
... Netflow Server . 
... Application Server . 

. Deployment . 
.. The Procedure of Analyzing A Sample File 
.. VirMon Compatibility on Windows  beta 

. Conclusion . 

 Classification of malware using its behavioral features 
. Automated Dynamic Analysis . 

.. VirMon . 
.. Cuckoo . 

. Feature Extraction . 
.. Malware Behavior Signature Formats 

... Open Indicators of Compromise - OpenIOC 
... Malware Attribute Enumeration and Characterization -

MAEC . 
.. Selected Behavioral Features . 

... N-gram modeling over API-call Sequences 
... IDS Alerts . 

. Online Machine Learning . 
.. Binary Classification . 
.. Multi-class Classification . 
.. Online Learning Algorithms Used In This Study 

XII TABLE OF CONTENTS

... Passive-Aggressive Learning 
... Confidence-Weighted Learning 
... Adaptive Regularization of Weights 
... Gaussian Herding . 

. Jubatus Online Learning Framework . 
.. Jubatus Architecture . 
.. Data Conversion Engine . 
.. Our Jubatus Deployment . 

. Conclusion . 

 Evaluation 
. The Malware Dataset . 
. Performance Measures . 
. Results . 

.. Parameter Tuning . 
. Conclusion . 

 Conclusion 
. Future Work . 

A Appendix 
A. Detect VMware Version with VMware Backdoor I/O Port 
A. Step by Step Advanced Cuckoo Installation 
A. Jubatus Setup for Distributed Mode . 
A. Summary of the Malicious Activities Observed in the Evaluation Set . . 

List of Figures

. Number of malware samples per day [] 

. Evolution of malware . 

. Vulnerability distribution in  []. 

. Top Exploit Kits in  []. 

. BIOS card details: WMI in real and virtual OS, []. 

. VMware specific registry keys on a VMware machine 

. VMware I/O Backdoor’s Main Functionalities 

. Searching VMware Processes in Process List 

. Packed executable file format . 

. Malware analysis pyramid . 

. Pros and Cons of Malware Analysis Methods 

. Sensor device . 

. The topology of VirMon: local and remote components of the presented

dynamic malware analysis system . 

. The logical topology of the system - The C&C server perceives analysis

machine as if it is working behind the firewall. 

. The topology of VirMon: local and remote components of the presented

dynamic malware analysis system . 

. Overview of the analysis machine components (e.g., filter drivers) . . . 

. High-level information flow and interactions between application server

and analysis machine . 

. Overview of the proposed malware classification system 

. An OpenIOC format for a Stuxnet malware sample 

. Tiers of the MAEC Bundle . 

. Distributed Mode Jubatus . 

XIII

XIV LIST OF FIGURES

. Results of dynamic analysis about the evaluation set 
. Distribution of the malware dataset according to first scan time in Virus-

total[] . 
. Normalized confusion matrix . 

A. Distributed Mode Jubatus . 

List of Tables

. Prices of Some -day Vulnerabilities, [] 
. The Most Used Exploit Kits and Their Prices 
. Commonly used anti-debugging techniques and their categories 
. General Overview of Malware Analysis Tools 

. Comparison of the major dynamic malware analysis frameworks 

. Sensor specifications . 
. Blade Server Configuration . 
. Important run-time activities of a trojan 
. Run-time activities of the cyrptolocker on Windows  beta 

. Adopted features from dynamic analysis frameworks 
. API calls and their categories . 
. Features and their types . 

. Categories of the IDS signature extracted from dynamic analysis 
. Malware families and class-specific performance measures 
. The weights of each features types and their meanings 
. Training & testing accuracy of CW . 
. Training & testing accuracy of AROW 
. Training & testing accuracy of NHERD 
. Training & testing accuracy of PA-I . 
. Training & testing accuracy of PA-II . 
. Comparison of proposed malware classification method with current

studies . 

A. Malicious activities observed in the evaluation set 

XV

Listings

. Alternatives for cleaning eax register . 
. Snap Code of Red Pill Technique [] . 
. Assembly Code to Detect VMware Machine by looking VMware I/O Port 
. An Example of IDS Rule . 
. An Alert belonging to the IDS rule given in Listing . 
. An example for the configuration of data conversion 
. Python pseudo-code for the classification task 
. Python pseudo-code for the searching scan result in Virustotal 
A. Snap Code of Red Pill Technique . 

XVII

Chapter 
Introduction

As recent advances in technology have dramatically and irreversibly affected our

daily lives over the past few years, we become addicted and chained to the very

thing that was supposed to set us free. In particular, as the Internet becomes increas-

ingly ubiquitous around the world, the cyber threats have also become increasingly

prevalent and serious. The lack of adequate protection mechanisms on the average

users’ computer and ignorance and underestimation about security threats have in-

clined cyber-criminals to launch security attacks.

In the near feature, with IPv, almost all devices including cars, ovens, baby mon-

itors, TV sets, refrigerators, etc. will have an IP address and will be commanded re-

motely. Consequently, we will be more prominent targets to malicious actors. Unfor-

tunately, since these electronic devices (known as Internet of Things) have not been

designed with enough security in mind, we will face fatal results when these devices

get compromised by hackers. For instance one can consider the scenarios where some-

one hacks a car and then finds a way to inactivate the car’s brake system, or if a hacker

compromises an oven located in a flat and then fire hazard can be maliciously initiated.

Actually, all these scenarios show us how large the field of the cyber space is and how

serious outcome can be expected from an attack.

When performing a cyber campaign, the most common and effective way used by

attackers is to take advantage of malware. Malware, short for malicious software, gen-

erally refers to any form of hostile software designed for various purposes such as

stealing personal information (e.g. credit card details, user accounts, e-mail lists), us-

ing it as a gateway for attacking other hosts, conducting Distributed Denial of Service

(DDoS), etc., without the user’s consent. For example, worms typically spread through

by exploiting server side vulnerabilities over the Internet. Once a target system has

been hacked, a malware can install additional payload to control it remotely. In this



 CHAPTER . INTRODUCTION

way, the victimized system becomes a member of a vast network, called a botnet in

malware domain. In cyber space, botnets are widely used in launching DDoS attacks,

sending phishing emails, hosting vulnerabilities to exploit client-side applications, etc.

The malware community is becoming a commercial industry of cyber-weapons by

leveraging the evolving behavior of malware and finding -day exploits (exploits for

unpatched vulnerabilities) [, ]. Current malware has evolved from primitive and

replicating viruses that disrupt OS operations and destroy user files to highly evasive

and flexible pieces of software that allow cyber-criminals to launch ever-increasingly

sophisticated and targeted attacks. Practically, the malware community targets money,

corporate espionage and ideological purposes. Even some states/regions develop mal-

ware in order to enforce their political, diplomatic, and military tactics. For example,

Stuxnet, discovered in , is one of the most known malware targeting Iran’s nuclear

facilities. Stuxnet has many advanced features such as  -day exploits, user-mode and

kernel-mode rootkit capability under Windows OS, a digitally signed driver by two

certificate authority []. Its creation cost is estimated to be US$million [].

Unfortunately, even though malware production and complexity dramatically in-

creased, the knowledge required by an attacker to deploy malware has considerably

decreased over the last decades. This relation between the threat and money invest-

ment clearly illustrates the destructive impact of research on malware development

targeting large scale of computer systems. This situation stems from the growing us-

age of user-friendly and automated malware creation frameworks, such as Metasploit

or exploit kits. With these attack kits, cyber criminals can easily and automatically

launch attacks that infect computers in order to perform their own malicious aims.

Some of these tool kits are free, open source, and others are sold on the Internet’s

black market.

Additionally, as the process of creating a malware sample from scratch is a highly

complex and tedious task and requires considerable skills and effort, malware authors

employ runtime packers and obfuscation mechanisms [, , ] (polymorphism and

metamorphism). This leads to the explosive increase in malware variants, which are

behaviorally identical but statically different samples. According to Cisco, around

, malware variants have been detected every day during  []. It is well

known that the majority of these malware is the variant of the previously known sam-

ples. On the other hand, identifying the family of a malware spares the re-analysis

of sample instances and enables researchers to focus on new or unseen malware in-

stances. Therefore, the classification of malware samples into appropriate families is

as important as malware detection.

From Figure ., we can observe that the number of malware samples per day has



nearly doubled year-to-year basis, and the number of samples appeared in  has

reached at ,. In fact, the total of malware produced in  alone is more than

the sum of all malware created over the last decade. Unfortunately, this dominant

trend is likely to strengthen in the future, and malware will remain the greatest secu-

rity threat to computer users.

20142013201220112010200920082007200620052004

0

1

2

3

4

5

6

7

8

9

·105

Years

N
u

m
be

r
of

sa
m

p
le

s

Figure .: Number of malware samples per day []

Currently, state-of-the-art malware detection relies on static malware detection

which consists of analyzing files without executing them and generally using a sig-

nature database or rule-set to operate. Although these solutions are very effective and

fast for known malware, they often have low detection rates on unknown instances and

variants of previously known samples. Thus, researchers have proposed dynamic anal-

ysis methods which are more robust to obfuscation techniques. They model run-time

behavior according to the actions that operate on the security-critical OS resources.

First and foremost, the crucial stage of dynamic analysis is to obtain the runtime be-

havior of a given file appropriately. Since cyber criminals are continuously armoring

their malware with anti-analysis techniques such as anti-debugging, VM-detection,

logic bombs, etc. to make them more resilient, withstanding with detection, appropri-

ate countermeasures must be considered by researchers. Moreover, the most important

thing to note here is that, when detecting malware, often a single solution is not suffi-

 CHAPTER . INTRODUCTION

cient. Indeed, using advanced multi-layer approaches to identify anomalies caused by

malware is essential to obtain a secured network. Even if one of the security solutions

is bypassed, other solutions will defend the network against threats.

While automated dynamic analysis has shed light on the activities of programs

once they are executed in a controlled environment, there must be some mechanism to

determine whether the file is malicious or not. In the literature, researchers generally

employ scoring mechanisms and behavioral patterns to assess harmfulness. However,

there is not enough research in the field of the automatic classification of malware and

similarity of malware families based on their behavior. On the one hand, the proposed

methods suffer from the curse of dimensionality which limits the feature space to avoid

explosion of searching complexity level. On the other hand, while malware features

grow proportionally with the number of activities of a given sample, the algorithms

require longer execution time and make the analysis inefficient.

. Problem Statement

The number of malware has dramatically increased through the greater use of ob-

fuscation techniques over the last decade. (Figure . shows this exponential growth.)

With these techniques, even the most popular anti-virus products can easily be evaded.

To cope with that problem and to provide more automation in the arms race between

malware authors and analysts, there is a strong need for new and scalable malware

analysis environments to automatically analyze large numbers of malware samples in

real-time.

While automated dynamic analysis exploits the activities of a file during its ex-

ecution in a controlled environment, a mechanism is still required to determine the

malicious impact of a file. Automatically classifying malware and similarity of mal-

ware families based on their behavior is a technical challenge towards an accurate and

reliable analysis and classification. The usual issue with the above method is that,

when the feature space increases, data become sparse and the computation time of al-

gorithms increases exponentially with the number of malware samples. (This problem

is known as the “curse of dimensionality"). However, unlike existing malware clas-

sification techniques, the proposed distributed machine learning method is not only

efficient and computationally less expensive but also more adaptable to the model

changes at runtime.

This thesis is motivated by the need to classify malware samples in large scale, and
aims to propose an optimal classification method.

.. CONTRIBUTIONS 

. Contributions

The contributions of this thesis are as follows:

. We present Virus Monitor (VirMon), a portable, scalable and transparent system

for dynamic analysis of malware targeting Windows OS. VirMon is deployed as

an automated and virtualized platform. VirMon collects the behavioral activities

of analyzed samples in low kernel level. VirMon is capable of using all recent

versions of Windows as an underlying analysis environment while it can suc-

cessfully make analysis of malware targeting the latest version of Windows. The

features of VirMon are as follows:

(a) VirMon is a fully-automated dynamic analysis system: it performs analysis

without any human intervention.

(b) VirMon is scalable: the analysis capacity, i.e., the average number of analysis

per minute, can be increased by connecting new virtualization servers to the

existing system. VirMon’s capacity can be improved by adding new analysis

machines upon the increase of the analysis workload.

(c) VirMon supports Network virtualization: the network traffic of analysis ma-

chines is distributed to different network locations via VPN to masquerade

their IP addresses. This decentralized design approach ensures that the

analysis system is not detectable by malware’s network level precautions

such as comparing public IP addresses of the analysis system.

. We propose a new malware classification method based on behavioral features.

File system, network, registry activities observed during the execution traces of

the malware samples are used to represent behavior-based features. Existing

classification schemes apply machine-learning algorithms to the stored data, i.e.,

they are off-line. We use on-line machine learning algorithms that can provide in-

stantaneous update about the new malware sample by following its introduction

to the classification scheme. In particular, the proposed malware classification

system makes the following contributions:

(a) It represents malware with its behavioral profile obtained from dynamic

analysis.

(b) It can classify malware samples based on their behavioral profile.

(c) The proposed system is not only efficient and computationally less expen-

sive but also more adaptable for model changes at runtime.

 CHAPTER . INTRODUCTION

(d) The samples used for evaluation are shared on [] for research purposes

with other researchers.

. Dissertation Overview

Including this chapter, this dissertation contains a total of seven chapters. An

overview of each chapter is provided below:

Chapter : Background

Chapter  provides a broad overview of the field of malware research. It begins

with the definition of malware, and then describes the common types of malware and

their key features. We present the history of malware in Section .. In Section ., we

provide an in-depth explanation of malware infection methods. Section . describes

the current hacker utilities to deploy cyber attack. In Section . the exiting anti-

malware techniques to evade detection attempts are presented. Finally, we report on

the state-of-the art in malware analysis methods by describing the pros and cons of

each method.

Chapter : Related Work

Chapter  discusses the state of the art of malware detection and classification

methods with special emphasis on data mining based method. We also highlight the

malware representation methods used in that study as well as classification algorithms

and dataset. Furthermore, well-known dynamic analysis frameworks are discussed

and compared with our proposed framework.

Chapter : VirMon: A Virtualization-Based Automated Dynamic Mal-

ware AnalysisSystem

Chapter  gives the implementation details of the proposed automated dynamic

analysis framework named VirMon. First, the chapter explains VirMon’s network vir-

tualization infrastructure whose main aim is to mask the IP addresses of the analysis

machines. We then elaborate on VirMon’s dynamic analysis system components and

their features including the collection method of behavioral activities through kernel-

callbacks and network activities through designed network components. Following

that, we describe the procedure followed by VirMon to analyze a submitted file. Fi-

.. DISSERTATION OVERVIEW 

nally, we report the functional testing results about a mini-filter driver that we devel-

oped both on Windows  and on Windows  (the newest version of Windows).

Chapter : Runtime-Behavior based Malware Classification Using On-

line Machine Learning

Chapter  details the approach used to classify malware samples according to the

behavioral artifacts in dynamic analysis framework. After a general overview of the

proposed method, we provide the methodology employed for modeling a malware

sample based on runtime features. Especially, we present the system improvements

that we have done in order to analyze a large amount of samples in a short time. Then,

we present online learning and its main advantages leveraged in this thesis. Further-

more, we elaborate on state-of-the art online machine learning frameworks and mo-

tivate our choice of the Jubatus framework. Then we describe distributed machine

learning environment used in this work. Finally, we explain the online machine learn-

ing algorithms employed in our study.

Chapter : Evaluation

Chapter  evaluates a dynamic feature-based malware classification system, for ef-

ficiently classifying a large number of malware programs into their respective families.

First, we describe the malware dataset that we used in detail. Then, we define the eval-

uation metrics. Finally, we present and evaluate the obtained results. After describing

our approach, we describe an implementation and subsequently an evaluation using

malware samples and common applications.

Chapter : Conclusion & Future Work

Chapter  provides a summary of the contributions and objectives achieved in this

research. Moreover it presents some avenues for future work.

Chapter 
Background

This chapter defines basic terms and definitions in malware research and de-
scribes common types of malware in the wild. Section . gives the history of
malware evolution with special emphasis on game challengers type malware.
In Section . malware infection methods are presented. Then we present anti-
malware techniques used to evade malware analysis. Finally we present the state
of the art in malware analysis.

The term malware, short for malicious software, refers to a piece of software code

that works on any computer system for the attacker without knowledge of the

system owners. Malware has great popularity among cyber criminals since it offers

attractive income opportunities. This popularity makes malware an important threat

for the computing society. In this chapter, as malware research is an interdisciplinary

and complex research field, we define some important terms and concepts for the sake

of clarity.

. Common Types of Malware

There are various approaches to classify malware into certain categories according

to given characteristics such as propagation, infection, stealth, exfiltration, command

and control (C&C) or concealment techniques, the set of behavior exhibited during run

time on the operating system (OS). Furthermore, it is becoming increasingly difficult

to identify malware types since nowadays malware authors can easily reach the source

code of several malware samples and combine their functionalities to create new and

compact ones. Moreover, it is becoming increasingly popular for malware samples to



 CHAPTER . BACKGROUND

have an update mechanism for extending their capabilities. For example, one sam-

ple can extfiltrate user’s credit card information and credentials meanwhile adding a

plugin in order to gain system level authority on OS. Interested readers can look at

an example to impersonate user tokens after successful exploitation with meterpreter
agent [].

Even though there is no general consensus on malware taxonomy, the common

malware types and their purposes can be briefly described as follows.

.. Virus

A virus is a program that needs another program to activate itself. It can replicate

itself but generally does not pursue any goal related to network activities, such as

infect another host, exfiltrate information from infected machine, etc. Some viruses

are written to corrupt the OS or make very harmful activities on the OS while others

are harmless and written for personal reputation. As viruses are the oldest malicious

program, nowadays most people use the virus term to indicate any type of malware.

Because of the common usage of viruses among people, popular security companies

prefer to name their products with virus term, e.g. Virustotal.

.. Worm

A worm is a software that runs autonomously; no host program is needed to launch

it (e.g. without direct human interaction). A worm has the ability to reproduce itself

via computer networks by:

• exploiting vulnerabilities builtin OS services as well as third-party network ser-

vices,

• social engineering; tricking users into performing the willing actions such as fill-

ing and sending user credentials in fake website, opening malicious attached file,

etc.,

• leveraging misconfiguration of the network applications (web server, file shar-

ing),

• brute force attack with default username and password pairs.

Since the propagation of worms happens silently in the background, the victim is

typically not aware of the infection. In most cases, worms have malicious payloads

executed just after the infection phase. Conficker, also known as Kido, is one of the

.. COMMON TYPES OF MALWARE 

most famous worm in the computer history and targeting Microsoft Windows OS. The

very first sample of Conficker was detected in October  and infected millions of

computers all around the world. Conficker exploits a vulnerability of network ser-

vices located built-in Windows OS including all versions from Windows  to Win-

dows Server  OSs to propagate through the Internet. This vulnerability, named

MS_ [], allows an attacker to execute remote code, thus taking control of the

computer remotely.

.. Trojan

A trojan is any program that seems very useful for users and encourages them to

install. Indeed, however, this program also contains hidden malicious payload which

may take effect after execution and can lead to many undesirable results. Since the

program works correctly, it is very difficult for an ordinary computer user to figure out

the effects of the program. Today’s trojans have very advanced features from taking

complete control of OS including all processes to capturing all key strokes.

For instance, Poison Ivy [] is a well known trojan that gives the attacker full

control the infected user’s computer. Poison Ivy was first detected in  and is also

known as remote access trojan (RAT). As Poison Ivy RAT can be found easily in the

Internet, it was used in many cyber attacks including the RSA SecurID data breach in

 [, ] and stealing secrets from the chemical industry in USA []. Once trojan

is activated, it can perform key logging, capture screen shot, record video through

camera, sniffing network for critical information, and so on.

.. Backdoor

A backdoor is an application allowing an attacker to connect to the computer, by-

passing the security mechanism of the system with some secret methods hidden in

the software. Backdoors provide the attacker with a remote shell (cmd.exe, bash, or

special console) on the system to control system remotely. Hackers commonly use

backdoors to hide their existence on the system after compromising the system. Be-

sides that, technical support teams sometimes use backdoors for providing help to

computer users.

c.php [] is one of the most popular PHP backdoor used for web-based at-

tacks [, ]. Once c.php file is uploaded on the system, the attacker obtains com-

plete access on database and sensitive directory which is accessible by the user of web

server, e.g. apache user. Moreover, c.php comes up with some default commands,

like privilege escalation to gain root access on the system.

 CHAPTER . BACKGROUND

.. Adware

An adware or advertising-supported software is any software which records user’s

information such as visited websites, purchased products from web, web search queries,

etc., for advertisement purposes. Generally, adwares are integrated into the legitimate

software by developers to recover their development costs by selling user’s shopping

habits to the related companies or showing commercial advertisements. Usually ad-

wares change the preferred home page and search engine to different sites that make

money. If the user knows and confirms this process, this type of software can not be

named as malware by definition.

In February , at the time of writing this thesis, a pretty shocking adware sam-

ple came to light. Lenovo, one of the biggest computer manufacturer has shipped

some of the computer with pre-installed adware that compromises all secure connec-

tions (SSL traffic) through its trusted root certificate [, ]. Even more interestingly,

this certificate employs a deprecated version of SHA that can easily be cracked by

hackers (interested readers can refer to []). The pre-installed adware, called Super-

fish is also capable of hijacking legitimate connections, inject advertising in web pages

and monitoring user activity.

.. Botnet

A botnet is a term used to refer a software that remotely controls collection of com-

promised computers on behalf of attacker. These computers connect to command &

control (C&C) servers by different means of communication protocols such as IRC,

HTTP/HTTPS or peer-to-peer and then wait for commands to execute. Botnets are

generally used to carry out distributed denial-of-service (DDoS) attacks. Moreover, at-

tackers can take advantage of botnet to steal private data from infected machine, to

send spam e-mail, to launch additional attacks, etc.

Zeus/Zbot [, ] is probably the most famous botnet ever discovered and has

been employed from  to today in many financial cyber attacks. Zeus mainly tar-

gets banking information of the compromised computer such as credit card numbers

and bank account credentials. In , after the source code of the Zeus was leaked

on the Internet, the number of Zeus variants has dramatically exploded.

.. Spyware

A spyware is computer software that covertly collects personal information without

user’s informed consent. A spyware generally has the ability to log keystrokes, record

.. COMMON TYPES OF MALWARE 

web history, enumerate username and passwords, scan sensitive documents on the

hard disk, etc.

Flame [, ], also known as Skywiper, is one of the most complicated spyware

first discovered in May  and designed to perform espionage activities in Middle

East counties including Iran, Syria, Lebanon, etc. Flame consists of multiple complex

plugins which enable itself to steal sensitive information and is conjectured that it was

not detected for  years. Moreover, Flame has worm capabilities which allows it to

infect other computers on the network by exploiting network services.

.. Rootkits

A rootkit is a software designed to hide the existence of certain files, network con-

nections, or processes from computer user by modifying OS settings, mechanisms or

structures in order to avoid detection and stay concealed. For example, a rootkit can

prevent a process from being visible by the tasklist tool in Windows. Convention-

ally, rootkits come up with backdoor functionality to access the infected computer

remotely.

In , Sony BMG Music Entertainment company used a software, named XCP

(Extended Copy Protection), to enable copy protection on CDs. Soon after the release

of XCP Mark Russinovich published an article describing his first findings about XCP

in his blog []. Russinovich disclosed that XCP has a rootkit component to hide its

existence in the system and also noted that the End User License Agreement(EULA)

does not mention this feature. Even worse the software leads exploitable security vul-

nerability and does not support uninstallation. Following that, Sony quickly released

an uninstaller to remove the rootkit component of XCP. However, this did not prevent

Sony from paying thousands of dollars in penalties.

.. Ransomware

A ransomware(or simply ransom) is a software used to restrain the user from ac-

cessing computer resources and demands a ransom to release restriction. Some of the

ransom encrypt important files on the system while others change password or lock

the computer system.

CryptoLocker [, ] is one of the famous ransom type malware targeting Win-

dows OS all around the world. CryptoLocker spreads by tricking users into executing

a file attachment in fishing e-mail. Once the user opens the attached file, CryptoLocker

activates itself and encrypt sensitive documents located on all hard drives of the sys-

tem by using the RSA encryption algorithm. After encryption, CryptoLocker translates

 CHAPTER . BACKGROUND

its private key to the attacker to request a ransom from users of the infected system.

. A Quick Look at the History of Malware

Since the creation of the first malware, security researchers have been continuously

combating with malware. In this section we will highlight the history and evolution of

malware and specify the most important ones.

In the literature, history of malware is split into several periods [, ]. However,

generally, the malware evolution can be considered in three phases as shown in Fig-

ure .. In the first age, malware was created for proof-of-concept. Then in the middle

age, as the Internet become popular, malware is developed for fun and personal repu-

tation. Finally, in the new age, malware was made mainly for financial gain, espionage

and sabotage.

Figure .: Evolution of malware

.. A QUICK LOOK AT THE HISTORY OF MALWARE 

 - Definition of self-reproducing automata
John von Neumann, has explored and gave lectures about the theory and orga-

nization of complicated automata since . In , he published a paper

called "Theory of self-reproducing automata" [] pointing out that a computer

program could reproduce itself.

 - "Creeper": the first computer worm
Bob Thomas wrote a proof of concept program that self-replicate it-self and

spreads across the network called the ARPANET, the Internet’s ancestor. Once

it infects the system, it displays the message "I’m the creeper, catch me if you

can!".

 - "Wabbit" : the first DoS software
The Wabbit makes incessant copies of itself at high rate that causes the computer

to crash because of the overloading.

 - Introduction of the term virus
While carrying out his dissertation, Frederick Cohen, computer scientist, defines

the term virus as: "We define a computer ‘virus’ as a program that can ‘infect’

other programs by modifying them to include a possibly evolved copy of itself."

[, ].

 - "Brain" - the fist PC-based virus
The first virus for MS-DOS, Brain, was written by two brothers in Pakistan. Brain

is a harmless boot sector virus, infecting the first sector of floppies as they are

inserted into an infected computer. Interestingly, two brothers inserted their

company name (named as  Brain & Amjads (pvt) Ltd.), address and phone

number into Brain’s source-code.

 - "Cascade" - the first self-encrypting virus
Cascade is the first self-encyting virus, infecting COM files and displaying text

falling down on the screen. Cascade led IBM to develop its own anti-virus prod-

uct.

 - "Michelangelo" - Hard disk eraser
The Michelangelo virus was designed to run on March th; the Italian Renais-

sance artist Michelangelo’s birthday. Once it activates, it erases a computer’s

hard disk and causes it to crash.

 - "Concept" - The first document virus
Concept is the first document or macro virus targeting Microsoft Word. Concept

 CHAPTER . BACKGROUND

spreads by exploiting the macros in documents.

 - "Iloveyou" - the most successful e-mail virus
The virus was distributed in an email with "I love you" subject containing a ma-

licious attached file. If this attachment is opened, it automatically infects the

computer and transfers itself to the user’s contacts. Then, this virus downloads

and executes additional software from the Internet.

 - "Cabir" the first Symbian OS virus
Cabir is the first mobile phone malware targeting Symbian OS. Cabir spreads via

a Bluetooth connection and displays the message "Caribe" on the phone’s screen.

Cabir does not perform any malicious activity on the device but causes the bat-

tery of the phone quickly run out because it activates the Bluetooth module to

spread to other cell phones.

 - "Sony Rootkit" the first rootkit
Sony BMG developed a software to protect copyright of their CDs. Basically, this

software hides some files so that users could not duplicate them. This software

is not only illegal but also potentially harmful because it contains vulnerabilities

allowing attackers to infect the computer.

 - Conficker
Conficker is a computer worm targeting the Microsoft Windows OS that first

started spreading in November . Conficker uses security flaws in the SMB

service allowing arbitrary remote code execution and brute force technique crack-

ing weak passwords of admin account to propagate. The Conficker worm in-

fected millions of personal computers, as well as government and business com-

puters all over the world.

 - Operation Aurora
Operation Aurora is a highly sophisticated attack targeting dozens of IT giants

such as Google, Yahoo, Juniper Networks, Adobe Systems. It employs a drive-by-

download attack to infect computers. To this end, malware authors uses a -day

(unknown) Internet Explorer vulnerability as an entry point into the systems.

 - Miniduke
The Miniduke campaign is an advanced persistent threat, that uses a zero-day

exploit located in Adobe Reader to infect targeted government and corporate

organizations in Europe. The malware empolyed in the Miniduke campaign fo-

cuses on espionage and data-stealing activities and has better defenses against

security tools, e.g. anti-viruses.

.. MALWARE INFECTION METHODS 

 - Operation Cleaver
Operation Cleaver is a hacking campaign targeting critical industries and orga-

nizations such as military, oil and gas, airlines, hospitals, etc. around the world.

Operation Cleaver is generally believed to be planned and executed by Iran for

retaliation to Stuxnet, Duqu and Flame.

. Malware Infection Methods

In this section, we look at infection methods used by malware authors to invade

systems. These methods are constantly evolving by adapting new techniques, finding

new weaknesses of users and computer systems, and avoiding defense mechanism.

The infection methods can be mainly split into the flowing groups:

• Exploiting Vulnerabilities

• Social Engineering

• Configuration Issues

.. Exploiting Vulnerabilities

Generally, today’s malware authors equip their malware with exploit components

to take advantage of the weaknesses of an application (e.g. bugs). These applications

can be split into two categories:

Client-side: Common end-user software like web browsers, PDF readers, document

editors, run-time environments which do not bind a port to listen incoming re-

quests are named client-side applications. The attacker creates a file to exploit

vulnerabilities of the client-application. Once the user opens the file, his com-

puter covertly infects.

Server-side: Server applications bind to a port to be accessed remotely. In this case,

there is no need to interact with the user’s computer. This malware directly ac-

cesses and exploits vulnerabilities. These types of vulnerabilities can be found in

the implementation of web, DNS, database servers and so on.

Drive-by-download is an attack targeting vulnerabilities of web browsers or web

application plugins which refers to the unintentional download of malware into a com-

puting system [, , ]. To infect through a drive-by-download attack, it is enough

to visit a web page. After visiting a malicious web page, the computer downloads and

 CHAPTER . BACKGROUND

%

%

%

Medium
High
Low

(a) By severity

%

%

%

Application
OS
Hardware

(b) By product type

Figure .: Vulnerability distribution in  [].

executes a software without noticing. The initial downloaded software is generally

small whose job is to download additional content or executable into computer. This

software is named downloader or dropper.

In , a highly sophisticated attack, named as Operation Aurora [, ], which

aimed at stealing intellectual properties of dozens of the giant company such as Google,

Yahoo, Juniper Networks, Adobe Systems, employed drive-by-download attack vector

to infect computers. To this end, malware authors use a -day (unknown) Internet

Explorer vulnerability as an entry point into systems. Once the victim visited the pre-

viously poisoned web pages of the known web site (known as a watering hole attack),

his computer gets infected without notice.

Currently, hackers try to find -day vulnerabilities ("-day exploits", or just "-
days"), exploitable vulnerabilities that the software developer is not aware of and for

which no patch is available for the time being. Zero-days are more desirable than any

other vulnerabilities for hackers since everyone is vulnerable. Consequently, -days

are generally used for highly advanced targeted attacks and sold on the black market

with good price. Table . shows a price list for some -days on the black market.

For instance, in April , a security flaw was found in the OpenSSL library which

is actively used in any encrypted application such as mail servers, VPN end-point, web

servers. This security vulnerability allows attackers to steal any information located

into application’s memory; passwords, private-keys, mail attachments and much more.

Moreover, the heart-bleed vulnerability affects client applications. []
Indeed, the main reason for the OpenSSL vulnerability is trusting user input. An

attacker can trick OpenSSL into allocating a KB buffer, copy more bytes than is

necessary into the buffer, send that buffer back to the attacker. Thus in each request,

.. MALWARE INFECTION METHODS 

Table .: Prices of Some -day Vulnerabilities, []

Target Software or OS Price Year

Vista $, 
Adobe Reader $, - $, 
Android $, - $, 
Chrome or Internet Explorer $, - $, 
Firefox or Safari $, - $, 
Flash or Java Browser Plug-ins $, - $, 
iOS $, - $, 
Mac OSX $, - $, 
Microsoft Word $, - $, 
Windows $, - $, 

the attacker leaks  KB of content from the application’s memory. This vulnerability

has existed in the wild since OpenSSL version .., which was released in March .
[]

.. Social Engineering

The attackers do not always use advanced hacking methods or tools to hack into

computer. They also use human factor to bypass security measures to achieve their

bad intentions. In the context of information security, this type of attack is called

social engineering. More formally, social engineering is the art of manipulating people

into performing some actions that the attacker wants. Social engineering attacks can

be divided into two main categories:

Human-based: In human-based scenarios, the attacker directly interacts with hu-

mans, such as calling him as an important person or technical support to retrieve

information or download and execute some software to user.

Computer-based: Contrary to human-based scenarios, in computer-based scenarios,

attackers do not directly interact the victim. Instead they use digital methods to

achieve their goals. For example, sending a phishing e-mail to harvest user cre-

dentials, sending malicious attachments in order to get access into victim com-

puter.

Sometimes, social engineering attacks may be very diverse and complicated to un-

derstand. Kevin D. Mitnick, one of the most famous hackers, shares some of his hacks

by using social engineering methods []. Interested readers can also refer to [, ].

 CHAPTER . BACKGROUND

To attack restricted networks, cyber criminals generally employ removable drives,

especially USB sticks. Cyber criminals add malicious content into USB sticks. This

malware is directly activated by the auto-run feature provided by Microsoft Windows.

On the other hand, even if the user disabled auto-run functionality, an attacker might

use removable media with related exploits to hack into the computer. For example

Stuxnet [] uses such kind of -day exploit [] to install itself into a victim’s computer.

.. Misconfiguration

When an application does not include any security bugs, it does not mean it is not

exploitable. Many applications come with a bunch of options and when not configured

appropriately, these options provide a mean for malware to take control of the systems.

Besides that, a malware can log into a system with default installation user names and

passwords. All of these misconfigurations allow the attacker unauthorized access to

sensitive information.

For example, if a Tomcat manager application is installed with default settings,

an attacker can upload a Web application ARchive (WAR)which contains malicious

payload that allows the attacker to gain access to the system [, ].

. Hacker Utilities

In the past, cybercriminals created malware from scratch but today they utilize

highly skilled attack kits; also known as crimeware. With attack kits, cybercriminals

can easily and automatically launch attacks that infect victim’s computer in order to

perform their own malicious aims. Some of these toolkits are free, open source, and

others are sold in the Internet. In this section, we briefly mention current hacker utili-

ties heavily used to compromise targeted users, computers or networks.

.. Exploit Kits

An exploit kit, or exploit pack, is a toolkit used by attackers to automate the mal-

ware infection process by exploiting client-side applications, especially web browsers

and their plugins (e.g. Flash, Java, and PDF). These tool kits play an important role in

malware distribution and generally are traded in the online black market- website or

forum to advertise malicious software & service, stolen data, etc. As exploit kits are

easy to setup and use, there is no need to be an expert hacker to launch an attack.

Exploit kits contain a set of exploits and according to user’s web browser version

they choose the best one to deliver drive-by-download attack. Beyond hacking capa-

.. HACKER UTILITIES 

bilities which include malware creation and distribution, exploit kits are also capable

of managing compromised host by using their command and control servers. Once the

machine is infected, it reports back to C&C server and takes commands to execute.

Typically, the interaction between exploit pack and a victim can be summarized as

follows:

• Attraction is the phase in which attackers lure the victim into connecting with

the exploit kit. This phase is generally carried out by using spam mail, search

engine poisoning [, , ] and infecting legitimate site with malicious links

that redirect victims to the exploit pact.

• Fingerprinting is the phase in which exploit pack performs reconnaissance against

version of the victim’s web browser and plug-ings, operating system and IP ad-

dress of the victim.

• Exploitation is the phase in which exploit kit chooses the most appropriate ex-

ploit code and delivers it to the victim to execute. Once the client application is

exploited, it gets additional payloads from exploit pack or its C&C server.

• Persitence is the phase in which exploit kit installs auxiliary modules to hide

itself and provides persistence access to the victim.

Currently, there is bunch of exploit kits in the wild. Some of the well known exploit

kits and their prices are depicted in Table ..

Table .: The Most Used Exploit Kits and Their Prices

Exploit Kit Price Release Year

Mpack [, ] $, 
Blackhole (v..) [, ] $/three months or $/year 
Gpack [] $, - $, 
Styx exploit pack [, ] $, / month 
Cool (+ crypter + payload)[] $, / month 
Sakura [] $- / month 

According to the  Internet Security Threat Report by Symantec [], Go Pack

had a share in % of all Web-based attacks in , closely followed by updated

version of Black hole exploit kit with %. Another exploit kit is Sakura which took

% of overall kit usage in . The next  in the top  kits in  are Styx (%)

are Coolkit (%). (See Figure .)

 CHAPTER . BACKGROUND

%%

%

%
%

%

Others
Go pack
Black hole
Sakura
Styx
Cool kit

Figure .: Top Exploit Kits in  [].

.. Remote Access Tools (RAT)

As stated before, Remote Administration Tool (or Remote Access Trojan) (RAT) is a

software aimed at remotely controlling the hacked system. Typically, RAT has ability

to capture screen shot, video and keystrokes, sniff network traffic and other malicious

actions to theft all safety critical information of the infected system. Though RAT

provides technically advanced feature, the user does not have to know background in

depth instead they just use graphical user interface to manage infected remote host.

According to Dell Secure Work report on underground hacking market [], the

RAT in  is getting cheaper when compared to the prices in . According the

report darkcomet, blackshades, cybergate, predator pain, Dark DDoser are the most

popular RAT along the hacker community and they are sold between $ and $.
Additionally, there are some RATs whose source code were leaked to the community

such as CrypterShear, Stewart, Poison Ivy, etc.

.. Metasploit Framework

The Metasploit Framework [] is an open source project that allows hackers to

create and deploy malware equipped with publicly available security vulnerabilities.

Metasploit Framework is generally used in penetration testing to asses an organiza-

tion’s network security capacities. To be more precise, it allows scanning target sys-

tems, identifying security vulnerabilities and finally exploit them.

Besides that, Metasploit has the world’s largest database of exploits - offers more

than , stable exploits, for local and remote vulnerabilities. Typically, once at-

tacker successfully penetrates into the computer, metasploit framework installs its ad-

vanced well-known agent, called meterpreter. This remote shell allows to exfiltrate

.. HACKER UTILITIES 

confidential information like dumped local users password, migrate into stable pro-

cess, install additional software, escalate user privileges, pivot onto other systems etc.

Metasploit also supplies automated malware creation functionality as well as build-

in obfuscation techniques. To create malicious trojan which enables remote access to

the victim computer, one can use msfpayload module by choosing the appropriate

payload type. Furthermore, the metsaploit framework supports (called msfencode)

different obfuscation modules to easily evade anti-virus solutions. Metasploit offers

the following options for malware developers:

• Generating binary and shellcode - a small piece of machine code generally em-

bedded into the malware to start remote shell.

• Exploiting server and client side vulnerabilities and integrating these exploits

into malware sample.

• Bypassing anti-malware solutions, for example exploit framework encodes mal-

ware sample to hide from anti-viruses or uses encrypted channels to commu-

nicate with the target in order to bypass network-based solutions IPS, IDS and

firewall.

• Automatically running post-exploitation attack vectors.

• Creating multiple listeners to command the victim machine.

As open-source version of metaploit is console-based software and contains lots of

modules and tools the user needs to know some basic computer, networking and hack-

ing terms and internal structure of metasploit. The usage details and the advanced

features of the metasploit framework are mentioned in [, ].

.. Social Engineering Toolkit

The Social-Engineer Toolkit (SET) [, ] is an open source project aimed at launch-

ing social engineering based attacks. Since it provides menu driven user interface, an

end-user can use and launch technically sophisticated attacks without facing any dif-

ficulty. However, if the attacker needs to create more reliable and advanced attacks,

he has to configure its parameters and install some dependencies. [] describes the

available SET parameters and their aims.

It is important to note that SET attack vector heavily depends on the Metasploit

framework which furnishes automatic payload generation and listener setup. SET in-

cludes different attack vectors to exploit human as the weakest link of the information

system. The main attack vectors provided by SET framework is as follows:

 CHAPTER . BACKGROUND

• E-mail Based Attack: Creating fake e-mail messages to deceive the victim into

performing the requested actions in the e-mail body such as opening malicious

attached file which contains an exploit capable of hacking the victim computer.

• Web Based Attack: SET provides various web-hacking based social engineering

attack vector. One of the most known and used is Java applet attack. In this

attack, SET clones a legal web site into local file system and serves this fake web-

site. If the victim browses that page and accepts the execution of the malicious

applet his computer will be immediately hacked. Furthermore, SET creates fake

web pages which include different browser exploit allowing drive-by-download

attack.

• Malicious Media Generator: SET framework can also produce malicious storage

media such as CD/DVD and USB. Once the victim plugs these devices into his

computer, the autorun feature of the Windows OS for storage devices executes

the malevolent payload.

. Anti-Malware Analysis Techniques

Malware authors have been employing more and more anti-malware analysis tricks

and techniques to overwhelm automatic analysis attempts and to make the malware

analysis process too slow and tedious for manual analysis. In this way, malware is

becoming more smart and adaptive to survive. These techniques fall into several cat-

egories and employ various tricks. In this section, the common anti-malware analysis

techniques are described in detail.

.. Code Obfuscation Techniques

In the context of software development, obfuscation is a way that makes software

harder to reverse engineer. To this end, these techniques transform a given program

to a different form while preserving its functionality. Initially, these methods were

developed to cope with violation of the intellectual property of software products.

However, today they have been extremely used by malware creators to evade from

detection of anti-virus scanner. In this section, the common obfuscation techniques

are briefly described. The details can be found in [, , , ].

Garbage Code Insertion: Malware authors can insert redundant and useless instruc-

tion or code to change its binary content without loosing its main functionality.

For example, adding NOP (no operation) instructions into different portion of

.. ANTI-MALWARE ANALYSIS TECHNIQUES 

the code is the first thing coming to mind. On the other hand, a programmer

calls useless blocks of code and then roll variables, conditions and registers back

to the initial positions.

Instruction Replacement: This method substitutes predefined instructions with equiv-

alent instructions. For example, to clear eax register, malware authors can use

one of the following options.

mov eax , 
xor eax , eax

and eax , 
sub eax , eax

Listing .: Alternatives for cleaning eax register

Instruction Permutation: If two successive instructions and their parameters are in-

dependent, it is programmatically possible to reorder them without having any

impact on program’s behavior.

Code Transposition: This technique reorders the blocks of code by using different

flow changing mechanism while preserving the behavior of program. It may be

done at the level of instructions or modules.

.. Anti-Virtual Machine Techniques

Today, both system administrators and users prefer VMs because it is easy to re-

build a machine from a snapshot. Following this preference, malware authors realized

that virtualization technology is used to dissect malicious executables, and they started

to obfuscate their source code with anti-virtual machine tricks. With these techniques,

a malware attempts to detect whether it is being run inside a virtual machine or on

a real machine. If the virtual machine is detected, the malware can act differently or

simply do not run. Issues with reliability and incomplete test information may mis-

lead the analyst. Since Vmware is the most used virtualization platform, this section

focuses on anti-VMware evasion techniques. However, these techniques can be applied

on other virtualization platform like Virtualbox.

... Hardware Fingerprinting

Hardware fingerprinting consists in looking for special virtualized hardware pat-

tern unique to virtual machines. For example, the MAC address of the network card,

specific hardware controllers, BIOS, graphic card, and so on. These hardwares have

 CHAPTER . BACKGROUND

some special names that help to identify virtual machines. Fingerprinting can be car-

ried out using Windows Management Instrumentation (WMI) classes and APIs [].
The following WMI command, which is executed in powershell, gives the BIOS details

of real and virtual machine, (see Figure .).

Figure .: BIOS card details: WMI in real and virtual OS, [].

... Registry Check

The registry is a centralized, hierarchical database for application and system con-

figuration in Windows operating system. Access to the registry is assured through

registry keys, which are analogous to file system directories. In registry system, a key

can contain other keys or key/value pairs, where the key/value pairs are analogous

to directory names and file names. Each value under a key has a name, and for each

key/value pair, corresponding data can be accessed and modified.

The user or administrator can view and edit the registry content through the reg-

istry editor, for example using the built-in regedit command in Windows OS. Alterna-

tively, programs can manage the registry through the Windows registry API functions.

The registry is stored hierarchically in key/value pairs and contains the following:

• windows version number, build number, and registered users,

• similar information for every properly installed application,

• the computer’s processor type, number of processors, memory, and so on,

• security information such as user password policies, log-in type, file/directory

access, etc.,

.. ANTI-MALWARE ANALYSIS TECHNIQUES 

• installed services.

Since the registry includes such a big database, it definitely holds virtual machine

specific key/value pair. Based on this information, Tobias Klein’ s tool ScoopyNG (see

for instance []) introduced a proof-of-concept code searching for certain keys within

the Windows registry to determine whether the machine is virtual or not. For example,

some special registry values for VMware machine are highlighted in Figure ..

Figure .: VMware specific registry keys on a VMware machine

... Memory Check

This technique involves looking at the values of specific memory locations after

the execution of instructions such as SIDT (Store Interrupt Descriptor Table), SLDT

(Store Local Descriptor Table), SGDT (Store Global Descriptor Table), or STR (Store

Task Register). Actually, most of the malwares with VM detection capability use this

technique, which is based on the fact that any machine, whether it is virtual or not,

needs its own instance of some registers [, ]. Systems such as VMware create

dedicated registers for each virtual machine. These registers have different addresses

than the one used by the host system, and by checking the value of these addresses, the

virtual systems’ existence can be detected. A snap code for this technique are given in

Listing .. However, this technique succeeds only on a single-processor machine and

is not compatible for multicore processors.

i n t swal low_redpi l l () {

unsigned char m[+] , r p i l l [] = " \ xf \x\xd\x\x\x\x\ xc " ;

 CHAPTER . BACKGROUND

* ((unsigned *)&r p i l l []) = (unsigned)m;

((void (*) ())&r p i l l) () ;

return (m[] >xd) ?  :  ;

}

Listing .: Snap Code of Red Pill Technique []

... VMware Communication Channel Check

Ken Kato discovered the presence of a host-guest communication channel in

VMware so called backdoor Input/Output (I/O) port. VMware uses the I/O port

x (’VX’ in ASCII) to communicate with the host machine. For the interested

readers, justifications are available in [].

There are more commands supported by the backdoor I/O port, such as to obtain

data from the Windows clipboard or the speed the microprocessor in the unit of MHz.

An example of extracting the VMware version of the virtual machine by using VMware

I/O backdoor is given in Listing .. The most common commands are displayed in

Figure .. A detailed documentation is available on [].

 # def ine MAGIC xd // VMware backdoor magic value = "VMXh"

 # def ine PORT x // VMware backdoor I /O port = "VX"

 # def ine GETVERSION xa // Get VMware vers ion command id = 


 __try {

 __asm {

 mov eax , MAGIC;

 mov ecx , GETVERSION ;

 mov dx , PORT;

 in eax , dx ;

 mov test_vmware , ebx

 }

 }

 __except (EXCEPTION_EXECUTE_HANDLER) { ; }



 i f (test_vmware == ’VMXh’)

 p r i n t f ("VMware Detected ! ! ! \ n") ;

 e l s e

 p r i n t f ("VMware not Detected . . . \ n") ;

Listing .: Assembly Code to Detect VMware Machine by looking VMware I/O Port

.. ANTI-MALWARE ANALYSIS TECHNIQUES 

Figure .: VMware I/O Backdoor’s Main Functionalities

... File & Process Check

The VMware environment creates many artifacts on the system. Many VMware

specific processes continuously run on the background. Besides that, there are some

VMware specific files and folders. Malwares can use these artifacts, which are present

in the file system and process listing, to detect VMware. For example, when VMware

tools are installed in the guest Windows machine, three VMware processes (e.g.,

VMwareService.exe, VMwareTray.exe, and VMwareUser.exe) run on the background

by default. Malware can detect these processes while searching the process listing for

the VMware string. In addition, VMwareService.exe runs the VMware Tools Service as

a child of services.exe. VMware can be detected by searching the registry for services

installed on a machine or by listing services using the "tasklist" or "net start" com-

mand (see for instance the output of the tasklist command executed in the VMware,

Figure .).

The VMware installation directory (default path C:\Program

Files\VMware\VMware Tools) may also contain artifacts. A quick search for

“VMware” in a virtual machine’s file system may help to find clues about the existence

of the VMware image.

Figure .: Searching VMware Processes in Process List

 CHAPTER . BACKGROUND

.. Anti-debugging

In the context of software development, a debugger is a tool used to detect errors

in the code. In the field of malware analysis, debuggers are used to reverse-engineer

malware samples and figure out sample’s behavior. Since debugging is very benefi-

cial against malware, malware writers employ anti-debugging techniques to hinder

debuggers.

Anti-debugging techniques can be divided into four categories:

• API calls: Several Windows API functions provides functions to determine if the

executable executed by a debugger.

• Flags: To stop execution of malware to the specified position, debuggers use

flags. Thus attackers take advantage of these flags to figure out the existence of a

debugger.

• Execution time: Since debuggers run malware step by step, execution time of a

sample takes longer. Consequently, malware authors can use execution time of

the malware to skip detection.

• Debugger vulnerabilities: To prevent debugging, malware authors sometimes

modify executable headers which crash debuggers because of their executable

parsing vulnerabilities .

Table . lists and shortly explains the anti-debugging techniques. Details about

each technique can be found in [, , , ].

.. Anti-Disassembly Techniques

In malware analysis terminology, disassembly refers to the process of understand-

ing software source code either by obtaining its pure code or by obtaining assem-

bly equivalent. These tools are called disassembler and widely used by malware re-

searchers while performing manual analysis to grasp malicious methods behind mal-

ware sample. Contrarily, malware authors employ anti-disassembly techniques to slow

and to complicate the analysis of malware.

Essentially, anti-disassembly techniques add special form of code or data into a

program which leads disassemblers to produce incorrect output. Indeed, the main

reason of this failure comes from predefined assumptions in disassembly algorithms

and malware authors take advantage of these assumptions to deceive these tools. Also,

there are more advanced techniques e.g. modifying the data and code section of the

executable file to thwart analysis.

.. ANTI-MALWARE ANALYSIS TECHNIQUES 

Table .: Commonly used anti-debugging techniques and their categories

Category Method

API IsDebuggerPresent
CheckRemoteDebuggerPresent
NtQueryInformationProcess
ZwQueryInformationProcess
OutputDebugString
FindWindow

Flag BeingDebugged flags
Ntglobal flags
Heap flag

Timing RDTSC
QueryPerformanceCounter & GetTickCount
Inserting INT  (Interrupt)

Debugger Vulnerabilities OutputDebugString (OllyDbg)

.. Packing

Packing or executable packing is another obfuscation method. This method com-

presses original files which in turn embedded into a new executable along with decom-

pression stub. This type of software is called packer. Packing procedure is illustrated

in Figure .. When the compressed file is executed, the decompression stub auto-

matically extracts the executable file and runs it without noticing the computer user.

Since packing leads malware to hinder detection of security tools especially signature-

based and obstruct reverse engineering attempts, it has become very popular among

malware authors. According to AV-Test Corporation, malware authors employ packing

techniques in % of malware detected by anti-virus vendors [].

Beyond compression, packers can include anti-debugging, anti-disassembly, anti-

virtual machine and encryption components. Compared to other anti-analysis tech-

niques, packers are compact form which provide a significant amount of features in-

stantaneously. Moreover, they are easy to use. As a consequence, malware authors

prefer packing techniques to bypass analysis attempts. UPX, AsPack, NullSoft, PE

Compact, Themida are the well known packers used by malware writers. Malware

researchers have explored different methods and techniques to detect, unpacked and

analyze compressed executable [, , , , , ].

 CHAPTER . BACKGROUND

Figure .: Packed executable file format

. State-of-the Art Malware Analysis Methods

Malware analysis is the process of examining and dissecting malicious software to

explore and reveal its functionality and objectives. Besides that, it aims at identify-

ing malware spreading mechanisms in order to stop its malicious activity. Currently,

the first options in the detection of malicious software is anti-virus tools which use

signatures to catch malware and remove them from the system. Indeed, signatures

are simply byte sequences or patterns extracted from analyzed file and vulnerable to

obfuscation techniques covered in the previous section.

Malware researchers have explored different techniques to detect and mitigate

threats coming from malware samples in arm race with malware authors. These tech-

niques can be divided into the three categories which are introduced in following sec-

tions (see Figure .).

• Static Analysis: Static analysis involves extracting static information (strings,

import functions, meta-data, etc.) from binary file to analyze and deduce sam-

ple’s harmfulness.

• Dynamic Analysis: Dynamic analysis refers to the process of executing malware

in a controlled environment and monitoring its run-time activities on the host

system.

• Manuel Analysis: The process of manually reversing the malware source code

by using debuggers, disassemblers and other tools.

.. STATE-OF-THE ART MALWARE ANALYSIS METHODS 

Figure .: Malware analysis pyramid

.. Static Analysis

Static analysis consists in examining a binary file without running it on the sys-

tem. Since the source code is not available, malware is disassembled and the created

execution paths are analyzed. In static analysis, researchers firstly check possible func-

tionalities of the sample, then create simple network signatures based on the gathered

information and finally determine sample’s maliciousness. The first step of static anal-

ysis consists of looking for obvious indicators of malicious software. This step is sim-

ilar to the analysis procedure in traditional antivirus where file fingerprint (usually

file hashes e.g. MD, SHA) is calculated and matched with an already-known mal-

ware. The second step is the deep file analysis where the file format and content is

investigated. The following checks are applied:

File Unpacking: Packing of the file needs to be determined. If the file is packed be-

fore deep search, it has to be unpacked and pure executable needs to be obtained.

There are different packing methods to obfuscate malware but unpacking proce-

dures are highly sensitive to its former packer and obtaining pure executable

code is challenging. However, there are research efforts to create common un-

packer for different packers, [, , , ].

Plain Text Matching: The plain text embeded into the executable such as URL, do-

main name, IP address, output messages are checked and information about be-

ing malicious is gathered as much as possible. Generally, strings or grep utility

is used to explore plain text in the file.

 CHAPTER . BACKGROUND

Anti-Virus Scan: Scanning a given sample with anti-virus engines is the first step of

the malware analysis. Sometimes, AV-engines can cause false-positives results

meaning that AV-engines labels a sample as malware which is indeed a benign

file. Consequently, malware analysts need to be suspicious to that kind of mis-

takes and cross-check the result by different tools and solutions.

File Meta-data Analysis: By leveraging hidden meta-data of an executable, malware

analysists can obtain useful information that help them to draw a conclusion

about whether the analyzed file is malware. For example, portable executable

(PE) file format contains valuable information such as compilation time, exe-

cutable name, imported and exported functions, as well as executable sections

and sizes.

Disassembly: Disassembled code of the malicious file is used to detect malware sam-

ples by using the some statistical approaches like N-gram modeling.

Static malware analysis is fairly straightforward and fast. It ensures security and

safety of the computer systems due to its ability of detecting malicious file without

execution. But a trade-off exists between its simplicity and accuracy, static detection

scheme can be ineffective against sophisticated malware and may miss important ma-

licious behaviors [].
Aditionally, the obfuscation techniques introduced by malware authors (such as

polymorphism, metamorphism, compression, encryption, and run-time packing) ren-

der static analysis complicated, time consuming and almost impractical. Therefore,

malware researchers explored and developed dynamic analysis methods which are

more resistant to the obfuscation techniques.

.. Dynamic Analysis

Dynamic analysis techniques involve running a malware sample and observe its

behavior on the system. As the file under inspection is executed, dynamic analysis

evades the code obfuscation and packing techniques. Essentially, malware typically

has abilities to create or modify several OS resources on the compromised device to

fulfill its objectives. Accordingly, the dynamic analysis consists of monitoring the fol-

lowing behaviors:

Volatile Memory: Malware can overflow buffers and use the abandonned memory

locations to gain access to the device. By capturing and analyzing the device

memory, it is possible to determine how a malware uses the memory.

.. STATE-OF-THE ART MALWARE ANALYSIS METHODS 

Registry/Configuration Changes: Changes in the registry may be an evidence to-

wards dynamic analysis. Malware often changes registry values to gain persistent

access to the system.

File Activity: Malware may also add, alter, or delete files. Therefore, by monitoring

file activities, valuable information about the malicious behavior can be obtained.

Processes/Services: Malware may disable Anti-Virus (AV) engines to fulfill its func-

tions, jump to other processes to obstruct analysis or install new services to ob-

tain persistent access to system.

Network Connection: Monitoring network connections is the essential part of dy-

namic analysis to understand the malware’s existence. Destination IP address,

port number and protocol can be analyzed in order to detect malware’s interac-

tion with the command-and-control (C&C) server.

Sequence of API calls: Since API call sequence reflects the behavior of software, it is

very handy to model and represent a software with its API calls.

Observing of these behaviors can give valuable information about software’s inten-

tion, which is difficult to be gathered by other detection schemes. Further, another ad-

vantage is that dynamic analysis can be automated with developed framework. In this

way it enables large-scale of malware analysis. However, some limitations in detection

may occur due to evolving malware characteristics versus anti-dynamic analysis such

as anti-virtual machine and anti-debugging techniques.

... Overview of Existing Dynamic Analysis Techniques

Dynamic malware analysis is an active research topic. Several methods exist for au-

tomatically analyzing malicious software behaviors. These can be gathered into three

groups []:

• Difference-based: Analyze differences between two snapshots of the system, one

snapshot recorded before the malware execution and the other one after the exe-

cution of the file .

• Notification-based: Use notification mechanism about the operating system

calls triggered by certain events e.g., registry key changes, file/folder modifi-

cations.

• Hook-based: Hook APIs in user mode or kernel mode to track the changes ap-

plied to the system.

 CHAPTER . BACKGROUND

Most dynamic malware analysis tools such as Anubis [], CWSandbox [], and

Norman Sandbox [] monitor runtime actions performed by malwares. However,

Regshot [], which is used to detect file and registry changes, monitor these changes

by snapshotting the sensitive operating system components (e.g. files, folder, registry

keys, and so on).

Security mechanism of most sandboxes (e.g. CWSandbox, Anubis, and Cuckoo

Sandbox []), which are used for running untrusted or malicious programs in a safe

environment without risking real systems, present fairly similar approaches to reveal

the behavior of the malware. The common task of these tools includes a variety of

details on the malware, such as the network activity and the created files during its

runtime. These activities can be monitored through its user or kernel space functions.

Analyzing malicious software in user-space helps to obtain high level invoked func-

tions such as enumerating the active processes, finding locked files, and tracing net-

work connections. However, when working in user-space, hidden processes or connec-

tions, which are embedded in the kernel-space, can not be detected. To access hidden

information in the operating system, analysis tools must have a kernel-space module.

These modules need to use kernel space functions to gather hidden information from

the user. However, kernel-space analysis requires deep and solid knowledge of Win-

dows OS and it is really a difficult task.

As an alternative to kernel-space analysis, the process of intercepting function calls

is a frequently used technique to trace behaviors of the malware and flow of the ex-

ecutable logic. Most dynamic analysis framework such as CWSandbox [], BitBlaze

[] and TTANalyze [] (now called Anubis) use this technique which is so-called

API hooking. The concept of hooking is simple: the call made by an application to a

function can be redirected to a custom defined function. API hooking has to be trans-

parent and undetectable by the malware. In case a malware detects API hooking, it

may modify its behaviors or jobs in order to be hidden.

From the side of malware, API hooking trap may be avoided by calling undocu-

mented kernel functions directly instead of using API functions. But in case of using

kernel functions, the target set to be infected by malware will be limited by the systems

whose version of the operating system and service patch level are specified. This situa-

tion may create conflicts with the general intention of many malwares about infecting

large amount of computer systems.

Moreover, dynamic analysis tools can be grouped under two categories differenti-

ated by implementation platform: analysis in pure software emulator and analysis in

virtual machine.

.. STATE-OF-THE ART MALWARE ANALYSIS METHODS 

Analysis in Emulator

An emulator is a piece of software that simulates the hardware. A software emula-

tor does not execute code directly on the underlying hardware. Instead, instructions

are intercepted by the emulator, translated to a corresponding set of instructions for

the target platform and finally executed on the hardware.

For example, Qemu [] is an open source and full system emulator where the pro-

cessor and peripherals are emulated by a software. Anubis, Renovo [] and Hook-

finder [] use the Qemu emulator in order to analyze malware. However, emulator

technique is not a straight-forward solution to detect malware. As stated in [],
malware samples can detect the stage of emulation. For example, detecting imper-

fect emulation of CPU or execution time of the specific commands allows a malware

sample to recognize the situation about running in an emulator.

Analysis in a Virtual Machine

Virtualization involves simulating parts of a computer’s hardware while most oper-

ations still occur on the real hardware for efficiency reasons. Therefore, virtualization

is obviously faster compared to emulation. Virtual machines (VMs) also provide dedi-

cated resources like emulators. A snapshot of VM resources (i.e., virtual mass storage,

CPU, and memory contents) can be recorded for restoring purposes. This feature can

be used to reduce the time required to analyze a malware sample since installation

is not required to recreate a clean instance of the analysis environment. For exam-

ple, CWSandbox uses this technique for analyzing a malware candidate in a virtual

Windows environment.

... Limitations of Dynamic Analysis

Due to the evolving characteristics of malwares, methodologies based on dynamic

analysis may pose limitations in monitoring some of them. Malware sandboxes do not

take into account any command-line options: they run given executable and monitor

its behaviors. Analysis of sample and detection may fail when malware is triggered by

command-line. Another drawback of malware sandboxes is their short guard time. In

general, sandboxes may fail to wait long enough and they may not record all events.

For example, if the malware is set to wait ten minutes before it performs malicious

activity, this time-triggered event may not be detected.

Before running, some malware checks the presence of certain registry keys or files

on the system, which do not exist in the sandbox. The absence of such legitimate

data prevents malware from running inside the sandbox environment. Sometimes,

 CHAPTER . BACKGROUND

the sandbox environment may be misled because the malware is created for a specific

OS, i.e., the malware might crash on Windows XP whereas it may run on Windows .
A sandbox can report basic functionality, but it can not classify the file as malicious.

The generated reports need to be analyzed in order to conclude whether the file is

malicious.

Furthermore, malwares can implement some functionalities to detect VM plat-

forms and they can adapt their behavior. One famous project implementing this detec-

tion functionality is the Red Pill project of Joanna Rutkowska. This tool is one of the

most known VM aware software, elaborates the feasibility and ease of such detection

strategies, []. Besides, some tools (e.g. Scoopy []) use virtual machine related

opcodes or query VM specific virtual registry values.

.. Manual Analysis

Manual malware analysis refers to the process of interactively examining malware

code to gain insights into the behavior of a software and uncover hidden its function-

ality. Manual analysis requires deep-knowledge and practice in various domains and

tools. Malware analyst prefers manual analysis if the static and dynamic analysis fail

in detection process or he wants to confirm the obtained findings. Some of the well-

known malware analysis tools are listed in Table ..
It is important to note that, generally manual analysis process is tedious and time-

consuming. However, manual analysis results are more accurate than other methods.

For example, a recent Zeus sample with MD bfeefcdacebc
[] indicates the importance of the manual analysis. When this sample is executed,

it checks the existence of virtualization platform and some dynamic analysis utilities

e.g. netmon.exe, procmon.exe. Once it detects such artifacts, this sample changes

its behavior and binds shell to TCP port  on the system and waits for incoming

requests. If the attacker succeed to connect this port, he can control the computer

remotely. Considering today’s network security policies especially NAT technology,

this behavior totally useless and unreasonable.

As this Zeus sample is packed, the static analysis also impractical to analyze, hence

the last choice is manual analysis. Once the process checks are bypassed by debuggers,

the sample injects itself into explorer.exe to stay hidden and download an additional

executable file and execute it. Then, the downloaded executable adds registry key to

be persisted on the compromised system, e.g. after reboot the system malware sample

will be again active state. Finally, the sample targets banking information in order to

profit. Further information can be gathered from [].
As mentioned in this chapter each malware analysis method has its advantages

.. SUMMARY 

and drawbacks. Malware analysts need to know limits of these methods in order to

perform reliable analysis. Figure . summarizes the pros and cons of the malware

analysis methods.

Figure .: Pros and Cons of Malware Analysis Methods

. Summary

In this chapter, we described malware and presented common types of malware.

Following that, a quick history of malware evolution was given. We further presented

the malware infection methods used to hack computer system in detail. Then we pro-

vided various aspects of hacker utilities to create malware and how these utilities and

application can be used to launch cyber attack.

We also introduced state-of-the art malware analysis methods and discussed cons

and pros of each of these techniques. We further provided list of tools practically and

effectively used in malware analysis, thus enabling the reader to be familiar in this

research field.

In the next chapter, we present related works in the field of malware research. Par-

ticularly, we provide the machine learning methods used in the literature for malware

classification and discuss their malware representation methods. Finally, we introduce

state of the art dynamic malware analysis frameworks and discuss their limitations.

 CHAPTER . BACKGROUND

Category Tool Objective

Static

Virustotal [] Free online multi anti-virus scanner

PEID [] Identify most common packers and
compilers for PE files

PEfile [] Python module enables problemati-
cally working with PE files

PEStudio []

Detect anomalies and suspicious pat-
terns for PE files as well as provide
score for indicating degree of harm-
fulness

IDApro [] Advanced disassembler and debugger
that explores software

Dependency Walker [] Shows the imported and exported
functions of PE files

PEview [], PE-
Browse [], PE Ex-
plorer []

View and Edit sections of PE files

Resource Hacker [] View and Edit resource section of PE
file

Bintext, strings, grep, find-
str

Scan and extract text from any file

Dynamic

Process Monitor []
Advanced system monitoring util-
ity for Windows-based system that
shows real-time system activities

Process Explorer []
Advanced task manager for Windows
system that explores processes and
threads

Autoruns []
Explores the auto-start services,
drivers, software for Windows
system

Process Hacker [] Process Explorer + open source sys-
tem resource monitoring utility

Capture-Bat [, ] Driver-based behavioral analysis tool
for malicious software

Regshot [] File and registry comparison utility
accordingly snapshots

Volatility [] Advanced memory-based forensic
analysis tool

Sandboxes: Cuckoo [],
VirMon [], Anubis [],
etc.

Dynamic software behavior analysis
tools

Network Sniffers: Wire-
shark [], Tcpdump,
Netmon []

Network packet analyzer tools

Manual

OllyDbg [], Immunity
Debugger [] Assembler level debugger for PE files

WinDbg []
Debugger for user mode applications,
kernel mode drivers as well as Win-
dows operating system

IDApro [] Advanced disassembler and debugger
that explores software

Table .: General Overview of Malware Analysis Tools

Chapter 
Related Work

This chapter presents previous researches about malware analysis and classifi-
cation. These research efforts use different malware modeling techniques us-
ing static or dynamic features obtained from malware samples. Furthermore,
we cover and discuss their modeling techniques and the testing set of these re-
searches.

Over the last fifteen years, significant research has been conducted in the area

of information security for detection and classification of known and unknown

malware by using various machine learning and data mining techniques. These tech-

niques can be divided into  major categories according to their malware modeling

approaches:

• N-gram: This approach involves a sequence of byte array extracted from various

information of a malware samples, such as binary content, disassembled instruc-

tions or API calls.

• Control-Flow: Control flow involves ordered function calls, instructions and

statements that might be executed and evaluated when a program is running.

• API & System Calls: In this approach, the API and system calls, which reflect

the behavior of a software, are extracted from malware samples in order to model

overall behavior of a software.

• Behavior Abstraction: It involves expressing malware behavior in terms of high-

level concepts for simplicity, conciseness and clarity.



 CHAPTER . RELATED WORK

. Malware Modeling Techniques

.. N-gram

In the field of statistic, an n-gram is a fixed size sliding window of byte array, where

n is the size of the window. According to size of n-gram, some special term is used

to refer these n-gram, e.g. -gram is referred unigram, -gram - bigram and -gram -

trigram. Larger size of n-gram generally referred by the value of n, e.g. -gram. For ex-

ample the “EDD" sequence is segmented (represented) into -gram as “EDD",

“EDD", “EDD" and “DD".

N-gram is used in various disciplines and domains like language identification,

speech recognition, text categorization, information retrieval, and even information

security. Basically, n-gram is used to build a model for given problem, then the model

makes prediction based on extracted n-gram features. Accordingly, n-gram modeling

have widely used in machine learning problems.

In the early literature, researchers use fix size n-gram and variable length n-gram

extracted from binary content of the analysis file and opcodes obtained after disas-

sembling for the purpose of presenting benign and malicious software. To detect and

classify samples, they applied various machine learning algorithms including SVM,

decision tree, naïve bayes, etc. and also ensemble learners (also known as boosting) on

these n-grams.

The first known use of machine learning in malware detection is presented by the

work of Tesauro et al. in []. This detection algorithm was successfully implemented

in IBM’s anti-virus scanner. They used -grams as a feature set and neural networks

as a classification model. When the -grams parameter is selected, the number of all

n-gram features becomes 2563, which leads to some spacing complexities. Features are

eliminated in three steps: first - grams in seen viral boot sectors are sampled, then the

features found in legitimate boot sectors are eliminated, and finally features are elim-

inated such that each viral boot sectors contained at least four features. Size of feature

vectors in n-grams based detection models becomes very large so feature elimination

is very important in these models. The presented work has been limited by the boot

sector viruses’ detection because boot sectors are only  bytes and performance of

technique is degraded significantly for larger size files.

As a historical track, IBM T.J. Watson lab extended boot virus sector study to Win
viruses in  []. At this stage,  and  grams were selected and encrypted data

portions within both clean files and viral parts were excluded due to the fact that

encryption may lead to random byte sequences. At the first instance, n-grams existed

.. MALWARE MODELING TECHNIQUES 

in constant viral parts were selected as features and then, the ones existed in clean files

more than a given threshold value were removed from the feature list. In this study,

along the use of neural networks boosting was also performed. Results of this study

shown that the developed method performance was not sufficient. Schultz et al. has

used machine learning methods in []. Function calls, strings and byte sequence

were used as a feature set. Several machine learning methods such as RIPPER, Naive

Bayes and Multi Naive Bayes were applied, the highest accuracy of .% with Multi

Naive Bayes was achieved.

Abou-Assaleh et al. [] contributed to the ongoing research while using common

n-gram profiles. k nearest neighbor algorithm with k= instead of the other learners

was used. Feature set was constituted by using the n-grams and the occurrence fre-

quency. Tests have been done with malware and  benign files. With this set, test

results shown % of success. Using the data in [], the accuracy slightly dropped

to the % level.

Kolter et al. [] used -grams as features and selected top  n-grams through

information gain measure. They applied naive Bayes, decision trees, support vector

machines(SVM) and boosting algorithms. Boosted decision tree outperformed all other

methods and gave promising results such as receiver operating characteristic(ROC)

curve of ..

In our previous study [], machine codes to extract malwares’ n-gram profile

instead of byte sequences are considered and the n-gram feature space is considerably

reduced. In this manner calculations are performed faster and efficiently. In our study,

each malware sample is used to determine its subfamily vector which is named as the

centroid of the subfamily.

Family of the malware is a descriptor of the malware used to classify malware sam-

ples according to their features especially in terms of the tasks performed and the pur-

pose of the creation. Subfamily is the specialized version of the family that describes

malware samples definitely. For instance, if a malware labeled as Win-Ramnit.F

by an anti-virus scanner, this means the malware belongs Win-Ramnit family and

Win-Ramnit.F subfamily. Centroid of the subfamily comprises the most frequent

n-gram of the subfamily instances. In other words, n-grams (words or terms), which

occur with higher document frequency in the subfamily instances, are used to con-

struct the centroid vector. So the subfamily is represented by its centroid vector.

To classify an instance, similarity function is calculated by counting the number of

matching n-gram (term) for each centroid of the subfamily. Experiments are carried

out  samples belonging to ten families, five of them have two subfamilies, and

therefore there exists  subfamilies in our dataset. Experimental results show that

 CHAPTER . RELATED WORK

the classification accuracy for training and testing is achieved their highest success

percentage of % and %, respectively.

Shafiq et al. come up with a data-mining based malware detection method that

uses distinguishing static feature extracted from portable executable (PE) files [].
They follow a threefold methodology: () extract structural and useful features from

PE files, () preprocess data (i.e. remove irrelevant, redundant and noisy information)

and () apply classification algorithm.

Their feature set consists of  features obtained from field in the PE file structure

such as section headers, DLLs referred, resources, etc. To improve quality of feature

vector and reduce the processing overheads, they used three well-known feature selec-

tion filters; Redundant Feature Removal (RFR), Principal Component Analysis (PCA)

and Haar Wavelet Transform (HWT).

They evaluated their method on two malware set, VX Heavens [] and

Malfease [] datasets which contain about . and .malware respectively by

using five machine learning algorithms; IBK, J, RIPPER, SMO and NB. J outper-

forms other algorithms in terms of the detection accuracy and achieves % detection

rate with a less than .% false positive rate. They claimed that their method is robust

to different packing technique but they did not conduct any experiment on runtime

packer that can modify all PE structure.

Wessenegger et. al. [] extract n-gram from the payload of the each network

packet to detect intrusion attempt in network level. Similarly, PAYL [], Mc-

PAD [] and Anagram [] analyze byte n-grams for detecting server-side attacks.

Basically, these studies also employ n-gram features but differ when considering the

weight of each vector. For example, McPAD and Anagram use term frequency while

Anagram employs boolean frequency. Besides that, the methods Cujo [] and PJS-

can [] use token n-grams with a binary map for identifying malicious JavaScript

code in web pages and PDF documents, respectively.

.. Control-Flow

Control Flow Graph(CFG) or Program Dependence Graph(PDG) semantically rep-

resents the structure of program. Essentially, CFG is constructed by scanning basic

blocks of a given program. Then this generated graph is used to identify the similari-

ties of software, based upon the similarities of the common sub-graph of the software.

Bonfante et al. proposed a malware detection strategy based on control flow graph

composed of six kinds of node jmp, jcc, call, ret, inst, and end (fundamental x as-

semble instructions) which correspond to the structure of control flow []. The con-

structed graph presents the all execution paths that might be traversed through a pro-

.. MALWARE MODELING TECHNIQUES 

gram while running. To reduce graph, the authors removed inst and jmp nodes from

the graph and linked all predecessors to its unique successor.

In their study, they employed two algorithm. The first algorithm searches for exact

match between the CFGs of know program and the program under test. The second al-

gorithm checks isomorphism between the reduced CFG of the program under test and

training programs. Experiments on  samples collected from public sources show

similar false positive rates, .% for first algorithm and .% for second algorithm.

The authors did not used other metric to measure the effectiveness of their study.

Cesare et. al. propose static malware detection method for malware variants by

using similarity search over set of CFGs []. In this study, two feature sets are used

to characterize a program: subgraphs of size k and any character sequence of size

q (q-gram) constructed from CFG. While constructing feature vector of a program,

the set of most of the  most frequent features are selected from training samples.

Consequently, the information of rare features are lost due to this feature reduction.

To calculate similarity of two programs based on their feature vector, Manhattan

distance is preferred because of its (runtime) computational efficiency when compared

to the more traditional ones such as Euclidean. They evaluated introduced malware

classification system with  real malware samples collected from honeypots and

 benign binaries obtained from Windows system directory and the Cygwin exe-

cutable directory are used.

The authors select the values of k and q as  and  respectively since it is recom-

mended in previous studies. Additionally, the threshold value of . was empirically

chosen by authors. The evaluation shows % false positives rate. Though authors used

unpacking technique to remove obfuscations before building feature vector, effective-

ness of their emulation-based unpacking method is questionable in malware domain.

Ding et al. presented a control flow-based method to model executable behav-

iors []. Before building opcode behavior, they utilized IDA Pro tool to decompile

executable. Then they constructed flow graph of a program that represents behavior

of a program and traverse the graph to grasp all possible execution paths. Following

that, they used n-gram method over all execution path to obtain features.

To reduce feature space, they employed information gain and document frequency.

The authors preferred to normalize feature vector in order to have unit length. In their

study, they used the well-known supervised classifiers, namely, the K-Nearest Neigh-

bor (KNN), decision tree and Support Vector Machine (SVM) to classify a program as

malware or not.

They conducted experiment consists of  benign executables and  malicious

executables, all of which are in Windows PE format. The benign executables are se-

 CHAPTER . RELATED WORK

lected from the building system directory of Windows XP. The malicious executables

were collected from netlux.org and Offensive Computing []. They used -fold cross

validation to evaluate the performance of each classifier. Their experimental result

shows the average accuracies of DT, KNN, SVM are .%, .%, and .%, respec-

tively. The main shortcoming of their study is that they focused on unpacked executa-

bles.

Similar to the control flow-based approaches presented above, Park et al. proposed

a malware classification schema based on maximum behavioral subgraph detection

[]. A behavior graph is created from the system calls captured during the execu-

tion of the suspicious software (in a sandboxed environment). The similarity between

two behavioral graphs is calculated by maximal common subgraph measure. If two

behavioral graphs have a small distance than a pre-determined threshold, these sam-

ples are considered as similar behavior and attributed to the same malware family.

The method has been evaluated on a set of  malware instances in  families. In

the paper, however, the authors only provided the class-wise accuracy for the tested

families.

.. Application Programming Interface

Application Programming Interface(API) calls is an interface allowing computer

user to access and request OS actions/services, such as creating a process, writing a file,

establishing network connection, etc. For this reason, sequence of API calls requested

by an executable program could be used to characterize its activity or behavior.

There are two methods to obtain API calls list: static analysis (e.g. IDA Pro disas-

sembly tool) or dynamic analysis (e.g. API hooking). The main problem in extraction

of the function or API calls through static analysis by disassembler (e.g. IDA Pro) is

that software can include multi execution paths, dirty and unused codes. Moreover,

disassemblers can be evaded by anti-disassembly methods. These drawbacks make

call graph improper for further use. Instead, if there is no run-time protection, one

can accurately obtain API call list through dynamic analysis.

Salehi et al. introduce a malware detection method relying on the API calls and

arguments list [, ]. To this end, malware samples are executed in a virtual

machine until all processes terminated or execution time reach timeout of two minutes

and their behaviors monitored by WINAPIOverride tool which provides Windows

API calls invoked during analysis along with their argument and return values.

To reduce the number of features, the frequency of the API calls smaller than spec-

ified threshold T is omitted. In their study, they used T as  for malware and  for

benign files. Then, well-known feature selection algorithm ReliefF is applied. Follow-

.. MALWARE MODELING TECHNIQUES 

ing that, the binary feature vector of a sample is created by the presence of selected

API list in a given sample.

To prevent over-fitting problem the authors employed -fold cross validation pro-

cedure. They used well-known classifier such as Random Forest, J, FT, SMO, NB,

HyperPipe. They achieved the best accuracy .% when applied Meta-classifier Ad-

aBoostM in combination with J. As authors used pre-defined set of API calls and

upper-bounded feature space with a constant value T to represent a software, which

may produce loose of important behavioral information. Moreover, they utilized lim-

ited amount of samples in evaluation phase.

Chandramohan et al. proposed malware detection framework that relies on the

modeling interaction between software and security-critical OS resources []. These

resources include file system, registry, process, thread, section, network and synchro-

nization. To collect runtime behavior of malware samples they used sandboxing tech-

nology but they did not mentioned the name of the tool used in their study. After

obtaining behavior report, feature extraction is applied. Their feature extraction con-

sists of three steps:

� Identify OS resources presenting in the behavior analyze report.

� Group related actions corresponding to the OS resources obtained in Step .

� Repeat Step  until all OS resources identified in Step  is finished.

In contrast to existing approaches whose feature space grows proportionality to

the number of malware sample, they used upper bound N = 16,652 to summarize

behavior of sample based on the pre-defined actions on OS resources. Similar to []
binary feature vector is created in which nth element is assigned as ‘’ or ‘’ based on

the presence or absence of that feature. Thus, each program either malware or benign

is presented by an N -dimensional binary feature vector.

They conducted an experiment involving , malware and  benign samples

by using Support Vector Machine and logistic regression algorithms. In the experiment

-fold cross-validation, the initial malware set are randomly divided into  subset and

training and testing is performed  times, is used. LR classification algorithm achieves

.% detection accuracy and % false positive rate.

.. Abstraction

Bayer et al. propose a clustering approach to identify and group malware based on

behavioral similarity []. To this end, they first perform dynamic analysis to acquire

the execution traces of malware programs. Then they generalize execution traces into

 CHAPTER . RELATED WORK

behavioral profiles that model the activity of a software in more abstract form. More

precisely, they create the behavioral profile of a software by abstracting the following

artifacts.

� System calls

� Control flow dependencies

� System call dependencies

� Network activities

In dynamic analysis phase, they introduced taint analysis to Anubis [], one of

the automated malware analysis system, in order to collect the listed features in the

above. After that, authors model and define a program’s behavior by following form

of action list. Here, += operator is the increment operator and malware behavioral

profile composes of collection of the OS events.

Malware behavior p r o f i l e += (OS o b j e c t type , o b j e c t name , OS operation ,

operation ’ s a t t r i b u t e s , operation ’ s s t a t u s)

OS o b j e c t types = { f i l e , r e g i s t r y , process , job , network , thread ,

sec t ion , driver , sync , se rv ice , random , time , info }

Following this behavior definition, they transform feature set in a suitable form for

the clustering algorithm. For clustering process, in their study, they utilized Locality-

Sensitive Hashing (LSM) based algorithm. They clustered the set of , samples in

 hours and minutes which is quite long and achieved precision(the probability for

an estimated instance as class c to be actually in class c) and recall(the probability for

a sample in class c to be classified correctly) of . and . respectively.

Bailey et al. also abstract a malware’s behavior and create a behavioral fingerprint

in order to categorize them []. The proposed fingerprint is composed of system

state changes such as files written, processes created, etc. rather than in sequences or

patterns of system calls.

To measure similarity of the groups of malware, they construct a tree structure

based on single-linkage clustering algorithm. Basically, this algorithm defines the dis-

tance between two clusters as the minimum distance between any two members of the

clusters. They tested their method over real world malware samples(including sam-

ples that have not seen in the wild, thus these samples did not have a signature to

match) and obtained better classification results than anti-viruses.

Similarly, Jang et al. present BitShred, a large-scale malware clustering technique

for automatically exposing relationships within clusters []. The authors used fea-

ture hashing to reduce high dimensional feature space and to mine correlated features

.. MALWARE MODELING TECHNIQUES 

between malware families and samples. The proposed method can utilize any analysis

reports that produce boolean set of features, or extract boolean features from report

files. They computed malware similarity by using Jaccard and BitVector Jaccard dis-

tance. Besides that, they also developed a parallelized version of BitShred within the

Hadoop framework.

To create a reference clustering data set, they used different anti-virus labels pro-

vided by VirusTotal []. For larger-scale experiment, they used , malware

samples and obtained precision of . and a recall of .. This task took about 
minutes.

Rieck et al. introduced a classification method that aims to determine whether

a given malware sample is variant of known malware family or is a new malware

strain []. They capture system call traces and represent the monitored behavior

of malicious software by means of special representation called Malware Instruction

Set (MIST) which is inspired from instruction sets used in CPU. In this representation,

the behavior of a sample is characterized with a sequence of instructions.

More precisely, MIST instructions are composed of three fields: a CATEGORY field,

an OPERATION field, and optional several ARGBLOCK fields. CATEGORY field con-

tains  different category and each of those groups a set of related operations. Ad-

ditionally, the ARGBLOCKs for each category widely varies between categories. The

authors optimized this representation for data mining algorithms.

They employed behavior reports obtained from the CWSandbox [] dynamic anal-

ysis platform for their testing set containing , samples. They applied the Support

Vector Machine (SVM) algorithm to identify malware classes. The experimental results

shows % accuracy.

Mohaisen et al. proposed a malware classification system, named CHATTER, based

on ordered high-level system events []. CHATTER consists of four major steps as

follows:

� Sandboxed execution: Though their method does not only rely on one sandbox,

they prefered AUTOMAL [] to collect runtime artifacts of sample under anal-

ysis. While the tool provides information for various activities they made use of

only network features.

� Behavioral documents: The output of their tool named AUTOMAL mapped into

an alphabet. In this way, the behavior of sample abstract into a format which is

more operable by machine learning algorithms.

� Utilizing n-grams: They enumerate and count all unique n-grams in a behavioral

document obtained in previous step. These n-grams are utilized to represent

 CHAPTER . RELATED WORK

malware samples.

� Machine learning component: They applied supervised machine learning algo-

rithm over constructed n-gram feature vectors.

To evaluate their study, they employed three well-known machine learning algo-

rithms; the k-nearest neighbor (k-NN), support vector machine (SVM), and decision

tree classifiers. The testing set consists of the malware families:  instance of Zeus,

 instance of Darkness, and  instance of Shady RAT(SRAT). They manually

identify and label training data by the help of the expert analysts. They achieved %
accuracy and when they paired with base-line classifier consists primarily of file sys-

tem feature the accuracy reached %. Though they obtained encouraging result on

testing set, their method is not suitable for malware sample that does not perform

network activities.

. Dynamic Malware Analysis Tools

As stated in Chapter , dynamic analysis requires executing a given program that

is being analyzed and monitoring its run-time activities in a control environment. Dy-

namic analysis consists in observing the activities of the suspicious file while allowing

their execution in a controlled environment. These systems track and inform about

file, registry, network, and process activities. To successfully detect malware and take

appropriate counter measures, dynamic analysis can be considered as an integrated

scenario and solution of an environment provided to malware for being deployed and

performing its tasks.

Over the last ten years, malware researchers have been proposed and developed

various tools and methods addressing the problem of malware analysis. Before dis-

cussing the current dynamic malware analysis frameworks in the following subsec-

tions, it would be good to indicate survey paper which gives an overview of dynamic

malware analysis and lists their strengths and drawbacks [].

.. Anubis

Anubis [] formerly TTAnalyze [], is an emulation-based dynamic malware

analysis system. It performs analysis operations on Windows XP OS running on Qemu

emulator. During analysis, it monitors Win and native API functions and their pa-

rameters through Qemu. With process monitoring feature, Anubis can only monitor

all processes created by file under analysis and omit other running processes.

.. DYNAMIC MALWARE ANALYSIS TOOLS 

Anubis monitoring relies on comparing dynamically the instruction pointer of the

emulated CPU with previously known entry points of functions in shared libraries.

Since the system runs on an emulator, duration of analysis may be longer compared to

the analysis duration in real PC and this anomaly can be detected by malware.

.. CWSandbox

CWSandbox [] leverages API hooking technique in user mode to track malware’s

activities. CWSandbox executes given sample either in a real PC or in a virtual Win-

dow machine. Once the sample is loaded into memory, API hooking is performed by

inline code overwriting. The sample is executed in a suspend mode and then all loaded

DLL’s API functions are overwritten. During this initialization step, CWSandbox iden-

tifies the exported API functions and injects necessary hooks. Hence, CWSandbox col-

lects all called functions and their related parameters.

To hide the indicators of the running environment i.e. CWSandbox from a given

sample, CWSandbox hooks API calls which provides these indicators. After finishing

analysis, CWSandbox creates a high-level report about activities from which malware

analyst can quickly follow them. Since it collects data in user mode, low level opera-

tions and undocumented function calls can not be captured.

.. Cuckoo

Cuckoo [, ] is an open source analysis system and relies on virtualization

technology to run a given file and supports major virtualization platforms such as

ESXi, Virtualbox and KVM. Cuckoo is written by Python language and allows users to

create their modules.

Cuckoo can analyze both executable and non-executable files. For example, if an of-

fice document is fed into the system, then Cuckoo uses an end-user application such as

Microsoft Word or OpenOffice to open it and reports run-time activities of this docu-

ment. These activities including pre-defined Win API functions and their parameters

are monitored and captured by its user-space API hooking technique. Furthermore,

Cuckoo has active community whose members share signatures and modules to the

researchers.

Owing to the fact that analysis module of Cuckoo runs at user level, malware can

easily notice presence of the analysis attempt causing to change its behavior. Besides

that, malware analyst might need time to understand Cuckoo’s structure and working

mechanism.

 CHAPTER . RELATED WORK

.. Capture-BAT

Capture-BAT [, ] is another dynamic analysis tool developed by New

Zealand chapter of honeynet.org []. Capture-BAT monitors process, registry, and

file activities at kernel level, and it captures network traffic using winpcap library. Fur-

thermore, it offers selection of events through its filtering interface that can be used by

the analyst to prevent noisy events to be captured. Since Capture-BAT is not an au-

tomated malware analysis system, serious concerns exist on whether it can efficiently

handle the high penetration of new and existing malware.

.. Norman Sandbox

Norman Sandbox [] is a dynamic malware analysis solution which executes a

given sample in virtual environment that simulates a Windows operating system. This

simulated environment emulates host computer and network and to certain extent

Internet connectivity. Norman Sandbox transparently replaces all functionality that is

required by a sample under analysis with custom-made versions.

Norman redirects all networking requests originated by sample under analysis to

the simulated servers in order to capture them. For example, if a sample tries to resolve

a host name to IP address, related DNS query forwarded to the simulated DNS server

instead of public DNS servers. This procedure is not noticeable by the sample. Other

network services such as HTTP, SMTP, etc. are redirected to the equivalent servers.

Instrumenting the APIs enables effective function call hooking and parameter mon-

itoring. The observed behaviors (e.g., function calls, and arguments) are stored to a

log file. Furthermore, Norman Sandbox also monitors auto-start extensibility points

(ASEPs) that can be used by malware instances to ensure persistence and automatic

invocation after shutdown - reboot sequences.

.. Dynamic Malware Analyzer

In our previous study, we developed and deployed Dynamic Malware Analyzer

(DMA) tool to analyze anti-virtual machine aware malware samples in VMware envi-

ronment []. DMA focuses on anti-virtual machine evasion techniques to provide

secure and reproducible environments for malware analysis and its implementation

issues. Malware is identified based on their behaviors by taking precautions related to

the anti-virtual machine detection techniques.

DMA employs Pin tool [, ], free tool provided by Intel for dynamic in-

strumentation of programs to hidden from detection attempts of VM-aware malware.

DMA tracks Windows API calls to change outputs of these calls. For instance, if OS’s

.. DISCUSSION AND CONCLUSION 

response contains the string "VMware", the control passes to the proposed replace-

ment routine where the returned value is changed to a more appropriate value such

as "Microsoft" or to a value that would have been returned on a host Windows OS. In

a similar way, when VM specific instructions such as SIDT are in the course of being

executed by the sample, the control passes to replacement routine where the value of

the destination operand is set to a value that would be obtained on the host Windows

OS.

.Net framework is used as the underlying platform and DMA enjoys a user-friendly

graphical user interface. Before using DMA, DMA needs to be configured through

its simple settings’ interface. DMA can monitor anomalies occurring on the system

through checking out all processes, connection table, service details and file activities

on Windows operating system. Success ratio of detection is tested by using public

malware sets with an accuracy of %. Though DMA is great tool for estimating the

harmfulness effect of the malware file to the system, it lacks of user-independent and

automatic analysis. Table . compares features of the major dynamic malware analy-

sis frameworks.

. Discussion and Conclusion

In this section we review malware detection and classification approaches based

on data mining and machine learning. Flowing that we briefly present state of the art

dynamic malware analysis frameworks. There are several important observations can

be made from the literature review done in this chapter, that are of relevance for this

research:

• The representation of malware by using n-gram profiles has been presented in

the open literature. In these studies some promising results towards malware

detection are presented. However malware domain has been evolving due to

survivability requirements. Thus, malware tries to evade anti-virus scanners to

perform its functions. Obfuscation techniques have been developed in order to

avoid detection by anti-virus scanner. And these techniques disturb n-gram fea-

tures of binary form of the malware used by the previous work.

• Call-graph comparison according to graph edit distance(GED) is NP-hard prob-

lem. In other words, calculating GED is more complex and computationally ex-

pensive.

• In the literature, there are studies that employ only static features like byte se-

quence, op-code sequence, printable stings and API call sequence. Though these

 CHAPTER . RELATED WORK

Table .: Comparison of the major dynamic malware analysis frameworks

A
nu

bi
s

C
W

Sa
nd

bo
x

N
or

m
an

Sa
nd

bo
x

D
M

A

C
u

ck
oo

C
ap

tu
re

-B
A

T

V
ir

M
on

Analysis implementation
User-mode component X X X X
Kernel-code component X X X
Virtual machine monitor
Full system emulation X X X X X
Full system simulation X
Analysis targets
Single process X X X X X X
Spawned processes X X X X X
All processes on a system X X X X
Complete operating system X X
Analysis support for
API calls X X X X
System calls X X X X
Function parameters X X X X
File system operations X X X X X X X
Process/thread creation X X X X X X X
Registry operations X X X X X X X
Instruction trace X
Networking support
Simulated network services X
Internet access(filtered) X X X X X X X

methods effective in detection and classification of unpacked malware samples,

they would be ineffective on obfuscated malware samples.

• In the proposed studies, there is an inevitable trade-off between ”curse of dimen-

sionality" and ”poor interpretability”. In other words, on one hand if feature-

space increases the analysis framework becomes infeasible. On the other hand,

once the feature space is reduced, important information might lose which causes

to reduce the accuracy of the analysis.

• To the best of our knowledge, dynamic analysis systems still use old versions of

Windows OS, for instance Cuckoo merely employs Windows XP and , as an un-

derlying analysis environment. However, computer owners generally prefer to

.. DISCUSSION AND CONCLUSION 

upgrade their OS to the newest version. Therefore, existing systems may fail at

analyzing malware targeting new versions of Windows OS. Reliability and avail-

ability of malware analysis scheme may be a major concern subject to the release

of new Windows OS version. Consequently, the next generation of dynamic mal-

ware analysis solutions should be adaptable to the future versions of OS.

Chapter 
VirMon: A Virtualization-Based

Automated Dynamic Malware Analysis

System

This chapter presents our dynamic malware analysis platform to explore behav-
ior of a malware and describes how our platform differs from other approaches.

In this chapter, we present Virus Monitor (VirMon) as a scalable automated anti-

malware system designed to be robust versus malware targeting new versions of

Windows OS. The features of VirMon are as follows:

• Portability: VirMon can use any version of Windows OS including XP, , , .
and even  beta as the OS of the analysis machine. When a new OS is released,

it can be easily adapted.

• Scalability: The analysis capacity, i.e., the average number of analysis per

minute, can be increased by connecting new virtualization servers to the exist-

ing system. VirMon capacity can be improved by adding new analysis machines

upon the increase of the analysis workload.

• Network virtualization: The network traffic of analysis machines is distributed

to different network locations via VPN to masquerade their IP addresses. This

decentralized design approach ensures that the analysis system is not detectable

by malware’s network level precautions such as comparing public IP addresses

of the analysis system.



 CHAPTER . VIRMON: A VIRTUALIZATION-BASED AUTOMATED DYNAMIC MALWARE ANALYSIS SYSTEM

The rest of the section is organized as follows: Section . presents the network

visualization method. The implementation details of VirMon components and their

functionalities are elaborated in Section .. In Section . two real-world malware

samples are used to illustrate the effectiveness and analysis results about monitoring

the malware activities. Finally, some conclusions are given in Section ..

. Network Virtualization Infrastructure

Malware authors try to evade dynamic analysis’ detection scheme by using the pub-

licity and popularity of dynamic malware analysis tools. As a primary task, they col-

lect private information about analysis systems. For instance, public IP addresses of

malware analysis systems constitute the most important private information. If the

public IP addresses of the environment in which malware is being executed, are a

known address by malware authors, malware changes its behavior or simply refuses

to run on these systems. For example, AV Tracker (see [] for instance) is a web plat-

form publishing public IP addresses of well-known analysis systems. In order to cope

with malware’s IP-based protection capability, a network virtualization infrastructure

relying on VPN technology is designed. Its main aim is to mask the IP addresses of the

analysis machines. The core nodes of the analysis system and their functionalities are

designed as follows:

• Network virtualization: It forwards network traffic to virtual analysis environ-

ment.

• VPN Server: It matches sensor & analysis machine.

.. Sensor Device

Sensors are embedded fan-less mini-PC placed (shown in Figure .) at any loca-

tion on the Internet in a plug-and-play fashion. The main purpose of these distributed

sensors is to send analysis machine’s traffic to the Internet and receive back the re-

sponses through a secure channel. They are used to mimic the analysis machine as if

it is directly connected to the Internet. IP layer information (for instance, source &

destination IP and TTL) of all network packets originating from analysis machine is

altered on sensor clients. Following this network logic, when a malware tries to grasp

public IP address of its outgoing channel, it obtains sensor’s public IP address.

On these sensors, a lightweight version of FreeBSD, a powerful open source OS, is

running along with VPN-client application. Each sensor has configuration files and

a public IP address assigned by the related organization to connect back to the data

.. NETWORK VIRTUALIZATION INFRASTRUCTURE 

Figure .: Sensor device

Table .: Sensor specifications

CPU MHz AMD Geode LX
DRAM MB DDR DRAM
Storage CompactFlash socket,  pin IDE header
Connectivity  Ethernet channels (Via VTM /)
I/O DB serial port, dual USB port
Board size  x " (. x .mm)

center. Indeed, these are elementary but safety-critical settings that need to be secured

and well protected. To prevent removal of these settings in case of power failure or

OS crash, they are statically written on the file system and mounted read-only mode.

Once the device is plugged into an electric power, OS automatically boots and connects

to the VPN Endpoint.

Figure .: The topology of VirMon: local and remote components of the presented
dynamic malware analysis system

 CHAPTER . VIRMON: A VIRTUALIZATION-BASED AUTOMATED DYNAMIC MALWARE ANALYSIS SYSTEM

.. VPN Server

After a successful VPN connection, an individual sensor is matched with an anal-

ysis machine. Following this configuration, all network packets are transferred via

this particular sensor. Figure . illustrates different locations of the sensors in dif-

ferent LANs, sensor devices can be deployed in the DMZ or in the separated network

segment of the organization. For VPN connection, sensor devices need a public IP

address and an open outgoing /TCP port on the firewall enabling access to the

VPN-server. Sensor devices do not create any additional security concerns due to the

access restrictions in the organization LAN, for instance, sensor clients can be only

accessed through SSH from the data center.

Individual static C class network is assigned to each analysis machine on the VPN

Endpoint. When a suspicious file while being analyzed in the system tries to make a

connection to a remote host, VPN Endpoint identifies the related sensor and forwards

its network traffic to that particular sensor. Hence, the private (local) IP address of

an analysis machine is mapped to the sensor’s public IP address. This transparency is

illustrated in Figure ..

In addition, to improve transparency of the system, separate VLANs are deployed

for each analysis machine on the internal firewall and virtualization server. Hence,

analysis machines are isolated from each other’s traffic and broadcast domain is re-

duced.

Figure .: The logical topology of the system - The C&C server perceives analysis
machine as if it is working behind the firewall.

.. DESIGN OF VIRMON 

. Design of VirMon

In this section, we elaborate VirMon dynamic analysis system components and

their functionalities. First, we present the collection methods of behavior-based ac-

tivities of the analyzed suspicious file with special emphasis on the merits of kernel

callback mechanism. Then, we describe the network topology of VirMon where net-

work activities of the analyzed sample are automatically gathered.

I-) Analysis machine components include mini-filter driver and driver manager.

They are responsible for reporting host-based process, registry, and file system

activities performed by the analyzed file, see Figure ..

II-) Network components are responsible for reporting network activities of the an-

alyzed file. The functions are realized by the following client and servers (see

Figure .):

• the sensors at different locations that forward network traffic of analysis

machines to the command and control (C&C) servers,

• a virtualization environment running the analysis machines,

• an application server managing whole analysis processes,

• an IDS generating alarms, extracting files and HTTP requests from network

traffic,

• a DNS server replying and logging all DNS requests,

• a NTP server used to synchronize all machines in the system,

• a relational database storing all events captured during analysis.

.. The Components of Analysis Machine

Each machine dedicated to analyze malicious software, stated as the analysis ma-

chine, has two main components: an application working in user space is responsible

for managing analysis process and a kernel driver. The application running in user

space is used to create a communication link between the analysis machine and the

application server. The file taken from the application server is first executed by the

user space component, and the process id information obtained by executing the file

is sent to the kernel space component. Then, the kernel space component watches the

three main activities of this process: process, registry, and file system.

Activities of the process (or processes) initiated by that executable and (if any) child

processes (i.e., additional process created by some of these processes) are monitored

 CHAPTER . VIRMON: A VIRTUALIZATION-BASED AUTOMATED DYNAMIC MALWARE ANALYSIS SYSTEM

Figure .: The topology of VirMon: local and remote components of the presented
dynamic malware analysis system

Figure .: Overview of the analysis machine components (e.g., filter drivers)

by means of the kernel callback functions being embedded in kernel driver. These

components of analysis machine are plotted in a top-down approach in Figure .. The

advantage of the callback mechanism and the technical details about how to monitor

run-time activities are presented in the following sub-section.

... Windows Callback versus API Hooking

API hooking is one of the preferred methods for dynamic malware analysis. In API

hooking, the function calls are instrumented and redirected to a predefined function

.. DESIGN OF VIRMON 

where they are logged. During hooking, all function calls and their parameters are

logged. This allows malware researchers to analyze the behavior of the file.

There are two types of API hooking: user and kernel space. In user space API

hooking, the Win and native Windows API functions are considered. One of the de-

ficiencies of this method is that the applied processes are not transparent to malware,

and malware can change its behavior and mislead the results.

On the other hand, kernel space API hooking relies on injection of code into kernel.

It is important to note that even though kernel patching was a popular method in the

past, probability of causing fatal errors, i.e., system crash, was high. To mitigate this is-

sue, Microsoft introduced a kernel protection mechanism (patch guard) with Vista 
bit OS to prevent it from unauthorized operations []. When a change attempt oc-

curs, this mechanism causes a blue screen of death (BSOD) to preserve kernel integrity

and it makes kernel hooking impractical.

To overcome these limitations, we use kernel callback mechanism, which provides

detailed view of run-time events based on defined conditions on a system basis [].
To be able to use callbacks, a kernel driver needs to be built. However, this is a very

challenging task since deep knowledge and skills about kernel programming is re-

quired to be able to build the driver. Basically, this driver, also known as mini-filter

driver, intercepts all IRP requests made by an application and decides whether al-

lowing or refusing these operations according to the given rule set. The portability

is followed by the claim of Microsoft, which states that kernel-callback mechanism is

reliable and compatible with all versions of Windows including their  bit versions.

... Process Monitoring

Malware creates new process or changes an existing one in order to run its ac-

tions without being detected. It may create services, which are normally run under

privileged account to manipulate safety critical information on the compromised host.

Thus, process activities of a given sample are very useful and crucial at analyzing run-

time behavior.

To obtain the information about run-time events provided by the callback mecha-

nism, related functions need to be called with their relevant parameters. For process

monitoring, the “PsSetCreateProcessNotifyRoutine” function allows the mini-filter

driver to monitor changes applied to the running processes. When an application ini-

tiates any process or thread activity, OS provides its parent and child processes to the

developed driver. However, in some situations the thread creation may be misleading

and detailed analysis is required. For example, when there is a working process being

among those processes tracked by the driver, and if the created thread does not belong

 CHAPTER . VIRMON: A VIRTUALIZATION-BASED AUTOMATED DYNAMIC MALWARE ANALYSIS SYSTEM

to this working process, this event is also recorded as a remote thread creation. On the

other hand, in the event of deleting a process, notification routine runs in the context

of the last thread exiting from the process. Consequently, finding the unique identifier

(i.e., PID) of the killer process becomes difficult. Under these circumstances, deletion

events of the processes tracked by the driver are simply recorded and unique matching

with a particular deleting process is not guaranteed.

... Registry Monitoring

Windows registry is a hierarchical database used to store configuration informa-

tion of applications, hardware and users, (see []). Many malware uses Windows

registry to gain persistent access to the system, for example, they register themselves

to the registry to be executed automatically at startup. In addition, registry can be

used to prevent users from calling the task manager, Windows defender utility, and so

on. Last but not least, it allows the user to run services for remote connections such as

remote desktop, it disables firewall to allow any access including malicious software.

Attackers can use these registry keys to gain authority over the OS and persistent ac-

cess to it. In this context, there is a strong need to monitor registry to understand

malicious behavior.

When an event occurs on the registry, “CmRegisterCallback” function can provide

related information to the mini-filter driver. To track registry events, one needs to

identify which actions to be monitored in the driver via some self-explanatory constant

values (e.g., RegNtPostCreateKey, RegNtPreDeleteKey, RegNtEnumerateKey). In VirMon,

registry operations about OpenKey, CreateKey, DeleteKey, SetValueKey, DeleteValueKey,

QueryValueKey and EnumerateKey are monitored.

... File System Monitoring

Malware copies itself or its variants to various locations in the file system and then

adds a registry key to start automatically while booting. While some of them download

extra payloads and update themselves periodically to hinder detection, others may

enumerate sensitive information from compromised hosts to exfiltrate. In addition,

it can alter legal programs to reach at their malicious objectives. For example, it can

create shortcut icon on the desktop with malicious arguments.

“FltRegisterFilter" function along with its callback actions can be used to moni-

tor file system activities on the system. Like registry monitoring, the actions to be

tracked have to be addressed in the driver accompanied by some constant values

(e.g., IRP_MJ_WRITE, IRP_MJ_READ, IRP_MJ_QUERY_INFORMATION). In VirMon,

.. DESIGN OF VIRMON 

to avoid redundant and distracting file operations, we consider only read, write, and

delete events performed by the tracked processes.

.. Network Components

Malware needs to connect very often to the C&C servers to send confidential infor-

mation collected from compromised machines or to receive C&C servers’ commands.

This bi-directional communication makes analysis of the network activities of mal-

ware as an inevitable requirement to be fulfilled by malware researchers. In VirMon,

we use different network solutions, such as VLAN, VPN, IPDS, and firewall to mon-

itor network activities of suspicious files. We are motivated by the previous analysis

results about malicious activities in the national network (see [] for instance), in

which malware samples have been collected via high interaction honeypots [, ].

... Virtualization Infrastructure

The open source Oracle VirtualBox [] is chosen as the virtualization infrastruc-

ture to host and to deploy malware analysis machines. VirtualBox supports both 
and  bit CPU. VirtualBox also provides accessibility features such as remote ma-

chine management, display of multiple remote machines via web interface, and offers

command-line interface (VBoxManage) for automated tasks.

Via the command-line interface, selected tasks of malware analysis machines in-

cluding automatic reloading from the safe state, setting network configurations, man-

agement of user accounts and services are remotely commanded. The virtualization

infrastructure is designed to have multiple physical servers, simultaneously. The scal-

ability of analysis machines ensures high performance of the virtualization infrastruc-

ture. Explicitly, the number of analysis machines deployed in the physical machine is

kept in proportion to its number of cores. For example, suppose s units of the physical

servers exist, each server has p number of processor and each processor has c cores,

then the total number of the analysis machine, denoted by N, is calculated by:

N = s × p × c (.)

... DNS Server

The Domain Name System (DNS) is a dynamic database service for translation of

Internet domains and host names to IP addresses. To bypass network restrictions,

network protocols can be extended and used for transmission of malware’s data. For

example, through DNS tunneling a file can be transferred. Although data transfer

 CHAPTER . VIRMON: A VIRTUALIZATION-BASED AUTOMATED DYNAMIC MALWARE ANALYSIS SYSTEM

rate is low, it can still present a threat to an organization while being less remarkable

among other data transfer protocols [, , ].
To monitor DNS requests made by analysis machines, we manually configure the

DNS server address of each machine and forward their DNS queries to our DNS server

located in the datacenter. Meanwhile, in order to prevent malware from resolving

domain name by using public DNS server (e.g., to prevent the usage of ... as a

well-known Google public DNS server, we redirect all DNS queries to the internal DNS

server by using our internal firewall). This way, all DNS requests made by malware can

be answered and logged by VirMon’s DNS server. Then, this log file is parsed and the

extracted information is sent to the database.

... IPDS Frameworks

Intrusion Prevention and Detection System (IPDS) is a network security solution

monitoring network traffic and system activities []. In VirMon, an IPDS is intro-

duced to prevent possible networks attacks caused by suspicious files in the system.

This secure scheme fulfils the analysis requirement of the malware analyzer by giv-

ing an opportunity to acquire all network events including the requested web pages,

downloaded files by malware. This statement is supported by the two evolving behav-

iors of the malware:

. Nowadays, IT departments allow their users to make only HTTP/HTTPS con-

nections because of security reasons. Consequently, malware has adapted to

HTTP/HTTPS protocols to communicate with its C&C server.

. As a well known fact, malware may download additional contents over Internet

such as payloads providing advanced features like dumping user credentials, piv-

oting to secure networks.

Suricata

Suricata [], an open source IPDS solution, can prevent malicious attacks such as

distributed denial of service (DDoS), port scanning and shell codes. It can also extract

files and HTTP requests from live network traffic. In order to circumvent network

attacks caused by malware sample under dynamic analysis, we use Suricata as one of

the IPDS component.

Bro

Bro is an open-source (comes with BSD license) powerful network analysis frame-

work. Bro is different from the typical IPDS since it can not block the attacks and

.. DEPLOYMENT 

does not rely on network signatures but it enables monitoring all network traffic. It

supports well-known network protocols, extracts related information from network

packets and exposes network activities at high-level [, ].
In the hierarchy of VirMon, Bro runs on IPDS server and reads network interface.

To extract files from live network traffic, a custom script compatible with HTTP, FTP,

IRC, SMTP protocol is created. The developed script logs hostname, URL, filename,

file type, and transport layer information (e.g., IPs and ports) to a file which is parsed

periodically for storing these information in database. Meanwhile, if the files extracted

by Bro Engine have not already been dissected beforehand, they are queued into ap-

plication server’s priority queue.

... Netflow Server

Netflow is the network protocol, and it generates IP traffic statistics for the given

network interface. Netflow analysis report involves the information about source and

destination hosts, used protocols, ports, flow duration and size of the transferred data.

Recently, researchers have proposed various malware detection methods based on

Netflow, [, ]. Motivated by these results, network flow for analyzing malware

is considered to be a completing protocol. To collect netflow information, all network

traffic made by the analysis machines is duplicated by the internal firewall and for-

warded to the netflow server. Then, it extracts brief information about the flow and

stores them in the database on a periodical basis.

... Application Server

The application server is responsible for the management of the malware analysis

processes. It assigns an analysis machine to the submitted file. It collects the file

activities from analysis system components. Then, it formats the collected data and

stores them in a database. After the analysis operations are completed, the application

server commands the analysis machines to be restored to a clean state.

. Deployment

The VirMon system is deployed by following the network topology illustrated in

Figure .. We have ran the evaluation of VirMon for months. Environment is set up

by using HP-blade systems containing  physical blade servers and each server has In-

tel Xeon -core .GHz processor, GB memory and GB internal storage. Since

the IPDS and database server requires more computing power with respect to other

network servers, they are installed in a separate blade server (see Table .). Other

 CHAPTER . VIRMON: A VIRTUALIZATION-BASED AUTOMATED DYNAMIC MALWARE ANALYSIS SYSTEM

Figure .: High-level information flow and interactions between application server
and analysis machine

servers are deployed in the virtualization infrastructure. Total number of the anal-

ysis machines is obtained by subtracting the remaining number of required servers:

N = 14× 6× 2− 4 = 164.

Table .: Blade Server Configuration

Blade ID Blade Count System
  IPDS server
  Database server
-  Virtualization servers

.. The Procedure of Analyzing A Sample File

The procedure followed by VirMon to analyze a submitted file is described. First,

the communication mechanism between the application server and analysis machines

is illustrated. Then, analysis results of a recent malware sample (i.e., a variant of the

hersperbot) targeting online banking users in Turkey are elaborated.

Figure . illustrates the interaction between the application server and the analysis

machine. The process steps are as follows:

. Analysis application sends a request to the application server to start a new analysis

process.

. The application server chooses a file in its priority queue and sends it to a analysis

machine.

.. DEPLOYMENT 

Table .: Important run-time activities of a trojan

Time Event Process Detail
// ::. Create Process C:\Windows\explorer.exe fatura_.exe (analyzed sample) MD:CBDBEFCCDDAFE
// ::. Create Process %Desktop%\fatura_.exe (analyzed sample) fatura_.exe (analyzed sample)
// ::. Terminate Process fatura_.exe (analyzed sample) -
// ::. Create Folder fatura_.exe %APPDATA%\yseszpkf
// ::. Create Folder fatura_.exe %APPDATA%\Sun
// ::. Create File fatura_.exe %APPDATA%\yseszpkf\yqoletyz.dat
// ::. Create File fatura_.exe %APPDATA%\Sun\yqoletyz.bkp
// ::. Create Process %Desktop%\fatura_.exe (analyzed sample) C:\WINDOWS\system\attrib.exe
// ::. Terminate Process %Desktop%\fatura_.exe (analyzed sample) -
// ::. Create Process C:\WINDOWS\system\attrib.exe C:\Windows\explorer.exe
// ::. Terminate Process C:\WINDOWS\system\attrib.exe -
// ::. DNS Query C:\Windows\explorer.exe followtweetertag.com
// ::. Send Data C:\Windows\explorer.exe https://followtweetertag.com(possibly download config files)
// ::. Create File C:\Windows\explorer.exe "yqomswoc.bkp, ajukiveq.bkp, yqoletyz.bkp under %APPDATA%\Sun"
// ::. Create File C:\Windows\explorer.exe "ajukiveq.dat, cfovpdiq.dat, oquthmjk.dat, yqoletyz.dat, yqomswoc.dat under %APPDATA%\yseszpkf"
// ::. Create File C:\Windows\explorer.exe C:\windows\esem\ohotuzuf.exe (MD: DBADFEDDDC)
// ::. Create Reg Key C:\Windows\explorer.exe HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\qzofpbuk=C:\windows\esem\ohotuzuf.exe
// ::. Send Data C:\Windows\explorer.exe https://webislemx.com (for further commands)

. The analysis application injects codes into explorer.exe process. This process exe-

cutes submitted file in the suspended mode and then explorer.exe writes PID of this

recently created process to a shared memory. Subsequently, the analysis application

reads PID info from the shared memory, sends a message involving this information

to the driver and a request about recording the events initiated by this process.

. The analysis application waits until the analyzed process exits or a timeout of 
minutes occurs. Then, it sends a message to the driver to stop recording events.

. The driver stops recording and writes collected events to a log file.

. The analysis application sends the log file to the application server for parsing,

. The application server parses the log file and stores it in the database. Finally, it

reverts the analysis machine to the clean state.

Malware samples used for evaluation purposes were obtained during recent mal-

ware campaigns targeted to Turkey. We analyze a trojan, named as hesperbot, which

was detected on August,  []. This trojan is focused on stealing banking ac-

count information to be used towards unauthorized money transfers. The attackers

social engineer victims to execute attached files by sending e-mail which looks like it

is originated from one of the service providers in Turkey. The analysis of hesperbot is

done automatically on a Windows  Ultimate -bit OS.

Since the number of events including system dll file and registry accesses gath-

ered from VirMon for this malware is too high (+), only important events oc-

curred on the system are displayed in Table .. The intention of the malware sample

can be easily derived from this table. When the sample is executed, the process cre-

ated by explorer.exe creates a new process entitled “fatura_.exe” having the

same name in its directory. In Turkish, “fatura” means “the bill”. This technique,

named as process hollowing, (see [, ] for instance), has been recently used by

malware to hide itself. Then, the process created by explorer.exe terminates itself. The

 CHAPTER . VIRMON: A VIRTUALIZATION-BASED AUTOMATED DYNAMIC MALWARE ANALYSIS SYSTEM

fatura_.exe process created by hollowing technique, creates %APPDATA%\Sun

and %APPDATA%\yseszpkf directories and drop randomly named binary files under

them. To be hidden, the fatura_.exe process creates new explorer.exe, which

in turn is used to carry out remaining activities, download configuration files from

C&C server, drop new executable and writes it to the auto-start line in the registry,

respectively. This analysis shows that the VirMon dynamic malware analysis system

successfully collects the run-time behaviors of the file sample.

.. VirMon Compatibility on Windows  beta

In order to show that VirMon (e.g., its mini-filter driver) is adaptable to the newest

version of Windows OS, we conducted functional testing of developed mini-filter

driver on Windows  beta. This test is based on the analysis results of the recent

malware sample, known as cyrptolocker, a variant of ransomware, that encrypts sen-

sitive documents on the infected machine and forces to pay a ransom to make them

usable again. Since other system components of VirMon work independently, it has

been sufficient to install the developed mini-filter driver into the analysis machine to

integrate new OS.

Accordingly, we successfully installed VirMon’s mini-filter driver on Windows 
beta without any need to modify or build driver’s code. Table . shows the sum-

marised run-time activities of the cyrptolocker still observed by VirMon during its

analysis. Cyrptolocker malware [] is active at the time of writing this thesis, De-

cember . This malware’s activities show that it uses the process hollowing tech-

nique as in the previously analyzed sample (i.e., hesperbot sample). Then, it probably

searches specific file types under C:\drive to encrypt and makes them unusable unless

one does not have the description key. Finally, it sends some information to its C&C

server and asks ransom from its victim user.

. Conclusion

In this chapter, the virtualization-based dynamic malware analysis system and its

components are presented. A mini-filter driver is built to monitor run-time activities

of the file to be analyzed. Since kernel-callback scheme is reliable and compatible with

all versions of Windows OS, analysis machine can support all Windows OS versions.

In addition to its portability feature, the design supports virtualization and scalability,

for instance the average rate of analysis can be adjusted by the virtualization approach,

and malware armed with IP-based evasion technique can be avoided by the decentral-

ized sensor architecture.

.. CONCLUSION 

Table .: Run-time activities of the cyrptolocker on Windows  beta

Time Event Process Detail
// ::. Create Process C:\Windows\explorer.exe %DESKTOP%\fatura_.exe (MD: CAADEADE)
// ::. Create Process %DESKTOP%\fatura_.exe %DESKTOP%\fatura_.exe
// ::. Terminate Process %DESKTOP%\fatura_.exe -
// ::. Create Folder %DESKTOP%\fatura_.exe %APPDATA%\ytivyteqyfypequs
// ::. Create File %DESKTOP%\fatura_.exe %APPDATA%\ytivyteqyfypequs\
// ::. Create Process %DESKTOP%\fatura_.exe %WINDOWS%\explorer.exe
// ::. Terminate Process %DESKTOP%\fatura_.exe -
// ::. Create File %WINDOWS%\explorer.exe %WINDOWS%\whdhufel.exe (MD: CAADEADE)
// ::. Create Reg Key %WINDOWS%\explorer.exe HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\ebotigob=%WINDOWS%\whdhufel.exe
// ::. Create File %WINDOWS%\explorer.exe %APPDATA%\Microsoft\Address Book
// ::. Create Process %WINDOWS%\explorer.exe %SYSTEM%\vssadmin.exe
// ::. Create File %WINDOWS%\explorer.exe %APPDATA%\Microsoft\Address Book\user.wab
// ::. Terminate Process %SYSTEM%\vssadmin.exe -
// ::. Create File %WINDOWS%\explorer.exe ", , ,  under %APPDATA%\ytivyteqyfypequs\"
// ::. DNS Query %WINDOWS%\explorer.exe IT-NEWSBLOG.RU
// ::. Query Directory %WINDOWS%\explorer.exe C:*
// ::. Create File %WINDOWS%\explorer.exe Start to encrypt all files located under C:*
// ::. Send Data %WINDOWS%\explorer.exe https://IT-NEWSBLOG.RU
// ::. Send Data %WINDOWS%\explorer.exe https://IT-NEWSBLOG.RU
// ::. Send Data %WINDOWS%\explorer.exe https://IT-NEWSBLOG.RU
// ::. Create Process %WINDOWS%\explorer.exe C:\Program Files\Internet Explorer\iexplore.exe
// ::. Create Process C:\Program Files\Internet Explorer\iexplore.exe C:\Program Files\Internet Explorer\iexplore.exe
// ::. Send Data %WINDOWS%\explorer.exe https://IT-NEWSBLOG.RU
// ::. Send Data %WINDOWS%\explorer.exe https://IT-NEWSBLOG.RU
// ::. Send Data %WINDOWS%\explorer.exe https://IT-NEWSBLOG.RU

Two recent malware samples captured in the wild are analyzed to illustrate the

portability feature and analysis success of the presented dynamic analysis system. The

activities of the analyzed samples are extracted accurately and details of each activity

are given with the timestamp, event and process description, which enhances read-

ability of the analysis.

However, since the presented design is based on virtualization technology, it is not

capable of analyzing malware sensitive to virtualized environments. Moreover, it can

only analyze executable files. In the future, we plan to improve the presented design by

adding the analysis skills oriented towards malware sensitive virtualized environment

by collecting network events on low kernel level.

Chapter 
Classification of malware using its

behavioral features

After having introduced VirMon dynamic malware analysis system, in this
chapter we explain the malware classification process, from feature selection to
the classification algorithms used in evaluation phase.

The proposed malware classification method consists of three major stages. The

first stage consists in extracting the behavior of the sample file under scrutiny

and observing its interactions with the OS resources. At this stage, the sample file

is run in a sandboxed environment. Our framework supports two sandbox environ-

ments deployed: VirMon [] and Cuckoo []. During the second stage, we apply

feature extraction to the analysis report. The label of each sample is determined by

using Virustotal [], an online multiple anti-virus scanner framework consisting of

 engines. Then at the final stage, the malware dataset is partitioned into training

and testing sets. The training set is used to obtain a classification model and the test-

ing set is used for evaluation purposes. An overview of our system including its main

functionalities is presented in Figure ..
The remain of this chapter is organized as follows. This chapters begins with de-

scribing the dynamic analysis frameworks employed in our research and answers the

question of why we choose these tools. In Subsection .. we provide an introduc-

tion and overview of the current state of the malware behavior sharing formats. Based

on these sharing formats, we propose and outline our behavioral features to repre-

sent malware. Following that, we describe the Jubatus framework, its architecture,

key functional components, and its data conversion method. In Section ., we define



 CHAPTER . CLASSIFICATION OF MALWARE USING ITS BEHAVIORAL FEATURES

Figure .: Overview of the proposed malware classification system

the online machine learning and provide some details of the online classification algo-

rithms used in our experiments. In particular, we present their mathematical details.

Finally, we conclude the chapter by summarizing its main contributions.

. Automated Dynamic Analysis

In this section, the details of the dynamic analysis frameworks (i.e. Cuckoo and

VirMon) used in this work are provided, especially the system designed to analyze

more samples in a given time with Cuckoo is presented. In this work, we used both

of the API calls and system changes to model the runtime behavior of a given file. To

this end, VirMon and modified version of the Cuckoo Sandbox is used to automatically

obtain behavioral activities. Table . shows the adopted outputs of the VirMon and

Cuckoo for presentation of a software behavior. Following to the brief overview of the

dynamic analysis frameworks, we will focus on the feature set.

.. VirMon

As stated in previous chapter (i.e. Chapter ), VirMon monitors any system changes

occurred on the analysis machine through its Windows kernel level notification rou-

tines. During the analysis, the state changes of the OS resources such as file, registry,

process/thread, network activities and IDS alerts are logged into a report file. One

.. AUTOMATED DYNAMIC ANALYSIS 

Table .: Adopted features from dynamic analysis frameworks

M
u

te
xe

s

P
ro

ce
ss

Tr
ee

ID
S

Si
gn

at
u

re
s

D
N

S
R

eq
u

es
ts

H
T

T
P

R
eq

u
es

ts

Fi
le

A
ct

iv
it

ie
s

R
eg

is
tr

y
A

ct
iv

it
ie

s

Se
rv

ic
e

A
ct

iv
it

ie
s

IR
C

C
om

m
an

d
s

A
P

I
ca

ll
s

Cuckoo 4 4 8 4 4 4 4 4 4 4

VirMon 8 4 4 4 4 4 4 8 4 8

of the most important feature of VirMon is automatic analysis that makes malware

analysis handy.

Obviously, in dynamic analysis some critical API call set expose the aim of a soft-

ware. These calls are one of the useful and efficient features to model malware. As

VirMon does not provide API calls made by the dissected file, open source Cuckoo

sandbox is used to overcome this limitation.

.. Cuckoo

Cuckoo, an open source malware analysis framework, reports artifacts with its

agents while executing a file in an isolated environment. Besides that, it obtains func-

tion calls of the file under analysis through hooking method.

We modified Cuckoo in order to increase the number of concurrent analysis it can

perform. The number of the guest machine in one analysis server is adjusted depend-

ing of the host system used for analysis. For example,  guest machines run in a

server containing  GB memory and 4× 4 Xeon CPU. Windows XP SP is selected as

analysis OS since it consumes less memory and CPU power. Simultaneously, we em-

ployed five host machine which has the same configuration with each other and each

of them severing  guest machine to dissect malware.

It is certain that malware might sometimes infect itself into other internal or ex-

ternal networks, attacks hosts located on the Internet or takes commands from Com-

mand and Control servers(C&C). Therefore analysis environment needs to be orga-

nized properly in order to cope with that kind of attacks. For this reason, virtual net-

work interfaces (i.e. VLAN interfaces) are defined on the each host server and on these

interfaces proper rules is applied to separate network traffic between each machines.

Furthermore, to allow each analysis machine to access to the Internet, NAT config-

uration is performed on cuckoo host server. On the other hand to restrict access to the

 CHAPTER . CLASSIFICATION OF MALWARE USING ITS BEHAVIORAL FEATURES

internal subnets iptables rules are applied. In addition, malware analysts can simulta-

neously monitor ongoing analysis and can interact with the process in any time.

The curl utility is used to automatically submit files into Cuckoo. Though the anal-

ysis report can be saved into either relational or non-relation database, we prefer to

save into file system. Due to the extensive storage need, one host machine is connected

to the  TB storage units. This storage formatted as glusterfs file format and shared

between other host machines. Refer to the Section A. for the step-by-step Cuckoo

installation instructions for the latest Ubuntu server (e.g. . LTS).

. Feature Extraction

.. Malware Behavior Signature Formats

There is no standard method for sharing malware information indicating its pres-

ence on the computer system. Researchers introduce frameworks, such as Open Indi-

cators of Compromise (OpenIOC)[] and Malware Attribute Enumeration and Char-

acterization (MAEC)[], to identify malware based on its network and host level in-

dicators instead of hash values or signatures employed in conventional security tools.

Consequently, these standardized malware reporting formats provide opportunity to

characterize malware samples uniformly and prevents malware community from re-

analyzing samples.

... Open Indicators of Compromise - OpenIOC

IOCs (Indicators of Compromise), sometimes called just indicators, are forensic ar-

tifacts of an malware attack (i.e. intrusion) that can be extracted from a host computer

or network. OpenIOC is a format developed by Mandiant Corp. [] for defining,

reporting and sharing the various clues related to malware infection which enables

fast and efficient malware detection schema to its users. OpenIOC supports various

categories such as email, network, process, file system, registry, etc. to specify mal-

ware presence on the system. Moreover, users can use logical operators (AND and

OR operator) in order to write their own complex and precise signatures that fits their

environment.

While creating a signature, OpenIOC employs an XML schema which can be easily

parsed and interpreted by various tools and libraries. Figure . shows an example

of OpenIOC created for Stuxnet malware through Mandiant IOCe editor []. This

signature looks for the following artifacts respectively:

• Checks if file name contains specified string.

.. FEATURE EXTRACTION 

Figure .: An OpenIOC format for a Stuxnet malware sample

• Searches the specified drivers; fs_rec.sys, mrxsmb.sys, sr.sys and fastfat.sys .

• Checks if there is a file named mrxcls.sys(i.e. software driver) signed by Realtek

Semiconductor Corp.

• Checks if there is a file named mrxnet.sys(i.e. software driver) signed by Realtek

Semiconductor Corp.

• Checks if there is a service named mrxcls on the system by enumerated the spec-

ified registry key.

• Checks if there is a service named mrxnet on the system by enumerated the spec-

ified registry key.

... Malware Attribute Enumeration and Characterization - MAEC

"Malware Attribute Enumeration and Characterization (MAEC) is a standardized

language developed by Mitre Corp. [] for encoding and communicating high-

fidelity information about malware based upon attributes such as behaviors, artifacts,

and attack patterns" []. MAEC aims to eliminate the ambiguity and inaccuracy of

the existing malware description schema. MAEC schemas not only reduce possible

 CHAPTER . CLASSIFICATION OF MALWARE USING ITS BEHAVIORAL FEATURES

duplication of analysis efforts, it also allows for the faster and efficient development of

precaution by taking advantage of the responses to the previously observed intrusions.

MAEC language is defined by three data models including Container, Package and

Bundle. Each of this models is implemented by its own XML schema. The most impor-

tant information related to our study includes in MAEC Bundle section. As shown in

Figure ., MAEC Bundle data model consists of three interconnected layer. The key

information about the layers are explained in below.

Figure .: Tiers of the MAEC Bundle

• Low Level – Actions: At the lowest layer, MAEC try to answer question "What

does the piece of malware do on a system or network?". To this end, MAEC

actions characterizes all system state changes performed by malware. Although

this level provides basic properties of the malware which allows us to compare

malware and find similarities along the samples, it does not answer question

"Why does the malware perform these actions?". Thus, these actions are needed

to be interpreted by analysts to understand their goals.

• Mid Level – Behaviors: This tier of the MAEC defines the goals behind the low

level actions. At this level, malware functionalities are extracted at significant

level of abstraction in order to describe how they operate. Similar actions could

be associated with different behaviors. For example, a registry key could be used

to allow malware to auto-start capabilities, or it could be employed as a simple

option while executing malware sample.

.. FEATURE EXTRACTION 

• High Level – Capabilities: At the upper-most layer, MAEC define high-level

abilities possessed by a malware sample. The key difference between behavior

and capability is that behavior describe how a malware operates, capability states

what a malware sample is capable of doing. In this regard, a behavior may serve

to describe a specific implementation of a capability which is possessed by a mal-

ware. For example, auto-starting is a behavior that is typically part of a ’Persis-

tence’ capability. Other examples of capabilities include ’Self-Defense’, ’Spying’,

’Data Exfiltration’ and so on.

Example of MAEC Bundle Mapping

Consider the following as an example of how a malicious action can be mapped

into the MAEC Bundle. Suppose the malware under consideration calls the Windows

CreateService API to create a service. This event would first be mapped to the ’Cre-

ate Service’ Action in the lowest-layer of MAEC Bundle. After further investigation,

we might conclude that the created service was used for malicious purposes such as

unauthorized access to the system, thus mapping to a ’Malicious Service Installation’

Behavior for middle-level. Finally, this behavior could be considered as a part of a

malware ’Persistence’ Capabilities. This mapping is illustrated in Figure ..

.. Selected Behavioral Features

In this study, common host-based malicious features, which are also the most sig-

nificant and representative features used to present malware behavior both in MAEC

and OpenIOC are selected. Moreover n-gram modeling over categories of the API call

and network-level intrusion alerts are employed while modeling behavior of a soft-

ware. In the following, these features are given in detail.

As machine learning algorithm needs more structural features to work, feature ex-

traction is applied on the analysis report obtained from dynamic analysis. Table .
shows the selected features and their variable types used for characterizing a malware

sample.

... N-gram modeling over API-call Sequences

Windows API call sequence represents the behavior of executable file. As the mal-

ware authors require to call relevant API calls to achieve their malicious goals, analysis

of API calls would allow malware examiner to understand the behavior of a given sam-

ple. The Windows API function calls can be grouped into various functional categories

 CHAPTER . CLASSIFICATION OF MALWARE USING ITS BEHAVIORAL FEATURES

such as system, registry, services, network activities, etc. As listed below, currently 
different categories of API calls are used while building n-gram features.

• hooking : operations or actions to inject code

• network : high-level actions for creating network connection

• windows : actions on window objects

• process : actions on processes

• misc : various actions for additional information

• system : querying of system information

• threading : actions on thread

• synchronization : actions on synchronization objects(mutex, named pipe)

• device : actions to access real or virtual devices

• registry : actions on registry database

• filesystem : actions on file system

• services : actions on Windows services

• socket : low-level actions related to network connections

Instead of directly taking into account API call based modeling, we consider the

category based modeling, which leads a lower feature space. To this end, we directly

used categories of the API call. Consequently, processing of the machine learning

algorithm requires less time and CPU power. Table . shows the API calls and their

categories.

To specify weight of each feature obtained from n-gram extraction, the term fre-

quency and inverse document frequency are used. Term frequency, or tf for short

is the statistical measure for how often a term occurs in a document. Moreover, the

following types of term frequency can be defined and used:

� boolean frequency for given term t:

tf (t) =

1, if t occurs in a given document

0, otherwise

� logarithmic frequency for given term t:

tf (t) = 1 + logf (t)

where f (t) is the number of occurances of term t in a given document

.. FEATURE EXTRACTION 

Table .: API calls and their categories

Category Code API # APIs

hooking A  unhookwindowshookex

network B 

dnsquery_a, dnsquery_utf, dnsquery_w, getaddrinfo,
getaddrinfow, httpopenrequesta, httpopenrequestw,
httpsendrequesta, httpsendrequestw, internetclosehandle,
internetconnecta, internetconnectw, internetopena,
internetopenw, internetopenurla, internetopenurlw,
internetreadfile, internetwritefile, urldownloadtofilew

windows C  findwindowa, findwindoww, findwindowexa, findwindowexw

process D 

createprocessinternalw, exitprocess, ntallocatevirtualmemory,
ntcreateprocess, ntcreateprocessex, ntcreatesection,
ntcreateuserprocess, ntfreevirtualmemory, ntopenprocess,
ntopensection, ntprotectvirtualmemory, ntreadvirtualmemory,
ntterminateprocess, ntwritevirtualmemory,
readprocessmemory, shellexecuteexw, system, virtualfreeex,
virtualprotectex, writeprocessmemory, zwmapviewofsection

misc E  getcursorpos, getsystemmetrics

system F 

exitwindowsex, isdebuggerpresent, ldrgetdllhandle,
ldrgetprocedureaddress, ldrloaddll, lookupprivilegevaluew,
ntclose, ntdelayexecution, setwindowshookexa,
setwindowshookexw, writeconsolea, writeconsolew

threading G 

createremotethread, createthread, exitthread,
ntgetcontextthread, ntcreatethreadex, ntcreatethread,
ntopenthread, ntresumethread, ntsetcontextthread,
ntsuspendthread, ntterminatethread, rtlcreateuserthread

synchronization H  ntcreatemutant, ntcreatenamedpipefile, ntopenmutant
device I  deviceiocontrol

registry J 

ntcreatekey, ntdeletekey, ntdeletevaluekey, ntenumeratekey,
ntenumeratevaluekey, ntloadkey, ntloadkey, ntloadkeyex,
ntopenkey, ntopenkeyex, ntquerykey, ntquerymultiplevaluekey,
ntqueryvaluekey, ntrenamekey, ntreplacekey, ntsavekey,
ntsavekeyex, ntsetvaluekey, regclosekey, regcreatekeyexa,
regcreatekeyexw, regdeletekeya, regdeletekeyw,
regdeletevaluea, regdeletevaluew, regenumkeyexa,
regenumkeyexw, regenumkeyw, regenumvaluea,
regenumvaluew, regopenkeyexa, regopenkeyexw,
regqueryinfokeya, regqueryinfokeyw, regqueryvalueexa,
regqueryvalueexw, regsetvalueexa, regsetvalueexw

filesystem K 

createdirectoryw, createdirectoryexw, removedirectorya,
removedirectoryw, findfirstfileexa, findfirstfileexw, deletefilea,
deletefilew, ntcreatefile, ntopenfile, ntreadfile, ntwritefile,
ntdeviceiocontrolfile, ntquerydirectoryfile,
ntqueryinformationfile, ntsetinformationfile,
ntopendirectoryobject, ntcreatedirectoryobject,
movefilewithprogressw, copyfilea, copyfilew, copyfileexw,
ntdeletefile

services L 
controlservice, createservicea, createservicew, deleteservice,
openscmanagera, openscmanagerw, openservicea, openservicew,
startservicea, startservicew

socket M 

accept, bind, closesocket, connect, connectex, gethostbyname,
ioctlsocket, listen, recv, recvfrom, select, send, sendto,
setsockopt, shutdown, socket, transmitfile, wsarecv,
wsarecvfrom, wsasend, wsasendto, wsasocketa, wsasocketw,
wsastartup

On the other hand, to designate the global weight of the n-gram extracted from the

malware dataset, inverse document frequency(idf) measure, an other statistical mea-

sure to indicate whether the given term is common or rare over all of the documents

 CHAPTER . CLASSIFICATION OF MALWARE USING ITS BEHAVIORAL FEATURES

(in our case document refers to malware sample). Idf is the logarithm of the total num-

ber of documents divided by the number of the documents containing the term. Given

that definition, the idf give more importance to the term which rarely occurs in the

document corpus.

idf (t) = log
total number of sample

number of documents containing the term

where the term occurs at least once in the document corpus.

... IDS Alerts

Intrusion Detection System (IDS) is useful to inspect network stream during mal-

ware analysis for catch malicious activities over network. While IDS scanning network

traffic for potential malicious activities by their rule set, they produce alerts and logs

them. In our study, we used the up-to-date IDS ruleset taken from Emerging Threats

[], a leading company in the field of network-based threat detection. For modeling

malware behavior it has an important option, to add IDS alerts to the feature set.

The IDS signatures consists of a header and options. The first line of the Listing .
is the header of the rule, which includes basic packet header information such as IP

addresses & ports, as well as actions to apply the packet like drop, alert, etc.. The other

lines of the Listing . is the rule options, which includes alert message, signature

patterns, rule revision, and other supported information.

After detecting network attack, IDS system produces the alert and logs it to the

specified file. Typically, the IDS alert includes time, rule specific information like

unique identifiers (sid and gid), revision, description of alert, alert type, priority and

the IP, port and protocol type associated with the attack respectively(refer Listing .).
To take advantage of this useful information we parse the network alerts to make it

more structure. More precisely, we only consider the definition of the alert and ig-

nore the other remaining information. For instance, given the alert in Listing ., "ET

MALWARE W/InstallRex.Adware Report CnC Beacon" is extracted and inputted as

string format into online learning algorithm.

 a l e r t http $HOME_NET any −> $EXTERNAL_NET any (

 msg: "ET MALWARE W/ I n s t a l l R e x . Adware Report CnC Beacon " ;

 flow : es tab l i shed , t o _ s e r v e r ;

 content : " POST " ; http_method ;

 content : " / ? repor t_vers ion= " ;

 http_ur i ; content : " data = " ;

 http_cl ient_body ; depth :  ;

 r e f e r e n c e :md , abbbeafbdbafcba ;

 c l a s s t y p e : t ro jan − a c t i v i t y ;

.. ONLINE MACHINE LEARNING 

 s id : ;

 rev :  ;

)

Listing .: An Example of IDS Rule

 //− : : . [* *] [ : :]

 ET MALWARE W/InstallRex.Adware Report CnC Beacon [* *]

 [C l a s s i f i c a t i o n : A Network Trojan was detected]

 [P r i o r i t y : ]

 {TCP}  . . . : −>  . . . :

Listing .: An Alert belonging to the IDS rule given in Listing .

An Example for Feature Selection

As it is well-known, malware tends to utilize random names for various types

of OS resources such as file, registry, etc. to make it more difficult to analyze. For

this reason, run-time features are sanitized from random values which are changed

by malware for each run. Consider the following as an example of how behav-

ioral actions are mapped into the feature set. This mapping for the file with

MD=adacedfdaedcb is illustrated in Table ..

. Online Machine Learning

The problems faced with classification of the malware using machine learning is

that feature space is very large. Researchers proposes many techniques to reduce this

feature space. However, their approaches do not scale well for large amount of dataset

and need more computational resources. To overcome this limitation researchers pro-

pose distributed machine learning frameworks. These frameworks can be separated

into two groups according to model updating mechanism: online frameworks which

updates its model for each training samples and batch (or offline) frameworks up-

dating models in regular interval. The online framework is more useful to properly

separate malwares into respective classes since once a new sample appears in the wild

the model needs to be updated immediately.

Online learning algorithms accommodate simple and fast model updates. Gener-

ally, they used for solving complex problems where high dimensional feature repre-

sentation such as n-gram, bag-of-words demand computational and runtime efficiency

(for instance natural language processing) .

 CHAPTER . CLASSIFICATION OF MALWARE USING ITS BEHAVIORAL FEATURES

Table .: Features and their types

Feature Category Type Value
Sequnece of API category N-gram ’ABCA’, ’BACA’, . . .
Mutex names String ‘zsd’
Created processes String ‘reg.exe’
Copy itself Boolean False
Delete itself Boolean False

DNS requests String ‘fewfwe.com www.hugedomains.com
fewfwe.net’

Remote IPs String ‘... ...’
TCP Dst Port String ‘’
UDP Dst Port String None

Presence of the special APIs Boolean ’isdebuggerpresent’: False,
’setwindowshook’: True

Read files String None
Registry keys String None

Changed/created files String

’% DOCUME∼%/ftpdll.dll
%SYSTEM%/drivers/spools.exe
%SYSTEM%/ftpdll.dll
%APP_DATA%/cftmon.exe ...’

Changed/created registry keys String

‘HKCU\Software\Microsoft\Windows\
CurrentVersion\Run
HKLM\SOFTWARE\Microsoft\WindowsNT\
CurrentVersion\Winlogon ...’

Downloaded EXE String ‘spools.exe cftmon.exe’
Downloaded DLLs String ‘ftpdll.dll’
User-agents String ‘_’
IDS alert String None

HTTP requests String ‘/?&v=Chatty/domain_profile.cfm?
d=fewfwe&e=com’

ICMP data String None
ICMP host String None
IRC commands String None

.. Binary Classification

In general, online learning algorithm works in sequence of consecutive rounds. On

each round, the algorithm takes an instance ~xt ∈ Rd , d-dimensional vector, as input

to make the prediction ŷt ∈ {+1,−1} (for binary classification) regarding to its current

prediction model. After predicting, it receives the true label yt ∈ {+1,−1} and updates

its model (a.k.a hypothesis) based on prediction loss `(yt, ŷt) meaning the incompati-

bility between prediction and actual class. The goal of online learning is to minimize

the total number of incorrect predictions. Pseudo-code for generic online learning is

given in Algorithm-.

.. ONLINE MACHINE LEARNING 

Algorithm  Generic Binary Online Learning Algorithm

Initialize: ~wt=1 = (0, ...,0)
for each round t in (,,..,N) do

Receive instance ~xt ∈Rd
Predict label of ~xt : ŷt = sign(~xt. ~wt)
Obtain true label of the ~xt : yt ∈ {+1,−1}
Calculate the loss: `t
Update the weights: ~wt+1

end for
Output: ~wt=N = (w1, ...,wd)

.. Multi-class Classification

Similar to online binary classification, online multi-class classification operates

over a sequence of training sample (~x1, ŷ1), ..., (~xt, yt). Unlike binary classification where

there is only two class; yt ∈ {+1,−1}, in multiclass learning there are N − classes;
yt ∈ V = {1, ...,N }. This makes multi-class classification algorithm more challenging

to implement.

Online multiclass classification algorithms, learn from multiple classifiers, in our

case a total of K classifiers are trained to obtained the model for predicting multi-class

problem. The predicted label (ŷt shown in Equation .) is the one associated with

the largest prediction value produced by the classifiers. After the prediction, the true

label yt ∈ V will be uncovered, the learner then calculates the loss function to measure

the incompatibility between the prediction and the actual label. Based on the results

of the loss function, the learner decides when and how to update the K classifiers at

the end of each learning step. Pseudo-code for multi-class online learning is given in

Algorithm-.

ŷt = arg max
i∈(1,...,K)

~wt,i~xt (.)

In our study, i.e., multi-class classification problem:

• ~xt represents feature vector of a malware instance at the t-th iteration. When

implementing the algorithm for malware detection, the set of features for the

given sample is constituted by using the basis of the feature vector whose feature

category, its type and value is given for each independent feature in Table ..

• ~yt is the set of labels at the t − th iteration. ŷt is the output of the algorithm or

more simply prediction of malware family for the given ~xt. More practically, in

our study, the families to be matched are listed in the first column of Table .,
and their union constitutes the whole family set.

 CHAPTER . CLASSIFICATION OF MALWARE USING ITS BEHAVIORAL FEATURES

• `t is the function using the relation between the set of features for the given

sample, the computed weight, denoted by ~wt and the estimated malware label.

• ~wt+1 denotes the updated weight vector at the (t + 1) − th iteration towards the

final prediction output.

Algorithm Multi-Class Online Learning Algorithm

Initialize: ~wt=1 = (0, ...,0)
for each round t in (,,..,N) do

Receive instance ~xt ∈Rd
Predict label of ~xt : ŷt = argmaxi∈(1,...,K) ~wt,i~xt
Obtain true label of the ~xt : yt ∈ V
Calculate the loss: `t
Update the weights: ~wt+1

end for
Output: ~wt=N = (w1, ...,wd)

.. Online Learning Algorithms Used In This Study

Online machine learning algorithms differ according to how to initialize the weight

vector ~wt=1 and update function used to alter the weight vector at the end of each

round. In the following section, we discuss the basic machine learning algorithms

used in our malware classification task and provide their details.

... Passive-Aggressive Learning

Passive-Aggressive(PA) involves an assertive update strategy by altering the weight

vector as much as needed to fulfill the constraint enforced by ongoing round. In cer-

tain learning problem which contains mislabel samples PA may drastically change its

weight vectors in the wrong direction to satisfy the constraints.

PA learning is formulated as:

~wt+1 = argmin
~xt

1
2

∣∣∣∣∣∣~w − ~wt∣∣∣∣∣∣2
subject to `t(~w; (~xt, yt)) = 0

(.)

where the loss function is based on the hinge loss:

`t(~w; (~xt, yt)) =

 0 if yt(~w.~xt) ≥ 1

1− yt(~w.~xt) otherwise

.. ONLINE MACHINE LEARNING 

The solution to the optimization problem in Equation . has a simple closed form

solution.

~wt+1 = ~wt + τtyt~xt where τt =
`t∥∥∥~xt∥∥∥2 (.)

To deal with such problems resulted from aggressive update, the two variants of PA

algorithm is proposed by researchers. These algorithms introduce non-negative slack

variable ξ into the optimization problem in order to obtain flexible update strategy.

This slack variable can be bring into two ways: linear or quadratic form.

Considering the objective function scales linearly depending on ξ, the following

constrained optimization problem is obtained.

~wt+1 = argmin
~xt

1
2

∣∣∣∣∣∣~w − ~wt∣∣∣∣∣∣2 +Cξ

subject to : `t(~w; (~xt, yt)) ≤ ξ and ξ ≥ 0
(.)

where C is a positive real number which supervises the effect of the slack variable

on the objective function. In the literature, this form of the algorithm is called PA-I.

Alternatively, the objective function can be formed to scale quadratically with ξ,

leading us the following constrained optimization problem,

~wt+1 = argmin
~xt

1
2

∣∣∣∣∣∣~w − ~wt∣∣∣∣∣∣2 +Cξ2

subject to : `t(~w; (~xt, yt)) ≤ ξ
(.)

where C is again a positive real number which supervises the effect of the slack

variable on the objective function. This obtained algorithm is termed as PA-II.

PA-I and PA-II has simple closed-form solution,

~wt+1 = ~wt + τtyt~xt

where τt = min
{
C, `t

‖~xt‖2
}

(for PA-I)

τt =
`t∥∥∥~xt∥∥∥2

+ 1
2C

(for PA-II)
(.)

... Confidence-Weighted Learning

Dredze et al. introduce confidence-weighted(CW) learning for binary classification

problem. CW employs a distribution function to update weight vector instead of using

single vector like PA algorithm. CW algorithm maintains a Gaussian distribution of

 CHAPTER . CLASSIFICATION OF MALWARE USING ITS BEHAVIORAL FEATURES

weights: N (~µ,Σ) where ~µ ∈Rd mean vector and Σ ∈Rd×d covariance matrix. Given an

input instance xt ∈Rd Gibbs classifier calculates the weight vector ~w from the Gaussian

distribution and makes a prediction {+1,−1} according to sign(~xt · ~w) function.

CW learning algorithm updates the weight distribution by minimizing the

Kullback-Leibler diverge between the new weight distribution and the previous one

while ensuring that the probability of correct prediction is no smaller than a given

threshold value(the confidence).

(~µt+1,Σt+1) = argmin
~mt ,Σ

DKL(N (~µ,Σ),N (~µt,Σt))

subject to: P rw∼N (~µ,Σ)[yt(~w · ~xt) ≥ 0] ≥ η
(.)

where η is threshold value named as confidence parameter. Dredze et al. proved

that this optimization problem can be solved in closed-form []:

~µt+1 = ~µi +αiΣi~xi
Σt+1 = Σt − βtΣt~xTt ~xtΣt

(.)

where updating coefficients are computed as follows:

αt = max

0,
1
υtζ

−mtψ +

√
mt2

φ4

4
+υtφ2ζ




βt =
αtφ√

ut + vtαtφ

where ut = 1
4(−αtvtφ+

√
αt2vt2φ2 + 4vt)2, vt = ~xTt Σt~xt, mt = yt(~µt · ~xt), φ = Φ−1(η) (Φ

is the cumulative function of the normal distribution), ψ = 1 + φ2

2 and ζ = 1 +φ2.

... Adaptive Regularization of Weights

As CW learning, Adaptive Regularization of Weights(AROW) learning assumes a

Gaussian distribution over weight vectors with mean vector ~µ ∈Rd and covariance ma-

trix Σ ∈Rd×d . However, unlike CW learning, AROW employs adaptive update method

while handling a new sample at each learning step. This makes AROW more resis-

tant to instantaneous changes when encounter mislabeled training sample in learning

phase. Particularly, Crammer et al. summarized and formulated AROW learning by

the following optimization problem:

.. ONLINE MACHINE LEARNING 

(~µt+1,Σt+1) = argmin
~mt ,Σ

DKL(N (~µ,Σ),N (~µt,Σt))

+
1

2γ

2
`2(~µ; (~xt, yt)) +

1
2γ
~xTt Σt~xt (.)

where `2(~µ; (~xt, yt)) = (max
{
0,1− yt(~µ · ~xt)

}
)2 and γ is a regularization parameter.

The optimization of AROW learning has a closed-form similar to CW, but has different

coefficients:

αt = `(~µt; (~xt, yt))βt

βt =
1

~xTt Σt~xt +γ

... Gaussian Herding

Gaussian Herding(NHERD) is a modified version of PA-II which has quadratic

function for updating weight. NHERD assumes a Gaussian distribution over weight

vectors with mean vector ~µ ∈ Rd and covariance matrix Σ ∈ Rd×d like AROW and CW.

Furthermore, on round t, NHERD employs a liner transformation of the weight distri-

butions with matrices At. In particular, Crammer and Lee formulate the loss function

of NHERD as follows []:

(~µt+1,At) = argmin
~m,A

1
2

(~µ− ~µt)TΣ−1
t (~µ− ~µt)

+
1
2
T r

(
(A− I)TΣ−1

t (A− I)Σt
)

+C(1−γt)2 +
C
2
~xTt AΣtA

T ~xt

(.)

The objective function of NHERD has a closed-form similar with the following co-

efficients:

αt =
(1−γt)
υt + 1

C

βt = 2C +C2υt

where γt = yy(~µt · ~xt),υt = ~xTt Σt~xt and C is a aggressiveness parameter (threshold

value).

 CHAPTER . CLASSIFICATION OF MALWARE USING ITS BEHAVIORAL FEATURES

. Jubatus Online Learning Framework

In this work, Jubatus, an online machine learning framework is preferred to clas-

sify malware samples based on their behavioral patterns. When compared to current

existing online learning tools LIBOL [] and MOA (Massive Online Analysis) [],
Jubatus is the only platform supporting parallel computing with distributed comput-

ers. Therefore, we deployed distributed jubatus servers in order to handle malware

classification task efficiently and consistently. Now, let’s look at the key features of

Jubatus framework and its configuration.

.. Jubatus Architecture

Essentially, Jubatus aims to combine machine learning and parallel computing to-

gether. Besides that, Jubatus supports various online learning algorithm in different

categories such as classification, regression, clustering, graph matching, etc. and has

real-time processing and scale-up abilities. All these features make Jubatus to be a

versatile and powerful tool for mining large-scale data.

Jubatus employs a client-server architecture to control components and to share

computationally expensive processes to its distributed servers over the network. The

task can be run either on single server or on multiple servers if you need scalability.

Jubatus framework uses a special method called loose model sharing which includes

the three major operations:

• UPDATE: Update operation corresponds to the training phase of online learning

algorithm. Initially, each server has a local model which is updated once a new

sample is submitted. In this step, a training sample will automatically be sent

to randomly selected server or to specified servers based on the user preferences.

After processing the sample, the corresponding server updates its local model in

an online learning manner.

• MIX: The MIX operation is the key step corresponding the sharing of the local

models of each server in order to build final version of the model. At the begin-

ning of each MIX operation, a server is randomly selected as a parent node for the

remaining servers. First of all, the parent node connects the rest of the servers to

gather their local model built in the previous step. Then the parent node merges

each of the local models into one model and pushes up-to-date model to the oth-

ers. At the end of MIX, all servers have the same model.

• ANALYZE: This step is responsible of prediction. In this step, a given test sam-

ple is also sent to one server. Then, according to its model the server makes a

.. JUBATUS ONLINE LEARNING FRAMEWORK 

prediction for the sample.

Figure .: Distributed Mode Jubatus

Jubatus composed of the following components for distributed mode. Figure .
illustrates the interaction between each of these nodes.

• Jubatas client: A Jubatus client is a component which requests a task from Juba-

tus keeper to execute and obtains the result from the keeper. Although one client

is enough for running task on Jubatus, sometimes when training data is huge, it

is a good practice to use multiple Jubatus clients .

• Jubatus keeper (proxy): The Jubatus keeper, is the important component which

is responsible controlling Jubatus nodes to accomplish scalable distributed com-

puting environment. More specifically, it requests a task to Jubatus nodes and

receives the results from them.

• Jubutus node (server): A Jubatus node is a component where a specified ma-

chine learning algorithm is executed. The examples of such algorithms are rec-

ommendation, classification, clustering, regression, etc..

.. Data Conversion Engine

The unstructured data such as texts or multi-media content can not be used directly

in machine learning. Instead, this data are converted to "feature vectors". Jubatus uses

data-conversion engine to simplify feature extraction process by employing a simple

configuration file. In this file, features are defined in terms of key-value pairs, called

"datum". Jubatus has three default datums as follows:

. string_values, whose key and value are both string,

. num_values, whose key is string, but value is numeric data,

. binary_values, whose key is string, but value is arbitrary binary data.

 CHAPTER . CLASSIFICATION OF MALWARE USING ITS BEHAVIORAL FEATURES

.. Our Jubatus Deployment

We set up a three machine cluster for Jubatus, allows us not only to speed the classi-

fication process but also to handle large dataset. While analysis, each machine done its

jobs and deliver the result to the manager of the cluster. Since Jubatus performs its ac-

tion on memory to respond rapidly, it needs more memory. Accordingly, we deployed

each servers with  GB memory.

Listing . shows an example configuration used to extract features from the behav-

ioral reports of the analyzed file. Based on the configuration file, each word separated

by spaces is used as a feature for string data. For numeric data, each value is used itself

as a feature. Specifically, for the "category_list", features extracted by N-gram analysis

is employed. This configuration file and its parameters directly and significantly af-

fects the accuracy of the model. We will discuss the affects of these parameters in the

following chapter (Chapter ).

 {

 "method": "CW",

 "converter": {

 "num_filter_types": {},

 "num_filter_rules": [],

 "string_filter_types": {},

 "string_filter_rules": [],


 "binary_types": {},

 "binary_rules": [],


 "num_types": {},

 "num_rules": [

 { "key": "*", "type": "num"}

],

 "string_types": {

 "gram": {"method": "ngram", "char_num": ""}
 },

 "string_rules": [


 { "key": "category_list", "type": "gram", "sample_weight": "tf", "global_weight": "idf"

},


 { "key": "*", "except": "category_list", "type": "space", "sample_weight": "bin", "

global_weight": "bin" }


]

 },

 "parameter": {

 "regularization_weight" : .
 }

 }

Listing .: An example for the configuration of data conversion

.. JUBATUS ONLINE LEARNING FRAMEWORK 

After installing and executing Jubaclassifiers on the remote servers(refer to Sec-

tion A. for further details), we start to evaluate the proposed malware classification

method. The flow of classification includes the following tasks. The Python pseudo-

code for these tasks is given in Listing ..

• Connect to Jubaclassifier

• Prepare the training and testing data

• Create model from training data

• Classify the testing data

• Evaluate the result

 # ! / usr / bin /env python

 import jubatus

 from jubatus . common . datum import Datum

 from jubatus . c l a s s i f i e r import c l i e n t



 host = ’  . . . ’

 port = 
 name = ’ t e s t ’

 timeout = 
 # step  : Connect to J u b a c l a s s i f i e r

 c l i e n t = jubatus . C l a s s i f i e r (host , port , name , timeout)



 # step  : Prepare the t r a i n i n g and t e s t i n g data

 t r a i n i n g _ s e t = [some samples for t r a i n i n g]

 t e s t i n g _ s e t = [some samples fo r t e s t i n g]



 # step  : Create the model

 c l i e n t . t r a i n (t r a i n i n g _ s e t)



 # step  : C l a s s i f y t e s t i n g s e t

 r e s u l t s = c l i e n t . c l a s s i f y (t e s t i n g _ s e t)



 # step  : Evaluate the r e s u l t s

 fo r r e s u l t in r e s u l t s :

 pr int t e s t i n g _ l a b e l [i] [] + " , " + max(r e s u l t , key=lambda x : x . score) .

l a b e l



 # opt ional : c l e a r the model

 c l i e n t . c l e a r ()

Listing .: Python pseudo-code for the classification task

 CHAPTER . CLASSIFICATION OF MALWARE USING ITS BEHAVIORAL FEATURES

. Conclusion

As it is well-known fact that most of the current malware samples are derived from

existing ones, and, if these samples are armed with obfuscation techniques common

security solutions can be easily evaded. In this chapter, we propose a novel approach

for classifying malicious programs efficiently by using runtime artifacts while being

robust to obfuscation. The presented dynamic malware analysis setup is usable on

large scale in real world. We propose a malware classification method by using online

machine learning algorithm. The proposed method employs run-time behaviors of an

executable to build feature vector. All details of the proposed approach is provided

throughout this chapter. In this chapter, the following key points of the classification

system were explained:

• Behavioral feature vector for representing a software

• Running configuration of the Jubatus data conservation

• Pseudo-code for classification task

In the following chapter, we evaluate the proposed classification schema and dis-

cuss the contributions of our thesis in the context of other existing work.

Chapter 
Evaluation

This chapter evaluates the proposed approach to classify malware samples ac-
cording to their behavioral profiles obtained dynamic analysis.

In this section, we present the conducted experiment to evaluate the proposed mal-

ware classification approach. Firstly the used malware dataset is described in de-

tail. Then, evaluation measures are explained and in conclusion the obtained results

are provided and discussed.

. The Malware Dataset

The testing malware dataset is obtained from "Virusshare Malware Sharing" plat-

form [] which provides huge amount of malware in different types including PE,

HTML, Flash, Java, PDF etc. As VirMon only analyze executable files, we select only

executable file. To understand new malware tends, the samples shared by Virusshare

in the first quarter of the  are chosen for behavioral analysis.

All the experiments were conducted under the Windows XP SP  operating system

with Intel(R) Core(TM) i-M@.GHz processor and GB of RAM. The analysis

with  guest machines takes  days to analyze approximately . samples. In

other words, the average time required to analyze a file is approximately one minute.

However, some files did not run because they require more hardware specifica-

tion or need newer .NET version than the one located in Windows XP SP. Besides,

sometimes the analysis procedure failed. At the end of the analysis, . files are

correctly analyzed and reported. However, % samples does not illustrate enough

activities. Since these samples can cause false positives, we removed them from the

dataset. Figure . shows the distribution of the dynamic malware analysis results



 CHAPTER . EVALUATION

about the evaluation set. IDS alerts captured by VirMon for the succeeded analysis

is given in Table .. Moreover, Figure . shows the distribution of the successfully

analyzed malware sample according to first scan time in Virustotal.

%

%

%
%

Analysis reach min. time-out
Not performed enough activities
Exception while analysis
Succeeded

Figure .: Results of dynamic analysis about the evaluation set

Table .: Categories of the IDS signature extracted from dy-
namic analysis

Signature categories Number of sample

A Network Trojan was detected 
Potential Corporate Privacy Violation 
Misc activity  
Potentially Bad Traffic 
Attempted User Privilege Gain 
Attempted Information Leak 
 Various kinds of attacks

For labeling malware samples, Virustotal, an online web-based multi anti-virus

scanner, is used. Although Virustotal provides public API which allows the user to

automate various task e.g. the scanning the suspicious file or searching scan result of a

given hash value, users can make at most  requests in any given minute time frame.

However, curiously enough, Virustotal does not take any precaution like rate quota (or

rate limiting) to limit the request directly targeting its web site. By taking advantage of

this, we wrote a simple python script to access the scan results of the files by searching

their sha values. The pseudo-code of this script is given in Listing .. Interested

users can refer to [] for the source-code of the script.

.. THE MALWARE DATASET 

0

0.5

1

1.5

2

2.5
·104

’-’ ’-’ ’-’ Oct ’ Nov ’ Dec ’ Jan ’

Date

N
u

m
be

r
of

sa
m

p
le

s

Figure .: Distribution of the malware dataset according to first scan time in Virusto-
tal[]

 # c r e a t e http headers c o n s c i e n t i o u s l y otherwise v i r u s t o t a l does not t a c k l e

the request

 headers = {

 ’ Accept−Language ’ : ’ en−US ’ ,

 ’ Accept−Encoding ’ : ’ gzip , d e f l a t e ’ ,

 ’ Connection ’ : ’ Keep−Alive ’ ,

 ’ Accept ’ : ’ t e x t /html , a p p l i c a t i o n /xhtml+xml , */* ’ ,

 ’ user−agent ’ : ’ Mozil la / . (Windows NT  . ; WOW; Trident / . ; rv : .)

l i k e Gecko ’ ,

 ’ Host ’ : ’www. v i r u s t o t a l . com ’

 }



 # sha value of the f i l e to search

 sha = " sha value of the f i l e "

 # c r e a t e the URL for the s p e c i f i e d f i l e

 url = " https : / /www. v i r u s t o t a l . com/en/ f i l e / { } / a n a l y s i s / "

 url = url . format (sha)

 response = reques ts . get (url , headers=headers)

 # Parse the response in order to obtain AV−scan r e s u l t s and other useful

information (such as f i r s t scan date)

Listing .: Python pseudo-code for the searching scan result in Virustotal

 CHAPTER . EVALUATION

As it is well known fact that malware labeling differs between different anti-virus

engines [, ]. To be more consistent in labeling, the most common scan result is

determined as tag of a sample. As the labeling process completely affects the classifi-

cation accuracy, researchers need to be attentive to anti-virus labeling and sometimes

cross check the labeling results. Table . shows the distribution of the malware classes

used to evaluate the proposed method.

. Performance Measures

To evaluate the proposed method class-specific measures like precision, recall
(a.k.a. sensitivity), specificity, balanced accuracy and overall accuracy (the overall

correctness of the model) are used.

Recall is the probability for a sample in class c to be classified correctly, the maxi-

mum value  means that the classifier is always correct when it estimates whether an

instance belongs to class c. On the contrary, specificity is the probability for a sample

not in class c to be classified correctly, the maximum value means that the classifier is

always correct when it estimates that an instance does not belong to class c. Moreover,

precision gives probability for an estimated instance as class c to be actually in class

c. Low precision means that a large number of samples were incorrectly classified as

belonging to class c.

Balanced accuracy is another class-specific performance indicator used to handle

misleading overall accuracy when the dataset is imbalanced. More specifically, it as-

sesses the errors for each class and is calculated as the arithmetic mean of the speci-

ficity and recall. Whereas, overall accuracy is calculated as the sum of correct classi-

fications divided by the total number of samples. The performance measures can be

listed as follows:

precision =
tp

tp + fp
(.)

recall =
tp

tp + fn
(.)

specif icity =
tn

tn + fp
(.)

balanced accuracy = recall + specificity


= 
(tp

tp + fn + tn
tn + fp

) (.)

.. PERFORMANCE MEASURES 

Table .: Malware families and class-specific performance measures

Family Code # Precision Recall Specificity
Balanced
Accuracy

AdGazelle ADG  . . . .
Adw.ScreenBlaze ASC  . . . .
Adware.Agent.NZS AAN  . . . .
Adware.BetterSurf ABE  . . . .
Adware.Bprotector ABP  . . . .
Aliser ALI  . . . .
Almanahe.D ALD  . . . .
Amonetize AMO  . . . .
Backdoor.Fynloski.C BFC  . . . .
Backdoor.SpyBot.DMW BSD  . . . .
Banker BAN  . . . .
Barys BAR  . . . .
Bundler.Somoto BSO  . . . .
Chinky CHI  . . . .
Conjar CON  . . . .
Dialer.Adultbrowser DAD  . . . .
FakeAlert FAL  . . . .
FakeAV FAV  . . . .
Gael GAE  . . . .
Hotbar HOB  . . . .
Jeefo JEE  . . . .
Kates KAT  . . . .
Keylog KEL  . . . .
Parite PAR  . . . .
PoisonIvy POI  . . . .
Renos REN  . . . .
Sality SAL  . . . .
Sirefef SIR  . . . .
Skintrim SKI  . . . .
SMSHoax SMH  . . . .
Swizzor SWI  . . . .
Trojan.Agent.VB TAV  . . . .
Trojan.Clicker.MWU TCM  . . . .
Trojan.Crypt TCR  . . . .
Trojan.Downloader.FakeAV TDF  . . . .
Trojan.Generic. TG  . . . .
Trojan.Keylogger.MWQ TKM  . . . .
Trojan.Patched.HE TPH  . . . .
Trojan.Startpage.ZQR TSZ  . . . .
Trojan.Stpage TSP  . . . .
Trojan.VB.Bugsban.A TVB  . . . .
Variant.Application.Yek VAY  . . . .
Virtob VIT  . . . .
VJadtre VJA  . . . .
Win.Valhalla. WV  . . . .
Win.Viking.AU WVA  . . . .
Worm.AutoIt WAA  . . . .
Worm.Generic. WG  . . . .
Worm.Hybris.PLI WHP  . . . .
Worm.PP.Palevo WPP  . . . .
Zusy ZUS  . . . .

accuracy =
correctly classified instances

total number of instances
(.)

 CHAPTER . EVALUATION

Based on a particular class c;

• True positives (tp) refer to the number of the samples in class c that were correctly

classified.

• True negatives (tn) are the number of the samples not in class c that were correctly

classified.

• False positives (fp) refer the number of the samples not class in c that were incor-

rectly classified.

• False negatives (fn) are the number of the samples in class c that were incorrectly

classified.

The terms positive and negative indicate the classifier’s prediction, and the terms

true and false indicate whether that prediction matches with ground truth label.

. Results

The following online classification algorithms are used in our distributed comput-

ing environment in order to empirically obtain the best accuracy.

• Passive-Aggressive I (PA-I) []

• Passive-Aggressive II (PA-II) []

• Confidence Weighted Learning (CW) []

• Adaptive Regularization of Weight Vectors (AROW) []

• Normal Herd (NHERD) []

.. Parameter Tuning

Setting appropriate parameters plays a key role in determining the accuracy of

the online learning algorithms. Some online learning algorithms have no parameter

(e.g. perceptron) and some have multiple parameters, but the algorithms evaluated

in our study have a common parameter named regularization weight and donated by

C. Regularization weight is the parameter to control the sensitivity of the learning.

Indeed, the bigger it is, the faster the algorithm can build the model. However, in

this case the constructed model becomes more sensitive to the noise data. In other

.. RESULTS 

word, the regularization weight is the parameter typically used to trade off between

the model build time and the sensitivity of the model.

Furthermore, we adjust the importance of the elements in feature vector to obtain

maximum classification accuracy. To this end, as indicated in Listing ., the weight

of each string-type feature vector is calculated with the value of sample weight and

global weight. Indeed, the weight of each feature is the product of these two values.

The "sample weight" specifies the weight of each feature without considering other

inputted data, whereas the "global weight" specifies the overall weight which is cal-

culated from the data inputted so far. For the number type features, we used given

number as its weight. The feature types and their sample and global weight values are

given in Table ..

Table .: The weights of each features types and their meanings

Feature Sample Value - Meaning Global Value - Meaning

N-gram over API
categories

tf: frequency of the feature
in given string

idf: the inverse of logarithm
of normalized document
frequency

String Type Features
except n-gram

bin:  for all features and all
data.

bin:  for all features and all
data.

Number Type
Features

num: use given number itself
as weight

Not applicable

To clarify the difference of the sample and global weight consider the following

example. ‘ABCDE’ n-gram feature is appeared  times in a malware sample. Beside

that, ‘ABCDE’ feature is included in  malware samples of all  malware sam-

ples. According to the given scenario, the sample weight of the ‘ABCDE’ is  and

global weight is idf = log(20000/500). As a result of the two parameters, the overall

weight of the ‘ABCDE’ feature is log(20000/500)× 60.

All classifiers were evaluated by utilizing -fold cross-validation, the initial mal-

ware set are randomly divided into  subset each of them is approximately equal size

and training and testing is performed  times. The following tables shows training

and testing accuracy of the selected classifiers based on various N -gram and regular-

ization weight (C), a parameter employed when updating objective function (model).

The bigger regularization weight is, the faster model is created. However, the created

model becomes more dependent to training set and more susceptible to noise data.

The most accurate classification results for training and testing are obtained

through CW algorithm when regularization weight equals to . and N equals to .
The training and testing accuracies of the each algorithm are given in the following

 CHAPTER . EVALUATION

tables. From these tables, it is easily noticeable that the classification accuracy gener-

ally diminishes as C increases. Besides that, when N increased until a threshold, the

exacted features become more representative and distinct for malware families. How-

ever, above this threshold, the feature set becomes unique for each malware sample

which causes the classification accuracy to drastically decrease.

Regularization Weight(C)
C=. C=. C=. C=. C=. C=. C=.

N Train Test Train Test Train Test Train Test Train Test Train Test Train Test
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .

Table .: Training & testing accuracy of CW

Regularization Weight(C)
C=. C=. C=. C=. C=. C=. C=.

N Train Test Train Test Train Test Train Test Train Test Train Test Train Test
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .

Table .: Training & testing accuracy of AROW

Regularization Weight(C)
C=. C=. C=. C=. C=. C=. C=.

N Train Test Train Test Train Test Train Test Train Test Train Test Train Test
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .

Table .: Training & testing accuracy of NHERD

The class-wise results for the most successful algorithm(i.e. CW) with the most

appropriate parameters (C=. andN=) are given in Table .. These results indicate

that perfect precision and recall value (i.e., .) is assured for  out of  families. For

example, Adw.ScreenBlaze, Worm.Generic. and Gael is one of these families.

Accordingly, the classifier estimates them without any error. Worm.Hybris.PLI family

.. RESULTS 

Regularization Weight(C)
C=. C=. C=. C=. C=. C=. C=.

N Train Test Train Test Train Test Train Test Train Test Train Test Train Test
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .

Table .: Training & testing accuracy of PA-I

Regularization Weight(C)
C=. C=. C=. C=. C=. C=. C=.

N Train Test Train Test Train Test Train Test Train Test Train Test Train Test
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .

Table .: Training & testing accuracy of PA-II

exhibits perfect precision but low recall, indicating the classifier inaccurately estimates

almost all instances as being to other families. For Kates family, the classifier produces

both zero precision and recall, which indicates that it never correctly classified an

instance belonging to Kates family, in other words tp is . It is important to note that

the classifier estimates the Worm.Generic. which has the highest number of

samples and covers almost % of dataset without any error.

To analyze how well the CW classifier can recognize instance of different classes, we

also created confusion matrix as shown in Figure .. The confusion matrix displays

the number of correct and incorrect predictions made by the classifier with respect to

ground truth (actual classes). The matrix contains n×n entries, where n is the number

of classes. The rows of the table correspond to actual classes and columns correspond

to predicted classes. The diagonal elements in the matrix represent the number of

correctly classified instances for each class, while the off-diagonal elements represent

the number of misclassified elements by the classifier. The higher the diagonal values

of the confusion matrix are, the better the model fits the dataset (high accuracy in

individual family predictions).

From the confusion matrix, it can be seen that Worm.Hybris.PLI and Virtob

wrongly estimated as Worm.Autoit and Kates, respectively. A quick research on the

Internet shows us that some AV vendors gives Worm.Autoit label instead of one used

in our dataset. Interested readers can find an example for such as case in [].

 CHAPTER . EVALUATION

ADG
ASC
AAN
ABE
ABP
ALI

ALD
AMO
BFC
BSD
BAN
BAR
BSO
CHI

CON
DAD
FAL
FAV

GAE
HOB
JEE
KAT
KEL
PAR
POI

REN
SAL
SIR
SKI

SMH
SWI
TAV

TCM
TCR
TDF
TG1
TKM
TPH
TSZ
TSP
TVB
VAY
VIT
VJA

WV2
WVA
WAA
WG3
WHP
WPP
ZUS

A
D

G

A
S

C
A

A
N

A
B

E
A

B
P

A
LI

A
LD

A
M

O
B

F
C

B
S

D
B

A
N

B
A

R
B

S
O

C
H

I
C

O
N

D
A

D
FA

L
FA

V
G

A
E

H
O

B
JE

E
K

AT
K

E
L

PA
R

P
O

I
R

E
N

S
A

L
S

IR
S

K
I

S
M

H
S

W
I

TA
V

T
C

M
T

C
R

T
D

F
T

G
1

T
K

M
T

P
H

T
S

Z
T

S
P

T
V

B
V

AY V
IT

V
JA

W
V

2
W

V
A

W
A

A
W

G
3

W
H

P
W

P
P

Z
U

S

Predicted Class

A
ct

ua
l C

la
ss

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

Normalized
Frequency

Figure .: Normalized confusion matrix

Overall, the testing accuracy reaches at %. We analyzed the run-time behavior

Virtob and realized that some of its samples generate almost similar artifacts with

Kates, such as modifying same registry keys related to Internet Explorer settings and

auto-start location and using same mutex names. One can inspect the following

two samples’s reports by their MD values afcedbffcdabbdfef and

cadfbaacada from []. These samples belong to Kates and

Virtob family, respectively.

Table . compares the proposed method and other state-of-the-art methods for

classifying malware. The table shows the classification accuracy and also indicates

used machine learning algorithms and features. According to Table ., as the number

of families increases, the classification or detection accuracy decreases. For instance,

the accuracy is higher when the set of  families or  families is experimented, see for

instance [] and [] using  and  families and reaching to % and % accu-

racy, respectively. However, the study using the set of  families present an achieve-

ment of .% in accuracy ([]). Consequently, the proposed method using a large

set of families, samples and features gives more more accurate and realistic results.

.. CONCLUSION 

. Conclusion

This chapter addresses the challenge of classifying malware samples by using run-

time artifacts while being robust to obfuscation. The proposed method employs run-

time behaviors of an executable to build feature vector. We evaluated five different

algorithms with around , current samples belonging to  families. CW algo-

rithm gives the most accurate results when compared to others. Its training and testing

accuracy is % and %, respectively.

In summary, this chapter has made the following contributions in the area of mal-

ware research:

• The presented dynamic malware classification approach is usable on large scale

in real world.

• The results of this research indicates that runtime behavior modeling is a useful

method in classifying malware.

• When compared to the recent researches, the proposed classification method

achieves the highest accuracy and scale to very large data-set.

In the following chapter, we conclude the thesis by summarizing the work done

and point out the future work.


C
H
A
P
T
E
R

.
E
V
A
L
U
A
T
I
O
N

Table .: Comparison of proposed malware classification method with current studies

Study, Year Algorithm Features Type Dataset Accuracy

[],  Online machine learning
(CW, ARROW)

Features derived from
URL string

Detection .. URLs %

[],  Ensemble learning with
Ripper, C. and IBk

N-gram feature of the
disassembled code

Detection Unknown Unknown

[],  SVM
N-gram feature of the
network artifacts

Classifica-
tion

Around .
samples, 
families

%

[],  Online machine learning
(algorithm unknown)

Performance monitor,
system call and system
call sequences

Classifica-
tion

. samples,
 families

.%

[],  SVM, LR Set of OS actions Detection
.malware
and  benign

%

[], 
Information Gain &
Adaboost with base
classifiers

API calls and their
parameters

Classifica-
tion

. samples,
 families

%

[], 
AdaboostM with  base
classifiers; SVM,
perceptron, etc.

Function length frequency
and printable string
information

Detection
 unpacked
malware and
 benign

%

[], 

Single-linkage
hierarchical clustering
using normalized
compress distance

Run-time artifacts Clustering
.malware
samples

%

[],  One-class SVM
APIs, strings and basic
blocks

Classifica-
tion

malware
samples

%

Our study, 
Online machine learning
(CW, ARROW, PA-I & II,
NHERD)

Run-time artifacts, IDS
signatures, important API
calls

Classifica-
tion

.malware
samples, 
families

%

Chapter
Conclusion

This chapter concludes the dissertation and outlines the possible future work.

Malware has become more apparent with the exponential increase in the num-

ber of incidence and cyber attack in which individuals, large organizations and

even states are involved. Currently, malware sample is equipped with advanced tech-

niques; such as obfuscation, encrypted communication channels, sandbox evasion,

etc., to fulfill their goals. Therefore, it has become almost impossible for today’s se-

curity solutions to cope with the current malware samples. In the light of this remark,

the primary goal of this dissertation is to classify malware samples according to their

behavioral artifacts while providing scalability and automation for large scale malware

analysis.

In this dissertation we have combined techniques from the discipline of malware

analysis and online machine learning to build up the proposed malware classification

framework. It involves the following steps:

• Large scale dynamic analysis with VirMon and Cuckoo sandboxes

• Preprocessing & feature extraction

• Modeling malware based on behavioral artifacts

• Labeling malware samples with anti virus tools

• Train sample with online machine learning algorithm

• Classify samples according to training model



 CHAPTER . CONCLUSION

• Evaluate the classification accuracy

An important contribution of this dissertation is the description of executable be-

havior with runtime artifacts. To identify what features are the most adequate for mal-

ware representation, we survey the known methods and schema for defining malware

infection, examining their common features (indicators). Furthermore, some useful

indicators related to network information is added to feature set. From this infor-

mation we get a good indication of the executable behavior. For example, activities

related to registry, file, process, network, IDS alert, API calls, etc. were used to build

a high dimensional feature set. To address the challenge of efficient feature extraction,

we encode API calls used by malware during dynamic analysis into two length long

codes. By ignoring the successive API calls, the encoding schema effectively captures

the semantics of the API calls while being resilient to various obfuscation techniques.

Following that, an n-gram extraction is applied to the API call sequence for construct-

ing a feature vector.

Unfortunately, our proposed method cannot resolve the problem of malware detec-

tion directly, but it provides an important step towards providing practical solutions to

anti-virus companies or malware research institutes with large scale malware classifi-

cation schema. The underlying assumption is that malware typically shares significant

similarity in terms of tasks performed on the OS since it is potentially derived from

the same code basis.

Selecting the most appropriate classifier for dataset and extracted features is the

key factor to determine the system’s accuracy. Comparing a set of classifier gives mal-

ware researchers to identify the classifier which satisfy their specific needs and re-

quirements in terms of run-time efficiency and classifier accuracy. As a consequence,

the proposed approach employs a set of classification algorithm to evaluate their per-

formance while carrying out large scale experiment with behavior-based features. Af-

ter testing PA-, PA-, AROW,NHERD and CW online classifiers with various param-

eters, CW shows better classification accuracy with N = 6 and C = 4.0.

. Future Work

The proposed approach can be further extended in various directions, some of

which are outlined below.

• The main limitation of the proposed approach is that it can only classify exe-

cutable file due to the VirMon’s inability to handle other file format. Consider-

ing current advanced malware is generally delivered into the target system by

.. FUTURE WORK 

exploiting client-side applications through malformed files such as PDF, Word,

Excel, HTML, etc., the proposed system should support different file format as

well VirMon framework. To this end, we plan to extend VirMon capabilities in

order to analyze popular file formats with client side applications like Cuckoo

sandbox.

• Although the VirMon and Cuckoo sandboxes provide adequate behavioral infor-

mation, further research may be fruitful in three possible areas:

– Integrate alternative dynamic analysis frameworks to investigate a sam-

ple and to compare the analysis reports for possible sandbox evasion tech-

niques.

– Look for additional features either dynamic or static that can be used to

improve the classification accuracy.

– Identify distinguishing malicious actions in order to efficiently reduce the

feature space and improve run-time performance of the classification algo-

rithms, especially when dealing with a large collection of malware samples.

• The rapid development of smartphone and its widespread user acceptance leads

the number of malicious software targeting such platform to increase. Another

future work can be done to classify malware targeting mobile platforms. To this

end, researchers could use existing dynamic analysis systems for mobile applica-

tions such as [, , , ] or developed new one.

To summarize, our proposed methods succeeded in automatically classifying mal-

ware samples with a high degree of accuracy. We believe that our proposed system

is practical and very useful in the fight against the vast amount of malware samples

continually emerging everyday.

Publications

� Abdurrahman Pektaş and Tankut Acarman. A dynamic malware analyzer against

virtual machine aware malicious software. In Security and Communication Net-

works, vol. , pp. -, .

� Hüseyin Tirli, Abdurrahman Pektas, Yliès Falcone and Nadia Erdogan ().
Virmon: A Virtualization-Based Automated Dynamic Malware Analysis System,

International Information Security & Cryptology Conference, available at http:

//www.iscturkey.org/iscold/ISCTURKEY/files/paper.pdf

� Abdurrahman Pektaş, Tankut Acarman, Yliès Falcone and Jean-Claude Fernan-

dez. Runtime-Behavior Based Malware Classification Using Online Machine

Learning. In World Congress on Internet Security (WorldCIS-), . (Ac-

cepted paper)

� Abdurrahman Pektaş, Tankut Acarman, Yliès Falcone and Jean-Claude Fernan-

dez. Runtime-Behavior Based Malware Classification Using Online Machine

Learning. In th EAI International Conference on Security and Privacy in Com-

munication Networks(SecureComm-), . (Poster paper)



http://www. iscturkey. org/iscold/ISCTURKEY2013/files/paper39.pdf
http://www. iscturkey. org/iscold/ISCTURKEY2013/files/paper39.pdf

Appendix A

Appendix

A. Detect VMware Version with VMware Backdoor I/O

Port

• # def ine MAGIC xd // VMware backdoor magic value = "VMXh"

 # def ine PORT x // VMware backdoor I /O port = "VX"

 # def ine GETVERSION xa // Get VMware vers ion command id = 


 #include <s t d i o . h>

 #include <windows . h>

 #include <excpt . h>



 i n t main (i n t argc , char * argv []) {

 unsigned i n t test_vmware , vmware_version ;



 __try {

 __asm {

 mov eax , MAGIC;

 mov ecx , GETVERSION ;

 mov dx , PORT;

 in eax , dx ;

 mov test_vmware , ebx

 mov vmware_version , ecx



 }

 }

 __except (EXCEPTION_EXECUTE_HANDLER) {

 p r i n t f ("An exception i s occurred ! ! ! \ n") ;

 }



 APPENDIX A. APPENDIX



 i f (test_vmware == ’VMXh’) {

 p r i n t f ("VMware Detected ! ! ! \ n") ;

 switch (vmware_version) {

 case  :

 p r i n t f (" Express \n") ;

 break ;

 case  :

 p r i n t f ("ESX\n") ;

 break ;

 case  :

 p r i n t f ("GSX\n") ;

 break ;

 case  :

 p r i n t f (" Workstation \n") ;

 break ;

 defaul t :

 p r i n t f ("Unknown Version \n") ;

 }

 e l s e

 p r i n t f ("VMware not Detected . . . \ n") ;

 }



 return  ;

 }

Listing A.: Snap Code of Red Pill Technique

A. Step by Step Advanced Cuckoo Installation

• Enable virtualization Technology from Bios in order to run x version of:

For our Cuckoo server: Press F while booting and follow the following steps;

Advanced Options -> Processor Options -> Intel Virtualization Technology ->

Enable

• Download and install Virtualbox as malware analysis platform:

 $ cd /tmp

 $ wget http : / / download . v i r tua lbox . org / v i r tua lbox / . ./ vir tualbox

− ._ ..−~Ubuntu~raring_amd . deb

 $ dpkg − i v i r tualbox − ._ ..−~Ubuntu~raring_amd . deb

 # i f there i s missing and dependent l i b r a r i e s use the fol lowing

command

 # $ apt−get − f i n s t a l l

A.. STEP BY STEP ADVANCED CUCKOO INSTALLATION 

• Download and install Virtualbox Extension Pack to improve capabilities of the

Virtualbox (especially VirtualBox Remote Desktop Protocol to support Remote

Desktop Session)

 $ cd /tmp

 $ wget http : / / download . v i r tua lbox . org / v i r tua lbox / . ./

Oracle_VM_VirtualBox_Extension_Pack − . . − . vbox−extpack

 $ vboxmanage extpack i n s t a l l Oracle_VM_VirtualBox_Extension_Pack

− . . − . vbox−extpack

• Create user for vbox and modify VBOXWEB_USER defined in /etc/default/vir-

tualbox configuration file.

 $ adduser vbox

 # e d i t vbox user as VBOXWEB_USER=vbox

 $ vim / e t c / defau l t / v i r tua lbox

• Create system start/stop links for vboxweb-service application.

 $ update−rc . d vboxweb− s e r v i c e d e f a u l t s

• Install the required packages

 $ apt−get i n s t a l l gcc make apache−mpm−prefork apache−u t i l s apache
.−bin apache apache−doc apache−suexec libapache −mod−php
l ibapr l i b a p r u t i l l i b a p r u t i l −dbd− s q l i t e l i b a p r u t i l −ldap

l ibapr php−common php−mysql php−pear wget

• Download & Configure phpvirtualbox application

 $ cd / var /www/html / ; wget http : / / sourceforge . net / p r o j e c t s /

phpvirtualbox / f i l e s / phpvirtualbox − .− . z ip

 $ apt−get i n s t a l l unzip ; unzip phpvirtualbox − .− . z ip ; mv

phpvirtualbox −.− phpvirtualbox

 $ cd phpvirtualbox ; cp conf ig . php−example conf ig . php

 $vim conf ig . php # e d i t username and password var iable , e . g . e d i t var

$username = ’ defined user that runs VirtualBox s e r v i c e in previous

steps ’ ;

• Upload an image to run in VirtualBox

 $ scp −r / images /XPSPx root@ . . . : / images

 $ chown −R vbox : vbox / images / # modify permissions of the image

• Browse http://.../phpvirtualbox/ to test the Virtualbox installa-

tion, the default username is admin, the password is admin as well.

 APPENDIX A. APPENDIX

• VLAN installation for network segregation

 $ sudo su −c ’ echo "q " >> / e t c /modules ’

 $ apt−get i n s t a l l vlan

 $ echo  > / proc / sys / net / ipv / ip_forward # enable IPv forwarding

• Add virtual VLAN interface(in this case, VLAN_ID=). Change the network

interface and other values according to your scenario.

 $ vim / e t c /network/ i n t e r f a c e s # add the fol lowing l i n e s

 auto eth .
 i f a c e eth . i n e t s t a t i c

 address  . . .
 netmask  . . .
 vlan−raw−device eth

• Assign network interface and IP address to an analysis machine

 $ vboxmanage modifyvm XPSPx− −−nic bridged −−bridgeadapter
vlan

 $ vboxmanage g u e s t c o n t r o l XPSPx− execute −−image "C: \ Windows\

System\ netsh . exe " −−username t s t −−password t s t −−wait−stdout

i n t e r f a c e ip s e t address l o c a l s t a t i c  . . .  . . .
 . . . 

 $ vboxmanage g u e s t c o n t r o l XPSPx− execute −−image "C: \ Windows\

System\ netsh . exe " −−username t s t −−password t s t −−wait−stdout

i n t e r f a c e ip s e t dns " Local Area Connection " s t a t i c  . . .
primary

A. Jubatus Setup for Distributed Mode

• Install jubatus for each machine (installation procedure is given for Ubuntu

Server . LTS(-bit) as follows):

– Write the following line to /etc/apt/sources.list.d/jubatus.list to register Ju-

batus apt repository to the system. deb http://download.jubat.us/apt bina-

ry/

– Now the repo is ready to install jubatus package. Currently jubatus package

is not GPG-signed. Thus, the user needs to accept the warning by typing yes

to the prompt when asked.

 $ sudo apt−get update

 $ sudo apt−get i n s t a l l jubatus

A.. JUBATUS SETUP FOR DISTRIBUTED MODE 

– Write jubatus binaries to the user profile to automatically load the jubatus

binaries when the user logs into the system.

• Setup Zookeeper to manage jubatus servers in cluster environment

– Configure Zookeper config file (for default intallation it is

/opt/zookeeper/zookeeper-../conf/zoo.cfg)for three jubatus servers

given by their IP addresses.

 tickTime=
 i n i t L i m i t =
 syncLimit=
 dataDir=/var / zookeeper

 c l i e n t P o r t =
 serv er .= . . . : :
 serv er .= . . . : :
 serv er .= . . . : :

– Run Zookeper service as follows:

 $ / opt / zookeeper / zookeeper − . ./ bin / zkServer . sh s t a r t

 JMX enabled by defaul t

 Using conf ig : / path / to / zookeeper / bin / . . / conf / zoo . cfg

 S t a r t i n g zookeeper . . .

 STARTED

– Register configuration file to ZooKeeper

 jubatus $ jubaconf ig −−cmd write −−zookeeper

= . . . : , . . . : , . . . : −−
f i l e arow . j son −−name deneme −−type c l a s s i f i e r

– Jubatus Proxy: proxy RPC requests from clients to servers.

 jubatus$ j u b a c l a s s i f i e r _ p r o x y −−zookeeper

= . . . : , . . . : , . . . :

– Join jubatus servers to cluster

 jubatus$ j u b a c l a s s i f i e r −−name deneme −−zookeeper

= . . . : , . . . : , . . . :
 jubatus$ j u b a c l a s s i f i e r −−name deneme −−zookeeper

= . . . : , . . . : , . . . :
 jubatus$ j u b a c l a s s i f i e r −−name deneme −−zookeeper

= . . . : , . . . : , . . . :

 jubatus$ j u b a v i s o r −−zookeeper

= . . . : , . . . : , . . . : −−
daemon

 APPENDIX A. APPENDIX

 jubatus$ j u b a c t l −c s t a r t −−serv er= j u b a c l a s s i f i e r −−type=

c l a s s i f i e r −−name=deneme −−zookeeper

= . . . : , . . . : , . . . :
 jubatus$ j u b a c t l −c s t a t u s −−serv er= j u b a c l a s s i f i e r −−type=

c l a s s i f i e r −−name=deneme −−zookeeper

= . . . : , . . . : , . . . :

– Check installation

 root@jubatus$ j u b a c t l −c s t a t u s −−serv er= j u b a c l a s s i f i e r −−type=

c l a s s i f i e r −−name=deneme −−zookeeper

= . . . : , . . . : , . . . :
 a c t i v e jubaproxy members :

  . . . _
 a c t i v e j u b a v i s o r members :

  . . . _
 a c t i v e deneme members :

  . . . _
  . . . _
  . . . _

Figure A.: Distributed Mode Jubatus

A.. SUMMARY OF THE MALICIOUS ACTIVITIES OBSERVED IN THE EVALUATION SET 

A. Summary of the Malicious Activities Observed in

the Evaluation Set

Table A.: Malicious activities observed in the evaluation set

Activitiy # sample

The binary likely contains encrypted or compressed data. 
Installs itself for autorun at Windows startup 
Steals private information from local Internet browsers 
Collects information to fingerprint the system (MachineGuid DigitalProductId SystemBiosDate) 
Performs some HTTP requests 
Executed a process and injected code into it probably while unpacking 
Creates an Alternate Data Stream (ADS) 
The executable is compressed using UPX 
Connects to an IRC server possibly part of a botnet 
Generates some ICMP traffic 
Detects VirtualBox through the presence of a file 
Queries information on disks possibly for anti-virtualization 
Creates a slightly modified copy of itself 
Creates a windows hook that monitors keyboard input (keylogger) 
Retrieves Windows ProductID 
Checks the version of Bios possibly for anti-virtualization 
Harvests credentials from local FTP client softwares 
Checks for the presence of known devices from debuggers and forensic tools 
Detects VirtualBox through the presence of a registry key 
Creates known Fynloski/DarkComet mutexes 
Checks for the presence of known windows from debuggers and forensic tools 
Zeus PP (Banking Trojan) 
Operates on local firewall’s policies and settings 
Disables Windows’ Registry Editor 
Creates an autorun.inf file 
Creates known SpyNet mutexes and/or registry changes. 
Installs an hook procedure to monitor for mouse events 
Installs OpenCL library probably to mine Bitcoins 
Contacts C&C server HTTP check-in (Banking Trojan) 
Creates known PcClient mutex and/or file changes. 
Installs WinPCAP 
At least one process apparently crashed during execution 
Looks up the external IP address 

Bibliography

[] Maksym Schipka. “Dollars for downloading”. In: Network Security  (),
pp. –.

[] Thomas Rid and Peter McBurney. “Cyber-Weapons”. In: The RUSI Journal .
(), pp. –. doi: ./... eprint: http://dx.

doi.org/./... url: http://dx.doi.org/.

/...

[] Matrosov Aleksandr, Rodionov Eugene, Harley David, and Malcho Juraj.

Stuxnet Under the Microscope. . url: http : / / www . eset . com / us /

resources/white-papers/Stuxnet_Under_the_Microscope.pdf.

[] Ben Flanagan. Former CIA chief speaks out on Iran Stuxnet attack. . url:

http://www.thenational.ae/business/industry-insights/technology/

former-cia-chief-speaks-out-on-iran-stuxnet-attack.

[] Philip O’Kane, Sakir Sezer, and Kieran McLaughlin. “Obfuscation: The hidden

malware”. In: IEEE Security & Privacy . (), pp. –.

[] Ilsun You and Kangbin Yim. “Malware Obfuscation Techniques: A Brief Sur-

vey.” In: BWCCA. , pp. –.

[] Ashu Sharma and SK Sahay. “Evolution and Detection of Polymorphic and

Metamorphic Malwares: A Survey”. In: ().

[] Cisco  Annual Security Report. url: http://www.cisco.com/web/offer/

gist_ty_asset/Cisco__ASR.pdf.

[] AV-TEST: The independent IT-Security Institute. url: http://www.av- test.

org/en/.

[] Abdurrahman Pektas. Malware Classification Based on Run-Time Behavior Using
Machine Learning. url: http://research.pektas.in/.

[] Post-Exploitation with "Incognito". url: http : / / hardsec . net / post -

exploitation-with-incognito/?lang=en.



http://dx.doi.org/10.1080/03071847.2012.664354
http://dx.doi.org/10.1080/03071847.2012.664354
http://dx.doi.org/10.1080/03071847.2012.664354
http://dx.doi.org/10.1080/03071847.2012.664354
http://dx.doi.org/10.1080/03071847.2012.664354
http://www.eset.com/us/resources/white-papers/Stuxnet_Under_the_Microscope.pdf
http://www.eset.com/us/resources/white-papers/Stuxnet_Under_the_Microscope.pdf
http://www.thenational.ae/business/industry-insights/technology/former-cia-chief-speaks-out-on-iran-stuxnet-attack
http://www.thenational.ae/business/industry-insights/technology/former-cia-chief-speaks-out-on-iran-stuxnet-attack
http://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf
http://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf
http://www.av-test.org/en/
http://www.av-test.org/en/
http://research.pektas.in/
http://hardsec.net/post-exploitation-with-incognito/?lang=en
http://hardsec.net/post-exploitation-with-incognito/?lang=en

 BIBLIOGRAPHY

[] Microsoft Security TechCenter. Microsoft Security Bulletin MS- - Critical.
. url: https://technet.microsoft.com/library/security/ms-.

[] FireEye. POISON IVY: Assessing Damage and Extracting Intelligence. . url:

https : / / www . fireeye . com / content / dam / legacy / resources / pdfs /

fireeye-poison-ivy-report.pdf.

[] FireEye. DIGITAL BREAD CRUMBS: Seven Clues To Identifying Who’s Behind
Advanced Cyber Attacks. . url: https://www.fireeye.com/content/dam/

legacy/resources/pdfs/digital-bread-crumbs.pdf.

[] Eric Chien and Gavin O’Gorman. The Nitro Attacks: Stealing Secrets from the
Chemical Industry. . url: http://www.symantec.com/content/en/us/

enterprise/media/security_response/whitepapers/the_nitro_attacks.

pdf.

[] CShell. c.php backdoor - php shell. . url: http://corz.org/corz/c.

php.

[] Davide Canali, Davide Balzarotti, and Aurélien Francillon. “The Role of Web

Hosting Providers in Detecting Compromised Websites”. In: Proceedings of the
Nd International Conference on World Wide Web. WWW ’. Rio de Janeiro,

Brazil: International World Wide Web Conferences Steering Committee, ,
pp. –. isbn: ----. url: http://dl.acm.org/citation.

cfm?id=..

[] Natasa Suteva, Aleksandra Mileva, and Mario Loleski. “Computer forensic

analisys of some web attacks”. In: World Congress on Internet Security (World-
CIS). , pp. –. doi: ./WorldCIS...

[] Lenovo Statement on Superfish. . url: https://s.amazonaws.com/isby/

lenovopartnernetwork.com/upload//docs/lenovo-bp-statement-on-

superfish.pdf.

[] Chris Duckett. Researchers: Lenovo laptops ship with adware that hijacks HTTPS
connections. . url: http://www.zdnet.com/article/lenovo-accused-

of-pushing-superfish-self-signed-mitm-proxy/.

[] Robert Graham. Extracting the SuperFish certificate. . url: http://blog.

erratasec . com /  /  / extracting - superfish - certificate . html #

.VOmt_mUfVa.

[] Cert Polska. ZeuS-PP Monitoring and Analysis. . url: http://www.cert.

pl/PDF/--pp-rap_en.pdf.

https://technet.microsoft.com/library/security/ms08-067
https://www.fireeye.com/content/dam/legacy/resources/pdfs/fireeye-poison-ivy-report.pdf
https://www.fireeye.com/content/dam/legacy/resources/pdfs/fireeye-poison-ivy-report.pdf
https://www.fireeye.com/content/dam/legacy/resources/pdfs/digital-bread-crumbs.pdf
https://www.fireeye.com/content/dam/legacy/resources/pdfs/digital-bread-crumbs.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the_nitro_attacks.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the_nitro_attacks.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the_nitro_attacks.pdf
http://corz.org/corz/c99.php
http://corz.org/corz/c99.php
http://dl.acm.org/citation.cfm?id=2488388.2488405
http://dl.acm.org/citation.cfm?id=2488388.2488405
http://dx.doi.org/10.1109/WorldCIS.2014.7028164
https://s3.amazonaws.com/isby/lenovopartnernetwork.com/upload/4/docs/lenovo-bp-statement-on-superfish.pdf
https://s3.amazonaws.com/isby/lenovopartnernetwork.com/upload/4/docs/lenovo-bp-statement-on-superfish.pdf
https://s3.amazonaws.com/isby/lenovopartnernetwork.com/upload/4/docs/lenovo-bp-statement-on-superfish.pdf
http://www.zdnet.com/article/lenovo-accused-of-pushing-superfish-self-signed-mitm-proxy/
http://www.zdnet.com/article/lenovo-accused-of-pushing-superfish-self-signed-mitm-proxy/
http://blog.erratasec.com/2015/02/extracting-superfish-certificate.html#.VOmt2_mUfVa
http://blog.erratasec.com/2015/02/extracting-superfish-certificate.html#.VOmt2_mUfVa
http://blog.erratasec.com/2015/02/extracting-superfish-certificate.html#.VOmt2_mUfVa
http://www.cert.pl/PDF/2013-06-p2p-rap_en.pdf
http://www.cert.pl/PDF/2013-06-p2p-rap_en.pdf

BIBLIOGRAPHY 

[] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef, M. Debbabi,

and L. Wang. “On the analysis of the Zeus botnet crimeware toolkit”. In:

Eighth Annual International Conference on Privacy Security and Trust (PST).
, pp. –. doi: ./PST...

[] Laboratory of Cryptography and System Security (CrySyS Lab). sKyWIper
(a.k.a. Flame a.k.a. Flamer): A complex malware for targeted attacks. . url:

http://www.crysys.hu/skywiper/skywiper.pdf.

[] Antiy Labs. Analysis Report on Flame Worm. . url: http://www.antiy.

net/media/reports/flame-analysis.pdf.

[] Mark Russinovich. Sony Rootkits and Digital Rights Management Gone Too Far.

. url: http://blogs.technet.com/b/markrussinovich/archive//

 /  / sony - rootkits - and - digital - rights - management - gone - too -

far.aspx.

[] CERT Australia. New Ransomware campaign. . url: https://www.cert.

gov.au/system/files///CERT_Australia_Publication_-

_WHITE.pdf.

[] McAfee Labs Threat Advisory. Ransom Cryptolocker. . url: https : / /

kc . mcafee . com / resources / sites / MCAFEE / content / live / PRODUCT _

DOCUMENTATION//PD/en_US/McAfee_Labs_Threat_Advisory_

Ransom_Cryptolocker.pdf.

[] Nikola Milosevic. “History of malware”. In: ().

[] Harold Joseph Highland. “A history of computer viruses - Introduction”. In:

Computers & Security . (), pp.  –. issn: -. doi: http:
//dx.doi.org/./S- ()- . url: http://www.

sciencedirect.com/science/article/pii/S.

[] John Von Neumann, Arthur W Burks, et al. “Theory of self-reproducing au-

tomata”. In: IEEE Transactions on Neural Networks . (), pp. –.

[] Fred Cohen. “Computer Viruses - Theory and Experiments”. In: .

[] Fred Cohen. “Computer viruses: theory and experiments”. In: Computers & se-
curity . (), pp. –.

[] Aikaterinaki Niki. “Drive-by download attacks: Effects and detection meth-

ods”. In: rd IT student conference for the next generation, University of East Lon-
don. .

http://dx.doi.org/10.1109/PST.2010.5593240
http://www.crysys.hu/skywiper/skywiper.pdf
http://www.antiy.net/media/reports/flame-analysis.pdf
http://www.antiy.net/media/reports/flame-analysis.pdf
http://blogs.technet.com/b/markrussinovich/archive/2005/10/31/sony-rootkits-and-digital-rights-management-gone-too-far.aspx
http://blogs.technet.com/b/markrussinovich/archive/2005/10/31/sony-rootkits-and-digital-rights-management-gone-too-far.aspx
http://blogs.technet.com/b/markrussinovich/archive/2005/10/31/sony-rootkits-and-digital-rights-management-gone-too-far.aspx
https://www.cert.gov.au/system/files/625/690/CERT_Australia_Publication_2013-72_WHITE.pdf
https://www.cert.gov.au/system/files/625/690/CERT_Australia_Publication_2013-72_WHITE.pdf
https://www.cert.gov.au/system/files/625/690/CERT_Australia_Publication_2013-72_WHITE.pdf
https://kc.mcafee.com/resources/sites/MCAFEE/content/live/PRODUCT_DOCUMENTATION/24000/PD24786/en_US/McAfee_Labs_Threat_Advisory_Ransom_Cryptolocker.pdf
https://kc.mcafee.com/resources/sites/MCAFEE/content/live/PRODUCT_DOCUMENTATION/24000/PD24786/en_US/McAfee_Labs_Threat_Advisory_Ransom_Cryptolocker.pdf
https://kc.mcafee.com/resources/sites/MCAFEE/content/live/PRODUCT_DOCUMENTATION/24000/PD24786/en_US/McAfee_Labs_Threat_Advisory_Ransom_Cryptolocker.pdf
https://kc.mcafee.com/resources/sites/MCAFEE/content/live/PRODUCT_DOCUMENTATION/24000/PD24786/en_US/McAfee_Labs_Threat_Advisory_Ransom_Cryptolocker.pdf
http://dx.doi.org/http://dx.doi.org/10.1016/S0167-4048(97)82245-6
http://dx.doi.org/http://dx.doi.org/10.1016/S0167-4048(97)82245-6
http://www.sciencedirect.com/science/article/pii/S0167404897822456
http://www.sciencedirect.com/science/article/pii/S0167404897822456

 BIBLIOGRAPHY

[] Van Lam Le, Ian Welch, Xiaoying Gao, and Peter Komisarczuk. “Anatomy of

drive-by download attack”. In: Proceedings of the Eleventh Australasian Informa-
tion Security Conference. Australian Computer Society, Inc. , pp. –.

[] Julia Narvaez, Barbara Endicott-Popovsky, Christian Seifert, Chiraag Aval, and

Deborah A Frincke. “Drive-by-downloads”. In: rd Hawaii International Con-
ference on System Sciences (HICSS). IEEE. , pp. –.

[] Cristian Florian. Most vulnerable operating systems and applications in .
. url: http : / / www . gfi . com / blog / most - vulnerable - operating -

systems-and-applications-in-/.

[] HB GARY Threat Report: Operation Aurora. . url: http://hbgary.com/

sites/default/files/publications/WhitePaper%HBGary%Threat%

Report,%Operation%Aurora.pdf.

[] McAfee Labs and McAfee Foundstone Professional Services. Protecting Your
Critical Assets Lessons Learned from "Operation Aurora". . url: http://

www.wired.com/images_blogs/threatlevel///operationaurora_

wp__fnl.pdf.

[] Lillian Ablon, Martin C Libicki, and Andrea A Golay. Markets for Cybercrime
Tools and Stolen Data: Hackers’ Bazaar. Rand Corporation, .

[] Mitre Cop. CVE--:Heart Bleed Vulnerability. . url: https://cve.

mitre.org/cgi-bin/cvename.cgi?name=CVE--.

[] Heart Bleed Vulnerability. . url: http://heartbleed.com/.

[] Mitnick Kevin D. and Simon William L. The Art of Intrusion: The Real Stories
Behind the Exploits of Hackers, Intruders and Deceivers. Wiley Publishing Inc.,

.

[] Wozniak Steve, Mitnick Kevin D., and Simon William L. The Art of Deception:
Controlling the Human Element of Security. Rober Ipsen, .

[] Wozniak Steve, Mitnick Kevin D., and Simon William L. Ghost in the Wires: My
Adventures as the World’s Most Wanted Hacker. Back Bay Books, .

[] Common Vulnerabilities and Exposures. CVE--. . url: https:

//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE--.

[] Rapid . Apache Tomcat Manager Application Deployer Authenticated Code Exe-
cution. . url: http://www.rapid.com/db/modules/exploit/multi/

http/tomcat_mgr_deploy.

http://www.gfi.com/blog/most-vulnerable-operating-systems-and-applications-in-2014/
http://www.gfi.com/blog/most-vulnerable-operating-systems-and-applications-in-2014/
http://hbgary.com/sites/default/files/publications/WhitePaper%20HBGary%20Threat%20Report,%20Operation%20Aurora.pdf
http://hbgary.com/sites/default/files/publications/WhitePaper%20HBGary%20Threat%20Report,%20Operation%20Aurora.pdf
http://hbgary.com/sites/default/files/publications/WhitePaper%20HBGary%20Threat%20Report,%20Operation%20Aurora.pdf
http://www.wired.com/images_blogs/threatlevel/2010/03/operationaurora_wp_0310_fnl.pdf
http://www.wired.com/images_blogs/threatlevel/2010/03/operationaurora_wp_0310_fnl.pdf
http://www.wired.com/images_blogs/threatlevel/2010/03/operationaurora_wp_0310_fnl.pdf
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://heartbleed.com/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2568
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2568
http://www.rapid7.com/db/modules/exploit/multi/http/tomcat_mgr_deploy
http://www.rapid7.com/db/modules/exploit/multi/http/tomcat_mgr_deploy

BIBLIOGRAPHY 

[] CVE Details. Vulnerability Details: CVE--. . url: http://www.

cvedetails.com/cve/-.

[] Fraser Howard and Onur Komili. “Poisoned search results: How hackers have

automated search engine poisoning attacks to distribute malware”. In: Sophos
Technical Papers ().

[] David Y Wang, Stefan Savage, and Geoffrey M Voelker. “Juice: A Longitudinal

Study of an SEO Botnet.” In: NDSS. .

[] John P John, Fang Yu, Yinglian Xie, Arvind Krishnamurthy, and Martín Abadi.

“deSEO: Combating Search-Result Poisoning.” In: USENIX Security Sympo-
sium. .

[] Marc Fossi, Gerry Egan, Eric Johnson, Trevor Mack, Téo Adams, Joseph Black-

bird, Brent Graveland, and David McKinney. “Symantec Report on Attack Kits

and Malicious Websites”. In: Haettu  (), p. .

[] Nir Kshetri. The global cybercrime industry: economic, institutional and strategic
perspectives. Springer Science & Business Media, .

[] Fraser Howard. “Exploring the Blackhole exploit kit”. In: Sophos Technical Paper
().

[] John Oliver, S Cheng, L Manly, J Zhu, R DELA PAZ, S Sioting, and J Leopando.

“Blackhole Exploit Kit: A Spam Campaign, Not a Series of Individual Spam

Runs”. In: Trend Micro Incorporated Research Paper ().

[] L Gundert and M van den Berg. “A Criminal Perspective On Exploit Packs”. In:

Team Cymru Business Intelligence Team ().

[] Aditya K Sood, Richard J Enbody, and Rohit Bansal. MALWARE ANALYSIS.

.

[] Mark Tang. Styx-like Cool Exploit Kit: How It Works. . url: http://blog.

trendmicro.com/trendlabs-security-intelligence/styx-exploit-pack-

how-it-works/.

[] Mark Tang. Cool Exploit Kit - A new Browser Exploit Pack on the Battlefield with
a "Duqu" like font drop. . url: http://malware.dontneedcoffee.com/

//newcoolek.html.

[] Solutionary: SERT Exploit Kit Report - A current inventory of the most popular
exploit kits, the common payloads deployed and the targeted vulnerabilities. url:

http://www.solutionary.com/_assets/pdf/sert-exploit-kit-overview-

sr.pdf.

http://www.cvedetails.com/cve/2009-3843
http://www.cvedetails.com/cve/2009-3843
http://blog.trendmicro.com/trendlabs-security-intelligence/styx-exploit-pack-how-it-works/
http://blog.trendmicro.com/trendlabs-security-intelligence/styx-exploit-pack-how-it-works/
http://blog.trendmicro.com/trendlabs-security-intelligence/styx-exploit-pack-how-it-works/
http://malware.dontneedcoffee.com/2012/10/newcoolek.html
http://malware.dontneedcoffee.com/2012/10/newcoolek.html
http://www.solutionary.com/_assets/pdf/sert-exploit-kit-overview-1174sr.pdf
http://www.solutionary.com/_assets/pdf/sert-exploit-kit-overview-1174sr.pdf

 BIBLIOGRAPHY

[]  Internet Security Threat Report. url: http : / / www . symantec . com /

content/en/us/enterprise/other_resources/b- istr_main_report_

v_.en-us.pdf.

[] Underground Hacker Markets. . url: http : / / www . secureworks . com /

assets/pdf-store/white-papers/wp-underground-hacking-report.pdf.

[] Metasploit Framework Source Code. url: https : / / github . com / rapid /

metasploit-framework.

[] David Maynor. Metasploit toolkit for penetration testing, exploit development, and
vulnerability research. Elsevier, .

[] Jim O’Gorman, Devon Kearns, and Mati Aharoni. Metasploit: the penetration
tester’s guide. No Starch Press, .

[] Source code of Socail Engineering Toolkit (SET). url: https://github.com/

trustedsec/social-engineer-toolkit/.

[] Nikola Pavkovic and Luka Perkov. “Social Engineering Toolkit - A systematic

approach to social engineering”. In: MIPRO, Proceedings of the th Interna-
tional Convention. IEEE. , pp. –.

[] P Vinod, R Jaipur, V Laxmi, and M Gaur. “Survey on malware detection meth-

ods”. In: Proceedings of the rd Hackers’ Workshop on Computer and Internet Se-
curity (IITKHACK’). , pp. –.

[] Jean-Marie Borello and Ludovic Mé. “Code obfuscation techniques for meta-

morphic viruses”. In: Journal in Computer Virology . (), pp. –.

[] Windows WMI Classes. url: http://msdn.microsoft.com/en-us/library/

windows/desktop/aa(v=vs.).aspx.

[] ScoooyNG: The VMware detection tool. url: http : / / www . trapkit . de /

research/vmm/scoopyng/index.html.

[] On the Cutting Edge:Thwarting Virtual Machine Detection. url: http : / /

handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.

pdf.

[] Detecting the Presence of Virtual Machines Using the Local Data Table. url: http:

//tutsyou.com/request.php?.

[] Snap Code of RedPill Technique. url: http : / / charette . no - ip . com :  /

programming/--_Virtualization.

http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf
http://www.secureworks.com/assets/pdf-store/white-papers/wp-underground-hacking-report.pdf
http://www.secureworks.com/assets/pdf-store/white-papers/wp-underground-hacking-report.pdf
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/trustedsec/social-engineer-toolkit/
https://github.com/trustedsec/social-engineer-toolkit/
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394572(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394572(v=vs.85).aspx
http://www.trapkit.de/research/vmm/scoopyng/index.html
http://www.trapkit.de/research/vmm/scoopyng/index.html
http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf
http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf
http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf
http://tuts4you.com/request.php?2141
http://tuts4you.com/request.php?2141
http://charette.no-ip.com:81/programming/2009-12-30_Virtualization
http://charette.no-ip.com:81/programming/2009-12-30_Virtualization

BIBLIOGRAPHY 

[] Alfredo Andres Omella. Methods for Virtual Machine Detection. . url:

http : / / charette . no - ip . com :  / programming /  -  -  _

Virtualization/www.ssec.com_vmware-eng.pdf.

[] VMware Backdoor I/O Port. url: https : / / sites . google . com / site /

chitchatvmback/backdoor.

[] Mark Vincent Yason. The art of unpacking. . url: https://www.blackhat.

com/presentations/bh-usa-/Yason/Whitepaper/bh-usa--yason-

WP.pdf.

[] Michael Sikorski and Andrew Honig. Practical Malware Analysis: The Hands-On
Guide to Dissecting Malicious Software. No Starch, .

[] JaeKeun Lee, BooJoong Kang, and Eul Gyu Im. “Evading Anti-debugging Tech-

niques with Binary Substitution”. In: International Journal of Security & Its Ap-
plications . ().

[] Peter Ferrie. The Ultimate Anti-Reversing Reference. . url: http://anti-

reversing . com / Downloads / Anti - Reversing / The _ Ultimate _ Anti -

Reversing_Reference.pdf.

[] Maik Morgenstern and Hendrik Pilz. Useful and useless statistics about viruses
and anti-virus programs. . url: http://www.av-test.org/fileadmin/

pdf / publications / caro _  _ avtest _ presentation _ useful _ and _

useless_statistics_about_viruses_and_anti-virus_programs.pdf.

[] Fanglu Guo, Peter Ferrie, and Tzi-Cker Chiueh. “A study of the packer problem

and its solutions”. In: Recent Advances in Intrusion Detection. Springer. ,
pp. –.

[] Seungwon Han, Keungi Lee, and Sangjin Lee. “Packed PE file detection for

malware forensics”. In: nd International Conference on Computer Science and
its Applications. IEEE. , pp. –.

[] Lorenzo Martignoni, Mihai Christodorescu, and Somesh Jha. “Omniunpack:

Fast, generic, and safe unpacking of malware”. In: Computer Security Applica-
tions Conference, ACSAC Twenty-Third Annual. IEEE. , pp. –.

[] Wei Yan, Zheng Zhang, and Nirwan Ansari. “Revealing packed malware”. In:

IEEE Security & Privacy . (), pp. –.

[] Lutz Böhne. “Pandora’s bochs: Automatic unpacking of malware”. PhD thesis.

University of Mannheim, .

http://charette.no-ip.com:81/programming/2009-12-30_Virtualization/www.s21sec.com_vmware-eng.pdf
http://charette.no-ip.com:81/programming/2009-12-30_Virtualization/www.s21sec.com_vmware-eng.pdf
https://sites.google.com/site/chitchatvmback/backdoor
https://sites.google.com/site/chitchatvmback/backdoor
https://www.blackhat.com/presentations/bh-usa-07/Yason/Whitepaper/bh-usa-07-yason-WP.pdf
https://www.blackhat.com/presentations/bh-usa-07/Yason/Whitepaper/bh-usa-07-yason-WP.pdf
https://www.blackhat.com/presentations/bh-usa-07/Yason/Whitepaper/bh-usa-07-yason-WP.pdf
http://anti-reversing.com/Downloads/Anti-Reversing/The_Ultimate_Anti-Reversing_Reference.pdf
http://anti-reversing.com/Downloads/Anti-Reversing/The_Ultimate_Anti-Reversing_Reference.pdf
http://anti-reversing.com/Downloads/Anti-Reversing/The_Ultimate_Anti-Reversing_Reference.pdf
http://www.av-test.org/fileadmin/pdf/publications/caro_2010_avtest_presentation_useful_and_useless_statistics_about_viruses_and_anti-virus_programs.pdf
http://www.av-test.org/fileadmin/pdf/publications/caro_2010_avtest_presentation_useful_and_useless_statistics_about_viruses_and_anti-virus_programs.pdf
http://www.av-test.org/fileadmin/pdf/publications/caro_2010_avtest_presentation_useful_and_useless_statistics_about_viruses_and_anti-virus_programs.pdf

 BIBLIOGRAPHY

[] Colin Burgess, Fatih Kurugollu, Sakir Sezer, and Keiran McLaughlin. “Detect-

ing packed executables using steganalysis”. In: th European Workshop on Visual
Information Processing (EUVIP). IEEE. , pp. –.

[] Paul Royal, Mitch Halpin, David Dagon, Robert Edmonds, and Wenke Lee.

“Polyunpack: Automating the hidden-code extraction of unpack-executing

malware”. In: Computer Security Applications Conference ACSAC’. IEEE. ,
pp. –.

[] Kevin Coogan, Saumya Debray, Tasneem Kaochar, and Gregg Townsend. “Au-

tomatic static unpacking of malware binaries”. In: th Working Conference on
Reverse Engineering. IEEE. , pp. –.

[] Guhyeon Jeong, Euijin Choo, Joosuk Lee, Munkhbayar Bat-Erdene, and Heejo

Lee. “Generic unpacking using entropy analysis.” In: MALWARE. , pp. –
.

[] Andreas Moser, Christopher Kruegel, and Engin Kirda. “Limits of static anal-

ysis for malware detection”. In: Twenty-third annual Computer security applica-
tions conference. IEEE. , pp. –.

[] Michael Ligh, Steven Adair, Blake Hartstein, and Matthew Richard. Malware
analyst’s cookbook and DVD: tools and techniques for fighting malicious code. Wiley

Publishing, .

[] Anubis - Malware Analysis for Unknown Binaries. url: https : / / anubis .

iseclab.org/.

[] Carsten Willems, Thorsten Holz, and Felix Freiling. “Toward automated dy-

namic malware analysis using cwsandbox”. In: IEEE Security & Privacy 
(), pp. –.

[] Norman ASA. Norman sandbox whitepaper. Tech. rep. Technical report, .

[] RegShot. url: http://sourceforge.net/projects/regshot/.

[] Automated Malware Analysis - Cuckoo Sandbox. url: http://cuckoosandbox.

org/.

[] Dawn Song et al. “BitBlaze: A new approach to computer security via binary

analysis”. In: Information systems security. Springer, , pp. –.

[] Ulrich Bayer, Christopher Kruegel, and Engin Kirda. TTAnalyze: A tool for ana-
lyzing malware. na, .

[] Fabrice Bellard. “QEMU, a Fast and Portable Dynamic Translator.” In: USENIX
Annual Technical Conference, FREENIX Track. , pp. –.

https://anubis.iseclab.org/
https://anubis.iseclab.org/
http://sourceforge.net/projects/regshot/
http://cuckoosandbox.org/
http://cuckoosandbox.org/

BIBLIOGRAPHY 

[] Min Gyung Kang, Pongsin Poosankam, and Heng Yin. “Renovo: A hidden code

extractor for packed executables”. In: Proceedings of the ACM workshop on Re-
curring malcode. ACM. , pp. –.

[] Zhenkai Liang, Heng Yin, and Dawn Song. “HookFinder: Identifying and un-

derstanding malware hooking behaviors”. In: Department of Electrical and Com-
puting Engineering (), p. .

[] Attacks on Virtual Machine Emulators. . url: https://www.symantec.com/

avcenter/reference/Virtual_Machine_Threats.pdf.

[] Joanna Rutkowska’s Blog. url: http://theinvisiblethings.blogspot.com.

[] VirusTotal: a free service that analyzes suspicious files and URLs. url: https://

www.virustotal.com/.

[] PEiD: common packers detector. url: http://www.aldeid.com/wiki/PEiD.

[] Pefile: a Python module to read and work with PE (Portable Executable) files. url:

https://code.google.com/p/pefile/.

[] Pestudio: a tool that performs the static analysis of -bit and -bit Windows exe-
cutable files. url: http://www.winitor.com/.

[] IDApro: multi-processor disassembler and debugger. url: https : / / www . hex -

rays.com/products/ida/.

[] Dependency Walker. url: http://www.dependencywalker.com/.

[] PEView. url: http://www.aldeid.com/wiki/PEView.

[] PEBrowse Professional. url: http://www.smidgeonsoft.prohosting.com/

pebrowse-pro-file-viewer.html.

[] PE Explorer. url: http://www.heaventools.com/overview.htm.

[] Resource Hacker. url: http://www.angusj.com/resourcehacker/.

[] Mark Russinovich and Bryce Cogswell. Process Monitor v.. . url: https:

//technet.microsoft.com/en-us/sysinternals/bb.

[] Mark Russinovich. Process Explorer v.. . url: https : / / technet .

microsoft.com/en-us/sysinternals/bb.

[] Mark Russinovich and Bryce Cogswell. Autoruns for Windows v.. .
url: https://technet.microsoft.com/en-us/sysinternals/bb.

[] Process Hacker. url: http://processhacker.sourceforge.net/.

[] Capture-BAT. url: https://www.honeynet.org/node/.

https://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf
https://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf
http://theinvisiblethings.blogspot.com
https://www.virustotal.com/
https://www.virustotal.com/
http://www.aldeid.com/wiki/PEiD
https://code.google.com/p/pefile/
http://www.winitor.com/
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
http://www.dependencywalker.com/
http://www.aldeid.com/wiki/PEView
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://www.heaventools.com/overview.htm
http://www.angusj.com/resourcehacker/
https://technet.microsoft.com/en-us/sysinternals/bb896645
https://technet.microsoft.com/en-us/sysinternals/bb896645
https://technet.microsoft.com/en-us/sysinternals/bb896653
https://technet.microsoft.com/en-us/sysinternals/bb896653
https://technet.microsoft.com/en-us/sysinternals/bb963902
http://processhacker.sourceforge.net/
https://www.honeynet.org/node/315

 BIBLIOGRAPHY

[] Christian Seifert, Ramon Steenson, Ian Welch, Peter Komisarczuk, and Barbara

Endicott-Popovsky. “Capture - A behavioral analysis tool for applications and

documents”. In: digital investigation  (), pp. –.

[] Volatility - An advanced memory forensics framework. url: https://github.com/

volatilityfoundation/volatility.

[] Hüseyin Tirli, Abdurrahman Pektas, Yliès Falcone, and Nadia Erdogan. “Vir-

mon: A Virtualization-Based Automated Dynamic Malware Analysis System”.

In: International Information Security & Crptology Conference. . url: http:

//www.iscturkey.org/iscold/ISCTURKEY/files/paper.pdf.

[] Wireshark - Network Analyzer. url: https://www.wireshark.org/.

[] Microsoft Network Monitor .. url: http://www.microsoft.com/en- us/

download/details.aspx?id=.

[] OllyDbg. url: http://www.ollydbg.de/.

[] Immunity Debugger. url: http://debugger.immunityinc.com/.

[] WinDbg. url: http://www.windbg.org/.

[] VirusTotal. Anti-Virus Scan for Zeus Sample. . url: http : / / bit . ly /

iSuvG.

[] Osman Pamuk and Necati Ersen Siseci. A Zeus Sample Analysis (FatMal). .
url: http://www.bilgiguvenligi.gov.tr/zararli-yazilimlar/fatura-

zararli-yazilimi-fatmal.html.

[] Gerald J Tesauro, Jeffrey O Kephart, and Gregory B Sorkin. “Neural networks

for computer virus recognition”. In: IEEE expert . (), pp. –.

[] William Arnold and Gerald Tesauro. “Automatically generated Win heuris-

tic virus detection”. In: Proceedings of the international virus bulletin conference.

.

[] Matthew G Schultz, Eleazar Eskin, Erez Zadok, and Salvatore J Stolfo. “Data

mining methods for detection of new malicious executables”. In: IEEE Sympo-
sium on Security and Privacy. IEEE. , pp. –.

[] Tony Abou-Assaleh, Nick Cercone, Vlado Keselj, and Ray Sweidan. “N-gram-

based detection of new malicious code”. In: Proceedings of the th Annual In-
ternational Computer Software and Applications Conference. Vol. . IEEE. ,
pp. –.

https://github.com/volatilityfoundation/volatility
https://github.com/volatilityfoundation/volatility
http://www.iscturkey.org/iscold/ISCTURKEY2013/files/paper39.pdf
http://www.iscturkey.org/iscold/ISCTURKEY2013/files/paper39.pdf
https://www.wireshark.org/
http://www.microsoft.com/en-us/download/details.aspx?id=4865
http://www.microsoft.com/en-us/download/details.aspx?id=4865
http://www.ollydbg.de/
http://debugger.immunityinc.com/
http://www.windbg.org/
http://bit.ly/1iSuvG0
http://bit.ly/1iSuvG0
http://www.bilgiguvenligi.gov.tr/zararli-yazilimlar/fatura-zararli-yazilimi-fatmal.html
http://www.bilgiguvenligi.gov.tr/zararli-yazilimlar/fatura-zararli-yazilimi-fatmal.html

BIBLIOGRAPHY 

[] Jeremy Z Kolter and Marcus A Maloof. “Learning to detect malicious executa-

bles in the wild”. In: Proceedings of the tenth ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. ACM. , pp. –.

[] Abdurrahman Pektaş, Mehmet Eriş, and Tankut Acarman. “Proposal of n-gram

based algorithm for malware classification”. In: SECURWARE, The Fifth Inter-
national Conference on Emerging Security Information, Systems and Technologies.
, pp. –.

[] M Zubair Shafiq, S Momina Tabish, Fauzan Mirza, and Muddassar Farooq. “Pe-

miner: Mining structural information to detect malicious executables in real-

time”. In: Recent advances in intrusion detection. Springer. , pp. –.

[] VX Heavens Virus Collection. . url: http://vxheaven.org/vl.php.

[] Malfease Project Malware Dataset. . url: http://malfease.oarci.net.

[] Christian Wressnegger, Guido Schwenk, Daniel Arp, and Konrad Rieck. “A

close look on n-grams in intrusion detection: anomaly detection vs. classifica-

tion”. In: Proceedings of the ACM workshop on Artificial intelligence and security.

ACM. , pp. –.

[] Ke Wang and Salvatore J Stolfo. “Anomalous payload-based network intrusion

detection”. In: Recent Advances in Intrusion Detection. Springer. , pp. –
.

[] Roberto Perdisci, Davide Ariu, Prahlad Fogla, Giorgio Giacinto, and Wenke

Lee. “McPAD: A multiple classifier system for accurate payload-based anomaly

detection”. In: Computer Networks . (), pp. –.

[] Ke Wang, Janak J Parekh, and Salvatore J Stolfo. “Anagram: A content anomaly

detector resistant to mimicry attack”. In: Recent Advances in Intrusion Detection.

Springer. , pp. –.

[] Konrad Rieck, Tammo Krueger, and Andreas Dewald. “Cujo: efficient detec-

tion and prevention of drive-by-download attacks”. In: Proceedings of the th
Annual Computer Security Applications Conference. ACM. , pp. –.

[] Christopher Krügel, Thomas Toth, and Engin Kirda. “Service specific anomaly

detection for network intrusion detection”. In: Proceedings of the  ACM
symposium on Applied computing. ACM. , pp. –.

[] Guillaume Bonfante, Matthieu Kaczmarek, and Jean-Yves Marion. “Control

flow to detect malware”. In: Inter-Regional Workshop on Rigorous System De-
velopment and Analysis. .

http://vxheaven.org/vl.php
http://malfease.oarci.net

 BIBLIOGRAPHY

[] Silvio Cesare and Yang Xiang. “Malware variant detection using similarity

search over sets of control flow graphs”. In: IEEE th International Conference
on Trust, Security and Privacy in Computing and Communications (TrustCom).
IEEE. , pp. –.

[] Yuxin Ding, Wei Dai, Shengli Yan, and Yumei Zhang. “Control flow-based op-

code behavior analysis for Malware detection”. In: Computers & Security 
(), pp. –.

[] Offensive Computing. url: http://www.offensivecomputing.net/.

[] Younghee Park, Douglas Reeves, Vikram Mulukutla, and Balaji Sundaravel.

“Fast malware classification by automated behavioral graph matching”. In: Pro-
ceedings of the Sixth Annual Workshop on Cyber Security and Information Intelli-
gence Research. ACM. , p. .

[] Zahra Salehi, Mahboobeh Ghiasi, and Ashkan Sami. “A miner for malware de-

tection based on api function calls and their arguments”. In: th CSI Inter-
national Symposium on Artificial Intelligence and Signal Processing (AISP). IEEE.

, pp. –.

[] Zahra Salehi, Ashkan Sami, and Mahboobe Ghiasi. “Using feature generation

from API calls for malware detection”. In: Computer Fraud & Security .
(), pp. –.

[] Mahinthan Chandramohan, Hee Beng Kuan Tan, Lionel C Briand, Lwin Khin

Shar, and Bindu Madhavi Padmanabhuni. “A scalable approach for malware

detection through bounded feature space behavior modeling”. In: IEEE/ACM
th International Conference on Automated Software Engineering (ASE). IEEE.

, pp. –.

[] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher

Kruegel, and Engin Kirda. “Scalable, Behavior-Based Malware Clustering.” In:

NDSS. Vol. . Citeseer. , pp. –.

[] Michael Bailey, Jon Oberheide, Jon Andersen, Z Morley Mao, Farnam Jahanian,

and Jose Nazario. “Automated classification and analysis of internet malware”.

In: Recent advances in intrusion detection. Springer. , pp. –.

[] Jiyong Jang, David Brumley, and Shobha Venkataraman. “Bitshred: feature

hashing malware for scalable triage and semantic analysis”. In: Proceedings of
the th ACM conference on Computer and communications security. ACM. ,
pp. –.

http://www.offensivecomputing.net/

BIBLIOGRAPHY 

[] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, and Pavel

Laskov. “Learning and classification of malware behavior”. In: Detection of In-
trusions and Malware, and Vulnerability Assessment. Springer, , pp. –
.

[] Aziz Mohaisen, Andrew G West, Allison Mankin, and Omar Alrawi. “Chatter:

Classifying malware families using system event ordering”. In: IEEE Conference
on Communications and Network Security (CNS). IEEE. , pp. –.

[] Aziz Mohaisen and Omar Alrawi. “Amal: High-fidelity, behavior-based auto-

mated malware analysis and classification”. In: Information Security Applica-
tions. Springer, , pp. –.

[] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. “A

survey on automated dynamic malware-analysis techniques and tools”. In:

ACM Computing Surveys (CSUR) . (), p. .

[] Digit Oktavianto and Iqbal Muhardianto. Cuckoo Malware Analysis. Packt Pub-

lishing Ltd, .

[] The Honeynet Project. url: http://honeynet.org/.

[] Abdurrahman Pektas and Tankut Acarman. “A dynamic malware analyzer

against virtual machine aware malicious software”. In: Security and Commu-
nication Networks . (), pp. –. issn: -. doi: ./
sec.. url: http://dx.doi.org/./sec..

[] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. “Pin: build-

ing customized program analysis tools with dynamic instrumentation”. In: Acm
Sigplan Notices. Vol. . . ACM. , pp. –.

[] Intel Corp. Pin - A Dynamic Binary Instrumentation Tool. . url: https:

/ / software . intel . com / en - us / articles / pin - a - dynamic - binary -

instrumentation-tool.

[] Anti-virus Tracker. url: http://www.avtracker.info/.

[] Microsoft Cop. Kernel Patch Protection: Frequently Asked Questions. url: http:

//msdn.microsoft.com/en- us/library/windows/hardware/gg.

aspx.

[] Microsoft Cop. Writing Preoperation and Postoperation Callback Routines. url:

http : / / msdn . microsoft . com / en - us / library / windows / hardware /

ff(v=vs.).aspx.

http://honeynet.org/
http://dx.doi.org/10.1002/sec.931
http://dx.doi.org/10.1002/sec.931
http://dx.doi.org/10.1002/sec.931
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://www.avtracker.info/
http://msdn.microsoft.com/en-us/library/windows/hardware/gg487353.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/gg487353.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/gg487353.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff557334(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff557334(v=vs.85).aspx

 BIBLIOGRAPHY

[] Microsoft Cop. What is the registry? url: http://windows.microsoft.com/en-

id/windows-vista/what-is-the-registry.

[] Necati Ersen Siseci, Bakir Emre, and Hüseyin Tirli. Case Study: Malicious Activ-
ity in the Turkish Network. url: http://www.syssec-project.eu/media/page-

media//syssec-d.-TurkishNetworkCaseStudy.pdf.

[] Xuxian Jiang and Xinyuan Wang. “"Out-of-the-box" Monitoring of VM-based

High-Interaction Honeypots”. In: Recent Advances in Intrusion Detection.

Springer. , pp. –.

[] Vincent Nicomette, Mohamed Kaâniche, Eric Alata, and Matthieu Herrb. “Set-

up and deployment of a high-interaction honeypot: experiment and lessons

learned”. In: Journal in Computer Virology . (), pp. –.

[] Oracle VM Virtual Box. url: https://www.virtualbox.org/.

[] Lucas Nussbaum, Pierre Neyron, and Olivier Richard. “On robust covert

channels inside DNS”. In: Emerging Challenges for Security, Privacy and Trust.
Springer, , pp. –.

[] Cheng Qi, Xiaojun Chen, Cui Xu, Jinqiao Shi, and Peipeng Liu. “A bigram based

real time DNS tunnel detection approach”. In: Procedia Computer Science 
(), pp. –.

[] Alessio Merlo, Gianluca Papaleo, Stefano Veneziano, and Maurizio Aiello. “A

comparative performance evaluation of DNS tunneling tools”. In: Computa-
tional Intelligence in Security for Information Systems. Springer, , pp. –
.

[] Aleksandar Lazarevic, Vipin Kumar, and Jaideep Srivastava. “Intrusion detec-

tion: A survey”. In: Managing Cyber Threats. Springer, , pp. –.

[] Suricata IDS. url: http://suricata-ids.org.

[] The Bro Network Security Monitor. url: http://www.bro.org/.

[] Bing Chen, Joohan Lee, and Annie S Wu. “Active event correlation in Bro IDS

to detect multi-stage attacks”. In: Fourth IEEE International Workshop on Infor-
mation Assurance. IEEE. .

[] Pedram Amini, Reza Azmi, and MuhammadAmin Araghizadeh. “Botnet De-

tection using NetFlow and Clustering”. In: Advances in Computer Science: an
International Journal . (), pp. –.

http://windows.microsoft.com/en-id/windows-vista/what-is-the-registry
http://windows.microsoft.com/en-id/windows-vista/what-is-the-registry
http://www.syssec-project.eu/media/page-media/3/syssec-d5.3-TurkishNetworkCaseStudy.pdf
http://www.syssec-project.eu/media/page-media/3/syssec-d5.3-TurkishNetworkCaseStudy.pdf
https://www.virtualbox.org/
http://suricata-ids.org
http://www.bro.org/

BIBLIOGRAPHY 

[] Leyla Bilge, Davide Balzarotti, William Robertson, Engin Kirda, and Christo-

pher Kruegel. “Disclosure: detecting botnet command and control servers

through large-scale netflow analysis”. In: Proceedings of the th Annual Com-
puter Security Applications Conference. ACM. , pp. –.

[] Antivirus scan results for cbdbefccddafe in VirusTotal. url:

http://tinyurl.com/oenqzl/.

[] Andrew J White. “Identifying the unknown in user space memory”. PhD thesis.

Queensland University of Technology, .

[] Antivirus scan results for caadeade in VirusTotal.
url: http://tinyurl.com/obrluj/.

[] Sophisticated Indicators for the Modern Threat Landscape: An Introduction to Ope-
nIOC. url: http://openioc.org/resources/An_Introduction_to_OpenIOC.

pdf.

[] MITRE Corporation. MITRE Corporation. The MAEC Language Version ..
Overview. url: http://maec.mitre.org/about/docs/MAEC_Overview.pdf.

[] Mandiant Corp. - Security Consulting Services. url: https://www.mandiant.

com/.

[] Mandiant OpenIOC Editor. url: http : / / www . mandiant . com / resources /

download/ioc-editor/.

[] MITRE Corporation. url: http://www.mitre.org/.

[] Emerging Threats - ETPro Ruleset. url: http://devclean.emergingthreats.

net/products/etpro-ruleset/.

[] Mark Dredze, Koby Crammer, and Fernando Pereira. “Confidence-weighted

linear classification”. In: Proceedings of the th international conference on Ma-
chine learning. ACM. , pp. –.

[] Koby Crammer and Daniel D Lee. “Learning via gaussian herding”. In: Ad-
vances in neural information processing systems. , pp. –.

[] Steven CH Hoi, Jialei Wang, and Peilin Zhao. “Libol: A library for online

learning algorithms”. In: The Journal of Machine Learning Research . (),
pp. –.

[] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. “Moa:

Massive online analysis”. In: The Journal of Machine Learning Research  (),
pp. –.

[] Virusshare: Malware Sharing Platform. url: http://www.virusshare.com/.

http://tinyurl.com/oe8nqzl/
http://tinyurl.com/obr2luj/
http://openioc.org/resources/An_Introduction_to_OpenIOC.pdf
http://openioc.org/resources/An_Introduction_to_OpenIOC.pdf
http://maec.mitre.org/about/docs/MAEC_Overview.pdf
https://www.mandiant.com/
https://www.mandiant.com/
http://www.mandiant.com/resources/download/ioc-editor/
http://www.mandiant.com/resources/download/ioc-editor/
http://www.mitre.org/
http://devclean.emergingthreats.net/products/etpro-ruleset/
http://devclean.emergingthreats.net/products/etpro-ruleset/
http://www.virusshare.com/

 BIBLIOGRAPHY

[] Aziz Mohaisen and Omar Alrawi. “Av-meter: An evaluation of antivirus scans

and labels”. In: Detection of Intrusions and Malware, and Vulnerability Assess-
ment. Springer, , pp. –.

[] Aziz Mohaisen, Omar Alrawi, Matt Larson, and Danny McPherson. “Towards

a methodical evaluation of antivirus scans and labels”. In: Information Security
Applications. Springer, , pp. –.

[] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram

Singer. “Online passive-aggressive algorithms”. In: The Journal of Machine
Learning Research  (), pp. –.

[] Koby Crammer, Alex Kulesza, and Mark Dredze. “Adaptive regularization of

weight vectors”. In: Advances in neural information processing systems. ,
pp. –.

[] A. Mohaisen, A.G. West, A. Mankin, and O. Alrawi. “Chatter: Classifying mal-

ware families using system event ordering”. In: IEEE Conference on Communica-
tions and Network Security (CNS). , pp. –. doi: ./CNS..
.

[] Veelasha Moonsamy, Ronghua Tian, and Lynn Batten. “Feature reduction to

speed up malware classification”. In: Information security technology for applica-
tions. Springer, , pp. –.

[] Raymond Canzanese, Moshe Kam, and Spiros Mancoridis. “Toward an auto-

matic, online behavioral malware classification system”. In: IEEE th Inter-
national Conference on Self-Adaptive and Self-Organizing Systems (SASO). IEEE.

, pp. –.

[] Min-Sheng Lin, Chien-Yi Chiu, Yuh-Jye Lee, and Hsing-Kuo Pao. “Malicious

URL filtering - A big data application”. In: IEEE International Conference on Big
Data. IEEE. , pp. –.

[] Ms Jyoti Landage and MP Wankhade. “Malware Detection with Different Vot-

ing Schemes”. In: COMPUSOFT, An international journal of advanced computer
technology (IJACT) . (), pp. –.

[] Rafiqul Islam, Ronghua Tian, Lynn Batten, and Steve Versteeg. “Classification

of malware based on string and function feature selection”. In: Cybercrime and
Trustworthy Computing, Workshop. IEEE. , p. .

http://dx.doi.org/10.1109/CNS.2014.6997496
http://dx.doi.org/10.1109/CNS.2014.6997496

BIBLIOGRAPHY 

[] Yang Zhong, Hirofumi Yamaki, and Hiroki Takakura. “A malware classification

method based on similarity of function structure”. In: IEEE/IPSJ th Interna-
tional Symposium on Applications and the Internet (SAINT). IEEE. , pp. –
.

[] Anthony Desnos and Patrik Lantz. DroidBox: An Android Application Sandbox
for Dynamic Analysis. url: https://code.google.com/p/droidbox/.

[] Thomas Eder, Michael Rodler, Dieter Vymazal, and Markus Zeilinger.

“ANANAS-A Framework For Analyzing Android Applications”. In: Eighth In-
ternational Conference on Availability, Reliability and Security (ARES). IEEE.

, pp. –.

[] LK Yan and H Yin. “DroidScope: Seamlessly Reconstructing the OS and

Dalvik”. In: Proceedings of USENIX Security Symposium. USENIX Association.

.

[] Lukas Weichselbaum, Matthias Neugschwandtner, Martina Lindorfer, Yanick

Fratantonio, Victor van der Veen, and Christian Platzer. “Andrubis: Android

Malware Under The Magnifying Glass”. In: Vienna University of Technology,
Tech. Rep. TRISECLAB ().

https://code.google.com/p/droidbox/

	Dedication
	Abstract
	Résumé
	Acknowledgments
	Introduction
	Problem Statement
	Contributions
	Dissertation Overview

	Background
	Common Types of Malware
	Virus
	Worm
	Trojan
	Backdoor
	Adware
	Botnet
	Spyware
	Rootkits
	Ransomware

	A Quick Look at the History of Malware
	Malware Infection Methods
	Exploiting Vulnerabilities
	Social Engineering
	Misconfiguration

	Hacker Utilities
	Exploit Kits
	Remote Access Tools (RAT)
	Metasploit Framework
	Social Engineering Toolkit

	Anti-Malware Analysis Techniques
	Code Obfuscation Techniques
	Anti-Virtual Machine Techniques
	Hardware Fingerprinting
	Registry Check
	Memory Check
	VMware Communication Channel Check
	File & Process Check

	Anti-debugging
	Anti-Disassembly Techniques
	Packing

	State-of-the Art Malware Analysis Methods
	Static Analysis
	Dynamic Analysis
	Overview of Existing Dynamic Analysis Techniques
	Limitations of Dynamic Analysis

	Manual Analysis

	Summary

	Related Work
	Malware Modeling Techniques
	N-gram
	Control-Flow
	Application Programming Interface
	Abstraction

	Dynamic Malware Analysis Tools
	Anubis
	CWSandbox
	Cuckoo
	Capture-BAT
	Norman Sandbox
	Dynamic Malware Analyzer

	Discussion and Conclusion

	VirMon: A Virtualization-Based Automated Dynamic Malware Analysis System
	Network Virtualization Infrastructure
	Sensor Device
	VPN Server

	Design of VirMon
	The Components of Analysis Machine
	Windows Callback versus API Hooking
	Process Monitoring
	Registry Monitoring
	File System Monitoring

	Network Components
	Virtualization Infrastructure
	DNS Server
	IPDS Frameworks
	Netflow Server
	Application Server

	Deployment
	The Procedure of Analyzing A Sample File
	VirMon Compatibility on Windows 10 beta

	Conclusion

	Classification of malware using its behavioral features
	Automated Dynamic Analysis
	VirMon
	Cuckoo

	Feature Extraction
	Malware Behavior Signature Formats
	Open Indicators of Compromise - OpenIOC
	Malware Attribute Enumeration and Characterization - MAEC

	Selected Behavioral Features
	N-gram modeling over API-call Sequences
	IDS Alerts

	Online Machine Learning
	Binary Classification
	Multi-class Classification
	Online Learning Algorithms Used In This Study
	Passive-Aggressive Learning
	Confidence-Weighted Learning
	Adaptive Regularization of Weights
	Gaussian Herding

	Jubatus Online Learning Framework
	Jubatus Architecture
	Data Conversion Engine
	Our Jubatus Deployment

	Conclusion

	Evaluation
	The Malware Dataset
	Performance Measures
	Results
	Parameter Tuning

	Conclusion

	Conclusion
	Future Work

	Appendix
	Detect VMware Version with VMware Backdoor I/O Port
	Step by Step Advanced Cuckoo Installation
	Jubatus Setup for Distributed Mode
	Summary of the Malicious Activities Observed in the Evaluation Set

