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Abstract 

Dual-phase (DP) steel has been developed by automotive industry for the purpose of 

weight reduction, improvement in safety performance and fuel efficiency. Usually, DP 

steel contains hard martensite islands embedded in a soft ferrite matrix. Synergy 

between these two phases with the inhomogeneous microstructure exhibits excellent 

mechanical properties. The mechanical properties (plasticity and damage behaviors) 

of DP steel are mostly derived from its microstructure, e.g., volume fraction, size, 

distribution and morphology of each constituent phase.  

Micromechanical approaches are vastly applied to predict plasticity and other 

mechanical properties of DP steel under various loading scenarios. In this work, 

micromechanical modelling of DP steel has been performed using real or artificial 

microstructures. A real microstructure is obtained from metallographic image, while 

an artificial microstructure generator with an enhanced phase assignment algorithm 

based on material topology optimization is proposed to investigate the mechanical 

properties.  

In this artificial generator, phase assignment process is performed on a modified 

Voronoï tessellation to achieve the tailored representative volume element (RVE) with 

a good convergence. The proposed method also includes a proper orthogonal 

decomposition (POD) reduction of flow curves (snapshots), which are computed 

using the asymptotic extension homogenization (AEH) scheme, to identify the 

optimal controlling parameters for DP steel. This numerical method is verified using 

DP590 and DP980 steels that indicate a good agreement with the flow stress from 

measurements and RVE prediction based on real microstructures. Predictions of 

plastic strain patterns including shear bands using the artificial microstructure closely 

resemble the actual mechanical behavior under similar loading conditions. Moreover, 

an interpolation has been adopted to obtain a correlation between these controlling 

parameters based on the identification for various DP steels. 

Additionally, a bi-level reduced surrogate model is developed and presented to 

identify the material parameters of the Mohr-Coulomb (MMC) fracture criterion. 

Using this method, the identification process becomes feasible with a limited number 

of experimental tests. The method combines local critical elements associated with 

global models. The surrogate model of fracture strain constructed using the diffuse 
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approximation and the local elements, reduced the computational cost for searching 

material parameters. Global fracture simulations are performed to update the target 

fracture strain and to compute the corresponding failure onset displacement. 

Convincing results are obtained via successive application of design of experiment 

(DOE) and enhanced design space transformation algorithms. The proposed 

identification protocol is validated with DP590 steel. Robustness of the method is 

confirmed with different initial values. 

These numerical investigations provide new direction for multiscale simulations of 

the plasticity and damage behaviors of DP steel. Moreover, they efficiently contribute 

to bridge the gap between scientific research and engineering application of 

heterogeneous materials. 
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Part I. Plasticity
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Chapter 1  

Introduction 

The physical phenomenon of plasticity occurs almost everywhere in our daily lives, 

such as the forming process of our beautiful plastic flowers from polymer particles, 

kids’ plasticine, etc. Some of these plasticity phenomena are controlled by us and 

some others are spontaneous. Instinctively we, human beings, are exceptionally 

curious of the plasticity formation and process. The problem of the strength of 

materials has been one of the most active scientific fields since the establishment of 

modern science. 

The industrial applications promoted the research of strength of materials. A number 

of new materials are produced and used in various new applications. Among various 

materials, metals were widely applied to build bridges, ships, land vehicles, railways, 

airplanes and various appliances. The strength and ductility of metals are greatly 

appreciated by the modern civilization. However, there are also such a number of 

unsolved problems in the metal ductility and plasticity. Theoreticians want to 

understand how the plastic phenomenon happens at the micro- or nano- levels. 

Practitioners on the other hand want to solve industrial problems, e.g., the sheet 

metal forming, the strength of car bodies, etc. Both of the theoreticians and 

practitioners have been the most active sources in the understanding related to 

plasticity. 

1.1. Context 

1.1.1 Automotive history 

The blueprint for the modern automobile was perfected in France and Germany in 

the late 1800s [1]. And, since Americans revolutionized the automobile industry in 

the early 1900s [2], the car dominance in our daily lives has dramatically changed 

our habits and makes towns and cities much closer. But, the side effects 

accompanied with the lasting innovations in automotive industry, such as 

environment pollution, climate change, fossil fuel depletion, have settled new 
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challenges. Therefore, more recently, the economic crisis has pushed the car industry 

to reduce the weight of car body, and to improve energy saving considerations. In 

order to achieve these goals, it requires using lighter materials and lightweight 

structures. 

The car from 1908 (Fig. 1.1a) still has the same mean features as today’s concept, 

i.g., four wheels, front-engine, etc. But, the design and the efficiency are quite 

different compared to the modern model (Fig. 1.1b). 

 

Figure 1.1: (a) Ford Model T from 1908 and (b) Mercedes-Benz concept style coupe 

(preview 2013 CLA-Class) at 2012 Paris Auto Show. 

1.1.2 Development of new materials  

In 1980s, carmakers are challenged to improve safety, to reduce fuel consumption 

and carbodies’ weight. Advanced High-Strength Steels (AHSS) tremendously help 

them to meet requirements for safety, fuel efficiency, exhaust air pollution, 

manufacturability, durability, environment politics and quality as a relatively low 

cost [3]. 

According to steel manufacturers, AHSS are a new generation of steel grades which 

can provide extremely high-strength and other advantageous mechanical properties, 

while maintaining the high formability. And, AHSS have been used in industrial 

application for many years, but with additional research and development of AHSS, 

carmakers are using these steel grades in more applications. 
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Figure 1.2: Tensile Strength-Elongation curve for low strength, conventional HSS 

and first generation AHSS steels [4]. 

A set of AHSS grades is shown in Fig. 1.2. In this figure, the ordinate describes the 

elongation in percent and the abscissa plots the tensile strength. This figure shows 

the particular combinations of material and mechanical properties in a banana form. 

And, most of the included materials result from tailored heating or cooling process. 

Fig. 1.2 also describes a wide range of AHSS such as High-Strength Low-Alloy 

(HSLA), Dual-Phase (DP), Ferritic-Bainitic (DB), Complex Phase (CP), Martensitic 

(MART) and Transformation Induced Plasticity (TRIP) steels. The recent research is 

focusing on same grades of DP steels providing various mechanical properties. DP 

steel usually consists of hard martensite islands embedded in soft ferrite [5]. This 

special microstructure makes them exhibit several mechanical characteristics, such 

as relatively high ultimate tensile strength (UTS), low yield strength (YS) to tensile 

strength ratio and absence of yield point elongation. Therefore, in automotive 

industry, their excellent mechanical properties have provided benefits of reducing 

the weight of car body, improving passive safety feature, energy saving 

considerations and good formability. 

By 2007, the average vehicle contained 11.6% medium- and high-strength steels, for 

a total steel vehicle content of 57% [3]. Due to the growing application of AHSS in 

practical, it has led to the investigation to improve its mechanical performance with 

less in quantity. Therefore, nowadays, the most challenging task for engineers is to 

select the material with the right combination of strength, ductility, toughness, and 

fatigue properties. 
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1.1.3 Dual-Phase steels in automobile industry 

As mentioned above, DP steels are currently widely used in automotive industry. 

Automakers are increasingly employing DP steels to increase strength and down 

gauge HSLA structural components. What is important to consider when designing 

with DP steels, as with other AHSS, is the effect of strain and bake hardening. DP 

steels may be developed with low to high yield strength (YS) to ultimate tensile 

strength (UTS) ratios, allowing for a broad range of applications from crumple zone 

to body structure. DP is sometimes selected for visible body parts and closures, such 

as doors, hoods, front and rear rails. Other popular applications include: beams and 

cross members; rocker, sill, and pillar reinforcements; cowl inner and outer; crush 

cans; shock towers, fasteners, and wheels [6-8]. The applications of various grades 

of DP steels in automotive industry are shown in Fig. 1.3. 

 

 

Figure 1.3: Applications of DP steels in automotive industry [6]. 

1.2. Dual-Phase steels 

1.2.1 Microstructures 

Most commonly, Dual-Phase steels, which contain special microstructure with hard 

martensite (’) islands in a soft ferrite () matrix [9], have been extensively applied 
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in low carbon strips and structural steel for various industrial applications. Their 

very special microstructure provides an outstanding combination of strength and 

ductility. Fig. 1.4 represents SEM and TEM micrographs of typical DP steels’ 

microstructure. 

 

Figure 1.4: Micrographs of DP steels’ microstructure, SEM: (a) ferrite -ferrite 

along with banded islands of martensite (’), (b) sub-structure within ’ phase; 

TEM: (c) and (d) are taken at two tilt angles illustrating ’ phase and  phase [9]. 

From the literature [3] and [10-11], the microstructure of DP steels is manufactured 

by inter critical heat operation of an initial ferrite/pearlite (+Fe3C) microstructure 

followed by an accelerated cooling as shown in Fig. 1.5. During the heating 

operation, the austenitic phase  appears for a temperature The amount of 

austenite, being later the amount of martensite, is controlled by the temperature level 

comprised between A1 and A3. The final quenching allows the transformation  

to take place, which could result in the final microstructure of DP steels. 

Although the main part of the microstructure of DP steels is ferrite and martensite 

phase, sometime a small amount of residual austenite may appear after the heat 
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operation. This kind of residual microstructure could lead to an influence on the 

macro mechanical properties of DP steels. And, the presence of austenite phase 

reduces the martensite volume fraction and affects its distribution after the heat 

treatment as well. Several literatures [12-13] about experimental aspect have 

reported that the variation of the martensite quantity and the microstructural features 

of the martensite distribution have an important influence on the macroscopic 

behavior of the DP steel.  

 

Figure 1.5: Thermal cycle of heat treatment to obtain a microstructure of DP steels: 

(a) schematic Fe-C diagram, (d) applied heat treatment [10]. 

1.2.2 Mechanical properties 

As mentioned in last section, the variation of the martensite proportion and the 

microstructural features of the martensite distribution affect the macroscopic 

mechanical properties of the DP steel such as the tensile strength and the elongation. 

Table 1.1 summarizes the product property requirements for various types of DP 

steels, according to ArcelorMittal standard 20×80 mm ISO tensile specimens 

(thickness: less than 3mm) [14]. 

Steed grade 
Yield Strength 

(YS) [MPa] 

Ultimate 

Tensile 

Strength 

(UTS) [MPa] 

Total 

Elongation 

[%] 

Direction 
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DP 450 280-340 450-530 27 Transversal 

DP 500 300-380 500-600 25 Longitudinal 

DP 600 330-410 600-700 21 Longitudinal 

DP 780 Y450 450-550 780-900 15 Longitudinal 

DP 780 Y500 500-600 780-900 13 Longitudinal 

DP 980 Y700 700-850 980-1100 8 Longitudinal 

DP 1180 900-1100 1180 5 Longitudinal 

Table 1.1: Various types of DP steels and their mechanical property requirements 

[14]. 

 

Figure 1.6: Mechanical properties in function of the volume fraction of martensite. 

Rm is the tensile strength and Ag the elongation for DP580 [15,16]. 

Fig. 1.6 shows the tendency of the mechanical properties in function of the volume 

proportion of martensite for the DP 580 steel (Chemical composition: Fe 0.09, C 1.9, 

Mn 0.1, Si 0.3, Cr 0.15, Mo) [15]. From this figure, it can be seen that, the tensile 

strength rises with the volume proportion of martensite increasing. But, the 

elongation declines while increasing the fraction of martensite. 
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In summary, due to the special dual phase microstructures in DP steels, they present 

an excellent candidate for the car body structural components. Usually, some safety 

parts in the car body, which maintain passenger surviving space in crash events, are 

produced by using DP steels. Also, the application of this kind of steel provides the 

possibility of reducing the weight of the vehicle. 

1.3. Micromechanics 

In the view of the special microstructures in DP steels, this kind of steels can be 

considered as heterogeneous materials at the micro level, which consist of clearly 

distinguishable phases (ferrite and martensite). From the results of several 

researchers [17-24], micromechanical modelling using numerical tensile test of a 

representative volume element (RVE) can be considered as an appropriate procedure 

to study and model the flow stress as well as damage of multiphase steels. As this 

procedure can provide a good description of the deformation of the material on the 

micro-scale giving insight into the stress and strain evolution and their distribution 

in the phases, it is very advantageous. However, a good RVE should be constructed 

so that the shape, morphology, size and randomness of constituent phases can be 

involved to be representative of the microstructure under consideration. Hence, the 

size of a well-quality RVE has to be sufficiently large to consist of the 

microstructural characteristics but also small enough for the stress-strain relation to 

be considered as homogeneous. The material on the macroscopic scale can be 

statistically homogeneous, and the FE model size must be at least as large as the 

RVE. 

 

Figure 1.7: 2D RVE including cohesive elements of DP600 steel (left: micrograph, 

middle: enlarged image, right: FE RVE model with boundary conditions) [31]. 
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Fig. 1.7 shows a 2D RVE selected to construct a finite element model including 

cohesive elements (for grain joint) of the DP600 steel based on real microstructure 

using metallographic images. This kind of images is fragmented into dissimilar parts 

with black and blue colors indicating the martensite islands and ferrite matrix 

respectively. 

1.4 Research objectives 

A constitutive modeling of materials and structures framework has been proposed, 

and this PhD thesis is integrated into it. Under this framework, it plans to model and 

simulate the interactions between materials, processes and their usage properties. It 

includes 4 main parts, as shown in Fig. 1.8. 

 

Figure 1.8: Constitutive modelling of materials and structures. 

In order to ensure the usage of new materials, hybrid structures, lightweight 

structures in practical design, it is necessary to bridge the gaps between these parts. 

So, one goal of this research is to bridge the gap between the parts of “Material 

behavior and microstructure change” and “Homogenization and local behavior 
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prediction”. In other word, we need to compute the homogenized properties of 

materials which are generated from processes, based on the material behavior and 

microstructure change. 

 

Figure 1.8: Illustration of the homogenization procedure of DP steel. 

Therefore, the first goal of this research is to develop computer codes and models 

for the micromechanical modelling of DP steel based on real and artificial 

microstructures. From the flowchart as shown in Fig. 1.9, we can get details about 

this procedure: firstly, the real microstructures and statistical description of DP steel 

can be obtained from measurements; secondly, artificial microstructures are 

generated using topology optimization with pre-defined controlling parameters; 

thirdly, RVEs are constructed based on real and artificial microstructures; finally, the 

homogenized plasticity of DP steel is calculated using an asymptotic expansion 

homogenization (AEH) scheme. 
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Chapter 2 

Literature review 

The previous chapter presented DP steels as the coexistence of hard martensite 

islands embedded in soft ferrite matrix. This special microstructure makes them 

exhibit several mechanical characteristics, such as relatively high ultimate tensile 

strength, low yield strength to tensile strength ratio and absence of yield point 

elongation. In automotive industry, their excellent mechanical properties have 

provided benefits of reducing the weight of car body, improving passive safety 

feature, and energy saving considerations. The increasing demand by the market of 

steel products with enhanced mechanical behavior has led to the investigation of 

advanced engineering materials to improve their mechanical performance with less 

in quantity. 

Therefore, this chapter will describe state of the art, which is focused on the 

microscopic approach. This approach physically describes the heterogeneity of 

plastic strain within the material. In addition, it allows understanding the material 

plastic deformation and validating the phenomenological approach. 

2.1. Micromechanical modelling of Dual-Phase steels 

Recently, many scientific researchers have done a lot of work to investigate the 

mechanical properties of DP steels by using micromechanics. From several 

researchers’ technique reports [17,18,25], aiming to investigate tensile properties of 

DP steel, it has been concluded that the dislocation density accumulation along the 

grain boundaries leads to local hardening in the boundaries and hardening in the 

microstructure. Void initiation around martensite islands, void growth and 

coalescence inside ferrite matrix can be observed during the damage process. 

Cleavage cracking of martensite at low strain levels can be considered as the failure 

mode for harder embedded particles in DP steel. Since the microstructure of DP 

steel is affected by the chemical composition and the processing conditions. In 

previous experimental investigations, SEM graphs showed that the martensite phase 

in the DP590 and DP600 was island shaped; fractography indicated that the fracture 
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mode of DP steel is ductile failure with dimple appearance; the microcracks are then 

propagated along the ferrite/martensite interfaces. 

Al-Abbasi and Nemes [26] developed a micromechanical model for DP steels, 

which are composed of martensite particles with two different sizes dispersed in a 

ferrite matrix. Accordingly, they reported that the strength of the RVE model 

increased with increasing the volume fraction of martensite. After that, several 

investigations with different boundary conditions have been done by Sun et al. [18]. 

It was found that the shear mode or split mode perpendicular to the loading direction 

can be considered as the final failure mode. Hosseini-Toudeshky et al. [27] studied 

the deformation pattern and mechanical behavior by using large and small 

deformation theories. In their work, the stress–strain behavior of DP600 was 

predicted by using a real microstructure-based RVE model. Ramazani et al. [21] 

applied periodic boundary conditions to calculate stress-strain curves for real 

microstructure-based RVE, and reported that the smaller RVEs prescribed with 

periodic boundary conditions was closer to the converged effective result. Recently, 

Uthaisangsuk et al. [22-24] used the real microstructure-based RVEs to investigate 

deformation and failure initiation at the micro level, emphasizing microcrack 

propagation in martensite by using extended finite element method (XFEM). All 

their investigations indicate that, the micromechanical modelling approach is a 

suitable method to simulate the local behaviors of DP steel. 

After the microstructure modelling, in order to predict the mechanical behavior of 

dual-phase steels at the macro level, proper homogenization process need to be done. 

Nowadays, several homogenization procedures have been proposed. And, these 

approaches will be described in details in following chapter. 

2.2. Representative Volume Elements (RVEs) 

As mentioned in previous chapter, micromechanical modelling using numerical 

analysis of tensile test of a representative volume element (RVE) can be considered 

as an appropriate procedure to study and model the flow stress of multiphase steels. 

Therefore, in this sub-section, the construction of RVEs based on real and artificial 

microstructures will be presented, and size convergence of RVEs and element size 

will be extensively discussed. 
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2.2.1 RVEs based on real microstructure 

Generally, the real microstructure of the DP steel can be detected by taking light 

optical microscopy (LOM) images or scanning electron microscopy (SEM) graphs. 

In the study reported by Asgari et al. [28], 2D RVE based on DP real micrographs 

was generated by using a specialized meshing program OOF (Object Oriented Finite 

element analysis software [29]). After that, Ramazani et al. [21] have repeated this 

work, in which they converted real micrographs into 2D RVE by using an in-house 

program that makes use of the color difference of martensite and ferrite after etching. 

Fig. 2.1 shows several 2D RVE models based on real microstructure of DP600 steel 

with 20%, 37% and 46% martensite. From this figure, phase distribution and phase 

fraction of martensite and ferrite can be properly described in theses 2D RVEs. 

Although 2D RVE can satisfy the prediction of flow stress based on continuum 

mechanical assumptions, such as the plane strain and the plane stress conditions, 

while a 3D RVE can offer more reality in these predictions. Therefore, Ramazani et 
al. [30] later introduced 3D RVE constructed statistically with random distribution 

of martensite and ferrite phases. This kind of 3D RVE is cubic as shown in Fig. 2.2. 
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Figure 2.1: Examples of 2D RVEs based on real microstructure for micromechanical 

modelling of DP600 steel with (a) 20%, (b) 37% and (c) 46% martensite [30]. 

 

Figure 2.2: Examples of 3D RVEs based on static microstructure for 

micromechanical modelling of DP600 steel with (a) 20%, (b) 37% and (c) 46% 

martensite [30]. 
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Figure 2.3: Comparison of true stress–strain curves from 2D and 3D RVE 

simulations of DP microstructures consisting of 20% and 45% martensite [31]. 

The size effect has been investigated by Uthaisangsuk et al. [31], they found that the 

stress-strain behavior of the 3D RVE is closer to the experimental flow curves than 

the one of the 2D RVE for both microstructures. Usually, the stress-strain curves 

were considerably underestimated by the 2D RVE simulations, in Fig. 2.3.  

Moreover, the influence of the RVE model using plane-strain and plane-stress 

assumptions on the stress–strain behavior was studied. The plane-strain model 

exhibited lower flow stress compared to the plane-stress model, since in the 

plane-strain model the martensite particles are geometrically assumed to be long 

cylinders in a ferrite matrix, rather than a spherical particle in a cylindrical matrix. 

This effect increases with the martensite volume fraction [31]. 

2.2.2 RVEs based on artificial microstructure 

Real microstructure based models are constructed using experimental data to 

investigate the influence of grain morphology or size changes on effective properties 

of DP steel. However, highly heterogeneous materials are produced during industrial 

processing like welding, forging or heat treatments. They have special localized 

microstructures: microstructure at one material point could be different from another. 

For example, the welding zone formed during spot welding process can be divided 

into 3 regions: base material, heat affected zone (HAZ) and nugget [32]. In the HAZ, 

the microstructure is also dissimilar point-by-point, which is difficult to obtain 

experimentally. It is comparatively easier to use a computed artificial microstructure 

based on local phase proportions and chemical compositions to predict the flow 

stress of each material point. Accordingly, the local phase proportions and chemical 

compositions can be obtained from the phase transformation model incorporating 

concerned diffusion mechanisms [33-37]. Therefore, this method particularly 

requires the development of an artificial microstructure with similar statistical 

properties to replace the real one. 

Based on statistical descriptions of DP steel, artificial microstructures are often 

generated using geometry primitives (e.g., spheres, polygons or polyhedra). 

Al-Abbasi and Nemes [38] developed a micromechanical model for DP steel, which 

consists of spherical martensitic particles with two different sizes in a ferrite matrix. 



17 

 

However, this model has disadvantages such as inexact geometric representation and 

no reliable data close to the interface between different phases. 

 

Figure 2.4: 2D periodic cells generated using Voronoï algorithm containing: (a) 25% 

and (b) 58% pearlite. The white and black areas represent the ferrite and pearlite 

phases, respectively [40]. 

 

Figure 2.5: (a) 2D artificial RVE containing 40% martensite (black color) and (b) 

corresponding FE mesh with 980,000 nodes and 1,000,000 elements [42]. 

Alternatively, Voronoï tessellation [39] is considered as an efficient tool for 

approximating the microstructure in DP steel. Nygårds et al. [40-41] modeled 

dual-phase microstructures using 2D (Fig. 2.4) and 3D periodic Voronoï tessellations 

with limited grain number to predict the effective mechanical properties. Due to the 

lack of an automate phase assignment algorithm, the second phase was just 

determined in a random grain growth way. Abid et al. [42] developed a random 2D 

RVE using Voronoï tessellation followed by an optimization and filtering algorithm 

to obtain tailored microstructures, as shown in Fig. 2.5. However, the used Voronoï 

seeds were sowed in a pseudo-random way, which underestimates the variability of 

the grain size, while overestimates the number of nearest neighboring cells. 

Moreover, their model is not suitable for RVEs with less than 100 m side length, 

since no periodicity exists in it. Fillafer et al. [43] simulated 3D microstructures 
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using periodic Voronoï tessellation and subsequent phase coloring to investigate the 

macroscopic stress-strain behavior of DP steel with different martensite fractions. In 

their work, the martensite contiguity was well considered and “soft” optimization 

criteria were used to reach the microstructure with predefined controlling parameters, 

as illustrated in Fig. 2.6. However, the randomness of the generating seeds was 

neglected and no more details of the “soft” criteria were given. 

 

Figure 2.6: 3D periodic artificial RVEs generated using Voronoï algorithm and phase 

coloring process containing (a) 10% and (b) 50% martensite within 150 grains. 

Martensite and ferrite cells are shaded and transparent, respectively [43]. 

Although Voronoï tessellation is an adequate approximation for DP microstructure, 

the variability of grain size, shape and neighboring grains' correlation are affected by 

the design of generator seeds [44-45]. Moreover, typical existing phase assignment 

processes do not allow well capturing the complete features of DP microstructure 

and obtaining a convergent phase distribution. Therefore, in this work, a modified 

Voronoï tessellation is periodically generated from Halton (quasi-random) sequence 

[46], which statistically exhibits low discrepancy, to provide adequate grain 

morphology. A phase assignment algorithm based on material topology optimization 

has been proposed to solve the phase distribution problem. 

Over the past few decades, a dramatic development of topology optimization has 

been performed in both scientific research [47-56] and industrial applications [57]. 

Various approaches including density-based methods [58,59], evolutionary 

procedures [60] and level-set methods [61,62], have been proposed to enhance the 

topology optimization design of multiscale nonlinear heterogeneous structures and 

topological design of microstructures of multi-phase materials. Originally, the 
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density-based topology optimization design technique can be regarded as a method 

that seeks the optimal structure to satisfy the given constraints, while minimizing the 

objective function, by defining a so-called “pseudo-density” within a fixed grid, as 

shown in Fig. 2.7. This is quite similar to the phase assignment procedure in 

artificial DP microstructure generation. Therefore, an algorithm related to 

density-based methods in topology optimization is introduced in our generator. 

 

Figure 2.7: Illustration of the application of material topology optimization in multi-

scale structure design [53]. 

Based on the combination of the modified Voronoï tessellation and enhanced phase 

assignment algorithm inspired by topology optimization, a novel artificial micro-

structure generator has been developed to build artificial RVEs with targeted 

parameters. This method also includes a proper orthogonal decomposition (POD) 

reduction [63, 64] of flow curves (snapshots) to identify the optimal controlling 

parameters for DP steel. This numerical method significantly improves the 

representativity of the generated RVE with low computational cost. The proposed 

method is verified using a DP590 steel which indicates a good agreement between 

the measurements and the predictions from RVE based on real microstructures 

[65-66]. 

2.2.3 RVE size and element size convergence 

As this micromechanical simulation by using RVE can provide a good description of 

the deformation of the material at the micro level giving insight into the stress and 

strain evolution and distribution in the phases, it is very advantageous. However, a 

good RVE should be constructed based on a way that the shape, morphology, size 

and randomness of constituent phases can be involved to be representative of the 

microstructure under consideration. Hence, the size of a well-quality RVE has to be 

sufficiently large to consist of the microstructural characteristics but also small 

enough for the stress-strain relation to be considered as homogeneous. The material 
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on the macro scale can be statistically homogeneous, and the FE model size must be 

at least as large as the RVE. 

From the study by Ramazani et al. [21,30], the acceptable size of RVE was 

considered as minimum as 24 µm while it can include at least 19 martensite islands 

[30]. Therefore, 2D RVEs with dimensions of 25×25 µm and 3D RVEs with 

dimensions of 25×25×25 µm as respectively shown in Figs. 2.1 and 2.2, are 

considered. Additionally, the effect of mesh size is studied by some researchers with 

element size ranging from 0.1 to 2 mm, and no deviation is obtained for the meshes 

finer than 0.25 mm. 

2.3. Prediction of flow curve of each single phase 

In the finite element analyses of dual-phase steel, the stress-strain relation of each 

single phase is an important issue. Nowadays, there are two main methods to predict 

the flow curve of each single phase in the DP steel: (i) Empirical models and (ii) 

Physically based models. These two approaches are discussed in the following 

subsections. 

2.3.1 Empirical models 

The implementation of RVE models for multiphase steels requires the mechanical 

behavior (stress-strain curve) for each phase to be determined as accurately as 

possible. The first experimental approach is to prepare several specimens which are 

individual phase (ferrite and martensite), and to preform tensile tests on these 

specimens. With the recorded stress-strain relation, it is possible to fit these flow 

curves by using empirical equations. 

The most popular formulation based on empirical equations is Swift equation: 

 0=
npK    (2.1) 

where K, n and 0 are material parameters. 

The limitation of these models is the reduced applicability, as they are based on 

fitted parameters that cannot easily be extrapolated to other conditions. For ferrite 

this has been overcome to a certain level relating the exponent n to the grain size 

and to composition. However, when the degree of complexity of the steel 



21 

 

microstructure increases, the applicability of these empirical equations is reduced. In 

some cases, the use of different n values is required in order to fit the flow curve 

over the entire deformation range. 

2.3.2 Physically based models 

An alternative to the empirical equations is the use of physically based models that 

link to both the micro and the macro scales and are expected to give more accurate 

prediction. Different dislocation based models can be found that have some 

differences in the formulation but all of them relate the strain hardening to the 

balance between the dislocation storage and recovery [67]. 

The macroscopic flow stress σ and the plastic strain ε are related to the critical 

resolved shear stress for current microstructure state   and the amount of 

crystallographic slip γ via an orientation factor, M as: 

=  and M Md d     (2.2) 

Assuming an average behavior, the microscopic hardening rate of the crystalline 

element, θ can be related to the macroscopic hardening as: 

2=
d dM
d d
 


 

  (2.3) 

The classical relation between the flow stress and the total dislocation density can be 

expressed as: 

0 0 M b               (2.4) 

The first term 0  reflects the Peierls stress and the effects of alloying elements in 

the solid solution. The second term   provides strengthening by precipitation or 

the carbon in solution. The third term  consists of the effects of dislocation 

strengthening as well as work softening due to recovery, with a constant, M the 

Taylor factor,  the shear modulus, b the Burgers vector and  the dislocation 

density. 

During deformation, the evolution of the dislocation density with strain is generally 

split into two parts: 
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stored recovery

d d d
d d d
  

  

   
    
   

 (2.5) 

The substitution Md d  in Eq. (2.5) allows expressing the change in dislocation 

density as a function of the macroscopic equivalent strain. Different expressions 

have been proposed for each term. Usually, it can be considered that: 

1
r

d M k
d bL





 
  

 
 (2.6) 

where rk is the recovery rate and L is the dislocation mean free path which can be 

considered proportional to the average spacing of the homogeneously distributed 

dislocation.  can alternatively be defined by some microstructural parameter like 

the subgrain size, the interparticle spacing or the grain size. The resulting equations 

and the results of the integration, considering 0 as being initial dislocation density 

in the deformation free material give different results, depending on the chosen 

option. After integration and substitution into Eq. (2.4), it will have results: 

   0

1
1 exp expr r

r

k M k M
bLk

           (2.7) 

   0

1
1 exp expr r

r

M b k M k M
bLk            

 

(2.8) 

The above formulation has been applied in order to predict the flow stress for 

different steel micro-constituents. The application of these equations to the 

experimentally determined tensile curves requires some fitting exercise to determine 

the involved parameters. The practical result is that, regardless of the approach 

being used, it is possible to predict with enough precision the tensile curve, by the 

correct selection of the parameters involved in the equations to the main 

characteristics of each particular microstructure. Generally, since the initial 

dislocation density before deformation is pretty low, the following equation can be 

used: 

 
0

1 exp r

r

Mk
M b

k L


    
 

     (2.9) 
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It is a simplified form of Eq. (2.4) and Eq. (2.8). In this equation, there is some 

uncertainty concerning the value of M . This term can strongly affect the strain 

hardening contribution to the overall result of the modelling. For the case of ferrite, 

factors of variation can be found as high as 1.8. In recent research [21,68,69], 

=0.3  and 3M  have been adopted for the different microstructures and 

consequently remain out of the required fitting exercise to the experimental tensile 

curves.  

2.4. Boundary conditions in micromechanics 

In general, computational homogenization procedures are needed with the adequate 

construction and solution of a boundary value problem, since the derivation of the 

local macroscopic constitutive response from an underlying microstructure. And for 

now, most of the homogenization approaches make an assumption on the global 

periodicity of the microstructure, which considers that the whole macroscopic 

specimen consists of spatially repeated unit cells. To study the effect of the boundary 

condition, RVEs have been studied under uniaxial tensile straining with 

conventional boundary conditions (i.e. linear displacement or constant traction 

boundary conditions) and periodic boundary condition (PBC). This section will 

describe these different types of boundary conditions. 

2.4.1 Conventional boundary conditions 

There are two main kinds of conventional boundary conditions, which are widely 

used in micromechanical modelling with RVEs: (i) linear displacement boundary 

condition (Dirichlet condition); (ii) constant traction boundary condition (Neumann 

condition). From the study of Terada et al. [70], it was reported that, as the RVE size 

decreases, estimation of the homogenized mechanical properties becomes worse. 

Therefore, it is necessary to build RVEs with relatively large dimensions. This will 

dramatically increase the computational time and decreases its efficiency. In the 

following section, description of periodic boundary condition will be presented in 

details. 
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2.4.2 Periodic boundary condition 

Periodic boundary conditions (PBC) are a set of boundary conditions which can be 

chosen for approximating a very large even an infinite system or part by using a 

small and representative part or element. This kind of boundary conditions is usually 

used in numerical simulations and mathematical models. The large systems 

approximated by PBC only consist of infinite number of volume elements, and these 

elements must have the capability to describe the general characters of the large 

systems. For example, the topology of two-dimensional PBC can be considered as a 

global map of polycrystalline or multiphase steels, the geometry of these volume 

elements satisfies perfectly two-dimensional tiling, and when a physical field (e.g. 

Strain or Stress) passes through one side of the element, it re-appears on the opposite 

side with the same magnitude. 

Two-dimensional PBC are often applied to simulate planar surfaces, and it could be 

called slab boundary conditions; in this case, PBC are used under the coordinate 

frame with two Cartesian coordinates (e.g. x and y), and the third coordinate (z) 

could remain zero to infinity. And in simulation of solid systems, the strain field 

arising from any inhomogeneity in the system will be artificially truncated and 

modified by the periodic boundary. The dimension of RVE used as the simulation 

box must be large enough to prevent periodic boundary artifacts from occurring due 

to the unphysical topology of the simulation. 

 

Figure 2.8: A 2D periodic structure and the k-th RVE. 
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One kind of unified displacement-difference periodic boundary conditions has been 

proposed by Xia et al. [71]. The displacement field for the global level structure can 

be expressed as in the following equation: 

*

1 2 3 1 2 3(x ,x ,x ) (x ,x ,x )i ij j iu x u    (2.10) 

where ix is a position vector from a reference point to a point on the boundary, and

ij  is the global average strain tensor of the periodic structure. The first term on the 

right side is a linear distributed displacement field, and the second term, 
*

1 2 3(x , x , x )iu represents a periodic function from one RVE to another nearby. It 

means a modification to the linear displacement field due to the heterogeneous 

structure. 

Since the periodic array of the RVEs (in Fig. 2.8) represents a continuous physical 

body, the continuity of displacement and stress must be satisfied. For the 

displacement continuity, in the k-th RVE (in Fig. 2.8), the displacement on a pair of 

parallel opposite edges could be written as: 

*k k
i ij j iu x u    (2.11) 

*k k
i ij j iu x u    (2.12) 

where indices “k+” and “k-” represent the k-th pair of two opposite parallel edges of 

an RVE (in Fig. 2.8). Since both the parallel edges are in the same RVE, then 

difference between the two displacements could be expressed as: 

( )k k k k k
i i ij j j ij ju u x x          (2.13) 

where
k
j  are constants for each pair of the parallel edges, with specified value of ij , 

then, the right side becomes constants and such equations can be easily applied in 

the finite element (FE) analysis as a series of nodal displacement constraint 

equations. Eq. (2.13) is a special type of displacement boundary conditions. It 

doesn’t give known values of boundary displacement, but specifies the constraint of 

the displacement difference between two opposite edges. Obviously, the application 

of PBCs can guarantee the continuity of global displacement field. But, this equation 
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may not be complete or may not guarantee the traction continuity conditions. The 

traction continuity conditions can be expressed as: 

0,       0k k k k
N N T T           (2.14) 

where N
 
and T  

are normal and shear stresses at the corresponding parallel 

edges, respectively. For general boundary value problems, the Eq. (2.13) and Eq. 

(2.14) constitute a complete set of boundary conditions. 

 

Figure 2.9: Comparison of different boundary conditions [70]. 

Fig. 2.9 clearly shows that, for all these three boundary conditions, the increase of 

the RVE size leads to a better estimation of the effective properties [70]. But for a 

given RVE size, the periodic boundary condition provides a better estimation than 

the two other boundary conditions. In other words, PBC is the most efficient one in 

terms of convergence rate as the RVE size increases. Therefore, the boundary 

condition applied to this micromechanical model is PBC. 

2.5. Homogenization scheme 

In order to describe material behavior of the DP steel, different models on micro- 

and macro-scale need to be created. At the micro level, micromechanical models, 

such as RVE models, have considered multiphase materials as heterogeneous. At the 

macro level, models with the same geometry and size of work piece can be easily 
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constructed, and these models should be defined with the global homogeneous 

material properties, which are obtained from the local micro-scale simulation. 

Therefore, a homogenization process is necessary to represent the macroscopic 

material behavior from the results of the RVEs’ numerical predictions. In the work 

of former researchers, two major types of homogenization methods have been 

described, the crystal plasticity based models [72-75] and the asymptotic expansion 

homogenization (AEH) method [76,77]. 

2.5.1 Homogenization method based on crystal plasticity 

The first homogenization method belongs to the analytical methods of continuum 

micromechanics. Among the analytical methods, the mean-field homogenization 

models [73,74] and the variational bounding models are the most widely used. In the 

mean field methods, the stress field in each phase is considered as approximately 

their mean values. Moreover, they use the information of the microstructure 

topology, geometry, and orientation of the inclusions and, possibly, statistical 

information of the phases distribution. And the variational bounding methods are 

used to obtain upper and lower bounds to the elastic tensor and other mechanical 

properties of heterogeneous materials. 

Many mean-field methods used in the micromechanical modelling of materials are 

built on the work of Eshelby [78]. A better approach to determine the strain 

localization tensor is to use Eshelby’s analytical solution to handle the 

inhomogeneity problem. He introduced the equivalent inclusion theory in order to 

solve the strain localization problem for a single inhomogeneity embedded in an 

infinitely large matrix (in the DP steel, ferrite phase could be the majority phase). 

Hence, his solution can be used only for dual-phase metallic materials. And in his 

theory, when the matrix properties are isotropic and the inclusion has an ellipsoidal 

shape, the localized stress and strain fields in the inclusion are uniform. In the work 

of Tanaka and Mori [73], a simpler approach, has been proposed based on the 

Eshelby theory, for metal matrix composite (MMC) materials. In this 

homogenization scheme, it is assumed that the inclusions in the RVE, experience the 

matrix strain as the far-field strain in the Eshelby theory. 
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2.5.2 Asymptotic expansion homogenization method 

From a mathematical view, this theory of homogenization is a limit theory that uses 

the asymptotic expansion and the assumption of periodicity to substitute the 

differential equations with rapidly oscillating coefficients, with differential equations 

whose coefficients are constant or slowly varying in such a way that the solutions 

are close to the initial equations [79].  

The AEH method is based on the multiscale perturbation theory, and it is usually 

used in the global/local and periodical problems. The advantage of this method is 

that it can solve micro-stress field problems for general loading conditions. 

Moreover, the local FE analysis is relatively independent of global analysis and only 

periodic boundary conditions are necessary during FEM analysis. 

The use of this approach requires specific boundary conditions prescribed to assure 

the perfect tilling between adjacent RVEs. Then, the above-mentioned PBCs can 

make the use of the translator symmetries of geometry to handle any physically 

valid deformation state of RVEs. Based on the AEH approach, the homogenized 

stress and strain are given by a computational first-order homogenization by volume 

fraction averaging. In the general FEM codes, this homogenization process can be 

implemented easily and directly. 
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Chapter 3 

Micromechanical model based on real microstructure 

In this chapter, the complete process of micromechanical modelling of DP steels will 

be presented in details. 2D RVEs are generated based on real microstructures. With 

an in-house image analysis program that works on the color difference of marten-

sitic and ferritic cell, corresponding finite element model can be constructed. The 

flow stress of each single phase can be computed by using the dislocation based 

theory as described in section 2.3.2. Then, the micromechanical simulation can be 

done with the prescription of PBC. And, the homogenized macroscopic flow stress 

of DP steels can be obtained. 

In addition, the whole micromechanical modelling will be validated on tensile tests 

of two DP steels: (i) DP590 steel (from ESI-Group) and (ii) DP600 steel (from 

literature [30]). Results and comparisons will be presented in the last section. 

3.1. Generation of RVEs 

As described in section 2.2.1, 2D RVEs are selected to construct a finite element 

model of the DP590 steel with real microstructure using metallographic images. 

This kind of images is fragmented into dissimilar parts with black and blue colors 

indicating the martensite islands and ferrite matrix respectively as shown in Fig. 1.7. 

As mentioned above, the size of RVEs has a significant influence on the simulation 

results. From the work of Ramazani et al. [21], the acceptable size of the RVE is 

considered as a minimum of 24 µm while it can include at least 19 martensite 

particles. Therefore, in this study, 2D RVE models with a size of 25 ×25µm have 

been used. 

3.1.1 Acquisition process of microstructure 

The microstructures of DP steels provided by metallography are shown in Figs. 3.1 

and 3.2. These metallographical pictures can be acquired by SEM (in Fig. 3.1) or 

LOM (in Fig. 3.2) after samples’ etching with 3% Nital solution. The patterns of the 

microstructure show martensite islands dispersed evenly in the ferrite matrix. 
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Fig. 3.1 shows the details of SEM microstructure for the investigated DP590 steel. It 

was taken by using a SEM machine FEI-Quanta FEG250. In this figure, two 

different parts can be distinguished: (i) ferrite phase (black and gray colors) and (ii) 

martensite phase (white color). And, the volume fraction of martensite can be 

calculated from this image.  It was found that the investigated material contains 

about 22% martensite and 78% ferrite. The LOM microstructure of cold-rolled 

DP600 steel and its rolling direction is illustrated in Fig. 3.2. In contrary, the white 

part indicates ferrite phase and the black indicates martensite phase. The volume 

fraction of martensite in this DP600 steel is 20%. Here, it is worth noting that the 

grain boundaries between ferrite and martensite should be distinguished to achieve 

an accurate model along the ferrite and martensite interface. The coordinate of grain 

boundary points can be obtained from an image analysis, which will be presented in 

the following section.  

 

Figure 3.1: SEM microstructure of the investigated DP590 steel. 

 

Figure 3.2: LOM microstructure of cold-rolled DP600 steel and its rolling direction 

[30]. 
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3.1.2 Image analysis process 

With the micrographs of experimental observation, some 2D RVE models with a 

size of 25 ×25µm can be selected. Figs. 3.3 and 3.4 show the selection of 2D RVE 

based on real microstructure of DP590 and DP600 steels, respectively. And, in these 

two RVEs, the volume fraction of martensite is approximately equal to the available 

volume fraction of martensite from experimental data. It means that the dimensions 

can be acceptable for finite element modelling. 

 

Figure 3.3: Selection of 2D RVE for micromechanical modelling of DP590 steel. 

 

Figure 3.4: Selection of 2D RVE for micromechanical modelling of DP600 steel 

[30]. 

When the selection process of RVEs based on real microstructures of DP steels was 

done, an in-house image analysis program has been used to distinguish the phase 

interface between ferrite and martensite and to build the final finite element model. 

The image analysis process includes three main steps:  
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(i) convert the selected metallographic image (Fig. 3.5a) into grayscale 

image by using Matlab [80] Toolbox, which is shown in Fig. 3.5b; 

(ii) extract geometry information of every martensite island by defining a 

threshold to distinguish the grain boundaries shown in Fig. 3.5c; 

(iii) mesh the RVE model and determine the material property of every 

element. Fig. 3.5d illustrates the final finite element model of RVE. 

From the study of Ramazani et al. [21], the convergent element length is about 0.25 

m. Therefore, in the 2D case, linear element with 0.25 m element size and RVE 

with 25 m edge length are used. Also, in this study, plan strain assumption is used 

in the micromechanical simulation. 

 

Figure 3.5: Image analysis procedure for RVE generation: (a) original 

metallographic image (black color: martensite phase; gray color: ferrite phase), (b) 

grayscale image, (c) grain boundaries and (d) final finite element model. 
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3.2. Calculation of flow curve of each single phase 

In the paragraph 2.3, different methods to predict the flow stress of each single 

phase in the DP steel have been presented. It can be concluded that, the use of the 

dislocation based theory which links to both the micro and the macro scales, are 

expected to give more accurate prediction. Therefore, the flow stress of ferrite and 

martensite phase in the investigated steels is calculated from this dislocation based 

model. Since the only requirement of this model is the local chemical composition, 

section 3.2.1 will describe the experimental measurement and section 3.2.2 is about 

the calculation process. 

3.2.1 Chemical composition measurement 

Due to the requirement of local chemical composition to compute the flow stress of 

the DP steel, we have done the energy dispersive X-ray spectroscopy analysis (EDX) 

for the DP590 and the DP600 steels. The model of the EDX analysis machine is 

FEI-Quanta FEG250, as shown in Fig. 3.6. The obtained chemical compositions are 

listed in Table 3.1.  

 

Figure 3.6: EDX analysis machine in UTC: FEI-Quanta FEG250. 
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Steel C Si Mn Ni P Cu Cr Mo 

DP590 0.05 0.44 1.04 0.48 0.005 0.18 0.04 0.05 

DP600 0.072 0.25 1.58 0.024 0.015 0.01 0.055 0.09 

Table 3.1: Chemical composition of the DP590 and DP600 steels (in wt%). 

3.2.2 Single phase flow stress 

The flow stress of ferrite and martensite in the DP590 steel are calculated from the 

dislocation based theory presented in section 2.3.2, developed by Gutierrez [67]. In 

this method, material parameters are computed according to the local chemical 

composition, which can be expressed as in Eq. (2.9). In this expression, is a 

material constant ( 0.33  ), M is the Taylor factor ( 3M  ), is the shear modulus 

( 80GPa  ), b is the Burger’s vector, L is the average dislocation free path (for 

ferrite 65.0 10L   and for martensite 83.8 10L   ), rk is the dislocation recovery 

rate ( rk =2 and 41 for ferrite and martensite [68,69], respectively). The first term in 

Eq. (2.9) is the Peierls stress for dislocation movement. It can be calculated with Eq. 

(3.1). In this expression, SSN denotes the carbon content (in wt. %) in dual-phase 

steel: 

0 77 750%P 60%Si 80%Cu 45%Ni 60%Cr 80%Mn

        11%Mo 5000 SSN
       

 
 (3.1) 

The second term is the additional strengthening due to the precipitation and carbon 

in solid solution. In the case of ferrite, it can be given as: 

 5000 F
SSC   (3.2) 

While for martensite, it should be: 

 3065 161M
SSC    (3.3) 

where F
SSC and M

SSC denote the carbon content (in wt.%) in ferrite and martensite, 

respectively. 
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Figure 3.7: Flow curves of ferrite and martensite for DP590 steel. 

For example, the flow stress of martensite and ferrite for the DP590 steel are shown 

in Fig. 3.7. They are computed based on the chemical composition listed in Table 

3.1. Additionally, in the simulation isotropic hardening and von Mises yielding 

function are adopted for each phase. 

3.3. Prescription of PBC 

Since periodic boundary conditions have been defined in section 2.4.2, their 

implementation will be presented in this section. In order to apply PBC by using 

constraint equations according to Eq. (2.13), a concept of “dummy node” [71,81] 

should be introduced with degrees of freedom corresponding to the average strains 

FE codes.  The nodal degrees of freedom, which belong to the boundaries of RVE, 

are then coupled to the degrees of freedom of the dummy nodes. Therefore, a set of 

constraint equations for the finite element model should be defined as: 

1 2

A B
i jN u N u u    (3.4) 

where u is a prescribed value, such as displacement or strain, related to a dummy 

node. This dummy node is not attached to any part in RVE model. It is just a node 

with arbitrary coordinates. The dummy node is used to prescribe the displacement 

u at a certain direction. Users have to define a load step in order to apply this value 
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as a boundary condition. By doing so, the average stresses may then simply be 

extracted from the information about reaction forces at the dummy nodes. With this 

operation, it is hence not necessary to perform explicit integration over the RVE for 

determination of average strains and stresses. 

 

Figure 3.8: An example RVE discretized into 5×5 elements. 

For example, a base RVE (ABCD, dimension: 1×1mm) shown in Fig. 3.8 is 

discretized into 5×5 elements for the sake of illustration. In this example, 

quadrilateral element with size of 0.2 mm and edge length 1 mm are used for 2D 

RVE. AB/DC is a pair of opposite parallel horizontal boundary edges of this RVE, 

and AD/BC is a pair of vertical boundary edges. In this case, Eq. (2.13) can be 

applied with 11 0.1 
 
and 22 12 0   in the plane stress FE analysis. By this way, 

Eq. (2.13) can be rewritten as: 

1 1 2 20.1,   0AD BC AD BCu u u u     (3.5) 

1 1 2 20,    0DC AB DC ABu u u u     (3.6) 

Here, boundary edge AD includes a set of nodes: 1, 7, 13, 19, 25, 31; BC is the node 

set which has nodes: 6, 12, 18, 24, 36; AB is the node set which has nodes: 2, 3, 4, 5 
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(nodes 1 and 6 are not included in this set since they will lead to excessive 

constraints of degrees of freedom); DC is the node set which has nodes: 32, 33, 34, 

35. To apply the Eq. (3.5) in FE code, two contraint equations can be expressed as: 

1 1 1 2 2 2=0,   0AD BC Y AD BC Yu u u u u u      (3.7) 

where 1 0.1Yu   means to constrain degree of freedom 1 at node Y (a dummy node, 

1000 for this example, it is necessary to make sure that the dummy node number 

should be big enough not to conflict with any other node numbers in FE model) to 

0.1, and 
2

Yu =0 to constrain degree of freedom 2 at node Y to zero. 

3.4. Homogenization process 

Following the asymptotic homogenization, the macroscopic displacement field of 

the DP steel depending on the aspect ratio between the macro and micro scales is 

expanded as: 

2

0 1 2( , ) ( , ) ( , ) ,  
xu u x y u x y u x y y  


      (3.8) 

where the involved functions are dependent on the global macroscopic variable x
and the local microscopic variable y . The dependence on /y x  implies that a 

quantity varies within a very small neighborhood of a macroscopic point x , which 

can be considered as “stretching” the microscale, so it becomes comparable to the 

macroscale. When ≪1, the dependence on y can be viewed periodic for a fixed 

macroscopic point x .As mentioned in section 2.5.2, the use of this approach requires 

PBC to assure the perfect tilling between adjacent RVEs. Then, the 

above-mentioned PBCs can make the use of the translator symmetries of geometry 

to handle any physically valid deformation state of RVEs. Based on the AEH 

approach, the homogenized stress and strain are given by: 

RVE
RVE

1
=ij ijV

dV
V

   (3.9) 

RVE
RVE

1
=ij ijV

dV
V

   (3.10) 
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These two equations are computational first-order homogenization by volume 

averaging. In the general FE codes, this homogenization process can be 

implemented easily and directly. 

3.5. Validation on tensile test analysis 

Numerical tensile tests can be carried out on the 2D RVEs generated from the 

microstructures of DP590 (from ESI-Group) and DP600 steel (from literature [30]). 

The evolution of stress-strain relation in the RVEs can be obtained from these 

numerical tensile tests. With the PBC prescription and the homogenization scheme 

presented in last sections, the homogenized flow stress can be obtained to compare 

with the experimental results. Therefore, the micromechanical modelling process 

will be described in the following sections. Also, results and comparisons will be 

discussed in the final section. 

3.5.1 Micromechanical modelling of DP 590 steel 

As presented in previous sections, the first operation to build the micromechanical 

models of the DP590 steel is to select the proper RVE with acceptable size. As 

shown in Fig. 3.3, a 2D RVE has been selected to construct a finite element model 

of the DP590 steel with real microstructure using metallographic image. Through 

the image analysis process (as shown in Fig. 3.9), a finite element model (in Fig. 

3.9d) can finally be constructed. 
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Figure 3.9: Image analysis procedure for RVE generation: (a) original metallo-

graphic image (brown color: martensite phase; yellow color: ferrite phase), (b) 

grayscale image, (c) grain boundaries and (d) final finite element model. 

Also, with the chemical compositions in Table 3.1, the flow curves of martensite and 

ferrite are shown in Fig. 3.7. Then, numerical tensile tests have been performed on 

this generated 2D RVEs based on real microstructure and prescribed PBC. The 

predicted stress-strain behavior of DP590 steel using the homogenization scheme in 

section 3.4 is compared with the experimental result in Fig. 3.10.  

 

Figure 3.10: Measured and predicted flow curve of DP590 steel. 

From this figure, it can be observed that there are small dissimilarities the 

measurements and the predictions from micromechanical modelling. The main 
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reason that can explain this difference is that, no fracture model and material 

softening mechanism have been assigned to both of ferrite and martensite phases. In 

addition, plan strain assumption is adopted for the simulation, while in the real 

tensile test, the specimen is subjected to three dimensional stress state. Therefore, 

this phenomenon appears, and we can expect that it will increase with the volume 

fraction of martensite. 

Fig. 3.11 shows the calculated equivalent plastic strain distribution in 2D RVE at 

various global strain levels of: (a) 0.24%, (b) 2.41%, (c) 8.02%, and (d) 16.54%. In 

both of the contour plots, shear bands can be observed in the ferrite matrix near 

martensite islands. 

 

Figure 3.11: Equivalent plastic strain distribution in 2D RVE at various global strain 

levels of: (a) 0.24%, (b) 2.41%, (c) 8.02%, and (d) 16.54%. 
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Figure 3.12: Equivalent plastic strain distribution in 2D RVE at global strain of 10%, 

shear bands in the red ellipses.  

The shear bands of the localized plastic strain are due to the microstructure 

inhomogeneity of dual-phase steel. The details of shear bands are shown in Fig. 3.12. 

And the direction of the localized plastic deformation is on average 45⁰ to the tensile 

direction. As the plastic flow accumulating, material failure can be predicted as the 

result of plastic strain localization in RVE during the deformation process. At the 

same time, shear dominant failure mode continues and leads to final failure of the 

2D RVE model. 

 

Figure 3.13: Cumulative distribution function of plastic strain in martensite and 

ferrite phases of 2D RVE at global strain of 15%. 
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The cumulative distribution of plastic equivalent strain in martensite and ferrite 

resulting from the 2D RVE simulation at global strain of 15% is illustrated in Fig. 

3.13. In future work, the result can be considered as the standard to evaluate and to 

validate 2D RVEs generated form artificial microstructures.  

Actually, SEM microstructure of deformed dual-phase has been reported by 

Hosseini-Toudeshky et al. [20], the ferrite matrix near the martensite islands is 

deformed severely and shear localization caused the void initiation along the grains 

interface. As the volume fraction of void reaches a critical value, micro-cracks 

initiated due to interface debonding that occurs and propagates. Their experimental 

observation validates our simulation results. Therefore, the computed flow stress can 

be used in the macroscopic simulation with fracture models. 

3.5.2 Micromechanical modelling of DP 600 steel 

By the same way, 2D RVE of the DP600 steel from literature [30] can be built as 

shown in Fig. 3.14. And, the flow curves, shown in Figs. 3.15 and 3.16, of 

martensite and ferrite phases are calculated with the chemical compositions listed in 

Table 3.1. 

 

Figure 3.14: 2D RVE based on real microstructure of DP600 steel: (a) original 

metallographic image (brown color: martensite; yellow color: ferrite) [30], (b) final 

finite element model. 
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Figure 3.15: Predicted and reference flow curves of martensite phase for DP600 

steel with 20% of martensite [30]. 

 

Figure 3.16: Predicted and reference flow curves of ferrite phase for DP600 steel 

with 20% of martensite [30]. 
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Figs. 3.15 and 3.16 show the predicted and reference flow curves of martensite and 

ferrite phase for the DP600 steel with 20% of martensite. For the DP600 steel, the 

difference between the flow curves of ferritic phase and the reference one is almost 

zero. However, for martensitic phase, slight discrepancy is observed between our 

predictions and the reference result. 

 

Figure 3.17: Von Mises stress and equivalent plastic strain distribution in 2D RVE at 

global strain of 10%. 

 

Figure 3.18: Reference data, measured and predicted flow curves of DP600 steel 

with 20% martensite. 
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The evolution of stress and strain in the RVEs can be obtained from these numerical 

tensile tests. Fig. 3.17 shows the contour plot of von Mises stress and the equivalent 

plastic strain on microscale at global strain equaled to 10% for the DP600 steel. In 

both of the contour plots, shear bands can also be noticed in 2D RVE. And the 

direction of the localized plastic deformation is on average 45⁰ to the tensile 

direction. High stresses up to 2100 MPa can be noticed in the martensite islands. 

A comparison between the data from reference and the predicted flow curves of the 

investigated DP600 steel is shown in Fig. 3.18. The results of finite element simula-

tions using 2D approach have been compared with reference data, it can be found 

that there are small dissimilarities. The main reason is that, the flow curves of each 

phase are obtained by using inverse analyses, so the used material properties are 

almost the same with the reference data. Additionally, our results are compared with 

experimental results, it can be noticed that, as the volume fraction of martensite 

increases, the effect of dimensionality will become more significant. However, from 

the literature [30], it is stated that, the flow curves of 3D simulation are much closer 

to those of the experimental flow curves compared to those of the 2D simulation in 

all investigated DP microstructures. The most plausible reason of this phenomenon 

is that, in the 2D simulation, planar strain state is adopting during the calculation, 

but in the real tensile test, the specimen deforms three dimensionally. So the 

difference appears, and it increases with the volume fraction of martensite. 

3.6. Conclusions 

Advanced high strength steels, such as the DP steels, exhibit complex ductile 

fracture behavior. In this study, the flow stress of the DP590 and DP600 steels is 

predicted by using 2D RVE models generated from real microstructures. From 

comparisons with experimental results, only pretty small dissimilarities are observed. 

And, these dissimilarities may result from several reasons as discussed above. 

Therefore, it can be concluded that micromechanical modelling can predict the flow 

stress of DP steels.  

Due to the microstructure inhomogeneity of DP steels, material failure can be 

predicted as the result of plastic strain localization in RVE during the deformation 

process. Shear bands can be observed on average 45
⁰
 to the tensile direction. 

Therefore, as the plastic flow accumulating, shear dominant failure mode continues 

and leads to final failure of the 2D RVE model. This phenomenon has been verified 
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by the observation of Hosseini-Toudeshky et al. [20]. So, further RVE models with 

fracture models can be developed in future work. 

However, it is relatively difficult to get the real microstructure of DP steel. During 

the acquisition of the real microstructure, it is necessary to cut specimens, to polish 

samples, to take micrographs. This whole procedure may take one week to generate 

a proper RVE model. Therefore, there is a necessity to generate artificial 2D or 3D 

microstructures using automated procedures for grain generation and coloring 

algorithms for phase assignment to replace RVEs based on real microstructure. 

Moreover, a good RVE should be constructed based on such a way that the shape, 

morphology, size and randomness of constituent phases involved are representative 

of the microstructure under consideration. Therefore, micromechanical volume 

elements, which are generated from artificial microstructures with different 

parameters, are considered in next chapter.  
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Chapter 4 

Micromechanical model based on artificial microstructure 

In this chapter, an artificial microstructure generator with an enhanced novel phase 

assignment algorithm based on material topology optimization is proposed to 

investigate the mechanical properties of DP steel. With this algorithm, phase 

assignment process is performed on a modified Voronoï tessellation to achieve the 

targeted representative volume element (RVE) with a good convergence. This 

method also includes a proper orthogonal decomposition (POD) reduction of flow 

curves (snapshots) to identify the optimal controlling parameters for DP steel. This 

numerical method significantly improves the representation of the generated RVE 

with low computational cost. The proposed method is verified using a DP590 steel 

which indicates a good agreement with experimental material behavior and the 

prediction from RVE based on real microstructure. Predictions of plastic strain 

patterns including shear bands using the artificial microstructure closely resemble 

the actual material behavior under similar loading conditions. Robustness of this 

approach provides a new dimension for RVE development based on artificial 

microstructure which can effectively be implemented in material characterization. 

4.1. Artificial microstructure generator 

4.1.1 Modified Voronoï tessellation 

Voronoï tessellation allows the generation of artificial microstructures with 

randomly distributed and orientated grains for metallic or ceramic materials. This 

kind of tessellation is a nearest neighbor diagram determined from a set of 

generating seeds. Since the resulting diagram is mainly affected by the choice of 

Voronoï generating seeds, a modified point set has been used to overcome the 

shortcomings (e.g., the inexact estimation of grain size and nearest neighboring 

grain number) exhibited by in the standard tessellation generated from a pseudo-

random sequence [40,42,43]. The modified point set is generated using Halton 

(quasi-random) sequence [46], which statistically exhibits low discrepancy. 
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Halton sequence is constructed using a deterministic method that uses coprime 

numbers as its bases. An integer n in decimal notation can be written in base v as: 

1

m
i

i
i

n w v


  (4.1) 

where w denotes the coordinate of each basis. Therefore, the n-th number in Halton 

sequence of base v can be given by: 

   1

1

,
m

i
i

i
h n w v 



v  (4.2) 

Throughout the construction of Halton sequence, the distribution of the sampling 

points which are considered as the Voronoï seeds, is more uniform than that of 

pseudorandom sequence. 

 

Figure 4.1: Construction of a periodic set of Voronoï generating seeds. 

Since periodic microstructures have favorable numerical properties in the context of 

computational homogenization [45], these seeds are repeated three times in each 

direction to ensure the periodicity of the modified Voronoï tessellation, as shown in 

Fig. 4.1. In order to demonstrate the advantages of the modified Voronoï tessellation, 

an example has been compared with the standard one, as shown in Fig 4.2. Two sets 

of seeds are generated from Halton (quasi-random) and pseudo-random sequences, 

respectively. The pairwise distance of each seed set follows the same normal 
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distribution, in which the average value and standard deviation are 0.52 m and 0.25. 

According to the generation mechanism of Voronoï tessellation, the distribution of 

pairwise distance can directly represent the size of resulting cells. For example, if 

the average distance between a seed and its surrounding neighbors is longer, the size 

of the corresponding Voronoï cell will be larger. Therefore, these two parameters 

that are the average value and the standard deviation of the pairwise distance 

distribution, can be utilized to control the size distribution of the generated Voronoï 

cells. 

 

Figure 4.2: Square periodic Voronoï tessellations including 900 cells generated for: 

(a) modified one using Halton (quasi-random) sequence and (b) standard one using 

pseudo-random sequence. Distribution of cell area in each case: (c) modified and (d) 

standard tessellations. 

In general, RVE size has a significant influence on the simulation results. The size of 

a remarkable RVE has to be sufficiently large to represent all microstructural 

features while that should also remain small enough to be treated as statistically 

homogeneous during the calculation of effective properties. In the studies of 

Ramazani et al. [21,30], it has been concluded that the acceptable size of RVE for 

DP steel can be considered as minimum of 24 m while it contains at least 19 

martensite islands, since periodic boundary conditions was imposed. Likewise, we 

consider 2D RVE models with a size of 25 m × 25 m. Fig. 4.2a and b show the 

modified and standard Voromoï tessellations including 900 cells generated based on 
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these two seed sets. Fig. 4.2c and d also illustrate the area distribution of Voronoï 

cells for the modified and standard tessellations, respectively. 

 

Figure 4.3: Voronoï cells with bad aspect ratio (green) and extremely small cell (red) 

in the standard Voronoï tessellation. 

From this comparison, both of the two generated Voronoï tessellations have the 

average cell area of 0.69cellA  m
2
. However, the modified tessellation shows a 

standard deviation of 0.17 which is less than half of the standard one (0.38). It 

clearly indicates that the modified Voronoï cells generated from Halton sequence are 

more regular than the other. This can effectively avoid the appearance of bad aspect 

ratio and extremely small cells in the artificial microstructure, as shown in Fig. 4.3. 

Moreover, the modified Voronoï tessellation is generated directly from Halton 

sequence, no additional computational cost on iteration to control the grain size 

distribution and grain morphology. Further details are included in Section 4.3 to 

show other advantages of the modified Voronoï tessellation on prediction of flow 

stress of DP590 steel. 

4.1.2 Phase assignment algorithm based on topology optimization 

In the previous section, a modified Voronoï tessellation is generated to represent the 

polycrystalline aggregate in DP microstructure. With the modified Voronoï 

tessellation, an automated process needs to be developed to assign the appropriated 

phases (martensite and ferrite) to each cell. In order to perform the automated phase 

assignment process, two controlling parameters proposed by Fillafer et al. [43], are 

utilized in this study to confine the solution space. These two parameters, the 

martensite phase fraction MP and the neighboring coefficient of martensite grains MC , 
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which consider not only the martensite phase fraction but also the dispersion of 

different martensite islands. The expressions of these two parameters are given as: 

2
,  

2

M MM
M M

T MM FM

A LP C
A L L

 


 (4.3) 

where MA and TA denote martensite phase and total area, while MML and FML are 

length of specific martensite-martensite and ferrite-martensite grain boundaries, 

respectively. An illustrative example is given in Fig. 4.4, to show the computation of 

the neighboring coefficient. Fig. 4.4a shows several local Voronoï cells, in which the 

central cell is a martensite grain surrounded by 6 different cells. The length of the 

shared boundaries that can be classified as two sets: MML and FML , are listed in Fig. 

4.4b. The corresponding MC is computed as 0.27 using Eq. (4.3). Accordingly, it is 

identified that, the value of MP can vary between 0 and 1. But, for a given martensite 

phase fraction, MC cannot satisfy the whole range of [0, 1]. In other words, these two 

controlling parameters are not mutually independent. 

 

Figure 4.4: Illustrative example of the neighboring coefficient of martensite grains

MC : (a) local Voronoï cells (blue: ferrite cells, red: martensite cells) and (b) 

boundary length shared by the central martensite and surrounding cells. 

Within the automated phase assignment process, the modified Voronoï tessellation 

can be considered as the fixed grid, which is similar in material topology 

optimization design. In each modified Voronoï cell, a material density function is 

proposed to determine its phase property: martensite grains with density  = 1, the 

red layer in Fig. 4.5, while ferrite ones with density  = 0, the blue layer in Fig. 4.5. 
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By defining constraints and an objective function, this process is deduced to a 0-1 

discrete value optimization problem, also known as “black-and-white” design. 

Therefore, the material interpolation algorithms in topology optimization can be 

referred to achieve artificial microstructures with proper phase distribution, as 

shown in Fig. 4.5. 

 

Figure 4.5: Artificial phase assignment process and final DP microstructure. 

According to the algorithm related to density-based topology optimization method, 

the controlling parameters in Eq. (4.3), can be rewritten in matrix form: 

,  
T T

M MT TP C 
a E

a Ι Ι E

ρ ρ ρ

ρ
 (4.4) 

where a is the grain area vector, I is uniform vector, E is a correlation matrix of 

martensite islands’ neighboring coefficient. The components of the matrix E are 

obtained by: 
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mnn
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
 (4.5) 

Here, mnL is the boundary length shared by m-th and n-th cells, N is the total amount 

of neighbor cells. By introducing E, the length of grain boundaries can be replaced 

by the material density vector, which only consists of 0 or 1: 
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1  if  

M
e

M


 
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
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x

x
 (4.6) 

where x is the geometry information of each cell. Noting from the definition of , a 

distributed and discrete value problem is formulated in a matrix form. To solve this 
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problem, the most commonly used approach in topology optimization is to replace 

the integer density (0 or 1) by continuous variables [0, 1]. And then, a penalty factor 

p is introduced to easily obtain a convergent martensite density distribution, as the 

so-called “black-and-white” solution [48,51,55]. Therefore, a power form of the 

material density in each cell, also named “pseudo-density”, can be rewritten as: 

 p
e F e M FQ Q Q Q    (4.7) 

where FQ and MQ are the material density of ferrite and martensite, respectively. 

Therefore, the structural optimization problem can be formulated as: 
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where the target controlling parameters
target

MP and
target
MC are predefined based on 

statistical descriptions of DP steel, ea is the area of a Voronoï cell. Here, a heuristic 

updating scheme is introduced to solve this optimization problem: 
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where is a positive moving limit and is a numerical damping coefficient to reach 

the convergent martensite phase distribution. And, the term B is calculated using the 

optimality condition [48,51,55]: 
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 (4.10) 

In Eq. (4.10), the Lagrangian multiplier is calculated using bisection algorithm to 

ensure the satisfaction of phase fraction constraint. The other two terms, eJ Q  and

M eP Q  can be obtained in matrix form. 
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Figure 4.6: Illustration of the phase assignment algorithm based on topology optimi-

zation. 

A schematic illustration of this phase assignment algorithm is shown in Fig. 4.6. In 

summary, the algorithm consists of the following steps: 

(i) the initial material density of each Voronoï cell is given with the value of 

the targeted martensite phase fraction
target

MP , the initial grayscale grids in Fig. 

4.6 (left); 

(ii) the discrete material density is deduced to the continuous 

“pseudo-density”,  after the integration of the penalization factor in Eq. 

(4.7). Meanwhile, this discrete value problem also becomes a continuous 

one; 

(iii) iterations of the updating scheme in Eq. (4.9) are performed to achieve a 

convergent material density in each cell. The intermediate grayscale color in 

Fig. 4.6 (middle) shows the simultaneous material density after the first 

iteration; 

(iv) a convergent solution is reached to present the optimal phase 

distribution. It is shown as the final grids in Fig.4.6 (right), white and black 

fill colors indicate ferrite and martensite phases, respectively. 

Following the aforementioned steps, artificial DP microstructures are constructed 

rapidly with a good convergence. That is, if the controlling parameters and Voronoï 

tessellation are fixed, our generator will find only one unique optimal phase 

distribution. 
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4.1.3 Numerical examples 

The basic methodology of the novel DP microstructure generator has been presented; 

this section provides several numerical examples and the applied values of other 

design parameters (e.g., penalty factor). With the modified Voronoï tessellation 

described in Section 4.1.1 and predefined sets of controlling parameters, two 

artificial microstructures are constructed using the proposed phase assignment 

algorithm, as shown in Fig 4.7. 

 

Figure 4.7: Example artificial microstructures with 900 grains. 

 

Figure 4.8: History curves of the controlling parameters for the artificial microstruc-

ture with
target

MP = 0.22, 
target
MC = 0.3. 

In these two examples, the penalty factor p and the move limit  are fixed as 3 and 

0.3, respectively. The first example, in which the target controlling parameters are 

set to
target

MP = 0.22 and
target
MC = 0.3, is illustrated in Fig. 4.7a. A fast and stable 

convergence is achieved in 9 iterations, the resulting microstructure is obtained with

MP = 0.22 and MC = 0.29. As discussed previously, due to the interdependence of the 

two parameters, there exists a slight dissimilarity between the target and resulting 
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parameters. While, an exact microstructure is constructed with target controlling 

parameters
target

MP = 0.5 and 
target
MC = 0.55, as shown in Fig. 4.7b. It only takes 12 

iterations to reach the convergence. This illustrates the flexibility of the proposed 

phase assignment algorithm in handling additional parametric variables of phase 

distribution. 

Fig. 4.8 shows the history of the controlling parameters for the first numerical 

example (Fig. 4.7a). The result clearly indicates that, the initial “pseudo-density” of 

each cell is set as the target value of parameter MP . The corresponding MC equals to 

0.22, which is lower than the target value and leads to a positive move in each cell. 

After 9 iterations, the phase distribution comes into a convergence. Therefore, a 

good-quality RVE is constructed with the targeted controlling parameters. 

4.2. Identification of controlling parameters using POD approach 

In this part, numerical tensile test is performed on artificial RVEs generated with 

various predefined controlling parameters. Using the AEH method, each artificial 

RVE can provide a prediction of flow stress. Here, a POD reduction approach [63, 

64] is proposed to identify the optimal controlling parameters for a DP steel. 

Therefore, an inverse procedure is performed by interpolation to obtain the optimal 

values of MP and MC . We can consider a set of predicted flow curves of 

dimensionality N, which are resulted from discrete RVEs with various values of P =

1 1{( ,C ),M MP 2 2( ,C ), ,( ,C )}K K
M M M MP P , as snapshots kS . 

By assembling the snapshot matrix S, the deviation and covariance matrices, D and 

C can be calculated as: 

1 2, , , ,  T
K       D S S S S S S C D D  (4.11) 

where
1

K
kk

K


S S is the average snapshot. Making a reasonable assumption that 

the snapshot number K is much smaller than the dimension of one single snapshot N, 

each snapshot kS can be expressed as a linear combination of eigenvector i of matrix 

C: 
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where  T
ik i k  S S is the projection coefficient of the k-th snapshot on the i-th 

eigenmode. Accordingly, a projection space can be built using the POD modes as the 

orthogonal basis, where its origin is the mean snapshot. Therefore, each flow curve 

can be presented by its coordinates in the projection space. 

 

Figure 4.9: Reconstruction of the k-th snapshot using the retained POD modes. 

In the conventional POD approach, the first l ≪ K significant modes corresponding 

to the largest eigenvalues of the covariance matrix C, can be utilized as a projection 

basis (also called as the retained POD modes) to reconstruct each snapshot: 

1

l

k ik i
i




 S S   (4.13) 

where kS denotes the reconstructed snapshot. Fig. 4.9 gives an illustration of the 

snapshot reconstruction approach using finite number of POD modes. It clearly 

indicates that errors are introduced during the reconstruction process. Moreover, the 

reconstruction error  between the flow curves kS and kS is given in terms of the 

number of retained modes l: 
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The error decreases as the number of retained modes increases. When it comes to an 

acceptable value, corresponding “energetic” modes are utilized to reconstruct each 

snapshot in the projection space. 

 

Figure 4.10: Illustration of: (a) the design space of controlling parameters and (b) 

the corresponding projection space. 

Fig. 4.10a shows an example design space of the controlling parameters MP and MC , 

in which each point provides a flow curve snapshot. After analyzing the relationship 

of the reconstruction error versus the retained POD mode number, the first l modes 

are selected as the new proper orthogonal basis to construct the projection space ( 

space). Each snapshot and the measurement are projected in this space, as shown in 

Fig. 4.10b. The difference between the predicted flow curve 
 and the measured 

one EXP is evaluated using the projected distance
EXP  . Therefore, for a 

given DP steel, an optimal design point of the controlling parameters can be 

identified using the POD approach. The integration of the POD method makes our 

generator suitable for comprehensive applications. 

4.3. Parametric study of artificial microstructure generator 

4.3.1 Identification of optimal controlling parameter for DP590 steel 

As discussed in Section 4.2, a POD approach is proposed to identify the optimal 

controlling parameters for a DP steel. In our case, the measured martensite fraction
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MP of the DP590 steel is equal to 0.22. And, the martensite neighboring coefficient 

is assumed to vary in the range of [0.05, 0.5] to generate a set of artificial RVEs 

using the same modified Voronoï tessellation. The POD approach is applied to deal 

with the resulting flow curves and the reconstruction error is calculated using Eq. 

(4.14), as shown in Fig. 4.11a. Hence, this identification process becomes a 1D 

problem since the controlling parameter MC is only varied to generate these discrete 

RVEs. It can also be seen that, the first most “energetic” mode already decreases the 

error to 0.04%.  Consequently, only one mode is enough to reconstruct these flow 

curve snapshots. 

 

Figure 4.11: POD reduction: (a) reconstruction error and (b) snapshot projection in

1 -space; red star: the projection of measurement, black dot: flow curve of RVE 

with optimal controlling parameters. 

Fig. 4.11b shows the projection coefficient of each snapshots in 1 -space that is 

reconstructed using the first most “energetic” mode. The measured flow curve of the 

DP590 steel is also projected in the space ( EXP in Fig. 4.11b), as a priori. In the 

projection space, if a point is nearer to the experimental star, the predicted flow 

curve of this RVE is closer to the measurement. We can observe that the RVE 

generated with MC = 0.3 ( OPT in Fig. 4.11b) provides the best fit with the measure-

ments. 
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Figure 4.12: Comparison between the measurements and predicted flow curves of 

artificial RVEs using the modified Voronoï tessellation with controlling parameters: 

(a) MP = 0.22, MC = 0.3 and (b) MP = 0.22, MC = 0.25. 

The flow curves from artificial RVEs with different martensite neighboring 

coefficients are compared with the measurements, as show in Fig.4.12. The 

prediction of the artificial RVE with optimal controlling parameters is in good 

agreement with the experimental results. It indicates that the proposed POD 

approach is efficient to identify the optimal controlling parameter for a DP steel. 

The artificial microstructures with MC of 0.3 and 0.25 are also shown in Fig. 4.12a 

and b. By comparing these two microstructures, the martensite phase distribution in 

the first one (Fig. 4.12a) is more aggregative than the second one (Fig. 4.12b). 

Moreover, it is evident that the RVE with smaller MC underestimates the flow stress 

of DP590 steel. The main reason of this phenomenon is that, the phase interface 

between ferrite and martensite in Fig. 4.12b is longer than in Fig. 4.12a. Since the 

existing heterogeneity at grain level tends to cause strain localization, the 

microstructure with longer ferrite-martensite interface boundary is prone to require 

less energy to develop the same plastic deformation. This confirms that the choice of 

the controlling parameters is proper to manipulate the phase assignment in artificial 
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microstructure. Therefore, the phase assignment algorithm based on topology 

optimization is able to cover a relatively comprehensive design space. 

4.3.2 Benefits of RVE generation within the modified Voronoï tessellation 

Since a modified Voronoï tessellation is proposed in this study, this section focuses 

on investigating the influence of the tessellation used to generate the artificial RVE.  

 

Figure 4.13: Comparison between the measurements and predicted flow curves of 

artificial RVEs generated from: (a) modified and (b) standard Voronoï tessellations, 

with same controlling parameters: MP = 0.22, MC = 0.3. 

In Section 4.1.1, periodic Voronoï tessellations are generated, in which Halton and 

pseudo-random sequences are utilized as generating seeds, as shown in Fig. 4.2. 

Moreover, optimal controlling parameter MC is identified in the previous section. 

Using the phase assignment algorithm in Section 4.1.2 with the same controlling 

parameters, corresponding DP microstructures are constructed based on the 

modified Voronoï tessellation and standard one, as shown in Fig. 4.13a and b. It can 

be clearly seen that, in the RVE generated from standard tessellation, there exists 

martensite grains with extremely large or small size and bad aspect ratio (Fig. 4.13b); 

these kinds of martensite grains have a significant influence on the martensite 
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neighboring coefficient MC , while contribute limitedly to the martensite phase 

fraction MP . Moreover, big martensite clusters are found in the RVE from standard 

tessellation, which affect the formation of shear bands along the ferritic-martensitic 

interface. 

Fig. 4.13 also illustrates the comparison between the measurements and predicted 

flow curves from artificial RVEs. The RVE generated from the standard Voronoï 

tessellation grossly underestimates flow stress of DP590 steel. As discussed before, 

the existence of martensite grains with extreme size or bad aspect ratio causes that 

the variability of grain size is underestimated, while the number of nearest 

neighboring grains is overestimated. In addition, the grain morphology of the 

modified Voronoï tessellation is more regular than the standard one. It can reflect 

accurate martensite contiguity and morphology, which confirms the suitability of the 

proposed microstructure generator. 

The results in Fig. 4.12 and 4.13 indicate the influence of controlling parameter MC
and Voronoï tessellation on the generated RVE and its flow curve prediction, 

respectively. Therefore, the RVE generated by predefining the optimal controlling 

parameters within the modified Voronoï tessellation, is called as the optimal 

artificial RVE in the following content. 

4.4. Validation of the optimal artificial RVE 

As presented in Section 4.3.1, optimal controlling parameters are identified using 

the proposed POD reduction approach. Although the prediction of effective flow 

stress concurs the measurements, the local plastic deformation of the optimal 

artificial RVE must be validated by comparing with the SEM-based RVE. Meshed 

FE models of SEM-based and optimal artificial RVEs of DP590 steel are shown in 

Fig. 4.14a and b. 

Tensile test simulation is performed on RVE models by prescribing a periodic 

boundary condition. In the periodic boundary condition, a global plastic strain of 17% 

is imposed to deform the RVEs, which guarantees that the stress level is below the 

material UTS (the uniform elongation is 18.5%). The results are compared with the 

measurements, as shown in Fig. 4.15. A small discrepancy is observed that, the 

simulated curves are slightly higher than the experimental result. This can be 

attributed to the utilization of plane strain assumption in the numerical simulations, 
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while the real specimen is subjected to 3D stress conditions. The similar difference 

has also been reported by Ramazani [30], and it increases with the volume fraction 

of martensite. Nevertheless, the SEM-based and optimal artificial RVEs provide 

accurate predictions of flow stress for DP590 steel. 

 

Figure 4.14: FE models with 0.25 m element size and 25 m edge length 

corresponding to: (a) SEM-based and (b) optimal artificial RVEs. 

 

Figure 4.15: Comparison of between the measurement and the predicted flow curves 

of SEM-based and optimal artificial RVEs. 

Fig. 4.16 and 4.17 show the equivalent plastic strain distribution in the SEM-based 

and optimal artificial RVEs at various global plastic strains. Although no material 

fracture or damage model is introduced, it is clearly found that shear bands are 
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formed in the ferrite matrix near martensite grains (Fig. 4.16c and Fig. 4.17c). Shear 

bands and localized plastic strain are caused by the heterogeneous microstructure of 

DP steel. Further details are shown in Fig. 4.18, which indicates the equivalent 

plastic strain distribution at global strain of 15.8% in the SEM-based and optimal 

artificial RVEs, and shear bands are located in the red ellipses. The direction of these 

shear bands is around 45⁰ to the tensile loading direction. It can make a reasonable 

assumption that, if a ductile fracture model (e.g., GTN model) is adopted in ferrite 

matrix, as plastic flow accumulating, voids or microcracks are nucleated and formed 

in the strain localization zone. Moreover, it is notable that, the validation of the 

optimal artificial microstructure is performed with the uniaxial tensile test. Due to 

the heterogeneity of the DP microstructure, additional investigations can be 

implemented in the case of biaxial or shear tests. 

 

Figure 4.16: Equivalent plastic strain distribution in SEM-based RVE at various 

global plastic strain levels of: (a) 5.09%, (b) 10.01% and (c) 15.04%. 

 

Figure 4.17: Equivalent plastic strain distribution in optimal artificial RVE at 

various global plastic strain levels of: (a) 5.09%, (b) 10.01% and (c) 15.03%. 
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Figure 4.18: Equivalent plastic strain distribution at global plastic strain of 15.8% in 

(a) SEM-based and (b) optimal artificial RVEs, shear bands in red ellipses. 

 

Figure 4.19: Cumulative distribution function of plastic true strain in ferritic and 

martensitic elements at global strain of 15.8%. 

In order to validate our generator based on solid data, another comparison of the 

strain patterns in each RVE has been implemented. A statistical approach is adopted 

according to the following steps: firstly, it calculates the distribution of the 

equivalent plastic strain in ferritic and martensitic elements at the global strain of 

15.8%. Secondly, the cumulative distribution function of element number in each 

strain interval is obtained to compare with the SEM-based RVE model, as shown in 

Fig. 4.19. A good agreement is observed from the comparison. This result confirms 
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that, optimal artificial RVE provides a good prediction of plastic strain patterns at 

the element level. 

4.5. Relation between controlling parameters  

The optimal RVE was validated for DP590 steel in previous section. However, the 

identification process of the controlling parameter MC needs to use the measured 

flow stress as a priori. That will significantly hold our protocol back to obtain the 

homogenized flow stress for DP steels in the practical application. Therefore, this 

section will focus on building interpolation between two controlling parameters ( MP
and MC ) based on limited number of trials on DP steels. 

 

Figure 4.20: (a) Optimal artificial RVE with controlling parameters MP = 0.55, MC = 

0.56, and (b) the corresponding FE model for DP980 steel. 

In order to construct the interpolation relationship between these two controlling 

parameters, another numerical application has been performed on DP980 steel by 

following the steps to obtain the optimal RVE. The corresponding controlling para-

meters are: MP = 0.55, MC = 0.56. The same element of 0.25 m is utilized to 

discretize the resulted RVE. The optimal artificial RVE and FE model are shown in 

Fig. 4.20a and b, respectively.  

By integrating the flow curve of each single constituent phase that is computed 

based on the dislocation theory and local chemical composition of DP980 steel, 

homogenized flow curve is compared with the measurement, as shown in Fig. 4.21. 

As presented in Section 4.4, the same discrepancy is observed from the comparison. 

The simulated flow curve from optimal artificial RVE is slightly higher than the 

experimental one.  
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Figure 4.21: Comparison between the measurements and the predictions from the 

optimal artificial RVE for DP980 steel. 

Steel degree MP  MC  

Pure Ferrite 0 0 

DP590 0.2204 0.2933 

DP980 0.5522 0.5605 

Pure Martensite 1 1 

Table 4.1: Steel degree and the corresponding optimal controlling parameters 

identified using the POD approach. 

Therefore, the identified controlling parameters are validated for this DP980 steel. 

This couple of parameters is considered as the first group of trial data to obtain the 

interpolation relationship. Additionally, the controlling parameters related to pure 

ferrite and martensite are (0, 0) and (1, 1), respectively. Together with the optimal 

controlling parameters identified for DP590 steel, there are four couples of trial data, 

which are listed in Table 4.1, to construct a 3rd order polynomial interpolation 

relationship between the martensite phase fraction MP and the neighboring coeffi-

cient of martensite grains MC . The form of the aforementioned polynomial inter-

polation is given as: 
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Figure 4.22: Interpolation relationship between the two controlling parameters based 

on limited number of trails on DP steels. 

Fig. 4.22 shows the neighboring coefficient of martensite grains MC as a function of 

the martensite phase fraction MP , and the trial points are depicted by red stars. It 

indicates that there exists a positive correlation between these two parameters. With 

this correlation function and martensite phase fraction, the parameter MC is 

computed. Therefore, an optimal RVE is generated based on the statistic description 

of microstructure from experimental measurement or phase transformation simula-

tion. Moreover, the flow stress of target dual-phase or multi-phase material can be 

calculated using the asymptotic homogenization. In this way, our methodology gains 

dramatic advantages in industrial application. 

4.6. Conclusions 

In this chapter, we proposed a novel artificial generator based on topology optimiza-

tion to reconstruct the microstructure of DP steel. A modified Voronoï tessellation 

generated from Halton sequence, was utilized as the polycrystalline aggregate in the 

generator. Two microstructure parameters were introduced to control the phase 
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assignment process in the DP steel. The novel phase assignment algorithm deduced 

the discrete value problem to a continuous one by defining a so-called “pseudo- 

density” within the modified Voronoï tessellation. Artificial DP microstructures were 

convergently and rapidly generated with predefined controlling parameters. The 

optimal controlling parameter MC = 0.3 of DP590 steel has also been identified by a 

POD approach, which considered the experimental measurement, as a priori. 
Therefore, an optimal artificial RVE was constructed using the modified Voronoï 

tessellation and the optimal controlling parameters. The flow stress prediction using 

the optimal RVE agrees well with the measurements. 

The effect of the used tessellations on the overall flow stress prediction of DP steel 

was investigated, in which the standard Voronoï tessellation is generated from 

pseudo-random sequence. The results showed that, grains with extreme size and bad 

aspect ratio existed in the RVE generated using the standard Voronoï tessellation. 

These low-quality grains caused the underestimation of the grain size variability and 

the overestimation of the nearest neighboring grain number variability, which further 

leads to a gross underrate on the overall flow stress prediction. Moreover, big 

martensite clusters were formed within the microstructure combining the phase 

assignment algorithm and the standard tessellation. This phenomenon affects the 

formation of shear bands along the ferritic-martensitic interface, which leads to an 

unreliable prediction. However, the utilization of the modified Voronoï tessellation 

in the RVE construction effectively prevents these drawbacks. 

In order to validate the novel artificial generator, comparison of overall flow stress 

and plastic strain distribution was performed between SEM-based and optimal 

artificial RVEs for DP590 steel. It was shown that both of these RVE simulations 

can provide an accurate prediction. Moreover, shear bands were observed along the 

interface of different phase in each case. The path of shear bands is around 45⁰ to 

the loading direction. It also concurs that, with the introduction of ductile fracture 

model, voids and microcracks can be formed in the strain localization zones. The 

statistical comparison of the equivalent plastic strain in ferritic and martensitic 

elements also showed that the optimal artificial RVE performed as well as the SEM 

based RVE at the element level.  

In order to handle the high-dimension problems, such method has been extended 

with a polynomial interpolation approach to construct the correlation between these 

concerned parameters. Moreover, during the extension of the generator in 3D case, 
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the key difficulty is that, the computation time dramatically rose as dimension 

increases. Therefore, in future, further investigations will be performed to overcome 

these difficulties. 

Overall, the promising results and the robustness of the proposed generator orient a 

new approach to predict the flow stress of the heterogeneous materials resulting 

from industrial forming processes. 

  



 

 

Part II. Damage 
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Chapter 5 

Introduction 

The previous part described the DP steel as the combination of hard martensite 

islands embedded into soft ferrite matrix, which enhances its mechanical properties. 

We also presented the possible ways to predict the flow stress of DP steel before the 

appearance of large deformation and fracture. However, the application of DP steel 

in the automotive industry is usually limited by its ductile fracture behavior that will 

finally lead to damage or failure of workpieces in carbodies after long-term 

utilization or traffic accident. Therefore, prediction of ductile fracture and damage of 

metals in engineering structure is an important but difficult topic in the automotive 

industries. During the last decades, a growing interest has been raised in ductile 

fractures modelling, which can be adopted in both sheet metal forming simulations 

as well as subsequent crash simulations. 

5.1. Background 

5.1.1 Damage problems 

Damage is usually described as complex physical phenomena concerned with the 

initiation, propagation and fracture of materials in engineering structures. In damage 

mechanics, typical engineering approaches and analysis are utilized to model the 

complex phenomena. According to Dusan Krajcinovic [81], “It is often argued that 

the ultimate task of engineering research is to provide not so much better insight into 

the examined phenomenon but to supply a rational predictive tool applicable in 

design”. The theoretical foundations and hypotheses of damage mechanics rely 

heavily on continuum mechanics. Most of the methods devoted to damage 

mechanics use state variables or indicators to represent the effects of damage on the 

remaining strength of material. The involved state variables can be measurable, e.g. 

void density, or computed based on the effect they have on macroscopic property, 

e.g. stiffness. Initially, the material is pristine, or intact. A fracture activation 

criterion is needed to predict fracture or damage initiation. It is necessary to develop 

a damage evolution model or method, since damage evolution does not continue 
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spontaneously after initiation. Combination of additional phenomenological 

parameters (e.g. void volume fraction) and hardening components need to be 

formulated in the evolution model. 

 

Figure 5.1: Ductile and brittle fracture behavior. 

Generally, the damage mechanism can roughly be classified as brittle and ductile 

(Fig. 5.1). The brittle fracture occurs with little or no plastic deformation, which 

gives no warning of material failure or damage. In contrast, obvious warning (e.g. 

necking, large elongation) occurs before the onset of ductile fracture in engineering 

structures. The ductile fracture or damage will be our interest. 

 

Figure 5.2: Damage problems in automotive: (a) edge fracture observed in carbody 

manufacturing [82] and (b) car crash test of a 2000 Hyundai Elantra [83].  

The ductile fracture, which occurs with large plastic strain, is frequently observed in 

metal forming processes [82] (Fig. 5.2a). Moreover, another situation where the 
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ductile damage often happens, is in traffic collision or car crash test (Fig. 5.2b). 

Therefore, the accurate prediction or simulation of ductile fracture plays a 

significant role in the design and manufacture of lightweight vehicles. And, our 

interest will remain in the ductile damage of DP steel. 

5.1.2 Damage of Dual-Phase steel 

Generally, the damage of ductile materials is caused by the appearance of voids at 

micro scale. During more than three decades, numerous researchers have observed 

the ductile damage with help of microscropy, X-ray tomography, and divided it in 

three specific steps: nucleation, growth, and coalescence of micro voids. As shown 

in Fig. 5.3b, the damage of DP steel begins with micro-cavity nucleation, which 

often localized at weak material points, such as grain boundaries, martensite/ferrite 

interface. Then, as the voids grow and coalesce, local and micro cracks are formed 

and propagate in the material. 

 

Figure 5.3: (a) Tensile test of notched plate specimen, (b) evolution of the damage 

process in a DP steel related to the macroscopic loading evolution [84]. 

According to the work of Avramovic et al. [85], the SEM observations of DP600 

(Fig. 5.4) clearly reveals the sites of void nucleation, which mainly occurred by four 

different processes. At the strain levels of 0.5 and 1.02, a small amount of voids 

were nucleated by martensite particle cracking (Fig. 5.4b and c). The kind of void 
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nucleation mostly appears on coarse martensite particles, or particles intersected 

through plate-like martensite phase. And, the resulting voids usually do not seem to 

grow significantly, as shown in Fig. 5.4c and d. When it enters the high strain stage, 

the main source of void formation is along the ferrite/martensite interface by 

debonding. As plastic strain increases, the voids grow longitudinally along the grain 

boundaries (Fig. 5.4d and e). During the deformation process, these voids become 

efficiently large and the density increases, which contribute dramatically to the 

propagation of ductile cracks. Finally, the void coalescence results in shear bands 

(the dash line in Fig. 5.4f). 

 

Figure 5.4: Void nucleation in the DP600 steel at various equivalent plastic strains: 

(a) on inclusion, (b) and (c) martensite cracking, (d) and (e) debonding at ferrite/-

martensite interface and propagation along the ferrite grain boundaries, (f) 

coalescence of voids close to fracture surface [85]. 

5.2. Ductile fracture 

As described in previous section, the ductile fracture is commonly presented by the 

nucleation, growth and coalescence of micro voids that ultimately results in crack 

formation and propagation. McClintock [86], Rice and Tracey [87] implemented 

their investigation on the evaluation of cylindrical and spherical inclusions in ductile 

matrices. Their researches have shown that void growth in ductile material is 
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governed by the stress triaxiality. Gurson [88] proposed a porous plasticity model 

that considers the void volume fraction in the ductile matrix as state variable. It 

describes the growth of voids and its influence on material’s load carrying capacity 

before failure. Moreover, it makes use of a fundamental hypothesis that the ductile 

fracture takes place as the void volume fraction reaches critical value.  

 

Figure 5.5: Stage of ductile failure: void nucleation, growth and coalescence 

according to GTN model [16]. 

According to these ductile fracture criteria, microstructure evolution represents a 

key feature to describe the softening mechanism (e.g. the reduction of the overall 

strength, caused by void growth and coalescence). Like the Gurson model, it 

assumes that voids always keep their shape while growing; when deviatoric stress 

state becomes dominant, alternative models have been proposed to achieve accuracy. 

The original Gurson model has been extended by considering the loss of load 

carrying capacity caused by void coalescence (e.g. Gurson-Tvergaard-Needleman 

model [89], shown in Fig. 5.5), by incorporating enhanced strain hardening models 

[90], by describing void shape effects [91] and by incorporating plastic anisotropy 

[92] and shear [93].  

Alternatively, phenomenological models have been developed to predict ductile 

fracture without modelling micro voids. The development of these models is based 

on a reasonable assumption that ductile failure appears when a weighting indicator 

of the accumulated plastic strain reaches a critical threshold. According to the work 

of Bao and Wierzbicki [94], each of these models cannot provide an accurate 

prediction of fracture behavior for a given material within a large coverage of stress 
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triaxialities. Therefore, Bai and Wierzbicki [95,96], extended the classical 

Mohr-Coulomb fracture criterion to predict ductile fracture, which is also called 

modified Mohr-Coulomb (MMC) criterion. The weighting indicator of MMC 

criterion includes the equivalent plastic strain, stress triaxiality and Lode angle 

parameter of the stress state. 

 

Figure 5.6: Experimental test plan on aluminum 2024-T351 covering large stress 

triaxiality range in the work of Bao et al. [94,95].  

Recently, numerous experimental investigations have been performed to 

characterize and calibrate the material parameters prerequisite of different fracture 

criteria for various ductile metals. Clausing [97] performed an experimental study 

on axisymmetric and plane strain tensile fracture specimens of several materials and 

found a lower ductility for plane strain loading condition. Hancock and Mackenzie 

[98] studied the relationship between the ductility and the stress triaxility for three 

different steels. They used smooth and U-notched axisymmetric tensile specimens 

and concluded that for all studied materials, the ductility is decreasing with stress 

triaxiality; they also found good agreement between their experimental results from 

notched axisymmetric specimens and flat grooved plane strain specimens and 

concluded that the ductility was determined by stress state, and not the strain state. 
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Using split Hopkinson bars, Johnson and Cook [99] performed dynamic torsion and 

notched tensile tests at different strain rates and temperatures. They concluded that 

the effect of stress triaxiality on the ductility of their tested metals was more 

significant than that of strain rate and temperature. 

Bao [94] carried out an extensive experimental program on aluminum 2024-T351 

covering stress triaxialities ranging from compression to multi-axial tension, as 

shown in Fig. 5.6. Bao’s results proposed a transition region between shear and 

uniaxial tension, where ductility increases with stress triaxiality. Mohr and Henn 

[100] proposed a butterfly-shaped flat specimen to study the onset of fracture over a 

wide range of stress triaxialities. When using this specimen in conjunction with a 

dual actuator system [101], virtually any loading condition between pure shear and 

transverse plane strain tension can be imposed. In most fracture experiments on 

sheet materials, the localization of plastic deformation through necking cannot be 

avoided. After necking, the stress fields within the specimen gage section become 

non-uniform and three-dimensional in nature. Consequently, the stress history prior 

to fracture can no longer be estimated from the force history measurements using 

simple analytical formulations. Unless reliable in-situ neutron diffraction stress 

measurements [102] and three-dimensional tomography based digital image 

correlation measurements [103] are available, the stress and strain histories prior to 

fracture need to be determined in a hybrid experimental-numerical approach. In 

other words, a detailed finite element analysis of each experiment is required to 

identify the stress and strain fields. This forced marriage of experimental and 

computational mechanics involves the risk of adding up the errors from both the 

experiment and the numerical simulation [104]. 

5.3. Research objectives 

The second of this PhD thesis is the investigation of ductile fracture models and 

ductile damage mechanism of DP steel and a new calibration procedure with limited 

experimental tests, including smooth and notched specimens under uniaxial loading 

condition. The loading environment is room temperature and quasi-static loading; 

the used DP steel is assumed to be isotropic. 

Commonly, the approaches include experimental investigation, finite element (FE) 

simulation and analytical solutions. In the experimental work, the uniaxial tests have 

been performed on both smooth and notched specimens. These tests could provide 
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the load-displacement response, the location and position of fracture initiation, as 

well as the fracture propagation mode. FE simulations are used to calculate all the 

stress states and strain components at the point of fracture initiation. Thus, this part 

proposes a bi-level reduced surrogate model to calibrate the material parameters in 

ductile fracture criteria. The method assembles local critical elements associated 

with global models. The surrogate model of fracture strain constructed using diffuse 

approximation [105,106] and the local element, reduces the computational effort for 

calibrating material parameters. Global fracture simulations are preformed to update 

the target fracture strain and to compute the corresponding failure onset 

displacement. Convincing results are obtained via successive applications of design 

of experiments (DOE) [64,107] and enhanced design space transformation 

algorithms. The proposed identification protocol is validated for specific DP steel. 

Robustness of the method needs to be confirmed with different initial parameter 

values. 

In order to achieve the above research goals, our work can be divided into the 

following parts: 

 Study different types of ductile fracture and damage model, select the 

proper one to describe and predict damage of the investigated material;  

 Design and carry out the experimental test plan, record the response of 

load-displacement curve; 

 Perform numerical simulations without fracture model of same tested 

specimens to record stress states of the local critical elements; 

 Develop a bi-level reduced surrogate model to calibrate the material 

parameters in the chosen fracture criterion, verify its reliability; 

 Perform and demonstrate the new identification protocol by application on 

specific DP steel. 

Therefore, the structure of this part is organized in the following manner: Chapter 

6 presents the review of popular ductile fracture and damage models; Chapter 7 

gives details of the experimental work and the bi-level reduced surrogate model 

for identification of material parameters in MMC criterion that is constructed 

using DOE and diffuse approximation approaches. 
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Chapter 6 

Literature review 

The previous chapter gives a brief review of the ductile damage problems of DP 

steel in automotive industry. Although the special microstructure of DP steel makes 

it possess several advanced mechanical properties, these ductile damage problems 

limit its application in engineering structures. Therefore, this chapter will describe 

the review, which is focused on the ductile fracture and damage modelling approach. 

Moreover, it presents several methods including experimental and numerical 

techniques, to calibrate the material parameters for fracture criteria. 

6.1. Ductile fracture criteria 

Recently, prediction of ductile fractures of DP steels in engineering structures is 

becoming a topic of great importance in the automotive industry. For example, 

research investigations have been performed by industrial engineers to reduce the 

weight of carbodies while maintaining their performance and safety features. As the 

massive application of DP steel in car manufacturing, the strength has been 

significantly increased, the ductility has been decreased. Therefore, ductile fracture 

becomes a major challenge in the design of vehicles with DP steel. There are various 

types of fracture, such as, forming fracture, edge crack, crushing fracture. Over 

several decades, different micro-/macroscopic models have been proposed to 

describe the ductile fracture of metals. Classical cylindrical inclusion growth model 

[86], spherical hole growth model [87], GTN porous plasticity model [88,89], 

damage mechanics [108], phenomenological fracture models (e.g. 

Cockcroft-Latham damage model [109], Wilkins model [110], Johnson-Cook model 

[99], cohesive element approach [111], and MMC model [95,96]). This section is 

concerned with the aspects of GTN and MMC fracture criteria. 

6.1.1 Gurson-Tvergaard-Needleman (GTN) fracture criterion 

Gurson [88] proposed a damage mechanics material model based on the observation 

that available plasticity models, such as the von Mises model, were predicting 
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incompressibility, although ductile rupture could involve significant porosity. 

Tvergaard and Needleman [89] modified the basic model through replacing the void 

volume fraction f by the modified damage parameter
*f in the GTN model to reflect 

the void coalescence process after the void volume fraction reaches a critical value. 

Today, the Gurson damage model [88] with this modification is the model of choice 

for crash simulations. The basic yield potential function for a ductile matrix material 

containing a spherical inclusion can be expressed as: 
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where is the von Mises stress, 
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Y is the yield stress of the principal phase material, which is a function of the 

equivalent plastic strain p in the ductile matrix, m is the hydrostatic stress and Ι is 

the second-order identity tensor. In the temperature and strain rate independent GTN 

model [89], it exists 9 free parameters. 1q , 2q and 3q are phenomenological fitting 

parameters; 1q affects the yielding by modifying the void volume fraction, 2q can be 

considered as a corrective factor for the hydrostatic stress, and 3q is related to 1q with 

2

3 1q q . Consequently, these three parameters have an influence on the form of the 

yielding surface. Moreover, the modified damage parameter
*f that takes account of 

void nucleation and coalescence is defined by: 
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where Cf is the critical void volume fraction, Ff is the void volume fraction at which 

material completely loses stress carrying capability (also called void volume fraction 

at fracture). Together with the initial void volume fraction 0f , they are another three 

specific parameters. The parameters N , Ns and Nf , which define the strain 

controlled void nucleation under loading, will be explained as follows. 
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In metal plasticity, isotropy assumption is used in the yield surface. A plastic flow 

rule is adopted: 

GTN
p 








 (6.4) 

where is the plastic multiplier. Since the plastic hardening of the ductile matrix is 

described using the function ( )Y p  . The evolution of the equivalent plastic strain in 

the matrix material M can be obtained from the plastic work expression: 

 1 :M M pf      (6.5) 

And, the total change of the void volume fraction f is given as: 
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where Gf is the change due to the growth of existing voids and Nf is the change due 

to the nucleation of new voids. Growth of existing voids is based on the law of 

conservation of mass and the assumption that the matrix material is plastically 

incompressible. In other words, the total volume of the main phase material is 

unchanged. Nucleation of the new void occurs principally along the interface 

between ferrite matrix and martensite islands. Different kinds of nucleation criteria 

have been formulated within this general phenomenological framework. In the GTN 

fracture model, it only can be controlled by the plastic strain of matrix material. The 

multiplier A describes the dependence of the void nucleation rate on the main 

effective plastic strain increment. The function A is given as: 
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where Nf denotes the total void volume fraction to be nucleated, N is the average 

nucleation strain and Ns represents the standard deviation of the Gaussian void 

nucleation strain distribution. 

6.1.2 Modified Mohr-Coulomb (MMC) fracture criterion 

The original M-C fracture model [112] has been widely used in rock and soil 

engineering. It could provide a good mechanical behavior prediction for materials 
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which fail in the elastic range or under small plastic strain, like rock, soil, concrete 

and so on. 

A modified version of the M-C model is proposed as an adequate fracture model in 

calibration and identification work. The original M-C model is written in stress 

space and assumes that the fracture occurs when the combined normal and shear 

stresses on any plane of normal vector n meet the following condition [96]: 

 1 2max nc c  
n

 (6.8) 

where 1c is the coefficient of friction and 2c is the shear resistance. Bai and Wierzbicki 

[96] transformed Eq. (6.8) into the space of stress triaxiality ( ), normalized Lode 

angle parameter (  ) and equivalent plastic strain at fracture ( f ) assuming 

proportional monotonic loading, in a spherical coordinate system. The resulting 

explicit expression for the fracture strain is given by [96]: 
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where K and n are the fitting parameters of flow stress obtained using the classical 

Swift law. 3c and c describe the dependence of the underlying plasticity model on 

the third stress invariant. The free model parameters 1 2 3( , , , )c c c c have to be 

calibrated based on fracture experiments. 

In Eq. (6.10), the stress triaxiality is defined as the ratio between the hydrostatic 

stress ( m ) and the von Mises equivalent stress ( ): 

m


  (6.11) 

with     . The Lode angle parameter is normalized as: 
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and lies in the range of 1 1   . The Lode angle is computed using: 

 
   I II III

3

27
cos 3

2

     




  
  (6.13) 

where I II,  and III are the principal stresses. Further details of the space 

transformation are given in the work of Bai and Wierzbicki [95]. 

 

Figure 6.1: Illustration of the MMC fracture criterion in ( , , )f    space. The solid 

line depicts the plane stress condition. 

In order to facilitate the utilization of the MMC model for sheet metal, Wierzbicki 

and Xue [113] proposed a plane stress formulation, in which the stress triaxiality and 

the normalized Lode angle parameter are related by: 
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Therefore, a plane stress fracture curve (the solid line in Fig. 6.1) can be projected 

on the fracture surface (in Fig. 6.1) using Eq. (6.14). Fig. 6.2 depicts the fracture 

locus in the plane ( , )f  , which needs to be calibrated and determined based on the 

designed fracture tests. The analytical stress states of the smooth and notched 

specimens are denoted with red, green and blue dots in Fig. 6.2. 
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Figure 6.2: Projection of the MMC fracture surface in ( , )f   plane. Red, green 

and blue dots depict the stress states of the designed fracture tests. 

In the case of proportional loading, the corresponding damage evolution indicator of 

the fracture model can be expressed using an integration form that is proposed by 

Bai and Wierzbicki [96]. The integral formulation is governed by a linear relation 

between the damage indicator and the equivalent plastic strain: 
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When the limit of strength is reached, the damage indicator ( )pD  of the critical 

material element reaches the threshold value of 1, and leads to element elimination 

from FE model. The fracture onset displacement referred to the critical element 

elimination, is considered as the simulated fracture onset displacement, while the 

exact value is identified from experiments. The calibration of the parameters in 

MMC fracture criterion is performed using an optimization approach to minimize 

the gap between the predictions and measurements. 

Due to the application range and nature of the experimental testing condition, the 

normalized Lode angle parameter is always greater than 0. Based on Eq. (6.10), a 

simplified three parameter version of the modified Mohr-Coulomb fracture (MMC3) 

[114] model can be obtained by setting the parameter c to 1. Therefore, the remain-
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ing unknown parameters become 1 2 3( , , )c c c . By this way, three groups of fracture 

experiments are sufficient to identify those parameters. 

6.2. Calibration of ductile fracture criteria 

In order to integrate the GTN criterion within the FE computation, nine parameters 

1 2 3 0( , , , , , , , , )C F N N Nq q q f f f s f are needed to identify from the experimental 

calibration process. The values 1 21.5, 1.0q q  and 3 2.25q   were recommended 

in the investigations of Tvergaard and Needleman [89]. The initial void volume 

fraction 0f , standard deviation Ns , mean equivalent plastic strain N , volume fraction 

of secondary voids Nf , critical void volume fraction Cf and the final void volume 

fraction Ff should be extracted from the experimental measurements. Several direct 

methods have been proposed to identify these 6 parameters by examining the 

fracture surface and analyzing the particles of the investigated material, namely 

fractography based on X-ray tomography. While, as discussed previously, only three 

groups of fracture tests are necessary to calibrate the 3 unknown parameters for the 

MMC3 criterion. Therefore, the next section will focus on the calibration methods to 

identify the material parameters for different ductile fracture criteria. 

6.2.1 X-ray tomography techniques 

The correct identification of the material parameters in GTN model is a prerequisite 

for successful analysis and prediction of the ductile failure with this model. Ben 

Bettaieb et al. [115,116] investigated the material parameters of a GTN porosity 

based plastic damage model through X-ray tomography measurements method and 

in-situ tensile test. In their work, the porosity evolution was predicted with a micro-

mechanical model combined with 3D experiments tests. Both of damage parameters 

representing the void nucleation and growth need to be quantified for a smooth 

dog-bone specimen of DP steel [117,118]. 

Commonly, the X-ray micro-tomography can be utilized to image and quantify the 

microstructure of multi-phase materials. Various researchers have performed studies 

on damage in ductile materials. In the work of Landron et al. [119], they used the 

tomography setup in the ID15A beam line at the European Synchrotron Radiation 

Facility (ESRF) in France. By combining a high-efficiency scintillator screen, a 

reflecting microscope objective and a fast charge-coupled device (CCD) detector, 
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they acquired an unprecedented radiography with high acquisition speed. The spatial 

beam radiation measured is 2 m and the voxel size is 1.6×1.6×1.6 m
3
.  

 

 

Figure 6.3: Tomographic slices parallel to the tensile direction at the steps: (a) just 

after necking and (b) just before fracture [118]. 

The central area of the dog-bone specimen was utilized to quantify the damage. The 

useful observation volume of the sample was 1×1×1 m
3
 parallelepiped. Only the 

central part, 1.4 mm in height, was imaged during their study, as shown in Figs. 6.3 

and 6.4. In fact, Fig. 6.3a and b show the typical evolution of a reconstructed 

vertical section of the central part of the dog-bone specimen. These sections that are 

parallel to the tensile axis were acquired from the tomographic 3D block at tensile 

test stages: (a) just after necking and (b) just before fracture, respectively. A massive 

amount of cavities that are related to the void nucleation, growth and sometimes 

coalescence are clearly shown in these sections.  

Additionally, in Fig. 6.4, a 3D rendering of the external shape of the specimen 

including the cavities for (a) the initial state and (b) the instant corresponding to the 

fracture onset. In this figure, the ferrite matrix is denoted with semitransparent gray 

color, and the cavities are denoted with black color to present their locations. These 

grayscale images can be directly binarized by defining a threshold to differentiate 

the voxels belonging to the cavities from those belonging to the matrix phase. The 
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perspective view makes the insertion of a scale bar inappropriate. The dimension of 

the reconstructed bloc is 1×1×1.5 mm. It is assumed that the central part of the 

specimen undergoes the highest stress triaxility and strain. However, when necking 

occurs, several points of the matrix material are eliminated from the analysis. These 

material points are far from the neck so that they are the less active zones as far as 

damage is concerned. 

 

Figure 6.4: 3D representation of the population of cavities inside the deforming 

sample in (a) its initial state and (b) just before fracture [118].  

Further details of these kinds of experimental measurements can be found in the 

literatures [116-119]. Although via direct methods, the accuracy of the GTN model 

parameters can be guaranteed, the limitations of this method, such as the experiment 

costs, test equipment and data analysis techniques, are also pretty significant for 

common researchers. Therefore, other experimental and numerical methods are 

proposed to calibrate the GTN and MMC fracture criteria in the following sections. 

6.2.2 Fracture tests and inverse calibration 

As discussed in previous section, the direct methods, such as X-ray tomography 

technique, can be utilized to identify the GTN model parameters. However, for most 

fracture criteria, calibration through direct methods is a challenging task. Hence, 

inverse approaches based on experimental and numerical methods are proposed and 
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developed to identify the fracture model parameters. In these inverse analysis 

approaches, a specific number of fracture tests should be performed to provide nece-

ssary information. This section will focus on describing various types of fracture 

tests and specimens. 

In the work of Dunand et al. [104, 114] , a basic ductile fracture testing program has 

been implemented on specimens extracted from TRIP steel sheets with various 

geometries, which include smooth tensile specimens, tensile specimens with central 

holes and circular notches and butterfly specimens for bi-axial experiments. And, 

experimental measurements of the corresponding fracture tests have been utilized to 

identify the material parameters of MMC model and a shear modified Gurson 

model.  

 

Figure 6.5: Illustrative examples of (a) smooth, notched tensile specimens with a 

circular cutout of (b) 20 mm and (c) 1 mm, and (d) tensile specimen with a central 

hole. 

Illustrative examples of smooth and notched tensile specimens and tensile specimen 

with central hole are shown in Fig. 6.5. Tensile can be performed on these flat 

specimens with tensile test machine under displacement control at a constant 

crosshead velocity. The loading force on the tensile specimen can be recorded by the 

holders of the test machine. In addition, Digital Image Correlation (DIC) is used to 
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measure the relative displacement of specimen boundaries and the displacement 

field at the center of the gage section that is fixed on the specimen. If the equipment 

condition is limited, we can also use the extensometer to record the relative 

displacement. In the measured force-displacement curves, a force peak is reached 

before fracture occurs. It is associated with the onset of through-the-thickness 

necking. And, the first discontinuity or drop in the measured displacement field or 

loading history is defined as the instant of the onset of fracture. The corresponding 

relative displacement of the specimen boundaries is considered as the displacement 

to fracture or fracture displacement. Correspondingly, the analytic values of stress 

state are also given in Table 6.1. And, the fracture strain ( )f is calculated using the 

following approximation: 

0lnf
f

A
A


 

   
 

 (6.16) 

where 0A and fA are initial and fracture cross section areas of a specimen, 

respectively. 

Additionally, bi-axial fracture tests are performed using a dual actuator system [120], 

which permits to apply a combination of normal and transverse loads to the boun-

daries of a butterfly-shaped specimen, as shown in Fig. 6.6a. The schematic illustra-

tion of the dual actuator testing system and bi-axial loading mechanism are also 

depicted in Fig. 6.6b. Due to the specimen geometry, the occurrence of fracture 

initiates at the center of the gage section, which is bounded by the shoulders of 

clothoid shape. Moreover, the fracture is remote from the lateral free edges. The 

ratio of the applied vertical load VF and the horizontal load HF is expressed by the 

bi-axial loading angle : 

tan V

H

F
F

   (6.17) 

In the case of  =0° where only the horizontal load HF is applied on the butterfly 

specimen, it corresponds to pure shear. While, in the case of  =90° where only the 

vertical load exists, the specimen is subjected to the transverse plane strain tension.  
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By varying the magnitude of the horizontal and vertical load, different loading 

conditions or stress states are investigated, such as  =0° (pure shear),  =25° 

(shear-dominated),  =63° (tension-dominated) and  =90° (transverse plane strain 

tension). All the bi-axial fracture experiments need to be performed under force or 

displacement control to enforce a constant loading angle. Displacements of the 

specimen boundaries or displacement field of the whole gage section are recorded 

by extensometer or DIC technique during the experiments. Moreover, the analytical 

stress states are also given in Table 6.1.  

Table 6.1: Five types of classical specimens for plasticity and fracture calibration 

and corresponding analytical values of stress states. 

No. Specimen type Stress triaxiality  
Normalized Lode 

angle parameter  

1 Smooth dog-bone specimen 
1

3   
1 

2 Notched tensile specimen 0.4-0.55 0.4-0.6 

3 
Tensile specimen with 

central hole 
0.3 0.9-1 

4 Butterfly specimen 0-0.6 0-0.5 

5 Equibiaxial tensile specimen 
2

3  
-1 

With the experimental measurements of aforementioned fracture testing program, 

the model parameters of the MMC and GTN models can be identified through 

inverse calibration [114].  
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Figure 6.6: (a) Butterfly specimen for bi-axial experiments and (b) schematic of the 

dual actuator testing system [120]. 

In each experiment, two load-displacement curves: the tangential force versus hori-

zontal displacement curve and the axial load versus vertical displacement curve, 

need to be measured. In experiments related to tension-dominated loading condition, 

the vertical load-displacement curves exhibit a peak prior to fracture, which can be 

considered as the onset of localized necking. In the shear-dominated experiments, 

the measured curves increase monotonically until fracture. The fracture 

displacement is defined as the relative (either horizontal or vertical) displacement of 

the specimen boundaries at which a sudden drop of force appears.
 

In the work of Eller et al. [121], an Erichsen-like test with hemispherical punch and 

die radius was performed to obtain a state of equibiaxial tension in three sets of 

boron steel sheets. The specimen geometry and schematic illustration of the loading 

mechanism are depicted in Fig. 6.7a and b, respectively. The experiment is carried 

out on a screw-driven universal testing machine under quasi-static loading condition. 

In order to reduce the effects of friction between punch and specimen, a lubrication 

or tribological system was put between them. The out-of-plane displacement of the 

specimen was measured with extensometer or DIC technique. The displacement is 

defined as the relative vertical displacement between punch and specimen clamp. 
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The applied force versus punch displacement curve increases monotonically until a 

drop in the force level at the instant of the onset of fracture. 

 

Figure 6.7: (a) Equibiaxial tension specimen geometry and (b) schematic illustration 

the loading process [121]. 

As previously presented, the stress state can be characterized in the space ( , )  . 

Various stress states encountered in classical specimens used for fracture testing can 

be uniquely characterized by the above-mentioned set of parameters ( , )  , as listed 

in Table 6.1. And, the analytical values of the stress triaxiality , the normalized 

Lode parameter in terms of measurable quantities are all listed in Table 6.1. 

For the MMC model, three butterfly fracture experiments with loading angle  of 0°, 

63° and 90° and the equibiaxial tensile test, which cover a wide range of positive 

stress triaxialities and the complete range of normalized Lode angle parameter, are 

enough to calibrate the four parameters of the MMC model. The calibration 

objective is to find a set of parameters 1 2 3( , , , )c c c c that make the model describe the 

onset of fracture correctly. Therefore, an objective function of least square error 

(LSE.) was proposed by Dunand et al. [114]; by minimizing it, a set of optimal 

parameters can be achieved: 

    
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            

    (6.18) 

where N is the number of calibration tests. ( )t , ( )t and ( )p t are the loading 

histories for the critical element where fracture is assumed to initiate. In the 

literatures, optimal parameters were obtained, confirming that the MMC criterion 
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has the capability to perfectly fit the results of all calibration experiments. 

Furthermore, the simplified version of MMC model, MMC3 model was calibrated 

by imposing the parameter 1c  . 

For the GTN model, parameters are determined using four kinds of fracture experi-

ments: (i) uniaxial tension, (ii) notched tension, (iii) equibiaxial experiment and (iv) 

pure shear experiment. An inverse method based on Monte Carlo Sampling was 

proposed to identify these model parameters. Further details of the calibration 

process can be found in the literatures [104,114]. 

6.3. Combination of damage and micromechanics 

As presented previously, micromechanical modelling and ductile fracture criteria of 

DP steel have been discussed. At macro level, the damage, like the plasticity, is 

supposed to be isotropic and homogeneous. The RVE model of DP steel includes 

two different phases: ferritic matrix and martensitic inclusion [133,134]. Each 

constituent phase has its own damage variables (void volume fraction in GTN model, 

damage indicator in MMC model, etc.). 

 

Figure 6.8: Schematic illustration of damage homogenization using RVE. 

The homogenized damage variables are hence computed and deduced from the 

phase fraction, as formulated in Eq. (6.19): 
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 1F F M M F M M MD D P D P D P D P      (6.19) 

where FD and MD denote damage variables in ferrite and martensite, FP and MP are 

phase fraction of ferrite and martensite phases. Fig. 6.8 shows a schematic 

illustration of the damage homogenization procedure. From this figure, proper 

fracture criterion is introduced in each single phase. And, corresponding material 

parameters of different phase are calibrated and identified according to the fracture 

test plans. Therefore, by combining the damage and micromechanics, the damage 

homogenization can be performed. However, this procedure needs a complex 

fracture test plan, which consists of several specimens of different materials (matrix 

and inclusion materials). This will cost numerous experimental works to prepare the 

specimen, to implement the test and to handle the measurements. In this work, due 

to the limitation of experiment condition, I have proposed a numerical method to 

calibrate the material parameters of fracture criterion for specific DP steel. And, a 

complex fracture testing plan has been proposed to perform on specimens of various 

DP steels and pure phase (pure martensite or ferrite) steels. By this way, the material 

parameters of fracture model for each phase can be identify and used to compute the 

homogenized fracture behaviors. But now, this project is still in progress. Therefore, 

the implementation of the damage homogenization will be carried on in future work. 

 

Figure 6.9: Total void volume fraction in matrix phase under uniaxial tensile load at 

strain level  = 0.014: RVEs with (a) 60% and (b) 80% inclusion phase [134]. 

An example of the combination of damage and micromechanics is given in Fig. 6.9. 

In this example, two 3D RVEs are artificially generated using spherical geometry as 

inclusion phase with fraction of: (a) 60% and (b) 80% [134]. GTN fracture model 

and identified material parameters are applied in the matrix phase. And, uniaxial 
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tensile load is imposed on the RVE model. These contours show the total void 

distribution, which is considered as the damage variable, in the matrix phase at the 

same strain level  = 0.014. From the observation, there are relatively higher void 

volume fractions along the interface between different phases. This can confirm the 

conclusion that we get in Part I. That is, due to the appearance of shear bands along 

the same interface, as the plastic flow accumulating, shear dominant failure mode 

continues and leads to final failure of the RVE model. 

Additionally, the implementation of this homogenization method needs to identify 

the fracture model parameters of materials with pure ferrite and martensite. In our 

work, the specimens with pure ferrite and martensite have been machined by 

ESI-Group. And, corresponding experiments will be performed to record the 

load-displacement history. In near future, when the whole fracture test plan has been 

done, material parameters of the selected fracture criterion can be identified using a 

calibration process based on bi-level reduced surrogate model. This calibration 

process will be presented in next chapter.  
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Chapter 7 

Calibration process based on bi-level reduced surrogate 

model 

Recently, numerous experimental investigations [94,104,114,121-125] have been 

performed to characterize and identify the material parameters of MMC criterion for 

various ductile metals. Typically, massive quantities of fracture tests need to be 

performed during the experimental works. This costs enormous amount of time and 

expenses to prepare specimens and analyze experimental data. Therefore, it 

particular emphasizes the needs for further improvement in this technique to 

simplify the identification process. 

For aforementioned reasons, a surrogate model [126-129] is employed as a 

computationally inexpensive alternative to calibrate the MMC fracture criterion in 

this work. The surrogate model utilizes an approximation based on the results 

computed at various points in a design space to replace a complex one. The 

approximation obtained from the surrogate model does not represent the low fidelity 

versions of computational models derived by simplifying the physics of underlying 

phenomena. Instead, the surrogate-model based approximation aims to reconstruct 

the input-output relationship by numerical simulations [107,128]. The application of 

the surrogate model in this identification process significantly reduces the number of 

required fracture tests. The diffuse approximation [53,54,63,105,106] is widely used 

to construct surrogate models. The specialized properties highlight its effectiveness 

in a range of computational mechanics application varying from structural 

optimization to surface interpolation for identification of material parameters. A 

surrogate model based on the diffuse approximation is proposed in the current work 

to empirically capture the non-linear evolution of material parameters on the fracture 

onset under uniaxial loading condition. Therefore, the objective is to develop a 

computationally affordable but accurate model, which utilizes a small set of training 

data obtained from bi-level models: local critical elements and global 3D finite 

element (FE) fracture models, to identify the material parameters of MMC criterion 

for a given DP steel. In the proposed method, the surrogate model is used as an 
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approximation tool associated with the design of experiments (DOE) [64,107] 

approach, given current fracture onset displacement and strain. 

7.1. Experimental work 

7.1.1 Material description 

In this work, fracture testing specimens are cut from 1.6 mm thickness cold rolled 

DP590 steel sheets. The loading axis of each specimen is always located along the 

rolling direction. Fig. 3.1 gives the micrograph of DP590 steel using Quanta FEG 

250 scanning electron microscope (SEM), which shows an obvious 

ferritic/martensitic microstructure. 

7.1.2 Specimen and experimental procedure 

Initial fracture calibrations are performed using tensile tests on a smooth and two 

notched flat specimens with different notch radius of R = 20 mm and R = 1 mm, as 

shown in Fig. 7.1.  

 

Figure 7.1: Geometry of smooth (a) and notched tensile specimens with notch of R 

= 20 mm and R = 1 mm. 
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Figure 7.2: Measured load-displacement curves and average fracture onset 

displacements for (a) smooth, notched tensile specimens with (b) 20 mm and (c) 

1mm open cutouts. 

The smooth specimen has a 100 mm gauge length and a 10 mm gauge width. 

Similarly, the R = 20 mm and R = 1mm notched specimens have the same gauge 

width of 10 mm and different gauge length of 40 mm and 20 mm, respectively. 

Experiments are carried out using Zwick Z020 tensile test machine at room 

temperature, with a quasi-static displacement rate of 2 mm/min. The measurements 

are depicted in Fig. 7.2. For all specimens, a maximum force is reached before 

fracture. 

The onset of fracture is defined by the first discontinuity in the normalized 

load-displacement curves. The appearance of the first crack corresponds to the 

sudden drop of the applied axial force in those tests. The corresponding relative 

displacement between the test region boundaries is referred as fracture displacement. 

Three specimens of each geometry are tested to ensure the reproducibility of the 

results. The variations in the measured fracture displacement are around 2.5% for 

smooth specimen, and less than 1.5% for each notched specimens. And, the initial 

input fracture strain ( )f is computed as in Eq. (6.16). 
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7.1.3 Strain hardening parameters fitting 

The elasto-plastic behavior of DP590 steel is predicted in Part I, which can be 

described by the J2 plasticity theory, in which a classical Swift power law is utilized 

to describe the flow stress up to the plastic localization occurrence: 

 0

n

pK     (7.1) 

where is true stress, and p is plastic strain. K, 0 and n are material constants to be 

fitted. Using the flow curve (Fig. 7.3) corresponding to the smooth specimen, the 

best fit is obtained with the set of parameters reported in Table 7.1. 

Table 7.1: Strain hardening parameters. 

K(MPa) 0  n 

1080 0.0032 0.21 

 

Figure 7.3: Measured and Swift law fitting flow stress of DP590 steel. 

The solid line in Fig. 7.3 presents the identified flow stress, and the circles represent 

the measurements. Since no obvious discrepancy is found in the comparison, Swift 
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law is utilized along with the von Mises yield criterion to describe the plastic 

behavior of the investigated DP590 steel. 

7.2. Surrogate model 

Generally, when an output of interest cannot be easily obtained using direct 

approaches, such as experimental measurements, a surrogate model [107] can be 

used as an alternate method to estimate the input-output relation and predict the 

output. Especially, in most engineering design problems, the design objective and 

constraint functions usually require experiments or simulations to build their 

formulations based on design variables. In fact, enormous amount of work, time and 

computation cost are really necessary to perform these experiments or simulations, 

which makes it relatively difficult to complete this work. However, with the 

application of surrogate model, including response surface methodology, diffuse 

approximation etc., it can significantly simplify the problems by constructing 

approximation models. Here, surrogate model can not only mimic the behavior of 

the simulation as closely as possible, but also be computationally cheaper to 

evaluate.  

In addition, Data-driven, bottom-up approaches, in which a limited number of 

sampled data is obtained via DOE, can be used to construct surrogate model. In 

these approaches, the input-output relation is pretty important, and we can even 

ignore the inner mechanism of the simulation method. Only response or output of 

these sampled data is obtained from the simulator. After that, relationship between 

input and output is usually approximated with several numerical methods, e.g. 

polynomial function interpolation, genetic algorithms. By this way, surrogate model 

can provide prediction efficiently and rapidly. 

Concerning the numerical properties of surrogate model, it has been wildly used in 

various fields of engineering design, which can avoid expensive experiments or 

simulations. 

7.2.1 Response surface methodology 

In statistics, response surface methodology (RSM) [107,127] can be used to 

investigate the input-output relation between several design and response variables. 

RSM is a popular method to build surrogate model, which uses a sequence of 
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designed experiments to calculate and obtain an optimal response. When treatments 

are from a continuous range of values then the true relationship between the 

dependent variable y and independent variables x might remain unknown. The 

approximation of the response function y = f(x1, x2, …, xn)+e is called response 

surface methodology.  

In general, the response surface f can be described using low-order polynomial 

models. Once it is supposed that only significant explanatory variables are left, then 

a more complicated design can be implemented to estimate a polynomial 

interpolation, which is still only an approximation but with the minimum 

discrepancy. But, the polynomial model can be used to optimize a response, such as 

maximize, minimize or attain a specific target.  

 

Figure 7.4: Illustrative example of an objective function with two independent 

variables y = f(x1, x2): designed experiments (black dots), response surface (fitting 

surface in color) with second-degree polynomial. 

An ordinary example of the application of RSM is to estimate a second-degree 

polynomial model f using a factorial experiment or a fractional factorial design. It is 

sufficient to determine which explanatory variables have an influence on the 

response variables of interest. As shown in Fig. 7.4, an objective function with two 

independent variables y = f(x1, x2) is proposed as the target to be approximated. A 
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specified account of sampling experiments (black dots in Fig. 7.4) is designed to 

estimate the relationship between these two independent variables and the objective 

function. Actually, these sampling experiments are from a design of experiments 

(DOE), which aims to describe or explain the variation of information under 

conditions that are assumed to reflect the variation. Based on the design of 

experiments, a second-degree response surface can be constructed as the relevant 

surrogate model. Moreover, by minimizing the objective function, an optimal 

solution is reached to achieve the engineering goal. 

Recently, the RSM method has been widely used to obtain the optimum material 

parameters of fracture criterion. In order to achieve this goal, the range in which 

each variable can be varied was obtained from literatures. Then, based on the 

experiment design methods, combinations of tensile test simulation were used to 

construct the corresponding response surface between the experimental 

load-displacement curve and the simulated one. Further details referred to this 

method to identify material parameter of GTN model can be found in the literatures 

[130,131]. 

7.2.2 Diffuse approximation 

As presented in previous section, RSM is a method for replacing a complex model 

by an approximate one based on results calculated at various points in the design 

space. The diffuse approximation, also known as moving least squares (MLS) 

approximation, is a method of reconstructing continuous functions from a set of 

random point samples via the calculation of a weighted least squares measure biased 

towards the region around the point at which the reconstructed value is requested 

[105-107]. The concept of diffuse approximation was first proposed by Nayroles 

[106] in the early 1990s. 

The basic idea of the diffuse approximation is to replace the FEM interpolation by 

introducing a local weighted least squares fitting in a small neighborhood of a point 

and based on n-th nodes close to this point on an element. Later, an approach named 

diffuse element (DEM) was developed based on this idea. 

In this method, a function f and a set of sampling points {( , ) | ( ) }i i i iS x f f x f  , 

where ix and if are real numbers. As presented in Section 7.2.1, these sampling 

points can be designed using different DOE techniques. Then, the diffuse 
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approximation of f at the point x is ( )f x , where p minimize the weighted least 

square error over all polynomials f: 

    
2

i i i
i I

x x f x f


   (7.2) 

Here, is the weighting function and it tends to zero as 𝑑 → ∞. 

 

Figure 7.5: Illustrative example of diffuse approximation. Black dots: sampling 

points, black curve: target function to be approximated, red curve: linear 

interpolation, and blue one: diffuse approximation of third degree. 

An illustrative example is given in Fig. 7.5, where the black dots represent the 

sampling points from DOE, the black curve denotes the target function, the red and 

blue curves denote the linear interpolation and diffuse approximation of third degree, 

which are obtained based on these sampling points. In this example, the weighting 

function is
2( ) exp( )d d   . Here, a quadratic interpolator is utilized as the smooth 

interpolator to approximate the target function. 

7.3. Bi-level modelling reduction strategy 

As presented in Section 6.1, the original MMC fracture criterion is simplified to a 

MMC3 criterion using the Eq. (6.9) and (6.10). In order to calibrate and identify 
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those three unknown parameters ( 1 2 3, ,c c c ), a bi-level reduced surrogate model is 

developed based on the combination of DOE and diffuse approximation approaches. 

Therefore, this section focuses on the bi-level modelling reduction strategy used to 

construct the surrogate model. 

7.3.1 Global finite element model 

For calibrating the MMC3 criterion, numerical simulations are initially performed 

on the three fracture specimens described in Section 7.1.2 combined with the strain 

hardening parameters given in Table 7.1. These preliminary simulations do not 

include fracture. All specimens are meshed with eight-node 3D solid, reduced 

integration elements (C3D8R in Abaqus/Explicit [132]). Although the specimen 

geometries are symmetrical, the initiation of fracture and resulted fracture surfaces 

do not show the same property. Therefore, whole specimens are considered in the 

global FE models to investigate the fracture behavior, as shown in Fig. 7.6a.  

7.3.2 Local critical element 

Meanwhile, in order to reduce the computational time, a local critical element, in 

which initiation of fracture occurs, is selected according to the strain localization 

level, as shown in Fig. 7.6b. From both simulation and experimental observations, it 

is identified that the local critical elements of the smooth and 20 mm notched tensile 

specimens are always located at the center of the longitudinal cross-section, while 

the third specimen reveals that the critical elements are located along the edge of the 

open notch, as shown in Fig. 7.6. The main reason of this phenomenon indicates that, 

stress concentration is caused by the geometric irregularity at the vicinity of the 1 

mm radius notch. 
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Figure 7.6: Illustration of the bi-level reduced strategy: (a) global FE model and (b) 

local critical element model. 

The histories of the stress triaxiality, normalized Lode angle parameter and 

equivalent plastic strain in the local element are recorded as with time and plotted in 

Fig. 7.7a. The values of ,  and p are also projected on the different individual 

planes, as shown in Fig. 7.7b-d. 
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Figure 7.7: Plane stress condition and stress state histories of the local critical 

element obtained for each tensile specimen without fracture modeling in: (a), (, ,

p ) space, (b), (, ) plane, (c), ( , p ) plane and (d), ( , p ) plane. 

It can be obviously found that the curves of smooth and 20 mm notched tensile 

specimens closely resemble with the analytical solutions obtained for the plane 

stress condition (the black line in Fig. 7.7a and b). However, in the case of 1 mm 

notched tensile specimen, those curves are significantly different from other two 

cases. This is mainly because that, the corresponding local critical element is not 

located in the center of specimen’s longitudinal cross-section. As those specimens 
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undergo necking stage, the stress states significantly deviates from the analytical 

solution. 

 

Figure 7.8: Flowchart of the Bi-level modelling reduction strategy. 

Based on the stress states paths training experimental points of unknown parameters 

( 1 2 3, ,c c c ) in DOE can be calculated within the local critical element. The 

corresponding surrogate model is constructed according to diffuse approximation. 

Fig. 7.8 gives a schematic illustration of the bi-level modelling reduction strategy. In 

summary, the strategy consists of following steps: 

i. Initial material parameters (
0 0 0

1 2 3, ,c c c ) are considered as the center (red dots in 

Fig. 7.8a) to create the DOE for the first iteration. Fracture onset strains of 

each training experimental points (blue dots in Fig. 7.8a) are calculated based 

on the stress states of the local critical elements (Fig. 7.8b) using Eq. (6.9); 
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ii. Fracture strain prediction for the DOE space is approximated using diffuse 

approximation. A surrogate model (Fig. 7.8c) of the least square error (LSE.) 
between the approximated and measured fracture strain is constructed to 

identify the material parameters. Identified parameters of each iteration are 

determined from the surrogate model by: 

  
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where  fi c is the approximated fracture strain at the point c, fi exp
is the 

measured fracture strain, and m is the number of specimen with different 

geometries; 

iii. The obtained parameters are then introduced within the global model (Fig. 

7.8d) to compute the corresponding LSE. of the fracture onset displacement: 
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where fid and fid exp
are the predicted and measured fracture onset displacements, 

respectively. The DOE of next iteration is designed by shifting the center to the 

center of the identified parameters and halving the DOE variation; 

iv. Converged material parameters are identified until the variation of DOE space 

and LSE. of the fracture onset displacement (in Eq. (7.4)) reach sufficiently 

acceptable ranges. 

The proposed bi-level modelling reduction strategy can guarantee not only the 

accuracy of identification process with the limited number of experimental tests, but 

also significantly reduce the computational time. Further details of the afore-

mentioned approaches and methods are given in the following sections. 

7.3.3 Adaptive correlation between fracture onset displacement and strain 

In our experimental test plan, as no DIC technique is used to capture the 

simultaneous strain when damage initially appears in critical elements, an adaptive 

deviation of fracture onset displacement is proposed as: 

exp
fi fi fid d d    (7.5) 

And, the new fracture strain is given as: 
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where fid is the fracture onset displacement obtained from the global model of the 

simulation, and 0iL is the initial effective length of each specimen’s test region. This 

adaptive correlation is utilized to ensure that our experimental target varies around 

the exact value with a decreasing error that eventually becomes negligible. 

7.4. Diffuse approximation of fracture strain prediction 

By following the procedure given in the flowchart (Fig. 7.8), a 3D material 

parameter DOE containing H points is designed in each iteration, expressed by 

matrix c 1 2 3

1 2 3[ , , ] [ , , , , ]K Tc c c c c c c . Let ( )f c denotes the K×3-dimensional 

fracture strain computed based on the stress state histories in local critical elements. 

The surrogate model of the fracture strain prediction ( )f c for the whole DOE space 

is constructed using the method of diffuse approximation: 

     
T

f c p c a c  (7.7) 

where
1 2 3[ , , , ]Tp p pp is the polynomial basis vector. In 3D case, the polynomial 

basis vector expressed in terms of the material parameters for the MMC3 criterion: 

 1 2 31, , , ,
Tc c cp  (7.8) 

The vector of coefficients  1 2 3, , ,
Ta a aa is the minimizer of function defined 

by: 

      
2

1

1

2

K
T

k f k
k

J w 


  a c c p a c  (7.9) 

where ( )kw c c is Gaussian weighting function depending on the Euclidean 

distance d betweenc and kc : 
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   
2d h

kw e
 c c  (7.10) 

in which h is a fixed parameter reflecting the anticipated spacing between 

neighboring points. It can be used to smooth the small fluctuation in data. 

 

Figure 7.9: Illustration of the diffuse approximation procedure used to estimate the 

fracture strain surrogate model. 

Fig. 7.9 illustrates the approximation procedure for a given fracture strain value of 

DOE training point. The corresponding approximated values for the whole design 

space are locally interpolated using diffuse approximation. Therefore, we construct 

the surrogate model including the LSE. between approximated and experimental 

fracture strain for each specimen, given by Eq. (7.3). A set of optimal parameters are 

identified in each iteration by minimizing the objective function. 

7.5. Design and transformation of DOE 

In Section 7.4, a diffuse approximation approach is presented to construct the surro-

gate model. The surrogate model uses a set of experiments in the design space to 

determine an optimum approximation. Numerical experiments are performed in 

local critical elements for this set of points in the DOE. The method used to design 

and transform DOE space is schematically depicted in Fig. 7.10. 
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Figure 7.10: Illustration of the DOE design and transformation. 

As illustrated in Fig. 7.10, the main idea behind this method is to use an initial 

estimation (green points in Fig. 7.10) within a sufficiently large design space at the 

beginning to select the experimental points (blue dots). It must guarantee that the 

first design space is big enough to consist of the solution that gives the best fit. After 

that, the identified points (red points) determined using Eq. (7.3) is used as the new 

center of design space with a smaller size or variation to reselect the experimental 

points. This procedure is repeated until convergence is reached. In the converged 

iteration, the center and identified points may be overlapped or located nearby. 

7.6. Validation on DP590 steel 

7.6.1 Mesh dependency of MMC3 fracture criterion 

Generally, the MMC3 fracture criterion is a strain-based model; thus, the simulation 

result is dramatically affected by the mesh size. Essentially, high strain gradients are 

persistent in necking zones so that the calculated normalized load-displacement 

curves and fracture onset displacements are highly dependent on the mesh size. 

Therefore, before applying our proposed calibration method, a convergence study of 

mesh size is preformed to determine an appropriate element size that can be utilized 

in this work. 
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Figure 7.11: Mesh dependent normalized load-displacement curves obtained for the 

smooth tensile specimen. 

 

Figure 7.12: Mesh dependent normalized load-displacement curves obtained for the 

R20 mm notched tensile specimen. 
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Figure 7.13: Mesh dependent normalized load-displacement curves obtained for the 

R1 mm notched tensile specimen. 

 

Figure 7.14: FE model with element length of 0.3 mm of: (a) smooth, (b) R20 mm 

and (c) R1 mm notched specimens. 

Figs. 7.11-7.14 illustrate the mesh size dependency of the normalized load-displace-

ment curves obtained for the smooth and notched tensile specimens, with element 
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length varying from 0.2 mm to 1 mm. For the smooth tensile test, the difference 

resulted from the mesh size is obvious. But, in other two cases, it has a dramatic 

influence on the simulation results. Convergence is reached when element length 

comes to 0.3 mm (red solid lines) or less than 0.3 mm. In order to guarantee the 

accuracy of the calculation and reduce the computational cost, the converged 

element length of 0.3 mm is adopted in the calibration process, as shown in Fig. 

7.14. 

7.6.2 MMC3 fracture criterion calibration for DP590 steel 

The methodology discussed in the previous sections is used to extract the MMC3 

criterion parameters from the current fracture tests. A quadric polynomial basis 

(second-order), consisting of 10 terms, is adopted to construct the surrogate model 

in Eq. (7.3). In each iteration, 11 training experiments are chosen from the DOE 

using latin hypercube sampling (LHS) approach. The identified solution of each 

iteration step is determined based on the fracture strain approximation for the whole 

DOE space. After that, the resulted material parameters are introduced in the global 

fracture test model. The adaptive correlation between the displacement and strain at 

the fracture onset, is computed to overcome the limitation of the current test plan. 

Hence, the three free parameters of MMC3 fracture criterion for DP590 steel are 

identified using the convergence condition given by: 

 
2

1

1
Argmin .

m
exp

fi fi
i

 LSE d d
m 

   (7.11) 

The error in the identification process is also presented by the LSE. between the 

measured and predicted fracture onset strain and displacement in each tensile 

specimen. 

Based on experience of numerous numerical experiments, first calibration process is 

begun with the initial guess of material parameters, (0.1, 600 MPa, 1.03), within the 

reasonable ranges of the first DOE: 1 [0,0.2]c  , 2 [450,650]c  (unit: MPa) and 

3 [0.9,1.3]c  . 
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Figure 7.15: Projected contours of the LSE. using the surrogate model between the 

experimental and approximated fracture strain on various parameter planes. 

Successive design spaces and corresponding LSE. obtained from the surrogate 

model between the experimental and approximated fracture strains of Iteration 1, 2 

and 11 are shown in Fig. 7.15. Since the surrogate model is four-dimensional, 

projected contours on various planes are given to illustrate its tendency. The red star 

in each design space represents the identified material parameters for the 

corresponding iteration. For example, the identified parameters are (0.094, 542.105 

MPa, 1.086) and (0.103, 550 MPa, 0.994) in the first and second iteration, 

respectively. During the subsequent iterations, the DOE size reduces until the 

converged results are obtained. When it comes to Iteration 11, material parameters 

vary only within a small range of 10
-4

 for 1c , 0.1 MPa for 2c , and 0.5 × 10
-3

 for 3c . 
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Figure 7.16: Convergence curves for the parametric identification of (a) 1c , (b) 2c
(unit: MPa) and (c) 3c . 

 

Figure 7.17: Progressive reduction of the LSE. between experimental and simulated 

fracture onset displacements with identified material parameters. 
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Fig. 7.16a, b and c show convergence curves for the parametric identification of 1c ,

2c and 3c , respectively. These results clearly indicate that after Iteration 7, each 

material parameter fluctuates around the converged value. Fig. 7.17 illustrates the 

progressive reduction of the LSE. between the experimental and simulated fracture 

onset displacements with the identified material parameters from global FE 

simulation. Obvious decreases are found, and it stabilized at around 0.02 after 9-th 

iteration. Note that, the LSE. is more reliable if the design space is smaller for each 

iteration. This is the reason why the result of Iteration 11 is more suitable than that 

of Iteration 9. And, the final identified material parameters for MMC3 fracture 

criterion are achieved as (0.117, 567.748 MPa, 0.982) in the first application. 

3.6.3 Validation of robustness 

In this work, we also aim to minimize the LSE. between the experimental and 

simulated fracture onset displacements. Our first application to calibrate the material 

parameters of MMC3 fracture criterion for DP590 steel, shows that the bi-level 

reduced surrogate model has the capability to achieve this goal.  
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Figure 7.18: Convergence curves for the parametric identification of (a) 1c , (b) 2c
(unit: MPa) and (c) 3c , with second group of initial parameter values. 

 

Figure 7.19: Progressive reduction of the LSE. between experimental and simulated 

fracture onset displacements with identified material parameters for the second 

application. 

In order to check the robustness of the proposed method, a second application with 

different initial values of material parameters (0.05, 550 MPa, 1.1) to begin the 

iteration computation is performed. The same design space ranges with the first 

application are used. 

In addition, the corresponding convergence curves are depicted in Fig. 7.18a, b and 

c. In this case, the fluctuation of each parameter stabilizes after 6 iterations. Fig. 

7.19 shows the corresponding relationship of iteration number and LSE. between the 

experimental and simulated fracture onset displacements with those identified 

material parameters. At Iteration 7, the LSE. has already reduced to 0.02. Therefore, 

the final identified material parameters are chosen from 9th iteration, as (0.117, 

567.039 MPa, 0.978). These results indicate a close agreement with the first 

application case, while the discrepancy is negligible. The negligible discrepancy is 

arisen from the proposed DOE and its transformation algorithms, which can be 

reduced by increasing the number of iterations. This comparison clearly shows that 

the calibration is independent of the initial guess; thus, it confirms the robustness of 

the calibration process for this MMC3 fracture criterion. 
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Figure 7.20: Comparison between simulated and measured load-displacement curves 

for (a) smooth, notched tensile specimens with (b) 20 mm and (c) 1mm open 

cutouts. 

 

Figure 7.21: Fracture locus of the MMC3 fracture criterion with identified material 

parameters: 1 0.117c  , 2 567.748c  MPa and 3 0.982c  . 
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For the validation purpose, comparisons of the normalized load-displacement curves 

acquired from the measurements and simulation with identified material parameters 

are depicted in Fig. 7.20. A good agreement is obtained between the measurements 

and predictions. 

The fracture locus of the MMC3 fracture criterion with identified material 

parameters is plotted in Fig. 7.21. The MMC3 fracture model shows a complex 

dependency on the stress triaxiality. For low stress triaxialities (0 1 3)  , the 

fracture strain reveals as U-shape function of triaxiality. While for the intermediate 

triaxialities (1 3 2 3)  , the fracture strain firstly decreases with triaxiality, and 

then it changes its path to rise rapidly. 

7.7. Conclusions 

The ductile fracture has been investigated extensively over decades. Numerous 

efforts have been done to calibrate the ductile fracture models with massive quantity 

of experimental tests. In this paper, a bi-level reduced surrogate model, which 

requires quite a limited number of tests, has been proposed to identify the material 

parameter of the MMC3 fracture criterion. The proposed method includes diffuse 

approximation and design of experiments (DOE) approaches to construct the 

surrogate model. 

The bi-level reduced surrogate model is successfully implemented to build local 

critical element and global fracture tensile test models in each iteration. At the local 

level, latin hypercube sampling (LHS) algorithm is adopted to select finite number 

of training points, in which the corresponding fracture strains are computed. Diffuse 

approximation is utilized to construct the surrogate model of fracture strain that 

ensures the accuracy as well as reduces the computational cost. By minimizing the 

LSE. between the approximated and measured fracture strains, identified parameters 

are determined and introduced in the global model. At the global level, the relevant 

fracture onset displacements are obtained using fracture tensile test simulations. 

Consequently, an adaptive correlation term between fracture onset strain and 

displacement is computed to update the target fracture strain in the subsequent 

iteration steps. Meanwhile, the new design space of material parameters is 

redesigned to reduce its size and center with the identified values. The proposed 

identification method helps to simplify the calibration of the MMC3 fracture 

criterion. 
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Our protocol was validated for DP590 steel with the use of numerical simulations 

and experimental results. During the first trial of the proposed model, the converged 

solution is achieved at 11th iteration, while the second trial only required 9 iteration 

steps. Results obtained from these two trials show a close agreement; this scenario 

indicates the robustness of this model to identify the material parameters. Further 

investigation on the robustness of the proposed method has been confirmed with 

different initial parameter guesses. Moreover, the predicted load-displacement 

curves using the identified material parameters concurs the experimental results. 

This study provides a novel numerical technique to identify the material parameters 

of ductile fracture criterion based on a surrogate model. It could be implemented for 

different ductile materials and further extended to take account of strain-rate or 

temperature effect. 
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Chapter 8 

Conclusions and perspectives 

In this work, we have investigated firstly in Part I the plastic behaviors of dual-phase 

(DP) steel using micromechanical modelling framework and asymptotic homogeni-

zation method by two ingredients: real and artificial microstructures. In contrast to 

the conventional methods, we develop a novel artificial microstructure generator to 

reconstruct the microstructural representation of multiphase materials, which are 

practically obtained from heat treatments.  

In order to predict the flow stress of DP steel, the micromechanical modelling 

framework based on real material microstructures have been investigated in Chapter 

3. We have developed an image analysis procedure that can directly transfer the 

microscopic observation (LOM or SEM) to FE model. The flow curve of each 

constituent phase is obtained using a dislocation based theory, in which the material 

parameters related to strain hardening are computed using the local chemical 

composition. With regard to the computational and calculation accuracy in the 

microscopic scale, periodic boundary condition (PBC) has been adopted associated 

with the asymptotic extension homogenization (AEH) method. Predictions of flow 

stress for DP590 and DP600 steels using this framework are in good agreement with 

experimental measurements or literature details. 

With regard to computational and experimental requirements due to RVE construc-

tion of multiphase materials, in Chapter 4 a novel artificial microstructure generator 

is proposed based on modified Voronoï tessellation and material topology 

optimization design. Halton sequence is adopted to obtain the modified tessellation 

that is considered as the polycrystalline aggregate for the microstructure of DP steel. 

During the generation process, two microstructure parameters have been introduced 

to describe the phase distribution at microscopic scale. The proposed phase 

assignment algorithm defines a “pseudo-density” within each Voronoï cell that 

deduces the discrete value problem to a continuous one. Tailored DP microstructures 

have been convergently and rapidly. Additionally, a proper orthogonal 

decomposition (POD) approach has been integrated to identify the optimal 
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controlling parameters for certain DP steel. Therefore, optimal RVEs have been 

generated and the corresponding predictions of flow stress concurs the experimental 

measurements. Based on the identification of various DP steels, the correlation 

between these controlling parameters is calculated using polynomial interpolation. 

We have investigated the plastic behaviors of DP steel using micromechanical 

modelling approaches. In the observation of microscopic simulation, the path of 

shear bands that are around 45⁰ to the loading direction, occur in the ferritic phase. It 

indicates that, as plastic flow accumulating, micro-cracks can be formed and 

propagated in the strain localization zones. Therefore, in Part II we have also 

investigated the ductile fracture and damage mechanism, which can be utilized to 

describe and predict the ductile fracture in DP steel.  

In pursuing reduction of experimental and computational costs, a bi-level reduced 

surrogate model has been proposed in Chapter 7 to identify the material parameters 

of the MMC3 fracture criterion. With our protocol that cooperates with diffuse 

approximation and design of experiments (DOE), the identification work only 

requires quite a limited number of fracture tests. In the bi-level method, training 

points have been selected according to latin hypercube sampling (LHS) algorithm. 

At the local level, the corresponding fracture strain of each design point is calculated 

using the stress states history of the local critical element. The surrogate model of 

fracture strain is approximated based on diffuse approximation. By minimizing the 

least square error (LSE.) between the approximated and measured fracture strains, 

identified parameters are determined and introduced in the global model. Fracture 

tensile test simulations have been performed to compute the relevant fracture 

displacement, which is utilized to compute an adaptive correlation term between 

fracture displacement and strain. Afterwards, the target fracture strain is updated 

according to this correlation term in the following iteration step. In the meanwhile, 

our DOE transformation algorithm centers with the identified values and reduces the 

variation size. Via successive iteration steps, the converged solution has been 

achieved for DP590 steel. The predicted force-displacement curves using the 

identified material parameters agree well with the experimental results.  

In our work, we have developed several numerical approaches to investigate and 

predict both of the plasticity and damage behaviors of DP steel. To the best knowle-

dge of the author, multiscale modelling of heterogeneous materials is a relatively 

new field that there still exist many difficulties, especially the damage and large 
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strain cases. Many potential developments for the proposed multiscale modelling 

framework can be carried out with respect to any of the three ingredients: homoge-

nization, fracture and damage modelling and reduced-order modelling. In the 

following we give our perspectives on potential extensions based on the proposed 

multiscale modelling framework: 

 As can be observed from Figs. 3.12 and 4.18, the presence of shear bands in 

ferritic matrix (mostly along the phase interface) results from 

inhomogeneous microstructures. These bands may result in the initial 

material failure or crack at microscopic scale. Therefore, there is necessity to 

introduce proper fracture or damage mechanisms in different phase materials 

and interface of the micromechanical model. Moreover, the macroscopic 

mechanical properties need to be computed using the extension of the 

asymptotic homogenization approach in two- or multi- field volumetric finite 

element (FE) simulation. 

 In Chapters 3 and 4, we have developed 2D representative volume element 

(RVE) construction framework for DP steel and multiphase materials. By 

comparing with experimental results, small discrepancies have been 

observed that, the predictions of 2D RVE simulations are slightly higher than 

exact ones. We have attributed these discrepancies to the utilization of plane 

strain assumption in our numerical simulations. In order to eliminate these 

discrepancies, our artificial microstructure generator needs to be extended 

into 3D case. To overcome the key difficulty of huge computation, 

reduced-order modelling approaches could be applied. In addition, to 

generate the multiphase microstructure due to practical heat treatments or 

composite structures, the extension of our proposed phase assignment 

procedure will be implemented for multiphase materials, which include more 

than two phases. 

 As discussed in Chapter 7, the material parameter identification of modified 

Mohr-Coulomb (MMC) fracture criterion has been performed using 

surrogate model. In future work, our identification protocol could be 

extended to different ductile fracture criteria that consist of more parameters 

unknown, such as Gurson-type models. Alternatively, the shape manifold 

learning approach may replace the diffuse approximation to speed the 
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identification procedure. Additionally, it could benefit to handle higher-order 

and sophisticated problems. 

 Online multiscale modelling of fracture and damage behaviors of heterogon-

ous material has not been implemented in recent scientific research. Each 

material point of the macroscopic model could be represented by specific 

RVE, which may be considered as the microscopic model. During the 

loading process on macroscopic structure, the stress state of each material 

point is obtained from FE analysis. Therefore, the micromechanical 

modelling could be performed by prescribing with boundary conditions, 

which are related to the corresponding stress state in the material point. The 

macroscopic mechanical properties, especially the damage indicator at 

macroscopic scale are homogenized based on the computation of RVE 

simulation.  
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