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Résumé

La mesure de la géométrie des feuilles d’une plante est une étape importante lorsqu’il est né-
cessaire d’étudier la physiologie de la plante ou encore son interaction I’environnement. Les
scanners 3D de type "Scanner LiDAR (Light Detection And Ranging) Terrestre" (ou TLS) sont
des outils de mesures qui ont permis d’extraire des variables géométriques pour la modélisa-
tion des plantes. Ces variables peuvent étre globales (e.g., canopée) ou locales (e.g., feuille).
De nombreuses méthodes d’extraction de variables globales ont déja été proposées dans la
littérature. Par contre, 1’extraction de variables locales dans des conditions in situ n’ont pas
été encore bien mises au point. Le TLS est un appareil de mesure de distance qui émet une
lumiere laser et qui enregistre le temps de vol de cette lumicre apres avoir été réfléchie par
une surface. Il utilise ce temps de vol pour en déduire sa distance a cette surface. Générale-
ment, les TLSs sont équipés d’un systeme mécanique et optique permettant le scan complet
d’une scene et ainsi, la génération d’un nuage de points de cette scene. L’analyse des don-
nées TLS nous permet de dire que la qualité des nuages de points des TLSs est variable en
fonction de la configuration de la mesure : lorsque le TLS mesure le bord d’une surface ou
une surface fortement inclinée, il integre dans sa mesure la partie de I’arriere plan. Ces confi-
gurations de mesures produisent des points aberrants, ou "outliers". On retrouve souvent ce
type de configuration pour la mesure de feuillages puisque ces derniers ont des géométries
fragmentées et variables. Ainsi, la qualité des scans ne permettent pas, en général, d’extraire
correctement les feuilles d’abres car la suppression des points aberrants devient rapidement
fastidieuse. L’ objectif de cette these est de développer une méthodologie permettant d’intégrer
les données d’intensité TLS aux distances pour corriger automatiquement ces points aberrants
et ainsi fournir une représentation réaliste des feuilles de canopée a partir de scan TLS. Le
principe du Shape-From-Shading (SFS) est de retrouver les valeurs de distance a partir des
intensités d’un objet pris en photo. Les points aberrants étant au bord du nuage de points re-
présentant les feuilles, nous choisissons de développer une méthode de SFS par propagation
initialisée par les régions du nuage de points qui sont de bonne qualité. Les valeurs d’intensité
d’une image sont fonction de 1’angle d’incidence entre le rayon lumineux et la surface. Nous
donnons une preuve mathématique que les surfaces qui ont une intensité (i.e., un angle d’in-
cidence) constante sur une image sont nécessairement des surfaces dites d’égales pentes, ou
dites de "tas de sable". Ces surfaces ont des propriétés géométriques intéressantes ce qui nous
a amené a choisir de développer une méthode de SES par propagation le long de ces régions
iso-intenses. Notre méthode de SFS a d’abord été testée sur des surfaces synthétiques. Elle est
ensuite appliquée a des données TLS de poirier Conference pour la reconstruction de feuilles
manuellement sélectionnée. En amont de ces reconstructions, les données d’intensité TLS sont
calibrés (correction radiométrique de I’effet distance, transformation des intensités en valeur
d’angles d’incidence).

Mots-clefs : TLS, point aberrants, shape-from-shading, surface foliaire et inclinaion






Abstract

Plant geometry measurement is an important step to study plant’s physiology and interac-
tion with its environment. 3D "Terrestrial LIDAR (Light Detection and Ranging)Scanners"
are measuring tools that allowed scientists to extract geometrical variable of plants for their
modeling. Those variables can be global (e.g., canopy shape), or local (e.g., leaf shape). De-
spite they have been showed efficient for global variables extraction, local variables extraction
within in situ condition has not been well set up yet. TLS device is a distance measuring tool
that emits a laser light and records time-of-flight of reflected laser light. It uses this time-of-
flight to determine distance between its aperture and the surface. Generally, TLS are equipped
with mechanical/optical system to make it possible to scan a scene, and consequently the gen-
eration of a 3D point cloud. TLS data analysis shows that the point cloud quality is variable.
This quality depends upon the measurement set up. When the TLS laser beam reaches the edge
of a surface (or a steeply inclined surface), it also integrates background measurement. Those
set up produce outliers. This kind of set up is common for foliage measurements as foliages
have in general fragmented and complex shapes. TLS data quality is severally biased and the
quantity of leaves in a scan makes the correction of outliers fastidious. This thesis goal is to
develop a methodology to integrate TLS intensity data with TLS distance to make an automatic
correction of those outliers and to provide a realistic representation of canopy leaves from TLS
scan. Shape-from-shading (SFS) principle is to reconstruct an object from the intensities of
its photography. Outliers being along the edge of surface point cloud, we chose to develop a
propagation SFS method with an initialization yield with portions of the TLS 3D point cloud
that are of good quality. Intensity values of a photograph depend on incidence angle between
light beam and surface. In this thesis, we prove that surface with constant intensity (i.e., inci-
dence angle) are necessarily surfaces of constant slope, or "sand-pile" surfaces. Those surfaces
have interesting geometrical property that made our decision to develop a propagation method
along iso-intensity regions. Our SFS method has been tested on synthetic surfaces. Then it
has been applied on Conference pear tree leaves that have been manually extracted from TLS
point cloud. Upstream those reconstructions, TLS intensity data are calibrated (radiometric
correction of the distance effect, intensity to incidence angle transformation).

Keywords: TLS, outlier points, shape-from-shading, leaf area and inclination
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Résumé en Francais : Modélisation
géométrique des feuilles d’arbres fruitiers a
partir des données d’intensité et de distance

fournies par un Systeme LiDAR Terrestre
(ou TLS)

L’ arboriculture fruitiere est une spécialité agricole qui consiste a gérer un verger et sa production,
tant pour la conduite d’arbres que pour la livraison des fruits aux industries agro-alimentaires,
aux distributeurs et/ou aux ménages. Par rapport a d’autres types d’agriculture, le choix d’une
exploitation en arboriculture fruitiere expose 1’agriculteur a certaines difficultés, caractéristiques

remarquables de cette activité! :

* I’investissement initial est non négligeable (~10 k€/ha) ;

* le temps de mise en production du verger est long; celui-ci varie de 3 a 5 ans selon les

variétés et les porte-greffes ;
* il est difficile de faire marche arriere lorsque le verger est mis en place ;
* il est impossible de mettre en place des rotations de culture sur la production des arbres ;
* I’entretient des arbres est complexe (ex. : conduite, controle de la vigueur) ;

* I’amplitude de la marge directe peut varier de -10k€/ha/an a 10k€/ha/an selon les conditions

météorologiques et I’entretient du verger.

A cause de ces difficultés, I’arboriculture fruitiere est une agriculture risquée et les vergers peuvent
rapidement se retrouver dans le rouge. Ainsi, il est souhaitable de réduire le risque au maximum.
Cette réduction peut se faire via les cofits (intrants, charges) ou encore par la garantie d’une qualité
et d’une régularité de production en contrdlant, par exemple : I’impact des facteurs biotiques (ex. :

maladies), abiotiques (ex. : irrigation), ou encore humain (ex. : élagage).

1Observatoire des exploitations fruitieres, données 2012. FranceAgriMer, CER France, Ctfil, FNPF.
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Ces facteurs — biotiques, abiotiques et humains — sont interdépendants, et donc, leur modélisation
est complexe. Toujours est-il, la mise en place de ces modeles permettent aujourd’hui aux scien-
tifiques de comprendre la dynamique de cette interdépendance et ils pourront, in fine, s’inscrire
dans un processus décisionnel pour la gestion optimale des vergers. Par exemple, la simulation
de la configuration d’un verger (ex. : densité de plantation, systeme de conduite — voir Figure 1)
permettrait d’étudier sa rentabilité et ce, de maniere beaucoup plus rapide et systématique que ce
qui est fait habituellement. En effet, pour mener a bien ce genre d’étude, il a été jusqu’a présent
nécessaire de planter et d’entretenir des vergers-tests pendant plusieurs années afin d’obtenir une
statistique satisfaisante sur leur production et leur gestion? (ex. : nombre d’unités horaires, charges
d’intrant, etc.). La simulation de la dynamique d’un verger permettrait de prendre en compte plu-
sieurs scenarii (climat, sols, topographie) a partir d’un systeme de conduite donnée et de rendre
compte rapidement de son efficacité et de son adéquation au lieu. Un second exemple que 1’ont peut
donner concerne la détection et I’étude de la propagation des stress biotiques et abiotiques. Comme
on peut I’imaginer, modéliser leur dynamique permettrait de mieux anticiper leur apparition et leur
propagation, ce qui pourrait permettre une meilleure irrigation et une application plus adéquate des
produits phytosanitaires. En conclusion, la modélisation des stress biotiques et abiotiques amene-
rait a une meilleure gestion des vergers, c’est-a-dire, a une réduction du cofit des intrants et a une
augmentation de la qualité de la production. Il est remarquable que ces stress induisent bien sou-
vent une déformation observable des organes de la plante. La mesure de ces déformations serait

une étape importante pour mener a bien 1’étude et la modélisation de la dynamique de ces stress.

Avec ces deux exemples, nous avons montré que pour estimer I’efficacité d’un systeme de conduite
appliqué a une variété plantée dans un environnement spécifique, 1’utilisation de modeles informa-
tiques pourrait s’avérer intéressante mais qu’il est nécessaire de mener des études approfondi de
la dynamique de la physiologie de la plante pour mettre en place ces modeles. Dans nos deux
exemples, nous avons vu que la description géométrique telle que celle du couvert ou de I’archi-
tecture mais aussi de la forme précise des feuilles étaient nécessaires. Ces descriptions nécessitent
des outils permettant de fournir rapidement et de maniere exhaustive des mesures de géométrie, et

a toute les échelles de la plante, c¢’est-a-dire, du couvert aux organes.

Traditionnellement, la géométrie du couvert peut étre estimée grace aux photos hémisphériques
desquelles sont déduit le Leaf Area Index? (ou LAI, voir Figure 2-1). Ce LAI représente la densité

globale du couvert. Les mesures de la position des organes ainsi que de I’architecture de 1’arbre

?La station de recherche PCFruit (Belgique) a mené pendant 7 ans (2003-2010) une étude portée sur une seule
variété (poirier Conference) et avec 7 systemes de conduites différents. Cette étude a consisté a comparer la gestion et la
production de ces systemes de conduite par rapport a un systeéme de conduite de référence, le «Slender Spindle» (valeur
=100%). PCFruit a montré que les systemes de conduite en « V-system » et « Super Spindle » avaient, respectivement,
un colit de main d’Y2uvre de 394% et 272%, un investissement initial de 180% et 234%, et une production de 137% et
de 120%.

3Louarn et al., “A three-dimensional statistical reconstruction model of grapevine (Vitis vinifera) simulating ca-
nopy structure variability within and between cultivar/training system pairs”, 2008.
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peuvent, elles, se faire de maniére laborieuse avec un digitaliseur 3D* (voir Figure 2-2). Comme
nous I’avons vu, des mesures de plantes a une échelle fine, ¢’est-a-dire au niveau des organes, sont
nécessaires et ces mesures devraient étre faites rapidement, c’est-a-dire au débit de plusieurs ares
de cultures par jour. Il y a quelques années, des scanners 3D abordables et portatifs, sont apparus
sur le marché. Ces scanners 3D permettent de mesurer rapidement la 3D d’un objet, c’est-a-dire,
de produire un nuage de point 3D représentant cet objet en vue de générer son modele 3DS. De
ces modeles 3D peuvent étre extraits des informations géométriques (ex. : volume, surface). Les
scanners 3D de type « Terrestrial LIDAR System (TLS) » ont la particularité de fournir des données
de qualité tant a de courtes qu’a de longues distances. Pour ma these, je me suis intéressée a ce
type de scanner 3D car ses caractéristiques sont adaptés aux mesures de la géométrie des organes

des arbres fruitiers pour des conditions de mesures en champs.

FIGURE 1: Différents systemes de conduite : (1) V-system, (2) Super Spindle, et (3) Slender
Spindle. A chacun de ces systemes de conduite correspond un type de gestion (taille,
irrigation) ainsi qu’un type de rendement.

Principes du TLS

Un TLS est un outil de mesure qui émet un rayon laser et qui enregistre soit le temps de vol de
ce signal lumineux (Time-of-Flight, ou ToF), soit son décalage de phase (Amplitude Modulated
Continuous Wave, ou AMCW). Avec cet enregistrement, le TLS déduit une distance, et depuis
peu, I'intensité retour de ce laser. Grace a la double rotation (azimutale et z€nithale) de son couple
émetteur/capteur, le TLS peut scanner la totalité d’une scene pour produire I’image de distance et
d’intensité de son environnement (voir Figure 3). Les TLS a technologie AMCW sont mieux adap-
tés aux mesures de verger en champs. En effet, contrairement au TLS équipé d’une technologie

ToF, les TLS-AMCW permettent de faire des mesures de courtes distances (<1 metre) ; leur préci-

4Un digitaliseur 3D est un appareil de mesure qui émet un champ magnétique et qui enregistre une position et une
orientation 3D a partir de la déformation de ce champ magnétique induite par une sonde en carbone. Chaque point
de mesure est enregistré, un par un, par une personne, ce qui, pour des mesures exhaustives, rend cette méthode de
mesure difficilement applicable pour un haut débit de mesure.

>Voir par exemple le site de I'INRA-PIA.F. (http://wwwé6.clermont.inra.fr/piaf/Methodes/
Architecture-3D)

Ces modeles virtuels 3D sont en général représentés sous forme de maillage 3D produit a partir du nuage de point
(ex. : Marching Cube). Les images de synthese utilisent ces types de modeles d’objets pour étre générées.
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FIGURE 2: Mesure de la géométrie de la plante : (1) Le LAI est déduit du Gap Fraction calculé a
partir d’une photo hémisphérique de la canopée vue d’en dessous, (2) Le digitaliseur
3D peut étre utilisé pour mesurer I’architecture des plantes et la position des organes.

sion, de quelques millimetres, est plutot constante selon la distance mesurée, celle-ci est en outre
suffisante pour la mesure d’organes ; et ils peuvent acquérir plus d’un million de points de mesure

par scan par rapport au TLS-ToF qui ne peut en acquérir que quelques centaines de milliers’.

Image distance

Image intensité

FIGURE 3: Le TLS fournit une image de distance (haut) et d’intensité (bas) de son environnement.
Ici, une ligne de verger de poiriers.

Twww.lidarnews.com : “The Reality : ToF vs Phased based scanners”
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Vers une reconstruction géométrique des feuilles d’arbres
fruitiers ?

Les données TLS ont déja été exploitées pour I’extraction de la géométrie des plantes et de leur

utilisation en agriculture. Par exemple (Figure 4) :

* Des méthodes similaires pour I’extraction de LAI a partir de photos hémisphériques ont été
utilisées avec des données TLS®. Ces mesures de LAI peuvent étre utilisées pour étudier la

pénétration de la lumiere dans la plante par exemple.

* Les volumes de lignes d’arbres fruitier ont pu étre estimés a partir des données fournit par
un TLS placé sur un tracteur’. Cette méthode de mesure a été développée notamment pour

I’application de produits phytosanitaires en fonction du volume des plantes.

* L’architecture des arbres'® a pu étre reconstruite via des méthodes de simulation de crois-
sance d’arbre, ou la densité du nuage de point 3D fourni par le TLS est utilisée pour indiquer
les directions de croissance de 1’arbre simulé!!. Ce genre de méthode a été mis en place dans

le contexte d’études menées sur les systemes de conduite.

* Enfin, les densités de surface foliaire (LAD) par voxel (ou volume-pixel) ont pu €tre extraites
des données TLS. Ce type de modele de plantes a pu étre utilisé pour des estimations locales
de I'interception lumineuse, ou encore pour des estimations locales de I’échange gazeux
entre une plante et son environnement (ex. : H20, CO2). Ce genre de représentation donne

une description plus fine de la plante que le LAL

Comme nous pouvons le remarquer, les TLS ont pu étre utilisés pour extraire les informations
géométriques des plantes, et ce, de I’échelle du couvert a I’échelle des organes : son utilisation
recouvre toutes les échelles, de la plus grossiere a la plus fine. Seulement, nous remarquons aussi
qu’aux échelles les plus fines, le développement des méthodes d’extraction n’a pu aboutir a I’ex-

traction des organes a proprement parler.

Pour comprendre ce manque, il nous faut regarder le nuage de points de plus pres pour nous rendre
compte qu’une grande quantité de points aberrants (ou outliers) sont enregistrés pendant le scan
de feuillage (Figure 5-1). Ceux-ci sont présents le long du bord des feuilles (Figure 5-2 et 3) et ils

interferent avec les méthodes de maillage traditionnelles (Figure 5-4).

Il s’avere que ces outliers sont propres a la technologie AMCW puisque ce type de TLS enregistre

la moyenne des distances présentes dans 1I’empreinte laser (Figure 6-A-i et ii). Ainsi, lorsque le

8Danson et al., "Forest canopy gap fraction from terrestrial laser scanning", 2007.

9Rosell et al., “A tractor-mounted scanning LiDAR for the non-destructive measurement of vegetative volume and
surface area of tree-row plantations : A comparison with conventional destructive measurements”, 2009.

101 architecture d’un arbre représente la géométrie et la topologie (description de la connexion entre branches
consécutives) de son branchage.

Hpreuksakarn, “Reconstructing plant architecture from 3D laser scanner data”, 2012.
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laser du TLS atteint le bord d’une surface (ex. : une feuille), le laser se coupe en deux et enre-
gistre une distance intermédiaire, c’est-a-dire : un outlier (Figure 6-B-i et i1). Toujours est-il : pour
extraire correctement les informations géométriques des organes d’une plante, il est nécessaire de

traiter ces outliers.

Une premiére solution, intuitive, consiste 2 les sélectionner!? puis a les supprimer. Seulement,
ces outliers peuvent recouvrir une grande partie du nuage de points représentant les organes de la
plante. Par exemple, a 1.5 metres, ils peuvent représenter jusqu’a 10% de la surface d’une feuille de
9 cm de diametre placée perpendiculairement au laser du TLS. Si cette feuille est placée a 5 metres,
ils peuvent représenter jusqu’a 30% de sa surface. En général, le feuillage des arbres fruitiers sont
composés d’une grande variété de type de feuilles, tant pour leur forme, leur inclinaison, mais aussi
leur taille qui, dans le cas des poiriers, peut varier de 3 a 10 cm de diametre. On peut facilement
imaginer que la suppression de ces outliers n’est pas la solution optimale lorsqu’on veut récupérer
la géométrie des organes. Une autre solution serait de corriger ces outliers, mais cette solution reste
vaine lorsqu’on considere uniquement I’information 3D puisque la correction du nuage de points
nécessiterait une connaissance a priori de la forme de 1’objet scanné et que, comme il vient d’€tre
mentionné, les forme de feuilles d’arbre fruitier sont trés variables. Pendant ma these, je me suis

tournée vers I’'information d’intensité fournie par le TLS pour corriger ces outliers.

LAI Volume Architecture Voxel/LAD Quid de la feuille
isolée ?
¥ Position
» Aire

“ % Inclinaisons

» Forme

Panson e'tAai., 2007
Rg)seh’e aj’._, 2009
.f’fe.r_{ksaiiqm, 2012_

Béland et al., 2014

Insitu? w

g s :-;i 7

Couvert Orgz;nes

FIGURE 4: Les données TLS ont été utilisées pour extraire la géométrie des plantes de 1’échelle
du couvert a celle des organes. Mais quid des feuilles isolées pour des mesures TLS
en champs ?

2Deux catégories de méthodes de sélection d’outliers dans les nuages de points existent. Ce sont les méthodes

basées sur la distance ou encore basées sur la densité. Voir Sotoodeh. “Outlier detection in laser scanner point clouds”,
2006



FIGURE 5: Image d’intensité du scan d’un groupe de feuille : (1) Nuage de points. (2) Vue de
profil de la sélection (jaune). (3) Sélection d’une feuille dans le nuage de point 3D :
les outliers sont visibles. (4) Maillage : les outliers dégradent le résultat final.

A-i) B-i)
”» Measured poin” ﬂ Measu\red poin”
A-ii) B-ii)

FIGURE 6: (A-i) L’empreinte laser est dans la surface. (A-ii) Un point vraissemblable est enre-
gistré. (B-i) L’empreinte laser est au bord de la surface. (B-ii) Un point aberrant (ou
outlier) est enregistré.

Une méthode de « Shape-from-Shading » (SFS) par
propagation pour la reconstruction des organes de la plante a

partir de I’image d’intensité du TLS

L’intensité est la donnée représentant la quantité de lumiere enregistrée par un capteur (ex. : un
appareil photo, le capteur TLS) une fois réfléchie par un objet placé dans une sceéne. Une image
d’intensité (ou photographie) est I’ensemble des intensités renvoyées par tous les points d’un objet
sur le capteur. Cette intensité dépend de la position de la source d’éclairage par rapport au capteur,
de la distance de I’objet illuminé, de son matériau, et, de sa géométrie. Lorsque la configuration de
la scéne (position source lumineuse/capteur, distance objet) est connue pour un objet avec un ma-

tériau donné, on peut dire que I’intensité dépend seulement de la géométrie de 1’objet. En d’autres
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termes, elle dépend de I’inclinaison locale - c’est-a-dire, du plan tangent - de la surface par rap-
port aux directions d’éclairage et de capture. Observant cette relation entre intensité et inclinaison,
nous pouvons imaginer que, pour une intensité donnée, nous avons une inclinaison locale de la
surface. C’est en partant de ce principe que depuis les années 50, des méthodes dites de Shape-
From-Shading (SFS) ont été développées : elles consistent a reconstruire les surfaces par I’analyse

de I’intensité.

Les méthodes de SFS peuvent étre catégorisées en deux types : les méthodes globales et les mé-
thodes par propagation (voir Figure 7). Ces méthodes sont en général basées sur des hypotheses
qui peuvent étre traduites de la maniere suivante : (i) le capteur est dans le «hot spot» de 1’émet-
teur, c’est-a-dire, ils sont alignés, et par convention, on les suppose étre a la verticale, (ii) les objets
sont positionnés a I’infinie du capteur/émetteur, et (iii) les objets sont sans texture. Ces hypotheses
correspondent tout a fait avec les conditions de scan d’arbre fruitier avec un TLS : (1) le capteur
TLS est dans le hot-spot de I’émetteur laser du TLS, (i1) les organes sont petits par rapport a leur
distance au TLS et peuvent étre considéré « a I’infinie », et (iii) les organes (dans le cas de poi-
rier) peuvent €tre considérés sans texture. Ainsi, une méthode de SFS pour la reconstruction de la

surface des organes d’arbres fruitiers pourrait étre développée pour corriger les outliers.

Mon choix s’est plutdt porté sur une méthode de SFS par propagation. En effet, les résultats des
méthodes SFS globales sont sensibles au choix d’une surface initiale. Or, les surfaces représentées
dans les nuages de points TLS sont biaisés a cause des outliers et donc ces dernieres ne peuvent étre
utilisées comme surfaces initiales. Les méthodes de propagation, au contraire, sont, par principe,
plus souples quant a la sélection de données initiales. Les bonnes données du nuage de points (ex. :
celles ou I'intensité correspond a la 3D du nuage de points) peuvent €tre utilisée comme données
de départ et la propagation se faire vers les données de mauvaise qualité pour ainsi reconstruire ces
dernieres. Ainsi les méthodes de SFS par propagation m’ont semblées étre mieux adaptées. Aussi,
j’ai choisi de propager la reconstruction long de domaines iso-intenses, c’est-a-dire les domaines
d’intensité constante, puisque cette stratégie m’aura permis d’utiliser 1’information 2D (i.e., la
forme du domaine) fourni par I’image. En outre, j’ai utilisé I’intuition de Peternell & Steiner!?
qui fut d’utiliser des surfaces dites en « tas de sable », ou STS (Figure 8) pour reconstruire les

domaines iso-intenses de 1’image.

Cette intuition peut étre rapportée a un résultat de Monge'# qui stipule que si on prend une photo
d’une STS avec les hypotheses de SFS mentionnée ci-dessus, alors nous obtenons une image iso-
intense. Ces types de surfaces sont pratiques car : (i) ce sont des surfaces développables (c’est-a-
dire, qu’elles sont soit des plans, soit des cones, ou soit générées par I’ensemble des tangentes a une
courbe 3D, par exemple, la développée de 1’hélice) et que (ii) leurs courbes de plus grande pente
sont rectilignes. Ces deux propriétés peuvent étre utilisées pour mettre en place un algorithme de

SES par propagation le long des domaines iso-intenses de 1’image.

BPeternell & Steiner. “A geometric idea to solve the eikonal equation”, 2005.
“Monge, "Application de 1’analyse 2 la géométrie", 1850.

10



Hypotheéses
-Placés alinfinie
-« Hot spot »

-
Il

T

i
i
'
e 3 '
i
]
'
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Méthode SFS global

S progressivement jusqu’a que sa photo, prise
\ / avec les memes Liypotheses
LY YAV ; ir f\ - o1 rara
P / — \ : eclal{ age/camera. comverge vers la photo
Photographie 7 ! d’origine.
5 4
P o » ¥
v Shape-from-Shading -
] ) /
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e, e
X
Le principe du « Shapefrom-Shading » (SFS) consiste a > Méthode SFS par propagation
reconstiuire mune surface a partiv de sa photographie.
Plusiewrs techniques ont été développées depuis les années = Reégion initiale (rouge)

50 prenant en compte différentes hypotheses sur I'eclairage,
la position de I"appareil photo, ou encore les propriéte de
réflectance du matériau. Deux types de meéthodes existent:
lez méthodes globales ef les méthodes par propagation.

= Construction  de  la direction de
C propagation (fleche)

= Propagation juscu’a la prochaine courbe
caractéristique (orange)

FIGURE 7: Différentes méthodes de Shape-From-Shading.

FIGURE 8: Exemple de surfaces en tas de sable (STS) : (1) un plan, (2) un céne, (3) la développée
d’une hélice.

Propriété paramétrique des surfaces correspondants aux

domaines iso-intenses de la photo

Avant de mettre en place 1’algorithme, il a été nécessaire de prouver la réciproque du résultat de
Monge, c’est-a-dire, de prouver rigoureusement qu un domaine iso-intense correspond nécessai-
rement a une STS. Pour ce faire, j’ai considéré I’intensité comme étant directement lié a I’angle

d’incidence (noté o) entre la direction émetteur/capteur du TLS et la normale a la surface®. La

I5Théoriquement, cette considération est raisonnable avec les hypothéses de SFS mentionnées précédemment. En
ce qui concerne le TLS, on doit procéder a des phases de calibration (ex : correction de I’effet de distance) avant de
récupérer directement 1’angle o.
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réciproque du résultat de Monge peut s’exprimer alors ainsi : si une image .'° , a un domaine

1so-a alors ce domaine iso-t correspond nécessairement a une STS.

Pour faire cette démonstration, j’ai di démontrer des propriétés spécifiques aux courbes de niveau
et de plus grande pente d’une surface lisse (Figure 9 - courbes rouges et vertes); ainsi qu’aux

domaines quadrillés d’une surface lisses (Figure 9 -1a v).

Grace a ces propriétés, j’ai pu montrer (voir Figure 10) que si nous considérions un domaine
1S0-0l, nous pouvions trouver, pour n’importe lequel de ses sous-domaines, un domaine quadrillé
contenant une courbe de plus grande pente avec un point d’inflexion. Comme ceci est vrai pour
n’importe quel sous-domaine, alors I’ensemble des points d’inflexion est dit « dense » dans le
domaine 1so-o. Par continuité, j’ai pu prouver ainsi que les courbes de plus grande pente ont des
points d’inflexion partout. En d’autre terme, qu’elles sont rectilignes. En outre, comme ces courbes
de plus grande pente sont d’inclinaison constante o, elles forment des STS ce qui aura conclu la

démonstration de la réciproque de Monge.

FIGURE 9: Une surface 3D est composée de courbes de niveau (hauteur constante — en rouge)
et des courbes de plus grande pente (orthogonales aux courbes de niveau — en vert).
Les points singuliers de la surface sont les points out plusieurs courbes de méme type
se croisent : ce sont, dans le cas de surfaces lisses, les sommets, puits et cols de la
surface. Les domaines quadrillés sont formés par deux courbes de niveaux et deux
courbes de plus grande pente. Il en existe cing types, dont quatre qui dépendent de
leur courbure : (i) quelconque, (ii) singulier, (iii) simple, (iv) conforme et (v) droit.

SF'S par propagation le long des domaines iso-intenses de
I’image d’intensité
Une fois que j’eus prouvé que les domaines iso-at correspondent a des STS, 1’algorithme SFS par

propagation le long de ces domaines a pu étre développé. Cet algorithme est composé de trois

compartiments (Figure 11) :

16Une image o est une image obtenue par la transformation des intensités d’une image en valeur o avec une relation
prédéfinie.
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A
3. Localement, on trouve un dommaine
quadrillé contenant une courbe de plus
grande pente avec un point d’inflexion.

\
1. On considére un 2. On fait I'analyse s -
ig0-o domaine. locale des cowbes de I
! niveau et de plus J a
‘\x_ /‘/'7 arande pente. s
.»—"'-. ............. -
V

4. Comme ¢’est vrai partout,
on en déduit que les courbes

o ] 5. ... et qu’en « remontant »
de plus grande pente sont .
T ces courbes rectilignes en
réctilignes...  w_ —_ D> -

C— courbes 3D d’mclinaison «,
on obtient une STS.

FIGURE 10: Propriétés d’un domaine iso-Q.

1. L’extraction des domaines iso-o : d’abord, I’'image d’intensité est transformée en image

d’angle d’incidence o.; cette image est segmentée en plusieurs sous parties contenant une

117 (ou nul) ; les

et une seule région initiale (ou graine) qui sont les régions ol & est minima
domaines iso-o sont extraits. La propagation se fait a partir des valeurs o minimal (ou nul)
jusqu’aux valeurs o maximales, par voisinage, aussi : les domaines iso-0t sont ordonnés le

long des valeurs @, croissantes.

. Le contour 3D de la graine est initialisé avec les données 3D de I’image de distance. En
outre, les directions de propagation (pour résoudre I’ambigiiité concave/convexe'®) sont ini-

tialisées.

. Les iso-o0 domaines avec la premiere courbe 3D sont données en entrée de 1’algorithme de

SFS par propagation a proprement parlé. Cet algorithme se déroule comme suit (Figure 12) :

a) Calcul des directions de plus grande pente : on calcul a partir du contour 3D de la

derniere région iso-0 de la surface, les directions de plus grande pente Gy, modulo

ZI

tan(Q)

I’identité suivante :
¢ = acos (

avec : o I’angle d’incidence, y 1’élévation de la tangente du dernier contour reconstruit
(ou de la graine), et, ¢ I’azimut de la direction de plus grande pente Gy par rapport a la

tangente de ce contour au point X.

17Ces régions peuvent étre considérées contenues dans un plan orthogonal 2 la direction émetteur/capteur (verti-
cale). Cette observation fait d’elles des régions de premier choix pour une propagation.

18 es processus de création d’images — et réciproquement, la reconstruction d’objet a partir de celles-ci — sont
faites modulo une orientation (vers le haut ou vers le bas pour un éclairage vertical). Dans le cas d’une reconstruction
par méthode de SFS, ce phénomene est connu sous le nom d’ « ambigiiité concave/convexe ».
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b) Propagation rectilinéaire : comme on propage la reconstruction des régions iso-o de
la surface, on utilise la propriété des courbes de plus grande pente d’une STS, c’est-a-
dire, leur linéarité :

, Ad
X' =X+ ——- Gy,
cos(o)
avec : X le point sur le dernier contour 3D reconstruit et duquel part la courbe de plus
grande pente courante, X’ le point d’arrivé de cette courbe de plus grande pente, Ad la

distance entre x et x’, les projections respective de X et X .

c) Complétion avec les STS : les régions iso-a sont complétées avec des STS : on utilise

les lignes de propagation pour paramétrer localement ces surfaces.

d) Retour a I’étape 1.

Finalement, en sortie de cet algorithme sont générés : (i) un maillage de la surface, (i1) une nouvelle

image de distance et (iii) un nuage de point 3D.

Cet algorithme fut testé sur plusieurs types de surfaces synthétiques (Figure 13) allant de surfaces
simples (sphere, ellipsoide, surface en forme de selle) a des surfaces plus complexes (combinaison
de sommets/selles asymétriques). Malgré des discontinuités dans les reconstructions ainsi que des

redondances dans les points reconstruits, les reconstructions €taient réalistes et satisfaisantes.

La sensibilité aux parametres d’entrées a aussi été testée. Ces parametres sont : (i) le nombre de
domaines iso-ot et (ii) la valeur de lissage du bruit présent sur le contour 3D de la graine. Pour le
premier parametre, nous avons observé que le choix du nombre de domaine iso-o dépendait de la
résolution de 1’image. Plus grande était cette résolution, plus grand était le nombre de domaines
1s0-0t qui pouvaient étre sélectionnés pour améliorer la qualité de la reconstruction. Dans le cas
d’images de basse résolution, la génération d’artéfacts sont produits a cause de la pixellisation
des contours. Nous en avons déduit que la sélection d’un nombre limité de domaines iso-o était
une meilleure stratégie dans ce cas. Le second parametre est un parametre de filtre passe-bas. Sa
bonne sélection est un facteur déterminant pour la vraisemblance de la forme reconstruite. Pour
choisir ce parametre, nous avons mis en place un compartiment algorithmique prenant en entrée
une information sur la forme générale de la surface (ex : forme de selle). Grace a ce compartiment,

nous avons pu obtenir des résultats satisfaisants.

Reconstruction de feuille de poirier Conference et validation

En Aot 2010, je suis allée dans un verger a Bierbeek (Figure 14), en Belgique, pour scanner une
ligne de poirier avec un TLS de type FARO LS880. L’effet causée par la distance sur les données
d’intensité du TLS furent corrigés et la relation entre intensité et angle d’incidence entre le rayon
laser du TLS et les surfaces foliaire, calculée!®. 58 feuilles entierement visibles dans le scan furent

sélectionnées manuellement pour étre reconstruite avec ma méthode de SFS par propagation.

19Balduzzi et al. “ The Properties of Terrestrial Laser System Intensity for Measuring Leaf Geometries : A Case
Study with Conference Pear Trees (Pyrus Communis)”, 2011
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FIGURE 11: Vue d’ensemble de I’algorithme de propagation.
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FIGURE 12: Détail sur I’algorithme de propagation utilisant les propriétés des STS.
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Nuage de point Muage de point
Images a original reconstruit

o el '

FIGURE 13: De haut en bas : Reconstruction d’un ellipsoide, d’une surface en forme de selle et
d’une surface complexe. En rouge : cas de discontinuités et de redondances dans le
nuage de point.

Les feuilles reconstruites sont visuellement réalistes, et lorsque leur aire et inclinaisons calculées
a partir des maillages reconstruits (Figure 16) sont comparés avec les mesures manuelles, de bons
résultats sont obtenus, notamment pour I’estimation des aires (R*= 0.95). En général, le probléme
des outliers a été éliminé avec ma méthode puisque toutes les distances ont pu étre ré-estimées,
méme la ol il y avait des outliers (voir Figure 15). En conclusion, I’estimation de la géométrie des

feuilles a pu se faire avec tous les points de mesure.

FIGURE 14: Verger scanné a Bierbeek.
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Mesure TLS Mesure manuelle
Marque & série FARO LS880 | 58 feuilles 0.8-2m
Technologie AMCW Aire Scanner plat
Champs de vision 320° x 360° | Résolution  0.01 cm?
Longueur d’onde 785 nm (NIR) Min-max 12-65 cm?
Diametre laser 3 mm Azimuth Boussole
Divergence laser 0.014° Résolution 10°
Champs de vision capteur 3 mrad Min-max  0-120°NE
Résolution angulaire 0.018° Elévation = Rapporteur
Portée 0.6 m-78 m Résolution 5°
Précision +3mm @ 25 m | Min-max 0-120°

TABLE 1: Gauche : récapitulatif des caractéristiques du TLS FARO LS880. Droite : Description
des mesures manuelles

Image d Imaged MNuage de point Nuage de point
originale  reconstruit original reconstruit

Imagea

L34 -
@1.1m*

L54 )
@1.47m..

193
@1.8m

FIGURE 15: Exemple de feuilles reconstruites.

Conclusions et perspectives

Dans ma these, j’ai pu mettre en place un algorithme de SFS par propagation le long de domaines
iso-intense pour reconstruire les surfaces foliaires a partir de données TLS a technologie de dé-

calage de phase pour pouvoir corriger les outliers présent le long du bord de ces surfaces. Pour
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FIGURE 16: Validation de I’extraction des surfaces et inclinaison des feuilles.

ce faire, j’ai prouvé la réciproque du résultat de Monge, c’est-a-dire, j’ai établi que les domaines
iso-intenses d’une image correspondent nécessairement a des STS. Grace a ce résultat, j’ai pu
développer un algorithme de SFS en utilisant les propriétés de ces STS, c’est-a-dire : (i) leurs
courbes de plus grande pente sont rectilignes, et (ii) leurs équations paramétriques définies loca-
lement par ces courbes. Ces propriétés m’auront permis de : (i) propager de maniere rectilinéaire,
et (i1) reconstruire localement les morceaux de surfaces représentant les régions iso-intenses entre
deux courbes de propagation. Malgré des cas de redondances et de discontinuités, cet algorithme
fonctionne tant sur des surfaces simples que sur des surfaces complexes ainsi que sur des surfaces
réelles, scannées avec un TLS. L'utilisation de cet algorithme m’a permis d’extraire formes, aires
et inclinaisons de feuilles de poiriers scannés en champs par un TLS et ce, en dépit de la présence
d’outliers. Malgré le fait que mon algorithme n’ait été validé que sur des feuilles, celui-ci est le
premier qui a pu extraire des géométries vraisemblables d’organes de plantes a partir de mesure
TLS en champs. En général, mon algorithme peut étre encore amélioré, notamment pour le trai-
tement de la redondance. Dans un premier temps, cette redondance pourrait €tre utilisée comme
un indicateur de qualité de la reconstruction : si une trop grande redondance de point est détectée,

alors les parametres pourraient étre re-estimé (ex : changer le nombre de domaines iso-.).
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Dans le cadre d’une utilisation de TLS en arboriculture fruitiere, plusieurs problemes n’auront pas

été traités dans ma theése :

* Tout d’abord, I’utilisation des données 3D du TLS : nous avons vu que seules les données de
distance associées aux graines de propagation ont été utilisées, c’est-a-dire, une petite portion
sur la totalité des données fournies. Ceci remet en cause la fonction premiere du TLS qui est
de mesurer des distances de maniere exhaustive. Pour utiliser de maniere optimale les deux
informations de distance et d’intensité, 1’utilisation d’une méthode de fusion de données

(ex. : filtre de Kalman®®) pourrait étre intégrée au fur et & mesure de la propagation.

* La segmentation des organes de la plante : cette segmentation pourrait étre faite sur un prin-
cipe similaire que celui que j’ai développé dans ma these : la correction d’outliers indiquant
le bord d’un objet et cette correction pourrait étre utilisée pour sélectionner les bords, et donc

pour segmenter des objets présents dans le scan.

» L’effet d’occlusion : toutes les feuilles ne sont pas visibles dans le scan du TLS et une

réflexion plus poussée menant a un protocole de mesure devra étre faite.

¢ La combinaison avec la mesure de 1’architecture et la détection/labellisation des différents

organes (feuilles, fruits, etc.).

Une fois ces problemes résolus, alors une application optimale des TLS en arboriculture fruitiere
pourra €tre envisagée. Puisque la croissance et la production des arbres fruitiers sont dépendantes
du lieu (sol et météo), le suivi phénotypique des plantes pourra étre mené aux quatre coins du globe
et les données, ainsi acquises, partagées pour avoir une meilleure compréhension de la physiologie

des plantes.

20K alman “A new approach to linear filtering and prediction problems”, 1960
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Introduction

Agro-forestery aims to manage orchards and fruit yield from early stage of trees to the delivery to
agro-industry and consumers of the crop production. As fruit production is driven by plant phys-
10logy, agro-foresters seek to control biological processes of trees. For instance, they manipulate
tree architecture (e.g., tree training, pruning, girdling) to control fruit quality (size, color, sugar)

[1, 2] and to understand plant occupation in space to limit pesticide application [3, 4].

Studying plant organ geometry and growth dynamic makes it possible to simulate physiological
processes occurring within the plant, and thus, to optimize their manipulation. Since the 90’s,
computer simulation of plant functioning have been developed [5]. Those models are becoming
increasingly sophisticated. For instance, functional-structural-plant-models (FSPMs) are computer
models used to simulate biological processes, such as nutriment transports [6], cellular growth
and morphogenesis [7], plant morphology [8] and plant interaction with its environment such as
gravitational forces [9] or sun [10]. FSPMs are usually associated with 3D plant models and deal
with the spatial distribution of both environmental and biological processes [11]. Once processes
simulated by FSPMs are well established, we can imagine that horticulturists use those computer
models to optimize pest management, plant water uptake, nutriment application and architecture
manipulation [5]. To reach this goal, robust tool of 3D acquisition of plant geometry at organ scale

are necessary.

3D scanners are metrology tools that deliver 3D point cloud representation of a scene. For instance,
stereo photography is a dual-view and passive system requiring proper calibration and geometrical
interpretation to provide 3D point cloud representing a scene. Laser triangulator is a 3D active
scanner that emits laser lines to film them with a camera placed in a slight inclined direction.
Object’s 3D shape are estimated with the laser line deformation. LiDAR (Light Detection And
Ranging) is an active measurement tool that: (1) emits either continuously a laser signal or a laser
pulse in a range of direction, (ii) records with a sensor placed in the hot-spot, time of flight of
the emitted light to (iii) computes its distance to objects that have reflected the emitted light and
eventually the associated reflectivity, i.e., the light intensity data. Terrestrial LIDAR System (TLS)
is a portable LiDAR system equipped with rotating mirrors or terrestrial carrier system to provide
a 3D point cloud of its surrounding scene. 3D scanners have been used in several fields such as
topography [12], architecture [13] and mechanical engineering [14]. In agro-forestery, they have
been used to estimate plant Leaf Area Index (LAI) [15], volume [16] and foliage density [17], but

also for individual organ geometry extraction under controlled condition, e.g., picked organ [18] or
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in greenhouse [18, 19, 20]. Compared to stereo photography and laser triangulator, TLS scanners
have an interesting range of measurement (few decimeters to several meters with a large angular
range) and they are flexible (e.g., simple system geometry, robustness, size). Generally, they are
considered well adapted for intensive study of plant geometry with in situ condition. Yet there is
very little TLS studies dealing with fine level plant architecture (leaves and fruit scale) and deal-
ing with complex in situ measurements (e.g.,[21, 22, 23]) and none aims to extract automatically

complete geometry of tree organs.

TLS measurement quality depends on several factors such as object’s distance, inclination and re-
flective properties [24], but also on the good calibration of its mechanical system [25]. In addition,
distance measurement can be severally biased when LiDAR laser beam reaches object edge: in
this case, the beam is split and a mixed distance value is recorded, i.e., an outlier point. The size of
the LIDAR laser spot is thus a very important aspect. The current affordable TLS have footprints
on the order of few millimeters that makes the amount of outliers point per scanned tree organs
non-negligible. Deleting them reduce severely organ sampling and their correction seems to be

more appropriate.

Intensity is an additional value provided by most of actual TLS. Intensity data has been used for
object segmentation [17] and classification [26], yet it has not been used for outliers detection and
correction. Shape-from-Shading (SFS) is a computer technique to reconstruct object shape from
their photography. In this thesis manuscript, we will propose a SFS method adapted to TLS data
that corrects outlier points. To do so, complex shape will be reconstructed from an initial set of 3D
points supposedly correct and will correct outliers by an interpretation of the intensity data. This

manuscript is organized as follows:

1. In afirst part, we will talk about TLS technology and its application in agro-forestery. Chap-
ter 1 will describe TLS technical features. Chapter 2 will make the state of art on plant
geometry measurement with TLS and in the framework of tree architecture manipulation

and pest detection. We will illustrate TLS limitations for plant organ reconstruction.

2. In a second part, we will develop a SFS technique adapted to organ extraction from TLS
data. In Chapter 3, we will split SFS techniques in two main categories: (i) global SFS,
and (ii) SFS by propagation. From our discussion, we will set up guideline to develop a
SFS method adapted to TLS data. The proposed solution will be the object of a topological
and geometrical analysis that will be made in Chapter 4 in order to gather mathematical
properties for our SFS algorithm. This latest will be set up and tested on synthetic images in
Chapter 5.

3. Inalast part, we will give first results on our SFS algorithm application on TLS scans of pear
tree canopy. Pre-processing (e.g., TLS radiometric calibration) required for the application
of our SFS method will be set up in Chapter 6. Finally, our SFS method will be validated
with manual measurement of Conference pear tree leaves shape, area and inclinations in
Chapter 7.
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Part I

Introduction: Terrestrial LIDAR Scanner

(TLS) for canopy geometry assessment?
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Chapter 1

Terrestrial LIDAR Scanner (TLS)

The measurement of distances and geometric shapes has always been important in human history,
especially for technical fields such as architecture or mechanics. To support the development of
those fields, research in metrology led to specialized tools that can be split into two main categories
of technologies: measurements with or without contact [27]. Measurements with contact (e.g.,
with a ruler, a 3D touch probe) are usually time-consuming. Therefore they apply primarily for
small objects and they usually lack precision. In contrast, measurements without contact (e.g.,
RADAR, distance measurement with triangulation) can apply to distant and/or large objects and

usually involve high accuracy.

A Light Detection and Ranging (LiDAR) device is a tool designed for measurement without con-
tact using a laser beam to measure the distance to an object surface. It is widely used in topogra-
phy [12], architecture [13], mechanical engineering [14], forestry [28] and agriculture [16]. When
scanning a scene, a LiDAR device collects two measurements from each laser beam emitted: (1)
the distance between the laser source and the scene objects and (2) the return intensity of the laser
beam. The set of measured distances can be subsequently converted into a 3D point cloud corre-
sponding to the surface of the scanned objects (see Appendix I). This 3D point cloud can then be
approximated by a virtual surface [29], e.g. a mesh composed of a set of triangles from which local
geometric properties of the objects can be estimated. The quality of these estimations depends on
LiDAR data quality and in the complexity of the scanned scene.

In complex environments, many factors affect LIDAR data quality. For canopy scenes, for exam-
ple, the heterogeneous distribution of leaves in space, their varying shapes, sizes and inclinations,
induce a large variability in the LiDAR data quality which in turn makes it difficult to extract
exact vegetation geometry of some elements [30]. Yet with the possibility of very high spatial
density sampling rate (e.g., the FARO LS880 can sample surface points at 1 m with a resolu-

tion of 0.1 mm [31]), LiDAR is becoming a practical tool to measure plants canopy architecture
[32, 33, 34, 20, 23].

In this first chapter we will describe LiDAR’s features, namely the different types of measurements
approaches for distance measurement and their error sources. We will also describe how return

intensity is estimated.
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1 LiDAR principle

A LiDAR scanner is a device which is primarily used to measure distances to a source by using
a laser beam that is mechanically distributed in space for spatial sampling. It is composed of a
laser emitter, a laser sensor, optics and electronic components (computer, clock, etc.) (Figure 1).
The laser beam is emitted through optics and deviated outside the device. It is back-scattered by
an object surface and a part of the reflected light reaches the LiDAR aperture. With alignment of
optics within the device, the sensor records the portion of back-scattered light in the direction of
the emitted beam, i.e., the sensor is in the hotspot direction. The analysis of this reflected light is
used to derive the LiDAR distance and intensity, at a pace synchronized with the emission clock

of the laser beams.

Microcontroller |
I

| Filter/Amp. |

I

| Sensor |

@

Figure 1: LiDAR principle: the laser is emitted through optics (blue). A part of the back-scattered
energy (red) is sensed and the produced signal is processed by electronic filters and
amplifiers before it is sent through a micro-controller.

1.1 Distance measurement

The main technologies to record distance with a laser beam are [35]: (i) the time-of-flight; and (i1)

the phase-shift technologies.

The time-of-flight system records the travel time of a pulsed beam light (Figure 2-1). The distance
is deduced from the time of flight of light:

_ At.c

d R

(1.1)

with Az the recorded time between the light emission and reception and c the light speed.

A phase-shift system modulates the amplitude of a continuous wave laser beam with a measuring
wave (Figure 2-3-a) and compares the phase shift between the emitted and the returned signal
(Figure 2-2). Travel time is deduced from the phase shift ¢ and the period A of the measuring
wave:

_¢
At =2 (1.2)
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The distance is then deduced with equation 1.1.

Time-of-flight and phase-shift systems are based on different techniques of distance measurement
and have consequently different characteristics. For instance, a time-of-flight LiDAR returns dis-
tances based on first or multiple return pulses whereas phase-shift LIDAR probe continuously
surfaces. That makes their measurement rate different [36]: time of flight LIDAR makes 50-150

kilo points per scan whereas phase-shift technology can provide until one millions points per scan.
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Figure 2: Distance measurement principle (from [35]): (1) Time-of-flight: the distance is deduced
from the measured time At between the emitted light pulse Pr and the received light
pulse Pg. (2) Phase shift: the phase comparison between the two signal provides the
time travel At . (3) Continuous wave laser beam principle: (a) the amplitude of the
laser beam (carrier wave) is modulated (measuring wave); and (b) the wave modulator
is directly placed after the laser source.

1.2 Intensity measurement

A LiDAR device measures distance by computing travel time of a pulsed or continuous laser beam.
Since a few years, most of the LiDAR devices provide returned light intensity of the laser beam.

If we suppose that the laser beam is collimated, i.e. the beam rays are parallel, the light power
received by the LiDAR sensor depends mainly on: (i) the object’s material reflectance p, which
depends on the incidence angle o; and (ii) the distance d between the device and the measured
object. In other words, the relationship between the received light power Pg and the transmitted

light power Pr is [37]:
Agr.P .cos(O
Pr=n. R- let(dl ( )’ (1.3)
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with Ag the receiver aperture area and 1 the receiver’s efficiency. Received light power follows
an inverse square law with respect to distance, also known as the light extinction effect [38]. This
power can be very large for close distances, whereas it can be low for a large distance and to avoid
sensor saturation, physical filter are used to decrease the returned light power for short distances
[39]. The intensity data, denoted /, often represents the received power of the back-scattered light
energy [40].

The availability of LiDAR intensity makes it possible to extract either the material’s reflectance or
the incidence angle between the scanned surface and the laser beam. To do so, a correction of the
distance effect should be carried out [40] before a radiometric calibration [41] or the settlement
of an incidence angle/intensity relationship [42]. Radiometric calibration makes use of the fact
that the intensity is highly dependent on the LiDAR wavelength. For instance, a green laser beam
(520-570 nm) will have a larger light energy return for a green material than for a red material [43].

Similarly, near-infrared laser beam (750-1400 nm) could be sensitive to material moisture [44].

Even if intensity values are generally far less used than distance values [45], they were found to
hold great potential for object classification such as land cover classification for airborne LiDAR
[26], distinction between stem and leaves [23], or trunk detection and diameter estimation [46].
With the appropriate wavelength, LiDAR has also been used to measure chlorophyll content in
broad-leaves [47].

1.3 Laser beam footprint

The laser beam is neither dimensionless nor perfectly collimated. It has an initial diameter the
size of the LiDAR aperture, and a divergence which is a function of the laser wavelength [48, 49]
(Figure 3-1). For instance, the FARO LS880 has a beam diameter of 3 mm and a beam divergence
of 0.014°. The laser beam creates a spot on the scanned surface called the footprint (Figure 3-3
and 5), and this footprint has the shape of an ellipse with two axis of different dimensions, i.e., the
minor axis Ad,,;, and the major axis Ad,,,, [5S0]. The distance d and intensity / are respectively the
average distance and average intensity recorded within this footprint and those values are recorded
with the laser beam position (established with the distance value) with which they are associated
[51].

Finally, the cross-section of the laser beam from the LiDAR that is perpendicular to the propagation
(also called the footprint) increases with distance between the object and the sensor. The footprint
can be approximately of the same size if an object is small, when it is strongly inclined or when it

is placed at a large distance. Object identification is strongly compromised in such cases.

1.4 Optical and mechanical design

Since the first LIDAR developments where airborne LiDAR system (ALS) were used as profiler
[52], the mechanical design of the device has been developed to increase the range of application

of the technology. Nowadays ALS have a scanning device that allows users to sample around
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Figure 3: The laser beam has a diameter and a divergence and LiDAR records distance and in-
tensity within the footprint.

+/- 20 degrees across the flight line. In contrast, hemispherical terrestrial LIDAR systems (TLS),
such as the FARO LS880 (Figure 4-left), use a 45° rotating mirror for a circular scan in zenith
(V) combined with a rotating or a moving platform for the azimuthal (8) rotation. The mechanical
displacement in these two directions allows a full hemispherical view (with the exception of the
masked area by the instrument’s base forming an occluded region of about 20 degrees underneath).
A clock sets the pace of the motors rotation and the laser beam return recording while distributed
in space, and the resolution of this pace determines the angular resolution of the scan as well as the
density of the point cloud. In other words, hemispherical TLS collects the distance and intensity
values together with their spherical direction, i.e., it produces the distance and intensity map of the
surrounding scene (Figure 5). If required, the spherical coordinates of measured points can easily
be transformed in Cartesian coordinates with the center point (0,0,0) at the optical center of the
LiDAR system [53].

Mobile LiDAR system (MLS) are polar LiDAR system (one angular dimension, e.g., the azimuth
angle) placed on a mobile carrier (car, tractor, robot, etc.). For instance, Rosell et al. designed a
MLS [16] with a SICK LMS200 placed on a tractor (Figure 4-right). Natural coordinates system
of the MLS distance map is cylindrical. Here again these data points can be easily transformed into
the Cartesian coordinates system [54]. Compared to static TLS, MLS optical center of the LiDAR
system moves along the path followed by the LiDAR carrier.

In general, mechanical design of LiDAR devices make the data expressed in a natural coordinates
system (spherical, cylindrical or polar in the case of the SICK LMS400) and to get distance and
intensity maps, LiDAR systems return either a measurement of the laser beam direction in the case
of hemispherical TLS (e.g., the angles (0,V)) or the position of the optical center of the LIDAR

system together with the angular position of the laser beam in the case of MLS.

2 Data quality

LiDAR systems measure distance with the time of return of an emitted signal in addition to the
return intensity of its laser beam. Since the first development of LiDAR technology, their range

of application have been increased. Hemispherical TLS became common in research field such
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Figure 4: Left: Hemispherical TLS. The beam direction is rotated with a 45° mirror (y) and the
device is placed on a motor with azimuthal rotation (8). Right (From [16]): MLS. A
polar LiDAR system is mounted on a tractor.

as agronomy, horticulture and forestry. In the following we will mainly discuss about this type of
LiDAR scanner.

The output of the TLS measurement is a 3D point cloud representing the laser beam returns of the
scanned object according to the selected sampling point density. However, the presence of noise
led researchers to investigate how to improve the data quality. Quality is generally expressed in
term of precision and accuracy (Figure 6) which correspond, respectively, to error and bias. In this
section, we will talk about LiDAR technical features such as point cloud quality and density, as

well as intensity quality and ratio outliers/number of points (ROP).

2.1 Distance value

The precision of TLS distances depends on many aspects dominated by three: (1) the distance
of the TLS laser aperture to an object, (2) the light beam incident angle, and (3) the material
reflectance and the ambient light [24]. Because of light extinction [38], the farther is an object,
the lesser is the light energy that is coming back. This implies a decrease in distance measurement
precision. Similarly, when less energy is returned, TLS are more prone to make errors on distance
measurements. This is actually the case for low reflectance materials and, in general, for inclined
surfaces. For instance, with a surface target of 90% reflectance, the phase-shift TLS FARO LS880
has a root mean square error of 2.6 mm at 10 m and of 4.2 mm at 25 m. With a surface target of

10% reflectance, those precisions are brought down to 5.2 mm and 10 mm respectively [31].

Distance measurement is computed with the integration of the distance within the laser beam
footprint. Depending on the surface inclination, the distance can be overestimated, i.e. it can have a
bias: (i) in the case the laser beam hits the middle of a slightly inclined surface, the average distance
is representative to the distances present within the laser beam footprint and an accurate distance
is measured (Figure 7-1); (i1) in the case of a surface that is strongly inclined, the footprint has

an ellipsoid shape (Figure 7-2) and the average distance corresponds to the distance at the middle
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Figure 5: TLS FARO LS880 (pear tree orchard scan): hemispherical images (spherical coordi-
nates) of the depth (up left) and intensity map (up right). The 3D point cloud is obtained
with proper transformation.
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Figure 6: Precision of the distance measurement is the degree to which repeated measurements
show the same results. Accuracy is the degree of closeness to the correct distance value.

point of the footprint. However, this middle point does not correspond to the laser beam position
and there is a bias in the interpretation of distance which is over-estimated. This overestimation is
generally negligible because the laser beam has in general a Gaussian irradiance density [55] and
the beam diameter of most TLS is usually small. It can be important for strongly inclined surfaces
though.

Measurement technology also affects the quality of the measurement [36]. Phase-shift TLS are
more suitable for short distance (< 2 m) than time-of-flight TLS, which provides incoherent point
cloud at such ranges. However, the measurement of a time-of-flight TLS takes into account the first
pulse return of the TLS laser beam that makes its measurement more accurate in the case of large
range. Ambient light affects differently those two light recording systems. In [43], Voegtle et al.
recommended to proceed measurements with the time-of-flight TLS TRIMBLE GX during night-
time , whereas the manufacturer of the LIDAR FARO LS880 (phase shift technology) declares that

the effect of light environment on the point cloud precision is negligible.

In the case of hemispherical TLS devices, incorrect motors alignment and device vibration create
respectively bias and errors in the measurement of the laser beam angular direction [56]. Still, it
is possible to correct bias with proper calibration [25], and in the case of static and high precision
TLS, the errors created by vibration are negligible compared to the distance measurement error
[24]. However, in the case of MLS, vibrations can cause severe errors and bias in the measurement
of the laser beam direction, and correction methods should be applied to merge every 3D point into

a coherent point cloud [57].

Proceeding to TLS scan requires an a priori reflection on the scan configuration (object position
and geometry) and on the device choice (LiDAR of technology and design). In general, proper

calibration of the LIDAR mechanical system and the post-process of its point cloud are necessary.
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Figure 7: (1) If the surface is perpendicular to the laser beam, the footprint is circular and the
measured distance is accurate (red dot). (2) If the surface is inclined, the measured
point distance is overestimated (red dot) and the footprint has an ellipsoid shape.

2.2 Intensity value

As previously mentioned in Section 1.2, the intensity depends mainly on three factors: (1) the inci-
dence angle between the laser beam and the object surface, (2) the optical property of the scanned
material, and (3) the distance between the object reflecting the beam and the sensor. Similarly to

the distance measurement, those three factors also influence the quality of the intensity values.

Intensity is a function of the returned light power within the TLS beam footprint. Even if equation
1.3 holds for smooth and opaque material and at varying incidence angle, the intensity is almost
constant with varying incidence angle in the case of irregular surfaces [58] (e.g., gravel with rough-
ness larger than the laser beam footprint). In general, intensity measurement can be biased due to

the complexity of the surface geometry and the size of the laser beam footprint.

Pfeifer et al. [59] showed that for the time-of-flight scanner Riegl LMS-Z420i, an increase on
material reflectance produces an increase on the measured intensity error which is always below
3% of recorded intensity. In the case of a time-of-flight TLS TRIMBLE GX, Voegtle et al. [43] also
showed a correlation between the increase of this error and the increase of the material reflectance.
However, with the time-of-flight TLS Optech ILRIS 3D, Hofle et al. [60] found an error constantly
equal to 10% which exemplifies how the quality of the intensity values is also related to LiDAR’s
technical specifications. In addition, they showed that both incidence angle and reflectance have an
influence on the intensity precision: if the incidence angle produces a lower intensity value, then

the error becomes lower with the increase of this angle.

Most of the studies showed that there is no clear impact of the distance on the error of measured
intensity: none were recorded for large range (up to 50m and with time-of-flight TLS Riegl LMS-
7Z420i [59]), middle range (up to 25m and with phase-shift TLS Leica HDS 6000 [61]), nor close
range (up to 2.6 m and with time-of-flight TLS Leica ScanStation 2 [47]).

The increase of light power return due to material reflectance and incidence angle increase induces
an increase of the LiDAR intensities measurement error. Still, the precision of those measurements

stays stable when the distance between the scanned surface and the TLS aperture gets larger. In
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other words, distance effect on intensity recording (see Equation 1.3) can be corrected and intensity
calibrated to the material reflectance [40]. This calibration depends on the design of the TLS
recording system: for instance, physical filter used to avoid sensor saturation at close range, makes
the intensity measurements less accurate for close range in the case of phase-shift TLS FARO
LS800 less accurate [42].

2.3 Outlier points

The distance and intensity values recorded by the TLS are values within the laser beam footprint.
During the scanning process, the laser beam can either completely or partially intercept a surface
[50]. When the footprint is contained within an object surface (Figure 8-A-i), the recorded dis-
tance and intensity are relatively accurate (Figure 8-A-ii): the measured point is an inlier. Still, the
recorded distance can be overestimated due to the surface inclination (see discussion in subsection
1.3) (Figure 9-1). When the laser beam has reached an edge, it is split between a foreground object
and a background object (Figure 8-B-i). In the case of time-of-flight measurements, the use of first
returned pulse guarantees that the foreground object is measured, but in the case of phase-shift
technology, the estimated distance and intensity become equal to intermediate values. Conse-
quently the recorded values are not representative (Figure 8-B-ii) and are called outlier points, or
outliers. Depending on the object’s geometry and the edges position, several outliers could be

recorded during the scanning process.

Determining whether a point is an outlier or an inlier is a difficult task. The point clouds repre-
sented by Figure 9-1 and 9-2 are similar but do not represent the same object configuration. In the
first drawing, the measured surface is continuous and the points are inliers (in red), whereas in the
second drawing, the surface is discontinuous and a portion of the points are outliers. In the case
of outliers, the configuration of the surface inclination can also lead to ambiguities. For instance,
when the upper surface has no strong inclination relatively to the TLS laser beam, the points at the
object’s edge are clearly outliers (Figure 9-2). However when the upper surface does have a strong

slope, the difference between outliers and inliers is more subtle (Figure 9-3).

Two types of outliers detection algorithm based on distance exist (see Appendix I) [50]. In the first
type of algorithm, a point is considered as an outlier if a defined portion of the scanned surface is
at least at a minimal distance to this point. In the second type of algorithm, a point is considered
as an outlier if it has not enough neighbors in its surrounding. This latest algorithm requires the
knowledge of local density, which is not always easy to estimate. Those two algorithms of outliers
detection based on distance works properly when the surface distance are large, with simple shape,
and not too strongly inclined (e.g., house’s wall). They can be misleading in the case of complex
and fragmented shapes such as tree canopy. In addition, they only detect outliers and do not correct

them.

In some cases the intensity values can be used as much to detect outliers as to correct them. In-

tensity values are related to the local inclination of the surface with respect to the LiDAR laser
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beam. For example, Figure 9-1 and Figure 9-3 show two cases where intensity and point cloud
information are consistent. In contrast, Figure 9-2 shows a case of inconsistency where locally the
normal associated with intensity does not match the normal derived from the point cloud. In this
later case, this mismatch reflects the existence of outliers and can be used in order to detect them.
Moreover, the consistency between intensity and surface inclination can lead to a correction of the

outliers.

A-i) B-i)
” Measured poin” ” Measged poin”
A-ii) B-ii)

Figure 8: (A-i) The laser beam footprint is in the middle of the surface. (A-ii) Accurate estimation
of the point distance. (B-i) The footprint is split between the measured surface and a
background surface. (B-ii) An outlier point of intermediate distance is recorded.
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Figure 9: Side view of a point cloud (red dots) and their corresponding surface (black curves). (1)
Smooth surface forming a large incidence angle with the LiDAR laser beam. Intensity is
correlated to incidence angle (black arrow) and to the point cloud local inclination (red
arrow). (2) Laser beam at a slightly inclined surface’s edge: there are clear outliers.
Intensity is correlated to the incidence angle but not to the recorded point cloud. (3)
Laser beam at a strongly inclined surface’s edge: difference between inliers and outliers
is more subtle. Intensity is correlated to a mixture of the local incidence angle.
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2.4 Point density

The point density describes the number of scan points within a given surface area. It is often
referred to as the resolution of the TLS recording. On most TLS systems point density depends
first on setting the clock associated with the emission/reception of the laser beams [56]. Distance is
an important factor which affects the point cloud density when LiDAR has a rotary system (Figure
10-b). Yet it has no impact in the density measurement along the carrier path of MLS (such as an
ALS or vehicle-mounted LiDAR) (Figure 10-a).

For both system of mobile and rotary, the incidence angle is a factor which is impacting on point
density: the larger this angle, the lower the point density becomes. On all TLS, several point
density are preprogrammed so these critical selected acquisition parameters are easily retrieved

from the data collected.

Another factor, external to the selected TLS parameters, which affects the point density is the
scanned scene composition. An object can be partially occluded and the number of laser hits on
its surface is lesser than expected. This phenomenon is called occlusion [62]. Similarly, an object
cannot be entirely scanned with one scan, mainly because of the occlusion of the element most

distanced or on the opposite side from the TLS. It is therefore frequently needed to scan an object

\\\\\\\\\*/

Translation Rotation

or a scene from several points of view.

a) b)

Figure 10: The point density depends on the travel resolution of the LiDAR laser beam. If the
laser beam is in rotation, the point density also depend on the object’s distance. (a) A
laser beam in translation; (b) A laser beam in rotation.

2.5 Ratio outliers/number of points (ROP)

In the case of phase-shift TLS, the laser beam footprint can be large enough to cover a large propor-
tion of an object’s surface and, during the scan, this footprint can reach the object’s edge and create
several outliers. To quantify the proportion of outliers, we define the notion of ratio outliers/number
of points (ROP) as the number of outliers divided by the total number of points representing a sur-

face. For a given surface area, the density of points decreases with distance, in contrast to the
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footprint diameter which increases. Thus the ROP increases with distance. Similarly, the ROP

increases with incidence angle, occlusion, footprint diameter, and angular resolution.

2.6 Quality factors

The table 1 recaps the main factors that have an impact on TLS data quality. All these factors have
been discussed in this section except for the wind speed. We see that the TLS data quality highly
depends on the TLS technical design, the scanned scene (object material, position and geometry)
but also on the environment (light and wind). Consequently it is predictable that scanning veg-
etation (trees orchards, forest, etc.) produce a very complex point cloud to analyze with a wide

gradient of data quality, even within the same scene.

Factor Distance Intensity ROP(*) Point Literature
Precision | Precision density

/" Distance N = e N [30]
" Incidence angle N\ /! /! ¢ [63]
" Object size /! /! / = [51]

/" Object reflectance Ve AV = (R [61, 64]
/' Occlusion = = /! /" [62]

/" Footprint diameter N\ e /! = [51,47]
' Angular resolution = = a a [56]
/' Ambient light = N\ = N\ (%) [61]
' Wind speed (¥*%) e e /! ¢ [65]

Table 1: Main factors on the LiDAR quality. If those factors increase ( /), the distance precision,
intensity precision, ROP and point density could increase ( /), decrease ("\,) or be insen-
sitive (=). (*) For phase-shift technology. (**) For low reflectance. (***) For vegetation
material.

3 Conclusion

LiDAR technology consists of emitting a pulsed or a continuous and modulated light signal, and
recording the time of travel of this light signal in order to measure distance. Hemispherical TLS
is a LiDAR system with double rotations and it can quickly produce a dense 3D point cloud of a
scene. Three main factors affect the precision of TLS measurements: the distance between TLS
aperture and scanned surfaces, those surfaces geometry and the material reflectance. When the
scan configuration is adapted to the scene (e.g., object are close enough, slightly inclined, etc.),
TLS devices provide data with satisfactory quality to extract geometry information. Yet in the
case of phase-shift TLS, footprint size makes distance measurement overestimated, and when the
laser beam reaches an edge, the consequent outliers make the TLS point cloud severely biased.
In addition, when the surface is inclined, it is not always possible to see the difference between
outliers and inliers and the surface representation can be incorrect. Plant canopies are fragmented

surfaces. As a result, leaf shape extraction from TLS scan is a difficult task.
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Intensity is function of the return light power recorded by the TLS sensor. This data is available
in most TLS and has been used mainly for scan segmentation. As recorded intensity depend on
surface inclination, it provides geometrical information on the scanned surface. In Section 2.3,
we showed that, on critical surface points which are the edges, the recording of intensity has a
behavior different from the distance recording. In some cases, intensity measurement has more
likelihood than the distance measurement and the use of this intensity could lead to the detection

and the correction of outliers.

The combination of the high throughput of data and their quality makes TLS devices common in
most fields where geometric measurements are needed. In agronomy it is used to extract global
descriptor of plant canopy such as the density of leaves. Yet TLS devices have not been used for
the leaf shapes extraction with in situ scans. In the next chapter, we will make an overview of the
main biological facts that make plant description at organs scale necessary, and we will discuss
the reason why the state of the art of TLS measurements of plants did not reach this scale yet. In
the following of the thesis, we will investigate the geometrical properties of intensity in order to
develop an outlier correction algorithm that we will apply on complex plant scene and illustrate

our approach on pear tree orchard scans.
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Chapter 2

Toward a geometric reconstruction of leaves

from orchard trees

Bio-engineers and horticulturist are seeking to improve the management of their orchard. For in-
stance, they wish to optimize the quantity and quality of their crop production (e.g. fruit size, taste
and density) [1], the quantity of pesticide to apply to decrease expenses and bio-impact [3], and
the management of their irrigation system in order to control the fruit growth [66]. From a bio-
logical prospective, understanding plant physiology help improving orchards’ management. Sugar
production is driven by water uptake, CO; availability and sunlight [67] and the plant morphol-
ogy determines the efficiency of the sugar spread in the plant and fruits (see Figure 1-1). In other
words, understanding plant growth mechanisms and their interaction with the plant’s environment
can help improving orchards management. Developing this understanding requires to acquire spe-

cific information on plant geometry.

TLS produces a dense 3D point cloud that can be used to extract geometrical characteristics of
scanned object. TLS measurements proved to be more adapted than traditional measurements for
the estimation of geometrical descriptors on plant morphology. Most studies investigating plant
architecture used TLS only to extract global indicators (e.g. [68, 22, 21, 32, 33, 65, 69, 15, 70]),
and a very few of them proposed measurements of canopy elements at organ scale [18, 47, 71, 72].
Moreover, the fine level work on plant architecture generally proposed an analysis under controlled
conditions. Therefore there is very little TLS studies dealing with fine level plant architecture

(leaves and fruit scale) and dealing with complex in situ measurements (e.g.,[21, 22, 23]).

In the first section of this chapter, we will investigate the biological aspect of plant morphology
in order to assess which geometrical characteristics are needed by agronomists and horticulturist.
Then, we will give a short description of the traditional measurements available to describe plant
geometry at different scales. This is followed by the description of measurement of the spectral
properties with spectrometers and the measurement of geometrical information with TLS. These
descriptions will help appreciate the different scales of measurements using TLS and traditional
measurements. In a last section, we propose a preliminary study to investigate TLS point cloud

quality of complex canopy to allow an entry level discussion on the use of TLS intensity to assess
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leaf geometry.

1)

Figure 1: (1) Schematic illustration of the plant interaction with sunlight, atmosphere and ground.
(2) Zoom on the leaves stomata. (taken from [73])

1 Plant morphology

Orchard tree morphology is a main factor that drives fruit production. The position of photosyn-
thetic material and fruits in addition to their connectedness, determine the efficiency of sugars
production and storage [74]. Morphology also affects the spread of pest and drought [75]. In the
following, we will see which factors in plant structure play an important role for fruit yield and

quality. In addition, we will give a short overview of pest and stress impacts on trees geometry.

1.1 Plant structure and fruit production

The management of orchards fruit production by the control of the tree morphology is one of the
main issues for the agronomists. Tree growth is a complex process and it is not easy to assess
which branching configurations will occur, i.e, how many new shoots will occur, their type and
their location. For instance on a pear tree, short shoots (< 5cm length) and long shoots (> 5 cm
length) appear every year. They can be lateral (on the side of a parent branch), or apical (continuing
the growth of a branch). In addition to the buds, they can bear a flower cluster (and consequently
fruits) or only leaves. Spur leaves are on shoot that bears the flower cluster, fruit and lateral bourse
shoot, and shoot leaves are on the shoots that do not produce fruit. Sugar produced by spur leaves

i1s more bio-available to the fruit than the sugar produced by shoot leaves [74].
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The imperatives on improving productivity impose the implementation of pruning rules to guide
the growing process of orchard trees, that is, to impose a training system to the tree. Since the
XVIIth century when king’s garden were horticultural research places [76], two different types of
training system have been developed: one seeks to limit the growth to a few principal branches
that are generally held by a structure, and the other one trends to let the tree getting a free shape.
For instance, the V-shape training is a training system using an artificial structure. V-shape tree
is composed by its trunk and four branches. Couples made of two branches forming a V with an
aperture of 40° allow a better sun penetration. Iron cables hold the tree structure and new long
shoots are pruned on the top and the bottom of the canopy every year. Fruiting shoots are better
exposed to sun in this way. The vertical axis training, the Solaxe training system (ST), and the
centrifugal training system (CT) are free shape training system. The ST (Figure 2-2) is a derivative
of the vertical axis training [77] (Figure 2-1), where tree is made up of a vertical trunk, and along
which fruiting branches are regularly distributed. However instead of the vertical axis training,
the ST involves combining the bending of the central axis and the fruiting branches, developing
free growing lateral fruiting branches and removing the competing vegetative branches. The CT
(Figure 2-3) is also a derivative of the vertical axis training. It involves pruning the shoot within

the canopy in order to create a shaft of light.

The comparison of fruits yield between different trainings is a common method to assess the effi-
ciency of a training system. For instance, in [78], six training system (four with artificial structure
and two with free structure) are evaluated on the behavior of four nectarine trees (Maria-Laura,
Katia, Red Diamond and Stark Red Gold). Authors compared the fruit yield, size, weight, and tree
flowering, vigor and branching for each of those training system. They showed that the training
system Palmette Arbor (with artificial structure) is the best training system for fruit yield for the
Maria-Laura and Katia varieties. Training system Palmette Arbor and Gobelet (free system) is the
best training system for the Red Diamond variety. Training system Palmette (with artificial struc-
ture) is the best training system for the Stark Red Gold variety. In addition, they showed that the
training system Gobelet (free system) was more adapted to stimulate new branching shoot.

Another type of research lead in horticulture is the understanding of the relationship between
sunlight, plants and fruit yield [79, 1, 80]. Light interception is a key factor to photosynthesis rate.
However, increasing the orchard productivity by increasing light interception by higher planting
density does not necessarily lead to the highest fruit yield and quality [74]. Plant structure and
fruiting versus leaves shoots position can have more impact. Willaume et al. [2], compared the ST
and CT systems on six Gala apple trees to compare the sunlight interception by spur leaves. To do
so, they measured leaves position and geometry of 20 to 30 shoots of different types (fruiting versus
vegetative shoots). They showed that CT enhances significantly spur leaves area when compared
with ST (Figure 3-1). With the vertical distribution of spur leaves in the canopy (represented by
the silhouette to area ratio (STAR) index, see Figure 3-3), they showed that light is more available
to spur leaves and consequently, that more sugars are bio-available to fruits. In addition, they

observed that CT induces a change in the color of the fruit positioned within the canopy (Figure
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3-2). In other words, their work shows that it is necessary to let sunlight reach spur leaves in order
to improve fruits quality. Yet their study was conducted on a single apple tree variety, and as each
tree species has an optimal training type that depends on its branching and fruiting configuration

[81, 82], it is necessary to extend this kind of research to other species.

Orchards management are expensive and the study of the relationship between light interception
and fruit tree structure is interesting as it allows a better understanding of the plant and thus to
better anticipate the plant needs and production. Yet, this type of study requires the measurements
of tree architecture and leaves position in addition to their labeling (spur versus shoot). Manual
measurements make this type of research tedious and time consuming, and researchers seek to

have rapid and reliable measurements tools.

Figure 2: (1) Vertical training system (from [82]). (2) ST system (from [77]). (3) CT system (from
[2]).

1.2 Plant diseases

Another key issue in agronomy and horticulture is the limitation of fruit tree biotic and abiotic
damages, and the optimization of phytosanitary applications. The cause of tree damages can either
be due from animal, bacterial, environmental, fungal or insects. The main damages caused on

apple and pear trees and that have a visual impact on the foliage are (from [83, 84]):

(1) Aphids (insect, Figure 4-1) that are small sap-sucking insect. On infested trees, termi-
nal leaves are curled downward and sticky with honeydew secreted by the aphids. This
honeydew may drip onto the fruit causing russet spots and promote growth of black

sooty mold and the highly infested shoots of young trees are stunted or malformed.

(2) The fire blight pathogen (bacterial, Figure 4-2), where major symptoms are blossom
blight, fruit blight, shoot blight, and canker. First symptoms usually start with the
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Figure 3: (1) Top view of the canopies: (a) ST tree, and (b) CT tree (green: shoot leaves, blue:

3)

4)

)

(6)

spur leaves, red: fruits). (2) Fruits: (a) ST tree, and (b) CT tree. (3) Vertical distribution
of the silhouette to area ratio (STAR) per fruiting shoot (green: ST, red: CT). (OPierre-
Eric Lauri)

blossom appearing water soaked then drooping and browning. The disease continues

growing down through the shoot, killing as it moves systemically.

Leaf-rollers (insect, Figure 4-3) that are in general solitary and web a leaf so that
the leaf appears rolled or folded. Once the leaf is rolled, the insect feeds inside. In
severe cases, individual leaves will turn brown or lace-like due to the feeding of the
caterpillar.

Drought (abiotic, Figure 4-4) where the foliage become limp, curl, wilt and go off
color. Plant cells furthest from the veins can turn brown and die. The entire leaf may
eventually die.

Pear rust mites (insect, Figure 4-5) are small sap-sucking insects. Their damages
consist of bronzing or darkening of pear leaves and fruit. This discoloration, called
russetting, begins on the underside near the vein that runs down the center of the leaf
and gradually spreads outward. The tops of the leaves may remain green and look
healthy.

Apple scab (fungal, Figure 4-6). Leaf spots appear in spring as small olive-green
lesions on the upper and lower leaf surfaces. As spores form, lesions develop a velvety
brown appearance. Later, lesions are more elongate and often follow veins, but the
same velvety brown look is present. As leaves age, they turn yellow (except for the

scab lesions) and fall from the tree.

The commonality of those damages factors are that the leaves aspect changes: color and/or geom-

etry are progressively changing during the propagation of the infestation. It is clear that each of
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those factors can destroy the plant either partially or entirely, and a great challenge for agronomist

would be to better understand their apparition and propagation.

At the orchard scale, there is a trend in pest management research to understand the spatial distri-
bution and propagation of the plant aggressors [85, 86]. At the organ scale, only a few research
studies have taken place to determine the relationship between the leaves geometry and drought
[87]. Research on in situ plants to quantify their local geometrical change due to insect, fungal and

bacterial invasion, are missing in the literature.

Figure 4: Common fruit tree damages (from [83, 84]): (1) aphids (insect), (2) fire blight (bacte-
rial), (3) leaf-roller (insect), (4) drought (abiotic), (5) pear rust (insect), and (6) apple
scab (fungal)

2 Measurements and representations of vegetation structure

Exact geometrical representation of plants at the scale of the organs is useful for many subjects
studied in agronomy and in plant biology. Various methods of plant measurements have been set
up, either at the scale of the canopy or organ, to understand physiological response of plants to
management and stress. In the following, we established the state of the art of different types
of plant descriptors and measurements, enumerating the methods in decreasing scale: starting by
methods considering the plant as a single entity (Figure 5-1), then dealing with distributions of
leaves geometries (Figure 5-2), and ending on methods at organ scale and on virtual plant models
(Figure 5-3).
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Figure 5: Canopy descriptor at different scale. (1) The plant as a single entity: simple turbid
medium. (2) Distribution of leaves geometry: vertical profile of leaf area density (from
[69]). (3) Virtual plants: ADEL-Maize (from [88]).

2.1 The plant as a single entity

Biotic and abiotic stresses induce physiological responses of plants at various scales. For instance,
the closure of the stomata cells due to water stress affects CO, assimilation, transpiration, temper-
ature and leaf water potential [67] (see Figure 1-2). In other words, water stress induces change
in the cellular structure and in the biochemical processes of the plant, which consequently has an
impact on the plant morphology, on its physiology and on its spectral response to sun light. This
spectral response can be recorded with remote sensing devices such as satellite multispectral sen-
sors in order to monitor plant water content [89]. To do so, it is possible to consider the plant or
a set of plants canopy as a simple entity. With such perspective it is possible to interpret spectral
response as plant stress indicator but also to estimate canopy efficiency to intercept light. In the
first case, the radiometric signal can be viewed as a single pixel representing the plant. In the sec-
ond case, structural measurement such as Leaf Area Index (LAI), can be extracted from a radiative

transfer equation. In the following, we will investigate those two types of plant models.

2.1.1 Spectral measurement

The recording of spectral response of plant can be carried out with a spectrometer. Spectrometers
are tools for the precise measurement of the incoming radiometric intensity on several spectral
bands ranging from UV to infrared. Among a large spectrum of uses, it is useful to measure the
spectral response of different plants in various contextual/environmental conditions. The spec-
trometers can take one measure for the whole field of view or imaging spectrometers provide an
image where each pixel contains the viewed intensity of a scanned object. The intensity measured
represent the contribution of every returned light ray once interacted with the canopy in the view-
ing direction. Spectral information of plants varies with plant physiology. For example Pefiuelas
et al. [90] used a spectrometer SE590 (©OSpectron Engineering with 252 bands covering 390-1100
nm) placed at an azimuthal angle of 50° towards the canopy of a Gerbera (ornamental flowering
plant, see Figure 6-1) to assess canopy response to water stress (Figure 6-2), with focus on the
950-970 nm wavelength bands.

The spectral response of plants depends in large part on how vegetation material occupies the
space. For instance, clumped canopy has different interaction with light than canopy with homo-

geneous distribution of leaves. It is necessary to understand the space dependency or plant archi-
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tecture to interpret correctly spectral measurements. For instance, the ratio of light intercepted by

the canopy, 1.e. its radiative transfer, can be investigated to determine plant occupation in space.
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Figure 6: (1) A Gerbera plant. (2) Spectral response of a Gerbera canopy under various water
condition (from [90])

2.1.2 Leaf area index

When penetrating plant canopy, light energy is reduced due to its repeated interaction with the plant
material. Studies showed that the relationship between the quantity of leaf material and radiative
transfer follows the form of the Beer-Lambert equation of light extinction [91]. Beer-Lambert law
states that there is a logarithmic dependence between the transmission 7', of light through a turbid
medium [92] (Figure 5-1):

T — i _ e*G.f.N’ 2.1)

Io

where [y and / are the intensity (power per unit area) of the incident light radiation and the transmit-
ted light radiation, respectively; G is attenuation cross section; NN is the concentration of attenuating
medium (e.g., number of leaves per unit volume); and ¢ is the distance the light travels through
the material (i.e., the light path length). Monsi and Saeki [91] showed that equation 2.1 can be

transformed into:

where Py is the probability of beam radiation penetrating a canopy without being captured at an
incident light direction 6, Ky is the so-called extinction coefficient representing the ratio of light
intercepted for a given light energy and at incident light direction 6, and LAl is the Leaf Area Index

[93] which is defined as the one-sided area of synthetic tissue per unit ground surface area (m?).

LAI is the principal variable of radiative transfer model representing the energy transfer in a
canopy. Several direct and indirect measurement protocols have been set up to measure LAI
[94, 95, 96, 93, 97]. The mains techniques to estimate LAI include (i) the direct methods with
a planimeter and indirect methods with (i1) the hemispherical photography and (ii1) TLS data,
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LAI measurements with a planimeter is the most direct method of LAI measurement for deciduous
stands requiring intensive field work [93] (Figure 7-1). This type of measurement consists on
gathering a partial amount of the vegetation leaves (either by destructive sampling or by non-
harvesting litter traps during leaf-fall period) and to insert them into a planimeter device. Each
leaf is placed on a conveyor and are lit in a chamber. Their shadow area is measured to give an
estimation of the leaves area. The total area is correlated to the dry weight of the sampled leaves.
Since the sampled area can be a fraction of the forest floor, the total stand LAI is estimated with
the extrapolation of that fraction of the sampled stand towards the entire stand assuming a uniform
distribution (or sufficient sampling). This method usually gives a sufficiently good estimation of
the LAI to be considered as a reference value. However, this method could be time consuming, it

shows underestimation in the case of curled leaves and it applies primarily for deciduous stands.

Hemispherical photograph is an indirect measurement method of LAI [95] (Figure 7-2). A pho-
tograph of the canopy is taken from below looking upward with a fish-eye lens. Separating the
sky portion and the vegetation portion of the photograph is used to assess the gap fraction which
is used to estimate the Plant Area Index (PAI). Method to segment woody element are used to
estimate LAI from PAI [98]. LAI is often under-estimated when calculated from hemispherical
photography because of the effects of vegetation clumping, structural complexity involving object
occlusion and the difficulty to separate wood from foliage. Still, a clumping factor can be inte-
grated in the computation to improve LAI estimation [94]. The use of hemispherical photograph
to estimate LAI may be approximate but it has several advantages over the direct method: it is

simple and fast and this type of measurement is broadly used.

TLS is also used for indirect measurement of canopy gap fraction and LAI. Danson et al. [99]
measured the gap fraction of a Pine forest canopy with a TLS Riegl LMZ2101 (Figure 8-1) and
a Nikon Coolpix 4500 hemispherical camera (Figure 8-2). They computed gap fraction within
zenithal band of 5° from the two types of data and showed that results obtained with spherical
photograph and TLS were similar (Figure 8-3). Moorthy et al. [15] used a TLS ILRIS-3D to
compute gap fraction and LAI of an artificial Ficus tree that was progressively defoliated. They
compared their results to: (1) manual measurement of the LAI, and (2) to the gap fraction de-
duced from a high resolution photograph (Nikon D50). They found good correlations between the
traditional measurement method and the TLS measurements for LAI and gap fraction extraction.
TLS measurements of LAI and gap fraction are close to measurement made with hemispherical
photograph. Similarly to the hemispherical photograph measurement, TLS tends to provide under-
estimated values of LAI when compared to planimeter measurements. Yet hemispherical camera

and TLS are way less tedious and time-consuming methods than the planimeter method.

Radiative transfer studies using LAI have been broadly used to study plant spectral response to
stresses (e.g., [100]). Yet scientists are interested to get a more precise description of the plant
canopy. This interest comes from a need for better accuracy of the LAI and the light interception
process. LAI is dimensionless and it does not directly represent leaf distribution [94] (e.g. canopy

clumping) and shape in the canopy [96]. Chen & Black [96] noticed that leaf inclination and shape
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were parameters that were neglected in indirect estimation of LAI; Biswas [101] showed that it
was necessary to include leaves inclination distribution in the light interception models; and Wang
et al. [102] used several type of leaf angle distribution model to prove that leaf inclination has an
impact for light interception when zenith angle increases. Still, it is possible to integrate leaf angle
distribution in LAI computation [94]: in Equation 2.2, the extinction coefficient Ky can be replaced
by G(0,0)/cos(0), where G is the so-called G-function that corresponds to the fraction of foliage
projected on the plane normal to the zenith direction. G(8, o) depends on leaf-angle distribution
o. Yet LAI is not sufficient to describe plant geometry at a fine-scale (at the level of the leaves)

for a good representation of plant architecture, and consequently, LAI is not adapted for extensive

plant physiology study.
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Figure 8: (1) Hemispherical picture of the TLS; (2) Hemispherical photograph; and (3) Compari-
son of the gap fraction computed from the TLS data (solid circles) and the hemispherical
camera (open circles) for each class of 5° zenithal angle (from [99]).

2.1.3 Concluding remarks

Many methods proved the effectiveness of considering the canopy as an entity to obtain informa-
tion on its physiological state. For example spectrometric methods can detect stresses from the
plant spectral response. Also, direct and indirect measurement methods allow operational estimate
of the LAI, an important structural attribute used in most radiative transfer models of plant canopy

interaction with incoming radiation.

Yet considering the canopy as a single entity under-represents important plant geometry attributes
of importance, especially in the case of complex canopy. Oversimplification of canopy geometry

undermine methods based on spectral response or radiative transfer models, greatly removing their
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ability to assess fine-scale plant physiology if needed. For instance, water stress induces geomet-
rical deformations of leaves that induce a variation of the global spectral response of the plant.
This variation can compensate or amplify the initial spectral response of leaves and geometrical
deformation of the canopy should be taken into account to obtain the signal variation associated to
biochemical processes at leaf scale. In addition, the under-representation of the plant geometry in
LAI makes the radiative transfer models almost useless when it is necessary to have a full under-
standing of the plant functioning and growth at finer scale in order to prune the tree. Descriptors

at fine scale have been set up to allow better understanding of the plant mechanisms.

2.2 Leaves geometry distribution

Fine scale plant geometry can be tackled by describing the geometry of its main components
(branches and leaves) such as their position, density, angle shape, etc. Intuitively, we can expect
that a fine scale representation of plant can lead to a better understanding of its physiology. In the
following sections, we describe three types of distribution of plant geometry: (i) the Vertical Leaf
Area Distribution (VLAD) and the Vertical Plant Area Distribution (VPAD), (ii) the Leaf Angle
Distribution (LAnD), and (iii) the 3D voxelized space filled with Leaf Area Density (LAD).

2.2.1 Vertical plant profile

Another way to see plant interaction with sun light is to consider the following geometry: vertical
distribution of photosynthetic elements in canopy induces subsequent variation in light transmit-
tance along the plant profile [91]. The characterization of this profile is required for many radiative
transfer models. Therefore the LAI per height bin, i.e. the VLAD, is a common structural canopy
descriptor [103]. The planimeter method can be used to measure this vertical distribution: the
canopy is split into height layer and litter-trap are placed at adequate place to gather leaves. Yet

those measurements are tedious and time-consuming to collect.

VPAD is an extension of the VLAD descriptor to all the plant components (branches, fruits, etc.)
that can be estimated with TLS measurements (Figure 9-1). Van der Zande et al. [30] acquired
several scans on an artificial tree with a TLS placed at different position and with different viewing
direction. They counted the number of points for every bin of chosen height to obtain a verti-
cal plant profile. Because the geometry of their artificial tree, some portions of the leaves were
occluded. They extended their VPAD with local LAI computed with a gap probability model to
tackle this occlusion effects. In addition, they showed that the local density of points, which de-
pends on the TLS position and direction, impacts on the VPAD: from a top-down view, VPAD is
under-estimated in the bottom part of their artificial canopy, and conversely, it is under-estimated
on the top with a bottom-up TLS viewing direction. Finally, they drew attention on impact of the

outliers on VPAD computation and proposed a preliminary method for their correction.

Vertical distribution of plants elements have been shown suitable to study light penetration, espe-

cially to compare the shaded versus sunlit portion of the crown [1, 91]. Such as the LAI, VLAD
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alone does not represent leaf shape and inclination. Yet it is possible to integrate in their computa-

tion leaf angle distribution.
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Figure 9: VPAD of an artificial tree (from [30]). Left column: side view of point cloud representing
an artificial tree scan. Right column: VPAD derived from the point cloud (solid line)
versus the reference measurements (dash lines). (1) scan from side view, (2) scan from
top-bottom view.

2.2.2 Leaf angle distribution (LAnD)

LAnD is a canopy descriptor that gives assumptions on leaves orientation using simple functions.
A priori assumption on leaves inclination, such as planophile, erectophile or spherical distribution
of leaves, is generally sufficient to carry out a light interception study [102]. However complex
canopy require a detailed description of the LAnD. To do so, it is possible to measure the LAnD

on a sub-sample of leaves canopy and extrapolate the results to the entire canopy.

LAnD can be measured manually with protractors [104] or with electromagnetic 3D digitizer [49,
105]. A 3D digitizer consists of [105]: an electronic system unit, one to four receivers to measure
points, and a single transmitter. The transmitter generates a low-frequency magnetic field which
induces current in coil included in the receiver. The intensity of the induced current depends on
the location and orientation of the receiver in the active volume around the magnetic source. The
Cartesian coordinates, i.e. X, y and z, and the Euler orientation angles, i.e. azimuth, elevation
and twist angles, of the receiver are determined and recorded. Those data correspond to the leaf
position and inclination. Detailed measurements of LAnD with 3D digitizer made it possible to
enhance leaf movement with sun with a precision of £15° for azimuth and 4-5° for elevation angle
[105] (Figure 10). This device is well designed to obtain the LAnD for a small amount of leaves;
carrying out a measurement campaign on an entire fruit tree canopy, such as a pear or an apple

tree, becomes tedious and time-consuming though.

TLS can be used to estimate LAnD. For instance, Hosoi et al. [106], used a TLS based on
trigonometry technology (Pulsec TDS-130L) to extract leaves inclination in order to get the LAnD
of a Japanese Zelkova tree. Trigonometric TLS are tools designed to provide precise range values.
They emit a scan line on a surface. A camera placed in a slightly different position records the line
deformation to estimate range data. Those scanners have a very good precision at short range. Yet

they are generally light sensitive and cannot measure surfaces at large distance. Hosoi et al. se-
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lected 200 leaves manually within their TLS point cloud and made a least square regression plane
fitting in order to get the leaf surface normal orientation relatively to the vertical. Because the high
precision tools they used, they got realistic LAnD. Béland et al. [23] used the same method than
Hosoi et al. with a time-of-flight TLS ILRIS-3D.

Even if a priori assumption on leaves inclination LAnD are sufficient for light interception study
[102], it is necessary to carry measurements at leaf scale in order to assess more detailed distribu-
tion though, especially when more physiological process are studied, e.g., leaf movement [105].
Despite 3D digitizer is an adequate tool for inclination estimation of small canopy leaves , it cannot
be used for large and dense canopies. Even if TLS were used to extract detailed LAnD [23], it is
important to notice that those LAnD estimation with phase-shift and time-of-flight TLS has not
been validated.
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Figure 10: LAnD distribution (azimuth and elevation) at varying time in day (morning, noon,
afternoon) (from [105]).

2.2.3 Voxelized space of leaf area density

Light interception by canopy can also be studied using ray tracing simulation which simulate the
sun light rays and their reflection on objects [107]. Ray tracing models have been used for radiative
transfer studies to understand, for instance, the light exchange between the leaves due to multiple-
scattering [108], or the radiative transfer model sensitivity to geometrical variation of the canopy
(e.g. leaf inclination [109]).

Ray tracing models need 3D representation of plants to simulate realistic light penetration in plants.
The use of voxels, i.e. unit cube of the 3D space, is an interesting compromise between excessive
3D rendering and a very general 3D representation. Each voxel is associated with a value repre-
senting the plant geometric values in space. For instance, the LAD can be attributed to each voxels
of a voxelized space [23]. LAD is a vegetation descriptor which provides the quantity of leaf area
per volume [109], i.e. it is a spatial distribution of LAI. it is a spatial distribution of LAI. Point-
quadrat measurements can also be used to build a 3D representation with voxelized LAD. This
method consists on passing a long and thin needle with an orientation 6 through the vegetation
(Figure 11-2) ) to count the number of plant material touched by the needle tip, i.e. it provides a

contact frequency Fg. The measurement of this contact frequency is repeated along a specific grid,
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i.e. the voxel grid. The output of this measurement is a 3D grid of voxels together with a contact
frequency with vegetative materials from which the LAD per voxel v can be estimated with a direct

radiation model [110]: ©
[}

0K

with Fg the contact frequency measured at inclination 8 and Ky the light extinction coefficient.

LAD(v)

(2.3)

Because it is a manual measurement, point-quadrat method become rapidly tedious and time con-

suming.

As for LAI estimation, this LAD estimation does not necessarily take leaf inclination into account.
Yet LAnD can be integrated in the LAD calculation if known [23]:
Fy

LAD(v) = —G(G,BL)’

(2.4)
where G is the so-called G-function derived from LAnD and that provides the mean projection of

a unit foliage area of mean inclination 0y, in a particular direction of interest 0.

TLS data can be used to estimate LAD with equation 2.4. For instance, Béland et al. [23] scanned
six Shea trees with a TLS ILRIS-3D to build a voxelized space with LAD. They estimated LAnD
with Hosoi et al.’s method [106] and used this LAnD to compute LAD on voxels of 10, 30 and
50 cm from Equation 2.4 (see figure 11-3). In addition, they used distance-corrected intensity to
segment the point cloud scan into woody and foliage parts to avoid woody sections in their LAD
computation. Finally, they carried out several scans around the trees to limit occlusion effects due

to foliage.

Signal occlusion while using TLS remains the main limiting factor for the construction of 3D vox-
elized space filled with LAD. Several studies [65, 111, 112] showed that occlusion leads to LAD
under-estimated which is related to foliage clumping. They proposed two strategies to account
for this occlusion for the estimation of LAD. As a first strategy, Béland et al. [23] used Coté et
al.’s [22] method to measure the light availability within the canopy and to use a light transmission
model to indirectly simulate the local LAD. The analysis of a VLAD estimation from the two tech-
niques, i.e., with and without the completion of LAD with light model, showed that the use of light
recording within the canopy complete properly their LAD extraction from TLS: TLS position rel-
atively to the trees make the upper and inner part of the canopy less sampled and they were able to
complete the missing data with local LAD estimation from light transmission. This completion is
especially efficient for large canopy with lots of clumping. As a second strategy, Béland et al. [17]
defined an optimal voxel size that should: (1) be small enough to take into account foliage clump-
ing, (2) be large enough such that associated LAD is coherent with light extinction effect, and (3)
such that occluded voxels are detectable. In this second study, they made TLS measurements on
two different tree species (Oak and Shea) that have leaves with similar shape but of different size

and found an optimal voxel size of 10 times the leaf size.

TLS scan segmentation of foliage versus woody parts is required to correctly build 3D voxelized

space filled with only LAD. Béland et al. [17, 23] made the intensity segmentation approach
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effective. Yet the intensity correction is a critical step and they suggested that this segmentation

most likely always involve a level of misclassification between wood and leaves components [23].

Béland et al. chose to integrate LAnD derived from time-of-flight TLS measurement [23]. Yet their
TLS is of lower resolution than TLS based on trigonometric used in [106] and their estimation of
LAnD is consequently of lower precision. They did not proceed to their LAnD validation but
suggested that the error induced by the point cloud quality is not large enough to affect their result.
Still LAnD stays an important information allowing a link between plant structural attributes and

their physiology.

Figure 11: (1) Point-quadrat method for LAD measurements. (2) Voxel (color: LAD) extracted
Jrom TLS measurement (from [113]).

2.2.4 Concluding remarks

Manual measurements of those distributions can be done on small canopy but they are tedious and
time-consuming for large and complex canopies. Instead TLS devices are suitable for accurate and
extended estimate of plant VLAD, LAnD and voxels representation of leaves density. Yet three
main issues need to be taken into account for exact estimate of VLAD and LAD with TLS devices:

(1) signal occlusion, (i1) segmentation of wood and foliage from the point cloud, and (iii) outliers.

(1) Occlusion of the laser beam is the main factor reducing the accuracy of VLAD and
LAD estimation from TLS devices. Even when several scans from different position
are done to reduce occlusion from a more comprehensive sampling of the plant [23,
62], large portions of the canopy can be missing in the point cloud. Signal occlusion
therefore leads to under-estimation. Fortunately some strategies exist to compensate
this problem. For example, C6té et al. [22] used a light penetration model to complete
the point cloud data where foliage clumping was too intense. Béland et al. [17] also
suggested to use an optimal voxel size that accounts for leaf size and the clumping
effect.

(i1) Leaf material extraction is possible only if woody part are removed. TLS intensity
showed great potential in woody material detection in the case of 3D voxelized space
of LAD [17]. Still, the analysis of the TLS data should be improved in order to

separate the foliage entirely from the woody section.
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(ii1) Outlier points showed to affect the quality of the VPAD estimation [30]. Optimal scan
configuration can be chosen to reduce their impact on the estimation. Still, outliers
stays a side factors in VPAD and LAD estimation.

LAnD stays a difficult distribution to assess exhaustively. Even if it is a second factor for LAD
computation, it is a great descriptor in order to study plant reaction to environment, such as leaves
movement due to sun position [105] (Figure 11-4). Other TLS technologies have been used to
extract correctly shapes and leaves orientation [20], yet time-of-flight and phase-shift TLS have

not been validated for in situ measurement of LAnD.

Light interception studies with VLAD, LAD and LAnD are more detailed (e.g. [108, 102, 91])
and consequently more convenient than LAI to assess biotic and abiotic stresses with radiative
transfer studies. Compared to models that consider plant canopies as a single entity, distributions
of the various leaves geometries extend radiative transfer study to a way more accurate description
of the plant relation with sunlight. In addition, researchers were able to study the influence of
leaves orientation in the LAD computation [102], the nested radiosity within canopies[108], the
up-scaling of tree transpiration [33], and the leaves orientation changes with sun position with
exhaustive measurement of LAnD [105]. Other leaf geometry distribution such as the silhouette to
area ratio (STAR) mentioned in Section 1.1, provided understandable indicator for light penetration
to improve tree training and pruning techniques [2]. However, those leaf geometry distributions
lack of details when it is necessary to understand the plant functioning, e.g., nutriments transport
and their bio-availability to fruits. The knowledge of the plant structure, such as the connectivity

of its organs and their position, is necessary.

2.3 Virtual plants

Virtual plants are computer models of plants that recreate plants structure and which simulate
their growth, functioning and interaction with its environment (Figure 12). The representation
of plant architecture is one of the main aspects of a virtual plant. Plant architecture is defined
by any individual description based on decomposition of the plant into components, specifying
their biological type and/or their geometries (shape, location, orientation) and/or the way these

components are physically related one with other, i.e., their topology [114].

Virtual plants are an essential component of virtual laboratories [115], which are computational
platforms that allow the management of several models such as the virtual plants itself, its physi-
ological mechanisms, weather simulation, etc. For instance, those models can be used to simulate
nutriments and water transport in the plant [6], or the plant response to gravitational forces [9]. In
addition, their visual representation makes the virtual plants usable for ray tracing simulation [10].
Generally, virtual plants representation uses the notions discussed in the two previous sections. Yet
the framework of virtual plants use is different: they are used for studies on growth dynamic and
plant physiology whereas descriptors such as the LAI and LAD rather enhance the plant occupa-

tion in space and the light penetration in its canopy. In the following sections, we will give a short
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overview on the procedures required to produce virtual plants and providing a realistic estimate of

plant architecture.
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Figure 12: Virtual plants in its virtual laboratory (FSPM: Functionnal Structural Plant Model-
ing). From [116]

2.3.1 Canopy volume

Canopy volume is a global representation of plant [114] that considers the plant as a single entity,
i.e., its crown shape. For instance, crown can be modeled with parametric shapes [117, 107] or

with the convex hull of the tree branching system [118] (Figure 13-1).

Crown geometric representation has been used for radiative transfer [117] but also to define allo-
metric relationship with the diameter at breast height [118]. An interesting application of canopy
volume measurement is the optimization of pesticide application. Palacin et al. [4] proposed to
use a MLS (polar LIDAR SICK LMS200 on a tractor) to estimate local canopy volume of orchard
trees in order to adapt in real-time phytosanitary application. Their polar LiDAR provides canopy
profile at a given tractor position. They estimated a volume section of the canopy with the travel-
ing of their MLS and along the two sides of the canopy [32, 16] (Figure 13-2). Their results led
to a correlation coefficient of 0.97 between the TLS estimated and the manually measured crown
volume of Conference pear trees. In the same framework, Palleja et al. [119] showed that volume
measurement with MLS are: (1) linearly dependent on speed error of the MLS, (2) little depen-
dent on the LiDAR height, (3) highly sensitive to MLS distance to canopy error and to (4) LiDAR
beam alignment with travel path. Real-time adaptation of phytosanitary application requires fast

measurement tools. Manual measurements are not applicable to this purpose. Conversely, re-
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mote measurement tools such as MLS can be considered as a potential tool to adapt phytosanitary

application in function of the canopy volume and shape.

Volume shape measurement of canopy is linked to the 3D distribution variables described in the
two last sections. Similarly, this descriptor is limited to a rough description of the plant and cannot
help understanding fine level plant physiology. Still, it is possible to investigate how the crown
is composed through the size and number of its components instead of representing it as a single
component. Virtual plants need that fine scale description with the distribution of components at

organ scale and with their topology and geometry.
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Figure 13: (1) Parametric and hull-based canopy model (from [114]). (2) Measurement of canopy
volume with MLS (from [16]).

2.3.2 Plant architecture and topology

Plant architecture topology refers to the representation of the connectedness of the branching sys-
tem. The measurement of plant architecture requires rigorous methods to avoid missed objects and
repetition of branches measurement [120]. In general, those measurements start from the tree root,

and goes from nodes to nodes to reach each of the branching point and with the following protocol:

1. The inter-nodes between the root and the first branch is measured.

2. Then the inter-nodes between the branching point of this first branch and a first child branch

is measured.
3. Similarly, this second branch is measured along consecutive inter-nodes and branching points.
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4. Once every child branches of the first branch are measured, the second inter-nodes set of the

trunk, i.e., defined by its first and second branch, is measured.

5. Finally, the measurement process is continued on the second branch of the trunk.

Several type of branching system encoding can be defined with this type of measurement protocol
[114]. For instance, each node can be represented by a character and the entire tree by a word
that is the concatenation of the characters. The connectedness of two nodes on the same branch is
represented by the concatenation of the two corresponding characters. The childhood of a branch is
represented with an opening and closing bracket containing the word representing the branch and
its children. Most of those encoding lead to a graph representations where tree branching points

are represented by the graph nodes and their direct connection by the graph edges (Figure 14).

Geometrical information can be attached to the encoding of a plant architecture. For instance,
inter-node length and branches inclination can be measured manually with a ruler and a pro-
tractor [121]. Yet those measurements are tedious and time-consuming because the complexity
of the object. TLS have been showed to be more adequate for those architecture measurements
[122, 123, 124, 125, 22]. For instance, Preuksarkarn [122] used two data set produced by a TLS
Leica Geosystems HDS series on a Cherry and Lime tree in order to extract their architectures
topology and geometry. They used a skeleton model to define the tree architecture. As for manual
measurement, the construction was propagated from the root and along the branching system of
the plant. Point clouds cluster were used as attractor: new skeleton section was built from the
local point cloud and progress towards the point cloud cluster with the largest density. In the case
of multiple branching, the point cloud has several clusters and each branch can be detected with
fine tuning of the model parameters and several skeleton sections are produced to represent the
corresponding branches junction. Finally, skeleton representing the scanned tree was encoded and
interpreted as a graph. Branches dimensions were computed from the point cloud and associated
with the skeleton sections. Preuksarkarn managed to produce realistic plant architecture with this
method. Yet those type of architecture computations from TLS data should be augmented to take
into account occlusion [122, 125], branches junction geometry [122, 123], and uncertainties of the

skeleton construction inherent of the complexity of the object [122].

Pattern repetitions in the plant architecture are observable with the analysis of its encoding. This
self-similarity of plants have been the basis of L-system [126]. L-system are formal grammar,
1.e., a set of transforming rule that are applied on a characters chain. As for the representation of
virtual architecture, L-system characters represent the components of a virtual plants. An initial
character chain, called axiom, represent the initial state of the plant. The grammar rule is applied
on this chain and to make the L-system simulating the plants growth [8]. Plants are not necessarily
an automatic repetition of a pattern though. L-system are adequate to represent plants growth in
optimal condition, but it lacks of representing external events (diseases, pruning, competition).
Still plants keep local similarity and patterns can be observed and be factorized [127]. Moreover,

the differences between measured architecture and a modeled architecture, e.g., a L-system, can

57



be studied with proper graph theory [128, 122]. Multi-scale tree graph (or MTG) are composite

graph that provides plants architecture description at different scales [114].

Plant architecture topology is an important information in biological studies. It has been used to
study nutriment transport [6] and gravity effect on the plant shape [9]. Moreover this architecture
representation can be augmented with organ positions on the branches: those positions can be
either measured [18], or taken into account in a L-system development with proper encoding [129],

or with the integration of statistics on those organs apparition [130].
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Figure 14: (1) Plant architecture measurement. (2) Multi-scale tree graphic. (3) Encoding of the
plant architecture.
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Figure 15: Tree architecture reconstruction from TLS data (from [122])
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2.3.3 Leaf measurements

3D shape measurements of organs are becoming more common since the spread of 3D measure-
ment tools such as stereo camera and LiDAR devices. Fruits, flowers, branches and leaves can be
rapidly measured, but with a quality depending on the measurement configuration. In the follow-
ing, we will investigate those measurements configuration, results and issues, in the case of leaves

measurements.

Leaves can be measured either when picked [71, 131, 132], or included in a canopy that can be
simple, i.e., made up of a single stem [133, 134, 135, 136], or complex [137, 138, 20]. In parallel,
several types of measurements tools can be used: flatbed scanner [139, 140], digitizer [131, 132],
stereoscopic photography [136, 134, 133, 137, 138], TLS based on trigonometry technology [71,
20] or phase-shift and time-of-flight TLS [18, 47].

The measurement set up (scene complexity and measurement devices) affects the type of analysis
and issues. In general, once the 3D information of the leaves are available, e.g. when they are
segmented from a point cloud, either virtual leaf surfaces is fitted [131, 132], or a mesh is generated
[136, 20].

Picked leaf measurements are generally done with a flatbed scanner [139, 140, 141] (Figure 16-
1). Developed methods to extract leaves geometry depends on the shape type of the leaves (e.g.,
number of lobes, simple shape versus with compounds) and the produced leaf measurements are
used to defined statistical distribution of leaf area and dimension (width, length). In most cases,
validation of those outputs is good: for instance, Bylesjo et al. [140] obtained a correlation coef-
ficient larger than 0.99 with the measurement of 500 Populus tremula leaves. Yet flatbed scanner
measurement is not adapted to reconstruct 3D shape of leaves, especially if those latest have com-
plex shape. Some studies used TLS to investigate their potential of 3D shape reconstruction of
picked leaves [47, 131, 71, 42] (Figure 16-2) and proved that leaves inclination and dimensions
can be well recovered. For instance, Chambelland et al. [18] used TLS based on trigonometry
(Konica Minolta VIVID 910 NCLSD) to measure picked young beech flat leaves. Their picked
leaves were placed perpendicularly to the TLS laser beam and at a short distance from its aperture.

Their reconstruction allowed them to prove leaf shape variation as a function of light availability.

Because their portability, TLS can be used for non-picked leaf geometry extraction. Yet leaves
segmentation is a main pre-process for measurements of leaves when lying within a canopy. Leaves
segmentation can either require an a priori number of leaves [136, 142] or carried out with user
interaction [138, 20]. Occlusion is an additional issue as there is no control on the leaf position
and inclination [19]: it leads to an incomplete point cloud that affects the quality of the estimation
of leaves geometry. In other words, canopy complexity plays an important role in the leaves

measurement.

If the leaves are in a simple canopy, e.g. plant composed of a single stem and of about ten leaves,
it is possible to place the plant in a pot that is on a rotating platform and to use stereoscopic

photography [133, 134, 135, 136] (Figure 17). In this case, sampling is exhaustive, occlusion is
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reduced and leaf segmentation can be handled because of the small amount of leaves. Validation of
the leaves dimensions is generally good. For instance, Paproki et al. [136] obtained a correlation
coefficient larger than 0.88 for the length and width extraction of a young Gossypium hirsutum,

Santos et al. [133] get a mean absolute percent error of 4.3% on mint leaves.

In the case of complex and large canopy, it is generally difficult to put the plant on a rotating
platform and thus to control the amount of point acquisition. Leaf contact, distance or occlusion
can lead to under-estimation of foliage components [19, 134]. In general, correct leaf segmentation
requires user intervention [20, 138]. In the case of single stem, leaf area, dimension and inclination
estimation are good if well segmented [20]. Estimations can hardly be validated on the entire
canopy though. To get correct leaves representations (e.g. low noise, no outliers), leaves geometry
extraction from complex canopy are either computed from stereoscopic photography [138] or from
TLS based on trigonometry [20]. Phase-shift and time-of-flight measurement of leaves geometry

in complex canopy are missing in the literature.

Stereoscopic photography and TLS have been showed to be efficient in order to extract either
picked or non-picked leaves geometry. However segmentation and occlusion are major issues in
the case of non-picked leaves. Generally, leaf segmentation needs a priori knowledge (number of
leaves, user directive). Still, those remote measurement tools are adapted to measure leaves geom-
etry, especially for high throughput measurement of simple canopies [135]. Because their conve-
niences, phase-shift and time-of-flight TLS are more suitable for outdoor measurements compared
to stereographic photography and TLS based on trigonometry. Yet they have not been used to

extract leaf geometry in complex and in situ canopy.
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Figure 16: (1) Flatbed scan of a leaves and the leaves shape extraction (from [139]). (2) TLS scan
and reconstructed shape of a picked leaf (from [18]).

2.3.4 Concluding remarks

Virtual plants are models that represent plant system at a given scale and that aim to study plant
physiology. Virtual plants extend the descriptor mentioned in Sections 2.1 and 2.2 to finer level
geometry descriptors of plants. In addition to their application to radiative transfer study [117],

virtual plants allow study on plant functioning and interaction with its environment, such as the
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Figure 17: Segmentation pipeline of leaves from stereoscopic photography of a plant placed on a
rotating platform (from [136]). Application to phenotyping.

study of nutriment transport in plant [6] or the gravity impact on the architecture [9]. Another
interesting and potential application of virtual plants is the real-time adaption of phytosanitary
application with MLS measurements. Still we have sought to look for plant description at organ
scale in order to make an extensive study of its physiology.

Organ geometry and the plant architecture acquisition can lead to a good description of plants.
They allow horticulturists to study their plant with the type of method proposed by Willaume et
al. [2] in order to improve orchards yields. In addition, they have the potential to make scientists

understanding plant diseases and stresses propagation and effect on organs geometry.

TLS showed great potential for architecture extraction despite issues caused by occlusion and
complexity of branching. TLS have also been showed to be adapted for picked leaves geometry
extraction. In the case of unpicked leaves, geometry extraction from other type of 3D scan (e.g.,
stereoscopic photography, trigonometry-based TLS) provides good results but the developed seg-
mentation methods, which are a main step for leaves extraction from point cloud, need a priori
knowledge or user intervention. Phase-shift and time-of-flight TLS have not been used to extract
geometry of leaves in the case of complex canopy yet. In the next section we will investigate the
reason why those TLS have not been used yet.

3 TLS quality factors for pear tree leaves measurements

Plant geometry is important information useful for biological and agronomic studies. We saw
that depending on the scale of the study, either a global structural variable such as the LAI, or
complementary canopy descriptors such as LAnD and LAD are necessary. Analysis of TLS point
cloud allow estimating 3D variables at global and fine scale more accurately and extensively as
they provide similar or better results than traditional measurements. Signal occlusion however is
the stronger limitations for improving results accuracy. Yet the possibility to estimate structural
variables at a fine resolution brings new opportunities in the understanding of the plants physiology
and consequently for their management (tree training, disease detection). Estimation of precise

geometrical plant descriptors are necessary but not always easily measurable for complex canopy.
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Fruit tree orchards are composed of several rows of tree spaced of few meters when their training
uses an artificial structures. TLS are generally placed between two consecutive rows (i.e., at few
decimeters from the canopy) in order to scan them. Closest parts of the canopy (< 1.50 meter) are
magnified in the TLS photograph (Figure 18-a), and the farther parts of the canopy (> 1.50 meter)
are scanned in a tighter perspective. This tighter view favors situations of canopy self-occlusion
(Figure 18-f) and decreases point cloud density due to distance (Figure 18-b). In comparison, a
scan set up with a TLS placed at a few meters from the vegetation will produce a more homoge-
neous density scan of the tree. In general, the configuration of tree orchards makes it difficult to

obtain homogeneous scan density.

Pear tree leaves have complex shape and their reflectance depend on their maturing stage. Leaves
are generally small (few centimeters) and numerous (few hundreds). The number of leaf edge in
the scan increases the occurrence of outliers (Figure 18-d). Reflectance and TLS beam incidence
angle have a substantial impact on the point cloud quality. In Figure 18-c and -e, those impact are

illustrated with simple objects, i.e., with a sphere and radiometric targets, respectively.

In conclusion, the scans of orchard trees are of heterogeneous density and quality that leads to
the presence of outlier points. As we will see, those outlier points mislead surface reconstruction.
Outlier deletion methods have been proposed to process TLS point cloud (see Appendix I), but
because the size of canopy leaves, we can expect that outlier deletion will not be adequate for plant
geometry extraction at organ scale. In this third section, we will make a short investigation on
the TLS outliers and leaves scan ROP (see Chapter 1, Section 2.5) for pear trees scanned at range
between one to five meters. That will illustrate impact of outlier points on plant organ geometry

extraction in addition of the impact of their deletion.

3.1 Material and methods
3.1.1 Pear tree orchards and leaves

A row of Conference pear tree orchards have been scanned in August 20th 2010, in Bierbeek,
Belgium. This orchard is composed of row of trees of 2.50-3 m high and with a distance of 3.4 m
from each other. The trees were trained in a V-shaped system (see Section 1.1). Because summer
time, several long branching shoot were presents at the bottom and the top of the canopy in addition

to the principal branches, leaves were mature and the fruits were at half of their growth.

3.1.2 TLS

We scanned the trees with a hemispherical TLS (FARO LS880) that uses phase-shift technology.
It has a field of view of 320°x360°, a beam aperture of 3 mm and a beam divergence of 0.24 mrad
(0.014°). The sensor field of view is of 3 mrad (0.17°) and the zenithal and azimuthal resolutions
are both of 0.31 mrad (0.018°). This device has a measurement range of 0.6 to 76 m with a
distance error of £3 mm at 25 m and an accuracy of 2.6 mm (resp. 5.2 mm) for material with 90%

reflectance (resp. 10%) at 10 m. This TLS provided both distance and intensity measurement. The
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Figure 18: (a) Scan view of a pear tree orchard row. (b) Side view of the row point cloud. (c)
Registration sphere: i. Sphere selection; ii. Side, front, and top views of the point cloud
and the sphere model (mesh); iii. Section. (d) Canopy point cloud and outliers. Zoom
on a leaf edge. (e) Radiometric target (22% and 99% reflectance) and point cloud
section. (f) Canopy section. (g) Wind effect.
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scanner was placed in the middle of the orchard inter-row. The closest leaves were at a distance of
approximately 1m and it was possible to visually recognize them up to a distance of approximately

10m. The measurements were carried out during a windless day to avoid fuzzy point cloud (Figure
18-g).

3.1.3 Leaves

Leaves had an average length of 6 cm along the principal vein axis and an half-width of 2.5 cm
(Figure 19-1). As we can see on Figure 19-2, the footprint diameter covered almost entirely the
half leaves portions and thus TLS has a higher chance to record outlier points (see Chapter 1,
Section 2.3).

Nine leaves of the TLS point cloud were selected manually with the software FARO Scene®
(Figure 19-3). Those leaves were at an approximate distance of 1.5, 3 and 5 meters from the TLS
aperture and had a length of approximately 9 cm. In Figure 19-4, the point cloud representing one

of the nine leaves is represented. Outliers were present along its edge (in red).

The point cloud was stored in a .xyz file for each of the nine leaves selected. Each of those point
clouds had outliers, and the number of outliers increased with the distance to the scanner. We used
the software MeshLab to erase manually the outliers and produce a second .xyz file containing a
point cloud free of outliers. We generated a rough and a fine reconstruction of those leaf surfaces
with a Marching Cube algorithm [143] and for both of the point cloud, i.e. with and without
outliers. In addition, the number of points for the original point cloud and for the one without

outliers, were computed to generate the ROP:

#outli
ROp = TOMTETS 3.1)
#points

Finally, a small sample of the point cloud is extracted from each leaves point cloud to compute

the distance precision and the noise/signal ratio (denoted RNS), defined as the ratio between the

computed precision and the size of the leaves, i.e.:

precision

RNS = (3.2)

leaf size’

3.2 Results and discussion

Table 1 shows the quality factor of the leaves point cloud at 1.5, 3 and 9 m (precision, RNS,
number of points, number of outliers and ROP). Precision varies between 5.5 and 6.7 mm, with
corresponding RNS value of 5% and 8%, respectively. The number of points per leaves decreases
with distance. Consequently, ROP increases with distance from 8% at 1.5 m to 33% at 5 m. Those
figures show that precision is not the main issue for leaves of this size ( ~ 9 cm length). Yet in the
case of smaller leaves, RNS can rapidly increase. ROP is shown to be more problematic though,
especially for the furthest leaves. Similarly than RNS, ROP increase when leaf size decreases.

The nine leaves selected were larger than the average ( ~ 6 cm length) thus we can expect more
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Figure 19: (1) Leaf length and half width. (2) Beam footprint maximal diameter Ad,,y in func-
tion of the incidence angle for different distance (1, 2.16, 5 and 10 m). Dotted lines:
average with standard deviation of mature pear tree leaf length and half width. (3)
Selection of nine leaves at distance of approximately 1.5, 3 and 5 meters from the TLS
aperture. (4) Leaf point cloud with inliers (gray) and outliers (red): (i) top view; (ii)
side view; and (iii) lateral view.

problematic cases for the quality factors of the point cloud representing the other pear tree leaves.
In other words, outlier points process should rather make their correction than their deletion in

order to keep a maximum information on leaves geometry.

Figure 20 shows three leaves point cloud (at 1.5, 3 and 5 m), in addition to their rough and fine
mesh reconstruction. In Figure 20-1, the outliers have not been removed. In this figure, we see that
there are points along leaves edge which have no real impact on the leaf point cloud shape (boxed
in blue) whereas other ones have a great impact on the shape of their mesh reconstruction (boxed
in red). We call the first ones the subtle outliers and the second ones the true outliers. In Figure
20-2, the true outliers have been manually deleted. The constructed meshes were more realistic
especially with fine parameters. As it has been discussed in Chapter 1, Section 2.3, the detection

of outliers is difficult when the incidence angle between the TLS beam and the surface is large.
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The selection of true versus subtle outlier points in Figure 20 illustrates this case.

We have proved that ROP is the main issue for leaves reconstruction especially for small and/or far
leaves. It might also bring issues for their segmentation. Subtle and true outliers deletion for close
leaves can decrease a little the shape reconstruction quality for close and large leaves. It would
make their reconstruction significantly wrong for small and/or far leaves though. In addition, the
selection of subtle versus true can be hardly implemented without any other knowledge or user
intervention. In other words, the safer strategy to take outliers into account would be rather to

correct them.

| Leaves length: ~9cm [ 1.5m | 3m | 5m |

Precision (mm) 5.5 6.7 5.7
RNS 5% 8% | 5%
Number of points 5560 | 1260 | 350
Number of outliers 760 | 300 | 110
ROP 8% | 18% | 33%

Table 1: Quality factors of nine leaves point cloud. Each value represents the average value for
three leaves at 1.5, 3 and 5 meters.

4 Conclusion

Physiological study of plant requires geometric models of plant. Those models should provide
organ and architecture description in order to study the plant physiology in details, such as the
training and pruning impact on fruit production, or the biotic and abiotic stresses effects and spread
on organs. Until today, several descriptors of plant canopy have been proposed. Those models
can be expressed either at the scale of a single plant, with distributive function or at a fine scale
compatible with the leaves compatible to create virtual plants. We have seen that single plant and
distributive models are generally not adequate for such detailed study even if they fit to more global

study such as a radiative transfer study [91].

TLS have been showed to be adequate for most of those descriptors extraction. Occlusion is
the main issue in most cases. Yet scientists proposed smart strategies to complete TLS scans,
such as the integration of radiometric measurement within canopy clusters [23]. Leaves geometry
extraction has been done with 3D scanner and stereoscopic photography on picked leaves (e.g.,
[18]) but also on unpicked leaves within simple canopy (e.g., [134]). In the case of complex

canopy, phase-shift and time-of-flight TLS require more work to improve method development.

In Section 3, we have investigated the quality factors of the point cloud representing nine large
leaves. ROP has been shown to be the main issue for their reconstruction and segmentation. ROP
increased with both increasing distance and decreasing leaf size. It is not possible to delete outliers
in order to reconstruct leaves and their selection is complicated. Correction of outlier points is a

more adapted strategy. Yet the procedures found in the literature to deal with outliers from a point
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Figure 20: Point cloud, rough reconstruction, and fine reconstruction of three leaves at 1.5 m, 3
m, and 5 m: (1) with outliers, and (2) without true outliers. Blue box: subtle outliers.
Red dashed box: true outliers. Blue arrow: TLS beam direction.
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cloud involve primarily point suppression. In Chapter 1, we have seen that intensity can be used
in order to detect outlier points. This thesis investigated in the next chapters how intensity values

from TLS returns can be used to develop a correction method for outlier points.
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Part 11

Algorithm: Shape-From-Shading
propagation along isophote region for TLS
data
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Chapter 3

Shape-From-Shading: state-of-art

In photographic processes, light interacts with objects placed in a scene before it is captured by
a light-sensitive surface (a sensor, a photographic film, etc.). The various interactions between
light and objects create a gradient of intensities within the photograph based on the object’s ma-
terial, orientations and shapes. Those intensities are represented by an intensity gradient on the
photograph which gives us the perception of a shape [144]. As a result, to each 3D shape in the
scene will correspond an intensity pattern in the photograph. Conversely, one can ask whether
it is possible to reconstruct the 3D shape corresponding to a given 2D intensity picture and how.
This issue is known as the Shape-From-Shading (SFS) problem and, beginning in the 50’s, several

mathematical techniques have been developed to address this question.

The first attempts of SFS reconstruction have been done within the framework of planetary topog-
raphy. In 1951, the Dutch astronomer Van Diggelen tried to retrieve the height of the Moon’s hills
near the terminator (i.e. the limit between shadowed and lit area) from photographs [145]. His
method integrated height variation with recorded intensity, taking into account the spherical shape
of the Moon. Van Diggelen’s method was formalized and generalized to the complete photo of
the Moon by Rindfleisch in 1965 [146]. Rindfleisch gave a differential expression of the height

variation as a function of the intensity variation and along a given path on the picture.

In 1970, Horn gave a general method for SES reconstruction [147]. He considered a scene with a
given light source direction, a camera position, and he supposed that the object’s optical properties
were known at every point. He remarked that singular points (i.e. with maximal intensity) corre-
sponded to surface normal aligned with light source direction. Solving a system of five equations,
he was able to reconstruct the surface shape by propagating the reconstruction from the normal of

those singular points along characteristic curves.

Since Horn’s publication, the SFS theory became part of computer vision field and started to be
applied: (i) in imagery (scanning electron microscope imagery [148], endoscopic and intraoral im-
agery [149, 150, 151, 152]); (ii) for 3D reconstruction improvement (differential light absorption
technique improvement [153] and stereoscopy [154]); and (iii) to photometric stereo [155], aug-
mented reality [156] and radar clinometry [157]. At the same time, scientists became interested
by the proof of existence and uniqueness of the SFS issue [158, 159, 160, 161, 162]. Since the
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reference book of Horn and Brook has been published in 1989 [163], two kinds of techniques have
clearly appeared: (i) the global (GLOB-SFS) and (ii) the propagation methods (PROP-SES).

GLOB-SFS methods use the surface photograph as a matrix of intensity values (the pixels) and
aims to recover by a global analysis the height corresponding to those pixels. Some initial 3D
values of the matrix are provided (boundary conditions, initial surface) in addition to assumptions
on the height function (continuity, parametric). Pixels height is recovered through an iterative

optimization, i.e. a global criterion is minimized (Figure 1-2).

As a generalization of Van Diggelen’s method, the PROP-SFS methods propagate the surface
reconstruction from an initial 3D region (points, curves) and along specific propagation curves.

Intensity variation is integrated along those curves to compute neighboring regions (Figure 1-3).

In this chapter we will review the physical concepts that are used in the SFS framework to model
material appearance and object picturing when the camera is aligned with the direction of the light
source (i.e. when the camera is in the hotspot direction). We will see that the intensity is directly
related to the incident light angle. We will introduce the reader with the basic conclusions provided
by the proofs of existence and uniqueness of SFS reconstruction and give him a short introduction
to traditional GLOB-SFS and PROP-SFS methods. Finally, we will focus on the type of SFS
method that we will develop for the 3D reconstruction of surfaces from LiDAR intensity and point

cloud.

1) 2)

Time

Figure 1: GLOB-SFS vs PROP-SFS. (1) We want to reconstruct the vase from its picture. (2)
GLOB-SFS: each pixel is processed at the same time in a matrix. The reconstructed
surface (blue) is the result of a converging process (red). (3) PROP-SFS: some areas,
i.e. the propagation seeds, are initiated with 3D data (in red). The reconstruction is
propagated (black arrows) along specific curves (blue dashed lines).

1 Image intensities modeling

1.1 Scene geometry

Even if SFS methods have been developed for surfaces containing sharp edges [164], such as cubes

or pyramids, common SFS methods consider a single object with a smooth surface § of R3, and
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(e1,e3,e3) the Cartesian coordinate system of R3 (figure 2). Let us introduce the basic notation

used in this chapter and in the rest of this thesis.

Let Q be an open and connected subset of R? and the surface .S be defined by its height function

on Q:
h: Q - R

x = hx). (-

Let x := (x1,x2) be a point of Q. We denote by X the point on § which corresponds to x and
parametrically defined by:
X:xl.el+x2.ez+h(x1,x2).e3. (1.2)

We suppose that: (i) & induces a bijection between Q and §; (ii) S is bounded, connected, and
C™-continuous (with m > 3); and (iii) its boundary 0. is of dimension 1, C" continuous (m' >2)
and defined such that oh : 89 — dS is the extension by continuity of /# on the boundary of Q.
We define p := a ,q = and recall that Vi = (p,q). With these notations, for any x € Q the

upward-oriented surface normal Ny at X is defined as:

1 -p
= | = . (1.3)
T+ V()P 1q
ligth
camera ‘E’
-
Ny, S

Photogrﬁl

\ h(X) \7/ Sham\from Shading
‘X
eM

Figure 2: We consider a scene with an object surface S, a light source, and a camera in the
hotspot direction. They are placed at infinity relatively to the object. The camera creates
the intensity picture. Shape-from-Shading problem is to recover the object shape from
this picture, i.e. for every x of the surface projection, to recover h(x).

1.2 Modeling light radiance and irradiance

The photograph of an object surface can be decomposed into two consecutive processes. The light

is first emitted by a source and reaches the object surface; then, the light is reflected (and thus
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re-emitted) and reaches the camera sensor. Those two steps can be seen as two sides of a radiative
process: a source (the light source or the light back-scattered by the surface) is radiating energy
on a surface (the object surface or the camera sensor). This latest surface is irradiated. Let us first

consider how the process of radiance and irradiance is usually formalized [165].

A scene is composed of objects, one or several light sources, and a camera. Let us consider a point
X on the object surface and its normal N to the surface, which is oriented upward. N, together with
two perpendicular directions in the surface tangent plane at X, define a normal-oriented coordinate
system. The incident radiance L; is the flux of light energy falling at this point within a given
solid angle relatively to N (Figure 3-1); it is expressed in watts per steradian per square meter
(W.sr~1.m=2). Incident radiance is a function of spherical directions 8; and ¢;, respectively, the
azimuth and zenith of the incident light source direction relatively to the surface normal. The
incident irradiance E; is the density of energy received on X and it is expressed in watts per square
meter (W.m?) and we denote by dE; := L;.cos0;.d®; the incident irradiance contributed by the
portion of the source found within the solid angle dw; in the direction (8;,¢;) (Figure 3-2), i.e.
represented by L;, and E; is the integration of the light energy contributed by every sources found
within each solid angles of the hemisphere (Figure 3-3):

E; = / Li.COS¢i.d®i. (14)

hemisphere

The outgoing radiance L, represents the flux of light energy after reflection and within a given
solid angle (Figure 3-1). It is a function of azimuthal and zenithal directions, respectively, 0, and

d,. We denote by dL,(0;,9;0,,d,) the outgoing radiance for a given source placed in the direction
(ei7 ¢l> :

To study the optical properties of a given material, we can measure its bidirectional reflectance
distribution function (BRDF'). For a given viewing direction (6,,®,), it is the ratio between the

outgoing radiance dL, of the surface if lit by a single light source placed in the direction (6;,¢;),
and the irradiance produced by this light source, i.e. dE; [165, 166, 167]:

dLo(ei,q)i;emq)O)
dEi(8;,0;)

BRDF (6;,01:0,,0,) := (L.5)

The BRDF can be interpreted as the proportion of light coming from direction (6;,0;) that will be
re-emitted in a direction (0,,d,). It is a feature of the object’s material: (i) it has a value between
0 and 1; (ii) its values are independent from the light sources and the camera distance; and (iii) it
is used as a coefficient function that one applies on all the incident radiance to know the quantity

of energy re-emitted by the material within a specific direction.

When a surface is photographed, the camera direction is not necessarily aligned with every surface
normal direction and it makes it difficult to understand the photogrammetric process if expressed in

a coordinate system which is normal-oriented. To make the expression of scene radiance coherent
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with the camera point of view, we consider the coordinate system viewer-oriented (i.e. with a
vertical viewing direction). We can express the outgoing radiance L, as a function of the surface
normal orientation (8y,¢y) relatively to the viewer: it is the integration of the incident radiance
L; over all possible source directions (6y,¢;) times the BRDF (0;,¢;;0,,0,) and we use a proper

coordinate change, we have (see [163] chapter 8.13):

Lo®y,0n) = [*_ [? BRDF (6;, 0500, 00).Li(5, 05)

(1.6)
.max(0,cos(0;)).sin(dy).ddsd6;.

with (O, ¢y ) the spherical coordinates of N relatively to the vertical direction, i.e. Oy and ¢y are,

respectively, the azimuth and zenith of N.

Figure 3: (1) The incident radiance L; is the emission of energy falling on a surface point within a
given solid angle and at a certain azimuth 0; and zenith ¢;. The outgoing radiance dL,
is the light reflection within a given solid angle and at a certain azimuth ©, and zenith
0, and for a given incident radiance L;. (2) The incident irradiance dE; is the energy
contributed by the portion of the source found within the solid angle in the direction
(0;,0;), i.e. Li.(3) The incident irradiance E; is the spherical integration of all the energy
falling on the point

1.3 Reflectance map and irradiance equation

The reflectance map R gives the scene radiance as a function of the surface orientation in a viewer-
centered coordinate system, i.e. it is either as a function of the surface gradient (p,q) [167] or as
a function of N. For a sake of simplicity, we consider this reflectance map as a function of the

normal, i.e. we consider R(N) instead of R(p,q), even if it is commonly expressed as a function of
(p.q)-

The reflectance map depends both on the nature of the object material which is modeled by the
BRDF, and on the distribution of light sources. In a viewer-oriented coordinate system, R can be

set equal to the outgoing radiance:
R(N) = Lo(6n, 0w)- (1.7)
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Let us now introduce the main assumptions made in this thesis.

1.3.1 Assumption on camera and light source position

We assume that a single light is illuminating the scene and a camera is placed between the light
source and the object, i.e. the camera is in the hot-spot direction. We also assume that the object is
at a distance d from the light source and the camera, and that this object has a small size compared
to d. In other words, we can consider both of the camera and light source placed at infinity and
we can assume that the perspective effect is negligible. In addition, we assume that camera lens
effect is negligible. Then the photograph of the scene is orthographic, i.e., it is an orthographic
photograph, and we can assume a coordinate system which is viewer-oriented. For every point

X € S and their corresponding normal Ny and gradient (py,qx ), the equation 1.7 holds, i.e.:

R(Nx) = Lo(Ony , Ony )- (1.8)

Light extinction is the consequence of the spherical spread of light energy depending on d which

) ) Liieht . - ) )
can be modeled by the inverse squared law [38], i.e. L; = % with Lyjep Outgoing source radiance.

As we can consider that the camera and light source are placed at infinity, the object lies in a range

between d and d + Ad for Ad << d. Then % ~ 1 dﬁfz)z. In other words, the light extinction is

negligible in the neighborhood of the object. In addition, the light rays can be considered parallel.

We can thus make the assumption of constant surface radiance.

Once the light rays reach the surface, they are re-emitted as the scene radiance. Those reflected
light rays reach the camera sensor. The produced gray levels, i.e intensities, are quantized mea-
surement of image irradiance. With proper intensity normalization on the picture, the reflectance

value can be set equal to the pixel intensity [168], i.e we have the irradiance equation:
R(Nx) = 1(x), (1.9)

with I(x) € [0, 1] the intensity value on x.

The assumptions made in this section are the most common in SFS theory [169] even if other
methods have also been developed to deal with several light sources [170], pinhole camera (i.e.

perspective projection) [171], and light extinction [172].

1.3.2 Object material

Because of heterogeneous micro-scale structures, textured materials (such as fabrics (velvet), wood
barks (pine) or minerals (tiger’s eye)) have an appearance that is not isotropic to azimuthal rotation
around the light source direction. Yet, in [168, 163], the authors recall that most materials have no
texture and are composed of two mains components depending on the surface roughness: (1) the

diffuse and (2) the specular reflection (figure 4).

Diffuse reflection gives material a mat appearance. We call Lambertian a material which has

a perfect diffuse reflection. This kind of material appearance only depends on the light source
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direction and not on the viewing direction. For a single light source, the BRDF only depends on

dE; and if this source is fixed, it is constant. We have:
R(N)=N.e3 =cos(0;) . (1.10)

For the case of diffuse reflection and of light-aligned camera, we obtain from equations 1.9 and
1.10:

1
[(x) = —F—, (1.11)
V14 |Vh(x)]?
which is equivalent to:
1
Vh(x)|= |5 — 1.12
VHW) = o (112)

This equation is reminiscent of the Eikonal equation |VA(x)| = f(x) [173] and several authors have
proposed a SFS solution by solving it [174, 164, 175, 176]. Similar equations for non light-aligned

camera have also been studied [177, 178].

The specular reflection gives the material its glossy appearance. Specular components are present
on surface points for which the surface normal bisects the angle between the light source and the

camera direction. For perfectly specular reflectance material, such as mirror, we have [165, 179]:
Lo(05,00) = Li(0, +7,0,). (1.13)

Most of the SFS authors assumed Lambertian materials even if it is possible to consider specular
ones [180]. Besides, Shape-from-Specularities [181] and Shape-from-Texture [182] are methods
which have been developed in parallel to SFS.

When the camera is in the hotspot direction, the specular components of the surface correspond to
the regions with maximal intensity and from equation 1.13, they correspond to points with a normal
also aligned with the light direction. As we are considering this case of light-aligned camera, the
reflectance is diffuse for other incident angle and it is isotropic to object rotation around the light

axis. In other words, the irradiance equation can be written:

R(o) = I(x), (1.14)

with a := ¢y, the angle between the surface normal and the incidence light at X and /(x) the

intensity value at x.

1.3.3 Surface normal orientation

Let us suppose that we know the reflectance map R for every o [184, 42], i.e. for every surface
orientation configuration. Then, from the equation 1.14, we can determine o from I, i.e. for a

given point x of the picture, we have:

ox =R (I(x)). (1.15)
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Ambient Diffuse Specular = Phong Reflection

Figure 4: Illlustration of diffuse and specular reflection: the Phong reflection model [183]. An ex-
tra ambient component (multiple scattered light due to the scene environment) is added
to the diffuse and specular reflection of the direct light.

For a given surface normal orientation, we have a single o (figure 5 - a and b). Reciprocally, to
each given o # 0 corresponds an infinity of potential normal orientation lying in an uncertainty
cone of angle o (figure 5 - ¢). We say that x is a singular point when I(x) = 1, i.e., a singular
point corresponds to a surface point X € .§ with o = O (Figure 5-d) and this latest could be either
a surface summit, sink or saddle point [161] (Figure 7-a, b and g) or points of an horizontal plane.

Picture regions with constant intensity are called iso-intensity regions. In some literature, they are
also called the isophote regions [185]. Isophotes is a terminology used in astrophysics to define the
constant intensity curves found on galaxies pictures [186]. It is also used in surface interrogation
research field where they are the surface curves or regions, along which the surface normals are
forming a constant angle with the vertical direction [187, 188]. In this thesis, we are considering
this latest definition, i.e. the isophote regions are the regions & € § such that for every x € &, oy
is constant. We notice that isophote regions correspond to iso-intensity curves if and only if: (i) the
material is Lambertian; or (i1) the camera is aligned with the hotspot direction and the reflectance
map is isotropic to azimuthal rotation which will be considered to be the case in the framework of
this thesis.

1.4 General intuition of the SF'S problem

With the assumptions made in section 1.3.1 on light and camera position, the intensity corresponds
to the angle o between the incident light and the surface normal. In other words, this intensity
provides a partial information on the local normal orientation: the normal at each point X is lying
on an uncertainty cone of angle oy = R~!(I(x)). The picture of a surface can be viewed as the
map of cones that correspond to the normals to this surface at every point (Figure 6). Solving the
SFS problem can thus be thought of choosing consistently throughout the whole image a particular
position for the normal on the cone at each pixel. The purpose of the SFS methods can be seen as

the problem of removing the normal orientation ambiguity at each pixel.

In the next sections, we will investigate the proof of existence and uniqueness of the SFS solution
and will have a brief look at the GLOB-SFS and PROP-SFS methods.
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Figure 5: (a) and (b) The incident light forms an angle o with the surface normal N. (c) We know
the incident angle o between the incident light and the surface normal at a point. How
can we deduce the normal N ? This normal lies on an uncertainty cone of angle . (d)
When o. = 0, the point is said to be singular. The surface orientation at this point is
determined.

Figure 6: (a) For singular points (red pixels), the surface normal is defined (arrow). (b) If we
know the relationship between R and o., the intensity can be replaced by an uncertainty
cone for each pixel of the picture.

79



2 SFS proof of existence and uniqueness

Several works have addressed the question of the existence and uniqueness of the SFS solution.
Even if several authors noticed the concave/convex ambiguity issue [172, 174] (figure 7-a and
b), only a few have given the theoretical limits of the SFS methods. In [159], Bruss studied the
existence of a solution for the Eikonal equation 1.12. She proved that in some neighborhood of
a point that is either a sink or a summit, it exists a unique convex solution. In the case when the
surface projection is bounded by its silhouette and has no other singular point, the SFS solution
exists everywhere. She generalized this proof to surfaces bounded by a closed isophote curve and
with a unique singular point. In [161], Oliensis proved the uniqueness of surface reconstruction
from intensity picture with several singular points and for object silhouette having an intensity

value of 0, i.e. with o, = 7.

Brooks [158], nuanced later by Kozera [160], gave two examples of the SFS resolution for which
ambiguity is not only about the concave-convex shape of the surface (Figure 7-1, a and b). In
his first example, he talked about an inclined plane (Figure 7-e) which forms a constant incidence
angle with a vertical ray light and which produces picture pixels of constant intensity (Figure 7-4).
In general, a vertical cone trunk of such angle provides the same intensity map (Figure 7-f). In
his second example, he tried to reconstruct part of the hemisphere from its picture and without
taking the singular point into account (Figure 7-2). He showed that an helical surface can also fit
the selected zone picture (Figure 7-c). These new type of ambiguities requires that one uses other

specific features of the image and the surface to allow a correct SFS reconstruction.

In [189], Horn et al. defined the impossible shaded images in the framework of continuous surface
reconstruction and for camera in the hotspot direction. Those images were composed of nested
and closed iso-intensity curves which were of decreasing intensity (Figure 7-3). There could not
be any continuous surface that corresponds to such intensity picture configuration. Those image
were not necessarily impossible for camera which were not light-aligned: in this case, the dark
point can be hidden by the surface itself. Similar impossible images were also illustrated in [161]
where Oliensis explained that intensity perturbation in the intensity picture could raise impossible

continuous surface reconstruction.

3 GLOB-SFS method

A GLOB-SFS method consists of recovering the photographed surface taking advantage of the
convergence of consecutive surface reconstructions. This kind of method is the most common and
it has already been the subject of surveys and comparisons since the late 90’s [174, 178, 169].
The global method can be split into three main subtypes: (i) the minimization; (ii) the linear
approximation; and (iii) the partial differential equation (PDE) resolution with viscosity solution
methods. We are going to illustrate each subtype of GLO-SFS method. Note that other types of

method do exist : e.g. neural network [154]. Those alternative methods have in general similar
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Figure 7: (1) Picture of a hemisphere corresponding to: (a) to the concave or (b) to the convex
hemisphere. (2) hemisphere picture without the singular point: (c) an helical surface
can correspond to this picture. (3) Picture of concentric and decreasing intensity region
that tends to 0: (d) the corresponding surface has a singularity on the central point. (4)
A constant iso-intensity can correspond to: (e) a piece of plane, or (f) a cone. (5) and

(g): Saddle surface.

features to one of those three subtypes of GLOB-SFS methods.

3.1 Minimization method

In [190, 176], the authors applied a minimization method in the framework of the Eikonal equation
resolution. Their method consisted of: (i) discretizing the Eikonal equation, (ii) defining an error
function, and (iii) applying an optimization algorithm (e.g. gradient descent) until the error became
smaller than a certain threshold. For instance, they considered the first partial derivative as the

difference between two adjacent pixels height of the picture, 1.e.:

pij = hiv1j—hij,

(3.1)
Gij = hij+1—hij,
which lead them to the new irradiance equation derived from 1.11:
Iij= ! (3.2)
Y VT (i = hig 2 (i —hig)? '
The authors defined the error function related to this equation:
| 2
€ = - 117] . (3'3)
(lz;') (\/ Ut (higrj—hi ) + (hi j1 — hi j)? )
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Finally, they considered other assumptions which add extra term to the error function. For instance,

they used the Schwartz’s theorem which states that:

*h Fh
axlaXQ aXanl B

0 3.4)

when the surface is C?-continuous and they applied to this identity an expression similar to 3.1.

The strength of their method was that it can deal with noisy image and the error function was a
control on the quality of the solution. However, it had the risk of providing a wrong solution. It
was the reason why they proposed to give an initial surface which had common features with the

solution (concavities, singular points, etc.).

3.2 Linear resolution

In [177], Tsai and Shah proposed a linear resolution of the SFS with camera which is not necessar-
ily in the hotspot direction. As for the minimization method, they approximated p and g on each
pixel by equation 3.1 and injected it into the irradiance equation 1.9 to obtain an equation with the
unknown height function 4, i.e.:

1(x; j) = R (h(xi j) = h(xi—1j), h(xi j) = h(xij-1)) = O. (3.5)

(. >
v~

f

The authors propose an iterative method to solve this equation. Let 4" be the height map at stage

n. Then, the authors derived a recurrence formula from the Taylor expansion of equation 3.5:

—f(h" 1 (xi)))

W (x; ) = h" (xi ) + (3.6)
4L (= (x1,)))
with:
df w1, . (p+a)(I+pps+qqs) (ps+4s)
dh(h (xi,j)) = 21 2)3 2. 2 2. 2 2.2 (.7
VI+P2+ P 1+pi+q2 1+ p2+ ¢ /1+pr+ 43

and (ps, qs) the direction corresponding to the azimuth and the elevation of the light source direc-
tion. Assuming an initial estimate ho(xi, j) =0, the depth map can be refined using equation 3.6

and with an iterative process [177].

This method is not able to deal with edged surfaces. In addition, there is no guarantee on the
likelihood of this reconstruction as there is no optimization process and extra iterations in the
calculation do not necessarily improve the result. As for the previous method, Tsai and Shah

proposed giving initial height values to guarantee the convergence.

3.3 Viscosity solution

Viscosity solution is a weak solution of a PDE, i.e.: (i) it is defined everywhere, but (ii) it is not

differentiable everywhere; and (ii1) it is equal to the solution of the equation almost everywhere, i.e.
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the equality does not hold on a set of measure zero. In 1997, Falcone and Sagona used this concept
of viscosity solution to solve Eikonal equation in the framework of SFS theory [175]. It has been
developed later by Prados and Faugeras as a PDE resolution technique [164, 162, 191, 172, 171].
To do so, they gave an explicit solution of the Eikonal equation 1.12. First, they defined it as an
Hamiltonian H, i.e. they expressed the equation in the form of a ordinary differential equation
(ODE)
H(x,Vh = |Vh(x)|—4/-—=—1=0. 3.8

(x5, VA(x)) = [Vh(x)] 10 (3.8)
They considered Dirichlet boundary conditions, i.e., 7 = ¢ on dQ2 with @ a scalar function. Finally,
they performed a Legendre transform of H to change the ODE 3.8 into a PDE, i.e. they built the

new function:

H*(x,q) := sup {p.q—H(x,p)}. (3.9)
pER?

To solve equation 3.9, they considered the functions:

Ty
Loy)i=_int 8 1 (9.8 ) s o (3.10)
0
and:
h(x) := inf {Q(y)+L(x,y)}, (3.11)
YEIQ

where C, , is the set of the paths & lying within Q such that (0) = x, §(7p) =y and with @, L, §
and H under some topological assumptions (continuity, convexity, etc.). They proved that / is a

viscosity solution of equation 3.8.

In practice, they used the dynamic programming principle to propagate the construction of / from
a starting point on dQ and they locally expressed the integral term of L(x,y) from a linear ap-
proximation. This method can be considered as a mixed GLOB-SFS and PROP-SFS method. The
particular features of this method is that it needs boundary height information and that it is not able
to deal with singular point. Its strength is that it can deal with noisy image and edged surfaces but

it is more time-consuming than the two previous methods [169].

4 PROP-SFS methods

PROP-SFS methods propagate surface reconstruction along specific curves from a group of seed
points where the solution is locally defined. PROP-SFS methods are the least represented methods
despite the fact that they were the first ones to be developed [145, 146, 147]. In general, the
propagation is carried out along the greatest slope curves. Those curves tangent projection are
collinear to the gradient of the height function which defines the surface, i.e. Vi = (p,q) (see
Appendix II). We will describe two main PROP-SFES propagation methods found in the literature:
(1) the propagation along the level height curves, and (2) the propagation along the isophotes

regions.
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4.1 Along level height curve

A level height curve is a surface curve of constant height. PROP-SFS along level height curve
method has been introduced by Bruckstein in 1988 [192]. He proposed to propagate the recon-
struction along the curves of greatest slope by integrating the intensity to build consecutive level
height curves. To do so, Bruckstein considered an initial level height curve hg of parametric repre-
sentation (x1(8),x(8)) € R?, with 6 € [0, 1] and of height Hy. As h is constant for any 8 € [0, 1],
then:

d
%h(xl(e),xz(e)) =0 = dh=p.dx;+q.dx, =0, 4.1)
meaning that V# is collinear to ng, the principal normal of 4y. He noticed that ng is equal to:
! —5(0)
ng = . . 4.2)
(¥1(6) +x3(8)) 2 < x| ()

From the Eikonal equation 1.12, he got:

/

x(0) (1-1

= (x’l(e)+x'2(9))2' 1
1

1

p:

(g)
© 4.3)
g = F ()"
() (0)+x5(0))2"  1(6)
To move to a vertical offset AH along the greatest slope curve, a distance of dg in the horizontal
plane should be traveled (Figure 8). Bruckstein suggested that in the Lambertian case, I is the

cosine of the angle between the normal to the surface and the vertical direction. Therefore, he
directly deduced that:

1(6)
dg=AH.————. 4.4
O o
As a consequence, the next level curve is of parametric representation:

0,AH 0
n@©AH) ) (a® (4.5)

x2(8,AH) x2(6)

X1 (9) 1
= + (4.6)
(XZ(G) ) (¥ () +x5(8)) 2

1(0) —%)(8)
AH'(l —1(8))1/2 ( xllie) )

This PROP-SFS method has been set up for unimodal surfaces (sink or summit) but in [193],
authors extended the approach to multimodal surfaces by using Morse classification of singular
points. In addition, they integrated a weighted distance map to control the reconstruction propaga-
tion and the blending between two connected reconstructions (i.e. starting from two neighboring
singularities). This PROP-SFS method has been reused by Braquelaire & Kerautret for synthetic
and real image reconstruction [194] on which a contour tangent estimation of the propagation seeds
with Euclidean path [195] has been integrated. The strength of this method is its fast computational
rate. However, an error is spread along the propagation: the greater the distance to the initial curve,

the worse is the accuracy of the reconstruction.
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Figure 8: To reconstruct an unimodal surface, Bruckstein proposed to use the level height curves.

(taken from [192]).

4.2 Propagation along isophote regions

The PROP-SFS along isophote regions method has been introduced simultaneously by Peternell
[196] and Dragnea and Angelopoulou [185] in 2005.

Peternell proposed a geometrical construction to interpolate a single iso-intensity regions of the
picture with sand-pile surfaces [196]. Sand-pile surfaces are developed surface (see Appendix
IT). Their greatest slope curves are their generatrices, i.e. they are lines and are of constant in-
clination. Because this constant inclination, the pixels of sand-pile surface picture are of constant
intensity. Peternell proposed to build those sand-pile surfaces from a level height curve: as for
the Bruckstein’s method, he used the fact that the direction of the greatest slope curves projection
are orthogonal to the level height curve and he used this level height curve as the directrix of the
sand-pile surface construction. He also proposed a strategy to solve the self-intersections of those
sand-pile surfaces. However, no algorithmic strategy has been implemented so far to deal with
surfaces with several isophote regions, singular points or with surface curves which are not level

height curves.

Dragnea and Angelopoulou proposed to estimate the surface normal along consecutive isophote
regions boundaries and propagating this normal along lines transecting the isophote region [185].
Their algorithm consisted of: (i) initiating a random normal orientation for the propagation seed;
(i1) propagating linearly the normal orientation; and (iii) estimating geometrically the normal as-
sociated with a next isophote region using the next isophote curve principal normal and the current
estimated surface normal. They processed recursively point (ii) and (iii) to propagate the recon-

struction.

The strength of this method is that it can deal with saddle point case. However, it is sensitive to
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the normal estimation and the algorithm was tested only on symmetric and simple surfaces with

single singularity.

S Comparison of the methods

In section 2, several different SFS reconstruction ambiguities have been introduced and it has
been shown that several surfaces can give the same picture [158]. Generally, we can consider that
SFS problem has at most two solutions (concave/convex ambiguity) for pictures that (i) contains
singular points and (ii) is contained either in the surface silhouette or within an isophote curve
of the surface [161, 159]. Most of the methods introduced in this chapter are reconstructing the

surfaces that fulfill those assumptions.

GLOB-SFS methods are proposing robust the reconstruction of surface, yet there is no guarantee
that the solution is correct. Intensity picture of the produced surface is close to the original picture,
but original and reconstructed surface can be very different. For instance GLOB-SFS using viscos-
ity solution provides only unimodal surfaces solution [164]. Still, it is possible to provide initial
height value to improve results [176, 177]. In the case of GLOB-SFS using viscosity solution,

boundary values are required.

Authors who studied the SFS proof of existence proved that SFS solution is sensitive to intensity
noise: in the case of small perturbations, the reconstruction can be wrong [161]. Yet authors who
have proposed GLOB-SFS methods managed to carry out valid reconstructions with noisy pictures
as those type of methods use convergence and minimal error principle. Nonetheless, Daniel and
Durou noticed that noise can be wrongly interpreted by their minimization GLOB-SFS [176]. In
the case of PROP-SFS, we can easily imagine the issues brought by noises. For the level height
method, the noise can bring ambiguity in the identification of the singular points. For the isophote

method, the noise can disturb the selection of isophote regions.

Minimization and linear approximation GLOB-SFS methods can handle surfaces with summit,
sink and saddle points [176, 177] whereas the GLOB-SFS method using viscosity solution can
only handle unimodal method [164]. The PROP-SFES are defined for unimodal surface [192, 185],

but strategies have been defined to handle more complex surfaces [193].

In PROP-SFS, greatest slope curves propagation are done from a propagation seed, which is a close
curve. This curve is chosen to be a level height curve in [192] and [196], and it is an isophote curve
containing a singular point in [185]. Greatest slope curves are either directly computed from level
height curves [192, 196] or deduced from an arbitrary normal initialization scheme [185]. Those
greatest slope curves are assumed to be linear within the isophote regions [196, 185]. Interestingly,
this assumption is supported by an ancient result obtained by Monge in 1850 [197], stating that
sand-pile surfaces verify the equation |VA| = ¢, where c is a constant, i.e. a sand-pile surface is an

isophote surface.
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According to Durou et al. [174], GLOB-SFS methods are slower than PROP-SFS method. In
their survey, they show that the PDE is the slowest, whereas the linear method is the fastest and
the minimization method has an intermediate speed. Tested on a SUN Enterprise E420, the global
methods could take either a few second (linear resolution), about 20 seconds (minimization), or

several minutes (viscosity solution) to reconstruct a surface from a picture of 250 x 250 pixels.

Generally, it is difficult to compare PROP-SFS with GLOB-SFS methods [169] as PROP-SFS
methods may need extra pre-processing (contour extraction, initialization). Propagation is in gen-
eral of linear time complexity as the computing of the surface along the propagation curves are
made using explicit equations. However, a reconstruction error is propagated for the PROP-SFS

while GLOB-SFS guarantees an homogeneously bounded error.

6 Conclusion

As it has been discussed in Section 1.4, we intend to use SFS techniques to reconstruct TLS
scanned surface from their intensities and in the scope of outlier points correction. In this chapter,
we have investigated the SFS techniques whose assumption correspond to the situation of LiDAR

scanner systems.

As we have seen in the previous chapter, 3D point cloud outlier are situated along scanned object
edge and silhouette. Those outliers, together with the inliers point, form a point cloud that may
contain large errors. To be optimal, GLOB-SFS needs initial height values [176, 177] or boundary
conditions [164]. We can neither use boundary conditions nor initial TLS point cloud for this type
of SFS reconstruction. Still, we can use distance information provided by the LiDAR scanner in

the case they are corresponding to correct measurement points.

Singular points can be easily determined as they correspond to maximal intensity value. Because
they represent surface region that are orthogonal to TLS beam, they are easily differentiated from
outlier points. GLOB-SFS method do not use this type of point of maximal intensity whereas
PROP-SFS method does (Figure 9-a). That lead us to chose to develop PROP-SFS method adapted
to TLS data.

Geometrical information related to intensity are represented by the uncertainty cones. PROP-SFS
uses the greatest slope curves for propagation. We expect that those curves can be determined
from the solution propagation in the uncertainty cone space (Figure 9-b). Reducing this space to
constant uncertainty cone space could make this determination easier. Constant uncertainty cone
space are associated to isophote region. To find the relationship between uncertainty cone space

and greatest slope, isophote regions should be investigated.

To conclude, I was led to develop a PROP-SFS method to reconstruct surface from LiDAR dis-
tance and intensity map in the spirit of Peternell, and Dragnea and Angelopoulou [196, 185].
Compared to Dragnea and Angelopoulou’s article [185], we will need to set up a direct greatest

slope computation from isophote curves. Compared to Peternell [196], we will deal with arbitrary
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isophote regions, and thus we will have to generalize the correspondence between isophote region
and sand-pile surfaces established by Monge in 1850 [197].

Figure 9: (a) We use normal orientation known on a given region to propagate the reconstruction.
(b) What is the relationship between uncertainty cone space and propagation curves?
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Chapter 4

Parametric properties of isophote surfaces

As it has been mentioned in Chapter 1, TLS distance data is used to reconstruct objects surface. Yet
the presence of outliers along the scanned object edge can interfere with its surface reconstruction.
It is especially true for small surfaces such as canopy leaves. Intensity return of the TLS laser beam
is in general provided and we noticed in Chapter 3, that TLS optical setup corresponds to particular
assumptions of the Shape-From-Shading (SFS) theory. The intensity is assumed to be related to
the incidence angle o between the incident light and the surface normal N. For every point x of
the TLS intensity picture, the cone of angle o (or the uncertainty cone of angle o) on which the
normal N lies is taken into account. In the case of smooth surfaces, we guessed that if the normal
orientation is known on a portion of the surface, then the uncertainty cone can vanish continuously
along the neighboring of this portion, i.e., N can be determined by continuity. In other words, the
TLS intensity is directly related to the surface geometry and it is possible to reconstruct the surface

shape from a known region and from the intensity values attributed to the surrounding points.

The general aim of this thesis is to use this intensity information to extract object’s shape. In turn
this impose to correct the TLS point cloud outliers and we chose to use a SFS-based method to
help in their correction. Because the quality of the TLS point cloud is variable and the boundaries
of the object representation are of poor quality, we selected a PROP-SFS method as it is expected
to be better adapted to solve the outliers issues. Because isophote regions are corresponding to
iso-intensity domains on the photograph of a surface if some optical properties of the material are

met, we chose to develop a PROP-SFS method along isophote regions.

In 1850, Monge [197] stated that the sand-pile surfaces (SPS), or constant slope surfaces, are
isophote surfaces, i.e., they are projected on an iso-intensity region. SPS surfaces are developed
surfaces (see Appendix II, Section 2.5) that makes them convenient to use. In order to use them to
reconstruct surfaces with a PROP-SFS method along isophote curves, we will give in this chapter a
topological and geometrical proof of the reciprocal of Monge’s statement, that is: if the photograph
of a surface is an iso-intensity domain, then this surface is necessarily covered by a finite set of
SPS.
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1 Scene modeling

As introduced in Chapter 3, we denote by S a single C3-continuous, bounded and connected surface

of R3, defined by its height function h on an open and connected domain s C R?:

h:s — R
x — hx),

(1.1

i.e., if x € s, then its corresponding point on the surface S is X := ( hzc ) ) (Figure 1-right).
X

We assume that the scene is composed of this surface, a single and vertical light source and an
orthographic camera which is in the hotspot direction, i.e., along —e3. Both of the light source
and the camera are placed at infinity. The effect of distance on intensity is thus negligible and the
light ray can be considered parallel. The camera takes a picture of the lit surface and the resulting
photograph is the orthographic projection of the surface with each of the intensities of shade on
each of the visible surface points (Figure 1-left). We suppose that the effect of the sensor features

on the photograph is negligible on the intensity recording.

We saw in Chapter 3 that if:

(1) the light source and camera direction are aligned; and

(i1) the material is without texture and its BRDF is isotropic to rotation around the light

source direction (e.g. Lambertian material),

then the intensity only depends upon the reflectance map R and the incidence angle o(X) :=
Z(e3,Nx) € [0,%[. In other words, it is expressed by the image irradiance equation of the form

I(x) = R(o(X)) and we can express the incidence angle as:

a(X) =R 1(I(x)). (1.2)

If ou(X) is constant for every X € S’ C S, then we say that the S’ is an isophote region of S, or iso-ot

region. An iso-o region is projected on an iso-intensity domain s’ C s, or iso-o. domains.

For a given iso-at domain s, is it possible to reconstruct the associated isophote region ? We know
that for each point of an iso-ot domain, there is an uncertainty cone of angle o. Yet several surfaces
can be projected on this iso-o. domain, such as a plane of inclination 7t/2 — o or a cone portion.
Nevertheless, is it possible to give a general characterization of geometry of the iso-ot domains and
corresponding isophote regions? To answer this question, we are going to prove the reciprocal of
Monge’s statement, that is, the iso-ot domains with a non-empty interior are corresponding to SPS

projections.
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Figure 1: Right: S is a surface lit by a single light source placed at infinity. It is pictured by a
camera placed in the hotspot. Left: The produced photograph.

2 Greatest slope and level height curves

To characterize the iso-o0 domains, we need first to introduce basic concepts and notations of

differential geometry.

The surface greatest slope curves (GS) and their projections (GSP) are denoted respectively by
G and g. They are both parametrized by u and we recall that G := (g,hog). The surface level
height curves (LC) and their projections (LCP) are denoted respectively by L and |. They are both
parametrized by v and are different only by a translation of a vector collinear to e3. Gy and Ly
denote respectively the tangents of the GS and LC at a point X € S and g, and /, denote respectively
the tangents of the GSP and the LCP at point x € s. We recall that the GS and LC have the following
properties on parametric surfaces (a proof is given in Appendix II, Section 2.1):

Property 1. If |Vh(x)| # 0 for every x € s, then:

1. g, is collinear to the gradient of the height function on x, i.e., g, < Vh(x);

2. For any point x € s and X = (x,h(x)) € S, Gx and g, are, respectively, orthogonal to Lx

and l;

3. The angle formed by Gx and g, is equal to o(X), i.e., Z(Gx,g,) = a(X).

For every point X € S such that |[Vh(x)| # 0, i.e., (X) # 0, there exist a unique GS and a unique
LC passing by X, i.e., the surface S is covered by GS and LC. We denote them by GX and L¥,
respectively. Similarly, there exist a unique GSP and a unique LCP passing by x, i.e., the domain s
is covered by GSP and LCP. We denote them by g* and I, respectively (Figure 2-1). All of those

functions, e.g., X — GX, are continuous.
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In the case o(X) = 0, then the points x and X are called singular. For C?-continuous surfaces, those
points are the only locus where several GS can cross (Figure 2). There are three kinds of singular
points depending on the local curvatures sign [198], i.e., on the local surface orientation (Figure
3): (i) the elliptic (e.g. a summit); (ii) the hyperbolic (e.g. a saddle); and (iii) the parabolic point
(e.g. a horizontal cylinder). Flat points, i.e., point contained in a flat region of the surface, are of
degenerate parabolic kind [199], and if a(X) = 0 for every X € S, then S is necessarily a plane
portion which is orthogonal to e3. To summarize, points with o@ = 0 have a normal orientation
which is determined (vertical) and they can be classified depending on the local orientation of the

surface.

In this chapter, we will consider isophote regions with o # 0. To characterize the iso-o. domains

on which they are projected, we will have a closer look to the geometry of GSP and LCP.

Figure 2: If |Vh| # O, the surface S is covered by GS (green) and LC (red). For every point
X €S, there exists a unique GS and LC, except on the singular points: (1) orange: the
summits; (2) blue: the sinks; and (3) pink: the saddles. The GS are projected onto the
GSP whereas the LC are projected on the LCP.

1) 2) 3) 4) A A 4 4 &
*YY v ¥ ¥

Figure 3: Example of singular points: (1) summit; (2) sink; (3) saddle; (4) horizontal cylinder.

3 Squared domain

Let us consider a C3-continuous surface S and s its domain as it is defined in Section 1. To

characterize the GSP and LCP geometry, we will first cut s into sub-domain delineated by two
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GSP and two LCP (Figure 4).

Definition 2 (Sub-arc of extremities and length). Let c be a parametric curve of R?. We denote
by c[x,y] := {c(u)| c(0) =x, c(1) =yand u € [0, 1]} the sub-arc of c of extremities x and y. We
denote by |c[x,y]| the length of this sub-arc between x and y, i.e:

1
|c[x,y]|=/O c(u).du. 3.1)

Definition 3 (Squared domain). A squared domain sd is a sub-domain of s, which does not contain
singular point, which is bounded by two LCP (denoted by I and I') and two GSP (denoted by
g® and g'), and which is of genus O (i.e., it has no hole). We denote by (a,b,c,d) the points
corresponding respectively to the intersection g N 1%, g®N1', g' N1° and g' N1', and call them the
summits of sd. g%, g!,1° and I' are called the boundaries of sd. In other words:

sd := {(g"[a,0].g'[c,d], Pla,c]I'[b,d])| g°,¢",I°,1" and a,b,¢.d € 5} 3-2)

A squared domain has the following properties:

neither 1 and I' nor g® and g! are intersecting within the square domain or on its boundary;

* more generally, two LCP or two GSP contained in a squared domain cannot intersect since

there is no singular point in a squared domain;

a GSP and a LCP can intersect once and only once in sd;

from Property 1, for any point x € s, g* and I cross orthogonally. This is particularly true

for the summits of the squared domain.

Notice that those four properties imply that the angle at the squared domain summits are equal to
7/2 (Figure 4-i) and not to 31/2 (Figure 4-ii). Indeed, if one of the summit angle is equal to 3m/2
then the corresponding GSP and LCP must necessarily cut respectively another GSP and LCP to
exit the squared domain. This is only possible if the squared domain contains a singular point.

Finally, we can consider the squared domains homeomorphic to a square.
Let us define a natural parametrization of a squared domain sd by the GSP and LCP (Figure 4-1):

[0,1] x[0,1] —  sd

(u,v) = x(u,v). 3-3)

We recall that g* and I* are respectively the unique GSP and LCP that pass through x := x(u,v).
These curves make it possible to define at each point x a pair of curvatures k8 (x) and ¥'(x) and the

continuous function:
K(u,v) == (B (x(u,v)), k' (x(u, 1)), (3.4)

for every (u,v) € [0,1]2.
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If we consider the surface domain s with its GSP and LCP and without its singular points, then
s is covered by squared domains (Figure 4). Several cases for the squared domain boundaries
configuration, i.e., the convexity of their boundaries relatively to each others, can occur and we

need to introduce the following definitions:

Definition 4 (Convexity relatively to a curve). Let ¢, c! and c? be three curves with their cor-
responding Frenet trihedron (¢,ko,bo), (¢1,k1,b1) and (t2,kz,b2), respectively. We suppose that
c and ¢! intersect c? once and only once, i.e., there exist two unique point @ and b such that
a=c’nc?and b =c! Nc®. We suppose that c? has neither inflexion point nor straight curve arc
between a and b. We say that c” and c' are of same convexity relatively to c? if Z(ka,kq) at a
and Z(ky,k;) at b have same sign (Figure 5-a). Similarly, we say that c® and c! are of opposite
convexity to c? if Z(k, ko) at a and Z(ky, k1) at b have opposite sign (Figure 5-b).

We are now going to define different types of squared domains:

Definition 5 (Simple squared domain). A squared domain is said to be simple if each of its bound-

ary curves (i.e., 1011 go and gl) have a non-null curvature, i.e., there is no inflection point (Figure

4-iii).

Definition 6 (Conform squared domain). A squared domain is said to be conform if it is simple
and if g and g! are of same convexity relatively to I° and to I' and conversely, if I and I' are of

same convexity relatively to g® and to g!' (Figure 4-iv).

Definition 7 (Right squared domain). The squared domain sd is said to be right for GSP if for
every x € sd, the curvature k8 (x) is null (Figure 4-v). It is right for LCP if for every x € sd, k' (x) is
null. Tt is right if it is both right for GSP and right for LCP, i.e., if for every x € sd, x(x) = (0,0).

Consequently, a squared domain sd is said to be non-right for GSP if there exists a x € sd such that
the curvature k8 (x) is non-null. It is non-right for LCP if there exists a ' € sd such that k'(x') is
non-null. We say it is non-right if it is both non-right for GSP and non-right for LCP, i.e., there
exists x and x’ € sd such that ¥&(x) is non-null and x'(x') is non-null.

We notice that both the simple and conform squared domains are defined with assumptions on
their boundary curves whereas a right squared domain is defined with its inner GSP and LCP.
The different kinds of squared domain have properties relating to each other. By definition, a
conform squared domain is necessarily simple whereas a right squared domain is neither simple

nor conform. In addition, the two following propositions hold:

Proposition 8. Let sd be a simple squared domain of s. If g and g' are of reverse convexity
relatively to |°, then there exists x € sd such that k& (x) = 0.

Proof. Let sd be a simple squared domain such that g” and g! are of reverse convexity relatively
to 19 (see Figure 6-1). Let u,v €]0,1[>. We have K&’ (x(u,0)) < 0 and K8’ (x(u,1)) > 0, thus there
exists v/ €]0, 1] such that if g* is the GSP that passes through x = x(u,'), then k& (x(u,v/)) =0. [
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Proposition 9. If sd is non-right for GSP, one can always find a sub-squared domain sd’ C sd
which is either right for LCP and non-right for GSP, or conform.

Proof. Let us suppose that sd is non-right for GSP (see for instance Figure 6-2). Then there exists
x:=x(u,v) € sd such that k& (x) # 0. As K is continuous, then there exists € > 0 such that for every
W' €lu,u+¢[ and X' := x(/,v), k& (x) has the same sign than k& (x). Similarly, there exist & # 0
such that for every v/ €]v,v+¢€'[ and y := x(u,V'), k& (y) has the same sign than k&' (x). We notice
that, in fact, we can choose € and €' such that for every ',V €]u,u+¢€[x|v,v+¢€'[ and z:=x(/,V'),
k& (z) has the same sign than ¥& (x).

We build the sub-squared domain of summit x, X', y and y := x(u+¢€,v+¢'), i.e.:

sd' == {(g"[x.2'], & [y.y'], Fle.y], [, y])| 8%,87, 1,1 and x,x'y,y € sd}. (3.5)

This squared domain is obviously non-right for GSP and it has been constructed such that every of

its inner GSP are of same convexity than g* relatively to I*.

sd’ is either right for LCP or non-right for LCP. In the first case, we found a candidate which
matches the proposition. In the second case, we can build a sub-squared domain sd” C sd” with the

same previous reasoning, i.e.:

sd” = {(g"[x, "], &[], Flx, . "y g5 87 K, and " yy" €sd}. (3.6)

with the two LCP boundaries of sd” which are of same convexity relatively to one of the GSP
boundary of sd”. Finally, we built a squared domain sd” that is conform which complete the

proof. ]

We defined several types of squared domain: the simple, the conform and the right; and we dis-
cussed their properties. We will use them to cover s and prove that if o is constant on a squared
domain, then it is necessarily right. This proof will be based on an analysis of the locus and shape
of the LCP relatively to the GSP and thus on the two previous properties. Then, we will extend
the analysis to the entire domain, i.e., we will prove that the GSP are necessarily a straight line

segment in s.

First and foremost, we need to introduce some extra geometric properties which will be specific to

the type of curves manipulated hereafter.

4 Remarkable geometric properties of curves

Let us consider I := [0, s,,4x] C R, C a 3D curve defined on I and c its projection on R2. We assume
that ¢ has no inflexion point, i.e., for every s € I, k°(s) # 0. Let T and ¢, be, respectively, the
tangent vector of C and c at the points C(s) and c(s). We recall the definition and basic properties

of a generalized helix [200]:
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Figure 4: Upper left: The surface domain, deprived of its singular points, is covered by squared
domain. (i) Ordinary squared domain and notations; (ii) Domain containing a singular
point; (iii) Simple squared domain, (iv) Conform squared domain and (v) Right squared

domain. In red: LCP. In green: GSP.

Figure 5: (a) ¥ and ¢! are of same convexity relatively to ¢*. (b) ® and c' are of opposite con-
vexity.

Definition 10 (Generalized helix). If for every s € I, a(s) := Z(t5,T) is constant, then C is said
to be a generalized helix of angle o (Figure 7-1).

Property 11. C is a generalized helix of angle o if and only if, for every s € I:
c(s)
C(s) = / , 4.1
) ( tan(a). [, %\.ds’ )

and for every O sl eI, we have:

! / 4D gt 4.2)



a

b I d d

b

Figure 6: (1) Proof of the proposition 8: if we consider a simple squared domain, then we neces-
sarily find a GSP with an inflexion point x. (2) Proof of the proposition 9: if we consider
an ordinary squared domain, we can find two GSP and two LCP that form a conform
square domain.

Property 12. Let C° and C! be two generalized helices of angle o such that there exist four points
A, B € C%and C, D € C! with their corresponding projection a,b € c° and c,d € c', respectively.
We suppose that A and B have the same height, respectively, than C and D. Then:

(fa,b] = |c'[e,d]]- 4.3)
Now let us recall the definition and property of an involute [198]:

Definition 13 (Involute). Let c and ¢y be two planar curves and, respectively, (,k,b) and (¢¢,kq, bo)
their associated Frenet trihedron. ¢y is said to be the involute of c if its equation is of the form:

co(u) = c(u) + (u® —u).1 (). (4.4)
Property 14. For every u €] — o0, u’], we have:
1. t(u) and to(u) are orthogonal;
2. and (Figure 7-2): .
lco(u) —c(u)| = /u \d;—(ss)\.ds. 4.5)
u

Finally, we introduce a lemma about the convexity of a curve relatively to another one for which a

proof is given in Appendix II, Section 1.5.

Lemma 15. Letr CO and C! be two planar curves with their parametric representation < and

c! and their Frenet trihedron (t1,k1,b1) and (to,ko,bo). Let us suppose that both ® and c' has

no inflexion point and <° is a natural representation of CO. If there exists f: RT — R strictly

increasing and such that:

(1) c'(s)  =c(s)+ f(s)-ko(s),
(2)cl(0) =<0, (4.6)
(3) 11(0)  =10(0),

then Z(ko(s),k1(s)) and Z(to(s),ko(s)) are of same sign (see Figure 7-3).
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Figure 7: (1) A generalized helix C, its projection c and their tangents. The length between 0 and
1 is conserved to a factor 1/cos(). (2) Involute properties: for every u €] — e, ug),

lco(u) —c(u)| = fuuo d;—(ss)|.ds. (3) Lemma 15: Z(ko,k1) and Z(tg,ko) are of same sign.

5 Fundamental theorem on iso-o¢ domains

Let us consider a C3-continuous surface S and s its domain as it has been defined in section 1 and
such that for every X € S, a is constant and non-null. To prove that the GSP of s are line segments,
we will show that the inner squared domains of s are necessarily right. We first need to prove that
for a given squared domain sd C s, there should be an inflection point on one of the GSP contained
in its interior, i.e., in S(Zi.

Lemma 16. Let sd be an ordinary squared domain. If o(X) is constant and non-null for every

o /
x € sd, then there exists X' € sd such that k& (x') = 0.

Proof. Let sd be an ordinary squared domain such that o(X) is constant and non-null for every

o X/ .
x € sd. We shall reason ad absurdum and suppose that for every x € sd we have k& (x') #0, i.e.
sd is not right for GSP. From the Proposition 9, if sd is not right for GSP, then there exists a

sub-squared domain sd’ Csd, ie.

sd":= {(g"[a, 1], ' [c,d],"[a,c],I'[b,d])| g°,8",1°,1' and a, b, ¢, d € sd}. (5.1)
which is either right for LCP or conform, i.e., 19 and I! are either segments of straight line, or of
same convexity.

For a given ¢’ € 19, we will build g¢', and more specifically, we will find &’ = g€ N1, i.e., we will

construct the sub-squared domain of sd’:

sd” := {(go[a,b],gcl [/,d"],°[a,c'),IL[b,d])] ¢ 1% 1" and a,b,c,d' € sd}. (5.2)
As a is constant in sd, then every GSP in sd are corresponding to an helix (see definition 10).
This is especially true for the GSP of sd’ and sd”. Thus, if we consider the couple of point ¢’

and d’ which are respectively on I and I!, then their corresponding height, i.e., C’ and I, have,

respectively, the same height than A and B and, and from property 11, we should have:

g [c,d']| = |g°[a,b]|. (5.3)
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Let us now consider the two half lines d” and d! of respective equations d’(s) = a + s.k(0) and
d! = b+ s.k(1) (with k(u) the normal of g° at u). If sd’ is right, then I = d* and I' = d!. If it is
conform, then |” and I' are of same convexity relatively to g and they are both lying on the same
side of d” and d! (Figure 8-1). Let c* be the involute of g° that passes through a and of equation
c(u) = g%(u) + (u—up).g°(u). We are now going to build d’.

The three following cases can happen:

1. 1Y is equal to d” or it is between d” and c* (Figure 8-1). Let us consider the circle C of center

¢’ and of radius |b — ¢/|. Firstly, the segment [¢’, b] cuts ¢ in ¢” and:

1 0

d

|b—c'|>|b—c”|:/ e <”)|.du. (5.4)
0 du

with fol |dg;£”) |.du the length of the helix projection portion, i.e.:

1 d 0
1 = lan) 5:5)

Secondly, d' is tangent to C and I' is on the same side of d! than I is of d°. Then, there
cannot be a point ' such that |g¢ [¢/,d’]| is equal to |g°[a,b]|. Thus, I° cannot be neither

equal to d” nor be placed between d° and c®.

2. Forevery u € [0,1] and v = u — uy, 1°(v) is equal to c*(u) (Figure 8-2). For similar reason

than the previous point, the only curve arc g€ [¢/,d’] which would be equal to fol |dg;lsu) |.du

is the segment d[b,c'] of length |g%(1) — c?(1)| (property 14). This would mean that g¢
intersects g’ at b = d’ which is not possible as there exists only one GSP that passes through

b. In conclusion, 1°(v) cannot be equal to the involute c“.

3. 19is between d! and c* (Figure 8-3). In this case, we are considering the function f: RT — R
which defines 1° relatively to c, i.e., 1°(v) = c(v) + f(v).k°(v). Necessarily, there exists
v/ € [0,1] such that f is increasing on [0,V'] and we are using the Lemma 15 and show that

gcl and g are of opposite convexity relatively to I°.

From the last point, we obtained two boundary curves gcl and g® which are of opposite convexity
relatively to I°. From the Proposition 8, we can find a point x(u,v) € sd” such that k& (u,v) = 0.

That concludes the proof. [

We can now prove the following theorems:

Theorem 17. Let sd be an ordinary squared domain. If o(X) is constant and non-null for every
X € sd, then sd is right for GSP.
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Proof. It is obvious that every open set o C sd contains a sub-squared domain sd’ of sd. From the

o
previous Lemma, there exists at least one point x € sd’ C o such that k& (x) = 0. In other word, if

we consider the subset of sd:
Infl:= {x(u,v) € sd| k& (u,v) = 0} (5.6)

o X . .
and any open o C sd, then oNInfl # 0. Thus Infl is dense in sd and as k& is continuous for every
X . . . . . . 0 .
x € sd, then k¢ =0, i.e., g* is a straight line inside sd. This property can be extended to sd by
o

closure of sd. In conclusion, sd is right for GSP. O]

Corollary 18. Let S a C3-continuous surface which is projected on the open domain s of R? as it
has been defined in Section 1 and such that for every X € S, a(X) is constant. For every x € s, g*

is a straight line segment in s.

Proof. Let s be a domain of R? such that for every x € s, a,(X) is constant and non-null. Let us
consider: x a point of s, g* the GSP that passes through it, and x’ # x another point of g*. For
every y € g*[x,x’], there exists a squared domain sdy that strictly contains y, i.e., y does not lie on
the boundaries of sdy, and which is necessarily right for GSP as it is stated by Theorem 17. Thus,
K8 (v) = 0. As this latest statement is true for every point y € g, then g* is necessarily a straight

line segment. 0
Definition 19 (Coherence of a squared domains set). A set of squared domain Setq is said to be

coherent if:

1. U sdis a connected domain;
sdeSetq

2. For every sd, sd’ € Seteq, x € sd and x’ € sd’, there is at most one GSP which connects x to x’

and if this GSP exists, it is C2-continuous.

Theorem 20. Let S a C3-continuous surface which is projected on the open domain s of R* as it
has been defined in Section 1 and such that for every X € S, o(X) is constant and non-null. Then,

we can cover s with a finite and coherent set of squared domains that are right for GSP.

Proof. Lets x a point of s. As (X)) is constant, then there exists a squared domain sd, C s that is

right for GSP and which strictly includes x, i.e., x does not lie on the boundaries of sd,. Thus, the

o
interior of sd,, i.e., sd, contains x and:
o .
Setin := {sd, with x € s} (5.7
is a cover of s. As s is a subset of R2, which is compact, there exists a finite sub-set:
/ ° .
Set;,, := {sd, with x € Iy C s} C Set, (5.8)
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that covers s. Finally:

Setsy := {sd, with x € I} (5.9)

is a finite set of right squared domains that cover s. The coherence of Setq is a direct application
of the Corollary 18. 0

We notice that, as for every x € s, the elevation of G is constant, i.e., equals to % — o, then GX
is also a straight line. Let us now show that the surface S is covered by a finite and coherent set
of sand-pile surfaces portions. To do so, we will consider the finite and coherent set of squared
domain that cover s and use the fact that both the GS and GSP are straight line segment. It is clear

that the definition of coherence of a covering set is a valid definition for the subregions of S.

2) d p 9 d

d° Y

Figure 8: Zoom on sd. (1) Considering the circle C of center ¢’ and of radius |b— c'|, we cannot
find a point on |' such that a GSP links |° and |' and such that its length equals |g°[a,b]|.
(2) If 19 = 4, then b is the only point that can be built such that the previous condition
is hold. (3) In the case |° is between c and g°, then g' has not the same convexity than
g? relatively to |°.

6 General nature of surfaces corresponding to iso-o region

In Appendix II, Section 2.4, we gave the basic definition of ruled and developed surfaces. Those

objects will allow us to characterize the surface that is projected on an iso-o. domain with o non-
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null. We recall the definition of those surfaces [201]:

Definition 21 (Ruled surface). A C¥-continuous ruled surface S is a surface defined by the parametriza-

tion:

R> —» R’
(u,v) — X(u,v) =F°(u)+v.Fl(u), (6.1)

where F : R — R3 is a C*-continuous function and F! : R — R3 a C*-continuous function that

maps a real to a vector and such that F!(u) # 0.

dFY dF!

Definition 22 (Developed surface). S is said to be a developed surface if for every u € R: -, -

and F! are coplanar.

In this latest case, three kinds of developed surface can be identified depending on the relationship
between %, % and F! [201]: the conical, the cylindrical and the development of the tangent of
a curve. In this latest case, the curve is called the regression edge of the developed surface and the

parametrization of the surface can be written as:

R* - R’
(u,v) — X(u,v)=Fu)+v.—(u), (6.2)

with F : R — R3 a C*-continuous function.

Definition 23 (Sand-pile surface). The surface S is a sand-pile surface (or constant slope surface,
denoted SPS) of angle o if it is either a plane of inclination angle o, a circular cone of angle o or

a developed surface with a generalized helix of angle o as regression edge.

Theorem 24. Let S a C3-continuous surface which is projected on the open domain s of R? as it
has been defined in Section 1 and such that for every X € S, a(X) is constant and non-null, then S
is covered by a finite and coherent set of SPS.

Proof. As it has been stated in the Theorem 20, s is covered by a finite and coherent set of squared
domain (denoted Setsq) that are right for GSP. Let us consider sd € Setsq with 1 one of its LCP
boundary, v €]0,1[ and g” the GSP that passes by I°(v). From Theorem 17, g" is a straight line and
its corresponding GS, denoted G, is also a straight line and, by assumption, its slope equals 5 — .

We can define a parametrization of the surface patch which is projected on sd (denoted Sqq) by:
X(u,v) =L°(v) +u.G(v). (6.3)

with L the LC associated to the LCP I and G(v) the tangent vector of G'. Sy is a ruled surface.

Let us consider (T,K,B) the Frenet trihedron associated with L°. From Property 1, we know that
G and T are orthogonal. In addition, we notice that B « e3. We have:

G = sin(a).K+cos(a).B, (6.4)
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and:

dG dK dB

From the Frenet-Serret formula [198], we have:

dK

2 141t B, (6.6)

dv
and:

dB
- "k, (6.7)

o=
with TLO the torsion of L%, As LY is planar, then ’CLO =0and % = 0. From equation 6.5, we obtain:
dG LO
— = —sin(a).x .T 6.8
= sin(o) (6.8)
Thus fl—(v; and dd—"vo oc T are coplanar which implies that S¢q is a developed surface and as Z(G(v),e3) =
o for every v € [0, 1], S¢q is a SPS. Because this is true for every squared domain of Sezy, we obtain

a finite set of SPS which cover S and which is coherent. O]

In the case we have a sub-domain of s such that o(X) = 0, we know that it corresponds to a piece
of plane which is a degenerate case of SPS. Finally, we proved that to an iso-o. region of a surface
is necessarily corresponding a finite and coherent set of SPS which are developed surfaces (see
Appendix II, Section 2.5).

7 Conclusion

In Chapter 3, we saw that under specific assumptions on the camera direction, light source position
and material optical properties, the SFS problem can be thought of choosing throughout the whole
image a particular position for the normal on an uncertainty cone of angle o. In this chapter, we
investigated the properties of iso-0. regions of S, a C3-continuous and bounded surface defined by
its height function h, with a constant and non-null angle oo = Z(e3,N). This surface is projected
on an open and connected domain s of R? and its iso-o. regions are projected on the iso-intensity
domains of the photograph, i.e., the domain on which the uncertainty cones are constant. We

proved that those iso-0 regions are covered by a finite and coherent set of SPS.

To prove this, we analyzed the geometrical properties of the GSP for a given iso-o domain sg.
We defined the squared domains which are sub-domains of s defined by two GSP and LCP and
proved that squared domains were necessarily right if & is constant and non-null (Theorem 17).
Iso-o. domains can be covered by a finite and coherent set of right squared domains (Theorem 20)
and we proved that to each of those squared domains corresponds a surface which is necessarily
a SPS. Finally, we concluded that the iso-a region Sy, which is projected on sy can be covered by
a finite and coherent set of SPS (Theorem 24) even if o = 0. In other words, we generalized the

correspondence between isophote region and SPS introduced by Monge [197].
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As it is mentioned in Appendix II, Section 2.5, SPS are a geometrical generalization of the cone.
This recall the initial intuition of solving the SFS problem by vanishing the uncertainty cone and
this characterization of the iso-o regions of S will help us to propose a rigorous SFS method which
will generalize the idea of Peternell [196], and Dragnea and Angelopoulou [185]. We know that
an iso-o region of the surface is necessarily covered by SPS and we will use their properties to

propagate a SFS reconstruction along iso-a curves.
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Chapter 5

PROP-SFS propagation of sand-pile

surfaces along iso-Q regions

TLS scanner has been shown adequate to extract information of vegetation geometry such as LAI,
vertical profile, voxelized LAD or tree architecture. Yet researchers encountered limits to extract
geometries at organs scale with TLS distance data, especially with phase-shift LIDAR technology.
This is due to the complexity of plant canopy and the consequent large quantity of outliers points
present along the edge of the organs. Intensity data is an extra data provided by most of TLS
today. The intensity information has been used for 3D scans segmentation [26] or scan registration
[202]. Here, we investigate the potential of intensity information in order to alleviate the difficulties

brought by outliers.

SFES consists of using the intensity of a surface photograph to estimate the third coordinate, i.e.
the height, of every point of this surface. In Chapter 3, several techniques of SFS techniques have
been introduced. Those methods can be classified in two main categories: the global methods
(GLOB-SFES) and the propagation methods (PROP-SES). We sought to use SFS method for TLS
outliers correction to retrieve object surface. Because the configuration and the availability of the
data, we chose to develop a PROP-SFS method. Inspired by the works of Peternell and Steiner
[196], and of Dragnea and Angelopoulou [185], we investigated the properties of iso-o surfaces
and prove that smooth iso-a surfaces are necessarily sand-pile surface. In this chapter we will use
those surface properties and propose a PROP-SFS algorithm to reconstruct surfaces along iso-o

domains of a-photograph of surfaces.

1 Pipeline principle

Let S be a surface and [ its intensity photographed as specified in Chapter 4. We call oo = R~ (1)
the a-photograph of the surface (Figure 1-1). The a-photograph is first simplified as a set of
quantized iso-o. domains (Figure 1-2). Each domain with constant o is bounded by either one, two
or more close curves: seeds are bounded by one iso-at curve and iso- regions encircling a seed

are bounded by two curves [159], an inner (IC) and the outer curve (OC). Their projection are
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respectively called the inner (ICP) and the outer curve projection (OCP). Our idea is to propagate
the geometrical 3D reconstruction of the surface, starting from the seed regions whose OC are
known (Figure 1-2, in pink), and iterate SPS construction outwards on adjacent iso-o regions
(Figure 1-2, in green).

In the following, we will propose a PROP-SFS algorithm pipeline to reconstruct surfaces along

iso-a regions and that will have the following components:

1. Iso-o0 domain chains extraction: each seed can be associated with a set of encircling iso-o

domains that are used to define the propagation.

2. Seed-based initialization: the propagation starts from the 3D values associated with the seed
OC.

3. SPS propagation: the consecutive 3D values recovered by the reconstruction are used to

define new SPS sets.
1) . 2)

l r—' IC=0C,4

ICP= OCP,.,

OCP

Figure 1: 1) The surface S and its o-photograph s. 2) The a-photograph is simplified. Zoom on
an area: the seed (in pink) encircled by an iso-o. domain with its ICP and OCP. SPS
surfaces reconstructions (in green) is used to estimate regions of S.

2 Pipeline description

2.1 Input data

Two types of matrices are output by the LIDAR device: (i) an a-matrix M of size N x M composed
of pixels representing the o values of the imaged surface, and (ii) a h-matrix M" with identical di-
mensions representing the distance values recorded by the LiDAR. Points in the considered image

domains will be referred as either a pair of integers (i, j), or as a pair of real numbers x = (x| x7)
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depending on whether discrete or continuous quantities are considered. The map sc to pass from

one description to the other one is defined as:

sc: [O,N]x [0,M] — R?

. ) ) (2.1)
(i,7) = (x1=ar.i+b1,x2=az.j+by),

where ay,by,a; and by are parameters associated with the LIDAR. The two matrices M*, M h and
the map sc are the three inputs of our algorithm. Note that M* and M" are actually pre-processed
versions of the corresponding LiDAR raw matrices (to correct distance effect and noise on raw

intensity data, and to perform o value calibration as detailed in Chapter 6).

2.2 Iso-0. domain chains extraction

A first component of our pipeline is applied to the matrix M® to output ordered iso-o. domains

encircling the seeds. This component is composed by three modules:

1. Quantization
2. Segmentation and chain extraction

3. Boundary curve extraction

Quantization. The first step is to construct iso-a domains. For this, a set Vo, = {0, ..., O, ..., 0, }
of n+ 1 increasing values o; € [0,7/2] is defined, with o, = 7t/2. An iso-o domain s’ of value o;;

(with i € 0,...,n) is the sub-domain of M® such that for every x € s

o1 <akx) <o if0<i<n |, 2.2)
O<ax) <oy ifi=0. (2.3)

Let us also define the max-o domains § with:

§= U " (2.4)
0<m<i
Segmentation and chain extraction. In a second step, the o--matrix is split into sub-domains

such that each of the produced domains contains at most one iso-o. domain of value o; (Figure
2-2).

Let us assume that a domain s contains a set of K disjoint sub-domains that we want to segment
into K parts so that each sub-domain is in its own part. For this, we use a watershed algorithm [203]
where seed regions are defined by those K sub-domains. As an output, the watershed algorithm

produces a partition of the original domain s in K parts {ry,...,rx } as illustrated in Figure 2-2.

Using this core procedure, our segmentation algorithm consists of segmenting recursively the orig-
inal ai-matrix in disjoint parts based on the watershed seeds &' corresponding to decreasing values

of a;. At each iteration step i, starting from i = n, the segmentation algorithm is applied to each
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part r produced at the previous step. Initially, r is the greatest domain represented in M*. To this
aim, only the portion of the watershed seeds contained in r, i.e., 5! Nr, are used. The output of
this segmentation is a partition of r into K parts, {ri,...,rx }, on which the segmentation algorithm
can be iterated. The algorithm terminates when i = 0 (Figure 2-3). The final partition resulting
from the overall execution of this algorithm is denoted £ = {o1, ...,0x } such that each part 6, € £
contains only one propagation seed. If s}'C denotes the iso-at domain of value o; presents in Gy, i.e.,
s}; = s/ N oy, then {s};}i form a chain [204] of iso-a domains at an increasing large distance from
the propagation seed. This ordered chain is used in the sequel to propagate the reconstruction from

the seeds outwards.

Boundary curve extraction. The OC of an iso-a region (i.e., on the surface) is built from the
propagation of GS that are reconstructed with the iso-o region IC. Yet it is necessary to extract the
corresponding 2D curves (i.e., ICP and OCP) from M%. This is done in several steps: (i) Binary
morphological operations make it possible to extract the pixels representing those curves [205] (see
Appendix III). (ii) From these pixellated curves, a 4-connected path is constructed and a Freeman
code is extracted [206]. (iii) An Euclidean path algorithm is then applied to approximate the curve
and to provide estimation of curve tangents [195] (Figure 2-3). (iv) Finally, the value of the curve

points and tangents are placed in the correct reference frame using sc (Equation 2.1).

The iso-o0 domain chains extraction component thus computes an ordered chain of iso-at domains
and the related ICP and OCP curves.

Figure 2: 1) Quantified M%*. 2) M* segmentation process at step i and i — 1. 3) M®* segmented,
seeds (in pink) and iso-o. domains contour. 4) Ordered chain of G;.

2.3 Seed-based initialization

To start the reconstruction, it is necessary to initialize the seeds and their OC. To do so, a second

component with two modules is applied to the seeds extracted from M* and the ~-matrix M":

1. Seeds 3D initialization

2. GS sign function initialization
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Seeds 3D initialization. Each point height of the seeds are initialized with the height matrix M",
i.e. for every point x € s, h(x) = M"(x). Similarly, 3D values are associated to each point of the
seeds OCP. If noise, a low-pass filter is applied to estimate the OC shape [207]. The tangents 7" of

the 3D curves as well as their elevations Y and sign function sg(7y), defined as:

1 if Yx > 0,
sglyx) == 0 (2.5)
else.

are also initialized with M".

GS sign function initialization. In order to compute the GS direction from the iso-a region IC,
it is necessary to know their orientation (upward versus downward). A local least square regression
is computed on M" along the seed OC to determine the local surface normal and associated GS.

From this computation, we can extract ¢, €] — m, nt] the azimuth of the GS and:

+1  if ¢ >0,
5g(0x) =<0  ifd,=0, (2.6)
—1 if ¢, <O.

the GS sign function of the seed OC. When sg(0,) is null, then we say that x is a toggle point. This
sign function is used to determine the propagation orientation of the GS estimated from the iso-o

domains.

2.4 SPS propagation

The two previous components of the PROP-SFS pipeline provide a chain of iso-a0 domains with
their boundary curves and the 3D seeds OC. In the following, we will establish the core component
of our PROP-SFS pipeline: the iso-ot domains of the chain will be browsed and consecutive 3D
1so-a regions of the surface will be reconstructed with the linear propagation of SPS GS. Yet
the surface a-photograph pixelization and simplification for the iso-ot domains extraction, raises a

number of issues that might be encountered during the surface reconstruction:

* ICP and OCP crossing: Consecutive ICP and OCP can be very close and touch each other
due to discretizing (Figure 3-1). In this case, the curve estimation may interpret that the

curves are crossing each other. On such point, the GS is neither constructed nor propagated.

* GS and GSP divergence: the reconstructed GS are propagated from a given iso-o. domain
IC in order to reconstruct the 3D values of the iso-o0 domain OC. Yet two consecutive GS
and associated GSP can diverge and a portion of the OC (Figure 3-2.i) and the area defined
by the two GS and this portion are not reconstructed. We use the SPS equation parameterized

by the two consecutive GS to interpolate the surface between those points.
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* GSP crossing: two consecutive GSP can converge and cross each other (Figure 3-2.i1). A

buffer value should be used to replace the computed point of OC by the last well computed

point.

* ICP concavity: concavity shape of ICP makes higher the chance that a GSP crosses either
another GSP (Figure 3-2.iii) or itself (Figure 3-2.iv) before the targeted OCP. Similarly to

the last point, a buffer value is used.

* Singular and toggle points: Singular points are factors driving the local surface shape and

consequently, the orientation of the SPS propagation:

e If the 3D boundary curve of a surface iso-a region is encircling a summit or a sink

Figure 3:

point, GS have a constant orientation along this curve, i.e., downward and upward,

respectively (e.g. Figure 3-3.1). Those GS are propagated linearly.

If it is encircling a saddle point, the GS has an orientation that goes alternatively upward
and downward (Figure 3-3.ii) and that makes the curve containing toggle points. When
SPS are propagated outwards from this iso-o region, SPS regression edges touch the
curve on those toggle points, and define an area not covered by the propagation (see
zoom in Figure 3-3.ii). In this case, we cannot use SPS surface. We rather use level

curves, i.e., LC, direction for the propagation. We make the assumption that they can

be propagated linearly.

1. Curves of the iso-o. domains that are close: the extracted curves can cross. 2. i)
GSP divergence;, ii) GSP crossing; iii) two GSP built in an ICP concavity can cross, iv)
a GSP built in an ICP concavity can cross this ICP. 3: i) Iso-o. domain encircling a
summit point. Propagation goes downward (black); ii) Saddle case: the propagation is
either downward (black dashed arrow) or upward (pink dashed arrow). Orange point:

toggle point. In green: real GS curves.

Those scenarii should be taken into account in the different SPS propagation components. This

SFES propagation is decomposed in seven main components:

1. Curves crossing inspection
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2. GS and LC vector construction
3. GS and LC vector propagation
4. Propagation line crossing

5. Surface construction

6. OC tangent updating

7. Propagation orientation updating

We denote by Ay and Ay, the IC and the OC of S*, and by ag and ay/, the ICP and the OCP
of s%, respectively. The ICP aq, will be traveled counter-clockwise. Each consecutive points x of
ag and corresponding 3D point X of A (called the current points) will be considered to build,
respectively, the GSP and GS direction. We want to reconstruct the point X’ and x” of Aoy and ay

with the reconstructed GS and GSP direction, respectively.

Curve crossing inspection. We test if the current point is a crossing point, i.e., if x of a is either
in ay or outside the iso-o0 domain defined by its IC and OC. In this case, no propagation of the
GS is carried out. Yet the previous reconstructed point does not necessarily correspond to a curve
crossing point and there is still an empty OC portion and an empty iso-0 region area defined before

x. The SPS construction in those zones should be processed.

GS and LC vector construction If x is not a crossing point, a vector is constructed from X.
If this point is not a toggle point, we can use the property given in Appendix II, Section 2.2, to
construct a SPS GS vector, denoted G¥ (Figure 4-1). To do so, we first construct the GSP, denoted

g, with the following formulas:

o = s0).(seCr )5 acos (M0 ) ), @)

tan(|o)

[ cos(¢x) —sin(dx)
8 ( sin(0x)  cos(dx) )jx’ (28)

where ¢, is the tangent of ag at x, Yy the elevation of this tangent, ¢px the azimuth of g, relatively to
1y, i.e. Ox := Z(ty,g,), and sg their sign function. The GS vector GX is then simply deduced from

Gy — ( cos(Q).g, ) . (2.9)

(0.
—sin(o)

If X is a toggle point, we cannot define SPS to fill the adjacent space of the iso-a regions. Instead,
we use the LC tangent (denoted LX on X). As Gy o Tx and LX | Gy (see Appendix II, Section

2.1), thus we can construct LX from Tx.
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GS and LC vector propagation. In the case X is not a toggle point, we can use SPS properties:
GS and GSP are straight line portions within the iso-o regions S* and the iso-o. domains s%,
respectively. For a given point x € ay, we can use the vector g, to build the GS line g* and deduce
x' = ay Ng* (Figure 4-2). The point X’ € Ay is constructed with the following formula:

Ad
cos(Q)

X' =X+ .Gy, (2.10)

with Ad the distance between x and x’.

In the case X is a toggle point, we use a similar formula to propagate Ly, that drives the LC line
LX:
X'=X+Ad.Ly, (2.11)

Propagation line crossing. In the propagation, the two following cases can occur:

¢ Because ICP concavity, g* or I crosses ag between x and ', i.e. [x,x']Nag # 0

e g" or I* crosses another GSP or LCP line between x and x’ i.e. Jy € ag and y’ € ay such that

[v,y'] is a reconstructed surface segment and [x,x'] N [y,y’] # 0.

To address these issues, we designed a simple correction strategy. This consists of storing the last
point X; of OC correctly reconstructed. Then for the current point x of ICP, if either one of the
above condition holds, then the theoretical value X’ of OC as defined by equation 2.11 is discarded
and replaced by value X, i.e., X' :=X.

Surface construction. In this chapter, we used SPS GS linear property to build a SFS method
to propagate surface reconstruction. We will now interpolate the iso-a regions with SPS portion.
Two consecutive lines propagation can lead us to miss a curve portion of Ay and the area defined
by those two lines are not defined. If X is not a toggle point, we fit the surface portion defined by
Ag, Ay, GXe and GYe with a SPS surface. This surface can be either (see Appendix II, Section 6):

* aplane, in the case where GX and GY are collinear;
* acone in the case where GX and GY cross on a point (the apex of the cone);
« or a circular SPS in the case g* and g cross but GX and G¥ do not cross.
Choosing plane interpolation is a reasonable strategy as GS lines stay close enough to make local

interpolation with plane. At the current stage of our PROP-SFS algorithm development, SPS are

considered planar.

In the case X is a toggle point, the uncovered region is interpolated with a plane portion defined by

the surface normal on X. Such as for the computation of LX, we compute the normal from T'y.
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OC tangents updating. Once the point X’ is determined, it is necessary to update the associated
tangents Ty in order to propagate the GS reconstruction along the next iso-o regions, i.e. to use
the Formulas 2.7, 2.8, 2.9 and 2.10. A naive reconstruction of Ty is to use a neighboring point
Y’ € Ay of X’ and to deduce Ty’ by combining ¢y together with the height of X" and Y. As Y’ is
projected on y which is estimated from Gy, that makes the computation of Ty, dependent on Gy,

ty and Gy. Because the discrete nature of the points, this solution is not optimal.

If we consider the generalized cylinder defined by a which contains Ay, then its normal on X' is
equal to ky, the principal normal of a, on x’ because the cylinder property of developed surface.
With this normal computation, we can use the proposition introduced in Appendix II Section 2.3

to make a finest estimation of 7 x/:

Ty = sgn(x'). (kxl X NX/) s (2.12)

where Ny is the SPS normal on X’ directly deduced from Gy, and:

+1 if L(tye, k) > 0,
sl =y (k) (2.13)
— clse.

Because the normals of a SPS are constant along the GS, Ny is directly deduced from Gyx. The
principal normal k, is directly deduced from the estimation of ¢,,. With this property, the compu-
tation of Ty depends on Gy and ¢, (see Figure 4-4). Similarly, the tangent can be updated with

Formula 2.12 on the plane associated with toggle points.

GS sign function updating. Because the propagation of Ly from a toggle point does not nec-
essarily build another toggle point on Ay, the new toggle points of A, are updated once all the
points of OC have been reconstructed. To do so, the algorithm seeks for a local maximum of yyx/
(i.e., the elevation of T'y/) or points for which yx» > o in the neighborhood of the point X’ that
have been constructed from a toggle point of Ay. Then, on each side of a toggle point, the last

orientation is sought to update completely the GS sign function sg(0) .

2.5 Algorithmic set up

Our PROP-SFS pipeline can be summarized as follows (see Figure 5). First, we produce the
1so-a chain of iso-at domains with associated boundary curves (see Figure 5-1): (i) the o-matrix
M% is quantized to construct iso-o. domains, (ii) it is then segmented as a set of sub-domains
¥ ={oy,...,0k}, and (iii) the boundary of the iso-a domains are extracted. Then, we proceed to
the seed-based initialization: (i) the seeds height, and (ii) the GS sign function of their OC are
initialized with the height matrix M" (see Figure 5-2). Finally, we apply the PROP-SFS algorithm
for every seed oy € X and associated chain G° (see Figure 5-3).

To iterate our iso-0. region reconstruction, we consider the iso-o. domain s’ along decreasing i €

{0, ...,n} the index associated with Vo, = {0, ..., @, ..., 0, }. Those iso-oe domains have associated
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Figure 4: (1) Gx and g, are built from Ay. (2) Propagation of g, and construction of X'. (3) A
SPS is generated between two consecutive points X and Y of Aq. (4) Construction of
T x with the cylinder Sy and the SPS.

ICP and OCP respectively denoted a’ and a’t!. The IC, denoted A, height values are known and

we want to construct the OC denoted by A'T!. We travel a’ and A’ counterclockwise, and consider
i

. . j . . .
X j’.H e A1 is reconstructed with the linear propagation of G, i.e. the GS that passes by X J’ (or Llj

consecutive x; and X J’ point, with increasing j. As it has been described in Section 2.4, the point

in the case of toggle points). Algorithm 5.1 gives details on the algorithmic procedure.

Three versions of our PROP-SFS method are available:

1. SFS-Simple with a GS propagation without area completion with SPS. This version only
takes into account the stages 2, 3 and 6 of the Algorithm 5.1 (Figure 5-3, in white);

2. SFS-SPS that uses the SPS (in our case, planes) properties to complete OC and iso-o. region
area reconstruction. Compared to the SFS-Simple, this version takes into account stage 5

(Figure 5-3, in green); and

3. SFS-Buffer that manages curves and GS crossing. Compared to the two previous version,

stages 1 and 4 are included (Figure 5-3, in blue).
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Algorithme 5.1

First point: If j = 0, then the algorithm is run until a first point X ;“ of Ai*1 is constructed, i.e.
Xt =x{" and j=j+1.

1. Curve crossing inspection: If x; € a’Na’*! then X;“ = X} and we go to step 5. If not, then
we go to the next step.

2. GS and LC vector computation:

If X! is a toggle point:
We build L’J
Else:
We construct GZ. with the method previously described.
i+1

3. GS and LC vector propagation: The candidates X]’:H and corresponding projection x'"" are

constructed with the linear propagation of G; or L’]

4. Propagation line crossing

a) Propagation line crosses the ICP: If [xi-,x;“] Na' #0, then X ;“ =X..
b) Consecutive propagation lines cross: If [, "\ ]N[x/ x"*1] £ 0, then T'! = -7

5. Surface construction :

if X! is a toggle point:

The surface portion between IC, OC, [X}q ,XJ’J_FH and [X J’:,X]’:“Ll] is fit with a plane.

else:

The SPS is constructed between IC, OC, [X ;_1 X ]’ﬂ] and [X ]’:,XJ’:“].

6. OC tangent updating: The tangent TS-“ is updated with G;“ and tiill .
Next point: Increase j, i.e., j = j+ 1, and go back to 1.

GS sign function updating: Once every points X]’-H of A1 are constructed, sg(¢) is updated.
Next o i is increased until the root of the chain is reached.
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3 Pipeline analysis

The algorithm has been implemented in Python with the following libraries: Numpy (matricial
and algebrical operation); Scipy (image processing); Scikit-learn (linear regression); a watershed
algorithm from VPlants’ Asclepios library (segmentation); Matplotlib (2D plotting); and Ope-
nAlea.PlantGL (mesh data structure and display). In the following, we will make: (i) a com-
parison between the three versions of our propagation algorithm, (ii) a short investigation on the
segmentation module, (iii) a sensitivity analysis on the reconstruction, and (iv) an analysis of its

complexity.
We define the average error € of the reconstruction as the error between the computed distance d
and the real distance d divided by the total height of the surface h;o; = hinax — min, 1.€.:

d—d

€= .
hyor

(3.1)

The absolute error || (in %) is the absolute error between the computed distance d and the real

distance d divided by the total height of the surface %, i.e.:

(3.2)

The error matrix is the matrix representing the absolute error for each pixel, and the error distribu-

tion is their distribution.

3.1 Propagation algorithms comparison

Ellipsoid. An ellipsoid of principal diameters 30, 15 and 10 and with an elevation angle of /8,
and a roll angle of /6 (Figure 6-1.i and iii) is used to study the completion of the OC portion with
the SPS. The a values to quantify the oi-matrices are chosen such that they represent 10% of the
domains (Figure 6-1.i1). Figure 6-2 shows the mesh of the ellipsoid reconstructed with the three
versions of our PROP-SFS algorithm. Due to GS divergence, the propagation misses OC points
that makes the reconstruction incomplete (Figure 6-2.i). The use of SPS surfaces in the SFS-SPS
and SFS-Buffer algorithm is shown to be an important step to obtain complete surface recon-
struction (Figure 6-2.11 and iii, respectively). In this particular example, no significant difference

between those two last reconstructions is visible.

Mozart’s eyes. Mozart’s eyes (Figure 7-1, data extracted from [208]) are reconstructed with the
SFS-SPS and SFS-Buffer algorithm (Figure 7-2.1 and iii, respectively). The 2D curves extraction
are shown in Figure 7-3. On the top of Mozart’s forehead, curves are crossing (Figure 7-3 zoom).
Those crossings are not taken into account with the SFS-SPS method: outlier triangles appear on
those crossing points (Figure 7-4.1). Those triangles induce outlier points in the point cloud recon-
struction (Figure 7-2.i1). The SFS-Buffer method avoids those triangles production and makes the

point cloud reconstruction with less outlier points, and thus more realistic (Figure 7-2.1v).
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Figure 6: (1) Inclined ellipsoid: (i) o-matrix, (ii) iso-o. domains, and (iii) distance matrix. (2)
Reconstruction: (i) SFS-Simple, (ii) SFS-SPS, and (iii) SFS-Buffer.

Figure 7: (1) Mozart’s eyes: (i) o-matrix, (ii) distance matrix, and (iii) original point. (2) Recon-
struction: (i) SFS-SPS mesh, (ii) SFS-SPS point cloud, (iii) SFS-Buffer mesh, and (iv)
SFS-Buffer point cloud. (3) Iso-a. domains and zoom on the crossing curves. (4) Zoom
on the mesh: (i) issues brought by the crossing curves (SFS-SPS), (ii) the issue is solved
(SF'S-Buffer).
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Complex surface. Finally a complex surface is built to test completely the SFS-Buffer method.

This surface has the following equation (Figure 8-1):

1 . T, ..y T
z = E.(4.sm(x).c0s(y) +3.cos(2x+ g)sm(i + g)
+2.cos(’3ﬁ).sin(4.y) +4.cos(2.x).sin(y)) (3.3)

The reconstructions of this surface with the SFS-SPS and SFS-Buffer methods are shown in Fig-
ure 8-3. Issues brought by curves concavities (Figure 8-4) are not taken into account with the
SFS-SPS method. The mesh reconstruction generates several crossing triangles (Figure 8-5.1).
Consequently, a large amount of outlier points are generated with this method (Figure 8-3.ii). The
SFS-Buffer method reduces those triangles crossings, especially on ICP concavity (Figure 8-5.ii)
and the generated point cloud has less outliers (Figure 8-3.iv). The number of point generated per
pixel (Figure 8-6) shows that the SFS-Buffer method is more efficient than the SFS-SPS method.
Yet multiple points reconstruction per pixel is still an issue as crossing curves is not entirely man-
aged. For instance, mesh triangles can cross OC (Figure 8-5.i1). This type of crossing is not
taken into account in the SFS-Buffer method. In the following, only the SFS-Buffer version of our
PROP-SFS pipeline will be used.

I I
mSFS-SPS

o |
80% mSFs-Buffer

60%

40%

Number of point (%]

20%

0% _._ l_‘_J__

0 1 2 3 4
Points reconstructed per pixel

Figure 8: (1) Complex surface: (i) o-matrix, (ii) distance matrix and (iii) original point cloud. (3)
Reconstruction: (i) SFS-SPS mesh, (ii) SFS-SPS point cloud, (iii) SFS-Buffer mesh and
(iv) SFS-Buffer point cloud. (4) Iso-o. domains. (5) Zoom on the mesh: (i) SFS-SPS and
(ii) SFS-Buffer. (6) Number of reconstructed points per pixel.
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3.2 Segmentation

When there are several seeds, our PROP-SFS algorithm segments the o-matrix. Because propa-
gated errors [163], the further the propagation from the seed, the larger the reconstruction bias.
This makes the joint between the segmented surface regions not necessarily consistent. In Figure
9-1 and 3, a surface with several sinks, summits and saddles points has been constructed. The seg-
mentation generates height matrix domains (Figure 9-2). The reconstructed distance matrix shows
the shift between the different region reconstructions (Figure 9-5). The mesh (Figure 9-6) and the
error matrix also shows this shift, especially on the points joining the four largest surface regions
(Figure 9-4, red frame).

Figure 9: Surface with several seeds: (1) a-matrix, (2) segmented domains and their iso-o. do-
mains, (3) distance matrix, (4) error matrix, (5) matrix of the reconstructed distance,
and 6) reconstructed mesh.

3.3 Sensitivity analysis

Several parameters should be taken into account to reconstruct surfaces with our PROP-SFS al-
gorithm: matrix size, number of o values taken into account in the quantification, o and distance

values quality. In the following, we will test the impact of those parameters using simple examples.
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3.3.1 Quality of the o values and smoothing

Three synthetic hemispheres with noise of amplitude £1.4°, £2.8° and £5.7° are generated to
study noise impact on the reconstruction (Figure 10-1). Each of the associated o-matrices are
smoothed with a neighboring averaging of kernel 1. This smoothing process is applied 1, 2, 3, 4,
5, 10, 20, 30, 40, 50, 60, 70, 80 and 90 times. The o values to quantify the a-matrices are chosen
such that their area represent 20% of the total domain area. They are called the quantification

percentile and are denoted by €.

Error distribution (Figure 10-2) shows that if the smoothing method is applied between 1 and 10
times on the ai-matrices with noise amplitude of +-1.4° and 4-2.8°, or between 2 and 10 times for
the ai-matrices with noise amplitude of 5.7°, then the majority of the reconstructed point (> 95%)
have an absolute error lower than 5% of the hemisphere radius and this error does not vary much.
Figure 10-3 shows the error matrices of the a-matrix with noise amplitude of +5.7° and with
the different smoothing value. This figure confirms that the application of the smoothing method
between 2 and 10 times does not change the global distribution of the error. Yet if the method is
applied 20 to 70 times, the reconstruction becomes more accurate. It loses accuracy with a larger
number of application though (>80). In addition, the local distribution shows a non-symmetrical
pattern for an application of 2, 3 and 4 times. This is the consequence of an incorrect extraction of
the iso-a curves. After a fifth smoothing application, the local distribution becomes symmetrical.
In the case the smoothing procedure is not applied, the hemisphere is not reconstructed entirely
(Figure 10-3, first matrix), and error distribution is not good (Figure 10-2).

Bias of -7°, -3.5°, 0°, 3.5° and 7° on the o values of an hemisphere o -matrix without noise have
also been tested. Figure 10-4 shows the average error for each of the reconstruction (plain curve) in
addition to the error between the real hemisphere area and the reconstructed surface area (dashed
curve). Results show that an increase of the o values decreases the average error that makes,

consequently, the reconstructed surface area closer to the real area.

Finally, hemisphere a-matrices with and without a bias of 7° and with noise amplitude of 42.8°
are generated. As it has been previously shown, the average error decreases with the application of
the smoothing method for both with (dashed curves) and without (plain curves) the bias on the o
values (Figure 10-5). In the case of matrices without bias, this error is positive and the application
of the smoothing method improves globally the reconstruction. In the case of a bias, this error
becomes negative after 20 applications of the smoothing method. The two curves represented here
are similar to a constant value which suggests that an o value bias translates the average error in

the case of the hemisphere reconstruction.

3.3.2 Size of the a-photograph and quantification

Synthetic hemispheres of radius 20 represented in o-matrices of size 25, 34, 41, 47, 53 and 58
pixels are generated to study the impact of matrix size and o quantification. The o values of those

matrix are either biased (Ao = +3.5°) or non biased. Quantification percentile are chosen such
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Figure 10: (/) Hemisphere o-matrix with noise of +1.4°, £2.8° and £5.7°. (2) Error distribution
for the reconstruction of the hemispheres with different number neighboring averaging.
(3) Error matrices for each step of the smoothing method. (4) Average error (plain)
and area error (dashed) of the reconstruction of the hemisphere with biased o. (5)
Average error of the reconstruction for different value of smoothing application and
with non-biased (plain) and biased (dashed) a-matrix.

that they represent 5%, 10%, and 20% of the domains, and the seeds are chosen such they have
a constant quantification percentile of 20%. Figure 11 shows the iso-at curves extraction (in red)
with error matrices for the reconstruction carried out on the a-matrices with and without bias.
This figure shows that the reconstruction quality depends on the matrix resolution but also on the

o values chosen for the quantification.

Iso-a curves reconstruction depends on the o-matrix resolution. This reconstruction is of lesser
quality when the resolution is low. For instance, those curves are not perfectly circular for the
matrices of size 25, 34 and 41 pixels. They rather have a polygonal shape. Conversely, the matrices
of size 47, 53 and 58 pixels provide a better curves estimation: their polygonal shape is smoother.
Consequently, the pattern of the absolute relative error matrices shows irregularity on the vertex
of those polygon. For instance, the matrix of size 41 with a quantification percentile of 20% looks
like a star with height spikes. The error matrices of size 47, 53 and 58 pixels have also spike like
shapes, but those spike are more distant from the seed. This pattern is also induced by the use
of planar SPS instead of conical or circular SPS. Polygonal shape of the iso-o curves makes GS

divergence larger and consequently, the region that should be filled by those planar SPS become
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larger. That amplifies the error made by planar SPS interpolation.

The accuracy of the iso-a curve extraction affect IC and OC estimation and initialization. If those
curves are incorrectly approximated, GS estimation is of low quality and an error is propagated.
In addition, the more o values are taken into account in the quantification, the more this error is
amplified. For instance, the reconstruction of the hemisphere from the a-matrix of size 25 pixels is
better with a quantification percentile of 20% than with a quantification percentile of 5%. However,
the distance between two consecutive iso-o curves prevails over their accuracy if well extracted as
it is the case with higher resolution o--matrices. For instance, a quantification percentile of 20%
provide a lesser quality reconstruction with the matrix of size 58 than a percentile of 10%. If this
percentile is too low (e.g., 5%), the amplification of the error due to the number of curves met

during the propagation is visible at the rim of the hemisphere silhouette.

Bias of the a values can help to compensate the propagation error. For every resolution used in
this study, error matrices have the same pattern when the hemisphere is reconstructed from both a
quantification percentile of 10% without bias and a quantification percentile of 20% with a bias of
3.5°.

In conclusion, both the size of the a--matrix and the quantification percentile affect the hemisphere
reconstruction. If the matrix is small, the percentile should be large to avoid error propagation due
to the low accuracy of the iso-a curve extraction. Conversely, if the matrix is large, this percentile
can be small. In the case of a high resolution together with a large percentile, a bias in the o values
can be used to compensate the propagation of the error due to the distance between consecutive

1SO-0L curves.

3.3.3 Low-pass filter parameter

The seeds OC can have noise and it is necessary to use method in order to extract correct 3D
representation of their boundary curve. Noise is generally represented with high-frequency values
whereas the curve signal, i.e., its shape, is rather represented with low-frequency values. In our
pipeline, we have implemented a low-pass filter [207]. This filter consists of expressing the curve
in the Fourier domain and to only keep the frequencies that are lower than a given bound, the cutoff
value. Low-pass filter consists on keeping only those low-frequency signal. For instance, if a curve
have a sinusoidal shape of frequency 1/2 and noise of frequency 1, a low-pass filter with a cutoff
value of 1/2 can be used to extract the sinusoidal shape of the curve. If the noise has a frequency
of 1/2 or less, then this filter is not adapted. In this way, assumptions on curve shape should be
made to extract it correctly. For instance, if a curve is encircling a saddle point, then this curve has
also a saddle shape, i.e., the shape of a sinusoidal with two peaks. If this curve has a length of /,

then it has a sinusoidal period of //2. A low-pass filter with a minimal cutoff value of

Smin=2/1 (3.4)

can be used to extract this curve. Similarly, if this curve is encircling a monkey saddle, i.e., it has

a shape of a sinusoidal with three peaks, then a cutoff value of f,,;;, = 3/ can be used.

123



M,
J — i h
Ao=0 f 4
[
Ao =3.5"
/' ._?_-_. " l
%a=10% ::1 W
N—
Ll
Ao = 0" _
=35 | W
S
%a=20% :
" gy )

Figure 11: Iso-o curves of the hemisphere (in red) represented in a O--matrix with a size of 25, 34,
41, 47, 53 and 58 pixels and with a quantification percentile of 5%, 10% and 20%. The
seeds have the same size (black area). Error matrix of the reconstructed hemisphere
with o-matrix without and with biased o, (Ao = 3.5°).
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Three saddle surface are generated with noise amplitude on the distance 10% the total surface
height. When their seed curves are extracted, the noise is of larger frequency than the curve
frequency. Those three saddle surfaces are represented as matrices of size 25, 50 and 75 pixels
(small, medium and large). The seed 2D curves are supposed to be circular, and they have an area
of 88, 376 and 857 pixels and a perimeter length / of 33, 68 and 103, respectively. We use the
Equation 3.4 to define the low-pass filter cutoff value. Those have a value of 0.061, 0.029 and
0.019, respectively.

Figure 12 shows the reconstruction of the three saddle surfaces together with the distribution of
their absolute relative error for the three low-pass filter cutoff values. If the filter bound is too
large, the noise is kept in the 3D representation of the seed OC (e.g., the value 0.061 for the large
saddle surface). If this value is too small, the seed OC is flat and the reconstruction is affected
(e.g., the value 0.019 for the small saddle surface). That shows that the choice of a good parameter
is necessary to have a correct reconstruction. For instance, the bound value 0.061 is more adapted
for the small saddle reconstruction than the value 0.019. This improvement is visible both in the
error distribution and in the visual representation of the surface. In term of absolute error, a larger

filter boundary make less perturbation in the accuracy of the reconstruction.
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Figure 12: (1) Error distribution of the saddle surface reconstruction low-pass filter of cutoff value
0.019, 0.029 and 0.061 from a small, medium and large o-matrix. (2) Mesh of the
reconstruction.

3.3.4 Quantification and saddle point

In Section 3.3.2, we tested several values of quantification to reconstruct a hemisphere (case of a

summit point type). In Section 3.3.3, we tested several low-pass filter cutoff values to reconstruct
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saddle surfaces. We will now apply our algorithm with several values of quantification percentile

on a saddle surface with a lesser symmetrical shape than in the previous section.

The saddle surface that is reconstructed is extracted from the synthetic vase example given by

Durou et al. [169]. This vase is defined by the equations:

1
flx) = m.(—138.24.x6 +92.16.x° +84.48.x* —48.64.x° —17.60.x> +6.4x+3.2)  (3.5)
1

x)2—y*)? if f(x)2 >)?
o (f(x)* =) fx)* =y 3.6)
0 else

To extract the vase col, i.e., its saddle area, we consider x € [—5.54,—1.27] and y € [—2.2,2.2]
(Figure 13-1).

The quantification percentile used are 20%, 10% and 5% with seeds of percentile 20%. The recon-
struction of this saddle surface shows that the use of a small percentile decreases the local absolute
error (Figure 13-3) and improves the reconstructed shape (Figure 13-2). In the error matrices, the
corner of the surface are better reconstructed if the percentile is lower (Figure 13-3.iii) and the
shape is more realistic. Yet on this corner the shape has the tendency to diverge from the real
shape. This might be due to a bad management of the toggle point in this case: those ones are
points that indicates a change in the GS propagation, yet in this vase col case, those GS keep the

same orientation.

3.4 Complexity

The developed PROP-SFS method requires several pre-processing before the running of the prop-
agation of the reconstruction. Surface domains segmentation, construction of the iso-o. domains
chain and seeds OC initialization are important steps. The smoothing of the o-matrix could be
necessary in case of noise and requires variable computing time. Finally, 2D curves extraction is
a process for which computing time is difficult to estimate. The chosen curve extraction algorithm
does not depend on the number of point, but rather on the local curvature of surface. Its computing
time decreases with curvature increase [195]. Those pre-processing makes it difficult to estimate
theoretically the complexity of our algorithm. We will rather make an empirical estimation of its

computing time.

The produced data (iso-a chain, curves, 3D points, etc.) depends only on the number of pixel of
the matrices and the quantification values used to extract the iso-o. domains but neither on the o-
matrix smoothing nor the curve extraction process. Number of pixels (denoted a;,,) and the chosen
a values to quantify the a-matrix also affect the computing time. We assume that the size of the

data (denoted s, in Mo) is linearly correlated to the computing time (denoted ¢).

The relationship between the number of points of the o--matrix, the o values chosen to extract
the 1so-00 domain and the computation time is studied on a synthetic hemisphere. A data set of

hemispheres of radius 20 and represented in a-matrices of size 25, 34, 41, 47, 53 and 58 pixels
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Figure 13: (1) Vase col: (i) a-matrix, (ii) distance matrix and (iii) initial point cloud. (2) Recon-
struction with quantification percentile of: (i) 20%, (ii) 10%, and (iii) 5%. (3) Differ-
ence matrix with iso-o. curves and the seed (in black) with quantification percentile of:
(i) 20%, (ii) 10%, and (iii) 5%.

are generated. The quantification percentile (denoted €¢,) are chosen such that they represent 5%,
10%, 15% and 20% of the domains.

In Figure 14-1, the file size s is related to the quantification percentile for each of the reconstructed

hemisphere. An interpolation of this relationship provides the following equation:

s =1.%0 12, (3.7)
with T a coefficient varying with a;,,. If related to a;,; (Figure 14-2), we obtain:

1=0.025.a]. (3.8)

Combination of Equations 3.7 and 3.8 gives:

1.37

Aot
s = 0.025.8512. 3.9)

Each of the hemisphere are reconstructed four times and the shortest computing time are kept. The

linear relationship between the files size s and computing time 7 is (Figure14-3):

1.37

a
1=0.022. ¢ + 14. (3.10)
(04
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Additional a-matrix of size 75 and 100 with the same quantification percentile are used to validate
this equation (Figure 14-4, dots). Those extra data show that the equation 3.10 is reliable for the
hemisphere reconstruction and for intermediate quantification percentile and o-matrix size. This

estimation is done for a simple case and cannot directly be extrapolated to other objects. Yet it

gives an idea of computing time for object of such sizes.
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Figure 14: (1) Size of the output data versus the quantification percentile for different image size.
(2) Relationship between equation 3.7 coefficients and the number of pixels. (3) Corre-
lation graph between the size of the output data and the computation time. (4) Compar-
ison between modeled (dashed curves) and effective (plain curves) computation time.
Dot: additional matrix to validate the model.

4 Conclusion

In Chapter 4 we proved that a-photograph with constant a-values is corresponding to SPS. In
this chapter, we set up a PROP-SFS pipeline that uses SPS GS property to propagate surface
1so-o regions reconstruction. We developed three main components: (i) oi-photograph matrix iso-

o domain extraction and ordering, (i1) initialization of the 3D seed from distance data, and (ii1)
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propagation of the SPS starting from the seed and along consecutive surface iso-o region. To set

up the last component, we used basic geometric and SPS properties to construct and propagate

SPS greatest slope lines from a surface iso-a region boundary.

Our PROP-SFS method has been shown to be sensitive to: (i) picture size a;,; and quantification

percentile €y, (i1) noise and bias on o-values, and (iii) distance noise.

(1)

(ii)

(iii)

Reconstruction error are propagated [163]. This error depends on the distance of the
reconstruction from the seed, but also, in our case, on the quality of the iso-o0 domain
boundary extraction. Boundary estimation error is added to the propagation error
throughout the propagation. In the case of small matrices, the quality of boundary
extraction is low, whereas large matrices lead us to better boundary extraction. In the
first case, it is thus necessary to extract a low amount of iso-0. domains to limit error

propagation caused by boundary estimation error.

On a synthetic hemisphere o-matrix with o-noise of maximum =+5.7°, we showed
that local averaging smoothing method should be applied at least five times to obtain
correct reconstruction. Yet this value cannot be used for every object a-matrix as we
did not take into account seed numbers and iso-o. domain boundary complexity (e.g.,

curvature and concavities).

SPS greatest slope computation depends on 3D curve shape. In particular, it depends
on the 3D seed boundary shape. If this latest curve has been incorrectly extracted due
to noise, the greatest slope computation is incorrect. Thus noise should be avoided on
this curve as much as possible. A low-pass filter has been implemented to extract curve
information from noisy distance data. A cutoff value can be chosen with assumption

on curve shape (e.g., number of peaks).

Results of our PROP-SFS method were satisfactory. In addition, we managed to complete strate-

gies proposed by Peternell, and Dragnea and Angelopoulou [196, 185], that are: (i) the general-

ization of the method to any isophote region, and (ii) the construction of GS lines from isophote

region boundary.
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Part 111

Application: Conference pear tree leaf area

and inclination estimation from TLS FARO
L.S880 data
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Chapter 6

Intensity properties of a TLS FARO LS880
to measure Conference pear tree leaves

geometry

To recover leaves area from 3D scan of tree canopy, TLS distance data cannot be directly used
because of the significant amount of outlier points around leaves edge. Nowadays, TLS system
provides TLS beam intensity return data. As this intensity is related to the incidence angle o
between the surfaces and the laser beam, this intensity can be used as a geometrical indicator to
correct outlier points and thus, to reconstruct realistic surfaces. To do so, we developed a PROP-
SFS method based on incidence angle o information (Chapter 5). Yet TLS does not directly
provide those incidence angle data. It rather provides intensity / and to get incidence angle «,
we have to set up relationship between I and o. As it has been mentioned in Chapter 1, intensity
depends on object distance due to light extinction. Yet the design TLS emitter/sensor system makes
the recording of intensity different than the one described with the classic light extinction law [40].

Thus, we need to study the distance effect on intensity to correct it.

This chapter is based on the article “The properties of terrestrial laser system intensity for mea-
suring leaf geometries: A case study with Conference pear trees (Pyrus Communis)” published in
Sensors in January 2011 [42]. It proposes a distance effect on intensity correction based on the
work of Kaasalainen et al. [40, 39] and it studies the relationship between the incidence angle o

and the TLS intensity both with laboratory and field condition.

1 Material and methods

1.1 TLS FARO LS880

1.1.1 System characteristics

The TLS FARO LS880 is used in this study. The rotation of a mirror placed at 45° to the laser beam

aperture (horizontal rotation) and the rotation of its trunnion (vertical rotation) provide a panoramic
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view of the scene that is surrounding the TLS as a 3D point cloud in a Cartesian or in a spherical
basis. The scans are proceeded with an angular resolution of 0.018° for both azimuthal and eleva-
tion rotation. This device uses the AM-CW technology: the amplitude of the laser is modulated
and an analysis of the frequencies of the backscattered signal provides the distance. Between the
mirror and the photo-diode of the scanner, optical elements (e.g., filters) reduce the intensity for
small distances to avoid overexposure of the sensor. Therefore, the relationship between the inten-
sity and distance follows neither the inverse square power law nor any linear function. In addition,
the electric-converted signal passes through a logarithmic amplifier that provides a logarithmic re-
lationship between different reflectance [39]. Each point has an extra dimensionless value that is
the intensity (ranging from O to 2047 in digital numbers) measured by the system. Details on the
features of the TLS FARO LS 880 are given Table 1.

Distance accuracy +3 mm at 25 m
Distance precision @ 10m (RMS for filtered / raw data )
90 % reflectance | 0.7/2.6 mm
10% reflectance | 1.3/5.2 mm

| LiDAR technology || Phase shift |
| FOV (zenith x azimuth) || 320° x 360° |
| Wavelength | 785 nm (NIR) |
| Diameter beam aperture || 3 mm |
Beam divergence | 0.014° |
Sensor FOV | 3 mrad |

Angle resolution used || 0.018° |

| 0.6 m—76 m |

| }

|

|

|
;
| Distance range
|
|
|
|

Table 1: TLS FARO LS 880 technical specification provided by the constructor.

1.1.2 TLS intensity and its dependencies

Theoretically, the photometric appearance of an object depends on surface geometry, material
properties, illumination and viewing direction of the camera (i.e., the TLS sensor) [209]. As
it has been mentioned in Chapter 1, the relationship between the received light power P and
the transmitted light power Pr is highly dependent on angle of incidence, distance and material

reflectance properties [37]:

'AR.PT.p(Oc).cos((x)

Pr=m T.d> ’

(1.1)

with Ag the receiver aperture area and 1 the receiver’s efficiency, o the angle of incidence with the
material, p(a) the reflectance value in function the angle of incidence between the TLS beam and
the material surface (constant in the case of Lambertian material) and d the distance between the
TLS beam aperture and the scanned object. As the TLS FARO LS880 has an intensity filter and
with the assumption that this filter has only an impact on the intensity variations due to distance, the

inverse square law could be replaced by a device specific distance function f. Finally, the intensity
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is modified by a logarithmic converter. The received power could be expressed as follows:

Pe = log (WAR'PT'p(:)'COS(a) .f(d)) (12)
AR.Pr.
= log( — >+éog(p(oc)l—kiog(cos(oc)l+£0g(f(d)2, (1.3)
—_—  ® © @

(@)
where (a) is a constant term of the formula while (b), (c) and (d) are its variable terms. Expressed

through a logarithmic function, the nature of the intensity, distance and angular dependencies

changes:

» There is a vertical translation of the graphs representing the received power and distance rela-
tionship at a fixed angle of incidence appears and this, for two different material reflectances

(b and d). This is due to the logarithmic product-to-sum reduction.

* With the same reasoning, the received power and angle of incidence relationship has the

same shape through distance (c and d).

In [39, 43, 61, 210], the authors experiment with the influence of distance, material and angle of
incidence on the intensity on a Spectralon® and retrieve those two properties. In this publication,
we will consider the received power as the intensity recorded by the TLS. As the objects of our
study are leaves, the diameter of the TLS beam footprint is an important parameter. A flat surface
with an angle of incidence of o, which has its center at a distance d from the TLS beam aperture

and with a TLS beam radius of r and a divergence of J, one gets the footprint major axis Adyqy:

Admax =

2.r <d +rtan(o)  d—rtan(o)

cos(al) cos(a—8) + cos(0+5) ).sin(ﬁ). (1.4)

In the case that the TLS footprint size is too large compared to the scanned object dimensions, a

crosstalk effect and a mixing of the intensity and distance in the point cloud occur [104].

According to the manufacturer, ambient light (e.g., sun) has little impact on the intensity. It does
not fade out the signal and the intensity data are similar for scanned scene with different ambient
light. However, there is more noise in the point cloud with increasing distance and sometimes even
no data at all, especially for low intensity. The FARO LS880 has been designed to be insensitive
to solar irradiance, at least for ranges smaller than 10 m and/or for surfaces with medium to high
reflectance.

1.2 Measurement setup
1.2.1 Study of distance effect on TLS intensity

As discussed in Section 1.1.2, the relationship graph between the intensity as the received power
and the distance follows the property of a vertical translation for different material reflectances

(term (b) in Equation 1.3). In [39], Kaasalainen et al. showed that this relationship is more variable
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for close distance (<3 m) due to the filter in the front of the TLS sensor whereas they resemble the
inverse square law of light intensity for greater distances. Thus, to avoid the distance effect as
it has been done by Kaasalainen et al. in [40], materials with different reflectances are scanned
at varying distances. Its aim is to retrieve this vertical translation of the relationship graph. For
this publication, materials are scanned on a board perpendicular to the laser beam at 0.35, 0.45,
0.6, 0.75, 0.8, 1, 1.5, 1.85, 2.15, 2.6, 3.6, 5, 7.5 and 10 m. Materials reflectance properties are
measured at 785 nm with a Spectra-Vista HR1024 spectroradiometer (spectral resolution of 3.5
nm between 350 and 1,000 nm). Measured materials are a 99% reflectance Spectralon® white
panel, five mate Canson® drawing papers (with 3%, 68%, 48%, 80%, 83% reflectance), a 22%
reflectance Kodak® Grey Card and a matte 3% reflectance painted board. All these materials are
either Lambertian or matte to be able to neglect the intensity variation due to the geometry of
the measurement (combination of a hemispherical scan with flat materials), especially for short
distances. Each material has a size of at least 8 x 8 cm to avoid intensity mixing due to the TLS
beam footprint size at the point representing the scanned surface at 10 m. Finally, a piecewise
interpolation of the intensity in function of the distance is calculated to retrieve intensity values at

intermediate distances. This measurement setup allows a distance correction of the intensity.

1.2.2 Setting the relationship between corrected intensity and beam incidence angle with

leaf surfaces

In [61, 210], Voegtle and Wakaluk, and Pfeifer et al. showed the relationship between the angle of
incidence and the intensity for a 99%-Spectralon®. To study the influence of the angle of incidence
on the intensity with materials such as leaves, a goniometric platform has been built (Figure 2).
Goniometric platform allows complete rotations around its vertical (azimuth) and horizontal axes
(elevation). Protractors were fixed onto the structure of the goniometric platform to show the
azimuth/elevation and rolling angle. The rolling angle variation was not used in this study. The
platform was painted with a 3% reflectance black paint for an easier segmentation of the point

cloud.

Ten leaves were randomly picked from 30 2-year old Conference pear trees on June 16th 2010
(Figure 1). Those trees are planted in two rows of 15 trees in an East-West direction with a distance
of 30 cm between the trees and 360 cm between the rows. They were located in Heverlee, Belgium
50°51°33.89”N, 4°40°48.45”E. Since pear tree leaves are curled [211], the picked leaves were
cut in two parts along their central vein to be flattened as much as possible before the scanning
procedure. They were fixed (abaxial and adaxial side) on the goniometric platform with black
painted strings (Figure 2) and were scanned within the hour after collection. The average length
of those leaves was 6.47 cm (0.5 cm standard deviation) and their average (half)-width was 2.19
cm (0.38 cm standard deviation). The goniometric platform was placed at 2.16 m from the TLS
beam aperture. An increment of 20° on the vertical axis and subsequently on the horizontal axis
was applied for each scan to get an angle of incidence ranging from 0° (perpendicular to the laser

beam) to 80° (almost parallel to the laser beam). For each leaf, one to three sub-selections were
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extracted from the point cloud depending on the angle of incidence and the size of the leaf. The
angle of incidence with the leaf surface was then compared to the averaged corrected intensity on
those sub-selections. The relationship between the intensity and the angle of incidence with pear

tree leaves was so deducted.

In a second experiment, from each of the 15 pear trees of the first row, a second scan was made
on June 24th 2010. A sub-selection of a flat part of each scanned leaf was made. The average
corrected intensity of this sub-selection was then related to the angle of incidence provided by
a Least Square Regression (LSR). This relationship was compared to the previously established
intensity and angle of incidence relationship. Compared to the latter experiment, leaves were not
at a constant distance and were not flat. Finally, the LSR was made on seven entire leaves for tree
n°9 to gain a more thorough understanding of the leaves geometry impact on the TLS point cloud

and intensity data.

In this case, outlier points as wrinkles and curvatures are also selected. Then, the differences (Ax)
between the angle of incidence found by this LSR and the angle of incidence provided by the

intensity for each hit of the TLS beam are mapped for each of those seven leaves:

AOC()C) = 0l (x) — OlL.SR (1.5)

with o (x), the angle of incidence computed with the intensity and angle of incidence relationship
at a point x on the scanned leaf and oz sz the angle of incidence provided by the LSR on the entire
leaf. The distributions (with normalized quantities) of those Aa values are shown. The difference
between the angle of incidence provided by the LSR and the one deduced by the average of the
corrected intensity on the leaf is calculated.

Figure 1: Part of a hemispherical projection of a TLS scan of 15 two years old pear trees (first
row). The corrected intensity and angle of incidence relationship is tested on leaves of
those trees. Trees are grouped by their distance to the beam aperture (red frames).
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HALF ADAXIAL/ABAXIAL SIDES
OF THE LEAVES

PROTRACTORS

FOR (a)AZIMUTHAL,
(b)ZENITHAL AND
(c)ROLLING ANGLE

Figure 2: The goniometric platform with its: (a) azimuth; (b) elevation and (c) rolling angle
protractors. To be flattened, half adaxial and abaxial leaf faces were fixed with black
Strings.

1.3 TLS data pre-processing and analysis

First, a manual sub-selection of the point cloud and their corresponding intensity is made. A
second sub-selection is made based on an intensity and distance threshold (Figure 3-1). To do so,
a reference point is selected and neighboring points are considered hit points if their intensity and
distance from the selected point are within the thresholds values. This approach limits the selection
of edge effects of leaves as well as the distance and intensity crosstalk effect, mixing of multiple
objects within the beam footprint [47, 24]. It also limits the selection of curvature and wrinkles of
leaves. After data extraction, the analysis gives distance values, angle of incidence provided by the
LSR, the average and standard deviation on the selected point’s intensity and finally, the number

of selected points.

1.3.1 Correction of distance effect on intensity

A first study is made to establish the relationship between the intensity and the distance with the
set up described in Section 1.2.1. In [39], Kaasalainen et al. showed that the relationship graph
between intensity and distance for the FARO LS880 presents a vertical translation for the differ-
ent reflectance. In this case, the relationship between intensity and distance can be interpolated
by the same polynomial. In addition to the method suggested by Kaasalainen in [40], where the
intensity is normalized by a 99%-Spectralon® intensity, an interpolation of the data is calculated
to get intermediate values of intensity in function of the distance. As the relationship does not
follow any analytical function because of the intensity filter (Equation 1.3), piecewise polynomial
interpolations of order one or two are calculated and as those interpolations are equal, but verti-
cally translated (Equations 1.3 and 1.4), only one piecewise polynomial interpolation should be

calculated, namely, the one of the 99%-Spectralon® (denoted as fggq, ).

Once done, a constant value ¢ for a target material at a given incidence angle o is determined by
the difference between its intensity value and the intensity value of the 99%-Spectralon® at a fixed
reference distance d,.y. One has cyef = foog (drer) — I(dyey) With I(dyy) the recorder intensity

at an arbitrary reference distance. For each intensity /(d) for this same target at distance d, the
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calibrated intensity, /. (which is now independent of distance) is calculated as:

Lo 1@

__ M . 1.6
f99%(d)+cref( 7) (1.6)

To know the quality of the distance correction, a Root Mean Square Error (RMSE) between the
value of the piecewise polynomial interpolation fo9¢, and the corrected intensity is calculated for
each distance. Finally, as the value f(d. f) is unknown, the distance effect on the intensity is

corrected with the following formula (Figure 3-ii):
I = fo99, (dref) +c (1.7)

with ¢ = f99%(d) —I(d).

Further investigation on the intensity correction, reflectance relationship and radiometric calibra-
tion could be done. In [41], Wagner defined a back-scattering coefficient related to the intensity
in the case that the angle of incidence with the scanned surface is unknown. In [39], Kaasalainen
et al. defined a logarithmic correction to estimate the reflectance value of a scanned object placed
perpendicular to the TLS beam. They aimed to be able to compare different TLS intensity. Unlike
this paper, the logarithmic correction is not made because of the reliability of the materials used in
this study. Therefore, we assume that the sensor of TLS does not change over time. Thus, a full

radiometric calibrated intensity will be needed for future research.

1.3.2 Determination of incidence angle with a Least Square Regression (LSR)

To obtain the angle of incidence with a surface (flat by assumption) represented by a selection from
the point cloud, a Least Square Regression (LSR) is proceed on the sub-selection (Figure 3-iii).
As there are three different LSRs related to each vector of the XYZ-basis, the LSR is selected that
minimizes the RMSE and allows at most 5% of the point cloud outside a pre-defined orthogonal
distance d; to the fitted plane. Finally, the normal angle to the plane is given by the coefficient of

the plane equation. The angle of incidence o with the surface equals:

o = |acos (—) — | (1.8)
[ |xs]]

with xg the vector representing a reference point in the sub-selection and n the normal to the surface
calculated by the LSR.

The accuracy and precision of this method is tested with the goniometric platform with increments
of 10° of its azimuthal and elevation angles. As statistical indicators, the r2, slope and intercept of a
linear regression of the angle determined by the LSR and the goniometric platform angle are given.
The targeted platform is placed at approximately 2.05 m from the TLS beam aperture. Knowing
the angle of incidence provided by the LSR, it can finally be related to the intensity averaged over

the cloud of points selected (Figure 3-iv).
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Figure 3: Analysis flowchart: (i) A semi-automatic and manual selection in the point cloud is
proceeded. It takes into account a distance and an intensity threshold to limit unwanted
point as outlier point or leaf curvature. (ii) The average distance and average intensity
are calculated from the selected point cloud. Their relationship is used to correct the
distance effect by replacing the intensity value by a reference value (correction of the
distance effect on the intensity). (iii) The angle of incidence with the selected surface is
calculated thanks to a LSR. (iv) The corrected intensities values of the selected points
are averaged. The angle of incidence is then related to this averaged corrected intensity.

2 Results

2.1 Correction of the distance effect on TLS intensity

As in [39], a vertical translation between the different intensity and distance relationships is re-
vealed (Figure 4). Those translations have a very low standard deviation for materials with a
reflectance value larger than 48% as presented in Table 2. This enables the generation of a refer-
ence piecewise polynomial interpolation on the 99%-Spectralon® graph and to correct the distance

effect on the intensity as discussed in point 1.3.1.

Figure 5 shows the intensity correction given by the Equation 1.6. With the equation notation, the
reference distance used (dyer) is 3.56 m and fo9, intensity units. The LS880 logarithm filter effect
is clear as can show relationships between the various reflectances measurements. The distance
effect correction with the piecewise polynomial is valuable for a distance larger than 1 m, especially
for materials with a reflectance larger than 48%, while the 22% reflectance Canson® paper yields

results of inferior quality. This result is analogous to the FARO LS HE80 used by Kaasalainen
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in [39]. The distance effect corrections of intensity value from materials with a reflectance of
3% (Canson® and paint) have the worth quality and the graph shows unexpected differences in
terms of reflectance that have not been detected by the spectroradiometer. Similarly, the difference
between the 80% and the 83% Canson® papers is not clear. The logarithmic correction suggested

by Kaasalainen [40] is not performed because of those two last reasons.

The RMSE between the translated 99%-spectralon piecewise polynomial interpolation used as
reference at a distance of 3.56 m (Equation 1.6) and the corrected intensity is lower than 4 units
(corrected intensity) for materials with a reflectance larger than 48%, whereas it is larger than 10

units (corrected intensity) for reflectance values smaller than 22% (Table 2).
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Figure 4: Intensity and distance relationship for the FARO LS880 for different materials placed
perpendicularly to the laser beam.

2.2 Validation of the incidence angle provided by a LSR

The angle of incidence provided by the LSR provides acceptable results with the goniometric plat-
form. The regression of the correlation graph between the angle of incidence calculated manually
and the one given by the LSR provides an R? of 1, a slope of 1 for both horizontal and vertical

rotation and an intercept of 1° for vertical and 2.8° for horizontal rotation.
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Figure 5: Correction of the distance effect on the intensity. The correction is valuable for distance
greater than 1 m. The reference distance is 3.56 m.

(i) Shift average (ii) Standard deviation | (iii) Raw value at (iv) RMSE
(Raw value) (Raw value) 3.56m (corrected intensity)
83%Canson® 30.24 3.90 1749 2.98
80% Canson® 27.84 4.88 1750 2.50
68%Canson® 79.07 5.76 1705 1.60
48%Canson® 169.55 5.36 1619 3.66
22%GreyCard 399.30 29.87 1408 11.49
3%Canson® 884.93 49.66 839 21.52
3%Paint 961.55 34.09 935 11.49

Table 2: (i) Vertical translation (average on the distance) between the intensity value of the 99%-
Spectralon® and the intensity value of other materials, (iii) Raw value at the refer-
ence distance (3.56 m), (iv) RMSE between the interpolation function fogq, of the 99%-
Spectralon® intensity (minus a constant, at the reference distance) and the measured
intensity for distance larger than 1 m. Raw values range between 0 and 2047.
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2.3 Relationship between intensity and incidence angle for Conference

pear tree leaves

2.3.1 Establishing relationship between intensity and incidence angle with leaves placed on
a goniometric platform

The angles of incidence provided by the LSR approximate the ones given by the protractors of the
goniometric platform. Figure 6 shows that the angles of incidence vary with a maximum amplitude
of £10° around the angle of incidence measured manually. At 50°, there is a shift of +10° in the
angle of incidence provided by the LSR. Indeed, despite the strings that are flattening the leaves,
it is difficult to avoid wrinkling leaves when attached to the goniometric platform. In this way,
the angles of incidence provided by the LSR are more realistic than the manually measured ones.
Thus, those one are substituted by the angle of incidence provided by the LSR. Figure 6 shows that
the intensity values increases with the decrease of the angle of incidence. In a first step, it increases
quickly (+150 units for 10°) for angle of incidence decreasing from 85° to 55° and it starts to level
off (430 units for 10°) for angle of incidence decreasing from 55° to 0°. In addition, the variations
of the intensity values are larger for angle of incidence larger than 55° (£100 units) whereas they

are smaller for angle of incidence smaller than 55° (£30 units).

No clear difference appears between the azimuthal rotation of the goniometric platform and the
elevation rotation. Given with a resolution of 5°, the curve of relationship between the corrected
intensity and angle of incidence for the two different rotations are similar and the maximal absolute
difference for the intensity is 20 units (corrected intensity) for an angle of incidence of 10°. This is
negligible compared to the intensity variation as a function of angle of incidence. We get similar
results in the comparison of the abaxial and adaxial sides of the leaves where the maximal absolute
intensity difference 38 units (corrected intensity) for an angle of incidence of 10°, which is also
negligible. Because of those two results, both cases are not taken into account in this study (graphs

not shown).

Because of the size of the beam diameter and divergence, its footprint diameter could become
larger than the leaf itself. It ranges from 0.046 m for an angle of incidence of 85° to 0.004 m for
an angle of incidence of 0°. Figure 7 shows the variation of the footprint diameter as a function of
angle and for the distance of 1, 2.16, 5 and 10 m. The diameter is calculated using Equation 1.4.
Those footprint diameters are compared to the average widths and lengths of half pear tree leaves
that were picked for the experiment. So, depending on the angle of incidence, the leaf size and the
distance, the intensity values for the leaf material could be more sensitive to surrounding material.
In Figure 6, the impact of the goniometric platform appears clearly for large angle of incidence.
At this range (2.16 m) the intensity values decrease could be explained by the mixing of the go-

niometric platform and the leaves intensities.

At this distance, the TLS beam footprint diameter is 20% of the leaf width for an angle of incidence
smaller than 20°, it is 45% of the leaf width for an angle of incidence greater than 65° and it

exceeds the leaf width for an angle of incidence greater than 80°. Though the type of the laser
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sensor is unknown, the weight of the goniometric platform intensity could be lower than suggested
in Figure 7 and the previous discussion, especially if it is Gaussian as discussed by Lindenbergh
et al. [212]. In addition, the LSR may present some issues to accurately represent a surface with
a large angle of incidence because the point cloud quality is worse at those angle of incidence

compared to the one of a surface that is perpendicular to the beam [212].

In conclusion, retrieving the angle of incidence with the intensity would have a precision of +5°
and because of the diameter of the TLS beam footprint, it is not possible to measure the angle of

incidence with the intensity for angle larger than 55-60°.

At a first sight, a logarithmic or cosine fitting could be made as it is insinuated in Equation 1.3-(b)

and (c). The intensity and angle of incidence relationship can be expressed as:

log(p(a).cos(a)) (2.1)

As one can see, three functions appear:

* the logarithmic function that has not been corrected,
¢ a cosine function, and

* the reflectance value pas a function of angle of incidence a with the leaf surface.

As the optical properties of the leaves are unknown (they are not Lambertian [213]) and the log-
arithmic correction [39] cannot be made because their value of the TLS intensity for different
reflectances are not consistent, as for example for low reflectance material (see Section 2.1), a
fourth order polynomial fitting is finally made on the relationship between intensity and angle of

incidence.

2.3.2 Testing relationship between corrected intensity and incidence angle on in-situ leaves

The test shows a vertical and positive translation in the intensity values for angles smaller than 60°
(Figure 8) compared to the previously established relationship. It presents more variability. There
is no clear difference between the different distances intensities, which means that the distance

correction is valid.

As in the previous experiment, the intensity increases with an angle of incidence decrease, but the
measured intensity values are higher. It could be interpreted in two ways: (i) it is higher in terms
of intensity and is vertically translated to +50 units (corrected intensity) or (ii) it is larger in terms

of angle of incidence and is horizontally translated to +10°.

In addition, the precision to find an angle of incidence from the corrected intensity for angles
of incidence smaller than 60° is larger than in the previous experiment: (i) £10° for angles of

incidence smaller than 30° and (i1) £15° for angles of incidence ranging from 60° to 30°.

Many reasons could occur to explain those two facts:
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(1)

(ii)

(iii)

(iv)

Curvatures: It is possible that in the selection, undesirable parts of the point cloud
are selected. Their intensity have a varying impact in the average intensity depending
on the quantity of these undesirable points, whereas those points can easily have an

impact in the LSR and thus on the angle of incidence. For instance:

a. if a leaf that is perpendicular to the beam is selected and if this selection
includes a sub-selection which forms a plane which is almost parallel
to the beam, then, the LSR on this selection will provide an angle of
incidence larger than expected and with a higher intensity (depending
on the quantity of undesired points that are selected). That would be
the reason why Figure 8 presents only a few selections with an angle of

incidence smaller than 5°.

b. With a similar reasoning, the selection of a leaf including a zone which
has a large angle of incidence with the TLS beam and a curved zone could

present a smaller angle of incidence than expected.

Wrinkles: In the case where a leaf that has many wrinkling is selected, then the

impact of these on the intensity is significant whereas the LSR will not consider them.

Footprint and point cloud quality: As the leaves are not placed onto on a larger flat
surface such as the goniometric platform, the quality of the point cloud representing
those leaves is lower especially for large angle of incidence and for increasing dis-
tances. This is the reason why there is a lack of data for the two groups of trees 1-7
and 12-15, especially for angle of incidences ranging from 90° to 60° (Figure 8 and
Table 9). As it has been showed by Soudarissanane et al. [63], an increase of the angle

of incidence implies a decrease in the point cloud precision.

Footprint and intensity mixing: As in point 2.3.1, the footprint has a great impact on
the intensity, especially for angles of incidence larger than 60° (Figure 7). This may be
the reason why the data are different for those angles as the surrounding scene is dif-
ferent. However, the intensity values should be more accurate than the ones provided
by the measurement on the goniometric platform, especially for angles of incidence
smaller than 60° and despite the decrease in precision.

Physiology: The scans did not proceed at the same time. There is an 8 days difference
between the scans with the leaves placed on the goniometric platform and the scans of
the trees.

Multiple scattering: The scans proceeded under different conditions than in the
case of leaves placed on the goniometric platform. Because of the complexity of the
canopy, it is possible that a multiple scattering effect occurs which results in a higher
than expected intensity.

TLS radiometric calibration: Due to the fact that the TLS has not been entirely cali-

brated, it is possible that the intensity of low reflectance objects changed through time.
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Nevertheless, the scans having 8 days difference, one might expect that the sensitivity

of the sensor has not moved as in [39].
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Figure 8: Test of relationship between intensity and angle of incidence for leaves of in-situ pear
trees. The bold line represents the reference curve established with the leaves on the

goniometric platform.

Tree Min. dist. Max. dist. #
n° (m) (m) data

1-5 292 4.30 26
6 2.43 3.22 21
7 1.83 2.52 50
8 1.55 1.99 100
9 1.44 1.83 100
10 1.32 1.94 70
11 1.36 1.96 70
12 1.68 2.55 30
13 2.15 3.06 24
14 3.02 3.15 4

15 X X X

Figure 9: Distances of the point cloud sub-selections for each of the 15 trees and their number
of sub-selections that have been made for the LSR plane fitting. The increase of the
distance increases the difficulty to make a correct LSR (no extraction is possible for tree
n°l5). Trees are grouped by their distances to the beam aperture (>1 m).
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2.3.3 Testing relationship between corrected intensity and incidence angle on an entire leaf

Figure 10-b shows a selection of seven entire leaves on tree n°9 (see also Figure 1). For those
selections, outlier points are mostly retained. A LSR is made on those entire leaves and provides
a reference angle of incidence that is subsequently compared to the angle of incidence provided
by the average intensity for each point of the selected leaves (see Figure 6). The differences
Aal (Equation 1.5) are plotted for each point (Figure 10-a) he fitted plane lies on the points that
have a Ao equal to zero (green) If Ao tends to be yellow or red, then it means that the leaf tends
to face the beam compared to the LSR angle of incidence, whereas if it is blue or purple, the leaf
tends to be on the side. The distributions (quantity normalized of the Ao are shown (Figure 10-c)
In addition, the difference between the LSR angle of incidence and the one provided by the average
intensity is given (Figure 10-c, inset). Those differences could have an uncertainty of +10 to +15°
because of the presence of a vertical translation in the intensity and angle of incidence graph as it

has been previously discussed.

Some of the assumptions of the previous section are confirmed by these measurements:

(1) Curvatures: It appears that leaves with a simple curvature (similar to a cylinder) as
leaves n° 3 to 7, have a skewed normal distribution for their Ao.. For leaves n°® 3 to 5,
this distribution is translated to respectively + 13°, + 5° and + 9°. It means that their
average intensity represents well the angle of incidence provided by the LLSR as it has
been previously seen.

At the opposite, the average intensity for leaves n° 6 and 7 is translated to respectively
—10° and —8°. For leaf n° 6 it could be explained by the case (i.a) of the Section 2.3.2
as the side of the leaf forms a large angle of incidence with the beam. This provides a
larger angle of incidence (Figure 10-a) which is not balanced by the low intensity of

this set of point in the average intensity (Figure 10-c).

(i1) Wrinkles: Leaves n° 1 and n° 2 illustrate well the impact of wrinkles on the intensity.

Both show a multimodal distribution.

(ii1) Footprint and point cloud quality: In general, outlier points are presents for surface
with large angle of incidence as it is also shown by the other leaves. Thus, one can
consider that a point with a low intensity has a higher probability to be a outlier point.
Leaf n° 2 shows a large surface that has a large angle of incidence with the beam but
those points does not look like outlier points. In fact, this leaf seems to be lengthened.
In this case, it would be more efficient not to delete those point, but to correct them,

depending on their positions on the leaf.

(iv) Footprint and intensity mixing, physiology, multiple scattering and TLS radio-
metric calibration: those factors are not tested since the scan used in this last study

is the same than in the previous one.
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Figure 10: (a) The figures shows the leaves as they appear to the TLS (up) and their side view
(down). A is plotted (Colors). X, Y and Z are the points coordinates in the scan
(m). (b) Selection of seven leaves on tree n°9. (c) Distribution (normalized) of Ao and
difference between the angle of incidence provided by the LSR on the entire leaf and the
intensity VS angle of incidence relationship (caption). Three groups are emphasized
depending on the shape of the distribution: (blue) two peaks, (red) centered but stopped
at ~+20°, (green) positive shift.
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3 Discussion

In this study, Conference pear tree leaves are scanned and the intensity data provided by the TLS is
analyzed with a particular focus on its properties for describing geometry of leaves. Prior to that,
the intensity is corrected for the distance effect and the angle of incidence provided by the LSR
is tested on the goniometric platform. Then the relationship between the corrected intensity and
the angle of incidence is determined with flattened leaves placed on a goniometric platform. Next,
this relationship is tested on flat part of the leaves that are still attached to the pear trees. Finally,
the angle of incidence is determined using a LSR on an entire leaf, and this notwithstanding leaf
curvatures and wrinkles. The Aa (see Equation 1.5) is mapped on the selection to understand the
impact of those curvatures and of those wrinkles on the data. To summarize, the three set-ups of

measurement are resulting in a LSR for four different conditions:

* for the goniometric platform only,
« for flattened leaves placed on the goniometric platform,
* for some parts of the leaves that are fixed on the tree,

¢ for entire leaves that are fixed on the tree.

It appears that the flattened leaves on goniometric platform provide a good precision (+5°) but
maybe a poor accuracy in terms of finding the angle of incidence with the intensity and because
of the incomplete radiometric calibration of the TLS intensity. In the case where this radiometric
calibration is sufficient, the test made on the partial selection of leaves on the tree would provide a
more accurate result (+50 units of corrected intensity). Still, this last test brings a lower precision
in the definition of the relationship (from +10° to £15° depending on the angle of incidence). This

shift in the accuracy could be explained either by:

* the LSR conditions (a low RMSE with a limited number of points that are away of the LSR

plane) and the leaf curvatures and its wrinkles,
* the impact of the footprint diameter of the TLS beam,

* the physiological state of the plant, the radiometric calibration of the TLS or even a multiple

scattering occurring in the canopy.

In the last test, it is clear that wrinkles and undulations are playing a large role in the precision. It
is also shown that angles of incidence larger than 60° with pear tree leaves will provide bad results
in term of accuracy and precision. Even the measurement on the goniometric platform could not
provide better information because of the 3%-reflectance painting surrounding the leaves and so in
the mixing of their intensity in the point cloud. As previously seen, scanning larger leaves could

reduce this angle of incidence limit. In addition, if the second experiment shows a consistency
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in the distance correction, it appears that distance plays a great role in the capacity to extract a
good point cloud and this to make a LSR with enough points. That probably depends on leaf
size, and one might expect that the measurements should be extended to a wider range and with
larger leaves. In general, distance, angle of incidence and leaves dimensions should be taken into
account for the set-ups of scanning that aim at extracting leaf geometry. The measurement set-ups

suggested in [30] could be improved in this way.

In addition, it would be also recommended to test the relationship between intensity and angle
of incidence for trees with flat leaves to study the multi-scattering effect and/or to change the
conditions of selection for the LSR set in Section 1.3.2. In the future, a complete radiometric

calibration should be set to guaranty the consistency of accuracy of the relationship.

Notwithstanding the aforementioned issues, different potential uses for the intensity can be envis-
aged. First, the third experiment emphasized the fact that intensity could help in determining the

points having a higher probability to be a outlier point:

* The points with a low intensity have a higher probability to be outlier points because they
are on the part of the leaves having a large angle of incidence. Those points could be directly

deleted or corrected.

* In the case where points with a low intensity constitute a large zone on the leaf, it is more
difficult to determine whether they are outlier points or not. This zone appears larger than
in the reality. In conclusion, closer is the point to the leaf border, higher is the probability
that this one is a outlier point. In those cases, the points should be only corrected as their

deletion would diminish the size of the leaf.

Those two points could be used to eliminate outlier points and view as an improvement of the pre-
processing methods for point cloud (as e.g., [214]). In addition, the intensity could help to extract
the angle of incidence to the leaf and thus, the normal of the leaf surface as shown in the Equation
1.8.

Alternatively, using the difference between the angle of incidence provided by the LSR and com-
paring it to the incidence angle provided by the intensity for each point of the selected leaves (Ao
would give an estimation of the curving and the wrinkling of the leaves and this thanks to the Ax
distribution. This could be used as a wrinkle indicator as the amplitude of those ones might be not
large enough compared to the distance precision of the TLS. Finally, a promising future in the use

of the intensity is given by its use as representing the normal of the surface of leaves.

4 Conclusion

We have investigated the properties of intensity in relation to distance and angle of incidence with
leaf surfaces. The distance effect on intensity has been corrected to set a constituent relationship

between the intensity and the angle of incidence. The variation of the intensity through angle of
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incidence seems to be a good indicator to help in the extraction of leaves geometries from TLS

point cloud.

Results show that one can expect a precision of +5° to derive the angle of incidence from intensity
data in the case of flat leaves. The results with curved leaves have clearly shown that the curvatures
and the wrinkles are the reason for the degradation of the precision in the relation between the
intensity and the angle of incidence. Therefore, we could expect to use the intensity to determine
angle of incidence with a precision of +5°.
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Chapter 7

PROP-SFS method for Conference pear
tree leaf area and inclination estimation
from TLS FARO LS880 data

Terrestrial LiDAR scanner (TLS) provides a novel tool for generating, at a high measurement
rate, an accurate and comprehensive 3D geometrical description of canopy. Despite the good
accuracy of the measurement (a few millimeters for most TLS in the measured range), only general
indicators such as leaf area index, vertical plant profile and vegetative volume have been extracted
(e.g. [16]). Several techniques based on surface fitting have been developed to digitize isolated
leaves [131, 138, 18], however they rely on user intervention that remains tedious for entire canopy
reconstruction. In addition, they do not deal with outlier points present along leaves edges [24].
Because large amount of outlier points in TLS scan of fruit tree, we showed in Chapter 2 that

automatic organ reconstruction is difficult.

In Chapter 5, a PROP-SFS algorithm based on a-photograph has been developed to tackle outliers
impact on surface reconstruction. In Chapter 6, we corrected distance effect on TLS FARO LS880
intensities and transformed them into incidence angle values. In this Chapter, we seek to validate
our PROP-SFS algorithm with manual measurement of leaf area, elevation and azimuth carried out

on Conference pear tree leaves.

1 Material and Method

1.1 Orchard

Measurements were performed on August 20th 2010 in a Conference pear tree orchards situated
in Bierbeek, Belgium (Figure 1). Trees were trained in a V-Shape with an aperture of 40° and they
were planted in rows distanced by 3.4 m from each others. Trees approximate height averaged

2.43 m without the new woody shoots, and 2.95 m with the new shoots. Distance between two
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neighboring trees averaged 1.05 m and distance between two neighboring branches was 0.55 m.

Orchard rows were oriented at a 130° of magnetic North (North-East direction).

a = 40°
b=340m
c=1.05m
d=055m
e=243 m
f=295m
g = I130°NE

Figure 1: Conference pear tree orchards. (a) V-system. (b) Distance between rows, (c) between
trees, and (d) between two neighboring branches. (e) Height of the trees without new
branching shoot and (f) with new branching shoot. (g) Row orientation.

1.2 TLS FARO LS880 data

The pear trees were scanned with a hemispherical TLS FARO LS880 (see technical specification
in Chapter 6, Table 1). The expected accuracy of the distance measured for this TLS ranges from
+ 2.6 mm to £ 5.2 mm with object placed at 10 m from the TLS aperture and with 90% to 10%
reflectance, respectively. TLS angle resolution was set up at 0.018° that made the scan time dura-
tion of 15 minutes. In addition to the distance, the FARO LS880 provides the intensity return of
the reflected laser beam for a given angular coordinate (6,0) of the TLS rotating platform. This
intensity is dimensionless and its value ranges from 0O to 2044. In Chapter 6, we proposed a method
to correct distance effect on intensity in addition to an intensity-to-incidence angle transformation
map. In this chapter, the correction method was applied on TLS data and the intensity was trans-
formed into incidence angle o values with a precision of +£5° and for values ranging between 0
and 90°.

A cardboard arrow was placed in the scan to indicate the North-direction. Azimuth was obtained
by computing the orientation with the arrow direction, i.e., angle between x axis and North, which
is 109°.

1.3 Leaf measurement

One hundred leaves were randomly selected on four neighboring branches such that those leaves

were placed in the TLS field of view. They were marked with black round stickers of diameter 1 cm
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to be visible in the scan (Figure 2). Leaves distance ranged from 0.8 to 2 m from the TLS aperture.
Before the LiDAR scan, leaf principal vein elevation and azimuth direction were measured with
a protractor and a compass. Because limited accessibility, azimuth of the leaves placed at the
top of the canopy were not measured. Azimuth measurements ranged from 0°N to 120°NE, with a
resolution of 10°, and elevation from 0° to -120°, with a resolution of 5°. After LiIDAR scan, leaves
were pruned and scanned with a flatbed scanner to extract their area. Because pear tree leaves are
not flat [211], they were cut along their principal vein. Obtained area were ranging between 12

and 65 cm?, for average area of 35 cm 2.

In TLS scan, only 58 leaves of the 100 were entirely visible. Those leaves were selected manu-
ally in the point cloud with FARO Scene® software. Their point density ranged from 29 to 272
points/cm?. Black stickers had a different intensity than leaves and their point cloud was of lower
quality (missing data, lower precision, etc.). Their intensity and distance values were corrected
manually to makes it possible to apply our PROP-SFS algorithm. This correction consisted of
making them visually coherent by copying surrounding texture and pasting this texture on the

sticker area (Figure 2).

= o~ S ¥ S

- - - s - - ' . .
— o DEg ?ﬁiﬁ" e
b, T L i et e

F1 +07 35 | 08 | 14
Fz +07 | +35° | 08 | 14
P3| +75° | +25° [ 18 | 22
P4 | +75° | 257 [ 18 | 22

Figure 2: (1) LiDAR intensity map representing Conference pear tree canopy. One hundred leaves
were selected (dots). Red: branch n°l, leaf 1-25. Light blue: branch n°2, leaf 26-50.
Green: branch n® 3, leaf 51-75. Yellow: branch n°4, leaf 76-100. Gray square represent
TLS coordinates (8,0) = (0,0) . (2) Coordinates of points P1, P2, P3 and P4. (3) Zoom
on leaves 1-5 and selection of leaf #1 in the LiDAR intensity map. (3) Correction of the
stickers: (a) intensity map with sticker (hole); (b) intensity map corrected; (c) distance
map with sticker; (d) distance map corrected.
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1.4 PROP-SFS pipeline description

In Chapter 5, we developed a PROP-SFS pipeline that reconstruct surface from o-photograph. This
pipeline carries out sand-pile surface propagation from a seed of minimal o value and along con-
secutive iso-o. domains. This pipeline requires as inputs: (i) an ®-matrix, (ii) an original distance
matrix (h-matrix) and (iii) a map to pass from matrix index coordinates to original coordinates.
Those input should be in Cartesian coordinates, i.e., orthonormal, but as scanned leaves are small
compared to their distance to TLS aperture, our PROP-SFS assumption on orthographic camera
holds. In other words, the coordinates system used to apply the propagation are the TLS spher-
ical coordinates (0,9,4) that were assumed locally orthonormal. The output of our PROP-SFS
pipeline is a mesh representation of the surface, called PROP-SFS mesh, and a point cloud gen-
erated with sand-pile surface equations, called PROP-SES point cloud. Our PROP-SFS pipeline
gathers several components (Figure 3): (i) iso-ot domains extraction and ordering, (ii) seed dis-
tance initialization , and (iii) sand-pile surface propagation algorithm. Those components can be

described as follows (Figure 3):

(1) Iso-ot domains are extracted and ordered. The o-matrix is quantized with a given set
of a-values to obtain iso-o0 domains. It is segmented such that each of the produced
part contains one and only one propagation seed. Finally, iso-ot domains are ordered

by inclusion.

(i1) 3D initialization from the original A-matrix is applied to construct the seed 3D bound-
ary curves. Local least square regression applied on a neighboring point set of size
s is used to estimate greatest slope orientation at each point of the initial 3D seed
curves. This initializes the propagation orientation, i.e., that defines the summit, sink

and saddle cases.

(ii1) Finally, the sand-pile surface propagation is iterated to each iso-ot domains, starting
from the seed to the last iso-ot domains of the chain. This component is composed of

three main steps:

(a) Sand-pile surface greatest slope directions are estimated from 3D inner

curves of a current iso-00 domain and with associated o value,

(b) They are linearly propagated outwards to reach the current iso-ot domain

outer boundary curve, and
(©) Sand-pile surfaces are used to fill empty space between propagation lines.

(*) Consecutive iso-o regions of the surface are reconstructed with those

three steps until the last iso-0t region is reconstructed.

As an output, a mesh is generated with the propagation lines and the 3D iso-o regions boundary

curves. New /A-matrix and 3D point cloud are constructed with the sand-pile surface equations.
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Figure 3: PROP-SFS pipeline. (i) iso-o. domains extraction and ordering, (ii) seed distance ini-
tialization , and (iii) sand-pile surface propagation algorithm with three main steps: (a)
greatest slope direction estimation, (b) greatest slope propagation, and (c) sand-pile
surface fitting.

PROP-SFS
point cloud

1.5 PROP-SFS extension

Four parameters drive components (i) and (ii) of our pipeline: (1) a-value quantification, (2) low-
pass filter cutoff frequency to smooth out initial curves from A-matrix, (3) number of times the
a-matrix is smoothed with local averaging, and (4) point set size s for the propagation orientation
initialization with the local least-square regression applied on the #-matrix. Additional components
for a-value quantification and optimal low-pass filter cutoff frequency are included in our PROP-
SES pipeline. Those ones together with guideline to choose parameters (3) and (4) are discussed

below.

(1) In Chapter 5, we saw that a-value quantification should be carried out such that there
is enough distance between two consecutive iso-ot domain curve boundaries. This is
especially true for the last iso-aidomain encircling all the other iso-ot domain. We call
this last iso-ot domain the a-matrix shell, and its width is called the shell number u (in
pixel). If the shell is forming a square of size ® of shell number u = 1 (Figure 4-1),

then its area a; ,—1 equals the perimeter of the square, i.e.:
asu—1 =4.(0—1). (1.1)
If the shell number u = 2, then a,,,—» < 2.a5,-1, and in general:
gy < W.lg =1 (1.2)

In other words, we can use Equation 1.2 to bound the shell area and to make it large

enough for the PROP-SFS propagation. We define the quantification percentile €
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2)

3)

4)

with this boundary:

gy 1= Hdom=l (1.3)

Aot

where a;,; is the total pixel area of the a-matrix. In the component managing o-
value quantification, user can provide an additional parameter defining seed size as a

multiple of the quantification percentile, i.e., €/ 1= v.gq,.

Original A-matrix has noise and our PROP-SFS algorithm requires a smooth initial
curve to construct propagation lines. A component to estimate low-pass filter cutoff
frequency adapted to both curve shape (number of curve peak) and length is imple-
mented. To set this cutoff frequency, the seed area of pixel area ag..q 1s assumed to
form a round of perimeter length /. As majority of pear tree leaves have saddle shape,
we suppose that the seed 3D boundary curve has two peaks and we define the low-pass
filter bound at //2, such as it is advised in Chapter 5.

In Chapter 5, the number of times the o--matrix is smoothed with local averaging
showed satisfactory results when the method was carried out at least five times on
a hemisphere o--matrix with £5.7° of a-noise, i.e., the actual a-noise of our data.
This particular value cannot be directly reused for leaf reconstruction as they have
more complicated shape. Carrying consecutive smoothing process on a few leaf o-
matrices makes it possible to visually choose the best smoothing parameter such that
number of seeds and iso-ot domain concavities are reduced (Figure 4-2). In this figure,
smoothing parameter of 10 to 25 times shows to be adequate. We arbitrary chose to

set this parameter at 20 times.

To set up propagation orientation, initial greatest slope orientation is estimated along
the seed boundary curve with a local least square regression of neighboring size s on
the A-matrix. This neighboring size should be set large enough to make the selected
points forming a visible slope. In Chapter 5, a neighboring radius of five pixels has
shown to provide a good propagation estimation. We kept this neighboring radius

value of five pixels to reconstruct the 58 leaves.

Once the PROP-SFS algorithm was run on our data, extraction of geometrical variables such as

leaf area and inclination (elevation and azimuth) was achieved to validate our reconstruction with

manual measurements. The PROP-SFS mesh was used to estimate those variables. Leaf area was

computed as the total area of the mesh’s triangles representing a leaf. Leaf principal vein azimuth

and elevation were made equal, respectively, to the azimuth and zenith angle of the mesh normal

computed as the sum of triangle normals weighted by triangle area. Leaf principal vein azimuth

estimation was corrected with TLS azimuth. This angle estimation supposes symmetrical leaf

shape and orientation to correspond to the leaf principal vein inclination measurement.
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Figure 4: (1) Pixel area of an o-matrix represented in a square of size ®. In blue: last iso-o

domain with shell value 1, and shell value 2. (2) Smoothing with local averaging is
carried out 0 to 25 times on O-matrix representing leaves number 1, 7, 26 and 27.

®

1.6 Analysis

Results of Chapter 5 made it possible to set up automatically low-pas filter cutoff frequency and
to fix both the o-matrix smoothing parameter and propagation estimation neighboring size value.
In this same chapter, we tested the quantification percentile and seed size impacts on hemisphere
reconstruction. In this chapter, we want to reconstruct leaf shapes from TLS scan. Those leaves
have more complicated shape than hemisphere. Thus we need to test again quantification percentile
and seed size impact for their reconstruction. To do so, we tested four parameter sets T1, T2, T3

and T3* with our PROP-SFS pipeline. Those parameter sets were defined as follows:

* T1, T2 and T3 had, respectively, shell number value of u =2, 3, and 4, and seed percentile
effed = 2.€q; and

 T3* with u =4 and £%°? = 1.¢g,.

In the next section, we assess if our PROP-SFS algorithm met one of our major goal, that was
to correct TLS outlier points. Leaf area, elevation and azimuth values were estimated from the
PROP-SFS mesh that was compared with the manual measurements to validate our PROP-SFS
algorithm application to traditional plant geometry extraction. Linear regression slope, intercept

and R? coefficients were computed from their correlation graph.

Then, few of the leaf reconstructions were examined to give a short insight of various configuration
and results (good reconstruction versus wrong reconstruction). PROP-SFS mesh and point cloud

were compared to the original point cloud. A second mesh was reconstructed from the PROP-SFS
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point cloud with a 3D Delaunay triangulation method found in Cloud-Compare software. This

second mesh was compared with the original point cloud.

At the moment of this thesis writing, our PROP-SFS reconstruction was not take into account all
the cases of complex iso-at domains configuration shapes. As we will see below, several distance
point per pixel of the PROP-SFS A-matrix can be computed. For each reconstructed leaves, we
counted the number of A-matrix pixels having n reconstructed distance relatively to the total /-
matrix point (rppp,). For instance, rppp; is the ratio of number of points having one and only one
reconstructed distance value to the total ~A-matrix number of points. This rppp; can be used as a
quality factor to assess non-redundancy in the reconstruction. For each parameter set, we built the
rppp; distribution as a function of the number of reconstructed leaves to indicate which parameter

set provides globally the best result in term of non-redundancy.

2 Results and discussion

2.1 Primary results

To illustrate good results of our PROP-SFS algorithm, we selected four 3D leaf reconstruction for
which the 3D Delaunay triangulation method applied on PROP-SFS point cloud provided satis-
factory reconstruction. Those leaves are illustrated in Figure 5. Those reconstructed leaves show
realistic shapes and are not affected by outlier points. That fulfills qualitatively one major aim of

our study.

#91

Figure 5: 3D Delaunay mesh built from PROP-SFS point cloud of well reconstructed leaves 28,
53, 91 and 7. Parameter set used is T3.

2.2 Geometrical variable extraction from PROP-SFS mesh

The four parameter sets T1, T2, T3 and T3* were tested. Validation results for PROP-SFS area,
elevation and azimuth estimation, are presented in Table 1. Correlation graphs for area (with BIAS

correction), elevation and azimuth estimation are shown in Figures 6, 7, and 8, respectively.

Compared to real area a, estimated area d is satisfactory: we obtained R? values of 0.7 for T1 and
T2, 0.7 for T3 and 0.77 for T3*. Yet our PROP-SFS area estimation had a BIAS, that is the value

defined such that the mean relative error (MRE) computed on our reconstruction set equals to zero,
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Le.:
1 (aAleaf +BIAS) — Aleaf _

Nieaf Aleaf

MRE =

0, 2.1)

where djeqr, arear and njeqp are respectively, estimated leaf area, real leaf area and number of
reconstructed leaves. Those BIAS range from -1.5 to -5 cm?. That shows a global under-estimation
of leaf area. With a closer look at the correlation graph that compared a with (a@ + BIAS) (Figures
6), results with T3 are shown to be more aligned with the 1:1 line than the three other tests. In
addition, its linear regression has the best slope and the sampling (#leaves) was larger. In this way,

the BIAS value of T3 (-4.5 cm?) was the most representative

Results on inclination angle estimation were less convincing, especially for azimuth. In the case of
elevation estimation, T2, T3 and T3* provide correlation graphs with a clear tendency (Figure 7).
This tendency was even more enhanced if the few outliers were deleted: we obtained a R? equals
to 0.65 with parameter set T3* if the single point with wrong estimation was deleted. Elevation
precision obtained was equal to +=20°. Azimuth validation provides less satisfactory results prob-
ably because the measurement range was too short (Figure 8), i.e., between 0° and 120°. Yet if
measurements are extrapolated to the entire azimuth range, i.e., the represented point cloud in the
correlation graphs of Figure 8 were repeated between -180° to +180°, azimuth precision obtained

would be at least equal to +40°.

Leaf Area Elevation Agimuih

& |#leaves(%) [BIAS Slope Intercept R? | Slope Intercept R* | Slope Intercept R?
T2 2%« 74% -3 0.86 073 07| 0.3 45 0.36] 0.27 51 047
T2|3  2.%0u 69% -5 0.78 116 0.7 0.51 -43  0.56| 0.30 50 0.20
T3|4 2%« 97% | -4.5 0.953 306 0.74] 0.52 -43 0.44| 025 -48 012
T4| 4  1.%«0 74% | -1.5 0.78 077 0.77] 0.54  -40.5 0.59| 0.30 -40  0.19

Table 1: PROP-SFS estimation comparison with measurement for T1, T2, T3 and T3*. Leaf area
intercept is without BIAS correction.

2.3 Mesh reconstruction from PROP-SFS point cloud

2.3.1 Parameter set comparison

To illustrate the source of reconstruction issue, we selected three leaves (leaves 37, 49 and 56)
reconstructed with parameter sets T3, T3* and T1 (leaf 56).Figure 9 shows those leaves o-matrix,
1so-o0 domain selection, original point cloud (with black sticker) and reconstruction. Table 2 shows
manual measurements and PROP-SES estimation of area, elevation and azimuth estimation for

those three leaves and parameter sets.

A close view to the reconstructions of leaves 37 and 49 in Figure 9 shows that a large seed selection
can be necessary to initialize the propagation orientation properly: the shape of the PROP-SFS
point cloud is more similar to the original point cloud when computed with T3 than with T3* (in

particular, see leaf 37, Figure 9-2, 51 and 5i1). Despite global curvature shape changes (concave
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Figure 6: Correlation graph for leaf area between flatbed and PROP-SFS measurements (BIAS
corrected) for Tl, T2, T3 and T3".
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Figure 8: Correlation graph for leaf azimuth between compass and PROP-SFS measurements for
T1, T2, T3 and T3*.

versus convex), leaf 37 area computed with T3*is closer to the real area than when it is computed
with T3 though (see Table 2).

Leaf 56 reconstruction illustrates the impact of seed number and a-value selection on PROP-SFS
reconstruction. If several seeds are used, gaps between segmented regions in the PROP-SFS mesh
were visible (Figure 9-3ii and 3iii, leaf 56). In addition, leaf 56 reconstruction showed the impact
of larger amount of a-values caused by the choice of a smaller shell number y. Iso-ot domains
constructed with the parameter set T1 made the propagation reaching some areas (e.g., Figure 9-
3iii, leaf 56, in blue) that were under-represented with T3* (e.g., Figure 9-3ii, leaf 56, in blue).
That made the PROP-SFS point cloud and second mesh more realistic (Figure 9-6iii versus 6ii,
leaf 56) .

Despite PROP-SFS mesh shape varies with the different parameter sets, there was no great change
in the associated area, elevation and azimuth estimation (Table 2). In general, Figure 9 and Table
2 show the difficulty to choose an adequate parameter set to reconstruct realistic leaf shape and

extract correct area and inclination.

2.4 PROP-SFS algorithm analysis

Figure 10 shows o--matrix, iso-o0 domain selection, original point cloud (with black sticker) and
reconstruction of leaves 1, 34, 93 and 27: (i) leaf 1 was a rather flat leaf with small a-values, (ii)

leaf 34 had more pronounced curved shape than leaf 1 and consequently had larger a-values, and
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T3*
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Figure 9: Leaves number 37, 49 and 56: (1) a-matrix, (2) original point cloud (with black sticker),
(3) iso-o. domain selection, (4) PROP-SFS mesh, (5) PROP-SFS point cloud, (6) mesh
reconstructed with the PROP-SFS point cloud.
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Area (1cnr) Elevation (5°) Azimuth (10°)

Mes. SPS Mes. SPS Mes. SPS

- T3* o 25 . -60 -80
L37 T3 26 20 -45 70 -100 .90
T3* - 43 - -90 -70

L49 T3 53 44 =70 .05 nan 70
T3 23 -70 =70

L356 T3* 30 21 -35 -60 -90 =70
T1 22 -60 =70

Table 2: Manual versus PROP-SFS measurement of area, elevation (rounded at 5°) and azimuth
(rounded at 10°) for leaves number 37, 49 and 56, for parameter sets T3, T3* and T1
(leaf 56).

(111) leaves 93 and 27 had typical pear tree leaf shape with vertical inclination, and were viewed

from the side, i.e., their half limbs were oriented within the TLS beam direction.

Figure 10 shows our PROP-SFS reconstruction errors:

* Some of the PROP-SFS meshes had visible mesh holes along outer iso-ot domain boundary
curves (see leaf 1 in Figure 10-4) as no strategy to fill PROP-SFS mesh in reverse propagation
(such as for the ~A-matrix construction) was set up. Those holes are inherent in our PROP-SFS

algorithm.

* There were still PROP-SFS mesh outlier triangles (see leaf 1 in Figure 10-4, zoom), and
crossing curves (see leaf 27 in Figure 10-4, zoom) that created redundancy in the PROP-SFS

point cloud.

* PROP-SFS mesh triangles were not necessarily handling well PROP-SFS point cloud recon-
struction for sans-pile surface filling. For instance, leat 93 PROP-SFS mesh showed two
cases of large triangle set with same vertex (see leaf 93, in Figure 10-4, zoom), i.e., using
the same buffer point. Sans-pile surface filling was well handled in the first case whereas it
was not in the second case that made point cloud holes visible in the PROP-SFES point cloud

(see leaf 93, in Figure 10-5, frame).

* Propagation orientation can be wrongly initialized. If too many toggle points are computed,

the reconstructed surface has wrinkles (see leaf 34 in Figure 10-4, zoom).

Table 3 shows manual versus PROP-SES estimation of leaf area, elevation and azimuth. Leaves 1
and 34 area and elevation were well estimated, whereas leaves 93 and 27 were respectively under
and over estimated. Leaf 1 PROP-SFS mesh was visually correct despite few mesh holes that
explain small under-estimation (1 cm?) of its area. Leaf 34 area estimation was correct despite
its PROP-SFS mesh has an approximated leaf shape. This mesh had large mesh holes but also
wrinkle shapes. The combination of both compensates area computation. Leaf 27 iso-ot domain
concavities created a large amount of crossing PROP-SFS mesh triangles. This explains over-

estimation of leaf 27 area. Finally, leaf 93 PROP-SFS mesh had no noticeable issue except its half
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limb was not reconstructed. This half limb had a too steepest incidence angle. Consequently, it was

not well represented in the iso-0. domain set and it was not taken into account in the reconstruction.

Leaves 1 and 93 elevation was well estimated. Leaf 1 had no particular issue impacting on elevation
estimation. Leaf 93 was vertical that made its elevation estimation good even if its half limb was
missing in the reconstruction. Wrong estimation for leaf 27 elevation might have been caused by
redundant PROP-SFS mesh triangles. Finally, leaf 34 PROP-SFS mesh wrinkles and general shape
caused severe bias in elevation and azimuth estimation. PROP-SFS azimuth estimation for leaves

1 and 27 were within the expected ranges of precision established in Section 2.2,

#1

#93

Figure 10: Leaves 1, 34, 93 and 27: (1) a-matrix, (2) iso-o. domain selection, (3) original point
cloud (with black sticker) (Leaves 93 and 27: side view with mesh), (4) PROP-SFS
mesh, (5) PROP-SFS point cloud, (6) mesh reconstructed with the PROP-SFS point
cloud.

Area (lem®) | Elevation (5°) | Azmmuth(10°)
_ Mes. SPS | Mes. SPS | Mes. SPS
L1 T3* 29 28 -50 -45 -50 -40
L34 T3* 18 18 -30 -50 | -100  -60
L93 T3* 51 33 -90 -85 nan -90
L27 T3 65 75 -85 -70 -70 -80

Table 3: Manual versus PROP-SFS measurement of area, elevation (rounded at 5°) and azimuth
(rounded at 10°) for leaves number 1, 34, 93 and 27.
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2.5 Extreme cases

Figure 11 shows leaf 84 reconstruction with parameter set T3*. Leaf 84 was one of the furthest
(1m90 from TLS aperture) and smallest leaf (17 cm?) of our leaf set. Thus it had the point cloud
with the lowest points density (29 points/cm?). Even if its area, elevation and azimuth were in-
correctly estimated (estimated minus real values equaling -10 cm?, -40° and 50°, respectively),
our PROP-SFS method was shown to tackle outlier points and to provide realistic leaf shape with

object with such size and distance.

Figure 11 shows leaf 41 reconstruction with T3. Leaf 41 was one of the largest leaf (55 cm?), it was
at a medium distance from TLS aperture (1.15 m) and a medium points density (112 points/cm?).
The particularity of this leaf was its strong inclination and its complex silhouette shape. Its PROP-
SFS mesh had several triangle outliers. Compared to leaf 27 in Figure 10, leaf 41 PROP-SFS mesh
outlier triangles made the PROP-SFS point cloud and 3D Delaunay triangulation incorrect. Those
ones created redundant points in the PROP-SFS point cloud: rppp; was at 47%. Without the point
redundancy, the general aspect of this PROP-SFS point cloud was realistic though.

#84 #41

Figure 11: Leaves 84 and 41: (1) original o-matrix, (2) iso-o. domains, (3) original point cloud
(with black sticker), (4) PROP-SFS mesh, (5) PROP-SFS point cloud, (6) mesh recon-
structed with the PROP-SFS point cloud.

2.6 rppp; distribution

To classify redundancy, four groups of 14-16 leaves with a-matrix size <2ko, 3ko, 4-5ko, and >6ko
were built and denoted A, B, C and D, respectively.

Figure 5 shows the total number of leaves (in %) reconstructed for each leaves and parameter set.
Each of the parameter sets managed to reconstruct every leaves of leaf set A. Parameter sets T1,
T2 and T3* did not worked on leaf set D whereas T3 did. In general, T3* functioned on 97% of

the leaves, whereas less than 75% were reconstructed with the other parameter sets (see Table 1).

Figure 12-1 to 3 shows rppp; distribution for leaf sets A-C with parameter set T1, T2, T3 and T3",
in addition to rppp; distribution for leaves set D with T3 (Figure 12-4). In term of non-redundancy,

the larger the number of leaves with high rppp; is, the better the parameter set is. In this way, T3
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gave the best results with leaf sets A and B whereas it was T3* that gave the best result with leaf set
C. T3 is the only parameter set that worked on D. Yet T3 rppp; distribution was of lower quality
with o-matrix set D (Figure 12-4): half of the leaves had a rppp; lower than 50% that indicates
heavy memory use because redundancy. We guess this memory use was too large for T1, T2 and
T3* that made the PROP-SFS reconstruction failing.
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Figure 12: Distribution of rppp, for: (1) leaf set A, (2) leaf set B, (3) leaf set C and (4) leaf set
D, with parameter set T1, T2, T3 and T3*. (5) Number of reconstructed leaves per
parameter set.

3 Discussion

Our PROP-SFS algorithm fulfilled our objectives to correct outlier points. Leaf reconstructions fit
original point cloud and avoid outlier points impact in the final reconstructed shape. We estimated
leaf area, elevation and azimuth from leaf PROP-SFS mesh and those estimations were assessed
with different shell number and seed size. Leaf area estimation showed in general satisfactory
results (RZ = 0.77 for the best set), but with a general underestimation represented by a BIAS of
4.5 cm?. Elevation estimation precision was equal to +=20° and azimuth precision was shown to be
at least equal to +£40°.

Quality of the PROP-SFS mesh reconstruction can be related to the results of the leaf area, ele-
vation and azimuth estimation. Holes in the PROP-SFS mesh make area under-estimated whereas
wrinkles make it over-estimated. Still, under-estimation caused by mesh holes can compensate
over-estimation caused by wrinkles. Holes and wrinkles also affect elevation and azimuth esti-
mation. In general, good PROP-SFS reconstructions were providing correct area and inclination
estimations, even if the method to extract inclination from PROP-SFS reconstruction should be im-

proved to general leaves configuration (e.g., asymmetrical shape and not vertical principal vein).

The quality of area and inclination estimation is not necessarily correlated to the quality of the
PROP-SFS point cloud reconstruction: for instance, a large amount of PROP-SFS mesh outlier
triangles can lead to wrong area estimation whereas it can have either small or large impact on the
PROP-SFES point cloud shape. Conversely, the estimated shape can be of opposite convexity and

provides a good area estimation.

Results of our validation lead us to consider two possible improvements for our PROP-SFS area

and inclination estimation: (1) to add an additional PROP-SFS pipeline component to correct
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mesh outlier triangles and holes (that have been discussed in Section 2.4), and (2) to optimize the
parameter set choice. Parameter optimization can be done with: (1) better quantification percentile,

(i) seed size choice, and (iii) redundant point analysis:

(1) We showed that it was better to start with a large seed to avoid false toggle point
detection.
(i1) In Chapter 5, reconstruction quality showed that the quantification percentile depends

on matrix size. In the case of large matrix, small €, can be used. In the case of
small matrices, €y should be chosen large enough to avoid error propagation from
1so-o curves estimation. In this chapter, no clear tendency appears between different
€y values. Yet, we showed that this value should also be also adapted to leaf shape

complexity.

(iii) Redundant point is also a quality factors that can be used to adapt parameter choice.
First, the amount of rppp; at the end of the computing process can be taken into
account to decide a change in the parameter set. Secondly, redundant point construc-
tion makes computing time longer. Conversely, long computing time can indicate the
chance of large amount of redundant point reconstruction. A computing clock can
be implemented to change our PROP-SFS parameters in case of too long computing

time.

4 Conclusion

Measuring plant geometry at organs scale is an important step to study plant physiology with
model such as functional-structural-plant-modeling (FSPM). 3D scanner have been showed to be
adequate to extract plant geometry at this scale (e.g., [71, 18, 136]), yet a very few were used
to extract in situ plant geometry at organ scale. Method for voxel representation at organ scale
derived from TLS data were set up (e.g., [113]) but single organ shape, area and inclination were

not extracted because the large amount of outlier points [215].

In Chapter 5, we developed a PROP-SFS method based on propagation along iso-ot domain. In this
chapter, we tested this method for Conference pear tree leaves geometry extraction from TLS data
with several PROP-SFS parameter set (shell number and seed size). 100 leaf area and inclination
were manually measured. 58 leaves that were entirely visible in the scan were manually selected
in the TLS point cloud to be reconstructed with our algorithm. The reconstruction were shown to
fit original point cloud and to correct outlier points. Area estimation provided satisfactory results:
the best correlation coefficient obtained was R? = (0.77. A BIAS of 4.5 cm? was observed for those
area estimation though. Elevation estimation precision was equal to +=20° and azimuth precision
was shown to be at least equal to £40°, yet elevation estimation from PROP-SFS mesh could
be improved if adapted to non-symmetrical and non vertical leaves. New azimuth measurement,

with larger sample, should be carried out to make it possible to proceed to a better validation.
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This chapter also allowed us to point out improvement for our algorithm. Those improvement
concerned outlier triangle, holes processing, optimization of shell number and choice of the seed

size.

As a first validation of our PROP-SFS algorithm, area and inclination estimations were satisfactory.
Compared to other leaf area, inclination and shape extraction method (e.g., [136, 18]), our PROP-
SES reconstruction provided less accurate area and inclination estimation. Yet those studies extract
geometrical variables only on picked leaves or from single stems placed close to the 3D scanner
aperture and such that the leaves were perpendicular to their 3D scanner viewing direction. In
other words, they used high resolution and high quality data with the best measuring conditions.
Compared to those previous studies, we gave the first leaf area, inclination and shape estimation
for complex canopy leaves shape scanned under in sifu conditions and from a phase-shift TLS
device and we validated our reconstruction for leaf point cloud density ranging from 29 to 272
points/cm?2. In addition, if our PROP-SFS propagation is improved to avoid mesh outlier triangles
and holes, and if optimal quantification percentile values and seed sizes are automatically selected,
our PROP-SFS algorithm can be expected to provide better results.
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Part IV

Conclusion
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Horticulturists and agronomists seek to improve and optimize their orchards management to de-
crease their expenses and increase their orchard yield quality. Orchard management mainly de-
pends on plant growth and reaction to biotic and abiotic stresses, and the understanding of the
plant functioning can lead horticulturists and agronomist to improve their yields. Plant physiology
study can be carried out with computer models and plant geometry description at organ scale is an

important information for this purpose. Scanner 3D can be used to extract such information.

Because their portability and their high measurement rates, TLS became a common metrology tool
for plant geometry measurements. Despite they have been broadly used for global (e.g., LAI) and
distributive (e.g., VLAD, voxelized 3D space of LAD, etc.) descriptors extraction, they were not
used to extract complex canopy geometry at organ scale and under in situ condition. Outlier points
presence along organs edge was the major limiting factor to segment and reconstruct organs from
TLS scanner as they represent a large amount of points in plant TLS point cloud. For instance,
we observed that pear tree leaves of 9 cm length have a ratio outlier/point (see Chapter 2, Section
2.5) representing from 8% to 33% of their point cloud when placed at 1.5 to 5 meter from the
TLS aperture, respectively. Consequently, we showed that outliers deletion was not an adequate
method to process TLS scan when used to extract geometrical information of plant organs, such as
leaf area, inclination and shape. This was the reason why we rather proposed to develop an outlier

point correction.

In canopy scan configuration, the detection of outlier points was a difficult task: organ shape
complexity and their large amount within tree canopy made it difficult to detect whether a point is
an inlier or an outlier point. As intensity return of TLS laser beam became a common data provided
by actual TLS devices, it was possible to consider it a new source of information to detect those
outlier points. Intensity data is related to scanned object reflectance property and geometry, i.e.,
inclination and distance to TLS aperture. The analysis of different geometrical configuration cases
showed that intensity has a different behavior than distance to surface configuration (inclination
and edge, Chapter 2, Section 2.3). Intensity and distance data are coherent when TLS measures the
inner part of a surface. They can be incoherent at object edge measurement points though. In this
way, intensity and distance inconsistency can be used to indicate the presence of outlier points. In
this thesis, we decided to use TLS intensity information to correct those outlier points. To do so,

we proposed a SFS method to reconstruct scanned object surface.

PROP-SFS design

SES consists of using intensity data of object photograph to reconstruct their shape in 3D dimen-
sion. As we have seen, the point cloud of a scanned object usually have outlier points along the
edge of the object. Yet they also have local parts that are of higher quality. Those ones are the
surface portions that are perpendicular to the TLS laser beam and which have consequently the
maximal intensity value. In this thesis, our idea was to design a computational method to recon-

struct surfaces from the high quality point cloud area and to propagate the reconstruction outwards
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the surface to correct the outlier points. In other words, those two types of point (outlier and
maximal intensity points) in TLS point cloud made our choice to develop a PROP-SFS method to

reconstruct surfaces from TLS scans.

Under certain assumptions on object material, surface isophote regions (i.e., constant incident an-
gle o between a surface and a light ray) correspond to iso-intensity domains of photographs. In
1850, Monge [197] stated that SPS are isophote surfaces. In this thesis, we considered the photo-
graph iso-intensity domains as domains with constant a-value. We proved that a-photographs with
constant o-values are necessarily corresponding to SPS. Those surfaces have a convenient compu-
tational property: their greatest slope curves are straight line portions. We used this last property

to set up a PROP-SFES algorithm by SPS propagation for surface iso-o regions reconstruction.

This PROP-SFS consists of three principal components: (i) the a-photograph matrix segmentation
and iso-o0 domain ordering, (ii) the initialization of the 3D seed from distance data, and (iii) the
propagation of the SPS starting from the seed for each segmented domains and along consecutive
surface iso-o region. To set up the last component, we used basic geometric properties to construct
and propagate SPS greatest slope lines from a surface iso-a region boundary. Yet this propagation
raises the issue that points were not reconstructed between propagation lines. To complete the
propagation, we used SPS equation to fill in missing points. Once our PROP-SFES pipeline was set
up, we tested this algorithm on synthetic surfaces and validated its application for the extraction of

Conference pear tree leaf geometry from TLS scan.

PROP-SFS result

Our PROP-SFS method can reconstruct simple but also complex shapes. We made an empirical
computing time ¢ estimation on hemisphere a-photograph and obtained ¢ ~ a}(f / e(lx' 12 with a;,; the
total pixel area of the object and €, the quantification percentile representing the o-values chosen
for iso-o. domain extraction. Yet redundant points of PROP-SFS point cloud are still generated
with the construction of wrong PROP-SFS triangle. Those redundant points can lead us to incorrect
PROP-SFS reconstructions and make computing time way longer. To limit that, TLS data should

be pre-processed and optimal parameters chosen.

Our PROP-SFS method has been shown to be sensitive to: (i) picture size a;,; and quantification
percentile €y, (ii) noise and bias on a-values, and (iii) distance noise. With this knowledge, we set
up methods and strategies to make optimal PROP-SFES reconstructions in terms of accuracy and

redundancy.

(1) It is widely known that PROP-SFS reconstruction makes a reconstruction error prop-
agation [163]. This error depends on the distance of the reconstruction from the seed,
but also, in our case, on the quality of the iso-o0 domain boundary extraction. Bound-
ary estimation error is added to the propagation error throughout the propagation. In

the case of small matrices, the quality of boundary extraction is low, whereas large
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matrices lead us to better boundary extraction. In the first case, it is thus necessary to
extract a low amount of iso-ot domains to limit error propagation caused by bound-
ary estimation error. A strategy of extracting iso-o. domains with fixed size (in pixel)
can be used to control the iso-ot domain number as a function of a-photograph size.
Upstream of our PROP-SFS pipeline, we added a method to select a quantification
percentile value as a function of the size of the picture shell (in pixel), i.e., the outer

iso-a domain that is encircling the other iso-ot domains.

(i1) Analysis of PROP-SFS reconstruction carried out on noised o-matrices showed that
it is necessary to avoid o noise. We set up a o-matrix smoothing method by local
averaging. On a synthetic hemisphere oi-matrix with a-noise of maximum =£5.7°, we
showed that this method should be applied at least five times to obtain correct recon-
struction. In the case of more complex shapes, the number of consecutive o--matrix
smoothing can be selected with visual inspection of the smoothed o-matrices. This
choice should take into account the number of visible seeds and iso-o. domain bound-
ary complexity (e.g., curvature and concavity) to limit complex propagation scheme
and thus redundancy. Bias of the o-values has also been shown to drive the recon-
struction quality and can make it more accurate. Yet we did not make any suggestion

about the use of artificial o-values bias.

(ii1) SPS greatest slope computation depends on 3D curve shape. In particular, it depends
on the 3D seed boundary shape. If this latest curve has been incorrectly extracted due
to noise, the greatest slope computation is incorrect. Thus noise should be avoided
on this curve as much as possible. A low-pass filter has been implemented to extract
curve information from noisy distance data. A cutoff value is chosen with assumption

on curve shape (e.g., number of peaks).

After proper TLS intensity calibration, Conference pear tree leaves geometry (area, inclination and
shape) were extracted from PROP-SFES reconstruction ran on TLS data. We tested several param-
eter sets with various quantification percentile values and 2D seed sizes. Our major goal to correct
outlier points was met and the reconstructed shapes were realistic. Leaf area estimation showed an
underestimation of 4.5 cm? for average leaf area of 35 cm? and best correlation coefficient obtained
was 0.77. Leaf elevation were extracted with a precision of £20° and azimuth with a precision
of +40°. We observed that quantification percentile values and seed sizes should be adapted to
leaf complexity and to matrix size to obtain better results. As a first strategy, we proposed to use
computing time and point redundancy to change parameter if needed. Finally, missing steps of our
PROP-SFS propagation were shown to impact in our results: SFS-PROP mesh outlier triangles

were still constructed and create a bias in the area and inclination estimation.

Compared to other leaf area, inclination and shape extraction method (e.g., [136, 18]), our PROP-
SFS reconstruction provided less accurate area and inclination estimation. However, those studies

extract those geometric variables only on picked leaves or from single stems placed close to the
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3D scanner aperture and such that the leaves were perpendicular to their 3D scanner viewing
direction. In other words, they used high resolution and high quality data with best measuring
conditions. Compared to those previous studies, we gave the first leaf area, inclination and shape
estimation for complex canopy leaves shape under in situ conditions and from a phase-shift TLS
device and we validated our reconstruction for leaf point cloud density ranging from 29 to 272
points/cm?2. In addition, if our PROP-SFS propagation is improved to avoid mesh outlier triangles
and holes, and if optimal quantification percentile values and seed sizes are automatically selected,
our PROP-SFS algorithm can be expected to provide better results.

Perspective

As a first trial, we managed to extract leaf shape, area and inclination from TLS scan of pear trees
under in situ conditions. In the framework of plant geometry extraction for extensive study of plant

physiology, results of our thesis makes it possible to reach new goals.

PROP-SFS improvement. In addition to the improvements aforementioned, two other points
can be investigated to makes our PROP-SFS method more optimal. The first point concerns the
investigation of the saddle toggle points. Those points define area were propagation cannot be
carried out normally with SPS. We used plane portion to fill those areas. Yet we did not make the
mathematical analysis of those toggle points. With comparable analysis than done in Chapter 4,
we can seek for specific surface to use with such points and improve our PROP-SFS algorithm.
The second point concerns the integration of distance data in the PROP-SFES reconstruction. TLS
principal data is distance and in our PROP-SFS, only a few distance points are used. Our PROP-
SES pipeline can be augmented with a method that integrates and merges distance information to
the reconstruction during the propagation. This method can be for instance a Kalman filter [216].

Scan segmentation. Two types of segmentation of TLS scan of plants are required: (i) woody
versus leaf material, and (i1) leaf segmentation. Béland et al. [17] used intensity to classify and
segment woody part versus foliage in their scans. Yet they observed that their method always likely
involves a level of misclassification between wood and leaf components. The analysis we did on
the intensity relation with surface inclination makes it possible to complete their classification. For
instance, the comparison of distance and intensity information can be done: local inclination can be
computed in the point cloud and thus transformed into o-values. Comparison with actual o-values

represented by the TLS intensities can be used to detect the boundary of potential segmented area.

Plant representation.  Traditional global and distributive geometric variables (LAI, VLAD,
voxelized 3D space of LAD, etc.) have been already estimated quite accurately from TLS data.
Yet it would be interesting to assess our PROP-SFS reconstruction quality on those variable es-
timations. First results obtained from pear tree leaf reconstructions showed that we can expect

satisfactory results for those global and distributive variables estimation. For instance, our results
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showed that our PROP-SFS reconstruction method can be used to detect leaf movements such it

has been done by Thanisawanyangkura et al.[105].

With our method, we managed to extract leaf shape of complex canopy scanned with TLS under
in situ conditions. Combined with tree architecture extraction method such as the one proposed
by Preuksakarn [122], it would be possible to reconstruct virtual plants from real observation
using TLS scans. Yet techniques to attach reconstructed leaves to virtual tree branches should
be developed. Signal occlusion caused by leaves avoid us to get complete plant scan. Specific

measurement protocols, such as plant scan through growth, should be set up.

Plant physiology. The general framework of this thesis was the use of TLS scans for extensive
physiological studies of plants to improve orchard management. Two main issues were discussed:

(1) tree architecture manipulation, and (ii) disease and stress detection.

Tree architecture manipulation depends on fruit quality and quantity objectives. Willaume et al.
[2] showed that the quantity and position in the canopy of spur leaves versus shoot leaves were
affecting fruit quality. Our PROP-SFS method could be used to detect fruit and reconstruct leaves.
Yet architecture information is highly required to make useful canopy models and additional stud-
ies, as above mentioned, should be carried out. Ideally, spur leaves versus shoot leaves detection
tools should be developed.

Diseases and stresses induce plant morphology changes. Our PROP-SFS algorithm has shown to
provide realistic representations of leaves. Consequently, it can be used to detect and study biotic

and abiotic stresses.

In conclusion, my thesis objective to correct TLS outlier points with PROP-SFS algorithm has
been fulfilled. My PROP-SFES algorithm can provide realistic object reconstruction from a TLS
scan, even for objects with low points density. We showed that the correction of outliers was a
mandatory step for the reconstruction of foliage when scanned with in situ conditions. We also
showed that the obtained reconstructions were satisfactory as first results. As it can be expected in
any computer method development, other components should be added upstream or downstream
to our PROP-SFS method to improve the quality of the reconstructions. A complete pipeline for
organs reconstruction would produce closer results to those obtained in laboratory conditions. In
general, this method should be integrated in a larger set of computing methods such as organs
segmentation, labeling, and architecture extraction, in order to produce virtual plants that would

be optimal for physiological studies.
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Appendix I

Traditional point cloud process

After a scene is scanned by a 3D scanner device, e.g., a TLS, it is in general necessary to process
the generated point cloud in order to extract the scene geometries such as objects area, position
and orientation. It could be interesting to reconstruct the object surface, that is, to generate a mesh,

1.e., a points set together with its connection segments.

As it has been discussed in Chapter 1, TLS scanner provide 3D point cloud that has several features
and dependencies. For instance, precision and density depends on the distance and material re-
flectance, holes are present because occlusion, and there are outliers along the edge of the scanned
objects. In addition, geometrical (object, scan setup) and topological (genus and smoothness) con-
figuration of the scanned surfaces may differ among scans. In other words, every scene has its
own features and it is very difficult, if not impossible, to set up a general point cloud processing to
reconstruct the scene surfaces. Still, there is commonality and three main steps for surface recon-
struction can be defined: (i) the point cloud pre-processing; (ii) the reconstruction of the object;
and (iii) the post-processing of the reconstruction. The framework of this thesis is the numerical
reconstruction of in situ plant canopy. Because most of the plant canopies are complex and dense,

manual an semi-automatic process are irrelevant.

In this appendix, we give a (non-exhaustive) summary on the main classifications made on au-
tomatic point cloud processes. A basic description of surfaces reconstruction is made in Section
1. We can notice that pre-processing on point cloud are the same than post-processing on mesh
vertices (e.g., [217]). Pre- and post-process description are described in Section 2.

1 Generation of the virtual surface

Surface reconstruction is a very broad domain and it is very complicated to classify the methods.
Fabio [218] proposed to report them according to some classifications which we summarize below.

First, he made a classification based on the type of the surface representation:

* Parametric representation: the surface is considered as a set of parametric surface patches,

described by parametric equations (e.g. B-spline, Bezier curves, etc.).
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Figure 1: From [29]: (a) Point cloud representing a tea-pot. (b) Surface reconstruction from the

Then,

Then,

tea-pot’s point cloud.

Interpolated surface: the surface is defined with a parametric representation and each point

of the point clouds is contained in the reconstructed surface.

Implicit representation: those methods try to find a smooth function that passes through

all positions where the implicit function is evaluated to some specified value.

Simplicial representation: the surface is a collection of simple entities including points,
edges and triangles. To build the edges and triangles, this reconstruction can be carried out

from a simple point cloud, e.g. a Delaunay triangulation [219].

Approximated surfaces: those representations do not contain all the original points, but
points as near as possible to them. For instance, the warping-based surface reconstruction

(deformation of an initial surface) is of this kind.
his classification is done according to the quality (or type) of the input data:

Unorganized point clouds: the algorithms only work on the spatial position of the points.

Structured point cloud: the algorithms can take into account additional information (e.g.

break lines, local orientation).
he categorized the algorithms by their spatial subdivision:

The surface oriented algorithm: the output of the reconstruction is a surface.

The volume oriented algorithm: the output of the reconstruction is a volume

Finally, he classified the reconstruction method according to the different assumption on the algo-

rithm:

Fixed topology: The algorithm assumes fixed topological type (e.g. genus, continuity).

Variable topology: The algorithm exploits structure or orientation information such as ad-
jacency relationship of data for multiple scan, or local surface orientation when surface gra-

dients are provided.
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2 Pre- and post-processing

2.1 Scan registration

In general, TLS scan is a partial representation of a scene. Only surfaces within the TLS field-
of-view are visible. However several scans make it possible to obtain, in the best cases, a full
representation of the scene. Registration method is a mandatory step to get coherent scans though
(see Figure 2): each scan are expressed in the local Cartesian coordinate system, for which the
TLS is the center, and a common coordinate system should be built. To do so, registration ball
[174, 220] or target [221] are placed in the TLS field-of-view and are automatically detected to
define a common coordinate system. Then an optimization of the registration can be carried out,

e.g. an iterative closest point algorithm [222].

Figure 2: Point cloud registration of the Stanford’s rabbit. From[223].

2.2 Objects segmentation, recognition and classification

In general, a scene composed of several objects. One of the first operation that a computer vision
system must perform is the separation of objects, e.g. the background [224]. This is called the
segmentation of the scene.

According to Hoover et al. [225], producing an image segmentation consist of: (i) make a set of
scene subsets, i.e., the segments, such that their union is equal to the scene; (ii) each segment is
connected [226]; (ii1) the intersection of two segments is empty; iv) repeating the segmentation
make the same set of scene segments. Wang and Shan [227] categorized traditional segmentation

algorithms into five groups of method, that we have summarized below:

* Edge-detection: the TLS data are converted into range image to make it suitable to tradi-

tional image edge-detection methods (see Figure 3).

* Surface-growing: the points are grouped around surface patches, i.e. the seed of the pro-
cess. The grouping is based on similarity measures, such as proximity, slope, curvature or

surface normal.
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* Scan-line: the range image is split into scan lines along a given direction. Then segments of

lines are merged together based on some similarity measures in a region growing fashion.

* Clustering: each point is associated with a feature vector and the TLS data is segmented

using a clustering technique, such as k-means or maximum likelihood.

* Graph partitioning: each TLS point or group of TLS points in a small neighborhood is a
node of a graph and the connection between those nodes consists of the connections/edge
between a pair of point. Each edge has a weight to measure the similarity of the pair of

points. The segmentation is achieved with finding the optimized graph cuts.

As previously mentioned, a TLS device also provides an intensity, i.e. a photograph of the scene.
Similar techniques than for the point cloud can be applied to this photograph to segment the scene
[224].

Sometimes, it is not possible to segment objects with the only point cloud (e.g. to segment grass
from roads [228]). In this case, both of the TLS distance and intensity can be used to segment the
image: the distance is used to segment objects with different shape and orientation, and intensity is
used to segment objects with different gray level. Still, there could be an uncertainty if the material

share close gray level [23].

Once the scene is segmented, an identification, location and description of the object can be carried
out, i.e. it is the recognition process. According to Jain and Kasturi [224], 3D object recognition
implies awareness of something already known, i.e. a model is necessary. The recognition process
involves an algorithm to perform matching between models and data description and might include
data- and model-driven sub-processes, e.g. a learning process. They classified the 3D recognition
methods in three different type [224]:

* The object representation schemes: for instance, a wire-frame, i.e. a set of characteristic
vertex points together with a list of edges corresponding to vertices pairs, can be used to
recognize a specific object. A smooth deformation of the wire-frame is carry out until the

object shape is matched.

* The aspect graphs and characteristic views: an object is represented in characteristic
viewpoints, which gives the same qualitative view (number and type of features) of the
projected object, called the “aspect” of the object. Connection in the aspect graph is defined

when a changes in the aspect take place between two characteristic viewpoints.

* The object recognition system: for instance, the model-based system ACRONYM [229]
for 3D interpretation of 3D images. ACRONYM is a modular system which uses view-
independent volumetric object model and it is based on the prediction-hypothesis-verification

paradigm.
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Another kind of scene partitioning is the scene classification. Scene sections are annotated by
high-level or low-level semantic information [230]. Compared to the recognition process, this op-
eration output is an annotated segmentation of the image, e.g. vegetation versus building (low-level
semantic); or a label for the image itself, e.g., forest versus city (high-level semantic). Similarly to
segmentation, both of TLS distance and intensity could be used to classified complex scene, e.g.,

the land covers which are forming a landscape.

A

Figure 3: Example of point cloud segmentation made with an edge detection algorithm: house
roofs versus ground. From [227]

2.3 Noise reduction

Some surface reconstruction methods can be very sensitive to noise. Noise removal could be an
important step in the pre-processing of noisy TLS data. The reduction of TLS distance noise
can be inspired by noise reduction methods for intensity photograph [231] such as median or
averaging filter. As well as for photograph, those type of noise reduction algorithm can also smooth
shape information. Noise reduction methods which consider a kernel with a curvature-dependent
geometry, e.g., anisotropic approach [232], or with adaptive kernel size [233], are methods which

remove noise together with keeping the shape information (Figure 4).

Another traditional noise removal method is to estimate local orientation with a moving least
square algorithm applied on the point cloud [214]. This local orientation is used to define a piece
of plane which would fit locally the point cloud and neighboring points are projected onto this
piece of plane.

Figure 4: Example of noise reduction with Gaussian filter with adaptive kernel. From [233].
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2.4 OQOutliers correction

It possible to delete the outliers manually, however this task can be time-consuming. Algorithm

for outliers detection can be classified in two kinds [50]:

* Distance based algorithm: a point is considered as an outlier if a defined portion of the

scanned surface is at least at a minimal distance.

* Density based algorithm: a point is considered as an outlier if it has not enough neighbors
in its surrounding. This last algorithm needs the knowledge of local density, which is not

always easy to estimate (Figure 5).

Figure 5: Distance based outlier detection of a TLS scan of an office. From [50].

2.5 Simplification

The scan of a scene can be redundant in term of distance sampling. Depending on the object shape,
it is neither necessary to keep every point of the TLS point cloud nor of the produced mesh vertices.

Pauly et al. [234] proposed to classify the points set simplification methods in three kinds:

* Clustering: the points set is divided into grid cell. All sample point that fall into the same
cell are represented by a common representative. This method fails in the correct representa-
tion of complex shape. Still, a region-growing clustering has been developed to be curvature

adaptive.

* Iterative simplification: the number of points is reduced by using a down-sampling oper-
ator. For instance, specific points can be removed from the original point cloud to keep the
representative points. In general, an error-metric is used to quantifies the error caused by the

down-sampling.

* Particle simulation: particles are randomly spread across the surface and their position is

equalized using a point repulsion algorithm.

2.6 Surface completion

Holes and under-sampling in the point cloud (Figure 7) can be generated because occlusions,

critical reflectance properties, constraints in the scanning path, or limited sensor resolution [235].
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Figure 6: Clustering simplification on the Stanford’s rabbit mesh. From [234].

To get a correct surface reconstruction, it is necessary to complete the points set. Schnabel et al.

[236] gave a short review of the different approaches:

* Surface completion based on level-set PDE and energy minimization: a smooth geome-

try is inferred in missing area.

* Example-based approach: those methods discover similarity in (or between) model in

order to infer the missing information from other fully captured surface part.
* Mesh-repair: to fill small gaps in the mesh.

* Range image completion: this approach consists in continuing primitive shapes that reach

a hole boundary.

Figure 7: Example of holes filling. From [235].

3 Discussion

In this appendix, we have seen that several concepts can be used to classify surfaces reconstruction,
and pre- and post- processes. Those classifications have been summarized in Table 1-1 and 2, re-

spectively. There are several ways to reconstruct surfaces and to carry out a correct representation
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of the surface reconstruction, and each of them assumes a certain quality of the point cloud. Intu-
itively, we can guess that it is necessary to perform point cloud processes to get a correct surface

representation (Table 1-3):

* We can easily imagine that point cloud segmentation is a necessary step before starting the

surface reconstruction;

* Noise reduction might be an important step if the correctness of the points position is needed,
as it is the case for the parametric, implicit, simplicial and interpolated representation. How-
ever, the reconstruction which is using an approximated representation might not need a

noise reduction.

e Qutliers correction is an important step in a point cloud processing as they might create a

large bias in the surface reconstruction.

» Simplification seems to be an optional step as it reduces redundancies of the point cloud and

does not improve correctness of the surface representation.

* Surface completion depends on the knowledge of the surface topology (e.g., genus) and/or
on the feature of the surface reconstruction. In addition, reconstructions can intrinsically get
rid of small holes. In conclusion, this type of process depends on the surface that should be

reconstructed and on the method of reconstruction.

* Registration is rather a process that depends on the availability of extra 3D point cloud and

it should not be a necessary step for surface reconstruction.

* Recognition and classification are semantic processes. They can help in the choice of a

surface reconstruction method, but are not mandatory.

In addition, in Table 1-2 , we see that some process have been developed to take into account both

of the intensity and distance image.
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Appendix 11

Geometry

1 Curve

1.1 Frenet trihedron

Let C a 3D curves that is at least C™ -continuous with 1’ >2 Letc: ICR—R3a parametric

representation C™ -continuous of C. Its tangent ¢ is defined by:

Let |k(s)| = k(s) be the curve curvature. We define the principal normal unit vector n as:

Finally, the binormal vector of the curve is defined as:

q(s) =1(s) x n(s).

(1.1)

(1.2)

(1.3)

(1.4)

We call (t,n,q) the Frenet trihedron of the curve C (see Figure ). The Frenet-Serret equations

relating ¢, n and ¢ are (See Chapter 5 of [198]):

i(s) = x(s)-n(s)
As) = —K(s).(s) +(s).b(s)
q(s) = =(s).n(s)

with T the torsion of the curve. In the case of a planar curve, the torsion is null, i.e., T(s) =
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Figure 1: Frenet trihedron of the curve C.

1.2 Inflexion point of a curve

An inflexion point is a point of a curve C such that the direction of the curvature vector changes
relatively to the tangent of C, i.e., ¢(s) is an inflexion point of the curve C if and only if k(s) =0
and if there exists € > 0, small enough, such that k(s +¢€) and k(s — €) are of opposite sign.

1.3 Involute and evolute

An involute is a curve §* obtained from another given curve & by attaching an imaginary taut string
on § and tracing the traveling of a given string point of this taut string while it is wounded onto

that given curve:

& (s) = &(s) + r(s)1e(s), (1.6)

where #¢ (s) generates the line that represents the taut string.

Involute curve has the following properties of curve length conservation (Figure 2):
€ (s") —E(s")| = LE(s") —&(s)) +1E"(s) —E(s)], (1.7)
and:

8 (s) =& = [&(s) = &i(s)l; (1.8)

where &} and &} are two involute curves.

1.4 Helix

A generalized 3D helix curve C is a curve which tangent 7 forms constant angle o with a given
direction V, i.e.:
T.V = cos(a.). (1.9)
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Figure 2: Involute properties.

If V is the vertical direction, the a helix can be viewed as the lift of a 2D curve ¢, with:

Ci(s)=ci(s),
Ca(s) = ca(s), (1.10)
Cs(s) = tan(aw). [ |20 | ',

A circular helix is the lift of a circle.

1.5 Chapter 4: Lemma 15 on curves.

Lemma. Let C° and C' be two planar curves with their parametric representation ¢ and ¢! and
their Frenet trihedron (1°,n°,q") and (t',n',q"), respectively. Let us suppose that both c° and c'
has no inflexion point and ¢° is a natural representation of C°. If there exists a: RT — R strictly

increasing and such that (see Figure 3):
(2) c'(0)  =c0), (1.11)

then £(n%(s),n' (s)) and £(t°(s),n°(s)) are of same sign.

Proof. Deriving Equation 1.11-1, we obtain:

dc! dc® dn® d
d—cs(s) _ d—cs(s)—l—a(s).d—’i(s)—i—d—csl(s).no(s). (1.12)
Because ¢ is a natural representation of a curve, then %(s) — 10(s). With the Frenet-Serret

equations (see Section 1.1), and because the two curves are planar, we obtain:

@l
ds

(s) = (1 —a(s).x%(s))..%s) + Z—Z(s).no(s), (1.13)
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on which we can apply the dot product with £°:

dc! da

to(s)x%(s) = a(s).(to(s)xno(s)), (1.14)
O(s) x1'(s) = EI_L{(S) (O(s) x n(s)). (1.15)
%5 ()]
As we have:
o) = &), (1.16)
0) = 1%0), (1.17)

and as a is strictly increasing, the two curves have the same curvature sign in the neighboring of 0,

1.e., we have:

t'(e) x n'(e) =% (e) x n°(e), (1.18)

with € > 0 and small. As ¢” and ¢! have no inflexion point, then the last assertion is always true,

ie.:

t' xn' =19 xnd. (1.19)
With proper application of the dot product of 0 and n!, this last equation is equivalent to:

O xt! =n®xn'. (1.20)
Combined with Equation 1.15, we obtain:

n’(s) x nl(s) = :’TS(S)

|G ()]

(1%(s) x n°(s)) . (1.21)

Because a is strictly increasing, then Z—‘s‘(s) > 0. Thus Z(n°(s),n'(s)) and Z(¢%(s),n°(s)) are of

same sign. [

Figure 3: Curves property.
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2 Surface
Let Q an open and connected subset of R? and § a surface of R? defined by its height function :

h: Q — R

2.1
(.X],xz) — h(x17x2).

We suppose that § is at least C"'-continuous (m > 3). We denote by (ej,e2,e2) the Cartesian

coordinates system of R3.

Notation:

* wis apoint of § and x its projection on €.

* g, and g, greatest slope vector on w € § and its projection.

oy and oy, level curve tangent on w € § and its projection.

N,,: normal to the surface on w.

T,,S: the tangent plane of § on w.

* ¢: curve representation of the 2D curve C € Q. We have:

c=cj.ejt+cr.er. 2.2)

e ¢*: curve representation of the 3D curve C* € S. We have:

c* =cj.e1 +cr.en+h(c).e;3. (2.3)

t{, and ¢{: tangent of ¢ on point w and its projection

2.1 Greatest slope, level curve and gradient property

Proposition. Let x € Q such that Vh(x) # 0 and w its corresponding point on S a surface that is

at least C"™-continuous (m > 3).

We have:

1. The projection of the greatest slope vector g,, is collinear to the height function gradient on

X, i.e., gw o< Vh(x).
2. gw and g, are orthogonal to oy, and oy, respectively.

3. Z(gw,gw) = O(w), where a(w) = Z(Ny, e3).
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Proof. (1) Let consider a curve C on £ and its C" -continuous natural representation ¢ (with m’ >
2). We have:

%h(c(s)) _ %h(c(s)).%cl(s)—|—aixzh(c(s)).%cz(s), 2.4)
- Vh(c(s)).%c(s), 2.5)

with ./ the scalar product of two vectors. As we can see on Figure 4, the quantity %h(c(s)) can be
positive or negative depending on the traveling direction of ¢(s). We choose it positive. Because

the Cauchy-Schwarz inequality theorem, we have the two following assertions:

0.< Vh(e(s)). 5-c(s) < [Vh(e(s))| |5 c(s)] = [VAe(s))], 2.6
and: J 4

Vh(c(s)).ac(s) = |Vh(c(s))| <= Vh(c(s)) o gc(s). (2.7)
Let us consider ¢/(s) := cirﬂ(gm%éc{j—s(hoc(s))}, ie., ¢(s) = Vh(c(s)).Lc(s) = |[Vh(c(s))|. From

assertion 2.7, it has its tangents collinear to VAi(c/(s)) for every s € R. Let us now consider ¢’* be
the 3D curve parametrization of C™* € § and w := ¢*(s,) € C*. We have tfv/* € T,,S . By definition
of ¢/, tf;/* is the vector of 7;,§ which has the largest projection on e3. Lets now the steepest descent
curve G* C S of natural representation g* that passes by w. g,, is the vector of 7,,.§ which forms
the greatest elevation angle, i.e., it is the vector of 7,,.§ with the largest projection on e3. It is equal
to tfvl*. That means:

c/*

gw="t, = gw=1, . (2.8)

As, 18" o< 1€, then from assertion 2.7:

gw o< 1€ o< VA(x). (2.9)

(2) For the level curve representation, it is obvious that we have for every ¢ € R, %(Q(G))) =0

and thus from equation 2.4:

d
Vh(o(0)). 5-0(0) = 0. (2.10)
For a given x := 0(c) we have by hypothesis Vi(x) # 0. As %Q(G) o< f¢ is non-zero, it is thus

necessarily orthogonal to VA(x). As we have previously seen, we haveVA(x) o< g,,. Thus:

gw Ly (2.11)
Similarly:

gw Lt (2.12)

(3) The vector 8ws 8w and e3 are on the same plane P. Because f{, Le3 and t{, L 8ws P is actually
P70 and thus we also have g,, L 7. We have 1}, € T,,§ and thus 7}, | N, meaning that N, is also
on [Po. Finally, we have g,, € 7,,S that means g,, L. N,,. In conclusion, as Z(e3,N,,) = o(x) and
Z(Ny,8w) =7/2, then Z(e3,gy) = a(x) +7/2. In other words, Z(gw,gw) = ol(x) (Figure 5). [
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Figure 4: Instant height variation (in green) along a curve C when lifted up on S.

Figure 5: Greatest slope elevation.

2.2 Chapter 5: Equation 2.7

Proposition. Let w be a point on a C"™-continuous surface S (m > 3) and let r be a vector of the

tangent plane T,,S. We denote by o := / (g_w,gw), Y:=Z(r,r) and ¢ = Z(r,8w). Lets us define:

+1  ifo>0, 1 ify>0,
o= and V= A (2.13)
—1 else. 0 else.

o—¢. (m.n _ acos (;ZZ((”ZJR) ) |) . (2.14)

Proof. We construct the following points (see Figure 6):

™
Il

Then:

s Wi=w.
* Let A be the head of g,, (with |g,,| = 1).

* Let B be the intersection point between the two lines which are directed by r and ¢, and

passing by W and A, respectively.
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* Let W' be the intersection point between the two lines directed by #¢, and g,, and passing by

W and B, respectively.

* Lets us consider the points A and B the projected points of A and B, respectively, on the

horizontal plane P,,. We remark that [W, B] is directed by r.
We have the following assertions:

* As it is recalled by proposition presented in Section 2.1 of this appendix, ¢, Lg,. Thus,
[W,A] LW, W']. As [W,W']||[A,B] and [W,A]||[W’, B], thus WABW' is a rectangle.

* As[A,B]||[W,W'] and [W,W'] is horizontal, then [A, B] is also horizontal. As [A,A] and [B, B
are vertical, then [A,A] L [A,B] and [B,B] L[A, B], respectively. In addition, [A,A] and [B, B]
are orthogonal to any lines within PP, and in particularly to [A, B]. Thus ABBA is a rectangle.

* Finally, as WABW’ and ABBA are rectangle, then [A,B]||[A,B] and [A,B]||[W,W']. Thus
[A, B]||[W,W']. As we also have t;, | g,, from the proposition of Section 2.1, then [A, W] L[A, B].
Because rectangle property, we have £([W,W']) = £(]|A,B]) = £([A, B]), with ¢ the length of
the segment. Then WABW' is a rectangle.

From basic trigonometric formulas, we know that ¢([A,A]) = sin(a.). As ABBA is a rectangle, then
¢([B,B]) = sin(a). Because B is the projection of B on P,,, then WBB is a right triangle with its
right angle on B. As y:= Z(r,r), then {([W,B]) = %. Finally, as ¢([W,A]) = cos(a), and as
WAB is aright triangle with its right angle on A, then:

¢::acos(t“”(7)) 2.15)

tan(o)

In this discussion, vectors inclination and orientation were absolute. If we take into account their
relative inclination and orientation (Figure 7), we can improve the Equation 2.15. As the greatest

slope is always pointing down, we make the analysis on the vector r situation relatively to g, and

¢:a(mﬂ—mm<mmwn>o. (2.16)

we obtain:

tan(|a|)

]

Figure 6: Geometrical construction for the proof.
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Figure 7: Different cases of vectors r € T,,S orientation and inclination relatively to g,, and the
horizontal (red).

2.3 Chapter 5: Equation 2.12

Proposition. Lets S be a smooth surface, w a point of S, A C S a curve on this surface that passes
by w and parameterized by a, and A C Q its projection of parametrization a that passes through a

point x :=w. We have:

5 =p. (n§ X Ny) (2.17)
with t¢ the tangent of a on w,n principal normal to the curve a on x,N,, the normal to the surface
S onwand:

+1  ifL(tEn%) >0,
o f £(tx,m) (2.18)
—1 else,

with ty the tangent of a on x. If K%, the curvature of A, equals zero, then we consider ny as being

the vector in P, (plane orthogonal to e3, i.e., horizontal plane) such that l(t%, n%) > 0 and t¥ 1 n%.

Proof. As A4 is the projection of 4, they are on the same generalized vertical cylinder Q. Thus ata
point x € Q, the normal NxQ lies within IP,,, the plane orthogonal to e3. As Q is a developed surface
(see Section 2.4), its tangent plane (and thus its normal) is invariant along its generatrices generated
by e3. As 4 is a level curve of Q, then 5 lies within 7,Q and is orthogonal to NXQ by definition of
the tangent plane. The vector which is orthogonal to 7 and which is in PP, is necessarily collinear

to n%. Thus N = +r% depending on the curvature sign of 4. Actually, NX = p.n.

We have:
A=QNS (2.19)

A basic property of differential geometry states that at a given point, the tangent of the curve
formed by the intersection of two smooth surfaces equals the dot product of the two surfaces

normal at this point. In other words, we have:
ty, = p.ng X Ny, (2.20)

that concludes the proof. O

2.4 Ruled and developed surfaces

A ruled surface is generated by the sweeping of a line along a curve. It is a developed surface if
the lines are the tangents of the curve. Lelong-Ferrand and Arnaudies [201] gave the following

definitions:

199



Definition (Ruled Surface). A C*-continuous ruled surface S is a surface defined by the parametriza-
tion:
R? — R3
(u,v) = X(u,v) = FOu) +v.F'(u), (2.21)
where FO: R — R3 is a C*-continuous function and F' : R — R3 a C*-continuous function that

maps a real to a vector and such that F'(u) # 0. The curve defined by FU is called the directrix
and the line defined by F' are the generatrices.

Definition (developed surface). Let S be a C¥-continuous ruled surface. It is said to be a developed

. 0 1
surface if for every u € R: ddiu, ddiu and F! are coplanar.

dF° dF!

We can identify three kinds of developed surfaces depending on the relationship between <7, <--

and F' [201]:
e the conical for which F© is a constant function of R3;
* the cylindrical for which F 1 is constant; and

* the development of the tangent of a curve. In this latest case, the parametrization of the

surface can be written as:

R?> — R3
dF

(u,v) +— X(u,v)=F(u) —|—V.E(u)7 (2.22)

with F : R — R3 a Ck-continuous function. The curve represented by F is called the regres-

sion edge of the developed surface.

And we have the following property:

Proposition. The tangent plane is identical along any generatrix of a developed surface.

Figure 8: Helicoid (ruled surface based on a helix) and circular SPS (developed surface of a helix)
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2.5 Sand-pile surface

Sand-pile surfaces (SPS), or constant-slope surface, are developed surfaces which have been in-
troduced by Monge in the 19th century [197]. Basically, SPS can be viewed as the envelope of a

vertical cone swept along a given planar curve, i.e.:

Definition (Sand-pile surface). S is called a sand-pile surface (or constant slope surface, denoted
SPS) of angle o if it is either a plane of inclination angle o; a circular cone of angle o or a

developed surface with a generalized helix of angle o as regression edge.

Inflexion points of helix makes discontinuous definition of SPS. We generally consider sand-pile

surfaces on helix portion without inflexion points.

We notice that the regression edge projection split the horizontal plane in two part: (i) where the
SPS is defined, (ii) where it is not. As SPS is a developed surface of a helix, it is defined on the

other side of the principal normal direction of its helix projection.
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Appendix 111

Tangent-driven reconstruction of discrete

contour

Dealing with a 2D digitized picture raises the problem of the quantification of the objects contour
due to the discrete nature of data storage (pixel, see Figure 1). One way to make a picture look
more real is to increase the density of pixels per area (centimeter?, inch?, etc.) to create the illusion
of a smooth contour. However, this is not always possible, especially when: (i) the object has a
complex shape that is at the scale of the pixel density; (ii) only rough camera are available; or (iii)

we want to reduce the size of the pictures, i.e., the density of pixel.

With digitized images, the knowledge of the precise geometry (e.g. contour tangential) remains
complex. Several techniques have been developed to approximate digitized contours, e.g., rewrit-

ing methods, spline approximation, discrete convolution (smoothing aliasing effect), among others.

These methods do not guarantee two primordial constraints in the approximation of such contour:

1. The real representation of the discrete boundary should not modify the initial digital infor-
mation, i.e. once the recovered boundary is computed, one can retrieve the original discrete

boundary if re-digitized.

2. The recovered contour does not depend on the starting point and orientation that would be
taken by the method. In this way, we guarantee that a region and its complement share

exactly the same boundary.

In [195], Braquelaire & Vialard presents a simple way to approximate the real boundary underlying
the discrete boundary of a digitized 2D region that satisfied those two constraints. In the following
paragraphs, we make a description of their algorithm and theory adapted from their witting [195]

with some of our commentary remarks.
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Digitization

Figure 1: Digitization of a scene consists of discretizing point position: instead of having contin-
uous contour, digitized object have a discrete contour.

1 Prerequisite

A digital image is a rectangular grid of pixels. A pixel could be represented either by a unit square

or by an intersection point in a grid.

We consider an infinite digital image in bijection with the plane Z?2, also called the discrete plane.
A discrete point P is a point of the discrete plane. In the following, we generally consider pixels
represented by unit squares centered on an integer point. As such, the pixel of center (Xp,Yp) is

identified with the discrete point P.

1.1 Freeman code

Two discrete points P and Q are said to be 4-adjacent if |Xp — Xp| +|Yp —Yp| = 1. They are said
to be 8-adjacent if max(|Xp — Xp|, |Yp —Yp|) = 1. A 4-connected discrete path is a sequence of
discrete points (P, ..., P,) such that Vi, 1 <i <n, P,_; and P; are 4-adjacent. Similarly a (resp.

8-connected discrete path is a sequence of 8-adjacent discrete points.

A 4-connected discrete path composed of n+ 1 points (P, ..., P,) can be represented by its first
point Py and its Freeman code, i.e., the sequence (my, ..., m,_1), where m; encodes the elementary
move from P; to P;;;. The four elementary vectors between a discrete point and its neighbors are
numbered from O to 3. In the case of 8-connected discrete path, the height elementary vectors
between a discrete point and its neighbors are numbered from O to 7. The elementary moves are

numbered counterclockwise, the “east” move being numbered 0.

According to the 4-connectivity, two consecutive Freeman directions define a quadrant. Similarly,
two consecutive Freeman directions define an octant when we talk about 8-connectivity. For in-
stance, the first quadrant is the part of the plane bounded by the two half-lines starting from the
origin of the coordinates system and of Freeman directions 0 and 1. Both quadrants and octants

are numbered counterclockwise.

In the same way, we say that a discrete path belong to a quadrant or an octant (e.g., first quadrant)
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if all of its Freeman code direction step belong to this quadrant or octant, respectively (e.g., the

steps are uniquely composed of 0 and 1).

1.2 Euclidean path

Let P = (X,Y) be a discrete point. The cell of P is the set of points (x,y) € R? verifying:

1

1

In other words, the cell of a point P is the unit square centered on P.

Let P be a discrete point. We say that the real point p is a Euclidean point associated with P if and
only if p belongs to the cell of P.

Let I be the discrete path (P, ..., Py). By associating an Euclidean point p; with each discrete point

P; , we obtain a sequence of real points IT = (py, ..., p,) that we call a Euclidean path associated
with IT.

1.3 Remarks

The definition of the Euclidean point associated with a discrete point ensures the reversibility of
the transformation of the discrete point into an Euclidean point, i.e. if we round the coordinates of
an Euclidean point p belonging to the cell of P, we retrieve P. This is also true for the Euclidean
path associated to a discrete path. Thus, if we want to retrieve the real contour from a digitized

contour, considering the Euclidean path ensures us to satisfy the first constraint seen previously.

However, there is an infinite Euclidean path associated to a discrete path and thus, an infinite
methods to set an Euclidean path associated to a discrete contour. In [195], Braquelaire & Vialard
develop a method that computes the discrete tangent at a boundary point, i.e. depending only on
the point and on its neighborhood. Their method allows to reconstruct the Euclidean path of a
discrete contour that does not depend on the choice of the starting point of the contour: that meets

the second constraints.

1.4 Discrete line

A discrete line L is the set of points (x,y) € Z? which satisfy the double inequality u < ax — by <
u+owith a, b, u€ Z? and o € N.

The four coefficients (a,b,u,®) are called the characteristics of the discrete line L. The fraction
a/b is the slope of L. The integer u describes its position in the discrete plane and ® its thickness.
If o is equal to max(|Xp — Xp|,|Yp —Yp|) = 1, L is an 8-connected discrete line; if it is equal to
|Xp —Xp| + |Yp —Yp| =1, L is a 4-connected one.

The upper and lower leaning lines of a discrete line L are the two real lines of respective equations:
ax —by = p, (1.2)
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ax—by=u+ow—-1. (1.3)

It is clear that we can also define the points of the discrete line as the integer points that are inside
the strip bounded by the two leaning lines and including these two lines. An upper leaning point is
a discrete point belonging to the upper leaning line. Similarly, a lower leaning point is a discrete
point belonging to the lower leaning line. Notice that the leaning points are points of the discrete
line. If we consider only a segment of a discrete line, we can define the upper and lower leaning
points of minimum abscissa and denote them respectively by U,, and L,,. In the same way, we

denote by Uys and Ly, the upper and lower leaning points of maximum abscissa.

The centered line of a discrete line L is the real line located in the middle of the two leaning lines

of L. Its equation is:

w—1
ax—by:,u—i—T. (1.4)

Because one can retrieve the thickness from u and the lower/upper leaning points (L, Ly and
U, Uy, this scalar will be omitted.

It is clear from equations 1.2 and 1.3 that the two leaning lines are parallels. This property will be
used to detect the line that will fit a discrete path portion.

1.5 8-connected discrete line segment recognition algorithm

In [195], Braquelaire & Vialard propose a modified version of Debled’s algorithm of 8-connected
discrete line segment recognition. This algorithm looks for the longest segment line of character-
istics (a,b,u) that will “fit” a discrete segment line. It considers an 8-connected discrete segment
that is on the first octant, i.e. its Freeman code is only composed with 0 and 1. The initial values of
the characteristics are provided by the first Freeman code, i.e. the direction between the first point
and its follower. Then points of the considered segment line are added one by one to an original
segment S to form a larger one §’, while its characteristics are updated from (a,b,u) to (a',b', 1)
. In some cases, it is not possible to build an upper and lower leaning lines that are parallel. In
this case the algorithm stops and the greatest segment line that can be fit from the starting point is

returned with its characteristic.

Initialization. Sy = (Py) with P, the first point of the 8-connected path with Freeman code com-
posed with only O (“east” direction) and 1 (“north-east”). Two cases are possible when considering
the first Freeman step my:

mo=0 = (a,b,u) =(0,1,0), Up =Ly, = (0,0), Uy = Ly = (1,0), (1.5)

mo=1 = (a,b,u) =(1,1,0), Uy =Ly, = (0,0), Uy =Ly = (1,1). (1.6)

Construction of the segment line. We want to build the segment line S; = (P, ..., Pi—1) UP; by
adding the point P; to the temporal segment S;_; = (P, ..., P,_1). Let (xp,yp) being the coordinates

of P; and r = axp — byp. Several cases showed in Table 1 and 2 appear.
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As we can see, the previous algorithm returns the characteristics of the segment line that fit the
best a part of a discrete path from a starting point. In the case the discrete path is too “curved”,
the algorithm stops and the range of the segment line is not the entire path but a neighbor of the
starting point. By “curved” we mean that if one adds a point to the temporal segment in regards
with the Freeman code and if the updating of the leaning lines brings two lines that are not parallels,

one gets a case that is not consistent with respect to the discrete line definition that has been seen

previously.

r=axp—byp (a,b' ), u, | Uy, | L, | Ly Discussion
r'=dxp—byp
u<r<u+b—1 (a,b,u) U, | Uy | L, | Lyy | Sand S have the same characteristics
r=u+b—1 (a,b,u) U, | Uy | L, | P | SandS have the same characteristics
r=u (a,b,u) U, | P | L, | Ly | Sand S have the same characteristics
r=u—1 (yp —yu, xp — Un | P | Ly | Ly S’ has a higher slope than S
AUp> T /)
r=u+b (yp —yL,,Xp — Uy |Uy | L, | P S’ has a lower slope than S
xg,, v’ —b' +1)
Else: break - - - - - S’ is not a segment line
Table 1: Positive cases
r =axp—byp (d,b' 1), U, | Uy | L, | Ly Discussion
' =dxp—Dbyp
u<r<u+b-—1 (a,b,u) Un | Uy | Ly | Ly | S and S have the same characteristics
r=u+b—1 (a,b,u) Un | Uy | P | Ly | Sand S have the same characteristics
r=u (a,b,u) P | Uy | L, | Ly | SandS have the same characteristics
r=u—1 (yu, — yPs XUy, — P |Uy | Ly, | Ly S has a lower slope than S
XUy s I”/)
r=u+b (YLy — VP XLy — U, | U, | P | Ly S’ has a higher slope than S
xp, v’ —b' +1)
Else: break - - - - - S’ is not a segment line

Table 2: Negative cases

Discrete tangential of a contour.

The idea of Braquelaire & Vialard is to use this algorithm

to deduce discrete tangent of a 4-connected contour [195]. For each point of the contour, they
extract the greatest Freeman code of same quadrant that encloses this point. With the fact that we
have a complementarity between 4-connected and 8-connected line segment, they use the modified
version of Debled’s algorithm (with in addition the “negative” case) to find the slope of the segment

line that fit the best the neighbor of the considered point.
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Euclidean points from a discrete point and its discrete tangential. To retrieve the Euclidean
point associated to a discrete point of the 4-connected discrete path, one uses the parametrization
of the path course:

t=x+y, (1.7)

where ¢ is the numbering of the discrete point (i.e. the time) that equals the abscissa plus the

ordinates of the considered point. In other word:
p= P(XP+yP)' (1.8)

Combined with the formula 1.4, one obtains the parametric equation of the centered line associated
to the 4-connected discrete path of characteristic:

b—a
X=1r4+Q _
b with o = ~102 (1.9)

y=jt+a

the real point p = (x(zp),y(tp)) is called the canonical projection of P on the real tangent. As
P is the origin of the coordinate system, tp = xp + yp = 0 and thus the canonical projection on
its tangent is p = (o, —) that is chosen as the Euclidean point associated to the discrete point.
Braquelaire and Vialard ensure with a Lemma that || < 1/2 and thus that this point verifies the
desired constraint of the Euclidean point definition.

2 Algorithm

The idea of this algorithm is to smooth a domain contour and for each points, to get a tangential.
With the prerequisite presented bellow, we will be able to define a methodology to construct such

contour.

2.1 Path extraction

Once a connected domain D = {(x,y) € Z?| value(x,y) = 1} of gender 0, is extracted, we want to
create its 4-connected contour path. To do so, we will use the mathematical binary morphology
operation on this domain. With the notation of [205], we proceed the following operation. First

we consider the squared structuring element:

!

I
—_ = =
—_— =

1
I |, 2.1
1

or £ ={(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)}. We apply a first erosion to D
with this structuring element:
D, =DOSE, (2.2)
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then a dilation to retrieve 2’ without single and double pixel on its border:

D'=D,®E, (2.3)

and then again an erosion of this latest. The difference between D’ and the last domain eroded
D! = D' & E provides the 4-connected discrete path 2.

P=7ND. (2.4)

Once this contour is built, it is necessary to order its point in the counterclockwise direction and to
build its Freeman code. To do so, we have used the matrix representation of the contour and travel

along in the counterclockwise direction.

The case of non connected domain and/or of gender > 0 are special cases that need to be brought

to this specific case.

2.2 Discrete tangent and Euclidean point calculation

Once the freeman code of a 4-connected contour path is computed, one applies the previously seen
properties for each point P; = (x,,,y,,) of the discrete path ¢ with its Freeman code associated
mp, = F4(P;+1 — P;) where 7, is the function that code a 4-connected elementary move into its

Freeman code for 4-connected discrete path.

1. First, we extract the quadrant associated to P;: we look in the Freeman code, at the considered

point, the first code change, in the forward and backward direction.

2. Then, a rough 4-connected segment is built: we retrieve all the steps that are associated to

this quadrant, around the considered point.

3. We consider the expression of this segment in the first quadrant: its Freeman code is ex-
pressed in modulo 2. The considered point is then considered as the origin (0,0) in this

frame.

4. Points per points, we apply the algorithm seen previously to compute the discrete tangent:
once the segment characteristics (a,b,u) and the leaning points L,,, Ly, Uy, and Uy, are com-
puted for the first step mp,, we update those latest when a positive and negative point is
added. The algorithm stops when there are no more points to add. In the case where we
cannot add positive or negative point, the algorithm continues for the negative or positive

addition, respectively.

5. The Euclidean point associated to the discrete point has the coordinate (a, —a), with:

—14+b+2u
= 2.5
o b (2.5)

6. Finally, we recall the computed value in the corresponding quadrant and for an 4-connected

quadrant. We apply the transformation indicated in Table 3.

209



| quadrant n° | characteristics | Euclidean point |

1 (a,b—a,u) (xp+0,yp—O)
2 (a,a—b,—u—b+1) | (xp—0,yp—t)
3 (—a,a—b,u) (xp— 0L, yp+ Q)
4 (—a,b—a,—u—b+1) | (xp+o,yp+at)

Table 3: Quadrant to Euclidean point transformation.

3 Time complexity

The time complexity of the tangent-driven Euclidean path computation is the same as the complex-
ity of the tangent recognition algorithm. As a matter of fact the Euclidean point associated with
a discrete point is directly deduced from the characteristics of the discrete tangent at this point
(o0 computation). The time complexity of the construction algorithm is O( x n), where [ is the
average length of the discrete line segments contained in the discrete contour and » is the number
of points of the discrete contour. The computation time depends thus on the shape of the contour.
The more a discrete curve is rectilinear the more the computation of the associated Euclidean path
is costly. However, for a given image size the shape of the discrete curve to be processed becomes
more irregular when its length increases. In other words, the value of / tends to decrease when the

value of 7 increases.
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