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Introduction

Among the peculiarities of quantum mechanics, entanglement is probably the
most counterintuitive example: objects are said to be entangled when the state
describing the full system cannot be factorized in a product of states characterizing
the individual objects. This has some striking consequences: the characterization
of two entangled particles (which may be in two very distant locations) reveals
strong correlations on the outcomes on particles 1 and 2, even though the results
of individual measurements on either particle are random [1]. This may appear
as a spooky action at a distance [2] going against the fact that no information
can be transmitted faster than the speed of light [3]. Nevertheless this striking
feature was used to invalidate the existence of local hidden variables [4, 5, 6, 7, 8].
This was done through the violation of inequalities formulated by J.S. Bell [9, 10]
which had formalized a debate going on for decades. Although these experiments
are an indication of the non-local character of quantum mechanics, they are still in
agreement with special relativity: a classical channel of communication is required
to reveal the correlations preventing faster-than-light transmission of data.

Apart from these fundamental considerations on physics, it was suggested, by
Feynman in particular [11], that these specificities offered by quantum mechanics
could be exploited to perform quantum simulations and to build quantum com-
puters. After this early proposal, several protocols have been proposed for which
quantum computers would perform better than their ‘classical’ counterparts such
as Shor’s algorithm [12] for the factorization into prime numbers or the Grover’s
search algorithm [13]. Demonstrations of these protocols have followed using for
example nuclear magnetic resonance [14] or superconducting qubits [15, 16]. The
storage of qubits has also been done with cold atoms [17] and trapped ions [18]. In
fact, the physical systems that can be used to implement quantum computation
tasks are numerous [19].

Integrated Quantum Photonics In this context quantum photonics is an
intense field of research: in [20], Knill, Laflamme and Milburn showed that opti-
cal quantum computation was achievable with linear optical elements and using
single photon sources and detectors. In fact, the best achievements of quantum
photonics have been obtained in the field of quantum communication: several
protocols of Quantum Key Distribution (QKD) [21, 22], the transmission of a
cryptographic key with a security against eavesdroppers guaranteed by quantum
mechanics, have been successfully demonstrated [23, 24, 25]. Modules for QKD are
now commercially available from companies such as IDQuantique or SeQureNet.
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The strong advantages of the photons are the relative ease with which they can
be produced and manipulated, their ability to be transported over long distances
and their robustness against decoherence. This enabled the teleportation of quan-
tum states [26, 27, 28] or even entanglement swapping from one system to an-
other [29, 30], schemes that are at the basis of quantum repeaters, the analogs
of classical amplifiers for quantum communications tasks. Photons have also been
used to perform boson sampling, a task that is deemed harder to solve with clas-
sical rather than with quantum means [31, 32, 33, 34].

Integration of several “quantum” building blocks is a key issue on the way
towards practical applications. After many important results obtained in quan-
tum optics with bulk systems [35, 36, 26], we assist today to a real boom of
quantum photonic technologies, a trend that is also followed by superconducting
processors [37, 38] and cold atoms [39] and trapped ions [40] chips. A fully in-
tegrated photonic quantum device would thus gather into a single chip, sources
of photons, optical circuits to manipulate them, and detectors with some elec-
tronics for feedback on the different elements of the device [20, 41, 42]. In that
perspective, semiconductor materials are an attractive platform. The maturity
of samples’ growth and processing techniques enables the fabrication of a great
diversity of passive and active devices. Playing on the refractive index contrast
between the materials in a heterostructure, light can be guided into channels [43].
Various techniques then allow to implement integrated beamsplitters [44, 45, 46]
or to control the polarization of light within the waveguide [47, 48].

Among the semiconductor materials, the III-V platform has strong optoelec-
tronic capabilities, for example the ability to implement laser diodes. In the per-
spective of building photonic circuits, the electro-optic Pockels effect in Gallium
Arsenide (GaAs) can also be exploited to create integrated optical delay-lines [45,
46]. More specific to quantum photonics is the recent integration of superconduct-
ing nanowire single photon detectors on III-V waveguides [49, 50]. Finally, the
strong second order nonlinearity of GaAs also enables the production of photon
pairs.

Semiconductor Sources of Photon Pairs Two main processes are used to-
day to produce photon pairs in semiconductor materials, namely the biexcitonic
cascade in quantum dots and parametric processes in nonlinear media. In the first
approach, the artificial atom constituted by the quantum dot is excited to form a
double electron-hole pair (the biexciton). Two photons are then emitted in cascade
with the de-excitation of the quantum dot. With this method, pairs of polariza-
tion entangled photons have been produced through optical [51, 52] or electrical
pumping [53] of the quantum dots. The emission of photon pairs is deterministic,
i.e. the excitation of the quantum dot is followed by the emission of a pair which
is a strong advantage of this approach. However these sources must be cooled to
cryogenic temperatures in order to extract the signal from the thermal noise.

Another possibility is offered by parametric processes relying on optical non-
linearities. This approach leads to a probabilistic emission but does not require
cryogenic temperatures. On one hand, in centro-symmetric media, such as sili-
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con, Four-Wave Mixing (FWM) is the most efficient nonlinear process. Pairs of
photons can be spontaneously generated by absorption of two photons from the
pump beam. Thanks to the compactness and the CMOS compatibility of the de-
vices based on this approach, this is a hot research topic; different sources based
on ridge waveguides [54, 55] or ring resonators [56] are under developments on
silicon chips.

On the other hand, III-V semiconductor materials are non centro-symmetric
and thus allow to access second order nonlinearities. In this case, the photon pairs
are generated by Three-Wave Mixing (TWM) with a process called Spontaneous
Parametric Down-Conversion (SPDC) in which the sum of the photons’ energies
corresponds to the energy of the pump photon. The pump beam is thus more easily
separated from the photon pairs via spectral filtering than with FWM processes.
The direct band-gap of GaAs allows also the integration of the pump laser within
the nonlinear device [57, 58], dramatically reducing the footprint of the system.
All these aspects have led us to adopt this strategy to develop our source.

A great diversity of devices have been demonstrated to satisfy both energy
and momentum conservation in order to achieve an efficient generation of pho-
ton pairs. Indeed the usual strategy employed with SPDC in bulk crystals [36]
which relies on birefringence to fulfill momentum conservation is not applicable to
Aluminum Gallium Arsenide (AlGaAs) compounds due to the isotropy of the ma-
terial. In waveguides, an artificial birefringence can be implemented by including
aluminum-oxide layers in the heterostructure [59]. Another possibility is offered
by modal phase-matching where the conservation of momentum is achieved by
involving different spatial modes of ridge waveguides [60, 58]. We also mention
the implementation of a Quasi-Phase Matching (QPM) through the periodic do-
main inversion; however AlGaAs QPM waveguides suffer from important optical
losses [61, 62]. This is not the case for AlGaAs whispering-gallery mode micro-disk
resonators for which no technological efforts is required in terms of domain inver-
sion. Indeed, the QPM is automatically achieved with the crystal symmetry and
the circular shape of the device [63, 64]. The strategy adopted in this thesis con-
sists in a transverse pumping scheme with photons propagating in a waveguide in
opposite directions and for which the phase-matching is automatically satisfied.
This approach gives also a great flexibility in engineering the properties of the
photons.

Degrees of freedom of the photon Among the degrees of freedom of the
photon, polarization is probably the most investigated one. From the atomic ra-
diative cascade [6] to type II SPDC [36], photon pairs with a given polarization
state have been easily generated, manipulated and characterized. It is the most
simple property of light on which to encode a qubit. However this Hilbert space is
only two-dimensional and consequently the quantity of information contained in
this degree of freedom is limited. To give one example, this imposes a limitation
on the rate of QKD relying on polarization.

Spatial degrees of freedom for example provide a Hilbert space of higher di-
mension: using slits, multi-pixel detectors and adaptive optics, the transverse mo-
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mentum and position of light can be discretized [65] to implement qudits, the
counterparts of qubits in Hilbert spaces of dimension bigger than two. Quantum
information can then be processed in free-space [66].

Another promising degree of freedom, especially for free-space communica-
tion [67], is the Orbital Angular Momentum (OAM) carried by light. In fact,
the exploration of this property has begun only quite recently, even for classical
light [68]. As opposed to polarization (the spin of light), OAM is an unbounded
degree of freedom with a potentially unlimited Hilbert space. A recent QKD ex-
periment has taken advantage of this space to transmit more than two bits per
photon [69]. The qudits encoded in the OAM have also been used to test para-
doxes of quantum mechanics [70], notably with the violation of Bell inequalities
generalized for higher dimensions [71].

In the aim of realizing compact devices for long distance communications, the
time-frequency properties of the photons are more suitable. For example, photons
having a long coherence time (and thus a narrow spectrum) can be modulated with
standard telecom components, such as electro-optic modulators [72, 73, 74], and
coupled into optical fibers to carry the desired information with no deformation
due to the dispersion and the nonlinearities of the fiber [75]. Photons with a
rich time-frequency mode structure may also be used for quantum computing.
Indeed, with the implementation of specialized beam-splitters called quantum
pulse gates [76], which transmit or reflect specific time-frequency modes, linear
optical quantum computing can be envisaged with these degrees of freedom [77].

Photon pairs produced by spontaneous TWM and FWM are generally entan-
gled, sometimes in multiple degrees of freedom. These correlations between mul-
tiple degrees of freedom are potentially undesired if only one property of light is
aimed to be entangled because they will give distinguishing information that may
degrade this entanglement [78]. Moreover, some applications require single photon
sources, which can be obtained with probabilistic sources of photon pairs using
one photon of the pair to herald its twin. If correlations exist between the pho-
tons, the heralding operation will project the heralded photon into a mixed state,
reducing its utility for most protocols [79]. For photons generated in waveguides,
these detrimental correlations essentially concern the frequency-time degrees of
freedom.

Frequency-time correlations engineering All these reasons motivate intense
research on the control of the frequency-time properties of photon pairs in order
either to remove any frequency correlation between them, or to engineer useful
states for quantum technologies. With this wish for precise control of the bipho-
ton also comes the necessity of accurately characterizing it. Depending on the
bandwidth of the photons, the engineering is more easily done in the temporal
or the spectral domain. The first manipulations were performed with techniques
related to the shaping of ultrashort pulses: the frequency components of the pho-
ton’s wavepacket were spatially separated with a dispersive element and a spectral
phase was applied to them before their recombination in order to get a photon with
engineered temporal properties [80]. The characterization was done with nonlinear
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optical phenomena or with two-photon interferences at a beam-splitter [81]. Qu-
dits in frequency can be implemented also, with a discretization of the continuous
frequency space. In [82] for example, prisms have been used to perform a spatial
separation of the photons’ frequency components which could then be addressed
independently with a programmable mask (spatial light modulator).

The operations mentioned above were done with devices external to the source
of photon pairs, and on the photon pairs themselves. While one could generate a
huge number of pairs and then perform a selection and filtering of the interesting
photons, this is in fact very demanding in resource and done at the expense of the
brightness of the source. Moreover such manipulation risks to degrade the “fragile”
quantum state of the photon pairs. This has led to a strong effort in what is called
source engineering, where the characteristics of the pump beam and the device
are chosen in order to only emit photons with the desired properties, avoiding
post-manipulation and unnecessary losses. With sources based on Periodically
Poled Lithium Niobate (PPLN) waveguides for example, the poling periodicity
can be chosen in order to achieve convenient dispersion properties which allow the
control of the phase-matching. The engineering of the frequency correlations of the
photons is then done by playing on the temporal characteristics of the pump beam
affecting energy conservation in the SPDC process [83]. In fact, the first frequency
engineering reported in [84] was performed in bulk crystals by adjusting the spatial
properties of the pump beam which affect momentum conservation. However the
variety of produced states has been limited by the dispersion properties of the
crystal used in this first demonstration.

Outline of the thesis This work is focused on a semiconductor source made
of AlGaAs: the device is transversally pumped and emits photons propagating in
opposite directions. As we will see, this pump geometry renders the device very
versatile for frequency correlations engineering. The automatic separation of the
pump and the two photons is also a strong advantage, relieving the need for a
pump filtering or a separation stage. To demonstrate the control of the frequency
correlations, reliable characterization techniques are required. We compare the
fiber spectrograph [85], the method at the state of the art at the beginning of
this work, with a novel approach we introduced in this thesis. We also show how
to go beyond with the frequency-time engineering of the photons and comment
on complementary methods of characterization. A case where the frequency-time
correlations of the photons can be detrimental is also treated and we present
solutions to this problem.

The first part of this thesis is dedicated to the description of the source at the
heart of this work. A first chapter summarizes the main features of this device
emitting pairs of counterpropagating photons. In chapter 2, we give a theoretical
analysis of the states produced by this source: the Joint Spectral Amplitude (JSA)
or biphoton wavefunction describing the properties of the photons, and in partic-
ular their correlations in terms of frequency, is derived. The role played by the
device, notably its facets and the microcavity, and the role of the pump beam
on the biphoton state are highlighted. This allows to identify means to engineer
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the spectral properties of the photons. We also introduce different functions to
adequately describe the photons in the spectral and temporal domain and in a
joint or separate manner.

In the second part, we present the experiments we have performed to engineer
the time-energy properties of the two-photon state and the methods we have im-
plemented to reconstruct the Joint Spectral Intensity describing them. We also
suggest techniques to access the phase of the biphoton wavefunction. Chapter 3
begins with a review of the existing techniques for the measurements of the time-
frequency properties of the photon pairs. We then detail one of these methods, the
fiber spectrograph, and we show how the modification of the spatial profile of the
pump beam can be used to control the degree of frequency correlation between the
two photons. In chapter 4, we introduce a novel technique relying on the stimula-
tion of the parametric process leading to a faster and more resolved reconstruction
of the Joint Spectral Intensity. We also theoretically investigate a variation of this
technique which would allow the full retrieval of the JSA. In chapter 5, we show
how to go beyond simple modifications of the degree of frequency correlations to
produce more exotic states. We revisit the two-photon interference at a beam-
splitter with a generalized approach allowing to characterize these states in terms
of their Wigner function.

The third part describes the production of states entangled in polarization. In
chapter 6 we highlight the role played by the JSA on the quality of the entangle-
ment and the influence of the facets of the waveguide. A new pumping scheme is
proposed to improve the level of entanglement with respect to a first experiment
preformed in our team [86].

The manuscript ends with some conclusions and perspectives opened by this
work.
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Photon pair generation by
Spontaneous Parametric
Down-Conversion in a

semiconductor ridge microcavity





Chapter 1

Working principle of the source

1.1 Phase-matching scheme for counter-propagating
twin photons

Our source is a ridge waveguide consisting of an Aluminum Gallium Arsenide
(AlGaAs) heterostructure (see Figures 1.1 and 1.2). Proposed by Berger and de
Rossi [87], the general scheme for the production of pairs is the following: the pump
beam, impinging on top of the ridge, generates by Spontaneous Parametric Down-
Conversion (SPDC) signal and idler photons propagating in opposite directions
into the waveguide. This guided regime is a strong advantage compared to non-
collinear SPDC in bulk crystals [36, 84], since the direction of emission of the
photons is degenerate for all frequencies. This greatly simplifies the collection of
the generated photons with respect to bulk crystals. After the proof of principle
of the source [88, 89], its conversion efficiency was enhanced [90, 91] with the
integration of two Bragg mirrors, surrounding the core layers. Their role is to
create a microcavity for the pump beam and to act as cladding layers for the
signal and idler fields. The efficiency is thus improved by 2 orders of magnitude
to reach 10−11 pairs per pump photon.

A distinctive feature of the source is the type II SPDC process due to the
polarization of the incident pump beam and the form of the nonlinear suscep-
tibility tensor imposing orthogonal signal and idler polarizations. Therefore, as
shown in figure 1.1, two concurrent processes of photon pair generation occur: in
the process we indicate as interaction HV , the signal photon is Transverse Elec-
tric (TE) polarized, i.e. its electric field is oriented parallel to the layers along the
y-axis (H polarization); its twin, the idler photon, is Transverse Magnetic (TM)
polarized with an electric field orthogonal to the layers along x (V polarization).
In the concurrent process we indicate as interaction V H, the situation is reversed
with a TM signal and a TE idler. In order to highlight the main features of our
source, we express the conservation laws for efficient SPDC. Indeed, the energies
and momenta of the emitted photons are given by:~ωp = ~ωs + ~ωi

kp = ks + ki
(1.1)
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Figure 1.1 – Counterpropagating phase-matching scheme implemented in a semi-
conductor microcavity waveguide. The waveguide is etched from a AlGaAs layer
heterostructure with alternating Al content, epitaxially grown on a GaAs chip
(the substrate). The pump beam impinges on top of the waveguide with an an-
gle θ and generates photons propagating in opposite directions with orthogonal
polarization. The two possible down-converted pairs are represented in solid and
dashed arrows, respectively. The Bragg mirrors create a microcavity for the pump
beam and act as cladding layers for the signal and idler fields. The core layers are
structured in order to achieve a Quasi-Phase Matching in the vertical direction.
The cap layer on top of the sample protects the lower structures from chemical
degradation due to contact with the environment.

Figure 1.2 – Waveguide facet observed with a scanning electron microscope. The
QPM can be clearly distinguished, surrounded by the asymmetric top and bot-
tom Bragg mirrors. This particular sample was etched with Inductively Coupled
Plasma - Reactive-Ion Etching.

where ωp, ωs and ωi respectively represent the angular frequency of the pump,
signal and idler fields and kp, ks, ki their wave-vectors. In the case of the coun-
terpropagating phase-matching scheme sketched in Figure 1.3, the momentum
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conservation can be projected along z and x. In this case (1.1) becomes:
ωp = ωs + ωi
ωp
c

sin θ = ks − ki
npωp
c

cos θ
np

= kQPM

(1.2)

where ks and ki are the norm of the photons’ wavevectors within the sample
and we have decomposed the pump wavevector along directions x and z with
np(ωp, x), the value of the refractive index at frequency ωp and depth x in the
heterostructure. To compensate the momentum of the pump beam in the vertical
direction, a Quasi-Phase Matching (QPM) is implemented by alternating layers
of different composition in the core of the waveguide. A detailed description is
given in the next section. We now focus on the conservation of energy and the
phase-matching along the propagation direction z:ωp = ωs + ωi

ωp sin θ = ωsns(ωs)− ωini(ωi)
(1.3)

where ns/i are the effective indices of the guided signal and idler modes∗ and θ is
the angle of incidence of the pump beam. We can then express the idler frequency
ωi as a function of the signal frequency ωs:ωi = −ωs + ωp

ωi = ns
ni
ωs − ωp

ni
sin θ

(1.4)

Figure 1.4 represents these two functions, allowing to identify the frequencies at
which the photons are generated depending on the characteristics of the pump
beam and the device. Over a large range of frequencies, the conservation of mo-
mentum is oriented in the positive diagonal and is almost orthogonal to the con-
servation of energy (anti-diagonal). Therefore, these two functions will always
intersect, leading to a solution for efficient production of pairs. This scheme thus
gives more flexibility with respect to collinear sources where these conditions can
become parallel, preventing the emission of pairs above a certain pump wavelength
for example [58].

The angle of incidence θ of the pump beam is a degree of freedom on which
we can play to tune the signal and idler frequencies, as illustrated by Figure 1.5
where the wavelengths of the signal and the idler are represented for the two
interactions HV and V H. We observe that the tuning curves are symmetric with
respect to the axis θ = 0: a specific pumping angle ±θdeg = ± arcsin

(
ns−ni

2

)
allows

to obtain photons with degenerate frequencies for either interaction. The removal
of the distinguishability in energy opens the possibility to generate polarization
entangled photons as demonstrated by our group in [86]. More details on this
experiment and on possible improvements to the level of entanglement will be
given in chapter 6.

∗Unless stated otherwise, the effective indices are determined throughout this work with the
transfer matrix method [92]. The refractive indices are calculated following [93] as a function of
temperature and the composition of the layers.
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Figure 1.3 – Sketch of the phase-matching for counterpropagating photons.
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Figure 1.4 – Sketch representing the relationships imposed by energy and mo-
mentum conservation on the signal and idler frequencies ωs and ωi. The numer-
ical simulation is performed for the nominal structure with a pump wavelength
λp = 2πc/ωp = 775 nm and an angle of incidence θ = 0.349◦, corresponding to
the situation in which the down-converted photons are generated at the same
frequency ωdeg = ωp/2.

1.2 The pump beam microcavity
The previous section summarizes the working principle and the specific features
of the counterpropagating phase-matching. A challenge with this scheme is to
overcome the weak efficiency caused by the limited volume of interaction. Indeed
in collinear geometries, the fields co-propagate over up to several centimeters while
within this source, the interaction length is defined by the size of the pump beam
on the ridge. Another issue is to avoid the penetration of the pump field into
the substrate which was a source of noise (resulting in a limited Coincidences
to Accidentals Ratio (CAR)) in the first generation of devices [88]. Indeed, the
absorption of the pump within the substrate and the subsequent re-emission of
incoherent photons over a wide range of frequencies was the cause of a broadband
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Figure 1.5 – Numerical simulation of the angular dependence of the signal (red)
and idler (blue) wavelengths for interaction HV (solid lines) and interaction V H
(dashed lines) for λp = 775 nm. The black lines correspond to the angles of in-
cidence of pump beams for which each process generates a frequency degenerate
photon pair (marked by a black circle).

optical noise.
These issues led to the current generation of devices where a microcavity is

implemented for the pump beam. A design with two asymmetric Bragg mirrors
was obtained after optimization. This work resulted in an enhancement of the
conversion efficiency by two orders of magnitude and an improvement of the CAR
while keeping a good compromise between the angular acceptance and the finesse
of the device [90]. Figure 1.6 shows the amplitude distributions Es(x, y), Ei(x, y)
and Ep(x, y) of the signal, idler and pump fields within the heterostructure. The
Bragg mirrors confine the signal and idler fields and generate a standing wave
pump field at resonance.

The oscillation of the pump beam within the structure requires a careful struc-
turing of the nonlinear medium to ensure an efficient nonlinear interaction. Indeed,
we will see in chapter 2 that the SPDC efficiency depends on the overlap integral
between the transverse profile of the fields Es(x, y), Ei(x, y) and Ep(x, y), and
the effective nonlinearity deff(x) in the interaction volume as expressed by the
quantity:

χΓ ∝
∫∫

dx dy deff(x)Es(x, y)Ei(x, y)Ep(x, y) (1.5)

We see that if deff(x) is constant for all depths, this overlap integral would almost
cancel due to the sign inversion of the pump amplitude every Λ ≈ λp/2n, where
the refractive index n depends on the aluminum content and the considered wave-
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Figure 1.6 – Refractive index profile at 1550 nm structure and electric field
amplitude for the three interacting modes within the heterostructure.

length∗. The ideal solution would consist in a QPM by periodically poling the
nonlinearity in the core layers, so that the interaction remains constructive at ev-
ery depths. However periodic domain inversion of AlGaAs is a difficult technique
to implement resulting in quite high optical losses [94], which are detrimental for
quantum applications. The solution that we have chosen consists in alternating
high second order susceptibility layers with low susceptibility ones having thick-
nesses Λ, matching their interfaces with the nodes of the intra-cavity pump field.
Since the value of the nonlinear susceptibility is decreasing with increasing Alu-
minum content [95], a modification of the layers composition allows to obtain the
QPM condition.

The addition of the microcavity has been therefore a strong improvement of
the device. On the other hand its presence restricts the bandwidth of the pump
field as far as the conversion efficiency is concerned. The reflectivity spectrum of
Figure 1.7 shows the resonance wavelength λµcav = 775 nm of the nominal struc-
ture with a 280 pm theoretical bandwidth. This restriction on bandwidth is not a
problem for pulses longer than a few picoseconds but prevents the use of shorter
pulse. In the temporal domain, the intra-cavity pump pulse will not necessarily be
Fourier-transform limited anymore. As an example, Figure 1.8 shows the temporal
evolution of the intra-cavity pump field for a pulse of duration† 3.5 ps. We will
see in section 2.2.4 how this mechanism impacts the time-energy properties of the
biphoton state.

∗we have neglected the influence of the angle of incidence of the pump beam. The correct
formula is Λ = λp/2n cos θ

†Full Width at Half-Maximum (FWHM) of the temporal intensity profile of the pulse.
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Figure 1.7 – Numerical simulation of the reflectivity of the nominal heterostruc-
ture for a pump beam at normal incidence. The pump beam resonates within the
microcavity at a wavelength λµcav = 775 nm in the center of the stop-band.
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Figure 1.8 – Temporal amplitude profile of an incident pump pulse of duration
3.5 ps – FWHM of the intensity profile – (top red) with center wavelength λp =
775 nm and the corresponding intracavity pump field (bottom blue) simulated for
the nominal structure at a temperature T = 293.15 K.

We should finally note that a tuning of the resonance point λµcav can be
achieved by heating or cooling the device. Indeed by changing the temperature,
the size of the layers is altered through thermal expansion [96] and more impor-
tantly, the refractive indices are modified [93]. Figure 1.9 shows the position of
the resonance λµcav simulated for different temperatures. We see that this option
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should be reserved for fine tuning as λµcav is only shifted by two nanometers for
a temperature variation of 40 ◦C.
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Figure 1.9 – Shift of the microcavity resonance wavelength λµcav as a function
of the temperature T of the device. This 1D numerical simulation takes into
account both the variation of the refractive indices and the thermal expansion of
the materials with temperature.



Chapter 2

Theory of Cavity SPDC

The versatility of sources based on a transverse pump configuration, in terms of
frequency correlations engineering was first pointed out in [97]. In that reference,
Walton et al. figured that the transverse pumping in waveguided counterpropagat-
ing phase matching geometries allowed to relax some constraints on the dispersion
properties of the sample in the perspective of controlling the degree of correla-
tions. In particular, they theoretically showed the possibility to generate states
with positive frequency correlations, avoiding the problem of group velocity match-
ing [98] which had prevented the production of such states in the first demonstra-
tions of state engineering [84]. In a second work, the same authors discussed the
extension of the technique to produce biphoton states with arbitrary frequency
properties [42], notably frequency-uncorrelated states with different bandwidths
for the signal and the idler by adjusting the spatial and temporal properties of the
pump beam with a dispersive element. Another thorough analysis of the frequency
properties of photon pairs generated in a counterpropagating geometry has been
done in [99].

In this chapter, we perform a theoretical description of the time-frequency
properties of the photon pairs produced with our device. In other words, we want
to derive the Joint Spectral Amplitude (JSA) φ(ωs, ωi), a function giving the joint
probability that the signal and idler photons are emitted at frequencies ωs and ωi,
respectively. For photons generated in a waveguide, this function describes almost
all properties of the pair and is thus sometimes called the biphoton wavefunction.
Our goal is then to identify the parameters of the pump beam affecting the corre-
lations between the constituents of the pair. The process we describe is sketched
in figure 2.1 in which we focus on only one of the two possible interactions, the
one in which the signal and the idler photons are emitted with a horizontal and
vertical polarization, respectively. We thus refer to it as interaction HV . The re-
sults for the other interaction (interaction V H) and for higher-order guided modes
are easily obtained by generalization. In the following, the x axis corresponds to
the growth direction (oriented from the cap layer towards the substrate), the z
axis is the propagation direction and the y axis is the direction orthogonal to the
growth axis. The first section of this chapter is devoted to the derivation of the
Hamiltonian describing the nonlinear interaction. In the second section, we dis-
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Figure 2.1 – Sketch of the process studied in this chapter: the pump beam is
Gaussian with waist wz and pulse duration τp, impinging with an angle of incidence
θ. Although two interactions can occur, we will mostly focus on the one involving
horizontally polarized signal photon and orthogonal idler photons (HV -process).

cuss the form of the JSA and the means to engineer it. Finally the influence of the
reflectivities of the sample facets is discussed in the last section of this chapter.

2.1 Derivation of the state produced by SPDC

2.1.1 General considerations on the quantization of the
electromagnetic field

The quantization procedure is exposed in many monographs [100, 101]: a La-
grangian formulation of the problem allows to find the conjugate canonical vari-
ables of the system [102]. These classical variables are then replaced by their
quantum operators counterparts and the classical Poisson bracket by the corre-
sponding canonical commutation relation.

Concerning the electromagnetic field, the scalar and vector potentials allow to
derive the electric and magnetic fields. In vacuum, in the absence of free charges,
a usual strategy is to adopt the Coulomb gauge in which the vector potential is
transverse and the scalar potential can be canceled, which greatly simplifies the
expression for the fields which are consequently purely transverse [103, 104]. An
expansion in normal modes allows then to identify the conjugate canonical vari-
ables of the field and to obtain the quantized electromagnetic field. This approach
can be extended to the case of the vacuum electromagnetic field in the presence
of charges where the dynamics of the system is controlled by the Maxwell-Lorentz
equations. The Coulomb gauge is again chosen to perform the canonical quanti-
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zation∗.
This approach is convenient to describe the interaction between light and mat-

ter when the latter is considered very dilute. The situation is less straightforward
when dealing with optically dense matter which is the case for our device since
the dispersion properties of the medium induce optical losses. An example of
canonical quantization in a dense medium at the microscopic level can be found
in [105]. The Lagrangian describing the system contains, in addition to terms de-
scribing matter and light, a part describing the interaction between them, and
a reservoir term to take into account the energy lost by the field. Solving the
problem by diagonalizing the full (linear) Hamiltonian allows to express the field
operators and to find the dielectric constant of the medium, which is shown to
satisfy the Kramers-Kronig relations. In particular, when losses are neglected, the
derived field operators reduce to the ones obtained with a phenomenological ap-
proach [106] where the dielectric constant of the medium is assumed to be known
a priori (from experiments). This justifies the “macroscopic” treatment we adopt
in this thesis, since we will be interested in quantizing fields at frequencies away
from any resonance i.e. where losses are negligible.

As a final remark, we note that other complications arise with complex pho-
tonic structures and cavities. The question of the electromagnetic field quantiza-
tion in cavities is considered in details in the book of Dutra [107]. In an effort to
describe nonlinear optical phenomena in non trivial structures [108, 109], Marco
Liscidini, John Sipe and coworkers tackled this issue with a different approach
based on quantum mechanics scattering theory [110]. In typical experiments light
is coupled in and out an interaction region from a certain number of channels.
Away from this interaction region, the channels are assumed to be isolated from
each other. Therefore the problem consists in finding the part of an incident field
that is scattered in every channels (asymptotic-in field) or conversely the inci-
dent fields in every channels that “scatters” in a wave outgoing in a single channel
(asymptotic-out field). Doing so there is no need to define cavity quasi-modes [111]
and their coupling with the external world since the effect of the structure on the
field is completely considered in the solution to the scattering problem. This ap-
proach is convenient to describe SPDC or Four-Wave Mixing (FWM) since the
nonlinear interaction is generally confined to a small volume and then light prop-
agates away from it before being detected. This treatment was used by its authors
to describe the links between spontaneous nonlinear phenomena, which can only
be described in a quantum framework, and their stimulated counterparts for which
a classical treatment exists [112, 113].

2.1.2 The electromagnetic field in the linear regime
The approach we follow for our treatment was introduced by Ghosh et al. in [114]
and [115], where the derivation of the two-photon state produced by an SPDC
source is derived with a first order perturbation of an interaction picture Hamilto-

∗This gauge transformation is correct for low energy physics. However for relativistic systems,
different transformations are more suitable [100].
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nian. In transverse pumping geometries this approach was also followed by Booth
et al. [116] and Peřina [99].

We first identify the modes of interest, those that will contribute to the nonlin-
ear interaction Hamiltonian ĤNL(t) and we choose the interaction or intermediate
picture [117]. We remind that in the usual Schrödinger picture, the dependence
in time is born by the wavefunction and the operators are constant in time. In
the Heisenberg picture, the wavefunction is constant and the time evolution is
contained in the operators so the fields better match their classical expression.

The interaction picture is a useful compromise in our case: the pump pulse
represents a time dependent perturbation via the nonlinearity of the system. In
its absence, the full Hamiltonian governing the radiation reduces to a linear term
ĤL that has trivial consequences on the evolution of the electromagnetic field.
With the adoption of the interaction picture, this evolution is contained in the
operators allowing to capture all the physics due to the nonlinear interaction
Hamiltonian ĤNL(t) in the wavefunction. The final state (a long time after the
pump pulse has left the medium) is then determined by solving a Schrödinger
equation for the nonlinear term ĤNL(t):

i~
d
dt |Ψ(t)〉 = ĤNL(t) |Ψ(t)〉 (2.1)

Since the pump beam is very bright and the nonlinear interaction has a low
efficiency, we assume that it is undepleted and we will thus adopt a classical
description of the pump field. At this stage, we do not make any assumption on
its spatio-temporal profile; we only impose a TE-polarization (i.e. with the electric
field in the y direction of the waveguide), a choice that will be justified later. The
pump beam is thus written as:

Êp(r, t) ∼ Ep(r, t) =

E(+)
p (r,t)︷ ︸︸ ︷

(2π)−3/2
∫

dk ûyEp(k, t)ei(k.r−ωkt) + c.c.︸︷︷︸
E(−)
p (r,t)

(2.2)

where ûy is the unit vector indicating the polarization of the field and Ep(k, t)
is the electric field amplitude at a given k, whose expression will be specified
later. The first integral E(+)

p (r, t) is then the analytic signal of the pump where
(+) indicates that positive frequencies are involved.

The parametric photons will be generated in the guided modes of the sample,
propagating along the z-direction. The length L of the waveguide being much
larger than the wavelengths in the range we will consider, we have a continuum
of k-vectors aligned in the propagation direction. The confinement in the trans-
verse plane (x, y) discretizes the number of allowed modes in those directions.
Our waveguides are designed to be monomode in the growth direction, however
the width of typical ridges is in the range 5− 10 µm. This allows higher order
guided modes to exist in the y direction that we will identify with the label m.
The polarization of the field is denoted with σ; it can be either TE or TM. The
modes are determined by solving the Maxwell equations for the heterostructure.
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The quantization procedure is performed by expressing the classical fields in nor-
mal modes [103] and replacing their amplitudes by the corresponding creation -
annihilation quantum operators. The electric field operator can thus be expressed
under the form:

Ê(r, t) =

Ê(+)(r,t)︷ ︸︸ ︷√
L

2π
∑
m,σ

∫
dkEl(x, y)ei(kz−ωlt)âl + h.c.︸︷︷︸

Ê(−)(r,t)

(2.3)

where âl is the annihilation operator of a photon in a given mode that we label
l = {k,m, σ} to keep a light notation and El(x, y) is the transverse profile of the
mode in the waveguide. The

√
L factor appears because of the continuity of k.

The creation and annihilation operators satisfy the usual commutation relations:

[âl, âl] = 0, [âl, â
†
l ] = δmm′δσσ′δ(k − k′) (2.4)

This is insured through a proper normalization of the modes [104, 108] which we
detail hereafter. Given their guided nature, all the energy contained in the modes
should pass through a plane transverse to the direction of propagation in the full
course of time which is formally written:

∑
m,σ

∫
dk ~ωlâ†l âl =

∫
dt
∫∫

dx dy Î(r, t) (2.5)

where Î(r, t) = ε0c
2
[
Ê(−)(r, t)× B̂(+)(r, t)− B̂(−)(r, t)× Ê(+)(r, t)

]
is the Poynting

vector operator. This results in orthonormalization conditions on the transverse
amplitudes El(x, y):

L
∫∫

dx dy ε0n2(x, y;ωk)E∗kmσ(x, y).Ekm′σ′(x, y)vp(x, y;ωk)
vg(x, y;ωk)

= ~ωk
2 δm,m′δσ,σ′

(2.6)
with n(x, y;ωk) the local index of refraction and vp(x, y;ωk) and vg(x, y;ωk) the
corresponding phase and group velocities [108]. The linear Hamiltonian governing
the evolution of the guided fields is then:

ĤL =
∑
m,σ

∫
dk ~ωl

(
â†l âl + 1

2

)
(2.7)

2.1.3 The signal and idler fields

Our phase-matching scheme imposes counterpropagating photons. We will call
signal the modes propagating in the forward direction, i.e. the terms with a posi-
tive k in the integral of equation (2.3) and idler those with a negative k (backward
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propagation):

Ê(r, t) =

Ê(+)
s (r,t)︷ ︸︸ ︷√

L

2π
∑
m,σ

∫ +∞

0
dkEl(x, y)ei(kz−ωlt)âl

+
√
L

2π
∑
m,σ

∫ 0

−∞
dkEl(x, y)ei(kz−ωlt)âl︸ ︷︷ ︸
Ê(+)
i (r,t)

+h.c.
(2.8)

The guiding regime also implies a direct connection between the k vector and the
frequency ω considered:

|k| = nmσ(ω)ω
c

(2.9)

where nmσ(ω) is the effective index of the mode. This allows to express the fields as
an integral over frequencies [104], which will be more intuitive for the description
of the frequency correlations between the photons. After the change of variables
passing from k to ω, the fields read:

Ê(+)
s/i (r, t) =

√
L

2π
∑
m,σ

∫ +∞

0
dω Emσ(x, y;ω)√

vmσg (ω)
ei(±|kmσ(ω)|z−ωt)âs/i,mσ(ω) (2.10)

with vmσg (ω) the effective group velocity of modem,σ at frequency ω and âs/i,mσ(ω)
is the annihilation operator of a signal/idler photon of this mode. The exponential
has a + sign for the signal field and a - for the idler. The fields being expressed,
we must find the correct form of the nonlinear interaction Hamiltonian ĤNL(t)
before the formal derivation of the biphoton state.

2.1.4 The Hamiltonian for the nonlinear interaction
The nonlinear interaction Hamiltonian is the quantum equivalent of the classical
nonlinear energy density representing the interaction of the three waves in the
nonlinear medium [118], integrated over the whole interaction volume. Limiting
our treatment to second order nonlinearities, this Hamiltonian reads:

ĤNL(t) = ε0
3

∫
drχ(2)

ijk(r)Êi(r, t)Êj(r, t)Êk(r, t) (2.11)

where the summation over all repeated indices is implied and χ
(2)
ijk(r) represents

the second order nonlinear susceptibility at the position r in the medium. Being far
from resonance, we neglect the dispersion of the nonlinear response. Taking into
account the Kleinman’s symmetry, all permutations of ijk are equivalent [118].

In the case of our device, the zincblende structure of AlxGa1−xAs compounds
imposes a cubic 4̄3m symmetry of the crystal and thus a certain form of the non-
linear tensor [118]. Due to this fact and the phase matching being achieved for
parametric fields propagating in opposite directions, only type II processes will
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occur i.e. those involving signal and idler fields with orthogonal polarizations. In
addition, SPDC can only take place if the pump is TE-polarized, justifying the
choice made in the previous section. We do not give the full details of these calcu-
lations which can be found in appendix A of the PhD thesis of Xavier Caillet [91].
The nonlinear Hamiltonian thus simplifies to:

ĤNL(t) = ε0

∫
drχ(2)(r)Êp(r, t)Ês,TE(r, t)Êi,TM(r, t)

+ ε0

∫
drχ(2)(r)Êp(r, t)Ês,TM(r, t)Êi,TE(r, t)

(2.12)

with the factor 1/3 gone because of the summation over all equivalent permu-
tations. The condition of energy conservation will only become apparent after
integration over time and over the pump spectrum. Nevertheless, for clarity, we
now remove from the expression of ĤNL(t) the terms that will not satisfy this
condition. To do so, we remind that the fields can be separated into a positive
frequency term Ê(+)(r, t) (the analytic signal) which annihilates a photon in all
modes and its hermitian conjugate with negative frequencies Ê(−)(r, t) which cre-
ates a photon. Therefore the only terms of equation (2.12) that preserve energy
are those involving the destruction of a photon in the pump mode and the cre-
ation of a photon in the signal and the idler (and their hermitian conjugates).
Considering this, ĤNL(t) reduces to:

ĤNL(t) = ε0

∫
drχ(2)(r)Ê(+)

p (r, t)Ê(−)
s,TE(r, t)Ê(−)

i,TM(r, t) + h.c.

+ ε0

∫
drχ(2)(r)Ê(+)

p (r, t)Ê(−)
s,TM(r, t)Ê(−)

i,TE(r, t) + h.c.
(2.13)

We have thus identified the nonlinear interaction Hamiltonian. In doing so we have
also made it clear that two “interactions” can occur in the device with exchanged
polarizations for the output photons. In the next section we derive the output
state of the pair in the interaction picture.

2.1.5 The two-photon state
The output state of our source is retrieved by solving the Schrödinger equa-
tion (2.1) for ĤNL(t). At a given time t, the state of the system reads:

|Ψ(t)〉 = T̂e
1
i~

t∫
−∞

ĤNL(t) dt
|Ψ(−∞)〉 (2.14)

where T̂ is the time ordering operator∗. In the low pump energy regime, where the
probability to generate one pair (per pump pulse) is small, a valid expression for

∗The expansion of the exponential will give multiple powers of the time integral of the
Hamiltonian, which do not necessarily commute. In the regime where a high number of pairs
is produced i.e. when the pump is very intense, the time ordering has the effect of taking into
account pairs that are already produced which stimulate the production of pairs with identical
characteristics bridging SPDC and DFG. An interesting discussion is found in section 5.4 of [119].
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the output state is given by the first order approximation of the previous equation:

|Ψ(t)〉 = |vac〉+ 1
i~

∫ t

−∞
dt ĤNL(t) |vac〉 (2.15)

where we have taken the vacuum |vac〉 as the initial state (t→ −∞). The second
term on the right hand side is the one describing the pair: writing |ψ〉 the two-
photon state and β its generation probability amplitude, we have:

|Ψ(t)〉 = |vac〉+ β |ψ〉 (2.16)

Since we measure the state after the disappearance of the pump pulse (we measure
the state away from the source), we can extend the time integration to +∞. To
simplify the demonstration, we focus only on the interaction where the signal
photon is TE polarized. The results are readily extensible to the other interaction.
We also neglect the interactions that can occur with guided modes of higher order
and focus on the fundamental modes of the waveguide. Under these assumptions,
the two-photon state is:

|ψ〉 = ε0
iβ~

∫
dt
∫

drχ(2)(r)Ê(+)
p (r, t)Ê(−)

s,TE(r, t)Ê(−)
i,TM(r, t) |vac〉 (2.17)

Expanding the fields in terms of their integral over frequencies, we get:

|ψ〉 = ε0
iβ~

∫
dt
∫

dr
∫∫∫

dωp dωs dωi χ(2)(r)Ep(r, ωp)ETE(x, y, ωs)ETM(x, y, ωi)

× L

2π
√
vTE
g (ωs)vTM

g (ωi)
e−i∆kzei∆ωtâ†TE(ωs)â†TM(ωi) |vac〉

(2.18)

with ∆ω = (ωs + ωi) − ωp representing the energy difference between the three
waves, and ∆k = kTE(ωs) − kTM(ωi) indicating the phase mismatch between the
signal and the idler field. A first simplification is done by integrating this expres-
sion over time, which is essentially

∫
dt exp(i∆ωt) = 2πδ(∆ω). This corresponds

to the condition of energy conservation and justifies the removal of some terms
from the nonlinear Hamiltonian. We can now integrate over the frequency ωp to
eliminate it from the expression of the state. This leads to an expression of the
state as a double integration over the signal and idler frequencies:

|ψ〉 =
∫∫

dωs dωi φ(ωs, ωi)â†TE(ωs)â†TM(ωi) |vac〉 (2.19)

with φ(ωs, ωi) the Joint Spectral Amplitude (JSA) or biphoton wavefunction :

φ(ωs, ωi) = ε0L

iβ~
√
vTE
g (ωs)vTM

g (ωi)

×
∫

drχ(2)(r)Ep(r, ωs + ωi)ETE(x, y, ωs)ETM(x, y, ωi)e−i∆kz
(2.20)
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Although an integral over r is still present in the expression, once we will specify
the form of the pump beam, its evaluation will give rise to a function of ωs and ωi
corresponding to the phase-matching. Equations (2.19) and (2.20) can be gener-
alized to the case in which both interactions occur and several spatial modes are
involved:

|ψ〉 =
∫∫

dωs dωi φmm
′

σ (ωs, ωi)â†mσ(ωs)â†m′σ⊥(ωi) |vac〉 (2.21)

with an implicit summation over the guided modes m and m′ and the polarization
σ (σ⊥ is the polarization orthogonal to σ). The JSA of a given process takes the
form:

φmm
′

σ (ωs, ωi) = ε0L

iβ~
√
vmσg (ωs)vm

′σ⊥
g (ωi)

×
∫

drχ(2)(r)Ep(r, ωs + ωi)Emσ(x, y, ωs)Em′σ⊥(x, y, ωi)e−i∆kz

(2.22)
the phase mismatch ∆k depending on the modes involved and their frequencies.
Having extracted the probability of generation β, the normalization of the bipho-
ton wavefunction takes a simple form:

〈ψ| ψ〉 =
∑

m,m′,σ

∫∫
dωs dωi

∣∣∣φmm′σ (ωs, ωi)
∣∣∣2 = 1 (2.23)

The modulus square of the JSA, the Joint Spectral Intensity (JSI) or joint spectral
density can thus be interpreted as the probability density of finding the biphoton in
a given pair of modes and a given couple of frequencies, justifying the designation
of φmm′σ (ωs, ωi) as the biphoton wavefunction. Now that we have identified the
general form of the biphoton state, it becomes necessary to specify a bit more the
shape of the pump to understand how the control of its characteristics allows to
engineer the emitted pairs.

2.2 Engineering the JSA
After the derivation of the state in the previous section, we now comment on the
engineering of the biphoton time-frequency correlations in our device. In doing so,
we will also introduce different ways to visualize the characteristics of the state
that, depending on the situation, can be more convenient than the most usual
JSI.

2.2.1 The phase-mismatch along the guiding direction
To simplify the following discussions, we first analyze the term of phase mismatch
c∆k(ωs, ωi) = ωs nTE(ωs) − ωi nTM(ωi) with nTE/TM the effective index of the
TE/TM mode, for the case of the first interaction (see figure 2.1) and limit our
treatment to fundamental modes. To do so, we expand the effective indices of the
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signal and idler modes around the degenerate frequency ωdeg = ωp/2, to second
order in δω = ωs−ωi

2 :

nTE(ωs = ωdeg + δω) = nTE(ωdeg) +δω dnTE

dω

∣∣∣∣∣
ωdeg

+ (δω)2

2
d2nTE

dω2

∣∣∣∣∣
ωdeg

nTM(ωi = ωdeg − δω) = nTM(ωdeg) −δω dnTM

dω

∣∣∣∣∣
ωdeg

+ (δω)2

2
d2nTM

dω2

∣∣∣∣∣
ωdeg

(2.24)

Using these expansions we can re-express the phase mismatch:

∆k = kdeg(ωp) + ω−
v̄g

+
(
ω−
2

)2
δGVD (2.25)

where ω− = ωs−ωi. The first term in this expansion correspond to the wavevector
the pump should have (projected along the z-axis) in order to produce frequency-
degenerate photon pairs. Its full expression is:

kdeg(ωp) =
ωp
(
nTE−nTM

2

)
c

= sin θdeg
ωp
c

(2.26)

This term is linked to the birefringence of the device: the pump beam should
impinge with an angle θdeg to obtain degenerate photons (see figure 1.3). Even
though bulk GaAs is not birefringent, the structuration implies a small index
mismatch between the two polarizations and therefore the angle of incidence for
degeneracy is slightly offset from normal incidence.

The second term in equation (2.25) depends on v̄g, the harmonic mean of the
group velocities defined by:

v̄g
−1 =

vTE
g
−1 + vTM

g
−1

2

= 1
c

nTE + nTM

2 + ωdeg

2
d(nTE + nTM)

dω

 (2.27)

This is one of the main features of the counterpropagating phase-matching playing
a strong role in the control of the frequency correlations. Indeed v̄g will act as a
proportionality coefficient between the spatial profile of the pump beam and the
spectral width of the JSA along the axis defined by the ω− variable.

The third term of (2.25) is controlled by the difference between the Group-
Velocity Dispersions (GVDs) of the two photons:

δGVD = 1
2

(
d2kTE

dω2 −
d2kTM

dω2

)

= 1
2c

2 d(nTE − nTM)
dω + ωdeg

d2(nTE − nTM)
dω2

 (2.28)
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The GVD is rather small for our waveguides, at least for the low order modes,
and its value being close for TE and TM modes, we will neglect this third term
in the rest of the discussion∗:

∆k = kdeg(ωp) + ω−
v̄g

(2.29)

Having identified and commented the different contributions to the phase-mismatch
along the propagation direction, we start the analysis of the impact of the pump
profile on the biphoton state.

2.2.2 The Joint Spectral Amplitude

In order to analyze the influence of the spatial profile of the pump beam on the
biphoton, we make some assumptions: we restrict the pump beam propagation to
the (x, z) plane so that its wavevector kp has no y-component (see figure 2.1). We
also assume that the transverse profile φp(y, z) of the pump is separable along the
y and z axis, i.e. we can express it as a product φp(y)× φp(z). The amplitude of
the pump beam thus reads:

Ep(r, ωp ≡ ω+) = E (0)
p fµcav(x, ω+)fspectrum(ω+)φp(y, ω+)φp(z, ω+) (2.30)

Here ω+ = ωp = ωs+ωi and fµcav(x, ωp) is a function describing the effect of the mi-
crocavity on the spectrum and the shape of the pump beam along x; fspectrum(ω+)
is the spectrum of the pump field; φp(y, ω+) and φp(z, ω+) are the spatial profile of
the beam along the y and z-direction with a possible dependence on ω+. E (0)

p is a
normalization constant. With this expression for the pump beam, we can decom-
pose the integral over r in equation (2.22) for the JSA along x, y and z. In order
to do so, we introduce the explicit expression of χ(2)(r), the quantity describing
the nonlinear medium:

χ(2)(r) = χ(2)(x)× ΠW (y)× ΠL(z) (2.31)

where ΠW (y) and ΠL(z) are rectangular gate functions (ΠL(z) = 1 if |z| ≤ L/2
and 0 elsewhere) giving the extent of the nonlinear medium along the length L and
the widthW of the waveguide, directions along which the nonlinearity is constant.
χ(2)(x) is the value of the nonlinearity along the x-axis, given by the composition
of the layers in the heterostructure†. With this considered, the general expression

∗We do however take into account the full (calculated) chromatic dispersion in our numerical
simulations.

†To estimate the value of the second order nonlinear coefficient, we use the value obtained for
GaAs at telecom wavelengths in [120] and the dependence on the Aluminum content from [95].
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of the JSA is:

φmm
′

σ (ωs, ωi) = ε0L

iβ~
√
vmσg (ωs)vm

′σ⊥
g (ωi)

E (0)
p fspectrum(ω+)

×
∫

dxχ(2)(x)fµcav(x, ω+)Emσ(x, ωs)Em′σ⊥(x, ωi)

×
∫

dyΠW (y)φp(y, ω+)Emσ(y, ωs)Em′σ⊥(y, ωi)

×
∫

dzΠL(z)φp(z, ω+)e−i∆kz

(2.32)

The first and second integrals represent the overlap of the three fields in the cross-
section of the waveguide. The second integral along y in particular determines the
pairs of modes m and m′ which can interact depending on their overlap with
the profile φp(y, ω+) of the pump beam. Focusing on the third integral which
corresponds to the phase-matching, we introduce the quantity:

φPM(ωs, ωi) =
∫

dzΠL(z)φp(z, ω+)e−i∆k(ωs,ωi)z (2.33)

where ∆k(ωs, ωi) is the phase-mismatch whose expression is given by equation (2.29).
If the pump spot-size is small with respect to the length of the waveguide, this
expression corresponds approximately to the Fourier transform of ϕ(z, ω+) =
φp(z, ω+)e−ikdegz:

φPM(ωs, ωi) =
∫ +L/2

−L/2
dz ϕ(z, ω+)e−i(ωs−ωi)z/v̄g ∼

√
2π ϕ̃

(
ω−
v̄g
, ω+

)
(2.34)

To illustrate this result, we take the simple example of a pulsed gaussian beam
of waist wy along direction y and wz along direction z located at the core of
the source so that we consider a flat wavefront, with a pulse duration τp ∝ ∆ωp
and central frequency ω(0)

p matching the resonance frequency of the microcavity.
The typical output pulse of a Ti:sapphire laser has a hyperbolic secant temporal
profile rather than a Gaussian. This function is its own Fourier Transform so
we choose this for fspectrum(ω+). The beam is impinging with an angle θ with
respect to the vertical direction. We are in the absence of chirp and there is
no frequency dependence in the angular spectrum (θ is independent of ωp). We
finally assume that we can decouple the spatial effect of the microcavity on the
pump beam, i.e. its amplitude distribution in the growth direction (see figure 1.6)
from the spectral filtering effect. This is indeed a correct approximation since the
amplitude distribution can be considered constant over the spectral acceptance
of the microcavity (see figure 1.7 and 2.6). Therefore we can write fµcav(x, ω+) =
fµcav(x)×fµcav(ω+). With these considerations, the amplitude of the pump reads:
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Ep(r, ω+) = E (0)
p fµcav(x)

× exp
(
− y

2

w2
y

)

× exp
(
− z

2

w2
z

)
ei
ω+ sin θ

c
z

× sech
(
ω+ − ω(0)

p

∆ωp

)
fµcav(ω+)

(2.35)

Focusing on fundamental signal and idler modes and interaction HV , the JSA
corresponding to this form of pump can be fully identified by simplifying equa-
tion (2.20):

φ(ωs, ωi) = χΓ φPM(ω−)φspectral(ω+) (2.36)

The term χΓ is the overlap integral between the interacting fields and the nonlinear
medium, including multiplicative constants:

χΓ(ωs, ωi) =
ε0LE (0)

p

iβ~
√
vTE
g (ωs)vTM

g (ωi)

×
∫∫

dx dy χ(2)(x)ΠW (y)fµcav(x) exp
(
− y

2

w2
y

)
ETE(x, y, ωs)ETM(x, y, ωi) (2.37)

It corresponds to the quantity that has been optimized during the design of the
source [91] since the efficiency of the source is directly linked to its value. The GVD
of the modes is weak so the effective group velocities can be considered constant.
The JSIs we study in this thesis will not exceed a few nanometers in width and will
remain the telecom band. For such frequency ranges, the profiles of the guided
modes do not vary significantly, which is also the case for the distribution of
the pump beam in the heterostructure within the acceptance bandwidth of the
microcavity. Therefore χΓ has just a marginal effect on the shape of the JSA. For
this analytic discussion we can thus consider it as frequency-independent and it
will just represent a multiplicative constant.

Since there is no angular dispersion in the pump beam, the phase-matching
term φPM(ω−) depends only on ω−, i.e. on the difference between the signal and
the idler frequency. The pump frequency will just act as a parameter, setting
the center of φPM in the (ωs, ωi) plane but will play no role in the shape of this
function. For a Gaussian pump beam, with a waist that is small with respect to
the waveguide length i.e. wz � L, we have:

φPM(ω−) =
√
πwz exp

− (ω− − ω(0)
−

∆ω−

)2
 (2.38)

A representation of this function is given in figures 2.2(a), (b) and (c). We see
that the phase-matching condition together with our choice of pump beam sets a



30 Theory of Cavity SPDC

distribution along the anti-diagonal of the (ωs, ωi) plane, i.e. along the ω− axis.
This function is Gaussian of width ∆ω− = 2v̄g/wz and it is shifted from degeneracy
by an amount ω(0)

− = ωp(sin θ − sin θdeg)v̄g/c. We can see that at the small angles
approximation, ω(0)

− ≈ ωp(θ − θdeg)v̄g/c, we retrieve the linear dependence of the
frequencies of the photons with the angle of incidence θ (see figure 1.5). As shown
in figure 2.2, by varying the size of the pump beam, we can engineer the degree of
frequency-correlation between the signal and the idler along the antidiagonal of
the JSA. Note that in the limiting case where wz � L, depicted in figure 2.2(c),
we pump the whole waveguide and φPM is just the Fourier Transform of ΠL(z):

φPM(ω−) = L sinc
ω− − ω(0)

−

∆ω−

 (2.39)

with sinc(x) = sin(x)/x and where ∆ω− = 2v̄g/L is the smallest width we are
able to achieve with a given sample. In intermediate situations (wz ≈ L), φPM is
given by the convolution of the Gaussian corresponding to the incident beam and
the cardinal sine corresponding to the waveguide.

The control of the spatial properties of the pump beam allows us to engineer
the part of the JSA that depends on the phase-matching and we have seen that this
corresponds to the antidiagonal (ω− axis) in the case of the counterpropagating
scheme. The control on the positive diagonal, namely the ω+ axis, is related to
the conservation of energy and is thus allowed by the modification of the spectro-
temporal properties of the pump beam:

φspectral(ω+) = sech
(
ω+ − ω(0)

p

∆ωp

)
fµcav(ω+) (2.40)

We see from this expression that the pump spectrum directly defines a func-
tion that is orthogonal to that defined by the phase-matching condition (see fig-
ures 2.2(d), (e) and (f)) and thus a modification of the bandwidth ∆ωp of the
pump laser will affect the width ∆ω+ of the function that defines the JSA in the
ω+ direction. Here we have chosen a hyperbolic secant to match the characteristics
of our laser but a Continuous Wave (CW) laser could be chosen as well, in which
case φspectral will take the linewidth of the laser and we will obtain an anticorrelated
state, such as the one depicted in figure 2.2(g) but with an even thinner width
along ω+. More sophisticated engineering of the pump beam can be done, for ex-
ample using a 4f-line [83] to pulse-shape the beam. We note that even though the
first demonstrations of frequency engineering of the biphoton were done with the
spatial shaping of the pump beam [84], modifying the spectro-temporal proper-
ties of the pump beam is, in collinear geometries, the only option once the sample
has been processed. This is a strong advantage of the counterpropagating scheme
which has the versatility of playing on the two aspects. With our device, this flex-
ibility will be limited by the presence of the microcavity whose constraints on the
resonance wavelength and the acceptable bandwidth are described by fµcav(ω+).

We note the special case for which the phase-matching and the energy conser-
vation impose distributions of identical widths i.e.

√
ln(2)∆ω− = sech−1(1/2)∆ω+
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for a Gaussian spatial profile and a hyperbolic secant temporal profile or, in terms
of experimental parameters:

wz =
2
√

ln(2)v̄g
sech−1(1/2)∆ωp

=
π
√

ln(2)v̄g
2 sech−1(1/2) sech−1(

√
1/2)

τp

(2.41)

with ∆ωp the FWHM of the spectral amplitude and τp the FWHM of the temporal
pulse intensity. For these specific conditions (neglecting the phase imposed by the
microcavity and limiting the pump bandwidth to its spectral acceptance), the
frequency state of the pair will be uncorrelated as in figure 2.2(h), which is a
situation of paramount importance for heralded single photon sources [79].

Changing the spectral and spatial properties of the pump beam thus allows to
tune the JSA along two orthogonal axis as illustrated in figure 2.2. However since
these axis correspond to ω+ = ωs + ωi and ω− = ωs − ωi, the simple Gaussian
pump we have proposed does not allow to control the bandwidths of the photons
individually. Fortunately, using a dispersive element like a prism or a grating,
one can correlate the wavevector with the individual frequency components of
the pulse so that kp.ûz = f(ωp)ωp/c with f a function describing the effect of
the dispersive element on the k-distribution. This has the consequence to rotate
φPM(ω−, ω+) which now depends on ω+. The dispersion can be chosen [42] so that
the state is uncorrelated (no information on ωs is gained by measuring ωi and vice
versa) but with different bandwidths for the photons. For example if a horizontal
JSA is desired (with degenerate central wavelengths), i.e. a biphoton state with a
bigger bandwidth for the signal rather than the idler, the distribution φPM(ω−, ω+)
corresponding to the phase-matching should be horizontal as well. In the frame
(ω+, ω−), the center of φPM, labeled ω(0)

− (see the definitions in equation (2.38)),
must thus evolve as ω(0)

− = ω+ − ω(0)
p . The orthogonal situation corresponds to

ω
(0)
− = −(ω+ − ω(0)

p ) so that the angle of incidence θ(ω+) obeys the following
relation:

sin
[
θ(ω+)

]
= sin θdeg ±

c

v̄g

(
1−

ω(0)
p

ω+

)
(2.42)

with + or - for a horizontal or a vertical JSA respectively. The two situations are
illustrated in figure 2.3. The angle θdeg in equation (2.42) is the central angle in the
dispersed beam (corresponding to the central frequency ω(0)

p ). For this choice of
central angle, the central frequencies of the photons will be degenerate. Choosing
a different central angle in the above expression gives even more latitude, allowing
to choose non degenerate central wavelengths for the photons as in figures 2.3(b),
(d) and (f).
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Figure 2.2 – Norm of the phase-matching function φPM(ωs, ωi) (left column),
of the spectral function φspectral(ωs, ωi) (central column) and of the JSA φ(ωs, ωi)
(right column). In all simulations, the pulse duration amounts to τp = 3.5 ps,
the pump has a central wavelength λp = 775 nm and we consider the nominal
heterostructure with a length L = 2 mm. The first row corresponds to a waist
wz = 200 µm leading to a frequency anticorrelated state. The device is pumped
at the degeneracy angle θdeg. In the second row, wz = 377 µm is chosen to match
τp according to equation (2.41) in order to obtain an uncorrelated state. The angle
of incidence is slightly different from θdeg. In the third row a correlated state is
obtained by pumping the device at θdeg with wz = 4 mm. φPM(ωs, ωi) takes a
sinc shape, as testified by the sidelobes in the JSA. The effect of the microcavity
has been removed in these numerical simulations (it slightly reduces the width of
φspectral(ωs, ωi)).
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Figure 2.3 – Norm of the phase-matching function φPM(ωs, ωi) (left column),
of the spectral function φspectral(ωs, ωi) (central column) and of the JSA φ(ωs, ωi)
(right column). With a pump frequency dependent angle of incidence θ(ωp),
φPM gets a ω+-dependency and can thus be tilted arbitrarily in order to ob-
tain frequency-uncorrelated biphoton states with independent bandwidths for the
signal and the idler. Top row: the angular dispersion is chosen to get a broader
signal photon. Bottom row: the idler photon is broader with the opposite choice
of dispersion. The central angle θ(ω(0)

p ) is different from θdeg. For both numerical
simulations, wz = 2 mm, τp = 3.5 ps, λp = 775 nm, L = 2 mm and we do not
consider the effect of the microcavity.
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2.2.3 The Joint Temporal Amplitude
To further study the joint properties of the photons we introduce a new tool:
the Joint Temporal Amplitude (JTA) φ̃(ts, ti) which gives the joint probability
amplitude of detecting the photons of the pairs at given times ts and ti [121, 98,
122, 99]. Although the JSA is strictly defined for positive frequencies, taking into
account the relatively narrow bandwidths of the fields, we can safely calculate the
JTA as the Fourier transform of the JSA [104]:

φ̃(ts, ti) = 1
2π

∫∫
dωs dωi φ(ωs, ωi)e−iωstse−iωiti (2.43)

where the domain of integration over ωs and ωi extends from −∞ to +∞.
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Figure 2.4 – Examples of JSIs (left column) and the corresponding JTIs (right
column). (a) and (b): the waist of the pump beam is wz = 200 µm. (c) and (d): the
waist is wz = 700 µm. The JTIs show opposite correlations to the JSIs because
of the Fourier Transformation. In all situations, the effect of the microcavity is
ignored and τp = 3.5 ps, λp = 775 nm, L = 2 mm.

To illustrate the meaning of this new function, we consider the frequency-
anticorrelated two-photon state represented in figure 2.4(a) which is the typical
state generated by SPDC sources with a (quasi-)CW pump. By computing the
JTA (sketched in figure 2.4(b)), we see that the photons are positively correlated
in time i.e. they will tend to be detected with the same delay with respect to each
other. In the case of a frequency correlated state, the photons are anticorrelated
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in time (figures 2.4(c) and (d)). This situation is easily illustrated with our source:
it is as if the pair being “generated” on one edge of the source, one photon would
directly exit and arrive earlier at the detector while the other would have to
travel throughout the whole sample and be detected later, the duration of the
pump pulse being shorter than this delay [97].

2.2.4 Effect of the pump microcavity on the Joint Tempo-
ral Amplitude

So far we have deliberately neglected the effect of the microcavity in order to
focus on the specific features of the counterpropagating phase-matching. Coming
back to our device, we must specify the form of fµcav, the function describing the
influence of the microcavity on the pump beam and consequently on the bipho-
ton. Scattering matrix methods [123] (more stable against numerical instabilities
compared to the standard transfer matrix approach [92]) allow to simulate the
pump field within the heterostructure thus taking into account the presence of
the microcavity. In order to get an analytic expression, we model the microcavity
as a standard Fabry-Perot cavity, sketched in figure 2.5 and show its general agree-
ment with the numerical simulations. To simplify the discussion we also assume
that the beam impinges with normal incidence.

r1, t1 r2, t2

E0
E→µcav

E←µcav

E→sub

D

Figure 2.5 – Fabry-Perot model of the microcavity with the Bragg mirrors as
beamsplitters with reflection and transmission coefficients r1, t1 for the top mirror
(left on this sketch) and r2, t2 for the bottom mirror. The medium has an effective
depth D. The incident field is E0 and intracavity fields are labeled E→µcav and
E←µcav. The field that penetrates in the substrate (with negligible amplitude) is
noted E→sub.

We consider a monochromatic plane wave beam of frequency ω and amplitude
E0 impinging on the device. The Bragg mirrors are modeled by thin beam split-
ters with reflection and transmission coefficients r1, r2 and t1, t2. They delimit
a cavity filled with a lossless medium of effective optical length npD with np an
effective index representing the average refractive index in the central layers of the
structure. We note that the length D does not exactly correspond to the distance
between the Bragg mirrors in the real structure, given that the field is penetrating
the mirrors [124, 125]. The field inside the cavity is the result of multiple trans-
missions and reflections within the structure. The small fraction of light reaching
the substrate will get absorbed there and we do not expect any energy to enter
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the microcavity from this side. Labeling E→µcav the intracavity field propagating in
the forward direction, and E←µcav the field propagating in the opposite direction
within the microcavity, we have:

E→µcav(x, ω) = t1E0e
ikx
(
1 + r1r2e

ik2D + (r1r2)2eik4D + (r1r2)3eik6D + . . .
)

= t1E0e
ikx
( 1

1− r1r2eik2D

)
E←µcav(x, ω) = t1r2E0e

ik(2D−x)
( 1

1− r1r2eik2D

) (2.44)

We can thus deduce the total intracavity pump field:

E→µcav(x, ω+) + E←µcav(x, ω+) =

fµcav(x)︷ ︸︸ ︷
t1E0(eikx + r2e

ik(2L−x))× 1
1− r1r2eik2D︸ ︷︷ ︸

fµcav(ω+)

(2.45)

where fµcav(x) describes the distribution of the field in the cavity along the x-
direction and fµcav(ω+) gives the overall spectral transmission function of the
microcavity. The dependence of this function on the pump wavelength is given in
figure 2.6 for both the analytic model and the numerical simulation of the nominal
structure. We recognize the Lorentzian profile, characteristic of the resonance, and
the associated phase shift. The most obvious effect of the microcavity on the JSA
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Figure 2.6 – Curves representing the dependence of |fµcav(ω+)|2 and of the phase
of fµcav(ω+) with λ. Solid lines: numerical simulations done with a scattering
matrix method on the nominal structure. Dashed lines: analytic model developed
in this section with R1 = |r1|2 = 0.9435 and R2 = |r2|2 = 0.9974 and the central
phase adjusted to match the resonance.

is a limitation of the pump bandwidth that the device can accept. This results in
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Figure 2.7 – JTIs illustrating the effect of the microcavity on the joint temporal
profiles of the photons. (a): JTI corresponding to a frequency uncorrelated state
with the phase of the corresponding JSA being flat. As expected, the JTI shows
no temporal correlation between the photons. (b): the effect of the microcavity
is added to the previous state. The photons wavepackets are slightly delayed and
present some temporal asymmetry in the positive diagonal due to the pump pulse
resonance inside the microcavity. For these simulations, τp = 3.5 ps, λp = 775 nm,
wz = 377 µm and L = 2 mm.

a band-pass filtering of the pump spectrum at a central frequency ωµcav with a
bandwidth ∆ωµcav.

The microcavity also affects the phase since the pulse dwells a certain amount
of time in the microcavity. This is more easily seen by looking at the JTA φ̃(ωs, ωi)
of the biphoton. Adding the resonance of the pump beam with no initial chirp
to the frequency-uncorrelated case, we see in figure 2.7(b) that we end up with a
JTI which is elongated along the diagonal ti = ts compared to the case where the
phase of the JSA is set to zero (figure 2.7(a)). This reflects the fact that the pulse
dwells a longer time in the cavity than its initial duration.

2.2.5 The Chronocyclic Wigner Function
The simultaneous visualization of the spectral and temporal properties of the
photons is not easy since the JSA and JTA are complex valued. Indeed the phase
profile of these functions can be very rich and contains critical features for the
degree of correlation. The pump beam can also be chirped, which means that
the frequency components of the pulse arrive at different times. This impacts the
JSA and correlates temporal and spectral properties of the biphoton [126]. This
information is lost if we simply look at the JSI and the JTI.

The quasiprobabilty Wigner function used in quantum mechanics [127] has
been adopted by the ultrafast optics community to describe the characteristics of
ultrashort pulses. In this context, the function is called Chronocyclic Wigner Func-
tion (CWF) and the usual X̂ and P̂ operators are replaced by the time t and its
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conjugate variable, the frequency ω [128]. This tool is now largely employed to de-
scribe the results of pulse characterization techniques such as Frequency Resolved
Optical Gating (FROG) or Spectral Phase Interferometry for Direct Electric-field
Reconstruction (SPIDER) methods [129]. Indeed it allows to easily distinguish
the important features of the pulse, i.e. its temporal and spectral widths and the
possible chirp. Writing E(t) the analytic signal of the electromagnetic field or
E(ω) its representation in the spectral domain, the corresponding CWF reads:

W (t, ω) = 1√
2π

∫
dt′
〈
E(t+ t′/2)E∗(t− t′/2)

〉
eiωt

′

= 1√
2π

∫
dω′

〈
E(ω + ω′/2)E∗(ω − ω′/2)

〉
e−iω

′t
(2.46)

This function represents the quasi-probability of measuring a pulse at a frequency
ω and a time t. The field quantities that are usually measured with a spectrometer
or an autocorrelator i.e. the spectral and temporal intensities I(ω) = |E(ω)|2 and
I(t) = |E(t)|2 are easily retrieved as the marginals of the CWF:

I(t) = 1√
2π

∫
dωW (t, ω)

I(ω) = 1√
2π

∫
dtW (t, ω)

(2.47)

This formalism was readopted by Grice and Walmsley [122] for the full de-
scription of the time-energy properties of the biphoton, both for pure and mixed
states. To describe the state with a real quantity, they extended the definition of
the CWF to cover the joint time-frequency properties of both signal and idler pho-
tons. The Joint Chronocyclic Wigner Function is thus a four dimensional (real)
quantity that depends on the frequencies ωs, ωi and detection times ts, ti and
which can be derived from the (complex) density matrix of the state ρ̂:

W (ωs, ts, ωi, ti) = 1
2π

∫∫
dω′s dω′i e−i(ω

′
sts+ω′iti)

×
〈
ωs + ω′s

2 , ωi + ω′i
2

∣∣∣∣∣ ρ̂
∣∣∣∣∣ωs − ω′s

2 , ωi −
ω′i
2

〉
(2.48)

In the case of a pure state, W can be expressed as a function of the JSA φ since
ρ̂ = |ψ〉 〈ψ|. A few simplifications of the previous expression give us:

W (ωs, ts, ωi, ti) = 1
2π

∫∫
dω′s dω′i e−i(ω

′
sts+ω′iti)

× φ
(
ωs + ω′s

2 , ωi + ω′i
2

)
φ∗
(
ωs −

ω′s
2 , ωi −

ω′i
2

)
(2.49)

The representation of this four-variables function is not evident. Fortunately, the
characteristics of our source allow us to factorize it into a phase-matching depen-
dent part and a term depending on the spectrum of the pump beam (and the
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transfer function of the microcavity fµcav). We will develop this in deeper details
in chapter 5. For the moment, we use this formalism to describe the frequency-
time properties of individual photons of the pair [126, 130]. Taking the partial
trace over the frequencies of one photon allows to retrieve the single photon CWF
of its twin:

Ws(ωs, ts) = 1
2π

∫
dωi

∫
dtiW (ωs, ts, ωi, ti) (2.50)

with an analogous formula for the idler. As with ultrashort pulses, the integration
of Ws along the temporal or the spectral axis allows to project the distribution
over the conjugate quantity and thus to recover the spectrum of the photon or its
temporal profile respectively:

Is(ωs) = 1√
2π

∫
dtsWs(ωs, ts)

Is(ts) = 1√
2π

∫
dωsWs(ωs, ts)

(2.51)

Taking the example of a frequency-uncorrelated state, we represent in fig-
ure 2.9(a) the CWF of the signal photon, with the projection of the spectral and
temporal intensities along their respective axis. The spectral width is the one we
expect by looking at the JSI and, as we have already seen with the JTI (fig-
ure 2.7(b)), the temporal profile presents some asymmetry due to the resonance
of the pump in the microcavity.

Other spatial and temporal characteristics of the pump beam may create cor-
relations between the temporal and spectral properties of the single photons. Be-
cause of energy conservation, the chirp of the pump beam itself is transfered to the
photons. For example the presence quadratic chirp in the pump beam implies that
φspectral(ω+) → φspectral(ω+)eiβ(ω+−ω(0)

+ )2 and induces a chirp on the signal photon
(figure 2.9(b)). The chirp in figure 2.9(c) on the other hand is due to a curvature of
the wavefront of the Gaussian pump beam as a result of momentum conservation.
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Figure 2.8 – Chronocyclic Wigner Func-
tions of the signal photon. On the sides of
the map are the projection of the Wigner
function representing Is(ts) and Is(ωs).
(a): signal CWF for a frequency uncorre-
lated biphoton state. (b): signal CWF for
a pump beam having a quadratic chirp
β = 5× 10−24 s2/rad. (c): signal CWF
for a pump beam having a curved wave-
front (radius of curvature R = −0.5 m).
In all simulations: the pump has a central
wavelength λp = 775 nm, a pulse duration
τp = 3.5 ps, the waist is wz = 377 µm and
the incidence angle is the degeneracy an-
gle θdeg. The simulated device has a length
L = 2 mm.
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2.3 Effects of the facets reflectivities on the JSA
The refractive index contrast between the air and the AlxGa1−xAs compounds
induces a partial reflectivity at the facets of the waveguide. Finite-Difference
Frequency-Domain (FDFD) numerical simulations allow us to estimate the modal
reflectivities RTE = 26.7% and RTM = 24.7% for the TE and TM fundamental
modes, respectively. The simulations have been done for λ ≈ 1550 nm and for
ridges of typical width W = 5 µm [90]. Thus, the two facets create a cavity for
the signal and the idler modes which has a non negligible impact on the pho-
tons. Indeed in the experiment done with our source to prove the generation of
indistinguishable photons [131], the team attributed the non ideal visibility of the
photons interference to the reflections of the photons at the facets and we shall
see in chapter 5 that the analysis of the experiment in terms of the biphoton
wavefunction can shed light on this issue.

θ

wpτp

x

z
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signalidler

polarization
&

process
selection

polarization
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Figure 2.10 – Sketch of the situation studied in this section: photon pairs are
produced and can make round-trips in the sample because of the facets’ reflec-
tivities. A suitable filtering is assumed in order to only study the process HV in
which signal (idler) photons are horizontally (vertically) polarized.

The influence of the reflectivities of the facets on the time-frequency prop-
erties of the generated photons is taken into account by following the approach
of Jeronimo-Moreno et al. [132]. Unfolding the Fabry-Perot cavity and consid-
ering the facets as beamsplitters with creation and annihilation operators for
intra-cavity and free-space external modes, the authors show that the effect of
the cavity reduces to the multiplication of the original JSA by transfer functions
describing the Fabry-Perot transmission for the signal and the idler frequencies,
as long as the source remains in the spontaneous regime, i.e. that the generated
photons do not stimulate the emission of other photons. To simplify the analy-
sis of the counterpropagating scheme, as sketched in figure 2.10, we assume that
polarizers are present on both sides of the sample so that only one polarization
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will be selected on each arm. We also suppose that we can select only one of the
two possible interactions, with frequency filtering for example in addition to the
polarizers∗. This is verified for all the experiments we comment in this manuscript,
except for the notable case of polarization Bell states where both polarizations
must be considered on each side of the source (the corresponding analysis is given
in section 6.4).

rσ, tσ rσ, tσ

b̂†i,σ(ω) â†s,σ(ω)

â†i,σ(ω)

b̂†s,σ(ω)

L

Figure 2.11 – Sketch of the sample with the facets considered as identical beam-
plitters with polarization-dependent reflection and transmission coefficients rσ, tσ.
The medium has a length L.

Figure 2.11 presents a sketch of the situation we study with â†s/i,σ(ω) and
b̂†s/i,σ(ω) the creation operator of a signal/idler photon with polarization σ and
frequency ω in the intra-cavity mode and free-space mode respectively. The left
and right facets are represented by polarization-dependent beamsplitters of (com-
plex) amplitude reflection and transmission coefficients rσ and tσ which fulfill
Rσ = |rσ|2 =

√
1− |tσ|2. The sample has a length L. Since we set the origin of

the z-axis at the center of the device, the first term we have to consider is the
propagation phase from the center to the edge of the waveguide:

â†s,σ(ω)→ eikσL/2âs
†
σ(ω) (2.52)

with kσ = nσ(ω)ω/c and where we chose the signal photon as a starting point. This
term is not strictly important here since it almost exclusively represents a temporal
offset because of the nearly frequency-independent group velocity. Nevertheless in
the case of polarization Bell states, it must be considered to account for the
birefringence of the sample. The photon reaching the forward facet is then either
reflected in the backward internal mode â†i,σ or transmitted in the forward external
mode b̂†s,σ(ω):

â†s,σ(ω)→ eikσL/2
(
rσâi

†
σ(ω)

+tσb̂†s,σ(ω)
) (2.53)

At the opposite facet, the same scenario happens with the addition of a phase
corresponding to the propagation over the length of the waveguide. As mentioned
earlier, we suppose for simplicity that the photons transmitted at this facet will

∗Without this precaution, an idler TE photon emitted via interaction V H can be reflected
by the left facet, then transmitted by the right one and can thus contribute to detection events
where we would expect only the signal TE photon from interaction HV .
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not contribute to the detection events on the idler side thanks to the polarizer
which will either absorb them or send them to a different path. We can essentially
discard the terms b̂†i,σ(ω) originating from â†s,σ(ω). The reflected energy reaches
again the first facet with a phase corresponding to the round trip inside the cavity
and is subjected to a new beamsplitter transformation:

â†s,σ(ω)→ eikσL/2
(
r3
σe
ikσ2Lâi

†
σ(ω)

+tσ
[
1 + r2

σe
ikσ2L

]
b̂†s,σ(ω)

) (2.54)

Consequently, after n round-trips in the sample, the creation operator of the
signal mode is transformed into:

â†s,σ(ω)→ eikσL/2
(
r2n+1
σ eikσ2nLâi

†
σ(ω)

+tσ
n∑
j=0

[
r2
σe
ikσ2L

]j
b̂†s,σ(ω)

) (2.55)

For n → ∞, all the energy is extracted from the cavity, i.e. the term in âi
†
σ(ω)

in equation (2.55) is negligible and the original creation operator reads â†s,σ(ω) =
fσ(ω)b̂†s,σ(ω) with:

fσ(ω) = eikσL/2
tσ

1− r2
σe
ikσ2L (2.56)

which is, up to the half-length propagation phase factor, the usual Fabry-Perot
transmission function. The JSA with reflective facets is then:

φFP(ωs, ωi) = fTE(ωs)fTM(ωi)φ(ωs, ωi) (2.57)

for the HV interaction (with an analogous expression for the V H interaction).
We illustrate this in figure 2.12 where the JSI for non-reflective facets represented
in (a) is transformed into the JSI (b) considering the facets reflectivity. Specific
frequencies for the signal and the idler are selected leading to a checkerboard
pattern on top of the original JSI∗. Although this additional feature may be un-
desirable for some applications, it will be an interesting benchmark to test the
resolution of techniques of reconstruction of the joint spectra.

In figure 2.12(c), we illustrate the effect of the Fabry-Perot on the norm of the
JTA, for the state of figure 2.12(b). As expected we see several peaks along the
signal and idler frequency axis. The main one corresponds to the direct transmis-
sion of both photons, and the others to a given number of round-trips of either

∗The length of the sample is known to be L = 2.1 mm however the accuracy of our cleavage
method prevents us from knowing it at a subwavelength precision. When simulating the Fabry-
Perot pattern due to the facets’ reflectivity, we will obtain the correct free spectral range i.e. the
spacing between the Fabry-Perot peaks which is approximately 180 pm for both polarizations
with this sample length. We note however that the absolute position of the peaks is very sensitive
to the sample length and we thus have to resort to direct measurements of the Fabry-Perot
pattern [133] to fix this.
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Figure 2.12 – (a) and (b): numerical simulation of the JSI for non reflective
facets (a), and for facets having reflectivities RTE = 26.7% and RTM = 24.7% (b).
In both cases, the pump has a central wavelength λp = 775 nm, a pulse duration
τp = 3.5 ps, a waist wz = 377 µm and an incidence angle θdeg. The simulated
device has a length L = 2.1 mm. A slight anticorrelation is due to the frequency
filtering of the microcavity (theoretical FWHM 280 pm). (c): norm of the JTA
corresponding to the state represented in (b). The main peak is identical to the
one in figure 2.7(b) and the lateral peaks are replica due to the double reflections
of any photon of the pair. The main pulse is offset from the time origin (the
arrival of the pump pulse into the sample) because of the time required to exit
the sample.

or both photons, separated by the round trip time τσ = 2L/vσg ≈ 44 ps, with
an exponentially decaying amplitude (cavity ring-down). The CWF for the signal
photon is represented in figure 2.13 for the same biphoton state. We see that the
Wigner function takes negative values between the round trip times but once inte-
grated along the time or the frequency axis, these interference terms washes out:
the spectrum is modulated by the Fabry-Perot pattern and the temporal profile
shows the peaks due to the round-trips.
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Figure 2.13 – Chronocyclic Wigner Function of the signal photon of the biphoton
state whose JSI is depicted in figure 2.12(b). The Wigner function takes some neg-
ative values because of the coherence that exists between the subsequent pulses.
On top of the map, the integration of Ws along the frequency axis leads to the
temporal intensity Is(ts). The main pulse (the photon is directly transmitted) is
followed by a pulse of lower amplitude after a time corresponding to a round trip
in the waveguide. The third pulse is barely visible. Integration along the λs axis
gives the signal spectrum Is(ωs) which is represented at the right side of the map.

2.4 Conclusion

In this chapter we have given a theoretical description of the two-photon state
produced by our source. This state is completely characterized by the biphoton
wavefunction or Joint Spectral Amplitude (JSA) φ(ωs, ωi), which gives the joint
probability that the signal and idler photons are emitted at frequencies ωs and ωi.

With the counterpropagating phase-matching, the characteristics of our source
and convenient properties of the pump beam, the JSA takes a simple form: it can
be written as a product of a function φPM related to momentum conservation and
depending only on the frequency difference ω− ≡ ωs − ωi of the photons, and a
function φspectral related to energy conservation which only depends on the sum of
their frequencies ω+ ≡ ωs + ωi.

This allows to identify means to engineer the degree of frequency correlations
between the photons. On one hand, the control of the spatial properties of the
pump beam acts on φPM and modifies the extent of the JSA along the anti-diagonal
axis ωi = −ωs+ω(0)

p corresponding to variable ω−. On the other hand, the spectral
properties of the pump beam acts on φspectral and changes the extent of the JSA
along the diagonal axis ωi = ωs corresponding to variable ω+. The source is thus
very versatile thanks to the control of the JSA along these two orthogonal axis.

The spectral and temporal contributions of the pump beam microcavity and
of the reflectivities of the facets have also been studied. To better describe their
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effects on the biphoton wavefunction, we introduced alternative descriptions of the
biphoton state: the Joint Temporal Amplitude (JTA) allows to visualize in the
temporal domain the effect of the resonance of the pump beam on the photon pair;
the Chronocyclic Wigner Functions (CWFs) show both spectral and temporal
aspects and are useful in describing the individual photons of the pair.



Part II

Frequency-time correlations
engineering





Chapter 3

Joint Spectral Intensity
Reconstruction with a Fiber
Spectrograph

3.1 Characterization tools in frequency-time space
Reconstructing the full biphoton wavefunction, i.e. the Joint Spectral Ampli-
tude (JSA) in waveguided regime is a formidable task. Indeed, the characterization
of ultra-short pulses is still an intense subject of research for classical electromag-
netic fields [129]. With photon pairs the task of reconstructing the full spectral and
temporal properties is complicated by the fact that the photons can be correlated
in those degrees of freedom and the characterization technique must thus be able
to resolve this. Moreover, detection in the single photon regime is an additional
difficulty. Single photon detectors suffer from low detection efficiencies and poor
temporal resolution. Dark counts can also be easily mistaken for genuine pho-
tons. The techniques developed by the ultrafast community are thus not directly
transposable for our needs.

To our knowledge, a full tomography of the JSA has not yet been reported
for sources producing photons with a rich chronocyclic structure. In fact most
characterization techniques are limited to the modulus square of the biphoton
wavefunction, i.e. the Joint Spectral Intensity (JSI). The most obvious strategy
in that respect is to send each photon of the pair to a monochromator (which will
select a specific “pixel” in the JSI by filtering the signal and the idler at given
wavelengths) and record, for a sufficient time, the number of coincidences at the
output of the monochromators [84, 134, 135]. This approach require very long
integration times depending on the size of the JSI and the desired sampling.

Measurements of the Joint Temporal Intensity (JTI) have also been reported,
which is only achievable when the photons are sufficiently narrow, i.e. their co-
herence time must exceed the temporal resolution of the detection chain. With
spontaneous Four-Wave Mixing (FWM) in cold atomic ensemble, Cho et al. gen-
erated pairs of photons with coherence time between 10 ns and 200 ns, well above
the timing jitter of their detectors [136].
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In [137], Polycarpou et al. managed to reconstruct the full waveform of one
photon of the pair. To do so, they heralded the photon to be characterized with the
detection of its twin. A homodyne detection with a pulse-shaped local oscillator
allowed to infer the full spectro-temporal form of the heralded photon. Although
this result is remarkable, it requires a source for the local oscillator, which is not
accessible for all sources of photon pairs. This technique also does not capture
all the richness of the biphoton state since it measures the properties of a single
photon. Indeed the heralding procedure requires a tight spectral filtering of the
heralding photon to avoid the projection of the photon to characterize in a mixed
state.

Two-photon interferences at beam-splitters [138] are also sensitive to a part of
the biphoton wavefunction. The central frequencies of the photons must remain
close to maintain a good interference visibility. Moreover they cannot distinguish a
frequency-anticorrelated state from an uncorrelated state having the same width in
the ω− axis. A theoretical proposal to solve this problem was made recently [139].
We will introduce in chapter 5 a generalization [140] of the famous Hong-Ou-
Mandel (HOM) interferometer [35].

A promising scheme for the characterization of photon pairs is the two-photon
counting interferometry introduced by Boitier et al. in [141]. The techniques re-
lies on two-photon absorption in a semiconductor detector. Unfortunately this
technique is not sensitive enough to work at the single photon regime yet.

In the next section we describe our implementation of the single-photon fiber
spectrograph. With this technique of reconstruction of the JSI, which was the
state of the art at the beginning of this work, we finish our overview of photon
pairs characterization methods.

3.2 Single photon spectrograph – Working prin-
ciple

As an optical pulse propagates through a given medium, e.g. an optical fiber,
it is subject to the chromatic dispersion of the material. Its temporal shape can
be greatly altered as it travels, which is a major concern for telecommunications
together with losses. The effect of propagation over a length l of the medium
corresponds to adding a frequency dependent phase φ(ω) = k(ω)l to the pulse
spectrum E(ω), where chromatic dispersion of the wave-vector k(ω) can be Taylor
expanded to identify different contributions [142]:

k(ω) = k0︸︷︷︸
constant phase

+

time delay︷ ︸︸ ︷
∂k

∂ω
(ω − ω0) + 1

2
∂2k

∂ω2 (ω − ω0)2 + · · ·︸ ︷︷ ︸
chirp

(3.1)

While the first two terms of this expansion have no effect on the temporal profile of
the pulse |E(t)|2 =

∣∣∣∣∫ dω E(ω)eiφe−iωt
∣∣∣∣2, this is not the case for higher order terms.
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For example the second order one is responsible for the Group-Velocity Dispersion
(GVD): the frequency components of the pulse propagate at different speeds with
respect to each others and arrive at different times to the end receiver. This
(and effects associated to higher order terms of chromatic dispersion) results in a
modification of the shape of the pulse called chirp, illustrated in Figure 3.1. This
“frequency-to-time translation” is the principle used by the fiber spectrograph to
reconstruct the JSI.

Chirp

Figure 3.1 – Sketch illustrating the chirp of a pulse. A Fourier-transform limited
pulse experiencing chirp exhibits a modified temporal profile so that its instanta-
neous frequency changes with time.

At the single photon level, the propagation of a biphoton state generated by a
Continuous Wave (CW) pump in a medium exhibiting GVD was studied in [143].
It was shown in particular that for long distance propagation, the temporal shape
of the two-photon state (JTI) is stretched and corresponds to the JSI, in an analo-
gous way a lens perform a Fourier transformation of an electromagnetic field in its
focal plane. It is a sort of far-field condition [144]. The experimental demonstra-
tion of this temporal stretching was done in [145] through the measurement of the
second order correlation function. The first reconstruction of a JSI was performed
in [85] for a biphoton state generated by a pulsed pump. In that work, Dispersion
Compensating Fibers (DCFs) were used to translate the frequency information
into arrival time information with an acceptable level of loss. This kind of fiber is
used in telecommunications for its GVD of greater magnitude and opposite in sign
compared to standard fibers so that a short length of DCF can compensate the
chirp due to a propagation over long distance with very low additional losses.The
chirped photon wavepackets were detected with free-running single photon detec-
tors and their arrival times recorded by a Time-to-Digital Converter (TDC). A
calibration of the spectrograph with independent sources allowed to reconstruct
the JSI by recording the JTI “Fourier transformed” by the DCF.

3.3 Experimental implementation
This section describes the experimental set-up that we have implemented in our
laboratory. The goal is to have a tool to measure the frequency correlations of the
biphoton and to reconstruct the associated JSI.
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3.3.1 Experimental set-up
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Figure 3.2 – Experimental set-up for the reconstruction of the JSI with the fiber
spectrograph (see text for description). Focal lengths are given in millimeters.

The experimental set-up we have implemented is represented in Figure 3.2. A
mode-locked Ti:sapphire laser (Coherent Mira™) provides pump pulses of dura-
tion τp = 3.5 ps centered at wavelength λp = λµcav = 759 nm (corresponding to
the microcavity resonance) with a repetition rate fp = 76 MHz. A pulse-picker
(APE™) based on acousto-optic modulation reduces this repetition rate to a suit-
able level for the detection chain, with fp = 3.8 MHz as a maximum value. Indeed
this has to be set in conjunction with the dead time of the detectors and the
detection efficiency of the whole chain to avoid its saturation. The pulse-picker
also provides a trigger signal tPP for the spectrograph. Optionally, a small fraction
of the pump beam is sent to an Optical Spectrum Analyzer (OSA) in order to
monitor λp. A periscope is used to set the pump beam at a suitable height for
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the sample and to adjust its polarization in order to have an efficient nonlinear
conversion. A first telescope made of two spherical lenses L1 and L2 magnifies the
beam and allows in conjunction with the last cylindrical lens L5 of the optical path
to focus the pump beam onto the ridge waveguide of width W ≈ 6− 10 µm. The
spatial shape of the pump beam is subsequently controlled with a second telescope
made of two cylindrical lenses L3 and L4 to adjust the size of the beam along the
z-axis. A full description of this part of the set-up is given in section 3.3.5. A set
of dielectric mirrors with a broadband coating is used all along the optical path.

The collection of the photons is done with two microscope objectives (×40,
NA= 0.65). Two pairs of silver coated mirrors couple the signal and idler photons
into single-mode polarization-maintaining telecom fibers equipped with collima-
tors. A Half-Wave Plate (HWP) and a Quarter-Wave Plate (QWP) enable to
set the polarization of the photon to a given orientation. In conjunction with a
fibered-Polarizing Beam Splitter (PBS) from OzOptics™, this configuration allows
to select the interaction we want to study (signal Transverse Electric (TE) - idler
Transverse Magnetic (TM) or the opposite). Each photon is then launched into
a DCF module from Draka™ where it experiences a delay depending on its fre-
quency. Two free-running InGaAs Single Photon Avalanche Photodiodes (SPADs)
id220 from idQuantique™ detect the photons with efficiency 20% and a dead time
set to 10 µs. Their arrival times ts and ti is then recorded by a TDC (QuTools
from QuTau™). The trigger tPP from the pulse-picker is also recorded by the TDC
which allows to obtain the delays between the pump pulses and the detection of
the photons τs/i = ts/i − tPP. An appropriate calibration of the spectrograph pro-
vides the conversion between τs/i and the corresponding photons wavelengths λs/i,
allowing to reconstruct their marginal spectra. The detection of events in coin-
cidence within one pump pulse sequence enables the reconstruction of the JSI
|φ(ωs, ωi)|2.

3.3.2 Calibration of the spectrograph
To retrieve the absolute wavelengths values, the photon spectrograph must be
properly calibrated. Different procedures can be followed to solve this issue. In [85],
the calibration was performed using an independent reference consisting in an
Optical Parametric Amplifier (OPA) reference. A small fraction of the OPA light
was sent into the fiber spectrograph, while the rest was measured with an Optical
Spectrum Analyzer (OSA). The comparison of the two independently recorded
spectra allowed the calibration.

Another solution consists in using the generated photons themselves for the
calibration, which is useful since it does not require an additional source. Photons
from one arm are injected into a monochromator and detected with a SPAD. A
marginal spectrum is thus recorded by sweeping a given range of wavelengths
with the monochromator. The calibration is then performed by recording the
corresponding spectrogram with the fiber spectrograph.

Along with the previous strategies, in the case of our sample we can also take
advantage of the reflectivities of the facets. Indeed if no selection on polarization
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is imposed at the collection stage, we can detect the signal and idler photons of
both interactions at the same time and record a marginal spectrum. In our case,
this can be simply done by rotating the QWP by 45◦ so that no optics needs
to be removed. Figures 3.3(a) and 3.3(b) show the recorded marginal spectra for
the left and right arms. The photon which gives rise to a given peak is used
to label it (signal/idler, directly transmitted/reflected once). We can identify a
central wavelength in the graph which marks the point at which the photons
would be degenerate i.e. λs/i = 2λp: this point is at the same distance from the
peak associated to photons that are directly transmitted through the facet and the
corresponding peak associated to photons which are reflected on the opposite facet
and then transmitted. The temporal delay τ (0)

Left/Right corresponding to degenerate
photons is therefore identified for both DCFs giving the following relations for the
calibration: 

λLeft = τLeft−τ
(0)
Left

DLeft
+ 2λp

λRight = τRight−τ
(0)
Right

DRight
+ 2λp

(3.2)

where τLeft/Right = tLeft/Right − tPP is the temporal delay between the detection
time tLeft/Right of one photon on the Left/Right arm and the trigger signal tPP
originating from the pulse picker. DLeft/Right is the dispersion of the DCF module.
Figure 3.3(c) represents the calibrated marginal spectra obtained with this pro-
cedure showing a perfect agreement between them while figure 3.3(d) depicts the
experimental situation in the tuning curves of the device.
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3.3.3 Spectral resolution
The choice of the length of the DCF is a compromise between the resolution we
want to achieve and the level of losses of the apparatus. Indeed since frequencies
are now related to temporal delays, the resolution we can reach depends on the
dispersion parameter D = −2πc

λ2
∂2k
∂ω2 × l of the “frequency to time translator” and

on the accuracy with which we can measure the photon detection time. The timing
resolution is limited by the electronics of the devices involved in the measurements,
i.e. by the jitter of the pulse picker δtPP, the temporal resolution δts/i of the
SPADs and the temporal size δtTDC of the time bins of the TDC. Taking all this
into account, we can express the wavelength resolution that we can achieve:

∆λ =

√
δt2PP + δt2s/i + δt2TDC

|D|
(3.3)

Obviously the stronger the dispersion, the better the wavelength resolution will
be. For DCFs, the spool length can be increased to improve this figure of merit,
however this is at the cost of higher losses. Furthermore, the pump power must
remain sufficiently low to limit the generation of double pairs. This is necessary
in order to correctly interpret the experimental results as the measurements of
the characteristics of a two-photon state∗. The chain of collection and detection
therefore has to be as efficient as possible and the losses due to the translator
must be limited to an acceptable value. Alternatives to DCF include solutions
based on Fiber Bragg Gratings (FBGs) such as chromatic dispersion emulators
or pulse stretchers [147]. For a similar level of losses, the dispersion achieved can
be one order of magnitude higher compared to DCFs. However the operational
bandwidth of such devices is limited to hundreds of GigaHertz around a specific
wavelength. This lack of flexibility and the cost of such apparatus are the reasons
for the choice of DCFs in a large majority of groups.

We now estimate the resolution of our spectrograph by putting in (3.3) the
typical values of our detection chain. The timing jitter of the pulse picker can
reach δtPP = 200 ps while the temporal resolution of our SPADs is δts/i = 250 ps.
The TDC bin size is δtTDC = 81 ps. In the range of wavelengths we wish to
measure, the dispersion of the DCFs is D ≈ −1475 ps/nm (for insertion losses
around 7.3 dB). We finally obtain the following resolution for the spectrograph:

∆λ(δts/i = 250 ps) = 224 pm (3.4)

3.3.4 Theoretical spectrogram
To verify the good functioning of the fiber spectrograph, we have taken into
account the dispersion properties of the DCF spools to simulate the expected
spectrogram. The faithful reconstruction of a JSI with the single photon spec-
trograph will depend on the ability to reach the far-field condition (by using a
sufficient length of fiber) so that, e.g., the photons’ temporal elongation due the

∗see Section 5.6 of [146] for a thorough discussion of this issue.



3.3 Experimental implementation 57

1517

1518

1519

1517 1518 1519
-2

-1

0

1

2

-2 -1 0 1 2

λ
i
(n
m
)

λs (nm)

a

t i
(n
s)

ts (ns)

0

0.25

0.5

0.75

1
b

Figure 3.4 – (a): numerical simulations of a JSI. (b): numerical simulations of the
JTI resulting from the propagation of the photons into the DCFs. The parameters
are a ridge waveguide of length L = 2.1 mm, pump waist wp = 222 µm, pumping
angle θ = θdeg = 0.349◦, pulse duration τp = 3.2 ps and central wavelength
λp = 759.1 nm.

resonance of the pump within the microcavity is not an issue (an effect encoded
in the phase of the JSI). Figure 3.4 shows the comparison between the JSI cal-
culated for our device and the expected reconstruction given the characteristics
of the DCFs. Figure 3.4(a) represents the calculated JSI of a state generated
for a ridge waveguide of length L = 2.1 mm, pump waist wp = 222 µm, pump-
ing angle θ = θdeg = 0.349◦, pulse duration τp = 3.2 ps and central wavelength
λp = 759.1 nm. The phases of the Fabry-Perot are the same as set in [148].

This state being fixed, we use the characteristics of the DCFs (details can be
found in appendix B) to deduce the Joint Temporal Amplitude (JTA) which can
be measured with the spectrograph according to:

φ̃(ts, ti) = F
[
φ(ωs, ωi)× e−i

lk′′(ωs)
2 (ωs−ωp/2)2 × e−i

lk′′(ωi)
2 (ωi−ωp/2)2

]
(ts, ti) (3.5)

where l is the length of the fiber and k′′(ω) = ∂2k
∂ω2 is the frequency-dependent sec-

ond order derivative of the wave-vector inside the DCF. Figure 3.4(b) presents a
numerical simulation of the JTI corresponding to the previous parameters. We see
that the correlation of the JTI is similar to that of the JSI. Oscillations correspond-
ing to the Fabry-Perot are also present. In fact, the wavepackets corresponding to
photons making a certain number of round trips before being transmitted by the
facet do not necessarily overlap at its output. However the stretching due to the
DCF allows this overlap to occur and results in the interference pattern shown in
figure 3.4(b). The resonance of the pump within the microcavity has a completely
negligible effect on the reconstructed spectrogram with such a stretching. We note
a blurring of the peaks along the diagonal ti = ts: this is due to the non negligi-
ble third order of dispersion in the DCFs. We also point that the Free Spectral
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Range (FSR) i.e. the spacing between the fringes is below or almost equal to the
resolution of our spectrograph, we will thus experience difficulties to resolve them
in the experiment.

3.3.5 Spatial shaping
The modification of the frequency correlations in this experiment is done via
the control of the spatial shape of the pump beam. The output beam from the
Ti:sapphire is a TEM00 Hermite-Gaussian beam. For consistency, we note x the
direction of epitaxy of the waveguide corresponding to the propagation direction
of the pump beam. The pump transverse coordinates z and y correspond to the
direction of propagation of the signal and idler photons and to the transverse
direction of the waveguide, respectively. Writing r2 = y2 + z2, the spatial shape
of the pump beam can then be described with the following expression:

Ep(x, y, z) = E0
w0

wp(x) exp
(
− r2

w2
p(x)

)
e
ikp

(
x+ r2

2R(x)

)
eiϕG (3.6)

where E0 is the amplitude of the field at the position x0 of the waist w0, wp(x) is
the beam radius (1/e2 maximum intensity) at the position x, R(x) the radius of
curvature of the beam and ϕG the Gouy phase.

As indicated in figure 3.2, a first telescope made of two spherical plano-convex
lenses L1 and L2 of respective focal lengths f1 = +100 mm and f2 = +300 mm
enables the magnification of the beam by a factor 3. In conjunction with the last
cylindrical lens L5 of focal length f5 = 20 mm, this allows to focus the pump beam
along the y-axis onto the ridge. A second telescope consists of two cylindrical lenses
L3 and L4 of focal lengths f3 = +75 mm and f4 = −50 mm whose separation can
be accurately adjusted with the help of a translation stage with micrometric pre-
cision. This configuration allows a very convenient frequency engineering because
a simple modification of the distance between the lenses of the second telescope
changes the extension of the pump beam (and its radius of curvature) along the
guiding direction, giving the possibility to generate a great diversity of states.

The distance between the two lenses of the cylindrical telescope is a parameter
that must be calibrated to link the graduation of the screw with a particular
profile of the pump beam. To calibrate the telescope, we first perform a knife-
edge measurement in its absence at two distant locations along the beam path.
This consists in progressively cutting the beam with a sharp and opaque object
(a black painted razor blade in our case) while recording the transmitted beam
power. This allows to estimate the size of the beam at the location x = xKE of the
blade. Since we give a specific shape to the beam along the z axis and cut it along
the same direction, we can disregard the other transverse direction y, so that:

Ep(xKE, z) ∝ E0
w0

wp
exp

(
−(z − z0)2

w2
p

)
e
ikp

(
xKE+ (z−z0)2

2R

)
(3.7)

where we now consider that wp and R represent the waist and the radius of
curvature, respectively, at xKE along axis z only. Assuming that the beam is
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centered at a position z0 � wp(x), the power that we measure as the blade cuts
the beam is:

PxKE(z) = Ptotal − Pblocked (3.8)

PxKE(z) ∝
∫ +∞

−∞
exp

(
−2(z − z0)2

w2
p

)
dz −

∫ z

0
exp

(
−2(ζ − z0)2

w2
p

)
dζ (3.9)

The change of variables ζ →
√

2ζ
wp

and writing Z(0) =
√

2z(0)
wp

allow us to express
PxKE as a function of the error function erf:

PxKE(z) ∝
√
π
wp√

2
− wp√

2

∫ Z−Z0

Z0
e−ζ

2 dζ (3.10)

PxKE(z) ∝
√
π −

[∫ 0

−Z0
e−ζ

2 dζ +
∫ Z−Z0

0
e−ζ

2 dζ
]

(3.11)

Using the parity of e−ζ2 ,
∫ 0

−Z0
e−ζ

2 dζ =
∫ Z0

0
e−ζ

2 dζ and since
∫ z

0
e−ζ

2 dζ =
√
π

2 erf(z),
we obtain:

PxKE(z) ∝ 1−
 erf

(
z0
√

2
wp

)
+ erf

(
(z − z0)

√
2

wp

) (3.12)

an expression which allows to deduce the beam radius wp from the knife-edge
experiment.

By performing the measurements at two different positions along the axis of
propagation x of the pump beam, we can also estimate the radius of curvature
according to the propagation of Gaussian beams, since wp and R are linked in the
complex beam parameter:

q(x) =
(

1
R(x) − i

λp
πw2

p(x)

)−1

(3.13)

In our experiment, these measurements allowed to estimate the waist and radius
of curvature after the first telescope to be wp ≈ 2 mm and R ≈ 6.5 m, respectively.
Knowing this we would in principle be able to estimate the spatial properties of the
pump beam at the location of the source and for different settings of the cylindrical
telescope using Gaussian beam propagation [142]. However the graduation of the
micrometer screw does not give directly the absolute distance between the two
lenses L3 and L4 in the telescope. We must therefore perform additional knife-
edge measurements for different settings of the micrometer screw, as shown in
figure 3.5. We can then estimate the distance between the lenses by fitting the
results thanks to Gaussian beam propagation, which consists here in matching
the setting giving the minimal waist for both experiment and simulation (see
figure 3.5). The discrepancy between the simulation and the experiment when the
beam is focused can be attributed to the degradation of the beam quality inside
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the pulse-picker. Imperfect orientation of the cylindrical lenses can also impair the
spatial shaping.

The knowledge of all these parameters, allows us to plot the spatial size and
curvature radius of the pump beam at the position of the source as a function
of the settings of the telescope (figure 3.6). From our numerical simulations, we
know that frequency-uncorrelated pairs can be produced for a pump beam with



3.4 Experimental reconstruction 61

a flat wavefront (R → ∞) and a waist wp ≈ 400 µm. This value is accessible by
setting the telescope close to 0.36 inch. A wide range of other parameters for the
pump beam can then be explored to obtain biphoton states with different levels
of frequency correlations.

3.4 Experimental reconstruction
In this section, we present the typical experimental results obtained with the fiber
spectrograph. Examples of reconstructed JSIs are shown in figure 3.7. In this
experiment, the level of frequency correlations is changed, as described in section
3.3.5, by a simple modification of the distance between the cylindrical lenses of
the tunable telescope. The corresponding beam size wp and radius of curvature
R are indicated for each numerical simulations of the JSIs expected for these
parameters. The pump beam central wavelength is λp = 759.150 nm. The signal
and idler photons are TM and TE-polarized, respectively. Rather than trying to
measure the very small angle of incidence θ, we rely on the marginal spectra and
the knowledge of the pump wavelength to deduce it:

θ = sin−1

λp
nTM(λ(0)

s )
λ

(0)
s

− nTE(λ(0)
i )

λ
(0)
i

 (3.14)

with λ
(0)
s/i, the central signal and idler wavelengths obtained from the marginal

spectra. In this particular experiment, the angle is θ = 0.43◦.
We notice that we retrieve the expected correlations with a good agreement. A

strong advantage over methods where monochromators or tunable filters are used
for the JSI measurement is that the spectrograph itself does not reject any pair.
The integration time (approximately one hour for each experiment) is thus reduced
compared to those methods which would require longer integration especially for
spectrally broad photons as in Fig. 3.7(e). Even though the JSIs seem to show
some structuring, the resolution of our spectrograph is not sufficient to resolve
the Fabry-Perot fringes due to the facets reflectivity that clearly appear in the
numerical simulations. A slight offset along the positive diagonal can be attributed
to a modification of the pump wavelength during the experiment.

We note that due to the different temporal sizes of the odd and even bins of the
TDC, a data analysis is necessary. The following procedure was chosen to solve
this issue: artificial temporal bins of equal size are built at the corner shared by
four neighboring raw bins by taking the mean of the counts recorded in those four
bins. For example, reconstructing the value of the JSI at a point located between
bins m and m + 1 along the signal time axis and n and n + 1 on the idler side,
thus corresponding to signal wavelengths λ(m)

s and λ(m+1)
s and idler wavelengths

λ
(n)
i and λ(n+1)

i amounts to:

|φ|2
λ(m)

s + λ(m+1)
s

2 ,
λ

(n)
i + λ

(n+1)
i

2

 =
|φ|2m,n + |φ|2m+1,n + |φ|2m,n+1 + |φ|2m+1,n+1

4
(3.15)
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where |φ|2i,j corresponds to the number of coincidences recorded during the ex-
periment at signal bin i and idler bin j. With this straightforward procedure,
we obtain consistent temporal bin sizes (corresponding to the average bin size
δtTDC = 81 ps) while maintaining a good resolution.

The resolution in the experiment could be improved by using Superconduct-
ing Single Photon Detectors (SSPDs) instead of InGaAs SPADs. Indeed while
avalanche photodiodes have quantum efficiencies of 25% at most, detectors based
on superconductors can reach more than 90% with a slightly reduced timing jit-
ter and an extremely low dark counts rate [149]. Superconducting Single Photon
Detectors (SSPDs) would allow to afford greater losses from the fibers, so a longer
DCF spool could be used, increasing the magnitude of the dispersion D. In our
case the resolution would be improved by at least a factor 3.5.

3.5 Conclusion
This chapter has begun with an overview of experimental techniques to reconstruct
the time-frequency properties of the two-photon state. It is then devoted to the
description of the two-photon fiber-spectrograph we have implemented in this
perspective. The group velocity dispersion of optical fibers is used to convert the
frequency components of the photons into temporal delays. Recording the arrival
times of the photons with free-running single photon detectors enables then the
reconstruction of the Joint Spectral Intensity (JSI).

After the description of the calibration of this tool we have shown how it
enables the demonstration of frequency-correlation engineering with our source.
The advantages and limitations of this technique have also been identified.
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Figure 3.7 – Example of frequency correlations engineering. (a)-(d): numerical
simulations of the JSIs for different pump beam radius of curvature R and trans-
verse size wp. (e)-(h): experimental JSIs reconstructed with the fiber spectrograph.
The color scale indicates the number of coincidences recorded per temporal bin
for an experimental integration of one hour.





Chapter 4

Joint Spectral Intensity
reconstruction by “Stimulated”
Parametric Down-Conversion

4.1 Working principle
The spontaneous processes of SPDC and FWM have a stimulated counterpart,
Difference Frequency Generation (DFG), which can be described with a classical
treatment (see figure 4.1). In this process the nonlinear medium is illuminated
with two beams: the pump beam and the signal. Depending on their characteris-
tics in terms of momentum and energy, a third field (idler) can be generated at the
frequency difference. In [113], Liscidini and Sipe pointed out that, since the pump
spectrum and the phase-matching are identical in the spontaneous and the stim-
ulated processes, the biphoton wavefunction serves as a response function for the
generation of the idler field. They thus suggested a novel approach to realize the
tomography of biphoton states using these classical fields, calling this technique
Stimulated Emission Tomography (SET).

This method is very appealing for the characterization of the JSI: in the case a
coherent signal field Bν(ωs) in the mode ν with central frequency ωs and spectral
width δωs is used to stimulate the DFG process, the average number of idler
photons generated in mode η in a spectral window δωi around ωi is:〈

â†η(ωi) âη(ωi)
〉
Bν(ωs)

δωi ≈ 2 |Bν(ωs)|2 |β|2 |φ(ωs, ωi)|2 δωs δωi (4.1)

with |Bν(ωs)|2, the average number of photons in the stimulating field and |β|2, a
normalization constant giving the probability that a pair is emitted by SPDC. We
see that the number of stimulated idler photons is proportional to the intensity of
the signal field. This means that the field produced via DFG can be intense enough
to be detected and characterized with “classical” detectors, i.e. other detectors
than SPADs, and can still give information about the JSI, |φ(ωs, ωi)|2 †, allowing
its reconstruction as shown in figure 4.2.

†as long as the stimulating field does not deplete the pump beam
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Figure 4.1 – Sketch showing the link between spontaneous nonlinear processes
(left panel) and their stimulated equivalents (right panel). In the spontaneous
cases, only the pump field is injected into the nonlinear material and generates
signal and idler photons in pairs starting from vacuum fluctuations. In the stim-
ulated case, a second field, corresponding to the signal in this sketch, is injected
along with the pump. It stimulates the emission of the corresponding idler field
by Difference Frequency Generation (DFG).

4.2 Experimental setup
Starting from these ideas, in collaboration with Liscidini and Sipe, we decided to
implement a set-up to validate their proposal and to use it for the frequency state
engineering of our source. Figure 4.3 depicts the experimental set-up developed to
implement the stimulated reconstruction of the JSI. It was designed to keep the
flexibility to switch from the SPDC-based experiment to the DFG one. The use
of fibered elements also allows to easily replace or to remove them without having
to worry about modification of the optical path.

The pumping scheme of the source is similar to the one used for the experiment
with the fiber spectrograph described in section 3.3.1. A tunable infrared CW
laser (Tunics-Plus™) provides the seed beam with a linewidth δωs = 100 kHz
and an optical power between 1 and 10 mW. Despite the quality of the laser,
some sidebands are present around the main peak. A tunable fibered Fabry-Perot
filter from OzOptics™ with a bandwidth 1.2 nm is used to avoid the presence
of these lines in the spectral range where the DFG occurs. A fibered polarization
controller is used to set the polarization of the seed beam which is injected into
a polarization maintaining fibered PBS used as a polarization circulator. The
seed beam is then sent into free space via a fiber collimator and coupled to the
source with a microscope objective (×40, NA= 0.65). The polarization of the
seed is aligned with respect to the TE and TM axis of the waveguide via the
orientation of the QWP and HWP. These waveplates also allow to switch from one
interaction to the other. The transmitted part of the seed is collected with another
microscope objective (same characteristics) and measured with a powermeter. This
allows to renormalize the experimental data by taking into account the gaussian
transmission profile of the Fabry-Perot filter.
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Figure 4.2 – Reconstruction scheme of a JSI, shared by the SPDC and the
DFG process for the same nonlinear sample and the same pump configuration. In
the DFG case, a narrow-band seed laser beam at frequency ωseed

s stimulates the
emission of a spectrally pre-conditioned coherent output beam in the idler mode.
This spectrum is proportional to a “slice” of the JSI corresponding to the injected
wavelength. Sweeping the seed wavelength allows the reconstruction of the JSI.

The idler beam generated by DFG propagates in the opposite direction and
with orthogonal polarization with respect to the seed beam. The injection objec-
tive of the signal thus serves as a collection objective for the idler which is coupled
into the PBS via the collimator. The orthogonal polarizations of the two beams
allow an easy separation between them. The idler beam is then sent to an Opti-
cal Spectrum Analyzer (OSA) (Yokogawa™ 6730C). This instrument can reach
a resolution of 20 pm with a sufficient sensitivity to detect idler photons in the
telecom band.

Once the seed wavelength λ(0)
s is chosen, the DFG emission is analyzed with

the OSA by measuring the optical power at different idler wavelengths λi, so that
a slice

∣∣∣φ(λ(0)
s , λi)

∣∣∣2 of the JSI is reconstructed. By sweeping the seed laser, the
JSI can be deduced on a given wavelength range (figure 4.2).

4.3 Joint Spectral Intensity measurements

4.3.1 Validation of the method
To demonstrate the technique and its advantages, we have performed a measure-
ment of the JSI both with the fiber spectrograph and the stimulated technique in
the same pumping conditions. In this experiment, the Ti:sapphire laser wavelength
is centered at 759.1 nm with a spectral Full Width at Half-Maximum (FWHM)
of 400 pm. Only the adjustable cylindrical telescope is present in this experiment
and set so that the waist wp = 240 µm of the pump beam is located at the posi-
tion of the source (we thus assume the wavefront to be flat). As in the previous
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Figure 4.3 – Experimental set-up for the reconstruction of the JSI with the DFG-
based method (see text for description). Focal lengths are given in millimeters.

experiment, the repetition rate of the laser is lowered from 76 MHz to 3.8 MHz
in order to avoid the saturation of the SPADs. For consistency, we keep the same
conditions in the stimulated experiment. In front of the waveguide the pump beam
average power is 46 mW.

The characteristics of the spectrograph for the experiment based on SPDC
are identical to the ones described in chapter 3. Concerning the DFG-based ex-
periment, the seed is TE-polarized with an optical power of 8 mW. The Fabry-
Perot filter is centered at the central wavelength of the window to be investigated,
1512.1 nm. The OSA is set to its best wavelength resolution, namely 20 pm and at
the maximal sensitivity. The wavelength scanning speed is thus slowed down but
on the other hand power level down to −100 dBm (i.e. 0.1 pW) can be detected.

Figures 4.4(a) and 4.4(b) represent the results of the experiments with the fiber
spectrograph and the stimulated technique, respectively, along with the numeri-
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cal simulation of the expected JSI (figure 4.4(c)). A remarkable improvement in
resolution is obtained with the stimulated technique with 20 pm for both the idler
(limited by the OSA) and the seed directions (10 pm sampling), to be compared
to a resolution of 224 pm with the fiber spectrograph. The integration time is also
reduced: in the spectrograph experiment, coincidences are counted for 2 hours
while with the DFG method only 45 minutes are required for the reconstruction.
Note that we could arbitrarily reduce the integration time in the “spontaneous”
experiment, but this would necessarily jeopardize the quality of the reconstruc-
tion. The maximal values have been normalized to 1 in all graphs. In the fiber
spectrograph experiment, the peak pixel contains 100 coincidences. In the DFG
experiment, the maximum detected idler power is 290 nW.
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Figure 4.4 – Comparison between the spontaneous and stimulated reconstruc-
tion of the JSI. (a) Experimental JSI measured with the fiber spectrograph in
120 min with a 224 pm spectral resolution along both wavelength axis. (b) Exper-
imental JSI reconstructed with the DFG-based method with a 20 pm resolution
for both axis in 45 min. (c) Numerical simulation of the JSI for the corresponding
experimental parameters.

For the numerical simulation, apart from the angle of incidence and the phase
of the Fabry-Perot, all the other experimental parameters are independently de-
termined. By measuring the spectrum of the pump beam, we get knowledge of
its central wavelength λp and its spectral width. The determination of the spatial
properties of the pump beam is described in section 3.3.5. The effective indices
nTE and nTM of the guided modes within the sample are simulated with the
transfer matrix method [92] and from the knowledge of the actual structure of
the sample (see Appendix A). The length of the waveguide L = 2.1 mm has been
determined from observations with an optical microscope. For the microcavity
resonance width, we use the theoretical value ∆λµcav = 280 pm [90].

The improvement in resolution and speed of acquisition offered by this tech-
nique is remarkable and should prove very useful in the perspective of charac-
terizing complex photonic circuitry with multiple nondeterministic sources. This
method has indeed been adopted by other groups to characterize their sources [150,
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151, 55, 152]. In [150], stimulation was used to characterize the JSI of pairs pro-
duced by spontaneous FWM in polarization-maintaining optical fibers. The side-
lobes of the sinc phase-matching part of the JSI are clearly reconstructed. In
the case of spontaneous FWM in silicon micro-ring resonators, the same method
was adopted in [152] to measure the JSI. In that experiment, the resonances of
the fields in the device are responsible for a very narrow joint spectrum, below
100 pm. A home-made actively stabilized Fabry-Perot filter was thus used instead
of an OSA to analyze the idler field. The achieved resolution is 4 pm in the idler
direction and 2 pm for the seed.

With our current implementation, it is not yet possible to study the frequency
correlations at the degeneracy point. This is due to the poor Extinction Ratio (ER)
of the fibered PBS which amounts approximately to 20 dB. A significant part of
the stimulating beam would thus pollute the idler beam and we cannot perform
a frequency filtering in that case. A solution to this issue would consist in using a
free space plate PBS whose ER can reach up to 40 dB. An increase of the energy
of the pump pulses would also allow to decrease the seed power required for a
given number of idler photons and solve this issue.

4.3.2 High-resolution frequency correlation engineering
This tool opens the way to the investigation of the frequency correlation engi-
neering with our devices. The simplest engineering can be obtained by adjusting
the cylindrical telescope at different settings as in section 3.4. Using the DFG
method, the corresponding modifications of the JSI are investigated. For this ex-
periment, both spherical and cylindrical telescopes are used and the signal seed
is TM polarized (a TE idler field is thus characterized). Figure 4.5 shows the re-
sults of the reconstruction for different waists wp and radii of curvature R (right
column) along with numerical simulations for the corresponding parameters (left
column). Depending on the overall efficiency of the DFG process, the sensitiv-
ity of the OSA and the investigated spectral window, the time required for the
reconstruction may vary. The pump wavelength for experiments (e) and (h) is
λp = 759.256 nm and the reconstruction takes 25 minutes. For experiments (f)
and (g), we measure λp = 759.145 nm and the acquisition is done in 1 hour. Note
that the stripes of noise in the experimental maps come from the technical noise
of the OSA. In figure (h), the instrument automatically removed all values below
a certain threshold. On one hand this has clearly reduced the presence of noise
but on the other hand, the edges of the JSI have been suppressed.

As appears in figure 4.5, the obtained level of resolution allows to reconstruct
the fine details predicted by the numerical simulations which were not resolved
with the fiber spectrograph. Note that in the simulations we have neglected the
losses since we know them to be low for this kind of waveguides (α ≈ 0.1 cm−1).
However the aging of the sample could have induced losses due to oxidation and
may explain why the Fabry-Perot peaks are slightly larger than expected.
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Figure 4.5 – Example of frequency correlations engineering. (a)-(d): numerical
simulations of the JSIs corresponding to the indicated radius of curvature R and
pump beam transverse size wp. (e)-(h): experimental JSIs reconstructed using
DFG.
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4.4 Prospect for a phase sensitive measurement
of the JSA with stimulated techniques

The results we have just described were limited to the measurement of the JSI
and thus lacks the phase sensitivity required for a full reconstruction of the JSA.
Nevertheless, they do not take full advantage of the Stimulated Emission Tomog-
raphy (SET) proposal [113] since we only use a CW stimulating beam rather than
a pulsed seed. Indeed the response of the source to a pulsed stimulation would con-
sist in idler pulses with characteristics dependent on the the seed beam and more
importantly on the timing information contained in the phase of the biphoton
wavefunction. One could then try to reconstruct the full JSA by stimulating the
device with known signal pulses and then characterize the generated idler beam
with standard techniques for ultrashort pulses reconstruction [129, 153] such as
Frequency Resolved Optical Gating (FROG) or Spectral Phase Interferometry for
Direct Electric-field Reconstruction (SPIDER), tools that are now commercially
available. Unfortunately those devices demand high input powers. We cannot af-
ford to stimulate the source with too energetic pulses otherwise we would risk to
deplete the pump. Even the increase of the pump repetition rate to the 76 MHz
value of the Ti:sapphire laser will not provide enough mean power to operate com-
mercial pulse profilers. The need for a controllable source of pulsed light around
1550 nm that we must synchronize with the pump pulses is an additional compli-
cation to the set-up. These reasons lead us to look for an alternative method.

Injecting both the pump and the seed beams in the source, we recall that the
idler DFG intensity we measure with the OSA is:

Iωs(ωi) = |φ(ωs, ωi)|2 (4.2)

with ωs the frequency of the seed and ωi the idler frequency measured at the
OSA and where we dropped multiplicative constants to keep a light notation. As
stated above this measurement is insensitive to the phase ξ(ωs, ωi) of the JSA.
The main idea of our proposal is to inject two seeds detuned with respect to each
other instead of a single one. Indeed with a fundamental seed at ωs, a sideband at
ωs + Ω and a control phase ψ between them, the intensity that will be measured
at a spectrometer or the OSA reads:

Iωs,Ω,ψ(ωi) = |φ(ωs, ωi) + eiψφ(ωs + Ω, ωi)|2 (4.3)

where we assume that the seeds have equal intensities. The measurement is now
sensitive to the phase thanks to the interference between the two terms on the
right hand side of the previous equation. This is clearer if we decompose the JSA as
φ(ωs, ωi) = |φ(ωs, ωi)|eiξ(ωs,ωi) with its explicit norm and phase and we transform
the former expression for the DFG intensity into:

Iωs,Ω,ψ(ωi) =|φ(ωs, ωi)|2 + |φ(ωs + Ω, ωi)|2

+ 2|φ(ωs, ωi)||φ(ωs + Ω, ωi)| cos
(
ψ + ξ(ωs, ωi)− ξ(ωs + Ω, ωi)

)
(4.4)
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By adjusting the control phase ψ to 0 and −π/2, we can estimate the cosine and
the sine of the phase difference δξ = ξ(ωs, ωi)− ξ(ωs + Ω, ωi) between two points
in the JSA:

cos(δξ) =
Iωs,Ω,ψ=0 − 1/2

[
Iωs + Iωs+Ω

]
√
IωsIωs+Ω

(4.5)

sin(δξ) =
Iωs,Ω,ψ=−π2 − 1/2

[
Iωs + Iωs+Ω

]
√
IωsIωs+Ω

(4.6)

where the dependence of all the terms with ωi is implied and Iωs,Ω,ψ is the intensity
measured in the presence of the two seeds while Iωs is the intensity measured with
our standard stimulation technique (a single seed). We thus see that the method
will involve the comparison of intensities measured with or without the interference
pattern. The phase difference is then retrieved:

δξ = arg
[

cos(δξ) + i sin(δξ)
]

(4.7)

This is only a relative phase between two points ξ(ωs, ωi) and ξ(ωs + Ω, ωi) in
the JSA. To reconstruct the actual phase, we need to select one point ξ(ω(0)

s , ω
(0)
i )

which will serve as a reference for the mapping, setting a global phase that we
will choose to match our theoretical prediction (this choice has no physical con-
sequence). Increasing the detuning Ω between the two seeds and seeding in both
directions ωs and ωi would allow, in principle to reconstruct the full phase dis-
tribution of the state. Our proposal is in fact related to the spectral shearing
technique [154] for ultrashort pulse analysis where shearing relates to the spectral
separation Ω between the original pulse carrier frequency and the shifted frequency
of the pulse replica generated for the analysis.

To actually implement this scheme, we need an efficient method for generat-
ing a sideband to the seed and we thus have to optically modulate the beam.
Acousto-Optic Modulators (AOMs) allow to achieve this, however the sideband
will be spatially separated from the carrier beam which is not practical for our
method. The range of shearing frequency is also limited with those devices com-
pared to Electro-Optic Modulators (EOMs). State of the art EOMs can now
achieve frequency modulation of the order 40 GHz and are usually fully integrated
into fibered components. Generally, the modulation (in phase or in amplitude) of
those devices generates several sidebands offset from the original carrier by a inte-
ger multiple of the modulation frequency Ω. Even though the technique would still
be sensitive to the phase of the JSA, the algorithm to retrieve the actual phase
would be overwhelmingly complicated. Fortunately some tricks exist to circum-
vent this issue. Indeed, amplitude EOM are usually two phase EOMs arranged in
a Mach-Zehnder interferometer configuration. By modulating them in quadrature
and balancing the interferometer properly, a single sideband can be selected along
with the carrier frequency [155]. Extinction Ratio of at least 35 dB between the
sideband of interest and the others have been achieved. Some solutions are also
commercially available that allow to keep only the sideband with the possibility
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to suppress the carrier [156]. We also note that arrangements combining an am-
plitude and a phase EOM in series [157] or in a Mach-Zehnder arrangement [158]
allow to obtain a single sideband that is orthogonally polarized with respect to
the original seed. Indeed, with a convenient initial polarization state, the EOM
behaves as a variable waveplate thus allowing the modulation to be perceived in
the polarization. In both cases the Extinction Ratio reached 20 dB. It is never-
theless interesting for our scheme since an additional Pockels cell combined with
a polarizer would allow, while keeping the modulation on, to switch between the
original seed at ωs alone, to the sideband at ωs + Ω alone and to the double seed.
With no modification of the setup or of the setting of the EOM, we would be
able to measure the terms in equations (4.5) and (4.6) in a minimum amount of
time, avoiding the issue of modifications of these intensities because of thermal
fluctuations for example, in the span of time required for an otherwise long acqui-
sition. This would however requires an additional free-space part to perform the
adjustment and filtering of the polarization.

The use of an electro-optic modulator would nevertheless be insufficient to
cover the full range of our JSA. Figure 4.6 shows a sketch of the algorithm we
propose; we combine the adjustment of the shearing frequency and the sweeping
of the frequency of the seed laser to solve this issue. The seed laser would be set
at ωs = ω(0)

s , typically at a point where the intensity of the reconstructed JSI is
maximal to optimize the Signal to Noise Ratio (SNR). The first shearing would
then be performed between ω(0)

s and ω(0)
s + δωs followed by a shearing between

ω(0)
s and ω(0)

s + 2δωs ... until the maximum shearing the modulator can achieve is
reached: ω(0)

s + Ωmax. The seed laser would then be set for the next iteration at
ωs = ω(1)

s = ω(0)
s + Ωmax and we would resume the shearing measurements with

ω(1)
s + mδωs (with m = 1 · · ·Ωmax/δωs) until the range of interest has been fully

probed. For all these shearings, the intensity would be measured with the OSA
at different ωi, yielding Iωs,Ω,ψ(ωi) with ωs = ω(n)

s = ω(0)
s + nΩmax, Ω = mδωs and

ψ = 0 or −π/2.
Doing so, we would get the following relation:

ξ(ω(n)
s +mδωs, ωi) = ξ(ω(n)

s , ωi)− δξ(ω(n)
s +mδωs, ωi) (4.8)

To solve this recurrence relation, we need the phase at the starting point, namely
ξ(ω(0)

s , ωi). An additional shearing along the idler direction and for a DFG in-
tensity measured at a single frequency ω(0)

s (we thus do not need the OSA for
this measurement since no sweeping is required) would provide this value up to a
global offset phase ξ(ω(0)

s , ω
(0)
i ) that we could set to an arbitrary value in order to

match the simulated phase and reconstruct ξ(ωs, ωi).
To estimate the feasibility of the technique, we take into account the noise of

the OSA in simulating both the measurement of the JSI and the reconstruction
of the phase. Studying the technical noise of the OSA shows that it is Gaussian,
with a standard deviation σ ≈ 0.2 pW and centered at a maximum mean value
p̄ ≈ 0.5 pW in the range of detection we normally use. The minimal detectable
value is pmin = 1 fW. Note that p̄ and pmin can slightly change between experi-
ments: in our simulations, we have chosen the worst case scenario. We simulate
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the measurement Iωs(ωi) of the JSI and the shearing measurement Iωs,Ω,ψ(ωi) with
two uncorrelated noises and combine the two to retrieve an estimate of the JSA
φest(ωs, ωi). The fidelity F is then computed as our figure of merit to compare the
simulated reconstruction φest(ωs, ωi) against the theoretical JSA φ(ωs, ωi):

F =
∣∣∣∣∫∫ dωs dωi φ(ωs, ωi)φ∗est(ωs, ωi)

∣∣∣∣ (4.9)

A shearing Ω = 20 GHz is chosen for the simulations, corresponding to com-
mercially available EOMs. We assume that we manage to select only one sideband
of the modulated signal and recombine it with the original seed at the same in-
tensity. In the experiments presented in this thesis, a pulse-picker was used to
generate a clock signal. The repetition rate of the pump laser was reduced to
3.8 MHz with this device to avoid the saturation of the single photon detectors.
For phase-sensitive reconstructions, this choice is not a good one since we would
get a fidelity of only 50% (figure 4.7). The reduction of the repetition rate is ac-
tually not necessary for the stimulated experiment and we can assume that the
source is pumped at the full repetition rate of 76 MHz. The intensity measured
with the OSA as well as the SNR should therefore be improved by a factor 20.
Figure 4.8 shows the result of these simulations in terms of predicted state and
expected measurement. In this case, the fidelity reaches 97%. The improvement
in SNR is actually so beneficial that a shearing of 1 GHz may suffice for the mea-
surement. We also note that δξ can be rather small so a better fidelity may be
obtained by approximating δξ ≈ sin(δξ). This has to be investigated on a case by
case basis.

Additional errors in the experiment may come from the inaccuracy with which
the shearing is done, namely the fluctuation δΩ of the shearing frequency should
remain below the spacing δωs between our data points. The control phase ψ which
in fact represents the synchronization between the pump repetition rate and the
modulation of the seed also plays an important role and should be controlled as
precisely as possible.
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Figure 4.6 – Experimental protocol proposed for the reconstruction of ξ(ωs, ωi).
The seed laser centered at ω(0)

s is modulated in order to generate a sideband de-
tuned by a frequency Ω = mδωs. The comparison of the idler intensities produced
by the modulated and un-modulated seed beams and measured with an OSA at
different frequencies ωi allows to establish a relationship between the phases at
frequencies ω(0)

s and ω(0)
s + Ω. The maximum shearing Ωmax achievable by current

modulators is likely not sufficient to cover the full range of interest. It is thus nec-
essary to tune the seed at ω(1)

s = ω
(0)
s +Ωmax and resume the shearing until the full

window has been scanned. This first shearing being done for the signal, we gain
information on the signal phase and the phase correlations between signal and
idler. However all phase information belonging to the idler only is lost. A shearing
experiment must be performed along the idler direction to circumvent this. With
this additional measurement, the phase profile ξ(ωs, ωi) can be reconstructed up
to a phase ξ(ω(0)

s , ω
(0)
i ), marked by a red dot on the graph, which can be set to

an arbitrary value. (The map represents a portion of the numerically simulated
phase profile ξ(ωs, ωi) for the example source.)



4.4 Prospect for a phase sensitive measurement of the JSA with
stimulated techniques 77

1549

1550

1551

1549

1550

1551

1549 1550 1551

1549

1550

1551

1549 1550 1551
1549

1550

1551

λ
i
(n
m
)

0 0.25 0.5 0.75 1

a

λ
i
(n
m
)

λs (nm)

b

λ
i
(n
m
)

−π −π
2 0 π

2 π

c

λ
i
(n
m
)

λs (nm)

−π −π
2 0 π

2 π

d

Figure 4.7 – Numerical simulations of the expected and “reconstructed” JSI and
phase. JSI (a) and phase profile (c) generated by the device. Simulation of the
expected outcome from the reconstruction of the JSI (b) and phase profile (d)
taking into account the noise level in our set-up. The pump laser has a repetition
rate of 3.8 MHz. The non trivial shape of the phase profile in (c) is due to the
resonance of the pump beam in the microcavity and to the reflective facets of the
sample.
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Figure 4.8 – Numerical simulations of the expected and “reconstructed” JSI and
phase. JSI (a) and phase profile (c) generated by the device. Simulation of the
expected outcome from the reconstruction of the JSI (b) and phase profile (d)
taking into account the noise level in our set-up. The pump laser has a repetition
rate of 76 MHz.
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4.5 Conclusion
This chapter has described the demonstration of a novel technique for the re-
construction of the Joint Spectral Intensity (JSI). Proposed by our collaborators
Marco Liscidini and John Sipe, it is based on the fact that the Joint Spectral
Amplitude (JSA) acts as a response function not only for SPDC but also for
Difference Frequency Generation (DFG), the corresponding stimulated nonlinear
process. Indeed for the same pumping condition, the injection of a seed laser
beam, corresponding to specific vacuum fluctuations in the signal mode for the
spontaneous process, is responsible for the production of light in the idler mode.
The spectral properties of the idler beam reflects the form of the JSI, allowing
its reconstruction. Moreover, the intensity of the DFG light is proportional to the
power of the seed and can thus be detected and characterized with “classical”
instruments giving more flexibility than single photon detectors. With this ad-
vantage, this method allows a faster and more resolved reconstruction of the JSI
in comparison to other techniques, a reason for its widespread adoption by the
community.

The technique has been limited to the characterization of the JSI. However we
have made a proposal to extend it to the measurement of the JSA using electro-
optic modulation.

A part of the work presented in this chapter has been published in [148].





Chapter 5

Biphoton state engineering in the
frequency-time space

The methods described so far (with the exception of the technique presented
in 4.4) are limited to the measurement of the JSI. The phase information con-
tained in the JSA, which is non trivial for our source, is lost in the measurement.
Moreover, methods to reconstruct the JSI do not allow to distinguish between a
pure and a mixed state. They thus do not constitute complete tomographies. In
this chapter we revisit the two-photon interference on a beamsplitter, famously
known as the experiment of Hong, Ou and Mandel [35]. In particular we show that
a partial information on the phase of the biphoton wavefunction can be inferred
from this type of experiment.

We first describe the original Hong-Ou-Mandel (HOM) experiment and some
examples of two-photon interferences obtainable with our source. We then dis-
cuss a modified experiment which gives access to more information on the bipho-
ton wavefunction and in particular, allows to reconstruct the antisymmetric part
of the chronocyclic Wigner function of the state. We finally show examples of
Schrödinger-cat like states that can be generated with our source and measured
with this technique.

Figure 5.1 – General principle of the
HOM interferometer. Single photons com-
ing from input paths s and i impinge on a
50/50 beamsplitter. The interference is ob-
served by recording the coincidences in out-
put paths 1 and 2 as a function of the delay
τ between the two input arms. τ

s

i 1

2
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5.1 Hong Ou Mandel experiment
The original experiment of Hong, Ou and Mandel [35] consists in sending the
photons of the pair into two input ports of a 50/50 beamsplitter with the possi-
bility to delay the arrival of one of them with respect to the other with an optical
delay line, or equivalently to set the respective arrival times of the photons with
a convenient translation of the beamsplitter (see figure 5.1). If the photons are
indistinguishable from each other and their wavepackets are superimposed at the
beamsplitter, the scenarios in which both photons are transmitted or reflected
cannot be distinguished and interfere destructively. In this situation two detec-
tors located in the output arms of the beamsplitter will never click in coincidence,
giving rise to a dip in the coincidence counts.

To understand this effect and its dependence on the input state, we start by
assuming a 50/50-beamsplitter with input arms s and i and output arms 1 and
2 as sketched in figure 5.1 and, considering the phase-shift when the beam is
reflected, the signal and idler creation operators are transformed into:

â†s(ωs) = â†1(ωs) + iâ†2(ωs)√
2

e−iωsτ

â†i (ωi) = iâ†1(ωi) + â†2(ωi)√
2

eiωiτ
(5.1)

where 2τ represents the optical path delay between the two input arms. The trans-
formation of the initial biphoton state |ψ〉 =

∫∫
dωs dωi φ(ωs, ωi)â†s(ωs)â

†
i (ωi) |vac〉

is thus:

|ψ〉 = 1
2

∫∫
dωs dωi φ(ωs, ωi)e−i(ωs−ωi)τ

(
iâ†1(ωs)â†1(ωi) + iâ†2(ωs)â†2(ωi)

+ â†1(ωs)â†2(ωi)− â†1(ωi)â†2(ωs)
)
|vac〉

(5.2)
The first two terms correspond to scenarios in which both photons leave the
beamsplitter in the same output port while the last two terms correspond to the
situation where the two photons take different output ports. The opposite signs
between the last two terms in the sum is the cause of the interference that will
occur when recording the coincidences at the detectors located in the two output
arms . The probability of coincidence is proportional to the joint-photocurrent of
the detectors [104]:

P (t, t′; τ) =
〈
ψ
∣∣∣ Ê(−)

1 (t)Ê(−)
2 (t′)Ê(+)

1 (t)Ê(+)
2 (t′)

∣∣∣ψ〉 (5.3)

with Ê(+)
1(2)(t) the positive frequency part of the electric field operator in the output

arm 1 (2, respectively). Since we are in the interaction picture, we remind that the

field operators have an explicit time dependence Ê(+)(t) = E(ω(0))√
2π

∫
dω e−iωtâ(ω)

and we have used the slowly varying envelope approximation (ω(0) � ∆ω) to
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extract all the frequency-dependent normalization term from the integral. The
normalized coincidence rate thus reads:

P (t, t′; τ) =
∥∥∥∥∫∫ dω1 dω2 â1(ω1)â2(ω2)e−iω1te−iω2t′ |ψ〉

∥∥∥∥2
(5.4)

The first two terms of equation (5.2) will obviously not contribute to the coin-
cidence counts. Applying the creation and annihilation operators to the vacuum
and integrating over ωs and ωi, we obtain:

P (t, t′; τ) =
1
4

∥∥∥∥∫∫ dω1 dω2 e
−iω1te−iω2t′

(
φ(ω1, ω2)e−i(ω1−ω2)τ − φ(ω2, ω1)e−i(ω2−ω1)τ

)
|vac〉

∥∥∥∥2

(5.5)

In a real experiment we would integrate the joint-detection events over time for
each pump pulse. In fact because of their jitter, the detectors have a timing reso-
lution of 200 ps and thus perform a time integration of the photon pulses whose
maximal temporal duration is of the order L/vg = 22 ps. Even if we take into
account the possible reflections of the wavepackets in the sample, we can see from
figure 2.12(c) that almost all events are comprised in a 100 ps temporal window.
Integrating over times t and t′ allows thus to simplify expression (5.5). Indeed the
modulus squared term involves a double integral over ω1 and ω2 and an additional
double integral over ω′1 and ω′2 because of the hermitian conjugate in the prod-
uct, which simplifies because of the time integration of the terms e−i(ω1−ω′1)t and
e−i(ω2−ω′2)t′ :

P (τ) = 1
4

∫∫
dω1 dω2

(
φ∗(ω1, ω2)ei(ω1−ω2)τ − φ∗(ω2, ω1)ei(ω2−ω1)τ

)
×
(
φ(ω1, ω2)e−i(ω1−ω2)τ − φ(ω2, ω1)e−i(ω2−ω1)τ

) (5.6)

Multiplying these terms and swapping the dummy variables of integration when
necessary, we get:

P (τ) = 1
2

[∫∫
dω1 dω2

∣∣∣φ(ω1, ω2)
∣∣∣2 − ∫∫ dω1 dω2 φ(ω1, ω2)φ∗(ω2, ω1)e−i(ω1−ω2)2τ

]
(5.7)

Taking into account the normalization of the biphoton wavefunction (given by
equation (2.23)), we obtain the general expression for the coincidence count rate
in a HOM experiment:

P (τ) = 1
2 −

1
2

∫∫
dω1 dω2 φ(ω1, ω2)φ∗(ω2, ω1)e−i(ω1−ω2)2τ (5.8)

The rate of coincidences is the difference between the constant term 1
2 , giving

the probability that the photons go into different ports and an interference term
which is controlled by the relative delay τ accumulated by the photons before
the beamsplitter. This term is the autoconvolution of the antidiagonal part of the
Joint Temporal Amplitude (JTA). This is more clear if we express the JSA of our
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source as in equation (2.36) with φ(ωs, ωi) = χΓ φPM(ω−)φspectral(ω+) and do a
change of variables from ω1, ω2 to ω+, ω−:

P (τ) = 1
2 −
|χΓ|2

2

∫
dω+ |φspectral(ω+)|2

∫
dω− φPM(ω−)φ∗PM(−ω−)e−iω−2τ (5.9)

We see that φspectral, the part of the JSA which depends on the chronocyclic
properties of the pump beam will not contribute to the shape of the interference
pattern in the HOM experiment. The two-photon interference is described by the
last integral which corresponds to the autoconvolution

(
φ̃PM ∗ φ̃∗PM

)
(2τ). φ̃PM(2τ)

is the Fourier transform of φPM(ω−) and corresponds to the antidiagonal part of
the JTA φ̃PM(2τ). Using the normalization condition (2.23) we have:

P (τ) = 1
2

1−

∫
dω− φPM(ω−)φ∗PM(−ω−)e−iω−2τ∫

dω− |φPM(ω−)|2

 (5.10)

In order to illustrate this result, we take the example of a Gaussian pump beam
as in equation (2.38) with waist wz and incidence angle θ. In this case, (5.10)
becomes:

P (τ) = 1
2

1− exp
− 2

(
ω

(0)
−

∆ω−

)2
 exp

− 2
(

τ

∆t−

)2
 (5.11)

where ∆ω− = 2v̄g/wp with v̄g the harmonic mean of the group velocities of the
TE and TM modes defined at equation (2.27), ω(0)

− = (k sin θ−kdeg)v̄g and ∆t− =
2/∆ω− = wp/v̄g. With degenerate photons, the frequency difference offset ω(0)

−
vanishes and the coincidence rate is fully characterized by the second exponential
which describes the HOM dip. Indeed, for τ = 0 both photons arrive at the
beamsplitter at the same time and will bunch together, so the coincidence rate
drops from 50% to zero. In our particular case, the dip takes a Gaussian form with
a width ∆t− controlled by the size of the beam on the device (see figure 5.2(a)).
If the central frequency of the photons differ, i.e. ω(0)

− 6= 0, the shape of the dip is
preserved but with a reduced visibility as |ω(0)

− | increases.
We note that the shape of the dip is not necessarily Gaussian. For example

when the whole waveguide is illuminated, φPM takes a sinc shape, as indicated in
equation (2.39). Consequently the convolution of its Fourier Transform and thus
the dip, takes a triangular shape (see figure 5.2(a)) [159]. On the other hand, when
a square band-pass frequency filter is applied to a strongly anticorrelated biphoton
state, φPM has the form of the filter and the dip thus takes a sinc shape [160].

In these examples φPM is an even function of ω−, but we can imagine different
situations. In [161], a BBO crystal was pumped with first-order Hermite-Gaussian
beams. The odd profile of the pump beam resulted in an antisymmetric bipho-
ton state. Consequently the coincidence count rate took a bump shape instead of
the usual dip (the photons always left the beamplitter from different ports). Fig-
ure 5.2(b) reports the numerical simulation of the two-photon interference when
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Figure 5.2 – Examples of simulated HOM interferences for our source. The facets
are assumed totally transmissive. (a): the pump beam is a fundamental Gaussian
beam. The solid black line depicts the Gaussian dip obtained with a beam of waist
wz = 377 µm impinging at the degeneracy angle θdeg. The dashed black line is
obtained with the same waist but with an angle of incidence imposing a 400 pm
offset between the central wavelengths of the signal and the idler. The dip has an
identical shape but a reduced visibility because ω(0)

− 6= 0. The solid blue line is
the triangular dip obtained when the whole length of the waveguide is pumped
at the degeneracy angle. (b): interferences obtained for a HG10 beam (solid blue
line) and a HG20 (dashed red line).

our source is illuminated with a HG10 and a HG20 pump. These different forms of
the interference pattern indicate that the HOM experiment is a sensitive technique
to probe the biphoton state. We will discuss this in details in the next section.

In this discussion, we have ignored so far the influence of the facets. As men-
tioned earlier, the HOM experiment done with our source in 2010 [131] resulted in
a Gaussian dip as expected since the waveguide was not fully illuminated. However
the visibility of the dip was limited to 85%. This was attributed to the reflection
of the photons at the facets. Figure 5.3 shows the shape of the dip calculated
taking into account the reflectivity of the facets. Satellite dips appear in addi-
tion to the main dip due to the interference between a doubly reflected photon
with a directly transmitted one. The probability of further reflections being low,
satellite dips that are further apart are not distinguished. The double reflection of
both photons will contribute to the main dip. We notice that the visibility of the
dip is not necessarily decreased by the facets’ reflectivity. Indeed if the resonance
phases for the TE and TM modes are identical, then the photons remain indistin-
guishable and the theoretical visibility is still 100%. Nevertheless, we have already
mentioned that the control of the relative phase between the TE and TM modes
is not possible and they do not coincide in general. For example, if we perform the
simulation with the TE/TM phases measured in the experiment reported in [148]
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Figure 5.3 – Two-photon interference simulated for a source of length L =
2.1 mm, a pump beam of waist wp = 377 µm impinging at the degeneracy angle
θdeg. Red dashed line: dip simulated with perfectly transmissive facets. Solid blue
line: dip obtained with partially reflective facets with RTE = 26.7% and RTM =
24.7%. The phase of the Fabry-Perot resonances is set so that they coincide for the
TE and TM modes at the wavelengths of interest. Dashed blue line: dip simulated
with the typical Fabry-Perot phases of our sample measured at room temperature.

instead of identical phases, we get a reduction of the dip visibility, still with the
presence of the satellite dips (see figure 5.3).

5.2 Generalization of the HOM experiment
A collaboration with our colleagues of the theory team (T. Douce, T. Coudreau,
P. Milman, A. Keller and S.P. Walborn) has led to a generalization of the HOM
experiment allowing to open new perspectives for state measurement and engi-
neering [140]: in this modified version of the HOM experiment, a frequency shifting
device, such as an optical modulator, is inserted into one of the input arms in ad-
dition to the standard delay line in the other arm (see figure 5.4). This gives access
to another degree of freedom in the analysis of the biphoton state, namely the fre-
quency difference between the signal and the idler photons that we have labeled
ω−. Our colleagues showed that the quantity that is reconstructed by performing
the modified HOM experiment is in fact a Wigner function.

Indeed, neglecting the reflection at the facets of the waveguide and using equa-
tion (2.36) where we have expressed the JSA as a product of a function of ω+ and
a function of ω−, we can simplify the expression (2.49) of the joint Chronocyclic
Wigner Function (CWF) of the biphoton state:

W (ωs, ts, ωi, ti) = χΓ W+(ω+, t+)×W−(ω−, t−) (5.12)

with ω± = ωs ± ωi and t± = ts±ti
2 and two-dimensional chronocyclic Wigner
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Figure 5.4 – Modified HOM interferome-
ter. The addition of a frequency shift Ω in
(at least) one of the input arms allows to
probe more properties of the biphoton state.

τ

Ω

s

i 1

2

functions defined thanks to the separability of the state as:

W+(ω+, t+) = 1√
2π

∫
dω′+ φspectral

(
ω+ + ω′+

2

)
φ∗spectral

(
ω+ −

ω′+
2

)
e−iω

′
+t+

W−(ω−, t−) = 1√
2π

∫
dω′− φPM

(
ω− + ω′−

2

)
φ∗PM

(
ω− −

ω′−
2

)
e−iω

′
−t−

(5.13)
We can already notice some similarities between the expression of W− and the
HOM coincidence rate given in equation (5.10). The introduction of a frequency
shift Ω modifies the equation (5.1) for the creation operators before the beam-
splitter in the following manner:

â†s(ωs) = â†1(ωs + Ω/2) + iâ†2(ωs + Ω/2)√
2

e−iωsτ

â†i (ωi) = iâ†1(ωi − Ω/2) + â†2(ωi − Ω/2)√
2

eiωiτ
(5.14)

and further calculations show that equation (5.10) for the coincidence rate is
transformed into:

P (Ω, τ) = 1
2

1−

∫
dω− φPM(Ω + ω−/2)φ∗PM(Ω− ω−/2)e−iω−τ∫

dω− |φPM(ω−/2)|2

 (5.15)

With the normalization
∫

dω− |φPM(ω−/2)|2 = 1, the chronocyclic Wigner func-
tion W− is thus directly retrieved from the generalized HOM measurement:

W−(ω−, t−) = 1− 2P (ω−, t−)√
2π

(5.16)

To illustrate this, we take the example of a Gaussian pump beam with a waist wp,
small with respect to the length L of the waveguide arriving with an incidence
angle θ. We allow the beam to impinge at a location z0 which may be different
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from the center of the sample. Starting from equation (2.38), the phase-matching
dependent part φPM of the JSA reads:

φPM(ω−) =
√
πwz exp

− (ω− − ω(0)
−

∆ω−

)2
eiω−t(0)

− (5.17)

with t(0)
− = z0/v̄g. We assume the angle of incidence small enough to approximate

wz = wp cos θ ≈ wp so that the width of the function is ∆ω− = 2v̄g/wp and it is
centered at ω(0)

− = (k sin θ− kdeg)v̄g ≈ (θ− θdeg)v̄g ωp/c. With this choice of pump
beam, the W− Wigner function can be drastically simplified to:

W−(ω−, t−) = πw2
p exp

− 2
(
ω− − ω(0)

−

∆ω−

)2
 exp

− 2
(
t− − t(0)

−

∆t−

)2
 (5.18)

with ∆t− = 2/∆ω− = wp/v̄g. We see that this is a Gaussian Wigner function
centered at point t(0)

− and ω(0)
− , of widths ∆ω− and ∆t− that corresponds to the

representation of a coherent state (see Fig. 5.5).
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Figure 5.5 – Pumping scheme (left) and CWF W− (right) corresponding to a
‘Gaussian’ state. The pump beam impinging at z0 = 0, the center of the waveg-
uide, with the angle θ = θdeg, the state is centered at t− = 0 and ω− = 0. The
widths along both axis are related to the waist wp of the pump beam. As long
as W (ωs, ωi, ts, ti) can be factorized according to equation (5.12), the pulse dura-
tion plays no role in the form of W−(ω−, t−). The usual HOM interference curve
corresponds to the slice along the axis ts − ti at degeneracy (λs − λi = 0). We
plot

√
2πW− to easily identify the value 1 as a dip of full depth (bunching at the

beamsplitter) and -1 as a full bump (antibunching) - see equation (5.16). In this
simulation wp = 200 µm, L = 2 mm, λp = 775 nm and τp = 3.5 ps.

Thus, in this situation, a shift of the pump spot z0 is equivalent to a displace-
ment along the t− axis of the phase space while a change in the angle of incidence
θ of the pump beam corresponds to a shift of the state along the Ω axis. The
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original HOM experiment in fact corresponds to measuring the slice of W− along
the axis t− at the zero frequency offset ω− = 0. Even though the birefringence of
the device may offset the arrival time of one photon with respect to the other, for
our sample and the typical lengths we are dealing with (L = 2 mm) this effect is
negligible as demonstrated by the central position of W− in figure 5.5. If the angle
of incidence of the pump beam is different from θdeg, the center of state will be
offset from ω− = 0 and the usual HOM experiment will exhibit a dip of reduced
visibility, as we have already commented in the previous section and illustrated
in figure 5.2(a).

This technique thus offers new perspectives to engineer and characterize more
exotic states than the ones we showed in chapters 3 and 4. For example with two
identical beams impinging at za and zb a superposition of 2 coherent states dis-
placed along the τ axis is obtained. In the limit |t(a)

− − t
(b)
− | � ∆t−, i.e. |za− zb| �

wp, such states are almost orthogonal, representing a superposition of two dis-
tinct coherent states (Schrödinger cat-like states). This situation is depicted in
figure 5.6. In the right figure, the two peaks correspond to the effect of the indi-
vidual beams at za and zb, while the fringes between them indicate the existence
of a well defined coherence. Indeed, if the pump beams are generated with two
independent lasers with no phase relation, this fringes would not exist, and we
would get the representation of a statistical mixture of the two coherent states.
If a decoherence mechanism is present, these fringes would blur, resulting in a
state of reduced purity [162, 163]. The technique is thus very general and can be
used to characterize states that are mixed although the origin of the decoherence
can be due to the environment or from a lack of separability in terms of ω− and
ω+ variables∗. In the latter case, the state can still be decomposed as a sum over
separable states W (ωs, ts, ωi, ti) = ∑

k ckW
k
+(ω+, t+) × W k

−(ω−, t−), just like the
Schmidt decomposition usually performed for the JSA with ωs and ωi [165]. The
interference will be the results of the different contributions in the superposition.

The link we have made between the HOM experiment and the W− function is
a very good illustration that two-photon experiments cannot be simply considered
as an interference between two photons as discussed e.g. in reference [166]†. Indeed
in the usual HOM experiment (see the slice at ω− = 0 in figure 5.6), if only one
of the two beams is present, we would observe a dip of full visibility, offset from
t− = 0, because we do not pump at the center of the waveguide. However, when
both pump beams impinge, the former dips have a depth reduced by two and
an additional dip of full visibility arises between them, even though no pair is
’generated’ in the center of the waveguide.

Figure 5.7 illustrates another example of state that can be generated. In this
case a superposition of states along the axis ω− is obtained by pumping the device
with 2 different angles of incidence θa and θb, impinging at the same point z0.
In this case quasi-orthogonality is obtained for |ω(a)

− − ω
(b)
− | � ∆ω−, i.e. |θa −

∗An example of non-trivial HOM interference for such non separable states can be found in
the experiment reported in [164].

†In this reference, an interference is observed even though the optical path delay between the
photons is compensated only after the beamsplitter.
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Figure 5.6 – Left: pumping scheme to obtain a Schrödinger cat-like state along
t−. Right: CWF W− of the corresponding biphoton state. In this example the
sample is pumped at two different locations za and zb separated by the same
distance (500 µm) from the center z0 of the waveguide. The two beams have
wp = 200 µm, λp = 775 nm and τp = 3.5 ps.
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Figure 5.7 – Left: pumping scheme to produce a Schrödinger cat-like state along
ω− with two beams impinging at the same location but with different angles of
incidence. Right: CWFW− of the corresponding biphoton state. The pump beams
are tilted symmetrically with respect to the degeneracy angle (θa,b = θdeg ∓ δθ)
so that λ(a,b)

− = −8πc
ω2
p
ω

(a,b)
− = ±2615 pm. The two beams have wp = 200 µm,

λp = 775 nm and τp = 3.5 ps.

θb| � 2c
ωpwp

(for small angles). While the cat state in time introduced in the
previous paragraph has never been observed (to our knowledge), the state encoded
along ω− we are describing here has already been produced and sent to a HOM
interferometer where fringes analogous to the ones we show in figure 5.7 along the
axis t− at ω− = 0 have been measured by Ou and Mandel themselves [167].
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We can imagine the engineering of more exotic states using complex configu-
rations of pump beams. As an illustration, we choose a so-called compass state
(see figure 5.8), a superposition of four coherent states presenting interesting ap-
plications in quantum metrology, as pointed out in [168, 169]. In order to obtain
such state, a set of four different pump beams is required, combining the pumping
schemes previously described. Two pairs of beams impinge at two different points
separated by a distance |za− zb|, each pair consisting in two beams symmetrically
tilted with respect to the degeneracy angle as shown in figure 5.8.
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Figure 5.8 – Left: pumping scheme to generate a compass state. Right: CWF
W− of the corresponding biphoton state. Two pairs of beams are used, impinging
at two different locations za and zb separated by the same distance (500 µm)
from the center z0 of the waveguide. In each pair, the pump beams are tilted
symmetrically with respect to the degeneracy angle (θa,b = θdeg ± δθ) so that
λ

(a,b)
− = −8πc

ω2
p
ω

(a,b)
− = ∓2615 pm. In this simulation wp = 200 µm, L = 2 mm,

λp = 775 nm and τp = 3.5 ps.

Although the measurement of the state along the t− axis is already a well
established technique [170, 171, 134, 172, 164], the characterization of the state
along the orthogonal axis ω− is still an open issue. We can mention the work
of Olislager et al. where EOMs are used to implement the manipulation of the
state in the frequency domain [73, 74]. For the frequency range relevant for our
device, state of the art EOMs in the telecom-band could work if the state is
not too broad. Indeed, a modulation of 40 GHz correspond to a wavelength shift
of 360 pm, which would allow a partial characterization of the simple state at
degeneracy pictured in figure 5.5 or of the central fringes of the compass state in
figure 5.8. In situations where the state is broader, the measurement will demand
a displacement of the state itself along ω− as a coarse frequency shift and a fine
control would be provided by optical modulation.

The development of techniques to probe the time-energy properties of the
biphoton is a subject of intense research. Indeed the implementation of the gener-
alized HOM interferometer for the reconstruction of a Wigner function [140] has
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been recently implemented in an experiment [173]. In this reference a CW beam
is used to pump a Periodically Poled Potassium Titanyl Phosphate (PPKTP)
crystal for the generation of the biphoton state. The monochromaticity of the
pump allows to simplify the experimental scheme, since the issue of shifting the
frequency over a large range can be overcome by changing the frequency of the
pump. In fact, in their implementation, heating or cooling the crystal modifies the
phase-matching conditions and is tantamount to changing the frequency difference
between the photons of the pair. This first proof-of-principle is encouraging for
our own implementation in pulsed regime.

5.3 Spatial shaping of the pump beam with a
spatial light modulator

In order to get a full flexibility for the biphoton state engineering we have decided
to implement a shaping of the pump beam with a Spatial Light Modulator (SLM).
This has also been the occasion to start a collaboration with the team of Robert
Boyd and Ebrahim Karimi in Ottawa (Canada). This type of device consists in
a matrix of liquid crystals whose orientation can be set pixel by pixel and repro-
grammed on demand. The orientation of the crystals affects the local birefrin-
gence thus providing a tool to control the phase and/or intensity distributions of
the impinging beam [174]. Applications of SLM include the generation of opti-
cal tweezers [175] or adaptive optics [176]. In the spectral domain, they are used
for pulse shaping [177] where a pulse is dispersed, modified with the SLM and
recombined with a dispersive element, thus allowing to control its chronocyclic
properties and to correct potential anomalies such as chirp.

In our case, we are interested in the spatial shaping of the beam. The approach
we adopt consists in imaging the SLM onto the device as sketched in figure 5.9,
performing a simultaneous phase and intensity masking [174]. The polarization
direction of the pump beam and its intensity are controlled by a half-wave plate
and a polarizer. Indeed to modulate the beam, the polarization has to be linear and
oriented along the plane containing the incident and reflected beams. The beam is
then expanded by a telescope (lenses L1 and L2) to cover the whole active surface
of the modulator. The model we have chosen is a Leto™ from the company Holoeye
for its excellent resolution, namely 1920×1080 pixels of size 6.4× 6.4 µm2. It is a
reflective, phase-only modulator based on the LCoS technology (Liquid Crystals
on Silicon). Since a non negligible part of the beam energy is unaltered by the
SLM, we superimpose to the modulation mask, the phase of a prism (or blazed
grating) in order to deflect the interesting part of the reflected beam into the first
order of diffraction. This also allows to modulate the intensity of the beam: since
we image the SLM, we can remove some areas by simply not applying the prism
phase at these locations so the corresponding energy will remain in the zeroth
order (see figure 5.10). The selection of the first order is done with a 4f-line: a
first lens L3 allows the spatial filtering of the modulated beam in the Fourier
plane with an adjustable iris. In order to maximize the efficiency, the separation
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Figure 5.9 – Setup for the spatial shaping of the pump beam with an SLM
(simultaneous phase and intensity masking). See the text for details. Focal lengths
are given in millimeters.

between the zeroth and first orders must be as small as possible. The second lens
L4 allows the imaging of the selected intensity onto the waveguide. The telescope
which is formed by these two lenses also allows to adjust the size of the beam
to the length of the waveguide. An additional half-wave plate allows to set the
polarization of the beam to TE in order to maximize the photon pair production.
Finally, a cylindrical lens L5 is still present to focus the beam on the ridge in the
transverse direction y.

Several precautions must be taken to ensure the correct behavior of the de-
vice. We have already mentioned the correct orientation of the polarization. The
amount of aberrations must also be kept to a minimum by using lenses with not
too short focal lengths. To maintain a high modulation efficiency and avoid astig-
matism, the angle between the incident and the reflected beams at the SLM must
be below 20◦. Concerning the SLM itself, the display is addressed with eight bits
allowing 256 different settings for each pixel. The voltage control value that has to
be applied to obtain a given phase retardance depends on various parameters, such
as the central wavelength of the beam or the temperature of the room. A correct
calibration of the device allows to obtain a linear phase response as testified by
the Ronchi test [178] shown in figure 5.11. This graph is obtained by measuring
the power in the first order (or in order -1) when applying a mask with pairs of
stripes of alternating values, each pair consisting of one stripe with a constant
zero value (no phase added to the beam) and the other addressed with a varying
gray level value (G.L.) – see figure 5.12. The power P1(G.L.) that is measured in
the first order allows to retrieve the actual phase retardance Φ(G.L.) applied by
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Figure 5.10 – Principle of phase and intensity masking with a phase-only SLM.
(a): desired intensity profile (Hermite-Gaussian beam). (b): blazed phase grating
(prism) applied to the SLM to deflect the impinging intensity into the first order
of diffraction. (c): phase mask applied to the SLM to obtain the Hermite-Gaussian
beam after spatial filtering of the first order of diffraction. The exact encryption
procedure of the mask is detailed in reference [174].

the whole device to the beam according to:

P1(G.L.) ∝
[
1− cos Φ(G.L.)

]
(5.19)

We also see from figure 5.11 that if the stripes have a width of only one pixel,
the cross-talk between them prevents the phase from reaching 2π. Therefore the
phase encoded with a mask having high spatial frequencies will not be faithful.
Other characterization procedures can be applied in order to make sure that the
phase is correctly encoded locally and to compensate for any defect of flatness of
the display [179, 180].

The efficiency of the device is limited by two factors: the pixelation of the
device with 200 nm of interpixel gap, leading to a 93% fill-factor, is responsible
for the diffraction of the beam into higher orders, even when the device is not
addressed. This, along with the reflectivity of the back mirror is limiting the
usable power to 75% of its initial value. The resolution and the possible cross-talk
between the pixels on the other hand limit the diffraction efficiency i.e. the ability
to send all the energy in the first order with a mask corresponding to a phase
blazed grating (a prism) and more generally to give the correct phase to the beam
with an arbitrary mask. According to the specifications of the manufacturer, our
SLM is supposedly the best in class with almost 85% of the usable power sent
into the first order of diffraction with a blazed grating of 16 levels and less than
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Figure 5.11 – Phase retardance Φ obtained at λp = 760 nm as a function of the
gray level applied to the SLM. This result is obtained via a Ronchi test with stripes
1-pixel and 5-pixels wide. The lower slope with the 1 pixel experiment is due to
the cross-talk between the liquid-crystals. An almost linear modulation is obtained
compared to the default calibration which is adapted for 633 nm (measured with
stripes of 5 pixels width).
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Figure 5.12 – Phase mask applied to the SLM to perform a Ronchi test. Stripes
with a constant gray level value alternate with stripes whose gray level is var-
ied while the intensity diffracted in the first order is measured. This allows the
calibration of the phase applied by the SLM for a given gray level.

1% in the other orders at a 633 nm central wavelength. These performances would
lead to a total light utilization efficiency, i.e. the ratio between the power before
the SLM and the power selected after the SLM, of almost 64%. Even though the
beam shape is well controlled (see figure 5.13), the total efficiency obtained up
to now is limited to 16.6%. Work is in progress to improve this figure of merit in
order to be able to measure the biphoton state with this pumping scheme.
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Figure 5.13 – CCD pictures of the sample illuminated by the Ti:sapphire laser
beam spatially shaped by the SLM. Top: Laguerre-Gaussian LG01 beam focused
by the cylindrical lens on the waveguide. Bottom: Hermite-Gaussian HG10 beam.

5.4 Conclusion
In this chapter, the two-photon interference at a beam-splitter has been theoret-
ically treated, with examples of interferences that we have linked to the form of
the JSA. With our colleagues from the theory team, we have introduced a gen-
eralization of the Hong-Ou-Mandel interferometer with a frequency displacement
in addition to the temporal displacement, opening the way to the generation and
characterization of more exotic two-photon states with our source, for example
Schrödinger cat-like and compass states.

For the production and engineering of these states, we are implementing a new
pumping scheme with a Spatial Light Modulator to control the spatial phase and
amplitude of the pump beam.

A part of the work presented in this chapter has been published in [181].
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Controlling entanglement in
polarization and frequency





Chapter 6

Joint Spectral Amplitude
engineering for maximal
entanglement in polarization

So far we have focused on only one of the two possible interactions which can occur
in our device. In fact, as described in chapter 1, for a given angle of incidence, two
concurrent phase-matching conditions can be fulfilled: one in which the photon
emitted towards the positive z (the signal) is Transverse Electric (TE)-polarized
(with its idler twin Transverse Magnetic (TM)-polarized) and one in which it is
TM-polarized (with its twin TE-polarized). We have named these two processes
interaction HV and V H, respectively. This feature of our source enables the pro-
duction of Bell states in polarization, a result which has been experimentally
demonstrated by our team in [86]. Starting from this demonstration, we present
a theoretical model taking into account the pertinent physical parameters having
an impact on the entanglement in polarization. In particular we link the level of
generated entanglement to the Joint Spectral Amplitude (JSA) of the biphoton
state and we show how to optimize the pumping scheme to get the maximum
entanglement in polarization.

6.1 Generation of Bell states in polarization
The debate between Einstein, Podolsky, Rosen [182] and Bohr [183] on the com-
pleteness of quantum mechanics and the possible existence of local hidden vari-
ables was formalized by Bell [9] and Clauser, Horne, Shimony and Holt [10]. These
works allowed to identify an inequality that could be checked through experiments
to settle the debate [6, 7, 8]. For two qubits, a maximal violation of the Bell-CHSH
inequality is provided by the Bell states [184]:

∣∣∣Ψ±〉 = |HV 〉 ± |V H〉√
2∣∣∣Φ±〉 = |HH〉 ± |V V 〉√
2

(6.1)
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whereH and V stand for horizontal or vertical polarization respectively and where
the first and second members of each ket represent the property of particle 1
and 2, respectively. Such states, after being used to test the foundations of quan-
tum mechanics, constitute today one of the major building blocks for quantum
information and communication [185, 12, 1, 26].

Coming back to our device and considering only fundamental spatial modes,
the general biphoton state, i.e. in the absence of spectral filtering and selection
on polarization, reads:

|ψ〉 = 1√
2

∫∫
dωs dωi φHV (ωs, ωi) |ωs, H〉 |ωi, V 〉

+ 1√
2

∫∫
dωs dωi φV H(ωs, ωi) |ωs, V 〉 |ωi, H〉

(6.2)

where φHV (ωs, ωi) and φV H(ωs, ωi) are the JSAs of the HV and V H process,
respectively, and where we have explicitly extracted the 1/

√
2 factor from the

normalization of the JSAs. Assuming a plane wave and a monochromatic pump
beam impinging with an angle θ, the previous expression simplifies into:

|ψ〉 = |ωs, H〉 |ωi, V 〉+ eiϕ |ω′s, V 〉 |ω′i, H〉√
2

(6.3)

with ϕ a possible phase offset between φθHV (ωs, ωi) and φθV H(ω′s, ω′i). In this state
the frequency degree of freedom is labeling the process introducing a which-path
information. This information must be removed in order to obtain a maximal
entanglement. In other words, we want:

|ψ〉 = |ωs ωi〉 ⊗
|HV 〉+ eiϕ |V H〉√

2
(6.4)

Such state cannot be obtained by pumping the device with a beam impinging with
a single angle of incidence θ due to the residual birefringence of the waveguide.
Having ωs = ω′s and ωi = ω′i is equivalent to ωHV+ = ωV H+ = ωp, which is satisfied
by energy conservation, and ωHV− ≡ ωs − ωi = ωV H− ≡ ω′s − ω′i which is achievable
with an adaptation of the phase-matching. Indeed, we recall that for the HV
interaction, ω(0)

− = ωp(sin θ − sin θdeg)v̄g/c and the degeneracy angle has been
defined in equation (2.26) to be θdeg = sin−1(nTE−nTM

2 ). For the V H interaction, the
polarization of the signal and the idler are exchanged and degeneracy is therefore
achieved with the opposite angle −θdeg. Thus, pumping interaction HV with an
angle θHV and interaction V H with an angle θV H , the condition to produce a Bell
state reduces to:

ωHV−︷ ︸︸ ︷
ωp(sin θHV − sin θdeg) v̄g

c
−ωp(sin θV H + sin θdeg) v̄g

c︸ ︷︷ ︸
ωVH−

= 0 (6.5)
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which simplifies into sin θHV − sin θV H = 2 sin θdeg. All the angles involved in our
study being small this condition can be approximated to:

θHV − θV H = 2θdeg (6.6)

Therefore, pumping the device with two different angles with a separation 2θdeg
between them allows to remove the correlation between the spectral and polar-
ization degrees of freedom, as shown in figure 6.1(d). In other words, we render
the two processes indistinguishable, except for the polarization of the photons.
We must however apply a spectral filtering to remove the photons that are pro-
duced, for example, with the HV process but with the θV H angle and vice-versa.
We illustrate this scheme in figure 6.1 in the more general situation of a pulsed
Gaussian beam choosing the simple case of degeneracy angles i.e. θHV = θdeg and
θV H = −θdeg. We see that this choice of angles allows to overlap the Joint Spec-
tral Intensitys (JSIs) of the two processes of interest and to obtain a frequency
degenerate |Ψ+〉 Bell state. We also identify the photons that must be removed by
spectral filtering. Changing the angles while keeping the 2θdeg separation between
them allows to maintain the overlap since the JSIs will only be shifted along the
ω− axis. With this more general case, we would obtain frequency non-degenerate
Bell states |Ψ+〉. We note that the other Bell states can be obtained with the ad-
dition and a convenient adjustment of a half-waveplate on one of the output arms
for the Φ± states, or with a suitable birefringent element for the Ψ− state [36].

6.2 Characterization of the state
We have identified the general scheme to generate a Bell state in polarization
which consists in pumping the device with two angles and applying a frequency
filtering. The automatic separation of the photons eases their characterization
with respect to the case of collinear sources. In this geometry, we can easily per-
form the polarization tomography of the state to reconstruct its density matrix ρ̂
by placing polarization analyzers in each output arm [186]. The single counts and
the coincidences between the two detectors are recorded for 16 different settings of
these analyzers. Indeed with two polarization qubits, the Hilbert space is described
by the basis {|HH〉 , |HV 〉 , |V H〉 , |V V 〉}, and therefore the density matrix has 16
components. The sets of coincidence measurements allows, in principle, to recon-
struct it via an inversion procedure. Nevertheless, like any inversion algorithm,
the sensitivity to the noise can be problematic, leading to reconstructed density
matrices that are not even physical, with purity Tr(ρ̂2) above 1 for example. To
circumvent this problem, different methods can be applied such as the maximum
likelihood technique where the physical density matrix that resembles the most to
the matrix obtained by inversion is identified. Debates are still ongoing regarding
the best methods to use [187] and on the errors that can arise from the quantities
derived from the reconstructed matrices [188]. During the PhD thesis of Adeline
Orieux [189] and in the experiment reported in [86] demonstrating the generation
of Bell states with the source, the maximum likelihood technique was used to
reconstruct the density matrix from the polarization tomography measurements.
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Figure 6.1 – Sketch of the JSIs illustrating the scheme to obtain biphoton states
that are maximally entangled in polarization. (a) and (b): JSIs describing the
spectral properties of the pairs emitted by the two processes for a pump beam
with an angle of incidence +θdeg and −θdeg, respectively. (c): pumping the device
with both angles and removing the non-degenerate pairs allows to obtain a Ψ+

Bell state, since the two processes are now indistinguishable from a spectral point
of view. (d): Tuning curves of the photons as a function of the angle of incidence
θ, describing the same situation. The black disks and the crosses indicate the
photons we select and the ones we remove, respectively.

Pumping the device with two angles θdeg and −θdeg, filtering out the frequency
non-degenerate pairs, the output state can be written:

|ψ〉 = 1√
2

∫∫
dωs dωi

[
φ

+θdeg
HV (ωs, ωi)â†H(ωs)â†V (ωi)

+φ−θdeg
V H (ωs, ωi)â†V (ωs)â†H(ωi)

]
|vac〉

(6.7)

where φ+θdeg
HV (φ−θdeg

V H , respectively) is the JSAs of the HV (V H) process pumped
with the angle +θdeg (−θdeg). We have not yet made any assumption on the form
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of the pump beam with the exception of the angles of incidence. Since only polar-
ization measurements are performed in the tomography, the density matrix that is
reconstructed is not, in fact, the full density matrix |ψ〉 〈ψ| of our biphoton but the
reduced density matrix ρ̂ expressed in the basis {|HH〉 , |HV 〉 , |V H〉 , |V V 〉}. This
is obtained by taking the trace of |ψ〉 〈ψ| over the frequency degrees of freedom.
Starting from the expression (6.7), this amounts to:

ρ̂ = 1
2



|HH〉 |HV 〉 |V H〉 |V V 〉
0 · · · · · · 0... α+θdeg β

...
... β∗ α−θdeg

...
0 · · · · · · 0

 (6.8)

where the diagonal elements α+θdeg and α−θdeg represent the relative efficiencies of
the two processes and the antidiagonal element β indicates the overlap between
them:

α+θdeg =
∫∫

dωs dωi
∣∣∣φ+θdeg
HV (ωs, ωi)

∣∣∣2 (6.9)

α−θdeg =
∫∫

dωs dωi
∣∣∣φ−θdeg
V H (ωs, ωi)

∣∣∣2 (6.10)

β =
∫∫

dωs dωi φ
+θdeg
HV (ωs, ωi)φ

−θdeg
V H

∗
(ωs, ωi) (6.11)

The purity of the state is given by Tr[ρ̂2] = (α2
+θdeg

+α2
−θdeg

+2|β|2)/4. Making use of
the fact that α+θdeg +α−θdeg = 2, a pure state is obtained with α+θdegα−θdeg = |β|2.
Of course if we were to use two pump beams from independent lasers with the
same power, the overlap term β would vanish because of the independent phase
fluctuations which would be reflected in φ

+θdeg
HV and φ

−θdeg
V H , leading to a mixed

state. Our target state is obtained when all the terms have equal weights, namely:

α+θdeg = α−θdeg = |β| = 1 (6.12)
In fact, if the two processes have the same strength, i.e. α+θdeg = α−θdeg = 1, then
the joint spectrum overlap |β| corresponds to the concurrence C = |β|, a commonly
used entanglement estimator [190, 191, 192]∗. The phase of β, corresponding to
ϕ in equation (6.4), does not feature in C because it does not contribute to nor
does it degrade the entanglement of the state. For example if this phase is 0,
we obtain the |Ψ+〉 Bell state while with a π-phase, we get the |Ψ−〉 state, both
states being maximally entangled. In fact in many experiments, this phase is not
well controlled which results in a reduced fidelity to the |Ψ+〉 state, even though
the state is strongly entangled, a reason to discourage the use of the fidelity to
estimate the quality of the state that is obtained. In our scheme, ϕ is set by the
position of the pump beams on the waveguide. Indeed if the beam is offset from
the center of the sample, the signal and the idler photons will not travel through
the same length before escaping the waveguide, which will result in a non zero ϕ

∗A demonstration is given in appendix C.
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because of the birefringence of the sample. This is indeed equivalent to placing a
birefringent element in one of the output arms. As long as the position of the spot
of the pump beam is not moving during the course of the experiment, ϕ will not
fluctuate and the entanglement will be preserved.

In conclusion, to obtain a maximally entangled state in polarization, we need
to set up the two laser pumps such that α+θdeg = α−θdeg in order to excite the two
processes with the same strength, and at the same time make them as indistin-
guishable as possible to maximize the value of C = |β|. We note that the existence
of spectral correlations between signal and idler does not necessarily result in a
degradation of the produced entanglement as long as they are identical for both
processes, as can be seen in the definition of β.

6.3 Optimizing the entanglement in polarization
A very simple way to produce two coherent pump beams impinging at ±θdeg
consists in passing the pump beam through the center of a Fresnel bi-prism (see
Fig. 6.2). The angle of each prism can be chosen such that it deviates the pump
beam entering the first face with a normal incidence by θdeg. This is the solution
which has been adopted in the experiment reported in [86].

x

z
y

−θdeg+θdeg

Figure 6.2 – Scheme to produce pairs of photons entangled in polarization at
degenerate frequencies. A Fresnel bi-prism is used to obtain two coherent beams
impinging on the source at the degeneracy angles.

Unfortunately, if the initial beam is Gaussian, the two beams emerging from
the bi-prism will have opposite half-Gaussian shapes. Beams of this form will never
overlap perfectly because of chirality. This has an impact on the JSAs of the two
processes. Figures 6.3(a) and (c) report the the JSIs

∣∣∣φ+θdeg
HV

∣∣∣2 and
∣∣∣φ−θdeg
V H

∣∣∣2 of the
two processes with the bi-prism located at the optimal distance from the source.
For a beam of waist wp = 600 µm at the location of the biprism and a degeneracy
angle at λp = 759.4 nm amounting to θdeg = 0.349◦, this distance is 4 cm. We
see that the JSIs overlap almost perfectly. However their phase distributions do
not exactly correspond, which is revealed when looking at the Joint Temporal
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Intensitys (JTIs)
∣∣∣φ̃+θdeg
HV

∣∣∣2 and
∣∣∣φ̃−θdeg
V H

∣∣∣2 represented in figures 6.3(b) and (d). The
shape of each JTI corresponds to the refracted half-Gaussian with oscillations
due to the diffraction at the junction of the prisms. A which-path information is
present due to the non-optimal overlap of the two beams resulting in a degradation
of the entanglement.

Here we propose an alternative solution which consists in shearing the incident
pump beam into two replicas with a specific type of grating (see Fig. 6.4), designed
to diffract the incident intensity only into its first order with an angle ±θdeg. This
is possible if the grating transmission function td(z) is:

td(z) = cos
(2πz
d

)
(6.13)

where d ∼ λ
θdeg

is the period of the grating. In this case a normally incident
Gaussian beam with amplitude S(z, θ = 0) and waist wp is transformed into two
beams

S±(x, z) = 1
2S(z − z±,±θdeg) (6.14)

with
z± = ± tan θdeg (x− xG) = ±λ

d
(x− xG) (6.15)

where xG is the position of the grating. We thus create two copies of the inci-
dent Gaussian beam impinging onto the waveguide with opposite angles ±θdeg.
In this case, the optimal overlap is obtained if the grating is as close as possible
to the waveguide. This kind of grating can be realized with an intensity mask
corresponding to the absolute value of the sinusoidal transmission factor and a
phase mask to account for the alternating sign. They are at the basis of lateral
shearing interferometry, a technique of wavefront reconstruction which consists in
interfering replicas of the initial beam [193].

For a quantitative analysis, figure 6.5 reports the value of the concurrence
C = |β| obtained in the two cases as a function of the distance between the optical
element producing the two pumping beams and the waveguide. In the case of the
bi-prism, the concurrence saturates at 84%, corresponding to the optimal overlap
between the 2 half-Gaussians emerging from it. The situation is different with
the grating since we can obtain almost unity concurrence when its distance from
the samples tends to zero. Even if in the present experimental set-up it may be
difficult to reduce the distance to less than 1 cm, this already results in a photon
pair concurrence of 98%, corresponding to an improvement of 17% with respect
to the bi-prism configuration. We assumed a spectral filtering over a ±2.95 nm
spectral window corresponding to half the separation between the degenerated
and non-degenerated JSAs. We note that tighter filtering conditions also allow
to increase the value of the concurrence but at the expense of the brightness of
the source. Another possibility would consist in using the bi-prism with an initial
beam that is shaped to adopt a top-hat profile. In this case we would not suffer
from an asymmetry and the experimental difficulty would consist, just as with the
bi-prism alone, in finding the position which maximizes the overlap between the
beams.
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Figure 6.3 – Frequency-time properties of the photon pairs obtained with the
bi-prism scheme for the production of polarization Bell states. The biprism is
placed at the optimal distance from the waveguide to maximize the entanglement
of the state. (a): JSI of the HV process obtained by pumping the device at +θdeg.
(b): corresponding JTI. (c): JSI of the V H process pumped with the angle −θdeg.
(d): corresponding JTI.
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+θdeg−θdeg

Figure 6.4 – Scheme to produce pairs of photons entangled in polarization at
degenerate frequencies with a grating. In this case, the pump beam is sheared into
two beams impinging onto the sample at the degeneracy angles.
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Figure 6.5 – Numerical simulation of the concurrence as a function of the dis-
tance x between the source and the grating (red circle) or the source and the
bi-prism (blue square). The simulations are performed for the real structure on
a spectral window of ±2.95 nm around the degeneracy wavelength 2 × λp. The
initial pump beam has a waist wp = 600 µm, a pulse duration τp = 3.5 ps and
central wavelength λp = 759.4 nm. The spatial profile of the pump beam on the
ridge is obtained with Fresnel diffraction.

Other mechanisms than the spatial shape of the pump beam can be detrimen-
tal for the entanglement quality of the produced state; for example the slightly
different transverse profiles of the TE and TM modes. Nevertheless, in the exper-
iment [86] and in this work, the photons are coupled in single mode fibers which
act like spatial filters and cancel this effect. We note that in the absence of mode
filtering we may have to consider SPDC processes which involve photons with
higher order spatial modes.

Another phenomenon, which we considered in the calculation of the JSAs, is
the timing difference between TE and TM photons at the output of the source
because of the difference in group velocities of the photons and the length of the
sample. This is negligible in our case since the group velocities of the TE and TM
modes are almost identical (for degenerate photons) and the length of our sample
is rather short (L ≈ 2 mm). With other sources of polarization Bell states however,
such as the ones based on Periodically Poled Lithium Niobate (PPLN) waveguides
and whose typical lengths reach several centimeters, a stage of compensation is
necessary to prevent which-path information to deteriorate the entanglement in
polarization [194, 195].

Up to now in this analysis, we have neglected the reflectivity of the facets of the
waveguide. The following section is devoted to their influence on the entanglement
in polarization.



108
Joint Spectral Amplitude engineering for maximal entanglement in

polarization

6.4 Influence of the reflectivities of the facets
We resume the treatment of section 2.3 where we assumed the presence of polar-
izers on each side of the source, so that we could look at only one polarization on
each arm. Relaxing this hypothesis, the creation operator of the signal mode is
transformed, after n round-trips in the sample, into:

â†s,σ(ω)→ eikσL/2
(
r2n+1
σ eikσ2nLâi

†
σ(ω)

+tσ
n∑
j=0

[
r2
σe
ikσ2L

]j
b̂†s,σ(ω)

+tσrσeikσL
n∑
j=0

[
r2
σe
ikσ2L

]j
b̂†i,σ(ω)

) (6.16)

The first two terms are unchanged compared to the treatment of section 2.3.
The additional last term describes the photons emitted in the device in a given
direction but leaving the source on the opposite side. After a sufficient number
of round-trips (n→∞), all the energy will be extracted from the cavity, i.e. the
term in âi

†
σ(ω) in the previous equation becomes negligible. The original creation

operator then reads:

â†s,σ(ω) = f→σ (ω)b̂†s,σ(ω) + f←↩σ (ω)b̂†i,σ(ω) (6.17)

with f→σ and f←↩σ , the transmission and reflection Fabry-Perot functions:

f→σ (ω) = eikσL/2
tσ

1− r2
σe
ikσ2L (6.18)

f←↩σ (ω) = rσe
ikσLf→σ (ω) (6.19)

In the perspective of producing Bell states in polarization we cannot neglect any-
more the second term of equation (6.17). Applying the scheme described in the
previous sections with two suitable pumping angles and the spectral filtering of
non-degenerate photons, and expressing the occupation of the modes with kets of
the form |sH, sV, iH, iV 〉, the general state reads:

|ψ〉 = 1√
2

∫∫
dωH dωV

(
φ

+θdeg
HV (ωH , ωV )f→H (ωH)f→V (ωV ) |ωH , 0, 0, ωV 〉

+φ−θdeg
V H (ωV , ωH)f→H (ωH)f→V (ωV ) |0, ωV , ωH , 0〉

+φ+θdeg
HV (ωH , ωV )f←↩H (ωH)f←↩V (ωV ) |0, ωV , ωH , 0〉

+φ−θdeg
V H (ωV , ωH)f←↩H (ωH)f←↩V (ωV ) |ωH , 0, 0, ωV 〉

+φ+θdeg
HV (ωH , ωV )f←↩H (ωH)f→V (ωV ) |0, 0, ωH , ωV 〉

+φ−θdeg
V H (ωV , ωH)f→H (ωH)f←↩V (ωV ) |0, 0, ωH , ωV 〉

+φ+θdeg
HV (ωH , ωV )f→H (ωH)f←↩V (ωV ) |ωH , ωV , 0, 0〉

+φ−θdeg
V H (ωV , ωH)f←↩H (ωH)f→V (ωV ) |ωH , ωV , 0, 0〉

)

(6.20)
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The first two terms of this expression correspond to the situation where both
photons are directly transmitted by the facets and are thus closely related to
the general expression we have obtained ignoring the facets (see equation (6.7)).
The next two terms describe photons which are both subject to an odd number of
reflections before being transmitted. They can thus contribute to the entanglement
in polarization of the states depending on their spectral and temporal overlap. The
last four terms of the expression correspond to photons that leave the device by
the same side.

In the following we assume a perfect detection and collection in order to focus
on the direct implications of the Fabry-Perot on the state. Doing so, we discard
the last four terms of the former equation to reach a simpler expression of the
state, similar to equation (6.7):

|ψ〉 = 1√
2

∫∫
dωs dωi

[
φHV (ωs, ωi)b̂†H(ωs)b̂†V (ωi)

+φV H(ωs, ωi)b̂†V (ωs)b̂†H(ωi)
]
|vac〉

(6.21)

where φHV and φV H are effective JSAs for the production of a |HV 〉 or |V H〉 pair,
respectively, which are expressed:

φHV (ωs, ωi) =φ+θdeg
HV (ωs, ωi)f→H (ωs)f→V (ωi) + φ

−θdeg
V H (ωi, ωs)f←↩H (ωs)f←↩V (ωi) (6.22)

φV H(ωs, ωi) =φ−θdeg
V H (ωs, ωi)f→V (ωs)f→H (ωi) + φ

+θdeg
HV (ωi, ωs)f←↩V (ωs)f←↩H (ωi) (6.23)

The reduced density matrix of this state takes an identical form to the one we
have computed for perfectly transmissive facets – see equation (6.8) – with:

αHV =
∫∫

dωs dωi |φHV (ωs, ωi)|2 (6.24)

αV H =
∫∫

dωs dωi |φV H(ωs, ωi)|2 (6.25)

as the diagonal elements, and:

β =
∫∫

dωs dωi φHV (ωs, ωi)φ∗V H(ωs, ωi) (6.26)

as the anti-diagonal term characterizing the overlap between the two effective
processes. The target state is again obtained when αHV = αV H = |β| = 1 and
in particular the best entanglement in polarization is achieved by maximizing
the value of the concurrence C = |β|. We saw in section 5.1 that the visibility
of the Hong-Ou-Mandel (HOM) dip was not necessarily reduced by the partially
reflective facets, as long as the TE and TM Fabry-Perot resonances coincide where
the JSI takes a significant value. This is also the case for the production of Bell
states in polarization, the concurrence C reaching 1 when these resonances are
in phase since the JSAs in equations (6.22) and (6.23) are then indistinguishable
apart from polarization. With the Fabry-Perot transmissions we measured with
our sample at room temperature [148], the overlap of the Fabry-Perot combs is



110
Joint Spectral Amplitude engineering for maximal entanglement in

polarization

not optimal, and assuming a pump made of two Gaussian beams impinging with
+θdeg and −θdeg and overlapping perfectly at the center of the waveguide with a
waist wp = 600 µm, the concurrence saturates at C = 80.4%.

If the source is to belong to a fully integrated photonic circuit, with production,
processing and detection of the photons in a single integrated chip, the absence of
facets implies that we should not suffer from any reduction of the entanglement
due to such Fabry-Perot mechanisms. Nevertheless, even if the source is used as
a single element, means exist to prevent the degradation of the concurrence. Our
team is collaborating with Xavier Lafosse (LPN, Marcoussis) to deposit mirrors
on waveguide facets [196]. A work is currently ongoing to adapt this technique for
the deposition of anti-reflection coatings on the facets of our samples in order to
suppress any Fabry-Perot effect. Preliminary simulations suggest that reflectivities
as low as 0.01% can be expected.

6.5 Conclusion
In this chapter we have detailed the production of Bell states in polarization with
the counterpropagating phase-matching scheme. In particular we have shown that
a frequency-degenerate |Ψ+〉 Bell states can be produced by pumping the device
with two opposite angles of incidence and with a suitable frequency filtering on the
photons. We have linked the level of entanglement in polarization to the overlap
of the JSAs describing the two processes HV and V H occurring in the source and
have proposed a pumping scheme to optimize it with a spatial shearing grating.
Finally, we have studied the influence of the facets’ reflectivities.

A part of the work presented in this chapter has been published in [197].



Perspectives

The variety of topics treated in this work allow to open several perspectives.
We have already presented in section 4.4 a proposal to extend the technique of
reconstruction of the photons’ joint spectrum in order to include the phase. In sec-
tion 5.2, we presented methods to generate more exotic states. We mentioned the
deposition of anti-reflective coatings on the facets in order to suppress their poten-
tially undesired reflectivity. If reflective coatings are deposited instead, the comb
structure due to the Fabry-Perot cavity would be reinforced. A theoretical work
is in progress with the theory team to clarify the question of whether such states
would correspond to the proposal of Gottesman, Kitaev and Preskill [198], with a
strong potential for fault-tolerant quantum computing. Hereafter we present three
promising perspectives under study in our team.

Photonics Circuits The control of the biphoton state as well as the techniques
for characterizing it pave the way towards the use of our source in more complex
photonic circuits. Manipulation of photons on chip is already well established on
glass [34] and silicon [199, 55] platforms. More recently this issue started to be
tackled also on the III-V platform. These efforts have led to an integrated HOM
interferometer [46] and to antibunching experiments with embedded quantum
dots sources [200, 201]. Our team has also started to work on this hot topic with
the development of integrated beam-splitters, one of the fundamental building
blocks for on-chip generation and manipulation of photons. Different strategies
can be adopted to implement this operation. We have chosen the Multi-Mode
Interferometers (MMIs) because of their strong tolerance to fabrication inaccura-
cies. Figure 6.6 reports a Scanning Electron Microscope (SEM) picture of one of
our devices. The MMI has two long input arms which can be pumped with beams
of different spatial profiles, allowing the generation of photon pairs with the de-
sired properties. Photons impinging on the splitter are heralded by the detection
of their twins on the opposite side. The deposition of electrodes or a shift of the
pump beam spots on the input arms would allow to implement the optical path
delay required for the HOM experiment. After classical characterizations meant
to characterize the optical losses and splitting ratio of the sample, experiments are
now in progress to check the behavior of the device in the single photon regime. In-
deed, an integrated Hanbury Brown and Twiss experiment [202] can be performed
by pumping only one input arm and recording counts on the output arms.
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Figure 6.6 – Integrated beam-splitter observed with a scanning electron micro-
scope. The MMI can be seen in the center at the junction of all four arms. The
length of the coupling region is suitably chosen to obtain a 50/50 coupling ratio
at the wavelengths of interest.

Integration of the pump laser Our current pumping procedure with an ex-
ternal Ti:sapphire laser does not allow yet for a compact device. We thus do not
exploit the optoelectronic capabilities of the III-V platform. Indeed our team has
recently demonstrated a monolithic source of photon pairs in a collinear geom-
etry (the photon pairs and the pump beam are emitted in the same direction),
the device being electrically injected to lase on the pump mode and consequently
generate photon pairs by SPDC [58].

With our phase-matching geometry however, an edge emitting laser is not
suitable and the natural route leads to Vertical-Cavity Surface-Emitting Lasers
(VCSELs). In those lasers, active layers formed by quantum dots or quantum
wells are sandwiched in a microcavity delimited by two (top and bottom) Bragg
mirrors. An aperture for the optical field and the charge carriers is defined by
the controlled oxidation of an AlAs layer so that the laser beam is emitted from
the surface (towards the top). In electrically injected versions, this configuration
allows to get very efficient lasers with a low threshold and high optical power,
especially when VCSELs are combined in arrays.

In particular, the devices presented in [203] with their large rectangular aper-
tures are of great interest to compact our source. Electrically pumped VCSELs
emitting at 850 nm are demonstrated with extreme aspect ratio apertures such
as 5 × 125 µm2 or 10 × 200 µm2. This fits our needs concerning the pump beam
profile to pump the nonlinear waveguide over a long length and a narrow width.
The devices even seem to perform better than VCSELs with identical active area
but with square or circular apertures shapes, due to a better heat management
and carrier transport.

In a subsequent article [204], the same authors showed that a coherent emission
can also occur at two symmetric angles, a situation comparable to our scheme
to generate polarization entangled states. The accurate control of the angle of
emission might be an issue.
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While these results are encouraging, the advantages of our source are only un-
veiled when we can control both spatial and temporal properties of the pump beam
which is a great challenge, notably with compact semiconductor devices [205]. A
compromise between a fully monolithic device and one with an external laser could
be provided by Vertical-External-Cavity Surface-Emitting Lasers (VECSELs) that
are relatived to VCSELs with no top Distributed Bragg Reflector (DBR) so that
the cavity extends in free space, giving an extra control on the laser emission.

From our experience with the collinear source, we also know that the doping is
responsible for additional losses in the telecom band. It is thus very likely that the
active layers and the nonlinear interaction volume will not coincide. In essence,
keeping the versatility of the source of counterpropagating photons and improving
its compacity will be a great challenge.

Bridging single photons and optomechanics A last perspective of this work
is the study of the interaction of optical and mechanical resonances in our de-
vices. This will be done in the framework of a collaboration with I. Favero, ex-
pert in optomechanics, working in MPQ. Indeed, it has been shown that for the
GaAs/AlAs family of materials, a resonator structure based on distributed Bragg
reflectors and designed to confine photons can also efficiently confine acoustic
phonons [206]. Following these ideas, it has recently been shown that a picosec-
ond strain pulse injected into a vertical-cavity surface-emitting laser induces a
modulation of the lasing intensity at frequencies up to 40 GHz, corresponding to
the frequency of confined phonons [207]. Preliminary numerical simulations show
very similar properties on our ridge-microcavity, making this device a promising
candidate to explore quantum state transfer between optical photons and micro-
mechanical phonons. We could envision using the phonons to store information,
create optical delays or implement logic gates, opening the way to a new class of
on-chip processors of optical information.





Conclusion

Polarization has certainly been the most used degree of freedom for quantum
optics. The exploration and control of other properties of light is now a major
axis of development along with the miniaturization of quantum technologies.

The source at the heart of this work presents many advantages which make it a
very convenient device to demonstrate new techniques and a serious competitor in
quantum photonics. Indeed, its room temperature operation does not necessitate
cumbersome cryogenic systems; the emission of photons at wavelengths compati-
ble with the telecommunication networks allows the transmission of the photons
over long distance; finally, III-V semiconductor materials presents a strong po-
tential for miniaturization, integrating the pump laser to get a monolithic device,
thanks to their direct bandgap, or nesting the source in a fully functional photonic
circuits. The most interesting aspect of our device is certainly its versatility for
frequency-correlations engineering. Indeed the control of the frequency-time prop-
erties of photon pairs is of paramount importance especially for integrated devices
where the addition of spectral filtering is not necessarily practical: on one hand
for applications such as heralded single photon sources, correlations between the
signal and idler frequencies may be undesired. On the other hand, the accurate
engineering of these properties can be very beneficial for dense coding applications
taking advantage of the high-dimensional frequency Hilbert space of the photon
pairs. To verify this, fast, reliable and high resolution spectral characterization
techniques are needed. This is a difficult task, requiring the characterization of
the chronocyclic properties of pulses as with classical beams and of the correlations
existing between the signal and the idler, both at a very low power regime.

In this thesis, we have developed a theoretical description of light generation
with our device. We have highlighted the originality of the counterpropagating
phase-matching scheme with a transverse pump, where all the fields involved in
the SPDC process are separated outside the source. In particular we have devel-
oped an analytic description of the Joint Spectral Amplitude (JSA), the biphoton
wavefunction describing all the spectral and temporal properties of the photons.
Supported by numerical simulations, this analytic development takes into account
the properties of the pump beam, and those of the device, especially the influence
of the microcavity and the facets of the waveguide. We have also shown how to
derive, from the expression of the JSA, the Joint Temporal Amplitude and the
Chronocyclic Wigner Functions (CWFs), which can be more adapted to the de-
scription of the biphoton depending on the context of the study. Most importantly,
this theoretical development leads to the identification of the parameters of the



116 CONCLUSION

pump beam allowing to engineer the frequency properties of the photons. With
this source, the degree of frequency correlations can be modified by changing the
spot size of the pump beam on the waveguide. Modifying the angle of incidence of
the pump beam on the other hand allows to control the central wavelengths of the
photons. Moreover, correlating the wavevectors of the pump with the frequency
components of the pump pulse enables the production of uncorrelated photons
with different bandwidths. Expressing the photon pairs’ time-frequency proper-
ties in terms of CWFs, we have developed a general framework to describe states
with arbitrary complexity which may be obtained with modifications of the spatial
profile of the pump beams. In particular we have given examples of Schrödinger
cat-like states and compass states.

The demonstration of the frequency-engineering with our device was made
possible by the implementation of reliable characterization techniques. Compared
to techniques where the JSI is reconstructed by recording coincidences between
photons filtered by monochromators, the single-photon fiber spectrograph recon-
structs the JSI over the full spectral window. This reduces the integration time
required to get enough photons statistics and this allowed us check the degree of
frequency correlations of our photons. Nevertheless, the duration of the experi-
ment is still significant due to limitations imposed by the single-photon detection
and to the strong losses induced by the fiber. Moreover this technique is not
highly resolved because of the electronic jitters in the detection chains. We have
thus introduced a new method based on the stimulation of the SPDC process. A
monochromatic seed beam injected in the device acting as specific vacuum fluctu-
ations in the signal mode, stimulates the emission of idler photons corresponding
to a given slice of the JSA at the wavelength of the seed. Indeed the JSA plays
the role of a response function, even for this stimulated nonlinear process. The
idler power that is produced is sufficient to be detected and spectrally charac-
terized with classical instruments. It is thus possible to reconstruct the JSI, slice
by slice, in a shorter integration time, and with more resolution than previous
techniques. This allowed us to resolve features in the JSI so far unaccessible. Our
current implementation is limited to the norm the biphoton wavefunction, but we
have analyzed the feasibility of a scheme sensitive to both phase and intensity
of the JSA. Alternatively, we have theoretically shown that a generalized Hong-
Ou-Mandel interferometer, where both the photons’ frequency and arrival time
difference are manipulated, is particularly suitable to reconstruct the generated
biphoton state. We note that this technique is also accessible to non-parametric
sources.

Finally, we have theoretically analyzed the production of Bell states in polar-
ization. We have shown how entanglement between polarization and frequency can
be detrimental to the quality of such state. Indeed the Fresnel bi-prism used in our
first experimental demonstration introduced temporal which-path information, re-
sponsible for a level of entanglement lower than expected. We have proposed a
solution based on a grating used in wavefront reconstruction technique to get an
ideal situation where the entanglement is not limited by the pumping procedure
itself and can thus be maximal in theory. We have also identified that the central
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position of the spot of the pump beam is responsible for the phase ϕ in the max-
imally entangled state produced with our source: |Ψ〉 = 1√

2(|HV 〉 + eiϕ |V H〉).
We have finally shown the importance of the facets reflectivity on the level of
entanglement in polarization.

The results of this work have pushed forward the comprehension of the gen-
eration of light with our sources and give means to characterize and engineer the
states they generate. This thesis has allowed to develop many fruitful collabora-
tions with theoreticians, leading to measurement tools already adopted by several
groups and opening perspectives to engineer interesting states for quantum infor-
mation.





Appendix A

Source sample

In this appendix, we give the nominal structure of our samples. Fourier-Transform
Infra-Red (FTIR) measurements performed on the wafers allow to deduce the
real structure through numerical simulations of the reflectivity with thicknesses h
corrected according to hreal = hnominal × (1 + ∆h).

Number of periods Role Al content (%) Thickness h (nm)
1 Substrate 0

36 Bottom 90 70.8
Bragg 35 50.1

1 Buffer 90 125.1

4 Core 25 129.1
Core 80 104.3

1 Core 25 129.1
1 Buffer 90 125.1

14 Top 35 50.1
Bragg 90 70.8

1 Cap 0 46.2

Nominal epitaxial structure for the wafers 88P14 (or 89P14) (January 2009) and
F3W083 (April 2015). Unless stated otherwise, the samples used in this thesis
have been processed from the wafer 88P14.
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Figure A.1 – Reflectivity spectrum measured with the FTIR on wafer 88P14
(solid line) and numerically simulated with an adjustment ∆h = −2.4 % of the
nominal thicknesses (dashed line).
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Figure A.2 – Reflectivity spectrum measured with the FTIR on wafer F3W084
(solid line) and numerically simulated with an adjustment ∆h = −0.41 % of the
nominal thicknesses (dashed line).
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Characteristics of the Dispersion
Compensating Fibers
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Figure B.1 – Group delay dispersion ∂2k
∂ω2 ×l of the dispersion compensating fiber

spoolDMV1000907 – with l the length of the fibers – measured (black dots) and
linear fit to the experimental data (solid line): ∂2k

∂ω2×l = 1.37×10−35ω+1.88×10−20.
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Figure B.2 – Group delay dispersion ∂2k
∂ω2 ×l of the dispersion compensating fiber

spoolDMV1000908 – with l the length of the fibers – measured (black dots) and
linear fit to the experimental data (solid line): ∂2k

∂ω2×l = 1.42×10−35ω+1.94×10−20.



Appendix C

Concurrence and Joint Spectral
overlap

We show in this appendix the equivalence between the Concurrence C and the
overlap |β| between the JSAs of the processes HV and V H used in the production
of Bell states in polarization (see chapter 6).

To give the definition of the concurrence C(ρ̂) of a given density matrix ρ̂, we
must construct the matrix:

R̂ = ρ̂(σ̂y ⊗ σ̂y)ρ̂∗(σ̂y ⊗ σ̂y) (C.1)

where (σ̂y ⊗ σ̂y)ρ̂∗(σ̂y ⊗ σ̂y) is the “spin-flipped” density matrix. Here (σ̂y ⊗ σ̂y)
are Pauli matrices applied on both qubits, giving:

(σ̂y ⊗ σ̂y) =


|HH〉 |HV 〉 |V H〉 |V V 〉

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 (C.2)

The concurrence is then obtained according to [191, 192]:

C(ρ̂) = max{0;√r1 −
√
r2 −

√
r3 −

√
r4} (C.3)

where √r1 >
√
r2 >

√
r3 >

√
r4 are the square roots of the eigenvalues ri of R̂.

We recall the general form of the density matrix in our Bell states production
scheme given by equation (6.8):

ρ̂ = 1
2



|HH〉 |HV 〉 |V H〉 |V V 〉
0 · · · · · · 0... α+ β

...
... β∗ α−

...
0 · · · · · · 0

 (C.4)
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A few steps of calculation lead to the expression of R̂:

R̂ = 1
4



|HH〉 |HV 〉 |V H〉 |V V 〉
0 · · · · · · 0... α+α− + |β|2 2α+β

...
... 2α−β∗ α+α− + |β|2 ...
0 · · · · · · 0

 (C.5)

whose eigenvalues are given by r± =
(√

α+α− ± |β|
2

)2

. If the two processes HV

and V H have equal strength, then α+ = α− = 1. The concurrence is then obtained
by taking C = √r+ −

√
r−, leading to:

C = |β| (C.6)



Appendix D

A note on softwares

Most of the graphs presented in this thesis have been plotted with Gnuplot. Con-
cerning this tool, I am particularly indebted to Dr. Hagen Wierstorf and his
website gnuplotting.org. The diverging colormap has been devised by Kenneth
Moreland [208] providing an elegant alternative to the problematic jet/rainbow
colormap. For sketches, I made an extensive use of The Gimp and Inkscape. The
bibliography is managed with JabRef [209].
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We present a theoretical model to describe polarization-entanglement generation by spontaneous parametric
down conversion in a transverse pump configuration. It takes into account the effect of a resonant microcavity
for the pump beam and gives a direct link between the level of generated entanglement and the spatial profile of
the pump beam. A pumping scheme leading to the generation of high quality Bell states is proposed.
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I. INTRODUCTION

The process of spontaneous parametric down conversion
(SPDC) is a key ingredient for a large number of applications
in the domain of quantum communication and information
including quantum teleportation [1], quantum cloning [2,3],
quantum cryptography [4], and quantum computation [5]. As
the proposals for quantum information protocols with SPDC
become more numerous and sophisticated, the requirements
on SPDC sources become more varied and stringent. For
example, polarization-entanglement based protocols require
the violation of Bell inequalities of tens of standard devi-
ations [6], implying a high degree of control on the two
biphoton amplitudes; optical quantum computation demands
indistinguishable single photons implying a complete control
of their properties. For instance, the linear optical imple-
mentation of the ubiquitous CNOT gate relies on Hong-Ou-
Mandel interference [7], requiring a very high wave function
overlap between photons. Photon pairs produced by SPDC
are often entangled in several degrees of freedom (direction,
momentum, frequency, polarization, etc.); on one hand, this
can allow the production of hyperentangled states [8] that have
been shown to be beneficial both in quantum communications,
e.g., to increase the bit rate [9], and in quantum computation,
e.g., to reduce the number of necessary gates to perform a
logic operation [10]. On the other hand, the existence of
correlations on several degrees of freedom can destroy the
requisite indistinguishability by enabling one to learn about
one photon state by performing measurements on its twin.

For all these reasons, the availability of sources able to
generate versatile two-photon states according to a particular
quantum information protocol requires a deep understanding
of the entanglement generation process and the ability to
control it. A great deal of attention has been devoted to
the generation of two-photon states with specific spectral
properties; different schemes have been proposed based on
group velocity matching [11,12], on noncollinear phase-
matching geometries [13–17], or on the shaping of the pump
beam [18].

*Present address: Dipartimento di Fisica, Sapienza Università di
Roma, Piazzale Aldo Moro, 5, I-00185 Roma, Italy.
†sara.ducci@univ-paris-diderot.fr

Among these possibilities, a phase-matching scheme with
a transverse pump beam impinging on a nonlinear waveguide
allows us to generate counterpropagating twin photons [19].
This configuration presents the advantage of a complete
control on the frequency degree of entanglement regardless
of the dispersion relation of the waveguide, thus providing
extreme versatility [20,21]. This opens the possibility to
generate a very large variety of two-photon states spanning
the two-dimensional Hilbert space of polarization and the
infinite-dimensional space of frequency.

Starting from the recent experimental demonstration of
Bell states generation in a semiconductor microcavity [22]
based on this phase-matching scheme [23], this paper presents
a theoretical model of such a source taking into account
the pertinent physical parameters having an impact on the
generated entanglement. In particular, we study the effect of
the microcavity on the SPDC spectrum, we link the level of
generated entanglement to the joint spectral amplitude of the
biphoton state, consider the impact of imperfect detection on
state tomography, and we show how to optimize the pumping
scheme to get a maximum entanglement.

Figure 1 presents the working principle of the source: A
pump beam impinges on top of an AlGaAs ridge microcavity
generating two counterpropagating, orthogonally polarized
wave guided SPDC photons. The frequencies of the emitted
photons are fixed by energy and momentum conservation;
since the photons are emitted in opposite directions, two
type II interactions take place. In interaction (1) the signal
is TE (H) polarized and the idler is TM (V); in interaction
(2), the opposite occurs. Momentum conservation in the
epitaxial direction is satisfied through a quasiphase-matching
(QPM) structure of AlGaAs layers with alternating refractive
indices. In order to enhance the conversion efficiency, a
resonant cavity for the pump beam is implemented with two
Bragg mirrors surrounding the core of the waveguide [24].
Central frequencies for the signal and idler are given by the
phase-matching conditions for interactions

(1):

{
�ω1 = ωp − ωs − ωi = 0
c�k1 = ωp sin θ − ωsnH (ωs) + ωinV (ωi) = 0 (1)

and

(2):

{
�ω2 = ωp − ωs − ωi = 0
c�k2 = ωp sin θ − ωsnV (ωs) + ωinH (ωi) = 0 (2)

1050-2947/2014/89(3)/033815(8) 033815-1 ©2014 American Physical Society
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FIG. 1. (Color online) Counterpropagating phase-matching
scheme implemented in a semiconductor microcavity waveguide.
The waveguide is etched from an epitaxially grown AlGaAs layer
structure with alternating Al content, deposited on a GaAs chip
(the substrate). The cap layer on top of the sample protects the
lower structures from chemical degradation through contact with
the environment. Both the upper and the lower Bragg mirror have
a higher layer density than the QPM core, which is responsible for
quasiphase matching of the SPDC processes.

The tunability curves of the source are presented in Fig. 2.
The paper is organized as follows: In Sec. II we derive

the expression of the generated state taking into account a
Gaussian profile for the pump beam as well as the microcavity
structure. In Sec. III we consider polarization state tomography
and derive the expression of the concurrence, an entanglement
monotone, as a function of the source parameters and pumping
configuration. Section IV describes the treatment of noise
in the reconstructed density matrix, while Sec. V shows

FIG. 2. (Color online) Angular dependence of the signal and
idler wavelength of interactions 1 (solid lines) and 2 (slashed lines).
The black slashed lines correspond to pump beams at +θdeg and
−θdeg such that each process generates a frequency degenerate
photon pair. The birefringence �n = 6.1 × 10−3 between TE and
TM mode induced by the structuring of the waveguide device breaks
the complete symmetry of phase matching where the blue and the
red curves respectively coincide with each other. Black circles mark
the creation of photons at the intersections of the tuning curves and
the pump beam markers. Nondegenerate photon pairs are rejected
through filtering.

the impact of the pumping scheme on the quality of the
entanglement. Two cases are studied in detail: In the first one
the pump beam is engineered with a Fresnel biprism, while
in the second one a lateral-shearing grating is used. Finally,
Sec. VI presents the conclusions and perspectives of this work.

II. SPDC IN THE TRANSVERSE PUMP CONFIGURATION

If we consider a frequency-broadband SPDC process
in a collinear, spatially single-mode case in a monomode
waveguide, we can describe it with an effective Hamiltonian

Ĥ ∝
∫

dt Ĥ (t) =
∫ 1

2 L

− 1
2 L

dz

∫∫
dωs dωi

× â† (ωs) b̂† (ωi) ĉ (ωs + ωi) ei�kz + H.c., (3)

where L is the length of the interaction volume in the direction
of the interacting beams, and �k is their phase mismatch.
Integration over the waveguide width and height to compute
the spatial mode overlap between pump, signal, and idler are
routinely neglected, as they result in a constant factor that can
be dealt with in the normalization of the output state.

In a transverse pump configuration with a beam impinging
with a small, variable angle of incidence θ , the Hamiltonian
must be modified to reflect this new degree of freedom [14]:

Ĥj =
∫

dt Ĥj (t)

∝
∫∫

dωs dωi

∫ 1
2 L

− 1
2 L

dz ei�kj zS (z,θ )

×
∫

dx deff (x) u∗
s (x) u∗

i (x) up (x) eikp(ωs+ωi )x

× â†j (ωs) b̂†j (ωi) ĉ (ωs + ωi) + H.c. (4)

j ∈ {1,2} indicates interaction 1 or 2. Both phase-mismatch
functions �k1 and �k2 from Eqs. (1) and (2) result in
spectrally close counterpropagating, cross-polarized photon
pairs, but with switched polarizations relative to each other.
The transversal spatial distribution S of the pump field now
defines the interaction region together with the waveguide
boundaries at z = ±L

2 and thus enters the equation under the
integral in the z direction. The x integral tests the overlap
between the transversal signal and idler modes us and ui

with the longitudinal pump field amplitude up (x) eikp(ωs+ωi )x .
An appropriate variation of the effective nonlinear coefficient
deff (x) with period � leads to QPM in the x direction: kp ≈ 2π

�
.

Let us consider an incident Gaussian beam with a spatial
field amplitude S ′ in “beam coordinates” (x ′ is the beam
propagation axis and z′ its transverse axis, see Fig. 1) close
to focus x ′ = 0 so we can neglect phase front curvature. The
transverse amplitude is given by

S ′(z′) = S0 e
− z′2

w2
p → S (z,θ ) = S0 e

− (z cos θ )2

w2
p , (5)

where S is the function transformed into the waveguide
coordinate system, with wp the pump beam’s waist. Since the
waveguide thickness is typically much smaller than the pump
beam waist, we assume it to be constant in the x direction.

033815-2
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We assume a coherent pump beam, and a SPDC source
producing with high probability only single photon pairs, so
that higher order events are negligible. It is then justified to
substitute the pump mode operator ĉ (ω) with the c-number
valued spectral amplitude function γ (ω) of the pump state
|γ 〉:

ĉ (ω) |γ 〉 = γ (ω) |γ 〉 . (6)

However, within the integrated microcavity, the SPDC process
acts on the intracavity field rather than the original pump field.
We therefore first replace the operator ĉ in the Hamiltonians
Ĥj with the intracavity operator ĉcav defined in Appendix A
and find

ĉcav (ω) |γ 〉 = f+ (ω) γ (ω) |γ 〉 , (7)

with f+ the transfer function between extra- and intracavity
pump spectrum.

With this substitution, we define from Eq. (4) the joint
spectral amplitude A(j ) of the output photon pair of interaction
j ∈ {1,2} via

Ĥj |0〉 ∝ |ψpair,j 〉

= 1√
Nj

∫∫
dωs dωi A(j ) (ωs,ωi,θ ) â†j (ωs) b̂†j (ωi) |0〉 ,

(8)

with

A(j ) (ωs,ωi,θ )

= f+ (ωs + ωi) γ (ωs + ωi)

×
∫ 1

2 L

− 1
2 L

dz ei�kj (ωs,ωi ,θ)zS (z,θ )

×
∫

dx deff (x) u∗
s (x) u∗

i (x) up (x) eikp(ωs+ωi )x, (9)

giving the probability amplitude of an emitted photon pair
emerging in the modes âH (ωs) and b̂V (ωi) (j = 1), or âV (ωs)
and b̂H (ωi) (j = 2). Nj is a normalization constant.

We now introduce a second pump beam, mirror symmetric
to the first one with respect to the z axis, at angle −θ and at
the same frequency. This too will pump two possible SPDC
processes, making for a total of up to four distinct photon pairs
generated in the perturbative approximation. For the proper
choice of pump beam angle ±θdeg, as a consequence of the
symmetry around θ = 0 (see Fig. 2), each beam pumps one
frequency-degenerate process. By filtering out the additional
nonfrequency-degenerate photons, we create the superposition
state

|	(θdeg, − θdeg)〉

= 1√N12

∫∫
dωs dωi

[
A(1)(ωs,ωi,θdeg)â†H (ωs)b̂

†
V (ωi)

+A(2)(ωs,ωi, − θdeg)â†V (ωs)b̂
†
H (ωi)

] |0〉 , (10)

which—for sufficiently overlapping joint spectral amplitudes
A(1) and A(2)—constitutes a polarization entangled Bell state
with a normalization constant N12.

III. BELL STATE GENERATION AND TOMOGRAPHY

The generation of polarization Bell states is obtained by
impinging with two pump beams at signal and idler frequency
degeneracy angles ±θdeg (cf. Fig. 2), such that a superposition
of two spectrally overlapping photon pairs with reversed
polarizations is created.

A complete reconstruction of the produced polarization
state is usually done by a state tomography [25]. If only
polarization measurements are performed and frequencies are
not measured, it is convenient to work with the reduced state
obtained by taking the trace over frequencies of the produced
state ρ̂(θdeg, − θdeg). We can thus calculate the reduced state
and then evaluate how its purity is linked to the parameters of
the system. Starting from

ρ̂(θdeg, − θdeg) = |	(θdeg, − θdeg)〉 〈	(θdeg, − θdeg)| (11)

and taking the trace over frequencies, we obtain the reduced
state

ρ̂ = α1 |HV 〉 〈HV | + α2 |V H 〉 〈V H |
+β∗ |V H 〉 〈HV | + β |HV 〉 〈V H | , (12)

with

α1 = 1

N12

∫∫
dωs dωi |A(1)(ωs,ωi,θdeg)|2,

α2 = 1

N12

∫∫
dωs dωi |A(2)(ωs,ωi, − θdeg)|2, and

β = 1

N12

∫∫
dωs dωiA(1)(ωs,ωi,θdeg)A(2)∗(ωs,ωi, − θdeg).

(13)

While the squared ratio of α1 and α2 gives the relative strength
of both SPDC interactions, β quantifies the overlap between
their output photon pairs in time and frequency.

The reduced state is then represented as a 2 × 2 density
matrix, in the basis (|HV 〉 , |V H 〉). The two eigenvalues λ−
and λ+ are

λ± = 1
2 [α1 + α2 ±

√
(α1 − α2)2 + 4|β|2]

= 1
2 {1 ±

√
1 + 4[|β|2 − α1(1 − α1)]}, (14)

where the normalization condition α1 + α2 = 1 has been
used. Purity and the entanglement in polarization can now be
computed and linked to α1 and |β|2. We note that these integrals
depend on frequency correlation amplitudes and their overlap,
which in turn depend on the spatial degrees of freedom of the
pump.

The matrix ρ̂ is pure if and only if Tr[ρ̂2] = 1, or λ2
− + λ2

+ =
1. Using λ− + λ+ = 1, this is equivalent to λ− = 0, that is

|β|2 = α1(1 − α1) (15)

[see Eq. (14)]. Since α1 � 1, the relation |β|2 � 1
4 always

holds. In that case λ+ = 1 and the corresponding eigenvectors
are

λ+ = 1 → 1√
1 − α1

(
β

1 − α1

)
,

λ− = 0 → 1√
α1

(
β

−α1

)
.

(16)
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ρ̂ can thus be written as ρ̂ = |φ〉 〈φ| with

|φ〉 = 1√
1 − α1

[β |H,V 〉 + (1 − α1) |V,H 〉] . (17)

The pure state is maximally entangled in polarization if the
two, orthogonal, contributions have an equal weight, that is

|β|2 = (1 − α1)2. (18)

To satisfy both conditions of purity [Eq. (15)] and maximum
entanglement [Eq. (18)] at the same time, the relevant elements
of the reduced density matrix ρ̂ too must have equal weight,
that is

α1 = α2 = 1
2 = |β| . (19)

The equality α1 = α2 translates the fact that both interactions
have equal contributions: This is a necessary but nonsuffi-
cient condition. Indeed, the two interactions must also be
indistinguishable to suppress which-path information in the
frequencies of the photons. This condition is obtained when
the joint spectral amplitudes A(1) and A(2) characterizing
interactions 1 and 2 perfectly overlap, therefore when the
value of |β| = ∫∫

dωs dωi |A(1)A(2)∗| is equal to 1/2. Note
that this joint spectrum overlap |β| is directly linked to the
concurrence C, a commonly used entanglement estimator, via
C = 2|β| [22,26].

In conclusion, to obtain a maximally entangled state in
polarization, we need to set up the two laser pumps such that
α1 = α2 in order to excite the two processes with the same
strength, and at the same time make them as indistinguishable
as possible to maximize the value of |β| (or alternatively
of C) by minimizing the distinguishability of the frequency-
degenerate photon pairs from interactions 1 and 2. We note that
the existence of spectral correlations between signal and idler
does not necessarily result in a degradation of the produced
entanglement. This can be seen in the definition of β: Like
the HOM interference between the photons from a single
SPDC process, it depends on the spectral symmetry between
signal and idler, which does not preclude spectral correlation.
A practical solution to realize this will be described in Sec. V.

IV. DETECTOR DARK COUNTS AND
BACKGROUND LIGHT

The theoretical model presented in the previous sections
gives a direct link between entanglement and controllable
parameters involved in the experiment, and has been used
to analyze the results reported in the polarization state
tomography experiment described in [22]. The fact that the
fidelity to the Bell state |ψ+〉 is Fraw = 〈ψ+| ρ̂exp |ψ+〉 = 0.83
rather than 1 is—according to this model—partly due to
residual distinguishability between both nonlinear processes.
This is equivalent to the loss of coherence between the two
possible polarization states of the entangled photon pair, but
background light and detector dark count events also have this
effect.

With pB the detection probability of a background event
(from either background light or dark counts), the measure-
ment operator for a single photon detector with quantum
efficiency η (measuring behind a polarizer transmitting only

vertically polarized light) takes the form

μSPD = pB |0〉 〈0| + (η + pB − ηpB) |V 〉 〈V | . (20)

The term pB |0〉 〈0| reflects the possibility of a detection
event when there is no input photon, while the factor to
the vertical term accounts for the possibility of detecting an
incoming photon, or a background event, or the occurrence
of both. Plugging this measurement operator into the state
tomography method after [25], we find the reconstructed
polarization entangled two-photon state of an ideal input state
(1 − pPDC) |0〉 〈0| + pPDCρ̂. For ρ̂ an input state according
to Eq. (12), the result of the tomography method is well
approximated by

ρ̂r ≈ 1

N
η2 (1 − pB)2 pPDC ρ̂

+ 1

N

[
ηpB(1 − pB)pPDC + p2

B

]
1 (21)

as long as |α2 − α1| � 1, that is if SPDC interaction 1 is
as strong as interaction 2. pPDC is the probability for an
entangled photon pair to be emitted. The first summand of
ρ̂r represents the “real” coincidence events. The second term
is caused by coincidence events that stem partly or fully from
(incoherent) background events, and thus is proportional to
the completely mixed state 1

41. N = pPDCη2 (1 − pB)2 + 4 +
pPDCηpB (1 − pB) + 4p2

B is a normalization constant.
We apply this noise model by comparing the expected

fidelity Fnoise = 〈ψ+| ρ̂r |ψ+〉 with the experimental fidelity
Fraw = 0.83 ± 0.04 demonstrated in [22]. Taking from there a
theoretical optimal value for |β| = 0.43, its phase (according
to experiment) arg (β) = −0.17, the background coincidence
event probability p2

B = 3.5 × 10−7 (from dark counts and
background light), and absolute detection efficiency of η =
0.13 × 0.25 (consisting of photon losses both in the exper-
imental setup and in the detection, respectively) we find
Fnoise = 0.79.

Since the calculated fidelity is compatible with the error
interval of the experimental value, we conclude that the
treatment of systematic errors presented here, which takes into
account imperfect overlap of the SPDC pump beams as well as
background light and detector dark counts, adequately models
our experiment.

V. POLARIZATION-ENTANGLEMENT OPTIMIZATION

Different mechanisms can be detrimental for the en-
tanglement quality of the produced state; for example the
slightly different transverse profiles of the TE and TM modes.
Nevertheless, in the experiment of Ref. [22] and in this
work, the photons are coupled through single mode fibers
which act like spatial filters and cancel this effect. Another
phenomenon which often requires a compensation stage is the
timing difference between TE and TM photons at the output
of the source. In our case the birefringence of the device is
very weak and the length of the waveguide sufficiently small
such that the delay acquired by orthogonally polarized photons
(88 fs) is well below their coherence time (typically 10 ps). This
mechanism is nevertheless taken into account in our analysis of
the overlap of the joint spectral amplitudes of the two possible
interactions. In this section we compare the impact of two
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FIG. 3. (Color online) Waveguide refractive index structure and
the amplitude modulus |A| of the guided transversal signal (bold
dashed line) and idler (bold solid line) modes and the longitudinal
pump field (thin solid line) in the medium.

different pumping configurations on the quality of polarization
entanglement; we will show that the main contribution in our
case comes from the spatial profile of the pump beam.

Starting from the amplitude distribution of the pump
beam on top of the waveguide, the joint spectral amplitudes
associated with the two interactions can be numerically
evaluated, taking into account the epitaxial structure of the
device through a standard transfer-matrix method [27]. This
allows us to determine the transversal signal and idler modes
profiles (Fig. 3). The resonant longitudinal pump mode was
obtained with a scattering matrix method [28].

The necessary parameters can be found in Appendix B.
From this we can calculate the parameter β presented in
Sec. III, which is directly related to the amount of entanglement
generated by the source.

A very simple way to produce two coherent pump beams
impinging at ±θdeg is passing the pump beam through the
center of a Fresnel biprism (see Fig. 4). The angle of each
prism can be chosen such that it deviates the pump beam
entering the first face with a normal incidence by θdeg. This

FIG. 4. (Color online) Bell state generation with a Fresnel biprism.

FIG. 5. (Color online) Bell state generation with a grating.

solution has been adopted in Ref. [22]. A second possibility
consists of shearing the incident pump beam into two replicas
with a specific type of grating (see Fig. 5), designed to diffract
the incident intensity only into its first order with an angle
±θdeg. This is possible if the grating transmission function
td (z) is

td (z) = cos

(
2πz

d

)
, (22)

where d ∼ λ
θdeg

is the period of the grating.
In this case a normally incident Gaussian beam with

amplitude S (z,θ = 0) and waist wp is transformed into two
beams:

S± (x,z) = 1
2S(z − z±, ± θdeg), (23)

with

z± = ±tan(θdeg) (x − xG) = ±λ

d
(x − xG), (24)

where xG is the position of the grating.
We thus create two copies of the incident Gaussian beam

impinging onto the waveguide with opposite angles ±θdeg.
This kind of grating can be realized with an intensity
mask corresponding to the absolute value of the sinusoidal
transmission factor and a phase mask to account for the
alternating sign [29].

To achieve a perfect entanglement in polarization, the
joint spectral amplitudes of the two interactions must be
identical: In this way, no which-path information is associated
to the frequency degree of freedom. Their absolute difference

FIG. 6. (Color online) Absolute value of the difference between
A(1) and A(2) in the case of the biprism. The degeneracy angles for
the two pumping beams are obtained for a biprism angle α = 41′10′′.
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FIG. 7. (Color online) Absolute value of the difference between
A(1) and A(2) in the case of the grating. The degeneracy angles for the
two pumping beams are obtained for a grating period d = 125 μm.

|A(1)(θdeg) − A(2)(−θdeg)| can be used to visualize the possible
entanglement degradation of the generated Bell states, since
we find ∫∫

dωs dωi |A(1)(θdeg) − A(2)(−θdeg)|2

= α1 + α2 − 2|β| = 1 − C (25)

using the definitions and results of Sec. III. As expected,
the concurrence C tends towards unity when the integral of
Eq. (25) tends to zero, namely when the two processes are
indistinguishable.

Figures 6 and 7 show this for the two cases of biprism and
grating; we assume a pulsed, Gaussian pump beam with waist
wp = 0.6 mm at λpump = 759 nm and with temporal width
τpump = 3.5 ps, optimized for the generation of frequency-
uncorrelated states [22]. The biprism is placed at a distance
of 4 cm where the obtained concurrence C is optimal and the
grating at a distance of 1 cm. It is clear that the overlap of
the two joint spectral amplitudes is higher when the grating
solution is used: The smaller the volume below the represented
surface, the higher is the obtained entanglement.

For a quantitative analysis, Fig. 8 reports the value of the
concurrence and |β| obtained in the two cases as a function
of the distance between the optical element producing the

FIG. 8. (Color online) β and concurrence as a function of the
distance between biprism (circles) or the grating (squares) and the
waveguide. The conditions of Figs. 6 and 7 are indicated by dashed
circles.

two pumping beams and the waveguide. In the case of the
biprism, the concurrence saturates at 0.86, corresponding to
the optimal overlap between the two half-Gaussians emerging
from it. The situation is different with the grating since we
can obtain almost unity concurrence simply by moving it
towards the waveguide, as the overlap between both pump
beams monotonically decreases with increasing distance. Even
if due to space constraints in an experimental setup it may be
difficult to reduce the distance to less than 1 cm, this already
results in a photon pair concurrence of 0.97, or an improvement
of 13% with respect to the optimal biprism configuration.

VI. CONCLUSION

We have provided an extensive theoretical model to describe
the generation of polarization entanglement by SPDC in a
semiconductor waveguide with a transversal pump configura-
tion. We have analyzed the effect of the resonant cavity for
the pump beam, of its spatial profile, and of the background
noise on the level of generated entanglement, comparing our
model with the experimental results of Ref. [22]. Finally, we
have proposed a pumping scheme based on a lateral-shearing
grating, to improve the entanglement level by at least 13%.
These results open the way to fully exploit the versatility
of the transversal pump configuration for SPDC: The ability
to adapt the interaction volume within the waveguide by
modulating the transversal pump field affords a spectral
control of the process far beyond that of a typical collinear
scheme, allowing for the creation of more exotic, spectral
and polarization hyperentangled photon pair states [6], with
a quantum information density surpassing that of the purely
polarization entangled state [30,31].
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APPENDIX A: FABRY-PEROT CAVITY

A convenient way to enhance the conversion efficiency of
the source is the implementation of a resonant microcavity for
the pump beam. However, there is also an effect on the SPDC
biphoton spectrum, which we will consider in this Appendix.
For the sake of simplicity, let us assume a very simple
plane two-mirror cavity, enveloping the waveguide in epitaxial
direction x. The medium inside the cavity shall only affect
the incoming pump beam by dispersion, we neglect nonlinear
effects and absorption. The sketch in Fig. 9 depicts the
elements involved: Each semitransmissive mirror is described
as a beam splitter BS1 and BS2 and we choose imaginary
transmission coefficients it1,it2 and real reflection coefficients
r1,r2, respectively. A coherent, monochromatic laser beam
with linear polarization in the y direction at frequency ω in
mode ĉ+

0 (ω) enters the system with an incidence angle θ . This
angle shall be small enough not to significantly reduce the
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FIG. 9. (Color online) Simple cavity model with two parallel,
plane semitransparent mirrors BS1 and BS2 separated by a distance D

and refractive index np inside the medium between them and beneath
BS2 in the substrate. The pump beam’s incidence angle is θ , and θ ′

inside the medium. The operators ĉ±
i are the monochromatic, plane

wave mode operators of the system.

spatial overlap between the counterpropagating cavity modes
so as to let us assume plane wave modes. Inside the cavity,
the beam travels under the refracted angle θ ′, populating
two counterpropagating modes ĉ±

1 (ω). Finally, ĉ+
2 and ĉ−

0
are the the cavity’s output modes. Mode ĉ−

2 can also act as
input mode, but in our case it faces the waveguide sample’s
substrate and thus can be said to be unpopulated. During one
round trip an intracavity beam picks up a phase difference
2ϕ = 2npDcosθ ′ω

clight
= ωcosθ ′

�ν
with respect to the incident beam,

where np is the pump refractive index of the medium and �ν

is the free spectral range of the cavity at normal incidence. To
accurately predict the SPDC output states, we now define the
intracavity field modes [32] for our setting.

Since the cavity consists only of linear optical elements
(discounting the effects of the χ (2)-nonlinear medium as
negligible), we can determine its effect on each spectral
component at a sharp frequency ω one at a time, even for
a short, broadband pump pulse. A monochromatic beam is
completely delocalized in time, so we look for a steady-state
solution of the coupled beam splitter input and output relations
of the system:

(
ĉ+

1
ĉ−

0

)
=

(
it1 r1

r1 it1

)(
1 0
0 eiϕ

)(
ĉ+

0
ĉ−

1

)
(A1)

and
(

ĉ+
2

ĉ−
1

)
=

(
it2 r2

r2 it2

)(
eiϕ 0
0 1

)(
ĉ+

1
ĉ−

2

)
. (A2)

The right matrix in Eqs. (A1) and (A2) applies a phase shift
by ϕ to intracavity mode ĉ±

1 for having completed half a
round trip, and the left matrix applies the respective beam
splitter operation. Solving for the intracavity modes ĉ±

1 yields

expressions depending on the cavity input modes ĉ+
0 and ĉ−

2 ,

ĉ+
1 = i

t1 ĉ+
0 + t2r1e

iϕ ĉ−
2

1 − r1r2e2iϕ
,

ĉ−
1 = i

t1r2e
iϕ ĉ+

0 + t2 ĉ−
2

1 − r1r2e2iϕ
.

(A3)

We can now define an overall cavity mode operator as the
superposition of the directional intracavity operators:

ĉcav (ω) = ĉ+
1 (ω) + ĉ−

1 (ω)

= f+ (ω) ĉ+
0 (ω) + f− (ω) ĉ−

2 (ω) , (A4)

with

f+ (ω) = it1(1 + r2e
iϕ)

1 − r1r2e2iϕ
(A5)

the cavity’s transfer function for a pump beam entering through
BS1. The expression for f− can be gained by swapping t1 with
t2, and r1 with r2. Replacing ĉ → ĉcav in the definition of the
SPDC Hamiltonians Ĥj and applying it to a two coherent beam
input state |γ +

0 〉 ⊗ |γ −
2 〉 with field amplitude γ −

2 → 0 (i.e., no
input beam from “below”) will result in a modulation of the
SPDC biphoton spectral amplitudes by the transfer function
f+ only:

A(j ) (ωs,ωi,θ ) → A(j ) (ωs,ωi,θ ) × f+ (ωs + ωi) . (A6)

Since we assumed input mode c−
2 to be unpopulated, the

respective transfer function f− does not feature here.

APPENDIX B: WAVEGUIDE DEVICE AND
SIMULATION PARAMETERS

Table I shows the aluminum content and the thicknesses
of the different layers in the heterostructure of the waveg-
uide source. AlGaAs refractive indices are then calculated
according to [33]. To calculate the frequency dependent
effective indices of the TE and TM modes, we use a standard
transfer matrix method [27]. At degeneracy, for example,
nTE = 3.0987 and nTM = 3.0865. This allows us to determine
the phase mismatch �k for both interactions [Eqs. (1) and (2)].

TABLE I. Composition of the heterostructure of the counterprop-
agating source used in the simulation and experiments of [22] and
[24].

Number of cycles Role xAl (%) Thickness h (nm)

1 Substrate 0
36 Lower 90 70.8

Bragg 35 50.1
1 Buffer 90 125.1
4 Core 25 129.1

Core 80 104.3
1 Core 25 129.1
1 Buffer 90 125.1
14 Upper 35 50.1

Bragg 90 70,8
1 Cap 0 46.2
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We assume a hyperbolic secant shape for the pump spectrum:

γ (ω) = sech

[
0.891

(
ω − 2πc

λp

)
�τp

]
, (B1)

with pulse duration �τp = 3.5 ps and central wavelength λp =
759.4 nm. The pump spatial shape is a Gaussian S (z) = e

− z2

w2
p

with waist wp = 0.6 mm, incident on the waveguide with an
angle θdeg = 0.349◦. The microcavity is treated according to
Eq. (A5). The phase is adjusted so that the resulting Airy peak
is centered at λp = 759.4 nm. This peak has a full width half
maximum of 0.4 nm.

With these parameters we can then calculate A(j ) (ωs,ωi,θ )
for both interactions according to Eq. (9).
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Abstract Quantum optics plays a central role in the study of
fundamental concepts in quantum mechanics, and in the devel-
opment of new technological applications. Typical experiments
employ sources of photon pairs generated by parametric pro-
cesses such as spontaneous parametric down-conversion and
spontaneous four-wave-mixing. The standard characterization
of these sources relies on detecting the pairs themselves and
thus requires single photon detectors, which limit both mea-
surement speed and accuracy. Here it is shown that the two-
photon quantum state that would be generated by parametric
fluorescence can be characterised with unprecedented spectral
resolution by performing a classical experiment. This stream-
lined technique gives access to hitherto unexplored features
of two-photon states and has the potential to speed up design
and testing of massively parallel integrated nonlinear sources
by providing a fast and reliable quality control procedure. Ad-
ditionally, it allows for the engineering of quantum light states
at a significantly higher level of spectral detail, powering future
quantum optical applications based on time-energy photon cor-
relations.

High-resolution spectral characterization of two photon
states via classical measurements

Andreas Eckstein1, Guillaume Boucher1, Aristide Lemaı̂tre2, Pascal Filloux1, Ivan Favero1,
Giuseppe Leo1, John E. Sipe3, Marco Liscidini4, and Sara Ducci1,∗

1. Introduction

One of most utilized strategies to generate quantum corre-
lated photons is exploiting spontaneous parametric down-
conversion (SPDC), the spontaneous fission of a “pump”
photon into a pair of photons, “signal” and “idler”, in a
nonlinear medium (see Fig. 1a). In general, the probability
of such an event is very small. Thus the quantum state de-
scribing the radiation field in the frequency regime of signal
and idler is mostly the vacuum state |0〉, but it also contains
a normalized two-photon component

|ψpair〉 = 1√
2

∑
ν,η

∫∫
dω1 dω2 φν,η(ω1, ω2)

× â†ν(ω1)â†η(ω2) |0〉 . (1)

with a small probability amplitude γ ; here |γ |2 is the
probability with which a photon pair is emitted, ν and
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Paris Cedex 13, France
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4 Department of Physics, University of Pavia, Via Bassi 6, I-27100 Pavia, Italy
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η label the modes into which the photons are gen-
erated, and ω1 and ω2 indicate their frequencies. The
biphoton wavefunction φν,η(ω1, ω2) characterizes all prop-
erties of the two-photon state, and it describes any
quantum correlation between the two emitted photons;
φν,η(ω1, ω2) is determined by the medium in which SPDC
occurs, as well as the pumping scheme [1]. In particular,
|φν,η(ω1, ω2)|2 is known as the joint spectral density (JSD),
with |φν,η(ω1, ω2)|2dω1dω2 being the probability of gener-
ating “photon 1” in the mode ν with frequency within dω1 of
ω1, and “photon 2” in the mode η with frequency within dω2
of ω2.

So far, the JSD has been obtained by performing spec-
trally resolved single photon coincidence measurements
[2–4]. In practice this strategy is constrained by the pair
generation probability, which must be much smaller than
unity within the time resolution of the single photon detec-
tor; otherwise an error would be introduced in the measured
spectral correlations by the detection of multiple photon
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Figure 1 Working principle: (a) In a sample with a second order
optical nonlinearity, SPDC converts a photon from the coherent
pump pulse into a signal and idler photon pair with some probabil-
ity. (b) If a coherent “seed” beam is introduced into the nonlinear
sample in the mode of either the signal or the idler photon, a
DFG process takes place and the conversion rate of pump pho-
tons is stimulated and increased by a factor proportional to the
seed beam power. (c) Reconstruction of a typical JSD, shared by
the SPDC and the DFG process for the same nonlinear sample
and the same pump configuration. In the SPDC case, the emit-
ted signal and idler photons are analyzed with spectrometers.
By single photon coincidence detection of each spectrometer’s
transmission, the intensity of a “pixel”, corresponding to the joint
transmission of both spectrometers’ filter characteristics, is mea-
sured. The whole JSD can be reconstructed after collecting a
sufficient number of events. In the DFG case, a narrow-band
seed laser beam at frequency ωseed

1 stimulates the emission of
a spectrally pre-conditioned coherent output beam in the idler
mode. This spectrum is proportional to a “slice” of the JSD cor-
responding to the injected wavelength (see Eq. 2). Sweeping the
seed wavelength allows the reconstruction of the JSD.

pairs. Moreover, after the detection event each single photon
detector has to be re-set to an operational state; this results
in a deadtime τD , which limits the maximally detectable
coincidence rate to τ−1

D . These constraints lead to unavoid-
able limitations in the spectral resolution with which the
JSD can be determined. On one hand, a large number of
coincidences is required for reasonably low relative errors,
demanding long integration times. On the other hand, short
experimental runs are desirable to minimize any drift in the
experimental conditions and to allow the characterization
of a large number of sources. Both of these requirements
cannot be satisfied simultaneously, and so the development
of convenient characterization strategies for quantum cor-
related photons, necessary for the emergence of advanced
quantum optical applications in integrated devices [5–10],
remains an outstanding technological challenge.

An alternative approach can be envisioned by recalling
that, while SPDC can be described only in the framework of
quantum theory, it can be viewed as difference frequency
generation (DFG) in the quantum limit. Indeed, in DFG
the conversion of pump photons to signal and idler pairs is
stimulated by a seed beam, so SPDC can be considered as
a DFG process stimulated by vacuum power fluctuations

[11]. The existence of a corresponding classical process
naturally prompts one to question if it is possible to gain
information about the quantum process by investigating
only its classical analog. In the past, DFG has been used
to determine the phase-matching function of SPDC sources
[12, 13]. It has also been experimentally demonstrated that
seeded four-wave mixing (FWM) can be used to directly
determine the number of pairs that would be generated
by spontaneous FWM in ring resonators [14]. Theoretical
studies have shown that DFG can be similarly used to de-
termine the number of pairs that would be generated by
SPDC, both in ring resonators and in other structures such
as waveguides [11]. In another context, DFG has been ex-
ploited for the realization of quantum cloning [15].

In this letter we extend this classical-quantum con-
nection even further, and demonstrate experimentally that
quantum correlations of photon pairs that would be gener-
ated by SPDC can be investigated through measurements
of the corresponding DFG process [16]. Besides the in-
triguing fundamental aspect of this result, we show that
our approach makes it possible to achieve an outstand-
ing spectral resolution and increase data acquisition rates
well beyond the state-of-the-art for spectrally resolved co-
incidence measurements [17, 18]. Finally, as one moves
from SPDC to DFG, the increase of the generated output
beam intensity by several orders of magnitude allows the
replacement of single photon detectors with an optical spec-
trum analyzer (OSA), a widely available general purpose
instrument.

The strategy we employ is based on the fact that, pro-
vided the same pumping scheme, the biphoton wavefunc-
tion φν,η(ω1, ω2) that would be relevant in SPDC plays the
role of the response function of the structure that charac-
terizes the generation of the stimulated light by DFG [16].
This is due to the fact that SPDC and DFG share the same
phasematching configuration and pump spectrum and thus
the same spectral correlation function, as indicated in Fig. 1.
In particular, the average number of photons stimulated in
the mode η with energy between ω2 and ω2 + δω2 by a
coherent seeding beam exiting the system in mode ν and
having energy centered at ω1 with a width of δω1 can be
written as

〈â†η(ω2)âη(ω2)〉
Bν (ω1)

δω2

≈ 2|Bν(ω1)|2|γ |2|φν,η(ω1, ω2)|2δω2δω1

≡ |Bν(ω1)|2 〈â†η(ω2)âη(ω2)â†ν(ω1)âν(ω1)〉 δω2δω1 (2)

where |Bν(ω1)|2 is the average number of photons in the
coherent seeding beam, and 〈â†η(ω2)âη(ω2)â†ν(ω1)âν(ω1)〉
δω2δω1 is the average number of pairs generated within
δω2 and δω1, by SPDC. Hence, Eq. 2 links the intensity
of the signal stimulated via DFG (shown in Fig. 3) to the
number of coincidences given by the photon pairs gener-
ated via SPDC in the corresponding experiment (Fig. 2).
Thus, by scanning the coherent seeding beam over the full
spectrum in a DFG experiment (see Fig. 1), it is possible to
obtain the JSD, |φν,η(ω1, ω2)|2, that one would extract from

www.lpr-journal.org C© 2014 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



LASER
& PHOTONICS
REVIEWS

L78 A. Eckstein et al.: High-resolution spectral characterization of two photon states via classical measurements

Figure 2 Sketch of the experimental setup for SPDC-based
spectral correlation measurements. A pump pulse incident from
the top of the semiconductor device leads to the creation of coun-
terpropagating pairs of signal and idler photons in the waveguide.
One of the two possible type II phase-matched processes is se-
lected with polarization optics (HWPa/b, PBSa/b) and two fiber
single photon spectrometers [4] are used to analyze signal and
idler photon. By introducing high group velocity dispersion with
the fiber spools DCFa/b, the arrival time of each photon at the
avalanche photo-diodes APDa/b relative to the pump laser’s elec-
trical trigger signal reveals the photon frequency and is recorded
by a personal computer via a time-to-digital converter (TDC).

coincidence measurements in the corresponding SPDC ex-
periment (i.e., without seed). Finally, Eq. 2 tells us that
the signal measured in the DFG experiments will be essen-
tially |Bν(ω1)|2 times the one measured in the correspond-
ing coincidence measurement, and thus several orders of
magnitude larger.

2. Experimental results

To demonstrate the advantages of our characterization tech-
nique, we experimentally compared SPDC and DFG-based
frequency correlation characterizations of an integrated
quantum light source: a picosecond-pulse-pumped AlGaAs
ridge waveguide in a transverse pump configuration, in
which an integrated microcavity with a resonance at the
frequency of the pump pulse enhances [13] the emission
of counterpropagating photon pairs from two simultane-
ously phase-matched type II SPDC processes [19]. Inte-
grated sources are attracting a considerable interest for their
flexibility and the possibility of mass production, but these
sources are also particularly challenging to investigate.

In the SPDC experiment (Fig. 2) we use a fiber spec-
trometer [4] to reconstruct the JSD by collecting one photon
pair at a time. When the detectors indicate the arrival of both
a signal and idler photon originating from the same trigger
pulse, the corresponding pair of signal/idler arrival times is
added to a joint histogram. With a sufficiently large number
of collected events this procedure yields the JSD, which is
proportional to the coincidence counts plotted in Fig. 4a.
Here the spectral resolution is 
λSPDC = 224 pm, limited
by the temporal jitter of the single photon detection signal
relative to the pump trigger signal.

In the DFG experiment (see Fig. 3) we collect the idler
spectrum generated, under the same pumping condition, by
sweeping a CW seed beam over the signal bandwidth of the
spontaneous process. In accordance with Eq. 2, each pre-
conditioned idler spectrum is proportional to the “slice” of

Figure 3 Sketch of the experimental setup for DFG-based spec-
tral correlation measurements. Besides the pump pulse injected
as in the SPDC experiment shown in Fig. 2, we inject a CW seed
laser beam into the signal mode of the waveguide. Its polariza-
tion, adjusted by fiber polarization controller FPC and filtered by
PBSa, is used to select the same type II process as in the SPDC
experiment. The transmitted seed laser power Pref is measured by
the powermeter PM. The tunable, fibered Fabry-Perot filter TFFP
is used for spectral clean-up of the seed laser line. The backward
emitted DFG beam has the same beam path as the seed beam,
but has opposite polarization and propagation direction. The fiber
integrated PBSa is therefore used as a combiner/splitter for both
beams to retrieve the DFG output and guide it to an optical spec-
trum analyzer (OSA).

the JSD corresponding to the pairs generated with the signal
photon at the wavelength of the CW seed. The measurement
result is presented in Fig. 4b. The spectral resolution along
the signal axis is determined by the accuracy of the seed
laser wavelength (20 pm), while along the idler axis it is
given by the OSA resolution (20 pm).

From a simple visual comparison of Fig. 4a and 4b, it is
hard to believe that the two pictures correspond to the same
JSD. This is due to the extremely high resolution offered
by our technique: for each pixel of the SPDC graph we
have more than 100 pixels in the DGF measurement. Thus,
to verify that the difference in the two measurements is
simply determined by the spectral resolution, we calculated
the expected JSD in the two cases (see Fig. 4c and d and
Supplementary Information I).

When we assume a resolution of 224 pm of the SPDC
experiment, the calculated JSD (Fig. 4c) corresponds to the
blurred blob obtained from the coincidence measurement
(Fig. 4a). On the contrary, if the resolution is increased,
the calculated JSD (Fig. 4d) is in excellent agreement
with that revealed by the DFG measurements (Fig. 4b).
It should be noted that the characteristic grid pattern is
the result of interferences within the waveguide due to
the high index mismatch at the waveguide facets. The re-
sulting high reflectivity creates a Fabry-Perot cavity situ-
ation for both output modes, so that the final two-photon
spectrum is shaped by the characteristic transmission func-
tions of the signal and idler cavities (see Supplementary
Information I). Interestingly, this effect was theoretically
predicted for resonant SPDC devices four years ago [20],
but it has never been observed, due to the limitations on the
resolution of measurements made with single photon detec-
tors. The high resolution JSD measurement presented here
boosts the pixel count over the SPDC results by two orders
of magnitude, while taking less than half as long to collect.
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Figure 4 Results: (a) Experimental JSD obtained by SPDC-
based measurements (see Fig. 2) with a sampling rate of 25 ×
25 pixels over 1.4 nm × 1.4 nm, an integration time of 120 min,
and a spectral resolution of 224 pm. The pixel pitch of 56 pm ×
56 pm is determined by the group velocity dispersion of the DCF
coils and the temporal resolution of the TDC to measure pho-
ton arrival times. (b) Experimental JSD obtained by DFG-based
measurements (see Fig. 3) with a sampling rate of 141 × 501
pixels over 1.4 nm × 1.4 nm, an integration time of 45 min, and
a spectral resolution of 20 pm. The pixel pitch of 10 pm × 2.8 pm
corresponds to the scanning steps of the seed laser on the x-axis
and to the spectral span over the number of data points of the
OSA on the y-axis. The raw spectral data has been normalized
to account for varying seed power (see Methods), leading to in-
creased noise levels towards the left and the right edge of the plot.
The visible offset between SPDC and DFG central wavelengths is
caused by a shift of the central pump wavelength by 0.1 nm when
re-locking the pump laser. (c) The figure c) is the convolution of
figure d) with a Gaussian of FWHM 224pm, corresponding to the
resolution of the SPDC measurement. (d) Numerical calculation
of the SPDC photon pairs’ JSD generated by the device under
study.

Thanks to this dramatic increase in data acquisition rate,
it becomes possible to fully exploit the spectral resolution
of the seed laser and the detector, and at the same time
minimize statistical errors within realistic measurement
durations.

Assuming a pure pump state, the Schmidt number
K = 1.05 (obtained from simulations) quantifies the spec-
tral entanglement of SPDC photon pairs emitted by the
sample [21, 22]. From the measured high resolution JSD
(Fig. 4b), we can under this assumption estimate an
experimental lower boundary [23] at K exp

min = 1.04 after
noise suppression, corresponding to a theoretical value of

Kmin = 1.03 extracted from (Fig. 4d) (see Supplementary
Information II).

3. Experimental parameters

Figures 2 and 3 depict the measurement set-ups for the di-
rect reconstruction of the JSD for SPDC and DFG-based
methods, respectively. In each experiment, the sample is
pumped by a mode-locked Coherent Mira Ti:Sapphire pi-
cosecond pulse laser at 759.1 nm, with a 0.4 nm spectral
FWHM. Its repetition rate is reduced from 76 MHz to
3.8 MHz with an APE Pulse Select acousto-optical pulse
picker, introducing a temporal jitter of up to τPP = 200 ps
into the pump laser’s trigger signal. The beam power in
front of the waveguide is 46 mW.

The sample is a chemically-etched ridge AlGaAs
waveguide grown by molecular-beam epitaxy. The em-
ployed phasematching scheme is non-collinear with a pump
pulse impinging on top of the waveguide at almost perpen-
dicular incidence [13]. Signal and idler beam are emitted in
cross-polarized, counterpropagating modes from either of
two simultaneously phase-matched type II SPDC processes
[19] (see Supplementary Information I for details).

In SPDC measurements, both signal and idler pho-
tons are collected on either side of the source with X40
microscope objectives. A set of wave plates and a po-
larizer allow us to select the correct polarization mode
for each photon. Both photons then travel through DCF
spools with a dispersion of DDCF = −1475 ps/nm. Free-
running idQuantique id220 avalanche photo diodes (APD)
act as single photon detectors at the end of each fiber. De-
tection efficiency is set to 20%, the timing jitter of the
electrical detection signal is τAPD = 250 ps and the dead
time τp = 10 µs. A quTools quTau TDC, connected to the
APDs, measures the photons’ arrival times relative to the
pump laser’s electrical trigger pulse with a τTDC = 81 ps
mean temporal bin size. The spectral resolution of the
fiber spectrometer assembly is given by the joint tem-
poral jitter of the pulse picker and the APD, as well as
the TDC time resolution over DCF dispersion, resulting

in 
λSPDC =
√

τ 2
PP + τ 2

APD + τ 2
T DC/DDCF = 224 pm. The

brightest “pixel” contains exactly 100 coincidence counts,
so that detector saturation or multiple photon pair events
distorting the result spectrum are not an issue.

In DFG measurements, we use a Yokogawa 6730C OSA
with a resolution of 20 pm for spectral analysis of the idler
beam. We employ a Tunics-Plus CW laser with a line-width
of 100 kHz at an output power level of 8 mW to stimu-
late downconversion. The tunable fibered Fabry-Perot filter
TFFP from ozOptics was used to clean the seed laser line; it
has a Gaussian transmission profile with a 1.1 nm FWHM
set to be centered at 1512.1 nm. At the output facet of the
waveguide less than 10% of the nominal seed power exits,
mainly due to losses in the filter and coupling losses. With
the help of the OSA, we detected a deviation from the nomi-
nal output wavelength by −0.33 nm and verified its relative
wavelength accuracy to be within the OSA resolution. The
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filter causes a variable seed laser power during the seed
laser’s wavelength sweep, which we monitored by record-
ing the power Pref of the seed beam exiting the waveguide
and accounted for in Fig. 4b by dividing the experimental
value for each data point by the corresponding seed beam
power. The maximal total DFG power measured with the
OSA was 290 nW.

4. Conclusion and outlook

We have implemented a novel technique to reconstruct
the joint spectral density of biphoton states that would
be emitted by spontaneous parameteric processes, using
a completely classical difference frequency generation ex-
periment. It significantly out-performs spectrally resolved
single photon coincidence measurements, both in measure-
ment time and resolution, and constitutes a fast, accurate,
and reliable tool for the characterization of photon pair
sources. Even in the first implementation performed here it
provides a qualitative advance over previous methods, and
reveals details of the biphoton joint spectral density that
have never been observed before. Further enhancements
can easily be achieved, as the 20 pm spectral resolution in
our experiments could be improved by an order of magni-
tude using state-of-the-art spectrum analyzers and lasers.
Adapting our method to explore polarization or spatial de-
grees of freedom would allow the complete characterization
of biphoton states generated by parametric processes, open-
ing the way to a new generation of experiments to explore
hitherto unstudied aspects of nonclassical states of light.
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Photon pair sources in AlGaAs: from electrical injection to quantum state engineering
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Integrated quantum photonics is a very active field of quantum information, communication, and processing. One of
the main challenges to achieve massively parallel systems for complex operations is the generation, manipulation, and
detection of many qubits within the same chip. Here, we present our last achievements on AlGaAs quantum photonic
devices emitting nonclassical states of light at room temperature by spontaneous parametric down conversion (SPDC).
The choice of this platform combines the advantages of a mature fabrication technology, a high nonlinear coefficient, a
SPDC wavelength in the C-telecom band and the possibility of electrical injection.

Keywords: integrated quantum photonics; semiconductor devices; electrical injection; parametric down conversion;
entanglement; frequency correlations

1. Introduction

In the field of integrated quantum photonics, semiconductor
materials have a strategic position to achieve extremely
compact and massively parallel devices. In these last years,
many efforts have been devoted to the development of
biphoton sources of photonic circuits to manipulate cor-
related photon pairs and of chips including several func-
tionalities (generation and manipulation or manipulation
and detection). In the context of entangled photon sources,
the efforts are focused on three main types of systems:
quantum dots, silicon waveguides/resonators, and AlGaAs
waveguides/resonators. Quantum dots-based photon pair
sources exploit the radioactive decay of a biexciton state;
entangled photon generation has been demonstrated both
under optical [1] and electrical [2] pumping. This approach
allows obtaining almost deterministic sources taking into
account that a quantum dot can emit a photon pair per
exciting pulse, and the recent progress in the efficiency
of photon pairs extraction. However, since the exploitation
of this physical process requires that the thermal energy
of the system be inferior to the biexciton energy, these
sources have to be cooled to typical temperatures of some
Kelvin. Optical parametric conversion offers an alterna-
tive approach. Despite its nondeterministic nature, this pro-
cess is the most widely used to produce photon pairs for
quantum information and communications protocols. The
spectacular progress made in silicon photonics has recently
led to the demonstration of entangled photon sources with
integrated devices having different geometries (waveguides,

∗Corresponding author. Email: sara.ducci@univ-paris-diderot.fr
1Present address: Clarendon Laboratory, University of Oxford U.K

nanowires, whispering-gallery mode resonators,etc.) [3–5]
Since Silicon doesn’t present naturally a second-order non-
linearity, the main physical process used in this case is
four-wave mixing. Sources emitting in the telecom band at
room temperature have thus been demonstrated as making
use of the SOI (Silicon-On-Insulator) platform, compatible
with the CMOS technology. However, the indirect band gap
of silicon hinders the demonstration of electrically driven
devices. Conversely, the parametric down-conversion in
direct band gap semiconductors is a process allowing to
achieve devices working at room temperature, keeping the
door open to the integration of the pump laser and the
nonlinear medium. Several advances have recently been
reported by exploiting the process of three-wave mixing
on the AlGaAs platform which combines high conversion
efficiencies (χ2 of GaAs around 110 pm/V at 1550 nm) with
the emission of photons in the near infrared. Since this
material is not birefringent, different solutions have been
proposed to satisfy the phase-matching condition among
which form birefringence (consisting in inducing an arti-
ficial birefringence by alternating GaAs and AlOx layers
[6]), quasi-phase-matching (by fabricating devices present-
ing a periodical inversion of the nonlinearity [7]), modal
phase-matching (in which phase velocity mismatch is com-
pensated by multimode waveguide dispersion [8,9]), and
counterpropagating phase-matching (with a pump beam
transverse to the generated photons [10]). In this paper, we
address two main aspects: the pair production by
electrical injection, leading to extremely compact sources

© 2015 Taylor & Francis
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directly compatible with the existing telecom network, and
the biphoton state engineering with a device in a transverse
pump configuration, opening the way to dense coding of
information.

2. Photon pair production by electrical injection at
room temperature

As mentioned before, the direct band gap of AlGaAs
presents an evident interest for the realization of electri-
cally injected devices. Among the above mentioned phase-
matching strategies, modal phase matching is the most
promising to monolithically integrate the laser source and
the nonlinear medium into a single device [11,12]. In this
scheme, the interacting modes can either be confined by
homogeneous claddings [13] or by photonic band gap [14],
this latter option avoiding aging problems via the reduction
in the total aluminum content.

Our device consists of a multilayer AlGaAs ridge waveg-
uide: two Bragg mirrors provide both a photonic band gap
confinement for a TE Bragg mode at 780 nm and total inter-
nal reflection claddings for TE and TM modes at 1.56 µm.
The structure has been optimized for efficient type-II SPDC
and lasing on the TE Bragg mode at room temperature. The
spatial profile of the three interacting modes is shown in
Figure 1. The details of the epitaxial structure can be found
in [15].

The sample was grown by molecular beam epitaxy on a
(100) n-doped GaAs substrate. Waveguides are fabricated
using wet chemical etching to define 5.5–6 µm wide and
2 µm deep ridges along the (011) crystalline axis, in order
to exploit the maximum nonzero nonlinear coefficient and a
natural cleavage plane. Processing is completed by sample
thinning and contact metallization with Au alloys; finally,
samples are cleaved into 2 mm long stripes. Figure 2 shows
the main processing steps used to fabricate the devices.

The simulated tuning curves of the source are given in
Figure 3; the strong dispersion of the Bragg mode arising
from the proximity to the energy band gap of the core

Figure 1. Simulated intensity profiles of the TE Bragg mode
(pump beam at 775 nm), and the TE and TM fundamental modes
(twin photons modes in the telecom range). (The colour version
of this figure is included in the online version of the journal.)

induces a great sensibility of the signal and idler wavelength
on the pump wavelength. This means that the spectral sen-
sitivity range of the single-photon avalanche detectors will
limit the window, in which both photons of a pair can be
detected; the tunability of the laser wavelength will thus
be a key issue for our device. The internal peak power and
the voltage characteristics of the device as a function of the
injected current are tested with a standard characterization
bench allowing a temperature control between 15 and 40◦C
with a Peltier module. In the first devices, in order to avoid
unwanted thermal drifts, we have employed current pulses
of duration 120 ns and a repetition rate of 10 KHz. Figure 4
(a) reports the laser emission intensity spectra as a function
of heat sink temperature, for an injected current of 422 mA;
the general trend corresponds to the theoretical temperature
dependence of the QW band gap (0.23 nm/◦C) plotted in
the same graph. Since the operation temperature of the
device sets at the same time the laser and the phase-matching
wavelength [15], we have checked the possibility to have an
additional degree of freedom to control the laser emission;
Figure 4 (b) displays the laser wavelength dependence on
the injected current for a heat sink temperature of 14◦C.
The data demonstrate the presence of a stark effect shifting
the gain spectrum (and thus the laser wavelength emission)
of the device [16]; this effect, presenting much shorter re-
sponse times than a temperature tuning, could indeed be
exploited to set the working point of our devices.

In order to check the possibility to drive the device in
continuous wave operation, we have measured the output
power as a function of the duty cycle; Figure 5 reports our
results for a device working at T = 20◦C. The observation
of a constant peak output power for a duty cycle up to
66% indicates that a CW operation is possible, showing
the technological maturity of the device.

The demonstration of photon pair emission in the
telecom range is done by performing time correlation
measurements under electrical injection in pulsed regime;
the emerging TE and TM photons are detected with two
InGaAs single-photon avalanche photodiodes having 20%
detection efficiency and 50 ns gate, synchronized with the
current pulses.Atime-to-digital converter is used to analyze
the time correlations between detected photons. Figure 6
reports the zero delay time coincidence value as a func-
tion of injected current for a typical device; for a current
value below the laser threshold, no ‘true coincidences’peak
emerges from noise. For a current value between 570 and
780 mA, a peak appears and increases linearly with the
injected current as expected from the typical diode behavior
of the device.

Taking into account the overall transmission along the
optical path, the internal generation of the device is
∼ 7×10−11 pairs per injected electron above the threshold,
corresponding to a SPDC efficiency ∼ 10−9 pairs/pump
photon. The maximum signal-to-noise ratio (SNR) mea-
sured up to now in our devices is 15, mainly limited by the
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Figure 2. Main processing steps for the fabrication of the electrically pumped device: (a) ridge definition by wet etching; (b) lower contact
deposition; (c) insulator deposition for independent addressing of each source; (d) upper contact deposition. (The colour version of this
figure is included in the online version of the journal.)

Figure 3. Numerical simulation of the type-II phase-matching resonance giving the twin photons wavelength as a function of the pump
wavelength. (The colour version of this figure is included in the online version of the journal.)

luminescence noise; an optimization work on both sample
design and technological processing is under progress to
reduce spurious luminescence. Assuming that the source
emits a Werner state, our result allows to estimate the fidelity
F to the Bell state |ψ+〉 that can be produced with the
present value of SNR: F would be given by (1 + 3P)/4
with P = SN R/(2 + SN R) leading to a value ∼ 91%,
which is compliant with future experimental violation of
Bell’s inequality.

3. Quantum state engineering in a transverse pump
configuration

The control of frequency correlations of photon pairs is
a key issue for quantum information processing since
different kinds of correlations are needed depending on

the specific application (linear optics quantum computa-
tion, clocks synchronization, long-distance communication
in optical fibers, etc.). Indeed, their existence can either
be an advantage for protocols based on hyperentangled
states, or a drawback when, for example, the frequency of
a photon must not reveal that of its twin. In this section, we
present a source, based on a transverse pump configuration,
allowing for a great versatility in the quantum state of the
emitted biphoton. This device is based on the scheme of
Figure 7: a pump beam at 775 nm impinging on top of a
multilayer AlGaAs waveguide with an incidence angle θ
generates by SPDC two orthogonally polarized signal/idler
guided modes around 1.55 µm. Two Bragg mirrors provide
a vertical microcavity for the pump beam increasing the
conversion efficiency of the device [17,18].
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4 C. Autebert et al.

Figure 4. (a) Laser emission intensity as a function of wavelength and heat sink temperature. The dashed line shows the theoretical
temperature variation of the QW band gap. (b) Laser wavelength dependence on the injected current demonstrating the presence of stark
effect. (The colour version of this figure is included in the online version of the journal.)

Figure 5. Laser output power as a function of the duty cycle of
the injected current having a value of 755 mA.

As a consequence of the opposite propagation directions
for signal and idler modes, two simultaneously
phase-matched processes occur: one where the signal (which
we will consider copropagating with the horizontal com-
ponent of the pump beam) is horizontally polarized and
the idler (which we will consider counterpropagating with
the horizontal component of the pump beam) is vertically
polarized (interaction 1), and the other where the signal is
vertically polarized and the idler horizontally (interaction
2). The frequencies of the emitted fields are fixed by the en-
ergy conservation of the interacting modes ; Figure 8 reports
the maximum values of the signal and idler wavelengths as
a function of the angle of incidence of the pump beam. The
black slashed lines correspond to pump beams at +θdeg

and −θdeg such that each process generates a frequency
degenerate photon pair.

Figure 6. Zero delay time coincidence value as a function of the
applied current. (The colour version of this figure is included in
the online version of the journal.)

By simultaneously pumping the device with the angle
+θdeg and the angle −θdeg and filtering out the additional
frequency nondegenerate photons, we create the superposi-
tion state [19]

|�(θdeg,−θdeg)〉
= 1√

2

∫∫
dωs dωi

[
A(1)(ωs, ωi , θdeg

)
â†

H (ωs) b̂†
V (ωi )

+ A(2)(ωs, ωi ,−θdeg
)

â†
V (ωs) b̂†

H (ωi )

]
|0〉 (1)

with

A( j)(ωs, ωi , θ) = 1√
N j
�ovl fM (ωs + ωi ) α(ωs + ωi )

×
∫ 1

2 L

− 1
2 L

dz ei	k j(ωs ,ωi ,θ)z S(z, θ) (2)

Here,N j is a normalization constant,�ovl is the nonlinear
overlap integral between the interacting modes, L is the
length of the illuminated region on the top of the waveguide,
fM (ωs + ωi ) is a function describing the Fabry–Perot effect
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Figure 7. Operation principle of the device: a pump beam
impinging on top of a waveguide with an angle θ produces
twin photons via two possible interactions. Phase-matching is
obtained automatically along the waveguide direction and through
a periodic modulation of the waveguide core in the epitaxial
direction. (The colour version of this figure is included in the
online version of the journal.)

Figure 8. Simulated signal and idler tuning curves as a function of
the angle of incidence of the pump beam. Polarization entangled
photons can be generated by simultaneously pumping interaction
1 (solid line) at +θdeg and 2 (dashed line) at −θdeg . (The colour
version of this figure is included in the online version of the
journal.)

of the microcavity on the pump beam, α is the spectral am-
plitude of the pump beam given by αp (ω) = sech

(
ω−ωp
	ω

)
,

with ωp the pump central frequency and	ω its bandwidth,
	k j (ωs, ωi , θ) are the phase-mismatch functions and
S(z, θ) is the transverse spatial distribution of the pump
beam.

A( j)(ωs, ωi , θ) are usually called joint spectral ampli-
tudes and give the probability amplitude of an emitted

Figure 9. Sketch of the joint spectral amplitude obtained by
pumping the device in the vicinity of +θdeg . The dimensions
of the spectral distributions are determined by the spatial and
spectral properties of the pump beam having a waist wp and a
pulse duration τp . (The colour version of this figure is included in
the online version of the journal.)

photon pair emerging in the modes âH (ωs) and b̂V (ωi )

( j = 1), or âV (ωs) and b̂H (ωi ) ( j = 2).
In Figure 9, we have sketched the joint spectral ampli-

tudes corresponding to the two interactions, when the device
is pumped in the vicinity of +θdeg with a pulsed beam.

A complete reconstruction of the produced polarization
state when the device is simultaneously pumped at ±θdeg

has been done by a state tomography [20,21]. If only po-
larization measurements are performed and frequencies are
not measured, it is convenient to work with the reduced
state obtained by taking the trace over frequencies. We
can, thus, calculate the reduced state and evaluated how
its purity is linked to the parameters of the system [19]. In
particular, we can link the concurrence C, a commonly used
entanglement estimator, to the joint spectral amplitudes of
the two interactions by C = ∫∫

dωs dωiA(1)
(
ωs, ωi , θdeg

)
A(2)∗(ωs, ωi ,−θdeg

)
.

A maximally entangled state will be obtained only if the
two interactions are excited with the same strength and if the
joint spectral amplitudes characterizing interaction 1 and 2
perfectly overlap. Figure 10 illustrates this point with two
examples; case (a) corresponds to the experimental situation
of [21], in which the two pumping beams are obtained by
passing a Gaussian pump beam through the center of a
Fresnel biprism. The angle of each prism can be chosen
such that it deviates the pump beam entering the first face
with a normal incidence by θdeg . Case (b) corresponds to
a situation in which the two incident pumping beams are
obtained by producing two replicas of a Gaussian beam with
a specific type of grating designed to diffract the incident
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6 C. Autebert et al.

(a) (b)

Figure 10. Squared absolute value of the difference between A(1)
(
ωs , ωi , θdeg

)
and A(2)∗

(
ωs , ωi ,−θdeg

)
using a biprism (a) or a lateral

shear grating (b) to produce the two pumping beams to generate polarization entanglement. The concurrence value is 0.86 for case (a) and
0.97 for case (b). (The colour version of this figure is included in the online version of the journal.)

intensity only into its first order with an angle ±θdeg . For
each case, concurrence is calculated : the use of the grating
allows to almost ’erase’ the which-path information in the
frequencies of the photons, and obtain a very high degree
of entanglement (C = 0.97).

Another interesting feature of this device is its versatility
in the control of the degree of frequency correlations be-
tween the two photons of the pair by an appropriate choice
of the spatial and spectral pump beam profiles [22,23].

Taking into account, also the effect of the facets’ reflec-
tivities, which is around 25–30% due to the index contrast
between semiconductor and air [24], the expression of the

Figure 11. High resolution joint spectral intensity of the biphoton
state emitted by our device pumped with a beam having a waist
of 0.22 mm and a pulse duration of 3.5 ps. The observed intensity
modulation is due to the multiple reflections of the twin photons on
the waveguide facets. (The colour version of this figure is included
in the online version of the journal.)

joint spectral amplitude given above modifies in:

A( j)(ωs, ωi , θ) → A( j)(ωs, ωi , θ) fTE(ωi ) fTM(ωs)

where fTE(ωi ) and fTM(ωs) describe the effect of the
reflection on the waveguide facets for the generated TE
and TM polarized photons. In order to experimentally
characterize frequency correlations, we have recently
demonstrated a technique based on difference frequency
generation [25,26]. When the structure is stimulated with a
CW signal beam, while it is subject to the same pumping
scheme of interest for SPDC, the biphoton wavefunction
relevant for the spontaneous experiment plays the role of
the response function of the structure that characterizes the
idler generated. Thus, by scanning the full spectrum of the
signal photons, it is possible to obtain the joint spectral
density that one would derive in a SPDC experiment. This
method allows reconstructing the joint spectral density of
a biphoton state with an unprecedented resolution (20 pm)
giving access to features that were theoretically predicted
but never observed (Figure 11). This streamlined technique
has the potential to speed up design and testing of massively
parallel integrated nonlinear sources and opens the way to a
new generation of experiments to explore hitherto unstudied
aspects of nonclassical states of light [27].

All these results demonstrate that III-V semiconductors
are a viable platform to develop integrated components
for future applications in quantum communications and
information. Note that the small birefringence associated
to these devices together with small footprint avoid the
necessity of additional steps (such as walk off compensa-
tion or interferometric schemes) to convert the correlated
photons into highly entangled states thus, facilitating the
implementation of large-scale architectures.
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We provide a toolbox for continuous-variable quantum-state engineering and characterization of biphoton
states produced by spontaneous parametric down-conversion in a transverse pump configuration. We show
that the control of the pump beam’s incidence spot and angle corresponds to phase-space displacements of
conjugate collective continuous variables of the biphoton. In particular, we illustrate with numerical simulations
on a semiconductor device how this technique can be used to engineer and characterize arbitrary states of the
frequency and time degrees of freedom.

DOI: 10.1103/PhysRevA.92.023804 PACS number(s): 42.50.Dv, 03.67.Bg, 42.65.Lm, 42.65.Wi

I. INTRODUCTION

Spontaneous parametric down-conversion (SPDC) exper-
iments play a prominent role in the field of quantum in-
formation and communications. Single and multiple photon
pairs generated through SPDC display entanglement in mul-
tiple degrees of freedom (DOF) which are fundamentally
different from each other. When combined or independently
accessed, they constitute a powerful platform for experimental
demonstrations of quantum protocols. Discrete DOF, such
as polarization and orbital angular momentum, are currently
used to implement quantum logic gates and protocols [1],
test the nonlocal properties of quantum mechanics [2–5],
and realize quantum cryptography [6–8] and teleportation
[9,10]. DOF associated with observables with a continuous
spectrum, like the quadratures of the electromagnetic field,
potentially offer the same versatility as discrete ones in the
field of quantum information. Continuous DOF in the single-
photon regime, such as frequency, transverse momentum,
or position, display a perfect analogy with a multiphoton
single-mode continuous variable (CV) [11,12]. Consequently,
they constitute an attractive platform to realize CV quantum
information protocols [13] that are usually associated with
the single-mode multiphoton configuration. For example,
an appealing aspect of using a single photon’s transverse
coordinates in this field is their relatively easy manipulation
with readily available optical devices, such as spatial light
modulators (SLMs) and lenses [12], circumventing the diffi-
culties encountered in multiphoton CV strategies to implement
non-Gaussian operations, which are essential ingredients of
universal quantum computation [13]. For these reasons, the
study of entanglement in CVs in the single-photon regime
is a valuable strategy to demonstrate CV-based quantum
gates [14], quantum key distribution [15,16], error correcting
codes [17,18], and quantum metrology protocols [19] and to
study quantum-to-classical transitions [20,21]. Finally, we can

*guillaume.boucher@univ-paris-diderot.fr
†Current adress: Laboratoire Aimé Cotton, Bâtiment 505–Campus

d’Orsay, Université Paris-Sud 11, 91405 Orsay Cedex, France.

mention that continuous DOF can be combined with discrete
ones to implement conditional operations [22–24].

CV entanglement in photon pairs can be generated in
different DOF via SPDC; one example is the spatial transverse
DOF of photon pairs produced in nonlinear bulk crystals.
Tailoring the spatial properties of the pump beam has been
previously employed to engineer [25,26] and detect quantum
states of photon pairs with different properties: in [27] it was
shown that controlling the transverse phase properties of the
pump beam could lead to bunching or antibunching of a photon
pair. References [22] and [28] demonstrate that the use of
SLMs placed in the arms of an interferometer can lead to
the measurement of arbitrary momenta of the quantum state
associated with the transverse photonic DOF.

Using frequency as a CV degree of freedom instead
of the transverse coordinates presents a series of potential
advantages: in general, the transverse variables of a propa-
gating field are entangled in the two-dimensional orthogonal
spatial coordinates x and y or, equivalently, the momentum
coordinates px and py ; this renders arbitrary state production
and measurement more challenging and limits the applications
of such DOF in quantum information tasks, since the quantum
state associated with each spatial direction is entangled and
can be cross-correlated between the x and the y directions.
Moreover, this spatial entanglement is jeopardized when
coupling into optical fibers or waveguides, while frequency
states remain robust in such devices. For all these reasons, we
illustrate our ideas focusing on the spectral degree of freedom.
Indeed, the characterization of arbitrary frequency entangled
states of photon pairs draws a lot of attention as illustrated
by recent works on frequency-dependent intensity correlation
measurements of the photon pair [29], the reconstruction of
biphoton wave functions generated with a monochromatic
pump [30], and amplitude-sensitive tomography techniques
in the time-energy space [31].

In the waveguided regime, frequency-correlated, uncor-
related, and anticorrelated photon pairs can be produced
by modifying the spectral properties of the pump beam
[32,33]. Nevertheless, even if the nature of correlations can be
controlled, pump bandwidth modification alone cannot lead
to arbitrary CV-state engineering, an essential tool for CV
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quantum information and communications, fundamental tests
of quantum mechanics and quantum metrology.

In this paper, we provide a toolbox to exploit the capabilities
of SPDC to create, measure, and characterize entanglement in
the CV DOF of a photon pair. Our strategy is based on the
combination of pump spatial engineering with the possibility
of characterizing a Wigner function of the photon pair using a
Hong-Ou-Mandel (HOM)–type [34] experiment [35].

In order to clarify these concepts, we present the case
study of a transversally pumped semiconductor waveguide
[36,37] potentially having great versatility in the control of
the biphoton frequency correlations [29]. Indeed it has been
shown that the pumping configuration allows one to modify
the phase matching conditions by simply changing the spatial
properties of the pump beam [38–40], e.g., its waist or angle of
incidence. However, more complex quantum-state engineering
has not been explored so far.

II. DESCRIPTION OF THE BIPHOTON STATE WITH
CHRONOCYCLIC WIGNER FUNCTIONS

The properties of the photon pair are described by the
biphoton wave function, which takes a complex form due to the
constraints imposed by momentum and energy conservation.
By neglecting group velocity dispersion (which is justified in
the spectral range of the generated photon pairs) and in the
narrow-bandwidth limit for the pump beam, we can write the
state of the pair in the form

|�〉 = χ�

∫∫
dωsdωif+(ωs + ωi)f−(ωs − ωi)|ωs,ωi〉, (1)

where ωs,i represent the signal and idler frequencies, respec-
tively, and χ� is a normalization constant [41]. The function
f+ corresponds to the spectrum of the pump beam reflecting
the condition of energy conservation (ωp = ωs + ωi ≡ ω+).
The phase of this function is affected by the presence of a
microcavity formed by two Bragg mirrors as shown in the
nonflat phase profile in Fig. 1(c). The narrow-band assumption
allows us to consider the phase-matching-dependent part of the
biphoton state as a strictly antidiagonal function f−,

f−(ω− ≡ ωs − ωi) =
∫ L/2

−L/2
dzϕ(z)ei

(ωs−ωi )z
v̄g , (2)

where L is the length of the sample, v̄g is the average
group velocity of the signal and idler photons at frequency
degeneracy, and ϕ(z) = �(z)e−ikdegz. The function �(z) is the

spatial profile of the pump beam and kdeg = sin(θdeg)ω
(0)
p

c
=

(ns−ni )
2

ω
(0)
p

c
, where ns,i corresponds to the signal and idler

effective refractive indices at degeneracy, ω(0)
p is the central

frequency of the pump beam, and θdeg is the pumping incidence
angle for which degeneracy occurs.

If the dimensions of the waveguide are large with respect
to the pump waist, i.e., the limit where L → ∞, f− can be
approximated by the Fourier transform of the spatial profile of
the pump beam:

f−(ω−) ≈ ϕ̃

(
ω−
v̄g

)
. (3)

We start by considering the situation depicted in Fig. 1(a),
where a Gaussian pump beam with waist wp impinges onto the
source at an angle θ and position z0. The field distribution along
the axis z is �(z) ∝ e−(z−z0)2 cos2 θ/w2

p ei(k sin θ)z and therefore f−
reads

f−(ω−) ∝ eiω−τ0e
− (ω−−ω

(0)
− )2


ω2 , (4)

with τ0 = z0/v̄g , 
ω = v̄g/2wp, and ω
(0)
− = (k sin θ −

kdeg)v̄g ≈ δθv̄g ωp/c [42]. Figures 1(b) and 1(c) represent
the biphoton wave-function norm and phase distribution
numerically simulated for a pump impinging at the degeneracy
angle θdeg at z0 = 0 with waist wp = 200 μm � L = 2
mm, central wavelength λp = 775 nm, and pulse duration
τp = 3.2 ps [43].

Instead of the complex-valued biphoton wave function,
a more convenient representation is given by chronocyclic
Wigner functions, which are the time-energy analogs of the
phase-space Wigner functions. With this approach, the time
and energy properties of the single photons of the pairs are
illustrated with real quantities [44,45], in the same way that
pulses of light are depicted in the domain of ultrafast optics
[46]. In this work, we describe, instead of the properties of
the isolated photons of the pair, their correlations along the
antidiagonal part f− of the biphoton wave function. This
represents the quasiprobability distribution of the biphoton
as a function of the detuning  between signal and idler
frequencies and the time-delay-conjugated variable τ . The
corresponding Wigner function W− is given by

W−(τ,) =
∫ ∞

−∞
dω−f−( − ω−)f ∗

−( + ω−)ei2τω− . (5)

Using the expression obtained in (4), we see that this
corresponds to a Gaussian Wigner function centered at point
τ = τ0,  = ω

(0)
− , of widths 
 = 1/
τ = 
ω = v̄g/2wp,

which is equivalent to the representation of a coherent state
[see Fig. 1(d)]. Thus, in this situation, shifting the pumping
spot z0 is equivalent to realizing displacements in the τ axis of
the phase space, while changing the angle of incidence θ of the
pump beam corresponds to shifting the state along the  axis.

III. ENGINEERING AND MEASUREMENT
OF BIPHOTON STATES

More complex states can be obtained by engineering the
pump beam. Indeed two identical beams impinging at za and zb

will generate a superposition of two coherent states displaced
along the τ axis. In the limit |za − zb| 
 2wp such states
are almost orthogonal, representing a superposition of two
distinct quasiclassical states (Schrödinger cat-like states). An
analog superposition is obtained along axis  by using two
angles of incidence, θa and θb, impinging at the same point
z0. Quasiorthogonality is obtained for |θa − θb| 
 c

2ωpwp
. We

can generalize these Schrödinger cat-like states using more
complex configurations of pump beams. As an illustration, we
choose a compass state (see Fig. 2), a superposition of four
coherent states presenting interesting applications in quantum
metrology, as pointed out in [47] and [48]. In order to obtain
this state, a set of four different pump beam configurations is
required: two pairs of beams impinging at two different points
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FIG. 1. (Color online) (a) Counter-propagating phase-matching scheme implemented in a semiconductor microcavity waveguide. The
characteristics of the pump pulses allow us to tune the time-energy properties of the biphoton. (b) Norm and (c) phase of the biphoton wave
function for wp = 200 μm, λp = 775 nm, τp = 3.2 ps, and θ = θdeg. The phase pattern in (c) is due to the resonance of the pump in the
microcavity. (d) Corresponding Wigner function. The  axis is given in units of � = 8πc

ω2
p

.

separated by a distance 
z, each pair consisting of two beams
tilted symmetrically with respect to the degeneracy angle as
shown in Fig. 2(a).

The procedure detailed above to generate quantum states
with different properties and applications can be generalized,
leading to the creation of arbitrary CV quantum states, since
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FIG. 2. (Color online) (a) Pump illumination scheme to generate a compass state: two pairs of beams impinge onto the waveguide at two
spots, za and zb, equidistant from the center of the source, each pair consisting of two beams tilted symmetrically with respect to the degeneracy
angle (θa,b = θdeg ± δθ ). (b) Norm and (c) phase of the biphoton wave function of the corresponding cat state with δθ = 9.37′, |za − zb| = 1
mm and for each beam wp = 200 μm, λp = 775 nm, τp = 3.2 ps, and θ = θdeg. (d) Corresponding Wigner function with 
� = 1.37 nm and

τ = 10.8 ps. The  axis is given in units of � = 8πc

ω2
p

.
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FIG. 3. Two possible strategies to realize the modified HOM
experiment leading to the measurement of the Wigner function. Left:
Displacements in time and frequency are realized in each arm of the
interferometer after the production of the photon pair. Right: In a
completely analogous setup, displacements in time and frequency are
realized by pump engineering. While modifying the incidence angle
of the pump beam, and, consequently, the phase matching condition,
corresponds to displacements in frequency, modifying the pump’s
incidence spot corresponds to displacements in time.

any state can be constructed from the overcomplete basis of
coherent states.

We now discuss how pump engineering can be used to
characterize arbitrary CV states using the direct measurement
of the Wigner function in all points of phase space. In [35], it
was shown how a generalization of the HOM experiment leads
to direct measurement of the Wigner function in the , τ phase
space. This generalization consists of considering displace-
ments in the frequency degree of freedom of the photons, in ad-
dition to time displacements. Of course, displacing either one
of these parameters modifies the distinguishability between the
photons in each arm of the HOM interferometer, as depicted
in Fig. 3. Time displacements can be realized relatively
straightforwardly by simply modifying the optical path in
each arm of the HOM interferometer. However, the frequency
displacements required to reconstruct the Wigner function
are quite broad with respect to the performances of currently
available optical modulators [49]. Pump engineering provides
an alternative solution to realize both time and frequency dis-
placements, dramatically simplifying the direct measurement
of the Wigner function and the CV state characterization.

As discussed previously, modification of the pump beam’s
incidence angle corresponds to displacing the central fre-
quency of the symmetric part of the wave function associated
with the photon pairs, while modification of the incidence point
corresponds to time displacements. Using these ingredients,
one can devise a procedure for the complete Wigner function
measurement as follows: in the first step, an initial state is
engineered. This state is the one to be characterized. Running
the HOM experiment with no frequency or time displacement
leads directly to the value of W−(0,0), the Wigner function
at the origin [35]. Then tilting the incident pump beams by

a given amount and repeating the same HOM experiment
is equivalent to displacing the original state in frequency
and measuring its Wigner function, leading to the value of
W−(,0). Analogously, displacing the pump beam in the z

axis and repeating the HOM strategy leads to the value of
W−(0,τ ). It is clear that, by combining different tilting angles
and displacements, one can obtain an arbitrary point of the
Wigner function and reconstruct W−(,τ ) for all values of 

and τ . In order to characterize the quantum state, the magnitude
of the displacements in both axes of phase space should
cover the region where |f−(ω−)|2 has a significant value. This
corresponds to realizing the pump’s angular displacements
in an interval 
θ ≈ θa − θb = 18.7′, while its impinging
position is displaced by an amount 
z ≈ za − zb = 1 mm
(see Fig. 2). Note that, as shown in [50], the proposed strategy
presents the advantage of not being limited by the detector’s
response time for measuring highly oscillating fringes or
phase-space structures associated with sub-Planck scales [47].
Note that the resolution required for displacements along the
z axis is easily achieved; as far as the angular displacement is
concerned, since 
θ is of the order of 2.7 mrad, a resolution
of 100 μrad is sufficient to resolve the fringes. This is also
achievable with thermal stabilization and stable mechanical
mountings.

One may argue that modifying the pump, in reality, modifies
the state to be measured instead of the measuring apparatus
that is probing different points of the phase space; but this is
common practice in quantum measurement strategies, where
the modification of the settings of the measurement apparatus
is formally equivalent to that of the state to be measured.
This equivalency was used, for instance, in the context of
cavity quantum electrodynamics in [21]. There, the Wigner
function is directly measured using a Rydberg atom interacting
dispersively for a fixed time interval with the field of a high-
quality microwave cavity. The setup is kept the same for all
points in phase space and the quantum state of the field in the
cavity to be measured is displaced, and consequently modified,
through the application of a coherent field. Also in [30], the use
of a monochromatic pump generating pairs of photons through
SPDC is combined with modification of the pump frequency
(or shifts in the temperature of the crystal) to circumvent the
difficulty of broad frequency displacements. In the present
case, changing the pump spatial configuration is equivalent to
displacing the state to be measured.

IV. CONCLUSION

In conclusion, we have shown how spatial pump engineer-
ing can be used to generate arbitrary CV frequency states of
a photon pair and directly characterize it through a HOM-like
experiment. The combination of the variety of pumping
geometries with that of the possible design of integrated
photonic circuits [51] will allow the realization of complex
and versatile quantum photonic chips [40]. The generalization
of this technique to prepare quantum states with higher photon
numbers, as well as to simulate the dynamics of CV states
and the application of different quantum operations to it, is an
interesting open perspective that will be investigated.
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[26] A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres,

Phys. Rev. Lett. 99, 243601 (2007).
[27] S. P. Walborn, A. N. de Oliveira, S. Pádua, and C. H. Monken,
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Résumé
Ce travail porte sur l’ingénierie et la caractérisation des propriétés temps-fréquence
de paires de photons générées par une source semiconductrice. Ce dispositif utilise
la conversion paramétrique à température ambiante pour émettre des paires de
photons se propageant dans des directions opposées et aux longueurs d’onde
télécom. Une microcavité intégrée à la source permet d’augmenter l’efficacité de
l’interaction nonlinéaire par résonance du champ de pompe transverse.

Nous présentons la théorie de la conversion paramétrique dans cette source et
nous montrons comment les propriétés spatiales et spectrales du faisceau de pompe
influencent les propriétés des photons, en particulier leur degré d’intrication en
fréquence, permettant un ingénierie souple. La variété d’états pouvant être pro-
duits est illustrée à l’aide de l’amplitude spectrale jointe.

Deux techniques permettant la caractérisation de l’intensité spectrale jointe
ont été implémentées. La première est un spectrographe à photons uniques ; la
seconde, basée sur la stimulation du processus de conversion paramétrique, a per-
mis une amélioration dramatique de la résolution et du temps d’intégration. Les
deux approches ont permis la démonstration de l’ingénierie des corrélations en
fréquences en variant la taille et la courbure du faisceau de pompe. Des exemples
d’états plus exotiques et une méthode pour caractériser leur fonction de Wigner
chronocyclique sont étudiés théoriquement. La relation entre les propriétés temps-
fréquence et le degré d’intrication en polarisation de la paire est aussi explorée.

Summary
This work is focused on the engineering and characterization of the frequency-
time properties of photon pairs generated with a semiconductor source. This de-
vice emits photons propagating in opposite directions at telecom wavelengths
using spontaneous parametric down-conversion at room temperature. A micro-
cavity integrated in the source allows the resonance of the transverse pump beam,
enhancing the efficiency of the nonlinear interaction.

We give a theoretical description of the down-conversion process in the source
and we show how the spatial and spectral properties of the pump beam impact the
properties of the photons, in particular their degree of entanglement in frequency,
allowing a versatile engineering. The variety of states that can be produced is
illustrated using the Joint Spectral Amplitude.

Two techniques allowing the characterization of the Joint Spectral Intensity
have been implemented. The first one is a single photon spectrograph. The second
one, based on the stimulation of the down-conversion process showed a dramatic
improvement in terms of resolution and integration time. Both techniques allowed
the demonstration of the frequency correlation engineering by varying the waist
and curvature radius of the pump beam. Examples of more exotic states and
a technique to characterize their chronocyclic Wigner function are theoretically
investigated. The relationship between time-frequency properties and degree of
entanglement in polarization of the biphoton is also explored.
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