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Simplicity is the extreme degree of sophistication

Leonardo da Vinci

All art is but imitation of nature

Lucius Annaeus Seneca
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Thanks to the advances in the fields of robotics and intelligent transportation systems (ITS), the au-

tonomous vehicles of the future are gradually becoming a reality. As autonomous vehicles will have to

behave safely in presence of other vehicles, pedestrians and other fixed and moving objects, one of the

most important things they need to do is to effectively perceive both their motion and the environment

around them.

In this thesis, we first investigated how bio-inspired visual sensors, called Local Motion Sensors

(LMSs), giving 1-D optic flow using a few pixels based on the findings on the fly’s visual system, could

be used to improve automatic parking maneuvers. For this purpose, we developed a low computational-

cost method for detecting and tracking a parking spot in real time using only 1-D OF measurements

around the vehicle together with the vehicle’s longitudinal velocity and steering angle. Highly simplified

2-D parking simulations were first performed using Matlab/Simulink software, then some preliminary

experiments were carried out using a vehicle equipped with two 6-pixel LMSs.

As the main challenge for visual sensors is to correctly operate in high-dynamic-range lighting condi-

tions, we also dealt here with a novel bio-inspired auto-adaptive silicon retina designed and developed by

our laboratory in collaboration with the Center of Particle Physics of Marseille (CPPM). We successfully

tested this silicon retina, showing that the novel pixel, called M2APix, which stands for Michaelis-Menten

Auto-Adaptive Pixel, can auto-adapt in a 7-decade range and respond appropriately to step changes up

to ±3 decades, while keeping sensitivity to contrasts as low as 2%.

We subsequently developed and tested a novel optic flow sensor based on this auto-adaptive retina

and a new robust method for computing the optic flow, which provides several advantages to previously

developed optic flow sensors such as its robustness to light levels, textures and vibrations that can be

found while operating on the road. To test the performances of this novel sensor and show how it can

be used for robotic and automotive applications such as visual odometry, we constructed a car-like robot,

called BioCarBot, which estimates its velocity and steering angle by means of an extended Kalman filter

(EKF) using only the optic flow measurements delivered by two downward-facing sensors of this kind.

Indoor and outdoor experiments were successfully carried out in a 7-decade light level range and using

various textures, showing promising perspectives of these sensors for odometry-based applications.
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Intelligent and autonomous systems are already part of our way of living, whether we consciously per-

ceive it or not. Indeed, thanks to the advances in the fields of robotics and intelligent transportation

systems (ITS), the autonomous vehicles of the future are gradually becoming a reality.

As autonomous vehicles will have to behave safely in presence of other vehicles, pedestrians and other

fixed and moving objects, one of the most important things they need to do is to effectively perceive both

their motion and the environment around them. Sensors are, in fact, crucial for safe and autonomous

operation of such systems in unknown and dynamic environments, where it is impossible to have com-

plete “a priori” information. Thus, the number and types of sensing technologies embedded on cars are

widely increasing to deliver redundant and complementary information, and eventually achieve the level

of autonomy and safety which will be required, for instance, by ISO and IEC standards.

Advanced driver assistance systems (ADAS) available on the market already make use of a number

of sensors to obtain as much information as possible about the environment around the vehicle, but they

are still far from allowing cars to perform truly autonomous tasks.

Some prototypes of the first autonomous vehicles have already been presented, but such solutions

are still too complex and expensive, and often require too large computational resources to be onboard

commercial cars. This is the reason why car manufacturers are constantly looking for alternative, effective

low-cost sensors that may integrate or replace existing technologies.

Effective technological solutions could be found by looking at the nature, which sometimes suggests a

different approach, aiming to process only the information needed for well-defined tasks. The insects, for

instance, are able to perform complex and fast maneuvers, and avoid obstacles by using only “low-level”

visual information and little computational resources, and they are only an example among thousands.

From these observations, the Biorobotics Team of the Institute of Movement Sciences at the Aix-

Marseille University, France has been designing and developing for more than 20 years visual sensors

inspired by the insects’ vision to measure locally the optical flow, i.e. the velocity of visual patterns on

✶
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the retina, with a very few pixels and computational resources.

In the following sections, we will provide an insight of the various fields concerned in this thesis. An

introduction on existing intelligent and autonomous systems, together with the limits of the technologies

used, will be first provided. Then, some important aspects of human and animal vision will be presented,

with a particular attention on the insects’ visual system and the optic flow. Lastly, some bio-inspired

technologies will be presented to show how biological findings can widely help in the development of

new efficient and effective technological solutions.

✶✳✷ ■♥t❡❧❧✐❣❡♥t ❛♥❞ ❛✉t♦♥♦♠♦✉s r♦❜♦ts

Since Isaac Asimov coined the term “robotics” in its “three laws of robotics” (1942) [1], and Norbert

Wiener formulated the principles of “cybernetics” (1948) [2], defining the basis of practical robotics, the

concept of intelligent and autonomous machines rapidly evolved up to our days.

One of the first examples of a general-purpose intelligent mobile robot, called Shakey, was created

by the Artificial Intelligence Center at the Stanford Research Institute (SRI International) between 1966

and 1972 [3] (Fig. 1.1(a)). While other robots existing at that time would have to be instructed on

each step for completing a task, Shakey was able to (i) process the visual scene by means of a television

camera and (ii) reason about its own actions by analyzing the task asked and breaking it down into

basic commands. The project combined the newest research results in robotics, computer vision and

natural language processing, melding for the first time sensing, reasoning and acting. Some of the most

remarkable results of the project include the Hough transform, the A∗ search algorithm and the visibility

graph method, which have been subsequently used in a wide range of applications other than robotic.

Indeed, the Shakey robot is an example among thousands showing how research works in robotics can

boost scientific studies and industrial developments of new technologies used in various application fields.

Since then, the cost and the size of sensors, actuators and computational units have reduced exponen-

tially, making it possible to develop cheaper and more compact robots with increasing intelligence and

autonomy. As as result, the number of application fields of robotic systems widely increased during the

last few decades, ranging from automation and manufacturing (the initial main market), to defense and

civil surveillance and intervention, to health care and human assistance, to home service and entertain-

ment, to intelligent transportation systems (ITSs). A remarkable evidence of this expansion of robotics

could be seen within the last decade, for instance, when Google acquired 7 robotic companies in 2013,

like Boston Dynamics and Meka Robotics, and developed the first self-driving car called Google Car.

The main functions characterizing an intelligent and autonomous robot can be defined as follows:

• perception (sensing and processing);

• reasoning (interpretation and decision making);

• control (action and interaction).

✷
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Effective perception and control represent the basic and necessary capabilities that bring mobile

robotic systems closer to autonomy, and may be sufficient for a robot to autonomously operate in rel-

atively simple environments. However, when the tasks and the environments become dynamic and com-

plex, these capabilities have often to be fused with higher level decision-making mechanisms, which focus

on more abstract cognitive planning abilities, to bring forth truly autonomous and intelligent systems.

As the number of autonomous agents increases, and the tasks and the environments become more

complex, the level of autonomy and intelligence have to be distributed over a swarm of robots in order to

cooperate with each other and with humans. Thereby, a new generation of robots, called “Cobots” [4,5],

have been designed and developed to cooperate in close interaction with humans in both public and

private spaces (industrial sites, cities, museums, hospitals, etc). Large scale experiments have been

successfully carried out in human populated environments using, for instance, tour-guide robots (Fig.

1.1(b)), humanoid robots (Fig. 1.1(c)) and cyber-cars (Fig. 1.6).

This new paradigm represents a major challenge for both industry and human society, and requires

new robots’ characteristics for balancing safety, efficiency and autonomy constraints, as well as being

socially acceptable and intuitive for human-robot interaction and cooperation. This requires some tech-

nological breakthroughs to provide autonomous but shared control, while dealing with incompleteness

and uncertainty on the environment, increasing robustness and safety, and satisfying real-time and cost

constraints using miniaturized embedded systems.

Indeed, if we look at nature we can see that the animals, and particularly the insects, can perform

complex tasks such as navigation and hazardous maneuvers with a tiny brain, and therefore with very

few processing and reasoning capabilities (see sections 1.6.3, 1.6.4 and 1.7.3). This is possible by using

very specialized, effective sensors and actuators, whereas the connection between these, which usually

defines the “intelligence” of an agent, can be quite simple depending on the animal’s morphology: in this

case, we speak about “embodied intelligence”.

As in this thesis we mainly deal with the perception, the sensors used in robotics and automobiles,

together with their advantages and drawbacks, will be described in details in the following section.

✶✳✸ ❙❡♥s✐♥❣ t❡❝❤♥♦❧♦❣✐❡s ✐♥ r♦❜♦t✐❝s ❛♥❞ ❛✉t♦♠♦❜✐❧❡s

There exist a wide variety of sensors used in mobile robotic systems, which can be divided in 2 main

groups: proprioceptive and exteroceptive sensors. Proprioceptive sensors measure values internal to the

system, such as wheel/motor sensors (e.g. encoders) and inertial measurements units (IMUs), whereas

exteroceptive sensors acquire information external to the system (i.e. from the environment), such as

passive and active visual sensors (e.g. cameras or lidars), ultrasonic sensors (sonars), radio-based sensors

(radars) and force/tactile sensors (Fig. 1.2).

The sensors can also be divided in active and passive sensors, depending on whether they measure

the environmental energy entering the sensor or the environmental reaction after emitting energy into

✹
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❱❡❧♦❞②♥❡✳ ✭❞✮ ❈❛♠❡r❛ ♣r♦✈✐❞❡❞ ❜② ❘❛s♣❜❡rr② P✐✳ ✭❡✮ ❙t❡r❡♦✲✈✐s✐♦♥ s❡♥s♦r ♣r♦✈✐❞❡❞ ❜② ❱♦❧tr✐✉♠ ❙②st❡♠s✳

✭❢✮ ❑✐♥❡❝t ❝❛♠❡r❛ ✭✐♥❢r❛r❡❞ ❞❡♣t❤ ❝❛♠❡r❛✮ ♣r♦✈✐❞❡❞ ❜② ▼✐❝r♦s♦❢t✳

the environment. Active sensors can often achieve superior performance as they control they the energy

emitted into the environment, however they have higher energy consumption and may suffer from inter-

ference between its signals and those beyond its control (emitted, for instance, by other nearby robots).

Therefore, passive sensors are usually preferred when achieving similar performances to active sensors.

❲❤❡❡❧✴♠♦t♦r s❡♥s♦rs The wheel/motor sensors measure the internal state (position, velocity, torque,

etc) of robot’s rotating components (motors or wheels). Probably the most popular sensors of this type

are the optical encoders, which measure the angular speed and position of a motor shaft or a wheel.

Because these sensors measure the position or velocity of some internal parts of the robot (e.g. wheels),

when used for the robot’s localization (odometry), they can produce drifts and even completely wrong

estimations, for instance, in slippery conditions.

■♥❡rt✐❛❧ ♠❡❛s✉r❡♠❡♥ts ✉♥✐ts ✭■▼❯s✮ The IMUs are electronic devices that measure the linear ac-

celeration, the angular velocity and the orientation of a robot, using a combination of accelerometers,

gyroscopes and magnetometers. These sensors are widely used in robotics since they can be very cheap

and compact, and provide very good performances for flight stabilization of aerial robots. However,

similarly to wheel/motor sensors, when these sensors are used for the robot’s localization (odometry),

they may suffer from drifts and high-level noise due to the integration over time of acceleration data,

especially in presence of strong vibrations.

✺
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●❧♦❜❛❧ ♥❛✈✐❣❛t✐♦♥ s❛t❡❧❧✐t❡ s②st❡♠s ✭●◆❙❙s✮ The global navigation satellite systems (GNSSs),

such as global positioning systems (GPSs), are space-based external sensors that provide location and

time information in all weather conditions, anywhere on the earth where there is an unobstructed line

of sight to at least four satellites. They are the only sensors that can deliver directly the robot’s absolute

position, however, they can operate only in open areas and often suffer from unreliability (wrong or no

measurements) and low resolution (up to a few meters). Differential GPSs (DGPSs) can deliver position

measurements with much higher resolution (up to a few centimeters) but are still very expensive for use

in most of robotic and automotive applications.

❙♦♥❛rs The ultrasonic sensors (or sonars) (Fig. 1.2(a)) are active sensors that measure the time-of-

flight (ToF) after the reflection of emitted acoustic waves against an object’s surface. They are usually

compact and low-cost sensors and have the advantages of detecting almost any type of material. However,

they can operate only in a short distance range (< 5m) and are quite sensitive to the noise that can be

produced by the wind or the objects’ shape (e.g. thin rod, sharp edge, etc).

❘❛❞❛rs The radars (RAdio Detection And Ranging) (Fig. 1.2(b)) are active sensors that use electro-

magnetic (radio) waves to measure the distance of an object based on the ToF, as well as its velocity

based on the Doppler effect (change of frequency of waves emitted from a moving source). They have

advantages such as operating in a long range (up to 200m) and providing both position and velocity

measurements using 2 different techniques on the same signal. On the other hand, their main disadvan-

tages are the bad angular precision, bad precision for tangential movements and bad reflection on certain

surfaces.

▲✐❞❛rs The lidars (LIght Detection and Ranging) (Fig. 1.2(c)), also called laser scanners, are active

sensors that use the light (generally infrared) reflected on a rotating mirror to measure the distance of

an object based on the ToF. There exist 1-D, 2-D and 3-D scanners, depending on the degree-of-freedom

(DOF) of the rotating mirror. Their main advantages are their wide range and high precision, which is also

nearly independent of the distance. However, they are very expensive, they comprise some mechanical

parts, which make the sensors wear out more easily, and they are sensitive to rain and dust.

❈❛♠❡r❛s Standard cameras (Fig. 1.2(d)) are widely used in robotics since they are cheap passive

sensors that can provide very rich information about the surrounding scene, but they need large compu-

tational resources to process the images to extract information about distance and velocity of the objects.

In addition, as the 3-D scene is projected onto a 2-D image, cameras require some additional information

(from other sensors or from some hypothesis on the environment) to obtain 3-D metric measurements.

Stereo-vision systems (Fig. 1.2(e)) are composed of multiple cameras (usually 2) to retrieve 3-D in-

formation on the environment from triangulation, but they are more expensive (multiple cameras looking

at the same scene) and need fine calibration and image processing to deliver robust measurements.

✻
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Infrared depth cameras, such as the Kinect sensor (Fig. 1.2(f)), give directly range 3-D data using

only one infrared camera and a light emitting source therefore can be relatively cheap, but distance

information can be provided only in a short range (up to a few meters), and are very sensitive to the

lighting conditions and therefore not very suitable for outdoor applications.

✶✳✹ ❆❞✈❛♥❝❡❞ ❞r✐✈❡r ❛ss✐st❛♥❝❡ s②st❡♠s

An Advanced Driver Assistance System (ADAS) is a system embedded on a vehicle which is designed to

assist the driver by enhancing, adapting and sometimes automating the driving to increase his safety and

comfort. Any system easing and facilitating the task of the driver can be therefore considered as an ADAS.

The main tasks of an ADAS system can be listed as follows:

• avoid a dangerous situation that could lead to an accident;

• free the driver of various tasks that could lessen his vigilance;

• assist the driver within his perception of the environment.

The safety features designed to avoid collisions and accidents can be divided in two groups: the

technologies that alert the driver to potential problems (passive safety), and those that avoid collisions

by implementing safeguards and taking over control of the vehicle (active safety).

ADAS systems that can be found nowadays on commercial cars make use of the sensing technolo-

gies presented in section 1.3, sometimes fusing them to achieve higher robustness and accomplish more

complex tasks (Fig. 1.3, 1.4).

Since ADAS systems rely on electronics and often include firmware elements, the development of

these cutting edge technologies is ruled by international safety standards, such as the IEC-61508 and

ISO-26262, which are proposed by specialized technical committees (e.g. ISO/TC 22 for “road vehicles”

and ISO/TC 204 for “intelligent transport systems”).

In the following, an insight of the main existing ADAS systems will be given. Some of these tech-

nologies have been around for a long time and they have already proven to result in improved driving

experiences and better overall road safety. However, a lot of ADAS are right on the cutting edge of

emerging automotive technologies as they need an increasing number and types of sensors delivering

redundant and complementary information to eventually achieve a higher level of autonomy and safety.

❆♥t✐✲❧♦❝❦ ❇r❛❦✐♥❣ ❙②st❡♠ The anti-lock braking system (ABS) is the first ADAS that has been em-

bedded in commercial cars (by Mercedes in 1978), significantly improving the driving safety (estimated

crash reduction from 5% to 85% depending on the road conditions between 1995 and 2007 [6]). The

ABS allows the vehicle’s wheels to maintain traction contact with the road surface according to driver’s

braking inputs, preventing the wheels from locking up and avoiding uncontrolled skidding, especially on

✼
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slippery terrains. To do that, the wheel’s angular velocities are compared to the vehicle’s velocity estima-

tion derived from other sensors (IMU, GPS, etc.), hence the importance of these sensors’ information to

be reliable.

❊❧❡❝tr♦♥✐❝ ❙t❛❜✐❧✐t② ❈♦♥tr♦❧ The electronic stability control (ESC), also called electronic stability

program (ESP), is a sort of extension of the ABS to improve the vehicle’s stability by detecting and reduc-

ing loss of traction (skidding). The ESC detects loss of steering control (understeering or oversteering)

and automatically applies braking commands separately to the 4 wheels to help steer the vehicle where

the driver wants to go. Some ESC systems also reduce engine power until control is regained. According

to the Insurance Institute for Highway Safety and the U.S. National Highway Traffic Safety Administra-

tion (NHTSA), one-third of fatal accidents could be prevented by using this technology [7], which became

therefore a mandatory ADAS for any car produced since 2011.

■♥t❡❧❧✐❣❡♥t ❙♣❡❡❞ ❆❞❛♣t❛t✐♦♥ This ADAS depends on a variety of information to help a driver main-

tain a legal speed. Since these systems monitor the current speed and compare it with the local speed

limit coming from the camera information (traffic signs recognition) and the GPS-cartography informa-

tion, they can work properly only in certain areas.

❆❞✈❛♥❝❡❞ ❊♠❡r❣❡♥❝② ❇r❛❦✐♥❣ The advanced emergency braking (AEB) is an ADAS designed to

reduce the severity of high speed collisions in the event of a lapse of driver attention. While some recent

automatic braking systems can actually prevent collisions, AEB systems are typically meant to slow down

the vehicle’s velocity to the point where less damage is caused and fatalities are unlikely. Most of the AEB

systems that can be found today on cars make use of a radar, a lidar and a camera to detect obstacles and

dangerous situations and trigger the emergency braking control.

❆❞❛♣t✐✈❡ ❈r✉✐s❡ ❈♦♥tr♦❧ The adaptive cruise control (ACC) is the first ADAS developed to auto-

matically adapt the vehicle’s velocity in response to the actions of the vehicles in front of it. The ACC is

especially useful on highways where drivers otherwise have to constantly monitor their cruise velocity in

function to other vehicles’ velocity, and therefore usually automatically shuts down below a certain speed

threshold. Newer ADAS systems based on ACC, such as ACC stop & go and the traffic jam assist, have

been recently developed by most of the car manufacturers for dense traffic situations and therefore lower

velocities and inter-vehicle distances.

▲❛♥❡ ❑❡❡♣✐♥❣ ❛♥❞ ❈❤❛♥❣✐♥❣ ❆ss✐st The lane keeping assist (LKA) system makes sure that the

vehicle does not leave its lane accidentally by warning the driver through visual and auditive alerts (lane

departure warning), and eventually taking small corrective actions over the driver if this is not reacting.

Lane changing assist (LCA) systems go a step further and are actually capable of performing lane changing

✾
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maneuvers without any driver action. While LKA systems only need a front-view camera to detect the

road lanes, LCA systems additionally need a rear-view camera as well as front and rear radars.

❇❧✐♥❞ ❙♣♦t ❉❡t❡❝t✐♦♥ Blind spot detection systems use a variety of sensors to provide a driver with

vital information that would be difficult or impossible to come by through any other means. Some of

these systems will sound an alarm if they detect the presence of an object within a blind spot, and other

include cameras to show images of the blind spot in the head unit monitor.

■♥t❡❧❧✐❣❡♥t P❛r❦✐♥❣ ❆ss✐st Intelligent parking assist (IPA) systems are designed to help the driver

with a parallel and/or perpendicular parking maneuver, but they may vary from one car manufacturer to

another. Most of the IPAS systems available on the market involve the use of ultrasonic sensors and a rear-

view camera to detect a free parking spot while the driver is driving along a row of parked vehicles [8–10].

Then, some of them simply tell the driver when to turn the steering wheel, to change the gear and to stop

the car, while others (most recent) (semi-)automatically control the steering and sometimes the speed

based on the estimation of the vehicle’s ego-position via odometry. IPAS systems involving Around View

Monitor Systems (AVMSs) have been recently proposed [11,12] to detect and track parking-spot’ ground

marks during parking maneuvers by means of wide-angle cameras (such as fish-eye and catadioptric

cameras) directed toward the ground, giving a view of the surrounding environment.

❍✐❣❤✇❛② ❆✉t♦♠❛t❡❞ ❉r✐✈✐♥❣ Systems providing highway automated driving (HAD) experiences

combine all the functions of the ADAS previously described with some additional sensors, namely radars

and lidars, to make cars autonomously drive on highways and freeways. This is the first and main feature

which prototypes of autonomous vehicles have demonstrated (see section 1.5), and therefore it will be

probably the first fully-automated driving system included on standard cars within the next few years.

High-performance ADAS systems have been presented in various research works [13–15] but they still

require too costly sensors, such as high-resolution lidars and radars as well as large computational re-

sources to reconstruct the surrounding 3-D environment in real time during the maneuvers. Therefore,

car manufacturers are constantly looking for alternative low-cost technologies.

First, we notice that, as mentioned at the beginning of this chapter, the more complex are the auto-

mated driving features and the higher is the level of uncertainty, the higher is the number and types of

sensors used. Second, we notice the importance of vision for improving safety and autonomy of future

cars, as all recently-developed ADAS systems make use of at least one camera (Fig. 1.4). As an exam-

ple, the U.S. NHTSA announced in 2014 that all new vehicles under 4500 kg produced in the U.S. will

required to have rear-view cameras by May 2018 [16]. In addtion, night vision systems using both active

and passive infrared sensors are gradually integrating ADAS systems to allow drivers to detect objects

that are difficult or even impossible to make out at night.

It is also worth noting the importance of an accurate estimation of the vehicle’s velocity and pose,

✶✵
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i.e. the odometry, is crucial for the effectiveness of most ADAS systems, from ABS and ESC to IPA and

HAD systems. Therefore, recent research works have been presented for performing reliable vehicle’s

positioning by fusing together the outputs of various onboard systems, such as GPS and ABS, with lane

markings detection [17] or 3-D urban maps [18]. Various works based on visual odometry [19, 20] and

simultaneous localization and mapping (SLAM) [21, 22] have also been presented, gaining increasing

interest in the ITS community.

✶✳✺ ❚♦✇❛r❞s ✐♥t❡❧❧✐❣❡♥t ❛♥❞ ❛✉t♦♥♦♠♦✉s ✈❡❤✐❝❧❡s

Although the keyword “autonomous vehicle” has been widely used by most of the car manufactures and

by the media only during the last few years, the idea of a self-driving car is definitely not new.

In one of most popular General Motors’ exhibitions entitled “Futurama: Highways and Horizons” at

the New York’s World Fair in 1939, the industrial designer Norman Bel Geddes had the vision of a future

featuring automated highways as a solution to traffic congestion. In the solution he presented, the cars

were powered by circuits embedded in the roadway and controlled by radio communication. Although

Bel Geddes did not call it in this way, that was the first clear vision of the autonomous and connected

vehicles of the future.✶

However, the first driverless car was demonstrated only about 40 years later by the Tsukuba Mechani-

cal Engineering Lab: the car could detect and track white street markers using a black-and-white camera,

and reach speeds up to 30 km/h on a dedicated track in Japan [23]. The technology was not ready yet

for automatic driving at high speed in highways and freeways, mainly due to the low-frequency image

processing and therefore the delays in the driving control feedback.

In 1986, professor Ernst Dickmanns and his research team at the Bundeswehr University of Munich

constructed the first complete robotic car, called VaMoRs, based on a Mercedes-Benz van (Fig. 1.5(a)).

The 5-ton car was re-engineered such that it was possible to control its steering wheel, throttle, and brakes

through electronic commands based on real-time processing of image sequences from and embedded

camera. The robotic car was capable of driving in well-marked highways without traffic using saccadic

computer vision, probabilistic approaches and parallel computing [24].

One of the greatest challenges in high-speed autonomous driving arises through the rapidly changing

visual scenes of the street. Forty years ago, computers were much slower than today, therefore sophisti-

cated computer vision techniques were necessary to obtain useful information in real time. The team of

Dickmanns solved the problem through an innovative approach to dynamic vision, called “4-D approach”,

in which spatio-temporal models were used to estimate 3-D position and velocity components without

storing previous images [25]. Inspired by human attention control, the platform carrying the cameras

performed saccadic movements to focus the attention on the most relevant details of the visual scene.

Kalman filters were extended to perspective imaging and used to achieve robust autonomous driving

✶❆❢t❡r st❡♣♣✐♥❣ ♦✉t t❤❡ ❡①❤✐❜✐t✐♦♥✱ t❤❡ ✈✐s✐t♦rs ♣r♦✉❞❧② ✇♦r❡ ❛ ♣✐♥ ✐♥ ✇❤✐❝❤ t❤❡r❡ ✇❛s ✇r✐tt❡♥ ✏■ ❤❛✈❡ s❡❡♥ t❤❡ ❢✉t✉r❡✑✳
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even in presence of noise and uncertainty [25].

Since then, the European Commission and the American Defense Advanced Research Projects Agency

(DARPA), among others, started funding major research initiatives with the objective of studying the

problem of autonomous navigation in urban and extra-urban environments.

In 1994, as final part of the Eureka PROMETHEUS project, the Dickmanns’s team in collaboration

with Mercedes-Benz constructed 2 semi-autonomous vision-based cars based on a Mercedes 500 SEL,

called VaMP and VITA-2 [26] (Fig. 1.5(b)). The two twin cars could drive more than 1000 km on the

highway near the airport Charles-de-Gaulle near Paris, in standard traffic with a speed up to 130 km/h,

by automatically keeping a safe distance depending on their speed and passing slower cars in the left

lane. The latter required interpreting the road scene also in the rear car’s hemisphere, thereby 2 cameras

with different focal lengths for each hemisphere (front and rear) have been used in parallel [26].

One year later, a modified version of the VaMP car autonomously drove about 1700 km on public

highways from Munich, Germany to Odense, Denmark at a speed up to 180 km/h, automatically passing

other cars (lane-changes at a maximum speed of 140 km/h) without GPS and with only 5% of human in-

tervention [26]. This is particularly impressive considering that the system used black-and-white cameras

and did not model situations such as road construction sites with yellow lane markings.

Considerable results were subsequently obtained by the research groups of A. Broggi (University of

Pavia, Italy) and C. G. Lo Bianco (University of Parma, Italy) between 1996 and 2001 in the context of

the ARGO project [27]. A modified version of the Lancia Thema (Fig. 1.5(c)) was able to distinguish

traffic lanes, identify ahead vehicles and other interference to its path, without requiring any special road

infrastructure, by using only a stereo vision system. The real-world test of the car was done in 1998,

when the car completed the “MilleMiglia in Automatico” tour, a journey through Italy along about 2000

km performed in automatic driving with a maximum speed of about 120 km/h, including extra-urban

rural roads for the first time ever [27].

In 2004, the first DARPA Grand Challenge, a driverless car competition along a 240-km off-road

route in the Mojave Desert region of the United States, took place with the purpose of accelerating the

development of autonomous vehicle technologies that could be applied to military requirements. None

of the vehicles finished the course, whereas the Sandstorm vehicle (a converted Humvee) of the Carnegie

Mellon’s Red Team traveled the farthest distance completing only about 12 km of the route [28].

One year later, the second DARPA Grand Challenge involved an off-road route similar to the previous

year, but this time 5 vehicles successfully completed the 212-km course, showing the exponential increase

of performances of the technologies used. The Stanley vehicle (a modified Volkswagen Touareg) of the

Stanford’s Racing Team, which won the first place, incorporated measurements from a GPS, a 6DOF IMU,

and wheel encoders for the vehicle’s pose estimation, whereas the environment was perceived through

4 lidars, a radar system, a stereo-vision and a monocular vision system [29] (Fig. 1.5(d)). The sensors

and processing units (7 onboard Pentium M computers) were still too cumbersome and costly to make

car manufacturers be interested in such applications.
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In 2007, the DARPA Urban Challenge, won by Carnegie Mellon’s Tartan Racing Team [14], involved

a 96-km urban-area course to be completed in less than 6 hours, while obeying all traffic regulations,

merging into traffic and negotiating with other cars and obstacles. Sensor systems become more ele-

gant and complete, and semi-autonomous features begin to hit the mainstream with car manufacturers

such as Audi, Volvo, GM and Mercedes incorporating features like collision avoidance, lane keeping and

changing, and driver attention assist into their new vehicles.

The VisLab Intercontinental Autonomous Challenge (VIAC) was the challenge conceived by the Arti-

ficial Vision and Intelligent Systems Laboratory (VisLab) at University of Parma, Italy, as an extreme test

of autonomous vehicles [30]. It ran from July to October 2010, involving 2 driverless Piaggio Porters

(Fig. 1.5(e)) driving with virtually no human intervention on an almost 16000 km trip from Parma, Italy

to Shanghai, China. The vehicles had to face a plethora of very different and extreme conditions: road,

weather, infrastructures, temperature, traffic, and even possibly unlawful behaviors of other vehicles. In

addition, the route was unknown since no maps of a large percentage of the trip were available. The

first vehicle (leader) was driven autonomously for most of the trip (limited human interventions were

needed to define the route and intervene in critical situations) while testing the sensing, decision and

control subsystems, and collecting data, whereas the second vehicle (follower) automatically followed

the route defined by the leader, requiring no human intervention (100% autonomous) [30]. The sensing

technologies used were similar to those used in the DARPA challenges, including 4 lidars, 2 stereo-vision

systems, 1 panoramic camera and 1 localization unit, yet being far from integration on standard cars.

The Google Car project lunched in 2009 started testing compact self-driving technologies with the

Toyota Prius on freeways in California, moving then with the Lexus RX450h in city streets in 2012. In

December 2014, Google delivered the first real-build prototype vehicle which included a GPS, a IMU,

wheel encoders, a 3-D lidar on the top, and a radar and a camera at the front (Fig. 1.5(f)). The Google

Car have been self-driven up to present over almost 2 million km in the United States, and involved in 12

minor accidents without any people blessed, mostly due to human errors from other drivers.

The Google Car project showed for the first time that autonomous driving was possible both in urban

and extra-urban roads, both at low and high speed, using a limited number of on-the-shelf sensors, thanks

to their increasing performances and decreasing cost, as well as the increasing embedded intelligence

and the vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication. Therefore, during

the last few years several car manufacturers started autonomous vehicle projects, leading to the first

prototypes that have been tested on public roads (mainly highways) in Europe, for instance, by the

Volkswagen, Mercedes, Volvo and PSA groups. As an example, the vehicle prototype of PSA Peugeot

Citroën has been recently driven autonomously along nearly 500 km on highway from Paris to Bordeaux,

France.

The Volkswagen’s Temporary Auto Pilot [31] received the strongest media attention because it left

the impression of a close approach to truly automated driving, although the driver have to continuously

watch the forward driving scene to make the system operate. The AutoPilot demonstration proceeded

✶✹
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through the different levels of driver assistance up to the combination of lateral and longitudinal control.

The vehicle demonstrated, for instance, the ability to track a slower vehicle in the left adjacent lane and

avoid overtaking it on the right, which is illegal in many European countries, as well as to perform an

emergency braking maneuver behind a stopped vehicle in its lane.

On parallel lines, the concept of Cybernetic Transport Systems (CTS) or “cybercars”, i.e. automated

electric vehicles transporting people or merchandises in some protected areas (cities, airports, private

tracks, etc), was proposed in 1991 by the french institute INRIA (Institut National de Recherche en In-

formatique et en Automatique). The first successful demonstrations took place at the Schiphol airport of

Amsterdam, Netherlands in 1997, with the Cycab vehicles, and in a suburb of Rotterdam, Netherlands

in 1998, with the Parkshuttles vehicles provided by 2GetThere (Fig. 1.6(a)). In this case, the features of

the autonomous vehicles were completely different than those described above, since they had to drive

autonomously at low speed in urban or suburban areas, that is in unknown, unstructured and populated

environments.
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Since then, the European Commission started funding major research CTS projects, such as the Cyber-

Mobil and CyberMove projects between 2001 and 2011, with the goal of creating a new transportation

options to move towards sustainability and increasing the attractiveness of city centers. Today, there exist

already some companies that produce cybercars, such as 2GetThere, Robosoft, Induct, Navya and Lohr

in Europe, and several early large-scale public experiments have been carried out, such as those with

the Cybus vehicles in La Rochelle, France in 2011, developed by INRIA and RoboSoft in the CityMobil

EU-funded project (Fig. 1.6(b)).

Several other projects (e.g. Aktiv, SAFESPOT, HAVEit, INTERSAFE 2, SARTRE, InteractIVe) and chal-

lenges (e.g. the Multi Autonomous Ground-robotic International Challenge and the Grand Cooperative

Driving Challenge) contributed in the scientific and technological advances that are leading most of the

car manufacturers to delivering the first commercial (semi-)autonomous cars within a few years.
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In 2012, the German Federal Institute for Road Research (“Bundesanstalt für Strabenwesen”,BASt)

proposed a first formalism of the levels of automated driving divided in five levels [32]. In 2013-2014,

the U.S. NHTSA agency, and then the International Society of Automotive Engineers (SAE International)

and the International Organization of Motor Vehicle Manufacturers (OICA), have also released their own

definition of the levels of automated driving [33–35]. The SAE definition, shown in Fig. 1.7, completely

agree with the BASt and OICA definitions, and is therefore commonly accepted and adopted by most of

the car manufacturers in Europe since it provides an incremental approach relying on a collaboration

between the driver and the system. The existing ADAS systems correspond to the first two levels of

automated driving (level 1 and 2 in Fig. 1.7), while prototypes of third and fourth level are already

presented by some car manufacturers (level 3, 4 and 5 in Fig. 1.7).
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All the presented systems offer a number of degrees of assistance to the driver, but, in their current

form, are not yet capable of providing self-driving experiences that are complete and cost-competitive.

Their limitations include:

• The perception of the environment: so far, the fusion of available sensors and artificial intelligence

is not capable of “seeing” and understanding the vehicle’s surroundings as accurately as a human

being can. Humans use a combination of learning and sensory inputs to detect and interpret events
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as they occur, and anticipate likely scenarios. Thus, the great challenge is, as of now, to find compact

technologies that make it possible to provide a 360-degrees perception of the environment with the

minimum amount of computational resources.

• The cost: creating a 360-degree view of the vehicle’s environment requires a combination of sensors

and may cost more than consumers are willing to pay. Lidar-based systems provide 360-degree

imaging but are complex, expensive, and not yet ready for the market (the lidar system used in the

Google car, for example, costs about $70000).

Effective, alternative technological solutions could be found by looking at the nature, and in particular

at human and animal vision, as it will be discussed in the following sections.

✶✳✻ ❚❤❡ ✈✐s✐♦♥ ✐♥ ❤✉♠❛♥s ❛♥❞ ❛♥✐♠❛❧s

Perception is essential for both humans and animals in order to navigate in unknown environments

and perform vital tasks. Among all the embodied sensors which humans and animals rely on, the eyes

are often the most important ones as they are passive sensors providing very rich information on both

the environment and the ego-motion. In fact, as already mentioned in section 1.3, passive sensors are

more energetically efficient than active sensors, and are therefore preferred by nature. In addition, light

provides probably the most rich information to be passively sensed in our world, making humans and

most animals develop this sensory modality more than others. In particular, vision is the most important

sense for flying animals, such as insects and birds, since good eyesight is essential for safe flight. Thereby,

these animals present some features, such as visual acuity and motion detection, superior to that of other

species.

As for every sensory system, the visual signals has first to be sensed and then to be processed in order

to perceive useful information. Here, we will first present two of the most interesting and important

features of both human and animal visual systems: light adaptation and motion perception. Then, we

will focus only on the insects’ vision, and in particular the fly’s visual system, as it represents probably the

most efficient visual system for performing motion detection with the minimum amount of computational

resources.

✶✳✻✳✶ ▲✐❣❤t ❛❞❛♣t❛t✐♦♥

Animals, like humans, can easily navigate in indoor and outdoor environments where the light intensity

can vary temporally within a 7-decade range, from night time with a cloudy sky (∼ 0.01Lux) to day time

with full sunshine (∼ 100000Lux), and spatially up to 3 decades, from shaded to lightened regions in

the same scene. To do this, their visual systems need to auto-adapt to the temporal and local average

luminosity in order to keep good contrast sensitivity while “coding” luminance information within a

limited electrical range.
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Thus, light adaptation in human and animal retinas has been extensively studied since the early

1950s, using both intra and extracellular methods [36–43]. In all these studies, the relationship between

light stimuli and photoreceptor responses has been documented, both in the dark and with background

illumination, via an adaptation process described by the so-called Michaelis-Menten equation [44]:

V = Vm
In

In + σn
, ✭✶✳✶✮

where V stands for the photoreceptor’s response and Vm is its maximum value; I denotes the light

intensity and n usually ranges from 0.7 to 1; σ is the adaptation parameter, corresponding to the light

intensity giving half of the maximum response.

The first micro-electrode recordings of rod and cone responses were obtained on saltwater fish (Ger-

ridae) by Svaetichin in 1953 [45]. In his pioneering study, Svaetichin discovered the S-potentials, as they

were subsequently called by Oikawa et al. in [46], which stands for “slow potentials”, referring to the

slow adaptation process which occurs in the photoreceptor potentials when they are exposed to flash

lights against a steady background.

However, the first mathematical description of the cone response given by equation (1.1) was provided

by Naka and Rushton in the case of the freshwater fish (Cyprinidae) [36]. The equation (1.1) where

n = 1 is therefore also known as the Naka-Rushton law. The same model was subsequently validated and

applied to turtles’ cones by Baylor et al. [37] and to monkeys’ cones by Boynton and Whitten [38], who

introduced the exponent n < 1 for the first time. Many studies were then carried out on vertebrates and

invertebrates, all confirming the equation in (1.1) with various values of n and sometimes with different

interpretations of the adaptation parameter σ (in the salamander [39], gecko [40], frog [41], locust, fly

and dragonfly [42], for instance, and in the human fovea [43]).

Figure 1.8(a) shows the responses of dark- and light-adapted red cone photoreceptors recorded in-

tracellularly in the retina of the turtle (Pseduemys Scripta Elegans) by Normann and Perlman [47]. As

can be seen from this figure, the function V (I) defined in (1.1) gives rise in the Log(I) domain to curves

with a fairly smooth “S” shape (continuous curves), where the slope of the “S” is given by the value of n

(n = 1 in that case) and the lateral shift by the value of σ. For flying insects, a similar sensory adaptation

mechanism capable of compensating for large changes in light intensity right at the photoreceptor level

has also been discovered [48,49] (Fig. 1.8(b)).

Based on the S-shaped curves shown in Fig. 1.8, two main features of the light-adaptation behavior

can be described by the incident-light model [50]:

• as the background lighting changes, the entire S-shaped curve shifts along the light intensity axis,

which corresponds to a change in the sensitivity of the photoreceptor in the neighborhood of the

background light. In fact, after reaching a peak value caused by an increase/decrease in the in-

tensity of the light (data points), the potential V gradually returns to a steady-state value, re-

flecting its adaptation to the background. This decrease/increase in V corresponds to a “slow”

increase/decrease in the parameter σ (see equation (1.1));
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❋✐❣✉r❡ ✶✳✽✿ ❙✲s❤❛♣❡❞ ❝✉r✈❡s ❝♦rr❡s♣♦♥❞✐♥❣ t♦ ❞❛r❦✲ ❛♥❞ ❧✐❣❤t✲❛❞❛♣t❡❞ r❡s♣♦♥s❡ ❝✉r✈❡s r❡❝♦r❞❡❞ ✐♥ ✭❛✮

❛ r❡❞ ❝♦♥❡ ♦❢ t❤❡ Ps❡❞✉❡♠②s ❙❝r✐♣t❛ ❊❧❡❣❛♥s t✉rt❧❡ ❛♥❞ ✭❜✮ ❘✶✲✻ ♣❤♦t♦r❡❝❡♣t♦rs ♦❢ t❤❡ ❈❛❧❧✐♣❤♦r❛ ✢②✳

❆❞❛♣t❡❞ ❢r♦♠ ❬✹✼❪ ❛♥❞ ❬✹✽❪✱ r❡s♣❡❝t✐✈❡❧②✳

• as the background illumination increases, the operating point of the photoreceptor increases cor-

respondingly (small horizontal lines in Fig. 3.1), which means that because of the non-linearity

of the curve, the response to a given increment/decrement in the stimulus becomes smaller/larger

at higher background levels. This process known as “response compression” was introduced for

the first time by Boynton and Whitten in [38]. The slope of the curve around the operating point

defines the contrast sensitivity.

✶✳✻✳✷ ▼♦t✐♦♥ ♣❡r❝❡♣t✐♦♥

Although it might appears as a straightforward process, motion perception is one of the most difficult

problems to be explained in the vision process from both a psychophysical and physiological perspective.

In fact, two kinds of motion perception can occur when, for instance, two or more visual stimuli are

switched on and off in alternation, depending on the stimulated area and the alternation rate: “first-

order” and “second-order” motion perception, also known in psychophysics as “φ-phenomenon” and “β-

movement”, respectively [51].

At fast alternation rates and small stimulated areas, we obtain a first-order motion perception, also

called “pure” motion perception since it is uncontaminated by form cues. This perception is mediated

by relatively simple “motion sensors” in the visual system, which detect a change in illuminance at one

photoreceptor in the retina and correlate it with a change at a neighboring photoreceptor after a short

delay (see section 1.6.4).

On the contrary, by alternating the stimuli at relatively low rate and covering a relatively large region,

we obtain a second-order motion perception, also called “apparent” motion since an object is perceived

as moving when, in fact, a series of stationary images is being presented. This perception depends on

the form of a moving contour, which is defined by contrast, texture or some other quality that does not

necessarily result in an increase in illuminance or motion energy in the Fourier domain [52, 53]. There

✶✾
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is much evidence to suggest that early processing of first- and second-order motion is carried out by

separate pathways before being combined in the V5/MT area of the human visual system [54].

The motion direction of a contour, e.g. a straight line, can be ambiguous for first-order motion

detectors because the motion component parallel to the line can not be inferred based on early-stage

visual inputs. This is because the neurons in the visual system which are responsible of such motion

detection are sensitive to visual inputs in a small area of the visual field, as if each neuron was looking at

the visual scene through a small aperture. This means that a variety of contours of different orientations

moving at different speeds can cause identical responses in these neurons, hence the need of integrating

this information with second-order motion perception.

❋✐❣✉r❡ ✶✳✾✿ ✭❛✮ ❚❤❡ ❛♣❡rt✉r❡ ♣r♦❜❧❡♠✳ ❚❤❡ r❡❛❧ ❞✐r❡❝t✐♦♥ ♦❢ ♠♦t✐♦♥ ♦❢ ❛ ♦♥❡✲❞✐♠❡♥s✐♦♥❛❧ ♦❜❥❡❝t ❝❛♥♥♦t

❜❡ r❡❝♦✈❡r❡❞ ✇❤❡♥ ✇❡ ❧♦♦❦ ❛t t❤✐s ♦❜❥❡❝t t❤r♦✉❣❤ ❛♥ ❛♣❡rt✉r❡ ✭r❡❝❡♣t✐✈❡ ✜❡❧❞✮ A s♠❛❧❧❡r t❤❛♥ t❤❡ ♦❜❥❡❝t✳

■♥ t❤✐s ❡①❛♠♣❧❡✱ t❤❡ r❡❛❧ ♠♦t✐♦♥ ♦❢ t❤❡ ♦❜❥❡❝t ✐s ❞❡s❝r✐❜❡❞ ❜② t❤❡ ✈❡❝t♦r R ❜✉t t❤❡ ♣❡r❝❡✐✈❡❞ ♠♦t✐♦♥

P ✐s ♦♥❧② t❤❡ ❝♦♠♣♦♥❡♥t ♥♦r♠❛❧ t♦ t❤❡ ♦❜❥❡❝t✳ ❚♦ ❞❡t❡r♠✐♥❡ t❤❡ ♠♦t✐♦♥ ❝♦♠♣❧❡t❡❧②✱ ❛ s❡❝♦♥❞ st❛❣❡

♠✉st ❝♦♠❜✐♥❡ s❡✈❡r❛❧ ❧♦❝❛❧ ♠❡❛s✉r❡♠❡♥ts✳ ✭❜✮ ❚❤❡ ♣❡r❝❡✐✈❡❞ ♠♦t✐♦♥ t❤r♦✉❣❤ ❛♥ ❛♣❡rt✉r❡ ✈❛r✐❡s ✇✐t❤

t❤❡ ❣❡♦♠❡tr② ♦❢ t❤❡ ❛♣❡rt✉r❡ ✐ts❡❧❢✳ ■♥ t❤✐s ❡①❛♠♣❧❡✱ t❤❡ ❧✐♥❡ ❛♣♣❡❛rs t♦ ♠♦✈❡ ❞✐❛❣♦♥❛❧❧②✱ ❛❝❝♦r❞✐♥❣ t♦

t❤❡ ♥♦r♠❛❧ ❞✐r❡❝t✐♦♥ ♦❢ t❤❡ ❧✐♥❡✱ ♦♥❧② ❜❡❢♦r❡ r❡❛❝❤✐♥❣ t❤❡ ❝♦r♥❡r ♦❢ t❤❡ ❛♣❡rt✉r❡✳ ❆❢t❡r t❤❛t✱ t❤❡ ❧✐♥❡ ✐s

♣❡r❝❡✐✈❡❞ ❛s ♠♦✈✐♥❣ ❤♦r✐③♦♥t❛❧❧② ✭❝❡♥tr❛❧ ♣❛rt✮ ❜❡❝❛✉s❡ t❤❡ ❜♦r❞❡rs ♦❢ t❤❡ ❛♣❡rt✉r❡ ❛r❡ ♣❛r❛❧❧❡❧✳ ✭❝✮ ❚❤❡

❝♦rr❡s♣♦♥❞❡♥❝❡ ♣r♦❜❧❡♠✳ P1 ❛♥❞ P2 ❛r❡ s❤♦✇♥ ♦♥ t❤❡ ✜rst ❢r❛♠❡✱ Q1 ❛♥❞ Q2 ♦♥ t❤❡ ♥❡①t✳ ❚✇♦ ♦♥❡✲t♦✲

♦♥❡ ♠❛t❝❤❡s ❛r❡ ♣♦ss✐❜❧❡ ✭P1 → Q1 ❛♥❞ P2 → Q2✱ ♦r P1 → Q2 ❛♥❞ P2 → Q1✮✱ ❧❡❛❞✐♥❣ t♦ t✇♦ ♣♦ss✐❜❧❡

♣❛tt❡r♥s ♦❢ ♠♦t✐♦♥✳ ✭❞✮ ❆ ♣♦✐♥t ♦♥ ❛ ❧✐♥❡ ❝❛♥ ❤❛✈❡ ✈❛r✐♦✉s ♠♦t✐♦♥s s✐♥❝❡ t❤❡ ♣♦✐♥t✲❝♦rr❡s♣♦♥❞❡♥❝❡ ❛♣♣❡❛rs

❛♠❜✐❣✉♦✉s✳ ❚❤❡r❡❢♦r❡✱ ✇❤❡♥ t❤❡ ❝♦rr❡s♣♦♥❞❡♥❝❡ ♣r♦❜❧❡♠ ❝❛♥ ♥♦t ❜❡ s♦❧✈❡❞ ❜❡❝❛✉s❡✱ ❢♦r ✐♥st❛♥❝❡✱ ♦❢ ❛♥

❛♣❡rt✉r❡✱ ❤✉♠❛♥s ♣❡r❝❡✐✈❡ ❛ ♠♦t✐♦♥ ♥♦r♠❛❧ t♦ t❤❡ ❡❞❣❡✳ ❆❞❛♣t❡❞ ❢r♦♠ ❬✺✺❪ ❛♥❞ ❬✺✻❪✳

This is also known as the “aperture problem” as described by Wallach [57]: in most cases, motion seen

through a small aperture (receptive field) is perceived as normal to the edge of a line or a local surface

contour (Fig. 1.9(a),(b)). From a second-order perception perspective, the aperture problem is closely

related to the “correspondence problem”, which refers to the capability of ascertaining which elements in

✷✵
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one image correspond to which elements in the previous image, where differences are due to the relative

motion between the eye/camera and the objects in the scene (Fig. 1.9(c),(d)).

These two problems represent the main issues that computer-vision algorithms have to deal with in

order to compute the right optical flow (see section 1.7).

✶✳✻✳✸ ❚❤❡ ✢②✬s ✈✐s✉❛❧ s②st❡♠

The compound eye of insects is very different from all other animals’ eyes, such as the mammalian eye

(Fig. 1.10(a)). In fact, while in most animals’ eyes the light is captured and projected on a layer of

photoreceptors, i.e. the retina, through a single lens, in the compound eye the light is captured by a

set repeating units called ommatidia, each consisting of a hexagonal lens, a transparent crystalline cone

and a few photoreceptors, also called rhabdomeres [58] (Fig. 1.10(b)). In particular, the ommatidium

of the fly comprises 8 photoreceptors, called R1-R8, which can be divided in 2 groups [59, 60]: two

“inner” photoreceptors (R7 and R8) that participate in color vision with four different spectral sensitivities

(from red to yellow), and six “outer” photoreceptors (R1-R6) that participate in motion detection and, in

particular, are responsible for the optomotor response (see section 1.6.4).

❋✐❣✉r❡ ✶✳✶✵✿ ✭❛✮ P✐❝t✉r❡ ♦❢ t❤❡ ❝♦♠♣♦✉♥❞ ❡②❡s ♦❢ ❛ ❘♦❜❜❡r ❋❧② ✭❍♦❧❝♦❝❡♣❤❛❧❛ ❢✉s❝❛✮ ♣r♦✈✐❞❡❞ ❜② ●✳

▼❛③③❛r♦❧❧♦ ♦♥ ✇✇✇✳❢❧✐❝❦r✳❝♦♠✳ ✭❜✮ ❙✐♠♣❧✐✜❡❞ s❝❤❡♠❡ ♦❢ t❤❡ ❝♦♠♣♦✉♥❞ ❡②❡ ♦❢ ✢②✐♥❣ ✐♥s❡❝ts✳ ❊❛❝❤

❡❧❡♠❡♥t❛r② ✉♥✐t✱ ❝❛❧❧❡❞ ♦♠♠❛t✐❞✐✉♠✱ ✐s ❝♦♠♣♦s❡❞ ♦❢ ❛ ❤❡①❛❣♦♥❛❧ ❧❡♥s✱ ❛ tr❛♥s♣❛r❡♥t ❝r②st❛❧❧✐♥❡ ❝♦♥❡ ❛♥❞

❛ ❢❡✇ ♣❤♦t♦r❡❝❡♣t♦rs✱ ❛❧s♦ ❝❛❧❧❡❞ r❤❛❜❞♦♠❡r❡s ✭❤❡r❡ s✐♠♣❧✐✜❡❞ t♦ ♦♥❡✮✳ ❚❤❡ ♦♠♠❛t✐❞✐❛ ❛r❡ ❝❤❛r❛❝t❡r✐③❡❞

❜② t❤❡✐r ✐♥t❡r✲♦♠♠❛t✐❞✐❛❧ ❛♥❣❧❡ ∆φ ❞❡✜♥✐♥❣ t❤❡ s♣❛t✐❛❧ r❡s♦❧✉t✐♦♥✱ ✇❤✐❝❤ ✈❛r✐❡s ❛❧♦♥❣ t❤❡ ❝♦♠♣♦✉♥❞ ❡②❡✳

❉✉❡ t♦ t❤❡ ❞✐✛r❛❝t✐♦♥ ♦❢ ❧✐❣❤t ✇❛✈❡s ✐♥ t❤❡ r❤❛❜❞♦♠❡r❡✱ ❡❛❝❤ ♦♠♠❛t✐❞✐✉♠ ❢❡❛t✉r❡s ❛ ●❛✉ss✐❛♥ ❛♥❣✉❧❛r

s❡♥s✐t✐✈✐t② ❝❤❛r❛❝t❡r✐③❡❞ ❜② ✐ts ❢✉❧❧ ✇✐❞t❤ ❛t ❤❛❧❢ ♠❛①✐♠✉♠ ∆ρ✳ ❆❞❛♣t❡❞ ❢r♦♠ ❬✺✽❪✳
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The ommatidia are distributed over the compound eye so that they form with their neighbors an

angle ∆φ, called inter-ommatidial angle, which varies all along the compound eye defining its resolution.

The smaller the inter-ommatidial angle, as, for instance, in the frontal region, the further objects can be

detected, such as flowers, preys or predators [61]. Due to the small size of the lens (a few µm), the light

is diffracted by the lens giving each ommatidium a Gaussian angular sensitivity characterized by its full

width at half maximum ∆ρ, also called acceptance angle [58]. Such an angular sensitivity, characterizing

the field-of-view of each ommatidium, produces a spatial low-pass filtering of the visual scene which is

essential in the motion detection processing [62]. Although the number of ommatidia as well as the

inter-ommatidial angle (∆φ) and the acceptance angle (∆ρ) largely vary among all flying insects, it was

shown that in diurnal insects ∆φ is roughly equal to ∆ρ, ensuring that there is little or no aliasing without

oversampling the visual information [61].

Two main types of compound eye can be found, depending on how the light converges onto the

retina: the focal apposition compound eye and the refracting superposition compound eye [63] (Fig.

1.11(a),(b)). In the apposition eye, typically found in day-active insects (e.g. locusts and beetles), the

ommatidia are optically isolated, each being sensitive to light along its optical axis. On the contrary, in

the superposition eye, typically found in crepuscular or night-active insects (e.g. butterflies), the om-

matidia are not optically isolated and therefore the light coming from one direction but passing through

neighboring ommatidia converges into one photoreceptor, thus amplifying its response. A particular case

of superposition eye is the neural superposition eye found, for instance, in diurnal flies, where the omma-

tidia are optically isolated (as in the apposition eye) but neuronal arrangement causes partial summation

of the photoreceptors’ responses (see [64,65] for a review).

The main advantage of the compound eye is its compactness, allowing visual processing mechanisms

to be situated immediately beneath the ommatidia, thus saving space and weight compared to the ver-

tebrates’ eyes where there is a wide useless space between the lens and the retina. In fact, beneath the

ommatidia there are three optic lobes, called ganglia (or neuropils), namely the lamina, the medulla,

and the lobula complex (lobula and lobula plate), corresponding to three different steps in the fly’s visual

processing [66] (Fig. 1.11(c)). The neurons in the first optic lobe, the lamina, receive directly inputs from

the R1-R8 photoreceptors and respond as high-pass filters by amplifying temporal changes and therefore

performing auto-adaptation to the background illuminance [48] (see section 1.6.1). These high-pass

filtered signals, which may correspond to moving contrasts, are then transmitted to the medulla neu-

rons to perform local motion detection between adjacent photoreceptors (see section 1.6.4). However,

due to their small size, the medulla neurons are extremely difficult to record and little is known about

them [67]. Lastly, the spatial convergence of local motion detectors is performed in the lobula plate

where the information from several thousand of photoreceptors converge onto large neurons which are

sensitive to specific motion directions.

The lobula plate is composed of approximately 50 tangential interneurons called Lobula Plate Tan-

gential Cells (LPTCs) that receive inputs from local motion detectors over a wide region of the field of
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view [68,69]. Among these neurons are the groups of horizontal (HS) cells and vertical (VS) cells, which

are sensitive to specific directions of motion (e.g. from back to front for the H1 neuron) [70, 71]. Simi-

lar neurons have been discovered in the honeybee, called velocity-tuned (VT) cells and optomotor cells,

which are sensitive to translatory and rotationary motions, respectively [72,73].

❋✐❣✉r❡ ✶✳✶✶✿ ✭❛✮ ❆ ❢♦❝❛❧ ❛♣♣♦s✐t✐♦♥ ❝♦♠♣♦✉♥❞ ❡②❡✳ ▲✐❣❤t t♦ ♣❤♦t♦r❡❝❡♣t♦rs ❝♦♠❡s t❤r♦✉❣❤ s♠❛❧❧ ❝♦r♥❡❛❧

❧❡♥s ✐♥ ❡❛❝❤ s♠❛❧❧ ❡②❡❧❡t✳ ✭❜✮ ❆ r❡❢r❛❝t✐♥❣ s✉♣❡r♣♦s✐t✐♦♥ ❝♦♠♣♦✉♥❞ ❡②❡✳ ❆ ♥✉♠❜❡r ♦❢ ♦♣t✐❝❛❧ ❡❧❡♠❡♥ts

❢♦❝✉s ❧✐❣❤t t♦ ♣❤♦t♦r❡❝❡♣t♦rs ✐♥ t❤❡ r❡t✐♥❛ ✭✏❝③✑ st❛♥❞s ❢♦r ✏❝❧❡❛r ③♦♥❡✑✮✳ ✭❝✮ ❙❝❤❡♠❛t✐❝ str✉❝t✉r❡ ♦❢

t❤❡ ✐♥s❡❝t ❝♦♠♣♦✉♥❞ ❡②❡✳ ❚❤❡ s✐③❡ ❛♥❞ ❞❡t❛✐❧❡❞ str✉❝t✉r❡ ♦❢ t❤❡ ❞✐✛❡r❡♥t ♥❡✉r♦♥❛❧ ❣❛♥❣❧✐❛ ❛♥❞ ❝❡♥t❡rs

♠❛② ✈❛r② ❢r♦♠ s♣❡❝✐❡s t♦ s♣❡❝✐❡s✳ ❚❤❡ str✉❝t✉r❡ s❤♦✇♥ ✐s ❝❧♦s❡st t♦ ❞✐♣t❡r❛♥ ✢✐❡s✱ ❛❧t❤♦✉❣❤ t❤❡ ♥✉♠❜❡r

♦❢ r❡t✐♥♦t♦♣✐❝ ❡❧❡♠❡♥ts ✭❢❛❝❡ts ❛♥❞ ❝♦rr❡s♣♦♥❞✐♥❣ ♣❛rts ✐♥ ❞❡❡♣❡r str✉❝t✉r❡s✮ ✐s ♥♦r♠❛❧❧② ♠✉❝❤ ❧❛r❣❡r✳

❆❞❛♣t❡❞ ❢r♦♠ ❬✻✸❪ ❛♥❞ ❬✼✹❪✳

✶✳✻✳✹ ❊❧❡♠❡♥t❛r② ♠♦t✐♦♥ ❞❡t❡❝t♦rs

Physiological and behavioral studies on animals and humans have shown that motion perception occurs

in the early-stage processing of the visual system at higher frequency than what is meant to be the image

rate. Various bio-inspired model, also known as elementary motion detectors (EMDs), based on these

studies have been proposed for visual motion perception. Most of these motion detectors are based on

a correlation (or de-correlation) mechanism which has been identified, for instance, in the medulla and
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lobula lobes of the fly’s visual system (see section 1.6.3), as well as in the low-level layers of neurons

behind the human retina, namely the Outer and Inner Plexiform Layers (IPL and OPL).

The first and most famous correlation-based EMD was proposed by Hassenstein and Reichardt in the

1950s and is therefore known as the Hassenstein-Reichardt (HR) model. The HR model was initially

inspired by electrophysiological experiments carried out in the visual system of the Chlorophanus beetle

[75, 76], but was later shown to be consistent with the motion perception occurring in many other

animals, such as other insects and particularly the fly [77], and even humans [78].

Correlation-based schemes compare the outputs of two photodetectors to illuminance variations at

two adjacent positions. In particular, the original HR model was composed of 2 symmetric elementary

units in which the output signal of the one of the 2 photoreceptors was multiplied by that of the other

photoreceptor after being delayed by a time τ , which was generated by a low-pass filter (Fig. 1.12(a)).

The output of the EMD is then given by the difference of the two units’ outputs, which can be seen as the

result of a correlation operation: a visual pattern moving to the right, for instance, will produce a high

positive output whereas it will produce a high negative output when moving to the left. In particular, the

highest positive (negative) value is obtained when the rightward (leftward) motion produces a time lag

between the 2 photoreceptors’ signals of exactly τ .

Improved versions of the HR model, also called elaborated Reichardt detectors (ERDs), have been

proposed subsequently based on further biological findings, including different filtering blocks in the

signals pathways, but without changing the essential correlation operation [80] (Fig. 1.12(b)).

In the 1980s, Franceschini et al. proposed a “facilitate and sample” model, which fits with an ERD

but unveiled essential details about its inner processing structure, after electrophyisiologically recording

the activity of the H1 neuron, one of the 50 wide-field LPTCs in the fly which is most sensitive to hori-

zontal back-to-front motion (see section 1.6.3). In their experiments, instead of stimulating the eye by

presenting some moving contrast in front of it, as it was done, for instance, by Hassenstein and Reichardt,

they created an “apparent motion” in the field of view of one ommatidium by stimulating only 2 adja-

cent photoreceptors of the same ommatidium, in particular the R1 and R6 photoreceptors, thanks to a

custom-made instrument hybrid between a microscope and a telescope [60,62] (Fig. 1.13(a)). This new

technique made it possible to isolate a single EMD and therefore reveal its inner processing structure in

a more direct way than previous experiments.

The results obtained first showed that the H1 neuron firing rate increased when presented with a

motion in the preferred direction (back-to-front) and was inhibited when the motion was in the non-

preferred direction (front-to-back) [81] (Fig. 1.13(b)). This confirmed that the fly’s EMD was composed

of a slow “facilitating arm” which drives a parameter (e.g., a gain or a threshold) that adjusts the transfer

of a fast “facilitated arm” (left and right side of the scheme in Fig. 1.13(d), respectively). The facilitating

arm dynamics was identified as a second-order low-pass filter (τ ≈ 50ms) by measuring its impulse

response when varying the interstimulus interval of short-lasting (10-ms) stimuli [62] (Fig. 1.13(e)). On

the contrary, the facilitated arm dynamics was identified as a first-order high-pass filter (τ ≈ 100ms)
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❋✐❣✉r❡ ✶✳✶✷✿ ✭❛✮ ❙❝❤❡♠❛t✐❝ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ t❤❡ ♦r✐❣✐♥❛❧ ❍❛ss❡♥st❡✐♥✲❘❡✐❝❤❛r❞t ✭❍❘✮ ♠♦❞❡❧✳ ■♥ t❤✐s

❜❛s✐❝ ✈❡rs✐♦♥ ♦❢ ❛ ❝♦rr❡❧❛t✐♦♥✲❜❛s❡❞ ❡❧❡♠❡♥t❛r② ♠♦t✐♦♥ ❞❡t❡❝t♦r ✭❊▼❉✮✱ t❤❡ ✐♥♣✉t s✐❣♥❛❧ ♦❢ ♦♥❡ ❜r❛♥❝❤

♦❢ ❡❛❝❤ ✉♥✐t ✐s ❞❡❧❛②❡❞ ❜② ❛ t✐♠❡ ✐♥t❡r✈❛❧ τ ❛♥❞ t❤❡♥ ♠✉❧t✐♣❧✐❡❞ ❜② t❤❡ ♥♦♥✲❞❡❧❛②❡❞ ✐♥♣✉t s✐❣♥❛❧ ♦❢ t❤❡

♥❡✐❣❤❜♦r✐♥❣ ❜r❛♥❝❤✳ ❚❤❡ ✜♥❛❧ ❞❡t❡❝t♦r ♦✉t♣✉t ✐s ❣✐✈❡♥ ❜② t❤❡ ❞✐✛❡r❡♥❝❡ ♦❢ t❤❡ ✷ ✉♥✐ts✬ ♦✉t♣✉ts✳ ✭❜✮

❙❝❤❡♠❛t✐❝ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ ❛♥ ❡❧❛❜♦r❛t❡❞ ❘❡✐❝❤❛r❞t ❞❡t❡❝t♦r ✭❊❘❉✮✳ ❚❤❡ ✐♥♣✉t ✐s ❛ ❧✉♠✐♥❛♥❝❡ ♣❛tt❡r♥

✇✐t❤ ❝♦♥tr❛st c(x, t)❀ ✐t ✐s s❛♠♣❧❡❞ ❜② ❧✐♥❡❛r s♣❛t✐❛❧ ✜❧t❡rs ✭r❡❝❡♣t✐✈❡ ✜❡❧❞s✱ ❙❋✬s✮ ✇✐t❤ s♣❛t✐❛❧ r❡s♣♦♥s❡s

rleft ❛♥❞ rright ❝❡♥t❡r❡❞ ❛t ❧♦❝❛t✐♦♥s xleft ❛♥❞ xright❀ yi,H ✭H = left, right✮ r❡♣r❡s❡♥ts t❤❡ s✐❣♥❛❧ ❛t t❤❡

✈❛r✐♦✉s st❛❣❡s ✐ ❢♦r t❤❡ ❧❡❢t ❛♥❞ r✐❣❤t s✉❜✉♥✐ts✳ TF ✐♥❞✐❝❛t❡s ❛ ❧✐♥❡❛r✱ t✐♠❡✲✐♥✈❛r✐❛♥t ✜❧t❡r ✇✐t❤ ❋♦✉r✐❡r

tr❛♥s❢♦r♠ D(ω)✱ X ✐♥❞✐❝❛t❡s ❛ ♠✉❧t✐♣❧✐❝❛t✐♦♥ ✉♥✐t✱ TA ✐♥❞✐❝❛t❡s ❛ t❡♠♣♦r❛❧ ✐♥t❡❣r❛t✐♦♥ ♦♣❡r❛t✐♦♥✱ ❛♥❞

− ✐♥❞✐❝❛t❡s ❛ ✉♥✐t t❤❛t s✉❜tr❛❝ts ✐ts ❧❡❢t ❢r♦♠ ✐ts r✐❣❤t ✐♥♣✉t✳ ✭❝✮ ❙❝❤❡♠❛t✐❝ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ ❛ ❣r❛❞✐❡♥t✲

❜❛s❡❞ ❞❡t❡❝t♦r✳ ❚❤❡ t❡♠♣♦r❛❧ ❧✉♠✐♥❛♥❝❡ ❣r❛❞✐❡♥t ♦♥❡ ♣❤♦t♦r❡❝❡♣t♦r✬s s✐❣♥❛❧ ✭∂I
∂t

♦♥ t❤❡ ❧❡❢t ❜r❛♥❝❤✮ ✐s

❞✐✈✐❞❡❞ ❜② t❤❡ s♣❛t✐❛❧ ❧✉♠✐♥❛♥❝❡ ❣r❛❞✐❡♥t ❜❡t✇❡❡♥ t❤❡ ✷ ♣❤♦t♦r❡❝❡♣t♦rs✬ s✐❣♥❛❧s ✭ ∂I
∂x

♦♥ t❤❡ r✐❣❤t ❜r❛♥❝❤✮✳

◆♦t❡ t❤❛t t❤❡ s♣❛t✐❛❧ ❣r❛❞✐❡♥t ✐s ❛♣♣r♦①✐♠❛t❡❞ ❛s t❤❡ r❛t✐♦ ❜❡t✇❡❡♥ t❤❡ ❞✐✛❡r❡♥❝❡ ♦❢ t❤❡ ✷ ♣❤♦t♦r❡❝❡♣t♦rs✬

s✐❣♥❛❧s ✭− s✐❣♥ ❛t t❤❡ t♦♣✮ ❛♥❞ t❤❡ s♣❛t✐❛❧ ❞✐st❛♥❝❡ ♦❢ t❤❡ ♣❤♦t♦r❡❝❡♣t♦rs✬ ♣♦s✐t✐♦♥s ✭∆x✱ ♠✐ss✐♥❣ ✐♥ t❤✐s

r❡♣r❡s❡♥t❛t✐♦♥✮✳ ❆❞❛♣t❡❞ ❢r♦♠ ❬✼✾❪ ❛♥❞ ❬✽✵❪✳

✷✺



❈❤❛♣t❡r ✶✳ ●❡♥❡r❛❧ ■♥tr♦❞✉❝t✐♦♥

❋✐❣✉r❡ ✶✳✶✸✿ ✭❛✮ ❖♣t✐❝❛❧ ♠❡t❤♦❞ ✉s❡❞ t♦ ❞r✐✈❡ t❤❡ t✇♦ ✐♥♣✉t ❝❛rtr✐❞❣❡s ❆ ❛♥❞ ❇ ♦❢ ❛♥ ❊▼❉ ✈✐❛ s✐♥✲

❣❧❡ ♣❤♦t♦r❡❝❡♣t♦r ✐❧❧✉♠✐♥❛t✐♦♥✳ ❙❡q✉❡♥t✐❛❧ ✐❧❧✉♠✐♥❛t✐♦♥ ♦❢ t❤❡ ♣❤♦t♦r❡❝❡♣t♦rs ❘✶→❘✻ ❞r✐✈❡s t❤❡ t✇♦

❝❛rtr✐❞❣❡s ❆→❇✱ ♣r♦❞✉❝✐♥❣ ✏❛♣♣❛r❡♥t ♠♦t✐♦♥✑ ✐♥ t❤❡ ♣r❡❢❡rr❡❞ ❞✐r❡❝t✐♦♥✱ ✇❤✐❝❤ ❝♦♥✈❡②s ❛♥ ❡①❝✐t❛t♦r②

s✐❣♥❛❧ ✭✰✮ t♦ t❤❡ ▲P❚❈✳ ✭❜✮ ❘❡s♣♦♥s❡ ♦❢ ❍✶ ✭s♣✐❦❡ ✐♥st❛♥t❛♥❡♦✉s ❢r❡q✉❡♥❝②✮ t♦ ❛ ♣❛✐r ♦❢ ❜r✐❡❢ ✭✶✵✲♠s✮

✢❛s❤❡s ♣r❡s❡♥t❡❞ s❡q✉❡♥t✐❛❧❧② t♦ t❤❡ ♣❤♦t♦r❡❝❡♣t♦rs ❘✶ ❛♥❞ ❘✻ ✭❞✐❛♠❡t❡r ≈ 1µm✮ ♦❢ ❛♥ ♦♠♠❛t✐❞✐✉♠

✭✐♥s❡t✮ ✭s♣♦t ❞✐❛♠❡t❡r ≈ 1µm✱ ✐♥t❡rst✐♠✉❧✉s ✐♥t❡r✈❛❧ ∆t = 50ms✱ r❡♣❡t✐t✐♦♥ t✐♠❡ = 500ms✱ ❛✈❡r❛❣❡

n = 100✮✳ ◆♦t❡ t❤❛t t❤❡ s❡q✉❡♥❝❡ s✐♠✉❧❛t✐♥❣ ♠♦t✐♦♥ ✐♥ t❤❡ ❛♥t✐♣r❡❢❡rr❡❞ ❞✐r❡❝t✐♦♥ ✭❘✻→❘✶✮ ✐♥❤✐❜✐ts ❍✶✿

t❤✐s s✉❣❣❡sts t❤❡ ❡①✐st❡♥❝❡ ♦❢ ❛ ❝♦❡①t❡♥s✐✈❡✱ ♠✐rr♦r✲s②♠♠❡tr✐❝ ❊▼❉ ❤❛❧❢✲❞❡t❡❝t♦r ❞r✐✈❡♥ ❜② t❤❡ s❛♠❡ t✇♦

❝❛rtr✐❞❣❡s ❇ ❛♥❞ ❆ ❛♥❞ s❡♥s✐♥❣ ♠♦t✐♦♥ ✐♥ t❤❡ ♦♣♣♦s✐t❡ ❞✐r❡❝t✐♦♥✳ ✭❝✮ ❍✶ r❡s♣♦♥s❡s t♦ ♠✐①❡❞ s❡q✉❡♥❝❡s

♦❢ ❧♦♥❣✲❧❛st✐♥❣ ✭2 s✮ ❧✐❣❤t ❛♥❞ ❞❛r❦ ♣✉❧s❡s r❡❝❡✐✈❡❞ ❜② t✇♦ s✐♥❣❧❡ ♣❤♦t♦r❡❝❡♣t♦rs ❘✶ ❛♥❞ ❘✻✳ ❆♠♦♥❣

t❤❡ ❡✐❣❤t st❡♣ s❡q✉❡♥❝❡s t❤❛t ❝❛♥ ❜❡ ♣r♦❞✉❝❡❞ ❜② ♠❛♥✐♣✉❧❛t✐♥❣ t❤❡ s✐❣♥ ❛♥❞ t❤❡ ❞❡❧❛② ♦❢ t❤❡ ❝❤❛♥❣❡s

♦❢ ❜r✐❣❤t♥❡ss ❞❡❧✐✈❡r❡❞ t♦ ❘✶ ❛♥❞ ❘✻✱ ♦♥❧② t❤❡ t✇♦ s❡q✉❡♥❝❡s s❤♦✇♥ ✐♥ t❤❡ t✇♦ ✉♣♣❡r ♣❧♦ts tr✐❣❣❡r❡❞ ❛

❝❧❡❛r✲❝✉t r❡s♣♦♥s❡ ✐♥ ❍✶✳ ✭❞✮ ❇❧♦❝❦ ❞✐❛❣r❛♠ ♦❢ t❤❡ ❡❧❛❜♦r❛t❡❞ ❍❘ ❤❛❧❢✲❞❡t❡❝t♦r ✭s❡♥s✐♥❣ ♠♦t✐♦♥ ✐♥ t❤❡

♣r❡❢❡rr❡❞ ❞✐r❡❝t✐♦♥✮ r❡s✉❧t✐♥❣ ❢r♦♠ ♠✐❝r♦✲st✐♠✉❧❛t✐♦♥ ❡①♣❡r✐♠❡♥ts✳ ❚❤❡ ❜♦① ✐♥ t❤❡ ❧❡❢t ❛r♠ ❞❡s❝r✐❜❡s ❛

s❡❝♦♥❞✲♦r❞❡r ❧♦✇✲♣❛ss ✭▲P✮ ✜❧t❡r✱ t❤❡ ✐♠♣✉❧s❡ r❡s♣♦♥s❡ ♦❢ ✇❤✐❝❤ ✇❛s ♠❡❛s✉r❡❞ ✐♥ ✭❡✮✳ ❚❤❡ ❜♦① ✐♥ t❤❡

r✐❣❤t ❛r♠ ❞❡s❝r✐❜❡s ❛ ✜rst✲♦r❞❡r ❤✐❣❤✲♣❛ss ✭❍P✮ ✜❧t❡r✱ t❤❡ st❡♣ r❡s♣♦♥s❡ ♦❢ ✇❤✐❝❤ ✇❛s ♠❡❛s✉r❡❞ ✐♥ ✭❝✮✳

✭❡✮ ■♠♣✉❧s❡ r❡s♣♦♥s❡ ♦❢ t❤❡ ❧♦✇✲♣❛ss ✜❧t❡r ♦❢ t❤❡ ❧❛t❡r❛❧ ❢❛❝✐❧✐t❛t✐♥❣ ❛r♠ ✐♥ ✭❞✮✱ ❡❧✐❝✐t❡❞ ❜② ♣r❡s❡♥t✐♥❣ ❘✶

❛♥❞ ❘✻ ✇✐t❤ s❡q✉❡♥❝❡s ♦❢ ❜r✐❡❢ ✭✶✵✲♠s✮ ✢❛s❤❡s ✇✐t❤ ✈❛r✐♦✉s ✐♥t❡rst✐♠✉❧✉s ✐♥t❡r✈❛❧s ✭❞❛t❛ ❛r❡ ♠❡❛♥s ♦❢ ❍✶

r❡❝♦r❞✐♥❣s ♦♥ ♥✐♥❡ ❤♦✉s❡✢✐❡s✮✳ ❆❞❛♣t❡❞ ❢r♦♠ ❬✻✵❪
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by measuring its step response when exposing the 2 photoreceptors to a sequence of long-lasting (2-s)

stimuli [62] (Fig. 1.13(c)), which represented the first major difference with the original HR detector. As

a result, the H1 neuron was not activated when the delay between the stimuli was too short (< 10ms) or

too long (> 230ms) which confirmed the fact that the EMD responds only to motions within a fixed range

(with different gains depending on the velocity), corresponding to angular velocities (i.e. the optic flow)

between 16o/s and 360o/s for the considered ommatidium having an interreceptor angle ∆ϕ ≈ 3.6o.

In addition, the appearance of two peaks in the H1 neuron’s response when applying long-lasting

(1 s) light sequences without overlap, could be explained by the existence of two separate pathways

sensitive respectively to ON-ON sequences (light-to-light transitions) and OFF-OFF sequences (dark-to-

dark transitions) (Fig. 1.13(c)). This result suggested to double the pathways of the initially-proposed

EMD giving 2 separate ON and OFF pathways (Fig. 1.13(f)), which represented another important

difference with the original HR detector. Recent experiments have confirmed the existence of separate

brightness increments and decrements circuits controlled by the L1 and L2 neurons in the lamina [82].

It is worth noting that ERDs have an important drawback: the output depends on not only on the

velocity of a moving pattern but also on its spatial structure, which is obviously undesired for motion

estimation. For this reason, other models of EMDs have been proposed throughout the years, although

showing no consistency with the biological findings.

A prominent alternative model for motion detection is the so-called “gradient detector”, which com-

putes a velocity-dependent signal by dividing the temporal derivative of local luminance ∂I
∂t

by its spatial

derivative ∂I
∂x

[83–86] (Fig. 1.12(c)). Differently from the ERD, the gradient detector provides a signal

that is proportional to the image velocity at each point and does not depend on pattern properties. In

particular, no modulations are expected in the local signals as long as the velocity is constant, and the

velocity dependence of the global signal should not vary with the spatial wavelength of the pattern. The

main issue with this computational model is that the uncertainty in the computed velocity may vary

widely. In fact, if the spatial derivative ∂I
∂x

is small, the noise in the temporal derivative is amplified, and

eventually when the spatial derivative is close to 0, the velocity is completely undefined. Along these

lines, Potters and Bialek proposed that an ideal motion detector scheme would be based on the gradient

detector only for high signal-to-noise, whereas it would be an ERD at low signal-to-noise ratios [79,87].

However, experiments on the fly visual systems provided unambiguous evidence in favour of the Re-

ichardt detector under all luminance conditions [88]. This “suboptimal” computation could be explained

by the fact that Reichardt detectors have an automatic gain control allowing them to dynamically adjust

their input-output relationships to the statistical range of velocities presented, while gradient detectors

do not have this property. As a consequence, Reichardt detectors, but not gradient detectors, always

provide a maximum amount of information about stimulus velocity over a large range of velocities [79].

Interestingly, the most famous methods for computing the optic flow from image sequences are closely

related to gradient detectors instead of Reichardt detectors (see section 1.7.2), going (apparently) in the

opposite direction of nature.
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Optical (or optic) flow can be defined as the projection on the retina of the (apparent) motion of visual

contrasts (objects, surfaces, edges, etc) caused by the relative motion between an observer (eye or cam-

era) and the environment [89] (Fig. 1.14). In other words, the optic flow is given by the change of

structured light in the image, i.e. on the retina of an eye or a camera, due to this relative motion between

the observer and the scene. In mathematical terms, the optic flow is an angular velocity vector field,

which is generally complex as it results from the motion of an agent relatively to moving or stationary

objects in a 3-D unstructured, unknown environment projected in a 2-D image. Further definitions can

be found in the literature highlighting different properties of optic flow.

❋✐❣✉r❡ ✶✳✶✹✿ ✭❛✮ ❚❤❡ ♦♣t✐❝ ✢♦✇ ✐s ❣❡♥❡r❛t❡❞ ♦♥ t❤❡ r❡t✐♥❛ ❜② ❝❤❛♥❣❡s ✐♥ t❤❡ ♣❛tt❡r♥s ♦❢ ❧✐❣❤t✳ ❚❤✐s

❡①❛♠♣❧❡ s❤♦✇s t❤❡ ♠♦✈❡♠❡♥t ♦❢ t✇♦ ✈✐s✉❛❧ ❢❡❛t✉r❡s ✭st❛r ❛♥❞ ❤❡①❛❣♦♥✮ ♦♥ ❛ ♣❧❛♥❡ ❛♥❞ t❤❡✐r ❛♥❣✉❧❛r

❞✐s♣❧❛❝❡♠❡♥ts ♦♥ t❤❡ r❡t✐♥❛✳ ✭❜✮✱✭❝✮ ❙❝❤❡♠❛t✐❝ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ t❤❡ ♦♣t✐❝ ✢♦✇ ✈❡❝t♦r ✜❡❧❞ ❣❡♥❡r❛t❡❞ ❜②

t❤❡ ❛♣♣❛r❡♥t ✈✐s✉❛❧ ♠♦t✐♦♥ ♦❢ t❤❡ ❣r♦✉♥❞ ♦♥ t❤❡ r❡t✐♥❛ ♦❢ ❛ ✢②✐♥❣ ❛❣❡♥t ✇❤❡♥ ✐t ✐s ♠♦✈✐♥❣ ✭❜✮ ❢♦r✇❛r❞s

❛♥❞ ✭❝✮ ❧❡❢t✇❛r❞s✳ ❊❛❝❤ ✈❡❝t♦r r❡♣r❡s❡♥ts t❤❡ ❞✐s♣❧❛❝❡♠❡♥t ✈❡❝t♦r✴♣r♦❥❡❝t✐♦♥ ♦❢ t❤❡ ❛♥❣✉❧❛r ✈❡❧♦❝✐t② ♦❢

❛ ♣♦✐♥t ♦❢ t❤❡ ❡♥✈✐r♦♥♠❡♥t ❢r♦♠ ♦♥❡ ✐♠❛❣❡ t♦ t❤❡ ♥❡①t ♦♥❡✳ ■♥ ✭❜✮✱ t❤❡ ♣♦✐♥t r✐❣❤t ✐♥ ❢r♦♥t ♦❢ t❤❡ ❛❣❡♥t

✇❤❡r❡ t❤❡ ❛♥❣✉❧❛r s♣❡❡❞ ✐s ③❡r♦ ✐s ❝❛❧❧❡❞ t❤❡ ❢♦❝✉s ♦❢ ❡①♣❛♥s✐♦♥ ✭❋❖❊✮✳ ❆❞❛♣t❡❞ ❢r♦♠ ❬✺✻❪ ❛♥❞ ❬✽✾❪✳

The first studies on how humans and animals use this visual motion information for perceiving the

environment was carried out in the early 1900s by the physician Hermann von Helmholtz. He was one
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of the first scientist who distinguished from both a physiological and psychological point of view what is

“visual sensation” (color, contrast, adaptation, etc) and “visual perception” (depth, motion, etc) [90]. He

stressed for the first time the importance of motion perception, instead of colors and edges perception,

for recognizing the objects’ shapes, and in particular for one-eyed persons: “My belief too is that it is

mainly by variations of the retinal image due to bodily movements that one-eyed persons are able to

form correct apperceptions of the material shapes of their surroundings” (from [90], p. 297).

However, the concept of optical flow was introduced by the psychologist James J. Gibson in 1950 to

describe the visual information that makes animals navigate into the environment [89]. Since Gibson,

authors have further demonstrated the role of the optical flow for the perception of the shape, distance

and movement of objects, as well as the control of locomotion [91–94], and have also formulated various

analytic models [95–97].

Although the phenomenology of the optic flow has been qualitatively and quantitatively known for

decades since von Helmholtz, only during the early 1980s popular algorithms were proposed for the

estimation of optic flow from image sequences [98, 99]. In this context, the optic flow field depends not

only the relative motion and the geometry of the scene, but also by the geometry of the pinhole camera,

namely the projection function.

✶✳✼✳✶ ▼♦❞❡❧✐♥❣ ♦❢ ❖❋

In their analytic model, Koenderink and van Doorn described the optic flow (or motion parallax) v̂ of a

fixed “fiducial point” P (e.g. a landmark) with respect to a moving “vantage point” O, corresponding to

the nodal point of the retina, as follows [100]:

v̂ =
1

||p||
((T · p̂)p̂− T )−R× p̂, ✭✶✳✷✮

where p is the position vector of P with respect to O, p̂ = p
||p|| is the unit vector representing the direction

of p, and T ,R are the translational and rotational vectors corresponding to the motion of the vantage

point with respect to an inertial frame (Fig. 1.15).

We note that, although the motion parallax is originally a 3-D vector field (v), the resulting optic flow

field (v̂) can be described as a 2-D vector field as it is always orthogonal to p̂. Thus, the optic flow is

usually represented using the Mercator projection defined by the azimuth (Φ) and elevation (Θ) angles.

By looking at equation (1.2), we can first note that the optical flow produced by self-motion of an

observer that is both translating and rotating can be written as a linear combination of the optical flow

vectors that would have been produced by separate translation and rotation (Fig. 1.15). Then, we note

that only the translational component of the optic flow field depends on the distance of the point P , and

this is why animals and humans usually try to reduce any rotational component of their head in order to

stabilize their locomotion using optic flow cues (see section 1.7.3). In fact, if the observer’s rotation (R)

is null (or known), the distance to P (p) or the observer’s translation (T ) can be computed when one of

these two is known. However, if P is also moving with a velocity Tp with respect to the inertial frame,
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❋✐❣✉r❡ ✶✳✶✺✿ ✭❛✮ ❚❤❡ tr❛♥s❧❛t✐♦♥ T ♦❢ ❛ s♣❤❡r✐❝❛❧ s❡♥s♦r ✭❣r❛② s♣❤❡r❡✮ ❝❛✉s❡s ❛ r❡❧❛t✐✈❡ ♠♦t✐♦♥ ♦❢ t❤❡

♣♦✐♥t p ✐♥ t❤❡ s❡♥s♦r✬s ❡♥✈✐r♦♥♠❡♥t t❤❛t ❧❡❛❞s t♦ t❤❡ ♠♦✈❡♠❡♥t ♦❢ t❤❡ ♣♦✐♥t✬s ♣r♦❥❡❝t✐♦♥ p̂ ♦♥ t❤❡ s❡♥s♦r✬s

s✉r❢❛❝❡✳ ❚❤❡ ♦♣t✐❝❛❧ ✢♦✇ ✈❡❝t♦r v̂ ❞❡s❝r✐❜❡s t❤❡ ✈❡❧♦❝✐t② ♦❢ t❤❡ ♣r♦❥❡❝t❡❞ ♣♦✐♥t p̂✳ ✭❜✮ ❚❤❡ r♦t❛t✐♦♥ R ♦❢

❛ s♣❤❡r✐❝❛❧ s❡♥s♦r ✭❣r❛② s♣❤❡r❡✮ ❝❛✉s❡s ❛ r❡❧❛t✐✈❡ ♠♦t✐♦♥ ♦❢ t❤❡ ♣♦✐♥t p ✐♥ t❤❡ s❡♥s♦r✬s ❡♥✈✐r♦♥♠❡♥t ✇✐t❤

❛♥ ❛♥❣✉❧❛r ✈❡❧♦❝✐t② v✳ ❚❤❡ ♦♣t✐❝❛❧ ✢♦✇ ✈❡❝t♦r v̂ ❞❡s❝r✐❜❡s t❤❡ ✈❡❧♦❝✐t② ♦❢ t❤❡ ♣r♦❥❡❝t✐♦♥ ♦❢ t❤❡ ♣♦✐♥t p̂ ♦♥

t❤❡ s❡♥s♦r✬s s✉r❢❛❝❡✳ ❆❞❛♣t❡❞ ❢r♦♠ ❬✶✵✶❪✳

then T must be substituted with ∆T = T − Tp in equation (1.2). In this case, e.g. in dynamic, unknown

environments, additional information on either p or Tp must be provided to solve equation (1.2).

✶✳✼✳✷ ❈♦♠♣✉t✐♥❣ t❤❡ ❖❋

A large number of methods for computing the optic flow from image sequences has been proposed

throughout the years. Most of these methods can be classified in three main groups: gradient-based,

block-matching and frequency-based methods.

Gradient-based (or differential) techniques compute the optic flow from spatio-temporal derivatives

of the image intensities. The image domain is therefore assumed to be continuous and differentiable in

space and time.

Block-matching techniques, compute the optic flow as displacement vectors of some identifiable

blocks/features between subsequent images, using, for instance, cross-correlation techniques.

Frequency-based techniques compute the optic flow from the Fourier transform of the image sequence

as the best-correlated displacements by applying, for instance, orientation-sensitive filters, such as the

Gabor filter.

Lastly, bio-inspired (or event-based) methods based on quasi-continuous neighboring-pixels’ signals,

instead of fixed-rate image sequences, can be considered as a fourth separate group.

✸✵



✶✳✼✳ ❚❤❡ ♦♣t✐❝❛❧ ✢♦✇

●r❛❞✐❡♥t✲❜❛s❡❞ ♠❡t❤♦❞s

Let us consider the scalar function I(x, y, t) describing the intensity values of an image sequence from a

camera, where x and y denote the spatial coordinates of each pixel whereas t denotes the time. Then, the

optic flow can be defined as the dense vector field v = [u(x, y, t) v(x, y, t)]T ≈ [∆x∆t
∆y
∆t ]

T describing the

displacement (∆x,∆y) of these intensity values between 2 subsequent image frames sampled by a time

∆t. For simplifications, we assume that the image sequences are gray-value or reduced to one channel.

More recent methods have been developed that take RGB images as input (e.g. in [102]).

Most gradient-based methods can be derived by considering that brightness remains nearly constant

between 2 subsequent image frames, i.e. I(x, y, t) ≈ I(x+∆x, y+∆y, t+∆t). By considering a first-order

approximation of the Taylor series of the latter, the following continuity equation can be derived:

∇I · v +
∂I

∂t
= 0, ✭✶✳✸✮

where ∇ = [ ∂
∂x

∂
∂x

]T is the spatial gradient operator.

Equation (1.3) has 2 unknowns (u, v) and therefore can not be solved as such but another set of

equations is needed. This limitation can be seen as a computational consequence of the aperture problem

(see section 1.6.2). Such equations can found by applying some additional local or global constraints to

the optic flow field, determining therefore 2 subgroups, namely local and global differential methods.

The most popular local method is the Lucas-Kanade method [98], also known as Lucas-Kanade-Tomasi

feature tracker for image-sequences registration, which assumes that the velocity vector v is nearly con-

stant within a small neighborhood surrounding a pixel. After dividing the image in regions, equation

(1.3) is calculated for the intensity values of the pixels in each region and the optic flow field is then

computed by performing a least-squares minimization to find the best fit for v.

For more robustness, a weighted version of the least-squares solution is usually performed to give

more weight to the pixels closer to the central pixel of the each region, for instance, by considering a

Gaussian function. Various methods performing outliers rejection (e.g. in [103]) or multiple motions

estimation in a generalized structure tensor [104] have also been proposed. To increase the algorithm

performance while decreasing the computational cost of its implementation, a pyramidal approach was

presented in [105] and has been widely used in various robotic applications.

The most popular global method is the Horn-Schunk method [99], which uses variational calculus to

minimize the functional obtained by adding a smoothness constraint on v, i.e. ||∇u||2 + ||∇v||2, to the

right-hand term of equation (1.3). Various methods using different regularity constraints have also been

proposed throughout the years [106,107].

Local methods may offer relatively high robustness under noisy conditions, but may be unreliable if

the optic flow is not uniform within each region and give rather sparse flow fields. On the other hand,

global methods allows optic flow to vary smoothly within neighborhoods and yield dense flow fields, but

have higher computational cost and are experimentally known to be more sensitive to noise. Thereby,

more recent methods have been proposed to unify both methods into one [108].
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As differential methods rely on the hypothesis that the image sequences are differentiable, these

methods may suffer from undersampling or discontinuities in the optic flow when visual motion is too

fast with respect to the frame rate or is produced by occluded objects.

Discontinuity in the optical flow due to occlusion can be analyzed by using line processes mixed with

velocity distributions or parametric models [109]. These techniques perform the segmentation of optical

flow into regions corresponding to various independently moving objects or surfaces.

The problem of undersampling may lead to inaccurate estimates of the optic flow at low and high

velocity as the accuracy depends on the frame rate of the acquisition system. By adapting the frame

intervals based on the speed of the objects, Chen et al. (2012) proposed a scheme based on the Lucas-

Kanade algorithm and using high-frame-rate cameras, which was able to process optic flow in a wide

range of velocities [110].

Although not exactly a gradient-based method, Srinivasan (1994) proposed a new algorithm called

the Image Interpolation Algorithm (I2A), which minimizes the error at each time step between the ac-

quired image and the interpolated one based on a set of the previous images [111]. The main advantage

of this algorithm is its robustness in comparison to the required computational power which makes is

suitable to be embedded on microcontrollers.

❇❧♦❝❦✲♠❛t❝❤✐♥❣ ♠❡t❤♦❞s

Numerical differentiation may sometimes lead to inaccurate or wrong estimates because of undersam-

pling (frame rate too low compared to motion) or poor signal-to-noise ratio. In these cases, gradient-

based methods are often inappropriate, whereas block-matching methods may give better results.

These approaches approximate the optic flow vectors by the displacements that yield the best fit be-

tween some blocks in the image sequence, which could be simply regions or identifiable features/patterns

(objects, edges, surfaces, etc). The best fit is usually performed by maximizing a similarity measure,

which is often represented by some correlation coefficients such as the Pearson cross-correlation coef-

ficients. Other similarity measures, such as the absolute value of differences or the sum of squared

differences, can be used to reduce the computational cost, which can be very high when performing

cross-correlation, but the performances often decrease in these cases.

The main limitation of these methods is related to the correspondence problem (see section 1.6.2).

In fact, the risk is to match two different blocks over time because they “look” similar, leading to a

wrong estimation of the optic flow, and this risk increases when the frame rate is too low compared to

the image velocity. Thereby, methods involving hierarchical or probabilistic approaches have also been

proposed [109] to help make a robust estimation of the optic flow.

As opposed to differential methods, block-matching methods may deliver very sparse flow fields when

only few features can be detected in the images, and usually require higher computational resources for

performing image processing to extract features.
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❋r❡q✉❡♥❝②✲❜❛s❡❞ ♠❡t❤♦❞s

Frequency-based methods apply orientation-sensitive or phase-based filters (e.g. Gabor filters) to the

Fourier transform of image sequences to find the best-correlated displacements from an oriented or phase

energy point of view [112,113].

In some cases, these methods can correctly estimate the optic flow in image sequences for which

both gradient-based and block-matching approaches would fail. For example, the motion of random dot

patterns can be easily extracted from the resulting oriented energy in the Fourier domain [112], whereas

it may be difficult to estimate with feature-based methods.

However, these methods have even higher computational cost then correlation-based methods and

may yield ambiguous results, for instance, for periodic images (i.e. with similar contiguous regions) due

to presence of several correlation peaks in the Fourier domain.

Although some of these models showed consistency with some psychophysic experiments, there is no

evidence that they are actually performed in the animals or humans visual system.

❇✐♦✲✐♥s♣✐r❡❞ ♠❡t❤♦❞s

As already mentioned at the beginning of this section, vision in animals is a very complex process which

can not be simplified with a fixed-rate image processing as it happens in standard cameras. Therefore,

methods inspired by the elementary motion detectors (EMDs) found in the animal and human visual

systems (see section 1.6.4) have been presented during the last few decades for local optic flow estimation

using signals from neighboring photoreceptors rather than image sequences [114,115].

Although both hardware and software implementations of elaborated Reichardt detectors (ERDs)

have been successfully presented for detecting motion and reproducing visio-motor responses on bio-

inspired robots [115], these models have some obvious limitations. First, the output of ERDs does not

represent exactly the optic flow but is somehow proportional to it in an undefined way, therefore the

measurements obtained can not be used directly, for instance, for estimating velocities or distances.

Second, the velocity of motion must lie within a certain range, determined by the delay (or the low-pass

filter) and the interreceptor distance. A wide range of velocities can be covered by using several detectors

with different internal delays and interreceptor distances, but such solutions would be computationally

costly and therefore less appealing for robotic applications.

In addition, the direction of motion in 2-D cannot be determined reliably from the output of few

neighboring detectors as they can not solve the aperture problem (see section 1.6.2). In order to solve it,

the output of several correlators have to be integrated spatially over a larger field of view as presented,

for instance, in [116], but this is once again computationally costly and therefore unsuitable for real time

applications.

By taking inspiration from their electrophysiological experiments carried out on the fly’s H1 neuron

(see section 1.6.4), Franceschini et al. proposed a token-matching scheme [62,117–119] which has been

later called the “time of travel” (TOT) scheme [120, 121]. Differently to ERDs, TOT schemes made it
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possible to directly estimate the time delay ∆t between 2 neighboring photoreceptors’ signals induced by

a visual motion (Fig. 1.16). The 1-D optic flow ω can be then computed by diving the interreceptor angle

∆ϕ by this delay, as follows:

ω =
∆ϕ

∆t
. ✭✶✳✹✮

❋✐❣✉r❡ ✶✳✶✻✿ Pr✐♥❝✐♣❧❡ ♦❢ t❤❡ t✐♠❡✲♦❢✲tr❛✈❡❧ ❊▼❉✳ ❚❤❡ ♠♦t✐♦♥ ♦❢ ❛ ❝♦♥tr❛st✐♥❣ ❡❞❣❡ ♦❝❝✉rr✐♥❣ ✐♥ t❤❡ ❋❖❱

♦❢ ❛ ♣❛✐r ♦❢ ♣❤♦t♦❞✐♦❞❡s P❤✶ ❛♥❞ P❤✷ ✭✐♥t❡rr❡❝❡♣t♦r ❛♥❣❧❡ ∆ϕ✮ ✐♥❞✉❝❡s ❛ t✐♠❡ ❧❛❣ ∆t ✐♥ t❤❡✐r ❡❧❡❝tr✐❝❛❧

r❡s♣♦♥s❡s✳ ❆❢t❡r ❧♦✇✲♣❛ss ✭s♣❛t✐❛❧✮ ✜❧t❡r✐♥❣ ❛♥❞ ❜❛♥❞♣❛ss ✭t❡♠♣♦r❛❧✮ ✜❧t❡r✐♥❣ st❡♣s✱ t❤❡ s✐❣♥❛❧s ❢r♦♠ P❤✶

❛♥❞ P❤✷ ✇❡r❡ t❤r❡s❤♦❧❞❡❞✱ ❣❡♥❡r❛t✐♥❣ ❛ ✉♥✐t ♣✉❧s❡ ✐♥ ❜♦t❤ ♣❛t❤✇❛②s✳ ❚❤❡ ♣✉❧s❡ ❢r♦♠ ♣❛t❤✇❛② ✭✷✮ ✇❛s

✉s❡❞ t♦ s❛♠♣❧❡ t❤❡ ❞❡❝❛②✐♥❣ ❡①♣♦♥❡♥t✐❛❧ ❢✉♥❝t✐♦♥ ❣❡♥❡r❛t❡❞ ❜② t❤❡ ♣✉❧s❡ ❢r♦♠ ♣❛t❤✇❛② ✭✶✮ ❜② ♠❡❛♥s ♦❢

❛ ♠✐♥✐♠✉♠ ❞❡t❡❝t♦r✱ t❤❡ ♦✉t♣✉t ♦❢ ✇❤✐❝❤ t❤❡r❡❢♦r❡ ✐♥❝r❡❛s❡❞ ♠♦♥♦t♦♥✐❝❛❧❧② ✇✐t❤ t❤❡ ❧♦❝❛❧ ❖❋ ω = ∆ϕ
∆t ✳

❆❞❛♣t❡❞ ❢r♦♠ ❬✶✷✷❪ ❛♥❞ ❬✶✶✼❪✳

Several versions of time-of-travel EMDs, also called Local Motion Sensors (LMSs), have been pre-

sented by our laboratory during the last 20 years, as it will described in details in section 1.8.3.

In [123], the authors suggested a correlation-based TOT scheme in which signals from neighboring

pixels were delayed by different time delays and the cross-correlation between the delayed and non-

delayed signals was computed in parallel. Then, the time delay ∆t could be estimated as the time delay

giving the maximum cross-correlation. However, no implementation of this method has been presented

so far.

✶✳✼✳✸ ❯s✐♥❣ t❤❡ ❖❋

As described in section 1.7.1, optic flow can provide very rich information on both the environment and

ego-motion while being processed at high frequency in the early stage of the visual system (see section

1.6.4). Therefore, optic flow is largely used in nature as well as in most of the technological applications

involving visual sensors, whether they are bio-inspired or not.

Various biological studies have shown that humans and animals use somehow the optic flow generated
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by their own motion to navigate in unknown environments [89,92,94,124–126]. This is particularly true

for flying animals, such as insects and birds, since they can not rely on proprioceptive sensors to gauge,

for instance, strides count and length like in legged animals.

Optic flow can contribute to navigation in different ways, depending on the animals, the tasks and the

environmental conditions. Although little is known on how exactly humans and animals use optic flow, it

is found to be used in all main functions of locomotion and flight control, such as gaze control, direction

and speed control, altitude control and obstacle avoidance, and path integration (odometry).

Most of the knowledge we have about the use of optic flow is on insects, especially on bees, since

they are relatively easy to manipulate and their “simple” neural processing make it possible to extract

functional models from behavioral experiments with more certainty.

❈♦♠♣❡♥s❛t✐♥❣ r♦t❛t✐♦♥❛❧ ♠♦✈❡♠❡♥ts

The stabilization to a straight flight is a very important feature for flying insects, as the rotational optic

flow only contains information of the insect’s own rotations, whereas the translational optic flow depends

on the ratio between its horizontal speed and the distance to the objects (see section 1.7.1). This is the

reason why mechanisms such as the optomotor response, the vestibulo-ocular reflex, the head reorien-

tation and the saccades, have been found to help the insects to always perform translations in order to

perceive less complex optic flow fields, hence facilitating extraction of useful information.

Compensation of yaw rotations have been found for the first time the 1950s by Hassenstein using

a “Spangenglobus” (“Y-maze globe”) [127], showing that insects react to visual stimuli produced by

rotations by moving in the same direction of such rotations. This behavior, also known as the “optomotor

response”, was confirmed by subsequent experiments carried out by Franceschini in 1973 in which a head-

fixed housefly was tethered to a custom micro “bicycle”, while it was presented to specific optical stimuli

that were not perturbed by the animal’s body or head movements. The virtual trajectory produced by the

fly’s strides on the bicycle in response to a drifting grating presented in its frontal FOV clearly showed the

reaction of the insect to maintain a straight course by compensating for undesired deviations [60] (Fig.

1.17). About 25 years later, Srinivasan et al. could characterize quantitatively this optomotor response

by tethering an insect in a rotating striped drum, showing that the insect tried to turn in the direction

of the rotation by producing a corresponding yaw torque [115]. Such a behavior has been successfully

explained by implementing ERDs on wheeled robots (see section 1.9).

Similar reactions for compensating roll and pitch rotations, namely the vestibulo-ocular reflex and the

head reorientation, have been found in insects, as well as in other animals and even humans, in order to

keep a straight gaze and therefore extract more straightforward optic flow cues [128–130].

❈♦♥tr♦❧❧✐♥❣ s♣❡❡❞ ❛♥❞ ❞✐r❡❝t✐♦♥

Inspired by observations on mosquitoes and locusts, Kennedy hypothesized as early as the 1940s that

flying insects control their speed by maintaining a preferred retinal velocity with respect to the ground

✸✺
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q✉❛❧✐t❛t✐✈❡❧②✳ ❆ ❤❡❛❞✲✜①❡❞ ❤♦✉s❡✢② ✇❛s t❡t❤❡r❡❞ t♦ t❤❡ ♠✐❝r♦ ❜✐❝②❝❧❡ ✇❤✐❧❡ ✐t ✇❛s ♣r❡s❡♥t❡❞ t♦ ✈✐s✉❛❧

❣r❛t✐♥❣s ♠♦✈✐♥❣ ❧❡❢t✇❛r❞s ❛♥❞ r✐❣❤t✇❛r❞s✳ ❚❤❡ ✈✐rt✉❛❧ tr❛❥❡❝t♦r② ♣r♦❞✉❝❡❞ ❜② t❤❡ ✢②✬s str✐❞❡s ♦♥ t❤❡

❜✐❝②❝❧❡ ✐♥ r❡s♣♦♥s❡ t♦ t❤❡s❡ ♠♦✈✐♥❣ ❣r❛t✐♥❣s ❝❧❡❛r❧② s❤♦✇❡❞ t❤❡ r❡❛❝t✐♦♥ ♦❢ t❤❡ ✐♥s❡❝t t♦ ♠❛✐♥t❛✐♥ ❛

str❛✐❣❤t ❝♦✉rs❡ ❜② ❝♦♠♣❡♥s❛t✐♥❣ ❢♦r ✉♥❞❡s✐r❡❞ ❞❡✈✐❛t✐♦♥s✳ ❆❞❛♣t❡❞ ❢r♦♠ ❬✻✵❪✳

below them [131, 132]. Nearly 50 years later, experiments performed on honeybees have shown that

the optic flow is used to control both their forward and lateral speed [92, 126, 133, 134]. In particular,

it has been observed that honeybees flying into a narrow tunnel tend to (i) navigate at equal distance

from the lateral walls [92] or follow one of the two walls at a certain distance [135] (depending on their

initial position and on the texture of the walls), and (ii) adjust their speed depending on the size of the

tunnel [92] in both the horizontal and the vertical planes [136] (Fig. 1.18). In addition, it has been

shown that, in a tunnel with moving lateral walls, flight speed increases when the wall is moving in the

direction of flight (decreasing the perceived optic flow) and vice-versa [126, 136]. These studies led to

the conclusion that the bees adjusted their flight (speed and direction) by keeping constant optic flow

cues. Recent experiments have shown that similar flight control strategies based on optic flow cues are

also performed by birds [137].

In 2001, Warren et al. experimentally showed for the first time that humans use optic flow to control

their walking [94], as it was already predicted by Gibson 50 years earlier (see section 1.7). In their

experiments, the subjects walked freely in a room while wearing a stereoscopic head-mounted display

that created an immersive virtual environment where the focus of expansion (FOE) was displaced of 10o

with respect to the theoretical one. The results showed that people steered to the target by following

trajectories much closer to that predicted by the optic flow than that predicted by the egocentric visual

perception (i.e. their position estimated with respect to the target) whenever the visual scene produces

good-enough optic flow cues [94] (Fig. 1.19). These and subsequent results [138–140] have been

particularly important to design and develop both static and dynamic virtual reality simulators used, for
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t✉♥♥❡❧ ♥❛rr♦✇s✱ ❛♥❞ ✐♥❝r❡❛s❡s ❛s ✐t ✇✐❞❡♥s✳ ❆❞❛♣t❡❞ ❢r♦♠ ❬✾✷❪✳

instance, for automotive tests, that reproduce consistent visual perception of the environment [141,142].

From all these results, authors have proposed various optic flow-based strategies for controlling both

flight and locomotion [115, 143], some of which have been successfully implemented on flying and

wheeled robots (see section 1.9).

❊st✐♠❛t✐♥❣ t❤❡ ❞✐st❛♥❝❡ tr❛✈❡❧❡❞ ✭❖❞♦♠❡tr②✮

Behavioral experiments have shown that insects most likely use optic flow information also to estimate

their complex trajectories when, for instance, they are searching for new food sources, allowing them to

take a direct route back to their homes. For example, after returning to their hives, the bees communicate

the distance and direction of the food source to their nest mates by encoding the information in a “waggle

dance” [144]. The length of this waggle run signals the distance flown and the orientation of the waggle

axis (relatively to gravity) signals the azimuthal direction of the food source, relative to the direction

of the sun [144]. Authors showed that these bees may estimate the distance flown by integrating the

optic flow perceived during flight [145–147]. In fact, when moving the ground or the lateral walls

forwards or backwards, the honeybees estimated respectively longer or shorter distances than that they

were trained for, and this estimation did not directly depended on the textures used. However, it has

been suggested that such an odometer would be influenced by the richness of visual information of the

overflown terrain [148] as well as the presence of celestial cues [149].

Similar studies on desert ants showed that optic flow appears to contribute also to the desert ant

odometer, although it mainly relies on strides count and length as for most of legged animals [93] (Fig.

1.20). This is true for the ventral part of the ant’s eye, which is the part looking at the desert floor and

thus suitable to monitor optic flow during locomotion, whereas differently to flying insects, lateral optic

flow is apparently without influence on distance estimation [150,151].
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♠♦✉♥t❡❞ ❞✐s♣❧❛② t❤❛t ❝r❡❛t❡❞ ❛♥ ✐♠♠❡rs✐✈❡ ✈✐rt✉❛❧ ❡♥✈✐r♦♥♠❡♥t ✇❤❡r❡ t❤❡ ❢♦❝✉s ♦❢ ❡①♣❛♥s✐♦♥ ✭❋❖❊✮

✇❛s ❞✐s♣❧❛❝❡❞ ♦❢ 10o ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ t❤❡♦r❡t✐❝❛❧ ♦♥❡✳ ✭❛✮✲✭❞✮ ❚❤❡ ❢♦✉r ✈✐rt✉❛❧ ✇♦r❧❞s✿ t❛r❣❡t ❧✐♥❡✱

❧✐♥❡ ✇✐t❤ ❣r♦✉♥❞✱ ❞♦♦r✇❛②✱ ❞♦♦r✇❛② ✇✐t❤ ♣♦sts✳ ✭❡✮✲✭❤✮ ▼❡❛♥ ♣❛t❤ ✐♥ t❤❡ ✈✐rt✉❛❧ ✇♦r❧❞ ✇❤❡♥ ✉s✐♥❣

t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ✈✐rt✉❛❧ ❡♥✈✐r♦♥♠❡♥t ❛❜♦✈❡✳ ✭✐✮✲✭❧✮ ▼❡❛♥ ✈✐rt✉❛❧ ❤❡❛❞✐♥❣ ❡rr♦r ✇✐t❤ r❡s♣❡❝t t♦ t❤❡

❧♦♥❣✐t✉❞✐♥❛❧ ♣♦s✐t✐♦♥ ✇❤❡♥ ✉s✐♥❣ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ✈✐rt✉❛❧ ❡♥✈✐r♦♥♠❡♥t ❛❜♦✈❡✳ ❉❛t❛ ❛r❡ ❝♦❧❧❛♣s❡❞ ❛♥❞

♣❧♦tt❡❞ ❛s t❤♦✉❣❤ t❤❡ ❞✐s♣❧❛❝❡♠❡♥t ✭10o✮ ✐s t♦ t❤❡ r✐❣❤t ✭❞❛s❤❡❞ ❧✐♥❡s✮✱ t♦❣❡t❤❡r ✇✐t❤ t❤❡ ❜❡t✇❡❡♥✲s✉❜❥❡❝t

st❛♥❞❛r❞ ❡rr♦r ✭❞♦tt❡❞ ❧✐♥❡s✮✳ ❚❤❡ ♣r❡❞✐❝t✐♦♥s ♦❢ t❤❡ ❡❣♦❝❡♥tr✐❝ ❞✐r❡❝t✐♦♥ ❤②♣♦t❤❡s✐s ❛♥❞ t❤❡ ♦♣t✐❝ ✢♦✇

❤②♣♦t❤❡s✐s ❛r❡ ✐♥❞✐❝❛t❡❞ ❜② t❤❡ ❝r♦ss❡s ❛♥❞ ❞❛s❤❡❞✲❞♦tt❡❞ ❧✐♥❡s✱ r❡s♣❡❝t✐✈❡❧②✳ ❆❞❛♣t❡❞ ❢r♦♠ ❬✾✹❪✳
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❋✐❣✉r❡ ✶✳✷✵✿ ❊①♣❡r✐♠❡♥ts ✇❤❡r❡ ❞❡s❡rt ❛♥ts ✇❡r❡ tr❛✐♥❡❞ ❛♥❞ t❡st❡❞ t♦ ✇❛❧❦ ✐♥t♦ ❛ t✉♥♥❡❧ ✇❤✐❧❡ ♠♦✈✐♥❣

t❤❡ ✢♦♦r ❢♦r✇❛r❞s ❛♥❞ ❜❛❝❦✇❛r❞s✳ ✭❛✮ P❛tt❡r♥ ♠♦✈❡♠❡♥t ✐♥ t❤❡ ❢♦r✇❛r❞ ❞✐r❡❝t✐♦♥ ✭❝✐r❝❧❡s✮ ❧❡❛❞s t♦

✐♥❝r❡❛s❡❞ tr❛✈❡❧ ❞✐st❛♥❝❡s✱ ✇❤✐❧❡ ♠♦✈❡♠❡♥t ✐♥ t❤❡ ♦♣♣♦s✐t❡ ❞✐r❡❝t✐♦♥ ✭st❛rs✮ ❞❡❝r❡❛s❡s t❤❡ ❧❡♥❣t❤s ♦❢ t❤❡

❛♥t✬s ♣❛t❤s✳ ❚r❛✐♥✐♥❣ ♣❛tt❡r♥✿ ❙❧✵✱ st❛t✐♦♥❛r②❀ t❡st ♣❛tt❡r♥✿ ❙✶✵✱ ♠♦✈✐♥❣✳ ✭❜✮ ❚❡sts ✇✐t❤ ♠♦✈✐♥❣ ♣❛tt❡r♥s

♦❢ ❞✐✛❡r❡♥t s♣❛t✐❛❧ ✇❛✈❡❧❡♥❣t❤s ✭❙✺✱ ❙✶✵✱ ❙✷✵✮ ❛t v = 15.5cm/s ✐♥ t❤❡ ❢♦r✇❛r❞ ❛♥❞ ❜❛❝❦✇❛r❞ ❞✐r❡❝t✐♦♥✳

❆♥❛❧②s✐s ♦❢ ✈❛r✐❛♥❝❡s r❡✈❡❛❧s ❛ ❤✐❣❤❧② s✐❣♥✐✜❝❛♥t ✐♥✢✉❡♥❝❡ ♦❢ t❤❡ ❞✐r❡❝t✐♦♥ ♦❢ ♠♦✈❡♠❡♥t ✭P < 0.0001✮✱

❜✉t ♥♦ s✐❣♥✐✜❝❛♥t ✐♥✢✉❡♥❝❡ ♦❢ t❤❡ t②♣❡ ♦❢ ♣❛tt❡r♥ ✭P = 0.12✮✳ ❆❞❛♣t❡❞ ❢r♦♠ ❬✾✸❪✳

❊st✐♠❛t✐♥❣ t❤❡ s❤❛♣❡ ❛♥❞ ❞✐st❛♥❝❡ ♦❢ ♦❜❥❡❝ts

In [91], it was also shown that bees can estimate an object’s distance by using its apparent motion across

the retina when the background is featureless, and probably also its motion relative to the background

when the background is textured. When encountering a novel environment comprising unfamiliar objects

of unknown size, the bees can evidently use these two types of motion cues to acquire a three-dimensional

perception of the visual world.

❖t❤❡r ♥❛✈✐❣❛t✐♦♥ t❛s❦s

Biological studies have also shown that the ventral optic flow plays an important role in insects for other

navigation tasks, such as altitude control and obstacle avoidance [152, 153] or automatic landing and

docking [154] (see [155] for a review).

✶✳✽ ❇✐♦✲✐♥s♣✐r❡❞ ✈✐s✉❛❧ s❡♥s♦rs

As already said in section 1.6, animals can perform complex tasks in various environments and lighting

conditions very efficiently thanks to their visual systems. Although some of these, as, for instance, the

fly’s visual system, are relatively simple in terms of computational resources, they make it possible to (i)

auto-adapt to light while being sensitive to small contrasts and (ii) detect local motion patterns in an very
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efficient way. For this reason, many efforts have been made to construct visual sensors that reproduce

these bio-inspired models both from a hardware and software point of view.

✶✳✽✳✶ ❲✐❞❡✲❉②♥❛♠✐❝✲❘❛♥❣❡ s❡♥s♦rs

A large variety of Wide-Dynamic-Range (WDR) image sensors based on CCD and CMOS technologies has

been proposed throughout the years [156], trying to widen the luminosity range as much as the visible

spectrum while keeping sensitivity to small changes for every average luminosity in the operating range.

WDR sensors can divided into 7 main categories [156]: companding sensors, multimode sensors,

clipping sensors, frequency-based sensors, time-to-saturation (time-to-first spike) sensors, global-control-

over-the-integration-time sensors, and autonomous-control-over-the-integration-time sensors.

Companding sensors compress their response to light usually by a logarithmic transfer function [157,

158]. This approach has advantages such as an increased dynamic range, a reduced susceptibility to

blooming (an apparent increase in the size of a bright object under overload conditions), and fewer ADC

bits for the digital output. In addition, as the logarithmic sensors work in continuous, i.e. non-integrating,

mode, they can have a higher time sampling resolution.

Multimode sensors combine a linear and a logarithmic response at dark and bright illumination levels,

respectively, by dynamically switching between these two modes of operation [159,160]. Although both

the saturation of linear pixels and the low sensitivity of logarithmic pixels are improved, the sensitivity

usually drops by several orders of magnitude after the pixel switches to logarithmic operation.

Clipping sensors apply a adjustment method on the integrating capacitance of each pixel resulting in

an adjustment of the integration period of the light flow [161,162]. This method improve the blooming

effect and the sensitivity at high lumininance levels, but the implementation of the reset of the integrating

capacitance requires a very accurate analog circuitry and precise timing control.

In frequency-based sensors light intensity is converted into a pulse frequency [163, 164], whereas

in time-to-saturation (TTS) (or time-to-first spike) sensors the image is processed according to the time

the pixel was detected as saturated [165, 166]. Both types of sensors are based on relatively complex

pixels, including ADCs, self-reset circuitry, etc, and therefore the noise floor is usually higher compared

to other sensors. In addition, their spatial resolution is usually low since the minimal transistor count

within the pixel is relatively higher than other sensors. The power consumption is also high, since the

pixel is frequently self-reset and the counter is toggled at the same frequency.

In sensors with global or autonomous control over the integration time, the integration time of each

pixel is controlled globally by a predetermined exposure period regardless of its amount of charge or

autonomously depending on its amount of charge, respectively [167, 168]. These sensors can achieve

the same (and even higher) dynamic range than the previous sensors with higher sensitivity, but they

involve more complex processing, such as multiple analog-to-digital conversions and frequent readout

cycles from memory units that store the digitized pixel values from previous captures, and are therefore

more expensive and power consuming.

✹✵
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Although some of these WDR image sensors can capture images in a luminosity range of up to 7

decades (140 dB), they all provide different contrast sensitivities at different average luminosities. Vision

applications involving, for instance, motion detection often require high and constant sensitivity in a large

luminosity range, in order to detect small temporal and/or spatial changes in the intensity in several

lighting conditions [169, 170]. One possible solution to this problem can be found by looking at the

auto-adaptive response of human and animal photoreceptors, as described in section 1.6.1.

❆✉t♦✲❛❞❛♣t✐✈❡ s✐❧✐❝♦♥ r❡t✐♥❛s

Sensors comprising auto-adaptive pixels are often included in the category of companding sensors

as their transient response when adapted to light is mostly logarithmic. However, the auto-adaptation

process give these sensors a contrast sensitivity which is very different to the WDR sensors presented

above, making these sensors belong to a separated category.

The first example of an auto-adaptive silicon retina was presented in [171], where a logarithmic

photoreceptor was used to handle transient changes in light in a 1-decade range, while light adaptation

within a 1-decade range was obtained by “subtracting” a local spatio-temporal average. This circuit

improved the contrast resolution of equally illuminated areas in comparison with standard logarithmic

photoreceptor retinas, but there was no improvement in the low signal-to-noise ratio inherent to the

logarithmic amplification. In [172], a modified version of this chip was compared with the OPL response

described in Necturus [173] (see Fig. 1.8), showing light adaptation in a 5-decade range but sensitivity

to luminous changes within a range of only 0.5 decades.

To overcome these limitations, a more biologically inspired solution was subsequently developed in a

study by [174], which consisted in modulating the synaptic strengths locally to control the sensitivity and

including cone-to-cone gap junctions to attenuate the noise (Fig. 1.21(a),(b)). Although the sensitivity

was improved in this way from 0.5 to 2 decades, the adaptation to light was not satisfactory because of

the circuit deviations resulting from the increasing inter-receptor coupling strength.

A good compromise between contrast sensitivity and light adaptation was reached in [175] (Fig.

1.21(c),(d)), which gave light adaptation in a 6-decade range and sensitivity in a 1-decade range. How-

ever, the steady-state response of this pixel was found to increase with the light intensity (i.e., the pho-

todiode current) and the transient response was not always monotonic when large lighting variations

occurred (see Fig. 2.13 in [176]). The Delbrück adaptive pixel was also found in studies on optic flow

measurements to have little practical use in situations where changes in the light greater than 1 decade

are liable to occur (see Figs. 7(b),7(d),7(j) and 7(l) from [177]).

In [178], the Gamma correction method presented in [179] for local tone-mapping purposes was

improved by digitally normalizing the pixel output directly in VLSI in line with the Michaelis-Menten law,

however only a few preliminary results on light adaptation and contrast sensitivity were presented.

✹✶
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❋✐❣✉r❡ ✶✳✷✶✿ ✭❛✮ ❚❤❡ ❇♦❛❤❡♥ ♥❡✉r♦♠♦r♣❤✐❝ ♦✉t❡r✲♣❧❡①✐❢♦r♠ ♣✐①❡❧ ❝✐r❝✉✐t ❛♥❞ ✭❜✮ ✐ts s✲s❤❛♣❡❞ ❝✉r✈❡s

❝❤❛r❛❝t❡r✐③❡❞ ❛t t✇♦ ❜❛❝❦❣r♦✉♥❞ ✐♥t❡♥s✐t② ❧❡✈❡❧s ✭t❤❡ ❝♦♥t✐♥✉♦✉s ❧✐♥❡s ❛r❡ ✜ts ♦❢ t❤❡ ▼✐❝❤❛❡❧✐s✲▼❡♥t❡♥

❡q✉❛t✐♦♥✮✳ ✭❝✮ ❚❤❡ ❉❡❧❜r✉❝❦ ❛✉t♦✲❛❞❛♣t✐✈❡ ♣✐①❡❧ ❝✐r❝✉✐t ❛♥❞ ✭❞✮ ✐ts s✲s❤❛♣❡❞ ❝✉r✈❡s ❝❤❛r❛❝t❡r✐③❡❞ ❛t

s❡✈❡r❛❧ ❜❛❝❦❣r♦✉♥❞ ✐♥t❡♥s✐t② ❧❡✈❡❧s ✇✐t❤✐♥ ❛ ✻✲❞❡❝❛❞❡ r❛♥❣❡✳ ❆❞❛♣t❡❞ ❢r♦♠ ❬✶✼✹❪ ❛♥❞ ❬✶✼✺❪✳

✶✳✽✳✷ ❆s②♥❝❤r♦♥♦✉s ❡✈❡♥t✲❜❛s❡❞ s❡♥s♦rs

Although active-pixel sensors (APS) have advantages such as having small pixels and compatibility with

standard computer-vision algorithms, they also have some clear drawbacks: the pixels are sampled repet-

itively even if their values are unchanged, the dynamic range of each pixel is limited by its gain and

integration time, and short-latency vision problems require high frame rate and produce massive output

data. Indeed, the high computational cost and low frame rate of conventional image processing is largely

the practical reason for the recent development of neuromorphic address-event representation (AER) sil-

icon retinas. The asynchronous nature of AER sensors output is inspired by the way in which neurons

communicate over a large range. Rather than sampling pixel values, AER pixels asynchronously output

address events when they detect a “significant” signal (see [180] for a complete review on neuromorphic

event-based sensors).

The asynchronous Parvo-Magno retina model presented in 2004 by Zaghloul and Boahen was the

first silicon retina modeling both the outer and inner plexiform layers in the retina, including sustained

(Parvo) and transient (Magno) types of cells [181].

✹✷
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The spatial contrast and orientation vision sensor, called VISe, presented in 2003 by Ruedi et al.

[182] included an on-chip analog computation of contrast magnitude and direction of image features. A

temporal ordering of this information according to the contrast magnitude is used to reduce the amount

of data delivered. This sensor, realized in a 0.5-µm two-poly three-metal technology, featured a contrast

sensitivity of 2%, a contrast direction precision of 3o, and a dynamic range of 120 dB.

The so-called “Octopus” retina presented by Culurciello et al. in 2003 is an event-based intensity-

coding imager that communicates the pixel intensity through the frequency or inter-spike interval of

the AER event outputs [164]. The name Octopus comes from the animal because the octopus eye, like

other cephalopods, is inverted compared to mammalian eyes, in the sens that the phototreceptors are not

behind the optic nerves fibers (as opposed to mammalian eyes), avoiding the presence of a blind spot

where the fibers pass through the retina.

In the Dynamic Vision Sensor (DVS) presented in 2008 by Lichtsteiner et al. [183] each pixel quan-

tizes local relative intensity changes independently and in continuous time to generate spike events.

These events appear at the sensor’s output as an asynchronous stream of digital pixel addresses, giving

local intensity changes in the visual scene with sub-millisecond timing precision. The output data rate

depends on the dynamic content of the scene and can be orders of magnitude lower or higher than

those of conventional frame-based imagers. By combining an active continuous-time front-end logarith-

mic photoreceptor with a self-timed switched-capacitor differencing circuit, the sensor achieves an array

mismatch of 2.1% in relative intensity event threshold and a pixel bandwidth of 3 kHz under 1 kLux.

Dynamic range is 120 dB and the chip power consumption is 23 mW. By providing high pixel bandwidth,

wide dynamic range, and precisely timed sparse digital output, this silicon retina provides an attractive

combination of characteristics for low-latency dynamic vision under uncontrolled illumination with low

post-processing requirements (Fig. 1.22(a),(c)).

The Asynchronous Time-based Image Sensor (ATIS) presented in 2011 by Posch et al. combines a DVS

pixel with an intensity measurement unit in each pixel in order to trigger light intensity measurements

by time-based DVS events [184] (Fig. 1.22(b)). To do this, the 304x240 30µm-pixel sensor combines

the notions of temporal contrast detection [183] and pulse-width modulation (PWM) intensity encoding

by using a new time-based correlation double sampling circuit to output the pixel gray level values only

from pixels that change in intensity, resulting in a dynamic range of about 130 dB. Neuromorphic pixels of

this kind has been found to give very impressive results for surveillance [185] and retinal-implant [186]

applications, and are actually used in visual sensors available on the market, such as those provided by

Pixium Vision and Chronocam (Fig. 1.22(e)).

However, none of these event-based silicon retinas could provide both spatial and temporal processing

in a form suitable for computer vision applications. The new Dynamic and Active-pixel Vision Sensor

(DAVIS), which combines DVS and APS technologies in the same pixel [187, 188], seems to be very

promising, offering the advantages of both conventional machine vision based on tiny APS and event-

based vision based on low-latency, sparse-output neuromorphic silicon retinas (Fig. 1.22(d)).

✹✸
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❋✐❣✉r❡ ✶✳✷✷✿ ✭❛✮✱✭❜✮ ❈✐r❝✉✐t ❛♥❞ t✐♠❡ r❡s♣♦♥s❡ ♦❢ ♦♥❡ ♣✐①❡❧ ♦❢ ✭❛✮ t❤❡ ❉❱❙ r❡t✐♥❛ ❛♥❞ ✭❜✮ t❤❡ ❆❚■❙ r❡t✐♥❛✱

✇✐t❤ t✇♦ ❡①❛♠♣❧❡s ♦❢ ✐♠❛❣❡s ❝❛♣t✉r❡❞ ❜② t❤❡s❡ s❡♥s♦rs✳ ❆❞❛♣t❡❞ ❢r♦♠ ❬✶✽✸❪ ❛♥❞ ❬✶✽✹❪✳ ✭❝✮ ❚❤❡ ❉❱❙

s❡♥s♦r ❛♥❞ ✭❞✮ t❤❡ ❉❆❱■❙ s❡♥s♦r ❞❡✈❡❧♦♣❡❞ ❛t t❤❡ ✐♥✐▲❛❜s ❧❛❜♦r❛t♦r② ❛t t❤❡ ❊❚❍ ❯♥✐✈❡rs✐t②✳ ✭❡✮ ❚❤❡

❈❤r♦♥♦❝❛♠ s❡♥s♦r ❜❛s❡❞ ♦♥ t❤❡ ❆❚■❙ r❡t✐♥❛✳

✶✳✽✳✸ ❖♣t✐❝ ✢♦✇ s❡♥s♦rs

As presented in section 1.7, a huge number of methods have been proposed to compute the global or

local optic flow, showing different pros and cons. Since the early 1980s, optic flow have usually been

computed by applying these algorithms on image sequences from standard cameras. However, this way

of computing the optic flow has 2 main drawbacks: (i) the estimates may be not reliable due to the

undersampling or the high dynamic range of the visual scene (see section 1.7.2), and (ii) it often requires

very large computational resources to deliver robust measurements. For these reasons, authors have

recently developed alternative solutions for measuring the optic flow suitable for real-time applications

by adapting on-the-shelf visual sensors with additional hardware or software modules, or constructing

new custom-made sensors.

Here, the different technologies which have been used for measuring the optic flow will be presented

by dividing them in 3 main categories: CMOS-based sensors, optical-mouse sensors and custom-made

sensors based on analog Very Large Scale Integration (aVLSI) chips. The bio-inspired local motion sensors

(LMSs) designed and developed at our laboratory will be presented separately in the next subsection.
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One of the first very high-frame-rate optical-flow sensors was developed by Diaz et al. in 2008 using a

CMOS camera followed by a superpipelined, fully parallelized architecture for the optical flow processing

implemented onboard a FPGA [189]. The 2-D optic flow was estimated by applying a gradient-based

method based on the Lucas-Kanade algorithm on images acquired at up to 170 frames/s with a resolution

of 800x600 pixels by an onboard DSP. A few years later, another optic flow sensor based on a 320x240

pixels CMOS camera and an onboard FPGA was presented using, this time, a correlation-based algorithm

running at 120 fps [190].

In [191], nearly 60000 ERDs were successfully implemented on a modified Eneo SmartCam module,

composed of a CMOS camera, a fisheye lens and a FPGA, covering a field of view of 185o and delivering

measurements at 300 fps (Fig. 1.23(a)). However, as discussed in section 1.6.4, the outputs of the ERDs

do not provide metric optic flow values and therefore this sensor could be used only as visual ego-rotation

sensor for micro aerial vehicles (MAVs).

In 2013, a new optic flow sensor called PX4FLOW, based on a CMOS imager and a block-matching al-

gorithm implemented onboard a ARM Cortex microcontroller, was presented [192], and is now available

for purchasing (Fig. 1.23(b)). This compact sensor is also equipped with a rate gyro and an ultrasonic

distance sensor to automatically compensate for rotations of the camera and scale the optic flow to metric

values, however it delivers only one optic flow measurement at the time instead of a vector field.
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The optical mouse presented by Lyon and Haeberli in 1982 [193] was actually the first digital motion

detection sensor. In their first chip, the photocurrent of a photodiode was integrated over time on a

capacitor and transduced to a digital signal by a simple inverter. The time for charging up the capacitor

depended on the input light level. Through lateral inhibition, a cell exposed to a brighter pattern which
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reached a high state earlier could suppress the neighbors. Thus, by tracking the location of the winner

cells, the movement of the input image could be determined.

Since then, a lot of improvements have been made to the retina and the algorithm used in optical-

mouse sensors to process the 2-D local optic flow. Recently, some authors characterized optical-mouse

sensors providing analytic models and comparative results [194, 195], however very little is still known

about the onboard processing of these sensors. In [196], the authors presented an interesting com-

parative analysis for tracking a vehicle’s position when using optical-mouse sensors instead of standard

technologies, such as GPSs, accelerometers or laser rangefinders.

Optical-mouse sensors have been recently used as optic flow sensors onboard wheeled and flying

robots by simply adjusting their lens, however they still have some important limitations such as their

sensitivity to dynamic lighting conditions and to their distance to the objects (see section 1.9).

❆♥❛❧♦❣ ❱▲❙■ s❡♥s♦rs

One of the first analog Very Large Scale Integration (VLSI) sensor for measuring 2-D optic flow was

developed by Tanner and Mead in 1986 [197]. This chip was designed to solve the continuity equation

in (1.3) for few neighboring pixels, however device mismatches were sometimes produced due to analog

division that amplified the noise. A modified version of the Tanner-Mead sensor was presented a few

years later in [198], where the temporal derivatives were multiplied instead of divided by the spatial

derivatives, in order to reduce the mismatches due to the noise amplification. Later, Stocker presented

a different gradient-based implementation on an analog VLSI chip using two-layer networks of locally

connected motion units to collectively estimate the optimal 2-D optical flow field [199,200]. By globally

adjusting some parameters, for instance, for varying the smoothness strength, the sensor could provide

good continuous-motion estimates.

In 1993, Delbruck presented the first effective implementation of multiple ERDs over a wide spatial

and temporal range on an analog VLSI chip, using unidirectional delay lines as tuned filters for moving

edges [114]. Other implementations of ERDs on analog VLSI chips were subsequently presented, for

instance, in [201–203]. Reviews on conventional gradient-based and correlation-based VLSI chips are

given in [204,205].

In 1995, Kramer et al. [206] presented a 1-D velocity sensor strongly inspired by the time-of-travel

scheme presented in [117, 118] (see section 1.7.2). At the time of the occurrence of an edge at one

pixel, a capacitor starts charging making its voltage decay logarithmically. When the edge reaches the

next pixel, a pulse signal is triggered and the voltage on the capacitor is sampled, delivering an output

voltage which is indicative of the edge velocity. A new chip based on this architecture but including a

light adaptation process was presented ten years later in [121], where this method was called for the first

time “time of travel” (Fig. 1.24). Similar approaches have been presented, for instance, in [207].

Barrows proposed a new design of a motion detection chip based on the Competitive Feature Tracker

algorithm, in which the photoreceptors’ signals were sent into an array of four feature detectors that
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output four analog feature signals [208]. The feature detector circuit reached its highest output value

when the feature which it was tuned for appeared on its input photoreceptors. A differential amplifier

was used as feature detector, making the motion detectors sensitive to only one direction.

Recently, new-generation optic flow sensors based on the asynchronous event-based retinas presented

above have been developed showing very promising results [209,210].

✶✳✽✳✹ ▲♦❝❛❧ ▼♦t✐♦♥ ❙❡♥s♦rs

Based on the experiments performed on the fly’s visual system as presented in section 1.6.4, Franceschini

et al. proposed a first analog implementation of a time-of-travel EMD, called 2-pixel Local Motion Sensor

(LMS) [117, 118] (Fig. 1.16(b), 1.25(a)). The computation of the time delay ∆t between two adjacent

photoreceptors’ signals was composed of 4 main steps:

• Spatial sampling and low-pass spatial filtering, which was achieved by defocusing a miniature lens

placed in front of the photoreceptors to obtain a Gaussian angular sensitivity, as it occurs in the fly’s

compound eye (see section 1.6.3).

• Band-pass filtering, which resulted from the combination of a low-pass filter to cut off the high

frequencies (noise) and a high-pass filter to enhance the transient signals (motion).

• Thresholding with a hysteresis block to detect a contrast. This threshold value was critical to the

performances of the LMS: too low values would give wrong measurements (due to the noise),
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whereas too high values would decrease the refresh rate.

• Measuring the time delay ∆t between two detected contrasts. In this first implementation, the time

delay was measured by sampling a decreasing exponential function generated by the first signal

after crossing the threshold value, through an impulse generated by the second signal after subse-

quently crossing the threshold value. The optic flow was therefore approximated by the function

e−
∆t
τ in order to reduce the noise present at high optic flow values.

Such a 2-pixel LMS could compute the optic flow only in one preferred direction (e.g. the first

photoreceptor must see the contrast before the second one). A bi-directional sensor could be implemented

by adding a second LMS in the opposite direction and by taking the maximum value between the two

measurements [211].
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A few years later, hybrid versions mixing analog and digital processing were proposed [122, 135,

212] (Fig. 1.25(b)). The bandpass-filtering step was still done using analog filtering to differentiate

the visual signals but also to avoid aliasing before digitization. The other steps of the processing were

carried onboard a microcontroller where the signals were first low-pass filtered to further cut off the high

frequencies, in particular the 100Hz of the artificial lighting, and then two separate pathways were used

to process ON and OFF contrasts. The optic flow was finally estimated using an exponential function or

a look-up table (Fig. 1.26(a)). This implementation has also been implemented successfully onboard a

FPGA [213] (Fig. 1.25(c)).

✹✽



✶✳✽✳ ❇✐♦✲✐♥s♣✐r❡❞ ✈✐s✉❛❧ s❡♥s♦rs

More recent versions of 6-pixel LMSs, also called Visual Motion Sensors (VMSs), have been devel-

oped to increase the range, the precision and the refresh rate of the OF measurements, as well as the

luminosity range [177, 214–216]. In [177], the authors implemented the TOT algorithm on both a

custom-made VLSI array called APIS (which stands for Adaptive Pixels for Insect-based Sensors) equipped

with Delbruck-type auto-adaptive pixels [175], and an on-the-shelf linearly-amplified photosensor/retina

called LSC (purchased from iC-Haus). The LMSs were tested for the first time in an outdoor environment,

showing that the LSC-based LMS was more accurate in a narrow 1.5-decade illuminance range, whereas

the APIS-based LMS was more robust to illuminance changes in a larger 3-decade range. In [214], a

bi-directional version of the LSC-based LMS was presented by applying the same maximum criterion as

presented in [211] (Fig. 1.25(d), Fig. 1.26(b)). In [216], a modified version of the LSC-based LMS was

used outdoors on an helicopter showing that it was possible to adapt the OF range of a LMS, in particular

to measure low optic flow values, by adjusting the optical lens and the filtering steps.
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Although they have shown very good results in certain testing conditions, the threshold-based TOT

methods used in these works have some important drawbacks. First, as explained above, the perfor-

mances of the LMS strongly depend on the thresholding phase, which makes the sensor dependent of

the operating conditions, such as the visual patterns, the light levels and possible vibrations. Then, the

refresh rate of the OF measurements depends not only on these operating conditions but also on the

bandwidth of the band-pass filter, whose high cut-off frequency is relatively low to cut off the noise.

A different implementation of a 2-pixel LMS has been proposed by continuously tracking the time

delay ∆t between two neighboring signals using a gradient-based approach similar to the Lucas-Kanade

method [217]. Although not bio-inspired, this processing allowed to process the angular speed in both

directions with good accuracy without being dependent on a threshold value. However, it was more

costly in terms of computational power and was sensitive to the initial condition on the time delay, which

influences the convergence of the processing.

Although showing very promising results, the LMSs presented so far require some important improve-

ments in order to be used outdoors on a real vehicle in unknown, unstructured environments under

dynamic lighting condition within a wide range.

✶✳✽✳✺ ❆rt✐✜❝✐❛❧ ❝♦♠♣♦✉♥❞ ❡②❡s

As described in section 1.6.3, the compound eye can deliver very effective motion detection over a very

wide field of view (FOV) using less pixels than standard cameras, thanks to its optically-isolated facets

(e.g. 800 to 900 facets over nearly 360o in the fly). Therefore, artificial implementation of compound eyes

has attracted researchers during the last few years. The main challenge in the the design of an artificial

compound eye is to be able to manufacture an array of microlenses that can be precisely aligned with

photosensitive layers. Recently, Song et al. (2013) proposed a solution based on an elastomeric microlens

array placed on top of a stretchable array of photodiodes interconnected by filamentary serpentine wires

deformed into an hemispherical shape [218] (Fig. 1.27(a)). In the same year, Floreano et al. presented

another biomimetic compound eye featuring a panoramic, undistorted field of view by using three planar

layers of separately produced arrays, namely a microlens array, a neuromorphic photodetector array,

and a flexible printed circuit board that are stacked, cut and curved to produce a mechanically flexible

imager [219] (Fig. 1.27(b)).

✶✳✾ ❇✐♦✲✐♥s♣✐r❛t✐♦♥ ✐♥ r♦❜♦t✐❝ ❛♥❞ ❛✉t♦♠♦t✐✈❡ ❛♣♣❧✐❝❛t✐♦♥s

Researchers and engineers have tried for long time to take inspiration from nature for developing ma-

chines that can help human lives in the most efficient and effective way. Biologically-inspired technologies

can be found in a wide range of application fields, from medical to aerospace applications, but all answer-

ing the same question: how can nature solve certain problems and how can its solutions be implemented

on electromechanical devices.

✺✵
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❢r✉✐t✢② ❉r♦s♦♣❤✐❧❛✳

In robotics, there exists two approaches: bio-inspiration and biomimetics. In the former, the aim

is to take inspiration from nature to develop new effective technologies by realizing an energy-efficient

technical adaptation of the natural model but without necessarily copying nature. Wheeled robots, and

eventually vehicles, using bio-inspired sensors (see, for instance, section 1.8) or actuators are good ex-

amples of this approach. Although these sensors and actuators are based on biological findings, they

are not constructed and employed to mimic the animal’s behavior but to improve the performances or

reduce the cost of the machine which they are applied to. In the latter, the aim is to go a step further

trying to mimic the animal’s behavior and, by looking at the robot’s response, sometimes trying to better

understand the animal itself and therefore reformulate some hypothesis that have been made on the bio-

logical models. This is the reason why researchers are now developing robots endowed with biomimetic

locomotion systems to walk, crawl, swim or fly based on nature’s best solution found through thousand

of years of evolution. Although the biomimetic approach is not directly related to this thesis, we would

like to give in the following section a short overview on biomimetic robots for completeness.

✶✳✾✳✶ ❇✐♦♠✐♠❡t✐❝ r♦❜♦ts

The BionicANTs presented by Festo in 2015 are a well-representative example of biomimetic robots since

they not only reproduce the delicate anatomy of the ants but, for the first time, they also mimic the

cooperative behavior of these creatures using complex control algorithms (Fig. 1.28(a)).

✺✶
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As the transition from aquatic to terrestrial locomotion was a key step in vertebrate evolution, various

amphibious robots that mimic the salamander and snake locomotion have been presented, for instance, in

[220,223,224] to bring light on their ability to switch between swimming and walking (Fig. 1.28(b),(c)).

Another example of biomimetic aquatic robot is the soft-bodied robot developed by Marchese et al.

(2014), which is capable of rapid, continuum-body motion by employing a compliant body with embed-

ded actuators emulating the slender anatomical form of a fish [221] (Fig. 1.28(d)).

By looking at the flapping-wing aerodynamics of insects, Wood et al. (2008) developed the first insect-

sized (60mg) Micro Air Vehicle (MAV) capable of Diptera-like wing trajectories by producing sufficient

thrust to accelerate vertically [222] (Fig. 1.28(e)). They successfully embedded on such an ultra light

MAV an optic flow sensor in order to estimate its altitude, making it able to hover and perform some basic

controlled flight maneuvers [225]. On similar lines, the SmartBird robot developed by Festo in 2011 is

another ultralight but powerful flying robot with excellent aerodynamic qualities and extreme agility by

mimicking the flight of birds (Fig. 1.28(f)).

Various quadruped robots that move and run like dogs, as well as anthropomorphic robots that walk,

manipulate and learn like humans have also been presented during the last decade. Probably some of

the best examples of these robots are those developed by Boston Dynamics, as they provide extremely

stable and natural gates in extreme terrain conditions, such as walking on very steep and slippery surfaces

including snow, ice and mug. In particular, the BigDog robot, founded by DARPA and presented in 2010,

was the first quadruped robot that could walk, run, climb and carry heavy loads on rough terrains by

reproducing the dog’s locomotion using compliant elements to absorb shock and recycle energy from one

step to the next (Fig. 1.28(g)).

The iCub robot developed by the Italian Institute of Technology is the first humanoid robot that

can learn how to lift up when lying on a floor and move on 4 legs, or how to manipulate objects and

interacting with the environment in a very child-like manner (Fig. 1.28(h)).

✶✳✾✳✷ ❇✐♦✲✐♥s♣✐r❡❞ ✇❤❡❡❧❡❞ r♦❜♦ts

One of the first bio-inspired optic flow-based robots was developed by Srinivasan et al. (1999), based

on the behavioral results obtained previously on honeybees (Fig. 1.29(a)). The small wheeled robot

was equipped with a forward-facing camera which captured views of both side walls (left and right)

using two mirrors in front of it [115]. The optic flow produced by the relative motion of the robot with

respect to the two side walls was first computed on a desktop computer using a simplified version of the

image-interpolation algorithm presented in [111] (see section 1.7). Then, suitable steering commands

were delivered to the robot to keep its trajectory close to the midline of the tunnel, reproducing a similar

behavior to that observed in their experiments on honeybees [91,92].

These authors also implemented on the same robot a localization method inspired by the bee’s visual

odometer [146], to determine the distance traveled by the robot by integrating over time the optic flow

experienced in the two sides. This computation did not yield the absolute travel distance since this
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depends on the distance to the walls (unknown), but it still yielded a value indicative of distance traveled

[115]. To overcome this shortcoming, the authors designed another robot which, this time, did not

compute image motion per se. Instead, a modified version of the image-interpolation algorithm was

applied to two panoramic views of the world captured simultaneously from a fixed, known distance apart

on the robot’s translating axis [115].

To decrease the important computational power required to extract visual information, [227] created

a small, low-power visual sensor with integrated analog parallel processing to extract motion in real-time

based on ERDs. This sensor was used on a mechanically asymmetric wheeled robot compensating its yaw

rotations thanks to a control feedback loop mimicking the optomotor response of insects (Fig. 1.29(c)).

Similar approaches but using different sensors for computing the optic flow or different estimation

and control algorithms have been presented, for instance, in [226, 229, 230]. In [226], authors pointed
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out that such strategy would lead to a crash of the robot on featureless walls and therefore they imple-

mented a wall following behavior triggered by the absence of optic flow measurements from one side

(Fig. 1.29(b)).

Humbert et al. proposed a new solution to estimate the position and velocity of a vehicle by inte-

grating over a wide field of view local optic flow measurements using their Fourier-series decomposi-

tion [231]. This method, called Wide-Field Integration (WFI), was inspired by the LPTC cells of the fly

(see section 1.6.3) and was successfully tested on a wheeled robot traveling inside a corridor to center

the robot and control its forward speed [232]. The method was later extended to a 6-DOF robot to

navigate in unknown environments [233] and implemented onboard a quadrocopter [234]. However, in

all these experiments, the optic flow measurements were coupled with other sensors, such as a sonar, an

accelerometer or a speed sensor, to obtain metric measurements.

Dahmen et al. (2009) presented a cheap and light wheeled robot that extracts self-motion exclusively

from optic flow, inspired by both the eye structure and the visually-controlled behavior of water striders

[228]. Optical mouse chips provided with adequate lenses were mounted on the robot’s head looking at

the ground over 360o, and used for measuring the optic flow induced by the visual motion of the ground

(Fig. 1.29(d)). Experimental results of the odometry method proposed were first provided by manually

driving the robot indoors along a straight line and around its yaw axis. Then, a different configuration of

the sensors was tested outdoors on a moving arm instead of the robot.

✶✳✾✳✸ ❇✐♦✲✐♥s♣✐r❡❞ r♦❜♦ts ❞❡✈❡❧♦♣❡❞ ❛t ♦✉r ❧❛❜♦r❛t♦r②

Based on the physiological and behavioral studies carried out on the fly and particularly on its visual

system (see section 1.6.4), Franceschini et al. built in 1989 the first bio-inspired vision-based wheeled

robot called “robot mouche” (fly robot). The fly robot was composed of 118 analog electronic circuits

modeled upon the neural circuitry of the fly’s brain connected to a circular array of photoreceptors and

was capable of approaching a goal while avoiding obstacles on its way by reproducing a behavior similar

to the fly’s optomotor response [118,119] (Fig. 1.30(a)). In particular, the robot could travel in transla-

tion at a known forward speed (50 cm/s) while controlling its direction and determining its distance to

the objects by using only 114 EMDs.

Ten years later, a similar control strategy was implemented on a 850g flying robot called FANIA which

was able to fly away from obstacles and follow a terrain without any knowledge of its speed but using

only 20 local optic flow measurements [235,236].

Inspired by the findings obtained on insects (see section 1.7.3), Ruffier et al. proposed in 2003 an

autopilot called OCTAVE, which stands for Optical altitude Control sysTem for Autonomous VEhicles, to

control the altitude of a flying robot by using only a 2-pixel optic flow sensor placed on the ventral part

of the robot facing downwards [122, 237–240]. This autopilot was successfully implemented on a 100g

tethered rotorcraft (Fig. 1.30(b)) flying over a contrasted ground and performing challenging tasks such

as taking-off, landing, terrain following and reacting suitably to wind.

✺✺
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Based on their results from behavioral experiments on honeybees (see section 1.7.3), Serres et al.

(2008) proposed a bio-inspired autopilot called LORA III, which stands for Lateral Optic Flow Regulation

Autopilot III, consisting of a dual OF regulator to control both forward and lateral speed by using 2

separate OF set-points [135]. The first lateral OF regulator adjusts the robot’s lateral speed so as to

keep the lateral OF equal to the sideways OF set-point. Therefore, the distance to the wall becomes

proportional to the robot’s forward speed, depending on the sideways OF set-point: the faster it travels,

the further away from the walls it will be. The second lateral OF regulator adjusts the robot’s forward

speed so as to maintain the sum of the two (right and left) OFs equal to the forward OF set-point. Thanks

to these two intertwined feedback loops, the vehicle forward speed is automatically adjusted to the size

of the corridor, depending on the forward OF set-point: the narrower the corridor is, the slower it travels.

This autopilot has been first tested in simulation [135] and then implemented on a 800g miniature

hovercraft traveling in a corridor [241] (Fig. 1.30(c)).

To generalize the OCTAVE and LORA autopilots in order to control the position and speed of an agent

freely-flying in a 3-D environment, the ALIS autopilot, which stands for AutopiLot using an Insect based

vision System, has been subsequently proposed and tested with a simulated flying agent [243].

Lastly, Expert et al. recently developed a bio-inspired tandem rotorcraft called BeeRotor mimick-

ing optic flow-based behaviors and flying in the vertical plane in a highroofed tunnel depicting natural
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scenes [242] (Fig. 1.30(d)). The 80g tethered miniature robot was able to control its heave, surge and

pitch, while reorienting its quasi-panoramic visual system made of only 24 pixels to be perpendicular to

the followed surface. The BeeRotor robot was able to perform complex tasks such as ground and ceiling

hugging and speed control in the presence of a rugged or unstationary environment without any ac-

celerometer or estimation of its pitch, altitude or groundspeed. Its robustness was shown even in absence

of the airspeed sensor or when strong perturbations were applied on the aircraft.

✶✳✾✳✹ ❇✐♦✲✐♥s♣✐r❛t✐♦♥ ✐♥ ❛✉t♦♠♦t✐✈❡ ❛♣♣❧✐❝❛t✐♦♥s

Although research works on autonomous vehicles have been presented since the early 1980s (see section

1.5), only recently bio-inspired technologies have been proposed for ADAS systems.

Sota et al. (2004) proposed a motion detection system for a blind spot overtaking monitor which was

based on Reichardt correlators [244] (see section 1.6.4). The approach presented used the saliency of

motion features in a competition scheme to filter out noise patterns and make features corresponding to

rigid body motion self-emerge from the background. The system was tested with real overtaking image

sequences, but no real-time implementation on a vehicle was presented.

In [245], the authors presented an architecture and retino-topic unit based on a bio-inspired high-

dynamic-range (HDR) sensor intended for automotive applications, in which collision threats were iden-

tified by mimicking the neuronal structure of the Lobula Giant Movement Detector (LGMD) found in the

locust’s eye. This chip and collision detection system were subsequently integrated into a commercial car

(Volvo XC90) and tested to deliver collision warnings in real traffic scenarios [246].

In the framework of the European project ADOSE, which stands for Application-specific Detection

of road users with vehicle On-board SEnsors, Kogler et al. (2009) presented a stereo vision system for

use in pre-crash warning applications for side impacts based on an event-based silicon retina inspired by

the human visual system [247]. A block-scheme stereo vision algorithm providing distance information

extracted from moving objects was successfully implemented on a DSP satisfying real-time constraints,

however no results on a real vehicle usage was presented.

Michalke et al. (2009) presented a biologically-motivated ADAS system based on the generic principle

of attention, inspired by front-end visual signal-processing principles in the human brain, to perform an

early task-dependent pre-selection of interesting image regions and decrease the scene complexity [248].

The system proposed was subsequently implemented on a Honda Legend prototype using a standard CCD

camera and successfully tested on typical construction sites on highways [249].

An ADAS system inspired by the fish schooling behavior has been recently proposed to provide swarm-

behavior capabilities to autonomous vehicles using only local knowledge of their environment [250]. This

system was first implemented on a dynamic driving simulator to gather driver’s feelings and then in traffic

simulation software to evaluate gains obtained for a set of equipped vehicles.
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The aim of this thesis is to: (i) evaluate the potential interest of the local motion sensors (LMSs) on out-

door mobile robots and automobiles, (ii) develop new sensors that are adapted to the road environment,

and (iii) propose some applications in which these sensors could improve the ADAS systems of tomorrow.

All but the last chapter feature either published or submitted papers, each dealing with separated but

related works. The papers were adjusted to comply with the format of this manuscript, however their

contents have not been altered.

■♥ ❝❤❛♣t❡r ✷✱ we present how the bio-inspired optic flow sensors developed at our laboratory (LMSs)

could be used in automatic parking maneuvers. For this purpose, we developed a low computational-cost

method of detecting and tracking a parking spot in real time using 1-D OF measurements around the

vehicle together with the vehicle’s longitudinal velocity and steering angle. Highly simplified 2-D parking

simulations were first performed using Matlab/Simulink software, then some preliminary experiments

were carried out using a vehicle equipped with two 6-pixel LMSs.

■♥ ❝❤❛♣t❡r ✸✱ we present a novel bio-inspired auto-adaptive silicon retina designed and developed by

our laboratory in collaboration with the Center of Particle Physics of Marseille (CPPM), that reproduces

the auto-adaptation process found on the animal and human retina. We successfully tested this silicon

retina, showing that the novel pixel, called M2APix, which stands for Michaelis-Menten Auto-Adaptive

Pixel, can auto-adapt in a 7-decade range and respond appropriately to step changes up to ±3 decades,

while keeping sensitivity to contrasts as low as 2%.

■♥ ❝❤❛♣t❡r ✹✱ we present a novel optic flow sensor based on this auto-adaptive retina and a new robust

method for computing the optic flow, which provides several advantages to previously developed optic

flow sensors such as its robustness to high-dynamic-range lighting conditions, various visual patterns

and vibrations. To test the performances of this novel sensor and show how it can be used for robotic

and automotive applications such as visual odometry, we constructed a low-cost car-like robot, called

BioCarBot, which stands for Bio-inspired Visually-guided Car-like Robot. This robot can estimate robustly

its velocity and steering angle using only the optic flow measurements delivered by two downward-facing

sensors along with an Extended Kalman Filter (EKF). Indoor and outdoor experiments were successfully

carried out in a 7-decade light level range and using various textures, showing promising perspectives of

these sensors for odometry-based applications.

■♥ ❝❤❛♣t❡r ✺✱ we present some conclusions on the work accomplished and discuss about further im-

provements that could be carried out on next versions of LMSs or on the methods proposed here for

automatic parking and visual odometry. A new multi-facets sensors composed of 4 M2APix chips on a

flexible Printed Circuit Board (PCB) is also presented, along with some perspectives on other applications

as well as on the integration of the LMSs on cars.

✺✽
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As already mentioned in section 1.4, most intelligent parking assist (IPA) systems available on the market

are designed to help the driver with a parallel and/or perpendicular parking maneuver by using ultrasonic

sensors and rear-view cameras [8–10] or wide-angle cameras all around the vehicle [11,12].

Although some IPA systems can already perform (semi-)automatic maneuvers, these systems have

some clear limitations, mainly due to the limits of the sensors used (see section 1.3), that do not allow

safe fully-automated maneuvers. Such limitations could be summarized as a common problem for mobile

autonomous systems (see section 1.2): they can not provide both a wide field of view and a high operating

frequency satisfying safety and real-time constraints.

On the one hand, the ultrasonic sensors have a narrow field of view (25 to 45o), a short-distance

range (< 5m) and low precision (5 to 15%), therefore, even if many of these sensors are used to cover

the area surrounding the vehicle, it is not possible to precisely detect and track the parking spot for a

fully-automated maneuver. On the other hand, cameras can cover wide field of views (e.g. fish eye

cameras), but they suffer from high-dynamic-range lighting conditions and the image processing require

too large computational resources to extract all the information required about the environment in real

time. In both cases, the refresh rate, i.e. the frequency at which useful information (distance, velocity,

etc) is extracted, ranges from 10 to 30Hz in standard vehicles.

Fully-automatic parking maneuvers have been presented in various research works [13, 15] but they

still require too costly sensors, such as high-resolution lidars and radars, as well as large computational

resources to reconstruct the surrounding 3-D environment in real time during the maneuvers.

As described in section 1.8.4, our laboratory have been developing for nearly 20 years 1-D optic flow

sensors, also called Local Motion Sensors (LMSs), inspired by fly’s visual system. These low-cost sensors

✺✾
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can deliver high-frequency measurements using a very few pixels and simple embedded electronics, and

have been successfully used for robotic applications where 2-D trajectories where performed in closed

loop. However, the LMSs developed so far, based on the time-of-travel scheme presented in sections

1.7.2 and 1.8.4, had some important limitations due to the thresholding phase: too low threshold values

would give wrong optic flow measurements due to the noise, whereas too high values would decrease the

refresh rate. This means that, due to this threshold value and the band-pass filter (see section 1.8.4), the

reliability and the refresh frequency of the optic flow measurements strongly depended on the operating

conditions (visual patterns, light levels, vibrations, etc).

Such an issue was confirmed after testing the LMSs presented in [177,216] outdoors on a real vehicle

in different environmental conditions. We therefore designed and implemented a new robust time-of-

travel algorithm for estimating the optic flow based on a cross-correlation method similar to that proposed

in [123] (see section 1.7.2). This algorithm was successfully implemented in RTMaps software on a

desktop PC, and was then applied to the photoreceptors’ signals acquired from the LMSs presented in

[177,216]. The details of this new method, which has been subsequently improved, will not be presented

in this chapter but in chapter 4.

In the work presented in the following paper, we investigated how LMSs could be used to improve

automatic parking maneuvers, and eventually represent an alternative or complementary solution for

new IPA systems. For this purpose, we developed a low computational-cost method of detecting and

tracking a parking spot in real time using 1-D OF measurements around the vehicle together with the

vehicle’s longitudinal velocity and steering angle. Highly simplified 2-D parking simulations were first

performed using Matlab/Simulink software, then some preliminary experiments were carried out using

a vehicle equipped with two 6-pixel LMSs based on the new time-of-travel algorithm.

Some details on the mathematical modeling and the experimental results presented here will be given

in Appendix A.

✻✵
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“Towards an Automatic Parking System using Bio-Inspired 1-D Optical Flow Sensors”

Article published in Proceedings of the 2015 IEEE International Conference on Vehicular Elec-

tronics and Safety, Yokohama, Japan, 2015

Authors: Stefano Mafrica,✶, ✷ Alain Servel✷ and Franck Ruffier✶

✷✳✷✳✶ ❆❜str❛❝t

Although several (semi-) automatic parking systems have been presented throughout the years [13, 15,

251–260], car manufacturers are still looking for low-cost sensors providing redundant information about

the obstacles around the vehicle, as well as efficient methods of processing this information, in the hope

of achieving a very high level of robustness. We therefore investigated how Local Motion Sensors (LMSs)

[216,242], comprising only of a few pixels giving 1-D optical flow (OF) measurements could be used to

improve automatic parking maneuvers. For this purpose, we developed a low computational-cost method

of detecting and tracking a parking spot in real time using 1-D OF measurements around the vehicle as

well as the vehicle’s longitudinal velocity and steering angle. The algorithm used was composed of 5

processing steps, which will be described here in detail. In this initial report, we will first present some

results obtained in a highly simplified 2-D parking simulation performed using Matlab/Simulink software,

before giving some preliminary experimental results obtained with the first step in the algorithm in the

case of a vehicle equipped with two 6-pixel LMSs. The results of the closed-loop simulation show that up

to a certain noise level, the simulated vehicle detected and tracked the parking-spot assessment in real

time. The preliminary experimental results show that the average refresh frequency obtained with the

LMSs was about 2-3 times higher than that obtained with standard ultrasonic sensors and cameras, and

that these LMSs therefore constitute a promising alternative basis for designing new automatic parking

systems.

✷✳✷✳✷ ■♥tr♦❞✉❝t✐♦♥

Since the pioneering works by Paromtchik et al. [251] and the first commercial Intelligent Parking Assist

System (IPAS) [252], a large range of (semi-) automatic parking methods have been developed over

the years using all kinds of sensors, from ultrasonic sensors [253–255] to cameras [256–258], laser

scanners [13,259], and radar systems [15,260].

On the one hand, high-performance automatic parking systems require costly sensors, such as laser

scanners [13,259] and radars [15,260] and large computational resources to reconstruct the surrounding

✶❆✐①✲▼❛rs❡✐❧❧❡ ❯♥✐✈❡rs✐té✱ ❈◆❘❙✱ ■❙▼ ❯▼❘ ✼✷✽✼✱ ✶✸✷✽✽ ▼❛rs❡✐❧❧❡✱ ❋r❛♥❝❡
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3-D environment in real time during parking maneuvers.

On the other hand, most of the (semi-) automatic parking pilots available on the market involve the

use of ultrasonic sensors and rear-view cameras [8–10, 255, 257] to detect a free parking spot while the

driver is driving along a row of parked vehicles and to autonomously control the steering system by

estimating the vehicle’s ego-position via odometry.

To improve IPAS systems, recent research works and industrial developments using Around View

Monitor Systems (AVMSs) have been proposed [11, 12, 258]. AVMSs mainly use wide-angle cameras

(such as fish-eye and catadioptric cameras) directed toward the ground, giving a view of the surrounding

environment, to detect and track parking-spots’ ground marks during parking maneuvers.

However, the autonomous vehicles of the future will require more accurate redundant information

than that provided by the systems currently available on the market, mainly because of (i) the narrow

field of view (FOV) and the short distance range of the ultrasonic sensors used and (ii) the low luminosity

range and the low sampling frequency of standard cameras.

As far as we know, the challenge for designing the IPASs of future autonomous vehicles consists

in finding low-cost, fast-response sensors providing redundant information about the obstacles present

around the vehicle, combined with a sensor-data processing system requiring very low computational

resources.

We therefore investigated how Local Motion Sensors (LMSs) [216,242], giving 1-D optical flow (OF)

measurements using methods based on findings obtained on the fly’s visual system [62] could be used to

improve automatic parking maneuvers.

Thanks to their wide luminosity range and their sensitivity to small contrasts [242, 261], LMSs com-

prising only a few autoadaptive pixels seem to constitute a promising alternative to standard cameras in

situations where the lighting conditions are highly variable and the visual patterns created by the vehi-

cle’s body, for example, show small contrasts. In addition, an array of LMSs would have the following

advantages with respect to ultrasonic sensors and cameras: (i) faster responses (up to 200 Hz); (ii) a

custom FOV (such as 180o); (iii) a longer distance range than ultrasonic sensors; (iv) less computational

cost than cameras.

In this paper, we present the first results toward developing a low computational-cost method of

performing automatic parking maneuvers whereby a parking spot can be detected and tracked in real

time based on a visual motion sensor setup performing 1-D OF measurements around the vehicle. The

algorithm used for this purpose was composed of 5 processing steps, as described in Sec. 2.2.5.

As proof of concept, some results obtained in a simplified 2-D parking simulation implemented in

Matlab/Simulink in closed loop will first be presented. Then, to report on the work in progress, we will

give some preliminary experimental results corresponding to the first step in the algorithm in the case of

a vehicle equipped with two 6-pixel LMSs on a vehicle.

In Sec. 2.2.3, the principles underlying an elementary LMS and the visual-sensor setup used in the

simulation will be described. In Sec. 2.2.4, the point and line motion model used will be presented. In

✻✷
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Sec.2.2.5, the various steps in the algorithm we developed will be outlined. In Sec. 2.2.6 and 2.2.7,

we will present and discuss the results of some simulations and preliminary outdoor experiments. Some

conclusions will be reached in the last section.

✷✳✷✳✸ ▲♦❝❛❧ ♠♦t✐♦♥ s❡♥s♦rs ❢♦r ♣❛r❦✐♥❣ ♠❛♥❡✉✈❡rs

Figure 2.1 shows the principles underlying a 2-pixel LMS [122] and a photo of a 6-pixel LMS [216].

❋✐❣✉r❡ ✷✳✶✿ ✭❛✮ Pr✐♥❝✐♣❧❡ ♦❢ ❛ ✷✲♣✐①❡❧ ▲▼❙✳ ❚❤❡ ❖❋ ♣r♦❞✉❝❡❞ ❜② ❛ ❝♦♥tr❛st ♠♦✈✐♥❣ ✐♥ ❢r♦♥t ♦❢ t❤❡ ▲▼❙

❝❛♥ ❜❡ ❝♦♠♣✉t❡❞ t❛❦✐♥❣ ω(t) = ∆ϕ
τ(t) ✱ ✇❤❡r❡ ∆ϕ ✐s t❤❡ ✐♥t❡rr❡❝❡♣t♦r ❛♥❣❧❡ ❛♥❞ τ ✐s t❤❡ t✐♠❡ ❧❛❣ ❜❡t✇❡❡♥

t❤❡ t✇♦ ♣❤♦t♦r❡❝❡♣t♦rs✬ ♦✉t♣✉t s✐❣♥❛❧s ❬✶✷✷❪✳ ✭❜✮ P❤♦t♦ ♦❢ ❛ ✻✲♣✐①❡❧ ▲▼❙✳ ✭❆❞❛♣t❡❞ ❢r♦♠ ❬✷✶✻❪✮✳

A defocused lens placed in front of 2 photoreceptors determines the interreceptor angle ∆ϕ between

the 2 photoreceptors’ axes and gives them a Gaussian angular sensitivity, on similar lines to what occurs

in many insects’ eyes. The width of the angular sensitivity determines the photoreceptors’ FOV.

A visual contrast moving in front of the LMS will induce a time lag τ between the photoreceptors’

output signals. By measuring this time lag, the optical flow can be computed as follows: ω(t) = ∆ϕ
τ(t) [122].

Let us take the case where one N -pixel LMS is installed at each of the four corners of the vehicle,

giving up to 4(N −1) 1-D OF measurements all round the car. In order to obtain a 180o FOV of each LMS,

N is taken to be such that N ×∆ϕ = 180o, where ∆ϕ is the interreceptor angle, as shown in Fig. 2.1. As

it is difficult in practice to obtain a 180o FOV with just one lens, there could be M N -pixel LMSs, so that

M ×N ×∆ϕ = 180o.

Figure 2.2 gives a diagram of the visual-motion sensor setup on a vehicle, in the case where 4 neigh-

boring visual signals give 3 1-D OF measurements.

If the environment is relatively smooth, i.e. there are only small variations in the distance between

the visual patterns and the LMS in the photoreceptors’ FOV, we can assume that the photoreceptors

will detect visual points on their axes instead of patterns in their FOV. When an OF measurement ωi is

delivered at the time t̄, this will therefore be just as if a visual point has moved from the i − 1-th to the

i-th photoreceptor’s axis, and this point is now (at t = t̄) on the i-th axis.

In this preliminary study, we assumed that the neighboring visual points detected formed straight

lines corresponding to the simplified 2-D profiles of the surrounding parked vehicles.

✻✸
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t❤❡ ❢♦✉r ❝♦r♥❡rs ♦❢ t❤❡ ✈❡❤✐❝❧❡✱ ✇❤❡r❡ N ✐s s✉❝❤ t❤❛t N×∆ϕ = 180o✳ ✭❜✮ ❆♥ ❡①❛♠♣❧❡ ✇❤❡r❡ ✹ ♥❡✐❣❤❜♦r✐♥❣

✈✐s✉❛❧ s✐❣♥❛❧s ❣✐✈❡ ✸ ❧♦❝❛❧ ❖❋ ♠❡❛s✉r❡♠❡♥ts✳

✷✳✷✳✹ P♦✐♥t ❛♥❞ ❧✐♥❡ ♠♦t✐♦♥ ♠♦❞❡❧✐♥❣

As the vehicle’s velocity is relatively low during parking maneuvers, we focused here on the 2-D kinematic

model for a car-like vehicle moving on a plane.

Figure 2.3 is a top-view diagram of a car-like vehicle with a 1-D OF sensor installed on one corner.

P

L

❋✐❣✉r❡ ✷✳✸✿ ❚♦♣✲✈✐❡✇ ❞✐❛❣r❛♠ ♦❢ ❛ ❝❛r✲❧✐❦❡ ✈❡❤✐❝❧❡ ✇✐t❤ ❛ ✶✲❉ ❖❋ s❡♥s♦r ✐♥st❛❧❧❡❞ ♦♥ ♦♥❡ ❝♦r♥❡r✳

According to Fig. 2.3 and the Ackermann steering geometry for car-like vehicles, the equations for a

point P moving on the same plane as the vehicle can be written as follows:




ẋi

ẏi



 = fP (xi,u) =





(yi+ys) tanφ−L
L

Vf + VPx

− (xi+xs) tanφ
L

Vf + VPy



 ✭✷✳✶✮

ωi =
xiẏi − yiẋi
x2i + y2i

✭✷✳✷✮

where u = [Vf φ]
T are the vehicle’s longitudinal velocity and its steering angle, respectively; L is the

✻✹
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distance between the rear and front wheel axes; Bxs = [xs ys]
T is the position vector of the 1-D OF

sensor with respect to the body frame < B >; BxP = [xP yP ]
T , Bxi = [xi yi]

T are the position vectors

of the point P with respect to the body frame < B > and the sensor frame < s >, respectively; BVP =

[VPx VPy]
T is the velocity vector of P with respect to the inertial frame < I >; and ωi is the angular

velocity of P with respect to < s >, i.e. the OF measured between the i-th and i − 1-th pixel of the

sensor (see Sec. 2.2.3). Note that the sensor frame < s > is parallel to the body frame < B > (i.e.

the rotation matrix between the two frames is the identity matrix), and the upper left index B indicates

that the vectors are projected onto the body frame < B >. For the sake of simplicity, this index will be

dropped in what follows.

As P must lie on the i-th pixel’s axis (see Sec. 2.2.3), its coordinates xi, yi must satisfy the following

equation:

sinψixi − cosψiyi = 0, ✭✷✳✸✮

where ψi is the orientation of the i-th pixel’s axis, i.e. the angle known to exist between Bxi and the

x-axis of < s >.

A straight line in the body frame < B > can be described by the following equation:

xlx+ yly = x2l + y2l , ✭✷✳✹✮

where Bxl = [xl yl]
T is the position vector perpendicular to the line l projected onto the body frame

< B >.

If the line l does not move with respect to the inertial frame < I >, we can assume that l is located

on the X-axis of < I >. In this case, in line with Fig. 2.3, the following equations hold:











ẋl

ẏl

θ̇











= fl(xl,u) =











(

yl tanφ
L
− sin2 θ

)

Vf

−
(

xl tanφ
L

+ sin θ cos θ
)

Vf

tanφ
L
Vf











, ✭✷✳✺✮

where θ is the angle between the X-axis of < I > and the x-axis of < B >.

✷✳✷✳✺ P❛r❦✐♥❣✲s♣♦t ❞❡t❡❝t✐♦♥ ❛♥❞ tr❛❝❦✐♥❣

The algorithm presented here (see Figure 2.4 ) first computes the positions of the points detected by the

LMSs using only 1-D OF measurements and the vehicle’s velocity and steering angle (Step 1), and it then

looks for straight lines in the clouds of points using the RANSAC method [262] (Step 2). These lines are

then classified by Naive Bayes Classifiers (NBCs) (Step 3) to ensure a geometrical coherence with respect

to the simplified parking-spot geometry. Lastly, the vectors perpendicular to the parking lines and the

intersection points between these lines are estimated by means of Extended Kalman Filters (EKFs) (Steps

4 and 5). A nonlinear tracking control is eventually performed based on the estimation of the vehicle’s

ego-position with respect to the parking lines and corners, but we will not focus on this process here.

✻✺
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Figure 2.5 shows an example of the results obtained in each step in the algorithm at one sampling

interval during the simulation. This example involves the case of perpendicular parking, but the present

algorithm can be applied to the case of parallel parking as well without making any changes.

In the simulated 2-D parking environment, the parked vehicles were simulated in the form of rect-

angular shapes (Fig. 2.5(a)) and the OF measurements of the LMSs were computed analytically as the

angular velocity of the points of intersection between the lines simulating the parked vehicles and the

pixels’ axes. A white Gaussian noise (n) with the standard deviation σn is added to the positions of the

intersections in order to obtain a non-linear noise in the OF measurements, which resembles the real

sensors’ noise more closely.

❙t❡♣ ✶ ✲ ❈♦♠♣✉t✐♥❣ ✷✲❉ P♦✐♥ts

Let us now assume that the point P in Fig. 2.3 does not move with respect to < I > or that its velocity

components (VPx, VPy) are negligible with respect to the visual motion induced by the vehicle’s motion,

so that we can take VP ≈ 0.

If we know the vehicle’s longitudinal velocity and its steering angle (Vf , φ), it is possible by combining

equation (2.1), (2.2) and (2.3) to compute the P coordinates as follows✸:

ψi 6= ±
π

2
:











xi =
Vf (L tanψi−xs tanφ−ys tanψi tanφ)

(tan2 ψi+1)(Lωi+Vf tanφ)

yi = xi tanψi

✭✷✳✻✮

ψi = ±
π

2
:











xi = 0

yi =
Vf (L−ys tanφ)
Lωi+Vf tanφ

✭✷✳✼✮

Figure 2.5(b) gives the cloud of points computed at one sampling interval during the simulation.

✸❙✉❜st✐t✉t✐♥❣ ✭✷✳✶✮ ✐♥t♦ ✭✷✳✷✮ ✐s ♣♦ss✐❜❧❡ ❜❡❝❛✉s❡ t❤❡ s❛♠♣❧✐♥❣ ♣❡r✐♦❞ ∆t ✐s ❧♦✇ ❡♥♦✉❣❤ ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ ❞②♥❛♠✐❝s ♦❢

xi, yi✳ ❍♦✇❡✈❡r✱ ❛ s✐♠✐❧❛r r❡s✉❧t ❝❛♥ ❜❡ ♦❜t❛✐♥❡❞ ✐♥ ❝❛s❡s ✇❤❡r❡ t❤✐s ❝♦♥❞✐t✐♦♥ ✐s ♥♦t ♠❡t✱ ❜② t❛❦✐♥❣ ❛ ❞✐s❝r❡t❡ ❛♣♣r♦①✐♠❛t✐♦♥

♦❢ ✭✷✳✶✮✳

✻✻
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❋✐❣✉r❡ ✷✳✺✿ ❊①❛♠♣❧❡ ♦❢ r❡s✉❧ts ♦❜t❛✐♥❡❞ ✐♥ ❡❛❝❤ st❡♣ ✐♥ t❤❡ ♣❛r❦✐♥❣✲s♣♦t ❞❡t❡❝t✐♦♥ ❛♥❞ tr❛❝❦✐♥❣ ❛❧❣♦r✐t❤♠

❛t ♦♥❡ s❛♠♣❧✐♥❣ ✐♥t❡r✈❛❧ ❞✉r✐♥❣ t❤❡ s✐♠✉❧❛t✐♦♥✳ ✭❛✮ ❚❤❡ s✐♠♣❧✐✜❡❞ ✷✲❉ ♣❛r❦✐♥❣ s♣♦t ✇✐t❤ t❤❡ ♣♦s✐t✐♦♥

✈❡❝t♦rs ♣❡r♣❡♥❞✐❝✉❧❛r t♦ t❤❡ ✹ ❧✐♥❡s ❞❡✜♥✐♥❣ t❤❡ s♣♦t✳ ✭❜✮ ❚❤❡ ♣♦✐♥ts ❞❡t❡❝t❡❞ ♦♥ t❤❡ ♣✐①❡❧s✬ ❛①❡s✱ t❤❡

♣♦s✐t✐♦♥s ♦❢ ✇❤✐❝❤ ✇❡r❡ ❝♦♠♣✉t❡❞ ✉s✐♥❣ t❤❡ ✶✲❉ ❖❋ ♠❡❛s✉r❡♠❡♥ts ❞❡❧✐✈❡r❡❞ ❜② t❤❡ ▲▼❙s ♣❧❛❝❡❞ ❛t t❤❡

✈❡❤✐❝❧❡✬s ❝♦r♥❡rs ✭❙t❡♣ ✶✮✳ ❆ ✇❤✐t❡ ●❛✉ss✐❛♥ ♥♦✐s❡ ✐s ❛❞❞❡❞ t♦ t❤❡ ♣♦s✐t✐♦♥s ♦❢ t❤❡s❡ ♣♦✐♥ts ✐♥ ♦r❞❡r t♦ ❛❞❞

❛ ♥♦♥✲❧✐♥❡❛r ♥♦✐s❡ t♦ t❤❡ ❖❋ ♠❡❛s✉r❡♠❡♥ts✳ ✭❝✮ ❚❤❡ ♣♦s✐t✐♦♥ ✈❡❝t♦rs ♦❢ t❤❡ ❧✐♥❡s ♦❜t❛✐♥❡❞ ❜② ❘❆◆❙❆❈

✐♥ t❤❡ ❝❧♦✉❞ ♦❢ ♣♦✐♥ts ✭❙t❡♣ ✷✮✳ ✭❞✮ ❚❤❡ ♣♦s✐t✐♦♥ ✈❡❝t♦rs ♦❢ t❤❡ ❧✐♥❡s ❝❧❛ss✐✜❡❞ ❜② ◆❇❈s ✭❙t❡♣ ✸✮✳ ✭❡✮ ❚❤❡

♣♦s✐t✐♦♥ ✈❡❝t♦rs ♦❢ t❤❡ ❧✐♥❡s ❡st✐♠❛t❡❞ ❜② ❊❑❋s ✭❙t❡♣ ✹✮✳ ❆ ✜rst ❛♣♣r♦①✐♠❛t✐♦♥ ♦❢ t❤❡ ♣❛r❦✐♥❣ ❝♦r♥❡rs✬

♣♦s✐t✐♦♥ ✐s ❣✐✈❡♥ ❜② t❤❡ ♣♦✐♥ts ♦❢ ✐♥t❡rs❡❝t✐♦♥ ❜❡t✇❡❡♥ ❡❛❝❤ ♣❛✐r ♦❢ ♣❡r♣❡♥❞✐❝✉❧❛r ❧✐♥❡s✳ ✭❢✮ ❚❤❡ ♣♦s✐t✐♦♥

✈❡❝t♦rs ♦❢ t❤❡ ♣❛r❦✐♥❣ ❝♦r♥❡rs ❡st✐♠❛t❡❞ ❜② ❊❑❋s ✭❙t❡♣ ✺✮✳

❙t❡♣ ✷ ✲ ❋✐♥❞✐♥❣ ▲✐♥❡s

To detect a parking spot, first we want to find four straight lines fitting some subsets of the cloud of

points obtained in Step 1. Then, to validate this spot, these four lines must satisfy two main conditions:

they must be nearly perpendicular two by two, and the distance between the two lines in the two pairs

of parallel lines must be greater than the vehicle’s width and its length, respectively (see Fig. 2.5(a)).

The validation procedure may depend on the specific parking environment (e.g. on whether it is parallel

or perpendicular) and require some information from other sensors, and this part will therefore not be

discussed here as it goes beyond the scope of this paper.

To look for more than one regression line in a cloud of points, we have to perform some linear

clustering in order to obtain subsets containing only one line each.

In this study, we used a modified version of the RANdom SAmple Consensus (RANSAC) method [262],

as it provides outliers in a statistically robust way, giving a good compromise between the level of perfor-

mance and the computational cost with subsets which may be dependent but are not very numerous and

are clearly separated linearly (as in the case of the 4 parking lines dealt with here). As previously done

✻✼



❈❤❛♣t❡r ✷✳ ❇✐♦✲■♥s♣✐r❡❞ ❖♣t✐❝ ❋❧♦✇ ❙❡♥s♦rs ❢♦r ❆✉t♦♠❛t✐❝ P❛r❦✐♥❣ ▼❛♥❡✉✈❡rs

in many vision-based applications such as those designed for motion segmentation [263], the generic

RANSAC algorithm is applied recursively to the subset of outliers, i.e., to all the points that do not belong

to the consensus set, and whenever a line is detected, it yields the position vector x̃l = [x̃l ỹl]
T satisfying

equation (2.4). The recursion is stopped when either four lines are detected or no lines are detected

in the subset of outliers, i.e., no consensus set is obtained in a maximum number of iterations n. It is

worth noting that in order to maintain the high frequency provided by LMSs, we performed only a small

number of iterations (n = 100). The robustness of the whole algorithm is in fact increased by applying

optimal classification (Step 3) and estimation (Step 4,5) methods to the straight lines obtained.

At each sampling interval, the h-th line x̃lh given by the algorithm can correspond to any of the four

lines defining the parking spot (xl1...4), or even to none of them.

Figure 2.5(c) shows the four lines detected by RANSAC in the cloud of points presented in Fig. 2.5(b).

Note that x̃l2 (the green line in Fig. 2.5(c)) differs from the corresponding line xl3 (the pink line in Fig.

2.5(a)), while x̃l3 , x̃l4 (the red and pink lines in Fig. 2.5(c)) are not in the right order as they correspond

to xl2 ,xl4 (the green and red lines in Fig. 2.5(a)).

❙t❡♣ ✸ ✲ ❈❧❛ss✐❢②✐♥❣ ▲✐♥❡s

Let us take the four straight lines xl1...4 defining the parking spot (Fig. 2.5(a)) and consider that they

belong to four classes L1...4.

To determine whether the h-th line x̃lh detected in Step 2 belongs to the j-th class Lj , we used

Naive Bayes Classifiers (NBCs), giving normal and uncorrelated probability distributions for the two

components of x̃lh . We therefore computed the Bayes probability as follows✹:































pj,h = p(Lj |xlh , ylh) =
p(Lj)p(xlh

|Lj)p(ylh |Lj)

p(xlh
,ylh )

p(xlh |Lj) =
1

√

2πσ2
xj

e
−

(xlh
−µxj

)2

2σ2
xj (same for ylh)

p(xlh , ylh) =
∑4
j=1 p(Lj)p(xlh |Lj)p(ylh |Lj)

✭✷✳✽✮

where we considered p(Lj) = 1
4 , [µxj

µyj ]
T = x̂−

lj
(k) and [σxj

σyj ]
T = fl(x̂lj (k − 1),u(k − 1)), with k

denoting the k-th sampling period (i.e., t = k∆t), and x̂lj = [x̂lj ŷlj ]
T being the position vector of j-th

line estimated by the EKF and x̂−
lj

its “a priori” estimate (see the next subsection for details).

We classified the line x̃lh in the class Lj if pj,h = maxj,h pj,h and pj,h > 0.95. To avoid any misunder-

standings, we specified the j-th classified line x̄lj = [x̄lj ȳlj ]
T .

Figure 2.5(d) shows the three lines which were classified out of the four lines in Fig. 2.5(c). In partic-

ular, x̃l2 (the green line in Fig. 2.5(c)) was dropped because it was too different from the corresponding

line xl3 (the pink line in Fig. 2.5(a)), while x̃l3 , x̃l4 (the red and pink lines in Fig. 2.5(c)) were classified

as x̄l4 , x̄l2 (the green and red lines in Fig. 2.5(a)).

✹❚❤❡ ❤②♣♦t❤❡s✐s t❤❛t t❤❡ t✇♦ ❝♦♠♣♦♥❡♥ts ♦❢ x̃lh
❤❛❞ ♥♦r♠❛❧ ❛♥❞ ✉♥❝♦rr❡❧❛t❡❞ ♣r♦❜❛❜✐❧✐t② ❞✐str✐❜✉t✐♦♥s ✇❛s ❛❞♦♣t❡❞ ♦♥

t❤❡ ❜❛s✐s ♦❢ ✇❤❛t ✇❛s ♦❜s❡r✈❡❞ st❛t✐st✐❝❛❧❧② ❞✉r✐♥❣ s❡✈❡r❛❧ s✐♠✉❧❛t✐♦♥s ✇✐t❤ tr❛❥❡❝t♦r✐❡s ♦❢ ✈❛r✐♦✉s ❦✐♥❞s✳
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In order to obtain a robust continuous estimation of the parking line vectors, an Extended Kalman Filter

(EKF) based on a discrete approximation for the model presented in (2.5) was implemented for each of

the four lines xl1...4 by taking the lines classified in Step 3 (x̄l1...4) to be actual measurements.

For each line, we took the first-order discrete approximation for the model presented in (2.5) as

follows:






















xlk = f̂l(xlk−1
,uk−1,wlk−1

)

= (fl(xlk−1
,uk−1) +wlk−1

)∆t+ xlk−1

zlk = hl(xlk ,νlk) = xlk

, ✭✷✳✾✮

where the index k denotes the k-th sampling period (i.e., t = k∆t); wl,νl denotes the model and the

measurement noise, respectively, and they are assumed to be independent white noises and to have

normal probability distributions, i.e. p(w) ∼ N(0, Q) and p(ν) ∼ N(0, R), where Q,R are the covariance

matrices which, in the present case, are diagonal✺.

At each sampling period, the steps involved in each EKF can be summarized as follows:

1. x̂−
lk

= f̂l(x̂lk−1
,uk−1,0)

2. P−
k = FkPk−1F

T
k +WkQW

T
k

3. Kk = P−
k H

T
k (HkP

−
k H

T
k + VkRV

T
k )−1

4. x̂lk = x̂−
lk
+Kk(zlk − hl(x̂

−
lk
,0))

5. Pk = (I −KkHk)P
−1
k

where F = ∂f̂l

∂xl
, H = ∂hl

∂xl
,W = ∂f̂l

∂wl
, V = ∂hl

∂νl
are the Jacobian matrices; P, P− are the error covariance

matrix and its “a priori” estimate, respectively; and I is the identity matrix.

In the present study, the j-th EKF was enabled when the j-th line was detected and validated for the

first time on the basis of the time correlation in the values of x̃lj (hypothesis test), but in practice, this

could be done using other sensors such as ultrasonic sensors, cameras or radars installed on the vehicle.

The initial estimate of x̂lj was set at the first value of x̃lj validated, while the initial estimate of Pk

was set at the identity matrix.

When there was no measurement of the j-th EKF, i.e. no x̄lj in Step 3, the Kalman gain Kk was set at

zero, so that it was still possible to have an estimation of xlj based on the “a priori” prediction x̂−
lj

.

Figure 2.5(e) shows the four lines estimated by the four EKFs. Note that although there was no

measurement corresponding to x̄l3 in Fig. 2.5(d), we still had an estimation of x̂l3 .

✺❚❤❡ ❤②♣♦t❤❡s✐s t❤❛t t❤❡ ❝♦♠♣♦♥❡♥ts ♦❢ t❤❡ ♠♦❞❡❧ ❛♥❞ t❤❡ ♠❡❛s✉r❡♠❡♥t ♥♦✐s❡ ❤❛❞ ♥♦r♠❛❧ ❛♥❞ ✉♥❝♦rr❡❧❛t❡❞ ❞✐str✐❜✉t✐♦♥s

✇❛s ❛❞♦♣t❡❞ ♦♥ t❤❡ ❜❛s✐s ♦❢ ✇❤❛t ✇❛s ♦❜s❡r✈❡❞ st❛t✐st✐❝❛❧❧② ❞✉r✐♥❣ s❡✈❡r❛❧ s✐♠✉❧❛t✐♦♥s ✇✐t❤ tr❛❥❡❝t♦r✐❡s ♦❢ ✈❛r✐♦✉s ❦✐♥❞s✳
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❙t❡♣ ✺ ✲ ❊st✐♠❛t✐♥❣ ❈♦r♥❡rs

The position vectors of the four parking corners can be estimated in terms of the intersection point

between each pair of perpendicular lines estimated in Step 4. This makes it possible to compute the j-th

corner vector x̄cj = [x̄cj ȳcj ]
T by substituting x̂lj and x̂lj+1

into (2.4) and combining the two resulting

equations. Here we dealt only with the two outer corners (the green and red circles in Fig. 2.5(e)). We

took x̄cl , x̄cr to specify the position vectors of the left and right corners, respectively.

This estimate of the corners’ positions was not accurate enough to be able to perform a feedback

tracking control on it. In particular, when the car is crossing the lines, i. e. xl ≈ 0, a very small error in

x̂l can lead to a very large error in x̄c.

In order to obtain a robust continuous estimation of the corner vectors, an EKF based on a discrete ap-

proximation of the model presented in (2.1) was implemented for each of the two outer corners (xcl ,xcr ),

by taking the line intersection points defined above (x̄cl , x̄cr ) to be actual measurements.

The same procedure as that applied with the EKF on xl in the previous subsection can be used with

the EKF on xc (taking the same model and the same measurement noise). We only had to replace the

index l by the index c and take the function fP (xc,u) defined in (2.1) instead of fl(xl,u).

The EKFs for xcl and xcr were enabled when the EKFs for xl1 ,xl2 and xl1 ,xl4 were enabled, respec-

tively (the blue and green lines and the blue and red lines, respectively, in Fig. 2.5(e)).

The initial estimates for x̂cl and x̂cr were set at the first value of the intersection point between

x̂l1 , x̂l2 and x̂l1 , x̂l4 , respectively, while the initial estimate of Pk was set at the identity matrix.

Note that although we defined the parking spot by the above four lines xl1...4 , the parking spot can

be detected even if xl3 is not found (i.e. in the case of an “open” or “homogeneous” background), and

depending on the automatic pilot’s requirements, a tracking control of the ego-vehicle’s trajectory can

eventually be performed only on the basis of the two outer corners’ positions (xcl ,xcr ) and the two

lateral lines’ orientations (xl2 ,xl4). For safety reasons, information about the parking-spot depth (i.e.

the distance between the vehicle and xl3) should be provided by means of other sensors (e.g. ultrasonic

sensors or cameras).

✷✳✷✳✻ ❈❧♦s❡❞✲❧♦♦♣ s✐♠✉❧❛t✐♦♥ r❡s✉❧ts

In the simulation presented here, we used 40-pixel LMSs with ∆ϕ = 4.5o (N ×∆ϕ = 40 × 4.5o = 180o)

and a white Gaussian noise with standard deviation σn = 10−2. The algorithm was run at 100Hz, giving

a sampling period of ∆t = 10ms. We decided to simulate the case of perpendicular parking because it

involves more complex maneuvers than parallel parking, which gives noisier OF measurements than the

parallel case. In addition, to obtain results that are closer to the real case, we took into account only the

OF measurements in [−350◦,−1◦] and [1◦, 350◦] (see [216,242]).

For the simulated results presented here, the stages of the parking controller can be summarized as

follows:
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P❛r❦✐♥❣ st❛❣❡ ✶ ✲ Vf ❝♦♥st❛♥t✱ φ ✐♥ ❝❧♦s❡❞ ❧♦♦♣

Drive at constant velocity (Vf = 1 m
s
) parallel to the first parking line xl1 (blue line in Fig. 2.5) until

the two outer corners xcl ,xcr are found: if the distance between xcl and xcr is greater than a minimum

value of the parking-spot width then go to the next step, otherwise continue to look for a parking spot. To

drive parallel to xl1 , the steering angle was computed as φ = arctan(kφL
θ∗−θ̂l1
Vf

), where θ̂l1 is the vehicle’s

orientation with respect to xl1 estimated by the first EKF (see equation (2.9)), θ∗ = π
2 and L = 2m.

P❛r❦✐♥❣ st❛❣❡ ✷ ✲ Vf ❛♥❞ φ ❝♦♥st❛♥t

Drive away from the parking spot at constant velocity and steering angle (Vf = 1 m
s
, φ = −π9 ) for a

fixed time in order to bring the vehicle to a suitable pose for facilitating the backwards maneuver. Then,

compute the reference trajectory X∗
c of the vehicle’s ego-position with respect to the inertial frame < I >

centered to one of the two corners. The trajectory from the actual pose to the desired pose, i.e. being in

the middle between xcl and xcr and parallel to xl2 (or xl4), was computed as a third-order polynomial

function using the boundary conditions on the initial and final position and velocity.

P❛r❦✐♥❣ st❛❣❡ ✸ ✲ Vf ❛♥❞ φ ✐♥ ❝❧♦s❡❞ ❧♦♦♣

Drive backwards following the reference trajectory by applying a feedback linearizing control based on

the Ackermann model as follows [264]: Vf = −

√

Ẋc

2
+ Ẏc

2
and φ = arctan(L ẊcŸc−ẎcẌc

V 3
f

), where Ẋc =

[Ẋc Ẏc]
T = Ẋ∗

c + k1(X
∗
c − X̂cl) and Ẍc = [Ẍc Ÿc]

T = Ẍ∗
c + k2(Ẋ∗

c −
˙̂
Xcl), X̂cl being the estimation on

the vehicle’s ego-position with respect to the left corner, i.e. X̂cl = −
IRBx̂cl , and IRB being the rotation

matrix from < B >to < I >.✻

P❛r❦✐♥❣ st❛❣❡ ✹ ✲ Vf ❝♦♥st❛♥t ✱ φ ✐♥ ❝❧♦s❡❞ ❧♦♦♣

Drive backwards at low constant velocity (Vf = −0.5 m
s
) parallel to xl2 (or xl4) by computing the steering

angle as φ = arctan(kφL
θ∗−θ̂l2
Vf

), with θ∗ = −π2 , until the parking maneuver is done.✼

Figure 2.6 shows the errors in the line and corner position vectors which occurred in Steps 2 to 5, as

described in Sec. 2.2.5, during a given trajectory of the simulated vehicle.

In Step 2, the errors between the real lines and the lines obtained with RANSAC (xl − x̃l) were

sometimes relatively large (Fig. 2.6(a)). As explained above, this was due to the fact that the lines given

by RANSAC were sometimes not in the right order (for instance, the second line obtained occasionally

corresponded to the third one, as in Fig. 2.5(c)), or they were sometimes spurious lines.

In Step 3, the errors between the real lines and the lines classified by NBCs (xl − x̄l) were much

smaller, but they could still be relatively large, depending on the noise (Fig. 2.6(b)).

✻❲❡ ✉s❡❞ t❤❡ ❡st✐♠❛t✐♦♥ x̂cl ✭❧❡❢t ❝♦r♥❡r✮ s✐♥❝❡ t❤❡ ❡st✐♠❛t✐♦♥ x̂cr ✭r✐❣❤t ❝♦r♥❡r✮ ✇❛s ♥♦t ❡♥♦✉❣❤ r❡❧✐❛❜❧❡ ❞✉r✐♥❣ t❤❡ ✜rst

♣❛rt ♦❢ t❤❡ ♠❛♥❡✉✈❡r ❜❡❝❛✉s❡ ✇❡ ❤❛✈❡ ♥♦ ♠❡❛s✉r❡♠❡♥ts ❢♦r xl2 ❞✉❡ t♦ t❤❡ ♦❝❝❧✉s✐♦♥✳
✼❚❤❡ ❣❛✐♥s kφ, k1, k2 > 0 ✇❡r❡ ❞②♥❛♠✐❝❛❧❧② ❛❞❛♣t❡❞ ✐♥ ♦r❞❡r t♦ ❛✈♦✐❞ ❛♥② s❛t✉r❛t✐♦♥ ♦❢ t❤❡ ❝♦♥tr♦❧ ✐♥♣✉ts✳
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❋✐❣✉r❡ ✷✳✻✿ ❊rr♦rs ✐♥ t❤❡ ❧✐♥❡ ❛♥❞ ❝♦r♥❡r ♣♦s✐t✐♦♥ ✈❡❝t♦rs ♦❝❝✉rr✐♥❣ ❞✉r✐♥❣ ❛ ❣✐✈❡♥ tr❛❥❡❝t♦r② ♦❢ t❤❡

s✐♠✉❧❛t❡❞ ✈❡❤✐❝❧❡ ❛t✿ ✭❛✮ ❙t❡♣ ✷ (xl− x̃l)❀ ✭❜✮ ❙t❡♣ ✸ (xl− x̄l)❀ ✭❝✮ ❙t❡♣ ✹ (xl− x̂l)❀ ✭❞✮ ❙t❡♣ ✹ (xc− x̄c)❀

✭❡✮ ❙t❡♣ ✺ (xc − x̂c)✳ ❚❤❡ ❝♦❧♦rs ✐♥ t❤✐s ✜❣✉r❡ ❝♦rr❡s♣♦♥❞ t♦ t❤♦s❡ ♦❢ t❤❡ ❧✐♥❡s ❛♥❞ ❝♦r♥❡rs ♣r❡s❡♥t❡❞

✐♥ ❋✐❣✳ ✷✳✺✳ ❚❤❡ ❝♦♥t✐♥✉♦✉s ❛♥❞ ❞♦tt❡❞ ❝✉r✈❡s ❝♦rr❡s♣♦♥❞ t♦ t❤❡ x ❛♥❞ y ❝♦♦r❞✐♥❛t❡s ♦❢ t❤❡ ✈❡❝t♦rs✱

r❡s♣❡❝t✐✈❡❧②✳
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In Step 4, the errors between the real lines and the lines estimated by the EKFs (xl − x̂l) were about

one order of magnitude smaller, and an estimation was still delivered even when no corresponding line

was found, i.e. no measurement x̄l was obtained (Fig. 2.6(c)). However, when the car was crossing the

lines, i. e. xl ≈ 0, a very small error in x̂l could lead to a very large error in x̄c (corresponding to the

shaded regions in Fig. 2.6(d)).

In Step 5, the errors between the real corners and those estimated by the EKFs (xc − x̂c) were much

smaller, especially when crossing lines (Fig. 2.6(e)).

The preliminary controller and the results presented here could be further improved, for instance by

looking for the right corner’s position xcr in the cloud of points while the vehicle is in the blind zone for

the xl2 (see Fig. 2.6) in order to improve the reliability on the estimation x̂cr and perform a closed-loop

maneuver based on the estimation of both corners’ positions.

✷✳✷✳✼ Pr❡❧✐♠✐♥❛r② ❡①♣❡r✐♠❡♥t❛❧ t❡sts

Preliminary tests were carried out on a real vehicle (Peugeot 3008) in order to check the validity of the

first step in the algorithm presented in Sec. 2.2.5. In particular, two 6-pixel LMSs (∆ϕ ≈ 1.5o [216] and

3.8o [242]) and a webcam (Logitech B905) were tied to a supporting slab which was attached to the front

fender, as shown in Fig. 2.7(a). The slab could be moved and rotated along the z-axis in order to adjust

the sensors’ height and their orientation.

Figure 2.7(b) shows an example of the OF measured by one of the two 6-pixel LMSs presented in Fig.

2.7(a) (∆ϕ ≈ 3.8o [242]) when the vehicle was moving alongside two parallel parked vehicles. Figure

2.7(c) shows the vehicle’s trajectory, along with the positions of the 2-D points computed by applying

equation (2.6) to the OF measurements in Fig. 2.7(b).

To compute the OF measurements ωi, the time lag τi between the i-th and i− 1-th pixel output signal

(see Fig. 2.1, 2.2) was estimated using a cross-correlation method inspired by the Reichardt-Hassenstein

model [76]. First we delayed one of the two signals by a time τk = k∆t in a fixed time window, and

we then computed the cross-correlation between the delayed and non-delayed signals. We then set τi

at a value equal to the time lag τk giving the maximum cross-correlation, as long as this maximum was

greater than 0.99. As the precision in τi is constant and ωi is inversely proportional to τi, the precision in

ωi is proportional to ωi itself, as we can notice by looking at Fig. 2.7(b).

The data acquisition and the data processing were performed on a laptop PC (Intel Core i7-2620M

CPU 2.70 GHz) with RTMaps software. In particular, the pixel output signals delivered by the LMSs

were sampled at a rate of 1 kHz by the embedded micro-controller (Microchip dsPIC33FJ128GP802)

and transmitted to the PC via serial communication, whereas the vehicle’s longitudinal velocity and its

steering angle were acquired at 20Hz by the PC via the vehicle’s CAN bus. The OF and the positions of

the 2-D points were computed at a frequency of 100Hz.

Figure 2.8 shows two examples of the vehicle’s trajectory along with the positions of the 2-D points

computed using the OF measured by one of the two 6-pixel LMSs presented in Fig. 2.7(a) (∆ϕ ≈ 3.8o

✼✸
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▲▼❙s ❛♥❞ t❤❡ ✇❡❜❝❛♠✳ ✭❜✮ ❊①❛♠♣❧❡ ♦❢ t❤❡ ❖❋ ♠❡❛s✉r❡❞ ❜② ♦♥❡ ♦❢ t❤❡ t✇♦ ✻✲♣✐①❡❧ ▲▼❙s ♣r❡s❡♥t❡❞

✐♥ ❋✐❣✳ ✷✳✼✭❛✮ ✭∆ϕ ≈ 3.8o ❬✷✹✷❪✮ ✇❤❡♥ t❤❡ ✈❡❤✐❝❧❡ ✇❛s ♠♦✈✐♥❣ ❛❧♦♥❣s✐❞❡ t✇♦ ♣❛r❛❧❧❡❧ ♣❛r❦❡❞ ✈❡❤✐❝❧❡s✳

❚❤❡ ❞♦tt❡❞ ❧✐♥❡s ✐♥❞✐❝❛t❡ t❤❡ ❖❋s ♣r♦❞✉❝❡❞ ❜② ❡❛❝❤ ♦❢ t❤❡ t✇♦ ♣❛r❦❡❞ ✈❡❤✐❝❧❡s✱ ❛♥❞ f̄ω ✐♥❞✐❝❛t❡s t❤❡

❛✈❡r❛❣❡ r❡❢r❡s❤ ❢r❡q✉❡♥❝② ♦❢ t❤❡ ❖❋ ♠❡❛s✉r❡♠❡♥ts ✐♥ ❡❛❝❤ ❞♦tt❡❞✲❧✐♥❡ r❡❣✐♦♥✳ ✭❝✮ ❚❤❡ s✐♠✉❧❛t❡❞ ✈❡❤✐❝❧❡✬s

tr❛❥❡❝t♦r②✱ ❛❧♦♥❣ ✇✐t❤ t❤❡ ♣♦s✐t✐♦♥s ♦❢ t❤❡ ✷✲❉ ♣♦✐♥ts ❝♦♠♣✉t❡❞ ❜② ❛♣♣❧②✐♥❣ ❡q✉❛t✐♦♥ ✭✷✳✻✮ t♦ t❤❡ ❖❋

♠❡❛s✉r❡♠❡♥ts ♣r❡s❡♥t❡❞ ✐♥ ❋✐❣✳ ✷✳✼✭❜✮✳ ❚❤❡ ♣✐❝t✉r❡ ✐♥ t❤❡ ❧♦✇❡r ♣❛rt ♦❢ t❤❡ ✜❣✉r❡ ✐s t❤❡ ✇❡❜❝❛♠ ✐♠❛❣❡

t❛❦❡♥ ✇❤❡♥ t❤❡ ✈❡❤✐❝❧❡ ✇❛s ✐♥ t❤❡ ♣♦s✐t✐♦♥ s❤♦✇♥ ❤❡r❡ ✭✇❡❜❝❛♠✬s ❋❖❱ ∼ 45o✮✳

[242]) when the vehicle was moving along a parallel (Fig. 2.8(a)) and a perpendicular parking lane (Fig.

2.8(b)) at a longitudinal velocity ranging from 3 to 9 m
s

.

The refresh frequency of the OF measurements, that is to say the ratio between the number of mea-

surements performed in a given time interval and the time interval itself, can vary significantly, depending

on the empty spaces and the contrasts provided by the car bodies (see the pictures in the lower part of

Fig. 2.8(a) and (b)), giving both dense and sparse clouds of points. However, the average refresh fre-

quency f̄ω for the OF produced by the parked vehicles ranged from 30 to 65Hz, which is about 2-3 times

greater than those of standard ultrasonic sensors and cameras.

A few 2-D points were generated in the center of Fig. 2.8(a) as the vehicle was moving along an

empty parking place lined with small traffic poles (see the third picture in Fig. 2.8(a)). No measure-

ments were made here on the background of the spots because it was too far from the LMS. In fact, the

analog band-pass filter implemented on the LMS (see [242]) cuts off the low-frequency variations in the

photoreceptors’ signals produced by the slow visual motion of the background. This issue can be fixed by

adjusting the analog filtering part of the LMS, but this has not been shown here.

✼✹
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❋✐❣✉r❡ ✷✳✽✿ ❊①❛♠♣❧❡ ♦❢ ✈❡❤✐❝❧❡✬s tr❛❥❡❝t♦r② ❛❧♦♥❣ ✇✐t❤ t❤❡ ♣♦s✐t✐♦♥s ♦❢ t❤❡ ✷✲❉ ♣♦✐♥ts ❝♦♠♣✉t❡❞ ✉s✐♥❣ t❤❡

❖❋ ♠❡❛s✉r❡❞ ❜② ♦♥❡ ♦❢ t❤❡ t✇♦ ✻✲♣✐①❡❧ ▲▼❙s ♣r❡s❡♥t❡❞ ✐♥ ❋✐❣✳ ✷✳✼✭❛✮ ✭∆ϕ ≈ 3.8o ❬✷✹✷❪✮ ✇❤❡♥ t❤❡ ✈❡❤✐❝❧❡

✇❛s ♠♦✈✐♥❣ ❛❧♦♥❣ ❛ ✭❛✮ ♣❛r❛❧❧❡❧ ❛♥❞ ✭❜✮ ❛ ♣❡r♣❡♥❞✐❝✉❧❛r ♣❛r❦✐♥❣ ❧❛♥❡ ❛t ❛ ❧♦♥❣✐t✉❞✐♥❛❧ ✈❡❧♦❝✐t② r❛♥❣✐♥❣

❢r♦♠ 3 t♦ 9 m
s
✳ ❚❤❡ ♣✐❝t✉r❡s ✐♥ t❤❡ ❧♦✇❡r ♣❛rt ♦❢ ❡❛❝❤ s✉❜✜❣✉r❡ ❛r❡ t❤❡ ✇❡❜❝❛♠ ✐♠❛❣❡s t❛❦❡♥ ✇❤❡♥ t❤❡

✈❡❤✐❝❧❡ ✇❛s ✐♥ t❤❡ ♣♦s✐t✐♦♥s ♣r❡s❡♥t❡❞ ✐♥ t❤❡ t♦♣ ♣❛rt✱ ❛♥❞ t❤❡ ❞♦tt❡❞ ❧✐♥❡s ❣✐✈❡ ❛ r♦✉❣❤ ✐♥❞✐❝❛t✐♦♥ ♦❢ t❤❡

✇❡❜❝❛♠✬s ❋❖❱ ✭∼ 45o✮✳

It is worth noting that in the case of both parallel and perpendicular parking, it is possible to recognize

the shapes of the parked vehicles in the clouds of points, even though few measurements are sometimes

made due to the reflections on the car bodies (see, for instance, the fourth picture in Fig. 2.8(a)).

In the case of perpendicular parking, the measurements were noisier than in the parallel case, mainly

because of (i) the occlusions of the cars’ sides and (ii) the misalignment of the cars (see for instance the

first and second pictures in Fig. 2.8(b)).

The qualitative results presented here validate the first step in the algorithm we have developed.

Although it was not possible, in the case of this example, to apply the other steps in the algorithm

because there were too few points in each sampling interval, it seems likely that by using LMSs with a

larger number of pixels (or several 6-pixel LMSs) delivering 1-D OF measurements all round the vehicle,

we will probably have enough points to be able to apply all the steps.

✷✳✷✳✽ ❈♦♥❝❧✉s✐♦♥s

In this paper, we have presented a low computational-cost method for detecting and tracking a parking

spot in real time based on a visual motion sensor setup performing 1-D OF measurements around the

vehicle.

The advantages of this method can be summed up as follows:

• the average refresh frequency is about 2-3 times higher than with standard ultrasonic sensors and

cameras;

✼✺



❈❤❛♣t❡r ✷✳ ❇✐♦✲■♥s♣✐r❡❞ ❖♣t✐❝ ❋❧♦✇ ❙❡♥s♦rs ❢♦r ❆✉t♦♠❛t✐❝ P❛r❦✐♥❣ ▼❛♥❡✉✈❡rs

• it produces redundant information about a parking spot, in cases where ultrasonic sensors and

cameras are liable to be inaccurate (e.g., when the parked vehicles are too far apart or too close,

under wide-range lighting conditions and when indistinct visual patterns are visible on the car

bodies);

• it can detect a candidate parking spot before passing it, thanks to the long-distance, wide-angle

range of view;

• it can track the parking spot in real time, thanks to the wide-angle range of view, as well as the

high-frequency measurements and low computational-cost processing;

• it makes it possible to eventually apply a nonlinear tracking control strategy using the estimation of

the vehicle’s ego-position with respect to the parked vehicles.

For these reasons, LMSs can provide a good additional information to automatic parking systems as

well as to other automotive applications. In particular, by using LMSs with several pixels (or several

few-pixel LMSs) giving a 180o FOV at each of the car’s four corners, it should be possible to apply the

present method in real time to performing safe closed-loop parking maneuvers.

Although we focused here only on the information provided by the LMSs, data provided by other

sensors (such as ultrasonic sensors) could be integrated into the algorithm to achieve more robust per-

formances.

Studies to improve the closed-loop parking maneuvers and experimental tests with several LMSs on a

real car-like robot are now under way.

✼✻
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As commented at the end of the paper, we showed that LMSs might provide good additional information

to automatic parking maneuvers, as well as to other maneuvers in which a wide FOV and high-frequency

measurements are needed. In addition, these sensors can deliver redundant information in cases where

ultrasonic sensors and cameras are liable to be inaccurate, for instance, when the parked vehicles are too

far apart or too close, under wide-range lighting conditions and when poor visual patterns are visible on

the car bodies.

We also wanted to propose here a relatively simple method to estimate in real time the vehicle’s

ego-position using 2-D point clouds giving quasi-rectangular shapes of the parked vehicles instead of

using odometry, which may lead to unreliable or inaccurate position estimates. The method we proposed

would allow to detect a candidate parking spot before passing it, thanks to the long-distance, wide-angle

range of view, and therefore drive the vehicle in a good starting pose and eventually apply an “optimal”

trajectory control strategy based on a real-time estimation of the vehicle’s ego-position with respect to

the parked vehicles. Although we showed that in a simplified simulated parking situation 1-D optic

flow measurements are sufficient for performing closed-loop parking maneuvers, this method have some

important limitations, e.g. the hypothesis that the parked vehicles nearly do not move, and therefore in

a real parking situation data provided by other sensors (e.g. ultrasonic sensors) should be integrated to

achieve higher robustness and safety.

The preliminary experimental tests performed in real parking conditions showed that the LMSs devel-

oped so far have some drawbacks related to high-dynamic-range lighting conditions, and therefore are

not ready yet to integrate ADAS systems. In fact, the response of the pixels used saturated when the light

changes were relatively large, which may occur, for instance, when passing from shaded to lightened

areas or when direct sunlight is reflected on the cars body, and they had different contrast sensitivities at

different light levels (e.g. from night to day time).

In addition, the new cross-correlation method used for computing the optic flow had two limitations:

it was not yet adapted for implementation onboard light embedded electronics, and the resolution of the

measurements was not constant but depended on the amplitude of the measurements themselves. This

last limit is a well-known issue for time-of-travel schemes: since the optic flow is computed as ω = ∆ϕ
τ

, if

the resolution of the time lag τ is linear, i.e. τ = n∆t with ∆t being the sampling time and n an integer,

then the resolution of the optic flow ω follows an hyperbolic law giving low ∆ω at high τ (i.e. n) and

viceversa (see Fig. 2.7(b)). Such a hyperbolic resolution may result in a higher noise level in the 2-D

point clouds computed from the optic flow measurements.

The next steps were therefore to improve these sensors in order to deliver robust measurements in

different lighting conditions, and then optimize the optic flow processing so that it can be implemented

on embedded electronics and give a constant OF resolution. To this purpose, first the work carried out

on a new auto-adaptive silicon retina will be presented in the next chapter, and then the new optic flow

sensor based on these improvements will be presented in chapter 4.
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In the previous chapter, we showed that LMSs could be promising for ADAS systems, however some

improvements have to be applied to these sensors in order to provide a higher level of robustness. In

particular, the LMSs used for the preliminary experiments carried out on a vehicle, which were devel-

oped in previous thesis [216, 242], sometimes delivered inaccurate responses depending on the lighting

conditions.

As discussed in section 1.8.1, this is a known, common problem for visual sensors that have to operate

in high-dynamic-range lighting conditions. Thus, it was not surprising for us to find out that LMSs have to

be improved in this sens in order to correctly work outdoors and particularly in road environments. Some

solutions using auto-adaptive pixels, namely the Delbruck pixel [175] (see section 1.8.1), have already

been presented in [177,242], however their responses were not satisfactory for optic flow measurements

when the light changes were higher than 1 decade (see Fig. 7(b),(d),(j),(l) in [177]).

We have therefore worked on a new auto-adaptive silicon retina, which comprises both the pixels of

Delbruck type [175] and novel pixels, called M2APix, that reproduce the Michaelis-Menten law inspired

by the findings on the animal and human retina (see section 1.6.1). The challenge of this novel pixel

was to improve some limits of existing auto-adaptive pixels (see section 1.8.1): (i) keeping high and

constant contrast sensitivity independently to the light level, (ii) not deviating when large changes in

light occur due to saturation of the VLSI transistors, and (iii) adapting in a luminosity range as wide as

possible. Since it was the first implementation of the M2APix pixel on a VLSI chip, the Delbruck pixels

were included to (i) provide a meaningful comparison of the M2APix responses with those of a well-

known auto-adaptive pixel, as the technology used for both pixels was the same, and (ii) have a useful

chip even in the unlucky case in which M2APix did not deliver a better response.
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For this purpose, we also developed a new standard method for accurately characterizing pixels’ re-

sponses to luminous changes of up to ±3 decades in a 7-decade mean luminosity range, by implementing

a single light source, which has been called the Lighting Box. In fact, in the studies presented in sec-

tion 1.8.1, the light adaptation and contrast sensitivity of silicon retinas were often tested by applying

a series of lighting steps (AC light) in addition to various background lights (DC light). As a result, the

pixels’ responses have often been described in terms of the stimulus intensity, and direct comparisons

could therefore be made with the biological findings. However, the method used to characterize pixels’

responses was sometimes not clear or had not even been described at all, which makes comparisons with

other results very difficult.

In the paper we present here, we described in details the M2APix pixel, as well as the new method

proposed for accurately characterizing pixels’ responses, and presented a complete characterization this

novel pixel, showing very promising results for use in optic flow-based applications. The VLSI chip was

designed and developed by our laboratory in collaboration with the Center of Particle Physics of Marseille

(CPPM) prior to this thesis. My personal contribution in this work was the design and development of

the hardware and software setup for testing the chip and processing the data, as well as the bibliographic

study and the main writing of the paper.

Some additional information on the VLSI chip as well as the characterization results obtained for the

Delbruck pixels present in this chip are given in Appendix B.
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✸✳✷✳✶ ❆❜str❛❝t

In this paper, we present: (i) a novel analog silicon retina featuring auto-adaptive pixels that obey the

Michaelis-Menten law, i.e. V = Vm
In

In+σn ; (ii) a method of characterizing silicon retinas, which makes it

possible to accurately assess the pixels’ response to transient luminous changes in a ±3-decade range, as

well as changes in the initial steady-state intensity in a 7-decade range. The novel pixel, called M2APix,

which stands for Michaelis-Menten Auto-Adaptive Pixel, can auto-adapt in a 7-decade range and responds

appropriately to step changes up to ±3 decades in size without causing any saturation of the Very Large

Scale Integration (VLSI) transistors. Thanks to the intrinsic properties of the Michaelis-Menten equation,

the pixel output always remains within a constant limited voltage range. The range of the Analog to

Digital Converter (ADC) was therefore adjusted so as to obtain a Least Significant Bit (LSB) voltage of

2.35mV and an effective resolution of about 9 bits. The results presented here show that the M2APix

produced a quasi-linear contrast response once it had adapted to the average luminosity. Differently

to what occurs in its biological counterparts, neither the sensitivity to changes in light nor the contrast

response of the M2APix depend on the mean luminosity (i.e. the ambient lighting conditions). Lastly, a

full comparison between the M2APix and the Delbrück auto-adaptive pixel is provided.

✸✳✷✳✷ ■♥tr♦❞✉❝t✐♦♥

During the last few decades, research in the field of robotics has advanced considerably, but there still

exist very few sighted robots which are able to behave appropriately, regardless of changes in the illumi-

nance (see Fig. 5 in [242], for instance), such as those which occur outdoors. One of the reasons for this

lack is that it is difficult to design pixels that combine high sensitivity with a wide luminosity range.

A large variety of Wide-Dynamic-Range (WDR) CMOS image sensors has been proposed throughout

the years [156], trying to widen the operating luminosity range as much as the visible spectrum while

✶❆✐①✲▼❛rs❡✐❧❧❡ ❯♥✐✈❡rs✐té✱ ❈◆❘❙✱ ■❙▼ ❯▼❘ ✼✷✽✼✱ ✶✸✷✽✽ ▼❛rs❡✐❧❧❡✱ ❋r❛♥❝❡
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keeping sensitivity to small changes for every average luminosity in the operating range. Although the

WDR image sensors capture images in a luminosity range of up to 7 decades, they provide different

contrast sensitivities at different average luminosities. Vision applications such as event-based and bio-

medical applications often require high and constant sensitivity in a large luminosity range, in order to

detect small temporal and/or spatial changes in the intensity in several lighting conditions [169, 170,

265, 266]. One possible solution to this problem can be found by looking at the auto-adaptive response

of human and animal photoreceptors.

In their physiological studies on fish, Naka and Rushton established for the first time that a vertebrate

retina obeys a process of adaptation whereby each photoreceptor’s response is normalized by a represen-

tative value of the average local luminosity [36], in line with the Michaelis-Menten equation [44]. In

the light of these and subsequent findings [36, 39, 43, 47, 267], many efforts have been made to mimic

the Outer Plexiform Layer (OPL) circuitry in silicon retinas [171, 172, 174, 175, 183, 265, 268, 269], or

to implement the model in software for image processing [179, 270–272]. In the latter case, the nor-

malization giving the adaptation is implemented numerically after digitalization which gives rise to noise

amplification, especially in dark scenes. Consequently, considerable interest has focused during the last

twenty years on developing a silicon retina giving an OPL-like response over the entire visible spectrum,

also thanks to the latest advances in retinal implant systems [273,274].

The first example of an auto-adaptive silicon retina was presented in [171], where a logarithmic

photoreceptor was used to handle transient changes in light in a 1-decade range, while light adapta-

tion within a 1-decade range was obtained by “subtracting” a local spatio-temporal average. This circuit

improved the contrast resolution of equally illuminated areas in comparison with standard logarithmic

photoreceptor retinas, but there was no improvement in the low signal-to-noise ratio inherent to the

logarithmic amplification. In [172], a modified version of this chip was compared with the OPL response

described in Necturus [173] (see Section 3.2.3), showing light adaptation in a 5-decade range but sensi-

tivity to luminous changes within a range of only 0.5 decades.

To overcome these limitations, a more biologically inspired solution was subsequently developed in

a study by [174], which consisted in modulating the synaptic strengths locally to control the sensitivity

and including cone-to-cone gap junctions to attenuate the noise. Although the sensitivity was improved

in this way from 0.5 to 2 decades, the adaptation to light was not satisfactory because of the circuit

deviations resulting from the increasing inter-receptor coupling strength. A good compromise between

contrast sensitivity and light adaptation was reached in [175], which gave light adaptation in a 6-decade

range and sensitivity in a 1-decade range. However, the steady-state response of this pixel was found to

increase with the light intensity (i.e., the photodiode current) and the transient response was not always

monotonic when large lighting variations occurred (see Fig. 2.13 in [176]). The Delbrück adaptive

pixel was also found in studies on optic flow measurements to have little practical use in situations

where changes in the light greater than 1 decade are liable to occur (see Figs. 7(b),7(d),7(j) and 7(l)

from [177]). In [178], the Gamma correction method presented in [179] for local tone-mapping purposes
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was improved by digitally normalizing the pixel output directly in VLSI in line with the Michaelis-Menten

law: only a few preliminary results on light adaptation and contrast sensitivity were presented, however,

in that study.

Other solutions not involving the use of auto-adaptive elements have been suggested. In [265], a

subretinal stimulator was endowed with light adaptation by shifting the dynamic input range via an

externally generated signal. The results presented showed that photoreceptor adaptation was achieved

in a 7-decade range. In [269], a silicon retina was provided with a wide dynamic operating range and a

high contrast sensitivity by applying a spatial and temporal filtering process based on resistive networks.

The results obtained showed that the pixels could deal with 4 decades of luminosity changes, but their

contrast responses depended on the external voltage controlling a reset transistor.

As far as we know, no artificial retinas have ever been endowed up to now with pixels with the

following features at once: (i) auto-adaptation to the mean local luminosity over a range as wide as the

visible spectrum; (ii) constant sensitivity to luminous changes, i.e. contrasts, at any average luminosity in

the operating range; (iii) reliable response even in the presence of sudden large changes in the luminosity

(i.e., without causing circuit saturations or deviations).

In this paper, it is proposed to present: (i) a novel analog silicon retina featuring auto-adaptive pixels

that obey the Michaelis-Menten law faithfully in a 7-decade range without causing any saturation of the

VLSI transistors, while keeping an effective resolution of the integrated analog-to-digital conversion of

about 9 bits; (ii) a method of characterizing silicon retinas, which can be used to accurately assess the

pixels’ response to transient luminous changes within a ±3-decade range and to changes in the steady-

state intensity within a 7-decade range. We have called this novel pixel the M2APix, which stands for the

Michaelis-Menten Auto-adaptive Pixel.

The present artificial retina consists of a 2 × 2mm CMOS circuit comprising four lines of six auto-

adaptive pixels, and a digital interface giving a fast serial read-out of up to 1MHz connecting the retina

directly to an external microprocessor or microcontroller. The adaptation time constant of the M2APix

can be changed by means of an external capacitor, providing additional flexibility to eventually meet the

application’s requirements in term of preferred bandwidth.

The biological background to this study is presented in Section 3.2.3. The chip implementation is

presented in Section 3.2.4, and a detailed description of our auto-adaptive pixel is provided in Section

3.2.5. The method of characterization used is presented in Section 3.2.8, and the results obtained using

this method are presented and discussed in Section 3.2.9. A comparison between the M2APix and the

Delbrück pixel present on the same silicon retina is proposed in Section 3.2.10. Some conclusions are

reached in the last section.

✸✳✷✳✸ ❇✐♦❧♦❣✐❝❛❧ ❜❛❝❦❣r♦✉♥❞

Light adaptation of the photoreceptors present in human and animal retinas has been extensively studied

in a large number of species since the early 50’s, using both intra and extracellular methods [36–43]. In all
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these studies, the relationship between light stimuli and photoreceptor responses has been documented,

both in the dark and with background illumination, via an adaptation process described by the so-called

Michaelis-Menten equation [44]:

V = Vm
In

In + σn
, ✭✸✳✶✮

where V stands for the photoreceptor’s response and Vm is its maximum value; I denotes the light

intensity and n usually ranges from 0.7 to 1; σ is the adaptation parameter, corresponding to the light

intensity giving half of the maximum response.

The first micro-electrode recordings of rod and cone responses were obtained on saltwater fish (Ger-

ridae) by Svaetichin in 1953 [45]. In his pioneering study, Svaetichin discovered the S-potentials, as they

were subsequently called by Oikawa et al. in [46], which stands for “slow potentials”, referring to the

slow adaptation process which occurs in the photoreceptor potentials when they are exposed to flash

lights against a steady background.

However, the first mathematical description of the cone response given by equation (3.1) was provided

by Naka and Rushton in the case of the freshwater fish (Cyprinidae) [36]. The equation (3.1) where

n = 1 is therefore also known as the Naka-Rushton law. The same model was subsequently validated and

applied to turtles’ cones by Baylor et al. [37] and to monkeys’ cones by Boynton and Whitten [38], who

introduced the exponent n < 1 for the first time. Many studies were then carried out on vertebrates and

invertebrates, all confirming the equation in (3.1) with various values of n and sometimes with different

interpretations of the adaptation parameter σ (in the salamander [39], gecko [40], frog [41], locust, fly

and dragonfly [42], for instance, and in the human fovea [43]).

Figure 3.1 shows the responses of dark- and light-adapted red cone photoreceptors recorded intracel-

lularly in the retina of the turtle (Pseduemys Scripta Elegans) by Normann and Perlman [47]. As can be

seen from this figure, the function V (I) defined in (3.1) gives rise in the Log(I) domain to curves with a

fairly smooth “S” shape (continuous curves), where the slope of the “S” is given by the value of n (n = 1

in that case) and the lateral shift by the value of σ.

Based on the S-shaped curves shown in Fig. 3.1, two main features of the light-adaptation behavior

can be described by the incident-light model [50]:

• as the background lighting changes, the entire S-shaped curve shifts along the light intensity axis,

which corresponds to a change in the sensitivity of the photoreceptor in the neighborhood of the

background light. In fact, after reaching a peak value caused by an increase/decrease in the in-

tensity of the light (data points), the potential V gradually returns to a steady-state value, re-

flecting its adaptation to the background. This decrease/increase in V corresponds to a “slow”

increase/decrease in the parameter σ (see equation (3.1));

• as the background illumination increases, the operating point of the photoreceptor increases cor-

respondingly (small horizontal lines in Fig. 3.1), which means that because of the non-linearity

of the curve, the response to a given increment/decrement in the stimulus becomes smaller/larger

at higher background levels. This process known as “response compression” was introduced for
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the first time by Boynton and Whitten in [38]. The slope of the curve around the operating point

defines the contrast sensitivity.

❋✐❣✉r❡ ✸✳✶✿ ❙✲s❤❛♣❡❞ ❝✉r✈❡s ❝♦rr❡s♣♦♥❞✐♥❣ t♦ ❞❛r❦✲ ❛♥❞ ❧✐❣❤t✲❛❞❛♣t❡❞ r❡s♣♦♥s❡ ❝✉r✈❡s r❡❝♦r❞❡❞ ✐♥ ❛

r❡❞ ❝♦♥❡ ♦❢ t❤❡ t✉rt❧❡✳ ❚❤❡ ♣❡❛❦ ♦❢ ❡✐t❤❡r t❤❡ ✐♥❝r❡♠❡♥t❛❧ ♦r ❞❡❝r❡♠❡♥t❛❧ r❡s♣♦♥s❡ ♠❡❛s✉r❡❞ ❢r♦♠ t❤❡

❞❛r❦✲❛❞❛♣t❡❞ ♣♦t❡♥t✐❛❧ r❡❝♦r❞❡❞ ❜❡❢♦r❡ t❤❡ ❜❛❝❦❣r♦✉♥❞ ♦♥s❡t ✭❞❛s❤❡❞ ❧✐♥❡✮ ✐s ♣❧♦tt❡❞ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡

❧♦❣ ♦❢ t❤❡ t❡st ♣✉❧s❡ ✐♥t❡♥s✐t② ✇❤✐❝❤ ❡❧✐❝✐t❡❞ ❡❛❝❤ r❡s♣♦♥s❡✳ ❚❤❡ st❡❛❞② ❤②♣❡r♣♦❧❛r✐③❛t✐♦♥ ♣r♦❞✉❝❡❞ ❜②

❡❛❝❤ ❜❛❝❦❣r♦✉♥❞ ❧✐❣❤t✐♥❣ ❝♦♥❞✐t✐♦♥ ✐s ❣✐✈❡♥ ❜② t❤❡ ✐♥t❡rs❡❝t✐♦♥ ❜❡t✇❡❡♥ t❤❡ ✐♥t❡♥s✐t②✲r❡s♣♦♥s❡ ❝✉r✈❡ ❛♥❞

t❤❡ s♠❛❧❧ ❤♦r✐③♦♥t❛❧ ❧✐♥❡✳ ❚❤❡ ❝♦♥t✐♥✉♦✉s ❝✉r✈❡s ✇❡r❡ ❞r❛✇♥ ❢r♦♠ ❛ s✐♥❣❧❡ t❡♠♣❧❛t❡ ✇❤✐❝❤ ❞❡s❝r✐❜❡s t❤❡

❢✉♥❝t✐♦♥ V = Vm
I

I+σ ✳ ❆❞❛♣t❡❞ ❢r♦♠ ❬✹✼❪✳

✸✳✷✳✹ ❈❤✐♣ ✐♠♣❧❡♠❡♥t❛t✐♦♥

In this section, we present our 2-D photosensor array, featuring a silicon retina composed of 24 auto-

adaptive pixels of two different kinds. A picture of the chip package, with a zoom on the retina, is

presented in Fig. 3.2.

The retina consists of a 2 × 2mm CMOS circuit designed using the 350nm XFAB standard CMOS

process. To facilitate the integration of the chip into custom-made Printed Circuit Boards (PCBs), the

circuit was encapsulated in a standard 9 × 9mm (LCC24) package with 24 pins. Four rows of auto-

adaptive pixels with a 254µm diameter N-well/P-substrate photodiode were implemented in the PCB, as

shown in Fig. 3.2(a). The photodiode is mostly sensitive to red light (λ ≈ 650nm) and its sensitivity Sph

is equal to 1.1 × 10−8Am2

W
. The retina is completely self-biased and can be read out by means of digital

serial read-out architecture implemented directly on the chip. The main functional blocks implemented

on the chip can therefore be summarized as follows:

• two rows of six Michaelis-Menten auto-adaptive pixels, that we called M2APix (see Section 3.2.5

✽✺
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❋✐❣✉r❡ ✸✳✷✿ ✭❛✮ ❚❤❡ s✐❧✐❝♦♥ r❡t✐♥❛ ✐♥ ✐ts 9 × 9mm ♣❛❝❦❛❣❡❀ ✭❜✮ ▼❛❣♥✐✜❡❞ ✈✐❡✇ ♦❢ t❤❡ s✐❧✐❝♦♥ r❡t✐♥❛

❝♦♠♣♦s❡❞ ♦❢ ✶✷ ▼✐❝❤❛❡❧✐s✲▼❡♥t❡♥ ♣✐①❡❧s ♣r❡s❡♥t❡❞ ✐♥ t❤✐s st✉❞②✱ ❛♥❞ ✶✷ ❛❞❞✐t✐♦♥❛❧ ❉❡❧❜rü❝❦ ♣✐①❡❧s❀ ✭❝✮

▼❛❣♥✐✜❡❞ ✈✐❡✇ ♦❢ ✸ ▼✐❝❤❛❡❧✐s✲▼❡♥t❡♥ ♣✐①❡❧s ❣✐✈✐♥❣ t❤❡ ♣❤♦t♦❞✐♦❞❡✬s ❞✐♠❡♥s✐♦♥s ❛♥❞ t❤❡ ✐♥t❡r✲r❡❝❡♣t♦r

❞✐st❛♥❝❡✳

for details);

• a low-pass filtered current-averaging cell and the reference voltage, required by the Michaelis-

Menten architecture (see Section 3.2.5);

• a bias generator providing the polarization currents required for the circuit to operate properly;

• a reference voltage for the analog-to-digital converter (ADC);

• a digital serial interface, which includes the digitizing of the pixel output signals via a 10-bit ADC,

and a direct serial communication bus (see details below).

In addition, two rows of six pixels of the Delbrück type (see [175] for more details) were implemented

on the same chip.

The photodiodes were aligned on two horizontally staggered rows so that the hexagons fit together

like a puzzle, recalling the shape and the arrangement of insects’ hexagonal ommatidia (Fig. 3.2). This

pattern of alignment of the photodiodes, which is particularly suitable for detecting luminous contrasts

in the main direction, also makes it possible to sense light variations in any other direction.

The analog signals originating from each pixel were digitized on-chip so that they could be directly

processed by an external microprocessor or microcontroller, saving the power consumption and the com-

putational resources of the latter for further data processing. Since the pixel type is selected by a digital

input, only one set of pixels can be converted at a time. The twelve M2APix outputs are low-pass fil-

tered with a cut-off frequency of 300Hz before being digitally converted, giving a minimum sampling

frequency of 600Hz in order to prevent the occurrence of aliasing. An integrated DC reference voltage

was connected to the ADC as an additional pixel output for testing and calibration purposes. To im-

prove the LSB voltage, the dynamic input range of the ADC can be reduced by using an external voltage

✽✻
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source. A synchronous direct-connection protocol similar to that used in the artificial compound eye

CurvACE [219] was adopted, as it provides a very simple, robust solution.

A functional diagram of the interface protocol is given in Fig. 3.3. For the serial communications,

a similar internal state machine working with a maximum frequency of 1MHz to that adopted in the

CurvACE sensor [219] was used to transfer the data to an external device.

❋✐❣✉r❡ ✸✳✸✿ ❇❧♦❝❦ ❞✐❛❣r❛♠ ♦❢ t❤❡ r❡t✐♥❛✬s s❡r✐❛❧ s②♥❝❤r♦♥♦✉s r❡❛❞✲♦✉t ✐♥t❡r❢❛❝❡ ✭s❡❡ ❬✷✼✺❪✮✳

✸✳✷✳✺ ▼2❆P✐①✿ ▼✐❝❤❛❡❧✐s✲▼❡♥t❡♥ ❛✉t♦✲❛❞❛♣t✐✈❡ ♣✐①❡❧

In this section, we present our novel auto-adaptive pixel implementing the Michaelis-Menten model in

analog VLSI, as described in Section 3.2.3. The theoretical basis of the analog circuit is first presented,

and an example of the auto-adaptive pixel’s response is then given to illustrate the behavior of the M2APix

and show how the pixel is related to S-shaped curves such as those presented in Fig. 3.1.

✸✳✷✳✻ ❈✐r❝✉✐t ❞❡s❝r✐♣t✐♦♥

The block scheme depicted in Fig. 3.4(a) gives an overview of the Michaelis-Menten pixel implementa-

tion. All the blocks in the area delimited by the dashed lines belong to a single pixel. These blocks are

therefore replicated twelve times, whereas the two blocks outside the dashed-line area are common to

all twelve pixels.

To implement the Michaelis-Menten function in (3.1), we adopted the current normalizer model

presented in [276] (Chapter 6, pp. 148-150), with an arbitrary number of current inputs, and patented
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❞❛s❤❡❞✲❧✐♥❡ ❛r❡❛✱ ✇❤✐❝❤ ❛r❡ r❡♣❧✐❝❛t❡❞ ✶✷ t✐♠❡s✱ ❜❡❧♦♥❣ t♦ ❛ s✐♥❣❧❡ ♣✐①❡❧✱ ✇❤❡r❡❛s t❤❡ t✇♦ ❜❧♦❝❦s ♦✉ts✐❞❡ t❤❡

❞❛s❤❡❞✲❧✐♥❡ ❛r❡❛ ❛r❡ ❝♦♠♠♦♥ t♦ ❛❧❧ t✇❡❧✈❡ ♣✐①❡❧s✳ ✭❜✮ ❍❛r❞✇❛r❡ ✐♠♣❧❡♠❡♥t❛t✐♦♥ ✐♥ ❱▲❙■ ♦❢ ❛♥ ❡❧❡♠❡♥t❛r②

❛✉t♦✲❛❞❛♣t✐✈❡ ♣✐①❡❧ ✭♣❤♦t♦❞✐♦❞❡ ❛♥❞ ❝✉rr❡♥t ♥♦r♠❛❧✐③❡r✮✱ t❤❡ ♦✉t♣✉t s✐❣♥❛❧ ♦❢ ✇❤✐❝❤ ✐s ♥♦t❡❞ Iouti ✳ ❆

s✇✐t❝❤ S ❝❛♥ ❜❡ ✉s❡❞ t♦ s❡❧❡❝t ❡✐t❤❡r I0i ❛s t❤❡ ♠❡❛♥ ❝✉rr❡♥t Imeani
♣r♦✈✐❞❡❞ ❜② t❤❡ ❜✉✐❧t✲✐♥ ❛✈❡r❛❣✐♥❣

❝✐r❝✉✐t✱ ♦r ❛♥ ❡①t❡r♥❛❧ ❝✉rr❡♥t Iexti ♣r♦✈✐❞❡❞ ❜② ❛♥ ❡①t❡r♥❛❧ ❝✐r❝✉✐t✳ ✭❝✮ ❍❛r❞✇❛r❡ ✐♠♣❧❡♠❡♥t❛t✐♦♥ ✐♥

❱▲❙■ ♦❢ t❤❡ ✜❧t❡r✐♥❣ ❛♥❞ ❛✈❡r❛❣✐♥❣ ❝✐r❝✉✐t ❝♦♠♣✉t✐♥❣ t❤❡ ♠❡❛♥ ❝✉rr❡♥t ♦❢ t❤❡ ✶✷ ♠✐rr♦r❡❞ ♣❤♦t♦❞✐♦❞❡

❝✉rr❡♥ts (I ′phi
) ♣r♦❞✉❝❡❞ ❜② t❤❡ ✶✷ ♥♦r♠❛❧✐③❡r ❝✐r❝✉✐ts✳
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in [277] in the context of photosensing. In the present application, two current inputs are required: one

for the photodiode current Iphi
and one for the current I0i corresponding to the average illuminance.

The functional scheme of the current normalizer is presented in Fig. 3.4(b). A switch S can be used

to select either I0i as the mean current Imeani
provided by the built-in averaging circuit or an external

current Iexti provided by an external circuit. In what follows, we take I0i = Imeani
.

The scheme adopted here improves the functioning of the current normalizer by adjusting the Vref

voltage to a different value from that of Vdd (3.3V ). The auto-adaptive pixels we designed work efficiently

in a wide range of luminosities corresponding to a photodiode current ranging from about 20 pA to 20µA.

The Vref voltage optimizes the functioning of the system at low currents by preventing the current source

Mb transistor from saturating.

❖♣❡r❛t✐♥❣ ♣r✐♥❝✐♣❧❡ ♦❢ t❤❡ ♥♦r♠❛❧✐③❡r

If the transistors M1, . . . ,M4 have the same dimensions and are working in their sub-threshold region,

the current output Iouti can be expressed as follows:

Iouti = Ib
Iphi

Iphi
+ Imeani

, ✭✸✳✷✮

where Ib = 50nA and the index i = 1 . . . 12 gives the number of pixels. For the sake of simplicity, we will

drop the index in what follows.

To obtain the same auto-adaptation to light as that which occurs in animals’ eyes, Imean has to be

a representative value of the background luminosity perceived by the artificial retina (see Section 3.2.2

and 3.2.3). Accordingly, the computation of Imean must reflect only the low-frequency changes in the

light perceived by all the photoreceptors in the retina. The current Imean is therefore the average value

of copies of all 12 photodiode currents (I ′phi
) filtered with a first order low-pass filter. As shown in

Fig. 3.4(c), the low-pass filter is provided by a gm-C structure using an operational transconductance

amplifier (OTA) Gm and an external capacitor Cm. In particular, if the external capacity is set at 100nF ,

as done in our tests, the cut-off frequency will be 150mHz.

As shown in Fig. 3.4(a), the output current of the normalizer is converted into a voltage via a high

gain transimpedance amplifier (TIA). This high-factor current-to-voltage conversion Rf is obtained using

a low-transconductance OTA in the feedback loop of an operational amplifier stage. The output voltage

Vout can therefore be expressed as follows:

Vout = −RfIout, ✭✸✳✸✮

where Rf is set at 17.5MΩ via the OTA transconductance.

To prevent the occurrence of aliasing due to the sampling frequency of the digital conversion, a first-

order low-pass filter with a gm-C structure is added to each pixel. A cut-off frequency of 300Hz is

achieved by means of a low-transconductance OTA and an internal capacitance.

✽✾
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Lastly, a voltage follower helps the pixel to drive the input sampling capacitance of the ADC.

The output pixel voltage can then be written as follows:

Vout = −RfIb
Iph

Iph + Imean
+ VBG, ✭✸✳✹✮

where VBG ≈ 2.3V denotes the band-gap voltage due to the intrinsic functioning of the various stages.

✸✳✷✳✼ ▼2❆P✐① r❡s♣♦♥s❡

The fact that the term Imean in equation (3.4) corresponds to the average luminosity constitutes a key

point in the adaptive behavior of the pixel.

Let us assume that in the absence of any optical lenses placed on the retina, all the pixels are exposed

to the same light intensity. If no changes or only very slow changes in the luminosity occur, all the

photodiode currents and their average will be identical. Therefore by substituting Imean = Iph into (3.4),

the steady-state value of the pixel’s output can be obtained:

Vout0 = −
RfIb
2

+ VBG, ✭✸✳✺✮

which is a constant value depending only on the operating current Ib and not on the photodiode currents.

This feature is the main difference with respect to the biological findings, which on the contrary, show

the existence of a logarithmic increase in the steady-state response with respect to the luminosity, giving

rise to the so called “response compression” (see Section 3.2.3). In fact, while the contrast sensitivity

of the OPL varies, depending on the average luminosity (see for instance the slope around the small

horizontal line of the full-triangle curve in comparison with the empty-triangle one in Fig. 3.1), our

silicon retina shows the same contrast sensitivity whatever the average luminosity. In other words, an

object showing a contrast of 10% will generate the same signal amplitude at the output of the M2APix

under both low and high luminosity levels.

In order to explain this behavior more clearly and show how it is related to S-shaped curves such as

those presented in Fig. 3.1, an example of the pixel’s response was plotted as shown in Fig. 3.5(a).

At the time t0, all the photodiode currents and the pixel’s output are stabilized at Iph0 and Vout0 ,

respectively. Then, after the time Ts, a step change in the luminosity occurs in front of the silicon retina,

making all the photodiode currents “rapidly” change from Iph0
to Iphi

(red line), while the average

current changes much more slowly (magenta line). During the stabilization of the average current, the

pixel’s output first increases from Vout0 to the peak value Vouti , and then decreases until it reaches its

stable baseline value Vout0 (blue line) again. We take rise time (Tr) to denote the time taken by Vout to

go from Vout0 to 90% of (Vouti − Vout0) and fall time (Tf ) the time taken by the signal to go from Vouti to

90% of (Vout0 − Vouti). It can be shown that Tr and Tf mainly depend on the photodiode and transistors

time-constant and the averaging block time-constant (τm = Cm

Gm
), respectively.

As Tr ≪ τm, it can be assumed that when Vout = Vouti , Imean does not change (Imean ≈ Iph0
)

independently from Iphi
. Therefore, the points defining the S-shaped curve correspond to the peak values

✾✵
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❧✐❣❤t ✐♥t❡♥s✐t② ✭❧✐❣❤t t♦ ❞❛r❦ ❣r❛② str✐♣❡✮✳ ❚❤❡ r❡❞ ❛♥❞ ♠❛❣❡♥t❛ ❧✐♥❡s st❛♥❞ ❢♦r t❤❡ ♣❤♦t♦❞✐♦❞❡ ❝✉rr❡♥t

❛♥❞ t❤❡ ❛✈❡r❛❣❡ ❝✉rr❡♥t✱ r❡s♣❡❝t✐✈❡❧②✳ ✭❜✮ ❚❤❡♦r❡t✐❝❛❧ ❙✲s❤❛♣❡❞ ❝✉r✈❡ ❜❛s❡❞ ♦♥ ❡q✉❛t✐♦♥ ✭✸✳✹✮✱ ❣✐✈✐♥❣ t❤❡

♣❡❛❦ ✈❛❧✉❡s ♦❢ t❤❡ ♣✐①❡❧✬s r❡s♣♦♥s❡ Vi t♦ st❡♣ ❝❤❛♥❣❡s ✐♥ t❤❡ ♣❤♦t♦❞✐♦❞❡ ❝✉rr❡♥t ❢r♦♠ Iph0
t♦ Iphi

✳

Vouti reached at all the step values Iphi
after the same initial value Iph0

(Fig. 3.5(b)). It is worth noting

that when the value of Iphi
reaches up to ±1 decades of Iph0

, the pixel shows a logarithmic sensitivity to

changes in the lighting conditions (see the sloping part of the curve around the operating point), while

the sensitivity decreases drastically in response to greater changes in the light.

Thanks to the intrinsic properties of the normalization, the peak values depend only on the ratio Iphi

Iph0
,

resulting in a horizontal shift of the S-shaped curve depending on Iphi
in the same way as the curves in

Fig. 3.1.

In addition, as Iph is linearly proportional to the luminous intensity, we can assume the presence of

a luminous contrast defined by the Michelson formula: ci =
Iphi

−Iph0

Iphi
+Iph0

. Substituting the inverse of this

formula into equation (3.4), i.e. Iphi
= 1+ci

1−ci Iph0 , we obtain:

Vouti = −RfIb
ci + 1

2
+ VBG. ✭✸✳✻✮

The pixel can therefore be said to give a linear contrast response, and the contrast resolution is given

by the coefficient of ci in equation (3.6).

Lastly, an AC noise simulation was performed with a white noise at the input (corresponding to the

shot noise of the photodiode), to obtain the Root Mean Square (RMS) of the output noise and con-

sequently the minimum detectable contrast for different values of the average luminosity, i.e. the DC

photodiode current. The RMS values are given by integrating the output noise in [10−5, 108]Hz. The

minimum detectable contrast can be defined as the contrast that gives rise to a transient response of the

output signal ±6-fold the RMS noise.

Figure 3.6 shows the RMS of the simulated output noise (blue) and the minimum detectable contrast

(red) with respect to the photodiode current. We can notice that the noise is decreasing with the DC

✾✶
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photodiode current. At very low background luminosity, the noise is dominated by the input white noise

of the photodiode which is amplified by the gain of the circuit. At higher luminosity, this gain is smaller,

so the simulated input noise becomes negligible and the output noise is nearly equal to the transistors’

noise. In any case, the RMS values obtained are always very low compared to the output variations

(Vouti − Vout0) in the transient response, as shown in the simulated response in Fig. 3.5. Consequently,

the minimum detectable contrast is very low over the entire operating range of the average luminosity,

varying from ±1.1% at 1Lux to ±0.4% at 105 Lux.
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❋✐❣✉r❡ ✸✳✻✿ ❘♦♦t ▼❡❛♥ ❙q✉❛r❡ ✭❘▼❙✮ ♦❢ t❤❡ s✐♠✉❧❛t❡❞ ♦✉t♣✉t ♥♦✐s❡ ✭❜❧✉❡✮ ❛♥❞ ❝♦rr❡s♣♦♥❞✐♥❣ ♠✐♥✐♠✉♠

❞❡t❡❝t❛❜❧❡ ❝♦♥tr❛st ✭r❡❞✮ ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ ♣❤♦t♦❞✐♦❞❡ ❝✉rr❡♥t✳ ❚❤❡ ❘▼❙ ✈❛❧✉❡s ❛r❡ ❣✐✈❡♥ ❜② ✐♥t❡❣r❛t✐♥❣

✐♥ [10−5, 108]Hz t❤❡ ♦✉t♣✉t ♥♦✐s❡ ♦❜t❛✐♥❡❞ ✇✐t❤ ❛♥ ❆❈ ♥♦✐s❡ s✐♠✉❧❛t✐♦♥ ✇❤✐❝❤ t❛❦❡s ✐♥t♦ ❛❝❝♦✉♥t ❛❧❧ t❤❡

tr❛♥s✐st♦r ♥♦✐s❡s ❛♥❞ ❛ ✇❤✐t❡ ♥♦✐s❡ ❢♦r t❤❡ ✐♥♣✉t ♣❤♦t♦❞✐♦❞❡✳ ❚❤❡ ♠✐♥✐♠✉♠ ❞❡t❡❝t❛❜❧❡ ❝♦♥tr❛st ❝❛♥ ❜❡

❞❡✜♥❡❞ ❛s t❤❡ ❝♦♥tr❛st t❤❛t ❣✐✈❡s r✐s❡ t♦ ❛ tr❛♥s✐❡♥t r❡s♣♦♥s❡ ♦❢ t❤❡ ♦✉t♣✉t s✐❣♥❛❧ ±6✲❢♦❧❞ t❤❡ ❘▼❙ ♥♦✐s❡✳

✸✳✷✳✽ ▼❡t❤♦❞ ♦❢ ❝❤❛r❛❝t❡r✐③❛t✐♦♥

In the studies presented in Section 3.2.2, the light adaptation and contrast sensitivity of silicon retinas

were often tested by applying a series of lighting steps (AC light) in addition to various background lights

(DC light). As a result, the pixels’ responses have often been described in terms of the stimulus intensity,

and direct comparisons can therefore be made with the biological findings (see Section 3.2.3). However,

the method used to characterize pixels’ responses is sometimes not clear or has not even been described

at all, which makes comparisons with other results very difficult.

A standard method is presented here for accurately characterizing pixels’ responses to luminous

changes of up to ±3 decades in a 7-decade mean luminosity range by implementing a single light source,

which has been called the Lighting Box (Fig. 3.7).

The Lighting Box consists of a 50 × 25 × 25mm 3-D printed box with a 10 × 10mm aperture. The

Lighting Box also includes a Printed Circuit Board (PCB) which accurately controls the light intensity

✾✷
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of a red Light Emitting Diode (LED) (TLWR7600, Vishay Semiconductors) by means of a specific digital

current driver (ADN8810, Analog Devices). The PCB with the LED and the PCB supporting the retina to

be characterized are fixed to each side of the box so that both the LED and the silicon retina can fit into

the aperture, facing each other inside the box (see Fig. 3.7(b)). The box also contains an optical filter

support, which can be inserted between the LED and the retina in order to attenuate the LED’s intensity

and thus characterize the pixel’s response in the illuminance range of interest.

The following main tools were used for this purpose:

• The Lighting Box described above.

• A NI Single-Board RIO-9683 Acquisition Device provided by National Instruments. The board fea-

tures a 400MHz real-time processor with 128 MB DRAM and includes an integrated real-time

controller and a 2-Million-Gate reconfigurable FPGA programmed using LabVIEW software includ-

ing Real-Time and FPGA modules.

• An Explorer 16 development board provided by Microchip, which includes a dsPIC 33FJ128GP804

micro-controller working at a sampling rate of 2 kHz. This device was programmed using Mat-

lab/Simulink with a toolbox specifically developed for use with Microchip dsPIC micro-controllers.

❋✐❣✉r❡ ✸✳✼✿ ✭❛✮ P✐❝t✉r❡s ❛♥❞ ✭❜✮ ❡①♣❧♦❞❡❞ ✈✐❡✇ ♦❢ t❤❡ ▲✐❣❤t✐♥❣ ❇♦① ❝♦♠♣♦s❡❞ ♦❢ ❛ P❈❇ ✇✐t❤ ❛ r❡❞ ▲❊❉

(λ ≈ 618nm) ❛♥❞ ❛♥ ♦♣t✐❝❛❧ ✜❧t❡r s✉♣♣♦rt✳ ❚❤❡ ❞✐r❡❝t ❝♦♥tr♦❧ ♦❢ t❤❡ ▲❊❉ ❝✉rr❡♥t ♠❛❦❡s t❤❡ ✐❧❧✉♠✐♥❛♥❝❡

✈❛r② ✐♥ ❛ ✸✲❞❡❝❛❞❡ r❛♥❣❡✳ ❆❞❞✐t✐♦♥❛❧ ♦♣t✐❝❛❧ ✜❧t❡rs ✭♥❡✉tr❛❧ ❞❡♥s✐t② ✜❧t❡rs✮ ✇❡r❡ ✉s❡❞ t♦ ❞r❛st✐❝❛❧❧②

✐♥❝r❡❛s❡ t❤❡ ♠❡❛♥ ❧✉♠✐♥♦s✐t② r❛♥❣❡ ❢r♦♠ ✸ t♦ ✼ ❞❡❝❛❞❡s✳

The block diagram in Fig. 3.8 gives an overview of the hardware setup and communication flow

involved in the method of characterization.

❈❤❛r❛❝t❡r✐③❛t✐♦♥ ♣r♦❝❡❞✉r❡

✾✸



❈❤❛♣t❡r ✸✳ ▼2❆P✐①✿ ❛ ◆♦✈❡❧ ❇✐♦✲■♥s♣✐r❡❞ ❆✉t♦✲❆❞❛♣t✐✈❡ P✐①❡❧

❋✐❣✉r❡ ✸✳✽✿ ❇❧♦❝❦ ❞✐❛❣r❛♠ ♦❢ t❤❡ ❤❛r❞✇❛r❡ s❡t✉♣ ❛♥❞ ❝♦♠♠✉♥✐❝❛t✐♦♥ ✢♦✇ ✐♥✈♦❧✈❡❞ ✐♥ t❤❡ ♣✐①❡❧ ❝❤❛r❛❝✲

t❡r✐③❛t✐♦♥ ♣r♦❝❡❞✉r❡✳

The 12 pixels’ output signals were acquired while they were being exposed to step changes in the

luminous intensity, as described in Section 3.2.7. During the overall acquisition process, the FPGA acts as

the master component handling and synchronizing the communications with the Lighting Box in order

to drive the intensity of the LED, and with the Explorer 16 in order to acquire data from the chip. Based

on Fig. 3.5 and Fig. 3.8, the i-th step in the procedure can be described as follows:

1. The FPGA sends the Lighting Box a packet of four bytes (Led Data) containing the information

about the initial value (ILED0
) and the step value (ILEDi

) of the LED intensity.

2. As soon as the Lighting Box receives the packet, it sets the LED intensity at the initial value ILED0
.

3. After waiting for a time (Twait), which is usually the time required for the pixel output to reach its

steady-state value, the FPGA sends Explorer 16 a trigger signal (Trigger 1) making it start sending

the data acquired. The steady-state value of the pixels is thus acquired before the lighting change

occurs.

4. A short instant later (Ts), the FPGA sends the Lighting Box a second trigger signal (Trigger 2)

making it switch the LED intensity from ILED0 to ILEDi
(see Fig. 3.5).

5. The Explorer 16 sends the FPGA the appropriate number of samples (Pixel Data), depending on the

sampling frequency.

6. The FPGA stores the data acquired in a FTP server and goes back to step 1 to deal with the next

pair ILED0
, ILEDi

.

The current-irradiance characteristic of the LED was assessed by measuring the LED’s irradiance with a

radiometer (ILT1700, International Light Technologies). To obtain a good idea of what the photodiodes

perceive, the radiometer was placed in front of the LED at the same distance as the chip. Therefore,

✾✹
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without any loss of generality, ILED can be taken to stand for the LED’s irradiance instead of the LED

current. Since the photodiode current is linearly proportional to the irradiance via the sensitivity Sph, as

defined in Section 3.2.4, equation (3.4) does not have to be changed even if we take Vout to be a function

of ILED.

As we were interested in characterizing our auto-adaptive pixel in 7 decades of photodiode current

(see Section 3.2.6) using a LED covering three decades, four neutral optical filters (NG filters, Schott)

were used: the 1 and 2mm NG3 type for dealing with 1- and 2-decade attenuation, respectively, and

the 2 and 3mm NG9 type for dealing with 3- and 4-decade attenuation, respectively. To check the

full set of S-shaped curves within ±3 decades about Iph0 (see Fig. 3.5(b), for example), a complete

pixel characterization was carried out by merging the data obtained with the various optical filters. In

particular, as the latter give contiguous 1-decade attenuation, S-shaped curves were obtained by merging

and averaging the peak values Vouti acquired at the same initial irradiance with several filters. For

instance, the S-shaped curve centered in 0.1 W
m2 (Fig. 3.5(b)) was obtained by merging the peak values

obtained with ILED0
= 0.1mA without any filter, ILED0

= 1mA with a 1-decade attenuation filter,

ILED0
= 10mA with a 2-decade attenuation filter and ILED0

= 100mA with a 3-decade attenuation

filter.

✸✳✷✳✾ ▼2❆P✐① ❝❤❛r❛❝t❡r✐③❛t✐♦♥ r❡s✉❧ts

In this section, it is proposed to present and discuss the experimental data obtained when our auto-

adaptive silicon retina was exposed to changes in the light, as described in Section 3.2.8.

To characterize the pixel’s response in the light-adapted condition, the LED light changes were trig-

gered when the pixel’s output signal reached its steady-state value. In other words, by referring to the

steps in the characterization procedure presented in Section 3.2.8, the waiting time Twait in Step 3 was

equal to 5Tf , where Tf denotes the fall time, as described in Section 3.2.7.

▼2❆P✐① tr❛♥s✐❡♥t r❡s♣♦♥s❡

As mentioned in Section 3.2.7, we were interested in measuring the peak values Vouti of the twelve pixels

with each pair of photodiode currents Iph0
, Iphi

corresponding to a step change in the light intensity

(Fig. 3.5). Pixel output signals were recorded with various pairs of LED irradiance values ILED0
, ILEDi

in the [10−5, 102] W
m2 range at a sampling frequency fs = 2 kHz, in order to accurately determine the

instant at which the peak value occurred, using the method described in Section 3.2.8. The set of all the

mean values obtained when ILEDi
= ILED0

corresponds to the steady-state response of the pixel and

constitutes an important auto-adaptive characteristic of the M2APix, which will be discussed below.

Some examples of the pixel’s response with ILED0
= 1 W

m2 are presented in Fig. 3.9.

Figure 3.9 shows the auto-adaptation of the pixel’s time response. According to the simulated example

presented in Section 3.2.7, the pixel’s output rapidly increases from the steady value Vout0 to a peak

value Vouti and then returns slowly to the steady value regardless of the contrast, which was obtained

✾✺
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❋✐❣✉r❡ ✸✳✾✿ ✭❛✮ ❊①❛♠♣❧❡ ♦❢ ▼2❆P✐① r❡s♣♦♥s❡s t♦ st❡♣ ❝❤❛♥❣❡s ✐♥ t❤❡ ▲❊❉ ✐rr❛❞✐❛♥❝❡ (ILEDi
)✱ st❛rt✐♥❣ ✇✐t❤

t❤❡ s❛♠❡ ✐♥✐t✐❛❧ ✐rr❛❞✐❛♥❝❡ (ILED0
= 1 W

m2 )✳ ✭❜✮ ❩♦♦♠ ♦❢ t❤❡ t❡♠♣♦r❛❧ ♣✐①❡❧ r❡s♣♦♥s❡s s❤♦✇♥ ✐♥ ❋✐❣✳ ✸✳✾✭❛✮

r❛♥❣✐♥❣ ❜❡t✇❡❡♥ ✵ ❛♥❞ 50ms✳ ❚♦ ❜❡ ❛❜❧❡ t♦ ❞✐st✐♥❣✉✐s❤ ♠♦r❡ ❝❧❡❛r❧② ❜❡t✇❡❡♥ t❤❡ st❡❛❞②✲st❛t❡ r❡s♣♦♥s❡s

❛♥❞ t❤❡ tr❛♥s✐❡♥t r❡s♣♦♥s❡s✱ t❤❡ st❡♣ ❝❤❛♥❣❡s ✇❡r❡ ❞❡❧❛②❡❞ ❜② 10ms (Ts) ❛❢t❡r t❤❡ ❛❝q✉✐s✐t✐♦♥ ♣r♦❝❡❞✉r❡

❤❛❞ st❛rt❡❞✳ ❚❤❡ ❜❧❛❝❦ ❝✐r❝❧❡s ❛♠♦✉♥t t♦ 90% ♦❢ t❤❡ ♣❡❛❦ ✈❛❧✉❡s Vouti ❛♥❞ ❣✐✈❡ q✉❛❧✐t❛t✐✈❡ ✐♥❢♦r♠❛t✐♦♥

❛❜♦✉t t❤❡ r✐s❡ t✐♠❡ (Tr)✳ ❚❤❡ ❝♦♥tr❛st ✈❛❧✉❡s ❛r❡ ❣✐✈❡♥ ❜② t❤❡ ▼✐❝❤❡❧s♦♥ ❢♦r♠✉❧❛ ci =
ILEDi

−ILED0

ILEDi
+ILED0

✳

here by making step changes of ILEDi
. However, as shown in Fig. 3.9(b), the rise time (Tr), namely the

time required to reach 90% of the peak value (black circles), is nearly constant with positive contrasts

(ILEDi
> ILED0), but depends on the contrast with negative ones (ILEDi

< ILED0).

Figure 3.10 shows the mean rise time over the 12 pixels plotted with respect to the contrast. Each

point corresponds to the time (Tr) required to reach 90% of the peak value Vouti , as depicted in Fig.

3.9(b), for every step change (ILED0
, ILEDi

).

By looking at Fig. 3.10, we can notice that the rise time depends on both the contrast and the average

luminosity. This coupling between contrast and rise time is directly due to the current-mode functioning

of the system. A high negative contrast corresponds to a normalizer’s output current tending to zero, as

we can see by considering Iphi
≪ Imeani

in equation (3.2). The time constants of the output transistors

will therefore be higher and the output signal will be slower in this case. Furthermore, the time constant

of the photodiode and the transistors increases for low current, i.e. low average luminosity, explaining the

higher rise times for the pink and red data points. It is worth noting that the mean rise time for positive

contrasts at medium/high average luminosity (blue and green data points) is about 1ms because of the

anti-aliasing low-pass filter (Fc = 300Hz, see Section 3.2.6).

The rise time (Tr) and the fall time (Tf ) depends on the bandwidth of the output signal that is

determined mainly by the photodiode and transistors time constant and the current-averaging block

time constant (τm). Such a bandwidth can be modified by modifying the external capacitor Cm, since

τm = Cm

Gm
(see Section 3.2.6). As the fall time Tf determines the time the pixel’s output takes to reach
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❋✐❣✉r❡ ✸✳✶✵✿ ❆✈❡r❛❣❡ r✐s❡ t✐♠❡ ✇✐t❤ r❡s♣❡❝t t♦ ❧✉♠✐♥♦✉s ❝♦♥tr❛st✳ ❊❛❝❤ ♣♦✐♥t ❝♦rr❡s♣♦♥❞s t♦ t❤❡ t✐♠❡

(Tr) r❡q✉✐r❡❞ t♦ r❡❛❝❤ 90% ♦❢ t❤❡ ♣❡❛❦ ✈❛❧✉❡ Vouti ✱ ❛s ❞❡♣✐❝t❡❞ ✐♥ ❋✐❣✳ ✸✳✾✭❜✮✳ ❊❛❝❤ ❝♦❧♦r r❡❢❡rs t♦ ❛

❞✐✛❡r❡♥t ✐♥✐t✐❛❧ ✐rr❛❞✐❛♥❝❡ ✈❛❧✉❡ ILED0 ✿ r❡❞ ❛❜♦✉t 0.001 W
m2 ✱ ♣✐♥❦ ❛❜♦✉t 0.01 W

m2 ✱ ❞❛r❦ ❜❧✉❡ ❛❜♦✉t 0.1 W
m2 ✱

❧✐❣❤t ❜❧✉❡ ❛❜♦✉t 1 W
m2 ✱ ❝②❛♥ ❛❜♦✉t 10 W

m2 ✱ ❣r❡❡♥ ❛❜♦✉t 100 W
m2 ✳

the maximum of its contrast sensitivity, i.e. the sensitivity at steady-state, it might be useful to set Tf as

small as possible. If we consider an irradiance higher than 0.1 W
m2 (about 100 Lux), the fall time Tf can

be reasonably reduced up to 0.1 s by changing the value of the external capacitor Cm to 5nF , because

the rise time Tr is lower than 0.01 s for any contrast in this irradiance range. In fact, Tf should be about

one decade greater than Tr to guarantee the correct functioning of the pixel in this luminosity range.

▼2❆P✐① ❙✲s❤❛♣❡❞ ❛♥❞ st❡❛❞②✲st❛t❡ r❡s♣♦♥s❡

The peak values obtained in response to step changes (ILEDi
) starting with several initial irradiances

(ILED0) are presented in Fig. 3.11, with respect to (a) the LED irradiance and (b) the Michelson contrast

ci, defined as follows ci =
ILEDi

−ILED0

ILEDi
+ILED0

.

By comparing the S-shaped curves in Fig. 3.11(a) with those in Fig. 3.1, it can be seen in the first

place that our silicon retina shows in qualitative terms the same adaptation process as that observed in

the OPL. In particular, the pixels auto-adapt to the average light in a 7-decade range while keeping a

sensitivity of nearly 600 mV
Log(I) in a range of about 2 decades (corresponding to the linear part of the

curves on the log scale). Each S-shaped curve obtained was well defined within a range of 6 decades,

which means that the circuit did not deviate, but remained consistent with the model, even when the

light changed suddenly by anything up to ±3 decades, which would correspond, for instance, to shifting

from a very dark overcast sky to direct sunlight (see the lower half of the dark-blue curve). In addition,

in line with equation (3.5), the steady-state response (black points) was almost constant throughout the

7 decades, giving the same contrast sensitivity whatever the average luminosity. Lastly, upon setting the

high reference of the ADC at 2.4V (see Section 3.2.4 for further details about the integrated ADC), we

✾✼
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❋✐❣✉r❡ ✸✳✶✶✿ ✭❛✮ ❙✲s❤❛♣❡❞ ❝✉r✈❡s ❛♥❞ st❡❛❞②✲st❛t❡ r❡s♣♦♥s❡s ♦❢ t❤❡ ✶✷ ♣✐①❡❧s t♦ ▲❊❉ ✐rr❛❞✐❛♥❝❡ ❝❤❛♥❣❡s ✐♥

❛ ✼✲❞❡❝❛❞❡ r❛♥❣❡✳ ❊❛❝❤ ❝♦❧♦r r❡❢❡rs t♦ ❛ ❞✐✛❡r❡♥t ✐♥✐t✐❛❧ ✐rr❛❞✐❛♥❝❡ ✈❛❧✉❡ ILED0 ✭r❡❞ ❛❜♦✉t 0.001 W
m2 ✱ ♣✐♥❦

❛❜♦✉t 0.01 W
m2 ✱ ❞❛r❦ ❜❧✉❡ ❛❜♦✉t 0.1 W

m2 ✱ ❧✐❣❤t ❜❧✉❡ ❛❜♦✉t 1 W
m2 ✱ ❝②❛♥ ❛❜♦✉t 10 W

m2 ✱ ❣r❡❡♥ ❛❜♦✉t 100 W
m2 ✱

s❛♠❡ ❝♦❧♦r ❛♥❞ ♠❛r❦❡r ❛s ❋✐❣✳ ✸✳✶✵✮✱ ❛♥❞ t❤❡ ❞❛t❛ ♣♦✐♥ts ❝♦rr❡s♣♦♥❞ t♦ t❤❡ ❛✈❡r❛❣❡ ♣❡❛❦ ✈❛❧✉❡ Vouti

r❡❛❝❤❡❞ ❜② t❤❡ ✶✷ ♣✐①❡❧s ✐♥ r❡s♣♦♥s❡ t♦ ❛ st❡♣ ❝❤❛♥❣❡ ✐♥ t❤❡ ✐rr❛❞✐❛♥❝❡ ILEDi
✱ ❛s s❤♦✇♥ ✐♥ ❋✐❣✳ ✸✳✺✳

❚❤❡ st❡❛❞②✲st❛t❡ r❡s♣♦♥s❡ ✭❜❧❛❝❦ ♣♦✐♥ts✮ ✇❛s ♦❜t❛✐♥❡❞ ✇✐t❤ ILEDi
= ILED0 ❛t s❡✈❡r❛❧ ✈❛❧✉❡s ♦❢ ILED0 ✱

✇❤❡r❡❛s t❤❡ ✐♥✐t✐❛❧ ✈❛❧✉❡s ♦❢ t❤❡ ✐rr❛❞✐❛♥❝❡ ILED0
❛r❡ ✐♥❞✐❝❛t❡❞ ❜② ❧❛r❣❡ ❜❧❛❝❦ ❝✐r❝❧❡s✳ ❚❤❡ s❤❛❞❡❞ ❛r❡❛s

✇❡r❡ ♦❜t❛✐♥❡❞ ❜② ♣❧♦tt✐♥❣ t❤❡ ♠✐♥✐♠✉♠ t♦ ♠❛①✐♠✉♠ ✈❛❧✉❡s ♦❢ t❤❡ ♠❡❛♥ ♣✐①❡❧ ♦✉t♣✉t ✈♦❧t❛❣❡s✳ ❚❤❡

❛✈❡r❛❣❡ ❞✐s♣❡rs✐♦♥ ♦❢ ❡❛❝❤ ❝✉r✈❡ (σmean) r❛♥❣❡❞ ❢r♦♠ 37.2mV ✐♥ t❤❡ ❝❛s❡ ♦❢ t❤❡ ❣r❡❡♥ ♦♥❡✱ t♦ 85.4mV ✱

✐♥ t❤❛t ♦❢ t❤❡ r❡❞ ♦♥❡✳ ✭❜✮ ❆✈❡r❛❣❡ ♣❡❛❦ r❡s♣♦♥s❡ ♦❢ t❤❡ ✶✷ ♣✐①❡❧s ✈❡rs✉s t❤❡ ❝♦♥tr❛st✳ ❚❤❡ ✈❛r✐♦✉s ❝✉r✈❡s

❝♦rr❡s♣♦♥❞ t♦ t❤❡ ❙✲s❤❛♣❡❞ ❝✉r✈❡s ✐♥ ❋✐❣✳ ✸✳✶✶✭❛✮ ✭s❛♠❡ ❝♦❧♦rs ❛♥❞ ♠❛r❦❡rs✮✳ ❚❤❡ ❝♦♥tr❛st ✐s ❣✐✈❡♥ ❜②

t❤❡ ▼✐❝❤❡❧s♦♥ ❢♦r♠✉❧❛✿ ci =
ILEDi

−ILED0

ILEDi
+ILED0

✳

✾✽
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obtained a LSB voltage of VLSB = 2.4
210 = 2.35mV , which corresponds to half of the voltage we would

have obtained by setting the high reference of the ADC at Vdd. As the pixel output signal was limited to

[1, 2.4]V , we obtained a effective resolution of the analog-to-digital conversion of 1.4V
2.35mV = 596 = 29.22,

i.e. about 9 bits.

The fact that the left part of the pink and red S-shaped curves is lower than that of the other ones was

due to the dark current of the photodiodes. The photodiode current can be divided into 2 components:

the background current Ilbg, which depends on the irradiance, and the dark current Idark, which has

a low constant value that does not depend on the irradiance. Therefore, as long as Ilbg ≫ Idark, we

can assume that Iph ≈ Ilgb and equation (3.4) still holds if we substitute ILED into Iph, whereas when

Ilbg ≪ Idark, we have Iph ≈ Idark, and Vout takes a constant value regardless of ILED.

In addition, the dispersion of the S-shaped curves from one pixel to another can be seen in the shaded

areas in Fig. 3.11(a). It is worth noting that this dispersion seems to be higher in the case of positive

contrasts. This pattern is mainly due to the generation of the current Ib and not to the pixels themselves.

As Ib is entirely conveyed to the normalizer’s output current Iout in the case of positive contrasts, its

dispersion is directly transmitted as well. This behavior can be improved by improving the dispersion of

the Ib generation cell.

In Fig. 3.11(b), the data points in Fig. 3.11(a) have been plotted versus the contrast. It can be seen

from this figure that the pixel’s response decreased almost linearly with the luminous contrast regardless

of the average luminosity, as predicted by equation (3.6). The non-linearity observed with highly negative

contrasts was due to the non-linearity of the VLSI current-to-voltage converter. The contrast resolution

Kc can be defined as the coefficient of ci in (3.6) divided by 100, i.e. Kc = −
Rf Ib
2×100 = −4.4 mV

% . As the

noise level is about 5mV (i.e. 2×LSB), contrasts as low as 2% can be detected. In addition, as the LSB

voltage VLSB is about 2.35mV, it is worth noting that a 1% contrast gave rise to a 2-bit change.

❋❛✐t❤❢✉❧♥❡ss ♦❢ t❤❡ ▼2❆P✐① ❝❤❛r❛❝t❡r✐③❛t✐♦♥ t♦ t❤❡ ▼✐❝❤❛❡❧✐s✲▼❡♥t❡♥ ♠♦❞❡❧

The absolute value of the errors observed between the peak values Vouti in Fig. 3.11(a) and the theoretical

values V ∗
outi

, based on the model for the circuit defined in Section 3.2.6, is presented in Fig. 3.12. As post-

layout simulations of the circuit showed that the current-to-voltage converter gave a non-linear response

at low current values, the theoretical values V ∗
outi

were computed by applying a look-up table of the

current-to-voltage converter to equation (3.2), with Iph = ILED instead of using equation (3.4).

It can be noted that on each S-shaped curve (each of which is presented in a different color), the

difference between the pixel output signals and the model outputs ranges from 0.1% to 8% of the whole

output range, showing a good match with the Michaelis-Menten function. Possibly due to the existence of

a mismatch between the actual response of the current-to-voltage converter and the simulated post-layout

response, the error decreased almost monotonically with the irradiance. In addition, the existence of a

greater error in the case of the red curve (ILED0
= 0.001 W

m2 ) was due to the presence of the photodiode

dark current (Idark), as explained above.

✾✾
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❋✐❣✉r❡ ✸✳✶✷✿ ❆❜s♦❧✉t❡ ✈❛❧✉❡ ♦❢ t❤❡ ❡rr♦r ❜❡t✇❡❡♥ t❤❡ ▼2❆P✐① r❡s♣♦♥s❡s ♠❡❛s✉r❡❞ ❛♥❞ t❤♦s❡ ♣r❡❞✐❝t❡❞ ❜②

t❤❡ ♠♦❞❡❧ ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ ▲❊❉ ✐rr❛❞✐❛♥❝❡✳ ❆s ♣♦st✲❧❛②♦✉t s✐♠✉❧❛t✐♦♥s ♦❢ t❤❡ ❝✐r❝✉✐t s❤♦✇❡❞ t❤❛t t❤❡

❝✉rr❡♥t✲t♦✲✈♦❧t❛❣❡ ❝♦♥✈❡rt❡r ❣❛✈❡ ❛ ♥♦♥✲❧✐♥❡❛r r❡s♣♦♥s❡ ❛t ❧♦✇ ❝✉rr❡♥t ✈❛❧✉❡s✱ t❤❡ t❤❡♦r❡t✐❝❛❧ ✈❛❧✉❡s V ∗
outi

✇❡r❡ ❝♦♠♣✉t❡❞ ❜② ❛♣♣❧②✐♥❣ ❛ ❧♦♦❦✲✉♣ t❛❜❧❡ ♦❢ t❤❡ ❝✉rr❡♥t✲t♦✲✈♦❧t❛❣❡ ❝♦♥✈❡rt❡r t♦ ✭✸✳✷✮✱ ✇✐t❤ Iph = ILED

✐♥st❡❛❞ ♦❢ ✉s✐♥❣ ❡q✉❛t✐♦♥ ✭✸✳✹✮✳ ✭❙❛♠❡ ❝♦❧♦r ❛♥❞ ♠❛r❦❡r ❛s ♣r❡✈✐♦✉s ✜❣✉r❡s✮

✸✳✷✳✶✵ ❈♦♠♣❛r✐s♦♥ ❜❡t✇❡❡♥ ▼2❆P✐① ❛♥❞ ❉❡❧❜rü❝❦ ♣✐①❡❧s

In this section, it is proposed to present a quantitative comparison between the M2APix and the Delbrück

pixel [175] implemented in the same silicon retina (see Fig. 3.2) when tested under the same conditions.

Table 3.1 lists all the values discussed in Section 3.2.9 for the M2APix and the corresponding values

obtained for the Delbrück pixel.

The Delbrück pixel reproduced non-monotonic responses with respect to the LED intensity for medium-

high luminosity, showing unreliable responses for changes higher than ±1 decade at ILED0 > 1 W
m2 .

Furthermore, the steady-state response increased with the luminosity, resulting in a higher DC output

variation and a lower effective output range. Finally, the adaptation time constant of the M2APix, which

determines the bandwidth of the output signal, can be potentially modified externally.

To show how the two types of pixel respond to small contrasts while they are still adapting to the

average luminosity, we applied the procedure presented in Section 3.2.8, but contrary to the static case

(see Section 3.2.9), they were exposed to repeated sequences of 0.5 s-long changes in the LED irradiance

(corresponding to contrasts ranging from −10 to 10%) while the average irradiance was increased by 1

or 2 decades every 5 s.

Figure 3.13 shows the time responses of one M2APix and one Delbrück pixel when exposed to two

different step sequences. Both types of pixel responded quickly to small changes (small contrasts) while

adapting to the average luminosity, regardless of the average luminosity and the changes in the luminosity

(amounting to 1 or 2 decades in this example). However, the two pixels’ responses presented some

remarkable differences:

✶✵✵
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▼2❆P✐① ❉❡❧❜rü❝❦ P✐①❡❧

❆❞❛♣t❛t✐♦♥ ❘❛♥❣❡ ✼ ❞❡❝❛❞❡s ✼ ❞❡❝❛❞❡s

❙❡♥s✐t✐✈✐t② ❘❛♥❣❡ ✷ ❞❡❝❛❞❡s ✶ ❞❡❝❛❞❡

❙❡♥s✐t✐✈✐t② ✭±0.5 ❞❡❝❛❞❡✮ 600 mV
Log(I) 600 mV

Log(I)

❆❜s♦❧✉t❡ ❈♦♥tr❛st ❘❡s♦❧✉t✐♦♥ ✭±0.5 ❞❡❝❛❞❡✮ 4.4 mV
% 5 mV

%

❊✛❡❝t✐✈❡ ❖✉t♣✉t ❘❛♥❣❡ ✭±1.5 ❞❡❝❛❞❡s✮ 1.4 V 0.8 V

❉❈ ❖✉t♣✉t ❱❛r✐❛t✐♦♥ ✭✼ ❞❡❝❛❞❡s✮ 0.1 V 0.6 V

❆✈❡r❛❣❡ ❘✐s❡ ❚✐♠❡ (ILED0
> 10−1 W

m2 ) ∼ 1ms ∼ 1ms

▼❛①✐♠✉♠ ❘✐s❡ ❚✐♠❡ (ILED0
= 10−3 W

m2 ) ∼ 100ms ∼ 30ms

▼♦♥♦t♦♥✐❝ ❘❡s♣♦♥s❡ ✭±3 ❞❡❝❛❞❡s✮ ❨❡s ◆♦

❆❞❥✉st♠❡♥t ♦❢ t❤❡ ❆❞❛♣t❛t✐♦♥ ❚✐♠❡ ❈♦♥st❛♥t ❨❡s ◆♦

❚❛❜❧❡ ✸✳✶✿ ❙♣❡❝✐✜❝❛t✐♦♥s ♦❢ t❤❡ ▼2❆P✐① ❛♥❞ ❉❡❧❜rü❝❦ ♣✐①❡❧s✳ ❚❤❡ ♠❛✐♥ ❛❞✈❛♥t❛❣❡ ✐s t❤❛t ▼2❆P✐①

r❡s♣♦♥❞s ♠♦♥♦t♦♥✐❝❛❧❧② ♦✈❡r ✈❡r② ✇✐❞❡ ✐❧❧✉♠✐♥❛♥❝❡ r❛♥❣❡ ✇✐t❤♦✉t ❛♥② ❧♦ss ♦❢ s❡♥s✐t✐✈✐t② ❛♥❞ ❝♦♥tr❛st

r❡s♦❧✉t✐♦♥✳

• The M2APix (Fig. 3.13(b)) consistently responded to any change in the light up to ±2 decades,

while the Delbrück pixel (Fig. 3.13(c)) responded asymmetrically for positive and negative changes

(see the blue line in the dotted circled area at 10 s) and nearly did not respond to a −2-decade

change (see the red line in the dotted circled area at 15 s).

• The M2APix always reached the same steady-state value Vout0 independently to the average lumi-

nosity, while the Delbrück pixel reached different steady-state values for different average luminos-

ity.

• The contrast response produced was not the same under both light-adapted and light-adapting

conditions: it depended on the change in the light. For both types of pixel, even very small contrasts

(e.g. a 2% contrast) were accurately detected when the pixel had adapted to the average luminosity

(see the blue line in the left-hand zoomed part of Figs. 3.13(b) and 3.13(c)). Conversely, when

adapting to a sudden large change in the light, the M2APix failed to detect the same 2% contrast

(see the blue line in the right-hand zoomed part of Fig. 3.13(b)) due to the logarithmic compression

imposed by the Michaelis-Menten function and the high fall time (Tf ). During this fall time (Tf ),

the contrast sensitivity of the pixel increases as the slope around the operating point increases when

moving from Vouti to Vout0 (see the blue circles in Fig. 3.5). In the same condition, the Delbrück

pixel shows a very different response: the first of the two consecutive 2% contrasts is detected with

a much higher gain than in the light-adapted condition while the second one is nearly not detected

(see the blue line in the right-hand zoomed part of Fig. 3.13(c)).

It is worth noting that the M2APix responded appropriately to a 6% contrast just after a 1-decade

change (see the red line in the right-hand zoomed part of Fig. 3.13(b)), which still corresponds to a good

✶✵✶
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❋✐❣✉r❡ ✸✳✶✸✿ ✭❛✮ ❚✇♦ s❡q✉❡♥❝❡s ♦❢ s♠❛❧❧ ❝♦♥tr❛sts ✐♥ ❛ ✷✲❞❡❝❛❞❡ ✐rr❛❞✐❛♥❝❡ r❛♥❣❡✳ ❚✐♠❡ r❡s♣♦♥s❡s ♦❢

✭❜✮ ▼2❆P✐① ❛♥❞ ✭❝✮ ❉❡❧❜rü❝❦ ♣✐①❡❧ ❬✶✼✺❪✱ ✐♠♣❧❡♠❡♥t❡❞ ✐♥ t❤❡ s❛♠❡ s✐❧✐❝♦♥ r❡t✐♥❛ ✭s❡❡ ❋✐❣✳ ✸✳✷✮✱ ✇❤❡♥

❡①♣♦s❡❞ t♦ t❤❡ ✐rr❛❞✐❛♥❝❡ s❡q✉❡♥❝❡s ✐♥ ❋✐❣✳ ✸✳✶✸✭❛✮✳ ❚❤❡ s❡q✉❡♥❝❡s ✇❡r❡ ♦❜t❛✐♥❡❞ ❜② r❡♣❡❛t✐♥❣✿ ±2% ❛♥❞

±4% ❝♦♥tr❛sts ✭❜❧✉❡ ❧✐♥❡✮✱ ±6% ❛♥❞ ±12% ❝♦♥tr❛sts ✭r❡❞ ❧✐♥❡✮✳ ❚❤❡ st❡♣s ✐♥ t❤❡ s❡q✉❡♥❝❡ ✇❡r❡ tr✐❣❣❡r❡❞

❡✈❡r② 0.5 s ❛♥❞ t❤❡ ❝❤❛♥❣❡s ✐♥ t❤❡ ❛✈❡r❛❣❡ ✐rr❛❞✐❛♥❝❡ ❡✈❡r② 5 s✳ ❋♦r t❤❡ s❛❦❡ ♦❢ ❝❧❛r✐t②✱ t❤❡ t✐♠✐♥❣ ♦❢ t❤❡

s❡q✉❡♥❝❡ ❤❛s ❜❡❡♥ s❧✐❣❤t❧② s❤✐❢t❡❞✳ ✭❚❤❡ s♣✉r✐♦✉s ♣❡❛❦s✱ s✉❝❤ ❛s t❤❛t ✇❤✐❝❤ ♦❝❝✉rr❡❞ ❛t ✶✵✳✺ s✱ ♠❛② ❤❛✈❡

❜❡❡♥ ❞✉❡ t♦ s♦♠❡ ❡rr♦r ✐♥ t❤❡ ❞❛t❛ tr❛♥s♠✐ss✐♦♥✮

contrast sensitivity under light-adapting conditions. Moreover, such contrast sensitivity can be improved

by decreasing the time constant of the current averaging block by reducing the value of the external

capacitor Cm (see Section 3.2.6 for details). In this way, the fall time Tf would be lower and the pixel’s

✶✵✷
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sensitivity would increase faster (see Section 3.2.7 for details).

✸✳✷✳✶✶ ❈♦♥❝❧✉s✐♦♥s

The results presented here show that our Michaelis-Menten analog auto-adaptive pixel (called M2APix)

can adapt automatically to any irradiance from 10−5 to 102 W
m2 , which would correspond, if the LED light

was green, to an illuminance of about 7× 10−3 and 7× 104 Lux respectively, that is from half moon on a

clear night to nearly direct sunlight. At the same time, the results obtained showed that the circuit does

not deviate from the model, even when the light suddenly changes by up to ±3 decades, which would

correspond, for instance, to shifting from a very dark overcast sky to direct sunlight.

In short, our auto-adaptive pixel can be said to have the following noteworthy features:

• adaptation to light in a 7-decade range, while remaining sensitive to changes in the light of up to

about 2 decades;

• quasi-constant steady-state response in a 7-decade range: it produces the same contrast response

whatever the average luminosity;

• no circuit deviations from the model within a ±3-decade range of the operating current;

• constant limited-range responses at any average luminosity, resulting in a lower LSB voltage and

therefore in a higher contrast resolution;

• minimum detectable contrast of 2% in the light-adapted condition and 6% in the light-adapting

condition.

Some further improvements could be made in a future version of the M2APix in the conversion stage,

by subtracting 1V from the pixel output signal before the conversion or increasing the resistance Rf of

the current-to-voltage converter in order to eventually increase the conversion range to [0, 2.4]V . This

would increase the contrast resolution nearly two-fold, giving a 4-bit change in response to a 1% contrast,

corresponding to a minimum detectable contrast of 1% in the light-adapted condition and 3% in the light-

adapting condition.

Since the M2APix makes a satisfying compromise between a high sensitivity and a wide dynamic

range, it should provide a useful tool for motion detection and optical flow processing in a very large

range of lighting conditions, from half-moonlight to full daylight. Thus, our auto-adaptive silicon retina,

or retinas composed of larger arrays of M2APix, could be employed in several fields, from event-based

applications to bio-robotics and bio-medical applications.

In the future, we plan to test our silicon retina outdoors with a suitable optical lens both at night and

in the daytime, by using it to measure the optic flow, for instance. In particular, we are willing to mount

one or more M2APix-based sensors onboard mobile and aerial robots (as in [216]) as aids to navigation

under various luminosity conditions, as well as on vehicles in the case of automotive applications.

✶✵✸
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In the paper presented here, we showed that the novel auto-adaptive pixel, called M2APix, makes a satis-

fying compromise between a high sensitivity (minimum detectable contrast of 2%) and a wide dynamic

range (7 decades) without deviating in presence of very large changes in light (±3 decades). The silicon

retina based on the M2APix pixels might therefore be used for optical flow processing in high-dynamic-

range lighting conditions, from half-moonlight to full daylight.

The next step was therefore to develop a new optic flow sensor based on this auto-adaptive retina

and test it in real operating conditions, for instance, in road environments. Such a new optic flow sensor,

together with the experimental results obtained when using it on a car-like robot, will be presented in

the next chapter.

✶✵✹
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In chapter 2, we presented some preliminary tests performed with two LMSs based on those presented

in [177,216], using a new time-of-travel method for computing the optic flow in a more robust way. The

results presented showed that such LMSs could deliver relatively high-frequency measurements robustly

with respect to the visual patterns and the vibrations present on the vehicle. However, some improve-

ments were needed to obtain robust optic flow sensors that could be embedded on vehicles for use in

ADAS systems: auto-adaptation to light, constant resolution of the optic flow measurements and onboard

implementation of the algorithm.

In chapter 3, we presented a new bio-inspired silicon retina based on a novel pixel, called M2APix, that

reproduce the Michaelis-Menten law inspired by the findings on the animal and human retina, providing

auto-adaptation to light levels in a 7-decade range and a minimum detectable contrast of about 2%.

We therefore developed a new optic flow sensor based on this auto-adaptive silicon retina, in which

an improved version of the algorithm used in the work presented in chapter 2 was implemented onboard

a micro-processor. The algorithm was improved in order to (i) obtain a constant optic flow resolution and

(ii) reduce the computational cost, allowing a high-frequency processing while delivering measurements

in a wide range and with relatively high resolution. This time, the sensors were tested on a low-cost

car-like robot instead of a real vehicle mainly due to the little availability of the latter, but also to allow

faster prototyping and sensors integration as well as more comfortable manipulation of the hardware

used during the experimental tests.

As mentioned in sections 1.3, 1.4 and 1.5, besides the effective perception of the environment around

them, autonomous vehicles also need to effectively perceived their motion to correctly estimate their

trajectory (odometry) and performed closed-loop maneuvers. The sensing technologies traditionally used

✶✵✺
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for this task on mobile robots and automobiles are wheel sensors, inertial measurement units (IMUs) and

global navigation satellite systems (GNSSs), such as standard or differential GPSs, but these sensors

often suffer from drift, low resolution, high noise levels or limited applicability to specific environments

[278,279]. In fact, apart for the GNSSs that give directly the vehicle’s absolute position but only outdoors

and with low resolution, none of these sensors can directly provide either position or velocity information

with respect to a local inertial frame. Several approaches based on visual odometry have therefore been

recently developed using various visual sensors, such as standard cameras, optical-mouse sensors and

custom-made optic flow sensors (see section 1.9). A remarkable example of the potential interest of

visual sensors for measuring the vehicle’s longitudinal and lateral velocity is given by the Correvit optical

sensors [280], which are used, for instance, on race cars as well as on prototype vehicles as ground-truth

reference values [281].

In the following paper, we will present (i) the new optic flow sensor based on the M2APix pixel and

the new optic flow algorithm, and (ii) its application to ground visual odometry on a low-cost car-like

robot, called BioCarBot, which stands for Bio-inspired visually-guided Car-like Robot. The experimental

results obtained indoors and outdoors in several operating conditions (light levels, ground textures, vi-

brations, etc) are shown and discussed in details, and they are also compared with those obtained using

measurements based on an Inertial Measurement Unit (IMU) and a motor’s speed sensor.

The details on the new algorithm implementation and on the electronics used on the BioCarBot robot,

as well as the supplementary data of the article, are given in Appendix C.

✶✵✻
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Title: “Minimalistic optic flow sensors applied to indoor and outdoor visual odometry on a

car-like robot”

Article submitted in February 2016 in Bioinspiration & Biomimetics

Authors: Stefano Mafrica,✶, ✷ Alain Servel✷ and Franck Ruffier✶

✹✳✷✳✶ ❆❜str❛❝t

Here we present a novel bio-inspired optic flow (OF) sensor and its application to ground visual odometry

on a low-cost car-like robot called BioCarBot. The minimalistic OF sensor was robust to high-dynamic-

range lighting conditions and to various visual patterns encountered thanks to its M2APIX auto-adaptive

pixels and the new cross-correlation OF algorithm implemented. The low-cost car-like robot estimated

its velocity and steering angle, and therefore its position and orientation, via an Extended Kalman Filter

(EKF) using only two downward-facing OF sensors and the Ackerman steering model. Indoor and outdoor

experiments were carried out, in which the robot was driven in the closed-loop mode based on the velocity

and steering angle estimates. The experimental results obtained show that our novel OF sensor can

deliver high-frequency measurements (> 300Hz) in a wide OF range (1.5 to 15 rad
s

) and in a 7-decade

high-dynamic light level range. The OF resolution was constant and could be adjusted as required (up

to 0.05 rad
s

), and the OF precision obtained was relatively high (standard deviation of 0.17 rad
s

with an

average OF of 4.5 rad
s

, under the most demanding lighting conditions). An EKF-based algorithm gave the

robot’s position and orientation with a relatively high accuracy (maximum errors outdoors at a very low

light level: 0.95m and 0.58 rad over about 32m and 8π rad) despite the low-resolution control systems

of the steering servo and the DC motor, as well as a simplified model identification and calibration.

The minimalistic OF-based odometry results were lastly compared to those obtained using measurements

based on an Inertial Measurement Unit (IMU) and a motor’s speed sensor.

✹✳✷✳✷ ■♥tr♦❞✉❝t✐♦♥

Optic flow (OF) has been studied by many authors during the last few decades [100,109,282,283]: var-

ious OF sensors [177, 192, 209] and algorithms [98, 99, 111] have been developed and used for robotic

applications such as autonomous navigation [233,284], speed control [242,285], simultaneous localiza-

tion and mapping (SLAM) [21,22], and visual odometry (VO) [286–289].

Although standard cameras have been widely used in this context, they have often proved to be

unsuitable for OF computation purposes, especially outdoors, because of their low dynamic range, their

✶❆✐①✲▼❛rs❡✐❧❧❡ ❯♥✐✈❡rs✐té✱ ❈◆❘❙✱ ■❙▼ ❯▼❘ ✼✷✽✼✱ ✶✸✷✽✽ ▼❛rs❡✐❧❧❡✱ ❋r❛♥❝❡
✷P❙❆ P❡✉❣❡♦t ❈✐tr♦ë♥✱ ❘♦✉t❡ ❞❡ ●✐s②✱ ✼✽✶✹✵ ❱é❧✐③②✲❱✐❧❧❛❝♦✉❜❧❛②✱ ❋r❛♥❝❡
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low frame rate and the high computational cost of the image processing. In addition, in camera-based

VO and SLAM applications, small motion is usually assumed to occur between frames, which is often not

the case, and a “scale factor” is also required to convert the visual information (e.g. the OF) into metric

measurements, which is often provided by other sensors [289, 290]. These issues can be overcome by

using high-dynamic-range, high-frame-rate cameras and stereo-vision systems, but these solutions require

even larger computational resources and are too expensive for most robotic and automotive applications.

Ethological findings on insects have shown that complex navigation tasks such as terrain following

[291, 292] ( [239] for a review), speed control [92] and odometry [146] are performed by many flying

insects, such as flies and bees, on the basis of OF cues although their compound eyes have a very poor

spatial resolution in comparison with our modern high-resolution cameras. In addition, it has been

behaviorally shown that nocturnal insects use these OF cues also for flight control in dim light conditions

[293].

Custom-made bio-inspired visual sensors have therefore been developed using technologies of various

kinds [183,219,294,295] in order to deal with the issues encountered with standard cameras. However,

designing effective low-cost OF sensors is a real challenge, and additional information given by other

sensors or based on assumptions about the environment is still required to convert the OF to distance

and/or velocity values. In addition, OF alone is generally thought to be unsuitable for VO purposes

when working in complex environments where the sweeping angular speed between the sensor and the

objects that induce the OF is subjected to sharp, large variations, especially in the presence of occluded

objects [289,290].

Visual odometry for mobile robots and automobiles has been recently developed using downward-

facing standard cameras [296–300] and optical mice [301–303], as well as custom-made OF sensors

[304,305], since the visual patterns and light conditions encountered in this way are relatively uniform,

and the distance between the sensors and the ground usually changes slightly. In most cases, the authors

used the car-like non-holonomic constraint to estimate the vehicle’s position and orientation using simple

methods involving low computational costs.

However, solutions based on standard cameras [297, 300] still fail to cope with high-dynamic-range

lighting conditions, as well as being impeded by the low frame rate and the high computational cost of

the image processing: only a narrow range of low velocity measurements can often be obtained using

this approach.

Solutions based on optical mice [301, 303] are certainly very cheap and deliver high-frequency mea-

surements, but their main disadvantage is that they have to operate very near the ground to be able to

work properly, and are therefore unsuitable for use in environments with an uneven terrain. In addition,

these sensors are usually highly sensitive to the lighting conditions and like standard cameras, deliver

measurements in a rather narrow velocity range.

Solutions based on custom laser or LED-lighted OF sensors [304,305], have been developed in order

to reduce the sensitivity to height and improve the performances while traveling over terrains of various

✶✵✽
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kinds, but no tests were run by these authors under various lighting conditions and under the robot’s

normal driving conditions.

Physiological studies on vertebrates have shown that the retina obeys a process of adaptation whereby

each photoreceptor’s response is normalized by a representative value of the average local luminosity, in

line with the Michaelis-Menten equation [36, 47]. In the light of these and subsequent findings, many

efforts have been made to mimic the Outer Plexiform Layer (OPL) circuitry in silicon retinas [171,175],

or to implement the model in software for image processing [179, 272]. More recently, we presented a

novel auto-adaptive pixel called M2APix, which stands for Michaelis-Menten Auto-Adaptive Pixel, that

auto-adapts in a 7-decade range and responds appropriately to both small and large contrasts [261].

Several versions of Local Motion Sensors (LMSs) have been developed at our laboratory [122, 177,

216, 242]: local 1-D OF measurements have been obtained using very few pixels and applying methods

based on findings previously obtained on the fly’s visual system [62].

❋✐❣✉r❡ ✹✳✶✿ ✭❛✮ P✐❝t✉r❡ ♦❢ t❤❡ ❧♦✇✲❝♦st ❝❛r✲❧✐❦❡ r♦❜♦t ❝❛❧❧❡❞ ❇✐♦❈❛r❇♦t✳ ✭❜✮ P✐❝t✉r❡ ♦❢ ♦♥❡ ♦❢ t❤❡ ✷ ❖❋

s❡♥s♦rs ✉s❡❞ ♦♥ t❤❡ r♦❜♦t✳ ✭❝✮ P✐❝t✉r❡ ♦❢ t❤❡ ✐♥❞♦♦r t❡st ❡♥✈✐r♦♥♠❡♥t ❡q✉✐♣♣❡❞ ✇✐t❤ ❱✐❝♦♥ ❝❛♠❡r❛s✳
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♠❛✐♥❧② ♦❢ ❛s♣❤❛❧t✱ ✐♥❝❧✉❞❡❞ ❤♦❧❡s✱ ❣r❛✈❡❧ ❛♥❞ ❛ st❡❡❧ r❛✐❧✳

In this paper, we present:

• a novel bio-inspired OF sensor giving measurements which are robust to high-dynamic-range light-

ing conditions and to the various visual patterns encountered;

• an application to visual odometry, in which these minimalistic OF sensors were mounted on a

✶✵✾
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low-cost car-like robot called BioCarBot (see Fig. 4.1) and tested both indoors and outdoors in a

7-decade light-level range.

An Extended Kalman Filter (EKF) was used to estimate the robot’s velocity and steering angle using

only the OF measurements delivered by two downward-facing sensors, as presented in [306] in the case

of a single indoor environment. In the present paper, the tests were extended to various indoor (see

Supplemental Video 1) and outdoor (see Supplemental Video 2) testing conditions, including various

light levels, ground textures, trajectories and vibrations, and the robot’s absolute position and orientation

were estimated in real time using the EKF estimates and the Ackerman steering model. These position

and orientation estimates were lastly compared with those obtained by applying the same model to the

measurements from an Inertial Measurement Unit (IMU) and a motor’s speed sensor.

The results presented here show that our novel OF sensors were robust to changes in light in a 7-

decade range (from about 10−10A to 10−3A of the photodiode current), including sharp changes of up

to 2 decades occurring within 0.5 s. Although low-cost, low-resolution servos and motors and a simplified

model identification and calibration method were used, the robot was able to estimate its velocity and

steering angle accurately. The robot’s position and orientation were estimated both indoors and outdoors

while it was traveling through unstructured environments (on ground consisting of asphalt, gravel, sand,

and leaves, including shadows and holes), both during the day and at night. In addition, the visual

odometry method was robust to vibrations liable to change the sensors’ local height by up to 6% (i.e.

±10mm over 175mm).

In Sec. 4.2.3, we will introduce the principles underlying a 2-pixel LMS as well as the method and

the hardware used to construct our novel OF sensor. In Sec. 4.2.4, we will present the BioCarBot robot,

the simplified model used to estimate the robot’s velocity and steering angle, and the control scheme

implemented on the robot. In Sec. 4.2.5, we will present and discuss the results obtained in the indoor

and outdoor experiments performed. Some conclusions will be reached in the last section.

✹✳✷✳✸ ◆❡✇ ■♠♣❧❡♠❡♥t❛t✐♦♥ ♦❢ t❤❡ ❱✐s✉❛❧ ▼♦t✐♦♥ ❙❡♥s♦r
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A defocused lens placed in front of 2 photoreceptors determines the interreceptor angle ∆ϕ between the

2 photoreceptors’ axes and gives them a Gaussian angular sensitivity with an acceptance angle ∆ρ (Fig.

4.2(a)), on similar lines to what occurs in many insects’ eyes. A visual contrast moving in front of the

LMS will induce a time lag τ between the photoreceptors’ output signals (Fig. 4.2(b)). After measuring

this time lag, the optic flow can be computed as follows:

ω(t) = ±
∆ϕ

τ(t)
, ✭✹✳✶✮

where the sign depends on the orientation of the sensor’s axis and on which of the two output signals is

delayed.

✶✶✵
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♠♦✈✐♥❣ ✐♥ ❢r♦♥t ♦❢ t❤❡ ▲▼❙ ❝❛♥ ❜❡ ❝♦♠♣✉t❡❞ t❛❦✐♥❣ ω(t) = ∆ϕ
τk(t)

✱ ✇❤❡r❡ ∆ϕ ✐s t❤❡ ✐♥t❡rr❡❝❡♣t♦r ❛♥❣❧❡ ❛♥❞

τ ✐s t❤❡ t✐♠❡ ❧❛❣ ❜❡t✇❡❡♥ t❤❡ t✇♦ ♣❤♦t♦r❡❝❡♣t♦rs✬ ♦✉t♣✉t s✐❣♥❛❧s✳ ✭❜✮✱✭❞✮ ❇❧♦❝❦ ❞✐❛❣r❛♠ ♦❢ t❤❡ ♥♦✈❡❧ ❖❋

❛❧❣♦r✐t❤♠ t❤❛t ❞❡t❡r♠✐♥❡s t❤❡ t✐♠❡ ❧❛❣ τk ❜❡t✇❡❡♥ s❡✈❡r❛❧ τi ✐♥ ❛ t✐♠❡ ✇✐♥❞♦✇ wτ ✱ ❣✐✈✐♥❣ t❤❡ ♠❛①✐♠✉♠

❝r♦ss✲❝♦rr❡❧❛t✐♦♥ ❜❡t✇❡❡♥ t❤❡ ❞❡❧❛②❡❞ ❛♥❞ ♥♦♥✲❞❡❧❛②❡❞ s✐❣♥❛❧s✳ ❚❤❡ ❖❋ s❡♥s♦r✬s ♦✉t♣✉t ❞♦❡s ♥♦t r❡s✉❧t

❞✐r❡❝t❧② ❢r♦♠ t❤❡ ❝♦rr❡❧❛t✐♦♥✱ ❛s ✐♥ t❤❡ ❘❡✐❝❤❛r❞t✲❍❛ss❡♥st❡✐♥ ♠♦❞❡❧ ❬✼✻❪✱ ❜✉t ❢r♦♠ t❤❡ r❛t✐♦ ❜❡t✇❡❡♥ t❤❡

✐♥t❡rr❡❝❡♣t♦r ❛♥❣❧❡ ∆ϕ ❛♥❞ t❤❡ t✐♠❡ ❧❛❣ τk✱ ✐✳❡✳ ω(t) =
∆ϕ
τk(t)

✳

The acceptance angle ∆ρ, namely the full width at half-height of the Gaussian angular sensitivity,

determines the cut-off frequency of the low-pass spatial filter as follows: Fc ≈ 1
∆ρ [307]. On the one

hand, achieving a tight ∆ρmakes it possible for the photoreceptors to respond to higher spatial-frequency

contrasts but on the other hand, when ∆ρ < ∆ϕ, it is difficult to estimate the time lag τ because the

2 output signals are rarely correlated in a short time window. Therefore, as occurs in some diurnal

insects [61], we adjusted the distance between the plane of the lens and that of the photoreceptors in

order to obtain ∆ρ = ∆ϕ.

◆❡✇ ❈r♦ss✲❈♦rr❡❧❛t✐♦♥ ▼❡t❤♦❞ ❢♦r ❈♦♠♣✉t✐♥❣ t❤❡ ❖❋

To compute the 1-D OF ω, the time lag τ between 2 neighboring pixels’ output signals was estimated

using a cross-correlation method inspired by the Reichardt-Hassenstein correlator model [76]. In the

method presented here, the OF sensor’s output did not result directly from the correlation, as in the

Reichardt-Hassenstein model, but from the ratio between the interreceptor angle ∆ϕ and the time lag τk

giving the maximum cross-correlation between the delayed and non-delayed signals, i.e. ω(t) = ∆ϕ
τk(t)

, on

similar lines to the method proposed in [123].

First the 2 pixels’ output signals (VPh1
, VPh2

) were sampled and band-pass filtered (V ′
Ph1

, V ′
Ph2

) at

fl = 3Hz and fh = 30Hz , and the following pseudo-algorithm was then applied (Fig. 4.2(c-d)):

1. delay one of the two filtered signals (e.g. V ′
Ph1

(t)) by the time τi;

2. compute the Pearson correlation coefficients between the delayed (e.g. V ′
Ph1

(t − τi)) and non-

✶✶✶
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delayed signals (e.g. V ′
Ph2

(t)) in a fixed time window wCorrPh;

3. repeat step 1 and 2 for every τi (i = 1, . . . , n) in a fixed time window wτ ;

4. set τ at a value equal to the time lag τk giving the maximum cross-correlation coefficient, as long

as this maximum is greater than the fixed value ρthr;

5. compute the OF ω using the equation (4.1) (or set ω at NaN if the maximum cross-correlation

coefficient is less than ρthr).

The threshold value of the cross-correlation coefficients (̺thr) directly reflects the reliability and the

robustness of the OF measurements: the higher ̺thr is, the more reliable and robust the measurements

will be, but in the presence of noise, the lower the refresh rate will be.

The time window of the signals (wCorrPh) determines the bandwidth of the OF measurements,

whereas the number of samples (n) in the time window determines the reliability of the correlation

coefficients: the smaller wCorrPh is, the larger the bandwidth will be, and the higher n is, the higher the

reliability will be.

In order to obtain a constant resolution ∆ω, the time lags were chosen as follows:

τi =
∆ϕ

|ω∗
i |
, ✭✹✳✷✮

where ω∗
i are the desired OF measurements, which are linearly separated by the resolution ∆ω∗ required.

The signals can then be delayed by the time τi elapsing between two sampling steps, by linearly interpo-

lating the signals sampled.

❍❛r❞✇❛r❡ ❛♥❞ ❙♦❢t✇❛r❡ ■♠♣❧❡♠❡♥t❛t✐♦♥

In this study, we used the auto-adaptive silicon retina presented in [261] soldered onto a tiny printed

circuit board (PCB) on which an optical lens casing was mounted (Fig. 4.3).

❋✐❣✉r❡ ✹✳✸✿ P✐❝t✉r❡ ♦❢ t❤❡ ❛✉t♦✲❛❞❛♣t✐✈❡ s✐❧✐❝♦♥ r❡t✐♥❛ ❝♦♠♣r✐s✐♥❣ t❤❡ ✶✷ ▼2❆P✐① ♣✐①❡❧s ❬✷✻✶❪ s♦❧❞❡r❡❞

♦♥t♦ ❛ t✐♥② P❈❇ ♦♥ ✇❤✐❝❤ t❤❡ ♦♣t✐❝❛❧ ❧❡♥s ❝❛s✐♥❣ ✇❛s ♠♦✉♥t❡❞✳

The M2APix pixel, which stands for Michaelis-Menten Auto-Adaptive Pixel, can auto-adapt in a 7-

decade range and responds appropriately to small contrasts, such as ±2%, as well as large changes in

light, such as ±3 decades [261]. In the chip used here, the analog low-pass filter had a cut-off frequency

✶✶✷



✹✳✷✳ ❆rt✐❝❧❡

of 100Hz (instead of 300Hz used in [261]), giving a minimum sampling frequency of 200Hz in order

to prevent the occurrence of aliasing.

The optical lens used here was taken from a Raspberry-Pi camera (focal length: 2mm), while the lens

casing was custom made using a 3D printer to precisely adjust the distance between the plane of the lens

and that of the pixels during the calibration phase. The interreceptor angle ∆ϕ and the acceptance angle

∆ρ were measured at ∆ϕ ≈ ∆ρ ≈ 3.6o using the method presented in [177], giving a cut-off frequency

of the low-pass spatial filter Fc ≈ 1
∆ρ ≈ 0.28 cycles

deg
[307].

The OF algorithm presented in section 4.2.3 was implemented by setting:

• the threshold on the cross-correlation coefficients ̺thr = 0.99;

• the number of pixels signals samples n = 70, giving a signal time window for the cross-correlation

computation wCorrPh = 0.21 s;

• the number of time lags m = 30, because a larger number would cause saturation of the CPU load

since the implementation of the algorithm was not optimized.

Depending on the velocity range required, the time lag window wτ ranged from 6.3ms to 63ms in

order to obtain OF measurements ωi ranging from 1 to 15 rad
s

and a resolution ∆ω∗ ranging from 0.05 to

0.5 rad
s

. In the experiments presented here, the OF range was set prior to each test at the smallest range

comprising all the reachable OF values given the robot’s velocity and steering angle commands and the

sensors’ height, in order to obtain the highest OF resolution given the computational constraint on the

total number of possible time lags at each time step (m = 30).

We note that having a very high threshold on the cross-correlation coefficients (̺thr = 0.99) does

not imply that the 2 neighboring signals have to be identical but rather that they have to be linearly

dependent, i.e. there might be a gain and an offset between them. Thus, the output of our OF algorithm,

i.e. the OF measurements, nearly does not depend on the color, intensity and spatial frequency of visual

patterns encountered, i.e. on the amplitude and shape of the pixels’ temporal signals produced, as long

as these signals fall in the bandwidth of the band-pass temporal filter (see section 4.2.3). In other words,

we can say that the pattern-based noise is very low as long as the visual patterns are not completely

uniform and have spatial frequency components lower than Fc.

The OF algorithm was then applied to every pair of adjacent pixels in each of the two 6-pixel rows

(see Fig. 2(b) in [261]), giving 10 local 1-D OF measurements within a field of view of about 18o. The

Visual Motion Sensor (VMS) was therefore composed of 10 2-pixel LMSs and the median value ωm of the

10 OF measurements ωi was used as the actual output of the VMS to robustly filter out possible outliers.

✹✳✷✳✹ ❇✐♦❈❛r❇♦t✿ ❛ ❇✐♦✲■♥s♣✐r❡❞ ❱✐s✉❛❧❧②✲●✉✐❞❡❞ ❈❛r✲▲✐❦❡ ❘♦❜♦t

❚❤❡ ❈❛r✲▲✐❦❡ ❘♦❜♦t

Figure 4.1 shows a picture of: the BioCarBot robot, one of the 2 VMSs used and the indoor and outdoor

testing environments equipped with a Vicon motion-capture system.
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The present odometry method was tested using a car-like robot based on the 2WD Racecar Kit pro-

vided by Minds-I Robotics, which was chosen despite the low resolution of the servo and motor control

because of its modularity and low price (US$ 275). The car-like robot was composed of a 1/10-scale

car body (419 × 203 × 114mm), one Hitec HS-311 standard servo coupled to a steering hub, one 5000-

rpm DC motor connected to a 300-A electronic speed controller (ESC), one 7.2-Volt 3000-mAh Ni-Cd

rechargeable battery, one mechanical slip differential and four 90mm-diameter crawler wheels.

The embedded electronics included one Nanowii board (Flyduino) featuring a ATmega32u4 16-MHz

CPU microcontroller (Atmel) and a MPU-6050 inertial measurement unit (IMU) comprising a 3-axis gyro-

scope and a 3-axis accelerometer (InvenSense) and one Overo IronSTORM computer-on-module (COM)

(Gumstix) featuring a 1-GHz CPU DM3730 processor (Texas Instruments) comprising an ARM Cortex-A8

architecture and a C64x digital signal processor (DSP).

Thanks to the modularity of the robot’s structure, 2 identical VMSs (Fig. 4.3(b)) were attached to the

robot’s frame on both sides of its body, aligned with the rear wheel axis (Fig. 4.1(a)). To facilitate the

sensors’ installation, we used the same testing board as that which was used in the study presented in

[261] to connect the VMSs to the Nanowii board (Fig. 4.1(b)). An OSRAM BPX65 photodiode connected

to an analog amplifier circuit was also included on the testing board next to the VMS in order to measure

the effective light levels of the scene.

To obtain the ground-truth values, the 3-D robot’s pose ([X Y Z αβ γ]T ) was measured by means of a

Vicon motion-capture system thanks to the infrared markers attached to the robot’s frame (Fig. 4.1(a)).

Indoor experiments were performed in the flying arena at our laboratory [308], whereas 4 individual

Vicon cameras each mounted on a tripod were used outdoors (Fig. 4.1(c-d)).

❈❛r✲▲✐❦❡ ❘♦❜♦t ▼♦❞❡❧✐♥❣

As the robot’s velocity was relatively low and the robot did not have any suspension system, we focused

here on the 2-D kinematic model for a car-like robot moving on a flat surface. Figure 4.4 shows the

kinematic diagram of the BioCarBot with the 2 VMSs installed on both sides, as depicted in Fig. 4.1(a).

Let us take the inertial frame < I > having the x and y axes lying on the local ground plane, with

the robot’s body frame < B > placed in the middle of the rear wheels’ axis. Two VMSs were placed at

xl = [xl yl zl]
T and xr = [xr yr zr]

T with respect to < B > (xl = xr = 0mm, yl = −yr = 140mm,

zl = zr = 125mm), respectively, facing downwards at a height of hl, hr, respectively, from the ground

(hl = hr = h = 175mm) (Fig. 4.1(a),4.4(a)). As the sensors’ frames < l >, < r > were taken to be

parallel to the body frame < B >, we can consider all the position and velocity vectors projected onto

< B >.

The ground OF can be measured using the method presented in section 4.2.3 thanks to the no-skidding

assumption, which guarantees that Vx >> Vy with any velocity vector V = [Vx Vy 0]
T located near the

line passing through the two rear wheel/ground contact points. Therefore, the OF measured between the
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❋✐❣✉r❡ ✹✳✹✿ ✭❛✮ ❑✐♥❡♠❛t✐❝ ❞✐❛❣r❛♠ ♦❢ t❤❡ r♦❜♦t ♠♦✈✐♥❣ ♦♥ ❛ ✢❛t s✉r❢❛❝❡✳ ✭❜✮ ❑✐♥❡♠❛t✐❝ ❞✐❛❣r❛♠ ♦❢ ♦♥❡

❖❋ s❡♥s♦r✳

i− 1-th and i-th pixels of each VMS can be written as follows:

ωi = −
Vix sin

2 ϕi
h

, ✭✹✳✸✮

where Vi = [Vix Viy 0]
T is the velocity vector of the vector xi = [xi yi zi]

T (zi ≈ −h) giving the position

of the intersection point Pi between the i-th pixel axis and the ground plane with respect to the sensor’s

frame, i.e. < l > or < r >, and ϕi is the angle between xi and the x-axis of the sensor’s frame (Fig.

4.4(b)).

Since the sensors’ frames< l >, < r > were taken to have their x-axis aligned with the rows of

pixels of each VMS (i.e. yi ≈ 0) and to be parallel to < B > (Fig. 4.4(a),(b)), the position vectors of

the intersection points Pi with respect to < B > can be written as xli = xl + xi = [xi yl zl − h]
T and

xri = xr +xi = [xi yr zr −h]
T , for the left and right sides, respectively, and their corresponding velocities

are given as follows:










V lix = Vl = V − ylΩ

V rix = Vr = V − yrΩ

, ✭✹✳✹✮

where V, Ω are the robot’s longitudinal and angular velocity, respectively (Fig. 4.4(a)).

By combining equations (4.3) and (4.4), we obtain a set of redundant linear equations that relate

the local OF measurements ωi to the robot’s longitudinal and angular velocity V, Ω, which can be used

for odometry purposes with any wheeled robot that satisfies the no-skidding assumption, regardless how

the robot is actuated. However, if we are interested in controlling the robot in closed loop, the dynamic

equations relating V, Ω to the specific control parameters should be included into equation (4.4) for

better tracking performances.

Since we are dealing here with a car-like robot which is controlled by a DC motor, giving the longitu-

dinal velocity V , and a steering servo, giving the steering angle φ, the angular velocity Ω can be computed

as follows, according to the Ackermann steering geometry [264] (Fig. 4.4(a)):
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Ω =
tanφ

L
V, ✭✹✳✺✮

where L(= 255mm) is the distance between the rear and front wheel axes (Fig. 4.1(a)).

By substituting the median value of the OF measurements obtained with each VMS ωlm, ω
r
m into (4.3)

and combining equations (4.3), (4.4) and (4.5), the following equation relating the output ζ = [ωlm ω
r
m]T

to the state ξ = [V φ]T is obtained:

ζ =





ωlm

ωrm



 ≈





(L−yl tanφ) sin2 ϕl
m

hL

(L−yr tanφ) sin2 ϕr
m

hL



V = h(ξ), ✭✹✳✻✮

where ϕlm and ϕrm are the orientation of the pixel’s axis corresponding to the median OF values ωlm and

ωrm, respectively.

Lastly, the dynamics of V and φ, which mostly depend on the dynamics of the DC motor and the

steering servo, respectively, were identified in the form of two independent first-order systems using the

ground-truth measurements:

ξ̇ ≈ Aξ +Bu = f(ξ,u). ✭✹✳✼✮

where A = diag(a1, a2), B = diag(b1, b2). The values of A and B were identified using the slower time

constants as follows: a1 = −b1 = −2.15, a2 = −b2 = −4.87.

It is worth noting that the identified model given in equation (4.7) does not take into account the

non-linearities which characterize the conversion from the actual control inputs, i.e. the values delivered

to the ESC and the servo controller, to the model input u, such as, for instance, the dependency of the

DC motor’s speed to the battery charge level and the backlash in the steering system’s geometry. Such

a simplified model, therefore, would not be accurate enough to be used directly for odometry purposes,

however we want to show here that it is sufficient to obtain good odometry results when applied to an

Extended Kalman Filter (EKF) using the measurements delivered by our novel OF sensors.

❊❑❋ ❛♥❞ ❈♦♥tr♦❧ ❙②st❡♠

❋✐❣✉r❡ ✹✳✺✿ ❇❧♦❝❦ ❞✐❛❣r❛♠ ♦❢ t❤❡ ❡st✐♠❛t✐♦♥ ❛♥❞ ❝♦♥tr♦❧ s❝❤❡♠❡ ✐♠♣❧❡♠❡♥t❡❞ ♦♥ t❤❡ ❇✐♦❈❛r❇♦t r♦❜♦t✳
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In order to obtain a robust continuous estimation of the robot’s longitudinal velocity and steering an-

gle (V, φ), an Extended Kalman Filter (EKF) based on the discrete approximation of the model presented

in (4.7),(4.6) was implemented, taking the median values of the 10 local OF measurements (ωlm, ω
r
m) to

be actual measurements.

The first-order discrete approximation for the model presented in (4.7) was taken to be as follows:























ξk = f̂(ξk−1,uk−1,wk−1) =

= [f(ξk−1,uk−1) +wk−1]∆t+ ξk−1

ζk = ĥ(ξk,νk) = h(ξk) + νk

, ✭✹✳✽✮

where the index k denotes the k-th sampling period (i.e., t = k∆t); w,ν denotes the model and the

measurement noise, respectively, and they are assumed to be independent white noises and to have

normal probability distributions, i.e. p(w) ∼ N(0, Q) and p(ν) ∼ N(0, R), where Q = diag(σ2
V , σ

2
φ) and

R = diag(σ2
l , σ

2
r) are covariance matrices. The assumption that Q and R had normal and uncorrelated

distributions was adopted on the basis of what was observed statistically during several experimental

tests with trajectories of various kinds (see section 4.2.5). The elements of R and Q were set at about

(∆ω
∗

2 )2 and 0.012, respectively, for the indoor tests and about ∆ω∗ and 0.022, respectively, for the outdoor

tests.

Because of the backlash and other uncertainties, we did not have a very clear picture of the motor

and steering control inputs u to the system. The real system inputs were therefore assumed to be equal

to the outputs from the controller, i.e. uk−1 = ξ̄k−1 (see equation (4.9)).

The initial estimate of the state ξ̂0 was set at zero, while the initial estimate of the error covariance

matrix P0 was set at the identity matrix. When there were no measurements available on at least one of

the robot’s sides, i.e. no ωlm or ωrm, the Kalman gain Kk was set at zero, so that it was still possible to

have an estimation of ξk based on the “a priori” prediction ξ̂−k . In that case, a timeout was set at 0.5 s,

after which the EKF was reinitialized and the robot was stopped. Such an event happened only in the

few cases where the robot drove for a while on a non-textured area of the floor (e.g. the white or black

areas in Fig. 4.1(b)), which never happened in the tests presented here.

The robot’s longitudinal velocity and steering angle (ξ = [V, φ]T ) were controlled in the closed-loop

mode using their estimates (ξ̂ = [V̂, φ̂]T ) and the values required (ξ∗ = [V ∗, φ∗]T ) via a proportional and

integral (PI) controller (Fig. 4.5):

ξ̄ = KP (ξ
∗ − ξ̂) +KI

∫

(ξ∗ − ξ̂), ✭✹✳✾✮

where KP = diag(0.5, 0.4) and KI = diag(2.5, 2).

We note that the EKF and the PI controller were applied on the state ξ = [V, φ]T instead of ξ = [V, Ω]T

in order to obtain a more robust estimate of φ, and therefore better closed-loop trajectories. Also, a

feedforward term could be added to the PI controller to increase the tracking performances/accuracy,

although it was not included here since no significant improvements were obtained.

✶✶✼
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Experiments were carried out both indoors (see Online Video 1) and outdoors (see Online Video 2) using

various floor patterns and trajectories to test the performances of the OF sensors as well as the method

of estimation and control presented here.

Figure 4.1 shows two examples of test environments, indoors (Fig. 4.1(c)) and outdoors (Fig. 4.1(d))

at the flying arena at our laboratory. In the tests presented here, the car-like robot followed paths forming

a circle, a square and a figure of eight. The floors used in the indoor tests showed patterns of various

colors and contrasts, from small and large high-frequency contrasts to large low-frequency contrasts. The

ground used in the outdoor tests, which consisted mainly of asphalt, included holes, gravel and a steel

rail.

The M2APix output signals were sampled at a frequency of 333Hz (∆t = 3ms) by the on-chip ADC

(see [261] for details), acquired by the Nanowii board via SPI communication and transmitted to the

computer-on-module (COM) via serial communication (see section 4.2.4 for details). The OF algorithm

presented in Sec. 4.2.3 as well as the estimation and control scheme shown in Fig. 4.5 were run at

the same rate on the COM. The Linux-based program running on the COM was entirely generated in

the Matlab/Simulink environment using the RT-MaG toolbox [308], a custom-made toolbox for real-time

applications developed at our laboratory. The ground host-PC program conveys the control set points

V ∗, φ∗ to the robot’s COM and receives data from the robot’s COM and the Vicon system using the RT-

MaG toolbox. Estimates of the absolute robot’s position X̂ and orientation θ̂ were lastly computed in real

time by integrating the equations provided in the Ackermann model [264] using the EKF estimates V̂ , φ̂

as inputs to the model.

To compare the minimalistic odometry results obtained when using the OF measurements with those

obtained when using inertial measurements, the estimates of the absolute robot’s position and orientation

X̂IMU , θ̂IMU were also computed offline using the measurements acquired from the MPU-6050 IMU

([aTIMU Ω
T
IMU ]

T = [ax ay az Ωx Ωy Ωz]
T ) and the measurements of the DC motor’s speed ΩDC acquired

by a hall-effect sensor attached to the motor’s shaft. Several methods have been proposed through the

years to perform odometry using inertial measurements based on specific dynamic models of the IMU

used, in particular to handle the varying bias of the gyroscopes [309, 310], but these methods require

an accurate identification and calibration of the models used. Here, in order to have a meaningful

comparison with our minimalistic OF-based method, estimates of the robot’s velocity and steering angle

V̂IMU , φ̂IMU were obtained by applying an EKF to the same dynamical model, e.g. equation (4.7), while

using the following output model:✸

✸◆♦t❡ t❤❛t ✐♥ t❤❡ ✜rst ❡q✉❛t✐♦♥ ✐♥ ✭✹✳✶✵✮ t❤❡r❡ ✐s ♥♦ ❝♦♥tr✐❜✉t✐♦♥ ♦❢ ΩIMU ❜❡❝❛✉s❡ t❤❡ ❜♦❞② ❢r❛♠❡ < B > ✇❛s t❛❦❡♥ t♦

❜❡ ❝♦✐♥❝✐❞❡♥t t♦ t❤❡ ■▼❯ ❢r❛♠❡✳
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ζIMU =











ax

Ωz

ΩDC











≈











a1V + b1u1 + g sinβIMU

tanφ
L
V

kg
2πrV











= hIMU (ξ), ✭✹✳✶✵✮

where g(= 9.81 m
s2
) is the gravity acceleration, r(= 14mm) is the radius of the robot’s wheels, and

kg(= 3.4) is the transmission gear ratio. The angle βIMU gives the rotation about the y-axis between

the body frame < B > and the inertial frame < I > and was computed by integrating the following

equations:✹

Θ̇IMU =











α̇IMU

β̇IMU

γ̇IMU











=











1 sinαIMU tanβIMU cosαIMU tanβIMU

0 cosαIMU − sinαIMU

0 sinαIMU

cos βIMU

cosαIMU

cos βIMU











ΩIMU . ✭✹✳✶✶✮

The initial condition of the integrator on Θ was taken as Θ0 = [atan(āy0, āz0) asin(
āx0

g
) 0]T , where

āx0, āy0, āz0 are the mean values of the accelerometer’s measurements along the three axes delivered

within 1 s before starting each test while the robot was not moving. The covariance matrix of the model

uncertainties was the same in both the OF-based and IMU-based EKF, i.e. QIMU = Q, whereas the

covariance matrix of the measurement noise was identified as RIMU = diag(0.2632, 0.0472, 0.0012).

The ground-truth values were computed from the robot’s pose measurements after being low-pass

filtered at fcl = 100Hz ([X ′ Y ′ Z ′ α′ β′ γ′]T ) as follows (see section 4.2.4 for details):

• Vtruth =

√

Ẋ ′2 + Ẏ ′2;

• φtruth = arctan(L γ̇′

Vtruth
);

• hltruth = h0 + Z ′′ + yl sin(α
′′) cos(β′′) + zl cos(α

′′) cos(β′′) (same for hrtruth using yr, zr);

• ωlitruth
= (ylγ̇′−Vtruth) sin

2 ϕi

hl
truth

(same for ωritruth
using yr, hrtruth);

where h0 is the height of the body frame < B > with respect to the local ground plane, i.e. h0 = h−zl,r =

50mm, and Z ′′, α′′, β′′ are the high-pass filtered values of Z ′, α′, β′ (fch = 1Hz), which were adopted in

order to cut off the low-frequency components due to the changes in the ground’s slope and height.

The average refresh rate of the sensors f̄ω was computed by dividing the number of median values of

the OF measurements obtained during each test by the time taken to run the test. The precision of the

median values of the OF measurements ωlm, ω
r
m as well as that of the estimates V̂ , φ̂ was computed by

dividing the standard deviations of the errors with respect to their ground-truth values by their average

absolute value (e.g. if ¯|V | = 0.3 m
s

and σV = 0.007 m
s

then the precision will be 0.007
0.3 ≈ 2.3%). The

accuracy of the estimates of the robot’s absolute position X̂ and orientation θ̂, instead, was computed by

✹◆♦t❡ t❤❛t ✇❡ s✉❜st✐t✉t❡❞ γ̇IMU ✇✐t❤ Ωz ✐♥ t❤❡ t❤✐r❞ ❡q✉❛t✐♦♥ ✐♥ ✭✹✳✶✵✮ ❜❡❝❛✉s❡ ✐♥ t❤❡ ❡①♣❡r✐♠❡♥ts ♣r❡s❡♥t❡❞ ❤❡r❡ ✇❡

❛❧✇❛②s ❤❛❞ Ωz ≈ γ̇IMU ✳ ❆❧s♦ ♥♦t❡ t❤❛t t❤❡ ❛♥❣❧❡ βIMU ✇❛s ❝♦♥s✐❞❡r❡❞ ❛s ❛ ♣❛r❛♠❡t❡r ❛❧t❤♦✉❣❤ ✐t ❞❡♣❡♥❞s ♦♥ Ωz ✱ ❛♥❞

t❤❡r❡❢♦r❡ ♦♥ t❤❡ st❛t❡ ξ✱ s✐♥❝❡ ✐ts ✈❛❧✉❡ ✈❛r✐❡❞ ✇✐t❤✐♥ ❛ s♠❛❧❧ r❛♥❣❡ ❛♥❞ ♥♦ s✐❣♥✐✜❝❛♥t ✐♠♣r♦✈❡♠❡♥t ✇❛s ♦❜t❛✐♥❡❞ ✉s✐♥❣ ❛

♠♦r❡ ❝♦♠♣❧❡① ♦✉t♣✉t ♠♦❞❡❧✳

✶✶✾
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dividing the maximum errors with respect to the ground-truth position and orientation respectively by

the distance traveled and the angle covered when these maxima were reached (e.g. if ||X − X̂|| = 0.7m

after traveling 45m then the accuracy will be 0.7
45 ≈ 1.6%). We preferred to use this traditional metrics

for the odometry accuracy instead of using other common metrics in visual odometry based on the errors

in the relative camera poses, such as that presented in [311], because such metrics give values that are

well representative of the “noise” in the position and orientation estimates (error between contiguous

estimates), but not necessarily of the accuracy of these estimates (absolute error). To better evaluate the

odometry performances during the entire path, we also provide here the plots of the error in the position

and orientation with respect to time and distance.

■♥❞♦♦rs

Figure 4.6 shows the results obtained indoors when the robot was driven on the floor shown in Fig.

4.1(c) on a circular path, keeping a constant steering angle at a velocity ranging from 0.3 to 1.3 m
s

, under

dynamically changing lighting conditions. The OF resolution ∆ω∗ required was set at 0.3 rad
s

and the

average refresh rate f̄ω obtained was about 327Hz.

First the incoming sunlight was made to vary by up to 2 decades by slowly closing the 8 blinds (from

0 to 24 s), giving a maximum luminosity of about 5000Lux (Iph ≈ 5× 10−5A), then the artificial lighting

was made to vary both slowly and rapidly by about 2 decades, by varying the neon ceiling lights and

then switching them off (from 24 to 46 s). The robot was then driven with only the Vicon cameras’ LED

lights switched on (from 46 to 59 s), corresponding to a luminosity of about 0.3Lux (average Iph of about

3×10−10A), before switching the neon lights on again. The light levels tested therefore covered a nearly

6-decade range (Iph from about 10−10 to 5× 10−5A), as can be seen from Fig. 4.6(f).

Indoor tests at constant light levels were also carried out in the same environment and using the same

trajectory to determine the highest precision and widest range achievable with our novel OF sensors.

First the robot was driven at constant velocities from the minimum to the maximum values, i.e. from

0.3 to 1.5 m
s

, setting the OF resolution ∆ω∗ required at 0.05 rad
s

: Fig. 4.7(A) shows the case where the

robot was driven at its maximum velocity. The minimum OF resolution ∆ω∗ used was set at 0.05 rad
s

in order to obtain a measurable OF range of 1.5 rad
s

without causing saturation of the CPU load. The

velocity was then varied linearly from the minimum to the maximum values with accelerations varying

from ±0.3 to ±1 m
s2

(Fig. 4.7(B)). In the latter case, the height of the VMSs with respect to the ground h

was exceptionally decreased to 135mm and the OF resolution ∆ω∗ required was increased to 0.5 rad
s

in

order to achieve a larger OF range (from 1.5 to 15 rad
s

). The average refresh rate f̄ω obtained was about

333Hz in all the cases tested.

Lastly, indoor tests were carried out using various trajectories and various floor textures. Figure 4.8

shows the results obtained indoors when the robot was driven on paths forming a figure of eight and a

square, while the velocity and the steering angle were made to vary trapezoidally. The OF resolution ∆ω∗

required was set at 0.1 and 0.2 rad
s

and the average refresh rate f̄ω obtained was about 325Hz.

✶✷✵
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❋✐❣✉r❡ ✹✳✻✿ ❖❋ ♠❡❛s✉r❡♠❡♥ts ❛♥❞ ♦❞♦♠❡tr② r❡s✉❧ts r♦❜✉st t♦ ❝❤❛♥❣❡s ✐♥ t❤❡ ❧✐❣❤t ❧❡✈❡❧s ✐♥ ❛ ♥❡❛r❧②

✻✲❞❡❝❛❞❡ r❛♥❣❡ ♦❜t❛✐♥❡❞ ✇❤❡♥ t❤❡ r♦❜♦t ✇❛s ❞r✐✈❡♥ ♦♥ ❛ ❝✐r❝✉❧❛r ♣❛t❤ ❛t ❛ ✈❡❧♦❝✐t② r❛♥❣✐♥❣ ❢r♦♠ ✵✳✸ t♦

1.3 m
s
✳ ✭❛✮ ▼❡❞✐❛♥ ✈❛❧✉❡s ωlm, ω

r
m ✭❞♦ts✮ ❛♥❞ ❣r♦✉♥❞✲tr✉t❤ ✈❛❧✉❡s ωlmtruth

, ωrmtruth
✭s♦❧✐❞ ❧✐♥❡s✮ ♦❢ t❤❡ ❖❋

♣r♦❞✉❝❡❞ ♦♥ t❤❡ ❧❡❢t ✭❞❛r❦ ❜❧✉❡✮ ❛♥❞ r✐❣❤t ✭❧✐❣❤t ❜❧✉❡✮ s✐❞❡s✳ ✭❜✮ ❉✐str✐❜✉t✐♦♥ ♦❢ t❤❡ ❡rr♦rs ❜❡t✇❡❡♥ t❤❡

♠❡❞✐❛♥ ✈❛❧✉❡s ❛♥❞ t❤❡ ❣r♦✉♥❞✲tr✉t❤ ✈❛❧✉❡s s❤♦✇♥ ✐♥ ❋✐❣✳ ✹✳✻✭❛✮✱ ✐✳❡✳ ωlmtruth
− ωlm ✭❞❛r❦ ❜❧✉❡ ❧✐♥❡✮ ❛♥❞

ωrmtruth
− ωrm ✭❧✐❣❤t ❜❧✉❡ ❧✐♥❡✮✳ ✭❝✮ ❊❑❋ ❡st✐♠❛t❡s V̂ , φ̂ ✭❞♦ts✮✱ ❣r♦✉♥❞✲tr✉t❤ ✈❛❧✉❡s Vtruth, φtruth ✭s♦❧✐❞

❧✐♥❡s✮ ❛♥❞ r❡❢❡r❡♥❝❡ ✈❛❧✉❡s V ∗, φ∗ ✭❞❛s❤❡❞ ❧✐♥❡s✮ ♦❢ t❤❡ r♦❜♦t✬s ❧♦♥❣✐t✉❞✐♥❛❧ ✈❡❧♦❝✐t② ✭❞❛r❦ ❣r❡❡♥✮ ❛♥❞

st❡❡r✐♥❣ ❛♥❣❧❡ ✭❧✐❣❤t ❣r❡❡♥✮✳ ✭❞✮ ❉✐str✐❜✉t✐♦♥ ♦❢ t❤❡ ❡rr♦rs ❜❡t✇❡❡♥ t❤❡ ❊❑❋ ❡st✐♠❛t❡s ❛♥❞ t❤❡ ❣r♦✉♥❞✲

tr✉t❤ ✈❛❧✉❡s s❤♦✇♥ ✐♥ ❋✐❣✳ ✹✳✻✭❝✮✱ ✐✳❡✳ Vtruth − V̂ ✭❞❛r❦ ❣r❡❡♥ ❧✐♥❡✮ ❛♥❞ φtruth − φ̂ ✭❧✐❣❤t ❣r❡❡♥ ❧✐♥❡✮✳ ✭❡✮

❊rr♦rs ✐♥ t❤❡ r♦❜♦t✬s ♣♦s✐t✐♦♥ ❛♥❞ ♦r✐❡♥t❛t✐♦♥ ❡st✐♠❛t❡❞ ✉s✐♥❣ V̂ , φ̂✱ ✐✳❡✳ ||X−X̂|| ✭❞❛r❦ r❡❞ s♦❧✐❞ ❧✐♥❡✮ ❛♥❞

θ− θ̂ ✭❧✐❣❤t r❡❞ s♦❧✐❞ ❧✐♥❡✮✱ ❛♥❞ V̂IMU , φ̂IMU ✱ ✐✳❡✳ ||X−X̂IMU || ✭❞❛r❦ r❡❞ ❞❛s❤❡❞ ❧✐♥❡✮ ❛♥❞ θ− θ̂IMU ✭❧✐❣❤t

r❡❞ ❞❛s❤❡❞ ❧✐♥❡✮✳ ✭❢✮ P❤♦t♦✲❝✉rr❡♥t r❡s♣♦♥s❡ ♦❢ t❤❡ ♣❤♦t♦❞✐♦❞❡ ♣❧❛❝❡❞ ♥❡①t t♦ t❤❡ ▲▼❙ ♦♥ t❤❡ ❧❡❢t s✐❞❡✳

❚❤❡ ❝✉rr❡♥t ✈❛❧✉❡s ✇❡r❡ ❝♦♠♣✉t❡❞ t❛❦✐♥❣ IPh = Idark(e
8.8Vout − 1)✱ ✇❤❡r❡ Idark(≈ 0.1nA) ✐s t❤❡ ❞❛r❦

❝✉rr❡♥t ❛♥❞ Vout ✐s t❤❡ ❛♠♣❧✐✜❡r✬s ♦✉t♣✉t ✈♦❧t❛❣❡✳ ✭❣✮ ❘❡❢❡r❡♥❝❡ X∗ ✭❞❛s❤❡❞ ❧✐♥❡✮✱ ❡st✐♠❛t❡❞ X̂ ✭❞♦tt❡❞

❧✐♥❡✮ ❛♥❞ ❣r♦✉♥❞✲tr✉t❤ X ✭s♦❧✐❞ ❧✐♥❡✮ r♦❜♦t✬s tr❛❥❡❝t♦r② ✐♥ t❤❡ ❝❧♦s❡❞✲❧♦♦♣ ♠♦❞❡✳ ❚❤❡ ♣✐❝t✉r❡s ❛t t❤❡

❜♦tt♦♠ ♦❢ t❤❡ ✜❣✉r❡ s❤♦✇✱ ❢r♦♠ ❧❡❢t t♦ r✐❣❤t✱ t❤❡ t❡st ❡♥✈✐r♦♥♠❡♥t ✉♥❞❡r ✐♥❝♦♠✐♥❣ s✉♥❧✐❣❤t✱ ♥❡♦♥ ❧✐❣❤t ❛♥❞

t❤❡ ❱✐❝♦♥ ❝❛♠❡r❛s✬ ▲❊❉ ❧✐❣❤t✳ ❚❤❡ ❧✐❣❤t ✈❛❧✉❡s ✐♥ Lux ✇❡r❡ ❡st✐♠❛t❡❞ ✉s✐♥❣ t❤❡ ❝✉rr❡♥t✲t♦✲✐❧❧✉♠✐♥❛♥❝❡

❝✉r✈❡ ❣✐✈❡♥ ✐♥ t❤❡ ♣❤♦t♦❞✐♦❞❡✬s ❞❛t❛s❤❡❡t✳
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❋✐❣✉r❡ ✹✳✼✿ ❘♦❜✉st ❖❋ ♠❡❛s✉r❡♠❡♥ts ❛♥❞ ♦❞♦♠❡tr② r❡s✉❧ts ♦❜t❛✐♥❡❞ ✭❆✮ ❛t ❤✐❣❤ r❡s♦❧✉t✐♦♥ ❛♥❞ ✭❇✮ ✐♥ ❛

✇✐❞❡ ❖❋ r❛♥❣❡✱ ✇❤❡♥ t❤❡ r♦❜♦t ✇❛s ❞r✐✈❡♥ ♦♥ ❛ ❝✐r❝✉❧❛r ♣❛t❤ ✭❆✮ ❛t ✐ts ♠❛①✐♠✉♠ ✈❡❧♦❝✐t② ✭1.5 m
s
✮ ❛♥❞ ✭❇✮

❛t ❛ ✈❡❧♦❝✐t② r❛♥❣✐♥❣ ❢r♦♠ ✵✳✸ t♦ 1.5 m
s
✇✐t❤ ✈❛r✐♦✉s ❛❝❝❡❧❡r❛t✐♦♥s✳ ✭❛✮ ωlm, ω

r
m ✭❞♦ts✮ ❛♥❞ ωlmtruth

, ωrmtruth

✭s♦❧✐❞ ❧✐♥❡s✮ ❞✉r✐♥❣ ✶ ❧❛♣✳ ✭❜✮ ❉✐str✐❜✉t✐♦♥ ♦❢ ωlmtruth
− ωlm ✭❞❛r❦ ❜❧✉❡ ❧✐♥❡✮ ❛♥❞ ωrmtruth

− ωrm ✭❧✐❣❤t ❜❧✉❡

❧✐♥❡✮ ❞✉r✐♥❣ ✸✲✺ ❧❛♣s✳ ✭❝✮ V̂ , φ̂ ✭❞♦ts✮✱ Vtruth, φtruth ✭s♦❧✐❞ ❧✐♥❡s✮ ❛♥❞ V ∗, φ∗ ✭❞❛s❤❡❞ ❧✐♥❡s✮ ❞✉r✐♥❣ ✶ ❧❛♣✳

✭❞✮ ❉✐str✐❜✉t✐♦♥ ♦❢ Vtruth − V̂ ✭❞❛r❦ ❣r❡❡♥ ❧✐♥❡✮ ❛♥❞ φtruth − φ̂ ✭❧✐❣❤t ❣r❡❡♥ ❧✐♥❡✮ ❞✉r✐♥❣ ✸✲✺ ❧❛♣s✳ ✭❡✮

||X−X̂||✱ θ− θ̂ ✭s♦❧✐❞ ❧✐♥❡s✮ ❛♥❞ ||X−X̂IMU ||✱ θ− θ̂IMU ✭❞❛s❤❡❞ ❧✐♥❡s✮✱ ❞✉r✐♥❣ ✸✲✺ ❧❛♣s✳ ✭❢✮ X∗ ✭❞❛s❤❡❞

❧✐♥❡✮✱ X̂ ✭❞♦tt❡❞ ❧✐♥❡✮ ❛♥❞ X ✭s♦❧✐❞ ❧✐♥❡✮ ✐♥ t❤❡ ❝❧♦s❡❞✲❧♦♦♣ ♠♦❞❡✳ ✭❣✮ X∗ ✭❞❛s❤❡❞ ❧✐♥❡✮ ❛♥❞ X ✭❣r❛②

❧✐♥❡✮ ✐♥ t❤❡ ♦♣❡♥✲❧♦♦♣ ♠♦❞❡✳

The results presented here show that the OF measurements did not depend on either the average

light level or the changes in the light, except in the case of very large, sudden changes (see Fig. 4.6(a)

at about 46 s and 59 s), nor they depended on the visual patterns and the types of trajectory used (no

statistical evidence in the error distributions and in the refresh frequencies). In addition, although the

error in the OF measurements increased slightly with the OF magnitude, our novel sensors were able to

measure the OF in a very large range, from about 1.5 to 15 rad
s

(i.e. from about 85 to 850
o

s
), and with

relatively high OF resolution (0.05 rad
s

). However, both a high resolution, and therefore precision, and a

wide range could not be provided yet at the same time due to computational limitations.

In all these tests, the overall error distributions were nearly Gaussian with a quasi-zero mean (Fig.

4.6(b), 4.7(A)(b),(B)(b), 4.8(A)(b),(B)(b)), giving values of the adjusted R-square goodness-of-fit statis-

tics, computed using the Matlab Curve Fitting Toolbox, always greater than 0.99. However, it is worth

noting that the error distributions were sometimes more peaky than their fitted Gaussian curves, meaning

that the errors were statistically closer to their mean values than those obtained with a pure Gaussian

✶✷✷
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❋✐❣✉r❡ ✹✳✽✿ ❘♦❜✉st ❖❋ ♠❡❛s✉r❡♠❡♥ts ❛♥❞ ♦❞♦♠❡tr② r❡s✉❧ts ♦❜t❛✐♥❡❞ ✇❤❡♥ t❤❡ r♦❜♦t ✇❛s ❞r✐✈❡♥ ♦♥ ❛

♣❛t❤ ❢♦r♠✐♥❣ ✭❆✮ ❛ ✜❣✉r❡ ♦❢ ❡✐❣❤t ❛♥❞ ✭❇✮ ❛ sq✉❛r❡✳ ✭❛✮ ωlm, ω
r
m ✭❞♦ts✮ ❛♥❞ ωlmtruth

, ωrmtruth
✭s♦❧✐❞ ❧✐♥❡s✮

❞✉r✐♥❣ ✶✳✺ ❧❛♣s✳ ✭❜✮ ❉✐str✐❜✉t✐♦♥ ♦❢ ωlmtruth
− ωlm ✭❞❛r❦ ❜❧✉❡ ❧✐♥❡✮ ❛♥❞ ωrmtruth

− ωrm ✭❧✐❣❤t ❜❧✉❡ ❧✐♥❡✮

❞✉r✐♥❣ ✸✲✽ ❧❛♣s✳ ✭❝✮ V̂ , φ̂ ✭❞♦ts✮✱ Vtruth, φtruth ✭s♦❧✐❞ ❧✐♥❡s✮ ❛♥❞ V ∗, φ∗ ✭❞❛s❤❡❞ ❧✐♥❡s✮ ❞✉r✐♥❣ ✶✳✺ ❧❛♣s✳ ✭❞✮

❉✐str✐❜✉t✐♦♥ ♦❢ Vtruth− V̂ ✭❞❛r❦ ❣r❡❡♥ ❧✐♥❡✮ ❛♥❞ φtruth− φ̂ ✭❧✐❣❤t ❣r❡❡♥ ❧✐♥❡✮ ❞✉r✐♥❣ ✸✲✽ ❧❛♣s✳ ✭❡✮ ||X−X̂||✱

θ − θ̂ ✭s♦❧✐❞ ❧✐♥❡s✮ ❛♥❞ ||X − X̂IMU ||✱ θ − θ̂IMU ✭❞❛s❤❡❞ ❧✐♥❡s✮✱ ❞✉r✐♥❣ ✸✲✽ ❧❛♣s✳ ✭❢✮ X∗ ✭❞❛s❤❡❞ ❧✐♥❡✮✱ X̂

✭❞♦tt❡❞ ❧✐♥❡✮ ❛♥❞ X ✭s♦❧✐❞ ❧✐♥❡✮ ✐♥ t❤❡ ❝❧♦s❡❞✲❧♦♦♣ ♠♦❞❡✳ ✭❣✮ X∗ ✭❞❛s❤❡❞ ❧✐♥❡✮ ❛♥❞ X ✭❣r❛② ❧✐♥❡✮ ✐♥ t❤❡

♦♣❡♥✲❧♦♦♣ ♠♦❞❡✳

distribution. We also note that such a difference in the height and shape of the error distributions was

due to the fact that these distributions were extracted from histograms over a rather low-resolution grid

of beams (∆beam from 0.02 to 0.04) in order to have smooth curves.

The greatest OF precision obtained was about 1.2% when ∆ω∗ was set at 0.05 rad
s

, whereas the lowest

was about 3.6% when ∆ω∗ was set at 0.5 rad
s

. The robot adopted the required velocity and steering angle,

giving a precision of the robot’s velocity and steering angle estimates (V̂ , φ̂) ranging from 1% to 5% and

from 6% to 12%, respectively, which made it possible to drive the robot relatively close to the reference

trajectory (Fig. 4.6(g), 4.7(A)(f),(B)(f), 4.8(A)(f),(B)(f)). When the robot was driven in the open-loop

mode, however, i.e. when setting ξ̄ = ξ∗ instead of applying the control scheme presented in Fig. 4.5,

the position and orientation errors were much larger than those obtained in the closed-loop mode (Fig.

4.7(B)(g), 4.8(A)(g),(B)(g)). Depending on the type of trajectory and on whether the robot was under

or over-steered with respect to the steering values required, the robot could go very astray, sometimes

making the robot drift up to going off the carpet at a very early stage (Fig. 4.7(B)(g), 4.8(A)(g)), or stay

in a closed path although very different to that required (Fig. 4.8(B)(g)).
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By using the OF-based estimates of the robot’s velocity and steering angle for odometry purposes,

we obtained an accuracy of the position and orientation estimates (X̂, θ̂) ranging from 0.3% to 2.3%,

after the robot had been traveling from 18 to 71m and turning from 4.1π to 8.1π rad, i.e. after about

2 to 8 laps. It is worth noting that such an odometry accuracy was about 2 to 9 times higher than that

obtained by using the IMU-based estimates of the robot’s velocity and steering angle (V̂IMU , φ̂IMU ) (Fig.

4.6(e), 4.7(B)(e), 4.8(A)(e),(B)(e)), except in the case of constant high velocity where the odometry

performances were comparable (Fig. 4.7(A)(e)). Such a result could be due to the fact that the OF-based

estimates (V̂ , φ̂) were not very accurate at the very beginning of the test because no measurements were

delivered until the OF values reached the range required, i.e. [6.75, 8.25] rad
s

and [8.25, 9.75] rad
s

for the

left and right side, respectively, giving large errors in the robot’s position and orientation estimates (see

the first part of Fig. 4.7(A)(e)).

Some quantitative data and statistics on each indoor test are given in Table 5.1 in the appendix.

❖✉t❞♦♦rs

Figures 4.9, 4.10 show the results obtained outdoors during the day-time (at about 12:00 PM) and at

night (at about 20:00 PM), respectively, when the robot was driven on the ground shown in Fig. 4.1(d)

on a circular path, keeping a constant steering angle while varying the velocity from 0.3 to 1.3 m
s

. The OF

resolution ∆ω∗ required was set at 0.3 rad
s

and the average refresh rate f̄ω obtained was about 300Hz in

both tests.

Outdoor tests were also carried out in the same environment using various ground textures (Fig. 4.11)

and various trajectories (Fig. 4.12). In the first case, 4 regions with different textures were added to the

floor: (1) a mixture of grass, leaves and flowers, (2) dark sand and (3) light sand, and (4) black asphalt

gravel (see the pictures at the bottom of Fig. 4.11). The OF resolution ∆ω∗ required was set at 0.2 and

0.1 rad
s

and the average refresh rate f̄ω obtained in the 2 tests was about 295 and 328Hz, respectively.

The results presented here show that our sensors responded appropriately outdoors by delivering OF

measurements regardless of the luminosity in a 6-decade range (Iph ranging from about 10−9 to 10−3A)

and despite the shadows produced by the robot itself under daylight conditions (see, for instance, pictures

(1) and (2) in Fig. 4.9). In addition, our sensors delivered OF measurements that did not depend

significantly on either the trajectory or the ground textures (grass, leaves, flowers, dark and light sand,

dark and light gravel), although sometimes fewer measurements were delivered on the left side when

the robot was driving on some of the textured regions (Fig. 4.11(a)).

As in the indoor tests, the overall error distributions were consistently nearly Gaussian with a quasi-

zero mean (Fig. 4.9(b), 4.10(b), 4.11(b), 4.12(b)), giving values of the adjusted R-square goodness-

of-fit statistics, computed using the Matlab Curve Fitting Toolbox, always greater than 0.98. The same

observations on the height and shape of the error distributions done for the indoor tests can also be done

for the outdoor tests.

✶✷✹
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❋✐❣✉r❡ ✹✳✾✿ ❘♦❜✉st ❖❋ ♠❡❛s✉r❡♠❡♥ts ❛♥❞ ♦❞♦♠❡tr② r❡s✉❧ts ♦❜t❛✐♥❡❞ ♦✉t❞♦♦rs ❛t ❛ ✈❡r② ❤✐❣❤ ❧✐❣❤t ❧❡✈❡❧

✭❛t ❛❜♦✉t ✶✷✿✵✵ P▼✮ ✇❤❡♥ t❤❡ r♦❜♦t ✇❛s ❞r✐✈❡♥ ♦♥ ❛ ❝✐r❝✉❧❛r ♣❛t❤ ❛t ❛ ✈❡❧♦❝✐t② r❛♥❣✐♥❣ ❢r♦♠ 0.3 t♦

1.3 m
s
✳ ✭❛✮ ωlm, ω

r
m ✭❞♦ts✮ ❛♥❞ ωlmtruth

, ωrmtruth
✭s♦❧✐❞ ❧✐♥❡s✮✳ ✭❜✮ ❉✐str✐❜✉t✐♦♥ ♦❢ ωlmtruth

− ωlm ✭❞❛r❦ ❜❧✉❡

❧✐♥❡✮ ❛♥❞ ωrmtruth
− ωrm ✭❧✐❣❤t ❜❧✉❡ ❧✐♥❡✮✳ ✭❝✮ V̂ , φ̂ ✭❞♦ts✮✱ Vtruth, φtruth ✭s♦❧✐❞ ❧✐♥❡s✮ ❛♥❞ V ∗, φ∗ ✭❞❛s❤❡❞

❧✐♥❡s✮✳ ✭❞✮ ❉✐str✐❜✉t✐♦♥ ♦❢ Vtruth − V̂ ✭❞❛r❦ ❣r❡❡♥ ❧✐♥❡✮ ❛♥❞ φtruth − φ̂ ✭❧✐❣❤t ❣r❡❡♥ ❧✐♥❡✮✳ ✭❡✮ ||X − X̂||✱

θ − θ̂ ✭s♦❧✐❞ ❧✐♥❡s✮ ❛♥❞ ||X − X̂IMU ||✱ θ − θ̂IMU ✭❞❛s❤❡❞ ❧✐♥❡s✮✳ ✭❢✮ ▲❡❢t ✭②❡❧❧♦✇ ❧✐♥❡✮ ❛♥❞ r✐❣❤t ✭♣✉r♣❧❡

❧✐♥❡✮ ❧♦❝❛❧ s❡♥s♦r✬s ❤❡✐❣❤t hl, hr ❛♣♣r♦①✐♠❛t❡❧② ❡st✐♠❛t❡❞ ✉s✐♥❣ t❤❡ r♦❜♦t✬s ♣♦s❡ ♠❡❛s✉r❡♠❡♥ts✳ ✭❣✮ X∗

✭❞❛s❤❡❞ ❧✐♥❡✮✱ X̂ ✭❞♦tt❡❞ ❧✐♥❡✮ ❛♥❞ X ✭s♦❧✐❞ ❧✐♥❡✮✳ ❚❤❡ ♣✐❝t✉r❡ ✐♥ t❤❡ ❜♦tt♦♠✲❧❡❢t ♣❛rt ♦❢ t❤❡ ✜❣✉r❡ s❤♦✇s

t❤❡ t❡st ❡♥✈✐r♦♥♠❡♥t ❛t ❛❜♦✉t ✶✷✿✵✵ P▼✱ ✇❤❡♥ t❤❡ ❧✐❣❤t ❧❡✈❡❧ ✇❛s ❛❜♦✉t 30000Lux✳ ❚❤❡ ♣✐❝t✉r❡s ♠❛r❦❡❞

✭✶✮ ❛♥❞ ✭✷✮ s❤♦✇ ✷ s✐t✉❛t✐♦♥s ✇❤❡r❡ t❤❡ r♦❜♦t ✇❛s ❞r✐✈✐♥❣ ♦♥ t❤❡ st❡❡❧ r❛✐❧✱ ❝♦rr❡s♣♦♥❞✐♥❣ t♦ t❤❡ s❤❛❞❡❞

r❡❣✐♦♥s ✐♥ ❋✐❣✳ ✹✳✾✭❛✲❣✮✳

The OF precision obtained here was slightly higher than that obtained in the indoor tests, ranging

from 2.6% to 3.8%, and did not significantly depend on the light levels, the ground textures or the type

of trajectory.✺ However, the average precision of the robot’s velocity and steering angle estimates (V̂ , φ̂)

is similar to that obtained in the indoor tests (2.3% vs 2.4% and 9.3% vs 9.8%, respectively), showing

the robustness of the method presented here to vibrations liable to cause a change in the sensors’ local

height of up to ±10mm (Fig. 4.9(f), 4.10(f)), amounting to about 6% of the nominal height. In the case

✺❚❤❡ st❛♥❞❛r❞ ❞❡✈✐❛t✐♦♥s ❛♥❞ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ♣r❡❝✐s✐♦♥ ✐♥ t❤❡ ✜rst ✷ t❡sts ✭❋✐❣✳ ✹✳✾✱ ✹✳✶✵✮ ✇❡r❡ ❝♦♠♣✉t❡❞ ✇✐t❤♦✉t

t❛❦✐♥❣ ✐♥t♦ ❛❝❝♦✉♥t t❤❡ ♠♦♠❡♥ts ✇❤❡♥ t❤❡ r♦❜♦t ✇❛s ❞r✐✈✐♥❣ ♦♥ t❤❡ st❡❡❧ r❛✐❧ ✭s❤❛❞❡❞ r❡❣✐♦♥s ✐♥ ❋✐❣✳ ✹✳✾✭❛✲❣✮✱ ✹✳✶✵✭❛✲❣✮✮

❛s t❤❡ ✐♠♣❛❝t ✇✐t❤ t❤❡ r❛✐❧ ♣r♦❞✉❝❡❞ ✈❡r② ❧❛r❣❡ ✈✐❜r❛t✐♦♥s✳
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❋✐❣✉r❡ ✹✳✶✵✿ ❘♦❜✉st ❖❋ ♠❡❛s✉r❡♠❡♥ts ❛♥❞ ♦❞♦♠❡tr② r❡s✉❧ts ♦❜t❛✐♥❡❞ ♦✉t❞♦♦rs ❛t ✈❡r② ❧♦✇ ❧✐❣❤t ❧❡✈❡❧s

✭❛t ❛❜♦✉t ✷✵✿✵✵ P▼✮ ✇❤❡♥ t❤❡ r♦❜♦t ✇❛s ❞r✐✈❡♥ ♦♥ ❛ ❝✐r❝✉❧❛r ♣❛t❤ ❛t ❛ ✈❡❧♦❝✐t② r❛♥❣✐♥❣ ❢r♦♠ 0.3 t♦

1.3 m
s
✳ ✭❛✮ ωlm, ω

r
m ✭❞♦ts✮ ❛♥❞ ωlmtruth

, ωrmtruth
✭s♦❧✐❞ ❧✐♥❡s✮✳ ✭❜✮ ❉✐str✐❜✉t✐♦♥ ♦❢ ωlmtruth

− ωlm ✭❞❛r❦ ❜❧✉❡

❧✐♥❡✮ ❛♥❞ ωrmtruth
− ωrm ✭❧✐❣❤t ❜❧✉❡ ❧✐♥❡✮✳ ✭❝✮ V̂ , φ̂ ✭❞♦ts✮✱ Vtruth, φtruth ✭s♦❧✐❞ ❧✐♥❡s✮ ❛♥❞ V ∗, φ∗ ✭❞❛s❤❡❞

❧✐♥❡s✮✳ ✭❞✮ ❉✐str✐❜✉t✐♦♥ ♦❢ Vtruth − V̂ ✭❞❛r❦ ❣r❡❡♥ ❧✐♥❡✮ ❛♥❞ φtruth − φ̂ ✭❧✐❣❤t ❣r❡❡♥ ❧✐♥❡✮✳ ✭❡✮ ||X − X̂||✱

θ − θ̂ ✭s♦❧✐❞ ❧✐♥❡s✮ ❛♥❞ ||X − X̂IMU ||✱ θ − θ̂IMU ✭❞❛s❤❡❞ ❧✐♥❡s✮✳ ✭❢✮ hl ✭②❡❧❧♦✇ ❧✐♥❡✮ ❛♥❞ hr ✭♣✉r♣❧❡ ❧✐♥❡✮✳

✭❣✮ X∗ ✭❞❛s❤❡❞ ❧✐♥❡✮✱ X̂ ✭❞♦tt❡❞ ❧✐♥❡✮ ❛♥❞ X ✭s♦❧✐❞ ❧✐♥❡✮✳ ❚❤❡ ♣✐❝t✉r❡ ✐♥ t❤❡ ❜♦tt♦♠✲❧❡❢t ♣❛rt ♦❢ t❤❡

✜❣✉r❡ s❤♦✇s t❤❡ t❡st ❡♥✈✐r♦♥♠❡♥t ❛t ❛❜♦✉t ✷✵✿✵✵ P▼✱ ✇❤❡♥ t❤❡ ❧✐❣❤t ❧❡✈❡❧ ✇❛s ❛❜♦✉t 1Lux✳ ❚❤❡ ✐♠❛❣❡s

♠❛r❦❡❞ ✭✶✮ ❛♥❞ ✭✷✮ s❤♦✇ ✷ s✐t✉❛t✐♦♥s ✇❤❡r❡ t❤❡ r♦❜♦t ✇❛s ❞r✐✈✐♥❣ ♦♥ t❤❡ st❡❡❧ r❛✐❧✱ ❝♦rr❡s♣♦♥❞✐♥❣ t♦ t❤❡

s❤❛❞❡❞ r❡❣✐♦♥s ✐♥ ❋✐❣✳ ✹✳✶✵✭❛✲❣✮✳

of larger changes in height, such as those caused by the rail (shaded regions in Fig. 4.9(a-g), 4.10(a-g)),

the robot could still estimate V and φ but with a much lower precision, and a more complex method of

estimation including information from other sensors would therefore have to be implemented in order to

achieve a higher level of robustness. In fact, the error in the position and orientation estimates (X̂, θ̂)

seems to particularly increase when the robot was driving on the rail at relatively high speed, because of

larger errors in the OF-based velocity and steering angle estimates (see, for instance, the shaded regions in

Fig. 4.9 at about 18 s and in Fig. 4.10 at about 12 s). However, even in presence of such large vibrations,

we obtained a still good accuracy of the position and orientation estimates, i.e. from 2% to 3% after

the robot had been traveling about 30m and turning about 6-8π rad (i.e. about 3 to 4 laps), which was

slightly higher than that obtained by using the IMU-based estimates of the robot’s velocity and steering

✶✷✻
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❋✐❣✉r❡ ✹✳✶✶✿ ❘♦❜✉st ❖❋ ♠❡❛s✉r❡♠❡♥ts ❛♥❞ ♦❞♦♠❡tr② r❡s✉❧ts ♦❜t❛✐♥❡❞ ♦✉t❞♦♦rs ♦♥ ✈❛r✐♦✉s ❣r♦✉♥❞ t❡①✲

t✉r❡s✳ ❚❤❡ r♦❜♦t ✇❛s ❞r✐✈❡♥ ♦♥ ❛ ❝✐r❝✉❧❛r ♣❛t❤ ❛t ❛ ✈❡❧♦❝✐t② r❛♥❣✐♥❣ ❢r♦♠ 0.4 t♦ 0.8 m
s
♦♥ t❤❡ ❣r♦✉♥❞ s❤♦✇♥

✐♥ ❋✐❣✳ ✹✳✶✭❞✮✱ t♦ ✇❤✐❝❤ ✹ ❛r❡❛s ✇✐t❤ ❞✐✛❡r❡♥t t❡①t✉r❡s ✇❡r❡ ❛❞❞❡❞✳ ✭❛✮ ωlm, ω
r
m ✭❞♦ts✮ ❛♥❞ ωlmtruth

, ωrmtruth

✭s♦❧✐❞ ❧✐♥❡s✮✳ ✭❜✮ ❉✐str✐❜✉t✐♦♥ ♦❢ ωlmtruth
−ωlm ✭❞❛r❦ ❜❧✉❡ ❧✐♥❡✮ ❛♥❞ ωrmtruth

−ωrm ✭❧✐❣❤t ❜❧✉❡ ❧✐♥❡✮✳ ✭❝✮ V̂ , φ̂

✭❞♦ts✮✱ Vtruth, φtruth ✭s♦❧✐❞ ❧✐♥❡s✮ ❛♥❞ V ∗, φ∗ ✭❞❛s❤❡❞ ❧✐♥❡s✮✳ ✭❞✮ ❉✐str✐❜✉t✐♦♥ ♦❢ Vtruth − V̂ ✭❞❛r❦ ❣r❡❡♥

❧✐♥❡✮ ❛♥❞ φtruth − φ̂ ✭❧✐❣❤t ❣r❡❡♥ ❧✐♥❡✮✳ ✭❡✮ ||X − X̂||✱ θ − θ̂ ✭s♦❧✐❞ ❧✐♥❡s✮ ❛♥❞ ||X − X̂IMU ||✱ θ − θ̂IMU

✭❞❛s❤❡❞ ❧✐♥❡s✮✳ ✭❢✮ X∗ ✭❞❛s❤❡❞ ❧✐♥❡✮✱ X̂ ✭❞♦tt❡❞ ❧✐♥❡✮ ❛♥❞ X ✭s♦❧✐❞ ❧✐♥❡✮✳ ❚❤❡ ♣✐❝t✉r❡s ❛t t❤❡ ❜♦tt♦♠

♦❢ t❤❡ ✜❣✉r❡ s❤♦✇ ✭❢r♦♠ ❧❡❢t t♦ r✐❣❤t✮ t❤❡ t❡st ❡♥✈✐r♦♥♠❡♥t ❛♥❞ t❤❡ ✹ t❡①t✉r❡❞ r❡❣✐♦♥s✿ ✭✶✮ ❛ ♠✐①t✉r❡ ♦❢

❣r❛ss✱ ❧❡❛✈❡s ❛♥❞ ✢♦✇❡rs✱ ✭✷✮ ❞❛r❦ s❛♥❞ ❛♥❞ ✭✸✮ ❧✐❣❤t s❛♥❞✱ ❛♥❞ ✭✹✮ ❜❧❛❝❦ ❛s♣❤❛❧t ❣r❛✈❡❧✱ ❝♦rr❡s♣♦♥❞✐♥❣

t♦ t❤❡ s❤❛❞❡❞ r❡❣✐♦♥s ✐♥ ❋✐❣✳ ✹✳✶✶✭❛✲❢✮✳

angle (V̂IMU , φ̂IMU ) (Fig. 4.9(e), 4.10(e), 4.11(e), 4.12(e)). In particular, the OF-based odometry gave

better performances in average than the IMU-based odometry when using trajectories where the steering

angle, and therefore the angular velocity, changed in sign, i.e. when driving on an eight-shaped path

(Fig. 4.12(e)). However, we note that, in the outdoor tests, the errors in the IMU-based estimates were

often lower than those in the OF-based estimates in the first part of the tests and then started increasing

very rapidly, probably because of the gyroscope’s varying bias. All in all, we note that the accuracy of

the solely IMU-based odometry strongly depends on the non-linear dynamics intrinsic to the IMU used,

therefore better odometry results could be obtained by including these non-linearities in the EKF.

Some quantitative data and statistics on each outdoor test are given in Table 5.2 in the appendix.

✶✷✼
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❋✐❣✉r❡ ✹✳✶✷✿ ❘♦❜✉st ❖❋ ♠❡❛s✉r❡♠❡♥ts ❛♥❞ ♦❞♦♠❡tr② r❡s✉❧ts ♦❜t❛✐♥❡❞ ♦✉t❞♦♦rs ✇❤❡♥ t❤❡ r♦❜♦t ✇❛s ❞r✐✈❡♥

♦♥ ❛ ♣❛t❤ ❢♦r♠✐♥❣ ❛ ✜❣✉r❡ ♦❢ ❡✐❣❤t ❛t ❛ ❝♦♥st❛♥t ✈❡❧♦❝✐t② ✇❤✐❧❡ t❤❡ st❡❡r✐♥❣ ❛♥❣❧❡ ✈❛r✐❡❞ tr❛♣❡③♦✐❞❛❧❧②✳

✭❛✮ ωlm, ω
r
m ✭❞♦ts✮ ❛♥❞ ωlmtruth

, ωrmtruth
✭s♦❧✐❞ ❧✐♥❡s✮✳ ✭❜✮ ❉✐str✐❜✉t✐♦♥ ♦❢ ωlmtruth

−ωlm ✭❞❛r❦ ❜❧✉❡ ❧✐♥❡✮ ❛♥❞

ωrmtruth
− ωrm ✭❧✐❣❤t ❜❧✉❡ ❧✐♥❡✮✳ ✭❝✮ V̂ , φ̂ ✭❞♦ts✮✱ Vtruth, φtruth ✭s♦❧✐❞ ❧✐♥❡s✮ ❛♥❞ V ∗, φ∗ ✭❞❛s❤❡❞ ❧✐♥❡s✮✳ ✭❞✮

❉✐str✐❜✉t✐♦♥ ♦❢ Vtruth − V̂ ✭❞❛r❦ ❣r❡❡♥ ❧✐♥❡✮ ❛♥❞ φtruth − φ̂ ✭❧✐❣❤t ❣r❡❡♥ ❧✐♥❡✮✳ ✭❡✮ ||X − X̂||✱ θ − θ̂ ✭s♦❧✐❞

❧✐♥❡s✮ ❛♥❞ ||X − X̂IMU ||✱ θ − θ̂IMU ✭❞❛s❤❡❞ ❧✐♥❡s✮✳ ✭❢✮ X∗ ✭❞❛s❤❡❞ ❧✐♥❡✮✱ X̂ ✭❞♦tt❡❞ ❧✐♥❡✮ ❛♥❞ X ✭s♦❧✐❞

❧✐♥❡✮✳ ◆♦t❡ t❤❛t s♦♠❡t✐♠❡s t❤❡ ♥♦✐s❡ ✐♥ t❤❡ ♠❡❛s✉r❡♠❡♥ts ❞❡❧✐✈❡r❡❞ ❜② t❤❡ ❱✐❝♦♥ s②st❡♠ ✇❛s ❤✐❣❤❡r t❤❛♥

t❤❡ ❛❝t✉❛❧ ♠❡❛s✉r❡♠❡♥t ❡rr♦r ❜❡❝❛✉s❡ t❤❡ ♠❛r❦❡rs ✇❡r❡ ♣♦♦r❧② ❞❡t❡❝t❡❞ ✭s❡❡✱ ❢♦r ✐♥st❛♥❝❡✱ t❤❡ ❣r❡❡♥ s♦❧✐❞

❧✐♥❡ ✐♥ ❋✐❣✳ ✹✳✶✷✭❝✮✮✳

✹✳✷✳✻ ❈♦♥❝❧✉s✐♦♥s

The low-cost car-like robot called BioCarBot presented in this paper is able to estimate its velocity and

steering angle, and therefore its position and orientation via an Extended Kalman Filter (EKF), using only

the OF measurements delivered by two novel downward-facing VMSs. Thanks to the cross-correlation

method and the auto-adaptive pixels used, these novel VMSs have the following advantages:

• the OF measurements are robust to high-dynamic-range lighting conditions (in a 7-decade range

with sharp changes of up to 2 decades within 0.5 s) and to the various visual patterns encountered;

• the refresh rate of the OF measurements is relatively high (300− 333Hz) and nearly constant, and

does not depend on the bandwidth of the band-pass filter;

• the resolution on the OF measurements is also relatively high (up to 0.05 rad
s

) and constant, i.e. it

does not depend on the OF magnitude, and can be set at whatever value required;

• the OF measurement range is relatively wide (from 1.5 to 15 rad
s

, i.e. 85 to 850
o

s
) and can also be

✶✷✽
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adjusted as required;

• the sensor’s precision can be relatively high (3.8% in the worst case), depending on the OF resolu-

tion required, the OF range and the robot’s vibrations.

With these OF sensors, the robot was able to estimate its own velocity and steering angle, and there-

fore its position and orientation accurately, both indoors and outdoors, and the drifts liable to occur when

it was driven in the open-loop mode were greatly reduced. The main features of the minimalistic visual

odometry method presented here can be listed as follows:

• robustness to high-range light levels (by daylight and at night, i.e. from about 1 to 30000Lux,

including shadows) and various ground textures (asphalt, gravel, sand, leaves, etc.);

• robustness to vibrations liable to affect change in the sensors’ local height up to 6% (i.e. from

±10mm to 175mm);

• fairly high-accuracy position and orientation estimation (from 0.3% to 3%) after covering a distance

from 30m to 75m and turning through an angle from 6π to 16π rad.

We also showed that the accuracy was higher in average than that of the IMU-based odometry, espe-

cially in the indoor tests and when the distance and the rotation angle covered were relatively large.

It is worth noting that both the sampling frequency, and hence the refresh rate, and the OF resolution,

and hence the precision, could be increased by either optimizing the implementation of the algorithm or

increasing the computational resources. These 2 parameters could be also adjusted in real time to the

values required depending on the robot’s reference trajectory, and therefore on the OF setpoint profile.

The precision of the estimates could also be improved by (i) adapting the EKF to include just a

single OF measurement (i.e. on one side only) when no measurement is available on the other side,

and (ii) precisely adjusting the values of the measurement and process covariance matrices of the EKF

after performing a calibration phase prior to each test. In addition, the OF and inertial measurements

could be combined together in one EKF by including accurately-identified dynamic models of the sensors

used which take into account their intrinsic non-linearities, in order to achieve greater robustness and

precision, as required for the autonomous vehicles of the future [312] and even tomorrow’s flying robots

[290].

Tests involving more complex and longer trajectories as well as more challenging environments, such

as forest paths, are now being considered, and we are planning to test the sensors and the estimation

method presented here on a real vehicle with a view to improving the existing odometry techniques. In

this view, we are willing to apply the improvements discussed above and to evaluate the results obtained

also by using the metrics presented in [311].

✶✷✾
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✹✳✸ ❈♦♥❝❧✉s✐♦♥

In the paper presented here, we showed that the new optic flow sensor based on the M2APix pixels and

the improved version of the correlation-based time-of-travel method delivered robust measurements in

real road conditions. In particular, this LMS provides some advantages with respect to those previously

developed at our laboratory (see section 1.8.4):

• the refresh rate and the precision of the measurements nearly did not depend on the operating

conditions (visual patterns, light levels, vibrations, etc), which often occurred when using a thresh-

olding phase;

• the refresh rate was higher (∼ 300Hz) and did not depend on the band-pass filtering phase;

• the measurable OF range was wider (85 to 850
o

s
);

• the OF resolution was constant (i.e. did not depend on the OF amplitude itself) and can theoreti-

cally be set as whatever value as required.

However, the method proposed has the main drawback of being very consuming in terms of com-

putational cost, especially if we want both wide range and high resolution, and therefore should be

implemented on embedded electronics allowing parallel computing, such as DSPs or FPGAs.

We also showed that this new LMS could be very promising for odometry applications in typical road

environments from night to day time, showing good precision in comparison with standard techniques

when estimating the robot’s position and orientation by using only two of these sensors and an EKF based

on a simplified identification and calibration of the Ackermann model. However, further experiments

along more complex and longer paths in several road conditions should be performed on a vehicle in order

to fully evaluate the real potential of these sensors for odometry applications. In any case, as already

said for automatic parking applications, the information provided by other sensors (wheel encoders,

IMUs, GPSs, etc) should be combined together in order to achieve greater robustness, as required for the

autonomous vehicles of the future.
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In this thesis, we wanted to propose new bio-inspired technological solutions that could be used in

advanced driver assistance systems (ADASs), and in particular on the autonomous vehicles of the future,

for which redundancy and complementarity of the information perceived will be the main requirement

for satisfying both autonomy and safety constraints.

As discussed in the first chapter of this manuscript, existing ADAS systems already offer a number of

degrees of assistance to the driver, but, in their current form, are not yet capable of providing self-driving

experiences that are complete and cost-competitive. Some prototypes of the first autonomous vehicles

have already been presented, but such solutions are still too complex and expensive, and often require

too large computational resources to be onboard standard cars.

We believe that effective technological solutions could be found by looking at the nature, which

often suggests smart but “simple” solutions allowing animals to process only the information needed for

well-defined tasks. The local motion sensors (LMSs), designed and developed at our laboratory using a

very few pixels and computational resources by taking inspiration from the fly’s visual system, definitely

represent a good example of this approach.

Although the LMSs proposed so far have proved their effectiveness in measuring 1-D optic flow in cer-

tain situations/environments and have successfully been used on mobile and aerial robots for performing

obstacle avoidance and speed control, they still required some improvements to correctly operate on real

vehicles in road environments. The main improvements required were related to (i) their robustness

with respect to the lighting conditions, visual textures and vibrations, and (ii) their ability to deliver

measurements at a high, quasi-constant refresh rate with a constant, fixed resolution.

Two aspects were dealt therefore in this thesis: a technological aspect, involving the adaptation of

LMSs to the road environments and the vehicle operating conditions, and an application aspect, involving

the effective use of LMSs for robotic and automotive applications.

✶✸✶



❈❤❛♣t❡r ✺✳ ❈♦♥❝❧✉s✐♦♥s ✫ P❡rs♣❡❝t✐✈❡s

• In the first part, we showed that by using a more robust time-of-travel method for computing

the optic flow based on cross-correlation of neighboring pixels’ signals, which was inspired by the

Hassenstein-Reichardt model, the LMSs could deliver high-frequency measurements when used

on a vehicle driving along parked vehicles, even in presence of vibrations and few contrasts on

the cars bodies. We also showed that, in situations where the LMSs delivered relatively accurate

measurements, it was possible to compute 2-D point clouds at the same high frequency, in which

the shapes of the parked vehicles could be recognized. Therefore, we might conclude that, in the

case where several LMSs could be used all around the vehicle, the lines corresponding to the parked

vehicles could be found in real time and the vehicle’s ego-pose could be estimated in a simple but

robust way during the entire parking maneuver, as showed in simulation. However, the response

of these sensors was still not satisfactory in extreme lighting conditions (from shaded to lightened

areas, with light reflected on vehicles, at night time, etc), mainly because of the signals delivered

by the pixels in such conditions.

• In the second part, we presented a new auto-adaptive silicon retina featuring a novel pixel, called

M2APix, that reproduces the auto-adaptive responses recorded in the retina of most animals and

even humans. Because testing auto-adaptive pixels and comparing them with other pixels responses

appeared to us not an easy and well-defined operation, we also proposed a new standard method

for accurately characterizing pixels’ responses to luminous changes of up to ±3 decades in a 7-

decade range, by using a single light source, called Lighting Box. The novel M2APix pixel showed

very promising results during these characterization tests, in particular showing no deviation of

its response in presence of sudden, very large changes in light, which is a common issue of VLSI

chips. However, further tests in real operating conditions had to be performed to prove their true

effectiveness for optic flow measurements.

• In the third and last part, a new robust optic flow sensor based on the new auto-adaptive chip and

the new correlation-based method was therefore constructed, after improving the OF algorithm for

providing a constant OF resolution and for successful implementation on embedded electronics.

This new LMS was successfully tested on a low-cost car-like robot, called BioCarBot, for estimating

its velocity and steering angle, and therefore estimating its trajectory (odometry), in various oper-

ating conditions (light levels, textures, vibrations, etc) similar to those occurring on road vehicles.

A reliable and accurate estimation of the vehicle’s velocity is, in fact, crucial as it is used by most

of ADAS systems: the effectiveness of ABS and ESC systems, for instance, strongly depends on this

estimation, but also that of any system controlling the vehicle’s trajectory based on odometry (e.g.

existing IPA systems). With the experiments carried out on the BioCarBot robot we showed that the

LMS developed here (i) was able to cope with the main issues encountered with previous LMSs,

improving their response outdoors in unstructured environments, and (ii) might provide a very

promising solution for accurate velocity estimation and therefore odometry-based applications.

✶✸✷
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The new visual sensors presented in this thesis are bio-inspired in the following aspects: (i) their novel

pixels reproduce the auto-adaptive response present in most animals’ retina [36,42,47], and (ii) the new

method for computing the optic flow combines the properties of time-of-travel algorithms [60, 62] with

those of correlation-based algorithms based on the Hasseinstein-Reichardt model [76,123], both inspired

by biological findings obtained on insects. In addition, although the car-like robot, and therefore the

model presented in the last part was not bio-inspired, the visual odometry method used was also inspired

by the biological findings obtained on insects, e.g. on bees and hunts [93,146], which show that ventral

optic flow is mostly used by these animals to estimate their trajectory.

✺✳✷ ❋✉rt❤❡r ✐♠♣r♦✈❡♠❡♥ts

Although some important improvements have been successfully applied on the optic flow sensors pre-

sented here, they still present some limitations mainly due to the higher computational load than previ-

ous solutions. In fact, as already mentioned, the new correlation-based method for computing the optic

flow could provide improved performances with respect to the threshold-based method used previously,

but this resulted in an increased computational cost and therefore larger resources required (e.g. from

a micro-controller to a micro-processor). A full quantitative comparison between the 2 methods should

be performed to be able to determine which method it is worth to use, depending on the application, the

hardware and the cost requirements.

In addition, although this new method allow to obtain a high refresh rate, a wide OF range and high

and constant OF resolution, up to now it was not possible to obtain all these advantages at the same time

as it would result in a saturation of the CPU load. As discussed at the end of chapter 4, the performances

of the OF sensor could be further improved by optimizing and implementing the algorithm, for instance,

on a DSP or FPGA, allowing to obtain a very good compromise between high frequency, wide OF range

and high OF resolution.

Although the method presented here was developed to measure optic flow only in one direction,

since it has been used in applications (odometry) where the direction of motion was known, it could be

improved to measure the optic flow in the 2 directions by applying relatively simple modifications (see

Appendix C). The same computations, in fact, could be performed after switching the delayed and non-

delayed signals (motion in the opposite direction), then the maximum cross-correlation coefficient could

be taken along the 2 directions, determining therefore also the sign of the optic flow. However, such an

improvement would result in a even higher computational load, and some tests should be performed to

verify its reliability.

As mentioned at the end of chapter 3, a few improvements could be also carried out on a new version

of the M2APix pixel in order to increase its effective voltage range up to the conversion range of the

ADC. In this way, the contrast resolution would be increased nearly two-fold, resulting to a minimum

detectable contrast of 1% in the light-adapted condition and 3% in the light-adapting condition, and thus

✶✸✸
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optic flow measurements would be possible even in the case of very little textured surfaces.

All in all, the LMSs developed up to present have some limitations with respect to other visual sensors,

which are intrinsic to either their function or the technology used: they need textured surfaces and

relative motion, they deliver motion information only in one dimension and their precision and distance

range depend on the lens characteristics, namely the interreceptor angle ∆ϕ, which can not be adjustable

as it can be done, for instance, in standard cameras. The two former are limits intrinsic to the function of

these sensors, i.e. visual motion and contrasts are necessary conditions for delivering measurements, and

therefore can not be avoided. Conversely, the two latter are, as of now, technological and methodological

limits, which could be probably improved respectively by (i) using 2-D pixels arrays and adapting the

method for computing the optic flow in 2-D, and (ii) using a more complex optical system to mechanically

adjust the lens characteristics online similarly to standard cameras.

The methods proposed here for parking and odometry-based applications also have some limitations,

mainly due to the hypothesis that have been made in other to allow to use only the information provided

by the LMSs (e.g. the hypothesis that the vehicles do not move, or that there is no lateral skid). This

approach is very convenient when applied to robots that have to accomplish relatively simple tasks in

not very complex environments, and therefore do not need redundant information and high level of

intelligence. However, as already said in the first chapter, the autonomous vehicles of the future, as well

as any autonomous mobile systems that have to operate in complex, populated environments, will need

redundant and complementary information coupled with high level of intelligence to accurately perceive

the environment and be able to make predictions and decisions on their actions. Therefore, the methods

proposed here should be further improved to integrate data provided by other embedded sensors and

performed more accurate estimations and control strategies.

In addition, the estimation and control methods used in these applications are statistically robust but

relatively simple, since they are based on simplified kinematic models mainly derived from the Acker-

mann steering model. This makes it possible to perform a real-time implementation onboard low-cost

car-like robots, and eventually cars, using relatively simple and light electronics, while obtaining good

performances in relatively simple environments. However, when the environments become more complex

and the dynamic of the vehicle may be important, these methods should be adapted to more complex

dynamic models, and a more accurate identification and calibration of such models should also be per-

formed. In addition, as we saw that the standard deviation of the measurement noise depended on the

measurements’ amplitude, methods involving dynamically-changing parameters of the covariance matri-

ces, such as the Chong-Kleman method [313], could be used to increase the robustness of the EKFs.

✺✳✸ ❚❤❡ ▼✉❧t✐✲▼2❆P✐① s❡♥s♦r

During this thesis, we also designed and developed a new multi-facet sensor based on M2APix chips,

called Multi-M2APix, as shown in Fig. 5.1.

✶✸✹
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❋✐❣✉r❡ ✺✳✶✿ ❚❤❡ ▼✉❧t✐✲▼2❆P✐① s❡♥s♦r ❝♦♠♣♦s❡❞ ♦❢ ✹ ▼2❆P✐① ❝❤✐♣s s♦❧❞❡r❡❞ ♦♥ ❛ ✢❡①✐❜❧❡ Pr✐♥t❡❞ ❈✐r❝✉✐t

❇♦❛r❞ ✭P❈❇✮✱ ✇❤✐❝❤ ❝❛♥ ❜❡ ✢❡①❡❞ ✉♣ t♦ ❛❜♦✉t 90o ❜❡t✇❡❡♥ ❡❛❝❤ ❝❤✐♣✴❢❛❝❡t✱ ❛❧❧♦✇✐♥❣ t♦ ❡✈❡♥t✉❛❧❧② ♦❜t❛✐♥

❛ 360o ✜❡❧❞ ♦❢ ✈✐❡✇ ✭❋❖❱✮✳ ■♥ t❤✐s ✈❡rs✐♦♥✱ t❤❡ ❧❡♥s ✉s❡❞ ✐s t❤❡ s❛♠❡ t♦ t❤❛t ✉s❡❞ ✐♥ t❤❡ s❡♥s♦rs ♣r❡s❡♥t❡❞

✐♥ ❝❤❛♣t❡r ✹✱ ❣✐✈✐♥❣ ❛ ∼ 22o ❋❖❱ ❡❛❝❤ ❛♥❞ t❤❡r❡❢♦r❡ ❛ ♠❛①✐♠✉♠ ❝♦♥t✐❣✉♦✉s ❋❖❱ ♦❢ ❛❜♦✉t 90o✳ ❍♦✇❡✈❡r✱

t❤✐s ❋❖❱ ❝❛♥ ❜❡ ❝✉st♦♠✐③❡❞ ❜② ❝❤❛♥❣✐♥❣ t❤❡ ❧❡♥s✱ ✇❤✐❝❤ ❝❛♥ ❜❡ ❡❛s✐❧② ✉♥s❝r❡✇❡❞ t❤❛♥❦s t♦ t❤❡ ✸✲❉

♣r✐♥t❡❞ ♦♣t✐❝❛❧ ❝❛s✐♥❣ ♠♦✉♥t❡❞ ♦♥t♦ t❤❡ ❝❤✐♣✳

The Multi-M2APix sensor is composed of 4 M2APix chips soldered on a 100x20mm flexible Printed

Circuit Board (PCB), which can be flexed up to about 90o between each chip/facet, allowing to eventually

obtain a 360o field of view (FOV). In the version developed here (Fig. 5.1), we used the same lens as

that used in the sensors presented in chapter 4, giving a ∼ 22o FOV each and therefore a maximum

contiguous FOV of about 90o. However, this FOV can be customized by changing the lens, which can

be easily unscrewed thanks to the 3-D printed optical casing mounted onto the chips. This possibility to

screw and unscrew the lens support also allow to adjust the distance between the lens and the pixels in

order to obtain different spatial filtering, namely different values of ∆ϕ,∆ρ, for each facet, reproducing

similar characteristics to those of the insects’ compound eyes but in a simpler and cheaper solution than

that of artificial compound eyes (although much less compact).

Some details on the hardware implementation of this sensor are given in Appendix D.

This sensor was initially developed in order to evaluate the responses of multiple LMSs to compute

2-D point clouds all around the vehicle (or the car-like robot) during parking maneuvers. Then, in the

case of good responses, the next step was to implement all the steps of the method proposed in chapter 2,

and eventually perform closed-loop parking maneuvers based on the optic flow measurements delivered.

Unfortunately, the development of this sensor encountered some difficulties and therefore took a too long

time to be tested and used for these purposes.

✶✸✺
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✺✳✹ ❖t❤❡r ❛♣♣❧✐❝❛t✐♦♥s ❛♥❞ ♣❡rs♣❡❝t✐✈❡s

Other applications that are not covered yet by existing ADAS systems have been also considered as in-

teresting for use of multiple LMSs, such as automated driving close to walls, flank-guards or sidewalks,

as well as in relatively narrow tunnels which can be found, for instance, in underground garages (Fig.

5.2). A robust estimation of the robot/vehicle’s position and orientation with respect to the side walls

(or flank-guards, sidewalks, etc) could be obtained, for instance, by adapting the solution proposed in

chapter 2 for estimating the position and orientation of the lines found in the 2-D point clouds computed

from the OF measurements. As the RANSAC method might be too computationally costly for implemen-

tation on low-cost embedded electronics, other solutions might be applied using EKFs based on the model

given in equation (2.5) but, this time, using directly the OF measurements from neighboring pixels or

the estimation of the line orientation obtained, for instance, by using the least squares method presented

in [242].

❋✐❣✉r❡ ✺✳✷✿ ❊①❛♠♣❧❡s ♦❢ s✐t✉❛t✐♦♥s t❤❛t ❛r❡ ♥♦t ❝♦✈❡r❡❞ ②❡t ❜② ❡①✐st✐♥❣ ❆❉❆❙ s②st❡♠s✱ ✐♥ ✇❤✐❝❤ ▲▼❙s

❝♦✉❧❞ ❛❧s♦ ❜❡ ❤❡❧♣❢✉❧ ❢♦r ❛✉t♦♠❛t❡❞ ❞r✐✈✐♥❣✿ ✭❛✮ ♥❛rr♦✇ t✉♥♥❡❧ ✐♥ ❛♥ ✉♥❞❡r❣r♦✉♥❞ ❣❛r❛❣❡❀ ✭❜✮ ❛ ✢❛♥❦✲

❣✉❛r❞ ❛t t❤❡ s✐❞❡ ♦❢ ❛ r♦❛❞✳

Another application which could be considered is the detection of dangerous movements around the

vehicle, in particular those produced by pedestrian, bikes or scooters, which are often not detected by

the sensors used on ADAS available on the market due to their limits (see section 1.3). Such dangerous

movements could be detected, for instance, by verifying the consistency in the OF measurements of

pairs of neighboring pixels (or neighboring LMSs), or yet the consistency between the OF measurements

delivered by the LMSs and some information (distances, velocities, etc) provided by other sensors or by

some “a priori” knowledge on the environment.

Perspectives of how LMSs could equip standard cars were finally discussed in this thesis. Thanks to

their simple structure and hardware requirements, we can imagine that these sensors could be integrated

in any part of the car comprising transparent plastic elements, such as the headlights. In fact, these

✶✸✻
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sensors do not require a high resolution/precision of their optical lens, which is defocalized as opposed to

standard cameras. Thus, we might propose that their lens could be directly produced by such transparent

elements by locally deforming the plastic material to obtain a specific defocalization, and therefore a

specific spatial filtering. Tiny PCBs including a few pixels would then be placed underneath this local

plastic deformations (Fig. 5.3). In this way, the integration of these sensors would be achieved in a very

cost-competitive way, giving local optic flow measurements all around the vehicle, which could therefore

be used for some of the applications proposed all along this thesis.

These technical solutions have been described in details in 2 patents that have been recently filed (see

the “Publications” page at the beginning of this manuscript).

❋✐❣✉r❡ ✺✳✸✿ ❊①❛♠♣❧❡ ♦❢ ✐♥t❡❣r❛t✐♦♥ ♦❢ t❤❡ ▲▼❙s ♦♥ ❛ ❝❛r✬s ❤❡❛❞❧✐❣❤t✳ ✭❛✮ ❙❡✈❡r❛❧ ▲▼❙s ❝♦✉❧❞ ❜❡ ♣❧❛❝❡❞

❛t ❞✐✛❡r❡♥t ♣♦s✐t✐♦♥s ♦❢ t❤❡ ❤❡❛❞❧✐❣❤t ❛♥❞ ❧♦♦❦✐♥❣ ❛t ❞✐✛❡r❡♥t ❞✐r❡❝t✐♦♥s✳ ✭❜✮ ❚❤❡ ❧❡♥s ✭▲✮ ♦❢ t❤❡s❡ ▲▼❙s

❝♦✉❧❞ ♣r♦❞✉❝❡❞ ❜② ❧♦❝❛❧ ❞❡❢♦r♠❛t✐♦♥s ♦❢ t❤❡ ❤❡❛❞❧✐❣❤t✬s ♣❧❛st✐❝ ✭●❇✮✱ ❛♥❞ t✐♥② P❈❇s ✭P❙✮ ❝♦♠♣r✐s✐♥❣

❛ ❢❡✇ ♣✐①❡❧s ✭P✷✮ ❝♦✉❧❞ ❜❡ t❤❡♥ ♣❧❛❝❡❞ ✉♥❞❡r♥❡❛t❤ t❤❡s❡ ❧❡♥s t♦ ♦❜t❛✐♥ ❛ s♣❡❝✐✜❝ ❞❡❢♦❝❛❧✐③❛t✐♦♥✱ ❛♥❞

t❤❡r❡❢♦r❡ ❛ s♣❡❝✐✜❝ s♣❛t✐❛❧ ✜❧t❡r✐♥❣✳

All in all, the bio-inspired visual sensors presented in this thesis are complementary to the sensors

already used on cars in the following aspects:

• they provide a higher dynamic range and higher frequency processing than standard cameras at

lower cost than high-dynamic-range and high-frequency cameras, however they give only motion

information in 1-D;

• they provide a wider field of view and longer distance range than ultrasonic sensors, however they

give motion information instead of distance information;

• they provide a higher sensitivity to tangential movements (i.e. perpendicular to the sensor’ axis)

than radial movements (i.e. along the sensor’s axis) as opposed to radars;

• they are passive sensors without any mechanical parts as opposed to lidars.

✶✸✼
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Therefore, these sensors might be used in autonomous vehicles for high-frequency motion detection

around the vehicle, and in particular in the lateral hemispheres (e.g. in automated driving in parking

garage), whereas cameras are still used for scene interpretation and object recognition at relatively low

frequency in most applications, sonars are used for stationary and quasi-stationary object detection rela-

tively close to the vehicle (e.g. in parking maneuvers) and radars are used for object detection relatively

far from the vehicle in the front and rear hemispheres (e.g. in highway automated driving).

In addition, as shown in the last part of this thesis, the LMSs could also improved the odometry

performances obtained when using GPSs, IMUs and wheel encoders.

✶✸✽
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❆❞❞✐t✐♦♥❛❧ ✐♥❢♦r♠❛t✐♦♥ ♦♥ ❈❤❛♣t❡r ✷

❉❡t❛✐❧s ♦♥ ♣♦✐♥t ❛♥❞ ❧✐♥❡ ♠♦t✐♦♥ ♠♦❞❡❧✐♥❣

Here, we describe the main steps which led to equations (2.1) and (2.5) in section 2.2.4.

Let us assume that the vector XP represents the position of the point P with respect to the inertial

frame < I > (see Fig. 2.3), then we have:

IXP = IX + IxP = IX + IRB(
Bxi +

Bxs), ✭✺✳✶✮

where X is the position of the of the body frame < B > with respect to < I >, the upper-left subscripts

indicate that the vectors are projected onto < I > or < B >, and IRB is the rotation matrix projecting

the vectors from < B > to < I > (and viceversa for BRI = IRTB).

By derivating equation (5.1) temporally with respect to < I > and projecting the resulting vectors

onto < B >, we obtain:

VP = BRI
d

dt

(

IXP

)

= BRI
d

dt

(

IX
)

+ BRI
d

dt

(

IRB(
Bxs +

Bxi)
)

, ✭✺✳✷✮

where VP represents therefore the velocity of P with respect to < I > projected onto < B >.

We note that the first term in the right-hand part of equation (5.2) is nothing but the longitudinal

velocity of the vehicle Vf = [Vf 0 0]
T , whereas the second term can be decomposed as follows:

BRI
d

dt

(

IRB(
Bxs +

Bxi)
)

= BRI

(

d

dt

(

IRB
)

IRTB
IRB(

Bxs +
Bxi) +

IRB
d

dt

(

Bxs +
Bxi

)

)

= BRI

(

Ω̂IRB(
Bxs +

Bxi) +
IRB

Bẋi

)

= Ω̂(Bxs +
Bxi) +

Bẋi,

✭✺✳✸✮

where Ω̂ = d
dt

(

IRB
)

IRTB is the skew-symmetric matrix of the vector Ω = [0 0 θ̇]T corresponding to the

angular velocity of < B > with respect to < I >, d
dt

(

Bxs
)

= 0 since Bxs does not change, and where we

used the properties IRTB
IRB = I and BRIΩ̂

IRB = BRI
IRBΩ̂, with I being the identity matrix.

By combining equations (5.2) and (5.3) and rearranging the terms on the two sides, we obtain:

Bẋi = VP − Vf − Ω̂(Bxs +
Bxi), ✭✺✳✹✮

which corresponds to equation (2.1) if we consider θ̇ = tanφ
L
Vf , according to the Ackermann model.
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To obtain the first 2 equations in (2.5), let us consider that, for a sake of simplicity, the X-axis of

< I > is located along the line l. Then, we can write:

Bxl =
BRI

Ixl =
BRI





0

−Y



 , ✭✺✳✺✮

where Y is the position of < B > along the Y -axis (i.e. the second component of X).

By derivating equation (5.5) temporally with respect to < I >, we obtain:

Bẋl =
BRI

d

dt

(

Ixl
)

+
d

dt

(

BRI
I
)

BRI
IT BRI

IIxl =
BRI

I ẋl − Ω̂Bxl, ✭✺✳✻✮

which corresponds to equation (2.5) if we consider that Ẏ = sin θVf and θ̇ = tanφ
L
Vf , according to the

Ackermann model.

In order to apply an extended Kalman filter (EKF) to the system described by equation (2.5), taking

xl as output, we need to verify its observability. The first 2 components of the state ξ = [xl yl θ]
T are

obviously observable since they correspond directly to the output xl, however we do not know whether

the third variable is observable or not. For this purpose, we need to compute the rank of the extended

observability matrix Ho, obtained by taking the extended output vector composed of the output itself and

its time derivatives up to the n − 1-th order (n being the dimension of state), and then computing the

partial derivatives of this vector with respect to state variables. If the rank of this matrix is equal to the

dimension of the system, i.e. rank(Ho) = 3, then the entire system, and therefore its state variables, is

observable.

By derivating the output xl with respect to time, we obtain the following observability matrix:

Ho =
∂

∂ξ





xl

ẋl



 =

















1 0 0

0 1 0

0 tanφ
L
Vf − sin(2θ)Vf

− tanφ
L
Vf 0 − cos(2θ)Vf

















, ✭✺✳✼✮

which is full rank since there are no values of the state and the control parameters (Vf , φ) that make the

determinants of the 4 minors equal to zero at the same time.

❉❡t❛✐❧s ♦♥ t❤❡ ❡①♣❡r✐♠❡♥t❛❧ r❡s✉❧ts

The vehicle’s trajectory (IX) shown in Fig. 2.8 was computed by integrating the equations of the Acker-

mann model [264] using the vehicle’s velocity and steering angle values acquired via the vehicle’s CAN

bus as actual inputs. The 2-D point positions in the inertial frame < I > (IXP ) were then computed by

using equation (5.1) obtaining the point clouds shown in Fig. 2.8.
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❉❡t❛✐❧s ♦♥ t❤❡ ❝❤✐♣

Here, we provide some details on the chip presented in chapter 3. The inputs and outputs of the silicon

retina as well as the circuital scheme of the reference voltage regulator allowing the correct operation of

the M2APix pixel (see section 3.2.6) are shown in Fig. B.1.

A simplified description of the chip’s inputs and outputs is given in table shown Fig. B.2. The reader

is also suggested to look at Fig. 3.3 and 3.4 for a complete overview of the chip.

❋✐❣✉r❡ ❇✳✶✿ ✭❛✮ ▼❛❣♥✐✜❡❞ ✈✐❡✇ ♦❢ t❤❡ s✐❧✐❝♦♥ r❡t✐♥❛ ✇✐t❤ ✐ts ✐♥♣✉ts ❛♥❞ ♦✉t♣✉ts✳ ✭❜✮ ❍❛r❞✇❛r❡ ✐♠♣❧❡✲

♠❡♥t❛t✐♦♥ ✐♥ ❱▲❙■ ♦❢ t❤❡ r❡❢❡r❡♥❝❡ ✈♦❧t❛❣❡ r❡❣✉❧❛t♦r ❛❧❧♦✇✐♥❣ ❝✐r❝✉✐t ♦♣❡r❛t✐♦♥ ♦✈❡r ✼ ❞❡❝❛❞❡s ♦❢ t❤❡

♣❤♦t♦❞✐♦❞❡ ❝✉rr❡♥t ✇✐t❤♦✉t ❝❛✉s✐♥❣ s❛t✉r❛t✐♦♥ ♦❢ t❤❡ tr❛♥s✐st♦rs ✭s❡❡ ❋✐❣✳ ✸✳✹✮✳
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Figure B.3 shows the table and the graph giving the theoretical conversion values from the external

voltage Vext to the current Iext which goes into the normalizer block of the M2APix pixel when the Mode

parameter is equal to 1.

❋✐❣✉r❡ ❇✳✸✿ ❚❛❜❧❡ ❛♥❞ ❣r❛♣❤ ❣✐✈✐♥❣ t❤❡ t❤❡♦r❡t✐❝❛❧ ❝♦♥✈❡rs✐♦♥ ✈❛❧✉❡s ❢r♦♠ t❤❡ ❡①t❡r♥❛❧ ✈♦❧t❛❣❡ Vext t♦

t❤❡ ❝✉rr❡♥t Iext✳
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An internal state machine similar to that adopted in the CurvACE sensor [219, 242, 275] was imple-

mented on chip for serial communication with an external device (Fig. B.4). When the chip is switched

on or reset, a clean initialization of all the used blocks is performed by means of a power-on-reset circuit,

therefore the first reading just after a reset should be not used by the external device. The sync and clock

signals are initially pulled up using internal pulled up resistors, then four synchronized combinations of

these signals impose the following states:

• Wait mode. After a power on or reset operation, the output data are all at the low level. This state

is not changed while the sync signal stays at the high level. In this mode, the clock variation is not

desirable to keep the power consumption at a lower level.

• Full scan mode. In order to set up this conversion mode, the sync signal has to go from 1 to 0

(falling edge) while the clock still at the high level. In this case, successive ADC conversions of

the pixels’ signals are performed and serial data are sent continuously to the external device at the

clock frequency until the sync signal changes (from 0 to 1). In order to jump to the single scan

mode, the sync signal has to change only at the low level of the clock and after an entire word (16

clock pulses) is sent. Otherwise the state machine reaches the stop mode.

• Single scan mode. In this mode, a counter disable signal is generated to take data only from the

selected pixel. For example, if we need to digitize only the pixel 7, 6 words (6x16 clock pulses)

have to be sent but only the result of the conversion of the 7th word will be sent on the serial

bus (data output signal). The single scan mode can only be set up after at least one conversion in

the full scan mode. This mode is mainly used for testing and characterization purposes where the

converted data are generated, for instance, only for the first pixel.

• Stop mode (or soft shutdown). The chip enters on this mode when one of these two conditions

are satisfied: a sync transition from 0 to 1 occurs while the clock is at the high level if the machine

is in full scan mode, or from 1 to 0 occurs while the clock is at the low level if the machine is in

single scan mode. In this mode, all internal blocks can be powered down. If all the analog blocks

are turned off, then the external device will have to wait for a while, namely the weak up time,

before validating data from conversion. If the blocks stayed switched on, the state machine goes

back to the wait mode.

The 16-bit words sent on the serial output data are composed as follows: 0 YYYY XXXXXXXXXX 0,

where the 4 Y bits define the pixel number starting from the most significant bit, i.e. 1000 for pixel 1,

0100 for pixel 2, etc (0000 corresponds to Vm for the M2APix pixel and to the bandgap voltage for the

Delbruck pixel), and the 10 X bits represent the pixel value starting from the least significant bit.
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Here, we present the results obtained for the characterization of the Delbruck pixels present on our

silicon retina, in addition to the M2APix pixels (Fig. B.1). The same hardware setup and characterization

procedure have been used as for the M2APix pixels (see section 3.2.8). However, only one optical filter

has been used for each average luminosity, therefore the s-shaped curves were characterized over ±1.5

decades instead of ±3 decades as for the M2APix pixel (Fig. B.5).

This characterization showed that, apart for the pixel 6 which did not properly respond (yellow line

with circle markers in Fig. B.5), the 12 pixels qualitatively reproduced the expected s-shaped curved as

provided in [175] at relatively low luminosity, whereas they delivered unexpected and unrepeatable re-

sponses for large changes in light (> 1 decade, corresponding to contrasts higher than 50%) at relatively

high luminosity (Fig. B.5). Such an unreliable response for large changes in light represents the main

drawback of the Delbruck pixel and, on the contrary, a major advantage of the M2APix pixel, as already

discussed in section 3.2.10.

Another difference between the Delbruck and M2APix pixel is the steady-state response: in the former

it increases with the luminosity, resulting in a theoretically unbounded output and a non-optimal LSB

resolution, since the transient operating range at each light level (∼ 1V ) is smaller than the whole

operating range (∼ 1.8V ), whereas in the latter it is nearly constant independently to the luminosity,

resulting in a limited-range output and therefore an improved LSB resolution.

10
-1

10
0

10
1

10
2

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Pixel 1

Pixel 2

Pixel 3

Pixel 4

Pixel 5

Pixel 6

Pixel 7

Pixel 8

Pixel 9

Pixel 10

Pixel 11

Pixel 12

-94 -50 50 94
Contrast (%)

0
10

-4
10

-3
10

-2
10

-1
10

0
10

1
10

2
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Irradiance (W/m²)

P
e
a
k
 V

a
lu

e
 (

V
)

No Filter

1 mm NG3 Filter

2 mm NG3 Filter

2 mm NG9 Filter

3 mm NG9 Filter Irradiance (W/m²)

10
-5

❋✐❣✉r❡ ❇✳✺✿ ❙✲s❤❛♣❡❞ ❝✉r✈❡s ❛♥❞ st❡❛❞②✲st❛t❡ r❡s♣♦♥s❡s ♦❢ t❤❡ ♣✐①❡❧s ♦❢ ❉❡❧❜r✉❝❦ t②♣❡ ♣r❡s❡♥t ♦♥ ♦✉r s✐❧✐✲

❝♦♥ r❡t✐♥❛✳ ✭❛✮ P❡❛❦ ❛♥❞ st❡❛❞②✲st❛t❡ ✈❛❧✉❡s ♦❜t❛✐♥❡❞ ❢♦r t❤❡ t❤✐r❞ ♣✐①❡❧ ❛t ❞✐✛❡r❡♥t ❛✈❡r❛❣❡ ❧✉♠✐♥♦s✐t✐❡s

✉s✐♥❣ ❢♦✉r ♦♣t✐❝❛❧ ✜❧t❡rs ✭❞✐✛❡r❡♥t ❝♦❧♦rs✱ ❜❧❛❝❦ ✐s ✇✐t❤♦✉t ♦♣t✐❝❛❧ ✜❧t❡r✮✳ ✭❜✮ P❡❛❦ ❛♥❞ st❡❛❞②✲st❛t❡ ✈❛❧✉❡s

♦❜t❛✐♥❡❞ ❢♦r t❤❡ ✶✷ ♣✐①❡❧s ✭❞✐✛❡r❡♥t ❝♦❧♦rs ❛♥❞ ♠❛r❦❡rs✮ ❛t ♦♥❡ ❛✈❡r❛❣❡ ❧✉♠✐♥♦s✐t② ✭♥♦ ♦♣t✐❝❛❧ ✜❧t❡r✮✳

✶✹✺



❆♣♣❡♥❞✐① ❇

✶✹✻



❆♣♣❡♥❞✐① ❈

❆❞❞✐t✐♦♥❛❧ ✐♥❢♦r♠❛t✐♦♥ ♦♥ ❈❤❛♣t❡r ✹

❆❧❣♦r✐t❤♠ ✐♠♣❧❡♠❡♥t❛t✐♦♥ ♦❢ t❤❡ ♥❡✇ ♦♣t✐❝ ✢♦✇ ♠❡t❤♦❞

Here, we describe the algorithm used for the correlation-based optic flow method presented in chapter 4,

which has been improved to reduce the computational cost and therefore be implemented on embedded

electronics.

The Pearson cross-correlation coefficient between 2 sampled signals x, y at one sampling step can

defined as follows:

̺ =
cov(x, y)

σxσy
=

∑n
i (xi − x̄)(yi − ȳ)

√

∑n
i (xi − x̄)

2
√

∑n
i (yi − ȳ)

2
, ✭✺✳✽✮

where x̄ =
∑n

i xi

n
is the mean value of x (same for ȳ), the index i indicates the i-th sample and n is the

number of samples. The sampling time ∆t and the number of samples n are constant and fixed, and

therefore x, y can be considered as FIFO buffers of fixed length n.

In our case, the ̺ coefficients are computed for N pairs of signals x, y, corresponding to the pixels’

signals VPhj
, VPhj+1

(N = 10 for the M2APix sensor, see section 4.2.3), and each pair for m time lags,

giving N × m computations of equation (5.8) and therefore N × m × n subtractions and products for

each signal. Such a computation can be too costly for embedded electronics if we want to have robust

measurements (high value of n) in a wide OF range with high OF resolution (high value of m).

By looking at equation (5.8), we can note that, as a new sample enters in the FIFO buffers, the sums
∑n
i (xi − x̄) and

∑n
i (yi − ȳ) (and their squared counterparts) computed from one sampling step to the

next one have n − 2 terms unchanged, i.e. the terms corresponding to i = 2, . . . , n − 1. Therefore,

the computation of the ̺ coefficients at each sampling step can be improved by updating these sums by

subtracting the n-th term (corresponding to the oldest sample in the FIFO) and adding the first term

(corresponding to the new sample entering in the FIFO), instead of recomputing them from zero. In this

way, we will have about N ×m× 2 subtractions and products instead of N ×m× n.

Therefore, the improved pseudo-algorithm applied to each pair of pixels’ signals VPh1
, VPh2

sampled,

band-pass filtered and buffered in the FIFO buffers Ph1, Ph2, can be described as follows:
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✶✿ ❢✉♥❝t✐♦♥ ❖❋✭Ph1, Ph2✮ ⊲ Ph1, Ph2 ❛r❡ ❋■❋❖ ❜✉✛❡rs

✷✿ Ph′2 ← Ph1[n+ 1] ⊲ ❚❛❦❡ t❤❡ ♦❧❞❡st s❛♠♣❧❡ ♦❢ Ph2

✸✿ Ph′′2 ← Ph2[1] ⊲ ❚❛❦❡ t❤❡ ♥❡✇❡st s❛♠♣❧❡ ♦❢ Ph2

✹✿ Ph′2mean
←

Ph2sum

n
⊲ Ph′2mean

✐s t❤❡ ♣r❡✈✐♦✉s ❛✈❡r❛❣❡ ♦❢ Ph2 ✭Ph2sum
✐s ✐♥✐t✐❛❧✐③❡❞ ❛t ✵✮

✺✿ Ph2sum
← Ph2sum

− Ph′′2 + Ph′2 ⊲ ❯♣❞❛t❡ t❤❡ s✉♠ ♦❢ t❤❡ ❡❧❡♠❡♥ts ♦❢ Ph2

✻✿ Ph′′2mean
←

Ph1sum

n
⊲ Ph′′2mean

✐s t❤❡ ✉♣❞❛t❡❞ ❛✈❡r❛❣❡ ♦❢ Ph2

✼✿ C ′
2 ← Ph′2 − Ph

′
2mean

✽✿ C ′′
2 ← Ph′′2 − Ph

′′
2mean

✾✿ C2 = C2 − C
′2
2 + C ′′2

2 ⊲ C2 ✐s ✐♥✐t✐❛❧✐③❡❞ ❛t ✵

✶✵✿ ❢♦r i← 1, . . . ,m ❞♦

✶✶✿ Ph′1 ← interp(Ph1, τi, n+ 1) ⊲ ❚❛❦❡ t❤❡ ♦❧❞❡st s✉❜s❛♠♣❧❡s ♦❢ Ph1 st❛rt✐♥❣ ❢r♦♠ t = τi

✶✷✿ Ph′′1 ← interp(Ph1, τi, 1) ⊲ ❚❛❦❡ t❤❡ ♥❡✇❡st s✉❜s❛♠♣❧❡s ♦❢ Ph1 st❛rt✐♥❣ ❢r♦♠ t = τi

✶✸✿ Ph′1mean
←

Ph1sum

n
⊲ Ph′1mean

✐s t❤❡ ♣r❡✈✐♦✉s ❛✈❡r❛❣❡ ♦❢ Ph1 ✭Ph1sum
✐s ✐♥✐t✐❛❧✐③❡❞ ❛t ✵✮

✶✹✿ Ph1sum
← Ph1sum

− Ph′′1 + Ph′1 ⊲ ❯♣❞❛t❡ t❤❡ s✉♠ ♦❢ t❤❡ ❡❧❡♠❡♥ts ♦❢ Ph1

✶✺✿ Ph′′1mean
←

Ph1sum

n
⊲ Ph′′1mean

✐s t❤❡ ✉♣❞❛t❡❞ ❛✈❡r❛❣❡ ♦❢ Ph1

✶✻✿ C ′
1 ← Ph′1 − Ph

′
1mean

✶✼✿ C ′′
1 ← Ph′′1 − Ph

′′
1mean

✶✽✿ C1 = C1 − C
′2
1 + C ′′2

1 ⊲ C1 ✐s ✐♥✐t✐❛❧✐③❡❞ ❛t ✵

✶✾✿ C12 = C12 − C
′
1C

′
2 + C ′′

1C
′′
2 ⊲ C12 ✐s ✐♥✐t✐❛❧✐③❡❞ ❛t ✵

✷✵✿ ̺i ←
C12√
C1C2

⊲ ❈♦♠♣✉t❡ t❤❡ P❡❛rs♦♥ ❝r♦ss✲❝♦rr❡❧❛t✐♦♥ ❝♦❡✣❝✐❡♥t

✷✶✿ ❡♥❞ ❢♦r

✷✷✿ k ← argmaxi ̺i ⊲ ❋✐♥❞ t❤❡ ♠❛①✐♠✉♠ ❝♦rr❡❧❛t✐♦♥

✷✸✿ ✐❢ ̺k > ̺thr t❤❡♥

✷✹✿ ω ← ±∆ϕ
τk

⊲ ❚❤❡ s✐❣♥ ❞❡♣❡♥❞s ♦♥ t❤❡ s❡♥s♦r✬s ❛①✐s ♦r✐❡♥t❛t✐♦♥

✷✺✿ ❡❧s❡

✷✻✿ ω ← NaN

✷✼✿ ❡♥❞ ✐❢

✷✽✿ r❡t✉r♥ ω

✷✾✿ ❡♥❞ ❢✉♥❝t✐♦♥

✶✹✽
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The algorithm presented above could be extended to measure the optic flow in 2 directions by ap-

plying a nested for loop (j ← 1, 2), in which the same computations (from line 2 to 21) would be

performed first by delaying Ph2, as in the case shown here, and then by delaying Ph1. The maximum

cross-correlation coefficient would be then taken along the 2 indexes (i = 1, . . . ,m and j = 1, 2), and

the sign of ω would be therefore determined by the index j, i.e. k, h ← argmaxi,j ̺i,j and ω ← ±∆ϕ
τk

depending on whether h = 1 or 2.

❉❡t❛✐❧s ♦♥ t❤❡ ❇✐♦❈❛r❇♦t r♦❜♦t

Figure C.1 shows a functional diagram of the electronics used on the BioCarBot robot.

❋✐❣✉r❡ ❈✳✶✿ ❋✉♥❝t✐♦♥❛❧ ❞✐❛❣r❛♠ ♦❢ t❤❡ ❡❧❡❝tr♦♥✐❝ ❤❛r❞✇❛r❡ ❛♥❞ ❝♦♥♥❡❝t✐♦♥s ✐♠♣❧❡♠❡♥t❡❞ ♦♥ t❤❡ ❇✐♦❈❛r✲

❇♦t r♦❜♦t✳

As mentioned in sections 4.2.4 and 4.2.5, the main electronics included one Nanowii board (Fly-

duino) featuring a ATmega32u4 16-MHz CPU microcontroller (Atmel) and a MPU-6050 inertial measure-

ment unit (IMU) comprising a 3-axis gyroscope and a 3-axis accelerometer (InvenSense) and one Overo

IronSTORM computer-on-module (COM) (Gumstix) featuring a 1-GHz CPU DM3730 processor (Texas

Instruments) comprising an ARM Cortex-A8 architecture and a C64x digital signal processor (DSP). The

M2APix output signals were sampled at a frequency of 333 Hz (∆t = 3ms) by the on-chip ADC (see [261]

for details), acquired by the Nanowii board via SPI communication and transmitted to the COM via serial

communication (UART). The Nanowii board also transmitted to the COM other values, such as the IMU

values, the motor speed values measured by a hall sensor attached to the motor shaft, and the battery

voltage level measured via an ADC, while receiving speed and steering control values. The OF algorithm

✶✹✾
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presented above as well as the estimation and control scheme shown in Fig. 4.5 were run at the same

rate on the COM. The ground host PC sends the control set points to the robot’s COM and receives data

from the robot’s COM and the Vicon system through a Wi-Fi connection via UDP communication.

In addition, the Nanowii board was interrupted every 0.02 s (50 Hz) by a radio receiver, which re-

ceived 3 commands from a remote controller: manual or automatic mode selection, and speed and

steering control values. Then, the Nanowii board transmitted at the same frequency the desired speed

and steering values to the electronic speed controller (ESC) and the servo via pulse width modulated

(PWM) signals. These values were those received by the radio receiver if the mode selected was manual,

otherwise were those received by the COM via serial communication (UART).
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❆❞❞✐t✐♦♥❛❧ ✐♥❢♦r♠❛t✐♦♥ ♦♥ t❤❡ ▼✉❧t✐✲▼2❆P✐① s❡♥s♦r

Here, we provide some details on the Multi-M2APix sensor shown in Fig. D.1.

❋✐❣✉r❡ ❉✳✶✿ ❙❝❤❡♠❛t✐❝ ✈✐❡✇ ♦❢ t❤❡ ❢r♦♥t ❛♥❞ ❜❛❝❦ s✐❞❡ ♦❢ t❤❡ ▼✉❧t✐✲▼2❆P✐① s❡♥s♦r✱ ❝♦♠♣♦s❡❞ ♦❢ ✹

▼2❆P✐① ❝❤✐♣s s♦❧❞❡r❡❞ ♦♥ ❛ ✶✵✵①✷✵♠♠ ✢❡①✐❜❧❡ Pr✐♥t❡❞ ❈✐r❝✉✐t ❇♦❛r❞ ✭P❈❇✮ ✭❣r❡❡♥ ❛r❡❛✮✱ ✇❤✐❝❤ ❝❛♥ ❜❡

✢❡①❡❞ ✉♣ t♦ ❛❜♦✉t 90o ❜❡t✇❡❡♥ ❡❛❝❤ ❝❤✐♣✴❢❛❝❡t✱ ❛❧❧♦✇✐♥❣ t♦ ❡✈❡♥t✉❛❧❧② ♦❜t❛✐♥ ❛ 360o ✜❡❧❞ ♦❢ ✈✐❡✇ ✭❋❖❱✮✳

❚❤❡ ✷ ❜r♦✇♥ ❛r❡❛s ❛t t❤❡ ❧❡❢t ❛♥❞ r✐❣❤t✲❤❛♥❞ s✐❞❡s ❛r❡ r✐❣✐❞ ♣❛rts ❞✉❡ t♦ t❤❡ ❝♦♥♥❡❝t♦rs ✭❣r❡② ❜❧♦❝❦s✮✳

❚❤❡ ❞❡t❛✐❧s ♦♥ t❤❡ ❝♦♥♥❡❝t♦rs✬ ♣✐♥s ❛r❡ ❣✐✈❡♥ ✐♥ t❤❡ t❛❜❧❡ s❤♦✇♥ ✐♥ ❋✐❣✳ ❉✳✷✳

The 100x20mm flexible Printed Circuit Board (PCB) is composed of 4 M2APix chips and some ad-

ditional electronics that allow to adjust the parameters of each chip (see Appendix B) from an external

device in a very portable way. The main electronic components included on the flex PCB are:

• one IO expander with 4 separate outputs driven by a single digital input via I2C communication

(PCA9536 by Texas Instruments), to set the parameter Insel at 0 or 1 to select either the M2APix or

the Delbruck pixels;

• one digital potentiometers with 4 separate outputs driven by a single digital input via I2C com-

munication (AD5144A by Analog Devices), to adjust the voltage Vext corresponding to the external

✶✺✸
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current Iext used in the M2APix pixels ifMode = 1✶ (as the operating voltage range is [250, 850]mV ,

a voltage regulator at 1V was also included on the PCB to enhance the potentiometer output reso-

lution);

• 2 level translators (TXB0104 and TXB0108 by Texas Instruments), to allow a suitable interface with

external devices operating at different voltage levels.

The pixels’ data can be acquired via SPI communication by using either the 2 separate buses available

(in this case, the chips are grouped by 2) or only a single bus by using a jumper on the connector. Due

to the maximum frequency of integrated ADC (1 MHz), the data from the 4 chips (12x4 pixels) can be

acquired at a maximum frequency of ∼ 2.2 Hz and ∼ 1.1 Hz, respectively in the 2 cases. Additionally, to

enhance the pixels voltage conversion, a voltage regulator at 2.5V was also included on the flex PCB and

connected to VADC input of each chip, setting the high reverence value of the integrated ADC.

The details on the connectors present on the flex PCB are given in the table in Fig. D.2, where SCL,

SDA are the I2C clock and data bus, respectively, for the IO expanders and the digital potentiometers;

SCLK_X, MISO_X (X = 1,2) are the SPI clocks and data buses (MISO), respectively, for the 2 groups

of chips (SCLK_1, MISO_1 can be connected to SCLK_2, MISO_2 for using a single bus); Sync_X (X =

1, . . . , 4) are the Sync signals for the read-out interface of each chip (corresponding to the “chip select”

of the SPI protocol); Vcc is the voltage level of the external device needed for the level translators; Vm_X

(X = 1, . . . , 4) are the voltage values corresponding to the internal mean current of M2APix pixels of each

chip (see Appendix B); Vin is the voltage supply which must be set at 3.3V .

❋✐❣✉r❡ ❉✳✷✿ ❚❛❜❧❡ ♦❢ t❤❡ ❝♦♥♥❡❝t♦rs✬ ♣✐♥s ♦❢ t❤❡ ▼✉❧t✐✲▼2❆P✐① s❡♥s♦r s❤♦✇♥ ✐♥ ❋✐❣✳ ❉✳✶✳

✶❚❤❡ Mode ♣❛r❛♠❡t❡r ✐s s❡t ❛t ✵ ♦r ✶ ❜② t❤❡ ❡①t❡r♥❛❧ ❞❡✈✐❝❡✳
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Grâce aux progrès réalisés dans les domaines de la robotique et des systèmes de transport intelligents

(ITS), les véhicules autonomes du futur sont en train de devenir une réalité. Les véhicules autonomes

devront se comporter en toute sécurité en présence d’autres véhicules, mais aussi de piétions et d’autres

objets fixes ou en mouvement. Ainsi, une des choses les plus importantes est de percevoir efficacement à

la fois leur mouvement et l’environnement autour d’eux. Le nombre et les types de capteurs embarqués

sur les voitures donc se multiplient pour pouvoir fournir des informations redondantes et complémen-

taires et, éventuellement, d’atteindre des niveaux plus élevés d’autonomie et de sécurité.

Des solutions technologiques efficaces pourraient être trouvées en regardant la nature, qui suggère

souvent des solutions simples mais intelligentes, permettant aux animaux de traiter seulement les in-

formations nécessaires pour des tâches bien définies. Les insectes, par exemple, peuvent effectuer des

maœuvres complexes et rapides et éviter les obstacles en utilisant uniquement des informations visuelles

“bas niveau” et peu de ressources de calcul.

Dans cette thèse, nous avons d’abord étudié comment des capteurs visuels bio-inspirés, appelés Local

Motion Sensors (LMS), qui mesurent le flux optique en 1-D en utilisant seulement quelques pixels sur

la base du système visuel de la mouche, pourraient être utilisés pour améliorer les manœuvres de sta-

tionnement automatiques. A ce propos, nous avons développé une méthode de calcul bas-coût pour la

détection et le suivi d’une place de parking en temps réel en utilisant seulement des mesures de flux op-

tique en 1-D autour du véhicule, ainsi que la vitesse et l’angle de braquage du véhicule. Des simulations

de parking très simplifié en 2-D ont d’abord été réalisées en utilisant le logiciel Matlab / Simulink, puis

quelques expériences préliminaires ont été effectuées sur un véhicule équipé de deux capteurs composés

de 6 pixels.

L’un des principaux défis pour les capteurs visuels est de fonctionner correctement dans une large

gamme de conditions d’éclairage. Nous avons donc travaillé sur une nouvelle rétine de silicium auto-

adaptative bio-inspirée conçue et développée par notre laboratoire en collaboration avec le Centre de

Physique des Particules de Marseille (CPPM). Nous avons testé avec succès cette rétine, en montrant que

le nouveau pixel, appelé M2APIX (pour “Michaelis-Menten Auto-Adaptive Pixel”), est capable de s’auto-

adaptater dans une gamme de 7 décades et de répondre de manière appropriée à des changements de

luminosité rapides jusqu’à ±3 décades, tout en conservant une sensibilité aux contrastes du 2%.
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Enfin, nous avons développé et testé un nouveau capteur de flux optique basé sur cette rétine auto-

adaptative et sur une nouvelle méthode robuste pour le calcul du flux optique, qui fournit plusieurs

avantages par rapport à des capteurs développés précédemment, tel que sa robustesse aux variations de

niveaux de lumière, textures et vibrations que l’on retrouve en milieu routier. Pour tester les performances

de ce nouveau capteur et montrer comment il peut être utilisé pour des applications robotiques et auto-

mobiles tels que l’odométrie visuelle, nous avons construit un robot de type voiture, appelé BioCarBot,

qui estime sa vitesse et son angle de braquage au moyen d’un filtre de Kalman étendu (EKF), en utilisant

uniquement les mesures de flux optique délivrées par deux capteurs de ce type regardant vers le sol. Des

expériences à l’intérieur et à l’extérieur ont été réalisées avec succès dans une gamme de luminosité de 7

décades et en utilisant différentes textures, montrant des perspectives prometteuses de ces capteurs pour

des applications du type odométrie.
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Depuis les travaux pionniers de Paromtchik et al. [251] et le premier système de stationnement intelligent

[252], une large gamme de méthodes de parking (semi-)automatique ont été développées au fil des

années en utilisant toutes sortes de capteurs, des capteurs à ultrasons [253–255] et caméras [256–258],

aux systèmes à lidars [13,259] et radars [15,260].

D’une part, les systèmes de stationnement automatique de haute performance exigent des capteurs

coûteux, tels que les lidars [13, 259] et les radars [15, 260], et de grandes ressources de calcul pour

reconstituer l’environnement en 3-D en temps réel pendant les manoeuvres de stationnement.

D’autre part, la plupart des systèmes de stationnement (semi-)automatique disponibles sur le marché

impliquent l’utilisation de capteurs à ultrasons et caméras de recul [8–10, 255, 257] pour détecter une

place de parking libre pendant que le conducteur conduit le long d’une rangée de véhicules garés. Une

fois la place détectée et validée par le conducteur, le véhicule effectue la manœvre de manière (semi-

)autonome en contrôlant le braquage sur la base de la trajectoire estimée par l’odomètre.

Nous avons donc étudié comment les capteurs de flux optique bio-inspirés développés par notre lab-

oratoire (LMS) [216, 242] pourraient être utilisé pour améliorer les manoeuvres de stationnement au-

tomatique. Grâce à leur large gamme de luminosité et leur sensibilité aux petits contrastes [242,261], les

LMSs comprenant seulement quelques pixels auto-adaptatifs semblent constituer une alternative promet-

teuse aux caméras standards dans des situations où les conditions d’éclairage sont très variables et les

motifs visuels créés par les carrosseries des véhicules, par exemple, montrent de petits contrastes. En

outre, un banc de LMSs pourrait présenter les avantages suivants par rapport aux capteurs à ultrasons et

caméras: (i) des réponses plus rapides (jusqu’à 200 Hz); (ii) un large champ visuel (par exemple 180o);

(iii) une gamme de distance supérieure aux ultrasons; (iv) le coût de calcul plus faible des caméras.

Dans ce premier article, nous avons présenté les premiers résultats vers le développement d’une méth-

ode de calcul à bas coût pour l’exécution de manoeuvres de stationnement automatiques, selon laquelle

✶✽✵
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une place de stationnement peut être détecté et suivi en temps réel sur une configuration du capteur de

mouvement visuel effectuant des mesures en 1-D autour du véhicule. L’algorithme utilisé à ce but était

composé de 5 étapes de traitement (Fig. I).

Step 1 Step 2 

Step 5 Step 4 Step 3 

❋✐❣✉r❡ ■✿ ❊①❡♠♣❧❡ ❞❡ rés✉❧t❛ts ♦❜t❡♥✉s à ❝❤❛q✉❡ ét❛♣❡ ❞❡ ❧✬❛❧❣♦r✐t❤♠❡ ♣♦✉r ❧❛ ❞ét❡❝t✐♦♥ ❡t ❞❡ s✉✐✈✐ ❞✬✉♥❡

♣❧❛❝❡ ❞❡ ♣❛r❦✐♥❣ à ✉♥ ✐♥t❡r✈❛❧❧❡ ❞✬é❝❤❛♥t✐❧❧♦♥♥❛❣❡ ❛✉ ❝♦✉rs ❞❡ ❧❛ s✐♠✉❧❛t✐♦♥✳ ✭❛✮ ▲❛ ♣❧❛❝❡ ❞❡ ♣❛r❦✐♥❣

s✐♠♣❧✐✜é❡ ❡♥ ✷✲❉ ❛✈❡❝ ❧❡s ✈❡❝t❡✉rs ❞❡ ♣♦s✐t✐♦♥ ♣❡r♣❡♥❞✐❝✉❧❛✐r❡s ❛✉① ✹ ❧✐❣♥❡s ❞r♦✐t❡s ❞é✜♥✐ss❛♥t ❧❛ ♣❧❛❝❡✳

✭❜✮ ▲❡s ♣♦✐♥ts ❞ét❡❝tés s✉r ❧❡s ❛①❡s ❞❡s ♣✐①❡❧s✱ ❞♦♥t ❧❡s ♣♦s✐t✐♦♥s ♦♥t été ❝❛❧❝✉❧é❡s ❡♥ ✉t✐❧✐s❛♥t ❧❡s ♠❡s✉r❡s

❞❡ ✢✉① ♦♣t✐q✉❡ ❡♥ ✶✲❉ ❞é❧✐✈ré❡s ♣❛r ❧❡s ▲▼❙s ♣❧❛❝és ❛✉① ✹ ❝♦✐♥s ❞✉ ✈é❤✐❝✉❧❡ ✭ét❛♣❡ ✶✮✳ ❯♥ ❜r✉✐t ❜❧❛♥❝ ❛

été ❛❥♦✉té ❛✉① ♣♦s✐t✐♦♥s ❞❡ ❝❡s ♣♦✐♥ts ❛✜♥ ❞✬❛❥♦✉t❡r ✉♥ ❜r✉✐t ♥♦♥ ❧✐♥é❛✐r❡ ❛✉① ♠❡s✉r❡s ❞✉ ✢✉① ♦♣t✐q✉❡✳

✭❝✮ ▲❡s ✈❡❝t❡✉rs ❞❡ ♣♦s✐t✐♦♥ ❞❡s ❧✐❣♥❡s ♦❜t❡♥✉❡s ♣❛r ❘❆◆❙❆❈ ❞❛♥s ❧❡ ♥✉❛❣❡ ❞❡ ♣♦✐♥ts ✭ét❛♣❡ ✷✮✳ ✭❞✮ ▲❡s

✈❡❝t❡✉rs ❞❡ ♣♦s✐t✐♦♥ ❞❡s ❧✐❣♥❡s ❝❧❛ss✐✜és ♣❛r ❧❡s ◆❇❈s ✭ét❛♣❡ ✸✮✳ ✭❡✮ ▲❡s ✈❡❝t❡✉rs ❞❡ ♣♦s✐t✐♦♥ ❞❡s ❧✐❣♥❡s

❡st✐♠és ♣❛r ❧❡s ❊❑❋s ✭ét❛♣❡ ✹✮✳ ❯♥❡ ♣r❡♠✐èr❡ ❛♣♣r♦①✐♠❛t✐♦♥ ❞❡ ❧❛ ♣♦s✐t✐♦♥ ❞❡s ❝♦✐♥s ❞❡ st❛t✐♦♥♥❡♠❡♥t

❡st ❞♦♥♥é❡ ♣❛r ❧❡s ♣♦✐♥ts ❞✬✐♥t❡rs❡❝t✐♦♥ ❡♥tr❡ ❝❤❛q✉❡ ♣❛✐r❡ ❞❡ ❞r♦✐t❡s ♣❡r♣❡♥❞✐❝✉❧❛✐r❡s✳ ✭❢✮ ▲❡s ✈❡❝t❡✉rs

❞❡s ♣♦s✐t✐♦♥s ❞❡s ❝♦✐♥s ❞❡ ❧❛ ♣❧❛❝❡ ❞❡ ♣❛r❦✐♥❣ ❡st✐♠és ♣❛r ❧❡s ❊❑❋s ✭ét❛♣❡ ✺✮✳

D’abord, l’algorithme calcule les positions des points détectés par les LMSs en utilisant seulement

les mesures de flux optique en 1-D autour du véhicule, ainsi que la vitesse et l’angle de braquage du

véhicule (étape 1), puis il cherche des lignes droites dans les nuages de points en utilisant la méthode

de RANSAC [262] (étape 2). Les lignes qui ont été trouvées sont ensuite classifiées par des Naive Bayes

Classifiers (NBCs) pour assurer une cohérence avec la géométrie simplifiée de la place de parking simulée

(étape 3). Enfin, les vecteurs perpendiculaires aux lignes de la place de parking et les positions des points

d’intersections entre ces lignes (coins de la place) sont estimés à l’aide des filtres de Kalman étendus

(EKFs) (étapes 4 and 5). Une stratégie de contrôle non-linéaire peut-être finalement appliquée sur la

base de l’estimation de la position du véhicule par rapport aux lignes et coins de la place de parking, mais

cela n’a pas été le point principal de ce travail.

Des résultats obtenus en simulation dans un parking simplifié en 2-D, mis en oeuvre dans Matlab /
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Simulink en boucle fermée, ont été d’abord présenté. Puis, nous avons montré des résultats expérimen-

taux préliminaires correspondant à la première étape de l’algorithme dans le cas d’un véhicule (Peugeot

3008) équipé de 2 capteurs à 6 pixels attachés sur le coin droit du pare-choc avant (Fig. II).

❋✐❣✉r❡ ■■✿ ❊①❡♠♣❧❡ ❞❡ tr❛❥❡❝t♦✐r❡ ❞✉ ✈é❤✐❝✉❧❡✱ ❛✐♥s✐ q✉❡ ❧❡s ♣♦s✐t✐♦♥s ❞❡s ♣♦✐♥ts ❡♥ ✷✲❉ ❝❛❧❝✉❧é❡s ❡♥

✉t✐❧✐s❛♥t ❧❡ ✢✉① ♦♣t✐q✉❡ ♠❡s✉ré ♣❛r ❧✬✉♥ ❞❡s ❞❡✉① ▲▼❙s à ✻ ♣✐①❡❧s ❛tt❛❝❤és ❛✉ ♣❛r❡✲❝❤♦❝s ❞✉ ✈é❤✐❝✉❧❡

✭∆ϕ ≈ 3.8o ❬✷✹✷❪✮✱ ❧♦rsq✉❡ ❧❡ ✈é❤✐❝✉❧❡ s❡ ❞é♣❧❛ç❛✐t à ✉♥❡ ✈✐t❡ss❡ ❡♥tr❡ 3 ❡t 9 m
s

❧❡ ❧♦♥❣ ❞❡s ✈é❤✐❝✉❧❡s ❣❛rés

✭❛✮ ❡♥ ❝ré♥❡❛✉ ❡t ✭❜✮ ❡♥ ❜❛t❛✐❧❧❡✳ ▲❡s ✐♠❛❣❡s ❞❛♥s ❧❛ ♣❛rt✐❡ ✐♥❢ér✐❡✉r❡ ❞❡ ❝❤❛q✉❡ s♦✉s✲✜❣✉r❡ s♦♥t ❧❡s ✐♠❛❣❡s

♣r✐s❡s ♣❛r ❧❛ ✇❡❜❝❛♠ ❧♦rsq✉❡ ❧❡ ✈é❤✐❝✉❧❡ ét❛✐t ❞❛♥s ❧❡s ♣♦s✐t✐♦♥s ♣rés❡♥té❡s ❞❛♥s ❧❛ ♣❛rt✐❡ s✉♣ér✐❡✉r❡✱ ❡t

❧❡s ❧✐❣♥❡s ❡♥ ♣♦✐♥t✐❧❧és ❞♦♥♥❡♥t ✉♥❡ ✐♥❞✐❝❛t✐♦♥ ❛♣♣r♦①✐♠❛t✐✈❡ ❞✉ ❝❤❛♠♣ ✈✐s✉❡❧ ❞❡ ❧❛ ✇❡❜❝❛♠ ✭∼ 45o✮✳

La fréquence de rafraîchissement du flux optique produit par les véhicules stationnés était entre 30 et

65 Hz, ce qui est environ 2-3 fois supérieures à celle des capteurs à ultrasons et caméras standards. Dans

les deux cas de parking parallèle et perpendiculaire, il est souvent possible de reconnaître les formes des

véhicules garés dans les nuages de points, même si peu de mesures sont parfois obtenues en raison, par

exemple, des réflexions sur les carrosseries de voiture (voir, par exemple, la quatrième image dans la Fig.

II (a)). Dans le cas de stationnement perpendiculaire, les mesures étaient plus bruyants que dans le cas

parallèle, principalement en raison (i) des occlusions des côtés des voitures et (ii) des désalignements

entre les voitures (voir, par exemple, la première et seconde image dans la Fig. II (b)).

Les résultats qualitatifs présentés ici valident la première étape de l’algorithme que nous avons développé.

Bien qu’il n’a pas été possible, dans ces premiers tests, d’appliquer les autres étapes de l’algorithme parce

qu’il y avait trop peu de points dans chaque intervalle d’échantillonnage, il semble que, à l’aide de LMSs

avec un plus grand nombre de pixels (ou plusieurs LMSs à 6 pixels), nous aurons probablement assez de

points pour être en mesure d’appliquer toutes les étapes.

✶✽✷
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Au cours des dernières décennies, la recherche dans le domaine de la robotique a considérablement

progressé, mais il existe encore très peu de robots basés sur la vision qui sont capables de se comporter

de manière appropriée, indépendamment des changements d’éclairage (voir Fig. 5 dans [242], par

exemple), tels que ceux qui se produisent à l’extérieur. Une des raisons de ce manque est la difficulté de

concevoir des pixels qui combinent haute sensibilité au contraste avec une grande gamme luminosité.

Une grande variété d’imageurs CMOS Wide-Dynamic-Range (WDR) a été proposé tout au long des

années [156], en essayant d’élargir la gamme de luminosité de fonctionnement autant que le spectre

visible, tout en conservant une sensibilité aux petits changements pour chaque niveau de luminosité

moyenne. Bien que les imageurs WDR puissent capturer des images dans une gamme de luminosité allant

jusqu’à 7 décades, ils fournissent des sensibilités au contraste qui dépendent de l’éclairage moyen. Des

applications visuelles, telles que les applications évènementielles et biomédicales, nécessitent souvent

une sensibilité élevée et constante dans une large gamme de luminosité, afin de détecter de petites

variations d’intensité temporelles et/ou spatiales dans plusieurs conditions d’éclairage [169, 170, 265,

266]. Une solution possible à ce problème peut être trouvée en examinant la réponse auto-adaptative

des photorécepteurs chez les humains et les animaux.

Pour autant que nous savons, aucune rétine artificielle n’a jamais été dotée jusqu’à présent de pixels

avec toutes les caractéristiques suivantes à la fois : (i) une auto-adaptation à la luminosité moyenne locale

sur une gamme aussi large que le spectre visible; (ii) une bonne sensibilité aux variations lumineuses,

soit les contrastes, à tout niveau de luminosité moyenne dans la plage de fonctionnement; (iii) une

réponse fiable, même en présence de fortes variations brusques de luminosité (à savoir, sans provoquer

des saturations des transistors VLSI).

Dans cet article, nous avons présenté: (i) une nouvelle rétine de silicium analogique ayant des pixels

auto-adaptatifs qui obéissent à la loi de Michaelis-Menten, à savoir V = Vm
In

In+σn ; (ii) une méthode

de caractérisation de rétines de silicium, ce qui permet d’évaluer avec précision la réponse des pixels

aux changements lumineux transitoires dans une gamme de ±3 décades, ainsi que des changements de

lumière ambiante dans une gamme de 7 décades.

La rétine artificielle présentée ici est composée d’un circuit CMOS de taille 2 × 2mm, comprenant

quatre lignes de 6 pixels auto-adaptatifs chacune, 2 lignes de type M2APix et 2 lignes de type Delbrück

(Fig. III). La rétine de silicium présente aussi une interface numérique pour envoyer les données des pixels

en série (jusqu’à 1 MHz) directement à un microprocesseur ou d’un microcontrôleur externe. La constante

de temps d’adaptation du pixel M2APix peut être modifiée au moyen d’un condensateur externe, offrant

une plus grande souplesse pour répondre éventuellement aux besoins de l’application en terme de bande

passante souhaitée.

Le nouveau pixel, appelé M2APix, qui signifie Michaelis-Menten Auto-Adaptive Pixel, montre en ter-

mes qualitatifs le même processus d’adaptation que celui observé dans la rétine des humains et des ani-

maux (Fig. IV). En particulier, il peut s’auto-adaptater dans une gamme de 7 décades et réagit de façon
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❋✐❣✉r❡ ■■■✿ ✭❛✮ P❤♦t♦❣r❛♣❤✐❡ ❞❡ ❧❛ rét✐♥❡ ❛rt✐✜❝✐❡❧❧❡ ❞❛♥s s♦♥ ♣❛❝❦❛❣❡ ❞❡ 9 × 9mm✳ ✭❜✮ ❱✉❡ ❛❣r❛♥❞✐❡

❞❡ ❧❛ rét✐♥❡ ❝♦♠♣♦sé ❞❡ ✶✷ ♣✐①❡❧s ▼✐❝❤❛❡❧✐s✲▼❡♥t❡♥ ✭▼2❆P✐①✮ ♣rés❡♥tés ❞❛♥s ❝❡tt❡ ét✉❞❡✱ ❡t ✶✷ ♣✐①❡❧s

s✉♣♣❧é♠❡♥t❛✐r❡s ❞❡ t②♣❡ ❉❡❧❜rü❝❦✳ ✭❝✮ ❱✉❡ ❛❣r❛♥❞✐❡ ❞❡ ✸ ▼2❆P✐① ❛✈❡❝ ❧❡s ❞✐♠❡♥s✐♦♥s ❞❡ ❧❛ ♣❤♦t♦❞✐♦❞❡

❡t ❧❡s ❞✐st❛♥❝❡s ✐♥t❡r✲ré❝❡♣t❡✉rs✳

❋✐❣✉r❡ ■❱✿ ✭❛✮ ▲❡s ❝♦✉r❜❡s ❡♥ ❙ ❝♦rr❡s♣♦♥❞❛♥t ❛✉① ré♣♦♥s❡s ❡♥r❡❣✐stré❡s ❞❛♥s ✉♥ ❝ô♥❡ r♦✉❣❡ ❞❡ ❧❛ t♦rt✉❡✱

❧♦rsq✉❡ ❞❡s ❝❤❛♥❣❡♠❡♥ts ❞❡ ❧✉♠✐♥♦s✐té ✭✢❛s❤s✮ s♦♥t ♣r♦❞✉✐ts ✉♥❡ ❢♦✐s q✉❡ ❧❡s ♣❤♦t♦ré❝❡♣t❡✉rs s❡ s♦♥t

❛❞❛♣tés à ❧✬♦❜s❝✉r✐té ♦✉ à ❧❛ ❧✉♠✐èr❡✳ ▲❡s ❝♦✉r❜❡s ❝♦♥t✐♥✉❡s ♦♥t été t✐ré❡s à ♣❛rt✐r ❞✉ ♠♦❞è❧❡ ❞é❝r✐t ♣❛r

❧❛ ❢♦♥❝t✐♦♥ V = Vm
I

I+σ ✳ ❆❞❛♣té ❞❡ ❬✹✼❪✳ ✭❜✮ ▲❡s ❝♦✉r❜❡s ❡♥ ❙ ❡t ❧❛ ré♣♦♥s❡ st❛t✐q✉❡ ❞❡ ✶✷ ♣✐①❡❧s ▼2❆P✐①

❡♥ ❢♦♥❝t✐♦♥ ❞❡ ❧✬✐rr❛❞✐❛♥❝❡ ❞❡ ❧❛ ▲❊❉ ❞❛♥s ✉♥❡ ❣❛♠♠❡ ❞❡ ✼ ❞é❝❛❞❡s✳ ❈❤❛q✉❡ ❝♦✉❧❡✉r s❡ ré❢èr❡ à ✉♥❡

✈❛❧❡✉r ❞✬✐rr❛❞✐❛♥❝❡ ✐♥✐t✐❛❧❡ ❞✐✛ér❡♥t❡ ✭❣r❛♥❞s ❝❡r❝❧❡s ♥♦✐rs✮✱ ❡t ❧❡s ♣♦✐♥ts ❝♦rr❡s♣♦♥❞❡♥t à ❧❛ ♠♦②❡♥♥❡ ❞❡s

✈❛❧❡✉rs ❞❡ ♣✐❝ ❛tt❡✐♥t ♣❛r ❧❡s ✶✷ ♣✐①❡❧s ❡♥ ré♣♦♥s❡ à ✉♥ ❝❤❛♥❣❡♠❡♥t ❞✬✐rr❛❞✐❛♥❝❡ ❡♥ é❝❤❡❧♦♥✳ ▲❛ ré♣♦♥s❡

st❛t✐q✉❡ ✭♣♦✐♥ts ♥♦✐rs✮ ❛ été ♦❜t❡♥✉❡ ❡♥ ♠❛✐♥t❡♥❛♥t ♣❡♥❞❛♥t ❧♦♥❣t❡♠♣s ❧❛ ♠ê♠❡ ✐rr❛❞✐❛♥❝❡✳ ▲❡s ③♦♥❡s

♦♠❜ré❡s ♦♥t été ♦❜t❡♥✉❡s ❡♥ tr❛ç❛♥t ❧❡s ✈❛❧❡✉rs ♠✐♥✐♠❛❧❡s ❡t ♠❛①✐♠❛❧❡s ❞❡s t❡♥s✐♦♥s ❞❡ s♦rt✐❡ ❞❡s ♣✐①❡❧s✳

✶✽✹



❯♥ ♥♦✉✈❡❛✉ ❝❛♣t❡✉r ❞❡ ✢✉① ♦♣t✐q✉❡ ❜✐♦✲✐♥s♣✐ré ❡t s♦♥ ❛♣♣❧✐❝❛t✐♦♥ à ❧✬♦❞♦♠étr✐❡ ✈✐s✉❡❧❧❡

appropriée à des changements brusques jusqu’à ±3 décades, sans provoquer de saturation des transistors

en VLSI. Grâce aux propriétés intrinsèques de l’équation de Michaelis-Menten, la sortie de pixel reste tou-

jours dans une plage de tension limitée et constante. La plage du convertisseur analogique-numérique

(ADC) a donc été ajusté de manière à obtenir une tension correspondante au bit le moins significatif

(LSB) de 2.35mV , et une résolution effective d’environ 9 bits. Les résultats présentés ici montrent que

les pixels M2APix produisent une réponse au contraste quasi-linéaire une fois qu’il se sont adaptés à la

luminosité moyenne. Différemment de ce qui se passe dans ses homologues biologiques, ni la sensibilité

aux changements de lumière, ni la réponse au contraste de M2APix dépendent de la luminosité moyenne

(à savoir, les conditions d’éclairage ambiant). Enfin, une comparaison complète entre le pixel M2APix et

le pixel auto-adaptatif de Delbrück a été effectuée.

❯♥ ♥♦✉✈❡❛✉ ❝❛♣t❡✉r ❞❡ ✢✉① ♦♣t✐q✉❡ ❜✐♦✲✐♥s♣✐ré ❡t s♦♥ ❛♣♣❧✐❝❛t✐♦♥

à ❧✬♦❞♦♠étr✐❡ ✈✐s✉❡❧❧❡

Le flux optique (OF) a été étudié par de nombreux auteurs au cours des dernières décennies [100, 109,

282,283] : divers capteurs [177,192,209] et algorithmes [98,99,111] ont été développés et utilisés pour

des applications robotiques telles que la navigation autonome [233, 284], le contrôle de vitesse [242,

285], la localisation et la cartographie simultanée (SLAM) [21,22], et l’odométrie visuelle [286–289].

Des méthodes d’odométrie visuelle pour les robots mobiles et les automobiles ont été récemment

mis au point à l’aide de caméras standards [296–300] et des souris optiques [301–303], ainsi que de

capteurs customs [304, 305], orientés vers le bas, puisque les motifs visuels et les conditions de lumière

rencontrées dans ce contexte sont relativement uniformes. Dans la plupart des cas, les auteurs ont profité

de la contrainte non-holonome de type voiture pour estimer la position et l’orientation du véhicule en

utilisant des méthodes simples impliquant des coûts de calcul faibles.

Cependant, des solutions basées sur les caméras standards [297, 300] ne parviennent pas encore à

faire face à des conditions d’éclairage en haute gamme dynamique, et ont toujours le problème d’une

cadence faible et un coût de calcul du traitement d’image élevé : seulement une petite gamme de vitesse

faible peut souvent être obtenue en utilisant cette approche.

Les solutions basées sur des souris optiques [301,303] sont certainement très économiques et offrent

des mesures à haute fréquence, mais leur principal inconvénient est qu’ils doivent opérer très près du

sol pour pouvoir fonctionner correctement, et ne conviennent donc pas pour une utilisation dans des

environnements avec un terrain accidenté. En outre, ces capteurs sont généralement très sensibles aux

conditions d’éclairage et comme les caméras standards, fournissent des mesures dans une plage de vitesse

assez petite.

Des solutions basées sur des capteurs customs éclairés par LED ou laser [304,305] ont été développées

afin de réduire la sensibilité à la hauteur et d’améliorer les performances tout en voyageant sur des

terrains de types différents, mais aucun test n’a été effectué par ces auteurs dans différentes conditions

d’éclairage et dans des conditions opérationnelles du robot.

✶✽✺



❘és✉♠é ❞❡ ❧❛ t❤ès❡ ❡♥ ❢r❛♥ç❛✐s

Dans cet article, nous avons présenté:

• un nouveau capteur bio-inspiré donnant des mesures de flux optique qui sont robustes aux condi-

tions d’éclairage dans une haute gamme dynamique, et qui ne dépendent presque pas des motifs

visuels rencontrés;

• une application à l’odométrie visuelle, dans laquelle ces nouveaux capteurs ont été installés sur un

robot bas-coût de type voiture, appelé BioCarBot (Fig. V), et testés dans une gamme de niveau de

lumière de 7 décades.

❋✐❣✉r❡ ❱✿ ✭❛✮ P❤♦t♦❣r❛♣❤✐❡ ❞✉ r♦❜♦t ❜❛s✲❝♦ût ❞❡ ❞❡ t②♣❡ ✈♦✐t✉r❡ ❛♣♣❡❧é ❇✐♦❈❛r❇♦t✳ ✭❜✮ P❤♦t♦❣r❛♣❤✐❡

❞❡ ❧✬✉♥ ❞❡s ✷ ❝❛♣t❡✉rs ❞❡ ✢✉① ♦♣t✐q✉❡ ✉t✐❧✐sés s✉r ❧❡ r♦❜♦t✳ ✭❝✮ P❤♦t♦❣r❛♣❤✐❡ ❞❡ ❧✬❡♥✈✐r♦♥♥❡♠❡♥t ❞❡

t❡st ✐♥tér✐❡✉r éq✉✐♣é ❞❡ ❝❛♠ér❛s ❱✐❝♦♥✳ ✭❞✮ P❤♦t♦❣r❛♣❤✐❡ ❞❡ ❧✬❡♥✈✐r♦♥♥❡♠❡♥t ❞❡ t❡st ❡①tér✐❡✉r éq✉✐♣é

❞❡ ❝❛♠ér❛s ❱✐❝♦♥✳ ▲❡ t❡rr❛✐♥ s❡ ❝♦♠♣♦s❛✐t ♣r✐♥❝✐♣❛❧❡♠❡♥t ❞✬❛s♣❤❛❧t❡✱ ❛✈❡❝ ❞❡s tr♦✉s✱ ❞✉ ❣r❛✈✐❡r ❡t ✉♥❡

r❛✐❧❧❡ ❡♥ ♠ét❛❧✳

Un filtre de Kalman étendu (EKF) a été utilisé pour estimer la vitesse du robot et son angle de braquage

en utilisant uniquement des mesures de flux optique délivrées par deux capteurs tournées vers le bas.

La position et l’orientation absolues du robot ont ensuite été estimées en temps réel en utilisant ces

estimations du EKF et le modèle d’Ackerman [264]. Des expériences à l’intérieur et à l’extérieur ont

été réalisées, dans lequel le robot a été commandé en boucle fermée sur plusieurs types de sols et de

trajectoires.

Les résultats présentés ici montrent que nos nouveaux capteurs de flux optique sont robustes aux

changements de lumière dans une plage de 7 décades (de environ 10−10A à 10−3A du courant de

photodiode), y compris des changements brusques jusqu’à 2 décades en 0, 5 s (Fig. VI). Bien que des
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❯♥ ♥♦✉✈❡❛✉ ❝❛♣t❡✉r ❞❡ ✢✉① ♦♣t✐q✉❡ ❜✐♦✲✐♥s♣✐ré ❡t s♦♥ ❛♣♣❧✐❝❛t✐♦♥ à ❧✬♦❞♦♠étr✐❡ ✈✐s✉❡❧❧❡

servos et des moteurs à bas coût et à faible résolution, ainsi qu’une identification et calibration du modèle

simplifiées, ont été utilisés, le robot a pu estimer sa vitesse et son angle de braquage de façon précise.

La position et l’orientation du robot ont été estimées à l’intérieur et à l’extérieur alors que le robot se

déplaçait dans des environnements non structurés (sur un sol constitué par l’asphalte, le gravier, le sable

et les feuilles, y compris des ombres et des trous), que ça soit pendant la journée ou la nuit. En outre,

la méthode d’odométrie visuelle s’est montrée être robuste à des vibrations susceptibles de modifier la

hauteur locale des capteurs jusqu’au 6% (à savoir, ±10mm sur 175mm).

❋✐❣✉r❡ ❱■✿ ▼❡s✉r❡s ❞❡ ✢✉① ♦♣t✐q✉❡ ❡t rés✉❧t❛ts ❞✬♦❞♦♠étr✐❡ r♦❜✉st❡s à ❞❡s ❝❤❛♥❣❡♠❡♥ts ❞❡ ❧✉♠✐èr❡ ❞❛♥s

✉♥❡ ❣❛♠♠❡ ❞✬❡♥✈✐r♦♥ ✼ ❞é❝❛❞❡s✱ ♦❜t❡♥✉s ❧♦rsq✉❡ ❧❡ r♦❜♦t ❛ été ❝♦♥❞✉✐t s✉r ✉♥❡ tr❛❥❡❝t♦✐r❡ ❝✐r❝✉❧❛✐r❡

à ✉♥❡ ✈✐t❡ss❡ ❛❧❧❛♥t ❞❡ ✵✳✸ à 1.3 m
s
✳✳ ✭❛✮ ❱❛❧❡✉rs ♠é❞✐❛♥❡s ωlm, ω

r
m ✭♣♦✐♥ts✮ ❡t ✈❛❧❡✉rs ❞❡ ✈ér✐té✲t❡rr❛✐♥

ωlmtruth
, ωrmtruth

✭tr❛✐ts ♣❧❡✐♥s✮ ❞✉ ✢✉① ♦♣t✐q✉❡ ♣r♦❞✉✐t s✉r ❝ôté ❣❛✉❝❤❡ ✭❜❧❡✉ ❢♦♥❝é✮ ❡t ❞r♦✐t ✭❜❧❡✉ ❝❧❛✐r✮✳

✭❜✮ ❉✐str✐❜✉t✐♦♥ ❞❡s ❡rr❡✉rs ❡♥tr❡ ❧❡s ✈❛❧❡✉rs ♠é❞✐❛♥❡s ❡t ❧❡s ✈❛❧❡✉rs ❞❡ ✈ér✐té✲t❡rr❛✐♥ ♠♦♥tré❡s ❡♥ ❋✐❣✳ ✹✳✻

✭❛✮✱ s♦✐t ωlmtruth
−ωlm ✭❧✐❣♥❡ ❜❧❡✉ ❢♦♥❝é✮ ❡t ωrmtruth

−ωrm ✭❧✐❣♥❡ ❜❧❡✉ ❝❧❛✐r✮✳ ✭❝✮ ❊st✐♠❛t✐♦♥s ❞❡ ❧✬❊❑❋ V̂ , φ̂

✭♣♦✐♥ts✮✱ ✈❛❧❡✉rs ❞❡ ✈ér✐té✲t❡rr❛✐♥ Vtruth, φtruth ✭❧✐❣♥❡s ❝♦♥t✐♥✉❡s✮ ❡t ✈❛❧❡✉rs ❞❡ ré❢ér❡♥❝❡ V ∗, φ∗ ✭❧✐❣♥❡s

♣♦✐♥t✐❧❧é❡s✮ ❞❡ ❧❛ ✈✐t❡ss❡ ✭✈❡rt ❢♦♥❝é✮ ❡t ❞❡ ❧✬❛♥❣❧❡ ❞❡ ❜r❛q✉❛❣❡ ✭✈❡rt ❝❧❛✐r✮ ❞✉ r♦❜♦t✳ ✭❞✮ ❉✐str✐❜✉t✐♦♥

❞❡s ❡rr❡✉rs ❡♥tr❡ ❧❡s ❡st✐♠❛t✐♦♥s ❞❡ ❧✬❊❑❋ ❡t ❧❡s ✈❛❧❡✉rs ❞❡ ✈ér✐té✲t❡rr❛✐♥ ♠♦♥tré❡s ❡♥ ❋✐❣✳ ✹✳✻✭❝✮✱ s♦✐t

Vtruth − V̂ ✭❧✐❣♥❡ ✈❡rt ❢♦♥❝é✮ ❡t φtruth − φ̂ ✭❧✐❣♥❡ ✈❡rt ❝❧❛✐r✮✳ ✭❡✮ ❊rr❡✉rs ❞❡ ♣♦s✐t✐♦♥ ❡t ♦r✐❡♥t❛t✐♦♥ ❞✉

r♦❜♦t ❡st✐♠é❡s ❡♥ ✉t✐❧✐s❛♥t V̂ , φ̂✱ ✐✳❡✳ ||X−X̂|| ✭❧✐❣♥❡ r♦✉❣❡ ❢♦♥❝é✮ ❡t θ− θ̂ ✭❧✐❣♥❡ r♦✉❣❡ ❝❧❛✐r✮✳ ✭❢✮ ❘é♣♦♥s❡

♣❤♦t♦✲❝♦✉r❛♥t ❞❡ ❧❛ ♣❤♦t♦❞✐♦❞❡ ♣❧❛❝é❡ à ❝ôté ❞✉ ▲▼❙ s✉r ❧❡ ❝ôté ❣❛✉❝❤❡✳ ❈❡s ✈❛❧❡✉rs ♦♥t été ❝❛❧❝✉❧és ❡♥

♣r❡♥❛♥t IPh = Idark(e
8.8Vout − 1)✱ ♦ù Idark(≈ 0.1nA) ❡st ❧❡ ❝♦✉r❛♥t ❞✬♦❜s❝✉r✐té ❡t Vout ❡st ❧❛ t❡♥s✐♦♥ ❞❡

s♦rt✐❡ ❞❡ ❧✬❛♠♣❧✐✜❝❛t❡✉r✳ ✭❣✮ ❱❛❧❡✉rs ❞❡ ré❢ér❡♥❝❡ X∗ ✭❧✐❣♥❡ ♣♦✐♥t✐❧❧é❡✮✱ ❡st✐♠❛t✐♦♥s X̂ ✭❧✐❣♥❡ ♣♦✐♥t✐❧❧é❡✮

❡t ✈ér✐té✲t❡rr❛✐♥ X ✭❧✐❣♥❡ ❝♦♥t✐♥✉❡ ✮ ❞❡ ❧❛ tr❛❥❡❝t♦✐r❡ ❞✉ r♦❜♦t ❡♥ ❜♦✉❝❧❡ ❢❡r♠é❡✳ ▲❡s ✐♠❛❣❡s ❛✉ ❜❛s ❞❡ ❧❛

✜❣✉r❡ ♠♦♥tr❡♥t✱ ❞❡ ❣❛✉❝❤❡ à ❞r♦✐t❡✱ ❧✬❡♥✈✐r♦♥♥❡♠❡♥t ❞❡ t❡st s♦✉s ❧❛ ❧✉♠✐èr❡ ❞✉ s♦❧❡✐❧ ❡♥tr❛♥t✱ ❧❛ ❧✉♠✐èr❡

❞❡s ♥é♦♥s ❡t ❧❛ ❧✉♠✐èr❡ ❞❡s ▲❊❉s ❞❡s ❝❛♠ér❛s ❱✐❝♦♥✳ ▲❡s ✈❛❧❡✉rs ❞❡ ❧✉♠✐èr❡ ❡♥ Lux ♦♥t été ❡st✐♠é❡s ❡♥
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Dans cette thèse, nous avons voulu proposer des nouvelles solutions technologiques bio-inspirées qui

pourraient être utilisées dans les systèmes d’aide à la conduite (ADAS), et en particulier sur les véhicules

autonomes du futur, pour lesquels redondance et complémentarité de l’information perçue sera nécessaire

pour satisfaire les contraintes d’autonomie et de sécurité.

Comme indiqué dans le premier chapitre de ce manuscrit, les systèmes ADAS existants offrent déjà un

certain nombre de degrés d’assistance au conducteur, mais, dans leur forme actuelle, ne sont pas encore

en mesure de fournir des expériences de conduite autonome qui sont complètes et à prix compétitif. Cer-

tains prototypes des premiers véhicules autonomes ont déjà été présentés, mais ces solutions sont encore

trop complexes et coûteuses, et exigent souvent trop grandes ressources de calcul pour être embarquées

sur des voitures de série.

Nous croyons que des solutions technologiques efficaces pourraient être trouvées en s’inspirant de

la nature, qui suggère souvent des solutions simples, permettant aux animaux de traiter seulement les

informations nécessaires pour des tâches bien définies. Les capteurs de mouvement local (LMS), conçus

et développés dans notre laboratoire utilisent très peu de pixels et de ressources de calcul, s’inspirant

ainsi du système visuel de la mouche.

Bien que les LMSs proposés jusqu’à présent ont prouvé leur efficacité dans la mesure flux optique

en 1-D dans certaines situations / environnements, et ont été utilisé avec succès sur des robots mobiles

et aériennes pour effectuer de l’évitement d’obstacles et du contrôle de vitesse, ils nécessitent encore

quelques améliorations pour fonctionner correctement sur des vrai véhicules dans des environnements

routiers. Les principales améliorations nécessaires étaient liées à (i) leur robustesse par rapport aux

conditions d’éclairage, aux textures visuelles et aux vibrations, et (ii) leur capacité à fournir des mesures

à un taux de rafraîchissement élevé et quasi-constante, avec une résolution fixe et constante.

Deux aspects ont été traités donc dans cette thèse: un aspect technologique, impliquant l’adaptation

des LMSs à l’environnement routier et aux conditions de fonctionnement du véhicule, et un aspect appli-

catif, impliquant l’utilisation efficace des LMSs dans les systèmes ADAS.

• Dans la première partie, nous avons montré que, en utilisant une méthode “temps de passage”

robuste pour le calcul du flux optique, basée sur la corrélation des signaux des pixels voisins, les

LMSs peuvent éventuellement fournir des mesures à haute fréquence lorsqu’ils sont utilisés sur un

véhicule dans des contextes de parking, même en présence de vibrations et peu de contrastes sur

les carrosseries des voitures. Nous avons également montré que, dans les situations où les LMSs

ont livré des mesures relativement précises, notamment pour le parking parallèle, il était possible

de calculer des nuages de points en 2-D à la même haute fréquence, dans lesquels on peut y recon-

naitre les silhouettes des voitures garées. Dans le cas où plusieurs LMSs pourraient être installés

tout autour du véhicule, les lignes correspondant aux véhicules garés pourraient être trouvées en

temps réel et la trajectoire du véhicule peut être estimée de manière simple et robuste pendant

toute la manœuvre de stationnement, comme montré en simulation. Cependant, la réponse de ces
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capteurs n’était toujours pas satisfaisante dans des conditions d’éclairage extrêmes, surtout à cause

des signaux délivrés par les pixels dans telles conditions.

• Dans la deuxième partie, nous avons présenté une nouvelle rétine de silicium auto-adaptative com-

posée de nouveaux pixels, appelés M2APix, qui reproduisent les réponses auto-adaptatives enreg-

istrées dans la rétine de la plupart des animaux et même des humains. Comme le fait de tester

des pixels auto-adaptatifs et de les comparer avec d’autres ne nous parait pas une opération facile

et bien définie, nous avons également proposé une nouvelle méthode standard pour caractériser

précisément les réponses des pixels aux changements lumineux allant jusqu’à ±3 décades dans une

gamme de 7 décades de luminosité moyenne, en utilisant une seule source de lumière, appelée

Lighting Box. Le nouveau M2APix pixel a montré des résultats très prometteurs au cours des tests

de caractérisation, présentant notamment aucune déviation de sa réponse en présence de change-

ments lumineux grands et brusques, ce qui est un problème commun des puces VLSI. Toutefois,

d’autres tests dans des conditions réelles de fonctionnement devraient être effectués pour prouver

leur efficacité pour les mesures de flux optique.

• Dans la troisième et dernière partie, un nouveau capteur de flux optique robuste, basé sur la nou-

velle rétine auto-adaptative et la nouvelle méthode de calcul de flux optique basée sur corrélation,

a donc été construit, après l’amélioration de la de l’algorithme pour fournir une résolution con-

stante et une mise en œuvre en électronique embarquée. Ce nouveau LMS a été testé avec succès

sur un robot de type voiture à bas coût, appelé BioCarBot, pour estimer sa vitesse et son angle de

braquage, et donc estimer sa trajectoire (odométrie), dans des différentes conditions de fonction-

nement (niveaux de lumière, textures, vibrations, etc.) semblables à celles qui se produisent sur

les véhicules routiers. Une estimation fiable et précise de la vitesse du véhicule est, en fait, crucial

car elle est utilisée par la plupart des systèmes ADAS : l’efficacité des systèmes ABS et ESC, par

exemple, dépend fortement de cette estimation, mais aussi celle de tout système de contrôle de la

trajectoire du véhicule sur la base de l’odométrie (par exemple dans les systèmes d’aide au station-

nement). Avec les expériences réalisées sur le robot BioCarBot nous avons montré que les LMSs

développées ont pu faire face aux principaux problèmes rencontrés avec des versions précédentes

de LMSs, comme l’amélioration de leur réponse à l’extérieur dans des environnements non struc-

turés, et pourraient donc fournir une solution très prometteuse pour estimer la vitesse précisément,

ainsi que pour des applications basées sur l’odométrie.

✶✽✾



❘és✉♠é ❞❡ ❧❛ t❤ès❡ ❡♥ ❢r❛♥ç❛✐s

✶✾✵





BIO-INSPIRED VISUAL SENSORS FOR ROBOTIC AND AUTOMOTIVE APPLICATIONS

ABSTRACT: Thanks to the advances in the fields of robotics and intelligent transportation systems (ITS), the au-
tonomous vehicles of the future are gradually becoming a reality. As autonomous vehicles will have to behave safely in
presence of other vehicles, pedestrians and other fixed and moving objects, one of the most important things they need to
do is to effectively perceive both their motion and the environment around them. In this thesis, we first investigated how
bio-inspired visual sensors, called Local Motion Sensors (LMSs), giving 1-D optic flow using a few pixels based on the find-
ings on the fly’s visual system, could be used to improve automatic parking maneuvers. For this purpose, we developed a low
computational-cost method for detecting and tracking a parking spot in real time using only 1-D OF measurements around
the vehicle together with the vehicle’s longitudinal velocity and steering angle. Highly simplified 2-D parking simulations
were first performed using Matlab/Simulink software, then some preliminary experiments were carried out using a vehicle
equipped with two 6-pixel LMSs. As the main challenge for visual sensors is to correctly operate in high-dynamic-range
lighting conditions, we also dealt here with a novel bio-inspired auto-adaptive silicon retina designed and developed by our
laboratory in collaboration with the Center of Particle Physics of Marseille (CPPM). We successfully tested this silicon retina,
showing that the novel pixel, called M2APix, which stands for Michaelis-Menten Auto-Adaptive Pixel, can auto-adapt in a
7-decade range and respond appropriately to step changes up to ±3 decades, while keeping sensitivity to contrasts as low
as 2%. We subsequently developed and tested a novel optic flow sensor based on this auto-adaptive retina and a new robust
method for computing the optic flow, which provides several advantages to previously developed optic flow sensors such
as its robustness to light levels, textures and vibrations that can be found while operating on the road. To test the perfor-
mances of this novel sensor and show how it can be used for robotic and automotive applications such as visual odometry,
we constructed a car-like robot, called BioCarBot, which estimates its velocity and steering angle by means of an extended
Kalman filter (EKF) using only the optic flow measurements delivered by two downward-facing sensors of this kind. Indoor
and outdoor experiments were successfully carried out in a 7-decade light level range and using various textures, showing
promising perspectives of these sensors for odometry-based applications.

KEYWORDS: Bio-Inspiration, Robotics, Vision, Optic Flow, Autonomous Vehicles, ADAS

CAPTEURS VISUELS BIO-INSPIRÉS POUR DES APPLICATIONS ROBOTIQUES ET AUTOMOBILES

RÉSUMÉ: Grâce aux progrès réalisés dans les domaines de la robotique et des systèmes de transport intelligents (ITS),
les véhicules autonomes du futur sont en train de devenir une réalité. Comme les véhicules autonomes devront se comporter
en toute sécurité en présence d’autres véhicules, mais aussi de piétions et d’autres objets fixes ou en mouvement, une des
choses les plus importantes qu’ils doivent faire est de percevoir efficacement à la fois leur mouvement et l’environnement
autour d’eux. Dans cette thèse, nous avons d’abord étudié comment des capteurs visuels bio-inspirés, appelés Local Motion
Sensors (LMS), qui mesurent le flux optique en 1-D en utilisant seulement quelques pixels sur la base du système visuel de
la mouche, pourraient être utilisés pour améliorer les manœuvres de stationnement automatiques. A ce propos, nous avons
développé une méthode de calcul bas-coût pour la détection et le suivi d’une place de parking en temps réel en utilisant
seulement des mesures de flux optique en 1-D autour du véhicule, ainsi que la vitesse longitudinale et l’angle de braquage du
véhicule. Des simulations de parking très simplifié en 2-D ont d’abord été réalisées en utilisant le logiciel Matlab / Simulink,
puis quelques expériences préliminaires ont été effectuées sur un véhicule équipé de deux LMSs composés de 6 pixels.
Comme le principal défi pour les capteurs visuels est de fonctionner correctement dans des conditions d’éclairage dans
une large gamme dynamique, nous avons ensuite travaillé sur une nouvelle rétine de silicium auto-adaptative bio-inspirée
conçue et développée par notre laboratoire en collaboration avec le Centre de Physique des Particules de Marseille (CPPM).
Nous avons testé avec succès cette rétine, en montrant que le nouveau pixel, appelé M2APIX, qui signifie Michaelis-Menten
Auto-Adaptive Pixel, est capable de s’auto-adapter dans une gamme de 7 décades et de répondre de manière appropriée
à des changements de luminosité rapides jusqu’à ±3 décades, tout en conservant une sensibilité aux contrastes aussi bas
que 2%. Nous avons enfin développé et testé un nouveau capteur de flux optique basé sur cette rétine auto-adaptative et
sur une nouvelle méthode robuste pour le calcul du flux optique, qui fournit plusieurs avantages par rapport à des cap-
teurs développés précédemment, tel que sa robustesse aux variations de niveaux de lumière, textures et vibrations que l’on
retrouve en milieu routier. Pour tester les performances de ce nouveau capteur et montrer comment il peut être utilisé
pour des applications robotiques et automobiles tels que l’odométrie visuelle, nous avons construit un robot de type voiture,
appelé BioCarBot, qui estime sa vitesse et son angle de braquage au moyen d’un filtre de Kalman étendu (EKF), en utilisant
uniquement les mesures de flux optique délivrées par deux capteurs de ce type regardant vers le sol. Des expériences à
l’intérieur et à l’extérieur ont été réalisées avec succès dans une gamme de luminosité de 7 décades et en utilisant différentes
textures, en montrant des perspectives prometteuses de ces capteurs pour des applications basées sur odométrie.

MOTS CLÉS: Bio-Inspiration, Robotique, Vision, Flux Optique, Véhicules Autonomes, ADAS
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