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Thesis layout

In this thesis, I present a new model for N-body simulations of young substructured star clusters,
the Hubble-Lemâıtre fragmentation. This model is based on an adiabatic expansion and frag-
mentation of an homogeneous system, which spontaneously develop clumps from initial overden-
sities. This model recovers characteristics from hydrodynamical simulations of star formation,
which are much more computationally expensive. The structure of the Hubble-Lemâıtre model
is investigated, then applied to the study of the relaxation of young substructured clusters re-
laxation, as well as of the evolution of binary populations in the same objects. The thesis is
organised as follows.

First, an introduction presents the scientific context of the thesis, and the motivations for a
new model.

The first part, subdivided in three chapters, introduces the Hubble-Lemâıtre model itself,
first with an analytical approach, then from the numerical point of view. The structural aspects
of the model are investigated and compared to observations and hydrodynamical simulations.
Then, the fragmented system is used as initial conditions to study the violent relaxation of
substructured clusters, comparing it to the collapse of uniform cold models.

The second part focuses on binary populations. A new binary detection algorithm is pre-
sented and its free parameter is calibrated. The spontaneous binaries arising during the Hubble-
Lemâıtre expansion are characterised, then completed to resemble observed populations. The
evolution of the obtained population is monitored during the collapse of the fragmented system,
assessing the effect of initial stellar density on binaries.

Finally, the various paths of research opened up by the Hubble-Lemâıtre model are presented,
such as the generation of mock observations with dust extinction to explore the influence of
mass segregation on the observed morphologies.

Relevant additional material is presented in the appendices.
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CHAPTER 1

Introduction
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Figure 1.1: Composite picture (visible and infrared) of the merging Antennaes galaxies (NGC
4038 and 4039). Very active star forming regions are seen in infrared as the gas is heated by
newborn stars. Bright blue points are the hot OB stars found in the numerous Young Massive
Clusters (YMCs) in the system. Credits: NASA, ESA, and B. Whitmore (STScI).
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Globular Clusters(GCs) have long been, and still are, considered invaluable witnesses of
galaxy formation, given their old age and bond with their host galaxies. Observations of the
GC specific frequency, the amount of GCs per galactic luminosity, showed elliptical galaxies
harboured proportionally more globular clusters than spirals, see the review by Harris (1991).
As ellipticals are spiral-spiral merger products, this pointed at merger events triggering episodes
of globular cluster formations (Ashman & Zepf, 1992).

The relation between GC populations and galaxy formation history was strengthened and
made more complex by the wealth of new observations brought by the advent of the Hubble Space
Telescope. First, Young Massive Clusters (YMCs), considered to be young globular clusters,
were found in merging galaxies such as the Antennaes (Whitmore & Schweizer, 1995). Then,
the cluster populations around galaxies were observed to be bimodal: an extended, metal-poor
blue population and a more concentrated, metal-rich red population (Zepf & Ashman, 1993;
Geisler, Lee & Kim, 1996). These clearly had different chemical and dynamical origins. Several
hypothesis have been put forward to explain this puzzling observation: some advocated for the
red population being created in merger events, others put forward the collection of blue clusters
through accretion of dwarf galaxies, and others defended two distinct in-situ formation events
in the galaxy, see the review by Brodie & Strader (2006).

While this question remains unsettled, it is clear that understanding the formation of globular
clusters is key to understand their link with the galaxy formation history. 10 years ago, a new
observation brought even more complexity to our picture of cluster formation. Globular clusters
had long been thought to be homogeneous single-age, single-metallicity, stellar populations. Yet,
a study by Piotto et al. (2007) showed the globular cluster NGC 2808 contained at least three
different stellar sequences. Many other GCs have been shown to contain multiple populations.
As this cannot be explained by the natural age spread arising from a continuous star formation
at the birth of the clusters, such observations have far-reaching implications on their formation
scenario.

A possible explanation is that globular clusters formed through the merging of smaller sub-
clusters. These subclusters could have different metallicities, or possibly different ages, as a
chain of successive, sequentially triggered star formation events could end up in the same cluster
through merging. This picture is backed up by the most recent observations of star-forming
regions in the Milky Way, showing a deeply substructured Inter-Stellar Medium (ISM) and star
formation. That massive clusters form from merging of smaller fragments have a strong influence
of their survival rate to gas expulsion and their degree of primordial mass segregation. This in
turn can affect our understanding of the ties between GC formation and galactic mergers, as the
mass estimates of Young Massive Clusters in the Antennaes hinge on their possible primordial
mass segregation (McCrady, Graham & Vacca, 2005).

The dynamics of sub-clusters merging to form more massive systems emerged as a crucial
aspect of cluster formation, and consequentially of our understanding of galaxy formation his-
tory. Hydrodynamical simulations of star cluster formation are computationally limited and
can only address this issue at small scales. This work aims at circumventing this limitation
through the creation of large-scale, dynamically consistent substructured initial conditions for
cluster simulations, unveiling the dynamical behaviour of these massive merging systems, while
including the important short-scale dynamics of binary stars, hence the ”multi-scale” approach.

In this introduction, we first define star clusters and important dynamical concepts such as
relaxation time and virial state. We then review the current state of theory, observations and
simulations on cluster formation, substructure and early dynamical evolution. Finally, we look
at alternative ways to investigate substructured dynamical evolution.

3



(a) The Pleiades, open cluster (b) ω Centauri, globular cluster

Figure 1.2: Examples of various types of cluster. White bars at the lower left of each pictures
show 1 parsec length scale. The dust present in the young Pleiades open cluster scatters starlight,
producing this blue haze. The globular cluster ω Centauri contains one million stars and is the
largest known star cluster in the Milky Way. Credits: NASA, ESA, AURA/Caltech; ESO/INAF-
VST/OmegaCAM

1.1 What is a star cluster ?

What is a star cluster ? A direct, almost tautological, definition is “a group of stars”. However,
this includes galaxies and random line-of-sight groups. We are interested in physical objects,
smaller than galaxies, in which stars are, if not bound together, at least under direct mutual
gravitational influence. Such objects include open clusters, globular clusters or associations.
Lada & Lada (2003) adopted the following definition: a cluster is a stellar system with N>
35 and a density ρ > 1 M⊙/pc

3. These objects can either dissolve in less than a million
year or remain bound for billions of years. In the last century, thanks to the improvement of
observational technology, many clusters have been discovered and their origins are progressively
being unravelled.

Clusters are the result of bursts of star formation in Giant Molecular Clouds (GMCs). All
stars within a cluster were born approximately at the same time, which explains the sustained
interest of the community for star clusters: they are the best available stellar physics laboratories,
a large population of stars sharing the same age and distance to Earth. The age of the cluster
can be derived from the most massive surviving stars in the population, as stars have lifetimes
inversely correlated with their masses. Overall, integrated spectral features from all members of
a star cluster can provide a wealth of information.

As we will see, clusters are also crucial to understand stellar formation. They harbour
the most massive and young stars, which cause large-scale ionisation, winds and shockwaves
from their explosive death in supernovaes. Massive stars caused the re-iniozation of the entire
observable Universe 400 Myr after the Big Bang. To understand massive stars is to understand
star formation, and to understand star formation is to understand star clusters.

Star clusters are historically divided into two “classical” categories: globular clusters and
open clusters. As observational technology improved, categories tended to blend into a spectrum
of size, age, and dynamical state, with Young Massive Clusters, embedded clusters and OB
associations. Several of these categories have significant overlap, but each one emphasizes a
particular characteristic of star clusters, thus these are useful for a comprehensive discussion.

Globular clusters are old and massive stellar systems, found orbiting most galaxies. Most of

4



(a) R136, Young Massive Cluster (b) NGC 1333, embedded cluster

Figure 1.3: Examples of various types of cluster. White bars show 1pc. The young massive
cluster R136 is surrounded by its primordial nebula while the embedded cluster NGC 1333
is still inside it. (b) is a composite of visible and infra-red light. Credits: NASA, ESA, F.
Paresce;T. Rector(U.Alaska Anchorage), H. Schweiker

them are older than 10 Gyr and more massive than 104 M⊙. The most massive known
Globular cluster in the Milky Way is ω Centauri, with 4 106 M⊙ (D’Souza & Rix, 2013),
see Fig 1.2b. They only contain stars, without any dust or gas. The 150 known globular
clusters in the Milky way are scattered in the disk and the halo, with a higher concentration
near the bulge (Harris, 1996).

Open Clusters are lighter objects, rarely more massive than 103M⊙. They are also younger,
with ages ranging from a few Myr to a few Gyr (Dias et al., 2002). Their small mass and
lower density make them vulnerable to tidal disruption from passing massive clouds on
nearby orbits. The pleiades are a famous example, see Fig 1.2a.

OB associations contain even less stars than open clusters, a few dozens in average, among
which very massive luminous O and B type stars, sometimes more massive than 50 M⊙.
Such stars do not survive more than a few million years, OB association are thus young
objects located in active star forming regions. They are often found near other associations,
in a hierarchical structure. Their density is much lower than a typical cluster, about
0.1 M⊙pc

−3 (Wright et al., 2014; Garcia et al., 2010), in fact, most are unbound and
dissolving objects.

Embedded clusters are the youngest star clusters in the sky. Most of the stars, protostars
and cores are still inside their primordial cloud, dust obscuring their optical light. The
development of infrared astronomy unveiled the internal structure of these objects. Em-
bedded clusters are young (<10Myr) and observed to be substructured (Kuhn, Getman
& Feigelson, 2015). Some have ongoing star formation, like NGC 1333, a very young
embedded cluster with both proto-stars and stars, see Foster et al. (2015) and Fig 1.3b.

Young Massive Clusters , or YMCs, are considered to be globular cluster progenitors. The
review by Portegies Zwart, McMillan & Gieles (2010) provides a definition of YMCs: bound
systems more massive than 104 M⊙ and younger than 100 Myr. Only a handful of such
systems are known in the Milky Way (see Fig 1.4). The most studied YMC of the galactic
neighborhood is R136, with a mass ∼ 105 M⊙ (Andersen et al., 2009), see Fig 1.3b. It is

5



Figure 1.4: Radius-Mass Diagram for Milky Way clusters. Blue dots are open clusters, red
dots Globular clusters and purple squares show Young Massive Clusters. Dashed lines show
constant density within half-mass radius ρh = 3M/8πr3hm and dotted lines show constant half-
mass relaxation time. The plot was taken from the review Portegies Zwart, McMillan & Gieles
(2010).

located in the Tarentula nebula, the most active known star forming region in the local
group, inside in the Large Magellanic Cloud 1. YMCs are found in large number in intense
star forming environment such as starburst galaxies and galaxy mergers like the Antennaes
galaxies (Whitmore et al., 2010).

“Most stars form in clusters” is a recurring statement in the field of stellar and cluster
formation. Near Infra-Red (NIR) studies of star forming region yielded a star formation rate from
embedded clusters of ∼ 3 · 103 M⊙ Myr−1 kpc2 (Lada & Lada, 2003) while the same estimation
for field stars in the Milky Way gives ∼ 3 − 7 · 103 M⊙ Myr−1 kpc2 (Miller & Scalo, 1979).
Another clue at the clustered nature of star formation is that high-mass O stars are for the vast
majority, clustered, see de Wit et al. (2005). Due to their short life, O stars are often observed at
the very location of their birth, or not very far. However, recent observations by, e.g, Gutermuth
et al. (2011) show a spatially hierarchical star formation, following a continuous stellar density
distribution (Bressert et al., 2010). The spherical, concentrated clusters we observe are then the
outcome of a merging process from subclusters.

1.2 Some important dynamical concepts

Before going into details about cluster formation and subsequent dynamical evolution, it is
necessary to define some crucial dynamical concepts.

1A dwarf irregular galaxy orbiting the milky way.
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1.2.1 Virial theorem

A self-gravitating system is a system bound by its own gravity. This applies to a star, a molecular
cloud, a star cluster or a galaxy. In all cases, gravity is set against a counteracting source of
energy that prevents the total collapse of matter into a single point. This source can be pressure
for stars and clouds, but for stellar systems such as clusters and galaxies, it is the agitation of
its components, the kinetic energy of the stars. Other energy sources include magnetic pressure
or tidal fields.

The exchange between the gravitational potential energy and the internal energy follows the
virial theorem, written in the general form (McKee & Ostriker, 2007; Binney & Tremaine, 2008):

1

2

d2I

dt2
= 2(Ek − Ek,s) + Ep + Etides + Em (1.1)

with I the moment of inertia, Ek the kinetic energy, Ep the potential energy, Ek,s a thermal
pressure surface term, Etides the energy injected by a tidal field and Em the magnetic pressure.
For a stationary system, 1

2
d2I
dt2

= 0, and in a purely gravitational system with N particles, there
is no thermal or magnetic pressure. Finally, if we consider an isolated system, Etides = 0 and
the virial theorem can be written in its more common form:

2Ek + Ep = 0 (1.2)

with :

Ek =

N
∑

i=1

1

2
miv

2
i and Ep = −

N
∑

i=1

N
∑

j>i

Gmimj

‖ri − rj‖
. (1.3)

We define the virial parameter Q as:

Q = −Ek

Ep
, (1.4)

Q = 0.5 characterizes a system in virial equilibrium. If the amplitude of the velocities is not
sufficient to counteract the gravitational pull, Q < 0.5, the system is said to be dynamically
cold, or subvirial. While if the stars are too close together compared to their velocities, Q > 0.5,
the system is hot and survirial. If Q > 1, the total energy is positive and the system is unbound.

1.2.2 Dynamical time-scales

Dynamical systems, like star clusters, tend to virial equilibrium. In such self-gravitating systems,
it is useful to define a few dynamical time scales. The most simple one is the crossing time,
defined as the time for a typical particle to cross the system. Following standard definitions
(Meylan & Heggie, 1997; Fleck et al., 2006), it is expressed as

tcr =
2Rh

σ
=

2Rh
√

GM/Rg

, (1.5)

where Rh is the half-mass radius, σ the three-dimensional velocity dispersion, M the mass of
the system of gravitational radius Rg given by GM/Rg = σ2.

Another crucial time-scale in stellar dynamics is the relaxation time, which can be defined
as (Heggie & Hut, 2003):

trel
tcr

=
0.138

2

(

Rh

Rg

)1/2 N

ln 0.4N
(1.6)

In a self-gravitating system, stars have orbits. If N is large enough, the potential inside the
system is smooth and stars have stationary orbits. The relaxation time is the time-scale at which
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the impact of numerous encounters a star endures is comparable to the motion of its initial orbit.
In other words, the initial conditions of a system are dynamically erased by collisional evolution
after a relaxation time.

In a relaxed cluster, the core is dense with a high velocity dispersion, whereas the outskirts,
the halo, is less dense and stars are slower. The definition from equation (1.5) and (1.6) imply
the relaxation time changes with distance to the center. It is therefore useful to define a global
time-scale for the whole system, the half-mass relaxation time defined by Heggie & Hut
(2003) as

trh ≃ 0.138

ln(0.4N)

√

N

Gm
R

3

2

h (1.7)

with m the mass of a star and Rh the half-mass radius. Let us compute two examples, taking
G in appropriate units

G ≃ 4.48 · 10−3 pc3 Myr−2 M⊙
−1. (1.8)

A cluster with 1000 stars of 0.5M⊙ and Rh = 1 pc has trh = 13 Myr, while a cluster with
106 stars of the same mass and a Rh = 6 pc has trh = 3.1 Gyr.

Equations (1.6) and (1.7) assume identical stellar masses in the system. In a real cluster,
stars have different masses, differently affected by collisional evolution. The most massive stars
cause gravitational focusing and exchange energy with other stars at a higher rate. They lose
their energy to lighter stars, progressively sinking at the center. Heggie & Hut (2003) give an
estimation of the segregation time-scale tms(m1) of a mass m1,

tms(m1) =
m1

〈m〉 trh, (1.9)

so a 30 M⊙ star in the previous 1000 star cluster will have a much shorter relaxation time
of 0.5

30 13 = 0.21 Myr = 210,000 years. A mass spread in a system considerably speeds up its
collisional evolution.

A more general expression than (1.9) can be obtained to quantify the global segregation
time-scale. From Fleck et al. (2006), the mass-segregation time-scale writes

tms

trel
≡ π

3

〈m⋆〉
max{m⋆}

ρ̄h
ρg

(

Rh

Rg

)3/2

, (1.10)

where

ρ̄h =
M/2
4
3πR

3
h

(1.11)

is the mean density within radius Rh, and ρg the mean density inside a sphere of radius Rg.

1.2.3 Static models

It is useful to have a static reference model for a self-gravitating system at equilibrium. Consid-
ering a relaxed system with enough particles, one can use a statistical description to model its
evolution, namely the ”collisionless Boltzmann equation”

∂f

∂t
+ v · ∇rf −∇Φ · ∇vf = 0, (1.12)

with f(r,v, t) the phase space distribution and Φ the gravitational potential. There are several
solutions to this equations, these are ”static” models for star clusters as they are considered in
equilibrium. Of course, the collisional evolution can never be fully neglected and these models
are approximations. We present here two models: Plummer and King. Both have a constant
density in the center, the core, but they differ by their general behaviours.
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Figure 1.5: Comparison of King and Plummer models density as a function of radius, for similar
core radiuses.

The Plummer model is a simple model with a null potential at infinity. It is defined by
its potential as a function of radius (Binney & Tremaine, 2008):

Φ(r) = − GM√
r2 + b2

(1.13)

with b the Plummer parameter, setting the depth of the central potential and the core radius.
From this expression, one can derive the radial density distribution:

ρ(r) =
3M

4πb3

(

1 +
r2

b2

)− 5

2

. (1.14)

Equation (1.14) makes the computational generation of a cluster straightforward, which
is why the Plummer model has been widely used in numerical simulations of star clusters.
However, a Plummer model theoretically extends to infinity, and is not consistent with many
globular cluster observations. Another, more complex, model has the observers on his side. The
King model has been sucessfully used to fit light-profiles of globular clusters (King, 1981). It
is defined as a distribution in energy:

fk(E) =

{

f0

(

e−2j2E − e−2j2E0

)

, if E < E0.

0, otherwise.
(1.15)

with j a free parameter. The core radius can be tuned through a parameterW0 = 2j2(E0−Ec)
with Ec the rest energy at the center.

The main difference with the Plummer model can be seen in Fig 1.5: for a given core radius,
King’s density decreases slower than Plummer, but does falls to zero at a given radius contrary
to Plummer that continues to infinity.

1.3 The origin of star clusters

In this section, we describe the current understanding of star formation and its substructured
spatial distribution in relation to that of the ISM. We then describe the dynamical evolution
brought by this distribution and how it relates to the expulsion of the primordial gas by the
young stars.

9



1.3.1 From gas to stars

The interstellar medium, or ISM, is made of dust and gas in various phases, densities and
temperatures, ranging from a hot ionized medium (T > 105 K and n < 0.01 cm−3) to a cold
neutral medium (T < 100 K and n > 10 cm−3), see Field, Goldsmith & Habing (1969). Finally,
in colder denser regions, T ∼ 10 K and n > 30 cm−3, the hydrogen takes molecular form H2 in
what is called molecular clouds. The dust contained in these regions makes them optically thick,
obscuring background stars. These ”holes in the sky”, as William Herschel exclaimed upon the
Dark Ophiucus Nebula (Houghton, 1942), come in different sizes, from the Bok globules to
GMCs. The interstellar dust absorbs the light in the visible and re-emits it in the infrared, thus
the advent of infrared astronomy unveiled the interior of molecular clouds. In particular, recent
observations with the Herschel Space Observatory showed a prevalence of filaments in clouds,
see André et al. (2010) and Fig 1.6.

Star formation occurs in the higher density clumps or filaments inside the clouds. The origin
of these overdensities has been the object of extensive theoretical development for 60 years. Tur-
bulent motion was very early on designated as the main cause of overdensity. Turbulence is the
transfer of energy from large scales to small scales, creating motions on small scales from a large
energy driver. The well known Kolmogorov incompressible turbulence is hardly applicable to the
ISM, as it is highly compressible (Scalo et al., 1998), instead, molecular clouds are subject to su-
personic turbulence, or Burgers turbulence (Frisch, Bec & Villone, 2001). Nearby supernovas or
tidal perturbation feed energy into the cloud, which is transferred through turbulence to smaller
scales as supersonic internal motions, which cause shocks and form overdense sheets. McKee &
Ostriker (2007) argue that filaments originate both from the intersection of such sheets and the
primordial morphology of the cloud, as self-gravitating matter tends to condense as filaments
(Springel et al., 2005).

Individual condensates of matter called cores form in clumps and filaments, these are stellar
seeds (Fig 1.7a). They collapse when their self-gravity overcome their magnetic and thermal
pressure and internal turbulence. When the central temperature increases and all molecular
hydrogen has been dissociated, the collapse stops and the protostar is born (Fig 1.7b). It
starts accreting its gaseous envelope. Angular momentum from the original cloud shapes the
envelope into a disk around the protostar, and magnetic activity starts creating jets (Fig 1.7c).
After about a Myr, accretion stops and the object becomes a Pre-Main Sequence (PMS) star
(Fig 1.7d). It slowly contracts, following the Hayashi (1961) track, to finally reach 106 K in its
core and start fusing hydrogen into Helium. The object enters the Main Sequence and begin its
life as a ”proper” star (Fig 1.7e). See Larson (1969) for a theoretical overview of the principles
of collapse and protostellar formation.

1.3.2 Substructure and early dynamical evolution

These stars emerges from molecular clouds, which are observed to be heavily substructured (see
e.g. Cambrésy 1999). This substructure can be seen as a fractal distribution (Elmegreen & Fal-
garone, 1996) or a network of filaments (André et al., 2010), both consistent with compressible
turbulence (McKee & Ostriker, 2007). Cores and protostars inherit this hierarchical structure
as shown by many observational studies of star forming regions and substructured young clus-
ters (Schneider & Elmegreen, 1979; Hartmann, 2002; Bressert et al., 2010). See for example
the distribution of Young Stellar Objects in the Carina Nebula on Fig 1.8. Examples of sub-
structured young clusters include the Taurus Ariga region, ρ-Ophiucus and Aquila, details and
other examples can be found in both volumes of The handbook of star forming regions Reipurth
(2008).

However, other young clusters do not display such fractal, clumpy or filamentary structure.
Instead, they are smooth, centrally condensed systems. The most known example is the Orion
Nebula Cluster, or ONC. Located in the heart of the Orion complex, the largest and most
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Figure 1.6: Visible light and infrared view of a part of the Orion star forming complex. Horshead
nebula is visible on the right, as well as the very bright star Alnitak, part of the Orion belt. NGC
2071 and 2068 are visible on the left. Pink infrared coloring shows radiation from very bright
young massive stars forming in the cloud. Colder filaments are visible all around. White bar on
lower right of upper panel shows 1 parsec. Credits: Digitized Sky Survey; ESA/Herschel/PACS.

(a) Starless core
(NIR)

(b) Young protostar
(IR)

(c) Protostar
(IR,UV)

(d) Pre-MS star
(visible)

(e) MS star
(visible)

Figure 1.7: Stages of stellar birth. (a) is just cold molecular gas and contains no central source
yet. (b) is more advanced, though hidden in visible light, its central protostar shines in infrared.
The protostar in (c) is actively accreting its disk and produces jets. (d) is a pre main-sequence
star, free from its envelope and surrounded by primordial gas. (e) is the mature stellar stage: the
main sequence. Credits: Kandori et al. (2005); NASA/JPL-Caltech/Evans,N; Burrows,C/HST-
NASA; ESA/Hubble & NASA; DSS
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Figure 1.8: Herschel IR 70m observations of the Carina Nebula, with YSOs as red points and di-
amonds. Cyan crosses show OB stars. Both the gas and prestellar objects follow a substructured
distribution. The figure was extracted from Gaczkowski et al. (2013).

active star forming region in the solar neighborhood, the ONC is estimated to be a few Myrs
old. Hillenbrand & Hartmann (1998) found no clumps or filaments in the stellar distribution
of the cluster, but a smooth distribution with a high density core formed by the Trapezium, a
dense system of massive stars. This mass segregation, if not fully primordial, implies that some
amount of dynamical evolution took place in the ONC since the formation of the stars. This
dynamical evolution could have erased the initial substructures.

This is consistent with observations by André et al. (2007) who found clumps of prestellar
objects to have a very low velocity dispersion in Ophiucus, meaning these clumps are more likely
to merge and interact than diverge and disperse in the field.

These observations point at a rough picture of substructured stellar formation and early
evolution: when the newly born stars emerges in clumps, if the background tidal field is weak
and the star forming region sits well inside its Roche radius, the clumps then progressively
merge and converge to the system barycentre to form a unique, relaxed self-bound association
over the course of a few crossing times. This picture is backed up to some extent by hydro-
dynamical simulations of fragmentation modes in the turbulent ISM (Klessen & Burkert, 2000;
Bate, Bonnell & Bromm, 2003; Mac Low & Klessen, 2004; Offner, Hansen & Krumholz, 2009;
Maschberger et al., 2010) and by recent observationnal clues that subclusters show dynamical
traces of mergers (Kuhn et al., 2015).

1.3.3 Star formation efficiency and infant mortality

Though stars form in a hierarchical clumpy structure, star forming regions are vulnerable to gas
expulsion and dispersion.

In their seminal paper on embedded clusters, Lada & Lada (2003) coined the term ”infant
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(a) Simulation of gas expulsion (b) Virial states of stellar clumps

Figure 1.9: (a): hydrodynamical simulation of wind-induced gas expulsion around a small clus-
ter, the figure was extracted from Dale et al. (2013). (b) virial parameter of stellar clumps in a
star forming hydrodynamical simulation, ignoring the potential of the gas to predict their post-
expulsion fate. The solid line is the cumulated distribution of clumps over all snapshots; the
shaded histogram shows the final distribution. The figure was extracted from Kruijssen et al.
(2012).

mortality” for young star clusters. Comparing the populations of embedded clusters and older
open clusters, the authors concluded clusters had a 90% mortality rate before 10 Myr. This
is explained by the traditionnal picture of gas expulsion in clusters: a portion of the gas in a
molecular clouds forms a group of protostars, which quickly accrete their envelope, then start
nuclear burning. This portion is expressed as the star formation efficiency

ǫ =
M∗

M∗ +Mgas
, (1.16)

with Mgas the remaining gas after star formation. This gas is thought to be ejected from the
young cluster through photo-ionization (the UV radiation from massive stars ionizes the neutral
gas which heats up and expands), jets and outflows (young stars ejecting matter during accre-
tion), winds (ejection of matter from stars surfaces at high speeds), and supernovae (shockwave
from the explosive death of a massive star). The gas expulsion occurs on a crossing time-scale,
see Krause et al. (2016). Considering a young cluster in dynamical equilibrium, the loss of the
mass of the gas on such a short time-scale can unbound the system, as the stars velocities are
now too high for the new potential well. The young cluster then dissolves following the gas
expulsion. This picture is backed up by observations of young dissolving clusters (Bastian &
Goodwin, 2006) consistent with corresponding numerical models (Goodwin & Bastian, 2006).
Extensive analytical and numerical work have explored this process, e.g. Tutukov (1978); Hills
(1980); Lada, Margulis & Dearborn (1984); Adams (2000); Boily & Kroupa (2003a,b), with an
estimated minimum star formation efficiency of 30% to remain bound after gas expulsion.

However, the picture is more complicated than it seems. The interaction between types of
stellar feedback, such as winds, photoionisation and supernovae, is not well understood (Dale
& Bonnell, 2011; Dale et al., 2013), and their exact time-scales can have a large influence on
cluster survival (Pelupessy & Portegies Zwart, 2012). Another serious issue with the classical
picture of gas expulsion is that star formation is substructured and clusters undergo dynamical
evolution while the gas is being evacuated, making survival heavily dependant on the clumpy
structure, as shown by Farias et al. (2015). Hydrodynamical simulations and recent observations
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show stellar clumps can be resistant to gas expulsion even before global dynamical relaxation
(Kruijssen et al., 2012; Kuhn et al., 2015), see Fig 1.9b which shows the distribution of virial
parameter Q of stellar clumps in a simulation, ignoring the gas potential. The vast majority
have Q < 1 and are expected to stay bound after expulsion.

Substructure and dynamical evolution have a prominent place in the issue of cluster survival.
In this work, we study this phenomenon without a hydrodynamical treatment of the gas to isolate
purely dynamical effects.

1.4 Simulating star clusters evolution

In this section, we describe the general characteristics of the hydrodynamical simulations invoked
earlier in this introduction. We emphasize their qualities and shortcomings, of which their limited
system size. We then turn to alternative methods to numerically reproduce the early dynamical
evolution of star clusters.

1.4.1 Hydrodynamical simulations

To model the formation of a star cluster from a core-less molecular cloud is no easy task. The
model has to reproduce turbulence, core condensation, gravitational collapse, accretion, and for
the most realistic ones, stellar feedback, magnetic effect and dust chemistry. Two numerical
paths has been explored in the past: AMR and SPH.

Adaptative Mesh Refinement, AMR, is an Eulerian approach. The hydrodynamical equa-
tions (conservation of mass, momentum, the equation of state) are discretized and solved on
a grid of cells following the finite volumes methods (see the RAMSES code, Teyssier 2002).
Smoothed Particle Hydrodynamics, SPH, is a Lagrangian approach: instead of looking at in-
puts and outputs of matter in a cell, the gas is subdivided in particles free to move in the system.
They are attributed a density, temperature and pressure. This method is akin to N-body inte-
gration, and many SPH codes can work as purely gravitational integrators. Even if these codes
can handle high density contrasts, the collapse and formation of a protostar can still bring the
numerical computation to a standstill. The usual workaround is the use of sink-particles: passed
a given density threshold, several gas particles are merged into a single point-like object able to
accrete any infalling matter. This works well though it suppresses any physical process below
this accretion limit, usually a few to a hundred AU. (Bate & Burkert, 1997).

The precision, size and complexity of cluster formation simulations have been steadily im-
proving for 20 years (see Turner et al. 1995; Klessen & Burkert 2000; Bate, Bonnell & Bromm
2003; Offner, Hansen & Krumholz 2009; Myers et al. 2014 and references). Nevertheless, no
simulation to date include realistic cooling processes, radiative and wind feedback, magnetic
fields and dust chemistry, all at the same time. All these are crucial to achieve precise and
realistic simulation of the star formation process. Moreover, one of the most detailed star for-
mation simulations to date, Bate (2012), only forms a few hundred stars in a volume spanning
less than 1 pc and evolves them for less than 0.2 Myr with a simulation run time of several
months. In fact, while looking at a typical star forming regions, hydrodynamical simulations
often reproduce a single fragment, see Fig 1.10b.

However, good results are already being achieved, see the short review by Clarke (2012).
Stellar properties and general structure agree with observations and interesting results are being
obtained. Maschberger & Clarke (2011) and Moeckel & Clarke (2011) have noted that massive
stars tend to sit at the heart of gas clumps in hydrodynamical simulations, some as the result of
merger events with low-mass proto-stars. The hydrodynamical treatment allows the formation
of gaseous disks around protostars that can influence the dynamics on small scales.

In summary, though hydrodynamical simulations are not yet fully realistic, they provide
a good approximation of reality for small clusters and allow exploration of early dynamical
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(a) Hydrodynamical simulation (b) Observed distribution of gas and protostars

Figure 1.10: Comparison of a star formation hydrodynamical simulation from Bate (2012) on (a)
and Herschel infrared observations of the Aquila star forming complex, extracted from Könyves
et al. (2010) on (b). Gas column density is shown as levels of red and yellow on the left and
as levels of blue and red on the right. The simulation spans 0.6 parsecs while the observations,
with the distance estimate from the authors, span 7 parsecs. We inserted the simulation into
the observations to compare the scales.

processes. However, they cannot model the dynamical interactions between stellar sub-clusters
and their consequences on a more massive final system.

1.4.2 Artificial substructure

There is a persistent difficulty to bridge over self-consistently from the star formation phase, to
the equilibrium configuration of bound clusters. Hydrodynamical calculations of star forming
regions evolve for up to a few 105 years, when a stable configuration would require several
106 years at typical cluster densities. A way to overcome this issue is to switch to purely
gravitational N-body simulations once the stars formed and most of the gas has been either
accreted or expulsed. It is computationally less expensive and allows for longer integration of
larger systems.

It is then essential to obtain a good model of the stars phase-space distribution at the end of
a hydrodynamical simulation. While King and Plummer model have a known distribution one
can sample from, no such thing exist for the clumps and filamentary structure of the newborn
stellar objects in star-forming regions. Several methods have been explored to solve this.

Sink particle distribution is the most straightforward solution. Moeckel & Bate (2010) took
the distribution of sink particles formed in the hydrodynamical simulation by Bate (2009)
and directly converted it as a stellar distribution, preserving the masses, positions and
velocities of the ”stellar seeds”. This is probably the best initial conditions for N-body
simulations of young clusters that can be achieved, at the cost of speed, sampling and size.
The initial hydrodynamical simulation took months to complete, making it hard to run it
again and impossible to run it multiple times to obtain a good statistical sampling of the
model. The size of the cluster achieved cannot exceeds a few 1000s stars given the current
state of hydrodynamical simulations.

Stellar spawning from hydrodynamics is a variant of the previous method. Fujii & Porte-
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(a) Hydrodynamical output (b) Stellar spawning

(c) Multiple Plummer (d) Fractal configuration

Figure 1.11: Representation of four methods to generate substructures. (a) is extracted from
Kruijssen et al. (2012), constructed with data from Bonnell, Bate & Vine (2003), (b) is extracted
from Fujii (2015). (c) and (d) were generated for this work.
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gies Zwart (2016) started from hydrodynamical simulations of massive molecular clouds
and stopped the integration once the main structures had formed but before local gravi-
tational collapse had set in. Stars were then spawned in space following the distribution
of gas. This enables larger clusters and quicker initial conditions of structures. However,
the velocity distribution of these new stars is artificial, as it can at best inherit the gas ve-
locity, without including the impact of the early collisional evolution that occurs between
protostars in the clumps.

Scattered Plummer spheres is an analytical answer to the substructure problem. McMillan,
Vesperini & Portegies Zwart (2007) created a clumpy model for a young star cluster by
spawning several Plummer spheres randomly in space. This is almost immediate and is
a good approximation. The authors obtained interesting results on the inheritance of
mass segregation during mergers. However, the Plummer profile places a constraint on the
clumps internal dynamics which bias the dynamical evolution.

Fractal models were introduced by Goodwin & Whitworth (2004) and has been used in nu-
merous studies ever since, e.g. Allison et al. (2009b); Kouwenhoven et al. (2010); Parker &
Wright (2016). The idea is to grow a 3D pseudo-fractal tree with probabilistic branching,
up to a given level, turning the final leaves into stars. The method is fast and the result
is spatially realistic, fitting the observation that finds a fractal structure in the molecular
clouds and star forming regions. However, the velocity distribution is artificial, drawn
from successive gaussians at each levels. The clumps will relax when integration starts,
shaking the whole system right off the bat.

It seems the generation of substructure has to balance realism and computational cost. The
most realistic method is too costly, and most of the quicker alternatives are disconnected from
the collisional dynamics of young stars inside a clumpy configuration. There is a need for an
computationally efficient method to produce dynamically consistent initial conditions to model
young star clusters and study their evolution, which is what we introduce in the next chapter.
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Part I

The fragmented model and its

evolution
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CHAPTER 2

The Hubble-Lemâıtre fragmented

model: analytical approach

In this chapter we introduce a new way to obtain substructured intial conditions: the Hubble-
Lemâıtre model. We derive the equations governing the expansion and perform a perturbation
analysis to investigate the growth of idealized overdensities.
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For decades, cosmologists studied the development of substructures in the early universe. In
an expanding universe, each point in space sees others moving away, with a velocity proportional
to their distances, thus a smooth universe should stay smooth, no structure should develop.
However, the matter distribution is not perfectly smooth, the density fluctuations grow through
gravity, accreting nearby matter, against the cosmological flow. These overdensities turn into
galaxies, that then clump together to form galaxy clusters, building up a hierarchical density
distribution, see White & Rees (1978); Aarseth, Turner & Gott (1979). This is the general
picture for galaxy formation.

We apply this process to star clusters to obtain hierarchical substructures. We set up rel-
atively smooth initial conditions by spawning stars in a uniform sphere, to which we attribute
radial velocities akin to the well-known Hubble velocity field of nearby galaxies. When left to
evolve, the model expands, reproducing the cosmological expansion, and overdensities grow,
stars clump together, spontaneously forming substructures. I named this method the Hubble-
Lemâıtre fragmentation. The name of Georges Lemâıtre was added for historical accuracy. It has
now been shown that the astronomical observation of redshifted galaxies and its interpretation
as the consequence of an expanding universe predated Hubble’s paper (Hubble, 1929). Georges
Lemâıtre had published his conclusion on an expanding universe two years earlier (Lemâıtre,
1927). The account of this can be found in Kragh & Smith (2003); van den Bergh (2011) and
Freeman et al. (2015).
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As the model is analog to the cosmological model of an expanding universe, we adopt the
usual notations in the present chapter. However, important differences should be noted:

• our model is not periodic but isolated and can be inserted in any environment;

• our particles follow a stellar mass function, at odds with the single-mass cosmological
simulations;

• we use a collisional integrator to perform the expansion and monitor close particles inter-
actions;

• the expansion of our model slows down over time, as there is no internal energy source
akin to the cosmological Dark Energy (Λ, the Cosmological Constant);

• the density fluctuations are not inserted from a known power spectrum but arise naturally
from spatial Poisson noise and the stellar mass function.

Our view was that by following through with a full stellar IMF, the massive stars would
define a radius of influence around themselves and sit preferentially, but not systematically, at
the heart of sub-structures, retrieving a feature seen in star formation calculations (Moeckel &
Clarke, 2011; Maschberger et al., 2010), while short-cutting costly computer calculations. The
configuration that is sought here is not unlike the situation found in the formation of galaxy
clusters in cosmology, as massive galaxies tend to drag in less massive ones and sit at the heart
of clusters.

2.1 How to build a Hubble-Lemâıtre model

2.1.1 Initial state

The first step to obtain a HL-fragmented model is to build an uniform sphere model. The N
stars, depending on the required membership, have to be distributed randomly in space inside
a certain radius, resulting in an uniform density. This can be achieved by sampling separately
the distance to the center and the angular position of each star, in a method analog as used in
Aarseth, Hénon & Wielen (1974) for a Plummer model. The distance to the center should be
sampled from the function

fR(X) = R0X
2, (2.1)

with R0 the bouding radius and X a random variable following a uniform probability law between
0 and 1. A direct uniform law for the radius would overpopulate the inner regions. The angles
φ and θ, respectively azimuthal and polar angle in the physics convention, should be sampled
from

fφ(X1) = 2πX1, (2.2)

fθ(X2) = arccos (X2), (2.3)

with X1 following a uniform probability law between 0 and 1 and X2 between -1 and 1. The
cartesian coordinates are then obtained through

x = R0 sin θ cosφ, (2.4)

y = R0 sin θ sinφ, (2.5)

z = R0 cos θ. (2.6)

(2.7)

The N particles are now homogeneously distributed in space in a sphere of radius R0. The
next step is to attribute velocities. Unlike other models, like Plummer, the velocities are here
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straightforward. We use the Hubble-Lemâıtre velocity field of neighbouring galaxies: velocities
are radial from the Milky Way, larger with increasing distances, taking the form:

v = H0r, (2.8)

with H0 being an equivalent of the well-known Hubble parameter. An appropriate H0 to
obtain a fragmented subvirial model has to be inferior to

√
2 (see next section). The model

obtained from this is then evolved through a N-body integrator, which in this case is NBODY6.
However, in this chapter, we take an analytical approach.

2.1.2 Fragmentation

The cluster expands, driven by the initial Hubble-Lemâıtre velocity field. During this expansion,
poissonian fluctuation in density from the uniform model starts to grow: parts of the cluster with
more mass initially attract more stars, forming clumps, which merge, spontaneously building
substructure. These clumps will be analyzed in the next chapter. If the system is bound, the
expansion stops at some point, the apex, at which the initial kinetic energy has been spent and
converted to potential energy: the cluster is now larger, substructured and subvirial, about to
collapse. The apex time ta of the end of the expansion. The maximum value of H0 producing a
bound system can be derived from Newton’s second law applied to an expanding spherical shell
of matter.

We start from a uniform sphere of radius R0, total mass M . We consider spherical shells as
mass elements, situated at distance r from the origin. As previously said, they are attributed a
radial velocity following (for the shell at r = R0) v0 = H0R0 = H0R0ur. We want to follow the
radial motion of the last shell of mass m, situated at R from the origin. Newton’s second law
gives

m
dv

dt
= −GMm

R2
. (2.9)

By multiplying on both sides by v and integrating between a given time and t = 0, one finds

v2(t)− v20 = 2GM

(

1

R
− 1

R0

)

. (2.10)

We take ν = v/v0, x = R/R0 and define

E∗ =
2GM

R0v20
(2.11)

which is a dimensionless measure of the total energy of the system. It comes

ν2 = 1 + E∗

(

1

x
− 1

)

. (2.12)

The evolution of the system has 3 outcomes, depending on the value of E∗,

• E∗ < 1, the velocity is always strictly positive as the system expands (x → ∞). The
system is unbound;

• E∗ = 1, the velocity approaches zero as the system expands. The expansion “stops at an
infinite radius”. The system is marginally bound;

• E∗ > 1, the velocity reaches zero for a finite radius, the system is bound and collapses
back on itself once the expansion stops.
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We place ourselves in the Hénon unit system, which means G = 1 and M = 1. Hénon units
will be more precisely defined in the next chapter. We choose R0=1. Which gives a critical value
E∗ to have a bound system: E∗ = 2/H2

0 > 1. This implies that to have a bound system, which
stops expanding at some point, one must have H0 <

√
2. We only consider in the following the

case in which E∗ > 1. We have the expression

ν =

√

1 + E∗

(

1

x
− 1

)

(2.13)

which, when derived over time gives

dν

dt
= − E∗

2x2

[

1 + E∗

(

1

x
− 1

)]− 1

2 dx

dt
. (2.14)

Combining this with (2.9), one obtains

dx

dt
= H0

√

1 + E∗

(

1

x
− 1

)

, (2.15)

which can be rewritten, using H̃0 = H0

√
E∗ − 1 and xa = E∗

E∗−1 ,

dx

dt
= H̃0

√

xa
x

− 1, (2.16)

xa being the extent of the maximum expansion as we assumed a bound system. The subscript
a is for apex. If we choose the notation u = x/xa, we get

√

u

1− u

du

dt
=

H̃0

xa
. (2.17)

We know that x varies from 1 to xa, thus u varies from 1/xa to 1. We can then make the
change of variable u = sin2 θ and separate the variables to get

√

sin2 θ

1− sin2 θ
2 sin θ cos θdθ =

H̃0

xa
dt (2.18)

which becomes, after simplifications,

[1− cos(2θ)]dθ =
H̃0

xa
dt. (2.19)

We now integrate the expression from t = 0 to ta, the time at which the expansions stops
and x reaches xa (wich implies ua = 1 and θa = π/2),

∫ π/2

θ0

[1− cos(2θ)]dθ =

∫ ta

0

H̃0

xa
dt (2.20)

π

2
− θ0 +

sin(2θ0)

2
=

H̃0

xa
ta (2.21)

π − 2θ0 +
2√
xa

√

1− 1

xa
= 2

H̃0

xa
ta (2.22)

which boils down to the expression of the apex time,

ta =
E∗

(

π
2 − θ0

)

+
√
E∗ − 1

H0(E∗ − 1)−
3

2

. (2.23)
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Figure 2.1: Theoretical values of the apex time, at which the system stops expanding, as a
function of initial HL parameter, which tunes the strength of the initial expansion.

Recalling the quantities:

E∗ =
2GM

R0v20
; xa =

E∗

E∗ − 1
; θ0 = sin−1

(

1√
xa

)

. (2.24)

See figure 2.1 for the value of ta as a function of H0.

2.2 The growth of overdensities: analytical study

2.2.1 Working equations

During the expansion and in the mean-field approximation, the mass inside any shell of radius
r(t) is conserved as they move outwards. The position of a mass element is known in parametric
form from a rescaling of its initial coordinates and we may write

r(t) = a(t)x (2.25)

v(t) = ȧx = H(t)r (2.26)

where x is a co-moving coordinate of position, and a(t) is a dimensionless function of time.
The flow is homological and no shell-crossing takes place. It is convenient to introduce a dimen-
sionless time τ such that

t =
τ

H0
. (2.27)

We then have from equation (2.19):

[

E∗

E∗ − 1

] 3

2

[2θ − sin 2θ]

∣

∣

∣

∣

∣

θ

θo

= 2
√

E∗τ (2.28)
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Table 2.1: Summary of main variables.

E Total system energy
E∗ Dimensionless total energy
W Total potential energy
Ek Total kinetic energy
M Total system mass
Ro Initial bouding radius
H0 Initial Hubble parameter
vo Initial velocity at bounding radius
H Variable Hubble parameter
τ Dimensionless time
x Comoving spatial coordinate

a(t) Rescaling function
θ Calculation angle

ν(τ) Dimensionless velocity 1 + E∗(1/a(τ)− 1)
ξ Radial displacement from comoving

δρ, δM, δρ Perturbed quantities
µ(τ) Central point mass

η Peculiar velocity dξ/dt

with

a(t) ≡ sin2 θ(τ)

sin2 θo
(2.29)

The dimensionless energy parameter E∗ satisfies E∗ > 1 for bound systems. The origin of
time τ = 0 coincides with the angle θo found from solving sin2 θo = (E∗ − 1)/E∗. The solution
(2.28) provides the time-sequence for the position and velocity of any shell 0 < x < Ro as
parametric functions of τ :

v(t) = H0x

√

1 + E∗

(

1

a(τ)
− 1

)

= H0 x ν(τ) (2.30a)

H(t) = H0
ν(τ)

a(τ)
(2.30b)

ρ(t) =
3M
4πR3

o

1

a3(τ)
. (2.30c)

2.2.2 Linear density perturbation

An actual Hubble-Lemâıtre model will develop 3-dimensional clumps during the expansion, but
to get an analytic view of this process, it is necessary to fall back on one dimension. This will
shed light on the growth of clumps and help understand general trends in the system.

We follow radial density perturbations in the expanding uniform sphere described by equa-
tions (2.28) and (2.29). A simplified calculation for radial modes of perturbation in the linear
approximation will be derived here, with the goal to determine when the clumps become mostly
self-gravitating. A more detailed analysis can be found in the classic work by Friedman & Schutz
(1978), Peebles (1980) and Aarseth, Lin & Papaloizou (1988).

We introduce a Lagrangian perturbation in the position of a shell of constant mass by
substituting x → x + ξ(x, t) and setting ξ = ξur for a radial displacement. Starting from the
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continuity equation, a linear treatment yields an expression for the perturbed density,

∂ρ

∂t
+∇(ρv) = 0, (2.31)

which transforms into
δρ+∇(ρvδt) = 0. (2.32)

We make use of the equivalence
∂

∂r
≡ 1

a

∂

∂x
(2.33)

to obtain, considering vδt = δr = a(τ)ξ and ignoring second order terms from δρ,

δρ = −∇ · (aρξ) = −ρ(τ)
1

x2
∂

∂x
(x2ξ), (2.34)

which leads to a perturbation in the mass integrated up to radius r

δM(< r) = δ

(

ρ
4

3
πr3

)

(2.35)

= −4πa3(τ)ρx2ξ. (2.36)

Poisson’s equation in spherical symmetry gives the perturbed potential

1

r2
∂

∂r
r2

∂

∂r
δφ =

1

a2
1

x2
∂

∂x
x2

∂

∂x
δφ = 4πGδρ. (2.37)

Substituting for δρ from (2.34) in (2.37), and using (2.33), we obtain

∂

∂x

(

x2
∂δφ

∂x

)

= −4πa2Gρ0
∂

∂x

(

x2ξ
)

. (2.38)

Integrating once, we obtain the general solution

a(τ)∇δφ =
3GM
R3

o

(

−ξ +R3
o

µ(τ)

x2

)

, (2.39)

where µ stands for a central point mass. A point mass would form by shell crossing at the center
of coordinates. In an expanding system, shell crossing at the center is unlikely. For that reason,
we make µ = 0 in the remainder of this chapter.

The equations of motion at co-moving radius x+ ξ(x, t) can be expanded to first order in ξ ;
identifying terms of the same order we obtain (with ∂/∂x = ∇x)

a(τ)
d2

dt2
ξ + 2ȧ(τ)

d

dt
ξ = −∇δφ− ξ∇x∇φ− ä(τ)ξ . (2.40)

The second and third terms on the right-hand side cancel out exactly ; the first is known
from (2.39). It is standard practice to demote this second-order dynamical equation to a set of
first order equations; for convenience we use the initial system radius R0 as unit of length, and
we introduce starred (∗) dimensionless variables. We then have x = R0x∗, ξ = R0ξ∗, and so on.
After simplification using the dimensionless functions of τ defined in (2.27) and recalling that
ȧ(τ) = H(τ), the differential equations read

d

dτ
ξ∗ = η∗(τ) (2.41a)

d

dτ
η∗ =

3E∗

a(τ)2
ξ∗ − 2

H(τ)

a(τ)
η∗ (2.41b)

where we have introduced the peculiar velocity η ≡ dξ/dt = H0R0η∗.
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Figure 2.2: Schematic illustration of a sinewave density perturbation (red line) applied to an
uniform distribution of matter (blue dots) and the resulting distribution (red dots). The mode
displayed here has m = 10.

2.2.3 Consistent initial conditions

Initial conditions

Equations (2.41) can be numerically integrated with an explicit integration scheme once the
initial values R0,H0,M and ξ∗(0) are specified and values of a(τ) are obtained from (2.29) and
(2.28). All functions of the dimensionless time τ are set to unity except η∗(0) = 0. The solution
is shown in the next section, on Fig. 2.3a.

The Hubble parameter H(τ) → 0 when the system reaches a maximum radius a(τ)R0 (θ[τ ] =
π/2 in Eq. 2.29). Around that time, equation (2.41b) transforms so the Lagrangian displacement
ξ∗ grows exponentially, and the clumps become the densest. We investigate the growth of a
density perturbation as a Fourier fragmentation mode before that. In the linear regime, such a
mode is decoupled from all the others. We pick

ξ∗(x, 0) = ξ
(o)
∗ sin(kx), (2.42)

where the wavenumber k is such that kR0 = mπ and ξ∗(R0, 0) = ξ∗(R0, τ) = 0 at all times. When
deciding which wavenumber to choose, we must bear in mind the finite numerical resolution of
the models that we will present later. The next subsection gives quantitative arguments that
motivated our choices. The aspect of the perturbed system is shown as a rough schematic on
Fig 2.2.

Fourier modes: resolution issues

An uniform distribution of N discrete mass elements cannot resolve infinitely small wavelengths,
the lower limit depends on the mean separation lo ≃ R0/N

1/3 which gives a reference wavelength
λ/R0 = λ∗ ≥ N−1/3 for a resolved Fourier mode. Since kR0 = mπ, this also implies that
m ≤ 2N1/3.

The initial amplitude ξ
(o)
∗ of the perturbation can be tailored to the actual Poissonian fluc-

tuations in a uniform distribution of discrete elements. The radius bounding a shell of N mass
elements distributed randomly will fluctuate freely between r, r + δr due to stochasticity. The
radius r of a uniform sphere being a power-law of mass M , we find:

δr

r
=

1

3

δM

M
=

1

3

δN

N
=

1

3
N− 1

2 (2.43)
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for identical mass elements. We then compute the number-averaged value 〈δr/r〉 by summing
over all elements from 1 to N and dividing by N − 1 to find

〈δr
r
〉 = 〈ξ(o)∗ 〉 = 2

3

√
N − 1

N − 1
. (2.44)

Thus the mean amplitude (in units of R0) is 〈ξ(o)∗ 〉 ≃ 1/10 for N = 32 and drops to 〈ξ(o)∗ 〉 ≃
6×10−4 when N = 106. We checked that the mode with the shortest wavelength λ∗ still resolved

would have a displacement 〈ξ(o)∗ 〉 initially smaller than λ∗/2 for any sensible value of N . This in
turn implies that this mode may grow over time to reach an amplitude ξ∗(x, τ) ≃ λ∗/2, which
is the point when orbit-crossing between shells of constant mass must occur. In other words, at
this point, the overdensity transitions from linear convergence of particles to collisional evolution
(not covered by Eqs. 2.41). The time when shell-crossing occurs can be seen as the ”birth” of
a clump, whether this clump undergoes consequent two-body relaxation effects depends on its
characteristics, such as density and membership, and the remaining time before the end of
expansion.

2.2.4 Segregation time-scale

We turn to the matter of mass segregation in the clumps. Let us consider a clump of membership
Nλ initiated by a Fourier mode of wavelength λ. With its total density ρ+δρ given by Eq. (2.34),
we may write

ρg =
ρo

a3(τ)

(

1 +
δρ

ρ

)

≡ ρo
a3(τ)

ρ∗. (2.45)

Combining this with Eqs. (1.5), (1.6) and (1.10) from the introduction, the mass-segregation
timescale in the clump now reads:

tms =
0.138

6
π

(

3

4π

)1/2 〈m⋆〉
max{m⋆}

Nλ

ln 0.4Nλ
(Gρg)

− 1

2 . (2.46)

Making use of the equality
4π

3
Gρo = H2

0E∗, (2.47)

the last three relations simplify to the expression of the new dimensionless mass-segregation
timescale:

τms = H0tms =
0.138

6
π

a
3/2
λ

(ρ∗E∗)1/2
〈m⋆〉

max{m⋆}
Nλ

ln 0.4Nλ
(2.48)

where aλ refers to the expansion factor a(τ) evaluated at time τ when ξ∗ ≃ λ∗/2. This is
because this timescale is relevant once the clump leaves the linear regime and starts its collisional
evolution, when shell-crossing occurs.

Clearly the segregation time depends strongly on the mass spectrum of individual clumps,
on their membership Nλ, as well as the density contrast ρ∗(τλ). We find the density contrast
from (2.42) and (2.34),

δρ

ρ

∣

∣

∣

∣

τ=0

= − 1

x2
∂

∂x2
x2ξ = −

(

2
sin mπx∗
mπx∗

+ cos mπx∗

)

mπξ
(o)
∗

which admits an upper-bound of 3mπξ
(o)
∗ . In the course of evolution, the initial amplitude of

perturbation grows to ξ∗ = λ∗/2 so that the density contrast peaks at

ρ∗ = 1 +
δρ

ρ
= 1 + 3mπλ∗/2 = 1 + 3π , (2.49)
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where the last substitution follows from the definition of the integer m. The mass Mλ in a shell
bounded by r, r+λ, is known from the unperturbed density profile ; in terms of the total system
mass M, we find

Mλ

M = (3x2∗ + λ2
∗/4)λ∗ = (1 + λ2

∗/4)λ∗ , (2.50)

where we have replaced 3x2∗ by its space-averaged value in the last step. Eq. (2.50) provides
an estimate of the bound mass of a clump formed through the growth of a radial perturbation
mode. If all the stars have equal masses, or, if the stellar mass function is symmetric with
respect to the mean value 〈m∗〉, the ratio of the number Nλ of stars in the clump to the total
number N is in the same proportion as Mλ

M
. We find an estimate for Nλ which reads

Nλ = N

(

1 +
λ2
∗

4

)

λ∗. (2.51)

We argued in §2.3.2 that a resolved mode should have λ∗ ≥ N−1/3, which translates as:

Nλ > N2/3

(

1 +
N−2/3

4

)

. (2.52)

This number inserted into Eq.(2.48) leads to a rough picture of the segregation process in clumps.
The rate of mass segregation leans on the choice of initial value for the expansion phase, H0.
In the limit when H0 = 0, there is no expansion whatsoever, and the clumps form unsegregated
(aside from random associations when attributing positions and velocities to the stars) during
global infall. If by contrast, the expansion is vigourous, aλ ≫ 1, and the segregation timescale
remains large. For N ∼ 104, we compute from (2.52) Nλ & 464: a clump with that many stars
will mass-segregate rapidly only if its stellar mass function includes very massive stars. We
note that one-dimensional (radial) modes would in fact split into several smaller fragments in a
three-dimensional calculation.1 We expect the clumps to form quickly and contain Nλ ≪ 464
stars, so that the internal dynamics will drive mass segregation before the system expansion
stops. Because this depends in the details on H0 and other important parameters, we defer the
analysis to the next chapter and N-body simulations.

2.2.5 Example with N = 15000

We now make use of all previous development to follow the evolution of a perturbation in a
given system and assess its dynamical state.

To ease comparisons with N-body calculations cast in standard Hénon units, we set M =
G = R0 = 1 and use H0 = 1.0833.. ≃ 1 so that the total binding energy E = −1/4, which gives
a value of E∗ ≃ 1.7. The Hubble expansion proceeds until a time t = τ/H0 ≃ 3.87/H0, when
H = 0 and the bounding radius R reaches R = a(τ)R0 ≃ 2.4R0. The evolution time up to that
point coincides almost exactly with the current global system free-fall time of ≈ 4.1 time units.
System-wide collapse to the barycentre will ensue on the same time-scale, but now this process
will involve the merging / scattering of several high-density clumps.

For simplicity, and for ease of calculations, we chose the mass of individual stars to follow a
truncated Salpeter (1955) distribution function, where the distribution function dN/dm ∝ m−α

⋆

with index α = 2.35 for masses in the range 0.3 M⊙ < m⋆ < 100 M⊙ giving a mean value of
≃ 1 M⊙.

We set N = 15000 as reference. We compute a mean initial amplitude of perturbation

ξ
(o)
∗ ≈ 0.005 with a shortest-resolved wavelength λ∗ ≈ 0.04. Fig. 2.3a displays the solution from
integrating Eqs. (2.41). The amplitude ξ∗(τ) grows monotonically and crosses the values λ∗/2

1 A full-grown radial mode forms a thin shell subject to fragmentation. See e.g. Ehlerova et al. (1997); Wünsch
et al. (2010).
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(a) Regimes of overdensity evolution (b) Segregation domains

Figure 2.3: (a): growth of perturbation ξ∗ over dimensionless time τ until the end of expansion
at τ = 3.84. An overdensity seeded with a wavelength λ∗ begins its collisional evolution when
ξ∗ reaches λ∗

2 . These regimes are illustrated for λ∗ = 0.04, in blue, and λ∗ = 0.08, in red. The
overdensities have to evolve collisionally for at least τms to mass-segregate. This time-scale is
also shown for each case. The λ∗ = 0.04 case evolves collisionally for several τms and will end
up mass-segregated, while the λ∗ = 0.08 case doesn’t have time to segregate. Modes of large
wavelength tend to produce less mass-segregated clumps. (b) for a given number of nodes m,
a model on the right of the corresponding line (arrow for m = 10) will have mass-segregated
overdensities at the end of the expansion, while on the left, the collisional evolution is too short
for segregation to set in. The red crosses show the minimum N below which the modes cannot
be resolved.
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at τ ≈ 2.3 : thereafter the perturbation enters a non-linear regime of evolution during which the
internal dynamics may become collisional (∆τ > τms). A second case is depicted on Fig. 2.3a,
where the wavelength λ∗ = 0.08 and the perturbation reaches amplitude ξ∗ = λ∗/2 at τ ≈ 3.6:
there is then too little time left before the end of the Hubble expansion phase for a clump of
stars to segregate (∆τ < τms).

The dynamical state of individual clumps is clearly a question of membership Nλ and mass
spectrum as shown in Eq. (2.48). We have been arguing that most small-size clumps will show
collisional internal evolution : a small cluster of stars would lose low-mass stars in the process
and so have an increased ratio of average- to maximum stellar mass. It is not clear, then, whether
this trend is strong enough to compensate for the (almost) linear dependence on membership.

2.3 Concluding remarks

We presented the procedure to build a Hubble-Lemâıtre fragmented model. With an appropriate
H0 , below

√
2, the expansion of our model ends at a time we named apex time. We derived

its expression as a function of H0 , as well as the governing equations of the expansion. A
perturbation analysis was performed to follow idealized radial overdensities. We expect clumps
to undergo a phase of linear convergence followed by collisional evolution. We can also expect
mass-segregation to occur in the clumps, though quantitative predictions cannot be obtained
from idealized radial shell-like overdensities. N-body simulations are needed to obtain detailed
characteristics.
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CHAPTER 3

Nbody application

After the previous analytical study, we present here the characteristics of numerically obtained
Hubble-Lemâıtre fragmented models. We describe the integrator NBODY6 and data analysis
framework StarFiddle, as well as a clump-finding algorithm that we use to analyse the population
of clumps obtained from the expansion. We investigate the influences of N, H0 and stellar mass
functions on the clumps mass function. We then look at the stellar content and distribution
inside clumps, comparing them to clumps obtained from hydrodynamical simulations.
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3.1 Numerical tools

3.1.1 Hénon units

Many N-body integrators use a set of units specifically invented for the N-body gravitational
problem, the N-body units, or Hénon units (as prescribed by Douglas Heggie during the MOD-
EST 2014 meeting). They were introduced by Hénon (1971) and are based on three relations:

G = 1 (3.1)

Mt = 1 (3.2)

E = −1

4
(3.3)
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Figure 3.1: Progressive fragmentation through the Hubble expansion. The left panel shows
the initial uniform sphere; the middle panel, an intermediate step, slightly fragmented with a
slowed down expansion; the right panel is the final stage, when the expansion has stopped and
the fragmentation is fully developed. N=10000 particles were used in this N-body model, with
H0 = 1.0. Time and coordinates are in Hénon units.

With G the gravitational constant, Mt the total mass of the system and E total energy of
the system. For a virialized system, that is a relaxed system in which the virial ratio

Q = −Ek

Ep
= 0.5, (3.4)

it comes that Ek = 0.25 and Ep = −0.5 and, considering the definition of the virial radius

Rv = −GM2
t

2Ep
= 1. (3.5)

This unit system was designed for virialized systems, but can be used for out of equilibrium
systems, as long as they are bound (Q < 1), with energy expressions functions of Q

Ep = − 1

4(1−Q)
(3.6)

Ek =
Q

4(1−Q)
(3.7)

which still fulfills the E = −1
4 condition. In practice, the Hénon mass, radius and velocities are

obtained through

mh =
m

Mt
(3.8)

rh = 4(1−Q)|Ep| · r (3.9)

vh =

√

Q

4(1−Q)Ek
· v (3.10)

with Ep and Ek being computed with Hénon masses and G = 1 but before rescaling length
and velocities. Such a system can be used as an input for NBODY6 without the need for the
software to rescale anything, as NBODY6 internally works with Hénon units.
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3.1.2 NBODY6

NBODY6 is a N-body integrator. It computes the trajectories in a system of interacting point
masses. It is the second youngest iteration of the NBODY family, a suite of N-body integrators
created by Sverre Aarseth. It can compute the gravitational interaction between up to 128,000
stars in a collisional fashion, meaning there is no softening of the potential, at any scale. This
allows for very close binaries to form and remain in the system. The code preserves the total
energy and angular momentum to better than one part in 104 for integration over ∼ 100 time
units.

To achieve its impressive performances, NBODY6 relies on several optimization technique
which have been first developed in the 1960s and 1970s, and improved ever since. NBODY1,
first of its name, was developed in the early 1960s and based on the idea of force polynomial
fitting: to ensure convergence, trajectories were computed by fitting polynomials to forces and
obtaining high-order derivatives. Over time, the force fitting was enhanced, and additional
techniques were added over the versions: NBODY3, NBODY2, NBODY4, NBODY5 (in that
order, see Aarseth 1999 for a summary of the NBODYs development).

NBODY6 was a work-station version of NBODY5 and was first developed throughout the
1990s. It has been enhanced and optimized ever since. It inherited the major features from its
NBODY ancestors that made them so successful. They are briefly described here in chronological
order of their implementation:

block time-steps; very early on, particles were attributed individual time-steps, functions of
their acceleration. An innovation was to commensurate these time-steps: they could only
be reduced by factors of 2, so all particles could easily resynchronise at some point in the
simulation;

KS-regularization was introduced to circumvent the large acceleration in close pairs that
slowed down integration, it relies on a change of variables for the pair that makes its
integration faster, while still factoring perturbing influence from other particles;

Ahmad-Cohen Neighbour scheme; considering that close neighbours and distant particles
have distinct dynamical effects, their influences were split into regular and irregular inte-
grations, with some level of synchronization;

Hermite integration scheme was introduced as the latest integration scheme in the NBODY
codes, it allows to obtain high-order estimates of future positions and velocities with limited
computational cost.

Appendix B contains additional details on these optimization techniques and a complete
description can be found in Sverre Aarseth’s book (Aarseth, 2003b).

While a new generation, NBODY7, was developed to include post-newtonian effects and
correctly integrate black hole binary dynamics (Aarseth, 2003a), the NBODY6 family has been
extended into several branches. Spurzem (1999) developped Nbody6++, a parallel version
powered by MPI, while Nitadori & Aarseth (2012) developed NBODY6GPU, a GPU-accelerated
version. Recently, both versions were merged into a MPI-GPU hybrid NBODY6++-GPU (Wang
et al., 2015). Renaud, Gieles & Boily (2011) and Renaud & Gieles (2015) introduced Nbody6tt,
which allows the inclusion of complex tidal fields from large-scale galactic simulations.

In this work, we adopted the widely used ”vanilla” version NBODY6, and its GPU accelerated
version when the number of particles exceeded 3000 (from several performance tests on our
models).

3.1.3 StarFiddle, an N-body API

Over the course of this work, I developed several python interfaces and modules to handle
snapshots of N-body simulations. Several C and Cuda libraries were implemented in these
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Figure 3.2: Visualization of the StarFiddle API. Squared boxes are data storing classes while
rounded boxes are modules.
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modules. Finally, all these were unified as a N-body python API called StarFiddle.

StarFiddle is centered around the PySnap class, which stores information about a N-body
simulation snapshot: identities of particles (n), masses, position and velocities. This class has a
wealth of methods to perform various analysis. The main methods are:

• Interactive Plot - 3d interactive and customizable 3D representation;

• SelectParticles - allows boolean selection to produce a PySnap of a subsample;

• Binaries - detects binary stars using the algorithm described in chapter 6;

• kdTree - builds a kdTree of the spatial distribution to perform neighbour searches;

• Densities - computes local densities for each particles through the kdTree;

• Energies - computes individual potential and kinetic energies for all particles;

• Minimum Spanning Tree - builds the MST of the system, for structure analysis;

• Clump detection - extracts overdensities through the algorithm described in next section;

• Principal Component Analysis - performs a PCA on the system for structure analysis;

• Write to file - writes the data to an ASCII file.

Computationally intensive algorithms were written in C or Cuda, then compiled into shared
libraries. These can be called from C or Python through the ctypes module. The binary, energy
and density algorithm were fully written for StarFiddle. The kdTree algorithm was adapted
from C++ from Press et al. (2007) to C, and its memory use was optimized; the algorithm
was successfully ran on cosmological simulations for 280 million points. The minimum spanning
tree was provided by the MLPACK library. Binaries and kdTree are classes of their own which
allows easy data storage and management.

The Cluster Models module lets the user create PySnap instances of various models of star
clusters: King, Plummer, Uniform, Fractal or Hubble. The King model uses a C implementa-
tion of a fortran algorithm by Gerry Quinlan and Christian Boily. The models can be set to
arbitrary virial parameters Q and injected with primordial binary populations. The stars can
have identical masses or follow a Salpeter or L3 Initial Mass Function (IMF) with user-provided
parameters.

LaunchNB6 is a Python interface for NBODY6. I slightly modified NBODY6 so it prints
ASCII snapshot files in place of the regular binary format output. LaunchNB6 creates the
specified working directory and launch the integration from initial conditions, either a specific
PySnap, or one created from the Cluster Models. It then reads the snapshot files to create a
PyRun instance. A PyRun can be stored and retrieved from a HDF5 file. This instance is
strongly related to the Animation module.

The Animation module allows interactive 3D animation of a PyRun and the creation of
synchronized plots to follow related data during the evolution. A specified subset of stars can be
marked and follow during the animation. In addition to PyRun, Animation lets the user create
interactive plots with an arbitrary number of sliders to easily explore a parameter space.

StarFiddle is available on GitHub.

3.1.4 Clump finding algorithm

As seen on Fig 3.1, once expansion stops, the distribution is roughly spherical and visibly clumpy.
By clump we mean here a local overdensity of stars. To characterize the model, it is necessary
to find and isolate clumps, using an efficient clump-identification algorithm (or, halo-finding
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Figure 3.3: Illustration of a Minimum Spanning Tree and its use to isolate subgroups, using a
cutting length dcut = 0.25 length units.

in cosmology). Several methods are commonly used, such as the HOP algorithm (Eisenstein
& Hut, 1998; Skory et al., 2010) which relies on attributing local densities to each particle
and separating the clumps through density thresholds. The HOP algorithm is very robust on
large cosmological data sets. However, our calculations have comparatively coarse statistics and
noisy density fields. This issue, coupled with the large number of free parameters of the HOP
algorithm, makes the method less appealing.

Instead we follow Maschberger et al. (2010) who adapted the minimum spanning tree (MST ;
see e.g. Allison et al. 2009b; Olczak, Spurzem & Henning 2011) technique to the detection of
clumps. A spanning tree is a set of edges connecting a group of particles without closed loops ;
the MST seeks to minimise the total length of the edges. One may then construct the MST for
the whole system, then delete all edges larger than a chosen cutting length, dcut. The sub-sets
that are still connected are labelled as clumps. This process is illustrated in Fig 3.3. In practice
a minimum sub-set size Nd is also chosen so as to avoid many small-N subgroups: experience
led us to choose Nd = 12 for the minimum number of stars per clump.

With Nd fixed, the length dcut is then the only free parameter left. There is some freedom
in choosing an appropriate value. Maschberger et al. (2010) fixed the value of dcut by visual
inspection of clumps. We instead identified clumps in a fragmented system for a range of
values for dcut and settled for the value which optimised the number of identifications. This
is shown on Fig. 3.4a for the fully-fragmented state of a N=80k Hubble-Lemâıtre model. For
small values of dcut, the number of detected clumps at first increases rapidly. The rise is due to
the length dcut initially being small compared with the typical volume spawned by Nd or more
nearest-neighbours. Beyond a certain value, a transition to another regime occurs, whereby the
algorithm starts to connect previously separated clumps, counting them as one. The number of
clumps thereafter begins to decrease. The value dcut ≈ 0.023 H.u optimises the outcome of the
clump-search. This is a generic feature of the MST algorithm and we have adopted the same
strategy throughout, adapting the value of dcut to the number N of stars used.

Another method to find the critical cutting length was used by Gutermuth et al. (2009);
Kirk & Myers (2011). In these works, the authors build the MST, then trace the cumulative
distribution function of all edges in the tree. In a clumpy configuration, there are at least two
regimes: the ”intra-clump” regime, with the majority of small edges, and the ”inter-clump”
regime with longer, scarcer edges. The intersection of the linear fits to these regimes provide a
good cutting length for clump detection. This procedure was applied to our system and gave
the same result than the clump count, as shown on Fig 3.4b.

On Fig. 3.5, a sub-set of the N=80k model is shown; we have identified stars that belong
to clumps with filled symbols. The three panels on that figure are each for a different value of
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(a) Number of clumps vs dcut (b) Cumulative distribution of MST edges

Figure 3.4: Two different methods to identify the critical dcut for clump detection. Both methods
give the same value. For this 80k model, the value is 0.023 in Hénon units. The red linear fit
on (b) was made on the linear portion of the distribution, discarding the seven further points
departing from the tendency.

Figure 3.5: Example of detected clumps for three cutting lengths, 0.013 (left panel), 0.023
(middle panel), 0.033 (right panel), which were labeled A,B,C in Fig. 3.4a. A cube within the
N=80k particles fragmented model was extracted and projected. Empty circles are stars which
do not belong to any clump, black circles are clump members, and blue squares are stars that
are identified as a single large clump. Tick marks are spaced by 0.05 length units for a box size
of 0.35 units.
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Figure 3.6: Top panels: spatial distribution of stars in systems with various compactness factors
Ct. Bottom panels: clump mass function for the population injected in the system in solid red
and the population returned by the clump finding algorithm in dashed blue.

dcut, increasing from left to right. For the smallest value dcut=0.013 H.u, clumps look somewhat
truncated as we are still in the under-sampling regime and only their cores registered as clumps.
The second, optimal, value dcut=0.023 H.u produces visually well-isolated clumps. Finally, the
third and largest value is so that clumps begin to merge together : this is shown by the unique
clump identified in the bottom panel (filled blue squares).

To check whether this algorithm is able to efficiently retrieve a clump mass function, I
performed an additional test. Several artificially substructured models were created through the
Plummer scatter method (see section 1.4.2). A multitude of Plummer spheres were generated
following a L3 IMF for both the clump and stellar masses. All clumps radii were scaled so
they all had similar number densities. The clumps were placed in space following a uniform
distribution. We wish to explore the algorithm behaviour with varying “clump crowding”. In a
spherical uniform distribution of radius 1, the mean nearest-neighbour distance is expressed as

〈dnb〉 ≃ 0.8N− 1

3 . (3.11)

See Chandrasekhar (1943) for details. We compute the average 90% Lagrangian radius of
our Plummer clumps, 〈R90〉, then introduce the compactness factor

Ct =
2〈R90〉
〈dnb〉

. (3.12)

For Ct < 1, the clumps are smaller than the interclump distance, while for Ct > 1, clumps
are in contact and mixed together for high enough values. Once the positions of the uniform
distribution are generated, it is possible to scale them to generate a system with a custom Ct.
For compactness factors of 2, 1 and 0.5, I generated 100 iteration of a 100 clumps model and ran
the algorithm on the resulting systems, using the clump count method to chose the dcut. The
injected clump mass functions are shown as red solid lines on Fig. 3.6 while the mass functions
obtained from the algorithm are shown as blue dashed lines.
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Table 3.1: Summary of fragmentation models and their characteristics. These simulations,
performed with NBODY6, started from a uniform sphere and were stopped either at the apex
time, ta, when the expansion halts, or 40 time Hénon units after ta. The third column shows
the number of independent computations for each model. Stars are drawn from an Salpeter
distribution with truncation values shown in the fourth column. All mass ranges preserve an
average stellar mass of 1M⊙. The RunsHN runs are detailed in the two lower tables.

Name N Sampling Mass
range

tend Model

RunsHN see below 175 [0.3 - 100] ta Hubble
Rmh20 15000 30 [0.35- 20 ] ta Hubble
Rmh100 15000 30 [0.3 - 100] ta Hubble
Rmh1 15000 60 1.0 ta Hubble
R40h20 40000 1 [0.35- 20 ] ta Hubble
R40h100 40000 1 [0.3 - 100] ta Hubble
R80h100 80000 1 [0.3 - 100] ta Hubble
Rh100 15000 1 [0.3 - 100] 40 H.u Hubble
Rh20 15000 1 [0.35- 20 ] 40 H.u Hubble
Ru100 15000 1 [0.3 - 100] 40 H.u Uniform
Ru20 15000 1 [0.35- 20 ] 40 H.u Uniform

Detailed characteristics of RunsHN:

N 1000 2000 4000 8000 16000

Sampling 12 8 5 5 5

Each RunsHN run is performed with 5 different H0 .

H0 0.8 0.9 1.0 1.1 1.2

For Ct = 2, the clumps are clearly mixed together, though the algorithm retrieve the general
shape of the mass function, with a slightly shallower slope as small clumps are more likely to
be detected as part of a bigger clump. These merged clumps are seen as the continuation of
the mass function at higher masses than what was injected. Given the aspect of the model, it
is too concentrated for any method to retrieve every clumps from the spatial distribution only.
For Ct = 1, the general shape of the retrieved mass function is accurate, though small clumps
remain slightly under-detected. Finally, for Ct = 0.5, the mass function is very well retrieved.

There is no objective definition of what constitutes a clumps, but we argue that our method is
efficient at retrieving ”realistic” clumps. Inspection of Hubble-Lemâıtre models and comparison
to the edge-length distribution method showed the clump count method was a suitable way to
choose a cutting length. We also showed this method could retrieve a clump mass function in a
system with reasonable compactness.

3.2 Clump mass function

Numerical realizations of the Hubble-Lemâıtre model allows us to assess the influence of im-
portant parameters on the fragmentation, such as H0 , N and the stellar mass function. We
performed several N-body simulations with varying parameters. They are summarised in table
3.1 and will be used throughout this chapter and the next.
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Figure 3.7: Analytical and simulated apex times as a function of H0 .

3.2.1 Influence of H and N

We wish to evaluate the influence of H0 and N on the fragmentation and clump growth. H0

tunes the strength of the expansion, which tunes the duration of the fragmentation. A stronger
initial expansion allows for more time for clumps to grow, so we expect more massive clumps
with increasing H0. On the other hand, a higher N smooths the spatial distribution, reducing
Poisson noise in the distribution. However, a high membership only samples more stars from
the same stellar mass function, and the density fluctuations should not change in nature, just
scale down with the average distance between stars. We do not expect N to significantly affect
the fragmentation in physical units.

To verify these, a set of simulation was performed to explore the mass function of clumps in
the H0-N parameter space. The models have 5 different memberships that go as powers of 2 in
thousands, with an increasing sampling to obtain acceptable statistics. They are summarised in
table 3.1 under the name RunsHN.

Apex time

In section 2.1.2, we derived an analytical prediction for the apex time of our expanding models.
To compare our numerical realizations to this prediction, we follow for each model the evolution
of the half-mass radius over time, then take the apex time as the maximum radius time, when
the cluster stops expanding and starts collapsing.

We show on Fig 3.7 the expected analytical curve as a dashed line, then the numerically
obtained apex times from our different H0 and memberships, averaged over all similar runs.
The 16k runs follow the analytical expectation within 5%, while lower membership models take
more time than expected to stop expanding at high H0 , overshooting by as much as 30%
for H0 =1.2. Visual inspection of the runs showed that low membership models were more
susceptible to have a large clump forming and perturbing the expansion. As we will show in
the present section, low-N clusters contains more massive clumps in relative mass than high-
N models. When a massive enough clump forms during the expansion, it offsets the matter
distribution and skews the half-mass radius (computed from the barycenter of the full system)
to higher values, offsetting its fall from the collapse. To reduce unwanted “sur-fragmentation”
effect, we use analytical apex times to select our fragmented configurations.
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Figure 3.8: Clump mass function for several memberships and two H0. Masses in the top panels
are in Hénon units, the x-axis was scaled with a factor 100 to get a percentage of the total mass
of the system. Bottom panel masses are in physical units. In each panel, top sub-panel shows
actual clump count in each bin (averaged over sampling), while bottom sub-panel normalize the
count by the model membership.
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Figure 3.9: Clump mass function (real mass) for several H0 and two memberships: N=1000 (left
panel) and N=16000 (right panel).

Clump mass function

The clump-finding algorithm was ran on the fragmented models to obtain the clump mass
function. The results are summarised as histograms on figures 3.8 and 3.9. We have used bins
of constant logarithmic intervals. We average the results over each model’s sampling, hence the
histogram can go down to fractional values.

Looking at the top panels of Fig 3.8, we see the mass function of clumps in relative mass,
the percentage of total mass they contain. Clumps in small-N systems tend to contain a much
larger portion of the total system mass than in large-N systems, which is even clearer in the
normalized count sub-panels. In fact, for H0 = 0.8, the peak of the mass function for N=1k
happens at 1.1% of total mass, while for N=16k, it happens at 0.07%. These values ratio gives ∼
16, the membership ratio: the clumps relative masses are inversely proportional to the model’s
membership.

This can be interpreted as a underlying common clump distribution in physical mass, re-
gardless of the total membership of the model. This is confirmed by looking at the bottom
panels of Fig 3.8, in which clump distributions are plotted in physical mass, once the masses of
stars have been rescaled from Hénon units to match the original stellar mass function. Looking
at the normalized count subpanels, it is clear that 1k and 16k models have the same clump
distribution, when raw count subpanels show clumps are expectedly more numerous in high-N
models. The difference between H0 = 0.8 and 1.2 is not clear from the graph, but it seems a
higher H0 pushes the upper limit of the distribution to slightly higher masses.

To illustrate this last trend, we turn to Fig 3.9 where clump MFs are shown for various
H0 and a common membership. For both N=1k and N=16k, the distribution preserves its shape
for various H0 , and gets prolonged at higher clump masses for N=16k, as more mass is available
to build clumps.

Thought the distribution does not undergo any dramatic change, a weak trend with H0 is
seen in both panels: as the strength of expansion increases, the distribution slightly decreases
at low clump masses and slightly increases at higher clump masses, the pivot mass being ∼ 30
M⊙. We look at the 16k model and follow the cumulated mass inside all clumps, as well as the
percentage of this mass in clumps below and above 30 M⊙, for different H0 :
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H0 0.8 0.9 1.0 1.1 1.2

Mtot 3502 3478 3582 3683 3561
< 30M⊙(%) 66 65 55 49 44
> 30M⊙(%) 34 35 45 51 56

From this data, we get two facts about our fragmented models: the mass contained in clumps
does not depend on H0 (<2% dispersion) and there is a transfer of mass from small clumps to
more massive ones as the expansion lasts longer.

To summarise: the general shape of the clump mass function is common to all membership
and H0 . In physical mass, the same clumps form in 1k and 16k models, almost regardless of
the duration of the expansion. We note a mass transfer from small to high mass clumps when
H0 increases, that is consistent with a merging process: small clumps assemble or get accreted
by large clumps. When the initial expansion is strong, the merging lasts longer and more mass
is transferred. This is confirmed by visual inspection of the models, as we see clumps merging
during the expansion.

3.2.2 Influence of stellar mass function

Neither H0 or N seem to heavily influence the shape of the clump mass function. We now turn
to another parameter: the stellar mass function. We know the clumps are seeded by density
fluctuations in the initial uniform sphere. These fluctuations are governed by pure Poisson
noise in the case of identical stellar masses, but are modified and enhanced once stars follow a
mass function themselves: a high-mass star surrounded by lighter ones will by itself introduce
a localized strong density fluctuation. We expect a relation between the clump mass function
and the stellar mass function in the generated initial conditions.

To quantify this relation, we ran a set of simulations where all the stars have the same mass,
and two sets for which a Salpeter mass function with α = 2.35 was truncated at different upper-
and lower-bounds. A total of 15000 stars in a Hubble configuration were used, all let go with
the same initial expansion rate H0 = 1. For the multi-mass models, the mass range was chosen
as [0.3, 100]M⊙ and [0.35, 20]M⊙ so that the mean stellar mass = 1M⊙ as for the single-mass
models. Thirty different runs were performed in each case and the outcome averaged for better
statistics. These are refered to as Rmh1, Rmh100 and Rmh20 in Table 3.1.

On Fig. 3.10, we display the clump mass function for the truncated Salpeter models as a red
solid line, while the single stellar mass models are shown in green dash. A grey shade indicates
one standard deviation where statistics allow (i.e., large numbers), and, as in previous section,
we have used bins of constant logarithmic mass intervals. Fig. 3.10a shows Rmh20 models, and
3.10b shows Rmh100 models. With clump membership restricted to N ≥ 12, the identical-mass
model stays relatively close to a power law (straight dotted line on the figure) of index ≈ −4
for the higher mass clumps. A spread in stellar masses leads to much more massive clumps (we
counted ≃ 80 clumps of 12M⊙ for the equal-mass case ; and ≈ 32 with a mass ≤ 12M⊙ for the
other ones) . This transforms the clump mass function, from a near-power-law, to a bell-shaped
distribution.

When very massive stars are included in the calculations, yet more massive clumps are formed
(Fig. 3.10b). The formation of large sub-structures depletes the number of clumps around the
peak value, and so the distribution becomes broader and shallower. The mean clump mass
for the different cases read 20M⊙ (equal-mass), 32M⊙ (Salpeter mmax = 20M⊙) and 45M⊙

(Salpeter mmax = 100M⊙), a steady increase with the width of the stellar mass spectrum. On
the other hand, the position of the peak of the distribution remains unchanged at (roughly) 20
to 21M⊙. The trend in total number of clumps detected is a slight decrease with the broadening
of the stellar mass spectrum, from 187, down to 151 respectively for the mmax = 20 and 100M⊙

Salpeter models. We observe that the overall fraction of stars found in clumps (some ≈ 6500
out of 15000, or 43%) stays unchanged.
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(a) Stellar mass range [0.35, 20]M⊙ (b) Stellar mass range [0.3, 100]M⊙

Figure 3.10: Mass function of the clumps identified with the MST algorithm. The calculations
all had N = 15000 stars, and we have averaged over 30 realisations for each configuration.
The results for three stellar mass functions are displayed: a model with equal-mass stars (green
dashed line); a Salpeter distribution function truncated at 20M⊙ (solid red line, left); a Salpeter
distribution function truncated at 100M⊙(solid red line, right). (a) The clumps mass function for
equal-mass models shows a trend with mass roughly in agreement with an M−4 power-law. By
comparison, the results for an Salpeter stellar distribution function truncated at 20M⊙ has a bell-
shaped profile, with a peak around M = 20.5M⊙; only the tail-end shows marginal agreement
with an ∝ M−1.7 power-law (dotted line on the figure); (b) another Salpeter distribution function
but with the upper-mass truncation set at 100M⊙. The tail at large clump mass is now much
flatter, with a slope ≈ M−1, (dotted line on the figure as well). The bins used had constant
logarithmic mass intervals.
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We argue that the shape of the clump mass spectrum provides indirect evidence for the
predominant role of massive stars as seeds for overdensity growth in our simulations. This is to
be opposed to a full hierarchical build-up of clumps from very tiny sub-structures. There are two
tell-tale signs to support this view : a) if high-mass clumps formed through the repeated and
stochastic merger of small clumps, then the clump mass function should tend to a log-normal
distribution, which is symmetric (in logarithmic scales) with respect to the peak value, whereas
the distributions shown here lack this basic property ; and b) the ratio of maximum clump mass
to mean mass may exceed 15 when the stellar truncation mass is set to 20M⊙, and reaches only
∼ 4 in the case when the upper mass is set to 100M⊙. If small-ish clumps were merging at the
same rate in both models, then this ratio should be comparable. Instead, very large clumps take
too long to assemble and the merger rate drops with clump mass. Recall that all fragmentation
calculations ran for the same total time. There is a weak merging process happening, as shown
in the previous section, but it is marginal, as heavy clumps likely form from massive star seeds.

To check this hypothesis, we borrow from black hole dynamics in galactic nuclei the notion
of a radius of influence, which is the radius enclosing as much mass in the stars as the central
black hole mass (see e.g. Merritt 2013). Here, the stars inside the influence radius are bound
to the massive star at the centre. Thus if a massive star is a seed for a clump, and only the
stars inside the influence radius remain bound to it, we should count as many clumps in the
mass range 2m⋆, 2m⋆ + 2dm⋆, as there are stars in the range m⋆,m⋆ + dm⋆. The maximum
clump mass exceeds twice that of the most massive stars mmax, which implies some degree of
merging and is consistent with the previous section. If we count all clumps starting from the
truncation value mmax of the stellar mass function, then we should find as many clumps in the
mass range above mmax, as there are stars in the interval [mmax/2,mmax]. We find for runs
with mmax = 20M⊙ some 120 clumps more massive than that, when there are ≃ 100 stars in the
range [10, 20]M⊙; and some 14 clumps of 100M⊙ or more, when there are (on average) 9 stars
in the mass range [50, 100]M⊙. This calculation suggests that most massive stars act as seeds
for the formation of large clumps in the generated initial conditions.

3.3 Clump contents

In this section we compare the clumps derived from the Hubble-Lemâıtre expansion method with
the distribution of proto-stars that form in hydrodynamical simulations and with observations
of young star forming regions. We first look at the velocity field inside and outside the clumps,
then we investigate the stellar content of the clumps themselves and their mass segregation.

3.3.1 The velocity field

There is no hydrodynamics in the approach that we have taken, nevertheless expansion under
gravity alone is equivalent to the adiabatic expansion of gas : for that case, the first law of
thermodynamics equates the drop in internal energy dU to minus the external work, −pdV . At
constant mass, the change in gravitational energy dW is −dEk, where Ek is the kinetic energy.
With W < 0 but increasing over time, this implies that Ek drops in amplitude. In the case
when the motion is strictly radial, Ek = 0 when H = 0 and all stars come to rest. We ask to
what extent the growth of substructures and non-radial motion off-set the ‘adiabatic cooling’
brought on by expansion.

Fig. 3.11a graphs the x-axis one-dimensional velocity distribution for the R40h20 model. The
left-hand panel displays the overall distribution as well as the two sub-populations of clumps
members and out-of-clump field stars. We identified some 20944 stars in clumps (or ≈ 52%) at
the end of expansion. The overall spherical symmetry is validated by the peak in the distribution
around vx = 0.

As sub-structures form and interact mutually, generating tangential as well as radial motion,
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(a) Distribution clumps/field (b) Distribution for different H0

Figure 3.11: (a) Distribution of the one-dimensional velocity field for the whole cluster as the
thick solid black line, in the simulation labelled as R40h20 at the apex time (H= 0). The
red dashed distribution shows clump members and thin solid blue the field particles. (b) The
distribution for three different values of H0 : when H0 = 0, the distribution is a Dirac-δ around
v = 0. The central distribution broadens as H0 increases to 0.3 and 1. Velocities are in H.u..

the peak broadens but remains symmetric about the origin. The large velocities are brought
by stars in clumps, which demonstrates that interactions within the substructures boost the
internal velocity dispersion of the cluster as a whole. Field stars dominate the low-amplitude
regime. Their velocity distribution is well-fitted with a Gaussian (shown as a dotted blue line),
down to one-tenth the height of the central peak, or about 1% of all field stars.

To illustrate further the idea that large velocities are confined to clumps formed by frag-
mentation modes, we compare on Fig. 3.11b a set of fragmented models with different initial
values of H0: 0, 0.3, and 1. Clearly when H0 = 0, the velocities are identically zero and there is
no fragmentation whatsoever (apart from root-N noise). The distribution is then a sharp peak
centered on zero. For positive but low values of H0, the fragmentation modes do not develop
much before the apex and the (non-radial) velocities remain small. The central peak has a much
narrower dispersion, and the high-velocity wings are clipped. In this case, too, analysis of the
weakly fragmented system shows that virtually all high-velocity stars are found in clumps. The
velocity distribution for the case H0 = 1 is added for comparison. The fact that the full range
in velocities is reduced by a factor ∼ 3 for the less fragmented model is also an indication of the
shallower potential well of the clumps

The full population velocity distribution (solid black line) at first sight is very similar to those
of Klessen & Burkert (2000, Fig. 5). In that figure, the authors show the velocity distribution
of gas particles in a fragmenting system. Klessen & Burkert attribute the high-velocity tails to
gas particles falling towards stellar clumps at supersonic speed. Supersonic motions imply that
gas particles trace ballistic trajectories, and hence behave like point mass particles.

A small fraction of field stars in our calculations also have large velocities. We suspected
that these stars might have acquired their large velocities through in-fall toward a nearby stellar
clump. We did not, however, find compelling evidence that would allow us to identify the origin
of high velocities in field stars. Inspection of a sequence of snapshots failed to show that the
velocity vectors were pointing at nearby stellar clumps: it is therefore not possible to make the
same assertion as Klessen & Burkert and state that stellar clumps accrete some field stars.

It is possible, on the other hand, that high velocities originate from past star-star interactions.
However, we did not find clear trends in the few orbits that we studied which would confirm
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such an event. The question of mass accretion by stellar clumps might be best settled if we
added gas to our simulations to boost the mass resolution, and analysed model data using mock
CCD frames, as did Klessen & Burkert. This was not attempted here.

We close this section with a remark about the velocity distributions seen on Fig. 3.11 and the
internal state of the stellar clumps. Because small clumps would have time to evolve dynamically
through star-star collisions and reach a state of near-equilibrium (see §2.2.4) we would expect
clumps to develop a velocity field similar to Mitchie-King models of relaxed self-gravitating star
clusters (Binney & Tremaine, 2008). The one-dimensional velocity distribution of Mitchie-King
models plotted in a logarithmic scale approaches a flat-top when |v1d| is small, and cuts off
rapidly at large values : the distributions are concave at all velocities. This holds true for all
models independently of their King parameter1 W0.

The shape of the distributions displayed on Fig. 3.11, on the other hand, is convex as we
shift, from small, to large |v1d|. We deduce from this straightforward observation that the
clumps that formed through fragmentation and subsequent mergers cannot be treated as fully
in isolation and in dynamical equilibrium à la Mitchie-King. Fragmentation in hydrodynamical
calculations often proceeds from filaments and knots (e.g., Klessen & Burkert 2001; Mac Low &
Klessen 2004; Maschberger et al. 2010; Bate, Tricco & Price 2014). The clumps that form in a
fragmenting Hubble flow are also surrounded by filaments and other structures which perturb
them.

3.3.2 The stellar mass function in clumps

We show on Fig. 3.12 the mass function of stars in clumps, field and in the whole cluster.
For brevity, we only show a model with a mass function truncated at 20M⊙, Rh20, however
our conclusions are not sensitive to the truncation value. The mass function of ≈ 6400 stars
that were found in clumps (some 43%) is displayed as the red solid curve and all other stars,
field stars, as the blue solid curve. The theoretical Salpeter distribution function for the same
number of stars is shown in black dots, with grey shades giving the 1σ dispersion from multiple
samplings. Finally, the green dashed curve shows the mass distribution of all 15 000 stars in the
model. The lower panel is the same data normalised to the Salpeter data.

The uptake in massive stars for the whole population (green dashed line) of both clumps
members and field stars is a statistical artefact and lies within the standard deviation of a
Salpeter distribution with comparable sampling number.

The clump member population clearly deviates from a Salpeter distribution in two ways : first
we note a deficit of low mass stars with respect to the theoretical Salpeter; secondly, although
a Salpeter mass function is more or less consistent with the population up to M ≈ 2M⊙(black
dotted line) the distribution shows a clear excess of massive stars. We find that practically all
the stars more massive than 10M⊙ ended up in a clump (this is the point where the solid red
curve joins the dash green one).

A log-log linear regression fit of the clump members mass function gives a power-law index
of −2.15± 0.02, shallower than the Salpeter index of -2.35. Applying the same analysis to field
stars, we find a steeper mass function of index −2.46±0.02. The difference of ≈ 0.3 between the
two populations is very similar to what is found in the Milky Way disc (see e.g. Czekaj et al.
2014; Rybizki & Just 2015; Bastian, Covey & Meyer 2010 )

Bonnell, Vine & Bate (2004) and Maschberger et al. (2010) showed from inspection of hy-
drodynamical simulations that massive stars play a key role in the assembling process of clumps,
attracting already formed protostars to them. We find a similar general trend in Hubble-
fragmented gas-free simulations: clumps develop around massive stars so that their stellar mass
function is top-heavy.

This excess can also be seen in the top panel of Fig. 3.13a in which for each of 440 clumps of

1Notice how this holds only because of the choice of a logarithmic vertical axis.
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Figure 3.12: Top panel : Mass function of all stars belonging to a detected clump (solid red)
and field stars (solid blue). The expectation drawn from a Salpeter distribution function for
the same total number of stars in dotted black ; the grey shade are 1σ uncertainties. The green
dashed line is the distribution for the full cluster. Bottom panel : same data normalised to the
Salpeter expectation.
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the R40h100 model, we show as white dots the mass of their heaviest star as a function of the
host clump’s mass. For comparison, we sampled a Salpeter mass function, drawing the same
number of stars as found in each clump. We then identify the most massive star in the Salpeter
sample ; the procedure was repeated 15000 times for each clump to obtain suitable statistics.
The color map shows the resulting distribution.

In a nutshell, Fig. 3.13a shows for each clump the likelihood that their most massive stars
may be drawn from a Salpeter function. One could call the red maximum likelihood zone the
”Salpeter valley”. Only clumps with a mass > 10M⊙ are included to account for a possible bias
when clump membership reaches below Nd = 12 stars. It can be seen on the figure that the
scatter of white dots tends to lie systematically above the Salpeter valley. If we add the relation
mclump = 2max{m⋆} (cf. section 3.2.2), we find some overlap with the data (see the red dashed
line on Fig. 3.13a). This clearly illustrates the tendency for massive stars to act as seeds when
the clump form, while the scatter is driven by the merger and accretion history of individual
clumps.

The correlation displayed on Fig. 3.13a is in good agreement with observational data for
young embedded clusters of the same mass range published by Weidner, Kroupa & Pflamm-
Altenburg 2013. We reproduced their figure on Fig. 3.13b with a black frame representing the
range shown on Fig. 3.13a.

Note how the scatter in the correlation brought on by the dynamical processes at play during
the adiabatic fragmentation phase also compares well with the data. Thus the stellar clumps
modelled here recover an important characteristic of observed embedded young clusters.

3.3.3 Mass segregation

In this section, we ask whether the clump assembling process at play in our simulations accounts
for the mass segregation measured in star-forming cores in hydrodynamical simulations. The
measure of mass segregation of Olczak, Spurzem & Henning (2011) based on the MST, while
efficient, will give noisy results for very small-N clumps. Instead, we follow Maschberger et al.
(2010) and rank clump members according to their distance to the geometric centre of a clump,
which is calculated by number-averaging (so this centre is not the clump barycentre). We then
sort the bodies by mass and tabulate the radial rank of the three most massive ones. This
process is illustrated on Fig. 3.14.

The great advantage of this approach is that it is independent of geometry and absolute size
once the ranking is normalised to the clump membership Nc. One issue arises with the binning
of the rank, since small values of Nc give large intervals by construction, and conversely for
populous clumps : we found a good compromise by setting the width of each bin to 1/20 since
the mean clump mass ∼ 20M⊙ implies Nc ∼ 20 on average. The procedure is repeated over all
clumps identified in the run (typically on the order of ∼ 200). The diagnostic for an un-biased
sampling is a profile with radius that remains the same regardless of the mass selected ; if,
furthermore, the stars are (on the mean) un-segregated in radius, then the profiles will be flat.

Fig. 3.15 graphs the distribution of rank of the three most massive stars in all the clumps
from the R40h100 fragmented state. The salient features are that 1) none of the distributions
are flat, all three peaking significantly at small ranks ; and 2) there is a clear trend for the most
massive star also to be the most segregated. Precisely this result had to be expected from the
internal dynamics of small clumps (cf. section 2.2.4). Our Fig. 3.15 should be compared with
Fig. 13 of Maschberger et al. (2010): the authors also found radial rank distribution to peak at
small values for massive stars, showing a level of mass-segregation in their clumps.

It is striking that the measure of mass segregation attained here for a gas-free configuration
is a good match to a full hydrodynamical setup. The initial configuration that we have adopted
relies only on density fluctuations to seed clumps, however once again we find evidence that
massive stars begin and remain the centre of gravitational focus for clump formation. That is
not so when clumps are setup using a fractal approach (Goodwin & Whitworth, 2004; Allison
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(a) Distribution clumps/field

(b) Distribution for different H0

Figure 3.13: (a) Mass of the heavier star in each clump, shown as white dots, as a function of
clump mass. The color map shows the likelihood for the maximum mass if all clump members
were sampled from a Salpeter IMF ; the orange crest gives the maximum likelihood. The red
dashed line shows the relation mclump = 2mmax (see. section 3.2.2). The data was taken from
the R40h100 run. (b) is a similar distribution from Weidner, Kroupa & Pflamm-Altenburg
(2013), built with data about young embedded star clusters from Weidner, Kroupa & Bonnell
(2010). The black frame notes the range of masses displayed in (a).
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Figure 3.14: Illustration of the radial ranking method. Stars marked 1,2 and 3 are the first,
second and third most massive stars in the clump. Distances to the geometrical center are
computed then sorted. The position in the sorted list is converted to a number, the radial rank.

Figure 3.15: Histograms of radial ranking of first, second and third most massive star in each
clump for a model with N = 40 000 stars (R40h100).

et al., 2009a). There is then no segregation initially, and it all develops at or shortly prior to
the global system evolution towards equilibrium (the collapsing violent relaxation phase).

3.4 Concluding remarks

We have developed a new approach based on adiabatic fragmentation to set up self-consistent
configurations for stellar dynamics that link up the velocity field of stars to their irregular
space configuration of arbitrary geometry, such as knots or filaments. The method offers great
advantages: it is easy to implement; it can treat an arbitrary number of stars without any
resolution issue. The light computational load allows for statistical ensemble averaging over
large samples, as was done throughout this chapter. For instance, the computation time on
a single card for 80,000 stars is about 12 hours. The methods has its limitations: the most
significant one is the failure to include hydrodynamical effects. In the introduction, we mentioned
other approaches partly based on hydrodynamics: such hybrid methods have been successful
but remain limited in scope, for instance Moeckel et al. (2012), or demanding in computational
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resources (and so constrain the number of realizations), as in Fujii & Portegies Zwart (2016).

The importance of massive stars

During the fragmentation process in our models, heavy stars act as seeds for the growth of
stellar clumps, and so the stellar clumps mass spectrum is shaped by the mass function of
the available stars. Although the fragmentation through gravitation only does not include the
detailed physics of star formation, we noted that hydrodynamical calculations including gas
pressure and turbulence suggest that the gravitational potential of massive stars attract more
gas and stars and, as such, act act as seeds for the formation of clumps (Bonnell, Vine &
Bate, 2004). We therefore recover a key prediction of hydrodynamical simulations. It is then
interesting to ask whether observations show a correlation between the host clump mass and its
population of massive stars.

Based on analysis of our fragmented Hubble models, we recover on Fig 3.13 a correlation
between the maximum mass of a star found in a clump of a given mass, Mc. This max(m⋆)−Mc

relation is eerily similar to the compilation for young clusters by Weidner, Kroupa & Pflamm-
Altenburg (2013), from which we extracted the figure 3.13b. Furthermore, we also found that
the stellar mass function in clumps has a much flatter (top-heavy) profile than in the field, i.e.
stars that do not belong to any clump: power-law fits for the two stellar populations show that
the Salpeter index for clumps stars is lower by about ≈ 0.3 compared to the same index for field
stars. A similar difference is deduced for Milky Way data ( Czekaj et al. 2014; Rybizki & Just
2015; see also Fig 2 from Bastian, Covey & Meyer 2010): we argue that these characteristics
will help tighten our understanding of the long-term evolution of such stellar associations, given
that their properties are, on the out-set, close to actual data for young clusters. It should be
emphasised that the global index of external galaxies may differ significantly from the canonical
value α = 2.35 (e.g., the GAMA survey, Gunawardhana et al. 2011; see also Hoversten &
Glazebrook 2008). We have not explored here to what extent this difference in indices between
field and clump populations will change for other values of the global index α.

We have also noted that the clumps are mass segregated at birth, i.e. at the end of the
fragmentation process. When we apply the same ranking statistics as for hydrodynamical cal-
culations of star formation, we obtain the same level of segregation for the three most massive
stars in a clump (cf. Fig. 3.15).

The slope of the clump mass function

Klessen & Burkert (2000, 2001) fit the gas clump mass function of their simulations with a
power-law dN

dM ∝ M−β where β ≃ -1.5. On the other hand, the cluster mass function in the
Milky Way can be described as a power law with an index ranging from -2 to -2.4 (Haas &
Anders, 2010). We have indicated that a power-law relation with a slope β ≃ −4 is a rough
fit for the case where all the stars are identical (Fig. 3.10). This is not so when a stellar mass
spectrum is included : if a Salpeter distribution function is truncated at 20M⊙ a power-law with
slope β ≃ −1.7 still fits approximately the distribution of clumps of mass > 20M⊙ ; and when
the Salpeter distribution function is truncated at 100M⊙, a power-law similarly fits the tail-end
of the distribution but now with a slope of ≃ −1 (see Fig. 3.10b). It is intriguing that the
slope of the distribution should fall within the bracket of values for the observational data for
clusters (−2.4+) and hydrodynamical fragmentation models (-1.5). If the clumps formed from
hydrodynamical fragmentation should become individual star clusters, and recover the β ≃ −2
or lower slope of observational data, then the distribution function must become steeper and also
cover a broader range of masses. The same conclusion applies to the Hubble clump distribution
function.

This implies either that clumps will merge so that a few very massive clusters will emerge, or
that fewer massive clumps form in the first place. Comparison with existing cluster population
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needs us to assume these clumps do not fall back and merge through collapse. This is possible
with an adequate galactic tidal field ripping apart this fragmented configuration and isolating
the clumps before the collapse. Many of the small stellar overdensities detected as clumps
would not survive more than a few million years before dispersing through collisional evolution,
however the larger clumps could survive and appear as isolated clusters or part of an association.
These massive clumps are the key to comparison to the galactic cluster mass function. We have
shown how the stellar IMF provides seeds for the growth of massive clumps and have illustrated
this with a Salpeter power-law IMF. A more realistic IMF has a steeper power index at larger
stellar masses (Kroupa, 2002; Chabrier, 2005). The fragmentation of stellar systems with fewer
massive stars would deplete the clump mass function at larger masses more in line with observed
statistics for clusters. This variability in the clump mass function highlights the major influence
of the stellar IMF on the fragmentation process. A full exploration of fragmentation requires
hydrodynamical simulations, which we have not performed here. These simulations remain
limited to much smaller systems (Bate, Tricco & Price, 2014; Lomax et al., 2014).

In the next chapter we assume an absence of tidal field and follow through with the final stage
of evolution towards equilibrium. We compare the final configuration with those of Allison et al.
(2009a) and the recent study by Caputo, de Vries & Portegies Zwart (2014).
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CHAPTER 4

Collapse and dynamical evolution

In this chapter, we let the Hubble-Lemâıtre models evolve and undergo violent relaxation. We
compare their dynamical evolution with that of cold uniform models. We investigate the evolu-
tion of the structure and global mass segregation.

Contents
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4.1 The simulations

4.1.1 Description of the models

The Hubble-Lemâıtre fragmented system is subvirial by construction. The configuration we took
as a reference is the apex of the expansion: the kinetic energy initially injected in the expansion
has been converted into potential energy through expansion or converted to transversal motion
by two-body interaction. If the model is left to evolve further, it collapses, violently relaxing to
reach a quasi-equilibrium state, resembling a Plummer or King model.

In the present chapter, simulations will use the fully fragmented state of Hubble models as
initial conditions for the subsequent dynamical evolution. Observational clues point to collapsing
and violently relaxing clusters. For example, Cottaar et al. (2015) find IC 348, a young (2-6
Myr) cluster, to be both survirial and with a convergent velocity field, consistent with infalling
motion. Our models undergo dry collapse with no gas, while real objects such as IC 348 still
contain residual gas. The scenario of our simulations is an idealized situation: clearly if there
was residual gas between the clumps and it was evacuated through stellar feedback, both the
clump merger rate and the depth of the potential achieved during relaxation would be affected.
As a limiting case, rapid gas removal may lead to total dissolution (see for instance Moeckel
et al. 2012 and Fujii & Portegies Zwart 2016). In the current situation, all clumps will merge.

The numerical integration were done once more with the NBODY6 integrator with the same
computational units. For comparison purposes, we also performed simulations of cold uniform
spheres, a configuration which has been extensively used in the past (e.g.,Theis & Spurzem
1999; Boily, Athanassoula & Kroupa 2002; Barnes, Lanzel & Williams 2009; Caputo, de Vries
& Portegies Zwart 2014; Benhaiem & Sylos Labini 2015) and one that minimises the level of
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Figure 4.1: Aspects of both Hubble (top panels) and uniform (bottom panels) systems through-
out the collapse. The epochs shown are, from left to right: initial conditions; half-collapse; point
of deepest collapse; direct aftermath of collapse. The times are in Hénon units.

fragmentation and mass segregation in the on-set of collapse. The models are referenced as
Rh100, Rh20,Ru100 and Ru20 in Table 3.1. The aspects of Rh20 and Ru20 during collapse are
shown on Fig 4.1. Note the deeper collapse of the uniform system.

We focus here on models with a mass function from 0.35M⊙ to 20M⊙ and 15000 stars,
a compromise value for rich open clusters that should allow us to identify clearly collisional
effects and trends with time, and ease comparison with the recent study by Caputo, de Vries &
Portegies Zwart (2014) where most calculations are performed with that sampling. We let both
Hubble-fragmented and uniform sphere evolve up to 40 H.u.

4.1.2 Scaling to physical units

Before discussing the results, it is useful to translate the units of computation to physical scales.
This is important if we want to discuss the state of the systems using one and the same physical
time, such that the hypothesis of no stellar evolution holds. To do so, we compute the free-
fall time of an uniform sphere (a good approximation for fragmented model as well) both in
physical units and Hénon units, which provide a conversion factor. We first have to choose an
initial physical length scale for the system by setting Rh = 1 pc. With a total system mass of
M = 15 · 103M⊙, this gives the uniform half-mass volume density

ρh =
M/2
4
3πr

3
h

≃ 1.8 · 103M⊙/pc
3, (4.1)

within values typically inferred from observations of clusters.

The free-fall time of an uniform sphere, obtained from conservation of energy and integration,
is expressed as

tff =

√

3π

32Gρh
. (4.2)
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Computing ρh,Hénon ≃ 0.13, we now compute both values of the free-fall time

tff ≃ 1.5 tHénon (4.3)

≃ 0.2 Myr (4.4)

which gives:

1 tHénon ≡ 0.13 Myr = 1.3 · 105yr. (4.5)

Thus by running up to 40 H.u we ensure that the systems evolve for ∼ 6 Myr, about the
lifetime of a 50M⊙ star. 1

We now want to evaluate the crossing and relaxation time-scales in such a system, as they
were defined in the introduction (1.2.2), and how they relate to the total duration of the simu-
lation. We could attempt to derive a crossing time for the initial, subvirial state but it would
not be representative of the evolution of the system. Instead, the more useful crossing time has
to be computed from the equilibrium state achieved. Using the virial theorem and conservation
of energy, we derive dynamical time-scales for the equilibrium system. The crossing times is
defined as

tcr,eq =
2Rh,eq

σ1d,eq
. (4.6)

From here on, we write the subscript 0 for initial values and no subscript for equilibrium
values. To obtain both Rh and σ1d we start from the total energy of the system. At t=0,
velocities are null, all energy is potential energy. It can be computed by integrating from the
center to R0. We obtain

E0 = −3

5

GM2

R0
. (4.7)

From virial theorem and conservation of energy, we get the following equations at equilibrium

{

2Ek + Ep = 0

Ek + Ep = E0

=⇒
{

Ek = −E0 =
3
5
GM2

R0

Ep = 2E0 = −6
5
GM2

R0
.

(4.8)

which can be combined with

Ek =
1

2
Mσ2

3d =
3

2
Mσ2

1d (4.9)

to get

σ1d =

√

2GM

5R0
. (4.10)

As for the half-mass radius at equilibrium, its value is dependant on how concentrated the
system is and is not easy to derive. However, numerically obtained King models show that in
relaxed systems, there is a consistent relation between Rh and the virial radius Rv, defined as

Ep = −GM2

2Rv
, (4.11)

that gives

Rh,eq ≈ 1.3×Rv,eq. (4.12)

Combining Eq. (4.8), (4.11) and (4.12) it comes

Rh,eq ≈ 0.54R0. (4.13)

1For our models with more massive stars, up to 100M⊙, these represent only ∼ 5% of the total mass and their
removal would not significantly alter the dynamics of the system.
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Knowing that R0 = 21/3Rh,0, we now write a good approximation of the crossing time in the
relaxed, equilibrium system

tcr ≃ 1.7
R

3/2
0√
GM

(4.14)

≃ 2.4 tHénon (4.15)

≃ 0.3 Myr. (4.16)

With N = 15000 we find from (1.6) a two-body relaxation time-scale

trel ≃ 324 tHénon (4.17)

≃ 95 Myr (4.18)

and from (1.10), considering a mass range of mmax/〈m〉 = 20, we find a mass-segregation
time-scale

tms ≃ 25 tHénon (4.19)

≃ 7.5 Myr (4.20)

Our simulations last for far less than a relaxation time, but we expect to see some dynamical
mass segregation set in in our models.

4.1.3 Removal of the ejected stars

In the previous section, we considered there was no mass loss during the collapse and relaxation
that lead to the equilibrium system. However, a look at the simulations shows this assumption
does not hold. Some stars are ejected from the system after the collapse, when the system
bounces. These stars are not part of the equilibrium system as they have no influence on the
central dynamics.

To investigate the evolution of the central bound system only, we need to isolate and subtract
the ejected stars. The obvious way to do this would be to compute the stars mechanical energies
and to remove all stars with positive energy. Though this works for a majority of the ejected
stars, a subset of them has a marginally negative energy. These register as bound when they
are essentially out of the system (far beyond the original system radius).

To efficiently collect a maximum number of ejected stars, we spotted the time when the
potential energy is maximum, when the collapse occurs. We then identified all stars whose
distance to the center increased monotonically from there onwards. The full selection criteria is
therefore :

vr(t) > 0, ∀t > tff or E⋆ > 0, ∀t > tff (4.21)

This allows a more complete selection of the ejecta. On Fig. 4.2 we graph |r| as a function
of time for a subset of escapers (shown as red curves) for the uniform collapse model Ru20. The
black curves are trajectories for bound stars given for comparison. Some of these bound stars
are later ejected from the system due to close interactions, as seen on the figure.

4.2 Collapse and virialisation

The constant diffusion of kinetic energy by two-body interaction means that no stellar system
ever reaches a steady equilibrium. However we can contrast the time-evolution of two configu-
rations and draw conclusions about their observable properties.
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Figure 4.2: Distance to origin for 750 stars from run Ru20 (see Table 3.1). Red lines show the
trajectory of stars that are considered ejected according to our criterion.

Figure 4.3: Half-mass radius as function of time for two systems undergoing collapse : a uniform-
density sphere, Ru20, as the thin red solid curve, and a clumpy Hubble model, Rh20, as the
thick blue solid curve. Half-mass radii are in H.u, as well as the time axis, where tHenon =
1unit = 0.13Myr. Dashed lines are the half-mass radii of the same systems for the same systems
but including only the bound stars.
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With this in mind we turn to Fig. 4.3 in which we show the evolution of the half-mass radius
for the cold uniform model (labeled Ru20; thin red curve), and the Hubble model (labeled
Rh20; thick blue curve). Both systems have the same bounding radius initially, contract to a
small radius when t ≃ 1.4 units and then rebound at time t ≃ 2 units. When all the stars are
included in the calculation for rh, we find that the radius increases at near-constant speed after
the collapse. That trend does not appear to be slowing down which indicates that a fraction of
the stars are escaping. The first batch of escapers is driven by the violent relaxation, however
the trend continues beyond t = 25 units, corresponding to t > tms which implies two-body
scattering and effective energy exchange between the stars. Note how the uniform model has a
much deeper collapse and rebounds much more violently (as was also seen on Fig. 4.1) shedding
a fraction twice as large of its stars:

Run Ejected stars Ejected mass

Ru20 4227 27%
Rh20 1932 12%

The half-mass radius Rh increases steadily in both models, from the bounce at t ≈ 2, until
the end of the simulation (values in H.u):

Rh Uniform 0.11 → 0.63 (×5);
Rh Hubble 0.34 → 0.49 (×1.4).

Clearly the gentler collapse of the fragmented model has led to a more extended post-collapse
configuration and reduced two-body evolution. Observe how the uniform model Ru20 is ejecting
more stars than the Hubble model: if we repeat the calculation for the Hubble run Rh20 but
now include only the bound stars, the curve of Rh obtained and shown as dash is shifted down
but keeps essentially the same slope ≈ 0.004. By contrast, the calculation for the bound stars of
run Ru20 yields a much shallower slope than for the whole system: the slope drops from 0.015
to about 0.007. Irrespective of how the half-mass radius is calculated, the conclusion remains
the same and agrees overall with the remark by Caputo, de Vries & Portegies Zwart (2014)
that boosting the kinetic energy of the collapsing initial configuration softens the collapse ; this
was shown in a different context by Theis & Spurzem (1999) and confirms these older findings.
Here, the fragmented model has non-zero kinetic energy due to the clumps internal motion. The
important new feature brought by the fragmented initial conditions is that the mass profile of
the virialised configuration evolves much less over time in comparison.

At the bounce, the half-mass radius of the Hubble model is ≈ 4 times larger than that of the
initially uniform sphere at rest (Fig. 4.3). The half-mass radii overlap at time t ≈ 15 H.u. (solid
curves) or t ≈ 50 H.u. (dashed curves). Is the same trend applicable to all Lagrangian radii ?
To answer this question we plot on Fig. 4.4 the ten-percentile mass radii for the two models.
The results are displayed for the two situations including all the stars (top row) or bound stars
only (middle row).

It is striking that the curves show very little evolution at all mass fractions for the case of
the Hubble model (see right-hand panels on the figure), whereas all mass shells either contract
or expand in time for the uniform one. We have noted how this model should undergo two-
body relaxation on a time-scale of t ≈ 320 H.u. while the innermost 10% mass shell shows an
indication of core-collapse at t ≃ 5 H.u.. This is due to the presence of a mass spectrum, the
time-scale for core-collapse should be closer to the mass-segregation time-scale, t ≃ 25 H.u..
The remaining difference can be attributed to the smaller total mass (due to the ejecta) and the
various assumptions made in section 4.1.2.

We note here that the two sets of curves reach very similar values at the end of the calculations
(t = 40H.u). A key difference between the two models, therefore, is that the final configuration
of the Hubble model is almost identical to what it was at the bounce ; the same simply does
not hold in the case of a uniform-density collapse. Furthermore, the Hubble calculation shows
no hint of two-body relaxation or core-collapse.
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Figure 4.4: The ten-percentile mass radii (10% to 90%) as function of time. Radii and time
axis are in H.u, with tHénon = 1unit = 0.13Myr. Left panels show the Uniform model and right
panels show the Hubble fragmented models. Panels a and b show the evolution of the whole
systems, while panels c and d show the same radii computed for the bound stars only. Panel e
shows the Uniform bound model (Ru20b) for which radius and time were rescaled to compensate
the difference of initial kinetic energy (see text for details). Panel f shows the same information
as panel d with smoothed data. 10% and 90% radii are labelled in the top right panel.
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Caputo, de Vries & Portegies Zwart (2014) and Theis & Spurzem (1999) noted how a non-
zero amount of kinetic energy in the initial configuration alters the depth of the bounce during
collapse. The ratio of half-mass radius at the bounce, to its initial value, is then

Rh

Rh,0
≃ Q0 +N−1/3 (4.22)

where Q0 is the virial ratio of the initial configuration (see Caputo, de Vries & Portegies Zwart,
2014, Fig.5). We computed the kinetic energy of the Hubble configuration and found that the
internal motion of the clumps means that Q0(Hubble) ≃ 0.02 for a Salpeter mass function with
upper truncation value of 20M⊙. With N = 15k stars, the ratio Rh/Rh,0 ≃ 0.041 when Q0 = 0
shifts to Rh/Rh,0 ≃ 0.061 when Qo = 0.02, or a factor close to 1.5. To account for the difference
in kinetic energy of the initial configurations, we may therefore rescale the uniform model such
that positions are ×1.5 and the time unit is ×(1.5)3/2 ≃ 1.84.

The new configuration would evolve in time in exactly the same way after mapping positions
and time to their rescaled values. The result is shown as the bottom row on Fig. 4.4. Note
that we have blown up the vertical axis to ease comparison between uniform and Hubble models
with bound stars only included. The rescaled uniform model is now slightly more extended than
before, but overall the final two configurations (at t = 40 H.u.) are as close as before rescaling.
This demonstrates that the outcome of the uniform collapse and its comparison with the Hubble
model is not sensitive to a small amount of initial kinetic energy. We note that while the ratio
Q0 is a free parameter in many setups for collapse calculations, that parameter is fixed internally
in the Hubble approach.

4.3 Global mass segregation

To investigate the state of mass segregation in our models, we follow the analysis of Caputo, de
Vries & Portegies Zwart (2014). The masses are sorted by decreasing values, then subdivided
into ten equal-mass bins. This means that the first bin contains the most massive stars. The
number of stars in each bin increases as we shift to the following bins, since their mean mass
decreases, and so on until we have binned all the stars. The half-mass radius Rh computed for
each bin is then plotted as function of time. In this way the mass segregation unfolds over time:
if the stars were not segregated by mass, all radii Rh would overlap. If two sub-populations
share the same spatial distribution, their respective Rh will overlap.

Figure 4.5 graphs the results for initially uniform-density and fragmented Hubble models.
The layout of the figure is the same as for Fig. 4.4. The violent relaxation phase leads to mass
loss for both models and the much more rapid expansion of the half-mass radii of low-mass stars
is an indication that most escapers have a lower value of mass.

Fig. 4.5(c) and (d) graphs Rh for the bound stars of each sub-population. Clearly the initially
uniform-density model is more compact early on, but note how the heavy stars sink rapidly to
the centre, more so than for the case of the Hubble model. The spread of half-mass radii increases
with time for both models, however two-body relaxation in the uniform-collapse calculation is
much stronger, so that by the end of the simulations the half-mass radii of the low-mass stars
of the respective models are essentially identical.

Since the low-mass stars carry the bulk of the mass, that means that the two models achieve
the same or similar mean surface density by the end of the run. At that time, the heavy stars in
the uniform-collapse calculation are clearly more concentrated than in the Hubble run (compare
the radii out to ∼ 40% most massive stars). A direct consequence of this is that the color
gradients of the core region of a cluster are much reduced when the assembly history proceeds
hierarchically, in comparison with the monolithic collapse. It will be interesting and possibly
important in future to compare such models with actual data for young clusters.
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Figure 4.5: Half-mass radii of stars selected by mass as function of time. Each bin identified
with 0-10%, 10-20% .. 90-100%, contains ten percent of the total system mass. The stars
were sorted by mass in decreasing order, and used to fill each ten-percent mass bin in order.
Hence the first ten-percentile contains the most massive stars, the next ten-percentile the second
group of massive stars, and so on until the 90-percent bin which contains the least massive
stars in the model and is the most populated. Half-mass radius and time are in H.u, with
tHenon = 1unit = 0.13Myr. Left panels show the evolution of the Uniform model (Ru20,
Ru20b) and right panels do the same for the Hubble model (Rh20, Rh20b). The organization
of panels follows the same layout than figure 4.4 with a different factor for the rescaling of the
uniform system.
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Table 4.1: Values of half-mass radii and their ratio to that of the most massive stars. The
mass categories are labelled X%-X+10%, with the percent symbol ommitted for brevity. The
results are for the rescaled bound uniform model (rescaled Ru20b) and the bound Hubble model
(Rh20b), after the collapse, and before dynamical mass segregation sets in.

Uniform (%) 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

Radius 0.20 0.245 0.282 0.273 0.294 0.325 0.326 0.328 0.335 0.340
Ratio 1 1.23 1.41 1.37 1.47 1.63 1.63 1.64 1.68 1.70

Hubble (%) 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

Radius 0.18 0.21 0.286 0.293 0.316 0.321 0.333 0.338 0.342 0.344
Ratio 1 1.16 1.58 1.63 1.76 1.78 1.85 1.88 1.90 1.91

Another interesting remark is that the kinematics of the stars within the system half-mass
radius are much different between the two models. For the Hubble calculation, the system half-
mass radius, ≈ 0.43 H.u, at t = 40 (cf. Fig.4.5d) coincides with the half-mass radius of the
30− 40% bin stellar sub-population. All bins up to that range show little or no time-evolution,
around the end of the run, which we interpret as efficient retention of these stars by the relaxed
cluster. In the case of the uniform-collapse run, the system half-mass radius reaches ≈ 0.33 H.u.,
which is significantly larger than the radius for the 30 − 40% stellar sub-population. For that
model, only the bins 0− 10% and 10− 20% are flat, and all the others increase almost linearly
with time. Thus a fair fraction of bright stars deep in the cluster show systematic outward
streaming motion, along with low-mass ones. This brings up the possibility to measure this
signature motion through relatively bright stars, originating well inside the cluster half-mass
radius. Recall that only post-bounce bound stars where selected to compute Rh on Fig. 4.5(c)
and (d) ; the expansion is therefore not driven by escapers (e.g., Fig. 4.5a), but rather through
two-body relaxation. On the down side the bright tracers would be short-lived, and this may
prove a strong constraint for observational detection.

Given the early dynamical evolution associated with substructured stellar clusters, some
observed dense objects may yet be out of equilibrium. We wish to investigate the out-of-
equilibrium state of our models just after the collapse. To ease the comparison between the two
systems, the same rescaling procedure as for Fig 4.4 was applied to the uniform model, only
this time the scaling was chosen so that the two clusters have comparable densities after the
bounce. Lengths were multiplied by 4; the time-axis is then scaled up by a factor (4)3/2 = 8.
The result can be seen in panel (e); panel (f) shows a smoothed and zoomed in Hubble model
for comparison.

We compare the values of the different half-mass radii of the various population before the
dynamical mass segregation sets in. This process is clearly visible as the drop of the half-mass
radius of the most massive stars during the evolution. We are interested in the segregation
which originates from the collapse and is present before this dynamical evolution. Table 4.1
sums up the values of the half-mass radii taken at t ∼ 5 for both models, both corresponding to
the same unevolved post-collapse state (see arrows on panels e and f on Fig 4.5). With on the
order of ∼ 100 stars per bin or more, one estimates roughly a ten-percent standard deviation
from random sampling. To measure the relative segregation between populations, the table also
lists the ratios of each half-mass radius to the one for the most massive stars.

Both models appear mass segregated (since these ratios are significantly greater than unity).
The Hubble model is more segregated, on the whole, albeit in a different way compared to
the uniform model. The segregation in that one is more regular and spreads over more mass
bins. In the Hubble model, the segregation is much enhanced for the first two mass bins. Such
differences in the degree and nature of segregation can be explained by the clumps structure
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before the collapse. We showed in section 3.3.3 that the clumps were mass segregated with their
most massive members being preferentially located at their center. The low membership and
mass of most clumps implies that segregation mostly affects the very top of the stellar mass
function. This segregation, predominant among massive stars, is then found in the resulting
centrally concentrated system, after the collapse, and visible on Fig. 4.5.

The inheritance of mass segregation was studied by McMillan, Vesperini & Portegies Zwart
(2007) for the case of merging Plummer spheres. Allison et al. (2010) furthermore showed
that mass segregation in the system as a whole is enhanced for more filamentary fractal initial
conditions (lower dimension, D ; see their Fig. 5). Here our results confirm this observation.
Mass segregation is a sensitive function of the initial clumpiness of the system and has imme-
diate bearing on the dynamics of the virialised configuration, since all massive stars are more
concentrated in the core.

4.4 Concluding remarks

We have followed Hubble-Lemâıtre fragmented models throughout collapse and subsequent dy-
namical evolution, and compared their structure and mass segregation to cold uniform models.
We found fragmented models undergo a softer, shallower collapse than uniform models, due to
their irregular spatial distribution and internal kinetic energy. Uniform models eject more than
twice as much stars from the system at the bounce due to this deeper collapse and virialize with
a 4 times smaller half-mass radius. This high concentration enhances two-body evolution and
the uniform systems expand faster than the Hubble models, even when excluding the ejected
stars from the system. Interestingly, after 40 H.u, or 6 Myr, both systems achieve approximately
the same density and distribution.

Both uniform and fragmented models develop mass-segregation over time, with the low-mass
stars being preferentially ejected or diluted. In the end of the simulation, the uniform systems
appear slightly more mass-segregated due to their denser configuration and enhanced two-body
evolution. However, just after collapse, Hubble-Lemâıtre models exhibit a mass segregation
mainly affecting the most massive stars. This characteristic is preserved throughout evolution
while the segregation seen in uniform models is more spread out in the mass function. This is
a signature of the hierarchical formation, as this “top-focused” segregation developed in small
clumps and was inherited by the whole system. This would enhance colour gradient in the core
of real clusters, opening the way for an observational criteria to assess the formation scenario of
very young relaxed clusters.
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Part II

Binary stars in substructured

clusters
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CHAPTER 5

Introduction to binaries

In the second part of this thesis we turn to binary stars and their relation to star clusters.

Binary stars are crucial to understand the evolution of star clusters for a variety of reasons.
They can be a reservoir of energy, supporting the core of a cluster against collapse by giving away
their internal energy to perturbers, heating the system and possibly ejecting stars, affecting its
global evolution and stopping core collapse (e.g Heggie & Aarseth 1992).

The statistical properties of binary star populations in dense stellar associations in partic-
ular may shed light on the discovery of multiple star-formation episodes in rich stellar clusters
(Anderson et al., 2009). For instance, binary stars enhance strong dynamical interactions which
in turn may speed-up evolution off the main sequence and so boost enrichment of the ISM
through winds (e.g., Tailo et al. 2015). Tight binaries of short-lived massive stars may evolve to
produce exotic stellar remnants including black hole progenitors (Bacon, Sigurdsson & Davies,
1996; Davies et al., 2009). Blue stragglers, abnormally hot stars for the age of their host clusters,
may form in binary mergers, making them a dynamical record of the past binary population
and dynamical state of the cluster (Knigge, Leigh & Sills, 2009).

Finally, accurate knowledge of binary populations in stellar clusters enable good estimation
of their dynamical mass, as the integrated velocity dispersion is largely biased by the binaries
internal motions, see Rubenstein & Bailyn (1997).

In this short introduction to binaries, we define a binary system, describe a statistical measure
for a binary population, then quickly review the observational and numerical state of research
on binary populations both in the field and in clusters.

5.1 What is a binary star ?

When two massive bodies of mass m1 and m2 interact gravitationally, they can have different
types of trajectory depending on their total energy

E = Ek + Ep =
1

2
m1v

2
1 +

1

2
m2v

2
2 −

Gm1m2

‖r1 − r2‖
. (5.1)

If E < 0, they are bound and locked in a binary system. Such systems are characterised by
their semi-major axis a, their eccentricity e, their period p, their total mass mt = m1 +m2 and
their mass ratio q = m2/m1 with m1 being the primary, more massive than m2. Mass, period
and semi-major axis are related by Kepler’s third law

Gmt

4π2
=

a3

p2
. (5.2)
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(a) Albireo (β Cygni) (b) Schematic of a two-body system

Figure 5.1: (a) Hubble observation of the binary star Albireo, fifth brightest star in the Cygnus
constellation. Albireo A, the red star, is a close binary system itself (not represented on (b) for
simplicity). The pair has a period of 213 years and a semi-major axis a ≃ 66 AU.

Interestingly, expressed in AU, M⊙ and years, G ≃ 4π2, thus the law can be written

(

mt

1M⊙

)

≃
(

p

1yr

)

( a

1AU

)3
. (5.3)

The total energy of the binary can be expressed as a function of a, m1, m2:

E = −Gm1m2

2a
(5.4)

5.2 Multiplicity fraction

In a stellar population, a fraction of stars will be found in multiple systems: some in binaries and
some in higher order hierarchies. A hierarchical triple is a stable 3-body bound system, a binary
of which one of the component is a binary itself. The same principle applies to quadruple,
quintuple, etc. One of the brightest stars in the night sky, Castor, is a sextuple hierarchical
system, with 6 stars in a stable system.

Counting binaries and multiples is not straightforward: does one count triples as two binaries
or three stars in a multiple system ? In their SPH simulation paper, Goodwin, Whitworth &
Ward-Thompson (2004) discussed several ways to measure the degree of multiplicity among
stars in a system, each of them quantifying different properties, such as companion probability,
companion frequency or pairing factor.

Let S be the number of single stars, and B, T and Q the number of binary, triple, and
quadruple systems, respectively. The fraction of multiple stars bound in binaries, triples and
quadruples to the total number of multiple plus single stars, is

fm =
B + T +Q

S +B + T +Q
. (5.5)

This measure is used in seminal observationnal papers (Duquennoy & Mayor, 1991; Raghavan
et al., 2010) and is our adopted choice. As pointed out by Hubber & Whitworth (2005), fm
in Eq. (5.5) has several advantages: 1) it may be restricted to a given mass m, setting Sm

the number of single stars, and Bm, Tm, Qm the multiple stars with a primary of that mass;
2) the multiplicity fraction is observationally robust: when a binary is being reclassified as a
triple, or an even higher order multiple system, the fraction does not change. These definitions
may be extended to cover a mass range in a coherent way, by substituting m → 〈m〉, the mean
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(a) Period and semi-major axis distribution (b) Binary fraction vs spectral type

Figure 5.2: (a) shows the observed distribution of period and semi-major axis observed in the
field. Different hatchings show different observation techniques: horizontal lines show unob-
served companions detected by the proper-motion acceleration of components, positively sloped
lines show spectroscopic binaries, negatively sloped lines visual binaries, cross hatching shows
objects found with both, and vertical lines are objects with common proper motions. (b) was
compiled from several surveys, detailed in Fig 6.5. Both figures were extracted from Raghavan
et al. (2010).

value over the range. This is useful mostly when comparing systems with different stellar mass
functions.

5.3 Observed population

A seminal survey of binary solar-type stars in the field was performed by Duquennoy & Mayor
(1991). This seminal paper was updated and completed by Raghavan et al. (2010), who es-
sentially confirmed the main results from the first study. They observed hundreds of F and G
main-sequence stars in pairs and derived their binary parameters. The total binary fraction for
these stars was found to be ∼ 53% as binaries are quite common in most stellar populations.
The authors also derived a period distribution, extending from less than a day to more than
a Myr. The distribution was consistently well fitted by a log-normal distribution. The period
distribution for F and G stars (as well as K and M stars, see Fischer & Marcy 1992) is

f(logP ) ∝ exp

[

−(logP − µlogP )
2

2σ2
logP

]

, (5.6)

with the peak value µlogP = 5.03, about 300 years, and the dispersion σlogP = 2.28, the distri-
bution is shown on Fig 5.2a.

Raghavan et al. (2010) also compiled several observational studies of binaries with primaries
of various spectral types. High mass stars, types O,B,A, (from 30+ down to 2M⊙) have a high
multiplicity fraction, about 75%, while lower mass stars such as M-dwarfs only have 10-30%
multiplicity, see Fig 5.2b. This trend of increasing multiplicity with increasing primary mass is
found in many surveys. Binary surveys are easier in the field due to the very large sample and
low stellar density. To perform similar studies in young star clusters is much harder due to source
crowding and embedded stars. Kouwenhoven et al. (2007) attempted to characterize the birth
binary population in the OB association Scorpius OB2. They found a very high multiplicity
fraction, consistent with 100%, and a period distribution more consistent with a powerlaw than
a log-normal distribution. From this survey and others, it is likely that the binary population
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(a) Evolution of total binary fraction (b) Evolution of semi-major axis distribution

Figure 5.3: (a): total binary fraction over time in a subvirial fractal system. Corresponding
models for the solid, dashed, dot-dashed and dotted are respectively 100% initial binary fraction
with log-normal distribution, 100% fraction with Kroupa distribution, field-like fraction with
log-normal distribution and 75% fraction with log-normal distribution. (b): 100% initial binary
fraction with an initial log-normal distribution (open histogram) and the evolved distribution
after 1Myr (hashed histogram). Solid red and dashed blue lines are fits for, respectively, the
G-dwarf and M-dwarf populations. Both figures were extracted from Parker, Goodwin & Allison
(2011).

in clusters undergoes an erosion through dynamical processing, with the field distribution as an
end-result.

5.4 Simulate binary populations in clusters

As noted earlier, young clusters are born substructured, then undergo dynamical evolution. The
rapid, global merging of sub-structures would bring together stars at a different stage of their
formation (as in NGC1333, see Foster et al. 2015) while at the same time induce a shift from a
clumpy Taurus-like profile to a more regular one. A simple but important question is how the
internal dynamics of such complex configurations may affect the characteristics of a population
of binary stars.

Many authors have explored this question through optimised initial conditions (Kroupa &
Burkert, 2001; Marks & Kroupa, 2012) or fractal configurations evolved with N-body integrators
(Parker, Goodwin & Allison, 2011; Geller et al., 2013; Parker & Meyer, 2014). A common feature
to all these studies is that the binary fraction drops over time regardless of their components
(masses), due e.g. to close star-star encounters or heating from the external galactic tidal field,
see Fig 5.3a. It was also shown that wide binaries are, as expected, more prone to destruction
than more compact systems, as is illustrated by the evolution of the population seen in Fig 5.3b.
For example, Vesperini & Chernoff (1996) explored the fate of binaries in violently relaxing
uniform systems. Comparing the internal velocity dispersion of the pairs and that of the cluster,
they showed their soft binaries were destroyed, though it had no significant impact on the global
structure of the cluster.

Parker & Meyer (2014) pointed out that the distribution of semi-major axes a of the field
population is a strong function of the primary’s mass: at fixed a, low-mass binaries carry less
binding energy so the distribution cuts off at shorter separation (∼ 20 AU) compared to that for
binaries with a more massive primary (∼ 300 AU). Their study of fractal initial conditions show
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that gravitational dynamics enhances the dissolution of low-mass systems. This then provides
a clue to account for the larger relative fraction of heavy stars in binaries, such as seen in a
compilation by Raghavan et al. (2010).

Furthermore, it is not clear yet whether binary populations should be tailored according to
the total system mass because of the limited range of M ∼ 102 to ∼ 103M⊙ of these studies
(Kroupa & Burkert, 2001; Parker, Goodwin & Allison, 2011; Parker & Meyer, 2014). Recall that
the intensity of the tidal field is a prime agent of binary heating. A trend with mass may be
expected on the ground that the drive to equilibrium of more massive systems leads to deeper
potential wells (e.g. Aarseth, Lin & Papaloizou 1988; Boily, Athanassoula & Kroupa 2002). A
steep potential will give rise to strong tidal fields which may disrupt bound sub-systems (Boily
et al., 2004; Renaud, Gieles & Boily, 2011). A definitive assesment of this effect is difficult
to reach because the results are a strong function of the system initial mass distribution and
kinetic energy content (Boily, Athanassoula & Kroupa, 2002; Caputo, de Vries & Portegies
Zwart, 2014).

In the following chapters, we present an algorithm to detect binary stars in N-body simulations.
This algorithm is applied to Hubble-Lemâıtre fragmented configurations, revealing a spontaneous
binary population created by the expansion of the initial uniform sphere. We inject new binaries
in the system to follow observed trends in the binary distribution. These systems are then left
to collapse, as before, and the binary populations are monitored. We evaluate the influences
of cluster membership and stellar density on the processing of binaries in substructured and
subvirial systems. We also detail the formation of “extreme” binaries in our simulations, very
short and very wide systems, and their dynamical origins.
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CHAPTER 6

Detecting and injecting binaries

In this chapter, we introduce a new algorithm to detect and record binary systems in N-body
simulations, then calibrate its free parameter. With this tool, we analyse the spontaneous binary
population arising in the Hubble-Lemâıtre models and we describe a binary injection method
to complete this population to match the observations.

Contents
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6.2.2 Spontaneous semi-major axis distribution . . . . . . . . . . . . . . . . . 83

6.2.3 Completing the population . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1 A new binary detection algorithm

6.1.1 Density comparison

The study of binary populations in N-body simulations requires an algorithm to detect binary
systems and compute their characteristics. The simplest approach is to compute all star-star
energies and consider bound pairs as binaries. This records a lot of ephemeral interactions, as
N-body dynamics cause transient bound systems. An additional criteria is needed to assess the
stability and robustness of a pair as a binary.

I developed a new algorithm based on the idea of a density threshold: binaries must be
denser than their direct environment. Before describing the algorithm, we wish to emphasize
the importance of neighbour searches in this kind of study. Be it to obtain bound pairs or to
study said pair direct environment, the quick retrieval of neighbours is crucial to an efficient
algorithm.

The method described here relies on the KD-tree algorithm (Press et al., 2007). While brute-
force neighbour searches scale as ∝ N , as all stars in the system have to be checked as potential
neighbours, a KD tree, once built, performs neighbour searches with algorithmic complexity
∝ log(N). The tree is built by sorting particles along one dimension, splitting them at the
median, then sorting each branch along another dimension, splitting them again, and so on,
cycling over dimensions. A two-dimensional example is show on Fig 6.1.

First, binary candidates are identified as negative energy pairs. The semi-major axis of the
system is derived from the star motions, then a ”binary density” is computed, with a the binary
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Figure 6.1: Illustration of a KD-tree for a random two-dimensional distribution (blue dots).

semi-major axis :

ρbinary =
m1 +m2

4πa3/3
. (6.1)

This is then compared to the local neighbour density, defined as the cumulated mass of a fixed
number Nnb of neighbours to the pair over the spherical volume reaching to the last neighbour.

ρlocal =

Nnb
∑

i=0
mi

4πr3Nnb
/3

. (6.2)

If the density ratio exceeds a threshold D,

ρbinary
ρlocal

> D, (6.3)

the pair is registered as a binary. Other authors, e.g. Parker et al. (2009); Lomax et al. (2015),
have used close hybrids of the criteria that we have implemented.

Stars can be found to be part of several binaries at once, which happens more often for
massive stars as they clear more easily the density threshold. When that happens, the algorithm
selects from such connected systems only the pairs exhibiting the lowest (most negative) binding
energy.

This method has two free parameters: Nnb and D. Nnb can be set from 6 to 10 neighbours
without a substantial impact on the detection. The density ratio is a more critical parameter,
as if it is chosen too low, a lot of ephemeral binaries are found, while a high value picks only the
closest binaries, ignoring wider, yet stable, systems.

6.1.2 Choosing a density ratio

It is necessary to find a good compromise value for the critical density ratio D that maximizes
the number of detected stable binaries without collecting too much transient systems. To do so,
I explore the results brought by different values of D in a N-body system containing binaries.
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Figure 6.2: Illustration of the density threshold method. The central blue stars and the red
bound neighbour describe a two-body orbit shown on the figure while the green bar indicates
the major-axis of the system. This defines the binary density over the green sphere, while the
local density is defined with the grey stars, the other neighbours. Nnb was here set to 7.

Figure 6.3: Semi-major axis histograms for various value of the density ratio D at t=0 and
10 H.u for a N = 10k King model and a binary fraction fb = 0.3. The injected log-normal
population is shown as a black solid line.
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A virialized King model is created with N = 10000 stars and a binary fraction of 0.3. This
means there are 2300 binaries and 5400 single stars,

fb =
Nb

Ns +Nb
=

Nb

N −Nb
=⇒ Nb =

fb
1 + fb

N = 2300. (6.4)

The binaries follow the Raghavan et al. (2010) log-normal distribution introduced in 5.3. We
let the system run for 10 H.u, or 12 crossing times, and write a snapshot every 0.1 H.u.

The binary detection is ran over all snapshots once per density ratio in the following list:

D 2000 500 150 60 30 10 5 2 1

We show on Fig 6.3 the semi-major axis distribution retrieved for various D for t=0 and
t=10, with the theoretical injected population as a solid black line.

Looking at the left panel, for t=0, we see all density ratios return the same population for
a < 1000 AU, while for higher separation, there are large variations. D = 2000 does not detect
semi-major axis larger than 3000 AU, while D = 1 detects ∼ 30 systems with a > 104 AU.
After 12 crossing times, on the right panel, we can see the detected tight population did not
change, while all wide populations converged. The population detected with the highest ratios
did not significantly evolve, while low ratios saw a large depletion of the population they initially
returned.

We can say that a very high ratio only detect binaries that are guaranteed to resist the
dynamical processing and survive, while low ratios detect more fragile systems. How ephemeral
are these latter binaries ? To evaluate the different population detected by different ratios, we
show on Fig 6.4 the detailed evolution of the wide, a > 1000 AU population. The large upper
panel show all wide binaries evolution (time on y-axis) for D = 2000, arranged on the x-axis by
time of first detection. Each pixel column represents a binary. The smaller sub panels show, for
each density ratio, the history of the binaries this ratio detected that the previous, greater ratio
did not. A binary that is detected with D = 2000 will also be detected for D = 500 and any
other lower value. Fig 6.4 shows what kind of binaries lowering the ratio progressively brings
in the detected population. The color codes the logarithm of the semi-major axis in AU, white
means the binary is not detected.

The D = 2000 population is mainly made of stable, relatively tight binaries. About half
the binaries are detected at t=0, while the others dynamically form in the system. Some
are destroyed, other widened through interactions as their color bars transitions to a lighter
color, sometimes after a “flickering” phase, when the detection goes on and off over successive
snapshots. This is due to the binary entering a dynamical interaction with a third star or other
binary, making the neighbour density undergoing spikes. This interaction leaves the binary with
a weaker bound, thus larger separation.

Looking at the populations brought by lower ratios, we see they are progressively wider and
more transient/flickering as the ratio lowers, which is to be expected. D = 1 only brings very
ephemeral pairs, often not lasting more than a single snapshot. All ratios bring their share of
transient binaries, but D = 10 is the last to capture relevant, relatively long-lived pairs.

Extreme values of density ratios bring a large difference in the detection of large binaries,
but a moderate value like D = 10 appears the best compromise to capture the substance of a
binary population.

6.2 The spontaneous binary population

Star-star interactions which take place during the HL expansion phase speed up the internal
evolution of small substructures (or, clumps). The global expansion, on the other hand, brings
about correlations in phase-space coordinates and the formation of loose binary stars (see Ap-
pendix C and Kouwenhoven et al. 2010; Moeckel & Clarke 2011). We refer to that population of
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Figure 6.4: Visualization of the wide (a > 1000 AU) binary population in a King model over
time. The large upper panel shows the evolution of all binaries detected for a density ratio
D = 2000, ordered by time of first detection. Each lower sub-panel show the new binaries
detected with the new, lower, value of D compared to the previous one.
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Figure 6.5: Observational data of binary fractions (dots with uncertainties) as a function of
primary mass. The data are taken from (in increasing primary mass): Close et al. (2003); Basri
& Reiners (2006); Fischer & Marcy (1992); Ward-Duong et al. (2015); Raghavan et al. (2010);
Patience et al. (2002); Preibisch et al. (1999); Mason et al. (1998). The red line is a best-fit
linear relation. The thin curves and 1-σ dispersion shaded area are the results for a population
of spontaneous binaries obtained from HL models.

binary stars as spontaneous binaries in the following. There is a trade off between the creation
of spontaneous binaries, and their destruction / heating when they sit near or inside a clump.
We address statistically their properties as a sub-population through numerical experiments.

We set up 20 models with N=20k stars drawn from the L3 single star initial mass function
(IMF) of Maschberger (2013). The L3 IMF matches the better known Kroupa (2001) and
Chabrier (2003) functional forms but with fewer free parameters. We set a lower truncation
mass of 0.1 M⊙ and a maximum of 30 M⊙, for an average mass of 0.5 M⊙. This choice of
truncation values allows us to take into account the impact of massive stars on the dynamics,
while keeping the vast majority of stars on the main sequence for up to 18 Myr, which is the
maximum simulation run-time in next chapter. For now we only look at the fragmented models
without considering the further dynamical evolution.

6.2.1 Binary fraction vs primary mass

Several studies have found a strong correlation between the binary fraction fm and the primary
mass m of a binary system (for compilations, see e.g. Fig. 17 of Bate 2012 and Fig. 12 of
Raghavan et al. 2010). Since heavy stars tend to drive the formation of clumps in HL models,
by attracting stars to themselves, it is natural to expect the HL procedure to give rise to a
correlation of that nature.

The spontaneous binary fractions found in our 20 Hubble-Lemâıtre models for logarithmic
primary mass bins are plotted as black lines on Fig 6.5. The shaded area shows the 1-σ disper-
sion for these distributions. The fraction increases rapidly with primary mass, and is in close
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Figure 6.6: Distribution of semi-majors axes of spontaneous binary populations for two values
of stellar number density. Black curve show the canonic separation distribution from Raghavan
et al. (2010).

agreement with observations for primaries of mass higher than 2 M⊙, when fm exceeds 50%.
However, the HL models show a significant deficit of low-mass primary binaries in comparison
to observational data.

The high binary fraction for heavy primaries can be explained, at least in part, by considering
the mass segregation occurring in the clumps during their formation. We shown in Chapter 3
that massive stars tend to sink to the center of clumps. These high mass stars are more likely
to capture another star to form a binary through a three-body interaction as they sit in denser
environments (Spitzer, 1987). A heavy star also creates a deeper potential well wherein to trap
a fly-by star at the on-set of HL fragmentation. There is indirect evidence for the three-body
binary formation process to draw from mass-segregated clumps, because these binaries have a
mean mass ratio q = m2/m1 that is significantly larger than expected from random pairing. The
mean value of q for binaries with a primary star in the range 15− 30M⊙ is 0.21± 0.11, whereas
random pairing yields a mass ratio of 0.02± 0.02 for that mass range. Due to mass segregation
inside clumps, massive stars are more likely to pair up with moderately heavy companions rather
than light ones.

6.2.2 Spontaneous semi-major axis distribution

The distributions of semi-major axes a and orbital periods are the main parameters used to
characterise binary populations. Up to this point, the distances were given in computational
Hénon units, but to talk about semi-major axes, generally given in AU, it is necessary to convert
the models to physical scales. To do so, we matched their stellar number density within the
half-mass radius to those of observed clusters. King et al. (2012) compiled data for several
young clusters and gave their stellar densities within half-mass radii, with high values reaching
400 stars/pc3, typical of the ONC, and low-densities of ∼ 6 stars/pc3, more akin to the Taurus
region. These are the two reference values used to build up our dataset of numerical models.
The time conversion gives a physical free-fall time of the models of 0.76 Myr for the high density
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Figure 6.7: Binary fraction as a function of primary mass. Blue circles show the binary fractions
in the population injected to complete the spontaneous binaries, in green triangles. The target,
observed, fractions are showed as red squares.

clusters and 6.0 Myr for the low density ones.

In practice the spontaneous binaries develop a logarithmic bell-shaped distribution of sepa-
ration centered on ∼ 2000 AU for a high-density HL model, and ∼ 7000 AU for a low-density
one, shown on Fig. 6.6 for the same 20 models than before. The spread shows the 1-σ disper-
sion. This is much wider than the averaged value of ∼ 50 AU for the Galactic field population
(Duquennoy & Mayor, 1991; Raghavan et al., 2010), where separations of ∼ 1 AU or lower are
not uncommon.

Separation distributions used in numerical works also include much tighter binaries. Hydro-
dynamical calculations by Bate (2012) show that orbital energy dissipated in the early stages
of formation may cause binaries with a ∼ 10 AU separation to shrink to a ∼ 0.5 AU in the
course of t ∼ 1 Myr. Analytical arguments by Stahler (2010) and Korntreff, Kaczmarek &
Pfalzner (2012) would have external drag forces from residual gas drive a tight binary to merge
completely. Kroupa & Burkert (2001) have shown that stellar collisions alone can not bring a
narrow distribution of semi-major axes to the full width of observed values. Other authors such
as Parker & Meyer (2014) investigated the evolution of a binary population identical to the field
but embedded in clumpy, fractal clusters (Goodwin & Whitworth, 2004) to test the robustness
of the field population. A full spectrum of separations is desirable for comparison with data and
theoretical models but is not a natural outcome of the HL fragmentation.

We follow Parker & Meyer (2014) to ease comparison with their setup, by supplementing
the population of spontaneous binaries with one that matches the field galactic populations at
small a. In doing so, we should also constrain the primary mass distribution so as to redress the
deficit of small-mass primaries (Fig. 6.5).

84



6.2.3 Completing the population

Completion procedure

The addition of new binaries to the HL distribution is not straightforward, as the phase space
coordinates of stars in an HL fragmented system are the consequence of the dynamical evolution
during the expansion (no known functional distribution function). A practical and coherent
method is to build the extra binary population before the HL expansion phase, and split them
at the apex of the expansion.

The first step is to choose the proper distribution of primary mass for these new binaries.
It should take into account the spontaneous population to preferentially populate the low-mass
primary space. It should also take into account the fact that the system expands with an effective
number of stars Ñ = N−nin with nin the number of injected binaries, as these contain two stars
fused in a single object until apex. Therefore, the number of spontaneous binaries is reduced.
Moreover, some spontaneous pairs (we found ≈ 50%) form at the end of the HL phase with one
fused binary as a component. These are no longer classified as bound pairs once the point mass
component is split into the binary.

By making a few assumptions, it is possible to account for these influences and derive a
distribution of primary masses consistent with a final binary fraction distribution close to ob-
servations. The procedure is detailed in appendix D. Once primaries are picked, secondaries are
chosen through random pairing in the remaining population and fused binaries are introduced
in the uniform, pre-expansion model. The injected population is shown as the blue curve on
Fig 6.7. Binaries are still injected at moderately high masses, even though the spontaneous
population had enough binaries in this range, because some of these binaries will not survive
when their secondary component splits. They have to be replenished.

Once the expansion ends and before binary splitting, the semi-major axis distribution of
spontaneous binaries is measured. A semi-major axis completion distribution is obtained by
subtracting the semi-major axis distribution from spontaneous (only considering the ones ex-
pected to survive) from the Raghavan et al. (2010) distribution, so the final population recovers
the observed population as much as possible. The injected binaries are split with semi-major
axes drawn from this completion distribution, shown in blue dashes on Fig. 6.9.

Result

This procedure was tested on a new set of 20 Hubble-Lemâıtre models, with the same param-
eters as before, N=20k, L3 IMF, but with fused binaries injected in the system. The splitting
was done twice for each model: once with low density (6 stars/pc3), and once with high den-
sity (400 stars/pc3). The resulting binary fraction is plotted on Fig 6.8 as a function of the
primary mass1. The deficit of low-mass primaries was bridged, while the fraction for high-mass
primaries was slightly reduced (from 0.85 down to 0.75 for a primary mass of ≈ 20M⊙; note the
increased scatter). This is the effect mentioned earlier, massive primaries see there secondaries
split, destroying the pair. Enough high-mass binaries were injected so the fraction remains in
agreement with observational data.

Turning to the distribution of semi-major axis, we choose to truncate the injected binary
population at short semi-major axes. Extensive numerical exploration of binary tidal heating
has been performed by O. Roos (2012, unpublished). Binaries were put on highly eccentric
orbits in cuspy Dehnen (1993) potentials, so experiencing large variations in the tidal force. It
was found the binary’s binding energy varied by ≈ 50% or more only when the semi-major axis
a > 100 AU. No binary-single stars or binary-binary interactions were included. The conclusion
from this study is that binaries with axis a shorter than 100 AU should rarely unbind due to tidal
heating. Further tests with NBODY6, and the results of the next section, largely confirm this.

1Only the low mass primary models are shown, as density does not affect the primary-mass distribution.
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Figure 6.8: Binary fraction as a function of primary mass. The results displayed are the average
of twenty realisations for 20k particles models; the shade indicates 1-σ deviations. Low-mass
primary binaries were injected to complete the spontaneous population (compare with Fig 6.5).

With that in mind, and in view of the computational costs, we truncated the binary population
at a = 1 AU. This choice allows to recover the range found in the SPH calculations of Bate
(2012), so a closer parallel can be made with his setup.

We show on Fig 6.9 in short-dashed the full spontaneous binary population (with a peak value
at a ≈ 7000 AU), prior to the procedure to split fused binaries. The distribution of separations
for the fused binaries is shown as the long-dashed blue curve, with a dip around a ≈ 10000 and
2000 AU for low and high density. Finally, the splitting procedure is carried out, and the result
shown as the solid green curve. The grey shade is the expectation value for the parametrised
Gaussian distribution of Raghavan et al. (2010). Discrepancies with this distribution are only
significant for binaries with a > 4000 AU for both densities. For low-density models, the peak
of the spontaneous population, still visible after the splitting procedure, introduces an excess
of binaries for (roughly) 4000 < a < 20000 AU. Note how the excess of binaries in that range
has been halved by the splitting procedure, dropping from a maximum of ≈ 370 to ≈ 170. For
the high-density model, as the spontaneous population is shifted towards short separation, their
inclusion is easier and they only introduce a slight bump in the distribution at a ∼ 2000 AU.

For larger separations, the very wide binaries are not identified by the density threshold
algorithm and are dropped from consideration. Since none of them are likely to survive for a
long period of time given the density of the system, this will have no bearing on our conclusions.

While Hubble-Lemâıtre fragmentation provides a self-consistent phase space distribution for
a substructured model, the population completion presented here preserves this consistency
by taking into account naturally occurring multiple systems, while allowing the user to inject
a realistic binary population. In the next chapter, we use the resulting completed systems as
initial conditions to investigate the evolution of a binary population during the violent relaxation
of a clumpy configuration.
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(a) Low-density model (b) High-density model

Figure 6.9: Distributions of binary separations for the completion of a population in low and
high density models. Spontaneous binaries before splitting are shown in short-dashed red, the
population injected in the system in long-dashed blue and the resulting measured distribution in
the completed system in green. The observational separation distribution from Raghavan et al.
(2010) is shown as a grey area, taking into account Poisson dispersion.
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CHAPTER 7

The evolution of the binary

population

In this chapter, the fragmented HL models with a completed binary population from the previous
chapter are left to evolve. The binary population is monitored to evaluate the influences of
membership and density on the processing of binaries in a substructured configuration. In the
end of the simulation, we detect very short and very wide binaries; we detail their dynamical
origins and the possible implications for binary formation.
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A gravitationally bound system will resist external tidal forces if it sits within its Roche radius
(Binney & Tremaine 2008, §8; Renaud, Gieles & Boily 2011). For binary stars, the condition
for boundedness is given by Eq. (6.3) with D = 3 and setting the mean density ρbin over the full
Jacobi volume. Thus the question of how much the mean background density rises and compares
to the mean density of the binary has important consequences for the further evolution of the
binary. The situation is made more complicated if the host’s potential changes rapidly, on the
dynamical time-scale tcr of Eq. (1.5).

Let us first recall the results of the collapse of an homogeneous sphere ofN identical stars. For
this case the sphere collapses by a factor C before it rebounds and evolves towards equilibrium
(Aarseth, Lin & Papaloizou, 1988; Boily, Athanassoula & Kroupa, 2002). The ratio of minimum
radius achieved during collapse to the initial system radius is a 1/3 power-law of N , so C ∝
N−1/3. If the total mass is conserved during the collapse, the mean background density scales
as ρ ∝ C−3 and so reaches a peak value max(ρ) ∝ N . Based on this analysis, one would expect
a strong relation between the system total mass M = Nm and the rate of destruction of binary
stars, especially those of large semi-major axis a, if and when a cluster undergoes a phase of
collapse.
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Figure 7.1: Left panel: spatial distribution of a Hubble-Lemâıtre fragmented model. Right
panel: evolution of the half-mass radius over time. The times labelled as t0 to t3 are the system
configurations used in the present chapter for analysis.

7.1 The models

To investigate this effect of membership on the destruction rate, various simulations were per-
formed: their parameters are summarized in Table 7.1. Runs with N ranging from 1500 to
80000 were sampled in such a way that ensemble-averaging gave roughly the same Poissonian
standard deviations in each case. As in previous chapter, stars were drawn from the L3 IMF
(Maschberger, 2013) with a truncation range of [0.1, 30] M⊙. All models underwent the binary
population completion procedure (see 6.2.3) with the two reference densities 6 pc−3 and 400
pc−3.

The aspect of a 20k stars model with high density, R20h in Tab 7.1, is shown on the left panel
of Fig. 7.1, while the evolution of its half-mass radius over time is shown on the right panel.
Four epochs of interest are shown as red dots: t0, the initial conditions; t1, end of collapse and
before the bounce; t2, just after the bounce and t3 = 30 H.u, when the system reached quasi-
equilibrium. These will be reference epochs throughout this chapter. Physical conversion from
section 6.2.2 gives a total duration of the simulations of 2.3 Myr for the high density clusters
and 18 Myr for the low density ones.

7.2 Results

7.2.1 Total binary fraction

We show on Fig. 7.2 the evolution of the binary fraction in HL fragmented systems as a function
of time. The time when the systems rebounds from the global in-fall, t ≈ 10 units, is marked
with a vertical dotted line on each frame. The binary fraction decays in each case during the
course of evolution, regardless of their membership N or initial density. All systems display
two different regimes of binary destruction, before and after the bounce from global collapse.
Before the bounce, binaries are destroyed at a higher average rate, the more so for the more
massive systems (large N). After the bounce (t > 10) the slopes all flatten out and binaries are
continuously destroyed but at a lower rate. For example, the R80h simulation removes 2.5% of
its binaries per time unit before the collapse; this rate goes down to 0.25% afterwards. Similarly,
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Table 7.1: Summary of simulations. Starting from an HL fragmented configuration, a binary
population was injected to complete the spontaneous binaries, reaching an overall binary fraction
of 0.42. Densities within half-mass radius are shown at t=0 and time of deepest collapse.

Name N Sampling ρh,0
(pc−3)

ρh,max

(pc−3)

R1.5h 1500 40 400 1.7·103
R5h 5000 10 400 4.0·103
R20h 20000 10 400 1.4·104
R80h 80000 1 400 7.1·104
R1.5l 1500 40 6 13
R5l 5000 10 6 79
R20l 20000 10 6 192
R80l 80000 1 6 103

Figure 7.2: Top panels: total binary fraction over time for different cluster memberships. Lower
panels: total number of binaries over time compared to initial number in each system, in per-
centage. The vertical dashed line indicates the time of deepest collapse. Lines shows the values
averaged over all models, the 1-σ dispersions are shown as shaded regions.
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the low-density N = 80k run has 1.7% before the collapse and 0.16 % thereafter.

We interpret these findings as follows. In the first stages of evolution, the rate of binary
destruction is driven by the two-body relaxation in the small clumps of the HL configuration.
To see this, Fig. 7.2, bottom row, graphs the relative fraction of surviving binaries for each
model. The linear slope is virtually identical up to t ≈ 5 units. The internal dynamics of clumps
is independent of the larger system in which they are embedded. As collapse proceeds, larger
N systems develop a deeper global potential well: this is easier to see for t → 10 as the curves
fan out. The range, of about 10%, accrued at t = 10 between runs of different N , is almost
unchanged at the end of the simulations, at t = 30 units. The rate of binary destruction post-
bounce is practically the same for all N , though note that it remains higher for the high-density
calculations (the final count of binaries drops from ≃ 80% at low density, to ≃ 70% at high
density).

There is a clear tendency for the pre- and post-collapse transition to be sharper as N in-
creases. We interpret this in the light of Eqs. (1.5) and (1.6). We note that the N = 1.5k
models are dominated by two-body interactions, the mass-segregation time-scale drops to ∼ 1
time units, and not by the overall collapse motion that drives density upwards, destroying bi-
naries. At the other end of the spectrum, the N = 80k models have a global mass-segregation
time-scale > 30 time units. These models, like all the others, are initially dominated by two-
body interactions in their clumpy substructures. However the later evolution sees the overall
collapse motion take over. It is the imprint of that global in-fall which allows the density to
peak at higher values (cf. Table 7.1) and laminate binaries more efficiently around that time.
Since the re-bound is of short duration, the strong tidal field drops quickly as we shift in the
post-bounce phase.

7.2.2 Binary fraction vs primary mass

To determine whether the evolution affects binaries differently according to their masses, we
show on Figs. 7.3 and 7.4 the binary fraction in relation to the primary mass. Results are shown
at four different times, and for all memberships and densities. The top row of each figure is
the binary fraction fm and the bottom row the percentage of binaries with respect to the initial
distribution. This representation highlights which binaries are the most processed in the system.
The panels for t = t1 and t2 are for times immediately before and after the bounce (cf. Fig. 7.1).
The dynamical evolution within the clumps and during the collapse impacts preferentially light-
primary binaries; binaries with a more massive primary (say, > 5 M⊙) survive better. The
shaded regions show the 1-sigma dispersion. Low-N models exhibit a large dispersion at high
primary mass due to the very low statistics for such binaries. Consistent with Fig 7.2, there
is a trend of enhanced binary destruction with increasing N. Note how the low-N models form
additional high-mass binaries during in-fall, since the binary fraction exceeds 100% at t = t1 and
t2. This is not so for the N = 20k and 80k models, which we interpret as due to the stronger
tidal fields in these models which stops new binaries from forming. It is interesting that despite
the deeper infall achieved by these large-N models, the trend of increased survival with primary
mass is not eradicated: this would have been the case had the external (global) tidal field clearly
dominated the binary destruction. Instead, we find that the strong fields do not erase memory
of the early evolution phase of the clumpy distribution.

The results for the later time t = t3 displayed coincides with the end-time of the simulations.
At that point all models have reached equilibrium and the binaries have been processed dynam-
ically in such a way that the binary fraction decreased monotonically for all primary masses. It
is worth noting that the low-density models (Fig. 7.3) have evolved for a physical time t ≈ 18
Myr, while the high density ones (Fig. 7.4) up to t ≈ 3 Myr only. This may explain the greater
scatter among the different runs for these models (they have more intense tidal fields but have
less time to act on the binaries). We also note that the peak at high primary mass, clearly
visible at t = t2, is still apparent at t = t3, except for the case N = 80k, which is the model
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Figure 7.3: Top panels: the binary fraction in logarithmic bins for the primary masses. The
dotted line is the linear fit to observations shown on Fig. 6.5. Bottom panels: the number of
binaries in each primary mass bin is shown as a percentage of the initial number (t=0). The
horizontal dashed line is 100 per cent. Shaded regions show 1-σ dispersion. The data are from
low density models.

Figure 7.4: Same key as Fig. 7.3. The data are from high density models.
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Figure 7.5: Histograms of semi-major axes for the binary population at four different times and
for four different cluster memberships. The dotted black line shows the distribution of N = 1.5k
models at t = 0 as a reference for the initial distributions. High density models are in the
top row, while low density models are in the bottom row. The reference times are taken from
Fig. 7.1.

with the highest density and the strongest tidal field. We interpret this as indicating that the
wide binaries have had time to be split, while this process is yet incomplete in the other models.
This view is backed up from inspection of the low-density runs at t = t3 on Fig. 7.3, where all
the peaks seen at t = t2 have been flattened save the runs with N = 1.5k. We believe that the
more stochastic low-N runs may have produced more high-mass primary escapers due to their
shallower potential well. These would therefore not be processed collisionally in the final cluster
and survive in isolation.

7.2.3 Semi-major axis distributions

The evolution of the distribution of semi-major axes a in a binary population hinges on its dy-
namical environment. Several analytical and numerical studies (Heggie, 1975; Kroupa, 1995a,b;
Vesperini & Chernoff, 1996; Heggie, Trenti & Hut, 2006; Parker et al., 2009; Parker, Goodwin &
Allison, 2011) have shown that wide, weakly bound binaries are preferentially disrupted, sculpt-
ing the distribution towards tighter, more bound binaries. This evolution is shown on Fig. 7.5
which graphs the distribution histograms as a function of semi-major axis a. The distributions
are plotted for 4 epochs, 4 memberships N and both the values of initial density. The averaged
distribution computed from the models with N = 1.5k at t = 0 is shown as a dotted line and
serves as reference. To ease the comparison between models with different N , all histograms
were normalized to the reference initial profile at t = 0 (e.g., the area under the curve is the
same for all the models).

We first distinguish between high- and low-density models. The overall behaviour of the
models is the same, with a rapid dissolution of large semi-major axis binaries, a ∼ 103 AU or
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Figure 7.6: Top panels: histogram of semi-major axis at four different times for the N = 20k
models. Bottom panels shows the erosion factor, the ratio between the sizes of the initial binary
population and the one at a given time, in each primary mass bin.

more. This takes place prior to the bounce, when t < t1 but is a continued trend from the start of
the computations to the end. As anticipated, high density models (top row on Fig. 7.5) process
the binary population more efficiently, reaching deeper in the short-axis range, down to a ∼ 20
AU, compared to a ∼ 100 AU for the low density models. This can be gauged qualitatively by
the gap that opens up between the dotted line and the histograms.

The system mass (or membership N) has little influence on the evolution of the histograms,
however, as the collapse factor C increases with N , the larger N models process significantly
wider a ∼ 103 AU binaries ; this is true regardless of the initial density (high or low). Note that,
here too, the N = 1.5k models stand out, in the sense that their wide binary population is less
efficiently processed.

Having identified the mean initial density as the main driver for binary population evolu-
tion, we wish to compare the rate of survival of binaries with the analytical approach by Marks,
Kroupa & Oh (2011). These authors introduced an analytic operator acting on a binary popu-
lation to mimic its evolution in a host star cluster, dispensing with N-body simulations. Marks
& Kroupa (2012) used this framework to reproduce the destruction of wide binaries, using the
operator as an “erosion factor” applied to a birth semi-major axis distribution, selectively re-
ducing the number of binaries in each semi-major axis bin (see their Fig. 1 for an illustration of
their approach). The erosion factor is bound (in their case) to the interval [0, 1], and equals one
when all binaries of a given semi-major axis a are retained (zero when they are all destroyed).

The erosion factors arising from our N = 20k simulations for the four reference times are
displayed on Fig. 7.6 (bottom panels). The model with initially high density heats up and
splits binaries of (relatively) shorter semi-major axis during the collapse, and beyond: the most
dramatic phase of evolution between times t0 and t2. During that interval, nearly 80% of binaries
with a > 1000 AU are split. There is comparatively little evolution from t2 to t3, which covers
the remaining half of the run time. The run of the erosion factor with a and its time-evolution
are very similar when comparing the runs of models with high and low initial density. The most
striking difference is the shift of the minimum value of the erosion factor, from a semi-major
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axis a ≈ 3000 AU, to larger axes a ≈ 10000 AU in the case of low density models . The extent
of the shift, a factor of 4, is consistent with the scaling of the mean separations between stars
l ∝ ρ−1/3; we compute for high and low density systems

llow
lhigh

=

(

ρhigh
ρlow

)1/3

=
3

√

400

6
≃ 4. (7.1)

This fact alone implies that the evolution of fragmented mass profiles through a relaxation
phase is driven mostly by stellar encounters. The same conclusion applies for the evolution of the
fractal models of Parker, Goodwin & Allison (2011). The late stages of cluster formation, post-
bounce and nearly in virial equilibrium, compare well with the analytical operator of Marks &
Kroupa (2012). One significant difference that this approach does not factor in is the formation of
wide binaries in the post-bounce phase. The operator may still adequately compute the evolution
of a binary population in a system in global equilibrium. Nevertheless, expanding low-density
volumes and other phenomena related to the virialisation phase appear to be outside the scope
of a cluster-wide binary-processing analytical operator.

7.2.4 Tidal shocks

We noted how larger-N simulations tend to iron out a larger fraction of binaries (see Fig. 7.5).
The weak trend with increasing N implies that both star-star interactions (including multiple
stars) and global tidal forces both boost the heating up and unbinding of binaries. The shift
seen on Fig. 7.4 is small but systematic: from 15% for N = 1.5k, to 25% for N = 80k of all
binary stars are destroyed at the bounce (t ≈ 10 units). To get a better appreciation for the
trend (or lack thereof) with N , let us compute the energy transferred to a binary star by the
tidal field. At the end of the collapse, the stars move on mostly radial orbits at high velocities.
Since they cross a dense region in a short time, we make use of the tidal shock approximation
developed by Spitzer (1958, see also Boily et al. 2004; Binney & Tremaine 2008).

Taking inspiration from the tidal shock suffered by a cluster crossing the galactic disk, we
can get an estimation of tidal heating on a binary crossing the dense center of the system at
the time of deepest collapse. Binney & Tremaine (2008) define the change of specific binding
energy ∆Es of a self-gravitating system of size r, mass µ, crossing a spherical volume of radius
rb and of projected surface density Σ ≈ rbρ at radial velocity Vr, as:

∆Es =
14π2G2Σ2a2

3V 2
r

. (7.2)

We seek out the scaling of this relation with the number of stars N , keeping the system initial
mean density ρ(0) constant. The expectation from the analysis of fragmentation modes is that
the radius at the bounce rb = Ro/N

1/3. The projected density at the bounce therefore scales as
Σ ≈ M/πr2b with the total mass M ∝ N . Ignoring mass loss and the energy dissipated by binary
disruption, we can estimate the magnitude of the square radial velocity V 2

r from the relation

3V 2
r ≈ 2GM

rb
∝ N

N−1/3Ro
. (7.3)

Substituting in (7.2) and replacing r by the semi-major axis a, we find

∆Es =
14πG2(M/πr2b )

2a2

2GM/rb
∝ GM a2

r3b
∝ GM

R3
o

Na2 . (7.4)

The binding energy per unit mass of a binary star is Es = −Gµ/2a. The relative energy
imparted to the binary by the shock is therefore

∆Es

Es
≈ 7πM

µR3
o

a3N . (7.5)
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We chose to keep the initial mean system density constant, so that the ratio M/(µR3
o) is

independent of N . The final scaling reads

∆Es

Es
∝ a3 N . (7.6)

An increase in membership N implies more significant heating of the binary star. If we
set ∆Es/Es = 1, then an increase of N → 10 × N should have the same relative effect on a
binary of semi-major axis a → a/101/3 ≈ a/2.15. By implication, the “processing limit” of the
distributions seen on Fig. 7.5 should shift from a ≈ 40 AU to a ≈ 40/3.76 = 10.64 AU, as we
work up from N = 1.5k to N = 80k calculations. This shift is not seen on the figure. What
we see, on the other hand, is that large-N systems tend to deplete more efficiently the wide
binaries, so that at the same stage of evolution, the richer systems have a binary distribution
that falls off more quickly at large separations. We attribute the weak dependence on N to the
approximation of a static background mass distribution1. In reality, the whole structure moves
on the same short dynamical time-scale of Eq. (1.5) and hence the effective surface density Σ
is much reduced if the system as a whole begins to re-expand. We suspected that the choice
of fixed initial density may be the reason for the undetectable shift of the processing limit on
Fig. 7.5. Our choice of initial conditions imply that the system size Ro ∝ M1/3; had we chosen
instead to use an empirical relation such as Ro ∝ M1/5 for stellar clusters (Larsen, 2004), then
we would have found a scaling of ∆Es/Es ∝ a3N7/5. The same rise in N as before would have
produced a shift from ≈ 40 AU to 6.5 AU in the peak of the distribution, and this is still too
large to go undetected.

7.3 Extreme tight and wide binaries

As mentioned in section 6.2.2, Bate (2012) has found in his hydrodynamical simulations several
examples of binaries reducing their separation over time through stellar encounters, from ∼ 10
AU down to . 0.5 AU. Tighter systems were hindered by numerical resolution issues. The
regularised treatment of close encounters (which allows to integrate up to machine precision) of
the code NBODY6 means that the same collisional process will be at play in the calculations that
we have performed. Since no binaries with semi-major axis a shorter than 1 AU was inserted
in the initial conditions, we focus first on the statistics of binaries that evolved to a < 1 AU.
In the second part of this section, we will explore the formation and the evolution of very wide
(a > 104 AU) binaries, many of which end up loosely bound to the stellar cluster as a whole.

7.3.1 Tight binaries

Several binaries with a < 1 AU were detected at the end of the low-density simulations. By
comparison, almost none developed in the high-density runs. Their properties are summarised
in the left panels of both Fig. 7.7a and 7.7b. The data are taken from N = 20k runs but
similar statistics were obtained for the other setups. The top row shows the binary mass as a
function of semi-major axis, while the bottom row on that figure graphs the distance of their
barycentre to the center of the cluster. Open circles denote binaries that already existed at t=0,
and became tighter over time, while filled circles are new binaries that formed in the course of
the simulation. Inspection of these new, tight binaries shows that both of their components were
part of binaries originally inserted in the system. Thus all new tight binaries shown on Fig. 7.7a
are the results of strong binary-binary interactions leading to splitting or exchange. (None of
the original binaries that survived to the end of the simulation had a < 1/2 AU.)

The statistics of these events should be compared with expectations based on estimated
collision rates. The time-scale for direct collisions between particles in a self-gravitating system

1The original treatment by Spitzer fixed a thin (vertically mixed) disc crossed by a stellar cluster at high speed.
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(a) R20l, low density models.

(b) R20h, high density models.

Figure 7.7: Left panels: Total binary mass (top) and distance to center of the cluster (bottom)
versus a for binaries tighter than 1AU at the end of the simulation. Right panels: same layout
for binaries wider than 104AU. The greyed area in the top panels shows the 90% probability
range of a binary total mass from random pairing given the present IMF. The red dashed line
in the top left panel shows the relation for constant v2∞σcoll ≡ σ0; it is bounded by two dotted
curves that have 10σ0 (above) and 0.1σ0 (below). The horizontal dotted line in the bottom panel
indicates the boundary between the ejecta (distance to center > 10 pc or 2.8 pc depending on
density) and the central system. Open circles are binaries which already existed at t=0. The
data are from R20l for (a) and R20h for (b).
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depends on the degree of gravitational focusing of the colliding bodies (Binney & Tremaine 2008,
section 7.5.8, Eq. 7.195a). This is given quantitatively by the Safronov number

Θ =
v2⋆
4σ2

=
GM

4σ2a
, (7.7)

where we have replaced the surface escape velocity v⋆ of a single star by the unbinding velocity
v2 = GM/a of a binary of total mass M and separation a. To obtain an estimate of Θ, we
looked at typical clump parameters from the R20l models: an average membership of Nc ∼ 50
stars and mean half-mass radius rh ∼ 0.2 pc yield an internal velocity dispersion (subtracting
the binaries internal motion) σ ∼ 0.5 km.s−1. Setting a binary mass M > 2M⊙ and semi-major
axis a = 1 AU yields Θ ≃ 3700 ≫ 1. The collisional rate τ−1

coll for binary disruption is then:

τ−1
coll = 16

√
πnσa2Θ

= 8× 10−4 Myr−1

(

n

700pc−3

)(

0.5km.s−1

σ

)

( a

AU

)

(

M

2M⊙

)

(7.8)

with n the stellar number density ∼ 700 pc−3. This rough estimate of the collision rate should
be interpreted as a lower limit because in practice a > 1 AU and many binaries have a total
mass > 2 M⊙. We find τ−1

coll ∼ 8 × 10−4 collisions per clump per Myr. Since on average ≃ 150
clumps formed in each R20l run, and assuming that the collision rate is constant throughout
the 6 Myr in-fall time, then we expect of order O(1) hard encounters per 104 stars. If most of
these interactions lead to the disruption of the binaries, some others will result in exchange and
tighter components.

These statistics are in good agreement with the identification in the ten N = 20k runs of
a total of 24 binaries with a < 0.6 AU, for an average of 2.4/5000 ≈ 0.05% of all binary stars
(fb ≈ 1/3 at t = 0). The very tight binaries each have a combined mass exceeding 2M⊙ with a
low mass ratio q, ranging from 0.01 up to 0.2. It is important to mention that main sequence
binary stars with a separation a . 0.02 AU would be contact binaries when both members
are solar-type or more massive stars. Clearly the evolution of such objects (and in fact their
formation process) calls for hydrodynamical effects that were not included in our study. It is
therefore remarkable that contact binaries should form strictly through gravitational scattering
on such short timescales.

These results apply to runs with initial mean number density of 6/pc3. The same analysis
carried out for the higher density models give a different outcome. For these models, the initial
density is larger by a factor ∼ 60 and the velocity dispersion by a factor ∼ 2, for all stars. From
Eq. (7.8), we find a collisional rate ∼ 30 times higher than previously. If direct collisions were
the main channel for the formation of tight binaries, the number of events should increase in
the same proportions. However, inspection of the simulations yielded only 4 tight binaries, each
with a semi-major axis a & 0.1 AU, see Fig. 7.7b. Thus the rate of formation of tight binaries
drops to 0.4 per 5000 binaries, or 0.008%, a six-fold decrease.

We argue that two factors hinder the formation of these objects in high density environment.
First, Geller & Leigh (2015) pointed out that exchange encounters between single stars and
binaries are not instantaneous (see also Hut & Bahcall 1983). The process can be perturbed
by other stars, so modifying the outcome of the collisions. This is also true for binary-binary
collisions: the time series of (tight) exchange product binary stars and that of their parent pairs
are shown in Fig. 7.8. From these twenty systems, only two can be said to be the product of
“clean” exchanges, most of the others are part of complex small-N hierarchical systems that last
for a non-negligible time compared to the evolution of the whole system. This translate as a
flickering of the detection, as the algorithm alternatively detect the parent systems or the tight
product. This is due to density ratios being extremely variable in small-N systems. Note the
bottom-left pair, the only pre-existing binary in the set, shown as an empty circle in Fig.7.7a.
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Figure 7.8: Evolution of semi-major axis over time for the 20 tight binaries (a < 0.8AU) in
the R20l models. For each pair, the tight binary is shown in red, the parent binary which
provided the primary in blue and the one that provided the secondary in green. The systems
are sorted from left to right and top to bottom by increasing final semi-major axis for the tight
pair. Numbers in legend are components mass in M⊙ for each binary.
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It appears that the splitting procedure created some of these small-N complex systems, as 8 of
these 19 exchange binaries are either immediately detected, with their parents being redetected
later, either showing detection flickering at t=0.

It is reasonable to expect that more hierarchical systems will develop in a higher-density
environment (involving more stars) and so the exchange process may be rendered even more
difficult with the enhanced rate of perturbations.

Secondly, the binary exchange binary cross-section is sensitive to the impact velocity. The
lack of a detailed theoretical framework on binary-binary collisions makes it difficult to pin down
statistical expectations with precision. In the case of a disruptive encounter between a binary
and a single star, extensive analytical work by Mikkola (1983, 1984a,b) and numerical scattering
experiments (e.g., Heggie, Hut & McMillan 1996; Fregeau et al. 2004) lead to a rough estimate
of the effective scattering cross section σcoll in relation to the mass and separation of identical
binaries:

σcoll ∝
mta

v2∞
. (7.9)

In this equation, σcoll is the effective collisional cross-section for disruption in binary-single
interactions, and v∞ is the relative velocity at infinity (prior to the collision) ≈ the clump
velocity dispersion. Taking v∞ ≈ σ = constant independent of mass and binary separation, we
may use (7.9) to relate binary mass M to separation a and cross-section σcoll. Hut & Bahcall
(1983) and Hut (1983) gave analytical expressions for the exchange cross sections, which scales
as the above scattering cross-section at low velocities, but becomes steeper for higher velocities:

σex ∝ mta

v6∞
. (7.10)

As the encounter velocity increases, it becomes harder and harder to perform a successful
exchange. The two initial mean densities that we picked may therefore cover the transition from
low- to high-velocity regimes, and reduce the number of tight binaries created to just a handful.

Going back to Fig. 7.7, we plot the relation v2∞σcoll ≡ σ0 of (7.9) as straight red lines on
both top-left panels. Two dashed curves bracket a curve in full type, each with a value of
σcoll differing by a multiplicative factor of ten (increasing from the lower curve, up). The large
separations between the curves and the clustering of data points along the full curve indicate
how a single value of σ0 effectively cuts through the diagramme in two well-delimited regions.
Thus the trend of binary mass increasing as M ∝ 1/a for the tightest binaries is consistent with
a constant product of σ0 = v2∞σcoll at the time of formation.

7.3.2 Wide binaries

The formation of wide ‘spontaneous’ binaries during the HL fragmentation process naturally
leads one to expect that more wide binaries will form in the post-collapse evolution of the
system, when expanding streams of stars emerge from the compact bounce to form a tenuous
halo. We already noted how the erosion factor on Fig. 7.6 shoots up for large semi-major axes,
exceeding unity at the later stages of evolution in both high- and low density calculations.
This implies either that a sub-set of wide binaries got softer over time, or that new binaries of
separation > 104 AU formed during the virialisation phase. If we compare the numbers for axes
a > 5.104AU ≃ 0.25 pc and for all ten N = 20k models, then there were 120 binaries more
in this range at the end of the simulations, than right after the bounce, at time t = t2. Of
those 120, some 40 new binaries formed in the expanding volume, while 80 are soft binaries that
became softer as a result of collisional evolution. While these numbers of very wide binaries are
very low indeed, a ratio of 120 per 10× 20k stars (0.06%), they are still significant because they
would be associated with neighbouring star-forming regions, and may yet register as correlations
in phase-space coordinates.

101



Figure 7.9: Evolution of individual binaries semi-major axis and distance to center over time
in the low density 20k particles models. The vertical dashed line marks the moment of deepest
collapse t ≃ (t1 + t2)/2.
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The right-hand panels of Fig. 7.7 graph the basic properties of this sub-set of extreme wide
binaries. We selected all binaries with separations exceeding 104 AU, the largest semi-major
axes that were found in the initial conditions. Hence all data points shown here are the result
of some evolutionary mechanism. The horizontal dotted line on Fig. 7.7a marks a distance of
10 pc and the one on Fig. 7.7b, 2.8 pc as the separation between the central equilibrium cluster
and the volume where weakly bound ejecta orbit. Close to ≈ 60% of wide binaries are escaping
the main cluster or are very weakly bound to it. Therefore most of them would be lost to the
tidal field in a real cluster environment.

We stress that the semi-major axis a of an individual binary star is not a monotonous
function of time. Fig. 7.9 graphs the evolution of six typical perturbed binaries, 3 tight and
3 wide binaries. Tight binaries mostly suffer strong interactions early on, before the collapse,
inside a clump. This would most likely take place at the centre of the clump, where the density
is higher. What happens next is hard to predict, as the pair can then be ejected from the
system by this interaction (e.g. the first binary, top panel); or sink at the center of the cluster
and remain there (second binary, middle frame); or follow the bulk of the ejecta, falling once
through the core and then leaving the system without further strong interactions (third binary,
bottom row).

Most wide binaries experience several strong interactions. Many of these take place around
the time of the collapse, as they orbit through the dense core of the cluster. These repeated
strong interactions will lead to heating and result in binary splitting. That is also why no
(spontaneous) wide binary was found in the dense clump cores of the initial HL configuration;
instead, they form in the low-density inter-clump space. Practically all wide binaries had a first
strong interaction during the densest phase of the in-fall (t1 < t < t2).

We remark that the evolution shown in Fig 7.9 is representative of most binaries undergoing
changes in parameter during the simulation. These changes are fully consistent with the well-
known Heggie law (Heggie, 1975; Hills, 1975): hard binaries get harder and soft binaries get
softer, with hard and soft related to the ratio between the binary internal energy and the mean
velocity dispersion in the cluster.

7.4 Concluding remarks

In this chapter, we have shown with numerical experiment that the dissolution of binary stars
proceeds at a much higher rate in initially clumpy configurations. The two-body relaxation time
of clumps of typical membership Nc = 50 is about six times shorter than the global free-fall time
of the sub-virial star-forming volume. As a result, binaries are destroyed at a rate ≈ 10 times
higher in clumps than in the later stages of evolution, when clumps have merged and a cluster
of stars achieves dynamical equilibrium. We have also highlighted that the transition between
clumpy and equilibrium states is much sharper when N & 104: in such rich star forming regions,
the binary dissolution rate is well approximated with a linear relation in both the regimes.
When N . 104, we find a more gradual transition (Fig. 7.2). These findings compare well with
those from, e.g., Parker, Goodwin & Allison (2011) based on fractal models, where the mass
segregation by collisional evolution was also found to be very significant early-on.

We presented in section 7.2.4 an argument suggesting that the deeper gravitational potentials
achieved through in-fall by larger-N models should lead to the destruction of tighter binaries
and hence a shift in the break of the distribution of separations (see Fig. 7.5). The net effect
of increasing N from 1 500 to 80 000, however, results mainly in a factor of ≈ 2 increase in the
fraction of wide (a > 300 AU) binaries being destroyed. Tighter binaries are largely unaffected.
In particular, the peak in the initial distribution of separations at a ≃ 50 AU is essentially
unchanged. Consequently, the slope of the separation distribution for wide binaries steepens
with N (i.e., the Gaussian shape is more skewed in richer models) in the early stages of the
life of a cluster. This effect is offset slightly by the formation of new very wide binaries in the
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post-collapse evolution, when several stars move on radial, weakly-bond orbits (see also Moeckel
& Clarke 2011; Kouwenhoven et al. 2010). We have found the formation of wide a > 104 AU
binaries to be statistically very similar regardless of the initial system density or membership,
when set at the same evolutionary stage. One important difference is the higher speed achieved
by outflowing wide binaries formed in denser systems. Runs with initial mean number density
of 6/pc3 developed outflows of velocities ≈ 2 to 3 km/s ; denser runs with 400/pc3 reached
velocities twice as large. Proper motion studies may pick up this bulk motion. In terms of
distance D, proper motion p and time-line ∆tp, one finds a minimal velocity for detection vp
such that

vp & 10−3 p

1µ′′

D

100pc

yr

∆tp
km/s . (7.11)

The GAIA spacecraft’s resolution reaches down to ≈ 26 micro-arcseconds at magnitude 15
(V-band), with a five-year time-line and could detect such outflows out to a distance of ∼ 600
pc. Well-known star forming regions such as the Orion nebula or ρ-Ophiucus are possible targets
for such outflows. Brighter, young stars should allow a more precise determination of vp and
possibly set new constraints on the formation history of rich open clusters.

We also noted that very tight binaries (a ∼ 0.01 AU) formed as a result of binary-binary
exchange collisions, when a new binary is formed as a result of the collision between two existing
ones. The process begins in the clumps at the start, and carries on throughout, the duration
of the runs. Statistically we found that ≈ 0.05% of all binaries end up with a semi-major axis
a < 0.6 AU. While these are low-number statistics, these events are important because they
concern the most massive stars of the models, and their rapid formation (on a timescale of
∼ 1 Myr) has direct implication for the formation by merger of very massive stars / contact
binaries. The shortest-axis system that we found had a ≃ 0.01 AU and a total mass of 18 M⊙

(see Fig. 7.7a). We observed similar trends in all the simulations, but noted that virtually no
such tight binaries form in high-density runs. One important factor contributing to this situation
is the increased collision velocities and (therefore) reduced effective interaction cross-sections in
denser regions (the Safronov number Θ drops by a factor ≈ 4). Another possibility comes from
inspection of the origins of tight binaries. Most of these systems were born in complex small-N
hierarchical systems. The very formation of the tight binaries may involve not just a pair of
binaries, but a more complex situation involving a small number of stars (see e.g.Leigh & Geller
2013; Geller & Leigh 2015). We feel unable to disentangle the web of possible formation channels
with confidence given the limited statistics of our sample of simulations.

All calculations reported here were performed with a stellar IMF truncated at 30M⊙ to avoid
issues with the time-evolution of the stars. It will be important in future investigations of that
formation scenario to include a full stretch of the stellar IMF and perform the time-evolution of
the stars simultaneously with the dynamics.
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Part III

Perspectives and conclusions
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CHAPTER 8

Perspectives

In this thesis, I introduced the Hubble-Lemâıtre fragmentation model and applied it to the
dynamical evolution of substructured star clusters, also exploring the fate of their binary pop-
ulation. Interesting results have been obtained, though some assumptions were made. In this
chapter, I review two of these assumptions: the isolated nature of the cluster and the absence of
stellar evolution. I also present a method to obtain elongated fragmented models, and describe
the outline of a comparison to observations. Finally I discuss the inclusion of hydrodynamical
effects in the model.
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8.1 Tidal field

In all our simulations, it was assumed the clusters were in isolation and no tidal field was
applied. This allowed us to study the mechanisms of violent relaxation and the erasure of
substructure. However, in reality, star forming regions are shaped by the gravitational influence
of their surroundings. We mentioned in section 3.4 that the galactic tidal field could prevent
the collapse of the Hubble-Lemâıtre fragmented configuration and scatter the clumps, injecting
them in the galactic cluster mass function. The fate of these clumps is uncertain, as some
will disperse through two-body interactions, and other will merge, depending on the geometry
imposed by the tidal field.

The tidal shear caused by differential rotation is important on large enough scales. Binney &
Tremaine (2008) give the Jacobi radius of a cluster on a circular orbit at the solar galactocentric
radius:

rj =

(

Gm

4Ω0A0

) 1

3

= 52 pc

(

m

105 M⊙

Ω0

A0

) 1

3

(

220km.s−1
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R0

8 kpc

)

2

3

, (8.1)

with m the cluster mass, Ω0 the angular galactic rotation, A0 an Oort constant and vc the
tangential velocity at the galactocentric radius R0. Substructures spanning more than 50 pc in
a regular galactic environment are expected to be strongly affected by tidal shear, modifying
the merging rate.

Numerical simulations will enable an exploration of the resulting clump mass function, which
would be more directly comparable to the cluster mass function in the Galaxy. NBODY6 has
a built-in galactic tidal field module, which allows the user to model the tidal forces associated
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Figure 8.1: Cluster formation in a hydrodynamical simulation of the Antennaes galaxies. The
colormap indicates gas densities and newly formed stars are shown as black dots. Two epochs are
shown, outlining the erasure of substructure. The figure was extracted from Renaud, Bournaud
& Duc (2015)

with the cluster orbiting a complex galactic potential, including a Miyamoto & Nagai (1975)
potential, see Aarseth (2003b) for details. The tidal shock from a passing molecular cloud is
also an option in NBODY6.

It is possible to go further in the inclusion of realistic tidal fields. Renaud, Gieles & Boily
(2011) introduced a new version of NBODY6, Nbody6tt, that can take an arbitrary tidal ten-
sor as an input and apply it to the evolution of a star cluster. Specifically, Nbody6tt enables
the application to a cluster of a tidal environment extracted from a large-scale galactic simu-
lation to obtain a time-dependant, self-consistent tidal field. The influence of different galactic
environment, such as tidal arms, on the cluster can then be evaluated.

For example, Renaud, Bournaud & Duc (2015) reported the formation of massive clusters
in their hydrodynamical simulation of a galaxy merger analog to the Antennae galaxies. Fig 8.1
show the merging of YMC fragments on 100 pc scales. This kind of event could be reproduced
in Nbody6tt with a Hubble-Lemâıtre configuration and the tidal data from the simulation.
Given the complex tidal fields in this kind of environment, the evolution of YMCs starting from
substructured initial conditions could shed light of their formation and disruption processes,
among which the tidal shear mentioned earlier.

8.2 Stellar evolution

No stellar evolution effects were included in our simulations. While choosing our maximum
stellar masses (tables 3.1 and 7.1) and the physical duration of our simulations (sections 4.1.2
and 7.1), we assumed stellar evolution would not significantly impact the global dynamical
evolution of the substructured fragmented configurations. However, these mass ranges do not
reflect the extent of the stellar mass spectrum observed in some young clusters; an often cited
upper limit on stellar masses is 150 M⊙ (Oey & Clarke, 2005).

As we shown in chapter 3, these stars would seed the fragmentation of the cluster and shape
the clump mass function. Would their subsequent evolution affect the internal dynamics of
clumps in our models ? To answer this, we turn to stellar models. Fig 8.2a shows the time
needed for a star to reach the Giant Branch, the main-sequence lifetime, as a function of its
mass. This analytical model from Hurley, Pols & Tout (2000) reaches up to ∼ 60 M⊙, which
gives a main-sequence lifetime of 6 Myr, while in our least dense models, with an initial stellar
density of 6 stars/pc−3, the clumps take 6 Myr to merge and erase the substructure.
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(a) Time to reach the giant branch vs stellar mass. (b) Mass loss for massive stars.

Figure 8.2: (a) Time taken to reach the Base of the Giant Branch (BGB) as a function of initial
stellar mass, for two metallicities, Z = 0.0001 and Z = 0.03. The figure was extracted from
Hurley, Pols & Tout (2000). (b) Evolution of mass over time for several massive stars, based
on the Geneva stellar model (Schaller et al., 1992). The figure was extracted from Weidner &
Kroupa (2006).

However, if we include the tidal fields from last section, the clumps might survive far longer,
and the death of these massive stars could have a significant impact on their structures, their
mass segregation, and on the overall clump mass function.

Moreover, more massive stars than 60 M⊙ are observed in clusters, and the lifetime alone
does not reflect the mass-loss these stars endure throughout their life. Fig 8.2b shows the
evolution of mass for several massive stars, 50, 65, 85 and 120 M⊙, from the Geneva stellar
model (Schaller et al., 1992). These stars not only disappear in less than 4 to 5 Myr, they also
lose a non-negligible portion of their mass before their death.

Throughout this thesis, we assumed stellar evolution would not affect the dynamics of our
simulated clusters. For isolated systems, and for the densities and mass ranges we chose, this is
mostly true. Nevertheless, as we include tidal fields and an extended mass spectrum to reproduce
observed objects, mass-loss and other evolutionary effects need to be taken into account. This
is especially true for binary evolution. Mass loss would affect the binary parameters, and some
binaries found in our systems have short enough separations to be contact binaries, had stellar
radii and evolution be included. These objects may be important for the formation of blue
stragglers or black holes, as they speed up stellar evolution.

NBODY6 has a built-in stellar evolution module based on the analytical model by Hurley,
Pols & Tout (2000), including wind-driven mass loss, radii evolution, supernova event and stellar
remnants. It was not used in this work for simplicity, but should be used for further research.

8.3 Anisotropic expansion

The Hubble-Lemâıtre expansion we used throughout this thesis was isotropic, the velocity field
was expressed with v = H0r with H0 a scalar value. As a result, the fragmented configurations
are roughly spherical and the net systemic angular momentum is null. This is a key difference
between the method we have developed and the fractal approach of Goodwin & Whitworth
(2004). Angular momentum may be significant in young clusters such as R136 (Hénault-Brunet
et al., 2012). In a fractal model, the way the velocity field is built leaves a residual, global
angular momentum whereas the Hubble-Lemâıtre approach starts off with strictly zero angular
momentum.
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A net angular momentum could be introduced in a Hubble model, for instance by setting

v = Hor+Ω× r (8.2)

with Ω a chosen angular velocity. One can actually go further and write in matrix form

v = Ĥr =





Hx,x Hx,y Hx,z

Hy,x Hy,y Hy,z

Hz,x Hz,y Hz,z



 r, (8.3)

with Ĥ now a 3×3 matrix, where the off-diagonal elements account for rotation and the elements
on the diagonal Hii control the three dimensional expansion. In this study, we have set Hij,i 6=j = 0
and Hii = Ho otherwise. It is then a simple matter to study the fragmentation along a filament
by setting, for example, Hxx = Hyy < Hzz.

For example, to favor fragmentation along the z-axis and introduce a rotation along the same
axis, the matrix can take the form

v =





0.2 + cos θ − sin θ 0
sin θ 0.2 + cos θ 0
0 0 1.7



 r, (8.4)

with θ setting the orientation and strength of the rotation. We set θ = π
4 and show the evo-

lution of the resulting system with N=3000 on Fig 8.3a. We obtain an elongated substructured
configuration, that is comparable to the observed structure of, e.g., the Carina star forming
region as observed in the MYStIX survey (Kuhn et al., 2014) shown on Fig 8.3b.

8.4 Mock observations

Another path of research with the Hubble-Lemâıtre models is the generation of mock observa-
tions to investigate completeness effects on the observed morphology of young clusters. In this
section we demonstrate a proof of concept of the method.

Observed mass segregation in low-density star-forming regions

We mentioned in the introduction that Bressert et al. (2010) argue for a star formation pro-
ceeding from a continuous spatial distribution, instead of distinct ”isolated” and ”clustered”
formation modes. The authors found a stellar surface density distribution for YSOs to be log-
normal, peaked around 22 stars/pc−2. High density young clusters would be the result of the
dynamical evolution we described in this thesis, with local low-density clumps and overdensities
merging and populating the high density tail of the observed distribution.

While there seems not to be a clear distinction between isolated and clustered star-formation,
the dynamical processes at play are expected to be different, as low density imply a low crossing
times. Thus stars forming in low density clumps should not be expected to undergo significant
dynamical evolution, and their characteristics should impact the outcome of their mergers.

Kirk & Myers (2011) adressed this issue by investigating the distribution of Young Stellar
Objects in low-density star forming regions, especially their degree of mass segregation. Their
target objects, among which IC 348 and Chal I, are substructured and show multiple stellar
clumps. To measure mass-segregation in such spatial distributions, they used the Minimum
Spanning Tree method to isolate clumps and evaluate their individual mass segregation.

They found some mass segregation, often limited to to the most massive star. However,
it is important to note that such structure analysis is very sensitive to completeness. The
most massive stars are the most luminous and in case of mass segregation, sit in the center
of clumps. Including lighter, fainter and more spread out stars could alter the global spatial
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(a) Anisotropic Hubble-Lemâıtre expansion.

(b) Stellar density in Carina.

Figure 8.3: (a) Evolution of an anisotropic Hubble-Lemâıtre model. The expansion was favoured
along z and a rotation around the same axis was introduced. (b) Stellar density in the young
Carina cluster; the colorbar is in stars/pc3. The figure was extracted from Kuhn et al. (2014).
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distribution, change the spanning tree and potentially connect clumps, modifying the mass
segregation measures. This problem could be worsen by the fact that the dust in the galaxy is
substructured, which could also influence the observed objects close to the detection limit.

Their objects are close enough (∼200 pc) for this not to be a significant problem, but it could
be for more distant objects. We wish to demonstrate how to use our naturally mass-segregated
and substructured model to generate mock observations and assess the influence of completeness
on the structure analysis of these objects. To do so, we will reproduce a model similar to IC
348, attribute luminosities to the stars and take dust extinction into account.

Making our own IC 348 and turning on our stars

We focus on IC 348 and reproduce a similar cluster. We first perform a Hubble-Lemâıtre ex-
pansion with N=400, the estimated membership of IC 348. As seen on Fig 8.5, The structure is
quite irregular compared to most of the roughly spherical models we shown in this thesis, this
is due to a stronger fragmentation caused by the low number of stars.

To attribute luminosities to these stars, we use the stellar evolution code MESA (Paxton
et al., 2011), a detailed suite of simulation tools able to model a star from protostar to white
dwarf. Given the young age of IC 348, we are mainly interested in the pre-main-sequence and
early main-sequence luminosities. We fix the age to 3 Myr, as the results appear weakly affected
by age dispersion. The code ouputs bolometric luminosities, that we can convert to apparent
bolometric magnitude mbol through

mbol = 4.74− 2.5 log

(

Lbol

L⊙

)

− 2.5 log

(

d

10 pc

)

. (8.5)

We convert these bolometric magnitude to H band magnitudes with a script, Starflux.
Starflux takes the bolometric luminosity from the tables of Hurley, Pols & Tout (2000) and
computes bolometric corrections based on the PEGASE stellar library.

We consider two different distances of 300 pc (the current estimate for IC 348) and 1 kpc to
evaluate the effects of distance with a fixed detection limit.

Dust extinction

Finally, we take dust extinction into account with the work of Green et al. (2015). The authors
gathered PAN-STARRS 1 and 2MASS data to obtain a 3D dust extinction map in the Galaxy
covering 75% of the sky. The database is downloadable through their website, which also accepts
custom queries to obtain the color excess EB−V for any user-requested coordinates and distance.

Niederkorn (2016) built a software to obtain extinction map from the user input of coordinate
range, distance and spatial resolution. The software automatically handles the query process to
get each extinction pixel. It also converts the color excess EB−V to the H-band extinction AH

through the relation

AH =
EB−V

AB/AV

AH/AV
− 1

AH/AV

, (8.6)

in which the ratios AB/AV and AH/AV are based on the correlations observed by Cardelli,
Clayton & Mathis (1989).

We select a region of the sky with longitude spanning from 25 to 40 and latitude from 0
to 15, as a 30×30 pixels map. We show on Fig 8.4 the two extinction maps obtained from the
map of Green et al. (2015) and Niederkorn’s script. They are, as mentioned earlier, heavily
substructured1. We are now equiped to generate mock observations of a young substructured
star clusters, including dust extinction. We take our Hubble-Lemâıtre N=400 model with the

1The dust distribution in the galaxy can in fact be considered to be fractal-like, and the scale of the window
we select have little bearing on the distribution itself.
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Figure 8.4: Extinction map in H band obtained from our script and Green et al. (2015). Left
panel shows the extinction at 300 pc and right panel at 1 kpc. The red square shows the zoomed
in map we applied to our models.

appropriate H magnitudes and apply the extinction map within the red square of Fig 8.4, chosen
to maximize the extinction for this proof of concept.

Observed structure

We show on Fig 8.5 the result for 3 detection limits in H magnitude: 18, 19, 20. These were
chosen to illustrate the changes underwent by the morphology as we detect more and more stars.
Left panels show the stars with a magnitude below the limit for a cluster at 300 pc (blue squares)
and 1 kpc (red circles). Any star detected at 1 kpc is also detected at 300 pc. Right panels
show the normalized cumulative distribution of the edge lengths in the Minimum Spanning Tree
computed from the corresponding configuration (similar to Fig 3.4b). The x-axis stops at 1.5 to
better visualize the turning point, as the distributions are normalized, they both reach 1.

As the system is mass-segregated, less luminous lighter stars are more spread out in the
system. As the dust or the distance make their magnitude go over the detection limit, the
cluster gets clumpier, and the cumulated edge distribution gets shallower.

This kind of analysis could be done on wider scale, with various cluster membership, density,
ages or morphologies (see anisotropic expansion earlier), and would bring an interesting view
of the influence of mass segregation on observed morphologies. Hubble-Lemâıtre models are
“naturally” mass-segregated, meaning the most massive stars are not automatically at the heart
of clumps. This brings a variability hard to reproduce with artificially segregated models.

8.5 Hydrodynamical effects

For now the Hubble-Lemâıtre expansion is a gas-less process, producing pure N-body initial
conditions. Though several observations do show a lot of substructures in the stellar distribution
in star forming regions, they also show substructures in the gas from which these stars emerge.
Rathborne et al. (2015) report ALMA data of the molecular cloud G0.253+0.016, which they
show is on the verge of undergoing a burst of star formation. The low sound speed in the ∼ 10K
gas implies that the proto-stars will condense from the gas and be distributed spatially in a
pattern of filaments similar to what is seen in the gas. In the same vein, deep IR observations
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Figure 8.5: Left panels: spatial distribution of stars in our “fake” IC 348 cluster that are detected
with the specified detection limit in H band. Blue stars are detected at 300pc while red stars are
detected at 1kpc. Right panels: normalized cumulative distribution of the MST edge lengths,
the colors match the legend on the left, the 1kpc distribution is lower and shallower.
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of ρ-Ophiucus by André et al. (2007) reveal pre-stellar clumps of cold gas with low inter-clump
velocity dispersion, of the order of ∼ 1 km.s−1, also making a case for in-situ star formation.
Strong interactions between stars would still impact on the global dynamics but only during the
final stages of their formation (binarity, masses of circum-stellar discs).

Finally, the In-Sync survey of Foster et al. (2015) published APOGEE spectroscopic obser-
vations of NGC 1333, a young embedded nearby open star cluster ( ∼ 250 pc; total mass of gas
and stars ∼ 103M⊙). The < 3 Myr-old main sequence stars in NGC 1333 have a 1d velocity
dispersion ∼ 0.8 km/s which matches the expected virial dispersion given the radial mass profile.
The stars are surrounded by dense, cool gaseous cores of low (sub-virial) velocity dispersions.
Inspection of the spatial distribution of both the stars and the gaseous clumps shows them to be
highly substructured (see their Fig. 1). There is an obvious challenge here, discussed at length
by Foster et al., to explain why gas-clumps and stars should follow such remarkably different
kinematics.

The Hubble-Lemâıtre model could be used to address the transition from embedded clusters
to gas-free stellar cores. This would require the addition of a substantial amount of gas in the
system. The details of the procedure are yet to be formulated, as the inclusion of a gaseous
component to the expansion is not straightforward, but this is a promising way to explore closer
ties with observations of young star forming regions.
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CHAPTER 9

Conclusions

The objective of this thesis was to find a way to study the dynamical evolution of young substruc-
tured star clusters without expensive hydrodynamical calculations and in the most consistent
way possible. To do so, I developped the Hubble-Lemâıtre expansion method. By letting massive
stars attract others to build overdensities, the method produces a self-consistent substructured
configuration, with relaxed clumps. Comparison of the clumps to observations and simulations
yielded these similarities:

• the massive end of the clump mass function is a power law with an index ranging from
-1 to -1.7, resembling the -1.5 power law distribution of overdensities in hydrodynamical
simulations, though it is too shallow compared to the [-2,-2.4] power law cluster mass
function in the Galaxy (section 3.4);

• the stellar mass function inside clumps is top-heavy while non clump-members have a
bottom-heavy distribution, consistent with what is observed in the Galaxy field and cluster
stars (section 3.3.2);

• the mmax-Mclump relation in the clumps recovers the trend found in observed embedded
clusters;

• the clumps are mass-segregated, in agreement with hydrodynamical simulations of star
forming regions.

This consistency with hydrodynamically-produced structures, though our simulations are
purely gravitationnal, can be understood by viewing the Hubble-Lemâıtre process as an adiabatic
cooling of the system, with the expansion acting as a dynamical pressure, sustaining the cluster
against collapse.

The expansion itself is unrealistic in the context of star formation, as it omits, e.g., magnetic
field, gas fragmentation and feedback. However, the procedure allows the Poissonian fluctuations
in the initial density profile to develop over time and yield a self-consistent velocity field and mass
distribution, consistent with observations and simulations. The model can be used as suitable
initial conditions for the study of relaxation and dynamical evolution of substructured young
clusters. It is then possible to simulate much more massive systems than what is achievable
through hydrodynamical simulations.

This made possible the numerical exploration of the impact of mass-segregated and self-
consistent fragments on the collapse of subvirial systems, compared to uniform models. This
brought out that, once virialized, such fragmented clusters exhibited a mass-segregation (in-
herited from the clumps) focused on the very massive stars while a segregation developed in
a denser, concentrated system was more spread out on the stellar mass spectrum. This would
have an impact on the colour gradient in the center of a very young star cluster observed just
after its violent relaxation, and could serve as a clue to a clumpy initial distribution. This work
was published under the reference Dorval et al. (2016).

117



In the first part of the thesis, I connected the large scales of multi-parsecs substructured star
forming regions to the dynamically faster collisional evolution of small stellar overdensities. In
this second part, I went further down in scale to obtain a true multi-scale approach. I took
advantage of the abilities of the NBODY6 integrator to introduce very small scale systems,
binary stars with separations spanning values from 10 000 down to 1 AU, when the period is
typically less than a year.

Interestingly, the Hubble-Lemâıtre expansion was found to develop its own binary popula-
tion, though it had to be supplemented with short, low-mass primaries to be consistent with
observations. This resulted in substructured models with realistic binary populations, opening
the way for a self-consistent exploration of the impact of large-scale collapse on a population of
binaries, using memberships for our models up to 80 000 stars. The main results of this study,
which has been submitted for publication1, are as follows:

• the clumpy configuration processes binaries up to 10 times faster than a relaxed spherical
configuration;

• high-membership models tend to have these two regimes clearly separated and to process
more binaries than low-N models, which have a blurrier transition between clumpy and
relaxed states;

• in agreement with previous work, we see wide binaries preferentially destroyed, the a >
1000 AU population being heavily affected, while the a < 100 AU population is largely
preserved, with a weak influence of membership;

• some wide, a > 104 AU, and tight, a < 0.6 AU, binaries appear in our systems, the
formation of the latter appears favoured by low stellar densities.

This last point is important, as the formation of systems such as the tightest one we detected,
a ∼ 0.01 AU, are usually thought to happen through hydrodynamical processes to absorb the
angular momentum of wider binaries. This purely gravitational process is a new formation
channel for such tight systems and their possible outcomes, like potentially blue-stragglers.

This demonstrates the added value of the Hubble-Lemâıtre method. On the one hand, the
tightest new binaries have massive primaries, they were then likely located in the heart of the
clumps, exposed to substantial dynamical interaction. On the other hand, the very wide binaries
are formed in the tenuous halo of ejected stars from the bounce. These interesting new systems
are the result of this connection of scales: small-N dynamically consistent clumps in an overall
subvirial system.

There are many ways to build on the Hubble-Lemâıtre model. To go beyond the isolated
violent relaxation of the configuration, realistic tidal fields could be applied to the system, pre-
venting the collapse and introducing a more complex merging process for the clumps. Moreover,
the strong influence of massive stars on the fragmentation means a more realistic stellar mass
range should be used in future simulations, with the inclusion of stellar evolution effects. This
is important both for the clumps dynamical evolution and the very short-period binaries we
detected, as these are likely to be contact binaries. The Hubble-Lemâıtre method is also able to
produce elongated, rotating systems to go beyond spherical symmetry and get closer to observed
star forming regions.

By taking a small-N fragmented system, attributing ages and luminosities to our stars
through the stellar evolution code MESA and placing them behind a realistic quantity of dust,
thanks to PAN-STARRS extinction data, it is possible to generate mock observations. It is then
possible to build the minimum spanning tree of detectable stars in the cluster and evaluate its

1Submitted to MNRAS, manuscript ID: MN-16-2804-MJ.
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clumpiness. Because of mass segregation, the most luminous stars are concentrated in the center
of clumps, while less detectable, lighter stars are more spread out. One can vary the distance
and detection limit to assess the bias these parameters introduce in the observed morphology of
the cluster.

The Hubble-Lemâıtre expansion is a promising new method, based on a simple idea and with
a realistic output. It has a lot of potentially fruitful research paths.

Finally, over the course of this work, I developped numerous numerical tools: a clump-finding
algorithm, a binary detection algorithm, a KD-tree, a minimum spanning tree, etc. All these
were integrated in StarFiddle2, a python API acting as both a user-friendly interface to NBODY6
and an analysis environment for N-body simulations. This tool will be accompanied with an
extensive documentation and can hopefully be useful to future students or researchers.

2https://github.com/dorvaljulien/StarFiddle
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APPENDIX A

How we got here: from Aristotle to

GPU computing

Physics was not built in a day. I attempted a summary of the intellectual development that led
us to our current state of knowledge. I did my best to honour the brilliant minds that made all
of this possible. However, as everything in life, it should be taken with caution and a critical
mind. I learned a lot researching for this and I can only encourage the reader to dig further.

Motion

For two thousand years, Aristotle physics dominated European philosophy. Rocks fell to the
ground because they wanted to join their element, objects in the sky were attached to eternal
rotating crystal spheres, and motion was either natural or violent, the latter needing a continuous
force to exist. As the importance of projectiles grew in middle-age warfare, some improvement
were made to explain trajectories, such as the impetus, a ”contained source of motion” imprinted
to a projectile by the thrower. Introduced by Philopon in the 6th century and relayed by
Avicenne in the 11th century, it was properly formalized by Jean Buridan in the 14th century
in his ”Questions on Aristotle’s Metaphysics”. Buridan’s impetus had a lot in common with
momentum, in that it was proportionnal to mass and velocity. However, it could be circular, as
shown by this description of celestial motion from Buridan (Clagett, 1959):

God, when He created the world, moved each of the celestial orbs as He pleased,
and in moving them he impressed in them impetuses which moved them without
his having to move them any more...And those impetuses which he impressed in the
celestial bodies were not decreased or corrupted afterwards, because there was no
inclination of the celestial bodies for other movements. Nor was there resistance
which would be corruptive or repressive of that impetus.

Despite the conceptual mistake of a circular momentum, Buridan, with this text, is the first
to include the motion of celestial bodies in the same framework used for everyday, terrestrial
motion. The impetus is not a good model, but it is a model for everything in the universe. No
more eternal crystal spheres, everything in the universe must obey the same laws. Scientific
revolutions do not happen in a vacuum: Buridan and others paved the way for the intellectual
landslide of the 16th and 17th century.

Geocentrism and heliocentrism

While the concept of motion was slowly being refined, our vision of the Universe was undergoing
some faster changes. The dominant system in Europe since 150AD was the Ptolemaic geocentric
model: the Sun and planets went around the Earth, following convoluted trajectories made of
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(a) Ptolemy geocentric system (b) Copernic heliocentric system

Figure A.1: (a): depiction of the Ptolemaic geocentric system, the equant is not shown. (b):
Copernicus illustration of his own heliocentric system, from De revolutionibus.

circles within circles called epicycles. Though complex, this system was consistent with Aristotle
principles of celestial spheres and was accurate to a reasonable extent. Some alternate geocentric
models were proposed by arab astronomers, such as Nasir ad-Din at-Tusi and Ibn al-Shatir, as
well as rejected attempts to heliocentric models.

Nicolaus Copernicus studied astronomy in Cracow and Bologna, under the influence of harsh
critics of the ptolemaic system. Strangely, this criticism was not fuelled by observations, but
by astrology. Astronomy and astrology were closely intertwined, and the chaotic structure of
the ptolemaic system made astrological considerations complicated (Barker et al., 2014). In a
quest for consistency and simplicity, Copernicus proposed his heliocentric system, published in
De revolutionibus orbium coelestium in 1543, the year of his death, in which all planets went
around the sun, in the correct order. However, clinging to circular orbits, Copernicus had to
preserve ptolemaic workarounds such as epicycles (not shown on Fig A.1b).

The astronomical evidence was, at the time, paradoxically against him. The apparent size
changes of planets could not be measured yet, neither could stellar parallaxes, contradicting
heliocentrism. The idea of a moving Earth implied some effect on falling bodies (known today
as Coriolis effect) which were also not measurable at the time. Building on this apparent counter-
evidence and on the work of indian astronomer Nilakantha Somayaji, Tycho Brahe, the most
renowned astronomer of his time, proposed an alternative model known as the Tychonic system
in the late 16th century (Ramasubramanian, 1998). Brahe maintained the Earth as the center of
the universe, circled by the sun, itself orbited by all other planets. The system was very efficient
and was quickly adopted by the Church and considered in compliance with the Holy Scriptures.

However, the seed of heliocentrism was planted in European scientific minds. The idea
exalted the impetuous and visionary Giordano Bruno, who pushed the decentralization of Earth
to the extreme, claiming stars were other suns, harbouring other planets, which themselves
could sustain intelligent life. For this, his rejection of catholic dogma and his vehement refusal
of retraction, Bruno was burned at the stake on the Campo de Fiori in 1600. Bruno, the fiery
dialectist, despised geometry and believed the mind alone could unravel any mystery.

Johanes Kepler believed in geometry, in consistency and in observations. Ardent supporter
of copernicism, he convinced Tycho Brahe to grant him access to his astronomical data, unsur-
passed at the time. Focusing on the motion of Mars, Kepler, through trial and error, found out
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(a) Jupiter satellites (b) Half-moon (c) Galileo (1605)

Figure A.2: (a) and (b): drawings by the hand of Galileo of his astronomical observations.

the planet was moving around the Sun following an ellipse. He formulated his first two laws of
planetary motions. Further exploration led him to the third law. The three laws of Kepler of
planetary motion were formulated, initiating the mathematisation of astronomy. They are:

Law I : All planets orbits are ellipses, with the Sun at one focus.

Law II: The line connecting a planet and the Sun sweeps out equal areas in equal
amounts of times as the planet follows its orbit.

Law III: The squared orbital period of a planet is proportional to the cubed semi-
major axis of its orbit.

The Starry Messenger

The father of modern astronomy, and precursor of modern science, Galileo Galilei was born in
Pisa in 1564. For the first part of his scientific career, Galileo got famous for his lectures on
mechanics and motion. Building on Buridan and Oresme’s ideas, he expressed the mathematical

form of free fall motion d = gt2

2 . Galileo also formulated what was essentially the future first
law of motion from Newton.

In 1609, his passion for scientific instruments led Galileo to build his own ”dutch perspective
glass”, or telescope, a pioneering optical device from the Netherlands. Once pointed at the sky,
the device triggered an avalanche of observations which would forever bury the aristotelitian
view of perfect and unchanged heavens. Moving Jupiter satellites, Moon craters and moun-
tains, millions of stars in the Milky Way, these were consigned into Sidereus Nuncius (Starry
messenger), the first scientific publication of astronomical observations (Galileo, 1610).

Strong advocate of copernicism, but lacking proper evidence, Galileo caused a large contro-
versy with his Dialogue Concerning the Two Chief World Systems published in 1632, a pamphlet
against the ptolemaic system, presenting (arguably unintentionally) one of its advocates as a
simpleton. Despite his friendship with the pope, he had to retract his work and reject coper-
nicism. Galileo spent the rest of his life under house arrest. Observational evidence at the
time was still on the side of geocentrism. However, the extent of the backslash against Galileo
showed the agitation of a Church having absorbed the principles of Ptolemy and Aristotle into
its doctrine, in a time seeing the debate shift from theology to physics and observations.

The relativity of motion is often attributed to Galileo, as he includes it in his controversial
pamphlet, stating that a traveller inside a ship sailing smoothly would not be able to tell he’s
moving. Thus, people could be standing on a moving Earth without feeling it. However, this
thought experiment was nothing new at the time and had been a recurring theme of mechan-
ical philosophy since Buridan. Oresme, Copernicus and Bruno had been building on the idea,
expanding and improving it, developing over the centuries an implicit understanding of inertia,
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(a) ”Not quite Newton’s tree” (b) Drawing from the Principia

(c) Isaac Newton (1689) (d) Edmund Halley (1686)

Figure A.3: (a) a supposedly descendant from Newton’s apple tree in Cambdrige. The drawing
in (b) illustrates the common mechanics of cannonballs and satellites.

until Bruno actually gives it a name: virtù. Galileo may have met Bruno himself, and had surely
been influenced by his writings (De Angelis & Santo, 2015). Galileo’s formulation was clearer,
and part of a larger understanding of motion, introducing the concept of reference frame. After
Copernicus decentralized the Earth, Galileo decentralized human subjectivity itself, setting the
scene for the revolution to come.

On the shoulders of giants

Isaac Newton is without a doubt the father of modern mathematical science. Admitted in
Cambridge in 1661, Newton supplemented the -still- official aristotelitian teaching with more
modern authors: Copernicus, Galileo, Kepler, and most of all, Descartes. The french philosopher
had a profound impact on the young student, rooting his love for mathematics and deductive
reasoning. However, while Descartes showed disdain for experimentation, Newton was an acute
observer of the natural world.

In 1666, while in is mother’s farm, having been forced out of Cambridge by the Plague,
Newton began his reflection on the motion of celestial bodies. He derived from Kepler’s law
that the Sun had to exert an inverse squared distance attraction on the planets. Extending the
concept to the Earth, moon, and a famous apple, Newton found a way to verify his hypothesis,
using data from Galileo mechanical studies on the strength of Earth attraction. The wrong
estimate of Earth radius he used at the time introduced a discrepancy which put the young man
off his gravitas studies for 18 years.

Edmund Halley, astronomer and friend of Newton, having heard of Newton’s inverse squared
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law, urged him in 1684 to communicate his work the Royal Society. With a new accurate measure
of Earth radius and confronted to a concurrent claim to his law from Robert Hooke (Kramer,
1982), Newton capitulated to Halley’s eager enthusiasm and communicated his work in the
famous Philosophi Naturalis Principia Mathematica (Newton, 1687). Published at Halley’s own
expense, the Principia shook all of Europe. Newton had invented Calculus (in parallel of Leibniz)
and applied it to derive the universal law of Gravitation.

F = G
m1.m2

r2
(A.1)

Where:

F Gravitational attraction between object 1 and object 2
G Gravitational constant, 6.67408.10−11m3kg−1s−2 (Mohr, Taylor & Newell, 2012)
mi Masses of object 1 and 2
r Distance between object 1 and 2

Though Newton was part of continuous line of geniuses and innovative minds building from
each others, as he puts it ”If I have seen further it is by standing on the shoulders of gi-
ants” (Maury, 1992), his input was truly revolutionary. He made large advances in optics and
mathematics, and created a consistent mathematical framework to compute motions, essentially
founding modern science and sowing the seeds of the industrial revolution. This framework is
summed up by Newton’s three laws of motion (from recent translation Cohen I. B. 1999):

Law I : Every body persists in its state of being at rest or of moving uniformly straight
forward, except insofar as it is compelled to change its state by force impressed.

Law II: The alteration of motion is ever proportional to the motive force impress’d;
and is made in the direction of the right line in which that force is impress’d.

Law III: To every action there is always opposed an equal reaction: or the mutual
actions of two bodies upon each other are always equal, and directed to contrary
parts.

The second law can be mathematically formulated in more modern terms:

∑

F =
dp

dt
(A.2)

Meaning the sum of all forces F applied to an object is equal to the time derivative of its
momentum p = m.v.

The N=3 body problem

As the Enlightenment brought a scientific revolution in many fields, I will now limit the discussion
to the development of celestial mechanics, while acknowledging input from other fields.

While the two-body problem had been solved by Newton and expanded by Bernoulli in 1710
(Barrow-Green, 1997), in the 18th century the three-body problem remained the object of much
investigation and development. A general solution for the Earth-Moon-Sun system would have
had applications on nautical astronomy and trans-continental navigation. Extended analytical
work by d’Alembert, Clairaut, Euler and Lagrange led to the development of early families of
approximate solutions or exact solutions to special cases.

From 1773 to 1793, Joseph-Louis Lagrange, helped by his invention of Lagrangian mechanics,
would make a lot of advances on the three-body problem. He introduced the concept of potential
and discovered libration points (later known as Lagrange points). In the same time, Pierre-Simon
de Laplace proved the stability of the solar system using a newly developed perturbation theory.
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(a) Charles Messier (1770) (b) Henri Poincaré (1887)

Figure A.4: The observer and the theorist, a century apart.

The solar system dynamics were being unraveled, with finely tuned perturbation computation,
but the general three-body problem remained unsolved.

In 1888, Henri Poincaré, a renowned mathematician, submitted an entry to a contest spon-
sored by the King of Sweden Oskar II. The goal was to determine a usable solution to the
N-body problem, for any given N. While Poincaré does not submit a complete solution, he wins
the contest by presenting an in-depth exploration of the phase-space of the restricted three-body
problem, which would later give rise to Chaos theory, see Yoccoz (2010). Poincaré managed to
prove that the three-body problem had no solution involving simple functions.

Contrary to popular belief, the three-body problem has a solution, it was derived by Karl
F. Sundman in 1912 (Sundman, 1912). However, any attempt to obtain accurate trajectory
predictions would face an enormous convergence time, making the solution unusable in practice
(Belorizky, 1930).

It is interesting to note that Elis Strömgren performed by-hand calculation of a three-body
system, see Aarseth (2003b); Strömgren (1909), prefiguring the advent of numerical orbit com-
putation.

The N>3 body problem

“The Sun attracts Jupiter and the other planets, Jupiter attracts its satellites and
similarly the satellites act on one another.”

By this sentence from the Principia, Newton formulates the N-body gravitational problem,
an arbitrary number of massive bodies all interacting gravitationally, for the solar system. The
“N>3-body” problem didn’t receive a lot of attention at first, as the unruly three-body problem
was on everyone’s mind, and a higher-N problem seemed abstract, the solar system example
being appropriately dealt in approximations.

In 1764, Charles Messier resolved individual stars in Messier 4, a globular cluster, hundreds of
thousands of stars grouped together. Many new clusters were to be found afterwards, extending
the catalog of real-life N-body systems. However, nothing was known of their kinematics, the
stars were, in a sense, suspended motionless in the sky. This was the case until the advent of
Doppler spectroscopy, which allowed astronomers to measure stars velocities (Doppler, 1842).
Stellar dynamics had begun.

The N>3-body problem was still inaccessible, so scientists like James Jeans and Arthur
Eddington decided to take the problem from the other hand, and took advantage of the large
number of stars. Inspired by Poincaré (1906), both astronomers applied the statistical theory
of gas to stellar systems, founding the field of stellar dynamics (Jeans, 1916; Eddington, 1916).
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(a) Siemens 2002 (b) Hydra supercomputer

Figure A.5: The Siemens 2002, seen here on (a) at the computer museum in Kiel, could perform
2000 operations a second. The Hydra cluster, on (b), at the Max Planck Computing & Data
Facility in Garching is made of 83,000 cores and 676 GPUs for a total of 1015 operations per
seconds, a billion millions.

An interesting experiment was conducted by Holmberg (1941) to understand the collision of
two stellar systems (galaxies). With too few points to warrant a statistical approach, and before
the rise of numerical integration, Holmberg modelled two galaxies with dozens of lightbulbs and
photocells, measuring the attractive force with the amount of light received in each direction,
taking advantage of the inverse squared fall of luminosity with distance, akin to gravity.

The numerical age

The first numerical N-body computations were performed by Sebastian Von Hoerner in 1959
when visiting the University of Tübingen, on a Siemens 2002, a cutting edge calculator at the
time (Fig A.5a). The very first had N=4. Then, Von Hoerner, back in Heidelberg, worked his
way up to 16 stars, then 25, programming and debugging on punch cards. This story was told by
Von Hoerner himself in von Hoerner (2001). He very quickly realized the importance of binary
stars and their impact on computations. He was also able to confirm some theoretical prediction
on cluster dynamics, and found a cuspy radial density profile(von Hoerner, 1960, 1963).

There was two ways to increase the number of stars in simulations: buy a better computer
or improve the algorithm. Sverre Johannes Aarseth got invested in the second path, which
would take over his scientific life. Aarseth pioneered the use of individual time-step, changing
the rate of particle positions update, gravitationnal softening (allowing convergence for close
approaches), and polynomial predictions for force calculations (Aarseth & Hoyle, 1964). As
power and optimization grew, investigations expanded, such as the interaction star-gas (van
Albada, 1968b) and binary formation (van Albada, 1968a).

The 1970s brought two new important optimisation methods: KS regularization of close
pairs (Aarseth, 1972) or 3-body systems (Aarseth & Zare, 1974) and Ahmad-Cohen neighbour
scheme (Ahmad & Cohen, 1973). The number of stars in simulations kept growing, reaching
1000 with Terlevich (1980) and materializing into the NBODY5 integrator. At this point various
methods departing from a pure collisional calculation began to emerge, such as the simplified
distant interaction with the Barnes & Hut (1986) tree algorithm.

To go beyond the regular improvement of computing power with time, a group of Japanese
researchers, among whom Junichiro Makino, designed and built special purpose hardware for
many-body problems: GRAPE (Ebisuzaki et al., 1990; Ito et al., 1991). These cards vastly
improved the speed of N-body simulations and were a milestone on the road to the paralleliza-
tion of computing. With the force calculation directly implemented in the hardware, GRAPE
dominated the field for 15 years.
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Figure A.6: The evolution of the number of particles in N-body simulations. Solid line shows
the Moore law. The figure was taken from Bédorf & Portegies Zwart (2012).

The latest technological leap in N-body simulations came from graphic cards, see Bédorf &
Portegies Zwart (2012) for a more detailed historical perspective. Graphical Processing Units, or
GPU, were originally designed for computer games visual rendering, applying the same transfor-
mations to a lot of pixels at the same time. These made them very efficient parallel computing
machines for physics. Interest in GPU computing started to grew in the 2000s (Nyland, Harris
& Prins, 2004; Elsen et al., 2006; Portegies Zwart, Belleman & Geldof, 2007) until the advent
of usable GPU programming languages, like CUDA, in the late 2000s. At this point GPU were
more efficient than GRAPE hardware for force calculation. Keigo Nitadori and Sverre Aarseth
developped a GPU-accelerated version of NBODY6 in 2012 (Nitadori & Aarseth, 2012). A new
iteration of the NBODY family, NBODY7, was also developed to include post-newtonian effects
from General Relativity (Aarseth, 2012).

This year, 330 years after the publication of the Principia, Wang et al. (2016) performed
several collisional nbody simulations of one million stars with a modified version of NBODY6
running on GPUs, on the Hydra supercomputer (Fig A.5b). Computers have made it possible
for humans to study systems of incredible scales in space and time, only using the universal
law of gravitation. N-body numerical integrators are the culmination of centuries of scientific
development on the motion of massive bodies.
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APPENDIX B

NBODY6

NBODY6 is the second youngest iteration of the NBODY family, a suite of n-body integrators
created by Sverre Aarseth. It can compute the gravitational interaction between up to 128,000
stars in a collisional fashion, meaning there is no softening of the potential, at any scale. This
allows for very close binaries to form and remain in the system. To achieve its impressive
performances, NBODY6 relies on several optimization technique which have been first developed
in the 1960s and 1970s, and improved ever since. Here will be developed four major features of
NBODY6, in chronological order of their implementation: block time-step, KS-regularization,
Hermite scheme and Ahmad-Cohen neighbour scheme. A full description can be found in Sverre
Aarseth’s book (Aarseth, 2003b). Inspiration for this section should be credited to the user
manual of NBODY6++, written by Emil Khalisi and Rainer Spurzem.

B.1 Block time-step

In the first N-body simulations, the system was integrated with an universal time-step, deter-
mined by the most accelerated star. A star in the outer regions of the cluster with a small
velocity did not need to be updated that often. One of the first improvement was the introduc-
tion of individual time-step: each star is attributed its own time-step, depending on the force
that is applied to it and its derivatives:

∆ti = η

√

√

√

√

|Fi||F(2)
i |+ |F(1)

i |2

|F(1)
i ||F(3)

i |+ |F(2)
i |2

(B.1)

With F
(j)
i begin the j-th derivative of the force applied to particle i and η a user-defined

accuracy parameter. Such a complex formulation is the result of extensive tests and is quite
robust for many special cases. Individual time-steps lead to desynchronized particles, hence the
need to interpolate the positions of other particles to compute Fi, which was achieved through
fourth-order polynomials.

To limit the amount of desynchronization, block-time steps were introduced. Instead of
having as many time steps as particles, one only allows quantized power of 2 of an initial time
step. ∆t0,

∆t0
2 , ∆t0

4 , ∆t0
2i

. All time steps are then commensurate and regularly fall back on the
same time steps, minimizing the amount of interpolation during the force calculations. The
concept is illustrated on Fig B.1.

B.2 KS-regularization

Close binaries are extremely problematic in N-body simulations. They require a small time step
as both binary components are much more accelerated than any other stars in the system, while
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Figure B.1: Illustration of block time steps on 4 particles. Particles get their positions updated
for each arrow symbol, common time steps are shown as vertical dotted lines. Figure from
NB6++ User Manual.

the rest of the system is unaffected. Block time-steps mitigate this problem, but the binary
system still requires a lot of integration for an orbit that is essentially already known. Regular-
ization is an answer to this problem. The essence of regularization is to decouple the integration
of a sufficiently isolated sub-system, changing its coordinates to make integration easier, and
including perturbations from external bodies. Several regularization scheme exist, NBODY6
implemented the Kustaanheimo-Stiefel method, or KS (Kustaanheimo & Stiefel, 1965).

Two bodies are candidates for regularization when their impact parameter is lower that the
one needed for an orthogonal deviation, wherein their trajectory are deviated of 90◦:

b⊥ = 2G
m1 +m2

v2∞
(B.2)

with mi components masses and v∞ relative velocity before encounter. This impact parameter
can be converted to a time step computed through equation B.1:

dtmin = κ
η

0.03

(

r3min

〈m〉

)
1

2

. (B.3)

To be actually regularized, two bodies have to have a mutual time step lower than dtmin and
fulfill two conditions:

Rr ·Vr > 0.1
√

G(m1 +m2)Rr (B.4)

|∆Fr| ·R2
r

G(m1 +m2)
< 0.25. (B.5)

Rr andVr being the relative velocities and positions of the particles and |∆Fr| the differential
force applied to them, or perturbation. These conditions mean the subsystem is dynamically
decoupled from external influence, but not unperturbed. When they are satisfied, the subsystem
is regularized: components are fused in a single particle at the system’s center of mass in the
global system, while the internal dynamics of the pair and computed separately, with a set
of changed coordinates. These coordinates are tailored for binary motion and close approach,
they are well behaved when Rr → 0. The influence of perturbers is taken into account when
necessary. When the perturbation ratio (left hand side of equation B.5) drops below a certain
value, the system is considered isolated and it is not computed any more, its parameters being
stored until the perturbation is strong enough to warrant integration.
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Figure B.2: Summary of the Hermite scheme starting from known positions and velocities at t0
to obtain 5th order values at t.

Regularisation have been extended to 3 and 4 bodies in hierarchical subsystems. NBODY6
can handle the regularization of a small-n non-hierarchical subsystem following the chain algo-
rithm, see Mikkola & Aarseth (1993).

B.3 Hermite integration scheme

On the appropriate time-scales, the accelerations of the particles in a N-body system vary
smoothly. It is therefore possible to predict the future acceleration then to correct the prediction,
achieving high order integration with limited computational cost. The Hermite integration
scheme was first introduced by Makino (1991) and has since been implemented within NBODY6
(Aarseth, 2003b; Nitadori & Aarseth, 2012).

The first step is to compute the acceleration and its derivative at t = t0 , for all particles i:

a0,i = −
∑

i 6=j

Gmj
R

R3
(B.6)

ȧ0,i = −
∑

i 6=j

Gmj

[

V

R3
+

3R(V ·R)

R3

]

(B.7)

with R = r0,i − r0,j and V = v0,i − v0,j . Using these quantities, it is now possible to predict
the positions and velocities at t through a Taylor serie, again for all particles i:

rp,i(t) = r0 + v0(t− t0) + a0,i
(t− t0)

2

2!
+ ȧ0,i

(t− t0)
3

3!
(B.8)

vp,i(t) = v0 + a0,i(t− t0) + ȧ0,i
(t− t0)

2

2!
(B.9)
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.
The predicted accelerations and their derivatives ap,i(t), ȧp,i(t) are computed by injecting

rp,i(t) and vp,i(t) into equations B.6 and B.7. The accelerations at t, of which predicted values
have just been computed, can also be obtained through Taylor series:

ai(t) = a0,i + ȧ0,i(t− t0) + a
(2)
0,i

(t− t0)
2

2!
+ a

(3)
0,i

(t− t0)
3

3!
(B.10)

ȧi(t) = ȧ0,i + a
(2)
0,i (t− t0) + a

(3)
0,i

(t− t0)
2

2!
(B.11)

with a
(2)
0,i ,a

(3)
0,i the third and fourth derivative of the acceleration at t = 0. Note that these quanti-

ties are unknown for now. To take the derivatives of equation B.7 would be too computationally
expensive. Instead, ap,i(t) and ȧp,i(t) are injected in the left hand side of equations B.10 and

B.11 and solved for a
(2)
0,i and a

(3)
0,i . This leads to the expressions:

a
(3)
0,i = 12

a0,i − ap,i

(t− t0)3
+ 6

ȧ0,i − ȧp,i

(t− t0)3
(B.12)

a
(2)
0,i = −6

a0,i − ap,i

(t− t0)2
− 2

2ȧ0,i + ȧp,i

t− t0
. (B.13)

The predicted values of positions and velocities are then corrected using the second and third
order derivatives of acceleration, yeilding fifth order accurate values.

rc,i(t) = rp,i(t) + a
(2)
0,i

(t− t0)
4

4!
+ a

(3)
0,i

(t− t0)
5

5!
(B.14)

vc,i(t) = vp,i(t) + a
(2)
0,i

(t− t0)
3

3!
+ a

(3)
0,i

(t− t0)
4

4!
(B.15)

(B.16)

In a nutshell, the Hermite scheme is a way to obtain 5th order terms with limited cost.

The steps are summarised in figure B.2. First r
(2)
0 and r

(3)
0 are computed, then used to obtain

predictions of r
(0)
t and r

(1)
t , transformed with the equations of motions into predictions of r

(3)
t

and r
(4)
t . These last two can be expressed through Taylor series as functions of r

(3)
0 ,r

(4)
0 and

r
(5)
0 , which are solved for these last two terms. The predicted values of r

(0)
t and r

(1)
t are then

corrected to the fifth order with r
(4)
0 and r

(5)
0 .

The error for a single time step scales as O(∆t6). The Hermite scheme has shown itself very
well suited for the block time step method, as the synchronization of particles limit the amount
of prediction to be made, many positions at a given time being already known and computed
with maximum accuracy.

B.4 Ahmad-Cohen neighbour scheme

For a given particle in an N-body system, the influence of direct neighbours changes on shorter
timescales than the smooth potential from distant particles. The essence of the Ahmad-Cohen
neighbour scheme is to decouple the two for computational efficiency (Ahmad & Cohen, 1973).
The acceleration is split into two components:

ai = ai,reg + ai,irr (B.17)

ai,irr is the acceleration from particles inside a given ”neighbour sphere” around particle i,
while ai,reg is the acceleration from all other, more distant, particles. Integration within the
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neighbours sphere, irregular integration, is decoupled from the global, regular, integration. Reg-
ular time steps, where complete force summation are performed over all particles with eq B.6,
are subdivided into irregular time steps, where regular acceleration is predicted and irregular
acceleration is computed through a force summation on the Ni,nb neighbours. The list of neigh-
bours of i is updated every regular time step and contains the particles within a sphere of radius
Ri,s centered on i. Also added to the neighbour list are the particles within 2

1

3Ri,s that satisfy
the condition

R ·V < 0.1
R2

s

∆Treg
(B.18)

with ∆Treg the regular time step. This ensures that fast approaching particles are selected
before they enter the actual neighbour sphere. Ri,s is determined through local number density
contrast and optimisation of the resulting Ni,nb.

When Nnb ≪ N for most particles, there is a great performance improvement and a minimal
loss of accuracy.
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APPENDIX C

Binary formation from phase-space

correlations

In this appendix, we derive the theoretical binary population arising from phase-space cor-
relations in an expanding uniform model. The global, isotropic expansion of a uniform self-
gravitating body is found by integrating the equations of motion with an initial velocity field

v = Hx, (C.1)

where H is the Hubble-Lemâıtre parameter, a monotonically decreasing function of time. We
want to show that the two-body correlation function defined around phase-space coordinates
dx3dv3 must peak when the Hubble-Lemâıtre expansion nears H → 0. Let m1 and m2 be two
stars of coordinates x1,x2, respectively; their relative velocity follows from (C.1) as

v1,2 = H (x1 − x2) ≡ H l.

With the definition of the reduced mass µ = m1m2/M and total mass M = m1 + m2, the
binding energy per mass of the stars reads

E = − Gµ

||x1 − x2||
+

1

2
v2
1,2 = −Gµ

l
+

1

2
H2l2 . (C.2)

The binding energy E < 0 provided that l3 < 2Gµ/H2. If we use as characteristic separation the
mean distance in the homogeneous sphere of radius R(t) (which encloses all the stars), then for
a total of N stars one may write l ≈ R/N1/3 and take m1 = m2 = m = M/N ; then µ = m2/N
and the condition E < 0 becomes

R(t)3 <
2Gm

H2
.

In practice, R(t) reaches a maximum value in a finite time interval since the system as a whole
is bound. Because H → 0, there must be a time interval during which the inequality is (on
average) everywhere satisfied. We anticipate most ‘spontaneous’ binary stars to form during
that time interval.

The calculation presented above predicts that virtually all stars should end up in binaries
of separation ≈ l = R(τ)/N1/3 (t = τ being the time when H = 0). This is not so in practice
because the velocity field around t = τ is not the Hubble flow of Eq. (C.1), but is rather (globally)
a Gaussian field (cf. section 3.3.1).

We want to outline the basic procedure that would lead to the identification of all bound
pairs (including multiple stars) for a general case. Let us work with the one-body phase-space
distribution function f(x,v, t) ; the game, then, is to ride one of the stars (say, mi) and seek
out any other one that may lead to E < 0. To do so, one may define a Heaviside operator,
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He(x− xi,v− vi) such that He = 1 whenever E < 0 and He = 0 otherwise. For instance, if we
set t = τ (no time integration or averaging) and sum over all pairs once only, we compute Nb

pairs, so:

Nb =
N
∑

j=1

∑

i>j

He(xj − xi,vj − vi)f(xi,vi − vj , t).

In integral form, this formalism would allow us to perform Monte Carlo draws from any func-
tional form for the distribution function f . Binney & Tremaine (2008), §7.5.8 give a numerical
example for the case when f = ρ(x, t)/m f̃(v, t), with ρ(x, t)/m = constant and the velocity d.f.
f̃(v, t) is a Maxwellian.
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APPENDIX D

Binary completion algorithm

The Hubble-Lemâıtre expansion gives rise to a spontaneous binary population detailed in section
6.2. This population has a deficit of low-mass primary binaries compared to observed binary
populations. Moreover, the semi-major axis of spontaneous binaries are too large compared to
the canonical period/semi-major axis distribution from Raghavan et al. (2010).

We aim at injecting new binaries in the system to reproduce the characteristics of observed
populations. The injected population should be designed to ”fill” the spontaneous/observed
discrepancy for low-mass primaries and short separations. In most cluster models, the binary
injection procedure is straightforward: a normal model is generated, with some stars bearing
the mass of both components of a binary. The binaries are then split with internal positions
and velocities suiting their semi-major axis and eccentricity.

This cannot be directly applied to Hubble-Lemâıtre models, as the star coordinates are not
generated on the spot from a known distribution function, they are the product of the expansion.
The binaries cannot be introduced into the initial uniform sphere, as such a specific dynamical
environment could have unexpected effects on the injected population, as could the expansion.
The idea is then to introduce binaries as single fused particles in the uniform sphere, let the
expansion happen until apex, then split the binaries.

However, the number of spontaneous binaries is function of the total number of stars in the
system, and introducing fused binaries lowers the effective number of spontaneous binaries. The
population we injected in the uniform sphere is no longer appropriate to the current distribution
of spontaneous. Moreover, many spontaneous binaries formed with one or two components being
to-be-split fused binaries. Splitting the pairs will destroy them, further altering the spontaneous
distribution.

The picture is even more complex if one looks at the binary fractions in several primary-mass
bins. A given primary star with a mass falling in the bin i, when merged with its secondary for
the expansion, might fall into the bin i+1 and participate to the binary fraction in this bin. To
converge towards a final population consistent with observations, we need to take into account
the effects of injection, inter-bin transfers and splitting.

D.1 ”Theoretical” population

Let us consider Nbin primary mass bins [mi;mi+1] We label theoretical binary fraction f th
i the

observed binary fraction in each of those bins. It is expressed:

f th
i =

nth
i

N s,th
i + nth

i

. (D.1)

with nth
i the theoretical number of binaries with a primary mass in the ith bin and N s,th

i the
theoretical number of single stars falling into the ith bin. Given a total number of stars N, these
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have unique values as f th
i values are fixed. To inject an appropriate compensating population,

we aim at obtaining nth
i binaries in each bins after splitting. To obtain these values is not

straightforward, as though f th
i is known, N s,th

i depends on how much of the Ni stars in the ith
bins are part of a binary, be it as a primary (nth

i ) or a secondary, which depends on the number
of binaries in all bins superiors or equal to i, as they cannot be secondary to a lighter star.

We express nth
i,j the number of theoretical binaries with a primary in mass bin i and a

secondary in mass bin j, as the number of primaries in i times the proportion of stars available
to be secondaries in bin j compared to all other possible bins k ≤ i, considering full random
pairing. The available secondaries in j are simply Nj − nth

j , and nth
i,j writes

nth
i,j = nth

i ×
Nj − nth

j
∑

k≤i

(

Nk − nth
k .

) (D.2)

We can now write the theoretical number of single stars in bin i as the total number of stars
in said bin Ni minus

• two times the number of binaries with primary and secondary in i, as this removes two
single stars;

• the number of binaries with a primary in i and a secondary in j < i;

• the number of binaries with a primary in j > i and a secondary in i;

which writes
N s,th

i = Ni − 2nth
i,i −

∑

j<i

nth
i,j −

∑

j>i

nth
j,i (D.3)

Substituting in Eq. D.1, we get

0 = nth
i

(

1− f th
i

)

− f th
i



Ni − 2nth
i,i −

∑

j<i

nth
i,j −

∑

j>i

nth
j,i



 (D.4)

which is a system of Nbin non linear equations with Nbin unknown variables nth
i . It can be

numerically solved to obtain the appropriate number of binaries with primaries in each bins to
have a system exhibiting the theoretical binary fraction distribution.

D.2 Injected and effective population

We consider a minimum mass of 0.1M⊙, a maximum mass of 30M⊙ and a total number of
logarithmic mass bins Nbin = 10. This gives a bin width of ≃ 0.24 < log(2), meaning that
the sum of two masses from the same bin systematically falls in the next bin1. With this in
mind, we turn to the number of effective stars. As we inject binaries before the expansion as
single objects, to be later split, the expansion happens with an effective total number of stars
Ñ = N − nin with nin the total number of injected binaries. On a single bin, nin

i expresses the
number of injected binaries with a primary in i. As in previous section, we define the number
of injected binaries with a primary in mass bin i and a secondary in mass bin j as:

nin
i,j = nin

i ×
Nj − nin

j
∑

k≤i

(

Nk − nin
k .

) (D.5)

With this, we can express the number of effective stars in each bins (this number counts
fused binaries as single stars) as the total number of stars in i, Ni,

1The smallest possible outcome, the lowest mass in the bin paired with itself, still falls in the next bin.
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• minus two times the number of injected binaries with both primaries and secondaries in i,
as the merged object changes bins;

• minus the number of binaries with a secondary in i and a primary in j > i, as the merged
object cannot be in bin i;

• plus the number of injected binaries with both primaries and secondaries in i − 1, as the
merged objects from the lower bins count as single stars in the present bin.

We make the hypothesis that most of injected binaries with a primary in i and secondary in
j < i produce merged objects falling into i, having no effect2 on Ñi. The expression writes

Ñi = Ni − 2nin
i,i −

∑

j>i

nin
j,i + nin

i−1,i−1 (D.6)

This effective stellar population will experience the Hubble-Lemâıtre expansion and form a
spontaneous binary population. The spontaneous binary fraction f sp

i was obtained from several
Hubble-Lemâıtre fragmentation runs and did not significantly vary with N or H0 . The presence
of fused binaries slightly modifies the mass function of the system but we assume this does not
affect the value of f sp

i . We can write

f sp
i =

ñsp
i

Ñ s
i + ñsp

i

. (D.7)

with ñsp
i the number of spontaneous binaries with a primary mass in i and Ñ s

i the number
of single stars in i, both in the effective population, in which a fused binary counts as one star.
Following previous notations, we write the number of spontaneous binaries with a primary in i
and secondary in j as

ñsp
i,j = ñin

i ×
Ñj − ñsp

j
∑

k≤i

(

Ñk − ñsp
k .

) (D.8)

and the number of single stars in the effective population as

Ñ s
i = Ñi − 2ñsp

i,i −
∑

j<i

ñsp
i,j −

∑

j>i

ñsp
j,i. (D.9)

Substituting in Eq. D.7, we get

0 = ñsp
i (1− f sp

i )− f sp
i



Ñi − 2ñsp
i,i −

∑

j<i

ñsp
i,j −

∑

j>i

ñsp
j,i



 (D.10)

D.3 Stable spontaneous

Some spontaneous binaries have one or two components that are fused binaries, we consider they
do not survive splitting, as the algorithm will no longer register a bound pair. This can produce
triple or quadruple hierarchical systems if the spontaneous pair semi-major axis is sufficiently
larger than the one(s) from the fused binary component(s), but we do not consider them here,
the algorithm will only detect the inner pairs.

Of the spontaneous binaries that arose in the effective population, ñsp
i , only those without

fused binaries as components survive. We assume this is a a necessary and sufficient condition

2This could be taken into account with a numerical study of the proportion of merged objects actually over-
flowing the bin when j < i.
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for survival. We can obtain the number of stable spontaneous binaries with a primary in i and
secondary in j by multiplying the number of spontaneous binaries ñsp

i,j by the proportions of
effective stars in i and j that are not fused binaries. Fused binaries in a given bin k are the ones
with primary and secondary both in k− 1 and all binaries with a primary in k and a secondary
in any l < k. This writes

ñsp,stable
i,j = ñsp

i,j ×







Ñi − ñsp
i−1,i−1 −

∑

k<i

ñsp
i,k

Ñi






×







Ñj − ñsp
j−1,j−1 −

∑

k<j

ñsp
j,k

Ñj






. (D.11)

Which translates, when talking about all stable spontaneous binaries with the primary in i,
as

ñsp,stable
i =

∑

j≤i

ñsp,stable
i,j (D.12)

We assume any injected binary survives when split, regardless of its final semi-major axis
and the density of its environment, it has no bearing on the present calculations. We can then
finally write the number of total surviving binaries in the system, both from the injected and
stable spontaneous populations, and equate it to the target theoretical number so the system
follows the theoretical binary fraction distribution:

nth
i = nin

i + ñsp,stable
i . (D.13)

Since nth
i is known from section D.1, we have two sets of Nbin unknown values, nin

i and ñsp
i ,

and two sets of Nbin non-linear equations, Eq. D.10 and Eq. D.13. This can be numerically
solved to obtain the values of nin

i .

The binaries can now be injected in the system with appropriate proportions of primary
masses.
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D.4 Introduction

Les étoiles naissent en groupe, lors de flambées de formation stellaire au sein de nuages
moléculaires. Les différentes étapes de cette formation stellaire sont présentes dans notre ciel:
nuage moléculaire froid, région d’émission HII peuplée de coeur proto-stellaires, jeune amas en-
foui (dans son gaz), jusqu’au stade évolué d’un jeune amas dépossédé de son gaz primordial.
Cette séquence évolutive de plusieurs millions d’années se déroule dans le ciel au fil des objets
et régions observées.

La compréhension de ce processus est cruciale pour appréhender la formation stellaire en
général et même galactique. En effet, les amas globulaires sont considérés comme des témoins
majeurs de la formation des galaxies. Séparés en populations bleues, à faible métallicité, et
rouge à haute métallicité, les amas globulaires ont un lien complexe avec les fusions galactiques.
Par exemple, des jeunes amas massifs, ou YMC (Young Massive Clusters), sont observés dans
des galaxies en train de fusionner, comme les Antennes. Ces objets sont considérés comme de
futurs amas globulaires.

Or notre compréhension de ces amas reste incomplète. Longtemps considérés comme les
systèmes homogènes par excellence, un seul âge, une seule métallicité, plusieurs séquences stel-
laires ont récemment été observées cohabitant au sein des mêmes amas. Ces populations mul-
tiples pourraient s’expliquer par le processus de formation des amas. Le gaz moléculaire dont
les étoiles émergent et les régions de formations stellaires sont profondément sous-structurés,
les filaments et grumeaux sont la normes. Seuls les amas plus âgés ont une structure lisse,
concentrée et symétrique. Cela implique une évolution dynamique, plusieurs grumeaux doivent
fusionner pour former ces amas. Si ces grumeaux ont des métallicités et/ou des âges différents,
cela pourrait expliquer les populations multiples des amas globulaires.

Les simulations hydrodynamiques permettent de reproduire la formation stellaire et
d’observer l’évolution de ces sous-structures. Hélas, elle sont souvent coûteuses en temps et en
ressources de calcul, et sont limitées à des petit systèmes (souvent un grumeau isolé), évoluant
pour un temps assez court. Pour pouvoir aller plus loin et prendre en compte l’interaction entre
les grumeaux, il est possible de prendre le relai avec des simulations à N-corps, en considérant
le gaz comme évacué par les étoiles. Les simulations à N-corps sont moins gourmandes en
ressources et permettent de modéliser de bien plus grand systèmes sur des échelles de temps
plus importantes.
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(a) Simulation hydrodynamique (b) Observation: gaz et proto-étoiles

Figure D.1: (a): comparaison entre une simulation hydrodynamique de formation stellaire tirée
de Bate (2012); (b): observations Herschel infrarouge du complexe de formation stellaire Aquila,
tirée de Könyves et al. (2010). La densité de colonne correspond aux niveaux de rouge et jaune
à gauche, et aux niveaux de bleu et rouge à droite. La simulation fait ∼ 0.6 parsecs de côté
et les observations, en considérant l’estimation de distance prise par les auteurs, s’étend sur 7
parsecs. La simulation a été insérée à droite pour comparer les échelles.

Pour pouvoir simuler l’évolution de ces systèmes de manière réaliste avec des simulations
N-corps, il est nécessaire de générer des conditions initiales réalistes: sous-structurées, sous-
virielles comme le montrent plusieurs observations de jeunes amas. Plusieurs méthodes existent
pour générer ce genre de système: correlation au gaz dans une simulation hydrodynamique,
grumeaux de Plummer ou croissance d’arbre fractale. Ces méthodes se basent sur des simulations
hydrodynamiques et restent coûteuse, ou produisent des systèmes avec une structure artificielle
dans l’espace des phases, ne prenant pas en compte l’état dynamique du système.

Mon travail de thèse s’est concentré sur la création et l’exploration d’une nouvelle méthode de
génération de conditions initiales pour simuler de jeunes amas sous-structurés à travers des simu-
lations N-corps. Cette méthode est l’expansion de Hubble-Lemâıtre , elle se base sur l’expansion
radiale d’un système uniforme pour laisser des surdensités naturelles se developper et construire
des grumeaux auto-cohérents dans l’espace des phases.

Dans ce travail, j’approche d’abord la méthode de manière analytique, dégageant les
équations qui gouvernent l’expansion du système. J’analyse ensuite des réalisations numériques
du modèle, en comparant les grumeaux aux observations et simulations hydrodynamiques. Je
prend ensuite ce modèle comme conditions initiales pour étudier la relaxation violente d’un amas
jeune, sous-viriel et sous-structuré.

Dans un deuxième temps, je change d’échelle dynamique et m’intéresse aux étoiles binaires
et à l’évolution de leur population dans ce genre de système sous-structuré. J’analyse la popu-
lation spontanée apparaissant dans les modèles de Hubble-Lemâıtre , puis j’injecte des binaires
supplémentaires pour me rapprocher des tendances des populations de binaires observées dans
le champs galactique. Enfin, je laisse les modèles évoluer comme précédemment pour explorer
l’influence des sous-structures et de l’effondrement sur la population de binaires.
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Figure D.2: Fragmentation progressive à travers l’expansion de Hubble-Lemâıtre . La figure
de gauche montre la sphère uniforme initiale, celle du milieu l’étape intermédiaire, légèrement
fragmentée et où l’expansion commence à ralentir, et enfin la figure de droite montre l’état final,
lorsque l’expansion est stoppée et la fragmentation est complète. 10000 particles ont été utilisée
dans ce modèle N-corps, avec un paramètre H=1.0. Le temps et les coordonnées sont en unités
de Hénon.

D.5 Partie I: Le modèle fragmenté et son évolution

Pour générer un modèle fragmenté de Hubble-Lemâıtre , on génère tout d’abord une sphère
uniforme en tirant des étoiles d’une fonction de masse stellaire, Salpeter ou L3. On attribue
ensuite des vitesses radiales selon

v = H0r, (D.14)

analogue au champs de vitesse observé pour les galaxies dans l’univers, H0 étant l’équivalent de
la constante de Hubble mais dont la valeur est ici libre. On laisse ensuite ce système évoluer à
travers un intégrateur N-corps.

Pour mon travail, j’ai utilisé NBODY6, créé par Sverre Aarseth. Ce choix a été motivé par les
nombreux avantages du code: c’est un intégrateur collisionel, capable de traiter des interaction
proches et des étoiles binaires sans adoucir le potentiel, il possède de nombreuses optimisations
algorithmiques qui font de lui un des intégrateurs N-corps les plus rapides. Enfin, il possède une
version GPU, permettant d’accélérer encore plus les simulations pour des nombres de particules
suffisamment élevés.

J’ai également developpé un environnement python, StarFiddle. Il s’agit d’une interface
python pour NBODY6 couplé à un environnement d’analyse pour les résultats de simulation
N-corps. StarFiddle possède de nombreux modules: graphes 3d interactifs, calcul des énergies à
travers une librairie Cuda, détection des étoiles binaires ou des grumeaux dans une simulation,
etc. Il est disponible sur GitHub.

Pendant l’expansion, les étoiles massives tendent à attirer des étoiles plus légère, faisant
croitre les sur-densités initiales dans le modèle. On peut montrer par le calcul que la constante
H0 doit être inférieure à

√
2 pour avoir un système lié et que l’expansion stoppe à un temps

donné. Ce temps augmente rapidement lorsque qu’on se rapproche de cette valeur limite.
Il est possible de faire une analyse en perturbation du système en expansion en considérant

des surdensités en coquille spheriques. Cela nous apprend que les surdensités devraient d’abord
converger en régime linéaire, puis rentrer dans une phase d’évolution collisionelle, d’où peut
émerger une ségrégation de masse.

L’analyse des modèles fragmentés obtenus numériquement à travers NBODY6 nécessite de
pouvoir isoler les grumeaux et les analyser. Pour cela, j’ai adapté la méthode utilisée par
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Maschberger et al. (2010) pour isoler les surdensités dans leur simulation hydrodynamique.
on construit d’abord l’arbre couvrant de poid minimal, ou MST (Minimum Spanning Tree)
du système, puis en coupant toutes les branches plus longues qu’une certaine longueur, on
considère tous les systèmes liés et isolés comme des grumeaux. J’ai fixé le seul paramètre libre,
la longueur de coupure, en maximisant le nombre de grumeaux détectés. Ce choix donne des
grumeaux cohérents, et un test sur des modèles artificiellement sous-structurés a confirmé que
l’algorithme permettait de retrouver une distribution théorique de grumeaux injectée dans un
système.

L’exploration des différents paramètres et la réalisation d’une multitude de modèles de
Hubble-Lemâıtre a permis de dégager les caractéristiques suivantes: la fonction de masse des
grumeaux est peu sensible au nombre total d’étoiles N ou à H0, mais elle est en revanche
dépendante aux bornes de la fonction de masse stellaire. Une masse stellaire maximum à 100
M⊙ donne une queue de fonction de masse de grumeau en loi de puissance avec un index proche
de -1, lorsque cette masse maximum descend à 20M⊙, la queue de la distribution accentue sa
pente, l’index descend à -1.7. Le pic de la distribution se maintient à ∼ 20 M⊙. Des simulations
avec masse stellaire unique ont abouti à une fonction de masse en loi de puissance à -4.

Cela souligne l’importance majeure des étoiles massives dans la fragmentation. Cette impor-
tance est confirmée par les résultats suivants. Les grumeaux ont comparativement plus d’étoiles
massives que les étoiles dites ”du champs”, celles n’étant pas détectées comme faisant partie
d’un grumeau. la différence entre les distributions stellaires rappelle celle observées entre le
champs galactique et les amas stellaires, voir Fig. D.3. De plus, la relation mmax − Mgrumeau

dans nos système montre que mmax est généralement supérieur à ce que l’on pourrait attendre
d’un tirage direct de la fonction de mass initiale. Cela recouvre la tendance observée dans des
amas jeunes enfouis. Enfin, en utilisant la méthode de rang radial pour mesurer la ségrégation
de masse, en accord avec Maschberger et al. (2010), nous trouvons une tendance générale à la
ségrégation dans nos grumeaux, similaire à ce qui est mesuré dans les sur-densités des simu-
lations hydrodynamiques. Cette ségrégation semble concentrée, statistiquement, sur les trois
étoiles les plus massives de chaque grumeaux.

Ces résultats valident les modèles de Hubble-Lemâıtre comme étant des conditions initiales
adaptées pour simuler l’évolution dynamique de jeunes amas stellaires. Nous laissons ces modèles
évoluer et subir une relaxation violente avant d’atteindre un état virialisé de quasi-équilibre.
Pour pouvoir dégager l’influence des sous-structures sur cette évolution, nous avons également
simulé la relaxation de modèles uniformes froids. Les étapes des effondrements de ces modèles
sont montrées dans la Fig. D.4. Tous les modèles ont été simulés jusqu’à 40 unités de temps
Hénon, ce qui correspond ici à ∼ 16 temps de traversée du système, mais bien moins qu’un
temps de relaxation.

L’effondrement des modèles de Hubble-Lemâıtre est plus doux que celui des systèmes uni-
formes en raison des grumeaux. En conséquence, le système central est moins dense. Les
systèmes uniformes éjectent deux fois plus d’étoiles au rebond que les modèles fragmentés. Nous
avons developpé une méthode d’extraction des étoiles éjectées permettant le retrait d’étoiles
marginalement liées au système. En se concentrant sur les étoiles liées, le coeur plus concentré
des systèmes uniformes accèlère leur évolution à deux-corps, ils s’étendent pour au final avoir une
structure spatiale comparable aux systèmes fragmentés à t = 40 H.u. Les rayons de mi-masse
des modèles sont tracés en fonction du temps sur la Fig. D.5.

En séparant les étoiles des systèmes par masse et en représentant l’évolution de leur répartion
dans le système, on remarque que les systèmes uniformes tendant à developper une ségrégation
de masse plus important que les systèmes fragmentés en fin de simulation. Pourtant, juste
après l’effondrement, les modèle de Hubble-Lemâıtre sont plus ségrégés, et cette ségrégation est
concentrée sur les étoiles les plus massives. Cette ségrégation spécifique est héritée des grumeaux,
dans lesquel le faible nombre d’étoiles pouvaient difficilement développer une ségrégation
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Figure D.3: En haut: fonction de masse des étoiles appartenant à un grumeau (ligne continue
rouge), et celle des étoiles hors des grumeaux (line continue bleue). L’attente statistique d’après
une fonction de masse de Salpeter est montrée en pointillés noirs, et la dispersion de ce tirage
en zone grisée. Les pointillés verts correspondent à la distribution de tout l’amas. En bas: mme
données normalisés à l’attente de Salpeter.
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Figure D.4: Systèmes fragmentés de Hubble-Lemâıtre (en haut) et uniformes (en bas) à plusieurs
étapes de l’effondrement. Les étapes sont, de gauche à droite: conditions initiales; pendant
l’effondrement; rebond; juste après l’effondrement. Le temps est donné en unités Hénon.

Figure D.5: Rayon de mi-masse en fonction du temps pour deux systèmes subissant un effon-
drement froid: un modèle uniforme (ligne rouge continue) et un modèle fragmenté de Hubble-
Lemâıtre (ligne bleue continue). Les rayons de mi-masse et le temps sont en unité Hénon,
avec 1tHenon = 0.13Myr. Les lignes en pointillés correspondent au systèmes auxquels ont été
soustraits les étoiles éjectés par le rebond.
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(a) Population spontanée (b) Population complétée

Figure D.6: Fraction de binaire en fonction de la masse primaire. Les résultats sont moyennés
sur 20 modèles différents, les zones colorées montrent la dispersion à 1 σ. Des binaires à faible
masse primaire ont été injectée pour se rapprocher des observations dans la figure de droite.

régulière, et se maintient dans l’évolution du système virialisé, en contraste avec la ségrégation
des systèmes uniformes, plus étalée sur le spectre de masse stellaire. Dans un véritable amas
stellaire, cela augmenterait les gradients de couleurs dans le coeur, en comparaison d’un système
provenant d’un effondrement plus uniforme.

D.6 Partie II: Les étoiles binaires dans les amas sous-structurés

Dans la deuxième partie de cette thèse, je me suis concentré sur les étoiles binaires et le sort des
populations de binaires dans les amas jeunes, sous-structurés et sous-viriels. Certains auteurs
s’étaient déjà spécifiquement penchés sur ce problème (Parker, Goodwin & Allison, 2011), mais
à travers des modèles fractaux, qui manquent la cohérence dynamique des systèmes de Hubble-
Lemâıtre , et pour des nombres d’étoiles limités à 1 ou 2 milliers. Le but de cette deuxième
partie était d’explorer l’influence de la dynamique collisionelle à lintérieur des grumeaux sur les
systèmes binaires, ainsi que celle de l’effondrement et de son champs de marée lié au nombre
total d’étoile.

J’ai développé un algorithme de détection d’étoile binaire dans les simulation à N-corps
reposant sur une structure de donnée appelée arbre KD. La recherche de paire d’étoile liée est
la première phase de l’algorithme, et cette recherche s’effectue, pour chaque étoile, parmi les
voisins directs. L’arbre KD permet, une fois qu’il a été construit, d’effectuer des recherches
de voisins log(N)/N fois plus rapidement qu’en force brute. Une fois que deux étoiles sont
détectées comme liées, elles doivent définir une densité plus importante que celle créé par les
voisins directs. Si c’est le cas, elles sont confirmées comme binaires. Cet algorithme a été testé
et son paramètre libre validé en insérant une population de binaire connue dans un amas de
King et en évaluant la solidité des systèmes retournés par l’algorithme.

L’application de l’algorithme aux systèmes fragmentés par la méthode de Hubble-Lemâıtre a
révélé l’existence d’une population de binaires spontanées, formées pendant l’expansion initiale,
pendant laquelle les étoiles proches étaient fortement corrélées dans l’espace des phases. Cette
population spontanée possède une fraction de binaire croissante avec la masse de la primaire.
Cette tendance est similaire à la distribution observée dans le champs galactique, mais la popu-
lation spontanée manque de systèmes avec des primaires de faible masse et des semi-axe majeur
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Figure D.7: Évolution de la fraction de binaire totale (haut) et du nombre total de binaires
en pourcentage de la population initiale (bas). La ligne verticale en pointillés indique le point
d’effondrement le plus profond. Les données sont moyennées sur tous les exemplaires de chaque
modèle, et les zones colorées montrent la dispersion à 1 σ.

inférieurs à ∼ 1000 AU, qui sont pourtant majoritaires dans les populations observées. J’ai
développé une méthode de complétion de la population. La nature particulière des modèles
de Hubble-Lemâıtre interdisait toute injection directe dans un système existant. Les binaires
doivent être injectées dans la sphère uniforme initiale, en tant qu’objet unique portant la masse
des deux composantes. Une fois l’expansion effectuée et le système fragmenté, les binaires
peuvent être séparées et attribuées des positions et vitesses internes cohérents avec leur car-
actéristiques. La population injectée doit être tirée d’une distribution obtenue à travers un
système d’équations non linaires qui modélisent la formation et la destruction de binaires au
cours de l’expansion.

Une fois ces modèles complétés, ils sont utilisés comme conditions initiales de la même manière
que précédemment: effondrement, relaxation violente et virialisation, puis évolution dynamique
plus régulière. Afin de dégager l’influence du nombre total d’étoiles, les modèles sont construit
avec N=1.5k, 5k, 20k et 80k étoiles. Pour explorer l’influence de la densité , tous les modèles
ont été construits avec deux densités stellaires différentes: 6 étoiles/pc3 et 400 étoiles/pc3. Ces
valeurs sont tirés des observations de King et al. (2012) et sont représentatives des extrêmes
observés dans les régions de formation stellaires.

En mesurant la fraction total de binaires au cours du temps, on voit que les grumeaux
détruisent 10 fois plus de binaires par unité de temps que le système virialié post-effondrement.
Ces deux régimes sont d’autant plus clairs que le nombre total d’étoiles est élevé. Grâce aux
puits de potential plus profond atteint par les amas avec 80k étoiles, ces derniers détruisent
deux fois plus de binaires que ceux avec 1.5k étoiles. La plupart des binaires avec des semi-axes
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majeurs supérieur à 1000 AU sont détruites, alors que celles plus courtes que ∼ 100 AU sont
assez peu affectées. Une faible tendance est observée, les amas avec plus d’étoiles atteignent
et détruisent des binaires légèrement plus sérrées, mais cette tendance est plus faible que ce
qu’un raisonnement analytique pourrait prédire. Cette différence est probablement due aux
sous-structures qui perturbent l’effondrement. Les binaires avec des primaires peu massives
sont préférentiellement détruites dans les grumeaux, pendant l’effondrement. Dans le même
temps, les primaires massives survivent mieux, voir voient leur population augmenter dans les
modèles avec peu d’étoiles et un faible champs de marée. En revanche, une fois l’effondrement
passé et le système virialisé, toutes les binaires sont affectées de la même manière par l’érosion
de leur population.

L’inspection détaillée des populations finales révèle l’existence des binaires ”extremes”: plus
larges ou plus serrées que ce qui a été injecté dans le système. Les binaires très larges ont
des semi-axes majeurs supérieurs à 104 AU et se forment dans le halo d’étoiles éjectées lors du
rebond. En effet, c’est un milieu à faible densité et aux vitesses corrélées, semblable à l’expansion
initiale qui a vu nâıtre les binaires spontanées.

Dans l’autre extrême, 0.05% des binaires détectées à la fin des simulations à faible den-
sité stellaire étaient plus serrées que 0.6 AU, certaines avaient une séparation ∼ 0.01 AU. Ces
systèmes n’ont pas été injectés dans les conditions initiales, et un suivi de leur évolution a
montré qu’ils étaient le produit de collision binaires-binaires échangeant des étoiles. On trouve
une tendance à une masse totale d’autant plus importante que la binaire est serrée. Para-
doxalement, presque aucun système similaire n’a été trouvé dans les modèles à haute densité,
alors que l’on pourrait attendre qu’une plus haute densité favoriserait les collisions et la forma-
tion de ces binaires. Nous avançons deux explications potentielles. Premièrement, ces binaires
d’échanges sont rarement le produit d’échanges instantanés et forment souvent des systèmes à
petit N, qui prennent un temps non négligeable pour véritablement procéder à l’échange, et une
plus haute densité augmente la probabilité de voir une autre étoile interrompre cet échange.
Deuxièmement, des travaux analytiques et numériques sur les collisions et échanges impliquant
des binaires semblent indiquer qu’une vitesse trop importante rend les collisions aboutissant à
des échanges plus difficiles. Une réponse définitive nécessitera un suivi particulier de ces systèmes
pour véritablement comprendre leur origine.

D.7 Perspectives et conclusion

Dans les simulations présentées dans ce travail, nous avons fait l’hypothèse d’amas isolés, ce qui
impliquait un effondrement isotrope et complet, permettant l’étude des processus de virialisation.
Pourtant, il est important pour l’avenir du modèle de Hubble-Lemâıtre d’inclure des champs
de marée galactiques réalistes. Cela pourrait empêcher le collapse et extraire des grumeaux du
système, tout en en fusionnant d’autres. Il serait intéressant de comparer la fonction de masse
finale des grumeaux obtenus en présence d’un champs de marée avec celle des jeunes amas
observés dans le même intervalle de masse. Des champs de marée tirés de simulations à échelle
galactique pourrait même être appliqués à nos modèles grâce au code Nbody6tt, developpé par
Renaud, Gieles & Boily (2011).

Une autre hypothèse qui traverse ce travail est que l’évolution stellaire des étoiles les plus
massives du système n’affecterait pas la dynamique générale de manière sensible. Cela est
vrai pour les intervalles de masse stellaire que nous avons choisi, mais pour se rapprocher des
observations, il est nécessaire d’inclure des étoiles plus massives. Il est alors indispensable
de prendre leur évolution et perte de masse en compte car cela perturbera probablement la
dynamique interne des grumeaux, leur fonction de masse et surtout l’évolution des binaires très
courtes que nous avons détectées, qui seront des binaires de contacts.

Une autre voie de recherche potentielle est l’expansion anisotrope: en remplaçant la constante

163



(a) Modèles à faible densité

(b) Modèles à haute densité

Figure D.8: À gauche: masse totale des binaires (en haut) et distance au centre de l’amas (en
bas) pour les binaires plus serrées que 1 AU à la fin de la simulation. À droite: même structure,
pour les binaires plus large que 104 AU. (a) représente les données tirées des simulations à faible
densité stellaire, et (b) celles tirées des simulations à haute densité. La zone grisée sur les figures
représentent la zone o 90% des binaires devraient se trouver si les composantes étaient tirées au
hasard dans la fonction de masse utilisée ici. La ligne rouge en pointillée montre une section
efficace de collision constante, en considérant v2∞σcoll ≡ σ0. Les deux lignes en pointillés plus
fins montrent 10σ0 (au dessus) and 0.1σ0 (en dessous). La ligne pointillée bleue dans les figures
montrant la distance au centre désigne la frontière entre le système central virialisé et le groupe
d’étoiles éjectées au rebond (10 pc pour la faible densité et 2.8 pc pour la haute densité). Les
cercle vides désignent des binaires qui existaient déjà à t=0, quand les cercles pleins montrent
des binaires crées au cours de l’évolution du système.
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scalaire H0 par une matrice, il est possible de favoriser l’expansion le long d’un axe, ainsi que
d’introduire une rotation, afin d’injecter un moment angulaire non nul dans le système. On
peut également imaginer l’addition de gaz dans le système pour obtenir un système fragmenté
permettant l’étude du couplage gaz-étoile dans les jeunes amas.

Enfin, les modèles de Hubble-Lemâıtre permettent la génération d’observations artificielles
pour analyser l’influence de la ségrégation de masse sur la morphologie de jeunes amas. En
utilisant des modèles stellaires pour obtenir les luminosités de nos étoiles, puis en appliquant
une extinction réaliste due à la poussière, il est possible d’explorer à quel point la ségrégation de
masse et les grumeaux obtenus dans les observations sont dépendants de la limite de détection.

Pour conclure, la méthode de Hubble-Lemâıtre est prometteuse et a déjà produit des résultats
intéressants sur l’évolution des jeunes amas et de leurs populations de binaires. L’idée de départ
est simple, mais le résultat recouvre suffisamment de résultats numériques et observationnels sur
la formation stellaire pour que le modèle puisse être considéré comme un bon point de départ
pour simuler des amas sous-structurés.

La ségrégation de masse présente dans les grumeaux se transmet au système virialisé, qui
présente alors un indice de son origine fragmentée, comparé à un système initialement uniforme.
Quand aux populations de binaires, nous avons montré que les grumeaux étaient plus efficaces
qu’un système central pour éroder la population de binaires, tout en repérant la formation de
binaires extrêmes.

Il existe de nombreuses voies de recherches prometteuse pour le modèle de Hubble-Lemâıtre ,
toute permettant de s’approcher un peu plus de la réalité des amas jeunes et de pouvoir simuler
leur formation de manière rapide et efficace.
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