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Abstract

Direct imaging of exoplanets provides valuable information about their nature, their interactions with
their host star environment and their atmospherical composition through the light they emit. In
order to image such objects, advanced data processing tools adapted to the instrument are needed.
In particular, the presence of quasi-static speckles in the images, due to optical aberrations distorting
the light from the observed star, prevents planetary signals from being distinguished. In this thesis, 1
present two innovative image processing methods, both based on an inverse problem approach, enabling
the disentanglement of the quasi-static speckles from the planetary signals. My work consisted of
improving these two algorithms in order to be able to process on-sky images.

The first one, called ANDROMEDA, is an algorithm dedicated to point source detection and
characterization via a maximum likelihood approach. ANDROMEDA makes use of the temporal
diversity provided by the image field rotation during the observation, to recognize the deterministic
signature of a rotating companion over the stellar halo. From application of the original version on
real data, I have proposed and qualified improvements in order to deal with the non-stable large scale
structures due to the adaptative optics residuals and with the remaining level of correlated noise in
the data. Once ANDROMEDA became operational on real data, I analyzed its performance and its
sensitivity to the user-parameters proving the robustness of the algorithm. I also conducted a detailed
comparison to the other algorithms widely used by the exoplanet imaging community today showing
that ANDROMEDA is a competitive method with practical advantages. In particular, it is the only
method that allows a fully unsupervised detection. By the numerous tests performed on different
data set, ANDROMEDA proved its reliability and efficiency to extract companions in a rapid and
systematic way (with only one user parameter to be tuned). From these applications, I identified
several perspectives whose implementation could still significantly improve the performance of the
pipeline.

The second algorithm, called MEDUSAE;, consists in jointly estimating the aberrations (responsible
for the speckle field) and the circumstellar objects by relying on a coronagraphic image formation
model. MEDUSAE exploits the spectral diversity provided by multispectral data. In order to refine
the inversion strategy and probe the most critical parameters, I applied MEDUSAE on a simulated
data set generated with the model used in the inversion. To investigate further the impact of the
discrepancy between the image model used and the real images, I applied the method on realistic
simulated images. At last, I applied MEDUSAE on real data and from the preliminary results obtained,
I identified the important input required by the method and proposed leads that could be followed to
make this algorithm operational to process on-sky data.



Résumé

L’imagerie d’exoplanétes permet d’obtenir de nombreuses informations sur la lumiére qu’elles émettent,
I'interaction avec leur environnement et sur leur nature. Afin d’extraire 'information des images, il
est indispensable d’appliquer des méthodes de traitement d’images adaptées aux instruments. En
particulier, il faut séparer les signaux planétaires des tavelures présentes dans les images qui sont dues
aux aberrations instrumentales quasi-statiques. Dans mon travail de these je me suis intéressée a deux
méthodes innovantes de traitement d’images qui sont fondées sur la résolution de problémes inverses.

La premiére méthode, ANDROMEDA, est un algorithme dédié a la détection et & la caractéri-
sation de point sources dans des images haut contraste via une approche statistique basée sur une
estimation par maximum de vraisemblance. ANDROMEDA exploite la diversité temporelle apportée
par la rotation de champ de I'image (ou se trouvent les objets astrophysiques) alors que la pupille (ou
les aberrations prennent naissance) est gardée fixe. A partir de l'application sur données réelles de
I’algorithme dans sa version originale, j’ai proposé, évalué et validé des améliorations afin de prendre
en compte les résidus non modélisés par la méthode tels que des structures de bas ordres variant
lentement et le niveau résiduel de bruit correlé dans les données. Une fois I’algorithme ANDROMEDA
opérationnel, j’ai analysé ses performances et sa sensibilité aux parametres utilisateurs, montrant la
robustesse de la méthode. Une comparaison détaillée avec les algorithmes les plus utilisés dans la
communauté a prouvé que cet algorithme est compétitif avec des performances tres intéressantes dans
le contexte actuel. En particulier, il s’agit de la seule méthode qui permet une détection entierement
non-supervisée. De plus, ’application a de nombreuses données prises sur ciel venant d’instruments
différents a prouvé la fiabilité de la méthode et 'efficacité a extraire rapidement et systématiquement
(avec un seul parameétre utilisateur & ajuster) les informations contenues dans les images. Ces appli-
cations ont aussi permis d’ouvrir des perspectives pour adapter cet outil aux grands enjeux actuels de
I'imagerie d’exoplanetes.

La seconde méthode, MEDUSAE, consiste & estimer conjointement les aberrations et les objets
d’intérét scientifique, en s’appuyant sur un modele de formation d’images coronographiques. MEDU-
SAE exploite la redondance d’informations apportée par des images multi-spectrales. Afin de raffiner
la stratégie d’inversion de la méthode et d’identifier les parametres les plus critiques, j’ai appliqué
I’algorithme sur des données générées avec le modele utilisé dans l'inversion. J’ai ensuite appliqué
cette méthode a des données simulées plus réalistes afin d’étudier I'impact de la différence entre le
modele utilisé dans l'inversion et les données réelles. Enfin, j’ai appliqué la méthode a des données
réelles et les résultats préliminaires que j’ai obtenus ont permis d’identifier les informations impor-
tantes dont la méthode a besoin et ainsi de proposer plusieurs pistes de travail qui permettront de
rendre cet algorithme opérationnel sur données réelles.
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General introduction

Exoplanet imaging is a major field of astrophysics which, complementary to other indirect techniques,
provides valuable information on exoplanetary systems. In particular, direct imaging presents three
major areas of intensive research:

1. The detection of massive giant planets at large orbits (more than 5-10 AU): By studying the
derived parameters (e.g. the range of their masses, their distance to the host star and the
age or type of the host star), we can, on the one hand, better understand the nature of these
objects, and on the other, constrain their orbital parameters to get clues about the formation
and migration process of giant planets.

2. The deep analysis of planetary emission spectra: This allows the study of their atmospheric
composition (such as chemical compounds, dust amount, cloud layers or weather) and investigate
the presence of biomarkers.

3. In case of the presence of a circumstellar disk (either protoplanetary for young systems or debris
for more mature ones): The study of the disk to planet connection brings further constraints on
the current models of planetary formation and evolution.

For the proper determination of these astrophysical quantities we need to optimize the current
image processing tools and to develop specific innovative algorithms adapted to the instrument, so
as to minimize the systematic uncertainties. During the past few years, major evolutions in both
instrumentation, sensors and computer capabilities enabling the use of advanced signal processing
techniques, resulted in scientific breakthroughs such as the discovery of 51 Eri b unveiled with GPI
(Macintosh et al., 2015), the detailed features and the enigmatic rapidly moving ripples revealed by
a deep imaging of the AU Mic disk with SPHERE (Boccaletti et al., 2015) or the retrieved spectrum
of the HR8799 e companion at short wavelength (Bonnefoy et al., 2016; Zurlo et al., 2016). The
discovery of the giant exoplanet Beta-Pictoris b (Lagrange et al., 2010) from 2003 NaCo images or
the rediscovery of HR8799 b, ¢ and d in archival HST NICMOS data (Soummer et al., 2011) and the
ALICE project (Choquet et al., 2015) show that applying innovative detection tools on older data can
lead to essential discoveries or objects follow-up, which are both essential to strengthen the constraints
on the planetary formation models.

There are still pending questions about the optimization of current signal processing algorithms
used by the community and new methods to be developed specifically for the instrument used and
the type of object sought. For instance, up to now, no method enabled to detect planetary compan-
ions in an unsupervised way. Also no dedicated method fully exploits the information provided by
multispectral coronagraphic images. This manuscript presents the work I have done during the three
years of my PhD on two algorithms which address these problematics. The originality of these two
algorithms is that they are both based on an inverse problem approach: an image model is used to
directly estimate the most probable unknowns of the problem, such as the position and the flux of a
potential planetary companion.

In the first chapter, I describe the motivations of exoplanet imaging and why image processing
methods are essential to optimally exploit the infrared high contrast instruments used for this purpose.
In the first part of the thesis, I present my work on the ANDROMEDA algorithm, which exploits
the temporal diversity of the images provided by the current high contrast instruments. The principle
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of this algorithm has been developed by Mugnier et al. (2009) but was not yet operational on real
data. My approach was to implement means of compensating the discrepancy between the model
used in the algorithm and the real images properties. Once this ANDROMEDA algorithm was able
to process on-sky data, I refined the method, conducted a thorough analysis of its performance and
compared it to the three major image processing methods currently used by the exoplanet imaging
community. In a last chapter, I present various applications of this algorithm to on-sky data, revealing
new detections and fine characterizations of stellar companions.

In the second part of this thesis, I present my work on the MEDUSAE algorithm, which exploits
the spectral diversity provided by integral field spectrographs. The basis of this algorithm has been
established by Ygouf et al. (2013) but this algorithm had not been applied on real data yet. My
approach was to revisit the algorithm strategy and conduct sensitivity tests on ideal simulated data. I
then present applications of this algorithm on realistic simulated data, following the properties of the
SPHERE-IFS instrument. I also present preliminary application of MEDUSAE on real in-lab data,
which raise several perspectives to make this algorithm operational on on-sky data in the future.



Chapter 1

Exoplanet imaging with high contrast
instruments
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This chapter introduces the context of the research I conducted during the three years of my PhD.

Unlike experimental sciences, the only information astrophysicists have comes from observations.
Simulations or in-lab experiments try to reproduce what is observed in the distant universe but it
is impossible to access the system under study and to tune the parameters to better understand it.
Moreover the physics laws apply in extremely different conditions which usually cannot be reproduced
in laboratory. By the different scales of distance, size and time of the event as well as the physical
conditions (such as pressure and temperature) in which the studied objects evolve, astrophysics is a
particularly challenging science and related to many fields of physics. Planet formation is a very good
example: it cannot be reproduced in laboratory, and only observations of our own, already formed
solar system are available while observations of younger extra-solar systems are very challenging and
provide scarce but very valuable information.

My PhD work is in the field of exoplanets which is a very young field of research as the first
exoplanet discovery was announced in the 90’s. The orbital time scales are from days to tens of years
and the size of the objects under study are of the order of magnitude of the planets constituting our
solar system. Today about 3500 exoplanets have been discovered! among the close stars of our Galaxy
(less than 10kpc from the Sun). Among these detections, various configurations and objects that were
not expected have been discovered. There is no strict definition for an exoplanet?. For now it can be
defined as:

1Source: http://exoplanet.eu/ as on July 2016.

2Two official definitions are established by the International Astronomical Union (IAU), one concerning the small
planets of size comparable to those of our solar system, and the other concerning the giant exoplanets which is still
controversial. The definitions can be found in http://w.astro.berkeley.edu/~basri/defineplanet/IAU-WGExSP.htm

12


http://exoplanet.eu/
http://w.astro.berkeley.edu/~basri/defineplanet/IAU-WGExSP.htm

1.1 Studying exoplanets

1. an object whose mass is below the limit of deuterium fusion (i.e. < 13Mjyy);
2. an object which revolves around a star (or a compact object);

3. an object which is massive enough so that its overall spherical shape is dominated by its grav-
itation (and not by its electrostatics forces) and so that it is the dominating body on its orbit
(unlike dwarf planets or a population of asteroids occupying a common orbit);

However this definition does not take into account potential free-floating planets (considered as sub-
brown dwarfs) yet unveiled by gravitational microlensing (Sumi et al., 2011) or by direct imaging
(Delorme et al., 2012). A physical definition should certainly include the fact that planets are formed
within the gas and dust disk surrounding young stars during their first million years. This definition
directly motivates a better understanding of the formation processes of planets, and how they impact
the observational properties of planetary-mass companions detected possibly billions of years later.
For now, two main scenarios of planetary formations are considered:

(1) the Core Accretion scenario (Pollack et al., 1996) favors a model in which planetesimals, formed
from the dust grains constituting the protoplanetary disk (essentially made of silicate and metals in
its inner part and ice in its outer part), coagulate in massive rocky cores by using all the available
material until its mass stabilizes. If the disk is massive enough, these cores can reach the necessary
mass to accrete gas, then becoming giant gaseous planets. Because the disk disperses its gaseous disk
in some million years (by photoevaporation, accretion onto the star and photodesorption mainly),
this stage is assumed to be fast enough (less than a million years). Also this stage is favored by the
presence of ice, so formation of giant planets is facilitated at larger distance from the star, beyond the
ice line (further than a few AUs depending on the stellar mass), but close enough to keep enough disk
mass (below 10-15 AUs).

(2) the Gravitational Instability scenario (Boss, 2002) states that local instabilities induce the
fragmentation of the protoplanetary disk into objects of several Jupiter masses whose collapse forms
giant planets. The latter is a faster process which could explain the presence of giant planets at large
separation from young stars that have been detected by direct imaging.

However, these two models do not explain the huge variety of exoplanets observed for twenty
years. Other processes such as migration and interaction with the planetary environment (disks or
other planets) must be taken into account to better understand the variety of these observations.

My subject of study focuses on the direct imaging of such objects in infrared, that is necessary
to complete our understanding of exoplanets. In Sect. 1.1, I expose the various exoplanet detection
techniques along with their limitation and biases, which motivate exoplanet imaging in spite of the
observational difficulties. More specifically, my work is in the field of image post-processing that is
necessary to detect and characterize exoplanets within high-contrast images. The post-processing
methods I present in this thesis are based on the instrument knowledge and cannot be disentangled
from the instrument features. In Sect. 1.2 I describe the instrumental solutions used to address the
technical challenges imposed by exoplanet direct imaging. The fundamental limits of these instrumen-
tal solutions are the main stake motivating my work on image post-processing techniques. In Sect. 1.3
I specifically describe what are the main characteristics that can be used to develop image processing
techniques for exoplanet detection, knowing the properties and fundamental limits of the instrument.

1.1 Studying exoplanets

In this section, I focus on why direct imaging is an important field of exoplanetary science by the
kind of information and objects it has access to. Exoplanet study has several purposes that can be
summarized in four interrelated questions:

1. How do giant planets and telluric planets form (in close relation to how do stars form)?

2. What are the typical architectures of planetary systems and how do they evolve?
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3. What are the physical properties of exoplanets (structure and atmosphere) and how do they
evolve?

4. Are there biomarkers on planets outside of the solar system? And particularly for telluric planets
in the so-called habitable zone.

In order to address the first question, it is needed to study the interactions between the star forming
region and the planetary companions. Only direct imaging can study simultaneously the disk-planet
interactions (either in submillimeter or visible/infrared wavelengths and using either classical imaging
or interferometry). Also, it is needed to study the occurrence of exoplanets around different types of
star (age, metallicity, spectral type), for which imaging is complementary to other techniques.

In order to address the second and third questions, it is needed to detect as many different planets
as possible, that is to say, with different ages, masses, sizes and distances to their host star. Among
the five techniques I expose in this section, direct imaging is the only one which specifically probes
companions that are younger, more massive and further from their host star compared to planets
detected with indirect methods. In this prospect, the combination of different observation techniques
is crucial to probe planetary companions in various situations.

In order to address the fourth question, it is required to obtain a spectrum of the observed exo-
planet. Access to the photons from the planets through direct imaging is a key point here.

In this section, I describe the five well established methods used to detect exoplanets nowadays and
give some of their specificity that help addressing these questions. I chose to present these methods
by chronology of first detections since it indicates if the method is technically accessible and easy to
set-up. I also sort these methods by the physical concept on which they rely and not by the physical
parameter which is used (such as time or photometry). Note that I only go through the classical main
methods although different flavors of each of them can be found, because only a few detections have
been found with these specific flavors.

1.1.1 Indirect methods of detecting and studying exoplanets
1.1.1.1 Pulsar timing

The very first detection of an exoplanet has been made thanks to pulsar timing.

A pulsar (for pulsating radio star) is a neutron star remaining from an intermediary mass star
(between 10 and 30 solar masses) which ended its life in a supernovae. During the parent star collapse,
the remaining core (of about 10 kilometers diameter) preserved almost all the angular momentum and
magnetic field making this object spinning very fast around its axis and creating two radio-beams
from its magnetic poles (frequencies between 150 kHZ and 3 GHz). If one of the two beams is visible
from Earth, the source is called a pulsar and emits brief and periodic signals®. Milliseconds pulsars
(rotating with a period of the order of milliseconds, as discovered by Backer et al., 1982) have a highly
regular rotation period on short time scales. This regularity is used as precise clocks or to probe the
interstellar medium (along the line of sight of the beam), to study gravitational waves (by indirect
observation, see the first discovery by Hulse and Taylor, 1975 who obtained a Nobel prize in 1993) or
to study the pulsars’ environment.

That is how the first two exoplanets have been detected by Wolszczan and Frail (1992) who noticed
anomalies in the pulsating period of PSR1257 4+ 12. These anomalies where analyzed as being due
to two or more Earth-sized bodies located at close distance to the host pulsar. This discovery was
unexpected since it is not understood how such an object could survive a supernovae explosion or form
after such an explosion.

Today, 23 planets have been unveiled thanks to this technique (belonging to 18 different planetary
systems). The first so-called super-earth has been discovered thanks to this technique (Wolszczan and
Frail, 1992).

3Nowadays, more than 2000 pulsars have been found in our Milky Way, since their discovery by Hewish et al. (1968).
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Accessible astrophysical parameters This technique gives access to the mass of the companion
and most of its orbital properties (semi-major axis, eccentricity and sometimes inclination) and thus
orbital period.

Fundamental limitations and biases This technique only probes planets revolving around pul-
sars and thus marginally addresses the questions (1) and (3). Moreover, as pulsars are compact objects
(very massive for their sizes), the planetary companions discovered thanks to this technique are usually
very close to their host body (less than 10 AU).

Many questions remain from these discoveries, such as where do these planets come from (was it
still part of the system, are they wandering bodies that have been gravitationally captured by the
system or have they been formed from the material left over by the supernovae). This technique thus
permits to marginally explore questions (1) and (2) and does not allow one to address question (4).

1.1.1.2 Radial velocity

For the scale of exoplanets, a two-body system revolves around the common center of mass whose
location depends on the relative mass of the two objects. For instance, the center of mass of the
Jupiter-Sun system is located at about 700,000 km from the center of the Sun (close to its surface). If
a substellar companion is massive enough compared to the mass of its host star, their center of mass
is significantly shifted from the more massive body towards the second body (see Fig. 1.1). From the
Earth, it is possible to observe the star revolving around this gravity center by radial velocity (which
observes the radial motion of the star) or astrometry (which observes the tangential motion of the
star). The idea of the radial velocity (RV) method is to observe the periodic radial motion of the star
(due to its rotation around the center of mass) by Doppler spectroscopy: the spectrum of the observed
star is periodically shifted (from reference spectral lines) due to the presence of planetary companions.

The first discovery of a planetary companion by radial velocity triggered the exoplanet hunt since
it is considered as the first exoplanet discovery. An object of a few jupiter masses, revolving around its
host star 51Peg in 4.2 days at a distance of 0.052AU has been discovered by Mayor and Queloz (1995)
thanks to the ELODIE spectrograph installed at the Observatoire de Haute-Provence (France). This
discovery was quite puzzling as such a massive companion was not expected that close to its host star.
Indeed, the only example we had at the time, were the eight planets of the solar system. This is the
first discovery of the so-called hot jupiters.

In July 2015, 670 planets within 508 stellar systems have been discovered thanks to this technique.

Note that instead of looking at the Doppler shifted star light, a precise astrometry follow-up of
the star can also show the rotation of the star around a different mass center due to the presence of
planetary companions. In this case, the stellar system must be as perpendicular to the line of sight
as possible to enable the identification of the star orbital motion. This technique, called astrometry,
resulted in one confirmed detection (Muterspaugh et al., 2010).

Astrophysical parameters accessible with this method This technique enables one to retrieve
the minimum mass of the detected companion but not the true mass since it depends on the inclination
of the system which cannot be known by this technique alone. Astrometric measurements must be
combined to the RV measures or imagery, in order to obtain the inclination, to derive the mass and
potentially the spectrum when combined with imagery. Note that the astrometric method, even if
the physical concept is the same, concerns different instruments (such as GAIA), different observation
strategies (observation of crowded fields) and different objects (it is less sensitive to the stellar activity).
The latter technique, combined with RV or imagery, will probably provide a harvest of results in the
ten next years. All the orbital properties are also derived from this technique but the inclination of
the system. The GAIA space observatory, operating since early 2014, should measure the orbits and

15



Exoplanet imaging with high contrast instruments

T u e e

100 -

t

centre of mass ]
r 50 — -

~  acceleration
- =GMy/1?

acceleration
=GMp/r? .

-50 E

=100 i~ .

M* i‘j
¢

Figure 1.1 — Principle of the astrometry exoplanet detection method. Left: Schematic view of the common
center of mass for a planet-star system (Figure from Perryman, 2011). Right: Radial velocity of the star 51 Peg
observed by ELODIE, the red solid line showing the fitted solution to derive the system parameters (Figure
from Mayor and Queloz, 1995).

inclinations of thousands* of extrasolar planets (Lattanzi and Sozzetti, 2010; Perryman et al., 2014),
determining their true mass by astrometric measurements.

Fundamental limitations and main detection biases Detections through this technique are
easier at short separations and also naturally for massive planets (such as hot Jupiters). Also, it is
easier to find companions around low-mass star (M-type stars of 0.3 to 0.5M). By principle, it is
easier to detect planetary systems that are edge-on (inclination of 90°) whereas it is impossible for a
pole-on system (null inclination).

False alarms For very stable instruments and high signal to noise measurements, the detection
capability of this method is ultimately limited by the perturbations of the RV caused by the star itself
("stellar jitter"). Stellar pulsations and stellar photospheric activity (i.e. surface spots and plages,
Borgniet et al., 2015) induce RV noise at different period and amplitude scales, thus either mimicking
or masking a small-mass planet RV signal.

Technical challenges The most critical instrumental challenge is related to the difficulty in cali-
brating the spectrograph in wavelength, in centering the fibers and stabilizing the temperature and
pressure of the system so as to reach the accuracy and stability required for such detections. Cur-
rently, an accuracy better than 1.0 m/s is achieved by the HARPS spectrograph (La Silla observatory,
Chile), which probes companions of mass down to super-Earth (1 to 5Mg) at short separation. To
give an order of magnitude, Jupiter induces a semi-amplitude of about 13 m/s over a period of 12
years whereas the Earth shows a semi-amplitude of 9 cm/s over one year.

Main instruments dedicated to RV Many ground-based instruments and large scale observa-
tional surveys are dedicated to exoplanet detection using the RV method although it must be used
with other methods to derive the full companions’ orbital parameters. As this technique is efficient
and well established, it is still one of the favored method, hence the numerous projects to investi-
gate nearby stars. Among the instruments in operation, there are SOPHIE (Observatoire de Haute-
Provence, France), CORALIE (La Silla observatory, Chile), HARPS (La Silla observatory, Chile) and

4Perryman et al. (2014) states that about 21 000 new detections by astrometry are expected during the five years
of its mission. These detections are for high-mass (from 1 to 15Mj,,) and long period planets, revolving around stars
located at about 500 pc from Earth).
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its northern counterpart HARPS-N (Roque de los Muchachos Observatory, La Palma, Spain), UCLES
(Anglo-Australian Observatory, Australia), APF (Lick observatory, USA) and EAPSNet, a project
which gathers the three facilities BOAO (Korea), Xinglong (China), and OAO (Japan). One of the
major projects for RV exoplanet search is ESPRESSO (P.I.: F. Pepe), currently being installed at
Paranal observatory (Chile), whose first light is planned in 2017 and whose goal is to observe semi-
amplitude variations of down to 5 m/s (depending on the instrument configuration).

In summary, this method mostly gives hints about the nature of exoplanets (addressing questions
(1), (2) and (3)) and, via models, gives access to both the internal and atmospherical composition of
the companions (question (4)).

1.1.1.3 Planetary transit

When a planet passes in front of its host star, it can be visible from Earth as the star brightness
dims by an amount which depends on the relative sizes of the star and the planet (see Fig. 1.2). This
technique was first imagined by O. Struve in 1952 (Struve, 1952), but the first transit observation of
a known object was made by Charbonneau et al. (2000), while the first discovered exoplanet thanks
to the transit technique was made by Konacki et al. (2003).

Today, about 2630 planets have been detected by this method, belonging to 1955 different systems,
but most of these detections have to be further confirmed by other techniques, given the important
number of false positives.

Note that the same kind of experiment can unveil planetary companions by detecting a specific
signature due to a secondary eclipse (the brightness of the observed star decreases when the companion
passes behind the star since the actual observed light was the addition of the two bodies light).
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Figure 1.2 — Principle of the transit exoplanet detection method. Left: Schematic view of the primary and
secondary transits (Figure from Perryman, 2011). Right: Light curve of the star OGLE-TR-56, the red solid
line showing the fitted solution to derive the system parameters (Figure from Konacki et al., 2003).

Accessible astrophysical parameters This technique directly gives access to the radius of the
planetary companion (the brightness decrease is proportional to the star-planet surface ratio), as
well as its orbital period. In order to obtain the mass or eccentricity, it has to be combined with
RV observations which provides the minimum mass (and the density) and most orbital parameters
or variations in the timing of the transit has to be observed (transit-timing variation technique,
TTV). Also, it is possible to probe the planetary atmosphere by high resolution spectroscopy (the
starlight goes through the atmosphere of the planet and specific absorption lines can be observed).
Secondary eclipses can also help disentangling contributions from the star atmosphere and from the
planetary companion atmosphere. The latter technique is really challenging. It has been applied on
a dozen of favorable cases (massive and hot companions) observed in infrared (where the contrast
remains moderate during many transits) with space-based observations (stable conditions). Future
observations from space, on either large scale general-use instruments (such as the JWST) or dedicated
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missions (such as the ARIEL project), should considerably extend such spectral measurements. Note
that the secondary eclipses and the transmission transits are usually called semi-direct techniques
since they access the trace of the emitted photons.

Fundamental limitations and main detection biases In order to observe planetary companions
with this technique, the stellar system inclination must exactly match the line of sight. There is a
probability of about 10% to obtain such a configuration for a planetary companion located at 0.05
AU from its host star whose radius is 1 solar radius. This configuration is more likely to happen for
companions at close separation to their host star. Moreover, this method mostly probes companions
whose relative radii with the star is great enough to detect the star dim: for instance, the Sun-Jupiter
system would provoke a light decrease of about 1%. It is possible to observe such transits around
further stars (up to 3000pc whereas RV probes stars located at up to 300pc from Earth). Up to
now, the most productive missions, designed to probe many transits (such as the spatial observatories
CoRoT then KEPLER), targeted dense and thus distant stellar fields, providing then very few systems
around bright enough stars (appropriate for very detailed characterization). The mission of the space
observatory PLATO, planned for 2024, is to search for Earth-like planets around up to one million
stars of various types, including the bright and nearby ones, by using this technique.

False alarms This detection method is riddled with many biases since a transit signature can be
produced by many other effects such as diluted eclipsing binary, brown dwarf eclipse, background
eclipse or stellar spot. For instance Santerne et al. (2012) showed thanks to a RV follow-up using
SOPHIE, that a false positive rate of about 40% was to be expected for most companions already
discovered by this method using the KEPLER instrument. A similar study by Morton et al. (2016)
shows that among 7056 potential companions discovered by KEPLER, 428 are actually false alarms,
1284 are to be confirmed and 1935 have a high probability of being true detections. In order to confirm
the discoveries it is required to add observations with other techniques such as RV (as proposed by
Bouchy et al., 2009) or to perform extensive studies of the object by using transit-time variation
technique (as proposed by Holman et al., 2010).

Main instruments dedicated to transit This technique can be relatively easy and cheap to in-
stall when looking for giant planets close to their host star, but when looking for super-Earths and
their spectra, it requires the use of space telescopes equipped with advanced technologies. Many
ground-based and space-based instruments are dedicated to exoplanet detection by transit. Among
the two major space missions, CoRoT and KEPLER discovered thousands of new planetary candi-
dates. CHEOPS, PLATO and TESS are the next missions planned to detect planetary transits and
retrieving their atmosphere spectra.

This technique, if combined with other techniques, can bring important information about the
nature of exoplanets in spite of its observational biases. One important aspect of this method which
will lead future experiments is the possibility of retrieving exoplanet atmospheric spectra and thus
address questions (2), (3) and (4).

1.1.1.4 Gravitational micro-lensing

The Shapiro effect states that light is curved when passing close to a massive object, such as a star, due
to its gravitational potential. Thus in a configuration when the line of sight of an observed background
star crosses a stellar system, this stellar system acts as a so-called gravitational lens (hence the name
of this method, see Paczynski, 1986). If a stellar companion is present around the lensing star, a
specific signature will appear in the observed light curve from the background star (see Fig. 1.3). This
method has an increased sensitivity for low mass companions at large separation, typically between
0.5 and 10 AU. This technique can also probe free-floating companions, as unveiled in Sumi et al.
(2011) and around black holes. The planetary systems probed by this technique are located at 1 to 8
kpc from the sun (further than for most indirect techniques).
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The first exoplanet unveiled thanks to this technique has been published by Bond et al. (2001).
Today, 47 planets have been detected among 45 different planetary systems. A review of these
discoveries can be found in Cassan et al. (2012).
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Figure 1.3 — Principle of the gravitational microlensing detection method. Left: Schematic view of a microlensing
phenomenon: The "lensing" star is passing in front of the observed source star. Right: Light curve of the star
OGLE-2005-BLG-390 showing an exoplanetary signal (Source: David Bennet, www.iap.fr).

Accessible astrophysical parameters From this method, it is possible to derive the mass of the
companion relative to the star (from which we can make statistical guesses of its absolute mass), its
period and its semi-major axis. Also, it is sensitive to faint free-floating planets that are not targeted
by any other technique, and can therefore give an insight into the population of such objects for which
little information is known.

Fundamental limitations and main observational biases The main disadvantage of this method
is that it is a non-reproducible method: once the peak is observed, there is an extremely low probability
that another background star may pass close enough to the microlensing star system. As in general,
the lensing probability is very low, very large samples of stars must be continuously monitored. In
order to have as many background sources as possible, the observed background stars are usually
located in the Milky-Way plane. For instance, the OGLE project aims at continuously observing the
galactic plane to spot such events.

This technique enables one to learn more about the statistics of exoplanets down to terrestrial
masses at large separation but it is very limited since non-reproducible and it must be combined with
other techniques such as direct imaging (as in Ranc et al., 2015) or interferometry (as in Cassan and
Ranc, 2016) to have more information about the detection and address question (2).

1.1.1.5 Summary of the indirect observational methods for exoplanets

To summarize, these four indirect methods give access to specific parameters and to specific stellar
systems whose properties are gathered in Tab. 1.1 and Tab. 1.2 respectively.
Note that 209 planets found thanks to the transit method are yet to be confirmed.

Thus the four indirect techniques enable the discovery of exoplanets which are mostly close to their
host star. On the contrary, direct imaging can probe larger stellar systems and give access to different
parameters to complete the overview of exoplanets. The next section focuses on what complementary
information can be revealed by exoplanet direct imaging.

1.1.2 Direct imaging for exoplanet study

In this section, I focus on the direct imaging (DI) technique which motivates the topic of my PhD.
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Detection method Accessible parameters First detection Number of detections
Pulsar timing M, a Wolszczan and Frail (1992) 23

Radial velocities Min, P, a, e, w, Q Mayor and Queloz (1995) 671

Transit R, P,a,e,i Konacki et al. (2003) 2628
Gravitational lensing M, P, a Bond et al. (2001) 47

Table 1.1 — Summary of the parameters accessible by the four indirect techniques described in this section and
number of planetary detections as of July the 5th 2016. M is the mass of the companion, R its radius, P is
its rotation period, a its semi-major axis, e its eccentricity, ¢ the inclination of the system, w the argument of
peristar and € the right ascension of the ascending node.

Detection method Distance range [AU] Mass range [M;,;,] Age of the host star [Gyrs]

Pulsar timing 5.1073-25 1.107%-10 -
Radial velocities 2.1072-10 1.1072 - 1.10*2 0.5-14
Transit 1.107%2-5 1.1073 - 1.10*2 0.01-15
Gravitational lensing 2.1071 - 10 2.1073 - 1.10+2 any

Table 1.2 — Summary of the range of planetary companion mass, semi major axis and host star age accessible
by the four indirect techniques described in this section, as on July 2016.

1.1.2.1 Astrophysical context enabling direct imaging

The planet mostly reflects visible light from its host star, depending on its albedo (that is to say its
surface and/or atmospheric composition) and emits infrared or shorter wavelength light, depending on
its temperature (itself mostly dependent on its mass and age). Direct imaging aims at detecting the
photons emitted or reflected by the planetary companions. In this section I will focus on the detection
of the light emitted by such bodies in the near-infrared (NIR). In such a configuration, the contrast
between the host star and the light emitted by the internal heat of the planet is lower than at shorter
wavelengths where the stellar blackbody emission is usually higher compared to its reflected light by
the planet.

To detect the photons emitted by the planetary companions, it must have an angular distance wide
enough to separate its signal from the star signal and must be bright enough to be visible. Within
these considerations, only giant planets at wide separation can be imaged today. Finding a planet of
given mass and age is easier around a low-mass star because it offers a more favorable contrast. On
the other hand, massive planets are possibly also more likely around massive stars which also drove
target selection for young massive stars and provided interesting detections.

The choice of the target stars is driven by the following considerations: they must be young enough
to provide a rather good contrast between the planet and the star (< 500Myrs) and close enough to
provide a relatively good resolution (< 100 pc). In total, less than 1000 candidates can be observed
under these conditions, considering the current work of young, nearby stars identification in the Sun
vicinity.

More details about the technical challenges required for direct imaging are discussed in next section.

First detection of an exoplanet by direct imaging Due
to the technical challenge required to image an exoplanet, the 2MASSWIJ1207334-393254
first detection of a planetary mass companion was made in 2004
by Chauvin et al. who detected a giant planet around a brown
dwarf. This 2MASSWJ 1207334-39325/ brown dwarf belongs
to the TW Hydrae association, whose age is estimated of ~ 8
Myrs. This brown dwarf is located at 70 pc from the Earth and
its estimated mass is 25M j,,. The coldness of this object made
it possible to reach the necessary contrast to image the giant
planet revolving at a projected distance of 55 AU. Several mod- -~ 778 mas N
els have been used to estimate its mass to 5 &= 2Mj,;, and its 35 AUatT0pe —|
E

Figure 1.4 — First exoplanet detected
around a brown dwarf, using the
VLT /NaCo instrument (Figure from
Chauvin et al., 2004).
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effective temperature of 1250+ 200 K. Note that this companion
may be a brown dwarf and not a giant planet, depending on
the formation mechanism and definition chosen. The moderate
mass ratio between the primary brown dwarf and this planetary
mass companion excludes the possibility for a planetary forma-
tion within the circumstellar disk.

Companions detected by direct imaging today Today, a few tens of exoplanets and bounded
brown dwarfs have been unveiled by direct imaging. These companions lie in a range of projected
distances to their host-star between ~ 10 and ~ 7000 AU, for estimated masses between ~ 3 and
~ 62M yp.

1.1.2.2 Derived astrophysical parameters

From the images, the characterization of the detected companions gives access to the planet-star
contrast and the projected planet-star position of the substellar companion. During my PhD, I worked
on image post-processing techniques whose goal is to detect companions and provide the most accurate
position and contrast estimation of the detected companions. Post-processing methods also provide
the detection limit, that is to say the faintest detectable signal as a function of the distance to the
star. During my PhD, I did not work on the conversion of these values into astrophysical parameters
such as the mass and the orbital parameters of the companions. The main properties of the planetary
companions are derived from this characterization thanks to models.

Obtaining information about the orbital properties of the stellar system Direct imaging
gives access to the projected separation to the star. In order to confirm the presence of a planetary
companion, it is usually observed twice in order to check if it is co-moving with the target star (and that
it is not a background star). The seven planetary orbital parameters can be derived from these data
points (the eccentricity being a very important parameter in the framework of the planet interaction
with its environment such as other planets or disks). For instance, two main ways of fitting the
orbital parameters, that are currently massively used by the community, are the following: a MCMC
estimation (which takes guess values in input then explores the different parameter combinations) and
a LSMC estimation (which is a generalization of the MCMC estimation but which uniformly explores
the seven orbital parameters). These two methods need the separation, the position angles as well as
the corresponding uncertainties on these parameters. Thus when developing image processing tools,
these parameters must be delivered with specific attention, mostly for the uncertainties which are not
trivial.

If the companion is revolving fast enough around its host star, from at least three observations
at three different epochs, it is possible to constrain the dynamic of the stellar system (via direct
observation and models). In particular, the stability of the system is investigated for multiple planetary
systems or planets detected within bright disks.

Note that in the case of companions at short separations, it is also possible to combine the as-
trometric data points with RV (or astrometric in the future) detections and use dedicated codes, as
described on the Beta Pictoris planetary system in Bonnefoy et al. (2014), to better constrain the
orbital parameters. The potential of such a combination can be found in Crepp and Johnson (2010).

Once the orbital parameters are estimated, it is possible to study the dynamical stability of the
system: when the planet has formed, where in the stellar environment, did it migrate etc.

Obtaining the mass of the detected companion Direct imaging gives access to the relative
luminosity of the planetary companion to its host star. Knowing the age of the host star, it is possible
to determine the mass of the planetary companion from its estimated contrast via evolutionary models
(giving the mass-luminosity relation). Such models should in particular predict the evolution of the
total luminosity with age (such as Baraffe et al., 2003 and Saumon and Marley, 2008). The conditions
of formation (and amount of gravitational energy effectively kept or radiated in this young age) may
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have an important impact on such predictions (Marley et al., 2007). In short, there are two main
models, referred to as the hot start and cold start models. The hot start model assumes that all the
gravitational energy from the gaseous cloud, which collapses to form the planet, is incorporated into
the planet in the form of thermal energy: the planets is bright during its formation and cools away
with time. The cold start model assumes that the gravitational energy is radiated away through a
shock wave and that the planets ends up much fainter at young age. Intermediate cases between those
2 models have also been developed. For a given total metallicity, the flux detected as a function of
wavelength is also a strong function of the physics of the atmosphere: composition, stratification, and
also possible cloud content.

Note that in the current landscape of knowledge, there is an important uncertainty, of about two
orders of magnitude, on the luminosity of giant exoplanets. The combination of RV and imagery could
potentially increase the exploration of the mass-luminosity diagram, and to decrease this uncertainty.

Constraining the estimations by probing different wavelengths Multispectral observations
increase the constrain on the estimated temperature. Also, the thermal emission of young planets is
much higher at longer infrared wavelengths (> 3um). The larger the wavelength the easier it is to
constrain the estimated temperature of the planetary companion. However, at larger wavelengths,
the resolution decreases and the thermal background noise increases which will intrinsically limit the
performance of the system. There is thus a compromise to make between shorter wavelength to obtain
images of high resolution and larger wavelengths for a better contrast and a better estimation of the
planets properties. Observations at several wavelengths are complementary and with the current
instruments, observing in the H-band (around 1.6um) is a good compromise. Moreover, the H-band
proximity with the methane absorption band makes it an interesting indicator for the temperature.
The L' band (around 3.8um) is also complementary for the interpretation since it shows a more
favorable flux for lukewarm companions and moderate observational difficulties making it better in
terms of mass limit.

Deriving exoplanet atmospheric spectra From multispectral data, it is possible to derive spectra
which are compared to atmospheric models or known objects, given the flux emitted by the surface
of the object. Several models have been developed, parametrized by the effective temperature, the
metallicity and the surface gravity of the companion and taking into account clouds (through their
optical thickness) and dust (through the size of the grains). For instance, the recent model Exo-REM
established by Baudino et al. (2015), derives the effective temperature, the surface gravity and the
planetary radius from spectral data points of an exoplanetary companion. From the spectra obtained,
the chemical composition can be extracted, with the presence of molecules such as methane, water,
ammoniac etc.

Obtaining constrains on the presence of exoplanets The provided detection limit constrains
the presence of other planetary companions on the stellar system thanks to evolutionary models
(depending on the age of the host star, some solutions are excluded). Further codes exclude planetary
companions with precise orbital parameters, such as MESS-2 (Bonavita et al., 2012 and Lannier et al.
2016, subm.). Thus, it is very important to provide a correct detection limit in order to not bias the
results of large surveys that eliminate the possibility of detecting companions with specific properties.
As the resulting conclusion is used to eliminate planet formation scenario, it is critical to provide
consistent detection limits.

1.1.2.3 Major results obtained thanks to DI

As imaged exoplanets are massive and young (because they are brighter and thus easier to detect than
their older counterparts), their atmospheres show low surface gravity properties probably responsible
for the deduced presence of thick clouds, as well as the non-equilibrium chemistry processes observed.
Several questions are still not solved: what are the boundaries between brown dwarf and exoplanets,
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do giant gaseous planets form like the smaller rocky planets (likely it is a different processus) and
which kind of scenario is the best suited to explain the observations.

The simplistic picture of planets forming in smooth, rotationally symmetric disks is more and more
challenged by the detection of gaps, substructures and spiral arm patterns in proto-planetary disks
(Benisty et al., 2015). These observations raised more than a question about the formation process of
stellar systems.

Fig. 1.5 and Fig. 1.6 show examples of outstanding discoveries directly demonstrating the interest
of direct imaging, which makes it possible to study the close interaction between the planet its envi-
ronment, to probe planetary companions at large separations and to derive spectra from their emitted
light. Among the numerous discoveries, we can point out for instance:

- The discovery of 2MASSWJ-1207334-393254 by Chauvin et al. (2004), showing an infrared excess
that were not expected from the models, which triggered new research on L-type atmospheres (see
Fig. 1.4).

- The discovery of the multiple system HR8799 by Marois et al. (2010b) constituted of four planets
with an inner and outer ring, which gave information about the stellar systems architectures (see
Fig. 1.6).

- The Beta Pictoris b companion have been found responsible for the inner warp in the disk
surrounding Beta Pictoris (Lagrange et al., 2012), showing the interest of direct imaging to study the
disk-planet interactions (see Fig. 1.5).

- The observation of young T-dwarf planets, such as Eri51 b (Macintosh et al., 2015), which is
critical to constrain the atmospheric models of young exoplanets.

.

Absil et al 2013

Milli et al 2014

Figure 1.5 — Interaction between the debris disk and the planetary companion: the example of the star Beta
Pictoris surrounded by a debris disk whose structure witnessed the potential presence of a companion (Mouillet
et al., 1997), later unveiled by Lagrange et al. (2010). Figures obtained in L’ band using VLT /NaCo (Absil
et al., 2013 for the planet and Milli et al., 2014 for the disk).

1.1.2.4 False positives in direct imaging

Three different types of noise can corrupt the exoplanet detection: the observational noise (due to
the observed scene), the instrumental noise (due to the imperfect set up to obtain the data) and the
"post-processing" noise (due to how the data are handled to perform the detection).

Observational noise One detected substellar companion can be due to a background star. It is
needed to re-observe the target star to check if the detected companion is indeed comoving with the
target star.

Instrumental noise Most instrumental biases are due to the remaining instrumental aberrations,
which are apparent under the shape of speckles that mimic planetary signals. In spite of advanced
data processing, some speckles might remain and be regarded as detections.
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Figure 1.6 — The four planet system around HR8799. Left: Discovery of four giant planetary companions around
the star HR8799 using Keck/NIRC2 (Figure from Marois et al., 2010b). Right: First extracted spectra of the
furthest companion HR8799b in H band (~ 1.6pum) and K band (~ 2.1pm) (Figure from Barman et al., 2011).

Processing and human noise In spite of the advanced post-processing techniques used, the com-
panion is usually visually detected in the subtracted image. In practice, several post-processing tech-
niques are used to check the truthfulness of a detection. If the detection seems nevertheless present,
it is re-observed at a different epoch to confirm that it is not a background star or a spurious speckle.
However, some companions might be missed because of this visual inspection. My PhD topic is to
make operational methods that avoid such false alarms.

Conclusions on the direct imaging capabilities for exoplanet study

Direct imaging currently gives access to giant planet companions revolving at more than 10 AU from
their host stars, for stars located at 100 pc or beyond from the Sun. This is complementary to the
other techniques which only have access to the internal part of stellar systems. Direct imaging is thus
essential to complete the view of stellar systems architecture.

Moreover direct imaging probes planetary companions around young stars (preferentially in the
few 1 to 100 Myrs) whereas other techniques probe the close environment of older stars (from 0.1 to
15 Gyrs). Direct imaging is thus essential to probe the formation and evolution process of exoplanets,
in synergy with the other indirect techniques. This complementarity is visible on Fig. 1.7 showing the
exoplanet detected as a function of the method used for the various distances to the host star and
estimated mass of the companions.

As a conclusion, direct imaging is a powerful technique, complementary to the four other indirect
techniques, from which it is possible to:

e Characterize the physical properties of an exoplanet by directly studying its emitted light;
e Follow the planet orbital motion in order to derive its orbital parameters;

o Study the interactions between the planet and its environment (other planets or circumstellar
disks);

e Analyze the statistical properties and occurrences of giant planets at wide orbits.

From these results, further constraints on the planet properties as well as their formation and evolution
processes and the presence of potential biomarkers are obtained. Direct imaging is thus essential in
order to address the four main questions motivating the exoplanet field of research.
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Figure 1.7 — Detected exoplanets masses as in May 2016 as a function of their distances to the host star,
considering the five different planet hunting techniques. Courtesy of G. Chauvin (from exoplanet.eu).

1.2 High contrast imaging with ground-based telescopes

Imaging extrasolar planets and circumstellar disks requires dedicated instruments and strategies to
bypass the two main obstacles:

1. The projected angular separation between the star and its companion is very small: it is typically
0.5” for a planet orbiting at 10 AU around a star located at 20 pc from the Sun (and it is of course
even closer for shorter separations and/or stars further away). To give an order of magnitude,
the theoretical (diffraction limited) angular resolution of the VLT (8-meter telescope) in H-band
(1.6pm) is 40 mas. For ground-based telescopes, the main aberrations that prevent from reaching
the theoretical limit are due to the atmospheric turbulence, decreasing the resolution down to
over 1”.

2. The contrast between the star and its companion is very high: from 10~ for young giant planets
(by emission, in the infrared) to 107! for Earth-like planets (by reflection, in visible light).

To reach such a high dynamical range, it is needed to use advanced instrumental solutions. For
ground-based telescopes, adaptive optics (AO) in association with coronagraphic devices are one of
the established instrumental solutions necessary to recover both a resolution close to the theoretical
diffraction limit and a high contrast. Other solutions such as speckle imaging (Labeyrie, 1970), sparse
aperture masking (Baldwin et al., 1986), lucky imaging (Law et al., 2006) or interferometry (Le
Bouquin and Absil, 2012) are also considered but they do not provide both the high resolution and
high contrast required for exoplanet and disks imaging. In this chapter, I present the high-contrast
imaging solution provided by instruments equipped with adaptive optics systems and coronagraphs.

In order to understand the main problematic of image reconstruction for high contrast imaging, I
describe in this section adaptive optics systems (Sect. 1.2.1) and coronagraphic devices (Sect. 1.2.2)
that together reach both the required resolutions and the required contrast for exoplanet and cir-
cumstellar disks imaging. The major limitation of the resulting high-contrast images comes from the
presence of quasi-static speckles in the field of view (Sect. 1.2.3). In the last section, I present the
main instruments equipped with such technologies and with which we can perform direct imaging
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(Sect. 1.2.4). These instruments are the ones on which it is possible to apply the image processing
techniques I developed during my PhD.

1.2.1 Adaptive optics systems

Due to the bad thermal conductivity of the terrestrial atmosphere, there are strong inhomogeneities
of temperature. These inhomogeneities, of sizes from millimeters to several meters, deviate the in-
coming light (since the refractive index is dependent upon the temperature®). Thus when observing
an astrophysical object with a ground-based telescope, the incoming light undergoes a phase shift
at each location of the entrance pupil, that varies temporally. This results in an important loss of
resolution, directly linked with the wind direction and speed in the atmosphere along the line of sight.
It is necessary to use an adaptive optics system to compensate for these induced aberrations.
In this section, I introduce the notions that I am using later in the manuscript.

1.2.1.1 Characterizing the turbulence strength

Seeing and Fried parameter Without AO correction, the angular resolution of the telescope is
limited by the atmospheric turbulence (and not by the diffraction of its aperture). The corresponding
angular resolution limit is given by the seeing defined as s = % (it is the FWHM of the resolution
element in arcsec). rg is the Fried parameter, representing the equivalent diameter of the entrance
pupil in the presence of atmospheric turbulence (scaling as A6/ %). The seeing is thus the typical size
of the pattern on the non-corrected image in Fig. 1.8-Middle.

Cn? profile A more thorough description of the astronomical seeing at an observatory is given by
producing a profile of the turbulence strength as a function of the altitude, called a C2 profile. This
profile can be measured at the observatory location by profiling techniques such as MASS (Tokovinin
and Kornilov, 2007, Multi Aperture Scintillation System), SCIDAR (Vernin and Roddier, 1973, SCIn-
tillation Detection And Ranging) or SLODAR (Wilson, 2002, SLOpe Detection And Ranging) and
upgraded versions of these principles. This point is critical in the framework of wide field corrections
but for the on-axis corrections dealt with in this thesis, only its integral really matters (well represented
by the seeing).

Coherence time To evaluate the level of turbulence, the correlation time, also known as the Green-
wood time delay, is also a relevant parameter. It is defined as 7o = 0.314"2, where v is the mean wind
speed weighted by the turbulence profile along the line of sight (Roddier, 1981). This parameter is
also proportional to A\%/°, therefore correcting in the near-infrared is easier than in the visible where
the turbulence evolves faster.

1.2.1.2 Adaptive optics system

Adaptive optics consists in analyzing the incoming wavefront by using a wavefront sensor (WFS) and
correcting this wavefront thanks to a deformable mirror (DM) located generally in a pupil plane to
which the command is sent from a real time computer (RTC). This whole set-up works in closed loop
to ensure a continuous correction. The first idea of such a system has been published by Babcock
(1953) and the first astronomical on-sky demonstration has been made with the COME-On system
(Rousset et al., 1990). Fig. 1.8 shows a seeing limited image and the corresponding AO corrected
image (SPHERE instrument).

Wavefront sensing A wavefront sensor is a device which measures the wavefront distortion. A
review on the wavefront sensor capabilities for adaptive optics can be found in Guyon (2005). The

5The refractive index is also dependent upon the pressure via the Gladstone-Dale law.
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Figure 1.8 — Adaptive optic correction, example of a point source image in H-band (A = 1.6um) for the VLT (of
diameter D = 8 m). Left: Short exposure image, without AO correction; the typical size of the speckle is A\/D
and they spread over a (\/ry)? area. Middle: Long exposure image of a star without AO correction; the typical
size of the pattern is A/ro (seeing). Right: Long exposure AO-corrected image (using the SAXO adaptive optics
of SPHERE).

most commonly used WF'S for adaptive optics are pupil plane wavefront sensors, which are sampling
the wavefront in a conjugated telescope pupil plane, such as:

1. The Shack-Hartmann wavefront sensor (Shack and Platt, 1971, SH-WFS), installed on most AO
systems and in particular on VLT /SPHERE, Gemini-S/GPI and Palomar/P3K;

2. The pyramid wavefront sensor (Ragazzoni and Farinato, 1999, Py-WFS), installed at the LBT /FLAO,
GMT/MagAO and Subaru/SCExAO;

3. The curvature wavefront sensor (Roddier, 1988, C-WFS), installed at the Subaru Telescope.

The SH-WFS samples the incoming wavefront via a lenslet array which focuses the light on a camera.
The position of the image given by one lenslet is directly proportional to the slope of the incident
wavefront. With this wavefront sensor, each actuator of the DM is conjugated with the four corners of
each adjacent sub-pupil. The Py-WF'S consists of a pyramid element whose top is placed at the focal
point. The pyramid top acts as a Foucault knife but in both directions (x and y) and the wavefront
error is computed from the four resulting pupil images. The C-WFS measures the intensity of the
spots on either side of an extra-pupillary plane (whose location with respect to the focal and pupil
planes is linked with spatial frequency range that are being analyzed) from which the curvature of
the wavefront in the pupil plane is derived. In practice, a detector is located in the pupil plane and
a vibrating mirror at the focal plane whose curvature is modified in a direction then in the opposite
direction to provide two conjugated extra-pupillary images. The distance to the pupil (defining the
sensitivity of the WFS) is set via the curvature of the vibrating mirror.

Alternatively, focal plane wavefront sensors estimate the phase directly from the images, by
phase diversity (Gonsalves, 1982) and derived methods such as LIFT (Meimon et al., 2010). In
the MEDUSAE method I present in this PhD thesis, phase diversity is used to estimate the residual
aberrations from the post-adaptive optics and post-coronagraphic images.

Extreme AO Extreme adaptive optics (XAO) concerns high density DM and fast RTC. If the
WES is a SH-WEFS, it is associated with a spatial filter, placed at its focal plane, to avoid aliasing by
removing high spatial frequencies (a pinhole whose size is varied as a function of the seeing).

Main limitations of the AO concept In spite of the AO correction, all the instrumental aber-
rations that are after the WFS are not corrected (after the beam splitter sending part of the light to
the WES). These aberrations are the non-common path aberrations (NCPA) that must be calibrated
or corrected with other means (such as COFFEE by Paul et al., 2014; Sauvage et al., 2012 or ZELDA
N'Diaye et al., 2013, 2016). As most NCPAs are low order aberrations, they can also be corrected
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continuously, with dedicated WFS. For instance, the instruments P1640 and GPI use a modified
Mach-Zehnder interferometer combining the light reflected off the coronagraph spot with a reference
wavefront, compared to the image from the science camera to measure the quasi-static components of
the complex electric field in the pupil plane following the coronagraphic stop (Cady et al., 2013). The
LLOWEFS system (Singh et al., 2014) used in SCExAO uses a reflective Lyot stop to send part of the
starlight in a dedicated focal plane wavefront sensor.

ESO VLT NACO June 2004

Y. : : ; .
b

Neuhduser, Guenther, Wuchterl, Mugrauer, Bedalov, Hauschildt

Figure 1.9 — Illustration of the AO correction evolution over the past 20 years on the same target, GQ-Lupi.
Left: Image from one of the first AO system for astronomy in 1994 (COME-ON+) installed on a 3.6m telescope,
which uses a SH-WFS and a 62 actuators DM (SR < 10%). Middle: Image from VLT /NaCo in 2005, using a
SH-WF'S associated with a 185 actuators DM (SR ~40-50%). Right: Image from VLT/SPHERE in 2015, using
a SH-WFS associated with a 1200 actuators DM (SR ~80-90%)

1.2.1.3 Characterizing the post-AO images

Residual phase variance The phase variance after the AO correction (also called residual phase),
@res, 18 one of the most common criterion to quantify the AO performance since it is directly linked
with the variable on which the AO system acts (the phase). As the AO system provides a real time
correction to obtain long-exposures, the AO performances are usually characterized by the temporal
mean variance that can be defined as:

Ae=7 [ [; [reste? e~ (5 /'<¢res<r,t>)2] i (1.1

Where T is the time of the long exposure and S the size of the pupil over which the phase is defined.
This variance characterizes the temporal mean, over one long-exposure, of the energy present in the
residual phase (for a perfect correction the phase is null, as well as its variance). Also, the residual
phase variance is chromatic: aim (o) = U;res()\l) X (3\\—;)2

Strehl ratio The Strehl ratio (SR) is defined as the ratio between the on-axis intensity of the
corrected PSF to the theoretical aberration-free diffraction limited PSF of the telescope given by the
Airy function:

_ FEP(a=0)
~ Airy(a = 0)

This is equivalent to the ratio of the integrals of the corresponding optical transfer functions® which
makes it possible to compute this parameter directly from the images. This parameter expresses the
amount of energy that is found in the central core of the corrected PSF. However this parameter
does not provide information on the energy distribution in the areas surrounding the central peak and
particularly on the high frequencies present in the images. In the small phase regime, this parameter

SR (1.2)

can be expressed as: SR ~ e “¢, where O'; is the variance of the residual phase (post-correction).

5The optical transfer function is defined as the Fourier transform of the PSF and represents the spatial frequency
content of the image.
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Extreme AO systems are systems able to achieve Strehl ratios above 90%, while standard previous
generation of AO systems typically reach 40 to 60% at 1.6um (corresponding to a wavefront error of
50 nm rms in the first case and 200 nm rms in the second case). Fig. 1.9 shows the evolution of the
post-AQO images according to different correction quality.

Power spectral density The power spectral density of the residual phase gives access to the spatial
frequency energy distribution of the residual phase:

PSDg,.(£) = (|[FT[¢res(r)] ) (1.3)

Where (.) is the spatial mean that can be replaced by a temporal mean in practice (by ergodicity).
FT is the Fourier transform operator (2D here), defined here as:

FTf@)(E) = F(£) = [[ f(x) e Fx ar, (1.4)

where i is the imaginary unit defined as i> = —1. In this manuscript, I choose the convention such

that the inverse Fourier transform is used to propagate the light from the pupil to the focal plane.
Moreover, we have the relation between the PSD and the variance: [ [0 PSDy, ., o (f)df = aim(r).
The latter is useful to characterize the errors due to an imperfect AO correction.

Residual phase structure function In order to study the spatial structure of the residual turbu-
lent phase ®,.,, we can define the residual turbulent phase structure function”:

Da(p,r) = (|®(p) = ®(p — 1)) (1.5)

Under the assumption that the phase is ergodic, this mean can be either a spatial or a temporal

mean. For a long-exposure, the AO-corrected PSF of the system can be expressed as: h = hgpatic *
Dd)T'eS

ITF~Y(e~ "2 )|?, where hgqric is the PSF of the system with only the static aberrations (Roddier
formula in Roddier, 1981).

1.2.1.4 Limitations of an AO system

For a classical AO system and for point source observation, the main contributors to the residual
phase variance 042) are the following (Conan, 1994; Gendron, 1995):

2 _ 2 2 2 2 2 2 2
0 = Ofitting + O aliasing + Oservolag + Ohoise T ONCPA + Ocalibrations T O exogenous (16)

. agmng is the error due to the finite number of actuators which prevents from correcting all the

. . 2 —5/6 (D 5/
spatial frequencies. We have o0, ¢ Nyt (75

of actuators N,¢; and good seeing conditions. This is the major source of error. The cutoff
frequency due to the DM is defined as f. = ]2\%‘ where N is the number of actuators of the DM
on the side and D the pupil diameter. For SPHERE, this cutoff frequency is at 20\/D and is
visible on Fig. 1.9-Right.

agliasing is the error due to the finite number of wavefront sampling elements in the WFES (the
number of microlens for a SH-WFS), which prevents from analyzing the high spatial frequencies
which are then folded in the low frequencies (hence the spatial filter on SPHERE). As a general
rule, O2jiasing ~ Oftting/3 (Without spatial filter).

3
hence the importance of a large number

. agervolag is the error due to the time delay between the wavefront analysis and the conversion
into commands for the DM, compared to the evolution of the turbulent wavefront defined by 7.
The temporal sampling of the wavefront, f;, is an important parameter that reduces this error

(for SPHERE, the sampling frequency is 1.2kHz). We have O-SQervolag o (fymo)~5/3.

"The structure function of a random variable A is defined by: Da(p,7) = {|JA(p) — A(p — r)|?), (.) being the mean.
This describes the statistics of the random fluctuations of the physical quantity A.
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Soise 1S the error on the WFS measurements. For a SH-WEFS it is linked to the photon and
detector noises at each lenslet focal plane. This is thus directly linked with the magnitude of
the target star in the analysis wavelength and with the sensor spectral bandpass.

. UI%CPA is the error due to the NCPAs mentioned above.

02 librations 15 the error due to mis-calibrations of the system. In particular the calibration of the

interaction matrix linking the command sent to the DM and the actual wavefront deformation

can induce errors. For a SH-WFS, the reference slopes must be carefully calibrated to avoid
sending an inadequate command to the DM. The influence function of the DM (the response of
the DM when pushing one actuator) must also be well calibrated to send the correct command

to the DM.

2

* Oiogenous are the errors due to the AO environment that disturb the adaptive optics correction

(such as mechanical vibrations).

.0’2

In this error budget the chromatic errors that are due to the propagation and diffraction of the light
through the atmosphere are neglected since they are not major.

In Sect. 9.1.4, I use this type of contributor analysis and the notions evoked to characterize the
AO system in order to estimate the residual phase structure function Dy, ..

1.2.2 High contrast for exoplanet imaging: Coronagraphy

Once a good resolution is achieved (so that most of the light is confined in the central PSF core) and
a small residual phase regime reached (so that the core PSF position is highly stable), one has to
deal with the high contrast obstacle®. This means (i) getting rid of the diffracted starlight within the
zone of interest and (ii) getting rid of the star core light to prevent the detector saturation. In order
to reach a high contrast for exoplanet imaging, additional constraints must be satisfied that can be
sorted in five main metrics to be regarded:

1. Contrast: The ratio of the peak of the stellar PSF to the starlight residuals at the planet
location (see Eq. 1.8);

2. Throughput: The amount of energy from the planetary signal which is preserved (similar to
the transmission of the coronagraph, it depends on the position in the field of view);

3. Inner Working Angle (IWA): The smallest angle on the sky at which the needed contrast
is achieved and where the planet signal intensity is reduced by no more than 50% (arbitrary
throughput chosen for the sake of the definition);

4. Bandwidth: The spectral bandwidth over which the coronagraph can achieve the needed con-
trast (this is particularly important when using broad-band filters or IFUs);

5. Sensitivity: The degree to which contrast is degraded in the presence of aberrations.

To reach good performance, these five aspects must be maximized, so as to detect exoplanet signals
within high-resolution images (that is to say reaching a high enough SNR for the science case presented
at Sect. 1.1, knowing that the final SNR depends on these five aspects).

In the case of a diffraction limited image with an entrance aperture defined by P whose incoming
wavefront has a phase @, in the Fraunhofer diffraction approximation (the observed point source is at
an infinite distance from the actual diffracting element, which is the telescope aperture defining the
pupil plane; the PSF being located in the corresponding image plane), the point spread function h of
the system writes (at a given time):

hiz,y) = |FT[P(u,0).e/* )P (2, y) (1.7)

Where (z,y) and (u,v) are respectively the coordinates in the focal plane and in the pupil plane. The
contrast to be maximized can be defined, at a specific location (z,y), as:
I(z,y)

Clz,y) = 7(0.0) (1.8)

8The notion of resolution can be difficult to define in high-contrast imaging, since it is a combination of AO and
coronagraphy. In any case, the use of coronagraph requires a high enough Strehl ratio.

30



1.2 High contrast imaging with ground-based telescopes

Where h(0,0) is the on-axis non-coronagraphic PSF and Z(z,y) the location of the coronagraphic
image where the contrast is estimated. In order to remove this light, the principle of coronagraphy is
to perform an energy transfer (absolute, if the energy is preserved, or relative, if part of the energy is
lost during the transfer) in either the focal plane or pupil plane.

Fig. 1.10 shows a schematic view of a coronagraphic set-up where the input beam enters through
the so-called upstream pupil, P,,, with an incoming wavefront defined by the upstream phase ¢y;.
Before the detector plane and after the coronagraph, the light goes through a downstream intermediate
pupil plane, Pgy,, and undergoes a downstream phase ¢g4,. Thus, if one wants to remove the starlight,
several levers can be investigated: (1) directly in the focal plane and acting on the amplitude, (2)
directly in the focal plane and acting on the phase, (3) directly in the pupil plane and acting on
the amplitude and (4) directly in the pupil plane and acting on the phase. The Eq. 1.9 defines the

Entrance pupil plane Intermediate focal plane Intermediate pupil plane
Pup M Pdo Detector plane

Figure 1.10 — Optical scheme of a coronagraphic set-up.

corresponding coronagraphic PSF in the detector plane, h., including the four levers which can be
tuned: A ‘ A
he = |[FT Y FT[FT Y Pyp x Pe € Purt¥e] g, e %] Py, ¢! 9do]|? (1.9)

As visible on this generic formula, (1) can be made by tuning 7. in the intermediate focal plane, (2)
by tuning d., (3) by tuning P, and (4) by tuning ..

A coronagraph cannot remove the speckles due to turbulent or quasi-statics wavefront errors:
only the coherent part of the beam can be removed. Coronagraphs are thus useful to get rid of the
photon noise due to the diffracting elements and the coherent amplification between the speckles and
the diffraction pattern, to avoid the saturation of the detectors and to limit scattering and parasitic
reflections in the optical train, downstream of the coronagraph. In other words, current coronagraphs
are designed to locally attenuate the static diffraction pattern (usually due only to the telescope and
the instrument), without addressing the dynamic phase and/or amplitude errors. These dynamic
errors are dealt with thanks to advanced image processing techniques, as the ones presented in this
manuscript.

All the current coronagraphic concepts developed so far are trying to play on these four levers
(either one or several of them) while trying to maximize the five metrics evoked above. In the following
I describe the main coronagraphic designs that are currently used. As one of the two image processing
methods I dealt with during my PhD relies on an imaging model taking into account this coronagraphic
device, it is important to be aware of the existing technologies to, on the one hand understand the
main limitations between the imaging model I use and the real images, and, on the other hand, having
ideas of how to modify this model so that it corresponds better to reality.

1.2.2.1 Focal plane mask coronagraphs (FPM)

The classical Lyot coronagraph The Lyot coronagraph (Lyot, 1939) consists of an occulting mask
placed at the focal plane in order to hide the central core of the PSF. By doing so, some starlight is
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diffracted by the edges of this mask. To reduce this effect, a Lyot stop is placed in the following pupil
plane before focusing the light on the detector plane (see Fig. 1.11). This coronagraph proved efficient
in practice and has been installed on many high-contrast instruments. Its main limitation is that its
physical size and resulting diffraction effects prevent from reaching a very small IWA? and reduce the
throughput. Also, the presence of the Lyot stop reduces the angular resolution. Note that the size
of the FPM is optimized for one wavelength (if the wavelength of observation is larger leakages may
appear and if it is smaller, the IWA is affected) but it is not the main limitation.

Focal Plane (FP) Pupil Plane (PP) AP
Mask blocks
central star Lyot stop

. _Reduced throughput

Planet | . L
~ " star "’

Figure 1.11 — Sketch of the optical layout of a classic Lyot coronagraph. Source: M. Kenworthy (Leiden
University).

Phase focal mask coronagraphs Instead of an amplitude focal plane mask, one can use a phase
focal plane mask in order to introduce a phase shift to the on-axis light which will destructively
self-interfere. Several concepts have been developed based upon this idea, among which the Roddier
& Roddier phase mask (Roddier and Roddier, 1997), the four quadrant phase mask (4QPM Rouan
et al., 2000) and the vector vortex coronagraphs such as the annular groove phase mask (AGPM
Mawet et al., 2005). These examples have been successfully installed on-sky. The main limitation of
this kind of coronagraph is that they are highly chromatic since it is based on a phase-shift. These
coronagraphs show a better IWA but a greater sensitivity to tilt errors and therefore, they must be
precisely centered to be efficient. Phase mask coronagraphs can ideally achieve a 1-2\/D IWA with
infinite contrast, and 100% throughput.

1.2.2.2 Pupil apodizers

Amplitude apodization In order to avoid pointing errors, another way of removing the stellar
central core is to use pupil apodizers'? that can be either binary mask (Kasdin et al., 2003; Spergel
and Kasdin, 2001) or graded transmission pupil mask (Nisenson and Papaliolios, 2001). The general
term for this kind of coronagraph is shaped pupil (SP).

Phase apodization The amplitude apodizers reduce the resolution of the image by definition. An
alternative to such coronagraphs is to use transmitting or reflecting optics acting on the phase at the
pupil plane (beam remapping). One of the most commonly used of these coronagraph is the apodizing
phase plate design (APP Kenworthy et al., 2007), as shown on Fig. 1.12 (it is a static deformed
surface, as opposed to the surface of a deformable mirror). The main limitations of the APP is that
it suppresses the stellar PSF for only half the field of view in a D-shaped pattern which is related to
the total energy transmission and IWA. The phase-induced amplification apodization (PIAA Guyon,

9The physics of the Lyot coronagraph is such that there is a contrast vs IWA trade-off which is not compatible with
exoplanet direct imaging (high enough contrast can be achieved only for large IWA, low IWA gives too low contrast).

10Note that 19th century astronomers routinely used simple binary masks to get a better resolution by reducing the
aberrations level (i.e., getting closer to the Gauss conditions).
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2003) uses aspheric optics in order to shape the pupil to create the phase aberration that reduces the
intensity of the PSF wings.

No Focal Plane Mask APP Optic
Pla:net Z
g B Star
Silﬂ" = Planet
| Z
Focal Plane (FP) Pupil Plane (PP) Detector

Figure 1.12 — Sketch of the optical layout of the apodizing phase plate (APP) coronagraph. Source: M. Ken-
worthy (Leiden University).

1.2.2.3 Hybrid coronagraph

From these different concepts, hybrid coronagraph designs have been developed that combine these
concepts. The most common hybrid coronagraph used on sky is the apodized pupil Lyot coronagraph
(APLC Soummer et al., 2011) which combines an adapted apodized upstream pupil with a classic
Lyot coronagraph. The dual zone phase mask (DZPM Soummer et al., 2003) is a polychromatic gen-
eralization of the Roddier&Roddier coronagraph which uses a complex apodization of the entrance
pupil and a dual phase zone focal plane mask.

A review of all these technologies can be found in Guyon et al. (2006) and Mawet et al. (2012).
Today, we can distinguish between two kinds of coronagraphs: direct apodization (such as SP or
APP) for moderate contrast and IWA, and hybrid coronagraphs for higher contrast and small TWA
(constituted of pupil apodizer, focal plane mask and Lyot stop). On current instruments, the APLC
is the most common, which proved efficient in practice while being well known. The vector vortex
coronagraph (VC) is becoming more and more common and several installations are foreseen for the
next years, as on SPHERE. Other technologies such as the PIAA and the apodized vortex are already
used in labs and being considered for near-future space missions, or ELTs ground-based instruments.

1.2.2.4 Measuring and correcting for low-order aberrations to center the coronagraph

Several solutions have been implemented to center the coronagraphic focal plane mask. As mentioned
in Sect. 1.2.1, the centering issue is linked with the presence of low order aberrations, and particularly
the tip-tilt errors. On SPHERE, the differential tip-tilt sensor (DTTS Baudoz et al., 2010) uses an
image of a fraction of the light before the coronagraph and centers the source via a closed loop. The
ZELDA sensor (ZELDA Dohlen et al., 2013; N'Diaye et al., 2013), currently installed on SPHERE,
will be likely used in the future to perform low to mid-order calibrations in real time (which is crucial
to reach small IWA as required for Earth-like observations). On SCExAO, a low order wavefront
sensor uses the light back reflected by the FPM and/or by the Lyot stop to analyze the low order
aberrations, and specifically the tip/tilt, and correct them via a closed loop (LLOWFS Guyon et al.,
2009 and CLOWFS Singh et al., 2014).

1.2.2.5 Current limitations and future designs of coronagraph

The main limitations of the current technologies is that the inner working angle is limited by the
presence of residual instrumental aberrations inducing starlight leakages from the coronagraph. In
order to alleviate this problem, both the wavefront control and the precision of the coronagraph
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centering must be increased (which are linked as the low order aberrations are the tip/tilt aberrations,
responsible for the de-centering of the source). Due to these residual errors, current coronagraphs are
designed for IWA of about 3-4\/D that are more robust to low order errors. If the low order errors
are small, some concepts, thus requiring a fine control of the pointing, can reach 1-2\/D.

Another strong limitation is due to the bandwidth since, for the commonly used coronagraph,
they are optimized for one wavelength, which is problematic for broadband images and multispectral
images as the ones I am working with in this manuscript. Many coronagraphs are now designed for
5-20% bandwidths (this is also the case for the vortex and other phase coronagraphs).

Future technologies are to investigate the beam remapping technique (as in Guyon et al., 2005;
Pueyo and Norman, 2013), to bring optimized exotic pupil apodizers (as in Carlotti et al., 2012; Kasdin
et al., 2003) or to specifically work on small IWA coronagraph concepts (as in Baudoz et al., 2008)...
and to do all of the above at the same time.

1.2.3 The speckle noise limitation

Among the instrumental aberrations some are time dependent and give rise to the presence of quasi-
static speckles in the images. These speckles cannot be calibrated and they are not varying fast enough
to be averaged in a smooth halo. The temporal variations arise from potential imperfections of the
rotative optical devices (such as ADC or derotator), from mechanical stress evolution (during the
observation or the instrument lifetime), unfiltered vibrations or thermal variations that occur in the
instrument. In the previous section, we saw that in AO-corrected images, there are still aberrations
remaining due to either the limitations of the AO system or the NCPAs which can be quasi-static.

The main limitation in the post-AO long exposure images are due to these quasi-static speckles
which prevent from detecting faint companions. It is expected that such speckle noise will also limit
future high-contrast imaging instruments for both ground- and space-based telescopes. The theoretical
formalism laid to describe the speckle noise is presented in Goodman (1975) in the framework of laser
interferometry. This formalism has been adapted to post-AO images by Cagigal and Canales (2000)
and experimentally demonstrated by Fitzgerald and Graham (2006). It has also been adapted to post-
AO coronagraphic images in Aime and Soummer (2004) and numerically demonstrated in Soummer
et al. (2007a).

The speckle intensity probability density function (PDF) for one location in the image plane and
random temporal phase errors can be shown to be a modified Rician function (MR). At a specific
location, this PDF can be written:

1 (_1+IC>IO <2m> (1.10)

pmr(I) = 7.5 1. L.
where I is the total PSF intensity that can be separated into two terms: I. the local time-averaged
static PSF (deterministic part) and Is the mean intensity of the speckle noise (inhomogeneous random
part), such as I = I.+ I5. Iy(x) is the zero-order modified Bessel function of the first kind. If I, >> I
then this PDF is similar to a Gaussian function showing a bright positive tail. If I, << I, then this
PDF is an exponential function.

This PDF is valid for a specific location. It is showed in Marois et al. (2008a) that for the case of
high-contrast images for exoplanet detection, the PDF is constant over annuli surrounding the star.

The PDF of Eq. 1.10 is also valid for a specific time. A detailed description of the temporal
evolution of the speckle noise in high contrast images can be found in Hinkley et al. (2007) who
showed that the quasi-static speckles have a typical evolution time from minutes to hours.

1.2.4 Dedicated instruments to high contrast exoplanet imaging

1.2.4.1 Current instrument

In this section, I will introduce the instruments used in this part of the manuscript. These instruments
are dedicated to high-angular resolution and high-contrast imaging in small field of view which makes
them suitable for exoplanet imaging (see Sect.1.2).
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1.2.4.2 Previous generation of high contrast instruments: the example of VLT /NaCo

The NaCo instrument was installed at the Nasmyth focus of
VLT /UT4 (Cerro Paranal observatory, Chile) in October 2001
and is now still in operation on UT1. This instrument is the
contraction of NAOS, an adaptive optics facility and Conica, an
IR camera.

The adaptive optics module NAOS NAOS, Nasmyth
Adaptive Optics System, is the adaptive optics module which is
equipped with a Shack-Hartmann wavefront sensor constituted
of 14 x 14 micro-lenses (working either in IR, 0.8-2.5um, or vis-
ible, 0.45-1um), associated with a 15 x 15 actuators deformable Figure 1.13 — NaCo instrument at the
mirror, enabling to reach a SR > 30% in H-band (depending on Nasmyth focus of the VLT-UT4 (before

the brightness of the observed star) (Rousset et al., 2003). 2014). The NAOS system is within the
light blue box and the Conica camera

The infrared camera CONICA CONICA, COudé Near In- "™ the red box. CGredit: BSO.

frared CAmera, is an infrared camera and spectrometer equipped
with an Aladdin3 1024 x 1024 pixels InSb array detector, ranging from 0.8-5.5um (working in 5 different
modes according to the wavelength of observation) (Lenzen et al., 2003).

Observation modes available The features of this instrument still evolve after its on-sky instal-
lation. Many of these features were motivated by high-contrast imaging: pupil tracking mode (PT),
with or without coronagraphic mode (focal plane masks and/or apodized phase plate in the pupil
plane), using Sparse Aperture Interferometric Masks (SAM), spectroscopy mode, polarimetric mode
and simultaneous differential imaging mode at two different wavelengths (this mode is not efficient
enough for exoplanet detection). In the first part of the thesis, I use observations made with this
instrument in PT mode and with or without the L' band AGPM coronagraph commissioned in 2013
(Mawet et al., 2013).

Spectral bands available for exoplanet imaging The classical imaging mode can be used using
one of the five bands of the instrument, centered on the J (1.265um), H (1.66pum), K (2.18um), L’
(3.80um) and M’ (4.78um) bands. The typical resolution of each band is AXN/A < 10% (but in H, it
is 15%).

Coronagraphic masks available Concerning the coronagraphic modes, several focal plane coro-
nagraphic masks can be used, among which two classical Lyot coronagraphs (mask size of 0.7”and
0.14"), one semi transparent mask attenuating the central PSF core (central mask size of 0.7”), two
4QPMs (optimized in H and K bands) and one AGPM (optimized for 4um). However, only the
AGPM and the APP are used today since the other coronagraph are not efficient enough to remove
the star diffraction residuals left after the AO correction. Thus, before the arrival of the AGPM on-sky
in 2013 (Absil et al., 2013), in order to investigate the close environment of the target star, another
method is to use saturated exposures of the star, which I used during my PhD.

In this configuration, this instrument enabled scientific breakthroughs such as the first detection
of a planetary mass companion by direct imaging and spectroscopy (Chauvin et al., 2004; Fig. 1.4),
the unveiling of the 8 Pictoris b companion (Lagrange et al., 2010; Fig. 1.5) or the discovery of the
exoplanetary companion HD95086 b (Rameau et al., 2013).

I mention here similar instruments whose images could be exploited exactly the same way as the
NaCo images since they all offer a pupil tracking mode, an AO correction and sometimes coronagraphs.
The image processing applied can thus be of the same kind. The ANDROMEDA image processing
method I present in the first part of the thesis can be applied to process images from these instruments:
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o The Gemini South telescope (Cerro Pachon, Chile) with the NiCi instrument (Artigau et al.,
2008);

o The W. M. Keck telescope (Mauna Kea, Hawaii) with its NGS-AO system (Wizinowich et al.,
2000) combined with the NIRC2 camera (McLean and Chaffee, 2000);

o The Gemini North telescope (Mauna Kea, Hawaii) with the ALTAIR AO system (Herriot et al.,
2000) combined with the NIRI instrument (Hodapp et al., 2003);

o The Subaru telescope (Mauna Kea, Hawaii) with the AO system AO188 (Hayano et al., 2008)
equipped with the HICTAO camera (Suzuki et al., 2010); (Hinkley et al., 2011).

1.2.4.3 Recent generation of high-contrast instruments: the example of VLT/SPHERE

The SPHERE instrument (Beuzit et al., 2008) was installed at the Nasmyth focus of VLT /UT3 (Cerro
Paranal, Chile) in May 2014. Contrary to NaCo, this instrument is specifically dedicated to the
exploration of the nearby environment of stars to detect and characterize protoplanetary disks, debris
disks and exoplanets. In order to address this challenge this instrument is constituted of a common
path infrastructure (CPI) containing the fore-optics (such as ADC and derotator) and high-contrast
devices (AO system and coronagraph) that have been designed separately but in co-design with the
science cameras. Then there are three imaging instruments (called sub-systems): IRDIS the infrared
dual band spectro-imager (Dohlen et al., 2008), IFS the integral field spectrograph (Antichi et al.,
2008) and ZIMPOL the visible polarimetric imager (Roelfsema et al., 2010). All these instruments are
installed on a fix shelf, unlike NaCo, which allows a good temporal stability. The SPHERE instrument
has been integrated at IPAG in 2012-2013 before its transport to the Paranal observatory.

In the following, I will point out the major differences in the design of SPHERE which provides
images quality to probe planetary companions with a contrast of down to 1076.

CPl

Focus 1
De-rotator

_ Polar Cal

Figure 1.14 — Layout of the SPHERE-CPI. The two infrared instruments are framed in red (IRDIS and IFS)
and the visible instrument in blue (ZIMPOL).

SAXO: the extreme adaptive optics module The design of the SPHERE extrem adaptive optics
system, called SAXO for SPHERE AO for eXoplanet Observation, has been made by the Onera team
(Fusco et al., 2016, 2006; Petit et al., 2008). SAXO is part of the Common Path and infrastructure
(CPI) of SPHERE (see Fig. 1.14). It is constituted of a 40 x 40 lenslet SH-WF'S, conjugated to a
41 x 41 actuator piezoelectric DM. The frame rate of the AO loop is 1.2 kHz and is going with a
tailored control law (Petit et al., 2014) included in the RTC, called SPARTA for Standard Platform
for Adaptive optics Real Time Applications. As mentioned above, the SH-WEFS is equipped with a
spatial filter that is automatically adjusted on the turbulence level (Poyneer and Macintosh, 2004).
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An EMCCD detector for the SH-WFS allows a powerful noise reduction (sub-electron) to cover all
star magnitudes up to 16. Results on on-sky integration of the SAXO module can be found in Fusco
et al. (2014). This XAO system achieved more than 90% of SR in H band and a 3 mas residual jitter.

Coronagraphic masks and pupil apodization The coronagraphic focal plane masks and the
pupil apodizers are also part of the CPI. The differential tip-tilt sensor (DTTS Baudoz et al., 2010),
insures the centering of the beam on the FPM. For now, SPHERE is equipped with a classic Lyot
coronagraph, an APLC and a 4QPM. The most frequently used coronagraph is the APLC.

IRDIS: the different observing modes The dif-
ferent modes have been designed by Dohlen et al.
(2008). This instrument has several observing modes:
Dual band imaging (DBI Vigan et al., 2010), long
slit spectroscopy (LSS Vigan et al., 2008), dual-
polarization imaging (DPI Langlois et al., 2010) and
a classic imaging mode, either using narrow-band fil-
ters (NB) or broad-band filters (BB). In my thesis,
I will use images obtained in DBI and BB modes:

ither stage =

Fig. 1.16 shows the transmission of the filters in these Dual Filter Wheel
two modes. The DBI mode filters combination have
been carefully chosen to be close enough while the sig- Figure 1.15 — Layout of SPHERE-IRDIS.

nal of the planet is expected to be null in one of the

two band (as expected from models of giant gaseous planet atmosphere). The spectral resolution is
about 50 in narrow band and about 350 in broad band. The detector is a Hawaii IT 2048 x 1024 pixels
array, offering a 11 x 11 "field of view. The pixel scale is of 12.25 mas/pixel and it is Nyquist sampled
at 950 m (shortest wavelength).

Final on-sky performance can be found in Vigan et al. (2014).
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Figure 1.16 — Observation wavelengths of the IRDIS modes I use in this manuscript. Left: Filter doublets
available for the DBI modes. Right: Broad band filters available.

IFS: the different observing modes The instru-

ment design is described in Antichi et al. (2008) and e o |
general instrument description can be found in Claudi &
et al. (2008). This IFU is based on the BIGRE con-
cept (Antichi et al., 2009): the image is sampled by
a double lenslet array focusing (Fig. 1.18-Left) on the
spectrograph, here constituted of two Amici prisms,
dispersing the light on the final image. The result-
ing sub-spectra, are registered onto a hexagonal lattice
configuration (Fig. 1.18-Middle-Left), whose detection
area is called spazel. This design is made to minimize
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Figure 1.17 — Layout of SPHERE-IFS.
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the cross-talk between adjacent spectra while maxi-

mizing the final contrast level. The image provided

by the spectrograph is thus constituted of small spectra, as shown on Fig. 1.18-Middle-Right. The
detector is a Hawaii IT 2048 x 2048 pixel array and provides a 1.73 x 1.73"” field of view, Nyquist
sampled at 950pum (the shortest wavelength). This image is then re-sampled into a multispectral cube
of 39 narrow band images of resolution 7.46 mas/pix, as on Fig. 1.18-Right. Two wavelengths ranges
are proposed by the SPHERE-IFS instrument: the YH band mode, from 0.97um to 1.66pm with a
spectral resolution of about 30 and the YJ band mode, from 0.96um to 1.34um, with a spectral reso-
lution of about 50. The main limitation of this design is the cross-talk. Calibration must be carefully
performed in order to avoid light leakages from one wavelength to another.

Final performance can be found in Mesa et al. (2015). Usually, the IFS and IRDIS mode are working
in parallel (called IRDIFS mode).

1st microlens 2nd microlens

:. l _f- array élarray
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Figure 1.18 — Coronagraphic images from SPHERE-IFS. Right: BIGRE dual lenslet design to sample the images
(Figure from Claudi et al., 2008). Middle-Right: Spaxel array (Figure from Antichi et al., 2008). Middle-Left:
Raw image at the detector and schematic view of the spaxel. Right: Reduced multispectral cube (39 images
with SPHERE-IFS).

Major results obtained with SPHERE This instrument notably helped refining the characteri-
zation of the system HR8799 and observe the closest companion HR8799¢ in J band for the first time
(Bonnefoy et al., 2016; Zurlo et al., 2016). SPHERE also unveiled new intriguing features in debris
disks such as concentric broken rings of HD 141569A (Perrot et al., 2016) and revealed the presence
of enigmatic fast radial moving ripples in the AU Mic debris disks (Boccaletti et al., 2015).

I mention here similar instruments whose images could be exploited exactly the same way as
the SPHERE images since they all offer an XAO correction and advanced coronagraphic devices
along with pupil apodizer designs. The image processing applied are thus of the same kind and the
ANDROMEDA image processing method presented in the first part of the thesis (Part. I) can be
applied to process images from these instruments:

o The Magellan Clay telescope (Las Campanas Observatory, Chile) with the AO system MagAO
(Close et al., 2012; Morzinski et al., 2014) associated with either the Clio camera (NIR) (Kopon
et al., 2010) or VisAO (visible) (Sivanandam et al., 2006);

o The Large Binocular Telescope Interferometer (Mount Graham, Arizona) with its FLAO system
(Esposito et al., 2010) combined with LMIRCam (Garden, 1994; Skrutskie et al., 2010).

More specifically, the instruments equipped with IFUs and on which the MEDUSAE image processing
method presented in the second part of the thesis (Part. IT) can be applied are the following:

o The Gemini South telescope (Cerro Pachon, Chile) with the GPI instrument (Macintosh et al.,
2008) installed in November 2014;

o The Subaru telescope (Mauna Kea, Hawaii) with the AO system AO188 (Hayano et al., 2008)
followed by the SCExAO extrem adaptive optics module (Guyon et al., 2010; Jovanovic et al.,
2015) and by the integral field spectrograph CHARIS (Peters-Limbach et al., 2013) which will
be commissioned in fall 2016;

o The Hale telescope (Palomar Observatory, California) with the PALM-3000 AO system (Dekany
et al., 2013) combined with the P1640 integral field spectrograph.
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Note that ANDROMEDA cannot be applied to images from the Hale/P1640 instrument since it does
not provide a pupil tracking mode, which is essential for ANDROMEDA.

High contrast for exoplanet imaging: conclusion

With the arrival of new dedicated instruments on-sky it is currently the golden age for high contrast
imaging. These technologies are essential to detect faint objects at very close separations to the star.
However, even when using such advanced technologies, there are still residual instrumental aberrations
provoking leakages of the starlight, resulting in the presence of speckles in the image field. By their
nature, these speckles are of the typical size of a resolution element (as for the planetary signals)
and are often brighter than the planetary signals. In the obtained image, the typical raw contrast is
of 107* at 0.2-1"making it difficult to detect planetary companions. Moreover, below the turbulent
speckles, quasi-static speckles lie at a level of several 10~ with a typical evolution time from seconds
to several hours: they are evolving too slow to be averaged in a smooth halo during the exposure
and too fast to be calibrated and removed. Thus one of the most important parameters in exoplanet
imaging is the temporal coherence time of the speckles which directly affects the quality of the images.
The typical temporal variation depends on the source of the aberrations, from the rotative elements
in the set-up (such as ADC or derotator) to the mechanical deformation of the optical elements and
changes in temperature or pressure. To optimally exploit the current high contrast instruments, the
image processing techniques must be developed in synergy with the instrumental design. This is an
excellent context for my PhD.

The next section introduces the different concepts on which the image processing methods currently
used by the imaging exoplanet community rely in order to detect the faint circumstellar objects within
such images. As the image processing methods I am using in this manuscript are based on inverse
problems, I start this section by introducing the notions of image reconstruction via inverse problems
that I use along the manuscript.

1.3 Image processing for exoplanet observation

A real image is a bi-dimensional continuous signal (analogical). When recording an image, this signal
is sampled (temporally and spatially) by a detector then digitized to be stored. The numerical image
is of finite dimension and has discrete values (given for each pixel). Image processing techniques are
meant to exploit the content of the images by highlighting the information included in the image but
hidden.

In this section, I introduce the notions of image processing for exoplanet imaging that are used
throughout this manuscript. During my PhD, the methods on which I worked are based on specific
solutions to inverse problems. In a first section, I introduce the general concept of inverse problems
and provide notions of image processing methods using an inverse problem approach that I use in the
manuscript (Sect. 1.3.1). In a second section, I describe the main image processing methods currently
used to detect and characterize planetary companions within high contrast images (Sect. 1.3.2).

1.3.1 Image restoration: inverse problems

An inverse problem consists in finding the parameters from a set of observations that depend on them.
Inverse problems deal with the parameters that are not directly observed. Many fields of experimental
science use inverse problems. In exoplanet imaging, the main goal is to find the objects within the
images corrupted by the speckle noise. A thorough introduction to inverse problems for astronomical
data can be found in Mugnier and Le Besnerais (2001) and Mugnier (2012).

Forward problem A forward problem models the data using the laws of physics and assuming
that the parameters of interest are known. When an image of an object is made, some information of
interest get mixed up: the data provided by the observation do not correspond directly to the physical
values of interest. However, these physical values are linked with the observation by known laws.
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Forward modeling consists in mathematically writing the link between the object and the data. For
instance, for a linear model of image, it is possible to write the image i (the measurement) obtained
from an object o (the unknown) as ¢ = Ho + n where n is the noise due to the image acquisition and
H being an operator called observation operator which represents the governing equations that relate
the model parameters to the observed data. The computation of ¢ knowing the object is a forward
problem.

Inverse problem An inverse problem starts with the data and infers the parameters of interest. For
instance, estimating the object from the image is the corresponding inverse problem which requires
a model of image formation to be inverted. The inversion can make good use of the knowledge on
the statistical behavior of the measurement uncertainties (the noise). If the observation operator H
is linear, then it is a linear inverse problem.

Ill-posed problem Another important notion is the notion of well-posed and ill-posed problem.
Most inverse problems are ill-posed because of the noise, the measures’ uncertainties and/or the
measures’ sampling etc. One definition of a well-posed problem, proposed by Hadamard, states that
the inversion of a model of physical phenomenon is well-posed if it has the three following properties:

1. A solution exists;

2. The solution is unique;

3. The solution is stable wrt the noise (the solution continuously depends on the data): a small
variation of the noise induces only a small variation of the solution.

Data processing in physics, and especially in astronomy, essentially consists in solving an inverse
problem, often ill-posed, and in practice after a pre-processing or reduction of the data. In exoplanet
imaging, this data reduction consists in applying dark and flat calibrations, removing the bad pixels and
re-centering the frames. In the manuscript, I call reduced data the images that have been cosmetically
processed and raw data those obtained directly on the detector.

Inversion process Because of the inevitable noise or modeling errors, it is impossible to directly
derive the object corresponding to the true object within the images. A basic and general idea is
for instance to minimize the difference between the mathematical model of the data formation and
the data (the image). The estimated object, 6, corresponds to the object which minimizes a criterion
representing the difference between the data and the model of the data. The next section explains
how to find the correct estimator to solve such a problem in the framework of image formation.

1.3.1.1 Deterministic approach

Without an explicit model of the noise, it is possible to minimize a least-square distance between the
data and our model of these data. For images, the criterion Jpg to be minimized wrt the unknown
object o is defined by Jrs =|| i — Ho6 ||?. In that case, the existence and uniqueness is guaranteed
in practice (i.e., infinite dimension). In this approach, the prior information about the noise are not
taken into account.

1.3.1.2 Stochastic approach

The Stochastic approach consists in specifically taking into account the information on the statistics
of the different types of noise present in the image in order to define the norm (the criterion to be
minimized). The maximum likelihood is a solution to inverse problem with this stochastic approach:
instead of minimizing the quadratic distance between the data and the model (as in the deterministic
approach), we maximize the probability of observing the data knowing the model. In image recon-
struction, the likelihood represents the probability of measuring the image i, knowing the object o.
This probability can be written: p(ilo) = p,(i — Ho), where p,, is the probability density function of
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the noise n. The maximum likelihood solution is given by the maximum of this term. Thus, we ob-
tain: 6pry = arg max(p(ilo)) (argmax(x) being the value of the variable that maximizes the quantity
x). If the noise is white and stationary, the maximum likelihood solution is equal to the least-square
solution. This solution is the one used in the ANDROMEDA method that I present and apply on
on-sky data in the first part of this manuscript (Part. I).

1.3.1.3 Regularization

In both cases, even with a statistic model of noise, the problem is ill-posed since it is too sensitive to
the noise (the stability is not guaranteed). Amplification of the noise present in the image is observed.
In order to guarantee the stability regarding the noise and the uniqueness, it is possible to regularize
the problem. Regularization consists in introducing additional information (prior knowledge) about
the parameters of interest in order to solve an ill-posed problem and to prevent over-fitting (i.e., fitting
the noise). Two types of regularization can be used:

(1) parametric regularization acts directly on the unknown parameters: its shape, its intensity etc.

(2) non-parametric regularization consists in adding a term to the criterion to be minimized (called
penalization term).

The regularization is usually weighted by a hyper-parameter (1D or 2D) that can control the strength
of the regularization.

With such a regularization, the stochastic approach is no longer the maximum likelihood ML but
the maximum a posteriori MAP which consists in looking for the most probable object knowing the
data by maximizing p(o|i). In the Bayesian framework, we have p(o|i) = W and considering
p(i) as constant, the two terms in the numerator are to be maximized: 6y 4p = argmaxp(oli) =
arg max p(ilo) x p(o). The MAP approach thus consists in stating that the estimated object 6 is the
object that minimizes the criterion J(o) given by J(o) = J;(0) + Jo(0) = —In(p(ilo)) — In(p(0)) — C
which is the sum of the ML term and the regularization term (fidelity to prior), to a constant C'.

1.3.1.4 Model of noise

In signal processing, the noise is a general term for unwanted (and in general unknown) modifications
that a signal may suffer during capture, storage, transmission, processing, or conversion. Noise is also
the word used to describe the random signals that carry no useful information but which hinders the
information retrieval.

The noise is usually classified by its statistical distribution. For instance, the detector noise
is a random process that approximatively follows a normal law: it is a Gaussian noise. In image
processing, the photon noise is another example of noise (also called Shot noise) which is a random
process following a Poisson law. Both noises are also white noises (they have a constant power spectral
density). The detector noise is additive (it is added to the image) since its origin is decorrelated from
the signal whereas the photon noise depends on the flux level in the image. From their respective
origins, the detector noise is a stationary process while the photon noise is not (it depends on the
brightness of the source).

1.3.1.5 Example of image deconvolution with MAP

Deconvolution is a typical example of an ill-posed inverse problem and it is part of the MEDUSAE
method described and tested in Part. II. In this section, I present its basic ingredients.

When the PSF h of the system is known, it is the case of classical deconvolution. In that case the
estimated object by MAP writes:

OMAP = argmoin[Jb(o(r)) + Jo(o(r))] (1.11)

For classical astronomical images, the dominant noise in the images is due to the photon noise
and detector noise. For high flux observed sources, the photon noise can be well approximated by a
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Gaussian noise (Mugnier et al., 2004). Hence the first term (likelihood term) follows a non-uniform

Gaussian law and writes: 1

Tlol)) & g5 Sl r () — o) (1.12)

202

where o2 =

Jghot + Jget and r is the image coordinates. In this case, we consider the detector noise to
be dominant wrt the photon noise whose variance can be estimated as: o’f,h o+ = max(i(r),0). Examples

of common regularizations on the object that I will use in this manuscript are given below.

Positivity constraint As the image is defined by the intensity, the object is obviously positive.
There are several ways to include this prior in the criterion: (i) by re-parametrization of the estimated
object (e.g: estimating a?(r) = o(r) which is by definition positive, Thi¢baut and Conan, 1995); (ii)
by forcing the minimization to remain in the positive parameter space (Nakamura et al., 1988); or (iii)
by adding an entropy term in the criterion that infinitely penalizes the presence of negative points
(Narayan and Nityananda, 1986).

L2 spatial regularization on the object For an object following a Gaussian statistics, the pe-
nalization term, under the L2 regularization, can be written (Conan et al., 1998):

Z it PS_DO ()f)’ (1.13)

where Z(r) = FT(x)(f), op, is the mean of the object and PSD, the power spectral density of the
object. The latter can be estimated via models. However, if the object is presenting sharp edges, this
type of regularization induces oscillations on the edges in the restored image (due to the Gibbs effect).

L1L2 spatial regularization on the object A way of alleviating this oscillation problem for
objects presenting sharp edges is to use a L1L2 regularization. The goal of such a regularization is to
penalize a lot when there is small intensity gradient between pixels while restoring the high intensity
gradients of the image. Mathematically, this can be written (Mugnier et al., 2001):

To(ofr)) = 1A i1 4 Yol (1.14)

where V, = \/(V;,;o(r)2 + Vy0(r)?), with V o the gradient of the object along the z direction. When
the gradient is low (V, small), it tends toward a L2 regularization (the term In(1 + |z|) dominates)
which smooths the noise and penalizes the edges. When the gradient is important (V, high), it tends
toward a L1 regularization (the term |z| dominates) which is a sparse regularization, independent of
the gradient. The hyperparameter § thus controls the transition between the linear regularization
and the quadratic regularization. The hyperparameter p controls the global weight of this L1L2
regularization.
Another way to define the hyperparameters is to write this regularization as:

QZ Sxd 1+Z><<rd)] (1.15)

Where d and s are intricated hyperparameters that must be tuned together: when d — oo then

2
Jo~ >, |V20><(;‘%| . In this manuscript, I use the latter notation.

LP spatial regularization on the object As a general rule, it is possible to use a LP regularization
(Mugnier et al., 1998), which consists in writing the penalization term as:

R (1.16)
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According to the value of p, this regularization favors either the sharp edges (p ~ 1) or smooth back-
ground (~ 2).

Note that when the PSF of the system h is not fully known, we talk about myopic deconvolution. If
the PSF is completely unknown, we talk about blind deconvolution. For exoplanet imaging with high-
contrast instruments, the PSF of the system is not fully known and most image processing techniques
developed so far aim at reconstructing the PSF of the system by using the redundant information
present in the images. The next section summarizes the principles of the current image processing
methods used for exoplanet imaging.

1.3.2 Current image processing for exoplanet imaging

Within high contrast images for exoplanets and disk imaging around bright stars, the dominant noise
is due to the quasi-static speckles. In order to disentangle the speckles from planetary companions, one
must find a diversity, that is to say a parameter for which the speckles have a different behavior from
the circumstellar objects. The speckles originate from the residual instrumental aberrations deviating
the starlight which is an on-axis intense point source. The circumstellar objects are faint off-axis
sources. During my PhD, I focused on the detection of planetary companions, that are off-axis point
sources.

Most image processings today are based on differential imaging: the goal is to build a model PSF,
here being the image of the star only, as seen by the camera at the specific moment of the observation,
and to subtract this model PSF to the science image so as to recover the circumstellar objects. Such a
model PSF is not easy to obtain since it needs to be very accurate to reach high contrast. That is why
the diversity is exploited to create a model PSF as close as possible to the real speckle field shown in
the science image. This operation can be repeated for several science frames in order to increase the
signal to noise ratio by smartly combining the subtracted images.

Today, most of the established methods are building empirically the model PSF, directly from the
set of images to be processed. The main drawback of such image processing is that part of the plane-
tary signal is removed during the subtraction. Some techniques provoke non-negligible self-subtraction
if the empirical PSF model still contains part of the planetary companion’s signal. Intensive post-
processing are then applied to characterize the detections by assessing this self-subtraction rate.

In the following, I describe the main diversities that are currently used to build the model PSF
and perform differential imaging.

1.3.2.1 Exploitation of the temporal diversity: ADI

ADI is the most commonly used method. At first order the optics diffracting the star light are assumed
to be in the pupil plane whereas the planetary signals are part of the image plane. When using a
telescope with an alt-azimuthal mount, the pupil plane and the image plane are rotating during the
observation at different deterministic velocities. One can choose to fix the pupil (by using a pupil
derotator) to temporally stabilize the aberrations in the images while the observed field rotates with
an angle analytically computable at each instant. The relative angle position of the field with respect
to a fixed direction on the detector is given by the parallactic angle which depends on the declination
and hour angle of the observed object and on the latitude of the observatory.

In this so-called pupil tracking mode, several exposures of the target are recorded and their cor-
responding parallactic angles are computed during the data reduction (prior to data processing).
Fig. 1.19 shows such an apparent rotation of the field of view while the speckle field is approxima-
tively fixed.

The basic principle of ADI is to compute the PSF model as the median of the temporal cube. This
PSF model is then subtracted to each individual frame of the temporal cube. Each subtracted frame
is then rotated to align with the true North then co-added to form the final image. This ADI concept
has been first proposed by Marois et al. (2006) who demonstrated that this method is efficient if the
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Figure 1.19 — Field rotation as a function of time. Images of the star Beta Pictoris with SPHERE: the planet
is seen moving clockwise in these images.

companion has rotated of at least two FWHM in the temporal cube. However, if the coherence time of
the speckles is short compared to the observation duration, the PSF model is not representative enough
of the frame to frame speckle field. From this basic idea, different techniques have been developed in
order to optimize the subtraction by building the most accurate PSF model possible.

In the following, I present the main methods that are commonly used by the imaging exoplanet
community today. There are several ways of sorting and presenting these methods and I choose to
present them from a user point of view. I thus separate these methods in three concepts: classical ADI,
LOCI and PCA whereas they are all linked by their principle. These three concepts have different
flavors that I will not describe in detail but mention the reference. An interesting review of these
methods concept can be found in Savransky (2015).

Classical ADI From the simple ADI concept, evolved ways of building the PSF model have been
established. I provide here a list of the most commonly used methods based on ADI:

1. Smart ADI (s-ADI Marois et al., 2006): consists in building one PSF model for each frame
by using the frames before and after the regarded frame, that have rotated of at least 1\/D
compared to the regarded frame;

2. Radial ADI (r-ADI Marois et al., 2006): as the field rotation depends on the distance to the
centered star, the latter rotation limit is set for each annulus surrounding the star (the thickness
of each annulus is a user-defined parameter);

3. Image rotation and subtraction (IRS Ren et al., 2012): makes use of the centro-symmetry of the
speckles in the field to rotate the images by 180° in order to form the PSF model.

For these classical ADI methods, all the images of the cube have the same weight whereas the
speckle field might not show the same correlation from one image to another. The following methods
try to optimally combine the images in order to build a model PSF that is more similar to the true
speckle field, by giving a different weight to each image of the temporal cube.

Locally optimized combination of images, LOCI This method, published by Lafreniére et al.
(2007) consists in building the model PSF by making a linear combination of the images in the temporal
cube and computes each linear coefficient so as to minimize the residuals (in the least-square sense).
The linear coefficients are computed within specific zones called optimization zones which differ from
the actual subtraction zones in order to avoid the planet self-subtraction. The subtracted images are
then combined into the final image in which the detection is visually performed. Several flavors of
this concept aims at optimizing the SNR of the detected companions. I mention here some of these
methods dedicated to pupil tracking monochromatic images:

1. Damped LOCI (D-LOCI Pueyo et al., 2012): this method first modifies the cost function that
determines the linear coefficients used to construct the model PSF (so that the subtraction zone
allows high signals whereas the residuals are minimized over the optimization zone) and it forces
these coefficients to be positive (this method does not require priors on the planetary spectrum);
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2. Template LOCI (T-LOCI Marois et al., 2014): this technique uses an input spectrum and
reference PSFs (non-coronagraphic or unsaturated exposures) to optimize the computation of
the linear coefficients of the model PSF while minimizing the planet self-subtraction. In order
to maximize the speckle subtraction, the frame to frame correlation matrix is conditioned.

3. Adaptive LOCI (A-LOCI Currie et al., 2012a): filters the images by their degree of speckle
correlation and determines the combination of algorithm parameters that maximizes the SNR
of point source.

4. Matched LOCI (M-LOCI Wahhaj et al., 2015): consists in injecting synthetic sources in the field
of view and finding the linear combination that maximizes the SNR of the synthetic sources in
the final image.

5. Optimized Image rotation and subtraction (OIRS Dou et al., 2015): as for IRS, it makes use
of the centro-symmetry of the speckles in the field to form the PSF model while optimally
combining the frames as in LOCI.

Instead of fully using each image of the cube with a specific weight to build the model PSF, another
idea is to use part of the information contained in the whole image cube by, for instance, decomposing
it into its statics vs variable components. The following method decomposes the image cube in its
most temporally correlated features to then combine them to form the model PSF.

Principal component analysis, PCA In the standard PCA method, the whole cube is decom-
posed into its eigen-modes (obtained by projecting the images on an orthogonal basis by performing a
singular value decomposition of the images): higher order modes show the most temporally correlated
features in the cube whereas lower order modes show the higly variable features (that is to say the
noise for very low orders). For each science frame, the eigen-modes are then linearly combined so as to
minimize the distance between the eigen-modes combination and each regarded image (thus building
the model PSF). It is thus needed to truncate the number of eigen-modes (or principal modes) used in
the projection: an infinite number of modes would perfectly remove the residual noise but would also
subtract the companions’ signals. To choose the correct amount of low order modes kept, a trade off
has to be made between the amount of residuals and the self-subtraction of the signal. In other words,
the images are projected on a subspace made of the first K eigen-modes, where K is the number of
actual modes removed. By subtracting these projected frames to the regarded science frame, most
of the static pattern (common to all frames) is removed and only the content of the image that is
different in most frames (such as the astrophysical signal) remains. This method has been proposed
by Amara and Quanz (2012) and Soummer et al. (2012). From this concept, evolved ways of building
the PSF model have been established, such as:

1. Smart PCA | s-PCA: instead of using all the images before and after the considered science frame,
s-PCA consists in using only the frames that have rotated of more than about one FWHM (the
number of FWHM is a user-defined parameter). As the rotation degree depends on the distance
to the central star, s-PCA sets such a limit for each annuli surrounding the star (the thickness
of each annulus is a user-defined parameter).

2. Low-rank plus sparse decomposition (LLGS Gomez Gonzalez et al., 2016a): the image is de-
composed into three components: the low rank (the speckle field), the sparse (the peaky planet
signals) and the Gaussian noise component (residuals). This decomposition removes the speckle
noise more efficiently, resulting in an improved SNR of the companion in the final image.

Note that the PCA approach is very similar to the LOCI approach (see Savransky, 2015) and in
any case it is an inverse problem solved by using a deterministic approach: the distance between the
image and the model PSF is minimized in the least-square sense. The two methods I am dealing with
in this manuscript use a stochastic approach to inverse problems which takes into account a model of
the noise statistics in the images.
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Most discoveries made to date in exoplanet imaging have been obtained thanks to these different
techniques. In practice, different algorithms are used to check whether the companion is still detected
when using another image processing method along with various user-parameters. The main limitation
of these methods is that part of the companion flux is removed during the process. An intensive post-
processing is therefore performed to estimate the relative photometry of the planetary companion
(Pueyo, 2016). The detection limit of the images must also be computed separatly. Moreover, for all
of these methods, the companions are detected by visual inspection of the final image as there is no
systematic detection procedure. The two algorithms I studied during my PhD aim to address these
three main limitations.

1.3.2.2 Exploitation of the spectral diversity: SDI and SSDI

If two or more images are taken simultaneously at different wavelengths (under the same turbulence
conditions), one can exploit the spectral diversity present in such images. In the general case, the
position, size and amplitude of the speckles vary with the wavelength: at first order, the speckles
spread radially in the image field while their size broadens when the wavelength increases (because
they originate from the on-axis centered starlight). However the planetary signal remains fix in the
field of view from one wavelength to another (because it is a faint off-axis point source so only the size
of its core is increasing with the wavelength). Fig. 1.20 shows the radial spread of the speckle field
when the wavelength of observation increases while the position of the planetary companion does not
vary.

wavelength

Figure 1.20 — Speckle field spreading with the wavelength while the planetary companion is fixed. Images of
the star Beta Pictoris with SPHERE.

The basic principle of spectral differential imaging is to assume that, at first order, the radial
motion of the speckle is deterministic. It is thus possible to rescale one image to another to obtain
the model PSF of the second image (Sparks and Ford, 2002). This basic SDI concept has been first
introduced in Racine et al. (1999) and Marois et al. (2005b) and concerns the case of two images
observed simultaneously. In order to avoid self-canceling the planetary signal during the subtraction
the planet must be significantly fainter (ideally absent) in one of the image than in the other or the
planet must be far enough from the star so that its fixed position is nicely discriminated from a radially
shifted speckle. Using spectrum models of planets permits to choose carefully the two spectral channels
used. For instance, the methane absorption line is commonly used (Borysow et al., 2003; Lenzen et al.,
2004; Marois et al., 2005a, 2000) and a list of compounds ratio can be found in Madhusudhan et al.
(2013).

Assuming that the aberrations are achromatic and that the small phase approximation is valid,
the PSF at wavelength Ay, denoted by h*?(r), can be rescaled at \; following (Cornia et al., 2010;

Pueyo and Kasdin, 2007):
A2 M\?
e (Zr)=(2) M 1.1
<)\1 r) <)\2) (x) (L.17)

The latter equation assumes that only the star PSF resides in the field so the rescaling operation
should better be performed on the image which does not contain the planetary signals. The image at
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is then computed as:

A2\ 2 A
02es(r) = (Ai) i (}j r) (1.18)

Since the model used to rescale the PSF in wavelength is only of the first order, it is better to choose
the two wavelengths A; and )y as close as possible to minimize errors that could arise from this
rescaling operation. However there are two main limitations when using the classical SDI algorithms:
(1) the bias in the estimated contrast is significant and (2) the estimated contrast depends on the real
spectrum of the companion (Rameau et al., 2015).

To go further, the same kind of concept can be applied to multispectral images (SSDI). In this
case, the diversity is increased by the number of spectral channels:

-2
A2 rescaled at A1, iy7.q,

1. Any adaptations of ADI and/or SDI on each channel separately are commonly considered. For
instance, multispectral PCA is adapted to process several wavelengths, T-LOCI takes into ac-
count the spectrum of the star given in input to optimize the companion extraction. A version
of the KLIP algorithm accompanied with forward modeling (KLIP-FM Pueyo, 2016), based on
perturbation theory, constrains the estimated spectrum of the planetary companion to avoid
over/self-subtraction of the companion signal.

2. The spectral deconvolution (SD Sparks and Ford, 2002; Thatte et al., 2007): after rescaling each
image of the multispectral cube, a polynomial fit is performed along the wavelength direction
for each pixel of the rescaled datacube. The resulting fit is then subtracted from the rescaled
datacube to reduce the speckle noise. Each frame is then rescaled to its original dimension
so that the planetary signal is at the same position in every frame while the speckle noise is
significantly reduced. However, once again, part of the signal is subtracted. This method is also
very sensitive to wavelength calibration.

3. The spectral diversity Burke and Devaney (2010): uses a multispectral phase retrieval (also called
wavelength diversity) which consists in estimating the model PSF by minimizing the distance
between the image and the PSF model along a stochastic approach (maximum likelihood) for
all the wavelengths. In order to decrease the number of unknowns, the multispectral phases
are parametrized by the optical path difference, assumed achromatic. However this method
is designed for non-coronagraphic systems and thus does not take into account the model of
coronagraphic image.

In the second part of this manuscript, I present the MEDUSAE method which uses the same infor-
mation as spectral diversity but taking into account the coronagraph and priors on the instrument in
order to fully exploit the multispectral images, while avoiding the planetary signal self-subtraction.

1.3.2.3 Other information exploited

Instead of using the spectral or temporal diversity as in this manuscript, I mention in the following
several techniques that make use of various diversities combined with differential imaging.

Polarimetric differential imaging, PDI The light reflected by planetary companions in the
visible or the light scattered by the circumstellar dust is polarized in a specific direction. By observing
the two linear polarizations simultaneously, one can subtract one frame to the other to unveil the
circumstellar objects. In practice, this method introduced by Kuhn et al. (2001) is efficient for disk
imaging and motivated the design of the SPHERE polarimetric imaging modes in the visible (ZIMPOL,
Roelfsema et al., 2010) and in the near-IR (IRDIS-DPI, Langlois et al., 2010).

Reference differential imaging, RDI Another idea, is to obtain the model PSF by observing

another reference star, close to the actual observed star, which has almost the same brightness (Mawet
et al., 2005; Rameau et al., 2012). This approach was used on NaCo even before the pupil tracking
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was implemented and the first detection of Beta Pictoris b was obtained this way (Lagrange et al.,
2010). An evolution of this idea is to create a library of PSF and to look for the most correlated
frames with the PSF library, similarly to PCA. The paper Milli et al. (2016) investigates the temporal
correlations between images in order to choose for the better frames.

Coherence differential imaging, CDI Another technique is to use the fact that the speckles
originate from the same source (the star light) and thus, that they are coherent. An idea, proposed by
Guyon (2004), is to exploits the coherence of the speckles to make them interfere destructively with
the central core of the PSF. This method, called synchronous interferometric speckle suppression, can
remove speckles regardless of their evolution time. A similar idea published by Baudoz et al. (2005) is
to divide in amplitude the incident field into two different images for which the speckles destructively
interfere. This set up, called hybrid interfero-coronagraph, is suitable to detect faint sources at very
close angular separation.

Binary differential imaging, BDI In the case of a binary star (which is the case of many objects
observed in exoplanet detection), an idea published by Rodigas et al. (2015) is to use the information
provided by the presence of the secondary star to obtain an estimate of the PSF model to be sub-
tracted to the primary star. This method is being exploited for the current MagAQO survey.

Note that ADI and SDI methods are by definition fundamentally limited close to the star while
these different methods have access to shorter separation.

Conclusion of this chapter

Along this chapter I demonstrated the interest of exoplanet imaging as well as the technological diffi-
culties to overcome in order to detect faint companions. I presented the main hardware and software
solutions that are implemented in the high-contrast instruments currently in operation. Among the
main ingredients for high contrast imaging, one can find adaptive optics systems, coronagraphic devices
and advanced image processing methods. The association of these ingredients allows the astronomers
to reach a contrast of about 107° in infrared images.

Fig. 1.21 is a block diagram illustrating the whole assembly line for exoplanet imaging, from the
astrophysical scene to its estimated properties. My PhD focuses on image processing (yellow box):
it starts with the so-called reduced images (raw images from the telescope, that have been cleaned
thanks to the calibration files, centered and often selected and/or temporally binned) and consists
in delivering the processed images in which it is possible to detect the planetary companions and to
characterize them. The characterization is to estimate their projected position, relative contrast to
the star as well as the detection limit of the data-set. From these characterizations, astronomers are
using models to derive some physical properties of the exoplanet that are compared to simulations in
order to understand the nature of exoplanets as well as their formation and evolution processes.

The principle on which the current image processing methods are based is differential imaging.
This technique resulted in numerous scientific breakthroughs in the exoplanets field. However, it is
still limited and some specific limitations must be alleviated if one wants to, on the one hand, correctly
process and interpret the results from large surveys and, on the other hand, search and confirm the
presence of faint and close companions. My PhD work is within this context and directly addresses
this topic.

Outline of this manuscript

In the first part of this thesis, I present the work I have done on the ANDROMEDA algorithm which
exploits the temporal diversity provided by the rotating image field. I first present the concept of
ANDROMEDA and the status of the algorithm when I started my PhD. After presenting the solu-
tions implemented to the original algorithm to make it operational, I present a neat analysis of its
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Astrophysical Telescope Image reduction Image processing Models
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Figure 1.21 — Diagram illustrating the main steps with the main information used from the astrophysical object
with unknown properties (in orange) to its estimated properties (in purple). The intermediate images are
written in blue. My work focuses on delivering the information from which the astrophysical propertied (green)
are estimated from the reduced data (red).

performance and a thorough comparison to the other main algorithms used. I finally present various
on-sky results demonstrating the response brought by the ANDROMEDA solution to the limitations
of the current algorithms commonly used and which lead to various perspective for this method.

In the second part, I present the work I have done on the MEDUSAE algorithm which exploits the
spectral diversity provided by multispectral data. I first present the concept of MEDUSAE and the
status of the algorithm when I started my PhD. This is followed by results of tests performed on data
simulated using the same model as the one used in the inversion. Following these preliminary tests, I
adapted MEDUSAE and applied it, in its original state, on real data. Results showed the importance
of simulating realistic data to analyze the algorithm capabilities in a first step. I simulated realistic
SPHERE-like data and applied MEDUSAE in its original state. The results from these preliminary
tests open perspectives that are necessary to investigate in order to make MEDUSAE operational on
on-sky data.
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Résumé en francais du chapitre
d’introduction : I’imagerie
d’exoplanetes avec des instruments de
haut contraste

Dans le chapitre d’introduction qui précede, je détaille le contexte dans lequel j’ai réalisé mes travaux
de thése de doctorat : il s’agit de I'imagerie d’exoplanétes avec des instruments a haut contraste. Plus
spécifiquement, mon sujet de these se focalise sur la partie traitement d’images afin de détecter et
caractériser des exoplanetes dans de telles images. Pour ce faire, j'utilise des méthodes basées sur la
résolution de problemes inverses.

Ainsi, dans une premiere partie, j’introduis le contexte astrophysique : comment peut-on définir
une exoplanéete, quelles sont les informations que ’on cherche & obtenir grace a leur étude, et comment
peut-on les détecter et les étudier (1.1)? Dans une seconde partie, je décris les solutions technologiques
mises en jeu afin d’obtenir des images a haute dynamique, nécessaires pour ’étude de ces objets
faibles et proches de leur étoile hote (1.2). Enfin, dans une troisieme partie, je décris 1'état de I'art des
différentes méthodes de traitement d’images qui permettent de détecter et caractériser des exoplanetes
ou disques circumstellaires dans les images obtenues (1.3). Dans la suite, je résume les motivations
principales menant & mon sujet de thése en suivant le plan utilisé dans le manuscrit.

Intérét de ’imagerie des exoplanétes

Une exoplanéte n’a pas de définition stricte. Bien qu’il existe des planetes flottantes, qui ont été
détectées, la définition courante est qu’il s’agit d’un objet gravitant autour d’'une étoile (ou d'un
résidu d’étoile type objet compact), et qui soit suffisamment massif pour que les forces de cohésion
soient dominées par la gravitation et pour qu’il ait nettoyé son orbite, mais pas trop massif pour que la
fusion du deutérium ne soit pas démarrée (auquel cas, I'appellation naine brune est préférée, a partir
de 14 masses de Jupiter).

Ces objets circumstellaires et leur environnement sont un sujet d’étude essentiel si ’on veut com-
prendre les processus de formation d’exoplanetes (liés & la formation stellaire), 1’évolution de ces
objets (lié a 'environnement de ces objets, disques circumstellaires ou autres planétes) et étudier leur
composition atmosphérique (sondant ainsi la présence de marqueurs biologiques) et ainsi trouver une
définition adéquate. Ces problématiques étant évidemment connectées les unes aux autres.

Dans ce cadre, I'imagerie des exoplanetes est essentielle puisqu’elle permet de compléter les connais-
sances que nous avons sur ces objets. Aujourd’hui, il existe cinq techniques majeures qui permettent
d’étudier les exoplanetes. Chacune de ces méthodes, de par son principe, a accées a un type d’objets
particuliers, a des parametres physiques spécifiques sur ces objets et a des limites fondamentales pro-
pres (résumées & la section 1.1'1.). L’imagerie d’exoplanétes est particuliérement complémentaire aux

UPour chaque méthode, j’évoque aussi les grandes découvertes, le nombre de détections effectuées & ce jour et les
projets instrumentaux en cours ou a venir afin d’exploiter au mieux ces méthodes.
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autres techniques, dites indirectes, puisqu’elle permet de sonder la présence de compagnons a plus
large séparation de leur étoile hote (quelques unités astronomiques) et est restreinte a des objets plus
massifs (de 'ordre de la dizaine de masses de Jupiter, afin de détecter leur lumiere émise). Trois points
majeurs peuvent étre notés concernant l'imagerie :

Détection par imagerie directe Les détections sont cependant rares (seulement une trentaine
de détections & ce jour) car les résidus de la lumieére de 1’étoile sont tres difficiles & gérer : chaque
détection est donc critique pour remplir 'espace des parametres explorés afin de mieux comprendre la
nature méme de ces objets par des études statistiques. Quand il n’y a pas de détection, il est tout aussi
important d’obtenir des limites de détection fiables puisque 1’absence de compagnon est directement
liée au scenario de formation et d’évolution planétaires.

Spectro-photométrie par imagerie directe D’autre part, 'imagerie permet d’avoir directement
acces aux photons et donc de caractériser le flux du compagnon afin d’en étudier I’atmosphére ainsi
que de contraindre ses propriétés physiques, selon les modeéles d’évolution choisis. Etant donné que ces
modeles concurrents sont treés similaires, il est essentiel d’obtenir autant de points que possible (une
bonne couverture en longueur d’onde) et d’avoir des incertitudes tres petites sur ces derniers afin de
discriminer ces modeles d’atmosphere, et de formation et d’évolution des planetes.

Astrométrie par imagerie directe Un suivi astrométrique d’'un compagnon dans le temps permet
de contraindre 'orbite de 1'objet en interaction avec son environnement (autres planétes et/ou disque
circumstellaire) et donc d’évaluer les scenarii de formation et d’évolution des planétes (en particulier
les processus de migration planétaire).

Ces trois aspects motivent directement la construction d’instruments dédiés afin d’étre plus sensible
aux compagnons de faible masse (quelques masses de Jupiter) a grande séparation (quelques dizaines
d’unités astronomiques) et affiner les points de données astrométriques et photométriques sur les
détections obtenues.

L’imagerie a haut-contraste pour I’étude des exoplanétes

Afin de pouvoir détecter des exoplanétes, il faut typiquement atteindre des résolution de 0.5 ” pour un
contraste de 107% en infrarouge pour des planétes jeunes de type géantes gazeuses. Les observations
sont réalisées en infrarouge car le contraste entre la lumiere émise par 1’étoile hote et celle émise par
la planete est le plus favorable dans cette gamme de longueurs d’onde.

Pour atteindre la sensibilité nécessaire, il faut utiliser de grands télescopes, essentiellement installés
au sol. Cependant, la présence de 'atmosphere terrestre induit une perte de résolution non négligeable
qui empéche 'exploitation des images obtenues. Un systeme d’optique adaptative permet de corriger
en temps réel les aberrations introduites par la turbulence atmosphérique et d’atteindre ainsi un
contraste typique de 1072 & 500mas en bande H (1.6um). Afin d’éliminer la lumiere diffractée par
I’étoile, I'utilisation d’un coronographe s’avére nécessaire pour atteindre un contraste de 10~% & 500mas.
C’est a ce stade qu’il est aussi nécessaire d’utiliser des méthodes de traitement d’images adaptées afin
d’atteindre un contraste de 107°-107¢ & 500mas. En effet, le coronographe enléve la partie cohérente
de la lumiere stellaire. Ce qui reste dans les images, apres le coronographe, est lié aux aberrations
résiduelles dues a la turbulence atmosphérique et aux aberrations résiduelles de I'instrument.

Dans le manuscrit, je décris les éléments principaux d’une optique adaptative (1.2.1) et les différents
type de coronographes qui existent (1.2.2) ainsi que les limitations fondamentales de ces composants
optiques, motivant directement le développement de méthodes de traitement d’images adaptées (1.2.3).
J’y introduis aussi les notions nécessaires a la compréhension de mon travail. A la suite de ces parties,
je décris les différents instruments dédiés au haut contraste pour lesquels il est possible d’appliquer les
méthodes de traitement d’images développées pendant mon travail de these (1.2.4). En particulier,
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j’ai travaillé avec des images obtenues avec les instruments VLT /NaCo et VLT /SPHERE que je décris
dans ces parties.

Traitement d’images pour la détection d’exoplanetes

Dans les images obtenues, il y a des tavelures (speckles en anglais) qui sont ’expression plan focal
de la lumiere de 1’étoile déviée par les aberrations résiduelles. Une partie de ces tavelures évolue de
facon quasi-statique et il est impossible de les étalonner pour les retirer ou de les moyenner en un halo
lisse dans I'image (qui peut étre rejeté a posteriori). De plus ces tavelures, de par leur nature, ont
typiquement la taille d’un élément de résolution, tout comme les signaux planétaires attendus (sources
non-résolues). L’intensité des tavelures est donc directement liée au flux de 1’étoile et au niveau des
aberrations résiduelles ce qui les rend souvent plus brillantes que le signal attendu sur les compagnons
planétaires.

Afin de discriminer les objets d’intérét astrophysique parmi ce bruit de tavelures, il faut utiliser
une diversité, c’est a dire une différence de comportement pour ces deux composantes. Durant mon
travail de these, j’ai exploité deux diversités:

Diversité temporelle griace au suivi de pupille Puisque les tavelures ont pour origine la présence
d’aberrations instrumentales, qui, au premier ordre, appartiennent au plan pupille, il est possible de
fixer spatialement les tavelures en utilisant un derotateur de champ placé en suivi de pupille (pupil
tracking). Dans le cas d’un télescope a monture alt-az, le champ image tourne alors & une vitesse
déterministe donnée par les angles parallactiques (dépendant de la position de la source et de la
localisation de l’observatoire). Ainsi, dans une séquence temporelle d’images, les objets hors-axe
tournent a une vitesse connue alors que les tavelures restent fixes dans le champ.

Diversité spectrale griace a I'imagerie multispectrale Puisque les tavelures sont I'image de
I’étoile & travers I'instrument, ils se déplacent radialement vers 'extérieur de 'image (I'image de 1’étoile
étant centrée) quand la longueur d’onde d’observation augmente. Cependant, les objets d’intérét (qui
sont moins brillants) restent immobiles. Ainsi, un instrument capable de faire simultanément plusieurs
images a différentes longueurs d’ondes (cas des spectrographes a intégrale de champ, IFS), permet
d’exploiter cette redondance d’information.

A ce jour, les différentes méthodes de traitement d’images utilisées par la communauté des chercheurs
en imagerie d’exoplanetes, et qui exploitent ces diversités, consistent a créer un modele empirique de
I'image de Iétoile seule et a la soustraire aux images (il s’agit donc d’imagerie différentielle). Malgré
les nombreux résultats obtenus grace a de telles méthodes ces dernieres années, elles sont limitées es-
sentiellement par trois aspects : (1) une partie du flux du compagnon est soustraite et il faut calculer
a posteriori cette fraction de flux afin de retrouver le vrai contraste du compagnon; (2) de la méme
maniére, la limite de détection est calculée a posteriori par des calculs intensifs; (3) il n’existe pas de
procédure de détection systématique et les compagnons sont visuellement détectés dans les images.
Dans tous les cas, les informations sur la formation d’image (telles que le comportement non-linéaire
des tavelures ou encore les motifs apparaissant apres soustraction d’images) ne sont pas prises en
compte.

La motivation principale de mon travail de theése est de répondre a ces limitations en explorant
d’autres pistes pour exploiter les images. Au cours de ma these, j’ai exploité ces diversités dans le
cadre de la résolution de problémes inverses. Il s’agit de définir un modéle de données dépendant
des parametres d’intérét a estimer (tels que la position et le flux du compagnon), puis d’exploiter
I’ensemble des données ainsi que toutes les informations a priori qui sont disponibles afin d’estimer les
paramétres les plus probables qui expliquent les données.
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Plan du manuscrit de thése

La premiere partie de ce manuscrit est consacrée a mon travail sur l'algorithme ANDROMEDA qui
exploite la diversité temporelle des images. La seconde partie de ce manuscrit est consacrée a mon
travail sur la méthode MEDUSAE qui exploite la diversité spectrale des images. Un résumé en
francais se trouve a la fin de de chaque partie. Une conclusion générale en francais se trouve a la fin
du manuscrit.
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Part 1

ANDROMEDA: Exploitation of the
temporal diversity in the images.



The goal of this part of the thesis is to present the work I have done during my PhD on the
ANDROMEDA algorithm, which is a method dedicated to the detection and characterization of point
sources within images taken in pupil tracking mode.

In the introduction chapter, I presented the main algorithms widely used today in exoplanet
imaging that can be sorted in three main concepts: ¢-ADI (Marois et al., 2006), LOCI (Lafreniere
et al., 2007) and PCA (Amara and Quanz, 2012; Soummer et al., 2012). The major limitations of
these algorithms are the following;:

1. The companions are visually detected in the final image: it depends on the observer acuteness;

2. Part of the planetary signal is subtracted: extensive post-analysis are required to estimate the
flux of the planetary signal.

The ANDROMEDA algorithm that I present in this first part of the manuscript intents to address
these limitations. ANDROMEDA is an ADI-based algorithm which solves the inverse problem in a
stochastic approach, that is to say by taking into account a model of the noise distribution in the
images.
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Chapter 2

The ANDROMEDA approach and
initial status
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In order to address the issues mentioned above, an original idea published by Mugnier et al. (2009),
is to develop an image processing method dedicated to point source extraction in images taken in pupil
tracking mode, based on inverse problem solving (similarly to Thiébaut and Mugnier, 2006). This
method, called ANDROMEDA for ANgular DiffeRential OptiMal Exoplanet Detection Algorithm is
the subject of this part of the thesis.

ANDROMEDA is an ADI-based method whose first step is to build the so-called differential images
obtained by subtracting two images for which, if a planetary companion is present, it has moved in
a deterministic manner whereas the stellar halo has remained mostly fixed. The key point of the
ANDROMEDA method consists in building a model of the differential images and in minimizing the
distance between this model and the actual scientific images, given the statistical distribution of the
errors on the model. Thus, the idea of ANDROMEDA is to use the ADI technique, not only to
minimize the impact of the speckles in the resulting image, but as a mean to (i) make the residual
noise as white as possible to enable the use of a statistical approach to discriminate planetary signals
from the speckles and (ii) make arise a specific and known signature when a companion is present that
can be easily disentangled from residual speckles by inverse problem solving.

This chapter describes the status of ANDROMEDA before I started working on this algorithm to
adapt it to the real data properties. I will first describe the ANDROMEDA method in its theoretical
principle (Sect. 2.1), that is to say in the case of ideal images, following the work of Mugnier et al.
(2009). This theoretical concept has been validated on simulated data, and I will present the conclu-
sions drawn out from this work (Sect. 2.2). My work consisted in making this method operational on
real data, starting from this first version of the method. In Sect. 2.3, T will apply ANDROMEDA in
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Exoplanet
signature

Image at t, Image at t, Differential
image

Figure 2.1 — Schematic principle of ANDROMEDA: the exoplanet signature is tracked in the differential image
via inverse problem solving, under the assumption that most of the starlight has been removed by the ADI.

its original configuration on real data, in order to bring out the issues (expected or not) leading to all
the stakes on which my work on this algorithm is based.

2.1 ANDROMEDA'’s principle

The ANDROMEDA method is based on inverse problem solving by using a maximum likelihood
estimation of the sought parameters. This section describes the approach followed by the algorithm
from its very theoretical aspect to its practical implementation.

2.1.1 Theoretical concept

The ANDROMEDA concept relies on differential imaging in order to, on the one hand, remove as
much starlight as possible and consequently whiten the noise, and on the other, reveal a deterministic
signature when a planetary companion is present. Indeed the star image evolves in a non-deterministic
way which makes it complex to model and estimate via inverse problem (see next part for discussion
about modeling the speckle field). Using ADI helps builing a consistent model of the resulting so-called
differential images to be inverted via a maximum likelihood. As the likelihood relies on the statistical
distribution of the noise in the data, whitening the noise is useful to compute this likelihood in an
analytical way. The specific planet signature is useful to better disentangle planetary companions
from remaining bright speckles and build the corresponding model.

2.1.1.1 Differential images: Accommodating the noise distribution and appearance of a
planet signature

Assuming that we find a couple of images i; and iy for which:
-The planetary companion is moving in a deterministic way in the field of view;
-The stellar halo is as stable as possible;
Then we can subtract one of these two images to the other, resulting in a differential image A:

A(r) =i1(r) —ia(r) (2.1)

In this differential image, most of the starlight has been removed (the error comes from the limited
star PSF stability in between the two frames) and a specific shape appears at the location of the
planetary companion in the two frames.

If no companion is present in the field of view (hypothesis Hp), then only the residual noise na
remains in the differential image:

A(r)|H, = na(r) (2.2)

As most of the starlight has been removed, we can assume that the starlight residuals are now decor-
related and that this remaining noise is mainly made of photon and detector noise.
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If a companion is present in the field of view (hypothesis Hj), then a so-called planet signature
appears in the field of view. This planet signature is a function of the planetary signal p which is itself
defined by its intensity a and its position in the first image i1, r1. The differential image can thus be
written:

A(r)|g, = m(a,r1) + na(r) (2.3)

Where m(a,r1) is the model of the planet signature, dependent upon the two unknown parameters
(the position of the planetary companion ry and its flux a) and na(r) the so-called modeling error
between the data A and its model m, which includes the noise and the model approximation.

In the first image i1, the planetary signal of flux a and at position rq, can be written p(a,ry1) =
a.(0(r1) * h(r)), where §(ry) is the Dirac function at the position r1 = (r1,6;), and h(r) is the PSF of
the system. Thus, in the resulting differential image A(r) defined by Eq. 2.1, the planetary signature
model m(a,r1) can be written:

m(a,r1) = a.[0(r1,01) * h(r)] — a.[0(re, 02) * h(r)] (2.4)

The following part describes how to estimate the two unknown parameters o and ry thanks to a
maximum likelihood estimation.

2.1.1.2 Maximum likelihood estimation (MLE) of the planetary signals’ parameters

In order to determine the unknown parameters of our statistical model given the data, the original
and fundamental idea of the ANDROMEDA method is to use a maximum likelihood estimation. The
estimated parameters are then the one which reproduce the best the observed data. This estimator
is commonly used to estimate the parameters from noisy data, which is the case here, by maximizing
the agreement between the model and the observed data.

The likelihood is defined as the probability of observing the data (here the differential images
A(r, k), where k encodes for the chosen diversity!) knowing its parameters (a and rg, given through
the model m(a,rg)). In our problem the likelihood? thus writes:

Z(m(a,ro)|Ar, k) = Pr(A(r, k)|m(a, ro)) (2.5)

This is the probability of observing the data A given that the model m is true. The latter term is
the probability density function of the distance between the model m and the data A. As we have
A(r,k) = m(a,ro)(r, k) + na(r, k), the likelihood is the probability density function of the residual
noise na(r, k).

The residual noise distribution in the differential images is non-stationary for one differential image
to another and it can be considered as Gaussian (in time and space) with a good approximation®.
Indeed, before the subtraction, the noise was constituted of detector noise, photon noise and quasi-
static speckle noise. After the subtraction, only the part of the quasi-static speckle noise which is
decorrelated remains?, as well as the linear combination of the photon and detector noise of the two
images subtraction. Considering that this normal distribution is centered (it has a null spatio-temporal
mean pa(r, k)) and has a variance JZA(I‘, k), the noise probability density function for a given r and a
given k, denoted z, can be expressed as:

SR WY G Y ONCS!
Pna (@) = Grol ) p( 2 o2 (@) ) (2.6)

'Though ANDROMEDA has been developed specifically to process ADI data, I chose here to use a generic k, index of
the couple of the two subtracted images, which could encode any variation, such as temporal or spectral. See perspectives
at the end of this part for more details.

2Based on the Bayesian formula, by assuming that there is no prior on the sought parameters and to within a constant,
the likelihood can directly be written as such.

3 Attempts to prove this point can be found in Marois et al. (2008a) or Absil et al. (2013) by performing normality
tests. I will further discuss this point in the next chapter at Sect. 3.1.2.

4In other words, the contribution of the speckle noise which is static in between the two images has been removed.
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Moreover, if the Gaussian noise is decorrelated, as it is approximatively the case in the differential im-
ages, the noise probability density function of the residual noise in all the differential images becomes,
for all the r and k:

1 1 n>
Pna(r, k) = . exXp —2Z|2A
Hr,k (27TU2A(r7 k)) r.k A

(2.7)

Note that the variance of the residual noise in the differential image still depends on the spatial
(through r) and chosen diversity (through k) variables. One can wonder why the variance term o%
cannot be moved outside the sum over the spatial and temporal variable. First, the quasi-static
speckles distribution varies radially which means that the variance of their residuals is not spatially
constant. Second, the chosen couples lead to different decorrelation levels (given that their correlation
degree before subtraction is different for each couple). A more detailed discussion about this variance
term is presented at Sect. 2.1.2.4.

At last, via the Eq. 2.3 which describes the relation between the data and the model, we can finally
write:
— mla,ro](r, k)2

2 JQA(I‘, k)

Z(m(a,ro)|Alr, k) o exp | — A, k) (2.8)
r.k

2.1.2 Practical solutions

In practice, for this maximum likelihood solution, three inputs are needed: (i) a method to whiten the
residual noise in the differential images, (ii) a model of the differential images and (iii) the variance
of the error distribution.

2.1.2.1 Differential images: image couple selection

As explained in introduction for images taken in pupil tracking mode, the quasi-static speckle field is
spatially stabilized in the field of view, while the astrophysical object rotates around the star during
the observation. The idea is thus to use this angular motion of the field of view to find the most
correlated frames to be subtracted one to another. In the resulting differential images, the noise has
been partially whitened since the static (temporally correlated) part of the starlight has been removed.
To do so, a couple of images to be subtracted has to be chosen within the following constraints®:

(1) The speckle field is as similar as possible in the two chosen frames;

(2) The companion position in the two frames must be different enough to avoid its self-subtraction.
As on real data the dominant error is due to the temporal variation of the quasi-static speckles (see
1.2.3), ANDROMEDA assumes that the most correlated frames are the frames that are the closest
in time®. Thus in the ANDROMEDA development, it has been chosen to consider a simple solution
to whiten the noise in the images by using a basic temporal ADI (note that more sophisticated ways
of whitening the noise could be investigated, as mentioned in the perspectives of this part). In this
case, the two constraints naturally become constraints on the time delay between the two frames to
be subtracted:

(1) Tt must be short enough so that the speckle field did not have the time to evolve too much;

®Note that instead of performing a basic angular subtraction, Smith et al. (2009) have proposed to avoid the sub-
traction by directly estimating the moving source within the quasi-static speckle field, which enables the exploitation
of every single frame. However their hypothesis is very strong since the star is assumed to be fixed during the whole
observation sequence.

SNote that if the dominant error was due to another optical device we could have chosen another more adapted
constraint on the image couples. For instance, if the ADC or derotator mis-pointing was the dominant error, then the
frames that are symmetric wrt the meridian would be the most correlated ones and thus the most likely to be subtracted.
In his PhD thesis, A. Cornia showed that using this strategy was not efficient enough to have a residual noise distribution
as Gaussian as possible in the differential images (Cornia, 2010, Sect. 3.2)
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(2) It must be long enough so that the angular position of the companion has sufficiently rotated
to not subtract its own signal”.
The latter constraint depends on the distance of the companion to the star (located at the center
of the frames): for a given parallactic angle rotation, the closer the companion, the less apparent
motion. The parameter responsible for this constraint is d,,,, the minimum azimuthal distance of
the planetary companion in the two considered frames. As this parameter depends on the distance to
the star (see Fig. 2.2), it has been chosen in ANDROMEDA to constraint the angular subtraction for
each separation to the star via annuli surrounding the star. The width of the annuli is thus another
user-defined parameter d, which can be set either constant with the distance to the star or increasing
with the distance to the star (since it becomes less critical at larger separation as the time delay
between two frames separated of d,,, is shorter).

Y

Figure 2.2 — Schematic view of the distance § to be constrained via the parameter d,,;, between off-axis objects
at two different times in the field of view, as a function of the distance to the star.

To summarize the ADI process established in ANDROMEDA, two images of a couple indexed
k respecting the two conditions (1) and (2) mentioned above, are subtracted one to another. The
resulting differential image can be written:

A(I‘, kannulus(r)) = ikannulus('r) (I‘, tl) - ikmmuzus(r) (I’, t2) (29)

where r stands for the whole field of view and kgppuius(r) 1S the index of the couple chosen for a specific
annulus at a certain separation to the star r. ix(r, 1) is the image of the science cube at ¢; and ig(r, t2)
the image at to. These two images must respect the two conditions mentioned above:

(1) At = |to — t1] is as small as possible;

(2) For a specific separation to the star, |ry, — re,| > dpin.

For more readability, I will express by a generic index k (encoding the time variation) the Kqppuius(r)s
but one has to keep in mind that this index is chosen for a specific distance to the star. In total, there
are as many index k as analyzed annuli and, for each of these annuli, as many couples meeting the
two conditions above as possible. For a regarded distance to the star, the maximum number of image
couples is thus the number of images in the cube, as in the ideal case every image of the cube is used.
If no couple is found, it means that there is not enough field rotation at this distance and that the
Omin constraint should be decreased.

"In his PhD thesis, A. Cornia assessed the energy loss amount as a function of the chosen . , in the case of noiseless
Airy patterns (Cornia, 2010, Sect. 3.2). However this does not affect the flux estimated by ANDROMEDA since this
energy loss, due to the signal self-subtraction, is taken into account in the planetary signature model defined at Eq. 2.4.
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2.1.2.2 Differential images: image couple flux scaling

Given the constraint (1) and (2), the average intensity distribution might have evolved significantly
between the two images, thus showing a non-negligible intensity offset in the resulting differential im-
age. These intensity variations from one frame to another are usually due to variations of the adaptive
optics correction quality and/or sudden changes of seeing conditions (see 1.2.1). To accommodate this
flux difference, one of the image must be adjusted with respect to the other via a scaling factor v so
as to compute the differential image as:

A(I‘, k) = ik(r,tl) — ’yk(r) ik(r,tg) y (2.10)

The scaling factor is empirically calculated for each image couple k found for each distance to the star
r. One method to calculate this scaling factor is by doing a so-called total ratio which minimizes the
total intensity by solving >-,  ix(r,t1) —yrr Yop, ik(r,t2) = 0 (Cornia et al., 2010), where rgyp
is the pixels contained in the regarded annulus of thickness d, and on which the constraint d,,;, is
applied, also called subtraction zone. By solving this, the corresponding scaling factor yrg is:

’Y erub Zk (r’ tl)
TR — <~ - /.
erub 25 (I‘, t2)

However this method might create artifacts if the sum of the pixels within the regarded annulus,
D oraup Uk (r,t9), is close to zero. Thus, another method is to minimize the total intensity of the differen-
tial image in the least-square sense, that is to say by minimizing ||, ix(r,t1)—yrs Yp, ., ix(r,t2)]?
(Cornia et al., 2010). By solving this, the corresponding scaling factor vyrg is:

, Dreus (T 1) k(T 2)
LS — -
D reus t(T5 2)?

Experiences on simulated data showed that optimizing the ADI in such a way usually makes come
out discontinuities in the resulting SNR map between adjacent annuli. Indeed, the mean of the scaling
factor for every couple k at a certain distance to the star could have a very different value from one
annulus to its neighbor (due to the radial dependence of the intensity distribution in the images and to
the fact that different pairs k of images are chosen from one annulus to the other, mostly close to the
star). As a consequence, to avoid these edge effects, the scaling factor 7y is calculated over a so-called
optimization area that shares the same inner radius as the actual subtraction area but generally has a
larger outer radius (that is to say > d,.), as shown on Fig. 2.3. The ratio optimization to subtraction
area, R4, is a user-defined parameters, set constant for all the annuli.

(2.11)

(2.12)

p——— Subtraction
- zone

Figure 2.3 — Description of the subtraction zone (red annulus of width defined by d,.) and of the optimization
zone (red plus orange annuli).

2.1.2.3 Building the model of a potential companion signature

For one differential image indexed k, the model of the planet signature can be written following Eq. 2.4
adapted to the temporal diversity exploited here via the ADI:

my(a,ro) = a.[0(r,01) * h(r) — 6(r, 0y ) * h(r)] (2.13)
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Figure 2.4 — Typical planet signature obtained by shifting the reference PSF of §,,:, (here only the distance
Omin is not angular but along the x-axis; dni, = 1A/D). This illustration is made thanks to an Airy pattern
sampled with an oversampling rate of 1.6. This noiseless ideal reference PSF has been normalized to its
maximum.

The angular distance between ri, and r¢, being determined thanks to the parallactic angles at ¢y and
t.

In order to build this model, we need an estimate of the imaging system PSF A. One solution would
be to jointly estimate this reference PSF as proposed in Smith et al. (2009) or Ygouf et al. (2013).
However here, it has been chosen to approximate this PSF by the image of the star (being unresolved),
hereafter referred to as the reference PSF. Depending on the system, there are two solutions to obtain
such an image:

-If no coronagraph is present, the images to be processed are saturated exposures; the reference
PSF can be obtained by making an unsaturated exposure (by using a neutral density to avoid the
saturation of the detector).

-If a coronagraph is used, the reference PSF can be obtained either by removing the coronagraph

(when possible) and making an image of the star, or by making an off-axis exposure of the star (still
by using a neutral density to avoid the saturation of the detector).
For this model to be included in the likelihood, this reference PSF must be normalized (by its total
intensity) in order to estimate the contrast of the potential planetary companions by maximizing the
likelihood. Also, any optics which impacts the flux of the reference PSF (such as neutral density
transmission factors or throughput of the coronagraph) must be taken into account to derive the final
estimated contrast of the detected point sources wrt to its host star.

This solution is rather efficient but has three main underlying assumptions:

1. It does not take into account the temporal variability of the star PSF during the observation.
Consequently, the estimated flux will have greater error-bars. A solution would be to have a
follow-up of the PSF quality (through its SR for instance) and to include this quality factor in
our model for each couple of image (see perspectives in 6.5.5).

2. It assumes that there is no smearing of the objects in the field of view during the exposure.
Consequently, this can decrease the SNR of the detected planetary signal and thus increase the
flux error-bars. One solution would be to take into account the smearing by implementing a way
of building the smeared PSF according to the distance to the star.

3. It assumes that the reference PSF is the same throughout the field of view, that is to say, that
there is no distortion or off-axis aberration which would affect the planetary signal response wrt
this reference PSF.

However tests and results suggested that these issues were of second order since the main error
between our model and our data is due to the estimation of the residual noise distribution in the
differential images.
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2.1 ANDROMEDA'’s principle

2.1.2.4 Estimation of the noise variance to compute the likelihood

In order to compute the likelihood we need the variance of the residual noise distribution in the
differential images. There is three ways of empirically computing this variance from the images
according to the noise distribution in the data cube:

1. 3D-variance The noise variance is estimated on each image of the regarded couple indexed k
and then the residual noise distribution in the differential image is calculated as follow:

oA (r,k) = o?(ix(r, t1)) + o (in(r, t2)) (2.14)

According to the dominant noise in the images this variance can be approximated to be easily
calculated. Under the assumption that the photon and the detector noise are dominant, the
variance in the image can be calculated as: o?(r,t) = max{i(r,t);0} + o3,, (Cornia et al.,
2010). However this method is not suited if other sources of noise, such as residual speckles, are
present in the differential image.

This variance is called 3D-variance in the following.

2. 2D-variance The variance is estimated from the full set of differential images obtained following:
g (r) = ([Ar, )P — (A, k))e)® (2.15)

This method assumes a temporally homogeneous variance. Thus, the same 2D map of variance
is used for every differential image and without taking into account its temporal variability.
This variance is called 2D-variance in the following.

3. 1D-variance The variance is estimated for each differential image obtained following:
oA (k) = ([A(r,k)])e — [(A(r, k)] (2.16)

This method assumes a spatially homogeneous variance. Thus one scalar value is computed for
each differential image and the spatial variability is not taken into account. This variance is
called 1D-variance in the following.

A very last option would be to use one scalar value computed following the 1D-variance and use
this same value for all the differential images.

Note that in any of these cases, if the ADI is optimized by using a scaling factor -, the latter must
be taken into account in the computation of O'QA.

The ANDROMEDA strategy in practice

To summarize, the strategy adopted by ANDROMEDA to fulfill in practice its conceptual approach
is (i) to use angular differential imaging in order to both whiten the residual noise in the resulting
differential images and reveal a specific planetary signature, (ii) to use one reference PSF by imaging
the star itself to build the model and (iii) to estimate the variance in an empirical way, directly from
either the images or the differential images.

Note that the knowledge on the star PSF and on the noise variance can be regarded as a prior
knowledge to be added to constrain the resolution of the inverse problem. In other words, the precision
on these two parameters is not essential but could significantly increase the precision on the flux
estimation and lead to a better SNR of the point sources detected in the field of view.

2.1.3 Inversion method

The ANDROMEDA method, under the assumptions leading to Eq 2.8, has an analytically computable
solution which is extremely easy to implement numerically. This section describes the inversion method
and the output delivered by the ANDROMEDA method. It is the core of ANDROMEDA under the

scheme explained in details above.
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2.1.3.1 Maximizing the likelihood

At this point, for each differential image, originating from a couple indexed k (temporal index), one
differential image can be expressed following Eq. 2.9.

As the natural log of a function achieves its maximum value at the same point of the function
itself, we can use the log-likelihood which is more convenient when an exponentiation is involved in
the likelihood. The log-likelihood J to be minimized writes:

m(r, k;xo)|*
A(r)

J(rg,a) = In L(rp,a Z'A (2.17)

For each annular zone at a certain distance from the star, this log-likelihood is computed for each

differential image (sum over index k, from 1 couple to all the Ny couples found for this particular

distance from the star), and over the whole field of view (sum over all the pixels in the image field, r).
Within a constant additive C', the likelihood criterion can also be expressed as:

J(ro,a) = —— Z k]:)") s k;(‘;) kA)(r’ e (2.18)

k,r A

This form is easier to derivate so as to find its minimum values, which is the best estimator taking
into account the noise statistics. Maximizing the log-likelihood is equivalent to minimizing the sum
of squared residuals between the data (differential images) and the model, weighted by the variance
of the residual noise.

2.1.3.2 Estimating the flux a of the companion

To estimate the optimal flux value & for each possible initial position of the planet, we assume that

the initial position rq is fixed and we analytically calculate the minimum of the log-likelihood wrt a

8](1‘0,(1)

by solving = 0. We thus obtain the fundamental expression of the estimated flux:

o

Zk Zr m(r, k; I‘Q)A(I‘, k)/ojA(r>
>k 2 mA(r, kiro) /oA (r)

This equation shows that the estimated flux can be regarded as a cross-correlation between the model
of the planet signature and the differential image, weighted by the noise variance; the whole being
averaged on every differential image. The denominator is a normalization constant.

In the ANDROMEDA code, after computing this estimated flux for each distance to the star, the
results are combined in a single 2D map called flux map, in units of flux relative to the input reference
PSF (i.e., A companion with the same flux as the star would be identified with a unity flux). On this
flux map, each pixel gives the fluz of the point source, if the point source has this pizel position.

a(ro) =

(2.19)

2.1.3.3 Estimating the uncertainty o(a) on the flux map

In order to compute the uncertainty on the estimated flux, one way to proceed is to compute, for each
possible initial position, the variance of the estimated flux, o2[a(ro)], given by:

-1

sz  k;1o) /oA (r) (2.20)

ANDROMEDA thus provides a 2D-map called map of the standard deviation of the flux, in
units of flux relative to the input reference PSF (as for the flux map), which describes how the noise
propagates from the differential image toward the flux map. It thus gives the detection limit, that is
to say the faintest detectable companion flux as a function of the separation from the star with a 1o
signal to noise ratio. In other words each pixel of this map gives the 1o uncertainty on the estimated
flux a.
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2.1 ANDROMEDA'’s principle

2.1.3.4 Estimating the initial position ry of the companion

Once the flux a has been estimated, we re-inject this estimated value on the likelihood criterion J to
obtain another likelihood criterion .J/, which therefore only depends on the initial position rq:

ke m(r, kyro) Alr, k) / o4 (r, )

J'(te) = J(To, d(rs)) = N TRV A I (2.21)

C being a constant. The criterion J'(ry) is a measure of the likelihood that there is a point source at
position rg on the first image of the sequence. This formula is easily interpretable by saying that the
planet has a high probability of being found at the position where the correlation between the model
and the differential image is the closest to one.

In practice J'(rg) is computed for each possible initial position of the planet on a grid chosen as
the original pixel grid of the images. The results are combined in a single 2D-map called likelihood
map. On this likelihood map, higher values are at positions where the presence of a companion is
more probable.

2.1.3.5 Link between the likelihood and the SNR

Notably, we can highlight that the log-likelihood is simply the square of the signal-to-noise ratio (SNR)
defined as SNR = a/o(a):
/ &(ro) ? . 2

T (x) (U[& (ro)]) SNR (2.22)
This means that maximizing the likelihood map is equivalent to maximizing the SNR map to find
the most-likely position of a potential companion. Also, thresholding the SNR to zero is equivalent
to computing a(rg) under the positivity constraint. The latter equation shows that the log-likelihood
directly incorporates this positivity constraint.

In summary, the likelihood and the SNR maps contain the same information, but we choose to
use the SNR map to perform the detection since it directly yields the statistical significance of each
detection. Indeed, in the Gaussian framework, the SNR is linked with a probability of false alarm
(PFA) which assesses whether a signal is a true planetary signal. Thus, the SNR naturally writes:

a(ro) _ X Xopmir, kixo) A(r k) /04 (x)
olarol /5 Sem2(r, kixo) /oR (x)

This is a 2D-map in sigma-units, in which there is a direct connection between PFA and threshold:
thresholding the SNR map automatically yields to every potential planetary signals corresponding to the
given confidence level. In the case the SNR has a normal distribution of null mean and unit variance
A (p = 0,0 = 1) (the normal distribution is centered and standardized), then when no planetary
companion is present (hypothesis Hp) the PFA as a function of the threshold 7 writes:

SNR(ro) = (2.23)

T

PFA(7) =05 x [1 = erf(5) (2.24)

Where erf is the Gauss error function defined as erf(x) = % I exp_t2 dt. Thus, a threshold
7 = 50 will reveal only point source signals having a probability of presence of more than 99.9968%

(corresponding to a PFA = 2.98¢77).
2.1.3.6 Positivity constraint on the estimated flux

We note here that it is possible to improve the estimator J'(rg) by constraining the estimated flux to be
positive. This optional positivity constraint arises from the fact that the value of a(rp) obtained from
Eq. 2.19 is not necessarily positive, whereas astrophysical fluxes are. Since a(rg) is a one-dimensional
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optimization, the optimal flux subject to the positivity constraint is simply Gpos(ro) = max {a(rg),0}.
Under the positivity constraint, the criterion J'(rg) becomes:

J'(ro) if a(rg) >0
0 if a(rg) <0

J"(ro) £ J[ro, dpos(ro)] = { , (2.25)

where a(rg) is given by Eq. 2.19 and J'(rg) by Eq. 2.21. In other words, applying the positivity con-
straint is equivalent to thresholding the SNR map to the positive values (at 1) and thus it decreases
the number of false detections.

Fig. 2.5 shows the expected shape of a planetary signal in the resulting flux and SNR maps, either
with or without the positivity constraint. The typical shape of this planetary pattern is oval, having its
major axis along the radial direction (whose size is linked with the d,,;, constraint chosen) and having
its perpendicular minor-axis of typical length one element resolution (1A/D). When the positivity
constraint is not set, this pattern is surrounded by two negative lobes in the azimuthal direction of
typically half the height of the main positive peak, due to the ADI process (the negative part of the
planet signature in the differential images, see Fig. 2.4).

03 0,25

Figure 2.5 — Typical planetary pattern expected either in the flux map and in the SNR map, without (left)
or with (right) the positivity constraint. These figures have been obtained by cross-correlating the planetary
signature at Fig. 2.4 where d,,;,, is set to 1A/D along the x-axis. Colors have been inverted: Black is high values
and white is low values. The resulting planetary pattern is indeed oval, having its major axis perpendicular to
the PSF shift axis (here the x-axis).

2.1.3.7 Conclusion on ANDROMEDA'’s principle

At the beginning of my PhD, practical solutions had been brought to make the ANDROMEDA concept
feasible and to numerically implement this method. The output provided by ANDROMEDA are four
2D images: a SNR map, a flux map, a likelihood map and a standard deviation of the flux map.

In the ideal case were the model perfectly matches the data and that the theoretical concept works,
the ANDROMEDA method aims to:

e Provide a SNR map having a statistical significance that is to say in which each value is directly
linked with a probability of false alarm;

o Enable the use of a systematic and objective detection criterion based on this false alarm prob-
ability;

e Estimate the flux directly, without intensive post-process of the output images;
o Estimate the position of the companion (where the probability of presence is higher);

o Estimate the detection limit along with the flux estimation.
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2.2 Previous work on the ANDROMEDA method

The basis of ANDROMEDA have been implemented in the IDL computer programming language
(Exelis Visual Information Solutions, Boulder, Colorado). Most of the work achieved to numerically
implement ANDROMEDA has been laid out by A. Cornia during his PhD at Onera, whose defense
took place in 2010 at the Paris 7 university (see his PhD thesis: Cornia, 2010).

In particular, during his PhD thesis, A. Cornia studied the effect of the main foreseen sources of
error on the ANDROMEDA capabilities. He also run ANDROMEDA on simulated data to obtain
the best user-parameter set under which ANDROMEDA provides the best performance. These data
have been simulated to be the most alike to the one expected from SPHERE at the time. My work
on ANDROMEDA starts from the conclusions he obtained from his work and I did not do such
a parametric study since my work focused on real data application and adaptation. This section
describes the SPHERE-like simulated data (Sect. 2.2.1), the conclusions drawn out from his study
of the main sources of errors (Sect. 2.2.2) and his study of the user-defined parameters (Sect. 2.2.3).
Note that in this section, I will only evoke the work done in ADI-mode although A. Cornia looked
into the case of SDI combined with ADI mode, hereafter denoted SADI.

2.2.1 Description of the simulated data used to test the method

These data have been simulated for the purpose of testing image processing methods on SPHERE-
like data, before the instrument was commissioned at the VLT. These simulated data were used by
A. Cornia to refine the first versions of ANDROMEDA (Cornia, 2010).

These simulations made use of the Code for Adaptive Optics System (CAOS, Carbillet et al.,
2008), under conditions from the SPHERE technical report: it includes variations of the AO system
correction, variations of the seeing, variations of the wind speed and direction, and variations of
the quasi-static aberrations position during the observation (by simulating the rotation and motion
of the main contributors to the non-common path aberrations of the instrument). The simulated
coronagraph is an APLC.

In the end, the simulated data cube is constituted of 144 images having the properties gathered in
Tab. 2.1.

Property Value
Instrument SPHERE

ESO program 1D Simulations using CAOS
Observation date -
Atmospheric conditions Good (seeing 0.85 + 0.15)
Pupil tracking ON

High contrast APLC optimized in H-band
Wavelength of observation H2-band: 1.587um
Sensor pixel scale 12.25 mas/px

Star magnitude GO at 10pc

Image size 536 x 536 pixels
Number of images 144

Total field rotation 120°; (—60.0° — 60.0°)
Offset angle wrt true North 104.84°

DIT image 100 sec

Total integration time 4h

Table 2.1 — Table summarizing the characteristics of the simulated SPHERE-like data, used to test AN-
DROMEDA.

Twelve synthetic planets have been injected in this data set, at three different separations from
the star (0.2”, 0.5”and 1”), at four different azimuthal positions (90° from one row to another) and
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having a star-planet contrast of 1076 (see Fig. 2.6). The effect of the smearing of the companions in
each frame is ignored here.

Figure 2.6 — Simulated data used to test ANDROMEDA, similar to the one expected from SPHERE. Left:
One reduced image of the temporal cube. Right: Location of the twelve synthetic planets injected. Colors are
inverted.

2.2.2 Theoretical study of the potential sources of errors

Four kinds of sources of error have been thoroughly analyzed thanks to the simulated data. These
sources of errors are not dependent upon the user-defined parameters but only on the data properties.
I quickly review these different sources A. Cornia has studied and give the main conclusions from his
study. Only the effects on the estimated flux are considered in his study. For more details, please
refer to his PhD manuscript: Cornia (2010).

Errors due to a bad centering of the images The first aspect is to assess the effect of a bad
centering of the images. As expected, the more the frames are bad-centered, the greater the error.
For instance, if the center deviated from the true one of half a pixel, the error on the flux estimation
is of 2.7%. Note that this effect is constant whatever the distance to the star.

Errors due the smearing of the companion An other aspect studied is if some smearing appears
for the companions, due to the non-instantaneous exposure time. As expected since the model does
not take into account the smearing of the companion, the more smearing, the greater the error on
the flux estimation. Obviously, this effect depends on the distance of the planetary companion to the
star: the further, the more the planetary signal is smeared. This error also depends on the speed of
the field rotation during the exposure: the closer to the meridian, the more smearing and thus the
greater the error. For instance, for a typical exposure time of 20sec for a star at a declination of 45°,
the error on the flux estimation is of less than 0.5% for a companion at 1.5”(averaged on the whole
image cube).

Errors due to the level of photon noise in the images As expected, the fainter the signal the
greater the error and the brighter the star, the greater the error. Since the star is centered in the
frames, this error also depends on the distance of the companion to the star. In the case of a star
flux of 2.25¢* phot/s/m? and a star-planet contrast of 10°, the photon noise level implies an error of
about 5% on the flux estimation of a companion at a separation of 1.25”from the star (assuming there
is only photon noise in the images) for the given DIT (100 sec here).

Errors due to the level of speckle noise residuals For the error due to the speckle noise, since
the speckle noise level varies as a function of the distance to the star (as it follows a MR distribution,
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see Sect. 1.2.3), it depends on the planet separation. Also, as expected, the fainter the signal the
greater the error. In the previous case (contrast of 10%), the speckle noise level implies an error on the
flux estimation from 8% at large separation (1”), to 40% at short separation (0.2").

As a conclusion, the main source of error in the images is given by the speckle noise which remains
in the differential images. In work I led during my PhD, this will be indeed of main importance.

2.2.3 Optimal set of user-parameters derived from simulated data application

On the original version of ANDROMEDA, seven user-parameters can be defined. I quickly review
these user-parameters along with their dependence and their impact on the ANDROMEDA output. 1
then summarize the optimal set of user-parameters A. Cornia retrieved from his studies, which aimed
at optimizing the flux estimation accuracy.

Size of the reference PSF window Npgr To choose the size of the reference PSF window, one
has to make a trade off between the computing time (which decreases with a smaller window) and the
flux estimation accuracy (which increases for a larger window since the more information about the
flux, the better the estimated contrast). The size of the PSF window is given in pixel whereas the total
energy in the window depends on the wavelength of observation. In the case of the simulated data,
in H-band, a good compromise is to use a 32 x 32 pixels window within which most of the reference
PSF flux is enclosed.

Minimum separation constraint for the ADI §,,;, As expected, the smaller, the better the
speckle subtraction, and the most accurate the MLE. A §,,;, of 0.5A/D seems appropriate for each
variation of the other user-defined parameters. This parameter is critical since it is the one responsible
for how much of the star PSF is removed in the differential images, that is to say of how much
decorrelated residuals remain from the speckle noise.

Thickness of the annuli in which the minimum separation constraint applies d, This
parameter has to be set as a trade off between the computing time (which decreases with a greater
thickness) vs estimated flux accuracy (which increases for thinner annuli). However this is not a
critical parameter and a thickness of one resolution element, d, = 1\/D, proved efficient enough while
not too long to be computed.

Optimization method used for the ADI subtraction Either optimization methods to compute
the scaling factor (by total ratio or least-square fit) provide similar results. However, it is better to use
the least-square value of the scaling factor in case the sum of the residuals in the differential images
is close to zero. The latter case mostly happens if an SDI process is performed before the ADI, as it
was foreseen for ANDROMEDA in order to apply it on DBI data obtained with SPHERE-IRDIS.

Optimization to subtraction area ratio R4 The results are hardly affected by this parameter.
However, on simulated data, choosing R4 = 1 seems to be the best option, which yields to both lower
artifacts and higher true signals.

Type of variance for the likelihood computation On simulated data, the 3D-variance (or
spatially inhomogeneous variance) provides better results in terms of flux estimation and less residuals
are found in the final output map (as in Mugnier et al., 2009). However, in real images, the quasi-static
speckles are expected to be the dominant noise and the use of this 3D-variance might be inadequate.
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Precision of the subpixel shift to build the planet signature model In order to reach a
higher SNR and a good flux estimation of the potential planetary companions, the model of the planet
signature must correspond to the true angular distance. To do so, the reference PSF is shifted by a
fraction of a pixel, given by PSFyp;f;. This angular distance is directly computed from the parallactic
angles given in input to ANDROMEDA. The precision by which the reference PSF is shifted is a
user-defined parameter. Experiences on simulated data showed that a shift of 1/50 is enough to have
an error smaller than 0.001% on the estimated flux which is negligible compared to the other sources
of error. Note that the companion is searched on a grid of one pixel pitch (see Eq. 2.5 of the MLE).
This PSFp; ¢ parameter is only used to build the model.

Positivity constraint As expected theoretically, adding the positivity constraint to compute the
flux increases the detectability and the flux estimation accuracy.

Conclusion & summary To conclude, the most influential of these seven parameters are the
Omin constraint and the size of the reference PSF window N,sy. Tab. 2.2 summarizes the user-defined
parameters, which optimize the flux estimation accuracy wrt the injected flux, set as default to run
ANDROMEDA.

Parameter Definition Units Value Impact
Npsy Size of the reference PSF window pixels 32 x 32 high
PSFpift Subpixel shift precision for the planet signature model pixels 1/50 low
ADI method Optimization method used for ADI # LS low
Omin Minimum separation to build the differential images A/D 0.5 high
dr Width of annuli on which ADI is performed A/D 1 low
Ra Ratio optimization to subtraction areas - 2 low
oA Type of residuals variance used - 3D low
Positivity Positivity constraint on the log-likelihood - ON high

Table 2.2 — Summary of the user-defined parameters set as default in ANDROMEDA and their respective
significance, after studying their impact on simulated data. Results are from A. Cornia PhD thesis, Cornia
(2010).

I also mention here that the typical area where point sources are looked for in the images are
defined between the IWW A which has to be given as an input and the OW A which depends on the
chosen size of the reference PSF, Npgr and on the thickness of the annuli d, following: OWA =
Nimg/2 — Npsr/2 — (dr x 2 x oversampling) in pixels, where Njy,q is the size of the images.

The choices made about both the practical and implementation solutions that are summarized above,
are the results of thorough work achieved during the PhD of Dr. A. Cornia. The corresponding justifi-
cations, including a tolerance analysis to the choices made, can be found in his PhD thesis, submitted
in 2010 - Chap 4. As a result, ANDROMEDA could detect on realistic SPHERE-like simulated data a
companion of 10° contrast to the star, at a separation of 0.5". For these data, the use of a 3D-variance
maps and of the positivity constraint were critical to obtain such a result.

During my PhD, I reviewed each of these user-defined parameters in the framework of the applica-
tion of ANDROMEDA on real data, as it is detailed in the Chap. 4. However some parameters should
not change on real data, such as the precision of the subpixel shift to build the planet signature model.
I thus assumed in the following that the precision of the subpixel shift to build the planet signature
model is set to PSFgp; s = 1/50 pixel.
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2.2 Previous work on the ANDROMEDA method

Summary of the original version of ANDROMEDA

As mentioned above, my work starts with the version of ANDROMEDA described in this chapter.
Fig. 2.7 is a schematic view of the different steps performed by the ANDROMEDA method as it was
originally implemented, from the required input to the useful output it provides.

In the next section, I will apply the ANDROMEDA code as it is on real data from the NaCo
instrument and list the unexpected obstacles which arose. This will give hints on the strategy chosen
to make ANDROMEDA operational on real data in a systematic way.

I also mention here that the final chapter of A. Cornia’s PhD thesis (Cornia, 2010, Chap. 5) present
preliminary results of ANDROMEDA applied on real data. As this work was very preliminary, in the
next section, I will start to work using the original version of the software as described above. Note
that two conclusions arose from his preliminary real data application: (i) the 2D-variance map should
be used when bad pixels remain in the reduced images, and (ii) a least-square ADI optimization seems
more robust in case many point sources are present in the field of view.
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Figure 2.7 — Diagram describing the ANDROMEDA’s principle from the input to its useful output.
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2.3 Application of ANDROMEDA on real data as it is

From these theoretical basis, the goal is to make ANDROMEDA operational on real data. In this
section I present the application of ANDROMEDA as it is described in the previous sections, on real
data taken with the VLT /NaCo instrument. The main expected problem is that the model of noise
chosen in the post-ADI data (white, Gaussian and non-stationary) might not be completely realistic
which would prevent ANDROMEDA to bring up point source signals in the final output.

2.3.1 Description of the real data used to apply ANDROMEDA

The real data used to test ANDROMEDA are constituted of a bright star surrounded by numerous
background stars that are natural point sources to be detected by the algorithm. Synthetic companions
were added inside the images in order to better quantify the ability of ANDROMEDA to accurately
detect and characterize the point sources in the images.

These data have been collected as part of the NaCo Large Program survey (NaCo-LP, PI: J.-L.
Beuzit), whose goal was to analyze the occurrence of giant planets and brown dwarf companions at
wide orbits (10-2000 AU) around 110 young, solar-type stars (Chauvin et al., 2015). This particular
data cube was used as a test case in the framework of the NaCo-LP program, since it presents a nice
crowded field and the saturated images were of good quality.

Target star properties The data collected are sequences of saturated exposures (there is no coro-
nagraph in that setup) taken in pupil tracking mode. The chosen star is TYC-8979-1683-1 (also called
CD-62-657), observed in 2011 on May the 5* within the ESO program 184.C-0567(D). This star is a
GT star of 17 Myr (V = 9.36, H = 7.47) located at 75.6 pc from the Sun. The observation was made
in H-band (filter centered around 1.66um) and stored in a 1024 x 1024 pixel frame (S13 camera inside
the CONICA imager having a field of view of 13.6” x13.6"), the pixel scale being 13.22 mas/pixel.

Observation conditions The star was observed during a total integration time of 36 min (giving
11 cubes of 29 frames each with an exposure time of 6.8 sec) and for a total field rotation of 18.5°.
Seeing conditions were good but variable (seeing of 0.57”to 1.15”; coherence time of 4-9 ms; Strehl
ratio of the reference PSFs: 21% and 26%). The empirical PSF core FWHM is estimated to be of
4.75 £+ 0.05 pixels. The target star was observed close to meridian crossing, the PSF core is saturated
inside a radius of 10-15 pixels (0.13”-0.20"), and integration times are set short enough so that the
angular smear of potential companions is small, especially in the outer part of the field.

Data reduction: science frames The data reduction of saturated exposures included sky subtrac-
tion (sky frame constructed from the median combination of exposures obtained at the five different
jitter positions: on minute timescales, the image center is moved by 43 arcsec in x or y on the detector
field), flat fielding, bad pixels correction, and rejection of poor-quality exposures. The location of the
star center on each frame is determined by fitting the unsaturated portion of the saturated PSF with
a 2D Moffat function. Individual frames are then shifted and registered to a common image center in
between four pixels. The first reduced image constituting the final data cube is shown in Fig. 2.8.

Data reduction: reference PSF A short series of exposures with the unsaturated star was taken
before and after the main saturated sequence in order to build the reference PSF required as an input
for ANDROMEDA. These unsaturated sequences were acquired with an exposure time of 1.7927
seconds, using a neutral density filter of 1.19 &£ 0.05% transmission factor.

Data reduction: parallactic angles The parallactic angle associated with each frame of saturated
images is computed from the observing time (converted from UTC to LST), assuming that individual
exposures are recorded at constant time intervals within each data cube (time information is available
only for the beginning and end of each data cube).
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Summary of the data-set properties All the input needed by ANDROMEDA are included in
this data set: reduced images, reference PSF, parallactic angles and wavelength of observation. For
better readability, Tab. 2.3 below summarizes the main properties of the dataset to be processed using

ANDROMEDA.

Property Value

Instrument VLT /NaCo - S13

ESO ID program 184.C-0567(D)
Observation date 2011/05/05
Atmospheric conditions Average (seeing: 0.57 "to 1.15 ")
Pupil tracking ON

High contrast Saturated exposure
Wavelength of observation H-band: 1.66um

Sensor pixel scale 13.22 mas/px
Resolution 1\/D = 4.75 £ 0.05 pixels
Star magnitude 7.47 (H)

Image size 600 x 600pizels
Number of images 296

Total field rotation 18.52°; (—22.2470 — —3.72198°)
Offset angle wrt true North 90.4°

DIT image 6.8 sec

Total integration time 36 min

Neutral density transmission for the reference PSF 1.19 £+ 0.05%

DIT reference PSF 1.7927 sec

Table 2.3 — Table summarizing the characteristics of the observation of the star TYC-8979-1683-1 with NaCo-
S13, used to test ANDROMEDA.

Introduction of synthetic companions To better quantify and optimize the detection perfor-
mance of ANDROMEDA using NaCo data, 20 additional synthetic substellar companions have been
injected in the image cube. The signal of each synthetic companion was modeled using the unsatu-
rated PSF image and inserted in the individual reduced frames, taking into account the field rotation
that occurred between the exposures (as in Chauvin et al., 2012). In other words, the reference PSF is
normalized then multiplied by the desired contrast and finally injected in each science frames, knowing
the parallactic angles variation between them.

The twenty synthetic companions were introduced along five radial directions of respective position
angles of 299.6°, 329.6°, 359.6°, 29.6° and 59.6° on the first image and at five angular separations of
0.26”, 0.53”, 1.06”, and 2.12”. The synthetic companions of the same position angle are of equal flux,
each with peak intensities corresponding to magnitude differences of respectively 12.85, 12.10, 11.35,
10.60, and 9.85 for the five position angles in increasing order. The location of these 20 introduced
synthetic companions is shown on Fig. 2.8.

2.3.2 Output provided by ANDROMEDA

In order to run ANDROMEDA, several user-defined parameters have to be carefully chosen. Tab. 2.4
summarizes the values chosen for this specific case, along with the previous section considerations
(from ANDROMEDA application on simulated data and preliminary real NaCo data application).
The resulting four 2D-maps provided by the method are shown at Fig. 2.10. First, the likelihood
map and the SNR map are the same but the detected signals are more visible in the SNR map as
foreseen by its definition (in the following I will not show the likelihood map anymore since it contains
the same information). Also the flux map is very similar to the SNR map provided, as expected since
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® Magnitud

Figure 2.8 — One cosmetically reduced image of the data cube of the star TYC-8979-1683-1 obtained with NaCo
(600 x 600 pixels, linear scale). The position of the injected synthetic planets is indicated with colored dots on
the green circles.

User-defined parameter Used value
Minimum distance for the ADI, §,in 0.5 /D
Width of the annuli for the ADI, dr 1.0 A/D
Optimization method for the ADI No optimization
Size of the reference PSF window, N, s 32 x 32 pixels
Precision of the reference PSF shift, PSFyp; 1/50 pixel
Variance of the residual noise, oa 3D-variance
Positivity constraint ON

Table 2.4 — User-defined parameter values chosen to run ANDROMEDA on the TYC-8979-1683-1 VLT /NaCo
data.

they are linked via Eq. 2.23. From now on only the SNR map will be used for the detection and
position retrieval and the flux map for the photometry retrieval.

Figure 2.9 — Output provided by ANDROMEDA, using the parameters at Tab. 2.4. From left to right: SNR
map, likelihood map, flux map and map of the standard deviation of the flux (the scales are logarithmic, except
for the map of the standard deviation of the flux, which is linear; all the units are arbitrary except the SNR
map which is in sigma unit).

Some patterns, having the expected oval shape along the radial direction (see Fig. 2.5) are indeed
present in the SNR map and easily visible. These results are promising but close to the star (below
1), it is impossible to detect companions due to the high level of residuals.
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2.3.3 Detected problems affecting ANDROMEDA'’s capabilities on real data

The Fig. 2.10 shows the SNR map obtained in the same conditions as the one gathered at Tab. 2.4
but with different ADI optimization and using either the 3D or 2D-variance map.
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Figure 2.10 — SNR maps provided by ANDROMEDA using the parameters gathered in Tab. 2.4. From left
to right: Without ADI optimization, with the total ration (TR) optimization, with the least-square (LS)
optimization. Top: using the 3D-variance map. Bottom: using the 2D-variance map. The scale is logarithmic
(in sigma units).

The visible detections in the 2D-variance maps have a twice higher SNR than the 3D-variance.
Moreover, more residual structures are visible close to the star (at less than 0.5”) whereas this is a
region of strong interest. With these data, assuming that the noise in the images is mainly made of
photon and detector noise is an inadequate hypothesis.

Using the optimization of the ADI leads to less residuals in the region between 0.5”to 1”but higher
residuals closer to the star. The diffuse structure close to the star, indicated by a green arrow on
Fig. 2.10, is along the wind direction (as visible on the raw images) and has the typical shape that the
wind induces in the images®. This means that the ADI optimization is efficient since this wind effect
is preserved in the resulting map and is not being averaged as for the non-optimized subtraction. The
optimization procedure (either using a total ratio or a least-square fit to compute the scaling factor
7) is essential to scrutinize regions closer to the star.

The main difference between the total ratio and least-square optimization is at large separation
where the least-square induces intense smooth structures in the SNR map (from about 3”). Indeed, in
this region, the noise is made of photon and detector noise so the pixel value reach close-to-zero values.
Thus the scaling factor computed by total-ratio diverges at large separation (as shown on Fig. 2.11-
Left). For the same reason, the scaling factor computed by least-square slowly decreases because the
denominator of Eq. 2.12 increases when the detector noise dominates (see Fig. 2.11-Right). A scaling
factor smaller than one in this region will induce a flux offset in the differential image, which remains

8This typical shape is for instance visible on raw SPHERE data as shown in Chap. 6 and on SPHERE-like simulated
data, as shown in Chap. 9.1 which reproduces this wind effect on simulation
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in the resulting SNR map.
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Figure 2.11 — Mean value of the scaling factor as a function of the distance to the star. Left: Using the total
ratio computation of the scaling factor. Right: Using the least-square computation of the gamma.

In any case, the performance is extremely limited by the starlight residuals preventing from de-
tecting companions at close separation. This is even more visible when thresholding the SNR map by
a constant 50 threshold: The three maps shown at Fig. 2.12 are the thresholded SNR maps obtained
using the 2D-variance map and the three different ADI optimization.
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Figure 2.12 — SNR maps thresholded at 50, provided by ANDROMEDA using the parameters gathered in
Tab. 2.4, using a empirical 2D-variance map. From left to right: without ADI optimization, with a total ratio
optimization of the ADI and with a least-square optimization. Colors are inverted: white corresponds to zero
and black to one.

On Fig. 2.12, the residuals are higher below 1”, where the quasi-static speckles are dominant, and
from about 3”, where the photon and detector noise are dominant. However, in between these two
regions a low amount of artifact remains above the 5o threshold but it is still not enough to perform
a proper detection.

2.3.4 Conclusion on ANDROMEDA'’s original capabilities

In spite of a rigorous and careful implementation, the advantages ANDROMEDA should have brought
by its principle are not carried out when applying the method on real data. The major problem being
that the model of residual noise (which is equivalent to the error made on the model) does not take
into account the presence of artifacts in the real data, which is a common issue in inverse problem
solving. As a consequence we lose the main features of ANDROMEDA:

e It it impossible to perform an automatic detection: in the SNR map, too many spurious peaks
appear above threshold whereas most of them are false alarms;
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o It is impossible to detect companions close to the star (less than 1”);
o It is impossible to detect faint companions (less than 11 mag of contrast);

In particular, the inhomogeneities preventing from thresholding the SNR map are under the shape of
low spatial frequencies in the images and are function of the separation to the star.

The next chapter describes the steps added to the original software described in this chapter to
bypass these obstacles and make ANDROMEDA operational on real data according to the specific
properties of the method itemized at Sect. 2.1.3.7.

I mention here that preliminary applications on real data have also been conducted by A. Eggen-
berger, whose work was published in a poster at the In the Spirit of Lyot, 2010 conference (Eggenberger
et al., 2010). In her work, limits had been identified and first tracks evoked at the beginning of my
PhD. However, a careful implementation as well as an in-depth study remained to be done.
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Chapter 3

ANDROMEDA: making it operational
to process real data
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In this chapter I describe the adaptations made to the ANDROMEDA method in order to make
it an operational pipeline able to process on-sky data.

In the following, I first describe the pre-processing and post-processing stages implemented in
ANDROMEDA which enable the method to offer the promised features described in the previous
chapter (Sect. 3.1). I then revisit each step of the algorithm in order to make sure that they are fully
adapted to the real data characteristics (Sect. 3.2). Once ANDROMEDA provides exploitable outputs,
I developed a procedure to make use of these outputs, in line with the core of the algorithm (Sect. 3.3).
This detection module performs an extraction of the point sources present in the field of view and
provides additional reliability criteria. These three steps made the ANDROMEDA method a fully
operational pipeline which, from the reduced data cube, provides valuable astrophysical information.

The improvements I brought to the ANDROMEDA method are summarized in the publication
Cantalloube et al. (2015) which can be found in the appendix, App. A. In this chapter I present these
improvements in details by describing the tests performed and the interpretation of the results.
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3.1 Stages required to make ANDROMEDA operational

As shown at the previous chapter, applying ANDROMEDA as it was at the beginning of my PhD
on real data does not provide the outputs expected from its theoretical development. The first step
was to understand the origins of these differences in order to find adapted solutions to bypass these
obstacles. Here, the two main goals are (1) to enable the detection of companions at close separation
to the star and (2) to enable the use of a constant threshold throughout the whole SNR map to
perform an automatic detection. Once these goals are reached and ANDROMEDA is operational, 1
will go through fine tuning of the whole algorithm in the next section.

To illustrate this section, I will use the TYC-8979-1683-1 data from VLT/NaCo (described in
Sect. 2.3.1).

3.1.1 Removing the low spatial frequencies in the reduced images

The SNR map provided by ANDROMEDA shows large scale inhomogeneities which prevent to detect
companions, mostly at close separation.

These inhomogeneities originate from slowly varying low frequencies in the images that are not
subtracted during the ADI process since they have significantly evolved between the two frames
constituting the couple k to be subtracted. This effect is particularly problematic close to the star
since, in order to respect the condition imposed by 0, the time delay between the two images
to be subtracted is higher. Consequently the difference between the two frames will show higher
inhomogeneities, making the detection particularly difficult at close separation, as observed in the
SNR map.

These low frequencies may arise from post-adaptive optics residual turbulence: temporal variation
of the strength of the wind and/or of its direction. The typical structures revealed in the SNR map on
NaCo data (see Fig. 2.10-Right) indeed correspond to structures due to the wind direction and speed,
as shown in both simulation of high contrast images (see Chap. 9.1) and in the SPHERE images (see
Chap. 6).

Because these low frequencies are not included in the model and not removed through ADI, they
must be eliminated beforehand. A pre-processing step has thus been added to the ANDROMEDA
method in order to get rid of these disturbing structures.

3.1.1.1 Implementation of a high-pass Fourier filtering

The goal is to remove as much as possible these low spatial frequency artifacts while preserving as
much as possible the scientific signal. As a point source has a large spectrum, a simple spatial filtering
is efficient to isolate these two contributions.

The proposed solution is to perform a Fourier high-pass filtering of the reduced images: a window
of zero value at low frequency and of unit value at high frequency is thus multiplied to the Fourier
transform of each reduced image. The window chosen to perform this filtering is built from a Hann
profile, for three major reasons:

- It is linear;

- Its slope is quite steep so there are not much residuals of lower frequency than the chosen cutoff;

- It is continuous so as to avoid the Gibbs phenomenon (or ringing artifacts, due to discontinuous
edges provoking oscillations in the image when going from real to Fourier space, back to real space)®.

The profile of this Hann window follows the equation:

f
fcutoff

Filternighpass(f) = 0.5 — 0.5 cos(m (3.1)

Note that another kind of window, such as Planck-taper window with a rather low tapering parameter, could have
been chosen, as long as it respects the three conditions above. However the exact shape of the window is not critical and
the usual Hann window used here as a classical solution to these three conditions.
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Where feutoff = F.fNyquist is the chosen cutoff frequency (see Fig. 3.3). F'is the filtering fraction, that
is to say the amount of low spatial frequencies removed wrt to the total spatial frequencies constituting
the images, defined by fnyquist; the frequency at Nyquist.

Due to the optical cutoff, the astronomical signal stops at the maximum frequency D/\ (with
D the diameter of the entrance pupil and A the wavelength of observation), which is defined by the
oversampling factor ovs along D/X = fyyquist X 1/ovs. In order not to remove all the astronomical
signal, the filtering fraction must be such that F' < 1/owvs.

A filtering fraction of 1 will not fully removed all the frequencies in the images due to the Hann
window shape (see Fig. 3.4, above dash-dotted blue line): remaining frequencies are left since the slope
is not perfectly vertical (see its profile at Fig. 3.3).
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Figure 3.1 — 1-D profile of the Hann window used for the Fourier high-pass filtering. The filtering fraction has
been set to F' = 1/3 in this example.

3.1.1.2 High-pass filtered images

The Fig. 3.2a shows one reduced image of the NaCo TYC-8979-1683-1 science cube, with or without
a spatial high-pass filtering. As expected, the filtering, even with a low filtering fraction, removes the
smooth stellar halo surrounding the star and reveals the obvious bright point sources in the image.
Obviously, removing more low spatial frequencies makes the filtered image smoother, revealing more
and more high frequency signals. Fig. 3.2b shows the corresponding Power Spectral density whose
central part is removed / reduced by the 2D-Hann window.

For more readability, the Fig. 3.3 shows the mean radial profile of the PSD as a function of the
distance to the star, according to different filtering fraction. The zero frequency (the mean in the
images) is removed while other low frequencies are significantly reduced.

3.1.1.3 Energy loss of the companion signal induced by the pre-filtering

The filtering fraction F' has to be chosen carefully in order to remove efficiently the low frequencies
while preserving the signal in the images. For a point source, such as a planetary companion, the
energy loss due to the filtering can be quantified by filtering an Airy pattern:

f (airyfiltered)2
loss = 1 — : 3.2
% AT Ynon— filtered
b J( )? 32

The Fig. 3.4 shows the energy loss as a function of the filtering fraction, for an Airy pattern sampled
at a typical oversampling factor of 1.6 (corresponding to the oversampling of NaCo in H-band, used
for the TYC-8979-1683-1 data), defined on a 64 x 64 pixels window. A filtering of one fourth of the
low spatial frequencies thus leads to a loss of 36%.
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ANDROMEDA: making it operational to process real data

(a) : First reduced image of the star TYC-8979-1683-1 by Naco. From left to right: Without filtering, with
filtering F' = 1/8, with filtering F' = 1/4 and with filtering F' = 1/2.

(b) : Power spectral density (PSD) of the first reduced image of the star TYC-8979-1683-1 by Naco. From left
to right: Without filtering, with filtering F = 1/8, F = 1/4 and F = 1/2. The color scale is logarithmic.

Figure 3.2 — Images and corresponding power spectral density (PSD) of the first reduced image of the star
TYC-8979-1683-1 data cube, with different filtering fraction values.
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Figure 3.3 — Radial profiles of the power spectral density (PSD) of the first reduced image of the cube, with or
without high-pass filtering. On the x-axis, the sampling Nyquist frequency is at 300 (half the size of the image
used to produce this graph). Using an oversampling factor of 1.6, the signal cutoff frequency (fnyquist/0vS)
is indicated by the black dashed line. Above this frequency, the PSD reveals the level of white noise. Various
filtering at frequencies F' X fnyquist are indicated by the colored dotted lines.
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Figure 3.4 — Energy loss of a planetary signal as a function of the filtering fraction, when filtering an Airy pattern
sampled at a typical oversampling factor of 1.6 and defined on a 64 x 64 pixels grid. The red dotted line shows
the lowest filtering fraction possible in this specific case (F,in = 1/20). The green dotted line shows a typical
filtering fraction F' = 1/4, leading to an energy loss of about 36% in this case. Above the blue dotted-dashed
line, the remaining frequencies that cannot be removed due to the Hann filter profile (about 4% of the energy
remains).

3.1.1.4 Consequences on ANDROMEDA'’s principle

A consequence of this filtering is that the differential images are no longer described by Eq. 2.13 but
by:
F(A(r,k); F) = F(ix(r, t1); F) — % 7 (i (r, t2); F) (3.3)

where .% (z; F') is the filtering function at a filtering fraction F.
Thus its model, defined at Eq. 2.3, must be modified in line with this filtering process:

F(A(r); F) =a.7(m(r,k;ro); F) + Z (na(r); F) (3.4)

Under the hypothesis Hy (no companion is present in the field), there are only residuals in the
differential images constituted of low frequency artifacts and noise. The low frequency artifacts are
different from the noise and they introduce:

-A non-null mean,

-Non-Gaussian residuals,

-A pixel-to-pixel dependence.

Thus, removing the low frequency artifacts helps improving these three aspects. The high-pass filtering
proposed in this section decreases the pixel to pixel correlation within the images, making the pixels
more independent and randomly distributed with a mean of 0 (as the null spatial frequency is removed).
As a consequence, the filtering helps our model of noise to be more consistent with the real residuals
distribution and thus leads to a more correct inversion.

In other words, without the pre-filtering, in each differential annulus, there is a flux offset due to
the low frequency artifacts. Thus, within each of these annuli, the pixel distribution is approximately
Gaussian but not centered around the same value. When computing the MLE via Eq. 2.5, the sum of
the images will not be centered on zero and the Gaussian distribution greatly affected by this effect.
For ANDROMEDA to work, it is needed to make the residuals in the differential images independent
and centered on zero.. The Fig. 3.5 shows the histogram of the residual noise in the differential image
from the simulated data, at different distances from the star, either with or without high-pass filtering
of the image (using F' = 1/4). Once filtered, the values are indeed centered around zero.

Under the hypothesis H; (a companion is present in the field), the model of the planetary signal
m(r, k;ro) must be filtered the same way the images are. Through Eq. 3.4, it means that the reference
PSF used to build the model must be filtered the same way. Thus, the model remains consistent
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Figure 3.5 — Histograms of the residuals in one of the differential images ix(t1, rsub) — ik (t2, 'sub), at TA/D
from the star, on simulated SPHERE-like data (Sect. 2.2.1). The data are those within an annulus of 1A\/D
width whose inner radius is at 7A/D from the star (~ 287mas), as for Fig. 3.19. The binning factor to plot the
histograms is set to 1000.

with the data as long as the reference PSF is filtered as the reduced images are. Consequently, the
estimated flux is not biased by the pre-filtering procedure and in practice, there is no need for any a
posteriori correction.

3.1.1.5 Consequences on the computation of the scaling factor ~

In practice, when applying a high-pass filter on the images, the mean of the images of the cube is set
to zero since the null frequency is removed. As a consequence, it is not possible to use the total ratio
optimization proposed in a first version of ANDROMEDA. Indeed, through Eq. 2.11, the denominator
may have zero values making the calculation of the yrr diverge. Thus one must use the least-square
optimization to compute the v scaling factor.

3.1.1.6 Consequences on ANDROMEDA’s output

This pre-filtering of the images has several consequences, in particular, on the shape of the planetary
pattern, on the optimization method used to perform the ADI and, obviously, on the SNR map output
by ANDROMEDA.

Shape of the planetary pattern in the SNR map As the reference PSF must be filtered the
same way, it affects the model of the planet signature and consequently the planetary pattern in the
SNR map. To have an idea of this effect, consider a perfect noiseless Airy pattern as the reference
PSF. High-pass filtering an Airy pattern induces to dig negative wings around the central core. These
negative wings become a positive crescent in the planetary signature (since it is the difference of two
Airy patterns, one being shifted of a few pixels). If, for the sake of this example, we assume that the
model perfectly matches the data and that the data is noiseless, Eq. 2.23 is equivalent to performing the
autocorrelation of this planetary signature. The autocorrelation of the planetary signature preserves
this peculiar crescent feature which appears on both sides of the planetary pattern. The Fig. 3.6 shows
the reference PSF, the planetary signature (using d,,;, = 1A/D) and the corresponding pattern, either
filtered or non-filtered, following this example.

In the SNR map this effect must be taken into account for the detection: if a signal has a very high
SNR, these so-called tertiary lobe artifacts could have a SNR above the threshold set, and thus be
regarded as detections. The Sect. 3.3, describing the procedure to exploit the ANDROMEDA output,
deals with this problem and details the implemented solutions to avoid detecting these artifacts.
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(a) : Reference PSF (here a noiseless Airy pattern de- (b) : Reference PSF (here a noiseless Airy pattern de-
fined on a 64 x 64 pixels frame, with an oversampling fined on a 64 x 64 pixels frame, with an oversampling
of 1.66) - Without filtering. of 1.66) - With filtering (F' = 1/4).
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(c) : Resulting planet signature after the ADI (using (d) : Resulting planet signature after the ADI (using
Omin = 1A/D) - Without filtering. Omin = 1A/D) - With filtering (F' = 1/4).

(e) : Resulting pattern after the MLE (using the posi- (f) : Resulting pattern after the MLE (using the posi-
tivity constraint) - Without filtering. tivity constraint) - With filtering (F' = 1/4).

Figure 3.6 — Simulated input reference PSF (Airy pattern), post-ADI planetary signature (6,,;, = 1A/D), and
final pattern obtained in the ANDROMEDA output map (with positivity), obtained with or without filtering.
Fig. 3.6f shows the apparition of two spurious bulges surrounding the main peak in the PSF shift direction
(x-axis here), due to the filtering process.

Consequences on the SNR map The Fig. 3.7 shows the SNR map obtained with ANDROMEDA
according to different filtering fraction and different ADI optimization methods, obtained by processing
the TYC-8979-1683-1 NaCo data. As expected, the pre-filtering increases the visibility of the com-
panions, in particular at close separation, that were hidden in the surrounding noise, as on Fig. 2.10.
The more these images are filtered, the sharper the planetary signals are.

Another information enhanced by the pre-filtering is the presence of the diffraction pattern due
to the spiders of the telescope which are not properly removed by the ADI, mainly visible in Fig. 3.7.
This is probably due to either a bad stabilization of the pupil field, inducing a bad estimation of the
parallactic angles, or to the varying luminosity of this diffraction pattern from one exposure to the
other, inducing light remaining after the ADI, even though the ADI is optimized per annuli, to have
the best starlight flux subtraction on average. This observational artifact must be kept in mind to

85



ANDROMEDA: making it operational to process real data

Figure 3.7 — SNR map output by ANDROMEDA from the TYC-8979-1683-1 NaCo data with or without the

(a) : SNR map obtained by using no
ADI optimization - Without filtering.

le+02 12 78 1.7e+02 2.6e+02

(¢c) : SNR map obtained by using a
total-ration ADI optimization - With-
out filtering.

22 23 69 115 161 206 252 298 343

(e) : SNR map obtained by using a
least-square ADI optimization - With-
out filtering.

95 14 68 1.5e+02 2.3e+02

(b) : SNR map obtained by using no
ADI optimization - With filtering.

a6 £ 30 68 107 145 183 221 259

(d) : SNR map obtained by using a
total-ration ADI optimization - With
filtering.

(f) : SNR map obtained by using a
least-square ADI optimization - With
filtering.

pre-filtering (using F' = 1/4) of the images and for different pre-ADI optimization.
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better exploit the SNR map for the detection, as it is detailed in Sect. 3.3.

Conclusion on ANDROMEDA'’s pre-processing

This pre-processing step added to the original version of ANDROMEDA leads to a better SNR map
since it makes the data more consistent with the model used in ANDROMEDA. This solution is
reliable and efficient on different data set. Thanks to the formalism used in ANDROMEDA, this
solution does not affect the flux estimation which remains unbiased.

The filtering fraction F' is a user-defined parameter to be tuned at the user’s convenience. Expe-
rience showed that a typical value of filtering fraction F' = 1/4 is usually enough to get rid of the low
frequencies artifacts and obtain an exploitable SNR map in terms of detection and astrometry retrieval
capabilities. This value is the same to process SPHERE images since the filtering fraction to be set
mostly depends on the temporal variation of the wind strength and/or direction which significantly
affects the SPHERE images.

However, when thresholding the obtained SNR map, there are still many false alarms remaining
above threshold. This effect is due to the discrepancy between the model of noise used in the algorithm
and the real noise distribution in the differential images. Next section describes this discrepancy and
the solution implemented in ANDROMEDA to take it into account.
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Figure 3.8 — Thresholded SNR maps to 50 obtained with ANDROMEDA including the pre-filtering procedure.
Left: Without ADI optimization. Right: With ADI optimization (least-square). Colors are inverted (black
means 1 and white means 0).

Moreover, we can note that this pre-filtering method might be interesting to be implemented in
other image processing pipelines. Indeed, as explained in this section, high-pass filtering makes the
residuals centered and more independent. Providing that most image processing techniques described
at Sect. 1.3.2 are combining the images, the residuals should be less correlated and more Gaussian
in the final processed image when removing these low frequencies. However if one is looking for faint
extended sources, one must be really careful of the filtering fraction applied to not remove the signal
of interest.

3.1.2 Correcting for the radial dependency of the SNR statistics

On the obtained SNR map, too many false alarms appear above threshold. This false alarm amount
shows a radial trend, being higher close to the star. This effect was expected since the model of noise
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used in ANDROMEDA is, in spite of the pre-filtering and the ADI, not fully verified, that is to say
not fully white and Gaussian. If this noise model was consistent with the real one, a uniform threshold
could be applied all over the field and yield directly the False Alarm Probability.

In this section, I will first discuss qualitatively the origins of this discrepancy and check that this
discrepancy indeed takes place in the real data. I will then detail the solution used for ANDROMEDA
to take into account this model discrepancy. A last part is a discussion about how this discrepancy
affects the detection limits derived by ANDROMEDA.

3.1.2.1 Inconsistency between the model of noise and the real noise distribution in the
differential images

The model of noise adopted in ANDROMEDA does not completely correspond to the real noise
distribution in the differential images. This was expected since the model of noise being white and
Gaussian is simplistic whereas, the real noise distribution is partially correlated and non-Gaussian.

Qualitative explanations on the origins of the noise model discrepancy This discrepancy
arises from two effects. First, on a temporal aspect, the quasi-static speckles vary too fast to be
completely removed thanks to the ADI (along with the chosen ADI strategy, which is here to use the
closest frames in time as long as they are separated of at least d,,i, ) thus leaving correlated features in
the differential images. This effect is stronger at close separation since the time delay between the two
subtracted images is longer due to the d,,;, constraint. Second, on a spatial aspect, the quasi-static
speckles in the reduced images follow a MR distribution (see Eq. 1.10) which shows a higher intensity
close to the star. Thus the residual speckles in the differential images have their intensity varying
with the distance to the star (but their intensity distribution is constant within annuli surrounding
the star).

These two effects combined affect the residual noise distribution in the differential images: close
to the star the noise is dominated by bright correlated speckle residuals. As a consequence, the
model deviation is higher at short separation. This trend is clearly visible on the thresholded SNR
map shown at Fig. 3.8, where more false alarms are present close to the star. This trend prevents
from thresholding the SNR map by a single value throughout the field of view since it corrupts the
connection between the PFA and the threshold: compared to the ideal threshold, the threshold to be
set on real data should be higher (having greater values at short separation) in order to reproduce the
theoretical PFA given by a 5o threshold.

From a certain separation to the star, the ADI efficiently removes the speckles in the differential
images and the noise model is more consistent with the residual noise distribution®. As a consequence
the SNR values from this distance is more linked to the true corresponding confidence level of the
detections. On the SNR map obtained at Fig. 3.8, this happens from a distance of about ~ 60A/D.
This distance depends on the quality of the data, in particular, from which separation the speckle
level is negligible and/or the stellar halo is smooth.

Note that the discrepancy between the model of noise and the real noise distribution does not
affect the flux estimation in itself, but it does affect the error on the flux estimation.

Whiteness of the noise in the differential images In order to visualize how much of the
residual noise in the differential images deviates from the model, we can plot the autocorrelations
of the residuals in the differential images. The autocorrelation of a signal describes the correlation
between values of a random process at different time, as a function of the delay. This is a useful
tool to probe information about repeated events in the signal or any similarities between signals as a
function of the delay. Thus, if the signal is a purely white noise, its autocorrelation is a Dirac peak at
the origin and zero elsewhere (ie: the signal is only similar to itself - that is to say for a delay of zero
- but is completely decorrelated through time).

2The residuals come from photon, readout and dark current noises, all being independently and randomly distributed.
This property is preserved by the ADI.
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Fig. 3.9 shows the autocorrelation of the residuals left in the differential images (using Opmin =
0.5A/D), at two different distances to the star, averaged on every differential image found at this
distance, for NaCo or SPHERE data. These autocorrelations indeed present an intense peak centered
on zero surrounded by variations around zero. Close to the star, the central peak is broader and less
intense than at larger separation and the standard deviation of the autocorrelation at non-null delays
is higher than the one at larger separation®. Moreover the SPHERE images of the star HR-7581
(obtained during the SPHERE commissioning (May 2014) and kindly provided by Dr. A. Vigan) are
taken under very good conditions (good adaptive optics correction and stable atmospheric conditions)
which has an non negligible impact on the noise whitening via ADI which is way better than for the
NaCo images (taken under fair conditions and obviously less good adaptive optics correction). Note
that the two filters, the cameras, the DITs used and the observation conditions are quite different
from the NaCo to the SPHERE data so a rigorous comparison is not possible but these graphs still
provide a fair idea of the images quality.
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(a) : images of the star TYC-8979-1683-1 by the NaCo instrument in H-band. Left: At an angular separation
of 50 pixels from the star (~ 17A/D); at this distance, 244 couples have been subtracted. Right: At an angular
separation of 150 pixels from the star (~ 51A/D); at this distance, 276 couples have been subtracted.
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(b) : images of the star HR-7581 by the SPHERE-IRDIS instrument in H2-band. Left: At an angular separation
of 50 pixels from the star (~ 15A/D); at this distance, 582 couples have been subtracted. Right: At an angular
separation of 150 pixels from the star (~ 46A/D); at this distance, 612 couples have been subtracted.

o
Time delay, Dt (se<)

Figure 3.9 — Autocorrelation of the residuals in the post-ADI images, within an annulus of 1A/D width, using
a pre-filtering of F' = 1/4, for NaCo (3.9a) and SPHERE data (3.9b). The discrepancy between the real noise
and its model as chosen in ANDROMEDA depends on the distance to the star and on the quality of the images.

From these figures, we can conclude that the residual noise in the differential images is indeed
structured and not perfectly white. Moreover, the deviation of this residual noise distribution from a
purely white noise is higher at close separation and depends on the quality of the images (observation
conditions, wavefront corrections and pupil tracking).

3The two small anti-correlation peaks present on either side of the central peak are linked with the chosen i, : one
specific frame i1 (t1) is subtracted to an other at i2(¢2) (resulting in A = i1(¢1) —i2(t2)); but the frame at 1 can be used
to be subtracted from an other frame at t3 (resulting in A = i3(¢3) — i1(¢1)), resulting in a repeating pattern visible
here. As the delay between the frame imposed by d.min is dependent upon the distance to the star, these anti-correlation
peaks do not have the same delay position wrt to the chosen distance (left and right panels of Fig. 3.9).
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Consequences on the SNR map output by ANDROMEDA When applying ANDROMEDA
on real data, this discrepancy between the noise model used and the real one affects the SNR map
through Eq. 2.23 which shows its dependence upon oa. The residuals in the output SNR map from
ANDROMEDA have the same distribution as the residual noise in the differential images (as it is
preserved via the Eq. 2.23), when, of course, excluding the pixels containing the signal of a planetary
companion. Under the assumption that the noise is white and Gaussian, the residuals in the SNR
map should have a Gaussian distribution with mean of zero and a standard deviation of one. Thus
by thresholding the SNR map by a constant value, only signals with a probability of presence set by
the chosen threshold should show up.

However, in the SNR map obtained on real data, the standard deviation of the noise is higher than
one at short separation which corrupt the connection between the PFA and the threshold. Moreover,
the standard deviation of the noise is greater close to the star and decreases up to one at larger
separation which prevents from applying a unique threshold over the whole field of view.

Consequently, if one wants to enable an automatic detection, as theoretically predicted by AN-
DROMEDA, there is a need in accommodating this trend.

Solutions to account for the noise model discrepancy A first idea is to modify the model
of noise used to compute the likelihood, which would correspond to the real noise statistics in the
differential images. Several studies aimed at deriving a complete statistical model for the residuals
speckle distribution in post-ADI images (e.g., Marois et al., 2008a). However this is not mature enough
since such a distribution would be very dependent upon the observation conditions which results in
adding parameters in the image processing method and thus potential sources of error. Moreover, one
interesting feature of ANDROMEDA is its simplicity since the maximum likelihood under the chosen
hypothesis has an analytical solution which is therefore easy to implement numerically.

Another solution could be to compute the equivalent threshold at each distance to the star, which
would account for this discrepancy, following, for instance, the reasoning in Mawet et al. (2014) (who
used a frequentist approach to compute an equivalent threshold in the framework of the small sample
statistics) or numerical simulations as in Marois et al. (2008a) (who showed that the presence of
quasi-static speckle noise, leads to a detection threshold up to 3 times higher to obtain a confidence
level equivalent to that at 50 for a purely Gaussian noise). However no systematic solution has been
developed so far which could permit to compute the real threshold (which would be fully linked with
the true PFA) to be applied as a function of the separation to the star.

In the case of ANDROMEDA, for the sake of simplicity, we chose to perform a post-processing of
the obtained SNR map. This a posteriori correction makes it possible to modify only the SNR map
output by ANDROMEDA instead of modifying either the model of noise (here white and Gaussian)
or the definition of the threshold (here set constant throughout the field).

3.1.2.2 Implementation of a normalization procedure for the SNR map

Knowing that we would like to obtain a SNR map that has a zero mean and a standard deviation
of one throughout the whole field of view, a simple solution, chosen here, consists in normalizing the
SNR map by its own radial standard deviation.

Normalizing the SNR map by its own radial standard deviation profile Normalizing the
SNR map is an empirical solution which is easy to implement by computing the standard deviation
in each annulus of one pixel width, centered around the star.

In order to not take into account spurious peaks due to either planetary companions or bright
speckles, which would alter the statistics, the robust standard deviation is computed (following Hoaglin
et al. (1983) and Beers et al. (1990) method which consists in calculating the median absolute deviation
divided by a normalization factor enabling a robust estimate of the standard deviation®). The resulting
profile of the robust standard deviation from the TYC-8979-1683-1 SNR map is shown on Fig. 3.10.

4The factor is chosen so that the regular standard deviation and the robust value are identical in the case of a Gaussian
distribution (which is true with a good approximation here): o = median(abs(z — median(z)))/0.6745.
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The obtained 1D profile is often quite jagged, mostly close to the star, since at this distance, the
standard deviation varies a lot from one annulus to the other, for the reasons explained above. Thus,
in order to only obtain the global trend of the radial profile obtained (decreasing from close to large
separation to the star), this profile must be smoothed.
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Figure 3.10 — Azimuthal mean standard deviation of the SNR map as a function of the distance to the star
TYC-8979-1683-1. Left: Regular radial profile of the SNR standard deviation. We can visualize the high peaks
indicating the presence of companions at certain separations (where the synthetic companions are located).
Right: Radial profile of the SNR robust standard deviation. The highest peaks have disappeared but the profile
is still jagged. (Figure from Cantalloube et al. (2015))

The raw SNR map output by ANDROMEDA is divided by this smoothed profile for each azimuthal
position.

Smoothing the normalization profile To obtain a typical profile which encodes the global trend
without taking into account the small variations of the azimuthal standard deviatio ren and/or the
potentially strong impact of the presence of planetary companions, the profile must be smoothed.

Looking at the obtained profile shown on Fig. 3.10-Right, one can think of a first process would
be to fit this profile by a polynomial of the fourth order. However the obtained fit is too smooth
and in particular, it does not show the peculiar two regimes profiles, close and far from the star, as
visible on the Fig. 3.11-Left. As a consequence the close companions are not detected, as shown on
Fig. 3.11-Right.

Another simple idea would be to smooth one given pixel over values on either sides of the regarded
pixel, the number of pixels on which the profile is smoothed being a user-parameter. The obtained
profile, shown on Fig. 3.12-Left, now shows the two regimes (before and after ~ 100 pixel on Fig. 3.10)
and seems to match better the raw profile. However the normalized SNR map obtained, does not
allow one to detect close companions, as shown on Fig. 3.12- Right.

A solution is to artificially increase the SNR of the planetary signals located at short separation
by under-normalizing the regions close to the star. In practice, it consists in smoothing one pixel
according to its neighboring pixels but only by the ones at larger separation, as shown on Fig. 3.13.
Due to the global trend of the robust profile, this method over-smooths close to the star while the
smoothing does not affect the normalization level far from the star.

This way of doing the normalization increases the detectability by slightly reducing the normaliza-
tion. But this method has no impact at large separation. It is really helpful at close separation since
the radial trend decreases very fast, as we can see on the profiles. When applying the normalization
procedure to the SNR map, we can check that from now on, if the SNR map is thresholded to the
usual value of 5o, only very probable companions are visible, as shown on Fig. 3.14. In particular,
the 11 furthest and brightest injected synthetic companions out of the 15 are clearly found above this
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Figure 3.11 — Smoothing the normalization profile. Left: Normalization profile (red solid line) obtained by a 4th
order fit of the radial robust standard deviation of the SNR map (black solid line). Right: SNR map normalized
by this profile, thresholded to 50. The close companions are missing though visible on the non-thresholded SNR
map.

Fobust profile g I
Smoothed robust profile

20

15

10

T @ T hD S ORcd LSOO OTHOS® e e SO0 5

150 200 250
Radius from the center (pixel)

o
L}
=
-
=
b=

Figure 3.12 — Smoothing the normalization profile. Left: Normalization profile (red solid line) obtained by
smoothing symmetrically over 18 pixels the radial robust standard deviation of the SNR map (black solid line).
Right: SNR map normalized by this profile, thresholded to 50. The close companions are missing though visible
on the non-thresholded SNR map.

threshold. The brightest companion at a separation of 0.53”this time appears above threshold whereas
it was not the case with the two other smoothing methods.

This chosen strategy to normalize the SNR map does not impact the flux estimation. Indeed, a is
fixed and since SNR = a/o(a), only the estimated flux error-bars are affected.

Effect of the smoothing amount on the normalized SNR map The number of pixels on which
the profile is smoothed is a user-parameter which is dependent upon the images quality: if the speckle
field is temporally stable, this profile will already be quite smooth and will not require an important
smoothing; however if the speckle field is not stable, the residuals level might be quite different from
one annulus to the other, thus showing a jagged profile, which therefore must be much smoothed.

If the profile is too smoothed, it will tend toward a flat profile which is equivalent to no normal-
ization: the radial trend must be preserved and must be realistic, as shown on Fig. 3.15-Right. In
this case, more artifacts will remain at close separation. However we will see at Sect. 3.3 which is
dedicated to the exploitation of ANDROMEDA output, that it is possible to efficiently reject such
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Figure 3.13 — Schematic drawing of the method used to smooth the radial robust SNR standard deviation profile
(black solid line). The red solid curve is the obtained normalization profile.
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Figure 3.14 — Smoothing the normalization profile. Left: Normalization profile (red solid line) obtained by
smoothing over 18 pixels towards larger separation the radial robust standard deviation of the SNR map (black
solid line). Right: SNR map normalized by this profile, thresholded to 50. This time, the close companions are
above the 5o threshold.

signals a posteriori.

If on the contrary the profile is not smoothed enough, spurious peaks may remain above threshold
and regarded as detections, as shown on Fig. 3.15-Left. This effect is particularly pronounced at short
separation since this is the area where the profile has a steep slope (see Fig. 3.10-Right).

The sensitivity to the user-defined parameter Ng,,.0tndepends on the separation to the star: close
to the star it is very sensitive whereas further it is not sensitive. This is explained by the steepness
of the profile which is deep at short separation (and thus very sensitive to the smoothing) and flat
from a particular distance where the speckle noise is no longer dominant (and thus not sensitive to
the smoothing). Generally speaking, this Ng,eotpuser-defined parameter depends on the quality of
the observation condition (that is to say whether the stellar halo is very spread in the image) which
will determine the steepness of the slop and the location from where it becomes rather flat.
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Figure 3.15 — Normalized SNR map thresholded to 50 for different smoothing value Ngy,00tn- From left to right:
Namooth= 12 pixels, Ngmooth= 18 pixels, Ngmooth= 50 pixels. From Ng,00tn= 14 pixels, the two close and faint
synthetic companions visible on the SNR are detected above threshold. For Ng,00tn> 14 pixels, no more close
synthetic companions are detected but more and more artifacts arose above threshold.

In practice a good compromise is to visually check the smoothed profile with respect to the robust
profile and check that the trend is satisfactory within these two regimes.

From tests performed on several data set, it appeared that typical values of Ngpoornmainly depend
on the instrument under use. For NaCo data, this Ngpoenis rather wide, with a typical value of
Ngmooth= 18 pixels in H-band and smaller at larger wavelength. For SPHERE-IRDIS data, a typical
value of Ngmooth= 2 pixels is usually enough, whatever the wavelength, which demonstrates the quality
factor gained by this instrument.

To summarize, once a convenient value is found, one has to keep in mind that at very close
separation, this normalization procedure only helps detecting companions close to the star. The
associated probability of presence must be read with care since it does not correspond to the intrinsic
one.

3.1.2.3 Corresponding detection limits estimated with ANDROMEDA

As the normalization procedure is made on the SNR map output from ANDROMEDA, it only affects
the SNR map. To remain consistent, the map of the standard deviation of the flux must be multiplied
by the same normalization profile since:

SNR(I‘) d(l‘o)

SNR = = 3.5
Normalizationsygr(r)  (ola(ro)] x Normalizationgng(r)) (3:5)

The normalized map of the standard deviation of the flux thus gives the corresponding 1o error
bar on the flux estimation. This map can also be used to compute the detection limit consistent with
the detection capabilities given by the SNR map. The detection limit shows the level of flux from
which no companion can be detected in the images, as a function of the separation to the star and for
a given confidence level expressed through the threshold 7 (in units of sigma). At a chosen threshold
7 this detection limit is simply given by 7 x ola(ro)].

Implementing the small sample statistics In order to account for the bias at small separation,
induced by the ADI process, I implemented in ANDROMEDA the small sample statistics correction, as
defined in Mawet et al. (2014). One of the reasons why the PFA is underestimated at close separation
is that there is only a small number of pixels contained in the processed annulus, added to the fact that
few couples are found due to the constraint imposed by 6., . These two points reduce the number
of degrees of freedom which are, in ANDROMEDA, the number of points inside the annulus, r, plus
the number of ADI couples found at this distance, k. This effect corrupts the statistics: we are in a
so-called small sample statistics regime.
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In practice, it consists in computing the equivalent threshold that should be applied to obtain the
same PFA a Gaussian statistics would give at the actual chosen threshold. Close to the star, the noise
statistics no longer follows a MR distribution, but a robust Student’s t-distribution (Mawet et al.,
2014), valid for an independent and identically distributed samples, as it tends to be the case when
performing differential imaging (Marois et al., 2008a).

Discussion on the notion of detection limit However, one has to keep in mind that computing an
objective detection limit for a given threshold, mostly at short separation, is extremely difficult and the
derived detection limits must be interpreted with great care. ANDROMEDA provides a systematic
detection limit which is however slightly biased at small separation because of the normalization
procedure described above which is an empirical solution. For now, there is no proper method to
define an unbiased detection limit, independent of the image processing used on the data, which could
inform on the real reachable objects range. This knowledge is however critical when interpreting
results from large observational surveys.

To illustrate this difficulty, we computed several detection limits on a particular test case, using
three different so-called classical methods, after processing the data with the same method (here a
PCA-KLIP). These classical methods, are the one currently used by the astronomers. It consists in
injecting synthetic companions at different separation to the star and with different position angle, and
estimating their flux wrt to the injected one. The first method, called square aperture, (green lines in
Fig. 3.16), consists in evaluating the noise in square boxes of size 3\/D. The second method, azimuthal
profile (purple lines in Fig. 3.16), consists in evaluating the noise in annuli of 1 pixel width surrounding
the star. The third method, circular aperture (blue lines in Fig. 3.16), consists in evaluating the total
rms flux within a circular aperture of diameter 1A/D. The Fig. 3.16 on which the detection limits
obtained following these three different ways are over-plotted, show that the profiles do not fully
overlap.
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Figure 3.16 — Detection limit at 50 derived from the same image data set 8 Pictoris described in Sect. 3.2.1
but processed using a PCA method. Three different methods are used to derive these curves (see text). Image
provided by J. Milli (ESO).

For ANDROMEDA, since the detection limit is directly provided without needing synthetic com-
panion injection, such an arbitrary choice does not exist. However choosing if we are providing the 2D
map (which keeps the tracks of bright companions), or providing a 1D-profile, either giving a range
(a thick curve) or giving a minimum limit or an average limit is something worth thinking of. In the
following, I chose to show the averaged detection limit, that is to say the azimuthal median of the map
of the standard deviation of the flux (to not take into account the presence of planetary companions),
and to over-plot the minimum value of each annulus of this map. Indeed, although the first curve
provides a fair idea of the detection limit with such a data set (green solid curve in Fig. 3.17), one
might found a detection below the curve. However it is impossible to find a companion, with the con-
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fidence level given by the chosen threshold, below the minimum curve (red dashed curve in Fig. 3.17).
Moreover this output is homogeneous to the one provided with other image processing methods such
as the ones in Fig. 3.16.
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Figure 3.17 — Detection limit at 50 derived from the same image data set 8 Pictoris described in Sect. 3.2.1,
processed using the ANDROMEDA method. Two different curves are presented: the azimuthal median of the
map of the standard deviation of the flux (green solid line) and the azimuthal minimum of the map (red dashed
line).

3.1.2.4 Distribution of the residuals in the normalized SNR map

This normalization procedure makes the residuals in the SNR map having a standard deviation of one
(which would have been the case if the residual noise in the differential images were white). It is visible
in the histograms shown at Fig. 3.18, where the Gaussian distribution is centered (usygr = 0) and its
FWHM is one (0gnr = 1). However this empirical solution is still limited as we can notice that the
further from the star, the better the distribution is fitted by a Gaussian (not only because there are
more pixels). This procedure must be made along with the pre-filtering, otherwise, the distribution is
not well approximated by a Gaussian and the normalization does not help in shifting the mean and
alleviating the variance (see Fig. 3.18-Left and Middle).
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Figure 3.18 — Histograms of the residuals in the normalized SNR map computed from the TYC-8979-1683-1
data, inside four different annuli centered on the star: black solid lines are for an inner radius of 15 pixels
(~ 5X/D), purple solid lines for 50 pixels (~ 17A/D), dark blue solid lines for 95 pixels (~ 32\/D), and light
blue solid lines for 247 pixels (~ 90A/D). Each annulus has a width of 15 pixels except for the largest, which
only has a width of 8 pixels. No obvious planetary-like signal can be found inside these annuli. Left: without
filtering. Middle: with a pre-filtering, using F' = 1/16. Right: with a pre-filtering, using F' = 1/4. Gaussian fits
of the histograms are over-plotted in red dashed lines. (Figure from Cantalloube et al. (2015))
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3.1.2.5 Conclusion on ANDROMEDA'’s post-processing

As a conclusion, the combination of the pre-processing of the images (spatial high-pass filtering)
and the post-processing of the SNR map (normalization of the SNR map by its azimuthal standard
deviation) both decrease the natural discrepancy which exists between the model of residual noise
made and its real distribution.

From experience on real data, empirically normalizing the SNR map is a reproducible method,
independent of the data-set as it is shown along the numerous examples given in Chap. 6. Only
the user-parameter Ng,,o0tpmust be tuned with care but visualization of the profile permits to easily
determine this factor. Also, for the last generation of high-contrast instruments such as SPHERE, the
adaptive optics correction stabilizes the trend and thus usually a systematic mild smoothing can be
used.

The implemented post-processing method is thus efficient and reliable. Using this normalized SNR
map permit to automatically detect point sources in the field of view. Moreover, apart of very close
separation regions, the retrieved SNR is now much better linked with the probability of presence of
the companion. This method also derives a detection limit corresponding to the ability of the pipeline
to extract point source companions in the images. I added a stage to fix the bias at close separation
by implementing the small sample statistics inside ANDROMEDA. Thus the detection limit provided
by ANDROMEDA is consistent with the retrieved flux and the noise distribution in the data. This
information is fundamental to correctly interpret results from observational surveys, as mentioned in
Sect. 1.1.2. Indeed the provided limit reached are crucial in Monte Carlo simulations used to derive
exoplanet occurrences orbiting various type of stars. The derived frequency is essential to favor one or
the other planet formation scenario. Moreover, this bias on the results can also corrupt the strategy
chosen for the future surveys.

3.1.3 Conclusion on ANDROMEDA in its operational state

The spatial high-pass filtering applied to the reduced image before running ANDROMEDA together
with the normalization of the SNR map by its azimuthal standard deviation trend provide three
exploitable outputs:

1. A SNR map, which has a statistical significance and thus can be used to perform the detection
and astrometry estimation in an objective way;

2. A flux map, used to read the contrast of the detections;

3. A standard deviation of the flux map, providing the error-bars on the estimated flux and from
which the detection limit can be derived.

From now on, ANDROMEDA is an operational tool which complies its intended theoretical advan-
tages, such as an objective detection criterion, a non-biased estimation of the flux and a corresponding
detection limit.

In order to make this algorithm fully adapted to the real data properties, the next section revisits
the full ANDROMEDA algorithm, along with the pre-processing and post-processing described in this
section. This study allows one to improve the different steps performed by the algorithm, to detect
the crucial steps of the method and to discuss the limitations of each step.

3.2 Exploring variations on building the differential images

Now that ANDROMEDA is fully operational and provides exploitable output, I will go through the
two main steps performed by the algorithm to discuss and choose the best strategy with a view to
apply ANDROMEDA on real data. In the following, I will not discuss the two added stages of pre
and post-processing, extensively dealt with above. However these stages are assumed included in the
pipeline for the discussions.
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3.2.1 Description of the data to illustrate this part

To test ANDROMEDA, we also applied it to the emblematic and well-known case of 8 Pictoris . This
star is surrounded by a debris disk inside which only one planet, 8 Pictoris b, has been detected by
imaging. This close companion is located at ~ 9 AU from its host star and was first detected by
Lagrange et al. (2009). Detecting this planet is challenging because it stands at very short separation
(< 0.5").

The S Pictoris data on which ANDROMEDA has been applied ANDROMEDA are described in
Absil et al. (2013), including all the information concerning the reducing steps applied (basic cosmetic
treatment, re-centering, frame selection, etc.). A summary of this data set properties can be found in
Tab. 3.1.

Notably, the observations are made with the NaCo instrument using the L’ filter which provides
images of relatively good quality in terms of contrast. This set-up is particularly interesting to probe
short separations. At larger separation, the background noise is non-negligible.

Property Value

Instrument - camera NaCo - L27

ESO program ID 60.A-9800
Observation date 2013/01/31
Atmospheric conditions Good (seeing ~ 1”; SR~ 70 — 75%)
High contrast L'-band AGPM vector vortex coronagraph
Wavelength of observation L/-band: 3.8um

Sensor pixel scale 27.15 mas/px
Resolution 1\/D ~ 4+ pixels

Star magnitude 3.51 (H)

Image size 150 x 150pizxels

Number of images 102 (temporally binned)
Total field rotation 82.56°%; (—14.73 — 67.83°)
Offset angle wrt true North 104.84°

DIT image 0.2 sec

Total integration time 3.5h

Neutral density transmission for the reference PSF None: off-axis exposure

DIT PSF 0.02 sec

Table 3.1 — Table summarizing the characteristics of the observation of the star 8 Pictoris with NaCo, used to
test ANDROMEDA.

Within this data set, Absil et al. (2013) have retrieved the companion 5 Pictoris b at a separation
of 452 + 9.6 and a contrast of 8.01 4+ 0.16 using a PCA-KLIP flavor described in their publication.
A detailed comparison of the results obtained with their pipeline with the results obtained using
ANDROMEDA on these data are published in Cantalloube et al. (2015).

3.2.2 Interpretation of the scaling factor v after pre-filtering the images

Without filtering, the computed scaling factor weights for the average intensity difference in the
two images i (t1) and ix(t2) inside the regarded annulus of thickness d, (as explained at Sect. 2.2).
However, when filtering the low spatial frequencies, the smooth stellar halo is removed (as it is visible
on Fig. 3.7). As a consequence, after this filtering, the scaling factor weights for the average pixel
to pixel correlation between the images ix(t1) and ix(t2) inside the regarded annulus of thickness d,.
These two different interpretations of the scaling factor are fundamental and have a non-negligible
impact on the choice of the method used to optimize the ADI according to the data set (see Sect. 3.2.3
for further discussion on this aspect).

To visualize the difference between these two interpretations, Fig. 3.19 shows the pixels’ intensity in
the image ix(t1, rsup) as a function of the pixels’ intensity in i (t2, rsub), Where rgyp is the subtraction
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area, that is to say the annulus of width d, centered on the star in which d,,;, applies (here, . =
0.5A/D). This figure is made on simulated data (those presented at Sect. 2.2.1), where no planetary
signal can be found. Note that if there were planetary signals, it would make no difference since it
would shift some data points symmetrically on either sides of the bisector. Indeed, at first order, the
planetary companion has the same intensity in the two images (More details about these aspects can
be found in Sect. 3.2.3). For these plots, I chose typical conditions for which the speckle field has
varied enough but is not completely decorrelated (d,,:, = 0.5A/D, d, = 1\/D for an inner radius of
7A/D ~ 287 mas).
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Figure 3.19 — Intensity of the pixels contained in i (f1, rsub) as a function of those contained in iy (t2, rsup) on
simulated SPHERE-like data (Sect. 2.2.1). The data are those within an annulus of 1A/D width whose inner
radius is at 7A/D from the star (~ 287mas).

On these graphs, the data points are distributed along an elongated shape on which the major-axis
thickness codes for the typical intensity dispersion within the two annuli and the minor-axis codes for
the pixel to pixel intensity degree of correlation (contribution of the noise). In agreement with this
explanation, we observe that the minor-axis indeed becomes wider under bad conditions and thinner
under good conditions (in terms of temporal stability). A schematic view of how to interpret such a
graph is presented at Fig. 3.20.

On Fig. 3.19, we indeed observe that the filtering modifies the shape of the data point distribution,
making it more oval and centered on zero. When the filtering is applied, the data points lie within
a typical Gaussian envelop: there is less decorrelation at high intensity than in the case without
filtering, which means that the brightest pixels belong to low frequency structures. At low intensities,
the distribution is slightly more dispersed when filtering. As a consequence, the scaling factor v, which
should provide the slope of the major-axis of this Gaussian envelop, indeed probes the pixel to pixel
decorrelation degree between the two annuli. On the contrary, without filtering, the scaling factor ~
probes for the average flux ratio between the two annuli.

Note that in both cases (with or without filtering), the least-square fits better the data points (green
solid line on Fig. 3.19) than the bisector (red solid line on Fig. 3.19). Also, the total ratio fit (orange
solid line on Fig. 3.19) is very close to the least-square fit when filtering and quite different without
filtering. For this particular couple of images, without filtering, yrr = 0.9413 and vyrg = 0.9423
whereas with filtering, yrr = 0.7176 and vrg = 0.8552.

The Fig. 3.21 shows the evolution of this least-square scaling factor, vrg, as a function of the
distance to the star, either with or without filtering. The expected behavior is that yrg =~ 1, mostly
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Figure 3.20 — Schematic explanation on how to interpret the graphs shown at Fig. 3.19.

at large separation since the d,,;, constraint implies a smaller time delay between the two images at
large distance (and thus a better similarity between the two frames to be subtracted).
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Figure 3.21 — Evolution of the minimum, maximum and mean value of the computed scaling factor v, as a
function of the distance to the star (for annuli of 1\/D width, the IWA inducing an offset of 4\/D), either with
or without pre-filtering of the SPHERE-like simulated images (Sect. 2.2.1).

Indeed, without filtering, yrs ~ 1, with smaller dispersion between the couples when going further
from the star (that is to say, whatever the couple of images, v g remains close to 1). However, with
filtering, the scaling factor is lower than one and slowly tends toward one (from about 40\/D), which
means that, as expected, the pixels to pixel correlation is greater at large separation. This effect is
worst on real data (see Fig. 3.22): the scaling factor is about 1 without filtering whereas it goes from
about 0.8 to 0.2 when filtering. This is due to the fact that the scaling factor accounts for the pixel
to pixel decorrelation in the filtered image and further from the star, the noise is mainly constituted
of photon and detector noise so it is highly decorrelated from one image to the other.

Another effect worth pointing out, is that the presence of the planets (whose location is indicated
by the green solid lines on Fig. 3.21) corrupts the least-square fit. Either with or without filtering, the
further from the star, the higher the scaling factor deviates from its mean value: at large separation
more noisy pixels are present wrt the number of pixels containing the signal of the planet (which is
constant whatever the distance to the star in these simulated data).

Thanks to this new interpretation of the scaling factor, when filtering the images, we can probe
the correlation degree between the first frame of the cube and the following ones. Fig. 3.23 shows
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Figure 3.22 — Evolution of the minimum, maximum and mean value of the computed scaling factor ypg as a
function of the distance to the star (for annuli of 1A\/D width, the IWA inducing an offset of 2)\/D), of the
images from the NaCo instrument or of the SPHERE-IRDIS instrument, both with a pre-filtering F' = 1/4.

the scaling factor vyrg, calculated between one annulus in the first frame and the same annulus in the
following frames constituting the image cube, for different distances to the star and either with or
without filtering of these frames.
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Figure 3.23 — Scaling factor .5 calculated between the first image of the cube and the i** following image (x-
axis, where there are 144 images in total), either without filtering (dashed line) or with filtering using F' = 1/4
(solid lines). The scaling factor is computed within annuli of 1A/D width, for various distances to the star
(different colors), using the SPHERE-like simulated data (Sect. 2.2.1).

Without filtering (dashed lines), the trend matches exactly the total flux of the images through
time® (see Fig.3.4 in Cornia, 2010).

With filtering (solid lines), the correlation decreases slowly between the first frame and the follow-
ing.

The latter graph confirms that depending whether the images are high-pass filtered, the scaling
factor should not be interpreted the same way. With filtering, it probes the pixel to pixel correlation
whereas without filtering it probes for the mean intensity difference. The next section, Sect. 3.2.3,

SFrom the 100** frame, the same trend appears, which is due to the way the data have been simulated: a period of
1000 sec has been used to compute the quasi-static speckles.
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discusses a different way of optimizing the scaling factor computation in line with the real data
properties and the applied high-pass filtering.

3.2.3 Refining the ADI process included in ANDROMEDA

The type of ADI applied in ANDROMEDA to build the differential images is optimized in order to
cope with the intensity distribution difference between the two images (as presented in Chap. 2 and
discussed at Sect. 3.1.1). In the original version of ANDROMEDA two kinds of optimizations had
been implemented: the total ratio optimization, which cannot be used anymore due to the pre-filtering
(and that I will ignore in the following), and the least-square optimization which proved better on
both simulated and real data Cornia (2010). Both methods consist in making a linear combination of
the two images to be subtracted. The corresponding coefficient (called scaling factor) is computed for
each couple of images (defined by the 0,y constraint), within an annular area including the actual
subtraction zone (of size defined by d, x Ry).

Robust optimization However, the least-square optimization, is by definition very sensitive to
outliers. As this optimization is made inside an annular zone, this effect can affect the least-square fit
in two cases: (i) If a bright speckle appears in one of the two images (or more generally has a different
brightness in one of the two images), or (ii) a planetary signal has a stronger intensity in one of the
two images. Indeed, on the graph shown at Fig. 3.20, we can see that as soon as a signal creates
an asymmetry of the data points distribution wrt the bisector, the least-square fit is biased toward
this data point. If the fit is biased, it will result in a flux offset in the resulting differential image.
Also this bias might smooth the planetary signal (if the computed ~pg is very small), inducing a
decrease of its SNR, making it more difficult to detect. One solution to avoid such a bias is to perform
a robust fit which would be insensitive to outliers®. For instance this would consist in minimizing
1>y ik(r,t1) — v Doy ix(r,t2)|| using the L; norm instead of the Lo norm, as implemented in the
original version of ANDROMEDA. In other words, when using the L1-norm, the weight given by an
outlier is lower than when using the L2-norm (since it is the absolute distance and not the squared
distance to the fit which is taken into account). In particular, when using this L1-norm, the same
number of data points are below and above the L1-fit in a graph such as the one presented on Fig. 3.20.

Non-linear subtraction Another point is that the star PSF shape does not vary linearly in the
images, as shown on the sketch Fig. 3.24. If there is a sudden evolution in the turbulence strength,
the image couple points can be better fitted by an affine law.

‘ : : —— Time t,
)\ 5 —— Time t,

PSF

Linear regime

Figure 3.24 — Schematic profile of the star PSF shape at two different times. At t; (red line), the post-AO
turbulence strength is higher than at ¢t which thus makes its energy less concentrated in the core. A linear
regime can be assumed in between the two vertical gray dashed-lines. However, at close separation, where the
subtraction is critical, this non-linear behavior may cause some errors.

SIn this context, outliers are noteworthy departures from the idealized assumption for which the estimator is optimized
- here a Gaussian distribution. In this study, the problematic points are the ones deviating from the others of a noteworthy
amount.
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3.2 Exploring variations on building the differential images

Proposed solution From these two considerations, the differential images can be computed via:

Alr, k) = i (e, t1) = (x) in(r,t2) — 174(r) (3.6)

The scaling factor -, and the affine term ~y/;, are computed by minimizing: ||ig(r) — v . ix(r) — V5|2, -
This differential image approach is called LI-affine optimization.

3.2.3.1 Algorithm to perform a robust affine fit

Minimizing an affine function under the L1-norm can be solved by using the Least Absolute Deviation
(LAD) which is resistant to outliers. The L1-norm has a probabilistic interpretation since it is a heavy
tailed pdf corresponding to an exponential distribution in e~ Il (which decreases more slowly than

~2* when performing a least-square fit), that is to say the outliers are less likely. The goal is to
minimize the following figure of merit:

e

N
Ly : f(z)) = J(a,b) = |y — f(@)| =Y |yi —b—a x| (3.7)
i=1

On which we can identify y = ix(r,t1) and f(x) = y(r) ig(r,t2) +/k(r), with = = ix(r, t2). The two
unknown parameters to be estimated by minimizing J are the linear factor a = v and the affine term
b=

There is no analytical solution to this problem. In particular it is possible that the solution is not
unique and/or not stable (which is instinctively understandable since it depends on the weight given
to the outliers). It is necessary to find an algorithm which permits to reach the best solution. Among
the methods solving this problem, the chosen one is a simplex method found in Press et al. (2007).

This estimator has two specific cases: (1) it passes through, at least, two of the data points and (2)
from a given slope (the scaling factor a), we can deduce the affine factor b (the intercept). Indeed the
robust solution providing b as a function of a is simply the median of y; — a z; (which is by definition
the norm-L1 in this case).

Then the minimization of a with a known b writes (see Press et al., 2007 for details about this
development):

a7
o= — 90— Z x; sign(y; — b — a x;) (3.8)
@ i
It is therefore possible to develop an iterative algorithm to calculate a and b, starting from a first
guess.

One difficulty is to find a good starting point to begin the descent (which can be found in a non-
robust way). In our case, it is clear that this first guess can be the least square solution which is not
that different from the robust solution at first order. In fact, in our case, where the model is an affine
line, it is much simpler to implement. The following describes a method to fit an affine straight line
in a robust way.

3.2.3.2 Practical implementation of the robust affine fit in ANDROMEDA
In order to iterate towards the minimum, three major steps are performed:

1. First-guess: the first step consists in performing a basic least-square fit to find the starting
point of the iteration. These starting points are args and brg, with which the function ¢rg is
calculated.

2. Bracketing: from the previously retrieved parameters, the x? is computed to provide an estima-
tion of the iteration step to be used (via its standard deviation). A first guess of the bracketing
is found at 3 sigma from the apg value in the downhill direction of ¢rg. From this new value
of a, a new ¢ is calculated via Eq. 3.8. By comparing ¢ to ¢rg, we check if the zero is indeed
included in between these two functions. This process is repeated downhill, until the two last
values of ¢ have a different sign.

103



ANDROMEDA: making it operational to process real data

3. Bissection: Once the range of values found, the parameter a is reduced by half of the interval
given by the bracketing, until the function ¢ is close enough to zero (according to the convergence
criterion defined above). To do so, we check at each iteration that the last ¢ calculated thanks
to the retrieved a is closer to zero; else the descent direction is changed.

4. During this process, each time the function ¢ is calculated, the affine factor b is calculated from
the scaling factor a and the data following: b = M EDIAN (y — a*x). Then ¢ is computed with
these two last values of a and b in order to check if it is still above the convergence criterion
defined by the user (here it is set to 107°).

3.2.4 Test of the robust affine fit in real differential images

The gain provided by any of the optimization methods depends on several parameters: if there is a
pre-filtering applied to the images, if there is a planetary companion, the conditions under which the
images are taken and the separation to the star. However, as ANDROMEDA is only operational with
the filtering, I will not discuss further this difference (see Sect.3.1.1).

In the following, I thus chose to investigate the performance of the L1-affine fit when the images
have been filtered (using F' = 1/4) and at separations where planetary companions are actively
searched (about 500mas). At the chosen distance and for a chosen couple k, I injected a planetary
companion (with the same contrast) in order to probe the difference of the fit characteristics, with or
without a planetary companion.

The Fig. 3.25, is a plot of the pixels’ intensity contained in the first annulus as a function of the
pixels’ intensity in the second annulus. As the planetary signal is not correlated from one image
to the other (since its position changes in the annulus), its signal (blue boxes in Fig. 3.25) will be
concentrated on both sides of the bisector (orange solid line in Fig. 3.25). Added to that, the planetary
signal has the same flux in the two images so the corresponding data points are gathered symmetrically
to the bisector, as we can visualize on Fig. 3.25). At this stage, the planetary signal does not bias
the least-square fit since its data points are located symmetrically around the bisector. However, if
the planet intensity varies from one image to the other, the least-square fit (green line) will be shifted
towards the highest intensity direction.

Following the same reasoning, the speckle intensity (black points on Fig. 3.25) variability in between
ik (t1, rsub and in ig(t2, rgyp is responsible for the scatter along the the minor axis direction (which
represents the noise dispersion, whereas the major axis represents the intensity dispersion of the pixels
within the annuli - see Sect. 3.1.1). If one data point represents a speckle present in both images at
the same location, but with a lower flux in i (¢1, rsup than in ig(t2, rsup, it creates an asymmetry from
the bisector. This asymmetry corrupts the least-square fit (green curve) whereas the Ll-affine fit is
less sensitive to these outliers and fits better the global shape of the scattered data points.

In order to visualize the effect of the subtraction in the differential images, the Fig. 3.26 shows the
azimuthal profile of each images, i (t1, rsup) and ix(t2, rsup), and their subtraction, according to the
three different subtraction scheme. On this graph, one can see that the Ll-affine optimization (red
solid line on Fig. 3.26) leads to a similar, yet slightly better, speckle subtraction than the least-square
optimization (green solid line on Fig. 3.26), as its mean is closer to zero and its variance slightly lower.
Another important aspect that it is worth pointing out here, is that the robust fit preserves better
the planetary signal when subtracting (ie: the negative bump is deeper because the scaling factor
~v is higher) compared to the least-square fit. These aspects have been intensively checked on both
simulated SPHERE-like data and on real data which led to the same conclusions.

The latter aspect can be verified by plotting the evolution of the computed scaling factor as a
function of the separation, as in Fig. 3.27, either for a least-square or a Ll-affine optimization. We
can first notice that the scaling factor (left side on Fig. 3.27) is slightly lower for the L1-affine fit than
for the least-square fit. However this is mostly the case at close separation (below 5\/D) since the
L1-affine and the least-square fit then provides relatively the same scaling factor from this distance.
Also the affine factor (right side on Fig. 3.27) has a very high dispersion at close separation, which
decreases significantly from 2-3\/D and is closer and closer to 0 from 5\/D. These two aspects indeed
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Figure 3.25 — Data points i (¢1, 'sub), as a function of the data points i (t2, rsup). The subtraction area rsup
is located at a distance of 6A/D and has a width of 1A\/D. The images have been pre-filtered using F' = 1/4
and couples found using d,,;, = 1A/D. The optimization are made within the regarded annuli (that is to say

Ry =1.0).
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Figure 3.26 — Azimuthal profile (over a one pixel’s wide annulus) of the differential images obtained by sub-
tracting the annuli used at Fig. 3.25, according to the optimization method used. In order to compare the three
methods, the rms value of the profile deprived of the planetary signal is indicated in the legend. The profile of
ik (t1, rsub) and ik (t2, rsup) are over-plotted in dashed-line (respectively black and blue lines).

confirm that the least-square fit and the L1-affine fit are very similar at separation larger than 5\/D.
As a conclusion of this section, the three following points are to be kept in mind:

e The important parameter for the robust fit to be effective is whether it exists a non-negligible
intensity variation of either a bright speckle or a planetary signal in the two images to be
subtracted (Fig. 3.25).
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(b) : Evolution of the scaling factor « (left) and the affine factor v’ (right) for a L1-affine optimization.

Figure 3.27 — Evolution of the minimum, maximum and mean value of the computed scaling (left) and affine
(right) factors as a function of the distance to the star (for annuli of 1\/D width, the IWA inducing an offset
of 2X/D), either with the least square computations of the factor or the Ll-affine, for the NaCo images of
Pictoris (Sect. 3.2.1). The green solid line is located at the separation where the planet 8 Pictoris b is present.

o At close separation (< 5A/D) the Ll-affine fit proves better at subtracting the speckle and it
preserves the planetary signature shape (Fig. 3.26).

o At larger separation (> 5\/D), the Ll-affine fit is equivalent to the least-square fit (Fig. 3.27).

In the next section, I will check these conclusions on the SNR maps provided by ANDROMEDA.

3.2.4.1 Impact of the robust affine fit on the SNR map

The results presented in this section are obtained by running ANDROMEDA on the 3 Pictoris data
from NaCo with the user-parameters set gathered in the Tab. 3.2.

User-defined parameter Used value
Filtering fraction, F’ 1/4
Minimum distance for the ADI, ,,:n 1.0 A/D
Width of the annuli for the ADI, dr 1.0 A/D
Ratio optimization to subtraction areas for the ADI, R4 1

Size of the reference PSF window, N 16 x 16 pixels
Inner working angle, IW A 2 \/D
Smoothing of the SNR robust standard deviation profile, Ngpooth 2 pixels

Table 3.2 — User-defined parameter values chosen to run ANDROMEDA on the 8 Pictoris VLT /NaCo data.

Fig. 3.28 shows the corresponding different SNR maps. The SNR map obtained with an optimiza-
tion method for the ADI (Fig. 3.28-Middle and Right) shows residuals distributed within annuli of
typical width d,, that are not present in the SNR map without optimization (Fig. 3.28-Left). Also
the SNR maps obtained with a least-square optimized ADI or a Ll-affine optimized ADI look very
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Figure 3.28 — SNR maps obtained by running ANDROMEDA on the data set presented at Sect. 3.2.1, using the
parameters gathered in Tab. 3.2. From left to right: SNR map obtained without optimization of the ADI, SNR
map obtained with a least-square optimization of the ADI and SNR map obtained with a L1-affine optimization
of the ADI. In each of these maps, the companion 5 Pictoris b is the only signal found above the 50 threshold,
with a SNR of respectively 16.24¢0, 14.80 and 14.08c.

similar. By looking closer at these maps, it appears that the residuals level is slightly lower at close
separation when using a L1-affine optimized ADI (see Fig. 3.30).

Note that the normalization profile obtained without the optimization shows clearly the two
regimes, showing a steep slope close to the star and a lower slope from a certain separation, here
from about 15-20 pixels (about 500mas), as shown on Fig. 3.29-Left. On the contrary, the normaliza-
tion profile obtained with the Ll-affine optimization has a constant slope all over the field, as shown
on Fig. 3.29-Right.

I | 1 I I I
20 40 60 2 40 60

Radius from the center (pixel) Radius from the center (pixel)

Figure 3.29 — Normalization profiles of the SNR maps of the § Pictoris data (red solid line) obtained by
smoothing the radial standard deviation profile of the SNR (black solid line) by three pixels, following the
method explained at Sect. 3.1.2. Left: without ADI optimization. Right: with the L1-affine optimization of the
ADI.

The planetary signal patterns in the SNR map are affected by the kind of differential image
optimization used. Without optimization the planetary signature is symmetrical (see Fig. 3.26) thus
the resulting planetary pattern is regular and similar to the theoretical shape (as in Fig. 2.5). However,
the optimization induces a slight distortion of the pattern but the difference on the position estimation
is below a tenth of a pixel for this planet (order of magnitude, since it depends on the scaling factor).
This distortion is due to the signal subtraction when the positive and negative peaks of the planetary
signal overlap. The scaling factor shrinks the negative peak (as it is usually smaller than one) which
affects the signature when the subtraction is made (which explains why the red and green positive
peaks of the planet signature are lower than the orange positive peak on Fig. 3.26).
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To visualize better the effect of the L1-affine optimization at close separation, the Fig. 3.30 shows
the robust standard deviation profile of the SNR maps, according to the different ADI optimization
procedures. Compared to the other methods, the Ll-affine optimization indeed permits to reach a
lower residuals dispersion around zero and lower residuals, in particular at close separation. At larger
separation (from about 1”), the L1 affine profile and the LS profiles are the same. Note that the
presence of the § Pictoris companion seems to indeed disturb the least-square fit which shows higher
residuals at this separation (green line on Fig. 3.30).
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Figure 3.30 — Radial profiles of the robust standard deviation of the SNR map, according to the different
methods of ADI optimization. Note that the peaks around 12 pixels are not due to the planetary companion
whose position is shown in green, but to bright speckles.

However, as written in the caption of Fig. 3.28, the SNR of the companion decreases when using the
optimization. As a consequence, even if the residuals level is indeed reduced at short separation, the
corresponding detection limit has to be compared to take into account the SNR difference. Fig. 3.31
shows the detection limits computed by ANDROMEDA under the conditions gathered in Tab. 3.2,
for the different ADI optimization methods. From this figure, it appears that the detection limit is
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Figure 3.31 — Detection limit computed by ANDROMEDA, according to the different methods of ADI opti-
mization.

globally lower for the method without optimization (black solid line on Fig. 3.31). Also, the detection
curves obtained using the least-square optimization and with the L1-affine optimization are very similar
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(note that at the separation of the companion 3 Pictoris b, the least-square is slightly lower than the
L1-affine which is in line with the fact the planetary companion has a higher SNR in the latter case).

Note that if there are no speckles (or if they are perfectly fixed), it is better to perform the image
difference without optimization. Indeed, on the one hand, it is easier to search for a symmetrical
planetary signature via the MLE and on the second, the scatter plot of the points in the first annulus
as a function of the points in the second annulus (as in Fig. 3.20) will be symmetrical wrt the bisector.

As a conclusion, the Ll-affine optimization does reduce the residuals level but it does not reach
a better detection limit. Also, the Ll-affine fit is equivalent to the least-square fit at larger distance
(from typically 1”).

3.2.4.2 Conclusion: which differential imaging optimization for which case

As a conclusion, there are three main cases to be considered:

1. If the dominant noise in the images originates from the photon and detector noise, a simple ADI
without optimization provides more accurate results;

2. If the dominant noise in the images originates from the flux difference between the two frames,
the least-square fit is equivalent to the robust affine fit (when filtering);

3. If the dominant noise in the images originates from the quasi-static speckle noise, the robust-
affine fit is the most adapted solution.

The robust-affine fit has been implemented and its application on real data has proven equally
or more efficient at reducing the speckle noise on both simulated and real data, while preserving the
planetary signal, if any. This L1-Affine optimization is particularly good at very close separation
where the intensity of the numerous speckles varies a lot from one image of the couple to the other
due to the poor rotation field velocity.

Provided that the image subtraction is performed with an adapted optimization, we saw that the
planetary signature is clearly affected by the scaling factor. Thus, a natural question which arose
from this work is: do we have to take into account the scaling factor when building the model of the
planetary signature 7 In the next section, this question is discussed in details.

3.2.5 Adapting the model of the planetary signature in the differential images

From the latter considerations, the question arose of whether one must take into account the scaling
factor when building the model of the planetary signal to be inverted. This model must correspond
as much as possible to the resulting planetary signature appearing in the differential image obtained
following;:

A(k,r) = ix(t1, Tsub) — Yk ik (t2; Tsub) — Yk (3.9)

Where ~y;, and v}, are computed either with a least-square fit (Eq. 2.12) or a robust-affine fit (Eq. 3.6),
over the subtraction area rgyp.

Taking into account the scaling factor in the planetary signature model In this first case,
the model is thus written:

mi(a,ro) = pr(re,) — & Pe(res) (3.10)

This model is appropriate under the assumption that the planetary signal has exactly the same shape
and intensity in the two frames, that is to say it does not vary along with the stellar halo. In practice,
this can be the case when the dominant factor, responsible for the temporal variations of the image
quality, affects only the on-axis PSF (i.e., the jitter temporal variation is dominant), that is to say
when the speckles decorrelate from ¢; to to but the planetary signal remains the same. For instance,
an increased wind speed might significantly increase the AO temporal residuals and thus the level
of stellar halo in the corrected area, whereas the Strehl ratio (and companion PSF core) is hardly
modified. Thus when tuning the second image, ix(t2,r), via the scaling factor, the negative pattern
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is scaled and to take into account this scaling, the scaling factor v must be taken into account in
the model (which is the original way implemented in ANDROMEDA). This also means the planetary
signature model is non-symmetrical, the negative bump will be greater than -1 since, when filtering,
~rs is still less than 1.0 (see typical planetary signature on Fig. 3.32-Right).

Without taking into account the scaling factor in the planetary signature model In this
second case, the model writes:

my(a,ro) = pr(re,) — Pr(re,) (3.11)

This model is appropriate under the assumption that the planetary signal varies in the same way as the
stellar halo. In practice, this can be the case when the dominant factor, responsible for the temporal
variations of the image quality, affects the whole field of view the same way (for instance, clouds
passing in front of the telescope pupil). Thus, optimizing the ADI (scaling ix(t2, rsub) Wrt ix(¢1, Tsup))
is equivalent to making the planet signature symmetrical in the resulting differential image (see typical
planetary signature on Fig. 3.32-Left), hence the scaling factor v must not be taken into account in
the model.

Impact on the ANDROMEDA performance on real data Choosing either one or the other
model thus depends on the observing conditions (and it might turn out to be a mix of these two cases).
For instance, on the TYC-8979-1683-1 data, the scaling factor must be taken into account to spot
the synthetic planetary companions since they have been injected without taking into account any
flux variation (only the field rotation is taken into account during the injection). However, in NaCo
Lr data and on SPHERE data, it is better to not take into account the scaling factor, as shown on
Fig. 3.33, which shows the SNR map obtained either with or without the scaling factor in the model
(after using a least-square optimized scaling factor during the ADI process).

Figure 3.32 — Model of the planet signature (with pre-filtering, F' = 1/4), without (left) or with (right) the
scaling factor taken into account (yrg = 0.4 in this example). As in Fig. 2.4, this planet signature is obtained by
shifting the reference PSF of 0,,,s, (here only the distance ,,;,, is not angular but along the x-axis; 0, = 1A/D).
This illustration is made thanks to an Airy pattern sampled with an oversampling rate of 1.6 and normalized
to its maximum.

Another more practical interpretation of this result is that when using a non-symmetrical shape,
mostly when ~g is lower than 0.5 which happens often on real data (see Fig. 3.27), the signature is
mainly made of the positive bump (as on Fig. 3.32) which will correlate better with speckle residuals.
On the contrary, there is lower chance to correlate with residual speckles when the planetary signature
model is symmetrical which is a shape very specific to a point source. The latter interpretation can be
verified by running ANDROMEDA in the same conditions, either with or without the scaling factor
in the model, as in next section.

Impact on the ANDROMEDA SNR maps Fig. 3.28 shows the different SNR maps obtained by

running ANDROMEDA on the 8 Pictoris data from NaCo (Sect. 3.2.1) using the parameters gather
in Tab. 3.2 for the two ADI optimization and the two different models. The SNR maps obtained with
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Figure 3.33 — Shape of the planetary signature due to the companion S Pictoris b in the NaCo images, located
at about 455mas, using 0., = 0.5A/D.
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Figure 3.34 — SNR maps (left) and corresponding subimages (right) obtained by running ANDROMEDA on
the data set presented at Sect. 3.2.1, using the parameters gathered in Tab. 3.2. From left to right: SNR map
obtained with a least-square optimization and SNR map obtained with a Ll-affine optimization. From top to
bottom: SNR map obtained by using a model without the scaling factor and SNR map obtained by using a
model with the scaling factor. In each of these maps, the companion 8 Pictoris b is the only signal found above
the 50 threshold, with a SNR of (from left to right, top to bottom): 14.800, 14.080, 14.470 and 14.030.

the scaling factor taken into account in the model shows higher residuals into annular areas which
could arise above the threshold set. For this specific data set, the scaling factor should better not be
taken into account.

As a consequence, for this data set, the corresponding detection limit curves, presented on Fig. 3.35
are lower in the case where the scaling factor is not taken into account in the model of the planetary
signature model.
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Figure 3.35 — Detection limits corresponding to the SNR map presented on Fig. 3.34. From left to right: Without
the scaling factor and with the scaling factor.

As a conclusion, if some detections are suspicious and could be artifacts, one way to check if they
are true detection is to run ANDROMEDA twice, once with and once without the scaling factor, in
order to check if the detection remain in both SNR maps with a significant SNR.

Note that in any case, the affine factor «/ must not be taken into account since it is only used to
obtain a better speckle subtraction during the ADI process. It is an offset used only for the subtraction
and it does not affect the planetary companion signal since its value only introduces an extremely low
offset (see Fig. 3.27b-Right).

At last, choosing either model only affects the SNR of the companion and the SNR map residuals
since the flux is estimated wrt the positive bump pg(r¢,) which is normalized and not scaled by any
factor.

3.3 Automatic companion extraction, properties and reliability cri-
teria

This section describes the detection module that I have implemented in ANDROMEDA, along with
the ANDROMEDA approach. This module extracts the information recorded in the three maps
output by ANDROMEDA: the SNR map, the flux map and the map of the standard deviation of the
flux. This detection module automatically provides the list of the detections (here referring to any
signal found above the threshold set), and sort them out into so-called firm detections and probable
artifacts (Sect. 3.3.3). Once this sorting is completed, the signals are thoroughly analyzed to obtain
their sub-pixel position (Sect. 3.3.1) and contrast wrt the central star (Sect. 3.3.2), along with the
corresponding error bars. Then the 1D detection limit curve is computed by the module (Sect. 3.3.4).
One specificity of this module is that it allows the used to visualize and to store the results in a
user-friendly way (Sect. 3.3.5).

Note that this toolbox can be used in line with other image processing methods, as long as point
source signals are searched in a 2D-map for a given threshold. It is easy to adapt this module in order
to analyze such output from various image processing methods.

3.3.1 Detection and astrometry

For the detection and position estimation, the SNR map is used.

Automatic detection The automatic detection consists in finding every signal above the chosen
threshold. To do so the highest signal is looked for and it is checked whether it is above the threshold
set. If it is the case, the signal is regarded as a detection. It is then analyzed before being removed

from the SNR map by erasing all the surrounding pixels belonging to this detected signal which stand
above the threshold. Then, the next highest signal is looked for, until one is found to be below the
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threshold. The detections are thus gathered from the highest SNR signal to the lowest following this
clean-like scheme.

Subpixel position estimation To analyze the signal, a subwindow is extracted from the SNR map.
This square subwindow must fully enclose the planetary-like pattern. Knowing the expected shape of
this pattern (see Sect. 3.1.1 for instance), the typical size of the subwindow is of 3A\/D x 3\/D. Thus,
it only depends on the pixel scale of the images and on the wavelength of observation.

Within this window, a 2D-Gaussian fit of the pattern is performed. Rigorously this SNR pattern
would be better fitted by the exact shape of the expected pattern (as in Fig. 2.5) than by a Gaussian
function. However the important aspect in the analysis of the pattern is the computed FWHM and the
position of the maximum, and the discrepancy of the pattern to a Gaussian shape pattern is mainly
on the edges of the pattern. Thus a more corresponding fit would not bring more information than a
Gaussian fit, and for simplicity, a Gaussian fit has been implemented. In IDL this fit is performed by
using the MPFIT2DPEAK procedures by Markwardt (2009).

From this 2D-Gaussian fit, the position of the maximum of the signal is retrieved, as sketched on
Fig. 3.36. The final estimated position is the position of the maximum of the 2D-Gaussian fit of the
analyzed SNR pattern. Thus, this procedure provides a subpixel precision on the estimated position.
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Figure 3.36 — Sketch of the determining of the signal position by a 2D-Gaussian fit.

Note that the normalization procedure might bias the position estimation in the radial direction,
depending on the slope of the normalization profile where the detection is localized. If the slope is very
steep, it affects the position of the planetary signal of less than three pixels (backwards if the slope is
negative). It is thus better to have a quite smoothed normalization profile to remove the jagged parts
whose slopes are very steep, in case a planetary companion could be present at this separation.

Estimation of the detection SNR The SNR of the detected signal is given by the maximum of
the 2D-Gaussian fit (which is the value of the signal at the estimated position).

Estimation of the 3-0 error on the position estimation This module computes and provides
the 30 error on the 2D-Gaussian uncertainty, following three considerations:

1- The MPFIT2DPEAK procedure provides the measured lo uncertainties on the fit parameters
(fitting error). To compute this uncertainty, I set a weight map which values 1 for any pixel within
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the subimage which is above threshold, else 0.

2- The MPFIT2DPEAK procedure assumes that the chi-square is equal to one (that is to say that
pure noise is surounding the pattern). In order to take the real noise distribution into account, the
latter error is scaled by the true reduced chi-square value: if the reduced chi-square is greater than
one, it is multiplied to the previous error.

3- The latter error assumes that the surrounding noise has a variance of 1. Thus, I computed the
azimuthal robust standard deviation of the SNR inside the annuli where the analyzed detection lies
(of width the size of the subimage). If this value is greater than one (which should not be the case
thanks to the normalization), it is also multiplied to the previous error.

Eventually the final error is multiplied by 3 to obtain the 3o error bar on the estimated position.
This error bar only account for the subpixel position estimation once the SNR map is computed. This
error bar does not provide the errors due to the algorithm robustness in itself (due to the sensitivity
of the algorithm to its user-defined parameters). These errors are discussed in the next chapter in
which I make vary each of the user-defined parameters to evaluate the deviation of the astrometric
estimations wrt to the retrieved value (Chap 4).

3.3.2 Photometry

For the contrast estimation, the flux map is used. The exact same subimage is extracted but in the
flux map. A 2D-Gaussian fit is also performed on the planetary pattern (which should have the same
shape in both the SNR and flux maps). The estimated flux is the flux read on the 2D Gaussian fit at
the sub-pixel position retrieved earlier: a(rp).

Contrast estimation The read flux is given wrt to the input reference PSF. The first step is to
convert this input reference PSF according to the science images. This conversion is made from the
knowledge about the observation conditions used to image the reference PSF: its integration time, the
transmission of the neutral density (if one used), the throughput of the coronagraph (if one used) or any
other parameter which would affect the integrated flux of the reference PSF wrt the integrated flux<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>