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Abstract

At high enough energies, QCD processes can be factorized into a hard part, which can be computed
by using the smallness of the strong coupling to apply the perturbative Feynman diagram method, and a
non-perturbative part which has to be fitted to experimental data, modeled or computed using other tools
like for example lattice QCD. However the smallness of the strong coupling in the perturbative part can
be compensated by large logarithms which arise from the cancellation of soft or collinear divergences,
or by the presence of multiple kinematic scales. Such logarithmically-enhanced contributions must be
resummed, leading to the DGLAP evolution at moderate energies and to the BFKL or B-JIMWLK equation
in the high energy limit. For the largest energies gluon recombination effects lead to saturation, which can
be described in the color glass condensate (CGC) or shockwave formalism. In this thesis, we propose to
study several exclusive perturbative QCD processes in order to get a better understanding of factorization,
resummation and saturation effects.

In the first part we perform the first computation of an exclusive quantity at Next-to-Leading-Order
(NLO) accuracy using the QCD shockwave formalism. We calculate the NLO amplitude for the diffractive
production of an open quark-antiquark pair, then we manage to construct a finite cross section using
this amplitude by studying the exclusive diffractive production of a dijet. Precise phenomenological and
experimental analysis of this process should give a great insight on high energy resummation due to the
exchange of a Pomeron in diffraction, which is naturally described by the resummation of logarithms
emerging from the soft divergences of high energy QCD. Our result holds as the center of mass energy
grows towards the saturation scale or for diffraction off a dense target so one could use it to study
saturation effects.

In the second part we show how the experimental study of the photoproduction of a light meson and
a photon at moderate energy should be a good probe for Generalized Parton Distributions (GPDs), one of
the generalizations of the non-perturbative building blocks in collinear factorization. In principle such a
study would give access to both helicity-conserving and helicity-flip GPDs. We give numerical predictions
for this process at JLAB@12GeV.
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Chapter 1

Résumé francais

La thése présentée ici traite de différents processus exclusifs en Chromodynamique quantique (QCD),
décrits a l'aide des outils de QCD perturbative, utilisables aux énergies hautes et modérément hautes.
Ces outils reposent sur la factorisation des processus hadroniques en une partie dite dure, calculable a
I'aide des méthodes habituelles des diagrammes de Feynman gréce a la petitesse de la constante de cou-
plage de QCD «; permettant 'expansion perturbative en puissances o, et une partie non perturbative
qui requiert des méthodes différentes comme par exemple la QCD sur réseau, ou doit étre contrainte par
les données expérimentales.

L’introduction de ce manuscrit présente une description des différentes factorisations en QCD pertur-
bative, qui seront mises en ceuvre dans la thése. Considérant un processus hadronique avec une énergie
au centre de masse s et impliquant une échelle dure 2, deux régimes cinématiques principaux peuvent
étre distingués: le régime colinéaire aux énergies modérées s ~ Q2 et le régime de Regge-Gribov aux
plus hautes énergies s > Q2. La factorisation colinéaire s’appliquant dans le premier cas met en jeu des
partons d’impulsion colinéaire au hadron, et la factorisation dite k; s’appliquant dans le deuxiéme cas
implique I'échangées de gluons de basse énergie (par rapport au hadron) avec un moment transverse
non nul. La factorisation en QCD est liée a la présence de grands logarithmes aprés compensation de di-
vergences infrarouges dans les observables physiques. En factorisation colinéaire les termes en o In(Q?)
sont resommeés par 'équation de Dokshitzer, Gribov, Lipatov, Altarelli, Parisi (DGLAP) et en factorisation
k: par les termes en «; In(s) sont resommés par I'’équation de Balitsky, Fadin, Kuraev, Lipatov (BFKL) et
par ses extensions non-linéaires Balitsky, Kovchegov (BK) et Jalilian-Marian, Iancu, McLerran, Weigert,
Leonidov, Kovner (JIMWLK) comprenant les effets de saturation gluonique aux énergies asymptotiques.

Dans la premiére partie de cette these, le formalisme dit des ondes de choc de QCD, I'extension non-
linéaire de la factorisation k;, est dérivé en détail. Aux énergies asymptotiques, un nucléon se comporte
comme un systéme trés dense de gluons faiblement couplés. Dans le référentiel d’un projectile qui rencon-
tre ce nucléon, ce projectile voit le champ de couleur effectif du nucléon qui possede alors une structure
spatio-temporelle similaire & une onde de choc. Le formalisme en question étudie I'évolution de ce champ
effectif avec effets de recombinaison des gluons (responsables des effets de saturation), et son couplage
au projectile.

Plus précisément le bloc non perturbatif de ce formalisme est constitué d’éléments de matrices du type
(P'|W|P), ou P’ (resp. P) est I'état sortant (resp. entrant) de la cible hadronique et W est construit a
partir de lignes de Wilson

U, = Tei9 d="07 (=), (1.1

constituées de gluons lents du champ b* de la cible. Du point de vue du projectile, le couplage a ce champ
est instantané et eikonal : b*(z) = §(2)b~ (Z)nk. Ce champ est le champ d’onde de choc, et il est possible
de dériver de maniere effective les régles de Feynman nécessaires pour le calcul du facteur d’impact d’'un
projectile en présence de ce champ.

Dans ce manuscrit les regles de Feynman effectives en présence du champ d’onde de choc sont ex-

plicitées, et 'équation d’évolution BK-JIMWLK pour 'opérateur dipolaire Z/lm] =1- —Tr(UZl Ut ) appa-
raissant dans un tel formalisme est redérivée en dimension quelconque, puis il est montré que {a limite
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quadridimensionnelle du résultat correspond bien a I'équation telle qu’elle est présentée dans la littéra-
ture
auzizj _ asNe

= d?z
on 272 “k

ol 7 est la séparation de rapidité, un parametre qui controle la séparation entre les gluons du facteur
d’impact du projectile et les gluons de voie ¢ provenant de la cible. Dans la limite linéaire ot le terme
enU.,., U, ., est négligé, cette équation est équivalente a la formulation en espace des coordonnées de
I’équation BFKL.

Une fois les regles de Feynman et 'équation d’évolution définies, le calcul au premier ordre de préci-
sion sous-dominant du facteur d’impact (partie dure en factorisation k;) d’'un processus diffractif exclusif
est fait en détail.

La diffraction en QCD est 'une des découvertes majeures du collisionneur HERA : il a été observé
qu’environ 10% des événements v*p — X révélaient un intervalle de rapidité entre les particules pro-
duites dans la zone de fragmentation du proton et les particules produites dans celle du photon virtuel.
La présence de cet intervalle de rapidité nécessite de décrire la diffraction par '’échange d’une particule
effective ayant les nombres quantiques du vide, le Pomeron. Deux modéles principaux ont été développés
pour cet échange de Pomeron, I'un dans le cadre de la factorisation colinéaire et 'autre dans le cadre de
la factorisation k;. Des analyses expérimentales récentes semblant favoriser le deuxiéme modele dans le
régime de faible masse diffractive, le but du calcul présenté dans ce manuscrit est d’améliorer les résultats
théoriques disponibles pour la description de la production diffractive exclusive d’une paire de jets vers
I'avant.

jet

jet

p Y

Figure 1.1: Modéles pour la production diffractive d'un double jet vers I'avant : resolved Pomeron (gauche)
et direct Pomeron (droite)

Pour ceci, 'amplitude complete a 'ordre sous-dominant est obtenue, 'échange d'un Pomeron en voie
t étant décrit par 'action d’opérateurs dipolaire et double-dipolaire sur les états entrant et sortant de la
cible hadronique, afin de pouvoir inclure les effets de saturation dans les prédictions numériques futures
basées sur le résultat présenté ici.

Dans un premier temps les régles de Feynman effectives sont utilisées afin de construire le facteur
d’impact pour la production diffractive vers I'avant d’une paire quark-antiquark (¢q) au premier ordre
sous-dominant. Pour cela il est nécessaire de calculer le diagramme présenté ci-dessous et toutes les
corrections virtuelles a ce diagramme.

Ensuite celui pour la production diffractive vers 'avant d’'un quark, un antiquark et un gluon (¢gg)
est calculé a 'ordre dominant, a partir des diagrammes ci-dessous et de leurs symétriques par 'échange
quark-antiquark :
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1 p2

—pg

Pq

Tm

Figure 1.2: Facteur d'impact d’ordre dominant. Le bloc gris indique 'interaction avec le champ d’onde de
choc, avec transfert d’impulsions effectives p; et ps.

Figure 1.3: Diagrammes dominants pour I'amplitude v* — g¢gg amplitude, avec échange effectif
d’impulsions p1, p2 and ps.

Les deux facteurs d’impact obtenus sont combinés afin d’obtenir la description a 'ordre sous-dominant
de la production diffractive exclusive d’une paire de jets vers 'avant avec la cinématique la plus générale.
Tous les mécanismes d’annulation de 'ensemble des divergences sont présentés. Nous montrons comment
I'équation d’évolution dipolaire permet d’annuler la divergence de rapidité et nous décrivons les effets de
la renormalisation sur les divergences ultraviolettes. La divergence molle et colinéaire est annulée par la
redéfinition des observables physiques via un algorithme de jet. Les divergences molle et colinéaire de la
contribution ¢gg sont isolées et réécrites de maniere a faire apparaitre leur forme habituelle ot le terme
dominant est un facteur global, et enfin annulées par les divergences restantes de la contribution ¢q.

Nous obtenons ainsi une expression finie pour la section efficace d’un processus exclusif a 'ordre sous-
dominant aux énergies asymptotiques avec effets de saturation gluonique. De trés nombreuses autres ob-
servables peuvent étre obtenues a partir des deux facteurs d'impact avec production ouverte de ¢g ou qgGg
ici obtenus, et plus généralement des techniques qui ont été développées dans ce but durant ce travail de
these. Certaines de ces observables sont présentées pour leur intérét théorique ou expérimental: section
efficace totale v*p — v*p, qui permettrait de vérifier par le calcul direct des résultats précédents obtenus
indirectement et d’avoir acceés a la trajectoire du Pomeron perturbatif a la précision sous-dominante ;
facteur d’impact pour des processus diffractifs exclusifs tels que la production d’un méson p° a l'ordre
sous-dominant, ou encore, sur le plan formel, clarification du lien entre le formalisme des ondes de choc
et le formalisme historique plus classique BFKL, non-trivialement équivalent dans la limite ot les effets
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de saturation gluonique sont négligeables. Sur le plan phénoménologique, I'intérét principal du calcul
présenté ici est la trés grande variété des prédictions possibles dont il pourrait servir de base. En effet la
généralité de la cinématique, I'utilisation du formalisme des ondes de choc valable jusqu’aux échelles de
saturation, et le fait que, les divergences étant annulées, la factorisation est prouvée a 'ordre considéré,
permettent de décrire le processus dans n’importe quel type de collisions : électron-proton, électron-ion,
et collisions ultrapériphériques proton-proton et proton-ion, ou le photon initial est émis par un hadron
ou un ion. En conséquence, ce résultat est utilisable aussi bien pour décrire des données existantes (par
exemple les analyses récentes des données de HERA), pour obtenir des prédictions pour des expériences
en cours d’analyse ou prévues (par exemple au LHC ou a RHIC) ou pour des expériences futures (par
exemple pour les projets futurs EIC ou LHeC). La grande précision des résultats de cette thése devrait
permettre une meilleure description des mécanismes de resommation molle, et grace a leur applicabilité
aux collisions impliquant aussi bien des hadrons que des ions lourds, une meilleure compréhension des
effets de saturation gluonique devrait en découler.

La deuxiéme partie de ce manuscrit traite de la question de la structure interne du proton via un
processus exclusif aux énergies plus modérées. Nous y présentons une étude de faisabilité détaillée pour
la photoproduction d’'un méson p° et d'un photon avec une grande masse invariante M., constituant
une échelle dure pour permettre I'application de la factorisation colinéaire. Il a été prouvé pour certains
processus que la factorisation colinéaire était applicable quel que soit 'ordre de précision du calcul du
sous-processus partonique en puissance de as. En rapprochant le processus proposé dans cette deuxieme
partie de deux d’entre eux, nous nous convaicons tout d’abord que la factorisation colinéaire devrait
s’appliquer dans notre cas. Nous procédons ainsi a la factorisation proprement dite, en une partie dure
et deux éléments de matrice non-perturbatifs : une Amplitude de Distribution (DA) pour le méson et des
Distributions de Partons Généralisées (GPD) pour le nucléon cible.

t' v

TN TN

2
» MW
2
M’YP §

x+¢€ x—£
@'s@ p

t

Figure 1.4: Similarité de la factorisation du processus étudié avec la Diffusion a Grand Angle v& — ~p,
en partie dure Ty, DA ¢ et GPD.

Au twist dominant (ici terme dominant dans I'expansion en puissances de M, ), la DA du méson est
paire (resp. impaire) en termes de chiralité si sa polarisation est longitudinale (resp. transverse). Il
existe en tout 8 GPDs possibles, dont 4 de chiralité paire et 4 de chiralité impaire. Par conservation de la
chiralité, le processus permet donc théoriquement de mesurer les GPDs paires tout comme les impaires,
selon la polarisation du méson. Nous nous placons pour notre étude a dans la limite quasi-diagonale,
ol I'impulsion échangée en voie ¢ est négligeable. Dans cette limite, seulement 2 GPD paires et une
GPD impaire contribuent. Les diagrammes de Feynman avec les projections de Fierz correspondantes qui
constitutent la partie dure associée a chacun des cas sont calculés analytiquement.

Dans le cadre de la factorisation colinéaire, le processus total s’écrit comme la convolution de la partie
dure avec une DA et une GPD. La DA est une fonction de deux variables : la fraction z d’impulsion du
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quark de la paire quark-antiquark constituant le p° & 'ordre de précision considéré et une échelle de
factorisation pur. Dans la limite ou up tend vers I'infini la DA a une forme analytique simple, que nous
utilisons pour notre étude de faisabilité afin de faire la convolution de la partie dure avec la DA ana-
lytiquement. Pour ce qui est de la GPD, nous nous basons sur 'ansatz de Radyushkin, qui permet de
modéliser 'élément de matrice non-diagonal comme la convolution d’'une Distribution de Parton (PDF)
avec une fonction de profil. A partir de cette ansatz et de valeurs extraites expérimentalement pour
les PDF, nous construisons des valeurs numériques pour les GPD, et nous faisons enfin la convolution
restante avec la partie dure.

A partir de ces résultats, nous concluons notre étude de faisabilité dans le cas particulier d’'une ex-

périence a JLab@12GeV en proposant les sections efficaces différentielle et totale, ainsi quun taux de
comptage prenant en compte les contraintes expérimentales de luminosité. Nous étudions également les
effets d’'une coupure angulaire sur ces nombres, afin de vérifier que les caractéristiques du détecteur ne
soient pas trop contraignantes.
Les statistiques trés prometteuses obtenues montrent que le processus considéré constitue une excellente
facon d’extraire expérimentalement de l'information sur les GPD, avec ou sans renversement de I'hélicité
des quarks (suivant la polarisation du p° produit. Cependant la différence de magnitude entre les con-
tribution paire et impaire de chiralité implique qu’afin de mettre en évidence les GPD impaires (GPD de
transversité, jusqu’ici expérimentalement inaccessibles), une étude théorique plus approfondie est néces-
saire. L’étude serait aisément reproductible pour d’autres expériences (par exemple 8 COMPASS, au LHC,
ou dans des futurs collisionneurs comme EIC ou LHeC). L’intérét de la classe de processus ici étudiée
est de permettre de tester phénoménologiquement I'universalité des GPD, qui sont jusqu’a présent essen-
tiellement étudiées dans le cadre de la diffusion Compton profondément virtuelle ou de la production
virtuelle exclusive de mésons.

Le manuscrit présenté ici montre ainsi en quoi '’étude de quelques processus exclusifs peut permettre
d’adresser plusieurs questions fondamentale de la QCD : les effets de resommation a haute énergie, les
effets de saturation, et la physique non-perturbative liée a la structure interne du proton. Plusieurs
outils théoriques ont été développés en vue de prédictions numériques précises dans un futur proche,
et une étude complete de faisabilité aux prédictions prometteuses est présentée, reproductible pour de
nombreuses expériences.
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Quantum Chromodynamics (QCD) is the quantum field theory of strong interactions. It is based
on the non-abelian gauge group SU(N,), where N. = 3 is the number of quark colors. It contains
by itself a natural extension of the so-called naive parton model which was proposed by Feynman and
Bjorken [1,12] as an explanation for the Bjorken scaling observed in inclusive Deep Inelastic Scattering
(DIS) events at SLAC in the sixties. QCD successfully describes even the strangest properties of the
strong interaction. Indeed as shown by Wilczek, Politzer and Gross [3H5], QCD is an asymptotically free
theory due to its non-abelian character given the number of quark degrees of freedom we know. This
explains why partons in a strongly bound hadronic state behave like free particles. The major difficulty
for the theoretical description of QCD processes is due to confinement : the direct observation of partons
as isolated free particles is impossible, one can only observe colorless bound states formed by several
partons. The mere existence of gluons was only proven in 1979 at PETRA. There are several ways of
circumventing confinement to describe strong interaction processes, among which perturbative QCD.

When describing a QCD process using perturbation theory, at least two scales (which might be of the
same order) are involved : the center-of-mass energy s of the whole process and a hard scale Q% > Aéc D
Typically Q? will be a photon virtuality, a squared transverse momentum, the squared mass of a heavy
quark or the invariant mass of a subprocess. Perturbative QCD relies on the factorization of the total
process into a hard part and a non-perturbative part. The latter contains the long distance dynamics of
the parton inside hadrons and it cannot be computed with the usual methods. One has to either fit it
to the experimental data, build a phenomenological model or use methods like lattice QCD to obtain a
description of non-perturbative quantities. Factorization implies that these quantities must be universal,
so experiments actually allow one to extract consistent information on the non-perturbative dynamics.
The computation of the hard part relies on the smallness of the strong coupling constant «s(Q?) at hard
enough scales, so that one can use the usual perturbative methods of Feynman diagrams. However
due to the presence of infrared divergences, or in some cases to the presence of additional scales, large
logarithms tend to appear when computing hard parts. Indeed for example in dimensional regularization,
quantities like

(@) = % +1n(Q%) +0(e) (1.3)

will appear when considering collinear gluon dynamics in the massless quark limit. In an infrared and
collinearly safe observable, the 1 pole cancels, but the logarithms remain. Thus a,In (Q?) terms arise.
Large logarithms can compensate the smallness of the coupling constant, in which case these terms are
of order 1. This means that the as-expansion is not a completely valid one and one has to extract terms

of type

ol In? (Q?) (1.4)

at all orders of this expansion. There are two main kinematic regimes of perturbative QCD, leading to
two different formalisms : collinear factorization and k;-factorization. The first regime is the so-called

Bjorken limit Q? — oo at moderate s or equivalently at moderately small Bjorken x, given by x = %2, and
the second one is the so-called Regge-Gribov or semihard limit s > Q? or equivalently z — 0.

The Bjorken limit of QCD is dominated by collinear dynamics : large logarithms of Q2 arise from
the cancellation of collinear divergences. The resummation of such logarithms leads to the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation [6H9] for the Parton Distribution Functions
(PDFs) and to the Efremov-Radyushkin-Brodsky-Lepage evolution equation [10H12] for the Distribution
Amplitudes (DAs). PDFs and DAs are the basic non-perturbative building blocks in the collinear factor-
ization framework which is to be used in such kinematics. Factorization in the Bjorken limit at leading
twist (i.e. for the dominant term in the % expansion) has been proven at all orders in «; in the hard part
for several processes, such as Deeply Virtual Compton Scattering (DVCS) [13,[14], i.e. v*p — ~p, and
Deeply Virtual Meson Production (DVMP) [15], i.e. v*p — Vp, where V is a light meson. Both processes
are described in Fig.
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Q?

Figure 1.5: Collinear factorization for DVCS (left) and DVMP (right). Generalized Parton Distributions
(GPDs) are the non-forward extensions of PDFs

The behaviour of the PDFs as a function of =, measured at HERA, are shown in Fig[I.6l Such re-
sults show that as the center-of-mass energy of the process grows, or equivalently as x decreases, the
contribution from exchanged gluons start dominating the process more and more.

) H1 and ZEUS

W2 =10 GeVf

xf

0.8 —— HERAPDF2.0 NNLO
. uncertainties:
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_— XUy
[ parameterisation

HERAPDF2.0AG NNLO

104 10° 102 10 1

Figure 1.6: Parton distribution functions [H1 and ZEUS collaborations, 2015]

This is actually natural in the second main QCD factorization formalism. QCD in the Regge limit is
dominated by soft gluon dynamics : large logarithms of x arise from the cancellation of soft divergences.
Such a4 In(z) terms are resummed by the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [16HI9]. One
of the most successful features of the BFKL approach is that it is consistent with pre-QCD results from
Regge theory. In Regge theory, which describes the strong interaction at small values of z, one can
show that processes are dominated by the exchange of an effective particle which carries the quantum
numbers of the vacuum, called the Pomeron. In the BFKL framework, a Pomeron is naturally described
as an effective ladder of ¢-channel gluons as shown in Fig.[I.7]
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Figure 1.7: BFKL description of the v*p — ~*p cross section. Black dots stand for Lipatov’s effective
vertex

Fig. [.8 sums up what was adressed : for large Q2 and moderate s, collinear factorization applies
and one seems to probe point-like quarks (the transverse resolution is of order Q~'). As s grows, the
target appears to become a denser and denser gluon medium, until at some point it becomes infinitely
dense. This infinite density is of course a physically incomplete picture. In the BFKL formalism, it appears
mathematically via the violation of the Froissard bound. Indeed at large s, cross sections behave like a

power of s
o X sap(t)_l, (1.5)

where ap is the Pomeron intercept. This is compatible with the BFKL result

ag4N,
T

—

ap(0) = 14 In(2) > 1. (1.6)
However it was shown by Froissart that the conservation of probability, as encoded through the unitarity
of the S-matrix, requires the cross section to grow slower than In*(s) [20]. Thus at very large center-
of-mass energies, the BFKL picture is incomplete : one needs some kind of saturation effects to occur in

order to slow down the growth of the cross section with s.

1 .
Y=In: Saturation
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s
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Figure 1.8: From collinear factorization to saturation

The idea to incorporate recombination terms through triple-Pomeron vertices (see Fig. to obtain
non-linear terms in the evolution equation was first introduced by Gribov, Levin and Ryskin [21]]. Such
an approach relies on the resummation of double logarithms o In(s) In(Q?) and constitutes a first step
towards saturation.
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Figure 1.9: “Fan” diagram involving a triple pomeron vertex

A more involved evolution equation was later derived by Balitsky in the so-called shockwave ap-
proach [22H25] and by Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov and Kovner (JIMWLK) in the
so-called Color Glass Condensate (CGC) approach [26434]]. This Balitsky-JIMWLK (B-JIMWLK) equation
(actually a hierarchy of equations, see part[2]of this thesis for further details) reduces, in the dipole oper-
ator case and in the double logarithmic limit, to the GLR equation. Its large- N, truncation was recovered
by Kovchegov using Mueller’s dipole formalism [35,[36]. It is estimated that the CGC formalism (or
equivalently Balitsky’s shockwave formalism) must be applied instead of the BFKL formalism for values
of Q2 outside the

Qs ()

2
ASep

Q:(z) <Q*< 1.7)

range, where Q? (z) = (Az™!) 3 Aéc p is the saturation scale and A is the mass number of the target [37].
The upper bound is linked to the fact that for too large values of Q?, k;-factorization is no longer the right
formalism to use.

In the first chapter of this thesis, we will study diffraction in the shockwave formalism. We will start
by giving an introduction to Balitsky’s shockwave approach for CGC computations. We first derive the
tools which are needed to compute impact factors in such a frame : the Feynman rules in the presence
of an external field built from slow gluons and the B-JIMWLK evolution equation for dipole operators
in D dimension, both in coordinate and in momentum space. Then we will detail the computation of
the impact factor for the diffractive open production of a quark-antiquark pair at NLO accuracy and the
impact factor for the diffractive open production of a quark, and antiquark and a gluon. From these
impact factors, we will finally build the impact factor for the exclusive production of a dijet in diffractive
DIS with an emphasis on the mechanisms which are involved to cancel the divergences. We conclude by
giving a list of several possible phenomenological applications and theoretical extensions or adaptations
of our results.

In the second chapter, we will show how exclusive processes allow one to extract non-perturbative
quantities experimentally. We will calculate the cross section for the photoproduction of a p meson and a
photon at leading twist and at leading order in «s; and we make a full feasibility study for this process at
JLAB@12GeV. We will detail the computation steps and the numerical methods which are used to obtain
our estimates.
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Chapter 2

An introduction to the shockwave
formalism

The shockwave formalism, or equivalently its CGC formulation, applies when one considers the scattering
of a dilute projectile on a dense target with high center-of-mass energy. The most straightforward example
of such a CGC process would be DIS off a heavy ion, but DIS off a proton can also be described in
the shockwave formalism if the center of mass energy of the collision is large enough. Note that the
CGC formalism can also be used in nucleus-nucleus collisions [38]. Let us consider such a process with
semihard kinematics s > Q* > A%, where Q” is the hard scale of the process, so that k;-factorization
applies. We will focus on diffractive DIS : our probe will be a photon with a large momentum along the
p® > 0 direction and the target will be a nucleon with a large momentum along the p* < 0 direction. We
introduce two lightcone vectors n; and ns as such :

1

1
n=—(1,01,1), no=—=(1,01,-1), nf =n, =(n; -n) =1 2.1
1 \/5( iR ) 2 2( 1 ) 1 2 ( 1 2) ( )

For any vector p we denote
pt=p_=(p-n2) = 1 P+, pr=p =(p-m)= 1 (r° -p%), (2.2)

V2 V2
p=ptni+p na+pi, (2.3)
so that

(p-k)=p"ky=p k™ +p k" +(pL ki) =pik_ +p_ky — (- k). 2.4

In this chapter and in the next one, we will work in dimension D = 2 + d = 4 + 2¢, so the transverse
momentum components will lay in a d-dimensional space. We will introduce a regularization scale p
with the dimension of a mass, since in dimensional regularization the coupling constant is a dimensional
quantity :
- -2

Jo=gp S Qo =asp " (2.5)
With these lightcone notations and in the Regge limit the projectile momentum p, and the target mo-
mentum p; will have large components respectively along n; and along ns, so that :

_ s
p;, P~ (2.6)

The B-JIMWLK picture is a k;-factorization formalism : the cross section is factorized into a projectile
impact factor and a target impact factor with the exchange of eikonal gluons with non-sense polarizations
in ¢t-channel. The shockwave approach relies on the separation of the gluonic field depending on its
rapidity (see Fig. ), in the spirit of the renormalization group : one integrates over the fast modes in the
impact factor, and the integration over the slow modes will lead to a renormalization equation for the
effective Wilson lines exchanged in ¢-channel.

23
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pT>elpy

Figure 2.1: Rapidity separation

When considering the projectile, gluons with positive +-momentum above a certain cutoff e”p;t
(n < 0) will contribute to the quantum corrections to the impact factor while the gluons with +-momentum
lower than this cutoff will act as an external field and will be treated as Wilson line operators. The quan-
tum corrections to the Wilson lines will lead to the resummation of logarithms, which contribute to the
B-JIMWLK evolution equation for the Wilson lines. This evolution equation then allows one to get rid
of the non-physical cutoff ¢”p/}” and is the non-linear extension of the BFKL equation in the shockwave
picture.

The B-JIMWLK equation was derived at LL accuracy in [[22H34]. Its large N, limit (or equivalently its
mean field approximation) was derived in Mueller’s dipole picture in [35,[36]]. Progress has been made
towards a general NLL description of the evolution equation in Balitsky’s picture in [39]], and the JIMWLK
Hamiltonian is known at NLL accuracy [40]. B-JIMWLK evolution is now known explicitly at LL. and NLL
accuracy for the dipole operator [41444], for the 3-point operator [45/46] and for 4-point operators [47l-
51]]. Some progress has been made towards moderate-z extensions of B-JIMWLK in [52]/53]. In the CGC
picture for a dense target, "next-to-eikonal' and "next-to-next-to-eikonal" A~!—corrections have been
computed in [54}/55].

Throughout this chapter, we will develop some techniques to compute projectile impact factors. We
will write the complete set of Feynman rules for such a computation, then we will derive the B-JIMWLK
evolution equation in D dimensions in coordinate space and in momentum space.

2.1 The boosted gluonic field

Let us consider a gluon field b} (z) in the target rest frame. We go to the projectile rest frame by a Lorentz
transformation with velocity 3 along the 2T axis. We introduce the new coordinates as :

(x+, 7, f) = (%, Az, 7), (2.7)
A = % . (2.8)
Then the gluonic field in the new frame b* reads :
bt e 7) = phg(at, T E),
b (et e F) = Abp (At T ), 2.9)
bt (er, x, f) = bh(AxT, %, x).

We will assume that the field vanishes at infinity. Then for a very large boost, the right-hand side of
Eq. (229) involves the field at close to infinite lightcone time =™, which then vanishes for both the + and
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i components of the field. Thus up to a A~! correction, one can write :

bt (ac*, T, f) = 0,
b (et e 7)) = A (At T ), (2.10)
bt (er, x, f) = 0.

The — component of the field loses any dependence on z~ since for large A it will always be evaluated
at z— = 0. One can trivially check via the action on a test function that for any integrable function F,

lim AF (Az) «x §(x). (2.11)

A—oo
Thus we can finally write
Vo(zt e, &) = b (ah,@)ny = 6(z7)B(@)nh. (2.12)

Let us now consider the collision of our projectile with a large momentum p,, along p* on a target with a
large momentum p; along p— and with mass m;. Then the energy of the target in the projectile’s frame is

L -
po_ M P TP P (2.13)

V1-p32 V2 V2

Hence the boost to go from the target frame to the projectile frame is of order

B~ 1—(:132 (2.14)
t
Thus
A~ V2R (2.15)
m
Hence basically
A~ |2 (2.16)
my

when pf ~ p; ~ (/2. This is the reason why we will always consider A~' corrections to be of order
% hence negligible. When computing a projectile impact factor, the field from the target will thus be
described as an external field with the form of Eq. (2.12). This is the picture we will use from now on.

2.2 Feynman rules in the shockwave field

2.2.1 Lagrangian
The QCD Lagrangian L reads :

1 — A
L = —Z]-'Wu}'a“” + iy Dy (2.17)

1
= Efree - gfabc (a#.Aﬁ) (AHZ)AUC) - ZQQfabcfade (AZAgA#dAUG)
i (49#1,4“) b, (2.18)

where we separated the interacting part and the non-interacting part £.... Throughout this thesis, we

will use the notation k = ~v*k,. Let us split the gluonic field into the internal field A, and the external
field b, :

A = AT b (2.19)
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Using the fact that b#b,, & n3 = 0, one gets :
L = —gfue [((A%-0) A%+ (- 0) A%) - (A°+1°) + ((A°- ) b + (b*- 0) b°) - A°]
20 Fanfuae [((A° - A%) + (6 A7) (A" 4) 4 (b 4%) + (8- 4°))
+ (b AT) (A" A7) + (0° A7) + (b A%))]
+ig) [—igt“ (Aa + Ba)} b (2.20)

Using the lightcone gauge (nq - A) = 0 simplifies this Lagrangian a great deal since in that case (b- A) = 0.
It becomes :

L = *gfabc (Aba) (Aa'AC)*ig%fabcfade [(Aa~Ad) (Ab~Ae)}
+i [~igt*Ae] 2.21)
~afune (-9) (A% 4% + gt (370

The part where the internal field interacts with the shockwave field thus reads :

aAb
Aa

Eint = 7gfacbbicgaﬁ G-

+g (o) (2.22)
2.2.2 Quark propagator through the shockwave field

20 Z1 %) z3

>

Figure 2.2: Quark propagator with 2 interactions with the external field

Using the Lagrangian in Eq. (2.22) one can write the propagator for a quark interacting twice with the
external field while propagating from point z, at negative lightcone time to point z3 at positive lightcone

time (Fig.[2.2) :
G (23, 20) |Z3+>0>Z0+ = /dDZ2dDzlGo (232) [igb™ (22) 7] Go (221) [igb™ (21) 7] Go (210)

I o dPps dPpy dP
/dngdDzl [’Lgb (22) igb (2’1)} /(27:))% (27:;; (27:;;
xGo (p3) v Go (p2) v Go (p1) (2.23)
X exp [~ (p3 - z3) + @ (p3 — p2) - 22 + i (p2 — p1) - 21 + i (p1 - 20)] -

Here, G| is the free quark propagator. b~ (z) does not depend on =z~ so one can integrate w.r.t. z; and z;
to get the explicit conservation of the + component of the momentum ¢ (p5 — p3) & (p3 — pi). Then :

G (z3, 20) |Ze.+>0>zo+ = (2m) /d22 dzid?%d 2y [igh™ (23, %) igb™ (27, 21)] (2.24)

ddps ddpz ddpl R, R, e L .
/ / )D exXp [Z (P3 - Z32) 4+ i (P2 - Z21) + 4 (P1 - Z10) — 'LerZgo]

2w

- (p v er:u) -
X /dp3 520y <P [—2p3 z;ﬂ
2p* (p3 §p+ )
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_ i(pTy” 4 p2i) _
X /dp2 ~F S—— ~Texp [—sz z;rl]
2p* (pz - 22p+ )
_ Z(p-’_’y_ +ﬁll_) L4+
X /dp1 a0\ OXP [fzpl 210} .
2p* <p1 - 12p+ )

Note that throughout this thesis, every integral written without bound is taken from —oo to +00. A
straightforward pole integration gives :

G (zs3, 20) |23+>0>Zo+ = (27r)5 /d,z2 dzfddZQddzl [ng (22 , zz) igb~ (Z1 , zl)] (2.25)

) / dp™0 (") 0 (232) 0 (221) 0 (1) exp [=ip™" 23]

d'ps (P9~ +Ps1) 2 ( pt ) <p+)242 .
X exp Ps— 232 —|—= | Z35—10
/ emP?  2pt Tt 23 )

ddﬁQ + 2;1 L2 . LS o
X WV exp *12]7 (pz *ZO) +i (P - Z1)

B (Pt~ +pis) 2 ( pt ) <p+)242 .
X exp | —t—— pPr——=%10) —|—/ ) Z15—%0,].
/ em?  2pt 2pt #h o)

We saw previously that up to a f correction, b~ (21, Z) oc § (2T). Thus the p> gaussian integral shrinks
into a ¢ function up to \[, which allows one to show explicitely that the interaction with the shockwave
field occurs at a single transverse coordinate. To make the p3 and p; gaussian integrals converge, let us

"
note that %2 > 0. One can replace i0 by i0C for any positive C. This way one can manipulate the 0
factors :
+ + 2 +\ 2
23 | (- P p
—i== | Ps— =32 — | =) %31 —10 (2.26)
2p+ [ ( z;rQ ) ( Z:;FQ ) 31 ‘|

—+ -+ 2 + 2
. 239 N P L . p -9 .
= —1—F — —Z -0 — | — Za1 + 10
2p* H (p3 3 32) } (2;2) (i +10)

24 pt 2 pt )
= —3—=(1-10 - —Z +1 Za5 +140) .
2+( )( z3+232) 232(31 )

A similar trick can be used for ;. Thus one finally ends up with three convergent transverse integrations.
Performing them gives :

. o (Z
G (23, 20) |z;>0>z0+ = /d22 dzid?z,d%z, [ng (z2 , 22) igh~ (zf, zl)} % (2.27)

a a
~ L EmL\ 4~ ZoL 4 —2impt\? [ —2impT 2
() (2 o (2
( 23 2o % Z1o
X0 (p™) 0 (252) 0 (231) 0 (210)
+

+
X exp [¢p+z30 il (22 +i0) + i (73 + io)}
2239 227

I'(D-1
= ZW /dZ;rderdd [Zgb (22 5 Zl) Zgb ( ;r7 _'1)] (228)
% (Z;’Y_ + 5311.) ~T (*ZJ’Y_ + ,2101_) 0 (zgg) 0 (z;rl) 9 (zﬁ))
B 2 ,.\D—1"
(—Z:?ZJ) : ( Z30 + Z4i0 Zl§)+7‘0)

z;r 2.20+

Let us define

UZSQ) = (ig)® /dzidzf@ (232) 0 (231) 0 (210) b~ (25, 2) b7 (21, 2) - (2.29)
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Then

(2377 +2311) 7
(—22) * (—20 + 4

( T+ 210¢)
: 0)”

The physical interpretation of this expression is not obvious, although it was now proven that the quark
field interacts instantly and at a single transverse point with the external gluonic field. The following
computation will give a more meaningful, although less complete, expression. Let us define

G (Z3a ZO) |.23+>0>zo+ = ’L% /dd_a U(l) 1° (2.30)

é (237 20) |ZS+>O>ZO+ = - /dDz15 (Zfr) GO (2’31) ’Y+G0 (210) 0 (Z;r) 0 (—ZSF) Uéf) 5 (231)

and compare it to our result for G (z3, zp). One has :

2
. r(& ziy T+ 2 t(—2fy +2
G (23, 20) |z;>o>z0+ = [(_QD)] /dzl_dd:%Ug) (257 311) 72 (=207 101) -
2> (=223 237 + 2 +10) * (225 270 + 713 + i0) °
(2.32)
One now has to use the Schwinger representation for the denominators :
1 (F)" /+°° 1y Fio(Ati
= do(an™t)eFie(AX0), 2.33
Az ~ Ty J, @ e (2.33)

Integrating straightforwardly w.r.t. z; then w.r.t. one of the Schwinger parameters, one gets :

()" [ ( 2 : (287 + 2310) 7" (=207~ + 2101)
d Z1 ——+ T

é (23, ZO) | + + =
20 20

zg3 >0>z4 _47TD_1

+oo -
XUZS?/ dovy (oq)d exp [ial (—22;,23_0 + 2'321 i 20—|— )} . (2.349)
0 20

Integrating w.r.t. the Schwinger parameter now gives :

- T(D=1) [ 4. (37 +2Z11)7" (=207 + %101)
G (23, 20) 45052y = To—po1 [4°5 2
4(27) (=)
0(2) 0 (-2 UP
X ( 3? (=20 ) A . (2.35)
(fz:i) + QZ; — 0+ ZO)
The comparison with Eq. (2.30) allows us to conclude :
G (2’3, Zo) |23+>0>Zg+ G’ (2’3, Zo) |23+>0>Z[T . (236)

We thus found a second expression for G (z3, 2zo). The physical interpretation of Eq. (2.31) is very clear.
The quark propagator can be decomposed in three parts : first the quark propagates from zy to 23, then
it interacts instantly at z;” = 0 with the external field, then it propagates again from z; to z3. Let us note

that UZSQ) is actually the (ig)” term in the (ig)-expansion of the Wilson line

ig /+ dzth™ (z+, 2’)] , (2.37)

0

[z;, ZJ]Z = Pexp

where P is the time-ordered product. It is then easy to generalize G (z3, zp) as follows :

G (2’3, ZQ) |23+>0>z0+ = /dDzl(S (Zik) GO (231) ’Y+G0 (210) [2;, Z(T:I 7 (238)
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The recursion goes as follows : let us define G(") (23, zo) the propagator with n interactions with the
external field and [z3, 27 ]gf) the (ig)" term in the expansion of [z, 2y ] and suppose we proved

G(n) (Zg, Zo) |z;>0>z;r = /d 215 (Zl ) GO (2’31) +G0 (210) [Z;_, 20 ](n) . (239)
Then

G (25, 20) |4 spont = / dP23Go (232) [ig7 b (22)] G™ (22, 20) (2.40)

(ig) / 4P 2dP 216~ (20) 6 (27) [Go (232) 7+ Go (z21) 7+ Go (210)]
<0 (=3) [, =)0 . (2.41)
The integration is exactly the same as before :

GO (g, 20) 5o 0o = /d 216 (21) [Go (za1) 7+ Go (210)] (2.42)
% (ig) /dz;o ()0 (=) 0 (=) b (o, 7) [, 4]

Given the definition (2.37) of the Wilson lines, it is now straightforward that

G (23, 20) | 5052 /d 210 (217) [Go (231)7* Go (210)] 0 (23) 0 (—25) [24 5 24| gf“) - (243

This ends the proof of recursivity of this property.
We proved the n = 2 step already, and the n = 1 step is trivial. Let us prove the n = 0 step by setting the
Wilson lines to identity in Eq. (2.34) :

) ) .
G0 _ D L (2 (T + ) vt (250 + o)
(237 ZO) |z;r>0>zar B _47TD71 o _5 Zg_

+oo +
X / doy (al)d exp [ial (—22;,23_0 + 2'321 Z3 210 + 20)} . (2.449)
0 Zo

By shifting z} to get a gaussian and integrating, this becomes :

GO ( )| (—i)” 2 2/+ood (o)} (2.45)
23, 2 = — | - a1 (o) ? .
35 20) |23 >0>2F 47TD71'Z(;F Zar 0 1l
+ 4 + 422 +
23 2 Za 20 Z d z
—2zf 28 (v7) — 22550 (3501) — 220 (v1) +is—L ()
l 230 (=) 2 oz,
d
. z+ 7’L'7TZSF 2
X exp |tog 223 Z30 230+ZO T
239 <30

The last integration finally gives :

F Q A
GO (23, 20) | oport = - ( 2 ) fw 5 (2.46)
RS TE
= GO (23, ZO) .
This ends our proof. Let us finally define
Uz = [-o0, +]; (2.47)

+oo
= Pexp [zg/ dzTh™ (er, Z) ,

— 00
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and its Fourier transform
Ulpy) = / diz) et Pz (2.48)

Let us note that for 2" 25 > 0, (2], 25|, = 1 and for 2"z <0, [2], 27|, = U-.

Indeed b~ (2) x & (z%) so if the 2 integration does not cross the z* = 0 line it is null and if it does
one can add the integrations from —oo to zJ and from z; to +ooc for free. For this reason, we will work
with Uy rather than [z, 2]"] . throughout most of this thesis. The complete set of Feynman rules in the
presence of the shockwave field can be derived using the same steps as used in the previous derivation.
They are all presented in the following section.

2.2.3 Feynman rules with a shockwave field

In this section, we will present the whole set of Feynman rules for computations in the shockwave for-
malism. We will not give details on their derivation, which is very similar to the previous computation.
We will always distinguish two cases : for the propagators, we will write the free propagators when the
parton propagates between two points with the same lightcone time sign so that it does not cross the
shockwave, and the propagator through the shockwave field in the other cases ; for the external lines
we will write the free external lines when the particle is emitted at a point with positive lightcone time
so that it does not cross the shockwave field, and the external line through the shockwave field when it
is emitted at negative lightcone time. The color indices are not explicitly written. In the free quantities
they are the usual ones and in the presence of the shockwave field they are carried by the Wilson lines,
which are in the fundamental representation for quarks and antiquarks and in the adjoint representation
for gluons.

Free propagators

Note that there is no unambiguous definition for the free gluon propagator in the coordinate space due
to the p% gauge pole.

N ’Lﬁ
G = 2.49
0P) =55 (2.49)
v ' . r(2 i
Go () = 22) - (2.50)
2m2 (—22 440)2
000000000000
— v —i vy P'ni +p¥ng
p G (p) = wo 2270 20 (251

Figure 2.3: Free propagators

We will sometimes use the following notation for the gluonic propagator :

ny pnv ng‘ng 2
(pt)
"ov Vo K Ho v
v L, DPins +pin nkn
di’(p) = U - FE - (2.53)

pt (pT)2
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Propagators through the shockwave field

P1
T2

Xo

Figure 2.4: Quark propagator through the shockwave field

G($2, 1'0) |z§r>0>xo+ 7/dD$15(1';r)Ufléo($21)’y+éo(l'1o) (254)
I (d+1 Uz, o1y 2
_ A ( —Z_’_l)/ddfl — 1$21'}:2$10 — — (2.55)
4(2m) (—ogaf)® (—ug - 20 + 2L 10
Lo Lo
dp-li_ddplL dp;ddng —ixy pf —i(pay -way) jixy py +i(p1L-Tol) + +
= [ | Ty e i o)
P T & e S -t 1
xe ol e 0 ay X P2 WPl g, )Y PLEPIL (2.56)
2p; 2p]
b P2
) < g < X
Figure 2.5: Antiquark propagator through the shockwave field
G — [ dPay6(a)UL G +G (2.57)
(2, 70) |yt 5050 216(27 ) Uz, Go(x21)7" Go(x10) :
. T A +/\
il (d+1 . Uz 217" 210
= 74; d+1)/ddz1 5 Pra— et (2.58)
(2m) (—aga)”? (am + 22 — 24 +i0)
dp—li_ddpli dp;ddng —ixy pg —i(pay w01 ) jiwy py +i(p1L -T2l) —+ +
= - [ gt [ e e a0t
inrng*“’ 7m+7’%¢+w -+ o -t A
Cwi e wi LU j-Lrpl_LVJFUT(plu)—7 bz ipu' (2.59)
2pq 2p,

Xe
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P1 P2

i) i)

Figure 2.6: Gluon propagator through the shockwave field

+ +
[zz giu - x%u”%} Uz [*CEO Jlav — 5E10J_an2u]

d =2
+,.+ 5+1 — Loy
(—zg23) <*z20 T ot

I (d)

G'u‘y (1'2; 1"0) |:n;’>0>xg+ = T 9 (9. dFL /ddfl

2.60
) (27T)d+1 ( )

9 d
— Zio0 )
2x 2z0+ + ZO)

+ gd + d
_ dpl d®p1y dp2 dpa1 e—ip;z;-‘ripTZ;e—i(p2L‘$2L)+i(plL‘$0L) (2.61)
(27T)d+1 (27T)d+1 :

2 . 2 .
S(ot 0 (pt) Pl P10 4
7(p12p}+(p2)6 w3 7l ey p2 ) U (p211)95 dosy (P, 1)
1

Free external lines

Up
2pt

u (p, o) |zg>0 = 60(p") ei(p-zo) (2.62)

j

3 .
v (p, o) |zg>0 = 0 (p+) P_i(p-o) (2.63)

v/ 2pt

6 (P 20) Lgsg = 0(p7) A=) (2.64)

Figure 2.7: Free external lines

External lines through the shockwave field

Zo

Figure 2.8: Quark line through the shockwave field
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(2.65)

%)

da
+ 2
_ a p .
000wy = ot (Fe) 0000 () [am
T 2
m P 5 =2
Pq ,_y+ Lo j_’l'IOJ_ exp |:ij (1‘0 . T10 440
+ —X 2IE+
2pq 0 0

2.2. Feynman rules in the shockwave field

ol

(=%)

) =it )

=9 .

b= Pg1 — 10
ipg 7o +2wo*< q;er
q

) — i (B - fo)] (2.66)

0(pf)0(—xg) [dp
[ e

2pq
Y (o + Parr)

0 3)

Zo

Figure 2.9: Antiquark line through the shockwave field

(2.67)

a
a (_i)a pj?r
v (pg, w0)]gs,r = — ——| 0(pF)0(—x]
0> 2(2m)% \ —g !
) _ & , o L -ty + 2 Uy
exp [lpj <$o —ﬁHO) i (Pg wl)] 07 e Ly p“+
0 -0 2pq
(2.68)

Figure 2.10: Gluon line through the shockwave field
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4 +
* a —1)? p
[e5 (pgs 70)]gs 0t = ( )i ( ﬁ) 0 ( (2.69)
(2m)2 \ %o 2ps
d = b _‘T(J)FQL ‘TlOL 2v _'2 s o
/d T (Ugl) 2 exp Zpg Zo ——+ZO — i (py - &1)
71‘0 QZEO
= O(pT) O (=xt EP + 8_—*2 i =
- (pg) ( 0) Pgy ‘TO +ZO 2 5 1 Pg1 'L(pgl 'wO)
2p Pg
ab (= o pglJ_
[U (p1)} 91, — p—+n2y . (2.70)
g

2.3 B-JIMWLK equation for the dipole operator in D dimensions

2.3.1 B-JIMWLK equation for the dipole operator in D dimensions in the coordi-
nate space

Let us decompose the external field at rapidity 7, = n + An as follows :

byran (2) = by (2) +by,(2), (2.71)
where
arP ,
ban (2) = / #eﬂ(pz)bf (p)d (e”JrA”p;; — p*) 0 (er — e"p;r) (2.72)
= O(An)

contains the gluons with +-momenta between ¢p;; and e”*A”p;{. Let us rewrite the definition of the

Wilson lines (2.37) :

ZN-—1

Z+
] dz3 (ig) by, (25, %) / dz3; (ig) by, (2%, 2)

y+
:2/ wﬂ@%@ﬁa/
~ Jat 2+ +
(2.73)

Expanding this equation in the second order in igba, and using the fact that [z, Z;L]Z = 1if 272 >0,
one can get :

y+
T = T [ (o TG, G ) T @79
+

Yy
—l—(ig)Q/+ dzf'dz;[ + +] ban (zf,z?’) [zf', zQ} bay (z;,é') [z;,yﬂg@(z;) .

Let us consider the matrix element for two eikonal lines moving through the shockwave field at rapid-
ity m1 = n + An and with a color singlet interaction with the external field. When computing such a
matrix element (0... [+, y+]%2"*" ...|0) at small Ay, the b, fields will be considered as classical, and the
ban fields will contribute to the quantum fluctuations leading to the evolution equation. In our case

]77+A77 ]77+A77

one line will involve [—oc0, +00 and the other one will involve ([ 00, +00 . The quantum

corrections involving ba,, fields will lead to 10 Feynman diagrams to be computed. Among these 10 Feyn-

man diagrams, 4 involve contributions where the ba,, gluon is emitted before the 2™ = 0 lightcone time
ab

and reabsorbed after this line, thus involving an additional adjoint Wilson line (U%) when the gluon

crosses the shockwave field as shown in Fig. 2.17]
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Figure 2.11: Double dipole contribution to the B-JIMWLK evolution of the dipole operator

The propagator built from ba,, fields reads :

ab ddgg X entan (er)d—l
)" = o [t [ 275
(%) (@m e 2(—zf )2
) - 52 2321 > > Mo v
X exp |—ipT 297 — 2— + o F i0 ¢ | (Za3 - Z31) (nhny) .
“1

The contribution from diagram A then reads

Iy, = (ig) / dzl/ dz;r (2.76)

T ( [+00, 2112 ¢ [, —oo], [0, 2515, ¢ [, +o0] ) (Gan)™
d 2 _92¢ ab entAan _
- G ew g, (vz tuzhe) / a'z (v2) / dp* (pH) " 2.77)
2(27T) 3 en
0 +o0 + 72 >2
le / dzs [ .+{ 3 231 . }:| > >
X exp |—1t 25 + —= —10 Zo3 - Z
L b wymer e o -oj e o)
2,,—2e9d d\12 > > a entAn
_ gm [5(5)] /ddzgi(md' 2) {ﬂ (U:7 th:ﬁta) (U’J) b]/ dpT _ipt (25,—i0)
—+1 . 4 4 zZ1 Zo Z3 ” + .
2 (2m) (23)* (Z31) e p
Thus
2 7252d r d 2 7. ab
PR L [d+(12)} /ddgg CEDE [Tr (v i) (vz) ](An). (2.78)
2 (2m) (3)° (731)°

The contribution from diagram B can be obtained from diagram A by performing (ig) « (—ig) and
Z5 <> Z1. Then one can easily show that Iz = I4. Diagram C reads

o - / iz / 4T ([-o0, 10 t0 [s 5712 8 [, o] [0, —oc]2,) (G

= d g (runteun ) (ot (1B ()™ 2.79
= 2 24 rt t )( i) (27r)d+1(53) (2.79)
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entAn

+yd—1 -2 > 2
X/ dp+L exp |:—’L'p+ {221 - @ + @ - ’LO}:| (223 . 532)

4 + +
+1
4 2 (fz;'zf) 2 22, 2z{

2,,—2¢ d\12 od
gH [F (5)} 2 d = arrt by n ba 1
2 (27) ™ /d Z5Tr (t Uzt Ugl) (Ug3) W (An) . (2.80)

Diagram D is then obtained from diagram C by performing (ig) <+ (—ig) and z» +> 2. It reads

2, —2¢ d\12 od
g [ (5)]"2 /dq b bo 1
Ip = Az Te (UlitUl ) (U2) ——— (An) . (2.81)
D 2(27T)d+1 7 r( 2 zl)( Zd) (2321)(1_1( n)

Finally the total contribution with the gluon crossing the shockwave reads :
Ip = ({a+Ip+Ic+1Ip) (2.82)

_ asp” > An D (%)]2 /dd,?gTr (t“Uﬂ thﬂT) (Ul7 )ab (2.83)
zZ1 z2 z3

2 (Z93 - Z- 1 1
X l _,i 2é3 _’321) + -9 d—1 + -9 d1‘| :
(73)2 (Z51) (%53) (%51)

Let us consider the total dipole contribution. To get it explicitely, one should compute the following
diagrams :

ol

Figure 2.12: Dipole contribution to the B-JIMWLK evolution of the dipole operator
However it can be obtained without any computation. It must have the form :
o= oy (viu) . (2.84)

Let us develop the Wilson lines at the lowest order in I by setting UZ = =1:

o 2 .
L oA [T (d)] Nz /ddzs[“zzg'z“) —t 1
(

+
d Lo e 5.4 —Sond—1 9o d—1
i 2 Zy3)? (25)° (73) (Z31)
Now let us notice that if all the Wilson lines are set to 1 in the total contribution must vanish :

Ur+Iv)luz —1 = 0. (2.86)

1 . (2.85)

Indeed we are computing the linear term in the Az expansion of the dipole operator. When every Wilson
line is set to 1, any dependence on 7 disappears so this term in the expansion in exactly 0. Thus :
B 2
2 An [0 (4)]° N2 1

| 2(Z3 - Z31) 1 1
— d
o= - d oN, ] l( 0% g - et (287)
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Hence the dipole contribution reads :

Iy =

+
d—1 L ond—1
) (2321)

Casp A [T (@)’ N2-1 iz | 2 Z1) 1
md 2N, (2,2 (22

T (vzvL) . 288)

One concludes by taking the An — 0 limit :

o (UL U o2 T ()] )
5% sn=> [0 (5)] /d—» bymi a  Ne—1 f
S N VA S L v 2R T(ﬂtizta) e _ e T(’JE)
an — 3 |Tr (UZ°ULt") (Us,) N, " Uiu;
2 (Zog - 2 1 1
x[ (2; 31)@ +— Tt d_ll . (2.89)
(23)% (Z3)*  (%3) (%51)
Let us introduce the dipole operators
1
up = 1- =T (vzu) (2.90)
First let us note that
ab
Ut = 2Tr (t*U" UM (2.91)
z3 z3 z3

which can be shown easily by using the definition of the action of the operator in the adjoint representa-
tion on an element of the group :

ab
(vz) ¢ = vievy, (2.92)
where the operators on the right hand side are in the fundamental representation. By multiplying this on

the right by a fundamental matrix ¢¢ and by taking the trace, one obtains Eq. (2.91). Using Eq. (2.91)
and the Fierz identity

a a 1 1
(t) @) = 551'15]% - 2—M5ij5kl , (2.93)
we can show that
ab  N2_1
n 4brrntia n _ e n rrnt
T (U2 tuie) (UL s (vzuzh)
N2 -1
= om (reuZ vt e (euevl) - —— (vzuz) (2.94)
1 1 1 1
X (Uﬂ) (Uﬂ*) (Uﬂ) (Uﬂ*) N1y (Uﬂ UET) (2.95)
z3 ik S Z1 np Z2 qm 2]\[c 71 %2
1
_ T T T
= S| (vzos) o (vogh) - N (U o] (2.96)
N?
= 9 [U& - u& - u§72 ‘H/{I]s u§72] : (2.97)
The evolution equation finally reads :
2 1-4
ouy _ N [r () ()" .08)
on 2md '
S 2 (Zog - Z31) 1 1
X/ddZS (U + Usy — Uy — U3 U ol o0 + od—1 + od1
Z3)? (231)2 (223) (231)
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For D = 4 one recovers the usual B-JIMWLK equation for the dipole operator

oUyy asNe [ 5 < 75 >
= d°Zs | =25 | [Us + U — UL, — UL UG, - (2.99)
an 272 Zy3 742 13 32 12 137732

This equation involves a double dipole operator U/ 332, which can only be described as the product of
two dipole operators in the mean-field (or large N.) approximation. In general, one should also use
the evolution equation for this new operator, which will involve another operator and so on and so
forth. Thus Eq. is not a closed equation. One should actually solve an infinity of equations, know
as Balitsky’s hierarchy of equations. The JIMWLK equation in its hamiltonian form allows for a more
compact definition of this hierarchy. In the large N. limit, Eq. reduces to the closed Balitsky-
Kovchegov equation.

2.3.2 B-JIMWLK equation for the dipole operator in D dimensions in the momen-
tum space

Let us introduce the Fourier transform of the dipole and double dipole operators :
Uy (1, 2) = / d'zd* Zpe P TP Y, (2.100)

and

—_~—

UL Uy (Br, Do, D) (2.101)

= /ddzlddzgddzgu}gugge*“ﬁl'50*1'(152'52)*“53'53).

Then the B-JIMWLK equation for the dipole operator can be rewritten as

~ 2
ou;! asN, [T (£ o
) =2 = [ (5;)2] /dleddZ?ddZB (U + Usy — Uy — Uy Us)]
n 2md (u2) 2
o [ 2 (_'2d3 . _’31)d I 1d71 + 1d1] o= iF1F1) (P2 22)
22\2 (72)\2 72 72
(Z53)? (Z51) (%53) (251
ach F 4 : — - = dd_’ddqdd_‘ ~ ~ ~ - . oL
- [ (5;)2] dleddZ?ddZ3/ o qu & {uﬂz + Uy — Uy — UL UL | (G, G2, 33)
2 (p?) 2 (2m)
(s 2

23+ Z31) + 1 . 1 _ e UPLF1) —i(P2-Z2) +i(G1-F1) +i(G2-Z2) i3 2) (2,102)
-9 \d—1 —>o\d—1
(Z3) (257)

We will need the expressions for the following integrals :

d = N\ —+oo
d’z eHFE) (—2) do (a1 [d?Zexp [ia (22 +i0) +i(p- Z
(") p [ie ( ) +i (7 2)]
0

(Z2)" I'(n)
_ (z%(:)ﬁ /O”"da (an 1 2)exp {—z;(l—lo)}
_ (_Z%RS;T)% /O+Ood5 (ﬁ—1+r") exp [—zﬂﬁ(l—io)}

(
d 4-n
_ Tl (5 —n) <i> (2.103)
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and

d'z i(p-2) (_i)n oo n—1 d = . oro9 PSS I
/(52)"6 7 = F(n)/o da(a )/d zexp[za(z +zO)+z(p~z)]z

I'(n) 0
AT (L —n41) (p) [ 4\ "
Then one gets :
~ 2
ouly, . asN, [T (4 g d?qrd s .- - - —
37712 (P1, P2) = - ([ 2)(37); / o [L{fs + U, — U, — U, u;g} (@1, &, G3) (2.105)
7 (p
bog by g Z i Z —1 Z K3 z
% [_2 /dd2’13dd,223 52232 j2)g i(P1—q1)-Z13—1(P2—q2)- 236(])1 +p2 _ (J1 _ q2 _ q3)
(253)7 (%51)7
1 L
+/dd223 i exp [—i (P2 — G2) - Zas] (27)7 6 (D1 — @1) 0 (P2 — G2 — G3)
%23

One finally gets the D-dimensional momentum space expression for the B-JIMWLK dipole evolution
equation :

ouy, . —d [(diqdigpdiqs . L L
L2 (51, f2) = 20, N ()2 /WNIH +P2— G — @ — @)

an (2m)

x|t + gy — Uty — U U | (@, @, @) (2.106)
— — — 2 — — — —
(P1 — 1) - (P2 — @2) ”ZF( ) [T (5)] 6 (P1—q1) 6 (P2 — @)

V-l m-w’  T@-1 gt
L) (G-a?] |- @)
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Chapter 3

Diffractive exclusive production of a
foward dijet in the shockwave
approach

3.1 Introduction

For several decades diffraction has been one of the most intriguing phenomena of strong interaction. The
HERA research program has shown for the first time that diffractive processes in the semi-hard regime
can be measured and studied based on QCD, giving one of the main tools to access the internal dynamics
of the nucleon in a regime of very high gluon densitied]. One of the most important discoveries of HERA
is the fact that about 10 % of the v*p — X deep inelastic scattering (DIS) events reveal a rapidity gap
between the proton remnants and the hadrons coming from the fragmentation region of the initial virtual
photon, as shown in Fig.[3.1]: the extra data compared to predictions consist of such events.

Events
-
(]

® H1dota
—————— LEPTO 3 3
L g on 10 e T =T R L B
10°} £ 2 F7RGAL | BCAL | FoaL (631

f
L e ZCUS doto ¥ g
L Monte Carlo Eis e
102 # L 4

even

.....

Figure 3.1: H1 and ZEUS results for DIS

This subset of events, called diffractive deep inelastic scattering (DDIS), are of type v*p — XY [58-
65]], where Y is the outgoing proton or one of its low-mass excited states, and X is the diffractive final
state. Apart from the inclusive DDIS data, one can further focus on more exclusive observables, like
diffractive jet(s) or meson production.

Due to the existence of a rapidity gap between X and Y, it is natural to describe diffraction through a
Pomeron exchange in the t—channel between these X and Y states. This is a common concept underlying
the approaches to describe diffraction within perturbative QCD.

In the collinear factorization framework, justified by the existence of a hard scale (the photon virtual-
ity Q2 in DIS), a QCD factorization theorem for diffraction was derived [[66]]. Similarly to DIS off a proton,

LFor reviews, see Refs. [56}[57].

41



42 Chapter 3. Diffractive exclusive production of a foward dijet in the shockwave approach

one has to introduce diffractive structure functions, which are convolutions of coefficient functions with
diffractive parton distributions. In this resolved Pomeron model, such distributions describe the partonic
content of the Pomeron, similarly to the usual parton distribution functions for proton in DIS.

jet

jet

P Y

Figure 3.2: Resolved (left panel) and direct Pomeron (right panel) contributions to dijet production.

At higher energies, it is natural to model the diffractive events by a direct Pomeron contribution
involving the coupling of a Pomeron with the diffractive state X of invariant mass M. For low values of
M?, X can be modeled by a ¢g pair, while for larger values of M?, the cross section with an additional
produced gluon, i.e. X = ¢qg, is enhanced. Based on such a model, with a simplified two-gluon exchange
picture for the Pomeron, a good description of HERA data for diffraction was achieved [67]. Interestingly,
the ¢g component with a longitudinally polarized photon plays a crucial role in the region of small
diffractive mass M, although it is a twist-4 contribution. It is a typical signature of such models.

In this direct Pomeron contribution, the ¢gg diffractive state has been studied in two particular limits.
First, at large 92, a collinear approximation can be used, based on the fact that the transverse momentum
of the gluon is much smaller than the transverse momentum of the emitter [68470]. Second, for very
large M?, contributions with a strong ordering of longitudinal momenta are enhanced [71,[72]]. These
two limiting results were combined in a single model, and applied to HERA data for DDIS in [73]].

This chapter is based on our work in [74l|75] towards a complete next-to-leading order (NLO) descrip-
tion of the direct coupling of the Pomeron to the diffractive X state. To be more specific, the Pomeron
should be understood here as a color singlet QCD shockwave, in the spirit of Balitsky’s high energy
operator expansion [22-25] or in its color glass condensate formulation [26H34].

In our first publication on this subject [[74]], we computed the v*) — ¢gg impact factor and rederived
the v(*) — g impact factor, both at tree leve. In this chapter, we will detail the complete computation of
the virtual contributions which can be found in [75] B, and we will compute the one-loop v(*) — ¢gimpact
factor. We emphasize that in these results, the impact factors are computed without any soft or collinear
approximation for the emitted gluon, in contrast with the results reported until now in the literature. This
presents an important step towards a consistent description of inclusive DDIS, or exclusive diffractive dijet
production, in the fragmentation region of the scattered photon, i.e. in the forward rapidity region, with
NLO precision. Since the results we derive are obtained in the QCD shockwave approach, and depend
on the total available center-of-mass energy, the present framework is rather general and can have many
applications. Indeed, below the saturation regime, one might describe the ¢t—channel exchanged state
in the linear BFKL regime [[16H19]], here with NLL precision [78H81[]. At higher energies beyond the
saturation limit, the Wilson-line operators evolve with respect to rapidity according to the B-JIMWLK
hierarchy as described in the previous chapter.

We calculate the matrix element for the v(*) — ¢ transition in the shockwave background of the
target. It depends on the target via the matrix elements of the two Wilson line operators U/;; and U;,Us;

2Here the photon can be either on-shell or off-shell, hence the notation v(*).
SPartial results of the present study were also presented in Refs. [[76}[77].
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defined in Eq.[2.90] between the in and out target states. For hadronic targets these matrix elements are
to be described by some models. For example for the dipole operator there are several saturation models,
inspired by the Golec-Biernat and Wiisthoff model [82}/83]], while for the quadrupole operator we are
not aware about any such model at the moment. These Wilson line operators can also be calculated as
solutions of their NLO B-JIMWLK evolution equations with the initial conditions at the rapidity of the
target. In the linear limit (BFKL) for forward scattering these solutions are known analytically with a
running coupling [84,/85]. In addition, in the low density regime one can always linearize the second
Wilson line operator and write the cross section in terms of matrix elements of color dipoles only.

Here we will focus on the details of the coupling of these Wilson-line operators to the diffractive state
with general semihard kinematics. The various possible regimes for phenomenological applications will
be the subject of future studies.

Next, motivated by the phenomenological importance of our results, we study in detail the cross
section for exclusive dijet production in diffraction, as was recently reported by ZEUS [86], and we show
explicitely how these cancellations occur in a detailed way. For this purpose, we derive the differential
cross section for the v*P — ¢qP’ transition. Taking the corresponding matrix element from Ref. [74]
we also calculate the v*P — qggP’ cross section. Combining them, we will write the v*P — 2jets P’
exclusive cross section in the small cone approximation.

This chapter is organized as follows. The next section contains the definitions and the kinematics.
Then we briefly introduce the basic notations and reproduce the LO ~*) — ¢g impact factor. Section 3.4]
gives the general expression for the v(*) — ¢¢ impact factor at one-loop accuracy. Section [3.5] gives the
v*) — ¢gg impact factor at Born order in arbitrary dimensions. Section gives the y() P — ¢gP’
cross section at leading and next-to-leading order. Section [3.7] gives the v(*) P — ¢ggP’ cross section at
leading order. Section[3.8] gives the final result for exclusive v* P — dijet P’ transition, showing explicitly
the cancellation of divergencies, based on the two previous sections. Some possible phenomenological
applications and theoretical extensions or adaptations will be described in the next chapter.

3.2 Definitions

For a moment, we will consider the open production of partons, the conversion into jets will be discussed
later in this chapter. We denote the initial photon vector as p,, and the outgoing quark and antiquark
vectors as p,, and p;. In the real correction, an additional external gluon is emitted. Its momentum will
be denoted as p,. We will focus on diffraction off a proton P which remains intact after the interaction.
We denote the initial and final proton momenta as py and pj,. We consider semihard kinematics with the
hard scale

s = (py +po)? > |P3], M3, |pjor|- 3.1

Mp is the proton mass. The semihard scale comes from either the photon virtuality |p?|, the momentum
transfer |p3, |, or the invariant mass of the produced jets. In such kinematics one can write

5§~ ijpa, (3.2)
and choose the reference frame where
pT,pg ~ Vs (3.3)
In the case of our process, we write
pr ~pf ~pf > ploet, po >0y pg 0, (3.4)

The longitudinal momentum fractions of the ¢g pair are defined by

+ +

b bg

—i =14, —i = 2. (3.5)

Py by

For simplicity we consider a forward photon with virtuality ) and no transverse momentum :
? 2 2
Py =0, p*;:pin?*%ﬁné, Q*=—p2>0. (3.6)

Y

40ur calculation can be used for other processes later on with minor modifications
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We will denote its transverse polarization as 7. Its longitudinal polarization vector reads

n

o — %n? + %ng. (3.7)
We work in the shockwave formalism in the light-cone gauge A - no = 0 and in dimension D =2+ d =
4 + 2¢. The Feynman rules for this formalism can be read in Section 2.2.31 To construct the cross
section after calculating the impact factor one has to integrate w.r.t. the field b generated by the proton.
Technically it means that one has to treat the field b as an operator and use the matrix element of the
total Wilson operator between the proton states

Ui = (P I T(Ui...)|Pyy). (3.8)

For simplicity of the notations we will still use the operator U instead of its matrix element during the
calculation of the impact factor, and return to the matrix element later on. In our computation we do not
need the S—function correction since renormalization effects start at the next-to-next-to leading order
in the impact factor. We also introduce a regularization cutoff « for the spurious light cone singularity
pg — 0. Evolving the operators U/ from rapidities p = o to p = ¢” with the help of the BK equation will
allow us to cancel rapidity singularities, as shown in Section [3.4.9]

3.3 Leading order amplitude

1 p2

— p’j

Yo

Y

Pq

T

Figure 3.3: LO impact factor. The momenta p; and p, go from the shockwave to the quark and antiquark.

The matrix element for the EM current in the shockwave background reads

e~ 4P~ vo) s — -
= —ieg / dDyO \/7 \/— (apq)nw (y0) v*% (yo) ezfci(z)dz)lmsw- (3.9)

Here a and b are the quark and antiquark annihilation operators, e, i W

is the projector on the color singlet. To shorten the notation we will work throughout this thesw with the
reduced matrix element 7“defined by :

—ie _’L(S(pq +pq _p'y) Na

q
2p7 VN, 27TD 3,/2pqg/2pq

Moz

(3.10)
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Its expression at LO is obtained using the Feynman rules in the shockwave background as found in
Section[2.2.3] The result can be written as

e = /ddpu_ddpuﬁs(pqu_ + pg2L — Pyl) Te[U(p1)UT (=pa )] @G (p11, pas) - (3.11)

After subtraction of the noninteracting part one gets

e = 1§ — T8 vy ve (3.12)

—Nc/ddpuddmﬂs(pqu + Pgat — Py L)o@ (P1e,pal) ;s (3.13)

where U, is the dipole operator as defined in Eq. (2.90). When computing a cross section rather than an
impact factor, one must act on the target with this operator as in Eq. (3.8)). The function

5 = O (p11,p21) (3.14)
is the LO impact factor and we will often suppress its dependence on variables for brevity. Its components
have the following form, withz = z;andz =1 -2 =25 :
Py QxfpiyF
p; 0 ﬁqu + ijQ
i — Uy, (1 = 220)pfy 1 + 5lha1L, v )7 v,
ﬁqu + foQ .

(Hpq'y"'vpé), (3.15)

(3.16)

This can be shown straightforwardly by writing using the expressions for the quark and antiquark lines in
the shockwave field. The first equality in Eq. (3.15) holds thanks to the electromagnetic gauge invariance,
which will allow us to deduce the — component of the impact factor from its + component.

3.4 Next-to-Leading order amplitude

V

Diagram 2 Diagram 3 Diagram 4

N~

Diagram 5 Diagram 6
gl g

Figure 3.4: NLO diagrams

There are 8 one-loop diagrams contributing to the matrix element 7. Five of them are presented in
Fig.[3.4 The remaining ones can be obtained from diagrams 3, 5 and 6 via the substitution p, < pg,
Ugq <> Vg, p1 <> p2, which we will denote (¢ > §).

3.4.1 Color factors and Wilson line operators

For virtual diagrams, the projector on the color singlet is \‘;“NL, where i and m are the respective colors

of the quark and the antiquark. There are two kinds of virtual diagrams. The diagrams of each kind will
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all involve the same Wilson line operator. For diagrams without the gluon crossing the shockwave after
projecting on the color singlet state the Wilson line operator will be :

Cr = UG, )50 ) [UT (=52)],,, 5 (3.17)
_ \/%<N§M1>Tr[U(ﬁl)UT(ﬁ2)}. (3.18)

For diagrams with the gluon crossing the shockwave one has to use Eq. (2.91)) and the Fierz identity. The
Wilson line operator will read

1

“ = VNe (t%)5 [U (1) (tb) ki [UT (‘ﬁﬂ]u [Uab (P5)] (3.19)
- \/QV (t)i5 () () 0 (1), [U )] i [UT (=52)],, (U (B3], [UT (3)] (3.20)
- 1 1 . . ) .

- o [&-najm - Eaijamn] [5kq&p — v Okdpa | (U (1)) [UT (=52)], [U (B3)],,,, [UT (B5)],,,
- s (TG U T U G U ) - 060 U ) )
- 2\/1JT (Tr [U (p1) UT (173)] Tr [U (p5) UT (*172)] — N.Tr [U (p1) U (7172)])

By subtracting the non-interacting part where all Wilson lines are identity and using the dipole and double
dipole operators as defined in Eq. (2.100) and Eq. (2.101), one can write the two color structures as :

C{ = Cl — CllU—>1 (322)

N2 -1\ -
= VvV Nc( éNc )UIQ; (323)

Cé = CQ — CQ|U*>1 (324)
Nof- -~ - o~
= —v Nc7 [Uw + Usze — Uz — Uss U:az} (3.25)
N2 -1\ -
\/Nc< §Nc )Ulz-
Similarly to the LO impact factor, we will thus write :
NJI(1—e€ N2 -1\ 1 o
" = as#/ddpu_ddpu {5(pqu_ + pg2L — DyL) ( N ) [Uu} o9
d'p31 ~ ~ ~ — o

+ N, W(S(pql +Pg2 — Dyl — P31) [Uw + Uzg — U2 — Us3 U:az} D5 5. (3.26)

From Eq. (B:24) one can see that the diagrams in which the gluon crossed the z* = 0 line will contribute
to both ®¢ and @4, while the other ones will contribute only to ®¢.

3.4.2 Computation steps

Assuming the gauge invariance of the impact factor, we will restrict ourselves to computing ®}, and
&', | for some diagrams. The contribution ¢, from a gauge invariant set of diagrams D is then deduced
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using the gauge invariance relation

2

We will first verify this relation for a gauge invariant set of diagrams, then we will assume it holds for the
other sets. The steps which are involved to compute all the virtual diagrams are the same.

* First we write the diagram as the integral over the coordinate of every vertex, with the building
blocks in Section 2.2

* The building blocks, including those for partons which do not cross the shockwave, will be written
in their mixed space representation, as a function of a lightcone time z* and a momentum. For
example the propagator for a quark which is emitted and reabsorbed at lightcone times of the same
sign will be written as

dptdip [ P2 —i0 _
G(zx) = /7 exp |—ix™T —iptaT 4+i(p- ¥ (3.28)
(@) 2pt (27r)d+1 2p ( )

x [(pJW‘ + 2]%7* +m) (0(p)0(zT) — O(—pT)O(—a™)) +i6 (x) yF

* Integrating w.r.t. the — component and the transverse components of the vertex coordinates will
give the explicit conservation of + and transverse momentum (taking into account the ¢-channel
momentum from the shockwaves)

* Then all the momenta except one can be integrated trivially. We will always keep the momentum [
of the loop gluon as the last integration parameter.

* Integrating w.r.t. the + component of the coordinates will finally allow one to write the diagrams as
an integral with only I, and [+ for variables. The [, integration can be performed using the usual
methods (Feynman’s or Schwinger’s trick, etc.). It will be regulated by the dimensional regulator
D = 4 + 2¢, while the I integration will be regulated using the lower rapidity cutoff ap?.

Our method is actually equivalent to the use of lightcone perturbation theory. Indeed :

* once only /T and [, remain, the numerator of the propagator of every intermediate particle will
contain two terms. One will correspond to the instantaneous exchange of the particle, for example
the § (z*) term in Eq. (3.28), while the other one will correspond to the numerator of an on-shell
particle, for example the first term in the brackets of Eq. (3.28).

* In Eq. (3:28), the non-instantaneous term contains two terms, with two different orientations in
time. With the exception of the loop gluon, the intermediate particle will always have only one
time orientation, the other one would correspond to a parton moving back in time.

* At each vertex, the + and transverse components of the momentum are conserved, however the —
component is not.

* The denominators which will remain will correspond to the so-called energy denominators in light-
cone perturbation theory.

We will make this comparison with greater details on an example.
The finite contribution of some of the NLO diagrams cannot be written in a compact enough way to fit

in this thesis. Their finite contribution to the cross section as }°, . K(I)%(I)g *) + (@8(1)%*)} will be

written in Appendix [A1]l The divergent part of those diagrams will be displayed here. To extract this
divergent part, we will write :

2

/Zodzim(z) ~ /Zde¢g)(z)+/zodz[<I>D(z)—@%))(z)] (3.29)
a a 0

/:0 a2 (z) + /0 dz [®p(2)], |
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where we explicitly extract the non-integrable part @g) of ®p, writing ®p(z) = @S;” (2) + O(ln z) for
z — 0, z being the + momentum fraction of the gluon : z = % with [ the gluon momentum. What we

call the divergent part of ®, will be made of the first term in the right-hand side of Eq. and the %
dimensional pole in the second term.

3.4.3 Diagram 2 : vertex correction

Pq

Y

Figure 3.5: Vertex correction

Using the mixed space representation for the propagators and external lines, one can write :

My

_ie 3 = a @ v
- (Zg)z/dDyodDyldDm@ (=y5) 0 (—ui") 0 (—v3) 1 (pg, y2) ¥"t*G (y20) ¥*G (yo1) 7" (3.30)
2py
Xt U, (pzjv Y1) Guv (y21) exp [—i (p'v “Yo)] N
—ieq . N2—-1)\1F0 p+) 0 (pr
; q+ (zg)Q/dDyodDyldDyQG (—yd) 0 (—yi) 0 (—v) <2N \/V) ( ‘;) 2( ;) (3.31)
Py ¢ ‘ V pq pq
5 /ddﬁ1 d*ps (7 - ) / dptdip  dktd'k  ditddl
en®en®\ T Lopt @) okt 2m) T 2it (20)7

xexp[ (p;rfp flJr)yQ +Z(pq+l++k+)y +Z( fpjkar)yO_fip;yar]
xexp{i(p-l—l—pql)-yg—i(k‘-l-l-l-p(p)'yl—i(p—k)'50}

-9 . ) . -9 . -2 . ) .

. Dsg — 10 . k2 —30 . p?—10 . pi — 10 . 12 —-40

X exp [@yf < q2pir ) — iy ( okt ) — iy ( T + iy q2p;r — iy o+
q

_ 7* (P37~ +Parr) ,
2pq

Kp v+ —+’Y +m) (0()0(ydy) — 0(—pF)0(ygz)) + 0 (y3) v*] 7°

[( g ) O 0Gh) - o000+ 1)

ler'V + Pg21) +
———7" v,
2pq

L nay + 11, 12 2i6 (ya;
XFM”W@M—GFWHMM<MW—Lwﬂ+Lm”— ymmd—i%?ﬂ-

(*)
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Integrating w.rt. v, y1, Yo, U2, 41 and yp to get + and transverse momentum conservation at each
vertex, then after a trivial integration w.r.t. p™, 7, k™ and k, one obtains :

e~ ey oo ( N2 -1 > 0 (ry) 0 (py) / d'p dPe (3.32)
: - 2Nev/Ne fopr J (2m) (2m) |
2p3 2pq 2pq

/dl*ddm (pd +p3 —pT) 0 (Por + Pa2)
2 -2 (- 1)

N2 .
(pqlfl) *107ﬁq21—i0+127i0

dys exp | —i
Y2 ST T o — 1) 7 o1t

N2
30 (Fn—T) =0 [2_g

o0
dyi exp |iyy
oo

q2 +
2p 2 (—pg — 1) 20+

- N2 N2

RS
dyo exp | =iyy | Py T 2(—pf —17)  2(pi —17)
b q
L ) : )
T (o Do) _ (pql - ) . .
XUp, s ot . o ((P;r - l+) v+ mfr +DPgL — ZL)

X (0(pF —17)0(ya0) — 00+ — p)0(ygy)) + 6 (y3o) 7*] o

ﬁql - f ’ ~
x l< (—=pF =1")y + 57)7* + P11l — h) (0(=pg —17)0(yg1) — (g +17)0(y1y))

(=pg —17)
y i’ - + g l v +l v f2
+id (yg_l) 7+] Wy(pqup—;rpqu)Wqu [(gLuu _bipne . LoN2p (l+)2 ngunzy)
26 (y,
< [0(17) 0 (yh) — 0 (=17) 0 (vh)] — #m,ﬂm].

Let us now show that, as physically expected, the cases where y;; < 0 or y; < 0 (which means the gluon
is emitted from the quark or the antiquark before the photon splits) cancel.
For example let us consider the case where y; < 0.

* In this case, one needs ™ > pS. Then 6 (—I*) = 0 since p; > 0 so the term with 6 (y{;) in
the gluon numerator cancels. So does the term with 6 (yg;) in the antiquark numerator, since
0 (—ps —17) =10 (pf — 1" —p¥) and pf > 0.

* It is also easy to cancel the term with § (y;,)in the gluon numerator :

— Due to the presence of the square of 4 (which is 0), the term with § (yd;) in the antiquark
propagator then cancels.

- The remaining term contains 6 (—yg;) = 0 (y3)-

— Thus this contribution requires both v, > 0 and y4, < 0, which is impossible.

* Thus the only remaining term in the gluon numerator contains a 6 (y3;) factor. Hence this term
contains an overall 6 (y3;) 6 (yg). This is excluded by the antiquark numerator since we canceled
the contribution where y;~ < y : everything cancels.

One can thus conclude : the term with yj > y; cancels. The  (—y;) contribution can be cancelled with
a similar reasoning. Hence 5 cases remain. Let us introduce MV, M () p{Y* and M{>*,
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which will correspond respectively to the cases where y5 > v > v, v > v > yd, vd = v > v,
vy > ys =g and yf >y >y Inlightcone perturbation theory, they would be drawn diagramatically

o ) f f

¥ >yl >l yi > s > v =yl >l

yi >y =y v >yl =y

Figure 3.6: Lightcone perturbation theory description of diagram 2. In the first figure, the vertical dashed
lines stand for the energy denominators, as described in the following.

The propagators which are crossed with a bar represent the instantaneous propagator in lightcone
perturbation theory.
Let us consider the first case. We then need the following integral :

/0 (Fu-0) ~0 (n-1) 0 (3.33)

dy exp |iyd — —
e e 1 BT e =) R
N
0 22 _ 72 pg1 — 1) —i0
im0 o (A7)
X dyy exp |iys | =% - -
/yo* 2p§ 2+ 2(pi +17)

i —i0 (ﬁql—f)Q—iO 1240

+
Yo s
x/ dyi exp |iy; e T T +
. T R

7
(gm0 a0\ (remin , BA-0 | (Fa-D)’=i0 N ((Fa-D)*~i0  (Fa-D)°-0  _\ '
( ('2pq+ + quf —Pv) ( T T quqf + 2(pg —17) — Dy 2(pg —17) + 2(pi +17) — Py

Let us consider the same contribution in lightcone perturbation theory. In this case, the denominator for
the diagram is made of the so-called energy denominators. Such denominators can be written as

D, = (Z E,<j>> — Ey, (3.34)

where B is the lightcone energy (i.e. p~) of the i-th particle in the n-th intermediate Fock state, and Ejy
is the energy of the initial Fock state (i.e. p7). In the present case there will be 3 of them (represented
by the vertical dashed lines in the first diagram in Fig.[3.6]), and they will read :

N\ 2 N\ 2
(Fa=1) =0 (Fp+1) —i0
+
2 (pd —17) 2 (pF +11)

-y, (3.35)
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N2
2oio ph—io (1) -0
D, = — 2 — —p7, (3.36)
21 2p; 2 (pg — 1)
52 —i0  P3—i0
Pa1 P =2 (3.37)

Dy =
2pg 2p7F

These are exactly the denominators in Eq. (3.33). This ends our comparison with lightcone perturbation
Y5, y; and yg we finally get for the 5 contributions to diagram 2 in

theory. After integration w.r.t. :
Fig.[3.6:
i = e (1) QRO [ (¢he) 558
2 - d d [ o . P :
opt 2N./N, /2pq+2p; (2m)? (27) <p2p—+° *mjp—f“)

/ apte " (P71 + Pat)
2ps

dit 6 (pf +pg —pT) 6 (Pgr + Pa2)

Py
X/0 AT 2(pg —17) 2 (pg +17)

(ﬁqlfl_‘)Q + 4 (ﬁqu_ [J_)] A

[ -0+
x F2_io | P20 | (Fa—1)’—i0 _ (51 —1)*—i0 | (Fg—1)7—i0 _
T Y ey P )\ ey T e P

. N2
(pql _ l) v+ (ﬁqu_ - ZAJ_) v

+ ) A
X | (=p7 =17)~y +
SRR IE TR
(pq7 +pq2l_)7 Upg lJ.,u”QU“i’ZJ_UnZ,u f
9 1 2 I+ - T 5 N2pN2y |
Py (i)
M2(2)a = M 1)Oé|(q<%q (3.39)
where (g <> g) stands for (1 <> 2, x4 <> 23, Py <> D7)
M2(3)a _ 7(3ch (’L'g)Q ( Nc2 -1 ) 0 (p;r) 9( ) /ddp1 ddﬁg (Z/[lQ) (3.40)
2N./N, d(pa—i0  pi—i _ '
2py Vewtany )" @) (p;Tf + P2 pv>
x/pq+ dit 8 (pf +pf —p3) 8 (P + Do) /ddf
) 2(p —17)2(pg +17)
Up,y " [(plf — 1My + (ﬁqu = h)} [ —pg = 1)+ (ﬁqu - ll)} v Up,
_ (Fa=0)=i0 | (Fa-1)"—i0 ’
<”” R C R R
M(4)O¢ _ 76(1NC . N2 Nc2 -1 0 (p;_) 0 ( ) ddpl ddﬁQ (U12) 3.41
2 N i (i) 2N./N, ¥ @2m)® (2m)? (Fz-i0 | #z-i0 (3.41)

2py
5 +P;f —P;r) 0 (Pq1 + Pa2)

O dit b (]
></ _/‘” 2 (py — 1) 2 (pf +17)

—pf 20+
Up, VYT {— (b7 1)~ 2(( Hz)v + (ﬁqu - ll):|
X
(ﬁql—f)Q—iO ﬁq2 —10 l 240 —
N
v (p;’y_ +ﬁ§2L) + lLuTLQl/
— a7 Ups 9L — I+ s

2p;f
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and finally

MP* = MY ea - (3.42)

The [, integration is now straightforward, we will not detail it. The integral w.r.t. [ is badly divergent
as it is written. One has to restore the rapidity cutoff 6 (|I*| — ap?) in the expressions above before
performing this integration. After performing those two integrations and quite a bit of Dirac algebra, one
can finally show that the contribution of this diagram to the + impact factor reads :

1 2 T T 1 w2
+. — + : :
— — — 2 —
2 (B e (% LAV OTA NN
- (x)+ln (a2)+21n(a2)ln(Q2) eln(oﬂ)]'

The dilogarithms can be rewritten in terms of logarithms by using several identities :

Li, ( z > + Li, (i> Li, (1 - 1) + Li, (1 - 1) (3.44)
r—1 z—1 z x

B In? (Z) o In? (x) .

= 5 - Liy (Z) — 5~ Lis (2)

_ In?(z) In®(x) =2 _

= —T—T———i—ln(x)ln(x)
= 5 ()%

Thus :

1 =2 + T 2 2 =2
o, = — a5 [—3131:111 (M) + 607 - - <m+4@> (3.46)

and

ol = @ {4 n %1112 (Z—f) n % - {m (z—f) - g} (3.47)
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3.4.4 Diagram 3 dressed quark propagator

Ay

A

Pq

Y

Figure 3.7: Dressed quark propagator

The contribution from diagram 3 in Fig.[3.4] reads

Mg’

71.6 . _ a
1 (19)2/dDy2dDyldDyoui (Pg» y2) YuGo (y21) 7 Go (Y10) Y*Vm (g, Yo) (3.48)

6im —i
xG’O‘” (y21) e~ H(Py-v0)

iNceq . 2/ D D D /ddﬁl ddﬁg JVC2 -1 ~ + +
d”yod " y1d U120 (— 0(— 3.
(ig) Yy2d”y1d " Yo 2n)? (2n)? \ZN/, 120 (—y3) 0 (—yg) (3.49)

D) ey et ot it as
u
Vavdapy ot o 2k o Lo om ™ " 2p§ u

(pW + %7* ﬂh) (0(p™)0(y3,) — O(—p™)0(yy)) + 06 (v3,) Vﬂ Vo

x [ ety + —27+ + lﬁ) (O(KM)0(yy) — 0(=k7)0(y51)) + 0 (yio) 7+] v

0= 15 72
Pg Y +DPg2L linoy +11m l

[6.(7) 6 (v5;) — 0 (—1%) 0 (y)] — 22’51(%?”2#”2”]

X
<
)
=

xexp [i (pf =1t —pt)yz +i(pr +17 —kY)yr +i (kT +pf —p3) uo |
xexp =i (Fn ~T=7) - Go+i (F=T-7) -7 —i (B +F) - 0]

-9 . 79 . —9 . 9 . 72 . 79 .
, Dgi—%0 12—40 p?—40 ) pe—i0 1%—i0 k*—1i0
X exp [zyi q;er - - ) +iyy < 2+ + -

The expression as we wrote it might seem mathematically undefined due to the presence of products of
distributions, like [¢ (y3;)] ®.. Let us note that it is only our compact way of writing a distinction of the
cases (y3 > yi,ys =yi,ys <yi). One could perform the simultaneous Fourier transform of the two
propagators between y» and y; a more careful way and obtain terms like &' (y5; ). However it is actually
easy to see that when y; = y;” the gamma structure cancels and when y;~ < y; one gets a contradiction
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like 0 > I* > pi > 0. Hence the seemingly ill-defined quantities do not contribute to our process.
Integrating w.r.t. y5, y1, Yo, Y2, %1 and g to get + and transverse momentum conservation at each
vertex, then after a trivial integration w.r.t. p™, 7, k™ and k, one obtains :

iNce L N2 ddﬁl ddﬁg ]\72 —1 ~
Mg = L (ig) /ddedeyére (—y§)9(—yo+)9(y2+1)/ - U2(3.50)
fopt 2m)* (2m)* \ 2NV N,

0(ps)0(pi) 1 [re dit - VT (PFyT + Pars)
8 2072 (pg — I+ Ly, T g
0 Pq ) 2pq

+

/202t 2P
N2

- (ﬁql - l)

x (p;rilJr)’Y +2(p3-_l+)7++<ﬁqu_*ll_) Yo

- Y
_ Pq1 A ;
X <p;7 + %’fr +pqu> 0(p)0(yy) + 146 (i) ’Yﬂ

o PgY +P1) |

Xy Yrup, 6 (0 4+ pd —p3) 6 (Pgr + Pa2)

Qp&r
ZLMTLQV + lLV”Qu f2

X |Ng1pw — I+ - (l+)2 N2y N2y

_ . N2\

e 2ps 20+ 2 (p&F — l"‘)
- e .
pqlfl) —10 7240 72 —i0
;o + ( _ Pql

e L Ry R T 7

g S S92 ]

. Py — 0 py —1i0 _
X exp zy{f( qu‘f + q2p¢'}_ pv>] .

L q

Distinguishing the two cases y;" > yg and y;” = y; gives two contributions :

Da Neeg ,. o [dip1 dip> [ N2—1 Ui
M?E ) = - 1 (’L ) d d 2N \/ﬁ o j Lo K (351)
QP;F (27T) (27T) c c P35 —i0 n P5—i0 s
2pd 2pF v
0 (pg) 0 (pF) 1 /p? dit / .
X — | 0 [d0 (] +pf — 1) 6 (B + Pa2)
opg2pr 2a Jo 2172 (pg —1F) SR
N2
+ (pta— D —1
_ (Pq’Y +pqu) b4y - (qu ) N . .
XU —1 + 7" + ( —1 )
Pq 27 T (pq )7 5 (p;r _ l+) v PgrL — i1
9 + ~
_ P . (p*V +p,72J_)
<V | Pgv™ + 5t + alfa ] TR iy,
ol <pq7 o TPaL )7 o7 Y Vp,
) 9l — lL;LnZVl‘:lLunZu. - (ll+2)2 NNy
5152271.0 2-40 (ﬁql_f)2_i0 — }3’,52271'0 ;ﬁq21 —i0 N\’
( wy T P ooGrmy P ) \Tap T P
and
N, dip, dip, [ N2 -1 U
€q p1 a'p2 c 12 (3.52)

2)a . 2/ ( )
M = )
° Qp;u(g) (2m)* (2m)? \ 2N/ N, <ﬁq21i0 4 P _>

2pqJr Qp; p'y
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0 (p;_) 4 (p;j’_) 1 Py di+
oot 208 — 6§ (pf +pF —p) 6 (P L
- \/m 2p;r /0 2012 (p;r _ l"‘) (pq + g pv) (Po1 + Pa2)

+ (ptr— 4B
a7 (PFyT +Pqrn) L, .
x/d Up, QP&F ’YJ_u*l—_F’Y

{(P;r —1F)y + (ﬁqu - ZL):| Yy (PFY™ + Paas) v v,

I K NI
Pp=i0 | [2_jo  (Fu=1)"—i0  _
2pf | 22—+ + -
Pg 27 20T 2 —17) Dy

X

Again the integration w.r.t. [, is easy and it will not be detailed. The diagram for the dressed antiquark
propagator can be obtained from this one by the symmetrization (¢ <> §). One can finally show that
diagram 3 and its symmetric contribute to ®¢ as :

X

=2 =()2 - =2 =22
+ 1 +
sofi (B2 1Ly gany 3, (1A £ )
TIT 2 € a? 2 Tt

P =2 72 4+ 2702)° 9 - =2 =2 52 4 2702
Ol = 2o | Do () P +27Q)7\ | 2| aEy P G Ph (P arQT)
1 13+(q+q) o 2 zzpt c 02 Q2 Q2 12

1 T 1 T _ T 3 2
O lsrgog = OF [5 In? (—) — 5l (E) +1n(z7)In (—2) +7-2 2% (3.53)

3ﬁq21 — 3ﬁq21 7T2 ﬁq21 1ﬁq21 2 Tx 1ﬁ21 2 T
~2ld S 2 T m? () - o2 m? (2] 3.5
sz M T P2 e e M 7)) T2 e G (3:54)
2
1 T T\ 3 (P23 +22Q?)
(I)lj_|3+(q<—>q) (I)OJ_ 5 1112 (E) + {ln (;) — 5} In <ql’L':f—‘u,4 (355)

By adding Eq. ([3.45) one gets the total virtual correction before the shockwave :

_ 9 _
1 T w2 (55 +22Q?) 1 zT\ 3
+ + B 2 ql
it 07y =05 0 () 405 o {m (PG ) 1 (3E) -3
i (3.56)
_ 9 -
_ _ R 2 (7,7 +22Q?) 1 I\ 3
@1 |2+q)1 |3+(q<_>q) :(I)O 5111 (E) +3* F‘F{ln (W +E 111 (?) 75 ,
] (3.57)
and
i i i |1 z 2 xx 3
(I)1J_|2 + (I)lJ_|3+(q(—>q) = (I)OJ_ |:§ 1I12 (E) — F + 3 + {h’l (E) — 5} (358)

=2 ()2 =2 p 2 7(0)?
+ T + T 1
This set of diagrams is gauge invariant, as can be explicitly checked using the gauge invariance property
of the leading order impact factor ®§ in the longitudinal case.
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3.4.5 Diagram 4 : final state interaction

Dy

Dq

Figure 3.8: Final state interaction

The computation method is the same as before. One gets :

—ie . a)i i o, —1 .
My = g (zg)Q/dDyngyldDy M i(pq- yz)g( )VMG (y2, yo) 7e (P~+yo) (3.59)
2pd 2pd

Upg 1 5zm
xG (Yo, Y1) %%ez(m'yl)e (pir) Gt (y21) —=

eqN. 219(+) (p¥) / N2 -1 dipy dipy -
BN tg) N <2N F) /6 i e () (360

ditdi o (pq erq 7p'y) d (pql +pq2) + + + + + +
X/ 20+ <(ﬁq1—f)2—i0 (P2 t1)’—i0 p>9(1’q e )/dy A0 () 0 ()
— Py

2(pg —1t) 2(p; +17)
_ v (p;_ - l+) + (ﬁqL - ZL) +'7_ (p;_ - l+) + (ﬁqlL - ll) N
XUp, Y 2(p;rfl+) Y 2(p;;—l+) ~
7~ (pd +17) + (ﬁqu + ll) L (pf +1%) + (ﬁqJ_ + ZAJ_)
LU
2 (pg +17) ! 2 (pg +1%) e
liunoy + 11y e i (y3,
X l[@ (1) 0 (y31) — 0 (—17) 6 (1) ] <9J_W _ Ll o Lvfaun (H)an#nzy) - 275‘321) TLQ#TLQV‘|
SN2 . Rt .
X exp |iy; Py _ (p(ﬁl) 7107 -0 +iy] 7 (qu) 720+12*z‘0
A\wr 200 1) 21% "\ 2(p + 1) 2+

There are 3 contributions M{"*, M{?* and M{®® corresponding respectively to 3 > yi > v, yi >
Ys > Y5> Ys = Y5 >y - As for the previous diagrams M2 = Ml(l)a|(q<_,q). The other two read :

—N.e 0(pF)0(py) ([ N2-1 dipy dps (-
e 9 (ig)? Pq ( )/ 1 2 (i (3.61)
! fap it \2NeVN:) [ (2m)? (2m) ( 12)

/pqdl+/ —' 5 pq +pq _pw)é(ﬁq1+ﬁq2)

20+ pqll 20 (pqz+f)2—i0 _
( T T R
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v (pf —17) + (ﬁqL — ll) LT )+ (ﬁqu — ll)

7 (07
T 2 1)
XV_ (pf +17) + (ﬁqu + ZAJ_) L (pf +17) + (ﬁqj_ + ZL)

2 (pg +1%) 7 2 (pd +1%) TUpa
9w — lL;wwyltlL,,nzu _ (;12)2 NNy
X

Zig N ) M (2 D 72 (FU)=i0 2]
2pq+ 2qu Q(p;rfl*) 2(qu+l+) 2pq+ 2(pq+7l+) 20+

and
o N, 0 (pr)o(pt) 1 N2 -1 dipy dps (-
Mf’) _ €q (ig)? (pq) (pg) ( ¢ )/ pld de (Uu) (3.62)
/QP;F 2]7(—;2]73_ 2Nc\/N( (27T) (27T)
/dl+ddf 8 (pf +pF —pT) 8 (Fr + Fa2) 0 (0} — 17) 0 (pF +17)
()2 (52 LR (F=0)’—i0  (Fa+0)*—i0\ [ (Fn—T)"—i0 n (Paati)*—i0
2pf " 2pf  2(pf—iT)  2(pg ) 2(pq —17) 20 +ir) 7

v (o~ 1)+ (hae —1) o (oF 1) + (haer +10)
2 1) 2(pg 1)
The [, integral is far more complicated than the one in the previous diagrams due to the presence of 3

denominators with an /; dependence in Mil)o‘ and M, f)o‘. However let us note that one denominator
can be reduced to [ 2 ater a simple shift on [. Indeed :

+

Xp, Y 7 g -

~NZ
ﬁi(pq*l) Joizzfio B LGQ»Q (3.63)
) 25 T At -\ pt) '

We will need similar integrals in most of the other diagrams, so we will define the following general
integrals :

B it d) = 1 [ = 1) _ (3.64
TS g s [0 a2+ a0 1
=
L(q, @, A1, Ag) = l/ - a1 - (3.65)
TS @) A ] [T )2 + A
(@, @, A, Ag) = l/ - ddf(lﬁ) (3.66)
TS @) A ] [T )2 + A
di (19 1k
MG, G, Ar, D) = l/ = ’ l(lill) - (3.67)
w0 @ ] [0 @02+ 0]

These integrals are computed in Appendix [A. .11

Let us start with a remark : once [ has been shifted, there is no divergence when the shifted [ ap-
proaches (. Indeed this would correspond exactly to a divergence emerging when the gluon is collinear
to the quark, which should be absent from such a diagram : collinear divergences occur when the gluon
is emitted and reabsorbed by the parton to which it is collinear.

Let us rewrite the third line and the gluonic tensor in Eq. (3.60), and set I ;—:ﬁq :

(.- 1)

ﬁpq’mm’ﬁdgu (1) (3.68)

tp, (YuPgY ") [ _ Pgis + Pgims _ % nhnt
T L + 2722
pq pq (pq)
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Using the Dirac equation one can write by anticommutation of the Dirac matrices v,p,; — 2pg,. Then
one only has to notice that the new gluonic tensor is dfj” (p,), which is exactly canceled by p,,. Thus as
expected there is at least a linear dependence in I in the numerator of this diagram once I, has been
shifted, which is the reason why we will not need the integral which is similar to Eq. but with 1
in the numerator. The only divergences from this diagram are actually soft divergences for « = + and
a = i. For a = — this diagram contains a UV divergence which should cancel when we construct a gauge
invariant quantity (i.e. adding the dipole contributions of diagrams 5 and 6). However as we stated
before we will not compute the @ = — contribution. They is no way of writing the final Dirac structure
and the finite result for this diagram which would be compact enough to fit in this thesis. Instead, we
will present the result for the contribution of this diagram to the cross section once in Appendix [A.T] We
will only write explicitly the divergent part of this diagram here. One gets :

(@ 14) 5, = %@3 lan (Z—f)fan( )+2ln(zx){1n (%)w* (3.69)
+ﬁpq0ﬁqu
(@ 1), = %cpgl [1112 (Z—f)—l 2( )+21n(—§) (3.70)

2z (P + x1Q? p5 + 22Q?
X < In —(]iql — Q2 ) —xT ? P 7T — 2Q + i
(xpg — TPy) Pgi rzQ
where C| and C’ are finite expressions.

3.4.6 Diagram 5 : gluon exchange through the shockwave field

by

>

a1\

Figure 3.9: Gluon exchange through the shockwave field

This diagram reads :

—ie . u a/)i i(pq- o, —i(py- v
Mg = 1 (zg)Q/dDmdDyldDyoMe(p" 420 (pF) G (y2, yo) v ) Go (yo1) 7" vm (Pgs 91)
2p 2p
v q
5zm
XG,U,I/ (le) \/ﬁ (3.71)
_ Zieglig) f/ddpu B s TN (G 4Tl — G — T + (2 (=2 ) 1o ()
= ,— 277) 5 13 32 12 13 32 2N, 120 (P3
0 (p7) 0 (pa . ., .
x7< DOU) [ agtaio (-o5) 0 (-u) 8 5 + 95 1) 0 G + i @72
2pq 2pq
/pq+ di+ /ddz— (1) A he =L (0 ) (ﬁqu _”) a
DTR R 2 (pg —17) ! 2(pq —1%) !



3.4. Next-to-Leading order amplitude 59

2
+ ot (@;1 B l) ile 5 +
< || @ +11) 7y + 457 — oL+ v v
(pf + 1) +3 i) Parr + 1o | 0(yio) + 16 (yi0) vF |
- B g _ B
(Pgy~ +Pa21) 1 I s U —ps
X _ — = —=—3<n,,
g P (py ) \Te T e ) \ e T T
— -\ 2 . — 2 .
i - (pqlfl) — 10 (pqlfl) —10 B
X - exp |1 — —
~ e (D)’-i0 Do 2 (pg —17T) 2 (—pF —11) Py
Pq 20t 2(pg —17)
l_, 2 l_, 2
Sy 0 —1) —i0 fﬁg) —i0
N R
X exp |1 + +
I Tl T 2 (e — 1) 21+

There are two contributions :

d d>  7d> )
(Do d%py, dpy dps [N. /- CINZoIN
M, e _ _ 9 5
5 /(27‘.)d (27T)d (27 { 5 (U 13 4 Usg — Uya Z/l131/132) + (2m) o, U126 (P3)
—(ig)? 0(nt)o (pt T
ig)“e P P . B B
bole /x, ( q)+ (z)é(p;_+p;pjy_)(s(pqlerquB)/ 3T /ddl (3.73)
2p 2pq 2pg 0
_ Y (p; - l+) +qu_ - ZJ_ +77 (p - l+) (pqlJ_ — lJ_) N
Xy, 7" I+ v + ]+ v
2(pq_l) Z(pq—l)
X (pJerlJr),Y + (ﬁql_f)27+ﬁu_+l]_ ryy(p;_'YiJrﬁqQJ_),ervi 1
' 2(pg +17) ! 2pF "2 (pg +17)
i I
(9iu5 - z_i”%) (gﬁ,j - %nﬂu)
X
— 2o (B0 -0 (B -D) 0 (Fa-0)'mi0
pq 20+ 2(pq+—l+) 2(p;—l+) 2(-1);’—[*’) pry
1
(o | Epyn  Gao Y
pg — —Dp3 — Pq1— —1 —
( 221)3 Ut + 2(pg —1+) pv)
and
«@ dd dd dd c ~ ~ ~ e~ N2
ME‘SQ) = /( pl)L p2 bs [ <U13 + Uzz — Uiz — Ui U32) + (2m)? ( o )umg (ps)}
+
p7 g — —
/ v / " z)(S (P + 13 — )6 (P + Dg2 — Ps) (3.74)
2177 2pq 2pg
a0 =1 bpe =l 0 0 )+ (B L)
X = [dlu, A" - v - 5
o 20T 2 (pq - l+) 9 (pq _ l+)
el <7l# - %”%) Upq 1
x I 7 g .
52 T2 40 (Fa—D)’—i0 (Fa—1)°—i0  p2—io | ([=ps)°—io N\ 2(pf +17)
2pg 2T 2(pi-if) 2(pg —1+) + 2p) + 20T — Py

Similarly to diagram 4, the [, integration requires quite some work. However it will involve the same
. . . g ad +
type of integrals as before. Indeed by performing the shift [ — [ — Ilj—+pq, one can reduce one of the
q

denominators to [ 2. Then using the same arguments as before one can show that there is at least a
linear dependence in [, in the numerator. The explicit finite result for this diagram can be found in
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Appendix[A] After adding the diagram which is symmetric to this one w.r.t. the exchange of the quark
and the antiquark, the contributions to ®¢ and @4 read :

W1 = 30 o (25) - 2) o m (2 B0

_ Yy
(@il)an = 7%@& lhf (Z_z) In 2( )+2ln<az) < 2le?_ In (%) +ln(xf)>]

—i—’ﬁqufHqu y (375)

ql
+Up, Cfivpg , (3.76)
(0fle),, = 2 ) (B 2@ ary ) [(75 0@) (75 + Q)
div (ﬁq21 + zfQQ) (ﬁq% + fo2) _ $5Q2ﬁ32 a2 fo2532
+iip, C3) Up, » (3.77)
i xrxT _ i 1. p i
(q’u|5)dw = =h (?) Up, (g1 (1 —27) + §[pqu, YLDV vp, (3.78)

L (Pd 2R i + 17Q°
—5 n = - 75 -
P x7Q? (pq21 + 22Q?) ( + 22Q?) — 2TQ*p;
(55 +22Q?) (§3 +22Q?)
X In —
27Q2p.2

+ (g ti)} + U, O3 vy,

5 5i ini 5 — 5i — (i
where (7 and ) are finite and so are ) = 02” |5 g and C71 = C3' |5 5

3.4.7 Diagram 6 : dressed quark line through the shockwave field

Figure 3.10: Dressed quark line through the shockwave field

With the usual computation method we get :

. _ieg . )0 (P3) o )—i(o , o
Mg = g (19)2/dDy2dDy1dDyowe (Pq-y2)—i(p~y yo),qu (y% 1) 7 Go (ym)v Vi (pq, o)
2p5 2y
5im
—G, , 3.79
X\/ﬁ (y2 yl) ( )

405, dd digs [N, /- . . — N2 -1\ - -
= 272 V' N, / p1 P2 2:)3 [7 (U13 +Uzg —Ui2 —Uis U32) + (2m)? ( ENC ) U120 (Ps)}
Xe(pq)e(pq)é

\/7 (pF +pf —p3) 0 (For + P —ﬁs)/dyfdyéé’ (—u1) 0 (—ud) (3.80)
2pq 2pg
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1 [Pedlt e T (pd 1)+ (ﬁqL - ll) L (b —1%) + (ﬁqu - ll) ,
X —— U
2p; / 2”/ v 2 (pg —1%) ! 2(p —17) !
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. oP7 7 T Dg2L
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Pg — 5 — 2(pg —17)
-9 . -9 . T
(P10 P —i0 lip g lip—psip
X exp [Wo ( ot + 2p; — Dy GLps = M2 )\ 91w = — 7 )
There are two contributions :
dip dd dip.
M = (ig) \/—/ pl pz 2p3
\/2p ﬂ-)
N, (- - - N2-1\ - . _
X [7 (Uls + Usy — Uia *U13U32) + (2m)? ( o )U125(p3)]
0 (1) 6 (07) 6 (b + Dt —p?) 6 (Fig + p —
% (pq) (pq) (pq +p2q pv) (Pqr + Pg2 — P3) (3.81)
p-2—1i0 0
V2pq 2pq (pq;pq+ +pq22p —py)
i g 0 umh) ) )
X—
zp;/O 2z+/ e 20 —11) 2 (g — 1) !
WP3” Dl
- e ==
(pqv 2+7 — Pg L>7 i
B lig—p3ip
(gJ-Hﬁ l+ TLQ“) (gLu T+ n?u)

X

_ ey (D)0 ((Ba-T)’—i0 | (I=ps)’—i0 | Fi—i0
(pq B O ) ( R A A TR

and

(ig)? /. / ddpl ddpz dips

d (27)d

\/ 2p7

Nef(r o~ -~ NE -
X [7 (Uw +Uzg —Ui2 —Uis U32) + (2m) ( =
0 (ps) 0 (vg)

. . N Pq ler o
X ——E=—==0 (pf +p; — 1Y) 0 (P +pq2p3)%/0 —/ddl (3.82)

21+
@/2pq 2pq !

o (p;r - l+) + (ﬁqL - ZL) v O(pq v +pq2L ’Y+ (g L1, )
- 4+ q 1 pv

1) Z;f125(173)]

c

X tip, V" YTy — 73 M2

2(pg —17) 2p;
1

— Trogg (D=0 ((Fa-D)?—i0 | (I=ms)’—i0 | pi-i0 )
(Pq T T Ta(pg i) 2(pg —17) + 20T + quqf Dy

The [, integration is a usual straightforward 2-denominator integration, then the /™ integral can be
performed, distinguishing the cases with or without § (p3).

X

The contribution of this diagram and its symmetric w.r.t. the exchange of the quark and the antiquark
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to ¢ and ¢ reads :

2 ZpT (T, v vy, 7 : 7 72 + 27027\ 2\ 6
((I)Hﬁ)d' = M In? (w—ﬁ) — In? (E) —2In (w—ﬁ) In M + 2+ =
v pql +sz « T « T € €

+ﬂquvap§ 5 (3.83)
= = _ -9 _ ~2\2
i _ i 2 (XT 2 (% T (93 +22Q?) 2 6
(Bl = % |1 (57) = (3) —2m (55) <1“ (—W To)tel B8
+@pq0163_vp6,
=t (7 At - 2
TZPT (Up, v Up, ) z\ (1 3 3 _ _
T o= 2w T i In (= —+In( = - — CcS v, 3.85
( 2 |6)dzv ﬁqu +$IZ'Q2 |: u (Oé) (6 +n ( M2 € +qu 2||qu + (q < q) ) ( )
: Up, (P11 (1 = 22) + 3[Pgr1, v ) v v, z\ (1 72 3
o5 o= —— L2 (=)(-+h(=))-= )
( 2L|6)dzy ﬁqu + ZC.f'QQ n (Oé) € + n /,L2 26 (3 86)

+apqc2617)pa + (g« q),

6 6i i 6 — (6 B} 6i — (6i
where C5) and C3) are finite, and so are €7 = Cy) |5 5 and C7| = C3)

P3—0°
3.4.8 Total dipole contribution
Summing the contributions from all diagrams involving U/, finally gives :
S
P9 = %@g + By, (3.87)

where the singular term reads

Sy xx 3 rZp? 1 ) TT 1. 42T 72

and the regular terms read

3 272,42

O =505 In TN 5 |+, (Cf + C3) + CF) vy, (3.89)
2 (2 — 5,)? (FF +27Q?)

and
i 3 i rzpt 27Q? 270>

P1r =3P I 5 3. o | 5z P\ 5T 00

2 (xp7 — ZPg)*(pp~ + 22Q?) Pq1 pyi +22Q
+1p, (CT + CYL + CYY vy, - (3.90)

Note that the i7In (z—f) term will never contribute, since in the cross sections STV will actually always

appear as 3(Sy + Si). In appendix A we will write the expressions for Cjj and C7', and for C3, O3,

C3, and C3 . The corresponding C coefficients are trivial to obtain by writing 7} | = C3 | |5 .5

3.4.9 Total double-dipole contribution

Cancelling the rapidity divergence : B-JIMWLK dipole evolution The divergent part of the virtual
amplitude contains a rapidity divergence of the form In («/) in the double-dipole contribution of diagrams
5 and 6. Such terms have to be absorbed into the renormalized Wilson operators with the help of the
BK equation. Indeed the LO contribution as defined in Eq. (3.12) involves the Wilson line operators at
rapidity In (). We thus have to use the B-JIMWLK evolution for these operators from the non-physical

cutoff « to the rapidity divide e, by writing
e U’
dp < L ) . (3.91)

vs' =ug

[e3
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Let us note that the B-JIMWLK equation is of order a; so US can be directly replaced by US" in NLO
corrections to impact factors without concern. Plugging this Eq. (3.91) into Eq. (B.12) and using the

dipole B-JIMWLK equation (2.106]) allows one to evolve the LO dipole contribution into an NLO double-
dipole contribution. This contribution reads :

(Ty")" = /ddpu_ddpuﬁs(pqu_ +pg2L — py1) PG (P11,p21)

d?ky 1 d%o, d¥sy
(27T)2d

en
X ln(g)(s(k?u + kot + ks —p11 — P2L)2asu2_d/

{Q(ku —p11) - (kal —pa21)
(k1 = p1)3 (k2 —p2)%
N TiT(1— D (g)? ( d(kay —pal) 4 6(k1L —p11) _ )1
I(d-1) (—(k1 =p)1)' 72 (—(k2 —p2)3)' "2
x [Te(ULUS) Tr(UsUS) — NTe(ULU)] (ko kot ks ). (3.92)

After integrating w.r.t. po; and renaming the variables, we get

d%py 1 dpy d?
<T0a>n — P11 sz Pu(s(pqu ¥ Papt — DL — poi)
(2m)

e’ d
X ln(E)Qasu / (2p) 6L +pL.p21 +D31 —D1)

2(ps - (p1=ps1)) | T (1 — )r(d)? (5@l —pa) | 5(py) )]
pi(p—p3)i I'(d—1) (—p2)=% ' (—(p—p3)?) %
X [Te(U, U T (UsU) — N Te(Ur U] (p11pas, psi)- (3.93)

Integrating w.r.t. p, , one can get the contribution from this convolution :

677
@EK (P11,D21,P31) = —4x5cpfyr(@pq7+vp§) In (E) (3.94)

. <1n<ﬁ_f>+l> - -
p? P+ xTQ? p,;%Jr:ci’QQ

P — Pj — Pgp — 207Q? . <(ﬁq1 +23Q?) (53 + m@%)]

+

(ﬁq21 + xiQ2)(ﬁq*22 +22Q?) — xffﬁ:gQQQ xng Q2

in the longitudinal case, and

i e’ _ 1
Bk = —2In (E) {qu ((1 2z )pqu_ + 2[ qlJ_v’U]) 7+Upa
—1 52 1 1 p2 4 12Q?
() ) L (B
53 +azQ W) e) A o)
Py + 2TQ?

73 + 22 @) (5 + 23Q7) — 37 Q°
. <<pq1 +23Q) (54 + mQ2>>

rzp$Q?

+ (¢ « q)} (3.95)

in the transverse case. Combining this subtraction term with the results from diagrams 5 and 6 in
Egs. B-77H3.78) and (3.851{3.86)), we can cancel the In « rapidity divergence and obtain the actual double-
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dipole part &, = &, + ® gk of the impact factor :
rT(Pf — ]32722 - ﬁ,fl —202Q?)
(5522 +22Q?) (p;12 + zg‘cQQ) - z2Q*py

() <<ﬁq% QY (5 + mcﬂ)

q)/2+ = 2pjy_ (ﬂpq7+qu)

e2n ij2ﬁ32
o 7\ (1 Py 3 ~
[ 2In (=) (=+m (= )) - =
<Z7q21+mQ2 [ n(en) (€+n(ﬂg)) 26]+(QHQ)>}
+ iy, (C3) + C3) v, (3.96)

in the longitudinal case, or

2

T 1 Py 3 TT
x {2111 (e”) <6 in (/ﬂ)) a 26:| +n (eQW)
y 1 ) D1+ 2TQ? Dy + TTQ?
<3 In — -7 - = - —
P xzQ? (pq21 + 22Q?) ( 2+ 2TQ? — 2TQ%*p7)
X In <<ﬁq% +27Q?) (7 + sz)>

$£Q2532

i 7. (pt L :
Y = {upq (P11 (1= 22) + S [pgr 1, v 1)v vp, <~27

) +(q & q)} + 1y, (C31 + O3 )vp, (3.97)

in the transverse case. These impact factors still contain % terms, although by construction they should
not have any IR, UV or collinear singularity. These poles are artificial UV poles and already appear in
the momentum representation of the B-JIMWLK equation for the dipole operator (2.106). They originate
from the fact that when we define the Fourier transform of the double-dipole Wilson line operator into
its momentum space representation straightforwardly in Eq. (2.101), we do not take into account its
property of vanishing when r3 = ry or r3 = r1. This property reveals in the convolution of the impact
factor and the operator (2.101) killing all the artificial singularities. Indeed, the divergent terms depend
only on p; and are independent of p5 and p> (up to a (1+>2) permutation). Writing those terms as F'(p1, )
and convoluting them as in Eq. gives

/ddpuddpuddmﬂs(p@ +pg2 —Dy1 —p31)F (p11)

x [tr(U; Ug)tT(UgUQT) — thT(UleT)](pu,pu,pu)
:/ddpu_ddpsj_ddm_dd?"uddT:u

x F (p11) ei(T'u‘PU)“”i‘(pqlﬂrpﬁ*)“(puﬁu)[tr(UlUg)tr(U3U2T) _ thr(UlUQT)]

-~ / ddpu_ddTu_ddTQJ_F (pu_> ei(ru»plL)-i-irzLv(pqlL-l-pqu)
X /dd’l“gL(S(T32L)[tT(UlU;:)ﬁT(UgUQT) — NJ?‘(U1U2T)] =0. (3.98)

Thus the artificially divergent part

F(pre) = =2 [2111(3_6 ) ! 3] (3.99)

P+ 27Q? en) e 2

will cancel once convoluted, so it can be omitted. For a more involved discussion about such terms, see
Ref. [87]. The same computation can allow one to omit the In(x?) contribution. However, we will keep
it so that no dimensional log appears, keeping in mind that there is no actual ;» dependence. Therefore
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hereafter we will use

5" = 2p (p, v vp,) wE 05 P ~ P —202Q)
2 v \Upq Pq (17522 + 22Q?) (ﬁq% + foQ) — :piQ2I3'32

1 (z_a‘c) I ((ﬁfg +23Q%) (b + wiQ2)>

e2n rTQ?p7
—22% z 7
(S (& Ny
+ <ﬁq21 + IEfQ2 n en n (,LLQ + (q Q)

+ Tp, (C3) + C3) ) vp, » (3.100)
and
o =, (pi (1_2$)+1[ﬁ i)yto _7211&(3)111 ps’
2 = g \Pq1L o PalL; Y11)7 Upg ﬁq21+$fo2 o 5
+1n (ﬁ) 1 i +22Q%) P + 2xQ?
e2n ﬁq21 x3Q? (ﬁqzl + ijz) (5622 + 22Q?) — ij2ﬁ32
=2 ~2\ (72 — )2
x In <(pq1 +22Q°) (P + 23Q ))

l.jQ2ﬁ32

) + (¢ < q)} + @y, (C5L + C5 vy, - (3.101)

3.4.10 Cancelling the UV divergence : renormalization

The virtual correction as we computed it contains both UV and IR divergences. The usual way of canceling
them is to first use the renormalization of the colored fields in the NLO amplitude to cancel the UV
divergence and then build an infrared and collinearly safe observable by adding the appropriate real
corrections to cancel the IR divergence.

In this section, we will show how renormalization is not actually needed when the external lines are
massless quarks, even in non-covariant gauges. In this case, the UV divergence in the NLO amplitude will
be canceled by IR divergences in the real correction.

k

Figure 3.11: Quark self energy

Let us compute a quark self energy diagram, keeping in mind that we want to apply it to an external
massless quark later on. It reads

. N2 -1 7“(13*’5)7'/ kuna, + kn
() = (i 2( c )/de { , — 2y T g (et 1 ET) ], (3.102)
= 2 (k2 +i0) [(p*k)QJriO] o ket (kg = 1)

where we introduced a general cutoff k; to deal with the spurious lightcone gauge pole (k*)~!.
There are only two vectors to project the result on. Let us write :

3 (p) = Spp 4 Snha . (3.103)
Then one has

1
LT [ﬁE (p)} = Sp% 4 St (3.104)

iTr [Wi (p):| = Spt. (3.105)
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Thus after a trivial evaluation of Dirac traces and using Feynman’s trick, one gets :

(ig)> (2 — D) (Ngl)/( dPk (p* — p-k)

2p* k2 + i0) [(p L z'o}

(i9)> (2~ D (N;p+1)/ / k@t —pk) (3.106)

2
—ap) 24 aap? + ZO}

Xp

For an on-shell quark after performing a shift on & the integral becomes a scaleless integral < [ k2750)2

In dimensional regularization such an integral is set by zero as follows. Let us first perform the right Wick
rotation to go to Euclidean space :

= Sp_1 dk:E kE , (3.107)

D
2m2

where Sp_1 = r(2) is the surface of the D-sphere. Let us separate the IR sector and the UV sector by

introducing an arbitrary cutoff A :

+oo A kuv
/ dkg (kp)?™° = lim V dsz(kE)D’E’—i—/ (k:E)DE’]. (3.108)
0

krr—0,kyyv —+4o00 krr A

In dimension D = 4 + 2¢, one needs ¢ to be positive in the IR sector and negative in the UV sector. Let us
then introduce ;g > 0 and ey < 0. Then :

oo D—5 1
/ dkp (k)P0 =
0

lim —— (AR — BT+ ——
kir—0,kuv —+oo | 2€1R

)

AQEIR AQEUV

= TP v (3.109)
Now we want to take the ey — 0 limit, getting the pole
/m dkg (kg)”™° - Lo (3.110)
0 2¢;r 2euv

The mere principle of dimensional regularization is to find the analytic continuation for any expression
at e = 0. The constraints €;z > 0 and eyy < 0 can then be dropped, and we will write e;r = eyy = €.
Then our scaleless integral can be set to 0. We conclude :

2 = 0. (3.111)

The gauge term is cancelled using the same principle except for one term. From Eq. (3.104) one gets :

N2 -1 dPk
Se = (i 2( c )/ (3.112)
1) 2p* (k2 4 i0) [(p—k)2+z'o
20t (p.k) — 2kt p? + 2 (p.k) pt — 2k2p*
% |:(2—D) (p2—p.k)— p* (p-k) p ]::r (p-k)p p 9(k3_|k+‘)

Using the exact same argument as before for scaleless integrals, one can cancel any term without k™ in
the denominator. Thus we can write :

2 /o dPk k? —2(p.k) n "
¥, = (¢ N; — 0(ky —1|k™1). 3.113
v ( 1) / (k% 4+ i0) [(P — k)2 + i()} [ k+ ] ( 0 ‘ ’) ( )
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Writing the numerator in the brackets as (p — k)2 — p? and dropping the p? term since we want to put the
quark on the mass shell at the end, we get :

dPk
S, = (ig)? (N31)/m9 (kg — &) (3.114)

This is a scaleless (tadpole) integral so it has to cancel. The previous argument based on dimensional
regularization is however not sufficient due to the spurious -1~ pole. The trick is now to perform the
transverse integration first :

ma o= G (2 [0 ) [ar o [ ; 'k

F2 — otk — io}

— w2 (V1) [ g ety [k (1 r<1é) i 3.115
o (32 1) [0 ) [ or (1-5) — g @119

Now let us separate the 4 different cases for the signs of k* and k™ :

S = ¢ N3—1)r(1—§)7r%—1 (3.116)
+Oodk+ Foo d_q . (d
(2 +1.—)2 —171'(5—1)
x Vk A
oo dkt 41
+7.—\2
Jr/k+ | dk(2kk)
0
B 4
- +1.-)2~
+/_Oo k—+/ dk~ (—2kTk7)

+/ 5 e kT (2K )E in(4-1)

By performing the right changes of variables to get the final integration over (k*, k™) € [kar , +o0] x
[0, +o0] for every term, one can easily see that those terms will cancel two by two. This way one can
cancel the spurious tadpole integral.

The conclusion is now that one can completely cancel the quark self energy in the case of a massless
on-shell quark, by setting e;g = eyy. Thus throughout our computation we will set Zy = 1, i.e. we
will not renormalize the quarks. Our statement will be that the UV divergence in the virtual amplitude
is then canceled by the IR divergence in the real amplitude, which is unusual but exactly equivalent to
keeping Z» # 1 and by its action turning the —— divergence into a ——, then canceling _— with actual
IR divergences.

3.5 The +* — ¢gg impact factor

We will now derive the v* — ¢gg impact factor. Later in this thesis it will be used to construct a well
defined cross section for dijet production, free of the soft and the collinear singularities. The IR finiteness
of the cross-section is discussed in details in Section [3.8] The complete expression for the v* — ¢gg
cross section is included in Appendix [A.22l The computation of this impact factor in dimension 4 was
already presented in [[74]. For the purpose of the present study we need its divergent part in dimension
D, therefore we will rewrite our results for an arbitrary value of D. The corresponding matrix element
for the EM current in the shockwave background reads

—i(pw‘yo)
=—z’eq/ dPyo" \/7 ,/ L (E)7OIT (b, (ap, Jncy, ¥ (30) 70 (o) € HEEE) 0y, (3.117)
QPW
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Figure 3.12: Diagrams for the v* — ¢gg amplitude. The momenta p,, p2 and p3 go from the shockwave
to the quark, antiquark and gluon.

where c is the gluon annihilation operator and (t")} is the projector on the color singlet. We label

N2 T
the emitted gluon momentum as
2

—P
+ o 9 nt
pt =z, pint + er (3.118)
g gl "1 9 g ’Y gl-

Again, we will work with the reduced matrix element 7"

fZ(S + + _
1 qu pq pg p'Y 77/0(7 (3119)
/ \/ - 3/ / /
2pq 2pq 2pg
which after subtraction of the noninteracting part can be parametrized as

2

N2 _
T = —QM_ENc/ddpuddML {5(pqu + pgoL +pgl)( CN

1\ -
) Uy ®S (3.120)

dd - - - —~
+ Nc/ Q’%ﬁﬁs(pqu + pg21 + Pg3L) {Uw + Uszo — Uiz — U3 U32] @Z} .

There are four diagrams contributing to the matrix element 7”. Two of them are shown in Fig.[3.12] the
remaining one are obtained from them by the substitution p, <+ pg, 44 > vz, p1 <> p2 and the reversal of
the order of the gamma matrices, which we will denote (¢ ++ ). The expressions for the amplitudes in
D-dimensional space with a longitudinal photon read

P;rﬂpq [2x49"" + 24 ('Yj/_’YjL_)]'YJrUpaEZJ_# (xgpqlld — TgPg3vl)

(I)i - P2 2 p}z 52 — (¢ q), (3.121)
e 72 (@4 o) (04 5+ B+ )
and
+7 A% (p a +
TgpTUp, E(Pg + D Up, B
@;' = ‘I)I|p3:0+ — _’9 v Up g( q g) pz; +(qu) (3.122)
q(Py — 3-Pq)? (Q e wq))
= Of|p,—0 + 27 . (3.123)
For a transverse photon, they read
*m At
1 € u q")/
= e (3.124)

20, T~ (ZE +x ) (QQ + 5;2 ) (QQ pql pq2 + EQLs)
e 9 zg(1—zq) Tg Ty
. X - .
X [%%QQ(’K’YD + (P17 V' Pgz1) + ﬁlac—qz)fjﬂ_(;p,jp‘g%L — zgply )
g

x i~ ; ~ ; R _
=271 (Yibaa1) + 20401 (Pg21'l) — 2quZ2L(pq1J-7ﬁ)} vp, — (¢ < q)
g
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and

Zglip, é; (Pq +ﬁg)7+(Viﬁ§2L - Q‘qufﬁl)vpé

(I)é = ¢i|p3:0+ - - 20 — 9 5 53
24 (1= 2q) (Fy — 225, (@* + 57 )

+ (g9 (3.125)

= ®,—0 + DL. (3.126)

3.6 Construction of the v*P — ¢qP’ cross section

Let us define the reduced matrix element A3 such that the v*P — ¢qgP’ cross section reads

1
do = —(2m) "6 (py + po — pg — Pz — p0)|As[*dps. (3.127)

We will need the parametrization of the proton matrix elements in the shockwave background

(P ()| T(tr(U=p UT . ) = No)l P(po)) = 276(Dy) Fig iy, (1) = 270 (9 ) F (2.0), (3.128)

(P! (p)IT (tr(Us UDtr(UUL L) = Netr(U3 U )| P(po))

Z
2

= 270(poo ) FpoLpy, (21, 21) = 216 (P ) F (20, 2 1).- (3.129)

We dropped the dependence on the proton transverse momenta po and p;, for convenience, and we
assumed the following proton state normalization :

(P'(po)|P(po)) = (2m) P~ 8(po0 )01 ™2 (P00 L) s ps (3.130)

The corresponding Fourier transforms read
/ddzLei(“'“)F(zl) =F(pL), (3.131)
/ddzJ_dde_ei(m'“)H(ZLQL)F(ZL, x,)= f‘(qJ_,pJ_). (3.132)

These hadronic matrix elements naturally appear when we insert the Wilson line operators between the
proton states and we extract the overall momentum conservation delta functions. The matrix element for
the dipole operator reads

(P'(po)|T(tr(U\US) = Ne)lp1 1, p21 ]| P(po))
(2 p )
= @3+ pas 4 pons) [ e PGV U ) - NIPu)). (3.133)
For the double dipole operator the analogous formula has the form :
(P ()|T (tr (UL U3)tr (UsUS) — Netr(UrU3))[pr 1 pat, p31]| P(po)) (3.134)
= (2m)*6(p1L + par + P31 + PoroL)
x / @z dte o TR ) (P ) T (e (Us UDr(UaUT ) — Netr(UsUT ) [P (po).
In our kinematics, momentum conservation reads
8P (py + po — pg — Pg — P6) = 6(pge )0 (P + pd — PT) D (pgr + par — PyL + Po0L), (3.135)

with the phase space measure

_ dpfdipgr  dpfdipg. dply dipl |
2pg (2m)@1 2p7 (2m)d+1 2p (2m)d+t

dps (3.136)
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The reduced matrix element A3 includes the LO and NLO dipole contributions and the NLO double dipole
contribution, as defined in section 3. It reads :

—2py eqe
Ay = —212 /ddpuddpﬂ
VN, (2m)P~*

a I'(l—¢) NE -1_, P121
X [5(Pqu + Pa2L —Pw){‘l’o +%W N. (I)l}F(T)

+ o

F(l — 6) ddp3l
(7)1t / (2m)?

Since the photon in the initial state can appear with different polarizations, we construct the density
matrix from the cross sections

S(PgrL + pg2i — py1 — P31 )BSF (p12u mu)] - (3.137)

_ (dorr dorr s
dO’J] = <dUTL dO'TT) 5 dO’TL = dO’LT. (3138)

Each element of this matrix has an LO contribution doy, an NLO contribution do; involving two dipole
operators and an NLO contribution do5 involving a dipole operator and a double-dipole operator.

doyr =doojr +doigr + doayr. (3.139)

The leading order cross section can be written as

2
aemQ2 (P_)
d = Z 0 dxdzdip,, dipg 6 (1 —x — y
001 2 T N, 202 wdTd'py1d?pgid (1 —x —I) (e1pel,)

X /ddpudddedplmddpwﬂs (Pg11L + Pg21) 0 (P1171 + P22r1)
X <I>€ (P11, P21) @4 (prro, por) F (p122L) F* (py;m) . (3.140)

The dipole x dipole NLO cross section is given by

_\2
I (1 — 6) JVC2 -1 aein (po )
(47r)1+€ N, (Qﬁ)‘l(d*l) N, 2zTs?

doiji = o dzdfddqu_ddp,ﬂ_é (1—z—7%) (Ejﬁcc;jk],y)

X

/ddpudddedpydepwﬂs (Pg11L +Pg21)0 (p1171 + P22 ) F (p122L) F* (p1'221)

{‘I)f (P11, p21) @) (P11, pri)+ ‘I>§ (P11, p21) @7 (p171s P2'L)} . (3.141)

X

We can separate this cross section into its divergent part and its convergent part. To get the convergent
part, one only has to replace ®; in Eq. (8.141) by ®;r from Eq. (3:87) and to set ¢ to 0. The remaining
divergent part reads

I'(1 —¢ N2 -1
(do1s1)div = s ( )< °

@m)ite \ 2N,
Replacing ®, by the contribution ®/, from Eqs. (3.100, 3.I0I) which includes the B-JIMWLK evolution

(see the discussion in Section [3.4.9), one gets a non-divergent dipole x double dipole NLO contribution,
which reads

) (SV + S‘*/) dO’o.][. (3142)

2

F(l-¢ am@ (po) — d d - *
doajr = s A (277)4(‘1—1(; N 22787 dzdZd®py 1 d®pg 6 (1 —x — T) (5155']7)
d?ps . dips | 5

(2m)"

X [‘I)/zﬁ (pu_, P21, sz_) @g* (pm_, pzu_) F* (p1/22/¢) F (%, pu) d (psu_)

+ @0 (P11, prri, Py L) @g (p1L, p21)F <p12u) F* (p1/22/¢, p3/¢) 5 (pu)} . (3.143)

X /ddpu_ddpuddpw_ddpzu (PgrL + Pg21 — p31) 0 (Pr171 + P21 + p33rL)

This expression is now finite so one can set ¢ = 0.
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3.6.1 Results for the Born cross section
Using Egs. (3.15) and (3.16) and summing over helicities of the quark and the antiquark, one gets

32(pt)*a’z?
Pa +22Q?) (P +22Q?)

> OF(prL,p2) ] (P 1 ph)) = ( (3.144)

helicities
Pa +22Q*) (P +22Q?)

Z Of (prosp2r) PG (P y,pori)* = (3.145)

helicities

and

8(p¢)2$f[(1 - 2$)29fgﬂ]f - gikgi + Qf_lgf]pqu_rpqyu
(Fa +22Q?)(Fh, +27Q?)

Z @6(p1¢,pu)¢'5(ph,p2¢)* = (3.146)

helicities
As a result, the LO density matrix elements read

4aemQ§
doorr, = A

d*p11 Dqg L
F aq
’/ﬁq% T zage ! Plat T 5)

dxdffd2qu_d2qu_5(1 —z —1)2*72Q?

2

) (3.147)

X

eng
doorr, = 7(2#)4NC

dpr PqgL d*p' | (1 - pgrr1) Paal "
PR o 9 L F(prg1 + 2= 3.148
X [/ [3:121 ¥ ZEIZ'QQ (pllJL + 2 ) / ﬁq21/ + IL'ZfQ2 (pl ql + 9 ) s ( 4 )

drdzd*p,  d*pg1 6(1 — 2 — 7)xz(1 — 22)Q

and

mQ2 i . A
doorr = Wdﬂhd%qi-d%cﬂﬁ(l —z—7)[(1 - 22)%gk1gY — ¢l + gklg7]

d2 i _ d2 / . , _ *
y [/ pri(eL pqu'k)F(pqu 4 Paal )1 l/ P} (1P J_l)F(plqu | Pagl )] - (3.149)

D1+ rTQ? 2 ﬁq21, + 2zQ? 2

3.6.2 Dipole - dipole NLO cross section do;
LL photon transition

Combining Egs. (3:141), (3:87) and (3.15), and summing over the polarization components ™ @ +5*@5r

with the help of the gauge invariance relation &; = Q(Q%@f{ , we get

p7)

I(1-— N2 -1
don, = o ( 6)( <

(4m)'te \ 2N,
CYSQQ (]\[C2 —1) aemQQ

L drdzd?p, | dps 6(1 —x — T
i TN ) Gy, S e a0 e )

) (SV + S;K/)dO'OLL

d(pr1r1 +p22/¢)F <p12J_) F* (pyzu_)

% d2 dQ d2 / d2 / 5 _
/ p11d pa1d®py | dipy ) 0(pgiL + pg2i) ﬁql,-l-wi’QQ 9 B

62272 | 2272 Q2
— — n — Ju— — —
P+ xTQ? (zPg — TPy)* (P + 2TQ?)?
(pg)?

+
s2py

+

tr((Cjf + CJ + Cf) )mﬁsq)} + h.c. (3.150)
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We will parametrize the finite contribution of the C functions using the + prescription as defined in

Eq.[3.29:

(poi)Qtr(be +A)7/zdz[(¢) . +(g+q) (3.151)
st;r I1PgY  Pq) = A 4)LL]4+ q<74), :
and o x
(sp2pzr (Clllpq'}’ be) = /0 dz[(én)rLly |ﬁs:5 +(@<q), (3.152)

where n = 5 or 6. The expressions for (¢,,). are given in Appendix[AIl For n = 6 the integral can be
performed analytically to the end, so that :

(pO ) —22223 | <$JJQ2 +ﬁq21>
n

CY gy p —
52p+ tr Ui o) = (pql +22Q* — Tp?)? Ty

22272 + 22Q? — TPy ik
+ e |4 Li Py + 22Q” L) 4 3m ( >8
Pg +2TQ Pg +2TQ G

) 22 > 2 + 2T 2
+=3 ?:EQ —5 |3In w +1
Pyi+22Q? — Tp; zpy

+ (g & ). (3.153)

LT photon transition

Using the same method as for the LL. component, we get

I(1—¢) (N2 -1 .
dUlTL = Qg (47{_)1_"_6 < 2NL > (SV + Sv) dUOTL
Osz N2 -1 aeng 2 2 _
< dxdzd d°ps10(1 —x — i
v o (50 i ttsd s dias o - - 23,
X d p11d*pa) d*p | d®por 1 S(pgrt + Pa21 )0 (p11rL + poort )F (p122L) F* (pv;m)
X 2 tr((C + CF + C1)baytpg)' Br2(1 — 22)phy
P+ xzQ? (D7 +22Q?) (P, +22Q?)

v (1 BT pPSQ (wpg —Tpy) | 22Q? " 2TQ?
pql + wa2) (qu’ + waQ) ﬁqQI/ ﬁqQI/ + ‘er2

( )2 tr((Cj + CF) + CF)ba(Y B 1 — 2apy, 1 )7 Dy)

+ (3.154)
ot T (ﬁqﬁ, + x:EQQ)
Once more we will parametrize the contributions from the C functions, as
(po )2tr(Ciipa((1 = 22)ply,, — 5[Pgrr L, v )y g) @ 4
0 [|Pa q1+L 2 Wq 1 q _ / dZ[(¢4)lLT]+ 4 (q AN q) , (3.155)
s2p5 0
0 )2tr(C} pa((1 = 22)ply ) — gL, ¥ )V Tp v :
(po ) ( 1Hpq(( )pql-’_J_ 2 [pql €L ’YJ_])’V pQ) _ / dZ[((bn)ZLT]Jr| - + (q AN q) , (3156)
S2p7 0 p3=
and . -
(pOQ) tr(C1'pay by) = / dz[(da)pp)+ + (g < @), (3.157)
0
—\2 x
b n A [ q
( §2) (O Pt o) = /0 dz((n i)+ |5 + (@ © @), (3.158)

with n = 5, 6. The values for (¢,,) are given in Appendix[A.Jl The contribution from diagram 6 can be
computed to the end :

(po )2tr(CYypa((1 — 22)py . — 5lg 1, Vi)V Py) Py )?
: 52;+ : =(1-2z )pql’J_(szr (Cl||pq’}/ Dq), (3.159)
5
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and
(pa)Qtr(CGj_ﬁf’erﬁ )= —z7(1 — Qx)pqzu_ 1 fﬁf
1 =3 — — S =
52 o q21 + 22Q? — TP, pq21 + 22Q)?

2Z(1 — 21:)pflu_ T2 i
—— = 4l | ————= +1 3In (2L ) -8
+ ﬁqgl_’_xi,Qg 12 | =35 z + + n<'u2)

—aTpt| | . Zpy
+ —== |7 —6Liy | 55———=5 +1
3p2 [ <pq1 + 27Q? )

—Ipy n Tpy
(7 + 27Q? — 7p}*)? P+ rTQ?

+ zz ($p2u - fprL)

1 TPy _
+ - g 2In| zs———= | — 1| | + (¢ < q). (3.160)
(pq21 +22Q? — Tp}?) [ (p,fl + 22Q? ( )
TT photon transition
The cross section for the TT transition reads
F(1—¢) (N2-1 .
doyrr = as (i )1+3 ( §N ) (Sv + Sv) doorr (3.161)
™ c
as (N2—1\ aem@? _ .
+ y ( N ) (27r)4]37 dl'dl'd2qu_d2qu_5(1 — 1z —T)(eTiety)
X /d2pud2pud2plud2plu5(l?qu + pg21)0(p117 1 + paz 1 )F (p12u) F* (pl,;u)
3 DqlLrPql’ LI i vk Ui | ol i
’ {5 T+ aaQ@) g, +aaQ) |~ ) 9LoL oL+ oLl
ql ql’
v | xzpt B 2T Q? n 2TQ?
(xPg — TPy)* (P73 + 272Q?) P Py +2zQ?
(pg )2 trl(CH + CFL + C¥ )pg(ply, (1 —22) — $[Bg1r1 . V17 D]
+ 4 h
2s2xT P2, 4+ 22Q? * .C-|p1<_>p/1 -
ql’ ik
The C functions are given by :
(Pa)Qt C4iA j 1 2 1 A J +5 ) — md ij q 3.162
5g2 tM(CLPa(Pgr 1 (1= 22) = Slhgu 1,71 1) Pe) = |z (93 )rr Lt (¢ q), (3.162)

and

—\2

) . 1 . z -
O (il (1= 20) = T D) = [ (@), st o0, (3163)

with n = 5, 6. The values for ¢,, are given in Appendix [AIl The contribution from diagram 6 finally
reads :

(o)
2
=X [gik(ﬁl “Pa1) +PI1CLPZ1'L + (2 — 1)quplq€1/ﬂ

2
i L. .
tr(CYLpa (P (1= 22) = S b1 1,7E])7 " ha)

%P n Ipy
(3 + 27Q? — 7p}*)? P+ rTQ?

— — =9
z TPy
+ = — — 2In| ——— | —1
Pa +27Q? — 7P l <pq21 + sz2> 1
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9 2 52 4 2702 — 752
L2, Pq1 Q 2191
Dy 6 pq1 + zzQ

—xx [pfzupfﬁm(l - 235) - 91’ (ﬁql 'ﬁql/) _Plguplem]

~1 zp?
_ (1 -3mm [ =2
PA +2TQ? — TPy’ ( <pq1 + 27Q?

1 7 +22Q? — T2
S 3In ( )+4L2 qu Q 2171 _3
pql +‘T$Q ,u‘ pql +IE!EQ

2
—IPpy TPy —
1 . 3.16
* (D +22Q? — 2p?)? ! (ﬁq% + :EiQ2> tae g G164
3.6.3 Dipole - double dipole cross section do,
LL photon transition
OééQ aemQ
doarr, = I (on)! Jffc dedid®py1d®pg16(1 — x — I)
2 d2P3L
X dP*p1od®pa dPp dPph | W5(Pqu +pgatL —p31)0(pirL + P2z +p3i)
T
1 = (P121 ProrL
5 B(55m) [F(557)
© P2 arQ? g b3l / D
_ 27 (P — ﬁfz — Pgi — 227Q?)
X 4xT 5 —> —5=3
(s + 22Q?) (P + 22Q?) — 273Q?p;
oz (73 +22Q%) (g1 +22Q?)
x In (—) In ———
e2n zTQ?ps
22T x Py _
- <ﬁl () (5E) raea)
Q* p N
v S
We will write . .
b _
(20p)+ r(C3lpa7 " Dg) = /0 dz[(¢n)rL]y + (¢ Q) , (3.166)
with n = 5, 6. The values for ¢,, are given in Appendix[A.T]
LT photon transition
Qg OéemQ
door; = 47? o ]3 dzdzd*p,, d®pg1 6(1 — 2 — 7) / d*py1 d*pa) d®ph | d*ph, (3.167)
)" Ne
d*ps d?ph |
X (QT(S(pqu_ + Pg2i + Pg3.1)0(Pr1/ 1L + P2zt + P3ziL)
5(1’5,1_) Pi12L P12
2 B (55 (257)
X &y pql’ T 2702 9 p3L 5

x [ 201 —22)p; 22(ps’ — Py — Py — 202Q°) In (E)
st (ﬁqQ + ‘T‘TQQ)(pql + ‘T"Z‘Q2) - ‘TjQ2ﬁB2 e

. ((pq2 +22Q?) (53 + wa2)>
sz2p32
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<ﬁl (i)ln(ﬁ)ww))}

(py ) N L i N
e trl(CE) + Cha(par 1 (1= 20) = Slhgv s 71 Bl
S°XTPy
5(1731_) P121\ & (Prr27L
) P (P (22 )
* P2 +azQ? \ 2 g Pt

) -2 T .2
X 2xx(1 —2 k —1 (—)1 3)
({ xz( )P (QQ ) n(Z)h (H2
(@) s«
n _
627] (ﬁ 21/ + xiQ2)(ﬁq22/ + w.i'QQ) — ZC.i'QQﬁ;/
111 (pql’ + szQ)(qu’ + z:fQQ)
x$Q2p3,

1 D1 + 2TQ?
+ =5 In — — 92
D1 xZQ

Again we will write

) + (¢ < (i)} + (pgj tr((CF + CP)pay T hg)* >] :

(i h) = [ dz [@ur) e+ @) (3.168)
and

~)2 . 1 . * .
%tr(cﬁlﬁq@f}l&(l —2z) - 5[ﬁq1’i;7§_])7+ﬁq) = /0 dz [((b;)TLLr +(q<q). (3.169)
N

The values for (¢56) 7 and (¢5,6)71, are given in Appendix[A]l
TT photon transition

aemQ d2p3J_
doagrp = 22 "2 g0 dzdPp, | d? L(Sl—x—x/d d*po d?p' | d*pl /
2T = L ), Pgrd pg1d( ) prodipa d®py  dph 2n)’
(ETiE*Tj) = (D121 Pl
P +azQ? [ g b3l 2
-2 T
_ 2 ki lj kj li kl _ij P3
X ({pql’LlpqlLk[(l 2z)°g1'g7 — 97791 + 9797 (Z;oqzl T 2302 In (e") In ( 2 )

W
L (PAt IR 7p +21Q?
P2 T Q? (P +22Q?) (P + 27Q?) — 22Q%*py

% 1n<(ﬁq1 + 220 )(ﬁquﬂEfQ )) >+(q<—>§)}

ijQﬁBQ
7 1 ~ i ~
tr((CSL + CQL)pq [pql’L(l 2$) - i[pql/l_ ) 'Y]])'Y+pq]> + h'c'|p1,pgf<—>p'1,pé‘| . (3170)

) d(pg1L + P21 — p31)0(Pr17L + P22t +p3L)

(po)?

+ 25227

]

As for the other contributions, we will write

—\2 1 ) T B
O (3l (1= 20) ~ gl D) = [ d[@)rr) st g o). @a7D

The expressions of (¢ )7 and (¢F )7 can be found in Appendix AT}
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3.7 Cross section for the +*P — ¢gg P’ transition

As in Section [3.6]we define a reduced matrix element A, such that the v*P — qggP’ cross section reads

1
do(qq9) = E(%)%(D)(m +po — Pq — Pg — Py — Ph)|Ad|*dpa, (3.172)
where
8P (py + po — Py — P — Py — 1) = 8 (D0 )6 (T + pF + ) — )
x 8D (g1 +pai + Py — Pyi +Po0L) (3.173)

with the 4-body phase space measure

dpyd’pgr  dpgd'par dpfdipg. dpydip),
2p§ (2m) 4+t 2pF (2m) a1 2pg (2m) 4L 2p (2m) 4t

dpy = (3.174)

The reduced matrix element can be derived from Section[3.5]and reads

62p Ea NCQ—l D121\ 5o
2 “NQ TIH /d p11d p2j_{5(pq1J_+pq2J_+ng_)< N >F( 122 )5

,pu)fbff} : (3.175)

d b3 = P12l
E sl (2L
+/ (2m)1 (Pg11L + Pga1 + g3 )F( 5

This cross section has a contribution do; with 2 dipole operators, a contribution do4 with a dipole operator
and a double dipole operator, and a contribution dos with 2 double dipole operators,

do(4qg) = dos + doy + dos. (3.176)

The dipole x dipole contribution reads

ay (Nf—l) aem@y _ (pg)?
(

u2e N, 2m)4Hd-DN, s?z,24

dosjr = (era€ip)

dxgd Dyl

9(27T)d

X /ddpuddpuddphddp/u5(]?qu + pgoi + g )0(p1171L + pazri)

X dxzg dzqd DgL ddqu_ 01 —zg — x5 — T4)

x ‘bg(lesz)‘bg*(thp/zL)F (p12u) F* (p1/221) . (3.177)

The dipole x double dipole contribution reads

a,  oem@7  (py)?

o dzd® Dyl
M2€ (27r)4(d71)Nc 82$ T

z(2m)d

d?ps1 d?p!

X /ddpuddpuddp/udd éLﬁﬁs(pqu + g2 + Pg3.1)0(Pr1/ 1L + P2zt + P3ziL)
T

I * P12\ &« (P172/ L
X[‘I)s(pu,pu)q’f (p’u,p’u,p’gl)F( 5 )F ( 5 7Pfu) 6(psL)

+ ‘I)f(pu_,pu,psj_)‘pg*(l%)ﬁ (p12u, :u) F~ (py%) 5(1”3¢)} ; (3.178)

doagr (e1a€)5)dxydrad qu_ddqu_ 0l —xg—x5—x4)

and the double dipole x double dipole contribution is given by

C aem@? )2 (erag’ dzd?
dUSJI _ s € Qq (pO) ( I Jﬂ)d dZqu pqdepqL ng

F (2m)4d=1) s2z 0, N2 —1 z(2m)d §(1 —xg — wq — )

d?ps 1 dp!
/d p11dpa) dipl | diph | — 2L 5(pg1s + Paat + Py3)d(Pr1vL 4 Pazt + p33iL)

(2m)

o * = (P12 = (P1727 1
X O (p11,pat,p3r )Py (plllvp/QLapél)F<T;p3J_)F ( 5 ,p’gl)- (3.179)
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We present the results for the products ®,®; in Appendix B in D-dimensional space. They can be used
directly in dimension 4 to describe the exclusive production of 3 jets. The cross sections here seem to
have a singularity for -, = 0. The dipole dipole part dos describes gluon emission after the shockwave.
Therefore it is natural for this term to have soft and collinear divergences as will be discussed in the next
section. However, each dos 4 5 also gets logarithmically large terms from the gluons with fixed transverse

momenta integrated over a large area % < x4 < 1. To apply these formulas for the exclusive production
of 3 jets one has to restrict the z, integration with the rapidity cutoff 6(xz, — €7) from the definition of
the impact factor and use it only for the fast gluons (jets). As a result, the cross section gets an explicit
dependence on the rapidity cutoff of the 3 observed jets. The situation is different in more inclusive
cases when one has to integrate over the produced gluon. Since the xz, integration gives a In (s) factor,
one has to resum all such contributions. One can do it via the evolution equation for the double dipole
operator with a color singlet projector following the logic of [88]]. However, since the main motivation of
the present thesis is to study the production of a dijet with NLO accuracy, in the next section we will only
extract the soft and collinear divergences in these real terms to construct a well defined cross section for
this process.

3.8 Cross section for the v*P — 2jets P’ exclusive transition

The expressions for v* — ¢g and v* — ¢gg impact factors can be used to construct IR stable cross
sections for dijet production. Whatever the experimental conditions are, one has to combine the ¢ and
qqg production cross sections obtained above to cancel the soft and collinear singularities in the virtual
part. They cancel with the singular contribution of ¢gg production arising from the emitted gluon phase
space area where the gluon is soft or collinear to the quark or the antiquark. We will explicitly show
this cancellation on the example of the v* P — 2jetsP’ exclusive production cross section experimentally
studied in [86]]. By exclusive production we understand that only two jets and the scattered proton
are seen in the detector and there is nothing else. Since we want our result for the cross section to be
differential only in the jet momenta, we integrate over the transverse momentum of the outgoing proton
as before. We define jets using the small cone algorithm, as in [89]].

Figure 3.13: Jet formed by a quark and a gluon

Let us define a jet cone radius R2. For convenience, we will assume that R? < 1. Two given partons
i, k with respective momenta p; and p; will form a jet with a momentum equal to the sum of their
momenta if they both satisfy the following condition :

A¢} ) + AY? < R?, (3.180)

where Ag; ;. is the azimuthal angle difference between parton i (resp. k) and the jet, and AY; ; is the
rapidity difference between the parton and the jet. The jet momentum will be given by

ps=zypin + (py +py)nh +04 ., Ty =x; + T, Pj=Di+ Dk- (3.181)
=2
In the small cone limit, p;” + p, ~ 2pp+"w up to a O(R) correction so the jet is on-shell in this approxima-
Y TJ

tion. The azimuthal angle and rapidity differences read :

== 1 1.213'_2’
Ag; , = arccos M, AY;p,=-In ; Z_,]; . (3.182)
' |pJHka| 2 kP
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Introducing the variable

&ik _ LiPk — ZTkPi , (3.183)
x; + Xk

which approaches 0 when the partons are collinear, expanding Eq. (3.182) in terms of A;;, we get the
condition for the partons to be inside the cone :

A2 2 (] xk

% < R’min | =%, =k ) 57 (3.184)
.I’J SCJ

We are now studying the exclusive production of dijets, thus there are only two kinds of contributions :

either one of the jets contains two of the produced partons, or the gluon is too soft to be detected. Let us

now focus on the first kind of contributions.

First let us note that any non-collinearly divergent diagram will be subdominant in terms of the R
expansion. Indeed the way we will obtain the first kind of contribution is the following : if particles < and
j constitute the first jet J and particle k constitutes the second jet K, we will make the following change
of variables :

da;drjdoyd?pd*p;dip,  —  drid A (deydiprderdipi) (3.185)

o o ~ o o R 17 N Ty
(1'.]7 D1, Tk, DK, Aij) = <$z + x5, pi + Dy, Tk, Pk, w—zpj - w—]pz> . (3.186)
J J

The Jacobian for this transformation is 1. The condition for particles ¢ and j to be in the cone of J in
Eq. (3.184) will restrict the integration w.r.t. A;;, so what one gets will have the form :

2 2

R’?min | &£, 2 A2
x2 2
7 T

The generic function F' will then be expanded around &ij = 0 by writing

(22 35%) / 'R0 [Pt (Bi)] - (3.187)

ning

- [Fﬁ‘ﬁz (ﬁij)] . -
Fifa(By) = et 4 |Fif, (Bip)] |+ O(Ay). (3.189)

]

Then the integral becomes :

d @ A ab (A 2 2 §-1
o 4 |:Fn1n2 (Aw)} [Fnlnz( w)} 2 x4 T2 x=
P (I)ﬁ* col 0 i a2 —»2R2 R2 o5
( n "Q)O(F(%) P + d min x%’x?, P min J:?,’x% pJ
(3.189)
Thus the diagram combinations with (F/5, ) = = 0 are always suppressed by a factor R?.

3.8.1 Jet cone algorithm and the soft and collinear divergence

To clarify how the cone algorithm allows one to cancel the soft and collinear divergence for our process,
let us consider a more general algorithm. Let us define a jet distribution 7 (p;, px), where p; and px
are the jet momenta. The cross section for the production of jets can be written as the convolution of the
jet distribution and the differential cross section for the production of partons. For example when the
first jet is made of a gluon and a quark, we can write

dgg(gtg; 7= /d%dquxgdd ddpqddpgj (pg + Pgs Pg) dopartons (Pg; Pa> Pg) - (3.190)

Let us define €, and 25 the areas of integration w..t. p, where the gluon is collinear respectively to the
quark or the antiquark, and 2 the area of integration where the gluon is soft. Then the jet cross section
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can be rewritten using the simple remark Q, N Q, N Q; = O, \ (s N Q) U (Qs N Q) =

Ao jers = / dzydzgd® p,d Py { / dzgd*py [T (pg + Py, P7) + T (Pgs Pq + Pg)] (3.191)

q

+/Q dzgd* 5y [T (D, Pg + pg) + T (Pg + Pgs Pq)]

q

+/ _ _dxgddﬁg [j (an pq) +J (p¢77 pq)]} dgpartons (pq, DPg, pg) .
Q.M N0,

= /dwquéddﬁqddﬁé dopartons (an Dg, pg) {/( dwgddﬁg [j (Pq7 pé) +J (Pq, Pq)] (3.192)

s

+/Q dagd* Py [T (pg + Py, P7) — 0(pg € Q)T (Pgs Pg) + T (g, Pq + Pg) — 0(pg € Q)T (pg, Py)]

+/Q dagd®py [T (pg: Pg + Pg) — 0(pg € )T (pg, Pg) + T (pg + Py, Pg) — 0(pg € )T (pg, pq)]} :

q

One can now easily see that the divergence arising when the gluon is both soft and collinear to the
quark or the antiquark is canceled by the use of the jet algorithm through the cancellation of terms like
J (pq +pg, pg) — 0(pg € Q)T (pg, pg) in the soft limit. We will show this cancellation explicitely in the
following pages in our formalism.

3.8.2 Preliminary remark

To obtain the v*P — 2jets P’ cross section from the v*P — gq P’ cross section, one only have to make
the change of variables (p,, p;) — (ps, px), where p; and px are the jet momenta, and then apply the
(J + K) symmetry.

We will show in the following pages that the divergent terms in the real part only arise from the
square of ®$. However for completeness we computed all the contributions to the cross section from
the real diagrams. Such contributions can be used to go beyond the small cone approximation in our
computation, or to compute other cross sections, e.g. for the exclusive production of a trijet among other
possibilities. Obtaining the squared real part is a fastidious but straightforward task. It can be done with
the massive use of the following remark :

Tr(y™My"2 ") = g™ "2 Te (Y. ") —g™ " Tr (2™ " ) g™ T (729"t ) L (3.193)

Given that g+ = g*? = g~ = g~ = 0 and that all the outgoing partons are on-shell and the ¢-channel
momenta are purely transverse, most of the terms in the right-hand side of Eq. (3:193) will cancel until
everything is reduced to a sum of traces of 4 and 6 transverse gamma matrices. Then those are taken
explicitely and recombined. In this work, this task was done by hand then checked using FeynCalc to
compute the exclusively transverse traces. Independently, it was computed using Mathematica and it was
checked that all the results coincide. All the expressions for the traces are in Appendix[A.2] of this thesis,
but in this part we will need the expressions for the square of ®¢, which are given below :

Z {‘i); (71, P2) B3+ (P, 172')} (3.194)
Ags Ag, Sg

8xqxg (pjy')4 (dxg +dag (zq + zg))

2 ﬂqzz ﬁ<§22’ A
(‘rq + ‘rg) (Q2 + zg(lifxg)) (Q2 + xq(lzq)) Agg

81,24 (pf;)4 (224 — dxg + dzq24)

_ qg
52, =2 N2 A2
(st ) (o ) (@ + s ) (@2 i) \ Sl

zg(1—xg) zq(1—zq)
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> [‘i)é (71, 72) 237 (P, pg,)} (3.195)
)‘flv Aév Sg
= 4z (pV) <Aqu-qugJ-V>
, A2 A2
(zq + zg)Q (xg + x4) (Q + (]i‘ﬂm ) (Q + xq(fﬂz )> AdgAlg

x [y (40q + 240 = 2) (Pl L0 = Phar g') = (205 = 1) (Aaqg + 24(2 — 74)) 91" Pl |

4z, (pf;)3 (225 —1) (z2d +4xg (g + zg)) pijJ_

- +@e 9,
(l'q T :Cg) (Q + Iq(zl)qzzq)) <Q + ) AQ
and finally

>[04 @ 5) 8 G )] (3.196)

Ags Ag, Sg
—2 (p* 2 A N

- 2 2 ( . )52 P ( qg;t&;u“_ ) {zg((d —4)zy —2)

(g +9)" (g + ) (Q2 + Ié(qu%’)) (Q2 1Q1xq)) o

X [PZyL (Pgugf +P§2L9T) + g1 ((ﬁql' 'ﬁﬂ)!]ﬂC +PZ1'LP§2L)

- gi’“péupf;u QL 91 (pql’ 1762)} —gt

X [(2% —1) (22 - 1)Pq1'LPun (4rqxg + 24(2 — 14d)) + dag7g ((ﬁql’ 'ﬁﬂ)gﬂc + pf;l’J_ng_”
+ (Pfimpgugﬁf“ — P P 97— Pl Pl g1 — g g (B - ﬁqz))

X z4((d —4)rg +2) + 24 (225 — 1) (x4d + 424 — 2) (gikpgm - gikpglu_) ppr

+ x4 (224 — 1)17];1’1_ (4rg + x4d — 2) (gfpf{u - gjb_ipqlfﬂ_)}

2 i i
2z, (p'Jyr) (xﬁd + dag (zq + xg)) ((pq2 pqu) -(1- qu) quw'gu +pq2’Lp§2L) +( 2
— q<rq).

zg (24 +$g) (Q2 ?”I )) (Q + o (fyz )) Ady

3.8.3 Collinear contribution

Considering expressions (3.121), (3.122), (3.124), and for the impact factors and the remark
in one can now see that only the square of diagrams without the gluon crossing the shockwave
will contribute in the small cone approximation. Indeed if the gluon is collinear to the emitter before
they both cross the shockwave, the interaction with the shockwave will spoil their collinearity before the
gluon is reabsorbed. The diagrams giving the first kind of real contributions to the cross section will thus

be the ones in Fig. [3.14]

Figure 3.14: Small-R contributions to the cross section

Additionally the contribution where the gluon constitutes a jet by itself and the quark-antiquark pair
constitutes the second jet, as in Fig.[3.15] is also suppressed since it is not collinearly divergent.
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Y

A
NN

Figure 3.15: R-suppressed contribution

When the first jet J is formed by the quark and the gluon and the second jet K is formed by the
antiquark, using the jet variables (3.183) and the small cone limit the collinearly divergent squared
impact factor reads :

STk (p )4 (g — xg) [:L'?]d+ d(x; —xg) ZL"]]

> (85 () 837 G )] — (3197
o ey (@ ) (@04 Fi) Ky,
Ei o o NF4k (= = 4z — oK) (p+) Picar (X —xg) [x5d + 4 (x) —x4) 2]
> [‘1)3 (P1, P2) @37 (P, P2')} = ; > QPK ; ﬁi? N, . :
Aar Ag: 89 T ( IJIK) (Q + z.zzx) Adg
(3.198)
and
(@5 (51, 7o) 8" (v, )] (3.199)
Ag»> Ag, Sg o

2|/ = > i i i
2 (P;F) [(PK2 'PK2’)9f — (x5 — xK)2pK2Lp]I€(2’L J’_pKQ/Lp]IC(QL} (xg — ) [l’id +4 (v —x4) xJ]
o =2 I '
wral (@2 4+ Hi ) (@2 + B ) Kz,
The other contributions can be obtained by the (¢ «++ ¢) and (J + K) symmetries. It is easy to see that
the LO contribution can can be factorized in these results, as follows :
N (fEJ*fE)Z'2d+4(Z']7IE)$J e v o
> [@3 (B, o) 5" (P, pz/)} = o) | 5) /] > B, 7) G (B, ) -

1 2
Ags Aa» Sg o 43?]A

helicities
(3.200)
Adding the phase space factors and integrating, one obtains :
I'(l—e€) (N?2-1
/ _ c
do31]co = s (4m)i+e ( 9N,

where n is proportional to the “number of jets in the quark" :

(4m)tte (o7 d%/ d'Dqg % tr(ey*Bay”)dun (pg)
176 21-9 A2 mm(mg,(wj 24)?) (27T) 2pJ2pq (pl; +p; _p;)Q

Rp,

J d -
:4/ 21y N d / 252 dqug
o Tglzy—z4) (1 —e€)m2 5(,29<RT”J min(22,(z 5 —x4)?)

2
J

(g —xg) [x§d+4xJ($J—xg)] .

1
1 : (3.202)
4 x%Agg

ng is obtained through the (J + K) symmetry. After a straightforward integration, one can show :

_ TjXK 3 1 R4pJpK 1
TLJ+TLK4|:{1H( 2 ) 2}{21n< P Jre

1 TJT 1 T, TrD? 2 7
—5m?( ;f) +5n <—]> In ( KD/ > Dyl 1n(8)] . (3.203)

2 TK TP 3 2
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3.8.4 Soft contribution
Similarly to the collinear divergence, the soft divergence arises from the diagrams where the gluon is
emitted after the 2™ = 0 line. Indeed if a soft gluon is emitted before the shockwave, its energy is not
sufficient for it to reach the 2™ = 0 before being reabsorbed. Thus such a contribution belongs to the
virtual dipole term. Hence the real diagrams contributing to the soft divergence are those in Fig.

gy i
jw Wd

Figure 3.16: Soft contribution to the cross section

The soft limit can be taken by writing
Pg = TgU, (3.204)

where u is of order unity and |z,4| < z,4, 7 is small. Then Eqs. (3.194), (3.195) and become

respectively :
Z [‘53 (P1, P2) i)gf* (P, 172/)} (3.205)
Ags Ag, Sg
1 i _ o\’
J K

_ 32$J1’K (p,Jyr) (E - ZK)

- 24+ Pz Q2+ Py 2 (= _ Pu 2. P 27

TITK zjzr ) Lg (U - E) (U — E)
(@4 (71, 72) 93 (v, )| (3.206)
)‘flkaivs&?
3 ar _ o\’
; J K
16— 02) P, (B )
= 5 1522 9 ﬁ22, R N 2 ~ ~ 2
(@« #5) (@ 2) o (- 2) (- 2)
and
> [‘i)f%, (1, D) B4 (P, p*gr)} (3.207)
Ag> Ags Sg
2T, . i 2 ; . N2
8 (P;r) |:(pK2 -ngr)gf —(xg —zK) pKQJ_p’;Q,J_ +pK2/J_p]I€(2J_} (5_], _ z_};)
B Q2+ZE}?2 Q2+ﬁ1?2’ 2—»@2—*&2

TJTK TJTK TIT K .Z‘g (U — ZJ) (U, — $K)

It is now easy to extract the leading order cross section by writing :

~ Lo\ 2
bs _ PK
(1}.] IK)

Z [ég (P1, P2) B4 (P, 172')} = — 2 Z O (p1, Pa) @G (P, Par) - (3.208)
.1'3 (’LT - gj) (’I_J: — p—K) helicities

Agy Ag, S =
a>Aq> Sg 7 TK
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By adding the phase space factors, one can then rewrite the soft cross section as :

| N2
2 _ 1+e d+ 4 (8L — LK
NZ—-1T(1 G)S g= (4m) /dxg (xd_?’) /(d U ( . K)

d ! s0 =d A ST AONT A N1+e = T/ d )
UBJIl It T 2N, (4m)i+e ) I(1—e¢) g 27)d (ﬁ, l)Q (a‘ ac 2
T g TK
(3.209)
or with a more explicit physical meaning :
S = (4n) s /’ pg ’ dwg ddﬁg
(1 —e¢) *Pg) g Pg)| xg (2m)T

To describe an exclusive quantity, we need to introduce an energy resolution F and integrate out the
gluons with an energy too small for it to be detected. Thus the soft gluon integration region consists in :

1
wy =3 (pf +p,) <E <p?, (3.210)
so that )
@ 2F
z, (14 —) <= <1 (3.211)
! < ®7)?/) by
Thus :
N = 2
22 725dd—* 4 (5—‘7 — g_x)
S = / dag (z87%) / - = R (3.212)
a #2222 D1 — o) ﬁ(afﬁ_J) (ﬁfﬁ_x)
’Y g TK

We have restored the rapidity cutoff o which will of course play a role to regularize the soft divergence.
However, in the sum n; + nx + S the region with a gluon both soft and collinear to the quark or to the
antiquark is calculated twice. To avoid double counting we restrict the integration in S so that the gluons
sit outside the cones (3.184)). The integration region then reads

2F
QO = {G2 < (p,Jyr)2 <J: T - 1>} N Qe (3.213)
gP~
2 2
g RQ—*Q = RQ—*Q
Qpe = {(a—p—J) >#}m{(ﬁ—p—f(> >—2K}. (3.214)
iy xJ TK T

Let us denote S’ the new definition of S with this integration area :

/p'v dxg/ pJff_i)Q
"8 -8

’UJ* 2y u

T

4 pJ px)z

/ dl’g/ du 112 TK - +4I(R7E)
(2 G a)
2F (pJ,TK —.I}JﬁK)4
= 4111( )1n< ~ = +41(R,E), (3.215)
apy (R2pfad) (R*pga)

where we defined

o d a (B- p—K)2
P u x T
I(R,E) = —/ v 2 / = L > (3.216)
@ 2> )2 DN T (ﬁ, ﬁ_J) (ﬂ', ﬁ_x)
T g TK
The integral I(R, E) is convergent and depends neither on « nor on e. In Appendix [A.3] we show that
this integral gives a contribution which is suppressed by a factor 1/s. Finally,

2F (ﬁJ.I}K —xJﬁK)4
S'=4ln ( > In ( = — . (3.217)
apy (R2pfa%) (RPpR)




84 Chapter 3. Diffractive exclusive production of a foward dijet in the shockwave approach

Combining Egs. (3.203) and (3:217) we have

TPy — TyPr)* 4F?
sf+nJ+nK:2[1n(< KBy — 21PK) )m( )

a5 xR PR T2k (py)?
1 2
rom (2 (Do (S ) e (R
a € (xxPr — T1PK) o
3 16u* p 2 3 on?
2 R PiPg TK TKDj € 3

Adding the singular part of the virtual correction (3.88), one finally cancels the In« and < divergences
and gets :

1 (xxpys — 2 pK)* 4E? 3
SRS/+nJ+nK+SV+S*4[—1n< ——— n{— | +-=
v 2 airy RUpRD; zyxK (py)? 2

) 2
+1n(8) — %m (x—J) In <z"pK) LB ] . (3.219)

.I’KﬁJQ 2

This is the main result of this study : we managed to build a finite cross section for the exclusive diffractive
production of a dijet at NLO accuracy and with general kinematics using the shockwave formalism in the
small jet cone approximation. To get this IR-safe cross section, one has to take the ¢g production cross
section from section 6, rename the quark momenta

(pg;Pq) — (P, PK),

and substitute Sy + S} — Sg in Eq. (3.150) for the LL transition, in Eq. (8.154) for the LT transition,
and in Eq. (3.161) for the TT transition.

3.8.5 Summary

Using the QCD shockwave approach [22][90}[91]], we have performed the first full computation of an
exclusive cross section with NLO accuracy in the shockwave approach. We have shown in a detailed way
the cancellation of UV, soft, collinear and rapidity divergences. All our results were obtained without any
approximation, with general semihard kinematics: i.e. for nonzero incoming photon virtuality, arbitrary
t—channel momentum transfer and invariant mass of the produced state. In the next chapter, we will
present a short but detailed list of several studies which could be based on our result or on our computa-
tion methods. First, we will describe how one could give phenomenological predictions for our process,
and how to extend it for other phenomenological applications. We will then give hints on how to extend
or rewrite our work for more theoretical problems.



Chapter 4

Prospects

Quite a lot of phenomenological and theoretical developments can be pursued based on our study. In
this chapter, we will focus on a list of some such prospects, and we will detail how we believe they could
be performed. First we will discuss the possible phenomenological applications of our process. Then
we will explain how to adapt our computation to the production of a light meson instead of jets, and
the theoretical problem at stake. We will then focus on the NLO * — ~* impact factor. First we will
explain how previous computations were done to emphasize that although some results exist, none were
obtained through a completely explicit NLO computation). Then we will give details on how we believe at
the moment one could recover this impact factor from our results. Finally we will discuss the extensions
of our computation for massive quarks with an emphasis on charmonium production. We will motivate
and discuss this by summing up part of another work of ours [93]] on the production of a forward J/¥
and a backwards jet at the LHC.

4.1 Phenomenological applications

The phenomenological applications of our results are multiple, and we expect them to improve essentially
the precision of models based on the kr—factorization picture, since several observables could now be
made accessible theoretically with NLO accuracy. Indeed, it is known that adding the NLO correction
to Born impact factors have major effects in BFKL predictions. The only available process for which
such a complete NLO description was obtained [94H99] is Mueller-Navelet dijet production [100]. In
particular, the azimuthal decorrelation was recently extracted by CMS [101]] and confronted with its very
good theoretical description of Refs. [102,[103]]. Furthermore, the fact that the state exchanged in the
t—channel in our computation is very general allows one to study not only the linear BFKL regime, but
also saturation effects in a proton or in a nucleus with NLO accuracy:.

First, the NLO impact factor of the present thesis could be used as it is to describe the exclusive
diffractive electroproduction of a dijet [86], and it can easily be adapted to non-exclusive dijet diffrac-
tive electroproduction by ignoring the energy resolution £ when performing the integral w.r.t. the gluon
momentum in the sector of the phase space where the gluon is outside the jet cones. This process was
studied at HERA [104]. In the limit Q? — 0, our general result could be also applied to the diffractive
photoproduction of jets [105,[106], with a hard scale given for example by the invariant mass of the
produced state. A precise comparison of the future NLO BFKL predictions with the NLO collinear fac-
torization approach could be performed [107,108]. More generally at future ep and eA colliders like
EIC [109] and LHeC [110], a large set of observables will give a possibility to enter the saturation regime
in a controllable way, since the saturation scale becomes perturbative for large center-of-mass energy
and/or large values of A. This includes photoproduction of heavy quarkonia, exclusive diffractive pro-
duction of light mesons, e.g. p—meson, either in electroproduction or photoproduction at large ¢. In
particular diffractive dijet production is considered as a very promising observable to probe the color
glass condensate and more generally to perform proton and nucleus tomography at low z, in connection
to Wigner distributions. Our result might be a first step to go beyond the recent LO analyses [111,[112].

Second, before the advent of future high energy and high luminosity ep and eA colliders, ultrape-
ripheral collisions (UPCs) at high energy which provide a source of photons from a projectile proton or

1We are however aware that such a computation was started by the author of [92]
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nucleus are perfect playgrounds in order to probe the high-energy partonic content of the target pro-
ton or nucleus. These are already accessible at the LHC. In particular during the Run I of the LHC, the
LHCD collaboration have measured exclusive photoproduction of J/¢ and (25) mesons [113[114] in
pp collision (later extended to T in Ref. [115]]), while the ALICE collaboration measured this process in
pPb [116] and PbPb [117H119]] collisions. CMS very recently released a similar analysis for PbPb [120].
The physics potential of UPCs will improve very significantly thanks to several very forward detectors
which are installed, under test, or planned in each of the four LHC experiments, in particular the CMS-
TOTEM Proton Spectrometer, AD-ALICE, HERSCHEL at LHCb and AFP at ATLAS [121]]. For example, the
diffr%ctive protoproduction of a large invariant mass dijet could be studied in UPC during Run II at the
LHCH.

4.2 The v* — p impact factor and the BFKL/BK correspondence

After applying a suitable adaptation of our results, one can obtain the NLO impact factor for the v*p
transition in arbitrary kinematics, therefore extending the result of [123]]. At leading twist, this process
is dominated by the v, — pp transition, transitions with other polarizations are twist-3 contributions.
The impact factor for the transition v — pr in the forward limit was obtained at LO in Ref. [124}[125]],
including both the kinematical twist 3 (the so-called Wandzura Wilczek (WW) [126] contribution, where
the Fock state of the produced meson is only made of a ¢g pair) and the genuine twist 3 contributions
(i.e. including a ¢gg Fock state).

The present result opens the way to a computation of LO v* — p transitions for arbitrary polarizations
and kinematics (using our v*) — ¢gg Born order result), as well as of the NLO y*) — p impact factor in
the WW approximation, using our one-loop v(*) — ¢g result.

In the following section, we will show how to adapt our results for the leading twist v;, — p, transition
then we will discuss a fundamental question at stake.

4.2.1 Collinear factorization for the production of a light vector meson at leading
twist
Let us study the v*gg — p amplitude, where p is supposed to be longitudinally polarized and the photon

has a large virtuality Q2 which will be our hard scale. We choose the frame so that the momentum p of
the p meson has null transverse components and is along n/' :

2
m
pt = p+n‘f + p—_fng ~ p+n‘f. “4.1)

The amplitude for this process reads :

i@m)Ps(p—p1—p2—a) A = (V)| Hintlg (1) g (p2)7 (@), (4.2)

where H;,,; is the interaction hamiltonian. Then :

i(2m)P 5 (p—p1—p2—q) A (4.3)
= Z (ief) (ig)z/dDZQdDzldDZO
f

X (V(p)| P |1y (z2)t" A ()b (22)0 (1)t Al (21 o ()95 (20) Ay ()i (20) | 9% (1)g" (p2) (@)

Here f is a flavor index. In the following for readability we will not write it, and we will mention in the
end how flavor should be included in the computation.

2In the usual collinear picture, a recent study of this process has been performed in Ref. [122].
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Figure 4.1: Example of one diagram for the v*gg — p transition. p; and p- are incoming momenta.

For example the diagram in Fig. reads :
i (QW)D Sp—pr—p2—q)A (4.4)
= (ieg)(19)" [dP 21 e 0= i) i

de le —i(k-z10)—i(l-202) [4a 2 ba NREY 70 J

X | —pF—pe€ [t°€1Go (k) £7€,Go (1) €2 5 (V (p)] 5, (21) ¥ (22) [0)
(2m)” (2m)

where (4, j) are color indices and («, 3) are spinor indices. Here we assumed that the gluons are on-shell

for simplicity in this toy model. In a k;-factorization computation, the polarization vectors ¢; must be

replaced by non-sense polarizations o ns of off-shell gluons.

First, let us write the Fierz identity in color space as follows :

[t°25Glo (k) t°21Go (1) 4] L Pi (21) W (22) 567" (4.5)
= [t%2Go (k) t°61Go (1) €] 1 ¥i (21) W (22) [2(t),; (8 + Nicéijémn
Due to the color neutrality of the meson state, the first term in the right hand side of Eq. cancels.
Then one gets :
[t°61Go (k) 1°€,Glo (1) 2] Bh (21) ¥ (22) 667"
= 6160 (924G () 22l P ()05 (22) 46

where we defined ¢ (21) ¢5 (22) = 9l (21) ¥} (22). The Fierz identity in spinor space relies on the
decomposition of the sixteen Dirac matrices on the following basis :

¥ = I, TP =iy,
DVH = Ak TAR = ylAS “4.7)
= b v
= b
The elements of this basis will be written as I'*, with \ a generalized index. Their inverses (FA)f1 =T,
read :
I's = I'°, I'p=-IF,
Iy, = T}, T =T}, (4.8)
r = I#,

pv
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b b //b b\\

Figure 4.2: Factorization in spinor space

The Fierz identity in spinor space reads

1
Saadep = 7 (Cx) g (T) - (4.9)

The Fierz matrices being a basis of the spinor space, any matrix X of this space can be written as
X = z,I'", and the previous identity allows one to check easily that

X = iTr (XTy) TN (4.10)

Applying this identity allows one to write :

_ 51117
[E1Go (k) €4Go (1) 2] Y (21) Y5 (22) 5 (4.11)
ab
= 4 [1/71 (21) Ty (2’2)} Tr [élGo (k;) £,Go (l) &:21—0\] -
8N,
One gets :
i(QW)D(S(P—Ih —p2—q A
ab
= g (e (i9)” [P 20?4 zge 020703200 (V (3)] 1 21) P () 0
D D
* / &fD <;7r—>lDei(k'“°”“'z°”Tr [61Go (k) ,Go (1) 227 . 4.12)

Chirality conservation implies that once convoluted with the hard part, the meson matrix element will be
canceled for every Fierz structure except for I'V# and T'4#, as can be trivially seen when considering the
trace in Eq. (4.12).
Collinear factorization relies on the expansion around the lightcone direction for the meson matrix ele-
ment. One can show that the axial matrix element starts at the 1st order in this Q~!-expansion while
the vector matrix element which starts at the Oth order. For a process such as v*gg — p the leading
contribution comes from the vector matrix element.

Thus for the production of a longitudinally polarized meson at leading twist, only the vector term
I'yx = v, will contribute.
Finally, the translation invariance of such a matrix element allows one to write

(p ()P (21) vt (22) [0) = €' P=) (p(p)] P (21 — 22) 72 (0) ]0) . (4.13)
One concludes :
59 (; )2 , , . ,
Sp—pr—p2—q) A = —i 815226(‘12);;? /dDZQdDzldDZOQ—l(m‘Z1)—l(pz'Z2)—Z(q'zo)el(p%2)
x (V)| (21 = 22) 7.4 (0) [0)
dPk  dPl

g / Gt T T AG (4G e (1)
™ ™
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Integrating w.r.t. 2, performing the change of variables (z1, z2) — (21 + 22,7 = 21 — 22), integrating
w.rt. (21 + 22) and finally w.r.t. k gives :

b (iey) (ig)” .
So-m-m-0A = DI D 4)15 ()0 (0)0)5 0+ 1~ + )

arr , . .
X / We**lﬂ*m)'m [61Go (I + q) £,Go (1) Eav"] . (4.15)

Let us shift { so that it represents the momentum p, of the “external quark” : | — p, =1+ g + p1.

Db (iey) (ig)” .
So-p—pa-) A = —iT DI D) ()2, 0)10)6 (a-+ 1 1)

dap . R . R
X / —p%e‘“p"‘”Tr [£1Go (pq — p1) €4Go (pg — p1 — q) E27"'] . (4.16)

We thus managed to factorize our process into a non-perturbative bilocal meson operator

(p (D) ¥ (21 — 22) yu¥ (0) 0) (4.17)
and a hard part
é‘ab ; s N2
H" (pg, p—pq) = —iMﬂ [61Go (g — 1) €4Go (Pg — P1 — q) E27"] (4.18)
8N, (27)

as such :

S(p—pr—ps—q) A = /dDr<p<p>|u3<r>w<o>|o>6<pfp1fprq>

d"pq —i(pg-r)
X/We Pam) P (pg, p — pqg) - (4.19)

In the spirit of collinear factorization, one then assumes that the — and transverse components of p, are
negligible in the hard part, since the hard scale ? is propagating along n; and the quark is collinear to
the meson.

Then one can trivially integrate w.r.t. p; and pj, to get :

S(p—p1—p2—qQ A = /dDT<P(p)|7/_)(7’)7M/)(O)|0>5(p*p1*pz*Q)(S(TJF)‘S(F)

dpt ) _
8 / (2p§D€_Z(p3T VH" [pina, (0 = pi)mi] . (4.20)
i

Thus the mesonic matrix element is evaluated in the limit where r is along the lightcone : r & ns. Such
a limit for this operator was derived in [127,[128] :

1
()Y (1) 7,0 (0)]0) ;2o = pufv / dze™ P (z), (4.21)

0

where ¢ (x) is the Distribution Amplitude of the longitudinal meson. Then integrating w.r.t. » and w.r.t.
+ gives -
py gives:

(2w€%—1 §(p—p1—p2— q)/o dzg) (x) (p- H) [zptne, (1—2)p*m]. (4.22)

5(1’*1’1*?2*‘])-'4:
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Figure 4.3: Factorization for the production of a light meson

Thus the leading twist amplitude for the production of a light longitudinal vector meson is obtained
by first computing the amplitude for the production of an open ¢g pair with respective momenta zp and
z7H with the right Fierz projection, and integrating the result multiplied by the DA of the meson o) ()
over z € [0, 1]. See Fig. 4.3
This procedure must be applied for each quark flavor contributing to the meson’s wavefunction, then their
contributions must be combined. For example for the production of a p” meson, whose wavefunction

is M, the amplitude must be computed for f = w and f = d, and combined with the factors %
and \_/—% For such a simple process, one can compute it once by using an effective quark charge e, = e“\;;d

but for more complicated processes involving several DAs or GPDs as in part 2 of this thesis, this effective
charge does not exist and one must compute each contribution to the end.

4.2.2 Adapting the present results to the production of a p meson

Similarly to the toy model studied in the previous section, we can adapt our results for the NLO v*p — qgp
cross section to the production of a longitudinal light vector meson at leading twist by studying the limit
where the quark and the antiquark are collinear, carrying the momenta xpy and Zpy, where py is the
meson’s momentum. The presence of logarithms of type

In | (zp; — xﬁqﬂ (4.23)

whose argument cancels exactly when the quark and the antiquark are collinear in our result is the sign
that the integration w.r.t. the transverse momentum of the loop gluon should be performed after ap-
plying the new kinematics. Then the integral will give rise to divergent terms from the collinear limit.
Such terms should then be absorbed into the ERBL evolution of the meson’s DA. Apart from that, the
computation is very similar to our calculation for the open ¢g production.

Obtaining such a result would extend the study in [123] to the non-forward case. Additionally, this
would be the first impact factor known at NLO accuracy in both the BFKL and the B-JIMWLK pictures.
The correspondence between the BFKL formalism and the linearized BK formalism with NLL accuracy is
a non-trivial question. The kernels for both approaches were shown to be equivalent for color neutral
processes : they are formulated as different representations of the same kernel. The difference lies in
the ambiguity in the definition of evolution kernels at NLO accuracy : there is always a possibility to
redistribute radiative corrections between the kernel and the impact factors. Thus the equivalence must
actually be true for cross sections, or for kernels and impact factors up to the action of an operator.
Schematically :

P K ® @%K = (q)BFKLO) & (OT/CBFKLO) & (OTq)BFKL) . 4.24)

The operator O was derived for the kernel equivalence, but its action on impact factors was not checked
yetd. Thus knowing an impact factor with NLO accuracy in both the BFKL and the B-JIMWLK approaches
would allow a consistency check between the two formalisms.

3p in considered to be lightlike (up to a %2 correction) when computing the hard part.

4For more detailed discussions about this subject, the reader is referred to [87,[129]130]
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4.3 The NLO +* — v* cross section

DIS experiments at HERA were among the strongest motivations for the study of QCD in the Regge limit.
However studies with LO accuracy in the k;-formalism only allowed for qualitative descriptions of the
DIS data : the predicted low z evolution seems to be faster than the observed evolution Thus higher
order corrections to the v*p — v*p cross section should be computed.

The photon impact factor was derived in the shockwave approach [90,[91]], then the DIS cross section
was obtained based on this result [133] and a phenomenological study [134] based on this cross section
seemed to fail to describe LEP2 data.

We believe that one could recover the NLO v* — ~* impact factor from our results. Such a computation
would be a useful consistency check of the previous results for this impact factor, in particular for the
dipole contribution, which was obtained indirectly in [90,/91]]. In this section, we will carefully describe
the method used in [90,[91]], then we will show how to adapt our results to check its validity range.

The first step is to separate the dipole and double dipole contributions.

First computation : the double dipole contribution

Figure 4.4: Double dipole contribution to the v* — ~* cross section at NLO

Like for our computation, using color neutrality in ¢-channel and subtracting the non-interacting part
allows one to write the double-dipole contribution, consisting of the diagrams in Fig.[4.4] as

o / 44215 d 55T (2, %, 2) {Tr (Uqu Uzis) Tr (UZ~3UZ12) ~N.Tr (UglUZT.Q)] (4.25)

+/dd21dd22 [/dd% (N(%N_ 1)1;" (21, %, 53)] [ﬂ (Ugleiz) —Nc} .

For this computation too one can separate this quantity into two contributions by introducing

FUV (= o\ d > ]Vc2 -1 Vo o o
I{L (21, 22) = |:/d z3 ( N )Ig (21, Z2, 23)] . (426)
The first term in Eq. will be the full double dipole contribution, while Eq. will be included
in the single dipole contribution.

For the same physical reasons as in the previous chapter, the only divergence which appears in the double
dipole contribution is the rapidity divergence. Thus computing the diagrams above does not require
dimensional regularization, only the rapidity regulator must be kept.

SAlthough recent studies [131}[132] involving collinearly resummed versions of the B-JIMLIWK kernel give more optimistic
results.
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In 4 dimensions, the gluon propagator can be written a convenient way as follows :

8 [ d*zn 9% 70 — 251 oy 1 2f091iar — 2% nay
G (22, 20) |t sgons = © / O e e L L 0L"20 (4 97)
2 20>z i (27r)4 (22, — ZO)2 855 (23, — ZO>2
where
1 B dk+ e—z‘k* (2 —u)

Ozy

In this formula, % is the actual physical momentum of the gluon and o is the rapidity cutoff. Given
the definitions in Section [2.2] and Eq. (4.27) one can now easily isolate the vertex integrations. Let us

consider one of the two qqg vertices :
3
. M
- *Z1

Figure 4.5: qqg vertex

The integration w.r.t. the coordinate of the vertex in Fig. is proportional to

[e3

Jo = / 042 Go (21 — )4 Go (o — =) T =2 =2 on (4.29)
|:(23 —z)? - Z.O}
x /d4z 2 5 (Z;_ — Z+) ghi 5 — (s =21 7" 3 £ % 5(4.30)
[(21 —2)? - iO} {(z3 —2)? - iO} {(z3 —2)? - iO} [(z — )% — iO}
Thus with a change of variable, one can reduce this vertex integral to the following quantity :
T —Z zY 2t Z2—9
o = [ oI 2 ] i s
(=, y) el L= Ry I

The way this integral is computed in [90,[91]] relies heavily on the dimension : in 4 dimensions one can
use the conformal transformation z# — 2/ = i—g to get rid of one denominator. Indeed if one defines
=S andy = yy—Q, J becomes :

12 oy 5!

nv _ 14, 14 4 1 < IL'_i,Z_ n v v I Z_lii/
T (x,y) = 2%y /dz( 1 /,y/)‘l <x/2 Z/2>('yz vz ><z’2 ) (4.32)

=2 (2

Such an integral can now be taken with the usual computation methods. It can be done to the end in
dimension 4 and without any regulator by cancelling potentially divergent terms through the (u < v)
antisymmetry property. Finally we obtainfd :

—im? xh fid yH yY
j22%4 — . - - v - H ~ kol g v _ g M ~
T (z,y) = Y — [$<x27 xﬂ)y+z<y27 yﬂ)y
1 A v v 1 v v ~ x#yl’ - yﬂx’/ A ~
& (" =) = 5 (0" = v“)y+27(x_y)2 (x—y)] :

This integral was used in our first paper [[74] to obtain the amplitude for the diffractive production of a
quark, an antiquark and a gluon, which was also computed in [135]] to construct the cross section for the
exclusive production of 3 partons.

In [90,[91]], the authors use this integral twice then integrate w.r.t. the T-momentum of the gluon with
the rapidity cutoff, then use one step of B-JIMWLK evolution to get a finite expression for the double
dipole contribution to the v* — ~* impact factor.

The single dipole contribution is then obtained indirectly.

6The -i factor corrects a misprint in [90].
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Single dipole contribution

The total dipole contribution reads
. / 5’5 [T (21, %) + 1 (5, )| [1r (UaUL) - N (4.33)

It contains the contribution Z in which the gluon crosses the external field but does not interact, and
the one Z in which the gluon does not cross the 2™ = 0 line, such as the diagrams in Fig. and their
complex conjugates.

Figure 4.6: Dipole contribution to the v* — ~* cross section at NLO

The trick used in [90,[91]] is now to study the non-interacting term which was subtracted before.
Indeed the sum of all diagrams must reduce, when the shockwaves are set to identity, to the 2-loops
correction to the gluon polarization tensor, which happens to be proportional to its 1-loop correction :

/ dzd?z, [I{“’ (21, Zo) + I (51,22)} = 1057, (4.34)
3ag "
= O, (4.35)
3as S
_ ﬁcF / AUz d0% T (31, %), (4.36)

where 7} is the leading order contribution to the process.
From this, the authors deduce that

o / 505 [T (21, 2) + B (G, )] [ (Us0L) - ] (4.37)
_ B, / 55T (7, %) [T (U5 UL) - N 438)

It would be interesting to check the validity of this method with a more completely explicit NLO calcula-
tion for the 4* — ~* impact factor. We are not aware of any such computation available at the moment.
There was another attempt at computing it in [136]] using lightcone perturbation theory. However the
author of [[136] also used an indirect method to obtain the dipole contribution and this method turned
out to be incomplete, as explained by the author himself in [92].

A new calculation was started by the same author and some preliminary results were discussed.

It would be interesting to obtain this result and to check the methods used in [90,91]] by adapting our
computation to the v* — ~* impact factor.
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4.3.1 Adapting our results to the v* — y*impact factor
Wilson line operators

With open quark and antiquark color indices ¢ and j , the leading order amplitude involves
C = (nuf) . (4.39)
( O) (%) ( 1¥2 ) 17

Let us consider the dipole and double dipole contributions to the NLO amplitude and to the real correction

with open color indices :

Figure 4.7: Example of two non-singlet virtual contributions

h
@@%ﬁw{ﬁ@%@w

Figure 4.8: Example of two non-singlet real contributions

The virtual and real color factors now read :

(élv)ij - (N;]\fcl)(%)j’ (4.40)
(&), = ;{Tr(ulug)(ygag)ijm (Ulag)ijp(av)ij, 441)
(er )J = (~ 1U2) : (4.42)
(e8)! = (wufevay) 4.43)

It is easy to check that by subtracting the non-interacting term and adding the projections on the color
singlet one would recover Egs. (3.22) and (3.24). We will subtract the non-interacting term for each
diagram and study the parts with and without the shockwave separately. Schematically we will write the
non-interacting term with a double dashed line. For example instead of diagram 2 we will compute the
difference in Fig.
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Figure 4.9: Contribution from diagram 2

4.3.2 Contribution without vertices between two shockwaves

Let us consider a contribution with two shockwaves and without a vertex between the shockwaves.

&
F
L

Lo

Figure 4.10: Shockwave merging
Using the expressions for the quark lines through the shockwave field, one obtains for this contribu-
tion :

dpdip, *

b= X[ B | a2 M| | [a2i 0 ) N1 ) (4.44)
Aq

= / APz dP ol (—a) 0 (—a)) / 497, d°7, (Ufl Ui, )

d d
dp"‘ddﬁ 1 p"r 2 p"r 2
x/ . d+1q9(p;r) d < q+> < q/+> (4.45)
(2n) ten’ \—f) =4
B s R OO o ek O

" L 0 (1)

+
-, 2pq -z

xTr {M* (1)

-9 92
. _ X . . _ Tirgr . s o s o
X exp [zp;' <x0 —12+20> fzp;' <x6 — 1/(-)+ +20> Jrz(pq.zl/)z(pq.zl)] .
2z, 2z,
The only dependence on g, is in the exponential given that —21; 4~ = 4+, Then integrating w.r.t. p,
q

gives a § (Z; — &). Using the same argument for the antiquark lines, one also gets a § (Z2 — 7). Thus by
unitarity of the Wilson lines this contribution reduces to the non-interacting one so it does not need to be
computed.

4.3.3 Contribution with a vertex between the shockwaves

Let us consider a general inclusive cross section with a quark-gluon vertex between two shockwaves with
the non-interacting term taken out. We will show that the virtual and the real contributions cancel exactly
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each other.
The virtual correction reads :

57 963./\/1

P3

Figure 4.11: Virtual contribution

dp+dd D D D v Up +\ i(p-x2)
Z d+1 (ig) [d”xod” x1d” 2o M (21, x0) H(p )e PE2)AmG (29, o) Gy (22, 1)

NeTs
« [ /dega(p, 23) M (:cg)} . (4.46)

Using the expressions for Feynman rules in the shockwave field and after a few straightforward integra-
tions, one can get :

dips dp, dip,  diqy
T _ D D D / )
R el (2m)? @m) 2m)? 2m)T @47

dpTdp L s - - L
< | TG U G G- @0 ()
< favs /dx;e ~a3)0 (=)0 (x) 0 (~) 0 (0 ) 0 (43)
(ig)
) (2v7)"2 (p+ — p¥)
XdOuai (p _p;aﬁ_ﬁé) dﬁ; (p+ _p;_a (71)
-2 2 _ > =2\2 2 _ 2 _ 2 _
: p° p3—i0  (p—p2)” —i0 Capr—i0 o g —i0 .+<p310)
X exp T e —— — + 1z ‘] —F/———— — T
[ : <2p+ 2p5  2(pt —pi) )  2pf Lo(pt—pf) P

x exp [ipTaty —ipy g — i (P1 - Zo) — i (G- T1) + 0 (P - Ts)]

Tr {ﬁv“ﬁw* (P37~ +P11) MY (z1, 20) M* (z3) (DT + P31) 7*}

The real contribution reads :

q1

x1

Z0 P2 3 M

p1 ! p P3

Figure 4.12: Real contribution
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d dg d?
I = Z / v dff = d-312 U dPz1dP ot (pa, x0) M" (21, 20) € (g2, 1) (4.48)

Aps Sqo

i . €* . -
« (zg) /deng$2 Upsy ,y,uez(pQ-zQ)@ (p;) ﬂez(qzzﬂ@ (q;-) G (:L.2, $3)M (ifs)
2p5 2q;

Again after a couple straightforward manipulations, we can show :

dipy dipy dipy  diqy
Ip = /dDJ} dPx1dPx / (4.49)
" ST 0 2n 20)7 (20) T

d =
x /El;:)iﬁ [U (7= p3)]" [U (720)] [U (5= P2 — @1)] 0 (p7)

< fans /dx;e ~af) 8 (o) 0 (x5) 0 (=)0 (0"~ p1) 0 (%)
(i9)
" @0 (28)° 207~ 13)

lo — P2l P a7,
(oo 2220, ()
< ot s T pt ey
-9 . -9 — -\ 2
4 [(PP=i0 Py (P —p2)
X ex 1T —_ Y —
pl 2( 2t 2 2(pt - py)

P —i0 - @’ _ Py —i0
X exp [wzo ( 207 )-l—m:l (2(p+—p§r) ird T

xexp [iptayy —ipgayy —i (P - To) — i (q1 - T1) +i (P - Ts)]

Tr [M* (z3) (pTy™ 4+ bs1) v PV Pyt (P37~ + Hrr) MY (21, 20)

By cyclicity of the trace and using the explicit expressions for the gluonic tensors in Eq. (4.47), one can
now see that

Ip = —-Iy. (4.50)

This is a very general result : in an inclusive cross section the vertices which are after the shockwave
in the amplitude will only contribute when one of the shockwaves around the vertex is set to identity,
either in the amplitude or in the complex conjugate amplitude. For our process, there is an additional line
which does not have a vertex between its two shockwave interactions. Using the previous results, one can
conclude that it will contribute to the non-interacting part. As a conclusion, one gets that contributions
with a vertex between the shockwaves must only be taken into account when the shockwaves are set to
identity in the amplitude or in the complex conjugate amplitude.

4.3.4 Conclusion : computation method

One can use the remarks in the two previous subsections to conclude that we only have to compute the
contributions with all the shockwaves in the amplitude or in the complex conjugate amplitude set to
identity. For example, diagrams 2 and 5 will contribute as shown in Fig. [4.13]
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Figure 4.13: Contributions from diagram 2 and diagram 5 to NLO DIS

In practice setting the shockwaves to identity on one side means projecting the Wilson line operators
on the other side on the color singlet state (without the additional # factor). This is coherent with the
fact that v* — ~* is of course a color neutral process. As a result of this remark, the operators involved
in such a computation are the same as those involved in ours at the level of the amplitude. To obtain the
~* — ~* at NLO accuracy in the shockwave formalism, one should then take our results for the v* — ¢g
impact factor in Section and for the I'* — ¢gg impact factor in Section [3.7] set all the Wilson line
operators to identity either in the amplitude or in the complex conjugate amplitude, and integrate over
the phase space of the produced particles.

4.3.5 Open charm and charmonium production
Adding a mass : open charm production

Adapting the Feynman rules with the shockwave field from Section to the case of massive quarks is
actually a straightforward task in mixed space and in momentum space representations of the building
blocks. For example the quark propagator in mixed space given by Eq. (2.56) becomes

A dpf dipiy [ dpddpal it _itps,. o= o il | -
G (w2, z0) oy >0>xf T / (217r)d+1 / (227r)d+1 e tra s —ipa it L) glro P ZUL)QWS(PB)H(P;)
43, —mP4io 4 pd —mP4i0 4 4.
XezzQ “r . o T Pa + P2t +m7+U(p2u)’y p1 TDP1L +m.

2p3 2pf

(4.51)

Then every step until the evaluation of integrals can be adapted without any concern. The
integrals, however, become more complicated. We believe that contrary to our result, which is written as
a finite integral over one real parameter, the result in the massive case will finally be written as a finite
integral over two real parameters. The cancellation of divergences will be different due to the absence of
collinear divergences and to the presence of quark mass renormalization terms.

Apart from these remarks, the main computation steps are the same for massive quarks. By adding a
mass to our result for the NLO ¢g production impact factor, one immediately gets the impact factor for
the production of massive quarks. With further adjustments, one could also get the NLO impact factor
for the production of a charmonium, for example a J/1 meson.

Charmonium production

Although J/v) mesons were first observed more than 40 years ago, the theoretical mechanism for their
production is still to be fully understood and the validity of some models remains a subject of discussions/].

7For recent reviews see for example [137}[138]
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The two main competing models for charmonium production are the Color Evaporation Model (CEM) and
the Non-Relativistic QCD (NRQCD) formalism.

The Color Evaporation Model relies on the local duality hypothesis, which states that a heavy quark
pair Q@) with an invariant mass below the threshold for the production of a pair of the lightest meson
which contains Q will eventually produce a bound QQ state after a series of randomized soft interactions
between its production and its confinement in - cases, independently of its color and spin. The
factor corresponds to the probability for the paif' to be in a color singlet state after such a series of
randomized color rotations. It is assumed that the distribution between all possible charmonium states is
universal.

Thus the way one should compute the cross section for .J/« production in the CEM consists in com-
puting all Feynman diagrams for the production of an open c¢ pair, summing over all spins and colors,
and integrating w.r.t. the invariant mass of the pair from the (2m.)? threshold to the D meson mass
threshold (2mp)?. Then one must add the supposedly universal fraction F;,,, which corresponds to the
factor # times the probability for the charmonium state to be a J/¢ among all the possible charmonium

states. This assertion relies on the additional hypothesis that the number of .J/1) mesons produced above
the (2mp)? threshold is negligible when compared to the quantity produced below it. To sum up, in the
CEM the cross section for the production of a J/v is related to the cross section for the production of a
cC pair via :

2
O'J/w = F‘]/w /4m§ dM dMQ, (452)
where M? is the invariant mass of the c¢ pair and the value for the fraction F,,, must be taken from
previous data fits, see for example [[139].

As a conclusion if one relies on the CEM, one could directly obtain the cross section for .J/1) production
from the massive extension of our results by integrating w.r.t. the invariant mass of the charm pair.

Adapting our results to an NRQCD computation requires more involved steps. This formalism relies
on the expansion of the onium wavefunction w.r.t. the velocity of its constituents :

/) = 0(1) |QRPSIV]) + 0()

QQPsV]g) +O(w?). (453)

It is assumed that all the non-perturbative physics is encoded in this wavefunction. Note that there is no
rigorous proof of NRQCD factorization between a hard part and the wavefunction at all orders, and the
general relative importance of the terms in the expansion of the wavefunction remains unknown.

The NRQCD formalism is quite similar to the collinear factorization framework. One computes the hard
part for the production of a collinear quark-antiquark pair with the right quantum numbers and uses the
corresponding effective vertices, obtained from the NRQCD expansion. For example the effective vertex
for the first term in Eq. reads :

(O

w ) [£3/ukae+ 0D (4.54)

vh(q2) g (q1) —
which corresponds the transition from a quark and an antiquark of mass m with respective Lorentz
indices « and S, respective colors 7 and j and respective momenta ¢; and ¢ to a J/v with momentum
k4, polarization ¢ 5/, and mass M. In the lowest orders in the NRQCD expansion, one can use M = 2m
and k;,, = 2q1 = 2g2 = 2q. The operator O, arises from the non relativistic hamiltonian, and its vacuum
expectation value can be fitted to data, for example via its contribution to the .J/1) — u* ™ decay rate.
Similarly the effective vertex for the second term in Eq. reads :

t5 ((Os)/y 2 S
i (7 [EJ/w(kJ/¢+M) - (4.55)

vhl@)ih(a)] — = ,
For example if one considers a process like v*p — J/1p, charge parity conservation implies that there
are two types of hard parts to compute. The first term in Eq. (to which we will refer as the color
singlet contribution) must be convoluted with the hard part for the production of a quark-antiquark pair
in the color singlet state and a gluon, and the second term in Eq. (to which we will refer as the color
singlet contribution) must be convoluted with the hard part for the production of a quark-antiquark pair
in the color octet state without the additional gluon.
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As stated before, there is no general estimate of the relative importance of the color singlet contribution
and the color octet contribution once convoluted with the hard part.

In a work in progresd, we have been studying the production of a forward .J /v and a backward jet at the
LHC. The description we used for this process is very similar to the BFKL description of Mueller-Navelet
jets, as shown by squaring the amplitude in Fig.[4.14]: one collinear parton is extracted from each hadron
through a PDF, and the hard part is factorized using the usual k;-factorization picture : two impact factors
and a BFKL Green’s function linked via off-shell non-sense gluons with non-zero transverse momenta.

Figure 4.14: The k;-factorized amplitude for the production of a forward J/« meson and a backward jet.

The so-called production vertex for the J/1) (which once squared and integrated becomes the upper
impact factor) can be described via NRQCD, in which case both the color singlet and the color octet
contribution must be taken into account. Our present results for this study, which incorporate the NLO
jet production vertex the NLL BFKL Green’s function and the .J/v production vertex at LO accuracy, tend
to show that the color octet contribution (hence the second term in the wavefunction expansion
dominates the process. This can be seen by considering the diagrams involved for each contribution as

shown in Figs. and [4.15]

< — 5o —
q {666 q

apy +k; [QPQ +k

Figure 4.15: Two examples out of the six diagrams contributing to J/v¢ production from a c¢ pair in the
color singlet state.

8see [[93] for a preview
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wim

q

q

apy + ky

Figure 4.16: Two examples out of the three diagrams contributing to J/¢ production from a c¢ pair in
the color octet state.

If one considers a process where the transverse momentum of the J/¢) meson is rather large, it is
easy to see that the diagram with the triple gluon vertex will dominate the whole process : the other

contributions are suppressed by a ];% factor when compared to this one.
I/
Thus there are processes where the color octet contribution may be sufficient to describe the data.

Let us note that for a process involving on-shell gluons in ¢-channel, the triple-gluon-vertex diagram is
excluded by the Landau-Yang theorem, which is the reason why the color singlet contribution will not be
subdominating.

While fully adapting the NLO computation described in the first part of this thesis to the production of
a J/4 meson using NRQCD would be impossible due to the presence of the additional gluon in the color
singlet contribution, by selecting a process in which the color octet contribution is expected to dominate
one should be able to give a good estimate of the J/« impact factor. For example if one wants to adapt
the computation in this thesis to the process studied in [93]], one should add a mass to the quarks and
make them collinear, and replace the incoming virtual photon by an on-shell gluon. Such an adaptation
is non-straightforward and the required B-JIMWLK evolution will not be the dipole evolution anymore,
yet it should be feasible from our results.
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4.4 Introduction

The near forward photoproduction of a pair of particles with a large invariant mass is a case for a natural
extension of collinear QCD factorization theorems which have been much studied for near forward deeply
virtual Compton scattering (DVCS) and deeply virtual meson production [[140H145]. In the present chap-
ter, we study the case where a wide angle Compton scattering subprocess v(qq) — ~yp characterized by
the large scale M., (the invariant mass of the final state) factorizes from generalized parton distributions.
This large scale M, is related to the large transverse momenta transmitted to the final photon and to
the final meson, the pair having an overall small transverse momentum. This opens a new way to the
extraction of these GPDs and thus to check their universality.

The study of such processes was initiated in Ref. [146,[147]], where the process under study was the
high energy diffractive photo- (or electro-) production of two vector mesons, the hard probe being the
virtual "Pomeron" exchange (and the hard scale being the virtuality of this pomeron), in analogy with the
virtual photon exchange occuring in the deep inelastic electroproduction of a meson. A similar strategy
has also been advocated in Ref. [148H150] to enlarge the number of processes which could be used to
extract information on GPDs.

The process we study heré?

Y (q) + N(p1) = v(k) + p°(pp.€p) + N'(p2) (4.56)

is sensitive to both chiral-even and chiral-odd GPDs due to the chiral-even (resp. chiral-odd) character of
the leading twist distribution amplitude (DA) of p;, (resp. pr).

Its experimental study should not present major difficulties to large acceptance detectors such as those
developed for the 12 GeV upgrade of JLab. The estimated rate depends of course much on the magnitude
of the generalized parton distributions, but we show that the experiment is feasible under reasonable
assumptions based on their relations to usual parton distributions and to lattice [153H156] calculations.

Let us briefly comment on the extension of the existing factorization proofs in the framework of QCD
to our process. The argument is two-folded.

t' v
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Figure 4.17: a) Factorization of the amplitude for the process v + m — - + p at large s and fixed angle
(i.e. fixed ratio t'/s); b) replacing one DA by a GPD leads to the factorization of the amplitude for
Y+ N —vy+p+ N atlarge M2, .

The now classical proof of factorization of exclusive scattering at fixed angle and large energy [157]]
allows to write the leading twist amplitude for the process v + @ — 7 + p as the convolution of a
mesonic distribution amplitude and a hard scattering subprocess amplitude v + (¢ + q) — v+ (¢ + q)
with the meson state replaced by a collinear quark-antiquark pair. This is described in Fig.[4.17h. The

9Some of the results presented here have been reported previously [151}[152].
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demonstration of the absence of any pinch singularity (which is the weak point of the proof for the
generic case A + B — C + D) has been proven in the case of interest here [158].

We extract from the factorization procedure of the exclusive meson electroproduction amplitude near
the forward region [15] the right to replace in Fig.[4.17h the lower left meson distribution amplitude by a
N — N’ GPD, and thus get Fig.[4.17b. Indeed the same collinear factorization property bases the validity
of the leading twist approximation which replaces either the meson wave function by its distribution
amplitude or the N — N’ transition to its GPDs. A slight difference is that light cone fractions (z,1 — 2)
leaving the DA are positive, but the corresponding fractions (z + £,£ — x) may be positive or negative
in the case of the GPD. Our calculation will show that this difference does not spoil the factorization
property, at least at the (leading) order at which we are working here.

The analogy to the timelike Compton scattering process [159-161]:

FYHIN = AN =yt N (4.57)

where the lepton pair has a large squared invariant mass 2, is quite instructive. Although the photon-
meson pair in our process has a more complex momentum flow, one may draw on this analogy to
ascribe the role of the hard scale to the photon-meson pair invariant mass.

In order for the factorization of a partonic amplitude to be legitimate, one should avoid the dangerous
kinematical regions where a small momentum transfer is exchanged in the upper blob, namely small
t' = (k — ¢)? or small v = (p, — ¢)?, and the region where strong final state interactions between
the p meson and the nucleon are dominated by resonance effects, namely where the invariant mass
M?2y, = (p, + pnv)? is not large enough.

This chapter is organized as follows. In Section we clarify the kinematics we are interested in
and set our conventions. Section [4.6] is devoted to the presentation of our model for DAs and GPDs.
Then, in Section [4.7] we describe the scattering amplitude of the process under study in the framework
of QCD factorization. Section [4.8] presents our results for the unpolarized differential cross section in
the kinematics of quasi-real photon beams at JLab where S,y ~ 6-22 GeV?. Finally, in Section [4.9] we
give estimates of expected rates at JLab. In appendices, we describe several technical details required by
analytical and numerical aspects of our calculations.

As a final remark in this introduction, let us stress that our discussion applies as well to the case of
electroproduction where a moderate virtuality of the initial photon may help to access the perturbative
domain with a lower value of the hard scale M.

4.5 Kinematics

We study the exclusive photoproduction of a vector meson p° and a real photon on a polarized or unpo-
larized proton or neutron target

Y(q,q) + N(p1,A) = v(k,er) + p’(Ppr €p) + N'(p2, X') (4.58)

in the kinematical regime of large invariant mass ),, of the final photon and meson pair and small
momentum transfer ¢ = (pa — p1)? between the initial and the final nucleons. Roughly speaking, these
kinematics mean moderate to large, and approximately opposite, transverse momenta of the final photon
and meson. Our conventions are the following. We define

H e
+
pr= BB A= (4.59)

and decompose momenta on a Sudakov basis as

vt =an” +bpt 4+, (4.60)
with p and n the lightcone vectors
p“:%(l,(),o,l) n”zTS(l,O,O,—l) p-nzg, (4.61)

and
ol = (0,07,0Y,0), ol =—7;. (4.62)
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The particle momenta read

M? M2+ A2
(L I H L I toH Iz B
pl=00+&p"+ nt, ph=(1-&p"+ n*+ AN, ¢t =nt, (4.63)
— e 2
| - O[n#+(pt7At/2) plu.+p,u.7AiL_
as - 2’
5 + A /2)? + m? N
P = apn“—i—(pt £/2) Epht—pl — ==, (4.64)
Qs 2

with M, m,, the masses of the nucleon and the p meson. From these kinematical relations it follows that

—

pe - o380 (it A0 4w (4.65)
S« SO[p )
and .
26 M? A2
l—a—a, = + ) (4.66)
s(1-¢Y)  s(1-9)
The total squared center-of-mass energy of the v-N system is
Syv = (g+p1)? =1 +&s+ M?. (4.67)
On the nucleon side, the squared transferred momentum is
2 1+ %, AE2M?
t=(p2—p1) T A (4.68)
The other useful Mandelstam invariants read
2¢ M? ool 4+ &
"= 2 M2 =2¢s(1—- > ) - A2_T5 ,
s (k+pp) o «Es( 5(152)) e (4.69)
5 — Ay )2)>
= —(k—q)= B = Ad/2)° - 2" (4.70)
5+ Ay /2)% + (1 — 2
Y i L ke GO L 4.71)
®p
and
(P + 8¢/2)2 + m? M? 4 A2 12"
2 _ _ P t _ 5
MpN’ =S <1 € + Sap Oép + s (1 — é_) (Pt 2At) . (472)

The hard scale M3 , is the invariant squared mass of the (v p°) system. The leading twist calculation
of the hard part only involves the approximated kinematics in the generalized Bjorken limit: neglecting
A; in front of p; as well as hadronic masses, it amounts to

2 123
M’yp ~ E y (473)
a, = l-—a=a, 4.74)
T M?
é‘ = 9_ -, , TR SYN*_’YPW s (475)

I — 2 ! 2
-t~ aM;, , —-u=aMj,. (4.76)
For further details on kinematics, we refer to Appendix [B.3]

The typical cuts that one should apply are —t', —u’ > A* and M}y, = (p, +pn')* > Mp where
A > Agep and Mp is a typical baryonic resonance mass. This amounts to cuts in o and & at fixed
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Mgp, which can be translated in terms of v’ at fixed Mﬁp and ¢. These conditions boil down to a safe
kinematical domain (—u)min < —u' < (—u')maz Which we will discuss in more details in Section [4.8]

In the following, we will choose as independent kinematical variables ¢, u’, M2, .

Due to electromagnetic gauge invariance, the scattering amplitude for the production of a pr meson
with chiral-odd GPDs and the scattering amplitude for the production of a p; meson with chiral-even
GPDs are separately gauge invariant, up to the well known corrections of order % which have been
much studied for the DVCS case [162,[163]. We choose the axial gauge p, ¢}, = 0 and parametrize the
polarization vector of the final photon in terms of its transverse components

€kl ki1
E'Z = EZL - Wp“ y (477)
while the initial photon polarization is simply written as
b = sf;J_ ) (4.78)

We will use the transversity relation p, -, = 0 to express the polarization of the p meson in terms of only
its transverse components and its component along n, using
1 [p?
n-e,=— |—=(p-e,)+ (L cp1)] - (4.79)
Oép OépS

4.6 Non-perturbative ingredients: DAs and GPDs

In this section, we describe the way the non-perturbative quantities which enter the scattering amplitude
are parametrized.

4.6.1 GPD factorization

GPDs are the non-forward extensions of PDFs. The way one factorizes a process with a GPD is very similar
to the DA factorization scheme we introduced in[4.2.7] : the hard part and the non-perturbative part are
factorized in spinor space and in color space using Fierz identities. Factorization in the space of momenta
is a bit more involved. It can be shown that such a process can be written as the convolution of a hard
part, computed with a pair of collinear on-shell partons carrying respective momenta (z +¢)p (incoming)
and (z — &)p (outgoing), where ¢ is the skewness parameter, and a GPD, integrated over = € [—1, 1]. See
figure

Figure 4.18: Collinear factorization involving a GPD

Thus for our process which combines the factorization of a DA and of a GPD, the amplitude is written
as the integral over (z, z) € [—1, 1] x [0, 1] of the product of the hart part, a GPD (depending on « and &)
and a DA (depending on z). The exact formulae can be found in section 4.7
We will now describe the expressions used for the non-perturbative matrix elements, and extract our
parameterization for the GPDs and the DAs.
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4.6.2 Distribution amplitudes for the p meson

The chiral-even lightcone DA for a longitudinally polarized vector meson p? is defined, at the leading
twist 2, by the matrix element [127]

1
(0[a(0)y"u(@)]0° By £p1)) = %pzfpo / dz 0T gy (2), (4.80)

with f,0 = 216 MeV, while the chiral-odd lightcone DA for the transversely polarized meson vector pj. is
defined as:

. 1
(0la(0)o" u(x)|p’ (pp, ) = %(Efgi Pp = €px P‘p‘)f,f/o dz e 6, (2), (4.81)

where e, is the p-meson transverse polarization and with f,- = 160 MeV. The factor % takes into

account the quark structure of the p®—meson: [p°) = \%(|u@> — |dd)). We shall use the asymptotic form
for the normalized functions ¢; and ¢,

P)(z) = 62(1-2),
b1(z) = 62(1—2). (4.82)

4.6.3 Generalized parton distributions

The chiral-even generalized parton distributions of a parton ¢ (here ¢ = u, d) in the nucleon target (A and
X are the lightcone helicities of the nucleons with respective momenta p; and py) are defined by [164]:

(p(p2, N)| 7 (—%) 7*q (g) lp(p1, \)) (4.83)

1 _ B .
= [ do et g, x) [VHQ(sc,«s,ﬂ+ﬁa+%aEQ<x,§,t>} u(pr A).

-1

and

(p(p2, Nl q (*%) 7% (%) Ip(p1, ) (4.84)
1 ) ~ -
= [ dw e 0 () [vwsﬂ%z,s,w FsTA E%z,s,w] u(pr, A

-1

The transversity generalized parton distribution of a quark ¢ is defined by:

w2 N7 (~5) 10 a (%) loer, ) (4.85)

1 . _ _
- / da e3P apy, X) [i0™ H (0,6,0) + ... ] ulpr, ),
-1
where ... denote the remaining three chiral-odd GPDs which contributions are omitted in the present
analysis.
We parametrize the GPDs in terms of double distributions (DDs) [165]

Hq(ac,«s,t:0):/dﬁda 5B+ Ea—2x) FiB,a,t=0), (4.86)
Q

where F? is a generic quark DD and Q = {|8] + |a| < 1} is its support domain. A D-term contribution,
necessary to be completely general while fulfilling the polynomiality constraints, could be added. In our
parameterization, we do not include such an arbitrary term. Note that similar GPD parameterizations
have been used in Ref. [166].

As shown in Section4.7.2] with a good approximation we will only use the three GPDs H, H and Hy.
We adhere on Radyushkin-type parameterization and write the unpolarized DD f? and the transversity
DD fZ in the form

fUB ayt = 0) = 1I(B, @) ¢(B)O(B) — TI(=B, ) 4(—B) ©(= ), (4.87)



110

and [148]]

f1(B,a,t = 0) =T1(B, ) 6q(B) ©(B) — II(—B, ) 6q(—B) O(-B) , (4.88)
while the polarized DD f4 reads

F1(8,a,t = 0) = T1(8, @) Aq(B) ©(B) + T1(—B, a) Ag(—5) O(=5), (4.89)

where TI(8, ) = %% is a profile function and ¢, g are the quark and antiquark unpolarized
parton distribution functions (PDFs), Aq, Ag, are the quark and antiquark polarized PDFs and dq, g are
the quark and antiquark transversity PDFs.

We now give specific formulas for the three GPDs which will be used in the present study. The GPD

H4Y reads
= 3(1— 2 _ 2
Hi(z,6t=0) = O>¢) [ " dy ((1:62%)@)3?/

3 _ 2,2
L l/g iy § T - 6)
+€

q(x — &y)

i
T
5]
1

T 3(1+z—E&y)t—y?
/E gdyz( zif_y),éy)sy a(—z +&y)

3(1+z—¢&y)?—y?
Liw L (1+a—&y)? q(—z +&y). (4.90)

|
3
P
v
2
—
;

Hi(r,6t=0) = O(x> &) /£ a0 %(1 axziy)gz)—gy25q(x e
+ 0> o> —¢) /1 a SUEE e gy
AT
- O(=<£>1) /_% dy %(1 ai;@);y)_g v’ 0q(—x +€y) (4.91)

while the H? GPD reads

5 =3 _ 2 _ .2
e et=0 = 0@>¢ [ a i A - gy)

€ 3(1— 2y
/5 dyz( (136_2%?@)331 Aq(z — &y)

w3 (L+x &y’ -yt
dy - Ag(—
+ /g A E— a(—z +&y)
14z
e 31tz —&y)? -y,
+ O §>x)/_i+§dy4 e Ag(—z +&y) . (4.92)
Since our process selects the exchange of charge conjugation C' = —1 in the ¢t—channel, we now consider
the corresponding valence GPDs
HY) (2,6, ) = H(2,6,1) + HI(~2,&,1) (4.93)

and

HE (@,6.0) = Hi(e,€.0) + Hp(—,6,1) (4.94)
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which have the symmetry properties H9(-) (z,¢,t) = H) (—z, ¢, t) and HE ) (2, ¢, 1) = HE ) (=2, €, 1),
as well as the valence GPD

gt](i)(‘rvé-at) :f{q(;ﬂ,£7ﬁ) —f{q(—l’7§,t), (495)

which has the antisymmetry property H%(7) (z, £,t) = —HY) (—x, £, t).
Introducing the symmetric valence distributions

qar(z) = 0(2)[g(x) — q(x)] + O(—2)lg(—z) — ¢(—x)] (4.96)
and
Sqvar(z) = 0(x)[0q(x) — 6q(x)] + O(—x)[0q(—x) — dq(—x)], (4.97)
and the antisymmetric valence distribution
Aguai() = 0()[Aq(x) — Ag(x)] - 0(~a)[Ag(~2) — Ag(~2)], (4.98)

the set of GPDs which we use in our computation of the scattering amplitude reads

1—x

1a) —n - L = 3(l—x+&y)*—y° B
SHO@61=0) = & @@>0/€g@4 T e - €)
3 3(1—x+&y)?—y?
! @“>$>9/E;@1 uiwfwﬁy%“xwo
+ (x4 —a), (4.99)
1 1 = 3(1— 2,2
SHE wet=0) = 3 &Xw>®/:;dyz(O$Z%gmy6%mx—@)
Te
€ 3(1— 2?2
YA (=== =
T+
+ (ze—2)], (4.100)
and
1 7a0 _o - 1 T O3(1l-atey)? -y B
2Hq (,&,t=0) = 5 @(x>§)/11++;dy4 (ErEYmE Agyal(z — &y)

—14x
1+¢€

- (x4 —2)]. (4.101)

z _ 2 .92
+oesas-g [ a Ut yA%mz@O

4.6.4 Numerical modeling

For the various PDFs, we neglect any QCD evolution (in practice, we take a fixed factorization scale
p% =10 GeV?) and we use the following models:

* For zq(x), we rely on the GRV-98 parameterization [167], as made available from the Durham
database. We neglect the uncertainty of this parameterization, considering only the central value
set of parameters.

In Fig. we show the resulting GPDs H*“(~) and H*~) for ¢ = .1 corresponding in our process
to the typical value S,y =20 GeV? and M2, = 3.5 GeV>.

» For zAq(x), we rely on the GRSV-2000 parameterization [[168]], as made available from the Durham
database. Two scenarios are proposed in this parameterization: the “standard”, i.e. with flavor-
symmetric light sea quark and antiquark distributions, and the “valence” scenario with completely
flavor-asymmetric light sea densities. We use both of them in order to evaluate the order of magni-
tude of the theoretical uncertainty.

In Fig.[4.20, we show the resulting GPDs H*(~) and H“(-) for £ = .1 corresponding in our process
to the typical value S,y = 20 GeV? and M,fp = 3.5 GeV2.



112

HY ) (z,¢)

‘ : : * T ‘ : '+ T
-1.0 -0.5 0.0 0.5 1.0 -1.0 - 0.5 0.0 0.5 1.0

Figure 4.19: Models for the GPDs H*(~) and H%~) for ¢ = .1, a value corresponding to S,y = 20 GeV?
and M2, = 3.5 GeV*>.

H")(2,¢€)

Figure 4.20: Models for the GPDs H*(~) and H%(-) for ¢ = .1, a value corresponding to S.,x = 20 GeV?
and M7, = 3.5 GeV?2.

* For z0q(x) we rely on a parameterization performed for TMDs (based on a fit of azimuthal asym-
metries in semi-inclusive deep inelastic scattering), from which the transversity PDFs xzdq(x) are
obtained as a limiting case [[169]]. These transversity PDFs are parametrized as

Sa(x) = SN (@)la(x) + Aw)] (4.102)

with

sla+ B)(th)

NS (z) =N z*(1— =) a GP

q (4.103)

Since this parameterization itself relies on the knowledge of z¢(x) and xAq(z), we will evaluate the
uncertainty on these PDFs by two means: first by passing from the “standard” to the “valence” po-
larized PDFs (see above), second by performing a variation of the set of parameters NqT ,a, 3, using
the 2 distribution of these parameters as used in Ref. [169]9. We further discuss our procedure
in Section

In Fig. [4.21] we show the resulting GPDs H;(_) and Hg(_) for ¢ = .1 corresponding in our process
to the typical value S,y = 20 GeV? and M2, = 3.5 GeV”.

10We thank S. Melis for providing us the complete set of parameters with the corresponding x? distribution.
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HE ) (2,6)
1.21

-1.0

-1.0 - 0.5 0.0 0.5 1.0

Figure 4.21: Models for the GPDs H;(f) and H;(f) for ¢ = .1, a value corresponding to S,y = 20 GeV?
and M2, = 3.5 GeV*>.

In order to evaluate the scattering amplitudes of our process, we calculate, for each of the above three
types of GPDs, sets of u and d quarks GPDs indexed by M?, i.e. ultimately by ¢ given by

p?

_ P .10

We vary M2, from 2.2 GeV ? up to 10 GeV ?, with a step of 0.1 GeV ?, in order to have a full coverage of
M3, for the case S,y = 20 GeV 2, see Appendix [B.4l

For each Mjp, the GPDs are computed as tables of 1000 values for z from —1 to 1. Figs. 420
and [4.27] are examples of these sets.

4.7 The Scattering Amplitude
4.7.1 Analytical part

Let us now consider the computation of the scattering amplitude of our process (4.58). When the hard
scale is large enough, it is possible to study it in the framework of collinear QCD factorization, where
the squared invariant mass of the (v, p") system M§ , is taken as the factorization scale. We write the
scattering amplitude of our process (4.58), taking into account the fact that the p meson is described as

uu—dd

V2

1
V2
where M} | and M | are expressed in terms of form factors H?, £, H, €9 and HiL g ﬁquj, ET 140 S%Lj,
analogous to Compton form factors in DVCS, in the factorized form and read

My L (M2 ') = —=(Mf = M ) (4.105)

y n o

10" *A - n-A -
<« oq ~~0214 5 oq
s () T A HIE ) + =y EUE ) fulpr, A)

3

. pa(p27 )‘I)|:ﬁ‘Hq(€7 ﬁ) +
(4.106)
in the chiral-even case, and
P-nAl—A-nPi -
mg H%Lj (ga t)

v-nPI—P.n~
m

1 _
M = n—.pﬁ(pz,x) |:i0—n]H(7]“Lj(§at)+

v A —A-ny
2m

+

5%14 (6) t) +

g%i_j (& t)|ulp, ) (4.107)

in the chiral-odd case.
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For convenience, we now define

Mq(t,M,fp,pT): = /_11dx/01dqu(t,M,fp,pT,x,z). (4.108)
| N
,J“ﬂ F:/"
Ay A As Ay As
FOrwETr
By Bo Bs By Bs

Figure 4.22: Half of the Feynman diagrams contributing to the hard amplitude. In the chiral-odd case,
As, A4 and By, By are the only contributing diagrams (the red diagrams cancel in this case).

The scattering sub-process is described at lower twist by 20 Feynman diagrams, but using the ¢ < ¢
(anti)symmetry properties allows one to compute only 10 of them, shown in Fig. then deduce the
remaining contributions by substituting (x, z) <> (—z,1 — z).

In the case of (v, p1,) production all the diagrams contribute. In the case of (v, p, ) production, due to the
chiral-odd structure of DAs and GPDs, there are only 8 non-vanishing diagrams, out of which one only
needs to compute By, A3, A4 and Bs.

We now discuss diagram B; in some details, and give the results for the other diagrams in Ap-
pendix [B.1

The chiral-even scattering amplitudes for longitudinally polarized p° described by the DA in-
volve both the vector GPDs and the axial GPDs (4.85). We now give the detailed expressions
for T@CE (B1), TXCE (B1), for a quark with flavor ¢ and for diagram B; in Feynman gauge. The vector
amplitude reads

1 tr(tet®)
i (4N)2

k+ 2P, I L CLLy R 1
k+zpp)? +ie (q¢+ (x +&p)? +ie 1 “(pr—i—(x—g)p)Q—i—ie

TR (By) = Fod))(2) (—ieQq)? (—ig)? i® (—i)

pﬂélt (

XtTD

X

@ | Do

w(p2, \') {ﬁHq(z,g,t) + %J"QAQ E(x,¢&, t)} u(p1, \) (4.109)

= CqCEtTg [Bl] ¢H(Z) %ﬁ(an)\/) |:fLHq($7§,t) + ﬁo—naAa Eq(l',§7t):| u(pla)\)v

which includes all non trivial factors (vertices as well as quark and gluon propagators) of the hard part
of diagram B;. Here, C7“F is a common coefficient for all diagrams involving vector and axial GPDs,
reading

4
CE __ 2 M2
C1 = —9 fp Qem, Qg T Qq . (4.110)
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The trace reads:

k+ zp, At p o 1
k+zpp)? +ic’ (q+ (x+&p)2 +ie 7 " (zZpp + (x — Ep)? +ic

trg[Bl] = trp f)péz(

8s [~s€a(eqr - €f1) + 2 (eq1 " Ppu) (€h1 - Pp1)] (4.111)
((k+ 2pp)* +i€)((q¢ + (x + &)p)* + i€)((2p, + (z — §)p)* +ic) '

4 [—a?¢sTa + 2T5]
aals?zz (v — & +ie) (x + &€ +ie)’

We introduced the two tensor structures that will appear in chiral-even diagrams in the vector sector:

Ta = (eq1-€k1),
Ts (eqL -P1)(PL - €k L) (4.112)

Similarly one can write in the axial sector:

1 tr(t*t®
TEB) = 3 T () (ieQu) (ig)? ()
o Rtz it@+&p . 5 1
e [ppek bt ep e @r@rop?+ic PTG, @—opP T ie
x %ﬂ(m,k’) {v%ﬁq(%w) - %75’ Eq(l’,&t)} u(p, A) (4.113)
2 _ A -
= CT B [Bi] 0)(2) S alpa X) |20 A0, ) - Ty B 60|l ),
with
A B okt zp, q+@+Op . . 5 1
ol = [ppek (k + pr)2+i€7H (a+ @+ p)2 tic V7 Gy, + (x— O)p)rie

_ 8i [ (eqL - ppo) €97 Pot Ser — (@ + 220, (€, - PpL) P TPoL o]
acy (b + 202 + i@+ (@ + DD+ i0)(Gopy + (v — OPF + 80
_ —4i [( + 2a2) Ta, — oI5|
T aaZestaz(z— & tie) (v + € +ie) (4.114)

where we introduced the two tensor structures which will appear in chiral-even diagrams in the axial
sector:

Tas = (po-epy)e"PeatPi,

Tp, = (po-eqr)ePerePs, (4.115)

The chiral-odd (CO) scattering amplitude involving quark of flavor ¢ (¢ = u,d) corresponding to
diagram B, in Feynman gauge has the form:

110(5n) = 5 T 120 01.6) (<ieQu) (ig)? ()
e (E+2p) L G+ (@ +Op 1

TP G p )2 e | (gt (@ + &)p)® +ie T Gy (m— ©)p)? + e
2 _
;’l_l,(p27)\/) [O—n]H’g’(xvgat)} U(pl,)\)

= C1CO GO B, 61 (2) > lpa, X) [i0™ H (e, €,1)] i, V), (4.116)

where 5
0100 = ~3 f:‘ e s T Q7 (4.117)
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is a common coefficient for all diagrams involving chiral-odd DA and GPD, and

tr99(By); = (4.118)
trp |Pp€Er (l;:+zz3p) o G+ @t op EqDYLs Y, !
PR k4 2,2 +ie | (g4 @+ Op)2 +ie P Gp, (@ — Op)? +ie

includes all non trivial factors (vertices as well as quark and gluon propagators) of the hard part of
diagram B;. The calculation of traces over ~y-matrices leads to the expression

8s {(q “P)EqLj (pp-s,*; ey k—s€ey ~5;§) — kek ey eqsqp”gL,,j}

((k 4 zpp)? +i€) ((zp, + (x — §)p)? +ie)((q + (x + )p)? + ie)
TB1;

trp? By =

= . 11
206s32Z (x + & +i€) (x — & +ie) (4.119)
Here T's ; is one of the two tensor structures which will appear in chiral-odd diagrams,
Thy = (p-k)eiy [(eq-pp) (a-€5) = (q-pp) (eq-€))] — v oot PV heigl
—8s % *
= D fach [206 (0 ) (01 £01) + (01 -20) (o1 €50) + s (g1 -2 )]
—aey] o (a—2)&s (eqr - exy) — (pL-eq1) (p1 - €51))] (4.120)

eri [*20425171 (p : 6*) (€qL-€r1) + (pL 'EZJ_) (€qL-€r1) — @ (EZ:J_ : EZJ_) (ro 'qu-)}
+€qJ_ [204 E(p-e ) (pr-ehs) — (oo 'EZJ_) (po-€hi) +oa(a—2)8&s (ef, 'EZJ_)}} )

the other one being

T, = (q- p) L[ er) (e g, k) —s& (e, -5;)} — kerpos, asary gl (4.121)
88 (_ . «
= oa (%L [(pL-eqr) (pr-€rr) —aRa—1)Es(eqL - €11 )]

+o¢5}:]_ [ (2 —1)¢&s (qu- EpJ_) +2¢ (p € ) (PL-€qr) +(PL-gq1) (pJ_ 'EZJ_)}
+€qJ_ 20 (p-e ) (pr-cks) — (po 'EpJ_) (pL-chy) — oals (ef, 'EZL)}
+PL [2045 (P : Gp) (eq1-er1) —a (PL 'EZJ_) (61 -er1) — @ (EqL 'EZJ_) (pL - EZ:J_)}} .

Here, we expressed these two tensor structures in terms of the transverse polarization vectors and of
(p-€p), using Eqs. (4.7714.79), for later convenience.
At the dominant twist, the sum over the transverse polarizations of the rho meson can be written as

LoV
S eherr = —gt 4 22, (4.122)

pol P

when computing the square of the chiral odd amplitude. The second term of this sum, which arises mainly
from the longitudinal polarization, does not contribute at leading twist. We thus note that (p - ¢,) terms
in the tensor structures will not contribute to the cross section since when summed over the transverse
polarizations at the dominant twist they will produce terms involving the scalar product of p either with
a transverse vector or with itself, which is null in both cases.

In a similar way we obtain the expressions for the remaining independent diagrams: A;, As, A3, Ay,
As, Bs, B3, By, Bs in the chiral-even sector and Az, A4 and Bjs in the chiral-odd sector. We show these
results in Appendix[B.]

The integral with respect to z is trivially performed in the case of a DA expanded in the basis of
Gegenbauer polynomials. The expressions for the case of two asymptotical DAs ¢ and ¢, , which we only
consider in the present article, are given explicitly in Appendix[B.2] and expressed as linear combination
of building blocks.

The integration with respect to z, for a given set of GPDs, (which can be our model described in
Section [4.6] or any other model), is then reduced to the numerical evaluation of these building block
integrals.
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4.7.2 Square of M| and M

In the forward limit A; = 0 = P, , one can show that the squares of M and of M read after summing
over nucleon helicities:

MIMI =37 MIX) M (A N) (4.123)
Ao

B(1—€2) (HA(&, M (6.0) + HUE DR (€.1))
— 48 (96 DETH (6 1) + ENEDET (€ 1))
8% (HI(EHET(6,1) + HT™ (€ DEUE D) + HIEDET(6,6) + A (E)E(E,1) ).

and
MIMT =37 MLON) MT*(AN) (4.124)
A
. ;. 2 . PUN ;. -~
-3 [—(1 ~ EMHE ORI (61 - TG €81 (6.0 — EF (E DNIEEL” (6.0) — 817" €.)

+e{mai el - EP O + HET(E DIEE (6,0) - EF (€ 1))

[E—

gLlij-

For moderately small values of £, these become:
MIMT* = 8 (’HQ(«E, ) HI* (€, 1) + HIE, ) HT* (€, t)) , (4.125)
MIMT™ = 8HF(EOHE (€ D) guy- (4.126)

Hence we will restrict ourselves to H9, H? and HY to perform our estimates of the cross section].

4.8 Unpolarized Differential Cross Section and Rate Estimates

4.8.1 From amplitudes to cross sections

We isolate the tensor structures of the form factors as

HI(E ) = HY(EOTa + HL(E )T, (4.127)
HIEt) = HYUED T, +HEE DT, , (4.128)
HIE) = ML (E0Th, +HE (0T, . (4.129)

These coefficients can be expressed in terms of the sum over diagrams of the integral of the product of
their traces, of GPDs and DAs, as defined and given explicitly in Appendix[B.2l They read :

HY = échENg, (4.130)
HE = 5—120q CENE, (4.131)
HY = SischENQS : (4.132)
HE = Sigcq “FNE_, (4.133)
and
HEL = SigchON;A, (4.134)
HEL = SischON;B. (4.135)

H1n practice, we keep the first line in the r.h.s. of Eq. #123) and the first term in the r.h.s of Eq. ({124).
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For the specific case of our process, it is convenient to define the total form factors as follows:

H(E L) = HU(g,) HE(E L), (4.136)
H(E ) = HYE ) - H( t), (4.137)
Hp(Et) = HE (1) —HE (& 1), (4.138)

from which we isolate the tensor structures

H(é-v t) = HA (67 t) TA + HB (55 t) TB ) (4139)
7:2(57 t) = 7:[145 (6) t) TAS + 7:235 (57 t) TB:, ) (4.140)
%‘(Evt = HTA (gat) Tiu +HTB (gat) TEJ_' (4.141)

In this study, we are interested in the unpolarized cross section. As a result, we will need the squared
form factors after summation over all the polarizations (outgoing v and p, incoming ~):

HEDP = Y HEL My M) H(E Ak Ag) (4.142)
Ak g
= 2MHaA )+ PLHB(E D + 0T [Ha(EOHE(E ) +HA(E DHB(E D],
HEOP = D HEL M A) H (61, Ak, Ag) (4.143)
Ak Ag
52pi_ Y 2 Y 2
= 4 |,HA5(£at)| +|/H35(§at)|7
Hr O = —gui; D Hp&t, A Mg M) HE (68 Ay Ags M) (4.144)

MeAgAp

= 5126284 (a4|HTA (Evt)|2 + |HTB (6) t)|2) :

We now define the averaged squared amplitude | M|?, which includes the factor 1/4 coming from the
averaging over the polarizations of the initial particles. Collecting all the prefactors (including a factor of
22 for the missing half of the set of diagrams and a factor of 1/2 from the square of the p° wave function,
see Eq. (4.103)), which reads

1
8_2228(1 o 52) (CqCE(OD))

we have the net result (factorizing out the coefficient for the u—quark), for the chiral-even case

21
? )

2 4 2 2

-—CE 4 " 2 o 1 p w 1
M= Z0-€)(C CE) {2 Ni—Na| + = |NE- TNB (4.145)
2 * 2 4 2
P o 1 | p ST p cu 1o
while for the chiral-odd case, we get
—Cco 2048 ” 2 1 u 1 ?
|./\/l |2 — - 2(1 _52) (C CO) {a4 — ZN%A + ’NTB — ZN%B } . (4.146)
The differential cross section as a function of ¢, M,f o —u' then reads

_ do W—F (4.147)
dt du’ dM2, e (—t)mn 3282 M2, (2m)3 ’
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4.8.2 Numerical evaluation of the scattering amplitudes and of cross sections

Above, we have reduced the calculation of the cross sections, see Eq. (4.147)), to the numerical evaluation
of the coefficients (B.62), (B.63), (B:43), (B:44), (B.45), (B.46). These coefficients are expressed as linear
combinations of numerical integrals, listed in Appendix[B.2l

Our central set of curves, displayed below, is obtained for S, = 20 GeV?, with Mgp varying in the
range 2.10 GeV? < Mgp < 9.47 GeV? (this latter value comes from the vanishing of the phase-space
in —t, as shown in Appendix[B.4] see Eq. (B.II5)) with a 0.1 GeV? step.

For each of these values of M?,, we chose 100 values of —u/, linearly varying from (—u') i = 1 GeV?
up to (—u')mazmas as defined by Eq. (B.III).

For each of these couples of values of (M2, —u’,) we compute each of the numerical coefficients
N%, N4, N% N%and N%, N4, N% N¢ for the chiral-even case, as well as the coefficients

% a> N o, Nit g, Ni 5 for the chiral-odd case, using the sets of GPDs indexed by M2, and computed as

explained in Section

This whole set of dimensionless numerical coefficients allows us to perform the various phenomeno-
logical studies discussed in the next subsections.

4.8.3 Fully differential cross sections

Let us first discuss chiral-even results, showing in parallel the proton and neutron target cases.

We first analyze the various contributions to the differential cross section in the specific kinematics:
Mgp =4GeV?, S,y =20 GeV?, —t = (—t),nin as a function of —u’. The dependency with respect to S,
will be discussed in Section [4.8.5]

In Fig. 23] we show the relative contributions of the u— and d—quark GPDs (adding the vector
and axial contributions), which interfere in a destructive way because of the flavor structure of the

oV = “ﬂ\;ﬁdd. The d—quark contribution is of course more important for the neutron target case.

doeven

dM?2,d(—u')d(~1)

dOeyen

dM2,d(—u)d(—t)

(nb - GeV~F)

(nb - GeV %)

3.5¢F

1.0

3.0 1\
25K O
2.0f
15¢

1.0

1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5
—u'(GeV?) —u/(GeV?)

Figure 4.23: Differential cross section for a photon and a longitudinally polarized p meson production,
for the proton (left) and the neutron (right), at M3 , =4 GeV?2. Both vector and axial GPDs are included.
In black the contributions of both u and d quarks, in blue the contribution of the u quark, and in green
the contribution of the d quark. Solid: “valence” model, dotted: “standard” model. This figure shows
the dominance of the u-quark contribution due to the charge effect. Note that the interference between
u—quark and d—quark contributions is important and negative.

In Fig. [4.24] we show the relative contributions of the GPDs H and H involving vector and axial
correlators. The vector contribution dominates. The two parameterizations of the axial GPD HY(z, ¢, t)
give quite different results, the one corresponding to the unbroken sea (“standard”) scenario being less
negligible than the other one (“valence”). As a simple calculation shows, there is no interference effect
between H and H contributions due to lack of a sufficient number of transverse momenta in the tensor
structures.

Fig. shows the dependence on M2,. The production of the vp pair with a large value of M2,
is severely suppressed as anticipated. However, the —u’ range allowed by our kinematical requirements
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d0even _ d
e (ub- GeV ™ ?) _ Q%even . —6
AMZ,d(—u')d(—1) 2 A1) (nb- GeV~F)

2.5 0.30 [,
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Figure 4.24: Differential cross section for a photon and a longitudinally polarized p meson production,
for the proton (left) and the neutron (right), at MWQP = 4 GeV?. Both u and d quark contributions
are included. In black the contributions of both vector and axial amplitudes, in blue the contribution
of the vector amplitude, and in green the contribution of the axial amplitude. Solid: “valence” model,
dotted: “standard” model. This figure shows the dominance of the vector GPD contributions. There is no
interference between the vector and axial amplitudes.

is narrower for smaller values of M?,. The two curves for each value of M?, correspond to the two

parameterizations of H(z,¢,t), the lines corresponding to the unbroken sea scenario lying above the
other one.
doeven

— % (nb- GeV ™) d0even ] 6
dM2,d(—u')d(—t) DA )d—D) (nb - GeV~Y)

] 5
—u (GeV?) —u (GeV?)
Figure 4.25: Differential cross section for a photon and a longitudinally polarized p meson production,

for the proton (left) and the neutron (right), as a function of —u’, for M,fp = 3,4,5,6 GeV? (resp. in
black, red, blue, green). Solid: “valence” model, dotted: “standard” model.

4.8.4 Single differential cross sections

To get an estimate of the total rate of events of interest for our analysis, we first get the Msp dependence
of the differential cross section integrated over «’ and ¢,

do /“)w (—u)mas do
— = d(—t) / d(—u') FE(t) X~ : (4.148)
dM2 ( (7u/)mm dt dUIdM,gp —t:(—t)mm

—t)min

P

Since this is mostly an order of magnitude estimate, we use a simple factorized universal dipole t—dependence
of GPDs,

(4.149)
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with C' = 0.71 GeV?. For a more precise study dedicated to an impact picture of the nucleon [1704175], a
more sophisticated approach [[176] should be used. The domain of integration over «’ and ¢ is discussed
in detail in Appendix[B.4}

The differential cross section we obtain do/ dM,fp is shown in Fig. for various values of S, n
covering the JLab-12 energy range. These cross sections show a maximum around M2, ~ 3 GeV?, for
most energy values.

dOeyen -
—U% (b - GeV™?) doeven (@~ xr—2
M2, iz, (nb-GeV™?)
0.30 0.035}
0.25F 0.030}
0.20} 0.025¢
o 0.020F
15}
‘ 0.015F
0-101 | 0.010}
0.05f 0.005
3 4 5 6 7 8 9 3 4 5 6 7 8 9
y 2 2
M2, (GeV?) M2, (GeV?)

Figure 4.26: Differential cross section do/ dMgp for a photon and a longitudinally polarized p meson
production, on a proton (left) or neutron (right) target. The values of S,y vary in the set 8, 10, 12, 14,
16, 18, 20 GeV?. (from 8: left, brown to 20: right, blue), covering the JLab energy range. Here, we use
the “valence” scenario.

4.8.5 Integrated cross sections and variation with respect to S,

For S,y = 20 GeV?, the integration over M, 3 p of our above results within our allowed kinematical region,
here 2.10 GeV? < MWQP < 9.47 GeV? (see Appendix[B.4), allows to obtain the cross sections ag’;ffo“ ~
0.54 pb and oPIgi™ ~ 0.76 nb for the proton, and 253" ~ 0.42 pb and o2¢%™" ~ (0.084 nb for the
neutron.

The variation with respect to S, could be obtained by following the whole chain of steps described
above. However, this can be obtained almost directly. Our aim is now to show that the only knowledge
of the set of numerical results computed for a given value of Sy, which we take in practice as S,y =
20 GeV?, is sufficient to deduce a whole set of results for any arbitrary smaller values of S,y. The key
points are the following.

First, the amplitudes only depend on «, £ and on the GPDs (which are computed as grids indexed by
£). Since o = —u/ /M§ ,» it is thus possible to use exactly the set of already computed amplitudes if one
selects the same set of («, &)

Second, one should note that to a given value of
M2,

150
2(,n — M?) — M2, (4150

&=

corresponds an infinite set of couples of values (M,f 59 SYN) -
In practice, we use our set of results obtained for S,y = 20 GeV?, indexed by M§ , and —u'.

Then, choosing a new value of 5‘7 ~, we obtain a set of values of J\Z/,f , indexed by the set of values of
M?, (which vary from 2.2 up to 10 GeV?, with a 0.1 GeV* step), through the relation

- Son — M2
2 2 Y
M2 =M

=t 151
S N — M2’ (4.151)

which is deduced from Eq. (4.150), and for each of these ]\7[72p a set of values of —4', using the relation

i = (=), (4.152)



122

which gives the indexation of allowed values of —’ as function of known values of (—u').
.It is now easy to che.ck that thisj mapping from a given S, n to a lower S, ; provides a set of (Msp, —a')
which exhaust the required domain.

Consider first the range in pr. From Eq. (B.I09), which defines the minimal value of M2, inde-

pendent of Sy, this value is mapped to a smaller value than required, when passing from S,y to S, .
From Eq. (BII5D, it is possible to show that M2 ;.. is mapped to a value M2, slightly larger than

the new required value M'? . (this comes from the little dependency of M with respect to S, x). Thus,

the mapping covers the whole required domain in Mjp (with a negligible loss of precision since a few
points are mapped outside the domain and thus cut).

Now, let us consider the range in —u’. Again, since the minimal value (—u’)uy is fixed, this value is
mapped to a smaller value than required, when passing from S, x to S, . Concerning the maximal value
(—')maxMax, from Eq. (B.ITT) it is a linear function of MWQP of the form

(7u/)maxMax =-A + M,?p 5 (4153)
with A > 0. The mapping of M2, leads to the maximal required value

(_ul);naxMax =—-A+ M,%p . (4.154)
But the mapping in —u’ will transform (—u/)maxMax tO

MQ 2 12 2
(_al)maxMax = M—’;p(_A + M'YP) - _AM—’;p + M'yp’ (4155)
vp vp
which shows that the maximal value (—4)maxmax Of (—@') obtained from the mapping is larger than the
2

needed (—u') , nax> SiNCE —A < —A JAZ;P <0.

We have thus shown that one can obtain the dependency of amplitudes and thus of cross sections for
the whole range in S,y from a single set of computation (at S,n = 20 GeV?), thus avoiding the use of a
very large amount of CPU time.

Then, for the obtained cross section which was obtained at a given value of S.,y, the integration over
the (—¢, —u') phase-space and then over M,f , is performed similarly to S,n = 20 GeV? case. One finally
gets the integrated cross section shown in Fig. for the proton and neutron targets, and for both
parameterizations of the axial GPD{'3. These cross sections prove that our process is measurable in the
typical kinematical conditions and integrated luminosity of a JLab@12GeV experiment. Counting rates
on a proton target are predicted to be one order of magnitude larger than on a neutron target.

Oeven (1b)

Oeven (1b)
0.87 el
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Figure 4.27: Integrated cross section for a photon and a longitudinally polarized p meson production, on
a proton (left) or neutron (right) target. The solid red curves correspond to the “valence” scenario while
the dashed blue curves correspond to the “standard” one.

127 quadratic extrapolation is performed for the small domain above S,y = 20 GeV?2.
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4.8.6 Results for the chiral-odd case

Let us now pass to the chiral-odd case, where a transversely polarized p meson is produced together with
the photon. This process now probes the chiral-odd transversity quark distributions which are connected
to the transversity PDFs.

In order to evaluate the theoretical uncertainty in the chiral-odd sector, for each of the two parameter-
izations of the transversity PDFs, we use a set of 1500 trials with their value of the x? test, as provided by
the authors of Ref. [169]], between —20 and +20. Their 9-parameters x? distribution (see the appendix
of Ref. [177] for details) is given by

P e /2Tl (4.156)
(@) = o '

We further renormalize this distribution in order to include on one hand the fact that the 1500 trials
only cover the [-20, +20] interval, and on the other hand discretization corrections. We then create a
histogram of these configurations, with a distribution weighted by the above described renormalized x?
distribution. This weighted histogram allows us to finally compute the —2¢0 and +2¢ values of the cross-
section. We perform this analysis at —u' = 1 GeV? and for three typical values of Mﬁp (2.2, 4, 6 GeV?),
for the “standard” scenario. We then extract the two typical configurations which gives cross-section close
to the —20 and +20 values, which we now use both for the “standard” and “valence” scenarios in order
to evaluate the typical theoretical uncertainty.

Fig. [4.28] shows the Mgp dependence of this cross section, both for the proton and the neutron.
Similarly to the chiral-even case, the production of the vp pair with a large value of M2, is severely
suppressed. Similarly, the —u’ range allowed by our kinematical requirements is narrower for smaller
values of M,fp. Comparing the chiral-even case, see Figs. and the chiral-odd case, see
Fig. one should note the very different behaviors of the differential cross section when varying —u’.
In the case of a proton probe, we show in Fig. [4.28] (left) as error bands the maximal and minimal values
of the cross-section (the maximal values are obtained with the “standard” trial at +2¢ and the minimal
values with the “valence” trial at —20).
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Figure 4.28: Differential cross section for the production of a photon and a transversally polarized p me-
son, for a proton target (left) and a neutron target (right), as a function of —u’, for Mgp =3,4,5,6 GeV?
(resp. in black, red, blue, green). The error bands on the l.h.s. panel (proton) correspond to the proce-

dure discussed in the text. For the neutron, we only show the results for the “valence” case.

Similarly to the chiral-even case, we perform the integration in the (—¢, —u’) phase-space. The differ-
ential cross section dooqq/ dM,fp we obtain is shown in Fig. for Syn = 20 GeV?, with the different
sets of results depending on the sets of transversity PDFs which we use, as explained above.

In Fig.[4.30] we show the differential cross section do,gq/ dMWQP for various values of S,y covering the
JLab-12 energy range. These cross sections show a maximum around a similar range of M2, ~ 3 GeV?,
for most energy values.

Finally, the dependency of the integrated cross section with respect to S, y is shown in Fig.[4.37] both
for proton and neutron, for the two “valence” and “standard” scenarios.
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doodd
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Figure 4.29: Differential cross section do/dM?, for a photon and a transversally polarized p meson
production on a proton target for S,y = 20 GeV?. The various curves differ with respect to the ansatz
for the PDFs dq used to build the GPD Hy. The dotted curves correspond to the “standard” polarized
PDFs while the solid curves use the “valence” polarized PDFs. The deep-blue and red curves are central
values while the light-blue and orange ones are the results obtained at +2¢.
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Figure 4.30: Differential cross section do/ dMsp for a photon and a transversally polarized p meson

production on a proton target. The values of S, vary in the set 8, 10, 12, 14, 16, 18, 20 GeV?. (from 8:
left, brown to 20: right, blue), covering the JLab energy range. We use here the “valence” scenario.

4.9 Counting rates

Using the Weizsacker-Williams distribution, one can obtain counting rates. This distribution is given
by [178l[179]

Qhax (1=2)
m2x2

s , (4.157)

x< 1 1x)+((1—w)2+1)1n

_ Oem 2
flz) = 2m .

2 ¢ 2 m2a?
where z is the fraction of energy lost by the incoming electron, m, is the electron mass and Q2 is the
typical maximal value of the virtuality of the echanged photon, which we take to be 0.1 GeVZ. Using the

expression for = as a function of the incoming electron energy E.

S,y — M?

BT (4.158)

z[Syn]| =
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Figure 4.31: Integrated cross section for a photon and a transverse p meson production, on a proton (left)

or neutron (right) target, as a function of S, . The solid red curves correspond to the “valence” scenario
while the dashed blue curves correspond to the “standard” one.

one can easily obtain integrated cross sections at the level of the eV process, using the relation

SN max 1
Oen = / oo (@) f(z) da = / o (2[Sy]) (el n]) Ao (4.159)
S+ N erit e
The shape of the integrand
1
F(8,n) = 577 0o (w1S0]) f(alS,)) (4.160)
of Eq. (4.159) is shown in Fig. [4.32]
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Figure 4.32: Shape of the integrand of 0.y, as a function of the invariant mass of the hadronic produced
state, on a proton target. Left: longitudinally polarized p meson production. Right: transverse p meson
production. In solid-red: “valence”. In dashed-blue: “standard”.

Up to now we discussed the photoproduction of a vp pair without paying attention to the origin of
the initial quasi-real photon. If it is emitted by a lepton beam, like in electroproductive DVCS, one should
also consider Bethe-Heitler-type processes, in which the final real photon is emitted by the lepton beam.
Let us however note that this mechanism involves an off-shell photon of momentum ¢, since in this case
¢* = (pp+A)? =~ —2¢sa, is large. Thus the Bethe-Heitler mechanism involves scattering amplitudes with
four hard propagators, whereas the photoproduction mechanism considered so far involves only three
hard propagators. We therefore expect the Bethe-Heitler contribution to be suppressed. A more precise
discussion is left for the future.
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At this point, we did not include any experimental constraint on the angular coverage of the final state
particles. We discuss this issue in Appendix taking the constraints of JLab Hall B into account, and
showing that this does not affect our predictions. We also show that a binning in the outgoing photon
angle could help to enhance the chiral-odd versus chiral-even ratio, in particular for observables which
are sensitive to the interference of the two amplitudes, beyond the scope of the present study.

We can now give our predictions for the counting rates. With an expected luminosity £ = 100 nb™*s
we obtain for 100 days of run: 7.5 10 pr and 3.4 10 py, .

-1

4.10 Conclusion

The analysis of the YN — vp" N’ process in the generalized Bjorken kinematics where GPD factorization
is expected to hold in a collinear QCD approach has shown interesting features.

Firstly, although any helicity state of the vector meson is populated at the same level in the twist
expansion of the amplitude, the production of longitudinally polarized vector mesons turns out to be
numerically dominant. This mostly comes from the difference in the normalization of chiral odd versus
chiral even GPDs, as shown in our modelization (see Figs. [4.19}H4.2T). If our model underestimates the
chiral odd GPDs (which might well be the case, since the constraints on the transversity distributions are
still quite indirect), the data rates for pr production will be higher.

Secondly, the magnitude of the cross section is large enough for the process to be analyzed in a
quite detailed way by near-future experiments at JLab with photon beams originating from the 12 GeV
electron beam. Detectors in Hall B, C and D seem to be perfectly suited for this study. A more detailed
study is needed to decide on the feasibility of the experiment when taking into account of all detection
efficiencies.

We restricted our analysis to unpolarized cross sections; this may be complemented by a computation
of various polarization observables.

A NLO calculation should first confirm the validity of the factorization hypothesis for this process, and
estimate the effects on the amplitude. Let us stress that, contrary to the DVCS (and TCS) case where
gluon contributions turn out to be important at this level [161,[180], the charge conjugation property of
the process studied here protects us from these contributions. We may thus expect that NLO corrections
will be under control, without the necessity of a resummation procedure.

To conclude, the cross section of our process is a factor 400 more than the yP — PeTe™ process, for
similar values of the hard scale, for which experimental proposals have been approved at JLab, Thus, the
study of our process appears feasible experimentally and promises to bring new important constraints on
GPD physics.

We would like to mention that a similar study could be performed in principle in the Compass experi-
ment at CERN where S,y ~ 200 GeV? and at LHC in ultraperipheral collisions [121]], as well as in future
electron proton collider projects like EIC [[109] and LHeC [110].



Chapter 5

Conclusion

In this work we studied several exclusive processes as a way to get a better insight on some of the funda-
mental questions of QCD : resummation effects, saturation effects and non-perturbative physics.

The study which was performed in the first part of this thesis constitutes the first computation of the
NLO impact factor for an exclusive process using the shockwave formalism.
Due to the fact that it was obtained with completely general kinematics, it is a strong basis for a lot of
precision phenomenology at asymptotic energies. Very few processes have been described with such ac-
curacy in the k;-factorization formalism, hence we expect our result to improve greatly our understanding
of QCD in its Regge limit. The use of the shockwave approach rather than the BFKL formalism allows our
results to hold when considering processes in eA collisions. Thus it is a step towards precision physics in
the saturation regime, where non-linear effects become important.
Our computation opened a way for similar NLO computations in the shockwave approach. In this thesis
we presented how to adapt our results for the computation of the v* — ~* impact factor and we showed
how to obtain the impact factor for the production of an open c¢ pair and for the production of a char-
monium in some cases. Moreover, we showed how to adapt the present computation to the production
of a light vector meson and how such a result would allow one to verify previous results for the corre-
spondence between the linearized BK equation and the BFKL equation.

In the second part of this thesis, we performed the full feasibility study for the photoproduction
of a p meson and a photon, giving numerical predictions for JLab@12GeV. We expect the proposed
process to be a probe of GPDs, the non-forward extension of the non-perturbative building blocks in
collinear factorization. The original idea behind our study was to probe transversity GPDs which are
chiral-odd, hence elusive, quantities. Our results hint that the chiral-odd contribution to this process
is highly suppressed, thus hard to probe experimentally, however a more involved study which would
include the density matrix of the final state may lead to more optimistic predictions in the future. In any
case, our process constitutes a very good way of probing the usual GPDs, for universality checks and for
new constraints on these quantities. Our results can be extended in the future to the electroproduction
case by adding Bethe-Heitler contributions in which the photon in the final state is emitted by the electron,
and a NLO computation could be performed in order to check the validity of the factorization hypothesis
for this process.
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Appendix A

Finite part of the v* — ¢q and v* — qqg

impact factors

A.1 Finite part of the v* — ¢¢ impact factor

A.1.1 Building-block integrals

Throughout this section, we will need the following integrals

¥, @, Ar, Do)

IQ(q_’h @2) Ah AQ)

IN(&, @, A1, As)

PR, @, A1, As)

: a4 (1%)
/ AN R b
/ il (A.2)
[(f— q1)? + A1} [(f— 72)? + AQ}
/ AT (%) (A3)
[(f* q@)* + Al} [(f* 3@2)? + Az}
@i (1)
(A.4)

The arguments of these integrals will be different for each diagram so we will write them explicitly before
giving the expression of each diagram, but we will ommit them in the equations for reader’s convenience.
Explicit results for the first 3 integrals in Egs. are obtained by a straightforward Feynman
parameter integration. Let us compute explicitely /¥ as an example : Let us first use Feyman’s trick and

lk

1 L

Ik
L T

shift [, to get textbook integrals :

/ ddf[(f @) + Al] [(f

(A.5)

@f+A4P§iﬂ

4T (1%)

9 1 .
/ dOéldOLQ /
0

m .
(l — 01491 — OézQz)

2

3
+ @ + aady — (aqy + 062(72)2 +a1Ay + Oézﬁz]

k k
Q1qy; + Qg

™

2 o1 n N
/ daydos / d
0

» 3
{l 2+ 1@ + @edy? — (a1 qy + a2§2)2 + 1Ay + 042A2}

k k
Q1qy; + Qagy

o1
7/ dagdag
0

34
[0416712 + a@? — (@i + a2§2)2 + a1 Ay + OCQAQ} ’

(A.6)
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Now let us make the following change of variables :

(a1, ) = (p, M), (A7)
w = rp, (A.8)
ag = r(l—p). (A.9)
Then
po- = (3 ﬂ%) m /ldep paiy +(1—p)as, _ (A10)
0 2

(P72 + (1= )32 + pdiz + B — 1 (@ +pi2)?] (r14)

where A;; = A; — Aj. Let us note that this integral is actually a convergent integral, so one can set d = 2
in the right hand side. Then one can perform the p integration :

r(3-4=: b+ (1-p)dh
™ g2+ (1—p)q,2 12 2 — - \4
S P
d a .
™ o P& — @+ Ar2) + (G + A2)] [=7130% + p (413 + A12) + Ag]

Let us define the two roots of the second denominator :

(@13 + Ar2) — \/(17122 +A12)” + 4434,

P = (A.13)
2‘112
(Q12 + A12 + \/ (@3 + A12) + 4(112A2
P2 = (A.14)
2%2
Then :
1 1 k k
I = oA )/dp = pql)“Jqu (A.15)
q q1 — 7 72 +A
12 2 12 [p+ ((leqfq}ﬁ} (p—p1)(p—p2)
= : (A.16)
q12 (@2 — &2 + A12) (p1 — p2) )
(‘12 +A2) k
« 1 /1d (qung_ + q2j_) 1 72— 2+A12) ‘J12L qs 1
pr 4 B H2) |y (p=p1) (@P+he)
(070’ +412) (72 —@2+012)
1 1 ( ’+42) ¢ — gt |
_ 1 / (P2Q12L + Q2L) dp 7’ q22+A12) lal 4214
pg 4 AT +D2) 0 (= p2) (37482)
2 (52 q22+A12) @2 QZZ+A12)
- P1di21 + 5y n ( Pl) (A17)
0332 - @+ D) n (32 +A2) (1 — pa) —p1
P1 (@12—522+A12) P1 P2
. (522 + A2) q{l - (6712 + Al) qu 1 ((712 + Al)
=2
- - T2 +A2 02+ gy + A2
@ =2+ o) (14 Gl ) (o ity
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. p2¢]f2¢+‘]§i In 1—p2
(3> +42) _
(pQ + (512—522+A12) (pl p2)

One can simplify this expression by using the following properties of the two roots :

A
pip2 = —_.—22, (A.18)
dr2
-2
+A
pLtpr = (%7212) : (A.19)
412
1(q3+ A12> 1
o= o (P2 (), (A.20)
' 2 ( a3 2( ' ?)
1 (33 + A12> 1
P2 = 3 = —5\pP1L=p
One finally gets :
2 [‘7122 (‘712 + Al) (‘722 + A2) - (‘712 - ‘722 + A12) (6712A2 - ‘TzQAl)]
o (B A ) b 200 () (o))
(p1—p2) 413 1—p1 —p2
Ay (G2 +Ay)?
+ (@ + Az) In % +(1<2);. (A.21)
A1 (G + A2)
I and I% only require textbook integrals. They read :
1 — 1-—
L = — 1nK L ) ( pQ)] , (A.22)
@5 (p1 — p2) L—p1 —p2
and
72 A k 732 A k _ 1— k A
o= (73 + A12) af + (q2_,12+2 2) e K P ) ( pz)} — A2y (—1) . (A23)
2(p1 — p2) (@13) 1—p1 —p2 245 \ Az

Please note that in some cases the real part of A; or As will be negative so the previous results can
acquire an imaginary part from the imaginary part + 70 of the arguments.
The last integral in Eq. (A-4) can be expressed in terms of the other ones by writing

=1, (qhqh) +In (qi;qél + qi@qﬁ) + Iy (ququ) , (A24)
Then by projecting the previous relation on the (jk)-tensors formed by ¢/, and ¢%, and solving for
(111, 2, Iz2) gives :
9\ 2 . . L. ) o ‘
(q22) (qujquklﬂk) — 20 (41 - &) (‘J1LjQ2Lkpk) + (¢ - 2) (Q2quQLkIJk)

Iy 72
(@22 — (@ )]

: (A.25)

a9 o o ; Yoo L2 N =2o o ;
; -2 (¢ - @) (s nl’®) + <Q12(I22 +(q1 - ¢2) ) (115021 617%) = @2 (@1 - @) (q2L5921117%)
12 = )

—90 =9 — —\2 2
[ql qy" — (Ch “q2) }

(A.26)

Ly — (@ - @)° (111106 7%) =242 (G1 - @) (112 l?%) + ((712)2 (q21jq21£17%) . (A.27)

-9 -9 — —\2 2
{% 7@ — (@1 - ¢2) }
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Let us make the following remark :

(%) = 71/ ddf<ql'lj<li) (A.28)

T [(f— q@1)* + Al} [(f— 3@)? + Az} I

1 . I 1. 1 ,

= —/ddl - L — | - - (@ +2M0) (A.29)
) e ) 2
1(g), Ay ; -

= |2 )+ I+ (¢Z+A0) L A.30
2[@,221& R + I+ (37 + ) I (A.30)

and similarly
: 1 qj Al . .
'Yy = 2| ——— |+ 2+ (G2 + A . A.31
(roxI’*) 2[512 A, + I3+ (3 + Aq) I (A.31)

Applying these in Egs. (A.251A.27) allows one to conclude :

1[Gk — (G-
I = 75[‘12 quik = (@ qQ)ZQék] (A.32)
(@232 — @ @)

= = -9
Q- q2 Q0+ A oo . 22 s o R Lo
X K )hﬂ( ! Al )qlﬂJr(@'qzl)Ié”r{qQQ (@1 - G12) + A1@ — Do (@1 - @) FIT |

=2
aq
_ -2
. 1 . In (91 1A1) (A.33)
1|w2a - @@’ 1
N 5 (@1 - ¢2) (@2 + A1) (qond?) + (qrels)]

—9 =9 — —a22
2[1 2_(1' 2)}

B : 12 (@7 + A2) (quind?) + (qindy)] + (14 2),
4 [512522 —(¢1 - @) }
Iy = Iilgeoo) - (A.34)

This last expression makes it seem that there is a singularity when ¢ and ¢ are collinear or anticollinear.
However, this singularity is non-physical and only appears when projecting on the particular basis of 2-
dimensional symmetric tensors (¢} ¢¥, ¢l ¢5+qlq¥, ¢iq5). One can show that it disappears when projecting
on the non-minimal basis (q{ qr, q{ a5 + qéqf, qéqé, gik). For a further study, the reader is referred to the
appendix in [181].

A.1.2 Diagram 4

Here the integrals from section (A.1) will have the following arguments :

. N T—2z\ . T —z L .
qQ = p1— - Pq> q2 = (qu*$pq),

T
A = (z—2)(T+2)Q% Ag%cffio. (A.35)

Let us write the impact factors in terms of these variables. They read :
(longitudinal NLO) x (longitudinal L.O) contribution :

d(x — 2)(T + 2)

. [—Z(z — 2)(z + DIz + qoir (222 — (22 — 2)(2 + 1))IF], (A.36)

(¢4>LL ==
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(longitudinal NLO) x (transverse LO) contribution :

(64) 0 = (1 = 22)pgr”, (¢a),p — Alw — 2)(T + 2)(1 — 22+ 2)[(@2 - Bor )9y, + @ Pqv i) I, (A37)
(transverse NLO) x (longitudinal LO) contribution :
(pa)ip = 2{[(x — & — 2)¢b ik + (—8zF — 622 + 22° + 32+ 1)q? | qoi]I¥
2[430 —2(324+5)+ (2 + 1)2]q2L;CI“C +@x—-Z—2) (- q1) I’
+ Lf(z — 2 - 2)g5, +7(2(x — 2)* = 5x + 32 + 1)q1 4]
—Z[2(x — 2)* — b + 32+ 114
xZ (1l — 22 . ) .
+ %[Qtluﬂzk + I — ¢t (2qe1 k1Y + D))}, (A.38)

(transverse NLO) x (transverse LO) contribution :

(¢4)iTjT = [(z—2—22)(x— T —2)(@ Pa)ai + (z+ (@ - @2)17311 — (@ 'ﬁql’)q;ﬁ][{
+ 2Z(gain — (@ — 2)qu k] (Pl L I7F — 97 pau i TH)
+ 20z —2)[(2Z+ 2)(G - Pyr) — B(Gr - Pr )] TV
+ [ =2)((a - ﬁqv)qu (@ Po)al ) — (1= 22)(@ —x +2) (G - @) Pl )}
= 2[(e - 2)(@al, — 22+ 2)a Jpv L
+ (1-22) (4:E2 Bz+5)x+(2+1) ) qu_kpqlzjl} I
- z( (2(30—2: —bx+3z+1)ply, I
+ z (56 2) (Pl 1 I — g7 par 1Lk I5)
I g7 (1= 2)(@ - Fr) = 21+ 2 = 2)(d@ - Fr))
(1-2)g), —2(1+z—2)q]  )pars
- @-2)(@F-—z+2)¢, —7(2x—2)? —5x+32+1)qh)pq1/ﬂ_]
+ Iy [gf (. =2+ 2)(q1 - Pgrr )21k + (1 = 2)(@2 - P )11k — (2 + 1) (G4 - @2) pg1v 1k)
+ Q{J_((x -+ Z)Q2Lkp;1’i — (2 +1)g5, pqv 1k)
+ @ (e —7—22)(x— 7 — 2) pevLi + (1 — 2)q1LiPg1r’)

— (1 —22)((1 =22+ 2)gs ik — (22° 4+ 32 — (8T + 62) + 1)QiJ_Q2J_k)pq1’i}

— (x —2)%ply ) Caeird™ + 15 — qi | (I + 2¢2.1117))
Piy i (gl (T2 + 2q21 k1Y) — 2016 7% — I3)

+ ¢TGP ) (Io + 2qo0 6 IF) + P 1k (22 T + TE)) | . (A.39)

A.1.3 Diagram 5

Here the integrals from section (A.2) will have the following arguments :

o o Z o r—z\ . z
1 =Dq1 — —Dgy G2 = < >p3 - —p1, (A.40)
x x x

Ay = M(pqz +22Q%), Do = (v -2)(T+2)Q%, (A41)

With such variables, it is easy to see that the argument in the square roots in Eq. (A-14) is a full square,
so that

r7Q? (T + z)

PL=——=5, P2=——

— . (A.42)
P> T(xr —z)
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In terms of the variables in Eq. (A.40), the impact factors read :
(longitudinal NLO) x (longitudinal LO) :

4z —2)(—22(T+2)+22+2) [

(¢5)LL =

T(x—2)s — (zq1ik — 2 (T +2) qa1k) If],
(longitudinal NLO) x (transverse LO) :

(65)%r = (& — )pqu (95)11

Az Z)(w—w—z)(

€T

+

2qY | — x(Z + 2)¢5 1) Pqr L (gikﬁ - glﬂclf) ;
(transverse NLO) x (longitudinal LO) :
1 — — — — z — i
(6s)ips, =2 [z~ 2= 2) (@ - @) — 2w — 2°Q* + (5~ a2 1
2 e 2 52 2\] i Tk
+ . [Z'QQJ_k( 8xT —6xz+22°+324+ 1) + 211 k(222 — 22" + = — 2 )} q; I
+2¢5 quir(z — T — 2)IF + 2£($(8£C —3) — 6z + 222 + 2)I}
T

2 - .
+ - (25, (x — % — 2) + ¢}, (82 — 62°(2 + 2) + z(2 + 3) (22 + 1) — 22%)| I
4

- [(z —2)(T+ 2)q1 1k +2(42® — (32 +5) + (2 + 1)*)gork] I

4 . o
- ;xfc(m — &) [qeund™ + 15 — ¢i | (qeind? + 12)]

(transverse NLO) x (transverse LO) :
ij Z,5 0 o _ N i
(¢)itr = =202 = 2) |2 (@ - F) = 22+ 2)(@ - )| 17
+ [FE(@ = 2)*Q%p s + (T — 2 +22)(T — 2+ 2)(@2 - P )diL
S i 2 i
= (@ Pa)((z +1)aa — 222 —2)a1))

+ (+) @B~ (v + ) @b, 1

- 2§($Q2Lk + (2 — 2)q11k) (giqul’u[kl _qu’iljk)

+ |2 -2 @@= 2@y, — (= D@ )y

-1 pqy)qlﬁ“f((xtz)ql +a(@ -+ )@ B) ph | I

r—T ;
+ 2 [ - (z(42® — (32 +5)z + (2 + 1)) gois + (. — 2)(T + 2)q11k) Dot

_ oz ; c ($(2x —2-2)¢), + zq{J_) pqllk} ik

+ M (22 — 62z + 2 + 2(8z — 3)) pglllg

+ [ x -7 ( T+ 2)g5 + (6<z+2):c —8z% — (2 +3)(22 +1) +2Z;2) qh) Doy
+ (=2 Y (@ o)+ dh P s) + Qo+ 2 = 3)(gF @ - ) + abuph )] I

+ (3 )pql’J_IB - ;(35” — 2)97 1 11}

+ ['T_qul’J_{ (T —x+2)¢5 qrin — (22% — 622 + 32 — 8x% + 1)qoirqt |

) 22 _ - g
- 2(z—x+22— ?)quktIL} +z(x — Z)QQQQqul’Lk

(A.43)

(A.44)

(A.45)
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+ (1- Z)quk(!]ij (@2 - Pg1r) + qu_PZyL)
+ (=24 2)q21r —2q11k) (97 (@1 - Pgr) + Q{Lpf]l’L)
ij 2\ -2 o o
+ g7 ((l‘ + ;) @ = (z+1)(q1- q2)) Pq1’ Lk
+ (@-z-22)@—7-2)gl ah — (z+ Vabral, +200 - Z)EQM_QL_) P IF
2xT _ i i i 4 j ij
— [(l’ — 2Py (Ge k™ + I5) = ply (@20 * + I5) + g parr i (go ™ + 1)
+ Iz + q@uill) (gij(ffl Pgr) + @l i — (1 - 2$)2Qin21/L)} : (A.46)
A.1.4 Diagram 6
For this diagram we will introduce the variable
. rT—2z\ _ Z
QZ( )P3——1- (A.47)
X X
Then the impact factors read :
(longitudinal NLO) x (longitudinal LO) :
(p6) 1 = —4xz? ]y, (A.48)
(longitudinal NLO) x (transverse LO) :
(¢6)7r = (1— 2$)p21/J_(¢6)LL ; (A.49)
(transverse NLO) x (longitudinal LO) :
(¢6)7p, = 27 [(1- 2$)pfjujo - Jﬁ] , (A.50)
(transverse NLO) x (transverse LO) :
66y = |(@ =)Dl Py — 95 oz - Prr) = Py s | Jo
+z [(w — )P gk — Pavikg? + pflugik} JiL (A.51)
We introduced
2k =2 =()2
. — > + xT
I ) o P ¢ ), (A.52)
S Pgp +22Q + 557507
and
9 o 2 2= 2
Jo=——3 - 702 x(f2 Z)——FZQ In —»2:1j l’/f 2 2772 |- (A.53)
(s +27Q?)  w2(pgH +2TQ?) z(x — 2) (P + 2TQ?) + 2274

A.2 Finite part of the v* — ¢gg impact factor

Here we present the convoluted impact factors from section 5.
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A.2.1 LL photon transition
4
L e 8 (py
@I(p17p27p3)q)i_ (p1’5p2/5p3): 52 ( ’Y) p2 P
o (xq(fﬂ/zq) + QQ) (Q2 q“ ;jl + j—j)
« Lg (x;d + 4z (zq + xg)) (TqPys — TgPg1) - (TqPg3r — TgPg1)
Tq (l’q + .179)2 (zg(liqug) + QQ) (Q2 p_ql_; + I;L;)

_ (4wqwq + 22 — 25d)(vgPes — TgPg2) - (TqPy3 — TgPy1) + (g q) (A.54)
=2 —2 =) . .
(zg +29) (xq + ) (%(’i“%) - Q2) (Q2 + AR i—;)
Now (g > @) stands for p, < pg, p§> “ pg), Tq &> Tg.
T, P, 0) + AT 4+ BT (A.55)

5 (51, 72) ©5 " (B, Por) = O (71, P2, 0) @
Here the first term in the r.h.s. is responsible for the emission of the gluon before crossing the shockwave
A describes the emission after the shockwave and B is the interference term. A and B are given by :

4
At — 8z (pF) " (25d + daq (vq + zg))
2q(Py — $40q)? (xq(l w0 T @ ( 5+ Q7 )
4 - Ty — — x
8 (p:yk) (ng - wﬁd + 4quli) (Pg — I_qu) ~(Py — I_Zpé)
- Tg = pq g2/
*)2( 1 )+Q)<$(12%)+Q

(Pg — iqu)Q(pg ~ 2P\ T 0z,

(A.56)

>+(q<—>q),

and

4

B _ 8 (r7)
=2
zy (g + x4) ( (1ﬂ,¢%) + QQ) <Q2 qy Tq Tq

Lq (4‘7311‘736 + $9(2 - xgd)) (ﬁ - Zg,ﬁtj) : (ﬁg - iz.ﬁql’)
X 7
Py — 72D ( +Q2)

(pg o w_gpq)z Zq(l zq)

Lq (ffzd +daq (zq + 2g)) (ﬁg - w_zﬁq) (g — i_zﬁql/) g )

(Fy — 252 (50 + Q2
q 41)

+ (11,2 2).

(A.57)

A.2.2 TL photon transition

M‘m

ﬁ

q)éil(ﬁlv ﬁ27 53) @I*(ﬁlv ﬁ27 ﬁ?)) =
(QQ ql
T

’U

Q

4
52 i Pl Ty
+ 22 <Q2+%+%+%>

2y ((P-5)G = (@ PP )<x9d+4wq—4> (G- P)

X
2 ﬁ 1/
ZC(TT?] (‘T‘j + ‘Tg) (Q2 xq)) Q2 + zq(lqzq))
(

((P- gy HL — () P )(xgd+4wqf2> ( L
_l’_

=2
Lqly 5 (xq +24) (qurzg) <Q +zq(1q2zq) ( 2+wq(2ﬁmq))
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+ HY (zg(rgd+d—2) + 74 (2

— dag)) zq

Here

139

Tg(Tq+ xg)2 (zg + xg) (Q2

2 + (¢ < q)-
+ zq(lqiq))

G = 95!#’23& xgpém, H} = xqusu zngvp Pi = ifqp;u

Similarly to the longitudinal to longitudinal photon transition, we write
D41, pa) 3 (P, Par) = ®Y(Ph, Pa, 0) @1 (P, P, 0) + AT + B

where A and B are now given by

AT =

daq (p;r)g

A2 A2 (44 14)° (xq+ 2,) (u(l T ) ( q

pq21/
zq(1—q) + Q2)
|2 (g + w9d — 2) (Al s (i - Rgg) = Dby (i - Rog) )
+ (225 — 1) (&qg AQg)pEpL (Azqzq + 24(2 — zgd))}
3

dxq (pv) (2176 - 1) (xﬁd + 4z, (qu + xg)) Pga1
A2

Aqg (:Cq + ‘rg)g (

L+ (¢ Q)
zq(1—xq) +Q)( Qqu)—’—Q)

pqz
and

Bt =4 (pt)’

AL, 1TqTg (22d 4 xgd — 224 + 224 — 4a a%q)
Adg (wg + xg)Q (zq + 24) <Q2 pql ;;q? = ) (Q + q(1q2/rq)>
(f Aqg)quL (xid + 4z, (g + J:g)) ( —2x5) + x4 ( — (Pg2 - A g ) (xgd +dxg —4)
2 pr122’ ﬁ 2 522 02’
Tg (:Cq + ‘Tg) Q m_q + o T4 (Q + zg(1— ) Q + zg(1—zq)
2 (o (R - Pa2) Ny — (- B i) ks 2)+ (K - By )l (1= 2q) (g (wgd - 2),4%))
_ 2 (0 4?22’ Py 2, _ P 41/
Tqry ($q + IL'g) (:Eq + IL'g Tq + Tg Q + zg(l—zg7) Q + zq(1—xq)
2y (P Bog) X1 = (X )2 )< d+ieg -2+ + (X - Ryg)pi 1 (1= 22,) (2 (wyd — 2) — da,27)
A 72 P2 ﬁ;z’ ﬁq21
st (o B o ) (0 ) o i)
N Lg ((X 'ﬁql)Aqu_ (Pg1 - & o) X1 ) (zgd + dzg — 4)— (X Ag )quL (224 — 1)(4( g~ Dxg— xﬁd)
x (ZEq + :Eg)s &gg (Q + 1;_1 + ZL; pg ) (QQ mq(ziq—lwq)) <Q + Zq(lquzq))
+(@< 9. (A.62)
Here we used the following variables
Xi = ‘T@p;L ‘Tgpziﬂi = Pi|P3 05 .
K = wqpg,1

1 7
‘]L - :I"quL

i _ i

TgPgar1L = G |py=0

i 7t
:L'gpql/L - Hl|p3—05

(A.63)

i
TgDg2l -

(A.61)

(A.58)

(A.59)

(A.60)
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A.2.3 TT photon transition

. (v?)”
Q)Z(ﬁlvﬁ%ﬁ?))q)i(ﬁl"52”53')*: o a - 7 2 2
(Q2+h+p"2 EL)< 2 4 01' p‘ﬁ' +_&)
Tq Tg Tq Tg
X gFagzg (deg +d — 2 4 2z4) QPEPZu (1—2z,) ((d —2)zy — 225 + Tgd + 2%)
_ ) _
(Tq + 2g)" (27 + 24) xg (xg + 4) (Q + 3 (Il)qlm )) Tqg+ Ty Tq+ Tg

Pa1 Tq+ Xy Tg+ x4

2 (g (P i) + Pivky. ) ((d )y~ 20q , (d—2)zy - 2xq)

2 (2 + ) (@2 + )

- ! . (ﬁ : ]3) [pf]up’éu (1—2xg)
T2 (0g + 24)° (2q + 74)° (Q + ) (@ + )

X (1 —2zg) (x4(2 — xgd) + dzqxg) + (gi (ﬁql “Pg) + pqupszfﬂ (24(2 = (d — 4)xy) + 4u42q)]

P P quIL (ﬁql '1762/)]31)}

Py (g (P - pqu)+quu)}

+ ((d = 4wy = 2) |2y (- ) (91 (P 5n) + PLpky ) + 2o 1Y ((
+ ((d = 4wy +2) 2o H' (PP Wk — B - B ) PL) + g (7 -
+ 20y ((H - ) PE = (P g HY ) w1 (1= 2) (g + g — 2)}

! ) {5 ((d — 4z, — da)

2

- =2
.I'qZCqZC‘g (ZCq + ‘rg)4 (Q2 + xq(zl)’;jqu)) (Q + 1qlxq)

% g (G B ) (P i) = (G Fp)(P - i) ) + (B - Br) (GLPE — G PY)

2(G 'ﬁql/) (Pipf;u + prf;u (1- 250(1)) -2(G- ﬁql) (prf;w_ + PipI;yL (1- 2%))}
) i i 2 ik (> =

+ (G- P) {Plgupqu *pqup;u (1—2z4)" + gf (P 'pql’)} (de +4zg (zg + xg))H

+(1+1,242,3<3,ick)+ (g Q). (A.64)

Once more we write

DL (i, po) @5 (P, Do) = DY (1, Pa, 0) @K (P, Por, 0) + A™ 4 B, (A.65)

Then

2
At ) - {ry (0~ 412, —2)
83,83, g+ 2p)" (o +20)* (i + @2) (i + @)
X {(ﬁql’ : 5qg) ((@72 : 5qg)gﬁC + Aégﬂ’gu) (Aqg Aqg) (( Pq1 - ﬁq?)gf erf;w_pgu)
+ Agglpf]yﬂﬁq? ‘ A 9) — AquAqu(pql/ pq2)} + (&qg : 5@)
X [(2% —1) (2zq — ]‘)pqlleqQL (4rqxg + 24(2 — 34d)) + 4z474g ((ﬁql/ 'ﬁqQ)gik +p211p§2¢)]
+ ((ﬁql’ Byg) ((@12 Rg0)g't + Agng}gQL) + Dby 1Dt (P2 - Bgg) — Alg L Aly s (P '1752))
xxg((d —4)zg +2) + 24 (225 — 1) (24d + 424 — 2)?3@. (Af{qL (Pq17 - &qg) - A];gJ_ (Pqr” - &ég))
2 (20 = 1) Py (40 + 240 = 2) (Dl (g2 Bag) = By, (B2 Bag)) }

2 L . 9 .
2x4 (p;r) ($527d +4dzq (zq + 959)) ((pqz 'pqz/)gf = (1 —2z4) Péup’éu + pzqzupquu)

N 4 q g2’
ZL'qug ($q +1'g) (zq(:i 2zq) + Q ) (mq(lzmq) + Q2>
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+(q < q), (A.66)

and

2(p¢ i

1 g2 ﬁqzz’
R (@+ v 2 ) (Q2 = mq>)
((d —2)zy —2z4) ik (= N i i
X (@ ix )3q . (gf(pqz/ “Agg) +p§2/LA5gL +p§2’LAqu (1- 2%))
q g

Tq (((d —4)zg — 274) (QT (Pa2r - Dgg) +pfj2’J_A](;gJ_) +p§2/J_Afng_ (zgd + 224) (1 — 2356))
(zq + xg)Q (z7 + zg)

+

- ! S g (A= 4),+2)

zqy (xq + 29)" (2q + 24)* (Q T zq))
% (i (2 Bag) XE = (X ) Ak, 1) (2 = 1) = (X - i) (95 i - Bag) + Pl 1 851 )
— X (P - Bag )l 1 — (Pt )i )] + A4y (1= 220) iy (P Bg) X5 = (X - o) AL )
g (1= 20g) (2gd + dzg = 2) Py (B - Byg) XL = (X ) Al ) = 24((d — D)y —2)
% (G - Bi) + Xpk ) G - Bag) + (K PPt = (i - Fao) X1 ) Al |
(X By )Piy oy (1= 220) (1= 29) (24 (v — 2) — da4aq)
- ()—(» 5qg) (91_ (Pq1 - Pa2r) erqu_qu/J_) (g(2 = (d—4)zy) + 4%%)}

1
Tq%q (Tq + xg)4 (Q2 + ﬁ)

X (plq%’J- <(ﬁ¢72 ’ &qg)vi - (‘7 ’ ﬁtﬂ)Ame) +pf7u ((‘7 'ﬁ@’)Agu - (17172’ ) Aqg)vff))

+VE (B2 - Bag)Phy s~ g2 P2 g ) + (B2 - B )VE = (V- Bl ) Dby

g (V) g2 - Bag) = (V - i) B - Bag) ) + oy (V- B ) Dy — Bz - Bog) V1)

+ (‘7 ) &qg) (pfmp’gu (1- 2%)2 - Qf(ﬁcﬁ ‘Pa) — p’éupfyu) (xﬁd —dag (vq — 1)) H
+(1+1,2+2i<k)+ (g Q). (A.67)

(g (24d + 4wg — 4) [(1 = 229)

Here we introduced
Vi = qu;L — ngZlL (A.68)

A.3 Integral I(R, F)

Here we will consider the integral (3.216)

i (BB
(R, E) ”/ / iy 5l (A.69)
: 71>}mzm T (i — By — By

where

— 2 222 — 2 22
. R2p - R*p=
an:{(a—p—ﬂ) >k }m{(a—p—ﬂ) > } (A.70)
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see Eq. (3.213). Introducing the variable y = QTE — 1, one gets
P~y
A
+oo - 25
d w  (2-7)
I(R,E) = —/ . = SR ; (A71)
o Yt 1lJaesyeiryna,. T (g, P_) @ p_)
Ij Zj
The change of the integration order plus integration w.r.t. y yields
_ Lo\ 2
aw  (B-2) i?
J(R,E):,/ di  \n 21n<1+ +2>. (A72)
Qe T (ﬁ,p_{') (g,ﬁ_) (py)
Next, introducing
U:max(&,&), (A.73)
Tl 1%
(A.74)

one can split the integration area into 2 parts
e, = {02 < (20)* 1N ey, Qne, = {@ % > (20)%).

an = anl U anQ;
= O (1) . Hence one can estimate this integral by putting this maximal

In the first domain (;ff)z < ((ji);
value into the logarithm and expanding it

1 dil
X <E) /anl ?u (G— %)2 (G— i%)2'

ﬂ oo\ 2
-
a  (B-%) i’
Tl ny (o a)
anl 77— ; 7 D3
(7-%) (1-%) ”
Although the integral in the rh.s. of this inequality contains In R, we neglect terms ~ O (2£) in the
Regge limit. In the second domain one can write
_ S o\ 2
j Pj
a  (B-F) @
— — ——n|1+— 3
Qney T (ﬁ, pa:) (ﬁ Pj) (p7)
o oo\ 2
Pj
da(#—;) ( *2) (N) (1)
< — 2 In{1+ =0(-], (A.76)
/sz T (u—v)t (p7)? (p7)? s
where the latter integral is easy to take. Finally,
InR
I(R,E) =0 (nT) . (A.77)

Therefore we neglect this contribution.



Appendix B

Computation details for part 2

B.1 Contributions of the various diagrams

For completeness, we present here the formulae for the contributions of the various diagrams of Fig.[4.22]

B.1.1 Chiral-even sector

Vector case

v _ o aw 2P, + k . 2D, + k— q A 1
ol =t [ppgk (2p, +pl<:)2 +ic (zp, +pk —q)? +ie U (—2pp — (x = &)p)? +ie
_ 8zsa 2L (eq1 - ppo)(efy Do) — s€(eqL €51 )] (B.1)
((zpp + k)2 +ie)((zpp + k — q)* +i€)((—2p, — (x — §)p)? + ie) .
_ 2[aésTa — (2 — 2) Tg]
 aaf?s22z (z — € +ie)
S . wy—d . by tk—g ) !
o el =t [ppgq (2p, *p(J)Q +ie *(zp, +pk —q)? +ie U ar (=2pp — (x = &)p)? +ie
_ 8zsa [ (g1 - ppi)(efy ~ppL) + séaleqr -cf))] (B.2)
((zpp — @) +i€)((2pp + k — @) +ie)((—2p, — (z — E)p)? + ie) .
 2[a2€sTu + (2 — 2) Tg]
 a?ag?s2zz (v — € +ie)
v o xp,—4 @+ &Op—k . 1
ol = [ppeq Cop— @ +ic ! (@+Ep—RP+ic 2 Gpy v (a— P +ie
_ 8sa [—é(sqL “Pp1) (€51 ~PpL) — 8E(gqL - EZL)} (B.3)
((zpp — @) +ie)(((z + Ep — k)? +i€e)((Zpp + (z — E)p)* + i€) '
_ —4 [a§sTA + ZTB]
T a2aés?2z (v + € —ie) (v — € +ie)
v B N T e k(=P 1
ol = [ppeq Grr— a2 i) PR )2 e (2pp — 4 — (z + §)p)* +ie
_ 8s[—Z(eqL Ppr) (€1 ~PpL) — sE ac, (eqr - 1)) (B.4)

((zpp — @) +i€)((k + (z — E)p)? +i€)((zpp — ¢ — (z + &)p)* + ie)

4 [aagsTa + ZTB]
a2€s2z (x — € +ie) [(x + €+ ie) — 2 (2aé + a(x + € +ie))]’
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—zp, — k 1

*

Zﬁp_q
— & ;
Zpp — k)% +ie " (zp, —q— (z+&)p)? +ie

2pp — q)% + e

t?“g [AS] = trp [ﬁpéq( 7“15'7# (7

8s [% (gt " Ppr) (€fy ~Pp1) +sEa(eqr - €f) B
R (o SRS (A R P u SR re &
2 [—a26sTa + (1 —22) (1 — az) T
02825222 [(x + € +i€) — 2 (2a€ + a(x + € + i€))]’

tri [Bo]
i+ (@+&p—k Qt@+Op o 1
(g+ (@ +Ep—k)2+ie © (g4 (x+&p)2+ie *7 H(=zp, — (x — )p)? +ie
— 482 (:E - €)d(5qL i EZJ_) (B 6)
(q+ (x+8&p — k)2 +ie)((qg+ (x +&)p)? +ie)((—2p, — (v — &)p)? + ie) '
B 4T,
azs(z+E&+ie) (z— & +ie)’

=trp |PpY" éx

f?‘l‘; [B3]

i+@+Op—k . @+OQp-k . 1
g+ (x+8&p—k)2+ie " ((x+&p— k)2 +ie

=trp |Dpy" (

)
4s?aa(z — &) (eq1 - €5 ) (B.7)
: .

((g+ (@ +&p — k> +ie)(((x + &p — k)* +ie)((=zp, — (x — §)p)* + i€
B AT,
azs(z+ & —ie) (z — € +ie)’

tTl‘g [B4]
Qt@t&p o @btk 1
g+ (x+Ep)® +ie ©F((x—Op+ k)2 +ic " (zp, +k+ (v —Ep)? +ie
8s%¢a(eql €5 )
((g + (z +&p)* +ie)(((x — E)p + k)2 +ie)((Zpp + k + (x — §)p)? + ie)
_ 8T
(x — & +ie) (x +E+ie)s[(x + & +ie) — 2 (2a€ + a(z + & +ie))]’

=trp ﬁp'y“(

(B.8)

f?“[/) [B5]
G+ (x+&)p : —zp, — k o 1

g+ @+ Op2tic UM (Tap, — k)2 tic F (Gpp+ k+ (z— E)p)® + ie

_ 85 [2 (41 - Pp1) (ke Por) + 5€0p (eq1 - 1)) (B.9)
(g + (z +&p)? +ie)((—2pp — k)2 +ie)((Zpp + k + (x — §)p)? +ie) | '

_ 4[aagsTy + 2TB)
a2z (x4 € +ie) [(x+ €+ ie) — 2 (206 + a(x + € +ie))]

= tTD ﬁp/y'u(

Axial case

Ctrp |pei—Pe k. APt R—d
PR (zpp + k)2 +ie T (zp, + Kk — ) + e

VDY Y 7 ! —
(—zpp — (x — §)p)? + i€
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= 8iZ [(1 — 20)(gq1 ~ppo) ™ot kL 4 (e} PoL) PP s ]
((zpp + k)% +i€)((2pp + k — ) +ie)((=2p, — (z = E)p)* + i)

_ 2i[Ta, — (a—a) Tg,]

aa2é?s3zz (v — € +ie)’

(B.10)

=1rp |Ppéq o4 —E) byt kg R : .
(2pp — q)% +i€ " (2pp+k —q)? + (=2pp — (z — §)p)* + i€
8iz [(EqL S PpL) PPt €rL _ 2= CY( L) €P oL aqq
" ((epp — 02 + i) ((zpp + k — )2 + i€) ((—2p, — (@ — E)p)? + ic)
= jigfggsfz);’l +§aﬁ€]) (B.11)

tri [As]

i | g0 @+ p—k .o 1
Tpp—a)® +ic! (@+&p—k2+ic " Gp, ¥ (v — Op)? +ie

8i [(—2,2 + O%p) (gL - PpL) €PTPoL s — alp (€51 " PpL) PPl Eat
((zpp — @)% +ie)(((x + E)p — k) +i€)((2p, + (z = E)p)? + ie)
_ 4i[Ta, — (1 — 2a2) T, ]
Ca2a2¢s3z22 (v — & +ie) (x4 & —de)’

(B.12)

tra [A4]

k+(z—&p . 1
@0+ i " oy —a— @ T PP T e
8i [(1—22) (41 - ppi) @™ Petit + (ef - ppui) P Por ot
((zpp — @) +i€)((k + (z = &)p)* + i€)((2pp — ¢ — (x +{)p)* + ie)
4i[Ta, + (1 —22) T, ]
a2€s3z (x — € +ie) [(x + €+ ie) — 2 (2aé + a(x + € +ie))]’

Hpyoe

— trp | poé 2 —
D PQ( )+Z€

(B.13)

trp [As]
A A 2Pp —q .5 —zpp — k * 1
—¢ I R
" [ppgq (2pp — q)2 + i€ “Zp, — k)P +ic F(zp, —q— (x + P tic

81 {% (€L " pp1) €PT Pt Sk 4 W(%L PpL) €PTPrL 8“}

((zpp — @)% +i€)((=2pp — k) + i€)((2pp — ¢ — (z + §)p)? + ie)

2i[(2—a—2az)Ta, — a(l —2az)Tg,]
a?a?s3 2z [(x + €+ ie) — 2 (2af + a(z + € +ie))]

(B.14)

(j+($+§)ﬁ,k o G+ (z+6p . .
(q+ (x+&p—k)* +ie k (q+ (z +&)p)? + ic aPY Tu

trid [By] = trp lﬁp ~#

1

—(z—&p)? +i€]
4 £_£ [(eqL " ppL) PP i — (efL ppL) TP fo ]
((g+ (z +&p — k)* +ie)((q + (x + §)p)* +ie)(—2p, — (x — &)p)* + ie)
- 4i [T, — Tg,]
 aa2és3z (x — & +ie) (x + & +ie)’

(B.15)
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G+@+Qp—k . (@+p—k
(g+ (x+&p — k)2 +ie * ((x +&)p— k)2 +ie

trp [Bs] = trp [ﬁp v EnD°
1
(=2pp — (x = Ep)* + ie]
44 wT—f [(eqL - ppr) ePmPos et — (g5, -ppL) P PoL cat ]
((g+ (x+p = k) +ie) (((z + &p — k)? +ie)((—2pp — (x — §)p)? + i€)
- —4i[Ta, — Tg,)
a3z (v — € +ie) (x + € — ie)’

X

(B.16)

(@—&p+k
x—&p+k)?+ie "

g+ (@+&p
(q+ (x+&)p)? +ie

try [Ba] = trp | ppy” €070 &x (

1
x (Zpp+Ek+ (z—&p)? + ie]

% [(EqL “PpL) €T Po Shi— (kL "PpL) P PeE 8“]

(g + (@ +8p)? +ie)((x — §p + k)? +ie)((2pp + k + (x — §)p)* + i€)
8i [Ta; — ')

- aas’ (x — & +ie) (z + & +ie) [(x + €+ ie) — 2 (2af + a(x + & +ie))]’ (B.17)

—zp, — k
—Zp, — k)% +ie

g+ (x+8&p
(q+ (z+&)p)? +ie

A%

€k

tTé [BS] =trp |?p7ﬂ éqﬁ'}/g)'yu(

1
- (zpp +k+(z—&p)* + ie:|
_§ [(22 —1) (e} -ppL) PPl eal — (g -p,y )€l PrL eh]
a ((q+ @+ Op)2 +ie)(—zp, — k)2 +ie)(zpy + k + (x — E)p)? + ic)
_ 4i[(1 - 22) T, — T
T als3z(r+E+ie) (x4 E4ie) — 2 (208 + a(x + € +ie))]

(B.18)

B.1.2 cChiral-odd sector

trgo [A3] j

o=, @HOp—k .. 1
(pp— a2 +ie| (@+Qp— kP +ie 77 W G, @ = p)? + e
16 (0 k)i, (e 2p) (a-€5) = (a-y) (g 2})) — € 5050 er Vi,

(((z +&p — k)2 +1ie) ((2pp — @) +i€)? ((Zp, + (z — §)p)? + i€)?

Thlj
20208382z (x — £ +i€) (v + & — ie)

N
Ppépeq

=trp

(B.19)

f?‘go [A4]j

k+(z—&p 1

=trp K+ (x—E)p)®+ic " (zpp—a— (@ + Ep)? + ie

ok oa Zﬁp -
ppspsq(

My L
w0 e U

16 [(p k) ety ((eq-pp) (0-€5) = (q-pp) (g - €3)) — ePr=r 2% e’””’”zgm}
((k+ (z = Ep)? +ie)? ((zpp — 9)* +ie)? (((x + E)p — 2pp + q)? +ie)?

(B.20)

_ Tayj
202883z (x — E+ie) [(x + €+ ie) — 2 (206 + @ (x + € +i€))]
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trgo [BS]_j =

Qt@+p .. ~2pp—k . 1

(g+ @+ p)2 tie P Tap, k)P e " Gpp+ k+ (- E)p)? T ie

_ o A5t ((po - 5) (g5 - k) — sE (e - €3)) — € =rPeco eacarvy, (B.21)
((=2p, — k)2 +i€) ((2pp — ¢ — (x = E)p)? +i€)((q + (x + &)p)? + i€) '

_ Tp1j

2837 (x4 € +de) [(x + € +ie) — 2 (2af + a(z + & +ie))]

trp |Dpé, "

B.2 Integration over > and z

B.2.1 Building block integrals for the numerical integration over x

Here, we list the building block integrals which are involved in the numerical evaluation of the scattering
amplitudes. Consider a generic GPD f. We define

1 1
/ (—&+x+ ie)(2§ + a(—=&+x +ie))

f(,§) dx, (B.22)

1

W = [ e @ o (B.23)
1 Et+atie

Llf] = [ o g( ;f:jl»gf(w,@dx, (B.24)
1 Eta+tie

Llf) = [ N s+< - ;f;’jze>>2f(z,s>dx, (B.25)
. 1

L[f] = [1 mf(%f)diﬂ, (B.26)
1

1

It[f] = [1 mf(%f)diﬂ, (B.27)
1

n = [ st (8.28

n = | e g de. (8.29
. 1

Lif] = /_1 2§+&(f§+x+ie)f($’€)dx’ (B.30)
! 1

Ll = [1 (=& +x +ie)(§ + = + ie) (2§+54(—§+z+ie))f($’€)dx’ (B.31)
1

1

i) = /,1 Erorio (X ralgraria) @ (B.32)

1
1
Ll = /4 (€ + x + i€) (2§+5¢(—§+z+ie))2f(x’£) de. (B-33)

Each of these integrals are finite and are evaluated numerically, using our models for the various involved
GPDs. After computing this set of integrals, the evaluation of the scattering amplitude is straightforward
using the decomposition given in the two next subsections. Below, we will not indicate the function f,
since it is obvious from the context.
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B.2.2 Chiral-odd case

For the chiral-odd case, diagrams A3 and A4 contribute to the structure 7% | while diagrams B; and Bj
contribute to the structure T | . Thus, writing

trpC[As]" + trfP[Aq) =TSO T, (B.34)
and
tr0 (B + tr§°(Bs]) = TEO T, (B.35)
we get
T90%(x) = — 31— 2)
A T P [0%(E v i) (a(Etatiot (1 2)2E+ (1) (& tartio)
3
704072«5(«5 —x—ie)(§+x —ie) (B.36)
and
co _ 1 3
Ts70lz) = 3 [ (1 - a)é(E — o —ie)(€ +a +ie)
3z
et Errri0 (- D@1 a)(Erztio) (B-37)

The integral with respect to z is trivially performed in the case of a DA expanded in the basis of Gegen-
bauer polynomials. We restrict ourselves to the case of an asymptotic DA ¢(z) = 6zz for which one
gets

! 1 3
CcO _
/0 Ta~é(z)dz = 53 {_ a@?E(E —x —ie)(E+x — ie) (B.38)
. 3 .\ 3in (SE)
a2{(§ —x —ie)(2§ + (1 — ) (=€ +x +ie))  af(26 + (1 — a) (=€ + @ +ie))?
and
1Tco ds — 1 3 (B.39)
/0 5 9) 'Z5_3[(1—a)g(g—x—ie)(g+x+ie) '
3 L 5 (st
EE+a+i0)26+ (1 —a)(—E+x +ie) | €26+ (1 — a)(—€ + z + ic))?

Let us note that the last term in the previous expressions and might seem to have a double
pole when z = —1£2¢ — je. However the logarithm cancels under such conditions, so this pole is actually
a simple pole.

Writing the integrals with respect to x of the product of and with the GPD H7 (z€) in
terms of building block integrals, we have the dimensionless coefficients

3 3

1 1
qa — 3 co - _ — —
NI, = /_1/0 T§O6(:) ds Hr(o, ) do = =l + ~clact 51— 1) (B.40)
and
Lot 3 3 3
Nip= 53/ / TEO¢(z) dz Hy(x, &) de = —S1 + S1g + ——— (I — I). (B.41)
-1Jo 13 § 2a8

B.2.3 Chiral-even case

For the chiral-even case, we only present the result in terms of building block integrals after integration
over z and integration over  when multiplied by GPDs.
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Vector part

From the symmetry of ¢(z), the integration over z of the product of diagrams A; and A, with ¢(z) leads
to vanishing Tz parts (their 75 components are antisymmetric) and to identical 7’4 parts.
We decompose the trace involved in a diagram diag as

trp[diag) = T [diag]) Ta + T} [diag) T, (B.42)
and we denote the dimensionless coefficients
1 1
Ni[diag] = s / / TX [diag) §(2) dz H(z,¢) dx, (B.43)
-1Jo
1 1
Ni[diag) = s / / TY [diag] ¢(2) dz H (z,€) dz . (B.44)
-1Jo
For further use, we define the coefficient obtained when summing over the set of diagrams Ay and By,
Ni = Z N |diag] (B.45)
diag
and
N =" Ni[diag]. (B.46)
diag
We get for diagrams Ay
2
NilA1] = Ni[As] = d_«,f]e ) (B.47)
2
Ni[As] = ——(I.—1I B.
45
Ni[A] = = (L —ald) (B.49)
2
Ni[As] = fglh (B.50)
and
1
NE[As] = “ofac (I. — I,), (B.51)
2 4 8 4
q - o . —
NZ[A4] = anIa aglb ~ 1.+ dgld, (B.52)
8 16, 4(1+a)
q — _ - [ S
Ni[4s5] = T v (B.53)

For diagrams Bj, we obtain for the Ty part

20
NYB = —— (. -1 B.
A[ 1] O_éé-( e f)a ( 54)
1
NYB = —(I. -1 B.
1B @5( e—1I5), (B.55)
1
N4[Bs] = @—g(le —1,), (B.56)
Ni&[Bs = 4 +2ad, —2al.), (B.57)
Ng‘ [35] = 464([d - Il) R (B.58)
and for the non-vanishing 75 part
1
N%[Bl] = 0760662 (Ie 7If)7 (B59)
4 4
N%[Bg)] = - 6 I + 8y — -1 — §I + —1;. (B.60)

ol £ a‘  aat
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Axial part

We decompose the trace involved in a diagram diag as

tré [diag] = Tfs [diag]) Ta, + T§5 [diag) T, ,

and we denote the dimensionless coefficients

Ng5[diag] =g /_1/0 TfS[diag] #(z)dz H(z, &) dx

N%s [diag] = s* [1 /0 T§5 [diag) #(z) dz H(x, &) dx .

(B.61)

(B.62)

(B.63)

Similarly to the vector case, we define the coefficient obtained when summing over the set of diagrams

A and By,

Ng,s = Z ]\7;115 [diag]

and

diag

N]‘_Z;S = Z N;:Z%5 [diag] .

diag

We get for diagrams Ay

N 4] = -l

R

N ] = (=1,

N4 = gl aly),

NZS[AE)] = *%Id CY;ZQ h (;21—2211'
and

g = 22

R

N ] = —ome—1,).

N [Ad) = *j—sz*%fc 41'(;7;;04)]617

N9, [As] —f;—é[d 0352 h-@%g.
For diagrams Bj we obtain for the 74, part

NLIB] = (-1,

Ni[B] = ——(— 1)),

Ni,[Bs] = aele = 1o),

A

N§.[Bs] = fj—zlb - %Ic + ilzjd + %Idv

(B.64)

(B.65)

(B.66)

(B.67)

(B.68)

(B.69)

(B.70)

(B.71)

(B.72)

(B.73)

(B.74)

(B.75)

(B.76)

(B.77)

(B.78)

(B.79)

(B.80)
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and for the Tz, part

NE1Bi] = @z—zz(le—lf), (B.81)
N [Bs] = *#;g(]efff), (B.82)
N, [Bs] = #@(Ieflg), (B.83)
N{ [Bs = N [Bd, (B.84)
N} [Bs] = —i—é([d—ll). (B.85)

B.3 Some details on kinematics

In this section we give further useful expressions for kinematics.

B.3.1 Exact kinematics
Combining Egs. and one gets

26 M2 4€2 M2
M2 —t=29 1— = 2¢s. B.
=i (1 ) o = (5-80)
From Eq. (4.67), one gets
SN — M?
= . (B.87)
so that we finally obtain
M2, —t 2¢
=_—° = B.88
T Sn 3P T4E (B.88)
and thus
(=5 (B.89)

B.3.2 Exact kinematics for A, =0

In the case A | = 0, we now provide the exact formulas in order to get the set of parameters s, &, o, @), D2, (—t)min

1 /
as functions of M,,, Syn, —u'.

In the limit A, = 0, Eq. (4.69) reads, using Eq. (B-87),

g2 - 2% (12
M7p1+§<1 1_€M> (B.90)

with M? = M?/(S,x — M?) and M2, = M2, /(S,n — M?). Thus, ¢ is solution of the quadratic equation
G (M2, —2—4M?) +26 — M, =0 (B.91)

the solution to be kept being

—14\/1+ M2,(M2,—2—4M?)
ey

_ _ (B.92)
M,%p —2—4M?2
The value of (—¢)min is obtained by setting A, =0in Eq. (4.68), i.e.
4€2 )2
(*t)min = 5 (B93)

e
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Combined with Egs. (B.89) and one easily see that (—t)u;y is obtained from the solution of
T?(1+ M?) +T@2M? M2, + M2, — 1)+ M? M3, =0 (B.94)

with T = (—t)min/(Syn — M?), the solution to be kept being

1— M2 (1+2M?) — /1 + M2 (M2, —2—4M?)
i \/ v (Syn — M?). (B.95)

(*t)min =

From Eq. (4.71) we have
Pt =—m +a,(m) —u) (B.96)

so that using Eq. which now reads

-2 =2 2
b Pi T,

26 = + = r (B.97)
S SOép
we obtain
’ 1— /
peo Q¥ 1= 0 W mp (B.98)
(6] as S S
Eq. (4.66) reads
B 26 M?
apfl—afis(l_g). (B.99)
so that
1 12 2€M2 / 2
_ Yo 28M7 _ B.1
o 255( W s ) (B.100)

Thus, computing & through Eq. (B.92) and then s through Eq. (B.87), Eq. (B.10Q) allows to compute the
value of . The value of a,, is then obtained using Eq. (B.99). Finally, 57 is computed using Eq. (B:96).

B.3.3 Approximated kinematics in the Bjorken limit

In this limit, A, and S,y are parametrically large, and s is of the order of S, . Neglecting A?, m2, t
and M? in front of s, (except in the definition of 7 where we keep as usual M? in the denominator of
Eq. (B.88)), we thus have

Py
M2, ~ 26s~ L, (B.101)
ax
a, = l-—a=a, (B.102)
T MV2P
_ ~ B.103
§ = g TR (B.103)
—t' ~ aM?, , —u~aMj, (B.104)
The skewedness ¢ thus reads
M2
— e (B.105)
$= 95y amro M2,
and the parameter s is given, using Eq. (B.87), by
M2
s=8,y—M*——L (B.106)

2
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B.4 Phase space integration

B.4.1 Phase space evolution

/ /
—UuU —U
1.2
fffffffffffffffffffffffffffffffffffffff R
1.0 frmmmmm o —
1.2
0.8} 1.0f
0.6f 0.8 Lo
0.6
0.af
0.4 05
0.2¢ 0.2
0.0 ‘ ‘ ‘ ‘ ‘ 0.0 0.0 ‘ ‘ ‘ ‘ ‘
00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05
/ / /
—U —U —U

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

—t —t —t

Figure B.1: Evolution of the phase space for M,, = 2.2 GeV? (up left), M,fp = 2.5 GeV? (up center),
M,, =3 GeV? (up right), M., =5 GeV? (down left), M,, =8 GeV? (down center), M,, =9 GeV?
(down right).

The phase space integration in the (—t¢, —u’) plane should take care of several cuts. This phase space
evolves with increasing M7, from a triangle to a trapezoid, as shown in Fig. These two cases and the
corresponding parameters are displayed in Figs. and

—U
(=t )maxMax 1.4 77T
—u' 1.2
(=t )min 1.0~
0.8F
0.6
0.4f
0.2f
0.0 : : : : :
0.0 0.1 0.2 0.3 0.4 0.5

—t
(=B)in (=Dmin (=) (=t)max

Figure B.2: Triangle-like phase space, illustrated for the case of M., = 2.5 GeV?,

Let us discuss these various cuts with some details. First, since we rely on factorization at large angle,
we enforce the two constraints —u' > (—u/)min, and —t' > (=t )min, and take (—u')min = (=t )min =
1 GeV?. The first constraint is the red line in Figs. [B.2 and [B.3] while the second, using the relation

2 / I 2 3 3
M2, + 1 +u' =t +msg, is given by
—u'(—t) = —t —m} + M2, — (=t )min , (B.107)

and shown as a blue line.
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The variable (—t) varies from (—t)min, determined by kinematics, up to a maximal value (—t)max
which we fix to be (—t)max = 0.5 GeV?, these two boundaries being shown in green in Fig.

The value of (—t)min is given by Eq. (B:95). In the domain of M2, for which the phase-space is a
triangle, as illustrated in Fig. the minimal value of —¢ is actually above (—t),,i,. For a given value of
M?, , this minimal value of —t is given, using Eq. (B.107), by

(*t)inf = m?) - Mr%p + (*t/)min + (*U/)min 5 (B108)

with (=) min < (—t)int -
This constraint on —t leads to a minimal value of M2

2, denoted as M. 2
which thus reads

~ypcrit when (_t)inf = (_t)max 5

Mgpcrit = (*u/)min + (*t/)min + mi - (*t)max . (B109)

With our chosen values of (—t/)min, (—t')min and (—t')max We have Mj perit =~ 2.10 GeV?, below which

the phase-space is empty. We note that this value, independent of S, x, ensures that the s—channel

Mandelstam variable M2, > M? »erit 1S indeed large enough as i'f should be for large angle scattering.

For the purpose of integration, we define, for —(u/) i, < —u',
(—t)min(—v') = m> — M2, + (=t )mmin — ' (B.110)
We denote the maximal value of —u" as (—u’)maxmax , attained when —t = (—t)max , and given by
(=t ) maxMax = (—)max — mj + M2, — (=t )min , (B.111)

see Fig.
The phase-space becomes a trapezoid when (—t)inf = (—t)min , i.e. according to Eq. (B.108) when

2 2
M'YP = _(_t)min ( 2"‘/)min ( u/)min mp . (Bllz)
Combined with Eq (B.94) ) this leads to

o1 —m2(1 4 M?
Mgptrans = (S’YN - M2)m2# ) (B.113)

where

—u min T -t/ min T m2
m? = (=) 3 N(_ ]\)42 L. (B.114)
Y

With our choice of parameters, we get M? . ~ 2.58 GeV? in the case of S,y = 20 GeV?.

p tran

(_u/)maxMax

(—’LL/ ) maxMin

(_ul)min 1.0 ?777

0.5f

0.07 L L L L I L L L L I L L L L I L L L L I L L L L Il L L
0.0 0.1 0.2 0.3 0.4 0.5 _¢

(_t)min (_t)max

Figure B.3: Trapezoid-like phase space, illustrated for the case M,fp =4 GeV? and S, = 20 GeV?.



B.5. Angular cut over the outgoing photon 155

Above this value, the phase-space is a trapezoid, illustrated in Fig.[B.3] This trapezoid reduces to an
empty domain when (—t)min = (—t)max - From the solution of Eq. (B.94), this occurs for

—(1+ 2M2) (= Dmax + V(=D ma(—Dmax + 4M?)

M? B
2M?2 ’

vp Max

= (S,n — M?) (B.115)

with M2 = M?/(S,n — M?) and (—)max = (—t)max/(Syn — M?). With our choice of parameters, we

get M2 \p., =~ 9.47 GeV? in the case of S, = 20 GeV?. This value decreases with decreasing values of
SyN -

The minimal value of S,y is obtained from the constraint Msp it = M2 o Max and equals S, nerie =
5.87 GeV?.

Finally, let us briefly discuss the invariant mass MPQN,, which should be restricted to be far above any
possible resonance. Using Eq. (4.72), for a given value of S,n, a careful study of the allowed phase

2 s r_ / 2 _ 2 A = .
space shows that M on 1S minimal when —u’ = (—/)maxmax and M5, = M3 \ax and for A, and p; anti

collinear, with |5t| being the value corresponding to —t = (—t)max - This minimal value increases with
Sy . Its minimal value is thus obtained when S, x = Synrit, this value being MPQN,Min ~ 3.4 GeV? which
is far above the resonance region.

B.4.2 Method for the phase space integration
Using the above described phase-space, the integrated cross section reads

do
i,

[ e [T aen e
X d(—u / d(—t) F(t ‘
( , (*t)min(*u/) dM,%pd(—U/)d(—f) (_t)xnin

—u )min

+ e(M'gptrans < Mv2p < MspMax)

{/(_u/)maxl\/lin ( /) (=t)max ( ) ()2 do
X d(—u / d(—t) F(t ‘
(=i (~umin AME d(—u)d(=t) [ ..,

T ey [T aype?
+ / d(—u / d(—t) F(t ’ .
(_u/)maxMin (_t)min(_u/) dM’%pd(ilu/)d(it) (7t)min

Using our explicit dipole ansatz for F'(t), see Eq. (4.149), we obtain

= o(Mjpcm < Mjp < Mﬁptrans) (B.116)

do c* 9 5 5
dM’%p - ? |:9(M'ypcrit < M’yp < M’yptrans) (B117)

(W )mexttax 1 1 do
/<> A=) [((—wmax 0P (D) c>3] N2, d(—a)d{ )
+ (M2

yptrans

‘(_t)min
V2 M2
< vp < wMax)

1 1 (_u/)maxl\/ﬁn , do.
x o) 03/ A=) Bz a—aya
((=t)max — O) ((=t)min — C) (=) min p (—u)d(—t) (—t)min

(W) maxmte 1 1 do
+/ d(=) cyE N_CV | dMZ d(—u')d ’
(=u)maxMin ((7t)max - ) ((7t)min(7u ) - ) P (7’[1, ) (7t) (=) min

which is our building formula for the numerical evaluation of integrated cross sections.

B.5 Angular cut over the outgoing photon

In order to take into account limitations of detection of the produced photon, it is necessary to know the
photon scattering angle in the rest frame of the nucleon target. The incoming nucleon momentum pj in
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1 doeven 1 doeyen
Ocven  df Oeven A
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Figure B.4: Angular distribution in the chiral-even case. Up, left: S,nx = 10 GeV?, for Mgp = 3 GeV?
(solid blue) and M2, = 4 GeV? (dotted red). Up, right: S,x = 15 GeV?, for M2, = 3 GeV? (solid
blue), M2, = 4 GeV? (dotted red) and M2, =5 GeV? (dashed green). Down: S,n = 20 GeV?, for
M2, =3 GeV? (solid blue), M2, =4 GeV? (dotted red) and M2,=5 GeV? (dashed green).

Eq. and the one in its rest frame py, , = (M,0,0,0) are related by the longitudinal boost along =
axis characterized by the rapidity ¢ such that, in the Bjorken limit,

1] M A9
cosh( = 3 NI + i . (B.118)

The incoming photon flies almost towards the —z axis, in the light-cone and in the rest frame, so that the
scattering angle # of the produced photon in the nucleon rest frame with respect to this direction satisfies

2Ms(1+€) || 5 — 5 |

= . (B.119)
—a(1 +&)2s2 + (P; — %)zMz

tanf = —

Using the relation o = M?,/(—u’), see Eq. (B.104), one gets from this expression tan 6 as a function of
—u/, which we formally write

tan@ = f(—u’). (B.120)

From this relation, # being positive, one should take

for tanf >0, 6
for tanf <0, 60

arctan(tan6), (B.121)
7 + arctan(tan 6) , (B.122)

where tan 6 is given by Eq. (B.I19).
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Figure B.5: Angular distribution in the chiral-odd case. Up, left: S,n = 10 GeV?, for M2, = 3 GeV?
(solid blue) and M?, = 4 GeV? (dotted red). Up, right: S,y = 15 GeV?, for M2, = 3.5 GeV? (solid
blue), M2, = 5 GeV? (dotted red) and M?, = 6.5 GeV” (dashed green). Down: S,y = 20 GeV?, for
M2, =4 GeV? (solid blue), M2, =6 GeV? (dotted red) and M2, =8 GeV? (dashed green).

For simplicity, we now perform our analysis in the case A; = 0, and thus write

2Ms(14 &) py

fanf = —
T T e o+ M

(B.123)

where Dt :”ﬁt || .
Using the formulas given in Sec. one can compute « as a function of 4. One gets

(1+«£+%)7~'tan29+a(1+\/1+tan29)
for tand > 0, - : B.124
or tan “ (1+ &+ 7)2tan 0 + 2a ( )
(1+§+7~')%tan29+a(1f\/1+tan29)

or tand < 0 _ B.125
or tant) <0, « (1+ &+ 7)2tan 0 + 2a , ( )

where
4 M2
a = —22, (B.126)
S
2¢ M?2 M?
F o= § o L (B.127)
1+¢ s s

thus providing —u’ as a function of 6 using —u’ = 04M72 »» see Eq. (B.104).
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The angular distribution of the produced photon can easily be obtained from the differential cross-
section by using the relation

o fi(=u)
dw) " Tt ) (5128
so that we get
ldo 1 do d(—u) 1 do 1+ f*(=u[0]) (B.129)

odd  od(—w) db od(—u) f'(—u[6))

The obtained angular distribution is shown in Fig. for the chiral-even case, and in Fig. for the
chiral-odd case. In the chiral-even case, the obtained angular distribution is an increasing function of 6,
while in the chiral-odd case, it decreases with increasing 6. In both cases, the distributions are dominated
by moderate values of 6.

dOeven —2 dOeven _2
—— (nb - GeV™?) ———— (nb-GeV™?)
anz, Mz,
0.25 /\\
\ 0.30¢[
0.20 / 0.25
0.15¢| / 0.20¢
/ 0.15¢
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/ 0.10 ¢
0.05¢v  / ——— 0.05] -
0.00 ‘ : R 0.00 ‘ ‘ et S
2.0 2.5 3.0 3.5 4.0 2 3 4 5 6 7
o 2 12 2
M2, (GeV?) M2, (GeV?)
dOeven —2
az, (nb - GeV™7)

9
e 2
M2, (GeV?)

Figure B.6: The differential cross section %%. Solid red: no angular cut. Other curves show the

effect of an upper angular cut 6 for the out-goi;{g ~: 35° (dashed blue), 30° (dotted green), 25° (dashed-
dotted brown), 20° (long-dashed magenta), 15° (short-dashed purple) and 10° (dotted black). Up, left:
Sy =10 GeV?2. Up, right: S,n =15 GeV2. Down: Syn =20 GeV?2.

In practice, at JLab, in Hall B, the outgoing photon could be detected with an angle between 5° and
35° from the incoming beam.

The effect of an upper angular cut can be seen in Fig. for the chiral-even case, and in Fig. for
the chiral-odd case. As seen from Figs. and [B.5] it mainly affects the low S, x domain. In particular,
the effect of the JLab 35° upper cut remains negligible as shown in Figs. and both for the chiral-
even and chiral-odd cases.

One should note that using cuts on 6, it is possible to reduce dramatically the contribution of the
chiral-even contribution, in particular in the region of S,y around 20 GeV?, while moderately reducing
the chiral-odd contribution. Putting additional cuts on M,fp, like M,fp > 6 GeV?, allows to increase the
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Figure B.7: The differential cross section ‘;‘I’;ﬁd. Solid red: no angular cut. Other curves show the
effect of an upper angular cut 6 for the out-going ~: 35° (dashed blue), 30° (dotted green), 25° (dashed-
dotted brown), 20° (long-dashed magenta), 15° (short-dashed purple) and 10° (dotted black). Up, left:

S.,n = 10 GeV?. Up, right: S,n = 15 GeV>. Down: S,n = 20 GeV?.

ratio odd versus even from ~ 1/900 to ~ 1/40, keeping about 3% of the chiral-odd contribution, for
typically S, between 18 GeV? and the maximal value 21.5 GeV?. This in principle would lead, dealing
with observables sensitive to the interference between the chiral-odd and the chiral-even contributions,
to a relative signal of the order of 15%.
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Titre : Etude perturbative de différents processus exclusifs en QCD aux énergies hautes et modérées

Mots clés : Processus exclusifs, Chromodynamique quantique perturbative, kt-factorisation, B-JIMWLK, Factorisation
colinéaire, Jets vers I’avant

Résumé : Aux énergies assez hautes, les processus de Chromodynamique Quantique (QCD) peuvent étre factorisés en
une partie dite dure, calculable via la méthode perturbative des diagrammes de Feynman gréace a la petitesse de la
constante de couplage, et une partie non-perturbative qui doit étre obtenue expérimentalement, modelée ou calculée a
partir d’autres méthodes comme par exemple la QCD sur réseau. Cependant, la petitesse de la constante de couplage de
QCD dans la partie perturbative peut étre compensée par de grands logarithmes

émergeant de la compensation de divergences molles ou colinéaires, ou de la présence de plusieurs échelles
cinématiques. De telles contributions logarithmiquement compensées doivent étre resommeées, afin d’obtenir I’équation
d’évolution DGLAP aux énergies modérées et I’équation BFKL ou B-JIMWLK dans la limite des trés hautes énergies.
Aux énergies les plus hautes, des effets de recombinaison gluonique meénent a la saturation, qui peut étre décrite avec le
formalisme des ondes de choc de QCD, ou CGC. Dans cette these, I’étude de certains processus exclusifs décrits via la
QCD nperturbative est proposée, afin d’améliorer la compréhension de la factorisation en QCD, et des effets de
resommation et de saturation.

Dans la premiére partie de ce manuscrit, le premier calcul d’une quantité exclusive au premier ordre sous-dominant
(NLO) effectué a I’aide du formalisme des ondes de choc de QCD est détaillé. L’amplitude pour la production ouverte
d’une paire quark-antiquark y est dérivée, puis la maniere de construire une section efficace finie pour la production
exclusive d’un double jet vers I’avant dans un processus diffractif a partir de cette amplitude est décrite. Une étude
précise phénoménologique et expérimentale de ce processus devrait permettre une grande avancée dans la
compréhension des effets de resommation, via ici I’échange d’un Pomeron en diffraction, objet naturellement décrit par
la resommation de logarithmes provenant de la compensation de divergences molles aux hautes énergies. Le résultat
présenté ici est valable lorsque I’énergie dans le centre de masse du processus hadronique approche la limite de
saturation ou pour des collisions impliquant des ions lourds. En conséquence, une telle étude serait une bonne méthode
d’analyse des effets de saturation.

Dans la deuxieme partie, il est montré que I’étude expérimentale de la photoproduction d’un méson léger et d’un photon
aux énergies modérées constitue un bon moyen d’accéder aux Distributions de Partons Généralisées (GPDs), I’une des
généralisations des quantitées non-perturbatives apparaissant en factorisation colinéaire. En principe, une telle étude
devrait donner accés aux GPDs conservant I’hélicité, mais aussi aux GPDs renversant I’hélicité, encore jamais
observées expérimentalement. Une étude de faisabilité compléte pour ce processus a JLab@12GeV est détaillée.

Title: Perturbative study of selected exclusive QCD processes at high and moderate energies

Keywords: Exclusive processes, Perturbative Quantum Chromodynamics, kt-factorization, B-JIMWLK, Collinear
factorization, Forward jets

Abstract: At high enough energies, QCD processes can be factorized into a hard part, which can be computed by using
the smallness of the strong coupling to apply the perturbative Feynman diagram method, and a non-perturbative part
which has to be fitted to experimental data, modeled or computed using other tools like for example lattice QCD.
However the smallness of the strong coupling in the perturbative part can be compensated by large logarithms which
arise from the cancellation of soft or collinear divergences, or by the presence of multiple kinematic scales. Such
logarithmically-enhanced contributions must be resummed, leading to the DGLAP evolution at moderate energies and
to the BFKL or B-JIMWLK equation in the high energy limit. For the largest energies gluon recombination effects lead
to saturation, which can be described in the color glass condensate (CGC) or shockwave formalism. In this thesis, we
propose to study several exclusive perturbative QCD processes in order to get a better understanding of factorization,
resummation and saturation effects.

In the first part we perform the first computation of an exclusive quantity at Next-to-Leading-Order (NLO) accuracy
using the QCD shockwave formalism. We calculate the NLO amplitude for the diffractive production of an open quark-
antiquark pair, then we manage to construct a finite cross section using this amplitude by studying the exclusive
diffractive production of a dijet. Precise phenomenological and experimental analysis of this process should give a great
insight on high energy resummation due to the exchange of a Pomeron in diffraction, which is naturally described by
the resummation of logarithms emerging from the soft divergences of high energy QCD. Our result holds as the center
of mass energy grows towards the saturation scale or for diffraction off a dense target so one could use it to study
saturation effects.

In the second part we show how the experimental study of the photoproduction of a light meson and a photon at
moderate energy should be a good probe for Generalized Parton Distributions (GPDs), one of the generalizations of the
non-perturbative building blocks in collinear factorization. In principle such a study would give access to both helicity-
conserving and helicity-flip GPDs. We give numerical predictions for this process at LAB@12GeV.
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