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Abstract

In the recent past, increasing interest has risen for nuclear quantum effects (NQE), espe-
cially in hydrogen-containing systems. Indeed, NQE such as proton tunneling and zero-
point energy often play a crucial role in the properties of these materials, even at room tem-
perature. The standard methods to simulate NQE are based on path integrals. An inter-
esting alternative to these methods is the Quantum Thermal Bath (QTB) [1]: this method
is based on a Langevin equation where the classical degrees of freedom are coupled to an
ensemble of quantum harmonic oscillators. While in the classical Langevin equation, the
random force consists in a white noise and fulfills the classical fluctuation-dissipation the-
orem, in the QTB approach, the random force fulfills the quantum fluctuation-dissipation
theorem [2]. We show through simple models that the QTB is a viable approach to take
into account NQE, even, to some extent, in anharmonic systems [3]. Hence, the QTB
enables realistic simulations of complex condensed-phase systems, generating static and
dynamic information, such as pair correlation functions and vibrational spectra, which can
be directly confronted with experimental results. We show that the QTB method is partic-
ularly successful in the study of the symmetrization of hydrogen bonds in several systems.
Indeed, the difficulty resides in the identification of a precise transition pressure since the
phase transition is often blurred by quantum or thermal fluctuations. It can depend on
the oxygen-oxygen distance, as in high-pressure ice [4], but it can be affected by the elec-
tric field induced by ionic impurities [5] or by the inherent asymmetric environment of
the hydrogen bonds, as in the delta phase of AlOOH [6]. Moreover, by comparing results
from QTB and standard ab initio molecular dynamics, we are also able to disentangle the
respective roles of NQE and thermal fluctuations in these phase transitions.
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Résumé

L’étude des effets quantiques nucléaires et de leurs conséquences suscite de plus en plus
d’intérêt, en particulier dans les matériaux comportant de l’hydrogène. En effet, les ef-
fets quantiques, tels que l’effet tunnel ou l’énergie de point zéro, ont souvent un impact
important sur les propriétés de ces matériaux, et peuvent être présents même à tempéra-
ture ambiante. Actuellement, les méthodes les plus courantes qui permettent de faire des
simulations numériques en tenant compte des effets quantiques nucléaires sont basées sur
le formalisme des intégrales de chemin. Le bain thermique quantique (ou QTB) [1] con-
stitue quant à lui une alternative intéressante à ces méthodes: il repose sur le principe
que les degrés de liberté classiques du système obéissent à une équation de Langevin par
laquelle ils sont couplés à un ensemble d’oscillateurs harmoniques quantiques. Dans le cas
de l’équation de Langevin classique, la force aléatoire est constituée d’un bruit blanc afin
que le système respecte le théorème de fluctuation-dissipation classique; au contraire, dans
l’approche du QTB, la force aléatoire est telle que la version quantique du même théorème
est vérifiée [2]. On montrera à l’aide de modèles relativement simples que le QTB con-
stitue une approche valide et efficace pour tenir compte des effets quantiques nucléaires
dans des systèmes avec des degrés variés d’anharmonicité [3]. Ainsi, grâce au QTB, on
peut réaliser des simulations de systèmes complexes et obtenir des informations sur leurs
propriétés structurales et dynamiques, telles que des fonctions de corrélation de paires
ou des spectres vibrationnels, qui peuvent à leur tour être confrontés directement aux
résultats expérimentaux. Nous montrerons que la méthode du QTB est particulièrement
adaptée pour l’étude de la symétrisation de liaisons hydrogènes dans différents systèmes.
En effet, identifier de manière précise une pression de transition est relativement diffi-
cile car la transition est souvent brouillée par des fluctuations quantiques et thermiques.
La pression de symétrisation peut également dépendre de la distance entre deux oxygènes
voisins, comme c’est le cas dans la transition VII-X de la glace [4], mais elle peut aussi être
impactée par le champ électrique induit par des impuretés ioniques [5] ou par l’asymétrie
de l’environement atomique de la liaison hydrogène, ainsi que nous l’avons établi dans la
phase δ de AlOOH [6]. De plus, en comparant les résultats des simulations de dynamique
moléculaires ab initio standards et à ceux de simulations QTB, nous pouvons distinguer
les rôles respectifs des effets quantiques nucléaires et des fluctuations thermiques dans ces
différentes transitions de phases.
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Introduction

Nuclear quantum effects (NQE) arise when a nucleus cannot be described through classical
mechanics but obeys the laws of quantum mechanics instead. The consequences thereof
are many, unexpected, and sometimes by no means negligible. From a simulation point
of view, NQE are a challenge but progress is being steadily made. The situation is now
that, given enough computation time, many problems and thus many different systems,
can be addressed. In this thesis, our objective is to study NQE in real systems through
an efficient and pragmatic approach.

NQE can impact the behavior of condensed matter systems and affect properties such
as thermal expansion, proton diffusion or specific heat. When NQE are present, two
conflicting effects occur: spatial delocalization due to quantum mechanics on the one
hand and confinement due to the atomic environment on the other. This is especially
true for light atoms, such as hydrogen, where the nucleus is simply a proton. As an
illustration of its quantum delocalization, the thermal wavelength of a "free" proton is of
the order of 1 Å at room temperature i.e. the same order of magnitude as interatomic
distances in hydrogen-containing systems. This can have many implications since hydrogen
is ubiquitous and can be found in various systems, from the interior of stars and gaseous
planets to water [7] and biological matter [8]. For example, the fact that the melting point
of heavy water (D2O and T2O) is higher than that of light water (H2O) is due to NQE and
is one of the isotope effects in water [9,10]. Other consequences of NQE are the quantum
ferroelectric behavior of KH2PO4 (KDP) [11] or the formation of many different ice phases
under pressure [12]. Hence, the study of the consequences of quantum effects has been the
focus of intense research in the recent years, both experimentally and theoretically.

The main difficulty resides in the simulation of NQE. Molecular dynamics (MD) is
an efficient tool to study the structural and dynamical properties of condensed matter
systems and has been widely used; however, it relies on Newton’s equations of motion
for the nuclei and thus treats them as classical particles. Simulating a system containing
quantum particles is problematic because of the well-known wave-particle duality: while
MD takes care of the "particle" aspect of a quantum nucleus, the "wave" aspect is much
more complicated and requires more complex and computationally heavy methods. As an
example, let us consider a simple water molecule: the zero-point energy in the two O-H
stretching vibrations and in the bending vibration is more than twenty times larger than
the thermal energy at room temperature (kBT ). Within the quantum mechanics frame-
work, this energy is "bounded" to the internal vibrations of the molecule; however, if the
system were treated classically by means of a standard MD simulation, then equipartition
of this energy would occur meaning that it would be shared equally among all the degrees
of freedom of the molecule, which would in turn cause the water to boil [13] ! Usually,
simulations treat the water molecule as a rigid molecule that can rotate but whose internal
degrees of freedom cannot vibrate. This allows for a correct description of the properties
of water in many cases but fails in others, such as proton transfer reactions for exam-
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INTRODUCTION

ple. Indeed, these reactions imply complex processes, based on the original von Grotthuss
process [14], where the O-H bonds must be able to break and reform.

Therefore, a lot of effort is being made to develop various approaches and techniques
to simulate efficiently quantum effects in condensed matter. Among them, the Quantum
Thermal Bath (QTB) method [1] simulates NQE by introducing a stochastic motion of
the nuclei, as in a standard Langevin equation. The difference in the QTB method is that
both thermal and quantum fluctuations are included in the stochastic force, in contrast
with standard Langevin dynamics where only the thermal energy is considered. This
allows us to treat protons as quantum particles within MD simulations with the same
computational cost as standard MD. Hence, we can address systems with a typical size
accessible by density functional theory-based calculations i.e. a few hundred atoms and
for time lengths up to 30 ps. This enables us to compute both structural properties
and vibrational spectra, that can be compared to experimental data. Furthermore, QTB
simulations also allow us to develop simple models i.e. with few degrees of freedom, that
capture the essence of the studied physical phenomenon and provide a clear description of
the mechanisms underlying it.

In the following, we will first describe in detail how the QTB works and what its advan-
tages are with respect to other existing methods, such as path integral molecular dynamics
(chapters 1 and 2). By adopting a pragmatic viewpoint, we will then use the QTB in a
straigthforward manner to analyze the behavior of hydrogen bonds under pressure, since
we expect the quantum nature of protons to play a role in their evolution. The most
common model that describes a proton in a hydrogen bond is a double well potential as a
function of a reaction coordinate that settles the (strong) iono-covalent bond either with
an oxygen on one side or the other. We will confront this picture to real cases, such as
the VII-X transition in high-pressure ice. In particular, the VII-X transition will allow us
to describe the mechanism behind a "quantum-driven" phase transition (chapter 3). The
double-well picture is however challenged in more complex materials; we will show that
NQE can disappear in the presence of impurities e.g. in salty ices, and that, more gener-
ally, the atomic environment can massively modify the behavior of protons under pressure
(chapter 4). Therefore, by considering different systems in which the balance between
quantum delocalization and atomic confinement varies, we will illustrate the complexity
of protons’ properties in materials. In parallel to the use of the QTB on several systems,
we will also conduct a critical analysis of the method by using simple models in order to
define its limitations and its field of applicability; in particular, we will discuss one of the
main pitfalls of the QTB, namely the zero-point energy leakage (chapter 5). This will
allow us to identify the pros and cons of the QTB and develop practical guidelines to use
this method when studying NQE.
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Chapter 1

State of the art

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Path integral molecular dynamics . . . . . . . . . . . . . . . . . 4

1.3 Time correlation functions with nuclear quantum effects . . . . 5

1.3.1 Time correlation functions via path-integrals . . . . . . . . . . . 6

1.3.2 Approximate methods: semiclassical approaches . . . . . . . . . 8

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Introduction

In this chapter, we will present some of the methods that are available today for simulating
quantum effects in condensed matter systems. This presentation is clearly not exhaustive;
rather, it aims at providing a quick overview that will be useful when the pros and cons
of the Quantum Thermal Bath method will be discussed. Numerical simulations have be-
come a staple in condensed matter studies; in particular, molecular dynamics (MD), which
was introduced by Alder and Wainwright in the 1960s [15], is one of the most widely used
theoretical tool nowadays. It allows to describe statistical mechanical systems by comput-
ing the time evolution of the atomic motion i.e. the atomic trajectories. However, when
tackling the motion of hydrogen nuclei, we are confronted with many difficulties arising
from quantum mechanics. While standard MD is very satisfactory when dealing with
classical nuclei, it is, strictly speaking, only valid above the Debye temperature. Several
reviews about the development of methods including quantum mechanics in MD simula-
tions already exist, and can be found in references [13,16–19]. First, we will briefly present
the reference method for treating nuclear quantum effects within MD simulations, namely
path integral molecular dynamics (PIMD) (section 1.2). Indeed, since PIMD is an exact
method that yields the structural properties of a quantum system, we will compare our
own simulation results, obtained via an approximate method - the Quantum Thermal Bath
(QTB), to PIMD results whenever they are available. Then, we will discuss methods that
are designed to provide access to the time-correlation functions of the system (section 1.3).
Indeed, if we are interested in the dynamical properties of the system, path integral based
methods such as centroid molecular dynamics [20–25] or ring polymer molecular dynam-
ics [26, 27] are necessary and they can become quite demanding computationally. Hence,
approximate methods are needed to study more complex minerals and many semiclassical
approaches have been developed in the recent years in particular in order to compute time
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CHAPTER 1. STATE OF THE ART

correlation functions. Since the QTB method falls into this category, we will make a rapid
overview of the most used semiclassical method, namely initial value representation. Thus,
we will attempt in this chapter to explain the context in which the QTB method was in-
troduced in order to understand how it relates to other methods aiming at treating nuclear
quantum effects. This will allow us to better understand the advantages and drawbacks
of the QTB with respect to other available approaches (see chapters 2 and 5).

1.2 Path integral molecular dynamics

Within Feynman’s path integral formalism [28], the canonical partition function writes:

Q =
∫

dx1

∫ x1

x1

e−S[x(τ)] Dx(τ) (1.2.1)

where the integration is over all paths x(τ) in imaginary time τ starting and ending at x1

i.e. x(0) = x(~β) = x1 where β = (kBT )−1 is the inverse temperature. S is the Euclidian
action and writes:

S[x(τ)] =
∫

~β

0
H(x(τ)) dτ (1.2.2)

where H is the Hamiltonian which is composed of a kinetic part and of the potential V (x).
If we discretize the imaginary time τ so that τ = n~β/P , n = 0, P and P being an integer,
then x(τ) can be approximated by a series of straight lines between each time step. The
partition function in equation (1.2.1) can thus be rewritten as:

QP =
(
mP

2π~2β

)P/2 ∫

dx1 . . .

∫

dxP e−βVP (x1,...,xP ) (1.2.3)

with

VP (x1, . . . , xP ) =
mP

2~2β2

P∑

n=1

(xn − xn+1)2 +
1
P

P∑

n=1

V (xn). (1.2.4)

Here, we have considered periodic boundary conditions i.e. xP +1 = x1. Now, the partition
function in equation (1.2.3) also corresponds to the configurational partition function of
a system consisting of P classical particles with the potential VP . Hence, there is an
isomorphism between the quantum system (with potential V ) and a cyclic chain of P
classical particles (see Figure 1.2.1). In this chain, each particle, also called a bead,
interacts with its two nearest neighbors via a harmonic potential with a force constant
mP/~2β2 and is trapped in the potential V/P . This isomorphism is in principle exact
only when the number of beads P is infinite i.e.

Q = lim
P →∞

QP . (1.2.5)

In practice, the classical isomorphism in equation (1.2.3) is valid if the potential V (x)
does not vary much with respect to the bond length fluctuations of the classical beads,
which can be attained for large but finite P . If we consider a free chain (i.e. without
any external potential), then the root mean square of the bond lengths is proportional
to

√

~2β/mP . If σ is the characteristic length scale over which the potential V (x) varies
significantly then, we need to set:

σ ≫
√

~2β

mP
⇔ P ≫ ~

2β

mσ2
. (1.2.6)

4



1.3. TIME CORRELATION FUNCTIONS WITH NUCLEAR QUANTUM EFFECTS

Figure 1.2.1: A depiction of the isomorphism between a quantum mechanical par-
ticle and a classical ring polymer within the path integral framework. Reference:
http://web.stanford.edu/group/markland/research.html

Hence, when the temperature decreases i.e. β → ∞, P must be very large. On the other
hand, at relatively high temperatures, P can be finite. In path integral based simulations,
one usually determines the value for P for which the relevant thermodynamic quantities
of the system are converged. In the following paragraph, we will show how this formalism
can be adapted for MD simulations.

Indeed, Parrinello and Rahman suggested in 1984 to use molecular dynamics in order to
evaluate the path integrals [29]. Indeed, equation (1.2.3) can be rewritten in the following
form:

QP =
∫

dp1 . . .

∫

dpP

∫

dx1 . . . dxP e−βHeff (1.2.7)

where

Heff =
P∑

j=1

p2
j

2m′ + VP (x1, . . . , xP ). (1.2.8)

By properly choosing m′, one can recover equation (1.2.3). The effective Hamiltonian Heff

then yields the classical equations of motion:

ẋj =
∂Heff

∂pj
, ṗj = −∂Heff

∂xj
. (1.2.9)

Hence, starting from an initial configuration (p1, . . . , pP , x1, . . . , xP ), one integrates the
equations of motion and then averages the thermodynamic properties over the trajecto-
ries. In the following, we will compare our results to PIMD calculations, when available,
in order to validate our simulations (see sections 3.3.2 and 5.3.2). One should note that
the trajectories computed within PIMD do not represent the real dynamics of the quan-
tum system because they are just a mean to evaluate statistical averages. Equilibrium
properties can be computed from these trajectories but, in order to calculate real-time
correlation functions, one needs to resort to more complex methods.

1.3 Time correlation functions with nuclear quantum effects

In many instances, one is interested in time-correlation functions of the system. Indeed,
many interesting quantities concerning the dynamics of complex systems can be expressed
in terms of time-correlation functions [30], such as:

CAB(t) = Tr [ρ0AB(t)] (1.3.1)

5



Time correlation functions with NQE

where A and B are quantum operators, ρ0 is the equilibrium density operator,

ρ0 =
e−βH

Z
, (1.3.2)

Z = Tr
[

e−βH
]

is the quantum partition function and H the Hamiltonian of the system
containing N particles. The time-dependent operator B(t) can be written as:

B(t) = eiHt/~Be−iHt/~. (1.3.3)

For example, if both A and B are the dipole moment operators, then the Fourier transform
of CAA(t) is the absorption spectrum; another example is if A is the velocity of a given
particle, then the time integral of CAA(t) yields the diffusion coefficient.

1.3.1 Time correlation functions via path-integrals

While PIMD is a powerful technique to compute equilibrium properties (see section 1.2), it
cannot yield directly information about the dynamics of the system. In order to compute
real time-correlation functions, one needs to resort to more complex methods, such as
centroid molecular dynamics [20–25] or ring polymer molecular dynamics [26,27], and both
of these methods can be quite demanding computationally for large or complex systems.

Centroid molecular dynamics The idea of centroid molecular dynamics (CMD) [20–
25] is to consider the centroids of the paths as classical phase space variables. In this
formalism, the centroid phase space "quasi-density" operator is:

φc(xc, pc) =
~

2π

∫

dζ
∫

dη eiζ(x−xc)+iη(p−pc)−βH (1.3.4)

where xc and pc are the position and the momentum of the centroid respectively, x and
p are the position and momentum quantum operators, and H is the Hamiltonian. By
definition, the centroid distribution function is given by:

ρc(xc, pc) = Tr [φc(xc, pc)] = e−βp2
c/2me−βVc(xc) (1.3.5)

where V (xc) is the centroid potential. The quantum partition function is then given by:

Z =
1

2π~

∫

dxc

∫

dpc ρc(xc, pc) (1.3.6)

and the average value of any operator A is:

〈A〉 =
1

2π~Z

∫

dxc

∫

dpc ρc(xc, pc)Ac(xc, pc; t) (1.3.7)

where
Ac(xc, pc; t) = Tr [δc(xc, pc; t)A] (1.3.8)

and δc is the normalized "quasi-density" operator:

δc(xc, pc; t) =
e−iHt/~φc(xc, pc)eiHt/~

ρc(xc, pc)
. (1.3.9)

In this framework, the equations of motion of the centroid are:

pc(t) = mẋc(t) = Tr [δc(xc, pc; t)p] , ṗc(t) = Fc(t) = Tr [δc(xc, pc; t)F ] (1.3.10)
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where F is the force operator. In the CMD approach, the following approximation is made
on the "quasi-density" operator:

δc(xc, pc; t) ≈ δc(xc(t), pc(t)) (1.3.11)

Using equations (1.3.10) with this approximation, the centroid correlation functions be-
come approximations for the true quantum correlation functions. However, equation
(1.3.11) is true only at t = 0 and in the case of a free particle or a particle in a har-
monic potential. It is also verified in the high-temperature limit. Finally, the centroid
potential Vc(xc) can be written as a centroid constrained imaginary time path integral
averaged over all closed imaginary time paths:

Vc(xc) = − 1
β

ln





√

2π~2β

m

∮

Dx(τ) δ(xc − x0)e−S[x(τ)]



 (1.3.12)

where S is the Euclidian action and

x0 =
1
~β

∫
~β

0
x(τ) dτ (1.3.13)

is the centroid of the path x(τ). The force Fc is then just −dVc/dxc. Using the same
formalism as for PIMD, the integral

∮
Dx(τ) . . . can be replaced by a configurational

integral over P particles, with cyclic boundary conditions (see equation (1.2.3)). In this
representation, the centroid coordinates become:

xc =
1
P

P∑

j=1

xj, pc =
1
P

P∑

j=1

pj. (1.3.14)

After having evaluated Vc in equation (1.3.12) via PIMD for instance, xc and pc are
propagated in real time using the equations of motion (1.3.10). The centroid correlation
function is then:

〈Bc(0)Ac(t)〉 =
1

(2π~)PZ

∫

dpc

∫

dx1 . . .

∫

dxP e−βp2
c/2m+VPBcAc[xc(t), pc(t)] (1.3.15)

where VP is the potential in equation (1.2.4). Thus, CMD simulations require one to
evaluate Vc at each time step of the trajectory. However, computing Vc in equation (1.3.12)
implies many PIMD steps. Approximations exist, such as adiabatic decoupling, that allows
to separate the non-centroid modes from the centroid’s motion and therefore speed up the
calculation [23,31–33]. Hence, CMD can be quite demanding computationally and is out
of reach for large and complex systems. In reference [18], Witt and coworkers investigate
the performance of path-integral based methods and in particular, of CMD on several
systems (diatomic and polyatomic molecules): they found that CMD works relatively well
at high temperature but also displays some problems at low temperature.

Ring-polymer molecular dynamics More recently, Craig and Manolopoulos pre-
sented a new method to compute time-correlation functions based on path integrals,
namely ring-polymer molecular dynamics (RPMD) [26]. In their formalism, the mass
m′ of the fictitious classical particles (see the effective Hamiltonian in equation (1.2.8)) is
taken to be m/P . Hence, the centroid has a mass m, as in CMD. As in PIMD, one then
propagates the equations of motion in real time. The force on the centroid is given by:

Fc = − 1
P

P∑

j=1

∂V (xj)
∂xj

(1.3.16)
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and after propagation to a time t, the following RPMD time-correlation function is com-
puted:

〈B(0)A(t)〉 =
1

(2π~)PZ

∫

dx1 . . .

∫

dxP

∫

dp1 . . . dpP e−βHeffBP (0)AP (t) (1.3.17)

where

AP (t) =
1
P

P∑

j=1

A[xj(t)], BP (0) =
1
P

P∑

j=1

B[xj(0)]. (1.3.18)

The RPMD correlation function is equal to the CMD correlation function in equation
(1.3.15) at t = 0 and if the operators A and B are linear functions of position and mo-
mentum. In this case, the RPMD correlation function is a good approximation to the
real physical time correlation function. One should note however that xc(t) and pc(t) are
propagated using the instantaneous centroid potential in RPMD whereas in CMD, they
were propagated using the average centroid potential of mean force. Hence, RPMD is less
computationally expensive than CMD and can be seen as an approximation to CMD. It
has been shown to give reasonable results in different cases [34–38], but as for now, no
rigorous derivation of RPMD has yet been provided. Witt and coworkers [18] also studied
the performance of RPMD and compared it to CMD: in particular, they found that the
chain frequencies that arise from the intrinsic dynamics of the ring polymers can interfere
with the physical frequencies of the system leading to non-physical peaks in the vibrational
spectrum, especially at low temperature.

1.3.2 Approximate methods: semiclassical approaches

Wavefunction-based methods

We have shown just above that path-integral based methods are the reference methods to
incorporate nuclear quantum effects, in a rigorous way, into MD simulations. However,
as explained in the previous section, PIMD can be quite demanding computationally,
especially at low temperature or for large and complex systems. Moreover, extracting
dynamical properties from path-integral based simulations is not straightforward: CMD
and RPMD methods aim at providing quantum time correlation functions but are subject
to other problems as pointed out in reference [18]. Other fully quantum calculations
exist but are similarly out of reach for large and complex systems; however, these exact
methods are being used more and more often for simple chemical reactions [39] and provide
benchmark results to which more approximate methods can be compared. For instance,
Makri and coworkers [40, 41] developed an approach based on path-integrals and applied
on models of molecular systems i.e. only a few relevant degrees of freedom describe the
main properties of the system and are being coupled to the environment via a bath of
harmonic oscillators. Another Hamiltonian-based approach, namely the time-dependent
Hartree method [42, 43], has been applied to systems with about ten degrees of freedom.
Here, we will show a few ideas to describe real-time dynamical processes while taking into
account the quantum nature of nuclei, through approximate methods.

Semiclassical theory and initial value representation

Many of the approximate or semiclassical approaches described in the literature are "mixed
quantum-classical" methods i.e. one or two degrees of freedom are treated quantum me-
chanically while the rest of the degrees of freedom are treated via the classical equations
of motion. The main problem resides in the coupling between the quantum degrees of
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freedom and the classical ones. Some of the existing methods are based on a wave packet
approach. Indeed, the wave packet approach is in principle exact if all the degrees of free-
dom of the system are considered, as explained in the previous paragraph. This is often
not attainable for systems with more than just a few degrees of freedom. However, if one
can separate the classical from the quantum degrees of freedom, one could in principle use
an exact approach for the quantum degrees of freedom. In particular, the self-consistent
field theory introduced by Bowman and coworkers [44,45] aims at finding the wavefunction
as a self-consistent solution to a given model Hamiltonian. By doing so, they are able to
reproduce the coupled vibrational motion of polyatomic molecules. Similar methods exist
that are based on an expansion of the wavefunction in terms of ~ or that approximate
the wave packets as variational Gaussians [46–48] and exploit the correspondence between
the classical and quantum dynamics of a Gaussian wave function in a harmonic potential.
These methods have been successful in the study of various clusters (e.g. solid and liquid
neon [47]); however, they scale poorly with the system size and have thus been applied
only to small molecules or clusters so far.

In the following, we will focus on a particular semiclassical method, namely initial value
representation (IVR), developed by Miller and coworkers along the last 40 years [49–55].
Semiclassical (SC) theory dates back to the late 1950s and 1960s when Ford and Wheeler
described quantum effects in elastic scattering using the WKB approximation within the
Schrödinger equation [56]. Their work was confirmed a few years later when Bernstein
showed that all the quantum effects in elastic scattering could indeed be described within
the SC theory [57]. SC theory was then extended to inelastic and reactive scattering pro-
cesses in the 1970s [49,58–60], and allowed to describe quantum effects such as tunneling
and interference within classical MD simulations. IVR then represents the first step to-
wards a practical way of carrying out SC calculations on complex systems by introducing
a Monte Carlo average over the initial conditions of classical trajectories.

The idea behind the semiclassical initial value representation (SC-IVR) method is
to approximate the time evolution operator, eiHt/~, by a phase space average over the
initial conditions of classical trajectories [13, 17, 49, 55, 58]. In particular, in the original
formulation of IVR of Van Vleck [61], the time evolution operator can be written as:

eiHt/~ =
∫

dp0

∫

dq0

√

Mqp

(2iπ~)3N
eiS(p0,q0)/~|qt〉〈q0| (1.3.19)

where (p0,q0) are the set of initial conditions for the momentum and coordinate operators.
(pt,qt) is the phase space point at time t and S is the classical action along the trajectory.
Finally, Mqp is the determinant of the Jacobian matrix relating the final coordinate qt to
the initial momentum p0:

Mqp = Det
[
∂qt

∂p0

]

. (1.3.20)

Within this approximation, the expression for the correlation function in equation (1.3.1)
becomes:

CAB(t) =
∫

dp0dp′
0dq0dq′

0

√

MqpM ′
qp

(2iπ~)3N
e−iS(p0,q0)/~+iS(p′

0,q′

0)/~〈q′
0|Aβ |q0〉〈qt|B|q′

t〉
(1.3.21)

where we have rewritten Aβ ≡ ρ0A. The first bottleneck in the method is the need to
perform a double phase space average at the initial time t = 0 and at any time t 6= 0.
A second and even more challenging problem resides in the evaluation of the exponential
terms which exhibit an oscillatory character that is difficult to tackle. This "phase problem"
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is crucial because it is the phase of the integrand in equation (1.3.21) which carries all
the quantum coherence information. Many techniques have been developed to solve these
issues.

Here we will present one of the simplest method which was introduced by Miller and
coworkers [62,63] and is called the "linearization approximation". The idea is to consider,
rather drastically, that the dominant terms in this double phase space average come from
trajectories that are close to each other. This approximation, however, has been shown
to yield very good results in many different cases e.g. the description of tunneling in
a one-dimensional potential which matches very well with benchmark results from fully
quantum mechanical calculations [13]. Hence, if one considers the following variables:

p0 =
p0 + p′

0

2
, q0 =

q0 + q′
0

2
(1.3.22)

∆p0 = p0 − p′
0, ∆q0 = q0 − q′

0 (1.3.23)

i.e. the sum and the difference of the two sets of initial conditions, then one can expand the
terms in equation (1.3.21) to the first order in ∆p0 and ∆q0. The integrals over ∆p0 and
∆q0 then become Fourier integrals since the phase of the integrand is linear. This is true
only if the phase is almost constant. This yields the following linearized time-correlation
function or LSC-IVR:

CLSC-IVR
AB (t) ≃

∫

dp0

∫

dq0A
(w)
β (p0,q0)B(w)(pt,qt) (1.3.24)

and is also called the "classical Wigner model" for the correlation function (we have re-
placed (p0,q0) by (p0,q0)). A(w)

β and B(w) are the Wigner functions of the corresponding
operators i.e.

O(w)(p,q) = (2iπ~)−3N
∫

d(∆q)〈q − ∆q

2
|O|q +

∆q

2
〉 (1.3.25)

for each operator Aβ and B.1 In practice, CLSC-IVR
AB (t) necessitates only one phase space

average and has the form of a classical correlation function except that the classical func-
tions have been replaced with Wigner functions. Usually, calculating the Wigner function
of B is relatively straightforward, in particular if B is simply a function of the coordinates
i.e. a local operator. On the contrary, computing A(w)

β is more complex because of the pres-
ence of the Boltzmann operator, e−βH . A rigorous way to treat the Boltzmann operator is
via Feynman’s path integrals but is rather tedious. Hence, various approaches have been
proposed, such as the harmonic approximation which works well at temperatures that are
not too low [63]. The local harmonic approximation [65–67] and the thermal Gaussian ap-
proximations (TGA) [68,69], have also been developed and are less drastic. For instance,
in the TGA approach, the Boltzmann operator is approximated by a multidimensional
Gaussian which implies the different gradients of the potential. Other formulations of the
SC-IVR method exist, such as the Herman-Kluk approach [70], also called coherent state

IVR, which yields the "forward-backward" approximation to the SC-IVR [71,72] but they
display the same problems as the approach described here. These various methods have
been applied to several systems, such as anharmonic oscillators and Lennard-Jones flu-
ids [73] where the velocity autocorrelation functions have been computed. They have also
been mixed with other methods such as the PIMD formalism or Liouville dynamics [74,75].

1We note that the classical Wigner model has been obtained before through various formulations [64,65].
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1.4. CONCLUSION

1.4 Conclusion

In this chapter, we described the reference method to include NQE into molecular dynamics
simulations, namely PIMD. It is an exact method based on an isomorphism between a
quantum particle and a chain of classical beads. PIMD thus yields exact results when
the number of beads is sufficiently large. However, the number of beads increases as
temperature decreases making low-temperature simulations quite heavy computationally.
Moreover, PIMD yields structural properties of the system but not dynamical properties.
To compute real time correlation functions, approximate methods such as CMD or RPMD
are needed and are much more computationally demanding than PIMD simulations. Thus,
path integral methods have several advantages: they are exact when the number of beads
is large enough and they can be massively parallelized. However, they are problematic
for complex or large systems or when computer resources are limited. We then showed
that over the last 40 years, many developments have been made in semiclassical methods.
While fully quantum calculations, such as the wave packet-based approaches, are out of
reach for systems with more than a few degrees of freedom, approximate methods have
been proposed. In particular, one of the most used formalism, IVR, relies on an average
over the initial conditions of classical trajectories and is still being improved today. Hence,
the need for efficient methods that are able to simulate large and complex systems and that
can give access to time correlation functions is quite important. In the following chapter,
we will present another approximate method - namely the Quantum Thermal Bath (QTB)
- that has been developed recently by Dammak and coworkers [1]. The idea of coupling the
system to a bath of oscillators was already discussed in the 1980s [76] and has been used to
calculate thermal transport properties and heat capacities [77–79]. Hence, methods based
on a Langevin equation of motion for the nuclear degrees of freedom, where the random
force which is generally a white noise in classical MD is a colored noise, have been proposed
in the last years. This quantum random force is chosen such that its power spectrum is in
accordance with the quantum fluctuation-dissipation theorem [2,80]. In 2009, two different
schemes combining quantum thermal baths with MD simulations were published. While
the formalism presented by Ceriotti and coworkers [81] relies on a generalized Langevin
equation, we will use in the following manuscript the QTB proposed by Dammak and
coworkers [1]. We will see that, compared to path integral methods, the QTB is much less
demanding computationally: running QTB molecular dynamics simulations presents no
additional cost compared to standard MD. While it is not an exact method, one can easily
run QTB and classical simulations simultaneously and thus determine whether nuclear
quantum effects are important in the system or not.
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Chapter 2

The Quantum Thermal Bath
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2.1 The Langevin equation

2.1.1 Brownian motion and the Langevin equation

In 1827, Brown discovered the irregular and incessant motion of pollen particles suspended
in water [82]. In 1905, Einstein gave the first theoretical explanation for this phenomenon,
which in turn, led to the fundamentals of the atomic theory. His theory however lacked
the notion of inertia for the particles [83]. Hence, in 1908, Langevin proposed a more
elaborate model for Brownian motion which is defined as the erratic motion of a "heavy"
particle in a fluid consisting of much "lighter" particles [84].

Langevin introduced two forces in order to describe the effect of the fluid on the
particle: a friction force, characterized by a friction coefficient γ, and a random force R
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which represents the incessant collisions between our particle and the particles constituting
the fluid. If no external force is applied on the particle, its equation of motion is given by

m
dv

dt
(t) = −mγv(t) + R(t) (2.1.1)

where m is the mass of particle and v its velocity.
Several assumptions are then made on the random force R(t). First, the fluid (also

called the bath) is considered to be in a stationary state; in most cases, the bath will be
considered in thermodynamic equilibrium. Hence, the random force R(t) is stationary,
meaning that the two following conditions are satisfied:

1. its mean value is zero:
〈R(t)〉 = 0 (2.1.2)

This assumption is necessary so that the mean value of the particle velocity is zero,
as should be the case in the absence of any external force.

2. its time-correlation function is infinitely short-ranged:

〈Ri(t)Rj(t′)〉 = 2Dm2δ(t − t′)δij , i, j = x, y, z (2.1.3)

where D ∈ R is a constant; we anticipate that D is the diffusion constant of the
particle, as we will discuss it later. This means that, for two different times t and t′,
Ri(t) and Rj(t′) are independent random variables. This arises from the fact that
the correlation time of the random force is of the order of the time between two
collisions in the fluid, which can be assumed to be very short compared to the other
characteristic times of the system.

The random force is most often a Gaussian white noise. For simplicity, we consider in
the following paragraph one degree of freedom (the generalization to three dimensions is
straightforward). We solve equation (2.1.1) for a given initial condition v(t = 0) = v0. We
obtain

v(t) = v0e−γt +
1
m

∫ t

0
R(s)e−γ(t−s) ds, (2.1.4)

and, averaging over time, we get

〈v(t)〉 = v0e−γt. (2.1.5)

Hence, the average velocity decreases exponentially with time, due to the friction term,
and the relaxation time is of the order of γ−1. Furthermore, the variance σ2

v(t) of the
velocity is given by

σ2
v(t) = 〈v(t)2〉 − 〈v(t)〉2 =

D

γ

(

1 − e−2γt
)

(2.1.6)

Equation (2.1.6) shows that at time t = 0, the variance is equal to zero as expected (the
velocity at time t = 0 is known with certainty). For times shorter than the relaxation
time, i.e. t ≪ γ−1, the variance increases linearly with time:

σ2
v(t) ∼ 2Dt. (2.1.7)

This is characteristic of a diffusion phenomenon for the velocity, where D is the diffusion
coefficient. Finally, in the long-time limit, we get

σ2
v(t) ∼ D

γ
(2.1.8)
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which means that the variance has saturated. Equation (2.1.8) indicates that in the long-
time limit, the fluctuations of the velocity are independent of time. The mean value of the
energy of the particle is then

〈E〉 =
1
2
m〈v(t)2〉 =

mD

2γ
. (2.1.9)

Thus, the particle is in equilibrium with the bath. If we now assume that the bath is in
thermodynamic equilibrium, then the equipartition theorem states that

〈E〉 =
1
2
kBT (2.1.10)

which in turn leads to the following relation between the random force, i.e. the fluctuations,
and the friction, i.e. the dissipation:

mD = γkBT. (2.1.11)

We note in passing that equation (2.1.11) is equivalent to the Einstein relation for the
diffusion constant [83]. Using the definition of D given in equation (2.1.3), equation
(2.1.11) can also be rewritten in the form

γ =
1

mkBT

∫ ∞

0
〈R(t)R(t + τ)〉 dτ. (2.1.12)

This expression can also be derived in the framework of the classical fluctuation-dissipation
theorem [85] as we show in the following.

2.1.2 The classical fluctuation-dissipation theorem

If we consider equation (2.1.1) (in one dimension) in Fourier space, where the Fourier
transform of a function f(t) is given by

f̃(ω) =
1

2π

∫ ∞

−∞
f(t)eiωt dt, (2.1.13)

we obtain the following relation between the Fourier components of the velocity and the
random force:

ṽ(ω) =
1
m

1
γ − iω

R̃(ω). (2.1.14)

We now define the spectral densities of the random force and the velocity as

SR(ω) = 〈|R̃(ω)|2〉 (2.1.15)

Sv(ω) = 〈|ṽ(ω)|2〉 (2.1.16)

Equation (2.1.14) thus rewrites in the following form

Sv(ω) =
1
m2

1
γ2 + ω2

SR(ω). (2.1.17)

This means that the spectral density of the velocity is the product of the spectral density
of the random force by a Lorentzian function of width γ.

In the case of a white noise, the spectral density is independent of the frequency, i.e.
SR(ω) ≡ SR. The Wiener-Khintchine theorem states that the autocorrelation function is
the inverse Fourier transform of the spectral density i.e.

〈R(t)R(t′)〉 =
∫ ∞

−∞
SR e−iωt dω = 2πSR δ(t − t′). (2.1.18)
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Using equation (2.1.3), we obtain

SR =
Dm2

π
. (2.1.19)

The combination of the Wiener-Khintchine theorem for the velocity and equation (2.1.17)
yields:

〈v(t)v(0)〉 =
πSR

γm2
e−γ|t|. (2.1.20)

Assuming the bath is in thermodynamic equilibrium, we have 〈v(0)2〉 = kBT/m; thus,

γ =
πSR

mkBT
. (2.1.21)

Since SR = SR(ω = 0), we get:

γ =
1

2mkBT

∫ ∞

−∞
〈R(t)R(t + τ)〉 dτ (2.1.22)

which is also the classical fluctuation-dissipation theorem (as in equation (2.1.12)).

2.1.3 The quantum fluctuation-dissipation theorem

The classical fluctuation-dissipation theorem just described (section 2.1.2) relies on the
equipartition of energy i.e. each degree of freedom has an energy proportional to the
temperature. From a quantum point of view, in addition to the thermal energy, we expect
the energy of a vibrational mode to be proportional to its frequency ω (since its zero-
point energy is ~ω/2). The quantum version of the fluctuation-dissipation can be derived
through linear response theory [2]. We consider an unperturbed system described by the
Hamiltonian H0({qi}, {pi}), where qi are the coordinates and pi the momenta. In the
presence of a perturbation, the Hamiltonian of the system becomes

H(t) = H0({qi}, {pi}) + V (t)Q({qi}, {pi}) (2.1.23)

where Q is a function of the coordinates and momenta and V is a function of time which
corresponds to the magnitude of the perturbation. Q is a generic operator for the system.
Its time-derivative Q̇ is the response of the system to the external perturbation; without
any loss of generality, we assume that 〈Q̇〉 = 0 if V = 0. The wavefunction Ψ of the system
thus obeys the following time-dependent Schrödinger equation:

i~
∂Ψ
∂t

= HΨ = H0Ψ + V (t)QΨ (2.1.24)

We denote {Ψj} the eigenfunctions of the unperturbed Hamiltonian so that

H0Ψj = EjΨj, j = 1, N. (2.1.25)

Hence, Ψ can be written in the form of a linear combination of the eigenfunctions {Ψj}:

Ψ =
∑

j

cj(t)Ψj (2.1.26)

where the cj are functions of time. Equation (2.1.24) thus becomes

i~
∑

j

dcj

dt
(t)Ψj =

∑

j

cj(t)EjΨj +
∑

j

V (t)cj(t)QΨj (2.1.27)
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leading to a set of first-order differential equations for the coefficients cj(t):

i~
dcj

dt
(t) = Ejcj(t) + V (t)

∑

k

〈Ψk|Q|Ψj〉ck(t) (2.1.28)

If we now assume that the applied perturbation varies sinusoidally with time, i.e. V (t) =
V0 sinωt then we can use the standard time-dependent perturbation theory. If we consider
that the energy levels of the system are densely distributed, the transition probability
density from an initial state with energy Ei to a final state with energy Ei + ~ω is (see
Appendix 2.A for more details):

Pif =
πV 2

0

2~

[

|〈Ei + ~ω|Q|Ei〉|2ρ (Ei + ~ω) + |〈Ei − ~ω|Q|Ei〉|2ρ (Ei − ~ω)
]

(2.1.29)

where we denote |Ei〉 ≡ Ψi. ρ(E) indicates the energy density so that the number of states
that have an energy between E and E + δE is ρ(E)δE. Each transition from state Ψi

to a state with energy Ei + ~ω is accompanied by the absorption of an energy ~ω, and
inversely, each transition to a state with energy Ei − ~ω is accompanied by the emission
of ~ω. Hence, the rate of absorption of energy is ~ωPif i.e.

Rabsorption =
πV 2

0 ω

2

[

|〈Ei + ~ω|Q|Ei〉|2ρ (Ei + ~ω) − |〈Ei − ~ω|Q|Ei〉|2ρ (Ei − ~ω)
]

.

(2.1.30)
In order to predict the behavior of a real thermodynamic system, one must average

over all possible initial states, weighted by the Boltzmann factor f(Ei) ∝ exp (−Ei/kBT ).
The power dissipation is then:

P =
∑

i

Rabsorptionf(Ei) (2.1.31)

≃ πV 2
0 ω

2

∫ ∞

0
ρ(E)f(E)

[

|〈E + ~ω|Q|E〉|2ρ (E + ~ω) − |〈E − ~ω|Q|E〉|2ρ (E − ~ω)
]

dE

(2.1.32)

We see that the power dissipation is quadratic in the perturbation. We can then define
an impedance z(ω) which is the ratio of the force V to the response Q̇. The instantaneous
power dissipation is thus V Q̇r(ω)/|z| where r(ω) is the real part of z(ω) (the resistance),
and the average power is

P =
V 2

0 r(ω)
2|z(ω)|2 . (2.1.33)

Hence:

r

|z|2 = πω

∫ ∞

0
ρ(E)f(E)

[

|〈E + ~ω|Q|E〉|2ρ (E + ~ω) − |〈E − ~ω|Q|E〉|2ρ (E − ~ω)
]

dE

(2.1.34)
We now consider the system without any external perturbation. We expect that the

system will exhibit spontaneous fluctuations (i.e. Q̇(t) 6= 0 at a given time t), that we may
associate with a spontaneously fluctuating force (V (t)). If the system is in the eigenstate
Ψn, then 〈En|Q̇|En〉 = 0 due to the hermitian property of the Hamiltonian H0. The mean
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square fluctuation of Q̇ is thus given by

〈En|Q̇2|En〉 =
∑

k

〈En|Q̇|Ek〉〈Ek|Q̇|En〉

=
1
~2

∑

k

〈En|H0Q−QH0|Ek〉〈Ek|H0Q−QH0|En〉

=
1
~2

∑

k

(En − Ek)2|〈Ek|Q|En〉|2.

We introduce the frequency ω = |En − Ek|/~, and we obtain:

〈En|Q̇2|En〉 =
1
~2

∫ ∞

0
(~ω)2|〈En + ~ω|Q|En〉|2ρ(En + ~ω)~dω

+
1
~2

∫ ∞

0
(~ω)2|〈En − ~ω|Q|En〉|2ρ(En − ~ω)~dω

=
∫ ∞

0
~ω2

[

|〈En + ~ω|Q|En〉|2ρ(En + ~ω) + |〈En − ~ω|Q|En〉|2ρ(En − ~ω)
]

dω.

We now sum over all eigenstates, correctly weighted by f(En):

〈Q̇2〉 =
∫ ∞

0
~ω2

[∫ ∞

0
ρ(E)f(E)

[

|〈E + ~ω|Q|E〉|2ρ(E + ~ω) + |〈E − ~ω|Q|E〉|2ρ(E − ~ω)
]

dE
]

.dω

Thus, we obtain

〈V 2〉 =
∫ ∞

0
|Z|2~ω2

[∫ ∞

0
ρ(E)f(E)

[

|〈E + ~ω|Q|E〉|2ρ(E + ~ω)

+ |〈E − ~ω|Q|E〉|2ρ(E − ~ω)
]

dE
]

dω. (2.1.35)

Both quantities r/|z|2 (equation (2.1.34) - which is related to the power dissipation)
and 〈V 2〉 (equation (2.1.35) - which is the mean square value of the spontaneous fluctuating
force in the absence of any external perturbation) involve the following integrals:

I± =
∫ ∞

0
ρ(E)f(E)

[

|〈E + ~ω|Q|E〉|2ρ(E + ~ω) ± |〈E − ~ω|Q|E〉|2ρ(E − ~ω)
]

dE.

(2.1.36)
The integral runs over positive energies E i.e. on energies higher than the ground-state
energy which is assumed to be 0. Hence, ρ(E) = 0 for E < 0 since there are no states with
an energy lower than the ground-state energy and ρ(E − ~ω) = 0 for E < ~ω. Hence:

I− =
∫ ∞

0
ρ(E)f(E)|〈E + ~ω|Q|E〉|2ρ(E + ~ω)dE

−
∫ ∞

0
ρ(E)f(E)|〈E − ~ω|Q|E〉|2ρ(E − ~ω)dE

=
∫ ∞

0
ρ(E)f(E)|〈E + ~ω|Q|E〉|2ρ(E + ~ω)dE

−
∫ ∞

0
ρ(E + ~ω)f(E + ~ω)|〈E|Q|E + ~ω〉|2ρ(E)dE

=
∫ ∞

0
ρ(E)|〈E + ~ω|Q|E〉|2ρ(E + ~ω) (f(E) − f(E + ~ω)) dE.

Since f(E + ~ω)/f(E) = exp(−~ω/kBT ), we obtain:

I− =
(

1 − e−~ω/kBT
) ∫ ∞

0
ρ(E)f(E)|〈E + ~ω|Q|E〉|2ρ(E + ~ω)dE (2.1.37)

18



2.2. FORMALISM OF THE QUANTUM THERMAL BATH

Similarly:

I+ =
(

1 + e−~ω/kBT
) ∫ ∞

0
ρ(E)f(E)|〈E + ~ω|Q|E〉|2ρ(E + ~ω)dE (2.1.38)

Thus:

R

|Z|2 = πωI− (2.1.39)

〈V 2〉 =
∫ ∞

0
|Z|2~ω2I+ (2.1.40)

This yields directly the following relation between the fluctuations 〈V 2〉 and the energy
dissipation R:

〈V 2〉 =
2
π

∫ ∞

0
R(ω)E(ω, T )dω (2.1.41)

where

E(ω, T ) = ~ω

[
1
2

+
1

exp (~ω/kBT ) − 1

]

. (2.1.42)

Formally, E(ω, T ) is the mean energy of a harmonic oscillator of frequency ω at tem-
perature T . At high temperatures, i.e. kBT ≫ ~ω, we recover the classical equipartition
value E(ω, T ) ≈ kBT .

2.2 Formalism of the Quantum Thermal Bath

2.2.1 The equations of motion

The Quantum Thermal Bath (QTB) applied to molecular dynamics (MD), was introduced
by Dammak and coworkers in 2009 [1]. The idea is to use a Langevin equation for the
motion of the nuclei similar to equation (2.1.1). Hence, for each particle of mass m and
position r, the equation of motion is

m
d2r

dt2
(t) = f(r) −mγ

dr

dt
(t) + R(t) (2.2.1)

where f is the internal force acting on the nucleus and given by the other nuclei and
electrons in the system1, γ is a friction coefficient and R is a random force.

When the particle is classical, the random force consists in a white noise, which sim-
ulates the thermal fluctuations of the system (see section 2.1.1). In this case, its spectral
density is related to the friction coefficient by

S
(class)
R (ω) ≡ 〈|R̃(class)

i |2〉(ω) = 2mγkBT, i = x, y, z (2.2.2)

In this framework, which we will denote by "standard Langevin MD", the energy equipar-
tition theorem holds and each degree of freedom has the same mean energy. The frequency
of each vibration mode does not affect its energy; hence S(class)

R does not depend on ω (see
Figure 2.2.1).

The idea behind the QTB method is to replace the white noise by a "colored-noise",
which depends on the frequency. In order for the quantum fluctuation-dissipation theorem

1Within the Born-Oppenheimer approximation - see appendix 2.B.2, f = −∇rEtot ({ri}, {Rj}) where
Etot is the total (internal) potential energy of the system.
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Figure 2.2.1: Spectral density of the random force in standard Langevin molecular dy-
namics (classical) and in QTB molecular dynamics.

to be verified (equation (2.1.41)), the spectral density of the random force in the QTB
framework is given by the following equation:

S
(QTB)
R (ω) ≡ 〈|R̃(QTB)

i |2〉(ω) = 2mγ~|ω|
[

1
2

+
1

exp (~|ω|/kBT ) − 1

]

. (2.2.3)

In this case, the random force simulates both the thermal and the quantum fluctuations
of the system. In contrast with the classical white noise, which tends to zero at low
temperature i.e. when kBT → 0, the QTB random force does not vanish since :

lim
T →0

S
(QTB)
R (ω) = 2mγ

~|ω|
2
. (2.2.4)

This term corresponds to the residual motion at T = 0 due to the zero-point energy of the
system (see Figure 2.2.1). On the other hand, at high temperatures, i.e. when kBT ≫ ~ω,
the QTB random force is similar to the classical white noise:

lim
T →∞

S
(QTB)
R (ω) = 2mγkBT = S

(class)
R . (2.2.5)

The QTB method thus requires no previous knowledge of the frequencies of the system,
and is completely general (there are no fitting parameters). In practice, the random
forces are generated at the beginning of the simulation and then read throughout the
simulation, at each time step. Therefore, QTB MD presents no additional computational
cost compared to standard Langevin MD.

2.2.2 The case of a harmonic oscillator

In the case of a harmonic oscillator, the QTB formalism is exact since the quantum
fluctuation-dissipation theorem holds in the linear regime. We consider a one-dimensional
harmonic oscillator of frequency ω0. The equation of motion (2.2.1) can be rewritten in
the following form:

mẍ = −mω2
0x−mγẋ+

√

2mγθ (2.2.6)
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where the random force has been rewritten in the form R(t) =
√

2mγθ(t). In Fourier
space, we obtain:

−mω2x̃ = −mω2
0x̃− imγωx̃+

√

2mγθ̃. (2.2.7)

x̃(ω) is the Fourier transform of x(t) and is:

x̃(ω) =
√

2γ
m

θ̃(ω)
ω2

0 − ω2 + iγω
(2.2.8)

The mean energy of the oscillator with position x̃ and velocity ṽ = iωx̃ is then given by

E =
∫ +∞

−∞

[
1
2
mω2

0|x̃(ω)|2 +
1
2
m|ṽ(ω)|2

]
dω
2π

(2.2.9)

Hence:

E =
∫ +∞

−∞

γ(ω2 + ω2
0)

(ω2
0 − ω2)2 + γ2ω2

|θ̃(ω)|2 dω
2π

(2.2.10)

Classical harmonic oscillator In the classical case, θ is a white noise and we have:
|θ̃(ω)|2 = kBT . Hence, the energy of the oscillator is:

E =
γkBT

2π

∫ +∞

−∞

ω2 + ω2
0

(ω2
0 − ω2)2 + γ2ω2

dω (2.2.11)

We then use the residue theorem which gives:

E =
γkBT

2π
2πi

∑

Res (2.2.12)

where Res are the residues of the integrand. The poles of the integrand obey the following
equation:

(ω2
0 − ω2)2 + γ2ω2 =

(

ω2
0 − ω2 + iγω

) (

ω2
0 − ω2 − iγω

)

= 0 (2.2.13)

Thus, the integrand has four poles given by:

ω1 =
iγ

2
+ Ω, ω2 =

iγ

2
− Ω, ω3 = − iγ

2
+ Ω, ω4 = − iγ

2
− Ω (2.2.14)

where Ω =
√

ω2
0 − γ2/4 if γ < 2ω0 and Ω = i

√

γ2/4 − ω2
0 otherwise. Hence, two poles

have a positive imaginary part and the two others have a negative imaginary part. The
residue of a function f at point a is Res(f, a) = limx→a(x − a)f(x), hence, the energy of
the classical harmonic oscillator is:

E =
γkBT

2π
2πi [Res(ω1) + Res(ω2)] (2.2.15)

and, whether γ − 2ω0 is positive or negative, we obtain:

E(class) = kBT (2.2.16)

which is simply the thermal energy. As expected, the energy is independent of the friction
coefficient γ and the frequency ω0.
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0
−ω2)2+γ2ω2 and |θ̃(ω)|2 is given in equation (2.2.17). Here, T = 300

K, ν0 = 100 THz and γ = 10 THz.

Quantum harmonic oscillator For a quantum harmonic oscillator, the noise θ̃ depends
on the frequency ω. If we choose

|θ̃(ω)|2 = ~|ω|
[

1
2

+
1

exp(~|ω|/kBT ) − 1

]

, (2.2.17)

then the integral in equation (2.2.10) diverges for large values of ω for any finite value of γ.
Indeed, the integrand behaves as 1/|ω| for large values of ω, as pointed out by Barrat and
coworkers [86]. This comes from the fact the QTB includes fluctuations for all frequencies,
even for arbitrary high frequencies, which are not expected to be present in a real system.
Hence, we introduce a cutoff frequency Ωcut in the generation of the QTB so that the noise
has a finite frequency support [−Ωcut,Ωcut]. This is easily justified if Ωcut is larger than
any physical frequency contained in the system. In particular, the integrand in equation
(2.2.10) consists in a function centered around ω0 with a width γ multiplied by |θ̃(ω)|2 (see
Figure 2.2.2): the integrand is therefore still centered in ω0 but is no longer symmetric
(its tail for |ω| > ω0 is longer than for |ω| < ω0). Hence, we can choose any value for Ωcut

that is larger than ω0 + γ for example i.e. Ωcut larger than the tail of the integrand. In
this case, for large values of |ω|, we have:

γ(ω2 + ω2
0)

(ω2
0 − ω2)2 + γ2ω2

|θ̃(ω)|2 ∼ γ~

|ω| (2.2.18)

and thus the divergent part of the integral is proportional to ~γln(Ωcut). For a given value
of Ωcut, one should then choose γ small enough that this term is negligible compared to
the energy. Then, if γ is small enough, we simply obtain:

E(quant) ≈ |θ̃(ω0)|2 (2.2.19)

and the energy of the oscillator is simply the zero-point energy and the Bose-Einstein dis-
tribution. However, the accuracy of the energy typically depends on the friction coefficient
γ. The top panel in Figure 2.2.3 shows the influence of γ on the total energy given by
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QTB for a harmonic oscillator. As expected, for γ small enough, the energy given by QTB
coincides with the exact quantum energy. However, if γ is too large (e.g. γ ≃ ω0/2π),
the energy increases and reaches non-physical values. The correct energy can be recovered
for large values of γ only if Ωcut is decreased (see lower panel in Figure 2.2.3). However,
if Ωcut becomes too low i.e. too close to the frequency ω0, then the relation in equation
(2.2.19) is no longer true and the QTB method fails to give the correct energy.

The top panel in Figure 2.2.4 shows the probability distributions obtained via classical
Langevin dynamics and via QTB at room temperature in a harmonic oscillator. We can
clearly see that the QTB yields the correct quantum distribution (that we can obtain by
numerically solving the exact Schrödinger equation). We can also compare the spectral
density obtained via QTB to the exact result (lower panel in Figure 2.2.4): |x̃(ω)|2/|θ(ω)|2
is not be dependent on the type of noise chosen and both classical Langevin dynamics and
QTB provide the correct spectral density (the exact expression is derived from equation
(2.2.8)).

2.3 Technical details

2.3.1 Implementation of QTB in Quantum Espresso

We compute the random force Riα(t) for each degree of freedom (i, α) (where i is the atom
index and α is the Cartesian coordinate) using a numerical technique designed to generate
Gaussian-distributed stochastic variables with a prescribed correlation function [87, 88].
For a time interval [0, tmax], with time step δt = tmax/(N−1), the corresponding frequencies
are νn = n/tmax, with n ∈ [0, N/2]. For each degree of freedom (i, α) and for each
frequency νn, two independent random numbers are generated, ξ1 and ξ2, so that the
Fourier transform of the random noise is:

R̃iα =

√

tmax

2

√

2miγ|θ(ωn, T )|2 (ξ1 + iξ2) (2.3.1)

where θ(ω, T ) is defined by equation (2.2.17) and mi is the mass of atom i. We then
perform an inverse Fourier transform to get the random force in real time space, for each
time step and each degree of freedom of the MD simulation. We also want to avoid the
collective motion of the system. Therefore, we replace Riα by Riα −mi

∑

j Rjα/
∑

j mj.
Quantum Espresso [89] is an ensemble of open-source computer codes for electronic

structure calculations based on density functional theory (DFT), plane waves and pseu-
dopotentials (see Appendix 2.B). Molecular dynamics algorithms based on the Born-
Oppenheimer approximation are available in the PWscf package. The basic structure
of this package is shown in a schematic way in Figure 2.3.1. The main program man-
ages the input and output and at each time step, calls the programs electrons.f90 and
move_ions.f90. The first one computes the interatomic forces using DFT for a certain set
of atomic positions at time t. The second program generates the new set of atomic positions
at time t+δt. The different MD algorithms are implemented in the dynamics_module.f90

program, which is where we added two new subroutines: langevin_classical_md and
langevin_qtb_md corresponding to the numerical integration of the equations of motion
(2.2.1) with a white noise and with a colored noise obeying equation (2.2.3) respectively.

The integration algorithm consists in a modified Verlet algorithm or "velocity-verlet",
described in Reference [90]. For the sake of simplicity, we show how this algorithm works
in the following paragraph for one degree of freedom x. If this degree of freedom is simply
submitted to an internal force f(x) which depends only on the position x(t) then the
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panel: Spectra (|x̃(ω)|2 /
∣
∣
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∣
∣
∣

2
) obtained via classical Langevin dynamics (in green),

QTB (in blue) compared to the exact result (in red - see equation (2.2.8)). The QTB and

classical spectra have been filtered to avoid any non-physical high-frequency noise.
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Main program

position: X(t) position: X(t+dt) 

f(t)

DFT on electrons:

electrons.f90

MD on nuclei:

move_ions.f90

dynamics_module.f90

langevin_classical_md langevin_qtb_md

INPUT PWSCF OUTPUT

Internal force:

Figure 2.3.1: Schematic description of the PWscf package in the Quantum Espresso code
[89].

velocity at a half time step (t+ dt) is given by (see Figure 2.3.2):

v

(

t+
dt
2

)

= v(t) +
dt
2

· f(x(t))
m

(2.3.2)

The position and the velocity at time t+ dt are then

x(t+ dt) = x(t) + dt · v
(

t+
dt
2

)

(2.3.3)

v(t+ dt) = v

(

t+
dt
2

)

+
dt
2

· f(x(t+ dt))
m

(2.3.4)

In our case, there are two additional forces, the random force R(t) and the friction term,
−mγv(t). Hence, the first step of the algorithm becomes:

v

(

t+
dt
2

)

=
[

1 − γ
dt
2

]

v(t) +
dt
2

· f(x(t)) +R(t)
m

(2.3.5)

Then, we obtain at t+ dt:

x(t+ dt) = x(t) + dt · v
(

t+
dt
2

)

(2.3.6)

v(t+ dt) =
[

v

(

t+
dt
2

)

+
dt
2

· f(x(t+ dt)) +R(t+ dt)
m

] (

1 + γ
dt
2

)−1

(2.3.7)

Therefore, the algorithm consists in three steps: from the knowledge of the position and
the velocity at time t, one can first compute the internal force f(x(t)) and the intermediate
velocity at time t+ dt/2; then, one computes the new position and the new force at time
t+dt; finally, one computes the velocity at time t+dt. We note in passing that, within the
"velocity-verlet" algorithm, the velocities are accurate up to (dt/2)3, while the positions
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n n+1n+1/2

x(t) x(t+dt)

v(t+ dt/2)

dt

t

v(t) v(t+dt)

Figure 2.3.2: Schematic representation of the modified Verlet integration algorithm [90]
used to solve the Langevin equation of motion (2.2.1) in Quantum Espresso [89].

are accurate up to (dt)4 as in the standard Verlet algorithm. Finally, one should note that
the PWscf package of Quantum Espresso uses Rydberg atomic units, which are recalled
in Appendix 2.C. In practice, to run a QTB or a classical Langevin dynamics simulation
within Quantum Espresso, the input file should contain the following parameters:

Name Type Value
calculation character ’md’

nstep integer number of time steps; nstep+1 should be a power of 2
ion_dynamics character ’langevin_classical’ or ’langevin_qtb’

langevin_friction real friction coefficient in THz
cutoff_freq_qtb real cutoff frequency in THz.

2.3.2 Vibrational spectra from QTB trajectories

In both Langevin and QTB molecular dynamics, we can compute the vibrational spectrum
of the system directly from the atomic trajectories, via a simple Fourier Transform of the
atomic autocorrelation function [91].

Incoherent spectrum In the following manuscript, whenever it is not specified, the
spectrum is the incoherent vibrational spectrum:

Iincoh(ω) =
1
N

N∑

k=1

∣
∣
∣C̃(k)

vv (ω)
∣
∣
∣

2
(2.3.8)

where N is the number of atoms in the system and C̃
(k)
vv (ω) is the Fourier Transform of

the velocity-velocity autocorrelation function of atom k:

C̃(k)
vv (ω) ∝

+∞∫

−∞
〈vk(t)vk(t + τ)〉e−iωτ dτ (2.3.9)

where vk is the velocity of atom k and 〈·〉 indicates the average over time. We note
in passing that Iincoh(ω) can also be obtained via the Fourier Transform of the atomic
positions as well (the only difference is a multiplication by ω2). Equation (2.3.8) yields
the complete vibrational spectrum. However, the intensities of the computed spectrum
are not directly related to the infrared spectrum because we neglect the calculation of
dynamical charges entering the infrared matrix element. Nevertheless, we can compare
the positions of the peaks in the computed vibrational spectrum to the frequencies obtained
via infrared or Raman spectroscopy. The computed spectrum can also be filtered if we
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are interested in some particular vibration modes. For example, if we are interested in the
oxygen-hydrogen stretching mode, one can compute directly:

I(ω) ∝
NH∑

k=1

∣
∣
∣
∣

∫

dOH(t)e−iωtdt
∣
∣
∣
∣

2

(2.3.10)

where the sum runs over all hydrogen atoms in the system and dOH is the distance between
a hydrogen and its nearest oxygen. I(ω) will thus contain all information concerning the
vibrations of the O-H segment. In a more general way, if we are interested in a particular
vibrational mode, we can define the associated vector wp, which has 3N components and
N is the total number of atoms in the system. The spectrum associated to this vibration
is then obtained via the Fourier Transform of the scalar product of wp and ∆r = r − r

where r is a 3N -components vector containing the positions of the N atoms and r is its
time average:

Ip(ω) ∝
∣
∣
∣
∣

∫

wp · ∆r(t)e−iωt dt
∣
∣
∣
∣

2

(2.3.11)

This method has the advantage of yielding relatively precise information about the peaks
in the vibrational spectrum rendering their interpretation easier. However, it requires the
knowledge of the nature of the vibrations (i.e. the vector wp) beforehand. The vectors wp

can be accessed via dynamical matrix calculations for instance. Indeed, we assume that
if the nature of the vibration remains relatively similar in the harmonic approximation
and in the anharmonic system, then the same eigenvector can be used. This kind of
interpretation needs to be confirmed by confronting the computed results to experimental
data for example. Other methods have also been developed to extract effective normal
modes from MD simulations, but are for now limited to molecular systems [92].

Coherent spectrum In equation (2.3.8), the incoherent spectrum is given by a sum
over the square modulus of each individual autocorrelation function. On the other hand,
the coherent vibrational spectrum is given by [91]:

Icoh(ω) =

∣
∣
∣
∣
∣

1
N

N∑

k=1

C̃(k)
vv (ω)

∣
∣
∣
∣
∣

2

. (2.3.12)

If the atomic vibrations are not in phase and basically independent from each other,
then Icoh ≪ Iincoh. However, the analysis of the coherent spectrum allows to determine
whether there are any collective motions of the atoms in the system. Figure 2.3.3 shows the
difference between the coherent and the incoherent spectra in the case of high-pressure
ice (see also chapter 3). Below a critical pressure (approximately 70 GPa), there is no
collective motion of hydrogen atoms in ice (corresponding to phase VII). However, above
this critical pressure, there are coherent vibrations of the hydrogen atoms, corresponding to
the phase X of ice. These different characteristics can also be seen via the real-time velocity
autocorrelation function, shown in Figure 2.3.4. In phase VII, at approximately 50 GPa,
the autocorrelation function simply displays an exponential damping. On the contrary,
at higher pressures in phase X, oscillations appear which indicate coherent vibrations of
protons in this phase.
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Figure 2.3.3: Incoherent (top panel) and coherent (lower panel) spectra of hydrogen atoms
in high-pressure ice VII and ice X for different pressures computed from QTB simulations
(from Supplemental Material of reference [5]).
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Figure 2.3.4: Hydrogen velocity autocorrelation function Cvv(t) in high-pressure ice for
different pressures computed from QTB simulations (from Supplemental Material of ref-
erence [5]).
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Appendix

2.A Perturbation theory

In section 2.1.3, we showed that the coefficient cj(t) obey the set of equations (2.1.28).
Without any perturbation, these equations become:

dc(0)
j

dt
(t) +

i

~
Ejc

(0)
j (t) = 0 (2.A.1)

which can be solved directly:
c

(0)
j (t) = aje

−iEjt/~ (2.A.2)

where aj = c
(0)
j (t = 0) are constants. If we now substitute cj(t) = aj(t)e−iEjt/~ into

equation (2.1.28) in the presence of a perturbation, we get the following equation for the
coefficients aj(t):

i~
daj

dt
(t) = V (t)

∑

k

〈Ψk|Q|Ψj〉ak(t)e−i(Ek−Ej)t/~ (2.A.3)

Since V (t) = V0 sinωt is considered a perturbation, we can decompose aj in powers of V0,
i.e.

aj(t) =
∑

k

V k
0 a

(k)
j (t) (2.A.4)

Hence, equation (2.A.3) becomes at the first orders:

i~
da(0)

j

dt
(t) = 0 (2.A.5)

i~
da(1)

j

dt
(t) = sinωt

∑

k

〈Ψk|Q|Ψj〉a(0)
k (t)e−i(Ek−Ej)t/~ (2.A.6)

Now, if we assume that at time t = 0, the system Ψ is an initial state Ψi, then

cj(t = 0) = aj(t = 0) = δij , j = 1, N (2.A.7)

⇒







a
(0)
j = δij , j = 1, N

a
(k>0)
j (t = 0) = 0, j = 1, N

(2.A.8)

And finally, equation (2.A.6) becomes

i~
da(1)

j

dt
= sinωt 〈Ψi|Q|Ψj〉e−i(Ei−Ej)t/~ (2.A.9)

⇒ a
(1)
j (t) = − i

~
〈Ψi|Q|Ψj〉

∫ t

0
sinωt′ e−i(Ei−Ej)t′/~ dt′ (2.A.10)
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By definition, the transition probability from state Ψi to a final state Ψf is

Pif (t) = |〈Ψf |Ψ〉|2 = |af (t)|2 (2.A.11)

Thus, at first order in the perturbation, we get:

Pif (t) = |a(0)
f + V0a

(1)
f (t)|2 (2.A.12)

= V 2
0 |a(1)

f (t)|2 if the final state is different from the initial state. (2.A.13)

Then,

Pif (t) =
V 2

0

~2
|〈Ψf |Q|Ψi〉|2

∣
∣
∣
∣

∫ t

0
sinωt′ e−i(Ei−Ef )t′/~ dt′

∣
∣
∣
∣

2

(2.A.14)

=
V 2

0

4~2
|〈Ψf |Q|Ψi〉|2 |A+ +A−|2 (2.A.15)

where

A+ =
ei(ωfi+ω)t − 1
ωfi + ω

(2.A.16)

A− =
ei(ωfi−ω)t − 1
ωfi − ω

(2.A.17)

are the antiresonant and resonant terms and

ωfi =
Ef − Ei

~
(2.A.18)

If ωfi > 0 i.e. Ef > Ei, then the system has absorbed energy; on the other hand, if ωfi < 0,
then the system has emitted energy. In the case of absorption, for ω near ωfi, the term
A− is dominant while in the case of emission, A+ is dominant. If we consider the two
processes, we can consider that:

Pif (t) =
V 2

0

2~2
|〈Ψf |Q|Ψi〉|2

[

|A−|2 + |A+|2
]

(2.A.19)

This allows us to recover the Fermi golden rule:

Pif (t) =
πV 2

0 t

2~2
|〈Ψf |Q|Ψi〉|2 [δ (ωfi − ω) + δ (ωfi + ω)] (2.A.20)

If we now consider that the energy levels of the system are densely distributed, with
an energy density ρ, then

Pif (t) =
∫ Ef +dE

Ef −dE
ρ(E′)Pif ′ dE′ (2.A.21)

where Pif ′ is given by equation (2.A.20). By definition, we have

δ(ωf ′i ± ω) ≡ δ(E′ − Ei ± ~ω) (2.A.22)

and we obtain, for the probability per unit of time Pif ≡ dPif (t)/dt:

Pif =
πV 2

0

2~

[

|〈Ei + ~ω|Q|Ei〉|2ρ (Ei + ~ω) + |〈Ei − ~ω|Q|Ei〉|2ρ (Ei − ~ω)
]

(2.A.23)
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2.B Density Functional Theory

2.B.1 Introduction

In order to describe interactions between atoms, different methods are available. Em-
pirical interatomic potentials, such as the Lennard-Jones potential, are usually fitted to
reproduce some measured physical property. These potentials are however limited by their
restricted applicability (their transferability to other systems than the one they have been
designed for or other physical quantities is relatively low) and by the accuracy of their
parametrization. Moreover, the chemical complexity of different types of bonding in a ma-
terial is generally not attainable via empirical potentials which do not treat explicitly the
electronic interactions. Indeed, all electronic properties of a system are also out of reach
of empirical potentials. Hence, ab initio methods i.e. methods that do not require any a
priori knowledge of the chemical bonding properties or any other experimental input, are
quite appealing since they attempt to solve the Schrödinger equation for the electrons and
the nuclei of the system.

2.B.2 Born-Oppenheimer approximation

The full wave function of the system Φ({ri}, {RI }) obeys the following Schrödinger equa-
tion:

HtotΦ({ri}, {RI }) = ǫΦ({ri}, {RI }) (2.B.1)

where {ri} and {RI}) are the scalar coordinates of the electrons and the nuclei respectively
and ǫ is the energy of the system. The total Hamiltonian is given by:

Htot = Helec +KN + VN (2.B.2)

where Helec is the many-body electronic Hamiltonian, KN the kinetic energy of the nuclei
and VN the Coulomb interaction between the nuclei:

Helec =
N∑

i=1

[

−~
2∇2

i

2m
+ Vext(ri)

]

+
∑

i<j

e2

|ri − rj | (2.B.3)

KN =
NN∑

I=1

−~
2∇2

I

2MI
(2.B.4)

VN =
∑

I<J

ZIZJe
2

|RI − RJ | (2.B.5)

with Vext the external potential that depends on the parameters {RI} (if all electronic
interactions are taken into account, it corresponds to the Coulomb interaction between the
nuclei and the electrons), N and NN the total numbers of electrons and nuclei respectively,
ZI and MI the atomic number and mass of the nuclei, m the mass of an electron. Solving
equation (2.B.1) is completely out of reach, hence, we need to simplify the problem. The
Born-Oppenheimer approximation consists in a separation of the electronic and nuclear
parts of the wave function:

Φ({ri}, {RI }) ≈ χ({RI}) × Ψ({ri}) (2.B.6)

where Ψ({ri}) is now the solution to the electronic Hamiltonian Helec (equation (2.B.4))
for a given configuration i.e. for fixed nuclear positions: HelecΨ = EelecΨ. The total energy
Etot is thus a function of {RI} and

Etot({RI}) = VN + Eelec (2.B.7)
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where VN is the interaction between the nuclei and Eelec is the electronic energy (of the
electronic ground-state). This approximation is valid in the limit where the electronic
degrees of freedom vary on much smaller time scale than the nuclear degrees of freedom.
Moreover, recent works have shown that such a factorization can be written exactly for
any system, even in the presence of strong coupling between the electronic and the nuclear
degrees of freedom [93–95]. Then, injecting equation (2.B.6) into the Schrödinger equation
(2.B.1), we obtain:

[KN + VN + ǫ]χ+ Γ = ǫχ (2.B.8)

where we used the normalization of Ψ i.e. 〈Ψ|Ψ〉 = 1 and

Γ = −
NN∑

I=1

~
2

2MI

[

〈Ψ|∇2
I |Ψ〉 + 2〈Ψ|∇I |Ψ〉∇I

]

χ (2.B.9)

The second approximation within the Born-Oppenheimer framework is to neglect Γ in
equation (2.B.8). Indeed, if the momenta of the electrons and of the nuclei are of the
same order of magnitude [96], then the ratio of the corresponding kinetic energies is of
the order of the ratio of the masses, m/MI . Hence, χ obeys a Schrödinger equation
with potential energy VN + E. The first term is simply the Coulomb interaction between
the nuclei while the second term, called the "potential energy surface", comes from the
electronic Hamiltonian. Therefore, solving equation (2.B.1) can be done in two steps within
the Born-Oppenheimer approximation: first, one solves the electronic problem (equation
(2.B.4)) for fixed nuclei positions thus obtaining the energy ǫ({RI}); then, one solves the
Schrödinger equation for the nuclear part (equation (2.B.8)) neglecting Γ. Hence, if one
minimizes VN + E where E is the electronic ground-state for one configuration, then one
finds the atomic equilibrium positions. The Born-Oppenheimer approximation also allows
to decouple the dynamics of the electrons and the nuclei: for each new atomic configuration
during the molecular dynamics simulation, one can compute the electronic ground-state
and the corresponding forces (see following sections for more details).

2.B.3 Density Functional Theory

In principle, one should solve the full Schrödinger equation for the system i.e. finding the
complete many-body wave function. Even if one is interested only in the electronic wave
function Ψ({ri}) (see section 2.B.2) where ri are the spatial coordinates of the N electrons,
Ψ has 3N variables. As an example, lets consider a simple benzene molecule C6H6 which
has 42 electrons. Hence, Ψ is defined in a Cartesian space of dimension 3N = 126. To find
the ground-state of the system, one needs to minimize the energy and thus minimize the
matrix element 〈Ψ|H|Ψ〉, where H is the Hamiltonian. If we choose a discrete mesh to
represent Ψ in space with 50 points, then the determination of any matrix element requires
50126 operations, which is unattainable with even the most powerful current computers.

One of the first solution to this problem was suggested by Hartree and Fock who
considered that Ψ could be written as a determinant of N one-particle wave function φi

i.e. Ψ = Det(φ1, . . . , φN ). Therefore, the problem consists in solving N coupled one-
particle equations instead of the full N -electron wave function, which is much easier from
a computational point of view. A further step is to consider a physical quantity, different
from the wave function, that defines the system uniquely. The idea behind the density
functional theory or DFT, is to use the electronic density, which we will briefly describe
in the following paragraph.

The energy of the system is E[Ψ] = 〈Ψ|H|Ψ〉 (we consider the wave function to be
normalized) and E0 the ground-state energy is a functional of the external potential Vext.
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The electron density (considering electrons as indistinguishable particles) is defined as:

n(r) = 〈Ψ|
N∑

i=1

δ(r − ri)|Ψ〉 (2.B.10)

where δ(r) is the Dirac delta function. Obviously, if one knows the Hamiltonian and the
corresponding wave function Ψ, one can compute the electron density. However, in 1964,
Hohemberg and Kohn showed that the reverse is also true through two theorems [97].
First, two different Hamiltonians cannot have the same ground-state electron density (if
we consider non-degenerate ground-states) i.e. the ground-state energy is a functional
of the electron density, E0 = E[n]. Second, the energy E[n] is minimal when n(r) is
indeed the ground-state density. These two theorems are easily proved and are valid for
systems with a fixed number of electrons. Hence, if one knows the energy functional E[n],
then one needs only to minimize it to find the ground-state electron density, without any
knowledge of the wave function. The problem is now to find the actual form of the energy
functional E[n] and its construction is a fundamental part of the DFT. Different energy
functionals exist and while their form usually implies several approximations, they also
perform differently depending on the system.

One of the easiest energy functional is the Thomas-Fermi-Hartree functional, ETFH[n].
The Hamiltonian in equation (2.B.4) consists in three terms: the kinetic operator, the
external potential and the Coulomb potential. The energy corresponding to the external
potential can be written as:

Eext[n] =
∫

Vext(r)n(r) dr. (2.B.11)

If we consider the electrons as classical charges, instead of quantum particles, then the
Coulomb potential can be approximated by the Hartree functional that writes:

EH =
e2

2

∫∫
n(r)n(r′)
|r − r′| drdr′. (2.B.12)

In doing so, we also include the electron self-interaction, corresponding to the terms i = j
in equation (2.B.4), which should not appear in U [n]. Finally, the kinetic energy is written
as:

K[n] ≈ C

∫

[n(r)]5/3 dr. (2.B.13)

This equation comes from the expression of the kinetic energy of a non-interacting ho-
mogeneous electron gas. The Thomas-Fermi-Hartree functional has many drawbacks and
very often yields results different from experiments; however, it is a first attempt at an
expression for the energy functional.

In order to go beyond this simple energy functional, we introduce Ks[n], the kinetic en-
ergy of a virtual system consisting of non-interacting electrons but that has the exact same
electron density as the real system. Therefore, we can write the exact energy functional
as:

E[n] = Ks[n] + Eext[n] + EH [n] + Exc[n] (2.B.14)

where Eext[n] is the external potential energy (equation (2.B.11)), EH [n] is the Hartree
functional (equation (2.B.12)) and Exc[n], called the "exchange-correlation energy func-
tional" contains all the other terms. The variational equation for the energy functional
becomes:

δE[n]
δn(r)

=
δKs[n]
δn(r)

+ Vext(r) + e2
∫

n(r′)
|r − r′| dr′ +

δExc[n]
δn(r)

= µ (2.B.15)
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where µ is the Lagrange multiplier associated with the conservation of the number of
electrons. In 1965, Kohn and Sham introduced the idea that for any system of interacting
electrons, one could find a virtual system of non-interacting electrons with the exact same
electron density [98]. For this virtual system, the variational equation is:

δE[n]
δn(r)

=
δKs[n]
δn(r)

+ V1p(r) = µ (2.B.16)

where V1p is an effective potential. From equations (2.B.15) and (2.B.16), we get:

V1p(r) = Vext(r) + e2
∫

n(r′)
|r − r′| dr′ + Vxc(r) (2.B.17)

where Vxc(r) = δExc[n]/δn(r) is called the "exchange-correlation potential". One can then
solve the N one-electron Schrödinger equations in order to find the one-particle wave
functions ψi: [

−~
2∇2

2m
+ V1p(r)

]

ψi(r) = ǫiψi(r). (2.B.18)

Then, if the potential V1p obeys equation (2.B.17), then the electron density is then given
by:

n(r) =
N∑

i=1

fi|ψi|2 (2.B.19)

where fi are the occupation factors. Equations (2.B.18) and (2.B.19) are called the Kohn-
Sham equations: they are non-linear (since V1p depends on the density) but can be solved
self-consistently. In passing, we note that the eigenvalues ǫi and eigenfunctions ψi do not
have any physical meaning and in most cases, do not represent the actual eigenvalues of
the real system.

2.B.4 The exchange-correlation functional

The exchange-correlation energy functional Exc[n] has been introduced as the difference
between the unknown energy functional E[n] and the sum of several known terms (see
equation (2.B.14)). In practice, Exc[n] takes into account the electronic quantum effects,
exchange and correlation, and compensates the electronic self-interaction introduced by
the Hartree functional. Several approximations exist for the actual dependence of Exc[n]
on the density.

First, the local density approximation (LDA) is one of the simplest approximation to
Exc[n] and is based on the construction of the exchange and correlation for the homoge-
neous electron gas (HEG) [98]:

E(HEG)
xc (n) = V

N

V
e(HEG)

xc (n) (2.B.20)

where e(HEG)
xc is the exchange-correlation energy per electron in the HEG and n is the

mean density in space. Within the LDA, this expression is generalized to densities that
are not constant in space by assuming the same functional dependence:

E(LDA)
xc [n] =

∫

e(HEG)
xc (n(r))n(r) dr. (2.B.21)

The LDA functional works quite well in many systems; this is mainly due to error com-
pensations (typically, the exchange energy is overestimated and the correlation energy is
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underestimated). However, the LDA also has some drawbacks that are well known: in par-
ticular, the cohesive energies are too high within LDA, meaning that the electrons are not
enough localized in space. Furthermore, long-range effects, such as van der Waals inter-
actions, are missing due to the local nature of the LDA. Therefore, LDA poorly describes
hydrogen bonds, which we are interested in in this manuscript.

Another approximation to the exchange-correlation functional is the generalized gradi-
ent approximation (GGA). It attempts to describe the electron density variations in space
in terms of its gradient ∇n:

E(GGA)
xc [n] = E(LDA)

xc [n] +
∫

e(GGA)
xc (n(r),∇n(r)) dr (2.B.22)

There are many different ways to write the function e(GGA)
xc . Among them, the functionals

presented by Perdew and coworkers in 1996 [99] have an analytical, but complex, form.
GGA functionals perform well in many systems; however, contrary to LDA, they tend to
overestimate bond lengths and underestimate cohesive energies. Finally, even though they
do not account for long-range effects, they usually provide a good description of hydrogen
bonds, which is why we use GGA in most of our ab initio calculations.

In order to solve the Kohn-Sham equations ((2.B.18) and (2.B.19)), one usually expands
the one-electron orbitals on a basis of set composed of known functions: these functions
can be localized in space such as atomic orbitals or gaussians, or they can be delocalized
such as plane waves. Some methods also use both localized and delocalized functions.
Here, we will use a basis of plane waves, as implemented in the PWscf package of the
Quantum Espresso code [89]. In order to speed up the calculations and in particular,
reduce the number of electronic orbitals that need to be solved, we resort to pseudo-
potentials. The idea relies on a separation of core electrons and valence electrons. In
a first approximation, one can consider the core electrons as inert and only the valence
or outer electrons are responsible for the chemical properties of the system, namely the
formation of bonds. Hence, we can replace the all-electron orbital by a smoothly-varying
wave function that describes the valence electrons (and therefore the bonding properties)
while the core electrons are replaced by a pseudo-potential. Hence, the number of Kohn-
Sham orbitals needed is reduced and the rapid oscillations of the valence orbitals near the
nucleus are also avoided.

2.B.5 Density Functional Perturbation Theory

In many cases, e.g. when we are interested in the dynamics of the system, we need the
electronic forces acting on the ions. We might also want to calculate lattice dynamics and
atomic vibrations. Hence, we show here how to access these information via a perturbative
expansion of the energy.

The atomic forces FI are the first derivatives of the potential energy VN +E (see section
2.B.2) with respect to the nuclei positions {RI}, where VN is the Coulomb interaction
between the nuclei and E is the energy coming from the electronic Hamiltonian:

FI = −∇I [VN ({RI}) + E({RI })] (2.B.23)

This method requires that one knows the exact dependence of the energy E on the atomic
positions, which is not feasible for systems containing more than a few atoms. However, if
one considers that E is actually a functional of the density n then, since

∫
n(r)dr = N , the

total derivative of E[n] is simply its partial derivative. Hence, from (2.B.14) and (2.B.11),
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we obtain:

FI = −∂Eext + ∂VN

∂RI
= −ZIe

2
∫

r − RI

|r − RI |3n(r) dr +
∑

J 6=I

ZIZJe
2 RJ − RI

|RJ − RI |3 (2.B.24)

The forces can thus be computed at the same time as the energy, where n is the ground-
state density.

For small atomic displacements, the potential energy of the nuclei, Ep = VN + E can

be expanded in terms of the displacements uI = RI −R
(eq)
I where R

(eq)
I is the equilibrium

position of atom I:

Ep = E(eq)
p +

∑

I,α

∂Ep

∂RI,α

∣
∣
∣
∣
∣
eq

︸ ︷︷ ︸

=0 by definition

uI,α +
1
2

∑

I,J,α,β

∂2Ep

∂RI,αRJ,β

∣
∣
∣
∣
∣
eq

uI,αuJ,β (2.B.25)

where α, β indicate the Cartesian coordinates. In the harmonic approximation, all terms
of order higher than 2 are neglected. In this case, we can define an interatomic force
constant matrix C so that the force acting on atom I due to the displacement uI is:

FI,α = −
∑

J,β

CI,α,J,βuJ,β (2.B.26)

and

CI,α,J,β =
∂2Ep

∂RI,αRJ,β

∣
∣
∣
∣
∣
eq

(2.B.27)

The displacements uI then correspond to harmonic oscillators: uI,α(t) = u
(0)
I,α/

√
MIexp(iωt).

Injecting this expression into the equation of motion for the atom I, we obtain that the
frequencies ω must obey the following equation:

Det
[
CI,α,J,β√
MIMJ

− ω2δI,α,J,β

]

= 0 (2.B.28)

where δ is the identity matrix. Hence, by diagonalizing the matrix C/
√
MIMJ , one can

obtain the eigenfrequencies ω and the corresponding amplitude and direction of the atomic
vibration motion. The main difficulty now resides in determining the interatomic force
constant matrix. One of the main straightforward method is to simply displace each atom
individually from its equilibrium position and is called the "frozen phonon" method. In the
case of a periodic crystal, the formalism is a little bit more complicated [100]. Indeed, C
only depends on the interatomic distances: hence, displacing the origin of the coordinates
by a lattice vector translation should not yield any modification in C. Therefore, one can
get all the vibrational properties of the system simply through the unit cell. Usually, we
introduce the dynamical matrix, which is the Fourier transform of the interatomic force
constant matrix:

DI,α,J,β(q) =
∑

K

CI,0,α,J,K,βeiK·q (2.B.29)

where K are the lattice vectors. By diagonalizing the dynamical matrix D, we get the
phonon dispersion relation i.e. ω(q) inside the Brillouin zone.
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2.C The jungle of atomic units

The PWscf package of Quantum Espresso [89] uses Rydberg atomic units, while in most
other cases, standard atomic units (or Hartree units) are used. Here, we briefly describe
both sets. First, we choose:

Rydberg: ~ ≡ 2m ≡ e2

2
≡ 1 (2.C.1)

Hartree: ~ ≡ m ≡ e ≡ 1 (2.C.2)

where m and e are the mass and the charge of an electron respectively. Therefore, the
unit of angular momentum is ~, the unit of mass is m in Hartree units and 2m in Rydberg
units and the unit of charge is e in Hartree units and e/

√
2 in Rydberg units. Then, we

can define all other units :

• the unit of length is the Bohr radius in both unit systems:

a0 =
~

2

me2
= 1 ≈ 0.529177 Å (2.C.3)

• the Rydberg energy is half the Hartree energy:

ERyd =
e2

2a0
= 1 ≈ 13.6 eV (2.C.4)

EHar =
e2

2a0
= 1 ≈ 27.2 eV (2.C.5)

• time is defined as the ratio between an angular momentum and an energy:

tRyd =
~

ERyd
= 1 ≈ 4.84 · 10−5 ps fRyd =

1
tRyd

= 1 ≈ 2.07 · 104 THz (2.C.6)

tHar =
~

EHar
= 1 ≈ 2.42 · 10−5 ps fHar =

1
tHar

= 1 ≈ 4.13 · 104 THz (2.C.7)

Another useful physical constant is the Boltzmann constant: kB = 8.617 · 10−5 eV.K−1.
The mass of a proton is equal to 1836.15 in Hartree units and 918.08 in Rydberg units.
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3.1 Introduction

3.1.1 An introduction to hydrogen bonds

Hydrogen bonds are ubiquitous in physics, chemistry or biology. They are one of the
most important components of life, as they occur in many biological structures such as
DNA and of course water. Hydrogen bonds are weaker than covalent bonds but stronger
than standard dipole-dipole interactions. Their strength is usually of about an order of
magnitude smaller than that of covalent bonds. For example, in ordinary ice Ih, the
energies of the covalent and hydrogen bonds are 4.8 and 0.29 eV respectively [101]. Hence,
they can contribute to the properties of the system, since they may be broken or reformed
by thermal fluctuations. Moreover, although it is clear that electronic properties are
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CHAPTER 3. NQE ON HYDROGEN BOND SYMMETRIZATION

Figure 3.1.1: Schematic representation of a water molecule with its two bonding and two
lone-pair orbitals. O indicates the oxygen atom, H indicates the hydrogen atoms.

essential to the description of hydrogen-bonded systems, the protons also play a major
role, e.g. in the electrical properties of ice [102].

A hydrogen bond can be defined as "an attractive interaction between a hydrogen atom
from a molecule or a molecular fragment X-H in which X is more electronegative than H,
and an atom or a group of atoms in the same or a different molecule, in which there is
evidence of bond formation" [103]. Thus, we can write the hydrogen bond in the form:

RX − H · · · X’R’

where X is considered the hydrogen-bond donor, while X’ is the hydrogen-bond acceptor.
Usually, the acceptor is an electron-rich region e.g. a lone pair of X’. A hydrogen bond is
then formed via electrostatic forces and tiny charge transfer between the donor X and the
acceptor X’. Indeed, when attached to the electronegative donor X, the hydrogen acquires a
positive charge while the acceptor X’ has, for example, at least one lone pair. The positive
charge of the hydrogen is then attracted to this lone pair, forming a hydrogen bond. This
is illustrated in more details in the following paragraph.

A hydrogen atom consists in a positive nucleus and a single electron which, in its lowest
energy state, is in the first (1s) shell i.e. is characterized by an s-type atomic orbital. An
oxygen atom has eight electrons: two fill the first shell (1s)2, two are in the s orbital of
the second shell (2s)2, and four are in the p orbital of the second shell (2p)4. Hence,
to form a water molecule, each hydrogen shares an electron pair with the p orbital of an
oxygen. Therefore, the first shell of the hydrogen is filled by two electrons, while the second
shell of the oxygen is filled by eight electrons when bonded to two hydrogens. The bonds
formed by these shared electron pairs are covalent bonds.1 However, since oxygen is more
electronegative than hydrogen, it will tend to exert a greater force on the shared electron
than hydrogen. This results in the electron spending more time in the outer shell of the
oxygen than that of the hydrogen. This in turn leads to a negatively charged oxygen and a
positively charged hydrogen. Consequently, an attractive electrostatic force exists between
hydrogen and oxygen atoms. A schematic picture of a water molecule is shown in Figure
3.1.1. Of the ten electrons constituting the system, two are in the first shell (1s) of the
oxygen nucleus, two pairs of electrons form the bonding orbitals between each hydrogen
and the oxygen, and the remaining two pairs of electrons form the lone-pair orbitals.

1As these bonds usually consist of an ionic contribution - as proved by the negative charge on the
electronegative atom - they should be called iono-covalent. For the sake of simplicity, they are simply
denoted as covalent in the following.
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Figure 3.1.2: Schematic representation of the hydrogen bond between two water molecules.

The attraction between the lone-pair orbitals of the oxygen and a hydrogen atom (from
a different water molecule for example) consists in a hydrogen bond (see Figure 3.1.2).
Hence, each water molecule can form two hydrogen bonds involving hydrogen atoms from
neighboring water molecules. These two hydrogen bonds and the two covalent O-H bonds
typically arrange themselves in a tetrahedral geometry, as is the case in ordinary ice.

The exact nature of hydrogen bonds has been extensively studied by Pauling who
predicted that they display characteristics of both covalent and ionic bonds [104]. The
electrostatic description given above consists in the classical, ionic, aspect of hydrogen
bonding. The intrinsic covalent and quantum nature of hydrogen bonds has been confirmed
recently by Compton measurements on ice [105], where a purely electrostatic (classical)
treatment of water molecules did not reproduce the phase coherence of the electronic
wave function (only a fully quantum modelization of the electrons using density functional
theory was able to reproduce the features of the Compton profile anisotropy). In order
to characterize the hydrogen bonds between two water molecules, we can visualize the
electronic density as given by the density functional theory (see Appendix 2.B) and shown
in the left panel of Figure 3.1.3. As expected, the maximum of the density is located
on the oxygen and the O-H covalent bond can be considered as a single entity. Since
we will be interested in the symmetrization of hydrogen bonds, we also computed the
electronic density in a symmetric configuration i.e. where the H nucleus is located at the
O-O midpoint (see right panel of Figure 3.1.3): the electronic density displays a local
maximum centered on the hydrogen nucleus. This means that the O-H bonds in this
configuration are no longer covalent. We will now present several theoretical descriptions
of hydrogen bonds and more precisely, of the behavior of the protons in those bonds.

3.1.2 A theoretical description of hydrogen bonds

In order to describe the properties of hydrogen bonds, a standard mean field picture for
the potential felt by the protons can be useful. This mean field potential most probably
depends on various parameters and especially on the atomic environment of the hydrogen
bond. However, the standard picture is to consider only the influence of the distance
between the hydrogen-bond donor and acceptor, X-X’. In the case of ice, this would be the
oxygen-oxygen interatomic distance.

When the X-X’ distance is large, the proton is covalently bonded to X and forms a
longer, weaker, hydrogen bond with X’. This is the case in several ordered phases of ice,
such as ice Ih or VIII, where the oxygen-oxygen distances are approximately equal to 2.8
Å and 2.5 Å respectively. The hydrogen bonds in those cases correspond to the standard
asymmetric hydrogen bond, as shown schematically in Figure 3.1.2. The proton is localized
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Figure 3.1.3: Electronic density computed from density functional theory calculations on:
(left panel) a configuration of ice VII (i.e constituted of water molecules linked by hydrogen
bonds); (right panel) a configuration of ice X (i.e. where the hydrogen nuclei lie midway
between their two neighboring oxygen atoms).

near one oxygen and its free energy landscape can thus be represented by an asymmetric
single well potential (see left panel in Figure 3.1.4).

At intermediate X-X’ distances, a curious phenomenon can occur. Indeed, instead of
only one equilibrium position, the proton can have two equivalent equilibrium positions:
one near the hydrogen bond donor X and one near the hydrogen bond acceptor X’. In this
case, proton hopping from one site to the other can occur. The free energy landscape of the
proton can thus be seen as a symmetric double well potential (see center panel in Figure
3.1.4), where the two wells correspond to the two equilibrium positions. Hence, the proton
can form a covalent bond with X and a hydrogen bond with X’, or conversely, a covalent
bond with X’ and a hydrogen bond with X. This situation corresponds to what we will call
disordered hydrogen bonds in the following. This occurs in the disordered phase VII of ice
for example, where the oxygen-oxygen distance is close to 2.4 Å and the hydrogen can be
found on both sides of the hydrogen bond. Hydrogen hopping over the potential barrier
obviously depends on thermal fluctuations but can also be driven by quantum tunneling
through the barrier.

Finally, at even smaller X-X’ distances, the hydrogen nucleus is no longer covalently

Figure 3.1.4: Cartoon depicting the free energy landscape of the proton in a hydrogen
bond in different situations (ice VIII, ice VII and ice X). Figure from reference [106].
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bonded to X or X’, nor does it form an actual hydrogen bond with any of the two: the
proton lies midway between X and X’. This constitutes what we will denote in the follow-
ing a symmetric hydrogen bond; the distinction between the donor and the acceptor of the
hydrogen bond is no longer appropriate. In this case, the proton free energy landscape
is a symmetric single well potential (see right panel in Figure 3.1.4). Symmetric hydro-
gen bonds are the signature of the phase X of ice, where the oxygen-oxygen distance is
approximately equal to or shorter than 2.3 Å. However, these symmetric hydrogen bonds
are not a peculiarity of high pressure ice only, and can be found in other materials that
are of geological interest and might play an important role in water transport in the Earth
mantle, such as aluminium oxide hydroxide [107].

Another way of describing the different behaviors of hydrogen bonds is to look at the
proton distribution function along the hydrogen bond direction (see Figure 3.1.5). From
this point of view, asymmetric hydrogen bonds correspond to a proton localized on one
side of the hydrogen bond: the distribution function would thus be unimodal and centered
near the donor X. On the other hand, in the case of disordered hydrogen bonds, proton
hopping results in a bimodal distribution, i.e. with two peaks corresponding to the two
equilibrium sites of the proton. Finally, the proton distribution is unimodal again in the
case of symmetric hydrogen bonds, i.e. when the proton lies midway between the hydrogen
bond donor and acceptor. However, in this case, the distribution has its maximum at the
center of the X-X’ bond.

In order to present a simple, homogeneous description of hydrogen bonds for different
X-X’ distances, we represent the effective potential energy of the proton by a double well
potential, where the distance between the two wells and the barrier height can vary. In
Figure 3.1.5, three different situations are represented that correspond to asymmetric,
disordered and symmetric hydrogen bonds. Indeed, for large X-X’ distances, the distance
between the two wells and the barrier are usually large enough that the proton distribution
is centered in one well only. On the other hand, when the X-X’ distance decreases, the
two wells get closer to each other while the barrier height also decreases. In this case, the
thermal energy is responsible for the proton’s delocalization over the two wells, leading
to a bimodal distribution function. Finally, when the X-X’ distance is even shorter, the
potential barrier can actually collapse, leading to a single well potential. This description
was also presented by Benoit and coworkers [108] (see section 3.1.3 for more details). This
picture is a classical one i.e. only thermal fluctuations are responsible for the proton’s
delocalization; if one considers the proton as a quantum particle, then several intermediate
situations can occur. In particular, quantum tunneling can delocalize the proton over the
two wells even if thermal fluctuations are negligible. Moreover, the zero-point motion of
the proton can lead to a unimodal distribution function even though the potential is still a
double well with a non-zero barrier. These "strange" quantum features will be addressed in
more detail in the following sections: first, we will present theoretical studies of a quantum
proton in a double well potential in sections 3.1.3 and 3.2 and then we will study proton
tunneling and hydrogen bond symmetrization in a real system, namely ice under high
pressure (section 3.3).

3.1.3 Previous theoretical studies of hydrogen bond symmetrization

In 1972, Holzapfel studied the linear motion of a proton between two oxygens [109]. He
developed a model that correctly describes the experimental data for the equation of state
of ice VII [110]. In his model, the hydrogen is subjected to two equivalent Morse potentials,
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Figure 3.1.5: Schematic representation of the mean field potential energy landscapes of the
protons in asymmetric (left), disordered (center) and symmetric (right) hydrogen bonds.

leading to a symmetric double well potential VH :

VH(r,R) = VOH

[

1 − e−α(r−a0) − e−α(R−r−a0)
]2

(3.1.1)

where r is the O-H covalent bond length, R is the O-O distance, a0 is the O-H covalent
bond equilibrium length and VOH is the corresponding covalent bond energy. From this
potential, Holzapfel derived a critical oxygen-oxygen distance below which the equilibrium
position of the proton is in the center of the hydrogen bond, and above which there are
two equivalent equilibrium positions. For ice VII, the critical O-O bond length that would
correspond to a transition to symmetric ice X is R = 2.41 Å. However, the proton is
considered a classical particle in this work.

Stillinger and Schweizer [111–113] were among the first to emphasize the importance
of quantum effects such as proton tunneling in the phase transitions of high pressure ice.
They considered the many-body eigenfunctions of a system containing N water molecules
and assumed a one-dimensional linear motion of the protons along the O-O segments.
Based on a mean-field approximation for the proton potential that relies on a description
of independent protons, they predicted the symmetrization of hydrogen bonds in ice VII.
They also predicted that the importance of the quantum nature of hydrogen in this tran-
sition should result in a significant isotope effect when hydrogen is replaced by deuterium.
In comparison with previous works, Schweizer and Stillinger were able to present a theory
that includes both short and long-range interactions based on the concentrations of differ-
ent hydrogen bond types as order parameters. Their work was also the first to include a
two-state description of proton tunneling.

More recently, in 1998, Johannsen introduced an alternative model based on a double
Morse potential (DMP) in order to analyze the correlation between the O-O distance and
the proton stretching frequency [114]. The standard DMP consists in the sum of two
Morse potentials centered on the two sites near each oxygen and forming a symmetric
double well potential:

UDMP (r) = uM (r) + uM (R− r) (3.1.2)

where uM is a Morse function, r is the O-H distance and R is the O-O distance. This
DMP model has already been used to predict the behavior of hydrogen bonds in various
materials [115]. However, for a more general description of hydrogen bonds, non-symmetric
potentials have to be considered. Introducing an asymmetry in the proton potential has
considerable consequences on the nature of its quantum states: the degeneracy between
some low-energy levels is lifted leading to more localized states. Johannsen improved such
a potential by replacing the Morse function uM :

uM (r) = u0

[

e−2a(r−r0) − 2e−a(r−r0)
]

(3.1.3)

46



3.2. STUDY OF A ONE-DIMENSIONAL PHENOMENOLOGICAL MODEL

by the following expression:

u(r) = u0




a

(

e−b(r−r0) − 1
)

+ b
(

ea(r−r0) − 1
)

a+ bea(r−r0)
− 1



 (3.1.4)

where a and b control the shape of the attractive and repulsive parts of the potential, r0

is the equilibrium O-H distance and u0 a parameter controlling the depth of the potential.
An asymmetry factor c is then introduced and the complete proton potential is: U(r) =
cu(r) + c−1u(R − r) (see e.g. Figure 4.1.1). This type of model, that includes both
symmetric and non-symmetric situations, allows for a correct description of transitions
frequencies (i.e. energy differences between eigenstates) for several different compounds
such as OH:LiNbO3 for example. We will also use this model to study a one-dimensional
chain of oxygen and hydrogen atoms in section 5.3.2.

Finally, ab initio path-integral molecular dynamics were also performed on ice at 100
K [108,116]. From these simulations, free energy profiles and proton distribution functions
were extracted: the double-well picture presented above (see section 3.1.2) stands in the
VII-X transition of ice. Depending on the barrier height, several characteristics of hydrogen
bonds in ice VIII, VII or X can be recovered.

3.2 Study of a one-dimensional phenomenological model

3.2.1 Introduction of a Landau-like potential model

In order to present a consistent and simple description of the transition from disordered
hydrogen bonds to symmetric hydrogen bonds, we use here a mean-field, one-dimensional
approach for the proton potential. The potential we introduce is a symmetric double well
potential similar to the potentials studied previously [111–114]; the barrier height and
the positions of the two wells depend on the pressure. The expression of the potential is
inspired by the Landau model of second-order phase transitions. Here, however, the role
of temperature is replaced by pressure. Landau-like potentials have already been used to
study the symmetrization of hydrogen bonds in high-pressure ice [117,118]. The potential
can thus be written in the form:

V (x) = ax4 + b (P − Pc)x
2 + V0 (3.2.1)

where x is the proton position along the O-O segment relative to its midpoint. a, b
and Pc are fitting parameters, which are chosen as to reproduce the potential energy of
protons in ice VII at approximately 50 GPa. Indeed, for each position x of the proton,
the energy of a simulation box containing 54 water molecules in the ice VII configuration
is minimized using the density functional theory. This gives an indication of the effective
potential energy felt by the protons in ice at T = 0 K.2 Here, we choose Pc = 100 GPa
as the transition pressure from ice VII to ice X obtained from classical simulations i.e.
simulations where the quantum nature of nuclei are not taken into account [119–122].
Indeed, this corresponds to the pressure at which the potential barrier disappears and
V (x) becomes a single well potential. By definition, the two minima of the potential are

at xeq = ±
√

b
2a (Pc − P ). For pressures below Pc, the barrier height is ∆V = b2

4a (Pc − P )2.
As pressure increases towards Pc, the two minima move closer to each other and the barrier
height decreases. At P = Pc, ∆V = 0.

2We choose a = 7.2 eV.Å
−4

, b = 0.04 eV.Å
−2

.GPa−1 so that V (x) correctly reproduces the proton
effective potential energy computed in ice VII at 50 GPa approximately (see Appendix 3.A).
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Figure 3.2.1: (top) Potential V (x) at different pressures (50, 70 and 110 GPa) with the
ground-state energy E1 and the energy of the first excited state E2. (bottom) Wave
functions of the ground-state, Ψ1(x), and the first excited state, Ψ2(x).

From a classical point of view, the transition from asymmetric hydrogen bonds to sym-
metric hydrogen bonds occurs when the barrier disappears, at P = Pc. From a quantum
point of view, this problem reduces to a time-independent Schrödinger equation for a pro-
ton in one dimension: a finite differences method turns it into an eigenproblem which is
easily solved by standard linear algebra procedures. We can thus obtain the eigenenergies
En and eigenfunctions Ψn(x) of the system at T = 0 K. Typical eigenstates are shown
in Figure 3.2.1 below the classical transition pressure, at 50 and 70 GPa and above the
classical transition, at 110 GPa. Unsurprisingly, at low pressures (at 50 GPa), the two
lowest energy states are almost degenerate and the ground-state wavefunction has two
maxima near the bottom of the two wells, and a local minimum at x = 0. On the con-
trary, above the classical transition pressure (at 110 GPa), the ground-state wavefunction
is centered around x = 0 where it is maximum. However, the ground-state wavefunc-
tion, Ψ1(x), undergoes a topological change when its local minimum at x = 0 becomes
a maximum around 70 GPa, with no further modification at pressures above 70 GPa.
This phenomenon is the signature of a quantum phase transition undergone by the sys-
tem [123–125]. Indeed, a quantum phase transition is marked by a fundamental change of
the topology of the ground state of the system. Hence, strictly speaking, quantum phase
transitions occur at T = 0 K since they refer to singularities in the ground state [126].
Here, we are interested in the consequences that such a quantum phase transition can have
even at finite temperature and we attempt to go beyond the T = 0 K description. In the
following, we will study proton tunneling and its consequences on the VII-X transition
from a more quantitative point of view (section 3.2.2) and then we will analyze the effect
of thermal fluctuations this transition (section 3.2.3). In particular, we will see that the
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main characteristics of the symmetrization transition of hydrogen bonds in ice are only
slightly affected by thermal fluctuations. Therefore, we will refer to this transition as a
"quantum-driven phase transition" at room temperature.

3.2.2 Quantum tunneling in a one-dimensional model

Below the transition, the proton is subject to quantum tunneling. In order to quantify
proton hopping through the barrier, several approaches are possible: we will first present
a semiclassical viewpoint, the WKB approximation, and then a more general approach
based on the system’s eigenfunctions. At the semiclassical level (within the WKB approx-
imation), the transmission factor through the barrier is (see chapter VI in reference [127]):

ΓWKB = exp

[

−2
∫ x2

x1

√

2m
~2

(V (x) − E1) dx

]

(3.2.2)

where x1 and x2 correspond to V (x1) = V (x2) = E1 and E1 is the ground-state energy i.e.
the zero-point energy. The top panel of Figure 3.2.2 shows ΓWKB increasing as pressure
increases until it reaches its final value, ΓWKB = 1 when E1 ≥ V (0) i.e. when the zero-point
energy is higher than the barrier height.

Another approach, based on the eigenfunctions of the system, consists in a simple
quantum picture in terms of the ground-state and the first excited state. When the barrier
is relatively high, these two states, Ψ1(x) and Ψ2(x), are almost degenerate (see top panel
in Figure 3.2.4). We can then define two states, Ψleft and Ψright, which correspond to a
proton localized in the left and the right well respectively:

Ψleft(x) =
Ψ1(x) + Ψ2(x)

2
, Ψright(x) =

Ψ1(x) − Ψ2(x)
2

. (3.2.3)

If our system is initially in the left well, i.e. in state Ψleft, then the wave function at time
t is:

Ψ(x, t) =
e−iE1t/~

2

(

Ψ1(x) + Ψ2(x)e−iω12t
)

(3.2.4)

where we have defined

ω12 ≡ E2 − E1

~
. (3.2.5)

Therefore, our system oscillates between the states Ψleft and Ψright with a period 2π/ω12:
this phenomenon is called coherent tunneling [128]. The tunneling or hopping rate of the
proton between the two wells is then given by

Γ12 ≡ ω12 =
E2 − E1

~
. (3.2.6)

In this case, Γ12 is also called the tunneling splitting and usually depends on the mass of
the particle, on the height of the barrier and on the distance between the two wells.

Moreover, since Ψ1 and Ψ2 are eigenstates of the system, they are solutions to the
time-independent Schrödinger equation:

Ψ′′
1 +

2m
~2

(E1 − V )Ψ1 = 0 (3.2.7)

Ψ′′
2 +

2m
~2

(E2 − V )Ψ2 = 0 (3.2.8)
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Thus, equation (3.2.7)×Ψ2− equation (3.2.8)×Ψ1 leads to:

Ψ′′
1Ψ2 − Ψ′′

2Ψ1 +
2m
~2

(E1 − E2)Ψ1Ψ2 = 0. (3.2.9)

Integrating this equation over half the real space, we get:

Ψ′
1(0)Ψ2(0) − Ψ′

2(0)Ψ1(0) =
2m
~2

(E2 − E1)
∫ 0

−∞
Ψ1(x)Ψ2(x) dx. (3.2.10)

Since Ψ2 is antisymmetric, Ψ2(0) = 0 and we obtain the following expression for the
hopping rate:

Γ12 = − ~

2m
Ψ′

2(0)Ψ1(0)
∫ 0

−∞ Ψ1(x)Ψ2(x) dx
. (3.2.11)

The numerator in equation (3.2.11) can be interpreted in terms of a current through the
barrier at x = 0 [129]:

J(0) = − ~

m
Ψ′

2(0)Ψ1(0). (3.2.12)

The top panel of Figure 3.2.2 also shows the evolution of the hopping rate Γ12 with
pressure. The behaviors of the semiclassical ΓWKB and of the quantum hopping rate Γ12

are very similar: they both increase as pressure increases. Above the critical pressure
where E1 equals the barrier height i.e. for P > Pt, while ΓWKB does not evolve anymore,
Γ12 continues to increase but with a slope much less important than for P < Pt. Hence,
both approaches yield similar results regarding the evolution of proton hopping as pressure
increases.

The lower panel in Figure 3.2.2 shows the evolution of the zero-point energy of the
system, E1, as well as that of the potential barrier height ∆V when pressure increases.
Three regimes can be distinguished:

1. regime (I) i.e. P ≤ Pt : ∆V 6= 0 and E1 ≤ ∆V

2. regime (II) i.e. Pt ≤ P ≤ Pc : ∆V 6= 0 and E1 ≥ ∆V

3. regime (III) i.e. P ≥ Pc : ∆V = 0

where Pt is a critical pressure (close to 70 GPa). In regime (I), the onset of proton
tunneling leads to the proton hopping from one well to the other: therefore, ΓWKB and
Γ12 increase rapidly, while the barrier height decreases. However, the zero-point energy
E1 remains lower than the barrier, resulting in a wavefunction with two maxima and a
local minimum at x = 0. In regime (II), the zero-point energy E1 is higher than the
barrier ∆V , leading to a maximum of the density at x = 0: the proton is mostly localized
around the center of the O-O segment, even though the barrier has not yet disappeared
(∆V 6= 0). Quantum tunneling is responsible for the delocalization of the proton over the
two potential wells in regime (I), but the transition to symmetric hydrogen bonds occurs
when the zero-point energy reaches the barrier height. The increase in Γ12 is then slowed
down because tunneling does not occur anymore in regime (II) and thus Γ12 is no longer an
indicator of proton hopping. At the semiclassical level, ΓWKB has reached its maximum
value and does not evolve anymore. In regime (III), the barrier has disappeared (i.e.
∆V = 0) and the proton confinement is only due to the contraction of the O-O distance.
Therefore, the quantum phase transition occurs when the zero-point energy reaches the
height of the barrier, at which point the ground-state wavefunction displays a topological
change. In the following section, we will discuss how thermal fluctuations affect proton
tunneling as well as the symmetrization transition.
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and barrier height ∆V as functions of pressure. Pt indicates the transition pressure from
asymmetric to symmetric hydrogen bonds at ambient temperature.

3.2.3 Thermal fluctuations contribution

The previous analysis was done at T = 0 K but can be extended to finite temperature
through simple arguments. The thermal energy associated with a temperature of 300 K
is approximately kBT ∼ 26 meV. In ice VII, this corresponds to half the barrier height at
the quantum transition point (approximately 54 meV at 65 GPa), i.e.

kBT =
∆V

2

∣
∣
∣
∣
P =Pt

=
E1

2

∣
∣
∣
∣
P =Pt

. (3.2.13)

A simple approximation consists in adding the thermal energy to the ground-state energy
i.e.

E|T 6=0 ≈ E1|T =0 + kBT. (3.2.14)

The transition pressure is still determined by the point where the energy is equal to the
barrier height: thus, it is reduced from 70 GPa to approximately 60 GPa (see Figure 3.2.3).
This is in agreement with experimental values found via infrared and Raman experiments
and with numerical studies that do take into account the quantum nature of hydrogens
(via PIMD [116] and via QTB [4]).

Furthermore, even at high temperatures, the contribution from zero-point motion -
which is a purely quantum effect - is far from negligible. Indeed, it induces a massive change
in the value of the transition pressure (Pt is about 40% smaller than Pc); this effect is even
dominant compared to thermal fluctuations (which contribute for 5% approximately). This
confirms that quantum-driven phase transitions do occur in real systems, even at room
temperature, and reinforces the importance of correctly treating nuclear quantum effects.

In order to further understand the mechanism of the transition and in particular the
role of thermal fluctuations, we look at the evolution of the eigenstates from a very high
barrier potential (top panel in Figure 3.2.4) to a single well potential (lower panel in Figure
3.2.4). At low pressures, the states 1 and 2 are degenerate as are the states 3 and 4. Hence,
the combination of states Ψ1 + Ψ2 and Ψ3 + Ψ4 correspond to localized states in each
well (see equation (3.2.3)). Therefore, the transition rate Γ13 = (E3 − E1/)~ = ∆E13/~
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represents the oscillation frequency at the bottom of the well. As pressure increases, the
degeneracies between states 3 and 4 and then 1 and 2 are lifted: the combinations of states
Ψ1 + Ψ2 and Ψ3 + Ψ4 are no longer localized states but are more complicated and Γ13

decreases. On the other hand, at high pressures, the eigenstates 1 and 2 correspond to the
two lowest-energy states of the single-well potential and Γ12 is now the transition rate that
represents the oscillation frequency in the potential. Figure 3.2.5 shows the evolution of the
energy differences between the eigenstates with increasing pressure. As expected, ∆E13

decreases (as does ∆E24) with increasing pressure as the system approaches the transition.
On the other hand, ∆E12 (as ∆E34) increases with increasing pressure. Furthermore, below
the transition i.e. for P < Pc, the harmonic frequency at the bottom of each well is:

ω
(LP)
0 = 2

√

b(Pc − P )
m

(3.2.15)

while above the transition, the harmonic frequency is:

ω
(HP)
0 =

√

2b(P − Pc)
m

(3.2.16)

where LP and HP stand for "low pressure" and "high pressure" respectively. The evolution
of these harmonic frequencies are also shown in Figure 3.2.5 (black lines). Hence, ω2

0 is
linear with pressure below and above the transition at P = Pc which corresponds to the
classical Landau theory of second-order phase transitions. More formally, we can define
the classical susceptibility χ as the proportionality coefficient between the displacement of
the atom, δx, and the force needed to displace it from its equilibrium position, δF :

δx = −χδF ⇒ χ−1 = − dF
dx

∣
∣
∣
∣
xeq

=
d2V

dx2

∣
∣
∣
∣
∣
xeq

. (3.2.17)
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In the harmonic approximation, the inverse susceptibility is simply proportional to the
square of the frequency, χ−1 = mω2

0. For a double well potential, we obtain:

χ−1 =

{

4b (Pc − P ) , for P ≤ Pc

2b (P − Pc) , for P ≥ Pc

(3.2.18)

In the classical Landau theory, the transition is accompanied by a soft mode, whose behav-
ior is related to

√

χ−1. Hence, below and above the transition, we expect a mode ω0 such
that ω2

0 is linear with pressure. Equation (3.2.18) also indicates that the proportionality
coefficient below the transition is twice that above the transition.

The classical Landau theory can be adapted to the quantum transition, as we have
seen that the transition rate Γ13 decreases with pressure below the transition while Γ12

increases above the transition, indicating the presence of a soft-mode at the transition.
In order to generalize these results, we compute the quantum susceptibility from linear
response theory. We consider a time-dependent perturbation f(t) to our system with
Hamiltonian:

H = H0 − f(t)x =
p2

2m
+ V (x) − f(t)x (3.2.19)

where V (x) is the double well potential given in equation (3.2.1). The dynamical response
function is

χ(t) =
i

~
θ(t)〈[x̂(t), x̂]〉 (3.2.20)

where θ(t) is the Heaviside function and the position operator x̂(t) is

x̂(t) = eiH0t/~ x̂ e−iH0t/~. (3.2.21)

[x̂(t), x̂] indicates the commutator of x̂(t) and x̂ i.e. [x̂(t), x̂] = x̂(t)x̂− x̂x̂(t). We introduce
the density matrix of the system ρ̂(T ) at temperature T which can be expressed in terms
of the eigenstates of the system {Ψn, En}:

ρ̂(T ) =
∑

n

e−βEn

Z
|Ψn〉〈Ψn|, (3.2.22)

Z =
∑

n e−βEn is the partition function and β = (kBT )−1 is the inverse temperature.
Thus, equation (3.2.20) can be rewritten as:

χ(t) =
i

~
θ(t) Tr {ρ̂(T ) [x̂(t), x̂]}

=
i

~
θ(t)

∑

m

〈Ψm|ρ̂(T ) [x̂(t), x̂] |Ψm〉

=
i

~
θ(t)

∑

n

e−βEn

Z
〈Ψn| [x̂(t), x̂] |Ψn〉

=
i

~
θ(t)

∑

n

∑

m

e−βEn

Z
[〈Ψn|x̂(t)|Ψm〉〈Ψm|x̂|Ψn〉 − 〈Ψn|x̂|Ψm〉〈Ψm|x̂(t)|Ψn〉]

=
i

~
θ(t)

∑

n

∑

m

e−βEn

Z

[

ei(En−Em)t/~ − e−i(En−Em)t/~
]

|〈Ψn|x̂|Ψm〉|2

= −2
~
θ(t)

∑

n

∑

m

e−βEn

Z
sin (ωnmt) |〈Ψn|x̂|Ψm〉|2
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Figure 3.2.6: Inverse quantum susceptibility χ̃−1 at room temperature as a function of
pressure (see equation (3.2.24)). The transition to symmetric hydrogen bonds at T = 300
K is indicated by the arrow at approximately 65 GPa and corresponds to the minimum of
χ̃−1.

with

ωnm ≡ En − Em

~
. (3.2.23)

If we denote xnm = 〈Ψn|x̂|Ψm〉, then

χ̃(ω) = −2
~

∑

n

∑

m

e−βEn

Z
|xnm|2

∫ ∞

0
sin (ωnmt) e−iωt dt

=
2
~

∑

n

∑

m6=n

e−βEn

Z
|xnm|2 ωnm

ω2 − ω2
nm

.

By definition, the static susceptibility is χ̃ = limω→0 χ̃(ω); thus,

χ̃ = −2
~

∑

n

∑

m6=n

e−βEn

Z

|〈Ψn|x̂|Ψm〉|2
ωnm

. (3.2.24)

Above the transition, only the first two states are thermally accessible (i.e. occupied and
thus relevant): hence, χ̃−1 ∝ (E2 − E1)/|x12|2 (i.e. the red line in Figure 3.2.5). Below
the transition, when the first two states are degenerate, we have: χ̃−1 ∝ (E3 − E2)/|x23|2
(i.e. the purple curve in Figure 3.2.5). Figure 3.2.6 shows the evolution of χ̃−1 with
pressure. We can clearly see that the susceptibility displays a minimum at the transition.
Moreover, χ̃−1 is linear with pressure well below and above the transition, thus displaying
the same behavior as the square of the O-H stretching mode frequency in ice, which softens
at the transition. Indeed, the increase in proton tunneling below the transition pressure
translates into an increase of χ̃, which in turn, corresponds to a decrease of the frequency
of the associated vibration mode. After the transition, the contraction of the potential
leads to a gradual confinement of the proton, diminishing its fluctuations and implying a
hardening of its vibrations.
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3.3. THE VII-X TRANSITION IN HIGH PRESSURE ICE

3.3 The VII-X transition in high pressure ice

3.3.1 Introduction and previous studies

While the phase diagram of water is extremely complex (more than 16 phases have been
found up to now! [130–133]), under very high pressure, only a few phases of ice exist. In
particular, above 20 GPa and at room temperature, the most stable phase of ice is the
phase VII, which consists in a molecular phase with a cubic structure and disordered hy-
drogen bonds. However, as pressure increases up to 100 GPa, the oxygen-oxygen distance
decreases and the molecular phase VII, where the protons tunnel between covalent and
hydrogen bonds, transforms into the non-molecular phase X, where the protons lie midway
between the oxygens in a symmetric configuration.

This structural transition was first predicted theoretically in 1972 by Holzapfel [109].
He determined a critical O-O distance below which the proton is localized at the O-O
midpoint and which corresponds to a pressure of 50 GPa. However, Holzapfel already
mentioned that the zero-point energy of the protons most probably shifts the transition
to lower pressures and that quantum effects might also be responsible for an isotope
effect when H is replaced by D. The importance of nuclear quantum effects was further
emphasized by Stillinger and Schweizer’s theoretical work (see section 3.1.3) [111,113].

The experimental and theoretical quest for the transition to symmetric hydrogen bonds
encounters two main difficulties: performing Raman or infrared spectroscopy in this pres-
sure range (between 30 and 100 GPa) is quite difficult because of the low-intensity (for
Raman scattering) and broad (for infrared spectroscopy) peaks associated with hydrogen;
on the other hand, taking nuclear quantum effects into account in simulations is also quite
a challenge (see chapter 1). Hence, the first Raman and Brillouin scattering experiments
found a transition near 45-50 GPa [134–136]. This transition pressure, near 45 GPa, was
also confirmed by ab initio molecular dynamics simulations that used the LDA approx-
imation with a gradient correction (see Appendix 2.B.4) as well as a variational Gaus-
sian wavefunction approach [117,118]. However, these studies were contradicted by other
experiments, such as synchrotron X-ray diffraction [137], other Raman scattering experi-
ments [138–140] and neutron diffraction measurements [141], which suggested a transition
above 60-70 GPa.

Finally, in 1996, more precise infrared measurements allowed a better determination
of the ice VII-ice X transition [142–144]. Figure 3.3.1 shows the evolution with pressure
of the mode frequencies obtained by infrared spectroscopy. The clear decrease of the
O-H stretching mode frequency is accompanied by an enormous broadening of the peak
[142, 143]. Meanwhile, the O-H bending mode frequency does not vary significantly with
pressure but disappears above 50 GPa. Finally, they observed a new mode in the high-
pressure phase (νT ) in the low-frequency region of the spectrum. Hence, the softening of
the O-H stretching mode was associated with the transition from ice VII to ice X between
60 and 65 GPa. Moreover, several anomalies in these spectra were interpreted as evidence
for proton tunneling in the 25-45 GPa range i.e. in phase VII [144]. Further experiments
(infrared [145, 146] and Raman [147, 148] spectroscopy, X-ray diffraction [149]) confirmed
this transition pressure and aimed at better understanding the complexity of the spectra
of high-pressure ice. In particular, the O-H stretching mode softens at the transition
but, because of its coupling to other modes, a cascading series of Fermi resonances was
observed. The expected isotope effect on deuterated ice was also confirmed: the transition
pressure is shifted to 80 − 90 GPa for deuterated ice [146].

On the theoretical side, standard ab initio simulations were performed but as long as no
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Figure 3.3.1: Evolution with pressure of measured peak frequencies via infrared spec-
troscopy. Left panel: results from Aoki and coworkers [142]; ν1 and ν3 are the symmetric
and antisymmetric O-H stretching frequencies (due to the large width of the peaks, these
two modes overlap); ν2 is the O-H bending mode frequency; νT is a new mode which ap-
pears in the phase X above the transition; νR and νD are the librational and distortional
lattice mode frequencies respectively. Right panel: results from Goncharov and cowork-
ers [144]; ν3, ν ′

3 and νS are the O-H stretching mode frequencies; νT is the translational
mode frequency; ν ′

R and ν ′
D correspond to the rotational and deformation modes.

nuclear quantum effects were included, there was a gap of 30 GPa approximately between
the numerically predicted transition pressure, ∼ 90 GPa at ambient temperature, and the
experimental one, ∼ 60 GPa [119–122,150]. However, the importance of zero-point effects
and proton tunneling was clearly demonstrated by a path-integral molecular dynamics
(PIMD) study from Benoit and coworkers [108, 116]. They were able to determine from
the proton distribution function that proton tunneling occurs in ice VII which transforms
into ice X around 72 GPa at 100 K (see Figure 3.3.2). Their work relied on the analysis
from a structural point of view of the evolution of the hydrogen bonds with pressure. In
the following, we compare our results that are obtained via QTB simulations with their
PIMD calculations and complete the analysis of the phase transition from ice VII to ice
X by analyzing the vibrational properties [4]. All computational details are in Appendix
3.B.

3.3.2 Structural properties of high-pressure ice

We first compare results from QTB molecular dynamics simulations to previous PIMD
calculations [116] in order to validate our use of semiclassical proton dynamics. Figure
3.3.3 shows the contour plots of the average proton distribution P (x,ROO’) as a function of
the proton position relative to the bond midpoint x = ROH −RO’H and the corresponding
O-O distance, ROO’. One should note that the distribution function P is averaged over one
trajectory with no configurational averaging. Indeed, in the case of a double-well potential,
one needs to average over trajectories with different initial conditions in order to obtain
the expected symmetric probability distribution function. Here, we are interested in the
probability for a proton of crossing the barrier at some point along its trajectory. At low
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Figure 3.3.2: Average proton distribution function P (δ,ROO’) as a function of the proton
position relative to the bond midpoint δ = ROH−RO’H and the corresponding O-O distance
ROO’ for quantum (left panels) and classical (right panels) simulations at T = 100 K and
different pressures. Figure from reference [116]. δ corresponds to x in the text.
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Figure 3.3.3: Contour plots of the average proton distribution function P (x,ROO’) as a
function of the proton position relative to the bond midpoint, x = ROH − RO’H, and the
corresponding O-O distance, ROO’ (no configurational average was performed), from QTB
(left panels) and standard ab initio (right panels) molecular dynamics simulations.
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Figure 3.3.4: Oxygen-hydrogen pair correlation functions g(r) as a function of the O-H
distance, from QTB (left panel) and standard ab initio (right panel) molecular dynamics
simulations.

pressure (P ∼ 30 GPa), the proton is localized on one site in the classical frame, which
shows explicitly that it never hops from one well to the other. Indeed, thermal fluctuations
are not important enough at this pressure to induce a delocalization of the classical proton.
In contrast, the proton is delocalized over two sites within the QTB framework, meaning
that during its trajectory, the proton passes from one well to the other. Thus, the zero-
point energy is properly accounted for in the QTB simulations allowing the proton to
jump back and forth through the energy barrier at pressures as low as 30 GPa. When
pressure is increased, the energy barrier is lowered thus allowing even the classical proton
to hop between the two sites, as revealed by the probability distribution function at 55
GPa in the classical simulation. At 140 GPa, both methods show a unimodal distribution
centered at x = 0, corresponding to ice X, while at 90 GPa, only the QTB distribution is
unimodal. The distribution functions provided by QTB simulations are similar to those
from ab initio PIMD calculations [116]: the onset of proton tunneling occurs however at
lower pressure in our simulations mainly because of the higher temperature (300 K instead
of 90 K in reference [116]).

An easier way to analyze the oxygen-hydrogen distances is to look at the O-H pair
correlation functions g(r) (see Figure 3.3.4). In both standard ab initio (without NQE)
and QTB MD cases, the low-pressure results consist of two peaks, denoting two different
bond lengths: short (∼ 1.1 Å) for covalent O-H bonds and long (∼ 1.4 Å) for compressed
hydrogen H-O bonds. In the classical ab initio simulations, for P ≤ 40 GPa, the proton
never switches between the two bonds as the two peaks are well defined with g(r) = 0
between them. As the pressure increases, the two peaks merge progressively, until the
proton is localized in the middle of the bond. In contrast, with the QTB method, the
peaks are broader, thus revealing looser bonds, and merge at lower pressure.

Finally, we can consider that the proton position relative to the bond midpoint, x,
is a good order parameter or reaction coordinate for the symmetrization transition (x
corresponds to δ in reference [108]). As long as the hydrogen bonds are asymmetric,
the average value of x is non-zero; at the transition and above, the hydrogen bonds are
symmetric and x is equal to zero on average. Figure 3.3.5 shows the average probability
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Figure 3.3.5: Probability distribution of the proton position relative to the bond midpoint
x = ROH −RO’H at different pressures, from QTB (left panel) and standard ab initio (right
panel) molecular dynamics simulations.

distribution of |x|. Clearly, NQE tend to broaden the distributions and the transition to
ice X occurs at lower pressure than in the classical framework, between 55 and 72 GPa.
These results (as well as previous theoretical studies [106, 116, 151]) point out that NQE
are significant and must be included for an accurate description of the symmetrization
transition in ice. However, in both cases, proton tunneling tends to blur the transition
in which the transformation of the two-peak probability distribution into a single peak is
continuous.

3.3.3 Vibrational properties of high-pressure ice

In contrast to the progressive change of O-H distribution functions, infrared and Raman
scattering experiments results display a relatively precise transition pressure at approxi-
mately 65 GPa. Indeed, as explained in section 3.3.1, the transition from ice VII to ice X
is marked by a strong softening of the O-H stretching mode (see Figure 3.3.1) [142–148].
Moreover, the analysis of a one-dimensional phenomenological model in section 3.2.3
showed that, at room temperature, the inverse susceptibility displays a minimum that
is related to a mode softening at the transition.

Thus, vibrational properties, which are naturally computed from the semiclassical
atomic trajectories, at variance with PIMD, are a clue to identify the transition pre-
cisely. The simulated spectra are calculated through the Fourier transform of the nucleus
autocorrelation function at different pressures (see also section 2.3.2 for more details on
the computation of vibrational spectra):

I(ω) ∝
∑

j

∣
∣
∣
∣

∫

xj(t)e
iωt dt

∣
∣
∣
∣

2

(3.3.1)

where

xj(t) = rj(t) · uj , uj =
OO

‖OO‖2
. (3.3.2)
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xj(t) is the relative position of hydrogen j on the O-O direction i.e. it is the projection of
the hydrogen position vector rj at time t along the direction vector uj .

The top panel of Figure 3.3.6 shows the proton vibrational spectrum I(ω) obtained
from QTB simulations in ice VII at approximately 20 GPa. The various peaks in the
spectrum can be identified by comparing our results to infrared and Raman measured
frequencies (see Figure 3.3.1) [145,146,148]. Indeed, our spectra are in very good agreement
with experimental measurements. Hence, at high frequency, near 3000 cm−1, we have
the O-H stretching mode: the antisymmetric and symmetric vibrations, ν3 and ν1 are
undistinguishable in our spectrum due to the large width of the corresponding peak. At
lower frequency, we can distinguish the O-H bending mode ν2 around 1600 cm−1, the
rotational vibrations of the water molecule νR and ν ′′

R near 1200 and 850 cm−1 respectively
and the translational mode νT at 350 cm−1 approximately. The lower panel of Figure 3.3.6
shows the proton vibrational spectra I(ω) for different pressures. We can already see that
the high-frequency peak, corresponding to the O-H stretching mode, broadens as pressure
increases and that its frequency decreases up to 70 GPa approximately.

The mode frequencies are then extracted from these spectra and shown in Figure 3.3.7
(each peak of I(ω) is fitted with a Lorentzian function in order to extract the frequency
and the width of each mode). First, we can see that the QTB-MD results are in excel-
lent agreement with both infrared and Raman measured frequencies (indicated by black
dots) [145,146,148]. One of the most noticeable features of these spectra is that, as pres-
sure approaches 65 GPa, the O-H stretching mode undergoes a significant softening, as
already pointed out by scattering experiments. The O-H stretching mode presents a clear
minimum at the VII-X transition, near 65 GPa. Struzhkin and coworkers [145] explained
that, as pressure increases to the transition pressure, the stretching mode couples to the
lower-frequency modes which results in a large number (or a cascade) of Fermi resonances
between the softening stretching mode and the rotational mode, the bending mode and
their combinations. In their work, they also calculated the transverse (TO) and longitu-
dinal (LO) frequencies from their reflectivity spectra and found that the LO mode has a
minimum at the transition (illustrated by the open triangles in Figure 3.3.7). This LO
mode is in very good agreement with our high-frequency peak, at any pressure. We also
computed the oxygen T2g vibrational mode (see section 2.3.2 for more details). This mode
is related to the cuprite-like structure of ice X and is Raman-active only in the symmetric
phase X (hence, we show our results only above the transition). The frequencies com-
puted from the QTB simulations are in excellent agreement with Raman measurements
on high-pressure ice by Goncharov and coworkers [148] and Bove and coworkers [152].

Finally, Figure 3.3.8 shows the O-H stretching mode frequencies obtained in high-
pressure ice from QTB simulations and from standard Langevin molecular dynamics i.e.
simulations that exclude any NQE. Clearly, NQE play a role and modify the O-H stretching
mode frequency. Moreover, the transition pressure Pt indicated by the minimum of the
O-H frequency is lower when NQE are included via the QTB. This confirms that NQE
play an important role in the VII-X transition in high-pressure ice.

3.3.4 Conclusion

Below the transition, in phase VII, the hydrogen bonds are asymmetric and disordered:
proton tunneling occurs and is responsible for the blurring of the distribution functions
below the transition; this leads to a "grey zone" (between 30 and 60 GPa approximately)
where the protons are delocalized over their two equilibrium sites. The analysis of a one-
dimensional Landau-like model of second-order phase transitions (see section 3.2) shows
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that the zero-point energy is the driving force of this transition: when the zero-point energy
equals the potential barrier height, the proton distribution changes from a bimodal function
to a unimodal one, with a maximum at the O-O midpoint. Furthermore, the transition
to ice X is marked by a strong softening of the O-H stretching mode, as predicted by the
study of the inverse susceptibility. The determination of a precise transition pressure is
thus much easier through the analysis of the vibrational properties of the system.

65



The VII-X transition in ice

66



Appendix

3.A Effective proton potential energy calculations

There are several different methods to obtain the potential energy surface of the protons.
One could use for example metadynamics in order to get the free energy landscape. Here,
we briefly describe the calculation of the potential energy at T = 0 K. In most cases,
we reduce the problem to only one dimension; however, it is easily generalized to two
or more dimensions. Assuming that x is the proton coordinate e.g. the proton position
relative to the O-O midpoint, for each value of x, we let the atomic structure relax i.e. we
minimize its energy while keeping x constant. The effective potential V (x) that we obtain
can then be viewed as a mean-field approximation for the potential energy landscape seen
by the protons. This method implies that x is the relevant order parameter. Moreover,
by reducing the problem to one degree of freedom (i.e. only one effective proton), we
make several approximations. First, we simplify the inherent complexity of the atomic
environment of the protons. This can, however, be repaired by taking into account the
3-dimensional position of the proton, r, instead of x. Second, for each value of the order
parameter, we move all protons coherently along their hydrogen bonds. A coherent motion
of all protons, while possible, would actually be relatively rare and we would rather expect
all protons to move independently from each other. Finally, by optimizing the atomic
structure at T = 0 K, we neglect all dynamical fluctuations of the atomic positions and
their consequences on the effective potential seen by the protons. In passing, we note
that the exchange-correlation functional might also influence the potential [153]. Hence,
we will use the PBE functional for all density functional theory studies on ice since it is
known to provide a good description of hydrogen bonds (see Appendix 2.B.4). In AlOOH
however, we will use the BLYP functional since it gives potential barriers approximately
15% higher than PBE (knowing that GGA tends to underestimate energy barriers, we
used the functional that gave us the highest barrier).

We will compare the proton potentials in high-pressure pure and salty ices, as well as in
high-pressure ice with an external homogeneous electric field. For the latter, we compute
the potential felt individually by each proton instead of averaging over all the protons in
the system:

Vp(r) = −
∫

fp(r′) · dr′ (3.A.1)

where fp are the interatomic forces and dr′ are the displacements of each proton along
the O-O segment. Hence, in high-pressure ice, if we average Vp over all the protons, we
obtain the same potential V (x) computed in the manner described above (i.e. through
the total energy of the system). We will use Vp(r) instead of V (x) in high-pressure ice
under an external electric field because if the electric field E is aligned along the z axis,
then half the protons "feel" a positive effective electric field Eeff while the other half "feel"
a negative effective electric field −Eeff (since the O-H· · · O bonds are aligned along the
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(111) directions). Hence, if we averaged over all the protons, the effects of the electric field
would cancel each other out and we would not be able to see anything.

3.B Computational details

The simulations were performed on a cell containing 54 water molecules. They were
initially arranged in the phase VII geometry. We checked that simulations starting from the
phase X gave the same results. The electronic structure is treated by the density functional
theory (see Appendix 2.B) within the generalized gradient approximation (GGA) with a
PBE functional [99]. We used ultrasoft pseudopotentials as available in the Quantum
Espresso code. The electronic wave functions were expanded in plane waves up to a
kinetic cutoff of 30 Ry (we checked the convergence of the total energy and forces). In
order to check if van der Waals contributions to the functional are important in our system,
we compared the energies obtained after structural relaxation of the simulation cell (see
Table 1 in reference [4]) where van der Waals contributions are included within the DFT-D
approximation [154]. We found that the relative difference in energies is approximately
0.1%. We also checked the effect of van der Waals contributions on the phonon frequencies:
the relative shift of the phonon frequencies that is due to the van der Waals contributions
never exceeds 10−4 and is thus negligible in our high-pressure study of ice.

We ran constant-volume simulations at room temperature (T = 300 K) using standard
Langevin and QTB molecular dynamics (see section 2.3.1). We chose a damping coefficient
of 333 cm−1 (approximately 10 THz). We also ran simulations with a damping coefficient
of 3.33 cm−1: the simulation results differ only in the width of the vibrational spectra.
The simulations were run for a total time of approximately 29 ps with a 0.484 fs time step.
The lattice parameter was varied from 18 to 14.5 bohrs, thus spanning a pressure range
from 12 to 180 GPa (the pressure was computed through the stress theorem [155]).
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Chapter 4

Towards lower symmetry: the effect of

the environment on nuclear quantum

effects
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4.1 Introduction

In the previous chapter, we have analyzed the VII-X phase transition of high-pressure ice
and described its mechanism which involves the quantum nature of protons. However,
when dealing with other systems, namely salty ices (i.e. a LiCl or a NaCl molecule has
been introduced into the ice structure) and the high-pressure δ phase of aluminium oxide
hydroxide (AlOOH), we were confronted with more complicated atomic environments for
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CHAPTER 4. EFFECT OF THE ENVIRONMENT ON NQE

the hydrogen bonds. This in turn had consequences on the evolution of the O-H· · · O
bonds under pressure that were different than in the case of pure high-pressure ice. The
following chapter will thus focus on protons that are confined in more complex atomic
environments.

4.1.1 The effect of the atomic environment on the proton potential

The previous chapter focused on a double well picture for the proton effective potential
(see section 3.2). This potential, however, represents a particular high-symmetry case as it
is symmetric with respect to x = 0 i.e. the midpoint of the oxygen-oxygen distance. This
assumption is verified in pure high-pressure ice where the system is constituted of water
molecules only. The atomic environment of a hydrogen atom is indeed the same on both
sides of the double well. However, this might not always be true in more complex crystals
with lower symmetry or if this symmetry is broken by the presence of impurities. In 1998,
Johannsen already predicted that a model potential for protons in hydrogen bonds should
include an asymmetric case in order to correctly describe experimental hydrogen bonds
in various systems [114]. Indeed, while coherent tunneling of protons has been observed
experimentally in molecular crystals [128], in many cases, protons are localized [156] and
this localization can sometimes be explained by an asymmetric proton potential. Several
reasons can be invoked for the asymmetry of the potential. First, there are hydrogen bonds
between chemically distinct donor and acceptor species, or the local environment of the
hydrogen bond might not be symmetric. Another reason for the asymmetry of the potential
is the coupling of hydrogen bond donor and acceptor to lattice vibrations, leading to a
time-dependent proton effective potential. Indeed, in many systems, the displacements of
protons are accompanied by a rearrangement of the surrounding electronic density leading
to small readjustments of the atomic equilibrium positions. This coupling to the protons’
environment usually renders the two wells of the potential inequivalent [128]. Finally,
Johannsen remarked that the idea of a universal potential for the description of hydrogen
bonds, even if appealing, might not be completely satisfactory. One should therefore be
careful that each double well potential, with its adapted set of parameters, is valid only for
a limited range of the bond length R. However, if the universality of the proton potential is
unattainable at the moment, these potentials are useful to understand the mechanisms of
proton localization and delocalization in several materials as well as for the study of isotope
effects when protons are replaced by deuterium. As we will see in the next section, the
shape of the potential can influence the properties of protons as introducing even a small
asymmetry in the potential can lead to dramatic changes of the proton wavefunctions.

4.1.2 The consequences of an asymmetric potential on proton tunneling and

hydrogen bond symmetrization: a one-dimensional study

We use in the following the same Landau-like potential that we used to model hydrogen
bonds in high-pressure ice (see equation (3.2.1) in section 3.2.1). In the symmetric double
well potential and in the case of a high barrier (P = 10 GPa) shown in the top panel
of Figure 4.1.1, the low-energy states are almost degenerate (E1 ≃ E2, E3 ≃ E4 etc):
each state is delocalized with an equal probability in each well. As explained in section
3.2.2, these states lead to coherent tunneling of protons through the barrier: the tunneling
splitting Γ12 = (E2 − E1)/~ then evaluates the proton hopping rate.

In order to introduce asymmetric potentials, we study the case of an asymmetric
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Figure 4.1.1: Symmetric (E = 0 - top panel) and asymmetric (E = 0.014 V.Å−1 - lower
panel) double well potential (see equation (4.1.1)) and corresponding proton wave func-
tions, calculated numerically. The baselines of the wave functions have been shifted to
represent the energy levels. In both cases, P = 10 GPa i.e. we are considering the
situation of a high barrier.
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Landau-like potential:

V (x) = ax4 + b (P − Pc)x
2 + Ex+ V0 (4.1.1)

where we have included a linear term. E is a homogeneous electric field while x is the
proton position along the oxygen-oxygen segment, P is the pressure. We use the same
parameters (a, b and Pc) as in section 3.2.1 in order to represent the potential energy
calculated in ice VII. As shown in the lower panel of Figure 4.1.1, the quantum states
are considerably modified when the potential becomes non-symmetric. The lower-energy
states are localized in a single well and the degeneracy is lifted. The higher-energy states,
whose energies are close to the barrier height, have a non-zero probability in both wells
indicating incoherent tunneling of protons through the barrier. As expected, for a small
asymmetry of the potential as depicted in Figure 4.1.1, the wave functions above the
barrier are not significantly affected by the asymmetry and are close to the corresponding
wave functions in the symmetric potential. Since Γ12 or ΓWKB (as defined in section 3.2.2)
cannot be used to quantify proton tunneling in an asymmetric potential, we compare the
average position 〈x〉 of the proton in the potential and its standard deviation σx. Indeed,
at finite temperature T , we have:

〈x〉 = Tr{ρ̂(T )x̂} =
1
Z

∑

n

e−βEn〈Ψn|x|Ψn〉 (4.1.2)

where ρ̂(T ) is the density matrix defined in equation (3.2.22), Z is the partition func-
tion, β = (kBT )−1 is the inverse temperature and {Ψn, En} are the eigenfunctions and
eigenenergies of the system. Similarly, we compute the standard deviation of x i.e.

σx =
√

〈x2〉 − 〈x〉2, and 〈x2〉 = Tr{ρ̂(T )x̂2}. (4.1.3)

Figure 4.1.2 shows the average position 〈x〉 and its standard deviation at a given
pressure (P = 10 GPa) as a function of the electric field E i.e. as the asymmetry of the
potential V (x) increases. When E = 0 i.e. in the case of a symmetric potential, 〈x〉 = 0
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Figure 4.1.3: Probability for the proton to be in the lowest well (Plow in equation (4.1.4))
of the double well potential (equation (4.1.1)) as a function of the electric field E for
different values of the pressure.

which indicates that the particle has an equal probability to be in the left or the right
well.1 As the asymmetry of the potential increases, the average position decreases and
converges towards the position of the lowest well, near −0.5 Å. Similarly, the delocalization
of the proton as indicated by its standard deviation σx is maximum when the potential is
symmetric at E = 0. As the asymmetry of the potential increases, σx decreases and the
potential is more and more localized in the lowest well of the potential. Another way to
quantify the localization of the proton is to compute the probability to be in the lowest
well:

Plow =
∫ 0

−∞
ρ(x, T ) dx (4.1.4)

where ρ(x, T ) is the probability density at room temperature i.e.

ρ(x, T ) =
1
Z

∑

n

e−βEn |Ψn(x)|2. (4.1.5)

Figure 4.1.3 shows that Plow evolves rapidly with increasing E from 0.5 (corresponding
to the quantum tunneling regime where the proton has equal probability to be in each
well) to 1 (corresponding to a proton localized in the lowest well). Hence, within this
simplified model, even a small electric field compared with local fields present in condensed
matter at a nanometric scale, drastically reduces the proton tunneling rate between the
two potential wells. In this case, the proton’s equilibrium position is equivalent to the
equilibrium position of its classical counterpart: this means that even a small electric field
is sufficient to suppress much of the quantum nature of protons in ice !

The asymmetry of the proton potential can thus be responsible for the localization
of protons and for the disappearance of proton hopping. However, the transition from
phase VII, with disordered and asymmetric hydrogen bonds, to phase X, with symmetric
hydrogen bonds, is driven by the zero-point energy (ZPE) of the system. The transition

1〈x〉 = 0 also corresponds to the case where the proton density has a maximum at x = 0. Here, P = 10
GPa and the density has two maxima, one in each well.
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Figure 4.1.4: Left panels: Evolution of zero-point energy E1 and barrier heights ∆V
and ∆V ′ as functions of pressure for two different values of E (top panel: E = 0.014
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actually occurs when the ZPE equals the barrier height and coincides with a topological
change of the proton’s wavefunction (see section 3.2). When the potential is asymmetric,
instead of one energy barrier, we are now faced with two different barriers that we will
denote ∆V and ∆V ′, with ∆V > ∆V ′. The left panels in Figure 4.1.4 show the evolution
of the ZPE, ∆V and ∆V ′ with pressure in two asymmetric cases. From a classical point of
view, the transition should occur when the two wells merge into a single one. In the first
case (top left panel), the electric field is sufficiently small so that the ZPE equals ∆V at
a lower pressure (Pt ≃ 80 GPa) than the classical transition pressure (Pc ≃ 90 GPa). The
ZPE tends to lower the transition pressure and at the transition, the proton density changes
from a two-maxima distribution to a single-maximum function (see top right panel in
Figure 4.1.4). In the second case, the asymmetry of the potential is much more important;
as shown in the lower left panel in Figure 4.1.4, the double-well potential becomes a single-
well potential before the ZPE actually levels with the barriers. Moreover, as shown in the
lower right panel of Figure 4.1.4, the density does not undergo any topological change:
at any pressure, the density has a single maximum which is off-centered with respect to
the center of the potential. As pressure increases, the position of this maximum is shifted
towards the center of the potential; however, even at high pressure, the density is not
symmetric with respect to x = 0. Hence, the term "symmetrization transition" may not
be appropriate when the potential is strongly asymmetric: we will use the term "pseudo-
symmetrization" instead in these cases since the proton distribution function will remain
asymmetric and off-centered above the transition pressure in these cases. In particular,
when the asymmetry is important, there is no modification of the nature of the proton
density; in this case, no transition takes place in the system. Moreover, as in pure ice, a
rigorous way to take into account the excited states at finite temperature is to consider the
inverse susceptibility χ−1 as a function of pressure (see equation (3.2.24)). The minimum
of χ−1 indicates the transition from asymmetric hydrogen bonds to symmetric O-H bonds.
Figure 4.1.5 shows the evolution of χ−1 as a function of pressure for different values of the
electric field E. As E increases, χ−1 is shifted towards higher pressures, which is consistent
with the top panel in Figure 4.1.4 where proton tunneling is reduced. Hence, the soft mode
accompanying the transition is shifted towards higher frequencies for a given pressure.

Finally, we note in passing that we have studied here a Landau-like potential with
an additional linear term. At a given pressure, the system undergoes a first-order phase
transition as the electric field E is varied. Indeed, the potential first derivative V ′(x) has
three real roots if

∆ = 8ab3 (Pc − P )3 − 27a2E2 > 0. (4.1.6)

In this case i.e. if ∆ > 0, then the potential V (x) has two minima and a maximum. For
E 6= 0, one of the minima corresponds to a metastable state. However, when E reaches a
critical value so that ∆ = 0, this metastable state disappears and the potential has only
one minimum. The critical value E at which the first-order transition occurs is

E =

[

8b3

27a
(Pc − P )3

]1/2

. (4.1.7)

In the following, we will discuss two different situations in which the proton effective
potential is asymmetric. First, we will show how small impurities in high-pressure ice
can affect the tunneling properties of protons (section 4.2). Then, we will study the
symmetrization of hydrogen bonds in a more complex system, the δ phase of aluminium
oxide hydroxide (section 4.3).
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4.2 The VII-X transition in salty ices under high-pressure

4.2.1 Why are salty ices important ?

Ices under very high pressure are present in many planets. Indeed, the recent Voyager,
Galileo and Cassini-Huygens missions have greatly improved our knowledge of ice-rich
planetary bodies, both for planets within our solar system [157–160] and extra-solar plan-
ets [161, 162]. However, while pure high-pressure ice has been extensively studied both
experimentally and theoretically, natural ices are usually "dirty" in the sense that they
unavoidably contain impurities such as salt. The incorporation of impurities into the ice
structure may be due to interactions between the ice and subsurface oceans, or between
the ice and surrounding silicate or metallic materials that may be present in the planet’s
interior. The effect of ionic defects in high-pressure ice has only been recently investi-
gated [5, 152, 163–171]. Indeed, it was thought for a long time that, upon cooling a salty
solution, water would expel the salt ions and form pure ice on the one hand and salt
hydrate on the other hand. Only recently experiments showed that one could indeed in-
troduce a large amount of salt into the ice structure by forming first an amorphous phase
of the salt solution and then recrystallizing it under pressure [165]. The consequences of
the presence of salt ions in the ice structure are varied and can be quite massive, even for
small salt concentrations. For instance, Klotz and coworkers showed through neutron scat-
tering experiments that in LiCl-ice, the displacement factors of the oxygens are five times
larger than in pure ice and the transition from the phase VII to the ordered phase VIII
does not occur upon cooling [165]. Moreover, Raman spectroscopy on NaCl-ice showed
that there is a systematic increase of the O-H stretching frequencies at any pressure up
to 27 GPa [163]. Finally, it was shown by Bove and coworkers in 2015 that, for LiCl salt
concentrations as low as 2 mol%, the transition pressure from phase VII to phase X is
shifted from 60 GPa to 90 GPa approximately [152].

In the following, we will focus on this particular property of salty ices and determine
whether the up-shift of VII-X transition pressure is due to local steric effects and if this
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Figure 4.2.1: Atomic structure showing: (left panel) the substitutional site occupied by
the anion Cl− (or the cation Na+); (center panel) the octahedral interstitial site occupied
by the cation Li+; (right panel) the interstitial site occupied by the cation D+ (or the
cation H+). The red balls are oxygen atoms and the light blue balls are hydrogen atoms.

Ice types Compositions Initial cation sites
HCl:53H2O interstitial

H-ices
DCl:53H2O deuterated cation interstitial
LiCl:53H2O interstitial

Li-ices
LiCl:53D2O deuterated interstitial
NaCl:53H2O interstitial

Na-ices
NaCl:52H2O substitutional

Table 4.1: List of studied systems. The anion is always chlorine replacing a water molecule
at an oxygen site.

effect is generalizable to other salty ices (section 4.2.2). Then, we will confirm that the
experimental results are indeed well reproduced by our QTB simulations and we will
question the resilience of NQE in those systems (section 4.2.3). Finally, we will attempt
to explain the behavior of protons in salty ices by comparing our results to those obtained
with a model system consisting of pure ice under an external electric field (section 4.2.4).

4.2.2 A local steric effect or a long-range effect ?

In order to determine which effects are specific to the cation and which are generalizable
to other ices containing ionic impurities, we study several salty ices with different cations:
LiCl-ice, NaCl-ice, HCl-ice and its deuterated version DCl-ice. We compare simulations
that include or not the quantum nature of nuclei (QTB-MD versus standard Langevin MD)
to distinguish between NQE and classical thermal effects. The technical details of these
simulations are described in Appendix 4.A. We study different types of salt in order to
distinguish local steric effects from more general, long-range effects. Indeed, the different
cations studied here (Na+, Li+, H+ and D+) have different sizes and behave differently:
Na+ is most likely to occupy a substitutional site (replacing a water molecule as shown in
the left panel of Figure 4.2.1), Li+, H+, and D+ will occupy interstitial sites. For example,
Li+ can be found in an octahedral site, surrounded by six water molecules, while H+ and
D+ will be found on a oxygen-oxygen segment that is not already occupied by a hydrogen
(see center and right panels of Figure 4.2.1). For clarity, we will denote by (S) an ice
structure with a cation occupying a substitutional site and (I) an ice structure with a
cation occupying an interstitial site. A summary of the studied systems is given in Table
4.1.
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Figure 4.2.2: Pair correlation function of the cation-oxygen distance for different salty ices
at approximately 50 GPa, averaged over QTB molecular dynamics trajectories.

A detailed study of the ice structure during the simulations shows that the cation
can behave quite differently depending on its type and size. Unsurprisingly, the anion Cl−

remains in its initial site (substitutional). On the other hand, the trajectories of the cation
differ significantly depending on whether it is H+, D+, Li+ or Na+. Figure 4.2.2 shows the
pair correlation function of the cation-oxygen distance averaged over the QTB simulations
at approximately 50 GPa (i.e. in the ice VII structure). The distances between the cation
and the oxygen atoms are completely different depending on the cation considered: the
distance between D and its first oxygen neighbors is approximately 1 and 1.3 Å, while the
same distances are approximately 1.8 Å for LiCl-ice (I), 1.9 Å for NaCl-ice (I) and 2.2 Å
for NaCl-ice (S). Finally, the dynamics of the cation are very different depending on the
pressure and the type of cation introduced into ice. Indeed, the trajectories of the cations
during our simulations are different depending on the pressure and the type of cation as
are the characteristic times of their displacements.

Moreover, while the behavior of the cations varies depending on the type and size
of cation introduced, the oxygen lattice is also locally modified by the presence of the
impurity. Figure 4.2.3 shows the average oxygen-oxygen distance (corresponding to the
O-H· · · O bonds) in different salty ices compared to pure ice. We can clearly see that, even
though the O-O distances near the cation are slightly larger than that of pure ice at the
same pressure, the majority of O-O distances (representing 94% of the hydrogen bonds in
our system) are unaffected by the presence of salt. Hence, the introduction of salt in ice
results in a local distortion of the ice lattice, in agreement with previous calculations [165].
In particular, the O-O distances are slightly larger near the cation than in the rest of the
system.

4.2.3 The ice VII - ice X transition in salty ices

We have seen in the previous section that the introduction of salt into high-pressure ice
affected the local atomic structure near the cation and that the detailed properties of the
lattice distortion depended on the type of cation introduced. Since the atomic environment
is likely to affect the behavior of hydrogen bonds (see section 4.1), we investigate the VII-
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X transition in salty ices by looking at the O-H pair correlation function (PCF) and
then the O-H stretching vibration. The analysis of the oxygen-hydrogen PCF (see Figure
4.2.4) shows that, upon the introduction of salt (LiCl in the presented case), the two O-H
distances are impacted: the first peak of the PCF, corresponding to the covalent O-H
bond, is shifted to shorter distances while the second peak, corresponding to the hydrogen
bond H· · · O, is shifted to larger distances with respect to pure ice. Moreover, the proton
disorder, as indicated by the height of the PCF between the two peaks, is much lower
in salty ice than in pure ice. Hence, proton hopping is clearly reduced in ice VII in the
presence of salt.

However, we have seen in section 3.3 that to determine a precise transition pressure
from ice VII to ice X, one has to analyze the vibrational spectrum of ice. Indeed, the
transition to phase X is marked by a strong softening of the O-H stretching mode: the
frequency of this mode displays a minimum at the transition pressure (see Figure 3.3.7).
The pressure evolution of the O-H stretching mode is displayed in Figure 4.2.5 for pure
and salty ices. While in pure ice, the transition pressure predicted by QTB is around 60
GPa, in all salty ices studied here, the VII to X transition occurs at a higher pressure
than in pure ice, at approximately 90 GPa. Hence, the results from QTB simulations are
in very good agreement with experimental measurements. Indeed, recent experiments on
both LiCl-ice [152] and NaCl-ice [5] showed that the T2g oxygen vibrational mode, which is
characteristic of the cuprite-like structure of ice X, appears around 90 GPa in the Raman
spectra of salty ices. Moreover, the transition pressure Pt is independent of the actual
position of the cation Na+, whether interstitial or substitutional. Finally, the similarities
between the different salty ices studied here indicate that the shift of Pt does not depend
significantly on the type or size of the ionic impurity (at least in the concentration range
studied here and within our statistical uncertainty).

Hence, the presence of small quantities of ionic impurities in ice shifts the transition
pressure by about 20 − 30 GPa with respect to pure ice. This shift is roughly the same
pressure shift as observed when quantum effects are neglected in pure ice (see section
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3.3.1) [4, 116, 119, 122]. Indeed, what is even more surprising is that standard Langevin
simulations, where protons are treated as classical particles, yield the same transition
pressure in salty ices as QTB simulations, while they yielded different Pt in pure ice (see
Figure 4.2.6). Therefore, NQE are lifted in the O-H spectrum of high-pressure ice in
the presence of salt and, as we have seen just previously, the hopping rate of protons is
decreased in salty ices. This raises the fundamental question of the resilience of NQE in
the presence of salt.

4.2.4 Influence of the ion-induced electric field on the quantum properties of

protons

More insight on the role of NQE or their absence in salty ices can be obtained by com-
puting the proton effective potential energy, at T = 0 K, where the protons’ positions
are constrained along the O-O segment (see Appendix 3.A for more details). Figure 4.2.7
shows the obtained effective potential energy in the different salty ices as well as that in
pure ice. One of the major differences between the potential in salty ices and the one in
pure ice is that the double well potential becomes asymmetric in the presence of salt: the
well at r = dOH/dOO ≃ 0.62 has a higher energy than the well at r ≃ 0.36. Moreover,
the potentials for LiCl-ices, NaCl-ices and HCl-ices are very similar, indicating that the
presence of an ionic impurity implies a general effect on the protons in ice, independently
of the type or size of the cation. Now, we have seen in the previous section (section
4.1.2) that a small asymmetry in the proton potential is likely to modify dramatically its
wavefunction and thus the quantum effects associated with it. In particular, we have seen
that even a small asymmetry in the potential results in a rapid decrease of the proton
tunneling rate and an increase of the transition pressure to ice X, which can also be seen
as a disappearance of NQE in salty ices.

The question that remains is the origin of such an asymmetry in the proton’s poten-
tial. Indeed, steric or geometrical effects may explain the asymmetry of the mean proton
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potential for the hydrogen atoms that are nearest-neighbors of the cation but not for the
majority of them. Therefore, even though natural, the explanation for the asymmetry
of the hydrogen potential that relies on local distortions caused by steric effects near the
cation is not satisfactory. In particular, since steric effects are completely different in
LiCl-ice (I) and HCl-ice for example, they cannot be held responsible for the modifica-
tion of the proton potential which is almost the same in these two ices. Furthermore,
the oxygen-oxygen distance, which is a critical parameter for the behavior of hydrogen
bonds (see section 3.2 and reference [108]), is little affected by the presence of the salt,
at least for the concentrations studied here. The asymmetric potential studied in section
4.1.2 consists in a Landau-like double well potential with an external electric field (see
equation (4.1.1)). The Landau-like potential without any external electric field (E = 0)
was used to model the VII-X transition in pure high-pressure ice (see section 3.2). Hence,
the potential in equation (4.1.1) would correspond to pure high-pressure ice under an ex-
ternal homogeneous electric field E. Thus, we focus on the effect of such a field on the
O-H· · · O bonds. We compute the effective potential energy of the protons in the presence
of an external electric field in the same way as for pure high-pressure ice and for salty ices
(see Appendix 3.A). The resulting potentials are shown on Figure 4.2.8: the presence of
a uniform external field (here, E is parallel to the c axis) has for consequence that the
proton potential becomes asymmetric. We can therefore make a parallel between the effect
of a homogeneous electric field on the O-H· · · O bonds in pure high-pressure ice and the
O-H· · · O bonds in salty ices that are far from the ionic impurity i.e. that are not affected
by the geometrical distortion near the cation.

Indeed, as it is incorporated into the ice structure, salt is dissociated into its cation and
its anion, that then occupy different sites in the ice structure, leading to a dipole electric
field in ice. We derive the electric potential Velec(r) from total energy calculations on a
relaxed configuration of pure and salty ice using density functional theory (see Appendix
2.B). We can then average this potential macroscopically i.e.

Vmacro(r) =
1
Ω

∫

Ω
Velec(r′) dr′ (4.2.1)
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where Ω is the primitive cell volume i.e. each value of the potential is averaged over a
cubic box of volume Ω = a3 (a being the primitive cell lattice parameter). Figure 4.2.9
shows the macroscopically averaged electrostatic potential Vmacro(r) in LiCl-ice, plotted
along several (1,1,1) directions i.e. r = r0 + r√

3
(1, 1, 1) for different r0. The average electric

field is then estimated from the gradient of the potential. We can see that, as expected,
in pure ice, the potential is constant meaning that there is no electric field in pure ice. In
salty ice, however, the gradient of the potential is non-zero: the large dip in the potential
corresponds to the position of the impurity but the slope of the potential indicates that
there is indeed a non-zero electric field in salty ice. The intensity of the electric field
depends on the position in the system since it derives from the electric dipole created
by the dissociation of the salt into the cation and the anion. However, the intensity of
the electric field is in the 0.2 − 1 V/Å range. Therefore, even though local steric effects
most likely affect the potential energy of protons near the cation, the asymmetry of the
potential of the majority of protons that are far from the impurity can be explained by the
long-range electric field induced by the salt dissociation [172].2 We note in passing that
recent Raman spectroscopy experiments also suggested that the electric field induced by
the ions dissociation is responsible for the lengthening of the H· · · O hydrogen bonds and
the concomitant shortening of the O-H covalent bonds in salty ices [173].

In salty ices, apart from local geometrical distortions of the oxygen lattice, the main
effect on the protons is the asymmetry of their effective potential energy, which can be
explained by the long-range electric field induced by the salt dissociation. The major
consequence of such an asymmetry in the protons’ potential is that nuclear quantum
effects, in particular proton hopping, are drastically reduced. This then impacts the actual
transition pressure from ice VII to ice X which is shifted by approximately 20 − 30 GPa,
a non-negligible effect even for small salt concentrations !

4.3 Aluminium oxide hydroxide under high-pressure

4.3.1 Introduction

In the previous section, we showed that the tunneling properties of protons are dramatically
affected by the presence of ionic impurities in ice because it affects the proton potential.
However, the symmetrization transition still occurs albeit at higher pressures. Indeed, in
high-pressure ice, whether pure or salty, the O-H· · · O bonds are symmetric with respect
to the O-O midpoint. Hence, we now investigate what happens if the O-O midpoint no
longer is an inversion center for the hydrogen bonds. This could occur for hydrogen bonds
in more complex minerals, with various environments. Indeed, in high-pressure ice, the
elastic properties and in a more general way, the global structure, are determined by the
hydrogen bonds. This is not always the case since in other hydrous minerals, such as
aluminium oxide hydroxide (AlOOH), the elastic properties could be determined by other
interatomic bonds than hydrogen bonds (see Figure 4.3.1). Finally, even though hydrous
minerals under pressure have been studied extensively since they are believed to play a
crucial role in the transport of water in the Earth mantle, nuclear quantum effects have not
been considered in AlOOH so far in contrast to other hydrous minerals such as Mg(OH)2

2The main differences between salty ices and simulations performed on pure ice with an external electric
field are in the repulsive part of the potential, which is however not essential to the tunneling properties
of protons (mainly dependent on the height and width of the barrier). These differences are most likely
due to the higher complexity of the actual electric field present in salty ice than our model with a uniform
electric field. In particular, the dipole electric field intensity varies depending on the proton’s position.
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Figure 4.3.1: Schematic representation of the O-H· · · O bonds in δ-AlOOH at low pressure
(P = 0 GPa).

and Ca(OH)2 [174–176].
In this section, we will study the hydrogen bonds in AlOOH, and more precisely, in

its delta phase. δ-AlOOH has been synthesized for the first time in 2000 at 21 GPa and
1000°C [177] and is a polymorph of the more known diaspore (α-AlOOH) and boehmite
(γ-AlOOH). It has been shown to be stable in a wide range of pressure and temperature
[178–180] and its structure is relatively well known [107, 177–184]. However previous
studies suggested that under increasing pressure, δ-AlOOH undergoes a symmetrization
transition similar to the ice VII - ice X transition. In particular, recent synchrotron
X-ray diffraction measurements indicated that there is a phase transition between 6.1
and 8.2 GPa, which is characterized by a modification of the compression properties of
δ-AlOOH [107]. However, this technique was unable to characterize precisely the post-
transition phase and also to determine whether proton hopping does actually occur in
δ-AlOOH. On the other hand, theoretical calculations predicted that δ-AlOOH undergoes
a second-order phase transition from an asymmetric (hydrogen off-centered - HOC) to
a symmetric (hydrogen centered - HC) structure at about 30 GPa [182, 185]. Moreover,
ab initio phonon dispersion curves computed at 0 K showed that the vibrational modes
involving protons are subject to strong modifications near the transition [186]. However,
these studies included neither thermal nor quantum effects, which would be likely to
reduce the transition pressure as is the case in high-pressure ice (see section 3.3). Hence,
the actual position of the hydrogen atoms in δ-AlOOH is still a matter of debate since
there are inconsistencies between experimental and theoretical results. The importance
of NQE in this system is also unknown: however, neutron scattering experiments on δ-
AlOOH and its deuterated version δ-AlOOD yield isotope effects that indicate that NQE
do play a role [187].

Finally, it has been shown that in the low-pressure phase α of AlOOH, namely dias-
pore, hydrogen bonds do not symmetrize up to at least 110 GPa [188,189]. Therefore, in
the following, we will study the evolution of hydrogen bonds under increasing pressure in
δ-AlOOH: first, we will analyze the protons’ effective potential from a one-dimensional per-
spective (section 4.3.2) and then we will focus on the structural and vibrational properties
of δ-AlOOH by including both thermal and NQE in our simulations (section 4.3.3).

4.3.2 The one-dimensional proton potential in AlOOH

In order to get more insight on the behavior of protons in δ-AlOOH, we compute the
proton’s effective potential energy V (x) where x is the proton transfer coordinate (see
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Figure 4.3.2: Effective proton potential energy V (x) in δ-AlOOH for different pressures.
x = dH···O − dO-H is the proton transfer coordinate i.e. the relative position of the proton
with respect to its two neighboring oxygen atoms.

Appendix 3.A). Figure 4.3.2 shows the resulting potential V (x) in δ-AlOOH at different
pressures. First, we note that at low pressure, V (x) is a double-well similar to the protons’
potential in high-pressure ice (Figure 3.2.1). As pressure is increased, the potential barrier
collapses and the distance between the two wells decreases up to 30 GPa where V (x)
becomes a single-well potential. Hence, from a purely classical point of view and without
taking into account any thermal fluctuations, the symmetrization of hydrogen bonds should
occur at 30 GPa. This is indeed the transition pressure from the HOC to the HC structure
found previously by Tsuchiya and coworkers both from structural relaxations of their
simulation cells and from phonon calculations at T = 0 K [182,186].

However, we can see that the potential V (x) is an asymmetric double-well; indeed,
V (x) is not symmetric with respect to the O-O midpoint. At 0 GPa for example, the two
wells are centered at approximately −0.5 Å (point A on the figure) and 0.6 Å (point C
on the figure). These two equilibrium positions have the same energy because in both
cases, the O-H· · · O bonds have the same structure if we consider the first neighbors of
each hydrogen atom. However, the shapes of the two wells differ. Moreover, the barrier is
approximately 0.15 eV high, which is about the same height as the barrier in high-pressure
ice at approximately 50 GPa, and is located close to the midpoint of the O-O distance
(x = −0.1 Å - point B on the figure). The asymmetry of the potential can be explained
by the surrounding Al and O atoms around the constrained O-H· · · O bonds; in particular,
when the proton lies in well A, the nearest oxygen atoms that are not part of the O-H· · · O
bonds are close enough to alter the proton’s potential energy landscape for small proton
displacements from the equilibrium. This situation is therefore different from the pure ice
one because of the asymmetry of the potential; it is also different from the potential in
salty ices, where a long-range dipole electric field rendered the two equilibrium positions
non-equivalent (see Figure 4.2.8).

In order to determine the behavior of protons in the potentials shown in Figure 4.3.2,
we solve the corresponding time-independent Schrödinger equation for the potentials and
compute the corresponding eigenfunctions and eigenenergies {Ψn, En}. Figure 4.3.3 shows
the evolution of the ground-state density |Ψ1(x)|2 and the zero-point energy E1 as pressure
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Figure 4.3.3: Evolution under compression of the effective proton potential in δ-AlOOH
with the corresponding ground-state density |Ψ1(x)|2 and zero-point energy E1 (at T = 0
K).

is increased. At low pressure, the proton’s ground-state is localized in the right well (it has
only one maximum), indicating asymmetric hydrogen bonds and localized protons which
is consistent with the HOC structure found by Tsuchiya and coworkers [182]. Hence, the
asymmetry of the potential strongly inhibits proton tunneling at 0 K, even though both
wells have the same energy. This is clearly different from the case of high-pressure ice,
where for the same barrier height, proton hopping occurs in a symmetric potential and
the ground-state density displays two maxima. As pressure increases, the ground-state
remains localized in the same well until the zero-point energy equals the barrier height,
between 10 and 15 GPa. Hence, in contrast to the VII-X transition in high-pressure ice, the
notion of quantum phase transition, as defined by a topological change of the wavefunction,
does not hold in the case of δ-AlOOH since the shape of the ground-state density does
not display any profound modification at the transition (as described in section 4.1.2 and
Figure 4.1.4).

At finite temperature, the proton density ρ(x, T ) is given in equation (4.1.5) and the
corresponding expectation value of the energy is:

〈E〉 =
1
Z

∑

n

Ene−βEn (4.3.1)

where Z is the partition function and β is the inverse temperature. Figure 4.3.4 shows the
evolutions under compression of ρ(x, T ) and 〈E〉 at room temperature. At low pressure, the
contribution of excited states to the density ρ(x, T ) makes it asymmetric and delocalized
over the two wells: ρ(x, T ) has two maxima, one in each well. Proton hopping is thus
possible due to the inclusion of thermal effects. At higher pressures, thermal fluctuations
further delocalize the proton over the two wells (the two peaks of the density get closer)
and, when the energy 〈E〉 equals the barrier height, the density displays only one maximum
near the center of the potential (the two peaks have merged). Hence, when thermal
fluctuations are included, AlOOH undergoes a phase transition from asymmetric hydrogen
bonds (where proton hopping occurs) to a phase δ′ characterized by only one maximum in
the proton density. This phase transition is marked by a topological change of the proton
density (similar to that observed in the lower panel of Figure 4.1.4) and the transition
pressure derived from this one-dimensional analysis is approximately 10 GPa, which is in
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Figure 4.3.4: Evolution under compression of the effective proton potential in δ-AlOOH
with the corresponding proton density ρ(x, T ) (equation (4.1.5)) and energy 〈E〉 at T = 300
K (equation (4.3.1)).

agreement with experimental predictions [107].3

However, because the proton effective potential is asymmetric, the probability density
is not symmetric with respect to the O-O midpoint. At low pressure, even though proton
hopping tends to delocalize the protons over their two equilibrium sites, they are more
localized in one well than the other (as shown by the two peaks of the density in the left
panel of Figure 4.3.4). Hence, the probability for the proton to be in well A or well C is
not 0.5 as in pure high-pressure ice. Furthermore, above the transition pressure, although
the proton density displays only one maximum, this maximum is not centered at the O-
O midpoint. Hence, we will refer to the hydrogen bonds in the post-transition phase as
pseudo-symmetric bonds instead of symmetric (or HC), as suggested previously in section
4.1.2. We will now investigate this pseudo-symmetrization transition in δ-AlOOH via QTB
MD simulations.

4.3.3 QTB simulations on δ-AlOOH

We run QTB MD simulations, as well as standard ab initio Langevin dynamics simulations
on δ-AlOOH at several pressures between 0 and 30 GPa (see computational details in Ap-
pendix 4.A). We first analyze the structural properties, in particular the O-H interatomic
distances; then, we focus on the vibrational spectra.

Structural properties

In order to analyze the evolution of hydrogen bonds upon increasing pressure, we com-
pute the O-H pair correlation functions (PCF) averaged over the QTB or the standard
Langevin MD trajectories (see Figure 4.3.5). At low pressure, the PCF displays two peaks
indicating two distinct bond lengths, consistent with the HOC structure: around 1.05 Å

3There is a still a small discrepancy between our transition pressure and the experimental one found
by Kuribayashi and coworkers (≃ 8 GPa). Several reasons could be invoked since thermal and zero-point
energy effects are very sensitive to the barrier height which, in turn, depends on the actual exchange-
correlation functional [153], as well as on the different approximations made when computing the proton
potential V (x).
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surements of O-D distances by Sano-Furukawa and coworkers [190].

for the covalent O-H bonds and around 1.5 Å for hydrogen bonds.4 Upon compression,
there is a dilatation of the O-H covalent bond and a concomitant contraction of the hy-
drogen bond length. As pressure further increases, the two peaks merge until they become
hardly distinguishable: at these pressures, the covalent and the hydrogen bond cannot be
differentiated anymore. However, the PCF from QTB are different from those obtained via
standard Langevin MD: the peaks are broader when NQE are taken into account and they
merge at a lower pressure, even though the positions of the peaks are similar. Moreover,
the minimum of the PCF between the two peaks is much higher when NQE are taken into
account, suggesting that either disorder or proton tunneling occurs at low pressure. Thus,
our QTB simulations show that the PCF undergoes a major modification between 10 and
15 GPa: below this pressure, the PCF displays two maxima while above this pressure, the
PCF has only one maximum. Hence, δ-AlOOH undergoes a phase transition at 10 − 15
GPa as already suggested by the one-dimensional analysis in section 4.3.2. Furthermore,
in the post-transition phase, the PCF is not centered at the midpoint of the O-O distance
(as it should be in the HC structure of Tsuchiya and coworkers [182]), but its maximum is
slightly off-centered. Hence, the term "symmetric hydrogen bonds" is not appropriate here
and the analysis of the PCF suggests a pseudo-symmetrization of hydrogen bonds between
10 and 15 GPa. Below the transition, hydrogen bonds are subject to thermal disorder and
proton hopping occurs. Above the transition, the hydrogen atoms are slightly off-centered
with respect to the midpoint of the O-O distance.

The usual relevant proton transfer coordinate in symmetrization transitions is x =
dH···O − dO-H where dH···O and dO-H are the O-H distances between a given proton H and
its two nearest-neighbor oxygen atoms. Figure 4.3.6 shows the probability distribution

4These distances are in agreement with experimental measurements on δ-AlOOD obtained through
neutron scattering around 5 GPa (indicated by black arrows in the left panel of Figure 4.3.5) [190]. Indeed,
the positions of the two peaks are almost the same whether we include NQE or not. Hence, the distances
for hydrogen (O-H) and deuterium (O-D) are expected to be similar, even though quantum effects are
weaker for deuterium than for hydrogen.
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point x = dH···O − dO-H at different pressures in δ-AlOOH from QTB molecular dynamics
simulations.

P (x) in δ-AlOOH obtained from QTB simulations. In contrast with high-pressure ice (see
Figure 3.3.5), the probability distribution of x does not display a maximum at x = 0 at
the transition i.e. between 10 and 15 GPa. On the contrary, even in the post-transition
phase, the maximum of the probability distribution of x is centered at a finite value of x.
This is consistent with slightly off-centered protons above the transition and the fact that
this transition should be considered as a pseudo-symmetrization. However, similarly to
the VII-X transition in high-pressure ice, the structural properties do not yield a precise
transition pressure. Hence, we turn to the vibrational spectra of δ-AlOOH in the following
paragraph.

Vibrational spectra of δ-AlOOH

The vibrational spectra can be computed directly from the atomic trajectories (see sec-
tion 2.3.2) but they are rather complex in δ-AlOOH. Hence, we conduct a preliminary
vibrational mode analysis via the dynamical matrix (see section 2.B.5) at 0 K and without
any quantum or anharmonic effects, which is described in Appendix 4.B. This approach
allows us to choose a basis of eigenvectors that is a key to the interpretation of the hy-
drogen vibrational spectra (see section 2.3.2). Figure 4.3.7 shows the evolution of the
frequencies of the O-H stretching and bending modes with pressure. At low pressure, we
distinguish two stretching modes at approximately 2800 and 2100 cm−1 and two bending
modes around 1400 cm−1 (in the (a,b) plane) and 1200 cm−1 (in the c direction). These
results are in very good agreement with Raman measurements at ambient pressure [178].5

Upon compression, the O-H stretching modes soften gradually, their frequencies dropping
to approximately 1800 and 2500 cm−1. Moreover, the width of the high-frequency mode
increases, which implies that these two peaks merge at the transition and are no longer
distinguishable. In contrast, the bending mode frequencies increase slightly with pressure.

5Due to the large widths of the peaks in the calculated spectrum, we could distinguish only two high-
frequency O-H stretching modes, while Ohtani and coworkers observed four broad bands. Tsuchiya and
coworkers [186] suggested that the presence of these multiple bands, instead of two sharp peaks is due to
hydrogen disorder at low pressure, which is consistent with our results on the O-H pair correlation.
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obtained from QTB simulations at T = 300 K. The vertical bars indicate the widths of the
peaks in the spectrum and the black dots correspond to Raman spectroscopy data from
Ohtani and coworkers [178].

Above the critical pressure (Pt ∼ 10 GPa), the O-H stretching mode frequency (≃ 1800
cm−1) does not vary appreciably with pressure, at least up to 25 GPa, while the bending
mode frequencies increase continuously. The second O-H bending mode in the (a,b) plane
becomes distinguishable only above 20 GPa. The previous trends agree with those found
by Tsuchiya and coworkers [186]. The softening of the O-H stretching mode up to about
10 GPa, where bending and stretching modes mix up, is consistent with a phase transi-
tion as also suggested by the modification of the O-H PCF. Hence, δ-AlOOH undergoes
a transition from phase δ with asymmetric hydrogen bonds (and where proton hopping
occurs), to a phase δ′, with pseudo-symmetric hydrogen bonds, which occurs around 10
GPa according to the analysis of the simulated vibrational spectra.

4.3.4 Comparison between δ-AlOOH and α-AlOOH

We have mentioned in the introduction that no symmetrization transition was observed
in diaspore i.e. in the phase α of aluminium oxide hydroxide at least up to 110 GPa
[188,189]. For the sake of comparison, we also ran QTB MD simulations on α-AlOOH at
several pressures up to 30 GPa approximately. Figure 4.3.9 shows the contour plots of the
distribution functions of the proton’s position along the O-O direction i.e. P (rparallel, rortho)
where

rparallel =
−−→
OH · −→u , rortho =

−−→
OH · −→v , −→u =

−−→
OO

|−−→OO|
, −→u · −→v = 0 (4.3.2)

and (−→u ,−→v ) are two orthogonal unit vectors in the plane that contains the two nearest
neighbors (O) of each proton and its nearest Al (see Figure 4.3.8). We can clearly see
that at low pressure, in δ-AlOOH, the proton’s distribution displays two peaks indicating
proton hopping along the O-H· · · O bonds. On the contrary, in α-AlOOH at low pressure,
the proton’s distribution displays a single maximum. Moreover, this peak is off-centered
with respect to the O-O direction meaning that the angle between the O-H covalent bond
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Figure 4.3.8: Schematic representation of a proton, its two nearest oxygen atoms and its
nearest aluminium.

and the O-O direction is non-zero (rortho = 0 would correspond to a linear hydrogen bond).
Furthermore, no proton hopping occurs in diaspore at low pressure, even though NQE are
included via the QTB. As pressure is increased up to 25 GPa approximately, we see that
in δ-AlOOH, the proton’s distribution has a single maximum as already discussed in the
previous sections, meaning that we are now in the δ′ phase with pseudo-symmetric bonds
(again, we can see that the distribution is slightly biased which confirms the analysis of
the PCF above). On the other hand, the distribution in diaspore remains unchanged by
increasing pressure: the protons are localized on one side of the O-H· · · O bonds and no
proton hopping or pseudo-symmetrization occurs. This analysis shows that in the case
of δ-AlOOH, the reduction of the proton’s effective potential to one dimension, along the
O-O direction, is consistent with the fact that the distribution is almost symmetric with
respect to rortho = 0 i.e. in the direction orthogonal to O-O. In α-AlOOH, the situation
is more complex. Therefore, we compute the two-dimensional effective proton potential
V (rparallel, rortho) (see left panel of Figure 4.3.10). We can see that the potential is no
longer a double well as in high-pressure ice or in δ-AlOOH but displays a single minimum
slightly off-centered with respect to the O-O direction and corresponding to the proton’s
equilibrium position. We can also see the influence of the Al atom nearby that affects the
potential and renders it asymmetric. Hence, even though the structures of the two phases
are similar (see right panel in Figure 4.3.10 and Figure 4.3.1), the effective potential felt by
the protons is very deeply affected by their atomic environment with different consequences
regarding proton hopping and hydrogen bond pseudo-symmetrization.

4.4 Conclusion

We have seen in this chapter that the environment of the protons can have a major impact
on their behavior and in particular on their quantum properties. Indeed, in high-pressure
ice, the structure is highly symmetric and the oxygen-oxygen midpoint represents an in-
version center for the hydrogen bonds. Hence, the proton’s effective potential landscape is
a symmetric double well: proton hopping occurs when the barrier is low enough and the
two equilibrium positions are close enough (as in phase VII of high-pressure ice). In this
scenario, the system undergoes a structural transition from asymmetric hydrogen bonds
(phase VII) to symmetric bonds (phase X) when the energy of the system equals the bar-
rier height. This transition is quantum-driven since the zero-point energy contribution is
much larger than the thermal fluctuations at room temperature. Furthermore, the VII-X
transition is accompanied by a topological change of the proton’s density, going from a
bimodal distribution to a unimodal one that is centered at the O-O midpoint. This picture
is strongly challenged when the material has a more complex structure than ice. First,
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Figure 4.3.9: Contour plots of the proton distribution functions P (rparallel, rortho) where
rparallel is the proton’s position along the O-O direction and rortho is its position in the the
direction orthogonal to O-O (see equations (4.3.2)): (top panels) at 5 GPa and (lower pan-
els) at 25 GPa, obtained from QTB MD simulations at room temperature in δ-AlOOH (left
column) and α-AlOOH (right column). The grey vertical lines indicate the perpendicular
bisectors of the O-O segment.
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Figure 4.3.10: Left panel: Contour plots of the effective proton potential V (rparallel, rortho)
in α-AlOOH at 10 GPa. Right panel: Schematic representation of a hydrogen bond in
α-AlOOH.

we have seen that a small concentration of ionic impurities in high-pressure ice yields
a long-range electric field that affects the protons’ potential and renders it asymmetric
(see section 4.2). Consequently, proton hopping is drastically reduced, the protons are
more localized than in pure ice and nuclear quantum effects are lifted ! This also affects
the VII-X transition in salty ices which is shifted to higher pressures, even for small salt
concentrations. Finally, we studied a more complex mineral, aluminium oxide hydrox-
ide. Under high pressure, two phases are metastable, phase α, also called diaspore, and
phase δ. The structures of these two phases are similar; however, the protons behave
very differently in each phase. In phase δ, the proton’s potential is an asymmetric double
well potential: thus, at finite temperature, proton hopping occurs. On the contrary, in
phase α, the proton’s potential consists in a highly asymmetric single-well localized near
the nearest neighbor oxygen atom. Hence, protons are trapped in their equilibrium po-
sition and nuclear quantum effects seem negligible. Moreover, in the case of δ-AlOOH,
the hydrogen bond is not symmetric with respect to the O-O midpoint. Under increas-
ing pressure, δ-AlOOH undergoes a pseudo-symmetrization transition to a phase δ’ with
pseudo-symmetric hydrogen bonds: the proton’s density transforms from a bimodal to a
unimodal distribution, however, it remains asymmetric and is not centered at the O-O
midpoint. In α-AlOOH, in contrast with the δ-δ’ transition, no pseudo-symmetrization is
seen in our pressure range since the distribution is already unimodal at low pressure.

To summarize, we showed in this chapter a few examples where nuclear quantum
effects have different consequences on the properties of hydrogen-containing systems. The
atomic environment and the complexity of the material are important ingredients that can
affect the proton’s effective potential, rendering the standard double-well picture unsuited
in these cases. However, even though the proton’s energy landscape are more complex,
quantum effects can still play an important role in the localization or delocalization of
protons.
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Appendix

4.A Computational details

Salty ices We run QTB and standard Langevin molecular dynamics (see chapter 2) on
salty ices. In both cases, the atomic forces are computed within the density functional the-
ory (see Appendix 2.B), via the generalized gradient approximation [99], as implemented
in the Quantum Espresso package [89]. Simulations run over a time length of about 25 ps
with a 0.484 fs integration time step. Our simulation cell contains 53 or 54 water molecules
and one LiCl, NaCl, HCl or DCl pair, corresponding to a concentration of about 2% mol
(see table 4.1). The initial configurations correspond to those described in reference [165]
for LiCl-ice. The most likely position for the cation Cl− is an oxygen substitutional lat-
tice site, where it replaces a water molecule (see left panel in Figure 4.2.1). Cl− is thus
surrounded by 8 water molecules. The site occupied by the anion depends on its size:
Na+ can occupy either a substitutional site as Cl− (denoted substitutional NaCl-ice) or
an interstitial site, as does initially Li+, H+ and D+. This interstitial site is the center
of the unit cell face (see center panel in Figure 4.2.1) and is octahedrally coordinated by
oxygen atoms. The initial distance between the anion and the cation is between 4.6 and
4.8 Å.

Aluminium oxide hydroxide, δ-AlOOH As for salty ices, we run both QTB and
standard Langevin molecular dynamics simulations on δ-AlOOH at different pressures.
The atomic forces are computed within the DFT, via the GGA, through the Becke-Lee-
Yang-Parr (BLYP) functional [191, 192]. The interaction between the ionic cores and
the valence electrons is described through ultra-soft pseudopotentials with non-linear core
corrections. The Kohn-Sham orbitals are expanded in plane-waves with 50 Ry energy
cutoff. The simulation cell is a 2 × 2 × 3 supercell containing 24 AlOOH units. The
corresponding Brillouin zone is sampled by a 2 × 2 × 2 Monkhorst-Pack grid with a 1 ×
1 × 1 offset (i.e. half a grid step in each direction). The simulations are run at ambient
temperature (T = 300 K) and the time length of each simulation is approximately 29 ps
with a 0.484 fs integration time step. The instantaneous pressures are computed via the
stress theorem [155] (the kinetic contribution to the pressure is negligible with respect to
the fluctuations of the pressure).

In order to check that the computational ingredients of our simulations are correct, we
compared the equations of state obtained via QTB MD and standard Langevin dynamics
simulations to previous experimental and theoretical results. Previous synchrotron X-ray
experiments showed a change of compressibility of δ-AlOOH near 10 GPa [187]. Similarly,
theoretical calculations by Tsuchiya and coworkers performed in the asymmetric P21nm
structure and in the symmetric, hydrogen-centered Pnnm structure yielded two distinct
bulk moduli [182, 185]. Hence, we compare the equations of state that we obtained via
QTB and standard Langevin MD to these previous calculations (see Figure 4.A.1). Up
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Figure 4.A.1: Equation of state of δ-AlOOH from standard Langevin molecular dynamics
(top panel: squares) and from Quantum Thermal Bath molecular dynamics (lower panel:
circles). The (P, V ) values computed by Tsuchiya and coworkers at T = 0 K in the P21nm
(top panel: inverted triangles) and the Pnnm (top panel: triangles) are also shown [182].
In the lower panel, the QTB data has been fitted with two distinct Vinet equations [193]: in
the low-pressure (LP) structure, VLP = 59.1 Å3, BLP = 154.2 GPa and in the high-pressure
(HP) structure, VHP = 58.5 Å3, BHP = 183.4 GPa; in both structures, B′

HP = B′
LP = 4.
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to 25 GPa, our results from standard Langevin MD are in very good agreement with
those from Tsuchiya and coworkers [182] (see top panel in Figure 4.A.1). This confirms
that the above computational ingredients are consistent within the standard Langevin MD
frame. Then, we fitted the (P, V ) points computed from our QTB simulations with two
distinct Vinet equations of state [193], one adapted to the low-pressure structure and the
other to the high-pressure structure (see lower panel in Figure 4.A.1), as done in previous
studies [182, 187]. Within this procedure, the two equations of state cross between 10
and 15 GPa; accordingly, the bulk modulus changes from 154 ± 2 GPa at low pressure
to 183 ± 2 GPa at high pressure. These values are in good agreement with previous
calculations [182,185]. The small discrepancies with the experiments [187] are mainly due
to the GGA functional, which slightly overestimates the cell parameters with respect to the
experimental values. Our dynamical simulations are therefore consistent with a change of
compressibility in δ-AlOOH with an increase of the bulk modulus by about 20% between
10 and 15 GPa at T = 300 K, which is compatible with a phase transition towards stiffer
O-H· · · O bonds as indicated by experiments.

4.B Dynamical matrix analysis in δ-AlOOH

In order to determine which phonon modes are relevant to the hydrogen bond pseudo-
symmetrization in δ-AlOOH, we calculate the dynamical matrix via the density functional
perturbation theory [100], within the harmonic approximation at 0 K. From the dynami-
cal matrix, the phonon frequencies and eigenvectors are computed at pressures well below
and above the transition pressure and far enough from it to avoid strong non-linear effects
connected with mode mixing at the transition. In the asymmetric hydrogen bond config-
uration (P21nm or HOC 1) [186], the vibration modes consist in two high-frequency O-H
stretching modes (around 2670 - 2710 cm−1 at 0 GPa), and four O-H· · · O bending modes
(between 1100 and 1350 cm−1). The two low-frequency bending modes are vibrations in
the c direction, while the two high-frequency bending modes are vibrations in the (a,b)
plane (which contains the O-H· · · O bonds). When pressure increases, the O-H stretching
mode frequencies decrease abruptly, while the bending mode frequencies increase slightly.
Finally, in the high-pressure symmetric phase (Pnnm or HC) [186], there are two bending
modes in the (a,b) plane (around 1600 - 1700 cm−1 at 50 GPa), which harden gradu-
ally, while two stretching modes and the two remaining bending modes in the c direction
vibrate in the 1300 - 1400 cm−1 range.

As already suggested by Tsuchiya and coworkers [182,186], this is consistent with the
fact that the transition from the HOC to the HC structure in δ-AlOOH is a second-
order phase transition, characterized by a strong softening of the O-H stretching modes.
Moreover, at the transition pressure Pc, there is an important mixing of the bending and
stretching modes. Hence, we cannot simply rely on the description of the vibrational
properties of δ-AlOOH directly via the dynamical matrix approach close to the HOC - HC
transition. This is why we turn to the study of the atomic trajectories in order to take
into account the inherent anharmonicity of the system, as well as thermal and quantum
effects.

Nevertheless, the dynamical matrix approach allows us to choose a basis of eigenvectors
- the phonon directions uj, j ∈ [1, 5] - that is a key to the interpretation of the hydrogen
vibrational spectra. A schematic representation of the eigenvectors on top of the local
atomic structure of δ-AlOOH is shown in Figure 4.B.1. In the P21nm configuration, u1

is parallel to the O-O direction, while u2 is orthogonal to u1 in the (a,b) plane. In the
Pnnm configuration, the O-H stretching mode eigenvector u3 forms a small angle with the
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Figure 4.B.1: Schematic representation of the atomic structure of δ-AlOOH, from asym-
metric (left) to symmetric (right) hydrogen bonds. Color code: H in light blue, O in red,
Al in violet. The eigenvectors uj (j = 1, . . . 4) for the stretching (j = 1, 3) and bending
(j = 2, 4) modes in the (a,b) plane are indicated for the hydrogen-off-centered (HOC)
and hydrogen-centered (HC) structures, respectively. u5, not represented, is normal to
the plane. The crystallographic conventions used here are the same as in reference [186].

O-O direction, and u4 is orthogonal to u3 in the (a,b) plane. In both configurations, u5

is parallel to the c direction. As it can be seen in Figure 4.B.1, the eigenvectors from the
two phases are quite similar: in particular, and apart from an irrelevant sign, u1 ≈ u3 and
u2 ≈ u4. Therefore, the use of these eigenvectors to obtain mode-specific density of states
(see equation (2.3.11)) appears to be reliable in both phases. At the transition, the O-H
modes can mix and become a linear combination of harmonic ones; apart from the modes
here reported, there are no others involving proton displacements in the harmonic case.
Therefore, the uj vectors form a minimal basis set to analyze the behavior with pressure
of modes involving protons.
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Retrospective on the Quantum Ther-

mal Bath method: model systems
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5.1 Introduction

We have shown in chapter 2 that the QTB is an exact method in the harmonic approx-
imation. Then, in chapters 3 and 4, we have used the QTB method straightforwardly
on various hydrogen-bonded systems (high-pressure ice and aluminium oxide hydroxide)
and we have seen that it yields correct results that are in agreement with experimental
measurements. In particular, the O-H stretching mode frequencies are correctly described
in both phase VII and phase X of ice. However, especially at the transition, the sys-
tem is quite anharmonic; yet, the QTB still yields interesting results in this case. In the
following, we will investigate the reliability and the limits of the QTB method for anhar-
monic systems, by using simple models in which the anharmonicity can easily be tuned.
First, we will attempt to point out from a theoretical point of view where difficulties arise
from when trying to describe quantum probability distributions with classical trajectories.
Then, we will focus on a specific pitfall of the QTB method, the zero-point energy leakage.
By studying two models with few degrees of freedom, we will be able to compare results
from QTB simulations with exact quantum calculations and thus attempt to define the
range of applicability of the QTB. Finally, we have seen in the two previous chapters (3
and 4) that the QTB simulations allowed us to construct one-dimensional models that
capture the essence of the behavior of protons in the real three-dimensional system. In
particular, the double well potential has been extensively used to study the hydrogen bond
symmetrization, hence, we will analyze the results obtained from QTB in such a potential.

99
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5.2 Computing quantum probabilities from classical-like trajec-

tories: the limits of the Ehrenfest theorem

In order to understand the limits of the QTB in an anharmonic system, we first remind
that this method is based on the Ehrenfest theorem, as do other semi-classical methods
(see section 1.3.2). It states that the average values of the quantum operators x̂ and p̂,
namely position and momentum, obey classical-like equations of motion:

d〈x̂〉
dt

=
〈p̂〉
m
,

d〈p̂〉
dt

= −〈∂V (x̂)
∂x

〉 (5.2.1)

where 〈Â〉 = 〈Ψ|Â|Ψ〉 is the expectation value of any operator Â and Ψ is the wavefunction
of the system. 〈x̂〉 can be considered as the center of mass of the wavefunction Ψ and the
time-dependent function 〈x̂〉(t) is the trajectory of the center of mass. The equation of
motion of the center of mass is thus:

m
d2〈x̂〉
dt2

= −〈∂V (x̂)
∂x

〉. (5.2.2)

Equation (5.2.2) is similar to the Newton’s equation of classical dynamics if we identify 〈x̂〉
with the position of the classical particle. However, the force f = −∂V/∂x (in the right
hand side of equation (5.2.2)) is averaged over the entire wavefunction (〈Ψ|f |Ψ〉) whereas
it would simply be evaluated at the position of the center of mass in a purely classical
picture:

fclass = − ∂V

∂x

∣
∣
∣
∣
x=〈x̂〉

6= −〈∂V
∂x

〉 = fquant (5.2.3)

If the wavefunction Ψ is relatively localized, then this difference is negligible and the center
of mass has a classical motion. In particular, in a harmonic oscillator V (x) = mω2x2/2,
the force −∂V/∂x = −mω2x is linear, and the ground-state wavefunction is Gaussian. In
this case, fclass = fquant and the motion of the center of mass is classical. The idea of the
QTB method is to mimick the spatial expansion of the wavefunction Ψ via a stochastic
motion. The time average of the force to which the particle is subjected along the stochastic
dynamics thus reproduces the expectation value of the quantum force operator. Using this
procedure, the QTB yields the correct quantum distributions of position and momentum,
in a harmonic potential as seen previously in section 2.2.2, but also in realistic anharmonic
systems as seen in chapters 3 and 4. We will discuss more particularly the case of a double-
well potential in the following section.

However, while the classical picture stands for the expectation values of p̂ and x̂, these
two operators do not commute and [x̂, p̂] = i~; hence, if we look at higher order expectation
values, we obtain:

1
2m

d〈p̂2〉
dt

= −〈 p̂
m

∂V (x̂)
∂x

〉 +
~

2mi
〈∂

2V (x̂)
∂x2

〉 (5.2.4)

1
2
m

d〈x̂2〉
dt

= 〈p̂x̂〉 +
i~

2
(5.2.5)

The classical analogue of equation (5.2.4) concerns the left hand side and the first term
of the right hand side of the equation and corresponds to the fact that the variation of
kinetic energy is the work done by the force f = −∂V/∂x (see equation (2.2.1)). However,
the second term of the right hand side is purely quantum since it arises from the non-
commutativity of p̂ and x̂. In the case of a harmonic oscillator, with frequency ω, equation
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(5.2.4) becomes:
1

2m
d〈p̂2〉

dt
= −ω2〈p̂x̂〉 +

~ω2

2i
(5.2.6)

and the second term of the right hand side, the quantum term, is an imaginary constant
term. As Ben-Nun and Levine describe in reference [194], the problem that arises from
the quantum term can now be "fixed" by shifting the actions of the modes and therefore
correctly taking into account the zero-point energy while computing classical trajectories.
We also note that in the case of a harmonic oscillator, according to equations (5.2.4) and
(5.2.5), we have:

1
2m

d〈p̂2〉
dt

+
1
2
mω2 d〈x̂2〉

dt
= 0 (5.2.7)

so that the average total energy is constant. Finally, in the case of a harmonic oscillator,
since the expectation value 〈pn〉 for n ≥ 3 can be expressed in terms of 〈p〉 and 〈p2〉 only,
the "fix" in reference [194] that ensures that the binary terms 〈p2〉, 〈x2〉, and 〈xp + px〉
are correctly given by classical trajectories, is correct at all orders. The QTB method
also takes care of this aspect since the zero-point energy is included in the expression of
the random force (see equation (2.2.3)). In particular, for the harmonic oscillator, we can
define an effective temperature Teff from the energy of the system so that:

kBTeff = ~ω

[
1
2

+
1

e~ω/kBT − 1

]

(5.2.8)

where T is the classical temperature (the temperature of the bath). The effective tem-
perature Teff takes into account both the zero-point energy of the oscillator, ~ω/2, and
the Bose-Einstein distribution at the physical temperature T . The QTB simulation in
the harmonic oscillator is therefore equivalent in this particular case to a classical MD
simulation at the temperature Teff.

In contrast, in a real anharmonic system, the QTB introduces a distribution of effective
temperatures Teff(ω) since each vibrational mode has a different energy and the balance
between the QTB pumping and damping ensures that no equipartition of the energy
occurs. The quantum term in equation (5.2.4) is not constant and depends on the operators
x̂ and p̂. The analogy between the expectation values of these quantum operators and the
position and momentum of the center of mass of Ψ is thus not correct anymore. Hence,
in anharmonic systems, another problem arises, namely the zero-point energy leakage
(ZPEL), which we will discuss in the following section 5.3.

5.3 The zero-point energy leakage

We have thus seen that using classical-like equations of motion to compute atomic trajec-
tories of quantum particles has some limits for anharmonic systems, especially concerning
the high-order expectation values of x̂n and p̂n. We however know, from chapters 3 and 4,
that the QTB nevertheless yields quite satisfactory results in real anharmonic systems. To
overcome this apparent contradiction, we now focus specifically on the zero-point energy
leakage (ZPEL), because it can lead to dramatic consequences for the structure of the
system, as we will show below.

In a classical MD simulation, equipartition of the energy occurs: if each degree of
freedom has a different initial energy, energy transfers will occur due to non-linear mode
couplings and each degree of freedom will end up with the same average energy. If we define
the effective temperature from the average kinetic energy E

(j)
k of each degree of freedom
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j i.e. kBT
(j)
eff = 2E(j)

k , then in a classical simulation, Teff = T where T is the temperature
of the bath. In a quantum system, this is not true anymore since the quantum energy
distribution is non-uniform and depends on the frequency of the vibrational modes. In
particular, high-frequency modes have more energy than low-frequency ones. During a
QTB simulation, there is a balance between QTB pumping and damping on the one hand,
which tries to enforce the quantum energy distribution, and energy transfers between the
vibrational modes on the other, which tend to drag the system towards an equipartition of
the energy. If the second phenomenon turns out not to be negligible, ZPEL occurs i.e. part
of the energy of the high-frequency modes is transferred into the low-frequency ones. As
a consequence, low-frequency modes end up with too much kinetic energy which can then
destroy the structure of the system e.g. if the effective temperature of the low-frequency
modes is higher than the melting temperature of the system.

ZPEL has been observed in several systems (water clusters and liquid water, Lennard-
Jones systems...) [195–198] and it has been recently pointed out by Bedoya-Martinez and
coworkers to appear in QTB simulations [197]. Several solutions to the ZPEL problem in
the case of the QTB have also been suggested: Bedoya-Martinez and coworkers tried to
modify the noise power spectrum in order to reinforce the quantum bath pumping and
thus obtain an energy distribution that is closer to the correct quantum one. This however
remains a rather ad-hoc solution that has to be adapted individually for each system.
In contrast, Ganeshan and coworkers proposed a deterministic approach to suppress the
ZPEL which however requires the knowledge of the vibration normal coordinates prior to
the simulation [196].

In the following section, we investigate the conditions leading to ZPEL for a better
understanding of the validity of the QTB method. To that purpose, we will study two
different models in which we can easily compare the QTB to exact calculations. First, we
will use a simple model consisting of two coupled harmonic oscillators (section 5.3.1) that
will allow us to control the anharmonicity easily. Then, we will analyze a one-dimensional
chain of atoms (section 5.3.2) in which the mode couplings are introduced via realistic
interatomic potentials. We note that the study of the ZPEL within the QTB, and more
generally, the development and the critical analysis of the QTB method, is part of a
collaboration with Fabien Brieuc and Hichem Dammak of Ecole Centrale Paris and with
Marc Hayoun from Ecole Polytechnique. The results of this study are to be published (a
manuscript of the submitted paper is given in the Publications section 5.5).

5.3.1 Coupled harmonic oscillators

We consider two coupled one-dimensional harmonic oscillators, with frequencies ν1 and
ν2. Thanks to the small number of parameters, this system provides a clear illustration of
the ZPEL within the QTB method and allows for the analysis of the conditions leading
to this phenomenon. In particular, we can easily tune the non-linear coupling between
the two oscillators and compare the QTB results with the exact numerical solution of the
corresponding time-independent Schrödinger equation. The system is described by the
Hamiltonian H:

H =
1
2
mẋ2

1 +
1
2
mω2

1x
2
1 +

1
2
mẋ2

2 +
1
2
mω2

2x
2
2 + C3(x1 − x2)3 + C4(x1 − x2)4 (5.3.1)

where ωi = 2πνi is the angular frequency of each oscillator, x1 and x2 are the coordinates of
the two oscillators, m is their mass and C3 and C4 are two anharmonic coupling constants.
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Friction coefficient γ = 4 × 10−4 ω1

Cut-off frequency Ωcut = 2ω1

Time step δt = 0.05ω−1
1

Total number of time steps 107

Number of independent trajectories ∼ 30
Ratio of frequencies Ω ∈ [0.05 − 0.8]

Cubic coupling constant c3 ∈ [0 − 25 × 10−4]
Quartic coupling constant c4 ∈ [0 − 40 × 10−4]

Temperature kBT = 0.03hν1

Table 5.1: Technical and numerical details concerning the QTB simulations on the two
coupled harmonic oscillators (equation (5.3.2)).

H can be written in a dimensionless form, H̃ = H/~ω1, so that:

H̃ =
q̇2

1

2
+
q2

1

2
+
q̇2

2

2
+ Ω2 q

2
2

2
+ c3(q1 − q2)3 + c4(q1 − q2)4 (5.3.2)

where we introduced the following variables:

Ω =
ν2

ν1
=
ω2

ω1
(5.3.3)

ξ =

√

~

mω1
, qi =

xi

ξ
(5.3.4)

c3 =
C3ξ

3

~ω1
, c4 =

C4ξ
4

~ω1
(5.3.5)

t∗ = ω1t, q̇i =
dqi

dt∗
(5.3.6)

q1 and q2 are the reduced positions of the two oscillators and Ω is the ratio of their
frequencies (we choose ν1 > ν2). We study the evolution of the energies ǫ1 and ǫ2 of the
two oscillators with a cubic or a quartic coupling governed by the dimensionless parameters
c3 and c4 that are:

ǫ1 =

〈

q̇2
1

2

〉

+

〈

q2
1

2

〉

, ǫ2 =

〈

q̇2
2

2

〉

+ Ω2

〈

q2
2

2

〉

. (5.3.7)

The numerical details of the QTB simulations are given in Table 5.1: the temperature
is set to kBT = 0.03hν1 (e.g. T ∼ 60 K if ν1 = 40 THz) so that the thermal energy
contribution to the energies of the oscillators is negligible with respect to their zero-point
energies and the parameters c3 and c4 are chosen so that a large range of coupling energies
is covered. The exact quantum calculation shows that the energies of the oscillators are
almost independent of the anharmonic coupling intensities in the range of coupling values
studied here and are equal to their zero-point energies; hence, in reduced units, ǫexact

1 = 0.5
and ǫexact

2 = Ω/2. Figure 5.3.1 shows the average energies obtained from QTB simulations
with a damping term γ = 4 × 10−4 in two distinct cases: Ω = 0.5 with only a cubic
coupling (c3 6= 0, c4 = 0) and Ω = 0.25 with only a quartic coupling (c3 = 0, c4 6= 0). The
average coupling energy is ǫc = 〈cn(q1 − q2)n〉 with n = 3 for the cubic case and n = 4 for
the quartic case. As expected, in the uncoupled case i.e. c3 = 0 and c4 = 0, the QTB gives
the expected quantum energies for the two oscillators, corresponding to their zero-point
energies, i.e. ǫQTB

i = ǫexact
i for i = 1, 2. In contrast, when the coupling constants c3 or c4
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Figure 5.3.1: Average energies, ǫ1 and ǫ2, of the two oscillators and average coupling energy
ǫc computed with the QTB as a function of the intensity of the coupling constants c3 and
c4. The damping term is γ = 4 × 10−4. Top panel: cubic coupling (c3 6= 0, c4 = 0) with
Ω = 0.5. Lower panel: quartic coupling (c4 6= 0, c3 = 0) with Ω = 0.25. By symmetry,
ǫc = 0 in the cubic case.
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Figure 5.3.2: Zero-point energy leakage quantified through the deviation factor ζ (equation
(5.3.8)) as a function of the ratio of frequencies Ω. Top panel: cubic coupling (c3 6= 0,
c4 = 0). Lower panel: quartic coupling (c4 6= 0, c3 = 0). The damping term is γ = 4×10−4.

are increased, the energies obtained from QTB diverge from the exact results: part of the
energy of oscillator 1 is transferred into oscillator 2, hence, ZPEL occurs.

In the following, we investigate how ZPEL depends on the coupling constants c3 and
c4 and on the frequency ratio Ω. To quantify the ZPEL, we adopt the following deviation
factor ζ:

ζ =
∆ǫexact − ∆ǫQTB

∆ǫexact
=

(ǫexact
1 − ǫexact

2 ) − (ǫQTB
1 − ǫQTB

2 )
ǫexact
1 − ǫexact

2

(5.3.8)

Within this definition, there is no leakage when ζ = 0 i.e. when ǫQTB
1,2 = ǫexact

1,2 . In contrast,
the leakage is maximum when ζ = 1 i.e. when the system has reached an equipartition of
the energy: ǫQTB

1 = ǫQTB
2 . In Figure 5.3.2, ζ is shown as a function of Ω for different values

of c3 and c4. We can see that the ZPEL strongly depends on the ratio of frequencies and
is present only for certain values of Ω. In the cubic case, it occurs only near Ω = 0.5 (top
panel of Figure 5.3.2). Indeed, cubic terms in the potential are known to be responsible
for frequency doubling or the second harmonic generation (2ω). This is further confirmed
by the analysis of the vibrational spectrum of the two oscillators computed from QTB
trajectories in the cubic case, with c3 = 2.4 × 10−4 for example (top left panel of Figure
5.3.3): harmonics at 2ω2, ω1 − ω2, and ω1 + ω2 are visible. Therefore, at Ω = 0.5, there
is a resonance between the couple of modes (ω1; 2ω2) and (ω2;ω1 − ω2). Similarly, the
quartic terms are responsible for the generation of modes with frequency 3ω; ZPEL is
indeed observed near the resonance at Ω = 1/3 (lower panel of Figure 5.3.2). However,
while increasing quartic coupling, significant ZPEL occurs for a range of small Ω values,
in contrast with the cubic coupling case. The lower panel of Figure 5.3.3 shows that, in
the case of Ω = 0.2 and c4 = 15.2 × 10−4, many other modes than ω1 and ω2 also appear
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Figure 5.3.3: Vibrational spectra (in logarithmic scale) of oscillators 1 (in red) and 2 (in
blue) obtained from QTB-MD simulations in the case of a cubic coupling (top panels)
with Ω = 0.5 and c3 = 2.4 × 10−4, and in the case of a quartic coupling (lower panels)
with Ω = 0.2 and c4 = 15.2 × 10−4. The spectra are computed with two different values
of the friction coefficient: γ = 4 × 10−4ω1 and γ = 4 × 10−3ω1.
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in the spectrum. Therefore, the quartic coupling case is quite different from the cubic
case where the anharmonicity introduced satellite peaks in addition to the normal modes
ω1 and ω2. Here, a large range of frequencies are excited due to mode mixing and mode
coupling. Hence, multiple resonances are likely to occur leading to a significant ZPEL for
values of Ω < 1/3.

Influence of the friction coefficient γ

The damping coefficient is now varied from 4 × 10−4ω1 to 2 × 10−2ω1. We focus on the
frequency range where the ZPEL is important: Ω = 0.5 for cubic coupling and Ω = 0.25
for quartic coupling. Figure 5.3.4 shows that ZPEL strongly depends on γ: increasing γ
can limit the leakage and even practically remove it in the case of the cubic coupling. In
particular, for c3 = 2.4 × 10−4, a value of γ equal to 4 × 10−3ω1 is sufficient to remove
the ZPEL (ζ = 0.08). The top right panel of Figure 5.3.3 shows the vibrational spectra
obtained in this case with the larger γ: while the ZPEL has been suppressed, the peaks
corresponding to the resonances (2ω2, ω1 − ω2 and ω1 + ω2) have also disappeared. This
further illustrates the relation between the mode resonances and the ZPEL. Moreover,
increasing γ also leads to a broadening of the peaks of the oscillators in the spectra,
consistently with the fact that the full width at half maximum in the case of a harmonic
oscillator is equal to γ in a Langevin dynamics. The case of the quartic coupling is more
complicated: even for large values of γ, the ZPEL is reduced but not completely suppressed
(Figure 5.3.4). The lower right panel of Figure 5.3.3 also shows that increasing γ in the
case of a quartic coupling with Ω = 0.2 and c4 = 15.2 × 10−4 is not sufficient to suppress
all of the resonances between the different modes.

Furthermore, we can estimate the characteristic time ttr of the energy transfer between
the two oscillators by running NVE calculations in which only one of the oscillators (e.g.
oscillator 1) is excited at t = 0. ttr can then be roughly estimated by calculating the typical
activation time of the second oscillator (e.g. oscillator 2). Figure 5.3.5 shows the evolution
of the energies of the two oscillators with time. As the energy of oscillator 1 decreases, the
energy of oscillator 2 increases as exp(t/ttr) and we can estimate ttr for each value of the
coupling constant. Figure 5.3.6 shows the evolution of ttr for Ω = 0.5 as a function of the
cubic coupling constant c3 (c4 = 0 here). As expected, the characteristic time of energy
transfer is directly related to the intensity of the coupling and in particular, ttr is inversely
proportional to c3. To remove the ZPEL, we need to choose a value for the damping γ
that is greater than the typical transfer frequency νZPEL = t−1

tr , in order to hinder the
energy transfer between the two oscillators. For example, we can see in Figure 5.3.6 that
for c3 = 4 × 10−4, ttr ∼ 400ω−1

1 thus νZPEL ∼ 2.4 × 10−3 ω1. Accordingly, Figure 5.3.4
shows that for γ = 4 × 10−4 ω1 i.e. for γ < νZPEL, ZPEL occurs while for γ = 4 × 10−3 ω1

i.e. for γ > νZPEL, ZPEL is largely reduced.
In conclusion, this simple model raises several important issues: the role of resonances

and the possibility to remove or at least significantly reduce the effects of ZPEL by in-
creasing γ. We now address these issues on a more complex model in the following section.

5.3.2 One-dimensional chain of atoms

We consider a one-dimensional chain of atoms, consisting of 3 oxygen atoms interspaced
with 3 hydrogen atoms, with periodic boundary conditions. The interactions between the
atoms are described by two interatomic potentials. On the one hand, the O-H interaction
is a Morse-type potential derived by Johannsen for hydrogen-bonded systems [114] and
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Figure 5.3.4: Effect of the damping coefficient γ (given in ω1 unit) on the energies of the
two oscillators (equation (5.3.7)) as a function of the coupling constants. Top panel: cubic
coupling (c3 6= 0, c4 = 0) and Ω = 0.5. Lower panel: quartic coupling (c4 6= 0, c3 = 0) and
Ω = 0.25. The solid line and symbols represent the results obtained from QTB-MD and
the grey dashed lines represent the exact results.
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already discussed in section 3.1.3:

VOH(r) =
u0

a+ bea(r−r0)

[

a
(

e−b(r−r0) − 1
)

+ b
(

ea(r−r0) − 1
)]

− u0 (5.3.9)

where r is the O-H distance, u0 is the height of the potential barrier, r0 the equilibrium
O-H distance, and a and b are two parameters. The values of the parameters are set so
that: r0 = 0.96 Å (which corresponds to the length of the covalent bond in the OH− ion),
a ≃ 7.11 Å−1, b ≃ 2.00 Å−1 and u0 = 2.73 eV so that the O-H stretching frequency (νOH) in
the harmonic approximation of the potential VOH given in equation (5.3.9) approximately
equals 100 THz. On the other hand, the O-O interaction is described by a standard Morse
potential:

VOO(R) = C0

(

1 − e−α0(R−R0)
)2

− C0 (5.3.10)

where C0 and α0 are the depth and the width of the potential respectively and R0 the
O-O equilibrium distance. The parameters are the following: C0 = 3.81 eV, R0 = 2.88 Å
and α0 varies so that the value of the O-O frequency (νOO) lies between 10 and 60 THz.
The simulations are run with a 0.1 fs time step and the total simulation time is about 3
ns. The QTB results are averaged over 12 trajectories.

The potential energy of an hydrogen atom is given by VOH(r) + VOH(R− r) which is a
double-well potential. We can thus define short "covalent" O-H bond (∼ 1 Å) and longer
"hydrogen bonds" H· · · O (∼ 1.9 Å). Although this model cannot represent a real ice cluster
or any other real physical system, it is characterized by realistic O-H frequencies and mode
couplings; it is thus useful to assess the effects of ZPEL in real hydrogen-bonded systems.
A normal mode analysis of the system yields one low-frequency, ν2, corresponding to the
O-O lattice mode, and two very similar high-frequencies, ν1, corresponding to the O-H
stretching modes. In analogy with the previous model, the O-H stretching modes roughly
play the role of the high-frequency oscillator (ν1) while the O-O lattice mode corresponds
to the low-frequency oscillator (ν2). In the following, we will show the influence of the
parameter Ω = ν2/ν1 and the friction coefficient γ on ZPEL at T = 600 K. The frequency
ν2 is varied through the parameter α0 while the frequency ν1 is almost constant since νOH

is fixed at 100 THz. The results from QTB are compared with those obtained from PIMD
simulations, using a Trotter number P = 20 which ensures a good convergence of all the
physical quantities in all cases studied here. For each QTB simulation, we checked that
the total energy of the system, as well as the kinetic and potential energies, are in good
agreement with the reference values given by PIMD.

In order to evaluate the leakage, we compare the kinetic energy of the light atoms,
significantly involved in the high-frequency modes, to that of the heavier atoms, mainly
involved in the low-frequency modes. Thus, the effective temperatures TH and TO of H
and O atoms are computed:

kBTH

2
=

1
NH

NH∑

i=1

〈E(i)
k 〉, kBTO

2
=

1
NO

NO∑

i=1

〈E(i)
k 〉 (5.3.11)

where NH and NO are the number of H and O atoms respectively (here, NH = NO = 3),
and 〈E(i)

k 〉 is the average kinetic energy of atom i. In a classical system, equipartition
ensures that the kinetic energy is equally distributed among all degrees of freedom: they
all have the same temperature and T (class)

H = T
(class)
O . This is not true in the quantum case:

high-frequency modes have more kinetic energy and TH 6= TO. As high-frequency mode
eigenvectors have approximately 95% projection on the displacements of hydrogen atoms,
the kinetic energy of hydrogens is higher than the oxygen counterpart and TH > TO. This
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Figure 5.3.7: Effective temperatures TO and TH of oxygen and hydrogen atoms (equation
(5.3.11)) calculated through classical MD, QTB and PIMD simulations at T = 600K.
Here Ω = 0.5. The arrows indicate the temperature shifts due to zero-point energy leakage
(ZPEL).

occurs in both QTB and PIMD, which serves as a reference here. From Figure 5.3.7, one
sees that, as expected, the leakage makes the effective temperature of light atoms decrease
and that of heavier atoms increase with respect to the PIMD reference values. In this
case, the ZPEL can be quantified through the deviation factor:

ζ =
(TH − TO)PIMD − (TH − TO)QTB

(TH − TO)PIMD
. (5.3.12)

ζ = 0 if there is no leakage and 0 < ζ < 1 if leakage occurs. Its dependence on Ω is shown
in Figure 5.3.8. Similarly to the coupled harmonic oscillators’ model (section 5.3.1), ZPEL
occurs mostly for Ω ∼ 0.5. We can also see that ZPEL can be substantially decreased by
increasing γ when Ω ∼ 1/2, similarly to the case of two coupled oscillators. However,
significant ZPEL is also observed for Ω < 0.2 which corresponds to a highly anharmonic
regime where a structural transition occurs and is therefore a different physical situation
than the other values of Ω that will not be discussed in detail here.

Figure 5.3.9 shows the distributions of interatomic distances, dOH and dOO for the
case Ω = 0.5 computed from QTB, PIMD and standard MD simulations. One can see
that the dOH distribution is almost not affected by ZPEL while the dOO distribution is
more sensitive to ZPEL: the QTB distribution is too broad, which is consistent with the
excess of kinetic energy for the oxygen that comes from the ZPEL. However, when ZPEL
is suppressed by increasing γ, the dOO distribution from QTB coincides with the PIMD
distribution.

We have seen in the case of the two coupled harmonic oscillators that increasing γ
has consequences on the vibrational spectrum of the system; in particular, the peaks
are broadened and the peaks corresponding to the mode resonances disappear when γ is
large enough to remove the ZPEL (see Figure 5.3.3). Figure 5.3.10 shows the vibrational
spectrum of the one-dimensional chain of atoms for Ω = 0.5 and for two different values of
γ. For γ = 0.2 THz, ZPEL occurs while for γ = 10 THz, ZPEL is almost fully removed (see
Figures 5.3.8). As expected, increasing the friction coefficient γ leads to broader peaks.
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However, the positions of these peaks hence the corresponding mode frequencies are not
modified by the large value of γ. Thus, even with a large damping term, the vibrational
spectrum still yields useful information about the mode frequencies whenever the peaks
in the vibrational spectrum are separated by more than γ.

In conclusion, in a system containing different chemical elements, the kinetic energy
repartition between them can be used as an indicator of ZPEL. More generally, in a
real system, a diagonalization of the dynamical matrix prior to the simulation could give
access to the normal mode frequencies ωi in the harmonic approximation. One could thus
compute the corresponding approximate effective temperatures ~ωi/2kB . If they are quite
different from the QTB kinetic energies then it would be an indication that ZPEL occurs.
As in the case of two coupled harmonic oscillators, the ZPEL is intrinsically related to
resonances between vibrational modes. Similarly, increasing the friction coefficient allows
to suppress the ZPEL. However, when the system is highly anharmonic, values of γ higher
than the vibrational frequencies of the system are required to counterbalance the leakage.
In this case, the quantum structural properties are well reproduced but the information
obtained by looking at dynamical properties should be used with caution.

5.3.3 Conclusion

We have attempted in this section to perform a quantitative study of ZPEL in QTB
simulations. We first found that ZPEL is intrinsically related to the coupling between
vibrational modes; therefore, this is hardly avoidable in practice, since in realistic systems
many modes can resonate. However, we also found that by increasing the damping term
γ, one can significantly reduce the ZPEL and even in some cases, remove it entirely. This
is due to the fact that by increasing the damping term, one reinforces the QTB pumping
rate with respect to the equilibration rate of the system, which is caused by the non-linear
couplings between vibrational modes. This in turn drags the system towards the correct
quantum energy distribution imposed by the QTB. However, it is commonly accepted that
increasing the damping term in Langevin simulations helps reaching the thermal equilib-
rium while biasing the system, in particular its vibrational spectrum. Here, we come to
the conclusion that the damping should be increased in QTB simulations in order to avoid
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the ZPEL. The effects of a large damping should then be carefully studied on both struc-
tural and dynamical properties in each specific case. Our results tend to show that the
QTB is a relatively robust method and yields excellent results as long as one keeps in
mind the physics of the problem. This is particularly well illustrated in the case of the
phase transitions of BaTiO3 (BTO). QTB simulations performed with a small damping
lead to a completely wrong phase diagram. In contrast, with a larger damping, one recov-
ers the correct sequence of phase transitions at the correct transition temperatures (see
the submitted paper on ZPEL in Publications section 5.5). On the other hand, damping
usually broadens vibrational peaks making it difficult and sometimes impossible to distin-
guish between different vibrational modes. However, the mode frequencies are often not
dramatically altered allowing the study of high-frequency O-H vibrational modes for ex-
ample as seen previously. This also justifies our Landau-like approach to phase transitions
and enables the direct comparison of the QTB spectra with spectroscopic measurements,
something which is usually hardly attainable by other methods (see chapter 1).

5.4 The QTB and the double well potential

We have just seen that in weakly anharmonic systems, the QTB could yield quite good
results, as long as the ZPEL is avoided by choosing an appropriate damping term. However,
we have seen in chapters 3 and 4 that the QTB simulations allowed us to construct a model
that accounts for hydrogen bonds in various systems, by means of a one-dimensional double
well potential. This kind of potential is highly anharmonic, especially if the barrier is
sufficiently small that proton tunneling can occur, such as is the case in ice VII. In the
following, we will analyze the results obtained from QTB simulations on a one-dimensional
double well potential in order to assess the performance of the QTB in an unfavorable case.
We consider the following symmetric double well potential:

V (x) = V0

[(
x

x0

)2

− 1

]2

(5.4.1)
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"High-barrier" "Low-barrier"
V0 = 2.7211 eV, x0 = 0.21 Å V0 = 0.54422 eV, x0 = 0.13 Å

Exact solution Etot = 0.68 eV Etot = 0.37 eV
QTB result Etot = 0.68 eV Etot = 0.40 eV

Classical result Etot = 0.26 eV Etot = 0.26 eV

Table 5.1: Energies obtained from the numerical solution of the time-independent
Schrödinger equation, the Quantum Thermal Bath method and classical molecular dy-
namics, using the double well potential given in equation (5.4.1).

where V0 is the height of the barrier at x = 0 and ±x0 are the positions of the two wells. We
compare results from classical molecular dynamics (using a Langevin thermostat), to QTB
molecular dynamics and to the numerical solution of the time-independent Schrödinger
equation. Simulations are performed at T ∼ 300 K with a damping term γ = 10 THz
and a cutoff frequency νcut ∼ 6600 THz. First, we look at the energies given by the QTB
for two different potentials (see table 5.1). As expected, classical molecular dynamics
yields a total energy equal to kBT i.e. the thermal energy is correctly obtained with a
Langevin thermostat (in particular, it is independent of the potential). Moreover, energy
equipartition occurs meaning that the average potential energy is equal to the average
kinetic energy. The quantum energy on the other hand is given by :

〈E〉 = Tr[ρH] (5.4.2)

where H is the Hamiltonian of the system (with eigenstates Ψn and eigenenergies En) and
ρ the density matrix i.e.

ρ =
1
Z

∑

n

e−βEn |Ψn〉〈Ψn| . (5.4.3)

Z =
∑

n exp(−βEn) is the partition function and β = (kBT )−1 is the inverse temperature.
Hence, the average total energy is:

〈E〉 =
1
Z

∑

n

e−βEnEn. (5.4.4)

In both the high-barrier case (V0 = 2.7211 eV) and the low-barrier case (V0 = 0.54422
eV), the quantum energy 〈E〉 is almost equal to the zero-point energy. In the high-barrier
case, the QTB result is in good agreement with the exact total energy. Additional QTB
simulations at T ∼ 0 K yield the same total energy as at ambient temperature which con-
firms that the QTB correctly accounts for the zero-point energy of the system. Moreover,
the average potential energy and average kinetic energy correspond to the potential and
kinetic part of the quantum energy as well. In the low-barrier case, the QTB overesti-
mates the total energy of the system with respect to the quantum result. In particular,
the average kinetic energy is overestimated while the average potential energy is slightly
underestimated. Hence, in the case of a high-barrier potential, the two wells can be ap-
proximated by two quasi-harmonic potentials and the QTB yields the correct energies. On
the contrary, in the low-barrier potential, the system is much more anharmonic and the
QTB fails to retrieve the quantum results.

We now focus on the structural properties of the system. Depending on the parame-
ters of the potential, the QTB yields position distribution functions that can be in good
agreement with the exact quantum one (see top panel of Figure 5.4.1): in the high-barrier
case, the QTB distribution displays two peaks that are almost the same as the quantum
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density, while the classical distribution is much narrower.1 In the low-barrier case how-
ever (see lower panel of Figure 5.4.1), the QTB distribution is not equal to the quantum
one: the positions of the two peaks are not close enough, and the value of the density
between the two peaks is too low; we note that the QTB still gives better results than
the classical simulation as far as the position distribution is concerned. Indeed, part of
the spatial delocalization inherent to the quantum nature of the particle is captured by
the QTB. This is also consistent with the fact that the QTB energies slightly depart from
the exact one in this case (see table 5.1). Concerning the vibrational properties of the
system, the same trend is observed. In the high-barrier potential, the QTB spectrum dis-
plays a high-frequency peak corresponding to the vibration of the particle in the bottom
of the well. The QTB frequency (νQTB ∼ 320 THz) is lower than its classical counterpart
(νclassical ∼ 340 THz) and the QTB peak is broader than the classical one2; this indicates
that the QTB accounts for part of the anharmonicity of the system better than the classical
simulation. In contrast, in a low-barrier potential, proton tunneling occurs. This purely
quantum effect is partly reproduced by the QTB: the distribution has a non-zero value at
the top of the barrier. However, the QTB trajectories associated to proton hopping events
are non-physical: the QTB introduces a hopping frequency which can be more important
by a few orders of magnitude than the correct quantum tunneling frequency.

To summarize, the double well potential is a clear illustration of the limits of the QTB.
In the case of a high barrier, for which proton tunneling is negligible and the two wells can
be considered as two independent quasi-harmonic potentials, the QTB yields relatively
good results: the energies correspond to the quantum ones meaning that the zero-point
energy of the system is well reproduced, and both the structural and (high-frequency)
dynamical properties are correctly described by the QTB. However, in the case of a low-
barrier potential and significant proton tunneling, the QTB shows some downsides. Indeed,
in order to take into account quantum tunneling, the QTB overestimates the kinetic energy
of the particle: hence, the energy deviates from the exact result (still being closer to it than
purely classical simulations) while the dynamics of this process is not realistic. On the other
hand, the position distribution still yields interesting information: tunneling is indicated
by a non-zero value at the top of the barrier potential and the spatial delocalization of
the particle is partly taken into account. If we now look back at the QTB results on
high-pressure ice for example, proton tunneling was correctly described by the QTB as
the distribution functions were in agreement with the PIMD distributions. This is also
partly due to the fact that ice is a real system, with many degrees of freedom and that the
reduction of the proton’s motion to only one-dimension is quite restrictive. Furthermore,
the high-frequency O-H stretching mode frequencies are also well described by the QTB
and in agreement with spectroscopic measurements. This is because the corresponding
vibrations are weakly anharmonic - such as the oscillation at the bottom of wells - and
thus well accounted for by the QTB. In contrast, we do not expect the low-frequency
dynamics of proton transfer along the hydrogen bonds or proton hopping to be correctly
reproduced by the QTB.

1The distributions have been averaged over several independent trajectories in order to recover sym-
metric distributions.

2As a comparison, the transition frequency νquantum obtained from the energy differences between the
ground state and the first excited state is approximately 300 THz.
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5.5 Conclusion

The QTB is an approximate method that relies on the quantum fluctuation-dissipation
theorem which is exact in the linear response theory framework [2]. Hence, the QTB
yields the correct energies, distribution probabilities and vibrational spectra in the case
of a harmonic oscillator (see section 2.2.2). However, we have seen in previous chapters
(3 and 4) that the QTB also gives good results in real anharmonic systems, such as
ice VII or δ-AlOOH. Here, we tried to carry out a critical analysis of the QTB method
and analyze its limitations. In particular, the QTB is prone to ZPEL where part of the
energy of high-frequency modes leaks into low-frequency modes with potential dramatic
consequences for the structure of the system. This problem is inherent to any semiclassical
method i.e. where the expectation values of the quantum operators x̂ and p̂ are replaced
by classical variables, that have classical trajectories during which equipartition of the
energy tends to occur. The ZPEL is a damaging problem, however, it can be handled
to a certain degree by choosing a sufficiently large damping coefficient. Another problem
of the QTB concerns its results in anharmonic systems. We can say that in a weakly
anharmonic system, e.g. a double well with a large barrier, the QTB correctly reproduces
the position distributions as well as the high-frequency vibrational spectra. In contrast,
in a highly anharmonic system e.g. in a low-barrier double well potential in which proton
tunneling is quite strong, the QTB yields acceptable distance distributions, as in ice VII for
example. The frequencies of proton tunneling on the other hand are incorrect because the
QTB trajectories associated with proton tunneling do not have any physical significance.
However, from the information obtained via QTB simulations, we can construct models
that are able to capture the essence of the physical phenomena studied (such as the Landau-
like potential in high-pressure ice) and from these models, one can compute quantities such
as proton tunneling frequencies directly from purely quantum calculations.
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Conclusion and perspectives

Studying nuclear quantum effects (NQE) is a challenging task, both from a computational
and a theoretical point of view. In particular, the development of simulation methods that
are able to treat NQE is still an active field of research today. The Quantum Thermal
Bath (QTB) was introduced by Dammak and coworkers recently [1] and constituted an
original approach in which the quantum delocalization of a particle is mimicked by means
of a stochastic motion. The QTB is similar to the Langevin thermostat except that
the random force is not a white noise but has a specific power spectrum given by the
quantum fluctuation-dissipation theorem [2]. This implies that the QTB method is a
little bit trickier to handle than standard Langevin dynamics as it involves the use of
a frequency cut-off in the generation of the stochastic force in order to avoid exciting
non-physical vibrations in the system. The QTB had then been successfully applied to
the study of the quantum isotope effect in lithium hydride and lithium deuteride [199].
Thus, at the beginning of this thesis, the QTB appeared as a promising method to include
NQE in molecular dynamics simulations, even though we did not have much experience
using it: it had the tremendous advantage of presenting no additional computational cost
compared to standard molecular dynamics and of being relatively easy to implement since
its formulation is general (and not system-dependent). Hence, we implemented the QTB
in the Quantum Espresso package [89], aiming at studying materials that contain hydrogen
atoms and thus gain more insight into the mechanisms of NQE.

We started with one of the prototypical systems in which quantum effects play a role,
the high-pressure phases of ice. We focused on the symmetrization transition from the
proton-disordered phase VII to the symmetric phase X that has been detected experi-
mentally at about 60 GPa at room temperature, whereas simulations without any NQE
predict a transition pressure of 100 GPa. Benoit and coworkers [116] were the first to
report that NQE were responsible for the downshift of the transition pressure. Thus,
we compared QTB and standard molecular dynamics simulations with the intention of
distinguishing quantum from classical (thermal) effects. We found that the QTB yields
the correct transition pressure as well as the correct protons distribution functions, in
agreement with PIMD results. A new achievement was that the vibrational spectra com-
puted from QTB simulations are fully consistent with experimental measurements [4].
This confirmed that the QTB is able to satisfactorily reproduce structural and dynami-
cal properties in several real anharmonic systems, even though its formalism is based on
the linear response theory. Moreover, the QTB results allowed us to devise an efficient
Landau-like approach to analyze the mechanism of the transition. The effective potential
landscape of the protons can be modeled by a double-well potential, in which the barrier
height and the distance between the two wells depend on the pressure. We ran purely
quantum calculations on a one-dimensional model effectively avoiding the approximations
inherent to the QTB method and pointing out the role of the zero-point energy in the
symmetrization of hydrogen bonds.
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The QTB allowed us to take care of NQE in the symmetrization of hydrogen bonds
in high-pressure ice, hence we performed the same analysis on salty ices. By comparing
QTB to simulations without any NQE, we came across an unexpected result, namely the
disappearance of NQE ! In particular, we found that proton hopping is less important
in salty ice than in pure ice but more spectacularly, the VII-X transition pressure is up-
shifted by approximately 30 GPa [5]. Again, the QTB simulations enabled us to set up
a model system to understand the mechanism by which NQE are lifted in salty ice: we
considered pure ice under an external electric field and showed that even a small electric
field, such as the one due to the dissociation of salt in ice, can make the proton’s effective
potential landscape asymmetric. Since NQE are very sensitive to the symmetry of the
potential, the consequences of a small electric field can be quite important and can explain
the disappearance of NQE in this case. This example also showed that the environment
of the hydrogen bonds is of paramount importance. The question that naturally arises
after this study is what happens to NQE in crystals in which the atomic structure has
a lower symmetry than in ice. Thus, we studied the high-pressure phases of aluminium
oxide hydroxyde (δ and α). The QTB simulations showed the important role of thermal
fluctuations as well as quantum effects in proton disorder and proton hopping. More
interestingly, the small differences between the structures of δ and α are important enough
so that in one case, a pseudo-symmetrization of hydrogen bonds occurs near 10 GPa (the
δ-δ′ transition [6]), while in the other case, no such transition is observed up to at least
50 GPa (in α-AlOOH).

In parallel, using the QTB which is an approximate method prompted us to study
in more detail the validity and the range of applicability of this method, in particular for
anharmonic systems. To this purpose, we used simple models with few degrees of freedom,
in which we could compare the QTB results to exact quantum calculations. We found that,
even though the QTB has several drawbacks, such as zero-point energy leakage or yielding
incorrect results in anharmonic systems, these problems can be handled to a certain degree
so that, once the leakage has been reduced below a physically relevant value, the QTB is
a relatively robust method that can provide very good results.

In conclusion, two main points emerge from the work presented in this thesis. On the
one hand, we showed through the different systems studied here that NQE have a complex
role and can impact the system’s properties in various and sometimes counterintuitive
ways. They are extremely sensitive to many parameters, such as the symmetry of the
atomic environment, and must thus be handled with care. On the other hand, concerning
the QTB method in itself, we clearly established that if one is interested in studying
quantum effects in hydrogen-containing solids, then the QTB is a useful and efficient
method: it can give valuable information about the complex role of quantum effects and
their importance with respect to classical thermal fluctuations. In particular, it gives
access to the system’s structural and dynamical properties as long as one is aware of the
inherent limitations of the QTB and keeps a critical eye on the results. However, if one
wants to study biological matter or liquids for example, i.e. materials that are highly
anharmonic and with weak interatomic bonds, then the QTB in its present form and
implementation does not represent a suitable framework and one needs to turn towards
more robust alternative methods.
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