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Abstract

The generation of short and high intensity laser pulses has become important in many
technical applications such as in alternative schemes for laser-driven nuclear fusion or
high energy particles and radiation sources generation. The energetic, intense and short
pulses are difficult to generate due to the damage threshold of solid optics materials.
One way to overcome these present day limitations is to use a plasma as an amplifying
medium. In a plasma, a long pump and short seed pulses can be coupled in order to
amplify the short pulse. The energy of the pump pulse can be delivered to the seed
pulse thanks to the third participating wave, an electron plasma wave [Stimulated Ra-
man Scattering, SRS] or an ion- acoustic wave [Stimulated Brillouin Scattering, SBS].
The SRS mechanism is characterized by a relatively fast plasma wave response allowing
the shortest output pulses (≈fs), but it needs a fine tuning between the laser frequency
ω0 and the electron wave frequency ωe, it is affected by kinetics effects and needs a
long and homogeneous plasma to be effective. The Brillouin amplification mechanism
in the weak coupling regime is limited to longer output pulses (≈ps) than SRS. Ho-
wever, in the strong coupling regime, it can amplify sub-ps pulses at higher intensities
and has numerous advantages: the energy transfer between the pump and seed pul-
ses is relatively fast, allowing short interaction lengths. It is robust with respect to
frequency-mismatch and plasma inhomogeneities and it can operate at higher densities
(above 25% of critical density), allowing larger growth rates and no parasitic thermal
backscattering in the SRS frequency range.
In the present work we describe we describe analytically and theoretically the different
stages of the sc-SBS amplification of the seed, with the objective of improving the
coupling and the efficiency of the energy transfer. A detailed analysis of the phases
time evolution of the participating waves allows one to clarify several issues in plasma
amplification: the energy transfer directionality and the role of the frequency chirp
originating from the laser pulse and the plasma density profile. We identify the diffe-
rent time-dependant phase relations that describe the evolution of the amplification at
the beginning of the coupling, during the so-called exponential regime of amplification
and when the pump depletion sets-in. The phases analysis allows also the estimation
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of optimal values of the chirp parameter α to be imposed to the long chirped-pulse-
generated pump in order to optimize the coupling, taking into account the natural
frequency spread driven by the amplification process and the one associated with the
plasma density profile. We show that the seed amplification can be slightly improved
(reduced) if the chirp parameter is negative (positive) and small. Large values of α
affect in a negative way the amplification reducing sensibly the energy transfer, no
matter the sign of α. The phases analysis in presence of an inhomogeneous plasma
density profile demonstrates that, contrary to SRS-based amplification, sc-SBS requi-
res a preferential gradient of the plasma profile with respect to the seed propagation.
Stimulated Brillouin Backscattering amplification is also investigated with an extensive
analysis of one-dimensional particle-in-cell simulations. Parameters relevant to nowa-
days experimental conditions are investigated. The obtained seed pulse spectra are
analyzed as a function of the interaction conditions such as plasma profile, pulses de-
lay, and seed pulse duration. The factors affecting the amount of energy transferred are
determined, and the competition between Brillouin-based amplification and parasitic
Raman backscattering is analyzed, leading to the optimization of the interaction condi-
tions. The comparison of these results with recent experiments on sc-SBS amplification
validates the first experimental observation of the signatures of the transition from li-
near to self-similar regime.The comparison among the spectra from experiments and
PIC simulations shows that the triggering of SBS is responsible for the amplification,
strongly limiting the growth of SRS. A presentation of the new particle in cell code
SMILEI (together with the results of very large two dimensional simulation of sc-SBS
amplification), concludes this work.
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Chapter 1

Introduction and basic notions of
laser-plasma interactions

In the last decades the development of high power lasers has become important as it
allows to explore new fields of physics, such as nonlinear ionization processes in strong
electric fields [1][2][3], the research on inertial confinement fusion [5] or building new
light sources such as X-ray lasers [6]. Since the laser invention [4], in the late 1960s, the
invention of Q- switching [7] and mode-locking [8] allowed to concentrate the energy
into shorter and shorter pulses. Before the invention of the chirped pulse amplification
in (CPA) 1985, the averaged pulse duration was limited to hundreds of picoseconds
due to the severe damage to the optical components. The revolution of the CPA made
possible to develop femtosecond lasers with average intensities of few petawatt [9] [10].
With the CPA, the lasers pulses are stretched by adding a linear chirp thus increasing
the duration to several hundred ps: the resulting low intensity pulses are amplified and
then recompressed removing the chirp to very short pulses and intensities of the order
of tens of PWs. Numerous applications are waiting for laser pulses much more powerful
than those available today. The efforts to surpass the nowadays intensity barriers with
current laser technology face again serious problems of damage of optical components
damage and costs. For example, if we want to compress 100 kJ in a 100 fs laser pulse to
reach a peak intensity of 1 EW, with the actual damage thresholds of metallic grating
we would need gratings with a very large surface of the order of ≈ 10m2, making the
size and cost of infrastructures difficult to be managed. It has therefore been proposed
to use plasmas as amplifying medium where the damage threshold is much higher. The
plasma-based amplification and compression scheme is due to a three-wave coupling
[24][25] between a short seed pulse, a longer pump pulse delivering the energy and a
plasma wave: the laser pulses are crossing in a plasma chosen in an appropriate way, as
it will be discussed later. The plasma wave can an electron plasma wave (Stimulated
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1 – Introduction and basic notions of laser-plasma interactions

Raman Scattering, SRS) or an ion-acoustic wave (Stimulated Brillouin Scattering). The
SRS mechanism [13],[14]-[23] requires a fine tuning between the laser frequency ω0 and
the electron wave frequency ωe. It is also affected by kinetics effects and needs a long
and homogeneous plasma to be effective. The Brillouin amplification mechanism in the
weak coupling regime is limited to longer output pulses (≈ps) than SRS. However, in
the strong coupling regime (sc-SBS), it can amplify sub-ps pulses at higher intensities
and has numerous advantages: the energy transfer between the pump and seed pulses
is relatively fast, allowing short interaction lengths. As it will be discussed later, the
sc-SBS coupling is enhanced when the interactions happens in inhomogeneous plasma:
this made the SBS amplification possibly easier to be controlled in plasmas generated
in gas jet [34][35][36]. In addition, sc-SBS does not require any frequency mismatch
between the pump and seed. The sc-SBS amplification happens in three main stages: a
first interaction of the pump and seed pulses that allows the phases of the pump, seed
and density perturbation to adapt in order to start the energy transfer. A second stage
where pump depletion can be neglected, known as "linear regime" [24][25][29], during
which the seed stretches and it is exponentially amplified. A last stage (the self-similar
regime) in which the pump energy is depleted and the seed is compressed [27]. The
advantages of plasma based amplifiers are apparent. There is no need for stretching and
recompression apart from the laser system delivering the input laser pulses. The pulse
shortening mechanism allows rather long input pulses, which are easier to generate.
Fig.(1.1) schematically shows these three phases of the seed amplification.

Figure 1.1: Different stages of the seed amplification schematically reproduced.

The goal of this work is to optimize the seed amplification studying the evolution
of the coupling along its different stages. The effects of different parameters on laser-
plasma coupling will be investigated. In the following of this chapter, we present a
short review of laser-plasma physics concepts which are relevant for the understanding
of the interaction regime that will be investigated in this work.
In chapter 2 we make a description of the amplification stages in terms of phase tem-
poral evolution. We will show that the time-dependence of the total phase of the three
implicated waves explains the energy flow direction during the amplification process
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1 – Introduction and basic notions of laser-plasma interactions

and determines the quality of the amplification.
In chapter 3 we present the effect on the coupling of the presence of frequency chirped
pump. The analysis is carried out taking into account the natural frequency spread
driven by the amplification process and the one associated with the plasma density
profile.
In chapter 4 we investigate the Stimulated Brillouin Scattering amplification with an
extensive analysis of one-dimensional PIC simulation that takes into account the pa-
rameters relevant to nowadays experiments.
In chapter 5 we make a comparison direct between results from PIC simulations and
results from recent experiments on sc-SBS. The simulations help to elucidate and un-
derstand the regime explored in the experiments.
In chapter 6 we present the structure of the SMILEI code used to carry out the PIC
simulations results showed in this work. We also include the results of two dimensional
simulations on sc-SBS amplification.
Finally, in the Conclusions, the different aspects of sc-SBS laser amplification will be
resumed and the efficiency of this scheme and its possible applications will be discussed.

1.1 Laser Plasma Interaction

1.2 The Propagation of Light in a Plasma

The electrons quivering in a plasma represent accelerated charges and hence radiate
at the laser frequency that is shifted in phase with respect to the laser radiation field.
This leads to the dispersion relation of electromagnetic waves of frequency ω and wave
number k in a plasma:

ω2(k) = ω2
pe + c2k2 (1.1)

where ωpe =
√
n0ee2/(ε0me) is the electron plasma frequency. The dispersion relation

implies that an electromagnetic wave with a frequency lower than ωpe cannot propagate
in a plasma but is reflected at the surface. Seen from a different point of view, a wave
of frequency ω0 can only propagate if the electron density is smaller than the so called
critical density

nc =
ε0meω

2
0

e2
(1.2)

Plasmas with a lower density are called underdense. Since many plasma effects scale
with the laser frequency, it is often useful to give the electron density as a fraction of
the critical density.
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1 – Introduction and basic notions of laser-plasma interactions

1.3 Plasma waves

In the simplest description of a plasma, collision between the particles are neglected.
Instead, the particles interact only via averaged electrostatic fields caused by charge
inhomogeneities and the magnetic fields generated by plasma currents. In absence of
any imposed large magnetic fields a plasma can support two kind of electrostatic waves,
one at high frequency, called electron plasma wave, and a second at a lower frequency,
called ion acoustic wave.

1.3.1 Electron plasma waves

The high frequency waves are related to high frequency charge density fluctuations
associated with the motion of electrons. Since the ions are much heavier than the
electrons, they are considered as immobile. They form a homogeneous, positively
charged background distribution of density n0i. The fluids equations for the electrons
specie are:

∂ne
∂t

+
∂(ne ~ue)

∂~x
= 0 (1.3)

∂(neue)

∂t
+
∂(ne ~ue

2)

∂~x
= −nee

~E

me
− 1

me

∂pe
∂~x

(1.4)

pe
n3
e

= constant (1.5)

where ne is the electron plasma density, ~ue is the electron mean velocity, ~E is the
electric field and pe is the electron pressure. The combination of the fluid equations
with the Poisson’s equation:

∂ ~E

∂~x
= −4π (ne − Zn0i) (1.6)

gives a wave equation describing the small amplitude fluctuations in the electron den-
sity: (

∂2

∂t2
− 3v2

e

∂2

∂~x2
+ ω2

pe

)
ñe = 0 (1.7)

where ve =
√
kBTe/mE is the electron thermal velocity and kB is the Boltzmann’s

constant. From Eq.(1.7) we can derived the dispersion relation for the electron plasma
waves:

ω2(k) = ωpe + 3v2
ek

2 (1.8)
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1 – Introduction and basic notions of laser-plasma interactions

1.3.2 Ion acoustic waves

A plasma can also support quasi-neutral density oscillations at a lower frequency de-
termined by ions inertia. To describe this kind of waves we consider the fluid equations
for both the electrons and ions species. The ion fluid equations write:

∂ni
∂t

+
∂(niui)

∂~x
= 0 (1.9)

∂(niui)

∂t
+
∂(niu

2
i )

∂~x
=
Zeni ~E

mi
− 1

mi

∂pi
∂~x

(1.10)

pi
n3
i

= constant (1.11)

where ni, ui, mi, pi and Z are the ion density, the mean ion velocity, the ion mass, the
ion pressure and the charge state, respectively. In combination with Eqs.(1.3)-(1.4) if
we consider the electron as isothermal and neglecting the electron inertia we can find
the wave equation describing the ion density fluctuations:(

∂2

∂t2
− ZTe + 3Ti

mi

∂2

∂~x2

)
ñi = 0 (1.12)

The dispersion relation for the ion acoustic waves is then:

ω(k) = ±kcs (1.13)

where cs =
√

ZTe+3Ti
mi

is the ion acoustic velocity. The condition of existence of this
kind of waves is ZTe/Ti << 1 otherwise we have a strong Landau damping. Thus often
the ion temperature is neglected in the definition of the ion acoustic velocity:

cs =

√
ZTe
mi

(1.14)

1.4 Stimulated Brillouin and Raman scattering

There are many instabilities and scattering processes that occur in laser-plasma inter-
action. Two of these instabilities involve the coupling of electromagnetic waves and
either an electron plasma wave or an ion acoustic wave. To be precise, the electro-
magnetic wave decays into a plasma wave and a second electromagnetic wave. If an
electron plasma wave is excited the process is called Stimulated Raman Scattering
(SRS). In case of an ion plasma wave it is called Stimulated Brillouin Scattering (SBS).
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1 – Introduction and basic notions of laser-plasma interactions

As parametric processes, the secondary waves obey a resonance condition.

ω0 = ωs + ωα

~k0 = ~ks + ~kα
(1.15)

where ω0 (k0), ωs (~ks), ωα ( ~kα) are the frequency (wave number) of the incident wave, of
the secondary wave and of the plasma wave respectively. For SRS ωα = ωpe ( ~kα = kpe) is
the frequency (wave number) of a electron plasma wave. For SBS ωα = ωiaw ( ~kα = kiaw)
is the frequency (wave number) of an ion acoustic wave. The secondary waves are
amplified exponentially in the small signal regime. In this regime the depletion of
the incident wave is neglected. The two electromagnetic waves drive the plasma wave
further by their common ponderomotive force. In a plasma, these instabilities can
be used to transfer energy between lasers beams. In particular, in this work we are
focusing on a three waves system: in a plasma, a long pump and short seed pulses can
be coupled in order to amplify the short pulse. The energy of the pump pulse can be
transferred to the seed pulse thanks to the third participating wave. The energy of the
long pump pulse being compressed in a short pulse results in field amplification. The
SRS mechanism is characterized by a relatively fast plasma wave response allowing the
shortest output pulses (≈fs) and thus the highest intensities, but it needs a fine tuning
between the laser frequency ω0 and the electron wave frequency ωe in order to satisfy
the resonance condition (Eq.(1.15)). However it is affected by kinetics effects [13] and
needs a long and homogeneous plasma to be effective. The Brillouin amplification
mechanism in the weak coupling regime is limited to longer output pulses (≈ps) than
SRS. However, in the strong coupling regime it can amplify sub-ps pulses at higher
intensities and has numerous advantages: the energy transfer between the pump and
seed pulses is relatively fast, allowing short interaction lengths. It is robust with respect
to frequency-mismatch and plasma inhomogeneities allowing larger growth rates and
no parasitic thermal backscattering in the SRS frequency range, as it will be discussed
in the following (chapter 4). It can as well operate at higher plasma densities (above
25% of critical density, not discussed here).

1.4.1 Stimulated Brillouin Backscattering

The Brillouin Scattering can be schematically modeled as the coupling of a large am-
plitude light wave into a scattered light plus an ion acoustic wave. The resonance
condition, in terms of frequency and wave number can be written as:

ω0 = ωs + ω

~k0 = ~ks + ~k
(1.16)
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1 – Introduction and basic notions of laser-plasma interactions

where ω0 and k0 are the frequency and the wave number vector of the incident light, ωs
and ks are the frequency and the wave number of the scattered wave and ω and k are the
frequency and the wave number of the ion acoustic wave. The coupled equations that
describe the Brillouin instability can be derived starting to consider the propagation of
a light wave in a plasma. In particular, from the Ampere’s equation:

∇× ~B =
4π

c
~J +

1

c

∂ ~E

∂t
(1.17)

we obtain: (
1

c2

∂2

∂t2
−∇2

)
~A =

4π

c
~J − 1

c

∂∇φ
∂t

(1.18)

where ~A is the vector potential, φ is the electrostatic potential. The electromagnetic
field and the electric field are related to the vector potential as ~B = ∇ × ~A and
~E = −1

c
∂ ~A
∂t − ∇φ. The current term can be split in a longitudinal term ~Jl and a

transverse one ~Jt, so that ~J = ~Jl + ~Jt. The longitudinal current, associated with the
electrostatic plasma wave, can be related to the electrostatic potential:

∂

∂t
∇φ = 4π~Jl (1.19)

so that Eq.(1.18) becomes: (
1

c2

∂2

∂t2
−∇2

)
~A =

4π

c
~Jt (1.20)

As the transverse current ~Jt is associated with the incident light wave, it can expressed
as:

~Jt = −nee
2 ~A

mec
(1.21)

Substituting Eq.(1.21) in Eq.(1.20) we obtain the equation for the propagation of a
light wave in a plasma: (

∂2

∂t2
− c2∇2

)
~A = −4πe2

me
ne ~A (1.22)

The vector potential ~A can be intended now as the sum of two terms, one that is
the incident large light wave ~Ap and the other ~As that is the scattered wave, so that
~A = ~Ap+ ~As. If now we write the electron density as sum of uniform density background
ne0 plus a small density fluctuation ñe, ne = ne0 + ñe, we obtain:(

∂2

∂t2
− c2∇2 + ω2

pe

)
~As = −4πe2

me
ñe ~Ap (1.23)
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1 – Introduction and basic notions of laser-plasma interactions

In Eq.(1.23) the term ñe represents the electron density fluctuations at low frequency
associated with an ion acoustic wave. To derive a relation relying the electron density
fluctuations and the incident light wave, we write the momentum electron fluid equa-
tion, in which the velocity ~ue is split into a longitudinal component ~ul and a transverse
component ~ut = e ~A

mec
:

∂ ~ul
∂t

=
e

me
∇φ− 1

2
∇

(
~ul +

e ~A

mec

)2

− ∇pe
nem

(1.24)

This equation can be simplified considering ~A = ~Ap + ~As, ne = ne0 + ñe and an
isothermal electrons response, obtaining,

e

me
∇φ =

e2

m2
ec

2
∇
(
~Ap · ~As

)
+

v2
e

ne0
∇ñe (1.25)

The ion fluid equations write:

∂ni
∂t

+∇ · (ni ~ui) = 0

∂ ~ui
∂t

+ ~ui · ∇~ui = −Ze
mi
∇φ

(1.26)

The linearization of these equations can be done imposing ni = ni0 + ñi and ~ui = ~̃ui.
The combination of them gives:

∂2ñi
∂t2
− n0iZe

mi
∇2φ (1.27)

We can now replace the equation for the electrostatic potential φ̃ given by Eq.(1.25)
and we obtain the equation that describes the excitation of the ion acoustic by the
beating of the incident wave ~Ap with the scattered light ~As:

∂2ñe
∂t2

− c2
s∇2ñe =

Zne0e
2

memic2
∇2
(
~Ap · ~As

)
(1.28)

We have then a system of two equations (Eqs.(1.23)(1.28)) describing the relation
among the incident light ~Al, the scattered light ~As and the ion acoustic plasma wave.
We consider now the case where we have two counter-propagating lasers beams, one
that we call pump beam that is long and energetic and a second short one that is
shorter and generally smaller in intensity: these beams are interacting between each
other and there are creating the ion acoustic perturbation. The pump is then diffusing
of this perturbation and part of its energy is backscattered towards the seed beam. The
system of equation is :
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1 – Introduction and basic notions of laser-plasma interactions

(
∂2

∂t2
− c2∇2 + ω2

pe

)
~Ap = −ω2

pe

ñe
ne0

~As, (1.29)(
∂2

∂t2
− c2∇2 + ω2

pe

)
~As = −ω2

pe

ñe
ne0

~Ap, (1.30)(
∂2

∂t2
− c2

s∇2

)
ñene0 =

Ze2

c2memi
∇2
(
~Ap · ~As

)
. (1.31)

where Ap is the potential vector of the pump beam, As is the potential vector of the
seed beam, Z is the ion charge, ne0 and ne0/Z are the unperturbed electron and ion
densities, cs =

√
ZTe/mi is the ion acoustic velocity, c is the light speed in vacuum and

ω2
pe is the electron plasma frequency. For the pump and seed lasers counter-propagating

along x with the pump in the direction of positive x, the electric fields can be written,
in a one-dimensional problem:

Ep =
1

2
(Epe

−i(−k0px+ω0pt) + E∗pe
i(−k0px+ω0pt)), (1.32)

Es =
1

2
(Ese

−i(k0sx+ω0st) + E∗se
i(k0sx+ω0st)). (1.33)

where k0p,0s and ω0p,0s are the wave-vectors and the frequencies of the pump and
seed in vacuum, respectively. Considering that ~E = −1

c
∂ ~A
∂t and that the envelopes of

the electric fields vary slowly on a period 1/ω0p,0s and on a wavelength 1/k0p,0s, it is
possible to write:

(∂t + vpg∂x)Ep = −i
ω2
pe

4ω0p

n

n0
Ese

i[(ks−kp)x−(ω0s−ω0p)t], (1.34)

(∂t − vsg∂x)Es = −i
ω2
pe

4ω0s

n∗

n0
Epe

i[(kp−ks)x−(ω0p−ω0s)t], (1.35)

(∂2
t − c2

s∂
2
x)
n

n0
= −Ze

2(kp + ks)
2

2memiω0pω0s
EpE

∗
se
i(kp+ks)xe−i(ω0p−ω0s)t. (1.36)

Here kp,s and ωp,s are the wave-vectors and the frequencies of the pump and seed in
the plasma and vp,sg are the group velocities for the pump and seed laser, respectively.

If we write the density perturbation as:

n

n0
= Neikx, (1.37)
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1 – Introduction and basic notions of laser-plasma interactions

where k = kp − ks ≈ 2kp, Eq.(1.36) becomes:

(∂2
t − c2

s∂
2
x − 4ikpc

2
s∂x + 4k2

pc
2
s)N = − 2Ze2

memic2
EpE

∗
se
−i(ω0p−ω0s)t. (1.38)

From Eq.(1.38) we can now distinguish two regime, the so-called weak and the
strong coupling regimes.

Weak coupling regime

The so-called weak coupling regime corresponds to the limit where the ion-acoustic
wave is resonant, and to lowest order ∂/∂t ∼ kcs. With ω ≈ kcs is than possible to
consider N = N(t)e−iωt so that i∂/∂t = ω + i∂/∂t, where now the time derivative
indicates a slow time variation with respect to the acoustic frequency, ∂/∂t << kcs.
By using this assumptions, and considering the resonance condition ω = ω0p − ω0s in
Eq.(1.34)(1.35)(1.38) we obtain:

(
∂t + vpg∂x

)
Ep = −i

ω2
pe

4ω0p
NEs (1.39)

(
∂t − vsg∂x

)
Es = −i

ω2
pe

4ω0s
N∗Ep (1.40)

(∂t + cs∂x)N = −i Ze2

2memic2k0pcs
EpE

∗
s (1.41)

In the linear regime (i.e. such that Ep ≈ constant) it is possible to consider an
exponential growth , N = Neγt with γ << kcs for a constant profile in space.The seed
will have the same form, Es = Ese

γt with growth rate given by :

γ =
1

2
√

2

kpvoscωpi√
ω0pkpcs

(1.42)

k = 2kp −
2ω0cs
c2

≈ 2kp (1.43)

where vosc = eEp/meω0p.

Strong coupling regime

In Eq.(1.38), since we are interested in the strong-coupling limit [24], ∂2
t is much larger

than 4k2
0pc

2
s, so we can neglect this term on the left hand side. We still leave the

possibility of ∂x > k0p, and thus we can write:
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1 – Introduction and basic notions of laser-plasma interactions

(∂2
t − c2

s∂
2
x)N = − 2Ze2

memic2
EpE

∗
se
−i(ω0p−ω0s)t. (1.44)

The above condition for strong coupling regime (∂2
t >> 4k2

0pc
2
s) is satisfied when:

(
vosc
ve

)2

> 4k0cs
ω0p

ω2
pe

. (1.45)

where vosc = eE0/ω0pme and ve =
√
Te/me .

In more practical units, it is possible to write Eq.(1.45):

I14λ
2
0p > 1.1× 10−1T 3/2

e (nc/n0)(1− n0/nc)
1/2. (1.46)

In Eq.(1.46) I14 is the pump laser intensity in units of 1014W/cm2, λ0p is the laser

wavelength expressed in µm, Te is the electron temperature in keV and nc =
ε0meω2

0p

e2

is the critical density.

Making the hypothesis that ω0p ≈ ω0s, Eqs.(1.34)(1.35)(1.44) can be written as:

(∂t + vpg∂x)Ep = −i
ω2
pe

4ω0p
NEs, (1.47)

(∂t − vsg∂x)Es = −i
ω2
pe

4ω0s
N∗Ep, (1.48)

(∂2
t − c2

s∂
2
x)N = − 2Ze2

memic2kpcs
EpE

∗
s . (1.49)

In Eqs.(1.47)(1.48)(1.49) we have already taken into account the condition k ≈ 2kp,
so that the spatial variations is for the envelope. If we take N = N e−iωt, Es = Ese

iω∗t

and Ep as a constant, we obtain the so-called linear sc-SBS solution, that is exponential
growth, with:

ω = ωsc ≡ ωsc + iγsc, (1.50)

ωsc =

(
k2
pv

2
oscω

2
pi

2ω0p

)1/3(
1

2
+ i

√
3

2

)
. (1.51)

Hence, in the strong coupling regime the frequency of the electrostatic wave is mostly
determined by the amplitude of the pump light wave (vosc), and | ωsc |� 2kpcs, that
corresponds to Eq.(1.45).
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The growth rate of the SBS instability is the imaginary part of Eq.(1.51):

γsc =

(
k2
pv

2
oscω

2
pi

2ω0p

)1/3(√
3

2

)
. (1.52)

Eq (1.52) can be normalized to ω0p and expressed in more practical units:

γsc
ω0p

= 5.04× 10−8
(
Ip[W/cm

2]λ2[µm]
)1/3(

1− ne
nc

)1/3(ne
nc

)1/3(Z
A

)1/3

(1.53)

From Eq.(1.47)(1.48)(1.49) it is possible to obtain a self-similar solution [27] in which
the seed evolution is described in correspondence with the pump depletion. In most of
the simulations presented in this paper we enter the self-similar regime where there is
efficient energy transfer from the pump to the seed. In order to study the pump to seed
energy transfer in the strong coupling regime and with relatively short pumps (typically
few ps) and seed (typically some 100 fs), we recall that such pulses are compressed by
the chirped pulse amplification (CPA) technique. In particular, motivated by current
day experimental conditions, we can include the effect of a chirp in the pump. Thus
we consider a pump laser with the electric field expressed as:

Ep ∝ ei(k0x−ω0t+φ(x,t)) (1.54)

where the phase variation due to the chirp is:

φ(x, t) = α(k0(x− x0)− ω0(t− t0))2 (1.55)

This corresponds to the propagation of a laser pulse with a time dependent fre-
quency:

ω(x, t) = ω0 −
∂φ(x, t)

∂t
= ω0 + 2α(k0(x− x0)− ω0(t− t0)) (1.56)

On a given point x0 the frequency is evolving linearly with time. x0 and t0 indicate
the centering of the chirp, where the nominal frequency ω0 of the laser pulse is located.
With this convention for the phase of the chirp, at x0, the frequency is varying as:

ω(t) = ω0 − 2αω2
0 (t− t0) (1.57)

The corresponding wavelength evolution is:

λ(t) ≈ λ0 + 4πcα (t− t0) (1.58)

The results of Eq.(1.57)(1.58) are shown in Fig.(1.2) in function of t − t0, at x = x0
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1 – Introduction and basic notions of laser-plasma interactions

Figure 1.2: Chirp phase φs(t) (a), frequency ω(t) − ω0 (b) and wavelength λ − λ0 (c)
values in function of time and for α = 3.3 × 10−7 (blue line) and α = −3.3 × 10−7

(green line)
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1 – Introduction and basic notions of laser-plasma interactions

and for | α |= 3.3 × 10−17: when α = 3.3 × 10−7 > 0, the chirp phase shape has
a positive concavity (Fig.(1.2(a)), blue line) and the laser pulse pulse frequency is
varying from high values to lower ones (Fig.(1.2(b)), blue line). On the opposite, when
α = −3.3 × 10−7 < 0, the laser frequency is varying from lower values to higher ones
(Fig.(1.2(b)), green line).

In the presence of chirp, Eq.(1.47)-(1.49) become:

(
∂t + vpg∂x

)
Ep = −i

ω2
pe

4ω0p
NEse

−iφ (1.59)

(
∂t − vsg∂x

)
Es = −i

ω2
pe

4ω0s
N∗Epe

iφ (1.60)

(
∂2
t − c2

s∂
2
x

)
N = − 2Ze2

memic2
EpE

∗
se
iφ (1.61)

1.4.2 Stimulated Raman Backscattering

A similar approach can be followed to derive the dispersion relation of the Stimulated
Raman Backscattering. In this case the pump and seed beams are coupling each other
and creating an high frequency electron density fluctuation. The resonance conditions
are now:

ω0 = ωs + ωpe

~k0 = ~ks + ~kpe
(1.62)

where ω0 and k0 are, as before, the frequency and the wave number vector of the
incident light, ωs and ks are the frequency and the wave number of the scattered wave
and ωpe and kpe are the frequency and the wave number vector of the electron plasma
wave. As the minimum allowed frequency of a beam traveling in a plasma is dictated
by ωpe, the Raman instability can exist only for density lower of ncr/4. Following
the same procedure than before, we can then couple Eq.(1.24) with the electron fluid
linearized equations for mass and momentum conservation, obtaining:(

∂2

∂t2
+ ωpe − 3v2

e∇2

)
ñe =

ne0e
2

mec2
∇
(
~Al · ~As

)
(1.63)
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If now we consider a three waves coupling between the pump laser, the seed beam and
the density perturbation excited, we can write:(

∂2

∂t2
− c2∇2 + ω2

pe

)
~Ap = −ω2

pe

n

n0

~As, (1.64)

(
∂2

∂t2
− c2∇2 + ω2

pe

)
~As = −ω2

pe

n

n0

~Ap, (1.65)(
∂2

∂t2
+ ωpe − 3v2

e∇2

)
n

n0
=

e2

c2m2
e

∇2
(
~Ap · ~As

)
. (1.66)

The exponential growth rate of the instability γSRS , in the case of direct backscatter,
is, in practical units:

γSRS = 4.27× 10−3

(
n

nc

)1/4 (
I14λ

2
0p

)1/2
ω0p (1.67)

where the density is expressed in units of critical density, I14 is the pump intensity
in units of 1014W/cm2, and λ0p and ω0p are the pump wavelength and frequency
in vacuum. For typical parameters that we use in this work (n/nc = 0.05 − 0.1,
Ip = 1015 W/cm2) we have γ−1

SRS ≈ 78− 66 fs. Notice that the strong coupling regime
may exists also for SRS, however it requires relativistic intensities not studied in this
work.
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Chapter 2

Energy flow directionality and time
scale characterization in the strong
coupling regime for SBS

In this chapter we explore the energy directionality and the characteristic time scales
of the SBS amplification. To do so, we rewrite the system of equation describing the
SBS amplification in the strong coupling regime (Eq.(1.59)-(1.61)) explicitly in terms of
amplitudes and phases of the pump and seed beams and plasma density perturbation.
As will be discussed in detail, in contrast to the weak-coupling regime of Brillouin
backscattering and standard optical parametric amplification (OPA) techniques [46],
the phase relation among pump, seed and plasma density perturbation is continuously
time-dependent. The description of the evolution in time of the phases of the three
waves allows one to give an explanation concerning the energy flow direction during
the amplification process and determines the quality of the amplification. The chapter
is organized as follows: in Sec. 2.1 we briefly remind the results in the weak coupling
regime. In this regime the total phase (defined as the combination of the phases of
the pump, seed and plasma density perturbation) is locked at ϑ = π/2 and that the
transfer direction of the energy is determined by this value of phase. In Sec. 2.3 we
describe the total phase evolution in terms of the maximum growth rate γsc for the
different stages of the amplification: we show that, during the very first moments of
the coupling, the total phase is determined by the seed and that it is evolving in time
to reach the value of ϑ = −4π/3. When this particular value is reached (tγsc ≈ 2),
the seed enters the linear regime (exponential growth) of amplification and the total
phase is almost constant until the pump starts to be depleted and the seed enters in the
self-similar regime (tγsc ≈ 4.67 for Ip0/Is0 = 100). At that point the total phase starts
to oscillate around −π continuously inverting the energy flow direction, leading to the
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2 – Energy flow directionality and time scale characterization in the strong coupling regime for SBS

oscillations behind the first peak that are the analogous of the π−pulse for the weak
coupling regime. The results of the numerical simulations have been obtained solving
numerically the SBS coupling equations (1.59)-(1.61) in one dimension: this allows one
to study the evolution of the seed amplification in the pure Brillouin regime without
having to take take into account the other instabilities, such as SRS, that can affect
the amplification.

2.1 Weak coupling regime

In this section we briefly study the energy flow direction in the weak coupling regime
and how this flow is determined by the sign of the phase matching between pump and
seed beams and density perturbation. To do so, we consider the evolution of the phase
from the beginning of the process in an homogeneous system, in which the pump, the
seed and the initial plasma density shape are constant. In Sec. 1.4.1 of the introduction
we showed that the system of coupled equations describing the amplification in the weak
coupling regime writes:

(
∂t + vpg∂x

)
Ep = −iµpNEs (2.1)

(
∂t − vsg∂x

)
Es = −iµsN∗Ep (2.2)

(∂t + cs∂x)N = −iζEpE∗s (2.3)

where Ep, Es and N are the wave function for the pump, the seed and the density
perturbation and µs, µp and ζ are the coupling factors defined as:

µp =
ω2
pe

4ω0p
(2.4)

µs =
ω2
pe

4ω0s
(2.5)

ζ =
Ze2

2memic2k0pcs
(2.6)

Let us decompose the waves functions in their amplitude (defined as a positive
quantity) and a phase, so that A→ Aeiϕ. We can define a total phase that takes into
account this combination:

ϑ = ϕp − ϕs − ϕ (2.7)
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2 – Energy flow directionality and time scale characterization in the strong coupling regime for SBS

where ϕp, ϕs, ϕ are the phases of the pump, of the seed and of the density perturbation
respectively. We already assumed phase matching by imposing the resonant condition,
and now we can, with no loss of generality, consider that initial pump and seed phases
are unperturbed and equal to zero, ϕp = ϕs = 0, and the density perturbation is zero.

According to the system of equations above the density perturbation growth is:

N(t) = −iζEpE∗s t (2.8)

From Eq.(2.8), with the assumptions above, we find that the phase of the density
perturbation is given by ϕ = −π

2 and the global phase is ϑ = π
2 . If we consider

the growth of the ion acoustic wave at a fixed location in the plasma and neglect
the convective term, we can simplify the system of equations above and explicit the
subsequent evolution of the amplitude and the phase of the waves:

∂tEp = −µpNEs sinϑ (2.9)

∂tϕp = −µp
NEs
Ep

cosϑ (2.10)

∂tEs = µsNEp sinϑ (2.11)

∂tϕs = −µs
NEp
Es

cosϑ (2.12)

∂tN = ζEpEs sinϑ (2.13)

∂tϕ = −ζ EpEs
N

cosϑ (2.14)

It is clear from the equations above that the phases of the different waves will appear
in the same combination. The global phase ϑ is the relevant quantity that determines
the efficiency of the coupling. Since initially we have that the global phase is ϑ = π

2 ,
the density perturbation, pump and seed phases ϕ, ϕp and ϕs are constant during the
whole process, as the coupling term on the right of Eqs.(2.10)(2.12)(2.14) is zero. This
means that the global phase stays constant at ϑ = π

2 . From Eqs.(2.9)(2.11) we have
then:

∂tEs > 0

∂tEp < 0
(2.15)

The energy flows from the pump to the seed. However, as the pump electric field
amplitude decreases and eventually goes to zero, the global phase flips, and we have
ϑ = −π

2 . At this new value of the global phase, the phases are constant again, but now
the energy transfer goes in the opposite direction, from the seed to the pump. This is
the so-called pi-pulse. In the following section we show that, for the strong coupling
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regime, the phases are not locked anymore but in continuous evolution with the time.

2.2 Strong coupling regime

As done in Sec. 2.1, it is useful to explicit the time evolution of the amplitude and the
phase of the fields from Eqs.(1.59)-(1.61), Aα → Aαe

iϕα , for α = p, s and N = Neiϕ :

(∂t + vpg∂x)Ep = −µNEs sinϑ (2.16)

(∂t + vpg∂x)ϕp = −µNEs
Ep

cosϑ (2.17)

(∂t − vsg∂x)Es = µNEp sinϑ (2.18)

(∂t − vsg∂x)ϕs = −µNEp
Es

cosϑ (2.19)

∂2
tN −N(∂tϕ

2)− c2
s(∂

2
xN −N(∂xϕ

2)) = −ΛEpEs cosϑ (2.20)

N∂2
t ϕ− c2

sN∂
2
xϕ+ 2∂tN∂tϕ− 2c2

s∂xN∂xϕ = −ΛEpEs sinϑ (2.21)

where µ and Λ are the coupling factor for the fields and the density perturbation
respectively:

µ =
ω2
pe

4ω0
(2.22)

Λ =
2Ze2

memic2
(2.23)

In Eq.(2.16)-(2.21) that quantity that appears on the right hand side ϑ is the global
phase:

ϑ = ϕp − ϕs − ϕ+ φ (2.24)

2.3 Different phases of the amplification in the strong-
coupling limit

In these section we examine in detail the amplification process in the simplest case
where the chirp is zero and the plasma density profile, pump and seed are constants. We
will examine in the next chapter the effect of finite pulse duration, and inhomogenous
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density profiles. In order to support our theoretical analysis and estimates we solve
numerically Eq.(1.59)(1.60)(1.61) with α = 0, for plasma and laser conditions such that
SBS develops in the strong-coupling regime for the case of a plasma of constant density,
and the pump and seed laser beams such that the intensity ramps up in a short time
up to a constant value, and then stays constant. We examine in detail the results of
a simulation with the following parameters motivated by recent experiments [34]. The
pump and seed lasers have an intensity of Ipump = 1015W/cm2 and Iseed = 1013W/cm2,
respectively. The same wavelength Λ0 = 1µm has been used for both laser beams,
corresponding to a frequency ω0 = 1.9× 1015rad/s.

The plasma has a length of Lp = 600 µm and a constant density of n/nc = 0.1;
50 µm of vacuum are left on both side of plasma. For these values of pump intensity
and plasma density, from Eq.(1.53), γsc ≈ 4.29 × 1012 s−1 corresponding to 233 fs.
The simulation starts with the laser beams in the simulation box, crossing at xcross =

350 µm; the time ramp for the lasers is tslope = 30 fs. This case correspond to an
efficient amplification and allows to study in detail and define the different stages of
the amplification process. The results of the amplification are shown in Figs.(2.1)(2.2).
In Fig. (2.1) we show the amplification as function fo space (t = 0) at the beginning
(Fig.(2.1)(a)) and at the end of the interaction (tend = 1.5 ps, time necessary for the
seed laser to propagate inside half of the simulation box) (Fig.(2.1)(b)). In Fig.(2.2)
we show the pump and seed electric field amplitudes (Fig.(2.2)(c)) and the phases
evolution (Fig.(2.2)(a)(b)) as a function of time by recording the informations about
electric fields, density perturbation amplitudes and phase evolution in the middle of
the simulation box, at x = 350 µm (dashed vertical line in Fig.(2.1)). The initial
simulations set-up with both the laser already in the middle of the plasma allows one
to start with a condition in which the plasma is not perturbed yet and the seed and
pump amplitude are constant.

We can deduce analytically form the equations presented in the previous chapter
the time evolution of the pump, seed and density perturbation amplitudes, in order to
define the directionality of the energy flow and compare with Fig.(2.2). In the green
shadowed regions of Fig.(2.2(b)) the energy flows from the pump to seed and the blue
regions viceversa. Various characteristic times can be identified for each step of the
amplification, i) the initial seed growth time (tγsc ≈ 2 in Fig.(2.2)), ii) the saturation
of the growth at a given position (line shadowed region for 2 < tγsc < 4.3 in Fig.(2.2)),
and finally iii) the time when the energy flow flips, from seed to pump, and the growth
saturates (dashed-dotted line for tγsc ≈ 4.67 in Fig.(2.2)). At this time the seed reaches
the maximum value of the electric field at a given position. At later time the situation
reverses and a second pulse in the seed grows again but at much smaller amplitude. In
the following we will analyze in detail all the different phases of the amplification.
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Figure 2.1: Electric fields amplitudes, in V/m, of the pump (blue line) and of the seed
(green line) at the beginning (a) and after tend = 1.5 ps (b). The unperturbed density
profile is in red, in arbitrary units.
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Figure 2.2: a) Evolution in time of the phases of the pump (ϕp, blue line), of the seed
(−ϕs, green line) and density perturbation (−ϕ, red line) in function of time and in
units of π. b) Time evolution of the total phase ϑ as defined in Eq.(2.24), in units of π.
The green shadowed regions indicate the values of ϑ for which the pump amplifies the
seed; the blue ones corresponds to a reversed flow energy direction (the seed amplifies
the pump). c) Electric fields amplitudes, in V/m, of the pump (blue line) and of the
seed (green line) in function of time. All these results are evaluated at the initial
crossing point of the lasers, x̂ = 0 (x = 350µm)
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2.3.1 Initial seed growth

To perform our analysis, and compare with the numerical results we will study Eq.(2.16)-
(2.21) at the initial crossing point xcross = 350µm. In particular, we make our analysis
in a new space frame in which Eq.(2.16)-(2.21) are related to x̂ = x − xcross and in a
way that the pump and seed lasers are overlapping on the domain:

− vgt ≤ x̂ ≤ vgt (2.25)

Let us consider without loss of generality that at t = 0 the density perturbation is zero,
and the pump and seed fields phases are the same (ϕp = ϕs = 0). At a given point x̂,
the lasers crossing starts at a time given by:

t0 =
| x̂ |
vg

(2.26)

Making these hypothesis it is possible to solve for the density from Eq. (2.20), in which
we neglect the terms multiplied by c2

s and, since N ≈ 0 at the beginning we neglect
the second terms in Eq. (2.20):

∂2
tN ≈ −ΛEpEs cosϑ (2.27)

If we integrate Eq.(2.27), we find that the plasma perturbation N is :

N(x̂, t) = −ΛEpEs
(t− t0)2

2
cosϑ = −ΛEpEs

(
t− |x̂|vg

)2

2
cosϑ (2.28)

Since N has to be positive, and the fields amplitudes are now defined as positive, we
deduce from Eq.(2.28) that cosϑ = −1, ϑ = −π and ϕ = π. Making the hypothesis
that, at the beginning of the interaction the derivative in space is zero, Eq. (2.17) and
Eq. (2.19) can be written as:

∂tϕp = µNEs/Ep

∂tϕs = µNEp/Es

These equations describe the evolution of the pump and seed phases. At the begin-
ning, the pump laser has an higher intensity compared to the seed one, Ep � Es, and
as a consequence

∂tϕs � ∂tϕp ≈ 0
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This means that ϕp that was taken initially zero will stay so, and ϕS will growth

ϑ ≈ −π + ϕp − ϕs < −π

From Eq.(2.16) and (2.18) we deduce that the energy flows from the pump to the seed
since:

∂tEs > 0

∂tEp < 0
(2.29)

In a first stage as long as the pump locally is more intense than the
seed Ep > Es the pump laser gives energy to the seed and the phase of the
ion-acoustic wave imposes that the pump amplifies the seed. In Fig.(2.2(b)),
this corresponds to the green shadowed region. The values of the total phase dictate
the direction of the energy transfer: if −2π < ϑ < −π it means that sinϑ > 0 and the
energy direction is dictated by Eq.(2.29) (green regions in Fig.(2.2(b)). Otherwise, if
−π < ϑ < 0, sinϑ < 0 the energy flow direction flips and the pump is amplified by the
seed (blue regions in Fig.(2.2(b)). From the Eq.(2.19) for the phase of the seed ϕs, it
is possible to obtain the frequency shift at the beginning of the coupling when N > 0

and ϑ = −π:

∆ωs = ∂tϕs = ΛE2
p0

(
t− |x|vg

)2

2
> 0 (2.30)

where Ep0 is the initial value of the electric field amplitude of the pump. The seed
is then downshifted with respect its initial value as a function of time. During this
transient regime, almost only the seed phase ϕs is varying and the total
phase variation ϑ is determined by −ϕs. Fig.(2.2(a)) To study the behavior of
the seed phase given by Eq.(2.19) and its evolution we make a second change of frame
of reference:

y = x̂+ | vg | t

τ = t

This allows one to follow a particular point on the seed pulse along the entire amplifi-
cation process. In this new reference, Eq.(2.19) become:

∂τϕs(y, τ) = −µNEp0
Es0

cosϑ (2.31)

where Es0 is the initial value of the electric field amplitude of the pump. Using the
same change of variables, Eq.(2.28) can be written as:

31



2 – Energy flow directionality and time scale characterization in the strong coupling regime for SBS

N(y, τ) =

−ΛEp0Es0

(
2τ− y

vg

)2
2 if x > 0→ vgτ ≤ y ≤ 2vgτ

−ΛEp0Es0

(
y
vg

)2
2 if x < 0→ 0 ≤ y ≤ vgτ

(2.32)

If we consider a point on the seed pulse for which x̂ > 0 at a given time τ , it means
that the point is at the right of the crossing point x̂ = 0. In this case the seed phase is
varying as:

ϕs(y, τ) = µ
Ep
Es

∫ τ

y/2vg

−ΛEpEs

(
2τ − y

vg

)2

2

 dτ =
1

12
µΛE2

p

(
2τ − y

vg

)3

=

2

9
√

3
γ3
sc

(
2τ − y

vg

)3

(2.33)

Otherwise if a point on the seed is at x̂ < 0 at a given time τ , it means that the point
travelled from x̂ > 0 to x̂ < 0; thus the seed phase can be expressed as:

ϕs(y, τ) = µ
Ep
Es

∫ y/vg

y/2vg

−ΛEpEs

(
2τ − y

vg

)2

2

 dτ +

∫ τ

y/vg

−ΛEpEs

(
y
vg

)2

2

 dτ

 =

1

12
µΛE2

p

(
y

vg

)2(
6τ − 5

y

vg

)
=

2

9
√

3
γ3
sc

(
y

vg

)2(
6τ − 5

y

vg

)
(2.34)

The results on the evolution of the seed phase can be resumed, in units of x and t,
as following:

ϕs(x̂, t) =


2

9
√

3
γ3
sc

(
t− x̂

vg

)3
if x̂ > 0

2
9
√

3
γ3
sct

3 if x̂ = 0

2
9
√

3
γ3
sc

(
t+ x̂

vg

)2 (
t− 5 x̂

vg

)
if x̂ < 0

(2.35)

In Fig.(2.3) we show the comparison between the theoretical estimation of the
phase of the seed (ϕths , red line) and the results from simulation (ϕs, green line), for
0 < tγsc < 2: the estimation of Eq.(2.35) is reproducing quite well the results from
simulations. Notice that in Fig.(2.3) the theoretical estimation of the phase of the seed
(ϕths , red line) has been shifted in time of tγsc ≈ 0.11 corresponding to the time ramp
of the seed. For x̂ = 0 the total phase ϑ is:
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ϑ(x̂ = 0, t) = −π − 2

9
√
3
γ3sct

3 (2.36)

Figure 2.3: Seed phase at the lasers crossing point x̂ = 0 and in function of time
(0 < tγsc < 2: comparison between the results of ϕs from simulations (green line) and
from the expression given in Eq.(2.35) (red line).

The evolution of the density perturbation phase ϕ for this initial interaction stage
can be calculated . We consider Eq.(2.21) neglecting the terms multiplied by cs:

∂tϕ = −ΛEpEs sinϑ

2∂tN
(2.37)

If ϑ ≈ π − ϕs and ∂tN = −ΛEpEs(cosϑ)t, we obtain:

∂tϕ =
1

2

tanϑ

t
= −1

2

tanϕs

t
(2.38)

and, making the hypothesis that tanϕs ≈ ϕs, we can write:

∂tϕ ≈ −1

2

ϕs

t
(2.39)
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As, from Eq.(2.35), ϕs has a different expression if x̂ > 0 or x̂ < 0, we can obtain:

ϕ(x̂, t) =




√
3

27 γ
3
sc

[
t3

3 − 3
2

x̂
vg
t2 − 3

(
x̂
vg

)2
t+ 25

6

(
x̂
vg

)3
−

(
x̂
vg

)3
ln t

]
if x̂ > 0

1
6ϕs(0, t) if x̂ = 0
√
3

27 γ
3
sc

[
t3

3 − 3
2

x̂
vg
t2 − 9

(
x̂
vg

)2
t+ 43

6

(
x̂
vg

)3
− 5

(
x̂
vg

)3
ln t

]
if x̂ < 0

(2.40)

Figure 2.4: Comparison between the simulation results for the evolution of the plasma
density perturbation phase (green line, −ϕ) and the estimation given by Eq.(2.40) (red
line, ϕs/6), at x̂ = 0 and for 0 < tγsc < 2.

In Fig.(2.4) we show the agreement between the simulation results for the evolution
of the plasma density ϕ (green line, −ϕ) and the estimation given by Eq.(2.40) (red
line, ϕs/6), at x̂ = 0 and for 0 < tγsc < 2. This result confirms that before the
exponential regime ϕ is negligible.

Eq.(2.28) and (2.35) are valid up to when the exponential growth regime [24] will
take place for the seed and the density perturbation as derived in Eq.(1.53). Comparing
with Fig.(2.2), the discussion confirms that on value and evolution of the seed phase
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ϕs given by Eq.(2.35) is valid for 0 < tγsc < 2. For later time, 2 < tγsc < 4.3 (dashed
region in Fig.(2.2)), the seed enters the so-called "linear regime" (where pump depletion
is neglected but both seed and plasma density perturbations grow exponentially) that
will be discussed in detail in the next section. In this limit, that has been largely studied
in the past, the downshift of the seed is a constant, given by the real part of Eq.(1.53),
while the density fluctuations oscillate at the same frequency. Thus in this part the
phases of the seed and density fluctuations are of the same order and compensating
each other, still with φp ≈ 0. As the intensity of the seed grows and becomes larger
than the pump one, the energy transfer changes direction (blue regions in Fig.(2.2),
for tγsc > 4.67) . This doesn’t happen instantly and the temporal spread of the seed
is determined by the time needed by the phases to adapt as will be detailed in the
following. To resume, in this section we showed that the energy transfer direction is
dictated by the evolution of the phases: in particular, as long the electric field amplitude
of the pump is more important than the seed one, the phase of the ion-acoustic wave
imposes that the pump amplify the seed. We also showed that the phases need a certain
time to adapt before entering the linear regime of amplification: during this transient
regime (of the order of tγsc ≈ 2, Fig.(2.2)(a)) the variation of the total phase ϑ is
determined by the seed phase ϕs. In the following section we show the phases behavior
during the so-called linear regime of amplification.

2.3.2 Exponential growth - ’Linear’ phase

After the transient growth and while the pump amplitude (and the corresponding
phase) can be considered roughly constant, as mentioned above the seed amplitude
and density perturbation enter the standard exponential phase [24][29]. Consistent
with recent literature on the subject [24][27][30] we call this phase the linear phase,
that is thus defined by the fact that pump depletion is negligible, and the pump and
seed exhibit exponential growth. Then we have φp ≈ 0, N ∝ e−iωsct et Es ∝ eiωsc∗t.

The seed phase ϕs evolves as:

ϕs = γsc/
√

3 · t+ ϕs0 (2.41)

and the density perturbation phase:

ϕ = −γsc/
√

3 · t+ ϕ0. (2.42)

and the total phase ϑ is roughly constant. From Eq.(2.18) and Eq.(2.19), making
the hypothesis that the seed amplitude Es and the density perturbation N are evolving
with eγsct, and using Eq. (2.41) it is possible to evaluate the constant value of the total
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phase, tan(ϑ) = −
√

3 and:

ϑ = −4

3
π (2.43)

This is confirmed by simulations as can be seen in seen in Fig.(2.2)(a) (where ϑ ≈
constant) and Fig.(2.2)(c) where the electric field amplitude of the seed is growing
exponentially for 2 < tγsc < 4.3. We are now in a position to estimate the necessary
time ti since the beginning of the coupling to reach the exponential amplification phase.
This is the time for ϑ as given by Eq. (2.35) to be of the order of −4π/3, that is for
ϕs = 2

9
√

3
γ3
sct

3 ∼ π/3:

ti =

(
4π

µΛE2
p0

)1/3

≈ 2

γsc
. (2.44)

The estimation of ti is confirmed by numerical simulations: in Fig.(2.2)(c) we can
see that the seed electric field amplitude start to grow at tγsc ≈ 2. The value of
density perturbation at t = ti is obtained by considering (from Eq.(2.28) N(x = 0, t) =

ΛEp0Es0t
2
i /2 :

N(x = 0, ti) = ΛEp0Es0

(
4π

µΛE2
p0

)2/3

≈ 3.8
γsc
µ

√
Is0
Ip0

, (2.45)

where Is0 and Ip0 are the initial intensities of the seed and pump respectively.
To summarize, in this section we showed that during the exponential regime of

amplification of the seed, the global phase is almost constant and ϑ = −4
3π. The nec-

essary time to reach the exponential regime (tγsc ≈ 2 for our values of pump intensity
and plasma density) has been estimated considering that, during the initial transient
regime, only the seed phase is varying. The time during which the exponential regime
holds until pump depletion starts and the solution enters the self-similar will be calcu-
lated in the following section.

2.3.3 Pump depletion and growth saturation

The duration of the exponential regime is limited by the pump depletion that starts
to play a role when the seed amplitude is comparable with the pump one. This time
can be evaluated making the hypothesis that Es ≈ Ep0 at the end of the exponential
regime, with Es0 indicating the initial value of the seed amplitude:

tdepl =
1

γsc
log

Ep0
Es0

=
1

2

1

γsc
log

Ip0
Is0

=
1.15

γsc
log10

Ip0
Is0

. (2.46)

The total time, since the beginning of the coupling to reach the pump depletion
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can be now calculated
ttot =

1

γsc
(2 + 1.15 log10

Ip0
Is0

) (2.47)

With the intensities and plasma density values considered, ttot ≈ 4.3
γsc

. Comparing
with Fig.(2.2)(c), we can see that the estimation made for ttot (right side of the shad-
owed region) is quite accurate, even if the total phase ϑ shown in Fig.(2.2)(b) has not
reached yet −π, value at which the energy transfer direction flips. To have a better
estimation of the time at which ϑ = −π we study the evolution of the electric field
amplitude and phase of the pump, since in this stage the phase of the pump is affected
(Fig.(2.2)(a)). During the exponential regime, the total phase ϑ is given by Eq.(2.43).
From Eq.(2.16), if ϑ = −4/3π, supposing N ∝ eγsct and Es ∝ eγsct and using the value
of N(x̂ = 0, t = ti) calculated at the beginning of the exponential regime Eq.(2.45), we
obtain:

Ep(t) = Ep0

[
1−
√

3

2

Is0
Ip0

e2γsct

]
(2.48)

where Ep0, Is0 and Ip0 are the initial values of amplitude of the pump, intensity of the
seed and of the pump, respectively. Notice that, in Eq.(2.48) we didn’t include the
space derivative ∂Ep

∂x
of Eq.(2.16) as it is negligible in the limit of the approximation

used in the estimation.

From Eq.2.17, with the same hypothesis, we obtain the equation for the evolution
of the pump phase ϕp:

∂ϕp = ∂

(
ϕp −

4π

3

)
= −NEs0e

2γsct

Ep0
cos

(
ϕp −

4π

3

)
. (2.49)

Integrating the previous equation leads to :

sin

(
ϕp −

4π

3

)
=
−1 +Ae−β(e

2γsct−1)

1 +Ae−β(e2γsct−1)
, (2.50)

where A = (1− sin 4π/3)/(1 + sin 4π/3) = 7 + 4
√

3 ≈ 14 and β = NEs0/(Ep0γsc).

We can develop Eq. 2.50 making the hypothesis that the term β
(
e2γsct − 1

)
� 1

and we obtain sin
(
ϕp − 4π

3

)
=
√

3
2 −

1
8β
(
e2γsct − 1

)
.

For ϕp < 1 we obtain:

ϕp =
β

4

(
e2γscτ − 1

)
=

1

4
· NEs0
Ep0γsc

(
e2γsct − 1

)
. (2.51)

Consistent with Fig.(2.2)(a) we find that the phase of the pump starts to grow when
depletion starts to set in, at t > ttot. If we substitute the value of density perturbation
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at the beginning of the exponential regime, as given by Eq.2.45, we find a simpler
expression:

ϕp ≈
1

2

Is0
Ip0

(
e2γsct − 1

)
(2.52)

We are now in a position to estimate at which time the pump will stop to transferring
energy to the seed. The characteristic time necessary to let the global phase ϑ to vary
from −4π/3 to −π (value at which the coupling is zero) is given by the variation of ϕp
(as expressed in the equation above) of π/3. As we can see in the simulations (Fig.(2.2))
and as expected |ϑ| keeps diminishing and when ϑ = −π + ε the direction of the flow
reverses from the pump to the seed, leading to the oscillation behind the first peak,
that are the analogous of the π-pulse for the weak coupling regime. Imposing ϕp ≈ π/3
in Eq.(2.52) we find:

tϕp ≈
1

2γsc
log

(
2π

3

Ip
Is

)
(2.53)

This allows one to evaluate the total time (since the begin of the coupling) at which
the electric field reach its maximum: at that time the pump stops to give energy to
seed.

tEsmaxγsc ≈ ti + tϕp = 2 + 2.67 = 4.67 (2.54)

In Fig.(2.2) tEsmax is indicated by the black dashed-dotted vertical line. As we can
see the estimation given by Eq.(2.54) is very accurate: at tγsc = 4.67 the total phase is
ϑ = −π/2 (Fig.(2.2)(b)) and the first peak of the amplified seed reaches its maximum
(Fig.(2.2)(c)). For tγsc > tEsmax the seed amplitude starts to decrease and the pump
is amplified. At later time, the process is inverted again (dotted black line) and a new
small peak of the seed starts to be amplified.

2.4 Conclusions

In this chapter we showed the importance of the time evolution of the phases of pump,
seed lasers and density perturbation in the determination of the directionality of the
energy transfer. In particular, developing the system of equations describing the SBS
amplification in terms of amplitudes and the phases, we can make a complete descrip-
tion of the different stages of amplification. In the case of the amplification of a laser
beam in the weak coupling regime, we found that the total phase (expressed as combi-
nation of the phases of the pump, seed and density perturbation) stays constant: when
ϑ = π/2 the seed is amplified by the pump. As the pump amplitude decreases and
eventually goes to zero, the global phase flips to ϑ = −π/2 and the energy transfer
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change direction, from the seed to the pump.
In the strong-coupling regime the situation is more complicated as the total phase is
continuously time-dependant. The energy transfer direction is dictated by the evolu-
tion of the phases: as long as the electric field amplitude of the pump is more important
than the seed one, the pump gives energy to the seed. During the very first moments
of the coupling (of the order of ≈ 2γsc for the values of pump intensity and plasma
density considered in this chapter), almost only the seed phase ϕs is varying and the
total phase variation is determined by the seed. When later in time the seed enters
the exponential regime of amplification, known as "linear regime", the seed and density
perturbation phases start to compensate each other (letting the pump phase unchanged
and equal to zero), resulting in a constant value of the total phase, ϑ = −4

3π. As soon
as the amplified seed intensity is comparable with the pump one (at tγsc ≈ 4.3 in our
simulations and estimations), the total phase starts to evolve again from ϑ = −4

3π to
ϑ = −π. This transient is driven by the pump phase ϕp that is varying with time: when
ϕp = π

3 (at tγsc ≈ 4.67) the total phase reaches ϑ = −π, value at which the energy
transfer is inverted. At this moment, the first peak of the amplified seed is formed
and the seed starts to give energy to the pump. The total phase is then oscillating
around ϑ = −π + ε, leading to the oscillation behind the first peak of the seed that
are analogous of the π-pulse for the weak coupling regime. To conclude, we showed
that the global phase ϑ is the relevant quantity that determines the efficiency of the
coupling and of the amplification.
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Chapter 3

Intrinsic frequency chirp in the
strong coupling regime for SBS

In Sec 2.3 we analyzed the different phases of amplification of a constant seed laser by
a constant pump. As already mentioned in many experimental situations of interest
the pump will be chirped, where the effect of the chirp can be considered as a time
varying phase φ, as in Eq. (1.55) or analogously as a varying frequency, where the
global frequency is given by ω(t) = ω0 − ∂φ/∂t. From the previous analysis it is clear
that time dependent variations in the phase can affect the coupling. In particular if the
de-phasing is too large the coupling will be quenched, while an optimal condition can
be found if the chirp can be used to maintain a favorable coupling in the maximum seed
growth, and pump depletion phase. In order to fulfill this condition, the parameter that
needs to be taken into account is the sign of the chirp parameter α. We will perform
the study still in the framework of a local analysis, at a given point in space, as it allows
useful estimations of the optimal value of α. However, with very large values of the
chirp parameter, we can indeed quench the amplification. Once identified the criterion
of optimal coupling, we can calculate the value of chirp and delay for the optimal
amplification, as well as the order of magnitude of the α parameter in the definition of
the chirp for which amplification still happens. We point out however that as long as
α is not too large, amplification is still efficient even if we do not consider the optimal
case. This is because in the strong coupling regime there is an intrinsic width in the
coupling, and the phase evolves with time over a relatively large range. The chapter
is organized as following: in Sec.3.1 we identify two values of the chirp parameter α
that compensate the seed phase evolution at two different stages of the amplification.
We show that the efficiency of the seed amplification is slightly improved when α is
negative and of the order of α ≈ −10−7 for the parameters considered in this work.
When α > 0 or is too large (|α| > 10−6) the amplification process is quenched and
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the seed phase does not manage to evolve and adapt to allow the coupling. In section
3.2 we investigate the role played by an inhomogeneous plasma density profile on the
evolution of the amplification of the seed. In particular, we show that a linear plasma
density profile with the maximum shifted towards right is more favorable comparable
to a case with a linear plasma density profile with the maximum shifted towards left
for a pump propagating to the right and a seed to the left. This case is still more
favorable when the comparison is made with a case in which we consider a constant
plasma density profile with a density equal to the average value of the inhomogeneous
cases. Contrary to SRS-based amplification, sc-SBS requires a preferential gradient of
the plasma profile with respect to the pump propagation direction. To have an order of
magnitude of the effect a density gradient, we define an effective pump chirp associated
with the density gradient.

3.1 Effect of the chirp on the coupling

In this section we make an estimation of the possible values of the chirp parameter α
that can enhance or quench the seed amplification. The equation that we consider and
solve are unchanged, apart from the presence of a chirp in the definition of the total
phase ϑ = ϕp + φ − ϕs − ϕ. The effect of this chirp is such that an optimal value
can improve the efficiency of the coupling, while a large chirp compensating the initial
value of the seed phase will quench the seed amplification. For a first analysis and a
first set of simulations, we make the hypothesis that the chirp function is centered at
x0 = 350 µm, where the pump and seed crosses, and t0 = 0 (chapter 1). The values
of pump and seed intensity and plasma density are the same than the ones in Sec 2.3,
namely Ip = 1015 W/cm2, Is = 1013 W/cm2 and n/nc = 0.1. In Fig.(3.1(a)) we show
the evolution of the seed phase ϕs as a function of time up to the time when the seed
reaches its maximum and pump depletion sets in. As shown in the figure and discussed
in Sec 2.3, at the beginning of the interaction, for t < ti, almost only the seed phase
ϕs is varying.
In order to find an optimal value of the chirp parameter, we consider the phases evo-
lution in the exponential stage. When the coupling enters in this stage, the phase of
the seed and the density are of the same order, while the the phase of the pump is still
negligible until pump depletion starts (t = ttot). In these conditions the seed becomes
downshifted with respect to the pump. In this stage we can consider mainly how the
presence of the chirp affects the total phase by compensating the seed phase. If the
chirp is such that the pump phase time derivative for ti < t < ttot (2 < tγsc < 4.3 in our
simulations) corresponds to a frequency upshift and it is almost exactly equal to the
seed phase derivative when pump depletion starts, the seed phase will stay close to its
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value in the exponential regime, and an optimal coupling is achieved. Notice that since
the time evolution of the phase associated to the chirp and associated to the coupling
are not the same, it is not evident a priori at what time the chirp has to compensate
for the seed and the choice we made is based on analysis of the simulations.

The expression of the seed phase evolution for ti < t < ttot for ti ≈ 2/γsc and
t = ttot ≈ 4.3/γsc is:

ϕs(t) =
γsc(t− ti)√

3
+ ϕs(t = ti) =

γsc(t− ti)√
3

+
π

3
(3.1)

As we pointed out before, a criteria to obtain an optimal coupling can be to impose
that the seed phase time derivative is equal to the chirp one at t = ttot, so that
∂tϕs(ttot) = ∂tφ(ttot):

γsc/
√

3 = 2|α|ω2
0ttot (3.2)

If α is negative, with our choice of x0 and t0 this corresponds to a negative phase for the
pump, and a frequency upshift. From Eq.(3.2), this gives a condition for the optimal
α, with α < 0:

αtot ≈ −
1

2
√

3

γ2
sc

ω2
0p

1

2 + 1.15 log10
Ip0
Is0

. (3.3)

If we consider the parameter of the simulations n/nc = 0.1 and a pump Ip =

1015W/cm2, we find γ2
sc/ω

2
0p ≈ 5.10−6 and the optimal coupling is given by αtot ≈

−3.3 × 10−7. This approach is shown in Fig.(3.1(c)): the green line indicates the
evolution of the phase of the seed −ϕs for ti γsc = 2 < t γsc < ttot γsc = 4.3, the black
line −ϕths is the approximation of the seed phase considered in Eq.(3.1) and the blue
line is the phase of the chirp calculated with αtot. Fig.(3.1(d)) shows the evolution of
the time derivative of the seed phase ∂t(−ϕs) (green dashed line), of the theoretical
value ∂t(−ϕths ) = γsc/3 (black dashed line) and the time derivative of the chirp phase
∂tφ(αtot) (blue dashed line), for tiγsc = 2 < t γsc < ttotγsc; Eq.(3.2) dictates that
∂tφ(αtot) and ∂t(−ϕs) are crossing at tγsc = 4.3.

As we will show in the following (Table 3.1), the amplification is generally improved
if the chirp parameter is small, α ≈ −10−7, but in terms of energy exchange the choice
of αtot allows a slightly better energy exchange between the pump and the seed.

A comparison of the amplification process in simulations for a non-chirped case
α = 0 and for the optimal case α = αtot is reproduced in Fig.(3.2) as function of time
and Fig.(3.3) as function of space. Notice that with the optimal value of chirp the
global phase (Fig.(3.2)(d),dashed black line) corresponding to the first peak is very
close to −3π/2, and when there is reverse of energy flow, it almost suddenly jumps to
π/2, with a behavior that is much closer to pi-pulse for weak coupling than without
chirp (Fig.(3.2)(d), black solid line). Similarly for this case with optimal chirp, the
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Figure 3.1: a)Evolution of seed phase −ϕs for 0 < tγsc < ttotγsc, with tiγsc = 2 and
ttotγsc = 4.3. b) Comparison among −ϕs (green line), −ϕth

s = 2
9
√
3
γ3sct

3 as calculated in
Eq.(2.35) (black line) and the chirp phase−φ(αi) calculated in Eq.(3.5) αi = 1.28×10−6

(red line), for 0 < tγsc < tiγsc c) Comparison among −ϕs (green line), −ϕth
s as given

by Eq.(3.1) (black line) and the chirp phase φ(αtot) calculated in αtot = −3.3 × 10−7

(blue line), for tiγsc < tγsc < ttotγsc. d) Evolution of the seed frequency ∂t(−ϕs) (green
dashed line) compared to the theoretical value ∂th

t (−ϕs) = γsc/
√
3 (black dashed line)

and the frequency variation due to the chirp ∂tφ(αtot) (blue dashed line).
All the results shown here are calculated at the initial laser crossing point (x = 350µm).
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Figure 3.2: Evolution in time of the phases of the pump (a) (ϕp), of the seed (b) (−ϕs),
of the density perturbation (c) (−ϕ) and of the total phase (d) ϑ in function of time
and in units of π, at x = 350µm. e) Electric fields amplitudes, in V/m, of the pump
(blue lines) and of the seed (green lines) in function of time.
The solid lines indicate the simulation results for α = 0, the dashed ones are for α =
αtot. The shadowed region indicates the time interval in which the seed is exponentially
amplified.
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Figure 3.3: Electric fields amplitudes, in V/m, of the pump (blue lines) and of the seed
(green lines) in function space, at t = 1.5 ps.
The solid lines indicate the simulation results for α = 0, the dashed ones are for α = αtot
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Figure 3.4: Electric fields amplitudes, in V/m, of the pump (blue lines) and of the seed
(green lines) in function space, at t = 1.5 ps.
The solid lines indicate the simulation results for α = 0, the dashed ones are for α = αi:
in this case the amplification of the seed with a chirped pump laser is strongly quenched.
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Figure 3.5: Evolution of the electric field amplitude of the seed in function of time at
the initial crossing point of the lasers (x = 350µm) and for positive (a) and negative
(b) values of α. The dashed black line indicates the maximum electric field amplitude
for α = 0.

Figure 3.6: Evolution of the total phase ϑ (in units of π) as function of time at the
initial crossing point of the lasers (x = 350µm) and for positive (a) and negative (b)
values of α.
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first peak is the one with highest intensity and the field goes almost to zero before
growing again and forming the next peak (Fig.(3.2)(e),green solid line). The differences
between a simulation with α = 0 and α = αtot are more important at the end of the
amplification, at t = 1.5 ps, Fig.(3.5): the final electric field amplitude of the seed
for the case of a chirped pump (green and blue dashed line in Fig.(3.3), respectively)
is Eαtots ≈ 2.05 × 1011 V/m and the pump amplitude is reaching almost zero when
the energy flow direction flips. In Table 3.1 we show the simulation results in terms of
final electric field amplitude, final duration and energy exchange as function of different
values of the chirp parameter α. FWHMout is the final duration of the higher peak
of the amplified seed, Qgain is the energy gain of the amplified seed evaluated on the
entire simulation box at the net of the initial seed energy, Qseedin = 23J/cm2. The initial
available pump energy and seed electric field amplitude are Qpumpin = 2333 J/cm2 and
Eseedin = 8.67× 109 V/m. The seed energy has been evaluated on the entire simulation
box; the available pump energy Qpumpin has been calculated as two times the energy
of the electric field for 0 < x < 350 µm. This is because the pump and seed pulses
are counter-propagating and the seed. The most efficient amplification is reached for
α = αtot = −3.3× 10−7, for which the pump transfers almost %67 of its energy to the
seed.

If instead the pump laser is chirped in such a way that the variation of phase due
to the chirp at the beginning of the interaction is of the same order of ϕs, and α

is positive (that is the pump is downshifted with our choice of t0, x0) the coupling
it’s quenched, and the seed phase does not manage to evolve and adapt to allow the
coupling. As found in the previous section, without chirp, the initial time evolution of
ϕs is ϕs = 2

9
√

3
γ3
sct

3, for all the initial time, up to t = ti ≈ 2/γsc.

On the other hand the chirp as function of time, at given point, can be written
(from Eq.(23)) as:

φ = αω2
0t

2 (3.4)

If we now set φ ∼ ϕs at ti we obtain the value of α for which the process is quenched
:

αi ≈ 0.26
γ2
sc

ω2
0p

(3.5)

For the parameters of the simulations this corresponds to αi = 1.28 × 10−6. In
Fig.(3.1)(b) we show the evolution of the seed phase −ϕs from the simulation results in
comparison with the theoretical values −ϕths from Eq.(2.35) and with the chirp phase
−φ(αi). The determination of αi (Eq.(3.5)) corresponds to −φ(αi) and −ϕths crossing
at t = ti. In Fig.(3.4) we show the simulation results for a non-chirped case α = 0 (solid
lines) and for the case in which the amplification is quenched (dashed lines) α = αi
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as function of space: when the pump is chirped with α = αi, the resulting amplified
seed is an order of magnitude smaller than the case with α = 0. A similar behavior
is reproduced also if α < 0 and very large, |α| > 10−6. In Fig.(3.5) we summarize the
results of the evolution of the seed electric field amplitude at x = 350 µm as function of
time and for different values of α: in particular, for α < 0 (Fig.(3.5)(b)) and α ≈ −10−7

the values of the electric field amplitude of the first peak are comparable, even if slightly
higher, to the simulation with α = 0. For values of α ≤ −αi the amplification is mostly
quenched, since the phase variation now is too fast. On the other hand, for small
positive values of α (Fig.(3.5)(a)) the amplification is a bit smaller compared to the
case with α = 0, even if still effective; for α ≥ αi the amplification is strongly quenched.
These results are confirmed in Table 3.1: for −1 · 10−7 < α < −3.3 · 10−7 the pump
energy transfer is of the same order of magnitude (≈ 63 − 67% of the available pump
energy). For positive values of α the energy transfer diminishes; for large values of α
the sign of the chirp parameter does not play a role any more and the amplification is
anyway strongly quenched.
In Fig.(3.6) we show the time evolution of the total phase ϑ as function of time and
for different values of α: notice that for negative values of the chirp parameter α
(Fig.(3.6(b)), the total phase reaches larger negative values during the linear regime
of amplification (2 < tγsc < 4.3) compared to the case with α = 0 (ϑ = −4π/3 for
α = 0 in the linear regime). In particular if α < 0 and of the order of the optimal
value calculated above α ≈ −10−7, the total phase approaches a value of the order of
ϑ ≈ −3π/2. On the opposite, if α > 0 (Fig.(3.6(a)) the total phase we have always
that ϑ > −4π/3. For large values of the chirp parameter, |α| ≈ 10−6, the evolution of
ϑ is strongly affected.
In this section we showed how the sc-SBS coupling is affected by the choice of the chirp
parameter α. We estimated two values of α that compensate the seed phase evolution
at two different stages of the amplification process. When α is negative and small
(of the order ≈ −10−7), the chirp is such way that the chirp phase compensates the
seed phase (corresponding to an upshift of the pump) when pump depletion sets in. In
this case the coupling is slightly improved compared to the case with α = 0.
If instead the pump is chirped in a way that the chirp phase is equal to the seed
phase at the beginning of the coupling, α is positive and large (of the order ≈ 10−6)
and the amplification is strongly quenched. For smaller positive values of α, the
amplification is slightly quenched compared to the case with α = 0. In a
general way, the amplification is slightly affected for small values the chirp
parameter α. On the opposite, for large values of |α| > 10−6 the amplification
is quenched, even if α is negative. This is consistent with what found in [31] where
they observe that the seed evolution is not symmetric with respect to the sign of the
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chirp.

Table 3.1: Overview of the results of the numerical simulations in function of the
chirp parameter α. The initial values of electric field for the seed is Eseedin = 8.67 ×
109 V/m; the available pump energy is Qpumpin = 2333 J/cm2. Eseedout is expressed in
V/m, FWHMout in unit of fs and Qgain in J/cm2

α Eseedout FWHMout Qgain %pump

0.0 1.8 · 1011 333 1405 60
−1.0 · 10−7 1.95 · 1011 340 1469 63
−2.0 · 10−7 2.0 · 1011 338 1525 65
−3.3 · 10−7 2.1 · 1011 335 1572 67
−6.5 · 10−7 1.8 · 1011 400 1458 62
−13.0 · 10−7 8.8 · 1010 600 580 25

1.0 · 10−7 1.78 · 1011 350 1340 57
2.0 · 10−7 1.6 · 1011 600 1269 54
3.3 · 10−7 1.4 · 1011 630 1172 50
6.5 · 10−7 1.1 · 1011 700 914 39
13.0 · 10−7 8.5 · 1010 870 396 17

3.2 Influence of the plasma density shape and laser inten-
sity profile on the phase evolution

In this section we investigate the role played by an inhomogeneous plasma density
profile on the evolution of the amplification of the seed. This section is organized
as following: in subsection 3.2.1 we show that the modification of the pump and seed
phases as they are propagating throughout a plasma with a not constant density profile
is negligible if there is no coupling. In subsections 3.2.3 and 3.2.4 we study the phase
evolution when the amplification happens in presence of triangular density profile and
we show how a decreasing triangular plasma density (in the direction of propagation
of the seed) improves the amplification. In subsection 3.2.5 we associate the intrinsic
frequency chirp for the amplification in an inhomogeneous density profile to a value of
the chirp parameter α.

3.2.1 Phase evolution for the propagation of pump and seed lasers
without coupling

In this section we explore the phase evolution of the pump and seed in the case they
are freely propagating in a linear plasma to asses the importance of the phase velocity
variation due to the density gradient. In a general way, the pump and seed electric
fields are defined as:
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Ep ∝ cos(kpx− ωpt)
Es ∝ cos(−ksx− ωst)

(3.6)

In the case of a constant plasma profile the phases of the pump and seed are
respectively:

ϕp = kpx− ωpt
ϕs = −ksx− ωst

(3.7)

At given point x and time t we have:

ϕp − ϕs = (kp + ks)x− (ωp − ωs)t (3.8)

If we have kp = ks, ωp = ωs and the total phase is:

ϕp − ϕs = 2kpx = 2
ωp
c

√
1− n

nc
x (3.9)

We consider now a plasma with a density that is varying linearly as:

n(x)

nc
=
nmax
nc

x

L
(3.10)

where nmax is the maximum value of plasma density and L is the plasma length; we
make the hypothesis that the plasma is limited between the coordinates x0 and x1. At
a given point x in the plasma the pump and seed phases read now:

ϕp =

∫ x

x0

kp(x
′)dx′ − ωpt (3.11)

ϕs = −
∫ x

x1

ks(x
′)dx′ − ωst (3.12)

The total phase is then:

ϕp − ϕs =

∫ x

x0

kp(x
′)dx′ +

∫ x

x1

ks(x
′)dx′ − (ωp − ωs)t (3.13)

If we make the hypothesis that kp = ks and ωp = ωs, the total phase is:

ϕp − ϕs =

∫ x

x0

kp(x
′)dx′ +

∫ x

x1

kp(x
′)dx′ =

∫ x1

x0

kp(x
′)dx′ + 2

∫ x

x1

kp(x
′)dx′ (3.14)

Eq.(3.14) can now be written:
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ϕp − ϕs = 2
ω0

c

∫ x

x1

√
1− ne(x′)

nc
dx′ = 2

ω0

c

∫ x

x1

√
1− nmax

nc

x

L
dx′ (3.15)

The integration of the previous equations gives:

ϕp − ϕs = −4

3

ω0

c
L

nc
nmax

(
1− nmax

nc

x

L

)(3/2)

(3.16)

This means that, at a first order and for small values of nmax
nc

, the space depen-
dance of the total phase ϕp − ϕs is similar to the one given by Eq.(3.9) for a constant
plasma. The effect on the phase evolution due to the propagation of the laser in an
inhomogeneous plasma and without coupling is negligible.

3.2.2 The role of a plasma density shape on the phase evolution

The comparison is made between two constant density profile, one with a maximum
of the plasma density of nmax/nc = 0.1 (Fig.(3.7(a)), in the following we refer to
this case as const1) and one with nmax/nc = 0.05 (Fig.(3.7(b)), case const2 in the
following), a triangular one with the maximum shifted towards left (Fig.(3.7(c)), case
trl) and nmax/nc = 0.1 and a triangular one with the maximum shifted towards right
(Fig.(3.7(d)), case trr) and nmax/nc = 0.1. The choice of nmax/nc = 0.05 for the
case const2 is dictated by the fact that for a linear ramp with 0 ≤ nmax/nc ≤ 0.1

the average density is 0.05 and thus it seems reasonable to make a comparison with
a constant density of this value. The laser are now crossing on the right boundary of
the plasma, at x = 650 µm, in order to let the seed to explore the entire length of the
plasma. In the following we make the hypothesis that the space coordinate is centered
at xcross = 650 µm, in a way that the position in the plasma is defined as x̂ = x−xcross:
the seed laser is travelling towards x̂ < 0. In Fig.(3.8)(a) we show the amplified seed
in function of space at t = 2.2 ps for all the case of interest: the final value of the
seed electric field amplitude is strongly influenced by the shape of the plasma density
profile. As expected the seed is better amplified in the case const1 compared to const2
one. The cases const1 (black line) and trr (green line) are comparable in terms of
final electric field amplitude and a bigger difference can be see if we compare the trr
case with the const2 one. This means that the direction of the plasma density ramp
compensates for the fact that the coupling can be locally weaker. In Fig.(3.8)(b) we
present the seed amplification at x = 550 µ in function of time we see that the seed
is growing faster for the case const1. To justify all these results, in the following we
explore the evolution of the seed phase in function of the plasma density shape; we will
show that the density profile acts on the coupling in a similar way to a chirp.

To study the evolution of the phase of the seed pulse, we rewrite Eq.(30)-(32) making
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appearing explicitly the dependance on the electron density in the plasma frequency.

(
∂t + vpg∂x

)
Ep = −i

ω2
pe(x)

4ω0
NEs = −iµ(x)neEs (3.17)

(
∂t − vsg∂x

)
Es = −i

ω2
pe(x)

4ω0
N∗Ep = −iµ(x)n∗eEp (3.18)

(
∂2
t − c2

s∂
2
x

)
N = − 2Ze2

memic2
EpE

∗
s = −ΛEpE

∗
s (3.19)

Notice that the coupling coefficient for the seed and the pump µ(x) =
ω2
pe(x)

4ω0
is now

space dependent. As we have done in the previous section, we explicit Eq.(3.17)-(3.19)
in terms of phase and amplitude and we neglect the terms multiplied by c2

s:

(∂t + vg∂x)Ep = −µ(x)NEs sinϑ (3.20)

(∂t + vg∂x)ϕp = −µ(x)
NEs
Ep

cosϑ (3.21)

(∂t − vg∂x)Es = µ(x)NEp sinϑ (3.22)

(∂t − vg∂x)ϕs = −µ(x)
NEp
Es

cosϑ (3.23)

∂2
tN −N(∂tϕ

2) = −ΛEpEs cosϑ (3.24)

∂tN∂tϕ = −Λ

2
EpEs sinϑ (3.25)

In Eq.(3.20)-(3.25) we neglected the dependence of the group speed on the local value
of density. To evaluate the density perturbation evolution N(x̂, t) we follow the same
procedure than Sec.2.3 but applied at the local density value. We find:

N(x, t) = −ΛEpEs
1

2

(
t− |x̂|

vg

)2

(3.26)

that is valid for x̂ < 0 and t > |x̂|/vg since the coupling at a given point starts only
when the seed has reached that point. To find the solution of the phase of the seed, we
make a change a variable in order to follow the seed pulse along its propagation.

y = x̂+ vgt (3.27)
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τ = t (3.28)

As before, the initial value of the global phase will be ϑ = −π, then Eq.(3.23)
becomes:

∂τϕs(y, τ) = µ(y)
Ep
Es
|N(y, τ)| = 1

2
µ(y)ΛE2

p

(
y

vg

)2

(3.29)

From Eq.(3.29), it is now possible to find a solution of ϕs for the cases of Fig.(3.7) with
respect to the different plasma shapes.

3.2.3 Density profile with n0(x̂ = 0) /= 0

For the cases with a constant density profile (const1 and const2) or with a triangular
profile with the maximum of the density shifted towards rights (trr), we can write:

n0(x̂) = nmax

(
1 +

x̂

L

)
(3.30)

where, for L > 0 and −L < x̂ < 0, Eq.(3.30) describes a density profile for which the
density is linearly decreasing along the plasma length L (case trr) or a constant profile
if L =∞. In Eq.(3.30), nmax is the plasma density value at x̂ = 0. In the space frame
of the propagating seed we obtain:

n0(y, τ) = nmax

(
1 +

y − vgτ
L

)
(3.31)

Replacing in Eq.(3.29) we find:

∂τϕs(y, τ) =
1

2
µmaxΛE2

p

(
1 +

y − vgτ
L

)(
y

vg

)2

(3.32)

where µmax is the pump and seed coupling parameter evaluated at n0(x̂ = 0) = nmax.
Integrating, we can find the expression of the seed phase ϕs:

ϕs(y, τ) =

∫ τ

y/vg

∂τϕs(y, τ) =
1

4
µmaxΛE2

p

L

vg

(
y

vg

)2
[

1−
(

1 +
y − vgτ
L

)2
]

(3.33)

or in units of x̂:

ϕs(x̂, t) =
1

4
µmaxΛE2

p

|x̂|
vg

(
t− |x̂|

vg

)2(
2− |x̂|

vg

)
(3.34)

that is valid for x̂ ≤ 0 and t > |x̂|/vg. The term 1
4µ

maxΛE2
p of Eq.(3.34) can be

written in terms of γsc:
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1

4
µmaxΛE2

p =
1

4

ω2
pe(x̂ = 0)

4ω0

2Ze2

memic2
E2
p =

2

3
√

3
γ3
scmax (3.35)

where γscmax is the value of growth rate at x̂ = 0. Eq.(3.34) writes now:

ϕs(x̂, t) =
4

3
√

3
γ3
scmax

|x̂|
vg

(
t− |x̂|

vg

)2(
1− 1

2

|x̂|
L

)
(3.36)

If now we consider the case of a constant plasma density profile (3.7)(a)(b)), L =∞,
Eq.(3.36) becomes:

ϕs(x̂, t) ≈
4

3
√

3
γ3
sc

|x̂|
vg

(
t− |x̂|

vg

)2

(3.37)

For an homogeneous density profile we can estimate the time needed for the phase
of the seed to reach π/3, value at which the exponential regime of amplification starts:

tconsti (x) ≈ |x̂|
vg

+

 √
3π
4

γ3
sc
|x̂|
vg

1/2

(3.38)

The closest position at which ϕs = π/3 for a constant density profile is then:

d(tconsti (x̂))

d(x̂)
= 0→ |x̂|const =

(√
3π

16

)1/3
vg
γsc
≈ 0.7

vg
γsc

(3.39)

and the corresponding time is:

tconstmin = 3

(√
3π

16

)1/3
1

γsc
≈ 2.1

1

γsc
(3.40)

On the other hand, the time needed for the seed phase to be equal to π/3 for a
triangular density profile with the maximum shifted towards right (Fig.(3.7(d))) is:

ttrri (x̂) =
|x̂|
vg

+

 √
3π
4

γ3
scmax

|x̂|
vg

(
1− 1

2
|x̂|
L

)
1/2

(3.41)

For |x̂| << L, this can be written as:

ttrri (x̂) ≈ |x̂|
vg

+

 √
3π
4

γ3
scmax

|x̂|
vg

1/2(
1 +

1

4

|x̂|
L

)
(3.42)

Making the assumption that vg/(Lγsc) << 1, the closest position at which ϕs = π/3

for a triangular density profile is :
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|x̂|trr ≈

(√
3π

16

)1/3
vg

γscmax

1− 1

6

(√
3π

16

)1/3
vg

Lγscmax

 ≈
0.7vg
γscmax

(
1− 0.12

vg
Lγscmax

) (3.43)

that corresponds to a time of the order of:

ttrrmin ≈ 3

(√
3π

16

)1/3
1

γscmax

1 +
1

18

1

6

(√
3π

16

)1/3
vg

Lγscmax

 ≈
2.1

γscmax

(
1 + 0.04

vg
Lγscmax

) (3.44)

If we compare the expression of |x̂|trr for a triangular profile with a linear density
spanning between 0 and nmax with |x̂|cost for a constant density profile with a density
equal to the average density, it follows that the case trr is most favorable as the seed
enters earlier the exponential regime and the self-similar regime. This is confirmed by
the simulation results shown in Fig.(3.8). If we look at the evolution of the electric field
amplitude of the seed as function of time at x̂ = −100 µm (x = 550µm) in Fig.(3.8)(b)
we can see that the seed is growing faster for the case const1 (with density n/nc = 0.1,
black line) compared to the simulation trr (green line). On the hand, the case trr
clearly is growing faster than the simulation const2 with density n/nc = 0.05 (pink
line). The same behavior is visible in Fig.(3.8)(a) in which we show the final seed
amplitude as function of space for the cases considered in this section: the trr attains
higher field amplitudes compared to the case const2. The simulation for the case trl is
discussed in the following section.

3.2.4 Density profile with n0(x̂ = 0) = 0

The same procedure can be adopted if we consider the following density profile shape:

n0(x̂) = −nmax
x̂

L
(3.45)

In this case, for L > 0 the local value of plasma density is increasing along x̂ < 0, as in
the case trl (Fig.3.7(c)). nmax is the maximum plasma density evaluated at x̂ = −L
In the space frame of the seed, Eq.(3.45) reads:

n0(y, τ) = −nmax
y − vgτ
L

(3.46)
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The evolution of the seed phase is now:

ϕs(x̂, t) =
1

4
µmaxΛE2

p

1

Lvg
x̂2

(
t− |x̂|

vg

)2

=
2

3
√

3
γ3
scmax

vg
L

x̂2

v2
g

(
t− |x̂|

vg

)2

(3.47)

where µmax is now the pump and seed coupling parameter evaluated at n0(x̂ = −L) =

nmax.
The value of ϕs = π/3 is reached at a time of the order of:

ttrli (x̂) =
|x̂|
vg

+
vg
|x̂|

(√
3π

2

L

vgγ3
scmax

)1/2

(3.48)

The closest point with respect to the initial interaction point at which the seed
phase is equal to π/3 is:

|x̂|trl =
vg

γscmax

(√
3π

2

L

vgγ3
scmax

)1/4

≈ 1.3
vg

γscmax

(
γscmaxL

vg

)1/4

(3.49)

and the correspond time is:

ttrlmin = 2

(√
3π

2

L

vgγ3
scmax

)1/4

≈ 2.6

γscmax

(
γscmaxL

vg

)1/4

(3.50)

The time necessary for the seed to reach π/3 for the case trl is longer compared
to the cases const1,2 and trr and the position where the exponential growth starts is
further away in the density ramp. This confirmed by the simulations shown in Fig(3.8):
the case trl is always the worst one in terms of seed electric field amplification, even
compared to a simulation with a constant plasma density profile and n/nc = 0.05 (case
const2, pink line).

3.2.5 Intrinsic frequency chirp due to a inhomogeneous plasma den-
sity profile

In the previous subsections we showed how the evolution of the phase of the seed is
influenced by the shape of the density profile. In terms of final value of the amplitude of
the electric field of the amplified seed at the end of the simulations, we showed that the
cases const1 and trr are comparable, even if in the triangular case the seed is exploring
a lower value of averaged density and, indeed, trr shows a better amplification than
the case const2, a constant profile with n/nc = 0.05. The averaged density value of the
entire plasma explored by the seed is nav/nc = 0.05. Motivated by these results and
by the improvement in the coupling when the right chirp is chosen for the pump, in
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Figure 3.7: Initial configuration of the lasers in function of space for the case const1
(a), const2 (b), trl (c) and trr (d)
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Figure 3.8: Electric field amplitude of the seed in function of space (a) and time (b)
(at x = 550µm) for the different plasma density shape considered.
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this section we make a comparison between the seed phase variation for the cases with
an inhomogeneous density profile with a possible value of the chirp parameter α to be
imposed to the pump laser in a constant density in order to find the same shapes and
values of final electric field amplitude. In previous sections we introduced the chirp
phase as:

φ(x, t) = α (k0(x− x0)− ω0(t− t0))2 (3.51)

where x0 and t0 are the centering of the chirp in space and time, respectively. The
frequency of the pump is varying as:

ω(x, t) = ω0 + 2αω0 (k0(x− x0)− ω0(t− t0)) (3.52)

? If, as before, we introduce a new space coordinate centered on the lasers crossing
point, x̂ = x− xcross, for x0 = xcross and t0 = 0 we can write the pump frequency as:

ω(x̂, t) = ω0 + 2αω0 (k0x̂− ω0t) (3.53)

As x̂ is defined negative along the plasma profile, we can replace x̂ = −vgt:

ω(x̂, t) = ω0 + 2αω0 (k0(−vgt)− ω0t) ≈ ω0 − 4αω2
0t = ω0 − 4αω2

0

|x̂|
vg

(3.54)

Notice that in Eq.(3.54) we made the approximation that k0vg ≈ ω0.
In order to estimate an effective chirp associated to the profile, we consider the local

value of the strong coupling growth rate. For a triangular profile with the maximum
shifted towards right (case trr) the local value of the growth rate γsc(x) is varying
linearly from its maximum value as:

γsc(x̂) ≈ γscmax
(

1 +
x̂

L

)1/3

(3.55)

The corresponding value of downshift is then:

∆ωsc(x̂) =
1√
3
γsc(x̂) ≈ γscmax√

3

(
1 +

x̂

L

)1/3

(3.56)

If now we compare Eq.(3.55) and Eq.(3.54) we can have an estimation of the value
of the chirp parameter to be imposed to the pump in a constant density profile:

αtrr = − γscmaxvg

4
√

3ω2
0|x̂|

(
1 +

x̂

L

)1/3

(3.57)

Notice that αtrr is negative and that Eq.(3.57) is valid for x < 0. If now we estimate
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αtrr in the middle of the box, at |x̂| = L/2, we find:

αtrr

(
x̂ =

L

2

)
= − γscavvg

2
√
3ω2

0L
≈ −2.7× 10−7 (3.58)

where γscav is defined as:

γscav = γscmax

(
1 +

x̂

L

)1/3

(3.59)

at x̂ = L/2. This result of Eq.(3.58) is consistent with what found earlier: both a
triangular plasma profile with the maximum shifted towards right (trr) and a negative
chirp contribute to enhancing the maximum of the first probe. For a plasma density
profile with the maximum shifted towards left (case trl), we have analogously a positive
value of α:

αtrl = −αtrr ≈ 2.7× 10−7 (3.60)

Figure 3.9: Electric field amplitude of the seed in function of space for different plasma
shapes and different values of chirp parameter α. The comparison is made among
a case in which the plasma density is constant and the pump is chirped with α =
αtrr ≈ −2.7 × 10−7 , (constαtrr

2 ),a case in which the plasma density is constant and
α = αtrl ≈ 2.7 × 10−7 (constαtrl

2 ), a case in which the plasma density is constant and
the pump is not chirped (const2) and the cases with a triangular plasma density profile
(trl and trr). The inbox shows the plasma density profiles considered.
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In Fig.(3.9) we show the electric field amplitude of the seed in function of space
at the end of the simulation and for different plasma density shape: consttrr2 is a
simulation with a constant plasma with n/nc = 0.05 and α = αtrr (black line), consttrl2

is a simulation with a constant plasma with n/nc = 0.05 and α = αtrl (blue line),
const2 is a simulation with a constant plasma with n/nc = 0.05 and α = 0 (violet
line), and trl (red line) and trr (green line) are the results for the triangular shapes
proposed in the previous subsection. For these simulations, when the pump is chirped
(cases consttrr2 and consttrl2 ) the chirp is centered at the initial lasers crossing point.
The peak of the amplified seed for the case consttrr2 is now closer to the case trr,
compared to the case where the pump is not chirped (const2): this means that a
triangular density profile with the maximum shifted towards right is affecting the phases
evolution similarly to a case in which the pump is upshifted compared to seed. The
same behavior is reproduced if we compare the cases consttrl2 and trl: the peak of the
amplified seed for a constant density profile and a pump with a positive value of the
chirp parameter is closer to the case where the pump is not chirped and the plasma
density is triangular with the maximum shifted towards left. Notice however that this
is true only for the first peak of the amplified seed, since the constant case consttrr2

and the triangular one trr behave quite differently in the trailing part, as shown in
Fig.(3.9): the π-pulse behavior is very clear with the consttrr2 case, while the triangular
shape enhances the first peak with a very little coupling in the subsequent peaks.This
can be an interesting feature of a decreasing profile as favoring the energy exchange
mainly in the first peak.
All these results are confirmed in Table 3.2, where we resume the results in terms of
final electric field amplitude, final duration and energy exchange. As before, Eseedin =

8.67 × 109 and Eseedout are the electric field amplitude before and at the end of the
amplification, FWHMout is the final duration of the higher peak of the amplified seed,
nmax/nc = 0.05 is the maximum value of the plasma density,Qpumpin = 4666J/cm2 is
the available pump energy Qgain is the energy gain of the amplified seed evaluated on
the entire simulation box substracted of the initial seed energy Qseedin = 23J/cm2. The
simulations consttrr2 and trr are very similar in terms of final electric field amplitude of
the seed, final duration and energy transfer. This is true also if we make the comparison
between the cases consttrr2 and trl: for these simulations the energy transfer is sensibly
reduced and the duration of the amplified seed is very large. Notice that, compared
to the values shown in Table 3.1, the energy transferred in the simulations of Table
3.2 is smaller even if the seed propagates in a longer plasma. This is because here the
average density is n/nc = 0.05.
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Table 3.2: Overview of the results of the numerical simulations for the different run
of Sec. 3.2.5. The initial value of the electric field for the seed is Eseedin = 8.67 ×
109 V/m; the available pump energy is Qpumpin = 4666 J/cm2. Eseedout is expressed in
V/m, FWHMout in unit of fs and Qgain in J/cm2

run α Eseedout FWHMout Qgain %pump

constα
trr

2 −2.7 · 10−7 2.27 · 1011 383 2280 48

constα
trl

2 2.7 · 10−7 1.37 · 1011 843 1573 34
const2 0.0 2.1 · 1011 360 2139 46
trr 0.0 2.53 · 1011 330 2200 47
trl 0.0 1.48 · 1011 506 1303 28
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3.2.6 Influence of realistic plasma density profile and laser shape on
the SBS amplification

In this section we show the results of the SBS amplification in the case of realistic
plasma and laser configurations. In a first series of simulations we consider a gaussian
plasma density profile with nmax/nc = 0.1 and a plasma length of L = 600µm. As
before, the pump and seed lasers are kept constant and at t = 0 they are crossing on
the right side plasma, at x = 650 µm, in a way to let the seed pulse to interact with
the whole plasma length (Fig. (3.10)). In Fig.(3.11) we show the evolution of the seed
electric field amplitude in function of time and in coincidence of the maximum of the
plasma density, at x = 350, for different values of positive (Fig.(3.11)(a)) and negative
(Fig.(3.11)(b)) values of the chirp parameter α. As in the simulations presented in
the previous sections, the highest intensity amplification is reached for negative values
of α. The best amplification for α = −2 · 10−7, comparable with the optimal value
found in Sec. 3.1, even if a bit smaller. For positive values of α the amplification is
strongly quenched. This is true even if α is negative but large (|α| > 6.5 × 10−7).
Notice that compared to the results found in Sec. 3.1 the seed amplification is now
more sensitive to the chirp parameter values, even if this is small: the amplification of
the seed in a gaussian shaped plasma with a chirped pump is now the results of the
sum of these two effects. Fig. (3.12) show the shapes of the pump and seed at the and
of the amplification in function of space and for α = 0 (solid lines) and α = −2 · 10−7:
with a negative chirped pump the seed is slightly better amplified.

To go further we show the results of simulations in which the pump and seed lasers
have a temporal shape: in particular, the duration at Full Width at Half Maximum in
intensity of the pump is FWHMp = 4.2 ps and for the seed we have FWHMs = 500 fs.
This allows one to study a situation closer to nowadays experiments [34] [35]. As the
lasers pulse have a finite duration, we introduce the concept of relative delay between
seed and pump lasers: this relative delay is defined as the time before the seed starts
to enter the simulation box since the beginning of the simulation. For different values
of relative delay, the maxima of the lasers pulses are crossing in different regions of
the plasma. In Fig.(3.13) we show where the maxima of the pump and seed lasers are
crossing for the simulations considered in this section. For tdelay = 4.22 ps the lasers
maxima are crossing at xcross = 500 µm as shown in Fig.(3.13)(a); for tdelay = 3.7 ps

the crossing point is at xcross = 350 µm, exactly in the middle of the plasma where
the maximum value of density is located (Fig.(3.13)(b)). For tdelay = 3.18 ps the
maxima of lasers are crossing at xcross = 200 µm (Fig.(3.13)(c)). An optimal delay
corresponds to the possibility of reaching higher growth rates, larger frequency spread
and downshift of the backscattered wave. According to the linear analysis shown in
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Figure 3.10: Initial configuration of the lasers pulses (pump in blue, seed in green)
for the simulations with constant lasers and a gaussian plasma profile (red line). The
electric field amplitudes are shown in units of V/m and the density is arbitrary units.
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Figure 3.11: Evolution of the electric field amplitude of the seed in function of time at
x = 350µm for positive (a) and negative (b) values of α. In this series of simulations,
both pump and seed laser are kept constant.
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Figure 3.12: Electric fields amplitudes, in V/m, of the pump (blue lines) and of the seed
(green lines) in function space, at t = 2.6 ps. The solid lines indicate the simulation
results for α = 0, the dashed ones are for α = −2 · 10−7
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Sec. 1.4.1 to maximize the sc-SBS coupling effect pump and seed lasers should cross at
the center of the plasma density because, in the definition of γsc, the pump intensity
and the plasma density appear as γsc ∝ (Ipn/nc)

1/3. In the case of a gaussian plasma
density profile, one would then expect a symmetry in the amplification efficiency if the
lasers cross on the right or on the left of the plasma maximum. In the following we
will show this is not true; in Fig.(3.14) we show the final seed electric field amplitudes
for the cases introduced. The highest values of amplification are obtained for the case
where the maxima are crossing at xcross = 200 µm, that means on the left of the
plasma maximum. Consistently with previous results, a decreasing ramp as seen from
the seed is more favorable, explaining why crossing in the first half of the plasma leads
to larger final electric field amplitude. Moreover, we find the crossing more towards the
border is slightly more favorable as in the zone of efficient growth more energy from
the pump is available. We point out that the pump intensity intervenes on one side in
the local value of the growth rate and on the other side as an energy "reservoir". In
the considered simulation we find that, with respect to variations in the growth rate,
the dominant effect is the variation of the density ramp: an optimal growth is when
pump and seed cross an the first half of the plasma (as seen by the pump) and part
of the decrease of the growth rate due to plasma density profile is compensated by the
pump increasing.
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Figure 3.13: Initial configuration of the lasers pulses (pump in blue, seed in green)
for the simulations with gaussian lasers and a gaussian plasma profile (red line). The
electric field amplitudes are shown in units of V/m and the density is arbitrary units.
The black dashed lines indicate the different crossing point considered. a) xcross =
500 µm. b) xcross = 350 µm. c) xcross = 200 µm.
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Figure 3.14: Final seed electric field amplitude (in V/m) as function of space for dif-
ferent crossing points of the pump and seed lasers.
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3.3 Conclusions

In this chapter we showed how the sc-SBS coupling and then the efficiency of the seed
amplification are affected by the presence of a frequency chirped pump. In chapter 2 we
explained that, in the strong coupling regime, the total phase is continuously varying
with time. The presence of a chirp can modify the time evolution of the total phase.
Following the different stages of the amplification, we can define different values of the
chirp parameter α that compensate the total phase variation. In correspondence of
pump depletion, we have large energy transfer which is affecting the downshift of the
seed frequency. Optimal coupling would then be achieved if the chirp phase compen-
sates the seed phase at the moment pump depletion sets in. Imposing this condition,
we find that the amplification is improved in terms of electric field amplitude and
time definition of the width of the first peak when α is negative and of the order
of αtot ≈ −10−7. If instead we impose a value of α for which the variation of the
phase due to the laser chirp at the beginning of the interaction is of the same order of
the seed phase ϕs, the seed phase doesn’t evolve anymore and the seed amplification
is quenched. This situation corresponds to positive and large values of αi ≈ 10−6.
The energy transfer is strongly reduced if the chirp parameter is large (of the order of
|α| ≈ 10−6).
We then showed that the seed amplification can be slightly improved (or re-
duced) if the chirp parameter is negative (positive) and small. Large values
of α affect in a negative way the amplification reducing sensibly the energy
transfer, no matter the sign of α. In the second part of this chapter, we studied
how the presence of an inhomogeneous plasma density profile affects the evolution of the
seed phase and then of the total phase. We then showed that, contrary to SRS-based
amplification, sc-SBS requires a preferential gradient of the plasma profile
with respect to the seed propagation. When the amplification happens along
a plasma density linearly decreasing (case trr in the chapter) as seen by the
seed during its propagation, the seed enters earlier the exponential regime
and the self-similar regime and it attains the highest amplification. In this
case the seed amplification is even better compared to a simulation with a
constant plasma with density equal to the average of the density ramp. In
a decreasing density (with respect to the seed direction of propagation) the difference
between the pump frequency and the seed frequency downshifted in the exponential
regime decreases. This is similar to the case of the seed amplification with
a negatively chirped pump. An effective chirp can then be defined at the aver-
age value of plasma density: for the parameters considered in this chapter we have
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αtrr ≈ −2.7×10−7. Analogously, for a plasma density increasing along the seed propa-
gation direction (case trl in the chapter), the amplification efficiency is reduced and the
equivalent value of chirp is positive, αtrl = −αtrr ≈ 2.7× 10−7. Simulations of amplifi-
cation in an homogeneous profile with the effective chirps shown confirm the validity of
the estimation of αtrr and αtrl as the amplified values become very close to the values
found with the inhomogeneous profiles. Notice however that an inhomogeneous density
profile acts differently than the chirp in the trailing pulses. In particular, for a plasma
profile as in the case trr the trailing peaks are very weak and the seed amplitude does
not go to zero. This can be an interesting feature of a decreasing profile as favoring the
energy exchange mainly in the first peak. All these results are confirmed in the cases
of simulations in which the plasma density and laser shapes are closer to the experi-
mental conditions. In the following chapter, we will show (using PIC simulations that
allows one to take into account the complete dynamics of the coupling including the
competition with other instabilities) that a decreasing profile as seen by the seed leads
to larger amplification and allows to control unwanted spontaneous SRS backscattering
of the pump.
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Chapter 4

Parametric studies of sc-SBS
optimal coupling via
one-dimensional PIC simulations

In chapters 2 and 3 we described the sc-SBS amplification in terms of phases evo-
lution and energy transfer directionality. In particular we approached the problem
making appearing explicitly the amplitudes and the phases in the three equation sys-
tem describing the sc-SBS amplification. In the present chapter we perform a set of
one-dimensional (1D) PIC simulations performed with the code SMILEI [44](Chapter
6). This 1D approach has the advantage of allowing a parametric study and also it al-
lows to focus on physical effects not dependent on the dimensionality. Two dimensional
effects, such as filamentation and self focusing should not play a role in the range of
parameters we explore [28][33]. The goal of the chapter is to optimize the plasma and
laser parameters involved in the SBS amplification mechanism in realistic configura-
tions, taking into account the competing phenomena (such as the spontaneous Raman
backscattering of the pump) that can affect the amplification. The chapter is organized
as following: in Sec.4.1 we show the set-up and the parameters chosen in the particle
in cell (PIC) simulations. In Sec.4.2, we discuss the role of the shape of the plasma
density in limiting SRS parasitic effects on the SBS amplification: we find that plasma
shaping allows to partially control SRS affecting also the energy transfer. Typical ex-
perimental profiles of plasma produced from gas jet have gaussian shape and already
help reducing significantly the spontaneous SRS. In Sec.4.3 we show the importance of
the choice of the relative delay of interaction between pump and seed pulses: this is an
important parameter as proved by simulations and experiments [34] [36] and the exact
optimal delay has to be experimentally assessed for each particular configuration with
a systematic scan of pump-seed synchronization. In Sec.4.4 we present how the initial
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duration of the seed plays a role in the SBS amplification. In particular, we show that,
if the initial seed duration is a fraction of γsc, the seed stretches before entering in the
self-similar regime [30]. In Sec.4.5, we summarize, in terms of energy exchange between
pump and seed lasers, the results of the simulations shown in Secs.4.2, 4.3, and 4.4.

4.1 Simulations set-up

The choice of the simulation parameters have been strongly motivated by recent ex-
periments carried out at LULI in 2013 [34]. We consider an intensity of the pump
and of the seed equal to Ipump = 1015W/cm2 and Iseed = 3 × 1013W/cm2, respec-
tively. The same wavelength λ0 = 1µm has been used for both laser beams, corre-
sponding to a frequency ω0 = 1.9 × 1015rad/s. Both lasers have a gaussian temporal
profile, where FWHM is the full-width-at-half-maximum in intensity and a cut-off at
≈ 3σ with σ ≈ FWHM/2.3548. For the pump and seed, FWHMpump = 4.2 ps and
FWHMseed = 500 fs, respectively. The corresponding energy fluence for the pump and
seed are Qp ≈ 2.9 kJ/cm2 and Qs ≈ 6.3 J/cm2, respectively. As in the experiments, the
plasma (hydrogen gas, Z = 1) has a 0.5− 1mm length, with the same ion and electron
temperatures of Te = Ti = 300eV and a maximum density of n/nc = 0.05− 0.1. In the
following sections, we show the results of simulations obtained when varying some of
these physical parameters.
If not otherwise specified, the resolution in the x-direction is ∆x = λ0/60, with 750
particles per cell per species (ions and electrons), and the time resolution is around
∆t ≈ 1/70 × 1/ω0. The standard interaction configuration in the figures of the sim-
ulations is that the pump comes from the left and the seed from the right. The field
boundary conditions are open (Silver-Muller type) and the boundary conditions for
the particles are reflective; during simulation the particles don’t reach the simulation
boundaries; 50− 100 µm of vacuum are left on both sides of the plasma.

4.2 Shape of the density profile

The presence of Raman backscattering during the propagation of the pump signal in the
plasma reduces the available energy for SBS. In particular, the Raman backscattering
growth rate [24], in practical units, is:

γSRS = 4.27 · 10−3

(
n

nc

)1/4 (
I14λ

2
0p

)1/2
ω0p. (4.1)

For typical parameters that we use in this chapter (n/nc = 0.05 − 0.1, Ip =

1015W/cm2) γ−1
SRS ≈ 78− 66 fs that is much shorter than the time taken by the pump
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to fill the whole plasma (half duration ≈ 2.1ps ). Thus we expect Raman to develop
significantly before an efficient sc-SBS energy exchange can take place. A natural way
to limit the spontaneous Raman backscattering of the pump laser would be to increase
the temperature of the plasma or the particle density above 0.25 nc [27][32][37][38],
but this would bring the discussion far from the experimental plasma parameters we
refer to. Another option to avoid the early Raman backscattering energy depletion is
to choose a non-constant plasma density profile. To describe the convective Raman
backscattering of the pump in the case of a plasma with a linear slope density shape,
we follow the approach given by Rosenbluth [39]; the expression of the amplification
factor in this case is:

ARos =
πγ2

SRS∣∣V1V2χ
′
0

∣∣ , (4.2)

where V1,2 are the group velocities of the counter-propagating lasers and χ′0 is:

χ
′
0 =

(
∂∆k

∂x

)
x=0

. (4.3)

where χ′0 is the dephasing due to the plasma density shape at the beginning of the
density slope and ∆k is the variation in k due to the density profile. If ARos . π,
SRS is quenched. In this section we examine the effect of different shapes of plasma
density on SRS of the pump. The pump laser propagates in a 500 µm fully ionized
plasma without seed, we compare the case of constant, triangular and gaussian density
profiles. In 1D simulations it is possible to easily distinguish the left propagating fields
by simply taking in account the sign of the phase speed of the electromagnetic wave.
The left propagating field is calculated as:

Eleft = Ez −
k(x)cBy
ω0p

, (4.4)

with
k(x) = ω0p/c

√
1− n(x)/nc. (4.5)

In Eq.(4.4), Ez and By are the electric and magnetic field of a laser beam linearly
polarized along z. In Fig. 4.1 we show the electron density in green and the ion
densities normalized to n/nc = 0.05 and the pump laser intensity (in red) normalized
to Imaxp = 1015W/cm2, at t ≈ 3.5 ps after the pump starts to enter the simulation box,
in the case of a constant plasma density profile. For reference, the time at which the
maximum of the pump enters the left side of the box (x = 0) is t0 ≈ 3.8 ps. In the
following sections, we refer to this case as constant. The blue signal represents the
Raman backscattering of the pump, that can be identified also in the electron density
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perturbations.

Figure 4.1: Pump laser propagating through a constant plasma at t ≈ 3.5 ps since the
beginning of the simulation (case constant). The red arrow indicates the direction
of propagation of the laser. The backscattered light (RBS, in blue) propagates in the
opposite direction. The green and yellow lines are the electrons and ions densities,
respectively, normalized to n/nc = 0.05.

The Raman Backscattering signal is easily identified in the frequency spectra pre-
sented in Fig. 4.2(a), integrated over 3.5 ps since the beginning of the simulation.
The electric field has been recorded every time step on the left edge of the simulation
box (in vacuum, x = 0, Fig. 4.1), so that the signal of the pump (incoming from
left to right) and the backscattered pump and signals are registered; the spectra are
normalized to the nominal laser frequency ω0. In Fig. 4.2(a) the peak at around
ωR/ω0 = 1−

√
n/nc = 0.77 is the expected frequency for the Raman for the backscat-

tered wave in vacuum. In Fig. 4.2(b) we show the temporal evolution of the spectra
in k/k0, integrated over the entire simulation box. The expected value of kR/k0 for
backscattered Raman laser is given by:

kR
k0

=
√

1− n/nc +

√
1− 2

√
n/nc − 1. (4.6)
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In Eq.(4.6), for a plasma with n/nc = 0.05, kR/k0 ≈ 0.72. The peak at the value
expected for the Raman instability (black dashed line on Fig. 4.2(b)) starts to grow ≈
2.5 ps after the beginning of the simulation. At that time, no evidence of spontaneous
SBS is present around k/k0 ∼ 1 (not shown in the figure). The Raman signals that
start to develop at t ≈ 3.5 ps and k/k0 > 0.75 are due to the fact that the plasma
density is not anymore homogeneous at that time.

Figure 4.2: Spectrum in ω/ω0 (a) and in k/k0 (b) of electric field Ez , for a constant
density profile. a)The frequency spectrum is integrated over 3.5 ps from the beginning
of the simulation. The peak at ω/ω0 = 1 corresponds to the nominal frequency of the
pump laser. The black dashed line at ω/ω0 ≈ 0.77 indicates the Raman frequency in
vacuum. b) The wavenumber spectrum is integrated over the entire simulation box
size. The black dashed line at k/k0 ≈ 0.72 indicates the wavenumber of the Raman
backscattered light in the plasma at a plasma density n/nc = 0.05.

In Fig. 4.3(a) we consider a triangular density profile (case triangular), with the
maximum density on the right of the box. In this case the Rosenbluth amplification
factor is ARos ≈ 3.58 (the Raman backscattered intensity of the pump will grow as
≈ e2ARos) and thus slightly above threshold (ARos,tr ≈ π): we expect SRS to be
significantly reduced. Fig. 4.3(a) shows the normalized intensity of the pump and
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the normalized density at t ≈ 3.5 ps (the pump maximum enters the simulation box
at t0 ≈ 3.8 ps , at the same time as in Fig. 4.1 for the constant case. The plasma
density is normalized to nmax/nc = 0.05. No backscattering of the pump signal occurs.
Similarly, a 500 µm gaussian plasma density profile with nmax/nc = 0.05, closer to the
experiments configuration, shows no pump backscatter at t ≈ 3.5 ps, as shown in Fig.
4.3(b) (case gaussian). In Fig. 4.4 (a,b) we show the frequency spectrum integrated
over t ≈ 3.5 ps and the k-spectrum of the electric field Ez integrated on the simulation
box and as function of time for the triangular case. The frequency spectrum confirms
that there is no SRS as the pump enters, while the wave vector spectrum shows that
some Raman activity develops but much weaker and later in time.

Figure 4.3: Pump intensity profile after 3.5 ps, in a triangular (a) and gaussian (b)
plasma density configuration. The pump intensity, normalized to its maximum value
Imaxp = 1015W/cm2 is shown in red; the green lines indicate the normalized electron
density. The yellow lines (partially hidden by the green ones) are the normalized ion
density. At this time the pump signal is not yet backscattered.

These simulations demonstrate that a more realistic configuration, such as a gaus-
sian density profile or a linear ramp as could be obtained by tilted gas jets, significantly
limits the Raman backscattering of the pump. This is consisted with what we found in
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Figure 4.4: Spectrum in ω/ω0 (a) and in k/k0 (b) of electric field Ez , for a triangular
density profile. a) The spectrum is integrated over 3.5 ps since the beginning of the
simulation. The peak on ω/ω0 = 1 corresponds to the nominal frequency of the pump
laser. There is no signature of Raman backscattering of the pump at ω/ω0 ≈ 0.77. b)
The spectrum is integrated on the entire simulation box size. The black dashed line at
k/k0 ≈ 0.72 indicates the wavenumber of the Raman backscattered light in the plasma
at a plasma density n/nc = 0.05.
The Raman signal at k/k0 > 0.75 is due the plasma density perturbation.
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chapter 3: a decreasing profile as seen by the seed leads to a larger amplification and
at the same time allows to control unwanted spontaneous instabilities (e.g. SRS). Thus
even if some Raman losses are expected, they should not affect significantly the energy
balance. This also suggests that an optimal delay between pump and seed should be
chosen in order to minimize unwanted spontaneous backscattering. The delay of the
seed with respect pump peak should not be too long so that spontaneous losses are
still negligible, but short enough that it can interact a significant amount of time with
the peak of the pump. Moreover it has been observed in simulations and experiments
[34] that when amplification is started it quenches spontaneous Raman, thus reduc-
ing the losses, as we will discuss in Sec. 5.1.2. Finally we should point out that the
Raman backscattering of the pump laser in a PIC code is often over-estimated, as it
is driven by the noise of macro-particles which is proportional to 1/

√
N with N the

number of macro particles per cell, thus the optimal delay found is likely to be shorter
in simulations than in experiments.

4.3 Relative delay between the pump and seed laser pulses

As discussed in Sec.4.2, correctly choosing the relative delay between pump and seed
limits the pump energy loss by SRS backscattering. This relative delay is defined
as the time before the seed starts to enter the simulation box since the beginning
of the simulation. The growth rate of the instability γsc = =(ωsc) and the downshift
∆ω = Re(ωsc) = γsc/

√
3 (Eq.(1.51)) depend on the local values of intensity and plasma

density. In Fig. 4.5 we show the result of Eq.(1.51) for a gaussian pump of intensity
Ip = 1015W/cm2 and duration FWHMp = 4.2 ps, and for a 1 mm gaussian plasma
density profile (FWHMplasma ≈ 392 µm) with nmax/nc = 0.1. The red and black lines
in Fig. 4.5 (a) represent the normalized pump intensity at two different times, when
the maximum of the pump reaches the left boundary and when the pump is in the
middle of the simulation box, respectively; the green line is the plasma density. In Fig.
4.5(b) we show the values of growth rates γsc/ω0 = =(ωs)/ω0 for the SBS instability, as
a function of the position in the plasma and for two arrival times (delay) of the pump
(red and black lines respectively). When the peak of the pump is on the left side of the
simulation box, γsc/ω0 ≈ 0.0025 (red dashed line in Fig. 4.5(b) ) and ∆ω/ω0 ≈ 0.0014;
when the peak of the pump is in the middle of the plasma, γsc/ω0 ≈ 0.0028 (black
dashed line in Fig. 4.5(b) ) and ∆ω/ω0 ≈ 0.0017. An optimal delay corresponds to the
possibility of reaching higher growth rates, larger frequency spread and downshift of the
backscattered wave . According to this linear analysis to maximize the sc-SBS coupling
effect pump and seed lasers should cross at the center of the plasma density (black line
in Fig. 4.5). However, the linear analysis does not take into account spontaneous
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losses. In simulations we find an optimal situation when the seed crosses the peak of
the pump in the first half of the plasma, in a situation that is intermediate between the
two examples of Fig. 4.5, as it will be discussed. In particular, when seed and pump
cross in the middle of the plasma, the effective local intensity of the pump has already
been reduced by the spontaneous backscattering and results in less efficient coupling.
This effect is seen as well in experiments [34][36] but the actual optimal delay is reduced
with respect to simulations because the noise is artificially increased in the latter.

Figure 4.5: Analytical solution of Eq.(1.51) for local values of the intensity of the
pump laser and of the plasma density. Fig. 4.5(a): local normalized values of the
pump intensity in function of space, at two different times: when the maximum of the
pump reaches the left boundary (red line) and when the pump is in the middle of the
simulation box (black line).Fig. 4.5(b):values of growth rate γsc/ω0 = =(ωs)/ω0, versus
the positions in the plasma and depending on the different position of the pump (red
and black dashed lines correspond to γ−1

sc ≈ 200 fs and γ−1
sc ≈ 178 fs, respectively ).

In Fig. 4.6(b) we schematically show this situation (case delay 1 in following
sections), where we wait tdelay ≈ 4 ps before starting to launch the seed laser on the
right side of the box so that the pump and seed are crossing in the middle of the plasma.
The results of the corresponding PIC simulation, at the time when the amplification
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of the seed has already happened (t ≈ 7.6 ps since the beginning of the simulation),
are shown in Fig. 4.6(a): the red line is the intensity of the pump normalized to its
maximum, the blue line is the light traveling towards left (that includes the seed signal
and spontaneous backscattering of the pump) normalized to the maximum value in
intensity of the pump. The green and yellow lines are the electrons and ions density
distribution normalized to n/nc = 0.1.

Figure 4.6: a) The red line is the intensity of the pump normalized to its maxi-
mum, the blue line is the light traveling towards left (that includes the seed signal
and backscattering of the pump) normalized to the maximum value in intensity of the
pump (Ip = 1015W/cm2). The green and yellow lines are the electron and ion density
distributions normalized to n/nc = 0.1. b) Intensity of the pump signal (red), of the
seed signal (blue) and plasma density profile (green) in arbitrary units, in the case in
which the maxima of the pulses meet in the middle of the plasma, case delay 1.

The gain in intensity of the seed, defined as the ratio between the maximum
intensity of the seed at the exit of the simulation box (left side of Fig. 4.6(a))
and the maximum intensity at the entrance (right side of Fig. 4.6(a)), is around
Iouts /Iins ≈ (2× 1015W/cm2)/(3× 1013W/cm2) ≈ 67.

In the Ez frequency spectrum recorded at x = 0 µm outside the plasma, in Fig.
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Figure 4.7: a)Spectra of electric field Ez integrated over the simulation time, for the
case in which the two maxima of lasers cross in the middle of the plasma, case delay
1. The peak on ω/ω0 = 1 corresponds to the nominal frequency of the pump laser.
The black dashed line indicates the expected frequency values for Raman, ω/ω0 ≈ 0.68
(normalized frequency in the vacuum of the Raman backscattered light for n/nc = 0.1
). b) Zoom of the spectra of electric field Ez integrated over ω/ω0 = [0.985, 1.01]. The
downshift in frequency corresponding to the SBS amplification of the seed is ∆ω/ω0 ≈
0.002 )
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4.7(a), we can see that a peak in the Raman backscattered light (at ω/ω0 ≈ 0.68) is still
present (black dashed line) and shows a relative large spectrum indicating that some
backscattering comes not only from the peak density, but also from lower density areas.
The zoom around ω/ω0 = 1 (nominal frequency of the lasers, Fig. 4.7(b)), we show
that the seed is amplified also at the strongly coupled SBS frequency (ω/ω0 ≈ 0.998);
this means that the light propagating towards left (in blue in Fig. 4.6) is a mix of SBS
amplified seed and Raman backscattering of the pump.

Figure 4.8: Evolution of the spectra in k/k0 of the electron (a) and ion (b) densities
for the case delay 1: kR and kIAW indicate the expected frequency shifts induced
by the Raman and Brillouin instability, respectively (red dashed lines). The Raman
backscattering starts at t ≈ 5.8 ps, the SBS amplification after t ≈ 6.1 ps.

In Fig. 4.8(a) and Fig. 4.8(b) we show the temporal evolution of the spectra of the
electron and ion densities, respectively. The dashed red lines indicate the values of k
expected for Raman (kR) and Brillouin (kIAW ) backscattered light, for the maximum
plasma density nmax/nc = 0.1, defined as kR/k0 ≈ 1.55 (Eq.(4.6)) and kIAW /k0 =

2
√

1− n/nc ≈ 1.89. In Fig. 4.8(a) we can see that the Raman signal starts to grow
around t ≈ 5.8 ps slightly before SBS amplification takes place. This means that still
part of the energy available in the pump goes in Raman backscattering, however once
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the ion signal becomes strong (t ≈ 7.2 ps) Raman is saturated.
The situation can be improved making the pulses crossing just before the Raman

backscattering starts to take energy from the pump signal (case delay 2 in following
sections). To do so, the same case has been run making the seed enter the simulation
box after tdelay ≈ 3.17 ps from the begin of the simulation. This way the maxima of
the two laser cross in the left part of the plasma density profile, at xcross ≈ 320µm.
This situation is schematically shown in Fig. 4.9(b). In Fig. 4.9(a) we show the results
from the PIC simulation for this case at t ≈ 7.6 ps from the beginning of simulation:
as before, the red line is the intensity of the pump normalized to its maximum, the
blue line is the light traveling towards left (that includes the seed signal and eventual
backscattering of the pump) normalized to the maximum value in intensity of the pump
and the green and yellow lines are the electron and ion density distributions normalized
to n/nc = 0.1.

The relative gain in intensity for the seed is around Iouts /Iins ≈ (4.5×1015W/cm2)/(3×
1013W/cm2) ≈ 150; the pump pulse is well depleted and the seed conserves its original
gaussian shape.

The evolution of the spectra of the electron (Fig. 4.10(a)) and ion (Fig. 4.10(b))
densities shows that the signal at the electron plasma wave frequency is reduced com-
pared to the case of Fig. 4.8(a) and that the clear signature of Brillouin amplification
is present, with the ion acoustic wave reaching larger amplitude. The first harmonic of
the acoustic wave is also clearly observable (not shown here). The signature ω/ω0 of
the electric field Ez confirms this analysis (Fig. 4.11): SRS is strongly reduced and lim-
ited to highest density region (red line) while the SBS signal is larger. Consistent with
the linear analysis, considering delays such that the coupling is most efficient results in
the simulation in larger seed growth and frequency downshift. A similar behavior and
the existence of an optimal delay was already observed in experiments [34][36]. These
results confirm what find in chapter 3, where we showed that make crossing the pump
and seed maxima in the first half of the plasma (as seen by the pump) leads to higher
seed amplification.

4.4 Initial seed duration

The amplification process takes place in two stages: a first linear regime during which
pump depletion is negligible, and a second self-similar regime in which the energy
transfer becomes important and the seed gets compressed in time. During the linear
regime of SBS, for the interaction of the pump with a wave packet, as in the case of
the short seed pulse that we consider in this chapter, the linear solution is an integral
function of an exponential times a weight function [30]. The Fourier components of
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Figure 4.9: a) The red line is the intensity of the pump normalized to its maximum,
the blue line amplified seed pulse traveling towards left normalized to the maximum
value in intensity of the pump (Ip = 1015W/cm2). The green and yellow lines are
the electron and ion density distributions normalized to n/nc = 0.1. b) Intensity of
the pump signal (red), of the pump signal (blue) and plasma density profile (green) in
arbitrary units, in the case in which the maxima of the pulses meet at x ≈ 320µm, case
delay 2.
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Figure 4.10: Evolution of the spectra in k/k0 of the electron (a) and ion (b) densities
for the case delay 2: kR and kIAW indicate the expected frequency shifts induced
by the Raman and Brillouin instability, respectively (red dashed lines). The Raman
backscattering starts at t ≈ 5.8 ps, but it disappears when the Brillouin amplification
takes place.
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Figure 4.11: Spectra of electric field Ez integrated over the entire simulation time
(tsim ≈ 10 ps, for a relative delay of tdelay ≈ 3.17 ps, case delay 2). The peak at
ω/ω0 = 1 corresponds to the nominal frequency of the pump laser. The zoom box
shows the frequency downshift due to the SBS amplification of the seed.
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the various wave-vectors grow unevenly, resulting in a longer seed. A short seed has a
broad k spectrum and only a narrow portion of this spectrum can be amplified. If the
initial seed duration is shorter than the shortest local value of γ−1

sc the seed will develop
a tail that will be amplified [30][42]. On the other hand, if the initial seed duration is of
the order or longer than γ−1

sc , then the seed enters directly in the self-similar regime, as
shown in Sec. 4.3 (Fig. 4.9). In both cases the final amplification intensity and energy
exchange is comparable as the seed duration adapts to the self-similar solution as will
be discussed in the following paragraph. We can summarize this by saying that as long
as the initial seed intensity is less than the pump intensity, amplification is roughly
independent of the initial seed duration.

It is interesting to notice that once the sc-SBS amplification is described by the self-
similar solution, the seed dimensionless intensity a2

s ≡ 0.72× 10−18Is[W/cm2]λ2
0[µm2]

and the seed duration τs are related. This can be shown by considering for simplicity
a case of full pump depletion, for a pump of normalized intensity a2

0 and duration
τp. With these units we find γsc =

√
3/2[a0

vg
c ωpi
√
ω0](2/3). A first relation, in the

case of full pump depletion, is simply given by the energy balance at the end of the
interaction : a2

sτs = a2
0τp. To find another relation, let us now consider the growth of

the seed according to the self similar solution [27] : as = τ3/4As(ξ), with τ = γsct and
ξ =
√
γsctγscx

′/vg, and x′ = x+ vgt− Lpl the spatial coordinate in the seed reference
frame. According to this solution the seed’s typical time scale of growth is γ−1

sc and
the maximum amplitude grows with time to the power 3/4.The function As(ξ) can be
found numerically [27] for a given boundary condition, and it is a ’bell’-shaped curve,
such that it reaches a maximum amplitude at ξmax ∼ 6 − 7, with a typical width
∆ξW ∼ 2− 3, characteristic of the seed duration in normalized units. The exact values
depend on the boundary conditions, and in the following we assume that ∆ξW is a
constant of order one. To relate this explicitly to the seed duration we can consider
the definition of ξ, and define ∆ξW =

√
γsctγsc∆x

′/vg. According to this ∆x′ is the
space occupied by the seed during its propagation, that is related to its finite duration
∆x′ ≈ vgτs, so that finally ∆ξW ≈

√
γsctγscτs. Since ∆ξW is a constant, this results

tell us that the seed duration shrinks as ∝ 1/
√
γsct (contraction associated to the

amplification). At the end of the interaction (t = τp the seed duration will satisfy the
condition ∆ξW =

√
τpγ

3/2
sc τs, thus giving a relation between τp, τs and a0. Solving for

τp and replacing in the energy balance equation, the dependence on a0 drops out and
we find a condition relating as and τs

a2
sτ

3
s = ∆ξ2

W

(
2√
3

)3 c2

v2
g

1

ω2
piωo

. (4.7)

A similar argument was applied in Ref.s [40][38] at initial or intermediate times, by
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considering that only a fraction (η) of the energy has been exchanged between pump and
seed. The final result being independent of the energy fraction η the relation Eq. (4.7)
was considered valid at any stage of the amplification. However this argument does not
apply in the linear phase, thus it cannot be used to deduce the initial seed duration.
The initial seed duration, as described earlier, will adapt in the linear stage so that once
the depletion regime is reached the growth will be roughly independent of the initial
seed value (see also next section, where we explicitly calculate the energy exchange)
[30]. This is confirmed by a set of PIC simulations where we varied the initial seed
duration, as well as by earlier results [30]. In this section we present a PIC simulation
in which the parameters are the same as presented in Sec 4.1, with the optimal relative
delay between the pump and seed lasers tdelay ≈ 3.17 ps (as found in Sec. 4.3) but with
an initial duration of the seed of FWHMseed = 100 fs instead of 500 fs (case short).
In Fig. 4.12(a) we show the results of the simulation at t ≈ 6.5 ps from the beginning
of the simulation. In the zoom of the intensities at x = [100,350] µm (Fig. 4.12(b))
we see that seed signal itself is not amplified: the amplification happens behind the
seed laser, creating a broad secondary pulse. The final duration of the final amplified
pulse 4.12(c) is FWHMseed

out ≈ 420 fs ≈ 2 × γ−1
sc at t ≈ 7.5 ps from the beginning of

the simulation (178 fs < γ−1
sc < 200 fs in Fig. 4.5). As shown in the 4.12(c) the final

intensity is comparable but smaller than the delay 2 case (Fig. 4.9); however with a
longer plasma the same intensity and shape of the solution of Fig. 4.9 are expected
[30]. In particular a seed duration that initially is a fraction of γ−1

sc can lead to slightly
higher amplification factors, the only drawback being that since the linear phase lasts
a bit longer, as the pulse needs to adapt, if the initial seed has duration much smaller
than γ−1

sc the plasma interaction length needs to be somewhat longer. Notice that if we
apply the analysis of Ref.s [40][38] to our value of seed intensity, FWHMsopt ≈ 1054 fs;
however we showed in previous sections that a seed with an initial FWHMs = 500 fs is
very well amplified, confirming that the important parameter in the seed amplification
mechanism is the comparison with γsc, at least in the first part of the amplification. It
is interesting to use the estimate above (Eq. (4.7)) to estimate the expected duration
in the case where amplification by the self similar model holds. Eq. (1.47)(1.48)(1.49)
do not take in account relativistic effects and coupling with electron plasma wave [41].
We consider then the upper limit of validity of these equations when the seed reaches
relativistic intensities, as = 1. If we plug this value in Eq. (4.7), we find the final seed
duration when such intensities are reached.

τs,relω0 =
2√
3

∆ξ
2/3
W

(1− ne/nc)1/3(ωpi/ω0)2/3
. (4.8)

and 2√
3
∆ξ

2/3
W ≈ 2 for the relevant case.
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If we consider hydrogen (Z = 1), taking ne/nc = 0.3 in the formula above, we find
that τs,relω0 ≈ 38, if we consider ne/nc = 0.05 we find that τs,relω0 ≈ 108. In all cases,
this suggests that seed duration after amplification will be short, from a few to a few
tens of laser cycles.

Thus if we consider a multi-stage amplification scheme or simulations where the ini-
tial seed intensity is already larger than the pump and close to the relativistic domain
(assuming that is has been successfully amplified in the self-similar regime in a previ-
ous stage), we have to consider very short pulses. However it has been shown that the
electron dynamics becomes dominant when the intensity gets close to the relativistic
condition, and the pure sc-SBS self-similar solution does not reproduce anymore the
dynamic of the energy exchange [33][41][42][28]. Self focusing effect at this high inten-
sity plays also an important role, so that further two and three dimensional studies are
required in order to optimize amplification in this regime.

Figure 4.12: The red line is the intensity of the pump normalized to its maximum,
the blue line is the amplified seed pulse propagating towards left normalized to the
maximum value in intensity of the pump (Ip = 1015W/cm2), for the case short at
t ≈ 6.5 ps (a) and t ≈ 7.5 ps (c) (the pump maximum enters the box at t0 ≈ 5.35 ps).
The green and yellow lines are the electron and ion density distributions normalized to
n/nc = 0.1. b) Zoom of the seed intensity for x = [100,350] µm at t ≈ 6.5 ps.
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4.5 Energy transfer and final duration of the seed

In this section we summarize the results of the previous simulations in terms of energy
gain and final duration of the seed.

Table 4.1: Overview of the parameters of the numerical simulations discussed in this
chapter. FWHMseed

in and FWHMseed
out are expressed in fs, tdelay is in unit of ps. The

plasma length and the crossing point are expressed in µm. Qtotout and Qseedout are in units
of J/cm2 and the intensity Iout in units of 1015W/cm2.

run density profile n/nc FWHMseed
in plasma length crossing point tdelay Qtotout/ Qseedout % Qpump FWHMseed

out Iout × 1015

I constant 0.05 500 500 250 4 2300/1500 50 600 2.5
II triangular 0.05 500 500 250 4 2480/2320 77 660 3.1
III gaussian 0.1 500 1000(392) 500 4 2530/2400 80 1330 2.0
IV gaussian 0.1 500 1000(392) 320 3.17 2882/2882 96 330 4.5
V gaussian 0.1 100 1000(392) 320 3.17 2088/2088 70 420 4.0

In Table 4.1 density profile denotes the shape of the plasma considered in each
simulation, n/nc is the peak value of the density, FWHMseed

in and FWHMseed
out are the

initial and final seed durations at full width half maximum in intensity, respectively.
For each plasma length (the FWHMplasma is indicated in parenthesis for the run with
gaussian density profiles), the crossing point is the position in the simulation where the
pump and seed maxima are meeting. tdelay is the time before the seed starts to enter
the simulation box since the beginning of the simulation, as defined at the beginning
of Sec.4.3. Qtotout is the energy fluence of the backscattered electromagnetic wave (that
includes the backscattered light of the pump signal and the amplified seed), Qseedout is the
gain in energy fluence of the seed pulse and % Qpump = 100×Qseedout /Qp is the percent-
age of the pump energy fluence backscattered in the seed pulse, where Qp ≈ 2.9kJ/cm2

is the initial pump energy fluence. Qtotout − Qseedout is the energy fluence associated to
the spontaneous backscattering. Iout is the peak intensity of the amplified seed. In
the case of a constant density profile (Sec. 4.2, constant case, run I in Table 4.1)
the energy fluence of the light traveling towards the left is high, almost 76 % of the
initial pump laser energy: the energy fluence transferred to the seed is ≈ 50 % of the
pump energy fluence and its final duration FWHMseed

out ≈ 1.2 × FWHMseed
in , as shown

in Fig. 4.13. The difference in energy fluence between Qouttot and Qseedout is due to the
Raman backscattering of the pump. In Fig. 4.14 we show the temporal evolution of
the Fourier transform in space of the electron density: it is interesting to point out that
at t ≈ 6 ps from the beginning of the simulation there is a signal at kFR/k0 =

√
n/nc

that is the corresponding wave-vector for the electron plasma wave due to the Forward
Raman scattering of the pump. It was suggested [38] [40] that at values of density of
the order of n/nc = 0.05− 0.1 the Raman competition, and in particular Forward Ra-
man, would be too detrimental to allow sc-SBS amplification. However, as we showed
in this chapter and in previous publications [33], if the delay is chosen appropriately
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and the plasma is not completely homogeneous, we can have successful SBS amplifica-
tion. In our simulations we observe Forward Raman scattering only in the homogenous
case and quite late in time. This is shown in Fig. 4.15 where we see that this signal
starts to be important when the SBS amplification (kIAW ) has already occurred. In
the case of a triangular density profile (Sec. 4.2,triangular case, run I in Table 4.1)
the energy fluence transmitted to the seed is ≈ 77 %. For both the constant and tri-
angular simulation, the plasma length is 500 µm and the pump and seed laser beams
are crossing in the middle of the plasma. For the run III in Table 4.1 (case delay 1
in Sec. 4.3) the pump and seed signals are meeting in the middle of the plasma: the
backscattered light takes ≈ 84 % of the pump energy fluence. The best case is the
run IV in Table 4.1 (case delay 2 inSec 4.3): not only ≈ 96 % of the pump energy
fluence goes into amplifing the seed signal, but the final duration of the seed is shorter
than its initial duration: this means that the seed efficiently reaches the non linear
amplification phase. The run V in Table 4.1 (case short in Sec. 4.4) is particular: the
seed triggers amplification on its tail as discussed in the previous section. Almost 70%

of the pump energy fluence is going directly to this secondary pulse: its final duration
in FWHM is ≈ 420 fs. The seed final peak intensity is comparable with the one of run
IV, but its energy fluence is smaller as the final shape is different: the peak intensity
is, in this case, the intensity of the secondary pulse. Has shown by Lehmann et al.
[30] by studying the self-similar solution, this latter case, for a long interaction time
and slightly larger plasmas, is expected to shrink and reach even higher intensities and
energy transfer efficiency.
In all the presented simulations, the seed-pump coupling is effective and leads to
large amplitude electron and ion density fluctuations. As already pointed out in the
past[27][43] and discussed in more detail in recent publications [37][32], the main am-
plification pulse is not however affected by non-linearity of the ion-acoustic waves as
the large density fluctuations grow behind the seed. However, behind the pulse a very
regular grating forms so that the coupling leading to SBS amplification has also been
suggested as a way to dynamically create plasma gratings [27][43][32]. When the den-
sity fluctuations become very large, kinetic and fluid non-linearities appear: as a result
quasi-neutrality does not hold anymore and, as we can see in Fig. 4.13 and Fig. 4.15,
the ion density fluctuations reach higher level than the electron one. Notice that this
is not observed in the other density figures because those images are taken at earlier
time, too close to the first peak amplification. This is confirmed by [32], where also
electron temperature effects are studied and it is shown that non-linear kinetic effects
mainly influence the tail of the amplified pulse.

93



4 – Parametric studies of sc-SBS optimal coupling via one-dimensional PIC simulations

Figure 4.13: Amplified backscattered light at the exit of the plasma, for the constant
case at t ≈ 6.39 ps (run I in Table 4.1). The red line is the intensity of the pump
normalized to its maximum, the blue line is the amplified light traveling towards left
normalized to the maximum value in intensity of the pump (Ip = 1015W/cm2). The
green and yellow lines are the electrons and ions density distribution normalized to
n/nc = 0.1.
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Figure 4.14: Temporal evolution of the spectra of the electron density: kFR and kIAW
indicate the expected frequency for the Forward Raman scattering and SBS backscatter
instabilities, respectively (red lines). The Forward Raman scattering starts at t ≈ 6 ps
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Figure 4.15: Amplified backscattered light at the exit of the plasma, for the triangular
case at t ≈ 6.5 ps (run II in Table 4.1). The red line is the intensity of the pump
normalized to its maximum, the blue line is the amplified light traveling towards left
normalized to the maximum value in intensity of the pump (Ip = 1015W/cm2). The
yellow lines are the electrons and ions density distribution normalized to n/nc = 0.1.
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4.6 Conclusions

This chapter presents a systematic parameter study of the effect of plasma density
profile, pump and seed time delay and seed temporal shape on sc-SBS amplification of
a seed by a pump in a two contra-propagative laser configuration. As a results of our
study, one dimensional PIC simulations appear as a necessary tool to describe most of
the competing process and non-linearities intervening in the amplification mechanism.
In particular, we find that plasma shaping allows to partially control SRS affecting
also the energy transfer. Typical experimental profiles of plasma produced from gas jet
have gaussian shape and already help reducing significantly the spontaneous SRS. The
optimal delay is a trade-off of amplification efficiency and backscattering of the pump.
This is an important parameter as proved by simulations and experiments [34][36],
and the exact optimal delay has to be experimentally assessed for each particular
configuration with a systematic scan of pump-seed synchronization.

Spectral analysis of the seed allows to evaluate the quality of the amplification
process. The local linear analysis gives the right order of magnitude for the sc-SBS and
SRS spectra. However PIC simulations and experiments [34][36] show larger downshifts
and broader spectra than predicted by the linear theory, as well as asymmetric spectra.
Amplification of a short seed is possible, however depending if the seed is low or high
(relativistic) intensity, the amplification mechanism will be different. In the case of low
intensity the seed stretches before entering in the self-similar regime. At high intensities
the electron contribution is more important even if the matching condition for SRS is
not satisfied [33]. Moreover amplification from low to very high intensities in a single
pass is very challenging experimentally and theoretically because of the competing
effects discussed in this chapter. A possible solution would be to consider a multi-stage
process where the pulse amplified by a pump in a plasma cell interacts with a second
pump in a nearby cell. Once the seed is amplified to almost relativistic intensities,
issues related to multidimensional effects such as self-focusing and filamentation become
important and need to be addressed in more detail in further studies.
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Chapter 5

Recent experiments on strong
coupling SBS amplification and
comparison with one dimensional
PIC simulations

In this chapter we shortly resume the results on some of the recent experiment car-
ried out at LULI demonstrating the feasibility of the amplification of short laser pulses
using strong coupling Stimulated Brillouin Scattering. We show then the results of
some PIC simulations to corroborate the conclusions given on recent SBS amplification
experiments.
As anticipated in the introduction of this thesis, because of the faster response of an elec-
tron plasma wave, Stimulated Raman Amplification (SRA) has been initially more in-
vestigated theoretically and experimentally [13] for amplification of sub-picosecond laser
pulses. One of the saturation mechanisms of SRA is the electron plasma wave break-
ing, limiting the maximum pump intensity [48] [49]. Achieving high energy transfers
then requires large transverse beam sizes and thus, because of the required frequency-
matching conditions, homogeneous plasmas over a large interaction volume.Therefore,
more attention has been recently directed towards Stimulated Brillouin Amplification
(SBA), in particular towards its strongly coupled (SC) SBA limit [27][26][36]. The first
experimental demonstration of short light pulse amplification using sc-SBS has been
given by L.Lancia et al. in [36]. In this experiments relative amplification factors of up
to 32 for the transmitted seed pulse were obtained by crossing temporally coincident
pulses with identical polarization in an Argon plasma with a density of 0.1 nc. The
pump laser has been compressed to a pulse duration of 3.5 ps, leading to a maximum
intensity of Ip = 6.5× 1016W/cm2: the seed was 400 fs long with a peak intensity of
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Is = 5× 1015W/cm2. Fig. (5.1) shows the amplified seed spectra and focal spots from
the L.Lancia’s et al. work [36]. This first experiment, even in not optimal conditions,
was intended as a proof-of-principle demonstration of sc-SBS amplification.

Figure 5.1: From 2010 L.Lancia’s paper [36]. (a) Transmitted signal recorder on the
seed spectrometer, at the exit of an Ar plasma with density ne = 0.1nc. Except for the
amplified signal, Is, all spectra have been multiplied by a factor of 5 for visibility. The
focal spot of the seed signal transmitted through the plasma without (b) and with (c)
the pump beam. Images are displayed with the same color scale.

A second paper from Lancia et al. [34] has been recently published: in this paper
they report the first observation of signatures of the transition from linear to self-
similar regime of strongly coupled SBS. In the following, we briefly resume the main
experimental results obtained in [34] and we make a comparison with the results from
some one dimensional Particle-in-Cell simulations that are also presented in [34].

5.1 Experiments and simulations comparison

In [34] three CPA pulses, of wavelength λ0 = 1058 nm and 6 nm bandwidth where
used: an ionizing beam generating the plasma from a supersonic hydrogen gas jet
(orange line in Fig. 5.2), a 6 J pump (blue line in Fig. 5.2) stretched to 4 ps leading
to a peak intensity of Ip = 2 × 1015W/cm2 and a seed beam (green line in Fig. 5.2)
with a 700 fs duration at FWHM and intensity of Is = 3× 1013W/cm2. The plasma
density profile was Gaussian with a 500 µm FWHM along the propagation axis and a
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maximum value of nmax/nc = 0.1. In these experimental conditions, the intensity of the
seed pulse were amplified up to a factor of 5. For the one dimensional PIC simulations
we have considered the same parameters in terms of lasers intensity, durations and
plasma density. In Fig.(5.3) we show the results of the amplification from the PIC
simulation: in blue we indicate the intensity of the amplified seed normalized to the
pump initial maximum intensity Imax

p = 2×1015W/cm2 and in red the pump intensity.
As it is possible to see, the pump laser is very well depleted and the seed amplification
is up to 283 its initial intensity. As one dimensional PIC simulations account for
all possible kinetic and nonlinear effects, discrepancy between experimental values of
amplification and the PIC simulations would be attributed, in our understanding, to
experimental uncertainties with plasma and lasers characterization (laser beam quality,
plasma density value). We focus here on the comparison between the spectra of the
amplified seed for the simulations and the experiments is way more important than a
direct comparison in terms of energy transfer and final intensities.

Figure 5.2: Experimental set-up of the experiments presented in [34]

5.1.1 Comparison between spectra of the amplified seed from simu-
lations and experiments

In Chapter 4 we showed how the choice of the relative delay between seed and pump
laser is a crucial parameter to control the SBS amplification in competition with the
spontaneous Raman backscattering of the pump. In the experiments [34] was ale ex-
plored explored the seed amplification in function of the relative delay between the two
lasers beams. In [34] the relative delay ∆t is defined as following: if ∆t = 0 the pump
and seed beams are crossing exactly in the middle of the plasma (purple solid line in

100



5 – Recent experiments on strong coupling SBS amplification and comparison with one dimensional PIC simulations

Figure 5.3: The red surface indicates the intensity of the pump normalized to its
maximum (Imax

p = 2×1015W/cm2), the blue one is the amplified seed pulse propagating
towards left normalized to the maximum value in intensity of the pump.
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Fig.(5.4)). If ∆t < 0 (for example ∆t = −6 ps, green solid line in Fig.(5.4)) the pump
arrives at the plasma center before the seed; the opposite if ∆t > 0 (∆t = +3 ps, yellow
solid line in Fig.(5.4)). Changing the relative delay between pump and seed one can
thus explore the pump-seed coupling from linear to self-similar regimes, while keeping
the same plasma and laser parameters (focal spot size, laser energy, pulse duration),and
avoid triggering or modifying other limiting mechanisms such as beam filamentation or
wave breaking. In Fig.(5.7) we show the seed energy gain (blue circles,left scale) and the
backscattered Raman energy from the pump into the seed propagation direction (green
squares,right scale), as a function of ∆t.The energy gain is defined as the ratio between
the signal at the seed exit of the plasma, and the signal of the seed propagating in vac-
uum, both normalized to the seed incident energy. Two types of gain measurement are
shown: they are obtained from the integration (i) of the CCD images of the focal spot
(2D calorimetry, full circles) and (ii) of the spectrum (1D calorimetry, empty circles).
For the 1D calorimetry only a vertical slice of the focal spot is selected through the
spectrometer slit. The slightly higher gain, recorded from the 1D calorimetry, suggests
that a higher amplification occurs in the central part of the beam. In Fig.(5.5)(a) we
show the comparison between the energy spectra of the seed in function on different
different delay with the spectra on the seed electric field from the PIC simulations
Fig.(5.5)(b). In particular, for the simulations results we show the Fourier transforms
of the seed electric field after interaction, for two different pump-seed delays; the spec-
trum is only shown over the interval of interest. As experimentally observed, at the
delay topt giving the maximum amplification, also correspond the largest redshift and
spectral width. Both the amplitude of the redshift and the spectral broadening are in
relatively good agreement with the experiment. It is interesting to compare the seed
spectrum obtained from PIC simulations of Fig.(5.5)(b) with the values of downshifts
given by the sc-SBS linear theory (Fig.(5.6)(b)) for different position of the pump in
the plasma (Fig.(5.6)(a)). The broadening and the redshift of the amplified signal is
in the same direction than what predicted by linear theory, but, if we compare the
values of redshift we find for the linear solution that ∆ω

ω0
≈ 0.0017 → ∆λlin ≈ 1.8 nm

when the pump is in the middle of the plasma and the downshift is maximized (black
lines in Fig.(Fig.(5.6)). From the PIC simulations for the best case at topt we have
∆λPIC ≈ 2.86 nm: this means that with the PIC simulations we entered the self-
similar regime where the pump is depleted and the linear theory is not valid anymore.
Looking at the good agreement between spectra from PIC simulations and experiments
(Fig.(5.5)), with can deduce that in the experiments the seed explores both a linear
and a self-similar regime. This is confirmed by Fig.(5.8) in which the duration and the
energy gain of the amplified seed are shown in function of the relative delay between
pump and seed pulses: the best energy gain coincides with the shortest duration of the
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amplified seed. To conclude this section, we showed that the relative delay between
pump and seed is an important parameter both in simulations and experiments: dif-
ferent delays from the optimal one leads to lower seed amplification and compression.
We point out that is difficult to make a direct comparison between the optimal relative
delay between pump and seed topt found in simulations (chapter 4) with the best one
found in experiments. This is because in experiments other parameters, such as the
quality of seed beam and of the plasma density and the self-focusing of the pump beam
[47], can affect the estimation of the optimal relative delay.

Figure 5.4: Evolution of the growth rate (solid curves, left scale) seen by the seed for
different delays ∆t with the counter propagating pump (dotted red curve, right scale).

5.1.2 Influence of amplification on SRS spectra

Another important point of interest is the competition between the Raman and Bril-
louin backscattering instabilities in the seed amplification. Stimulated Raman scatter-
ing could reduce the efficiency or quality of the Brillouin amplification process [38][35].
For very short pulses it could also contribute to the seed amplification [28]. In [34] a
strong decrease of Raman backscattering has been observed when the SBS amplifica-
tion of the seed takes place. This is showed in Fig.(5.7) in which the green squares
represents the Raman contribution to the amplified seed in function of the relative
delay between pump and seed pulses. At higher values of seed energy gain, the SRS
signal has a lower amplitude and frequency bandwidth with respect to shots at lower
gain.

In this section we present some simulations in which we keep the ions immobile, in
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Figure 5.5: a) Transmitted spectra, expressed in mJ=nm, as a function of the delay.
Two reference spectra in vacuum propagation are shown. b) 1D-PIC simulated spectra:
optimal case (blue solid line) and delayed(green). The peak at the initial pump and seed
wavelength(1058 nm) is masked to show only the spectra related to the amplification
process.
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Figure 5.6: a) Local normalized values of the pump intensity at two different times:
when the maximum of the pump reaches the left boundary of the box (red line) and
when the pump is in the middle of the simulation box (black line). The green line
indicates the plasma density profile. b)Values of the redshift ∆ω/ω0 as predicted by
the sc-SBS linear theory (Chapter 1) versus the positions in the plasma and depending
on the different position of the pump (red and black lines correspond to∆ω/ω0 ≈ 0.0015
and ∆ω/ω0 ≈ 0.0017, respectively
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Figure 5.7: Energy gain Eout/Ein of the seed (left scale, blue circles) and pump Raman
backscattered signal (right scale, green squares),as a function of relative delay between
pump and seed arrival time at the plasma center. Full (empty) circles are the 2D (1D)
calorimetry. Plasma density is 0.1nc.

Figure 5.8: Duration (FWHM, left axis, triangles) and energy gain (right axis, circles)
of the amplified seed laser as a function of relative delay between pump and seed arrival
time at the plasma center.
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Figure 5.9: Comparison of the spectra for the simulations with ion fixed in the case
with only the pump signal going through the plasma (red line) and the case with both
pump and seed lasers interacting (green line).

107



5 – Recent experiments on strong coupling SBS amplification and comparison with one dimensional PIC simulations

Figure 5.10: Spectra in ω/ω0 of the electric field Ez. a) Simulation with only the pump
laser and the ions immobile. b)Simulation with both pump and seed lasers and the
ions mobile.
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order to better understand the competition between the SRS and SBS amplification
mechanisms [34], present for the cases considered in chapter 4 and in the experiments
[34][36]. In particular two identical simulations have been performed, with the same
parameters as reported at the beginning of this section, with the immobile ions (SBS
suppressed). In the first one only the pump goes throughout the plasma and no seed
in sent in the simulation box, in the second, both pump and seed lasers interact. With
the immobile ions only the thermal SRS can develop. In Fig. 5.9, we show the fre-
quency spectra integrated over the whole simulation and recorded at the left edge of
the simulation box, outside the plasma. At this edge we have: i) the pump signal,
incoming from left to right; ii) the seed (when it is present) outgoing from right to
left; iii) and the backscattered pump signal. The frequency axis has been normal-
ized to ω0, so that ω/ω0 = 1 corresponds to nominal frequency of the pump and the
seed at the entrance in the simulation box. The red line indicates the SRS frequency
(ωR/ω0 ≈ 0.68) for the backscattered electric field at the maximum value of the plasma
density (nmax/nc = 0.1). The important result is that, when the SBS is suppressed
(fixed ions) there is no difference in the spectra whether the seed is present
or not and the band width is large showing the presence os SRS from dif-
ferent points along the plasma density profile . This proves that the SRS signal
is only related to the spontaneous backscattering of the pump. There is no coupling
between pump and seed if sc-SBS amplification is quenched as the frequency matching
condition for SRS is not satisfied. In Fig. 5.10 we compare the spectra of the elec-
tric field Ez (around the expected values of the backscattered Raman wave) from the
simulation with ion fixed and only the pump (Fig. 5.10(a)) with the spectra from the
simulation with both the laser interacting and the ion mobile (Fig. 5.10(b)). When the
SBS coupling is suppressed (Fig. 5.10(a)) the signal at Raman frequencies is strong and
spread. On the opposite side, when the SBS can occur (Fig. 5.10(b), mobile
ions), the Raman signal is smaller and only the frequency corresponding
to the highest density value (n/nc = 0.1) appears. Notice that the large spread
of the spectrum in Fig. 5.10(a) is due to the strong plasma density inhomogeneities
(spanning between ω/ω0 ≈ 0.68 for n/nc = 0.1 and ω/ω0 ≈ 0.74 for n/nc ≈ 0.07)
created by the SRS backscattering of the pump. Even if the Raman spectrum is large,
it is well separated from the SBS range of frequency. This is more true when SBS
amplifications sets in (Fig. 5.10(b)). From those results we can state the presence
of an anti-correlation between the SBS and the spontaneous mechanism: all the SRS
signals are from backscattering of the pump signal and, in presence of SBS ampli-
fication mechanism, the SRS contribution is limited [34]. Fig.(5.11) shows the
backscattered Raman scattering of the pump in the experiments: it also shows that
the triggering of SBS amplification (maximized in the optimal case, when
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∆t = −2 ps, Fig.(5.11)(a)) reduces drastically the spontaneous backscattered
Raman of the pump, as also observed in simulations. In correspondence of the
delay for which the SBS amplification reaches the highest efficiency (∆t = −2 ps), the
spread of the Raman spectrum is reduced compared to the one in correspondence of
other values of relative delays.

5.2 Conclusions

In this chapter we show a comparison between results obtain from PIC simulations and
from recent experiments carried out at LULI [34][36]. One dimensional PIC simula-
tions helps to describe and interpret the quality of the amplification process obtained in
experiments. As a results of our study, we demonstrated and validated the first experi-
mental observation of the signatures of the transition from linear to self-similar regime
as we also reported in [34]. The comparison among the spectra from experiments, PIC
simulations and the previsions given by the sc-SBS linear theory confirms that the in
the experiments the seed explores both a linear and self-similar regime of amplification.
We also showed how the choice of the relative delay between the pump and seed beams
is a crucial parameter not only theoretically [35] but equally in nowadays experiments.
In [34] a strong decrease of the Stimulated Raman Amplification occurs has been mea-
sured for the first time. These findings are confirmed by PIC simulations that show
that the triggering of SBS is responsible for the amplification, strongly limiting the
growth of SRS. This is particularly true in simulations, where we show that when the
Stimulated Brillouin Amplification is suppressed keeping the ions immobile, there is no
difference in the spectra around the Raman frequency, proving that the SRS signal is
only related to the spontaneous backscattering of the pump.
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Figure 5.11: Backscattered pump Raman spectrum for a relative pump-seed delay of
∆t = −2 ps (a), ∆t = −8 ps (b), ∆t = +4 ps (c)
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Chapter 6

Presentation of the new particle in
code SMILEI and results of two
dimensional simulations of sc-SBS
amplification

In this chapter we present the new particle-in-cell code SMILEI developed during the
last three years at LULI: I have participated to the development of SMILEI from the
very beginning, focusing on the diagnostic module of the code. This code has been also
used to carry out all the results showed in this thesis work. This chapter is organized
as following: after a short introduction on the motivation on the development of the
SMILEI code, we show the structure of the code and the efforts made on the side of
the parallelization and the optimization of the code. In the last part of this chapter
we show an application of SMILEI on very large scale two-dimensional simulations on
SBS in the strong coupling regime.

The Particle-In-Cell (PIC) approach is a very popular method for solving a wide
range of physics problems. Initially developed for fluid dynamics studies [50], its various
advantages (conceptual simplicity, efficient implementation on massively parallel com-
puters, etc.) have since established it as a central simulation tool for plasma physics,
from semiconductors to cosmology or accelerators.

Today, the kinetic simulation of plasmas in various environments, from the labora-
tory to astrophysics, strongly relies on PIC codes [51]. In this chapter, we present the
new open-source PIC code SMILEI. It has been developed in a collaborative framework
including physicists and high-performance computing (HPC) experts to best benefit
from the new HPC architectures and paradigms. SMILEI development was initially mo-
tivated by recent progresses in ultra-high intensity (UHI) laser technology, and ongoing
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projects aiming at building multi-petawatt laser facilities. To support this formidable
experimental and technological undertaking, new numerical tools have to be deployed.

In addition, SMILEI development started at a time when a paradigm shift occurred
in HPC. In particular, the number of cores exploitable on modern massively parallel
supercomputers has skyrocketed. This tendency is progressing quickly but software
development lags behind. Today, most of the codes used by the plasma community
face difficulties when confronted with these new challenges, and a strong collaboration
between physicists and HPC specialists is necessary to overcome these difficulties. In-
tended as a multi-purpose and collaborative PIC code, SMILEI today addresses a wide
range of physics problems, from laser-plasma interaction to astrophysics.

This chapter aims at presenting an overview of some of the code’s principles and
structure. In the Annexe B we show more in detail the SMILEI’s performance and
capabilities, as well as benchmarks and examples.

6.1 The Particle-In-Cell (PIC) method for collisionless plas-
mas

The Maxwell-Vlasov model

The kinetic description of a collisionless plasma1 relies on the Vlasov-Maxwell system of
equations. In this description, the different species of particles constituting the plasma
are described by their respective distribution functions fs(t,x,p), where s denotes a
given species consisting of particles with charge qs and mass ms, and x and p denote
the position and momentum of a phase-space element. The distribution fs satisfies
Vlasov’s equation: (

∂t +
p
msγ

· ∇+ FL · ∇p

)
fs = 0 , (6.1)

where γ =
√

1 + p2/(ms c)2 is the (relativistic) Lorentz factor, c is the speed of light
in vacuum, and

FL = qs (E + v×B) (6.2)

is the Lorentz force acting on a particle with velocity v = p/(msγ). This force follows
from the existence, in the plasma, of collective electric [E(t,x)] and magnetic [B(t,x)]

1The PIC method can be applied to (fully or partially ionized) plasmas as well as beams of charged
particles. For the sake of simplicity however, we will refer to all these states as plasmas.
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fields satisfying Maxwell’s equations:

∇ ·B = 0 , (6.3a)

∇ ·E = ρ/ε0 , (6.3b)

∇×B = µ0 J + µ0ε0 ∂tE , (6.3c)

∇×E = −∂tB , (6.3d)

where ε0 and µ0 are the vacuum permittivity and permeability, respectively.

The Vlasov-Maxwell system of equations (6.1–6.3) describes the self-consistent dy-
namics of the plasma which constituents are subject to the Lorentz force, and in turn
modify the collective electric and magnetic fields through their charge and current
densities:

ρ(t,x) =
∑
s

qs

∫
d3pfs(t,x,p) , (6.4a)

J(t,x) =
∑
s

qs

∫
d3pvfs(t,x,p) . (6.4b)

Quasi-particles and the PIC method

The “Particle-In-Cell” method owes its name to the discretization of the distribution
function fs as a sum of Ns “quasi-particles” (also referred to as “super-particles” or
“macro-particles”) :

fs(t,x,p) =

Ns∑
p=1

wp S
(
x− xp(t)

)
δ
(
p− pp(t)

)
, (6.5)

where wp is a quasi-particle “weight”, xp is its position, pp is its momentum, S is the
shape-function of all quasi-particles and δ is the Dirac distribution.

In PIC codes, Vlasov’s equation (6.1) is integrated along the continuous trajectories
of these quasi-particles, while Maxwell’s equations (6.3) are solved on a discrete spatial
grid, the spaces between consecutive grid points being referred to as “cells”. Injecting
the discrete distribution function of Eq. (6.5) in Vlasov’s equation (6.1), multiplying
the result by p and integrating over all p and over the volume of the quasi-particles,
leads to the relativistic equations of motion of individual quasi-particles:

dxp
dt

=
up
γp

(6.6)

dup
dt

= rs

(
Ep +

up
γp
×Bp

)
, (6.7)
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where rs = qs/ms is the charge-over-mass ratio (for species s), up = pp/ms is the

reduced momentum and γp =
√

1 + u2
p is the Lorentz factor.

In this Section, we present the general PIC algorithm, starting with the simulation
initialization and then going through the PIC loop itself (see Tab.6.1).

Table 6.1: Summary of SMILEI’s PIC algorithm.

Initialization time step n = 0, time t = 0

Particle loading ∀p, define (xp)n=0, (up)n=−1
2

Charge projection on grid
[
∀p, (xp)n=0

]
→ ρ

(n=0)
i,j,k

Compute initial fields - solve Poisson on grid:
[
ρ

(n=0)
i,j,k

]
→ E(n=0)

stat

- add external fields: E(n=0)
i,j,k ,B(n=0)

i,j,k = B
(n=

1
2 )

i,j,k

PIC loop: from time step n to n+ 1, time t = (n+ 1) ∆t

Restart charge & current densities
Save magnetic fields value (used to center magnetic fields)

Interpolate fields at particle positions ∀p, [(E)
(n)
i,j,k, (B)

(n)
i,j,k]→ E(n)

p ,B(n)
p

Push particles - compute new velocity ∀p, p
(n−1

2 )
p

[
E(n)
p ,B(n)

p

]
p

(n+
1
2 )

p

- compute new position ∀p, x(n)
p

[
p

(n+
1
2 )

p

]
x(n+1)
p

Project current onto the grid using a charge-conserving scheme[
∀p x(n)

p ,x(n+1)
p ,p

(n+
1
2 )

p

]
→ J

(n+
1
2 )

i,j,k

Solve Maxwell’s equations

- solve Maxwell-Faraday: E(n)
i,j,k

[
J

(n+
1
2 )

i,j,k

]
E(n+1)
i,j,k

- solve Maxwell-Ampere: B
(n+

1
2 )

i,j,k

[
E(n+1)
i,j,k

]
B

(n+
3
2 )

i,j,k

- center magnetic fields: B(n+1)
i,j,k = 1

2

(
B

(n+
1
2 )

i,j,k + B
(n+

3
2 )

i,j,k

)
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Time- and space-centered discretization

As will be discussed in Sec.6.1.1, Maxwell’s equations are solved here using the Fi-
nite Difference Time Domain (FDTD) approach[52] as well as refined methods based
on this algorithm (for a review of these methods see [53]). In these methods, the
electromagnetic fields are discretized onto a staggered grid, the Yee-grid, that allows
for spatial-centering of the discretized curl operators in Maxwell’s equations (6.3c) and
(6.3d). Similarly, the time-centering of the time-derivative in Maxwell’s equations(6.3c)
and (6.3d) is ensured by considering the electric fields as defined at integer time-steps
(n) and magnetic fields at half-integer time-steps (n+ 1

2). Time-centering of the mag-
netic fields is however necessary for diagnostic purposes, and most importantly when
computing the Lorentz force acting on the quasi-particles. It should also be noted, as
will be discussed in Sec. 6.1.1, that a leap-frog scheme is used to advance the particles
in time, so that their positions and velocities are defined at integer (n) and half-integer
(n− 1

2) time-steps, respectively.

6.1.1 The PIC loop

At the end of the initialization stage [time-step (n = 0)], all quasi-particles in the sim-
ulation have been loaded and the electromagnetic fields have been computed over the
whole simulation grid. The PIC loop is then started over N time-steps each consisting
in (i) interpolating the electromagnetic fields at the particle positions, (ii) computing
the new particle velocities and positions, (iii) projecting the new charge and current
densities on the grid, and (iv) computing the new electromagnetic fields on the grid.
In this section, we describe these four steps taken to advance from time-step (n) to
time-step (n+ 1).

Field interpolation at the particle

At the beginning of time-step (n), the particles velocities and positions are known at
time-step n − 1

2 and n, respectively. For each particle p, the electromagnetic fields
[at time-step (n)] are computed at the particle position using a simple interpolation
technique:

E(n)
p = V −1

c

∫
dxS

(
x− x(n)

p

)
E(n)(x) , (6.8)

B(n)
p = V −1

c

∫
dxS

(
x− x(n)

p

)
B(n)(x) , (6.9)
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where we have used the time-centered magnetic fields B(n) = 1
2 [B(n+1/2) + B(n−1/2)],

and Vc denotes the volume of a cell.

Particle pusher

Knowing, for each quasi-particle, the electromagnetic fields at its position, the new par-
ticle momentum and position are computed using a (second order) leap-frog integrator.
The new particle momentum is computed according according to:

u
n+

1
2

p = u
n−1

2
p + rs∆t

E(n)
p +

v
(n+

1
2 )

p + v
(n−1

2 )
p

2
×B(n)

p

 , (6.10)

as well as the new particle position:

xn+1
p = xnp + ∆t

u
n+

1
2

p

γp
, (6.11)

where ∆t denotes the duration of a time-step.

Charge conserving current deposition

Charge deposition (i.e. charge and current density projection onto the grid) is then
performed using the charge-conserving algorithm proposed by Esirkepov [56]. The cur-
rent densities in the dimensions of the grid (i.e., the x-direction for 1D3V simulations,
both x- and y-directions for 2D3V simulations, and all three x-, y- and z-directions for
3D3V simulations) are computed from the charge flux through the cell borders (hence
ensuring charge conservation) while the current densities along the other dimensions
are performed using a simple projection. To illustrate this point, we take the exam-
ple of current deposition in a 2D3V simulation. The current densities in the x- and
y-directions associated to a particle with charge q are computed as:

(Jx)
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where (Wx)(n+
1
2 ) and (Wy)

(n+
1
2 ) are computed from the particle present and former

positions x(n+1)
p and x(n)

p , respectively, using the method developed by Esirkepov. The
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particle current in the z-direction (not a dimension of the grid) is, in this geometry,
computed using a simple projection:

(Jz)i,j = qwrvp S(xi,j − xp) . (6.14)

Similarly, the charge density deposited by the particle is obtained using the simple
projection:

(ρ)
(n+1)
i,j = q wp S(xi,j − x(n+1)

p ) . (6.15)

The total charge and current densities henceforth gather the contributions of all
quasi-particles of all species. It is worth noting that, within a charge-conserving frame-
work, charge densities are only projected on the grid for diagnostics purposes (as we
will see in next paragraph, it is not used to advance the electromagnetic fields).

Maxwell solvers

Now that the currents are known at time-step n + 1
2 , the electromagnetic fields can

be advanced solving Maxwell’s equations (6.3). First, Maxwell-AmpÃĺre Eq. (6.3c) is
solved, giving the advanced electric fields:

E(n+1) = E(n) + ∆t

[
(∇×B)(n+

1
2 ) − J(n+

1
2 )

]
. (6.16)

Then, Maxwell-Faraday Eq. (6.3d) is computed, leading to the advanced magnetic
fields:

B(n+
3
2 ) = B(n+

1
2 ) −∆t (∇×E)(n+1) . (6.17)

Before discussing the discretization of the curl-operator in more details, it is worth
noting that solving Eqs. (6.3c) and (6.3d) is sufficient to get a complete description of
the new electromagnetic fields. Indeed, it can be shown that this conserves a divergence-
free magnetic field if Gauss’ equation (6.3a) is satisfied at time t = 0. Similarly,
Poisson’s equation (6.3b) is verified as long as it is satisfied at time t = 0, if the charge
deposition algorithm fulfills the charge conservation equation:

∂tρ+∇ · J = 0 (6.18)

This motivated the use of Esirkepov’s projection scheme discussed in the previous
paragraph. We conclude this Section by discussing in more details the discretization
of the curl-operators in Eqs. (6.3c) and (6.3d). To do so, let us focus on the equations
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for the electric and magnetic fields Ex and Bx discretized on the (staggered) Yee-grid:
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The partial derivatives in space in both equations are discretized as follows. In the
Maxwell-Ampere equation, the partial derivative in x (similarly in y and z) reads:

(∂xF )i,j,k =

F
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1
2 ,j,k
− F

i−1
2 ,j,k

∆x
, (6.21)

and corresponds to the usual curl-operator discretization used in the FDTD method.
In the Maxwell-Faraday equation, the partial derivatives are modified as proposed by
various authors . The spatial derivative in the x-direction (similarly in the y and z

directions) reads:
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and the parameters αx, ηx, βxy and βxz satisfy:

αx + 2βxy + 2βxz + 3 ηx = 1 , (6.23)

to ensure second order accuracy [57].

More details on the SMILEI’s performances are discussed in the appendix B where
we focus on the efforts made on the parallelization. In particular, the optimization
on the code allows one to run massively parallel large two dimensional simulations.
The next section focuses on the results of two dimensional simulation on the sc-SBS
amplification.
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6.2 Two dimensional simulation of sc-SBS amplification of
a short laser pulse

In this section we show two examples of very large two-dimensional simulations on the
amplification of short laser pulses via the SBS instability in the strong coupling regime.
The interest of these simulation is not only to test SMILEI on a large scale simulation,
but also to propose new experimental configurations to optimize the process. Simulate
the sc-SBS amplification of short laser pulses in conditions near to the experimental
ones demands a big efforts in terms of calculation time and IT resources. As we
showed in previous chapters, the experimental interaction length are typically of the
order of millimeters and the lasers spot size is spanning between few tens to hundreds
of micrometers: the physics of the system is evolving on the time scale of tens of
picoseconds. In order to take in account all the phenomena implied [33] (such as
the competition between Raman, Brillouin and the filamentation of the pump), a two
dimensional description of the system is needed.

Figure 6.1: Plasma and lasers configuration for the simulation SIMA: the pump and
seed lasers are crossing in a gaussian plasma with an head-on geometry
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Figure 6.2: Plasma and lasers configuration for the simulation SIMB: the seed lasers
is interacting with two pump signals in a constant plasma shifted towards right. The
two pump lasers are propagating in the plasma with an angle 6ř with respect to the
seed direction of propagation
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6.2.1 Simulations set-up

In this section we show two example of two dimensional simulations. In the first one
(called SIMA in the following) the lasers configuration is similar to what showed in
the previous chapters: the pump (cos2(t) temporal shape with duration of FWHMp =

4.2ps, Ip = 1015W/cm2) and seed (cos2(t) temporal shape with duration of FWHMs =

0.5ps, Is = 1015W/cm2) are crossing in a counter propagative geometry in a gaussian
plasma. The plasma is 1 mm x 0.5 mm long and has a maximum value of density
of n/nc = 0.1. Both the seed and pump lasers have a transverse cos2(y) shape with
FWHM tr

y,A = 130 µm. The aim of this simulation is to show that sc-SBS amplification
can be an interesting tool to amplify short lasers pulses with an initial very large spot
size. If the phase front of the amplified seed is well conserved, the amplified
pulse can be later focused to reach even higher intensities.

In a second simulation (SIMB in the following) we propose an innovative plasma-
lasers configuration to further optimize th sc-SBS seed amplification. The seed (cos2(t)

temporal shape with duration of FWHMs = 0.5ps, Is = 1015W/cm2) is interacting
with two pump (cos2(t) temporal shape with duration of FWHMp = 4.2ps, Ip =

1015W/cm2) that are counter-propagating with an angle of 6◦ degrees with respect
to the seed direction of propagation. For this simulation the plasma is constant with
n/nc = 0.05 and it is shifted towards right. In this case the transverse size of the beams
is smaller, FWHM tr

y,B = 30 µm. Fig.(6.1) and Fig.(6.2) show the plasma geometry
and the pump and seed lasers direction of propagation for the simulations considered.
The advantage of the plasma-lasers set-in studied in this simulations is to separate
the direction of backscattering of the pump lasers from the direction of propagation of
the seed, as we will briefly show in the following. The space resolution for both the
simulations is ∆x = 33 nm (30720 x 15360 PIC cells). The total time simulated is
tsim = 10 ps with a time resolution of ∆t = 7.3× 10−2 fs. For each PIC cell there are
25 particles per specie, for a total number of particles of ppSIMA

= 23 × 109 for the
simulation SIMA and ppSIMB

= 16 × 109 for SIMB. The simulations run on 65536
MPI processors (4096 nodes) involving 262144 threads OpenMP.

6.2.2 Amplification results

In Fig.(6.3) we show the pump and seed intensities at three different stages of the
amplification. At t = 5.8ps the seed starts to interact with the pump (Fig.(6.3)(a)).
At t = 7.6ps the seed reaches the middle of the simulation box: at that time the seed
is still in the exponential regime of amplification, as the pump is not depleted yet.
At t = 9.7ps the seed has travelled through the entire simulation box and the pump
is depleted: the final intensity of the seed os Ioutseed ≈ 4.6 × 1015 that means 5× the
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initial intensity. The final duration of the amplified seed is tout = 450 fs: this confirms
that the seed has been partially temporally compressed and that it experienced the
self-similar regime of amplification. Notice that this simulation is optimized in terms
of relative delay between the two pulse: the seed and pump maxima are crossing at
x ≈ 320 µm (corresponding to a delay of tdelay = 2.5 ps), that means on the left of the
plasma maximum. This value of relative delay is the results of the optimization process
made analyzing one dimensional simulations, as showed in chapter 4. The transverse
size of the amplified seed at FWHM is of the order of FWHM trout

y,A ≈ 100 µm. This
simulation demonstrates that sc-SBS is possible in the presence of a pump and an initial
seed with very large transverse sections.
Fig.(6.4) shows the amplified seed exiting the simulation box at t = 10 ps for the case
SIMB: the final seed intensity is Ioutseed ≈ 3×1015 (3× the initial intensity). Even if the
final intensity of the seed is lower than what obtained with the head-on configuration
of SIMA, this set-up allows the Raman signal originated by the backscattering of the
pump to propagate mostly on the pump direction of propagation and be separated
from the seed. The SBS amplification of the seed is confirmed by the spectra showed
in Fig.(6.5): Fig.(6.5)(a) is the spectrum (in terms of wave number k/k0 and frequency
ω/ω0, where k0 and ω0 are the nominal wavenumber and frequency of the pump lasers)
of the electric field recorded on the entire length of the left side of the simulation
box. Fig.(6.5)(b) shows a zoom of the spectrum for ω/ω0 = [0.98,1.02]: the peak in
the amplified seed (central spot in the figure) confirms the signature of the sc-SBS
amplification of the laser. The other color spots are the signatures of the propagating
pump lasers at ω0 frequency. Looking at the spectrum of Fig.(6.5)(a) , for ω/ω0 =

[0.77,0.88], we see the Raman signal originated by the backscattering of the pump: part
of this signal is concentrated around k/k0 = 0.1 confirming the preferential direction
of the backscattering of the pump. Notice that, at the end of the amplification, the
transverse focal spot size of the seed at FWHM in intensity is FWHM trout

y,B ≈ 28 µm,
that means of the same order of the initial one (FWHM tr

y,B = 30 µm). Further
optimization studies will improve this set-up.

6.3 Conclusions

In this chapter we briefly showed an overview of some of the SMILEI code’s principles
and structure. The effort made to create a new particle in cell code that responds
the nowadays HPC opportunities made possible to carry out two dimensional sc-SBS
amplification simulations on a very large scale, comparable to the real experiments one.
We showed preliminary results from two examples of these two dimensional simulations:
in a first one, we proved that the sc-SBS amplification is possible when the pump and
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seed lasers have a large initial spot size. In this case the seed amplified phase front
is well conserved and the seed could be later focused to reach even higher
intensities. Notice that the results presented for this case are obtained making cross
the maxima of the pulses on the decreasing portion of the plasma density (as seed by the
seed during the propagation), confirming the importance of the relative delay between
the pump and seed lasers. In a second simulation we proposed a set-up in which the
seed is amplified by two pump propagating with an angle of 6◦ with respect to the seed
direction. We showed that one of the advantages of this plasma-lasers configuration
is to separate the Raman backscattering of the pump along the seed propagation.
Experimentally, this plasma-lasers set-up will probably reduce the problem of pump
and seed alignment typical of an head-on configuration. Further studies will allow
a comparison with a simulation with the same set-up but with only pump present,
similar to the experimental set-up shown in [36]. Moreover both the configurations
shown here will create different plasma density gratings and it will be interesting to
make a comparison with recent publications on the subject [45].
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Figure 6.3: SIMA: Evolution of the pump and seed intensities at t = 5.8 ps (a),
t = 7.6 ps (b) and t = 9.6 ps (c)
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Figure 6.4: Pump and seed intensity at the end of the amplification, at t = 10 ps. The
final intensity of the seed is Ioutseed ≈ 3× 1015 (3× the initial intensity)
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Figure 6.5: a) Spectrum (in terms of wave number k/k0 and frequency ω/ω0, where k0

and ω0 are the nominal wavenumber and frequency of the pump lasers) of the electric
field recorded on the entire length of the left side of the simulation box. b) Zoom of
the spectrum for ω/ω0 = [0.98,1.02]
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The problem of the plasma amplification of low energy, short (≈ 100-500 fs) laser pulse
by an energetic long (≈10ps) pulse via strong coupling Stimulated Brillouin Backscat-
tering has been investigated in this work, both analytically and numerically. We found
that studying explicitly the amplitudes and the phases in the system of equations de-
scribing the SBS amplification, we can make a complete description of the different
stages of amplification. In the strong-coupling regime, contrary to the weak coupling
regime, the phases of the participating waves are continuously evolving with time. We
showed that the initial energy transfer direction is dictated by the evolution of the
phases: as long as the electric field amplitude of the pump is more important than the
seed one, the pump gives energy to the seed. Concerning the evolution of the different
stages of the amplification, we found that at the beginning of the of the coupling, the
total phase ϑ (defined as a combination of the phase of the pump, of the seed and of the
density perturbations) is determined by the seed phase. When later in time the seed
enters the exponential regime of amplification, known as "linear regime", the seed and
density perturbation phases start to compensate each other (letting the pump phase
unchanged and equal to zero), resulting in a constant value of the total phase. The
system will stay in this regime as long as the pump depletion is negligible. When the
amplitude of the amplified seed and of the pump are comparable, the total phase starts
evolving again driven by the variation of the pump phase: at that moment the electric
field of the amplified seed reaches its maximum and the pump no longer provides en-
ergy to the seed. The energy flow is then reversed (the seed starts to give energy to the
pump) and the total phase is oscillating around ϑ = −π (value at which the coupling
stops) , leading to the oscillations behind the first peak of the seed that are analogous
of the π-pulse for the weak coupling regime. It was highlighted shown that the global
phase is the relevant quantity that describes the efficiency of the coupling.
In many experimental situation of interest the pump laser is chirped: the dephasing
originating from the chirped-pulse-generated lasers can affect the efficiency of the am-
plification. In particular if the dephasing is too large the coupling will be quenched,
while an optimal condition can be found if the chirp can be used to maintain a favorable
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coupling in the maximum seed growth, and pump depletion phase. In order to fulfill
this condition, the parameter that needs to be taken into account is the sign of the
chirp parameter α. Following the different stages of the amplification, we can define
different values of the chirp parameter α that compensate the total phase variation. In
correspondence of pump depletion, we have large energy transfer which is affecting the
downshift of the seed frequency. Optimal coupling would then be achieved if the chirp
phase compensates the seed phase at the moment pump depletion sets in. Imposing
this condition, we find that the amplification is improved in terms of electric field am-
plitude and time definition of the width of the first peak when α is negative and of the
order of α ≈ −10−7. If the chirp parameter α is positive or too large the energy transfer
is strongly reduced and the amplification quenched. We found that large values of α
(of the order of |α| > 10−6 affect in a negative way the seed amplification, no matter
the sign of α. A definite relation was established between the maximum growth rate
γsc and the condition for the laser chirp to allow optimal amplification or to quench
the process. We found that the sc-SBS amplification requires a preferential gradient
of the plasma profile with respect to the seed propagation. When the amplification
happens along a plasma density linearly decreasing as seen by the seed during its prop-
agation, the seed enters earlier the exponential regime and the self-similar regime and
it attains the highest amplification. In this case the seed amplification is even better
compared to a simulation with a constant plasma with density equal to the average of
the density ramp. This is similar to the case of the seed amplification with a negatively
chirped pump. We defined an effective chirped associated to the density profile: for
the case with a favorable density profile, the associated values is negative and the order
of αtrr ≈ −2.7 × 10−7 confirming the previous finding about the relation between the
sign of α and the increasing in the coupling efficiency. A definite relation was then
stablished between the maximum growth rate γsc and the condition for the laser chirp
to allow optimal amplification or to quench the process.
To further optimize and study the sc-SBS in more realistic configuration we carried out
a series of one-dimensional particle in cell (PIC) simulations. As a results of our study,
one dimensional PIC simulations appear as a necessary tool to describe most of the
competing process (such as the SRS backscattering of the pump) and non-linearities
intervening in the amplification mechanism. PIC simulations show larger downshifts
and broader spectra than predicted by the linear theory, as well as asymmetric spectra,
allowing the study of the coupling also in self-similar regime. In addition to the results
obtained through the envelope simulations, we find that plasma shaping allows to par-
tially control SRS affecting also the energy transfer. Typical experimental profiles of
plasma produced from gas jet have gaussian shape and already help reducing signifi-
cantly the spontaneous SRS. We found that the time synchronization between pump
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and seed is a crucial parameter to enhance the coupling. In particular, we show that
most of the energy transfer happens in the decreasing portion of the plasma density (as
seen by the seed during its propagation), confirming the results obtained simply solv-
ing the sc-SBS system of equations. Amplification of a short seed is possible, however
depending if the seed is low or high (relativistic) intensity, the amplification mecha-
nism will be different. In the case of low intensity the seed stretches before entering
in the self-similar regime. One dimensional PIC simulations helps to describe and in-
terpret the quality of the amplification process obtained in experiments. As a results
of our study, we demonstrated and validated the first experimental observation of the
signatures of the transition from linear to self-similar regime as we also reported in
[34]. The comparison among the spectra from experiments, PIC simulations and the
previsions given by the sc-SBS linear theory confirms that the in the experiments the
seed explores both a linear and self-similar regime of amplification. The importance
of the relative delay between pump and seed pulses is confirmed also in experiment,
in particular regarding the competition between SBS and SRS. The PIC simulations
results demonstrate that, when the SBS amplification of the seed sets in, the growth
of SRS is strongly limited.
In the last part of this work we presented the efforts made to develop and optimize
the new particle in cell code SMILEI. This efforts made possible to carry out two di-
mensional sc-SBS amplification simulations on a very large scale, comparable to the
real experiments one. We showed that, in an head-on configuration, the relative delay
of interaction between pump and seed is an important parameter that allows to reach
important seed intensity also in a two dimensional simulation. We then proposed a new
possible set-up, in which a seed is amplified by two pump lasers counter-propagating
with an angle of 6◦ with respect to the seed direction of propagation. This configuration
allows one to limit the Raman backscattering of the pump along the seed propagation
and reduces the deterioration of the initial focal spot of the seed.
To conclude, we showed the SBS amplification of short laser pulses in the strong cou-
pling regime can be one of the opportunity to overcome present day limitations in terms
of damage threshold of solid optics materials. It was shown that a detailed analysis
of the combined temporal evolution of amplitude and phase in the strong coupling
regime allows to clarify several issues in plasma amplification: the directionality of the
energy flow, and the role of the chirp originating from the laser pulse and the plasma
profile. Together with the parameters optimization obtain through PIC simulations,
these results possibly allow a better interpretation and an improvement of nowadays
experiments on SBS amplification. This analysis is also of importance to inertial con-
finement fusion (ICF) in the context of cross-energy beam transfer as the interaction
conditions can be in strong-coupling.
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Appendix A

Relation between the chirp
parameter α and the duration of a
gaussian laser beam

In this appendix we explicitly derive the relation between the chirp parameter α and the
duration of gaussian laser beam finite in time. To do so, we first write the expression of
the temporal evolution of the intensity in the case of a gaussian laser beam in a given
point in the space, making the hypothesis that is centered around ω0:

I(t) = Imaxe
−t2/(τFWHM/(2

√
ln2))2 = Imaxe

−t2/τ2 (A.1)

In Eq.(A.1), Imax is the maximum value of intensity and the peak of the gaussian,
τFWHM is the minimal duration of the pulse at the Full Width Half Maximum and τ
is the minimal pulse duration (corresponding to a given spectral spread) defined as:

τ =
τFWHM

2
√
ln2

(A.2)

In the same way, the electric field can be written as:

E(t) = Emaxe
−t2/2τ2e−iω0t (A.3)

where Emax is the electric field peak amplitude and ω0 is the nominal frequency at
Emax. If we make the Fourier transform of Eq.(A.3) we obtain:

E(ω) ∝ τe−(ω−ω0)2τ2/2 (A.4)
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The spectral width of the electric field is then:

∆ω =

√
2

τ
(A.5)

The spectral width at FWHM in intensity is:

∆ωFWHM =
4ln2

τFWHM
(A.6)

In the introduction we showed that the effect of a chirp, in terms of phase, can be
expressed, in a given point as:

φ(t) = αω2
0(t− t0)2 (A.7)

where α is the chirp parameter and t0 is the time centering of the pump. For t0 = 0

the chirp modify the spectral form of the electric field as:

E(ω) ∝ τe−(ω−ω0)2τ2/2eiβ(ω−ω0)2 (A.8)

where β (ω − ω0)2 is the spectral contribution of the chirp to the electric field.
Eq.(A.8), in terms of temporal dependance, reads now:

E(t) ∝ e−t2/(2τ2+8β2/τ2)e
i β

τ4+4β2
t2

= e−t
2/2T 2

eiαω
2
0t

2
(A.9)

with T defined as the duration of the chirped pulse

T =
√
τ2 + 4β2/τ2 (A.10)

and

αω2
0 =

β

τ4 + 4β2
(A.11)

Combining Eq.(A.10) and Eq.(A.11) we find a relation between the chirp parameter
α and the durations T and τ :

αω2
0τ

2 =
1

2

τ

T

√
1− τ2

T 2
(A.12)

In Fig.(A.1) we show the numerical solution of Eq.(A.12): notice that Eq.(A.12)
dictates that a chirped laser beam has a longer duration compared to a not-chirped one
and that for each value α there are two possible solution of τ/T . The chirp parameter
is limited to:
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Figure A.1: Numerical solution of Eq.(A.12)
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For each value of α there are then two solutions that are:

T 2

τ2
=




2

1+
√

1−16α2ω4
0τ

4
if τ

T ≥ 1√
2

2

1+
√

1+16α2ω4
0τ

4
if τ

T ≤ 1√
2

(A.14)

Eq.(A.14) can now be written in terms of minimal duration at FWHM:
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In this work we generally consider laser beams much longer than the minimal du-
ration: in that case Eq.(A.12) can be approximated as:

|α| ≈ 1

2ω0τT
(A.16)

In terms of durations at FWHM, Eq.(A.16) reads:

|α| ≈ 2ln2

2ω0τFWHMTFWHM
≈ 1.38

2ω0τFWHM
(A.17)
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Appendix B

SMILEI’s performance and
capabilities

In this annex we briefly show the SMILEI’s structure and performances, focusing on
the efforts made on the parallelization. SMILEI’s objectives are high performances,
a large user community and support for a variety of applications. Its architecture
reflects these goals: a modern C++ approach provides structure to separate physics
and computing components, encourage their progress, facilitate their maintainability
and ensure a multi-purpose capability.

C++ elements and flow

SMILEI’s core program is written in the C++ language. Its multi-purpose and mature
technology ensures great flexibility and strong support for the new HPC machines.
Moreover, C++’s object-oriented programming provides an efficient way of structur-
ing the code. Importantly, this eliminates a few bad habits such as passing large lists
of parameters through functions, or usage of global variables, inefficient in parallel
computing. Components can be constructed almost independently. It offers a good
separation between the purely computing or performance aspects and the physics cal-
culations.

Figure B.1 shows the various elements of SMILEI’s main code: C++ classes, data
structure, and the program flow. The main classes, namely “Particle species” and
“Electro-magnetics”, are the counterparts of particle and cell in Particle-in-cell, respec-
tively. The particle species hold the particles object, which is the data structure for
the particles positions and momenta. It also contains operators on the particles: the
boundary conditions and the pusher. On the other side, the Electro-magnetics class
contains the fields, i.e. the data structure for the electric and magnetic fields. Note
that these fields also describe the charge and current densities as projected on the grid.
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Figure B.1: C++ flow, classes and data structure in SMILEI.

Electro-magnetics also includes operators: boundary conditions for the fields and the
Maxwell solver.

Two additional operators are external to those structures because they operate
between particles and fields. The interpolator takes the field data and interpolates it
at the particles positions. The projector takes the particle data and projects it at the
grid points.

Polymorphism

The C++ language supports the definition of polymorphic classes. These classes contain
functions (or other members), called virtual functions, that are selected at runtime
among several options. In other words, the content of an object is not decided a priori,
but may be defined during the simulation by choosing the class from which it is created.
SMILEI relies on C++ polymorphism to handle its multi-purpose ambition. All these
derived classes inherit their functions from the base class, but they include different
data structures. In Fig.B.1, examples of polymorphic (virtual) classes are highlighted.
Note that, in SMILEI, selecting the class, from which each object will be created, is
ensured by a “factory design pattern”. There are several advantages to polymorphism.
First, it allows for straightforward inheritance of properties between objects of similar
structures. It also improves the readability of the code by removing the complexity of all
the multi-purpose capabilities from the program flow. Lastly, it standardizes the form
of the objects for easier maintenance. In these conditions, a single executable file can
perform simulations in various dimensions, interpolation orders, or physics components,
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without the complexity of many code versions. However, an excess of virtualization,
or a large number of objects layers could have a significant computational cost. For
instance, the use of a virtual method to access a single data element (e.g., a single
particle property) would have an unacceptable data access overhead. This pitfall is
avoided by passing the whole data structures to computational operators. They are
passed in their virtual form, then cast to their particular class.

Uncoupling operators from data

An other fundamental ambition of the project is to provide an efficient tool of simulation
on current and future supercomputers whose architectures are in permanent evolution.
For instance, they may have complex memory hierarchy, whether distributed or shared
between several processors. For ideal performances, the code must be adapted to these
specific architectures. This is a major challenge in the context of a multi-purpose code:
genericity contradicts the wide range of supercomputing targets.

SMILEI’s solution, based on its object-oriented architecture, consists in uncoupling
computing algorithm from data formalism. Operators can thus be defined indepen-
dently from the chosen data structure, provided the “protocol” for accessing to the
data is respected. As a consequence, performances can be optimized separately in
operators and in the data structures.

Along the same principle, parallelism management tends to be decoupled from the
physics calculations by implementing different levels of parallelism.

HDF5 data management

A significant amount of output data is generated by PIC simulations, as described in
Sec. B. We examine here the representation of these data, focusing on (i) the data
access convenience and (ii) the performances on a large super-computer.

Classical output management would simply consist in gathering data on a “master”
processor which writes everything out, or in generating one file for each processor.
The former technique is limited by the cost of communicating data and its memory
overhead, while the latter requires heavy post-processing simulations. In both cases,
the larger the simulation, the more expensive the overhead.

Modern, parallel libraries for file output have now emerged. They can share and
write data in parallel to a single file. Famous examples areMPI-IO, HDF5 (Hierarchical
Data Format) and NetCDF (Network Common Data Form).

Although no file-output parallelism matches the performances of the modern com-
puting parallelism techniques, they greatly enhance the simulations efficiency. While
MPI-IO has the best performances, it generates unformatted data. To analyze it,
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dedicated tools must be implemented. HDF5 and NetCDF are similar to each other,
as they are also a structured data model, open-source and widely used. Note that
NetCDF is now based on HDF5 ’s structure. While HDF5 is fairly generic, NetCDF is
specialized and wide-spread among the climate-modeling community.

SMILEI uses HDF5 for its parallel performances and its multi-purpose structured
data model. Additionally, this format benefits from a large panel of open-source soft-
ware for post-processing and visualization.

Parallelization

As high-performance computing (HPC) systems are evolving towards the exascale,
there is an admitted risk that today’s algorithms and softwares will be subpar, at
best, for the upcoming architectures. Manufacturers have been unable to improve the
existing “standard” microprocessor technologies for the last decade. Instead, the trend is
oriented towards the multiplication of the number of computing units by several orders
of magnitude rather than their improvement. This is achieved either with co-processors,
or with massively multi-core processors. In order to face this emerging complexity,
modern codes must expose a tremendous amount of parallelism while conserving data
locality and minimizing load imbalance. We first present the overall parallelization
strategy chosen for SMILEI, and follow with accurate descriptions of its elements.

Strategy

For the sake of generality, all fundamental computing items (cores, MPI processes,
openMP threads, cuda threads, openCL work items, etc.) will be referred to as com-
puting elements (CE) in this subsection.

The difficulty in parallelizing a PIC code lies in the coupling between the mesh and
particle aspects of the code. In a typical run, most of the load is carried by the particles.
It is therefore very tempting to distribute particles equally between CEs: benefits would
be huge. First, simplicity. No particle communications are required because particles
only interact with fields and are independent from each other. Second, an almost
perfect load balance is maintained at all times. The drawback of this approach is
that it implies that all CEs have access to a shared global array of grid quantities
(fields and currents). These accesses must be synchronized and require frequent global
communications which, in practice, prevent any form of scalability above a couple
hundreds of CEs.

A purely particle-based decomposition being impossible, we must apply a mesh-
based decomposition technique. Domain decomposition is the technique used in all
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state-of-the-art PIC codes such as Osiris [61] or Calder-Circ [59] in laser-plasma inter-
action or Photon-Plasma [60] in astrophysics. It has shown very good scalability but
comes with a cost. As most of the computational load is carried by particles, having a
mesh-based decomposition is inconvenient. Its implementation is not straightforward
and load balance is very difficult to achieve. The biggest issue is that particles are
volatile objects traveling throughout the entire domain, forcing (1) communications
between CEs when particles cross their local domain boundary, and (2) random access
to the grid at every interpolation and projection phases. Communications are limited
to neighbor domains and are not a fundamental threat to performances or scalability.
The randomness of the particles positions is much more concerning. Random access
to the grid arrays breaks the principle of data locality, paramount to the performance
via a good cache use. Conversely, a proper access to the data avoids multiple load
operations when the same data is used several times. And on top of that, if the access
is well organized, SIMD operations can be executed and accelerate the computation by
a significant amount.

Most of the time, this issue is addressed by sorting particles. Different kind of
algorithms can ensure that particles close to each other in space are also well clustered
in memory. Particles can be sorted at the cell level by a full count-sort algorithm every
now and then during the simulation, or they can be subject to a more lax but more
frequent sorting.

Note that the domain decomposition technique is already a form of sorting. Particles
of a given sub-domain are naturally stored in a compact array of memory and attached
to the grid portion they can interact with. If each sub-domain is sufficiently small to
fit in the cache, very good performances can be achieved. This approach is the one
used in SMILEI. It is a very fine-grain domain decomposition referred to as “patch-
based” decomposition where patches denote the very small sub-domains. In addition,
SMILEI still performs a very lightweight particle sorting within the patches in order to
minimize cache misses. It brings a convenient flexibility in patches size without loss of
performances because the particles remain well sorted even if the patches are large.

A patch-based MPI + openMP implementation

SMILEI’s implementation follows the so called “patch-based” approach described in
[58]. It consists in a very fine grain domain decomposition where each sub-domain
is referred to as a patch. It uses an MPI + openMP implementation. The Message
Passing Interface (MPI) provides a mean to address a distributed memory system,
compulsory in any HPC code. OpenMP is used to share computational load within the
shared memory nodes of the system with a reduced programming complexity. Coupling
the two standards provides both good scalability and load balancing, as explained in
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this section.

Patches organization and distribution

The first layer of parallelism in SMILEI is achieved by an almost standard domain
decomposition. The principle is straightforward. The simulation box is divided into
sub-domains. These sub-domains are independent of each other and can therefore be
treated in parallel. In a standard MPI approach, each MPI process handles one sub-
domain. In the “patch-based” approach implemented in SMILEI, the simulation box is
divided into many more sub-domains than there are MPI processes. It follows that each
MPI process has to handle many patches instead of a single traditional sub-domain. At
this point, it is important to understand that patches still have all the characteristics
of traditional sub-domains. Each of them owns its own set of particles and its local
grid part on which fields and current densities are defined.

The obvious cost of this fine grain domain decomposition is an additional, but nec-
essary, synchronization between patches. Synchronization between patches belonging
to the same MPI process is very cheap. It consists in a simple copy of a relatively
small amount of ghost cells and exchange of particles in a shared memory system.
Synchronization becomes more expensive when it occurs between patches belonging to
different MPI processes. In that case, data has to be exchanged through the network
between distributed memory systems via costly calls to the MPI library. In order to
limit this cost, we need a flexible distribution policy of the patches between the differ-
ent MPI processes which minimize MPI calls. This is achieved by organizing patches
in a compact manner following a space-filling curve, i.e. a curve passing once and only
once in each patch. There are many types of space-filling curves; the Hilbert curve
was chosen for SMILEI. An example of the Hilbert curve is given in Fig. B.2. This
curve is divided into as many segments as MPI processes and each process handles one
of these segments. The mathematical properties of the Hilbert curve guarantees that
these segments are compact in space (see Fig. B.2).

OpenMP parallelization and load balancing

Patch-based decomposition, in addition to its cache efficiency, is a very convenient way
to expose a lot of local (inside MPI sub-domains) parallelism. Each patch being in-
dependent, they can be easily treated in parallel by the threads owned by the MPI
process. Without this structure, the projection of particles might result in race condi-
tions (threads overwriting each other’s computation) and would require costly atomic
operations.

In SMILEI, patches are treated by openMP threads. In practice, this allows the user
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Figure B.2: Example of a 32 × 32-patches domain decomposition, shared between 7
MPI processes. MPI domains are delimited by different colors. The Hilbert curve
(black line) passes through all the patch centers (black dots). It starts from the patch
with coordinates (0,0) and end at patch with coordinates (31,0).
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to start the simulation with less but larger MPI domains than in a pure MPI implemen-
tation. A similar level of computational performance is retained while decreasing the
global amount of communications. The number of macro-particles per patch may differ
significantly and so does the associated computational load. The use of the openMP
dynamic scheduler therefore provides local load balancing at a reasonable cost. If a
thread is busy treating a patch with a lot of macro-particles, other threads will be able
to handle the remaining lighter patches thus avoiding idle time. This is well illustrated
in figure B.4.

Patches also act as sorting structures because particles of a given patch only interact
with this patch’s local grid. Small patches therefore provides a finer grain load balancing
and optimized cache use at the cost of more inter-patch synchronization.

Load management

The objective of load management is to share the computational workload between the
MPI processes as homogeneously as possible, thus to avoid idle, underloaded processes
waiting for overloaded processes. In SMILEI, this is achieved by dynamically balancing
the load.

We have seen that openMP already provides some amount of load balancing at the
node level. But it doesn’t help managing the load at the scale of the whole system.
In SMILEI, the complete simulation workload is divided into independent and small
packages: the patches. Dynamic load balance is achieved by exchanging these portions
of workload between MPI processes. This technique is efficient because a single patch
workload is much smaller than the total workload of a process. The patch size defines
the balance grain and the smaller the patches the smoother the balance.

This is yet another argument in favour of using patches as small as possible. At this
point, it becomes interesting to understand what limits the patch size. The minimum
size of a patch is dictated by the number of ghost cells used. It sounds reasonable to
consider that a patch must have more cells than ghost cells. The number of ghost cells
is defined by the Maxwell equations discretization scheme order and shape function of
the macro-particles. For a standard second order Yee scheme for instance, 4 ghost cells
are used per dimension (2 for each direction). The minimum patch size in that case is
therefore 5 cells per dimension. This criteria also guarantees that ghost cells from non
neighbour patches do not overlap which is convenient for the synchronization phases.

We have seen that patches are organized along a Hilbert space-filling curve divided
into as many segments of similar length as there are MPI processes. Each process
handles the patches located in its segment of the Hilbert curve. Dynamically balancing
the load simply consists in exchanging patches between neighbour MPI processes along
the curve. That is to lengthen or shorten the segments depending on how loaded they
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are. When an MPI processes is overloaded, it sends patches to its neighbours along
the Hilbert curve; therefore its segment becomes shorter. Inversely, an underloaded
process will receive patches from its neighbours; its segment becomes longer. Patches
are always exchanged along the Hilbert curve in order to retain its important locality
property which is still valid for segments of different lengths.

First, the computational load Lp of each patch p is evaluated as

Lp = Npart + Ccell ×Ncells + Cfrozen ×Nfrozen (B.1)

where Npart is the number of active particles in the patch, Ncells is the number of
cells in the patch, Nfrozen is the number of frozen (immobile) particles in the patch,
and Ccell and Cfrozen are user-defined coefficients representing the computational cost
of cells (mostly solving Maxwell equation) and frozen particles. In most cases, the
active particles are the major source of computational load. By default SMILEI uses
Ccell = 1 and Cfrozen = 0.1. The total computational load is Ltot = ΣpLp and the
optimal computational load per process Lopt = Ltot/NMPI, where NMPI is the number
of MPI processes. The balancing algorithm proceeds to a new decomposition of the
Hilbert curve so that each segment carries a load as close to Lopt as possible. This
balancing process is typically done every 20 iterations in order to follow the dynamics
of the simulation. Frequent and small corrections give superior performance than rare
and dramatic adjustments (see figure ??).

The amplitude of the readjustment is limited in the “movement limitation” phase:
each MPI process keeps at least one of its original patches. This reduces the perfor-
mance impact of strong, high-frequency, oscillatory variations of the load observed in
certain cases. Once the segments are defined, the actual exchange of data is done.

Performances and scaling

This section illustrates the efficiency of the chosen parallelization strategy and gives
some insight on the optimization of the numerical parameters available to the user.

MPI

Here, the impact of the MPI parallelization is studied. Figure B.3 displays SMILEI’s
strong scaling in the case of an homogeneous plasma and a pure MPI parallelization.
The same simulation is run on different number of cores and a single MPI process is
attached to each core. As the number of cores increases, the size of the data handled
by each core, or “domain size”, decreases. The efficiency remains close to 100% as long
as the domain size remains larger or equal to the L1 cache size. As the domain size ap-
proaches the L1 size, a superlinear effect improves the performances a bit but efficiency
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drops as the domain size becomes significantly smaller than the cache. At this point, the
system computing units occupation is too small to deliver proper performances. Figure
B.3 illustrates the fact that MPI communications perform well in SMILEI: there is no
significant overhead, their costs is much smaller than the computation in a standard
case.

Figure B.3: Pure MPI strong scaling of SMILEI in an homogeneous plasma case on
the OCCIGEN system.

MPI + openMP

It came out of the previous section that the MPI parallelization is good at handling
homogeneous plasmas as long as the sub-domains sizes are not too small with respect
to the L1 cache. In this section we present the performances achieved with the hybrid
MPI+openMP parallelization when the plasma does not remain homogeneous.

The case study is now, and until the end of the section, an ultra-high-intensity laser
propagating in a plasma. It is a two-dimensional simulation consisting of 1024 × 128

patches, each having 8 × 5 cells and 200 particles per cell. Each run ran on 32 nodes
of the OCCIGEN system. This represents 64 processors of 12 cores each for a total of
768 cores. The plasma is initially homogeneous but load imbalance builds up at the
start and rises quickly after 6000 iterations before stabilizing.

Figure B.4 shows the evolution of the wall-clock time necessary to complete 100
iterations as a function of the number of iterations already completed for different
numerical settings. The runs only differ by the number of openMP threads per MPI
process and total number of MPI processes. The total number of threads is kept
constant and equal to 768 in order to have 1 thread per core. The openMP dynamic
scheduler is used in all cases.
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Figure B.4: OpenMP load balancing effect. The plot displays the evolution of the
wall-clock time necessary to complete 100 iterations as a function of the number of
iterations already completed. The legend shows the total number of MPI processes
and number of openMP threads per MPI process in the format MPI × openMP.

Several interesting features can be noticed on figure B.4. First, as long as the
plasma is relatively homogeneous (first 1000 iterations) all runs perform similarly. It
means that the overhead for having an hybrid parallelization is negligible in this case.
Later in the simulation, the pure-MPI case shows an extreme sensitivity to the load
imbalance. The wall-clock time spent to perform 100 iterations is almost multiplied
by 20 with respect to the initial homogeneous plasma. Cases using more than one
openMP thread per MPI process are much less sensitive to this effect. And the more
threads per MPI process, the smoother the performances. This is perfectly in line with
the local load balancing analysis given in section B. Nevertheless, even in the best case
64 × 12, a performance loss of a factor superior to 4 is still impacting the simulation.
This is explained by the fact that openMP can only balance the load within a given
MPI domain. Imbalance across MPI domains will keep slowing the simulation down.

Using more openMP threads, or equivalently more cores, per MPI process allows
the use of larger MPI domains and therefore provides a better load balancing. But the
number of openMP threads is limited to the number of cores accessible on the shared
memory system. In our case, this is a single OCCIGEN node made of two processors
of 12 cores each so up to 24 openMP threads could be used. But going from 12 to
24 openMP threads per MPI process results in a drop of the performances because
of the synchronization required between the two processors of the node. The best
performances are achieved when a single MPI process is given to each processor and
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when all cores of the processor are managed by the openMP scheduler. The quality
of the load balancing via the openMP dynamic scheduler thus directly depends on the
size (in number of cores) of the processors composing the nodes.

MPI + openMP + dynamic load balancing

This section presents results obtained with the dynamic load balancing (DLB) algo-
rithm described in section B. Figure B.5 shows a comparison between the two best
cases obtained in the previous section (without DLB) and the same cases with DLB
activated.
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Figure B.5: Dynamic load balancing (DLB) algorithm effect. The plot displays the
evolution of the wall-clock time necessary to complete 100 iterations as a function of
the number of iterations already completed. The legend shows the total number of
MPI processes and number of openMP threads per MPI process in the format MPI ×
openMP. The red and yellow curves are replicas of figure B.4.

The balancing here is done every 20 iterations and Ccell = 2. No difference is ob-
served during the balanced stage of the run (first 1000 iterations). As expected, the
cost of the balancing is negligible when actual balancing is not required. In the imbal-
anced stage of the run, DLB provides an additional gain of almost 40% with respect to
the previous best case “64×12”. A side benefit is also to reduce the dependency on the
large number of openMP threads. Indeed, it appears that almost similar results are
obtained with only 6 openMP threads when DLB is active. As DLB balances the load
between MPI processes, the local balancing via openMP becomes much less critical
than before. Note that the openMP parallelization remains necessary for an efficient
fine grain balancing but it can be achieved with only a limited number of threads thus
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removing the dependency on a large shared memory hardware.
Note also that the cost of the imbalance is still significant in spite of all the efforts

to balance the load. The additional cost is mainly due to the imbalance of the particles
communication cost which is not as well balanced as the computational cost of particles.

User interface:Python input file

End-users need only know how to write an input file, which we call namelist. Although
the core of SMILEI is written in C++, the namelist is written in the python language.
This has many advantages over the typical text-only inputs. Indeed, python can process
complex operations that may be necessary to initialize the simulation. It can generate
arbitrary numbers of simulation elements at run-time, without the help of an external
script (which would have to be pre-processed). It supports thousands of additional
packages, often helpful for specific physics calculations. It is widely used and becoming
a reference for all sorts of applications. Very importantly, python functions can be
passed as arguments to SMILEI. For instance, a density profile can be directly defined
as a function of the coordinates.

When SMILEI is run, it starts a python interpreter that parses the namelist line-
by-line, and executes all the python commands. Throughout the initialization of the
simulation elements (particles, fields, diagnostics, etc.) the interpreter stays active.
SMILEI gathers required data from it, processes all required initialization steps, and
finally closes the interpreter. Note that, if a python function needs to be evaluated
throughout the simulation, the interpreter is kept active at all times. This happens,
for instance, when defining a custom temporal profile for a laser envelope.

Diagnostics

Data collection and analysis are performed by diagnostics. They are not post-processing
modules, but are part of the main code and executed in situ. All of these diagnostics
have the capability of being performed only at user-defined times during the simulation.

Scalar diagnostic – The simplest diagnostic is called scalars: it processes a large
set of field and particle data, and combines the results from all processors before writing
out scalar quantities in a dedicated file. Among these quantities, one can find the overall
energy balance (with contributions from the different fields, particles, and losses at the
boundaries), averaged particle quantities (charge, energy, number of particles), and
global field information (minima, maxima and Poynting flux through boundaries).

Fields diagnostic – The diagnostic fields provides a direct copy of all the arrays in
the code, after concatenating them from all the processors. Note that, in addition of the
E and B fields, the particle densities and currents are also written as they are projected
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on arrays at each time-step. Moreover, these data may be temporally averaged over a
number of time-steps requested by the user.

Probe diagnostics – The drawback of the diagnostic fields is that the whole arrays
are written out. To reduce the file space footprint, the probes have been implemented:
one probe corresponds to a series of points at which locations the fields are interpolated
and written in a dedicated file. This series of points can be either regularly arranged
in a line, in a rectangle (for a two-dimensional simulation), or in a parallelepiped (for
a three-dimensional simulation). The spatial separations between consecutive points is
defined by the user. Note that several probes can be added to a single simulation.

Trajectory diagnostics – Histories of individual particles are stored by the track-
ing diagnostic. Each species of particles may be tracked independently, with custom
output frequencies. In order to follow individual particles, each tracked particle is
assigned a unique number which is transported throughout the simulation with the
particle.

Particle distribution diagnostics – Tracking the position of all particles with
a high frequency would be time- and memory-consuming. To obtain digested particle
data with flexible capabilities, the particle diagnostic has been implemented. One
diagnostic is defined by an arbitrary number of axes, which overall define a grid: all
the particles in the selected species deposit their weight in the grid cell they belong to
(the cell size is independent of the PIC grid). These axes are not necessarily spatial
(x, y or z), but can also be one of px, py, pz, p, γ, vx, vy, vz, v or the particle charge
q. A large number of combinations can thus be designed. For instance, using one
axis [x] will provide the density distribution vs. x; using two axes [x, y] will provide
the two-dimensional density distribution vs. x and y; using one axis [px] will provide
the x-momentum distribution; using two axes [x, px] provides the phase-space along
x; using three axes [x, y, γ] provides density maps at different energies; using one axis
[q] provides the charge distribution. Further versatility is possible by choosing the
particle quantity deposited, instead of simply the weights w. For instance, depositing
w q vx results in the jx current density and depositing w vx px results in a component
of the pressure tensor. A final feature of these particle diagnostics is the capability for
temporal averaging over an arbitrary number of time-steps.
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