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Introduction

The study of the variability in materials is an open subject in computational mechanics when
dimensioning structures. This variability can be the result of the manufacturing of the ma-
terial (choice of the constitutive elements, manufacturing process), but also can come from
the description of its physical model. Hence, it is easy to understand that the stronger the un-
certainties, the more difficult the computations can get, whichever the scale considered (from
a micro-scale point of view to the scale of an engineering structure). This is especially true
for reinforced concrete which has been (and still is) extensively used for civil engineering
purposes, even if its long-term mechanical behavior and the degradation mechanisms that
result from the aging of the structures are not perfectly known or even understood. Chemical
reactions, mechanical degradations (see Fig. 1) can occur along the life of a given structure,
which makes it even more difficult, even with the advanced numerical tools available nowa-
days, to predict the behavior of a building to a certain loading. Among the numerous areas
of interest in this field, the simulation of reinforced concrete structures under cyclic loading
has shown a growing interest, especially since the Fukushima incident from 2011. This was
the trigger event of the SINAPS@ project1, funded by the French national research agency
(ANR) and led by the CEA, which also involves many industrial and academic partners such
as EDF, AREVA, École Centrale de Nantes or École Normale Supérieure Paris–Saclay. Its
goal was set to explore the uncertainties related to the physical processes and the methods
used to evaluate the seismic risk and the vulnerability of structures and nuclear components.
It mostly aims at providing tools to describe the seismic hazard as well as its impact on a given
structure, to identify the seismic margins and to propose recommendations on the evolution
of regulations regarding the seismic hazard.

Our interest, as part of this project, lies in the fact that when studying the response of
a reinforced concrete structure to seismic loading, one can consider several time scales, all
having an important impact on the final behavior of the structure:

(i) early-age concrete’s mechanical properties evolve quickly due to the hydration of the
concrete paste, with highly exothermic reactions, which can impact the stress and strain
state of the structure. The long-term effects of those mechanisms on the global mechan-

1www.institut-seism.fr/en/projet/sinaps/
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4 Introduction

ical response of a structure are not well known in particular for massive constructions,
for which the high gradients of temperature can initiate cracks within the structure;

(iii) inner and desiccation creeps, which are independent from the hydration, have long-
term effects which impact the strain state of the structure;

(iii) chemical and mechanical degradations may occur over the life of the structure, weak-
ening it and changing its mechanical properties.

The seismic hazard itself is also not well understood and modeled. The problem faced here is
the following: one has to compute the mechanical response, at time t, of a structure for which
the loading conditions are defined over a short time scale, but has to take into account the
whole history of the structure (sometimes several decades in the case of massive civil engi-
neering structures). Some models do exist to do so, however their numerical implementation

Figure 1: Example of degradations in a reinforced concrete medium

can often be complex ([Hilaire et al., 2014] provides an extended overview of the state of the
art). Yet, this works does not intend to provide advances in the modeling of those long-term
mechanisms previously exposed, but rather focuses on the numerical strategy to solve such
problems. To do so, we propose to consider a reinforced concrete structure at a given instant
for which some of the mechanical properties face a variability on some of their coefficients
such that whichever the degradation mechanisms that may have occurred over the life of the
structure, we will only consider their potential effects on (loading or material) parameters
solely defined by an interval of variation. The aim here is not to compute the response of
the structure over several months, years or decades but to assess the mechanical response of
such family of structures under cyclic loading conditions, with the behavior of the material
highlighting both strong nonlinearities and variabilities.

Despite the rise of algorithms and technologies for high-performance computing, the res-
olution of such parametric problems is still an issue as the cost of the computation (both
CPU and storage) increases exponentially with the number of parameters in the formulation
of the problem (dozens, potentially hundreds of parameters). Among the classes of methods
that arose over the last decades to circumvent such issue, we focus here on model-reduction
techniques, based on a separated-variable representation of the unknown fields (let say the

Model-order reduction for the parametric analysis of damage in reinforced concrete structures



Introduction 5

displacement field) which show the double advantage of reducing the computation cost of
parametric problems and providing a good framework for the storage of the solution (and
its post-treatment). Those methods, unlike meta-modeling techniques, do not intend to sim-
plify the model itself but rather to provide a framework for approximating the solution of the
mechanical problem associated with a rather complex physical model. The choice of such
techniques is especially motivated by the fact that the number of uncertain parameters, as well
as their intervals of variation, can be very large, which might make probabilistic approaches
too computationally expensive to carry out.

Model-order reduction methods usually rely on a two phase approach (summarized on
Fig. 2): the first step consists in building the reduced-order model, seen in our case as a
database of solutions (which will also be referred to as “virtual charts” of solutions, an anal-
ogy to the engineering charts used in the past), which can be expensive when dealing with
nonlinear parametric problems but which encompasses all the different possible occurrences,
whereas the second step consists in particularizing the solution for a given purpose, a strategy
which makes conceivable the possibility of obtaining rapidly (in real time) the mechanical re-
sponse of the system. Among those techniques, the proper orthogonal decomposition (POD)
method [Kosambi, 1943, Chatterjee, 2000], the reduced-basis (RB) method [Maday and
Ronquist, 2004, Patera and Rozza, 2007] and the proper generalized decomposition (PGD)
method [Ladevèze, 1999, Chinesta et al., 2010, Nouy, 2010] have been quite extensively used
over the last decade in numerous areas such as fluid dynamics, study of composite structures,
real-time surgery, . . . , with a recent emphasis on verification and validation aspects [Patera
and Rozza, 2007, Ammar et al., 2010a, Bouclier et al., 2013]. The two first approaches rely
on a learning phase, for which the solution of the problem is partially computed for given
instants or values of parameters (snapshots) in order to extract the reduced-order basis which
can be used online to find the approximation of another similar problem. The RB method
goes a step further as it provides a way to choose the best snapshots to accurately cover the
dynamics of the solution to approximate. On the other hand, proper generalized decomposi-
tion techniques do not rely on such learning stage as they directly build a separated-variable
approximation of the solution fields using a greedy algorithm, without any prior information
on this solution.

INPUT 

database of solutions

OFFLINE phase 
construction of the 

database

ONLINE phase 
particularization of the 

database

nonlinear solver 
+ 

reduced-order modeling

post-treatment,   
optimization algorithms,  

…

OUTPUT 
particularized  
solution field

mechanical problem  
+ boundary conditions
+ set of parameters  

Figure 2: Offline/online approach in reduced-order modeling
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6 Introduction

However, such approaches used alone are not well-suited for solving nonlinear problems
as the ones encountered in civil engineering calculations. Linearization strategies, such as
Newton-Raphson techniques [Nocedal and Wright, 1999], the asymptotic numerical method
[Cochelin et al., 1994] or the LATIN method [Ladevèze, 1999] can be used to solve this issue.
Newton methods (Newton-Raphson, quasi-Newton, . . . ) are probably the most commonly
used, especially with POD and RB methods during the learning phase of the process. They
are usually quite efficient when the number of parameters stays low, as they requires to en-
rich the reduced-order model at each iteration (increment) of the process, which can become
expensive. Their coupling with POD is illustrated in [Kerfriden et al., 2011] and with RB in
[Jung et al., 2009]. For PGD, see [Ammar et al., 2010b]. Asymptotic numerical method, cou-
pled with POD, was introduced to tackle hyper-elasticity problems [Niroomandi et al., 2010],
or with PGD in [Chinesta et al., 2013] for heat transfer problems. It relies on an asymptotic
expansion of the variables of interest, but its main drawback it that it requires a high-order
interpolation of the nonlinear term to obtain accurate results. This approach can however be
interesting as it enables to take into account the bifurcation phenomena [Beringhier et al.,
2016]. Finally, the LATIN method relies on a simple but powerful concept: a separation
of the linear/nonlinear problems and an alternative resolution of the two subproblems. This
approach, coupled with PGD (let us recall that PGD –denominated “radial approximation” at
the time– was at first a tool of the LATIN algorithm [Ladevèze, 1985]), is very attractive as it
iteratively provides an approximation of the solution field under a separated representation,
which can be enriched until reaching a given quality criterion. It has been extensively used
in the last couple of decades in numerous research fields, such as the study of multi-scale
[Ladevèze and Nouy, 2003] or multi-physics [Dureisseix et al., 2003] problems for example.

Considering the parametric aspect of the equations, two approaches must be mentioned
in particular: (i) Newton-Raphson–RB methods have shown to be very efficient [Drohmann
et al., 2012], especially thanks to the way the parametric domain is covered to select the most
interesting parameter sets (most energetic solutions) in order to build the approximation; (ii)
the LATIN–PGD association is fairly natural in this context and provides a great framework
for parametric studies, based for example on successive enrichments of solutions (multi-
parametric strategy [Boucard and Ladevèze, 1999, Allix and Vidal, 2002]).

This LATIN–PGD approach is at the core of the developments presented in this work, as
it enables to tackle the two problems at stake in our study: on the one hand, damage mech-
anisms are often modeled by strongly nonlinear equations, whereas on the other hand some
equations of the mechanical model depend on parameters which may have an important vari-
ability. This present work is, in a sense, in the continuity of the ones of [Heyberger et al.,
2013] and [Relun et al., 2013] which intended, for example, to take into account the variabil-
ity on material parameters to compute the failure probability of an mechanical component,
using the multi-parametric strategy and a wise sampling of the parametric space. In both
cases, those approaches may show some limits when too many parameters are considered,
as the parametric space becomes very rich and the solutions associated with different sets
of parameters may not be close enough one another, which is the main assumption of this
method. It also follows some older work from [Allix et al., 1989] for which the LATIN–PGD

Model-order reduction for the parametric analysis of damage in reinforced concrete structures



Introduction 7

algorithm has been used for damage mechanics problems (for composite structures) with a
time-space variable separation.

The strategy chosen here to take the parametric dependency into account in the LATIN–
PGD framework is however different and two contributions are presented in this work. The
first one is a new extension of the classical LATIN–PGD algorithm to parametric studies for
which, unlike the multi-parametric strategy, the parameters are considered as extra-variables
for the PGD decomposition. This enables to work on larger parametric spaces, as the basis
is iteratively enriched to take into account all the different occurrences (sometimes even non-
physical/irrelevant ones). The feasibility of this extension was shown in [Vitse et al., 2014]
on a simple 1-D heat evolution problem, with a variability on the thermal conductivity. This
present work provides a more general framework for the resolution of nonlinear parametric
problems, and the numerical implementation of the 3-D model led to the development of a
new tool for computational mechanics at LMT (ROMlab). The second novelty is the appli-
cation of such strategy to reinforced concrete structures, with an isotropic damage model and
unilateral effect. Particular importance is given to first introducing the different notions in
a continuous manner to present the main concepts, and in a discrete framework in order to
highlight the numerical aspects and problems that were encountered.

It must be pointed out that several works used different approaches for the simulation of
damage mechanics in a reduced-order modeling framework: [Ryckelynck et al., 2011] with
Newton-Raphson–POD, [Metoui et al., 2014] with PGD for the delamination in cohesive
zones and [El Halabi et al., 2016] with a Newton-Raphson–PGD approach. [Kerfriden et al.,
2012] also proposed a local/global approach for the simulation of quasi-brittle fracture using
a POD local enrichment.

Regarding the objectives of the SINAPS@ project, this work does not intend to provide
criteria related regarding the mechanical strength of civil engineering structures under cyclic
loading conditions. Our objective is to provide a tool to accurately and quickly compute
databases of solutions (first step of the model reduction strategy) which take into account all
the different sets of parameters, that can be afterwards used by engineers for design purposes
for example.

This manuscript is divided into four chapters.

• In Chap. 1 the models of the concrete and reinforcement media are recalled, based on
the work of [Richard and Ragueneau, 2012] and [Vassaux et al., 2015]. The dam-
age behavior and the unilateral effect equations are presented, with an emphasis on
the different material parameters studied and the influence of their variability on the
mechanical response of a 0-D structure.

• Chap. 2 details the state of the art of nonlinear model-order reduction and the recent
extensions to parametric studies. It first presents different ways to obtain a separated-
variable decomposition for evolution problems, based on the use of POD, RB and PGD
methods. The extension to parametric problems is then presented with methods either
based on the enrichment of an already computed basis or considering the new param-
eters as extra-coordinates of the decomposition. Different variations of the algorithm

Model-order reduction for the parametric analysis of damage in reinforced concrete structures



8 Introduction

for generating PGD modes are proposed. Finally, different couplings with lineariza-
tion methods for solving non-linear evolution problems are recalled and a focus on the
LATIN–PGD algorithm is made.

• In Chap. 3, a reinforced concrete medium is considered. The different ingredients of the
LATIN–PGD algorithm are detailed, with a continuous then a discrete point of view.
The extension to a full parametric decomposition of the LATIN linear stage is detailed
and the main differences with the classical time-space decomposition are highlighted.
This study lead to the development of a 3-D finite element-based tool, ROMlab, cou-
pling LATIN and PGD algorithms for multi-materials structures, with variabilities on
material and loading parameters. Some elements of the numerical implementation are
given.

• Chap. 4 gives numerical results, post-treated from databases generated with ROMlab:
first a tensile test is simulated to ensure that the algorithms provides a good approxi-
mation of the model. A parametric dependency is set on the loading condition, and this
test shows that the local and global behaviors are recovered with a few iterations. Then
the algorithm is used to compute the response of a reinforced concrete beam during a
4-points bending test, with this time a variability on both the amplitude of the loading
and the mean value of the Young modulus of the concrete medium. Simulations on the
full beam shows that the damage patterns are globally recovered within a few iterations.
Those results are obtained by particularizing the computed databases for different sets
of parameters. Finally, the numerical study is validated with the simulation of the re-
sponse of a T-shaped concrete beam subjected to complex loading conditions (see a
picture of the experiment on Fig. 3) and our numerical results are compared to Cast3M
simulations from [Iskef, 2016], which intended to study the behavior of beam-column
assemblies (SMART testing project at LMT).

Figure 3: SMART testing project experiment

Model-order reduction for the parametric analysis of damage in reinforced concrete structures



Chapter 1
Concrete: a widely used complex medium

Preamble We must point that no work has been done during this thesis on the modeling of
the behavior of the concrete medium. The purpose of this chapter is only to recall the main
aspects of the model implemented in the algorithm developed during the thesis, and highlight
its main characteristics.

We study herein a reinforced concrete medium. In the following sections, �c (respec-
tively �r) will refer to mechanical quantities relative to the concrete medium (respectively
the reinforcement). The concrete model considered in this thesis derives from [Richard and
Ragueneau, 2012, Vassaux et al., 2015], with the difference that the plasticity in compression
and the hysteresis effects are neglected in order to simplify the model (but could be relatively
easily taken into account for industrial applications). Concrete is modeled under a contin-
uum damage mechanics theory, where a unique damage variable associated with an isotropic
hardening is assumed in tension. Under this assumption, the crack openings are not directly
computed but may be obtained by a post-treatment of the damage field. A summary of the
different mechanisms that are taken into account in this work is presented in Tab. 1.1. To
improve the reader’s comprehension, the main elements of the damage model are recalled in
Sec. 1.1. The unilateral effect is also taken into account and is described in Sec. 1.2. A sum-
mary of the state and internal variables and thermodynamic forces for the concrete medium is
given in Tab. 1.2. Reinforcements are elastic steel bars and the interface between the concrete
and the bars is chosen to remain perfect (see Sec. 2). The variability aspects of the concrete
medium are detailed in Sec. 5 and numerical examples highlighting their influence on the
mechanical response of a 0-D structure (Gauss point) are given in Sec. 6.

1 The concrete medium
A decomposition of the stress tensor within the representative volume element (RVE) is as-
sumed [Sellier et al., 2013]. The total stress σc is split into two independent parts:

σc = σc,m + σc, f (1.1)

Model-order reduction for the parametric analysis of damage in reinforced concrete structures



10 Concrete: a widely used complex medium

Table 1.1: Summary of the mechanisms studied

Mechanisms

Asymmetry between tension and compression X
Stiffness degradation in tension X
Quasi-brittle behavior in tension X
Hardening / softening behavior in compression ×

Permanent strain in tension X
and in compression ×

Unilateral effect X
Hysteretic phenomena ×

where σc,m is the stress in the cracked continuum medium (neglecting the interactions be-
tween the cracks) and σc, f is the stress in the cracks when closed. The total free energy of
the specimen writes:

Ψ = Ψm + Ψ f (1.2)

where Ψm and Ψ f are the Helmholtz free energies respectively associated with the two afore-
mentioned stress tensors. The formulation of those two energies is detailed in the next sec-
tions.

1.1 Modeling of the cracked behavior
Fracture processes are modeled using the continuum damage theory. The experimental re-
sponse for a uni-axial tension test [Terrien, 1980] is given on Fig. 1.1 and highlights the
classical softening behavior of quasi-brittle materials. To model so, an isotropic damage
model is formulated, implying a unique scalar damage variable dc. The free Helmholtz en-
ergy associated with the cracked continuum medium then writes:

Ψm =
1
2

(1 − dc) εc : Cc : εc + Ψm,d(zc) (1.3)

where dc is the isotropic damage variable; εc is the second-order total strain tensor; Cc is the
fourth-order Hooke tensor; zc is the isotropic hardening variable; Ψm,d represents the energy
locked through the damage process and can be seen as a consolidation function which drives
the post-peak behavior in tension. This function is associated with the isotropic hardening
related to damage.

From the Clausius-Duhem inequality, the state equations are obtained by differentiating
the state potential with respect to the state variables. The Cauchy stress tensor writes:

σc,m =
∂Ψm

∂ εc = (1 − dc) Cc : εc (1.4)

Model-order reduction for the parametric analysis of damage in reinforced concrete structures



The concrete medium 11

0 1 2 3
0

1

2

εc (×10−4)

σ
c

(M
Pa

)

Figure 1.1: Uniaxial tension test – stress/strain relation [Terrien, 1980]

and the energy rate released by the damage mechanism Yc is expressed by:

Yc = −∂Ψ
m

∂ dc =
1
2
εc : Cc : εc (1.5)

Finally, the thermodynamic force Zc associated with the isotropic hardening zc writes:

Zc =
∂Ψm

∂zc =
dΨm,d(zc)

d zc (1.6)

The non-associated pseudo-potential of dissipation ϕm is based on a Mazars-like failure cri-
terion [Mazars, 1984], expressed in terms of energy variables:

ϕm(Y
c
,Zc ; Y0) = Y

c − (Y0 + Zc) (1.7)

where: (i) Zc is the thermodynamic force associated with zc; (ii) Y
c

is the energy released
rate, with:

Y
c
(εc ; Ec) =

1
2
〈εc〉+ : Cc : 〈εc〉+ (1.8)

where the Macaulay brackets 〈�〉+ denote the positive part of � such that:

〈X〉+ =

3∑

i=1

〈Xi〉 ni ⊗ ni (1.9)

with 〈Xi〉+ the positive part of the ith eigenvalue of matrix X (〈Xi〉+ = 1
2 (Xi + abs(Xi))) as-

sociated with the eigenvector ni. One may notice that, the damage state being linked with
positive extensions, Y

c
will be used instead of Yc as the latter is not an increasing function of

the total strain. An associated flow is assumed and the flow rules can be written considering
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12 Concrete: a widely used complex medium

the normality rules:

ḋc = λ̇d
∂ ϕm

∂Y
c = λ̇d (1.10)

żc = λ̇d
∂ ϕm

∂Zc = −λ̇d (1.11)

where λ̇d is the Lagrange multiplier determined from the loading / unloading conditions and
can be computed explicitly using the consistency condition ϕm = ϕ̇m = 0, provided that the
consolidation function H(zc) is known (assuming the arbitrary choice Ψm,d(zc) = H(zc), such
that Zc =

d H(zc)
d zc ). The following choice for the consolidation function is made:

H(zc) =
1
Ad

[−zc + ln(1 + zc)] (1.12)

with Ad a material parameter which drives the brittleness of the softening part of the stress /

strain relation [Richard et al., 2010]. The expression of damage (only satisfied during load-
ing) can be obtained analytically and is written as follows:

dc(Y
c

; Ad,Y0) = 1 − 1

1 + Ad(Y
c − Y0)

(1.13)

and the isotropic hardening variable zc states:

zc = −dc (1.14)

where Ad and Y0 are parameters of the study. For the sake of simplicity and for the reasons
exposed above Y

c
will be written Yc in the rest of this manuscript.

1.2 Modeling of the cracked closure phenomenon (unilateral effect)
Concrete, during cyclic loadings, undergoes tension and compression phases which activate
alternatively cracks in the direction of the loading as well as in the transverse directions,
as shown on Fig. 1.2. Even though the concrete medium is permanently damaged during
tension, it appears to behave in compression independently from its history in tension. This
mechanism is called the unilateral effect [Mazars et al., 1990]. This section deals with the
modeling of the constitutive laws related to the cyclic effects.

Whereas classical theories separate the tension to the compression (where the damage
is assumed to have a null value), [Vassaux et al., 2015] uses only one damage variable and
shows two aspects at stakes here:

(i) a nonlinear elastic modeling reproduces the progressive crack closure and regain of
stiffness induced by the initiated contacts within the cracks when unloading a damaged
sample in tension;
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Figure 1.2: Schematic representation of the behavior of a concrete medium under a uni-axial
cyclic prescribed displacement

 
Perturbation

Friction zone

Figure 1.3: Crack under cyclic loading [Mihai and Jefferson, 2011] (courtesy of M. Vassaux)

(ii) a dissipation mechanism (plasticity) can be introduced to reproduce the friction initi-
ated at the surface of the closing cracks and which is associated with hysteresis effects,
as shown in Fig. 1.3. However, this phenomenon will not be taken into account in our
study.

The mechanical behavior of the cracks is described by a stress tensor σc, f , which is a non-
linear function of the strain tensor εc, f = dc εc (note that this relation remains elastic). εc, f
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14 Concrete: a widely used complex medium

can be considered as the homogenized contribution of crack opening to the total strain of the
representative elementary volume [Matallah et al., 2010]. The following assumption is made:

σ̇c, f (εc, f ; Ec) = ν(εc, f ) Cc : ε̇c, f (1.15)

where the function ν is chosen to be scalar, meaning that the tangent modulus is proportional
to the undamaged Hooke elastic tensor. It represents the part of the stiffness lost during
tension which is recovered during compression and 0 < ν < 1. As ν evolves with the loading
state, it is considered dependent on εc, f . The free energy Ψ f then writes:

Ψ f =

∫ T

0

[∫ T

0
ν(εc, f ) Cc :

dεc, f

dt
dt

]
dεc, f

dt
dt (1.16)

with I1 the trace operator and the function ν is defined in [Vassaux et al., 2015] as:

ν = 1 − 1

1 + exp
[
− α0

I1(ε f
max)

I1(εc, f )
] (1.17)

where: (i) ε f
max is the maximum of crack strain that affects the evolution of the proportion of

closed cracks; (ii) α0 is a parameter controlling the variance of the event “a crack closes”. ν
is a sigmoid function, thus integrable and the continuity of the total free energy is ensured.
σc, f can then be computed by integrating Eq. (1.15).

Table 1.2: Summary of the model variables for the concrete medium

Mechanism State variable Internal variable Thermodynamic force

Total strain εc σc

Elasticity εc,e σc,m

Isotropic damage dc −Yc

Isotropic hardening zc Zc

related to damage
Crack closure εc, f σc, f

2 The reinforcement

2.1 Modeling of the behavior of the reinforcement
The goal of our study is primarily to focus on the degradation of the concrete medium. As a
consequence, an elastic behavior of the steel reinforcement is considered:

σr = Cr : εr (1.18)
dr = 0 (1.19)
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2.2 Interface between the concrete and the reinforcement
Degradation mechanism (corrosion of the interface for example [Richard et al., 2010]) and
sliding may appear at the interface between concrete and steel. We will however consider this
interface to be perfect for the rest of the study and consider the following kinematic relation
between the nodes of the (c, r) interface:

~u�(c,r) = uc
(c,r) − ur

(c,r) = 0 (1.20)

3 Summary of the constitutive relations

State laws

σc,m = (1 − dc) Cc : εc

σ̇c, f = νCc : ε̇c, f

Yc =
1
2
〈εc〉+ : Cc : 〈εc〉+

Zc =
d H(zc)

d zc

σr = Cr : εr

(1.21)

Evolution equations

dc = 1 − 1
1 + Ad(Yc − Y0)

zc =
1

1 + Ad(Yc − Y0)
− 1

εc, f = dc εc

dr = 0

(1.22)

4 Regularization of the problem
The loss of ellipticity of problems involving softening behaviors is a recurrent problem when
simulating reinforced concrete structures [Hill, 1958], leading to a localization of the defor-
mations. To solve this problem, a regularization of the equations must be done. A short
overview of the existing methods to do so is given in App. A. For our study, the damage vari-
able dc is regularized using a viscosity law [Ladevèze, 1991, Dubé et al., 1996, Allix and
Deü, 1997, Allix, 2012, Allix et al., 2003]:

ḋc =
1
τc

[
1 − exp(−a 〈dc

s(Y
c) − dc〉+)

]
(1.23)

where dc
s is the non-regularized damage variable, dc is the regularized one, τc is called the

characteristic time and a is a parameter usually equal to 1.
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5 Uncertainties and parametric dependency
The study of reinforced concrete leads engineers to face difficulties related to the variabil-
ity on some constitutive parameters of the medium. This variability comes from different
sources: the manufacturing itself, for example for massive structures made from several
batches of concrete; its design, involving geometrical parameters; the loading conditions (ei-
ther coming from the loading itself or from the boundary conditions); the aging of a structure,
which may also induce a variability on some parameters of the constitutive laws as a result
of delayed phenomena as presented in the introduction of this manuscript. Those uncertain-
ties have a direct influence on the mechanical behavior of the structure. Usual techniques
to assess this influence rely on probabilistic tools (Monte Carlo simulations for example) or
statistical data (from extensive experimentation campaigns). For example, [Choi and Kwon,
2000] provide numerical values of the coefficient of variation (the ratio between the standard
deviation of a given value and its mean value, also referred to as relative standard devia-
tion) of the Young modulus around (0.10–0.15) and (0.20–0.30) for the tensile strength, for
which a normal distribution is assumed, based on Monte Carlo simulations in order to as-
sess the variability in deflections of reinforced concrete beams. However, the cost associated
with this techniques is high, due to the numerous experiments or numerical simulations to be
performed.

The approach chosen in our study to model those uncertainties is to set a variability on
N p parameters µ = {µi}i=1···N p of the mechanical formulation, for which a uniform distribution
is considered. The main difference with the usual techniques will rely on the numerical
tools used to simulate the response of structures associated with those parameters, which
will be the point of the next chapters. Two types of parameters are studied here: material
(Young modulus for example) or boundary condition parameters (amplitude of the loading,
frequency, . . . ) and for which the intervals of variation are known. For example, µ = {µ1, µ2}
where µ1 affects the brittleness coefficient Ad = Ad(µ1) and µ2 affects the Young modulus
such that Ec = Ec(µ2).

Note that: (i) geometrical parameters are not taken into account; (ii) only material pa-
rameters of the concrete model are considered, even if the reinforcement may also face high
material variabilities.

6 0-D results
This section provides some numerical examples computed with M. Vassaux’s (slightly mod-
ified Matlab) code in order to show the influence of the variability on some parameters on
the mechanical behavior at the scale of a Gauss point. The material can be considered as a
homogenized concrete medium. First, the mechanical response (without variability) is com-
puted in order to illustrate the different aspects of the model mentioned in the previous sec-
tions. Then, a variability is set on some material parameters (see Tab. 1.3) and the mechanical
behavior is computed for several values of those parameters.
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Table 1.3: Studied parameters, variability

Parameter Name Mean value Variability Bounds of variation

Ec Young modulus 36 × 109 Pa +/ − 30% [25.2 – 46.8] × 109

Ad Brittleness coefficient 8 × 10−3 J−1.m3 +/ − 20% [6.4 – 9.6] × 10−3

Y0
Initial threshold for

180 J.m−3 +/ − 20% [144 – 216]
damage activation
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Figure 1.4: Prescribed strain (Fig. 1.4a) and according mechanical response σc
xx = f (εc

xx) at
a Gauss point (Fig. 1.4b)

6.1 Mechanical response to uni-axial cyclic loading

Fig. 1.4b shows the behavior σc
xx = f (εc

xx) for a cyclic uni-axial loading (4 cycles) for which
the amplitude of the tension part of the loading increases with the time, as shown on Fig. 1.4a.
This figure illustrates the evolution of both the damage mechanism and the unilateral effect
over the different cycles. The quasi-brittle aspect of the response is observed and the damage
state increases over the different cycles along with the amplitude of the loading. The un-
damaged elasticity modulus (linear part of the curve) is also progressively (and completely)
recovered during the unloading (and compression) phase, inducing permanent strains in ten-
sion.

6.2 Influence of the variabilities on the mechanical response of the struc-
ture

A variability is set on the Young modulus Ec, the energy threshold Y0 and the brittleness
coefficient Ad. Their mean value, variability and according intervals of variation are summed
up in Tab. 1.3. The goal of this section is to highlight the influence of those parameters on
the mechanical response of a structure.
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Variability on the Young modulus. Fig. 1.5a shows the influence of a +/−30% variability
on the Young modulus Ec on the mechanical response of the medium, which directly inter-
venes in the behavior equation (1.4) and in the formulation of the unilateral effect (1.15). It is
noticeable that after a few cycles the behavior reaches the same damaged state, showing that
this parameter has a strong influence on the first few cycles.

Variability on the energy. Fig. 1.5b shows the influence of a +/ − 20% variability on the
initial threshold for damage activation Y0 (which is linked to the maximum strength in tension
for the concrete medium f c

t = 3.6× 106 Pa) on the mechanical behavior of the medium. Note
that uncertainties on this parameter may accelerate or delay (in terms of stress reached) the
activation of damage, and as a consequence have an important role on the integrity of a
structure.

Variability on the post-peak coefficient. Fig. 1.5c shows the influence of a +/−20% vari-
ability on the brittleness coefficient Ad, which drives the post-peak behavior (see Eq. 1.13),
on the mechanical response of the medium. As a consequence, this parameter has a strong in-
fluence on the fracture energy, which is proportional to the area under the σxx = f (εxx) curve.
Numerically, this property is used in the energy regularization as the post-peak coefficient is
locally adjusted in order to keep a consistent energy whichever the mesh discretization (see
App. A).

7 To put it in a nutshell . . .
The material behavior of the reinforced concrete medium was presented, with a unique dam-
age variable activated in tension and a unilateral effect representing the cracks closure in
compression. The influence of the variability on some material parameters on the 0-D me-
chanical response of the medium has been studied. Such modeling highlights two difficulties
that have to be taken into account for the simulation of engineering structures: (i) the strong
nonlinearity of the behavior equations of the concrete medium; (ii) the material variability
in such problems which has a strong influence on the global mechanical response of the
structure. The simple 0-D examples highlight the importance of taking into account those
uncertainties, as the local behavior is strongly influenced by those parameters (and we will
see in a further chapter that the same observation applies to the macroscopic response of
3-D structures). Probabilistic or stochastic approaches are usually used to take into account
this second issue. Monte-Carlo methods however require numerous numerical simulations,
which can be costly depending on the complexity of the model. Perturbation methods, such
as developments in Taylor series, are not suitable for large variations of the parameters. Spec-
tral methods (for example combined with the finite element method [Ghanem and Spanos,
1991]) are interesting but require a high order of decomposition to be precise enough, with
once again a high computational costs. We will present in the next chapter an alternative
way to directly take into account material and loading variabilities in the formulation of the
mechanical problem using a deterministic approach.
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Figure 1.5: Influence of the variability on the Young modulus Ec (Fig. 1.5a), the energy
threshold Y0 (Fig. 1.5b) and the brittleness coefficient Ad (Fig. 1.5c) on the mechanical re-
sponse at a Gauss point
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Chapter 2
Nonlinear parametric model reduction –
state of the art

It is obvious that the more parameters are added to the mechanical formulation of an evo-
lution problem, the more complex the computation gets and dedicated numerical strategies
need to be implemented to circumvent this issue, especially when facing strong nonlineari-
ties as the ones encountered in damage mechanics. This difficult problem led over the last
decades to the developments of different types of model reduction techniques used to reduce
the complexity of a given time-dependent partial differential equations problem involving
many variables, whether they are material or geometrical parameters. As a matter of fact,
classical approaches consisting in using explicit or implicit incremental techniques may re-
quire a rather refined time discretization and as a result may be very costly to use when
solving parametric problems. An alternative resolution consists in seeking the solution of
this problem under a separated-variable representation, as a sum of products of time and
space functions:

u(x, t) ≈ um(x, t) =

m∑

k=1

ak(t)Φk(x) (2.1)

where the set of the coefficients {ak(t)}k=1···m is associated with the rank-m reduced-order basis
(ROB) {Φk(x)}k=1···m.

Different methods to construct such approximations are given in Sec. 1 for evolution
problems, with an emphasis and on the proper orthogonal decomposition (POD) and the
proper generalized decomposition (PGD). The extension to parametric problems is given in
Sec. 2, for which the PGD method provides a very convenient framework. The treatment of
nonlinear problems in the context of reduced-order modeling is addressed in Sec. 3, where
different linearization techniques are recalled and a focus is done on the LATIN method.

For a better understanding of this chapter, the different notations are given:

• intervals of definition:
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– x ∈ Ω, a non-zero bounded regular domain, with Ω ⊂ Rd (d = 1, 2, 3);
– D =

∏N p

i=1Di withDi = [µmin
i , µmax

i ] (where “
∏

” is used in the sense of “×”) is the
space associated with the variable µi, with the particular case: D1 ≡ I = [0,T ]
associated with the time variable µ1 ≡ t;

– P = Ω ×D;

• vector spaces:

– W ≡ H1(Ω) =
{
u ∈ L2(Ω), ∇u ∈ L2(Ω)

}
, with ‖�‖W =

(∫
Ω
� 2 dΩ

)1/2
, L2 norm

onW;
– U ≡ L2(D,W) =

{
u : D→W,

∫
D
‖u‖2W dµ < +∞

}
;

– Sm, a subspace ofU of the fields that write (2.1) with Φ ∈W and ai ∈ F i;
– F i ≡ L2(Di,R);
– F =

∏N p

i=1F i;
– T um(Sm), the tangent linear space to Sm at um;

1 Reduced order modeling for evolution problems

1.1 Data analysis using the proper orthogonal decomposition technique
Let us consider a field u(x, t) ∈ U explicitly known. One seek to find the best rank-m
approximation um ∈ Sm of u(x, t) under the form presented in (Eq. 2.1). This can be achieved
by solving the following minimization problem:

min
(ai,Φi)∈(F×W)

‖u −
m∑

i=1

ai Φi‖2U (2.2)

with the constraint of orthogonality of the functions {Φi}i=1···m: (Φk,Φl)W = δkl, which can
be rewritten, considering ai = (u,Φi)W , where (·, ·)W:

min
Φi ∈W

(Φk,Φl)W = δkl

‖u −
m∑

i=1

(u,Φi)W Φi‖2U (2.3)

which leads to the resolution of an eigenvalue problem.

This decomposition is optimal in the sense that the modes are orthogonal and their norm
monotonically decreases with m. Its accuracy depends on the number of modes (i.e. number
of products of functions) m. As an example of those properties, Fig. 2.1a shows the incre-
mental (direct) solution uref(x, t) of a heat evolution problem on a beam and the truncation
error for several number of modes in the decomposition:

Err =
‖uref − um‖W
‖uref‖W

(2.4)
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with ‖u‖2W ≡
∫
I
‖u‖2U dt.

(a) POD of the function u(x, t) for m = 1, m = 5 and
m = 20 and the associated truncation error
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Figure 2.1: SVD reconstruction um(x, t) for different levels of truncation (Fig. 2.1a) and
evolution of the associated truncation error with the number of terms m (Fig. 2.1b)

1.2 Construction of the reduced-order model when u is known implic-
itly (as the solution of a partial differential equation)

Let consider the following abstract evolution problem: find u(x,µ ≡ t) ∈U solution of:

L(u; t) = f (t) (2.5)

where L is a linear differential operator. For example, L ≡ A(t), symmetric positive definite
time-dependent operator or L ≡ d

dt I + A(t). Different methods exist to build the rank-m ap-
proximation Eq. (2.1) on a subspace Sm ⊂U. Those techniques are detailed in the following
sections and their advantages and drawbacks are recalled.

1.2.1 Snapshot-based Galerkin POD

The proper orthogonal decomposition (POD) [Kosambi, 1943, Chatterjee, 2000], also known
under similar forms as Karhunen–Loève (KL) decomposition [Karhunen, 1946] or principal
component analysis (PCA) (all equivalent in the discrete case [Liang et al., 2002]), enables
to approximate the solution of a problem on a given ROB {Φk}k=1···m computed thanks to
snapshots of solutions of similar problems. Those snapshots can be engendered by experi-
mental data or numerical solutions computed over either a coarse mesh or time discretization,
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and must be chosen so that they represent the dynamics of the system. The orthogonal ba-
sis {Φk}k=1···m can be computed offline by performing a POD of the collection of snapshots
and the problem lies in finding, online, the corresponding most adequate set of coefficients
{ak}k=1···m to obtain the best approximation of the function u(x, t):

ak = (u,Φk)W (2.6)

To be more precise, let us consider this problem in a discrete framework, for example using
finite elements in space (nx degrees of freedom –DOFs), and a sampling Ip = [t1, · · · , tp] of
the time interval I . The expressions are now given using the discretized fields and operators
using non-italic letters. The matrix (database) Ξ ∈Mnx,p is assembled from the snapshots of
solutions of the initial problem (2.5) computed from the full-order model for given instants
{tk}k=1···p:

Ξ =




u(t1)




u(t2)




u(t3)


· · ·


u(tp)




(2.7)

where u(t j) is the computed field u at instant t j. Two approaches to compute the ROB
{Φk}k=1···m can be highlighted:

1. a Karhunen-Loève decomposition [Karhunen, 1946] can be computed from determin-
ing the eigenvalues and eigenvectors of the covariance matrix C = ΞΞT:

CΦ = αΦ (2.8)

where (α,Φ) are the eigenvalues and eigenvectors of the C.

Remark. An alternative approach could consist in sampling the spatial domain and
assembling Ξ as a collection of the time functions associated with those sample points.
However, the spatial problems is usually much bigger than the time discretization that
is why the first approach is mostly used;

2. another approach to obtain the desired decomposition is to perform a singular value
decomposition of the matrix Ξ, which gives a factorization of the form:

Ξ = UΛVT (2.9)

where U ∈Mm(R) and V ∈Mp(R) are orthogonal matrices (see App. B), which can
be rewritten:

Ξ =

m∑

i=1

λi Ui ⊗ V?
i (2.10)
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where⊗ represents the outer product of the vectors Ui and V?
i (first m vectors of V). The

analogy with the KL decompositions shows that the singular values λi are the square
roots of the eigenvalues αi of the covariance matrix C and the first m eigenvectors
{Φi}i=1···m of C are the first m columns of U.

The Galerkin-POD method is summed up in Alg. 1. The main advantage of such tech-
nique is that if the expected results are similar enough from one computation for a given set
of parameters to an other, the ROB {Φk}k=1···m can be re-used and only a new set of coeffi-
cients {ak}k=1···m has to be re-computed. However, the main drawback lies in the choice of the
initial sampling of the snapshots and that, hopefully, p � nt, which highly depends on the
dynamics on the problem.

Algorithm 1: snapshot-based Galerkin POD
Offline stage:

Step 1: the time space I is sampled: ti ∈ [1, p] ;
Step 2: problem (2.5) is solved for each ti in order to get the solutions ui = u(x, ti) ;
Step 3: the database Ξ = {ui}i=1···p is assembled ;
Step 4: a PCA of C or a SVD of Ξ gives the reduced basis {Φi}i=1···m.

Online stage:
Step 5: Galerkin method on Span({Φi}i=1···m).

1.2.2 Proper generalized decomposition

On the other hand, proper generalized decomposition (PGD) techniques aim at approximat-
ing the evolution problem (2.5) by building the ROB {Φk}k=1···m and finding its coefficients
{ak}k=1···m at the same time during an iterative process, by successively enriching the approxi-
mation until a given criterion is reached [Ladevèze, 1999, Nouy, 2010]:

um(x, t) =

m∑

k=1

ak(t)Φk(x) (2.11)

with {(Φk, ak)}k=1···m ∈ [U × F ]m. We recall in this section two methods for building the
approximation: the first one based on a Galerkin orthogonality criterion and the second one
based on the minimization of a residual function. Note that this kind of approximation was
first introduced in the late 80s as the “radial approximation” in the LATIN algorithm [Lade-
vèze, 1985].

Algorithm based on the Galerkin orthogonality criterion. We now consider that the
problem is semi-discretized in space, with L ≡ L, symmetric, constant and positive definite
matrix and we assume the rank-m approximation of u is known, such that one seeks the
rank-(m + 1) approximation as:

um+1 = um + am+1Φm+1 (2.12)
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with (Φm+1, am+1) ∈ U × F. The classical definition of this new approximation consists in
writing the orthogonality of the residue L(um+1) − f with respect to the function a?Φm+1 +

am+1Φ
? with (Φ?, a?) ∈ U ×F:

(L(am+1Φm+1), a?Φm+1 + am+1Φ
?)I = (f − um, a?Φm+1 + am+1Φ

?)I (2.13)

where (u, v)I is defined as:

(u, v)I ≡
∫

I

vT u dt (2.14)

Such problem can be separated into two coupled equations:

(L am+1, am+1)IΦm+1 = (fm+1, am+1)I (2.15)

([ΦT
m+1 LΦm+1] am+1, a?)I = (ΦT

m+1 fm+1, a?)I ∀a? ∈ F (2.16)

with fm+1 = f − um.

Algorithm based on the stationarity of the residual function. The second approach con-
sists in finding the new couple of functions (Φm+1, am+1) ∈ U × F minimizing the residual
function:

‖ f −L(um+1)‖2 =
∥∥∥ f m+1 −L(am+1 Φm+1)

∥∥∥2
(2.17)

where f m+1 = f − um. Such kind of approximation then depends on the choice of the norm
‖�‖. On a discrete framework, if one again we consider L ≡ L, symmetric, constant and
positive definite matrix, the norm ‖�‖ is defined such that:

‖v‖2 ≡ ‖v‖2L−1 = (L−1 v, v)I ≡
∫

I

vT L−1 v dt (2.18)

The stationarity of this residue relative to am+1 and Φm+1 writes: find (Φm+1, am+1) ∈ U × F

such that:

(L(am+1Φm+1), am+1Φ
?)I = (fm+1, am+1Φ

?)I ∀Φ? ∈ U (2.19)
(L(am+1Φm+1), a?Φm+1)I = (fm+1, a?Φm+1)I ∀a? ∈ F (2.20)

Remark. One can notice that the two formulations are equivalent if L ≡ L symmetric,
constant and positive definite and the orthogonality is done relative to the functions a?Φm+1 +

am+1Φ
? in the Galerkin formulation. This equivalence would not exist if u̇ terms appeared in

the formulation (in the case of L ≡ d
dt I + L(t) for example) [Nouy, 2010].

We know explain how to solve those problems.

Practical resolution. Problems (2.15 – 2.16) and (2.19 – 2.20) can be solve either by using
a fixed-point algorithm or by substituting the space Eq. (2.15) (respectively (2.19)) into the
time problem (2.16) (respectively (2.20)), which leads to the study of the stationarity of a
Rayleigh ratio.
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• Fixed-point algorithm. Following problem (2.15–2.16), this system of coupled equa-
tions can be solved using a fixed-point algorithm as shown on Alg. 2 [Néron and Dureisseix,
2008, Ammar et al., 2012]. A stationarity criterion is used to stop the process. Note that even
though the maximum number of iterations to reach this stagnation is usually quite low (3–5),
a maximum value of iterations kmax can be enforced to stop the fixed-point algorithm.

Algorithm 2: fixed-point procedure to generate the new functions (Φm+1, am+1)

Data: a(0)
m+1;

Result: (Φm+1, am+1);
while (ak+1

m+1 − ak
m+1)I > ε do

1. compute Φ(k+1)
m+1 solution of:

(L a(k)
m+1, a

(k)
m+1)IΦ

(k+1)
m+1 = (fm+1, a

(k)
m+1)I (2.21)

2. compute a(k+1)
m+1 solution of:

[(Φ(k+1)
m+1 )T LΦ(k+1)

m+1 ] a(k+1)
m+1 = (Φ(k+1)

m+1 )T fm+1 (2.22)

end

• Substitution. On the other hand, one can substitute the function Φm+1 from the first
equation in problem (2.15) into Eq. (2.16) which leads to the study of the stationarity of a
Rayleigh ratio to obtain am+1:

R(am+1) = (fm+1, am+1)T
I [(L am+1, am+1)I]−1 (fm+1, am+1)I (2.23)

and, knowing the am+1 function, Φm+1 can then be computed accordingly from Eq. (2.15) or
(2.19).

Remark. The PGD modes, unlike the POD ones, are not naturally orthogonal. A
Gram-Schmidt algorithm can be used to form an orthonormal ROB (see App.. C).

1.3 Conclusion on the (x, t) reduced-order modeling
The classical separated-variable decompositions for evolution problems have been presented.
Two distinct approaches can be used: on the one hand, the ROB can be computed from partial
solutions (snapshots) determined during a learning phase; on the other hand, PGD provides
a separated-variable representation without any prior information on the solution. The use
of one method or the other is however case-sensitive, as the difference in computation cost
mostly depends on the dynamics of the solution to approximate (which has an important role
for the POD on the number of snapshots to compute in order to catch this dynamics). We
know present the extensions of such methods to solve parametric evolution problems.
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2 Dealing with parametric dependency
We now consider the following problem dependent on N p parameters µ = {µi}i=1···N p (for
which the assumption µ1 ≡ t is made to keep some consistency with the first section of this
chapter). The problem lies now in finding u(x,µ) solution of:

L(u;µ) = f (µ) (2.24)

Note that we will consider in this study only material and loading parameters. See [Ammar
et al., 2014, Bognet et al., 2014, Courard et al., 2016, Zlotnik et al., 2015] for strategies taking
into account geometrical parametric dependencies. Two methods are proposed to take into
account the parametric dependency in a reduced-order modeling framework.

2.1 Enrichment strategies
The first approach consists in improving an already computed basis, calculated for an initial
set of parameters, in order to solve the problems associated with the other sets of parameters
(see Alg. 3).

Algorithm 3: time-space representation – enrichment procedure
Data: u j(x, t), solution associated with the jth set of parameters µ j ;
Result: u j+1(x, t), solution associated with the ( j + 1)th set of parameters µ j+1 ;
Step 1: computation of the coefficients {a j+1

k }k=1···m j associated with the ( j + 1)th

problem, relative to the basis {Φ j
k}k=1···m j (POD stage) ;

while ς > ςcrit do
Step 2: enrichment of the ( j + 1)th solution by adding new modes:

u j+1(x, t) =

m j∑

k=1

a j+1
k Φ

j
k +

m j+1∑

i=m j+1

a j+1
i Φ

j+1
i (2.25)

end

2.1.1 In the context of POD

Enrichment strategies. In the context of POD, enrichment step 2 of Alg. 3 is not easy to
perform as the main advantage of this approach lies in the assumption that, once the initial
basis is computed, the new problem to be solved will be similar enough such that this basis
is accurate enough. If this is not the case, the original basis {Φ0

k}k=1···m0 needs to be enriched,
which may not always be easy and may require the computation of new snapshots [Glüsmann
and Kreuzer, 2009, Ryckelynck, 2005] (which increases the cost of the online phase of the
process).
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Reduced basis method. As a palliative to the case sensitivity of the POD, reduced basis
(RB) methods [Maday and Ronquist, 2004, Patera and Rozza, 2007] provide a convenient
framework for such kind of studies as they use a greedy algorithm to select the most rele-
vant calculations to be performed (i.e. the most relevant snapshots) on the parametric space
in order to enrich the ROB: a parametric manifold, analogue to an ensemble of snapshots,
which intends to accurately represent the dynamics of the solution over the parametric space,
is computed along a rigorous error estimator which quantifies the quality of the computed
solution [Rozza and Veroy, 2007, Rozza et al., 2008].

Let assume a set of parameters µ, and a large number ψ of sets of parameters which can
be obtained from a discretization of the variables {µi}i=1···N p (in that case ψ =

∏N p

i=1 ni) or by
using random processes (Monte Carlo method for example). The goal is to select only p of
those sets and compute the according solutions {u(x,µi)}i=1···p which will be used to build
the reduced-order model. However, unlike PCA for which the approach consists in looking
for the singular values and vectors of the covariance matrix formed with those solutions (see
Sec. 1.2.1), those solutions will be directly kept and ortho-normalized one another (using a
Gram-Schmidt algorithm for example) to build the ROM. The problem is here to choose the
“best” sets of parameters µi. Let assume m < M sets have already been chosen, associated
with {µi}i=1···m sets of parameters. µm+1 is chosen such that:

µm+1 = arg max
µ

∆en
m (µ) (2.26)

where ∆en
m is an operator estimating the projection error (based on an energy norm). Differ-

ent choices are possible for this operator [Patera and Rozza, 2007, Rozza et al., 2008], for
example a function proportional to the residue of the equilibrium equation. This approach is
especially interesting when the number of sets of parameters ψ is large.

2.1.2 In the context of PGD: the multi-parametric strategy

Similar to the enrichment method presented in Alg. 3, the multi-parametric strategy [Boucard
and Ladevèze, 1999] uses the “on the fly generation” aspect of the PGD to enrich the reduced-
order model over a parametric space. [Néron et al., 2015] gives an extended overview of the
implementation of this technique. More recently, [Heyberger et al., 2013] presented improve-
ments in order to browse in a more efficient way the parametric space. More informations
will be provided in a later section once the LATIN method has been presented.

2.2 Higher-order decompositions

Another approach consists in taking the parameters µ directly into the decomposition:

um(x,µ) =

m∑

k=1

Φk(x)
N p∏

i=1

ai
k(µi) (2.27)
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2.2.1 High-order decompositions

A canonical polyadic (CP) decomposition [Hitchcock, 1927] of the parametric ensemble of
snapshots can be performed to compute such approximation. However such kind of decom-
position requires numerous observations or computations and may be expensive to perform.
Details about the construction of such kind of approximations are given in App. B.

2.2.2 “High-order” PGD

Another approach consists in using the PGD previously presented and introduce the new pa-
rameters as extra-coordinates of the decomposition [Ammar et al., 2012]. A greedy algorithm
is then used to build iteratively the functions. Different approaches for the generation of such
approximation are presented in this section, under a discrete form.

Method A: (classical) enrichment strategy. Back to Eq. (2.24) and using a similar ap-
proach than the one presented in Sec. 1.2.2, the correction ∆um ∈ U is sought under a
separated-variable decomposition:

∆um = Φm+1

∏

i

ai
m+1 (2.28)

and by choosing the test function u? ∈ Tum+1(Sm+1) such as:

u? = Φ?
N p∏

j=1

a j
m+1 +

N p∑

i=1

(ai)?Φm+1

∏

j,i

a j
m+1 (2.29)

problem (2.24) leads to the resolution of N p +1 coupled equations, which can be solved using
a fixed-point algorithm (similar to the one given in Alg. 2):

Enrichment method A:

(i) computation of the space function (assuming {(a j)?} j=1···N p = 0):

Φm+1 = L−1


fm+1 ×̄ j+1

[
ID j a j

m+1

]

∏N p

j=1

[
(a j

m+1)T ID j a j
m+1

]
 (2.30)

(ii) computation of the parametric functions (assuming Φ? = 0 and {(a j)?} j=1···N p, j,i = 0):

ai
m+1 =

ΦT
m+1

fm+1 ×̄ j+1
j,i

[
ID j a j

n+1

]

[ΦT
n+1 LΦn+1]

∏N p

j=1, j,i[(a
j
m+1)T ID j a j

m+1]
(2.31)

with fm+1 = f − um, ×̄k is the mode-k tensor-vector product [Bader and Kolda, 2007] and the
integration operators IDi are defined as:

∫

Di

a(µi) · b(µi) dµi ≡ aT IDi b (2.32)

which gives the new product of functions ∆um = Φm+1
∏N p

i=1 ak
m+1.
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Method B: enrichment through tensor decomposition of the parametric functions. We
still consider the problem (2.24) and the correction ∆um is sought under the following separated-
variable decomposition:

∆um = Φm+1 Am+1 (2.33)

where Am+1(µ) ∈ MD(R) is initialized in the fixed point algorithm as:

Am+1(µ) =

N p∏

i=k

ak
m(µk) (2.34)

and the test function is chosen as:

u? = Φ? Am+1 +Φm+1 A? (2.35)

Once again, a fixed point algorithm enables to compute the different functions:

Enrichment method B:

(i) the space function is computed from Eq. (2.30) with A? = 0;

(ii) assuming Φ? = 0 one computes Am+1 by solving the following problem:

Am+1 =
ΦT

m+1 fm+1

ΦT
m+1 LΦm+1

(2.36)

(iii) a rank-1 CP-decomposition is performed on Am+1 to obtain the new set of functions
{ak

m+1(µk)}k=1···N p .

This approach is especially interesting because: (i) D is alleged to be small compared to P
(especially because of the size of Ω); (ii) we only assume a rank-1 decomposition; (iii) the
orthonormalization of the basis is now much easier to perform (see App. C).

Method C: “Block” PGD. When the number of parameters increases too much (dozens,
possibly hundreds) the assembly of the full operators {Ai}i=1···m can be too costly to perform
(even for dedicated computers!). A way to balance this memory issue and the complexity
of (and time spent) writing a full fixed-point algorithm (as shown on Eqs. (2.30–2.31)) is
to mix both approaches, making blocks of parameters and building A j operators associated
with each of these groups, so that one does not exceed the memory available and that the CP
decomposition converges quickly and with a good accuracy.

um(x, {ph}N1

h=1, {qi}N2

i=1, {r j}N3

j=1) =

m∑

k=1

Pk Qk RkΦk (2.37)
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where:

Pk =

N1∏

h=1

ah
k(ph) Qk =

N2∏

i=1

bi
k(q

i) Rk =

N3∏

j=1

c j
k(r

j) (2.38)

A fixed-point algorithm can subsequently be used to obtain (Φm+1,Pm+1,Qm+1,Rm+1) and a
rank-1 CP-decomposition is performed on those tensors to obtain the corresponding func-
tions. This approach is similar to a tensor train decomposition [Oseledets, 2011].

2.3 Summary on parametric reduced-order modeling
Reduced-order modeling based on a separated variable representation has been introduced in
the first section, first with a (x, t) decomposition for evolution problems with the introduc-
tion of the proper orthogonal decomposition and the proper generalized decomposition. The
algorithms to generate the reduced basis have been presented in both cases.

The extension to parametric decompositions has now been presented. On the one hand,
enrichment strategies aim at improving an already computed reduced order basis by adding
new functions in the decomposition in order to obtain an approximation of the solution asso-
ciated with a similar problem. Enrichment strategies within the POD framework do exist, but
their numerical cost may be heavy as they sometimes rely on the computation of new snap-
shots. The reduced-basis method aims at palliating to this case-sensitivity by providing tools
to efficiently browse the parametric space. The multi-parametric strategy uses the advantages
of the PGD to provide an easy way to enrich the solution at a lower cost than the POD.

On the other, approaches consisting in taking the parametric dependency directly into the
separated variable decomposition have been presented. They show the advantage of providing
an approximation of the solution for all the possible outcome (sets of parameters). However,
in the case of POD, they require the computation of numerous snapshots (in order to sweep
the parametric space). PGD, once again, offers a more convenient framework for such studies.

However, those methods used alone are not suitable for the resolution of nonlinear prob-
lems, which is a strong aspect of our study. To do so, those methods need to be coupled with
linearization strategies. We present in the next section the coupling between POD/PGD and
different strategies.

3 Dealing with nonlinearities
As we have seen in the previous parts, classical problems in computational lead to the reso-
lution of:

R(u; t) = L(u; t) − f (t) = 0 (2.39)

withL a nonlinear differential operator. Different approaches have been investigated to solve
such problems in a reduced-order modeling context, usually based on the linearization of the
equations. Among those methods, one can cite:
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(i) Newton-Raphson methods, mainly used with the POD [Kerfriden et al., 2011, Rader-
macher and Reese, 2014] and RB methods [Drohmann et al., 2012]. This however
requires to build a reduced-order model at each iteration of the algorithm.

(ii) the asymptotic numerical method [Cochelin et al., 1994] has been employed with POD
[Niroomandi et al., 2010, Niroomandi et al., 2012] and PGD [Leygue et al., 2013]
and shows the advantage of requiring the computation of only one tangent operator,
which stays constant over the iterations. However a higher interpolation order of the
nonlinear term is thus required, leading to the generation of big (in number of terms)
reduced-order bases.

(iii) the LATIN method [Ladevèze, 1999] lies in a separation of the difficulties of the prob-
lem, in our case the local problem (nonlinear) and the global problem (in space) which
are solved iteratively and the solution of the problem is fully computed at each iteration
of the algorithm.

Those methods are detailed in the following sections.

3.1 Newton algorithms for evolution problems

The semi-discretized version of (2.39) reads:

R(u; t) = L(u; t) − f(t) = 0 (2.40)

which is a nonlinear vector equation. The usual approach to solve this problem consists in
using a Newton algorithm, which leads to finding the correction ∆u j for each iteration step i
and for each time increment t j the equation:

R(ui
j) + LT (ui

j) ∆ u j = 0 (2.41)

The solution ui+1
j is then updated by ui+1

j = ui
j + ∆ u j. Different versions of the Newton

algorithm exist, depending on the choice for the operator LT :

(i) Newton-Raphson, for which LT is the tangent operator:

LT (ui
j) =

∂L(u j)
∂u j

∣∣∣∣∣∣
u j=ui

j

(2.42)

(ii) quasi-Newton algorithms gather a large range of methods, which are used when the
Jacobian or Hessian matrices are unavailable or too complicated to compute;

(iii) secant method, which is can be seen as a finite difference approximation of the Newton-
Raphson method.
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Example of coupling with POD. The coupling with the proper orthogonal decomposition
is now presented, and summed up in Alg. 4. Let us consider the matrix U ∈ Mnx,m(R),
assembly of the m ROB vectors {Φi}i=1···m. The solution field u is searched under the form:

u = u(t j) + Uα j (2.43)

with the additional orthogonality constraint on the residue:

UT R = 0 (2.44)

The problem (2.40) can be rewritten, at each instant t j ∈ [0, nt] and at iteration i: find ∆αi
j ∈

Mm,1(R) solution of:

Ri
R(u j) + LT,R(u j) ∆αi

j = 0 (2.45)

where Ri
R is defined such that:

Ri
R = UT LT (u j + Uα

i
j) + UT f (2.46)

This enable to actualize the function αi+1
j = αi

j + ∆αi
j and to compute the new corrections

(with classical Newton-Raphson tangent operator):

Ri+1
R = UT LT (u j + Uα

i+1
j ) and LT,R(ui+1

j ) = UT ∂L(u j + UT α j)
∂α j

∣∣∣∣∣∣
α j=α

i+1
j

(2.47)

The algorithm stops when the norm of the residue Ri+1
R is lower than a threshold ςcrit.

Algorithm 4: Newton-Raphson–POD
Data: residue R, ‖ . ‖ a norm on Rnx , U ∈Mnx,m(R)
;
Result: α j = {ak(t j)}k=1···m
;
hypothesis: ∃u∗ ∈ Rnx,m such that R(u∗) = 0, R′(u∗) invertible ;
initialization: u0 ∈ Rnx,m, ς0 = ‖R(u0)‖, i = 0 ;
while ςi > ςcrit do
• solve: Ri

R(u j) + LT,R(u j) ∆αi
j = 0 ;

• actualize: αi+1
j = αi

j + ∆αi
j ;

• correction stage:

Ri+1
R = UT LT (u j + Uαi+1

j ) and LT,R(ui+1
j ) = UT ∂L(u j + UT α j)

∂α j

∣∣∣∣∣∣
α j=α

i+1
j

• computation of ςi+1 = ‖Ri+1
R ‖ ;

end
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Remarks. (i) It is important to notice that due to the definition of the damage variable
dc in Chap. 1, which depends on the positive part of the strain tensor εc, classical Newton-
Raphson can not be applied. Secant approaches are preferred for such problems, but this
tends to slow down the convergence rate of the algorithm; (ii) the (natural) extension of
such algorithm to a parametric case is very expensive. Some dedicated strategies must be
employed to overcome the problem of recurrent computation of snapshots (once again, RB
can be an interesting approach).

3.2 The asymptotic numerical method
The asymptotic numerical method (ANM), developed by [Azrar et al., 1993] is an extension
to the method of asymptotic developments presented in [Potier-Ferry, 1979] and has been
applied to numerous fields: nonlinear geometry, Navier-Stokes equations, contact, visco-
plasticity, . . . It consists in defining asymptotic expansions of the unknown fields, as well as
a loading parameter λ affecting the nonlinear term, for example:

{
u = u0 + c u1 + c2 u2 + · · ·
λ = λ0 + c λ1 + c2 λ2 + · · · (2.48)

Such expansion is introduced in the nonlinear equilibrium equation which leads to the reso-
lution of a sequence of linear problems associated with the order of the expansion parameter
c, for which the solution up, associated with the order-p parameter c, depends on the p − 1
terms {(ui, ci)}i=1···(p−1).

ANM–PGD algorithms have been investigated in [Leygue et al., 2013], for which a PGD
approximation of the unknown terms up is built for the different successive linearized prob-
lems. Accordingly, the total number of enrichment phases of the reduced-order model is
ntotal =

∑p
i=0 ni, which can be high depending on the order of expansion (e.g. the number of

terms p), which is linked to the nonlinearity of the problem. The main advantage of this ap-
proach remains that the different problems share the same stiffness matrix, which then must
be inverted only once.

3.3 The (classical) LATIN–PGD algorithm
More than being a nonlinear solver, the LATIN method [Ladevèze, 1989, Ladevèze, 1999] is
a concept which relies on a simple but powerful idea: the separation of difficulties, which are
solved alternatively during an iterative process, with search directions E+ and E− coupling
the two problems. At convergence, the solution s of the algorithm satisfies both groups of
equations. The most classical example is the treatment of visco-plastic behavior, for which
the global (linear) equilibrium and the local nonlinear behavior are solved alternatively. This
idea is schematically represented on Fig. 2.3, where Γ denotes the space associated with the
nonlinear equations and Ad the one for which the solution s satisfies the global equilibrium
equations. s represent the exact solution, whereas sM (red dot) represents the rank-M approx-
imation of s. Unlike Newton-like techniques, this approach provides a complete solution at
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Displacement

Force

Displacement

Force

Figure 2.2: Schematic comparison of the Newton-Raphson (left) and LATIN (right) algo-
rithms

each iteration of the algorithm (see Fig. 2.2 for a schematic description of both methods).
Such strategy has also been applied for other types of problems: multi-scale, for which the
micro and macro problems are solved alternatively; domain decomposition, for which the
separation operates on the sub-domains on the one hand and the interfaces on the other hand;
multi-physics, which separates the different models. In many cases, model-order reduction
(PGD) is used to reduce the cost of resolution of the global problem. A thorough summary
of the different works is provided in App. D, with the according references.

s

s0

�

Ad

ŝm

sm+1

sm

E+

E�

sM

Figure 2.3: Schematic representation of the LATIN algorithm

We now briefly detail the different steps of the algorithm, which are summarized in Alg. 5.

Model-order reduction for the parametric analysis of damage in reinforced concrete structures



36 Nonlinear parametric model reduction – state of the art

3.3.1 The different steps of the algorithm

Let us first introduce the following spaces:

(i) space Ad of the admissible fields s such that the state equations are satisfied;

(ii) space Γ of admissible fields s such that the evolution equations are satisfied.

The solution of the problem satisfies the admissibility conditions and the evolution laws, such
that it lies at the intersection of Ad and Γ:

s ∈ Ad ∩ Γ (2.49)

• Initialization of the algorithm. The algorithm is classically initialized by computing the
elastic solution of the problem, such that s0 ∈ Ad. However, more “clever” initialization
can be done (partially converged solutions for example, which is the idea behind the multi-
parametric strategy –see Sec. 3.3.2), provided that this initial solution belongs to Ad. The
iterative process then starts with a local stage.

• The local stage. The local stage (Fig. 2.4a) consists in finding ŝm ∈ Γ knowing sm ∈ Ad
and the search direction E+ defined such that (ŝm − sm) ∈ E+. This local problem is solved
incrementally (a Newton-Raphson technique -for example- can be used if required) at each
Gauss point of the structure.

• The linear stage. The linear stage (Fig. 2.4b) consists in finding sm+1 ∈ Ad knowing
ŝm ∈ Γ and the search direction E− defined such that (sm+1 − ŝm) ∈ E−. To reduce the
computational cost of this stage (which is global in space and time), the PGD technique
is usually used to approximate the solution sm+1 under a separated-variable representation,
which is enriched at each iteration of the algorithm, for which the quantity of interest um+1 at
iteration m + 1 writes:

um+1 = um + ∆ um (2.50)

with um =
∑m

i=1 ai(t)Φi(x), known at this iteration, and one seeks the correction ∆ um =

am+1 Φm+1 in the same way as the one presented in Sec. 1.2.2.

• Stopping criterion. Error estimation is still an open field when dealing with reduced-
order models. In the LATIN framework, different criteria exist to quantify the error of ap-
proximation [Ladevèze, 1999], the most classical is based on an energy norm (as defined in
1.2.2):

ς =
‖εm+1 − ε̂m‖C∥∥∥1
2 (εm+1 + ε̂m)

∥∥∥
C

(2.51)

Other possibilities based on the norm of the residue or the norm of the modes can also be
considered.
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(a) Local stage at iteration m + 1
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(b) Linear stage at iteration m + 1

Figure 2.4: Local (Fig. 2.4a) and linear stage (Fig. 2.4b) representations

Algorithm 5: LATIN algorithm - concept
Data: elastic solution satisfying the boundary conditions
;
Result: um, approximation of u
;
while ς > ςcrit do

Iteration m + 1 starts:
• Local stage: knowing the solution sm ∈ Ad from previous iteration m, find the
local solution ŝm ∈ Γ using the search direction E+, parameter of the method:

{
ŝm ∈ Γ

(ŝm − sm) ∈ E+ (2.52)

• Linear stage: knowing the solution ŝm ∈ Γ just computed, find the linear
solution sm+1 ∈ Ad using the search direction E−, also parameter of the method:

{
sm+1 ∈ Ad

(sm+1 − ŝm) ∈ E− (2.53)

• Computation of error indicator ς ;
end

Remark: choice of the search directions. Tangent, secant or constant search direc-
tions have been investigated, depending on the applications. Tangent search directions are
not well-suited for damage mechanics for example, but provide good results for elasto-plastic
problems. [Ladevèze, 1999, Relun, 2011] provide some elements for optimized search direc-
tions when dealing with elastic-viscous-plastic materials.
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3.3.2 The multi-parametric strategy

Let us come back to the multi-parametric strategy mentioned in Sec. 2.1.2. Its objective is
to provide very quickly the solution of a nonlinear evolution problem for several values of
parameters of the model, by re-using the solution of the same problem computed with dif-
ferent (but “close”) values of parameters. This strategy relies on the non-incremental aspect
of the LATIN method, which enables to initialize the algorithm with any solution already
computed (as it belongs to Ad). Fig. 2.5 illustrates this concept, for which the initial basis
is successively enriched to provide the approximations sM j (red dots) of a unique problem
associated with the parametric samplings {µi}i=1···N p affecting only the nonlinear space Γ. The
number of iterations required to achieve the convergence of the algorithm is usually low due
to this choice of the initialization.

The choice of the values of the parameters minimizing the number of iterations from one
set to another is not trivial, and this question has been addressed in [Soulier and Boucard,
2009] (criteria on a distance in the space of parameters and in the space of the solutions) or
[Heyberger et al., 2013] (“rational” multi-parametric strategy) using an approach similar to
the RB method to select the most relevant sets of parameters to compute the enrichment.

It is worth mentioning that this approach has also been used without PGD at the linear
stage in [Champaney, 1996, Boucard and Champaney, 2003], but the addition or reduced-
order modeling in this framework tends to accelerate the process.

E�

s j

s0
sM0

sM j

s0

Ad

� j

�0

E+

E�

sM0

sM j

Figure 2.5: Schematic representation of the multi-parametric strategy
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3.4 Limits of such approaches
The main drawback of these linearization methods, especially in a parametric context, is
that they require the evaluation of the nonlinear term many times and [Chaturantabut and
Sorensen, 2010] shows that the POD-Galerkin problem can be more costly to solve than the
original full-order problem. The (expensive) computation of tangent operators is also often
required.

Different techniques exist when working with reduced-order models to lessen the cost
of such operations. Several methods are popular in the literature: one can cite the empiri-
cal interpolation method (EIM) which has been applied with POD [Barrault et al., 2004] or
reduced basis [Grepl et al., 2007], and its discrete counterpart DEIM used with POD [Chat-
urantabut and Sorensen, 2010]; Gappy-POD techniques [Willcox, 2006] such as the a priori
hyper-reduction method, used with POD [Ryckelynck, 2005, Ryckelynck et al., 2012], the
Gauss-Newton with approximated tensors method also used with POD [Carlberg et al., 2013]
or the energy-conserving sampling and weighting hyper reduction method used with POD
[Farhat et al., 2014]; finally, the reference point method has been used with PGD withing the
LATIN framework [Ladevèze, 1997, Capaldo, 2015].

4 To put it in a nutshell . . .
The point of this chapter was to present at the same time the different existing techniques to
solve nonlinear parametric problems, in a separated-variable-based reduced-order modeling
framework, as well as the advantages and limits of those techniques. Classical time-space de-
compositions have been presented in the first section and the techniques to build the according
approximations have been presented. Whereas POD techniques rely on partially known data
(from experiments or numerical simulations), PGD techniques aim at building the reduced
basis iteratively until a (user-defined) error criteria is reached. Used alone, those techniques
are however very similar and the differences appear more clearly in a parametric context.
Due to the need for partial data, POD shows the limit of being extremely case-sensitive, and
enrichment techniques are not always easy to perform. Reduced basis methods however pro-
vide a convenient framework for parametric studies as they give tools to efficiently browse the
parametric space in order to enrich the reduced-order model according to the dynamics of the
problem. PGD techniques, on the other hand, provide a great framework for parametric stud-
ies, either through an enrichment of the solution similar to the POD one (multi-parametric
strategy) or by fully decomposing the quantity of interest over its different variables.

The aspects linked to the nonlinearity of the problems encountered in mechanical en-
gineering have also been investigated and different ways to tackle these issues in a ROM
framework have been mentioned. The LATIN–PGD coupling offers great possibilities for the
simulation of nonlinear parametric problems and this strategy will be at the basis of our work.
This approach has already been used in a parametric context, the multi-parametric strategy,
but for which only a time-space decomposition was assumed, and enriched progressively
associated with the parametric path.
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We propose in this work to consider another approach for which the parameters are taken
as extra-variables of the PGD decomposition directly in the linear stage of the LATIN al-
gorithm. This approach, compared to the RB and the MPS, is expected to be interesting in
particular when the solution space is very large (either because it involves many parameters
or because the variables ranges are wide). Preliminary results for a 1-D thermal problem
have been published in [Vitse et al., 2014] but will not be recalled in this manuscript. The
next chapter provides algorithmic elements of this coupling, and the direct application to a
damage model with unilateral effect.

Remark: applications of LATIN–PGD algorithms to damage mechanics. The LATIN
algorithm, in the context of damage mechanics, has mostly been used for the study of com-
posite materials, without using PGD (except [Allix et al., 1989] which used a (x, t) decom-
position). [Vandoren et al., 2013] proposed a version of the LATIN to simulate snap-back
behaviors in reinforced concrete structures, once again without ROM.

More generally, concerning damage in the context of model reduction, one can cite [Ryck-
elynck et al., 2011] which showed the high potential of model reduction to deal with damage
simulations, and some very recent works such as [Metoui et al., 2014] who introduced the
coupling of PGD with a cohesive zone for delamination, or [El Halabi et al., 2016] who used
a PGD-based multi-scale formulation for simulating problems with a rate-dependent damage
model.
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Chapter 3
LATIN nonlinear parametric model
reduction applied to damage mechanics
problems

We present in this part the improvements made to the classical LATIN–PGD algorithm given
in the previous chapter in order to tackle the parametric dependency of the problem detailed
in Chap. 1. The formulation of the damage problem in the framework of the LATIN method is
presented. The enrichment strategy for the reduced model used here is the method B given in
Chap. 2. Sec. 1 sets the hypothesis of the mechanical problem studied in this chapter. Sec. 2
provides the algorithmic developments of the method. The different stages of the LATIN
method are shown in a continuous and discrete framework. Finally, as a significant part of
this thesis has been dedicated to the computer implementation of the method (which led to
the development of the ROMlab solver), Sec. 3 gives some details about technical elements
on both the algorithm and some model aspects specifically linked to the numerical simulation
of damage mechanics.

1 Mechanical problem formulation
We consider a reinforced concrete beam as illustrated on Fig. 3.1. The small perturbations
assumption is made and the only load applied on the beam is a displacement ud on its part ∂1Ω
(body forces are neglected, which is a strong assumption for dynamical problems –which is
not the case here– or the study of massive structures). The mechanical state of this structure
is defined by the set of fields s = (σ,Y, ε, d), where ε (respectively Y , σ, d) is the assembly
of εc and εr (respectively Yc, σc, dc and Yr, σr, dr) relative to their corresponding degrees of
freedom (DOFs).

Although the reinforcement is considered to remain in the elastic regime for our study,
one can refer to [Relun et al., 2013] for the LATIN–PGD implementation of an Armstrong-
Frederick elasto-visco-plastic behavior. A summary of the state laws and evolution equations
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of the problem defined in Chap. 1 is given:

State laws.

σc,m = (1 − d) Cc : εc

σ̇c, f = νCc : ε̇c, f

Yc =
1
2
〈εc〉+ : Cc : 〈εc〉+

Zc =
d H(zc)

d zc

σr = Cr : εr

(3.1)

Evolution equations.

dc = 1 − 1
1 + Ad(Yc − Y0)

zc =
1

1 + Ad(Yc − Y0)
− 1

εc, f = dc εc

dr = 0

(3.2)

Figure 3.1: Representation of a reinforced concrete beam

The problem is defined over P = Ω ×D associated with the set of variables p = {x,µ},
where Ω = {M(x)} ∈ R3 denotes the geometrical space of the specimen, andD =D1 × · · · ×
Dp, in particularD1 ≡ I = [0,T ] and the spacesDi = [µmin

i , µmax
i ] are respectively associated

with the variables {µi}i=2···N p (that will be, let us recall, affecting materials characteristics or
the loading amplitude in this chapter). Those spaces are assumed to be sufficiently regular to
allow the rewriting of the mechanical formulation below.
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Let us also introduce the following spaces, as well as their corresponding homogeneous
counterparts (denoted �0):

• spaceW ≡H1(Ω) =
{
u ∈ L2(Ω), ∇u ∈ L2(Ω)

}
;

• ‖�‖W =
(∫
Ω
� 2 dΩ

)1/2
, L2 norm onW;

• V ≡ L2(D,W) =
{
u : D→W,

∫
D
‖u‖2W dµ < +∞

}
;

• space F i ≡ L2(Di,R);

• space F =
∏N p

i=1F i;

• spaceU of the admissible fields u such that:

u ∈ V and u|t=0 = 0 and u = ud on ∂1Ω (3.3)

and ud may depend on µ;

• spaceU0 of the admissible fields u such that:

u ∈ V, u|t=0 = 0 and u = 0 on ∂1Ω (3.4)

• space Sadm of the static admissible fields σ such that:

∀u? ∈U0, −
∫

P

ε(u?) : σ dp = 0 (3.5)

• space Ad of the admissible fields s such that σ ∈ Sadm and the state equations (3.1) are
satisfied;

• space Γ of the admissible fields s such that the evolution equations (3.2) are satisfied;

• space T um(U0), the tangent linear space toU0 at um.

We now present the modified LATIN–PGD algorithm.

2 Extended LATIN–PGD algorithm
The most important changes to the classical LATIN–PGD algorithm are presented in this
section. At the local stage, the behavior equations are solved at each Gauss point, for every
set of values of parameters. This step can seem very costly, however this process is highly
parallelizable with very important speedups (a numerical example is given in Chap. 4). At the
linear stage, the enrichment to the approximation is sought under a time–space–parameter
decomposition, using the method B presented in Chap. 1.
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2.1 Initialization

Let us recall that the kinematic admissibility is usually contained in the initial elastic solution
u0 ∈ U such that the following corrections ∆um are searched inU0. This means that in the
event a parameter is chosen to affect the loading conditions (in our case, its amplitude), the
initial (kinematically admissible) solution must also comply with the parametric dependency.
On the numerical point of view, in many cases, this computation can easily be parallelized
over several CPUs, which does not increase the cost of the operation compared to the classical
algorithm.

Although usual for plasticity or contact problems for example, this initialization may not
be the most interesting choice for damage mechanics. The elastic solution provides an overall
over-estimation of the strain field and as a consequence a damage state that may be widely
spread over the structure at the first iterations instead of being very localized, whereas the
converged solution tends to give confined damage areas concentrating the strain. This may
impact the number of iterations of the algorithm to reach convergence. However, in our case,
the damage tends to localize to only a few areas of the structure, which does not impact too
much the number of iterations. For composites structures, for which the damage is localized
to many areas over the structures (local delamination, . . . ) such initialization may lead to
the generation, during the first iterations of the algorithm, to non-relevant modes that do
not represent the damage state of the structure. Procedures enabling to “kill” those modes,
depending on criteria to be defined, will need to be implemented but are not the core of this
work.

2.2 Local Stage

The problem at the local stage consists in finding ŝm = (σ̂m, Ŷm, ε̂m, d̂m) knowing sm =

(σm,Ym, εm, dm), where the search directions are defined as:

E+



Ŷm = Ym

(σ̂c
m − σc

m) + Hm (ε̂c
m − εc

m) = 0
ε̂r

m = εr
m

(3.6)

The choice has been made to store the state of the energy rate variable Y between the previous
linear stage and the local stage. Moreover, the search direction Hm is chosen to be equal to
H♦m (that is defined in Sec. 2.3).

At each Gauss point, for each time step t j and value of parameters {µ j
i ∈ [µmin

i , µmax
i ]}i=2···N p ,

one has to solve Alg. 6. The more the number of parameters increases and the more the
numerical cost (both CPU and storage) of this stage can be important. Note that however
complex this stage can be, it is possible to parallelize the process at different scales: models
(reinforcement and concrete media in our case), Gauss points, possibly parameter spaces.
This issue is discussed in Sec. 3.
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Algorithm 6: local stage
Data: sm = (σm,Ym, εm, dm), search direction (3.6) and behavior equations:

σ̂c,m
m = (1 − d̂c

m) Cc : ε̂c
m (3.7)

σ̂r
m = Cr : ε̂r

m (3.8)

Result: ŝm = (σ̂m, Ŷm, ε̂m, d̂m);
For the concrete medium ;
Step 1: computation of the energy released Ŷm:

Ŷc
m = Yc

m =
1
2

〈
εc

m
〉

+ : Cc :
〈
εc

m
〉

+ (3.9)

Step 2: computation of the threshold ϕm = Ŷc
m − (Y0 + Zc) ;

2.3 Linear Stage
The approach chosen to tackle the parametric dependency at the linear stage is to consider
the parameters as extra-variables to the decomposition. This section provides the elements
for the implementation of the different steps of the linear stage in a LATIN context, and the
problems to be solved.

The search directions are defined as follows [Ladevèze, 1999]:

E−
{

dm+1 = d̂m

(σm+1 − σ̂m) − H♦m+1 (εm+1 − ε̂m) = 0 (3.20)

where one can notice the choice for dm+1 is made in order to linearize the problem, as dm+1 is
then assumed to be fixed and is not an unknown at this stage anymore. A classical choice for
search direction is to compute the tangent operator. However, this is not possible anymore in
this study due to the use of positive parts (〈�〉+) in the computation of the damage variable.
As the assembly (and integration) of the secant matrix ([Vandoren et al., 2013]) is also com-
plicated, the search direction operator H♦m+1 at iteration m + 1 is chosen to be constant over
the iterations and equal to the undamaged stiffness matrix, such that H♦m+1 = H♦0 = C where
C is the assembly of Cc and Cr relative to their corresponding DOFs. This also implies that
Hm = H♦m = C (search direction operator at local stage). Other choices may be investigated,
for example based on the use of a weighted stiffness matrix. By injecting the search direction
(3.20) into Eq. (3.5), the problem becomes:

∀u? ∈ T um+1(U0),
∫

P

ε(u?) :
[
H♦m+1 : ε(um+1)

]
dp = −

∫

P

ε(u?) :
[
σ̂m − H♦m+1 : ε̂m

]
dp (3.21)
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Algorithm 1 (continuation)
if ϕm > 0 then

Step 3.1: computation of d̂c
m:

d̂c
m = 1 − 1

1 + Ad(Ŷc − Y0)
(3.10)

Step 3.2: regularization of d̂c
m using a damage-delay technique:

ˆ̇dc
m =

1
τc

[
1 − exp(−a 〈d̂s(Ŷc

m) − d̂c
m〉+)

]
(3.11)

Step 3.3: after injecting (3.7) into (3.6), one obtains ε̂c
m by solving the following

system:
[
(1 − d̂c

m) Cc + Hm

]
: ε̂c

m = σc
m + Hm : εc

m (3.12)

Step 3.4: σ̂c,m
m is computed according to (3.7) ;

Step 3.5: computation of stress σ̂c, f
m : integration of:

˙̂σc, f
m = νCc : ˙̂εc, f

m (3.13)

Step 3.6: computation of total stress σ̂c
m:

σ̂c
m = σ̂c,m

m + σ̂c, f
m (3.14)

else
Step 3.1: element follows and elastic law:

ε̂c
m = εc

m (3.15)

Step 3.2: compute the according stress field:

σ̂c
m = Cc : ε̂c

m (3.16)

This problem is semi-discretized in space using classical finite elements with basis functions
that are continuous and polynomial by parts over each elements. The expressions are now
given using the discretized fields and operators using non-italic letters. Assuming a rank-m
approximation has been computed at the previous iterations of the algorithm:

um = u0 +

m∑

j=1

Φ j

N p∏

i=1

ai
j(µi) (3.22)

with u0 ∈ U×F the initial solution satisfying the boundary conditions, the problem here lies
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Algorithm 1 (continuation)
For the reinforcement ;
Step 4: computation of ε̂r

m and σ̂r
m from (1.19) and (3.6):

ε̂r
m = εr

m (3.17)
σ̂r

m = Cr : ε̂r
m = Cr : εr

m (3.18)

d̂r
m = 0 (3.19)

in finding a correction ∆um ∈ U0 such that:

um+1 = um + ∆um (3.23)

which leads to the resolution of the following problem: ∀u? ∈ Tum+1(U0) find ∆um ∈ U0

solution of:
∫

D

(u?)T
[
BT H♦m+1 IΩ B

]
︸            ︷︷            ︸

G

∆um dµ = −
∫

D

(u?)T
[
BT IΩ

(
[σ̂m + H♦m+1 ε̂m] + H♦m+1 B um

)]
︸                                            ︷︷                                            ︸

Qm

dµ

(3.24)

where Qm ∈MP(R) and G ∈MΩ(R). We also define the operators B such that ε(u) = B u
and IΩ:

∫

Ω

∇Φ · ∇Φ dΩ ≡ (BΦ)T IΩ BΦ (3.25)

The linear stage of the LATIN algorithm at this point consists of two steps: an update of
the already computed time functions and (if necessary) the enrichment of the reduced-order
model, as presented in the following sections and summed up in Alg. 7. Note that some
recent advances obtained by [Giacoma et al., 2015, Giacoma et al., 2016] to generate a quasi-
optimal decomposition can also be integrated into the algorithm.

2.3.1 Update of the basis

Once at least one iteration has been performed, an update stage is set in order to enrich the
time functions of the already computed decomposition, directly after the local stage, in order
to improve the approximation and possibly skip the rest of the linear stage [Boisse et al.,
1990, Ladevèze and Nouy, 2003, Ladevèze et al., 2010]. Coming back to problem (3.24),
one seeks to update the previously computed basis {a1

i (t)}i=1···m and the correction ∆um writes:

∆um(x,µ) =

m∑

i=1

Φi a1
i

N p∏

k=2

ak
i (3.26)
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with the test function u? chosen as:

u? =

m∑

j=1

(a1)?Φ j

N p∏

k=2

ak
j (3.27)

such that only the time functions are updated in the process, the other parameter functions
being fixed. Other choices can be investigated but this method allows to recover the classical
time-space approach if no other parameters than t are taken into account. The parametric
spaces are now uniformly discretized using nt and nei values respectively for the spaces I
andDi , i>1. Their discrete counterparts are respectively written I and Di , i>1. Eq. (3.24) then
writes: ∀ j ∈ [1,m], ∀(a1)?,

∑

i

∫

I

((a1)?)T

(ΦT
i GΦ j)

N p∏

k=2

[(ak
i )

T IDk ak
j]


︸                                ︷︷                                ︸

A ji

a1
i dt = −

∫

I

((a1)?)TΦT
j

(
Qm ×̄k+1

k>1

[
IDk ak

j

])

︸                     ︷︷                     ︸
Q̃m, j

dt

(3.28)

with ×̄k the mode-k tensor-vector product [Bader and Kolda, 2007] and where the integration
operators IDi are once again defined as:

∫

Di

a(µi) · b(µi) dµi ≡ aT IDi b (3.29)

which leads to the resolution of the problem: find {a1
i }i=1···m ∈Mm,nt(R) (collection of the m

time functions to be updated discretized over nt time steps) solution of:

A · [{a1
i }i=1···m] = Q̃m (3.30)

where A ∈Mm(R) and Q̃m ∈Mm,nt(R), so that one gets the new approximation:

um+1 = u0 +

m∑

i=1

Φi (a1
i + a1

i )
N p∏

k=2

ak
i (3.31)

Criterion for skipping the enrichment The following indicator is computed to decide
whether a new PGD mode should be generated or not at iteration m + 1 [Heyberger et al.,
2012] :

η =
e1 − e2

e1
(3.32)

e1 =
‖εm − ε̂m−1‖C
‖ 1

2 (εm + ε̂m−1)‖C
e2 =

∥∥∥εm+1 − ε̂m

∥∥∥
C∥∥∥1

2 (εm+1 + ε̂m)
∥∥∥

C

(3.33)

with ‖X‖2C =
∫
D

XT IΩC X dµ. If the value of this indicator is greater than a certain threshold
ηcrit, the computation of the new PGD mode is skipped and a new local stage is performed.
Else, a new PGD mode is computed by solving Eq. (3.24) with um = um+1 as explained in the
next section.
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2.3.2 Generation of a new mode

The new PGD mode is computed using a Galerkin orthogonality criterion, following the
method B exposed in the previous chapter. Back to Eq. (3.24), the correction ∆um is sought
under a separated-variable decomposition:

∆um = Φm+1 Am+1 (3.34)

where Am+1(µ) ∈MD(R) is initialized in the fixed point algorithm as:

Am+1(µ) =

N p∏

i=k

ak
m(µk) (3.35)

and the test function is chosen as:

u? = Φ? Am+1 +Φm+1 A? (3.36)

This leads to the resolution of a fixed-point algorithm:

(i) computation of the space function (assuming A? = 0):

Φm+1 = G−1


Qm ×̄ j+1

[
ID j a j

m+1

]

∏N p

j=1

[
(a j

m+1)T ID j a j
m+1

]
 (3.37)

(ii) computation of the parametric functions (assuming Φ? = 0):

Am+1 =
[QmΦm+1]

[ΦT
m+1 GΦm+1]

(3.38)

(iii) a rank-1 CP-decomposition is performed of Am+1 to obtain the new set of functions
{ak

m+1(µk)}k=1···N p using an alternating least square algorithm (see App. B). This operation
is done numerically using the Tensor toolbox [Bader and Kolda, 2007].

2.3.3 Orthonormalization of the basis

The new functionΦm+1(x) is orthonormalized with respect to the already computed orthonor-
mal basis {Φi(x)}i=1···m, with the norm of the new mode being put on the time function a1

m+1:

a1
m+1 ← a1

m+1[ΦT
m+1 IΩΦm+1]

N p∏

k=2

[(ak
m+1)T IDk ak

m+1] (3.39)

Φm+1 ← Φm+1

[ΦT
m+1 IΩΦm+1]

(3.40)

ak
m+1 ←

ak
m+1

[(ak
m+1)T IDk ak

m+1]
∀k ∈ [2,N p] (3.41)

Note that this orthonormalization step is not natural with the method A presented in Chap. 2.2.2
and is now possible due to the use of the CP-decomposition (see App. C).
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2.3.4 Update of the stress and strain fields

The computation of the search direction for the local stage requires the update of the strain et
stress fields:

εm+1 = B um+1 = ε0 +

m+1∑

i=1

BΦi

N p∏

j=1

a j
i (3.42)

and the updated stress field is given according to (3.20):

σm+1 = σ̂m + H♦m+1 (εm+1 − ε̂m) (3.43)

Algorithm 7: linear stage

Data: ŝm = (σ̂m, Ŷm, ε̂m, d̂m), search direction (3.20)
;
Result: sm+1 = (σm+1,Ym+1, εm+1, dm+1)
;
Step 1: update of the existing basis (Eqs. (3.26 – 3.31)) ;
Step 2: computation of εm+1 and σm+1 from search direction (3.20) ;
Step 3: computation of the update indicator η;
if η < ηcrit then

Step 4: computation and orthonormalization of a new PGD mode (Eqs. (3.34 –
3.43)) ;

end

2.4 Stopping criterion
The algorithm stops when the L2 norm of the new mode (i.e., the norm of the new time
function) ς =

∥∥∥a1
m+1

∥∥∥
L2 falls below a given criterion ςcrit. Such choice is interesting because it

is inexpensive to compute.

It can however be questioned as it gives an overall indication of the influence of the cor-
rection (that is to say of the new mode) to the approximation. For very local phenomena, as it
is our case, such estimator does not provide a relevant information on the local improvements
to the solution, in the areas where the damage occur.

Error estimators, within this framework, are given in the literature for time-space PGD
decompositions in [Ladevèze, 1999, Ladevèze et al., 2010]:

ς =
‖εm+1 − ε̂m‖C∥∥∥1
2 (εm+1 + ε̂m)

∥∥∥
C

(3.44)
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where the norm ‖X‖2C is defined Sec. 2.3.1. However the extension to the parametric case is
not an easy task as it is computationally extremely expensive, especially because, as explained
in Sec. 3.6, the operator ε̂m, of size P, is full (in the sense of non-separated) and non-sparse.

Error estimators have been developed for high-dimensional PGD reduced-order models
[Ammar et al., 2010a, Alfaro et al., 2015]. Once again, those indicators alone can not be used
as they only provide an approximation of the error of the reduced-order modeling part, in our
case associated with the global linear problem, but do not take into account the error linked
to the approximation of the local nonlinear behavior.

2.5 Algorithm

The overall algorithm is summarized in Alg.. 8 which gives an overview of the main stages
of the LATIN strategy.

Algorithm 8: LATIN–PGD algorithm
Data: s0, elastic solution satisfying the boundary conditions
;
Result: um+1, rank-m + 1 approximation of u
;
while ς > ςcrit do

Local stage: (Alg.. 6)
∀µi ∈ Di: incremental resolution of the local problem: sm → ŝm ;
Linear stage (Alg.. 7)
• Update stage*: computation of the correction {a1

i }mi=1 made to the time functions
{a1

i }mi=1, assuming the basis {Φm, {a j
m} j>1} remains fixed;

if η > ηcrit then
A new iteration starts→ local stage ;
Break;

else
• Enrichment of the basis: alternated fixed point algorithm:
→ ∆um = Φm+1

∏
i ai

m+1 ;
→ um+1 = um + ∆um

end
Computation of the indicator ς;

end
* At least one global stage has to have been undertaken to perform the update stage.
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3 Computer implementation
The work done during this thesis led to the development of a finite-element based Matlab
code, ROMlab (based on the esbroufe1 program developed by J.C. Passieux), which not only
provides the tools for nonlinear (PGD-)model reduction for multi-material models, but also
intends to prepare a basis for more advanced methods and to help developing prototypes
of algorithms with applications on 2-D or 3-D examples at LMT. The work done on this
tool is the first step towards the development of more advanced solvers. This section aims
at providing several pieces of information regarding computational aspects related to the
modeling of reinforced concrete, the simulation of damage mechanisms in the LATIN–PGD
framework, as well as more general remarks concerning the LATIN algorithm itself (and
especially the cost associated with the local stage, which is detailed in Sec. 3.6).

3.1 Regularization of the problem
Different methods have been investigated for the regularization of the problem (see App. A).
Even though nonlocal approaches are very classical for such kind of problem, their compu-
tational implementation is very heavy, especially for a 3-D demonstrator such as ours. The
energy regularization is also difficult to implement due to the choice of the damage evolution
law, which integration is not easy. Our choice finally focused on a damage-delay technique,
which is usually used for dynamic problems for composite structures but showed interest-
ing regularization results. However, its use with cyclic loading conditions tend to highlight
some issues, especially when the loading reaches an extrema (for uni-axial loading, when
switching from tension to unloading and compression) as the delay effect tends to increase
the damage state even after the unloading phase started. The choice of the time constant τc is
also difficult to justify as it does not have a physical sense, but has a strong influence on the
post-peak behavior. Both aspects have to be taken into account when using this technique.

3.2 Concrete-reinforcement interface modeling
Different techniques exist to numerically represent a reinforced concrete medium, depending
especially on the nature of the interface between the concrete and the steel media one wants
to model. The classical approach consists in incorporating 2-nodes steel bar elements into the
3-D concrete mesh, where the nodes of the bars match some nodes of the volume elements
(conformal meshes). The adherence is managed through kinematic relation between the dif-
ferent nodes. This however does not enable one to represent the degradation mechanisms at
the concrete/steel interface. To do so, a first approach consists in using enrichment strategies
[Casanova et al., 2012] in order to represent the progressive sliding of the nodes of the rein-
forcement relative to the nodes of the concrete mesh, but the numerical implementation can
be delicate. Another approach consists in using 3-D cylinders with joint elements to model
the interface. Those elements can either have a null value thickness but volume interfaces can
also be used to take into account its progressive degradation and sliding mechanisms. The

1http://jchpass.free.fr/index.php?id=fem
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drawbacks of such techniques are their numerical cost, as the meshes become heavier, and
numerical instabilities that may appear at the interfaces.

We chose the most simple approach (i.e. 1-D steel bar elements into the 3-D concrete
mesh, which is the most used technique in engineering applications and softwares) in the
numerical examples presented in the next chapter, as shown on Fig. 3.2. A perfect interface
is also assumed, meaning that no sliding will be taken into account.

Figure 3.2: Numerical assembly of the 3-D hexahedron elements (concrete) and 1-D bar
elements (thick black lines, reinforcement)

3.3 Damage initiation
Numerically, it is classical when studying concrete to represent the intrinsic heterogeneity
of the material. This is done here by weighting the mean value of the Young modulus Ec

with a uniform distribution (+/ − 5%, see Fig. 3.3a) in order to enable the localization of
the initiation of the damage. Other methods such like the turning band method could also be
implemented [Mantoglou and Wilson, 1982] (see Fig. 3.3b).

3.4 Damage limiters at the boundary conditions
Stress concentrations may occur in the areas where the boundary conditions are applied. An
elastic behavior is assumed in those areas (in blue on Fig. 3.4) to avoid the initiation of
damage in those zones where complex nonlinear phenomena may occur (although there is a
high stress concentration, damage in this area may not lead to the crushing of the structure).

3.5 Visualization
The post-treatment and visualization of the PGD quantities is done using the PXDMF plug-
in2 developed by F. Bordeu within the ParaView3 software. The PXDMF file format is
used for storing solutions under a separated-variables representation. It enables to easily

2https://rom.ec-nantes.fr/resources/separated-variables-representation-visualisation/
3http://www.paraview.org/
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−5 −4 −3 −2 −1 0 1 2 3 4 5

(a) Weighting distribution of the concrete medium’s
Young modulus Ec (in %)

(b) Typical simulated realization of a 2-D station-
ary process, generated by the turning bands method
[Mantoglou and Wilson, 1982]

Figure 3.3: Modeling of the heterogeneity of the medium

Figure 3.4: Boundary conditions areas (red) and damage limiter zones (blue areas) on a
reinforced concrete beam under 4-points bending loading conditions

and quickly particularize the computed database for given sets of parameters (as the recon-
struction only involves sums and products of vectors and scalars, depending on the choice of
the values of the parameters), or post-process the different parametric functions to extract for
example some local quantities of interest (using the internal filters of ParaView).

Remark. The damage variable d is also decomposed using a CP-decomposition (at
convergence) to have some consistency in the format of the variables for the visualization.
This is a relatively low-cost operation as d is sparse.

3.6 Discussion – numerical cost of the local stage

The algorithm of the local stage for 3 parameters is detailed in Alg. 9. Two problems can be
highlighted here:
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1. without any optimized strategy, the CPU cost of this stage increases exponentially with
the number of parameters due to the nested for loops;

2. this stage requires the computation of the strain and stress tensors, which are (following
the classical approach) full (non-separated) and non-sparse. To detail this issue, let
assume a medium with an isotropic behavior (6 unknowns in the strain field), meshed
with 10k 8-nodes hexahedron elements (that is to say 80k Gauss points, which is a fair
number for a demonstrator but relatively small for an industrial case), for which the
time interval is cut into 100 time steps (which is not a lot but rather classical for the
kind of study we face) and for which the parametric spacesD2 andD3 are discretized
with 10 values. The total size of the operator ε̂m is ζ = 80×103 ·6·100·10·10 = 4.8×109

values, each of them being represented over 64 bits (e.g. 8 bytes) for a total size of 35.8
Gb. Such costly assembly not only is time-consuming, but sometimes too expensive to
be performed.

It is to be mentioned that the choice of the search direction is also important in this
matter, as we chose a constant one. A secant search direction would require the com-
putation of an operator of the size Ω × P (nx times bigger than the example given
above), which is impossible to achieve with our tools.

Both the CPU and the storage costs of those operators are challenging without any optimiza-
tion. Several approaches have been investigated to reduce those costs.

It is to be noticed that the process presented in Alg. 9 is time-dependent but the other
parameters do not interfere one another. Hence, the local stage can easily (up to Matlab’s
capabilities) be parallelized over several cores. The machines available at LMT possess up
to 32 cores and a numerical comparison between the serial and parallel runs for the same
test case given in the next chapter presented very good speedup values. It is certain that
programmed in a language incorporating message passing interface (MPI4) communications,
this stage can be parallelized at the most elementary level (Gauss point), provided no nonlocal
phenomena occur (but it still could be parallelized over the parametric spaces, with expected
great speedups). Note that the parallelization can be implemented for other operations in
the LATIN algorithm, such as the initialization stage, or several numerical procedures to be
performed during the computation of the PGD functions.

Concerning the assembling of the stress and strain operators, different compression meth-
ods can be coupled to the LATIN algorithm to reduce the memory usage during this stage.
The first approach could be to perform a PARAFAC decomposition of these operators in
order to reduce their storage cost. This however still requires the computation of the full-
order operators, which may not be feasible. Another approach could be to use the reference
points method (RPM) [Ladevèze, 1997, Capaldo, 2015], which was developed in the LATIN
framework and which provides tools for compressing massive operators in order to perform
elementary algebraic operations on their compressed versions and finally reconstruct the ap-
proximations of those operators in a separated-variables representation. Finally, the quantities

4https://en.wikipedia.org/wiki/Message_Passing_Interface
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at the local stage could be sought directly under a separated variable representation (which
is however really problem-dependent), but once again the number of parameters may still
cause memory issues. The resolution of problems with many (dozens) of parameters was the
topic of the Master’s thesis (and PhD to follow) of C. Paillet which I co-supervised during
his Master’s degree.

4 To put it in a nutshell . . .
The extension of the LATIN–PGD algorithm to parametric problems using the parameters
as extra-variables into the PGD decomposition has been introduced in this chapter. The en-
richment of the reduced order model is done using a Galerkin orthogonality technique. Its
formulation in a damage-mechanics problem was also presented. Such formulation, used
alone, poses obvious computational problems in terms of CPU usage and memory allocation.
However, several leads have been proposed to lower these costs for problems involving many
of parameters. The choice of the indicator for the estimation of the quality of the approxima-
tion remains an open question, as one has to take into account both the global aspect of the
approximated solution and the very local degradations that occur in confined zones. The next
chapter provides numerical examples illustrating this technique.
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Algorithm 9: local stage – computational aspects
Data: sm = (σm,Ym, εm, dm), search direction
; Result: ŝm = (σ̂m, Ŷm, ε̂m, d̂m)
; for µ1 = 1 · · · nt do

for µ2 = 1 · · · ne2 do
for µ3 = 1 · · · ne3 do

Concrete medium:
for each Gauss point k do

(all the (k, µ1, µ2, µ3) indexes are omitted –but must be kept in mind)
computation of

〈
εc

m
〉
+:

computation of the eigenvalues αi and eigenvectors Λi of εc
m〈

εc
m
〉
+ =

∑3
i=1Λ

T
i 〈αi〉+Λi

computation of the energy released Ŷ
c
m:

Ŷ
c
m = Yc

m = 1
2 (

〈
εc

m
〉
+)T Cc 〈

εc
m
〉
+

computation of the threshold ϕm = Ŷ
c
m − (Y0 + Zc

m−1) ;
if ϕm > 0 then

computation of d̂
c
m:

d̂
c
m = 1 − 1

1+Ad(Ŷ
c
m−Y0)

damage-delay regularization of d̂
c
m:

ˆ̇dc
m = 1

τc

[
1 − exp(−a 〈d̂s − d̂

c
m〉+)

]

computation of ε̂c
m:

ε̂c
m =

[
(1 − d̂

c
m) Cc + Hm

]
\ (σc

m + HT
m ε

c
m)

computation of σ̂c,m
m :

σ̂c,m
m = (1 − d̂

c
m) Cc ε̂c

m

computation of stress σ̂c, f
m using an explicit Euler scheme ;

computation of total stress σ̂c
m:

σ̂c
m = σ̂c,m

m + σ̂
c, f
m

actualization of the hardening:
Ẑ

c
m = Ŷ

c
m − Y0

else
element follows and elastic law:
ε̂c

m = εc
m

computation of stress field:
σ̂c

m = Cc ε̂c
m

end
end
Reinforcement:
for each Gauss point k do

ε̂r
m = εr

m
σ̂r

m = Cr ε̂r
m = Cr εr

m
d̂

r
m = 0

end
end

end
end
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Chapter 4
Numerical examples

This part illustrates the method presented in the previous chapter. Three numerical examples
are provided for meshes of different sizes, and parameter variabilities on the loading and on
material variables. The simulated concrete is a Portland blend cement CEM I 52,5 N CE
PM-CP2 NF and the bars are FE E 500. Finite elements are 8-nodes hexahedron (brick)
elements for the concrete and 2-nodes bar elements (only working in tension–compression)
for the reinforcement. The meshes are set to be compatible, meaning that each node of the
reinforcement elements matches at least one node of the concrete medium. The values of the
material coefficients, identified in [Iskef, 2016], are summed up in Tab. 4.1 and algorithmic
parameters are given in Tab. 4.2.

Table 4.1: Material coefficients

Symbol Parameter Value

Ec Young modulus (concrete) 25.42 × 109 Pa
νc Poisson ratio (concrete) 0.2
ft Tensile strength 3.6 × 106 Pa
Y0 Threshold for damage activation 254.92 J.m−3

Ad Brittleness coefficient 1 × 10−3 J−1.m3

Er Young modulus (steel) 185.35 × 109 Pa
νr Poisson ratio (steel) 0.3
D Diameter of the section of the steel bars 8 × 10−3 m

The first example is a reinforced beam in tension and results illustrating the behavior
implemented, so as a variability on the loading conditions, are given in Sec. 1. The second
example is a 4-points bending test on a reinforced concrete beam, for which a variability is set
on the amplitude of the loading and on the Young modulus of the concrete medium. Results
are given in Sec. 2. The third example is a beam-column assembly arising from the SMART
testing project at LMT. A cyclic displacement is prescribed at one extremity of the column,
in the plane of the specimen, and a variability is set on the brittleness coefficient of the
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Table 4.2: Algorithmic variables

Symbol Parameter Value

α0 Unilateral effect parameter 6.5
a Damage-delay parameter 1
τc Characteristic time 10 · ∆ t
ηcrit Update criterion 0.8
ςcrit Stopping criterion 1 × 10−6

concrete model (Ad), which affects the softening part of the damage evolution law. Numerical
simulations and a comparison with Cast3M results are given in Sec. 3. Finally, Sec. 4 provides
first hints concerning the performances of the algorithm, and deals with aspects linked to the
parallel processing at the local stage.

1 Case 1 – tensile test
The first example is a tensile test on a reinforced concrete beam for which the geometrical
description of both the concrete medium and its reinforcement are given on Fig. 4.1a and the
discretization informations are given in Tab. 4.3. Homogeneous Dirichlet boundary condi-

0.45

0.045

(a) Geometry of the beam (b) 3-D representation

Figure 4.1: Tensile test – geometry (left) and 3-D representation (right) of the beam

Table 4.3: Discretization of the first example

Variable space Interval of variation – discretization

Ω Concrete 3, 157 nodes, 2, 400 elements (9, 471 DOFs, 19, 200 GPs)
Reinforcement 80 nodes, 112 elements (240 DOFs, 112 GPs)

D1 ≡ I Time t ∈ [0, 199] (200 time steps)
D2 Loading variability µ2 ∈ [1, 24] (24 values)

tions are enforced on one side of the beam (to the concrete surface as well as the correspond-
ing reinforcement matching nodes) and a time-dependent prescribed displacement condition
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ud(t, µ2) is applied to the other extremity of the beam. Its amplitude is parameterized with a
variable µ2 and is represented on Fig. 4.3a for three values of µ2, with a variability of around
25%:

ud(t, µi
2) = (0.75 + 0.25

µi
2

µmax
2

) saw(t) (4.1)

where the function saw(t) is shown Fig. 4.2a. This example is set to illustrate the strong
influence of a variability on the loading conditions on the global mechanical response of the
structure when the material parameters a kept invariant. This variability can either be due to
a lack of knowledge on the loading conditions, or due to inaccuracies in the application of
the load (improper fit of mechanical parts, . . . ). The following chart was computed:

um(x, t,ud(µ2)) =

m∑

i=1

Φi(x) a1
i (t) a2

i (µ2) (4.2)

Fig. 4.2 shows the evolution of the σxx = f (εxx) relation at a given Gauss point for a
given value of the parameter µ2. One can see that the evolution of damage follows a similar
pattern as in [Richard and Ragueneau, 2012] with the deterioration initiating at a threshold
ft ≈ 3.6 MPa. The unilateral effect is also recovered, with the secant modulus after the first
cycle going asymptotically towards the undamaged Young modulus.
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Figure 4.2: Tensile test – behavior σc
xx = f (εc

xx) at the Gauss point level for µ2 = 12

Fig. 4.3b shows the global reaction F|∂1Ω = f (ud) and is particularized for the three
previous values of µ2. It illustrates the important influence of this parameter on the global
response of the structure
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Figure 4.3: Tensile test – F(ud) for several values of parameter µ2

The first four spatial modes of the decomposition (4.2) are given on Fig. 4.4. One can
notice that the more iterations, the more the modes localize and add specific information to
certain areas. The parameter functions are given on Fig. 4.5a and 4.5b. The same remark can
be done for the time functions, for which the information is added at instants during which
the magnitude of the prescribed displacement is the most important. On the other hand, no
specific indication can be deduced from the functions a2(µ2) as they are mostly linear. This
can be explained by the fact that the parameter only affects the amplitude of the loading, and
as a consequence the amplitude of the damage areas, which stays localized to the same zones.
The damage patterns are then relatively similar from one value of µ2 to another, which would
not be the case if µ2 affected the localization of the zone of enforcement of the prescribed
displacements.
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Figure 4.4: Tensile test – magnitude of the first four spatial modes {Φi}i=1···4
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Figure 4.5: Tensile test – parametric functions {a1
i (t)}i=1···11 (left) and {a2

i (µ2)}i=1···11 (right)

Finally, Fig. 4.6 shows the evolution of the L2 norm of the time functions (and as a con-
sequence the norm of the PGD modes as the other functions are normalized during the Gram-
Schmidt orthonormalization phase). One can observe that the norm of the modes decreases
rapidly with the iterations until reaching ςcrit after only 11 iterations.
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Figure 4.6: Tensile test – evolution of the L2 norm of the time functions with the number of
modes in the decomposition

The results shown in this section highlight the fact that only a few modes were necessary
to recover the local and global behavior of the structure, with both a complex model and a
strong variability on the loading conditions. Whereas the first modes tend to represent the
global elastic response of the medium, the more iterations and the more the modes tend to
locally improve the solution in order to represent the very localized nonlinear phenomena.

The following section shows results on a rather more complex test case for which a vari-
ability is enforced on both material and loading parameters.
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2 Case 2 – 4-points bending test

The goal of this second example is to simulate the response of a reinforced concrete beam,
which geometry is given on Fig. 4.7, to a 4-points bending test (see Fig. 4.8 for a picture of
an experiment at LMT, courtesy of A. Michou).

Figure 4.7: Bending test – longitudinal (half representation, left) and transversal (right) ge-
ometry of the reinforced beam (in m)

Figure 4.8: 4-points bending test at LMT (courtesy of A. Michou)

The discretization of the specimen as well as the parametric spaces is given in Tab. 4.4
and the boundary conditions are enforced over a band of elements along the width of the
specimen (in red on Fig. 4.9).

The prescribed displacement ud(t, µ2) is parameterized by a variable µ2, with a variability
of +/ − 30% which affects once again its amplitude using a law similar to the one presented
in the first section (4.1) (but for which the maximum value of the prescribed displacement is
set to 0 – see Fig. 4.10 for its particularization for three values of µ2). The Young modulus of
the concrete medium is also parameterized with a variable µ3 affecting its mean value, with
a variability of +/ − 15% around its mean value (Ec ∈ [21.61, 29.23] GPa). The following
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Table 4.4: Discretization of the second example

Variable space Interval of variation – discretization

Ω Space – concrete 3, 157 nodes, 2, 400 elements (9, 471 DOFs, 19, 200 GPs)
Space – reinforcement 160 nodes, 232 elements (480 DOFs, 232 GPs)

D1 ≡ I Time µ1 ≡ t ∈ [0, 99] (100 time steps)
D2 Loading variability µ2 ∈ [1, 12] (12 values)
D3 Young modulus variability µ3 ∈ [0.85, 1.15] (9 values)

chart was then computed:

um(x, t,ud(µ2), Ec(µ3)) =

m∑

i=1

Φi(x) a1
i (t) a2

i (µ2) a3
i (µ3) (4.3)

This example is more complex due to the strong variability on both material and loading pa-
rameters (especially for bending tests), which leads to more complex distributions of damage
and stresses over the structure.

It enables to show the possibilities of the algorithm and especially the advantage of using
a space-parameters PGD decomposition: on the one hand, it reduces the cost (both CPU
and memory usage) of the linear problem, and it makes the post-treatment of the solution
(visualization of global responses, but also computation of other local quantities of interest)
quicker and interactive, thanks to the PXDMF plug-in.

Figure 4.9: Bending test – boundary conditions (red) and elastic boxes (blue)

Some space modes, time and parameter functions of the decomposition (4.3) are respec-
tively given on Figs. 4.11 and 4.12. Concerning the space modes, one can once again notice
that the modes are more and more local showing that the approximation is progressively lo-
cally enriched with the number or iterations. Note that the focus has been made on Fig. 4.12a
on the higher-order functions to show that once again those functions add corrections at time
steps when damage occurs: when the load exceeds the value of the initial threshold during the
first cycle (for example around t = 10s), or when the load exceeds the peak from the previous
cycle (around t = 40s or t = 90s). The other parameter functions remain relatively smooth,
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Figure 4.10: Bending test – variability on the prescribed loading ud(t, µ2) for several values
of parameter µ2

as the variability on the loading seems to have a more important influence on the response.

−3.1 −1.5 0 1.5 3.4

Figure 4.11: Bending test – z component of the spatial modes {Φi}i={1,3,5,7} (Φ(z)
i = Φi · z)

Fig. 4.13 shows the particularization of the damage map for three given sets of parameters
µi = {t j, µk

2, µ
l
3}i=1···3. One can notice the strong influence of the parameters µ2 and µ3 on

the mechanical response of the beam, with more or less wide damaged zones depending
on the sets of parameter. Once again, this reconstruction can be achieved really easily and
quickly once the virtual chart is built thanks to the ParaView [Ayachit, 2015] PXDMF reader
developed at École Centrale de Nantes1, which recombines on the fly the different modes

1https://rom.ec-nantes.fr/

Model-order reduction for the parametric analysis of damage in reinforced concrete structures

https://rom.ec-nantes.fr/


66 Numerical examples

0 20 40 60 80 100

0

5

10

t (s)

a1 (t
)(
×1

0−
6 )

(a) Time functions {a1
i (t)}i=1···11

2 4 6 8 10 12

0

0.5

µ2

a2 (µ
2)

1
2
3
4
5
6
7
8
9

10
11

(b) Functions associated with parameter µ2 {a2
i (µ2)}i=1···11

0.8 0.9 1 1.1 1.2
−4

−2

0

2

4

µ3

a3 (µ
3)

1
2
3
4
5
6
7
8
9

10
11

(c) Functions associated with parameter µ3 {a3
i (µ3)}i=1···11

Figure 4.12: Bending test – parametric functions {a1
i (t)}i=1···11 (Fig. 4.12a), {a2

i (µ2)}i=1···11

(Fig. 4.12b) and {a3
i (µ3)}i=1···11 (Fig. 4.12c)

(depending on the user-chosen values of parameters) in order to assemble the particularized
solution.

This finding is verified on a more local scale: Fig. 4.14 shows the evolution of the Mises
stress σVM within an element of the damaged area for the different sets of parameters (µ2, µ3).
Finally, one can notice on Fig. 4.15 the overall decrease of the norm of the modes along with
the number of iterations.

Once again, only a few (11) iterations were necessary to compute the solution of a 4-
points bending test on a reinforced concrete beam, with a variability on the amplitude of the
prescribed displacement and on the Young modulus of the concrete medium. The use of PGD
in this context is especially interesting as it lowers the cost of the linear stage of the problem,
as well as it enables to easily compute local quantities of interest (here the Mises stress),
which can be very quickly updated when changing the values of the parameters µ.
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(a) Damage map for µ1 = 90, µ2 = 2 and µ3 = 1.15
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(b) Damage map for µ1 = 90, µ2 = 11 and µ3 = 1.15
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(c) Damage map for µ1 = 90, µ2 = 11 and µ3 = 0.85

Figure 4.13: Bending test – damage map for three particularized cases: (a) (90, 2, 1.15); (b)
(90, 11, 1.15); (c) (90, 11, 0.85)

3 Case 3 – SMART testing project at LMT
The SMART testing project aims at studying the behavior of reinforced concrete beam–
column assemblies (see Fig. 4.16) under complex simulations. Those assemblies are con-
sidered as one of the most critical zones in the dissipation of seismic energy, and can face
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Figure 4.14: Mises stress on an element – response surface (4.14a) and projection (4.14b)
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Figure 4.15: Bending test – evolution of the L2 norm of the time functions with the number
of modes in the decomposition

different crushing mechanisms, due to the bending or shearing of the beam, to the bend-
ing or shearing of the column, to the shearing at the node, or a combination those different
modes. The experiment was carried out at LMT during A. E. Iskef’s PhD in 2015–16. The
extremity of the column not attached to the beam is put inside a hexapod device, which is
able to prescribe 6-DOFs displacements at the extremity of the column (see Fig. 4.17a). A
load cell measures the reaction force at the hexapod–column interface and the displacement
field is measured using digital image correlation [Sutton, 2013]. The geometry of the speci-
men is given on Fig. 4.16 and the meshes for the concrete and its reinforcement are given on
Fig. 4.18. The discretization of the problem is given in Tab. 4.5.
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Figure 4.16: Beam–column assembly – geom-
etry (in meters)

(a) SMART testing project experiment

(b) Virtual representation

Figure 4.17: SMART testing project – ex-
periment (top) and virtual representation
(bottom)

Figure 4.18: Beam–column assembly (in black the casks for the application of the prescribed
displacements)

Remark. It has to be mentioned that I am also involved in this project for the virtual
preparation of the testing, as shown on Fig. 4.17b. The goal of this aspect of the project is to
use rendering softwares (in our case Blender2) to simulate the cameras (both specifications
and positions) that will be used for the digital image correlation procedure, especially for
such complex testing procedures involving up to 12 cameras and for which the set up can be
very time-consuming.

2https://www.blender.org

Model-order reduction for the parametric analysis of damage in reinforced concrete structures

https://www.blender.org


70 Numerical examples

Table 4.5: Discretization of the third example: SMART testing beam–column specimen

Variable space Interval of variation – discretization

Ω Space – concrete 6, 860 nodes, 5, 004 elements (20, 580 DOFs, 40, 032 GPs)
Space – reinforcement 1, 248 nodes, 1, 476 elements (3, 744 DOFs, 1, 476 GPs)

D1 ≡ I Time µ1 ≡ t ∈ [0, 260] (261 time steps)
D2 Post-peak variability µ2 ∈ [0.1, 1] (19 values)

[Iskef, 2016] presents experimental results for 3 phases of loading conditions. The first
phase consists on a prescribed in-plane bending displacement of the extremity of the column,
while the extremities of the beam are fixed, and for which the amplitude of the loading in-
creases with the time, as shown on figure 4.19. The second and third loading phases are more
complex as the prescribed displacement of the column’s extremity follows a 2-D off-plan
path.
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Figure 4.19: SMART testing – loading phase 1

In this section, only the first phase of the loading will be considered. A variability of the
brittleness coefficient Ad, parameter which drives the post-peak behavior (highly nonlinear)
during the softening part of the behavior, is assumed such that Ad = Ad(µ2). This example is
complex in a sense than the parameter µ2 directly affects the nonlinearity of the problem (see
Fig. 4.20). The following database was computed:

um(x, t, Ad(µ2)) =

m∑

i=1

Φi(x) a1
i (t) a2

i (µ2) (4.4)

Fig. 4.21 shows the damage map for three values of the parameter µ2. The first thing to
notice is that two zone are mostly damaged during the process. The node of the assembly
is particularly affected during the loading. Another area, close to the in-hexapod cask (right
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Figure 4.20: Evolution of damage dc with the energy rate Y for different values of µ2

part of the column), is also damaged. this is due to the rigid motion imposed to the casked
elements that tends to create a high strain zone. This area may not exist during a real test as
the boundary conditions are not perfect, and may allow rotations within the casks.
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Figure 4.21: Post-treatment of the damage field for three values of µ2 = 0.2 (left), µ2 = 0.4
(center) and µ2 = 0.8 (right) at a given time step

One can also see that the damage zones are broader with the increase of the value of the
parameter, as the behavior shifts to a very brittle configuration (see Fig. 4.20). This can be
seen on Fig. 4.22 which gives a closer view on the node of the beam–column assembly. One
can once again see the evolution of the damage pattern, similar to the one presented in [Iskef,
2016] for the Damage TC model [Costa et al., 2005] (which unlike our model considers two
damage variables, one in tension and one in compression), as shown on Fig. 4.23 (which was
however obtained for a more intense cyclic prescribed displacement –20 mm peak).
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(a) µ2 = 0.2 (b) µ2 = 0.4 (c) µ2 = 0.8
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Figure 4.22: Post-treatment of the damage field for µ2 = 0.2 (left), µ2 = 0.4 (center) and
µ2 = 0.8 (right) – close-up view on the beam–column node
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Figure 4.23: Damage field computed with the Damage TC model – close-up view on the
beam-column node (courtesy of A. E. Iskef)

Figs. 4.25 and 4.24 respectively show spatial functions and the parametric functions of
the decomposition (4.4). One can notice once again the three behaviors encountered for the
first examples along the enrichment of the reduced order basis: (i) the spatial modes localizes
the information to the more damaged zones. This comes from the fact that, starting from an
elastic behavior (initialization), the strains (and as a consequence damage) concentrates in
certain areas, the node for example, whereas the rest of the beam goes under an elastic un-
loading. This concentration increases along the iterations (progressive localization to several
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areas); (ii) this correction is mostly achieved once again at the peaks of loading, as shown in
Fig. 4.24a; (iii) the other parametric function modulates relatively smoothly the approxima-
tion.
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(b) Functions associated with parameter µ2 {a2
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Figure 4.24: SMART testing test – parametric functions {a1
i (t)}i=2···11 (left) and {a2

i (µ2)}i=1···11

(right)

We showed in this example the ability to recover the damage patterns at the node of
the beam–column assembly with a few iterations, with a variability on a parameter directly
affecting the nonlinear part of the behavior law. This variability induces a local mechanical
response that switches from a softening to a quasi-brittle behavior. This can be especially
useful to determine the parameter Ad, which has to be identified during experiments.

4 Performances of the algorithm

Evaluating the performances of this algorithm is not an easy task, first because high perfor-
mance computing has never been the goal of our study, which was to show the feasibility of
the extension of the LATIN algorithm more than its efficiency compared to other solutions.
However, some work has been done to improve some steps of the computation, especially us-
ing the parallel-processing options of Matlab. As a consequence, this section does not intend
to compare the CPU cost of our method compared to other techniques (which is quite user-
dependent) but rather to profile our algorithm and propose some improvements to be made
for further HPC developments that could be done if implemented into an industrial code. For
each test, 5 runs were made and the elapsed time of the different stages was averaged over
those runs. Note that neither the pre-process (assembly of the FEM operators, boundary con-
ditions, . . . ) nor the post-process (.vtu or .pxdmf exports) was taken into account. Three tests
have been carried out as described in Tab. 4.6.
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(a) Φ1(x) (b) Φ2(x) (c) Φ3(x) (d) Φ4(x)

(e) Φ5(x) (f) Φ6(x) (g) Φ7(x) (h) Φ8(x)

(i) Φ9(x) (j) Φ10(x)

0

5

10

15

20

25

30

Figure 4.25: Magnitude of the space modes {Φi}i=1···10
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Table 4.6: Profile test cases – dimension of the domains

#elements
µ1 ≡ t µ2 µ3 #CPUs

(#Gauss points)

(1)
c: 360 (2, 280)

[0, 99] (100 val.) [1, 12] (12 val.) [0.8, 1.2] (9 val.) 1
r: 112 (112)

(2)
c: 360 (2, 280)

[0, 99] (100 val.) [1, 12] (12 val.) [0.8, 1.2] (9 val.) 12
r: 112 (112)

(3)
c: 2400 (19, 200)

[0, 99] (100 val.) [1, 12] (12 val.) [0.8, 1.2] (9 val.) 12
r: 232 (232)

The first one associated with a first mesh was run for 3 parameters without enforcing
the parallelization of the code. The overall profile of the LATIN–PGD algorithm is given
in Fig. 4.26. The linear stage is decomposed into the update phase and the enrichment step
(Fig. 4.26b). This computation is time-consuming as the local problem, even though the
model is explicit, has to be computed at each Gauss point and for each value of parameters.
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(a) Profile of the stages of the LATIN-PGD algorithm
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(b) Detailed profile of the linear stage

Figure 4.26: Profile of test (1) (serial) (Fig. 4.26b details the linear stage)

The second example was carried out on the same mesh, but the parallelization of the
process is enforced. This parallelization is particularly easy to implement as the parameters
are independent one another and the model is local. It is to be mentioned that even if only
the initialization and local stages are explicitly parallelized (using the parfor option), some
other processes are “naturally” parallelized by Matlab. The profile associated with those runs
is given on Fig. 4.27. One can notice that the division is quite similar for those two runs,
especially when looking at the detailed profile of the linear stage (Figs. 4.26b and 4.27b).
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However, the average time of the first (sequential) run was 4, 320 seconds, whereas the total
time for the second run (parallelized over 12 cores) was 371 seconds, which means a speedup
of 11.6.
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Figure 4.27: Profile of test (2) (parallel) (Fig. 4.27b details the linear stage)

Finally, the last test was carried on a larger mesh. One can notice that the bigger (in terms
of number of DOFs or GPs) the mesh gets the more expensive the linear stage becomes,
especially the enrichment phase (generation of a new mode) which becomes more expensive
as the spatial problem (resolution of a linear system, of size number of DOFs) is more heavy
to solve in the fixed-point algorithm.

Those results highlight two issues: (i) the parallelization of the algorithm drastically re-
duces the computation cost associated with the resolution of the nonlinear problem and the
construction of the approximation of the solution fields; (ii) the generation of the PGD modes
becomes heavier with the size of the mesh, due to the resolution of a linear system in the
fixed-point algorithm.

This parallelization could be enforced at deeper levels depending on the application, at
every Gauss point of the local stage for example. This however requires a better parallel
infrastructure than the one offered by Matlab and the integration into an industrial software
should be considered to do so (for example in the Cast3M of CODE_ASTER codes)

Another interesting study would be to compare our method with the multi-parametric
strategy, especially for the second test case (bending test), as it faces the strongest variability.

5 To put it in a nutshell . . .
We presented in this chapter some numerical results computed thanks to the ROMlab demon-
strator developed during this thesis (Matlab code relying on the Tensor toolbox [Bader and
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Figure 4.28: Profile of test (3) (parallel) (Fig. 4.28b details the linear stage)

Kolda, 2007]). Those examples show the possibility to simulate reinforced concrete media
with a highly nonlinear behavior, in a framework that enables an easy post-treatment of the
database (thanks to the PXDMF plug-in). Different kinds of material and loading variabili-
ties have been considered on structures of the size of a toy example to the size of industrial
applications. In every case, about a dozen iterations were necessary to reach the stopping
criterion.

We also showed in this chapter that the numerical cost associated with the computation of
the database can be reduced by parallelizing the process, with in this particular case a really
high scalability. However, some limits may occur when the number of degrees of freedom
increase, mostly linked to the memory required to store some of the quantities computed
at the local stage. Different ways to tackled this problem can be considered: (i) using CP-
decompositions of those quantities; (ii) the RPM method could be used to approximate those
operators; (iii) a PGD formulation of the local problem would both reduce the computation
cost of this stage, but would also accelerate the resolution of the linear stage as most of
the operations to be performed (integrations, Galerkin projections, . . . ) would be done in a
separated representation framework.
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The increasing complexity of numerical simulations led researchers to find more efficient
tools able to solve quickly and accurately those problems. Among those issues, the case of
parametric studies is an interesting one as it requires the resolution of the same physical model
for numerous different sets of parameters of this model. A class of methods that has grown
over the last decades and that has risen our interest in the work presented herein is the model-
order reduction methods, based on the separation of the variables of the problem. Among
those approaches, the proper generalized decomposition has shown interesting results as,
unlike the other strategies, it does not require any pre-computed reduced-order basis to build
the approximation, as the latter is constructed by successive enrichments over an iterative
process. The application of such approaches to civil engineering problems is fairly new,
mostly because, alone, those methods can not tackle the nonlinearity of the equations of the
physical models at stake. To do so, PGD has to be coupled with a nonlinear solver, in our
case the LATIN method. LATIN–PGD algorithms have been used for a couple of decades
for numerous fields of applications, with for example interesting results for modeling the
behavior of elasto-visco-plastic materials.

We proposed in this work the extension of the classical LATIN–PGD algorithm, relying
on a time-space decomposition of the unknown fields, to a wider parametric dependency,
where the parameters are all considered as coordinates of the quantities of interest. Algorith-
mic developments have been proposed and applied to a damage mechanics model, involving
damage in tension and crack closure (unilateral effect) in compression. The main differences
with the classical algorithm are the following: (i) the local stage of the LATIN method has
to be solved for all the discrete values of parameters, at every Gauss point. It was shown that
in our case, mostly due to the fact that the equations are local and because the formulation
of the damage model is explicit, that the process can numerically be extensively parallelized
with a high speedup; (ii) different methods for the generation of the new modes have been
proposed, using high-order tensor decompositions. The field of application is also fairly new
in this context, as several numerical results have been presented on a damage mechanics
problem, involving strong local nonlinearities due to the quasi-brittle behavior of the con-
crete medium and the crack closure phenomenon. The first study was a simple tension test
on a reinforced concrete beam, with a variability on the amplitude of the prescribed displace-
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ment, in order to show the ability to quickly (11 modes) recover the local behavior as well
as the global equilibrium of the structure. The second test was a 4-points bending test, for
which both the amplitude of the loading and the Young modulus of the concrete medium, to
show the ability to build larger databases but also its easy particularization for given sets of
parameters thanks to the PXDMF plug-in. The post-process (computation of other quantities
of interest, such as the Mises stress) is also much simpler to perform and the study of local
quantities of interest has shown the impact of this variability on the mechanical response of
the concrete medium. Finally, this method was used to model an industrial-like structure
(40k Gauss points), a T-shaped reinforced concrete structure, as the one used in the SMART
testing project at LMT, for which the brittleness coefficient, driving the post-peak behavior
in the damage evolution law, was parametrized.

Those different studies showed the capabilities of the algorithm and provided great indi-
cations on the directions to take to improve the method: only a few iterations (however costly
for our Matlab demonstrator) were necessary to reach the stopping criterion. Once computed,
this database can be easily particularized or post-processed (computation of Mises stress, op-
timization studies, . . . ) and can be enriched once again if necessary by re-initializing the
LATIN-PGD algorithm with the previously converged solution, which can be seen as an ex-
tension of the multi-parametric strategy.

However, some limits arose and must be mentioned: (i) the cost associated with the reso-
lution of the local problem, which – if no special technique is used – increases exponentially
with the number of parameters of the formulation. We showed however that this cost can
be reduced by using HPC techniques, and such result is extremely encouraging for a future
implementation in industrial parallel codes, but assembly of large operators is still required;
(ii) the lack of guaranteed error indicators, taking into account both the error linked to the
reduced-order modeling but also to the local phenomena that may occur (strain and damage
concentrations, . . . ), is probably the biggest drawback of this approach. The extension of
classical LATIN indicators to numerous parameters is not possible as it is computationally
very expensive. In the particular case of damage mechanics, estimators based on the local
quantities as well as the global response of the structure should be investigated.

From these observations, the prospects of this work are numerous, and can be separated
according to their (estimated) complexity.

• The short term prospects deal with the enrichment of the model and the addition of
mastered numerical tools to improve the demonstrator. Different approaches can be
used to tackle the complexity of the local problem: the reference point method (RPM,
[Capaldo, 2015]) can be used to reduce the cost associated with the resolution of the
local behavior, as it provides a great framework for dealing with fields depending on
many parameters. The enrichment of the model, by taking into account the plasticity
in compression of the concrete medium and the elasto-visco-plastic behavior of the
reinforcement is also necessary to increase the fidelity of the results. Different sampling
techniques on the parametric spaces may also be investigated as a post-treatment of
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the computed database of solutions, as the approximation is known for every set of
parameters.

• The middle term prospects are more focused on alternate PGD decompositions or ways
to deal with the parametric dependency. For example, a formulation based on the de-
composition of the damage variable d (instead of u) could be investigated, as the value
of this quantity of interest (and its post-treatment to obtain the crack opening) drives
the dimensioning of the structures. Another extension of the method could lie in a hy-
brid multi-parametric strategy / “extended” (in the sense of the number of parameters)
LATIN-PGD approach, for which the repartition of the overall parameters between
both techniques could be done for example in our case depending on the way they may
affect the damage pattern: loading parameters –which affect the spatial localization–
could be integrated into the PGD decomposition whereas the Young modulus or the
brittleness coefficient Ad, which affect the intensity of the damage, could be covered
in a MPS framework. PGD-based identification ([Marchand et al., 2015, Nadal et al.,
2015, Signorini et al., 2016]) could be interesting as it can be easily implemented once
the database is computed. Those procedures usually rely on recurring FE simulations
which are not necessary anymore. Also, the computation of sensibility fields (gradients
of the quantity of interest with respect to the parameters) is now really easy to achieve
thanks to the format of the approximation. For example:

∂u(x,µ)
∂ µi

=

m∑

k=1

Φk(x)
d ai

k

d µi

N p∏

j=1, j,i

a j
k(µ j) (4.5)

Some collaborations with the material department at LMT are expected on these as-
pects, with applications for real-time identification during digital image correlation
testings. See also [Passieux and Périé, 2012] for a PGD–DIC algorithm.

• In the long term, more advanced numerical tools have to be developed and coupled
with our algorithm to tackle problems linked to simulations involving variabilities on
numerous parameters (dozens, hundreds), more complex loading conditions (seismic
loading) or application to other fields. Among those possibilities, we consider the fol-
lowing: a full separated-variable decomposition algorithm could be investigated, with
a lot of work to be done on the formulation of the local problem. This would however
considerably reduce the cost associated with the storage of the local quantities. How-
ever, this approach may not be suitable for damage mechanics problems. The extension
to the simulation of of the seismic response of structures could be done by considering
a synthetic parametric seismic loadings. This aspect will be studied in collaboration
with CEA Saclay. The extension of the PGD to a very large number of parameters
will be investigated in the PhD of C. Paillet (2016–), in the continuity of his Master’s
thesis work that I co-supervised. The use of PGD virtual charts, coupled with multi-
fidelity optimization algorithms (cokriging, . . . ) is also an interesting aspect, and will
be developed in the PhD of S. Nachar (2016–). The application to the simulation of
composite structures would be a great extension. However, while we are “lucky” that
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the damage is localized in a low number of areas for our examples, the apparition of
micro-damage in composites may be tougher to model as it localizes in numerous ar-
eas at the same time. As a consequence, the first PGD modes may not give a relevant
idea of the space localization, and a strategy to “kill” the irrelevant modes may need
to be implemented. Another important point focuses on error estimators: better error
estimators for high-dimensional reduced order models are necessary, in the event the
quantities of interest are very local, to validate the quality of the overall approximation.
Finally, the implementation into an industrial software is necessary to investigate the
possibilities of this algorithm. CODE_ASTER provides a good framework to do so
thanks to its Python interface. Some ongoing work [Oumaziz et al., 2017] shows inter-
esting results for a non-invasive implementation of the LATIN algorithm for frictional
contact with domain decomposition.
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funding managed by the National Research Agency under the program “Future Investments”
(SINAPS@ Reference No. ANR-11-RSNR-0022).
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Appendix A
Regularization methods for fragile media

The non-objectivity of the numerical solutions is a classical problem when simulating the
response of fragile media. The loss of ellipticity of the mechanical problem for softening
materials, due to the loss of positive-definitiveness of the tangent operator, usually leads to a
mesh dependence of the solutions. This fact can be easily illustrated on a simple 1-D homo-
geneous concrete beam problem in tension, solve using finite elements: let us consider two
different discretization of the medium, one coarser than the other. For each problem, numeri-
cal approximations will simulate a defect on one element which will initiate the damage after
a certain load is reached. Whereas the damage value will increase on this element, the rest
of the beam will undergo an elastic unloading. In both cases, only one element will damage
but the dissipated energy, linked to the size of the finite element mesh, will be different, as
illustrated on Fig. A.1.

Zone with defect

ud(t)

E2

E1 E1

L

Figure A.1: Mesh dependency of the damage pattern. The green area has a weakest Young
modulus E2 < E1. The red zone shows the element that damages in two mesh configurations.

This implies that changing the mesh leads to a change in the numerical solution, the most
extreme configuration consisting in refining the mesh in order to have a size of elements
tending to zero, which automatically leads to a dissipated energy also tending to zero, as if no
energy was necessary to fracture the beam, which does not have a physical sense [Hill, 1958].
It is also noticeable that the dissipated energy not only depends on the size of the mesh, but
also on its orientation and on the type of elements used for the numerical resolution.
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To avoid this problem, localization limiters need to be implemented to guarantee that the
dissipated energy value has a physical sense. Different regularization strategies are presented
in the next sections. Some of those methods, such as nonlocal regularizations [Jirásek, 2007]
or energy-based regularization [Hillerborg et al., 1976] rely on the definition of a character-
istic length, related to the discretization of the finite element mesh.

Energy regularization
The dissipated energy depends on the size of the localization zone. For finite element simu-
lations, the size of this zone corresponds for local models to the size of one finite element (or
a band of elements). The method presented in [Hillerborg et al., 1976] consists in adjusting
the softening part of the material model (herein the value of Ad) depending on the size of this
element in order to obtain a dissipated energy independent from the mesh, by adapting the
stress–jump of displacement relation of the process zone so that the surface energy dissipated
by the creation of the surface of the crack is equal the critical energy restitution rate Gc of the
material:

Gc =

∫ ~u f �

0
σ d~u� (A.1)

where ~�� represents the jump of quantity � at the process zone. This approach however
does not avoid the localization of the damage to one element, as it only corrects the damage
evolution law to obtain a more physical meaning (in the sense of the dissipated energy). Also,
the damage pattern remains dependent on the orientation of the mesh, as shown on Fig. A.2.
To avoid this problem, non-local approaches have been developed and are presented in the
next section.

Figure A.2: Mesh dependency of the damage pattern. (a) mesh with vertical bands; (b) mesh
with tilted bands (courtesy of C. Giry)

Non-local regularization of internal variables
The idea behind non-local regularization approaches is to consider that, for each point, a local
quantity is replaced by another quantity taking into account the influence of the neighboring
points. These approaches consider the fact that the macroscopic response depends on lower-
scale interactions in a zone proportional to the internal length lc (also called characteristic
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length) introduced at the macroscopic level. The numerical outcome of this assumption is
that the damage does not evolve on only one band of elements but on a band that contains
several elements, which size is proportional to lc. The shape and size of the elements does
not influence the dissipated energy nor the propagation of this zone of localization. [Jirásek,
2007] details those different approaches and provides a numerical comparison.

Integral approaches
Nonlocal integral regularization is really classical when working with softening materials
(either modeled with plasticity or damage –or both). The idea behind these approaches is to
replace a local variable b(x) from the model by its average b(x) over a neighborhood of the
considered point [Grassl and Jirásek, 2006]. The nonlocal average is given as the convolution
product of the local function by a (classically Gaussian) weight function:

b(x) =

∫

Ω

φ0(x, s)∫
Ω
φ0(x, s)d s

b(s) d s (A.2)

where the weight function is used to determine the interactions between the different points.
For example:

φ0(x, s) = exp
(
−

(
4 ‖x − s‖2

l2
c

))
(A.3)

This framework remains general and can be used either for plasticity [Jirásek and Rolshoven,
2003] or damage ([Saouridis and Mazars, 1992] for isotropic, [Desmorat et al., 2007] for
anisotropic) models and can be applied to different variables [Jirásek, 2007]. However this
technique is highly intrusive and requires heavy modifications of the numerical codes. Other
numerical problems can arise for elements close to the boundaries of the domain, or when
a point and its region or interest are too close from a crack (classical technique leads to
numerical interaction between the Gauss points on each side of the crack. This issues has
more recently been addressed in [Giry et al., 2011].

Differential approaches
The continuous model is enriched by adding higher-order derivative terms either to the local
quantities (for example the strain or the internal variables) [De Borst and Mühlhaus, 1992].
This regularization can be either implicit or explicit, as detailed below.

Explicit gradient

Under its explicit form, this approach consists in adding to the local quantity b its Laplace
quantity:

b(x) = b(x) + lc ∇2 b(x) (A.4)
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where lc is homogeneous to a length. This method is often said to be “weakly nonlocal” as
it involves only the local value of the variables and its derivatives at the same point. How-
ever, this method requires to use richer (higher-order) finite elements (a C1 continuity of the
displacement field is then required).

Implicit gradient

An implicit method can also be used, for which the nonlocal form of the local variable b is
defined implicitly:

b + lc ∇2 b = b (A.5)

This method is said to be “strongly” nonlocal. Its is that it is more robust than its explicit
counterpart, and can be related to the integral version by considering a Green weight func-
tion [Peerlings et al., 2001]. However, it requires the additional resolution of a differential
equation in the process which requires more degrees of freedom. Finally, it implies the loss
of symmetry of the operator to be inversed, which requires to impose additional boundary
conditions (for example a null flux).

Bounded rate concept – damage-delay
The damage-delay [Ladevèze, 1991, Dubé et al., 1996, Allix and Deü, 1997, Allix et al.,
2003, Suffis et al., 2003] (or bounded rate concept [Allix, 2012]) method introduces a viscos-
ity aspect in the evolution law of the damage variable, through a characteristic time parameter
τc, in order to delay the peak of damage (see [Needleman, 1988] for elastic-plasticity). The
advantage of such methods is that it set a maximum value of the damage rate, which regu-
larizes the problem, whichever the strain rate (this aspect is not taken into account in [Dubé
et al., 1996]). For example:

ḋ =
1
τc

[
1 − exp(a 〈ds − d〉+)

]
(A.6)

where d is the regularized damage variable and ds is the damage variable calculated without
regularization. This method provides a non-dependence on the mesh size and avoids the
localization phenomenon, but the stability is really dependent on the characteristic time τc.
Parameter a is usually equal to 1.
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Appendix B
Tensor decompositions

This appendix presents basic notions for understanding matrix and tensor decompositions in
a discrete framework. See [Bader and Kolda, 2007] for more information on the formalism
and the implementation of those decompositions.

Classical SVD

Singular value decomposition (SVD) is a factorization of a real or complex matrix and is
a generalization of the eigendecomposition of a positive semidefinite normal matrix to any
m × n matrix. Let consider the matrix A ∈Mm,n(R), with m > n.

(i) ∃U ∈Mm(R) unitary (meaning UT U = Im);

(ii) ∃V ∈Mn(R) unitary (meaning VT V = In);

(iii) ∃Λ ∈Mm,n(R);

such that:

A = UΛVT (B.1)

ai1,i2 =
∑

j1

∑

j2

λ j1, j2 ui1, j1 vi2, j2 (B.2)

where the matrix Λ is defined as:

Λ =



λ1
. . . 0

λm

0 0


(B.3)
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The {λi}i=1···m are the singular values of A. On a reduced-order modeling point of view, this
can be rewritten:

A =

m∑

i=1

λi Ui ⊗ V?
i (B.4)

where ⊗ represents the outer product of the vectors Ui and V?
i (first m vectors of V).

High-order SVD

Whereas the classical SVD provides at the same time (a) a rank-R decomposition of a her-
mitian matrix A and (b) orthonormal raw/column matrices U and V, those two properties
are embodied by two different decompositions for higher order arrays. (a) can be computed
using CP decomposition (see next paragraph). (b) is extended to higher order tensors by
a method known as the Tucker decomposition, which enables to compute the orthonormal
spaces associated with the different modes (axes) of a tensor.

• SVD

A = UΛVT

ai1,i2 =
∑

j1

∑

j2

λ j1, j2 ui1, j1 vi2, j2

• HO-SVD (Tucker decomposition)

A = Λ ×n
i=1 U(i) (B.5)

ai1···iN =
∑

j1

· · ·
∑

jN

Λ j1··· jN u(1)
i1, j1
· · · u(N)

iN , jN
(B.6)

with ×k the mode-k tensor-matrix product and where Λ is here called the core tensor. Such
decomposition must fulfill the following requirements:

(i) each U = [u(n)
i, j ]In×In is an orthogonal matrix;

(ii) two sub-tensors of the core tensor Λ are orthogonal:
〈
Λ jn=p,Λ jn=q

〉
= 0 if p , q (B.7)

(iii) the sub-tensors in the core tensor Λ are ordered according to their Frobenius norm:
∥∥∥Λ jn=1

∥∥∥ ≥
∥∥∥Λ jn=2

∥∥∥ ≥ · · · ≥
∥∥∥Λ jn=In

∥∥∥ for n = 1 · · ·N (B.8)
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Construction of the approximation The high-order SVD decomposition can be computed
from several SVDs according to the following process:

1. given a tensor A ∈ Fn1×···×nN , construct the mode-k flattening A(k);

2. compute the singular value decomposition of A(k):

A(k) = U(k)Λ(k) VT
(k) (B.9)

and store the left singular vectors U(k);

3. The core tensor Λ is the corresponding projection of A onto the tensor basis formed by
the factor matrices {U(n)}n=1···N , i.e.

Λ = A ×N
n=1 UT

(n) (B.10)

Tensor rank approximation
Considering a tensor space Fn1×···×nN = Fn1 ⊗· · ·⊗FnN where F ∈ R or C, every order-N tensor
A in this space may be represented as a linear combination of rank-1 tensors (as a Kruskal
tensor):

A =

r∑

i

λi U(1)
i ⊗ · · · ⊗ U(N)

i (B.11)

(B.12)

where λi ∈ F and Uk
i ∈ Fnk . r is called the rank of the tensor:

(i) if r is minimal, this approximation is referred to as “tensor rank decomposition”, “min-
imal CP decomposition” or “canonical polyadic decomposition”;

(ii) otherwise, it is called “r-term decomposition”, “CANDECOMP/PARAFAC” or “polyadic
decomposition”.

Construction of the approximation Different methods exist to construct such approxima-
tion. Among them:

• alternating algorithms:

– alternating least squares (the one used in this work);

– alternating slice-wise diagonalization;

• algebraic algorithms:

– simultaneous diagonalization;
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– simultaneous generalized Schur decomposition;

• optimization algorithms:

– Levenberg-Marquardt;

– nonlinear conjugate gradient;

• direct methods (direct multi-linear decomposition).
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Appendix C
Orthonormalization of a reduced basis –
extension to parametric problems

The orthonormalization of the reduced-order basis is done in the PGD framework using a
Gram-Schmidt algorithm. Whereas this approach is trivial when dealing with time-space
separation (or more generally two-variables representations), the extension to parametric de-
compositions requires high-order techniques. We give in this appendix the details in the
discrete case.

Case 1: time-space representation
Input:

• the solution at iteration m:

um(x, t) =

m∑

i=1

aiΦi (C.1)

• the new mode just computed:

∆um(x, t) = am+1Φm+1 (C.2)

One seeks to orthonormalize the function Φm+1 with respect to the already computed or-
thonormal basis {Φi}mi=1 according to a given norm:

〈Φi,Φ j〉IΩ = ΦT
i IΩΦ j =

{
0 if i , j
1 if i = j (C.3)

where IΩ is defined such that:
∫

Ω

Φi(x) ·Φ j(x) dΩ ≡ (Φi)T IΩΦ j (C.4)
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um+1, the rank-(m + 1) time-space decomposition of u, then writes:

um+1 =

m∑

i=1

aiΦi + am+1Φm+1

=

m∑

i=1

aiΦi +

m∑

i=1

am+1

[
〈Φi,Φm+1〉IΩ

Φi + Φ̃i

]

=

m∑

i=1

[
ai + am+1 〈Φi,Φm+1〉IΩ

]
︸                        ︷︷                        ︸

ãi

Φi + am+1 Φ̃m+1

=

m∑

i=1

ãiΦi + am+1 Φ̃m+1

(C.5)

with:

Φm+1 ← Φ̃m+1 = Φm+1 −
m∑

i=1

〈Φi,Φm+1〉IΩ
Φi (C.6)

The new function Φm+1 is then normalized:

am+1 ← am+1 〈Φm+1,Φm+1〉IΩ
(C.7)

Φm+1 ← Φm+1

〈Φm+1,Φm+1〉IΩ

(C.8)

A criterion for rejecting the new mode is implemented if its norm (e.g. the norm of the
function am+1) is lower than a certain threshold (meaning the (m + 1)th mode does not enrich
sufficiently the rank-m decomposition).

Case 2: extension to a parametric representation

Following the procedure explained in the previous section (method B), the orthonormaliza-
tion procedure for parametric problems after the fixed point algorithm leads to:

um+1 =

m∑

i=1

[
Ai + Am+1 〈Φi,Φm+1〉IΩ

]
︸                          ︷︷                          ︸

Ãi

Φi + Am+1 Φ̃m+1 (C.9)

where Am+1 =
∏

k ak
m+1, Ai ∈ MD(R) and consequently Ãi ∈ MD(R). A rank-1 CP-

decomposition of the terms Ãi is performed in order to get the new functions {{ãk
i }mi=1}N

p

k=1
(using an alternating least squares algorithm as presented in Appendix B).

Once again the new mode is normalized (with the weight of the the function being put on
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the “first” parametric function, in our case the time function):

a1
m+1 ← a1

m+1 〈Φm+1,Φm+1〉IΩ
N p∏

k=2

〈ak
m+1, a

k
m+1〉IDi

(C.10)

Φm+1 ← Φm+1

〈Φm+1,Φm+1〉IΩ
(C.11)

ak
m+1 ←

ak
m+1

〈ak
m+1, a

k
m+1〉IDi

∀k ∈ [2,N p] (C.12)

where IDi is defined as:
∫

Di

a(µi) · b(µi) dµi ≡ aT IDi b (C.13)

with B such that ε(u) = B u.
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Appendix D
LATIN method

References Damage PGD

R
ef

.
w

or
ks

Functional formulation [Ladevèze, 1985] x
Internal variables formulation [Ladevèze, 1989] x
English version [Ladevèze, 1999] x

Large deformations and plasticity
[Vauchez, 1991] x

[Liu, 1992] x

Large deformations, [Boucard, 1996] x
co-rotational formulation [Michel-Ponnelle, 2001] x

Elasto-visco-plasticity,
large number of cycles
and thermo-elasticity

[Boisse, 1987] x
[Cognard, 1989] x

[Arzt, 1994] x
[Cognard et al., 1999] x

Verification, viscoplasticity [Pelle and Ryckelynck, 2000] x

Nonlinear dynamics [Royer, 1990] x

D
am

ag
e

an
d

co
m

po
si

te
s Integral behavior laws [Allix and Ladevèze, 1992] ? x

Internal variables formulation [Douchin and Ladevèze, 2001] ?
Multi-scale composite structures [Trovalet, 2010] ?
Buckling-delamination coupling [Saavedra Redlich, 2012] ?
Snap back in concrete [Vandoren et al., 2013] ?

Fast dynamic, pyrotechnic shocks
[Lemoussu et al., 2002]

[Derumaux, 2004]
[Gupta et al., 2005] ?
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References Damage PGD

A
ss

em
bl

y

2-D axisymmetric, static [Danwé, 1993]
3-D (flange in static) [Champaney, 1996]
Application, quasi-static [Blanzé et al., 2000]
Dynamics, pyrotechnic shocks [Ladevèze et al., 2000]

Optimization
[Boucard et al., 2009]

[Soulier and Boucard, 2009]
Contact [Giacoma et al., 2015] x
Non-invasive [Oumaziz et al., 2017]

D
D

M

Parallelism
[Lorong, 1994]

[Dureisseix, 1997]

Multi-scale
[Ladevèze and Dureisseix, 2000]

[Ladevèze et al., 2001]

Re-use strategy, stochastic
[Nouy, 2003]

[Ladevèze et al., 2001]
Multi-physics [Néron, 2004]
Coupling with XFem, cracking [Guidault, 2005]
3-D multi-scale, C++ [Violeau, 2007]
Time multi-scale [Passieux, 2008] x
Composites [Kerfriden, 2008] ?
Dumping [Caignot, 2009]
Reference points method, multi-scale [Capaldo, 2015] x

M
ul

ti-
pa

ra
m

et
ri

c

Assemblies [Boucard and Champaney, 2003]
Multi-scale dynamics [Odièvre, 2009]
Composite assemblies [Roulet, 2012] ?
Buckling, elasto-visco-plasticity [Boucard and Ladevèze, 1999] x
Elasto-visco-plasticity [Relun, 2011] x
Optimal basis [Heyberger et al., 2013] x

Optimization, assemblies
[Laurent, 2013]
[Courrier, 2015]

Identification [Allix and Vidal, 2002] x
Inverse problems [Nguyen et al., 2008] x
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Extended summary in French

1 Introduction

L’étude de la variabilité intrinsèque aux matériaux est un sujet essentiel quant au dimen-
sionnement des structures de génie civil. Cette variabilité peut provenir de la fabrication du
matériau (choix de ses éléments constitutifs, procédés de fabrication), ou de la description
de son modèle physique. Ainsi, il est évident que plus ces incertitudes seront importantes et
plus la simulation du comportement de ce matériau sera complexe, quelle que soit l’échelle
considérée pour l’étude (du point de vue microscopique à l’échelle macroscopique de la struc-
ture). C’est en particulier vrai pour le béton armé qui est utilisé de manière intensive depuis
des décennies bien que son comportement à long terme ne soit toujours pas bien compris ni
modélisé. La tenue mécanique de ces structures peut être modifié par des réactions chim-
iques ou des dégradations mécanique ce qui rend la prédiction de leur comportement à un
aléas donné extrêmement complexe, et cela même avec des outils numériques de plus en
plus performants. Parmi les nombreuses thématiques de recherche, l’étude de la réponse
des structures en béton armé à un aléas sismique est extrêmement importante, en particulier
depuis l’incident de Fukushima en 2011. Le projet SINAPS@ a été lancé en réponse à cet
incident, et a pour but de quantifier l’influence des incertitudes liées aux procédés physiques
et aux méthodes utilisées pour qualifier le risque sismique sur la vulnérabilité des structures
de l’industrie nucléaire. Son but est principalement de fournir des outils pour décrire le
phénomène sismique ainsi que son impact sur des structures en béton armé, pour identifier
les risques et proposer des recommandations quant à l’évolution des règles concernant le
risque sismique.

L’étude présentée ici porte sur le fait que le calcul de la réponse d’une structure en béton
armé à un aléas sismique, à un instant donné, nécessite la connaissance de l’histoire de ladite
structure et des différentes dégradations qui ont pu lui être causées, celles-ci pouvant s’étaler
sur plusieurs décennies. Ces phénomènes sont souvent complexes à modéliser, tout comme
l’est le chargement sismique, ce qui rend ce type de calcul extrêmement coûteux à réaliser.
L’objectif des travaux présentés ici n’est cependant pas de modéliser ces phénomènes aux
longs termes mais d’en étudier les potentiels effets sur une structure soumise, à un instant
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donné, à un chargement cyclique. Pour ce faire, nous considérons un milieu pour laquelle
certains paramètres matériaux (mais aussi affectant le chargement) ne sont connus que par
leur valeur moyenne et leur intervalle de variation, le but étant de déterminer la réponse
d’une structure exacerbant un comportement fortement non-linéaire pour les différents jeux
de paramètres associés à ces nouvelles variables du problème.

Il est évident que la prise en compte de ces paramètres dans la résolution d’un problème
déjà délicat de part la nature du modèle utilisé (fortement non-linéaire, et qui est décrit dans
la prochaine section) rend ce type d’étude très complexe en terme de coût de calcul avec les
techniques de résolution usuelles. Cette double difficulté (non-linéarité, calcul paramétrique)
est traitée ici en associant un algorithme itératif, la méthode LATIN [Ladevèze, 1999], et une
méthode de réduction de modèle, la PGD [Ammar et al., 2012]. Les algorithmes de type
LATIN–PGD on été utilisés à maintes reprises depuis les années 80 pour le traitement des
problèmes non-linéaires d’évolution faisant intervenir des modèles de comportement visco-
plastique, mais aussi plus récemment pour des problèmes multi-physiques ou avec décom-
position de domaine. L’utilisation de ces algorithmes pour des études paramétriques a été
faite dans le cadre de la stratégie multi-paramétrique [Boucard and Ladevèze, 1999]. Nous
proposons ici une extension de l’algorithme classique, faisant intervenir une décomposition
PGD temps-espace à une décomposition intégrant plus de variables, et l’application de cette
méthode à un problème d’endommagement avec effet unilatéral. Le modèle de comportement
matériaux est sommairement décrit dans la prochaine section, puis l’algorithme LATIN-PGD
est donné en mettant l’accent sur les modifications apportées pour prendre en compte l’aspect
paramétrique du problème. Cette méthode est enfin illustrée au travers de deux exemples
(sollicitations de traction et flexion) avec variabilité sur des paramètres matériaux et affectant
l’amplitude du chargement.

2 Le modèle étudié
La modélisation du milieu étudié découle de [Richard and Ragueneau, 2012] (pour la loi
d’endommagement) et [Vassaux et al., 2015] (pour la loi de refermeture de fissure). Cette
section rappelle les différents points du modèle, la variabilité considérée et l’influence sur le
comportement mécanique du béton. Les quantités relatives au modèle de comportement du
béton (respectivement de l’armature) seront notées �c (respectivement �r).

2.1 Modèle d’endommagement avec effet unilatéral

La relation de comportement au niveau d’un point de Gauss est donnée Fig. E.1. On peut
voir que deux phénomènes ici sont pris en compte. Un endommagement en traction, venant
affecter la rigidité du matériau, et un regain de rigidité progressive lors de la phase de
décharge et de compression, caractérisant le phénomène de refermeture progressive des fis-
sures présentes dans le béton, et conférant au matériau une rigidité (en compression) proche
de sa rigidité “saine” sont considérés. Il est à noter que contrairement à [Richard and Rague-
neau, 2012], ni la plasticité en compression, ni les phénomènes hystérétiques liés au charge-
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ment cyclique ne sont pris en compte. En terme de modélisation, cet état peut être obtenu en
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Figure E.1: Réponse mécanique σc
xx = f (εc

xx) au point de Gauss

scindant le tenseur des contraintes de Cauchy au sein du volume élémentaire représentatif en
une somme de deux contributions indépendantes, la première liée à l’état de contrainte dans
le milieu dans le milieu fissuré (en négligeant les interactions entre les fissures) et la seconde
liée à l’état de contrainte dans les fissures une fois refermées :

σc = σc,m + σc, f (E.1)

Un résumé des différentes variables est donné Tab. E.1 et le lecteur peut se référer à Eqs. (E.2,
E.3) pour un résumé des équations constitutives du problème.

Table E.1: Résumé des variables du modèle de comportement du béton

Mécanisme Variable d’état Variable interne Force thermodynamique

Déformation totale εc σc

Élasticité εc,e σc,m

Endommagement isotrope dc −Yc

Écrouissage isotrope zc Zc

associé à l’endommagement
Refermeture de fissure εc, f σc, f
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Lois d’état

σc,m = (1 − dc) Cc : εc

σ̇c, f = νCc : ε̇c, f

Yc =
1
2
〈εc〉+ : Cc : 〈εc〉+

Zc =
d H(zc)

d zc

σr = Cr : εr

(E.2)

Lois d’évolution

dc = 1 − 1
1 + Ad(Yc − Y0)

zc =
1

1 + Ad(Yc − Y0)
− 1

εc, f = dc εc

dr = 0

(E.3)

où Cc le tenseur de Hooke du béton, Ad un paramètre matériaux régissant le comportement
adoucissant de la loi d’endommagement, Y0 le seuil d’initiation d’endommagement.

2.2 Variabilité au sein du béton
Les procédés de fabrication, ainsi que le vieillissement des structures en béton armé, peu-
vent conduire à une évolution de certaines propriétés du matériau. Les incertitudes qui en
découlent ont une influence directe sur la réponse mécanique globale des structures. Nous
considérerons en particulier ici des variabilités sur des paramètres matériaux, ainsi que sur
des paramètres liés au chargement (affectant notamment son amplitude). Une approche clas-
sique pour prendre en compte ces variabilités consiste à s’appuyer sur des outils probabilistes
ou sur des données statistiques. Cependant, de telles approches nécessitent bien souvent
un nombre de calculs numériques conséquent ou la mise en place de vastes (et coûteuses)
campagnes expérimentales.

L’approche choisie ici consiste à considérer un ensemble de N p paramètres µ = {µi}i=1···N p ,
affectant des variables matériaux ou l’amplitude du chargement, uniquement décrits par une
distribution uniforme centrée sur la valeur moyenne de ces paramètres. Par exemple, on
prendra µ = {µ1, µ2} tel que µ1 affecte le coefficient pilotant la phase adoucissante du béton
Ad = Ad(µ1) et µ2 affecte le module d’Young de telle manière que Ec = Ec(µ2).

Fig. E.2 montre la réponse mécanique, à l’échelle du point de Gauss, d’une structure
en béton pour laquelle une variabilité sur le module d’Young du béton Ec (Fig. E.2a), sur
le seuil initial d’endommagement Y0 (Fig. E.2b) et sur le coefficient d’adoucissement Ad

(Fig. E.2c) sont considérées (voir Tab. E.2). On peut voir la forte influence de cette variabilité
sur la réponse mécanique du problème, en particulier pour la variabilité sur Ad pour laquelle
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la variation d’énergie dissipée (aire sous la courbe de la partie adoucissante) est fortement
impactée.

Table E.2: Paramètres étudiés, variabilité

Paramètre Nom Valeur moyenne Variabilité Intervalle de variation

Ec Module d’Young 36 × 109 Pa +/ − 30% [25.2 – 46.8] × 109

Ad Coefficient d’adoucissement 8 × 10−3 J−1.m3 +/ − 20% [6.4 – 9.6] × 10−3

Y0
Seuil initial d’activation

180 J.m−3 +/ − 20% [144 – 216]
de l’endommagement

3 Réduction de modèle en non-linéaire et analyse paramétrique
La prise en compte de ces paramètres pour la simulation de problèmes structuraux complexes
(tant bien émanant du modèle ou de la géométrie du milieu) est bien souvent rédhibitoire
en terme de coût de calcul, aussi bien en temps de simulation qu’en capacité de stockage
de la solution associée. L’approche choisie dans cette étude pour prendre en compte cette
dépendance aux paramètres consiste à approximer les champs solution du problème sous une
forme à variables séparées, comme une somme de produits de fonctions de chacune de ces
variables, c’est à dire:

u(x,µ) ≈ um(x,µ) =

m∑

k=1

Φk(x)
N p∏

i=1

ai
k(µi) (E.4)

En particulier, cette approximation est construite de manière itérative en utilisant un algo-
rithme Galerkin–PGD [Nouy, 2010]. Cependant, cette approche utilisée comme telle n’est
pas efficace pour la résolution de problèmes fortement non-linéaires tels que ceux rencontrés
dans le cas de notre étude. Ainsi, le couplage avec la méthode LATIN [Ladevèze, 1999] est
étudié. Les algorithmes LATIN–PGD ont déjà été l’objet de nombreuses études, faisant inter-
venir une décomposition temps-espace du champ d’intérêt. Nous proposons ici l’extension
de cette méthode à des problèmes paramétrés en s’appuyant sur une description telle que
(E.4), et l’application de cette méthode à des problèmes structuraux tels que ceux rencontrés
dans le domaine du génie civil.

3.1 Proper generalized decomposition
L’approche considérée ici consiste à prendre en compte l’intégralité des variables du prob-
lème dans la formulation PGD classique comme des coordonnées additionnelles de la dé-
composition [Ammar et al., 2012]. Un algorithme glouton est alors utilisé pour construire de
manière itérative les différentes fonctions de la représentation. L’approche utilisée est la suiv-
ante : en considérant le problème discrétisé (noté avec des symboles droits) L um+1(µ) = f(µ)
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Figure E.2: Influence de la variabilité sur le module d’Young Ec (Fig. E.2a), le seuil
d’activation de l’endommagement Y0 (Fig. E.2b) et le coefficient d’adoucissement Ad

(Fig. E.2c) sur la réponse mécanique au niveau d’un point de Gauss (les valeurs moyennes
sont notées �av)

avec µ ∈D, où L est un opérateur linéaire, on cherche l’approximation de rang um+1 comme
une correction ∆um apportée à l’approximation um obtenue à l’itération précédente, où ∆um

s’écrit :

∆um = Φm+1 Am+1 (E.5)

avec Am+1(µ) ∈ MD(R) et Am =
∏N p

k=1 ak
m. La fonction test est choisie telle que :

u? = Φ? Am+1 +Φm+1 A? (E.6)

Un point fixe est enfin utilisé pour déterminer les fonctions Φm+1 et Am+1 :
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(i) la fonction d’espace est calculée en résolvant l’équation suivante, en considérant A? =

0 :

Φm+1 = L−1


fm+1 ×̄ j+1

[
ID j a j

m+1

]

∏N p

j=1

[
(a j

m+1)T ID j a j
m+1

]
 (E.7)

(ii) en considérant Φ? = 0, Am+1 est calculée en résolvant le problème:

Am+1 =
ΦT

m+1 fm+1

ΦT
m+1 LΦm+1

(E.8)

(iii) une décomposition CP [Hitchcock, 1927] de rang 1 de l’opérateur Am+1 est effectuée
pour obtenir l’ensemble des fonctions de paramètres {ak

m+1(µk)}k=1···N p .

où fm+1 = f −um, ×̄k est le produit tenseur-vecteur sur la k-ième dimension [Bader and Kolda,
2007] du tenseur fm+1 et les opérateurs d’intégration IDi sont définis par :

∫

Di

a(µi) · b(µi) dµi ≡ aT IDi b (E.9)

3.2 La méthode LATIN
Introduisons les espaces suivants :

(i) l’espace Ad des champs solutions admissibles s vérifiant les équations d’état;

(ii) l’espace Γ des champs admissibles s vérifiant les équations d’évolution.

La solution du problème vérifie à la fois les conditions d’admissibilité ainsi que les lois
d’évolution, de sorte qu’elle se trouve à l’intersection des espace Ad et Γ:

s ∈ Ad ∩ Γ (E.10)

• Initialisation de l’algorithme. L’algorithme est initialisé en calculant la solution élas-
tique, vérifiant les conditions d’admissibilité cinématique, de sorte que s0 ∈ Ad. Le processus
itératif commence ensuite par une étape locale.

• L’étape locale. Le but de l’étape locale est de trouver la solution ŝm ∈ Γ, vérifiant
les équations de comportement locales (et dans notre cas non-linéaires) à partir de la so-
lution sm ∈ Ad calculée à l’itération précédente, vérifiant l’équilibre global. La direction
de rechercher E+ est définie de sorte que (ŝm − sm) ∈ E+. Ce problème local est résolu de
manière incrémentale (l’utilisation d’un algorithme de Newton-Raphson -par exemple- peut
être nécessaire) en chaque point de Gauss de la structure et pour chaque valeur de paramètre.
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• L’étape linéaire. L’étape linéaire consiste à trouver la solution sm+1 ∈ Ad à partir de la so-
lution calculée à l’étape locale précédente ŝm ∈ Γ et la direction de recherche E− définie telle
que (sm+1 − ŝm) ∈ E−. Ce problème est global en espace et dépend des paramètres µ. Pour ré-
duire le coût de calcul associé à cette résolution, la méthode PGD (telle que décrite précédem-
ment) est implémentée pour approximer la solution sm+1 sous la forme d’une représentation
à variables séparées, qui est successivement enrichie au fur et à mesure des itérations :

um+1 = um + ∆ um (E.11)

et l’enrichissement ∆ um est déterminé à partir des équations (E.5–E.8). L’algorithme LATIN–
PGD étendu aux problèmes paramétrés est résumé Alg. 10.

3.3 Critère d’arrêt de l’algorithme
L’algorithme s’arrête lorsque la norme L2 du nouveau mode ς =

∥∥∥a1
m+1

∥∥∥
L2 devient plus petite

qu’un certain critère ςcrit.

Algorithm 10: Algorithme LATIN–PGD
Data: s0, solution élastique vérifiant les conditions d’admissibilité cinématique;
Result: um+1, approximation de rang-m + 1 de u;
while ς > ςcrit do

Étape locale :
∀µi ∈ Di : résolution incrémentale du problème local : sm → ŝm;
Étape linéaire :
Enrichissement de la base réduite : algorithme de point fixe :
→ ∆um = Φm+1

∏
i ai

m+1;
→ um+1 = um + ∆um

Calcul de l’indicateur ς;
end

La faisabilité de ce couplage LATIN–PGD paramétrique a été illustrée pour un problème
1-D de diffusion thermique dans [Vitse et al., 2014]. La prochaine section présente des ré-
sultats concernant la simulation de structures en béton armé, avec le modèle endommageant
avec refermeture de fissure présenté Sec. 2 et une variabilité sur l’amplitude du déplacement
imposé lors d’un essai de traction-compression puis sur un essai de flexion 4 points sur une
poutre en béton armé.

4 Exemples numériques
Cette section donne quelques résultats numériques concernant dans un premier temps l’étude
d’une poutre en béton armé soumise à un chargement de traction–compression, puis dans
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un second temps l’étude d’une poutre en béton armé soumise à un chargement de flexion 4
points, avec une variabilité à la fois sur l’amplitude du déplacement imposé ainsi que sur le
module d’Young du béton (second exemple).

4.1 Essai de traction
On considère une poutre en béton armé soumise à un chargement de traction–compression. Sa
géométrie est donnée Fig. E.3 et une variabilité sur l’amplitude du chargement est considérée,
paramétrée par une variable µ2 suivant la loi:

ud(t, µi
2) = (0.75 + 0.25

µi
2

µmax
2

) saw(t) (E.12)

Le modèle de comportement étudié est celui rappelé Sec. 2. Le but de cet étude est déterminer

0.45

0.045

(a) Géométrie de l’éprouvette (b) Représentation 3-D

Figure E.3: Géométrie (gauche) et représentation 3-D (droite) du spécimen

l’approximation du champ de déplacement u sous la forme:

um(x, t,ud(µ2)) =

m∑

i=1

Φi(x) a1
i (t) a2

i (µ2) (E.13)

Les informations relatives à la discrétisation du problème sont données dans le tableau E.3.
La Fig. E.4 donne l’évolution temporelle du chargement pour quelques valeurs du paramètre

Table E.3: Discrétisation du premier exemple

Espace de définition Intervalle of variation – discrétisation

Ω Béton 3, 157 nœuds, 2, 400 éléments (9, 471 DDLs, 19, 200 PGs)
Armature 80 nœuds, 112 éléments (240 DDLs, 112 PGs)

D1 ≡ I Temps t ∈ [0, 199] (200 pas de temps)
D2 Paramètre de chargement µ2 ∈ [1, 24] (24 valeurs)

µ2 ainsi que la réponse globale associée, obtenue par particularisation du champ PGD déter-
miné en utilisant la méthode LATIN–PGD pour 11 itérations de l’algorithme présenté Sec. 3.
L’indicateur d’erreur associé est donné Fig. E.5.
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Figure E.4: F(ud) pour plusieurs valeurs de µ2
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Figure E.5: Évolution de la norme L2 des modes dans la décomposition PGD

4.2 Essai de flexion 4 points

Le but de ce second exemple est de simuler le comportement d’une structure en béton armé,
dont la géométrie est donnée Fig. E.6, lors d’un essai de flexion 4 points (la photographie
d’une étude expérimentale d’A. Michou au LMT est donnée Fig. E.7).

La discrétisation spatiale de l’éprouvette ainsi que des espaces paramétriques est donnée
Tab. E.4 et les conditions aux limites (encastrement et déplacement imposé) sont appliquées
sur des bandes d’éléments sur la largeur de la poutre (en rouge sur la Fig. E.8).

Le déplacement imposé ud(t, µ2) est paramétré par une variable µ2, avec une variabilité
de +/ − 30% qui affecte encore une fois son amplitude en suivant une loi similaire à celle
présentée dans la section précédente (E.12) (ce chargement est particularisé pour trois valeurs
de µ2 Fig. E.9). Le module d’Young du béton est également paramétré par une variable µ3

qui affecte sa valeur moyenne avec une variabilité de +/ − 15% (Ec ∈ [21.61, 29.23] GPa).
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Figure E.6: Essai de flexion – coupes longitudinale (gauche) et transversale (droite) de la
structure (en m)

Figure E.7: Essai de flexion 4 points réalisé au LMT par A. Michou

Table E.4: Discrétisation du second exemple

Espace d’approximation Intervalle de variation – discrétisation

Ω Espace – béton 3, 157 nœuds, 2, 400 éléments (9, 471 DDLs, 19, 200 PGs)
Espace – armature 160 nœuds, 232 éléments (480 DDLs, 232 PGs)

D1 ≡ I Temps µ1 ≡ t ∈ [0, 99] (100 pas de temps)
D2 Variabilité sur le chargement µ2 ∈ [1, 12] (12 values)
D3 Variabilité sur le module d’Young µ3 ∈ [0.85, 1.15] (9 valeurs)

La base de donnée suivante est ainsi calculée :

um(x, t,ud(µ2), Ec(µ3)) =

m∑

i=1

Φi(x) a1
i (t) a2

i (µ2) a3
i (µ3) (E.14)

Cet exemple est plus complexe dans le sens où cette forte variabilité, à la fois sur des
paramètres affectant le chargement appliqué à la poutre et son matériau constitutif, conduit à
des distributions d’endommagement et de contraintes complexes sur la structure.

Cela permet ainsi de montrer les possibilités de l’algorithme développé et en particulier

Model-order reduction for the parametric analysis of damage in reinforced concrete structures



106 Extended summary in French

Figure E.8: Essai de flexion – zones d’applications des conditions aux limites (rouge)

l’avantage lié à l’utilisation de la représentation espace-paramètres de la PGD : cette décom-
position permet tout d’abord de réduire le coût (mémoire et CPU) du problème linéaire et rend
ainsi le post-traitement de la solution (visualisation de la réponse globale, calcul de quantités
d’intérêt locales) bien plus facile à mettre en œuvre et rapide à effectuer, en particulier grâce
au format PXDMF développé par F. Bordeu à l’École Centrale de Nantes1.
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Figure E.9: Essai de flexion – variabilité sur le déplacement imposé ud(t, µ2) pour quelques
valeurs de µ2

Les fonctions d’espace et paramétriques de la décomposition (E.14) sont respectivement
données Figs. E.10 et E.11. On peut remarquer concernant les fonctions spatiales que les
enrichissements sont de plus en plus localisés au fur et à mesure qu’augmente le nombre
d’itérations. Concernant les fonctions du temps, présentées Fig. E.11a, on peut remarquer
que les enrichissements sont localisés aux moments ou l’endommagement évolue : lorsque
la charge dépasse le seuil initial lors du premier cycle (autour de t = 10s), ou lorsque la charge
dépasse le pic atteint lors du cycle précédent (à t = 40s ou t = 90s). Les autres fonctions
paramétriques sont cependant relativement régulières, ceci lié au fait que la variabilité sur le
chargement semble prépondérante sur celle liée au module d’Young.

1https://rom.ec-nantes.fr/
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Figure E.10: Essai de flexion – composante suivant l’axe z des fonctions d’espace {Φi}i={1,3,5,7}
(Φ(z)

i = Φi · z)

La Fig. E.12 montre la particularisation du champ d’endommagement pour trois jeux
de paramètres µi = {t j, µk

2, µ
l
3}i=1···3 parmi 10, 800 possibles. On peut remarquer que les

paramètres µ2 et µ3 influencent fortement l’intensité de l’endommagement dans certaines
zones de la poutre, plus ou moins étendues selon les jeux choisis. Encore une fois, cette re-
construction est facilement et rapidement obtenue à partir de la base donnée grâce au plug-in
PXDMF développé at École Centrale de Nantes2 et utilisé au sein du logiciel ParaView [Ay-
achit, 2015], qui permet une combinaison en temps réel des différents modes, associée à un
jeu de paramètres choisi par l’utilisateur, afin d’assembler la solution ainsi particularisée.

On retrouve ce résultat sur des aspects plus locaux : la Fig. E.13 montre l’évolution de
la contrainte de von Mises σVM dans un élément endommagé pour l’ensemble des jeux de
paramètres (µ2, µ3). Enfin, on peut remarquer sur la Fig. E.14 que la norme des modes décroît
globalement avec le nombre d’itérations.

Seulement 11 itérations ont été nécessaires pour calculer la solution de ce problème ex-
acerbant une forte variabilité à la fois sur des paramètres matériau et affectant le chargement
imposé (pour un total de 10, 800 jeux de paramètres possibles). L’utilisation de la PGD dans
ce cas est particulièrement intéressante car elle permet de grandement réduire le coût associé
au traitement du problème linéaire du solveur LATIN, ainsi que de permettre très facilement
l’étude de l’influence de ces paramètres sur les réponses mécaniques globales ou locales de
la structure.

5 Conclusions et perspectives
La faisabilité du couplage LATIN-PGD avec une décomposition paramétrique a été montrée
dans [Vitse et al., 2014] pour un problème 1-D et un premier résultat pour un problème 3-D

2https://rom.ec-nantes.fr/
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Figure E.11: Essai de flexion – fonctions paramétrique {a1
i (t)}i=1···11 (Fig. E.11a), {a2

i (µ2)}i=1···11

(Fig. E.11b) et {a3
i (µ3)}i=1···11 (Fig. E.11c)

avec un modèle endommageant avec effet unilatéral a été présenté. Ces résultats sont en-
courageants car ils permettent, avec un faible nombre de termes dans la décomposition PGD,
d’approximer le comportement global de la structure avec un modèle pourtant fortement non-
linéaire et une forte variabilité sur le déplacement imposé. L’analyse de structures massives
avec des chargements plus complexes et une variabilité sur des paramètres matériaux et af-
fectant le chargement sont nécessaires pour valider la méthode, et analyser ses performances
numériques.

Les perspectives de ces travaux portent notamment sur le développement d’estimateurs
d’erreurs permettant de caractériser la qualité du modèle réduit, reposant à la fois sur des
critères globaux et locaux. L’utilisation d’approches de types points de référence [Capaldo,
2015] peut également s’avérer intéressante pour alléger le coût de calcul de l’étape locale de
l’algorithme LATIN.
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