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Abstract

Tensor-based methods are by now well-established tools in many scientific and engineering

domains, due to their capability of exploiting additional structure in comparison with matrix-

based ones. Two quite common tasks in applications are the computation of a canonical

polyadic decomposition (CPD) and the recovery of a tensor of interest from a reduced number

of linear measurements under a low-rank assumption, known as low-rank tensor recovery

(LRTR). General iterative methods exist for CPD computation, but they often suffer from

slow convergence and are prone to delivering inaccurate estimates. With respect to LRTR,

no approach has yet been proven optimal in terms of sampling requirements.

In the first part of this thesis, we formulate two methods for computing a CPD having

linearly structured (e.g., Toeplitz or banded) matrix factors: a general constrained alternat-

ing least squares (CALS) algorithm and an algebraic solution for the case where all factors

are circulant. Exact and approximate versions of the former method are studied. The latter

method relies on a multidimensional discrete-time Fourier transform of the target tensor,

which leads to a system of homogeneous monomial equations whose resolution provides the

desired circulant factors. Our simulations show that combining these approaches yields a sta-

tistically efficient estimator, which is also true for other combinations of CALS in scenarios

involving non-circulant factors.

The second part of the thesis concerns LRTR and, in particular, the tensor comple-

tion (TC) problem. We propose an efficient algorithm based on multilinear rank, called

SeMPIHT, which employs sequentially optimal modal projections as its hard thresholding

operator. Then, a performance bound is derived under usual restricted isometry conditions,

which however yield suboptimal sampling bounds. Nevertheless, our simulations suggest

SeMPIHT obeys optimal sampling bounds for Gaussian measurements. Step size selection

and gradual rank increase heuristics are also elaborated in order to improve performance. In

addition to SeMPIHT, we devise an imputation scheme for TC based on soft thresholding of

a Tucker model core, named IFHST, relying on characteristics typically possessed by real-

world tensors. The utility of such a scheme is illustrated in the completion of a road traffic

data tensor acquired by an intelligent transportation system.

Keywords: canonical polyadic decomposition, structured matrices, structured tensors, al-

ternating least-squares, circulant matrices, homogeneous monomial equations, low-rank ten-

sor recovery, tensor completion, iterative hard thresholding, intelligent transportation sys-

tem.





Résumé

Les méthodes basées sur les tenseurs sont aujourd’hui très utilisées dans différents domaines

scientifiques et d’ingénierie, en raison de leur capacité à mieux exploiter l’aspect multidi-

mensionnel des données et leur structure sous-jacente par rapport aux méthodes matricielles.

Deux tâches importantes sont le calcul d’une décomposition polyadique canonique (CPD) et

la récupération d’un tenseur de rang faible (LRTR) à partir d’un nombre réduit de mesures

linéaires. Cependant, les méthodes itératives générales de calcul de CPD souvent convergent

lentement et/ou produisent des estimées imprécises, et aucune approche au problème LRTR

n’a à ce jour été démontrée optimale vis-à-vis du nombre de mesures nécessaires.

Dans la première partie de cette thèse, on formule deux méthodes pour le calcul d’une

décomposition polyadique canonique ayant des facteurs matriciels structurés dans un sens

linéaire (e.g., des facteurs de Toeplitz ou en bande): un algorithme général de moindres

carrés alternés (CALS) et une solution algébrique dans le cas où tous les facteurs sont cir-

culants. Des versions exacte et approchée de la méthode CALS sont étudiées. La solution

algébrique fait appel à la transformée de Fourier multidimensionnelle à temps discret du

tenseur considéré, ce qui conduit à un système d’équations monomiales homogènes dont la

résolution fournit les facteurs circulants désirés. Nos simulations montrent que la combinai-

son de ces approches fournit un estimateur statistiquement efficace, ce qui reste vrai pour

d’autres combinaisons de CALS dans des scénarios impliquant des facteurs non-circulants.

La seconde partie de la thèse porte sur le problème LRTR et, en particulier, celui de

reconstruction tensorielle (TC). On propose un algorithme efficace basé sur le rang multi-

linéaire, noté SeMPIHT, qui emploie des projections séquentiellement optimales par mode

comme opérateur de seuillage dur. Puis, une borne de performance est dérivée sous des

conditions d’isométrie restreinte habituelles, ce qui fournit des bornes d’échantillonnage

sous-optimales. Néanmoins, nos simulations suggèrent que SeMPIHT obéit à des bornes

d’échantillonnage optimales pour des mesures Gaussiennes. Des heuristiques de sélection

du pas et d’augmentation graduelle du rang sont aussi élaborées dans le but d’améliorer la

performance. On propose aussi un schéma d’imputation pour TC basé sur un seuillage doux

du cœur d’un modèle de Tucker, appelé IFHST, et on illustre son utilité pour la récupération

de données réelles de trafic routier acquises par un système de transport intelligent.

Mots-clés: décomposition polyadique canonique, matrices structurées, tenseurs struc-

turés, moindres carrés alternés, matrices circulantes, équations monomiales homogènes,

récupération de tenseurs de rang faible, reconstruction tensorielle, seuillage dur itératif,

système de transport intelligent.
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The Équipe SIS of I3S laboratory always gave me strong support, offering several possi-

bilities for my development as a researcher. I thus wish to thank them, especially the team

leaders Vicente Zarzoso and Sylvie Icart.

Collaborating with Pierre Comon, Maxime Boizard and Rémy Boyer was also an enriching
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Chapter 1

Introduction

Tensors have interested mathematicians and physicists since the nineteenth century. In

physics, they offer a convenient language for expressing certain natural laws. A famous ex-

ample is Eistein’s theory of general relativity, whose fundamental equations are expressed

in terms of tensors. From the sixties onward, a growing interest in tensors has also been

observed across many other scientific and engineering communities, in part spurred by pi-

oneering works in psychometrics which applied tensor-based techniques with data analysis

purposes [200, 201, 202, 100, 39]. Notably, blind source separation techniques were developed

in the nineties by exploiting the tensor structure of higher-order cumulants [36, 38, 37, 50],

while many works employing tensor models were surfacing also in the chemometrics literature

[4, 25, 24, 130]. Nowadays, the ever expanding list of applications of tensors encompasses

problems in telecommunications [179, 57, 84, 83, 81], signal processing [60, 180, 147, 154, 45],

computer vision [177, 135, 42, 149], biomedical engineering [8, 171, 170, 140], dynamical sys-

tem modeling and identification [114, 78, 79, 26] and data mining [6, 120, 145, 156].

This relatively recent surge of interest in tensor methods is mainly explained by their abil-

ity to exploit additional problem structure in comparison with more traditional matrix-based

ones. The estimation of excitation/emission spectra from fluorescence data in chemometrics

by means of high-order tensor decomposition techniques [25, 24] is a stereotypical example

of such a superiority, which stems in this case from the uniqueness of these quantities un-

der much milder conditions than are needed when matrix decompositions are used instead.

More generally, the same idea applies to inverse problems whose sought quantities consti-

tute multilinear models, such as, e.g., in the estimation of directions of arrival in antenna

array processing [174]. Tensor models are equally useful in many other problems because

they often provide accurate and parsimonious representations of real-world multidimensional

data, a fact that can be exploited for developing efficient storage, computation and estima-

tion techniques. This line of thought is followed, for instance, in data compression [56, 7],

nonlinear system modeling [79, 26] and low-rank tensor recovery [43, 167].

Concomitantly with the thriving resort to tensor-based methods in applied sciences,

new and exciting research directions related to tensor properties, tensor representations

and multilinear algebra have flourished. Significant advancement has been brought about

by such an ample effort in recent times [95, 72, 73, 153, 87, 15, 44, 96, 162], and yet some
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fundamental properties of high-order tensors still elude researchers to a great extent.

1.1 Motivation

1.1.1 Structured canonical polyadic decomposition

Tensor decompositions play a major part in the above described trend. Arguably, the

canonical polyadic decomposition (CPD) [104] (also known as PARAFAC or Candecomp

[100, 39]), which expresses a tensor as a minimal sum of rank-one tensors, is among the

most important and popular tensor-related techniques. Such a relevance is primarily owed

to its strong uniqueness properties, but also due to its connection with the tensor rank. As

a consequence, much work has been devoted to the study and development of algorithms for

CPD computation, a problem which is in general NP-hard [102].

General iterative algorithms exist for computing an approximate CPD [193, 2, 41], usually

assuming knowledge of its rank. Owing to its simplicity, a quite popular one is alternating

least squares (ALS) [100], which cyclically estimates the matrix factors by keeping all but one

of them fixed. Yet, they are prone to suffering from well-known convergence difficulties, due

to which they can fail to deliver accurate results or require a great computing effort. These

difficulties are largely caused by the openness of the set of tensors having rank bounded by any

R > 1, which implies that the approximate CPD computation problem may have no solution.

Even when it does have one, convergence can be slowed down when traversing regions of the

parameter space close to tensors having no best rank-R approximation [144, 155].

Tensors arising in some applications admit CPDs whose factor matrices are structured,

whether in a linear sense (e.g., having Toeplitz, circulant, Hankel, banded or block-Toeplitz

structure) or not (e.g., having Vandermonde structure) [198, 206, 9, 57, 84, 78, 186]. There-

fore, CPD computation methods which exploit their structure have been proposed in an

attempt to mitigate the above mentioned difficulties [116, 184, 187]. However, the treatment

of structural constraints has been mostly ad-hoc and on a case-by-case basis. Algebraic

methods are particularly interesting for they often provide a quite cheap approximate solu-

tion. Though this estimate is usually significantly disturbed in the presence of noise, it can

be refined by an iterative algorithm, in many cases at a relatively small cost.

1.1.2 Low-rank tensor recovery

Recently, the low-rank tensor recovery (LRTR) problem was formulated as a logical extension

of compressive sensing and low-rank matrix recovery, aiming at the estimation of higher-order

tensors from a small number of linear measurements by exploiting parsimony with respect to

some tensor model (or tensor representation). A particular case of LRTR which draws special

interest, known as tensor completion, focus on recovering the missing entries of a partially
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observed tensor. It finds applications in several fields where measured tensors can often be

approximated by low-rank models, such as, e.g., computer vision [134, 213], hyperspectral

imaging [88, 181], seismic data processing [122] and road traffic data recovery [191, 163, 164].

The passage to higher-order tensors, however, is complicated by the fact that multiple

non-equivalent definitions of rank exist in this case, each one corresponding to a different

tensor model. Hence, various approaches exploiting these distinct rank notions have been

proposed. One can argue that the strategy based on the Tucker model, whose supporting

concept of parsimony is the multilinear rank, is adopted most of the time. The principal rea-

son is that this approach rests upon classic matrix tools. In comparison, that based on tensor

rank is harder to address, even though its underlying CPD model is more parsimonious.

In contrast with compressive sensing and matrix recovery, no LRTR method has yet

been shown optimal or quasi-optimal in the sense of requiring a number of measurements

growing roughly linearly with the complexity (in terms of the number of degrees of freedom)

of its underlying tensor model. In fact, even systematic experimental studies on this point

are lacking. Moreover, many existing methods are not suitable for recovering tensors which

deviate considerably from the ideal assumption of low multilinear rank. Much work is still

needed to bridge these gaps, both in the general case and in the tensor completion setting.

1.2 Contributions

This thesis addresses some of the foregoing issues involved in the problems of structured

canonical polyadic decomposition (SCPD) estimation and LRTR. Its contributions are sum-

marized below.

Formulation of SCPD algorithms and performance evaluation. We formulate a

general constrained version of ALS, called constrained alternating least squares (CALS), in

which the factors can be arbitrarily structured in a linear sense (i.e., they lie in specified

matrix subspaces) [65]. Also, (partially and completely) symmetric SCPDs are treated and

approximate iterates with reduced cost are derived [64]. Though ad-hoc versions of ALS

with structured factors have already been proposed, ours appears to be the first systematic

treatment of the SCPD computation problem via this approach.

An algebraic solution for a SCPD having only circulant factors is developed as well,

rooted in the special eigenstructure of square circulant matrices. By applying the multidi-

mensional discrete-time Fourier transform to the target tensor, this approach reduces the

SCPD computation to the resolution of a system of homogeneous monomial equations [64].

We characterize the resulting system of equations and study how its different solutions relate

to one another.
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The performance of the proposed CALS variants with regard to convergence to local

minima and to total computing cost is studied by means of simulations. This investigation

allows assessing the sensitivity of CALS vis-à-vis its initialization and also understanding

under which conditions the use of approximate iterations can be of interest.

More broadly, we evaluate the statistical performance of several SCPD estimation algo-

rithms by relying on closed-form expressions for the Cramér-Rao lower bound which were

derived in [19, 63, 65, 20]. This is carried out in a Bayesian setting where random SCPD

instances are drawn according to specified prior distributions. In particular, we assess the

performance of estimators combining an algebraic (and non-iterative) stage with a subse-

quent refinement stage via some iterative algorithm [65].

Low-rank tensor recovery via iterative hard thresholding. An iterative hard thresh-

olding (IHT) algorithm for LRTR based on multilinear rank is proposed [68, 67]. This

algorithm employs a hard thresholding operator which is less costly than currently used

alternatives and leads to superior or comparable performance. Furthermore, theoretical re-

covery results are derived by relying on its analytical properties and on restricted isometry

assumptions. We also study the sampling requirements of our proposed algorithm and com-

pare it with those of many others by means of systematic numerical experiments. Heuristics

for step size selection and gradual (multilinear) rank increase are proposed, discussed and

empirically evaluated [66].

Tensor completion algorithm based on soft Tucker core thresholding. Motivated

by the typical modal singular spectra possessed by real-world data tensors, we develop an

algorithm for tensor completion based on applying soft thresholding to the core of an orthog-

onal Tucker model. The rationale of this strategy lies in the connection between compress-

ibility of that core and fast decay of modal singular spectra of the target tensor, which we

show analytically and illustrate numerically. Links with existing approaches are elucidated

and a control theory-based interpretation is given to a version of our algorithm comprising

a feedback correction mechanism for accelerating convergence.

The suitability of this algorithm for completing real-world tensors is shown by means of

a detailed application example. Namely, we deal with the problem of traffic data reconstruc-

tion, which is of great relevance in the context of intelligent transportation systems.

1.3 Publications and oral presentations

[64] J. H. de Morais Goulart and G. Favier, “An algebraic solution for the Cande-

comp/PARAFAC decomposition with circulant factors,” SIAM Journal on Matrix Analysis

and Applications, vol. 35, no. 4, pp. 1543–1562, 2014.
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[63] J. H. de Morais Goulart, M. Boizard, R. Boyer, G. Favier, and P. Comon, “Statistical

efficiency of structured CPD estimation applied to Wiener-Hammerstein modeling,” in Pro-

ceedings of the European Signal Processing Conference (EUSIPCO). Nice, France: IEEE,

Sep. 2015, pp. 948–952.

[66] J. H. de Morais Goulart and G. Favier, “An iterative hard thresholding algorithm with

improved convergence for low-rank tensor recovery,” in Proceedings of the European Signal

Processing Conference (EUSIPCO). Nice, France: IEEE, Sep. 2015, pp. 1701–1705.

[20] M. Boizard, J. H. de Morais Goulart, R. Boyer, G. Favier, and P. Comon, “Performance
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[65] J. H. de Morais Goulart, M. Boizard, R. Boyer, G. Favier, and P. Comon, “Tensor CP
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of Selected Topics in Signal Processing, vol. 10, no. 4, pp. 757–769, 2016.
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1.4 Structure of the thesis

This manuscript is divided into two parts, each one addressing one of the problems de-

scribed in Section 1.1. First, Chapter 2 introduces basic mathematical definitions, algebraic

operations and fundamental results which are required for the remaining of the thesis. The

notation used in subsequent chapters is also established.

Part I starts with Chapter 3, which describes the SCPD problem and illustrates its

relevance by giving an application example. Existing specialized estimation algorithms are

reviewed, and then expressions for the corresponding deterministic and Bayesian Cramér-Rao

bounds are given.

Subsequently, our proposed methods for SCPD computation are presented in Chapter 4.

We start by working out a constrained version of ALS which takes the structure of the

matrix factors into account. Exact and approximate iterates are developed, as well as a

general formulation which deals with (partially or completely) symmetric SCPDs. Next, an

algebraic solution for handling circulant factors is elaborated by relying on multilinearity

of the model and on basic properties of circulant matrices. Applying the multidimensional
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Fourier transform to the target tensor, we essentially convert the SCPD problem into the

resolution of a system of homogeneous monomial equations. The solutions of this system are

studied and several illustrative examples are provided.

Chapter 5 then closes this part by presenting an empirical evaluation of the SCPD esti-

mation algorithms proposed in Chapter 4. It first studies the performance of CALS variants

with respect to convergence towards local minima and to computing cost. Then, the statis-

tical performance of several SCPD estimators is numerically evaluated, by making use of the

Cramér-Rao bounds given in Chapter 3.

Part II begins on Chapter 6, where we state the LRTR problem, discuss its main aspects

and then survey some of the major existing approaches and their related recovery guarantees.

This presentation is preceded by a brief review on compressive sensing and low-rank matrix

recovery, with the goal of introducing and explaining in simpler settings some aspects which

are also relevant to the LRTR problem.

The IHT framework is detailed in Chapter 7, where we describe existing algorithms

based on this technique for compressive sensing, low-rank matrix recovery and LRTR. We

then propose an IHT algorithm for LRTR and derive a recovery performance bound based

on standard restricted isometry assumptions. Step size selection and gradual rank increase

heuristics are developed for accelerating convergence, the latter being applicable to tensors

having characteristics typically observed in real-world data. Numerical simulations are em-

ployed to estimate the sampling bounds of several algorithms both in the general setting (with

Gaussian measurements) and in the context of tensor completion. This chapter also includes

further simulation results concerning the comparison of LRTR algorithms with respect to

convergence speed and computational efficiency.

We then proceed to present our proposed tensor completion algorithm based on soft

thresholding in Chapter 8. To this end, a review on single imputation schemes for tensor

completion is first given. Drawing upon this strategy, our proposed approach is developed,

where the thresholding operation is meant to approximately solve an ℓ1-regularized least-

squares problem formulated with the goal of estimating a parsimonious Tucker model. After

discussing an interpretation of the alternating direction method of multipliers (ADMM)

algorithm with exponentially growing penalty parameter in terms of a feedback control

mechanism, we propose a version of our algorithm incorporating this idea for performance

improvement. Lastly, simulation results are presented to validate the devised method.

The algorithm conceived in Chapter 8 is then applied to the problem of road traffic data

reconstruction in Chapter 9. We first provide information on the application context, on the

considered performance indices and on the real-world data used in our experiments. The

experimental procedure is then described, followed by a discussion of the obtained results.

Finally, we present our general conclusions and elaborate on research perspectives.



Introduction

Les mathématiciens et physiciens s’intéressent aux tenseurs depuis le XIXe siècle. En

physique, les tenseurs offrent un langage qui convient pour exprimer certaines lois. La

théorie de la relativité générale d’Einstein en est un exemple fameux, ses équations fon-

damentales étant écrites sous forme tensorielle. À partir des années soixante, un intérêt

croissant pour les tenseurs est observé également dans beaucoup d’autres communautés sci-

entifiques et d’ingénierie, ce qui est en partie dû aux travaux novateurs en psychométrie

qui appliquaient des techniques basées sur les tenseurs à des fins d’analyse de données

[200, 201, 202, 100, 39]. Notamment, des techniques de séparation aveugle de sources ont été

développées dans les années quatre-vingt-dix en exploitant la structure tensorielle des cumu-

lants d’ordre supérieur [36, 38, 37, 50], alors que plusieurs travaux employant des modèles

tensoriels apparaissaient aussi en chimiométrie [4, 25, 24, 130]. Aujourd’hui, la liste toujours

croissante des applications des tenseurs comprend des problèmes de télécommunications,

[179, 57, 84, 83, 81], traitement du signal [60, 180, 147, 154, 45], vision par ordinateur

[177, 135, 42, 149], ingénierie biomédicale [8, 171, 170, 140], modélisation et identification de

systèmes dynamiques [114, 78, 79, 26] et fouille de données [6, 120, 145, 156].

Cet afflux d’intérêt relativement récent pour les méthodes tensorielles s’explique princi-

palement par leur capacité à mieux exploiter la structure de certains problèmes par rapport

à des méthodes matricielles traditionnelles. L’estimation de spectres d’excitation/émission

à partir de données de fluorescence en chémometrie à l’aide de techniques de décomposition

tensorielle [25, 24] est un exemple stéréotypé de leur supériorité, qui dans ce cas découle

de l’unicité des quantités à estimer sous des conditions beaucoup moins contraignantes que

celles qui s’appliquent lorsqu’on fait appel plutôt à des décompositions matricielles. De

manière plus générale, cette même idée s’applique aux problèmes inverses dont les quantités

d’intérêt satisfont des modèles multilinéaires, comme, e.g., l’estimation de directions d’arrivée

dans le traitement de réseaux d’antenne [174]. Les modèles tensoriels sont également utiles

dans beaucoup d’autres problèmes car souvent ils fournissent des représentations précises

et parcimonieuses de données réelles multidimensionnelles, ce qui peut être exploité par des

techniques de stockage, calcul et estimation efficaces. Ce raisonnement est appliqué, par

exemple, à la compression de données [56, 7], à la modélisation de systèmes [79, 26] et à la

récupération de tenseurs de rang faible [43, 167].

Simultanément à l’application florissante de méthodes tensorielles aux sciences ap-

pliquées, de nouvelles directions de recherche passionnantes liées aux propriétés des tenseurs,

aux représentations tensorielles et à l’algèbre multilinéaire ont prospéré. Des avancements

significatifs ont été apportés récemment [95, 72, 73, 153, 87, 15, 44, 96, 162], et pour-
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tant certaines propriétés fondamentales des tenseurs d’ordre supérieur échappent encore aux

chercheurs dans une large mesure.

Motivation

Décomposition canonique polyadique structurée

Les décompositions tensorielles jouent un rôle majeur dans la tendance décrite ci-dessus. La

décomposition canonique polyadique (CPD) [104] (aussi connue sous les noms PARAFAC et

Candecomp [100, 39]), qui exprime un tenseur comme une somme minimale de tenseurs de

rang un, se situe parmi les techniques tensorielles les plus importantes et populaires. Cette

importance est principalement due à ses propriétés d’unicité, mais aussi à son lien avec le

rang tensoriel. Par conséquent, un grand effort est consacré à l’étude et au développement

d’algorithmes pour le calcul de la CPD, un problème qui est en général NP-difficile [102].

Des algorithmes itératifs généraux existent pour le calcul approximatif d’une CPD [193,

2, 41], normalement sous l’hypothèse de connaissance de son rang a priori. En raison de

sa simplicité, un algorithme assez populaire est celui des moindres carrés alternés (ALS)

[100], qui estime chaque facteur matriciel en gardant les autres facteurs fixés. Toutefois, ces

algorithmes sont susceptibles de connâıtre des difficultés de convergence bien connues, qui

peuvent produire des résultats imprécis ou bien exiger un temps de calcul prohibitif. Ces

difficultés sont largement causées par l’ouverture de l’ensemble des tenseurs de rang borné

par R > 1, qui entrâıne la possibilité d’inexistence d’une solution au calcul approximatif

d’une CPD. Même s’il y en a une, la convergence peut être ralentie lorsque l’algorithme

traverse des régions de l’espace des paramètres incluant des tenseurs qui n’admettent pas de

meilleure approximation de rang R [144, 155].

Les tenseurs qui apparaissent dans certaines applications admettent des CPDs à fac-

teurs matriciels structurés, soit dans un sens linéaire (e.g., ayant une structure Toeplitz,

circulante, Hankel, en bande ou Toeplitz en bloc) ou non-linéaire (e.g., ayant une struc-

ture Vandermonde) [198, 206, 9, 57, 84, 78, 186]. Donc, des méthodes de calcul de CPD

qui exploitent leur structure ont été proposées afin d’essayer d’atténuer les difficultés sus-

mentionnées [116, 184, 187]. Cependant, le traitement de contraintes structurelles est fait

surtout de façon ad-hoc et au cas par cas. Les méthodes algébriques sont particulièrement

intéressantes car souvent elles fournissent une solution approchée à un faible coût de calcul.

Bien que cette estimé soit en général assez perturbée lorsqu’il y a du bruit, elle peut être

raffinée par un algorithme itératif, à un coût relativement faible dans de nombreux cas.
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Récupération de tenseurs de rang faible

Récemment, le problème de récupération de tenseurs de rang faible (LRTR) a été posé comme

une extension logique de l’échantillonnage compressé et de la récupération de matrices de

rang faible. Son but est l’estimation de tenseurs d’ordre supérieur à partir d’un nombre réduit

de mesures linéaires en exploitant la parcimonie inhérente à un modèle (ou représentation)

tensoriel(le). Un cas d’intérêt spécial de LRTR, connu sous le nom de reconstruction ten-

sorielle, se concentre sur la récupération de composantes manquantes d’un tenseur de données

partiellement observé. Ce problème s’applique à plusieurs domaines où les tenseurs mesurés

peuvent souvent être approchés par des modèles à rang faible, comme, e.g., en vision par

ordinateur [134, 213], en imagerie hyperspectrale [88, 181], dans le traitement de données

sismiques [122] et la récupération de données de trafic routier [191, 163, 164].

Néanmoins, le passage aux tenseurs d’ordre plus élevé est compliqué par le fait que de

multiples définitions non-équivalentes de rang existent dans ce cas, chacune étant associée

à un modèle tensoriel différent. Ainsi, plusieurs approches exploitant ces notions de rang

distinctes ont été proposées. On peut argumenter que la stratégie basée sur le modèle de

Tucker, dont la notion sous-jacente de parcimonie correspond au rang multilinéaire, est

adopté la plupart du temps. La principale raison pour cela est que cette approche s’appuie

sur des outils matriciels classiques. En comparaison, celle basée sur le rang tensoriel est

plus difficile à aborder, malgré le fait que son modèle sous-jacent basé sur la CPD est plus

parcimonieux.

Contrairement aux problèmes d’échantillonnage compressé et de récupération matricielle,

aucune méthode de LRTR n’a encore été démontrée optimale ou quasi-optimale dans le sens

d’exiger un nombre de mesures qui crôıt approximativement linéairement avec la complexité

(en termes du nombre de degrés de liberté) de son modèle sous-jacent. En fait, même

des études empiriques et systématiques sur cet aspect manquent. En plus, beaucoup de

méthodes existantes ne sont pas adéquates pour la récupération de tenseurs s’éloignant con-

sidérablement de l’hypothèse idéale de rang multilinéaire faible. Beaucoup de travail est

encore nécessaire pour que ces lacunes soient comblées, tant dans le cas général que dans le

cadre de reconstruction tensorielle.

Contributions

Cette thèse aborde certaines des questions citées ci-dessus liées aux problèmes d’estimation

d’une CPD structurée (SCPD) et de LRTR. Les contributions apportées sont résumées ci-

dessous.
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Formulation d’algorithmes de calcul d’une SCPD et évaluation de performance.

On formule une version contrainte générale de ALS, notée CALS, où les facteurs peuvent

être structurés de façon arbitraire dans un sens linéaire (i.e., ils se trouvent dans des sous-

espaces matriciels spécifiés) [65]. Par ailleurs, les SCPDs (partiellement ou complètement)

symétriques sont traitées et des itérées approchées à coût réduit sont dérivées [64]. Bien que

des versions ad-hoc de ALS à facteurs structurés aient déjà été proposées, la nôtre est ap-

paremment la première à traiter le problème de calcul d’une SCPD de manière systématique

via l’approche ALS.

Une solution algébrique pour le calcul d’une SCPD n’ayant que des facteurs circulants est

également développée, basée sur la structure spéciale de la décomposition en valeurs propres

des matrices circulantes. Par l’application de la transformée de Fourier à temps discret

multidimensionnelle au tenseur d’intérêt, cette approche ramène le problème de calcul d’une

SCPD à la résolution d’un système d’équations monomiales homogènes [64]. On caractérise

le système d’équations obtenu et on étudie comment ses différentes solutions sont liées entre

elles.

La performance des variantes CALS proposées en ce qui concerne la convergence vers des

minima locaux et le coût de calcul global est étudiée au moyen de simulations numériques.

Cette investigation nous permet d’évaluer la sensibilité de CALS vis-à-vis de son initialisa-

tion et aussi de comprendre sous quelles conditions l’usage d’itérées approchées peut être

intéressant.

Plus généralement, on évalue la performance statistique de plusieurs algorithmes

d’estimation SCPD en s’appuyant sur des formules pour la borne inférieure de Cramér-

Rao qui ont été dérivées dans [19, 63, 65, 20]. Ceci est réalisé dans un cadre Bayesien où des

exemples aléatoires de modèles SCPD sont générés selon des distributions a priori spécifiées.

En particulier, on évalue la performance d’estimateurs couplant une étape algébrique (et

non-itérative) à une étape de raffinage mené par un algorithme itératif [65].

Récupération de tenseurs de rang faible via un seuillage itératif dur. Un algo-

rithme de seuillage itératif dur (IHT) pour LRTR basé sur le rang multilinéaire est proposé

[68, 67]. Cet algorithme emploie un opérateur de seuillage dur qui est moins coûteux que

les alternatives actuellement utilisées et mène à une performance comparable ou supérieure.

Par ailleurs, des résultats théoriques de récupération sont dérivés en s’appuyant sur ses pro-

priétés analytiques et sur des hypothèses d’isométrie restreinte. On étudie également les

besoins d’échantillonnage de notre algorithme proposé et on les compare à ceux de beaucoup

d’autres algorithmes à l’aide d’expériences numériques systématiques. Des heuristiques pour

le choix du pas et pour l’augmentation graduelle du rang (multilinéaire) sont proposées,

discutées et empiriquement évaluées [66].
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Algorithme de reconstruction tensorielle basée sur un seuillage doux du cœur

d’un modèle de Tucker. Motivés par les spectres singuliers typiquement possédés par

des tenseurs de données réelles, on développe un algorithme pour la reconstruction tensorielle

basée sur l’application d’un seuillage doux au cœur d’un modèle de Tucker orthogonal. Le

raisonnement central de cette stratégie repose sur le lien entre compressibilité du cœur et

décroissance rapide des spectres singuliers modaux du tenseur d’intérêt, ce qu’on démontre

analytiquement et illustre numériquement. Des parallèles avec d’autres approches existantes

sont élaborés et une interprétation basée sur la théorie d’automatique est donnée à une

version de notre algorithme comprenant un mécanisme de correction rétro-actif qui a comme

but l’accélération de sa convergence.

La pertinence de cet algorithme pour la reconstruction de tenseurs de données réelles est

montrée dans un exemple d’application détaillé. Cet exemple concerne la reconstruction de

données de trafic routier, ce qui est d’une grande importance dans le contexte des systèmes

de transport intelligents.
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Structure de la thèse

Le manuscrit est structuré en deux parties, chacune abordant l’un des deux problèmes

y traités. D’abord, le Chapitre 2 introduit des définitions mathématiques basiques, des

opérations algébriques et des résultats fondamentaux qui sont nécessaires dans le reste de la

thèse. La notation utilisée dans les chapitres suivants est aussi établie.

Le Chapitre 3 décrit le problème de calcul d’une SCPD et illustre sa pertinence en donnant

un exemple d’application. Des algorithmes d’estimation spécialisés sont rappelés, puis des

expressions pour les bornes de Cramér-Rao déterministe et Bayésienne sont données.

Ensuite, nos méthodes proposées pour le calcul d’une SCPD sont présentées dans le

Chapitre 4. On développe d’abord une version contrainte de ALS qui prend en compte

la structure des facteurs matriciels. Des itérées exactes et approchées sont dérivées,

ainsi qu’une formulation générale qui traite les SCPDs (partiellement ou complètement)

symétriques. Puis, une solution algébrique pour l’estimation de facteurs circulants est

élaborée en s’appuyant sur la multilinéarité du modèle et sur les propriétés fondamentales

de matrices circulantes. À l’aide de l’application de la transformée de Fourier multidimen-

sionnelle au tenseur d’intérêt, on réduit le problème du calcul d’une SCPD à la résolution

d’un système d’équations monomiales homogènes. Les solutions de ce système sont étudiées

et plusieurs exemples illustratifs sont fournis.

Le Chapitre 5 termine cette partie en présentant une évaluation empirique des algorithmes

d’estimation d’une SCPD proposés dans le chapitre précédent. Premièrement, on étudie la

performance des variantes CALS en ce qui concerne la convergence vers des minima locaux et

le coût de calcul. Puis, la performance statistique de plusieurs estimateurs d’une SCPD est

évaluée numériquement en faisant appel aux bornes de Cramér-Rao données dans le Chapitre

3.

Le Partie II commence au Chapitre 6, où on pose le problème LRTR et on discute de ses

principaux aspects, puis on présente un survol d’un certain nombre d’approches majeures

existantes et de leurs garanties de récupération. Cette présentation est précédée d’une suc-

cincte révision des problèmes d’échantillonnage compressé et de récupération de matrices

de rang faible, dans le but d’introduire et d’expliquer dans ces cadres plus simples certains

aspects qui sont aussi pertinents pour le problème LRTR.

L’approche IHT est détaillée dans le Chapitre 7, où on décrit des algorithmes existants

basés sur cette technique pour l’échantillonnage compressé, pour la récupération de matrices
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de rang faible et pour LRTR. Ensuite, on propose un algorithme IHT pour LRTR et on

dérive une borne de performance basée sur des hypothèses usuelles d’isométrie restreinte.

Des heuristiques de choix du pas et d’augmentation graduelle du rang sont développées pour

accélérer la convergence, cette dernière s’appliquant à des tenseurs ayant des caractéristiques

typiques de données réelles. Des simulations numériques sont réalisées pour estimer les

bornes d’échantillonnage de plusieurs algorithmes à la fois dans un cadre plus général (avec

mesures Gaussiennes) et dans le cadre d’une reconstruction tensorielle. Ce chapitre comprend

également des résultats de simulation concernant la comparaison d’algorithmes LRTR quant

à leur vitesse de convergence et leur efficacité de calcul.

On procède ensuite dans le Chapitre 8 à la présentation de notre algorithme de recon-

struction tensorielle basé sur un seuillage doux. Pour cela, d’abord on fait une révision de

schémas d’imputation simple pour la reconstruction tensorielle. En s’appuyant sur cette

stratégie, notre approche proposée est développée, où l’opérateur de seuillage est destiné

à résoudre approximativement un problème de moindres carrés régularisé par une norme

ℓ1, qui est formulé dans le but d’estimer un modèle de Tucker parcimonieux. Après avoir

fourni une interprétation de la méthode des multiplicateurs à directions alternées (ADMM)

avec paramètre de pénalisation exponentiellement croissant en termes d’un mécanisme de

contrôle rétro-actif, on propose une version de notre algorithme incorporant cette idée pour

améliorer sa performance. Finalement, des résultats de simulation sont présentés pour valider

la méthode développée.

L’algorithme conçu dans le Chapitre 8 est ensuite appliqué au problème de reconstruction

de données de trafic routier dans le Chapitre 9. Premièrement, on décrit le contexte de

l’application, les indices de performance considérés et les données réelles utilisées dans nos

expériences. Puis, la procédure expérimentale est présentée et suivie par une discussion des

résultats obtenus.

Enfin, on présente nos conclusions générales et on décrit quelques perspectives de

recherche.



Chapter 2

Tensors and multilinear algebra

In this chapter, we formally introduce tensors, define important algebraic operations and

state fundamental results on multilinear algebra, laying the mathematical foundations for

the subsequent chapters. In particular, we present and discuss the main properties of two of

the most important tensor decompositions, the canonical polyadic and the Tucker decompo-

sitions, which play a central role in our contributions. Along this chapter, the mathematical

notation used throughout the thesis will also be established.

Contents

2.1 Tensors and tensor spaces . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Isomorphisms among tensor spaces . . . . . . . . . . . . . . . . . . . . 20

2.3 Tensor norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Tensor-related algebraic operations . . . . . . . . . . . . . . . . . . . . 25

2.5 Tensor rank and the canonical polyadic decomposition (CPD) . . . 31

2.6 Modal spaces, multilinear rank and the Tucker decomposition . . . 39

2.7 Final remarks and bibliographical notes . . . . . . . . . . . . . . . . . 49

2.1 Tensors and tensor spaces

We start by defining our mathematical objects of interest, tensors and tensor spaces. One

way of introducing tensor spaces relies upon the notion of a quotient space [131, 95], which

is recalled below. Vector spaces are basic building blocks in that construction. In this thesis,

all vector spaces are defined either over the field of real numbers, R, or over that of complex

numbers, C. Whenever a given definition or property applies to both fields, we use the

symbol F ∈ {R,C}.

Definition 2.1 (Quotient space). Let N ⊂ V be a subspace of a vector space V and define

the equivalence relation for all v, w ∈ V:

v ∼ w if and only if v − w ∈ N . (2.1)
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This relation induces, for each v ∈ N , the equivalence class:

v , {w ∈ V : v ∼ w}. (2.2)

The quotient space with respect to this equivalence relation, denoted by V/N , consists of the

set containing all equivalence classes (2.2), along with an addition and a scalar multiplication

operations defined as v+w = v + w and αv = αv. These operations satisfy the axioms which

characterize a vector space, hence the terminology “quotient space.”

A crucial point in the above definition is that all the elements in N are equivalent to

0 ∈ V. One thus regards N as a “null subspace” when dealing with V/N . For this reason,

it is said that N is “collapsed” into the zero vector.

Let us now turn to the definition of tensors. In essence, tensors are objects associated

with multilinear transformations, whose coordinate representations themselves transform

multilinearly under a change of basis [49]. We thus begin by defining multilinear transfor-

mations.

Definition 2.2 (Multilinear transformation). Let Vp, with p ∈ 〈P 〉 , {1, . . . , P}, and W be

vector spaces defined over F. A map f : V1 × · · · × VP 7→ W is said to be multilinear if and

only if for all p ∈ 〈P 〉 it satisfies

f(v1, . . . , vp−1, αvp + βv′p, vp+1, . . . , vP ) =

αf(v1, . . . , vp−1, vp, vp+1, . . . , vP ) + βf(v1, . . . , vp−1, v
′
p, vp+1, . . . , vP ) (2.3)

where vq ∈ Vq, q ∈ 〈P 〉, v′p ∈ Vp and α, β ∈ F. In particular, if W = F (that is, if

dim(W) = 1), then f is called a multilinear form or a multilinear functional.

Example 2.3. Let V1,V2,V3 be vector spaces over F equipped with scalar products 〈·, ·〉V1 ,

〈·, ·〉V2 and 〈·, ·〉V3 , respectively. Define the following multilinear form over V1 × V2 × V3:

f(w1,w2,w3) : (v1, v2, v3) 7→ 〈v1, w1〉V1〈v2, w2〉V2〈v3, w3〉V3 ∈ F, (2.4)

where wp ∈ Vp, p ∈ {1, 2, 3}. Clearly, for any scalars α1, α2, α3 ∈ F satisfying α1α2α3 =

1, the multilinear form f(α1w1,α2w2,α3w3) is equivalent to f(w1,w2,w3), in the sense that

f(α1w1,α2w2,α3w3)(v1, v2, v3) = f(w1,w2,w3)(v1, v2, v3). �

The above example shows the motivation for introducing corresponding equivalence

classes. In order to define them, one must resort to the concept of free vector space. Essen-

tially, a free vector space defined upon a set S, denoted by F (S), contains all formal finite

linear combinations of elements of S, disregarding details with respect to their structure

[95]. Formally, an element f ∈ F (S) can be thought of as a function f : S 7→ F with finite

support. The elements s ∈ S for which f(s) 6= 0 are precisely those involved in the formal

sum which is represented by f . For every s ∈ S, there is a unique fs ∈ F (S) such that

fs(t) = 1 if s = t and fs(t) = 0 otherwise.
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Definition 2.4 (Elementary tensor). Consider the free vector space F (V1×· · ·×VP ), where
each Vp is a vector space. Every (v1, . . . , vP ) ∈ V1 × · · · × VP generates an equivalence class

v1 ⊗ · · · ⊗ vP on F (V1 × · · · × VP ) which is induced by the following relation:

∀ g ∈ F (V1 × · · · × VP ), v1 ⊗ · · · ⊗ vP ∼ g if and only if v1 ⊗ · · · ⊗ vP − g ∈ N , (2.5)

where N is a subspace of F (V1 × · · · × VP ) defined as [95]

N , span

{
∑

i1

· · ·
∑

iP

α
(1)
i1
. . . α

(P )
iP
f(

w
(1)
i1

,...,w
(P )
iP

)

− f(∑
i1

α
(1)
i1

w
(1)
i1

,...,
∑

iP
α
(P )
iP

w
(P )
iP

) : α
(p)
ip
∈ F, w

(p)
ip
∈ Vp

}

. (2.6)

Each sum in the above expression has finitely many terms. The equivalence class v1⊗· · ·⊗vP
is called elementary or decomposable tensor.

Given the definition of N , we are ready to introduce tensor spaces. To avoid unneces-

sary complications regarding their topological closedness, our definition is limited to finite-

dimensional tensor spaces, upon which we shall focus in this thesis.

Definition 2.5 (Tensor space [95]). Consider the free vector space F (V1× · · · × VP ), where
each Vp is a finite-dimensional vector space defined over F. We define the tensor space

T = V1 ⊗ · · · ⊗ VP as

T = V1 ⊗ · · · ⊗ VP , F (V1 × · · · × VP ) /N , (2.7)

where N is as defined by (2.6). The expression V1 ⊗ · · · ⊗ VP is said to be a tensor product

(denoted by the symbol ⊗) of P vector spaces. The elements lying in V1⊗· · ·⊗VP are called

P -th order tensors, and shall be represented by boldface calligraphic letters, as V, X and W.

For conciseness, we shall adopt the notation
⊗P

p=1 Vp , V1⊗· · ·⊗VP . A mixed notation

is also useful, as inW⊗
(
⊗P

p=1 Vp
)

⊗Z. An analogous notation shall be used for elementary

tensors, as in
⊗P

p=1 vp , v1 ⊗ · · · ⊗ vP . Hence, for instance,

v1 ⊗ · · · ⊗ vp−1 ⊗ wp ⊗ vp+1 ⊗ · · · ⊗ vP =





p−1
⊗

q=1

vq



⊗ wp ⊗





P⊗

q=p+1

vq



 . (2.8)

Fundamentally, Definition 2.5 states that

T =

P⊗

p=1

Vp = span







P⊗

p=1

vp : vp ∈ Vp, p ∈ 〈P 〉






, (2.9)

i.e., the elements of a P th-order tensor space are (finite) linear combinations of elementary

tensors, each one composed by P vectors. T is itself a vector space, in which all elements

of the subspace N are assimilated with the zero vector. Based on this observation, one can

deduce multilinearity properties which together characterize a tensor space, as follows.
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Proposition 2.6 (Multilinearity properties of tensor space [95, Lemma 3.10]). Let
⊗P

p=1 Vp
be a tensor space over F. Then, we have ∀ p ∈ 〈P 〉, v′q, vq ∈ Vq, α ∈ F:

(i)
(
⊗p−1

q=1 vq

)

⊗ 0⊗
(
⊗P

q=p+1 vq

)

= 0

(ii)
(
⊗p−1

q=1 vq

)

⊗ (αvp)⊗
(
⊗P

q=p+1 vq

)

= α
⊗P

q=1 vq

(iii)
(
⊗p−1

q=1 vq

)

⊗ (vp+ v′p)⊗
(
⊗P

q=p+1 vq

)

=
⊗P

q=1 vq +
(
⊗p−1

q=1 vq

)

⊗ v′p⊗
(
⊗P

q=p+1 vq

)

.

Proof. Follows from the assimilation of the elements of N with zero.

Although the tensor product ⊗ has not been explicitly defined as an operator among

vectors, it is characterized by the properties enumerated in Proposition 2.6. It has precedence

over and is distributive with respect to addition.

Proposition 2.7 (Induced basis of a tensor space). Let the vector spaces V1, . . . ,VP defined

over F, and let Bp ⊂ Vp denote a basis of Vp. Then, the set B =
{
⊗P

p=1 bp : bp ∈ Bp
}

constitutes a basis for T =
⊗P

p=1 Vp. Moreover, dim(T ) =
∏P

p=1 dim(Vp).

Proof. See [95, Proposition 3.21].

In particular, when Vp = F
Np , then the canonical bases Bp =

{

e
(p)
1 , . . . , e

(p)
Np

}

of

V1, . . . ,VP induce the canonical basis B =
{

e
(1)
n1 ⊗ · · · ⊗ e

(P )
np : np ∈ 〈Np〉

}

of T =
⊗P

p=1 Vp.
We finish this section by stating the fundamental universal factorization property which

characterizes tensor spaces [131].

Proposition 2.8 (Universality of the tensor product). Let f : V1 × · · · × VP 7→ W be any

multilinear transformation defined over the vector spaces V1, . . . ,VP . Then, there exists a

unique linear transformation φ :
⊗P

p=1 Vp 7→ W such that ∀ (v1, . . . , vP ) ∈ V1 × · · · × VP ,
f(v1, . . . , vP ) = φ

(
⊗P

p=1 vp

)

holds.

Proof. See [95, Proposition 3.22].

2.1.1 Tensor representations

Let T =
⊗P

p=1 Vp be a finite-dimensional tensor space1 and Bp = {b(p)np }Np

np=1 ⊂ Vp be a basis

of Vp, with Np ∈ N. From Proposition 2.7, elementary tensors of the form
⊗P

p=1 b
(p)
np , where

b
(p)
np ∈ Bp, form a basis for T . This means that any tensor V ∈ T can be written in the form

V =
∑

n1

· · ·
∑

nP

vn1,...,nP

P⊗

p=1

b(p)np
, (2.10)

1Since all tensor spaces we consider have finite dimensions, we shall often omit the expression “finite-

dimensional,” for brevity.
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where the scalars vn1,...,nP constitute the coordinate representation of V with respect to

the basis B, formed as described by Proposition 2.7. These scalars can be thought as the

components of a hypermatrix [vn1,...,nP ] defined over F, i.e., [vn1,...,nP ] ∈ F
N1×···×NP . Such an

object can be regarded simply as a generalization of a matrix, in the sense that it is a P -way

array of numbers indexed by P indices. Each one of these indices is said to be associated with

one mode or geometric dimension of the multidimensional array. Needless to say, FN1×···×NP

is a vector space itself with the obvious definitions of addition and multiplication by a scalar.

The above discussion makes a clear distinction between a tensor and its representation.

As a matter of fact, a same object [vn1,...,nP ] ∈ F
N1×···×NP can represent multiple tensors

from different tensor spaces. Furthermore, as soon as we apply a change of basis to one of

the vector spaces involved in the tensor space, the coordinate representation must evidently

be transformed accordingly. This is analogous to the fact that a single linear transformation

between finite-dimensional vector spaces can have multiple matrix representations and, con-

versely, a same matrix representation can represent different objects—in particular, it can

also represent bilinear transformations.

Example 2.9. Let V1,V2,V3 be vector spaces with corresponding bases Bp = {b(p)n }Np

n=1 ⊂ Vp.
Consider the vectors vp ∈ Vp having representations vp =

∑

np
α
(p)
np b

(p)
np , with αnp ∈ F. Then,

using the properties described by Proposition 2.6 we have

V = v1 ⊗ v2 ⊗ v3 =
(
∑

n1

α(1)
n1
b(1)n1

)

⊗
(
∑

n2

α(2)
n2
b(2)n2

)

⊗
(
∑

n3

α(3)
n3
b(3)n3

)

(2.11)

=
∑

n1

∑

n2

∑

n3

α(1)
n1
α(2)
n2
α(3)
n3
b(1)n1
⊗ b(2)n2

⊗ b(3)n3
. (2.12)

Therefore, the representation of V in the induced basis B =
{

b
(1)
n1 ⊗ b(2)n2 ⊗ b(3)n3 : b

(p)
np ∈ Bp

}

is the N1 ×N2 ×N3 hypermatrix [vn1,n2,n3 ] = α
(1)
n1 α

(2)
n2 α

(3)
n3 . �

The notion of tensor product is related to a more concrete operation, which is defined

for vectors x(p) =
[

x
(p)
np

]

∈ F
Np , p ∈ 〈P 〉, as follows:

⊗ : F
N1 × · · · × F

NP 7→ F
N1×···×NP (2.13)

x(1) ⊗ · · · ⊗ x(P ) 7→
[

x(1)n1
. . . x(P )

nP

]

. (2.14)

This operation is called outer product (or Segre outer product [131]). Its definition can be

extended for hypermatrices, yielding

⊗ : F
N1×···×NP × F

M1×···×MQ 7→ F
N1×···×NP×M1×···×MQ (2.15)

[vn1,...,nP ]⊗
[
wm1,...,mQ

]
7→
[
vn1,...,nPwm1,...,mQ

]
. (2.16)

It is straightforward to verify that it also satisfies the multilinearity properties of the tensor

product which are described in Proposition 2.6.
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It should be borne in mind that the symbol ⊗ is used here in three different senses. First,

it denotes the tensor product between vector spaces, which yields a tensor space. Second,

it is employed to denote elementary equivalence classes from a tensor space T whose linear

combinations span T . Third, it stands also for the outer product operation above defined.

Now, turning back to Example 2.9, we observe that the coordinate representation of V

with respect to the basis B satisfies [vn1,n2,n3 ] =
[

α
(1)
n1

]

⊗
[

α
(2)
n2

]

⊗
[

α
(3)
n3

]

. This holds of course

generally: the coordinate representation [vn1,...,nP ] of V =
∑R

r=1

⊗P
p=1 v

(p)
r with respect to

the basis B induced by B1, . . . ,BP is such that

vn1,...,nP =

R∑

r=1

P∏

p=1

v(p)np,r, (2.17)

where v
(p)
r =

[

v
(p)
np,r

]

is the representation of v
(p)
r with respect to Bp.

Example 2.10. Let V1 = V2 = R
2, V3 = R

3 and consider the vectors having coordinates

v1 =

[

1

−1

]

∈ V1, v2 =

[

3

2

]

∈ V2, and v3 =







2

−2
1






∈ V3 (2.18)

with respect to some chosen bases Bp. Under the corresponding induced basis for
⊗3

p=1 Vp,
the representation [vn1,n2,n3 ] of the tensor V = v1 ⊗ v2 ⊗ v3 has coordinates

v1,1,1 = 6, v2,1,1 = −6, v1,2,1 = 4, v2,2,1 = −4, v1,1,2 = −6, v2,1,2 = 6,

v1,2,2 = −4, v2,2,2 = 4, v1,1,3 = 3, v2,1,3 = −3, v1,2,3 = 2, v2,2,3 = −2.

In terms of the outer product, the representation of V satisfies [vn1,n2,n3 ] = v1⊗v2⊗v3. �

Example 2.11. In the familiar second-order case, a special notation is usually employed for

the outer product. Namely, according to the rules of matrix multiplication, v ⊗w = vwT

holds. So, if we consider, for instance, V1 = R
N1 and V2 = R

N2 and choose the canonical

bases, then

∀vr ∈ R
N1 ,wr ∈ R

N2 , V =
R∑

r=1

vr ⊗wr is represented by V =
R∑

r=1

vrw
T
r .

�

Despite the fundamental distinction that exists between tensors and their coordinate

representations as hypermatrices, Examples 2.9 to 2.11 suggest a natural assimilation of these

concepts is conceivable when one is not necessarily interested in a particular interpretation

in terms of their action (seen as multilinear transformations). This is the case in many

practical applications (such as, e.g., in signal processing) where usually what really matters



20 Chapter 2. Tensors and multilinear algebra

is the possibility of modeling some given quantities of interest as (finite-dimensional) objects

possessing a tensorial structure, to which multilinear transformations are applied. This

allows leveraging multilinear algebra results and tensor models for solving practical problems.

In such a finite-dimensional setting, one can identify tensors with their representations,

assuming some bases have been chosen for all involved vector spaces.

In this thesis, we adopt this viewpoint, with the implicit assumption that a basis has been

specified, so that we refer to tensors via their representations. At any rate, most definitions

and results we will discuss are invariant with respect to the basis chosen for each vector

space, which legitimates attributing them to tensors, and not only to their representations.

2.1.2 Symmetric tensors

A particular case of interest concerns symmetric tensors. A necessary condition for symmetry

is, of course, that all vector spaces involved in the tensor product be the same. In this case,

we write T =
⊗P

p=1 V = V⊗P and say that the tensors in T are hypercubic.

Definition 2.12. (Symmetric tensor [131]) A hypercubic tensor V ∈ T = V⊗P is said to be

symmetric if and only if

V =

R∑

r=1

v(1)r ⊗ · · · ⊗ v(P )
r =

R∑

r=1

v(π1)
r ⊗ · · · ⊗ v(πP )

r , (2.19)

for all possible permutations π = (π1, . . . , πP ) of (1, . . . , P ). The set of symmetric tensors is

a subspace of T , which we will denote by S(V⊗P ).

Clearly, an elementary tensor V =
⊗P

p=1 v
(p) is symmetric if and only if v = v(1) = · · · =

v(P ), in which case we use the notation V = v⊗P . For general tensors, however, v
(1)
r = · · · =

v
(P )
r does not necessarily hold in (2.19). For instance, V = v⊗ v⊗w+ v⊗w⊗ v+w⊗ v⊗ v
is symmetric, but the elementary tensors which constitute it are not.

The above definition has an obvious implication with regard to the representation of a

symmetric tensor: for any basis B of V, the representation [vn1,...,nP ] of V ∈ S(V⊗P ) satisfies

[vn1,...,nP ] =
[

vnπ1 ,...,nπP

]

(2.20)

for any permutation π of (1, . . . , P ). Note that this naturally holds provided that a same

basis B is used for all instances of V appearing in the tensor product V⊗P .

2.2 Isomorphisms among tensor spaces

Recall that two finite-dimensional vector spaces (over a same field) are isomorphic (denoted

by the symbol ≃) if and only if they have the same dimension. Thus, due to Proposition 2.7,

we have for example

R
4 ⊗ R

2 ⊗ R
2 ≃ R

16 ≃ R
4 ⊗ R

4 ≃ R
4×4. (2.21)
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In spite of these isomorphisms, the tensor structures of the listed spaces are clearly different.

For instance, V = v1 ⊗ (v2 ⊗ v3 +w2 ⊗w3) is not an elementary tensor of R4 ⊗R
2 ⊗R

2 in

general, but v1⊗Φ(v2⊗v3+w2⊗w3) is an elementary tensor of R4⊗R4 for any isomorphism

Φ : R2 ⊗ R
2 7→ R

4.

When working with tensors, we routinely resort to certain (vector space) isomorphisms

among different tensor spaces. This is done for multiple reasons:

(i) Analytical ease. It can be easier or more convenient to manipulate tensor algebraic

expressions by invoking isomorphic identities to work with “matricized” or “vectorized”

tensors. Some examples of this expedient will be shown in Section 2.4.

(ii) Storage and numerical calculus. When conducting numerical calculations on a com-

puter, it can be convenient to store a tensor (representation) as a long vector or a

matrix. Furthermore, by resorting to isomorphic identities, certain tensor operations

can be written in terms of matrix-matrix or matrix-vector operations, which allows

the use of standard numerical linear algebra routines for their implementation (see

Section 2.4).

(iii) Leveraging of matrix tools. Exploiting isomorphic relations between tensors and ma-

trices allows us to apply certain powerful matrix tools, such as the singular value

decomposition (SVD), when performing tensor computations. Indeed, techniques such

as matrix decompositions serve as building blocks for many tensor-related algorithms.

For a tensor space defined as
⊗P

p=1 F
Np , we shall resort to three main isomorphisms:

1. Mode-p (“flat”) matrix unfolding. This amounts to a isomorphic identity between a

general tensor space and another one where the mode-p vector space is singled out,

which can be denoted as

F
N1 ⊗ · · · ⊗ F

NP ≃ F
Np ⊗

(
F
NP ⊗ · · · ⊗ F

Np+1 ⊗ F
Np−1 ⊗ · · · ⊗ F

N1
)

(2.22)

≃ F
Np ⊗ F

∏

q 6=p Nq ≃ F
Np×

∏

q 6=p Nq . (2.23)

Throughout this thesis, we use the notational conventions N̄ =
∏

pNp and N̄p = N̄/Np,

which allow us to write F
N1 ⊗ · · · ⊗ F

NP ≃ F
Np×N̄p . Note that in (2.23) the tensor

structure of the space between parentheses of (2.22) is disregarded. Exploiting the

above isomorphisms, one can apply matrix techniques when working with tensors of

F
N1 ⊗ · · · ⊗ F

NP . For instance, a QR decomposition can be employed to compute an

orthogonal basis for the mode-p space (see Section 2.6).

Given a tensor space F
N1 ⊗ · · · ⊗ F

NP , we denote the mapping underlying the above

described isomorphism by Φ〈p〉 : F
N1 ⊗ · · · ⊗ F

NP 7→ F
Np×N̄p . The image of a tensor V
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is denoted as

Φ〈p〉(V) = (V)〈p〉 = V〈p〉 ∈ F
Np×N̄p . (2.24)

Concretely, given the representation [vn1,...,nP ] of a tensor from F
N1 ⊗ · · · ⊗ F

NP , the

isomorphism Φ〈p〉 establishes the association

vn1,...,nP = v̄np,j , j = 1 +
∑

q∈〈P 〉\{p}
(nq − 1)

∏

s∈〈q−1〉\{p}
Ns, (2.25)

where V〈p〉 =
[
v̄np,j

]
∈ F

Np×N̄p . The column ordering implied by the above equation

follows the same convention as that of [119]. Any other convention is equally acceptable,

provided it is consistently used.

2. Combined-mode matrix unfolding. Instead of rearranging the coordinate representation

of a tensor in a matrix where the row dimension is associated with a single mode, one

can more generally consider the isomorphism

F
N1 ⊗ · · · ⊗ F

NP ≃




⊗

p∈I1
F
Np



⊗




⊗

p∈I2
F
Np



 , (2.26)

where {I1, I2} ⊂ 2{1,...,P} is a partition of {1, . . . , P}. In the particular case where

I1 = {1, . . . , p} and I2 = {p+1, . . . , P}, the corresponding isomorphism is denoted by

Φ[p] : F
N1 ⊗ · · · ⊗ F

NP 7→ F

∏p
q=1 Nq×

∏P
q=p+1 Nq , and its image by

Φ[p](V) = (V)[p] = V[p] ∈ F

∏p
q=1 Nq×

∏P
q=p+1 Nq . (2.27)

The adopted convention for indexing the resulting matrix is as follows. Given the

representation [vn1,...,nP ] of V ∈ F
N1 ⊗ · · · ⊗ F

NP , Φ[p] implies the association:

vn1,...,nP = v̄j1,j2 , (2.28)

where V[p] = [v̄j1,j2 ] ∈ F

∏p
q=1 Nq×

∏P
q=p+1 Nq and

j1 = 1 +

p
∑

q=1

(nq − 1)

q−1
∏

s=1

Ns, j2 = 1 +

P∑

q=p+1

(nq − 1)

q−1
∏

s=p+1

Ns. (2.29)

3. Tensor vectorization. The simplest exploited isomorphism, written as

F
N1 ⊗ · · · ⊗ F

NP ≃ F

∏P
p=1 Np = F

N̄ , (2.30)

amounts to a vectorization of the tensor coordinate representation. In this case, we

represent the mapping by the usual “vec” operator

vec : FN1 ⊗ · · · ⊗ F
NP 7→ F

N̄ (2.31)

vec(V) 7→ w = [wj ] such that vn1,...,nP = wj , (2.32)
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where

j = 1 +

P∑

p=1

(np − 1)

p−1
∏

q=1

Nq.

One observation is now in order. Usually, one defines the vec operator in such a way

that, given A =
[

a1 . . . aN2

]

∈ F
N1×N2 , it yields vec(A) =

[

aT1 . . . aTN2

]T
∈ F

N2N1 . It

can be checked that our above definition of vec is then equivalent to vec(V) = vec
(
V〈1〉

)
.

Example 2.13. Let [vn1,n2,n3,n4 ] ∈ R
2×2×2×2 be the representation of V ∈⊗4

p=1R
2. Then,

V〈1〉 =

[

v1,1,1,1 v1,2,1,1 v1,1,2,1 v1,2,2,1 v1,1,1,2 v1,2,1,2 v1,1,2,2 v1,2,2,2

v2,1,1,1 v2,2,1,1 v2,1,2,1 v2,2,2,1 v2,1,1,2 v2,2,1,2 v2,1,2,2 v2,2,2,2

]

,

V[2] =










v1,1,1,1 v1,1,2,1 v1,1,1,2 v1,1,2,2

v2,1,1,1 v2,1,2,1 v2,1,1,2 v2,1,2,2

v1,2,1,1 v1,2,2,1 v1,2,1,2 v1,2,2,2

v2,2,1,1 v2,2,2,1 v2,2,1,2 v2,2,2,2










and vec(V) =















v1,1,1,1

v2,1,1,1

v1,2,1,1

v2,2,1,1
...

v2,2,2,2















.

�

2.3 Tensor norms

We describe now tensor norms which add further structure to tensor spaces.

2.3.1 Induced scalar product and associated Hilbert-Schmidt norm

In this thesis, we shall deal with iterative algorithms which perform sequences of numerical

computations with tensor representations, and also with the approximation of tensors by

tensor models. For these purposes, it is necessary to introduce a metric representing the

notion of distance between elements of a tensor space. This can be addressed by profiting

from the natural inner product space structure of the finite-dimensional vector spaces that

we consider. More explicitly, we know that FNp can be endowed with an operation 〈·, ·〉 which
satisfies the axioms characterizing a scalar product. These axioms are notably satisfied by

the usual (Euclidean) scalar product defined for all v = [vn],w = [wn] ∈ F
Np as 〈v,w〉 =

∑

n vnw
∗
n (where it is understood that α∗ = α for any α ∈ R). Jointly, the scalar products

of the vector spaces FNp induce a scalar product over
⊗P

p=1 F
Np which is defined as follows.

Definition 2.14 (Induced scalar product). The induced scalar product of a tensor space
⊗P

p=1 Vp composed of finite-dimensional inner product spaces Vp is defined for elementary



24 Chapter 2. Tensors and multilinear algebra

tensors as

〈v1 ⊗ · · · ⊗ vP ,w1 ⊗ · · · ⊗wP 〉 =
P∏

p=1

〈vp,wp〉 . (2.33)

Its extension to non-elementary tensors follows from combining the axioms 〈V,W〉 =

(〈W,V〉)∗ and 〈αV+ βV′,W〉 = α〈V,W〉+ β〈V′,W〉 with (2.33).

The induced scalar product is unique [95]. Also, it is easy to verify that under its definition

two elementary tensors
⊗P

p=1 vp and
⊗P

p=1wp are orthogonal if and only if vp ⊥ wp holds

for at least one p ∈ 〈P 〉.
Endowing a vector space with a scalar product naturally gives rise to a norm. In the case

of a finite-dimensional tensor space
⊗P

p=1 Vp, if one picks the scalar product induced by the

Euclidean scalar products of the spaces Vp, this norm is as follows.

Definition 2.15 (Tensor Frobenius norm). The norm associated to the induced Euclidean

scalar product, usually called Frobenius or Hilbert-Schmidt norm, is given by

‖V‖F ,
√

〈V,V〉, (2.34)

satisfying the usual axioms for all V ∈⊗P
p=1 Vp.

For elementary tensors, it is easy to verify that ‖v1 ⊗ · · · ⊗ vP ‖F =
∏P

p=1 ‖vp‖2. The

name “Frobenius norm” is used because it can be seen as an extension of the matrix Frobenius

norm. Indeed, in terms of the coordinate representation [vn1,...,nP ] of a tensor V ∈⊗P
p=1 Vp

with respect to the induced canonical basis, we have

‖V‖F =

√
∑

n1

· · ·
∑

nP

|vn1,...,nP |2. (2.35)

Henceforth, every time we claim a certain tensor V is “approximated” by another one

V̂, denoted by V ≈ V̂, we refer to the fact that ‖V − V̂‖F is “sufficiently small” in some

meaningful sense (e.g., from the point of view of some application).

2.3.2 Other norms

We define now other notions of norm by identifying a finite-dimensional tensor with its

coordinate representation under the induced canonical basis.

Definition 2.16 (Hölder p-norm [131]). Let V be a finite dimensional P th-order tensor. A

generalization of the Frobenius norm is the Hölder p-norm, given by

‖V‖H,p =

(
∑

n1,...,nP

|vn1,...,nP |p
) 1

p

, (2.36)
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for p ∈ [1,∞[, and by

‖V‖H,∞ = max
n1,...,nP

|vn1,...,nP | (2.37)

for p =∞. Note that, for p = 2 we have ‖V‖H,2 = ‖V‖F .

From the above definition, it follows that the induced scalar product defined in the

previous section satisfies the Hölder inequality

|〈V,W〉| ≤ ‖V‖H,p‖V‖H,q, ∀p, q ∈ [1,∞] such that
1

p
+

1

q
= 1, (2.38)

which reduces to the Cauchy-Schwartz inequality when p = q = 2. This is easily shown by

exploiting the evident fact that ‖V‖H,p = ‖ vec(V)‖p, where the latter is the ℓp norm.

When tensors are interpreted as multilinear functionals, one can define an operator or

spectral norm in the usual sense used for linear operators.

Definition 2.17 (Spectral norm). Let V ∈ T =
⊗P

p=1 Vp, where Vp are finite-dimensional

spaces. The spectral norm of V is given by [133]

‖V‖2 = max
{∣
∣
∣

〈

V,
⊗P

p=1 up

〉∣
∣
∣ : up ∈ Vp, ‖up‖2 = 1

}

. (2.39)

Finally, we introduce the norm which is the dual of the spectral norm [133].

Definition 2.18 (Nuclear norm). The tensor nuclear norm (or Schatten 1-norm [131]) of a

finite-dimensional P th-order tensor V is defined as

‖V‖∗ = min







R∑

r=1

|σr| : V =

R∑

r=1

σr

P⊗

p=1

u(p)r , ‖u(p)r ‖2 = 1, R ∈ N






. (2.40)

Using these definitions, the above mentioned duality property can be expressed as

‖V‖2 = max{|〈V,W〉| : ‖W‖∗ = 1} and ‖V‖∗ = max{|〈V,W〉| : ‖W‖2 = 1}. (2.41)

As a final remark, we point out that both the spectral and the nuclear norms are NP-

hard2 to compute [102, 87], which has important consequences for some applications.

2.4 Tensor-related algebraic operations

We now turn to the description of important tensor algebraic operations. To this end, the

following ancillary mathematical definitions shall be used. The P th-order Kronecker delta

2The term “NP-hard,” where NP stands for “nondeterministic polynomial time,” comes from computa-

tional complexity theory. Informally speaking, the class of NP-hard problems encompasses all problems that

are “as hard as any problem from NP,” in the sense that a solution of any NP-hard problem provides a solution

to all problems from NP. In its turn, the class of NP problems contains the decision problems whose solution

can be verified in polynomial time by a deterministic Turing machine. See, e.g., [5] for formal definitions.
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is defined as

δi1,i2,...,iP =







1, i1 = · · · = iP ,

0, ip 6= iq for some p, q ∈ 〈P 〉.
(2.42)

For any N1, N2 ∈ N, the symbol IN1×N2 shall denote the matrix IN1×N2 = [δn1,n2 ] ∈ F
N1×N2 .

If N1 = N2, we write IN×N = IN . When N1 and N2 are clear from the context, we use

simply I. The operator Diag : FN 7→ F
N×N is defined for any b = [bn] ∈ F

N as

b 7→ [Diag(b)n1,n2 ] = [bn1δn1,n2 ]. (2.43)

2.4.1 Kronecker product

Many tensor identities can be isomorphically written as expressions involving Kronecker

products of vectors and matrices. This is useful both for analysis and numerical computation

purposes. So, let us recall this operation and its basic properties.

Definition 2.19 (Kronecker product). For any pair of matrix spaces FN1×N2 and F
M1×M2 ,

the Kronecker product is defined as

⊠ : FN1×N2 × F
M1×M2 7→ F

N1M1×N2M2 (2.44)

A⊠B =










a1,1B a1,2B . . . a1,N2B

a2,1B a2,2B . . . a2,N2B
...

... . . .
...

aN1,1B aN1,2B . . . aN1,N2B










(2.45)

for all A ∈ F
N1×N2 and B ∈ F

M1×M2 .

Proposition 2.20 (Properties of Kronecker product). The Kronecker product satisfies:

(Distributivity w.r.t. addition) A⊠ (B+C) = A⊠B+A⊠C, (2.46)

(Associativity) A⊠ (B⊠C) = (A⊠B)⊠C, (2.47)

(Mixed-product property) (A⊠B)(C⊠D) = (AC)⊠ (BD), (2.48)

(Relation with vectorization) vec(DEF) = (FT ⊠D) vec(E), (2.49)

(Relation with transposition) (A⊠B)T = AT ⊠BT , (2.50)

(Relation with inversion) (X⊠Y)−1 = X−1 ⊠Y−1 (2.51)

(Relation with conjugation) (A⊠B)∗ = A∗ ⊠B∗, (2.52)

assuming the matrices in (2.48) and (2.49) have compatible dimensions allowing the displayed

matrix products and that X,Y are square nonsingular matrices.

Proof. Properties (2.46), (2.47), (2.50) and (2.52) are obvious. Proofs for the other ones are

found in [126, 148].
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Proposition 2.21 (Relation with isomorphisms). With regard to the isomorphisms intro-

duced in Section 2.2, we have the following identities for v(p) ∈ F
Np , p ∈ 〈P 〉:

(

v(1) ⊗ · · · ⊗ v(P )
)

〈p〉
= v(p)

(

v(P ) ⊠ . . .⊠ v(p+1) ⊠ v(p−1) ⊠ . . .⊠ v(1)
)T

, (2.53)

(

v(1) ⊗ · · · ⊗ v(P )
)

[p]
=
(

v(p) ⊠ . . .⊠ v(1)
)(

v(P ) ⊠ . . .⊠ v(p+1)
)T

, (2.54)

vec
(

v(1) ⊗ · · · ⊗ v(P )
)

= v(P ) ⊠ . . .⊠ v(1). (2.55)

Proof. Denote v(p) =
[

v
(p)
np

]

. By definition, the indexing convention adopted for Φ〈p〉 implies

that the (np, j)th element of
(
v(1) ⊗ · · · ⊗ v(P )

)

〈p〉 ∈ F
Np×N̄p is given by

∏

p v
(p)
np , with

j = n1 +

p−1
∑

q=2

(nq − 1)

q−1
∏

r=1

Nr + (np+1 − 1)

p−1
∏

q=1

Nq +
P∑

q=p+2

(nq − 1)

(
p−1
∏

r=1

Nr

)



q−1
∏

r=p+1

Nr



 .

It can be checked that this equals the (np, j)th element of

v(p)
(
v(P ) ⊠ . . .⊠ v(p+1) ⊠ v(p−1) ⊠ . . .⊠ v(1)

)T ∈ F
Np×N̄p , which shows (2.53). The

proofs of (2.54) and (2.55) are similar.

Corollary 2.22. Letting V =
∑R

r=1 v
(1)
r ⊗ · · · ⊗ v

(P )
r , we can write

V〈p〉 =
R∑

r=1

v(p)
r

(

v(P )
r ⊠ v(P−1)

r ⊠ . . .⊠ v(p+1)
r ⊠ v(p−1)

r ⊠ . . .⊠ v(1)
r

)T
(2.56)

V[p] =
R∑

r=1

(

v(p)
r ⊠ v(p−1)

r ⊠ . . .⊠ v(1)
r

)(

v(P )
r ⊠ v(P−1)

r ⊠ . . .⊠ v(p+1)
r

)T
(2.57)

vec(V) =

R∑

r=1

v(P )
r ⊠ v(P−1)

r ⊠ . . .⊠ v(1)
r . (2.58)

Proof. Follows from (2.53)–(2.55) via linearity of Φ〈p〉, Φ[p] and vec(·).

2.4.2 Khatri-Rao product

Definition 2.23 (Khatri-Rao product). For any pair of matrix spaces FN1×N2 and F
M1×N2 ,

we define the Khatri-Rao product as

♦ : FN1×N2 × F
M1×N2 7→ F

N1M1×N2 (2.59)

A♦B =
[

a1 ⊠ b1 a2 ⊠ b2 . . . aN2 ⊠ bN2

]

, (2.60)

where an denotes the nth column of A, and similarly for B.

Due to the above definition, the Khatri-Rao product is referred to as a “columnwise

Kronecker product.” Similarly to the Kronecker product, it has the following properties.
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Proposition 2.24 (Properties of Khatri-Rao product). For matrices of appropriate dimen-

sions, the Khatri-Rao product satisfies:

(Distributivity w.r.t. addition) A♦ (B+C) = A♦B+A♦C, (2.61)

(Associativity) A♦ (B♦C) = (A♦B)♦C, (2.62)

(Relation with Kronecker) A♦B = (A⊠B)(IN2 ♦ IN2), (2.63)

(Relation with vectorization) vec(ADiag(b)C) = (CT ♦A)b, (2.64)

where in (2.63), A ∈ F
N1×N2 and B ∈ F

M1×N2 .

Proof. Properties (2.61) and (2.62) are straightforward; (2.63) follows from the structure of

(IN2 ♦ IN2); (2.64) follows from (2.49), (2.63) and the fact that vec(Diag(b)) = (IN ♦ IN )b.

2.4.3 Mode-p product

The mode-p product consists in applying a linear transformation acting upon one of the

vector spaces which constitute the underlying tensor space (i.e., it acts upon one mode).

The formal definition and the used notation are as follows.

Definition 2.25 (Mode-p product). Let Vp,Wp be vector spaces and L(Vp,Wp) be the space

of linear transformations from Vp to Wp. The mode-p product defined over the tensor space

T =
⊗P

p=1 Vp is the mapping

×p : T × L(Vp,Wp) 7→





p−1
⊗

q=1

Vq



⊗Wp ⊗





P⊗

q=p+1

Vq



 (2.65)

V×pAp =

R∑

r=1





p−1
⊗

q=1

v(q)r



⊗Ap

(

v(p)r

)

⊗





P⊗

q=p+1

v(q)r



 , (2.66)

where V =
∑R

r=1 v
(1)
r ⊗ · · · ⊗ v(P )

r ∈ T and Ap ∈ L(Vp,Wp).

In a finite-dimensional setting where Vp = F
Np and Wp = F

Mp , letting Ap ∈ F
Mp×Np be

a matrix representing Ap ∈ L(Vp,Wp) with respect to the chosen bases, one can write (2.66)

more concretely as

V×p Ap =
R∑

r=1





p−1
⊗

q=1

v(q)
r



⊗
(

Apv
(p)
r

)

⊗





P⊗

q=p+1

v(q)
r



 , (2.67)

where V =
∑R

r=1

⊗P
q=1 v

(q)
r ∈ T , with v

(q)
r ∈ F

Nq . This is why this operation is referred to

as “mode-p product.”
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The mode-p product is an operation of central importance when dealing with tensors.

In the first place, it can be used to carry out a change of basis with respect to one of the

modes. Secondly, it is the key ingredient in the subspace-based representation of a tensor

called Tucker decomposition, which we shall see ahead. We now derive its main properties.

Proposition 2.26 (Commutativity of mode-p products over distinct modes). For p, q ∈ 〈P 〉
such that p 6= q, the mode-p product satisfies

(V×p Ap)×q Aq = (V×q Aq)×p Ap. (2.68)

Proof. The proof follows easily from (2.66), by exploiting the fact that the operator ×p acts

only on the pth mode, preserving the vectors associated with the other modes.

Because of the above property, we usually do not employ parentheses as those of (2.68).

For brevity, we shall also employ the notation

V

P×
p=1

Ap , V×1 A1 ×2 · · · ×P AP . (2.69)

Expression (2.69) is referred to as a multilinear transformation of V because it consists of a

joint application of P transformations, each one being linear with respect to one mode.

Proposition 2.27 (Composition of mode-p products over a same mode). For any p ∈ 〈P 〉,
the mode-p product satisfies

(V×p Ap)×p A
′
p = V×p (A

′
p ◦Ap), (2.70)

where Ap ∈ L(Vp,Wp), A
′
p ∈ L(Wp,Up) and A′

p◦Ap ∈ L(Vp,Up) denotes the composite linear

map (A′
p ◦Ap)(vp) = A′

p(Ap(vp)).

Proof. Similar to that of Proposition 2.26.

Proposition 2.28 (Distributivity of mode-p product with respect to addition). For any

p ∈ 〈P 〉, the mode-p product satisfies both

(V+V′)×p Ap = V×p Ap +V′ ×p Ap, (2.71)

V×p (Ap +A′
p) = V×p Ap +V×p A

′
p. (2.72)

Proof. The proof of (2.71) follows trivially from Definition 2.25, while that of (2.72) is

obtained by combining Definition 2.25 with the multilinearity of the tensor product.

It is worth noting that (2.72) implies that the expression (2.69) is multilinear with respect

to A1, . . . , AP .
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Proposition 2.29 (Relation between mode-p product and matrix unfolding isomorphism).

Let V ∈⊗P
q=1 F

Nq . For any p ∈ 〈P 〉 and Ap ∈ F
Mp×Np , we have the isomorphic association

W = V×p Ap ⇔ W〈p〉 = ApV〈p〉. (2.73)

Proof. First, write V =
∑R

r=1 v
(1)
r ⊗ · · · ⊗ v

(P )
r . Then, by definition,

W =

R∑

r=1





p−1
⊗

q=1

v(q)
r



⊗
(

Apv
(p)
r

)

⊗





P⊗

q=p+1

v(q)
r



 . (2.74)

By exploiting relation (2.53), we can write

W〈p〉 =
R∑

r=1

(

Apv
(p)
r

)(

v(P )
r ⊠ v(P−1)

r ⊠ . . .⊠ v(p+1)
r ⊠ v(p−1)

r ⊠ . . .⊠ v(1)
r

)T
(2.75)

= Ap

[
R∑

r=1

v(p)
r

(

v(P )
r ⊠ v(P−1)

r ⊠ . . .⊠ v(p+1)
r ⊠ v(p−1)

r ⊠ . . .⊠ v(1)
r

)T
]

(2.76)

= ApV〈p〉. (2.77)

Remark 2.30. The above property is clearly independent of the particular ordering adopted

for the column indexing of the matrix unfolding.

Corollary 2.31. Let V ∈⊗P
q=1 F

Nq , W ∈⊗P
q=1 F

Mq and Aq ∈ F
Mq×Nq , q ∈ 〈P 〉. Then, for

any p ∈ 〈P 〉, we have the relation

W = V

P×
q=1

Aq ⇔ W〈p〉 = ApV〈p〉 (AP ⊠ . . .⊠Ap+1 ⊠Ap−1 ⊠ . . .⊠A1)
T . (2.78)

Proof. Follows from the properties of the Kronecker product.

Example 2.32. It is easy to check that ∀V ∈ F
N1 ⊗ F

N2 , V ∈ F
N1×N2 , Ap ∈ R

Mp×Np , with

p ∈ {1, 2}, the natural isomorphic relation V ≃ V implies V×1 A1 ×2 A2 ≃ A1VA
T
2 . �

Finally, we note that the action of a tensor as a multilinear functional can be expressed

in terms of mode-p products. Indeed, it can be easily checked that the expression

V(w1, . . . ,wP ) = V

P×
p=1

wT
p (2.79)

defines a multilinear functional which is associated with V ∈ ⊗P
p=1 F

Np . In the above

notation, it is understood that V is represented under the same bases as the vectorswp ∈ F
Np .
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2.5 Tensor rank and the canonical polyadic decomposition

(CPD)

The concept of rank is of pivotal significance in linear algebra. It can be thought of as a

measure of complexity of linear transformations and it is connected to certain properties of

a matrix representation, such as its row and column spaces. When it comes to tensors, there

are multiple ways of extending this concept, each one yielding a complexity measure with

different properties. In this section, we review the tensor rank, a notion due to Hitchcock [104]

which is intimately related to minimal representations3 of a tensor as a linear combination

of elementary tensors.

Definition 2.33 (Polyadic decomposition). Any representation of a tensor V ∈ ⊗P
p=1 Vp

having the form V =
∑S

s=1 v
(1)
s ⊗ · · · ⊗ v(P )

s is called a polyadic decomposition of V.

Definition 2.34 (Tensor rank [104]). The rank of a tensor V ∈ ⊗P
p=1 Vp, denoted by

rank(V), is given by the smallest integer R such that a polyadic decomposition of V with R

terms exists, i.e., such that we can write

V =
R∑

r=1

v(1)r ⊗ · · · ⊗ v(P )
r (2.80)

for some v
(p)
r ∈ Vp, p ∈ 〈P 〉.

It follows from Definition 2.34 that a tensor is elementary if and only if it is a rank-one

tensor. This is clearly consistent with the matrix rank, since a rank-R matrix is given by

a sum of (not less than) R rank-one matrices. Despite this conceptual similarity, many

properties of the tensor rank are in sharp contrast with those of the matrix rank, as we shall

discuss in Section 2.5.2.

The terminology “tensor rank” is justified because the rank is an intrinsic property of

a tensors itself and not merely of one of its possible coordinate representations, since it is

invariant with respect to changes of basis [133, 69]. This can be shown as follows.

Proposition 2.35 (Invariance of tensor rank with respect to coordinate bases). The identity

rank

(

V

P×
p=1

Ap

)

= rank(V) (2.81)

holds for every tensor V ∈⊗P
p=1 F

Np and any nonsingular matrix Ap ∈ F
Np×Np .

Proof. The following argument is due to [95, Lemma 3.36]. From Definition 2.25, it is seen

that the multilinear transformation applied in (2.81) cannot increase the number of terms

3The word “representation” here refers to a way of writing the tensor as a sum of elementary ones, and

not to the coordinate representation of a tensor.
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in the sum (2.80). Hence, rank
(

V×P
p=1Ap

)

≤ rank(V). But
(

V×P
p=1Ap

)

×P
p=1A

−1
p = V,

and thus the chain of inequalities

rank(V) = rank

((

V

P×
p=1

Ap

)
P×

p=1

A−1
p

)

≤ rank

(

V

P×
p=1

Ap

)

≤ rank(V) (2.82)

shows (2.81).

2.5.1 The canonical polyadic decomposition and its properties

We proceed now to the definition of the canonical polyadic decomposition (CPD), of which

a constrained (structured) version will be the central subject of Part I of this thesis.

Definition 2.36 (Canonical polyadic decomposition [104, 39, 100]). A polyadic decompo-

sition of a tensor V ∈ ⊗P
p=1 Vp having R = rank(V) terms is called4 a canonical polyadic

decomposition of V. It may be more convenient to write the CPD of a tensor as

V =
R∑

r=1

λr a
(1)
r ⊗ · · · ⊗ a(P )

r , (2.83)

where each vector a
(p)
r satisfies ‖a(p)r ‖ = 1 for some chosen norm (typically, the Euclidean

norm) ‖ · ‖ of Vp and λr ∈ R (or, without loss of generality, λr ∈ R+).

Because the CPD of a tensor exposes its rank, it is said to be a rank-revealing decompo-

sition or rank-retaining decomposition [131].

If a finite-dimensional tensor V ∈⊗P
p=1 Vp admits a CPD of rank R, then it is clear that

any associated hypermatrix coordinate representation also admits an analogous decomposi-

tion written as a sum of outer products of vectors

[vn1,...,nP ] =
R∑

r=1

λr a
(1)
r ⊗ · · · ⊗ a(P )

r , (2.84)

where, for all p ∈ 〈P 〉, a(p)r ∈ F
Np is a coordinate representation of a

(p)
r ∈ Vp under the chosen

basis for Vp. When assimilating V with [vn1,...,nP ], we shall equal V to expression (2.84). In

scalar form, from (2.17) we have

vn1,...,nP =
R∑

r=1

λr

P∏

p=1

a(p)np,r. (2.85)

4The acronym CPD can also stand for Candecomp (from canonical decomposition) / PARAFAC (from

parallel factors) decomposition. These two names were attributed to it when it was independently rediscovered

in the seventies [39, 100].
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Definition 2.37 (Matrix factor of a CPD). Given a CPD of the form (2.84), the vectors a
(p)
r ,

r ∈ 〈R〉, can be thought of as columns of a matrix factor A(p) =
[

a
(p)
1 . . . a

(p)
R

]

∈ F
Np×R.

The following simplified notation (often referred to as Kruskal’s notation) is then employed

V =
r
λ ; A(1), . . . ,A(P )

z
, (2.86)

where λ = [λr] ∈ R
R. When no constraint is imposed over the norm of the vectors a(p) and

the CPD is written without the scaling factors λr, we denote it by V =
q
A(1), . . . ,A(P )

y
.

By resorting to Corollary 2.22, it can be easily shown that the mode-p matrix unfolding

of V in (2.86) is given by

V〈p〉 = A(p)Diag(λ)
(

A(P ) ♦ . . .♦A(p+1) ♦A(p−1) ♦ . . .♦A(1)
)T

. (2.87)

Applying property (2.64) to (2.87) with p = 1, we can derive yet another useful identity:

vec(V) = vec(V〈1〉) =
(

A(P ) ♦ . . .♦A(1)
)

λ. (2.88)

Finally, from Corollary 2.22 we have also the property

V[p] =
(

A(p) ♦ . . .♦A(1)
)

Diag(λ)
(

A(P ) ♦ . . .♦A(p+1)
)T

. (2.89)

2.5.1.1 Applications of the CPD

In applied domains, the computation of a CPD is typically sought with one of the following

major goals:

1. Solving multilinear inverse problems. The CPD can be computed for estimating quantities

of interest which are represented by the vectors involved in the outer products. In other

words, it arises in inverse problems with multilinear models, which may involve additional

constraints. Problems of this nature can be found in, e.g., telecommunications [179, 84,

83], chemometrics [25, 183] and blind source separation [61, 151]. In this context, an

attractive feature of the CPD for P ≥ 3 is that its uniqueness properties are stronger

than those of the dyadic decomposition (or bilinear decomposition) of a matrix, as we will

discuss in Section 2.5.1.3.

2. Exploratory data analysis. The extraction of meaningful quantitative information in the

form of constituents of a CPD model is an increasingly employed tool in a wide range

of disciplines from psychology to web mining. We refer the reader to [3, 45, 145] and

references therein for other examples.

3. Memory complexity reduction. For large tensors of sufficiently low rank (or which admit a

low-rank approximation, an aspect which we shall discuss in Section 2.5.2.5), one can ex-

ploit the CPD in order to save storage memory. Indeed, assuming a tensor V ∈⊗P
p=1 F

Np
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has a CPD with R terms, then it can be stored using O(R∑pNp) memory, which repre-

sents a significant saving over N̄ when R≪ minpNp. Examples of this use can be found

in [56, 79].

4. Computational complexity reduction. When tensors are regarded as multilinear transfor-

mations or multilinear functionals, then a CPD can be exploited to reduce the computa-

tional complexity involved in its application, provided its rank is sufficiently low.

A celebrated example of item 4 concerns Strassen’s algorithm for matrix multiplication.

This bilinear operator can be regarded as a third-order tensor whose rank determines its

fundamental arithmetic complexity. Strassen has developed an algorithm for computing the

product of two 2 × 2 matrices using only 7 multiplications, instead of 8 [190]. It turns out

that his algorithm is related to a CPD of the corresponding matrix multiplication tensor,

whose rank is 7 [105].

A further example in the domain of nonlinear system modeling comes from the inter-

pretation of a P th-order symmetric Volterra kernel [176] as a multilinear functional applied

to the input signal, which appears repeated P times as its argument. In the discrete-time

setting with finite memory Np, this is expressed as

yp(n) = Hp(u(n), . . . ,u(n)
︸ ︷︷ ︸

P times

), (2.90)

where yp(n) is the output signal and u(n) ∈ F
Np is a vector containing the most recent Np

samples of the input signal at (discrete) time n. If Hp ∈
⊗p

q=1 F
Np admits the decomposition

Hp =
∑S

s=1 v
⊗p
s with S ≪ Np, then it is more efficient to compute (2.90) by means of

yp(n) =
S∑

s=1

(

〈u(n),v∗
s〉
)p
, (2.91)

which requires O(S(Np + p)) multiplications, than by using (2.79), which requires O(Np
p )

multiplications. This is the idea underlying the model proposed in [79]. Note that we have

refrained from calling the considered decomposition a CPD and also from equating S with

rank(Hp). The reason shall be clear in the next section.

2.5.1.2 Symmetric CPD

For symmetric tensors, a naturally constrained form of the CPD can be defined as follows.

Definition 2.38 (Symmetric rank and symmetric CPD). Let V ∈ S(V⊗P ) and consider the

polyadic decomposition composed only by symmetric elementary tensors

V =
S∑

s=1

v⊗P
s . (2.92)
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The minimal S such that (2.92) holds is called symmetric rank of V, denoted by srank(V).

A decomposition of the form (2.92) with S = srank(V) is called a symmetric CPD of V.

The fact that any symmetric tensor can be decomposed as in (2.92) is shown in [51,

Lemma 4.2]. Then, it is clear from the above definition that rank(V) ≤ srank(V) holds for

any symmetric tensor V. An important open question is whether rank(V) = srank(V) holds.

A positive answer has been conjectured in [51].

2.5.1.3 Uniqueness of the CPD

While the existence of the CPD follows immediately from its definition (one can always take

a sum of elementary tensors composed by basis vectors), its uniqueness properties are not

equally evident. Right away, it can be seen that a trivial ambiguity arises from the fact that

V =
r
λ ; A(1), . . . ,A(Π)

z
=

r
Πλ ; A(1)Π, . . . ,A(P )Π

z
(2.93)

for any permutation matrix Π ∈ F
R×R. This property is known as permutation ambiguity

or permutation indeterminacy. Note that it can be partially alleviated if one imposes |λr| ≥
|λr+1| for all r ∈ 〈R− 1〉. Even so, the ambiguity persists if |λr| = |λr+1| for at least one r.

Another (perhaps less) trivial ambiguity is called scaling ambiguity (or indeterminacy),

and can be expressed in the same notation as

V =
r
A(1), . . . ,A(P )

z
(2.94)

=
r
A(1)Diag

(

α
(1)
1 , . . . , α

(1)
R

)

, . . . ,A(P )Diag
(

α
(P )
1 , . . . , α

(P )
R

)z
, (2.95)

where
∏P

p=1 α
(p)
r = 1 for all r ∈ 〈R〉. It is thus related with the possibility of jointly rescaling

the vectors of each elementary tensor, so that the result remains unchanged. When F = R,

this indeterminacy is eliminated up to signs by normalizing these vectors and leaving the

overall scaling factor in a constant λr, as in (2.83). For F = C, even imposing normalization

there are infinitely many choices of constants α
(p)
r ∈ C such that

∣
∣
∣α

(p)
r

∣
∣
∣ = 1 and

∏P
p=1 α

(p)
r = 1.

The above discussion motivates the following definition.

Definition 2.39 (Essential uniqueness of the CPD). A CPD of a tensor V is said to be

essentially unique if it is unique up to the trivial scaling and permutation ambiguities.

When the CPD is applied to an inverse problem, essential uniqueness is vital for guar-

anteeing the recovery of the quantities of interest up to harmless indeterminacies. It is

well-known that rank-retaining matrix decompositions can only be made unique by impos-

ing strong constraints, such as orthogonality. But, often there is no physical basis for such

constraints. Fortunately, in the tensor case much milder constraints suffice for essential

uniqueness, as first proven by Kruskal [124] for third-order tensors. A generalization of this

result due to Sidiropoulos and Bro is stated below.
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Definition 2.40 (Kruskal rank [124]). The Kruskal rank (krank) of a matrix A ∈ F
N1×N2 ,

denoted krank(A), is the maximal integer such that every set containing krank(A) columns

of A is linearly independent.

Theorem 2.41 (Sufficient condition for essential CPD uniqueness [178]). Let V ∈⊗P
p=1 F

Np

and assume its representation admits a CPD of the form (2.86), with P > 2 and R > 1. If

the matrix factors A(p) are such that

P∑

p=1

krank
(

A(p)
)

≥ 2R+ P − 1, (2.96)

then the CPD of V is essentially unique. The inequality (2.96) is known as Kruskal condition

or Kruskal bound.

Theorem 2.41 is the best known CPD uniqueness result. The Kruskal condition is a

sufficient one, but it is not necessary in general. Unfortunately, necessary and sufficient

conditions are not known for the general case. Nonetheless, for practical applications the

above result is already advantageous in comparison with the matrix setting. In particular, a

matrix A(p) ∈ R
Np×R with R ≤ Np having columns independently drawn from an absolutely

continuous distribution has krank(A(p)) = R with probability one [178].

The discussion of further CPD uniqueness results is beyond the scope of this thesis. For

more recent results and a detailed account on this issue, the reader is referred to [72, 73] and

references therein.

2.5.2 Properties of the tensor rank

We shall now briefly discuss some distinctive properties of the tensor rank.

2.5.2.1 The tensor rank depends on the underlying field

The first striking dissimilarity between the tensor and matrix ranks is the fact that, in

general, the former depends on the underlying field. In other words, the rank of a tensor

defined over R can be greater than the rank it possesses when defined over C. Examples of

this phenomenon are given in [119, 49] and references therein.

2.5.2.2 The tensor rank can exceed the smallest dimension

Whereas the rank of a matrix cannot exceed its smallest dimension, the same does not hold

for tensors. This property applies to real and complex tensors, as shown by the following

result, whose proof can be found in [95].
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Proposition 2.42 (Lemma 3.42 of [95]). Let Vp, p ∈ 〈P 〉, be vector spaces defined over F

such that dim(Vp) ≥ 2 and suppose the vectors vp, wp ∈ Vp are linearly independent. Then,

rank(v1 ⊗ v2 ⊗ w3 + v1 ⊗ w2 ⊗ v3 + w1 ⊗ v2 ⊗ v3) = 3. (2.97)

Since Proposition (2.42) holds with Vp = F
2, the rank can indeed exceed the smallest

dimension. This phenomenon is not restricted to tensor spaces involving vector spaces of

dimension 2. Many examples are given in [52] of finite-dimensional tensor spaces having

typical ranks (see the next subsection for a definition) which exceed the dimensions of all

involved vector spaces.

This fact bears important implications with regard to the existence of certain special

representations of tensors. More specifically, since there exist tensors V ∈ ⊗P
p=1 Vp whose

(any) minimal representation of the form (2.80) is such that R > dim(Vp) for some p ∈ 〈P 〉,
then the set of vectors

{

v
(p)
1 , . . . , v

(p)
R

}

⊂ Vp which take part in this representation cannot

be linearly independent. Consequently, (considering that each Vp is endowed with a scalar

product) there cannot be a minimal representation of V with the property that for all q ∈ 〈P 〉,
{

v
(q)
1 , . . . , v

(q)
R

}

⊂ Vq is a family of orthogonal vectors.

2.5.2.3 Multiple typical ranks exist for real tensors

When one randomly draws the elements of an N1×N2 matrix from an absolutely continuous

distribution, the resulting matrix has maximal rank R = min{N1, N2} almost surely (i.e.,

with probability one). This stems from the fact that in any matrix space, the set of rank-

defective matrices (i.e., having rank R < min{N1, N2}) has Lebesgue measure zero.

This property partially carries over to tensors of higher orders when their spaces are

defined over algebraic closed fields [54], like C. Assuming for instance that some topology

is defined for a tensor space
⊗P

p=1 Vp defined over C, then it can be shown that there is a

unique integer R such that the set of tensors from this space possessing rank R has nonzero

volume. This rank is called the generic rank of
⊗P

p=1 Vp. On the other hand, unlike the

matrix case, the generic rank does not necessarily correspond to the maximal rank.

Now, for tensor spaces defined over R, the dissimilarity is even greater: in lieu of a single

generic rank, they possess multiple ranks which occur with positive probability. These are

known as typical ranks. Also, the smallest typical rank of a tensor always matches the generic

rank of the complex tensor space of same dimensions [49]. The interested reader can find

many examples of generic ranks of finite-dimensional complex tensor spaces in [54].

2.5.2.4 The tensor rank is NP-hard

Given a tensor V of unknown rank, a problem of significant practical interest is that of

computing rank(V). Yet, this turns out to be a very difficult problem for P ≥ 3, which is
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in contrast to the matrix case, where efficient algorithms exist. In [102], it was shown that

many tensor-related problems are NP-hard, including computing the rank of a tensor.

2.5.2.5 The best rank-R approximation may not exist

Consider the set of tensors having rank bounded by R ∈ N, defined as

RR (T ) =






V ∈ T : ∃v(p)r ∈ Vp such that V =

R∑

r=1

P⊗

p=1

v(p)r






⊆ T =

P⊗

p=1

Vp. (2.98)

Clearly, R0 ⊂ R1 ⊂ R2 ⊂ . . . holds, where R0 contains only the null tensor. For finite-

dimensional tensor spaces, there exists a maximal rank value Rmax satisfying R0 ⊂ R1 ⊂
R2 ⊂ · · · ⊂ RRmax = T [95].

A problem of great importance for many practical applications asks for the best approx-

imation (or one among the best approximations, if multiple ones exist) of a given tensor V
contained by some set RR. This approximation can be sought with any of the goals de-

scribed in Section 2.5.1.1. In particular, note that in inverse problems, computing the CPD

of low-rank tensors measured in real-world applications typically involves approximation,

due to presence of measurement errors and noise. Hence, given a tensor V from a (finite-

dimensional) normed tensor space and a positive integer R, one is interested in finding

V∗ = argmin
V̂∈RR

‖V− V̂‖, (2.99)

where ‖ · ‖ is some chosen norm.

A fundamental difficulty exists when trying to solve (2.99): because the set RR is not

topologically closed (with respect to the topology induced by any norm ‖ · ‖) for P > 2 and

R > 1, the sought minimizer may not exist [69]. Examples of this phenomenon can be found

in, e.g., [95, Proposition 9.10] and [49, 69, 131]. These examples essentially construct a tensor

V having rank strictly greater than R for which infW∈RR
‖V−W‖ = 0 is not attained by any

W ∈ RR ⊂ T . Consequently, V has no best rank-R approximation, as it can be arbitrarily

well approximated by tensors in RR. This motivates the definition of the so-called border

rank of a tensor, given by [131, 95]

rank(V) = min

{

R : inf
W∈RR

‖V−W‖ = 0

}

. (2.100)

In words, it is the minimal R such that either rank(V) = R or V has no best R-rank

approximation. In [69, Theorem 1.3], it is shown that for tensor spaces of the form R
N1 ⊗

R
N2⊗R

N3 with Np ≥ 2, the set of tensors satisfying rank(V) < rank(V) has positive volume.

Hence, it is of practical relevance when one is interested in rank-reduced approximations.

See [133] for a discussion on how to deal with this issue in practice.
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2.6 Modal spaces, multilinear rank and the Tucker decompo-

sition

Tensor subspace techniques are useful in many applications, as they enable the use of familiar

matrix and numerical linear algebra tools. At their core lies the concept of multilinear rank,

whose definition can also be traced back to the work of Hitchcock in the beginning of the

twentieth century [103]. In order to define it, we first introduce modal spaces.

Definition 2.43 (Mode-p space [95]). Let V ∈⊗P
q=1 Vq be a finite-dimensional tensor. The

subspace of Vp denoted by spacep(V) satisfying

(i) V ∈
(
⊗p−1

q=1 Vq
)

⊗ spacep(V)⊗
(
⊗P

q=p+1 Vq
)

(2.101)

(ii) ∀Wp ⊆ Vp, V ∈
(
⊗p−1

q=1 Vq
)

⊗Wp ⊗
(
⊗P

q=p+1 Vq
)

=⇒ spacep(V) ⊆ Wp (2.102)

is called the mode-p space of V with respect to mode p. In other words, spacep(V) is the

intersection of all subspaces Wp ⊆ Vp such that V ∈
(
⊗p−1

q=1 Vq
)

⊗Wp ⊗
(
⊗P

q=p+1 Vq
)

.

It is easy to see from the above definition that the mode-p space of a tensor is unique,

while its existence is shown in [95, Theorem 6.13]. The next result states that it can be

seen as generalization of column and row spaces of a matrix. In the introduced notation,

the mode-1 space (resp., mode-2 space) of a second-order finite-dimensional tensor equals its

column space (resp., row space).

Theorem 2.44 (Relation between modal unfoldings and mode-p spaces). For any finite-

dimensional tensor V ∈⊗P
p=1 Vp, we have colspace

(
V〈p〉

)
= spacep(V).

Proof. Due to (2.101), we can write V =
∑S

s=1

⊗P
q=1 v

(q)
s in such a way that all v

(p)
s ∈

spacep(V). Similarly to (2.87), we have also V〈p〉 = A(p)B(p), where A(p) =
[

v
(p)
1 . . . v

(p)
S

]

and the rows of B(p) ∈ F
S×N̄p are Kronecker products of vectors from the spaces Vq, q 6= p.

Now, without loss of generality, we can assume B(p) has linearly independent (l.i.) rows, for

if this is not the case, then another representation of the form V =
∑R

r=1

⊗P
q=1w

(q)
r , with

R < S and v
(p)
r ∈ spacep(V), can be obtaining by combining a number of rows of B(p) and

their corresponding columns in A(p). Hence, colspace(V〈p〉) = colspace(A(p)). On the other

hand, we clearly have colspace(A(p)) ⊆ spacep(V). But, spacep(V) is minimal by definition,

and thus spacep(V) = colspace(A(p)) = colspace(V〈p〉).

Let us now define the multilinear rank and clarify its relation with the tensor.

Definition 2.45 (Multilinear rank [104]). The multilinear rank (mrank) over a finite-

dimensional tensor space T =
⊗P

p=1 Vp, with dim(Vp) = Np, is the map defined by

mrank : T 7→ 〈N1〉 × · · · × 〈NP 〉 (2.103)

[mrank(V)]p = dim(spacep(V)) = rank(V〈p〉). (2.104)
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We shall also use the notation rankp(V) , [mrank(V)]p.

Lemma 2.46 (Relation between rank and mrank). Every V ∈⊗P
p=1 Vp satisfies the inequal-

ity rankp(V) ≤ rank(V) for all p ∈ 〈P 〉.

Proof. Let V =
∑R

r=1

⊗P
p=1 v

(p)
r be a CPD of V. Clearly, V ∈ (

⊗p−1
q=1 Vq)⊗Wp⊗(

⊗P
q=p+1 Vq),

where Wp = span
{

v
(p)
1 , . . . , v

(p)
R

}

is a subspace of Vp. Thus, by definition, spacep(V) ⊆ Wp,

and so we have rankp(V) = dim(spacep(V)) ≤ dim
(

span
{

v
(p)
1 , . . . , v

(p)
R

})

≤ R.

In comparison to the tensor rank, the mrank is “better behaved,” in the sense that

strange phenomena such as those discussed in Section 2.5 do not take place. In particular,

rankp(V) ≤ Np. A justification for defining the multilinear rank as a property of tensors

rather than of their representations (in the spirit of Proposition 2.35) can be derived as

follows.

Proposition 2.47 (Invariance of the mrank with respect to coordinate bases). The identity

mrank

(

V

P×
p=1

Ap

)

= mrank(V) (2.105)

holds for every tensor V ∈⊗P
p=1 F

Np and all nonsingular matrices Ap ∈ F
Np×Np .

Proof. Since (V ×p Ap)〈p〉 = ApV〈p〉, we have the chain of equalities rankp(V ×p Ap) =

rank(ApV〈p〉) = rank(V〈p〉) = rankp(V), where the second one follows from nonsingularity

of Ap. Applying this argument repeatedly for p ∈ 〈P 〉 yields (2.105).

2.6.1 Tucker decomposition

In the same way in which the tensor rank is closely related to the CPD, the mrank is closely

related to the Tucker decomposition (TD). Below, we first define such a decomposition and

present some of its properties. Then, we consider some particularizations of special interest.

Definition 2.48 (Tucker decomposition [103, 202]). Let V ∈⊗P
p=1 F

Np . A Tucker decom-

position or multilinear decomposition of V consists in writing it under the form

V = G

P×
p=1

A(p), (2.106)

where A(p) ∈ F
Np×Mp are again called factor matrices and G ∈⊗P

p=1 F
Mp is the core tensor.

It is easy to show that (2.106) is equivalent to saying that an element of the representation

of V can be written in terms of that of G as

vn1,...,nP =

M1∑

m1=1

· · ·
MP∑

mP=1

gm1,...,mP

∏

p

a(p)np,mp
, (2.107)
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where A(p) =
[

a
(p)
np,mp

]

. This is the scalar form of the Tucker model.

Without further restrictions, infinitely many TDs of a tensor exist. This comes as no

surprise, given that (2.106) can be seen as a multilinear change of basis when the matrices

A(p) are nonsingular. More generally, if all matrix factors have linearly independent columns

(but are not necessarily square), then (2.106) can be regarded as the representation of V with

respect to the bases associated with these matrices, in which case G plays the role of the

corresponding coordinate representation.

Proposition 2.49 (Relation between CPD and TD). Let V ∈ ⊗P
p=1 F

Np and suppose it

admits the CPD V =
q
λ ; A(1), . . . ,A(P )

y
, with A(p) ∈ F

Np×R and λ ∈ R
R. Then,

V = L

P×
p=1

A(p), (2.108)

where the representation of L ∈⊗P
p=1R

R satisfies [lr1,...,rP ] = λr1δr1,...,rP .

Proof. From (2.17), we have

vn1,...,nP =
∑

r

λr
∏

p

a(p)np,r =
∑

r1

· · ·
∑

rP

λr1δr1,...,rP
∏

p

a(p)np,rp =
∑

r1

· · ·
∑

rP

lr1,...,rP a
(p)
np,rp .

The identity (2.108) then follows from (2.107).

Corollary 2.31 provides a useful expression for the mode-p unfolding of a tensor in terms

of its TD components. In particular, it allows a visualization of the non-uniqueness of the

TD: since V〈p〉 = A(p)G〈p〉
(
A(P ) ⊠ . . .⊠A(p+1) ⊠A(p−1) ⊠ . . .⊠A(1)

)T
, A(p) and G〈p〉 can

be replaced by A(p)B and B−1G〈p〉, respectively, without changing V〈p〉, for any nonsingular

B ∈ F
Mp×Mp . Similarly to the CPD, by applying property (2.49) of the Kronecker product

we can also derive the following identity:

vec(V) =
(

A(P ) ⊠ . . .⊠A(1)
)

vec(G). (2.109)

We now formally state the link between the mrank and the TD.

Theorem 2.50 (Connection between Tucker decomposition and mrank). LetV ∈⊗P
p=1 F

Np .

If mrank(V) = (R1, . . . , RP ), then V admits a Tucker decomposition of the form (2.106) with

factors A(p) ∈ F
Np×Rp and core tensor G ∈⊗P

p=1 F
Rp .

Proof. By definition, mrank(V) = (R1, . . . , RP ) implies dim(spacep(V)) = Rp. This means

any basis of spacep(V) has cardinality Rp. Let A(p) ∈ F
Np×Rp hold the vectors of a basis

as its columns, for all p ∈ 〈P 〉. Due to Theorem 2.44, there is a matrix B(p) ∈ F
Rp×N̄p

having l.i. rows and such that V〈p〉 = A(p)B(p). Moreover, as the columns of A(p) are l.i.,
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A(p)HA(p) is nonsingular. Therefore, we have V〈p〉 = A(p)
(
A(p)

)+
V〈p〉, where

(
A(p)

)+
=

(

A(p)HA(p)
)−1

A(p)H is the left inverse of A(p). Consequently,

V = V

P×
p=1

(

A(p)
(

A(p)
)+
)

=

[

V

P×
p=1

(

A(p)
)+
]

︸ ︷︷ ︸

,G

P×
p=1

A(p),

where G is the representation of V with respect to the basis matrices A(1), . . . ,A(P ). As

G ∈⊗P
p=1 F

Rp , the result holds.

Remark 2.51. Note that the converse of Theorem 2.50 is not necessarily true. Indeed, we

can at most say that the existence of such a Tucker decomposition implies rankp(V) ≤ Rp

(e.g., the null tensor trivially admits a Tucker model of that form with a null core).

As with the CPD, tensor models based on the TD also find many practical applications.

Among the goals described in Section 2.5.1.1, items 2–4 are often also motivations for em-

ploying a TD. Examples of its use in data analysis are given in [3, 45, 145, 158, 175]. In

this context, the particularizations described ahead in Sections 2.6.1.1 and 2.6.1.2, one of

them having properties reminiscent of the matrix SVD, are often exploited for dimensionality

reduction and/or feature extraction. It is also used for compression, as in [137], by virtue of

Theorem 2.50. The motivation is that, for a mrank-(R1, . . . , RP ) tensor such that Rp ≪ Np,

it is much less costly to store basis matrices A(p) ∈ F
Np×Rp and a core tensor G ∈⊗P

p=1 F
Rp ,

which requires storing
∏

pRp+
∑

pNpRp numbers from F, than storing N̄ =
∏

pNp numbers.

Finally, its use for complexity reduction is exemplified by the so-called principal dynamic

modes (PDM) model used in the modeling of (nonlinear) physiological systems [141, 142].

This link relies again on viewing Volterra kernels as multilinear functionals.

We finish this section by pointing out that [110] provides a thorough account of invariance

relations between a tensor and the core of a TD. For instance, under the assumption that

the factors A(p) of a TD have l.i. columns, we have rank(V) = rank(G), which implies

rank(V) ≤∏P
p=1 rankp(V). Also,

α‖G‖F ≤ ‖V‖F ≤ β‖G‖F , (2.110)

with α =
∏

p ‖A(p)‖2 and β = α/
(
∏

p κ
(
A(p)

))

, where κ(A) denotes the ratio between

the largest and the smallest (nonzero) singular values of A. A similar bound holds for the

nuclear norm.

2.6.1.1 Orthogonal Tucker decomposition

When every factor of a TD belongs to the Stiefel manifold VRp(F
Np) of Np × Rp matrices

having orthonormal columns, we call it an orthogonal Tucker decomposition (OTD). This
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corresponds to an important case of the TD with special properties. For instance, with regard

to property (2.110), we have α = β = 1 for A(p) ∈ VRp(F
Np), and thus ‖G‖F = ‖V‖F [110].

Moreover, given a tensor V ∈⊗P
p=1 F

Np with mrank(V) = (R1, . . . , RP ) and an orthonormal

basis U(p) ∈ VRp(F
Np) for spacep(V), it is easy to see that the corresponding core can be

computed as G = V×P
p=1U

(p)H .

OTDs are well-suited for numerical computations. In particular, they provide a conve-

nient framework in which the problem of best subspace-based approximation, which we will

discuss in Section 2.6.2, can be posed and numerically tackled. Clearly, given any TD of a ten-

sor V = G×P
p=1A

(p) having mrank(V) = (R1, . . . , RP ) and such that A(p) ∈ F
Np×MP , with

Mp ≥ Rp, an OTD can be derived by computing, e.g., a QR decomposition A(p) = Q(p)R(p),

with Q(p) ∈ VRp(F
Np×Rp) and R(p) ∈ F

Rp×Mp , from which we have

V = H

P×
p=1

Q(p), with H = G

P×
p=1

R(p) ∈
P⊗

p=1

F
Rp . (2.111)

Alternatively, given a tensor V having mrank(V) = (R1, . . . , RP ), by computing P QR

decompositions V〈p〉 = Q(p)R(p), where Q(p) ∈ VRp(Np) and R(p) ∈ F
Rp×N̄p , we can write

the OTD V = H×P
p=1Q

(p), with H = V×P
p=1Q

(p)H ∈⊗P
p=1 F

Rp .

2.6.1.2 Higher-order singular value decomposition

We describe now a particularization of the OTD which plays an important role in many

tensor-based techniques.

Proposition 2.52 (Higher-order singular value decomposition [58]). Every tensor V ∈ T =
⊗P

p=1 F
Np admits the OTD

V = S

P×
p=1

U(p) (2.112)

where U(p) ∈ VNp(F
Np) is the matrix of left singular vectors of V〈p〉 and S ∈ T . This OTD

is called the higher-order singular value decomposition (HOSVD) of V and its core satisfies

S〈p〉S
H
〈p〉 = Diag

(

σ
(p)
1

2
, . . . , σ

(p)
Np

2
)

, (2.113)

where σ
(p)
np is the npth singular value of V〈p〉, referred to as npth mode-p singular value of V.

In case of ambiguity, we use also the notation σ
(p)
np (V).

Proof. Let V〈p〉 = U(p)Σ(p)W(p)H be the SVD of V〈p〉, where U(p) ∈ VNp(F
Np), W(p) ∈

VN̄p
(FN̄p) and Σ(p) ∈ R

Np×N̄p , with
[
Σ(p)

]

np,n′
p
= σ

(p)
np δnp,n′

p
. Now, consider the tensor

S = V

P×
p=1

U(p)H . (2.114)
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As U(p) ∈ VNp(F
Np) is unitary, it is clear that (2.112) holds. From (2.114) and the SVD of

V〈p〉, we obtain

S〈p〉 = U(p)HV〈p〉
(

U(P ) ⊗ · · · ⊗U(p+1) ⊗U(p−1) ⊗ · · · ⊗U(1)
)H

(2.115)

= Σ(p)W(p)H
(

U(P ) ⊗ · · · ⊗U(p+1) ⊗U(p−1) ⊗ · · · ⊗U(1)
)H

. (2.116)

Finally, using properties of the Kronecker product and the fact that U(p) and W(p) are

unitary matrices, we can verify that (2.113) holds.

Remark 2.53. One can consider also an mrank-retaining “reduced” or “economical”

HOSVD as follows. Letting mrank(V) = (R1, . . . , RP ), the SVD of each unfoldingV〈p〉 can be

computed in its “economical” form, yielding U(p) ∈ VRp(F
Np), W(p) ∈ VRp(F

N̄p) and a pos-

itive definite Σ(p) = Diag
(

σ
(p)
1 , . . . , σ

(p)
Rp

)

∈ R
Rp×Rp . Then, (2.112)–(2.114) still hold with a

reduced core S ∈⊗P
p=1 F

Rp , because colspace(U(p)) = spacep(V) = colspace(V〈p〉) (cf. The-

orem 2.44). Property (2.113) is in this case expressed as S〈p〉S
H
〈p〉 = Diag

(

σ
(p)
1

2
, . . . , σ

(p)
Rp

2
)

.

2.6.2 Best mrank-r approximation

The computation of subspace-based tensor approximations is a problem with many applica-

tions. Given a tensor space T =
⊗P

p=1 Vp and a tuple r = (R1, . . . , RP ) ∈ N
P , by defining

Lr = {V ∈ T : rankp(V) ≤ Rp, p ∈ 〈P 〉} , (2.117)

one can formulate this problem as

min
V̂∈Lr

‖V− V̂‖ (2.118)

for some norm ‖ ·‖. By far, the most common choice is the Frobenius norm, which means we

look for “the closest tensor” V̂ ∈ Lr to V in terms of Euclidean distance. In contrast to the

tensor rank-based approximation discussed in Section 2.5.2.5, here one can show that in the

finite-dimensional case, (2.118) always has a solution for any chosen norm, which is owed to

the fact that Lr is closed (and that all norms are equivalent). See, e.g., [95, Theorem 10.8]

for a formal statement of this fact in a more general setting. On the other hand, the solution

can be nonunique, because Lr is not a convex set.

Due to the relevance of the above problem, it has been studied by many authors. In

particular, [59] has derived the following result.

Proposition 2.54. Let V ∈⊗P
p=1 F

Np and r = (R1, . . . , RP ) ∈ N
P , with Rp ≤ Np. Then,

min
V̂∈Lr

‖V− V̂‖F = max
U(p)∈VRp (F

Np )

∥
∥
∥
∥
∥
V

P×
p=1

U(p)H

∥
∥
∥
∥
∥
F

. (2.119)
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Proof. First note that ‖V− V̂‖2F = ‖V‖2F −2Re{〈V, V̂〉}+‖V̂‖2F . Also, since V̂ ∈ Lr, it must

admit an OTD V̂ = G×P
p=1U

(p). Now, whichever the matrices U(p) are, it only makes sense

to choose Ĝ = V×P
p=1U

(p)H , because it attains the minimum of

min
G






−2Re

{〈

V,G
P×

p=1

U(p)

〉}

+

∥
∥
∥
∥
∥
G

P×
p=1

U(p)

∥
∥
∥
∥
∥

2

F






= min

G

{

−2Re
{〈

Ĝ,G
〉}

+ ‖G‖2F
}

= − ‖Ĝ‖2F .

The result thus follows from the definition of Ĝ.

Based on this result, [59] proposes the high-order orthogonal iteration (HOOI) algorithm,

which is a multilinear generalization of the orthogonal iteration scheme used to compute

dominant singular vectors of a matrix (see, e.g., [90, Section 7.3.2]). The HOOI updates

the matrices U(p) of Proposition 2.54 in an alternating fashion. Fixing all of them but

U(p) for some p ∈ 〈P 〉, U(p) can be updated by computing the dominant mode-p subspace

of dimension Rp by means of a SVD. Although its implementation is simple, the HOOI

may require many iterations to converge, a fact which is aggravated by its relatively high

computing cost per iteration.

Another approach to address this problem is proposed in [107, 108]. It consists in em-

ploying Riemmannian optimization techniques in order to compute a solution to the best

mrank-reduced approximation problem. These techniques exploit the properties of certain

smooth manifolds to which the search for a solution is constrained. Despite the fact that con-

vergence can be achieved in less iterations than HOOI with, e.g., a Riemmanian trust-region

based scheme, the required computing effort is still quite high.

Often, instead of pursuing a solution close to the optimum (this is generally the best we

can hope for, as this problem is NP-hard [102]), one is satisfied with a quasi-optimal solution

Ṽ satisfying

‖V− Ṽ‖F ≤ C min
V̂∈Lr

‖V− V̂‖F (2.120)

for some (reasonable) constant C. There exist approximate non-iterative solutions which

meet this requirement and whose computing cost is much milder than that of the above

mentioned iterative methods. Below we describe two alternatives with these characteristics.

2.6.2.1 Truncated HOSVD

Owing to Proposition 2.54, the optimization problem of interest can be expressed as

min
U(p)∈VRp (F

Np )

∥
∥
∥
∥
∥
V−

(

V

P×
p=1

U(p)H

)
P×

p=1

U(p)

∥
∥
∥
∥
∥

2

F

= min
U(p)∈VRp (F

Np )

∥
∥
∥
∥
∥
V−V

P×
p=1

U(p)U(p)H

∥
∥
∥
∥
∥

2

F

.
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The cost function J(U(1), . . . ,U(P )) =
∥
∥
∥V−V×P

p=1U
(p)U(p)H

∥
∥
∥

2

F
can then be rewritten by

introducing a telescoping sum, yielding

J
(

U(1), . . . ,U(P )
)

=

∥
∥
∥
∥
∥
∥

V−
P∑

p=1

V

p×
q=1

P(q) +

P−1∑

p=1

V

p×
q=1

P(q)

∥
∥
∥
∥
∥
∥

2

F

, (2.121)

where P(p) = U(p)U(p)H ∈ F
Np×Np is the orthogonal projection onto colspace(U(p)). Re-

grouping the terms,

J
(

U(1), . . . ,U(P )
)

=

∥
∥
∥
∥
∥
∥

P∑

p=1

V

p−1×
q=1

P(q) ×p P
(p)⊥

∥
∥
∥
∥
∥
∥

2

F

=
P∑

p=1

∥
∥
∥
∥
∥
V

p−1×
q=1

P(q) ×p P
(p)⊥

∥
∥
∥
∥
∥

2

F

(2.122)

≤
P∑

p=1

∥
∥
∥V×p P

(p)⊥
∥
∥
∥

2

F
=

P∑

p=1

∥
∥
∥P(p)⊥V〈p〉

∥
∥
∥

2

F
, (2.123)

where P(p)⊥ , I − P(p), the second equality follows from orthogonality of the terms of the

sum and the inequality follows from nonexpansiveness of P(q), q ∈ 〈P 〉.
The celebrated Eckart-Young theorem implies that the (separate) minimization of each

term of the upper bound in (2.123) is achieved by taking U(p) having the first Rp left

singular vectors of V〈p〉 as columns. This is the idea underlying the truncated HOSVD

(THOSVD) method for approximating a solution of (2.119). Given a tensor V ∈⊗P
p=1 F

Np

and a target approximation mrank r = (R1, . . . , RP ), one first computes for each unfolding

the “economical” SVD V〈p〉 =
[

U
(p)

Ũ(p)
]

Σ(p)W(p)H , where U
(p) ∈ VRp(F

Np), Ũ(p) ∈
VMp−Rp(F

Np), Σ(p) ∈ R
Mp×Mp and W(p) ∈ VMp(F

N̄p), with Mp = min{Np, Np}. Then, the

approximation

V = V

P×
p=1

P
(p)

(2.124)

is computed, with P
(p)

= U
(p)

U
(p)H

for all p ∈ {1, . . . , P}.
In addition to its simplicity and to the fact that it only requires standard numerical

linear algebra routines for its implementation, the truncated HOSVD is a quasi-optimal

approximation in the sense of (2.120). To see this, let V⋆ ∈ Lr be a solution of (2.119).

Because rankp(V
⋆) = Rp, then the Eckart-Young theorem implies

∥
∥
∥

(

I−P
(p)
)

V〈p〉
∥
∥
∥

2

F
≤
∥
∥
∥V〈p〉 −V⋆

〈p〉

∥
∥
∥

2

F
. (2.125)

Therefore, from (2.123) we derive the bound

J
(

U
(1)
, . . . ,U

(P )
)

=
∥
∥V−V

∥
∥
2

F
≤ P ‖V−V⋆‖2F = P min

V̂∈Lr

∥
∥
∥V− V̂

∥
∥
∥

2

F
. (2.126)
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This is a well-known property of the THOSVD [209, 91]. Another fact that can be directly

derived from (2.123) is [59]

∥
∥V−V

∥
∥
2

F
≤

P∑

p=1

min{Np,N̄p}∑

rp=Rp+1

[

σ(p)rp (V)
]2
, (2.127)

which stems from the fact that the quadratic error of a truncated SVD equals the sum of

the squared discarded singular values.

Due to the above described features, the THOSVD is often used either to obtain the final

desired approximation or as starting point for iterative methods as those described in the

previous section [59, 107].

2.6.2.2 Sequentially optimal modal approximations

In [209], an alternative to the THOSVD is proposed for the best mrank-r approximation

problem. It is based on the fact that problem (2.119) is equivalent to minimizing (2.122) with

the constraints U(p) ∈ VRp(F
Np) and P(p) = U(p)U(p)H . Hence, omitting these constraints

for simplicity, we can write it as [209]

min
P(1)

(
∥
∥
∥V×1 P

(1)⊥
∥
∥
∥

2

F
+min

P(2)

(
∥
∥
∥V×1 P

(1) ×2 P
(2)⊥

∥
∥
∥

2

F
+min

P(3)

(

. . .

· · ·+ min
P(P−1)

(∥
∥
∥
∥
∥
V

P−2×
p=1

P(p) ×P−1 P
(P−1)⊥

∥
∥
∥
∥
∥

2

F

+min
P(P )

∥
∥
∥
∥
∥
V

P−1×
p=1

P(p) ×P P(P )⊥
∥
∥
∥
∥
∥

2

F

)

. . .

)))

.

(2.128)

An approximate solution can then be obtained by solving instead

min
P(2)

(
∥
∥
∥V×1 P̂

(1) ×2 P
(2)⊥

∥
∥
∥

2

F
+min

P(3)

(

· · ·+min
P(P )

(∥
∥
∥
∥
∥
V×1 P̂

(1)
P−1×
p=2

P(p) ×P P(P )⊥
∥
∥
∥
∥
∥

2

F

)

. . .

))

,

where P̂(1) = argminP(1)

∥
∥
∥V×1 P

(1)⊥
∥
∥
∥

2

F
. The same principle is then applied for all p ∈ 〈P 〉,

leading to

P̂(p) = argmin
P(p)

∥
∥
∥
∥
∥
V

p−1×
q=1

P̂(q) ×p P
(p)⊥

∥
∥
∥
∥
∥

2

F

. (2.129)

With respect to the minimum of the original problem, we can write

min
V̂∈Lr

‖V− V̂‖2F ≤
P∑

p=1

min
P(p)

∥
∥
∥
∥
∥
V

p−1×
q=1

P̂(q) ×p P
(p)⊥

∥
∥
∥
∥
∥

2

F

=

∥
∥
∥
∥
∥
V−V

P×
p=1

P̂(p)

∥
∥
∥
∥
∥

2

F

. (2.130)

Observe that P̂(p) depends on all P̂(q) with q < p. More precisely, the projectors P̂(p) result

from a sequential optimization with respect to each mode, given the solution of all previous



48 Chapter 2. Tensors and multilinear algebra

ones. For this reason, we call5 this solution sequentially optimal modal projections (SeMP).

It is not hard to see that the modal projections can just as well be applied in any different

order (i.e., any permutation of (1, . . . , P )), which generally yields different results.

Just like the THOSVD, it is easy to show that SeMP yields a quasi-optimal approxima-

tion, since the attained cost function value (cf. (2.130)) satisfies

P∑

p=1

min
P(p)

∥
∥
∥
∥
∥
V

p−1×
q=1

P̂(q) ×p P
(p)⊥

∥
∥
∥
∥
∥

2

F

≤
P∑

p=1

min
P(p)

∥
∥
∥V×p P

(p)⊥
∥
∥
∥

2

F
. (2.131)

Therefore, SeMP is subject to the same upper bound (2.126) derived for the THOSVD in

Section 2.6.2.1, and is also quasi-optimal by a factor of
√
P . This holds regardless of how

the modal projections are ordered.

In comparison with the THOSVD, though, SeMP possesses important advantages. The

first one is computational, and stems from the fact that the procedure can be carried out

in such a way that the dimensionality of the target tensor is reduced at each step (i.e., for

each mode) [209]. This is evidenced by the pseudocode presented in Algorithm 2.1, in which

Lp ,
(
∏p−1

q=1 Rq

)(
∏P

q=p+1Nq

)

. Line 4 of this procedure is equivalent to

Z̄p = Z̄p−1 ×p

(

Ū(p)
)H

∈ F
R1×···×Rp×Np+1×···×NP . (2.132)

Therefore, the final outcome can be written as Sr (V) = V×P
p=1 Ū

(p)
(
Ū(p)

)H
= V×P

p=1 P̂p.

Note the similarity between this expression and (2.124). The fact that the matrix Ū(p)

calculated in Algorithm 2.1 satisfies Ū(p)(Ū(p))H = P̂p, with P̂p defined by (2.129), can be

verified as follows. For brevity, let us denote Zp−1 , V×p−1
q=1 P̂p, with Z0 = V. We need to

show that Ū(p) contains the first left Rp singular vectors of (Zp−1)〈p〉 as columns. For p = 1,

this is clearly true, as Z0 = Z̄0 = V. For p > 1, we proceed by induction. Assume the claim

holds for all q ∈ 〈p− 1〉, which implies Ū(q)(Ū(q))H = P̂q. Then, it is easy to verify that it

holds also for p, because the left singular vectors of

(Zp−1)〈p〉 = V〈p〉

(

Ū(1)
(

Ū(1)
)H

⊠ . . .⊠ Ū(p−1)
(

Ū(p−1)
)H

⊠ INp+1 ⊠ . . .⊠ INP

)H

(2.133)

are the same as those of

(
Z̄p−1

)

〈p〉 = V〈p〉

((

Ū(1)
)H

⊠ . . .⊠
(

Ū(p−1)
)H

⊠ INp+1 ⊠ . . .⊠ INP

)H

. (2.134)

where IN denotes the N ×N identity matrix. Indeed,

(Zp−1)〈p〉 (Zp−1)
H
〈p〉=V〈p〉

(

Ū(1)
(

Ū(1)
)H

⊠ . . .⊠ Ū(p−1)
(

Ū(p−1)
)H

⊠ INp+1 ⊠ . . .⊠ INP

)

VH
〈p〉

=
(
Z̄p−1

)

〈p〉
(
Z̄p−1

)H

〈p〉 .

5Though [209] uses the name “sequentially truncated HOSVD” we prefer to adopt “sequentially optimal

modal projections,” because the resulting projection operators are not associated with the original dominant

modal subspaces.
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Algorithm 2.1 Sequentially optimal projections (SeMP) for low-mrank approximation [209].

Inputs: Tensor V whose best approximation in Lr is sought, target mrank r = (R1, . . . , RP )

Output: An approximate projection Sr (V) of V onto Lr
1: Z̄0 ← V

2: for p = 1, . . . , P do

3: compute the SVD: (Z̄p−1)〈p〉 =
[

Ū(p) Ũ(p)
]
[

Σ̄(p) 0

0 Σ̃(p)

]
[

W̄(p) W̃(p)
]H

,

where Ū(p) ∈ F
Np×Rp , Σ̄(p) ∈ R

Rp×Rp , W̄(p) ∈ F
Lp×Rp , Lp =

(
p−1
∏

q=1

Rq

)(
P∏

q=p+1

Nq

)

4: compute Z̄p via: (Z̄p)〈p〉 ← Σ̄(p)
(
W̄(p)

)H

5: return Sr (V)← Z̄P ×1 Ū
(1) ×2 · · · ×P Ū(P )

Let us calculate the resulting cost. When Np ≪ Lp, instead of computing the SVD of

(Z̄p−1)〈p〉 ∈ F
Np×Lp as described by Algorithm 2.1, one can proceed as follows. First, the

eigenvalue decomposition of (Z̄p−1)〈p〉(Z̄p−1)
H
〈p〉 ∈ F

Np×Np provides (only) the left singular

vectors of (Z̄p−1)〈p〉, which are then used for the projection stage (2.132). The goal is decom-

posing a much smaller matrix. Though the overall cost of the decomposition stage remains

O(N2
pLp) because of the matrix product (Z̄p−1)〈p〉(Z̄p−1)

H
〈p〉, it is much faster in practice,

compensating for the increased effort of using (2.132) instead of Line 4 of Algorithm 2.1.

Hence, assuming the modal projections are ordered as (1, . . . , P ), the cost of applying Sr is

O





P∑

p=1

NpLpmin{Np, Lp}



+O





P∑

p=1

R1 . . . RpNp . . . NP



+O





P∑

p=1

N1 . . . NpRp . . . RP



 .

The first term corresponds to the computation of Ūp, p ∈ 〈P 〉, while the other ones refer

respectively to the costs of (2.132) and of Line 5 of Algorithm 2.1.

The second advantage is the fact that its error can be exactly quantified by [209]

∥
∥
∥
∥
∥
V−V

P×
p=1

P̂(p)

∥
∥
∥
∥
∥

2

F

=
P∑

p=1

min{Np,N̄p}∑

rp=Rp+1

[

σ(p)rp

(

V

p−1×
q=1

P̂(q)

)]2

. (2.135)

While performing the approximations, this can be exploited in order to adjust the mrank

components Rp in order to approximately meet a prescribed tolerated error level, poten-

tially yielding a less complex (in terms of mrank) approximation than THOSVD for a same

tolerance level. We refer the reader to [209] for more details.

2.7 Final remarks and bibliographical notes

We would like to close this chapter by pointing out that many important aspects related to

tensor algebra were not discussed here, as they are not essential for our objectives. A notable
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example is the distinction between covariant, contravariant and mixed tensors, crucial in

physics for dealing with quantities which are invariant with respect to the chosen coordinate

bases. The famous Einstein summation convention gives an elegant way of writing tensor

equations which hides the involved summations, being based on the implicit assumption that

the occurrence of a same index for a covariant and a contravariant modes implies summation

(an operation which is called contraction). See, e.g., [21]. More recently, [80] has applied a

similar notation to express matrix identities involving Kronecker and Khatri-Rao products,

which is useful to write matrix unfoldings of certain tensor models in a concise way.

The main bibliographical sources consulted for this chapter are [131, 95, 49]. Other

relevant sources of background material on tensors are [119, 133]. The interested reader can

find interesting and in-depth discussions in these works and references therein.
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Chapter 3

Structured CPD estimation and

Cramér-Rao bounds

When applied to qualify a mathematical model, the adjective “structured” generally implies

some constraint reducing its number of degrees of freedom. Put in another way, structured

models generally comprise interdependent components, thus forming a (proper) subset of the

set of all possible models. We describe in this chapter a class of CPDs whose matrix factors

are structured in a linear sense. Its relevance is illustrated by means of an application example

in which an inverse problem can be solved by estimating a structured CPD. Subsequently, we

recall existing specialized algorithms which perform this task. Finally, expressions for both

deterministic and Bayesian Cramér-Rao bounds associated with the underlying estimation

problem are given.

Contents

3.1 Structured matrix factors and the structured CPD (SCPD) . . . . 52

3.2 Application example: Wiener-Hammerstein model identification . . 55

3.3 Existing SCPD computation methods . . . . . . . . . . . . . . . . . . 56

3.4 Cramér-Rao bound for SCPD estimation . . . . . . . . . . . . . . . . 63

3.1 Structured matrix factors and the structured CPD

(SCPD)

Recall that the CPD of a P th-order tensor can be expressed in terms of P matrix factors,

as in (2.86). In this part of the thesis, we study a special case of this decomposition where

one or more of its factors is (are) subject to structural constraints of the following kind.

Definition 3.1 (Structured matrix [184]). A matrix A(p) ∈ C
Np×R is said to be structured

if it belongs to a proper subspace of CNp×R. In other words, it can be written as

A(p) =

Up∑

u=1

θ(p)u E(p)
u , (3.1)
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where Up < NpR and the matrices E
(p)
u ∈ C

Np×R are linearly independent, thus forming a

basis Bp =
{

E
(p)
1 , . . . ,E

(p)
Up

}

of a subspace having dimension Up.

In terms of the vectorization operator discussed in Section 2.2, we have

vec
(

A(p)
)

= E(p)θ(p), (3.2)

where

E(p) ,
[

vec
(

E
(p)
1

)

. . . vec
(

E
(p)
Up

)]

∈ C
Np×Up (3.3)

and θ(p) ,
[

θ
(p)
1 . . . θ

(p)
Up

]T
∈ C

Up holds the coordinates of the representation of A(p) with

respect to the basis Bp. Each column of A(p) ∈ C
Np×R can be written in terms of θ(p) as

a(p)r = S(p)
r θ(p), (3.4)

where S
(p)
r ∈ C

Np×Up is defined such that its uth column equals the rth column of E
(p)
u .

As particular cases of Definition 3.1, we can mention banded, Hankel, Toeplitz and

circulant matrices, as well as block-Hankel, block-Toeplitz and block-circulant ones. For

convenience, we provide in Table 3.1 expressions for Up, S
(p)
r and E

(p)
u considering some

classes of structured matrices (which are not unique, since they depend on the chosen basis).

Example 3.2. According to Table 3.1, any 3× 2 Toeplitz matrix A(p) can be written as

A(p) =







c d

b c

a b






= a







0 0

0 0

1 0






+b







0 0

1 0

0 1






+c







1 0

0 1

0 0






+d







0 1

0 0

0 0






= aE

(p)
1 +bE

(p)
2 +cE

(p)
3 +dE

(p)
4 .

Thus, θ(p) =
[

a b c d
]T

and, for instance, the first column of A(p) is given by







c

b

a






=







0 0 1 0

0 1 0 0

1 0 0 0






θ(p) = S

(p)
1 θ(p). (3.5)

�

Example 3.3. Matrices with banded circulant structure (cf. Table 3.1) have the form

A(p) =
















a1

a2
. . .

...
. . . a1

aUp a2
. . .

...

aUp
















∈ C
Np×R, (3.6)
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Up S
(p)
r , r ∈ 〈R〉 E

(p)
u , u ∈ 〈Up〉

Unstructured RNp

[

0Np×Np(r−1) INp 0Np×Np(R−r)

] [

E
(p)
u

]

i,j
= δu,(j−1)Np+i

Hankel Np +R− 1
[

0Np×r−1 INp 0Np×R−r

] [

E
(p)
u

]

i,j
= δu,i+j−1

Toeplitz Np +R− 1
[

0Np×r−1 eNp . . . e1 0Np×R−r

] [

E
(p)
u

]

i,j
= δu,Np+j−i

(Toeplitz) Circulant Np Πr−1
p =





01×Np−1 1

INp−1 0Np−1×1





r−1

[

E
(p)
u

]

i,j
= δu,1+((i−j) mod Np)

Banded circulant Np −R+ 1













0r−1×Up

IUp

0R−r×Up













[

E
(p)
u

]

i,j
= δu,(i−j)+1

Table 3.1: Characteristics of A(p) for some classes of matrices [19, 65].

with Up = Np − R + 1, where all omitted elements are null. We can also write A(p) =
[

a Πpa Π2
pa . . . ΠR−1

p a
]

, where Πp is the permutation matrix defined in the fourth

row of Table 3.1 and a =
[

a1 . . . aUp 0 . . . 0
]T
∈ C

Np . �

We proceed now to the definition of the structured CPD.

Definition 3.4 (Structured CPD). A rank-R tensor X ∈ T ,
⊗P

p=1C
Np is said to admit

a structured canonical polyadic decomposition (SCPD) when it can be written in the form

(2.86) and at least one of the matrix factors A(p) ∈ C
Np×R is structured.

3.1.1 Uniqueness of the SCPD

As the imposition of constraints over factors of a CPD is intended to aid in the resolution

of inverse problems (in the sense discussed in Section 2.5.1.1), model uniqueness is a key

concern. In general, the trivial scaling and permutation indeterminacies are more restricted

when we consider an SCPD. We present next an example illustrating this point.

Example 3.5. Consider the SCPD X =
q
A(1),A(2),A(3)

y
, where A(1) = [ai,j ] ∈ C

3×2 is a

Hankel matrix. In this case, the condition ai,1 6= al,1 for i 6= l, together with the Hankel

structure of A(1), is sufficient to eliminate the permutation ambiguity. The scaling ambiguity

persists but is more restricted, because the scaling matrix Diag(α
(1)
1 , α

(1)
2 ) of (2.95) must

satisfy α
(1)
1 = α

(1)
2 . �

In practice, the existence of non-trivial ambiguities is actually the main concern. By

relying on the concept of krank and on Theorem 2.41, it may be possible to derive simple

uniqueness conditions for some SCPDs, as in the following lemma.

Lemma 3.6. Every nonzero banded circulant matrix A(p) ∈ C
Np×R of the form shown in

(3.6) has full krank (i.e., krank(A(p)) = R).
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Proof. Since au 6= 0 for some u ∈ 〈Up〉, then clearly rank(A(p)) = krank(A(p)) = R.

If all factors are (nonzero) banded circulant, then (2.96) is automatically satisfied, and

hence essential uniqueness holds. More generally, if the factors A(1), . . . ,A(Q), with Q ∈ 〈P 〉,
have that structure, then condition (2.96) can be rewritten as

P∑

p=Q+1

krank
(

A(p)
)

≥ P − (Q− 2)R− 1. (3.7)

When Q = P − 1, for example, it can be checked the above inequality is satisfied for P = 3

provided krank
(
A(3)

)
≥ 2, while it is always satisfied for P ≥ 4.

3.2 Application example: Wiener-Hammerstein model iden-

tification

We now discuss the application of the SCPD to the problem of Wiener-Hammerstein (WH)

model identification, as originally exploited by [78]. The well-known WH model is often used

for representing nonlinear dynamical systems [94]. Its time-invariant discrete-time version

is illustrated in Fig. 3.1, where g(·) is a memoryless nonlinearity and W (z), H(z) are linear

time-invariant systems. Because of its “modular” structure consisting of simple blocks, the

WH model is said to belong to the class of block-oriented models [94].

When applying the WH model to some real-world nonlinear system, a central problem is

that of identifying its parameters. It consists in estimating the parameters which constitute

the representation of that system under the WH model form, given a set of experimental

data (i.e., input and output signal samples). We describe in the following the connection

between the identification of a WH model and the computation of a SCPD.

Let us assume that the components of a givenWHmodel have the form g(x) =
∑P

p=1 gpx
p,

W (z) =
∑U−1

u=0 wuz
−u and H(z) =

∑R−1
r=0 hrz

−r. Note that the polynomial form of g(·) is

suitable for the approximation of a smooth function by its Taylor expansion, truncated at

order P . Then, the resulting input/output relation is

y(n) =
P∑

p=1

gp

R−1∑

r=0

hr

[
U+r−1∑

m=r

wm−rx(n−m)

]p

, (3.8)

where x(n) is the input signal and y(n) its corresponding output. By expanding the term

between brackets, rearranging the ordering of the summations and manipulating indices, it

can be shown that this model admits an equivalent Volterra representation [114]

y(n) =

P∑

p=1

N−1∑

n1=0

· · ·
N−1∑

np=0

v(p)(n1, . . . , np)

p
∏

q=1

x(n− nq), (3.9)
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W (z) g(·) H(z)
x(n) y(n)

Figure 3.1: Block-diagram of the Wiener-Hammerstein model.

having symmetric discrete-time finite-memory Volterra kernels

v(p)(n1, . . . , np) = gp

R̃∑

r=r0

hr

p
∏

q=1

wnq−r (3.10)

for n1, . . . , np ∈ {0, . . . , N −1}, with N = U +R−1, r0 = max{0, n1−U +1, . . . , np−U +1}
and R̃ = min{R− 1, n1, . . . , np}.

Now, observe that (3.10) can be written in the same form as (2.85), provided we define

λr = hr−1 and A(1) = · · · = A(P ) = A ∈ R
N×R such that

[A]nq ,r ,







wnq−r, r ≤ nq ≤ U + r − 1,

0, otherwise.
(3.11)

The above definition implies A is banded circulant. Moreover, due to the scaling ambiguity

of (3.10), one can assume, without loss of generality, that gp = 1 (as long as gp 6= 0). Also,

assuming that w0 6= 0 (in other words, W (z) does not comprise a pure delay), we can fix

w0 = 1, leaving the scaling in the vector λ. So, associating v(p)(n1, . . . , np) with a symmetric

pth-order tensor V(p) ∈ S

((
R
N
)⊗P

)

such that [V(p)]n1,...,np = v(p)(n1 − 1, . . . , np − 1), the

parameters of W (z) and H(z) can be estimated by computing the SCPD

V(p) = Jλ ; A, . . . ,AK . (3.12)

This reasoning underlies the approach described in [78], where it is assumed that the Volterra

kernel V(p) has been estimated from input-output samples (by using any available method,

such as, e.g., [199, 115]).

It is important to point out that estimates of the memory lengths of the filters, U and

R, are necessary for applying the above described approach. This task can be performed by

employing the structure identification algorithm proposed by [117] to the estimated Volterra

kernels. Besides providing estimates of U and R, applying this technique allows one to

validate the WH structure of the system of interest.

3.3 Existing SCPD computation methods

In this section, we present an overview of existing numerical methods aimed at computing

the factors of an SCPD.
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3.3.1 Alternating least squares with structural constraints

3.3.1.1 The alternating least squares method

By far, the most employed method to compute the CPD of a tensor in practical applications

is that of alternating least squares (ALS). Its unparalleled popularity is evidenced by the

frequent references to ALS as “the workhorse” of numerical CPD computation [203, 159].

This predominance can be basically attributed to its simplicity.

ALS is a rather general method for solving a least-squares problem involving a model

which is multilinear with respect to certain blocks of parameters (such as, e.g., matrix or

vector components). It is based on the simple strategy of estimating these blocks in an

alternating fashion, by fixing all but one of them, whose update is then given by a least-

squares estimate. As such, it can be seen as a special case of the block-nonlinear Gauss-Seidel

method (or cyclic block coordinate descent method) [203, 218, 204].

In the case of CPD estimation, one considers the problem

min
A(1), ...,A(P )

J
(

A(1), . . . ,A(P )
)

= min
A(1), ...,A(P )

∥
∥
∥Y−

r
A(1), . . . ,A(P )

z∥
∥
∥

2

F
, (3.13)

where A(q) ∈ C
Nq×R, q ∈ 〈P 〉, and Y ∈ T is typically a measured tensor which we wish

to (approximately) decompose. By exploiting the isomorphic identity (2.87) and assuming

estimates Â(q) are available for all A(q) with q ∈ 〈P 〉 \ {p}, one can rewrite the problem as

min
A(p)∈CNp×R

∥
∥
∥
∥
Y〈p〉 −A(p)

(

Â(P ) ♦ . . .♦ Â(p+1) ♦ Â(p−1) ♦ . . .♦ Â(1)
)T
∥
∥
∥
∥

2

F

. (3.14)

Assuming rank(Â(P ) ♦ . . .♦ Â(p+1) ♦ Â(p−1) ♦ . . .♦ Â(1)) = R, the solution to (3.14) is

Â(p) = Y〈p〉
(

Â(P ) ♦ . . .♦ Â(p+1) ♦ Â(p−1) ♦ . . .♦ Â(1)
)+

, (3.15)

where (·)+ denotes the right inverse of the argument. This process is then repeated for all

other q ∈ 〈P 〉, and so on, until a stopping criterion is met. For instance, if one cycles through

the modes in the order 1, . . . , P , then the kth iteration of this scheme can be written as

Â
(1)
k = argmin

A(1)∈CN1×R

J
(

A(1), Â
(2)
k−1, . . . , Â

(P )
k−1

)

(3.16)

Â
(2)
k = argmin

A(2)∈CN2×R

J
(

Â
(1)
k ,A(2), Â

(3)
k−1, . . . , Â

(P )
k−1

)

(3.17)

...

Â
(P )
k = argmin

A(P )∈CNP×R

J
(

Â
(1)
k , . . . , Â

(P−1)
k ,A(P )

)

. (3.18)

An often used stopping criterion is based on the (normalized) error between two consec-

utive tensor estimates [136, 193]: given values of the normalized squared error (NSE)

NSE(Ŷk;Y) =

∥
∥
∥Y− Ŷk

∥
∥
∥

2

F

‖Y‖2F
(3.19)
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for two consecutive iterations k−1 and k, where Ŷk =
r
Â

(1)
k , . . . , Â

(P )
k

z
, one checks whether

|NSE(Ŷk;Y)−NSE(Ŷk−1;Y)| < ǫ (3.20)

holds for a given tolerance level ǫ. In other words, the algorithm stops whenever it does not

achieve “sufficient progress” between two consecutive iterations.

The choice of R is clearly critical in the above scheme, but in practice it is generally

unknown and NP-hard to compute (cf. Section 2.5.2.4). Even though in some applications

the model rank is known beforehand, in practice this model is only an approximation of Y,

due to the presence of noise [133]. Yet, as discussed in Section 2.5.2.5, a tensor may fail to

have a best rank-R approximation. In that case, the ALS scheme can lead to factors which

yield an arbitrarily low approximation error, although their columns contain meaningless

elements with very large magnitude [155, 188].

3.3.1.2 Convergence of the alternating least squares method

By inspecting (3.16)–(3.18), one realizes that the cost function J(·) cannot increase from one

iteration to another, as each estimated factor is conditionally optimal, given the previous

estimates. On the surface, this may seem to guarantee convergence to a local minimum. It

turns out, however, that even leaving aside existence issues (i.e., assuming at least a global

minimum exists for the chosen R), the convergence of ALS is a more complicated matter.

First, note that difficulties arise if no action is taken to suppress the scaling ambiguity

of the iterates, which complicates the convergence analysis of the scheme (3.16)–(3.18) and

can also cause an unstable behavior of the algorithm in practice [203]. To overcome this

problem, a unit ℓ2 norm can be imposed to every column of each factor; another option is

to impose ‖a(1)r ‖2 = · · · = ‖a(P )
r ‖2 for all r, where a

(p)
r denotes the rth column of A(p) [203].

While this is sufficient in the real setting, since it leaves only sign ambiguities, it is not in

the complex case, due to the possibility of rotations over the unit circle.

The particular case where R = 1 (over R) has been studied in [204, 218]. In this special

scenario, ALS can be seen as a generalization of the power method (see, e.g., [90, Section

7.3.1]) and existence of solutions is not a concern, because every tensor admits a best rank-

one approximation [69]. In [218] it is shown that in this case the ALS method converges

linearly in a neighborhood of a local minimum, provided a certain matrix derived via the

linearization of the cost function around that local minimum is nonsingular. A less restrictive

global convergence result is derived in [204]. Concerning the general case (R ≥ 1), [203] has

shown the local convergence of ALS, also in the real setting, by relying on an assumption

which implies essential uniqueness, but is stronger.

In practice, it is known that ALS often suffers from very slow convergence. Many re-

searchers have reported that the algorithm is prone to traversing regions of very small
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progress per iteration, which is known as a “swamp” and is related to the occurrence of

quasi-collinear columns in the estimates. Besides increasing the computing time, this phe-

nomenon can also induce a premature stop of the ALS scheme, since its stopping criterion is

usually based on some measure of progress along the last iterations. The reader is referred

to [155, 144] for interesting discussions on this issue and on ways of circumventing it.

3.3.1.3 Imposing structural constraints

Versions of ALS incorporating constraints have already been proposed in the litterature. Yet,

this is generally done in an ad-hoc manner, by exploiting special structure which is peculiar

to a certain problem at hand. We briefly describe two examples in the following.

The authors of [84] came up with an ALS algorithm to compute a CPD of the form

Y = Jh∗ ; H,H∗,HK , (3.21)

where h ∈ C
R and H ∈ C

2R−1×R is a Hankel matrix whose last column is given by

[hT 0 . . . 0]T . Using (2.88), h is estimated at the first step of their algorithm via

ĥk =

[(

Ĥk−1 ♦ Ĥ∗
k−1 ♦ Ĥk−1

)+
vec(Y)

]∗
, (3.22)

where (·)+ denotes here the left inverse of its argument. Subsequently, Ĥk is constructed from

ĥk according to its definition, and then the process is repeated. Despite preserving the model

structure, the resulting sequence of iterates is no longer guaranteed to yield non-increasing

cost function values, because the SCPD of (3.21) is not multilinear in h and H.

In [150], the same principle is employed to enforce the block-Toeplitz structure of a

matrix factor, though the model in this case is not a CPD, but a TD. At each iteration,

the parameters of this matrix are first estimated by exploiting the algebraic structure of the

model, and then the structured matrix is used to estimate the other matrix components.

3.3.2 Non-iterative solution for a SCPD having a banded circulant matrix

The first work in which a special non-iterative algorithm is proposed to address a SCPD seems

to be [116], where a third-order CPD comprising a banded circulant factor is considered.1

The rationale behind that algorithm is explained in the following.

Assume that a given (nonzero) tensor V ∈ C
N1 ⊗ C

N2 ⊗ C
N3 satisfies

V =
r
A(1),A(2),A(3)

z
, (3.23)

where A(p) ∈ C
Np×R. Without loss of generality, we suppose that the banded circulant factor

in the above CPD is A(3) =
[

a
(3)
n,r

]

. So, according to Lemma 3.6, rank(A(3)) = R. The

1Although it has the form shown in (3.6), that factor is referred to in [116] only as a Toeplitz matrix.
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starting point is expression (2.87), which for p = P = 3 reads V〈3〉 = A(3)
(
A(2) ♦A(1)

)T
.

With the further assumption that B = A(2) ♦A(1) ∈ C
N2N1×R has full column rank, it can

be verified that there exists a nonsingular matrix D ∈ C
R×R such that

UD = A(3) and WΣD−H = B∗, (3.24)

where V〈3〉 = UΣWH is the (economical) SVD of V〈3〉, with U ∈ C
N3×R, Σ ∈ R

R×R and

W ∈ C
N2N1×R. In other words, U provides a basis to colspace(A(3)) and likewise for W and

B∗. The strategy of [116] consists in exploiting the structure of A(3) and the knowledge of

these bases in order to construct a system of linear equations in the elements of D.

Let us assume also that a
(3)
1,1 6= 0. In that case, due to the scaling ambiguity in (3.23), one

can impose a
(3)
1,1 = 1. Recall that only the first N3−R+1 components of the first column of

A(3) can be nonzero. Hence,
[

a
(3)
1,1 a

(3)
N3−R+2,1 a

(3)
N3−R+3,1 . . . a

(3)
N3,1

]T
equals the canonical

basis vector e
(R)
1 ∈ C

R. One can thus construct a selection matrix

S1 =

[

e
(N3)
1 e

(N3)
N3−R+2 e

(N3)
N3−R+3 . . . e

(N3)
N3

]T

∈ C
R×N3 (3.25)

such that S1a
(3)
1 = e

(R)
1 , where a

(3)
r denotes the rth column of A(3). Now, as A(3) is circulant,

a
(3)
r = Πr−1

3 a
(3)
1 , where Π3 is as defined by Table 3.1. Defining Sr , S1(Π

r−1
3 )T , we have

Sra
(3)
r = S1(Π

r−1
3 )TΠr−1

3 a
(3)
1 = e

(R)
1 , because Πr

3 is orthogonal for all r. Due to (3.24), we

can write SrUdr = e
(R)
1 , where dr denotes the rth column of D. This leads to the system

of equations











S1U 0 . . . 0

0 S2U . . . 0

...
...

. . .
...

0 0 . . . SRU












︸ ︷︷ ︸

,SU

vec(D) =












e
(R)
1

e
(R)
1

...

e
(R)
1












= 1R ⊠ e
(R)
1 (3.26)

which comprehends R2 equations in R2 unknowns. As SU is nonsingular, D can be estimated

from it. Yet, more equations can be obtained by exploiting the structure of A(3), as follows.

The idea is now to construct selection matrices which extract the parameters of A(3)

(i.e., its elements that hold nonzero values) from each column a
(3)
r . Concretely, by defining

S̄r =

[

e
(N3)
r e

(N3)
r+1 . . . e

(N3)
r+N3−R

]T

∈ C
N3−R+1×N3 , (3.27)

we have S̄1a
(3)
1 = S̄2a

(3)
2 = · · · = S̄Ra

(3)
R . Thus, S̄rUdr− S̄r+1Udr+1 = 0, which leads to the
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system











S̄1U −S̄2U 0 . . . 0

S̄1U 0 −S̄3U . . . 0

...
...

. . .
...

S̄1U 0 . . . 0 −S̄RU












︸ ︷︷ ︸

,S̄U

vec(D) = 0(R−1)(N3−R+1). (3.28)

Hence, gathering together the above systems, we have





SU

S̄U






︸ ︷︷ ︸

,Φ

vec(D) =






1R ⊠ e
(R)
1

0






︸ ︷︷ ︸

,ψ

, (3.29)

which comprehends R2 + (R − 1)(N3 − R + 1) = R(N3 + 2)−N3 − 1 equations in R2 vari-

ables. Because Φ has full column rank [116], the least-squares solution is given by vec(D) =
(
ΦHΦ

)−1
ΦHψ. Once D is estimated, A(3) and B can then be recovered from (3.24). Subse-

quently, the factors A(1) and A(2) can be computed from br = vec

(

a
(1)
r a

(2)
r

T
)

= a
(2)
r ⊠ a

(1)
r

by appropriately rearranging the elements of br in a N1 ×N2 matrix Br and computing its

best rank-one approximation.

3.3.3 Subspace-based solution

The approach proposed in [184] is essentially a generalization of the previous one, being able

to handle other structural constraints and allowing the estimation of multiple structured

factors. Moreover, in certain cases a solution can be obtained in a non-iterative manner, as

explained below.

Suppose V ∈ ⊗P
q=1C

Nq admits an SCPD with p structured factors. For simplicity of

presentation, assume that the factors A(1), . . . ,A(p) are structured, with A(q) ∈ C
Nq×R. So,

defining B , A(P ) ♦ . . .♦A(p+1), we have from (2.89)

V[p] =
(

A(p) ♦ . . .♦A(1)
)

BT ∈ C

∏p
q=1 Nq×

∏P
q=p+1 Nq . (3.30)

We assume here that both A(p) ♦ . . .♦A(1) and B have full column rank. For brevity, let

us denote M1 =
∏p

q=1Nq and M2 =
∏P

q=p+1Nq. The above matrix unfolding can also be

written in terms of its (economical) SVD as V[p] = UΣWH , where U ∈ C
M1×R, Σ ∈ R

R×R

and W ∈ C
M2×R. Just as in the previous section, there is a nonsingular D ∈ C

R×R satisfying

A(p) ♦ . . .♦A(1) = UD and WΣD−H = B∗. (3.31)

Now, in order to exploit the structures of the factors A(q), q ∈ 〈p〉, more generally than

the approach of Section 3.3.2, that of [184] takes into account the fact that, according to
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Definition 3.1, there exists a basis Bq = {E(q)
nq }Nq

nq=1 which characterizes the structure of

A(q), and under which one can write A(q) =
∑Nq

nq=1 θ
(q)
nq E

(q)
nq . Vectorizing both sides of the

first relation in (3.31) and applying property (2.49), we have vec (UD) = (IR ⊠U) vec(D) =

vec
(
A(p) ♦ . . .♦A(1)

)
. As by definition the rth column of A(p) ♦ . . .♦A(1) equals a

(p)
r ⊠ . . .⊠

a
(1)
r , then using (3.4) we obtain

(IR ⊠U) vec(D) =









(

S
(p)
1 θ(p)

)

⊠ . . .⊠
(

S
(1)
1 θ

(1)
)

...
(

S
(p)
R θ(p)

)

⊠ . . .⊠
(

S
(1)
R θ

(1)
)









=









S
(p)
1 ⊠ . . .⊠ S

(1)
1

...

S
(p)
R ⊠ . . .⊠ S

(1)
R









ζ,

where ζ , θ(p)⊠ . . .⊠θ(1) ∈ C
U1...Up . Finally, using the definition of S

(q)
r ∈ C

Nq×Uq , we write

(IR ⊠U) vec(D) =
[

ẽ1,1,...,1,1 ẽ1,1,...,1,2 . . . ẽ1,1,...,1,U1 ẽ2,1,...,1,1 ẽ2,1,...,1,2 . . . ẽUp,Up−1,...,U2,U1

]

︸ ︷︷ ︸

,Ẽ

ζ, (3.32)

where ẽnp,...,n1 = vec
(

E
(p)
np ♦ . . .♦E

(1)
n1

)

.

The above development yields the following system of R
∏p

q=1Nq linear equations

G






vec(D)

ζ




 = 0, with G =

[

−IR ⊠U Ẽ

]

(3.33)

in R2 +
∏p

q=1 Uq variables. If this system admits a unique solution, then it can be sought

by computing the right singular vector of G associated to its smallest singular value. As

this expedient does not take the Kronecker structure of ζ into account, for p > 1 it is

necessary to construct from the estimate ζ̂ a pth-order tensor (using (2.55)) whose best

rank-one approximation then yields an estimate for each θ(q), q ∈ 〈p〉. When p = 2, such

an approximation can be computed with an SVD, but for p > 2 iterative algorithms such as

those proposed in [218, 59] are required.

The computation of A(p+1), . . . ,A(P ) follows the same logic. Namely, after recovering B

from (3.31) and the obtained estimate of D, each column br of B is then rearranged as a

(P−p)th-order tensor, whose best rank-one approximation gives estimates of a
(p+1)
r , . . . ,a

(P )
r .

One can therefore conclude that this method is particularly attractive when either P = 3 or

P = 4 and p = 2, because then only standard numerical linear algebra routines are needed.

A similar procedure is also given in [184] specifically for banded matrices with no further

structure. In this case, R systems of linear equations are derived, each one related to one

column of A(p) ♦ . . .♦A(1). These systems can be solved independently, yielding estimates

for the respective columns of the structured factors (as long as their solutions are unique).
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As mentioned above, a key concern in this method is whether the solution of the con-

structed system(s) of equation is (are) unique. Sufficient conditions for guaranteeing so are

derived in [184], but covering only the cases where the factors are banded and possibly also

Toeplitz or Hankel. Yet, there are other scenarios to which this method applies, such as

when the structured factors are tall circulant matrices.

The main drawbacks of this approach are:

1. It cannot handle certain structures. For instance, if p ≥ 2 and the structured factors

are Toeplitz but neither banded nor circulant, then some ẽup,...,u1 vectors in (3.32)

are necessarily null. Consequently, G possesses multiple null singular values, with

an associated subspace of right singular vectors, and hence (3.33) admits infinitely

many solutions. In general, uniqueness is not guaranteed whenever2 rank(G) < R2 +
∏p

q=1 Uq − 1. We have observed that this also happens in scenarios where square

circulant factors are considered.

2. It cannot take into account the structure of all P factors jointly, since V[p] must be

such that p ≤ P − 1.

3.4 Cramér-Rao bound for SCPD estimation

We review in this section the material presented in [19, 65, 63], which concerns the derivation

of formulas for the Cramér-Rao bound associated with the SCPD estimation problem. These

formulas shall be employed in Chapter 5, where we numerically compare several algorithms

in terms of their statistical estimation performance by means of Monte Carlo experiments.

First, we provide some basic definitions and notation related to estimation theory. For

the sake of simplicity, our presentation will be restricted to the real setting, as in [65]. Yet,

an extension to the complex case can be derived by relying, e.g., on [113, Chap. 15].

3.4.1 Information inequality and the Cramér-Rao bound (CRB)

The information inequality is a mathematical result rooted in estimation theory and often

invoked for evaluating estimators. Essentially, it states that (under certain conditions) the

mean squared error (MSE) achieved by any unbiased estimator cannot be smaller than the

trace of the inverse of the Fisher information matrix (FIM) associated with the estimation

problem. We now recall this result, which will require some definitions.

Let y(η) be a random variable containing information about some parameter vector η,

which we wish to estimate, and let p(y;η) be its probability distribution function (p.d.f.).

2Of course, when noise is present G has full column rank almost surely, but then the unique solution of

(3.33) is merely an artifact produced by the noise.
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Given a measured y, we denote an estimator of η by η̂(y). A natural performance criterion

for the evaluation of η̂(y) is the MSE, defined as

MSE(η̂;η) = E

{

‖η − η̂(y)‖22
}

, (3.34)

where E denotes mathematical expectation (with respect to p(y;η)). Note that the true

parameter vector η is assumed here to be fixed in a deterministic way.

In this context, the Fisher information is a valuable tool, because it quantifies the amount

of information on η which is provided by a sample of y. This measure is directly related to

how strongly p(y;η) depends on η, as formalized next.

Definition 3.7. (Fisher information matrix) Let y ∈ R
N̄ be a random variable whose p.d.f.

p(y;η) depends on the parameter vector η ∈ R
M and assume that p(y;η) is continuously

differentiable with respect to η. The Fisher information matrix (FIM) of y is defined as

F(η) , E

{(
∂ log p(y;η)

∂η

)(
∂ log p(y;η)

∂η

)T
}

∈ R
M×M . (3.35)

If p(y;η) is twice continuously differentiable with respect to η,

E

{
∂ log p(y;η)

∂η

}

= 0, for all η, (3.36)

and some further mild regularity conditions hold (see, e.g., [128, Section 2.6]), then the

components of F(η) can be written as [F(η)]m1,m2 = E

{

− ∂2 log p(y;η)
∂[η]m1∂[η]m2

}

.

By definition, F(η) is symmetric and positive semidefinite. When it is positive definite,

then the information inequality can be shown under certain conditions, as stated below.

Theorem 3.8 (Information inequality [113, 189]). Let η be the (deterministic) parameter

vector on which the random variable y depends. Assume that the FIM of p(y;η) exists

and is positive definite and that p(y;η) fulfills the regularity condition (3.36). If η̂(y) is

an unbiased estimator of η, then the covariance matrix of its produced estimates satisfies

E

{

(η − η̂(y)) (η − η̂(y))T
}

< F−1(η). Defining C(η) , F−1(η) and taking the trace of

both sides, this implies

MSE(η̂;η) ≥ trace (C(η)) . (3.37)

The right-hand side of the above equation is referred to as Cramér-Rao lower bound (CRB).

Proof. See, e.g., [113, 128].

3.4.2 SCPD model

In practice, the assumption that a measured tensor admits a SCPD is at best a model

which approximates the available data. First, because it is generally corrupted by noise.
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Also, modeling errors are usually present, due to deviations from assumed ideal conditions.

Hence, a modeled tensor Y ∈ T =
⊗P

p=1C
Np can be written as

Y = X+N, (3.38)

where X ∈ T admits a SCPD and N ∈ T is a random variable accounting for the aforemen-

tioned imperfections.

In order to present the derivation of CRBs associated with the SCPD estimation problem,

it will be helpful to introduce a vectorized form of (3.38). By exploiting (3.4) together with

(2.58), the SCPD of X can be expressed as

x , vec(X) =
R∑

r=1

λr

(

a(P )
r ⊠ . . .⊠ a(1)r

)

=
R∑

r=1

λr

[(

S(P )
r θ(P )

)

⊠ . . .⊠
(

S(1)
r θ

(1)
)]

. (3.39)

Defining Φr , S
(P )
r ⊠. . .⊠S

(1)
r and using the mixed-product property (2.48) of the Kronecker

product, we can rewrite x as a function of the parameter vector ν , [θT λT ]T ∈ R
K , where

θ ,
[

θ(1)
T . . . θ(P )T

]T
, having the form

x(ν) =

(
R∑

r=1

λrΦr

)

︸ ︷︷ ︸

,Φ(λ)

(

θ(P ) ⊠ . . .⊠ θ(1)
)

︸ ︷︷ ︸

,f(θ)

∈ R
N̄ . (3.40)

Note that K =
∑

p Up+R. Finally, defining n , vec(N) ∈ R
N̄ , we have the vectorized model

y(ν) , vec(Y) = Φ(λ)f(θ) + n ∈ R
N̄ . (3.41)

Here, we consider that the noise tensor N is composed of independent and identically

distributed (i.i.d.) zero-mean Gaussian elements of variance σ2. Under such an additive white

Gaussian noise (AWGN) assumption, it is well known that maximum likelihood estimates

are obtained by solving the (nonlinear) least-squares problem

min
ν
‖y − x(ν)‖22 . (3.42)

Depending on the structure of the SCPD factors, different algorithms can be employed

for addressing problem (3.42). Clearly, the ALS method is appropriate since its target cost

function is precisely a least-squares one. We shall formulate a constrained version of this

method in Chapter 4. Even though the other (algebraic) approaches presented in Section 3.3

are not based on a least-squares criterion, they are often able to provide a relatively accurate

approximate solution, provided the signal-to-noise ratio (SNR) is sufficiently high. Another

algebraic approach, aimed at estimating circulant factors, shall also be proposed in Chapter 4.
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3.4.3 Model identifiability

Before proceeding to the derivation of CRB formulas, a discussion on identifiability of our

model is necessary. The parameter vector ν is said to be locally identifiable when any

point ν0 has a neighborhood in which the mapping ν 7→ x(ν) is injective. This property

is necessary for existence of a finite CRB, since otherwise the FIM is singular. To see this,

note from the zero-mean AWGN hypothesis we have

∂ log p(y;ν)

∂ν
=

∂

∂ν
log

[
(
2πσ2

)− N̄
2 exp

(

− 1

2σ2
‖y − x(ν)‖22

)]

(3.43)

= − ∂

∂ν

(
1

2σ2
‖y − x(ν)‖22

)

=
1

σ2
J(ν)Tn, (3.44)

where J(ν) = ∂
∂νx(ν) ∈ R

N̄×K is the Jacobian of the (vectorized) model with respect to ν.

Hence, since E{nnT } = σ2IN̄ , we have from (3.35)

F(ν) =
1

σ2
J(ν)TJ(ν). (3.45)

Therefore, F(ν) is nonsingular only if ν is locally identifiable, for otherwise rank(J(ν)) < K

(by the inverse function theorem), implying rank(F(ν)) < K. Global identifiability, in its

turn, means ν 7→ x(ν) is injective over all RK , and is not required for existence of the CRB.

As discussed in Section 2.5.1.3, the CPD is inherently subject to permutation and scaling

ambiguities. It is easy to see that the former has no influence over the injectivity of x(ν),

despite the fact that it must be taken into account when assessing performances through

computer simulations, for correctly measuring estimation errors. On the other hand the

scaling ambiguity implies the existence of infinitely many vectors ν yielding the same x(ν),

thus precluding (3.40) from being (locally or globally) injective.

For suppressing the scaling indeterminacy, degrees of freedom (DOF) “in excess” must

be eliminated, according to the structure of the factors. If, e.g., a factor A(p) is circulant,

imposing θ
(p)
u = 1 for some u is sufficient to fix its scaling, due to its structure (this excludes,

though, the case in which θ
(p)
u = 0). Another option would be to impose unit norm for each

column, which also eliminates one DOF (as one θ
(p)
u becomes a function of the others). Alike

measures must be taken for the other factors, so that their scaling is absorbed by λ.

Henceforth, we consider that for each θ(p), a reduced version θ̄
(p)

including only the

minimal necessary number of DOF has been appropriately defined. For simplicity, we assume

that the Vp first elements of θ(p) are fixed and denote Ūp , Up − Vp. Thus, θ̄
(p)

= Bpθ
(p),

where Bp =

[

e
(Up)
Vp+1 . . . e

(Up)
Up

]T

∈ R
Ūp×Up is a selection matrix. A vector θ̄ is defined

analogously to θ, so that we can consider the reduced vector of parameters η , [θ̄
T
λT ]T ∈

R
M , with M ,

∑

p Ūp +R. Its corresponding model will be denoted by

y(η) = x(η) + n ∈ R
N̄ (3.46)

and the FIM and Jacobian matrices are from now on denoted by F(η) and J(η), respectively.
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3.4.4 CRB for SCPD estimation under additive white Gaussian noise

Applying the Cramér-Rao inequality to our setting, we have

MSE(η̂;η) ≥ trace(C(η)) =
P∑

p=1

Ūp∑

u=1

CRB
(

θ̄(p)u

)

+
R∑

r=1

CRB(λr), (3.47)

where CRB
(

θ̄
(p)
u

)

= [C(η)]v,v, with v =
∑p−1

p′=1 Ūp′ + u, and CRB(λr) = [C(η)]s,s, with

s =
∑

p Ūp + r. In order to derive these diagonal elements of C(η), we can employ (3.45)

and the definition of C(η), which together imply

C(η) = σ2
(
J(η)TJ(η)

)−1
. (3.48)

Hence, the key for deriving the CRB of a SCPD model consists in calculating its corre-

sponding Jacobian, which depends on the structure of the factors and also on some model

assumptions. We briefly describe below the formulas derived in [65] for different cases.

3.4.4.1 No identical factors

We assume here that A(p) 6= A(q) for all p 6= q. Two cases are considered, as discussed below.

1) Arbitrary λ. Here, the Jacobian matrix is given by

J(η) =
[

J
θ̄
(1)(η) . . . J

θ̄
(P )(η)

︸ ︷︷ ︸

,J
θ̄

Jλ(η)
]

, (3.49)

where J
θ̄
(p)(η) contains the derivatives of x(η) with respect to θ̄

(p)
= Bpθ

(p), and Jλ(η)

is likewise. From (3.40), we can derive

J
θ̄
(p)(η) = Φ (λ)

(

θ(P ) ⊠ . . .⊠ θ(p+1) ⊠BT
p ⊠ θ(p−1) ⊠ . . .⊠ θ(1)

)

, p ∈ 〈P 〉, (3.50)

Jλ(η) =

[

Φ1f(θ) . . . ΦRf(θ)

]

. (3.51)

For notational simplicity, we shall omit the argument of J(η) whenever convenient. Re-

lying on these formulas, the following result, shown in [65], can be derived.

Proposition 3.9. The CRB for the uth element of θ̄
(p)

in (3.47) is given by

CRB
(

θ̄(p)u

)

=
σ2

‖gu,p‖22 − ‖Pu,p gu,p‖22
, (3.52)

where gu,p is the column of Jθ̄ containing the derivatives with respect to θ̄
(p)
u , Gu,p

contains all the other columns of Jθ̄ (in any order) and Pu,p is the orthogonal projector

onto the column space of [Gu,p Jλ(η)]. Similarly, the CRB for the rth element of λ is

CRB (λr) =
σ2

‖dr‖22 − ‖Pr dr‖22
, (3.53)
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where dr is the column of Jλ associated with λr, Dr holds all other columns (in any

order) and Pr is the orthogonal projector onto the column space of [Jθ̄(η) Dr].

2) λ with identical elements. If we assume now that λ1 = · · · = λR = λ, then we can impose

λ = 1 without loss of generality,3 due to the scaling ambiguity. The parameter vector is

then η = θ̄. Under this assumption, we have the following result, also from [65].

Proposition 3.10. The closed-form expression of the lower bound on the MSE is

MSE(η̂) ≥ trace(C(η)) =

P∑

p=1

Ūp∑

u=1

CRB
(

θ̄(p)u

)

, (3.54)

in which CRB
(

θ̄
(p)
u

)

is given by (3.52), where gu,p and Gu,p are as defined in Proposi-

tion 3.9 and Pu,p is now the orthogonal projector onto the column space of Gu,p.

3.4.4.2 Symmetric (or partially symmetric) model

If identical factors exist, then the formulas (3.52)–(3.53) are still valid, but the structure of

the resulting Jacobian becomes more complex. Assume that only Q ≤ P distinct matrix

factors are involved in the SCPD of X. Without loss of generality, this can be expressed as

X =
r
λ ; A(k1), . . . ,A(k1)

︸ ︷︷ ︸

l1 times

,A(k2), . . . ,A(k2)

︸ ︷︷ ︸

l2 times

, . . . ,A(kQ), . . . ,A(kQ)

︸ ︷︷ ︸

lQ times

z
, (3.55)

where lq > 0, l1 + · · · + lQ = P and kq =
∑q−1

s=1 ls + 1. The parameter vector can

thus be written as η =
[

θ̄
(k1), . . . , θ̄

(kQ)
,λ
]T

, and the Jacobian is given by J(η) =
[

J
θ̄
(k1)(η) . . . J

θ̄
(kQ)(η) Jλ(η)

]

, with J
θ̄
(kq)(η) =

[

w
(kq)
1 . . . w

(kq)

Ūkq

]

, where

w
(kq)
u =

[(

θ(k1)
)⊠l1

]

⊠ . . .⊠

[(

θ(kq−1)
)⊠lq−1

]

⊠z
(kq)
u ⊠

[(

θ(kq+1)
)⊠lq+1

]

⊠ . . .⊠

[(

θ(kQ)
)⊠lQ

]

and

z
(kq)
u = et ⊠

[(

θ(kq)
)⊠lq−1

]

+ θ(kq) ⊠ et ⊠

[(

θ(kq)
)⊠lq−2

]

+ · · ·+
[(

θ(kq)
)⊠lq−1

]

⊠ et,

with t = Vkq + u. The block Jλ(η) is as described by (3.51), but now with

f(θ) =

[(

θ(kQ)
)⊠lQ

]

⊠ . . .⊠

[(

θ(k1)
)⊠l1

]

. (3.56)

Example 3.11. Consider a third-order tensor whose SCPD is such that A(2) = A(3). Hence,

Q = 2, k1 = 1 and k2 = l2 = 2. The parameter vector and the Jacobian are written as

η =

[
(

θ̄
(1)
)T (

θ̄
(2)
)T

λT

]T

and J(η) =

[

J
θ̄
(1)(η) J

θ̄
(2)(η) Jλ(η)

]

, (3.57)

3In this case, though, only P − 1 factors should have the scaling of their columns fixed.
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with

J
θ̄
(1)(η) = Φ (λ)

(

θ(2) ⊠ θ(2) ⊠BT
1

)

, J
θ̄
(2)(η) = Φ(λ)

[

w
(2)
1 . . . w

(2)

Ū2

]

, (3.58)

where w
(2)
u =

(

eV2+u ⊠ θ(2) ⊠ θ(1)
)

+
(

θ(2) ⊠ eV2+u ⊠ θ(1)
)

and

Jλ(η) =

[

Φ1f(θ) . . . ΦRf(θ)

]

, with f(θ) =
(

θ(2) ⊠ θ(2) ⊠ θ(1)
)

. (3.59)

�

This somewhat intricate notation can be greatly simplified if the SCPD is completely

symmetric, meaning A(p) = A, θ(p) = θ, Ūp = Ū , Vp = V and Up = U for all p ∈ 〈P 〉.
Indeed, under such an assumption the Jacobian J(η) = [Jθ̄(η) Jλ(η)] has blocks given by

Jθ̄(η) = Φ(λ)

[

w1 . . . wŪ

]

, (3.60)

Jλ(η) =

[

Φ1 (θ ⊠ θ ⊠ θ) . . . ΦR (θ ⊠ θ ⊠ θ)

]

, (3.61)

now with wu = eV+u ⊠
(

θ⊠(P−1)
)

+ θ ⊠ eV+u ⊠
(

θ⊠(P−2)
)

+ · · ·+
(

θ⊠(P−1)
)

⊠ eV+u.

In practical applications, when X represents a symmetric quantity (such as, e.g., a sym-

metric Volterra kernel), Y may also be symmetric, because elements which should be iden-

tical are not repeatedly estimated or observed. As this implies that N is also symmetric,

the preceding results are no longer valid, because we have assumed its elements are i.i.d.

Nonetheless, to accommodate this additional constraint it suffices to introduce a selection

matrix Ψ ∈ R
L×NP

containing as rows every Kronecker product of canonical basis vectors

eTnP
⊠ . . . ⊠ eTn1

such that (n1, . . . , nP ) ∈ D = {(n1, . . . , nP ) : 1 ≤ n1 ≤ · · · ≤ nP ≤ N},
in such a way that the product Ψ vec(Y) no longer contains redundant components due to

symmetry. Note that L = |D| =
(
NP+P−1

P

)
. Then, we redefine the vector model as

y , Ψ vec(Y) = ΨΦ(λ)f(θ) + n, (3.62)

where now n , Ψ vec(N). As this n is again zero-mean Gaussian i.i.d., (3.48) remains valid.

The Jacobian, however, must now be multiplied from left by Ψ. A similar adjustment applies

to partially symmetric SCPDs. Also, it should be noted that the particular ordering of the

rows of Ψ is irrelevant in the above reasoning.

3.4.5 Bayesian extension

An MSE-based comparison with a single fixed η is insufficient for a sound statistical eval-

uation of estimators, for there is no reason to choose a particular value of η over another.

Hence, we consider now the case where η is itself a random variable with some specified
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prior p.d.f., which incorporates available information about the values it typically assumes

in a given application. This is the basic principle underlying the Bayesian estimation frame-

work [13]. An appropriate performance criterion in this case is the Bayesian mean squared

error (BMSE), defined as [10]

BMSE = Eη {MSE (η̂;η)} , (3.63)

now with

MSE (η̂;η) = Ey|η
{

‖η̂(y)− η‖22
}

, (3.64)

where Ev{·} denotes expectation with respect to the p.d.f. of v and, similarly, Ev|u{·} denotes
expectation with respect to the conditional distribution p(v|u). Expression (3.64) therefore

defines the conditional MSE given η.

As discussed in [65], two possibilities exist for the extension of the CRB to the Bayesian

setting: Van Trees’ Bayesian Cramér-Rao bound (BCRB) [207] and the expected Cramér-

Rao bound (ECRB) based on the Bayesian-deterministic connection [207, 10]. The latter is

adopted here for two reasons, as discussed in [65]:

(i) The regularity conditions required by the BCRB are stricter than those required by

the ECRB. For instance, a uniform prior is ruled out by the regularity conditions of

BCRB, whereas it is admissible for the ECRB.

(ii) For any statistical priors p(η), the ECRB is tighter than the BCRB when both are

applied to our estimation problem. A proof of this fact is given in [65, Result 5].

Analogously to expression (3.47), in the Bayesian setting we consider the inequality

Eη {MSE (η̂;η)} ≥
P∑

p=1

Ūp∑

u=1

ECRB
(

θ̄(p)u

)

+
R∑

r=1

ECRB(λr), (3.65)

where the terms constituting the lower bound are as follows:

• for arbitrary λ, the ECRB for parameters θ̄
(p)
u and λr are

ECRB
(

θ̄(p)u

)

= Eθ̄Eλ

{

CRB
(

θ̄(p)u

)}

, (3.66)

ECRB(λr) = Eθ̄Eλ {CRB(λr)} , (3.67)

where CRB
(

θ̄
(p)
u

)

and CRB(λr) are given by (3.52) and (3.53), respectively;

• when λr = λ for all r ∈ 〈R〉, the ECRB for parameters θ̄
(p)
u is given by

ECRB
(

θ̄(p)u

)

= Eθ̄

{

CRB
(

θ̄(p)u

)}

(3.68)

where CRB
(

θ̄
(p)
u

)

is given by (3.52).



Chapter 4

Algorithms for SCPD computation

This chapter presents our proposed solutions for the SCPD computation problem. The first

one consists of a systematic way of constraining the ALS algorithm to take into account the

structure of each factor, with either exact or approximate iterates, the latter being less costly.

The second solution is algebraic and applies when all factors are circulant. It is based on

computing the multidimensional Fourier transform of the tensor of interest, which leads to a

system of homogeneous monomial equations whose resolution provides the factor estimates.
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4.1 Constrained alternating least-squares (CALS) algorithm . . . . . . . 71
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4.1 Constrained alternating least-squares (CALS) algorithm

As discussed in Section 3.3.1, adapted implementations of the ALS method have been pro-

posed in the literature for dealing with constrained factors, but always in an ad-hoc manner.

In this section, by relying upon the characterization of an SCPD given in Section 3.1, we

develop a general constrained alternating least squares (CALS) algorithm for taking into

account the linear structure of the desired factors. Two variants of this algorithm are for-

mulated: one with exact iterates [65] and another with approximate iterates [64].

4.1.1 Exact iterates

We assume that a data tensor Y ∈ T =
⊗P

p=1C
Np has been given, and that one wishes to

compute its SCPD by minimizing the least-squares criterion (3.13). The structure of the

decomposition factors A(p) ∈ C
Np×R, p ∈ 〈P 〉, is assumed to be known and characterized

by their corresponding matrix bases Bp =
{

E
(p)
1 , . . . ,E

(p)
Up

}

, as described in Section 3.1. The

coordinate representation of A(p) under Bp is denoted by θ(p) ∈ C
Up .
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Our starting point is the basic subproblem (3.14) which must be solved for estimating

each factor. Let us denote by Â
(q)
k the estimate of A(q) computed at iteration k and define

W
(p)
k ,

(

Â
(P )
k−1 ♦

. . .♦ Â
(p+1)
k−1 ♦ Â

(p−1)
k ♦ . . .♦ Â

(1)
k

)T
, (4.1)

so that this subproblem can be written as

min
A(p)∈CNp×R

∥
∥
∥Y〈p〉 −A(p)W

(p)
k

∥
∥
∥

2

F
. (4.2)

For the sake of generality, we may include the scaling factors λr of (2.86), thus obtaining

min
A(p)∈CNp×R

∥
∥
∥Y〈p〉 −A(p)Λ̂k−1W

(p)
k

∥
∥
∥

2

F
, (4.3)

where Λ̂k−1 = Diag(λ̂k−1) is our current estimate of Λ = Diag(λ), with λ = [λ1 . . . λR]
T .

By employing property (2.49) of the Kronecker product, it is easy to see that (4.3) is

equivalent to the problem

min
A(p)∈CNp×R

∥
∥
∥
∥
vec
(
Y〈p〉

)
−
[(

Λ̂k−1W
(p)
k

)T
⊠ INp

]

vec
(

A(p)
)
∥
∥
∥
∥

2

2

. (4.4)

Moreover, as A(p) is structured in the sense of Definition 3.1, it obeys the identity

vec
(
A(p)

)
= E(p)θ(p), where E(p) ∈ C

RNp×Up is defined by (3.3). So, we can rewrite (4.4) as

min
θ(p)∈CUp

∥
∥
∥vec

(
Y〈p〉

)
−Φ

(p)
k θ(p)

∥
∥
∥

2

2
, (4.5)

where Φ
(p)
k ,

[(

Λ̂k−1W
(p)
k

)T
⊠ INp

]

E(p) ∈ C
N̄×Up . Hence, assuming Φ

(p)
k has full column

rank, the least-squares estimate of θ(p) is given by [65]

θ̂
(p)

k =
(

Φ
(p)
k

)+
vec
(
Y〈p〉

)
, (4.6)

where (·)+ denotes the left inverse of its argument. Once all estimates θ̂
(p)

k are obtained and

their respective factors Â
(p)
k are constructed, λ can be estimated by exploiting (2.88):

λ̂k =
(

Â
(P )
k ♦ . . .♦ Â

(1)
k

)+
vec (Y) =

(

Â
(P )
k ♦ . . .♦ Â

(1)
k

)+
vec
(
Y〈1〉

)
. (4.7)

These update equations lead to the scheme shown in Algorithm 4.1, where we also indicate

the computational complexity of each step. Some comments are in order:

• At line 5, we take into account the fact that X ⊠ I can be calculated (for any X)

without performing any actual multiplications, by just arranging the elements of X

into the resulting matrix of known structure.

• At line 6, it takes only O(R) operations (rather than O(RNp)) to calculate each com-

ponent of the result, because Φ̄
(p)
k has at most R nonzero entries per row.
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Algorithm 4.1 CALS algorithm with exact iterates [65].

Inputs: Y ∈ T , basis matrices E(p) and initial parameter vectors λ̂0, θ̂
(p)

0 , p ∈ 〈P 〉
Outputs: Estimated parameter vectors λ̂ and θ̂

(p)
, p ∈ 〈P 〉

1: k ← 1

2: repeat

3: for p = 1, . . . , P do

4: W
(p)
k ←

(

Â
(P )
k−1 ♦

. . .♦ Â
(p+1)
k−1 ♦ Â

(p−1)
k ♦ . . .♦ Â

(1)
k

)T

// O(RN̄p)

5: Φ̄
(p)
k ←

(

Λ̂k−1W
(p)
k

)T

⊠ INp // O(RN̄p)

6: Φ
(p)
k ← Φ̄

(p)
k E(p) // O(RN̄Up)

7: θ̂
(p)

k ←
(

Φ
(p)
k

)+

vec
(

Y〈p〉

)

// O(N̄U2
p )

8: Â
(p)
k ← unvec

(

E(p)
θ̂
(p)

k

)

// O(RNpUp)

9: normalize Â
(p)
k // O(RNp)

10: λ̂k ←
(

Â
(P )
k ♦ . . .♦ Â

(1)
k

)+

vec (Y) // O(R2N̄)

11: Λ̂k ← Diag(λ̂k) // O(1)
12: k ← k + 1

13: until the stopping criterion is fulfilled

14: return λ̂ and θ̂
(p)

= θ̂
(p)

k−1, p ∈ 〈P 〉

• At lines 7 and 10, in practice it is not advisable to explicitly calculate a left inverse

when solving a least-squares problem, for numerical accuracy reasons. Instead, stan-

dard procedures such as the method of normal equations or that which employs a QR

factorization should be preferred (see [90, Section 5.3]).

An important feature of the above described CALS algorithm is that it preserves the

fundamental property of ALS of always yielding non-increasing cost function values. This

is owed to the fact that it essentially solves a sequence of least-squares subproblems having

convex cost functions over matrix subspaces.

As a final remark, note that for certain SCPDs the estimation of λ must be omitted in

order to meet the model constraints. For instance, if Y = JA(1), . . . ,A(P )K and all factors

A(p) are Toeplitz (or Hankel), then a model of the form

r
λ;A(1), . . . ,A(P )

z
=

r
A(1), . . . ,A(P )Diag(λ)

z
(4.8)

is actually more general than necessary, as A(P )Diag(λ) is not necessarily Toeplitz (or

Hankel) for an arbitrary λ. A simple solution in this case is to estimate at line 10 of

Algorithm 4.1 a single scaling factor λ ∈ R which applies to all rank-one terms of the

decomposition, instead of a vector-valued λ ∈ R
R. Another option would be to eliminate λ

altogether and then normalize all but one factor.
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4.1.2 Approximate iterates

Instead of deriving an exact least-squares solution to each subproblem, one can alternatively

consider approximate iterates obtained by solving them in a two-step fashion. First, we

compute an unconstrained estimate of A(p) via the standard update equation

Ã
(p)
k = Y〈p〉

(

Λ̂k−1W
(p)
k

)+
, (4.9)

from which the parameter vector is then estimated in the least-squares sense via [64]

θ̂
(p)

k =
(

E(p)
)+

vec
(

Ã
(p)
k

)

. (4.10)

Since we can assume without loss of generality that the basis matrices E
(p)
u , u ∈ 〈Up〉, are

mutually orthogonal (i.e., 〈E(p)
u ,E

(p)
v 〉 = 0 if u 6= v), the above left inverse is given simply by

(
E(p)

)+
= Diag

(∥
∥
∥E

(p)
1

∥
∥
∥

−2

F
, . . . ,

∥
∥
∥E

(p)
Up

∥
∥
∥

−2

F

)
(
E(p)

)H
. This applies, in particular, to all bases

described by Table 3.1.

Algorithm 4.2 provides a CALS scheme with approximate iterates, describing also the

computational complexity of each step. In particular, at line 5 we account for the fact that,

though each row of Ã
(p)
k is the solution of a least-squares problem of size R × N̄p, only

O(R2(N̄p + Np)) total operations are necessary rather than O(RN̄pNp). For instance, if a

QR factorization of Λ̂k−1W
(p)
k is employed, it is computed only once and then used to solve

for the Np rows. By comparing the complexity expressions of Algorithm 4.2 with those given

in Algorithm 4.1, it can be seen that the approximate iterates are less costly to compute.

Indeed, the complexity of an iteration in the exact version is dominated by lines 6 and 7 of

Algorithm 4.1, which cost O(RN̄Up) and O(N̄U2
p ) operations, respectively, and are repeated

for all p ∈ 〈P 〉. By contrast, in Algorithm 4.2 the costliest step is that of line 9, whose

complexity is O(R2N̄), and which is also present in Algorithm 4.1.

On the other hand, as the approximate iterates are suboptimal, the algorithm may suffer

from convergence problems. A combined strategy can be sought by starting off with approx-

imate iterates and switching to the exact ones after some criterion is met. Our simulations

of Chapter 5 show that, under certain circumstances, such a mixed approach can reduce the

total computing effort and can also improve the chances of attaining a global minimum.

4.1.3 Symmetric CALS

It is straightforward to adapt Algorithms 4.1 and 4.2 to handle a (partially or totally)

symmetric SCPD, by estimating each distinct factor only once per iteration. We note that

this is a standard technique employed in the unconstrained case [52, 79, 84]. This adapted

version is called symmetric constrained alternating least squares (SCALS). In order to

provide its formulation, it will be useful to resort to the notation introduced in Section 3.4.4.2
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Algorithm 4.2 CALS algorithm with approximate iterates [64].

Inputs: Y ∈ T , basis matrices E(p) and initial parameter vectors λ̂0, θ̂
(p)

0 , p ∈ 〈P 〉
Outputs: Estimated parameter vectors λ̂ and θ̂

(p)
, p ∈ 〈P 〉

1: k ← 1

2: repeat

3: for p = 1, . . . , P do

4: W
(p)
k ←

(

Â
(P )
k−1 ♦

. . .♦ Â
(p+1)
k−1 ♦ Â

(p−1)
k ♦ . . .♦ Â

(1)
k

)T

// O(RN̄p)

5: Ã
(p)
k ← Y〈p〉

(

Λ̂k−1W
(p)
k

)+

// O(R2(N̄p +Np))

6: θ̂
(p)

k ← 1
R

(

E(p)
)H

vec
(

Ã
(p)
k

)

// O(RNpUp)

7: Â
(p)
k ← unvec

(

E(p)
θ̂
(p)

k

)

// O(RNpUp)

8: normalize Â
(p)
k // O(RNp)

9: λ̂k ←
(

Â
(P )
k ♦ . . .♦ Â

(1)
k

)+

vec (Y) // O(R2N̄)

10: Λ̂k ← Diag(λ̂k) // O(1)
11: k ← k + 1

12: until the stopping criterion is fulfilled

13: return λ̂ and θ̂
(p)

= θ̂
(p)

k−1, p ∈ 〈P 〉

for describing a P th-order SCPD having Q distinct factors A(k1), . . . ,A(kQ), Q < P . Recall

that the kqth factor appears lq times in the decomposition, with kq =
∑q−1

s=1 ls. By defining

B̂
(kq)
k ,

(

Â
(kq)
k

)♦ lq
and

W
(kq)
k ,

[

B̂
(kQ)
k−1 ♦ . . .♦ B̂

(kq+1)
k−1 ♦

(

Â
(kq)
k−1

)♦ lq−1
♦ B̂

(kq−1)
k ♦ . . .♦ B̂

(k1)
k

]T

, (4.11)

we can write each least-squares subproblem as

min
A(kq)∈CNkq

×R

∥
∥
∥Y〈kq〉 −A(kq)Λ̂k−1W

(kq)
k

∥
∥
∥

2

2
, (4.12)

for all q ∈ 〈Q〉. Hence, at iteration k, one estimates all θ̂
(kq)

k and Â
(kq)
k by employing either

the exact update equations of Algorithm 4.1 or the approximate ones of Algorithm 4.2. For

convenience, we explicitly give this adapted scheme in Algorithm 4.3.

A significant drawback of the SCALS is the fact that the cost function is no longer

guaranteed to decrease or stay the same along the iterations, unlike happens with ALS and

CALS. This stems from the fact that the solution θ̂
(kq)

k is suboptimal when lq > 1, since the

solved subproblem does not account for the multiple (lq) occurrences of A
(kq) in the SCPD

of Y. Consequently, SCALS is more sensitive to its initialization and more prone to suffering

from convergence problems than CALS.

We must also note that estimating a scaling factor λ is of vital importance when dealing

with symmetric SCPDs of the form JA, . . . ,AK, because only then normalization can be

applied with no loss of generality. Without normalization, estimation errors undergo a

feedback effect which quickly destabilizes the iterates, causing the algorithm to diverge. The
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Algorithm 4.3 CALS algorithm with partial or total symmetry, SCALS.

Inputs: Y ∈ T , basis matrices E(kq) and initial parameter vectors λ̂0, θ̂
(kq)

0

Outputs: Estimated parameter vectors λ̂ and θ̂
(kq)

1: k ← 1

2: repeat

3: for q = 1, . . . , Q do

4: W
(kq)

k ←
[

B̂
(kQ)

k−1 ♦ . . .♦ B̂
(kq+1)

k−1 ♦
(

Â
(kq)

k−1

)♦ lq−1

♦ B̂
(kq−1)

k−1 ♦ . . .♦ B̂
(k1)
k−1

]T

// O(RN̄kq )

5: Compute exact or approximate estimates θ̂
(kq)

k and Â
(kq)

k // See Algs. 4.1 and 4.2

6: normalize Â
(kq)

k // O(RNkq )

7: B̂
(kq)

k ←
(

Â
(kq)

k

)♦ lq
// O(RN lq

kq
)

8: λ̂k ←
(

B̂
(kQ)

k ♦ . . .♦ B̂
(k1)
k

)+

vec (Y) // O(R2N̄)

9: Λ̂k ← Diag(λ̂k) // O(1)
10: k ← k + 1

11: until the stopping criterion is fulfilled

12: return λ̂ and θ̂
(kq)

= θ̂
(kq)

k−1, q ∈ 〈Q〉

same is not true for non-symmetric (or partially symmetric) SCPDs, whose estimation via

CALS (or SCALS) is generally not compromised by the absence of normalization.

The above observations will be illustrated by means of simulation results in Chapter 5.

4.2 Algebraic solution for a SCPD having circulant factors

In this section, we address the estimation SCPDs having only circulant factors. Let us first

formally define this structure.

Definition 4.1 (Circulant matrix). A matrix C ∈ C
N×R is said to be circulant with gener-

ating vector c = [c0 c1 . . . cN−1]
T ∈ C

N if C = circR(c) , C =
[

c ΠNc . . . ΠR−1
N c

]

,

where ΠN ∈ C
N×N denotes the same permutation matrix of Table 3.1, i.e.,

ΠN =






01×N−1 1

IN−1 0N−1×1




 . (4.13)

Here, we focus only on hypercubic tensors from T ,
⊗P

p=1C
N . A circulant-constrained

canonical polyadic decomposition (CCPD) of X ∈ T is a SCPD of the form

X =
r
C(1), . . . ,C(P )

z
∈ T , (4.14)

where the factors C(p) ∈ C
N×R are circulant. Our goal is to compute these factors from

X, up to trivial (scaling and permutation) ambiguities. In order to accomplish it, we now

present the approach we developed in [64], which is based on the resolution of a system of

monomial equations obtained through the multidimensional Fourier transform of X.
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A distinguishing feature of the CCPD (4.14) is that its rank is upper bounded by N ,

as opposed to the general CPD, whose rank can exceed all dimensions of the tensor (see

Section 2.5.2.2). Indeed, if the factors C(p) in (4.14) were such that R > N , then from

Definition 4.1 (and Proposition 4.4 shown below) we would have c
(p)
N+r = c

(p)
r for all p and

1 ≤ r ≤ R − N , where c
(p)
r denotes the rth column of C(p). This would clearly imply the

existence of linearly dependent terms in the decomposition, and therefore R would not be

minimal. Because of this fact, in what follows we assume that R ≤ N , without loss of

generality.

4.2.1 Basic properties of circulant matrices

Let us start by recalling properties of circulant matrices. In particular, square circulant

matrices possess a well known special property, as expressed by the following result.

Lemma 4.2. Every square circulant matrix C ∈ C
N×N possesses a complete set of orthog-

onal eigenvectors, which are the columns of the DFT matrix

F ,
1√
N












1 1 1 . . . 1

1 ωN ω2
N . . . ωN−1

N

...
...

...
...

1 ωN−1
N ω

2(N−1)
N . . . ω

(N−1)(N−1)
N












∈ C
N×N , (4.15)

where1 ωN , exp(2π/N). It thus follows that any circulant matrix C ∈ C
N×N can be

diagonalized by F, or, equivalently,

C = FΛFH , (4.16)

where Λ = Diag(λ) ∈ C
N×N contains the eigenvalues of C.

Proof. See [93, Section 3.1] (in which a different ordering of the eigenvectors is adopted).

A direct consequence of Lemma 4.2 is that, if we rewrite (4.16) as FHC = ΛFH , then

from the first column of the latter identity we have FHc = 1√
N
λ. In other words, c and 1√

N
λ

form a DFT pair.2 But, since this result applies only to square matrices, we now introduce

a definition which will facilitate the treatment of tall circulant factors.

Definition 4.3 (Circulant completion). Let C = circR(c) ∈ C
N×R with R ≤ N . We define

the circulant completion of C as the square matrix C̆ ∈ C
N×N given by C̆ = circN (c). Note

that, if N = R, then C̆ = C.

1According to our definition, FHx yields the DFT of x. Some authors adopt instead the convention

ωN , − exp(2π/N), in which case the DFT of x is given by Fx.
2In [93, Section 3.1], it is rather the first row of C and (1/

√
N)λ that form a DFT pair, because of the

different ordering they assume for the eigenvalues.
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From the above definition, it follows that any N × R circulant matrix with R ≤ N is

such that its circulant completion can be decomposed as in (4.16). By noting that ΠN itself

is circulant, we can also state the following useful property.

Proposition 4.4. Let ΠN be as defined by (4.13). Then, Πk
N = Π

(k)N
N for all k ∈ Z, where

(·)N denotes the modulo N operator.3 Consequently, there exist only N distinct matrices of

the form Πk
N , namely, Π0

N ,Π
1
N , . . . ,Π

N−1
N . Moreover, Πk

N admits the eigendecomposition

Πk
N = FDiag

(

1, ω−k
N , . . . , ω

−k(N−1)
N

)

FH . (4.17)

Proof. It is easy to check that, for any k ∈ Z,

Πk
N =






0(k)N×N−(k)N I(k)N

IN−(k)N 0N−(k)N×(k)N




 = circN

(
e(k)N+1

)
, (4.18)

and thus Πk
N = Π

(k)N
N . Hence, applying Lemma 4.2, we can calculate its eigenvalues via

√
NFHe(k)N+1 =

[

1 ω−k
N . . . ω

−k(N−1)
N

]T
, from which (4.17) follows.

4.2.2 General system of monomial equations

4.2.2.1 Derivation of the monomial equations

Our approach consists in exploiting property (4.16) to derive a set of monomial equa-

tions from X, by relying on the sole assumption that it admits a CCPD. Taking the

multidimensional discrete Fourier transform (MDFT) of X, we obtain

Y = X

P×
p=1

FH ∈ T . (4.19)

Applying Propositions 2.27 and 2.49, it can be deduced from (4.14) and (4.19) that

Y =
r
FHC(1), . . . ,FHC(P )

z
∈ T . (4.20)

But, since eachC(p) ∈ C
N×R is a circulant matrix, we can decompose its circulant completion

as C̆(p) = FΛ(p)FH , where Λ(p) = Diag(λ(p)) is a diagonal matrix containing the eigenvalues

of C̆(p). Therefore, as F is both unitary and symmetric, we have

FHC̆(p) = Diag(λ(p))FH =
[

λ(p) ⊙ f∗1 λ(p) ⊙ f∗2 . . . λ(p) ⊙ f∗N
]

, (4.21)

where fn is the nth column of F and ⊙ denotes the Hadamard product, i.e., entry-wise

multiplication. Thus, considering only the first R columns of (4.21),

FHC(p) =
[

λ(p) ⊙ f∗1 λ(p) ⊙ f∗2 . . . λ(p) ⊙ f∗R
]

. (4.22)

3The modulo N operator is defined as follows: ∀k ∈ Z, N ∈ N, (k)N = m if and only if k = lN +m for

some l ∈ Z, with m ∈ {0} ∪ 〈N − 1〉.
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In particular, as f1 =
1√
N
1N , the first column of (4.22) implies, as already mentioned,

DFT
{

c(p)
}

=
1√
N
λ(p) ⇐⇒ IDFT

{
1√
N
λ(p)

}

= c(p), (4.23)

where c(p) is the generating vector of C(p).

Now, by substituting (4.22) into (4.20) and resorting to the scalar form (2.85) of the

CPD, the elements of Y are seen to satisfy the P th order monomial equations

yn1,...,nP = N−P
2

(
R∑

r=1

ω
−(r−1)(n1+···+nP−P )
N

)
P∏

p=1

λ(p)np
, (4.24)

whose unknowns are the eigenvalues λ
(p)
n = [λ(p)]n of the circulant completions of the desired

matrix factors.

Remark 4.5. The above development can be generalized to handle any CPD X =
q
A(1), . . . ,A(P )

y
such that each A(p) ∈ C

N×R (with R ≤ N) can be completed to form

a square matrix Ã(p) ∈ C
N×N satisfying Ã(p) = V(p)Λ(p)Z(p), where V(p),Z(p) ∈ C

N×N are

known a priori, V(p) is nonsingular and the unknown Λ(p) is diagonal. In that case, one

computes Y = X×P
p=1

(
V(p)

)−1
, whose elements are then given by

yn1,...,nP =





R∑

r=1

P∏

p=1

[

Z(p)
]

np,r





P∏

p=1

λ(p)np
. (4.25)

4.2.2.2 Characterization of the derived equations and their solutions

In order to exploit the set of equations (4.24) for computing the factors of the CCPD of X,

it is important to first determine which equations are relevant, as the summation of complex

exponentials can vanish for some multi-indices (n1, . . . , nP ). The next result establishes a

necessary and sufficient condition for the non-nullity of that summation.

Proposition 4.6. Let N,R ∈ N such that R ≤ N and N > 1, n1, . . . , nP ∈ 〈N〉 and

Q ,
N

gcd(N,n1 + · · ·+ nP − P )
, (4.26)

where gcd(·, ·) yields the greatest common divisor of its arguments. Then, we have

R∑

r=1

ω
−(r−1)(n1+···+nP−P )
N 6= 0 (4.27)

if and only if one of the following (mutually exclusive) conditions are met: (i) Q = 1; (ii) Q

does not divide R.
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Proof. Defining v , (n1 + · · ·+nP −P )/gcd(N,n1 + · · ·+nP −P ) ∈ N and using (4.26), we

can obtain from (4.27) the equivalent relation

R∑

r=1

ω
−(r−1)v
Q 6= 0. (4.28)

It is now evident that (i) is a sufficient condition for (4.28), since ω1 = 1. On the other hand,

if (ii) is true, then we necessarily have Q > 1. In this case, (4.28) corresponds to a sum of

R Qth roots of unity raised to a power v that is co-prime with Q by definition, which yields

zero if and only if R = lQ for some positive integer l < R. Hence, (ii) also implies (4.27).

Note that the last argument also establishes the only if part of the proof, since in this part

we have to show that the sum in (4.27) vanishes if Q > 1 and Q divides R (i.e., when both

(i) and (ii) above are false).

Proposition 4.7. If N = R, condition (i) of Proposition 4.6 is equivalent to (4.27) and can

be alternatively written as

∃ l ∈ N such that n1 + · · ·+ nP − P = lN. (4.29)

Proof. Condition (ii) of Proposition 4.6 is immediately ruled out when N = R, since Q

divides N by definition, whereas condition (i) and (4.29) are trivially equivalent.

We now focus on the characterization of the solutions of the system of equations (4.24).

First, we claim that it provides no “spurious” solution, in the sense that every solution is

associated with a CCPD. This is assured by the following lemma.

Lemma 4.8. Let X ∈ T and assume the elements of Y = MDFT{X} satisfy (4.24), for

some N,R such that R ≤ N and some set of N -tuples {(λ(p)1 , λ
(p)
2 , . . . , λ

(p)
N )}Pp=1. Then, X

admits a CCPD having as factors P circulant N × R matrices such that the eigenvalues of

the circulant completion of the pth factor are λ
(p)
1 , λ

(p)
2 , . . . , λ

(p)
N .

Proof. First, note that every solution {(λ(p)1 , λ
(p)
2 , . . . , λ

(p)
N )}Pp=1 can be (injectively) associ-

ated with P circulant N ×R matrices G(1), . . . ,G(P ) whose circulant completions are given

by Ğ(p) = FDiag
(

λ
(p)
1 , λ

(p)
2 , . . . , λ

(p)
N

)

FH . By construction, those matrices are such that

MDFT
{
JG(1), . . . ,G(P )K

}
= Y, because the eigenvalues of Ğ(1), . . . , Ğ(P ) jointly satisfy

the system of equations (4.24). Now, taking the inverse multidimensional discrete Fourier

transform of both sides, we obtain JG(1), . . . ,G(P )K = X, as claimed.

In general, (4.24) admits infinitely many solutions. In light of the above result, this is of

course expected, because of the ambiguities that are inherent to the CPD. In particular, if

the factors C(p) in (4.14) satisfy Kruskal’s uniqueness condition, Theorem 2.41 tells us that

the CPD is essentially unique, i.e., with only column scaling and permutation ambiguities on
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its factor matrices. This implies that the different solutions of (4.24) should also be related

with each other accordingly. Our next result shows that such a relation is rather simple.

Theorem 4.9. Suppose X ∈ T , with P ≥ 3 and N > 1, admits a CCPD whose factors

C(p) ∈ C
N×R, with 1 < R ≤ N , satisfy Kruskal’s condition

∑P
p=1 krank(C

(p)) ≥ 2R+P − 1.

Let {(λ(p)1 , λ
(p)
2 , . . . , λ

(p)
N )}Pp=1 denote the solution of (4.24) corresponding to the eigenvalues

of C̆(p), p ∈ 〈P 〉, and assume that {(µ(p)1 , µ
(p)
2 , . . . , µ

(p)
N )}Pp=1 is another solution. Then,

(i) there are P complex scalars αp satisfying
∏P

p=1 αp = 1 and an integer r ∈ {0}∪〈R− 1〉
such that, for all p ∈ 〈P 〉 and n ∈ 〈N〉, we have

µ(p)n = αpω
−r(n−1)
N λ(p)n ; (4.30)

(ii) defining G(p) ∈ C
N×R as the circulant matrix whose circulant completion Ğ(p) has

eigenvalues µ
(p)
1 , µ

(p)
2 , . . . , µ

(p)
N , we have for all p ∈ 〈P 〉

G(p) = C(p)Πr
R∆p, (4.31)

where ∆p ∈ C
R×R is a diagonal matrix such that ∆1 . . .∆P = I and αp = [∆p]1,1.

Proof. By virtue of Lemma 4.8, X admits the CCPD X =
q
G(1), . . . ,G(P )

y
. But, since we

assume that the factors satisfy Kruskal’s uniqueness condition, we have

G(p) = C(p)Π∆p (4.32)

for some permutation matrix Π ∈ C
R×R and some diagonal matrix ∆p ∈ C

R×R, with the

constraint ∆1 . . .∆P = I. Since by definition every column of C(p) is of the form Πr
Nc(p),

where ΠN is given by (4.13) and c(p) is the generating vector of C(p), we have from (4.32)

that there exists r ∈ {0} ∪ 〈R− 1〉 such that

g(p) = αpΠ
r
Nc(p), (4.33)

where g(p) is the generating vector of G(p) and αp = [∆p]1,1. Due to the circulant structure

of G(p), we can also write

G(p) = αpΠ
r
NC(p). (4.34)

Now, substituting (4.17) in (4.33) and multiplying both sides from the left by
√
NFH , we

obtain
√
NFHg(p) = αp

√
NFHFDiag

(

1, ω−r
N , . . . , ω

−r(N−1)
N

)

FHc(p). But, since G(p) and

C(p) are circulant, from (4.23) we have
√
NFHg(p) = µp and

√
NFHc(p) = λp, where

µp = [µ
(p)
1 . . . µ

(p)
N ]T and λp = [λ

(p)
1 . . . λ

(p)
N ]T . Using this property and recalling

that F is unitary, we thus deduce µp = αpDiag
(

1, ω−r
N , . . . , ω

−r(N−1)
N

)

λp or, in scalar form,

µ
(p)
n = αpω

−r(n−1)
N λ

(p)
n . To complete the first part of the proof, we observe that the constraint
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∆1 . . .∆P = IR implies
∏P

p=1 αp = 1 and that the constant r is the same for all p ∈ 〈P 〉,
since the same permutation Π applies to all factors in (4.32).

For the second part, we use the fact that krank(C(q)) > 1 must hold for at least some

q ∈ 〈P 〉, otherwise Kruskal’s condition would not be satisfied. Because of that, we claim that

Π = Πs
R for some s ∈ {0} ∪ 〈R− 1〉. In other words, only a circulant permutation of the

columns is allowed. Too see why this is so, note that if Π is not circulant then G(q) has two

consecutive columns g
(q)
k and g

(q)
k+1 which are (possibly rescaled versions of) non-consecutive

columns in C(q), i.e.,

g
(q)
k = β1Π

k1
N c(q) and g

(q)
k+1 = β2Π

k2
N c(q) (4.35)

such that k2 6= (k1 + 1)R, with k1, k2 ∈ {0} ∪ 〈R− 1〉, and β1, β2 are nonzero. But, g
(q)
k+1 =

ΠNg
(q)
k , and hence

β2Π
k2
N c(q) = β1Π

k1+1
N c(q). (4.36)

Now, assuming k2 > k1 + 1, the above equation implies

Πk2−k1−1
N c(q) =

β1
β2

c(q). (4.37)

As 0 < k2 − k1 − 1 ≤ R− 2, this means that C(q) has a column which is proportional to the

first one (i.e., to its generating vector), contradicting krank(C(q)) > 1. If instead k2 < k1+1,

a similar observation holds, because

Πk1+1−k2
N c(q) =

β2
β1

c(q) (4.38)

and 0 < k1 + 1 − k2 ≤ R − 1. (Note that we cannot have k1 + 1 − k2 = R, because then

that would mean k1 = R− 1 and k2 = 0, i.e., k2 = (k1 + 1)R.) This shows that Π = Πs
R for

some s ∈ {0} ∪ 〈R− 1〉. By exploiting again the fact that krank(C(q)) > 1, it is easy to see

that such an s must be unique, for otherwise C(q) would have collinear columns. Therefore,

since Π = Πs
R implies g(p) = αpΠ

s
Nc(p), a comparison with (4.33) shows s = r, where r is

the same integer as in (4.30) and (4.33).

Example 4.10. Consider a tensor X which admits the CCPDs:

X =

u
wwwwwwwv












a 0

0 a

−a 0

0 −a












,












b 0

0 b

b 0

0 b












,












c 0

0 c

−c 0

0 −c












}
�������~

=

u
wwwwwwwv












0 a

−a 0

0 −a

a 0












,












0 b

b 0

0 b

b 0












,












0 c

−c 0

0 −c

c 0












}
�������~

. (4.39)

When a, b, c are all nonzero, Kruskal’s condition is fulfilled, and so the factors G(p) of the

second decomposition must be related to those of the first one, C(p), as in (4.31). This is

indeed true, with R = 2, r = 1, ∆2 = IR and ∆1 = ∆3 = Diag(−1, 1). On the other hand,

(4.34) must be also satisfied. Note that it holds with r = 1, α1 = α3 = −1 and α2 = 1. �
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Corollary 4.11. If all conditions of Theorem 4.9 hold and N = R, then

(i) the permutation matrix appearing in (4.32) is the same as that of (4.33), i.e., Π = Πr
R;

(ii) ∆p = αpIR for all p.

Proof. Since all square circulant matrices commute (because they share the same set of

orthonormal eigenvectors), we have from (4.34) that G(p) = αpC
(p)Πr

N . Comparing this

equation with (4.31), and recalling that r is unique, (i) follows.

To prove (ii), we note that all circulant permutations of the generating vector are present

when N = R. As Π = Πr
N , the product C(p)Πr

N is also circulant. Therefore, the same

scaling factor must be applied to all columns, otherwise G(p) could not be circulant. Hence,

from G(p) = αpC
(p)Πr

N we conclude that ∆p = αpIR for all p.

Remark 4.12. As seen above, when multiple solutions exist by virtue of the permutation

ambiguity, then the corresponding permutation matrices must be circulant. When N = R,

the converse is true: all the N distinct circulant permutations of the original factors yield

equivalent CCPDs. In other words, if {(λ(p)1 , λ
(p)
2 , . . . , λ

(p)
N )}Pp=1 is a solution for (4.24), then

so is any set {(ω0
Nλ

(p)
1 , ω−r

N λ
(p)
2 , . . . , ω

−r(N−1)
N λ

(p)
N )}Pp=1 with r ∈ {0} ∪ 〈N − 1〉. Indeed, from

Proposition 4.7 we know that, when N = R, every nonzero equation of the form (4.24) is

associated with indices n1, . . . , nP that satisfy n1 + . . . + nP − P = lN for some l ∈ N.

Consequently, ω
−r(n1+...+nP−P )
N = 1 holds for such indices, and hence

P∏

p=1

λ(p)np
= ω

−r(n1+...+nP−P )
N

P∏

p=1

λ(p)np
=

P∏

p=1

ω
−r(np−1)
N λ(p)np

, (4.40)

which shows that the equations (4.24) are invariant to this introduction of the factors

ω
−r(np−1)
N in the corresponding eigenvalues.

4.2.3 Symmetric system of monomial equations

The symmetric case can be derived from the previous subsection by considering that C(1) =

· · · = C(P ) = C ∈ C
N×R, which yields

X = JC, . . . ,CK ∈ S (T ) ⊂ T . (4.41)

This simplifies the equations (4.24), which can be rewritten as

yn1,...,nP = N−P
2

(
R∑

r=1

ω
−(r−1)(n1+···+nP−P )
N

)
P∏

p=1

λnp , (4.42)

where the superscript of the eigenvalues has been dropped, since they all refer now to the

same circulant completion C̆. As the MDFT of a symmetric tensor is also symmetric, some

of the equations (4.42) are redundant. Moreover, assuming Kruskal’s condition holds (i.e.,

krank(C) ≥ (2R+ P − 1)/P ), we can show that (4.42) admits at most PN solutions.
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Theorem 4.13. Let X be given by (4.41), where C ∈ C
N×R is circulant, with N ≥ R > 1. If

krank(C) ≥ (2R+P −1)/P , then the equations (4.42) admit at most PN different solutions.

Proof. The proof is similar to that of Theorem 4.9, with the additional constraint α1 = · · · =
αP = α due to symmetry. Since the scaling matrices must satisfy ∆1 . . .∆P = IR, the only

possible distinct values for α are α = exp(2πp/P ) for p ∈ {0}∪ 〈P − 1〉. Combining this fact

with the existence of only N distinct values for the integer r in (4.34), we are left with at

most PN distinct solutions for (4.42).

Remark 4.14. From the result of Corollary 4.11 we conclude that, if a symmetric CCPD

with square factors is essentially unique, then (4.42) admits exactly PN solutions, since

every combination of one of the P distinct matrices exp(2πp/P )IR with one of the N distinct

matrices Πr
N yields an equivalent symmetric CCPD, and no other equivalent CCPDs exist.

4.2.4 Summary of proposed algebraic solution

Algorithm 4.4 summarizes our proposed algebraic solution for the CCPD. Complexity ex-

pressions are also given for steps 1, 2 and 4. With regard to the first one, we point out that

Y can be efficiently computed with a multilinear fast Fourier transform algorithm [75]. The

second step can be performed by verifying for all combinations of indices n1, . . . , nP ∈ 〈N〉
which of them satisfy one of the conditions of Proposition 4.6, if N > R, or the condition of

Proposition 4.7, if N = R. Evidently, since for each combination of indices these conditions

depend only on P , R and N , their assessment can be done a priori and reused for several

different hypercubic tensors of same order, rank and dimension (hence the O(1) cost). Step
3 is the core of the method, being discussed below. Finally, step 4 consists in simply recon-

structing the desired factors from the estimated eigenvalues of their circulant completions.

This can be done by computing the inverse fast Fourier transform of each obtained vector of

eigenvalues, λ(p), which yields its corresponding generating vector.

As we have shown, solving (4.24) provides an exact solution for the CCPD in the noise-

less case. In the presence of noise, evidently, only an approximate solution can be sought.

Discussing computational methods for the resolution of polynomial systems, which have been

employed to solve practical problems (see, e.g., [127] and references therein), is outside the

scope of this thesis. Here, we consider only some simple examples of the systems (4.24) and

(4.42), whose solutions can be calculated by employing easily derived ad-hoc procedures.

This derivation is done in Section 4.2.5, in order to illustrate the approach. The derived

procedures will also be used for numerical evaluation purposes in Chapter 5. This kind of ad

hoc approach, to which we shall refer as ad-hoc algebraic solution (AAS), is of low compu-

tational cost and can always be derived, as long as certain eigenvalues are nonzero. As this

is generically true for hypercubic tensors X of the form (4.14), little generality is lost.
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Algorithm 4.4 Algebraic solution for computing a CCPD.
Inputs: Hypercubic tensor X ∈ T to be decomposed and the rank R of the CCPD.

Outputs: Circulant N ×R complex matrix factors C(1), . . . ,C(P ) (or C, in the symmetric case).

1: Y← MDFT{X} // O(PNP logN)

2: Find the relevant equations using Proposition 4.6 (or Proposition 4.7, if N = R) // O(1)
3: Solve the relevant equations (4.24) (resp., (4.42)) for λ

(p)
n (resp., λn)

4: return C(p) ← N−1/2 circR(IDFT{λ(p)}) (resp., C← N−1/2 circR(IDFT{λ})) // O(PN logN)

A major drawback of these AAS procedures is the fact that they are neither robust

to noise nor numerically well-behaved. For certain combinations of P , N and R, multiple

procedures of that kind can be derived and applied, so that one can keep the candidate

solution which yields best reconstruction in a least-squares sense. This strategy allows, to

a certain level, a mitigation of the degradation due to noise. Moreover, an AAS estimate

can be effectively and efficiently refined by iterative algorithms, as will be illustrated by the

experimental results presented in Chapter 5.

4.2.5 Illustrative examples

We now consider some simple examples.

Example 4.15. Letting X =
q
C(1),C(2),C(3)

y
with C(p) = circR(c

(p)) ∈ C
3×2, it can be

checked that all 27 elements of Y = MDFT{X} are generally nonzero. In particular,

λ
(1)
1 λ

(2)
1 λ

(3)
1 =

ỹ1,1,1
2

, (4.43)

where ỹn1,n2,n3 , 3
√
3 yn1,n2,n3 . Although infinitely many solutions exist due to the scaling

ambiguity, we can eliminate that ambiguity by imposing the values of all but one λ
(p)
1 , since

they determine the scaling of their corresponding factors (due to (4.23)). However, this can

only be done when λ
(1)
1 λ

(2)
1 λ

(3)
1 6= 0. For instance, if we choose λ

(2)
1 = λ

(3)
1 = 1, then (4.43)

can be directly solved for λ
(1)
1 . Next, we can use, for example, the equations

λ
(1)
1 λ

(2)
1 λ

(3)
2 =

ỹ1,1,2

1 + ω−1
N

→ λ
(3)
2 , λ

(1)
2 λ

(2)
1 λ

(3)
1 =

ỹ2,1,1

1 + ω−1
N

→ λ
(1)
2 ,

λ
(1)
1 λ

(2)
3 λ

(3)
1 =

ỹ1,3,1

1 + ω−2
N

→ λ
(2)
3 , λ

(1)
1 λ

(2)
2 λ

(3)
1 =

ỹ1,2,1

1 + ω−1
N

→ λ
(2)
2 ,

λ
(1)
1 λ

(2)
1 λ

(3)
3 =

ỹ1,1,3

1 + ω−2
N

→ λ
(3)
3 , λ

(1)
3 λ

(2)
1 λ

(3)
1 =

ỹ3,1,1

1 + ω−2
N

→ λ
(1)
3

to calculate the values of the other eigenvalues, as indicated. This scheme amounts to an

AAS procedure for the non-symmetric setting with P = N = 3 and R = 2. �

Example 4.16. For P = 3, N = 4 and R = 3, all 64 equations are generally nonzero. So, if

λ
(p)
1 6= 0 for all p, then we can assume λ

(2)
1 = λ

(3)
1 = 1 without loss of generality and compute
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the remaining eigenvalues from λ
(1)
1 λ

(2)
1 λ

(3)
1 = 8

3 y1,1,1 and

λ
(1)
1 λ

(2)
2 λ

(3)
1 = 8 y1,2,1, λ

(1)
2 λ

(2)
1 λ

(3)
1 = 8 y2,1,1, λ

(1)
1 λ

(2)
1 λ

(3)
2 = 8 y1,1,2,

λ
(1)
1 λ

(2)
3 λ

(3)
1 = 8 y1,3,1, λ

(1)
3 λ

(2)
1 λ

(3)
1 = 8 y3,1,1, λ

(1)
1 λ

(2)
1 λ

(3)
3 = 8 y1,1,3, (4.44)

λ
(1)
1 λ

(2)
4 λ

(3)
1 = − 8 y1,4,1, λ

(1)
4 λ

(2)
1 λ

(3)
1 = − 8 y4,1,1, λ

(1)
1 λ

(2)
1 λ

(3)
4 = − 8 y1,1,4.

Alternatively, if λ
(1)
2 λ

(2)
2 λ

(3)
2 6= 0, then a similar solution consists in exploiting instead the

equations for y2,2,2, y2,2,1, y2,2,3, y2,2,4, y2,1,2, y2,3,2, y2,4,2, y1,2,2, y3,2,2, y4,2,2, after imposing

λ
(2)
2 = λ

(3)
2 = 1. Note that these equations are all different from those in (4.44). Thus, if

the elements of Y contain i.i.d. noise, it makes sense to apply in practice both derived AAS

procedures and then keep the solution with the best least-squares reconstruction error with

respect to Y, which can reduce degradation of the results. �

Example 4.17. When R < N , the permutation ambiguity is only present if the factors do not

have full column rank. This can be grasped by considering the monomial equations together

with the result of Theorem 4.9. For instance, if {(µ(p)1 , µ
(p)
2 , µ

(p)
3 , µ

(p)
4 )}3p=1 provides another

solution for the system (4.44), then µ
(p)
n = αpω

−r(n−1)
N λ

(p)
n for all n ∈ 〈N〉 and p ∈ 〈P 〉. On

the other hand, this requires, for instance, that the equation λ
(1)
2 λ

(2)
2 λ

(3)
4 = µ

(1)
2 µ

(2)
2 µ

(3)
4 =

λ
(1)
2 λ

(2)
2 λ

(3)
4 ω−5r

N holds, where we have used the fact that α1α2α3 = 1. Now, if there is a

permutation indeterminacy, then r ∈ 〈R− 1〉. But, since this implies ω−5r
N 6= 1, there must

be at least one null eigenvalue among λ
(1)
2 , λ

(2)
2 , λ

(3)
4 . �

The simple approach followed in Examples 4.15 and 4.16 for deriving AAS procedures

can be employed in general, but may involve more complicated procedures and may require

the non-nullity of other eigenvalues. Furthermore, disjoint sets of equations may not be

available for deriving multiple alternative AAS procedures. When N = R, for instance, the

pattern of vanishing equations generally leaves NP−1 exploitable equations out of NP .

Example 4.18. For P = N = R = 3, only 32 = 9 equations (in 9 unknowns) are available,

having the form λ
(1)
n1 λ

(2)
n2 λ

(3)
n3 = 3

√
3 yn1,n2,n3 , with np ∈ 〈3〉. Here, no two disjoint sets of

equations can be exploited in order to derive alternative AAS procedures. One possible

procedure is to assume λ
(2)
1 = λ

(3)
1 = 1, determine λ

(1)
1 from y1,1,1 and then compute β1 =

y2,1,3/y1,2,3, β2 = y2,3,1/y1,3,2 and β3 = 3
√
3 (λ

(1)
1 )2β1β2 y2,2,2 =

(

λ
(1)
2

)3
. This gives us three

different solutions for λ
(1)
2 , each of which can be exploited to yield (different) solutions for

all eigenvalues. This multiplicity stems from the permutation ambiguity, as
(

λ
(1)
2 ωr

N

)3
=

(

λ
(1)
2

)3
for all r ∈ {0, 1, 2}. �

Example 4.19. For the symmetric case where P = N = R = 3, defining ỹn1,n2,n3 ,

3
√
3 yn1,n2,n3 and disregarding redundant equations due to symmetries, we have the fol-

lowing equations: λ31 = ỹ1,1,1, λ
3
2 = ỹ2,2,2, λ

3
3 = ỹ3,3,3 and λ1λ2λ3 = ỹ1,2,3. Here, the coupled
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equation in λ1λ2λ3 constrains the possible solutions, so that there can be at most PN = 9

instead of 27 solutions, as stated by Theorem 4.13. �

Remark 4.20. In the previous example, if it is known a priori that C ∈ R
N×R and λ1 6= 0,

we can choose a real solution for the equation involving λP1 , which is guaranteed to exist

(in the noiseless case) due to (4.23). This allows suppressing the scaling ambiguity whilst

obtaining a real factor C.

Example 4.21. When N = 4, R = 3, all factors are identical and λ1 6= 0, then one possible

straightforward procedure for computing a solution is to calculate

λ1 = 2
3

√

1

3
y1,1,1, λ2 = 8 

y2,1,1
λ21

, λ3 = 8
y3,1,1
λ21

, λ4 = −8 
y4,1,1
λ21

. (4.45)

Other subsets of equations can be similarly exploited. Due to the scaling ambiguity, the

generating vector c can only be estimated up to a complex factor ej
2π
3
p, with p ∈ {0, 1, 2}.

When c is known to be real, this can be exploited in order to cancel such a factor out.

�

4.3 Final remarks

We have proposed in this chapter two methods for the problem of SCPD estimation.

The first one is a general constrained formulation of ALS for handling the estimation

of linearly structured factors, which generalizes previously proposed ad-hoc algorithms. We

derived versions with exact and with approximate iterates, which can help finding a good

compromise between accuracy and computing time, and gave also an explicit formulation for

the case with partial or total symmetry. This CALS approach can be used in conjunction

with a non-iterative approach (such as AAS or the methods of Sections 3.3.2 and 3.3.3).

The second solution brings the possibility of employing non-iterative procedures (such

as the AAS procedures) for estimating CCPDs. Though its estimates can be degraded

by noise and numerical errors, they are quite cheap (in terms of computing complexity)

approximate solutions which can be further refined. It can thus be used alongside an iterative

algorithm, allowing to reduce the total computing time. In comparison with the approach of

Section 3.3.2, our algebraic solution allows simultaneously estimating multiple factors having

a more general circulant structure. In comparison with the method reviewed in Section 3.3.3,

it is less robust numerically, but permits taking the structure of all factors into account and

is able to handle the symmetric case. Furthermore, square non-banded circulant factors can

also be estimated with our algebraic approach, while the method of Section 3.3.3 does not

seem to apply in this case, due to non-uniqueness of the solution of (3.33).



Chapter 5

Numerical evaluation of SCPD

algorithms

In the first part of this chapter, we investigate properties of the CALS algorithm variants

proposed in Section 4.1 by means of computer experiments. Then, a numerical evaluation of

the statistical performance of several SCPD estimators is conducted in the second part, by

resorting to the CRB expressions given in Section 3.4. Finally, based on the insights gained

from the experimental outcomes, we draw concluding remarks for this part of the thesis.
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We note that all simulations reported in this chapter, and also on the upcoming ones,

were performed in Matlab R2013a running on a Intel Xeon ES-2630v2 2.60 GHz with 32 GB

of 1866 MHz RAM memory.

5.1 Evaluation of CALS schemes

In this section, we empirically study the behavior of CALS in several simulation scenarios.

This study is focused on three aspects:

1. Solution quality. Since it tackles a nonlinear least-squares problem, convergence to

a local minimum is the best we can generally expect from CALS. Thus, the choice

of the initial solution naturally influences the quality of its estimate. It is therefore

important to study how sensitive CALS is to degradation caused by a poorly chosen

initial point. This degradation can be due to convergence to a local minimum, prema-

ture stopping induced by slow convergence or failure to converge within a maximum

number of iterations. In particular, a relevant question is how the exact and approxi-
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mate variants formulated in Sections 4.1.1 and 4.1.2 compare with respect to solution

quality, assuming both start from a same initial point.

2. Computing time. The initialization also affects the amount of iterations required by

CALS to converge (and whether it converges at all). Hence, it is reasonable to ask

how the total computing time varies as a function of the distance between the initial

solution and a global minimum. We have shown that the approximate iterates of

Section 4.1.2 have reduced computing cost. Yet, as such an approximation might slow

down convergence speed and thus increase the total number of iterations, it is crucial

to investigate whether it can bring an effective overall economy.

3. Presence of scaling factors and normalization. In Section 4.1.1, we claimed that un-

necessary scaling factors should not be included in an SCPD. Also, in Section 4.1.3 it

was argued that normalization is critical when all factors are identical, which requires

inclusion of a (scalar) scaling factor λ. These remarks will be illustrated by means of

experimental results.

5.1.1 Dependence of solution quality and computing time on initialization

We now describe some numerical simulations aimed at studying aspects 1 and 2 listed above.

5.1.1.1 Non-symmetric case

Let us start by considering the computation of non-symmetric SCPDs. Here, the decomposed

tensors belong to T = R
20⊗R

12⊗R
15. Two simulation scenarios are considered. The tensor

to be decomposed in Scenario 1 is

Y =
r
λ;A(1),A(2),A(3)

z
∈ T , (5.1)

where A(1) ∈ R
20×10 is Toeplitz, A(2) ∈ R

12×10 is circulant and A(3) ∈ R
15×10 is banded

circulant. In Scenario 2, we decompose Y = Y0+σnN, where Y0 is given by the same SCPD

as in (5.1), N ∈ T has its i.i.d. elements drawn from a standard Gaussian distribution, and

the scalar σn is chosen so that SNR =
‖Y0‖2F
‖σnN‖2F

= 50 dB. The elements of λ and θ(p) are also

drawn from a standard Gaussian distribution. The matrix factors are constructed according

to (3.1), and then normalized so that the first column has unit norm.

The experimental procedure is as follows:

(i) 100 realizations of Y are generated as described above.

(ii) For each model realization, 10 random initial points corresponding to perturbed solu-

tions are generated via Â
(p)
0 = (1−α)A(p) +α∆p and λ̂0 = (1−α)λ+α δ, where ∆p

and δ are generated as A(p) and λ, respectively, and α ∈ {0.1, 0.5, 0.9}.
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Scenario
Exact Approximate Mixed

α = 0.1 α = 0.5 α = 0.9 α = 0.1 α = 0.5 α = 0.9 α = 0.1 α = 0.5 α = 0.9

1 1.00 | 0.00 0.88 | 0.22 0.70 | 0.51 0.56 | 0.00 0.44 | 0.00 0.41 | 0.00 0.98 | 0.13 0.97 | 0.27 0.96 | 0.30

2 1.00 | 0.00 0.88 | 0.22 0.75 | 0.54 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.99 | 0.15 0.96 | 0.26 0.96 | 0.30

Table 5.1: Convergence in Scenarios 1 and 2 of Section 5.1.1.1: proportion of runs which

converge to a minimum (bold); and proportion of runs which converge to a local minimum

of NSE larger than -75 dB in Scenario 1 and larger than -30 dB in Scenario 2 (underlined).

(iii) Three variants of CALS are employed: CALS with exact iterates (Algorithm 4.1), CALS

with approximate iterates (Algorithm 4.2), and a “mixed” version in which a number of

approximate iterates is performed before switching to exact ones. As stopping criteria,

we use (3.20) with tolerance ǫ = 10−12 and set the maximum number of iterations

to K = 1500. In mixed CALS, at most 300 of the K iterations are allowed to be

approximate; if (3.20) is met after K1 < 300 iterations, then the algorithm switches to

exact iterates right away.

(iv) To verify that a minimum has been reached,1 we check whether the gradient of the cost

function (see (5.3)) has norm smaller than 10−5.

Fig. 5.1 shows, for each variant, the empirical cumulative distribution functions (c.d.f.) of

the NSE and of the computing time spent at each run. Table 5.1 displays (i) the proportion

of runs which reach a minimum (in boldface) and (ii) the proportion of runs which reach

a (local) minimum having final NSE larger than -75 dB (underlined). It can be seen that,

when the initialization is quite close (α = 0.1) to the global optimum (λ,A(1),A(2),A(3)),

exact iterates reach that optimum almost certainly. For approximate CALS, this is true

at only 56% of the realizations (though about 60% attain a small error), while none of the

remaining runs reached a minimum. The gap with respect to the exact version is reduced

when the mixed approach is used, so that 85% of the runs attain the global minimum. The

performances of approximate CALS are highly similar for α = 0.5 and α = 0.9, and likewise

for mixed CALS. The same is not true for the exact version, whose share of runs trapped

by local minima rises from 22% (α = 0.5) to 51% (α = 0.9). Exact CALS is outperformed

by mixed CALS for these values of α, and even by approximate CALS when α = 0.9.

Fig. 5.1(d)–(f) show that, despite the smaller cost per iteration of approximate CALS,

it takes longer than exact CALS for α = 0.1, as it may require many more iterations. For

instance, almost all realizations of exact CALS take no more than 0.2 seconds, the same

1The condition (3.20) does not imply convergence to a minimum, as the algorithm may have entered a

region of slow progress or may even have stagnated far from a minimum, since convergence is not guaranteed.
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Figure 5.1: Scenario 1 of Section 5.1.1.1: empirical c.d.f. of the NSE attained by CALS (top)

and of the overall computing time it takes (bottom) under varying initial conditions.

being true for about 60% of the runs of approximate CALS. Yet, the computing cost of

exact CALS varies considerably with α. So, when α = 0.5 or α = 0.9, approximate and

mixed CALS enjoy a visible computational advantage in comparison with the exact version.

Fig. 5.2 shows the results for Scenario 2, where noise is present with an SNR of 50 dB.

The behavior is similar to that seen in Scenario 1, but now the added noise prevents the NSE

from going below -50 dB and approximate CALS always stops before reaching a minimum.

The above outcomes demonstrate that exact CALS is the best choice when the initial

solution is close to a global optimum, as expected. On the other hand, if the initial solution

is sufficiently far from the sought global optimum, the performance of exact CALS tends

to degrade, because it is more likely to get trapped by local minima or to fail to converge.

Approximate CALS, it seems, does not get stuck around other minima than the desired

solution, and thus is more robust than exact CALS with respect to initialization. This

apparently comes from the fact that the approximate updates are not locally optimal. Indeed,

we have observed that the NSE often increases or oscillates before convergence to the global

optimum. Even when approximate CALS does not converge to the optimum, it often reaches

some close enough estimate from where exact CALS can attain the desired solution, which

is what frequently happens in the mixed CALS approach.
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Figure 5.2: Scenario 2 of Section 5.1.1.1: empirical c.d.f. of the NSE attained by CALS (top)

and of the overall computing time it takes (bottom) under varying initial conditions and

SNR = 50 dB.

5.1.1.2 Symmetric case

We now turn to the case where the SCPD is partially or completely symmetric. The ex-

perimental procedure is the same as in the previous section, but now employing the SCALS

algorithm (see Section 4.1.3). Two scenarios are again simulated for P = 3. Scenario 1

concerns the case where all three factors are given by a same circulant matrix A ∈ R
20×10.

In Scenario 2, A(1) and A(2) are still identical and circulant, but A(3) ∈ R
15×10 is a distinct

matrix having banded circulant structure.

We plot in Fig. 5.3 the results of Scenario 1 and display the proportion of runs converging

to a local minimum on Table 5.2. For α = 0.1, the results are similar to those seen in the non-

symmetric setting, with “exact” SCALS2 achieving a quasi-perfect success rate. For the other

values of α, though, its performance is not as good before. As the iterates are necessarily of

approximate nature in the symmetric case, the algorithm suffers from convergence difficulties

more often than in the non-symmetric case. This also hampers the performance of mixed

SCALS, because the additional “exact” iterations often do not bring much improvement over

2Recall from Section 4.1.3 that the subproblem solution for repeated factors is never really exact in the

symmetric case.
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Scenario
Exact Approximate Mixed

α = 0.1 α = 0.5 α = 0.9 α = 0.1 α = 0.5 α = 0.9 α = 0.1 α = 0.5 α = 0.9

1 1.00 | 0.00 0.49 | 0.00 0.13 | 0.00 0.61 | 0.00 0.30 | 0.00 0.28 | 0.00 0.78 | 0.00 0.43 | 0.00 0.43 | 0.00

2 1.00 | 0.00 0.70 | 0.00 0.25 | 0.00 0.69 | 0.00 0.54 | 0.00 0.51 | 0.00 0.90 | 0.00 0.72 | 0.00 0.69 | 0.00

Table 5.2: Convergence in Scenario 1 of Section 5.1.1.2: proportion of runs which converge

to a minimum (bold); and proportion of runs which converge to a local minimum of NSE

larger than -75 dB (underlined).
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Figure 5.3: Scenario 1 of Section 5.1.1.2: empirical c.d.f. of the NSE attained by SCALS

(top) and of the overall computing time it takes (bottom) under varying initial conditions.

the initial approximate solution. Moreover, we notice that all runs with NSE larger than

-75 dB either stagnate or attain the maximum number of iterations without reaching a local

minimum. This behavior is similar to that of approximate CALS in the non-symmetric case.

In Scenario 2, whose results are shown in Fig. 5.4, the same deterioration is not observed,

because the estimate of the third factor is now exact. Indeed, the performances are even a

little better than those of the non-symmetric case.

With respect to computing time, the exact version is in average more efficient in both

scenarios and for all α. This stems from the economy brought by estimating identical factors
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Figure 5.4: Scenario 2 of Section 5.1.1.2: empirical c.d.f. of the NSE attained by SCALS

(top) and of the overall computing time it takes (bottom) under varying initial conditions.

only once, together with the smaller number of iterations which are usually needed.

5.1.2 Presence of scaling factors and normalization

We now study the impact of estimating vector-valued instead of scalar-valued scaling factors

and also of applying normalization during the iterations of CALS and of SCALS. Two study

cases are considered: Scenario 1 concerns a non-symmetric SCPD, while Scenario 2 is focused

on a symmetric one. In the former, 100 realizations of Y =
q
A(1),A(2),A(3)

y
are constructed,

where the factors A(1),A(2),A(3) are exactly as in Scenario 1 of Section 5.1.1.1. Given Y, we

apply CALS (with exact iterates) with the same stopping criteria as in Section 5.1.1.1. Now,

the algorithm is run with three types of iterates: (i) exactly as described by Algorithm 4.1,

which includes the estimation of λ absorbing the scaling factors of the model; (ii) as described

by Algorithm 4.1 but with a single scaling factor λ and (iii) without the normalization step

of line 9 and without the estimation of λ (Λ̂k−1 is absent at line 5). Fig. 5.5 shows the

computed c.d.f. of the NSE attained by each one of the applied versions. It is clear that, in

comparison with the version using scalar-valued scaling or with the unnormalized version,

that estimating a vector-valued λ has a slightly worse performance, due to the reasons

discussed in Section 4.1.1.
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Figure 5.5: Scenario 1 of Section 5.1.2: empirical c.d.f. of the NSE attained by CALS, under

varying initial conditions, in the estimation of a non-symmetric SCPD.
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Figure 5.6: Scenario 2 of Section 5.1.2: empirical c.d.f. of the NSE attained by SCALS, under

varying initial conditions, in the estimation of a symmetric SCPD.

In Scenario 2, we repeated the same procedure in a symmetric setting where Y =
q
A(1),A(1),A(1)

y
and A(1) is constructed exactly as in the previous scenario. This leads

to the results shown in Fig. 5.6, where the curves given by the unnormalized version are not

shown because it always diverges due to the resulting numerical instability which is discussed

in Section 4.1.3. Similarly to the previous scenario, it can be seen that the performance is

degraded by the introduction of additional (and unnecessary) degrees of freedom brought by

a vector-valued λ.

We thus conclude that (i) estimating an overcomplex model can cause a significant degra-

dation of the results and (ii) normalization is crucial in the (completely) symmetric setting,

otherwise the algorithm diverges. The first conclusion is explained by the potential intro-

duction of local minima, as the overcomplex model is more general than the sought SCPD.
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5.2 Statistical performance of SCPD algorithms

Although a wide variety of algorithms have been developed for estimating CPDs, very few

statistical assessments exist in the literature. The first one was [136], which derived the

Cramér-Rao bound (CRB) for unstructured third- and fourth-order tensors, and applied it

to evaluate the performance of the standard ALS algorithm. Apart from [136], both [173] and

[23] have derived CRBs for the estimation of CPDs having Vandermonde factors, motivated,

respectively, by the estimation of the directions of arrival of multiple source signals and by

the estimation of the multidimensional harmonic model.

In Chapter 3, we saw closed-form expressions for the CRB of the SCPD estimation

problem which were derived in [65]. We now apply them for evaluating the statistical per-

formance of estimators by means of Monte Carlo simulations. The evaluation is performed

in a Bayesian framework: prior distributions are assigned to the parameters of interest, and

then the BMSE of each algorithm is estimated by computing the ensemble average of the

measured MSE. The CRB is also averaged with respect to the parameter vector realiza-

tions, yielding the ECRB. All ensemble averages are calculated by taking the 2% trimmed

(or truncated) mean of the data, i.e., the 2% largest and 2% smallest values are discarded

before computing the average. This is done in order to attenuate the degrading effect of a

few realizations whose results are outstandingly poor.

5.2.1 Evaluated estimation algorithms

In Chapters 3 and 4, four different SCPD estimation methods have been described. Here,

we evaluate:

A1) the subspace-based solution (SBS) described in Section 3.3.3;

A2) ad-hoc procedures based on the algebraic solution of Section 4.2, which are referred to

as AAS in Section 4.2.4;

A3) the CALS algorithm proposed in Section 4.1, either using only exact iterates or adopting

the mixed approach described in Section 5.1;

A4) combinations of the above non-iterative methods (i.e., items A1 and A2) with iterative

ones, which are applied for refining the estimates provided by the former.

We note that the method described in Section 3.3.2 is not included because its rationale is

essentially the same as that of SBS, whilst the latter is more general.

The last item on the above list is naturally relevant because, despite bearing a small

computational cost in comparison with iterative methods, the non-iterative approaches of

algorithms A1 and A2 often fall short of precision, especially in the presence of noise. Their
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estimates can be refined, e.g., by CALS or by a gradient, Newton or quasi-Newton descent.

As our SCPD model involves AWGN (cf. Section 3.4.2), the maximum likelihood estimate

is the solution of the nonlinear least-squares problem tackled by CALS. Using (3.40) and

(3.42), this problem can be rewritten in vector form as

min
η
‖y − x (η)‖22 = min

η
‖y −Φ(λ)f(θ)‖22 . (5.2)

The gradient of its cost function is

∇η = −JT (η) (y −Φ(λ)f(θ)) , (5.3)

where J denotes the Jacobian of x (η) with respect to η, which can be calculated by using

the expressions derived at Section 3.4.4. When both X and N are (partially or completely)

symmetric, as discussed in Section 3.4.4.2, we have the problem

min
η
‖Ψ (y −Φ(λ)f(θ))‖2F , (5.4)

where Ψ is a selection matrix meant to eliminate redundancies arising due to symmetry.

Thus, the gradient reads

∇η = −JT (η)ΨTΨ (y −Φ(λ)f(θ)) . (5.5)

In the next sections, we shall employ the above expressions to refine estimates produced

by non-iterative schemes with the use of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-

gorithm [27], which is a quasi-Newton optimization method. Essentially, instead of employing

the exact Hessian matrix at each iteration, it resorts to an approximation which takes into

account the information provided by the sequence of computed gradient vectors. This is done

for computational reasons, since computing the Hessian is usually a quite time-consuming

task. The reader is referred to [27, 152] for a detailed explanation of this algorithm. We

employ here the Fortran implementation L-BFGS-B [219], for which a Matlab interface is

available at http://github.com/pcarbo/lbfgsb-matlab.

5.2.2 Applicability of the CRB

The validity of our statistical evaluation can be justified along the same lines of [136]. Under

the assumption that y is disturbed by AWGN, algorithms which approach a global minimum

of problem (5.2) deliver maximum likelihood estimates, which are asymptotically unbiased

and asymptotically attain the CRB under mild conditions. In signal-in-noise problems, this

is approximately true even for a small sample size, as long as the SNR is sufficiently high

[113]. Under such an SNR condition, it is thus legitimate to compare the MSE of these

algorithms with the CRB. Though the same cannot be claimed for SBS and AAS without a

refinement step, we are mostly interested in the case where such a refinement is performed

by an iterative method for solving (5.2).
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5.2.3 Non-symmetric SCPD

Two different scenarios are considered for the evaluation of non-symmetric SCPD estimators.

The first one concerns the CCPD of a hypercubic tensor (see Section 4.2), and thus all

algorithms enumerated in Section 5.2.1 apply. In the second scenario, we address a more

general SCPD, which cannot be handled by AAS.

5.2.3.1 Scenario 1: circulant-constrained CPD

Here, the SCPD model is constructed as X =
q
C(1),C(2),C(3)

y
∈ T ,

(
R
N
)⊗3

, where

each C(p) ∈ R
N×R is circulant with N = 4 and R = 3. We fix θ

(1)
1 = θ

(2)
1 = 1 to avoid

identifiability issues, as discussed in Section 3.4.3. Hence, applying the notation of that

section, we have η =
[

(θ̄
(1)

)T (θ̄
(2)

)T (θ(3))T
]T

. A Gaussian prior distribution is assumed

for the parameter vector. So, several joint realizations of θ̄
(1)

, θ̄
(2)

, θ̄
(3)

= θ(3) and N̄ ∈ T are

generated by drawing their elements from the standard Gaussian distribution, and then the

AWGN tensor is obtained as N = σN̄, with σ varying to simulate different SNR conditions.

Given one realization Y = X+N, we apply the following estimators:

1. AAS: The estimate η̂ is computed by solving (4.24). To reduce degradation due to

noise, we employ three different ad-hoc procedures like those shown in Example 4.16

and keep the solution which yields the lowest quadratic error with respect to Y. As

some imaginary residual is generally present in η̂, we take its real part.

2. Ni-CALS: Corresponds to Algorithm 4.1 with a multi-initialization scheme. It consists

in running CALSNi times with different random initializations and keeping the solution

yielding the lowest quadratic error with respect to Y. As stopping criteria, we employ

(3.20) with ǫ = 10−10 and a maximum number of iterations Kmax = 2000.

3. Ni-MCALS: The mixed CALS scheme of Section 5.1, here referred to as mixed con-

strained alternating least squares (MCALS), is used with the same stopping criteria as

Ni-CALS. At most 10% of the total of Kmax iterates are allowed to be approximated.

This proportion can be even smaller, if the stopping criteria (3.20) is met by the ap-

proximate iterates, in which case the algorithm immediately switches to exact iterates.

The same multi-initialization strategy as that of Ni-CALS is employed.

4. SBS: The approach of Section 3.3.3 is applied to jointly compute circulant factors C(1)

and C(2), as well as an unstructured first estimate of the third factor, A(3). Then, θ(3)

is estimated from A(3) in the least-squares sense, by resorting to the update equation

(4.10) of approximate CALS (applied only once).

5. AAS-CALS: The estimates given by AAS are taken (after normalization) as initial

points for CALS.
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Figure 5.7: Scenario 1 of Section 5.2.3: estimated BMSE of several SCPD estimators and

corresponding ECRB.

6. SBS-CALS: After obtaining (normalized) initial estimates with SBS, the CALS algo-

rithm is used for refining them.

7. SBS-BFGS: Instead of using CALS to refine the estimates given by SBS, the quasi-

Newton algorithm BFGS [27] is employed. The stopping criterion in this case checks

whether the norm of the gradient is below a given tolerance level. As recommended in

[219], the tolerance should be about as large as the square root of machine precision.

We thus set it to 10−8. As a second stopping criterion, we set Kmax = 2000.

Note that, as no normalization is imposed in AAS and SBS, the parameter vectors must be

normalized a posteriori, by dividing θ(p) by θ
(p)
1 for p ∈ {1, 2} and absorbing these scaling

factors in θ(3). In CALS and MCALS, normalization is imposed during the iterations in a

similar fashion.

We have also performed simulations including an AAS-BFGS estimator, but its results,

unlike those of SBS-BFGS, were generally not satisfactory. This is owed to the fact that

AAS often provides starting points which are not sufficiently precise in order to initialize a

(quasi-)Newton algorithm. These results are therefore not shown in the following.

In Fig. 5.7, we show the BMSE of each estimator for Nr = 500 realizations of Y, as well

as the estimated ECRB, for multiple SNR levels (in dB), which is defined here as

SNR = 10 log10

1
Nr

∑Nr
nr=1 ‖Xnr‖2F
σ2N3

, (5.6)

where Xnr stands for the nrth realization of X. The estimated ECRB corresponds to the

sample average of the CRBs of all realizations, which are computed by applying formula
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Ni-CALS Ni-MCALS AAS SBS

SNR Ni = 10 Ni = 10 AAS AAS-CALS SBS SBS-CALS SBS-BFGS

9.9 1.65 ·102 1.32 ·102 1.53 ·10−3 1.59 ·10−2 4.32 ·10−3 1.88 ·10−2 1.04 ·10−1

14.9 1.47 ·102 1.19 ·102 1.30 ·10−3 1.33 ·10−2 4.00 ·10−3 1.60 ·10−2 7.38 ·10−2

19.9 1.43 ·102 1.15 ·102 1.28 ·10−3 1.21 ·10−2 3.96 ·10−3 1.47 ·10−2 6.91 ·10−2

24.9 1.40 ·102 1.08 ·102 1.28 ·10−3 1.13 ·10−2 3.91 ·10−3 1.38 ·10−2 6.37 ·10−2

29.9 1.40 ·102 1.07 ·102 1.27 ·10−3 1.07 ·10−2 3.92 ·10−3 1.31 ·10−2 6.12 ·10−2

34.9 1.40 ·102 1.05 ·102 1.27 ·10−3 1.02 ·10−2 3.89 ·10−3 1.23 ·10−2 5.77 ·10−2

39.9 1.42 ·102 1.03 ·102 1.27 ·10−3 9.56 ·10−3 3.92 ·10−3 1.18 ·10−2 5.51 ·10−2

Table 5.3: Average computing time (in seconds) measured in Scenario 1 of Section 5.2.3.

(3.52) to each parameter. Similarly, the estimate of BMSE for each method is given by the

sample average of the computed MSEs. The average computing time spent by each method

for each SNR level is shown in Table 5.3. We omit, though, the computing times of 1-CALS

and 1-MCALS, due to their unsatisfactory estimation performance.

It can be seen that both CALS and MCALS perform quite poorly with a single random

initialization, due to frequent early termination or inability to converge, while all other

iterative estimators approximately reach the ECRB for SNR ≥ 15 dB. With regard to the

non-iterative ones, SBS performs better than AAS, thanks to its better numerical properties.

By inspecting also Table 5.3, we conclude that AAS-CALS and SBS-CALS provide the best

compromise between precision and computing effort, with a computational advantage for the

former. Another relevant observation is that 10-MCALS is slightly less costly than 10-CALS,

while their BMSE curves are indistinguishable in Fig. 5.7.

5.2.3.2 Scenario 2: factors with different structures

Let us consider now the SCPD X =
q
A(1),A(2),A(3)

y
, where A(1),A(2) ∈ R

5×4 are banded

Toeplitz matrices having the forms

A(1) =
















θ
(1)
1 0 0 0

θ
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2 θ

(1)
1 0 0

θ
(1)
3 θ

(1)
2 θ

(1)
1 0

θ
(1)
4 θ

(1)
3 θ

(1)
2 θ

(1)
1

0 θ
(1)
4 θ

(1)
3 θ

(1)
2
















, A(2) =
















θ
(2)
1 θ

(2)
6 0 0

θ
(2)
2 θ

(2)
1 θ

(2)
6 0

θ
(2)
3 θ

(2)
2 θ

(2)
1 θ

(2)
6
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(2)
4 θ

(2)
3 θ
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(2)
1
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2
















(5.7)

and A(3) ∈ R
4×4 is unstructured. Note that the set of basis matrices associated with each one

of A(1) and A(2) is simply a subset of the Toeplitz basis described by Table 3.1. Again, we fix

θ
(1)
1 = θ

(2)
1 = 1 in order to eliminate the scaling ambiguity. For the other parameter vector

components, a uniform distribution over the interval [−1, 1] is chosen as prior distribution.
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Figure 5.8: Scenario 2 of Section 5.2.3: estimated BMSE of several SCPD estimators and

corresponding ECRB.

The experimental procedure here employed is exactly akin to that of considered in Sec-

tion 5.2.3.1, and we also evaluate the same estimators, except for AAS and its combinations

with iterative algorithms, which do not apply.

Fig. 5.8 and Table 5.4 display the obtained results. Just as in Scenario 1, 1-CALS and 1-

MCALS do not deliver accurate estimates in average, for the same reasons. With 10 random

initializations, their performances are greatly enhanced, corresponding to the best ones at

SNR levels below 17 dB. With respect to computing time, 10-MCALS is again less costly

than 10-CALS and this time by a larger margin, which indicates that the use of approximate

iterates brings important computational savings in this setting. When initialized by SBS,

CALS is able to reach quite close to the ECRB for SNR ≥ 18 dB, whereas the same is true

for BFGS only after about 23 dB. So, for a sufficiently high SNR level, SBS-CALS provides

the best compromise between cost and precision, as it is about 4 orders of magnitude less

costly than 10-MCALS and almost one order of magnitude less costly than SBS-BFGS.

5.2.4 Symmetric SCPD

We consider here one scenario involving a completely symmetric SCPD. In this scenario,

X admits a SCPD of the form X = JC,C,CK, with C ∈ R
4×3 circulant. The generation

of model realizations is similar to that of Section 5.2.3.1, but now there is a single θ̄ =

θ = η (note that no component θu is fixed here, because there is no scaling ambiguity

to suppress). Also, the noise tensor is symmetric (cf. Section 3.4.4.2), being generated as

follows: the elements [N]n1,n2,n3 such that n1 ≤ n2 ≤ n3 are drawn from a zero-mean

Gaussian distribution of variance σ2, while all the others are determined by symmetry.
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Ni-CALS Ni-MCALS SBS

SNR Ni = 10 Ni = 10 SBS SBS-CALS SBS-BFGS

7.9 2.29 ·103 3.98 ·102 6.06 ·10−3 5.66 ·10−2 8.11 ·10−1

12.9 1.96 ·103 3.87 ·102 6.07 ·10−3 2.68 ·10−2 2.62 ·10−1

17.9 1.97 ·103 3.51 ·102 6.09 ·10−3 2.46 ·10−2 1.12 ·10−1

22.9 1.95 ·103 3.45 ·102 6.06 ·10−3 2.27 ·10−2 9.70 ·10−2

27.9 1.95 ·103 3.06 ·102 6.03 ·10−3 2.16 ·10−2 9.16 ·10−2

32.9 1.89 ·103 2.97 ·102 6.09 ·10−3 2.07 ·10−2 8.60 ·10−2

37.9 1.87 ·103 3.04 ·102 6.02 ·10−3 1.93 ·10−2 7.98 ·10−2

Table 5.4: Average computing time (in seconds) measured in Scenario 2 of Section 5.2.3.

We describe below how each algorithm was applied to estimate C.

1. AAS: Factors are computed by solving three disjoint subset of equations such as that

of Example 4.21 and keeping the best solution. As the parameter vector θ can only

be estimated up to a complex scaling factor of the form ej
2π
3
p, with p ∈ {0, 1, 2} (as

discussed in Section 4.2.3 and Example 4.21), it is necessary to suppress it by taking

into account the fact that θ is real. This is done by computing

p̂ = argmin
p∈{0,1,2}

U∑

u=1

min

{
[

Arg(θ̃u)−Arg
(

ej
2π
3
p
)]2

,
[

Arg(θ̃u)−Arg
(

ej(
2π
3
p−π)

)]2
}

,

where Arg : C 7→ [−π, π[ outputs the phase of its argument, and then estimating the

generating vector as θ̂ = Re

{

e−j 2π
3
p̂θ̃
}

, with θ̃ denoting the output of AAS. This

amounts to estimating the phase of the undesired complex scaling factor in the least-

squares sense. Each term of the above sum is given by the minimum between two

expressions because there are two possibilities for the phase of θu: it is either null (if

θu ≥ 0 ) or it equals π (when θu < 0).

2. Ni-SCALS: The SCALS algorithm described in Section 4.1.3 is applied. A multi-

initialization scheme is again used with Ni random initial points.

3. Ni-MSCALS: Just like in the non-symmetric setting, we apply SCALS with approx-

imate and then exact iterates, which is referred to as mixed symmetric constrained

alternating least squares (MSCALS), and Ni different initializations.

4. SBS: As this method does not take symmetry into account, this is done a posteriori, by

averaging all obtained factors, which are estimated exactly as described in Section 5.2.3.

We also evaluate the combined approaches 4) AAS-SCALS, 5) SBS-SCALS and 6) SBS-

BFGS.
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Figure 5.9: Symmetric setting of Section 5.2.4: estimated BMSE of several SCPD estimators

and corresponding ECRB.

Ni-CALS Ni-MSCALS AAS SBS

SNR Ni = 10 Ni = 10 AAS AAS-SCALS SBS SBS-SCALS SBS-BFGS

19.9 1.20 ·103 8.40 ·102 1.17 ·10−3 2.18 ·10−2 4.21 ·10−3 2.99 ·10−2 4.79 ·10−2

29.9 8.39 ·102 4.99 ·102 1.15 ·10−3 9.12 ·10−3 4.18 ·10−3 1.15 ·10−2 4.06 ·10−2

39.9 7.79 ·102 4.52 ·102 1.14 ·10−3 7.75 ·10−3 4.16 ·10−3 9.99 ·10−3 3.58 ·10−2

49.9 7.06 ·102 4.41 ·102 1.13 ·10−3 6.72 ·10−3 4.13 ·10−3 8.82 ·10−3 3.24 ·10−2

59.9 6.95 ·102 3.92 ·102 1.13 ·10−3 5.78 ·10−3 4.15 ·10−3 7.82 ·10−3 3.00 ·10−2

Table 5.5: Average computing time (in seconds) measured in the symmetric setting of Sec-

tion 5.2.4.

The results are shown in Fig. 5.9. In comparison with the results of Section 5.2.3.1, we

can see that the algorithms perform in general worse. In the case of SCALS, this is due to the

imposition of symmetry. For both AAS and SBS, an additional stage is employed (in AAS,

for fixing the scaling factor; in SBS, for computing a single factor estimate), which degrades

performance. 1-SCALS and 1-MSCALS yield again quite unsatisfactory results, while all

other iterative algorithms get quite close to the ECRB for SNR ≥ 35 dB. Inspecting the

average computing times on Table 5.5, one can conclude that AAS-SCALS and SBS-SCALS

lead to the best compromise between statistical efficiency and computing cost.

5.2.5 Wiener-Hammerstein model identification

We now evaluate SCPD estimators when applied to identify the linear filters of Wiener-

Hammerstein systems from their third-order Volterra kernels. Recall from Section 3.2 that
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Figure 5.10: Wiener-Hammerstein identification scenario of Section 5.2.5: estimated BMSE

of several SCPD estimators and corresponding ECRB.

this kernel admits a SCPD of the form V(p) = Jλ ; A,A,AK, where A ∈ R
N×R is a banded

circulant matrix characterized by U = N − R + 1 parameters, which correspond to the

coefficients of the linear filter W (z) of Fig. 3.1. We set U = 5 and R = 3; thus, N = 7.

To perform this experiment, Nr = 500 realizations of the parameters θ̄ and λ are generated

by drawing each component θ̄u and λr uniformly over [−1, 1]. To ensure local identifiability,

θ1 = 1 is imposed.

We perform the described procedure for a third-order tensor Y ∈ S

((
R
7
)⊗3
)

, with X =

V(3) built from the exact Volterra kernel v(3) generated as (3.10). The kernel estimation error

is modeled by the (symmetric) noise tensor N, which is generated exactly as in the previous

scenario. The variance σ2 of N is again varied for simulating different SNR conditions.

The employed estimators are:

1. Ni-SCALS: SCALS is specialized to the particular structure of the Voltera kernel

(3.12). This is done by estimating a single factor A per iteration. A multi-initialization

scheme with Ni initializations is also used, for improving performance.

2. SBS: The procedure is similar to that of Section 5.2.4, with the estimate of A being

obtained by averaging the two structured factors estimated by the algorithm. After

that, it is suitably normalized, and then λ is estimated by employing (4.8).

Again, we apply SCALS and BFGS to refine the SBS solution.

The BMSE estimated at several SNR levels is shown in Fig. 5.10, with the corresponding

time measurements reported in Table 5.6. It is seen that 1-SCALS and 1-MSCALS produce

very poor results, due to the typical convergence problems encountered in practice. With 10
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Ni-CALS Ni-MSCALS SBS

SNR Ni = 10 Ni = 10 SBS SBS-SCALS SBS-BFGS

-3.6 1.13 ·103 3.85 ·102 5.16 ·10−3 2.05 ·10−2 1.74 ·10−1

1.4 5.92 ·102 1.57 ·102 4.88 ·10−3 1.33 ·10−2 9.56 ·10−2

6.4 2.98 ·102 9.92 ·101 4.84 ·10−3 1.09 ·10−2 6.75 ·10−2

11.4 2.31 ·102 8.20 ·101 4.86 ·10−3 9.88 ·10−3 5.95 ·10−2

16.4 1.53 ·102 7.09 ·101 4.82 ·10−3 9.32 ·10−3 5.64 ·10−2

21.4 1.51 ·102 6.53 ·101 4.82 ·10−3 8.94 ·10−3 5.43 ·10−2

26.4 1.46 ·102 6.15 ·101 4.81 ·10−3 8.64 ·10−3 5.25 ·10−2

Table 5.6: Average computing time (in seconds) measured in Scenario 1 of Section 5.2.4.

random initializations, this problem is overcome (for sufficiently high SNR), as it becomes

more likely that at least one run will produce good estimates; however, the total computing

cost is very high. In contrast, SBS’s BMSE lies within moderate distance from the ECRB, but

its computing cost is quite low. Taking advantage of its estimate, both SBS-SCALS and SBS-

BFGS are able to reach quite close to the ECRB for SNR values greater than approximately

11 dB, with a slight advantage for the latter. Furthermore, SBS-SCALS outperforms SBS-

BFGS from a computing cost perspective, thus offering the best compromise in this scenario.

5.3 Final remarks

The main conclusions we can draw from our numerical experiments are as follows:

1. When estimating the factors of a CCPD, AAS procedures are useful in that they

deliver cheap initial estimates which often allow iterative algorithms to quickly reach

an accurate solution.

2. Whenever an approximate initial solution is available (given by, e.g., AAS or SBS),

the CALS (or SCALS) algorithm is often able to converge within a relatively small

computing time, and its BMSE approaches the ECRB for sufficiently high SNR levels.

3. When a cheap initial solution is not available (e.g., when the structure of the factors

cannot be handled neither by an AAS nor by SBS), then the MCALS algorithm which

employs first approximate and then exact iterates seems to be a good option, as its

probability of convergence to local minima is smaller than that of CALS, as seen in

Section 5.1, while it requires less overall computing effort.



Part II
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Chapter 6

From compressive sensing to

low-rank tensor recovery

In this chapter, we introduce the low-rank tensor recovery problem and review the main

existing approaches which were devised to address it. Before that, it is opportune to briefly

discuss the compressive sensing and low-rank matrix recovery problems, as they share fun-

damental aspects with our studied problem. This introductory material shall then serve as

a basis for subsequent chapters.

Contents
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6.2 Low-rank matrix recovery . . . . . . . . . . . . . . . . . . . . . . . . . 110
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6.1 Compressive sensing

The pioneering works of Candès, Romberg, Tao [31, 32, 30] and Donoho [74] sparked a flurry

of interest in the topic of compressive sensing (CS).1 Their remarkable results basically

establish conditions under which a sparse vector can be exactly recovered from a set of linear

measurements having much lower cardinality than its dimension. Moreover, it was shown

that this is a tractable problem, as it can be solved by means of efficient algorithms [31, 74].

Importantly from a practical viewpoint, the body of CS results also comprises performance

bounds for the approximate reconstruction of an approximately sparse vector (e.g., having

components with exponentially decaying magnitude) from noisy measurements [34, 166].

In view of the ubiquity of (approximately) parsimonious signals in nature, these ideas find

application in many different domains, such as system identification [111, 12], biomedical

signal processing [161, 138], radar imaging [101, 160] and astronomy [18].

1The terminology “compressed sensing” or “compressive sampling” is also employed.
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In the following, we briefly introduce the main aspects of CS. The interested reader can

find an in-depth and thorough account of CS in [85].

6.1.1 Problem statement and main involved issues

Definition 6.1 (s-sparsity). A vector x ∈ R
N is said to be s-sparse if card(x) ≤ s < N .

Problem 6.2 (Compressive sensing [31, 32, 30, 74]). Let x⋆ ∈ R
N be an unknown signal of

interest and y = Ax⋆ be a linear measurement of x⋆ obtained with a known measurement

matrix A ∈ R
M×N which does not depend on x⋆, and such that M ≪ N . Assuming that

x⋆ is s-sparse, with s ∈ 〈M〉, recover x⋆ from y.

Problem 6.2 is ill-posed without further assumptions, because its underdetermined system

of linear equations has infinitely many solutions (provided y ∈ colspace(A)). Nevertheless, it

turns out that the s-sparsity of x⋆ can be exploited to uniquely recover it from y, as long as

A satisfies certain conditions. This is useful for many practical tasks, such as, e.g., efficiently

sensing real-world images which admit (approximately) sparse representations in the wavelet

domain [33].

There are two central aspects involved in Problem 6.2 [85]:

(i) Encoding: which measurement matrices (or classes or matrices) are appropriate for

measuring arbitrary s-sparse vectors?

Since we do not know in advance which entries of x⋆ are nonzero, some matrices are

clearly inappropriate, such as those having canonical basis vectors as rows. To answer

the above question, useful quality measures have been developed for characterizing

suitable measurement matrices [31, 74, 33, 47]. They serve as important tools for

establishing theoretical recovery guarantees of CS algorithms.

(ii) Decoding: which recovery algorithms can be employed for efficient recovery?

The suitability of an algorithm hinges on two requirements. First, it must of course

be computationally tractable. Second, it should successfully recover x⋆ whenever A is

suitable (in terms of appropriate quality measures). Ideally, it should also be subject

to performance bounds guaranteeing a certain degree of accuracy even if x⋆ is only

approximately sparse (which is called stable recovery) and if the measurements are

noisy (which is referred to as robust recovery).

These two aspects are briefly discussed in the following sections.

6.1.2 Measurement matrices and the restricted isometry property

The very goal of CS is to take as few measurements as possible whilst still enabling recovery

of arbitrary s-sparse vectors (at least with high probability). Ideally, we would like to
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reconstruct x⋆ from O(s) measurements, since s is its number of degrees of freedom (DOF).

Recoverability of an arbitrary x⋆ clearly requires that the linear transformation associated

with A be injective in the set of s-sparse vectors Ss =
{
x ∈ R

N : card(x) ≤ s
}
, that is,

Av −Aw = A(v −w) = 0 must imply v = w for all v,w ∈ Ss. Since v −w is 2s-sparse,

this amounts to imposing nullspace(A) ∩ S2s = {0}, which requires krank(A) ≥ 2s [85,

Theorem 2.13]. Hence, from Definition 2.40, it is clear that M ≥ 2s is a necessary condition.

In principle, injectivity of A on Ss implies recovery can be achieved by solving

min
x∈RN

card(x) subject to Ax = y. (6.1)

Yet, problem (6.1) is NP-hard in general [31, 85], requiring an exhaustive search among all

possible submatrices of A having s columns.

Hence, injectivity of A on Ss is necessary but not sufficient for establishing recovery

guarantees of practical algorithms. To achieve this goal, other properties of measurement

matrices have been exploited, such as coherence, the nullspace property and the restricted

isometry property (RIP) [31, 33, 47]. The latter, in particular, stands on the rationale that

an appropriate measurement matrix should approximately behave as an orthonormal system

over S2s, i.e., be such that ‖A(v−w)‖2 ≈ ‖v−w‖2 for any v,w ∈ Ss [31]. In other words,

A must nearly preserve distances between vectors of Ss, hence the expression “restricted

isometry”. This idea was formalized in [31] as follows.

Definition 6.3 (Restricted isometry constants). Let A ∈ R
M×N . The s-restricted isometry

constant (RIC) of A is the smallest positive real number δs such that

∀x ∈ Ss, (1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22. (6.2)

If δs < 1, then A is said to have the RIP of order s.

Definition 6.3 allows deriving recovery guarantees (including stable and robust recovery)

for many CS algorithms. However, the explicit construction of deterministic matrices having

sufficiently small RICs at an optimal number of measurements is to date an open problem.

A major breakthrough in CS theory is the discovery that certain random matrices (e.g.,

having Gaussian or Rademacher elements) have small RICs with overwhelming probability

as long as M ≥ O(s log(eN/s)). This bound is in fact optimal, in the sense that it matches

the number of measurements which is necessary for stable recovery [85, Theorem 11.7].

In applications, though, unstructured random matrices are often unsuitable due to physi-

cal constraints and also because the lack of structure prevents implementation of fast matrix-

vector products. Fortunately, it has been shown that certain structured random matrices

providing a number of measurements that scales nearly linearly in s, up to a logarithmic

factor (larger than log(eN/s)), also possess small enough RICs. This applies, in particu-

lar, to partial Fourier and partial noiselet measurements [166, 172], which can be efficiently

computed by means of O(N log(N)) fast transform algorithms.
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6.1.3 Recovery via ℓ1 norm minimization

A standard CS approach consists in reformulating problem (6.1) by replacing the cardinality

function with the ℓ1 norm, which yields the basis pursuit problem:

min
x∈RN

‖x‖1 subject to Ax = y. (6.3)

Efficient algorithms exist for the above problem, which can be regarded as a convex relaxation

of (6.1). Thus, contrarily to (6.1), every local minimum of (6.3) is a global one. In spite of

such a relaxation, (robust and stable) recovery guarantees have been derived (see, e.g., [34]).

Therefore, under certain conditions on A, (6.1) has the same solution as (6.3).

Variants of (6.3) have been formulated, such as the (convex) unconstrained penalized

formulation known as basis pursuit denoising, written as

min
x∈RN

λ ‖x‖1 + ‖Ax− y‖22, (6.4)

where λ > 0 is a regularization parameter controlling the compromise between the accuracy

with which measurements are matched and the degree of parsimony of x. Note that (6.4)

is more reasonable than (6.3) when y is noisy. A global minimum of (6.4) can be found by,

e.g., the alternating direction method of multipliers (ADMM) [22] or proximal methods [48].

Many other approaches exist, but are beyond the scope of this thesis. See [85] for a

comprehensive review.

6.2 Low-rank matrix recovery

Motivated by the occurrence of matrices having (approximately) low rank in a myriad of

applications, the pioneer work of Fazel [82] considered the problem of low-rank matrix recov-

ery (LRMR) from a set of underdetermined linear measurements. She devised the nuclear

norm minimization heuristic, which is very similar in spirit to the standard CS technique of

ℓ1 norm minimization.

Interestingly, the matrix rank can be thought of as an extension of cardinality to second-

order tensors [169]. This connection is explained by the SVD: the cardinality of the diagonal

matrix holding the singular values of a matrix is, by definition, its rank. In fact, both CS

and LRMR are instances of the general problem of recovering a “parsimonious” element of

a given set from a small number of linear measurements. This explains why some LRMR

approaches are directly inspired by CS techniques.

6.2.1 Problem statement

Similarly to the CS setting, we consider here the set of matrices having rank bounded by R,

defined as LR ,
{
X ∈ R

N1×N2 : rank(X) ≤ R
}
.
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Problem 6.4 (Low-rank matrix recovery). Let X⋆ ∈ R
N1×N2 be some (unknown) matrix of

interest and A : RN1×N2 7→ R
M be a linear measurement operator (MO), with M < N1N2.

Given y = A(X⋆) and assuming X⋆ ∈ LR, recover X⋆ from y.

The affine rank minimization problem considered in [82] has the form

min
X∈RN1×N2

rank(X) subject to A(X) = y. (6.5)

A very important particular case of LRMR is the matrix completion (MC) problem [28],

where only a portion of the elements of a matrix is observed and the goal is to correctly infer

the missing entries under a low-rank assumption. A well-known instance of this setting in

the area of recommender systems is involved in the so-called “Netflix prize” [11]. Formally,

in MC the operator A assumes a particular form: each component ym of y = A(X⋆) satisfies

ym = x⋆n1(m),n2(m) =
〈

X⋆, eN1

n1(m) ⊗ eN2

n2(m)

〉

= X⋆ ×1

(

eN1

n1(m)

)T
×2

(

eN2

n2(m)

)T
, (6.6)

where eNn denotes the nth canonical basis vector of RN . Such an A is called a sampling

operator (SO).

6.2.2 Suitable measurement operators

Just as in CS, we need useful ways of quantifying the suitability of MOs and we want to

know how many measurements must be taken to ensure recovery. Recall that the SVD of a

rank-R matrix is characterized by R(N1 + N2 − R) DOF, which is precisely the dimension

of the manifold of rank-R matrices [208]. It follows then that a necessary condition is

M ≥ R(N1 +N2 − R) [35]. We thus hope to be capable of reconstructing arbitrary rank-R

matrices from O(R(N1 +N2 −R)) measurements with efficient algorithms.

In contrast to CS, where the best sampling bounds involve a logarithmic term, this hope

is fulfilled in LRMR. For Gaussian measurements, this has been shown in [40, Proposition

3.11] by exploiting the convex geometry of the nuclear norm ball. Another way of deriving

sampling bounds is by relying on an extension of the RIP to LRMR operators. The idea is

defining the R-RIC of A as the smallest positive real number δR such that

∀X ∈ LR, (1− δR)‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δR)‖X‖2F . (6.7)

The authors of [35] demonstrate that certain random MOs (such as Gaussian ones) possess

the matrix RIP for M ≥ cRmax{N1, N2}, where c is a positive constant.

When it comes to MC, however, RIC-based results do not apply, due to the special form

of A. It is not hard to show that no SO can possess the RIP unless almost every entry is

sampled. For instance, if X⋆ = [eN1
1 . . . eN1

R ON1×N2−R] ∈ LR, then there exist SOs with

M ≤ N1N2 −R such that A(X⋆) = 0, which thus cannot meet (6.7) for δR < 1.
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The reason of failure in the above example is the sparsity of X⋆, which makes a random

sampling “miss” the relevant entries most of the time. This has motivated the formulation

of the so-called incoherence conditions [28], which essentially state that vectors from the

row and column spaces of the target low-rank matrix must be sufficiently uncorrelated with

canonical basis vectors, i.e., their energy must be sufficiently spread. This can be formalized

by requiring that µ0(X
⋆) ,

∥
∥vec

(
UVT

)∥
∥
∞ be sufficiently small, where X⋆ = UΣVT is the

SVD of X⋆, and also that the column and row spaces of X⋆ have a small coherence measure,

defined as follows.

Definition 6.5 (Coherence with respect to canonical basis [28]). Let U be an R-dimensional

subspace of RN . Then, the coherence of U with respect to the canonical basis is defined as

µ(U) , N

R
max
n∈〈N〉

∥
∥PU

(
eNn
)∥
∥
2

2
, (6.8)

where PU denotes the orthogonal projector onto U .

Often, one assumes that the set of locations of theM sampled entries is uniformly drawn

at random from {I ∈ 2〈N1〉×〈N2〉 : |I| = M}. This is a reasonable model in applications

where the occurrence of missing data follows no particular structure, but may be inadequate

if it is more likely to be concentrated (e.g., in space or time). In [29], the minimum value

of M needed to guarantee reconstruction is established for this uniform sampling model, no

matter which recovery algorithm is used. It is given by the number of DOF of the low-rank

model, times a measure of coherence of the column and row spaces of X⋆, times a logarithmic

factor in max{N1, N2}. This logarithmic factor is due to the coupon-collector effect,2 since

each row and column has to be sampled at least once to enable reconstruction [28].

6.2.3 Recovery via nuclear norm minimization

A popular LRMR approach is that of nuclear norm minimization (NNM). As previously

commented, a parallel can be drawn with CS, because ‖X‖∗ = ‖σ‖1 while rank(X) =

card(σ), where ‖ · ‖∗ denotes the nuclear norm and σ ∈ R
min{N1,N2} contains the singular

values of X ∈ R
N1×N2 . Formally, one poses the problem

min
X∈RN1×N2

‖X‖∗ subject to A(X) = y. (6.9)

or variants such as minX∈RN1×N2 λ ‖X‖∗ + ‖A(X)− y‖22 [35].

This approach can be well justified by geometric arguments [40]. Also, it can be seen as a

convex relaxation of (the NP-hard) problem (6.5) where the rank function is replaced by its

2The terminology comes from the coupon collector’s problem in probability theory: how many draws (with

replacement) are needed in average to collect at least once each one of the n different coupons placed inside

a urn? This number is proportional to n log(n).



6.3. Low-rank tensor recovery 113

tightest convex relaxation over the unit spectral norm ball. This resulting convex problem

can be efficiently tackled by means of semidefinite programming techniques or by ADMM.

We refer the reader to [28, 35, 29, 169] for recovery results of NNM, which show it is capable

of perfect recovery at an order-wise optimal number of measurements: O(R(N1+N2−R)) in
LRMR and O(µR(N1 +N2 −R) log(max{N1, N2})) in MC (with uniform sampling), where

µ depends on µ0(X
⋆), µ(U) and µ(V), with U = colspace(X⋆) and V = rowspace(X⋆).

As in the case of CS, several other LRMR approaches exist but we shall not delve further

into this topic.

6.3 Low-rank tensor recovery

When dealing with the recovery of tensors, rank is again a natural and relevant complexity

measure. However, in passing from matrices to higher-order tensors, the notion of rank gains

multiple non-equivalent meanings, as mentioned in Chapter 2. Correspondingly, multiple

ways of approaching the low-rank tensor recovery (LRTR) problem exist. In the following,

we state mathematical formulations for two of them.

6.3.1 Problem statement

Problem 6.6 (Low-rank tensor recovery). Let X⋆ ∈ T ,
⊗P

p=1R
Np be some (unknown)

tensor of interest and let A : T 7→ R
M be a linear MO, with M < N̄ . Given y = A(X⋆) and

assuming X⋆ belongs to a set of parsimonious tensors S ⊂ T , recover X⋆ from y.

As in the matrix setting, an important particularization of Problem 6.6 is when A is an

SO, which is called the tensor completion (TC) problem. In this case, we have

ym = x⋆n1(m),...,nP (m) = X⋆
P×

p=1

(

e
Np

np(m)

)T
, (6.10)

which is a generalization of (6.6). The goal is thus reconstructing a tensor having missing

entries. In this context, we shall employ the definition

Ω , {(n1, . . . , nP ) ∈ 〈N1〉 × · · · × 〈NP 〉 : ∃m ∈ 〈M〉 such that ∀ p ∈ 〈P 〉, np = np(m)} ,

i.e., Ω is the set of multi-indices whose corresponding entries are sampled. Associated with

it is the orthogonal projection (·)Ω : T 7→ T Ω, where

T Ω , {X ∈ T : [X]n1,...,nP 6= 0 only if (n1, . . . , nP ) ∈ Ω}. (6.11)

In particular, it is easy to show that for any tensor X ∈ T ,

(

A
†
A

)

(X) = (X)Ω, (6.12)
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where A† is the adjoint3 of A

Essentially, in LRTR one wishes to exploit some joint low dimensionality along multiple

modes of the tensor of interest in order to reconstruct it from a few measurements. We

discuss in the sequel two possible choices of S for achieving this goal, corresponding to the

two notions of rank we introduced in Chapter 2, the tensor rank and the multilinear rank.

6.3.1.1 Formulation based on tensor rank

The set S associated with the formulation based on tensor rank can be expressed as

S = RR , {X ∈ T : rank(X) ≤ R}. Note that this definition is equivalent to that given

in Section 2.5.2.5. So, a tensor having low rank admits a CPD whose factors have a re-

duced number of columns, in comparison with the smallest typical rank (see Section 2.5.2.3).

Therefore, the number of DOF of X⋆ ∈ S grows as the number of its CPD parameters, i.e.,

as O(R∑pNp). This is largely inferior to N̄ = dim(T ) for small values of R.

On the other hand, computational and analytical difficulties arise when dealing with

the tensor rank, as discussed in Section 2.5.2. A formulation analogous to (6.5) seems here

even harder, as merely computing the rank of a tensor is already intractable. Also, unlike

the matrix case, the tensor nuclear norm introduced by Definition 2.18 is not a convex

underestimator of the rank [133]. Nevertheless, in [40] it is argued that minimizing the

nuclear norm still makes sense under the convex geometric framework they explore.

Another argument in favor of tensor nuclear norm minimization is given by [216], where

it is shown that the convex formulation

min
X∈T

‖X‖∗ subject to A(X) = y (6.13)

leads to sampling bounds of the form4 O(∑pNp
∏

q 6=p rankq(X
⋆) +

√

R̂N̄ polylog(
∑

pNp))

in TC with uniform sampling, with R̂ =
(
∑

pNp
∏

q 6=p rankq(X
⋆)
)1/2 (∑

pNp

)−1/2
. This

is suboptimal with respect to the DOF count above mentioned, but is still below the best

bounds known for the formulation based on multilinear rank (which we will present next).

For instance, when Rp = R and Np = N for all p (which we will henceforth call “balanced

model”), this yields O(PNRP−1 +NP/2R(P−1)/4 polylog(PN)).

As convincing as these arguments may sound, no efficient approach is currently known for

solving (6.13). A considerable obstacle is the fact that the nuclear norm is hard to compute

and even to approximate in a certain sense [87], but ways of sidestepping these difficulties

are currently under investigation, as we shall discuss in Section 6.3.3.3. We mention also

that the recent study [168] on convex relaxations for the tensor rank points at an interesting

direction. Yet, further work seems to be needed for reducing the involved computing cost.

3Recall that the adjoint A† of A satisfies 〈A(x),y〉 = 〈x,A†(y)〉 for all x ∈ R
N̄ and y ∈ R

M .
4The notation polylog(n) stands for a polylogarithmic function f(n) =

∑K
k=1 ak log

k(n) for some K.
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6.3.1.2 Formulation based on multilinear rank

The approaches proposed in this thesis to handle Problem 6.6 are based on the multilinear

rank introduced in Section 2.6. This amounts to taking S = Lr, where Lr is defined by

(2.117) and r = (R1, . . . , RP ) ∈ 〈N1〉 × · · · × 〈NP 〉 sets a component-wise bound for the

mrank. Such a subspace-based approach to parsimonious modeling allows us to promptly

resort to well-established and efficient computational matrix tools, unlike in the previously

described approach. Furthermore, it is justifiable for tensors which can be well approximated

by models of considerably low rank, meaning rank(X⋆) < Np for some5 p ∈ 〈P 〉, due to the

bound rankp(X
⋆) ≤ rank(X⋆) (see Lemma 2.46).

According to Remark 2.51, a tensor X⋆ is in Lr if and only if it can be written as a Tucker

model X⋆ = G×P
p=1U

(p) whose core G is in
⊗P

p=1R
Rp (and, evidently, U(p) ∈ R

Np×Rp).

Now, without loss of generality, one can constrain that model similarly to the HOSVD (see

Section 2.6.1.2), by requiring each U(p) ∈ R
Np×Rp to have orthonormal columns and each

mode-p unfolding of G to have mutually orthogonal rows. U(p) has thus RpNp−Rp(Rp+1)/2

DOF, where the subtracted term accounts for orthonormality of its columns. Similarly, G

has
∏

pRp −
∑

pRp(Rp − 1)/2 DOF. Altogether, this yields

Φ(r) ,
∏

pRp +
∑

pRp(Np −Rp) = O(
∏

pRp +
∑

pRpNp). (6.14)

In fact, Φ(r) corresponds precisely to the dimension of the manifold of tensors having mrank

r [123]. Visibly, it is much smaller than N̄ = dim(T ) for low enough values of Rp.

One recurrent formulation in this context, which we shall adopt here, is

min
X∈Lr

‖y −A(X)‖22 . (6.15)

Ideally, one would like to come up with a computationally efficient algorithm capable of

recovering any X⋆ ∈ Lr from M ≈ Φ(r) (sufficiently informative) measurements. Given

an instance of problem (6.15), we shall refer to the ratio θ , Φ(r)/M as its regime. In

general, as θ approaches zero, successful recovery becomes more likely, and thus small values

of θ correspond to favorable regimes. Conversely, the recovery performance of an algorithm

typically degrades as θ → 1. GivenM random measurements of a certain class (e.g., Gaussian

or Bernoulli), the interval ]0, θ0] in which perfect recovery is achieved with high probability

using a given algorithm is called its recovery regime for M with respect to this class.

6.3.2 Suitable measurement operators

In [146], it is shown that a certain nonconvex formulation permits perfect recovery (assuming

X⋆ ∈ Lr) by taking the optimal amount of O(R̄ +
∑

pNpRp) Gaussian measurements. Yet,

5As discussed in Section 2.5.2.2, the rank of a tensor can exceed all of its dimensions. For instance, the

smallest typical rank of a 8× 8× 8 real tensor is 24 [54]; hence a low-rank tensor might still have high modal

ranks if 8 < rank(X⋆) < 24.
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this result is valuable only as a theoretical reference, because that formulation is intractable.

Mimicking the LRMR theory, analytical tools have been developed for characterizing suitable

MOs in the analysis of tractable LRTR approaches, such as the following extension of RIP.

Definition 6.7 (RIP in the LRTR setting [165]). Let A : T 7→ R
M and r ∈ 〈N1〉×· · ·×〈NP 〉.

The r-RIC of A is the smallest positive real number δr such that

∀X ∈ Lr, (1− δr)‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δr)‖X‖2F . (6.16)

If δr < 1, then A is said to have the RIP of order r.

Still in [165], a result allowing the derivation of sampling bounds has been given, stating

that L-subgaussian MOs possess RICs satisfying δr < δ with probability at least 1− ε if

M ≥ Cδ−2 max
{
(RP + PNR) log(P ), log

(
ε−1
)}
, (6.17)

where N = maxpNp, R = maxpRp and C depends only on L. This class of MOs com-

prehends, e.g., Gaussian and Rademacher measurement ensembles. The same result is also

stated in their follow-up work [167], where it is claimed that the term PNR in (6.17) can be

refined to
∑

pNpRp. When Rp ≈ R for all p, this number of measurements is close to the

optimum, since for fixed δ and ε one has the bound M ≥ Mmin ≈ O(Φ(r)). More interest-

ingly in practice, [167, Theorem 4] shows also that partial Fourier measurements (combined

with random sign flips) satisfy δr < δ with probability greater than 1− 2e−η provided

M ≥ Cδ−1 (1 + η) log2(NP )max
{
(RP + PNR) log(P ), δ−1(1 + η) log2(NP )

}
. (6.18)

For the particular setting of TC, (in)coherence conditions have been proposed in [106]

for establishing the success of their approach. They can be seen as an extension of those

proposed in [28], requiring that there exists a mode p ∈ 〈P 〉 and a constant µ such that

µ
(

U (p)
)

≤ µ Rp

Np
, µ

(

V(p)
)

≤ µ Rp

N̄p
,
∥
∥
∥U(p)V(p)T

∥
∥
∥
H,∞
≤
√

µ
Rp

N̄
(6.19)

and
1

P
‖X⋆‖H,∞ ≤

√

µRp(min{Np, N̄p})−1, (6.20)

where U (p) = colspace(X〈p〉), V(p) = rowspace(X〈p〉), and U(p)Σ(p)V(p)T is the SVD of X〈p〉.

As in LRMR, the motivation is guaranteeing that any set of entries sampled uniformly at

random be sufficiently informative, which cannot work for sparse tensors.

6.3.3 Review of main approaches

In the following, we summarize the main existing LRTR techniques, except for the iterative

hard thresholding approach, which is the subject of Chapter 7.
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6.3.3.1 Solutions based on minimizing nuclear norms of matrix unfoldings

The first and perhaps most popular approach to date consists of minimizing or bounding a

weighted sum of nuclear norms (SNN) of matrix unfoldings. This idea, originally proposed

in [88, 135, 196], was motivated by the effectiveness of nuclear norm minimization in LRMR

and by the fact that it yields convex formulations. For these reasons, it was later employed

many times, as in [134, 181, 197].

Many variants of this approach have been devised. A commonly employed formulation is

min
X∈T

P∑

p=1

γp
∥
∥X〈p〉

∥
∥
∗ subject to A(X) = y, (6.21)

where the positive constants γp are weighting parameters. The approach proposed in [196,

195] considers the (more general) penalized version

min
X∈T

1

2λ
‖y −A(X)‖22 +

Q
∑

q=1

γq
∥
∥X〈pq〉

∥
∥
∗ (6.22)

in two cases:

(i) Q = 1 and p1 = p ∈ 〈P 〉. This actually amounts to solving an LRMR problem having

the mode-p unfolding as its target matrix.

(ii) Q = P and pq = q for all q ∈ 〈P 〉, which means that the nuclear norm of every flat

unfolding is included in the sum, just as in (6.21).

An ADMM algorithm is proposed in [195] for formulation (6.22). Its derivation starts by

considering the equivalent convex problem

min
X∈T

Z(q)∈RNpq×N̄pq

1

2λ
‖y −A(X)‖22 +

Q
∑

q=1

γq

∥
∥
∥Z(q)

∥
∥
∥
∗

︸ ︷︷ ︸

,J
(

X,{Z(q)}Q
q=1

)

subject to ∀ q, X〈pq〉 = Z(q),

(6.23)

whose augmented Lagrangian is given by

Lη

(

X, {Z(q)}Qq=1, {A(q)}Qq=1

)

= J
(

X, {Z(q)}Qq=1

)

+

Q
∑

q=1

(〈

A(q),X〈pq〉 − Z(q)
〉

+
η

2

∥
∥
∥X〈pq〉 − Z(q)

∥
∥
∥

2

F

)

, (6.24)

where η is called penalty parameter and the matrices A(q) ∈ R
Npq×N̄pq are estimates of

the Lagrangian multipliers [22, 152]. Note that Lη corresponds to the Lagrangian of the

cost function of (6.23) with an added quadratic term which “enforces” the constraint (or



118 Chapter 6. From compressive sensing to low-rank tensor recovery

Algorithm 6.1 ADMM algorithm for LRTR based on SNN minimization approach [195].

Inputs: Initial estimate x0 = vec(X0), vector of measurements y, matrix A ∈ R
M×N̄ such that A(X) =

A vec(X) and parameters γq, λ and η

Output: Estimate of X⋆

1: k ← 0

2: repeat

3: xk+1 =
(

ATA+QληIN̄
)−1

(

ATy + λη
∑Q

q=1 Π
T
pq

(

z
(q)
k − 1

η
a
(q)
k

))

4: for q = 1, . . . , Q do

5: z
(q)
k+1 = vec

[

prox
‖·‖∗
γq/η

(

unvecNpq×N̄pq

(

Πpqxk+1 +
1
η
a
(q)
k

))]

6: for q = 1, . . . , Q do

7: a
(q)
k+1 = a

(q)
k + η

(

Πpqxk+1 − z
(q)
k+1

)

8: k ← k + 1

9: until the stopping criterion is fulfilled

10: return X̂
⋆
= unvecN1×···×NP

(xk)

“strengthens” convexity). The idea is then to solve the optimization problem by searching

for a saddle point of Lη, which characterizes the solution of (6.23). To this end, one must

simultaneously minimize Lη with respect to X and Z(q) and maximize it with respect to

A(q). In ADMM, this is done iteratively in an alternating fashion, via the scheme

(i) Xk+1 = argmin
X∈T

Lη

(

X, {Z(q)
k }

Q
q=1, {A

(q)
k }

Q
q=1

)

,

(ii) Z
(q)
k+1 = argmin

Z(q)∈RNpq×N̄pq

Lη

(

Xk+1, {Z(q)}Qq=1, {A
(q)
k }

Q
q=1

)

, q = 1, . . . , Q,

(iii) A
(q)
k+1 = A

(q)
k + η

(

(Xk+1)〈pq〉 − Z
(q)
k+1

)

, q = 1, . . . , Q.

Note that the third equation can be interpreted as a gradient ascent step of size η.

The resulting scheme is given in Algorithm 6.1. For concreteness, it is presented in terms

of vectorizations of X, Z(q) and A(q), denoted by x, z(q) and a(q), respectively. The linear

operator A is represented by a matrix A ∈ R
M×N̄ such that A(X) = Ax. We employ the

symbol prox
‖·‖∗
β to denote the proximity operator of the matrix nuclear norm, defined as [48]

prox
‖·‖∗
β (W) , argmin

T

β‖T‖∗ +
1

2
‖W −T‖2F , (6.25)

which arises at step (ii). It can be shown that the solution of (6.25) is given by the soft

singular value thresholding operator prox
‖·‖∗
β (W) = U(Σ − βI)+VT , where W = UΣVT

is the SVD of W and (·)+ projects each component of its argument onto R+. Finally,

Πp ∈ R
N̄×N̄ denotes the permutation matrix which satisfies for all p ∈ 〈P 〉

Πpx = Πp vec(X) = Πp vec(X〈1〉) = vec(X〈p〉) ⇔ ΠT
p vec(X〈p〉) = x. (6.26)
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It is evident that the products ATA and ATy can be precomputed in order to reduce the

overall load. However, this comes at the price of storing a matrix having N̄2 entries, and still

demands a large number of operations to initialize the algorithm. Thus, for unstructured

operators, Algorithm 6.1 quickly becomes too costly as N̄ grows. When tackling a TC

problem, one can of course reduce this burden by rewriting line 3 as6

[xk+1]n =







([x⋆]n + λη[vk+1]n) /(1 +Qηλ), n ∈ Ω

1
Q [vk+1]n, n /∈ Ω

(6.27)

where x⋆ = vec(X⋆) and

vk+1 ,

Q
∑

q=1

ΠT
pq

(

z
(q)
k −

1

η
a
(q)
k

)

. (6.28)

In [195], special attention is paid to the case where λ → 0, since then (6.22) becomes

equivalent to (6.21) (with P = Q and pq = q). In that scenario, (6.27) can be simplified to

[xk+1]n =







[x⋆]n, n ∈ Ω

1
Q [vk+1]n, n /∈ Ω.

(6.29)

Let us describe some theoretical results pertaining to this approach. Recovery guarantees

were given in [197] considering formulation (6.22). For fixed P , they certify success (in the

noiseless case) as soon as O(maxpRpN̄p) Gaussian measurements are taken (assuming all

unfoldings are involved in the SNN term). For instance, for the balanced model, this yields

O(RNP−1). More recently, [146] has shown that such a number of Gaussian measurements

is actually necessary for recovery via this approach.

In an attempt to reduce the gap with respect to the optimal rate of O(Φ(r)) measure-

ments, [146] proposed minimizing the nuclear norm of a single matrix unfolding having

“more balanced” dimensions (i.e., as close as possible to being square). With respect to the

balanced model, for example, one should then choose X[q] with q = ⌊P/2⌋, which allows

reaching sampling bounds growing as O(R⌊P
2
⌋N ⌈P

2
⌉) for Gaussian measurements. Despite

the progress, this bound still grows much faster than Φ(r) and only brings improvement for

P > 3. Also, the optimal choice of unfolding generally depends not only on the dimensions

Np, but also on the mrank components Rp, which are generally not known beforehand.

Still in the realm of convex SNN-based approaches, robust principal component analysis

(PCA) techniques are extended to a TC setting in [106], relying on an underlying model

which consists of a sum of a low-mrank tensor plus a sparse one. With this approach,

[106] states the first recovery guarantees for TC, which apply to the balanced model with

O(µRNP−1P 2 log2(NP−1)) measurements, where µ is the same constant of (6.19)–(6.20).

6Here, with some abuse of notation, we also denote by Ω ⊂ 〈N̄〉 the set of indices associated with the

multi-indices (n1, . . . , nP ) of the entries sampled by A, according to the ordering defined by the vec(·) operator
(see Section 2.2).
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6.3.3.2 Modal unfolding factorization approach

An approach based on matrix factorization is proposed in [213] for TC, extending the method

of [212] employed in the context of matrix recovery. Its formulation is written as

min
X∈T

A(p)∈RNp×Rp

B(p)∈RN̄p×Rp

P∑

p=1

αp

2

∥
∥
∥A(p)B(p)T −X〈p〉

∥
∥
∥

2

F
subject to A(X) = y, (6.30)

where
∑

p αp = 1 and the modal ranks R1, . . . , RP are fixed a priori. One thus per-

forms a simultaneous low-rank factorization of the estimate’s mode-p unfoldings. To tackle

problem (6.30), the algorithm given in [213], named tensor completion by parallel matrix

factorization (TMac), relies on a simple alternating minimization procedure which cyclically

updates A(1), . . . ,A(P ), B(1), . . . ,B(P ) and X via conditional least-squares estimates.

An important aspect of formulation (6.30) is how to choose adequate values for the modal

ranks Rp. While too low values might not allow accurate reconstruction of a given tensor,

setting these ranks too high with respect to the number of available measurements also

degrades estimation performance. Yet, in general one does not know in advance which values

sit in between these two extremes. To deal with this issue, [213] employs a rank adaptation

scheme which either (i) starts off with an underestimated value for each Rp, increasing each of

them throughout the iterations when slow progress is detected with respect to its associated

mode or (ii) starts from overestimated values for the ranks and decreases each one of them

if a significant gap is found between two consecutive eigenvalues of (Â
(p)
k )T Â

(p)
k , where Â

(p)
k

is the estimate of A(p) produced at iteration k. See [213] for details on this heuristic.

In addition to modal ranks, the weights αp in (6.30) should ideally be set based on

knowledge of the relative parsimony of each modal unfolding, which often is not available.

Hence, an adaptive scheme for estimating these weights is also proposed in [213]. The idea

is to set them according to the error contained in each factorization, essentially by assigning

larger values to the modes whose unfoldings best fit their corresponding factorizations.

No recovery results are provided in [213]; only a convergence proof (to a local minimum)

is developed.

6.3.3.3 Algorithms based on tensor rank

Despite the predominance of the mrank-based approach of Section 6.3.1.2, some (few) works

have been devoted to attacking Problem 6.6 from a CPD-oriented perspective.

Recall from Section 3.3.1.1 that a standard method for computing the CPD consists in

estimating the best factors in the least-squares sense. A simple way of addressing the TC

problem thus consists in formulating a weighted least-squares criterion where the weight of

each particular entry is either unitary or null, depending on whether it is observed or not.
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This approach is suggested in [24], and a second-order optimization algorithm based on the

Levenberg-Marquardt method [143] is proposed on its basis in [194]. Later, [1] followed the

same idea but derived a first-order algorithm, aiming at completing large-scale tensors. Note

that this approach requires choosing the rank R, and is subject to facing problems related

to the non-existence of a best rank-R approximation (see Section 2.5.2.5).

A block coordinate descent algorithm is proposed in [214] to deal with the case in which

the factor matrices are nonnegative. Interestingly, a best rank-R approximation always exists

under this constraint [132]. The resulting algorithm draws upon the alternating proximal

gradient method and resorts also to an extrapolation technique in order to accelerate con-

vergence. A proof of its convergence is provided in [214].

Another method proposed in [194] employs a single imputation technique combined with

the ALS algorithm. The idea is fairly simple: at each iteration, one updates the factors after

filling the missing data with the values provided by the most recent model estimate (i.e., in

light of the current factor estimates). This can be seen as a special case of the celebrated

expectation minimization method [118, 71].

Quite recently, [215, 43] have adopted a different strategy, resorting to the conditional

gradient (CG) algorithm7 [86] and to the generalized CG algorithm [99], respectively. The

work in [215] addresses the TC problem via the formulation

min
X∈T

1

2
‖y −A(X)‖22 subject to ‖X‖∗ ≤ β, (6.31)

where β > 0. At each kth iteration of their algorithm, one first solves

Sk = argmin
‖X‖∗≤β

〈∇J(Xk),X〉 = −β argmax
‖X‖∗≤1

〈∇J(Xk),X〉 . (6.32)

As the functional maximized in the above expression is, by definition, the dual of the nuclear

norm, i.e., the tensor spectral norm (see Section 2.3.2), we can write

Sk = − β
P⊗

p=1

u(p), where
(

u(1), . . . ,u(P )
)

= argmax
‖u(p)‖2≤1

〈

∇J(Xk),
P⊗

p=1

u(p)

〉

. (6.33)

Hence, the difficulty of dealing with the nuclear norm is circumvented by rewriting subprob-

lem (6.32) in terms of a rank-one approximation problem, for which efficient approximation

methods exist (see, e.g., [182] and references therein). Once Sk is obtained, the update

Xk+1 = (1 − αk)Xk + αkSk is calculated, where αk is some chosen step size. Though [215]

empirically shows the effectiveness of this scheme, no recovery results are derived.

The approach of [43], in its turn, relies on the penalized formulation

min
X∈T

1

2
‖y −A(X)‖22 + λ‖X‖∗, (6.34)

7Also known as Frank-Wolfe algorithm.
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where λ > 0 is a regularization constant. Following the generalized CG method, one com-

putes at each iteration

Sk ∈ argmax
‖Z‖∗≤1

〈∇J(Xk),Z〉 (6.35)

and then calculates the iterate Xk+1 = (1− αk)Xk + αkβkSk, where 0 < αk ≤ 1 and βk is a

scaling factor computed in an optimal fashion. Similarly to the above described algorithm,

this allows leveraging rank-one approximation methods in order to compute Sk. Specifically,

[43] uses a method which approximates the spectral norm of a tensor by the maximum

spectral norm possessed by one of its matrix slices, i.e., subtensors in which only two indices

vary and all others are fixed. Sampling bounds for Gaussian measurements are then derived

on the basis of a result obtained by [146]. Yet, these sampling bounds involve a factor of the

form N̄p (which yields NP−1 in the balanced model), and thus are quite disappointing when

compared with the number of DOF of the underlying CPD model, which is O(R∑pNp).

6.3.3.4 Other approaches

Among other works which have been devoted to LRTR, we can mention the efforts to handle

TC via Riemannian optimization techniques, by exploiting the smooth manifold structure

of sets of low-mrank tensors. Namely, both [112, 123] develop nonlinear conjugate gradient

algorithms for reconstructing low-mrank tensors with missing data, essentially by relying on

the Tucker model. A detailed explanation of these approaches is out of the scope of this

thesis, as it requires introducing Riemannian geometry concepts.

Recent works have also exploited the so-called hierarchical tensor (HT) representation8

[95, Chapter 11]. Specifically, [55] addresses the TC problem by profiting from the smooth

manifold structure of the set of tensors having fixed rank with respect to that representation

[205]. The TC problem is also tackled in [92] by means of the tensor train model, which

is a particular case of the HT representation. When the representation rank of that model

has components bounded by R, its number of DOF grows (with respect to the balanced

model) as O(PR2N), making it attractive for large P and small R. Indeed, the use of HT

representations is generally advocated on the basis that it scales better with P than Tucker-

based approaches, which involve a P th-order core, whilst still avoiding typical conceptual

and computational problems associated with CPD-based ones [95].

8The expression “hierarchical Tucker representation” is also used [205].



Chapter 7

Iterative hard thresholding for

low-rank tensor recovery

Iterative hard thresholding (IHT) has been proven an effective approach for parsimonious sig-

nal recovery. In this chapter, we first review the theoretical underpinnings of this technique

and its application to CS and LRMR. Then, we propose an IHT algorithm for LRTR which

employs sequential modal SVD truncation as its thresholding operator. This operator is

more computationally efficient than currently used alternatives and allows deriving recovery

guarantees by relying solely on restricted isometry constants. A step size selection heuris-

tic is then developed for accelerating convergence. When recovering realistic data, further

acceleration and robustness with respect to mrank overestimation are obtained by a contin-

uation technique that estimates a sequence of increasingly complex models. Comprehensive

numerical experiments are presented, corroborating the relevance of our contributions.
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7.1 Iterative hard thresholding (IHT)

IHT is a simple and effective technique for the recovery of parsimonious signals from un-

dercomplete measurements, having being successfully applied in CS, LRMR and LRTR

[16, 109, 165, 192, 217]. Its rationale is as follows. In an arbitrary finite-dimensional in-

ner product space H endowed with a scalar product 〈·, ·〉, one poses

min
x∈S

J(x) = min
x∈S
‖y −A(x)‖22 , (7.1)
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where A : H 7→ R
M is a linear operator, ‖x‖22 , 〈x, x〉 and the set S ⊂ H contains the

parsimonious elements of interest. This set is typically nonconvex, closed and nonempty.

The basic idea of IHT is then to generate iterates of the form

xk ∈ PS
(

xk−1 −
µk
2
∇J(xk−1)

)

, with ∇J(x) = −2 A
† (y −A(x)) , (7.2)

where µk > 0 is some chosen step size and PS denotes1 the (orthogonal) projector onto

S. Because S is possibly nonconvex, PS(x) = argminz∈S ‖x − z‖22 generally yields a set

(which is nonempty by the extreme value theorem, since S is closed and nonempty). In

practice, whichever the chosen xk satisfying (7.2) is, convergence and recovery guarantee

results usually remain the same.

The iterates in (7.2) resemble the projected gradient (or projected Landweber) algorithm,

which is a convex optimization method [48]. Interestingly, it turns out that they apply to (7.1)

even for nonconvex S, due to the form of J(x). The explanation relies on the majorization-

minimization technique [17], which consists in minimizing at iteration k the functional

Jk(x) = µkJ(x) + ‖x− xk−1‖22 − µk ‖A(x− xk−1)‖22 (7.3)

over S for some value of µk such that Jk(x) > µkJ(x) for all x 6= xk−1. Such a µk always

exists: as H is finite-dimensional and thus ‖A‖ is bounded,2 one can take µk < ‖A‖−1.

Clearly, if xk ∈ argminx∈S Jk(x) and xk 6= xk−1, then µkJ(xk) < Jk(xk) ≤ Jk(xk−1) =

µkJ(xk−1), thus achieving objective function reduction.

So, the question is how to compute such a xk. Expanding J(x) in (7.3), we have

Jk(x) = ‖x− xk−1‖22 − 2µk〈A†(y −A(xk−1)), x〉 − µk‖A(xk−1)‖22 + µk‖y‖22. (7.4)

The expression in (7.4) is strictly convex, and hence its (unique) unconstrained minimum is

straightforwardly obtained by solving J ′
k(x) = 0, which gives

x⋆k , argmin
x∈H

Jk(x) = xk−1 + µkA
†(y −A(xk−1)) = xk−1 −

µk
2
∇J(xk−1). (7.5)

The crucial point is that, because the quadratic term in x of J(x) is canceled out in Jk(x),

the latter has circular level curves, and thus argminx∈S Jk(x) = PS (x⋆k) for any nonempty

closed set S. This result is shown below, generalizing the one we have given in [66].

Proposition 7.1. Let S ⊂ H be a closed nonempty set. Then, PS(x
⋆
k) is the set of mini-

mizers of Jk(x) over S, where x⋆k is given by (7.5).

Proof. Since S is closed and nonempty, Jk is continuous and Jk(x)→∞ for ‖x‖2 →∞, Jk

admits at least one minimum in S. Also, for any x ∈ S, we can write x = x⋆k + z for some

1This notation will be repeatedly used throughout this chapter.
2The symbol ‖ · ‖ denotes here the operator norm of A.
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z ∈ H and then express Jk as

Jk(x
⋆
k + z) = Jk(x

⋆
k) + ‖z‖22 + 2〈z, x⋆k − xk−1〉 − 2µk〈A(z),y −A(xk−1)〉 (7.6)

= Jk(x
⋆
k) + ‖z‖22 + 2〈z, x⋆k − xk−1〉+ 2

〈

z,
µk
2
∇J(xk−1)

〉

(7.7)

= Jk(x
⋆
k) + ‖z‖22, (7.8)

where the last equality follows directly from (7.5). Hence, as z = x− x⋆k, we have

argmin
x∈S

Jk(x) = argmin
x∈S

‖x− x⋆k‖22 = PS(x
⋆
k). (7.9)

This simplicity is precisely the benefit of iteratively minimizing Jk(x) rather than J(x).

7.1.1 Application to compressive sensing and low-rank matrix recovery

Formulation (7.1) applies to CS with H = R
N and S = Ss, as defined in Section 6.1.2. Note

that Ss is not convex, since u,v ∈ Ss generally implies αu + (1 − α)v ∈ S2s for α ∈ (0, 1).

The iterates thus have the form

xk+1 = Hs

(
xk + µkA

T (y −Axk)
)
, (7.10)

where Hs : R
N 7→ Ss projects a vector onto its best s-sparse approximation by zeroing

all but its components of largest magnitude. As multiple best approximations may exist

(for instance, |PSs(1)| =
(
N
s

)
), an arbitrary Hs(x) ∈ PSs(x) is picked. Hs is called a hard

thresholding operator.

By imposing certain RIC bounds on A, recovery results such as the following one can be

derived. In particular, it implies linear convergence to the sought solution in the ideal case

where x⋆ is s-sparse and there is no measurement error.

Theorem 7.2 (Performance bound for IHT [85, Theorem 6.18]). Suppose A ∈ R
M×N has

a 3s-RIC bounded as δ3s < 1/
√
3 ≈ 0.5773. Then, if y = Ax⋆ + e, the iterates (7.10) satisfy

‖xk − x⋆
s‖2 ≤ γk‖x0 − x⋆

s‖2 + τ‖A(x⋆ − x⋆
s) + e‖2 (7.11)

for µk = 1, where γ =
√
3 δ3s < 1, τ ≤ 2.18/(1− γ) and x⋆

s = Hs(x
⋆).

In analogy with (7.10), IHT can be applied to LRMR with H = R
N1×N2 and S = LR by

iteratively computing

Xk+1 = HR

(

Xk + µkA
† (y −A(Xk))

)

, (7.12)

where HR : RN1×N2 7→ LR delivers a best rank-R approximation of a matrix, LR being

defined as in Section 6.2.1. From Eckart-Young’s theorem [76], it can be computed through

HR(X) =
R∑

r=1

σrurv
T
r , where X =

min{N1,N2}∑

n=1

σnunv
T
n (7.13)
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is the SVD of X, with σ1 ≥ σ2 ≥ · · · ≥ σmin{N1,N2}. If σR = · · · = σR+d, with d ∈
〈min{N1, N2} −R〉, then HR delivers one of the multiple best approximations ofX. Similarly

to (7.11), performance bounds of the form

‖X⋆ −Xk‖F ≤ ξk‖X⋆ −X0‖F +
γ

1− ξ ‖e‖2 (7.14)

are derived in [125] under RIP assumptions, with both ξ and γ depending on δ2R and δ3R.

Unfortunately, though, no recovery guarantees exist for IHT in the matrix completion setting.

7.1.2 Application to tensor recovery based on multilinear rank

Consider now H = T ,
⊗P

p=1R
Np and S = Lr (as defined by (2.117)). Recall from

Section 2.6.2 that, though computing projections onto Lr is NP-hard, efficient approximate

methods exist. The truncated HOSVD described in Section 2.6.2.1, in particular, is quasi-

optimal (in the sense of (2.120)) and has moderate computing cost. This has motivated its

use in the tensor iterative hard thresholding (TIHT) algorithm [165], whose iterates read

Xk+1 = Hr(Vk), Vk , Xk + µkA
† (y −A(Xk)) , (7.15)

where Hr : T 7→ Lr outputs the HOSVD of its argument truncated at mrank r and

µk =
‖∇J(Xk)‖2F
‖A(∇J(Xk))‖2F

. (7.16)

Later on, the same authors have proposed in [167] the normalized tensor iterative hard

thresholding (NTIHT) algorithm whose step size is given by

µk =
‖Gk‖2F
‖A(Gk)‖2F

, Gk = ∇J(Xk)
P×

p=1

U
(p)
k U

(p)
k

T
(7.17)

where the orthogonal matrices U
(p)
k are bases for the modal subspaces of Xk which are

obtained in the application of THOSVD at iteration k − 1.

Although the effectiveness of TIHT and NTIHT was experimentally shown, recovery

results based solely on typical RIP conditions are still lacking. The best known one in this

sense is as follows.

Theorem 7.3 (Performance bound of NTIHT [167, Theorem 1]). Put a ∈ (0, 1) and let A

be an MO possessing a 3r-RIC satisfying δ3r < a/(a + 8), where 3r = (3R1, . . . 3RP ). Let

X⋆ ∈ Lr. Then, given measurements y = A(X⋆) + e, if

‖Xk −Vk‖F ≤ (1 + ε(a)) ‖X⋆ −Vk‖F , (7.18)

where ε(a) = a2(1− δ3r)2(17(1− δ3r +
√
1 + δ2r‖A‖2))−2, then for all k we have

‖X⋆ −Xk+1‖F ≤ ak‖X⋆ −X0‖F +
b(a)

1− a‖e‖2, (7.19)

where b(a) = 2
√
1+δ3r
1−δ3r

+
√

4ε(a) + 2ε(a)2 1
1−δ3r

‖A‖2.
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Though a heuristic justification is given in [167] for condition (7.18), it cannot be guar-

anteed in general because the THOSVD is quasi-optimal by a factor
√
P , whereas ε(a) ≈ 0.

A similar scheme called minimum n-rank approximation (MnRA) is proposed in [217].

However, as it uses a convex combination of truncated SVDs in lieu of the hard thresholding

operator, no projection onto Lr is performed. Given nonnegative weights wp satisfying
∑

p∈〈P 〉wp = 1, this operator, denoted here by Cr, is defined as

Cr (X) =
P∑

p=1

wpZp such that (Zp)〈p〉 = HRp

(
X〈p〉

)
, (7.20)

in which HRp is the same of (7.13). The step size of MnRA is fixed, thus yielding iterates

Xk+1 = Cr

(

Xk + µ A
† (y −A(Xk)

)

. (7.21)

Although Xk /∈ Lr in general, convergence to the true estimate in the ideal case has been

shown in [217] under RIP conditions. For convenience, this result is reproduced below.

Theorem 7.4 (Performance bound of MnRA [217, Theorem 4.2]). Let A be an MO with

RICs δr̄p < 1 for all p ∈ 〈P 〉, where r̄p , (N1, . . . , Np−1, 3Rp, Np+1, . . . , NP ). Let also

X⋆ ∈ Lr and y = A(X⋆) + e and assume 3/4 < µ < 5/4. If maxp δr̄p < τ , then MnRA

satisfies

∀ k, ‖X⋆ −Xk‖F ≤ 2−k‖X⋆ −X0‖F + 2C‖e‖2, (7.22)

where C = 2µ
√
1 + τ and τ = 1/4−|1−µ|

µ(1+⌈maxp Np/Rp⌉) .

Unlike Theorem 7.3, this result does not involve a restrictive assumption such as (7.18).

Yet, it is not satisfying from a sampling efficiency standpoint, because A can only have a

RIC δr̄p < 1 if M ≥ Mmin = O(RpN̄p) (e.g., O(RNP−1) for the balanced model having

Rp = R and Np = N for all p), which grows way more quickly than Φ(r) (see (6.14)).

7.2 An IHT algorithm based on sequentially optimal modal

projections

Recall from Section 2.6.2.2 that the SeMP operator, denoted by Sr, is an alternative to

THOSVD which consists in computing a chain of sequentially optimal modal projections of

the argument. We propose here to employ it in the context of the IHT method, which yields

Xk = Sr

(

Xk−1 + µkA
† (y −A(Xk−1))

)

. (7.23)

In this equation, Sr is applied with the modes ordered as π = (p1, p2, . . . , pP ), where π is

some permutation of (1, . . . , P ), referred to as the modal projection ordering (MPO). The

above scheme gives rise to the SeMP-based iterative hard thresholding (SeMPIHT) algorithm,

which is laid out in Algorithm 7.1.
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Algorithm 7.1 SeMPIHT algorithm: sempiht(X0,y,A,r,Kmax,ǫ).

Inputs: Initial solution X0, measurement vector y, measurement operator A, target mrank

r, maximum number of iterations Kmax, tolerance ǫ

Outputs: Estimated tensor X̂
⋆
and used number of iterations K

1: for k = 1, . . . ,Kmax do

2: Gk ← A† (y −A(Xk−1))

3: compute step size µk using either ISS (see Section 7.3.2) or formula (7.17)

4: compute Xk ← Sr (Xk−1 + µkGk) using Algorithm 2.1

5: if criterion (7.48) is satisfied then

6: break

7: return X̂
⋆ ← Xk and K ← k

7.2.1 Comparison with previous approaches

Clearly enough, the hard thresholding operator employed in an IHT algorithm has a major

impact on its convergence speed, computing cost and recovery effectiveness. We thus compare

the operators of SeMPIHT, TIHT and MnRA according to the following criteria.

1) Approximation accuracy. As seen in Sections 2.6.2.1 and 2.6.2.2, both Hr and Sr

are quasi-optimal by a factor
√
P . In fact, our practical experience is consistent with the

observations reported in [209], in that ‖X−Sr(X)‖F < ‖X−Hr(X)‖F holds in most observed

cases. MnRA’s operator Cr, in its turn, satisfies

‖X− Cr(X)‖F =
∥
∥
∥
∑P

p=1wp (X− Zp)
∥
∥
∥
F
≤∑P

p=1wp ‖X− Zp‖F
≤∑P

p=1wp ‖X−Xr‖F = ‖X−Xr‖F

for all Xr ∈ PLr
(X), where the second inequality comes from the fact that (Zp)〈p〉 is the

best rank-Rp approximation of X〈p〉. This perhaps surprising result is explained by the fact

that Cr is not really a projection onto Lr, due to the (weighted) sum of projections which

are low-rank only with respect to one mode.

2) Computing cost. Both Hr and Cr require computing the SVD of each unfolding X〈p〉.

Assuming it takes O(N1N2min{N1, N2}) operations to compute the SVD of a N1 × N2

matrix,3 applying Hr requires

O





P∑

p=1

NpN̄pmin{Np, N̄p}



+O





P∑

p=1

R1 . . . RpNp . . . NP



+O





P∑

p=1

N1 . . . NpRp . . . RP





(7.24)

3In principle, the first R terms can be computed with O(RN1N2) operations [97]. Yet, in our experience,

optimized classical algorithms delivering the whole SVD, such as that of LAPACK, are usually faster.
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operations, where the first sum is the cost of the SVDs and the second one comes from the

projection onto the dominant modal subspaces (see (2.124)). The latter is broken down into

two terms because it is faster to fist compute the R1 × · · · × RP core of the THOSVD, and

then reconstruct the full tensor. Overall, the cost is dominated by the first sum of (7.24).

Similarly, applying Cr demands

O
(
∑

pNpN̄pmin{Np, N̄p}
)

+O(PN̄) (7.25)

operations, where the first term is related to the SVDs, and the second one to the convex

combination of (7.20). Though (7.24) and (7.25) are asymptotically equivalent, Cr is less

costly in practice due to the difference between the second terms of these expressions.

As seen in Section 2.6.2.2, the cost of applying SeMP is

O





P∑

p=1

NpLpmin{Np, Lp}



+O





P∑

p=1

R1 . . . RpNp . . . NP



+O





P∑

p=1

N1 . . . NpRp . . . RP



 .

(7.26)

Comparing the first term of (7.26) with those of (7.24) and (7.25), it is seen that Sr is less

costly than Hr and Cr, which is due to the dimensionality reduction performed at each step

of Algorithm 2.1.

3) Analytical tractability. Theorem 7.3 states a partial recovery result which applies to

TIHT. Unfortunately, it relies upon a condition which cannot be assured a priori. MnRA,

in its turn, enjoys the RIC-based performance bound of Theorem 7.4, despite the fact that

in general Cr(X) /∈ Lr. This result, however, leads to suboptimal sampling bounds. At this

point, it is not clear whether a similar (suboptimal) result based only on RIC assumptions

can be derived for TIHT. In particular, note that

∀ p, (Hr(X))〈p〉 /∈ argmin
rank(W)≤Rp

‖W −X〈p〉‖F . (7.27)

In contrast, the sequential optimality of the modal projections performed by SeMP allows

establishing RIC-based performance bounds, as we will show next.

7.2.2 Performance bound

This section establishes recovery results for SeMPIHT, under the standard assumption that

A has sufficiently low RICs. We first state two important lemmata, and then proceed to our

main result, which is inspired by (but simpler than) that of [217].

Lemma 7.5. Let U(p) ∈ VRp(R
Np), p ∈ 〈P 〉, and define

U =
{

X : X = G×1 U
(1) ×2 · · · ×P U(P ) for some G ∈ R

R1×···×RP

}

⊂ Lr, (7.28)
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with r = (R1, . . . , RP ). Denote AU = APU , where PU is the orthogonal projector onto U ,
and assume A has a RIC δr < 1. Then, ‖A†

UAU −I‖ ≤ δr, where I is the identity over T .

Proof. Our proof is an extension of the argument supporting [85, Eq. (6.2)] (given in the

context of CS). Consider X ∈ U , for which AU (X) = A(X). By definition of δr, we deduce

‖AU (X)‖2F − ‖X‖2F ≤ δr‖X‖2F . Rewriting the left-hand side of this inequality, we obtain

〈AU (X),AU (X)〉 − 〈X,X〉 = 〈(A†
UAU −I)(X),X〉 ≤ δr‖X‖2F . (7.29)

Assuming that ‖X‖F 6= 0, dividing by ‖X‖2F and taking the maximum with respect to

X ∈ U \{0} yields

max
X∈U\{0}

‖AU (X)‖2F
‖X‖2F

− 1 = max
X∈U\{0}

〈(A†
UAU −I)(X),X〉
‖X‖2F

≤ δr. (7.30)

Now, note that for any Z ∈ T , ‖AU (Z)‖2F = ‖AU (PU (Z))‖2F and ‖Z‖2F ≥ ‖PU (Z)‖2F .
Consequently, the maximum must be the same over the whole space, because

max
Z 6=0

‖AU (Z)‖2F
‖Z‖2F

≤ max
Z 6=0

‖AU (PU (Z))‖2F
‖PU (Z)‖2F

= max
X∈U\{0}

‖AU (X)‖2F
‖X‖2F

,

and therefore (7.30) implies

max
Z 6=0

〈(A†
UAU −I)(Z),Z〉
‖Z‖2F

≤ δr. (7.31)

Finally, since A†
UAU −I is self adjoint, the left-hand side of the above expression is precisely

the definition of its operator norm, and thus the proof is complete.

The next lemma is an extension of [85, Lemma 6.20] (which also applies to CS).

Lemma 7.6. If U ⊆ Lr and A has a RIC δr < 1, then for all e ∈ R
M we have

‖PUA
†(e)‖F ≤

√

1 + δr‖e‖2. (7.32)

Proof. We assume ‖PUA†(e)‖F 6= 0 (otherwise the result is trivial) and start by deriving

‖PUA
†(e)‖2F = 〈PUA

†(e),PUA
†(e)〉 = 〈e,APUA

†(e)〉 ≤ ‖e‖2‖APUA
†(e)‖2. (7.33)

Now, by definition of δr, ‖APUA†(e)‖F ≤
√
1 + δr‖PUA†(e)‖F . Combining this inequality

with (7.33) and dividing both sides by ‖PUA†(e)‖F yields the desired result.

Theorem 7.7 (Performance bounds for SeMP). Let X⋆ ∈ T and y = A(X⋆) + e. If A

has a RIC δr̄p < 2−P , where r̄p = (N1, . . . , Np−1, 3Rp, Np+1, . . . , NP ), then the scheme (7.23)

applied with fixed step size µk = 1 and MPO π = (p, p2, . . . , pP ) satisfies after k iterations:

‖X⋆
r −Xk‖F ≤ ξk‖X⋆

r −X0‖F +
2P
√

1 + δr̄p
1− ξ ‖A(X⋆ −X⋆

r) + e‖2 , (7.34)
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where ξ = 2P δr̄p < 1 and X⋆
r ∈ PLr

(X⋆) = argminZ∈Lr

‖X⋆ − Z‖F , with r = (R1, . . . , RP ).

If the step size formula (7.17) is used, then (7.34) holds with δr̄p < 1/(2P+1 + 1) and

ξ = supk 2
P (|1− µk|+ µkδr̄p) < 1.

Proof. For simplicity, we assume, without loss of generality, π = (p, p2, . . . , pP ) =

(1, 2, . . . , P ). To describe the computation of Sr at each iteration, we use the notation:

V0 = Xk−1 + µkA
† (y −A(Xk−1)) (7.35)

= Xk−1 + µkA
†
A(X⋆

r −Xk−1) + µkA
†(A(X⋆ −X⋆

r) + e), (7.36)

(Vp)〈p〉 = HRp

(

(Vp−1)〈p〉

)

, where HRp is as defined in (7.13), and Xk = Sr(V0) = VP . The

result is then obtained by bounding the errors of the approximations V1, . . . ,VP . First, note

that

(Vp)〈p〉 ∈ argmin
rank(Z)≤Rp

∥
∥Z− (Vp−1)〈p〉

∥
∥
F

=⇒ ∀Z ∈ Lr, ‖Vp −Vp−1‖F ≤ ‖Z−Vp−1‖F ,

which, together with X⋆
r ∈ Lr, implies

‖X⋆
r −Vp‖F ≤ ‖X⋆

r −Vp−1‖F + ‖Vp −Vp−1‖F ≤ 2 ‖X⋆
r −Vp−1‖F . (7.37)

Therefore, as Xk = VP , iterating over this inequality for p = 2, . . . , P , we deduce

‖X⋆
r −Xk‖F ≤ 2P−1 ‖X⋆

r −V1‖F . (7.38)

Now, to bound ‖X⋆
r −V1‖F , we employ the same reasoning as in [89, Lemma 4.1]. Let

U =
{

Z : colspace
(
Z〈1〉

)
⊂ colspace

(

(X⋆
r)〈1〉

)

∪ colspace
(

(V1)〈1〉

)

∪ colspace
(

(Xk−1)〈1〉

)}

,

so that X⋆
r,V1,Xk−1 ∈ U ⊂ Lr̄1 . We thus have

‖V1 −V0‖2F = ‖PU (V1 −V0)‖2F + ‖PU⊥ (V1 −V0)‖2F (7.39)

= ‖PU (V1 −V0)‖2F + ‖PU⊥ (V0)‖2F (7.40)

and also

‖V1 −V0‖2F ≤ ‖X⋆
r −V0‖2F = ‖PU (X⋆

r −V0)‖2F + ‖PU⊥ (V0)‖2F , (7.41)

which follows from (V1)〈1〉 = HR1

(

(V0)〈1〉

)

and X⋆
r ∈ Lr ∩ U . Combining (7.40) and (7.41),

we obtain

‖V1 −PU (V0)‖F = ‖PU (V1 −V0)‖F ≤ ‖PU (X⋆
r −V0)‖F = ‖X⋆

r −PU (V0)‖F . (7.42)
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Hence, using the above equation and (7.35), we have

‖X⋆
r −V1‖F ≤ ‖X⋆

r −PU (V0)‖F + ‖V1 −PU (V0)‖F
≤ 2 ‖X⋆

r −PU (V0)‖F = 2 ‖PU (X⋆
r −V0)‖F

= 2
∥
∥
∥PU (X⋆

r −Xk−1)− µkPUA
†
A(X⋆

r −Xk−1)− µkPUA
† (A(X⋆ −X⋆

r) + e)
∥
∥
∥
F

= 2‖(1− µk)PU (X⋆
r −Xk−1)− µkPU

(

A
†
A−I

)

(X⋆
r −Xk−1)

− µkPUA
† (A(X⋆ −X⋆

r) + e) ‖F
≤ 2|1− µk| ‖PU (X⋆

r −Xk−1)‖F + 2µk

∥
∥
∥PU (A

†
A−I) (X⋆

r −Xk−1)
∥
∥
∥
F

+ 2µk

∥
∥
∥PUA

† (A(X⋆ −X⋆
r) + e)

∥
∥
∥
F
. (7.43)

It follows from the nonexpansiveness of PU that ‖PU (X⋆
r −Xk−1)‖F ≤ ‖X⋆

r −Xk−1‖F . By

noting that X⋆
r,Xk−1 ∈ U and using the notation AU = APU , we have also

PU (A
†
A−I) (X⋆

r −Xk−1) = PU (A
†
A−I)PU (X⋆

r −Xk−1) = (A†
UAU −I) (X⋆

r −Xk−1) .

Thus, from Lemma 7.5 and the fact that U ⊂ Lr̄1 we derive the bound
∥
∥
∥PU (A

†
A−I) (X⋆

r −Xk−1)
∥
∥
∥
F
=
∥
∥
∥(A

†
UAU −I) (X⋆

r −Xk−1)
∥
∥
∥
F
≤ δr̄1 ‖X⋆

r −Xk−1‖F .

Finally, resorting to Lemma 7.6, the last term of (7.43) can be bounded as
∥
∥
∥PUA

† (A(X⋆ −X⋆
r) + e)

∥
∥
∥
F
≤
√

1 + δr̄1 ‖A(X⋆ −X⋆
r) + e‖2 . (7.44)

The above inequalities, combined with (7.38), yield

‖X⋆
r −Xk‖F ≤ ξ‖X⋆

r −Xk−1‖F + 2Pµk
√

1 + δr̄1‖A(X⋆ −X⋆
r) + e‖2,

where ξ , 2P (|1− µk|+ µkδr̄1). We consider two choices of step size:

• For µk = 1, the assumption δr̄1 < 2−P implies ξk = 2P δr̄1 < 1.

• If (7.17) is employed, it follows from the definition of the RIC that (1 + δr̄1)
−1 ≤

µk ≤ (1 − δr̄1)
−1. We then have two cases: (i) if µk > 1, then |1 − µk| + µkδr̄1 =

µk(1 + δr̄1) − 1 ≤ 2δr̄1(1 − δr̄1)
−1; (ii) similarly, if µk ≤ 1 then |1 − µk| + µkδr̄1 =

µk(δr̄1 − 1) + 1 ≤ 2δr̄1(1 + δr̄1)
−1 ≤ 2δr̄1(1 − δr̄1)

−1. It can be checked that the

condition δr̄1 < 1/(2P+1 + 1) implies 2δr̄1(1 − δr̄1)−1 < 2−P , thus yielding ξk < 1 in

both cases.

Defining ξ , supk ξk < 1, it follows that

‖X⋆
r −Xk‖F ≤ ξk‖X⋆

r −X0‖F +

(
k−1∑

l=0

ξl

)

2P
√

1 + δr̄1‖A(X⋆ −X⋆
r) + e‖2 (7.45)

≤ ξk‖X⋆
r −X0‖F + 2P

√
1 + δr̄1
1− ξ ‖A(X⋆ −X⋆

r) + e‖2 , (7.46)
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as claimed. To conclude, note that the same reasoning holds for any other MPO π =

(p, p2, . . . , pP ), in which case the role of δr̄1 is played more generally by δr̄p .

Corollary 7.8. Let X⋆ ∈ Lr and y = A(X⋆). If A has a RIC δr̄p < 2−P , then the scheme

(7.23) with fixed step size µk = 1 and MPO π = (p, p2, . . . , pP ) converges to X⋆. If the step

size formula (7.17) is used, then the same result holds with δr̄p < 1/(2P+1 + 1).

Proof. Follows from taking k →∞ in (7.34) with X⋆ = X⋆
r and e = 0.

We would like to highlight the similarity of Theorem 7.7 with standard IHT results in

CS, such as Theorem 7.2. In particular, the estimated rate of convergence depends on Rp.

Moreover, if X⋆ /∈ Lr and e = 0, the algorithm approaches an estimate whose distance to

X⋆ is proportional to ‖X⋆ −X⋆
r‖F . Also, the gap between the bound and this optimal error

grows with Rp, since then δr̄p and ξ also grow.

It is important to bear in mind that, since the above results are RIC-based, they do

not apply to TC, because sampling operators cannot possess small RICs (cf. discussion in

Section 6.2.2).

7.2.2.1 Implied sampling bound

Ideally, performance bounds for mrank-based recovery should assume a small RIC of order

(dR1, . . . , dRP ) for some constant d. But, just as in Theorem 7.4, our results rely instead on

a RIC having order (N1, . . . , Np−1, 3Rp, Np+1, . . . , NP ). Consequently, they unfortunately do

not improve upon currently known sampling bounds. Indeed, applying (6.17) with δ = 2−P ,

the RIC condition in Theorem 7.7 is met with high probability provided that one takes4

M ≥Mmin = O(4P (RpN̄p +RpNp +
∑

q 6=pN
2
q )) (7.47)

subgaussian measurements, which grows much faster than the model complexity Φ(r) (see

(6.14)). Formally demonstrating (near-)optimality of our approach seems presently out of

reach. Nevertheless, our numerical simulations of Section 7.5.1 will show that in practice

Mmin = O(Φ(r)) = O(∏pRp+
∑

pNpRp) Gaussian measurements are sufficient for achieving

recovery with SeMPIHT. We note that the same is observed also for both TIHT and MnRA.

7.2.3 Computing cost per iteration

The computing effort involved in the use of Sr is given by (7.26). Calculation of the argument

of Sr can be split into three stages: (i) computing the gradient of J , (ii) calculating the step

4[167, Th. 2] states that δr ≤ δ if a bound of the form M ≥ O(δ−2(RP + PNR) log(P )) is met, where

r = (R1, . . . , RP ), R = maxpRp and N = maxpNp. Nonetheless, an inspection of its proof reveals that this

bound can be refined as M ≥ O(δ−2(
∏

pRp +
∑

pNpRp) log(P )), which for fixed P and r = r̄p = (N1, . . . ,

Np−1, 3Rp, Np+1, . . . , NP ) implies (7.47). The refinement of the term PNR is mentioned in [167].
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size µk and (iii) calculating the sum V0 = Xk−1 − µk
2 ∇J(Xk−1). Stage (i) requires O(MN̄)

operations for unstructured (e.g., Gaussian) operators, which can be alleviated by working

with structured MOs. For instance, it requires O(M) in TC, while a cost of O(N̄ log(N̄)) is

achieved when random partial Fourier or noiselet measurements are taken by means of fast

transform algorithms (see, e.g., [125, 172]). The cost of stage (ii) depends on the step size

selection strategy, and thus we postpone its discussion to Section 7.3. Finally, (iii) generally

takes O(N̄) operations. In TC, this cost drops to O(M) because the gradient is sparse (due

to the form of the SO).

7.2.4 Stopping criteria

In a practical implementation of (7.23), one needs to design appropriate criteria for stopping

the algorithm when convergence is nearly attained, or when it fails to converge. To this end,

at each iteration k we check whether the condition

‖Xk −Xk−1‖F ≤ ǫ‖Xk−1‖F (7.48)

is satisfied for two consecutive estimates. If so, convergence is declared and the algorithm

stops. Otherwise, it keeps running until a maximum number of iterations Kmax is met.

Although (7.48) does not necessarily imply proximity to a (local) minimum, it is our

experience that this criterion works well in practice, provided an appropriate value is chosen

for ǫ. When y = A(X⋆) and X⋆ ∈ Lr, then any reasonable value (i.e., sufficiently small

but above machine precision) is suitable, because as k →∞, ‖Xk−1‖F → ‖X⋆‖F and ‖Xk −
Xk−1‖F → 0; hence, (7.48) will eventually be satisfied. However, in the more realistic and

practically relevant setting where X⋆ ≈ X⋆
r ∈ Lr, and/or e 6= 0, choosing an appropriate ǫ

becomes a subtler issue. In practice, one typically must tune ǫ empirically.

7.3 Step size selection

The issue of step size selection is of great importance in IHT [192]. On the one hand,

µk should be sufficiently large to accelerate convergence. In particular, the requirement

Jk(x) > µkJ(x) for all x 6= xk−1 can be relaxed, since it is sufficient but not necessary for

objective function decrease. On the other hand, too large steps may cause the algorithm to

diverge. In addition, invariance with respect to the scaling of the MO is desirable, which

is not possible with a fixed step size. To pursue these goals, some adaptive strategies have

been developed in the literature.

The normalized iterative hard thresholding (NIHT) for CS was proposed in [16], moti-

vated by the poor performance of IHT with unit step size, which succeeds only in highly

favorable regimes, and by its lack of robustness vis-à-vis the scaling of A. The idea is to
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calculate µk = ‖∇J(xk)‖22‖A∇J(xk)‖−2
2 , the corresponding next estimate xk and then keep

the latter if supp(xk) = supp(xk−1), in which case the step is optimal. Otherwise, µk is kept

only if

µk < (1− c) ‖xk − xk−1‖22
‖A (xk − xk−1) ‖22

(7.49)

for a given positive constant c < 1. If (7.49) does not hold, then µk is repeatedly decreased

through division by some constant κ > 1 and new candidate estimates xk are computed

until (7.49) is met. As can be checked from (7.3), (7.49) implies J(xk) < J(xk−1) for

xk 6= xk−1. Furthermore, it guarantees convergence of the algorithm and, as empirically

verified, markedly improves its recovery performance [16].

Similar ideas were applied to LRMR in [192]. In this case, the role of vector support is

played by row and column spaces of the low-rank estimate. As the algorithm progresses, two

consecutive estimates are increasingly likely to have approximately the same column and row

spaces (though they are never really identical, because subspaces vary continuously). Thus,

the algorithm of [192] simply uses

µk =
‖Pk−1 (∇J(Xk−1)) ‖2F
‖APk−1 (∇J(Xk−1)) ‖22

, (7.50)

where Pk−1 denotes the orthogonal projector onto the column space of Xk−1. Notwithstand-

ing the lack of a verification akin to (7.49), this algorithm provably achieves perfect recovery

(in the ideal case) when the MO has a 3R-RIC δ3R < 1/5 [192].

7.3.1 Step size selection in low-rank tensor recovery

The step sizes generated by TIHT via (7.16) are often too conservative, which considerably

slows down convergence. In particular, when tackling a TC problem, property (6.12) implies

that (7.16) delivers a constant unit step, because then ∇J(Xk) = 2 ((Xk)Ω − (X⋆)Ω), and

hence

µk =
‖(Xk)Ω − (X⋆)Ω‖22
‖A((Xk)Ω − (X⋆)Ω) ‖22

= 1. (7.51)

This causes inefficient behavior especially for small ρ, i.e., when few measurements are

available.

To address this shortcoming, the proponents of TIHT have formulated the NTIHT algo-

rithm, where formula (7.50) is extended to the higher-order setting by projecting the gradient

onto the tensor space formed by the most recently estimated modal subspaces. This is the

idea underlying (7.17). It is thus optimal only if the modal subspaces do not change from one

iteration to the next, which evidently happens only approximately. Nonetheless, it usually

delivers a quite satisfying convergence speed, at a cost of

O
(
∑P

p=1R1 . . . RpNp . . . NP

)

+O
(
∑P

p=1N1 . . . NpRp . . . RP

)

+ cA+O(M) +O(N̄) (7.52)
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operations per iteration, where the sum is associated with the multilinear transformations

of (7.17), cA denotes the cost of applying the MO A (as discussed in Section 7.2.3) and the

last two terms are related with the calculation of the norms.

7.3.2 A heuristic for improving step size selection

In [66], we have proposed a step size selection heuristic which relies upon an extension of

condition (7.49) to the tensor setting. Originally, this heuristic, which we call improved step

size (ISS), was employed together with the THOSVD operator Hr, yielding the ISS-TIHT

algorithm. In what follows, its rationale is described.

In the IHT framework described in Section 7.1, it clearly suffices to guarantee that the

inequality µkJ(xk) < Jk(xk) holds at xk for deriving J(xk) < J(xk−1), instead of requiring

that Jk(x) majorizes µkJ(x) for all x. Specifically, in the tensor setting one can check whether

µk < ω(µk) =
‖Xk −Xk−1‖2F
‖A(Xk −Xk−1) ‖22

, (7.53)

since then µk‖A(Xk−Xk−1)‖22 < ‖Xk−Xk−1‖2F , which together with (7.3) implies µkJ(Xk) <

Jk(Xk). The notation ω(µk) emphasizes that the bound on µk depends on µk itself. We have

observed that TIHT’s formula (7.16) usually does not violate it. However, (7.16) often yields

µk ≪ ω(µk), while empirical evidence suggests the optimal step mostly lies closer to ω(µk).

Our proposed step selection heuristic is rather simple: given a fixed α such that 0≪ α <

1, one checks whether the candidate µk satisfies

αω(µk) ≤ µk < ω(µk), (7.54)

keeping its associated estimate Xk when it does. Otherwise, we simply set µk = βω(µk) for

some β ∈ (α, 1), compute a new Xk and repeat the process. The initial candidate step size

can be computed, e.g., via (7.16). As there is no guarantee of finding a step fulfilling (7.54)

with this procedure, we establish a maximum number of trials L, after which we keep the

largest generated step size satisfying the upper bound in (7.54). If none of them does, we

take the smallest candidate step and proceed as in NIHT [16], reducing it via division by a

factor κ > 1 until the upper bound is verified.

We point out that the idea of choosing a new candidate for the step size as βω(µk) is

already suggested in [16] with β = 1, but only to enforce the upper bound ω(µk). In the

case of TIHT, enforcing also the lower bound of (7.54) substantially accelerates convergence

(which also holds true for SeMPIHT). This is illustrated by Fig. 7.1, where we display the

resulting J(Xk) for a range of values of µk. The step sizes given by formulas (7.16) and (7.17)

are indicated, as well as the bounds relative to the latter. These values were observed in one

iteration of an actual run of ISS-TIHT with ρ = 0.3, α = 0.5 and β = 0.7. As we can see,

TIHT’s choice µT is far below the optimal step size. NTIHT’s formula, in its turn, yields
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Figure 7.1: Cost function value J(Xk) resulting from different choices of step size in one

iteration of TIHT: µT denotes the step given by (7.16); while µN denotes the step given by

(7.17). In this example, α = 0.5 and β = 0.7. A similar behavior is observed for SeMPIHT.

a step µN which violates (7.54), and thus is rejected. Note that the next candidate step

βω(µN) is better than both µT and µN (also, it satisfies its own bounds). Alike situations

also take place when running SeMPIHT.

7.4 Gradual rank increase heuristic

More often than not, tensors measured in applications possess modal singular spectra which

decay steadily, instead of having an exactly low mrank. In that case, gradually increasing the

mrank of the estimated model along iterations can improve recovery [123]. We pursue this

idea here, proposing a continuation technique, called gradual rank increase (GRI), which

starts off with a small mrank and conducts the algorithm through increasingly complex

estimates.

There are several ways in which one can implement a GRI scheme. A fairly simple one

starts with a chosen mrank r1 and then runs Algorithm 7.1 for a maximum of K ′
max < Kmax

iterations or until (7.48) is satisfied. The outcome X̂
⋆

r1
is then used to initialize a subsequent

run in which the mrank components are set as [r2]p = min{[rmax]p, [r1 + i]p} for all p,

where i ∈ N
P is a prescribed increment and rmax is the (final) target mrank. This process

is repeated until reaching rmax, at which point normal operation is resumed, as depicted

in Fig. 7.2. Note that a sequence of increasingly complex estimates X̂
⋆

rt
, t = 1, 2, . . ., is

produced before outputting X̂
⋆
= X̂

⋆

rmax
.

A disadvantage of the above scheme is that one cannot control the increments of each

mrank component separately. If, e.g., i = 1 and [rmax]p ≪ [rmax]q, then the algorithm

reaches [rmax]p many iterations before reaching [rmax]q. But, we would rather assign to

each component a growth rate proportional to its magnitude. To this end, we can check

the convergence of each modal subspace basis matrix U(p) separately. An even simpler
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Figure 7.2: Diagram of SeMPIHT algorithm with GRI heuristic.

strategy is to predefine modal rank profiles specifying values for the mrank components

at each iteration, until attaining the target mrank. From that point, normal operation is

resumed. For instance, if rmax = (R, 2R, 10R), then one can increment [r]p by one unit at

every 10R/[r]p iterations, so that rmax is attained at iteration k = 10R.

7.4.1 Effect of gradual rank increase

Though GRI strategies have been already employed in LRTR (see, e.g., [92, 123]), no detailed

discussion has been offered (to the best of our knowledge) on why it works in the first place.

In the following, we attempt to fill this gap by drawing upon experimental results.

7.4.1.1 Tensor models

Two types of tensor models are considered in these experiments:

• A type-1 (T1) tensor consists of a Tucker model having a R1 × · · · × RP core and

Np×Rp factors. Thus, by construction, it belongs to Lr. All factors and the core have

standard Gaussian entries. As a consequence, T1 tensors have highly concentrated

nonzero modal singular values.

• A type-2 (T2) tensor generally has full mrank but exhibits exponentially decaying

modal spectra. To impose this property, we adopt the Tucker model used in [213,

Sec. 2.3], which has a N1 × · · · ×NP Gaussian core and matrix factors Ap = QpSp ∈
R
Np×Np , where Qp is orthogonal and Sp = Diag(1, 2−ϕ, . . . , N−ϕ

p ), with ϕ > 0.

The typical spectral characteristics of T1 and T2 tensors are illustrated in Fig. 7.3(a). Specifi-

cally, it shows the average modal spectra of 500 realizations of 20×20×20 T1 (r = (10, 10, 10))

and T2 (ϕ = 3) tensors, which are normalized to have unit Frobenius norm. Numerically, the

T2 tensors have full mrank. Consistently with the shown behavior, the mean squared error

of the best mrank-(R,R,R) approximation as a function of R displays an abrupt variation

for the T1 tensors; that of the T2 tensors decays steadily and smoothly.



7.4. Gradual rank increase heuristic 139

5 10 15 20

10−15

10−12

10−9

10−6

10−3

100

n

σ
(p
)

n

(a) Modal spectra

p = 1

p = 2

p = 3

2 4 6 8 10 12 14 16 18 20
0.05

0.1

0.15

0.2

R
ν (

R
,R

,R
)

(b) Modal rowspace coherence

T1

T2 (ϕ=0.5)

T2 (ϕ=0.75)

T2 (ϕ=1)

T2 (ϕ=1.5)

T2 (ϕ=2.5)

T2 (ϕ=3.5)

Figure 7.3: Typical behavior of the considered random tensor models: (a) modal spectra;

(b) row space coherence (see (7.55)).

Another relevant property of these tensor models is highlighted in Fig. 7.3(b). Namely,

we generated 500 realizations of T1 tensors of varying mrank r = (R,R,R) and T2 tensors

with varying ϕ, all having dimensions 20× 20× 20, and then plotted the average modal row

space coherence of their approximate projections onto Lr, i.e.,

νr(X) = min
p

Rp

N̄p
µ(Wp), where







Wp = rowspace
(
(Xr)〈p〉

)
,

Xr = Sr(X)
(7.55)

and µ(·) is as defined by (6.8). (For T2 tensors, note that Xr 6= X). The (approximate)

projection is performed because we are ultimately interested in the properties of the best

mrank-r approximation of X, since it is this approximation which is sought by SeMPIHT, the

difference X−Xr being regarded as modeling error (cf. Theorem 7.7). Fig. 7.3(b) indicates

that the modal row space coherence of the (approximately) projected T2 tensors grows with

ϕ. Also, the gap among the curves grows with R. As we shall see ahead, this has important

negative implications when trying to complete T2 tensors sampled uniformly at random.

We would like to draw attention to the fact that, although the modal spectra of T2

tensors are more akin to those of most real-world tensors, to date most published works have

exclusively considered T1 (or similar) tensors in computer experiments with synthetic data.

7.4.1.2 Experimental results

Our experiments consist of Monte Carlo simulations involving the recovery of 20 × 20 × 20

tensors by employing Algorithm 7.1 with ISS.

We first employ Gaussian MOs. For each value of ρ = M/203 ∈ {0.10, 0.25, 0.40}, Nr =

100 realizations of an MO A are generated by drawing the entries of its associated matrix

A ∈ R
M×203 (which satisfies A(X) = A vec(X)) from a zero-mean Gaussian distribution of
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variance 1/M . Each MO is then used to sense T1 tensors having mrank (R,R,R), with

R ∈ 〈15〉, and T2 tensors with spectral decay factors ϕ ∈ {32 , 52 , 72}. When recovering T1

tensors, the target mrank always matches mrank(X⋆) and we setKmax = 1000 and ǫ = 10−10.

The algorithm is run once initialized with the null tensor (initialization I) and then three

more times with random initializations.

In the recovery of T2 tensors, we vary the target mrank (R,R,R) and run the algorithm

twice for each R: once initialized with the null tensor (initialization I) and once using the

solution obtained with mrank (R−1, R−1, R−1) to initialize the run in which r = (R,R,R)

(initialization II). Note that the latter initialization strategy is closely related to our GRI

heuristic. Again, Kmax = 1000, but a specific ǫ was chosen for each combination of ϕ and ρ

by a trial and error procedure.

At the end of each run, we compute the squared error of the resulting estimate X̂
⋆

l with

respect to the generated tensor X⋆
l , where l denotes the realization. The normalized mean

squared error (NMSE), defined as

NMSE =
1

Nr

Nr∑

l=1

‖X⋆
l − X̂

⋆

l ‖2F
‖X⋆

l ‖2F
, (7.56)

is shown in Fig. 7.4. In the case of T1 tensors, only the best outcome among the runs

with initialization II is kept for computing (7.56). For T2 tensors, we plot also the NMSE of

Sr(X
⋆
l ), which gives an approximate lower bound. Fig. 7.4(a) displays a sharp transition from

success to failure in the recovery of T1 tensors, which is a typical behavior in parsimonious

signal recovery problems. Concerning T2 tensors, Fig. 7.4(b)–(d) show that the NMSE gets

quite close to the lower bound when inside the region of successful recovery of T1 tensors

(cf. Fig. 7.4(a)), regardless of the initialization. Beyond that region, a gap appears: results

obtained with initialization I rapidly degrade, while those for initialization II degrade (or

even improve) only slightly before stabilizing. The rate of deviation from the lower bound

depends on ρ and ϕ, in conformity with (7.34).

The results of a similar experiment performed with (uniformly) random SOs are shown

in Fig. 7.5. As we can see, transition into failure happens in Fig. 7.5(a) for ρ = 0.10 as

soon as R = 2, against R = 6 in the Gaussian case. Also, the results are very poor for T2

tensors with initialization I, even in a favorable regime (i.e., where recovery of T1 tensors

succeeds). Moreover, the performance worsens as the singular values decay rate ϕ grows,

which is explained by the behavior shown in Fig. 7.3(b), as the recoverability of X⋆
r depends

on r and on some measure of coherence. The use of initialization II does a remarkable job

in avoiding such a degradation. Indeed, the results for ρ = 0.25 and ρ = 0.40 are similar to

those obtained with Gaussian sensing. For ρ = 0.10, not enough measurements seem to be

available for achieving comparable results.

Let us now interpret these outcomes in light of the results of Section 7.2.2. Since X⋆ ∈ Lr
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Figure 7.4: Recovery performance of SeMPIHT with Gaussian sensing. The approximate

lower bound in (b)–(d) is the average of NSE(Sr(X
⋆);X⋆).

in our experiment with T1 tensors, Corollary 7.8 guarantees convergence to the global mini-

mizer X⋆ whenever A satisfies the stated RIC condition, regardless of the initialization (and

despite the nonconvexity of (7.1)). Hence, when using Gaussian sensing, initialization plays

no role in the recovery regime (with high probability), which is corroborated by Fig. 7.4(a).

In the phase transition region, the influence of initialization comes into play, as apparently

the insufficiency of measurements vis-à-vis the number of DOF causes convergence to local

minima, with rapidly increasing probability as R grows. Similar remarks hold for T2 tensors,

in that the iterates approach a ball centered at a best approximationX⋆
r ∈ Lr ofX⋆ regardless

of the initialization for appropriate A (cf. Theorem 7.7), which explains Fig. 7.4(b)–(d).

Now, for T2 tensors, gradually increasing the mrank can stabilize the approximation error

when a too high mrank (with respect to ρ) is chosen. This apparently happens because, once

the phase transition region is reached, the lack of sufficient information causes convergence

to a local minimum not far from the initial point. In particular, when completing T2 tensors

this continuation strategy delivers good results despite their non-ideal coherence properties.

It also brings computational advantages, because the convergence rate ξ is faster and the

cost of Sr is reduced when r has small components.
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Figure 7.5: Recovery performance of SeMPIHT with sampling operators (TC). The approx-

imate lower bound in (b)–(d) is given by NMSE(Sr(X
⋆);X⋆).

7.5 Simulation results

In the following experiments, P = 3, for simplicity. Also, ISS is always employed with

parameters L = 3, α = 0.5, β = 0.7 and, unlike [66], with initial candidate step size µk = 1.

7.5.1 Estimation of sampling bounds

First, we numerically estimate how many measurements are necessary for recovering a model

with a given complexity. More precisely, the idea is to find, for several values of ρ, the

maximum normalized number of DOF Φ̄(r) = Φ(r)/N̄ up to which recovery is highly likely.

For simplicity, we takeN1 = N2 = N3 = N , and sort all possible values of Φ̄(r) by considering

every mrank r = (R1, R2, R3) such that (i)R1 ≤ R2 ≤ R3 and (ii)R3 ≤ R1R2. This entails no

loss of generality, as constraint (i) avoids redundant tuples, while constraint (ii) eliminates

those which are not feasible.5 Then, for each ρ ∈ {0.05, 0.10, . . . , 1}, we start from the

simplest model, r = (1, 1, 1), and generate 15 joint realizations of an MO A and a T1 tensor

5Note that mrank(X) = r is equivalent to the existence of a Tucker model constrained as discussed in

Section 6.3.1.2, whose core can only have a mode-3 unfolding with orthogonal rows if R3 ≤ R1R2.
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Figure 7.6: Estimated (normalized) number of DOF which can be recovered by SeMPIHT

for each level of ρ, using Gaussian MOs (GO) and SOs. Recovery was successful in 15

consecutive realizations for values of Φ̄ below or over the curve.

X⋆ ∈ Lr. Recovery of X⋆ from y = A(X⋆) is declared successful when NSE(X̂
⋆
;X⋆) ≤ −90

dB. If all 15 runs are successful, then the process is repeated with the next model of higher

complexity (in terms of Φ(r)). When failure occurs for some r′, then the value Φ(r)/N̄ of

the immediately less complex model is declared to be frontier of the recovery region. To

reduce computing time, instead of starting from r = (1, 1, 1) for every level of ρ, we start

from the mrank tuple associated with the frontier obtained for the immediately preceding

undersampling rate (i.e., for ρ − 0.05). The stopping criteria are set as ǫ = 10−8 and

Kmax = 1500. Gaussian MOs and SOs are generated as described in Section 7.4.1.2.

The results obtained for N ∈ {10, 15, 20} are shown in Fig. 7.6. When using Gaussian

operators (GO), the maximum Φ̄(r) clearly grows approximately linearly with ρ for all N .

Moreover, the improvement due to ISS is visible, as the slope becomes much higher (about

0.9) than with fixed step size (about 0.17). Hence, M ≥Mmin = O(Φ(r)) Gaussian measure-

ments (are highly likely to) suffice for recovery, with Mmin ≈ 1
0.9Φ(r) = 1.11Φ(r) when using

ISS and Mmin ≈ 1
0.17Φ(r) = 5.88Φ(r) when µk = 1. So, despite the quite loose sampling

bounds implied by Theorem 7.7, in practice SeMPIHT with ISS succeeds for a quasi-optimal

number of Gaussian measurements. On the other hand, the relation between Φ̄(r) and ρ is

no longer linear in TC.

For the sake of comparison, the same procedure is applied with N = 20 to ISS-TIHT [66],

MnRA [217], geomCG [123], TMac [213] and the ADMM scheme based on SNN minimization

(SNNM) of Algorithm 6.1. In the latter, the penalty parameter η is adapted along the

iterations to accelerate convergence, as discussed in [22, Sec. 3.4.1], and observations are

taken as constraints (λ → 0). Having been devised specifically for TC, the performances of
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Figure 7.7: Estimated (normalized) number of DOF which can be recovered for each level of

ρ, using (a) Gaussian MOs and (b) SOs. The target tensors are 20× 20× 20. Recovery was

successful in 15 consecutive realizations for values of Φ̄ below or over the curve.

geomCG and TMac are only evaluated6 with SOs. For a fair comparison, a variant of MnRA

using ISS is also included. All methods are initialized with the null tensor and cannot exceed

Kmax = 1500 iterations.

This comparison is shown on Fig. 7.7. In the Gaussian sensing setting of Fig. 7.7(a), the

sampling requirements of SeMPIHT and ISS-TIHT are almost identical, while those of ISS-

MnRA are a little stricter. Though MnRA with fixed step size µk = 1 displays quite a poor

performance, Φ̄ still grows roughly linearly with ρ. In its turn, the behavior of the SNNM

approach is markedly different, abruptly improving in the region ρ > 0.8. Such a nonlinear

relation is expected, as discussed in Section 6.3.3.1. In the TC scenario of Fig. 7.7(b),

SeMPIHT and ISS-TIHT have generally the least strict sampling requirements, with geomCG

competing closely for ρ ≥ 0.7. TMac’s performance is less satisfying, but slightly better than

that of MnRA for ρ ≥ 0.65. Here, ISS does not improve MnRA’s sampling requirements.

Finally, the SNNM approach displays an outstandingly poor performance in comparison with

the others.

7.5.2 Convergence and computational cost

In order to evaluate the studied algorithms with respect to their convergence speed and

computational cost, they are applied to recover 60 realizations of N × N × N T1 and T2

tensors sensed by Gaussian and SOs. At each iteration, we measure the quadratic error

6We employ the implementations provided by their authors, obtained from http://anchp.epfl.ch/geomCG

and http://www.math.ucla.edu/∼wotaoyin/papers/tmac.html. Yet, we have replaced geomCG’s MEX

routines by Matlab code, which turns out to be much faster in our setting (as sugested by [55]).
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Figure 7.8: Convergence of several algorithms in a Gaussian sensing scenario where ρ =

0.25 and N1 = N2 = N3 = 20: (a) T1 tensors of mrank r = (3, 3, 3); (b) T2 tensors

(ϕ = 2.5) modeled with mrank r = (9, 9, 9); (c) T2 tensors (ϕ = 2.5) modeled with mrank

r = (13, 13, 13).

of the current solution with respect to X⋆ and also the time spent. Results concerning T2

tensors are displayed along with an average (approximate) lower bound calculated as in

Section 7.4.1.2.

SeMPIHT is run both with the ISS heuristic and with the NTIHT step size selection rule

(7.17). When (and only when) T2 tensors are recovered, SeMPIHT is also run with GRI

(in which case the ISS heuristic is used). The tolerance parameter used in geomCG’s rank

increase condition (cf. [123, Eq. 4.2]) is set as δ = 0.1. TMac’s adaptive weight heuristic is

used, starting with weights α1 = α2 = α3 = 1/3 [213]. Algorithm 6.1 for SNNM is again run

with λ→ 0 and penalty parameter adapted as described by [22, Sec. 3.4.1].

We start by considering Gaussian operators. In this case, N = 20, ρ = 0.25, T1 tensors

have mrank r = (3, 3, 3), and T2 tensors have decay parameter ϕ = 2.5. The results for T1

tensors are shown in Fig. 7.8(a). In this scenario, both SeMPIHT (with ISS) and ISS-TIHT

outperform the other algorithms, having practically indistinguishable performances. This

happens because the cost of applying the Gaussian MO dominates that of the projection.

Fig. 7.8(b) displays the results obtained for T2 tensors modeled with the mrank r = (9, 9, 9).

The GRI used in SeMPIHT follows the first procedure described in Section 7.4, with K ′
max =

1, i = (1, 1, 1) and r1 = (1, 1, 1). From Fig. 7.4(c), one can verify that Φ(r)/(ρN̄) falls inside

the recovery regime of SeMPIHT, and thus it reaches quite close to the bound, as well as the

other algorithms. Among them, SeMPIHT with GRI is clearly the fastest to converge. Now,

in Fig. 7.8(c), the model mrank is set as r = (13, 13, 13), which yields too high a value of

Φ(r) for ρ = 0.25. In this case, we have set K ′
max = 2. Note that the GRI technique prevents

the degradation brought by mrank overestimation, while the performances of the other IHT
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Figure 7.9: Convergence of several algorithms in a TC scenario where ρ = 0.2 and N1 =

N2 = N3 = 100: (a) T1 tensors of mrank r = (10, 10, 10); (b) T2 tensors (ϕ = 2) modeled

with mrank r = (30, 30, 30).

algorithms are severely deteriorated. This robustness with respect to mrank overestimation

is valuable, since in practice one generally does not know which mrank values fall inside the

recovery region for a given M .

Fig. 7.9 displays the results obtained for TC, with N = 100 and ρ = 0.2. The T1 tensors

and T2 tensors are generated with, respectively, r = (10, 10, 10) ϕ = 2. Upon inspection

of Fig. 7.9(a), it is clear that both variants of SeMPIHT are more efficient than all other

algorithms in recovering T1 tensors. The gap between SeMPIHT with ISS and ISS-TIHT is

due to the reduced cost of the thresholding operator. The NTIHT variant is even faster in

this scenario. For the recovery of T2 tensors, the mrank is set as r = (30, 30, 30), and we

choose K ′
max = 1. Both geomCG and TMac are run with their mrank increase heuristics

[123, 213], with initial mrank r1 = (1, 1, 1) and unit increments. SeMPIHT uses the same

settings. Fig. 7.9(b) show that the IHT algorithms without GRI clearly fail, which is due

to the non-ideal coherence properties of the T2 tensors. Among the others, SeMPIHT with

GRI provides the best performance, followed by TMac. Unlike the other methods, geomCG’s

results have large variance, and so we also plot in Fig. 7.9(b) its median results, which are

much more reasonable in terms of final NMSE, but at the expense of a large computing cost.

7.6 Concluding remarks

In this chapter, we have proposed an IHT algorithm for the LRTR problem, relying on

SeMP for hard thresholding. It has smaller cost per iteration compared to other tensor IHT

algorithms, while delivering better or comparable convergence speed. Also, the sequential
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optimality of the modal projections in SeMP allows deriving performance bounds based solely

on RICs, which is still an open problem for THOSVD. Though the exploited RICs imply

largely loose sampling bounds for certain random (e.g., Gaussian) measurement ensembles,

our simulations show perfect recovery is achieved by SeMPIHT (and also by TIHT and

MnRA, for that matter) with a number of Gaussian measurements which scales linearly

with the intrinsic complexity of the model.

Step size and gradual rank increase heuristics were also proposed. The former accelerates

convergence by imposing upper and lower bounds to candidate step sizes, while the latter

prevents degradation due to mrank overestimation and further accelerates the algorithm

when the sought tensor has fast decaying modal spectra. GRI is especially important in TC,

as it can avoid degradation due to non-ideal coherence properties of the measured tensors.



Chapter 8

Feedback-controlled imputation

schemes for tensor completion

In this chapter, we develop an iterative TC scheme combining a single imputation technique

with soft thresholding of the HOSVD core. This thresholding operation arises as an ap-

proximate solution of a ℓ1-regularized least-squares problem which is well-suited when the

target tensor admits a compressible orthogonal Tucker model. We show the link between this

property and a fast decay of its modal singular spectra. A connection between the ADMM

algorithm and iterative single imputation schemes is also elaborated, with an interpretation

in terms of a feedback-controlled system. Then, we propose an improved version of our

algorithm incorporating such a feedback control mechanism. Finally, simulation results are

presented, validating the potential of the proposed method.
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8.1 Single imputation schemes for tensor completion

In Section 6.3.3.3, we mentioned that the approach of [194] couples a single imputation

technique with the ALS algorithm in order to fill in the missing entries of a tensor X⋆ ∈
T =

⊗P
p=1R

Np under the assumption of low tensor rank. It can be summarized along the

following lines:

1) At iteration k, one forms the estimate

[Zk]n1,...,nP =







[X⋆]n1,...,nP , (n1, . . . , nP ) ∈ Ω,

[Xk]n1,...,nP , (n1, . . . , nP ) /∈ Ω,
(8.1)
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where Xk is given by the tensor model estimated at iteration k − 1. This means that

the components of Zk corresponding to the missing entries of X⋆ are imputed (only

once, hence the term “single imputation” which is borrowed from the statistics literature)

according to the most recent model estimate.

2) Then, the following least-squares problem is posed:

min
A(p)∈RNp×R

∥
∥
∥Zk −

r
A(1), . . . ,A(P )

z∥
∥
∥

2

F
, (8.2)

for some chosen R. In order to approximately solve it, [194] employs a single iteration of

the ALS algorithm described in Section 3.3.1.1.

3) Subsequently, one computes the reconstructed tensor

Xk+1 =
r
Â

(1)
k+1, . . . , Â

(P )
k+1

z
, (8.3)

where the factors Â
(p)
k+1 are the approximate minimizers of (8.2) obtained at step 2, and

then goes back to step 1 until some stopping criterion is met.

An interpretation of the above described algorithm as an instance of the expectation

minimization (EM) method [71] is discussed in [194]. It holds when the residuals are zero-

mean Gaussian i.i.d. variables, which implies that maximizing the conditional expectation

of the log-likelihood function is equivalent to minimizing the least-squares cost function of

(8.2). Formulating that problem thus amounts to the E-step, while solving it corresponds to

the M-step.

A similar algorithm is devised in [121], where instead of a CPD model, a Tucker model

is employed. Its first step is identical. In step 2, the least-squares problem has the form:

min
G∈⊗P

p=1 R
Rp

U(p)∈VRp (R
Np )

∥
∥
∥
∥
∥
Zk − G

P×
p=1

U(p)

∥
∥
∥
∥
∥

2

F

= max
U(p)∈VRp (R

Np )

∥
∥
∥
∥
∥
Zk

P×
p=1

(

U(p)
)T
∥
∥
∥
∥
∥

2

F

, (8.4)

where the modal ranks Rp are fixed a priori and the equality is due to Proposition 2.54.

Finally, given an approximate solution (Û
(1)
k+1, . . . , Û

(P )
k+1) of (8.4), step 3 is carried out as

Xk+1 = Zk

P×
p=1

[

Û
(p)
k+1

(

Û
(p)
k+1

)T
]

. (8.5)

Again, this can be interpreted as application of the EM scheme, provided the residuals satisfy

the same assumptions mentioned above. To obtain an approximate solution of (the NP-hard

problem) (8.4), [121] resorts to the standard THOSVD defined in Section 2.6.2.1.

We point out that, in the TC setting, the TIHT algorithm is equivalent to this THOSVD-

based single imputation scheme. The equivalence is due to property (6.12), which entails

µk = 1 (see (7.51)), implying that the tensor Vk appearing in (7.15) is given by Vk =

Xk + µkA
† (y −A(Xk)) = Xk + (X⋆)Ω − (Xk)Ω. This is clearly equivalent to the definition

of Zk in (8.1).
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8.2 Single imputation with ℓ1-regularized least squares

The rationale of our proposed approach shares common ground with the methods we have just

described. Namely, it is also an iterative procedure coupling a single imputation technique

with the approximate estimation of a parsimonious model, which we now describe.

8.2.1 Sparse and compressible orthogonal Tucker models

Recall from Section 2.6.1.1 that an OTD of a tensor X⋆ can be written as

X⋆ = G

P×
p=1

U(p) =

N1∑

n1=1

· · ·
NP∑

nP=1

gn1,...,nP

P⊗

p=1

u(p)
np
, (8.6)

where, in general, G ∈ T and U(p) ∈ VNp(R
Np) for all p ∈ 〈P 〉. Since this expression

can be seen as the representation of X⋆ under orthonormal bases U(p), we can think of the

cardinality of the core G (i.e., its number of nonzero elements) as a measure of complexity

of X⋆. When card(vec(G))≪ N̄ , we say that (8.6) is a sparse OTD model of X⋆.

Clearly, if rankp(X
⋆) ≪ Np for some p ∈ 〈P 〉, then G will be sparse. Thus, this model

obviously applies to low-mrank tensors. However, we aim here at the more realistic situation

in which G is not exactly sparse, but only compressible in some sense. In the following, this

notion is formalized and connected to the definition of T2 tensors of Chapter 7.

8.2.1.1 Compressibility of vectors in the ℓ1 sense

Recall that

∀x ∈ R
N , ‖x‖2 ≤ ‖x‖1 ≤

√
N‖x‖2. (8.7)

The lower bound is attained if there is a unique n ∈ 〈N〉 such that xn is nonzero, since

in that case ‖x‖2 =
√

x2n = |xn| = ‖x‖1. Therefore, it is attained when x has its energy

maximally concentrated. When all components of x have equal magnitude, i.e., |xn| = x0 ≥ 0

for all n ∈ 〈N〉, then ‖x‖1 = N |x0| =
√
N
√

Nx20 =
√
N‖x‖2, and thus the upper bound is

attained. In other words, the energy of x is minimally concentrated in that case.

The above observations motivate the following definitions.

Definition 8.1. The compressibility measure Γ : RN \ {0} 7→
[

1,
√
N
]

of a nonzero vector

x ∈ R
N is given by

Γ(x) =
‖x‖1
‖x‖2

. (8.8)

Definition 8.2 ([85]). For any s ∈ 〈N〉, we define the best s-sparse approximation error of

x ∈ R
N in the ℓ2-norm sense as

µs(x) , inf{‖xs − x‖2 : xs ∈ R
N is s-sparse}. (8.9)
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Similarly, we can define a normalized version of µs(x) as

µ̄s(x) ,
µs(x)

‖x‖2
. (8.10)

As µ̄s is scale-invariant, it is easier to interpret and more useful for comparison purposes

than µs. The utility of the above definitions is justified by the following result, which links

the best s-sparse approximation error of a vector to its ℓ1 norm.

Theorem 8.3 ([85, Theorem 2.5]). Every x ∈ R
N satisfies µs(x) ≤ 1

2
√
s
‖x‖1.

Specifically, it implies that vectors with small ℓ1 norm can be well approximated by sparse

representations. Using now the definition of Γ, we have the following corollary.

Corollary 8.4. Any x ∈ R
N satisfies

µ̄s(x) ≤
1

2
√
s

‖x‖1
‖x‖2

=
1

2
√
s
Γ(x) ≤ 1

2

√

N

s
. (8.11)

As a consequence of this bound, Γ provides an index of compressibility for comparing

different vectors of a same space.

8.2.1.2 Compressibility of the HOSVD core

In Chapter 7, we have adopted T2 tensors, whose modal unfoldings have rapidly decaying

singular values, for modeling tensors found in real-world applications. In terms of the above

introduced definitions, this amounts to saying that T2 tensors have compressible modal

spectra. We now state new results connecting the compressibility of the HOSVD core of a

tensor to the compressibility of its modal spectra.

Theorem 8.5. The core S of the HOSVD of a P th-order tensor X ∈ T satisfies

max
p∈〈P 〉

∥
∥
∥σ(p)

∥
∥
∥
1
≤ ‖S‖H,1 ≤ min

p∈〈P 〉

√

N̄p

∥
∥
∥σ(p)

∥
∥
∥
1
, (8.12)

where σ(p) ∈ R
Np contains the singular values of X〈p〉.

Proof. Let the HOSVD of X be given by X = S×P
p=1U

(p), with U(p) ∈ VNp(R
Np) and

S ∈ T . From Proposition 2.52, we have that

S〈p〉 = Σ(p)W(p)T ∈ R
Np×N̄p , (8.13)

where W(p) ,
(
U(P ) ⊗ · · · ⊗U(p+1) ⊗U(p−1) ⊗ · · · ⊗U(1)

)T
V(p) and X〈p〉 = U(p)Σ(p)V(p)T

is the SVD of the mode-p unfolding of X. Now, noting that W(p) ∈ VN̄p
(RN̄p), denoting the
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nth row of S〈p〉 by sTn and the nth column of W(p) by w
(p)
n , we compute

‖S‖H,1 =

Np∑

n=1

∥
∥sTn

∥
∥
1
=

Np∑

n=1

∥
∥
∥σ(p)n w(p)

n

∥
∥
∥
1
=

Np∑

n=1

σ(p)n

∥
∥
∥w(p)

n

∥
∥
∥
1

(8.14)

≤
Np∑

n=1

σ(p)n

√

N̄p

∥
∥
∥w(p)

n

∥
∥
∥
2
=
√

N̄p

Np∑

n=1

σ(p)n (8.15)

=
√

N̄p

∥
∥
∥σ(p)

∥
∥
∥
1
, (8.16)

where the inequality follows from (8.7). Similarly,

‖S‖H,1 =

Np∑

n=1

σ(p)n

∥
∥
∥w(p)

n

∥
∥
∥
1
≥

Np∑

n=1

σ(p)n

∥
∥
∥w(p)

n

∥
∥
∥
2
=
∥
∥
∥σ(p)

∥
∥
∥
1
. (8.17)

Since these results are valid for all p ∈ 〈P 〉, (8.12) follows.

Corollary 8.6. The core tensor S of the HOSVD of a nonzero P th-order tensor X ∈ T

satisfies

max
p∈〈P 〉

Γ
(

σ(p)
)

≤ Γ(vec(S)) ≤ min
p∈〈P 〉

√

N̄p Γ
(

σ(p)
)

. (8.18)

Proof. Follows from ‖ vec(S)‖2 = ‖S‖F = ‖X‖F = ‖X〈p〉‖F = ‖σ(p)‖2 and Definition 8.1.

As the matrix factors in (8.6) are orthogonal, ‖X⋆‖F = ‖G‖F . Therefore, approximating

G by a sparse core (via simple truncation of the sum in (8.6)) yields quadratic error (with

respect to X⋆) which equals the sum of the squares of the neglected core elements. If the

core is compressible, then a significant number of terms can be neglected while still achieving

a reasonable approximation. Now, the above results show that the HOSVD cores of many

parsimonious tensors found in applications are compressible as a consequence of their modal

spectral behavior. Of course, the HOSVD is just one of the infinitely many possible OTDs

of a tensor; conceivably, it could admit OTD models having even more compressible cores.

8.2.1.3 Some empirical evidence and discussion

We now illustrate the above discussion by means of some numerical examples. To this end,

we generate 500 realizations of T2 tensors from R
N×N×N , with N = 20, using exactly the

same procedure as that of Section 7.4.1.1. The spectral decay rate ϕ assumes values from

{1.0, 1.2, . . . , 2.4}. For every generated tensor, the core of its HOSVD, S, is computed. In

Fig. 8.1(a), we show the ensemble average of the elements of s̄ = sortabs(vec(S)) ∈ R
N̄ ,

where the operator sortabs arranges the absolute values of the elements of its argument

in non-increasing order. Observe that the magnitude of the elements of the core decay

more quickly for larger values of ϕ, in consonance with our results. Fig. 8.1(b) shows the

cumulative distribution function (c.d.f.) of Γ(vec(S)). As we can see, increasing ϕ induces a
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Figure 8.1: Compressibility of the HOSVD core of T2 tensors for different spectral decay

rates ϕ: (a) average sorted absolute values of its components; (b) empirical c.d.f. of Γ(vec(S)).

The minimum value of 1 is indicated by a red dashed line in (b).

sharper concentration of the distribution around its mean, which tends to decrease towards

the minimum value of 1.

In a second experiment, we generate 500 realizations of tensors Xp, p ∈ {1, 2}, having
fast decaying singular values only with respect to the first p modes. The decay rate employed

for X1 is ϕ = 2.5, while it is set as ϕ = 2.2 for X2. On Fig. 8.2(a)–(b) we plot the same

quantities as in Fig. 8.1, while on Fig. 8.2(c)–(e) we plot the average modal spectra of the

generated tensors. Fig. 8.2(a)–(b) indicate that the core of X2 is in average significantly

more compressible than that of X1. However, as Fig. 8.2(c)–(e) shows, the mode-1 spectrum

σ(1) of X1 is more compressible than all modal spectra of X2: indeed, on average we have

Γ(σ(1)(X1)) = 0.0903, Γ(σ(1)(X2)) = 0.1226 and Γ(σ(2)(X2)) = 0.1248. This suggests

that the bound Γ(vec(S)) ≤ minp∈〈P 〉

√

N̄p Γ
(
σ(p)

)
is pessimistic, as in practice the most

compressible modal spectrum it is not the only one that contributes to the compressibility

of the HOSVD core. The latter seems instead to be affected by the behavior of all modal

spectra, thus jointly capturing the spectral behavior of multiple modes.

8.2.2 Imputation scheme with ℓ1-regularized least squares

We now formulate our approach on the basis of the above discussion. Similarly to the

algorithms discussed in Section 8.1, it proceeds iteratively as follows:

1) First, Zk is constructed exactly as in (8.1), with Xk denoting the tensor reconstructed

from the most recently estimated model.
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Figure 8.2: Compressibility of the HOSVD core of tensors with varying number of modes

having fast decaying singular spectra: (a) average sorted absolute values of its components;

(b) empirical c.d.f. of Γ(vec(S)); (c)–(e): average modal spectra of generated tensors. The

minimum value of 1 is indicated by a red dashed line in (b).

2) In order to estimate an OTD model having a compressible core, we consider the ℓ1-

regularized least-squares formulation

min
G∈T

U(p)∈VNp (R
Np )

1

2

∥
∥
∥
∥
∥
Zk − G

P×
p=1

U(p)

∥
∥
∥
∥
∥

2

F

+ τ ‖G‖H,1 , (8.19)

which, due to the orthogonality of the factors U(p), is equivalent to

min
G∈T

U(p)∈VNp (R
Np )

1

2

∥
∥
∥
∥
∥
Zk

P×
p=1

(

U(p)
)T
− G

∥
∥
∥
∥
∥

2

F

+ τ ‖G‖H,1 . (8.20)

Observe that parsimony is imposed by regularization of the OTD core. But, just as in

the schemes based on low-rank CPD and low-mrank Tucker models, an exact solution of

(8.20) is hard to obtain. One can nonetheless obtain an approximate one by relying on

the following reasoning.
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First, observe that for τ → 0, any OTD of Zk serves as a solution of (8.19)–(8.20). Now,

as τ is increased, we expect the global minimizers to vary continuously, due to continuity

of the norms and of the OTD model with respect to its components. We thus propose

to take the factors of an OTD of Zk as an approximation of the optimal factors U(p),

and then find the corresponding optimal G. In order to attain a sufficiently low value of

the objective function, this OTD should have a core as compressible as possible. Due to

Corollary 8.6, we choose to employ the HOSVD. Letting Zk = Sk×P
p=1U

(p)
k denote the1

HOSVD of Zk, we have Zk×P
p=1

(

U
(p)
k

)T
= Sk. Therefore, from (8.20) we derive the

approximate solution

argmin
G∈T

1

2
‖Sk − G‖2F + τ ‖vec(G)‖H,1 = prox

‖·‖H,1
τ (Sk), (8.21)

where prox
‖·‖H,1
τ is defined analogously to the ℓ1 proximity operator, i.e.,

[

prox
‖·‖H,1
τ (Sk)

]

n1,...,nP

=







[Sk]n1,...,nP − sign([Sk]n1,...,nP )τ, if |[Sk]n1,...,nP | > τ,

0, otherwise.

3) In the third step, we compute the new reconstructed estimate

Xk+1 =
(

prox
‖·‖H,1
τ (Sk)

) P×
p=1

U
(p)
k (8.22)

and then return to step 1 until some stopping criterion is satisfied. A simple stopping

criterion consists in bounding the relative error between two consecutive estimates by

some specified tolerance level ǫ > 0, as in

‖Xk −Xk+1‖F
‖Xk‖F

< ǫ. (8.23)

We finish this section by noting that [210] has relied on similar ideas for comput-

ing an approximation of a tensor having low (tensor) rank: a CPD model of the form

Jλ ; A(1), . . . ,A(P )K is estimated by minimizing a least-squares criterion regularized by a

term of the form ‖λ‖1. The motivation is promoting a sparse (or compressible) vector of

weights λ, thereby reducing the complexity of the model. Though not discussed in [210], it

seems that an extension of their method to the TC problem is possible.

8.3 Imputation schemes with feedback

8.3.1 Nuclear norm minimization of a single unfolding

We now go back to the ADMM scheme for LRTR described in Algorithm 6.1, and consider

the case where Q = 1, with λ → 0. In other words, the measurements are taken as exact

1Since the SVD is not unique if it has repeated singular values, the HOSVD of a tensor is also possibly

not unique. At any rate, the result in Corollary 8.6 applies to all possible HOSVDs.
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constraints, and only one modal unfolding is supposed to be of low rank. Note that in this

case, the superscripts (q) are unnecessary, as well as the permutation matrices Π(q).

Under these assumptions, and considering the TC scenario, (6.28) and (6.29) yield

[xk+1]n =







[x⋆]n, n ∈ Ω

[zk − 1
ηak]n, n /∈ Ω.

(8.24)

The update equation of zk+1 is

zk+1 = vec

(

prox
‖·‖∗
1/η

(

unvecNp×N̄p

(

xk+1 +
1

η
ak

)))

, (8.25)

while that of ak+1 can be written as

ak+1 = ak + η(xk+1 − zk+1). (8.26)

Though the ADMM algorithm is in principle quite robust with regard to the choice of

the penalty parameter η, being guaranteed to converge (for convex problems) under mild

conditions for any η > 0, in practice this parameter has a strong impact on convergence

speed [77]. For this reason, a standard heuristic consists in varying η along the iterations

for accelerating convergence [22]. A straightforward possibility is to start off with some

sufficiently small value η0 and then monotonically increase it, as in the simple rule [134]

ηk =
1

ψ
ηk−1, (8.27)

where 0 < ψ < 1.

Let us thus insert this adaptive η rule into the above equations. With the definition

z̄k+1 , xk+1 +
1

ηk
ak, (8.28)

equations (8.24)–(8.26) become

[xk+1]n =







[x⋆]n, n ∈ Ω

[zk − 1
ηk
ak]n, n /∈ Ω

, (8.29)

zk+1 = prox
‖·‖∗
1/ηk

(

unvecNp×N̄p
(z̄k+1)

)

, (8.30)

ak+1 = ak + ηk(xk+1 − zk+1). (8.31)

In particular, the third one implies

1

ηk
ak =

1

ηk
ak−1 +

ηk−1

ηk
(xk − zk) =

1

ηk
ak−1 + ψ (xk − zk) . (8.32)

Together with (8.28), the above identity yields

1

ηk
ak =

1

ηk
ak−1 + ψ

(

z̄k −
1

ηk−1
ak−1 − zk

)

= ψ(z̄k − zk). (8.33)
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By using (8.28) and (8.29), we thus derive

z̄k+1 =







[x⋆ + 1
ηk
ak]n = [x⋆ + ψ(z̄k − zk)], n ∈ Ω

[

zk − 1
ηk
ak +

1
ηk
ak

]

n
= [zk]n , n /∈ Ω.

(8.34)

Now, to rewrite the expression given in (8.29) for n /∈ Ω, we deduce from (8.33)–(8.34)

[
1

ηk
ak

]

n

= [ψ (z̄k − zk)]n = [ψ (zk−1 − zk)]n , (8.35)

from which it follows that

[xk+1]n =







[x⋆]n, n ∈ Ω

[zk + ψ (zk − zk−1)]n , n /∈ Ω.
(8.36)

The resulting scheme is summarized in Algorithm 8.1. Two interesting observations can

be drawn from its final form:

1) The algorithm is simplified, because the iterates no longer depend on xk, and hence we

update only two variables per iteration, z̄k+1 and zk+1, rather than three. It can also be

noted that, since zk and zk−1 should be close near convergence, the reconstructed entries

of the estimated tensor are approximately given by [zK ]n, for n /∈ Ω.

2) There exists a strong similarity between Algorithm 8.1 and the single imputation schemes

discussed in Section 8.1, in the sense that they all consist in iteratively (i) taking the most

recent estimate, (ii) replacing the known elements by their observed values, with possibly

an added correction term, and then (iii) mapping the result into a new estimate by

means of some parsimony-inducing operator. In particular, the operator of Algorithm 8.1

performs a soft thresholding of the singular values of the mode-p unfolding of its argument.

8.3.2 Interpretation as feedback-controlled system

In the following, we continue the analysis of Algorithm 8.1. By repeatedly plugging (8.31)

into (8.32), we can derive

1

ηk
ak =

1

ηk
ak−2 + ψ2 (xk−1 − zk−1) + ψ (xk − zk) (8.37)

=
1

ηk
ak−3 + ψ3 (xk−2 − zk−2) + ψ2 (xk−1 − zk−1) + ψ (xk − zk) (8.38)

and so on, ultimately obtaining

1

ηk
ak =

1

ηk
a0 +

k∑

j=1

ψk+1−j (xj − zj) . (8.39)
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Algorithm 8.1 ADMM algorithm with varying penalty parameter for TC based on NNM

of a single unfolding.
Inputs: Initial estimate X0 ∈ T , vector of measurements y and parameters η0 and ψ

Outputs: Estimate X̂
⋆
of X⋆

1: k ← 0

2: repeat

3: [z̄k+1]n =







[y]n + ψ ([z̄k]n − [zk]n) , n ∈ Ω

[zk]n, n /∈ Ω.

4: zk+1 = vec
(

prox
‖·‖∗
1/ηk

(unvecNp×N̄p
(z̄k+1))

)

5: ηk+1 = ψ−1ηk

6: k ← k + 1

7: until the stopping criterion is fulfilled

8: return [x̂⋆]n =







[x⋆]n, n ∈ Ω

[zk]n + ψ ([zk]n − [zk−1]n) , n /∈ Ω.

Hence, for n ∈ Ω, inserting (8.39) into (8.34) and using [xk]n = [x⋆]n, we compute

[z̄k+1]n =



x⋆ +
1

ηk
a0 +

k∑

j=1

ψk+1−j (x⋆ − zj)





n

. (8.40)

This shows that the correction term in the update of [z̄k+1]n for n ∈ Ω is nothing but a

exponentially weighted sum of all previous errors with respect to the corresponding (ob-

served) entries of x⋆, plus a term which satisfies 1
ηk
a0 → 0 for k → ∞ when ψ < 1 (and

which disappears if a0 = 0). We thus can see the operation of this algorithm as that of a

feedback control mechanism which drives the outputs of the proximity operator (the con-

trolled system) corresponding to the known elements (i.e., having indices n ∈ Ω) towards

their observed values. This can be easily seen by rewriting (8.34) with the use of a unit delay

operator q−1, which yields

(
1− ψq−1

)
[z̄k+1]n = q−1 ([x⋆]n − ψ[zk+1]n) , (8.41)

implying

∀n ∈ Ω, [z̄k+1]n =
q−1

1− ψq−1
([x⋆]n − ψ[zk+1]n) . (8.42)

Hence, the N̄ inputs of the controlled system (i.e., the components of z̄k+1) can be clearly

partitioned into two sets, as depicted in Fig. 8.3: (i) components having indices in Ω (denoted

by [z̄k+1]Ω) are manipulated by a first-order feedback control mechanism with time constant

ψ and setpoint given by the observed values of x⋆; (ii) the other ones (denoted by [z̄k+1]Ω̄,

where Ω̄ stands for the complement set with respect to Ω) are not manipulated, being given

simply by the corresponding outputs of the controlled system.

Interestingly, ψ can also be seen as a forgetting factor, because the smaller it is, the faster

the factors ψk+1−j in (8.40) decay, so that deviations from x⋆ “in a far past” contribute less
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−
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[x⋆]Ω
+

Figure 8.3: Interpretation of Algorithm 8.1 (with null initial conditions) as a feedback control

system.

and less to the correction produced by feedback control mechanism. In the limit case ψ → 0,

these components of z̄k approach the corresponding observed values of x⋆. At the other

extreme, ψ = 1 yields a scheme in which all previous deviations of with respect to x⋆ have

equal weight. In the latter case, the first-order control system of (8.42) becomes a pure

discrete-time integrator, and hence unstable behavior may be observed.

A control system interpretation of ADMM has already been (briefly) discussed in [157].

However, it differs from ours with respect to the involved variables and to the goal of the

control strategy, because of the special case we consider here and of our rewriting of the

update equations. Specifically, in their case three variables are iteratively updated and the

feedback control mechanism is meant to gradually suppress the error between two variables

in order to satisfy an equality constraint. Also, our interpretation is further developed and

easier to grasp, thanks to the simplified update equations of Algorithm 8.1.

8.3.3 Generalized imputation scheme for tensor completion

Having elaborated on the connection between the ADMM scheme with varying penalty

parameter of Algorithm 8.1 and the imputation schemes studied in Section 8.1, we now

propose a general imputation scheme for TC having a feedback first-order control mechanism.

A concrete description of it is given in Algorithm 8.2, where P : RN̄ × R 7→ R
N̄ represents

a parsimony-inducing operator chosen according to the adopted underlying model.

In particular, P can perform the operation described by (8.22). We refer to this possi-

bility as imputation scheme with feedback and HOSVD soft thresholding (IFHST). Another

alternative, which we call IFHHT, is to assimilate P with the hard thresholding operator

Hr, the target mrank r being chosen a priori. The incorporation of these approaches into the
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framework of Algorithm 8.2 allows profiting from the first-order feedback control mechanism,

which accelerates convergence speed, as empirically illustrated in the next section.

Algorithm 8.2 Imputation scheme with feedback and forgetting factor for TC.
Inputs: Initial estimate X0 ∈ T , vector of measurements y and parameters η0 and ψ

Outputs: Estimate X̂
⋆
of X⋆

1: k ← 0

2: repeat

3: [z̄k+1]n =







[y]n + ψ ([z̄k]n − [zk]n) , n ∈ Ω

[zk]n, n /∈ Ω.

4: zk+1 = P(z̄k+1, 1/ηk)

5: ηk+1 = ψ−1ηk

6: k ← k + 1

7: until the stopping criterion is fulfilled

8: return [x̂⋆]n =







[x⋆]n, n ∈ Ω

[zk]n + ψ ([zk]n − [zk−1]n) , n /∈ Ω.

In the specific case of IFHST, initializing the algorithm with a small enough value of η0

and choosing an appropriate forgetting factor ψ < 1 leads to an interesting behavior, namely:

• the first iterates have very sparse cores, because 1/ηk is sufficiently large so that nearly

all core components are zeroed by the soft thresholding operator for small k;

• since 1/ηk decays exponentially as the algorithm progresses, the sparsity of the core

is gradually reduced and thus more and more rank-one terms associated with nonzero

core elements are added to the model.

In some sense, this leads to a sequential estimation of increasingly complex models, similarly

to the effect produced by the use of the GRI technique in SeMPIHT.

8.4 Experimental validation

8.4.1 Improvement of imputation scheme due to first-order feedback con-

trol mechanism

We start by highlighting the improvement brought by the feedback control mechanism. Ini-

tially, we run a Monte Carlo simulation where several realizations of a T1 20×20×20 tensor

having mrank (4, 4, 4) are generated as X0 = G×P
p=1U

(p), where G ∈ R
4 ⊗ R

4 ⊗ R
4 has

standard Gaussian entries and unit Frobenius norm and U(p) ∈ V4(R20). Each one of these

tensors is reconstructed from 15% randomly sampled elements. Before sampling, we add a

rescaled standard Gaussian term N (also of unit Frobenius norm), yielding

X⋆ = X0 + 10−5N. (8.43)
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Figure 8.4: Acceleration of convergence of IFHHT due to first-order feedback control mech-

anism with time constant ψ.

The IFHHT algorithm is then applied for several values of ψ in the interval (0, 0.99). Note

that, when ψ = 0 (i.e., without feedback control), IFHHT is essentially equivalent to TIHT.

Fig. 8.4 shows the average NSE (see (3.19)) achieved after k iterations, for k ∈ 〈700〉 and
20 realizations. Observe that for ψ = 0.99, there is no gain in comparison with TIHT, as the

convergence is even slower. However, as we reduce ψ, convergence is remarkably accelerated,

up to a certain value beyond which it starts to slow down again. In particular, with ψ = 0.8

IFHHT attains convergence at least five times faster than TIHT.

Pronounced oscillations are seen in some curves, especially that associated with ψ = 0.99.

This phenomenon is related to our control system interpretation: ψ = 0.99 corresponds to an

“aggressive” tuning of the first-order control mechanism where a pole is introduced near the

unit circle. In fact, when we used ψ = 1 in our experiments, the algorithm often diverged. As

an illustration, we show in Fig. 8.5 the value of [z]n attained along the first 160 iterations of

one realization for a given n ∈ Ω. The corresponding observed value (i.e., [x⋆]n) is also shown

for reference. Clearly, the contribution of past errors in (8.40) induces large oscillations for

ψ = 0.99. When ψ = 0, no past errors are taken into account, and thus a smooth curve

is observed, but it takes long to converge. Visibly, the choice ψ = 0.8 attains a reasonable

compromise.

Our second experiment focus on the recovery of T2 tensors generated as in Section 7.4.1.1,

with a spectral decaying parameter of ϕ = 3. They are completed from 40% randomly

sampled elements by the IFHST algorithm. The average results of 20 realizations is shown

in Fig. 8.6 for various values of ψ and of η0. When ψ = 0, line 5 of Algorithm 8.2 is not

performed; instead, we set ηk = η0 for all k. Visibly, the choice of η0 then controls the
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Figure 8.5: Evolution of a reconstructed component of the target tensor during a run of

IFHHT, for several values of ψ.
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Figure 8.6: Acceleration of convergence of IFHST due to feedback mechanism with forgetting

factor ψ.

compromise between convergence speed and final error: η0 = 103 (dark blue curve) leads

to quick convergence but a somewhat high NSE, while augmenting η0 (dark green and red

curves) allows decreasing the final error, but slows down convergence significantly. The

curve for ψ = 1 was generated with the same η0 as the second one, which causes them to be

superposed until around k = 600. From that point on, the integral control mechanism yields

a marked improvement of the final NSE (i.e., it reduces steady-state error), but convergence

is still slow. Now, for ψ = 0.95 and ψ = 0.85, there is a remarkable gain with respect to

both convergence speed and final NSE.

When we take a look again at the evolution of [z]n for some n ∈ Ω along the iterations
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Figure 8.7: Evolution of a reconstructed component of the target tensor during a run of

IFHST, for several values of ψ.

of a single run, the benefit of employing the feedback control mechanism with a well-tuned

forgetting factor is evident, as seen in Fig. 8.7. Note that, when ψ = 0.85 and ψ = 0.95,

the oscillations die down much more quickly. The large oscillations in the beginning happen

because [z]n = 0 for small k due to the small value of ηk, which implies a large threshold.

8.4.2 Evolution of Tucker core sparsity along iterations

As we mentioned in Section 8.3.3, in IFHST the sparsity of the thresholded HOSVD core of

the iterates typically decays as k grows. This is illustrated by Fig. 8.8, which was generated

with the same experimental procedure used for Fig. 8.6, but now only with ψ = 0.85, η0 = 1.2

and for a single realization. Incidentally, it shows that a highly sparse core can accurately

model X⋆: for k = 60, the sparsity level is 98.7%, while the NSE is around -73.5 dB.

8.4.3 Empirical sampling bounds

Proceeding exactly as in Section 7.5.1, we estimate the recovery regime of IFHST for ρ ∈
{0.05, 0.10, . . . , 1}. This allows us to compare it with several other algorithms, as done in

Fig. 8.9. It can be seen that, unlike the solution based on minimizing the SNN of matrix

unfoldings, IFHST (which was run with ψ = 0.95 and η0 = 0.02) produces reasonable results,

behaving similarly to the other algorithms, despite its narrower recovery regime. Also, we

should note that IFHST is not fed with a priori knowledge on the mrank of the solution,

contrarily to all other algorithms except SNN.
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Figure 8.8: Evolution of (a) NSE and (b) sparsity of the thresholded HOSVD core along a

run of the IFHST algorithm with ψ = 0.85 and η0 = 1.2.
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Figure 8.9: Estimated (normalized) number of DOF which can be recovered by several

algorithms for each level of ρ, using sampling MOs. The measured third-order tensors have

dimensions Np = 20 for all p. Recovery was successful in all 15 realizations for values of Φ̄

below or over the curve.

8.4.4 Convergence and computing cost

To conclude our experimental validation, we now compare IFHST and IFHHT with other

algorithms in terms of convergence speed and computing cost, as done in Section 7.5.2. In

the first scenario, we recover approximately (10, 10, 10)-mrank 100× 100× 100 tensors with

an undersampling rate of ρ = 0.2. Some modeling error is introduced by generating these

tensors exactly as described by (8.43). For a fair comparison between IFHST and SNN, the

latter was also run with an exponentially varying penalty parameter updated as in line 5 of

Algorithm 8.2. Also, TMac employs its adaptive weight scheme, as described in [213].

The algorithmic parameters are set as follows: η = 1.2 and ψ = 0.7 for IFHST; ψ = 0.5

for IFHHT; η = 5 and ψ = 0.85 for SNN; α = 0.5, β = 0.7, κ = 1.2 and L = 3 (ISS

settings) for SeMPIHT, TIHT and MnRA; α1 = α2 = α3 = 1/3 (initial weights) for TMac.
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Figure 8.10: Evolution of NMSE as a function of time for several TC algorithms when applied

to recover approximately (10, 10, 10)-mrank 100× 100× 100 tensors, with ρ = 0.2.

In Fig. 8.10, we display the evolution of the NMSE of 60 realizations. The approximate

lower bound is estimated by applying SeMP to each generated tensor. It can be seen that

all algorithms which directly impose a low-mrank constraint do a better job than IFHST,

as they converge more quickly to the lower bound (with only a slight advantage in the case

of geomCG). Among them, IFHHT is outperformed only by ISS-TIHT and SeMPIHT. In

comparison with SNN, IFHST converges much faster.

In the second scenario, T2 tensors with a decay parameter of ϕ = 3/2 are randomly

generated and reconstructed by TC algorithms after being sampled with ρ = 0.15. Now,

only SeMPIHT is kept as the representative of IHT algorithms, because it is the only one

incorporating a GRI scheme, which is necessary for satisfactory performance in this case. For

the same reason, imputation scheme with feedback and HOSVD hard thresholding (IFHHT)

is not included. Both TMac and geomCG are run with their rank-increasing strategies

starting from r0 = (1, 1, 1). The target mrank of SeMPIHT, TMac and geomCG is r =

(40, 40, 40), and unit increments are applied to each mrank component in all three algorithms.

The tolerance which controls mrank increase is set as 0.01 for both TMac and geomCG. In

SeMPIHT, mrank components are incremented every two iterations. IFHST is run with

ψ = 0.85 and η0 = 12.

As we can see from the curves in Fig. 8.11, the chosen r allows, in principle, reaching an

NMSE of about -49 dB. Yet, the IHT algorithms are only able to reach a level of approxi-

mately -46 dB, which is due to the lack of enough measurements. IFHST, in its turn, is not

limited by that bound, for it does not impose an exact low mrank upon its model. Coinciden-

tally, however, it approximately attains the bound. It also outperforms the other algorithms

with regard to convergence speed, thus being the preferable solution in this scenario.
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Figure 8.11: Evolution of NMSE as a function of time for several TC algorithms when applied

to recover 100× 100× 100 T2 tensors having a decay parameter of ϕ = 3/2, with ρ = 0.15.

8.5 Conclusions

Let us highlight the main contributions which were developed along this chapter.

1. The first one is the idea of formulating a single imputation algorithm based on soft

HOSVD core thresholding aiming to promote a parsimonious (compressible) OTD core.

We have shown that this can be justified on the grounds of the relation between the

compressibility of the HOSVD core and that of the modal singular spectra of a tensor.

2. We have explored an interpretation of algorithms based on single imputation with feed-

back correction as control systems which attempt to drive a certain parsimony-inducing

operator into producing outcomes matching the observed tensor entries. This connec-

tion sheds light upon the behavior of those algorithms, which may present oscillations,

depending on the tuning of the parameters.

3. Our experimental results clearly show the benefits of employing such a feedback cor-

rection mechanism in terms of both convergence speed and final reconstruction error,

which is true both for IFHHT and IFHST.

4. It was observed that the recovery regime of IFHST varies with ρ in a similar fashion

as other state-of-the-art TC algorithms, such as ISS-TIHT and TMac. This is in clear

contrast with the performance of SNN, which is less efficient.

5. Finally, the results of Section 8.4.4 show that, although IFHST is less efficient (in

terms of convergence speed and computing cost) when dealing with T1 tensors, it is

well adapted when it comes to the recovery of T2 tensors, which approximate more

closely the characteristics of real-world tensors arising in practical contexts.

The last point will be further corroborated by the experimental results presented in the

subsequent chapter.



Chapter 9

Traffic data reconstruction via

tensor completion

This chapter presents experimental results which demonstrate the usefulness of IFHST in

the reconstruction of traffic data. Before presenting our simulation results, we give a concise

description of the application context, the relevant performance measures and the employed

data.
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9.1 Introduction

For over three decades, several intelligent transportation systems (ITS) have emerged world-

wide as a means of improving mobility of people and goods, and particularly as a response to

the growing and pervasive problem of traffic congestion, which impinges especially on large

urban areas [129]. Currently, there exists a large literature dedicated to the development

of models, systems and technology for: (1) enhancing economic and social benefits brought

by an efficient transportation system, (2) reducing the occurrence of accidents and (3) mit-

igating the negative effects caused by traffic congestion, which include time losses, waste of

energetic resources and heavy pollution.

A central piece in an ITS is the timely and reliable collection of traffic data, which is fed

into models and application systems employed by transportation users, companies, relevant

authorities and researchers for information, management, decision-making and prediction.
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These data, which are obtained via a wide range of devices and techniques, can comprise

vehicle counts, speeds and lengths, among others. The resulting datasets are typically spatio-

temporal, featuring daily profiles acquired by multiple sensors. In practice, however, frequent

failure of sensing devices, of network links or of processing units causes the occurrence of

missing data. As the effectiveness of subsequent processing tasks (such as, e.g., the prediction

of travel times [129]) is impaired by the absence of measurements, multiple techniques have

been proposed in order to fill in the missing entries.

A strong correlation is typically observed among daily traffic profiles, not only in a spa-

tial sense (i.e., among different sensors), but also in a temporal one, due to the occurrence

of quasi-periodic patterns (i.e., very similar behavior among different days or weeks). Con-

sequently, road traffic datasets can often be well approximated by low-rank or low-mrank

tensors. Hence, some recent works have focused on the problem of traffic data reconstruction

by resorting to TC techniques [191, 163, 164]. In this section, we shall pursue this approach

for reconstructing real data gathered in the context of the Grenoble Traffic Lab project [70]

by resorting to the IFHST algorithm.

9.2 Grenoble Traffic Lab

Grenoble traffic lab (GTL) is a collaborative project undertaken by the NeCS team,1 which

involves researchers of the GIPSA-lab and of INRIA and is supported by local traffic author-

ities. A thorough description of this initiative is found in [70]. Its main goal is providing an

experimental platform for testing, validating and comparing traffic management/monitoring

algorithms, relying upon data collected by a dense network of sensors.

To date, 130 magnetometers have been deployed along the south ring of Grenoble, which is

a peri-urban corridor of about 10.35 km connecting two highways (see Fig. 9.1). These devices

are capable of detecting the passage of a vehicle, thus serving for counting purposes, for

estimating inter-vehicle time intervals, vehicle lengths and speeds (by exploiting detections

performed by a pair of sensors). Overall, there are 68 sensors,2 22 of which are placed under

on- and off-ramps. The relevance of the collected data stems from the relatively high traffic

load often observed on this ring.

One important feature of GTL is the estimation of average travel times for traversing the

entire ring. This traffic index is approximated by the formula [129, Section 2.3]

∆t =

N∑

j=1

∆sj

vj(τj)
, with τn = t0 +

n−1∑

j=1

∆sj

vj(τj)
, (9.1)

where the position differences ∆sn originate from a partition of the corridor length sB − sA
1Networked Controlled Systems. Website: http://www.inria.fr/en/teams/necs.
2For simplicity, we refer to a pair of magnetometers which yield a single reading as a single sensor.
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Figure 9.1: Grenoble’s south ring from Meylan (point A) to Rondeau (point B) (image

courtesy of Google Maps).

into N consecutive segments, i.e., such that
∑N

n=1∆sn = sB − sA; τn represents the time

at which the vehicle reaches the upstream3 boundary of the nth segment; vj(t) gives the

space-mean vehicle speed4 measured at the jth segment at time t; and t0 is the initial time.

Now, because GTL actually gathers time-mean speeds instead of space-mean ones, the latter

are estimated from the former by calculating the harmonic mean

vn(t) = 2
(

v−1
sn,1

(k) + v−1
sn,2

(k)
)−1

, (9.2)

where vsn,1(k) and vsn,2(k) denote the time-mean speeds at, respectively, the upstream and

downstream boundaries of the nth segment, and k is the discrete time index such that

t ∈ Ik = [t0 + (k− 1)Ts, t0 + kTs), with Ts denoting the sampling period of data acquisition.

It is worth noting that formula (9.2) is valid under the assumption that the speeds vsn,1(k)

and vsn,2(k) of vehicles which enter and leave the nth road segment, respectively, are constant

during the time interval Ik [98], which is evidently an approximation. In GTL, multiple time-

mean speeds are measured at the boundaries of a road segment, each one corresponding to

one lane. Hence, an average of these measurements, weighted by their respective vehicle

counts, is computed in order to obtain vsn,1(k) and vsn,2(k).

If the value obtained for a given vj(τj) via (9.2) is smaller than a specified lower bound

vmin, then we assume that a traffic congestion is taking place at the jth road segment

during the sampling interval Ik which comprises τj . Thus, in order to avoid misleading

3The upstream boundary of a road segment is its entry point, while the downstream is its exit point.
4See [98] for definitions of time-mean speed and space-mean speed.
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overestimation of ∆t due to the use of a too small vj(τj) in formula (9.1), we use instead

vj(τj+lTs), where l is the smallest natural number such that vj(τj+lTs) ≥ vmin. Accordingly,

a “penalty time” of lTs is added to ∆t. Note that this means that vehicles are (virtually)

stopped at the time period Ik∪Ik+1∪· · ·∪Ik+l−1 due to congestion, and then resume flowing

at sampling interval Ik+l. In our simulations, we have employed vmin = 5 km/h.

Due to the importance of the above described calculation, which is in particular exploited

for future time-travel forecasting [70], we shall evaluate reconstruction methods in terms of

their capability of delivering speeds data allowing an accurate approximation of the travel

times calculated from the original (reference) data.

9.3 Traffic data employed in our case study

We had access to data spanning the 91-days period between April 1st 2015 and June 30th

2015. This dataset includes time-mean vehicle speeds (measured in km/h) and vehicle counts

gathered at all 68 measurement points. The sampling period is Ts = 15 seconds, so that

there are 24× 60× 4 = 5760 daily samples. Hence, the available data comprises two tensors

X̃0,W̃0 ∈ R
5760×68×91, whose modes are associated with, respectively, time samples, sensors

and days. In our notation, X̃0 contains speeds data, while W̃0 contains vehicle counts data.

Because X̃0 contains a high proportion of missing entries (around 53%), we use as refer-

ences two other data tensors, X̃ and W̃, which coincide with X̃0 and W̃0 on the effectively

measured data but contain imputed values in the place of missing entries. The imputation

has been done by GTL’s real-time imputation routine, which we describe ahead.

9.3.1 Preprocessing

Fig. 9.2(a) shows, for each pair (s, d) ∈ 〈68〉× 〈91〉, the proportion of elements t ∈ 〈5760〉 for
which [X̃0]t,s,d is missing; and similarly for W̃0 in Fig. 9.2(b). Clearly, there are more missing

speed entries than missing counts, because measuring the former requires two successful

detections, while only one suffices for the latter. Since speeds measured on access ramps are

irrelevant in the above described computation of travel times, we discard data from ramp

sensors having average daily missing data ratio larger than 0.7. This allows us to ignore

portions of X̃ containing too many imputed entries. Data coming from other ramp sensors

are kept, as they potentially provide useful information for the reconstruction. Similarly, we

have discarded all data from Sundays, as they contain a disproportionate amount of imputed

entries which do not correlate well with other daily profiles. So, overall we remove data from

12 sensors and 13 days.

As a second preprocessing step, all components of X̃ are thresholded at the speed limit

of 90 km/h to avoid estimating travel times incompatibly with the legal limit. Then, the
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Figure 9.2: Proportion of daily missing data for each sensor: (a) time-mean speeds; (b)

vehicle counts.

data are downsampled by a factor of four by computing per-minute average speeds. Also, we

discard data measured outside our window of interest, between 6:00 and 20:00, where most

traffic jams and slowdowns take place. The resulting downsampled data tensors are denoted

by X,W ∈ R
840×56×78.

After all these preprocessing steps, the final missing data ratio of X is 0.38, while that of

W is 0.20. For illustration, in Fig. 9.3 we show the daily profiles measured by three different

sensors over 12th June 2015, (a) before and (b) after preprocessing. One can clearly see the

degree of correlation among different sensors on this day.

Fig. 9.4 displays for all 56 sensors (a) the measured speeds tensor X0 (thresholded at 90

km/h), with missing entries denoted by black dots, and (b) the reference tensor X, where

these missing entries have been imputed. Since the axis of sensors is ordered according to

their physical placement along the road, we can clearly visualize spatial correlations among

nearby sensors, represented by horizontally spread regions having close values. Fig. 9.4(a)

shows that, though some missing elements are scattered over the data, they are to a great

extent concentrated, indicating that certain sensors suffer from consistent failure during time

periods which can last from some minutes to many hours. As observed in Fig. 9.4(b), the

imputed data incurs some loss of information concerning spatial correlations, as seen from

the “discontinuities” arising inside approximately homogeneous horizontal regions.
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Figure 9.3: Portion of daily profiles measured by three different sensors on 12th June 2015:

(a) before preprocessing; (b) after preprocessing.
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Figure 9.5: Possible placements of a missing data window of length L = 3 (represented by the

blue brackets) within a daily profile. The squares denote the samples along a given mode-1

fiber (thus associated with time).

9.4 Simulation of missing data

We turn now to the design of sampling operators for our experiments. In order to simulate

the systematic loss of data which happens in practice (cf. Fig. 9.4), it is desirable to randomly

distribute missing data windows of some given length along the time dimension (i.e., along

the mode-1 fibers) of the speeds tensor. We thus proceed as follows:

1. A subsampling ratio ρ ∈ (0, 1) and a missing window length L (in minutes) are specified.

2. Then, we compute the total number of missing data windows as Nw = ⌊(N̄ −M)/L⌋,
where M = ρN̄ and N̄ = 3,669,120.

3. Each one of these windows is randomly assigned to one daily profile of one sensor, with

uniform probability. Its location inside that daily profile is also randomly drawn from

a uniform distribution which includes the possibilities of starting at the last sample or

of ending at the first sample. This is illustrated in Fig. 9.5, where the squares represent

all samples of a daily profile (of length N1 = 840) and the blue brackets indicate all

possible placements of a missing data window having length L = 3. Note that the

effective length of the placed window can thus be smaller than L.

4. After distributing all Nw windows, the effective number of missing data entries, Nm,

can be smaller than N̄ −M , because of the border effect mentioned in the previous

item and also due do the superposition of multiple windows. Hence, in order to attain

the prescribed value of ρ, we randomly distribute N̄ −M −Nm single missing entries

uniformly over the samples which are not covered by any window.

By tuning the window length L, we can adjust the sampling scheme to reflect a more or

less systematic failure of sensors. In practice, if ρ is sufficiently small, there is a significant

probability of window overlapping and of window placement on the borders of a daily profile,

and thus a fair amount of uniform sampling also takes place. This approximates the behavior



174 Chapter 9. Traffic data reconstruction via tensor completion

10 20 30 40 50

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

Sensor

T
im

e

(a)

20

40

60

80

10 20 30 40 50

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

Sensor

T
im

e

(b)

20

40

60

80

Figure 9.6: Examples of missing data patterns generated with the procedure of Section 9.4:

(a) ρ = 0.4 and L = 60; (b) ρ = 0.6 and L = 120. The black dots indicate missing entries.

seen in Fig. 9.4, where, in addition to the long missing data windows, many single missing

entries are also scattered around.

Fig. 9.6 shows two examples of missing data patterns generated as described above: (a)

with ρ = 0.4 and L = 60; and (b) with ρ = 0.6 and L = 120. These plots refer to the same

day of Fig. 9.4. It can be seen that Fig. 9.6(a) contains more horizontally connected regions

of missing data than Fig. 9.6(b), due to the larger values of ρ and L used in the latter. One

also observes many single missing entries scattered on both plots.

9.5 Completion of speeds data

This section presents the completion experiments performed on speeds data collected by

GTL. After describing the evaluated algorithms, we outline the experimental procedure,

and then display the simulation results.

9.5.1 Description of evaluated algorithms

The compared reconstruction algorithms are as follows:

1. Temporal interpolation (Interp): As a baseline of comparison, we employ a very simple

linear interpolation scheme along the temporal (the first) mode. It goes as follows:

• Whenever the samples xk,s,d, . . . , xk+I−1,s,d are not observed, but xk−1,s,d and

xk+I,s,d are, with k − 1 ≥ 1 and k + I ≤ N1, then these missing entries are
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estimated as

x̂k+i−1,s,d = xk−1,s,d +
(xk+I,s,d − xk−1,s,d)

I + 1
i, for i ∈ 〈I〉. (9.3)

• If, on the other hand, k = 1 or k + I − 1 = N1, then the estimates

x̂k,s,d, . . . , x̂k+I−1,s,d are set to the nominal value smax = 90 km/h. Note that

this is a reasonable rule for small I, since the traffic is typically in free-flow con-

dition at the boundaries of the daily period of interest (between 6:00 and 20:00).

2. GTL’s algorithm: This imputation method also exploits temporal correlations. But,

since the missing samples are estimated immediately after failure is detected, their

reconstruction cannot depend on future information. Instead, only a limited num-

ber of (temporally) preceding samples are averaged. Spatial correlations are similarly

exploited. The procedure is as follows. At the (discrete) time instant k of day d:

(i) The algorithm first tries to impute each missing sample by averaging its four

temporally preceding ones (at the same day and sensor), via the formula

x̂k,s,d =
1

Lt

Lt∑

l=1

xk−l,s,d, where Lt , min{4, k − 1} (9.4)

denotes the effective length of the temporal averaging window.

(ii) If at least one among the samples in the sum of (9.4) was also not observed,5 then

step (i) fails. So, the algorithm tries to impute each remaining missing entry by

averaging values read by neighboring sensors (i.e., those who immediately precede

and follow sensor s on the road), via the formula

x̂k,s,d =
1

Ln

Ln∑

l=1

xk,sl,d, (9.5)

where Ln ∈ 〈2〉 is the number of available neighbors, whose indices are sl, l ∈ 〈Ln〉.
Most sensors have two neighbors, but those on ramps and on the first and last

collection points have only one.

(iii) Again, step (ii) fails when neighbors’ samples are also missing at instant k. In that

case, the algorithm draws from historical information, attempting to compute

x̂k,s,d =
1

Lh

Lh∑

l=1

xk,s,dl , (9.6)

where {d1, . . . , dLh
} is the set of Lh preceding days of the same class of d—i.e.,

they are either weekdays or Saturdays,6 according to d. In practice, a large value

5Even if one or more of the samples in the summand of (9.4) were themselves imputed, these imputed

values are not employed when computing that of x̂k,s,d, in order to avoid biasing the results.
6Recall that Sundays have been excluded from the dataset.
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is assigned to the length Lh (such as 120 for weekdays and 24 for Saturdays).

However, given the limited length of our dataset, here we compute the average

among all available preceding days of the same class.

(iv) As expected, the imputation attempt of step (iii) also fails when one of the samples

xk,s,dl in the historical data was not measured. If so, the algorithm simply sets,

as a last resort, x̂k,s,d = smax, which means assumption of a free-flow condition.

3. Fixed-point continuation algorithm (FPCA) with approximate SVD [139]: This algo-

rithm consists of a fixed-point continuation scheme which solves the matrix completion

problem (6.9) by considering a sequence of subproblems of the form

min
X∈RN1×N2

τ‖X‖∗ +
1

2
‖y −A(X)‖22 , (9.7)

with decreasing values of the regularization constant τ . We apply it to complete the

mode-1 unfolding X〈1〉 ∈ R
840×4368. This allows exploiting correlation among daily

profiles. We have employed the Matlab code provided by its authors,7 which contains a

routine for automatic adjustment of the parameters. In our case, it yields the parameter

values µ = 10−4, η = 0.25, τ = 2 and a maximum number of inner iterations (for the

subproblems) of 10. For details, see [139].

4. SNN: The popular TC approach based on SNN minimization (cf. Algorithm 6.1) has

been employed for traffic data reconstruction in [163, 164]. We therefore include it

in our evaluation with the measurements as constraints (i.e., with λ → 0), which is

essentially the same method as that used in [163, 164]. As in [195], we set η = η0/σy,

choosing η0 = 50, where σy is the standard deviation of the observed entries of X.

Also, the algorithm is allowed to run for a maximum number of Kmax = 150 iterations.

5. Block coordinate descent (BCD) algorithm for nonnegative CPD: Because the speed of

a vehicle is a nonnegative quantity, taking that property into account is desirable. We

thus include in our evaluation the BCD algorithm proposed in [214] which estimates

nonnegative factors of a CPD model. This also allows assessing how a technique based

on tensor rank compares with others based on mrank. In the context of traffic data

completion, the use of a CPD-based approach has been considered in, e.g., [191]. The

maximum number of iterations for this algorithm was set at Kmax = 500. We chose the

rank empirically, by trying to find a sufficiently high rank value for which no significant

improvement was observed when it was further increased. This led to the values of

R = 300 for ρ = 0.4, R = 700 for ρ = 0.6 and R = 800 for ρ = 0.8.

6. SeMPIHT: The following ISS settings are applied: α = 0.5, β = 0.7, L = 3 and initial

candidate step size µk = 1. The target mrank r was also empirically adjusted in an

7The code is available at http://www1.se.cuhk.edu.hk/∼sqma/FPCA.html.
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attempt to achieve the best possible performance. It was set as r = (100, 20, 25) for

ρ = 0.4, r = (170, 25, 35) for ρ = 0.6 and r = (350, 30, 40) for ρ = 0.8. The second

GRI scheme discussed in Section 7.4 (in which each mrank component has a growth

rate proportional to its final value) is employed, being tuned so that the target mrank

is attained at iteration [r]1. The maximum number of iterations is Kmax = [r]1 + 150.

7. IFHST: The parameters of IFHST are set as ψ = 0.85, η0 = 0.01 and Kmax = 150.

While the maximum number of iterations was set for each algorithm according to its

observed computing cost and convergence speed, their tolerances are all given by ǫ = 10−6.

In particular, BCD was generally stopped without satisfying this tolerance, due to its slow

convergence. Yet, the obtained NSE curves suggest no significant improvements would be

achieved by performing additional iterations. SeMPIHT also did not perform well in this

regard, being usually stopped only after reaching its maximum number of iterations.

9.5.2 Experimental procedure

We have considered 9 scenarios, corresponding to all pairs (ρ, L) ∈ {0.2, 0.4, 0.6} ×
{30, 60, 120}. In each scenario, a random SO generated as described in Section 9.4 is applied

to sample X. The output X̂ of each completion algorithm is then filtered by the first-order

lowpass Butterworth filter

H(z) =
0.1602z + 0.1602z−1

1− 0.6796z−1
, (9.8)

whose normalized cutoff frequency is of 0.03π rad/sample. This filtering process takes place

along the first mode, so that all daily profiles are smoothed out by H(z).

To guarantee that all entries of the filtered estimate lie in [0, 90], we threshold them at

90 km/h and replace negative samples by employing an interpolation scheme akin to Interp.

The processed estimate is then denoted by X̂f . Of course, X is also transformed in the same

way, yielding the filtered reference tensor Xf . At that point, we measure the normalized

quadratic error

NSEspeed ,

∥
∥
∥(Xf )Ω̄ − (X̂f )Ω̄

∥
∥
∥

2

F

‖(Xf )Ω̄‖2F
, (9.9)

for each reconstruction method, where Ω̄ is the complement of the set of sampled multi-

indices, Ω. Similarly, we compute the root mean squared error (RMSE)

RMSEspeed ,

√
√
√
√

1

|Ω̄|
∑

(n1,n2,n3)∈Ω̄

(

[Xf ]n1,n2,n3 − [X̂f ]n1,n2,n3

)2
(9.10)

and also the mean absolute percentage error (MAPE), which is defined as

MAPEspeed ,
100

|Ω̄|
∑

(n1,n2,n3)∈Ω̄

∣
∣
∣
∣
∣

[Xf ]n1,n2,n3 − [X̂f ]n1,n2,n3

[Xf ]n1,n2,n3

∣
∣
∣
∣
∣
. (9.11)
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Figure 9.7: Experimental procedure: blue boxes indicate the usual stages of GTL, while the

green ones represent the stages involved in our experiment.

Subsequently, we proceed to the computation of travel times for each day of the considered

time horizon. This is done by applying the calculation procedure described in Section 9.2

once for each t0 ∈ {6:00, 6:01, . . . , 19:29}. This set has cardinality 810. Hence, a matrix T̂ ∈
R
810×78 containing all computed travel times is constructed for each algorithm. Accordingly,

a reference matrix of same dimension, T, is formed by travel times calculated from Xf .

Due to measurement imperfections and to approximations involved in the calculation, the

resulting daily travel time profiles contain strong high-frequency oscillations. Yet, they

convey the evolution of the traffic congestion state along one day, which should be smooth.

Thus, we filter each column of the matrices T̂ and T by (9.8), obtaining matrices T̂f and

Tf , respectively, which comprise more physically reasonable travel time profiles. Then, we

compute for each algorithm the performance measures NSEtt, RMSEtt and MAPEtt, which

are defined analogously to (9.9)–(9.11).

For clarity, this experimental procedure is portrayed in Fig. 9.7. The blue boxes represent

operations pertaining to (a simplified version of) GTL’s usual flow, while the green ones stand

for the stages involved in our experiment.

9.5.3 Simulation results

Table 9.1 presents the results, with the best performance indices per scenario underlined.

Overall, BCD and IFHST have the best performance, generally with a large advantage over

the other methods. The accuracy of Interp, in particular, degrades significantly when L

grows, as expected. The same rate of degradation is not observed for other algorithms. In

the case of GTL, this is explained by the fixed window size of its temporal interpolation

stage. Yet, its estimates are quite inaccurate, due to the poor exploitation of correlations.

When ρ = 0.6, IFHST achieves the best reconstruction of speeds, but BCD scores the best
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Figure 9.8: Reconstruction of speeds on June 12th 2015 achieved by all algorithms for ρ = 0.4

and L = 120: (a) reference data; (b) pattern of missing entries (in black color); (c)–(i) outputs

of reconstruction algorithms.

NSEtt and RMSEtt. This apparently contradictory behavior happens because the computed

travel times are somewhat sensitive to the occurrence of underestimated speeds, as it is

the inverse of space-mean speeds which appears on formula (9.1). It was observed that

IFHST is more prone to producing underestimated speeds than BCD, which can yield a few

“outliers” in T̂f that largely deviate from their counterparts of Tf . Of course, this impacts

the quadratic performance indices more severely than MAPEtt.

At any rate, the estimates produced by IFHST are often the most accurate ones, or at

least among the two most accurate ones when it is outperformed by BCD. Now, when we

consider the execution times of these two algorithms, it becomes clear that IFHST provides

the best compromise between computing cost and overall accuracy.
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Figure 9.9: Empirical c.d.f. of the absolute percentage errors committed by each algorithm

with respect to travel times.

In Fig. 9.8 we compare the results of all algorithms over June 12th 2015 in terms of speeds

reconstruction, considering the scenario ρ = 0.4, L = 120. A quick inspection shows the clear

superiority of BCD and IFHST over the other approaches. Interp and GTL arguably deliver

the worst results in terms of overall preservation of data features. In particular, Interp

ignores spatial correlations, thus destroying the horizontal coherence of the data to a great

extent. This effect is also observed for GTL, which imputes too many samples with the

nominal speed of 90 km/h. FPCA performs poorly, especially within the time window from

12:00 to 15:00. This seems to come from the loss of structure caused by the “matricization,”

due to which a low-rank solution is obtained at the expense of losing day-specific details.

SNN and SeMPIHT perform better, but their results are also perceptibly degraded.
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Figure 9.10: Estimation of travel times over the 26th June 2015: (a) c.d.f. of absolute per-

centage errors; (b) estimated times and reference values.

Let us now turn our attention to the accuracy of estimated travel times. First, we plot

in Fig. 9.9 the c.d.f. of the absolute percentage errors

[e]n = 100×
∣
∣
∣
∣
∣

[vec(Tf )]n − [vec(T̂f )]n
[vec(Tf )]n

∣
∣
∣
∣
∣

(9.12)

produced by each method. These curves show the clear superiority of BCD and IFHST,

whose errors are smaller than 20% for over 99.5% computed travel times in every scenario.

In Fig. 9.10(a), we plot the same c.d.f. but focusing on 26th June 2015. This date was chosen

because a substantial congestion took place on it. Fig. 9.10(b) shows the reference travel

times on that day, along with the estimates produced by each algorithm. IFHST and BCD

clearly deliver the best performance, while SeMPIHT gives the worst one, due to its frequent

underestimation of vehicle speeds. GTL, on the other hand, is prone to overestimate the

speeds, as it imputes missing values with the nominal speed (i.e., the speed limit) too often.

Lastly, convergence plots of all iterative algorithms are plotted on Fig. 9.11 for two

different scenarios: ρ = 0.4, L = 120 and ρ = 0.8, L = 60. (In these figures, the NSE

measured at each iteration is over the whole tensor, and not only over Ω̄.) The curves

exhibit the unambiguous superiority of IFHST over other approaches, which was seen to

hold true in all scenarios.

9.6 Final remarks

Our computer experiments ratify the usefulness of IFHST for the reconstruction of real-world

tensor data. More specifically, the performance achieved by this algorithm in the completion
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Figure 9.11: Convergence plots of iterative algorithms for two selected scenarios.

of tensors comprising vehicle speeds data was quite satisfactory and better than those of

other approaches, either in terms of reconstruction accuracy or of computing time (or both),

even in the presence of relatively long portions of missing data. This robustness with respect

to consistent failure of sensing devices is a desirable feature in the context of traffic data

acquisition, which thus makes IFHST a viable alternative in practice.



Chapter 10

Conclusions and perspectives

This thesis has offered contributions to the problems of structured canonical polyadic decom-

position estimation and of low-rank tensor recovery. We now present our overall conclusions

and point out some research perspectives worth future investigation.

10.1 Structured canonical polyadic decomposition

Chapter 4 has developed two approaches to the problem of SCPD which are quite different

in nature. In addition to the simplicity and generality of CALS, the approximate iterates

we have formulated add to its versatility, allowing mixed strategies for the reduction of

its computing cost. The algebraic solution for circulant-constrained CPDs, in its turn, is

directed towards a particular case, but is able to completely exploit the structure of the

target tensor in a non-iterative manner. In particular, it provides an exact solution in the

absence of noise.

The numerical studies of Chapter 5 make clear the utility of the mixed CALS variant

which employs first approximate and then exact iterates, as they show it achieves cost re-

duction and even avoids local minima when the initialization is far from a global optimum.

Another major conclusion coming from that chapter is the quite satisfying statistical perfor-

mance of SCPD estimators which combine a non-iterative method providing an approximate

initial solution with an iterative algorithm for refinement. In particular, combinations of

simple ad-hoc methods based on our algebraic solution or on the SBS method with CALS

were capable of approaching the ECRB in our simulations, while keeping a smaller cost in

comparison with other evaluated alternatives.

10.1.1 Perspectives

We list below some research topics concerning structured tensor decompositions which de-

serve further investigation.

• Generalization of algebraic solution. It would be valuable to investigate whether the

algebraic solution devised on Chapter 4 can be extended to more general situations

in which non-circulant matrix factors are also involved. A motivating example is the

Wiener-Hammerstein identification problem described in Section 3.2, where one of
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the factors is a circulant matrix post-multiplied by a diagonal one. Generalizations

to handle block-Topelitz or block-circulant factors seem also desirable, due to their

importance in some applications [57, 185].

• Nonnegativity constraints. Nonnegative tensor decompositions are useful in many prob-

lems, such as data mining, chemometrics, hyperspectral imaging, computer vision,

biomedical engineering and audio source separation. Such a wide applicability has led

several researchers to study this topic [177, 46, 214, 162]. The introduction of struc-

tural constraints of the form we have considered could be of interest in some of these

problems. For example, a structured nonnegative CPD arises in [154].

• Theoretical properties of SCPD. Given the practical relevance of the SCPD, a better

understanding of its theoretical properties is desirable. In particular, an important

question is whether the ill-posedness of the best rank-R approximation problem dis-

cussed in Section 2.5.2.5 can be circumvented by imposing structured factors, such as

banded circulant matrices. Also, the derivation of other uniqueness results for partic-

ular structures, in addition to existing ones [53, 185, 184], can be considered.

• Other structured tensor models. More generally, the estimation of structured versions

of other tensor models can also be envisaged. For instance, a structured tensor de-

composition in rank-(1, L, L) terms, which is more general than the CPD, arises in

the problems of convolutive blind signal separation and blind deconvolution [62, 185].

Computing hierarchical tensor models [95] having structured components seems also

an interesting problem, although we are not aware of applications in this case.

10.2 Low-rank tensor recovery

The SeMPIHT algorithm we have proposed in Chapter 7 takes advantage of the attractive

features of the approximate best mrank-r approximation method via sequentially optimal

modal projections, offering an efficient alternative to the LRTR problem. We have presented

systematic numerical simulations which suggest that the existing tensor IHT algorithms,

including SeMPIHT, have order-optimal sampling requirements for Gaussian measurement

operators. Unfortunately, though, our derived theoretical results fall short of the expected

RIC conditions for ensuring recovery of low-mrank tensors. Our simulation results also give

convincing evidence on the remarkable improvement brought by our step size selection and

gradual rank increase heuristics.

Despite the merits of SeMPIHT, it fails to deliver satisfactory results when the low-

mrank assumption is violated to a significant extent, meaning the mrank of the target tensor

is full (as typically happens in applications) and its modal singular spectra do not decay fast



186 Chapter 10. Conclusions and perspectives

enough. To address this more adversarial scenario in the case of tensor completion, we have

proposed in Chapter 8 the IFHST algorithm, which couples a single imputation scheme with

a soft thresholding operation whose purpose is promoting a solution having a compressible

HOSVD core. This property was shown to be tied to a fast decay of the modal singular

spectra of the target tensor.

Chapter 9 has illustrated the effectiveness of the IFHST strategy when applied to real-

world data arising in a traffic data reconstruction context. The employed sampling scheme

simulates systematic failure of some data acquisition devices, resulting in concentrated por-

tions of missing data in the observed tensor. Even so, IFHST yields an accurate reconstruc-

tion of these unknown entries. Though a CPD-based approach with nonnegative factors had

a quite close performance with respect to reconstruction accuracy, it was seen to demand

more computing effort, thus making IFHST the most cost-effective solution.

10.2.1 Perspectives

Let us now list some foreseeable extensions of our contributions to LRTR.

• Derivation of recovery results. An improvement of the performance bound (7.34) and

of the exploited RIC condition is worthwhile. This probably requires employing other

proof techniques for taking advantage of the complete low-mrank structure. An even

larger theoretical gap exists in the case of tensor completion, where RIC-based results

do not apply. The derivation of recovery guarantees for SeMPIHT in this setting is

likely to be quite hard, given the absence of similar results for IHT methods in LRMR.

It is unclear whether a proof based on coherence conditions could be pursued for IFHST.

• Improvements in computational efficiency. The computing cost per iteration of our

developed algorithms is still a limiting factor when we consider application to very

large tensors. In the case of SeMPIHT, the randomized techniques presented in [97]

for approximate computation of a truncated SVD can alleviate the required effort,

but possibly at the expense of a slower convergence. As for IFHST, one could try to

come up with a way of exploiting the sparsity of the thresholded HOSVD core at early

iterations in order to improve efficiency.

• Extension of conjugate gradient-based approach. IHT algorithms employing conjugate

gradient techniques in order to accelerate convergence have been proposed in [14] for

CS and MC. It is reasonable to suppose that this strategy could also be beneficial

in the LRTR case. In particular, a SeMPIHT variant employing a conjugate gradient

scheme seems worth pursuing.

• Recovery of low-rank and sparse components. A formulation modeling the target tensor
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as a sum of low-rank and sparse components has already been proposed in [106]. How-

ever, it relies on the minimization of SNN approach, which is suboptimal [146]. Hence,

an interesting research direction points at the extension of our proposed algorithms in

order to deal with this problem. First, this can yield a robust recovery method with

respect to outliers. Second, it is of interest in some applications such as the separation

of foreground and background elements in video sequences. Indeed, the video data

used in the simulations of [211] is unfolded (matricized) for treatment with their MC

algorithm; thus, a tensor approach preserving the structure of the data could lead to

better results.

• Comparison with other methods based on hierarchical tensor models and on tensor rank.

In our numerical simulations, we have not compared our Tucker-based approaches with

algorithms based on hierarchical tensor models, such as those of [55, 92]. Comparison

experiments involving the recovery of real-world data tensors are therefore desirable in

order to study which parsimony notion is better suited for each class of application. It

would be equally interesting to perform a comparison between IFHST and a TC algo-

rithm extending the method proposed in [210], given the similarity we have mentioned

in Chapter 8.

• Application to Volterra model identification. The encouraging results obtained in [26]

with the application of the Volterra-CPD model [79] to kernels derived from a loud-

speaker model indicate that low-rank approximations are useful to model physical

systems. Since the outputs of a homogeneous Volterra system can be seen as measure-

ments of a Volterra kernel taken with a measurement operator induced by the applied

input signal, an LRTR-based identification approach merits investigation. In particu-

lar, the identification of non-homogeneous Volterra models with this strategy involves

significant difficulties, as it requires a joint recovery of low-rank tensors of different

orders. A study of this problem could thus lead to a generalization of LRTR.



Conclusions et perspectives

Cette thèse a offert des contributions aux problèmes de calcul d’une décomposition canonique

polyadique structurée et de récupération de tenseurs de rang faible. On présente dans ce

chapitre nos conclusions globales et on souligne quelques perspectives de recherche.

Décomposition canonique polyadique structurée

Le Chapitre 4 a développé deux approches pour le problème de calcul d’une SCPD qui sont

assez différentes. En plus de la simplicité et de la généralité de CALS, les itérées approchées

que l’on a formulées contribuent à sa versatilité, permettant l’utilisation de stratégies mixtes

pour réduire son coût de calcul. La solution algébrique pour les CPDs avec contrainte

circulante vise un cas particulier, mais est capable d’exploiter complètement la structure du

tenseur d’intérêt de façon non-itérative. En particulier, elle fournit une solution exacte en

l’absence de bruit.

Les études numériques du Chapitre 5 attestent clairement de l’utilité de la variante CALS

mixte qui emploie des itérées d’abord approchées puis exactes, en montrant que cette ap-

proche réduit le coût et évite des minima locaux lorsque l’initialisation est loin de l’optimum

global. L’autre conclusion majeure de ce chapitre est la performance statistique assez satis-

faisante de certains estimateurs SCPD qui combinent une méthode non-itérative fournissant

une solution initiale approchée avec un algorithme itératif pour la raffiner. En particulier,

des combinaisons de méthodes simples ad-hoc basées sur notre solution algébrique ou sur la

méthode SBS avec CALS ont été capables de se rapprocher de la ECRB dans nos simulations,

tout en gardant un coût plus faible par rapport à d’autres alternatives évaluées.

Perspectives

On énumère ci-dessous quelques thèmes de recherche concernant les décompositions ten-

sorielles structurées qui méritent d’être étudiés davantage.

• Généralisation de la solution algébrique. Il serait intéressant de déterminer si la solution

algébrique développée dans le Chapitre 4 peut être étendue à d’autres situations plus

générales où des facteurs matriciels non-circulants sont aussi impliqués. Un exemple qui

motive cette investigation est le problème d’identification Wiener-Hammerstein décrit

dans le Chapitre 3.2, où l’un des facteurs est une matrice circulante multipliée à droite

par une matrice diagonale. Des généralisations pour traiter des facteurs Toeplitz ou

circulants en bloc paraissent aussi souhaitables, dû à leur importance dans certaines

applications [57, 185].
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• Contraintes de non-négativité. Les décompositions tensorielles non-négatives sont utiles

dans beaucoup de problèmes, comme dans la fouille de données, la chimiométrie,

l’imagerie hyperspectrale, la vision par ordinateur, l’ingénierie biomédicale et la

séparation de sources audio. Cette large applicabilité a conduit plusieurs chercheurs

à étudier ce sujet [177, 46, 214, 162]. L’introduction de contraintes structurelles de la

forme considérée pourrait être d’intérêt pour certains de ces problèmes. Par exemple,

on retrouve une CPD structurée non-négative dans [154].

• Propriétés théoriques de la SCPD. Compte tenu de l’intérêt pratique de la SCPD, une

meilleure compréhension de ses propriétés théoriques est souhaitable. En particulier,

une question importante est de déterminer si la recherche de la meilleure approximation

de rang R d’un tenseur, qui est un problème mal posé dans le cas général, peut avoir

une solution garantie lorsque l’on impose de la structure dans les facteurs, tels que

des facteurs circulants en bande. Par ailleurs, la dérivation d’autres résultats d’unicité

pour des structures particulières, en plus de ceux qui existent [53, 185, 184], peut être

considérée.

• D’autres modèles tensoriels structurés. De façon plus générale, l’estimation de versions

structurés d’autres modèles tensoriels peut être également envisagée. Par exemple,

une décomposition tensorielle structurée dans des termes de rang-(1, L, L), qui est plus

générale que la CPD, se produit dans les problèmes de séparation de sources aveugle

convolutive et de déconvolution aveugle [62, 185]. Le calcul de modèles tensoriels

hiérarchiques [95] ayant des composants structurés semble aussi intéressant, bien qu’on

ne puisse pas en donner des applications.

Récupération de tenseurs de rang faible

L’algorithme SeMPIHT que l’on a proposé dans le Chapitre 7 exploite les propriétés de la

méthode approchée de meilleure approximation de rang multilinéaire (mrang) r via des pro-

jections modales séquentiellement optimales, fournissant une alternative efficace au problème

LRTR. On a présenté des simulations numériques systématiques qui suggèrent que les al-

gorithmes IHT existants, y compris SeMPIHT, ont besoin d’un nombre optimal (en ordre

de grandeur) de mesures Gaussiennes. Nous avons aussi dérivé des résultats théoriques qui

garantissent la récupération de tenseurs de mrang faible. Cependant, malheureusement ces

résultats s’appuient sur des conditions RIC largement sous-optimales. Nos résultats de sim-

ulations ont mis en évidence l’amélioration remarquable apportée par nos heuristiques de

choix du pas et d’augmentation graduelle du mrang.

En dépit des mérites de SeMPIHT, il n’arrive pas à produire des résultats satisfaisants

lorsque l’hypothèse de mrang faible est considérablement violée, c’est-à-dire lorsque le mrang
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du tenseur d’intérêt est plein (ce qui arrive typiquement dans les applications) et ses spec-

tres singuliers modaux ne décroissent pas assez rapidement. Afin d’aborder ce scénario

moins favorable dans le cas de la reconstruction tensorielle, on a proposé dans le Chapitre 8

l’algorithme IFHST, qui couple un schéma d’imputation simple à une opération de seuillage

doux dont le but est de promouvoir une solution qui ait une HOSVD avec cœur compressible.

On a montré que cette propriété est liée à une décroissance rapide des spectres singuliers

modaux du tenseur d’intérêt.

Le Chapitre 9 a illustré l’efficacité de la stratégie IFHST appliquée à des données réelles

issues d’un contexte de reconstruction de données de trafic. Le schéma d’échantillonnage

simule la défaillance systématique de quelques capteurs, ce qui cause l’occurrence de portions

concentrées de données manquantes dans le tenseur observé. Malgré cela, IFHST produit

une reconstruction précise des composantes inconnues. Bien qu’une approche basée sur la

CPD non-négative ait eu une performance assez proche en ce qui concerne la qualité de

reconstruction, elle a demandé un effort de calcul supérieur, ce qui monte que IFHST atteint

un compromis plus favorable entre coût de calcul et précision.

Perspectives

Nous décrivons ci-après une liste de possibles extensions de nos contributions au problème

LRTR.

• Dérivation de résultats de récupération. Une amélioration de la borne de perfor-

mance (7.34) et de la condition RIC exploitée est d’intérêt. Ceci exige probablement

l’emploi d’autres techniques de preuve pour profiter de la structure de mrang faible

complètement. Un écart théorique encore plus large existe dans le cas de la reconstruc-

tion tensorielle, où les résultats basés sur RIC ne s’appliquent pas. Le développement

de garanties de récupération pour SeMPIHT dans ce cadre est probablement assez dif-

ficile, compte tenu de l’absence de résultats similaires pour des méthodes IHT dans

le cadre LRMR. Ce n’est pas clair si une démonstration basée sur des conditions de

cohérence pourrait être envisagée pour IFHST.

• Amélioration de l’efficacité de calcul. Le coût de calcul par itération de nos algorithmes

est encore un facteur limitant quand on considère leur application à des tenseurs de très

grandes dimensions. Dans le cas de SeMPIHT, les techniques randomisées présentées

dans [97] pour le calcul approché d’une SVD tronquée peuvent réduire l’effort de calcul,

mais possiblement au détriment de la vitesse de convergence. Quant à IFHST, on

pourrait concevoir une manière d’exploiter la sparsité du cœur seuillé de la HOSVD

lors des premières itérations pour améliorer l’efficacité.

• Extension de l’approche basée sur le gradient conjugué. Des algorithmes IHT employ-
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ant les techniques du gradient conjugué afin d’accélérer la convergence ont été proposés

dans [14] pour CS et MC. Il est alors raisonnable de supposer que cette stratégie pour-

rait aussi être bénéfique dans le cas LRTR. En particulier, une variante de SeMPIHT

employant un schéma du gradient conjugué mériterait d’être étudiée.

• Récupération conjointe de composants de rang faible et parcimonieuse. Une formula-

tion modélisant le tenseur d’intérêt comme une somme d’un tenseur de rang faible et

d’un tenseur parcimonieux a été déjà proposée dans [106]. Cependant, elle s’appuie sur

l’approche de minimisation de la somme des normes nucléaires, ce qui est sous-optimal

[146]. Ainsi, une piste de recherche intéressante consiste à éteindre nos algorithmes afin

de traiter ce problème. D’abord, cela peut fournir une méthode de récupération robuste

par rapport aux données aberrantes (outliers). Puis, il s’agit d’une problématique

intéressante pour certaines applications comme la séparation d’éléments de premier

plan et d’arrière-plan d’une vidéo. En effet, le tenseur de données de vidéo utilisé

dans les simulations de [211] est déplié pour que la méthode soit applicable; une ap-

proche tensorielle qui préserve la structure des données pourrait aboutir à de meilleurs

résultats.

• Comparaison à d’autres méthodes basées sur les modèles tensoriels hiérarchiques et

sur le rang tensoriel. Dans nos simulations numériques, nous n’avons pas comparé

nos approches basées sur le modèle de Tucker aux algorithmes basés sur les modèles

tensoriels hiérarchiques, tels que ceux de [55, 92]. Des comparaisons portant sur la

récupération de tenseurs de données réelles sont alors souhaitables pour qu’on étudie

quelle notion de parcimonie est mieux adaptée à chaque classe d’applications. Il serait

également intéressant de réaliser une comparaison entre IFHST et un algorithme de

TC fondé sur la méthode de [210], compte tenu de la similarité que l’on a évoquée dans

le Chapitre 8.

• Application à la modélisation de Volterra. Les résultats encourageants obtenus dans

[26] avec l’application du modèle Volterra-CPD [79] à des noyaux calculés à partir du

modèle d’un haut-parleur indiquent que les approximations de rang faible sont utiles

pour modéliser les systèmes physiques. Puisque les sorties d’un modèle de Volterra

homogène peuvent être regardées comme des mesures d’un noyau de Volterra acquises

par un opérateur de mesure induit par le signal d’entrée, une approche d’identification

basée sur LRTR mérite d’être étudiée. En particulier, l’identification de modèles de

Volterra non-homogènes à l’aide de cette stratégie entrâıne des difficultés significatives,

car elle exige une récupération conjointe de tenseurs de rang faible de différents ordres.

Une étude de ce problème pourrait alors mener à une généralisation de LRTR.
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