

Transfert de carbone le long du continuum végétation-sol-nappe-rivière-atmosphère dans le bassin de la Leyre (Landes de gascogne, SO France)

Loris Deirmendjian

▶ To cite this version:

Loris Deirmendjian. Transfert de carbone le long du continuum végétation-sol-nappe-rivièreatmosphère dans le bassin de la Leyre (Landes de gascogne, SO France). Géochimie. Université de Bordeaux, 2016. Français. NNT: 2016BORD0319. tel-01469149

HAL Id: tel-01469149 https://theses.hal.science/tel-01469149

Submitted on 16 Feb 2017 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THÈSE PRÉSENTÉE

POUR OBTENIR LE GRADE DE

DOCTEUR DE

L'UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE

SCIENCES ET ENVRONNEMENTS

SPCÉIACILITÉ : Biogéochimie et Écosystèmes

Par M. Loris DEIRMENDJIAN

TRANSFERT DE CARBONE LE LONG DU CONTINUUM VEGETATION-SOL-NAPPE-RIVIÈRE-ATMOSPHÈRE DANS LE BASSIN DE LA LEYRE (LANDES DE GASCOGNE, SO FRANCE)

Soutenue le 8 décembre 2016

Devant le jury composé de

Membres du jury :

Mme. DIGNAC, Marie-France, Chargée de Recherche INRA, AgroParisTech	Rapporteur
M. BORGES, Alberto Vieira, Chercheur qualifié, FRS-FNRS, Université de Liège	Rapporteur
M. LUDWIG, Wolfgang, Professeur, Université de Perpignan	Rapporteur
M. LOUSTAU, Denis, Directeur de Recherche INRA, Villenave d'Ornon	Président
M. ABRIL, Gwenaël, Directeur de Recherche CNRS, Université de Bordeaux	Directeur

Remerciements

La thèse de doctorat est un bel apprentissage du travail de chercheur, et également, le fil conducteur d'une tranche de vie de son auteur, l'accompagnant du crépuscule de son insouciante vie estudiantine, à l'aube de sa maturité scientifique et personnelle...enfin me semble-t-il ? Ce manuscrit clos cette délicieuse expérience, même si je ne vous cache pas que son achèvement est vécu avant tout comme une certaine délivrance. De nombreuses personnes m'ont accompagné, épaulé, soutenu pendant cette longue gestation de trois ans. Ce sont ces personnes que j'aimerais mettre en avant dans ces remerciements.

Je tiens tout d'abord à remercier mon directeur de thèse Gwenael Abril de m'avoir fait confiance pour mener à bien ce projet. Gwen, je te remercie à la fois pour ta qualité scientifique et ta qualité directionnelle. Tu sais faire avancer les choses et impliquer les gens sans montrer aucune condescendance, ce qui est assez rare pour être souligné. Tu es également une personne formidable, toujours de bon conseil, avec des valeurs que je partage. Je suis ainsi très fier d'avoir pu réaliser cette thèse de doctorat avec toi. J'espère sincèrement que cette collaboration n'en est qu'à ces balbutiements.

Je remercie les membres du Jury, Marie-France Dignac, Alberto Borges, Wolfgang Ludwig et Denis Loustau d'avoir évaluer ce travail de thèse, ainsi que le LabEX COTE pour son financement. Je remercie également Benoît Garat pour l'installation des piézomètres, ainsi que Francis Collin et Florent Lalaux, les deux agriculteurs du bassin de la Leyre qui m'ont permis de faire des prélèvements sur leurs parcelles.

Ce travail de thèse n'aurait non plus pas pu être mené à son terme sans l'aide de nombreux collègues et amis. Je tiens à remercier Pierre Anschutz et Céline Charbonnier avec qui j'ai eu ma toute première expérience de « stagiaire en biogéochimie ». Le commun des mortels pense que stage rime forcément avec abattage, mais pour ma part, c'était plutôt avec phosphatage. En tout cas, ce stage m'a vraiment plu et cela m'a conforté dans mon choix en faveur de la recherche. Je vous remercie également pour votre aide au laboratoire et pour les bonnes tranches de rigolade. Et désolé pour le fer à repasser dans la voiture ! Dominique Poirier je te remercie pour ta bonne humeur perpétuelle au laboratoire, ton aide pour les analyses et ton accompagnement sans faille sur le terrain. Je n'oublierai pas non plus, le fameux pineau frelatée, vive la Charente Libre ! Damien Buquet je te remercie pour (la liste est NON exhaustive) : ta gentillesse, ta dévotion, ta motivation, ton implication dans les discussions scientifiques. J'ai découvert un collègue formidable mais avant tout un ami. Je te souhaite le meilleur. Junior Cotovicz je te remercie pour la petite parenthèse enflammée sud-américaine. Junior, ta bonne humeur, tes conseils scientifiques, ton amitié

m'ont également été d'une grande aide. Mais le plus important c'est que tu as su relever le niveau du futsal...joga bonito ! Je tiens à remercier également de nombreux autres collègues, stagiaires, amis qui ont participé de près ou de loin au bon déroulement de cette thèse. Merci Bruno Deflandre pour les discussions scientifiques comme footballistiques, et également merci pour les fameux breuvages tourbés ; merci Baptiste Voltz pour ton implication dans ton stage par contre je ne te remercie pas pour mon vélo, je te souhaite également le meilleur (loin de tout véhicule à deux roues) ; merci Anne Rapin pour la qualité de ton stage et ta rigueur scientifique ; merci Amandine Reguena pour ton stage ; et également merci à Axel Canredon, Rémy Synays, Camilla Lienart, Barbara Proença, Salomé Mignard, Ludivine Chabaud qui ont su rendre le couloir du B18 vivant. Ce fameux couloir ou l'amplitude thermique est digne du plus rude des climats continentaux.

Au terme de ce parcours, je remercie enfin celles et ceux qui me sont chers et que j'ai quelque peu délaissés ces derniers mois pour achever cette thèse. Leurs attentions et encouragements m'ont accompagné tout au long de ces années. Je suis, et serai éternellement redevable à ma famille, mes parents Mireille et Olivier, ma petite sœur Célia, pour leur soutien moral et leur confiance dans mes choix. J'ai également une pensée toute particulière pour mon cousin Nico, parti malheureusement trop tôt... rest in peace bro ! Mes pensées vont également à ma copine Hélène. Ton soutien, ton aide et ton amour, à ce moment si particulier de ma vie, ont été une vraie bénédiction. J'en suis touché au-delà des mots.

Je tiens également à remercier mes amis proches, ceux de Lyon comme ceux de Bordeaux, des années Gadagne aux années Nansouty, c'est aussi l'amitié qui forge un homme et c'est donc un peu grâce à vous tous que j'ai pu finir cette thèse. Par ordre non logique : Jaydjou, Lacrespe Idron, Rodrigol, Robinhol, Polnight, Quichnight, AdriBrownie, Beubeuzz, Zorino, Jacquouille, JazzyBazz, Varousse, Sakul, Luciano, Tartare, Roulietta, Maxou, Birdhy, Toto, Strouki, Bobo, Tuture, Katichou, Kletou, Pauline, Popo.

Enfin, mes remerciements ne vont pas à Marc Zuckerberg, ni à l'Équipe 21 et encore moins à Be in qui m'ont fait perdre pas mal de temps...

...Jamais dans la tendance mais toujours dans la bonne direction.

LISTE DES FIGURES	. 1
LISTE DES TABLEAUX	. 2
LISTE DES ABREVIATIONS	. 3

RESUME	. 4
ABSTRACT	. 5

INTRODUCTION GENERALE	7
CONTEXTE SCIENTIFIQUE	
CADRE INSTITUTIONNEL	
ORGANISATION DU MEMOIRE	

I.1. LE CYCLE GLOBAL DU CARBONE	
I.2. LE CYCLE DU CARBONE DANS LES ECOSYSTEMES AQUATIQUES CONTINENTAUX	
I.2.1. Les différentes formes de carbone	
I.2.2. Bilan de carbone dans les écosystèmes aquatiques continentaux	
I.3. LES ISOTOPES STABLES DU CARBONE INORGANIQUE DISSOUS	
I.3.1. Définition	
I.3.2. Fractionnement isotopique du système carbonate	35
I.3.3. Variations naturelles du δ^{13} C-DIC	
I.4. CONCLUSION	39

rériels et méthodes

II.1. SITE D'ETUDE	42
II.1.1. Situation géographique et contexte (hydro)géologique	42
II.1.2. Pédologie	46
II.1.3. Le bassin de la Leyre	48
II.2. OBJECTIFS ET STRATEGIE D'ECHANTILLONNAGE	49
II.2.1. Détermination des ordres de rivières	52
II.2.2. Délimitation des bassins versants, de l'occupation des sols et de la lithologie	53
II.2.3. Détermination des débits cumulés de chaque ordre	54
II.3. MESURES IN SITU, PRELEVEMENTS ET ANALYSES	56

III.2.2. Sampling strategy	67
III.2.3. Continuous measurements at the Bilos site	
III.2.4. Discrete sampling	71
III.2.5. Water balance at the Bilos site	72
III.2.6. Groundwater carbon fluxes at the Bilos site	73
III.2.7. Degassing in first order streams	75
III.2.8. Analysis of data	75
III.3. RESULTS	77
III.3.1. Water mass balance	77
III.3.2. Carbon fluxes	80
III.4. DISCUSSION	85
III.4.1. Controls on groundwater fluxes in the Landes de Gascogne pine forest ecosystem	า 85
III.4.2. Production and consumption of dissolved carbon in groundwaters	
III.4.3. Carbon export from groundwater and fate in streams	
III.5. CONCLUSION	
ACKNOWLEDGMENTS	

Abstract	98
RESUME	99
IV.1. INTRODUCTION	. 100
IV.2. MATERIAL AND METHODS	. 102
IV.2.1. Study site	. 102
IV.2.2. Sampling strategy and field work	. 104
IV.2.3. Laboratory analysis	. 107
IV.2.3. Degassing experiment	. 108
IV.2.4. Modeling DIC isotopic equilibration during CO ₂ degassing	. 109
IV.3. RESULTS	. 113
IV.3.1. Hydrology and water mass balance in the Leyre Watershed	. 113
IV.3.2. Spatio-temporal variations of pCO ₂ , TA, DIC and δ^{13} C-DIC	. 115
IV.3.3. Degassing experiment	. 120
IV.3.4. Groundwater spring	. 122
IV.4. DISCUSSION	. 122
IV.4.1. Temporal variations and origin of DIC in groundwater	. 122
IV.4.2. Rapid CO ₂ degassing and DIC isotopic equilibration in first and second order streams.	124
IV.4.3. Carbonate weathering in the third and fourth order streams	. 126
IV.4.4. Budget of DIC at the scale of the Leyre watershed	. 127
IV.5.CONCLUSION	. 135
ACKNOWLEDGMENTS	. 136

V. RESUME	
V.2. INFLUENCE DE L'OCCUPATION DES SOLS SUR	LA SIGNATURE BIOGEOCHIMIQUE DES NAPPES
PHREATIQUES	
V.3 INFLUENCE DE L'OCCUPATION DES SOLS	S ET DU CYCLE HYDROLOGIQUE SUR LA SIGNATURE
BIOGEOCHIMIQUE DES RUISSEAUX DE PREMIERS E	T DE SECONDS ORDRES 147

V.4. EVOLUTION DU SIGNAL BIOGEOCHIMIQUE DE L'AMONT A L'AVAL	153
V.5. BILAN DE MASSE DU CARBONE	158
V.6. CONCLUSION	165
CONCLUSION GENERALE ET PERSPECTIVES	167
BIBLIOGRAPHIE	175
ANNEXES	191
ANNEXE 1 : VARIATIONS TEMPORELLES DANS LES DIFFERENTS ORDRES HYDROLOGIQUES PERIODE D'ECHANTILLONNAGE (JAN. 2014-JUL. 2015) DE LA CONDUCTIVITE, DU PH ET DES M SUSPENSION (SPM)	DURANT LA ATIERES EN
ANNEXE 2 : VARIATIONS TEMPORELLES DANS LES DIFFERENTS ORDRES HYDROLOGIQUES PERIODE D'ECHANTILLONNAGE (JAN. 2014-JUL. 2015) DE TA, DU DIC ET DU δ^{13} C-DIC	durant la 193
ANNEXE 3 : VARIATIONS TEMPORELLES DANS LES DIFFERENTS ORDRES HYDROLOGIQUES PERIODE D'ECHANTILLONNAGE (JAN. 2014-JUL. 2015) DE PCO ₂ , DE CH ₄ ET DE O ₂	DURANT LA
ANNEXE 4. VARIATIONS TEMPORELLES DANS LES DIFFERENTS ORDRES HYDROLOGIQUES PERIODE D'ECHANTILLONNAGE (JAN. 2014-JUL. 2015) DE DOC, DE POC, ET DE POC%	
ANNEXE 5 : CARACTERISTIQUES DES STATIONS D'ECHANTILLONNAGE	
ANNEXE 7 : COMMUNICATIONS ORALES ET POSTERS	215
ANNEXE 8 : SOUTENANCE ORALE (8 DECEMBRE 2016)	

Liste des figures

Figure 1 : Schéma du cycle du carbone.	15
Figure 2 : Illustration schématique du système carbonate dans les eaux naturelles.	20
Figure 3 : Rôle des systèmes aquatiques continentaux dans le cycle global du carbone.	23
Figure 4 : Fractionnements isotopiques du carbone dans le système carbonate.	35
Figure 5 : Gamme de variations théoriques du δ^{13} C-DIC.	37
Figure 6 : Carte de l'occupation des sols des Landes de Gascogne.	43
Figure 7 : Paysage typique des Landes de Gascogne.	44
Figure 8 : Succession litho-stratigraphique des Landes de Gascogne.	45
Figure 9 : Principaux types de sol dans les Landes de Gascogne.	47
Figure 10 : Lithologie du bassin versant de la Leyre.	49
Figure 11 : Localisation des 29 stations de prélèvements.	50
Figure 12 : Map of the Leyre Watershed.	66
Figure 13 : Seasonal variations of hydrological parameters in the Leyre Basin.	78
Figure 14 : Monthly water mass balance at the Bilos site.	79
Figure 15 : Concentration of carbon in Bilos groundwater.	80
Figure 16 : Ecological parameters, storage and export of carbon at the Bilos site.	82
Figure 17 : Residence time of carbon in Bilos groundwater.	84
Figure 18 : Map of the Leyre watershed.	103
Figure 19 : Spatial variations of DIC in the Leyre watershed.	116
Figure 20 : Temporal variations of DIC in the Leyre watershed.	118
Figure 21 : Isotopic equilibration of DIC during experimental degassing.	121
Figure 22 : δ^{13} C-DIC plotted against pCO ₂ , TA and DIC for groundwaters and rivers.	125
Figure 23 : Mass balance of CO ₂ .	134
Figure 24 : Mass balance of CO_2 isotopes.	135
Figure 25 : PCA des eaux de nappes phréatiques superficielles.	144
Figure 26 : Influence de l'occupation des sols.	149
Figure 27 : PCA des ruisseaux de premiers et de seconds ordres.	150
Figure 28 : Ruisseaux lors de la remise en eau.	152
Figure 29 : PCA de la composition chimique des eaux superficielles.	155
<i>Figure 30</i> : Variabilité spatiale des concentrations en carbone le long d'un gradient amont-aval.	157
Figure 31 : Bilan de masse des différentes formes du carbone dans le bassin de la Leyre.	160
Figure 32 : Volumes de mousses observées dans un ruisseau d'ordre 2.	161
Figure 33 : Bilan de carbone du bassin de la Leyre.	163

Liste des tableaux

Tableau 1 : Superficie et % d'occupation du sol des différentes stations d'échantillonnage.	51
Tableau 2 : Caractéristiques de la géométrie de chaque ordre de rivière.	53
Tableau 3 : Drainage (F_d en m^3 km ⁻² d ¹) des rivières d'ordre croissant dans le bassin de la Leyre.	56
Tableau 4 : List of the abbreviations used in the chapter III.	68
Tableau 5 : Pearson's correlation coefficient (r_p) for the different parameters.	76
Tableau 6 : Annual water budget of the Bilos site (in mm).	87
Tableau 7 : Carbon budget (g C $m^{-2} y^{-1}$) in the Leyre watershed throughout the sampling period.	92
Tableau 8 : Conceptual variations of some variables of the studied ecosystem.	95
Tableau 9 : Characteristics of Leyre River catchment and sampling network.	104
Tableau 10 : Drainage (F_d in m^3 km ⁻² d^{-1}) of the different gauging stations in the Leyre Basin.	105
Tableau 11 : Additional river flow measurements in first order streams.	105
Tableau 12 : Spatial distribution of inorganic carbon and ancillary parameters in the Leyre basin	119
Tableau 13 : CO ₂ fluxes and gas transfer velocity (k_{600}) in each stream orders.	130
Tableau 14 : CO2 evasion from various catchments.	131
Tableau 15 : Différences de composition chimique entre eaux de nappes forestières et agricoles.	143
Tableau 16 : Différences de composition chimique entre ruisseaux agricoles et forestiers.	148
Tableau 17 : Distribution spatiale des concentrations de carbone (pour toutes les stations).	156

Liste des abréviations

Ce manuscrit est écrit partiellement en Anglais et en Français ; dans un souci d'homogénéité et de lisibilité, seules les abréviations anglaises seront utilisées.

DOC : carbone organique dissous

- **DIC** : carbone inorganique dissous
- **POC** : carbone organique particulaire
- SPM : matières en suspension
- POC% : teneur en carbone organique particulaire des SPM
- PIC : carbone inorganique particulaire
- TOC : carbone organique total
- OC : carbone organique
- TA : alcalinité totale
- NEP : production nette de l'écosystème
- NPP : production primaire nette de l'écosystème
- GPP : production primaire brute
- Reco : respiration de l'écosystème
- NEE : échanges nets de l'écosystème
- PCA : Analyse en composante principale
- Les décimales sont séparées par des points (.)
- Les milliers sont séparés par des virgules (,)

TRANSFERT DE CARBONE LE LONG DU CONTINUUM VEGETATION-SOL-NAPPE-RIVIERE-ATMOSPHERE DANS LE BASSIN DE LA LEYRE (LANDES DE GASCOGNE, SO FRANCE)

Résumé

Les systèmes aquatiques continentaux sont des vecteurs majeurs du cycle global du carbone, recevant une quantité importante de carbone qu'ils émettent vers l'atmosphère et exportent aux océans. Nous caractérisons les concentrations et les transferts de toutes les formes carbonées à l'interface eau souterraine-ruisseau-atmosphère, dans un bassin versant de plaine, tempéré, forestier et sablonneux, où l'hydrologie se produit majoritairement au travers du drainage des eaux souterraines. Nous suivons différentes stations couvrant l'ensemble de la variabilité du bassin, depuis les eaux souterraines jusqu'à l'exutoire, avec des proportions variables d'occupation du sol. Le DOC est exporté majoritairement en périodes de crues alors que la même quantité de DIC est exportée entre périodes de crues et d'étiages. Le carbone terrestre dérivé des sols forestiers est la source principale de carbone dans les eaux superficielles et seulement 3% de la NEE est exportée. L'occupation du sol modifie localement les formes de carbone dans les ruisseaux mais à l'échelle du bassin la forêt prédomine. Nous quantifions le dégazage de CO₂ en s'appuyant sur un bilan de masse isotopique. Environ 75% du dégazage total se produit dans les ruisseaux de premiers et de seconds ordres, qui se comportent comme des points chauds pour l'émission de CO₂. Ce travail de thèse contribue à une meilleure définition du rôle des ruisseaux et des rivières dans le cycle global du carbone. De manière plus précise, il améliore les connaissances sur la proportion du pompage biologique de CO₂ atmosphérique d'un écosystème qui est exportée vers le réseau hydrographique, ainsi que le devenir de ce carbone en aval.

Mots clefs : bassin versant, nappes phréatiques, rivières, NEE, export de carbone, dégazage de CO₂

CARBON TRANSFER ALONG THE VEGETATION-SOIL-GROUNDWATER-STREAM-ATMOSPHERE CONTINUUM IN THE LEYRE BASIN (LANDES DE GASCOGNE, SO FRANCE)

Abstract

Inland waters are a major component of the global carbon cycle. These systems receive a significant amount of carbon from aquatic and terrestrial sources. A part of this carbon is degassed in the atmosphere while another is exported to the oceans. We characterize the concentrations and transfers of all carbon forms at the groundwater-streamatmosphere interface, in a temperate, forested and sandy lowland watershed, where hydrology occurs in majority through drainage of groundwater. We monitored contrasting study site representative of the diversity of the ecosystem, from groundwater to river mouth, with different proportion of land use. DOC is exported in majority during high flow periods whereas the same amount of DIC is exported between high and base flow periods. Terrestrial carbon that originates from soils forests is the major source of carbon in surface waters but only 3% of the NEE is exported. Land use modifies locally the different forms of carbon in streams but at the basin scale forests predominate. We quantify the degassing of CO₂ based on fairly well balanced isotopic mass balance. About 75% of the total degassing occurs in first and second order streams, which behave as hotspots for CO₂ degassing. This work contributes to a better definition of the role of streams and rivers in the global carbon cycle. Specifically, this work enhances understanding on the proportion of CO₂ pumped by an ecosystem and then exported to the river system, as well as the fate of this carbon downstream.

Key words: watershed, groundwaters, rivers, NEE, carbon export, CO₂ degassing

Introduction générale

Contexte scientifique

Le cycle global du carbone est un cycle biogéochimique majeur du Système Terrestre (atmosphère, océan, végétation, sol, lithosphère) et l'activité anthropique le remanie profondément depuis plusieurs décennies en injectant dans le réservoir atmosphérique d'importantes quantités de carbone fossile sous forme de dioxyde de carbone (CO₂). En effet, avant la première ère industrielle (i.e., 1,750) la pression partielle en CO₂ (pCO₂) dans l'atmosphère (établie à partir de bulles d'air piégées dans des carottes glaciaires) était de 278±2 ppmv (parties par million volumiques), alors qu'elle était de 391±0.5 ppmv en 2011 (Hartmann et al., 2013). Le CO₂, principal gaz à effet de serre, a la capacité d'être transparent au rayonnement solaire incident (0.3-3 µm de longueur d'onde) mais au contraire de pouvoir absorber une partie du rayonnement infrarouge (3-50 µm) diffusé par la Terre. L'accroissement de la teneur en CO₂ atmosphérique provoque ainsi une intensification de l'effet de serre et un réchauffement de l'atmosphère (Hartmann et al., 2013). L'effet de serre est un phénomène naturel qui revêt une importance capitale pour les organismes vivants sur Terre, en contribuant à maintenir une température annuelle de l'air favorable à leur développement. Néanmoins, son augmentation engendre des conséquences qui peuvent être néfastes pour l'environnement, et que l'on nomme « changement global », qui se caractérise entre autres par une remontée du niveau marin par dilatation de l'océan et fonte des glaces, ainsi qu'une perturbation des écosystèmes aquatiques et terrestres, avec une intensification des évènements extrêmes (Prentice et al., 2001).

Ainsi, dans un futur proche, si aucune mesure n'est prise pour diminuer les émissions de carbone, l'Homme s'achemine chaque jour vers davantage de catastrophes météorologiques, écologiques, économiques et humaines. Atténuer le changement climatique nécessite alors de réduire les émissions de carbone fossile, d'une part, et de mieux comprendre comment les différents compartiments du Système Terrestre stockent, émettent ou transfèrent du carbone, d'autre part.

A l'échelle globale, les écosystèmes aquatiques continentaux ont un rôle clef dans les transferts de carbone, en recevant une quantité importante de carbone par le drainage et l'altération (chimique et mécanique) des continents, qu'ils transfèrent aux écosystèmes côtiers (Meybeck, 1982, 1987). Cependant, le transfert de carbone le long du continuum continent-océan n'est pas conservatif (Cole et al., 2007). En effet, les écosystèmes aquatiques continentaux réémettent dans l'atmosphère (i.e., dégazage de CO₂) et

enfouissent dans leurs sédiments une partie du carbone organique qu'ils reçoivent (Cole et al., 2007). De plus, les différents processus qui régissent les transferts et les émissions de carbone au sein de ces écosystèmes sont encore mal contraints et quantifiés. Premièrement, il n'existe encore aucune méthode directe pour déterminer la quantité de carbone transférée depuis le continent vers les écosystèmes aquatiques continentaux. Ce flux d'entrée est généralement déterminé comme étant la quantité capable de contrebalancer les sorties de carbone des écosystèmes aquatiques continentaux (i.e., enfouissement dans les sédiments, dégazage vers l'atmosphère et export aux écosystèmes côtiers) (Cole et al., 2007). Deuxièmement, les méthodes de mesure des émissions de carbone vers l'atmosphère sont toutes limitées dans le temps et l'espace et sont souvent extrapolées à l'ensemble d'un plan d'eau pour obtenir des émissions annuelles. Ainsi, à l'échelle globale, il subsiste de grandes incertitudes dans les bilans de carbone des écosystèmes aquatiques continentaux.

En perturbant le cycle global du carbone, l'Homme a probablement augmenté les transferts de carbone depuis les écosystèmes aquatiques continentaux à la fois vers l'atmosphère et les océans (Regnier et al., 2013). Même si les émissions de carbone des eaux continentales vers l'atmosphère sont relativement modestes par rapport aux autres flux naturels, elles sont significatives par rapport aux flux anthropiques (e.g., le dégazage de carbone des eaux continentales équivaut aux émissions de carbone liées aux changements d'usage des terres). Il devient donc nécessaire de définir de manière précise et robuste les bilans de carbone dans les eaux continentales, aussi bien à l'échelle locale que globale, pour mieux contraindre les processus qui régissent les flux de carbone le long du continuum continent-océan. Il s'agit de comprendre plus précisément les conditions présentes, pour pouvoir prédire quelles seront les réponses de ces écosystèmes face au changement global, puisque des phénomènes de rétroaction positive ou négative vis-à-vis du CO₂ atmosphérique pourraient avoir lieu.

Cadre institutionnel

Cette étude, réalisée au sein du laboratoire EPOC (équipe ECOBIOC) a pu voir le jour grâce au financement du LabEx COTE (Laboratoire d'Excellence qui porte sur l'évolution, l'adaptation et la gouvernance des écosystèmes continentaux et côtiers). Le LabEx COTE regroupe 9 laboratoires de l'Université de Bordeaux (dont EPOC) ainsi que les principaux instituts nationaux de recherche impliqués dans les recherches sur les écosystèmes terrestres et aquatiques. Le LabEx COTE finance des projets innovants, pluridisciplinaires qui permettent de mieux définir et de mieux comprendre les interactions entre les écosystèmes et leurs évolutions à moyen et long terme. Le but principal est de mettre au point des méthodes de gestion adaptative et de gouvernance permettant d'assurer la durabilité des écosystèmes ou de faciliter leur mutation dans le contexte des changements globaux.

Ce travail de thèse faisait partie du projet CNP-Leyre dont l'objectif était de comprendre et décrire les mécanismes contrôlant les flux de carbone, d'azote et de phosphore entre les différentes parties des écosystèmes formant le bassin versant de la Leyre (végétation-sol-nappe-rivière-atmosphère). Cette thèse est focalisée sur l'élément carbone, dans l'optique de comprendre et quantifier des flux de carbone entre ces différentes compartiments. Cette étude s'est notamment appuyée sur une stratégie d'échantillonnage complètement originale couplant hydrologie et biogéochimie.

Organisation du mémoire

Ce manuscrit se structure en 6 chapitres :

Le *chapitre l* est une synthèse bibliographique sur le cycle global du carbone, et le rôle des systèmes aquatiques continentaux dans ce cycle. Il décrit aussi les bases théoriques de l'utilisation des isotopes stables du carbone pour tracer les processus biogéochimiques et définit les objectifs de ce travail de thèse.

Le chapitre II décrit le site d'étude et la stratégie d'échantillonnage définie pour répondre aux objectifs ainsi que les différentes méthodes utilisées sur le terrain et au laboratoire.

Le chapitre III décrit la dynamique du carbone organique et inorganique dissous dans la nappe phréatique superficielle d'une parcelle forestière instrumentée par l'INRA depuis plusieurs années ; il met pour la première fois en relation l'exportation de carbone dissous par drainage avec l'hydrologie et la biogéochimie forestière et fait l'objet d'une publication qui sera prochainement soumise à la revue *Biogeosciences*.

Le chapitre IV quantifie à l'échelle du bassin versant le dégazage de CO₂ issu de la nappe, depuis les rivières vers l'atmosphère, en utilisant notamment une méthode isotopique originale. Il fait l'objet d'un article soumis le 19 Avril 2016 à la revue *Geochimica et Cosmochimica Acta*.

Le *chapitre* V décrit les contrastes en terme d'export de carbone entre milieu forestier et milieu agricole et établit le bilan de toutes les espèces carbonées depuis les eaux souterraines jusqu'à l'exutoire du bassin versant.

Le chapitre VI replace les résultats de cette étude dans le contexte scientifique actuel et propose des perspectives de travail dans la continuité de cette thèse.

CHAPITRE I

Les systèmes aquatiques continentaux et le cycle global du carbone

I.1. Le cycle global du carbone

Le cycle global du carbone est constitué d'un ensemble de réservoirs connectés de manière continue par des flux qui résultent de processus aussi bien physiques que chimiques et biologiques (Fig. 1). D'un réservoir à l'autre, le carbone circule à des vitesses et sous des formes chimiques diverses (i.e., gazeuse, particulaire, dissoute, organique et minérale) ; certains compartiments constituant des réserves plus ou moins importantes, plus ou moins durables, plus ou moins mobilisables. Dans cet ensemble on distingue un compartiment à taux de renouvellement rapide constitué de l'atmosphère, la végétation terrestre, les sols et les systèmes aquatiques continentaux, l'océan, et un compartiment à taux de renouvellement lent qui comprend les roches carbonatées, les réserves fossiles et les sédiments marins (Fig. 1). Le taux de renouvellement (j) d'un réservoir étant défini comme la masse (g) de carbone comprise dans le réservoir divisé par les flux sortants (g j^{-1}) de ce réservoir. Ainsi, le compartiment rapide a des taux de renouvellement qui peuvent varier de quelques mois pour l'océan de surface, de quelques années pour l'atmosphère à des siècles pour les sols et les océans profonds (Ciais et al., 2013). A l'inverse, le compartiment lent a des taux de renouvellement qui dépassent très largement 10,000 ans (Ciais et al., 2013). Ces deux compartiments échangent du carbone au travers du volcanisme (continental et sous-marin), de l'altération chimique et mécanique des continents et de la sédimentation océanique profonde (Sundquist, 1986) (Fig. 1). Même si à l'échelle des temps géologiques, ces mécanismes ont joué un rôle primordial dans les variations et la régulation de la teneur en CO₂ atmosphérique, à l'échelle centennale à laquelle a lieu le changement climatique, ces flux restent relativement faibles et constants (<0.3 Pg C an⁻¹; Ciais et al., 2013). Ils sont alors négligeables par rapport aux flux se déroulant dans le compartiment rapide.

Au sein du compartiment rapide, le réservoir principal est de loin l'océan (38,000 Pg C ; Kump et al., 1999) (Fig. 1). Les autres réservoirs, par ordre de taille, sont constitués par les sols (2,000±500 Pg C ; Batjes, 1996) qui se subdivisent en sols des zones humides (500±200 Pg C ; Bridgham et al., 2006) et pergélisol (1,700 Pg C ; Tarnocai et al., 2009), l'atmosphère (830 Pg C ; Prather et al., 2012) et la végétation terrestre (500±150 Pg C ; Prentice et al., 2001) (Fig. 1).

Figure 1 : Schéma du cycle du carbone construit à partir de Kump et al. (1999) et Ciais et al. (2013). Les stocks et les flux sont en Pg C et Pg C an⁻¹, respectivement. Les boîtes en gras représentent les différents réservoirs (stocks). Les flèches noires représentent les flux naturels de carbone. Les flèches orange représentent les flux anthropiques. Le puits net terrestre est le résultat de la différence entre la production primaire (123±8 Pg C yr⁻¹, Beer et al., 2010) et la respiration totale (hétérotrophe et autotrophe) combinée aux incendies. Le puits net océanique actuel est le résultat net des échanges gazeux de CO₂ entre l'océan et l'atmosphère (i.e., les flux entrants et sortants de l'océan sont respectivement de -80 Pg C yr⁻¹ et de +78.4 Pg C yr⁻¹). De plus, les échanges gazeux sont dirigés par la différence de concentration en CO₂ entre l'océan et l'atmosphère. Ex₁, Ex₂, E₁, E₂ et D représentent respectivement l'export du continent vers les eaux continentales, l'export des eaux continentales vers l'océan, l'enfouissement dans les eaux continentales, l'enfouissement dans les sédiments océaniques et le dégazage des eaux continentales vers l'atmosphère. Les réserves fossiles proviennent de GEA (2006). Les réserves fossiles et les réserves dans les sédiments océaniques sont comprises dans la réserve lithosphérique.

Avant la première ère industrielle (i.e., 1,750), l'atmosphère terrestre échangeait du carbone avec le réservoir terrestre et océanique par le biais de processus naturels (respiration, photosynthèse, dégradation de matière organique et transfert gazeux). De plus, l'atmosphère terrestre préindustrielle contenait environ 590 Pg C et était dans un état proche de l'équilibre avec les autres réservoirs du compartiment rapide (Ciais et al., 2013). De nos jours, l'atmosphère terrestre contient environ 830 Pg C, majoritairement sous forme de dioxyde de carbone (99.5 %), le reste étant partagé entre le méthane (3.7 Pg C), le monoxyde de carbone (0.2 Pg C) et de petites quantités d'hydrocarbones, d'aérosols de carbone noir et de composés organiques volatiles (Ciais et al., 2013). L'augmentation de la teneur en CO₂ atmosphérique (4 Pg C an⁻¹) de l'ère moderne résulte en des flux

anthropogéniques qui se sont additionnés aux flux naturels (Fig. 1). Les flux anthropogéniques sont la combustion de carbone fossile (e.g., charbon, pétrole et gaz) combiné à la production de ciment (7.8 ± 0.6 Pg C an⁻¹) et le changement d'usage des terres (1.1 ± 0.8 Pg an⁻¹) causé par la déforestation et la mise en culture des surfaces terrestres (Ciais et al., 2013) (Fig. 1). On estime qu'environ 50 % des émissions anthropiques actuelles sont réabsorbées par la végétation terrestre (2.6 ± 1.2 Pg C an⁻¹) et les océans (2.3 ± 0.7 Pg C an⁻¹) (Ciais et al., 2013) (Fig. 1). La végétation terrestre et les océans sont donc considérés « en moyenne » comme des puits de carbone, le terme « en moyenne » signifiant que certaines régions, à certaines périodes de l'année, agissent comme des puits et, à d'autres comme des sources de CO₂ pour l'atmosphère.

I.2. Le cycle du carbone dans les écosystèmes aquatiques continentaux

I.2.1. Les différentes formes de carbone

Le carbone dans les milieux aquatiques se rencontre soit sous forme dissoute (DIC, DOC), particulaire (PIC, POC), organique (DOC, POC) ou inorganique (DIC, PIC). La différence entre carbone dissous et particulaire se définit analytiquement par filtration à 0.45 μ m (Meybeck, 1982). Chaque forme de carbone a une composante résultant de processus externes, et une composante résultant de processus internes au milieu aquatique.

Le carbone organique particulaire (POC) et dissous (DOC) dans les eaux continentales est principalement d'origine externe (Meybeck, 1993; Hope et al., 1994). Les entrées externes de carbone organique dans les eaux continentales peuvent provenir directement de la végétation, au travers de la chute directe de litière (Thurman, 1985) ou de la lixiviation des acides organiques de la végétation riparienne liée au ruissellement sur les troncs et les feuilles (Koprivnjak and Moore, 1992). On considère que le DOC issu de la lixiviation des acides organiques est très réactifs et n'atteint en général pas l'océan (Meybeck, 1993). Le carbone organique dans les eaux continentales peut également provenir de la lixiviation et de l'érosion des sols et des litières (Meybeck, 1993) et du drainage des nappes phréatiques (Schiff et al., 1997; Striegl et al., 2005). Le carbone mobilisable dans les sols est issu de l'exsudation racinaire, du renouvellement des racines fines et de la chute de litière (Davidson and Janssens, 2006). Le POC peut également provenir de processus aquatiques internes, au travers de la production primaire du

phytoplancton et des plantes aquatiques (Battin et al., 2008). Le DOC peut également provenir de l'hydrolyse du POC dans le milieu aquatique.

Le carbone inorganique particulaire (PIC) se rencontre aussi dans le milieu aquatique sous la forme calcite ou aragonite (CaCO₃) et calcites magnésiennes (Ca_xMg₁. _xCO₃). Le PIC dans les eaux continentales est issu de l'altération mécanique des roches carbonatées (Meybeck, 1993). La calcite et l'aragonite sont en équilibre avec la phase aqueuse selon la réaction suivante :

 $CaCO_{3} \stackrel{Ksp}{\longleftrightarrow} Ca^{2+} + CO_{3}^{2-}$ (Eq. 1)

 $K_{sp} = [Ca^{2+}][CO_3^{2-}]$ (Eq. 2)

Où,

 K_{sp} est le produit de solubilité de la calcite, de l'aragonite, qui est également fonction de la température, de la pression et de la salinité. On définit ensuite l'indice de saturation de la calcite noté Ω :

 $\Omega = [Ca^{2+}]_{fw}[CO_3^{2-}]_{fw} / K_{sp}$ (Eq. 3)

Où,

 $[Ca^{2+}]_{fw}$ et $[CO_3^{2-}]_{fw}$ sont les concentrations en Ca^{2+} et CO_3^{2-} dans les eaux continentales considérées et K_{sp} est le produit de solubilité de CaCO₃ dans les conditions in situ de température, de pression et de salinité (Zeebe, 2012).

La précipitation de calcite est un processus lent qui se produit rarement spontanément, sans médiation biologique. En effet, dans les rivières eutrophisées ou le pH peut excéder 9.0 pendant la journée, CaCO₃ peut précipiter (Meybeck, 1993). Cependant, dans certaines conditions physico-chimiques rares, le PIC peut également précipiter sans aucune influence phytoplanctonique (Feng and Kempe, 1987). Par contre, la dissolution de la calcite est un

phénomène très rapide qui se produit dès qu'on atteint la sous-saturation ($\Omega < 1$) (Wollast, 1994). K_{sp} est fonction de la température, de la pression et de la salinité, mais une éventuelle précipitation/dissolution est généralement due au déplacement des équilibres du système acide carbonique en augmentant/diminuant le terme [CO₃²⁻] (voir Eq. 10).

Le carbone inorganique dissous (DIC) est la forme majoritaire de carbone inorganique dans les eaux continentales. Le DIC est composé majoritairement des trois espèces suivantes

- le CO₂ dissous, CO_{2(aq)}.

- les ions bicarbonates, HCO₃⁻.

- les ions carbonates, CO32-.

Il existe également une quatrième forme mineure : l'acide carbonique (H₂CO₃) dont la concentration est inférieure à 0.3 % de $[CO_{2(aq)}]$ (les crochets représentent les concentrations) (Zeebe and Wolf-Gladrow, 2001; Zeebe, 2012). La somme de $[CO_{2(aq)}]$ et $[H_2CO_3]$ définit alors le terme $[CO_2^*]$. Ainsi :

 $DIC = [CO_2^*] + [HCO_3^-] + [CO_3^{2-}]$ (Eq. 4)

En raison des échanges avec l'atmosphère, le CO_2 aqueux est en équilibre thermodynamique avec le CO_2 atmosphérique (Zeebe and Wolf-Gladrow, 2001; Zeebe, 2012) (Fig. 2).

 $\begin{array}{c} K0\\ \text{CO}_{2(g)} \overleftrightarrow{} \text{CO}_{2(aq)}\\ (\text{Eq. 5})\end{array}$

Où

 K_0 est le coefficient de solubilité du CO_2 qui est dépendant de la température, de la salinité (Weiss, 1974). [CO_2^*] et la pression partielle en CO_2 dans l'eau ($pCO_{2(aq)}$) obéissent à l'équation [CO_2^*] = $K_0 pCO_{2(aq)}$ (Zeebe, 2012). Où la pression partielle en CO_2 dans l'eau

 $(pCO_{2(aq)})$ est exprimée en atm et la constante de solubilité du CO_2 (K₀) en mol L⁻¹ atm⁻¹ et la concentration en CO_2^* en mol L⁻¹.

Le CO₂ dissous dans l'eau s'hydrate en acide carbonique, qui réagit avec les ions hydrogènes (pH = $-\log[H^+]$), et se dissocie en ions bicarbonates et carbonates à travers les équilibres suivants :

$$K_{1} = [H^{+}][HCO_{3}^{-}]/[CO_{2}^{*}] = 10^{-pH}[HCO_{3}^{-}]/[CO_{2}^{*}]$$

$$(Eq. 7)$$

$$HCO_{3}^{-} \stackrel{K2}{\Leftrightarrow} CO_{3}^{2-} + H^{+}$$

$$(Eq. 8)$$

$$K_2 = [H^+][CO_3^{2^-}]/[HCO_3^{-}] = 10^{-pH}[CO_3^{2^-}]/[HCO_3^{-}]$$

(Eq. 9)

Où,

 K_1 et K_2 sont la première et la deuxième constante d'équilibre thermodynamique du système de l'acide carbonique en mol L⁻¹. Ces constantes sont contrôlées par la température, la salinité et la pression.

La combinaison des équilibres entre acide carbonique et bicarbonate, et entre bicarbonate et carbonate conduit à la réaction d'équilibre suivante :

 $CO_2^* + CO_3^{2-} + H_2O \Leftrightarrow 2HCO_3^{-}$ (Eq 10)

Figure 2 : Illustration schématique du système carbonate dans les eaux naturelles. CO_2 est échangé entre les eaux naturelles et l'atmosphère au travers de l'équilibration entre $pCO_{2(g)}$ et $pCO_{2(aq)}$. Ces échanges sont régis par le gradient de pCO_2 entre l'eau et l'air et k_{600} (i.e., la vitesse de transfert gazeuse à l'interface eau-air, voir partie I.2.2. *le dégazage de carbone vers l'atmosphère*). K_0 , K_1 et K_2 sont le coefficient de solubilité du CO_2 , la première et la seconde constante de dissociation de l'acide carbonique, respectivement.

Contrairement aux vitesses d'échanges entre gaz et liquide, de l'ordre de quelques jours, les cinétiques de réactions entre espèces dissoutes sont de l'ordre du centième de seconde (Jupin, 1996). Les différentes formes de DIC dans les systèmes aquatiques sont donc en équilibre permanent. Toute modification de la concentration d'une de ces espèces déplace les équilibres et modifie l'abondance des autres formes. Par exemple, lors d'un ajout de CO_2^* , la quantité d'HCO₃⁻ augmente tandis que celle du CO_3^{2-} diminue (déplacement de l'équilibre vers la droite de l'Eq. 10).

L'alcalinité totale (TA) permet également de décrire le système des carbonates. TA est une forme de conservation de la masse pour l'ion hydrogène. Elle est rigoureusement définie (Dickson, 1981) comme « …le nombre de moles d'hydrogène équivalente à l'excès d'accepteur de protons (bases formées à partir d'acides faibles avec une constante de dissociation $K \le 10^{-4.5}$ à 25 °C et une force ionique de zéro) par rapport aux donneurs de protons (acides avec K > 10^{-4.5}) dans un kilogramme d'échantillon ». Ainsi :

 $TA = [HCO_3^{-1}] + 2[CO_3^{2-1}] + [OH^{-1}] + [B^{-1}] - [H^{+1}]$ (Eq. 11) Où,

[B⁻] représente dans les eaux marines l'ensemble des bases faibles autres que les ions carbonate et bicarbonate, soit les ions borate, sulfate, fluorure. Dans les eaux continentales drainant des sols très organiques [B⁻] représente également les acides organiques humiques et fulviques (Abril et al., 2015).

Cependant, dans les systèmes aquatiques continentaux les concentrations en B⁻, OH⁻ et H⁺ sont généralement négligeables par rapport aux ions carbonate et bicarbonate. Ainsi, dans de nombreuses eaux continentales (mais pas toutes) l'alcalinité totale devient l'alcalinité carbonatée (CA) :

 $TA = CA = [HCO_3^{-1}] + 2[CO_3^{2-1}]$ (Eq. 12)

DIC et TA sont des paramètres conservatifs, i.e., leurs concentrations mesurées en unités gravimétriques (mol kg⁻¹) ne sont par exemple pas affectées par des changements de pression ou de température, et en l'absence de réaction apportant ou retirant l'une des 3 formes CO₂*, HCO₃⁻ ou CO₃²⁻, obéissent à une loi de mélange linéaire (Zeebe, 2012). Parmi toutes les concentrations des différentes espèces du système carbonate et ses différents paramètres, seulement pCO₂, pH, DIC et TA peuvent être déterminés analytiquement (Dickson et al., 2007). De plus, les concentrations en OH⁻ et la pression partielle en CO₂ (pCO₂) peuvent être facilement déterminées avec la constante de dissociation de l'eau et la loi de Henry. En utilisant ensuite la première (Eq. 7) et la seconde (Eq. 9) constante de dissociation de l'acide carbonique, ainsi que la définition du DIC (Eq. 4) et de TA (Eq. 12), on obtient quatre équations avec six inconnues. En conséquence, si deux de ces paramètres (i.e., pCO₂, pH, DIC et TA) sont connus, le système se simplifie en quatre équations à quatre inconnues. Ainsi, tous les autres paramètres (pCO₂, [CO₂*], [HCO₃⁻], [CO₃²⁻], pH, DIC et TA) peuvent être calculés pour une température, une salinité et une pression données (Zeebe and Wolf-Gladrow, 2001). Néanmoins, dans certains milieux aquatiques comme les rivières acides (pH < 6) drainant des podzols avec une forte concentration d'acides organiques, le calcul à partir de pH et TA surestime très largement les valeurs de pCO₂ (i.e., de +864 à +3,180 % pour des eaux avec un pH < 6) (Abril et al., 2015). Notamment car les acides organiques sont chargés négativement et ont alors une influence sur la valeur de TA, mais aussi car dans ces eaux peu alcalines et acides, l'effet des équilibres du système carbonate sur le pH devient minoritaire par rapport à celui des acides organiques.

TA dans les eaux continentales provient majoritairement de l'altération chimique des roches silicatées et carbonatées sur le bassin versant (Meybeck, 1987; Ludwig et al., 1998; Amiotte-Suchet et al., 2003). Lors de l'altération chimique des roches silicatées, la totalité du DIC produit provient du CO₂ issu directement de l'atmosphère ou indirectement au travers de la respiration de carbone organique dans le sol :

 $3H_2O + 2CO_2 + CaSiO_3$ (ou MgSiO₃) $\rightarrow Ca^{2+}$ (ou Mg²⁺) + $2HCO_3^{-} + Si(OH)_4$ (Eq. 13)

Lors de l'altération chimique des roches carbonatées une moitié du DIC produit vient de l'atmosphère, l'autre provient de la roche (ou du minéral) elle-même :

 $CaCO_3 + CO_2 + H_20 \rightarrow Ca^{2+} + 2HCO_3^{-1}$ (Eq. 14)

La fraction CO₂ du DIC provient de la respiration aérobie (autotrophe ou hétérotrophe) de carbone organique (i.e., CH₂O) :

 $CH_2O + O_2 \rightarrow CO_2 + H_2O$ (Eq. 15)

Le CO₂ dans les eaux continentales peut être ainsi issu de la respiration aquatique (Duarte and Prairie, 2005; Battin et al., 2008), de la respiration du sol (Raich and Schlesinger, 1992), de la respiration dans les nappes phréatiques (Craft et al., 2002) ou des échanges gazeux avec l'atmosphère (voir partie I.2.2 *le dégazage de carbone vers l'atmosphère*).

I.2.2. Bilan de carbone dans les écosystèmes aquatiques continentaux

La problématique traitée ici concerne le rôle des écosystèmes aquatiques continentaux vis à vis du CO₂ atmosphérique, c'est-à-dire tout ce qui concerne les flux de matière organique et de CO₂. Par contre, les flux d'alcalinité sont considérés comme conservatifs depuis les roches où a lieu l'altération jusqu'à l'océan.

Les écosystèmes aquatiques continentaux ont longtemps été considérés comme un composant mineur du cycle global du carbone, dont l'unique rôle était de connecter de

manière passive (i.e., « passive pipe », transport conservatif) les réservoirs terrestres et océaniques (Fig. 3). Ainsi, Livingstone (1963) considérait les eaux continentales comme étant toutes en équilibre avec l'atmosphère. Leopold et al. (1964) décrivait les fleuves comme des « *gouttières emportant la ruine des continents* », montrant la force du paradigme qui existait à l'époque. Cole et al. (2007) ont été les premiers à démontrer que les systèmes aquatiques continentaux sont des conduits qui connectent de manière active (i.e., « active pipe », transport non conservatif) les réservoirs terrestres et océaniques (Fig. 3). Par la suite, de nombreux auteurs se sont intéressés à ce nouveau concept, affinant d'année en année les flux de carbone de l'active pipe, aussi bien à l'échelle régionale que globale (Tranvik et al., 2009; Aufdenkampe et al., 2011; Butman and Raymond, 2011; Raymond et al., 2013; Regnier et al., 2013; Abril et al., 2014; Borges et al., 2015).

Figure 3: Vue schématique simplifiée du rôle des systèmes aquatiques continentaux dans le cycle global du carbone, adapté de Cole et al. (2007). A : le concept du « passive pipe » où les systèmes aquatiques continentaux transportent du carbone (organique et inorganique) jusqu'aux océans à raison de 0.9 Pg C an⁻¹ (voir le texte). En faisant l'hypothèse que ce transport est passif, cela implique que 0.9 Pg C an⁻¹ est aussi exporté depuis le continent vers les écosystèmes aquatiques continentaux. B : Le concept de l' « active pipe » où les systèmes aquatiques continent dans les sédiments et dégazent du CO₂ vers l'atmosphère. Pour équilibrer ces flux, est alors nécessaire que 1.9 Pg C an⁻¹ soient exportés depuis les écosystèmes terrestres vers les écosystèmes aquatiques.

L'export de carbone, des fleuves aux océans :

A cause d'une insuffisance de mesures il est difficile de rassembler une base de données comprenant plus de 50 % des fleuves mondiaux, qu'elle soit classée en fonction de la décharge globale aux océans ou de la surface de drainage globale (Meybeck, 1993). Pour ces deux méthodes de classement, les 200 premiers fleuves représentent 60 % de la décharge globale et 70 % de la surface de drainage globale (Meybeck, 1988), mais la plupart de ces rivières ne sont pas étudiées. Estimer les apports globaux de carbone par les rivières et les fleuves nécessite alors une extrapolation des rivières documentées (Meybeck, 1982, 1993)

Une extrapolation globale des flux de carbone nécessite en premier lieu d'estimer la représentativité de la base de données utilisée. Baumgartner and Reichel (1975) ont établi un bilan hydrologique global et ils estiment que la décharge mondiale des rivières à l'océan est de 37,400 km³ an⁻¹ (ce chiffre n'inclut pas les régions polaires) avec une aire de drainage de 99.9 10⁶ km². La bonne représentativité des données peut être agréée lorsque la base de données représente au moins 50% de la décharge globale à l'océan (ou de l'aire de drainage globale) ; ou que le débit spécifique moyen de la base de donnée soit équivalent au débit spécifique moyen global de 11.8 L s⁻¹ km⁻² (i.e., 37,400 km³ an⁻¹ pour 99.9 10⁶ km²) (Meybeck, 1982, 1988). Différentes extrapolations sont alors possibles :

La première méthode, probablement la plus intéressante et la plus précise, consiste à relier les concentrations (g C m⁻³) ou le taux d'export (t C km⁻² an⁻¹) de carbone à l'embouchure de différents fleuves mondiaux avec des variables environnementales aussi bien climatiques, biologiques que géomorphologiques (Amiotte-Suchet and Probst, 1995; Ludwig et al., 1996, 1998; Amiotte-Suchet et al., 2003).

Plus précisément pour les flux de carbone organique total (i.e., TOC) et de matières en suspension (i.e., SPM), Ludwig et al. (1996) se basent sur les meilleurs modèles de régression possibles pour décrire les flux globaux de carbone (en fonction des variables environnementales choisies) à partir d'une base de données de 60 bassins versants couvrant 50 % de l'aire de drainage globale. À partir de ces relations empiriques et un modèle hydrologique global, Ludwig et al. (1996) estiment alors les exports de TOC et de SPM par biome, par océan ou par continent, en ayant au préalable fait une classification bioclimatique des différents bassins étudiés. Finalement, ils démontrent que la proportion de carbone organique particulaire (i.e., POC) dans les SPM diminue avec les concentrations en

SPM qui augmentent, notamment à cause de la dilution du POC avec des particules minérales dans les rivières turbides. Les flux de SPM dans les eaux continentales dépendant principalement de l'intensité du drainage et de la pluie ainsi que de la pente du bassin. Le DOC est également prédit par l'intensité du drainage et la pente du bassin ainsi que la quantité de carbone enfoui dans les sols (Ludwig et al., 1996).

D'une autre manière, les flux d'export de DIC par les rivières ont été déterminés à partir du flux de consommation du CO₂ atmosphérique ou du sol par l'altération chimique des roches (FCO₂) (Amiotte-Suchet and Probst, 1993, 1995). FCO₂ est principalement fonction du drainage et du type de roche drainée par les eaux de surface (Amiotte-Suchet and Probst, 1993, 1995). Des relations empiriques par types de roches ont été déterminées en utilisant des mesures de débits et de TA à l'embouchure de 232 petits bassins versants monolithologiques étudiés par Meybeck (1987), qui ont ensuite été classés en 6 sous-catégories lithologique (e.g., sableuse, schisteuse, magmatique/métamorphique, carbonatée, volcanique, basaltique). Pour chaque bassin versant (FCO₂) a été déterminé en considérant qu'il est égal au flux d'HCO₃ (TA) pour les bassins silicatés et à la moitié du flux d'HCO₃ (TA) pour les bassins carbonatés (voir Eq. 13-14). Ensuite un modèle linéaire reliant drainage et (FCO₂) est établi pour chaque sous-catégorie lithologique. Une correction liée au climat est apporté par Ludwig et al (1998) pour pallier au fait que les 232 bassins versants ont une faible représentativité spatiale (<8 km²) et climatique (les bassins se situent tous en France) (Meybeck, 1987). En effet, la cinétique d'altération chimique des roches dépend de facteurs tels que la température, la pluviométrie, la pCO₂ des sols (Raymond and Cole, 2003; Goudie and Viles, 2012) qui sont eux-mêmes reliés au climat. Ensuite en extrapolant ce modèle linéaire avec un modèle hydrologique et un modèle lithologique global, le flux de DIC par les rivières est alors estimé (Amiotte-Suchet and Probst, 1995; Amiotte-Suchet et al., 2003). Il faut souligner que ce modèle (GEM-CO₂) a été validé en le comparant à des données mesurées à l'embouchure de différents bassins. Finalement, l'export de DIC est prédit par l'intensité du drainage ainsi que la proportion de carbonates et de silicates dans le bassin versant considéré (Meybeck, 1987; Ludwig et al., 1998; Amiotte-Suchet et al., 2003; Cai et al., 2008).

Une méthode d'extrapolation plus simple est aussi possible si la base de données est représentative. En faisant l'hypothèse soit que la concentration moyenne de C est constante ou soit que le flux d'export spécifique de la base de données est constant. On peut ensuite extrapoler les flux de C en connaissant le pourcentage de débit (ou d'aire de drainage) que la somme des rivières considérées représente par rapport au débit global des rivières (ou l'aire de drainage globale des rivières) (Livingstone, 1963; Holeman, 1968; Alekin and
Brazhnikova, 1968). La deuxième hypothèse étant préférable car les aires de drainage peuvent être déterminées avec grande précision alors que l'estimation des débits varie considérablement (Meybeck, 1993). Cependant, lorsque l'Amazone est inclus dans la base de données, la représentativité est biaisée à cause de son très fort débit (Meybeck, 1993). Dans le but de réduire ce biais, une deuxième méthode d'extrapolation consiste à déterminer un flux spécifique moyen d'export (g C m⁻² an⁻¹) de carbone par biome (e.g., toundra, tropical, tempéré) en considérant les rivières choisies comme représentatives de ces biomes, puis à l'extrapoler à la surface totale (m²) de chaque biome (Meybeck, 1993). Cette méthode reste problématique car les grands systèmes fluviaux ne sont rarement exclusifs que d'un seul type de biome (Ludwig et al., 1996). De plus, les concentrations en carbone dans les rivières de chaque biome varient aussi considérablement (Ludwig et al., 1996). Ensuite on peut extrapoler ces flux d'export de carbone (g C an⁻¹) à l'échelle globale en connaissant le pourcentage de débit (ou d'aire de drainage) que la somme des rivières considérées représente par rapport au débit global des rivières (ou l'aire de drainage globale des rivières).

Dans leur synthèse, Cole et al. (2007) estiment les flux de carbone à l'océan comme la moyenne des différents flux globaux disponibles dans la littérature. Pour le TOC, ces flux varient de 0.38 Pg C an⁻¹ (Degens et al., 1991) à 0.53 Pg C an⁻¹ (Stallard, 1998), et pour le DIC, de 0.21 Pg C an⁻¹ (Amiotte-Suchet and Probst, 1995) à 0.30 Pg C an⁻¹ (Stallard, 1998). Cole et al. (2007) ajoutent en plus une contribution directe des nappes phréatiques à l'océan (0.13-0.25 Pg C an⁻¹), calculée à partir de valeurs moyennes d'alcalinité (Cai et al., 2003) et de DOC (Simpkins and Parkin, 1993) dans les nappes phréatiques proches des océans et de la décharge globales des eaux souterraines à l'océan (estimer comme étant égal à 5-10 % de la décharge globale des rivières). Finalement, Cole et al. (2007) considèrent que 0.9 Pg C an⁻¹ rejoint les écosystèmes côtiers. Cet export fluvial est similaire à celui déterminé 25 ans plus tôt par Meybeck (1982).

L'enfouissement de carbone dans les écosystèmes aquatiques continentaux :

Cole et al. (2007) estiment l'enfouissement global de carbone dans les lacs et les réservoirs artificiels à 0.23 Pg C an⁻¹ (Fig. 3). L'enfouissement dans les écosystèmes fluviaux est quant à lui supposé négligeable (Cole et al., 2007). Pour calculer ce bilan, Cole et al. (2007) se réfèrent à plusieurs études (Meybeck, 1993; Dean and Gorham, 1998; Stallard, 1998; St Louis et al., 2000; Einsele et al., 2001) basées sur des taux de

26

sédimentation par type de systèmes (e.g., réservoirs artificiels, petit lacs, grands lacs) extrapolés à la surface totale de chaque système. Les taux de sédimentation sont déterminés à partir de carottes sédimentaires datées dans lesquelles sont mesurées la masse volumique du sédiment et sa teneur en carbone organique (Dean and Gorham, 1998). Généralement, l'enfouissement de carbone dans les lacs et réservoirs augmente avec la productivité nette, et est inversement proportionnel à la taille du lac et/ou réservoir (Paterson et al., 1998; Kortelainen et al., 2004). L'enfouissement global de carbone dans les écosystèmes aquatiques continentaux représente alors un flux important par rapport à la surface qu'ils occupent. Effectivement, au moins autant de carbone organique est enfoui dans les sédiments aquatiques continentaux que dans les sédiments marins (Fig. 1).

Le dégazage de carbone vers l'atmosphère :

Le dégazage est la conséquence de la sursaturation en CO₂ des eaux de surface par rapport à l'atmosphère (Frankignoulle et al., 1996). Il est calculé selon l'équation suivante :

 $Fco_2 = kco_2 S \Delta co_2$ (Eq. 16)

Où,

Fco₂, est le flux de dégazage de CO₂ (g C an⁻¹), kco₂ la vitesse de transfert du CO₂ (m an⁻¹), S la surface du réseau hydrographique (m²) et Δ co₂ le gradient de concentration en CO₂ entre l'eau et l'atmosphère en (g C m⁻³).

La vitesse de transfert du CO_2 (kco₂) est une variable clef dans l'estimation des échanges de carbone avec l'atmosphère, et son estimation est délicate car elle est influencée par plusieurs facteurs physiques et morphologiques (Raymond and Cole, 2001). De plus, la mesure directe de kco₂ est difficile et rare. kco₂ est contrôlée par la dissipation turbulente à l'interface air-eau et peut être obtenue selon différentes méthodes de mesure directes (Wanninkhof, 1992; Raymond and Cole, 2001; Zappa et al., 2007) :

- à partir d'un gaz traceur (e.g., naturel comme le radon ou injecté comme le propane), puis en mesurant sa perte en aval au cours du transit des eaux et en la ramenant ensuite à la surface d'échange (Elsinger and Moore, 1983; Dinsmore et al., 2010; Wallin et al., 2011). - à partir de chambres flottantes, dans lesquelles sont mesurées les changements de concentration en gaz au cours du temps (Richey et al., 2002; Billett and Moore, 2008).

- à partir d'un bilan de masse d'oxygène (Devol et al., 1987).

Les injections de gaz traceur sont plus adaptées aux petites rivières et présentent l'avantage d'être non-intrusives et de ne pas perturber le milieu ; elles permettent aussi d'obtenir des mesures sur des échelles de temps variant de l'heure au jour et des échelles spatiales intégrant plusieurs km² (Raymond and Cole, 2001). Au contraire, les chambres flottantes mesurent des échanges instantanés sur une surface réduite (< 1 m²) (Raymond and Cole, 2001). De plus, les chambres flottantes peuvent perturber la turbulence à l'interface air-eau soit en limitant l'impact du vent, soit au contraire en générant artificiellement des remous (Broecker and Peng, 1984).

La rareté et la difficulté des mesures directes de kco₂ a contraint la communauté scientifique à développer des équations prédictives empiriques de kco₂. Pour les lacs et les estuaires ces modèles sont basés sur des équations en fonction de la vitesse du vent (Jacobs et al., 1999; Borges et al., 2004; Zappa et al., 2007) tandis que pour les ruisseaux et les rivières ils sont basés sur des équations en fonction de la pente, la vélocité de l'eau, le débit et la profondeur (Raymond et al., 2012).

Les surfaces des eaux continentales sont estimées de manière relativement précise à l'aide de bases de données géo-spatiales combinée à des équations hydrauliques (Butman and Raymond, 2011; Raymond et al., 2013). Par exemple, pour les ruisseaux et les rivières, la base de données HydroSHEDS (Lehner et al., 2008) permet d'estimer la longueur du réseau hydrographique, et des modèles de paramètres hydrauliques qui sont fonction du débit permettent d'en obtenir la largeur (Fekete et al., 2002).

Evolution de l'estimation du dégazage de carbone :

La première estimation du dégazage global de CO_2 (0.75 Pg C an⁻¹) depuis les écosystèmes aquatiques continentaux a été réalisée par Cole et al. (2007), se référant pour les lacs à Cole et al. (1994) et Sobek et al. (2005), pour les fleuves à Cole and Caraco (2001) et pour les estuaires à Frankignoulle et al. (1998) et Borges (2005). Cependant, les estimations de Cole et al. (1994) et Cole and Caraco (2001) sont basées sur peu de données et restent imprécises. Par exemple, pour les lacs globaux, Cole et al. (1994)

utilisent une pCO₂ moyenne (1,036 ppmv), une valeur de kco₂ fixe (0.5 m j⁻¹), et n'apportent aucune précision sur la proportion de la surface des lacs globaux que représentent les 1,835 lacs étudiés. Ces auteurs précisent toutefois que les lacs étudiés ne sont pas distribués géographiquement de manière équivalente, les écosystèmes tempérés et boréaux étant davantage représentés par rapport aux écosystèmes tropicaux. Pour les fleuves, Cole and Caraco (2001) estiment un dégazage de CO₂ de 46 fleuves mondiaux (i.e., en utilisant leur pCO₂ moyenne et un kCO₂ fixé à 0.8 m j⁻¹). Ils estiment alors que ces 46 fleuves mondiaux sont représentatifs des eaux continentales mondiales, sans préciser ce que ces fleuves représentent par rapport à la décharge ou l'aire de drainage globale (voir partie I.2.2. *export de carbone, des fleuves aux océans*). Finalement, Cole and Caraco (2001) estiment les flux globaux de CO₂ en extrapolant le dégazage moyen de CO₂ (e.g., 93 mmol m⁻² j⁻¹) de ces 46 fleuves en le multipliant par la surface du miroir d'eau mondiale (e.g., 0.5% de la surface des terres émergées).

Tranvik et al. (2009) affinent ce flux (1.4 Pg C an⁻¹) en prenant en compte le dégazage depuis les lacs salés (Duarte et al., 2008) et l'hétérotrophie nette des ruisseaux (Battin et al., 2008) qui ne sont pas pris en compte par Cole et al. (1994) et Cole and Caraco (2001).

Par la suite, Raymond et al. (2013) font une analyse plus détaillée de la surface des eaux continentales et des vitesses de transfert en utilisant une base de données hydrographique globale (Lehner et al., 2008), combinées à des lois de proportionnalité de rivières (Leopold and Maddock Jr, 1953; Dodds and Rothman, 2000), des estimations de débits (Fekete et al., 2002) et des nouvelles connaissances sur le contrôle des vitesses de transfert dans les eaux continentales basées notamment sur des relations empiriques en fonction de critères objectifs (e.g., pente, vitesse) (Alin et al., 2011; Raymond et al., 2012). Raymond et al. (2013) ont ensuite combiné ces nouvelles approches avec la base de données mondiale GLORICH de pCO₂ calculées à partir du pH et de l'alcalinité (1.27 millions d'échantillons disponibles distribués sur 17,000 stations). Chaque paramètre (i.e., surface hydrographique, pCO₂, kco₂, dégazage) a été ensuite extrapolé pour chaque bassin COSCAT, la base de données mondiale des 151 bassins versants connectés à l'océan (Meybeck et al., 2006). Cette analyse plus détaillée a permis d'obtenir de manière précise le dégazage global depuis les écosystèmes fluviaux (1.8±0.25 Pg C an⁻¹) ainsi que depuis les lacs et réservoirs (0.32 Pg C an⁻¹). Cependant, le fait que cette estimation (ainsi que les précédentes) soit basée sur un calcul de la pCO₂ et non pas de mesure directe pose la question de sa validité. En effet, les récents travaux d'Abril et al. (2015) suggèrent que les pCO₂ calculées à partir de pH, TA et température de l'eau sont significativement surestimées (jusqu'à 300 % en moyenne dans le fleuve Congo), particulièrement dans des environnements peu alcalins et fortement concentrés en DOC, comme de nombreuses rivières tropicales et boréales qui contribuent très fortement au flux total calculé par Raymond et al. (2013).

Battin et al. (2008) ont calculé l'hétérotrophie nette globale (0.32 Pg C an⁻¹) des ruisseaux, rivières et estuaires, en analysant 130 publications ou sont estimées à la fois la production primaire et la respiration aquatique. De plus, Battin et al. (2008) estiment que ce flux est probablement sous-estimé car les surfaces des ruisseaux et rivières sont difficiles à estimer, les plaines d'inondations ne sont pas incluses et les systèmes tropicaux sont sous-représentés. Toutefois, cette estimation suggère que l'hétérotrophie nette fluviale n'explique que 18 % du dégazage depuis les rivières. En conséquence, il existe des sources externes de CO_2 qui sont capables de soutenir le flux global de dégazage des eaux continentales. Ces sources externes sont le drainage des sols et des nappes phréatiques (Hotchkiss et al., 2015) ainsi que celui des zones humides inondables qui sont exportatrices de CO_2 dissous (Abril et al., 2014).

Le CO₂ externe est produit dans les sols par la respiration du sol qui provient à 50 % de la respiration des racines (autotrophe), à environ 40 % de la décomposition de la matière organique récente (issue de la végétation sus-jacente) par les microbes et la faune du sol (hétérotrophe) et en plus faible proportion (10 %) de l'oxydation chimique de matériaux carbonés plus anciens et plus récalcitrants (Raich and Schlesinger, 1992; Ryan and Law, 2005). Le facteur de contrôle principal de la respiration du sol est la disponibilité en substrat (matière organique d'origine terrestre), même si des facteurs environnementaux comme la température jouent aussi un rôle important (Knorr et al., 2005; Davidson and Janssens, 2006). Le CO₂ peut également être produit dans les nappes phréatiques par la respiration (Craft et al., 2002). Abril et al. (2014) ont montré que les plaines d'inondation du bassin amazonien agissent comme des « pompes à CO₂ », exportant à la fois du CO₂ au travers de la respiration des racines et du sédiment, et du carbone organique au travers de l'exsudation racinaire et de la chute de litière. Ces exports de CO₂ pouvant maintenir une sursaturation des eaux continentales sur des centaines de kilomètres (Abril et al., 2014). Ainsi, les flux de carbone qui transitent à partir des zones humides, tropicales notamment, ont un rôle clef dans les bilans de carbone des eaux continentales et nécessitent d'être plus soigneusement étudiés.

L'export de carbone depuis le continent vers les eaux continentales :

Il n'existe à notre connaissance encore aucune méthode permettant de mesurer directement le flux de carbone entre le milieu terrestre et le milieu aquatique. Pour cette raison, ce flux est pour l'instant calculé comme la somme des trois autres flux de l'active pipe (Fig. 1). En considérant, les plus hautes estimations des différents flux (i.e., 2.1 Pg C an⁻¹ pour le dégazage de CO₂, 0.23 Pg C an⁻¹ pour l'enfouissement dans les sédiments et 0.9 Pg C an¹, pour l'export aux océans), cela nécessiterait que 3.3 Pg C an¹ soient exportés depuis le continent. Sachant que la NEP globale est estimée à 2.6±1.2 Pg C an⁻¹ (Ciais et al., 2013) et à 1.6-4.2 Pg C an⁻¹ (Randerson et al., 2002), cela suppose que ce carbone ne soit en réalité pas stocké dans les écosystèmes terrestres mais exporté en quasi-totalité vers les eaux continentales. Ceci n'est cependant pas cohérent avec les bilans de CO₂ issus des méthodes atmosphériques qui supposent qu'il y ait bel et bien un puits net de carbone sur les continents (Ciais et al., 2013). Ce puits de carbone étant mesuré comme la différence entre les émissions de CO₂ anthropogénique, la réelle augmentation de la teneur en CO₂ atmosphérique et l'absorption nette de CO₂ des océans (qui est très bien ajustée). On mesure ainsi la relative fragilité de ces estimations, et les imprécisions qui subsistent avant de pouvoir boucler un bilan de carbone anthropogénique plus précis.

Impact anthropogénique sur les bilans de carbone des eaux continentales :

Depuis la première ère industrielle, le cycle du carbone dans les eaux continentales a été largement impacté par les activités anthropogéniques (Regnier et al., 2013). En effet, Regnier et al. (2013) estiment que les flux de carbone total des eaux continentales vers les océans ont augmenté de 20 % depuis 1,750. Cette augmentation est attribuée à la déforestation et aux pratiques agricoles intensives qui favorisent la dégradation et l'érosion du sol. L'agriculture et le changement d'usage des terres ont également tendance à augmenter le taux de sédimentation dans les lacs (Einsele et al., 2001). Ainsi, Tranvik et al. (2009) montrent que l'enfouissement global de carbone dans les lacs pourrait être encore plus conséquent (0.6 Pg C an⁻¹) que celui estimé par Cole et al. (2007), car les taux de sédimentation dans les par l'homme et dans les réservoirs artificiels peuvent être un à deux ordres de grandeurs plus élevés que ceux observées dans les lacs naturels (Downing et al., 2008). Les réservoirs hydroélectriques ou construits pour l'irrigation ont aussi un impact important sur le dégazage de CO₂ car ils augmentent à la fois la surface d'échange avec l'atmosphère et le temps de résidence des eaux (Mulholland and Elwood,

1982; Stallard, 1998). En effet, basé sur les travaux de St Louis et al. (2000), Cole et al. (2007) reportent un flux de dégazage important (0.3 Pg C an⁻¹) seulement pour les réservoirs artificiels. Finalement, Regnier et al. (2013) estiment que 50 % du dégazage global est lié aux perturbations anthropogéniques.

Conclusion sur l'active pipe :

En résumant toutes les informations disponibles dans la littérature, il apparait que les eaux continentales sont une composante majeure mais mal documentée du cycle global du carbone. Elles jouent à la fois un rôle de transporteur et de réacteur où différents processus se déroulent (respiration/photosynthèse, dégazage, enfouissement). Le cycle du carbone dans les eaux continentales est contrôlé par des processus complexes faisant intervenir divers facteurs anthropiques, climatiques, hydrologiques, topographiques et géologiques. Il en résulte une très forte hétérogénéité spatiale et temporelle, difficile à intégrer dans les bilans. Une meilleure compréhension de ce cycle nécessite d'enrichir la base de données globale, d'une part, et de contraindre davantage à l'échelle locale les processus qui jouent dans l'active pipe afin de mieux les extrapoler à l'échelle globale, d'autre part. A l'échelle locale, comprendre la dynamique des exports et des émissions de carbone des eaux continentales, peut être réalisé en s'appuyant sur des mesures isotopiques du carbone organique dissous.

I.3. Les isotopes stables du carbone inorganique dissous

I.3.1. Définition

Les isotopes sont des atomes dont le noyau contient le même nombre de protons mais un nombre de neutrons différents. Deux grands groupes d'isotopes sont distingués : les isotopes stables et les isotopes instables, également appelés radio-isotopes.

Le carbone possède deux isotopes stables, le ¹²C et le ¹³C qui ont une abondance respective de 98.89 % et 1.11 % (Stumm and Morgan, 1996). Par définition, la composition isotopique R d'un composé, est le rapport de sa concentration de l'isotope lourd sur sa concentration de l'isotope léger :

¹³R = [¹³C]/[¹²C] (Eq. 17)

Deux isotopes d'un même élément ont le même numéro atomique mais un nombre de masse différent, ce qui leur confère des propriétés physico-chimiques légèrement différentes. L'isotope lourd a une mobilité réduite, et donc une vitesse de diffusion et de réaction plus faible que l'isotope léger (Mook and Rozanski, 2000). L'isotope lourd a également une énergie de liaison plus forte ; ainsi, briser une liaison à laquelle participe un isotope lourd nécessite plus d'énergie que pour briser celle contenant un isotope léger (Mook and Rozanski, 2000). En conséquence, les molécules contenant des isotopes légers se déplacent plus rapidement, et sont également plus « fragiles » ; les réactions chimiques sont plus rapides et plus fréquentes pour les molécules contenant des isotopes légers que pour les molécules contenant des isotopes légers que pour les molécules contenant des isotopes légers que pour les molécules contenant des isotopes légers les molécules contenant des isotopes légers que pour les molécules contenant des isotopes lourds (Mook and Rozanski, 2000). Pour cette raison, dans la nature, les organismes vivants auront tendance dans certaines conditions à utiliser préférentiellement l'isotope léger. Il se produit alors un fractionnement isotopique.

Le fractionnement isotopique modifie la composition isotopique d'un élément dans un certain composé par le passage de ce composé d'un état physique à un autre ou d'une composition chimique à une autre. Trois processus de fractionnement sont distingués, à savoir : le fractionnement *thermodynamique* (dans des systèmes à l'équilibre chimique ou physique) (Vogel et al., 1970; Mook et al., 1974), le fractionnement *cinétique* (dans les réactions chimiques à sens unique) (Mook and Vogel, 1968; Emrich et al., 1970; Salomons

and Mook, 1986), et le fractionnement *de transport par diffusion* (Vogel et al., 1993; Mook and Rozanski, 2000).

Dans la nature, les différents fractionnements isotopiques d'un élément entre deux composés vont engendrer un changement de composition isotopique entre ces deux composés. Ainsi, le facteur d'enrichissement isotopique (ε) est défini comme la différence de composition isotopique d'un élément entre les deux composés. Ainsi :

 $\varepsilon_{b/a} = ((R_b - R_a) - 1) \ 1000$ (Eq. 18)

Où,

 $\epsilon_{b/a}$ représente le changement de composition isotopique entre le composé a et b, et R_b et R_a représentent respectivement les compositions isotopiques des composés a et b.

Enfin, l'utilisation des compositions isotopiques R conduirait à reporter des résultats avec un trop grand nombre de chiffres significatifs (trop de décimales). Pour cette raison la notion de rapport isotopique (δ) a été introduite par Craig (1953) :

 $\delta^{13}C = ({}^{13}R_{echantillon}/{}^{13}R_{standard}) - 1) 1000$ (Eq. 19)

Le rapport isotopique δ est alors défini comme l'écart relatif de la composition isotopique de l'échantillon par rapport à celle d'un standard international de composition isotopique connue. En conséquence, le δ du standard international est 0, des valeurs positives de δ indiquent un enrichissement en isotope lourd par rapport au standard tandis que des valeurs négatives de δ indiquent en appauvrissement en isotope lourd par rapport au standard tandis au standard. Le standard reconnu et utilisé communément pour les isotopes du carbone est le PDB (i.e., Pee Dee Bélemnite, CaCO₃). Ces carbonates de calcium proviennent d'un mollusque fossile datant du crétacé, situé dans la rivière Pee Dee en Caroline du Sud. La composition isotopique R du rostre en calcite de ce mollusque est égale à 0.0112372, ce qui définit la valeur 0 de l'échelle des rapports isotopiques δ^{13} C.

I.3.2. Fractionnement isotopique du système carbonate

Le système des carbonates est en équilibre thermodynamique (voir I.2.1) (Eq. 6-10 ; Fig. 3-4), qui s'accompagne aussi d'équilibres isotopiques de carbone (mais aussi d'oxygène) entre chaque composé du système carbonate (Fig. 4). Le composé ayant la masse moléculaire la plus importante contient le plus d'isotope lourd, et le fractionnement isotopique entre chaque composé est linéairement dépendant de la température et obtenu par des expériences en laboratoire (Thode et al., 1965; Emrich et al., 1970; Vogel et al., 1970; Mook et al., 1974; Zhang et al., 1995). Cependant, il est important de noter que pour les études biogéochimiques comme celle présentée ici, c'est le δ^{13} C du DIC (de la somme de toutes les formes carbonates, bicarbonates et CO₂ dissous) qui est mesuré, et non pas celui du CO₂ ou celui des carbonates et des bicarbonates.

Le bilan de masse isotopique s'écrit alors :

 $δ^{13}$ C-DIC [DIC] = $δ^{13}$ C-CO₂ [CO₂] + $δ^{13}$ C-HCO₃⁻ [HCO₃⁻] + $δ^{13}$ C-CO₃²⁻ [CO₃²⁻] (Eq. 20)

Figure 4 : Fractionnements isotopiques du carbone dans le système à l'équilibre CO_2 -HCO₃-CO₃-CO₃-CO₃-CO₃ à 15 °C.

I.3.3. Variations naturelles du δ^{13} C-DIC

Le δ^{13} C du CO₂ atmosphérique a une valeur d'environ -7.5 ‰ (Keeling et al., 1984) (Fig. 5). Le CO₂ atmosphérique apparaît comme étant pratiquement en équilibre isotopique avec le DIC dans l'océan. Ainsi, les valeurs de δ^{13} C du DIC marin sont environ de 0 à +1.5 ‰, du fait du fractionnement isotopique entre les phases gazeuse et dissoute (Mook and Rozanski, 2000). En accord avec le fractionnement isotopique entre bicarbonates et calcite (i.e., $\varepsilon \approx$ +0.4 ‰ à 15 °C, voir Fig. 4), les roches carbonatées ont un δ^{13} C proche de 0 (Clark and Fritz, 1997) (Fig. 5).

Le carbone organique des plantes a une teneur en ¹³C plus faible que celle du CO₂ atmosphérique du fait du fractionnement qui se produit pendant la photosynthèse par les plantes, et qui dépend de leur type de métabolisme. En effet, on distingue trois types de métabolisme : C3, C4 et CAM, auxquels correspond une série de réactions biochimiques différentes qui fractionnent le CO₂ atmosphérique avec une intensité différente (Farquhar et al., 1989; Vogel et al., 1993). Les plantes en C3 qui utilisent le cycle de Calvin pour réaliser la photosynthèse, produisent du carbone organique avec un δ^{13} C variant de -22 à -34 ‰, avec une moyenne proche de -28 ‰ (Craig, 1953, 1954; Vogel et al., 1993). Les plantes en C4 utilisent le cycle photosynthétique de Hatch-Slack et produisent du carbone avec un δ^{13} C variant de -10 à -15 ‰ (Smith and Epstein, 1971). Enfin les CAM (Métabolisme Acide Crassulacéen) produisent une large gamme de teneur en ¹³C centrée autour de -17 ‰ mais sont nettement moins abondantes sur les continents que les plantes en C3 et C4 (Deines, 1980).

Ensuite, ce carbone organique produit par les différents types de plantes est respiré dans le sol. De plus, il n'y a pas (ou très peu) de fractionnement isotopique lors de la respiration dans le sol (Amundson et al., 1998; Ekblad et al., 2002). Cependant, à cause de la diffusion moléculaire sélective du CO₂ dans le sol (le ¹²CO₂ diffuse plus vite vers le sommet du sol et l'atmosphère que le ¹³CO₂), le CO₂ du sol peut devenir enrichi en ¹³C relativement au carbone organique à hauteur de 4-5 ‰ au maximum (Cerling et al., 1991). De ce fait, les valeurs de δ^{13} C du CO₂ du sol sont centrées autour de -25 ‰ sous climat tempérés pour lequel le cycle de Calvin domine, mais elles peuvent atteindre -8 ‰ en présence de végétation de type C4 (Peterson and Fry, 1987).

Le CO₂ du sol peut altérer chimiquement les roches et minéraux silicatés et carbonatées (Eq. 13-14). Les bicarbonates issus de l'altération chimique des roches non

carbonatées auront la même signature que le CO_2 du sol tandis que les bicarbonates issus de l'altération chimique des roches carbonatées auront une signature isotopique moyenne entre celle des carbonates ($\delta^{13}C \approx 0$ ‰) et celle du CO_2 du sol (Salomons and Mook, 1986).

Figure 5 : Gammes de variations théoriques du δ^{13} C des différentes sources de DIC dans les eaux continentales. Le δ^{13} C différents des plantes en C4, CAM et C3 provient du fait que ces plantes fractionnent le CO₂ avec une intensité différente lors de leurs réactions photosynthétiques. Le CO₂ du sol peut être enrichi en ¹³C jusqu'à 4 ‰ par rapport au OC du fait du fractionnement lié à la diffusion verticale dans le sol, plus les sols sont perméables plus ce fractionnement est intense. L'altération chimique de calcite par le CO₂ du sol augmente le δ^{13} C du DIC dans les nappes car une moitié du DIC vient alors des carbonates (δ^{13} C = 0 ‰). Les eaux de surface ne sont pas équilibrées isotopiquement avec le CO_{2atm} et sont donc en équilibration isotopique permanente. Une eau continentale (ou marine) qui est en équilibre avec le CO_{2atm} aura un δ^{13} C de +1.5 ‰.

Par la suite, lorsque le carbone inorganique dissous rejoint le réseau hydrographique, plusieurs processus suivants vont faire varier le signal du δ^{13} C-DIC (Fig. 5) :

(1) les échanges de CO₂ avec l'atmosphère, car le δ^{13} C du CO₂ atmosphérique a une valeur de -7.5 ‰, ce qui rend le gradient en ¹²CO₂ entre l'eau et l'air supérieur à celui en ¹³CO₂. Par conséquent, dans le cas d'eaux douces sursaturées en CO₂, le dégazage du ¹²CO₂ est plus rapide que celui du ¹³CO₂ et le δ^{13} C-DIC devient moins négatif lorsque le CO₂ dégaze. Aujourd'hui, il existe peu de travaux qui tentent de contraindre plus spécifiquement l'équilibration isotopique des eaux douces avec l'atmosphère (Polsenaere and Abril, 2012; Venkiteswaran et al., 2014).

(2) la photosynthèse dans le milieu aquatique, rend également le signal du δ^{13} C-DIC moins négatif car les algues ou les plantes aquatiques utilisent préférentiellement du DI¹²C (Fry and Sherr, 1989; Hinga et al., 1994).

(3) la balance entre des apports des différentes sources externes (sols, zones humides) ou interne (respiration de matière organique de signature isotopique plus négative) rend le δ^{13} C-DIC plus ou moins négatif par des effets de mélange des eaux. A noter que la respiration hétérotrophe dans le milieu aquatique ne génère pratiquement pas de fractionnement et que la signature du DIC produit est alors très proche de celle de la source de carbone organique utilisée (Amundson et al., 1998; Ekblad et al., 2002).

En fonction de toutes ces différentes origines du carbone et des processus dans les eaux naturelles, la signature en δ^{13} C du DIC dans les eaux continentales va théoriquement varier de -30 à + 1.5 ‰ (Fig. 5). Dans certains environnements où un ou certains processus sont dominants, comme les ruisseaux étudiés dans ce travail où le dégazage de CO₂ est le processus majeur, la mesure du δ^{13} C-DIC est particulièrement utile pour distinguer les différentes sources et les processus qui contrôlent le DIC dans les eaux naturelles (Mook and Tan, 1991).

I.4. Conclusion

Cette synthèse bibliographique sur le cycle du carbone dans les systèmes aquatiques continentaux a permis de mettre en évidence leur importance en tant que vecteur de carbone à l'échelle globale. En effet, ces systèmes peuvent recevoir du carbone de la part de nombreuses sources principalement terrestres et sont généralement sursaturés en CO_2 comparé à l'atmosphère. Cette sursaturation des eaux continentales (due aux contributions de différentes sources terrestres et aquatiques) est à l'origine d'un flux important de dégazage de CO_2 vers l'atmosphère. Cependant, il subsiste de grandes incertitudes sur ce flux de dégazage, notamment du fait qu'il soit estimé à partir de la surface du réseau hydrographique et de la vitesse de transfert du CO_2 , deux paramètres difficile à déterminer et à extrapoler. De plus, l'utilisation des isotopes stables du carbone dans les eaux naturelles, permet de distinguer les différentes sources et processus qui contrôlent le carbone inorganique dissous, notamment l'équilibration isotopique avec l'atmosphère comme étudiée dans ce travail.

Ainsi, les concentrations et les formes chimiques du carbone et sa composition isotopique dans les systèmes aquatiques continentaux sont le résultat de processus multiples et complexes qui s'entrecroisent et qui dépendent entre autres du climat, de la lithologie, de la nature des sols et de la végétation, de la topographie, de la géomorphologie du réseau hydrographique et de l'hydrologie.

Chapitre II

Matériels et Méthodes

II.1. Site d'étude

II.1.1. Situation géographique et contexte (hydro)géologique

Le bassin de la Leyre (2,100 km²) est situé au sein d'une entité géographique et géologique unique communément nommée le « Triangle landais », ou également les « Landes de Gascogne » (Fig. 6). Cette région est un vaste bassin sédimentaire d'environ 10,000 km², délimité par l'Océan à l'ouest et qui s'étend des confins de l'Adour au sud à la Garonne au nord (Fig. 6). Ce paysage est caractérisé par une pente très faible inférieure à 1.25 ‰ en moyenne, généralement orienté SE-NW et par une altitude également très faible inférieure à 50 m en moyenne (Jolivet et al., 2007). Les Landes de Gascogne bénéficient actuellement d'un climat doux et humide de type océanique. Autrefois caractérisé par ses étendues de landes marécageuses, les Landes de Gascogne représentent aujourd'hui le plus grand massif forestier résineux artificialisé d'Europe occidentale (Jolivet et al., 2007). Ce massif fut planté à partir de 1850 dans la continuité des aménagements de drainage du territoire initié par Napoléon III. Cette région est ainsi caractérisée par d'immenses parcelles forestières entrecoupées de fossés de drainage (Fig. 7). A partir de la deuxième moitié du XX^{ème} siècle, l'apparition de nouvelles techniques de drainage, d'irrigation et de fertilisation a facilité la mise en place d'exploitations agricoles (le plus souvent de la maïsiculture) (Hays, 1981) (Fig. 7).

Si actuellement l'unité des Landes de Gascogne tient son identité de son massif forestier, son originalité lui vient également de la couche superficielle de sable (les sables des Landes) qui recouvre la totalité de son territoire et à partir duquel se sont développés les sols (Jolivet et al., 2007). Le sable des Landes est le résultat final du comblement progressif du bassin Aquitain, dont l'histoire récente prend place au Miocène (-23 Ma à -5 Ma) (Fig. 8). Au Miocène, la région landaise est un golfe peu profond soumis à une série de transgression et de régressions marines qui génère des dépôts sédimentaires marins, de nature argileuse et calcaire (i.e., **carbonatés**) (Alvinerie, 1969; Dubreuilh et al., 1995) (Fig. 8). A la fin du Miocène, une nouvelle régression marine s'amorce et le bassin peu profond se réduit progressivement à une vasière marneuse qui finit par disparaitre. Ce bassin est comblé dans un premier temps par **les grès carbonatés** de la formation des Sables Fauves puis par la formation argilo-ligneuse des Glaises Bigarrées, mise en place cette fois-ci sans influence marine perceptible (i.e., **non carbonatées**) (Dubreuilh et al., 1995) (Fig. 8). Ainsi, à la fin du Miocène, l'histoire du comblement sédimentaire du bassin aquitain est pour l'essentiel achevée. L'épaisseur totale des dépôts varie fortement d'une région à une autre en fonction du passé tectonique local et des types de sédiments déposés (Dubreuilh et al., 1995). Durant le pliocène (-5 Ma à -2 Ma) se mettent en place des dépôts fluviatiles et donc **non carbonatés**, d'épaisseurs et de natures variables (graviers, sables, argiles, lignites, tourbes), issus du démantèlement du Massif central, des Pyrénées et de la Montagne Noire que Legigan (1979) nomme Complexe intermédiaire (i.e., formation d'Arengosse, Onesse, Belin) (Fig. 8).

Figure 6 : Carte de l'occupation des sols des Landes de Gascogne et localisation du bassin versant de la Leyre.

On rapporte à la période du Pléistocène (-2 Ma), l'ensemble des dépôts fluviatiles graviers, sables et argiles qui conduisent à l'ultime comblement du bassin aquitain (Legigan, 1979; Dubreuilh et al., 1995) (Fig. 8). Cette période est marquée par l'alternance de périodes glaciaires et interglaciaires. Les dépôts accumulés depuis le pliocène sont alors soumis à des remaniements locaux, à l'altération de climats chauds froids ou humides, à l'érosion et à la reprise fluviatile. Le Bassin Aquitain est alors soumis aux phénomènes périglaciaires, mais également à un ruissellement et à une éolisation intense. Dans ce contexte, se déposent alors des sables fin, blanchâtres d'origine fluviatile (formation de Castets) (Legigan, 1979; Dubreuilh et al., 1995).

Figure 7 : paysage typique des Landes de Gascogne, fossé de drainage agricole (en haut à gauche), ruisseau traversant une jeune parcelle forestière (en haut à droite) et le vue aérienne (en bas) (Sources : Loris Deirmendjian & Google images).

Le dernier stade glaciaire (Wurm) a pour conséquence une aridification du Bassin Aquitain qui favorise l'éolisation de la formation de Castets pour donner la formation du Sable des Landes (Legigan, 1979). Le Sable des Landes est dispersé dans tout le Bassin Aquitain. La zone est alors une vaste étendue subdésertique. Cependant, le réchauffement et l'humidification du climat postglaciaire permet le développement de la végétation qui stoppe la mobilité des sables. La particularité de la formation du Sable des Landes tient surtout dans sa grande extension et à son uniformité. Le sable des Landes est très **homogène**, et composé essentiellement de grains de quartz (Jolivet et al., 2007). Cette formation à une épaisseur variable ne pouvant excéder 3-4 m (Legigan, 1979).

Figure 8 : Succession litho-stratigraphique synthétique des formations continentales des Landes de Gascogne (Dubreuilh et al., 1995).

Les différentes formations géologiques argilo-sableuses, perméables composent un **système aquifère multicouche homogène** (Fig. 8). Cette nappe phréatique est libre et continue, souvent très proche de la surface et d'une épaisseur de 10 à 130 m (Jolivet et al., 2007). Cette nappe est alimentée essentiellement par l'infiltration directe des précipitations (Jolivet et al., 2007). Les mouvements latéraux de cette nappe sont le plus souvent très lents et l'essentiel du drainage vers les exutoires des bassins versants se fait via le réseau hydrographique et les réseaux de drainage artificiels (fossés) qui y sont associés (Rimmelin, 1998).

II.1.2. Pédologie

Les sols de la plaine sableuse des Landes de Gascogne sont essentiellement des sols podzolisés humifères, plus ou moins hydromorphes (Fig. 9) (Trichet et al., 1999). Ce type de sol est généralement caractéristique de zones de latitudes plus élevées telles que les zones boréales. La podzolisation dans les Landes de Gascogne est le résultat conjoint d'un matériau parental filtrant (i.e., **très perméable**), sableux et très pauvre en minéraux altérables (i.e., le Sable des Landes), d'un climat tempéré humide, de la proximité de la nappe d'eau souterraine et d'une végétation acidifiante à base d'Ericacées (Jolivet et al., 2007). La podzolisation implique un processus biochimique d'altération (i.e., attaque des argiles du sol par les acides organiques produits par la végétation sus-jacente qui libèrent des cations tels que Fe²⁺, Al³⁺, Ca²⁺, etc.) et un processus de migration verticale (i.e., battement de la nappe) puis d'immobilisation des constituants organiques et des complexes organo-minéraux dans des horizons d'accumulation (Jolivet et al., 2007)

Le régime de la nappe phréatique conduit à trois types de Landes (Righi and Wilbert, 1984) qui conditionnent la nature de la pédogenèse (Legigan, 1974) (Fig. 9).

- La lande sèche (bien drainée), en bordure de ruisseau ou dans les parties hautes du massif, avec une nappe profonde toujours à plus de 2 m de profondeur (Fig. 9) (Righi, 1977; Augusto et al., 2006).

- La lande humide (mal drainée), dans les parties basses ou dans les vastes interfluves du massif, avec une nappe à proximité du sol en hiver (0-0.5 m de profondeur) comme en été (1-1.5 m de profondeur) (Fig. 9) (Righi, 1977; Augusto et al., 2006).

- La lande mésophile, dans les situations intermédiaires à ces deux situations, là où l'amplitude de battement de la nappe est supérieure à 2 m, créant des périodes sèches et humides (Fig. 9) (Righi, 1977; Trichet et al., 1999).

Les landes humides et mésophiles totalisent environ 80 % de la surface du massif forestier landais, et les landes sèches environ 15 % (Trichet et al., 1999). Bien que non stricte, il existe une relation entre le type de sol et la typologie forestière : les PODZOSOLS MEUBLES ou DURIQUES avec un horizon éluvial (E) sont fréquents dans la lande sèche alors que les PODZOSOLS HUMIQUES sans horizon éluvial (et les REDOXISOLS) sont abondants dans la lande humide (voire très humide) (Fig. 9) (Augusto et al., 2006). Dans les zones de la lande mésophile, il est fréquent d'observer des profils intermédiaires à ces deux sols caractéristiques (PODZOSOLS HUMODURIQUES) (Fig. 9) (Augusto et al., 2006).

Figure 9 : Principaux types de sol dans les Landes de Gascogne (Augusto et al., 2006).

II.1.3. Le bassin de la Leyre

La vallée principale des Landes de Gascogne est celle de la Leyre, formée par la confluence de la Grande Leyre et de la Petite Leyre, et qui se jette dans la Lagune d'Arcachon (Fig 6). La longueur totale de la Leyre (incluant la Grande Leyre) est de 115 km. La Leyre draine un bassin versant de 2,100 km² et 82 affluents directs (Fig. 10). Les affleurements géologiques du bassin de la Leyre sont essentiellement formés par des formations argilo-sableuses non carbonatées datant du Plio-Quaternaire (Fig 8, 10). Cependant il subsiste localement des affleurements géologiques carbonatés (e.g., formation des Sables Fauves) (Fig 8, 10). De plus, l'épaisseur du substratum imperméable carbonaté datant du Miocène est très variable dans le bassin de la Leyre (Corbier et al., 2010). Le substratum carbonaté est très proche de la surface du sol en aval de la Leyre et dans la partie sud est du bassin qui est drainée par la Petite Leyre (Corbier et al., 2010). L'occupation des sols du bassin versant de la Leyre est partagée entre forêt de pins maritimes (83.4 %), cultures principalement de maïs (14.2 %) et zones urbaines (2.4 %) (Fig. 1). La température moyenne de l'air est de 13°C et les précipitations annuelles moyennes sont de 930 mm (Moreaux et al., 2011). De plus, l'évapotranspiration annuelle moyenne varie de 234-570 et 63-800 mm, respectivement pour les pins maritimes et les maïsicultures (Govind et al., 2012).

En conséquence, du fait des faibles pentes (< 1.25 ‰) et de la forte perméabilité des sols (podzols), **le ruissellement de surface est négligeable** dans le bassin versant de la Leyre. Ainsi, l'excès de pluviométrie percole rapidement dans le sol (i.e., aux alentours de 55 cm h⁻¹ en moyenne, Vernier and Castro., 2010), et soutient l'enrichissement en eau et en carbone des eaux de nappes phréatiques superficielles. Un ruissellement de surface inexistant couplé à une forte perméabilité génère également une très forte interconnexion entre les eaux souterraines et les eaux de surfaces. Conséquemment, l'hydrologie dans le bassin versant de la Leyre survient seulement au travers du **drainage du réseau hydrologique souterrain**. Le niveau du toit des nappes phréatiques varie fortement suivant la saison et selon le type de Landes, avec un niveau très proche de la surface lors des périodes hivernales et plusieurs mètres sous la surface du sol lors des périodes estivales. Enfin, en utilisant la classification de Strahler (1957) légèrement modifiée (voir plus loin), le réseau hydrologique du bassin versant de la Leyre).

Figure 10 : Lithologie du bassin versant de la Leyre.

II.2. Objectifs et stratégie d'échantillonnage

Ce travail de thèse porte sur les transferts de carbone le long du continuum végétationsol-nappe-ruisseau-rivière-atmosphère dans le bassin de la Leyre, et les relations existant avec l'occupation des sols.

Ce travail s'est organisé en plusieurs sous-objectifs :

Le premier était de comprendre et de quantifier les transferts de C de l'atmosphère jusqu'aux nappes phréatiques, au travers de l'assimilation nette de C par la végétation et de l'interaction entre les eaux de nappes et le sol.

Le second était de mieux quantifier l'export de C des eaux souterraines vers les ruisseaux, puis vers les rivières et l'atmosphère en ce qui concerne les biogaz.

Le troisième était de mieux comprendre l'influence de l'occupation des sols sur ces différents transferts/exports.

Afin d'atteindre ces objectifs, nous avons choisi différentes stations d'échantillonnage couvrant l'ensemble de la variabilité du bassin de la Leyre, depuis les nappes phréatiques (ordre 0) jusqu'à l'exutoire (ordre 4) avec des proportions variables d'occupation agricole des bassins versants (Tab. 1 ; Fig. 11).

Figure 11 : Localisation des 29 stations de prélèvement et de leurs sous-bassins versants, représentées avec le réseau hydrographique à gauche et l'occupation des sols à droite.

Nous avons ainsi sélectionné 29 stations (5 piézomètres et 24 rivières) (Tab. 1). Parmi les 5 stations piézométriques, 2 sont situées au milieu de parcelles agricoles, 2 sont situées au milieu de parcelles forestières et 1 est située dans une forêt riparienne proche d'un ruisseau de premier ordre. Une des parcelles forestières (Bilos) est instrumentée dans le cadre du projet européen ICOS pour la mesure en continu de la hauteur de nappe, des flux atmosphériques d'énergie, de vapeur d'eau et de CO₂. Parmi les 24 stations de rivières, 4 sont également des stations de jaugeages suivis par la DIREN (direction régionale de l'environnement) où des mesures de débit journalières sont disponibles. Toutes les stations ont été visitées avec une fréquence d'environ un mois. Le piézomètre de la parcelle forestière instrumentée a été visitée 16 fois entre Fev. 2014 et Jul. 2015, celui de la zone riparienne et ceux situés dans les parcelles agricoles ont été visitée 11 fois entre Août. 2014 et Jul. 2015, le dernier piézomètre forestier a été visité 6 fois entre Jan. 2015 et Jul. 2015. Les stations rivières ont été visitées 15-16 fois entre Jan. 2014 et Jul. 2015.

Station	Ordre	Superficie	Forêt (%)	Agricole (%)	Urbain (%)	Agricole*
	Strahler	(km²)				
1	4	2,103	83.4	14.2	2.4	Non
2	4	1,650	84.1	14.7	1.3	Non
3	3	592	81.6	17.6	0.8	Non
4	3	359	83	16.2	0.8	Non
5	2	124	81.5	18.0	0.5	Oui
6	3	485	86.9	12.7	0.4	Non
7	3	350	87.4	12.2	0.3	Non
8	2	158	85.7	14	0.3	Non
9	1	16	78.1	20.2	1.7	Oui
10	2	112	78.7	20.8	0.6	Oui
11	2	33	92.4	6.4	1.2	Non
12	1	0.25	100	0	0	Non
13	1	2.3	94.8	5.2	0	Non
14	1	57	69.3	30.7	0	Oui
15	1	34	96.2	3.8	0	Non
16	1	7.9	94.2	5.8	0	Non
17	1	16.8	92.2	7.8	0	Non
18	1	1.3	46.2	53.8	0	Oui
19	1	1.04	13.5	86.5	0	Oui
20	1	11.3	55.8	44.2	0	Oui
21	1	13.4	57.5	42.5	0	Oui
22	2	81	86.5	13.5	0	Non
23	2	97	84.9	15.1	0	Non
24	1	31	97.7	2.3	0	Non
P1	0		100	0	0	Non
P2	0		0	100	0	Oui
P3	0		0	100	0	Oui
P4	0		100	0	0	Non
P5	0		100	0	0	Non

Tableau 1 : Superficie et pourcentage d'occupation du sol des différentes stations d'échantillonnage. *Un sous bassin est considéré comme agricole quand sa proportion d'agriculture est supérieure à 17.75 % de sa superficie. Pour les stations piézométriques nous avons échantillonné de l'eau pour y mesurer les paramètres suivant TA, DIC, pCO₂, δ^{13} C-DIC, DOC, CH₄ et relever les paramètres physicochimiques associés (pH, conductivité, température, O₂). Pour les stations rivières nous avons également prélevé pour mesurer les paramètres particulaires, SPM, POC et POC% (voir liste des abréviations).

II.2.1. Détermination des ordres de rivières

Pour toutes les analyses géomatiques nous avons utilisé le logiciel ArcGIS 10.2. Premièrement, le réseau hydrographique sous forme de polyligne (i.e., fichier Shapefile, c'est-à-dire un fichier de données vectorielles permettant d'archiver l'emplacement, la forme et les attributs d'entités géographiques) a été téléchargé à partir d'une base de données hydrologique (BD CARTHAGE®) mise à disposition par l'IGN (institut géographique national). Cette base de données géo-référencie tout le réseau hydrographique aussi bien naturel qu'anthropique (i.e., fossé de drainage) et permet de connaître avec exactitude la longueur de chaque cours d'eau.

Afin de classer le réseau hydrographique du bassin de la Leyre nous avons adapté la méthode de Strahler (1957) à la BD CARTHAGE®. Cette méthode stipule qu'un ruisseau sans tributaire est un ruisseau d'ordre 1. L'ordre d'une rivière augmente lorsque deux ruisseaux de même ordre se rencontrent. Par contre l'ordre ne change pas lorsqu'un ruisseau rencontre un tributaire d'ordre inférieur. Cette méthode de classification pose cependant un problème lorsque le réseau hydrologique est ramifié de nombreux petits fossés de drainage artificiels (les ruisseaux rectilignes observables sur la Fig. 11). En effet, en appliquant la méthode de Strahler (1957) au bassin versant de la Leyre, celle-ci aurait été une rivière d'ordre 8, comme la Loire (Cushing et al., 2006). D'autre part, de nombreux fossés d'ordre 1 ou même 2 sont à sec en été et si l'on considère qu'alors ils n'existent plus, l'ordre des ruisseaux permanents en aval changeraient saisonnièrement. Ceci nous a amené à modifier la méthode de classification. Nous appliquons la méthode de Strahler (1957) seulement aux ruisseaux naturels (i.e., non rectilignes), ce qui nous a permis de déterminer que la Grande Leyre et la Petite Leyre étaient des rivières d'ordre 3 avant leur confluence. En conséquence la Leyre est une rivière d'ordre 4. Ensuite, nous avons considéré que tous les fossés (ruisseaux artificiels rectilignes) étaient d'ordre 1 s'ils n'avaient pas de tributaire, mais aussi s'ils s'asséchaient en été. Les ruisseaux permanents avec tributaires sont quant à eux d'ordre 2. Ainsi, considérer comme d'ordre 1 tous les petits fossés artificiels et saisonniers quel que soit leur position dans le réseau hydrographique, permet de ne pas

52

augmenter artificiellement l'ordre des rivières en aval. Enfin, nous avons également défini les eaux de nappes phréatiques comme étant des ordres 0.

A partir de cette classification nous avons également estimé la surface du miroir d'eau de chaque ordre (Tab. 2). En effet, grâce à la BD CARTHAGE® nous obtenons avec une grande précision la longueur cumulée de chaque ordre de rivière déterminé précédemment. Nous avons ensuite attribué une largeur commune pour chaque ruisseau du même ordre, déterminé au préalable sur le terrain. Le fait que le réseau hydrologique soit très impacté par l'homme est ici un avantage, car la géomorphologie des ruisseaux de même ordre est similaire.

Ordre de Strahler	0	1	2	3	4
Stations forestières	3	6	4	4	2
Stations agricoles	2	6	2	0	0
Stations de jaugeages		0	2	1	1
Longueur cumulée (km)		1,610	750	115	40
Largeur estimée (m)		1	4	15	30
Miroir d'eau (km²)		1.6	3	1.7	1.2

 Tableau 2 : Caractéristiques de la géométrie de chaque ordre de rivière.

II.2.2. Délimitation des bassins versants, de l'occupation des sols et de la lithologie

Nous avons délimité les bassins versants de chacune de nos stations (Fig. 11) à partir de la BD CARTHAGE ® et d'un Modèle Numérique de Terrain (i.e., le MNT est un raster, une image matricielle dont chaque pixel correspond à une valeur d'altitude) d'une résolution de 25 m mis à disposition par l'IGN.

Il a fallu tout d'abord reconditionner le MNT en lui intégrant la BD CARTHAGE ®. En effet, dans des zones peu pentues (comme c'est le cas dans le bassin de la Leyre) il est très difficile pour l'algorithme d'accumulation de déterminer le chemin du canal d'écoulement et ainsi de délimiter les bassins versants. Pour améliorer le résultat de cet algorithme il est nécessaire de copier le réseau hydrographique dans le MNT, et de creuser d'une certaine altitude les cellules raster du MNT à l'endroit où se positionne le réseau hydrologique. Cette

opération permet ainsi à l'algorithme d'accumulation de flux de pouvoir délimiter correctement les chemins d'écoulement hydrologiques et donc de modéliser correctement les bassins versants (Hellweger and Maidment, 1997). Cela nécessite les étapes suivantes :

- convertir le réseau hydrologique de polyligne (i.e., shapefile) en raster.

- attribuer une valeur au nouveau raster hydrologique.

- soustraire le nouveau raster hydrologique au MNT.

Ainsi, le nouveau MNT est creusé d'une certaine altitude aux niveaux des pixels où se trouve le réseau hydrologique. Nous avons essayé plusieurs modélisations du bassin versant de la Leyre que nous avons comparées avec l'emplacement du réseau hydrologique, les pentes et les altitudes. La modélisation a donné les meilleurs résultats lorsque le réseau hydrologique a été creusé de 4 m.

Ensuite, avec les outils classiques de modélisation hydrologique d'ArcGIS 10.2, un sous bassin versant (sous forme de raster) peut être déterminé à n'importe quel endroit du réseau hydrologique. Il faut par la suite convertir le raster en polygone (i.e., shapefile) sur lequel on applique les outils de calculs de surface d'ArcGIS 10.2 pour déterminer sa surface

Le projet CORINE Land Cover met à la disposition de tous les citoyens des données géoréférencées sur l'occupation du sol dans 29 pays européens. En France, cette base de données est notamment disponible sur le site du Ministère de l'Ecologie, du Développement Durable et de L'énergie. La base de données CORINE 2012 est un fichier shapefile. Avec les outils de géotraitements d'ArcGIS 10.2, nous pouvons découper cette base de données selon la forme et l'emplacement des bassins versant précédemment déterminés, et ainsi calculer avec précision les surfaces d'occupation du sol de chaque bassin.

La lithologie des Landes de Gascogne nous a été fournie directement sous format shapefile par le BRGM (Corbier et al., 2010).

II.2.3. Détermination des débits cumulés de chaque ordre

Afin de calculer des flux d'exportation de composés carbonés, nous avons besoin de déterminer les débits de chaque ordre avec une fréquence minimale mensuelle. Pour cela,

nous nous sommes basés sur les données des stations de jaugeage qui donnent des valeurs de débits journaliers en quatre points du réseau hydrographique, que nous avons complétées par des mesures ponctuelles de débit.

Notre bassin versant bénéficie de 4 stations de jaugeages qui sont situées sur deux ruisseaux d'ordre 2, un d'ordre 3 et un d'ordre 4. Tout d'abord, nous avons défini les périodes de crues mensuelles comme étant des mois ou le débit mensuel moyen de la Leyre est deux fois plus élevé que le débit moyen annuel. Les périodes de crues sont alors Jan. 2014-Apr. 2014 et Fév. 2015-Mar. 2015. Les périodes Mai. 2014-Jan. 2015 et Avr. 2015-Dec. 2015 sont alors considérées comme des périodes d'étiages. Pour compléter notre base de données hydrologique, nous avons également réalisé des mesures de débits sur deux ruisseaux de premiers ordres en périodes de crues (Fév. 2016) et en périodes d'étiages (Avr. 2015). Pour cela, nous avons mesuré des profils de vitesse d'eau le long d'une section de rivière à l'aide d'un courantomètre à induction magnétique (OTT MF PRO[™]). Ensuite, nous avons intégré ce profil de vitesse d'eau, pour convertir ces vitesses en débits.

Du fait de sa grande homogénéité, de la prédominance du drainage, et de l'absence de ruissellement superficiel, le bassin versant de la Leyre présente l'avantage de permettre raisonner en terme de facteurs de drainage (i.e., débit spécifique), c'est-à-dire le rapport débit/surface de bassin versant, en m³ km⁻² d⁻¹ (ou encore en mm an⁻¹ comme la pluviométrie). Ainsi, nous avons comparé les facteurs de drainage des stations de jaugeage (ordres 2, 3 et 4) pour 3 périodes distinctes : les périodes de crues, les périodes d'étiages et la période 2014-2015. Ensuite, nous avons comparé les facteurs de drainage journaliers de deux stations d'un ruisseau d'ordre 1 mesurés sur le terrain pour les périodes de crues (Fév. 2016) et d'étiages (Avr. 2015) avec ceux des mêmes journées sur les deux stations de jaugeage d'ordre 2.

On constate que l'augmentation relative des facteurs de drainage entre les ordres 2 et l'ordre 4 est relativement constante dans le temps (e.g., 15%, 24% et 19% pour les trois différentes périodes hydrologiques), et quelle que soit la période d'observation (Tab. 3). Ceci nous permet d'utiliser les relations entre les facteurs de drainage des différents ordres pour n'importe quelle période de l'année et de reconstituer les débits de toutes nos stations de prélèvement à partir de leur ordre, de la superficie de leur bassin versant et des mesures journalières des stations de jaugeage.

55

Période de mes	ure	Ordre 1	Ordre 2	Ordre 3	Ordre 4
Crue	F _d		2,029	2,073	2,397
	Ratio des F _d *			1.02	1.18
	% augmentation*			+2%	+15%
Etiage	F _d		354	460	466
	Ratio des F _d *			1.30	1.31
	% augmentation*			+23%	+24%
2014-2015	F _d		765	855	939
	Ratio des F _d *			1.12	1.23
	% augmentation*			+11%	+19%
01/04/2015	F _d	731-772	995		
	Ratio des F _d [#]		1.33±0.5		
	% augmentation [#]		+19%		
22/02/2016	F _d	609-770	1,362		
	Ratio des F _d [#]		2.0±0.3		
	% augmentation [#]		+49%		
Modèle	Moyenne des ratios de F_d		1.66±0.43	1.15±0.14	1.09±0.07
hydrologique	entre ordre n et n+1				
	% augmentation entre		+40%	+13%	+8%
	ordre n et n+1				

Tableau 3: Facteurs de drainage (F_d en m³ km⁻² d⁻¹) des rivières d'ordre croissant dans le bassin de la Leyre. Les pourcentages représentent l'augmentation des facteurs de drainage d'un ordre à l'autre et correspondent aux apports de nappe intermédiaires dans chaque ordre. Ne disposant pas de mesure continue sur des ruisseaux d'ordre 1, les apports de nappe sur les ruisseaux d'ordre 2 ont été estimés en considérant la moyenne entre les mesures en étiage et celles en crue. * par rapport à l'ordre 2. [#] par rapport à l'ordre 1.

II.3. Mesures in situ, prélèvements et analyses

Sur le terrain, la pCO₂ dans les eaux souterraines et les rivières a été mesurée directement en utilisant un équilibrateur alimenté en eau par une pompe péristaltique (Frankignoulle and Borges, 2001; Polsenaere et al., 2013). Le circuit d'air de l'équilibrateur est relié à un analyseur de gaz infrarouge (Li-COR®, Li-820), qui a été calibré la veille de l'échantillonnage sur deux segments linéaires en raison de sa réponse non-linéaire dans la gamme des valeurs de pCO₂ observées (0-90,000 ppmv). La non-linéarité est due à la saturation de la cellule infrarouge à des valeurs de pCO₂ supérieures à 20,000 ppmv. Nous avons utilisé des standards certifiés (Air Liquide[™] France) de 2,079±42 ; 19,500±390 et 90,000±1,800 ppmv, ainsi que de l'azote passant dans de la chaux sodée pour le zéro. Pour

le premier segment linéaire [0-20,000 ppmv], qui correspond aux eaux superficielles, après avoir fait le zéro nous calibrons le LICOR à 19,500 ppmv et nous vérifions la linéarité à 2,042 ppmv. Pour le second segment [20,000-90,000 ppmv], qui correspond aux eaux souterraines échantillonnées, nous mesurons la réponse du LICOR avec le standard 90,000 ppmv, et nous utilisons cette valeur mesurée et la valeur de 19,500 ppmv pour faire une correction de la valeur obtenue sur le terrain. De plus, pour les eaux souterraines, nous avons pris la précaution de renouveler l'eau du piézomètre afin d'être sûr de ne pas échantillonner de l'eau qui aurait pu stagner, en pompant environ 300 L d'eau avec une pompe submersible avant l'échantillonnage.

Les échantillons d'eau pour le dosage de l'alcalinité totale (TA) ont été prélevés dans des bouteilles de 150 mL en polypropylène après avoir été filtrés avec une seringue équipée d'un filtre en fibre de verre Whatman GF/F (Ø=0.7 μ m). Ensuite, la TA a été analysée par électro-titration sur des échantillons de 50 mL avec du HCl 0.1 N comme titrant. Le point d'équivalence a été déterminé avec la méthode de Gran entre pH 4 et 3 (Gran, 1952). La précision de cette mesure basée sur des répliquas est d'environ ±5 μ mol L⁻¹. De plus, les échantillons ayant un pH très faible (<4.5) ont été bullés avec de l'air atmosphérique afin de dégazer du CO₂. Par conséquent, le pH en début de titration augmente au-dessus d'une valeur de 5, et la titration est plus précise (Abril et al., 2015).

Les échantillons d'eau pour les analyses de carbone inorganique dissous (DIC), de sa composition isotopique (δ^{13} C-DIC) et du méthane dissous (CH₄) ont été collectés dans des flacons sérums (i.e., 120 mL pour δ^{13} C-DIC et DIC et 60 mL pour CH₄) scellés avec un bouchon en caoutchouc et empoisonnés avec 0.3 mL d'HgCL₂ à 20 g L⁻¹ afin d'éviter toute respiration microbienne pendant le stockage. Les flacons sérums ont été soigneusement scellés en prenant soin qu'aucune bulle d'air ne soit piégée à l'intérieur puis ont été entreposés dans le noir pour prévenir de toute photo-oxydation.

Le DIC a été calculé grâce au logiciel CO2SYS à partir de la pCO₂ in situ, TA et de la température en utilisant les constantes de dissociation de l'acide carbonique de Millero (1979) et la solubilité du CO₂ de Weiss (1974). Contrairement au calcul de pCO₂ à partir de pH et TA (Abril et al., 2015), le calcul de DIC à partir de pCO₂ et TA est peu affecté par la présence d'alcalinité organique, notamment par le fait que le CO₂^{*} est très majoritaire par rapport à TA dans nos échantillons, en moyenne (toutes les saisons, tous les ordres) CO₂^{*} représente 60±25 % du DIC. Nous avons également effectué des mesures directes de DIC sur une sélection de 335 échantillons (eaux souterraines et superficielles). Le DIC a été mesuré à partir d'un flacon sérum scellé de 120 mL supplémentaire. Après création d'un

57

volume de tête de 25 mL avec de l'azote gazeux, 0.3 mL d'acide phosphorique à 85 % est introduit dans le flacon. Le flacon sérum est fortement secoué pour assurer l'équilibration entre phase gazeuse et liquide. Le gaz du volume de tête est ensuite analysé par injection de 0.5 mL au travers d'un septum dans un circuit fermé relié au LICOR (débit d'air 0.5 L min-1). De la chaux sodée placée juste après l'analyseur de gaz assure un niveau de référence zéro à l'entrée de la cellule infrarouge. Les surfaces de pics ont été enregistrées, intégrées et comparées à celles obtenues avec des standards obtenus par dissolution de quantités connues de CaCO₃ dans de l'eau distillée à pCO₂ atmosphérique. pH et TA ont également été mesurés dans ces standards pour calculer le DIC dans ces solution très alcalines. Les concentrations de DIC dans les échantillons sélectionnés ont été calculées à partir des volumes d'eau et des volumes de têtes et du coefficient de solubilité du CO₂ (Weiss, 1974). Le DIC mesuré directement était cohérent à ±15 % avec le DIC calculé à partir de la pCO₂, la TA et la température pour une gamme variant de 90-5,370 µmol L⁻¹. Par conséquent, les mesures directes de DIC étant très longues et fastidieuses, dans la suite de ce manuscrit le DIC sera toujours calculé à partir de pCO₂ et TA.

Le δ¹³C-DIC a été mesuré en suivant la procédure de Gillikin and Bouillon (2007). Un volume de tête a d'abord été créé dans le flacon sérum en injectant 25 mL d'Hélium gazeux. Ensuite, 0.3 mL d'acide phosphorique chaud à 85 % a été ajouté afin de titrer tous les bicarbonates et les carbonates en CO₂. Pour assurer l'équilibration entre la phase gazeuse et liquide les flacons ont été fortement secoués. Les mesures ont été effectuées en utilisant un spectromètre de masse isotopique (Micromass Isoprime) équipé d'un port manuel d'injection de gaz. Nous avons injecté deux fois 2 mL de gaz contenu dans le volume de tête du flacon. Le rapport isotopique du carbone est exprimé selon la notation (δ^{13} C) par rapport au Pee Dee Belemnite (voir Introduction). δ^{13} C-DIC a été étalonné par rapport à un standard obtenu à partir d'une poudre de Na₂CO₃: 45 mg de Na₂CO₃ sont introduits et scellés dans un flacon sérum qui est ensuite purgé à l'hélium pour supprimer toute trace de CO₂. Le Na₂CO₃ est ensuite dissous en injectant 3 mL d'acide phosphorique chaud à 85 % dans le flacon à l'aide d'une seringue et d'une aiguille. Ce standard a été au préalable calibré avec un standard certifié (NBS19, 1.96 %) à l'aide de la double entrée de l'IRMS (Micromass Isoprime). La valeur isotopique du standard Na₂CO₃ était de -4.5±0.2 ‰. Enfin, pour corriger la répartition du CO₂ entre la phase gazeuse (volume de tête) et la phase aqueuse dans les échantillons, et pour calculer le δ^{13} C-DIC, le fractionnement isotopique du CO₂ a l'interface air-eau en fonction de la température du laboratoire a été appliqué (Miyajima et al., 1995).

Le CH₄ a aussi été quantifié à partir d'un volume de tête (10 mL) crée avec de l'air atmosphérique. 0.5 mL de volume de tête ont été injectés dans un chromatographe à gaz équipé d'un détecteur à ionisation de flamme (GC-FID).

Le DOC a été obtenu après filtration sur le terrain à travers des filtres pré-brûlés Whatman GF/F (Ø=0.7 μ m). Les filtrats de DOC ont été stockés dans des flacons en Pyrex (25 mL) également pré-brûlés, ont été acidifiés avec 50 μ L d'HCL à 37 % pour atteindre un pH de 2 et conservés à 4 °C au laboratoire, avant analyses. Les concentrations en DOC ont été mesurées avec un analyseur Shimadzu TOC 500 (en mode TDM-IC), qui est basé sur l'oxydation thermique, après une étape de purge du CO₂ dissous formé après l'acidification (Sharp, 1993). La répétabilité est supérieure à 0.1 mg L⁻¹.

Pour les paramètres particulaires, matières en suspensions (SPM), concentration en carbone organique particulaire (POC) et teneurs en carbone organique dans les matières en suspension (POC%), un bidon de 5 L a été prélevé sur le terrain à chaque station, puis filtré le même jour au laboratoire à travers des filtres en fibre de verre pré-pesés et pré-brûlés (500 °C pendant 8 h) Whatman GF/F (Ø=0.7 µm). Les filtres ont ensuite été séchés à l'étuve à 60 °C pendant la nuit et stockés au sec et à l'obscurité. Par la suite, les SPM ont été déterminées par pesée. POC% a été mesuré sur les mêmes filtres, qui ont été au préalable acidifiés dans des creusets avec du HCl 2 N pour en éliminer les carbonates et ensuite séchés à 60 °C (Etcheber et al., 2007). La teneur en POC dans les filtres (POC%) a été mesurée par combustion catalysée et détection infra-rouge en utilisant un analyseur LECO CS 125. Le POC en mg L⁻¹ a ensuite été calculé à l'aide des concentrations en SPM. L'incertitude sur le POC% est de ±0.05 % de SPM.

La conductivité, la température, et la saturation en oxygène, et le pH des eaux souterraines et superficielles ont été mesurés en utilisant des sondes portables (WTW®). La veille de chaque échantillonnage, la sonde pH a été calibrée en utilisant des solutions tampons NBS (4 et 7), et la sonde polarographique à oxygène a été calibrée à la valeur de 100 % dans une atmosphère humide.

Chapitre III

Contrôle hydrologique et écologique sur l'export de carbone vers les eaux continentales
Abstract

Export of soil carbon to superficial water through the drainage of groundwater is a significant but poorly documented component of the continental carbon budget. We monitored the concentrations of dissolved organic and inorganic carbon (DOC and DIC) in groundwaters and first order streams of a small temperate, forested and sandy watershed where hydrology occurs exclusively through drainage. The studied watershed was also implemented for continuous measurements of groundwater table, precipitation, evapotranspiration, river discharge, and net ecosystem exchanges of sensible and latent heat fluxes as well as CO₂. On a monthly basis, we found a good consistency between precipitation and the sum of evapotranspiration, drainage and groundwater storage. DOC and DIC temporary storage in groundwater and export to streams varied drastically during the hydrological cycle, the residence times of these two carbon forms varying from one month to several years. DOC concentrations in groundwater and streams were maximal at high water table and high stream discharge, when the water table reached the superficial organic rich layer of the soil. A large fraction of this winter DOC maximum was temporarily stored and further mineralized to DIC in the groundwater and only about 15 % was exported to streams. In contrast, DIC, which occurred in majority in the form of dissolved CO₂ in groundwater and streams, was apparently diluted at high water table; DIC concentrations were maximum at low water table and low discharge in late summer and maximum pCO_2 in groundwater corresponded to the late summer period of heterotrophic conditions (i.e., Reco>GPP). Groundwater DIC peaked in late summer and was followed by a rapid loss of excess CO₂ from stream surface to the atmosphere. Overall, mean carbon export is 7.8 t C km⁻² yr⁻¹ (50 % as DOC and 50 % as DIC) and represents only 1.6 % of the NEE. About 60 % of the DIC export from groundwater returns to the atmosphere in the form of CO₂ in first order streams.

Keywords: Groundwaters, soil, NEE, DOC, DIC, forest, export, degassing

Résumé

L'export de carbone du sol vers les eaux de surfaces au travers du drainage des eaux souterraines est une composante majeure mais mal documentée du cycle global du carbone. Nous avons suivi les concentrations de carbone organique et inorganique dissous (DOC and DIC) dans les eaux souterraines et les ruisseaux de premier ordre d'un petit bassin versant tempéré, boisé et sablonneux ou l'hydrologie se déroule exclusivement au travers du drainage des eaux souterraines. Le bassin versant étudié a également été instrumenté pour des mesures en continu de hauteur de nappe phréatique, de précipitation, d'évapotranspiration, de débits ainsi que d'échanges écosystémiques nets de flux de chaleur latente et sensible et de CO2. Sur une base mensuelle, nous avons trouvé une bonne cohérence entre les précipitations et la somme de l'évapotranspiration, du drainage et du stockage dans les eaux souterraines. Le stockage temporaire de DOC et de DIC dans les eaux souterraines ainsi que l'export de DOC et de DIC vers les eaux superficielles varient considérablement au cours du cycle hydrologique, le temps de séjour de ces deux formes allant d'un mois à plusieurs années. Les concentrations de DOC dans les eaux souterraines et superficielles étaient maximales en périodes de crues, lorsque la hauteur des eaux de nappes était suffisamment élevée pour atteindre les couches organiques superficielles du sol. Une grande partie de ce DOC hivernal a été temporairement stocké puis minéralisé dans les eaux souterraines, et seulement 15 % est exporté vers les eaux superficielles lors de ces périodes de crues. En revanche, le DIC, qui est principalement sous forme de CO₂ dissous dans les eaux souterraines et superficielles, a apparemment été dilué en périodes de crues lorsque la hauteur de nappe était maximale. Les concentrations de DIC dans les eaux souterraines étaient maximales à la fin de l'été en périodes d'étiages lorsque la hauteur de nappe était la plus profonde et qui correspond à une période où l'écosystème bascule en conditions hétérotopiques (i.e., R_{eco}>GPP). La concentration de DIC dans les eaux souterraines atteint un pic à la fin de l'été, suivi par une perte rapide de l'excès de CO₂ depuis la surface des cours d'eau vers l'atmosphère. Dans l'ensemble, l'export total de carbone est 7.8 t C km⁻² yr⁻¹ (50 % sous forme de DOC et 50% sous forme de DIC), représentant seulement 1.6 % de la NEE. Environ 60 % de l'export de DIC des eaux souterraines retourne directement vers l'atmosphère sous forme de CO₂ dans les ruisseaux de premier ordre.

Mots clefs : Eaux souterraines, sol, NEE, DOC, forêt, export, dégazage

III.1. Introduction

Since the beginning of the Industrial Era, human activities have greatly modified the exchanges of carbon between the atmosphere and the continent, as well as those occurring along the aquatic continuum that connects the land and the coastal ocean (Ciais et al., 2013; Regnier et al., 2013). Globally, the land (i.e., vegetation and soil) is a major reservoir of carbon that acts as a net carbon sink (Ciais et al., 2013). However, how and where this carbon is stored in land or exported to inland waters is still a matter of uncertainties (i.e., "the missing anthropogenic CO₂ sink") (Cole et al., 2007). The "missing sink" is the difference between anthropogenic inputs of CO₂ in the atmosphere, the measured increase of CO₂ in the atmosphere and fairly well constrained estimates of the net uptake of CO_2 by the world's ocean. We do not know to what extent inland aquatic systems matter to "missing sink" (Cole et al., 2007). In addition, the amount of C exported from land to streams and rivers is significant compared to the net terrestrial sink and other anthropogenic fluxes (Cole et al., 2007; Ciais et al., 2013; Regnier et al., 2013). The subsidies of carbon from land are also the major source of CO₂ degassing in streams and rivers (Cole et al., 2007; Hotchkiss et al., 2015) and of organic and inorganic C export to the coastal zone (Meybeck, 1982). Hence, it appears crucial to better understand the mechanisms that control storage and export of carbon in land.

Terrestrial vegetation takes carbon from the atmosphere through photosynthesis (GPP, Gross Primary Production), part of which is used by plants as a source of energy and then directly released by autotrophic respiration (AR), while another part is assimilated by vegetation to produce biomass (NPP, Net Primary Production) (Porporato et al., 2003). The C fixed by NPP enters into the soil as organic carbon through litterfall, root detritus and root exudates (Davidson and Janssens, 2006). Part of this carbon resulting from NPP is then respired by heterotrophic organisms in soils (Raich and Schlesinger, 1992). Thereafter, soils can lose carbon from evasion to the atmosphere, from wind erosion or from export through hydrological processes (Dawson and Smith, 2007). Hydrological processes consist in surface erosion through surface runoff, channel erosion of streams and rivers as well as lateral drainage (Dawson and Smith, 2007). Hydrological C export is generally controlled by basin slope, rainfall intensity, river flow intensity and lithology (Meybeck, 1987; Ludwig et al., 1996). Furthermore, soils can lose carbon in groundwaters through vertical leaching. Thus, drainage of groundwater enriched in dissolved carbon acts as an important source of CO₂ degassing (Venkiteswaran et al., 2014; Deirmendjian and Abril, submitted). However, dynamics on how soil carbon interacts with underlying groundwater is poorly documented.

In this study, we focused on dissolved carbon (DIC and DOC) dynamics in groundwater and associated streams draining a temperate pine forest watershed. We investigated what controls dissolved carbon temporal storage in groundwater and carbon export to superficial waters, including hydrological parameters (precipitation, evapotranspiration, water table, drainage) and ecological parameters (net ecosystem exchange, gross primary production, ecosystem respiration). We selected as main study site a forest plot, located in a small temperate watershed which offers the convenience of a relatively homogeneous lithology (sand) and vegetation (pine forest), as well as a simple hydrological functioning mainly as groundwater drainage (no surface runoff). We aim to describe the factors controlling the leaching of carbon from the soil to groundwater as well as the export of carbon from groundwater to streams.

III.2. Materials and Methods

III.2.1. Study site

The Leyre Watershed (2,100 km²) is located in the southwestern part of France near Bordeaux and lies in the "Landes de Gascogne" area (Fig. 12). The landscape is a very flat coastal plain with a mean slope lower than 1.25 ‰ (generally NW-SE) and a mean altitude lower than 50 m (Jolivet et al., 2007). The lithology is relatively homogeneous and constituted of sandy permeable surface layers dating from the Plio-quaternary period. The soil is composed of sandy permeable podzols characterized by a low pH (4-5), low nutrient availability, and high organic carbon content that can reach 55 g per kg of soil (Augusto et al., 2010). The region was a vast wetland until the XIXth century, when a wide forest of maritime pine (Pinus pinaster) was planted following landscape drainage from 1850. Nowadays, the catchment is mainly occupied by pine forest (about 80%), with a modest proportion of croplands (about 15%) (Fig. 12). The typical rotation period of pine forest is ~40 years, ending in clear-cutting, tilling and re-planting (Kowalski et al., 2003). The climate is oceanic with mean annual air temperature of 13°C and mean annual precipitation of 930 mm (Moreaux et al., 2011). Moreover, the average annual evapotranspiration is in the range of 234-570 and 63-800 mm, respectively for maritime pine and cropland (Govind et al., 2012). Hence, owing to the low slope and the high permeability of the soil, surface runoff is negligible in the Leyre watershed, and the excess of rainfall percolates into the soil and supports the enrichment of carbon in groundwater. In addition, the sandy permeable surface layers contain a free and continuous water table strongly interconnected with the superficial river network. This interconnection is facilitated by a dense network of drainage ditches,

initiated in the XIXth century, and currently maintained by forest managers in order to increase tree growth rate. Consequently, hydrology in the Leyre watershed occurs exclusively through drainage of groundwater. Furthermore, the seasonal changes in groundwater table can be important, with a water table close to the surface during winters and several meters below the surface during summers. Finally, we adapted the Strahler definition of first order stream by including streams and ditches either having no tributaries and/or being seasonally dry.

All the abbreviations used in the chapter III are listed in table 4. Carbon fluxes are in italics.

Figure 12 : Map of the Leyre Watershed with land use showing the location of the gauging station, the Bilos site as well as the locations of the other sampled piezometers and first order streams.

III.2.2. Sampling strategy

Within the Leyre Watershed, we selected 3 piezometers that were located in different forest plots and 6 first order streams whose watersheds were dominated largely with forest (~90 %) (Fig. 12).

Among the 3 piezometers, the Bilos site (44°29'38.08"N, 0°57'21.9"W, altitude: 40 m, 0.6 km²) is a quasi-rectangular parcel, owned by the Commune of Salles and managed by the National Forest Office. Besides, in 1999, clear-cutting of the 50-years old forest at the Bilos site was finished and seeding was completed in 2005 (Kowalski et al., 2003). Thereafter, the Bilos site was equipped with continuous measurements for groundwater table depth, atmospheric fluxes of energy, water vapor and CO_2 and ancillary variables. Furthermore, at the Bilos site, the impermeable layer is located at approximatively 10m below the soil surface. At the Bilos site, the carbon content of the soil was 18.3 g kg⁻¹ (0-20 cm, bulk density was 1.30 kg L⁻¹), 10 g kg⁻¹ (20-40 cm, bulk density was 1.50 kg L⁻¹) and 6.4 g kg⁻¹ (40-60 cm, bulk density was 1.55 kg L⁻¹) (Trichet and Loustau, personal communication). Using these latter data we calculated a SOC stock of 9.75 kg C m⁻² in the 0-60 cm layer.

In addition to continuous measurements at the Bilos site, we also made discrete measure sampling of the partial pressure of CO₂ (pCO₂), total alkalinity (TA) and dissolved organic carbon (DOC) in groundwater and in first order streams (Deirmendjian and Abril, submitted). The Bilos site was sampled with a frequency of approximately once a month, on 15 occasions between Feb-2014 and Jul-2015. In addition, the two other piezometers were sampled respectively on 11 (Aug. 2014-Jul. 2015) and 6 occasions (Jan. 2015-Jul. 2015). Furthermore, first order streams were sampled on 16 occasions between Jan. 2014 and Jul. 2015. Concerning river discharge, our study took benefit from one calibrated gauging station of the water quality agency (daily temporal resolution), located on the Leyre River (4th order stream) (Fig. 12).

Abbreviations	Definitions
Р	Precipitation (mm d ⁻¹)
GWS	Groundwater storage (mm d ⁻¹)
ETR	Evapotranspiration (mm d ⁻¹)
D	Drainage (mm d ⁻¹)
H _m	Mean Bilos Groundwater table (mm)
ТА	Total Alkalinity (µmol L ⁻¹)
pCO ₂	Partial pressure of CO ₂ (ppmv)
DIC	Dissolved inorganic carbon
DOC	Dissolved organic carbon
DIC _m	Mean concentration of DIC in Bilos groundwater (mmol m ⁻³)
DOC _m	Mean concentration of DOC in Bilos groundwater (mmo m ⁻³)
DIC _{m1}	Mean concentration of DIC in first order streams (mmol m ⁻³)
DOC _{m1}	Mean concentration of DOC in first order streams (mmol m ⁻³)
DICs	Storage of DIC in groundwater (mmol m ⁻² d ⁻¹)
DOCs	Storage of DOC in groundwater (mmol $m^{-2} d^{-1}$)
DIC _{ex}	Export of DIC through drainage of groundwater (mmol m ⁻² d ⁻¹)
DOC _{ex}	Export of DOC through drainage of groundwater (mmol m ⁻² d ⁻¹)
F _{Degass}	Degassing flux in first order streams (mmol m ⁻² d ⁻¹)
F _c	Net daily flux of CO_2 determined form eddy covariance (mmol m ⁻² d ⁻¹)
GPP	Gross Primary Production (mmol m ⁻² d ⁻¹)
R _{eco}	Respiration (mmol $m^{-2} d^{-1}$)
NEE	Net Ecosystem Exchange, calculated as R_{eco} - GPP (mmol m ⁻² d ⁻¹)
DIC _{rs}	Residence time of DIC in Bilos groundwater (d)
DOC _{rs}	Residence time of DOC in Bilos groundwater (d)

Tableau 4 : List of the abbreviations used in the chapter III.

III.2.3. Continuous measurements at the Bilos site

Precipitation was measured using automatic rain gauges with a 30 minutes integration: Young EML SBS 500 (EML, North Shields, UK) located on 3 m tower, from 01/01/2014 to 10/05/2014 and TRwS (MPS system; Bratislava, Slovakia) an electronic weighing precipitation located on a 6 m tower, from 01/07/2014 to 31/12/2015. Hence, between 11/05/2014 and 31/06/2014, there was no precipitation measurement available. Thus, during this period, we used data from Meteo France © station at Belin-Béliet (about 30 km from the Bilos site). Precipitation measurements were also checked weekly in the field with manual reports.

The net CO_2 and latent heat fluxes were measured using the eddy covariance technique. The eddy covariance technique allows determine the turbulent-scale covariance between vertical wind velocity and the scalar concentration of CO_2 or H_2O , measured near the ecosystem/atmosphere interface which is an atmospheric flux between the ecosystem and the atmosphere. The atmospheric exchange originates from atmospheric eddies (turbulence) caused by buoyancy and shear of upward and downward moving air that transport gases such as CO_2 and H_2O .

Here, wind velocity, temperature and CO₂/water vapor fluctuations were measured with, respectively, a sonic anemometer (model R3, Gill instruments Lymington, UK) and an open path dual CO₂/H₂O infrared gas analyzer (model Li7500, LiCor, Lincoln, USA) at the top of a 9.6 m tower (01/01/2014 to 10/05/2014) and with another sonic anemometer (model HS50, Gill instruments) and a close path enclosed dual CO₂/H₂O infrared gas analyzer (model Li7200, LiCor ©) at the top of a 15 m tower (09/07/14 to 31/12/2015) . Consequently, there were no eddy covariance measurements available between 11/05/2014 and 08/07/2014 and thus between these two dates the latent heat fluxes were determined following the procedure of Thornthwaite (1948).

In this paper raw data were processed following the ICOS Aubinet et al. (1999) methodology. The post-processing software EddyPro (www.licor.com) was used to treat raw data and compute average fluxes (30 min period) by applying the following steps: (1) spike removal in anemometer or gas analyzer data by statistical analysis, (2) coordinating rotation to align coordinate system with the stream lines of the 30 min averages, (3) linear detrending of sonic temperature, H₂O and CO₂ channels (4) determining time lag values for H₂O and CO₂ channels using a cross-correlation procedure, (5) computing mean values, turbulent fluxes and characteristic parameters, (6) high frequency corrections via transfer functions (Moore, 1986) and (7) performing a Webb Pearman Leuning correction to account for the effects of temperature and water vapor on measured fluctuations in CO2 and H2O (Webb et al., 1980). Thereafter, CO₂ and H₂O fluxes were filtered in order to remove points corresponding to technical problems, meteorological conditions not satisfying eddy correlation theory or data out of realistic bounds. Different statistical tests were applied for this filtering: (1) stationarity and turbulent conditions were tested with the steady state test and the turbulence characteristic test recommended by Foken and Wichura (1996) and Kaimal and Finnigan (1994).

According to the different tests, only values of CO₂ and H₂O fluxes that pass all the filters mentioned above were retained. Then, missing values of CO₂ and H₂O fluxes were gap-filled and partitioned into *GPP* and R_{eco} with the R package Reddyproc (version 0.8-2) that implements the procedure of Reichstein et al (2005). *NEE* was then partitioned into *GPP* and R_{eco} by applying the following steps:

(1) during nighttime *GPP*=0 so $NEE = R_{eco}$

(2) statistical regression between R_{eco} and night air temperature and meteorological conditions is adjusted with a Arrhenius type equation (Lloyd and Taylor, 1994) :

 $R_{eco}(t) = R_{ref}(t) \exp[E_0(1/T_{ref}-T_0)-(1/(T_{soil}(t)-T_0)]$ (Eq. 21)

Where,

 T_{soil} is the soil temperature measured at 10 cm. R_{ref} , E_0 and T_0 are respectively the ecosystem respiration for a reference soil temperature of 15 °C, the activation and a calibrated temperature (227.13 K).

(3) day-time R_{eco} is obtained by extrapolating night-time fluxes using the temperature response

(4) *GPP* is calculated as the difference between daytime *NEE* and R_{eco} , additional check are performed to avoid unrealistic values of *GPP* (notably, at night).

GPP is positive or zero. R_{eco} is positive. $NEE = R_{eco} - GPP$. Hence, positive NEE indicates a positive CO_2 flux (upward flux) whereas a negative NEE indicates a negative CO_2 flux (downward flux). We also considered that $NEE = F_c$.

The groundwater table was measured using high performance level pressure sensors (PDCR/PTX 1830, Druck and CS451451, Campbell Scientific) in one piezometer located amid the Bilos site. The pressure measurements were fully compensated for temperature and air pressure fluctuations. The measurements were obtained at 60 second intervals and integrated on 30 min period. They were checked with manual probe weekly. Since there were no measurement available between 30/04/2014 and 23/06/2015, values of the

groundwater table depth was interpolated between these two dates. Further away, we used the parameter H_m that is the mean groundwater table between two sampling dates.

III.2.4. Discrete sampling

We measured partial pressure of CO_2 (p CO_2) directly in the field and total alkalinity (TA) and dissolved organic carbon (DOC) back in the laboratory.

Thus, partial pressure of CO_2 in groundwater and in first order streams was measured directly using an equilibrator (Frankignoulle and Borges, 2001; Polsenaere et al., 2013a). This equilibrator was connected to an Infra-Red Gas Analyzer (LI-COR®, LI-820), which was calibrated on the 0–90,000 ppmv range, following the procedure of Deirmendjian and Abril (Submitted). We took the precaution to renew the water in the piezometers by pumping of about 300 L with a submersible pump before sampling.

TA was analyzed on filtered samples by automated electro-titration on 50 mL filtered samples with 0.1N HCl as titrant. Equivalence point was determined with a Gran method from pH between 4 and 3 (Gran, 1952). Precision based on replicate analyses was better than \pm 5 µM. For samples with a very low pH (<4.5), we bubbled the water with atmospheric air in order to degas CO₂. Consequently, the initial pH increased above the value of 5, and TA titration could be performed (Abril et al., 2015). We calculated dissolved inorganic carbon (DIC) from *p*CO₂, TA, and temperature measurements using carbonic acid dissociation constants of Millero (1979) and the CO₂ solubility from Weiss (1974) as implemented in the CO₂SYS program. Contrary to pCO₂ and TA was weakly affected by the presence of organic alkalinity, because 75±15 % of DIC in our samples was dissolved CO₂.

DOC samples were obtained after filtration, in the field through pre-combusted GF/F filters (porosity of 0.7 μ m); DOC filtrates were stored in pre-combusted Pyrex vials (25 mL) and acidified with 50 μ L of HCI 37 % to reach pH 2 and kept at 4 °C in the laboratory before analysis. DOC concentrations were measured with a SHIMADZU TOC 500 analyzer (in TOC-IC mode), which is based on thermal oxidation after a DIC removal step (Sharp, 1993). The precision (repeatability) was better than 0.1 mg L⁻¹.

III.2.5. Water balance at the Bilos site

By definition, water balance is:

 $P = D + ETR + GWS + \Delta S$ (Eq. 22)

Where,

P, D, ETR, GWS and Δ S are respectively, precipitation, drainage, evapotranspiration, groundwater storage and change of soil water content in the unsaturated zone, all expressed in mm d⁻¹. These 5 parameters were determined respectively as follows:

(1) P is the cumulative precipitation (mm) over a period t;

(2) D, the drainage at the Bilos site, as the mean Leyre River flow over a period t divided by the catchment size at the gauging station;

(3) ETR the cumulative evapotranspiration (mm) obtained from eddy covariance measurements of latent heat flux over a period t at the Bilos site;

(4) GWS groundwater storage as the net change in water table depth (mm) over the period t;

(5) Δ S. No reliable measurement of soil water content was available and this term was not measured therefore.

In the above description, drainage (D) is calculated for the Leyre River that is fourth order stream according to Strahler classification. The Bilos site is drained in majority by ditches that are first order stream according to Strahler classification. Hence, we corrected the drainage of fourth order stream to estimate the drainage value at the Bilos site. This correction factor is about 2.1, as deduced from in situ discharge measurements in the Leyre catchment (Deirmendjian & Abril submitted).

Finally, water balance of the Bilos site, was calculated on a monthly basis over a two years period (2014-2015).

72

III.2.6. Groundwater carbon fluxes at the Bilos site

In order to understand the dynamics of carbon in groundwater, we calculated 4 different terms of carbon groundwater fluxes at the Bilos site: storage of DIC and DOC (DIC_s and DOC_s) and export of DIC and DOC (DIC_{ex} and DOC_{ex}) all expressed in mmol m⁻² d⁻¹.

Storage of DIC in groundwater is calculated using the following equation:

 $DIC_{s} = (S_{f} - S_{i}) / dt = (DIC_{f} V_{f} - DIC_{i} V_{i}) / dt$ (Eq. 23)

Where,

 S_f and S_i are the final and the initial stock of DIC in groundwater in mmol m⁻². DIC_f and DIC_i are the final and the initial concentration of DIC in groundwater in mmol m⁻³, respectively. V_f and V_i are the final and the initial volume of groundwater in m³ m⁻². dt is the period in day between two sampling days. DIC (or DOC) storage can be positive or negative depending if gain or loss of DIC occurred in the groundwater between two sampling days.

The volume of groundwater (V) was calculated as the following manner:

 $V = (10 + H) \Phi_{\text{effective}}$ (Eq. 24)

Where,

10 and H (H is negative), are respectively the total height of the permeable surface layer and the height of groundwater table, in m. In the Leyre watershed the total porosity equals to 0.4 whereas $\Phi_{\text{effective}}$ (effective porosity) equals to 0.2 (Augusto et al., 2010; Moreaux, 2012)

We calculated DOC_s as the same manner as DIC_s.

Export of DIC through drainage of groundwater is calculated using the following equation:

 $DIC_{ex} = D DIC_m$ (Eq. 25)

Where,

D and DIC_m are the drainage of groundwater and the mean concentration of DIC in groundwater between two sampling days, respectively in m d⁻¹ and mmol m⁻³.

We calculated DOC_{ex} as the same manner as DIC_{ex}.

Finally we calculated the residence time of DIC (DIC_{rs}) in groundwater relative to their mean stock (S_{DIC}) as:

 $DIC_{rs} = S_{DIC} / outputs fluxes$ (Eq. 26)

Where,

Outputs fluxes are DIC_{ex} plus DIC_s (only when DIC_s is negative) and expressed in mmol m⁻² d⁻¹ and,

 $S_{DIC} = (S_i + S_f) / 2 = (DIC_i V_i + DIC_f V_f) / 2$ (Eq. 27)

Where,

 S_{DIC} is the mean stock of groundwater DIC between two sampling days in mmol m². S_f and S_i are the final and the initial stock of DIC in groundwater in mmol m⁻². DICi and DIC_f are the initial and the final concentration of DIC in groundwater in mmol m⁻³, respectively. V_i and V_f are the initial and the final volume of groundwater in m³ m⁻².

We calculated DOC_{rs} as the same manner as DIC_{rs.}

III.2.7. Degassing in first order streams

We determined degassing flux (F_{Degass}) between two sampling dates, in first order streams as described in Deirmendjian and Abril (submitted).

 $F_{Degass} = ((\Delta CO_{2(t)} + \Delta CO_{2(t+1)}) / 2) Q_{mean} / S$ (Eq. 28)

Where,

 $\Delta CO_{2 (t)}$ and $\Delta CO_{2 (t+1)}$ are the differences between the concentrations of CO_{2} in Bilos groundwater and in first order stream (mean of the 6 first order streams)at time t and t+1, expressed in mmol m⁻³. Q_{mean} is the mean river flow of first order streams in m³ d⁻¹ between time t and t+1. S is the area of the Leyre watershed in m².

III.2.8. Analysis of data

In this paper we used Pearson's correlation coefficient (r_p) to investigate the strength of a linear correlation between mean carbon concentrations in groundwater (DIC_m, DOC_m) and in first order streams (DIC_{m1}, DOC_{m1}) with carbon groundwater fluxes (*DIC_s*, *DOC_s*, *DIC_{ex}*, *DOC_{ex}*), hydrological parameters (P, GWS, ETR, D and H_m) ecological parameters (NEE, GPP, R) and degassing flux in first order stream (*F_{Degass}*).

All the Pearson's correlation coefficient, r_p are presented in Table 5.

	DIC _m	DOC_{m}	DIC _{m1}	DOC _{m1}	DICs	DOCs	DIC _{ex}	DOC _{ex}	F _{Degass}	Р	GWS	ETR	D	H _m	NEE	GPP	R
DIC _m	1	-0.63	<u>0.81</u>	-0.34	-0.08	0.10	-0.49	-0.62	-0.49	-0.06	0.42	0.41	-0.70	<u>-0.82</u>	0.48	0.27	-0.05
DOC_{m}		1	-0.35	0.30	0.26	-0.25	0.76	<u>0.96</u>	0.68	0.16	-0.31	0.49	<u>0.96</u>	0.78	-0.15	0.14	-0.34
DIC _{m1}			1	-0.55	0.25	0.11	-0.37	-0.30	-0.47	-0.26	0.12	-0.23	-0.41	-0.71	0.38	0.27	-0.13
DOC_{m1}				1	-0.47	0.08	0.43	0.30	0.44	0.40	0.44	-0.43	0.37	0.66	0.17	0.41	-0.51
DICs					1	-0.19	0.22	0.23	-0.11	-0.28	-0.39	0.44	0.22	0.01	-0.32	-0.12	-0.07
DOCs						1	-0.09	-0.12	-0.12	0.63	0.62	-0.45	-0.07	-0.10	0.22	0.28	-0.27
DIC _{ex}							1	0.72	<u>0.95</u>	0.25	-0.08	0.23	<u>0.80</u>	<u>0.83</u>	-0.16	0.17	-0.40
DOC _{ex}								1	0.58	0.23	-0.25	0.35	<u>0.98</u>	0.77	-0.16	0.17	-0.39
<i>F</i> _{Degass}									1	0.25	-0.07	0.25	0.69	<u>0.79</u>	-0.09	0.18	0.36
Р										1	0.76	-0.30	0.26	0.23	0.33	0.44	-0.43
GWS											1	-0.73	-0.23	-0.15	0.62	0.63	-0.51
ETR												1	0.35	0.17	-0.63	-0.63	0.50
D													1	<u>0.86</u>	-0.20	-0.14	-0.39
H _m														1	-0.27	-0.06	0.31
NEE															1	<u>-0.85</u>	-0.55
GPP																1	<u>-0.91</u>
R																	1

Tableau 5 : Pearson's correlation coefficient (r_p) for the different parameters. Values in bold indicate correlation with p-value < 0.05, whereas underlined and bold values indicate correlation with p-value < 0.001. Carbon fluxes are in italics.

III.3. Results

III.3.1. Water mass balance

Over the 2000-2015 period, mean annual air temperature was 14 °C, mean annual P was 2.26 mm d⁻¹ and mean annual ETR was 2.1 mm d⁻¹ (Fig. 13b). In 2014, mean annual air temperature was 14.4 °C, mean annual precipitation was 3.02 mm d⁻¹, mean annual ETR was 2.49 mm d⁻¹, mean annual drainage was 0.57 mm d⁻¹ and mean annual GWS was -0.19 mm d⁻¹ (Fig. 13b). In 2015, mean annual air temperature was 14.5 °C, mean annual P was 1.87 mm d⁻¹, mean annual ETR was 1.70 mm d⁻¹, mean annual drainage was 0.32 mm d⁻¹ and mean annual GWS was -0.47 mm d⁻¹, mean annual drainage was 0.32 mm d⁻¹ and mean annual GWS was -0.47 mm d⁻¹ (Fig. 13b). Moreover, extremely high precipitations occurred for Jan. 2014 (247 mm compared with an average rainfall of 77 mm for the 2005-2013 period). Conversely, Sep. 2014 (5.5 mm compared with an average rainfall of 69 mm for the 2005-2013 period) and Dec. 2015 (5.7 mm compared with an average rainfall of 95 mm for the 2005-2013 period) received an extremely low amount of precipitations (Fig 13b).

During the 2014-2015 period, the Leyre River discharge was on average 17.9 m³ s⁻¹ including two relatively short flood events (further referred as high flow period) in Jan. 2014-Apr. 2014 (maximum flow of 120 m³ s⁻¹) and in Feb. 2015-Mar. 2015 (maximum flow of 80 m³ s⁻¹), and two longer periods of low discharge (further referred as base flow period) between May. 2014-Jan. 2015 and Apr. 2015-Dec. 2015 (minimum flow of 5.1 m³ s⁻¹) (Fig. 13a).

Periods for groundwater discharging (decreasing water table) were Feb. 2014-Sep. 2014 and Mar. 2015-Aug. 2015 and these two periods were characterized both by ETR higher than P and by negative GWS (Fig. 13a-b). Conversely, periods of groundwater loading (rising groundwater table) were Oct. 2014-Feb. 2015 and Sep. 2015-Dec. 2015 and were characterized both by P higher than ETR and positive GWS (Fig 13a-b). High drainage periods were preceded by heavy rainfall (P) and high GWS by about 3-4 months (Fig. 13a-b).

Furthermore, there was a good linear correlation between GWS and P ($r_p = 0.76$, p-value < 0.05), and between GWS and ETR ($r_p = -0.73$, p-value < 0.05) (Tab. 5). High river discharge periods were also associated with the highest water table and the highest D (Fig. 13a-b). As a consequence, H_m and D were positively correlated ($r_p = 0.86$, p-value < 0.001) (Tab. 5).

Overall, ETR was higher in spring and summer (maximum value of 5.33 mm d⁻¹ in Apr. 2014) than in autumn and winter (minimum value of 0.33 mm d⁻¹ in Dec. 2014) (Fig. 13b). On the contrary, P was higher in autumn and winter (maximum value of 7.99 mm d⁻¹ in Jan. 2014) than in spring and summer (minimum value of 0.18 mm d⁻¹ in Sep. 2014) (Fig 13b).

Finally, water balance at the Bilos site as calculated as P, on the one hand and as the sum of ETR, GWS and D on the other hand (see Eq. 22, in section III.2.5) closely followed the 1:1 Line (Fig. 14). The water mass balance estimated with different techniques and independent devices was fairly consistent. This reveals that our approach was well adapted to establish the water mass balance of our forest plot and thus the dissolved carbon fluxes.

Figure 13: Seasonal variations of hydrological parameters in the Leyre. (A) Discharge of the Leyre River associated with groundwater table at the Bilos site; side bars represent high flow periods and the blue dotted line is the average annual Leyre river discharge calculated from a 30 year period. (B) Monthly precipitation (P), drainage (D), evapotranspiration (ETR) and groundwater storage (GWS) at the Bilos site.

Figure 14 : Monthly water mass balance (see section III.2.5) at the Bilos site for 2014-2015. Pearson coefficient R = 0.85, p-value < 0.001. Blue points represent months where GWS (Mar. 2014, Apr. 2014, Mar. 2015, Apr. 2015, Jul. 2015) is extremely negative (see Fig. 13). These blue points are further away from the 1:1 Line than the other months (represented in black). The drainage of the Leyre River is delayed compared to the drainage of Bilos plot. Thus, when the loss of groundwater is extremely high (GWS negative), calculated D do not correspond to measured GWS. Hence, we expected more mistakes when GWS is extremely negative.

III.3.2. Carbon fluxes

In groundwater and first order streams, TA originated from weathering of silicate minerals with vegetation-derived CO_2 (Polsenaere and Abril 2012; Deirmendjian and Abril, Submitted). In addition, the proportion of TA in the DIC pool was respectively 4.9±4.9 ‰ and 29.5±14.4 % for groundwater and first order streams, the large majority of the DIC was thus composed of dissolved CO_2 resulting from microbial and plant root respiration in the soil.

Figure 15: (A) Mean concentration of DIC (DIC_m) and DOC (DOC_m) in groundwater as a function of water table (H_m). Temporal variations throughout the sampling period of (B) DIC in groundwater (Bilos and two other piezometers) and DIC in first order streams (medium dashed line) and (C) DOC in groundwater (Bilos and two other piezometers) and DOC in first order streams (medium dash line). Side bars represent high flow periods.

Lowest values of DIC in Bilos groundwater occurred concomitantly with highest values of DOC in Bilos groundwater (570 & 3,625; 1,190 & 3,325 and 1,500 & 3,660 mmol $\rm m^{\text{-3}}$ respectively in Feb. 2014, Mar. 2014 and Mar. 2015). They were associated both with high water table and high D periods (Fig. 13a; 15). Furthermore, during these high flow periods, we never observed such high DOC concentrations in first order streams as in the groundwater (Fig. 15c). Thus, DOC_{m1} was not correlated with DOC_m ($r_p = 0.30$) and DOC_{ex} (r_p = 0.30) (Tab. 5). On the contrary, highest values of DIC in Bilos groundwater (5,400 and 5,100 mmol m⁻³ in Sep. 2014 and Oct. 2014 respectively) and lowest values of DOC in Bilos groundwater occurred during base flow and low water table periods (Fig. 15). In addition, highest values of DIC (5,400; 5,100 and 3,975 mmol m⁻³ in Sept, Oct and Nov. 2014 respectively) in Bilos groundwater were also associated both with highest values of DIC in first order streams, although with lower values (1,300 mmol m⁻³ in Sep. 2014). We also noticed that highest DIC concentrations in the groundwater exactly coincided with positive NEE ($R_{eco} > GPP$, 21, 33 and 50 mmol m⁻² d⁻¹, respectively in Sep, Oct and Nov 2014) (Fig. 15b; 16a). Indeed, DIC_{m1} and DIC_m were correlated together ($r_p = 0.84$, p-value < 0.001) (Tab. 5). However, DIC_{m1} was not related to DIC_{ex} (Tab. 5).

We observed a first rapid increase (Feb. 2014-May. 2014) of DIC in Bilos groundwater (570 to 3,030 mmol m⁻³) associated with both a fast decrease (Feb. 2014-May. 2014) of DOC in Bilos groundwater (3,625 to 950 mmol m⁻³) and the onset of groundwater table levelling off (Fig. 13a, 15). Moreover, at the same time intervals, we observed a DIC_s increase in the groundwater (33 and 52 mmol m⁻² d⁻¹) roughly equivalent to a DOC_s decrease (-31 and -72 mmol m⁻² d⁻¹) (Fig. 16b). We observed a fast second increase (Aug. 2014-Sep. 2014) of DIC in Bilos groundwater (2,700 to 5,400 mmol m⁻³) but not related with any decrease of groundwater DOC (Fig. 15b-c). Same temporal trend was observed for piezometer 2 (Fig. 15b-c). DIC concentration in Bilos groundwater decreased from 5,400 mmol m⁻³ (Sep. 2014) to 1,700 (Mar. 2015) mmol m^{-3} in parallel with a rise in the water table due to high P (Fig. 13b; 15b-c). Same temporal trend was observed for piezometer 2 (Fig. 13b, 15b-c). Concomitantly, a fast increase in DOC concentration from 575 to 3,670 mmol m⁻³ occurred in Bilos groundwater between Jan. 2015 and Mar. 2015. Furthermore, the same trend (fast increase of DOC) was observed for piezometer 3 but not for piezometer 2 (Fig. 15c). Then, from Mar. 2015 to Jul. 2015 a large decrease of DOC concentration from 3,670 to 320 mmol m⁻³ in Bilos groundwater was observed in parallel with a small increase of DIC from 1,700 to 2,400 mmol m⁻³, and a drop in the water table (Fig. 13a, 15b-c). During this period, the same trend was observed in piezometer 3 but not in piezometer 2 (Fig. 13a, 15b-c).

Figure 16: Temporal variations throughout sampling period of (A) ecological parameters at the Bilos site (*GPP*, *R* and *NEE*), here *GPP* is represented negative (B) storage of DIC and DOC in groundwater at the Bilos site and (C) export of DIC and DOC throughout Bilos groundwater and degassing of CO_2 in first order streams.

 DIC_m and DOC_m were negatively correlated in Bilos groundwater ($r_p = -0.63$, p-value < 0.05) (Tab. 5; Fig. 15). Moreover, DIC_m in Bilos groundwater was negatively correlated with D $(r_p = -0.70, p-value < 0.05)$ and H_m $(r_p = -0.82, p-value < 0.001)$ whereas DOC_m in Bilos groundwater was positively correlated with D (R = 0.96, p-value < 0.001) and H_m (r_p = 0.78, p-value < 0.05) (Tab. 2, Fig. 4). In addition, DIC_m and DOC_m were respectively 2,300±1,100 mmol m⁻³ and 1,040±970 mmol m⁻³. In the same time, H_m controlled both the export of both carbon forms, being positively correlated with DIC_{ex} ($r_p = 0.83$, p-value < 0.001) and DOC_{ex} $(r_p = 0.77, p-value < 0.05)$. Although seasonal differences occurred between both carbon forms throughout the sampling period, the mean, time-integrated value of carbon export was 0.90 mmol m⁻² d⁻¹ for *DIC*_{ex} and 0.90 mmol m⁻² d⁻¹ for *DOC*_{ex}. Furthermore, DIC_{ex} and DOC_{ex} were positively correlated together as they were strongly impacted by D values (r_p =0.72, pvalue < 0.05) (Tab. 5). Consequently, export of carbon was more important during high flow periods than during the base flow period, both for DICex and DOCex (Fig. 13a, 16c), even if concentration of DIC_m were 10 times higher during the base flow period than during high flow periods. Furthermore, F_{Degass} was positively correlated with DIC_{ex} (r_p = 0.94, p-value < 0.001), D ($r_p = 0.65$, p-value < 0.05) and H_m ($r_p = 0.78$, p-value < 0.05). Besides, DIC_m was also negatively correlated with DIC_{ex} (R = -0.49), whereas DOC_m was positively correlated with DIC_{ex} (R = 0.76, p-value < 0.05) (Tab. 5, 15b-c, 16c). As in the groundwater, DIC_{m1} and DOC_{m1} concentrations in streams were negatively correlated ($r_p = -0.55$, p-value < 0.05). DIC and DOC concentrations in first order streams were respectively 370±260 and 410±100 mmol m⁻³ in first order streams, that was, significantly lower than DIC and DOC concentrations in Bilos groundwater (respectively 2,300±1,100 mmol m⁻³ and 1,040±970 mmol m⁻³). Furthermore, DIC_{m1} was negatively correlated with H_m ($r_p = -0.71$, p-value < 0.05), whereas DOC_{m1} was positively correlated with H_m ($r_p = 0.66$, p-value < 0.05) (Tab. 5).

Overall, throughout sampling period, storage of carbon in Bilos groundwater was highly variable, depending on the intensity of increase/decrease of carbon concentrations in groundwater, with mean value of 0.8 mmol m⁻² d⁻¹ and -9.6 mmol m⁻² d⁻¹, for *DIC*_s and *DOC*_s respectively (Fig. 16b). This means that throughout sampling period, the groundwater storage gained some DIC but lost some DOC. Moreover, DIC_s was correlated with none of the studied parameters whereas DOC_s was correlated with P (R = 0.63, p-value < 0.05) and GWS (R = 0.62, p-value < 0.05) (Tab. 5).

Residence time of DIC varied between 35 d (21/11/2014-16/12/2014) and 10,800 d (27/08/2014-24/09/14) (Fig. 17). Residence time of DOC varied between 46 d (04/03/2015-10/04/2015) and 12,400 d (24/09/14-31/10/14) (Fig. 17). Furthermore, in autumn (24/09/14 to 16/12/14) DOC_{rs} was higher ($10,000\pm2,200$ d) than the others months (390 ± 670 d). DIC_{rs}

was very high in 2 different periods that were late summer (10,800 d between 27/08/14 to 24/09/14) and early winter (5,800 d between 16/12/14 to 27/01/15).

Figure 17 : Residence time of DIC and DOC in Bilos groundwater relative to export and loss (storage when negative). Residence time is calculated as the stocks of each C species divided by their outputs (storage when negative plus export).

Mean GPP, mean R_{eco} and mean NEE were respectively 420 mmol m⁻² d⁻¹, 310 mmol m⁻² d⁻¹ and -110 mmol m⁻² d⁻¹ throughout the sampling period (here we excluded 16/05/14-

07/07/14 period, no data available), equivalent to 1840, 1360 and 480 g C m⁻² y⁻¹. This figure is close from Moreaux et al (2011) estimates of 1720, 1480 and 340 g C m⁻² y⁻¹ respectively, as measured at a younger forest stage in the same forest plot. NEE was positive ($R_{eco} > GPP$) in Oct. Nov and Dec. 2014 and negative ($R_{eco} < GPP$) all over the rest of the sampling period (Fig. 16a). GPP increased from Mar. 2014 to Aug. 2014 (285-640 mmol m⁻² d⁻¹) and from Jan. 2015 to Jun. 2015 (-180 to -860 mmol m⁻² d⁻¹). R_{eco} followed the same trend. Finally, none of these variables (NEE, GPP, R_{eco}) were correlated with carbon groundwater fluxes (DIC_s , DOC_s , DIC_{ex} , DOC_{ex}). The maximum in DIC_m concentration in the Bilos groundwater occurred in late summer (from Oct. to Dec 2014; Fig. 15b), when the forest ecosystem was heterotrophic (NEE positive, $R_{eco} > GPP$) (Fig. 16a).

III.4. Discussion

III.4.1. Controls on groundwater fluxes in the Landes de Gascogne pine forest ecosystem

Our dataset obtained during the 15 months of monitoring enables to understand well how rainfall is partitioned between evapotranspiration, drainage and groundwater storage in the "Landes de Gascogne" area, as well as what controls the water table level between precipitation, drainage and evapotranspiration. Due to the high permeability of the sandy podzolic soil, when precipitations are high, water infiltration in the soil is faster than the capture by vegetation. Consequently, groundwater is filled directly by rain water, which raises the water table and thus increases the GWS. For that reason, GWS tightly increases with P (Fig. 13b; Tab. 5). On the contrary, the use of water by plants and the ETR is maximum in spring and summer (i.e., corresponds to the growing season), and associated with less P. For that reason, GWS decreases with increasing ETR (Fig. 13b; Tab. 5), revealing that water uptake by the pine trees exerts a strong influence on water table depth.

On the one hand, this was consistent with some authors who found that water table was significantly elevated after harvesting pine forest due to reduced evapotranspiration (Bosch and Hewlett, 1982; Sun et al., 2000; Xu et al., 2002; Guillot et al., 2010), and Guillot et al (2010) estimated that groundwater contribution to the ETR was above 50 %. On the other hand, rising water table can saturate plant rooting zone, and the resulting anoxia places stress on growing vegetation because of lacking oxygen required for aerobic respiration (Naumburg et al., 2005). In response to anoxia, plant roots switch to anaerobic metabolism (Naumburg et al., 2005). Thus, roots that cannot tolerate periods of anoxia

III. Contrôle hydrologique et écologique sur l'export de carbone vers les eaux continentales

usually die. Therefore, whole-plant responses may resemble symptoms of drought stress, including the closure of stomata and a decrease in photosynthetic activity and water transport capacity (Cronk and Fennessy, 2016). However, flood-tolerant species have developed a number of soil adaptations that allow them to cope with periods of soil saturation and anoxia, primarily by increasing oxygen supply to roots (Kozlowski, 1997, 2002). These structural and physiological adjustments are mainly observed in wetland vegetation, which is adapted to extended periods of flooding (Kozlowski, 1997). We believe that this is also the case for pine tree in the Leyre watershed. Indeed, because of the flat landscape, the low drainage, the high permeability of the soil and the high rainfall, water table is usually very close to the soil surface during each high flow periods. Thus, pine tree must be adapted to high water table period.

In other environment (Mediterranean), spring growth flush (as well as groundwater uptake) of cork oak was also initiated when groundwater was near the soil surface (Costa et al., 2003). In semi-arid oak savanna in California Miller et al. (2010) also showed that woody vegetation uses a significant amount of groundwater as soil moisture reserves are depleted. Moreover, the precipitation preceding the growing season, can be important to simulate physiological activity of the trees during the growing season (Miller et al., 2010; Naumburg et al., 2005). In the studied watershed, climate is oceanic and the precipitation preceding the growing season is always intense (mean precipitation during Nov. Dec. Jan and Feb 2000-2015 was 320 mm). Hence, groundwater uptake by plants in spring could be stimulated by high precipitation in winter and high water table period that reduce soil moisture reserve (because the water table is very near the soil surface).

Throughout the sampling period, H_m fluctuations control the intensity of D (Tab. 5). This correlation linking D and H_m is not unexpected since H_m might be interpreted as a proxy for the watershed pressure head driving the drainage D (Tab. 5; Fig. 13a-b). Conversely, H_m is not correlated with P, ETR or GWS.

Consequently, the drainage (D) was not correlated with GWS (Tab. 5). Hence, fluctuation of groundwater storage is decoupled from D in this ecosystem. This is due to the long time needed for transferring groundwater discharge to river flow in this system. This is indeed consistent with the flat topography of the watershed (mean slope lower than 1.25 ‰) and its low overall hydraulic conductivity. It should be also noticed that the human-made network of ditches probably has a substantial role in the drainage regime. Indeed, when the water table is high, it is strongly regulated by drainage ditches which are connected to rivers. Finally, H_m is not correlated with P, ETR or GWS. Consequently, fluctuation of the height of

86

the water table is not driven specially by one of the hydrological parameters, but probably influenced by all the parameters (P, ETR, GWS and D) tied together.

	2014	2015	2014-2015
Precipitation	1,102	681	1,783
Evapotranspiration (ETR)	912	621	1,533
Drainage (D)	209	118	327
Groundwater Storage (GWS)	-72	-174	-246
ETR + D + GWS	1,049	565	1,614

Tableau 6 : Annual water budget of the Bilos site (in mm). ETR in May and Jun. 2014 were estimated using the procedure of Thornthwaite (1948) cause lack of data (see section III.2.3).

We consider water input as precipitation and water output as evapotranspiration plus drainage. Water stock (i.e., groundwater storage plus soil water in the unsaturated zone, see Eq. 22) changes can be calculated from subtracting output to input. Hence, water stock changes are -19 mm and -58 mm, respectively in 2014 and 2015 (Tab. 6). However, we measured groundwater storage of -72 mm and -174 mm, respectively in 2014 and 2015 (Tab. 6). Thus, we estimates that soil water in the unsaturated zone gains 53 mm and 116 mm; respectively in 2014 and 2015. Larger increase of soil water content in 2015 is consistent with the larger thickness of the unsaturated zone in 2015 (up to 1,800 mm) (Fig. 13a). At the Bilos site, Moreaux et al (2011) measured a loss of soil water of -70 mm, but calculated on the 0-800 mm soil layer. This suggests that the unsaturated zone of the soil gains water in deeper horizons and lose water in superficial horizon.

III.4.2. Production and consumption of dissolved carbon in groundwaters

DIC in the groundwater was composed of 4.9 ± 4.9 % (range is 1.5-23 %) of bicarbonate (alkalinity) and 95 ± 4.9 % (range is 76-98.5 %) of dissolved CO₂. Dissolved CO₂ originates from the solubilization of CO₂ that comes from soil respiration, root respiration (autotrophic) and microbial respiration (heterotrophic) (Raich and Schlesinger, 1992); Dissolved CO₂ can also originate from respiration in the saturated soil, i.e. in the groundwater itself using DOC (Craft et al., 2002). TA in the sampled groundwater originates from silicate weathering, in the sandy podzols (Polsenaere and Abril, 2012; Polseneare et al. 2013; Deirmendjian and Abril,

submitted). Indeed, dissolved CO_2 can react with silicates to produce bicarbonates (Meybeck, 1987, 1993). However, in monolithic watersheds draining mainly silicate rocks, TA is typically very low, on average below 125 mmol m⁻³ according to Meybeck (1987), and 32-135 mmol m⁻³ in groundwater at the three sampled sites. This is consistent with the very low content in feldspars and allover clay minerals in our sandy podzols (Augusto et al., 2010). Moreover, silicate weathering and soil respiration occur at different time scales. Indeed, soil respiration is a short time scale process (10^0-10^2 years) whereas silicate weathering is a long time scale process (10^4-10^6 years) (Ciais et al., 2013; Colbourn et al., 2015). DOC in groundwater generally comes from the leaching of soil organic matter. High soil pH or calciterich soils containing clay favor DOC stabilization, while low soil pH in combination with sandy soils, as the case here in the Landes de Gascogne, favor DOC destabilization and lixiviation (Paradelo et al., 2015). Moreover, in the Leyre watershed, sandy podzols contain almost no clay minerals (Augusto et al., 2010) and, therefore, this low proportion of clay might be limited the formation of clay-OM complex and thus the stabilization of soil DOC.

During our sampling, the temporal variations of DOC and DIC concentrations in groundwater were opposite (Fig. 15), showing that this two carbon forms originate from very different processes occurring in the saturated and/or unsaturated soil.

During flood peaks (high flow periods), water table at the Bios site was high (as a consequence of high precipitation and low vegetation use during winter, see section 4.1) and was very close to the soil surface: 1.2 cm in Feb. 2014 and 17.2 cm in Mar. 2015 (Fig. 13a). Consequently, the groundwater had reached the superficial and organic-rich horizons of the soil (0-20 cm) where soil organic carbon concentration is high, 18.3 g kg⁻¹ in the Bilos site (see section III.2.2). There were non-negligible amounts of organic carbon in deeper soil layers, but content values were much lower (6.4 g kg⁻¹ in the 40-60 cm layer) than in the topsoil layer. In addition, organic matter in deep soil layers is generally well-stabilized (Torn et al., 1997; Rumpel and Kögel-Knabner, 2011) and consequently not prone to produce DOC. Finally, in their review of stream composition in temperate forests, Michalzik et al. (2001) reported DOC concentrations in soil waters of forest top layers to range from 1,600 to 7,500 mmol m⁻³ (20 to 90 mg L⁻¹). Additionally, in forested very acidic soil worldwide Camino-Serrano et al. (2014) found DOC concentrations in soil water close to 40 mg L⁻¹. Hence, combining all these factors, during high groundwater table periods and high flow periods, DOC in Leyre groundwater are very high because of the direct leaching in groundwater of soil organic matter of upper organic horizons (i.e., we found groundwater DOC close to the mean value of Michalzik et al. (2001) and Camino-Serrano et al. (2014) in soil waters of forest top layers). Moreover, we calculated a stock of SOC in the 0-60 cm layer of 9.7 kg m⁻²,

whereas the stock of groundwater DOC ranges from 0.08 kg m⁻² (during high flow period) to 0.01 kg m⁻² (during base flow period). Finally, only a tiny part of the soil organic matter content is likely to be leached into groundwater.

Furthermore, as storage of DOC in Bilos groundwater increased with GWS ($r_p = 0.62$) and P ($r_p = 0.63$), groundwater gets enriched in DOC when GWS increases due to high precipitation (Tab. 5). However, during high flow periods of 2015, DOC in piezometer 2 and 3 did not reach values as high as the Bilos site. This is a consequence of both local hydrological and topographic heterogeneity. Indeed, the piezometer 2 is located very close to a stream, in a slope part, and thus groundwater table remains lower (maximum level of groundwater table is 157 cm below the soil surface) than in other piezometers and do not reach organic horizons. The piezometer 3 is located on a small forest plot similar to the Bilos site. However, the groundwater table reaches only 70 cm below the soil surface. In addition, at 70 cm depth, DOC concentrations in forested acidic soil are close to 800 mmol m⁻³ (10 mg L⁻¹) (Camino-Serrano et al., 2014).

Immediately after the maximum flow, DOC concentration in groundwater decreased guickly and is associated in parallel with an increase in DIC (Fig. 15b-c). Furthermore, during this DOC decrease, storage of DIC and DOC in groundwater were almost equivalent but opposite: +90 mmol m⁻² d⁻¹ for DIC versus -100 mmol m⁻² d⁻¹ for DOC between 12/02/2014 and 16/05/2014 (Fig. 16b). In addition, during high flow periods the mean residence time of groundwater DOC was 80±50 days (Fig. 17). This residence time is long enough to assume that the increase of DIC was due mainly to the respiration of groundwater DOC. The respiration rates of 93 mmol $m^{-2} d^{-1}$ (i.e., $DOC_s - DOC_{ex}$ between 12/02/14 and 16/05/14) in the Leyre watershed is coherent with respiration rates in streams determined by Battin et al. (2008) (i.e., 1.93 g C m⁻² d⁻¹ that is equal to 160 mmol m⁻² d⁻¹) or more recently by Hotchkiss et al. (2015) (i.e., 0.87 g C m⁻² d⁻¹ that is equal to 72.5 mmol m⁻² d⁻¹). Craft et al. (2002) also determined respiration rates value (range 6.4-210 mmol m⁻³ d⁻¹) within a floodplain aguifer of a large gravel-bed river in north-western Montana (USA). Between 12/02/2014 and 16/05/2014 the mean height of the saturated zone is 9.5 m at the Bilos site that leads to a respiration rate of 9.8 mmol m⁻³ d⁻¹, consistent with findings of Craft et al. (2002). Contrary to deeper soil, dissolved organic carbon in the upper soil horizons generally consists in labile low molecular weight compounds (Aravena et al., 2004) that also derived from organic matter recently produced and leached. Thus, during high flow periods groundwater DIC originates mostly from respiration of young labile groundwater DOC.

During base flow periods, groundwater DOC was very stable $(535\pm80 \text{ mmol m}^3)$ (Fig. 15c), suggesting that groundwater DOC was more recalcitrant and probably more aged during base flow periods. This was consistent with findings of Schiff et al. (1997) which found that a small temperate basin had wide range in DO¹⁴C, from old groundwater values at base flow under dry basin conditions to relative modern values during high flow or wetter conditions. In the Leyre watershed we found that recalcitrant groundwater DOC has residence time around 30 years in autumn (Fig. 17). In addition, as we never observed an increase of groundwater DOC concentration during base flow periods (when groundwater table is low) (Fig. 15c), it seems that soil DOC in upper horizons cannot be mobilized by rainwater percolation and that saturation of the soil horizon is necessary; this is also attested by the absence of correlation between P and DOC_m (Tab. 5). However, in other types of environment (fractured rock aquifer) Shen et al. (2015) found significant correlation between surface precipitation and groundwater DOC.

The second increase of DIC during Sep. 2014 was due to another process, not associated with any DOC degradation. This DIC likely originated from the dissolution of gaseous CO₂ that could have accumulated in the unsaturated region of the soil during summer and enhanced heterotrophic and plant roots respiration. During drought period (rainfall was 5 mm in Sep. 2014) the water deficits stress growing vegetation and leads to numerous physiological changes (Naumburg et al., 2005). The dehydration of plants lowers the rate of photosynthesis (1) directly by closing stomatal pores, hence interfering with uptake of carbon dioxide by leaves, and (2) indirectly by adversely influencing the photosynthetic mechanism (Kozlowski, 2002). The second increase of groundwater DIC occurred exactly during positive NEE and larger ecosystem respiration than Gross Primary Production, which we believed is influenced by drought period (Fig. 16a)

Moreover, mature forests are in general characterized by a thick humus layer that could in part isolate soil air from atmospheric air and participate to the process of soil CO_2 accumulation during summer. However it is not the case here because the Bilos site is a young forest, trees were sowed in 2005 and after tillage (i.e., tillage buried the humus layer). Such transfer of CO_2 from soil air to groundwater is typical of events of percolation of rainwater in the unsaturated soil after a long dry period as reported in an Amazonian plot (Johnson et al., 2008). However, at our study site, Sep. 2014 was one of the driest months throughout the sampling period (Fig. 13b), which suggests that soil CO_2 could have been transported by simple downward diffusion. Thereafter, in Oct. 2014 when the water table started to increase again, groundwater DIC decrease as a consequence of dilution with rainwater with low DIC content. Moreover during this period of rising water table, draining of

90

groundwater was stronger, which resulted in a faster recycling of the DIC in the groundwater (Fig. 13a-b; 15b). Indeed, calculated mean residence time of groundwater DIC was 80±60 days during the Oct. 2014-Dec. 2014 period, while it was 3,200±3,000 days during the other periods. (Fig. 17). Furthermore, residence time of DIC and DOC (i.e., calculated between two sampling days) ranged from months to several years (Fig. 17). This reveals the intensity of different processes that change DIC or DOC stocks in Bilos groundwater. Overall, residence time (DIC_{rs} or DOC_{rs}) between two sampling dates that "tends toward zero" indicates negative storage of carbon in groundwater and thus a loss of carbon in groundwater (Fig 16b; 17). In contrast, residence time (DIC_{rs} or DOC_{rs}) between two storage of carbon in groundwater and thus a loss of carbon in groundwater that "tends toward infinity" indicates positive storage of carbon in groundwater and thus a gain of carbon in groundwater (Fig 6b; 17).

III.4.3. Carbon export from groundwater and fate in streams

In the groundwater, the water table (H_m) controls at the same time the intensity of the drainage D, and the concentrations of dissolved carbon, positively for DOC and negatively for DIC (Tab. 5; Fig. 15a). In addition, H_m and D control the export of DOC and DIC through groundwater. Indeed, when H_m is high, D is high and thus DIC_{ex} and DOC_{ex} are both maximal (Tab. 5). Thus, drainage intensity and DOC concentration in groundwater have a cumulative positive effect on DOC export; in contrast, drainage intensity and DIC concentration in groundwater have antagonist effects on DIC export, but, as the drainage effect is stronger, DIC export is still positively correlated with H_m and D. As a result, throughout the sampling period, high flow and high H_m periods (Jan. 2014-Apr. 2014 and Feb. 2015-Mar. 2015) account for 87 % and 47 % of the total DOC and total DIC exports, respectively.

Consequently, groundwater exports the majority of DOC during high flow periods, but about the same quantity of DIC during base flow periods and high flow periods. However, for the whole sampling period, the mean carbon export is the same (0.90 mmol.m⁻².d⁻¹), both for DIC and DOC (Tab. 7), and, as drainage is the only hydrological pathway, the forest ecosystem exports in total 1.80 mmol m⁻² d⁻¹, 50% as DOC and 50% as DIC. Throughout the sampling period, this export flux represents 1.6 % of the mean NEE (Tab. 7). Hence, young forest at the Bilos site, loss a low quantity of carbon through soil leaching and groundwater drainage. In contrast, in peatland systems Billett et al. (2004) showed that the amount of carbon exported in surface waters can potentially exceed NEE. It should be also noticed that another part of the NEE is lost by root exudates, litter fall and fine roots turnover (Davidson and Janssens, 2006). Afterwards, part of the litter fall and fine roots turnover is respired by

heterotrophic respiration in the soil (Raich and Schlesinger, 1992) while another part prone to produce SOC that can be more or less stable (Rasse et al., 2005).

In first order stream, DIC and DOC concentrations were generally lower than in groundwater, but still negatively correlated, with maximum DOC at high flow and maximum DIC at base flow (Tab. 5; Fig. 15b-c).

 DOC_{m1} is controlled positively by H_m (Tab. 5). Indeed, increase in riverine DOC concentrations with discharge and high water table has been reported in the Leyre watershed (Polsenaere et al., 2013) and in many other catchments elsewhere (Dawson et al., 2002; Striegl et al., 2005; Raymond and Saiers, 2010; Alvarez-Cobelas et al., 2012). However, during high flow periods we never observed DOC concentration in first order streams as high as those in Bilos groundwater (Fig. 15c). This might be due partly because groundwater DOC is quickly respired before reaching the stream (see section III.4.2). Also, as groundwater DOC enters the superficial river network through drainage it might be rapidly recycled by photo-oxidation or respiration within the stream, as attested by the absence of correlation between DOC_m and DOC_{m1} . Indeed, groundwater DOC during high flow periods must be relatively labile (Aravena et al., 2004). In addition, podzols contain a huge quantity of humic and fulvic acids (Righi and Wilbert, 1984), that are also very photodegradable (Tranvik, 1996; Schmitt-Kopplin et al., 1998; Suhett et al., 2007).

	Sampling period (09/01/14 to 09/07/15)			
GPP	1,840			
R _{eco}	1,360			
NEE	-480			
DOC _{ex}	3.9			
DIC _{ex}	3.9			
DOCs	3.5			
DICs	-41.6			
F _{Degass}	2.4			

Tableau $\overline{7}$: Carbon budget (g C m⁻² y⁻¹) in the Leyre watershed throughout the sampling period.

The comparison of DOC concentration between the three piezometer (Fig. 15c) also suggest some significant heterogeneity in DOC export due to topographic effects and the depth of the water table, the Bilos plot potentially exporting more DOC than the entire Leyre watershed. As a consequence, part of the difference in DOC concentration between groundwaters and streams during the high flow might also be due to spatial mixing of groundwaters from different soil horizons. In contrast, during base flow period, DOC concentrations in groundwater and in first order streams were very similar (Fig. 15c), which suggests that this DOC was not labile, and not degraded in the superficial river network.

DIC concentration in first order streams increased in parallel with those in groundwater, during base flow (Fig. 15b). Indeed, concentrations of DIC show an inverse relationship with discharge in many catchments (Dawson et al., 2002; Polsenaere et al., 2013), as the result of dilution with rain water and lower contribution of deep CO₂-enriched groundwater during high flow periods (Billett et al., 2004; Dawson and Smith, 2007). In addition, during both base flow and high flow periods, we never observed DIC concentration in first order streams close to groundwater DIC concentration. Indeed, the quick loss of DIC between groundwater and first order streams is due to the degassing of CO₂ (F_{Degass}) (Venkiteswaran et al., 2014). This rapid degassing was also attested by the change in the $\delta^{13}C$ signature of the DIC (Deirmendjian and Abril, Submitted). Furthermore, the positive correlation between F_{Decass} and both *DIC*_{ex} and H_m reveals that groundwater DIC is the main source of CO₂ degassing in superficial stream waters, and that degassing is higher during high water table periods. Indeed, degassing in streams is higher during high flow (0.90 mmol m⁻² d⁻¹) than base flow (0.40 mmol m⁻² d⁻¹) as a consequence of both higher inputs of groundwater DIC in streams and higher water turbulence. Indeed, degassing is a function of river flow that induces water turbulence and thus increases the gas transfer velocity (Zappa et al., 2007; Raymond et al., 2012). Finally, during the sampling period mean degassing represented 30 % of the total carbon export (i.e., and 60 % of the DIC export) and thus, a significant part of the carbon exported from forest plot rapidly returns in the atmosphere in the form of CO₂ through degassing process, while export of total carbon represents 1.6 % of the mean NEE.

Climate change may affect precipitation amount and temporal distribution and thus groundwater recharge in ecosystems. Our study suggests that drought period might enhance soil respiration (heterotrophic + autotrophic) and reduce forest productivity, leading to higher groundwater CO_2 concentration and higher degassing of CO_2 in streams. We believed that the probable increase of CO_2 degassing in streams and rivers caused by increasing drought period is a possible negative feedback on vegetation uptake and has to be taken into account in climate model. As it is suggested in Loustau et al. (2005), where detrimental

effects on forest productivity are expected, enhancement of drought resistance (e.g., through species substitution) may limit the restriction to forest growth.

III.5. Conclusion

The work presented here extends the scope on the interaction between the net productivity of forest ecosystem and the concentrations of dissolved carbon in the underlying groundwater. Using net ecosystem exchange measurements, dissolved carbon concentrations determination in both groundwater and stream water and hydrological measurements, we have highlighted that the main controls of carbon fluxes are from hydrology, in interaction with ecophysiological activity of plants (Tab. 8). Thus, high water table resulted in larger DIC and DOC exports and the height of water table outcome from the balance between precipitation, evapotranspiration and drainage, with a notable influence of local topographic heterogeneities. This work also revealed a large difference of dissolved carbon concentrations between groundwaters and stream waters, those differences originates from distinct processes. Finally, we found that mean export of total dissolved carbon through groundwater represents only 1.6 % of the mean NEE, while 30 % of this carbon export returns to the atmosphere in the form of CO₂ through degassing in first order stream waters.

Acknowledgments

This research is part of the CNP-Leyre project funded by the Cluster of Excellence COTE at the Université de Bordeaux (ANR-10-LABX-45). We thank Luiz Carlos Cotovicz Junior, Katixa Lajaunie-Salla, Baptiste Voltz, Gwenaëlle Chaillou and Damien Buquet (EPOC Bordeaux) for their assistance in the field. We thank Pierre Anshutz (EPOC, Bordeaux), Alain Mollier and Christian Morel (ISPA INRA) for their implications on the CNP-Leyre project. We thank Pierre Trichet (ISPA INRA) for providing SOC data at the Bilos site.

	High flow period	Growing season	Late dry summer	Early winter
DIC _m	very low	high	very high	low
DOC _m	very high	low	very low	low
DIC _{m1}	very low	high	very high	low
DOC _{m1}	low	very low	very low	low
DIC _{ex}	very high	low	very low	low
DOC _{ex}	very high	low	very low	low
F _{degass}	very high	low	very low	low
DICs	positive	negative	positive	negative
DOCs	positive and then negative	negative	stable	stable
GWS	positive and then negative	negative	negative	positive
ETR	high	very high	low	very low
D _m	very high	low	very low	low
H _m	very high	low	very low	low
NEE	negative	negative	positive	negative
GPP	high	very high	low	low
R _{eco}	high	very high	low	low

Tableau 8 : Conceptual variations of some variables of the studied ecosystem.

Chapitre IV

Dégazage de CO₂ et équilibration isotopique du DIC à l'interface eau souterraine-ruisseauatmosphère

Ce chapitre fait l'objet d'un publication soumise le 19 Avril 2016 à la revue Geochimica et Cosmochimica Acta:

Deirmendjian L. and Abril G. Rapid CO_2 degassing and isotopic equilibration of dissolved inorganic carbon at the groundwater-stream-atmosphere interface.
Abstract

Streams and rivers are significant sources of CO₂ at the global scale and a large fraction of this carbon originates from respiration in soils and groundwaters, particularly in headwaters. We characterize the concentrations and transfers of dissolved inorganic carbon (DIC) at the groundwater-stream-atmosphere interface in a temperate, forested and sandy lowland watershed, where hydrology occurs in majority through drainage of groundwater (no surface runoff). We monitored pCO_2 , DIC and $\delta^{13}C$ -DIC along an upstream-downstream gradient including groundwaters and streams with orders 1 to 4. Partial pressure of CO₂ (pCO₂) rapidly decreased from 48,070±26,320 ppmv in the groundwaters to 4,820±4,540 ppmv in first order streams, as the result of CO₂ degassing that occurred concomitantly with an enrichment in δ¹³C-DIC from -26.2±1.2 ‰ in groundwaters to -19.8±2.7 ‰ in first order streams. This enrichment could be modeled and reproduced experimentally by simply considering the isotopic equilibration of DIC with the atmosphere while CO₂ degassing. Stable carbon isotopic composition of DIC continued to increase from -19.3±2.7 ‰ in second order streams to -14.1±2.4 ‰ in fourth order stream, but this time due to both isotopic equilibration with the atmosphere and a significant contribution of carbonate weathering as attested by an increase in Total Alkalinity (TA). Our approach, also based on the analysis of specific discharge in all stream orders, allowed quantifying groundwater CO₂ degassing in each stream orders for the whole watershed without the necessity of applying a gas transfer velocity and a stream surface area. About 75 % of the total CO₂ degassing from the watershed occurs in first and second order streams, which behave as hotspot of atmospheric carbon emission.

Keywords: River systems, headwaters, carbon stable isotopes, CO₂ evasion, hotspot

Résumé

A l'échelle globale, les ruisseaux et les rivières sont des sources significatives de CO₂ et une grande partie de ce carbone provient de la respiration dans les sols et les eaux souterraines, particulièrement dans les eaux de tête de bassin versant. Nous caractérisons les concentrations et les transferts de carbone inorganique dissous (DIC) à l'interface eau souterraine-eau superficielle-atmosphère, dans un bassin versant de plaine, tempéré, forestier et sablonneux, ou l'hydrologie se produit en majorité au travers du drainage des eaux souterraines (pas de ruissellement de surface). Nous avons suivi la pCO₂, le DIC et le δ^{13} C-DIC le long d'un gradient amont-aval, comprenant aussi bien des eaux souterraines que des ruisseaux d'ordre 1 à 4. La pression partielle de CO₂ a diminué rapidement de 48,070±26,320 ppmv dans les eaux souterraines à 4,820±4,540 ppmv dans les ruisseaux de premier ordre, résultant d'un dégazage de CO₂ qui a lieu en concomitance avec un enrichissement en δ^{13} C-DIC de -26.2±1.2 ‰ dans les eaux souterraines à -19.8±2.7 ‰ dans les ruisseaux de premier ordre. Cet enrichissement peut être modélisé et reproduit expérimentalement en considérant simplement l'équilibration isotopique du DIC avec l'atmosphère lorsque le CO₂ dégaze. La composition isotopique stable du DIC a continué d'augmenter de -19.3±2.7 ‰ dans les ruisseaux de premier ordre à -14.1±2.4 ‰ dans les ruisseaux de quatrième ordre, mais cette fois à la fois à cause de l'équilibration isotopique avec l'atmosphère et d'une contribution significative de l'altération chimique des carbonates, comme attesté par une augmentation de l'alcalinité totale (TA). Notre approche, également basée sur une analyse des débits spécifiques, a permis de quantifier le dégazage des eaux souterraines en CO₂ dans chaque ordre de rivière et ceci pour l'ensemble du bassin versant, sans la nécessité d'appliquer une vitesse de transfert gazeuse ou une surface de miroir d'eau. Environ 75 % du dégazage total du CO₂ provenant du bassin versant se produit dans les ruisseaux de premiers et de seconds ordres, qui se comportent alors comme des zones de points chauds pour l'émission de carbone atmosphérique.

Mots clefs : Système hydrologique, eaux de têtes de bassin, isotopes stables du carbone, dégazage de CO₂, points chauds

IV.1. Introduction

River networks have been recognized as an important component of the global carbon cycle. Indeed, world rivers transport yearly 0.9 Pg C from the continent to the ocean (Meybeck, 1982). This number based on a carbon concentration at river mouths (Martin and Meybeck, 1979; Meybeck, 1981) corresponds to the global continental C input to estuarine and coastal systems (Borges, 2005). However, streams, lakes and rivers do not only act as a passive pipe that delivers terrestrial carbon to the ocean, but also as sites of CO₂ evasion to the atmosphere (Cole et al., 2007). Indeed, riverine waters are generally supersaturated in CO₂ compared to the overlying atmosphere, and this water-air gradient leads to CO₂ degassing (Frankignoulle et al., 1996; Cole et al. 2007). At the global scale, a recent estimate of CO₂ degassing flux for stream and rivers is 1.8 Pg C yr⁻¹ (Raymond et al., 2013). This degassing flux is of the same order of magnitude as the global CO₂ uptake by the terrestrial biosphere (Ciais et al., 2013) . In addition, the amount of carbon that leaves the terrestrial biosphere is much larger than the amount of terrestrial carbon that reaches the ocean (Cole et al., 2007).

The CO₂ dissolved in riverine waters originates from two different sources and processes (Hotchkiss et al., 2015): it can be (1) internal, i.e. resulting from heterotrophic decomposition and photo-oxidation of organic matter in the aquatic system itself or (2) external, i.e. resulting from inputs of groundwater enriched in CO₂, which comes from plant roots respiration and from microbial respiration of terrestrial organic matter in soils and groundwaters. However, sources of and processes controlling CO₂ emissions change with the size of streams and rivers. Indeed, in headwaters, CO₂ degassing fluxes are mainly of external origin and thus largely dependent on groundwater inputs that are strongly linked to the catchment characteristics including lithology, topography, soil types, climate and vegetation (Lauerwald et al., 2013; Polsenaere et al., 2013). In contrast, as stream order and river discharge increase, soil and groundwater CO₂ inputs become less significant compared to internal CO₂ production. Indeed, in larger rivers, internal primary production, respiration and net heterotrophy are likely to become a more significant source of CO₂ degassing (Hotchkiss et al., 2015), but still based on organic carbon subsidies from land (Cole and Caraco, 2001). Several studies on headwaters have been conducted in temperate (Butman and Raymond, 2011), boreal (Wallin et al., 2013; Kokic et al., 2015) and tropical (Johnson et al., 2008; Davidson et al., 2010) ecosystems, at different spatial scales. These works converged to the same conclusion that headwaters are hotspots of CO_2 degassing. Hot spots were defined as regions that exhibited disproportionately high reaction rates relative to the surrounding area (Vidon et al., 2010). This hotspot character makes difficult a precise quantification of CO_2 evasion based on the water-air CO_2 gradient, the gas transfer velocity and the water surface area. Indeed, the two latter parameters are particularly difficult to quantify accurately in headwaters (Raymond et al., 2012).

Dissolved Inorganic Carbon (DIC) in river systems includes not only dissolved CO₂, but also carbonate and bicarbonates ions, generally quantified by Total Alkalinity (TA) titrations assuming that TA = HCO_3^2 + $2CO_3^2$. TA originates from atmospheric CO₂ through the process of weathering of carbonate rocks, silicate rocks as well as other rocks (Meybeck, 1987b; Amiotte-Suchet et al., 2003; Cai et al., 2008). Stable isotope composition of DIC (δ^{13} C-DIC) is both controlled by the signature of the carbon sources and the in-stream fractionating processes that change the δ^{13} C signature (Brunet et al., 2005; Doctor et al., 2008; Polsenaere and Abril, 2012). Oxidation of terrestrial organic matter liberates DIC with a quiet negative δ^{13} C signal, close to that of the dominating plants and soils in the watershed, i.e., between -22 and -34 % for C₃ plants and -12 to -16 % for C₄ plants (Vogel et al., 1993). In the opposite way, weathering of carbonate rocks which have a δ^{13} C of about 0 ‰ (Clark and Fritz, 1997) makes δ^{13} C value of the DIC less negative. In addition, gas exchange along river courses increase δ^{13} C signal of the DIC (Polsenaere and Abril, 2012; Venkiteswaran et al., 2014) because atmospheric CO₂ have δ^{13} C of about -7.5 ‰ (Keeling et al., 1984), making degassing of ¹²CO₂ faster than that of ¹³CO₂. In aquatic systems with a limited amount of well identified carbon sources, and where fractionation factors can be calculated as the case of gas exchange, the origin and cycling of riverine DIC can be traced with δ^{13} C-DIC. In the case of headwaters, the isotopic signature of DIC is particularly useful, as it is governed by three major processes: input of ¹³C depleted carbon from soils in majority as dissolved CO₂, eventually some inputs of ¹³C enriched carbon from carbonate weathering in the form of alkalinity, and isotopic equilibration with the atmosphere induced by gas exchange (Polsenaere and Abril, 2012; Venkiteswaran et al., 2014).

In this study we focus on the link between CO_2 degassing and the isotopic signature of DIC along the groundwater-stream continuum. We selected as study site a small lowland temperate catchment, which offers the convenience of a relatively homogeneous lithology (sands) and vegetation (pine forest), as well as a simple hydrological functioning mainly as groundwater drainage (no surface runoff). In order to better understand and quantify how river systems process inorganic carbon fluxes and emit CO_2 to the atmosphere, we

monitored the spatio-temporal variations of pCO_2 , TA, DIC and $\delta^{13}C$ -DIC in groundwater and in streams of increasing order. We also apply an isotopic model in order to explain the observed patterns and quantify the relative importance of isotopic equilibration with the atmosphere and soil and carbonate rocks contributions to the DIC along the river continuum. Finally, we demonstrate that when drainage predominate, groundwater sampling allows a precise quantification of degassing, avoiding the necessity of assuming or measuring a gas transfer velocity and a water surface area, two parameters difficult to quantify and subject to a large variability at regional and global scales.

IV.2. Material and methods

IV.2.1. Study site

The Leyre watershed is located in the southwestern part of France near Bordeaux and has a surface area of 2,100 km². The Leyre River flows about 115 km northwest before reaching the Arcachon Lagoon (Fig. 18). The Leyre catchment is lowland with a mean slope lower than 1.25 ‰ and a mean altitude lower than 50 m. The lithology is relatively homogeneous and constituted of different sandy permeable surface layers dating from the Plio-quaternary period (Fig. 18). However, some sandy carbonated outcrops dating from the Miocene era are present locally (Fig. 18). The region was a vast wetland until the XIXth century, when a wide forest of maritime pine (Pinus pinaster) was planted following landscape drainage from 1850. Nowadays, the catchment is mainly occupied by pine forest (about 84 %), with a modest proportion of croplands (about 14 %). The climate is oceanic with mean annual air temperature of 13°C and mean annual precipitation of 930 mm (Moreaux et al., 2011). Moreover, the average annual evapotranspiration is in the range of 234-570 and 63-800 mm, respectively for maritime pine and cropland (Govind et al., 2012). Owing to the low slope and the high permeability of the soil, surface runoff is negligible in the Leyre watershed, and the excess of rainfall percolates into the soil and supports the enrichment of carbon in groundwater. The soil permeability, the vegetation and the climate turn soils into podzols with an extremely coarse texture (Augusto et al., 2010). These podzols are characterized by a low pH (4), low organic nutrient availability, and high organic carbon content that can reach 55 g per kg soil (Jolivet et al., 2007). The sandy permeable surface layers contain a free and continuous groundwater table strongly interconnected with the superficial river network. The seasonal changes in water table can be important, with a water table close to the surface during the wet period and several meters below the surface during dry summers. The groundwater table is characterized by a period of discharge and a period

of reload. In order to categorize the catchment hydrology we use the Strahler classification but slightly modified. We define order 0 as groundwater and order 1 as streams and ditches either having no tributaries or being seasonally dry (from June to November during our sampling period). With these definitions, the river orders in the Leyre watershed range from 0 to 4. Hydrology is characterized by a period of highest flow in winter with a flood peak in February or March and a period of lowest flow in spring, summer and autumn.

Figure 18 : Map of the Leyre watershed showing the river network, the lithology and the locations of groundwater and river sampling stations and their associated sub-watersheds.

IV.2.2. Sampling strategy and field work

We selected 20 sampling stations (17 river stations and 3 piezometers) within the watershed, from groundwater to river order 4, after a precise characterization of the drainage basin based on a geographical information system (Fig. 18; Tab. 9). We included in the GIS the land use from the Corine Land Cover (2006) database, as well as the hydrological superficial network as a polyline form on an open water database (BD CARTHAGE ®). Based on digital elevation model (DEM) provided by French geographic institute (http://www.ign.fr/), we divided the Leyre watershed in different sub-watershed and we calculated their respective surface areas using ArcGIS 10.2TM (Fig. 18; Tab. 9). The selected stations in stream orders 1 to 4 have all a sub-watershed occupied by at least 85 % of forest (Tab. 9). We also determined the water surface area for each river order in the watershed by applying a mean width per river order, as determined in the field (Tab. 9). In addition, we also sampled one groundwater spring and its respective stream 40 meters downstream.

Stream order	0*	1	2	3	4
Number of stations	3	6	4	4	2
Mean forest occupation (%)	100	96	88	85	85
Mean catchment surface area of the stations (km ²)		15	98	446	1,863
Cumulated river length (km)		1,610	750	115	40
Mean river width (m)		1	4	15	30
Cumulated water surface area (km ²)		1.6	3	1.7	1.2

 Tableau 9 : Characteristics of Leyre River catchment and sampling network. * order zero corresponds to groundwater.

		Order 1	Order 2	Order 3	Order 4
HF	F _d		2,029	2,073	2,397
	F _d ratio*			1.02	1.18
	% of increase*			+2%	+15%
BF	F _d		354	460	466
	F _d ratio*			1.30	1.31
	% of increase*			+23%	+24%
2014-2015	F _d		765	855	939
	F _d ratio*			1.12	1.23
	% of increase*			+11%	+19%
01/04/2015	F _d	731-772	995		
	F _d ratio [#]		1.33±0.5		
	% of increase [#]		+19%		
22/02/2016	F _d	609-770	1,362		
	F _d ratio [#]		2.0±0.3		
	% of increase [#]		+49%		
Hydrological	Mean F _d ratio ⁺⁺		1.66±0.43	1.15±0.14	1.09±0.07
model					
	% of increase ⁺⁺		+40%	+13%	+8%

Tableau 10: Drainage (F_d in m³ km⁻² d⁻¹) of the different gauging stations in the Leyre Basin. Percentages correspond to additional diffusive groundwater inputs between two stream orders. * compared to second order streams. # compared to first order streams. *+ compared to stream order n+1 and n. HF corresponds to high flow periods (Jan. 2014-Apr. 2014 and Feb. 2015-Mar. 2015). BF corresponds to base flow periods (May. 2014-Jan. 2015 and Apr. 2014-Jul. 2015).

	Q	S	F _d I	F _d II	F _d ratio*	
	(m ³ s ⁻¹)	(km²)	$(m^3 km^{-2} d^{-1})$	$(m^3 km^{-2} d^{-1})$		
01/04/2015	0.305	34.12	773	995	1.29	
01/04/2015	0.276	32.58	731	995	1.36	
22/02/2016	0.304	34.12	770	1362	1.77	
22/02/2016	0.204	33.16	609	1362	2.24	

Tableau 11 : Additional river flow measurements in first order streams (Q) and associated catchment area (S). $F_d I$ and $F_d II$ corresponds to drainage in first order streams and second order streams, respectively.* F_d ratio corresponds to the ratio of drainage between second and first order streams. This leads to $Q_{or2} = 1.66 \pm 0.43 \Sigma Q_{or1}$ (see tableau 10 and text).

Concerning river discharge, our study took benefit from four calibrated gauging stations of the water quality agency (daily temporal resolution), located on two second order streams, one third order stream, and one fourth order stream (Fig. 18; Tab. 9). For each station, we calculated the drainage factor by dividing the discharge by the surface area of the respective sub-watersheds for a two years period representing two hydrological cycles (Jan. 2014-Dec. 2015) (Tab. 10), the high flow period (Jan. 2014-Apr. 2014 and Feb. 2015-Mar. 2015), as defined as periods with Leyre River discharge was higher than 35 m³ s⁻¹ (twice the mean annual river flow over 30 years period); and the base flow period, (May. 2014-Jan. 2015 and Apr. 2015-Jul. 2015). In addition, in order to complete our hydrological dataset, we performed measurements on two first order streams at high flow (Feb. 2016) and at base flow (Apr. 2015) (Tab. 11). We measured water velocity profiles in river section with a magnetic induction current meter (OTT MF pro[™]), and then, we integrated the water velocity profiles, in order to convert water velocity into discharge. For the two periods, we compared the drainage of the first order streams (Q_{Or1}) with that of second order streams (Q_{Or2}) and found that Q_{0r2}=1.66±0.43ΣQ_{0r1} (Tab. 11). In this case, additional diffusive groundwater inputs between first and second order streams represented 40% of the water discharged by the second order streams.

The 20 stations were visited with a frequency of approximately one month, on 18 occasions between Jan. 2014 and Jul. 2015. Exception was one piezometer that was visited on 16 occasions between Feb. 2014 and Jul. 2015 whereas the two other piezometers were visited on 11 occasions between Aug. 2014 and Jul. 2015. In addition, we also sampled on 5 occasions between Mar. 2015 and Jul. 2015, a groundwater spring and its small stream 40 meters downstream with a mean depth of 2-5 cm and mean width of 20 cm.

In total, we collected 292 samples for the concomitant measurements of temperature, pH, pCO₂, TA, calculated DIC and δ^{13} C-DIC.

In the field, the partial pressure of CO_2 (pCO_2) in ground, stream and river waters was measured directly using an equilibrator (Frankignoulle and Borges, 2001; Polsenaere et al., 2013). This equilibrator was connected with an Infra-Red Gas Analyzer (LI-COR®, LI-820), which was calibrated one day before sampling, on two linear segments because of its nonlinear response in the range of observed pCO_2 values (0–90,000 ppmv). This non-linearity was due to saturation of the IR cell at pCO_2 values above 20,000 ppmv. We used certified standards (Air LiquideTM France) of 2,079±42; 19,500±390 and 90,200±1,800 ppmv, as well as nitrogen flowing through soda lime for the zero. For the first linear segment [0-20,000 ppmv], which corresponded to river waters, we set the zero and we span the LI-COR at 19,500 ppmv, and we checked for linearity at 2,042 ppmv. For the second segment [20,000-90,000 ppmv], which corresponded to the sampled groundwaters, we measured the response of the LICOR with the standard at 90,000 ppmv, and used this measured value to make a post correction of measured value in the field. For groundwaters, we took the precaution to renew the water in the piezometers by pumping of about 300 L with a submersible pump before sampling.

The δ^{13} C-DIC and DIC samples were collected using 120 mL glasses serum bottles sealed with a rubber stopper and poisoned with 0.3 mL of HgCl₂ at 20 g L⁻¹ to avoid any microbial respiration during storage. Vials were carefully sealed taking care that no air remained in contact with samples. Vials are also stored in the dark to prevent photo-oxidation. We stored TA sampled in polypropylene bottles after filtration using a syringe equipped with glass fiber (0.7 µm). We also measure pH (± 0.05) and temperature (± 0.05 °C) *in situ* with specific probe (Metrhom). Before the start of each sampling trip the pH probe was calibrated using NBS buffer solutions (4, 7 and 10).

IV.2.3. Laboratory analysis

The δ^{13} C-DIC was measured following the procedure of Gillikin and Bouillon (2007). A headspace was first created in the 120 mL serum vial, by injecting 25 mL of Helium gas. Then 0.3 mL of warm 85% phosphoric acid was added in order to titrate all bicarbonates and carbonates to CO₂. To ensure gas equilibration the vials were strongly shaken. Measurements were performed using Isotope Ratio Mass Spectrometer (Micromass Isoprime), equipped with a manual gas injection port. We injected twice 2 mL of headspace gas from the vial headspace. The carbon isotope ratio is expressed in the delta notation (δ^{13} C) relative to Pee Dee Belemnite. δ^{13} C-DIC was calibrated against a homemade standard (45 mg of Na₂CO₃ were introduced in a sealed vial flushed with helium, and were then dissolved with 3 mL of warm 85 % phosphoric acid); this standard had been calibrated against a certified standard (NBS19, -1.96 %) using a dual-inlet IRMS (Micromass Isoprime). The isotopic value of the Na₂CO₃ standard was -4.5±0.2 ‰. Finally, to correct for the partitioning of CO₂ between headspace and the water phase in the samples, and to calculate the δ^{13} C of the total DIC, the isotopic fractionation of CO₂ at the water-air interface as a function of lab temperature of Miyajima et al (1995) was applied.

TA was analyzed on filtered samples by automated electro-titration on 50 mL filtered samples with 0.1N HCl as titrant. Equivalence point was determined with a Gran method from pH between 4 and 3 (Gran, 1952). Precision based on replicate analyses was better than \pm 5 µM. For samples with a very low pH (<4.5), we bubbled the water with atmospheric air in order to degas CO₂. Consequently, the initial pH increased above the value of 5, and TA titration could be performed (Abril et al., 2015).

We calculated DIC from pCO₂, TA, and temperature measurements using carbonic acid dissociation constants of Millero (1979) and the CO₂ solubility from Weiss (1974) as implemented in the CO₂SYS program. We also performed some direct measurements of DIC on a selection of 239 samples. DIC was measured in an extra sealed 120 mL serum vial, after creating a headspace of 25 mL with nitrogen gas, acidifying with 0.3 mL of 85% phosphoric acid, and shaking. Gas mixture from the headspace was analyzed by injecting through a septum 0.5 mL of gas in a closed loop connected to the LICOR LI-820 (air flow 0.5 L min⁻¹). Soda lime was placed after the gas analyzer and ensures a zero baseline at the entrance of the IRGA. Peak areas were recorded, integrated and compared to those obtained with standards made by dissolving well-known amounts of CaCO₃ in distilled water at the atmospheric pCO₂, pH and TA were also measured to check the calculated DIC concentration in these standards. DIC concentrations in the samples were calculated from the water and headspace volumes and the solubility coefficient of CO₂ from (Weiss, 1974). DIC measured directly was consistent with DIC calculated from pCO₂ and TA at ± 15% for a DIC range of 90-5,370 µmol L⁻¹. Therefore, we report here the DIC dataset based on calculation with pCO_2 and TA.

IV.2.3. Degassing experiment

In order to perform experimental degassing of dissolved CO₂, we collected two 10 L containers of groundwater on the field, filled until the top without air to avoid degassing. The water was poisoned with HgCl₂ to inhibit respiration. Back in the laboratory, we pumped this water to the equilibrator to monitor continuously the pCO₂. The outlet of the equilibrator was connected to the container, recirculating the water in a closed circuit. When the value of pCO₂ was stable we collected a 120 mL vial to perform δ^{13} C-DIC measurements thereafter. Then, we aerated the water by bubbling air from the outside (thus containing CO₂ close to the atmospheric concentration and isotopic value) using an air pump and a bubbling system. When the decrease of pCO₂ was sufficient (for increments between 8,000 and 100 ppmv depending on the concentration), we stopped the aeration, wait for a stable pCO₂ signal, and

sample again for δ^{13} C-DIC measurements. We repeated this operation until the water *p*CO₂ was equilibrated with the atmosphere. We also measured TA, before and after each experiment. The experiment was reproduced on two occasions, and we obtained a total of 35 pairs of *p*CO₂ and δ^{13} C-DIC values, or pairs of DIC and δ^{13} C-DIC values, after verifying that TA was not affected by degassing and constant during the experiment.

IV.2.4. Modeling DIC isotopic equilibration during CO₂ degassing

We modeled changes in δ^{13} C-DIC with CO₂ degassing on the basis of equations detailed in the StreamCO₂-DEGAS, first created by Polsenaere and Abril (2012).

IV.2.4.a. Initial state of δ^{13} C-CO₂^{*} in river

The model operates between pH 4.7 and 7.2 because between these values DIC can be simply considered as the sum of CO_2^* from oxidation of terrestrial organic matter and HCO_3^- from rock weathering. Model takes into account mass conservation of the total DIC, using the apparent CO_2 solubility constant K_0 (mmol L⁻¹ atm⁻¹) of Weiss (1974) for freshwater. In the calculation, TA is assumed as conservative and not affected by gas exchange.

 $δ^{13}$ C-DIC . [DIC] = $δ^{13}$ C-CO₂^{*} . [CO₂^{*}] + $δ^{13}$ C-HCO₃⁻ . [TA] (Eq. 28)

In river water dissolved CO_2 (CO_2^*) is in isotopic equilibrium with bicarbonates as defined by Zhang et al (1995).

 $δ^{13}$ C-HCO₃ = $δ^{13}$ C-CO₂^{*}+ ε (Eq. 29)

With,

 ϵ represents the isotopic fractionation (‰) of HCO₃⁻ relatively to dissolved CO₂^{*}.

Thus, the initial stable isotopic composition of dissolved CO_2 is obtained from (Eq. 28) and (Eq. 29):

 $\delta^{13}\text{C-CO}_{2\text{ initial}}^* = \delta^{13}\text{C-DIC}_{\text{initial}} + ((\epsilon * [\text{TA}]_{\text{initial}}) / [\text{DIC}]_{\text{initial}})$ (Eq. 30)

Where,

 δ^{13} C-CO_{2 initial} and δ^{13} C-DIC_{initial} are the stable isotopic composition of initial dissolved CO₂ and initial DIC, respectively.

IV.2.4.b. Partial pressure of ${}^{12}CO_2$ and ${}^{13}CO_2$ in air and water

The initial partial pressures of ${}^{12}CO_2$ and ${}^{12}CO_2$ in river waters can be calculated from the water pCO₂ starting from (Eq4).

 $p^{13}CO_{2water initial} = \delta^{13}C-PDB . pCO_{2initial} . ((\delta^{13}C-CO_{2initial} * / 1000) + 1) / 1 + \delta^{13}C-PDB . ((\delta^{13}C-CO_{2initial} * / 1000) + 1) (Eq. 31)$

Where,

 p^{13} CO_{2water initial} is the initial partial pressure of 13 CO₂ in water (ppmv) and δ^{13} C-PDB refers to Pee-Dee belemnite standard isotope equal to 0.011237.

Then, C stable isotopes in CO_2 follow the mass conservation in water as in (Eq5), and the Henry's law as in (Eq6).

 $[CO_2^*]_{water} = [^{12}CO_2^*]_{water} + [^{13}CO_2^*]_{water}$ (Eq. 32)

 $pCO_{2 \text{ water}}$. $K_0 = p^{12}CO_{2 \text{ water}} K_0 + p^{13}CO_{2 \text{ water}}$. K_0 (Eq. 33)

Similarly for the atmosphere, the partial pressures of each CO_2 stable isotope in the air can be calculated using (Eq. 34) and (Eq. 35).

 $p^{13}CO_{2atmosphere} = \delta^{13}C-PDB . pCO_{2atm} . ((\delta^{13}C-CO_{2atmosphere} / 1000) + 1) / 1 + \delta^{13}C-PDB . ((\delta^{13}C-CO_{2atmosphere} / 1000) + 1) (Eq. 34)$

Where,

 p^{13} CO_{2atmosphere initial} is the initial partial pressure of 13 CO₂ in the atmosphere (ppm) and δ^{13} C-CO_{2atmosphere} equates to -7.5 ‰.

Then, CO₂ stable isotopes follow the mass conservation in the air:

 $pCO_{2 \text{ atmosphere}} = p^{12}CO_{2 \text{ atmosphere}} + p^{13}CO_{2 \text{ atmosphere}}$ (Eq. 35)

IV.2.4.c. Water-air gradient and flux of ¹²CO₂ and ¹³CO₂

The model calculates CO₂ fluxes to the atmosphere for each isotope from the following equations:

 $F^{13}CO_2 = k_{600}K_0 (p^{13}CO_{2water} - p^{13}CO_{2atmosphere})$ (Eq. 36)

Where,

 $F^{13}CO_2$ represents the ${}^{13}CO_2$ fluxes at the interface in mmol m⁻² h⁻¹; K₀ is the apparent CO₂ solubility constant of Weiss (1974) in mol kg⁻¹ atm⁻¹; k₆₀₀ is an arbitrary normalized gas transfer velocity (for a Schmidt number of 600 in cm h⁻¹).

Afterwards, the model calculates a loss of CO_2 ($[CO_2^*]_{loss}$) from river to the atmosphere for each isotope from the different water-air gradient.

 $[{}^{13}\text{CO}_2^*]_{\text{loss}} = (k_{600}\text{t}/10^{-3}\text{H})K_0\Delta p^{13}\text{CO}_2 = \beta K_0(p^{13}\text{CO}_{2\text{water}} - p^{13}\text{CO}_{2\text{atmosphere}})$ (Eq. 37)

Where,

 $[^{13}CO_2^*]_{loss}$ is the loss of $^{13}CO_2$ to the atmosphere in mmol L-1, t is a time constant (h) and H is the depth of the river (m); both t and H are arbitrarily fixed.

The same calculations are made for ${}^{12}CO_2$ fluxes and dissolved ${}^{12}CO_2$ losses. In Equation (37), the term β is dimensionless and proportional to the ratio between the gas transfer velocity and water height. As the same value of β is applied to both isotopes, this parameter can be fixed arbitrarily and defines the size of the iterations. In the model, the relationship between CO₂ degassing and δ^{13} C-DIC is not affected by β , by the chosen gas transfer velocity or by the river depth (Polsenaere and Abril 2012).

IV.2.4.c. Loss of DIC and change in δ^{13} C-DIC

The $[CO_2^*]_{loss}$ is removed from the concentration of ${}^{12}CO_2^*$ and ${}^{13}CO_2^*$.

 $[^{13}CO_2^*]_{n+1} = [^{13}CO_2^*]_n - [^{13}CO_2^*]_{loss}$ (Eq. 38)

 $[{}^{12}CO_{2}^{*}]_{n+1} = [{}^{12}CO_{2}^{*}]_{n} - [{}^{12}CO_{2}^{*}]_{loss}$ (Eq. 39)

 $[CO_2^*]_{n+1} = [^{13}CO_2^*]_{n+1} + [^{12}CO_2^*]_{n+1}$ (Eq. 40)

 $[DIC]_{n+1} = [CO_2^*]_{n+1} + [TA]$ (Eq. 41)

When the new concentration of DIC is obtained the model calculates the new δ^{13} C as in (Eq. 42)

$$\delta^{13}\text{C-DIC}_{n+1} = (\delta^{13}\text{C-CO}_{2\ n+1}^{*} . [\text{CO}_{2\ }^{*}]_{n+1} + [\text{TA}] . \delta^{13}\text{C-HCO}_{3\ n+1}^{-}) / ([\text{CO}_{2\ }^{*}]_{n+1} + \text{TA})$$
(Eq. 42)

Where,

$$\delta^{13}\text{C-CO}_{2 n+1}^* = (([^{13}\text{CO}_2^*]_{n+1} / [^{12}\text{CO}_2^*]_{n+1}) / \delta^{13}\text{C-PDB}) - 1) . 1000$$

(Eq. 43)

 $δ^{13}$ C-HCO_{3 n+1} = $δ^{13}$ C-CO_{2 n+1} + ε (Eq. 44)

Finally, from the new δ^{13} C of the total DIC the new concentration of the DIC is calculated.

IV.3. Results

IV.3.1. Hydrology and water mass balance in the Leyre Watershed

During the monitoring period (Jan. 2014-Jul. 2015), hydrology was characterized by an average discharge of 21.3 m³ s⁻¹ at the second most downstream station (Fig. 18; 20a), including two relatively short flood events (further referred as "high flow period") in Jan. 2014 – Apr. 2014 (maximum flow 120 m³ s⁻¹) and in Feb. 2015 – Mar. 2015 (maximum flow 60 m³ s⁻¹), and two longer periods of low flow (further referred as "base flow period") between May. 2014 – Jan. 2015 and Apr. 2015 – Jul. 2015 (minimum flow 5.1 m³ s⁻¹ in Nov. 2014). Periods for groundwater discharging (decreasing water table) were Jan. 2014 – Oct. 2014 and Mar. 2015 - Jul. 2015, and period of groundwater loading (increasing water table) was Nov. 2014 – Mar. 2015 (Fig. 20a).

Drainage factors were 840±90 m³ km⁻² s⁻¹ for the two year period (Jan. 2014-Dec. 2015), 2,180±200 m³ km⁻² s⁻¹ during the high flow period and 410±60 m³ km⁻² s⁻¹ during the base flow period (Tab. 10). Drainage gradually increased from second order streams to fourth order stream by 19%, 15% and 24%, respectively for the three periods (Tab. 10). This spatial increase in drainage factors provides a quantitative estimate of additional water flows from diffusive groundwater inputs in higher stream order reaches, compared to that coming from the streams immediately upstream. Hence, normalizing the river discharge data with the corresponding watershed surface area by calculating the drainage factor allowed a precise quantitative analysis of groundwater inputs in the different stream orders.

The increase in river flow from stream order 2 to 4, was in the same order of magnitude (19±4 %) for the three distinct periods (two years, high flow and base flow period) (Tab. 10). Consequently, we are able to use the increase of drainage factors between first and second order streams from four one-off measures to understand annual water flow relation between first and second order streams (Tab. 11). After adding the complementary information based on first order streams discharge, we found the following ratio between discharges in following stream orders (Tab. 10):

ΣQ_{Or2}=1.66ΣQ_{Or1} (Eq. 45)

ΣQ_{Or3}=1.15ΣQ_{Or2} (Eq. 46)

Q_{Or4}=1.09ΣQ_{Or3} (Eq. 47)

These downstream increases in drainage factors reflect the contributions of groundwater drainage (GW) in each stream order, relative to surface runoff from upstream. The water balance in the Leyre Watershed during the two years period (Jan. 2014-Dec. 2015) can be described as follows:

ΣQ_{Or2}=ΣQ_{Or1} (60%) + GW₁₋₂ (40%) (Eq. 48)

ΣQ_{Or3}=ΣQ_{Or2} (87%) + GW₂₋₃ (13%) (Eq. 49)

Q_{0r4}=ΣQ_{0r3} (92%) + GW₃₋₄ (8%) (Eq. 50)

Thus,

 $Q_{Or4} = \Sigma Q_{Or2} (80\%) + GW_{2-3} (12\%) + GW_{3-4} (8\%)$ (Eq. 51) $Q_{Or4} = \Sigma Q_{Or1} (48\%) + GW_{1-2} (32\%) + GW_{2-3} (12\%) + GW_{3-4} (8\%)$ (Eq. 52)

Where,

 Q_{Or1} , Q_{Or2} , Q_{Or3} and Q_{Or4} refer to river flow of each stream order and GW_{1-2} , GW_{2-3} and GW_{3-4} refer to groundwater inputs between each stream orders.

We consider that Equation 45 to 52 remains valid for any period of the hydrological cycle.

IV.3.2. Spatio-temporal variations of pCO_2 , TA, DIC and δ^{13} C-DIC

Throughout the sampling period, pCO₂, TA, DIC and isotopes ratios of DIC varied greatly in time (Fig. 20) and space (Tab. 12; Fig. 19) along an upstream-downstream gradient (from groundwaters to fourth order stream). A significant decrease of pCO_2 was observed while river order was increasing (Fig. 19a). Median pCO_2 values were 43,150; 3,120; 2,740; 1,520 and 1,645 ppmv whereas mean pCO_2 values were 48,070±26,320; 4,820±4,540; 3,000±1,090; 1,740±580 and 1,740±460 ppmv respectively for groundwaters, first, second, third and fourth order streams. Temporally, the stronger variations occurred in groundwaters and first order streams (Fig. 20b). In groundwater, a slow and regular increase of pCO_2 (from 7,700 to 103,870±12,510 ppmv) occurred during discharging periods, when residence time of water in the soil increased. In contrast, a rapid decrease of pCO₂ (down to 28,890±2,790 ppmv in Mar. 2015) was observed during loading periods, when groundwater was diluted with rainwater (Fig. 20a-b). The same temporal trend occurred in first order streams, although with an amplitude much smaller (3,700±1,530-27,205 ppmv) than in groundwaters (7,680-103,870±12,510 ppmv). Moreover, in first order streams highest value of pCO₂ (27,205 ppmv in Sep. 2014) was associated with lowest value of groundwater table during base flow period (Fig 20a-b). In second, third and fourth order streams, water pCO₂ followed a seasonal cycle asymmetric compared to groundwaters, with lower pCO_2 values during base flow and higher pCO_2 values during flood peaks (Fig. 20b).

During the entire sampling period, TA values were not significantly different (p>0.05) in groundwaters, first and second order streams (Fig. 19b). Indeed, median values of TA were 72, 60 and 75 μ mol L⁻¹ whereas mean values of TA were 71±25, 74±45 and 90±60 μ mol L⁻¹ respectively for groundwaters, first and second order streams. In contrast, a significant

increase (p<0.001) of TA was observed between second and third order streams and between third and fourth order streams (p<0.05), where mean values of TA were 230±190 and 300±110 µmol L⁻¹ respectively for third and fourth order streams (Fig. 19b). Throughout the sampling period, the results did not show temporal variations of TA in groundwaters (71±25 µmol L⁻¹), in first order streams (74±54 µmol L⁻¹) and in second order streams (90±60 µmol L-1) (Fig. 20c). Temporal variations were observed only in third order streams (range 65±15-410±280 µmol L⁻¹) and fourth order stream (range 100±40-480±25 µmol L⁻¹). Seasonally, TA in third and fourth order streams increased during groundwater discharging period and decreased during groundwater loading period, to reach a minimum value during flood peak (Fig. 20a-c).

Figure 19: Spatial variations of dissolved inorganic carbon species in the Leyre watershed during the study period according to stream order. (a) Partial pressure of carbon dioxide (pCO2), (b) total alkalinity (TA), (c) dissolved inorganic carbon (DIC), (d) stable isotope composition of DIC (δ 13C-DIC). Box-plots represent the mean (red bar), the median (black bar) as well as 10th, 25th, 75th and 95th percentile. A black square indicates that data were significantly different from those immediately at their left with p<0.001. A white square indicate that data were significantly different from those immediately at their left with p<0.05.

DIC concentrations and isotopic composition showed a clear spatial trend along the groundwater-stream continuum (Fig. 19c-d). Indeed, DIC concentrations significantly decreased (p<0.001) from 2,300±1,120 μ mol L⁻¹ (median was 2,090 μ mol L⁻¹) in groundwaters to 310±210 µmol L⁻¹ (median was 230 µmol L⁻¹) in first order streams (Fig. 20c). In parallel, δ¹³C-DIC increased from -26.2±1.2 ‰ (median was -26.2 ‰) in groundwaters to -19.8±2.7‰ (median was -20.2 ‰) in first order streams (Fig. 19d). More downstream, DIC concentrations remained globally constant (p>0.05) in first (310±210 and 230 μ mol L⁻¹, respectively for mean and median), second (240±65 and 230 μ mol L⁻¹) and third (310±190 and 220 µmol L⁻¹) order streams, and finally significantly increase (p<0.05) in fourth order streams (380±100 and 380 µmol L⁻¹). The latter increase was related to an increase of TA (Fig. 19b), and was also concomitant with a significant (p<0.01) increase of δ^{13} C-DIC from -16.2±4.4 ‰ (median was -14.7 ‰) in third order streams to -14.1±2.4‰ (median was -13.1 ‰) in fourth order streams (Fig. 19d). Temporal variations of DIC followed those of pCO_2 in groundwaters (range from 570 to 4,590±2,700 µmol L⁻¹) and in first order streams (range from 225±25 to 1280 µmol L⁻¹). On the contrary, temporal variations of DIC in third order streams (range from 145±15 to 490±270 µmol L⁻¹) and fourth order stream (range from 215±80 to 550±30 μ mol L⁻¹) followed those of TA (Fig. 20c-d). Stable isotopes composition of DIC were globally constant in groundwaters (-26.2±1.2 ‰). Furthermore, during base flow periods (May. 2014 – Jan. 2015 and Apr. 2015 – Jul. 2015), δ¹³C-DIC signal was also overall stable in first order streams (-18.9±2.4 ‰), second order streams (-18.5±2.2 ‰), third order streams (-14.9±2.5 ‰), and fourth order stream (-12.9±0.7 ‰) (Fig. 20e). In contrast, during the flood peaks (Feb. 2014 and Mar. 2015) we observed a significant decrease of δ^{13} C-DIC in headwaters (down to -27.6 ‰ in Mar. 2015 in first order streams) and rivers (down to -28.9, -35.4 and -21.1 ‰ in Mar. 2015 for second, third and fourth order streams respectively). This was particularly true during the second flood event (Fig. 20e).

Figure 20: Seasonal variations of hydrology and inorganic carbon speciation and isotopic composition in the different river orders. (a) Daily discharge of the Leyre River at the outlet, groundwater table at the Bilos station and monthly precipitation at Belin-Beliet municipality, (b) partial pressure of carbon dioxide (pCO₂), (c) total alkalinity (TA), (d) dissolved inorganic carbon (DIC), (e) stable isotopic composition of DIC (δ^{13} C-DIC). Each point represents the mean value obtained at different stations with same stream order (spatial average), and the error bars correspond to the Pearson standard deviation (spatial heterogeneity).

	T (°C)	рН	σ (µS m⁻¹)	<i>p</i> CO ₂ (ppmv)	TA (µmol L ⁻¹)	DIC (µmol L ⁻¹)	δ ¹³ C-DIC (‰)
Groundwater	13.5±2.2	4.5±0.2	113±45	48,070±26,320	71±25	2,300±1,120	-26.2±1.2
	[8.5~17.9]	[3.7~4.8]	[67~268]	[7,680~116,380]	[32~135]	[570~5,370]	[-28.8~-23.4]
First order	12.9±4	5.9±0.4	116±28	4,820±4,540	74±45	310±210	-19.8±2.7
	[4.8~22.1]	[5.1~6.9]	[72~187]	[1,010~27,205]	[29~280]	[87~1,280]	[-27.6~-12.4]
Second order	12.8±2.7	6.1±0.5	120±35	3,000±1,090	90±60	240±65	-19.3±2.7
	[6.3~18.3]	[4.6~6.9]	[62~256]	[1,445~6,430]	[30~410]	[140~545]	[-27.4~-13.5]
Third order	13.4±3.1	6.6±0.5	130±20	1,740±580	230±190	310±180	-16.2±4.4
	[7.8~19.5]	[5.5~7.5]	[83~180]	[1,058~3,271]	[35~715]	[120~780]	[-35.4~-11.5]
Fourth order	13.6±3	6.8±0.3	150±20	1,740±460	300±110	380±100	-14.1±2.4
	[9~18.4]	[5.9~7.3]	[81~198]	[1163~2925]	[60~500]	[140~580]	[-21.1~-11.9]

Tableau 12: Spatial distribution of inorganic carbon and ancillary parameters in the Leyre watershed throughout the sampling period (Jan. 2014-Jul. 2015); Average±SD are shown in bold (averaged value at different stations with the same stream order) and range are shown between brackets (range of all stations with same stream order).

IV.3.3. Degassing experiment

The two degassing experiments allowed describing how δ^{13} C-DIC is affected when CO₂ originating from the groundwater degasses to the atmosphere (Fig. 21).

Initial pCO_2 values were 41,160 and 47,730 ppmv, TA concentrations were 35 and 70 µmol L⁻¹, DIC concentrations were 1,720 and 2,030 µmol L⁻¹, and δ^{13} C-DIC values were - 26.2±0.1 ‰ and -26.5±0.04 ‰ for the two experiments, respectively. Final pCO_2 values were 530 and 460 ppmv, TA concentrations were 35 and 70 µmol L⁻¹, DIC concentrations were 55 and 90 µmol L⁻¹, and δ^{13} C-DIC value was -18.4±0.4 ‰ and -14.2±1.2 ‰ for the two experiments, respectively. During the time courses of the experiments, pCO_2 , DIC and δ^{13} C-DIC values followed relatively well the curves predicted by the degassing model (Fig. 21).

First, rapid decreases in pCO_2 occurred (from 41,160 to 9,360 ppmv and from 47,730 to 3,260 ppmv, for the two experiments, respectively) and in DIC (from 1,720 to 420 µmol L⁻¹ and from 2,030 to 200 µmol L⁻¹). This first period of large and rapid CO₂ degassing was associated with a moderate increase in δ^{13} C-DIC (from -26.2±0.5 to -24.3±0.03 ‰ and from - 26.5±0.04 to -22.5±0.2 ‰).

Later, slower decreases in pCO_2 (from 9,360 to 530 ppmv and from 3,260 to 460 ppmv) and in DIC (from 420 to 55 µmol L⁻¹and from 200 to 90 µmol L⁻¹) occurred, associated with a large increase in δ^{13} C-DIC (from -24.3±0.03 ‰ to -18.4±0.4 ‰ and from -22.5±0.2 to - 14.2±1.2 ‰). Some experimental degassing points slightly differ with theoretical curves in the lower-left part of the model, where a large decrease of DIC occurs with little change in δ^{13} C-DIC (Fig. 21). However, the general pattern of changes of δ^{13} C-DIC due to CO₂ degassing in the experimental data could be verified with *in situ* data, which followed the same general pattern from groundwaters to fourth order streams (Fig. 22a-c). Furthermore, isotopic equilibration during CO₂ degassing could be reproduced experimentally, which validates our isotopic model.

Figure 21 : Isotopic equilibration of DIC during experimental degassing. Results of the two degassing experiments, showing the evolution of pCO₂, DIC and δ^{13} C-DIC. The continuous lines show the theoretical model. Note that total alkalinity (TA) was constant during the experiments.

IV.3.4. Groundwater spring

We sampled a spring of groundwater and its very small stream 40 meters immediately downstream in order to know how fast CO₂ degassing could be in very small headwaters. All the discharge in the stream was apparently coming in majority from the sampled spring. For the five sampling period, values of pCO_2 in the spring were 22,370; 30,000; 32,170; 34,950 and 37,500 ppmv whereas those in the stream were 6,560; 9,950; 10,100; 11,050 and 10,900 ppmv. Values of δ^{13} C-DIC were -26.7; -26.7; -24.7; -24.6 and -25.6 ‰ in the spring whereas they were -20.4; -21.5; -21.9; -21.6 and -19.5 ‰, in the stream. Consequently, for the five sampling periods, pCO_2 has lost 21,700±6,800 ppmv in 40 meters; in the meantime δ^{13} C-DIC increased by +4.7±1.7 ‰. In addition, for a mean water velocity of 20 cm s⁻¹, the travel between the spring and the sampling point in the headwater (40 meters downstream) was covered in about 3 minutes.

IV.4. Discussion

IV.4.1. Temporal variations and origin of DIC in groundwater

The potential sources of DIC in groundwaters are carbonate or silicate weathering, dissolution of soil-CO₂ that originates from heterotrophic respiration of soil organic matter (SOM) and from plant root respiration. In addition, heterotrophic respiration occurs also in the saturated zone of the soil, that is, in the groundwater itself. Carbonate weathering produces DIC with δ^{13} C of about -12 ‰, whereas silicate weathering produces DIC with δ^{13} C with an isotopic composition close to that of soil-CO₂ (Das et al., 2005; Wachniew, 2006; Polsenaere and Abril, 2012). Vegetation cover in the Leyre watershed is mainly C₃ plants (Govind et al., 2012). δ^{13} C of SOM that originates from C₃ plants can range between -22 and -34 ‰ (Vogel et al., 1993), with an average of -28 ‰. The latter average stable isotopic composition of SOM is in agreement with observations of Polsenaere et al (2013) who measured at the outlet of the Leyre River, an average value for δ^{13} C-POC (Particulate Organic Carbon) of -28.7±0.5 ‰ over a one year sampling. In addition, little or no fractionation occurs during mineralization of SOM (Ekblad et al., 2002). However, due to selective molecular diffusion of CO₂ through the soil pores, the isotopic composition of soil-CO₂ can become slightly enriched in ¹³C relative to SOM by up to 4-5 ‰ (Cerling et al., 1991). In addition, carbon isotopes are also fractionated (ϵ of about -1 ‰) during dissolution of soil-CO₂ into aqueous-CO₂ (Zhang et al., 1995). Hence, the average δ^{13} C-DIC values of -26.2±1.2 ‰ observed in groundwaters are consistent with two different sources of carbon with the same isotopic signature: (i) aqueous- CO_2 derived from respiration of soil organic matter in soils and groundwaters, (ii) HCO_3^{-} derived from weathering of silicates with soil- CO_2 . The absence of carbonate weathering in the sampled groundwater is also consistent with the lithology of the selected stations (Pleistocene and Pliocene sands), representative for the majority of the Leyre Watershed (Fig. 18).

During the monitoring period, changes in concentration in groundwater occurred for pCO_2 and DIC but not for TA and δ^{13} C-DIC. This reveals that although the intensity of the DIC source may change over time, the origin of groundwater DIC remained the same.

Lowest values of pCO₂ in groundwaters occurred during high flow and high groundwater table period (Jan. 2014-Apr. 2014 and Feb. 2015-Mar. 2015), as a consequence of dilution with rainwater with low DIC content. Moreover during these two periods, draining of groundwater is stronger, and rapidly recycling the DIC present in the saturated soil, and decreasing the concentration in the groundwater. Values of pCO_2 in groundwaters start to increase at the beginning of the base flow period (May 2014 and April 2015), as a consequence of respired DOC (Dissolved Organic Carbon), that had been accumulated in groundwater because groundwater table had reached organic horizon during last high flow period (data not shown, see chapter III). Indeed, during high flow periods (Jan. 2014-Apr 2014 and Feb. 2015-Mar. 2015), concentration of DOC in groundwater is 2,890±770 µmol L⁻¹ whereas during base flow periods (May. 2014–Jan. 2015 and Apr. 2015– Jul. 2015) DOC concentration in groundwater is 560±140 µmol L⁻¹. During summer 2014 (Jun-Aug), values of pCO_2 in groundwaters are stable, as a consequence of no water inputs into groundwater, as attested by the decreasing groundwater table during this period. We assume that the second increase (27/08/14-24/09/14) of pCO₂ in groundwaters at the end of decreasing groundwater table period, has been related to soil-CO₂ flush with the percolation of rainwater in the unsaturated soil (Johnson et al., 2008). However, at our study site, Sep. 2014 was one of the driest months throughout the sampling period (Fig. 20), which suggests that soil CO₂ could have been transported by simple downward diffusion. Finally, values of pCO₂ in groundwaters decrease from late summer (end of Sep. 2014) to next flood peak (Mar. 2015), as a consequence of increasing groundwater table and increasing river flow, that dilutes groundwaters and that increases drainage of groundwater, respectively.

IV.4.2. Rapid CO₂ degassing and DIC isotopic equilibration in first and second order streams

In order to analyze quantitatively the process of CO₂ degassing and DIC isotopic equilibration with the atmosphere in streams and rivers, we have plotted δ^{13} C-DIC as a function of pCO_2 , TA, and DIC (Fig. 22). The distributions of $\delta^{13}C$ -DIC versus pCO_2 and DIC followed well the trajectories predicted by the degassing model, starting in the groundwater and ending in the fourth order streams (Fig. 22a-c). This reveals that degassing is the dominating process that drives the spatial variations of these three parameters in the Leyre watershed. In addition, TA is overall conservative between groundwaters, first and second order streams (Fig. 20c, 19b; 21b). Consequently, changes in δ^{13} C-DIC between groundwaters and second order streams are attributable to CO₂ evasion to the atmosphere only. Furthermore, unlike in experimental degassing (Fig. 21), we never observe in first order streams very high values of pCO_2 with very negative $\delta^{13}C$ -DIC (Fig. 22a) as those found in groundwater (~-26 ‰). This suggests that CO₂ evasion between groundwaters and first order streams occurs very fast. Groundwater spring sampling and the large loss of pCO₂ of 21,700±6,800 ppmv in 40 meters and less than 3 minutes, confirms that degassing from groundwater is a very fast process. This conclusion is in agreement with findings of Venkiteswaran et al (2014) who mentioned that most of the CO₂ originating from groundwaters has been lost before typical in-stream sampling occurs. Hence, in the Levre Watershed, changes in δ^{13} C-DIC between groundwaters and second order streams, are due to CO₂ degassing only and corresponds to an increase of 6.9±3.9 ‰. As we will discuss later in section 4.4, the contribution of in stream respiration to CO₂ degassing is a minor component of the CO₂ degassing flux. Consequently, DIC in first and second order streams can be considered as groundwaters DIC minus a large part of CO2, which has already degassed.

Figure 22 : Stable isotopic composition of DIC (δ^{13} C-DIC) plotted against *p*CO₂ (a), TA (b) and DIC (c) for groundwaters and each stream orders. Empty symbols correspond to high flow samples whereas full symbols correspond to base flow samples. Larger symbols with error bars correspond to the average±SD (standard deviation) in each stream order throughout sampling period. Curves in panel (a) and (c), represent modeled changes in δ^{13} C-DIC considering only the loss of CO₂ by degassing from stream water to the atmosphere; the theoretical model was applied using a TA value of 72 µmol L⁻¹ (dashed line), which corresponds to the mean concentration in groundwaters and a value of 296 µmol L⁻¹ (solid line), which corresponds to the mean concentration of carbonate weathering and a mixing model (solid line) fitted to the dataset in second, third and fourth order streams above the mean signal of second order stream (TA=90 µmol L⁻¹, δ^{13} C-DIC=-19.3 ‰).

IV.4.3. Carbonate weathering in the third and fourth order streams

In monolithic watersheds draining only silicate rocks, TA is typically very low, below 125 µmol L⁻¹ according to Meybeck (1987). In the Leyre Watershed, although TA was below this threshold in groundwaters, and in first and second order streams, TA was higher in third and fourth order streams (Fig. 19b, 20c, 22b). This reveals a significant contribution of carbonate weathering in third and fourth order streams. The changes in δ^{13} C-DIC between second and fourth order stream was about 5.2±5.1 ‰ (Fig. 19d; 22b), from -19.3±2.7 ‰ in second order streams to -14.1±2.4 ‰ in fourth order streams. This enrichment in ¹³C is attributable not only to CO₂ evasion, as confirmed by the *p*CO₂ decrease (Fig. 19a, 20b, 22a), but also to inputs of TA from weathering of carbonates.

This increase of TA in 4th order stream is consistent with the spatial distribution of lime sand outcrops dating from Miocene Era (Fig. 18). However, the spatial distribution of superficial lime sand does not explain the increase of TA in 3rd order streams. This suggests that the increase of TA could be due to deeper groundwater inputs that might be in contact with lime sand layers. The latter assumption is consistent with the increase of TA during base flow period (Fig. 20). In addition, the influence of sandy carbonated outcrops could be also greater during base flow period. Indeed, DIC that originates from dissolution of carbonate rocks tends to dominate as the major source of alkalinity, even in watersheds where carbonates are present only in trace amounts (Das et al 2005).

The δ^{13} C values for most carbonates of marine origin is about 0 ‰ (Clark and Fritz, 1997). Carbonates then react with soil-CO₂ and produce DIC with an isotopic composition close to the average of those of soil-CO₂ and carbonate rocks (Salomons and Mook, 1986), ie., -12 ‰ in the Leyre watershed. In order to differentiate the respective contributions of degassing and carbonate weathering between second and fourth order streams, we applied a mixing model between two DIC end-members (Fig. 22b): one end-member is DIC from second order streams and the other end-member originates from carbonate weathering with a δ^{13} C-DIC signature of -12 ‰:

 δ^{13} C-DIC_{mm} = ([DIC]₂ . δ^{13} C-DIC₂ + x . δ^{13} C-DIC_{ca})/([DIC]₂ + x) (Eq. 53) Where,

 δ^{13} C-DIC_{mm} is the stable isotopic composition of DIC resulting from the mixing of the two endmembers; [DIC]₂ and δ^{13} C-DIC₂ are the average composition of second order streams; δ^{13} C-DIC_{ca} is the average composition of δ^{13} C-DIC from carbonate weathering; x is the fraction of DIC that originates from carbonate weathering.

This mixing model does not account for the CO_2 loss to the atmosphere and thus predicts the theoretical signature of the DIC as function of TA, when carbonate weathering occurs, but CO_2 degassing does not occur. In addition, we fitted on our data of δ^{13} C-DIC and TA another curve of the same form as mixing model (i.e., $f(x) = (A + B \cdot x) / (C + x)$), without considering a preselected value as end-member. δ^{13} C-DIC and TA values of second, third and fourth order streams that are above the mean concentration of second order streams (i.e., δ^{13} C-DIC=-19.3 ‰ and TA=90 µmol L⁻¹) were used to obtain the fitted curve (Fig. 22b).

In the δ^{13} C-DIC versus TA plot (Fig. 22b), the fitted curve was well above that given by the carbonate weathering model, with a quite constant difference of -1.8 ‰. This difference in δ^{13} C-DIC is due to CO₂ degassing between second and fourth order streams, a process accounted for in the fitted curve on the experimental data points, but not in the carbonate weathering mixing model. According to these results, between second and fourth order streams and fourth order streams, inputs of TA from carbonate weathering increase the δ^{13} C-DIC by 3.4 ‰ whereas CO₂ degassing increase it by 1.8 ‰.

IV.4.4. Budget of DIC at the scale of the Leyre watershed

According to our data, transport of groundwater DIC followed by degassing in streams of increasing order is the major pathway of CO₂ in the Leyre watershed. Indeed, pCO₂, DIC and δ^{13} C-DIC data are explained by theoretical degassing model between groundwaters and second order streams (Fig. 22a-c); in addition, we were also able to separate the effect of evasion on pCO₂, DIC and δ^{13} C-DIC, from that of carbonate weathering on TA, DIC and δ^{13} C-DIC between second and fourth order streams (Fig. 22b). Owing to the very shallow depths and the short residence time of water in these streams, in stream respiration is believed as a minor contribution to CO₂ degassing; we will verify the validity of this assumption after establishing a mass balance of both CO₂ and stable isotopes of CO₂ in the watershed. Our mass balance calculation (Fig. 23-24) considers the discharge of groundwater and water from upstream and the difference in pCO₂ between each stream orders and the groundwater. We assume that the loss of CO_2 between two different stream orders is due to CO_2 evasion. Hence, fluxes of CO_2 degassing (based on Equation 45 to 52) can be calculated for each river order as follows:

$$F_{Or1} = Q_{Or1}(CO_{2}^{*}_{GW} - CO_{2}^{*}_{Or1})$$
(Eq. 54)

$$F_{Or2} = Q_{Or1}(CO_{2}^{*}_{Or1} - CO_{2}^{*}_{Or2}) + 0.40Q_{Or2}(CO_{2}^{*}_{GW} - CO_{2}^{*}_{Or2})$$
(Eq. 55)

$$F_{Or3} = Q_{Or2}(CO_{2}^{*}_{Or2} - CO_{2}^{*}_{Or3}) + 0.13Q_{Or3}(CO_{2}^{*}_{GW} - CO_{2}^{*}_{Or3})$$
(Eq. 56)

 $F_{Or4} = Q_{Or3}(CO_2^*_{Or3} - CO_2^*_{Or4}) + 0.08Q_{Or4}(CO_2^*_{GW} - CO_2^*_{Or4})$ (Eq. 57)

Where,

 F_{Or1} , F_{Or2} , F_{Or3} and F_{Or4} ; $CO_2^*_{GW}$, $CO_2^*_{Or1}$, $CO_2^*_{Or2}$, $CO_2^*_{Or3}$ and $CO_2^*_{Or4}$; Q_{Or1} , Q_{Or2} , Q_{Or3} and Q_{Or4} are respectively, the degassing flux in mol s⁻¹, the concentration of aqueous-CO₂ in mol L⁻¹ and the river flow L s⁻¹, in each stream order.

Fluxes of ${}^{12}CO_2$ or ${}^{13}CO_2$ degassing (based on Eq. 18 to 23) can be calculated for each river orders as the same manner:

 $F_{Or1} = Q_{Or1}({}^{12 \text{ or } 13}\text{CO}_{2}{}^{*}_{GW} - {}^{12 \text{ or } 13}\text{CO}_{2}{}^{*}_{Or1})$ (Eq. 58)

 $F_{Or2} = Q_{Or1}({}^{12 \text{ or } 13}\text{CO}_{2}*_{Or1} - {}^{12 \text{ or } 13}\text{CO}_{2}*_{Or2}) + 0.40Q_{Or2}({}^{12 \text{ or } 13}\text{CO}_{2}*_{GW} - {}^{12 \text{ or } 13}\text{CO}_{2}*_{Or2})$ (Eq. 59)

Where,

 $\begin{array}{l} F_{Or1}, \ F_{Or2}, \ F_{Or3} \ \text{and} \ F_{Or4}; \ {}^{12}\text{CO}_2{}^*{}_{GW}, \ {}^{12 \ \text{or} \ 13}\text{CO}_2{}^*{}_{Or1}, \ {}^{12 \ \text{or} \ 13}\text{CO}_2{}^*{}_{Or2}, \ {}^{12 \ \text{or} \ 13}\text{CO}_2{}^*{}_{Or3} \ \text{and} \ {}^{12 \ \text{or} \ 13}\text{CO}_2{}^*{}_{Or4}; \ {}^{13}\text{CO}_2{}^*{}_{Or4}; \ Q_{Or1}, \ Q_{Or2}, \ Q_{Or3} \ \text{and} \ Q_{Or4} \ \text{are respectively, the degassing flux in mol s}^{-1}, \ \text{the second se$

concentration of aqueous ${}^{12}CO_2$ or ${}^{13}CO_2$ in mol L⁻¹ and the river flow L s⁻¹, in each stream order.

 $^{12}CO_2$ or $^{13}CO_2$ is calculated from Equations 30 to 33. The mass balance of $^{12}CO_2$ or $^{13}CO_2$ cannot be calculated the same way in 3rd and 4th order streams because $\delta^{13}C$ -DIC signal is influenced by carbonate weathering in these stream orders.

However, the mass balance calculation of CO₂, ¹²CO₂ and ¹³CO₂ is well closed with this method (Fig. 23-24). This means that our water mass balance based on the analysis of specific discharge between streams of increasing order is also coherent. The sampling of groundwater associated with sampling of streams of increasing order also allows a very precise quantification of the carbon budget at the scale of the watershed.

With this method, we find that first and second order streams account respectively for 45 % and 33 % of the total CO_2 degassing from the watershed (Tab. 13; Fig. 23); and the total degassing flux is 1,7 10⁴ t C yr⁻¹ (44.9 mol s⁻¹). In addition, it is important to note that accounting for diffusive inputs of groundwaters in each stream order is crucial for the establishment of such budget. Indeed, if instead we had considered that all the discharge measured at the watershed outlet (order 4) was originating from first order streams (assuming discharge is conservative and groundwater inputs in second, third and fourth order streams are negligible), the total flux of CO_2 evasion in the Leyre Watershed would be the same, but the contribution of first order streams would be more than 90%. Then, for each stream order, we divided the degassing flux by the water surface area or the catchment surface to derive a vertical flux. The total annual average vertical flux is 514 mmol m⁻² d⁻¹ (expressed per stream surface area) and 8.1 g C m⁻² yr⁻¹ (expressed per catchment area). Those fluxes are of the same order of magnitude as those reported elsewhere (Tab .14).

Stream Order	1 st			2 nd			3 rd			4 th		
Water discharge (m ³ s ⁻¹)												
From groundwater	4.3	22.1	10.3	2.8	14.6	6.8	1.1	5.3	2.5	0.7	3.8	1.8
From upstream	0	0	0	4.3	22.1	10.3	7.1	36.7	17.1	8.2	42.0	19.5
Total	4.3	22.1	10.3	7.1	36.7	17.1	8.2	42.0	19.5	8.9	45.8	21.3
ΔCO_2^* (µmol L ⁻¹)												
With groundwater	2,165	857	1,962	2,252	947	2,050	2,310	991	2,108	2,315	980	2,108
With upstream	0	0	0	87	90	89	58	44	58	4.1	-10.6	0.05
CO_2^* flux (mol s ⁻¹)												
From groundwater	9.3	19.4	20.2	6.4	13.3	13.9	2.4	5.3	5.2	1.7	3.7	3.7
From upstream	0	0	0	0.4	2.0	0.9	0.4	1.6	1	0	0	0
From aquatic heterotrophy	1.4	1.4	1.4	2.5	2.5	2.5	1.5	1.5	1.5	1	1	1
CO_2 degassing flux (mol s ⁻¹)												
Total	9.3	19.4	20.2	6.8	15.3	14.8	2.8	6.2	6.2	3.7	3.7	3.7
Contribution to the total (%)	45	43	45	31	33	33	14	15	14	8	8	8
k ₆₀₀ (cm h ⁻¹)	13	28	28	9	22	19	13	29	27	12	19	23

Tableau 13 : CO_2 fluxes and gas transfer velocity (k₆₀₀) in each stream orders in the Leyre Watershed. Italics numbers correspond to base flow period (Apr. 2014-Jan. 2015 and Apr. 2015-Jul. 2015), standard numbers correspond to high flow period (Jan. 2014-Mar. 2015 and Feb. 2015-Mar. 2015) and bold numbers correspond to the entire sampling period (Jan. 2014-Jul. 2015). Aquatic heterotrophy was estimated using and average value of 0.0725 mol m⁻² d⁻¹ from Hotchkiss et al. (2015), see text.

IV. Dégazage de CO₂ et équilibration isotopique du DIC à l'interface eau souterraine-ruisseau-atmosphère

Site	Stream flux	Catchment flux	Methods	Reference
	(mmol m ⁻² d ⁻¹)	$(g C m^{-2} d^{-1})$		
Temperate peatland	21-3,823	14.1	Propane injection	(Hope et al., 2001)
Temperate peatland	317-2,157	4.6	Propane injection	(Billett et al., 2004)
Xijang river (subtropical)	190-356		Modeled k	(Yao et al., 2007)
Boreal peatland	71-992	3.1-3.9	Floating chambers	(Billett and Moore, 2008)
Temperate peatland	5,803	11.5-13.9	Propane injection	(Dinsmore et al., 2010)
Mississippi (temperate)	269		Modeled k	(Dubois et al., 2010)
Entire USA	201-915	4.5-22.9	Modeled k	(Butman and Raymond, 2011)
Boreal stream	332-1,463	5	Propane injection	(Wallin et al., 2013)
Yellow river (arid)	624	10.3	Modeled k	(Ran et al., 2015)
Temperate podzols	514	8.1	Mass balance	This study

Tableau 14 : CO₂ evasion from various catchments. Modeled k were derived from empirical relations as function of stream hydraulics geometry.

In our analysis, we have assumed that all the CO₂ degassed from the Leyre watershed was external, i.e. originating from groundwater, and not internal i.e. resulting from the negative balance between in-stream production and respiration. Indeed, the average value of in-stream net heterotrophy reported by Hotchkiss et al (2015) from a large dataset in the US, is 72.5 mmol m⁻² d⁻¹, which corresponds to 14 % of the average degassing rate in the Leyre watershed, and to only 7 % in first order streams (Tab. 13). It is worth to note that in first order streams, the contribution of in-stream heterotrophy is probably even lower, owing to the very shallow depths. Furthermore, our isotopic mass balance calculation for CO₂ is also closed, attesting that internal inputs of CO₂ are also negligible in 1st and 2nd order streams and probably in 3rd and 4th order streams.

Our approach also allows us to compute the gas transfer velocity (k) of CO₂ in cm h^{-1} for each stream order, by dividing the areal flux by the *p*CO₂ gradient between water and air.

 $k = areal flux / (K_0 (pCO_{2w} - pCO_{2a}))$ (Eq. 60)

Where,

 K_0 is the apparent CO₂ solubility constant of Weiss (1974) for freshwater (4.5 10^{-5} mol m⁻³ µatm⁻¹), *p*CO_{2 w} is the partial pressure of CO₂ in each stream orders (in ppmv) and *p*CO_{2 a} is the atmospheric partial pressure of CO₂ set to 400 ppm.

Then, k is standardized to k₆₀₀ using the following equation:

 $k_{600} = (600/ScCO_2)^n k$ (Eq. 61)

Where,

a Schmidt number of 600 in freshwater corresponds to CO_2 at a temperature of 20°C, ScCO₂ is a Schmidt number temperature dependency for CO_2 calculated with coefficients of Wanninkhof (1992). *n* describes the turbulent characteristics of the water surface (MacIntyre et al., 1995) and is set to -2/3.

Our calculated k_{600} were in the range of 13-27 cm h⁻¹ (or 3.1-6.4 m d⁻¹). These values are typical for low slope watersheds and well correspond to those derived from the different models established by Raymond et al (2012) from stream hydraulic geometry.

The carbon export (F_{ex}) of DIC (DIC at equilibrium + Excess CO₂) from the Leyre watershed was computed using the discharge weighted concentration C_{dw} and the annual mean discharge Q_{mad} (Q_m = 21.3 m³ s⁻¹) for the sampling period as follows:

 $F_{ex} = C_{dw}Q_{mad}$ (Eq. 62)

Where,

 $C_{dw} = \Sigma C_i Q_{mi} / \Sigma Q_{mi}$ (Eq. 63)

Where,

 C_i is the instantaneous concentration of the DIC and Q_{mi} is the corresponding mean monthly discharge of each sampling period i. (ranging from 5.5 m³ s⁻¹ to 51.9 m³ s⁻¹ in Jul. 2015 and Mar. 2014, respectively).

The carbon export was calculated at the most downstream gauging stations (Fig. 18) in t C yr⁻¹ (carbon export) and then normalized by the corresponding watershed surface (1,650 km²) in t C km⁻² yr⁻¹ (carbon export rate). As pCO₂ at this downstream station was still far from the equilibrium with the atmosphere, a part of the C input to the coastal lagoon was in the form of Excess CO₂, as defined as the quantity of DIC that is transferred as CO₂ to the atmosphere after complete water-air equilibration. Excess CO₂ was calculated as the difference between in-situ DIC (i.e., calculated with in situ TA, pCO₂ and temperature) and a theoretical DIC at equilibrium with the atmosphere. The latter was obtained by resolving the inorganic carbon system with the observed alkalinity and temperature and the atmospheric pCO₂ of 400 ppm.

Finally, the export of DIC through the Leyre watershed is 2 10^4 t C yr⁻¹ and comprised of 87% as CO₂ degassing, 3% as export of DIC at equilibrium and 10% as excess of CO₂.

Figure 23 : Mass balance of CO_2 along the groundwater-stream-atmosphere continuum in the Leyre Watershed during the monitoring period (Jan. 2014-Jul. 2015). Black arrows and black numbers represent water fluxes in m³ s⁻¹. Red arrows and red numbers represent CO_2 fluxes in mol s⁻¹. The export of CO_2 between each boxes are calculated from the mean concentration during the monitoring period (Jan. 2014-Jul. 2015) and the corresponding water flux. R represents the contribution of net heterotrophy in each stream orders, and is in mol s⁻¹.

Figure 24 : Mass balance of isotopes of CO_2 along the groundwater-stream-atmosphere continuum in the Leyre Watershed during the monitoring period (Jan. 2014-Jul. 2015). Black arrows and black numbers represent water fluxes in m³ s⁻¹.). Red arrows and red numbers represent ¹³CO₂ fluxes in mol s⁻¹. Red arrows and red numbers represent ¹²CO₂ fluxes in mol s⁻¹. The export of CO₂ between each boxes are calculated from the mean concentration during the monitoring period (Jan. 2014-Jul. 2015) and the corresponding water flux

IV.5.Conclusion

The isotopic composition of the DIC in groundwaters indicates that the primary control on carbon fluxes is export of groundwater CO_2 resulting from soil respiration. Waters in the Leyre River network are supersaturated in CO_2 with respect to the atmosphere throughout the watershed and at different flow conditions, and a source of atmospheric CO_2 , with a maximum intensity in first and second order streams and during the flood period. Our approach based on p CO_2 , DIC, TA and δ^{13} C-DIC allowed us to quantify the relative importance of gas exchange and carbonate weathering along the river course and stream increasing order. Evasion of CO_2 from first and second order streams was the dominant

component of the entire DIC flux in the watershed, accounting for about 75 % of the total CO_2 evasion flux from river network. Overall, CO_2 evasion from river system represents 87 % of the entire DIC export from the Leyre watershed.

Acknowledgments

This research is part of the CNP-Leyre project funded by the Cluster of Excellence COTE at the Université de Bordeaux (ANR-10-LABX-45). We thank Dominique Poirier, Luiz Carlos Cotovicz Junior, Katixa Lajaunie-Salla, Baptiste Voltz, Gwenaëlle Chaillou and Damien Buquet (EPOC Bordeaux) for their helpful assistance in the field. Damien Buquet's contribution to river gauging, and Karine Charlier's contribution to isotopic analysis at EPOC were greatly appreciated; Christophe Chipeaux and Denis Loustau (ISPA, INRA Bordeaux) for provide water table data and Bernard Gaillard (DIREN Aquitaine) for provide river flow chronic.

Chapitre V

Exportation de carbone par le bassin de la Leyre : intégration de toutes les formes chimiques et hétérogénéités liées à l'occupation des sols

V. Résumé

Ce chapitre a pour objectif de décrire de manière exhaustive les flux hydrologiques de toutes les formes de carbone dans le bassin versant de la Leyre. Il valorise la totalité des données acquises pendant la thèse, d'abord en analysant les nappes et ruisseaux à dominance forestière, mais aussi ceux à dominance agricole. La comparaison entre ces deux usages des terres apporte de nouveaux éléments sur les facteurs de contrôle de l'export hydrologique de carbone. Ensuite, nous décrivons dans ce chapitre des formes chimiques du carbone autres que le DIC et le DOC dont les dynamiques spatiales (de l'amont à l'aval) et temporelles ont été analysées en détail dans les deux chapitres précédents. Même si le DIC et le DOC sont les formes les plus significatives en terme de flux, le POC (et les SPM), ainsi que le CH₄ dissous et d'autres paramètres d'accompagnement tel que l'oxygène dissous, mettent en évidence certains autres processus biogéochimiques qui se déroulent dans les nappes et les ruisseaux. Enfin, nous terminons ce chapitre par l'établissement d'un bilan de masse complet de carbone, intégrant toutes les formes chimiques, les transferts verticaux de la surface d'eau vers l'atmosphère et horizontaux jusqu'à la lagune d'Arcachon.

V.2. Influence de l'occupation des sols sur la signature biogéochimique des nappes phréatiques

Rappels

L'occupation des sols dans le bassin versant de la Leyre est partagée entre forêts de pins (83.4 %), cultures, principalement de maïs (14.2 %) et zones urbaines (2.4 %). D'autre part, les parcelles agricoles étant relativement éparpillées sur le bassin versant (Fig. 6, Chapitre II), la proportion de superficie agricole est au maximum de 86.5 % pour les ruisseaux d'ordre 1, de 20.8 % pour les ruisseaux d'ordre 2 et de seulement 17.6 % pour les ruisseaux d'ordre 3 (Tab. 1, Chapitre II). Nous avons choisi de classer nos stations comme « agricoles » lorsque la superficie cultivée en maïs était supérieure à 17,75 % du bassin versant (Chapitre II). Ce critère permet de considérer des bassins versants comme agricoles seulement pour les ruisseaux de premiers et de seconds ordres.

Méthodes

Nous avons utilisé les logiciels Sigmaplot12.0 et RStudio (package ggplot2 et FactomineR) pour réaliser les différentes analyses statistiques de ce chapitre.

L'Analyse en Composante Principale (PCA) est une méthode exploratoire (i.e., descriptive) multivariée de réduction dimensionnelle, qui permet de remplacer *p* variables initiales fortement liées entre elles par *q* facteurs appropriés (q < p). Ces nouvelles variables sont nommées *axes*. En définitive, la PCA permet de restituer en deux ou trois dimensions la structure et les proximités observées dans le nuage d'origine en *p* dimensions, en minimisant la perte de variance totale. Mais également d'étudier de manière descriptive les relations entre les *p* variables utilisées. L'Analyse en Composante Principale (PCA) a été utilisée dans ce chapitre pour étudier les relations entre les différentes variables mesurées (SPM, POC, POC%, DOC, TA, pCO₂, DIC, δ^{13} C-DIC, CH₄, pH, O₂, conductivité,) dans les eaux de nappes phréatiques (ordre 0) et dans les eaux superficielles (ordre 1 à 4).

Nous avons également utilisé le test de Shapiro-Wilk pour vérifier la normalité de nos données, combiné à un test de Mann-Whitney dans le cas de données non paramétriques, ou d'un t-test dans le cas de données paramétriques. Ces différents tests ont été utilisés soit pour estimer si une variable était significativement différente entre les périodes de crues et

les périodes d'étiages (pour un ordre donné), ou entre stations agricoles ou forestières (pour un ordre donné), soit pour estimer si une variable était significativement différente entre deux ordres hydrologiques, cette fois-ci, sans distinction de régime hydrologique ou d'occupation du sol. Pour ces différents tests, nous considérons qu'il y a une différence significative lorsque les p-values sont inférieures à 0.05.

Résultats et discussion

La PCA avec les données des eaux souterraines montre plusieurs tendances (Fig. 25). L'axe 1 est relié aux variables pCO₂, CH₄, O₂, conductivité et δ^{13} C-DIC, qui sont associées à l'occupation du sol (Tab. 15 ; Fig. 25). D'un côté, la composition chimique des eaux de nappes forestières est caractérisée par de plus fortes concentrations en pCO₂ et en CH₄ et de moins fortes conductivités, des saturations en oxygène moins élevées et un signal isotopique du DIC plus négatif (Tab. 15 ; Fig. 25). D'un autre côté, la composition chimique des eaux de nappes agricoles est caractérisée par de plus fortes conductivités, des saturations en oxygène plus élevées et un signal isotopique du DIC moins négatif ainsi que de plus faibles concentrations en pCO₂ et en CH₄ (Tab. 15 ; Fig. 25). L'axe 2 de la PCA est lié à la variable DOC qui est associé au régime hydrologique des eaux de nappes forestières en périodes de crues se différencie par de plus fortes concentrations en DOC (Fig. 25).

Les pCO₂ suivent des variations temporelles dans les eaux de nappes agricoles et forestières, avec des maxima en fin de période d'étiage et des maxima pour les niveaux de nappes les plus hauts (Annexe 3). De plus, les proportions de CO₂ dissous et de TA du DIC sont également similaires dans les eaux de nappes agricoles (DIC est composé de 94±3 % de CO₂ et 6±4 % de TA) et forestières (95±5 % de CO₂ et 5±5 % de TA). Cependant, le CO₂ dissous est significativement plus élevé dans les eaux de nappes forestières que dans les eaux de nappes agricoles (Tab. 15; Fig. 25). Ceci suggère que la respiration du sol, le principal processus impliqué dans la formation du DIC dans les eaux de nappes (Chapitre III) répond à la même dynamique temporelle dans les nappes forestières et agricoles, mais que son intensité est plus forte en milieu forestier.

Ordre	p-value	Nappes	Nappes	
		forestières	agricoles	
рН	p=0.089	4.5±0.2	4.5±0.2	
		[3.7~4.8]	[4.3~4.9]	
Conductivité (µS cm⁻¹)	p<0.001	113±45	360±66	
		[67~268]	[220~467]	
TA (µmol L⁻¹)	p=0.034	71 ± 25	91±26	
4		[32~135]	[34~130]	
DIC (µmol L ⁻)	p<0.001	2,300±1,120	1,450±465	
10		[570~5,370]	[817~2,590]	
δ ¹³ C-DIC (‰)	p<0.001	-26.2±1.2	-19.8±1.4	
		[-28.8~-23.4]	[-22.0~-17.6]	
pCO ₂ (ppmv)	p<0.001	48,070±26,320	30,650±11,320	
4		[7,680~116,380]	[19,030~60,545]	
CH₄ (nmol L⁻¹)	p<0.001	1,670±1,680	42±23	
		[30~6,700]	[16~130]	
O_2 (% saturation)	p<0.001	15±20	70±20	
1		[0~63]	[31~93]	
DOC (µmol L ⁻ ')	p<0.001	895±895	530±140	
		[275~3,670]	[320~880]	

Tableau 15 : Analyse statistique des différences de composition chimique entre les eaux de nappes forestières et les eaux de nappes agricoles pour les différentes variables étudiées. Les p-values en gras indiquent une différence significative entre eaux de nappes en milieu agricole et forestier. Les chiffres représentent moyenne±écart-types et la gamme de variation est représentée entre crochets

Plusieurs hypothèses sont envisageables pour expliquer cette différence de niveau de pCO₂ entre les eaux de nappes agricoles et forestières.

Premièrement, dans les écosystèmes tempérés, la production primaire nette (NPP) des terres cultivées équivaut à celle des forêts, mais cependant la végétation des terres cultivées est généralement récoltée et les sols sont labourés (Ciais et al., 2010; Luyssaert et al., 2010). De ce fait, seulement 65 % de la NPP est disponible pour la respiration du sol (Ciais et al., 2010). De plus, la NPP de la végétation sus-jacente est un des facteurs principaux contrôlant la respiration du sol (Raich and Nadelhoffer, 1989; Davidson and Janssens, 2006). Le labour des sols a deux types d'impacts sur la dynamique du SOC (Kirkels et al., 2014). D'une part, il remet en surface du carbone enfoui et crée des conditions favorables à sa décomposition en augmentant l'aération des sols ; d'autre part, il dilue le SOC des horizons supérieurs en le mélangeant avec des horizons plus profonds, ou le SOC est moins biodégradable (Gregorich et al., 1994; Renwick et al., 2004). En conséquence, les plus faibles concentrations en CO₂ dissous dans les eaux de nappes agricoles s'expliquent aussi par un taux de respiration du sol plus faible, dû à probablement moins de SOC disponible du fait des récoltes et des labours. Cette hypothèse est cohérente avec des observations de terrain lors des forages des piézomètres et les horizons organiques à la surface du sol beaucoup moins épais dans les parcelles agricoles (environ 20 cm) que dans les parcelles forestières (environ 60 cm). Ces différences expliquent aussi les plus fortes saturations en oxygène observées dans les eaux de nappes agricoles (Tab. 15 ; Fig. 25).

Figure 25 : Analyse en composante principale (PCA) des eaux de nappes phréatiques superficielles. Pour cette analyse statistique nous avons utilisé les variables quantitatives qui sont significativement différentes (p<0.001) entre les eaux de nappes agricoles et forestières (Tab. 1). Le DIC n'a pas été utilisé dans l'analyse du fait de sa redondance avec pCO_2 . Les variables qui sont situées le long du même axe directionnel sont corrélées les unes aux autres, les variables qui sont opposées sont négativement corrélées. De plus, plus le vecteur d'une variable est proche du cercle de corrélation (représenté en noir) plus cette variable est un bon indicateur. Le pourcentage des axes représentent le pourcentage de variance qu'ils expliquent. Les variables qualitatives supplémentaires sont l'occupation des sols associées au régime hydrologique: Crops BF = eaux de nappes agricoles en période d'étiage (base flow); Crops HF = eaux de nappes agricoles en période de crue (high flow); Forest BF = eaux de nappes forestières en période d'étiage (base flow); Lu étiers en période d'étiage (base flow); Un échantillon d'un des groupes qualitatifs a 68 % de chance de se retrouver à l'intérieur de l'ellipse correspondante. Deuxièmement, dans les sols riches en éléments minéraux et bien aérés et oxygénés (Tab. 15), le taux de CO₂ qui s'échappe du sol vers l'atmosphère peut être très élevé et la dissolution dans l'eau souterrainne moins importante (Dawson and Smith, 2007). A l'opposé, les sols humides et organiques tels que les sols forestiers du bassin de la Leyre, emmagasinent plus facilement du CO₂ (et du CH₄) dans la solution aqueuse du sol (Dawson and Smith, 2007). Ainsi, l'évasion du CO₂ du sol vers l'atmosphère est réduite pour ce type de sol (Dawson and Smith, 2007). En conséquence, les plus faibles concentrations en CO₂ dissous dans les eaux de nappes agricoles pourraient être dues également à des caractéristiques de sol différentes (e.g., texture, agrégation, microbiologie)entre parcelles arables et forestières, induites par les pratiques agricoles.

D'une manière générale, le stock de SOC est plus important dans des sols humides et peu drainés que dans des sols aérés et bien drainés (Lal, 2004). Dans les terres cultivées, le stock de SOC décline lorsque les apports par les résidus de culture et la biomasse racinaire sont inférieurs aux pertes par érosion, minéralisation et lessivage (Lal, 2004). Les concentrations en DOC moins importantes en périodes de crues dans les eaux de nappes agricoles sont aussi à mettre en relation avec le stock de SOC moins important dans les sols agricoles. De plus, les sols agricoles sont mieux drainés que les sols forestiers, le niveau de la nappe phréatique agricole n'est jamais affleurant à la surface du sol, et n'atteint donc jamais les niveaux superficiels du sol les plus riches en matière organiques, comme c'est le cas dans certaines parcelles forestières en périodes de crues (Chapitre III).

L'alcalinité (TA) dans les eaux de nappes superficielles provient de l'altération chimique des silicates ou des carbonates car le CO₂ dissous peut réagir avec les minéraux silicatés ou carbonatés pour produire des bicarbonates (Meybeck, 1987; Ludwig et al., 1998). D'après Meybeck (1987), dans des petits bassins versants silicatés monolithologiques, la TA est généralement très faible, en dessous de 125 µmol L⁻¹. Aussi bien dans les eaux de nappes agricoles que forestières, la TA ne dépasse en moyenne jamais 125 µmol L⁻¹, attestant que seule l'altération chimique des silicates se déroule dans les eaux de nappes échantillonnées. Ceci est cohérent avec la lithologie des parcelles où étaient installés nos piézomètres (Fig. 10, Chapitre II). Cependant, une différence modeste mais significative est observée dans les concentrations en TA entre eaux de nappes agricoles et eaux de nappes forestières (Tab. 15). Cela suggère que les pratiques agricoles jouent également un rôle significatif sur l'altération chimique des silicates. Dans d'autres environnements avec une proportion de minéraux carbonatés plus importante, certains auteurs ont effectivement trouvé que l'agriculture avait également une influence sur l'altération chimique des sols et l'export de bicarbonate par les rivières (Semhi et al., 2000;

145

Raymond and Cole, 2003; Oh and Raymond, 2006; Barnes and Raymond, 2009). En effet, le labour augmente la surface des minéraux du sol et modifie également l'hydrologie superficielle des sols, augmentant le taux de contact entre l'eau et les minéraux (Raymond and Cole, 2003). Les apports azotés agricoles (non connus dans cette étude) peuvent stimuler la nitrification, relâcher ainsi des protons dans les eaux du sol, et alors augmenter l'altération chimique des minéraux du sol (Semhi et al., 2000). Dans les eaux de nappes agricoles, des apports azotés sont attestés par les fortes conductivités (Tab. 15) et par les concentrations en NO₃⁻ (~2,000 µmol L⁻¹, données non publiées du projet CNP-Leyre).

Une différence significative a aussi été observée entre les eaux de nappes agricoles et forestières pour le signal isotopique du DIC (Tab. 15; Fig. 25). Comme discuté précédemment, les concentrations en alcalinité ne semblent pas témoigner d'une altération de carbonate dans les sols agricoles, l'altération des silicates étant apparemment prédominante aussi bien dans les sols forestiers qu'agricoles des parcelles où sont situés nos piézomètres. La différence du signal isotopique du DIC entre les eaux de nappes agricoles et forestières provient donc de la végétation sus-jacente qui est composée principalement de plantes en C3 dans la forêt et de plantes en C4 (maïs) dans les cultures. Cependant, le signal isotopique du DIC dans les eaux de nappes agricoles (-19.8±1.4 ‰, Tab. 15) indique que ce DIC provient d'un mélange de CO_2 issu de la respiration des plantes en C3 et C4. Plusieurs hypothèses sont envisageables pour expliquer que le signal isotopique du DIC dans les eaux de nappes agricoles est tout de même largement différent du signal des plantes en C4 (i.e., en moyenne -14 %). Premièrement, la nappe superficielle dans le bassin de la Leyre est libre et continue (Chapitre II). Les eaux de nappes situées dans les parcelles agricoles ont donc forcément déjà été en contact avec des sols forestiers des parcelles tout autour. Deuxièmement, les parcelles agricoles étudiées ont des cultures en rotation, notamment avec des cultures maraichères qui sont généralement des plantes en C3. Troisièmement, les sols agricoles étaient dans un passé proche (environ 30 ans) des sols forestiers. En conséquence, les sols agricoles du bassin de la Leyre sont un mélange de matières organiques anciennes (C3) et nouvelles (C4).

La saturation en oxygène est significativement plus élevée dans les eaux de nappes agricoles que forestières (Tab. 15; Fig. 25). Comme décrit pour le CO₂, cette différence provient des pratiques agricoles qui entrainent un plus faible taux de respiration dans les sols agricoles.

L'oxygénation des sols et des eaux de nappes agricoles mène à une concentration de méthane quasi nulle dans les eaux de nappes agricoles (Tab. 15). Ce résultat est cohérent

avec les travaux de Ciais et al. (2010) qui montrent que la plupart des terres cultivées Européennes se font sur des sols aérobies, et ainsi la production de méthane est très faible, se déroulant seulement dans des microsites anaérobies en particulier après l'application de fumier. En effet, la méthanogènese est complètement limitée aux sols anaérobies, et ce n'est pas le cas des sols et des eaux de nappes agricoles dans le bassin de la Leyre. Dans les eaux de nappes forestières, les concentrations en DOC sont maximales au pic de crue, alors que les concentrations en CH_4 et pCO₂ sont minimales (Annexe 3). Par la suite, l'augmentation de CH_4 semble concomitante à la diminution de DOC (Annexe 4). Pendant les périodes de crues, l'augmentation du niveau de la nappe phréatique sature le sol en eau et peut conduire à une anoxie du sol (Naumburg et al., 2005). En réponse à cette anoxie les plantes (et probablement les microorganismes) s'adaptent et basculent vers un métabolisme anaérobie (Naumburg et al., 2005). Ainsi, comme le témoignent les concentrations en méthane, la méthanogénèse se déroule dans les sols et les eaux de nappes forestières, principalement lorsque les sols sont saturés en eau pendant les périodes de crue (Chapitre III, partie 4.1)

V.3 Influence de l'occupation des sols et du cycle hydrologique sur la signature biogéochimique des ruisseaux de premiers et de seconds ordres

Les variables pH, Conductivité, TA, DOC, SPM et POC sont significativement différentes entre les ruisseaux de premier ordre agricoles et forestiers et entre les ruisseaux de second ordre agricoles et forestiers (Tab. 16). Les concentrations en DIC et son signal isotopique (δ^{13} C-DIC) sont significativement différentes mais seulement entre les ruisseaux de premiers ordres agricoles et forestiers (Tab. 16). La teneur en POC et les concentrations en CH₄ sont significativement différentes uniquement entre les ruisseaux de seconds ordres agricoles et forestiers (Tab. 16). Les concentrations en pCO₂ et les saturations en O₂ ne sont jamais significativement différentes entre ruisseaux agricoles et forestiers (Tab. 16).

Lorsque l'on trace les concentrations dans les nappes et les ruisseaux en fonction de la proportion d'agriculture et de forêt sur leurs bassins versants, on observe une influence assez nette de l'occupation du sol sur la conductivité (Fig. 26). Le graphique montre une tendance à la dilution entre un pôle 100 % agricole avec une conductivité très élevée et un

pôle 100 % forestier avec une conductivité très basse (Fig. 26). Les concentrations en CH_4 , DOC, O_2 et p CO_2 en fonction de l'occupation du sol, montrent une très forte variabilité entre le pôle 100 % agricole et le pôle 100 % forestier (Fig. 26). Cependant, sur ces graphiques nous n'observons aucune tendance à la dilution entre ces deux pôles opposés, renseignant sur le fait que les concentrations de ces paramètres sont sujettes à des processus qui ne concernent pas seulement la dilution entre deux pôles distincts (i.e., échanges avec l'atmosphere, apports d'autres sources). Les concentrations en TA sont similaires entre le pôle 100 % agricole et le pôle 100 % forestier (Fig. 26). L'augmentation observée dans les ordres 3 et 4 n'est donc pas due à l'occupation du sol.

Ordre	1*	forestiers	agricoles	2*	forestiers	agricoles
рН	p<0.001	5.9±0.3	6.1±0.4	p=0.031	6.1±0.5	6.3±0.4
		[5.1~6.9]	[5.4~7.0]		[4.6~6.9]	[5.5~7.1]
Conductivité (µS cm ⁻¹)	p<0.001	116±28	220±54	p<0.001	120±35	170±35
		[72~187]	[86~370]		[62~256]	[101~260]
TA (µmol L⁻¹)	p<0.001	74±45	120±50	p=0.004	90±60	120±80
		[29~280]	[40~300]		[30~410]	[50~360]
DIC (µmol L ⁻¹)	p=0.003	310±210	330±120	p=0.252	240±65	250±80
		[88~1,280]	[105~650]		[140~545]	[140~440]
δ ¹³ C-DIC (‰)	p<0.001	-19.8±2.7	-17.9±3.4	p=0.164	-19.2 ± 2.	-17.9±3.4
		[-27.6~-12.4]	[-27.6~-11.3]		[-27.4~-13.5]	[-28.9~-12.3]
pCO ₂ (ppmv)	p=0.283	4,820±4,540	4,420±2,610	p=0.277	3,000±1,090	2,730±1,380
		[1,010~27,205]	[1,040~14,080]		[1,445~6,430]	[1,030~5,300]
CH_4 (nmol L ⁻¹)	p=0.226	198±180	470±920	p<0.001	300±370	495±340
		[30~980]	[18~4,900]		[70~1,670]	[104~1,340]
O ₂ (%)	p=0.155	85±13	89±12	p=0.863	91±8	90±6
		[35~108]	[56~120]		[62~110]	[77~100]
DOC (µmol L ⁻¹)	p<0.001	440±160	600±310	p<0.001	650±500	900±340
		[195~1,050]	[230~2,290]		[180~2,780]	[325~1,500]
SPM (mg L ⁻¹)	p=0.006	2.2±1.7	5.1±6.3	p=0.008	4.9±10.2	12.1±16.1
		[0.1~6.5]	[0.2~50.5]		[0.5~73]	[1.1~86]
POC (% de SPM)	p=0.334	31±15	29±7	p=0.008	22±8	18±6
		[12~100]	[16~48]		[0.3~52]	[9~34]
POC (mg L ⁻¹)	p=0.007	0.6±0.4	1.5±2.2	p=0.007	0.8±1.1	2±1.9
		[0.2~2.1]	[0~13.2]		[0.1~6.9]	[0.2~9]

Tableau 16 : Analyse statistique des différences de composition chimique entre les eaux de ruisseauxd'ordre 1 et 2 agricoles et forestiers. Les p-values en gras indiquent une différence significative. Leschiffres représentent moyenne±écart-types et la gamme de variation est représentée entre crochets.

Figure 26 : Influence de l'occupation des sols sur les concentrations en gaz dissous (O_2 , pCO_2 , CH_4), la conductivité et les concentrations en DOC et TA.

La PCA sur les données de ruisseaux de premiers et de seconds ordres montre trois tendances différentes (Fig. 27). La composition chimique des ruisseaux de premier et de second ordre en périodes de crues est associée à de plus fortes concentrations en DOC, POC et SPM (Fig. 27). Lors de ces périodes de crues, les ruisseaux de premiers et seconds ordres forestiers auront tendance à avoir également un signal isotopique du DIC plus négatif et également un pH plus faible que les ruisseaux de premier et second ordre agricoles (Fig. 27). D'une autre manière, la composition chimique des ruisseaux de premier et de second ordre en périodes d'étiages est associée à de plus fortes concentrations en TA, de plus forts

pH et un signal isotopique du DIC également moins négatif (Fig. 27). Les fortes teneurs en POC (POC%) sont caractéristiques à la fois des ruisseaux forestiers en périodes de crues et en périodes d'étiages (Fig. 27). Dans cette analyse, le CH_4 a une faible représentativité et n'est associé à aucun groupe en particulier (Fig. 27)

Figure 27 : Analyse en composante principale (PCA) des ruisseaux de premiers et de seconds ordres. Pour cette analyse statistique nous avons utilisé certaines des variables quantitatives qui sont significativement différentes entre les eaux superficielles agricoles et forestières (Tab. 2). Le DIC n'a pas été utilisé dans l'analyse du fait de sa redondance avec pCO_2 . Les variables qui sont situées le long du même axe directionnel sont corrélées les unes aux autres, les variables qui sont opposées sont négativement corrélées. De plus, plus le vecteur d'une variable est proche du cercle de corrélation (représenté en noir) plus cette variable est un bon indicateur. Le pourcentage des axes représentent le pourcentage de variance qu'ils expliquent. Les variables qualitatives supplémentaires sont l'occupation des sols associées au régime hydrologique: Crops BF = eaux de nappes agricoles en période d'étiage (base flow); Crops HF = eaux de nappes agricoles en période de crue (high flow); Forest BF = eaux de nappes forestières en période d'étiage (base flow); Un échantillon d'un des groupes qualitatifs a 68 % de chance de se retrouver à l'intérieur de l'ellipse correspondante.

De nombreux ruisseaux de premiers et de seconds ordres agricoles sont à secs pendant la période d'étiage (Chapitre II). Lors de cette période, le lit et les berges des ruisseaux agricoles se végétalisent très fortement probablement à cause des intrants utilisés en agriculture (Fig. 28). Dans le bassin de la Leyre, du fait de la faible pente topographique les processus d'érosion des sols ne peuvent être ni une source très importante de POC ni de SPM. Plusieurs facteurs sont envisageables pour expliquer que l'on observe des concentrations en POC et en SPM en moyenne plus élevées dans les ruisseaux de premiers et de seconds ordres agricoles (Tab. 18) et particulièrement en périodes de crues (Fig. 27). L'augmentation de cette biomasse aquatique dans les ruisseaux en milieu agricole pendant la période sèche peut alors devenir un piège à sédiment au début de la remise en eau. Lorsque le débit en périodes de crues est suffisamment énergétique il pourrait remettre en suspension tout le sédiment accumulé en fin de période d'étiage et également arracher cette litière. Certains ruisseaux en milieux agricoles sont également curés après la période d'eutrophisation pour permettre le bon fonctionnement de ces fossés de drainage (Fig. 28). Nous avons également observé de plus fortes teneurs en POC dans les ruisseaux de premiers et de seconds ordres forestiers, mais des concentrations en POC en moyenne moins élevées qu'en milieu agricole (Tab. 18). Ceci suggère qu'il y a plus de dilution de POC avec des matières minérales en milieu agricole. Un point fondamentalement différent entre ruisseaux en milieux forestiers et agricoles est la présence de végétation riparienne. D'une part, la végétation riparienne forestière stabilise les berges et diminue l'érosion des berges. D'autre part, la chute de litière de la végétation riparienne est une source de POC pour les ruisseaux forestiers.

Dans les ruisseaux de premier et second ordre, le DOC est significativement plus élevé en milieu agricole qu'en milieu forestier (Tab. 18 ; Fig. 27). Ces observations contrastent avec d'autres travaux qui ont montré que l'occupation des sols n'avait que très peu d'influence sur les concentrations en DOC dans les ruisseaux (Vidon et al., 2008). Cependant, l'eutrophisation des ruisseaux de premiers et seconds ordre agricoles pourrait également être à l'origine de cette différence. En effet, dans les ruisseaux de plaines riches en macrophytes, le DOC aquatique provient généralement du sédiment et est dérivé de la décomposition des plantes (Wilcock and Croker, 2004). Effectivement, la zone hyporhéique est métaboliquement active et est responsable de la rétention, de l'enfouissement et de la minéralisation de la matière organique (Fischer et al., 2005). Le CH₄ augmente aussi pour les ordres 2 agricoles mais seulement en période d'étiage (Tab. 18, Annexe 3). Ceci peut être dû également à l'eutrophisation. Les ruisseaux d'ordres 2 ne sont par définition jamais à sec et ainsi le maximum de biomasse en période d'étiage peut résulter en l'augmentation du piégeage du sédiment et de la décomposition de la végétation qui fournirait une source de carbone organique pour la méthanogénèse (Wilcock and Croker, 2004; Sanders et al., 2007). Les ruisseaux d'ordres 1 agricoles ne sont pas exportateurs de méthane en période d'étiage car ils sont à sec durant cette même période.

Figure 28 : Comparaison d'un ruisseau forestier (A) et ruisseau agricole (B) à l'automne, lors de la remise en eau. Curage d'un ruisseau agricole peu après la remise en eau (C).

La TA est significativement plus élevée dans les ruisseaux de premiers et de seconds ordres agricoles en période d'étiage. Cette augmentation dans les ruisseaux dominés par l'agriculture est cohérente avec la différence significative de TA observée entre les eaux de nappes superficielles agricoles et forestières. De plus, les parcelles agricoles sont arrosées avec l'eau de la nappe (une grande partie est perdue par évaporation directe) et sont mieux drainées que les parcelles forestières. Ainsi, il est possible qu'en période d'étiage, le niveau de nappe moyen des parcelles agricoles soit plus bas que celui des nappes forestières. Ces niveaux de nappes plus profonds auront eu un temps de résidence plus long et sont probablement plus concentrés en alcalinité, expliquant les TA plus élevées dans les ruisseaux agricoles. Le mécanisme serait le même que pour l'augmentation de la TA dans les ordres 3 et 4 (Chapitre IV).

L'occupation du sol a une influence sur les concentrations des différentes formes de carbone. Par rapport aux ruisseaux forestiers, les concentrations dans les ruisseaux agricoles d'ordres 1 (46±20 % de superficie agricole dans les bassins versant agricoles d'ordre 1, chapitre II, Tab. 1) sont en moyenne inférieures de 6% pour le DIC, et en moyennes supérieures de 26% pour le DOC, de +58% pour le CH₄, de 38% pour la TA et de 60% pour le POC (Tab. 16). La proportion de terres agricoles sur le bassin versant étant de seulement 14 %, cela suggère un impact modeste de l'agriculture sur les flux d'exportation à l'exutoire du bassin versant. Cependant, sans information détaillée sur l'hydrologie des terres agricoles dans le bassin, nous ne sommes pas en mesure de quantifier cet impact.

V.4. Evolution du signal biogéochimique de l'amont à l'aval

La pression partielle en CO₂ diminue de l'amont à l'aval du fait du dégazage vers l'atmosphère, tandis que la TA augmente en période d'étiage du fait de l'influence locale d'affleurements carbonatés (Chapitre IV). Le DIC suit les variations spatio-temporelles de la pCO₂ entre les eaux de nappes et les ruisseaux d'ordre 2 car le CO₂ dissous y est l'espèce majoritaire. A l'opposé, le DIC suit les variations spatio-temporelles de TA dans les ordres 3 et 4 où la TA est l'espèce majoritaire. Ces variations ont directement une influence sur le signal isotopique du DIC. L'augmentation du signal isotopique du DIC entre les eaux de nappes et les ordres 2 est une conséquence de l'équilibration isotopique du DIC dans les ordres 3 et 4 est une conséquence des apports de TA avec une signature isotopique différente et un dégazage toujours actif (Chapitre IV).

L'évolution du pH est une conséquence directe du dégazage et des apports de TA. Effectivement, le pH est très bien anti-corrélé à la pCO₂ et corrélé à TA et (Fig. 29). L'acide carbonique a une influence importante sur le pH dans ces eaux très peu tamponnées (i.e., faible en TA). Ainsi, lorsque le CO₂ dégaze le pH augmente (Fig. 30). La TA est une base faible et qui a donc la capacité de capter des protons et de faire augmenter le pH. Ainsi dans les ordres 3 et 4, l'augmentation du pH (comme l'augmentation du signal isotopique du DIC) est aussi une conséquence des apports de TA dans les ordres supérieurs et du dégazage qui se maintient car les eaux des ordres 3 et 4 sont toujours sursaturées en CO₂ comparé à l'atmosphère sus-jacente (Annexe 3). La saturation en oxygène est anti corrélée à la pCO₂ car ces deux paramètres ont une dynamique opposée en termes de respiration et d'échange gazeux avec l'atmosphère. Les ruisseaux qui sont alimentés par des eaux de nappes peu chargées en O₂ vont s'oxygéner progressivement au contact de l'atmosphère.

La PCA sur les données des eaux superficielles (ordre 1 à 4) montre plusieurs tendances (Fig. 29). En périodes d'étiages, la composition chimique des eaux superficielles d'ordre 1 à 2 est caractérisée par de fortes pCO₂ et de fortes teneurs en POC% (Fig. 29). Par contre, celle des eaux superficielles d'ordre 3 à 4 est caractérisée par de fortes concentrations en TA, de fort pH et un signal isotopique du DIC moins négatif (Fig. 29). En périodes de crues, la composition chimique des eaux superficielles est caractérisée par de fortes concentrations en DOC, POC et SPM, plus particulièrement pour les ruisseaux de premiers et de seconds ordres (Fig. 29).

Figure 29: Analyse en composante principale (PCA) de la composition chimique des eaux superficielles (ordre 1 à 4). Le DIC n'a pas été utilisé dans l'analyse statistique du fait de sa redondance avec TA et pCO₂. Les variables qui sont situées le long du même axe directionnel sont corrélées les unes aux autres, les variables qui sont opposées sont négativement corrélées. De plus, plus le vecteur d'une variable est proche du cercle de corrélation (représenté en noir) plus cette variable est un bon indicateur. Le pourcentage des axes représentent le pourcentage de variance qu'ils expliquent. Les variables qualitatives supplémentaires sont (A) les différents ordres et (B) le régime hydrologique ou HF = périodes de crues (high flow) et BF = périodes d'étiages (base flow) Un échantillon d'un des groupes qualitatifs a 68 % de chance de se retrouver à l'intérieur de l'ellipse correspondante.

Dans les eaux superficielles du bassin de la Leyre nous avons mesuré des teneurs en POC% élevées, en moyenne supérieures à 17 % (Tab. 17). En effet, dans la plupart des rivières les teneurs en POC varient entre 1 et 5 % mais peuvent exceptionnellement atteindre 20 % pour des rivières de plaines (Meybeck, 1993). En général les teneurs en POC sont inversement reliées aux concentrations en SPM (Meybeck, 1993; Ludwig et al., 1996), c'est également le cas dans le bassin de la Leyre (Fig. 30). Cette relation reflète soit la contribution variable de la production interne de POC (phytoplancton) dans les différentes rivières, soit la dilution de POC avec des matières minérales lorsque la turbidité augmente (Ludwig et al., 1996). Les teneurs très faibles en chlorophylle a (Polsenaere et al., 2012)

indiquent que la production interne de POC dans la Leyre est négligeable. Ainsi, seulement la dilution avec les matières minérales est envisageable pour expliquer l'évolution amontaval de la teneur en POC. Comme le ruissellement de surface est négligeable dans le bassin de la Leyre, cet apport de matière particulaire minérale en périodes de crues peut provenir de l'érosion des berges, du lit des rivières et des actions de curage.

	0*	1	2	3	4
рН	4.6±0.2	6.0±0.4	6.2±0.5	6.6±0.5	6.8±0.3
	[3.7~4.9]	[4.2~7.0]	[4.6~7.1]	[5.5~7.5]	[5.9~7.3]
Conductivité (µS cm ⁻¹)	210±130	165±65	140±40	130±20	150±20
	[67~470]	[72~370]	[62~260]	[83~180]	[81~198]
MES (mg L ⁻¹)		3.8±6.2	7.2±12.9	9.4±6.1	9.3±3.6
		[0.002~50.5]	[0.5~86]	[1.4~31]	[4.4~20.3]
TA (µmol L ⁻¹)	77±27	93±52	101±71	230±190	300±110
	[30~135]	[30~300]	[30~420]	[35~715]	[60~500]
DIC (µmol L ⁻¹)	1,950±1,000	320±180	240±70	310±180	380±100
10	[510~5,400]	[90~1,280]	[140~545]	[120~780]	[140~580]
δ ¹³ C-DIC (‰)	-23.7±3.4	-19.1±3.3	-18.7±3.1	-16.2±4.4	-14.1±2.4
	[-29.8~-17.6]	[-28.5~-11.1]	[-28.9~-12.3]	[-35.4~-11.5]	[-21.1~-11.9]
pCO ₂ (ppmv)	41,160±23,240	4,720±3,800	2,800±1140	1,740±580	1,740±460
1	[7,680~116,380]	[1,000~27,205]	[1,030~6,430]	[1,060~3,28]	[1,160~3,35]
CH₄ (nmol L⁻')	1,040±1500	335±670	365±365	400±230	535±250
	[16~6,700]	[18~4,900]	[70~1,670]	[40~1,600]	[168~1,420]
O ₂ (%)	35±35	87±14	90±10	90±5	90±5
1	[0~93]	[35~120]	[62~110]	[80~100]	[76~93]
DOC (µmol L ⁻⁺)	750±720	530±280	730±460	480±190	530±210
	[275~3,660]	[200~2,300]	[180~2,780]	[190~960]	[225~1,200]
POC (mg L ⁻)		1.0±1.6	1.2±1.5	1.5±0.7	1.6±0.5
		[0~13.2]	[0.05~9]	[0.3~4.3]	[0.7~3.2]
POC (%)		29.5±11.9	20.7±7.4	18.8±7.2	17.1±3.2
		[12.7~107]	[0.3~53]	[10~18.8]	[13.2~29.1]

Tableau 17 : Distribution spatiale des concentrations de carbone (pour toutes les stations) et des paramètres physicochimiques associés dans le bassin de la Leyre pour la période d'échantillonnage (Jan. 2014-Jul. 2015) Moyenne±ecart-type (en gras) et variations (entre crochets). *les ordres 0 correspondent aux eaux de nappes superficielles.

Sur une moyenne annuelle, le long du gradient amont-aval, les concentrations en DOC sont relativement stables (Tab. 17, Fig. 30). Ceci suggère que ce DOC est relativement réfractaire et conservatif au cours du transit le long du bassin versant et que sa dégradation ne joue pas de rôle majeur dans la sursaturation des eaux en CO₂. Néanmoins, une différence significative est observée entre les ordres 1-2 et 2-3 (Fig. 30). Cette différence est le résultat des fortes concentrations en DOC observées dans les ordres 1 et 2 en périodes de crues (Fig. 29).

Figure 30: Variabilité spatiale des concentrations en carbone et des paramètres physicochimiques associés le long d'un gradient amont-aval pour la période de mesure (Jan. 2014-Jul. 2015). Les box plots représentent le 95^{ème} percentile ainsi que le premier et le deuxième quartile. Les traits rouges représentent les moyennes et les traits noirs représentent les médianes. Les gammes de variations et les moyennes sont en Table 3. Un carré noir signifie qu'un ordre est significativement différent du précédent avec p < 0.001. Un carré blanc signifie qu'un ordre est significativement différent du précédent avec p < 0.05.

V.5. Bilan de masse du carbone

Afin d'effectuer un bilan de masse pour toutes les formes du carbone dans le système hydrographique du bassin de la Leyre, nous avons utilisé le bilan hydrologique déterminé dans le chapitre IV et basé sur des mesures de débits et des calculs de débits spécifiques sur chaque ordre. Ce bilan permet de calculer la décharge des eaux de nappes dans chaque ordre et le débit cumulé de chaque ordre. De plus, ce bilan hydrologique a pu être validé de manière indépendante en comparant le bilan de dégazage établi dans les ordres 1 et 2 et le bilan de ¹³C-DIC tenant compte de l'équilibration isotopique du DIC avec l'atmosphère (Chapitre IV).

Pour le bilan de masse des différentes formes du carbone, nous utilisons les données de toutes les stations quelle que soit l'occupation du sol. À l'échelle du bassin versant, les forêts prédominent largement sur les flux de carbone.

Pour les espèces dissoutes (présentes également dans les eaux de nappes), les flux sont calculés pour chaque ordre superficiel comme le flux de carbone venant de l'ordre inférieur auquel s'ajoute le flux de carbone venant de la décharge des eaux de nappes. Ces flux sont également déterminés à partir des flux d'eau correspondants et des concentrations moyennes pendant la période de mesure. De plus, le flux provenant des eaux souterraines et des ruisseaux de premiers et de seconds ordres est calculé à partir des concentrations en milieu agricole et milieu forestier pondéré par la surface qu'ils représentent (e.g., 85% pour le forestier et 15% pour le l'agricole).

Pour le CO_2 , le dégazage dans chaque ordre est la somme de deux contributions différentes. Une partie du dégazage est calculé comme la différence de concentration en CO_2 entre les eaux de nappes et les eaux superficielles multipliée par la décharge des eaux de nappes correspondantes. L'autre partie du dégazage est calculée comme la différence de concentration en CO_2 entre deux ordres superficiels multipliée par le débit correspondant (Chapitre IV).

Pour le CH₄, nous avons utilisé deux méthodes différentes pour calculer le dégazage. Une première méthode identique à celle du CO₂, basée sur les flux entrants et sortants dans chaque boîte en tenant compte de l'amont (ordre inférieur) et de la nappe. Le flux vers l'atmosphère est alors calculé par différence entrées-sorties de CH₄ dissous dans chaque boîte. Cette première méthode repose sur l'hypothèse (non vérifiée) que la nappe constitue

158

la principale source de CH₄ dans les rivières. La seconde méthode est basée sur le coefficient d'échange à l'interface air-eau qui provient du bilan de masse de CO₂ établi avec la même première méthode et validé par les bilans de masse isotopique dans les boîtes d'ordres 1 et 2. Les coefficients d'échanges du CH₄ et du CO₂ sont liés par la formule :

 $k(CH_4)/k(CO_2) = (Sc(CH_4)/Sc(CO_2))^n$ (Eq. 64)

Où,

 $Sc(CO_2)$ et $Sc(CH_4)$ sont les nombres de Schmidt du CO_2 et du CH_4 calculés avec les coefficients de Wanninkhof (1992) en fonction de la température in situ. n décrit les caractéristiques turbulentes de la surface de l'eau, et est fixé à -2/3 en rivière (Jähne et al., 1987).

Nous avons ensuite utilisé les surfaces de miroir d'eau calculées dans le chapitre IV pour obtenir des flux de CH₄ en t C yr⁻¹.

Le bilan de masse du CO₂ dans les ordres 1 à 4, ainsi que de TA et du DIC dans les ordres 1 et 2 sont quasiment équilibrés (Fig. 31). C'est-à-dire que pour ces paramètres et ces ordres, les entrées de carbone sont équivalentes aux sorties de carbone. Ici, chaque flux est calculé de manière indépendante, à partir de flux d'eau multiplié soit par des différences de concentration entre deux ordres (pour le dégazage), soit par des concentrations moyennes (pour les exports latéraux). Ce bilan fermé atteste de la bonne représentativité de nos stations d'échantillonnage ainsi que du bilan hydrologique correct déterminé dans le chapitre IV.

Le bilan de masse de TA et du DIC n'est plus équilibré pour les ordres 3 et 4. En effet, l'augmentation de TA dans les ordres 3 et 4 provient d'une source souterraine non échantillonnée. Cette fois-ci, nous pouvons utiliser le bilan de masse pour calculer le flux probable de TA de cette source, en déterminant ce flux par différence avec les autres. Ce bilan permet néanmoins de déterminer les concentrations théoriques en TA de cette contribution supplémentaire située dans les ordres 3 et 4 au niveau des affleurements carbonatés.

159

Figure 31 : Bilan de masse des différentes formes du carbone dans le bassin de la Leyre. Les flèches rouges représentent les flux de carbone en t C an⁻¹. Les flèches noires représentent les flux hydrologiques en m³ s¹. Le flux souterrain de TA dans les ordres 3 et 4 ne peut pas être déterminé par des mesures directes du fait d'une contribution importante de nappes plus profondes qui sont au contact de niveaux carbonatés et enrichis en TA. Calculés par différence, les flux souterrains de TA sont de 1,000 et 670 t C an⁻¹, respectivement pour la décharge dans les ordres 3 et 4. Ces résultats amèneraient à une concentration en TA dans les eaux de nappes de 1,075 µmol L¹ et 1,010 µmol L¹ pour les nappes drainées par les ordres 3 et 4, respectivement. Ces valeurs sont cohérentes avec Meybeck (1987), qui avait mesuré des valeurs de TA dans des rivières drainant des petits bassins versants mono-lithologiques de 125 µmol L⁻¹ (i.e., pour des bassins entièrement silicatés) et 3,125 μ mol L⁻¹ (i.e., pour des bassins entièrement carbonatés). Pour le bilan du DIC, x et y représentent les apports souterrains de TA provenant de niveaux carbonatés dans les ordres 3 et 4. x = 1,000 t C an⁻¹ et y = 670 t C an⁻¹. Pour le bilan de CH₄, les flèches vertes représentent le dégazage calculé à partir des concentrations moyennes et des coefficients d'échanges alors que les flèches violettes représentent le dégazage de CH₄ calculé à partir des différences de concentration entre eaux de nappes et rivières, en faisant l'hypothèse que la nappe est la seule source de CH₄.

Le bilan de masse de DOC dans les ordres 1, 2, 3 n'est pas non plus équilibré (Fig. 31). Selon notre bilan, il entre davantage de DOC qu'il n'en sort dans les ordres 1 et 3, soit une perte de respectivement -44 % et -32 %. Au contraire, il entre moins de DOC qu'il n'en sort dans les ordres 2 (+11 %) et 4 (+4 %). Même si ses différences restent modestes par rapport aux incertitudes auxquelles on s'attend pour des flux d'éléments dissous en milieu fluvial, elles suggèrent que nous n'avons pas mesuré certaines sources ou certains processus de production ou de consommation. Comme discuté précédemment, les fortes concentrations en DOC dans certains ordres 2 sont associées aux périodes de crues et à la remontée de la nappe à la superficie du sol riche en matière organique (Chapitre III). Or il existe une forte hétérogénéité spatiale des niveaux de nappe au sein du bassin versant dont l'impact sur les flux de DOC est difficile à appréhender et à intégrer. Nous ne pouvons pas totalement exclure non plus l'occurrence de processus de dégradation ou de photooxydation du DOC dans les ruisseaux, même si les temps de résidence dans chaque ordre sont relativement courts et si le bilan de DIC et de dégazage de CO₂ contraint par l'isotopie nous semble robuste. Enfin, nous avons aussi observé sur le terrain des formations de grands volumes de mousses en aval des chutes d'eau pendant les crues (Fig. 32). Ceci indique qu'une fraction du DOC est hydrophobe et potentiellement volatilisable et pourrait être émise vers l'atmosphère sous forme de VOC (Volatile Organic Carbon).

Figure 32 : Volumes de mousses observées dans un ruisseau d'ordre 2 en milieu forestier pendant une période de crue (Mar. 2015).

Le bilan de masse de CH₄ indique très clairement que la nappe n'est pas la source majoritaire de CH₄ émis par le réseau fluvial. En effet, pour tous les ordres de ruisseaux, les apports de l'amont et de la nappe sont d'un ordre de grandeur inférieure à ce qui diffuse vers l'atmosphère à partir de la surface de l'eau. Ce bilan non équilibré indique donc que la majorité du CH₄ émis est produit dans le milieu aquatique, dans les sédiments sableux des rivières, qui sont généralement enrichis en matière organique au niveau des méandres ou des bras morts, où se déposent la litière de la végétation riparienne. Contrairement au CO₂, les concentrations en CH₄ augmentent de l'amont vers l'aval, ce qui confirme bien l'hypothèse d'une source principale dans le milieu aquatique et non pas dans le milieu terrestre.

Nos résultats permettent aussi d'établir un bilan de carbone à l'échelle du bassin versant en intégrant les surfaces terrestres et aquatiques (Fig. 33). Nous avons donc normalisé tous les flux hydrologiques de carbone moyens par la surface de bassin versant afin de les comparer aux flux des écosystèmes forestiers. Nous calculons trois composantes du flux d'exportation en t C km⁻² yr⁻¹ :

(1) le flux depuis les nappes (DOC, DIC et CH_4) et les sols (POC) vers le milieu aquatique ;

(2) le flux de dégazage des rivières vers l'atmosphère (CO₂ et CH₄) ;

(3) le flux de sortie à la station de jaugeage la plus en aval (POC, DOC, CH₄, et DIC).

Figure 33 : Bilan de carbone du bassin de la Leyre.

L'export de carbone total du bassin versant de la Leyre est estimé à 24,2700 t C an⁻¹ (DIC + DOC + CH₄), soit 14.7 t C km⁻² yr⁻¹, auquel s'ajoute 0.6 t C km⁻² yr⁻¹ de POC (on considère que le flux de POC est conservatif jusqu'à l'exutoire) (Fig. 33). Ainsi, l'export de carbone total du bassin versant de la Leyre est estimé à 15.3 t C km⁻² yr⁻¹, dont 70 % de DIC, 26 % de DOC, 4 % de POC et moins de 0.001 % de CH₄. (Fig. 33). En aval, ce flux se partage en un flux dégazage de CO₂ vers l'atmosphère de 9.5 t C km⁻² yr⁻¹ et un apport horizontal à la lagune d'Arcachon de 5.1 t C km⁻² yr⁻¹ (Fig. 33). A l'exutoire, le flux de carbone se partage entre 50% de DOC, 10 % de POC et 40 % de DIC (dont 7 % sous forme de CO₂ en excès par rapport à l'équilibre avec l'atmosphère et qui dégazera rapidement dans la lagune (Abril et al. 2000).

Ces exports sont cohérents mais légèrement différents avec ceux reportés pour les rivières tempérées globales, d'environ 60 % inorganique et 40 % organique par Meybeck (1993). La différence des contributions d'export de carbone entre Meybeck (1993) et notre étude provient de celles du DIC et du POC. En effet, dans notre étude le POC contribue à seulement 10 % de l'export total du fait du ruissellement de surface négligeable alors qu'il contribue à 19 % dans la compilation de Meybeck (1993). L'export de DIC contribue également à 40 % (au lieu de 60 % pour de Meybeck (1993)) car la lithologie du bassin de la Leyre est essentiellement silicatée.

A partir d'une compilation globale Alvarez-Cobelas et al. (2012) ont également reportés des valeurs similaires pour l'export de DOC pour des bassins versants drainant des sols podzolisés, variant de 2 t C km⁻² yr⁻¹ and 6 t C km⁻² yr⁻¹ (1er et 3eme quartile). A partir d'une compilation de 208 rivières tempérées en Grande-Bretagne (qui couvre la période 1975-2003) Worrall and Burt (2007) ont également reporté des valeurs similaires (6.6 t C km⁻² yr⁻¹) pour les exports de DOC. Dans le bassin versant de la Leyre l'export de DOC représente 80 % de l'export de TOC. Ceci est également cohérent avec les travaux de Alvarez-Cobelas et al. (2012) qui ont reporté que les exports de DOC représentent en moyenne 73±21 % des exports de TOC. Le dégazage de CO₂ dans le bassin de la Leyre est aussi en accord avec d'autres systèmes tempérés. En effet, Butman and Raymond (2011) ont reporté des flux verticaux de CO₂ de 12.4±3 t C km⁻² yr⁻¹ pour les rivières tempérées américaines. L'export de carbone total de 13.7 t C km⁻² yr⁻¹ est également cohérent avec d'autres systèmes tempérés. Worrall et al (2007) ont reporté des valeurs similaires pour une compilation de rivière tempérée (9.5-11.4 t C km⁻² yr⁻¹). Par contre l'export total de carbone du bassin de la Leyre

(Hope et al., 2001) ou des rivières très anthropisées en Belgique (38.2 t C km⁻² yr⁻¹) (Abril et al., 2000).

V.6. Conclusion

A l'échelle du bassin versant de la Leyre, 3 % de la NEE est exportée par le réseau hydrographique. Parmi ces 3 %, 60 % retournent directement à l'atmosphère par dégazage. Ainsi, dans le bassin de la Leyre une faible fraction de la NEE est exportée. Comme discuté précédemment (chapitre I) si l'on considère les estimations les plus hautes des différents flux dans le concept de l'active pipe, cela supposerait que la majorité de la NEE (entre 50 et 100%) soit exportée vers le réseau hydrologique. Des études locales comme celle-ci ou comme celle de (Kindler et al., 2011), indiquent au contraire que la fraction de le NEE exportée vers le réseau hydrographique est seulement de quelques pourcents. Deux hypothèses peuvent expliquer cette incohérence entre ces deux types d'approche : le dégazage de CO_2 par les fleuves et les lacs à l'échelle globale est largement surestimé et/ou le milieu terrestre n'est pas la principale source qui alimente le dégazage de CO_2 , qui pourrait être dû davantage aux zones humides inondables, comme cella a été démontré pour l'Amazone (Abril et al., 2014).

Conclusion générale et perspectives

Ce travail de thèse contribue à une meilleure définition du rôle des ruisseaux et des rivières dans le cycle global du carbone. De manière plus précise, il améliore les connaissances sur la proportion du pompage biologique de CO₂ atmosphérique d'un écosystème qui est exportée vers le réseau hydrographique, ainsi que le devenir de ce carbone en aval. Les milieux aquatiques continentaux ont été identifiés comme des vecteurs de carbone significatifs à l'échelle globale entre le milieu terrestre, l'atmosphère et l'océan. Lequel est généralement calculé comme la somme de trois termes :

- (1) le dégazage de CO₂ des lacs et rivières vers l'atmosphère ;
- (2) le piégeage de carbone dans les sédiments lacustres et estuariens ;
- (3) le flux à l'exutoire des bassins versants vers l'océan côtier.

Ce mode de calcul est affecté par de nombreuses incertitudes et ne permet pas de « fermer » le bilan de carbone des milieux aquatiques puisque le terme d'entrée est par définition la somme des termes de sortie. Les études quantifiant directement par des mesures sur le terrain, le flux sortant du milieu terrestre et entrant dans le milieu aquatique sont rares et difficiles à mettre en place.

Dans ce travail, ceci a été possible tout d'abord en choisissant comme site atelier le bassin versant de la Leyre, qui offre l'avantage d'être relativement homogène en termes de topographie, de lithologie, d'hydrologie et d'occupation du sol, et surtout, dans lequel la quasi-totalité de l'exportation de carbone a lieu par le drainage des eaux de nappes. Nous avons pu adopter une stratégie d'échantillonnage associant aux mesures d'échanges atmosphériques d'eau et de CO₂ par l'écosystème forestier, des mesures hydrologiques et un suivi mensuel des concentrations de toutes les formes du carbone depuis les nappes en amont jusqu'aux ruisseaux d'ordre croissant en aval.

Dans un premier temps, nous avons mis en relation les concentrations en DIC et DOC avec les flux hydriques et de CO₂ mesurés par la tour d'Eddy covariance. La libération de DOC est principalement contrôlée par l'hydrologie et est plus intense en hiver lorsque le niveau de la nappe atteint la superficie du sol enrichie en matière organique. Ainsi, 87% de l'export de DOC a lieu pendant les périodes de crue (i.e., high flow). Au contraire, la

recharge de la nappe a tendance à diluer les concentrations en DIC, qui augmentent plutôt en été, lors de période de déficit hydrique et de débit plus faible. 47% de l'export de DIC a lieu pendant les périodes d'étiages (i.e., base flow), et sur une année, les flux de DIC sont plus de deux fois supérieurs à ceux de DOC. Ces niveaux de concentrations dans la nappe forestière et les flux d'exportation de DIC et DOC sont d'abord gouvernés par les variations hydrologiques, qui affectent directement le temps de résidence des eaux de nappes en modifiant la hauteur de nappe et l'intensité du drainage, et indirectement l'activité physiologique de la végétation et des microorganismes du sol. La valeur maximale de pCO₂ dans la nappe est atteinte en fin d'été lorsque l'écosystème forestier sus-jacent bascule d'un métabolisme à majorité autotrophe à un métabolisme à majorité hétérotrophe. De plus, nous avons également mis en évidence des processus de dégradation hétérotrophe du DOC en DIC dans les eaux souterraines au printemps, période de début de décharge. La pCO₂ dans l'eau souterraine peut alors jusqu'à doubler en 1 mois. Cependant, des mesures concomitantes de pression partielle en CO₂ du sol, d'humidité du sol et de respiration du sol à l'aide de chambres statiques, nous auraient permis d'affiner davantage notre analyse.

En effet, nous n'avons pas pu mettre en relation la pression partielle en CO_2 de la nappe phréatique avec celles de l'air du sol et de la solution du sol. La question se pose en effet de l'équilibre de la p CO_2 entre ces trois phases, ainsi que les cinétiques d'équilibration. Disposer de données concomitantes de p CO_2 du sol nous aurait permis d'évaluer la saisonnalité de la respiration dans la zone insaturée du sol et de suivre les processus de dissolution du CO_2 du sol vers la nappe sous-jacente. D'autre part, des mesures de respiration du sol par des chambres statiques nous auraient permis d'évaluer comment le CO_2 est stocké dans le sol, et comment il s'en échappe vers l'atmosphère. De plus, nous savons peu de choses sur le rôle de paramètres hydrologiques (pression hydrostatique, humidité, intensité de la pluie) sur l'évasion du CO_2 du sol ou sur sa capture dans les horizons plus profonds du sol. Des mesures simultanées d'humidité du sol nous auraient permis d'en comprendre davantage.

Ensuite, ce travail de thèse s'est attelé à étudier le dégazage de CO₂ vers l'atmosphère depuis la surface des ruisseaux et rivières. Les valeurs des signatures isotopiques du DIC, très négatives dans les nappes et qui augmentent vers l'aval s'expliquent par trois processus :

(1) la respiration du sol occupée en majorité par des plantes en C3 comme source principale de DIC ;

169
(2) le dégazage de CO₂ dans les eaux superficielles qui génère une équilibration isotopique du DIC de l'amont à l'aval du bassin ;

(3) une contribution de l'altération chimique de carbonates à l'aval, qui se traduit aussi par une augmentation de l'alcalinité.

Un modèle isotopique combinant l'équilibration du DIC à l'interface air-eau et le mélange de DIC provenant du sol et des roches carbonatées permet d'expliquer quantitativement l'évolution spatiale des données de DIC et de δ^{13} C-DIC. Le modèle isotopique calcule aussi la quantité de CO₂ dégazée depuis l'amont jusqu'à l'aval du bassin. Il permet aussi de quantifier de manière indépendante le coefficient d'échange gazeux pour chaque ordre de ruisseau en s'affranchissant des difficultés de mesure de ce paramètre sur le terrain. Nous observons que dans le bassin de la Leyre, les plus petits ruisseaux (ordres 1 et 2) se comportent comme des points chauds de dégazage de CO₂, puisqu'ils contribuent à 75 % du dégazage total du réseau hydrographique pour une superficie de seulement 21 % du miroir d'eau. Il serait intéressant dans le futur de tenter d'appliquer notre modèle de dégazage dans d'autres bassins versants avec des climatologies, lithologies et occupation des sols différentes. Si l'on parvient comme ici à estimer les sources de DIC provenant des plantes et de l'altération, et si la production primaire dans le milieu aquatique est faible, le reste du signal isotopique du DIC peut être interprété quantitativement en terme de dégazage de CO₂. On pourrait aussi envisager d'utiliser ces principes pour estimer le dégazage de CO₂ des ruisseaux à plus large échelle à partir des bases de données déjà disponibles ou en transposant notre stratégie d'échantillonnage (prélèvements de nappes et de ruisseaux d'ordres croissants avec des occupations des sols variables) sur ces sites.

Dans le cadre de ce travail de thèse, nous n'avons malheureusement pas eu la possibilité d'acquérir des mesures de métabolisme dans le milieu aquatique. De telles données auraient permis de tester davantage l'approximation qui consiste à considérer que la respiration dans l'eau et les sédiments fluviatiles est négligeable comparée aux apports de la nappe dans le bilan de CO₂ dans les eaux des affluents de la Leyre. La photosynthèse aquatique n'était quant à elle pas significative, hormis dans les ruisseaux agricoles fortement productifs en été. On peut considérer cependant que dans une colonne d'eau de moins de 10 cm, la respiration hétérotrophe est une source faible de CO₂ par rapport au CO₂ dissous issu du flux de la nappe. Par contre plus à l'aval, dans la petite et la grande Leyre où les profondeurs peuvent atteindre plusieurs mètres, la respiration dans les eaux et les sédiments

est probablement significative. Il est cependant très probable que cette respiration produirait du DIC avec une signature isotopique similaire à celle provenant des eaux de nappes. Ceci justifierait la bonne cohérence entre le signal isotopique du DIC mesuré dans le bassin de la Leyre et le modèle théorique de dégazage, du moins dans les ordres 1 et 2 où les roches carbonatées n'affleurent pas. Il aurait tout de même été intéressant de connaître le métabolisme des eaux et sédiments, et notamment son évolution spatiale (ordres croissants) et temporelle (cycle hydrologique). Des mesures plus continues (diurnes et saisonnières) de la pCO₂ dans les eaux auraient aussi pu être réalisées pour mieux comprendre les fonctionnements des métabolismes du sol et du milieu aquatique.

Si dans le bassin de la Leyre, la forêt prédomine en tant que source de C pour le milieu aquatique, notre analyse comparative entre sites forestiers et agricole révèle des contrastes forts dans la composition chimique des eaux en relation avec l'occupation du sol et le régime hydrologique. Dans des sols perméables avec une faible rétention des minéraux comme ceux du bassin de la Leyre les intrants utilisés en agriculture peuvent rejoindre facilement le réseau hydrologique superficiel. Ces intrants conduisent à une eutrophisation des ruisseaux, où se développe pendant l'été une végétation semi-aquatique de type zone humide. Ces fossés végétalisés sont enrichis en DOC, CH₄ et POC en été, même s'il est probable qu'ils modifient peu le bilan de carbone dans l'ensemble du bassin. Si l'export latéral de CH₄ par ces fossés est faible car les débits sont faibles, il aurait été intéressant d'y mesurer les flux de CH₄ vers l'atmosphère (diffusion et ébullition) avec des chambres. En effet, les fortes concentrations en CH₄ dans ces eaux de fossés relativement stagnantes indiquent qu'ils pourraient être des points chauds d'émission de méthane. Les pratiques agricoles ont également une influence sur la composition chimique des eaux de nappes phréatiques superficielles. En effet, les récoltes et les labours ont tendance à rendre les sols agricoles moins organiques, induisant une plus faible respiration du sol. Ainsi, le sol et la nappe en milieu agricole auront tendance à avoir des concentrations en CO₂ plus faibles et des saturations en O₂ plus fortes par rapport au milieu forestier. L'oxygénation des sols agricoles rend alors impossible la production de méthane, qui est localisée en aval dans les fossés.

Dans ce travail, nous n'avons pas eu non plus la possibilité d'établir un bilan hydrologique et de carbone aussi détaillé en milieu agricole qu'en milieu forestier.

L'instrumentation d'une parcelle agricole avec un système eddy covariance, un piézomètre, des jaugeages des fossés, et des données de récolte et de volumes d'irrigation serait nécessaire pour affiner nos résultats en zone agricole. Une étude plus détaillée des parcelles agricoles permettrait de quantifier l'influence des pratiques agricoles sur les exports de carbone.

Malgré ces incertitudes qui subsistent et justifient de nouvelles recherches sur le sujet, l'essentiel des objectifs de cette thèse a été atteint. Nous établissons un bilan détaillé de flux de carbone dans le bassin de la Leyre, depuis les nappes de la forêt des landes de Gascogne jusqu'à l'entrée du bassin d'Arcachon. Les exports de carbone organique et inorganique dissous au travers du drainage des eaux de nappes phréatiques ne représentent qu'une infime partie (3%) de l'absorption nette de CO₂ par l'écosystème forestier. A l'aide de notre bilan hydrologique et des concentrations en carbone dans les eaux de nappes et de ruisseaux d'ordres croissants, nous avons pu déterminer le bilan de masse de toutes les formes de carbone ainsi que leur flux vers la lagune d'Arcachon ou l'atmosphère. Certains bilans sont bien équilibrés et robustes, comme celui du CO₂ et du DIC qui représente 70% du flux total du C sortant de la nappe, indiquant que nous avons contraints toutes les sources de manière satisfaisante. D'autres comme ceux du CH4 ou de la TA ne sont pas totalement équilibrés, mais ils contribuent moins au bilan global (max. 4% pour le POC). Notre stratégie d'échantillonnage a été efficace pour le CO₂, le DIC et le DOC mais pas forcément pour le POC, le CH₄ et la TA. Nous calculons un flux annuel de carbone du milieu forestier vers le réseau hydrographique de 15.3 t C.km⁻² an⁻¹. Ce flux se partage en 70% de DIC, 26 % de DOC, 4 % de POC et moins de 0.001% de CH₄. 60 % de ce flux est dégazé des ruisseaux et rivières vers l'atmosphère sous forme de CO₂ et 40 % atteint la zone côtière sous forme de DIC, DOC et POC.

Bibliographie

Bibliographie

Bibliographie

A, B, C

- Abril, G., Bouillon, S., Darchambeau, F., Teodoru, C.R., Marwick, T.R., Tamooh, F., Ochieng Omengo, F., Geeraert, N., Deirmendjian, L., Polsenaere, P., Borges, A.V., 2015. Technical Note: Large overestimation of pCO₂ calculated from pH and alkalinity in acidic, organic-rich freshwaters. *Biogeosciences* **12**, 67–78. doi:10.5194/bg-12-67-2015.
- Abril, G., Etcheber, H., Borges, A.V., Frankignoulle, M., 2000. Excess atmospheric carbon dioxide transported by rivers into the Scheldt estuary. *Comptes Rendus de l'Academie des Sciences-Series IIA-Earth and Planetary Science* **330**, 761–768.
- Abril, G., Martinez, J.-M., Artigas, L.F., Moreira-Turcq, P., Benedetti, M.F., Vidal, L., Meziane, T., Kim, J.-H., Bernardes, M.C., Savoye, N., Deborde, J., Souza, E.L., Albéric, P., Landim de Souza, M.F., Roland, F., 2014. Amazon River carbon dioxide outgassing fuelled by wetlands. *Nature* **505**, 395–398. doi:10.1038/nature12797
- Alekin, O.A., Brazhnikova, L.V., 1968. Dissolved matter discharge and mechanical and chemical erosion. *General Assembly of Bern* 35–41.
- Alin, S.R., de Fátima FL Rasera, M., Salimon, C.I., Richey, J.E., Holtgrieve, G.W., Krusche, A.V., Snidvongs, A., 2011. Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. *Journal of Geophysical Research: Biogeosciences* **116**.
- Alvarez-Cobelas, M., Angeler, D.G., Sánchez-Carrillo, S., Almendros, G., 2012. A worldwide view of organic carbon export from catchments. *Biogeochemistry* **107**, 275–293.
- Alvinerie, J., 1969. Contribution sédimentologique à la connaissance du Miocene Aquitain: interprétation stratigraphique et paléogéographique. *Thèse Université Bordeaux III*.
- Amiotte-Suchet, P.A., Probst, J.-L., 1995. A global model for present-day atmospheric/soil CO₂ consumption by chemical erosion of continental rocks (GEM-CO2). *Tellus B* **47**, 273–280.
- Amiotte-Suchet, P.A., Probst, J.-L., 1993. Modelling of atmospheric CO₂ consumption by chemical weathering of rocks: application to the Garonne, Congo and Amazon basins. *Chemical Geology* **107**, 205–210.
- Amiotte-Suchet, P., Probst, J.-L., Ludwig, W., 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO₂ uptake by continental weathering and alkalinity river transport to the oceans. *Global Biogeochemical Cycles* **17**.
- Amundson, R., Stern, L., Baisden, T., Wang, Y., 1998. The isotopic composition of soil and soil-respired CO₂. *Geoderma* **82**, 83–114.
- Aravena, R., Wassenaar, L.I., Spiker, E.C., 2004. Chemical and carbon isotopic composition of dissolved organic carbon in a regional confined methanogenic aquifer. *Isotopes in environmental and health studies* **40**, 103–114.
- Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., Kowalski, A.S., Martin, P.H., Berbigier, P., Bernhofer, C., 1999. Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. *Advances in ecological research* **30**, 113–175.
- Aufdenkampe, A.K., Mayorga, E., Raymond, P.A., Melack, J.M., Doney, S.C., Alin, S.R., Aalto, R.E., Yoo, K., 2011. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. *Frontiers in Ecology and the Environment* 9, 53–60. doi:10.1890/100014.
- Augusto, L., Badeau, V., Arrouays, D., Trichet, P., Flot, J.L., Jolivet, C., Merzeau, D., 2006. Caractérisation physico-chimique des sols à l'échelle d'une région naturelle à partir

d'une compilation de données. Exemple des sols du massif forestier landais. *Etude et gestion des sols* **13**, 7–22.

- Augusto, L., Bakker, M.R., Morel, C., Meredieu, C., Trichet, P., Badeau, V., Arrouays, D., Plassard, C., Achat, D.L., Gallet-Budynek, A., Merzeau, D., Canteloup, D., Najar, M., Ranger, J., 2010. Is "grey literature" a reliable source of data to characterize soils at the scale of a region? A case study in a maritime pine forest in southwestern France. *European Journal of Soil Science* **61**, 807–822. doi:10.1111/j.1365-2389.2010.01286.x
- Barnes, R.T., Raymond, P.A., 2009. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. *Chemical Geology* **266**, 318–327.
- Batjes, N.H., 1996. Total carbon and nitrogen in the soils of the world. *European journal of soil science* **47**, 151–163.
- Battin, T.J., Kaplan, L.A., Findlay, S., Hopkinson, C.S., Marti, E., Packman, A.I., Newbold, J.D., Sabater, F., 2008. Biophysical controls on organic carbon fluxes in fluvial networks. *Nature Geosciences* **2**, 595–595. doi:10.1038/ngeo602.
- Battin, T.J., Luyssaert, S., Kaplan, L.A., Aufdenkampe, A.K., Richter, A., Tranvik, L.J., 2009. The boundless carbon cycle. *Nature Geoscience* **2**, 598–600.
- Baumgartner, A., Reichel, E., 1975. The world water balance: mean annual global, continental and maritime precipitation and run-off. *Elsevier. New York*.
- Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M.A., Baldocchi, D., Bonan, G.B., 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. *Science* **329**, 834–838.
- Billett, M.F., Moore, T.R., 2008. Supersaturation and evasion of CO₂ and CH₄ in surface waters at Mer Bleue peatland, Canada. *Hydrological Processes* **22**, 2044–2054.
- Billett, M.F., Palmer, S.M., Hope, D., Deacon, C., Storeton-West, R., Hargreaves, K.J., Flechard, C., Fowler, D., 2004. Linking land-atmosphere-stream carbon fluxes in a lowland peatland system. *Global Biogeochemical Cycles* 18.
- Borges, A., Delille, B., Schiettecatte, L.-S., Gazeau, F., Abril, G., Frankignoulle, M., 2004. Gas transfer velocities of CO₂ in three European estuaries (Randers Fjord, Scheldt and Thames). *Limnology & Oceanography* **49**, 1630–1641.
- Borges, A.V., 2005. Do we have enough pieces of the jigsaw to integrate CO₂ fluxes in the coastal ocean? *Estuaries* **28**, 3–27.
- Borges, A.V., Darchambeau, F., Teodoru, C.R., Marwick, T.R., Tamooh, F., Geeraert, N., Omengo, F.O., Guérin, F., Lambert, T., Morana, C., Okuku, E., Bouillon, S., 2015. Globally significant greenhouse-gas emissions from African inland waters. *Nature Geoscience* 8, 637–642. doi:10.1038/ngeo2486.
- Bosch, J.M., Hewlett, J.D., 1982. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. *Journal of hydrology* **55**, 3–23.
- Bridgham, S.D., Megonigal, J.P., Keller, J.K., Bliss, N.B., Trettin, C., 2006. The carbon balance of North American wetlands. *Wetlands* **26**, 889–916.
- Broecker, W.S., Peng, T.-H., 1984. Gas exchange measurements in natural systems. *Gas Transfer at Water Surfaces. Springer*, pp. 479–493.
- Brunet, F., Gaiero, D., Probst, J.-L., Depetris, P.J., Gauthier Lafaye, F., Stille, P., 2005. δ¹³C tracing of dissolved inorganic carbon sources in Patagonian rivers (Argentina). *Hydrological Processes* **19**, 3321–3344.
- Butman, D., Raymond, P.A., 2011. Significant efflux of carbon dioxide from streams and rivers in the United States. *Nature Geoscience* **4**, 839–842. doi:10.1038/ngeo1294.
- Cai, W.-J., Guo, X., Chen, C.-T.A., Dai, M., Zhang, L., Zhai, W., Lohrenz, S.E., Yin, K., Harrison, P.J., Wang, Y., 2008. A comparative overview of weathering intensity and HCO₃⁻ flux in the world's major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers. *Continental Shelf Research* **28**, 1538–1549.

- Cai, W.-J., Wang, Y., Krest, J., Moore, W.S., 2003. The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to the coastal ocean. *Geochimica & Cosmochimica Acta* **67**, 631–639.
- Camino-Serrano, M., Gielen, B., Luyssaert, S., Ciais, P., Vicca, S., Guenet, B., Vos, B.D., Cools, N., Ahrens, B., Altaf Arain, M., 2014. Linking variability in soil solution dissolved organic carbon to climate, soil type, and vegetation type. *Global Biogeochemical Cycles* **28**, 497–509.
- Cerling, T.E., Solomon, D.K., Quade, J., Bowman, J.R., 1991. On the isotopic composition of carbon in soil carbon dioxide. *Geochimica et Cosmochimica Acta* **55**, 3403–3405.
- Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myeni, R., Piao, S., Thornton, P., 2013. Carbon and other biogeochemical cycles. *Climate Change 2013*: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA., pp. 465–570.
- Ciais, P., Wattenbach, M., Vuichard, N., Smith, P., Piao, S.L., Don, A., Luyssaert, S., Janssens, I.A., Bondeau, A., Dechow, R., 2010. The European carbon balance. Part 2: croplands. *Global Change Biology* **16**, 1409–1428.
- Clark, I., Fritz, P., 1997. Environmental isotopes in hydrology. *Lewis Publishers, Boca Raton, Florida.*
- Colbourn, G., Ridgwell, A., Lenton, T.M., 2015. The time scale of the silicate weathering negative feedback on atmospheric CO₂. *Global Biogeochemical Cycles* **29**, 583–596.
- Cole, J.J., Caraco, N.F., 2001. Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. *Marine Freshwater Ressources* **52**, 101–110.
- Cole, J.J., Caraco, N.F., Kling, G.W., Kratz, T.K., 1994. Carbon dioxide supersaturation in the surface waters of lakes. *Science-AAAS-Weekly Paper Edition* **265**, 1568–1569.
- Cole, J.J., Prairie, Y.T., Caraco, N.F., McDowell, W.H., Tranvik, L.J., Striegl, R.G., Duarte, C.M., Kortelainen, P., Downing, J.A., Middelburg, J.J., Melack, J., 2007. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. *Ecosystems* 10, 171–184. doi:10.1007/s10021-006-9013-8.
- Corbier, P., Karnay, G., Bourgine, B., Saltel, M., 2010. Gestion des eaux souterraines en région Aquitaine. Reconnaissance des potentialités aquifères du Mio-Plio-Quaternaire des Landes de Gascogne et du Médoc en relation avec les SAGE. Rapport final, BRGM RP 57813.
- Costa, A., Pereira, H., Oliveira, A., 2003. Variability of radial growth in cork oak adult trees under cork production. *Forest ecology and management* **175**, 239–246.
- Craft, J.A., Stanford, J.A., Pusch, M., 2002. Microbial respiration within a floodplain aquifer of a large gravel-bed river. *Freshwater Biology* **47**, 251–261.
- Craig, H., 1954. Carbon 13 in plants and the relationships between carbon 13 and carbon 14 variations in nature. *The journal of geology* 115–149.
- Craig, H., 1953. The geochemistry of the stable carbon isotopes. *Geochimica* & *Cosmochimica Acta* **3**, 53–92.
- Cronk, J.K., Fennessy, M.S., 2016. Wetland plants: biology and ecology. CRC press.
- Cushing, C.E., Cummins, K.W., Minshall, G.W., 2006. River and stream ecosystems of the world. *University of California Press.*

D, E, F

Das, A., Krishnaswami, S., Bhattacharya, S.K., 2005. Carbon isotope ratio of dissolved inorganic carbon (DIC) in rivers draining the Deccan Traps, India: sources of DIC and their magnitudes. *Earth and Planetary Science Letters* **236**, 419–429.

- Davidson, E.A., Figueiredo, R.O., Markewitz, D., Aufdenkampe, A.K., 2010. Dissolved CO₂ in small catchment streams of eastern Amazonia: A minor pathway of terrestrial carbon loss. *Journal of Geophysical Research: Biogeosciences* **115**.
- Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. *Nature* **440**, 165–173.
- Dawson, J.J., Smith, P., 2007. Carbon losses from soil and its consequences for land-use management. *Science of the total environment* **382**, 165–190.
- Dawson, J.J.C., Billett, M.F., Neal, C., Hill, S., 2002. A comparison of particulate, dissolved and gaseous carbon in two contrasting upland streams in the UK. *Journal of Hydrology* **257**, 226–246.
- Dean, W.E., Gorham, E., 1998. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. *Geology* **26**, 535–538.
- Degens, E., Kempe, S., Richey, J.E., 1991. Chapter 15, summary Biogeochemistry of major world rivers. Degend ET, Kempe S, Richey JE, Eds. Biogeochemestry of major world river. Scope 42, New York: Wiley 323–344.
- Deines, P., 1980. The isotopic composition of reduced organic carbon. *Handbook of environmental isotope geochemistry* 329–406.
- Devol, A.H., Quay, P.D., Richey, J.E., Martinelli, L.A., 1987. The role of gas exchange in the inorganic carbon, oxygen, and ²²²Rn budgets of the Amazon River. *Limnology and Oceanography* **32**, 235–248.
- Dickson, A.G., 1981. An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. *Deep Sea Research Part A. Oceanographic Research Papers* **28**, 609–623.
- Dickson, A.G., Sabine, C.L., Christian, J.R., 2007. *Guide to best practices for ocean CO*₂ *measurements*.
- Dinsmore, K.J., Billett, M.F., Skiba, U.M., Rees, R.M., Drewer, J., Helfter, C., 2010. Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment. *Global Change Biology* **16**, 2750–2762.
- Doctor, D.H., Kendall, C., Sebestyen, S.D., Shanley, J.B., Ohte, N., Boyer, E.W., 2008. Carbon isotope fractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from a headwater stream. *Hydrological Processes* **22**, 2410–2423.
- Dodds, P.S., Rothman, D.H., 2000. Geometry of river networks. I. Scaling, fluctuations, and deviations. *Physical Review E* 63, 16115.
- Donisa, C., Mocanu, R., Steinnes, E., 2003. Distribution of some major and minor elements between fulvic and humic acid fractions in natural soils. *Geoderma* **111**, 75–84.
- Downing, J.A., Cole, J.J., Middelburg, J.J., Striegl, R.G., Duarte, C.M., Kortelainen, P., Prairie, Y.T., Laube, K.A., 2008. Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. *Global Biogeochemical Cycles* **22**.
- Duarte, C.M., Prairie, Y.T., 2005. Prevalence of heterotrophy and atmospheric CO₂ emissions from aquatic ecosystems. *Ecosystems* **8**, 862–870.
- Duarte, C.M., Prairie, Y.T., Montes, C., Cole, J.J., Striegl, R., Melack, J., Downing, J.A., 2008. CO₂ emissions from saline lakes: A global estimate of a surprisingly large flux. *Journal of Geophysical Research: Biogeosciences* **113**.
- Dubois, K.D., Lee, D., Veizer, J., 2010. Isotopic constraints on alkalinity, dissolved organic carbon, and atmospheric carbon dioxide fluxes in the Mississippi River. *Journal of Geophysical Research: Biogeosciences* **115**.
- Dubreuilh, J., Capdeville, J.P., Farjanel, G., Karnay, G., Platel, J.P., Simon-Coinçon, R., 1995. Dynamique d'un comblement continental néogène et quaternaire: l'exemple du bassin d'Aquitaine. *Géologie de la France* **4**, 3–26.
- Einsele, G., Yan, J., Hinderer, M., 2001. Atmospheric carbon burial in modern lake basins and its significance for the global carbon budget. *Global and Planetary Change* **30**, 167–195.
- Ekblad, A., Nyberg, G., Högberg, P., 2002. ¹³C-discrimination during microbial respiration of added C₃, C₄ and ¹³C-labelled sugars to a C₃-forest soil. *Oecologia* **131**, 245–249.

- Elsinger, R.J., Moore, W.S., 1983. Gas exchange in the Pee Dee River based on ²²²Rn evasion. *Geophysical Research Letters* **10**, 443–446.
- Emrich, K., Ehhalt, D.H., Vogel, J.C., 1970. Carbon isotope fractionation during the precipitation of calcium carbonate. *Earth and Planetary Science Letters* **8**, 363–371.
- Etcheber, H., Taillez, A., Abril, G., Garnier, J., Servais, P., Moatar, F., Commarieu, M.-V., 2007. Particulate organic carbon in the estuarine turbidity maxima of the Gironde, Loire and Seine estuaries: origin and lability. *Hydrobiologia* **588**, 245–259.
- Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., 1989. Carbon isotope discrimination and photosynthesis. *Annual review of plant biology* **40**, 503–537.
- Fekete, B.M., Vörösmarty, C.J., Grabs, W., 2002. High-resolution fields of global runoff combining observed river discharge and simulated water balances. *Global Biogeochemical Cycles* **16**.
- Feng, J.-X., Kempe, S., 1987. The concentration and transport of major ions in the lower Huang He [J]. Mitt. *Geol. Palaont. Inst. Univ. Hamburg* **64**, 161–170.
- Fischer, H., Kloep, F., Wilzcek, S., Pusch, M.T., 2005. A river's liver-microbial processes within the hyporheic zone of a large lowland river. *Biogeochemistry* **76**, 349–371.
- Foken, T., Wichura, B., 1996. Tools for quality assessment of surface-based flux measurements. *Agricultural and forest meteorology* **78**, 83–105.
- Frankignoulle, M., Abril, G., Borges, A., Bourge, I., Canon, C., Delille, B., Libert, E., Théate, J.-M., 1998. Carbon dioxide emission from European estuaries. *Science* **282**, 434–436.
- Frankignoulle, M., Borges, A.V., 2001. Direct and Indirect pCO₂ Measurements in a Wide Range of pCO₂ and Salinity Values (The Scheldt Estuary). *Aquatic Geochemistry* **7**, 267–273. doi:10.1023/A:1015251010481.
- Frankignoulle, M., Bourge, I., Wollast, R., 1996. Atmospheric CO₂ fluxes in a highly polluted estuary (the Scheldt). Limnology and Oceanography **41**, 365-369.
- Fry, B., Sherr, E.B., 1989. δ¹³C measurements as indicators of carbon flow in marine and freshwater ecosystems. *Stable Isotopes in Ecological Research* **68**, 196–229.

G, H; I

- Gillikin, D.P., Bouillon, S., 2007. Determination of δ^{18} O of water and δ^{13} C of dissolved inorganic carbon using a simple modification of an elemental analyzer-isotope ratio mass spectrometer: an evaluation. *Rapid Communications in Mass Spectrometry* **21**, 1475–1478.
- Goudie, A.S., Viles, H.A., 2012. Weathering and the global carbon cycle: Geomorphological perspectives. *Earth Science Reviews* **113**, 59–71.
- Govind, A., Bonnefond, J.-M., Kumari, J., Moisy, C., Loustau, D., Wigneron, J.-P., 2012. Modeling the ecohydrological processes in the Landes de Gascogne, SW France. *Plant Growth Modeling, Simulation, Visualization and Applications (PMA), 2012 IEEE Fourth International Symposium,* 133–140.
- Gran, G., 1952. Determination of the equivalence point in potentiometric titrations of seawater with hydrochloric acid. *Oceanologica Acta* **5**, 209–218.
- Gregorich, E.G., Monreal, C.M., Carter, M.R., Angers, D.A., Ellert, B., 1994. Towards a minimum data set to assess soil organic matter quality in agricultural soils. *Canadian journal of soil science* **74**, 367–385.
- Gruber, N., Friedlingstein, P., Field, C.B., Valentini, R., Heimann, M., Richey, J.E., Romero-Lankao, P., Schulze, E.-D., Chen, C.T.A., Raupach, M., 2004. The global carbon cycle: integrating humans, climate and natural world. *The Vulnerability of the Carbon Cycle in the 21st Century: An Assessment of Carbon-Climate-Human Interactions SCOPE* **62**, 45–76.

- Guillot, M., Dayau, S., Spannraft, K., Guyon, D., Wigneron, J.-P., Loustau, D., 2010. Study of two forested watersheds in Les Landes region: monitoring of carbon stock and water cycle over the last decades. *LANDMOD2010-Montpellier*.
- Hartmann, D.L., Klein Tank, A.M.G., Rusicucci, M., Alexander, L.V., Broenniman, B., Charabi, Y., Dentener, F.J., Dlugokencky, E.J., Easterling, D.R., Kaplan, A., Soden, B., Thorme, P., Wild, M., Zhai, P., 2013. Observations: atmosphere and surface: *Climate Change 2013*: The physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Interngovernmental Panel on Climate change [Stocker, T.F., Qin, G-K. Plattner, M. Tignoe, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M Midgley (eds.)] Cambridge university Press, Cambridge, United Kingdom and New York, NY, USA. 159–254.
- Hays, D., 1981. La Haute Lande: vie rurale et aménagement. Sous la direction de Pierre Barrière. *Thèse de doctorat Université de Bordeaux III.*
- Hellweger, F., Maidment, D., 1997. AGREE-DEM surface reconditioning system. University of Texas, Austin.
- Hinga, K.R., Arthur, M.A., Pilson, M.E., Whitaker, D., 1994. Carbon isotope fractionation by marine phytoplankton in culture: the effects of CO₂ concentration, pH, temperature, and species. *Global Biogeochemical Cycles* **8**, 91–102.
- Holeman, J.N., 1968. The sediment yield of major rivers of the world. *Water Resources Research* **4**, 737–747.
- Hope, D., Billett, M.F., Cresser, M.S., 1994. A review of the export of carbon in river water: fluxes and processes. Environmental pollution **84**, 301–324.
- Hope, D., Palmer, S.M., Billett, M.F., Dawson, J.J., 2001. Carbon dioxide and methane evasion from a temperate peatland stream. *Limnology and Oceanography* **46**, 847–857.
- Hotchkiss, E.R., Hall Jr, R.O., Sponseller, R.A., Butman, D., Klaminder, J., Laudon, H., Rosvall, M., Karlsson, J., 2015. Sources of and processes controlling CO₂ emissions change with the size of streams and rivers. *Nature Geoscience* **8**, 696–699.

J, K, L

- Jacobs, C.M., Kohsiek, W.I.M., Oost, W.A., 1999. Air–sea fluxes and transfer velocity of CO₂ over the North Sea: results from ASGAMAGE. *Tellus B* **51**, 629–641.
- Jähne, B., Heinz, G., Dietrich, W., 1987. Measurement of the diffusion coefficients of sparingly soluble gases in water. *Journal of Geophysical Research: Oceans* **92**, 10767–10776.
- Johnson, M.S., Lehmann, J., Riha, S.J., Krusche, A.V., Richey, J.E., Ometto, J.P.H., Couto, E.G., 2008. CO₂ efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. *Geophysical Research Letters* **35**.
- Jolivet, C., Augusto, L., Trichet, P., Arrouays, D., 2007. Forest soils in the Gascony Landes Region: formation, history, properties and spatial varaibility.
- Jupin, H., 1996. Le cycle du carbone. *Hachette*.
- Kaimal, J.C., Finnigan, J.J., 1994. Atmospheric boundary layer flows: their structure and measurement. *Oxford University Press.*
- Keeling, C.D., Carter, A.F., Mook, W.G., 1984. Seasonal, latitudinal, and secular variations in the abundance and isotopic ratios of atmospheric CO₂: 2. Results from oceanographic cruises in the tropical Pacific Ocean. *Journal of Geophysical Research: Atmospheres (1984–2012)* **89**, 4615–4628.
- Kindler, R., Siemens, J.A.N., Kaiser, K., Walmsley, D.C., Bernhofer, C., Buchmann, N., Cellier, P., Eugster, W., Gleixner, G., GRÜNWALD, T., 2011. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. *Global Change Biology* **17**, 1167–1185.

- Kirkels, F., Cammeraat, L.H., Kuhn, N.J., 2014. The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes—a review of different concepts. *Geomorphology* **226**, 94–105.
- Knorr, W., Prentice, I.C., House, J.I., Holland, E.A., 2005. Long-term sensitivity of soil carbon turnover to warming. *Nature* **433**, 298–301.
- Kokic, J., Wallin, M.B., Chmiel, H.E., Denfeld, B.A., Sobek, S., 2015. Carbon dioxide evasion from headwater systems strongly contributes to the total export of carbon from a small boreal lake catchment. *Journal of Geophysical Research: Biogeosciences* **120**, 2014JG002706. doi:10.1002/2014JG002706.
- Koprivnjak, J.-F., Moore, T.R., 1992. Sources, sinks, and fluxes of dissolved organic carbon in subarctic fen catchments. *Arctic and Alpine Research* 204–210.
- Kortelainen, P., Pajunen, H., Rantakari, M., Saarnisto, M., 2004. A large carbon pool and small sink in boreal Holocene lake sediments. *Global Change Biology* **10**, 1648–1653.
- Kowalski, S., Sartore, M., Burlett, R., Berbigier, P., Loustau, D., 2003. The annual carbon budget of a French pine forest (Pinus pinaster) following harvest. *Global Change Biology* **9**, 1051–1065.
- Kozlowski, T.T., 2002. Physiological-ecological impacts of flooding on riparian forest ecosystems. *Wetlands* **22**, 550–561.
- Kozlowski, T.T., 1997. Responses of woody plants to flooding and salinity. *Tree physiology* **17**, 13-21.
- Kump, L.R., Kasting, J.F., Crane, R.G., 1999. The earth system. Prentice Hall.
- Lal, R., 2004. Agricultural activities and the global carbon cycle. Nutrient Cycling in *Agroecosystems* **70**, 103–116.
- Lauerwald, R., Hartmann, J., Moosdorf, N., Kempe, S., Raymond, P.A., 2013. What controls the spatial patterns of the riverine carbonate system?—A case study for North America. *Chemical geology* **337**, 114–127.
- Legigan, P., 1979. L'élaboration de la formation du sable des Landes, dépôt résiduel de l'environnement sédimentaire pliocène-pléïstocène centre aquitain. *Institut de géologie du Bassin d'Aquitaine*.
- Legigan, P., 1974. Signification de quelques sols fossiles à l'égard de la mise en place du sable des Landes. Bull. *Institut de géologie du bassin d'Aquitaine* **16**, 137–144.
- Lehner, B., Verdin, K., Jarvis, A., 2008. New Global Hydrography Derived From Spaceborne Elevation Data. Eos, Transactions *American Geophysical Union* **89**, 93. doi:10.1029/2008EO100001.
- Leopold, L.B., Maddock Jr, T., 1953. The hydraulic geometry of stream channels and some physiographic implications.
- Leopold, L.B., Wolman, M.G., Miller, J.P., 1964. Fluvial processes in geomorphology. Courier Corporation.
- Livingstone, D.A., 1963. Chemical composition of rivers and lakes. US Government Printing Office.
- Lloyd, J., Taylor, J.A., 1994. On the temperature dependence of soil respiration. *Functional ecology* **8**, 315–323.
- Loustau, D., Bosc, A., Colin, A., Ogée, J., Davi, H., François, C., Dufrêne, E., Déqué, M., Cloppet, E., Arrouays, D., 2005. Modeling climate change effects on the potential production of French plains forests at the sub-regional level. *Tree Physiology* **25**, 813–823.
- Ludwig, W., Amiotte-Suchet, P., Munhoven, G., Probst, J.-L., 1998. Atmospheric CO₂ consumption by continental erosion: present-day controls and implications for the last glacial maximum. *Global and Planetary Change* **16**, 107–120.
- Ludwig, W., Probst, J.-L., Kempe, S., 1996. Predicting the oceanic input of organic carbon by continental erosion. *Global Biogeochemical Cycles* **10**, 23–41.
- Luyssaert, S., Ciais, P., Piao, S.L., SCHULZE, E.-D., Jung, M., Zaehle, S., Schelhaas, M.J., Reichstein, M., Churkina, G., Papale, D., 2010. The European carbon balance. Part 3: forests. *Global Change Biology* **16**, 1429–1450.

Bibliographie

M, N, O

- MacIntyre, S., Wanninkhof, R., Chanton, J.P., 1995. Trace gas exchange across the airwater interface in freshwater and coastal marine environments. *Biogenic trace gases: Measuring emissions from soil and water*.
- Martin, J.-M., Meybeck, M., 1979. Elemental mass-balance of material carried by major world rivers. *Marine chemistry* **7**, 173–206.
- Meybeck, M., 1993. Riverine transport of atmospheric carbon: sources, global typology and budget. *Water, Air, and Soil Pollution* **70**, 443–463.
- Meybeck, M., 1988. How to establish and use world budgets of riverine materials, in: *Physical and Chemical Weathering in Geochemical Cycles* **251**, 247–272.
- Meybeck, M., 1987. Global chemical weathering of surficial rocks estimated from river dissolved loads. *American Journal of Science* **287**, 401–428.
- Meybeck, M., 1982. Carbon, nitrogen, and phosphorus transport by world rivers. *American Journal of Science* **282**, 401–450.
- Meybeck, M., 1981. River transport of organic carbon to the ocean. NAS-NRC Carbon Dioxide Effects Res. and Assessment Program: Flux of Org. *Carbon by Rivers to the Oceans* 219-269(SEE N 81-30674 21-45).
- Meybeck, M., Dürr, H.H., Vörösmarty, C.J., 2006. Global coastal segmentation and its river catchment contributors: A new look at land-ocean linkage. *Global Biogeochemical Cycles* **20**.
- Michalzik, B., Kalbitz, K., Park, J.-H., Solinger, S., Matzner, E., 2001. Fluxes and concentrations of dissolved organic carbon and nitrogen–a synthesis for temperate forests. *Biogeochemistry* **52**, 173–205.
- Miller, G.R., Chen, X., Rubin, Y., Ma, S., Baldocchi, D.D., 2010. Groundwater uptake by woody vegetation in a semiarid oak savanna. *Water Resources Research* **46**.
- Millero, F.J., 1979. The thermodynamics of the carbonate system in seawater. *Geochimica & Cosmochimica Acta* **43**, 1651–1661.
- Miyajima, T., Miyajima, Y., Hanba, Y.T., Yoshii, K., Koitabashi, T., Wada, E., 1995. Determining the stable isotope ratio of total dissolved inorganic carbon in lake water by GC/C/IIRMS. *Limnology and Oceanography* **40**, 994–1000.
- Mook, W., Rozanski, K., 2000. Environmental isotopes in the hydrological cycle. *IAEA Publish* **39**.
- Mook, W.G., Bommerson, J.C., Staverman, W.H., 1974a. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. *Earth and Planetary Science Letters* **22**, 169–176.
- Mook, W.G., Tan, F.C., 1991. Stable carbon isotopes in rivers and estuaries. *Biogeochemistry of major world rivers* **42**, 245–264.
- Mook, W.G., Vogel, J.C., 1968. Isotopic equilibrium between shells and their environment. Science **159**, 874–875.
- Moore, C.J., 1986. Frequency response corrections for eddy correlation systems. *Boundary-Layer Meteorology* **37**, 17–35.
- Moreaux, V., 2012. Observation et modélisation des échanges d'énergie et de masse de jeunes peuplements forestiers du Sud-Ouest de la France. *Thèse de doctorat Universoté de Bordeaux I*
- Moreaux, V., Lamaud, É., Bosc, A., Bonnefond, J.-M., Medlyn, B.E., Loustau, D., 2011. Paired comparison of water, energy and carbon exchanges over two young maritime pine stands (Pinus pinaster Ait.): effects of thinning and weeding in the early stage of tree growth. *Tree physiology* **31**.
- Mulholland, P.J., Elwood, 1982. The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. *Tellus* **34**, 490–499.
- Naumburg, E., Mata-Gonzalez, R., Hunter, R.G., Mclendon, T., Martin, D.W., 2005. Phreatophytic vegetation and groundwater fluctuations: a review of current research

and application of ecosystem response modeling with an emphasis on Great Basin vegetation. *Environmental Management* **35**, 726–740.

Oh, N.-H., Raymond, P.A., 2006. Contribution of agricultural liming to riverine bicarbonate export and CO2 sequestration in the Ohio River basin. *Global biogeochemical cycles* **20.**

- P, Q, R, S
- Paradelo, R., Virto, I., Chenu, C., 2015. Net effect of liming on soil organic carbon stocks: *A review. Agriculture, Ecosystems & Environment* **202**, 98–107.
- Paterson, M.J., Muir, D.C.G., Rosenberg, B., Fee, E.J., Anema, C., Franzin, W., 1998. Does lake size affect concentrations of atmospherically derived polychlorinated biphenyls in water, sediment, zooplankton, and fish? *Canadian Journal of Fisheries and Aquatic Sciences* **55**, 544–553.
- Peterson, B.J., Fry, B., 1987. Stable isotopes in ecosystem studies. *Annual review of ecology and systematics* **18**, 293–320.
- Polsenaere, P., Abril, G., 2012. Modelling CO₂ degassing from small acidic rivers using water pCO2, DIC and δ13C-DIC data. *Geochimica & Cosmochimica Acta* **91**, 220–239. doi:10.1016/j.gca.2012.05.030
- Polsenaere, P., Savoye, N., Etcheber, H., Canton, M., Poirier, D., Bouillon, S., Abril, G., 2013. Export and degassing of terrestrial carbon through watercourses draining a temperate podzolized catchment. *Aquatic sciences* **75**, 299–319.
- Porporato, A., D'odorico, P., Laio, F., Rodriguez-Iturbe, I., 2003. Hydrologic controls on soil carbon and nitrogen cycles. I. Modeling scheme. *Advances in Water Resources* **26**, 45–58.
- Prather, M.J., Holmes, C.D., Hsu, J., 2012. Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry. *Geophysical Research Letters* **39**.
- Prentice, I.C., Farquhar, G.D., Fasham, M.J.R., Goulden, M.L., Heimann, M., Jaramillo, V.J., Kheshgi, H.S., LeQuéré, C., Scholes, R.J., Wallace, D.W., 2001. The carbon cycle and atmospheric carbon dioxide. *Climate Change 2001*. The Scienctific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [J. T. Houghton, Y. Ding, D. J. Griggs, M. Noquer, P. J. van der Linden, X. Dai, K. Maskell and C.A. Johnson (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 183–237.
- Raich, J.W., Nadelhoffer, K.J., 1989. Belowground carbon allocation in forest ecosystems: global trends. *Ecology* **70**, 1346–1354.
- Raich, J.W., Schlesinger, W.H., 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. *Tellus B* **44**, 81–99.
- Ran, L., Lu, X.X., Yang, H., Li, L., Yu, R., Sun, H., Han, J., 2015. CO₂ outgassing from the Yellow River network and its implications for riverine carbon cycle. Journal of Geophysical Research: Biogeosciences **120**, 1334–1347.
- Randerson, J.T., Chapin, F.S., Harden, J.W., Neff, J.C., Harmon, M.E., 2002. Net ecosystem production: a comprehensive measure of net carbon accumulation by ecosystems. *Ecological applications* **12**, 937–947.
- Rasse, D.P., Rumpel, C., Dignac, M.-F., 2005. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. *Plant and soil* **269**, 341–356.
- Raymond, P.A., Cole, J.J., 2003. Increase in the export of alkalinity from North America's largest river. *Science* **301**, 88–91.
- Raymond, P.A., Cole, J.J., 2001. Gas exchange in rivers and estuaries: Choosing a gas transfer velocity. *Estuaries and Coasts* **24**, 312–317.

- Raymond, P.A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., Guth, P., 2013. Global carbon dioxide emissions from inland waters. *Nature* 503, 355–359. doi:10.1038/nature12760
- Raymond, P.A., Saiers, J.E., 2010. Event controlled DOC export from forested watersheds. *Biogeochemistry* 100, 197–209.
- Raymond, P.A., Zappa, C.J., Butman, D., Bott, T.L., Potter, J., Mulholland, P., Laursen, A.E., McDowell, W.H., Newbold, D., 2012. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnology and Oceanography: *Fluids and Environments* 2, 41–53.
- Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F.T., Gruber, N., Janssens, I.A., Laruelle, G.G., Lauerwald, R., Luyssaert, S., Andersson, A.J., Arndt, S., Arnosti, C., Borges, A., Dale, A., Gallego-Sala, A., Goddéris, Y., Goosens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos, F., LaRowe, D., Leifeld, J., Meysman, J., Munhoven, G., Raymond, P., Spahni, R., Suntharalingam, P., Thullner, M., 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. *Nature Geoscience* 6, 597–607.
- Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., others, 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. *Global Change Biology* **11**, 1424–1439.
- Renwick, W.H., Smith, S.V., Sleezer, R.O., Buddemeier, R.W., 2004. Comment on " Managing soil carbon"(II). *Science* **305**, 1567–1567.
- Richey, J.E., Melack, J.M., Aufdenkampe, A.K., Ballester, V.M., Hess, L.L., 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO₂. *Nature* **416**, 617–620.
- Righi, D., 1977. Genèse et évolution des podzols et des sols hydromorphes des Landes du Médoc. *Thèse de doctorat Université de Poitiers.*
- Righi, D., Wilbert, J., 1984. Les sols sableux podzolisés des Landes de Gascogne (France) : Répartition et caractères principaux. *Sciences du Sol* **4**, 253–254.
- Rimmelin, P., 1998. Etude des apports allochtones d'azote inorganique dissous parvenant à un système lagunaire: le Bassin d'Arcachon. *Thèse de doctorat Université de Bordeaux I*.
- Rumpel, C., Kögel-Knabner, I., 2011. Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. *Plant and Soil* **338**, 143–158.
- Ryan, M.G., Law, B.E., 2005. Interpreting, measuring, and modeling soil respiration. *Biogeochemistry* **73**, 3–27.
- Salomons, W., Mook, W.G., 1986. Isotope geochemistry of carbonates in the weathering zone. *Handbook of environmental isotope geochemistry* 2, 239–269.
- Sanders, I.A., Heppell, C.M., Cotton, J.A., Wharton, G., Hildrew, A.G., Flowers, E.J., Trimmer, M., 2007. Emission of methane from chalk streams has potential implications for agricultural practices. *Freshwater Biology* **52**, 1176–1186.
- Schiff, S.L., Aravena, R., Trumbore, S.E., Hinton, M.J., Elgood, R., Dillon, P.J., 1997. Export of DOC from forested catchments on the Precambrian Shield of Central Ontario: clues from 13C and 14C. *Biogeochemistry* **36**, 43–65.
- Schlesinger, W.H., Melack, J.M., 1981. Transport of organic carbon in the world's rivers. *Tellus* **33**, 172–187.
- Schmitt-Kopplin, P., Hertkorn, N., Schulten, H.-R., Kettrup, A., 1998. Structural changes in a dissolved soil humic acid during photochemical degradation processes under O₂ and N2 atmosphere. *Environmental science* & *technology* **32**, 2531–2541.
- Semhi, K., Amiotte-Suchet, P.A., Clauer, N., Probst, J.-L., 2000. Impact of nitrogen fertilizers on the natural weathering-erosion processes and fluvial transport in the Garonne basin. *Applied Geochemistry* **15**, 865–878.
- Sharp, J.H., 1993. The dissolved organic carbon controversy: an update. Oceanography 6.
- Shen, Y., Chapelle, F.H., Strom, E.W., Benner, R., 2015. Origins and bioavailability of dissolved organic matter in groundwater. *Biogeochemistry* **122**, 61–78.

- Simpkins, W.W., Parkin, T.B., 1993. Hydrogeology and redox geochemistry of CH4 in a late Wisconsinan till and loess sequence in central lowa. *Water Resources Research* **29**, 3643–3657.
- Smith, B.N., Epstein, S., 1971. Two categories of ¹³C/¹²C ratios for higher plants. *Plant physiology* **47**, 380–384.
- Sobek, S., Tranvik, L.J., Cole, J.J., 2005. Temperature independence of carbon dioxide supersaturation in global lakes. *Global Biogeochemical Cycles* **19**.
- Stallard, R.F., 1998. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. *Global Biogeochemical Cycles* **12**, 231–257.
- St Louis, V.L., Kelly, C.A., Duchemin, É., Rudd, J.W., Rosenberg, D.M., 2000. Reservoir Surfaces as Sources of Greenhouse Gases to the Atmosphere: A Global Estimate Reservoirs are sources of greenhouse gases to the atmosphere, and their surface areas have increased to the point where they should be included in global inventories of anthropogenic emissions of greenhouse gases. *BioScience* **50**, 766–775.
- Strahler, A.N., 1957. Quantitative analysis of watershed geomorphology. *Eos, Transactions American Geophysical Union* **38**, 913–920.
- Striegl, R.G., Aiken, G.R., Dornblaser, M.M., Raymond, P.A., Wickland, K.P., 2005. A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. *Geophysical Research Letters* **32**.
- Stumm, W., Morgan, J.J., 1996. Chemical equilibria and rates in natural waters. *Aquatic chemistry* 521–531.
- Suhett, A.L., Amado, A.M., Enrich-Prast, A., Esteves, F. de A., Farjalla, V.F., 2007. Seasonal changes of dissolved organic carbon photo-oxidation rates in a tropical humic lagoon: the role of rainfall as a major regulator. *Canadian Journal of Fisheries and Aquatic Sciences* **64**, 1266–1272.
- Sun, G., Riekerk, H., Kornhak, L.V., 2000. Ground-water-table rise after forest harvesting on cypress-pine flatwoods in Florida. *Wetlands* **20**, 101–112.
- Sundquist, E.T., 1986. Geologic analogs: Their value and limitations in carbon dioxide research. *The Changing Carbon Cycle*, Edited by J. R. Trabalka and D. E. Reichle. Springer-Verlag, New York, 371–402.

T, U, V

- Tarnocai, C., Canadell, J.G., Schuur, E.A.G., Kuhry, P., Mazhitova, G., Zimov, S., 2009. Soil organic carbon pools in the northern circumpolar permafrost region. *Global biogeochemical cycles* **23**.
- Thode, H.G., Shima, M., Rees, C.E., Krishnamurty, K.V., 1965. Carbon-13 isotope effects in systems containing carbon dioxide, bicarbonate, carbonate, and metal ions. *Canadian Journal of Chemistry* **43**, 582–595.
- Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. *Geographical review* **38**, 55–94.
- Thurman, E.M., 1985. Amount of organic carbon in natural waters, in: Organic Geochemistry of Natural Waters, 7–65.
- Torn, M.S., Trumbore, S.E., Chadwick, O.A., Vitousek, P.M., Hendricks, D.M., 1997. Mineral control of soil organic carbon storage and turnover. *Nature* **389**, 170–173.
- Tranvik, L., 1996. Photo-oxidative production of dissolved inorganic carbon in lakes of different humic content. *Limnology and Oceanography* **4**1, 698–706.
- Tranvik, L.J., Downing, J.A., Cotner, J.B., Loiselle, S.A., Striegl, R.G., Ballatore, T.J., Dillon, P., Finlay, K., Fortino, K., Knoll, L.B., Kortrlainen, P.L., Kutser, T., Larsen, S., Laurion, I., Leech, D.M., Leigh McCallister, S., McKnight, D.M., Melack, J.M., Overholt, E., Porter, J.A., Prairie, Y., Renwick, W.H., Roland, F., Sherman, B.S., Schindler, D.W., Sobek, S., Tremblay, A., Vanni, M.J., Verschoor, A.M., von Wachenfeldt, E.,

Weyhenmeyer, G.A., 2009. Lakes and reservoirs as regulators of carbon cycling and climate. *Limnology and Oceanography* **54**, 2298–2314.

- Trichet, P., Jolivet, C., Arrouays, D., Loustau, D., Bert, D., Ranger, J., 1999. Le maintien de la fertilité des sols forestiers landais dans le cadre de la sylviculture intensive du pin maritime. *Étude Gestion Sols* **6**, 197–214.
- Venkiteswaran, J.J., Schiff, S.L., Wallin, M.B., 2014. Large Carbon Dioxide Fluxes from Headwater Boreal and Sub-Boreal Streams. *PLoS ONE* **9**, e101756. doi:10.1371/journal.pone.0101756.

Vernier, F., Castro, A., 2010. Critère Préservation de l'environnement Sous-critère Eau.

- Vidon, P., Allan, C., Burns, D., Duval, T.P., Gurwick, N., Inamdar, S., Lowrance, R., Okay, J., Scott, D., Sebestyen, S., 2010. Hot spots and hot moments in riparian zones: Potential for improved water quality management. *Journal of the American water resources association* **46**, 278-298.
- Vidon, P., Wagner, L.E., Soyeux, E., 2008. Changes in the character of DOC in streams during storms in two Midwestern watersheds with contrasting land uses. *Biogeochemistry* **88**, 257–270.
- Vogel, J.C., Ehleringer, J.R., Hall, A.E., Farquhar, G.D., 1993. Variability of carbon isotope fractionation during photosynthesis. *Stable Isotopes and Plant Carbon-Water Relations. Academic Press*, 29–46.
- Vogel, J.C., Grootes, P.M., Mook, W.G., 1970. Isotopic fractionation between gaseous and dissolved carbon dioxide. *Zeitschrift für Physik* **230**, 225–238.

W, X, Y, Z

- Wachniew, P., 2006. Isotopic composition of dissolved inorganic carbon in a large polluted river: The Vistula, Poland. *Chemical Geology* **233**, 293–308.
- Wallin, M.B., Grabs, T., Buffam, I., Laudon, H., Ågren, A., Öquist, M.G., Bishop, K., 2013. Evasion of CO2 from streams – The dominant component of the carbon export through the aquatic conduit in a boreal landscape. *Global Change Biology* **19**, 785– 797. doi:10.1111/gcb.12083.
- Wallin, M.B., Öquist, M.G., Buffam, I., Billett, M.F., Nisell, J., Bishop, K.H., 2011. Spatiotemporal variability of the gas transfer coefficient (KCO₂) in boreal streams: Implications for large scale estimates of CO₂ evasion. *Global Biogeochemical Cycles* **25**.
- Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean. *Journal of Geophysical Research: Oceans* **97**, 7373–7382.
- Webb, E.K., Pearman, G.I., Leuning, R., 1980. Correction of flux measurements for density effects due to heat and water vapour transfer. *Quarterly Journal of the Royal Meteorological Society* **106**, 85–100.
- Weiss, R., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. *Marine chemistry* **2**, 203–215.
- Wilcock, R.J., Croker, G.F., 2004. Distribution of carbon between sediment and water in macrophyte dominated lowland streams. *Hydrobiologia* **520**, 143–152.
- Wollast, R., 1994. The relative importance of biomineralization and dissolution of CaCO₃ in the global carbon cycle. *Bulletin de l'Institut océanographique de Monaco* **13**, 13–35.
- Worrall, F., Burt, T.P., 2007. Flux of dissolved organic carbon from UK rivers. *Global Biogeochemical Cycles* **21**.
- Xu, Y.-J., Burger, J.A., Aust, W.M., Patterson, S.C., Miwa, M., Preston, D.P., 2002. Changes in surface water table depth and soil physical properties after harvest and establishment of loblolly pine (Pinus taeda L.) in Atlantic coastal plain wetlands of South Carolina. *Soil and Tillage Research* **63**, 109–121.
- Yao, G., Gao, Q., Wang, Z., Huang, X., He, T., Zhang, Y., Jiao, S., Ding, J., 2007. Dynamics of CO₂ partial pressure and CO₂ outgassing in the lower reaches of the Xijiang River,

a subtropical monsoon river in China. Science of the Total Environment **376**, 255–266.

- Zappa, C.J., McGillis, W.R., Raymond, P.A., Edson, J.B., Hintsa, E.J., Zemmelink, H.J., Dacey, J.W., Ho, D.T., 2007. Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. *Geophysical Research Letters* **34**.
- Zeebe, R.E., 2012. History of seawater carbonate chemistry, atmospheric CO₂, and ocean acidification. *Annual Review of Earth and Planetary Sciences* **40**, 141–165.
- Zeebe, R.E., Wolf-Gladrow, D.A., 2001. CO₂ in seawater: equilibrium, kinetics, isotopes. *Elsevier oceanography series* **65**.
- Zhang, J., Quay, P.D., Wilbur, D.O., 1995. Carbon isotope fractionation during gas-water exchange and dissolution of CO₂. *Geochimica & Cosmochimica Acta* **59**, 107–114.

de cadres grisés représentent les périodes de crues hydrologiques Annexe a conductivité, **_** •• durant la Variations du рЧ période temporelles et des d'échantillonnage matières dans en suspension (SPM). Les les (Jan. différents 201 l4-Jul. ordres 2015)

de périodes de crues hydrologiques Annexe -ج ّ du Ν ... DIC durant Variations et du a δ^{13} C-DIC. période temporelles d'échantillonnage Les cadres dans grisés les (Jan. différents représentent les 2014-Jul. ordres 2015)

de pCO₂, de CH₄ et de O₂. Les cadres grisés représentent les périodes de hydrologiques crues Annexe ω • • durant Variations a période d'échantillonnage temporelles dans les (Jan. différents 2014-Jul. 2015) ordres

de périodes de crues. hydrologiques Annexe DOC, de 4 •• POC, durant Variations et a de période POC%. temporelles d'échantillonnage Les cadres dans grisés les (Jan. différents représentent les 2014-Jul. ordres 2015)

I	II	III	IV	v	VI	VII	VIII	IX
1	Rivière	4	2103,0	83,4	14,2	2,4	44,4746	-0,7670
2	Rivière	4	1650,0	84,1	14,7	1,3	44,6254	-0,9960
3	Rivière	3	592,0	81,6	17,6	0,8	44,5483	-0,8715
4	Rivière	3	359,0	83,0	16,2	0,8	44,3655	-0,7542
5	Rivière	2	124,0	81,5	18,0	0,5	44,2123	-0,7803
6	Rivière	3	485,0	86,9	12,7	0,4	44,1520	-0,7904
7	Rivière	3	403,0	87,4	12,2	0,3	44,3699	-0,7554
8	Rivière	2	158,0	85,7	14,0	0,3	44,3746	-0,6870
9	Rivière	1	16,0	78,1	20,2	1,6	44,2708	-0,5136
10	Rivière	2	112,0	78,7	20,8	0,6	44,4204	-0,8208
11	Rivière	2	33,0	92,4	6,4	1,2	44,4105	-0,7527
12	Rivière	1	0,3	100,0	0,0	0,0	44,4650	-0,7722
13	Rivière	1	2,3	94,8	5,2	0,0	44,4710	-0,7758
14	Rivière	1	57,0	69,3	30,7	0,0	44,3166	-0,6449
15	Rivière	1	34,0	96,2	3,8	0,0	44,4714	-0,8528
16	Rivière	1	7,9	94,2	5,8	0,0	44,3087	-0,6520
17	Rivière	1	16,8	92,2	7,8	0,0	44,3062	-0,6571
18	Rivière	1	1,3	46,2	53,8	0,0	44,3011	-0,6667
19	Rivière	1	1,0	13,5	86,5	0,0	44,2987	-0,6714
20	Rivière	1	11,3	55,8	44,2	0,0	44,2946	-0,6758
21	Rivière	1	13,4	57,5	42,5	0,0	44,2955	-0,6835
22	Rivière	2	81,0	86,5	13,5	0,0	44,3246	-0,6804
23	Rivière	2	97,0	84,9	15,1	0,0	44,3246	-0,6804
24	Rivière	1	31,0	97,7	2,3	0,0	44,3440	-0,7176
P1	Piézomètre	0	NA	100,0	0,0	0,0	44,2830	-0,6159
P2	Piézomètre	0	NA	0,0	100,0	0,0	44,3017	-0,6350
P3	Piézomètre	0	NA	0,0	100,0	0,0	44,3249	-0,6799
P4	Piézomètre	0	NA	100,0	0,0	0,0	44,3317	-0,6788
P5	Piézomètre	0	NA	100,0	0,0	0,0	44,4936	-0,9552

Annexe 5 : Caractéristiques des stations d'échantillonnages

Légende en-têtes : I = Station. II = Type. III = Ordre Strahler. IV = Superficie (km²). V = Forêt (%). VI = Agricole (%). VII = Urbain (%). VIII = Latitude (WGS84). IX = Longitude (WGS84).

Annexe 6 : Resultats bruts des differentes campagnes d'echantillonnage	Annexe 6 :	: Résultats	bruts des	différentes	campagnes	d'échantillonnage
--	------------	-------------	-----------	-------------	-----------	-------------------

I	Ш	Ш	IV	V	VI	VII	VIII	IX	X	XI	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX	XX	ХХІ	XXII
Α	1	09/01/2014	10,7	88	6,5	176	200	1163	0,052	61	261	277	17	-15,2	0,2	7,2	449	18	9,2	15,5	1,4
Α	2	09/01/2014	10,5	88	6,6	169	190	1183	0,053	62	252	263	10	-15,0	0,2	6,5	386	14	10,0	13,2	1,3
Α	11	09/01/2014	11,1	87	6,2	102	101	1544	0,052	80	181	148	15	-18,2	0,6	9,1	222	1	4,2	19,1	0,8

1	Ш	ш	IV	V	VI	VII	VIII	IX	X	XI	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX	ХХ	XXI	XXII
В	1	29/01/2014	9,3	83	5,9	131	141	2823	0,055	155	296			-21,1	0,4	14,2	359	16	11,4	24,2	2,8
В	2	29/01/2014	9,8	87	6,0	131	62	1400	0,054	76	137	98	12	-19,8	0,0	10,9	838	280	8,8	14,7	1,3
В	3	28/01/2014	9,9	92	5 <i>,</i> 8	155	51	1257	0,054	68	118			-22,4	0,6	10,0	143	4	8,5	17,6	1,5
В	4	28/01/2014	9,1	90	5 <i>,</i> 5	138	54	1800	0,055	100	154	133	10	-19,7	1,0	11,5	161	4	4,9	20,3	1,0
В	5	28/01/2014	8,9	90	5 <i>,</i> 5	137	53	2430	0,056	135	188	143	1	-21,4	1,1	12,1	187	2	4,3	34,3	1,5
В	6	28/01/2014	9,2	92	6,2	115	93	1058	0,055	58	151	180	3	-17,2	0,1	10,6	355	12	20,3	10,8	2,2
В	7	28/01/2014	9,3	94	6,2	114	88	1224	0,055	67	155			-16,5	0,2	10,2	283	32	19,7	11,2	2,2
В	8	28/01/2014	8,2	95	5,7	112	60	1445	0,057	83	142	143	7	-20,3	0,0	9,8	184	2	4,9	23,9	1,2
В	9	29/01/2014	9,8	79	5,5	157	88	2800	0,054	151	239	364	3	-22,8	0,2	10,7	308	5	50,5	26,1	13,2
В	10	29/01/2014	8,5	94	5,7	128	77		0 <i>,</i> 056			238	5	-20,7	0,1	16,7	194	5	86,0	10,3	8,9
В	11	29/01/2014	7,9	62	4,6	62	145	1663	0 <i>,</i> 058	96	241	171	1	-23,8	1,3	33,4	118	5	73,1	9,5	6,9
В	12	29/01/2014	8,9	65	4,2	78	96	6100	0 <i>,</i> 056	340	436	389	9	-26,7	0,5		406	9			
В	13	27/01/2014	10,4	71	5 <i>,</i> 8	150	57	4600	0,053	243	300	246	2	-23,2	0,0	3,1	101	39	0,4		0,0
В	14	27/01/2014																			
В	15	27/01/2014	9,8	89	5 <i>,</i> 5	111	42	2035	0,054	110	151	117	3	-21,4	1,8	5,6	135	1	5,7	24,3	1,4
В	16	27/01/2014	9,8	82	5 <i>,</i> 6	120	54	3558	0,054	192	246	190	1	-21,4	1,6	4,4	111	17	6,6	27,9	1,8
В	17	27/01/2014	9,9	87	5,9	128	77	2184	0,054	118	194			-20,2	0,2	8,8	237	36	4,2	47,8	2,0
В	18	27/01/2014	11,4	56	5,9	282	140	6145	0,051	315	454	402	1	-21,6	0,1	5,8	728	35	21,2	22,9	4,9
В	19	27/01/2014	10,9	77	5,9	246	130	6300	0,052	328	457	328	6	-19,6	0,1	9,5	4378	159	7,0	28,4	2,0
В	20	27/01/2014	10,3	81	5,4	242	74	5515	0 <i>,</i> 053	293	366	274	1	-21,3	0,3	10,5	135	1	2,0	125,0	2,5
В	21	27/01/2014	10,7	85	5,6	253	69	3600	0,052	189	258	192	4	-19,7	1,6	10,0	70	8	22,2	31,0	6,9
В	22	27/01/2014	10,0	89	5,7	126	45	2000	0,054	107	152	120	2	-20,9	0,2	6,5	159	12	4,6	26,1	1,2
В	23	27/01/2014	9,9	94	5 <i>,</i> 8	151	40		0,054			125	0			6,9	89	0	11,8	16,9	2,0
В	P4	12/02/2014	8,5	0	4,6	88	135	7680	0,056	434	569	411	2	-27,6	3,1	43,5	104	4			

Légendes en-têtes : I = Campagne. II = Station. III = Date. IV = Température (°C). V = O₂ (%). VI = pH. VII = Conductivité (μ S cm⁻¹). VIII = TA (μ mol L⁻¹). XIX = pCO₂ (ppmv). X = K₀ (mol L⁻¹ atm⁻¹). XI = CO₂ (μ mol L⁻¹). XII = DIC calculé (μ mol L⁻¹). XIII = DIC mesuré (μ mol L⁻¹). XIV = SD DIC mesuré (μ mol L⁻¹). XV = δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD CH₄ (nmol L⁻¹). XIX = SPM (mg L⁻¹). XXI = POC (% SPM). XXII = POC (mg L⁻¹).

1	Ш	Ш	IV	V	VI	VII	VIII	IX	X	XI	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX	ХХ	XXI	XXII
С	1	07/03/2014	9,4	81	6,3	81	144	2925	0,055	160	304	257	12	-18,9	0,5	11,1	671	6	5,3	25,0	1,3
С	2	07/03/2014																			
С	3	06/03/2014	9,6	93	6,1	135	50	1842	0,054	100	150	138	7	-17,6	1,5	9,1	146	1	9,3	17,1	1,6
С	4	06/03/2014	10,8	87	5,7		46	2819	0,052	147	193	162	1	-19,9	0,2	10,7	163	8	2,6	30,0	0,8
С	5	06/03/2014	9,5	79	5,6	145	56	4870	0,055	266	322	220	2	-19,8	0,1	9,2	510	17	5 <i>,</i> 8	26,5	1,5
С	6	06/03/2014	9,6	92	6,5	103	81	1508	0,054	82	163	163	2	-15,9	0,0	9,8	228	47	15,2	10,1	1,5
С	7	06/03/2014	9,7	94	6,3	102	78	1505	0,054	82	160	156	6	-18,5	1,1	9,4	282	3	14,0	11,4	1,6
С	8	06/03/2014	8,7	90	5 <i>,</i> 8	108	50	2259	0,056	127	176	128	2	-20,4	0,0	9,0	353	21	3,8	20,7	0,8
С	9	07/03/2014	9,8	80	5,9	211	94	5251	0,054	284	377	199	2	-21,3	0,3	4,1	270	5	5,5	24,7	1,4
С	10	07/03/2014	8,7	94	6,0	164	52	2014	0,056	113	165	167	2	-18,4	0,6	10,0	239	5	18,7	11,7	2,2
С	11	07/03/2014	8,7	92	5 <i>,</i> 5	88	59	3391	0,056	190	249	189	2	-22,5	0,3	16,0	123	71	6,2	14,2	0,9
С	12	07/03/2014	9,5	58	4,4	91	109	11692	0,055	638	747	473	1	-24,6	0,1	20,7	127	3			
С	13	05/03/2014	11,1	76	5,5	126	49	7193	0,052	372	421	247	1	-22,3	0,5	3,7	95	7	2,0	24,0	0,5
С	14	07/03/2014																			
С	15	05/03/2014	10,3	88	5 <i>,</i> 6	91	38	3341	0,053	177	215	160	9	-20,1	0,8	5,5	135	3	3,2	29,0	0,9
С	16	05/03/2014	10,6	82	5,6	101	46	7171	0,053	377	423	200	1	-22,6	0,5	5,0	168	1	4,2	24,7	1,0
С	17	05/03/2014	10,4	83	6,1	111	63	3800	0,053	201	264	151	2	-22,0	0,3	9,5	161	10	2,3	32,2	0,8
С	18	05/03/2014	12,1	70	5,9	237	116	10737	0,050	537	653	389	12	-22,0	0,9	6,2	630	22	4,5	26,9	1,2
С	19	05/03/2014	12,1	80	5,9	214	107	7967	0,050	398	505	265	3	-19,8	3,6	7,1	3192	139	5,1	23,5	1,2
С	20	05/03/2014	11,0	83	5,6	181	80	7846	0,052	407	487	270	2	-20,4	0,8	12,4	71	4	8,2	25,5	2,1
С	21	05/03/2014	11,5	88	5,7	194	68	5856	0,051	299	367	205	1	-18,6	1,1	11,7	146	2	8,8	24,3	2,1
С	22	05/03/2014	11,1	89	5,7	114	47	3472	0,052	179	226	153	1	-20,5	0,2	7,1	107	23	5,1	23,1	1,2
С	23	05/03/2014	11,0	92	6,0	125	41	2671	0,052	139	180	135	0	-20,4	2,2	6,7	110	6	7,9	18,3	1,4
С	24	06/03/2014	9,4	89	5,4	87	38	3693	0,055	202	240			-24,3	0,1	5,5	207	19	2,2	32,1	0,7
С	P4	17/03/2014	11.5	0	4.5	96		23322	0.051	1190	1190	1990	7	-24.0	0.1	38.7	1703	3			

1	Ш	Ш	IV	V	VI	VII	VIII	IX	Х	XI	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX	ХХ	ХХІ	XXII
D	1	24/04/2014	13,4	90	6,5	148	239	1843	0,048	88	327	296	8	-13,5	0,3	5,7	909	42	14,4	14,6	2,1
D	2	24/04/2014	12,9	89	6,6	142	231	1658	0,049	81	312	288	4	-13,1	0,8	5,3	661	13	11,8	15,4	1,8
D	3	23/04/2014	13,0	91	6,5	135	94	1674	0,049	81	175			-16,8	0,0	4,7	896	10	9,7	15,6	1,5
D	4	23/04/2014	13,2	92	6,1	127	35	3036	0,048	146	181	150	1	-17,3	0,7	5,2	486	22	7,4	18,3	1,4
D	5	23/04/2014	13,4	86	6,1	157	64	3791	0,048	182	246			-19,1	0,3	5,8	1180	51	7,2	20,6	1,5
D	6	23/04/2014	12,6	91	6,9	128	299	1516	0,049	75	374			-12,1	0,6	6,0	755	6	13,6	13,0	1,8
D	7	23/04/2014	12,7	89	6,9	124	244	1687	0,049	83	327	269	5	-13,6	0,0	5,9	477	0	11,8	15,5	1,8
D	8	23/04/2014	12,7	90	6,3	122	79	2640	0,049	129	208	175	2	-19,5	2,5	6,3	804	8	2,6	26,3	0,7
D	9	24/04/2014	12,2	89	6,4	202	124	3860	0,050	192	316	241	1	-18,0	0,2	3,2	350	25	2,4	22,6	0,5
D	10	24/04/2014	13,0	97	6,7	183	65	1578	0,049	77	142	129	1	-16,0	0,8	6,5	407	1	8,6	16,6	1,4
D	11	24/04/2014	11,8	93	6,6	105	137	2646	0,051	134	271	203	5	-17,6	0,6	5,3	186	13	4,2	21,6	0,9
D	12	24/04/2014																			
D	13	22/04/2014	14,0	81	5,6	139	44	4887	0,047	230	274	190	1	-20,5	0,7	3,2	75	5	0,6	42,3	0,3
D	14	24/04/2014	12,9	96	6,6	213	111	1944	0,049	95	206	203	12	-16,1	2,2	4,3	218	1	0,2	167,0	0,3
D	15	22/04/2014	13,5	87	6,1	84	67	2368	0,048	113	180	144	1	-17,6	0,9	4,1	171	1	6,6	21,7	1,4
D	16	22/04/2014	13,1	85	6,0	98	54	4192	0,048	203	257	169	1	-20,3	2,6	4,9	145	7	3,6	21,9	0,8
D	17	22/04/2014	13,2	88	6,3	121	93	2114	0,048	102	195	158	1	-16,8	0,8	7,1	286	10	5,8	28,0	1,6
D	18	22/04/2014	14,0	72	5,9	192	121	8148	0,047	383	504	333	2	-20,2	0,3	5,5	642	2	2,7	32,4	0,9
D	19	22/04/2014	14,8	79	6,0	251	122	5923	0,046	271	393	255	1	-16,9	2,0	6,7	2400	8	3,5	30,8	1,1
D	20	22/04/2014	14,9	97	5 <i>,</i> 8	191	56	3823	0,046	175	231	162	2	-15,8	0,3	9,1	83	2	12,4	24,9	3,1
D	21	22/04/2014	14,9	92	6,0	206	63	3324	0,046	152	215	143	4	-18,6	0,2	8,0	323	8	27,4	23,7	6,5
D	22	22/04/2014	13,7	92	6,0	112	61	2700	0,047	128	189	138	2	-17,7	0,1	5,3	122	8	8,7	22,1	1,9
D	23	22/04/2014	13,9	92	6,0	136	48		0,047			142	1	-17,1	1,4	4,5	163	3	13,0	19,7	2,6
D	24	23/03/2014	12,8	92	6,1	85	71	3086	0,049	151	222	139	5	-19,6	0,6	4,0	199	6	1,5	33,3	0,5
D	P4	16/05/2014	14,3	0	4,4	90		65090	0,047	3031	3031	1651	21	-28,8	0,8	11,4	6703	144			

1	Ш	III	IV	V	VI	VII	VIII	IX	Х	ХІ	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX	ХХ	XXI	XXII
Е	1	21/05/2014	14,9	90	6,9	148	290	2073	0,046	95	385	347	2	-13,1	0,2	7,0	894	25	19,2	16,6	3,2
Е	2	21/05/2014	14,7	85	6,9	141	286	2080	0,046	96	382	362	6	-13,1	0,7	7,0	1421	109	20,3	14,1	2,9
Е	3	20/05/2014	15,2	90	6,8	132	166	1644	0,045	74	240	273	1	-17,0	0,2	5,5	479	25	16,9	15,9	2,7
Е	4	20/05/2014	15,0	85	6,2	123	60	3271	0,046	149	209	206	2	-19,7	0,2	5,9	1596	28	6,1	22,6	1,4
Е	5	20/05/2014	15,0	85	6,0	150	82	4109	0,046	187	269	183	5	-18,5	0,2	8,6	170	4	7,9	19,1	1,5
Е	6	20/05/2014	15,0	90	7,1	135	82	1571	0,046	72	154	187	10	-19,3	0,3	7,9	759	6	23,4	13,1	3,1
Е	7	20/05/2014	15,0	85	6,5	129	350	1873	0,046	85	435	390	9	-12,7	0,2	7,2	781	10	12,2	13,9	1,7
Е	8	20/05/2014	14,7	85	6,3	118	413	2890	0,046	133	546					7,5	808	34	4,4	24,7	1,1
Е	9	21/05/2014	14,5	75	6,5	161	95	3708	0,046	172	267	177	3	-14,3	0,5	4,0	714	197	8,2	20,2	1,7
Е	10	21/05/2014	15,5	95	6,3	177	77	1678	0,045	75	152	126	4	-15,7	0,5	8,1	443	3	16,9	14,0	2,4
Е	11	21/05/2014	13,0	85	6,3	105	147	2762	0,049	134	281	232	7	-16,3	1,1	6,3	211	7	5,0	17,1	0,9
Е	12	21/05/2014	14,0	74	5,0	85	74	6463	0,047	304	378	200	2	-22,4	0,4	18,5	2368	127			
Е	13	19/05/2014	15,4	94	5,5	177	31	3868	0,045	174	205	160	2	-17,6	0,1	3,3	60	3	0,4	40,1	0,2
Е	14	21/05/2014	15,5	85	6,6	197	147	2800	0,045	126	273			-15,1	0,1	5,9	1260	3	1,1	24,4	0,3
Е	15	19/05/2014	15,4	87	6,0	111	89	3541	0,045	159	248	189	1	-17,6	0,0	4,3	303	0	1,8	19,7	0,4
Е	16	19/05/2014	16,0	96	6,1	105	73	3361	0,044	148	221	159	2	-20,5	3,5	4,2	123	8	1,0	25,2	0,3
Е	17	19/05/2014	17,1	94	6,2	131	72	1655	0,043	71	143	142	0	-14,7	1,2	7,4	78	2	2,9	27,2	0,8
Е	18	19/05/2014	18,3	82	5,9	186	83	9232	0,041	380	463	292	15	-21,3	1,8	6,0	495	18	2,5	22,9	0,6
Е	19	19/05/2014	20,2	95	6,0	300	120	3662	0,039	143	263	233	9	-14,3	0,3	6,6	4904	58	2,9	25,6	0,7
Е	20	19/05/2014	20,5	77	6,1	242	58	3342	0,039	129	187	140	7	-15,9	0,0	9,3	63	1	2,4	29,4	0,7
Е	21	19/05/2014	19,1	100	6,2	263	72	3419	0,040	137	209	158	6	-16,3	1,1	6,9	201	5	4,5	23,1	1,0
Е	22	19/05/2014	16,4	90	6,0	140	75	3889	0,044	170	245	200	5	-18,6	0,8	5,0	224	15	3,3	18,0	0,6
E	23	19/05/2014	15,3	94	6,2	177	45	2980	0,045	134	179	152	7	-16,5	0,1	4,5	203	3	8,3	17,0	1,4
Е	24	20/05/2014	15,7	90	6,0	85	84	3071	0,045	137	221	193	0	-18,2	0,1	4,6	473	14	1,2	22,1	0,3

I.	Ш	Ш	IV	V	VI	VII	VIII	IX	Х	ХІ	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX	ХХ	ХХІ	ХХІІ
F	1	25/06/2014	18,4	92	6,6	127	364	1946	0,041	80	444	485	21	-13,2	1,0	5,3	403	47	13,3	14,9	2,0
F	2	25/06/2014	18,2	90	6,6	120	320	1632	0,041	67	387	493	4	-13,2	0,5	6,2	370	11	12,1	14,7	1,8
F	3	24/05/2014	17,4	97	6,5	101	124	1518	0,042	64	188	229	8	-13,7	0,8	4,1	216	33	23,5	11,7	2,8
F	4	24/05/2014	17,6	90	6,0	99	105		0,042			289	0	-17,8	0,6	4,6	312	47	4,9	19,2	0,9
F	5	24/05/2014	18,3	82	5,8	123	90		0,041			280	10	-18,3	0,6	6,7	782	97	6,1	20,3	1,2
F	6	24/05/2014	18,0	90	6,5	118	131		0,042					-12,8	0,0	5,1	550	44	12,8	13,3	1,7
F	7	24/05/2014	17,6	87	6,7	110	430		0,042			603	23	-14,0	0,6	5,1	576	5	7,6	16,4	1,2
F	8	24/05/2014	16,8	93	6,0	91	110		0,043			249	12	-19,7	0,0	5,4	1547	67	2,7	19,6	0,5
F	9	25/06/2014	19,2	100	6,3	143	192	3970	0,040	159	351	371	4	-15,9	0,1	4,6	90	4	1,6	23,3	0,4
F	10	25/06/2014	19,1	90	6,4	162	187	1801	0,040	72	259	304	1	-12,3	0,1	8,6	130	1	7,2	13,8	1,0
F	11	25/06/2014	13,9	82	6,4	84	168	2131	0,047	101	269	309	2	-13,5	0,0	4,6	95	5	2,5	18,1	0,5
F	12	25/06/2014																			
F	13	23/06/2014	21,3	100	5,7	75	34	1789	0,038	67	101	118	7	-12,4	0,2	4,0	45	2	1,2	40,8	0,5
F	14	25/06/2014	20,6	93	6,8	173	255	1221	0,038	47	302	385		-13,5	1,1	7,7	126	1	0,7	34,9	0,2
F	15	23/06/2014	15,9	50	5 <i>,</i> 3	133	29	14264	0,044	632	661	512	8	-20,3	0,7	2,9	616	31	3,2	21,8	0,7
F	16	23/06/2014	21,1	85	5,5	96	83	5723	0,038	217	300	333	0	-18,2	0,1	5,9	138	21	2,4	27,7	0,7
F	17	23/06/2014	22,1	85	6 <i>,</i> 3	108	154	2600	0,037	96	250	304	0	-19,4	0,7	7,6	271	22	5,6	27,2	1,5
F	18	23/06/2014	23,0	60	5,7	202	82	14083	0,036	506	588	489	10	-22,3	1,7	5,4	457	89	9,4	22,1	2,1
F	19	23/06/2014																			
F	20	23/06/2014	25,8	120	5 <i>,</i> 5	321	40	6373	0,033	212	252	296	5	-13,5	0,3	4,8	100	28	3,2	30,2	1,0
F	21	23/06/2014																			
F	22	23/06/2014	15,7	65	5,9	99	88	6427	0,045	286	374	414	1	-21,8	1,3	5,1	107	1	2,0	22,1	0,4
F	23	23/06/2014	15,9	97	5,4	160	34	3254	0,044	144	178	207	0	-15,3	0,2	3,4	124	9	4,2	18,0	0,7
F	24	24/06/2014	21,2	108	5,7	76	72		0,038			217	6	-18,0	0,0	4,8			4,6	12,7	0,6
F	P4	07/07/2014	14,1	0	4,6	77		59186	0,047	2774	2774	1757	7	-27,4	0,1	6,5	2416	21			
F	P4	17/07/2014	14,7	0	4,6	118		58958	0,046	2711	2711	1601	14	-27,7	0,1	7,1	4488	51			

Légendes en-têtes : I = Campagne. II = Station. III = Date. IV = Température (°C). V = O₂ (%). VI = pH. VII = Conductivité (μ S cm⁻¹). VIII = TA (μ mol L⁻¹). XIX = pCO₂ (ppmv). X = K₀ (mol L⁻¹ atm⁻¹). XI = CO₂ (μ mol L⁻¹). XII = DIC calculé (μ mol L⁻¹). XIII = DIC mesuré (μ mol L⁻¹). XIV = SD DIC mesuré (μ mol L⁻¹). XV = δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD CH₄ (nmol L⁻¹). XIX = SPM (mg L⁻¹). XXI = POC (% SPM). XXII = POC (mg L⁻¹).

1	- 11	Ш	IV	V	VI	VII	VIII	IX	Х	XI	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX	ХХ	XXI	XXII
G	1	23/07/2014	17,7	88	7,1	149	366	1717	0,042	72	438			-13,3	0,0	5,4	583	1	10,4	15,6	1,6
G	2	23/07/2014	17,6	90	7,0	144	330	1499	0,042	63	393			-13,0	0,1	6,5	421	7	9,1	14,5	1,3
G	3	22/07/2014	16,6	90	6,7	120	134	1477	0,043	64	198			-14,5	0,0	4,2	328	31	6,4	22,6	1,5
G	4	22/07/2014	16,8	88	6,4	116	112	2899	0,043	125	237	228	10	-18,1	1,2	6,6	290	2	5,0	25,3	1,3
G	5	22/07/2014	17,6	80	6,2	135	92	4226	0,042	178	270	220	8	-20,4	0,4	8,7	552	21	10,3	21,9	2,3
G	6	22/07/2014																			
G	7	22/07/2014	16,7	80	7,2	129	397	1666	0,043	72	469			-13,7	0,5	5,5	470	71	6,8	17,0	1,2
G	8	22/07/2014	16,0	83	6,2	110	107	3158	0,044	139	246			-17,4	0,7	5,4	1232	44	1,1	52,4	0,6
G	9	23/07/2014	18,9	94	6,5	144	161	2435	0,040	98	259	283	1	-16,7	0,0	4,3	154	13	1,0	21,4	0,2
G	10	23/04/2014	19,8	90	6,7	210	187	1509	0,039	59	246			-14,3	0,1	9,4	222	7	8,3	13,4	1,1
G	11	23/07/2014	13,8	100	6,7	110	178	1757	0,047	83	261			-15,4	0,2	3,7	162	4	2,0	20,3	0,4
G	12	23/07/2014																			
G	13	21/07/2014	19,6	90	6,0	177	37	1279	0,040	51	88	98	4	-13,7	0,0	4,9	50	0	0,1	16,4	0,0
G	14	23/07/2014																			
G	15	21/07/2014	15,2	35	5,4	158	50	16404	0,045	742	792			-22,7	0,1	3,1	588	33	3,2	21,6	0,7
G	16	21/07/2014	19,2	83	5 <i>,</i> 8	122	50	4808	0,040	193	243			-20,4	0,1	3,7	170	6	1,5	29,8	0,4
G	17	21/07/2014																			
G	18	21/07/2014																			
G	19	21/07/2014																			
G	20	21/07/2014																			
G	21	21/07/2014																			
G	22	21/07/2014	14,5	80	5,8	120	40	3917	0,046	181	221	142	9	-19,1	0,3	2,9	129	11	1,5	23,9	0,4
G	23	21/07/2014	15,6	87	5,4	219	43	3146	0,045	141	184			-20,0	0,3	2,6	103	5	1,6	20,3	0,3
G	24	22/07/2014	20,1	90	6,2	79	55	1571	0,039	61	116			-16,0	0,3	4,5	97	12	1,9	25,8	0,5

Légendes en-têtes : I = Campagne. II = Station. III = Date. IV = Température (°C). V = O₂ (%). VI = pH. VII = Conductivité (μ S cm⁻¹). VIII = TA (μ mol L⁻¹). XIX = pCO₂ (ppmv). X = K₀ (mol L⁻¹ atm⁻¹). XI = CO₂ (μ mol L⁻¹). XII = DIC calculé (μ mol L⁻¹). XIII = DIC mesuré (μ mol L⁻¹). XIV = SD DIC mesuré (μ mol L⁻¹). XV = δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD CH₄ (nmol L⁻¹). XIX = SPM (mg L⁻¹). XXI = POC (% SPM). XXII = POC (mg L⁻¹).

I	- 11 -	Ш	IV	V	VI	VII	VIII	IX	Х	XI	XII	XIII	XIV	xv	XVI	XVII	XVIII	XIX	ХХ	XXI	XXII
Н	1	27/08/2014	16,4	88	7,0	148	430	1665	0,044	73	503			-12,3	0,0	4,0	430	25	7,5	16,9	1,3
н	2	27/08/2014	16,5	89	7,0	140	390	1604	0,043	70	460			-11,9	0,2	5,0	426	16	6,1	16,3	1,0
н	3	26/08/2014	16,3	100	6,7	117	140	1283	0,044	56	196			-13,7	1,2	3,2	361	3	5,9	18,2	1,1
н	4	26/08/2014	15,9	90	6,5	107	112	2946	0,044	130	242	224	7	-17,6	0,3	4,2	344	8	3,6	22,1	0,8
н	5	26/08/2014	16,1	82	6,2	128	116	4911	0,044	216	332			-19,7	0,0	5,7	1336	17	4,5	23,4	1,1
н	6	26/08/2014	16,6	100	7,0	140	592	1268	0,043	55	647	710	2	-18,0	0,0	3,6	638	21	6,0	18,3	1,1
н	7	26/08/2014	16,5	92	7,0	135	490	1522	0,043	66	556	477	5	-11,9	0,0	5,0	398	27	5,8	19,2	1,1
н	8	26/08/2014	15,5	87	6 <i>,</i> 8	99	115	3267	0,045	146	261	249	1	-16,7	0,1	4,3	1674	73	1,9	23,6	0,4
Н	9	27/08/2014	17,4	98	6,8	112	217	1945	0,042	82	299	289	11	-14,0	0,0	3,2	36	7	1,2	31,3	0,4
н	10	27/08/2014	17,9	98	6,9	212	263	1557	0,042	65	328			-12,9	0,0	7,7	468	22	3,5	15,6	0,5
Н	11	27/08/2014	14,0	100	6,8	108	177	1995	0,047	94	271			-15,1	0,5	3,8	178	6	1,5	0,3	0,0
н	12	27/08/2014																			
н	13	25/08/2014																			
Н	14	27/08/2014																			
н	15	25/08/2014	15,1	36	5,4	160	70	10463	0,045	475	545	390	6	-21,9	0,1	2,9	658	60	2,0	21,9	0,4
н	16	25/08/2014																			
Н	17	25/08/2014																			
н	18	25/08/2014																			
н	19	25/08/2014																			
н	20	25/08/2014																			
н	21	25/08/2014																			
н	22	25/08/2014	14,8	82	5,9	119	39	3806	0,046	174	213			-20,8	0,5	2,4	167	12	3,2	12,7	0,4
н	23	25/08/2014	16,2	90	5,2	256	51	2378	0,044	104	155	122	8	-20,7	0,3	3,2	160	1	1,7	18,8	0,3
н	24	26/08/2014																			
н	P1	25/08/2014	17,7	0	4,6	171		34618	0,042	1451	1451	1556	107	-24,8	0,0	4,2	2784	26			
Н	P2	25/08/2014	17,5	80	4,6	227		19372	0,042	817	817	809	3	-17,9	0,0	7,6	33	5			
Н	P 3	25/08/2014	15,7	60	4,6	220		19034	0,045	848	848	844	18	-18,3	0,1	4,5	52	1			
Н	P4	27/08/2014	15,1	0	4,5	94	64	58756	0,045	2668	2732	1470	37	-26,2	0,2	5,8	2724	174			

Légendes en-têtes : I = Campagne. II = Station. III = Date. IV = Température (°C). V = O₂ (%). VI = pH. VII = Conductivité (μ S cm⁻¹). VIII = TA (μ mol L⁻¹). XIX = pCO₂ (ppmv). X = K₀ (mol L⁻¹ atm⁻¹). XI = CO₂ (μ mol L⁻¹). XII = DIC calculé (μ mol L⁻¹). XIII = DIC mesuré (μ mol L⁻¹). XIV = SD DIC mesuré (μ mol L⁻¹). XV = δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD CH₄ (nmol L⁻¹). XIX = SPM (mg L⁻¹). XXI = POC (% SPM). XXII = POC (mg L⁻¹).

I	Ш	Ш	IV	V	VI	VII	VIII	IX	X	XI	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX	ХХ	XXI	XXII
I	1	24/09/2014	15,0	88	7,2	119	458	1348	0,046	61	519			-12,3	0,0	4,9	654	43	6,7	21,5	1,4
I	2	24/09/2014	14,9	90	7,2	113	425	1440	0,046	66	491			-11,9	0,2	4,1	372	32	4,4	16,7	0,7
I	3	23/09/2014	14,8	100	6,9	93	145	1128	0,046	52	197			-13,6	1,2	5,0	351	43	4,4	18,5	0,8
I	4	23/09/2014	14,5	92	6,4	83	121	2788	0,046	129	250			-17,6	0,3	4,8	400	3	3,0	22,4	0,7
I	5	23/09/2014	14,3	80	6 <i>,</i> 3	101	127	5300	0,047	247	374			-19,6	0,0	6,7	1223	1	2,6	21,4	0 <i>,</i> 5
I	6																				
I	7	23/09/2014	14,9	86	7,1	110	545	1366	0,046	62	607			-11,9	0,0	5,5	635	27	3,4	55,0	1,9
I	8	23/09/2014	13,3	88	6,4	75	144	3113	0,048	150	294	269	4	-16,7	0,1	5,6	900	56	1,7	22,8	0,4
I	9	24/09/2014	14,1	95	6,9	86	224	1752	0,047	82	306			-14,0	0,0	3,6	23	8	2,0	25,5	0 <i>,</i> 5
I	10	24/09/2014	14,6	98	7,1	176	337	1508	0,046	70	407			-12,9	0,0	7,9	420	55	12,2	12,7	1,5
I	11	24/09/2014	12,9	100	6,9	82	182	1815	0,049	88	270	271	1	-15,1	0,5	4,6	205	39	1,7	20,4	0 <i>,</i> 3
I	12																				
I	13																				
I	14																				
I	15	22/09/2014	16,0	50	5,1	114	76	27205	0,044	1201	1277			-21,9	0,1	4,1	551	3	3,2	18,1	0,6
I	16																				
I	17																				
I	18																				
1	19																				
1	20																				
1	21																				
1	22	22/09/2014	13,9	67	5,9	85	47	4941	0,047	233	280	208	5	-20,9	0,5	3,2	151	11	1,4	16,4	0,2
1	23	22/09/2014	16,0	107	5,1	181		3241	0,044	143				-20,8	0,3	3,9	95	0	0,5	3,3	0,0
1	24													-18,4	0,0						
I	P1	22/09/2014	17,9	0	4,6	115		91359	0,042	3806	3806			-24,8	0,0	6,1	4152	819			
I	P2	22/09/2014	17,0	78	4,3	292		60546	0,043	2592	2592	937	30			6,5	33	9			
I	P3	22/09/2014	15,8	44	4,4	250		45846	0,044	2037	2037	728	15	-18,5	0,1	10,6	48	0			
I	P4	24/09/2014	15,1	0	4,7	72	86	116377	0,045	5284	5370			-26,2	0,2	5,8	2025	193			

Légendes en-têtes : I = Campagne. II = Station. III = Date. IV = Température (°C). V = O₂ (%). VI = pH. VII = Conductivité (μ S cm⁻¹). VIII = TA (μ mol L⁻¹). XIX = pCO₂ (ppmv). X = K₀ (mol L⁻¹ atm⁻¹). XI = CO₂ (μ mol L⁻¹). XII = DIC calculé (μ mol L⁻¹). XIII = DIC mesuré (μ mol L⁻¹). XIV = SD DIC mesuré (μ mol L⁻¹). XV = δ^{13} C-DIC (‰). XVI = SD δ^{13} C-DIC (‰). XVI = SD δ^{13} C-DIC (‰). XVI = SD CH₄ (nmol L⁻¹). XIX = SPM (mg L⁻¹). XXI = POC (% SPM). XXII = POC (mg L⁻¹).
I	Ш	Ш	IV	V	VI	VII	VIII	IX	Х	ХІ	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX	XX	XXI	XXII
J	1	31/10/2014	12,9	90	7,0	164	502	1619	0,049	79	581	608	7	-12,3	0,0	4,1	531	6	5,7	18,6	1,1
J	2	31/10/2014	12,8	93	7,2	145	451	1404	0,049	69	520	583	16	-12,4	0,0		269	24	4,4	16,8	0,7
J	3	29/10/2014	12,4	85	6,8	118	151	1150	0 <i>,</i> 050	57	208	215	7	-13,4	0,1	3,2	302	4	1,4	47,2	0,7
J	4	29/10/2014	13,2	88	6,4	102	107	2772	0 <i>,</i> 048	134	241	227	10	-17,9	0,1	3,1	205	2	2,3	12,9	0,3
J	5	29/10/2014	13,0	80	6,2	126	123	5201	0,049	253	376	303	1	-21,0	0,7	4,3	829	61	2,4	26,2	0,6
J	6	29/10/2014	12,4	91	7,3	155	715	1245	0 <i>,</i> 050	62	777			-11,5	0,5		442	24	3,8	22,4	0,9
J	7	29/10/2014	12,6	86	7,2	152	670	1441	0,049	71	741	789	1	-12,2	0,2	3,8	344	28	3,7	12,7	0,5
J	8	29/10/2014	12,3	89	6,6	98	123	3183	0 <i>,</i> 050	158	281	252	1	-17,0	0,4	4,9	1260	78	2,6	22,6	0,6
J	9																				
J	10	31/10/2014	12,9	100	7,0	216	357	1686	0,049	82	439	481	4	-13,4	0,0	6,3	272	9	1,1	21,3	0,2
J	11	31/10/2014	12,4	95	6,9	110	191	1836	0 <i>,</i> 050	91	282	292	8	-17,9	0,3	4,7	123	4	2,0	20,0	0,4
J	12																				
J	13																				
J	14																				
J	15																				
J	16																				
J	17																				
J	18																				
J	19																				
J	20																				
J	21																				
J	22	30/10/2014	12,8	80	5 <i>,</i> 8	115	53	4939	0,049	241	294	207	1	-21,9	0,1	3,2	117	9	1,5	18,4	0,3
J	23	30/10/2014	14,2	110	5,1			3504	0,047	164		152	1	-21,4	0,4	3,7	110	0	0,5	3,7	0,0
J	24																				
J	P1	30/10/2014	17,4	19	4,7	107		47061	0,042	1990	1990	849	31	-25,4	0,0	4,0	728	15			
J	P2	30/10/2014	16,8	79	4,4	397		42204	0,043	1818	1818	872	2	-21,1	0,0	7,8	49	0			
J	P3	30/10/2014	15,7	37	4,4	350		46831	0,045	2087	2087	772	7	-17,8	0,2	6,4	77	2			
J	P4	31/10/2014	15,1	0	4,6	91		112334	0,045	5100	5100	1608	21	-27,0	0,2	7,1	2551	163			

Légendes en-têtes : I = Campagne. II = Station. III = Date. IV = Température (°C). V = O₂ (%). VI = pH. VII = Conductivité (μ S cm⁻¹). VIII = TA (μ mol L⁻¹). XIX = pCO₂ (ppmv). X = K₀ (mol L⁻¹ atm⁻¹). XI = CO₂ (μ mol L⁻¹). XII = DIC calculé (μ mol L⁻¹). XIII = DIC mesuré (μ mol L⁻¹). XIV = SD DIC mesuré (μ mol L⁻¹). XV = δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD CH₄ (nmol L⁻¹). XIX = SPM (mg L⁻¹). XXI = POC (% SPM). XXII = POC (mg L⁻¹).

I	Ш	Ш	IV	V	VI	VII	VIII	IX	Х	XI	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX	XX	XXI	XXII
κ	1	21/11/2014	11,3	90	6,7	198	308	1769	0,051	91	399	409	2	-13,1	0,2	7,8	428	22	14,2	15,8	2,2
κ	2	21/11/2014	10,9	92	6,8	181	284	1551	0,052	81	365	378	3	-13,1	0,8	7,5	328	5	11,0	16,5	1,8
κ	3																				
κ	4	19/11/2014	11,1	93	6,3	173	80	2013	0,052	104	184	182	0	-18,6	0,7	8,4	132	7	22,8	18,6	4,2
κ	5	19/11/2014	11,2	90	6,1	217	84	2946	0,052	152	236	182	4	-19,1	0,8	9,8	411	35	19,4	19,1	3,7
κ	6	19/11/2014	10,6	94	7,0	156	465	1485	0,053	78	543	536	6	-13,4	0,4	7,1	425	42	20,4	12,3	2,5
κ	7	19/11/2014	10,6	100	6,9	146	395	1686	0,053	89	484	502	6	-13,0	0,2	7,2	370	19	5,8	18,4	1,1
κ	8	19/11/2014	10,5	93	6,3	127	103	2866	0,053	151	254	164	7	-17,7	0,2	6,1	1041	38	3,5	22,0	0,8
κ	9	21/11/2014	11,9	95	6,5	176	133	3065	0,050	154	287	279	0	-18,2	0,3	5,3	297	10	2,0	22,5	0,5
κ	10	21/11/2014	11,6	100	6,8	260	151	1381	0,051	70	221	202	3	-13,2	0,0	9,5	228	6	12,1	15,1	1,8
κ	11	21/11/2014	11,8	98	6,9	115	184	2128	0,051	107	291	274	2	-15,8	0,3	5,5	148	4	1,6	23,0	0,4
κ	12	21/11/2014	16,1	70	5 <i>,</i> 3	101	55	9072	0,044	399	454	217	2	-22,2	0,1	9,0	67	3			
κ	13	20/11/2014	11,4	94	6,1	187	75	3162	0,051	162	237			-20,1	0,2	5,6	175	11	6,5	18,0	1,2
κ	14	21/11/2014	12,3	86	6,3	245	151	4491	0,050	223	374	294	3	-18,1	0,1	6,1	335	6	1,2	38,0	0,5
κ	15	20/11/2014	12,0	50	5 <i>,</i> 5	179	80	18644	0,050	935	1015	538	8	-22,5	0,5	4,1	702	5	1,1	27,2	0,3
κ	16	20/11/2014	11,5	86	6,1	127	91	4602	0,051	235	326	261	3	-19,1	0,4	6,1	438	14	1,2	34,6	0,4
κ	17																				
κ	18																				
κ	19																				
κ	20																				
κ	21																				
κ	22	20/11/2014	11,4	86	5,7	115	48	4161	0,051	213	261	175	1	-21,9	0,7	3,7	117	3	0,5	47,6	0,2
κ	23	20/11/2014	12,2	91	5 <i>,</i> 3	205		2736	0,050	136		123	0	-20,9	0,4	3,6	106	4	0,5	32,0	0,1
κ	24	19/11/2014	9,7	100	6,1	72	50	1234	0,054	67	117	82	3	-17,0	0,6	5,2	213	4	0,9	28,9	0,3
κ	P1	20/11/2014	16,6	14	4,4	96		103304	0,043	4477	4477	1224	12	-25,0	0,7	5,4	538	17			
κ	P2	20/11/2014	15,7	90	4,7	407		39308	0,045	1752	1752	752	2	-21,0	0,5	8,0	29	7			
κ	P3	20/11/2014	15,3	31	4,3	406		46311	0,045	2090	2090	797	11	-20,4	0,7	6,5	47	5			
κ	P4	21/11/2014	14,5	6	4,4	93		85920	0,046	3976	3976	1102	3	-26,3	0,5	8,1	1391	72			

Légendes en-têtes : I = Campagne. II = Station. III = Date. IV = Température (°C). V = O₂ (%). VI = pH. VII = Conductivité (μ S cm⁻¹). VIII = TA (μ mol L⁻¹). XIX = pCO₂ (ppmv). X = K₀ (mol L⁻¹ atm⁻¹). XI = CO₂ (μ mol L⁻¹). XII = DIC calculé (μ mol L⁻¹). XIII = DIC mesuré (μ mol L⁻¹). XIV = SD DIC mesuré (μ mol L⁻¹). XV = δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD C (mg L⁻¹). XIII = CO₂ (μ mol L⁻¹). XIX = SD C (μ cmol L⁻¹). XIX = SPM (mg L⁻¹). XII = POC (μ SPM). XXII = POC (μ L⁻¹).

Ι	Ш	Ш	IV	V	VI	VII	VIII	IX	X	XI	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX	ХХ	XXI	XXII
L	1	18/12/2014	11,4	92	7,0	181	360	1588	0,051	81	441	483	3	-12,8	0,2	5,6	474	15	10,0	17,1	1,7
L	2	18/12/2014	11,4	93	7,2	167	369	1359	0,051	70	439	496	3	-12,9	0,2	5,2	339	14	9,5	16,8	1,6
L	3	17/12/2015	10,8	96	7,0	146	124	1171	0,052	61	185	196	2	-14,0	0,0	4,7	286	6	4,4	20,6	0,9
L	4	17/12/2014	11,0	92	6,2	142	91	2092	0,052	108	199	205	6	-17,1	0,3	4,7	174	3	12,6	21,1	2,7
L	5	17/12/2014	10,8	90	6,2	186	68	2510	0,052	131	199	179	12	-18,7	0,1	6,1	453	17	13,7	18,4	2,5
L	6	17/12/2014	10,9	93	7,4	151	533	1196	0,052	62	595	630	4	-12,1	0,1	6,0	449	1	5,8	24,0	1,4
L	7	17/12/2014	10,5	90	7,3	149	450	1438	0,053	76	526	585	1	-12,6	0,2	5,1	342	33	7,6	17,4	1,3
L	8	17/12/2014	10,8	93	6,5	111	100	2373	0,052	124	224	188	7	-17,5	0,1	5,9	756	26	1,9	24,7	0,5
L	9	16/12/2014	10,4	91	6,4	174	130	2220	0,053	118	248	199	2	-16,8	0,0	5,0	94	1	1,5	19,8	0,3
L	10	18/12/2014	11,4	92	6,8	204	109	1193	0,051	61	170			-13,9	0,3	7,6	198	7	12,3	12,8	1,6
L	11	15/12/2014	10,6	94	6,9	134	82	1591	0,053	84	166	266	1	-15,6	0,1	5,9	118	3	1,5	21,9	0,3
L	12	15/12/2014	12,8	55	6,0	125	280	3025	0,049	148	428	443	2	-16,2	0,4	8,3	59	4			
L	13	15/12/2014	9,1	96	6,4	157	75	1658	0,055	92	167	170	2	-17,1	0,4	5,1	71	7	3,0	18,6	0,6
L	14	16/12/2014	10,3	91	6,6	231	157	2320	0,053	123	280	277	7	-16,7	0,3	7,1	114	1	1,3	24,2	0,3
L	15	15/12/2014	9,0	90	6,7	110	68	2967	0,056	165	233	187	2	-19,0	0,2	5,1	152	1	0,8	31,0	0,3
L	16	15/12/2014	9,1	96	6,2	101	53	2148	0,055	119	172	171	2	-18,7	0,9	7,2	103	2	0,9	32,4	0,3
L	17	15/12/2014	8,1	98	6,5	154	82	1010	0,057	58	140	142	3	-14,2	0,0	8,1	99	3	0,7	31,2	0,2
L	18																				
L	19																				
L	20																				
L	21																				
L	22	15/12/2014	9,7	90	6,0	114	58	3016	0,054	163	221	214	5	-21,4	0,5	5,0	122	17	2,1	16,6	0,4
L	23	15/12/2014	10,7	94	5,5	195	31	2272	0,052	119	150			-20,0	0,2	4,0	72	3	1,1	17,4	0,2
L	24	17/12/2014	10,6	92	6,0	79	248	1834	0,053	96	344	102	3	-19,5	0,1	5,9	140	0	0,9	31,9	0,3
L	P1	16/12/2014	15,3	55	4,5	268	47	36856	0,045	1663	1710	923	19	-23,4	0,1	7,4	176	1			
L	P2	16/12/2014	14,5	85	4,5	400		22348	0,046	1034	1034	650	40	-20,8	0,1	8,5					
L	P 3	16/12/2014	15,2	50	4,3	467		21225	0,045	961	961	625	26	-19,6	0,2	7,6	43	5			
L	P4	16/12/2014	13,7	3	4,7	91		39005	0,047	1852	1852	1369	23	-25,5	0,0	8,1	4101	160			

Légendes en-têtes : I = Campagne. II = Station. III = Date. IV = Température (°C). V = O₂ (%). VI = pH. VII = Conductivité (μ S cm⁻¹). VIII = TA (μ mol L⁻¹). XIX = pCO₂ (ppmv). X = K₀ (mol L⁻¹ atm⁻¹). XI = CO₂ (μ mol L⁻¹). XII = DIC calculé (μ mol L⁻¹). XIII = DIC mesuré (μ mol L⁻¹). XIV = SD DIC mesuré (μ mol L⁻¹). XV = δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD C (mg L⁻¹). XIII = CO₂ (μ mol L⁻¹). XIX = SD C (μ cmol L⁻¹). XIX = SPM (mg L⁻¹). XII = POC (μ SPM). XXII = POC (μ L⁻¹).

1	Ш	Ш	IV	V	VI	VII	VIII	IX	X	XI	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX	ХХ	XXI	XXII
М	1	29/01/2015	9,1	80	6,8	184	250	1517	0,055	84	334	373	7	-12,9	0,2	5,4	606	23	8,7	17,1	1,5
М	2	29/01/2015	9,0	80	6,9	167	230	1282	0,056	71	301	230	11	-12,8	0,4	5,0	329	7	8,3	15,6	1,3
М	3	28/01/2015	8,1	91	6,4	173	83	1219	0,057	70	153	160	1	-14,6	0,0	4,5	376	2	6,8	16,6	1,1
М	4	28/01/2015	8,8	97	6,1	164	65	1981	0,056	111	176	138	3	-18,4	0,1	4,2	264	13	6,0	21,8	1,3
М	5	28/01/2015	8,4	91	5,9	181	48	2433	0,057	138	186			-19,4	0,1	9,5	566	14	5,3	22,1	1,2
М	6	28/01/2015	7,8	90	6,9	145	406	1105	0,058	64	470	508	5	-12,1	0,1	4,5	484	4	14,6	12,1	1,8
М	7	28/01/2015	7,9	88	6,9	140	334	1314	0,058	76	410	382	10	-12,4	0,2	4,7	358	6	6,8	20,0	1,4
М	8	28/01/2015	8,2	94	6,2	119	80	1814	0,057	104	184	148	4	-17,4	0,5	5,4	562	3	1,6	30,0	0,5
М	9	29/01/2015	10,7	82	6,2	202	98	2875	0,052	151	249	249	2	-19,0	0,1	3,6	166	5	4,2	21,8	0,9
М	10	29/01/2015	8,9	93	6,6	187	75	1191	0,056	66	141	133	3	-15,5	0,2	6,3	233	2	12,6	13,0	1,6
М	11	29/01/2015	10,5	90	6,7	108	84	2045	0,053	108	192	214	4	-18,4	0,1	8,7	113	5	6,1	21,2	1,3
М	12	29/01/2015	11,0	82	6,2	107	174	6304	0,052	327	501	498	3	-20,5	0,1	6,9	105	14			
М	13	26/01/2015	7,2	94	6,0	153	67	3029	0,059	179	246	217	2	-20,6	0,2	3,4	36	6	2,6	20,9	0,5
М	14	29/01/2015	10,7	82	6,2	180	113	3521	0,052	184	297	309	5	-19,3	0,1	7,6	488	19	4,8	0,0	0,0
М	15	26/01/2015	5,6	90	6,1	103	57	2021	0,063	127	184	128	1	-19,7	0,2	7,7	61	1	1,8	25,6	0,5
М	16	26/01/2015	5,7	90	6,2	107	53	2221	0,062	139	192	176	6	-19,8	0,2	6,4			1,1	21,3	0,2
М	17	26/01/2015	4,8	92	6,8	149	65	1236	0,065	80	145	144	1	-16,8	0,2	6,2	153	5	1,0	27,9	0,3
М	18	26/01/2015	8,2	81	6,0	195	127	2374	0,057	136	263	446	1	-20,8	0,1	27,5	226	4	1,4	24,6	0,3
М	19	26/01/2015	7,1	106	6,6	337	302	3549	0,059	211	513	564	5	-11,3	0,3	6,8	62	4	8,4	15,8	1,3
М	20	26/01/2015	6,7	97	6,0	311	54	2302	0,060	139	193	198	1	-15,8	0,3	8,6	90	0	1,6	36,5	0,6
М	21	26/01/2015	6,4	100	6,2	308	41	1043	0,061	63	104	105	2	-13,9	0,2	7,4	32	0	2,1	23,2	0,5
М	22	26/01/2015	6,3	92	6,1	137	54	1872	0,061	114	168	167	1	-19,1	0,3	5,4	133	2	1,6	26,3	0,4
М	23	26/01/2015	7,0	92	6,1	148	42	1744	0,060	104	146	142	2	-17,5	0,5	4,0	96	4	2,4	21,8	0,5
М	24	28/01/2015	8,3	98	5,5	82	39	2013	0,057	115	154	156	0	-20,5	0,0	3,7	111	1	1,2	26,4	0,3
М	P1	27/01/2015	12,6	52	4,6	215	85	17317	0,049	852	937	466	15	-25,9	0,0	4,2	42	3			
Μ	P2	27/01/2015	12,2	92	4,6	456		24274	0,050	1210	1210	835	17	-22,0	0,1	4,4	31	4			
Μ	P3	27/01/2015	14,5	58	4,3	320		20954	0,046	970	970	857	1	-19,7	0,0	3,8	28	0			
Μ	P4	27/01/2015	11,9	10	4,4	95	59	37673	0,050	1896	1955	907	25	-27,6	0,1	6,9	371	7			
Μ	P5	27/01/2015	12,2	10	4,8	115	96	39013	0,050	1945	2041	1469	3	-26,8	0,2	9,1	538	4			

Légendes en-têtes : I = Campagne. II = Station. III = Date. IV = Température (°C). V = O₂ (%). VI = pH. VII = Conductivité (μ S cm⁻¹). VIII = TA (μ mol L⁻¹). XIX = pCO₂ (ppmv). X = K₀ (mol L⁻¹ atm⁻¹). XI = CO₂ (μ mol L⁻¹). XII = DIC calculé (μ mol L⁻¹). XIII = DIC mesuré (μ mol L⁻¹). XIV = SD DIC mesuré (μ mol L⁻¹). XV = δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD CH₄ (nmol L⁻¹). XIX = SPM (mg L⁻¹). XXI = POC (% SPM). XXII = POC (mg L⁻¹).

I	Ш	Ш	IV	V	VI	VII	VIII	IX	X	XI	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX	ХХ	XXI	XXII
Ν	1	02/03/2015	11,5	76	6,4	143	146	3351	0,051	171	317			-20,3	0,2	9,3	308	22	4,9	29,1	1,4
Ν	2	02/03/2015	11,1	84	6,7	138	98	1993	0 <i>,</i> 052	103	201			-18,1	0,3	9,0	270	8	5,7	17,6	1,0
Ν	3	03/03/2015	11,6	90	6,1	140	185	1903	0,051	97	282	280	1	-26,3	0,0	9,3	125	16	17,9	16,2	2,9
Ν	4	03/03/2015	11,7	90	5 <i>,</i> 8	121	50	2600	0,051	132	182	244	4	-33,0	0,5		108	3	5,2	30,2	1,6
Ν	5	03/03/2015	11,1	77	5,7	135	65	4895	0 <i>,</i> 052	253	318	325	10	-28,9	0,1	13,2	312	21	8,6	23,4	2,0
Ν	6	03/03/2015																			
Ν	7	03/03/2015	11,4	88	6,3	95	83	1767	0,051	90	173	197	5	-35,4	0,1	11,3	253	6	31,0	11,9	3,7
Ν	8	03/03/2015	11,9	85	6,0	83	59	2313	0,050	116	175	167	2	-26,6	0,3	10,2	124	8	6,9	22,6	1,5
Ν	9	02/03/2015	12,0	74	5,9	175	93	6009	0,050	301	394			-23,3	0,0	6,1	294	11	20,7	22,6	4,7
Ν	10	02/03/2015	10,9	92	5 <i>,</i> 8	130	61	2442	0,052	127	188	154	1	-21,4	0,0	13,2	103	4	60,0	8,7	5,2
Ν	11	02/03/2015	11,9	89	5,0	74	89	2629	0,050	132	221	159	3	-27,4	0,2	30,9	124	4	49,0	11,8	5 <i>,</i> 8
Ν	12	02/03/2015	12,0	79	6,1	111	194	6557	0,050	329	523	415	18	-20,4	0,1	6,8	75	9			
Ν	13	05/03/2015	9,2	84	5,6	131	56	5852	0,055	323	379	301	6	-24,0	0,2	4,5	190	13	5,1	24,9	1,3
Ν	14	02/03/2015	11,8	74	5,7	145	110	6645	0,051	336	446			-22,2	0,0	7,2	731	5	20,3	23,6	4,8
Ν	15	05/03/2015	7,9	91	5 <i>,</i> 8	91	34	2749	0,058	159	193	141	5	-25,1	0,6	5,3	167	8	2,2	29,6	0,7
Ν	16	05/03/2015	8,1	81	5,6	105	53	2900	0,057	166	219			-27,6	0,2	5,2	138	10	2,9	27,0	0,8
Ν	17	05/03/2015	8,0	90	5,9	120	50	2874	0,057	165	215			-22,1	0,2	9,4	156	2	1,4	51,7	0,7
Ν	18	05/03/2015	10,1	70	6,0	254	141	8443	0,053	451	592			-27,6	1,3	6,7	395	14	1,9	37,6	0,7
Ν	19	05/03/2015	10,8	88	5,9	233	113	4075	0,052	213	326	415	19	-27,5	0,1	7,6	140	2	0,9	48,2	0,4
Ν	20	05/03/2015	10,6	90	5 <i>,</i> 8	252	66	6762	0,053	355	421	485	5			10,1	69	0	2,1	31,5	0,7
Ν	21	05/03/2015	9,6	92	5 <i>,</i> 8	244	61	4830	0,054	263	324			-25,3	0,0	10,3	87	0	2,9	32,0	0,9
Ν	22	05/03/2015	8,9	93	6,0	123	43	2790	0 <i>,</i> 056	155	198			-25,9	0,2	6,4			2,7	22,5	0,6
Ν	23	05/03/2015	8,9	94	6,1	135	44	2392	0 <i>,</i> 056	133	177			-21,5	0,2	6,6	101	8	5,6	19,1	1,1
Ν	24	03/03/2015	11,2	83	5,5	83	45	3587	0 <i>,</i> 052	185	230	175	6	-23,3	0,0	5,8	981	50	3,9	20,7	0,8
Ν	P1	04/03/2015	11,8		4,8	185	82	25737	0,051	1300	1382	948	96	-27,9	0,4	3,3	2884	98			
Ν	P2	04/03/2015	10,7		4,9	365	86	23154	0,052	1213	1299			-21,4	0,1	7,1	26	1			
Ν	P3	04/03/2015	13,9		4,4	352		19808	0,047	934	934	574	4	-19,8	0,0	4,9	24	1			
Ν	P4	04/03/2015	10,6	12	4,0	93		32522	0,053	1710	1710	1372	19	-26,8	0,1	44,0	131	11			
Ν	P5	04/03/2015	10,2		4,4	70		28403	0,053	1514	1514	1035	22	-26,6	0,2	18,3	50	1			

Légendes en-têtes : I = Campagne. II = Station. III = Date. IV = Température (°C). V = O₂ (%). VI = pH. VII = Conductivité (μ S cm⁻¹). VIII = TA (μ mol L⁻¹). XIX = pCO₂ (ppmv). X = K₀ (mol L⁻¹ atm⁻¹). XI = CO₂ (μ mol L⁻¹). XII = DIC calculé (μ mol L⁻¹). XIII = DIC mesuré (μ mol L⁻¹). XIV = SD DIC mesuré (μ mol L⁻¹). XV = δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD CH₄ (nmol L⁻¹). XIX = SPM (mg L⁻¹). XXI = POC (% SPM). XXII = POC (mg L⁻¹).

I.	Ш	Ш	IV	V	VI	VII	VIII	IX	Х	XI	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX	ХХ	XXI	XXII
0	1	08/04/2015	11,8	92	7,0	143	260	1670	0,051	84	344	306	4	-13,9	0,1	6,2	982	0	7,9	15,7	1,2
0	2	08/04/2015	11,4	89	6,9	150	235	1435	0,051	73	308	249	11	-14,1	0,4		472	17	7,9	15,2	1,2
0	3	07/04/2015	11,3	94	6,6	147	97	1375	0,051	71	168	130	3	-17,8	0,0	2,4	300	21	7,6	16,3	1,2
0	4	07/04/2015	11,9	97	6,2	140	73	2570	0,050	129	202	147	0	-19,9	0,4	4,9	429	15	4,9	21,8	1,1
0	5	07/04/2015	11,5	87	6,0	168	53	3200	0,051	163	216	149	6	-20,9	0,0	6,3	972	40	5,1	23,3	1,2
0	6	07/04/2015	10,7	91	7,2	134	354	1305	0,052	68	422	386	11	-12,0	0,2	5,7	588	8	8,3	16,7	1,4
Ο	7	07/04/2015	11,3	91	7,1	126	294	1470	0,051	75	369	344	21	-13,5	0,3	7,2	484	44	7,9	16,4	1,3
Ο	8	07/04/2015	11,1	94	6,3	122	81	2175	0,052	112	193	141	1	-18,0	0,1	6,5	337	10	1,8	29,3	0,5
0	9	08/04/2015	10,1	88	6,3	200	108	2395	0,053	128	236	225	7	-19,2	0,2	4,1	287	5	1,3	23,3	0,3
0	10	08/04/2015	10,8	92	6,6	184	76	1305	0,052	68	144	157	1	-19,3	0,1	5,9	288	10	6,1	16,7	1,0
0	11	08/04/2015	10,9	96	6,5	107	137	2185	0,052	114	251	246	13	-17,4	0,1	5,1	168	0	3,0	21,0	0,6
0	12	08/04/2015	13,6	77	5,9	106	150	9950	0,048	474	624	615	3	-21,5	0,5	6,9	73	6			
Ο	13	09/04/2015	9,9	86	6,0	149	57	3615	0,054	195	252	194	12	-20,9	0,2	3,3	128	11	0,8	39,0	0,3
0	14	08/04/2015	10,1	90	6,4	210	117	2395	0,053	128	245	220	2	-16,7	0,7	7,0	241	1	1,6	24,0	0,4
0	15	09/04/2015	11,1	85	6,2	101	58	2335	0,052	121	179	156	5			4,1	211	0	2,2	27,9	0,6
0	16	09/04/2015	10,3	92	6,0	106	55	2815	0,053	150	205	193	6	-20,3	0,4	3,8	156	11	0,5	61,2	0,3
0	17	09/04/2015	10,3	96	6,3	132	71	1585	0,053	84	155	110	2	-20,7	0,2	7,0	218	22	0,4	81,9	0,4
0	18	09/04/2015	11,3	95	6,2	217	145	4825	0,051	248	393	408	2	-17,3	0,0	18, 2	294	3			
Ο	19	09/04/2015	11,9	102	6,2	288	137	4560	0,050	230	367	310	3	-17,5	0,4	6,7	468	13			
0	20	09/04/2015	12,3	111	6,0	206	51	3285	0,050	163	214	218	14	-15,1	0,2	8,0	64	4			
0	21	09/04/2015	12,2	107	6,1	272	51	2405	0,050	120	171	101	9	-17,6	0,7	7,2	82	4	2,1	30,8	0,6
0	22	09/04/2015	12,1	95	6,0	123	46	2950	0,050	148	194	180	5	-20,2	0,0		124	11	1,6	26,0	0,4
0	23	09/04/2015	12,4	96	6,0	160	41	2435	0,050	121	162			-18,3	0,2	6,8	167	5	2,7	24,1	0,7
Ο	24	07/04/2015	11,1	96	5,9	86	44	2535	0,052	131	175	177	4	-20,8	0,4	3,9	149	4	1,2	29,1	0,4
0	P1	10/04/2015	12,1	47	4,7	151	77	30520	0,050	1526	1603	1424	17	-25,7	0,1	5,2	2830	381			
0	P2	10/04/2015	11,6	93	4,8	410	100	28953	0,051	1472	1572	1235	2	-21,9	0,2	6,7	44	0			
0	P 3	10/04/2015	13,3	72	4,4	367	130	21700	0,048	1043	1173	928	1	-20,1	0,5	5,2	39	3			
0	P4	10/04/2015	11,1	3	4,2	102		46046	0,052	2380	2380	2111	2	-27,6	0,6	20,6	568	69			
0	P5	10/04/2015	10,7	31	4,6	67	96	29665	0,052	1554	1650	1281	10	-26,7	0,0	18,6	53	2			

Légendes en-têtes : I = Campagne. II = Station. III = Date. IV = Température (°C). V = O₂ (%). VI = pH. VII = Conductivité (μ S cm⁻¹). VIII = TA (μ mol L⁻¹). XIX = pCO₂ (ppmv). X = K₀ (mol L⁻¹ atm⁻¹). XI = CO₂ (μ mol L⁻¹). XII = DIC calculé (μ mol L⁻¹). XIII = DIC mesuré (μ mol L⁻¹). XIV = SD DIC mesuré (μ mol L⁻¹). XV = δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD CH₄ (nmol L⁻¹). XIX = SPM (mg L⁻¹). XXI = POC (% SPM). XXII = POC (mg L⁻¹).

Ι	Ш	Ш	IV	V	VI	VII	VIII	IX	X	XI	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX	ХХ	XXI	XXII
Р	1	04/05/2015	15,9	85	7,0	148	243	1775	0,044	79	322	324	4	-14,7	0,2	9,7	509	20	11,6	16,4	1,9
Р	2	04/05/2015	15,8	89	7,0	141	211	1730	0,044	77	288	222	26	-14,4	0,1	6,7	168	1	11,0	14,7	1,6
Р	3	05/05/2015	16,1	89	6,4	135	91	1565	0,044	69	160	149	5	-16,2	0,1	5,5	363	24	9,0	19,8	1,8
Р	4	05/05/2015	16,1	89	6,4	133	66	2485	0,044	109	175	172	4	-19,8	0,4	6,0	40	1	7,4	20,2	1,5
Р	5	05/05/2015	16,1	84	6,1	159	62	3200	0,044	141	203	155	4	-19,7	0,1	7,4	501	32	7,8	22,3	1,7
Р	6	06/06/2015	15,4	92	7,3	133	365	1435	0,045	65	430	406	12	-12,7	0,2	6,7	562	33	13,7	15,4	2,1
Р	7	05/05/2015	16,1	87	7,1	126	265	1700	0,044	75	340	343	1	-14,5	0,2	7,6	394	10	13,8	11,7	1,6
Р	8	05/05/2015	15,8	95	6,4	118	93	2060	0,044	92	185	137	2	-17,7	0,2	7,1	376	0	2,3	30,4	0,7
Р	9	04/05/2015	16,5	94	6,4	180	122	2945	0,043	128	250	228	3	-17,7	0,0	4,6	168	10	0,7	36,9	0,3
Р	10	04/05/2015	16,9	92	6,7	180	94	1590	0,043	68	162	359	1	-16,8	0,1	7,6	130	16	9,3	15,5	1,4
Р	11	04/05/2015	13,8	95	6,7	107	124	2360	0,047	112	236	333	15	-14,8	0,2	6,1	88	3	4,7	20,2	0,9
Р	12	04/05/2015	14,1	75	6,0	106	156	10100	0,047	473	629	408	9	-21,9	0,9	7,0	123	1			
Р	13	06/05/2015	13,7	94	6,1	147	53	2860	0,047	136	189	189	1	-18,1	0,0	3,9	85	3	0,7	47,9	0,3
Р	14	04/05/2015	17,4	97	6,7	215	179	1560	0,042	66	245	230	7	-17,4	0,2	6,2	165	5	1,6	16,2	0,3
Р	15	06/05/2015	14,7	91	6,3	99	62	2320	0,046	107	169	163	7	-18,7	0,6	5,2	177	2	1,3	29,7	0,4
Р	16	06/05/2015	14,4	92	6,2	102	58	2600	0,046	121	179	174	2	-19,2	0,1	5,0	130	10	1,1	30,5	0,3
Р	17	06/05/2015	14,7	95	6,5	123	65	1495	0,046	69	134	105	3	-17,4	0,1	12,6	151	1	1,4	29,7	0,4
Р	18	06/05/2015	15,1	110	6,4	211	161	3835	0,045	174	335	325	1	-13,2	0,5	6,4	124	17	2,2	29,2	0,6
Р	19	06/05/2015	15,2	97	6,3	305	150	4550	0,045	206	356	319	4	-15,2	0,0	6,6	120	2	1,1	40,0	0,4
Р	20	06/05/2015	15,7	109	6,2	260	54	2380	0,045	106	160	121	5	-12,8	0,2	9,5	36	4	1,9	26,7	0,5
Р	21	06/05/2015	15,8	99	6,3	266	61	1735	0,044	77	138	141	4	-16,0	0,1	7,4	39	2	2,1	24,9	0,5
Р	22	06/05/2015	14,9	92	6,2	123	64	2700	0,046	123	187	155	8	-19,8	0,2	6,3	92	20	1,9	26,8	0,5
Р	23	06/05/2015	14,7	92	6,1	154	42	2420	0,046	111	153	116	2	-18,5	0,0	4,7	127	5	3,2	22,7	0,7
Р	24	05/05/2015	15,5	95	6,0	83	32	2220	0,045	100	132	106	3	-20,3	0,2	5,1	79	0	1,6	25,7	0,4
Р	P1	07/05/2015	13,3	50	4,8	163	59	21915	0,048	1054	1113	949	1	-24,4	0,0	4,7	1958	5			
Р	P 2	07/05/2015	13,2	88	4,9	397	66	31873	0,048	1538	1604	1424	109	-20,9	0,1	7,6	49	2			
Р	P 3	07/05/2015	13,4	70	4,5	371	104	21800	0,048	1045	1149	918	1	-18,9	0,0	5,3	38	5			
Р	P4	07/05/2015	12,0	2	4,5	99	102	46191	0,050	2318	2420	1902	48	-26,4	0,1	9,2	2420	137			
Р	P5	07/05/2015	12,3	24	4,8	93	35	42770	0,050	2125	2160	1669	54	-25,3	0,1	10,0	132	4			

Légendes en-têtes : I = Campagne. II = Station. III = Date. IV = Température (°C). V = O₂ (%). VI = pH. VII = Conductivité (μ S cm⁻¹). VIII = TA (μ mol L⁻¹). XIX = pCO₂ (ppmv). X = K₀ (mol L⁻¹ atm⁻¹). XI = CO₂ (μ mol L⁻¹). XII = DIC calculé (μ mol L⁻¹). XIII = DIC mesuré (μ mol L⁻¹). XIV = SD DIC mesuré (μ mol L⁻¹). XV = δ^{13} C-DIC (‰). XVI = SD δ^{13} C-DIC (‰). XVI = SD δ^{13} C-DIC (‰). XVI = SD CH₄ (nmol L⁻¹). XIX = SPM (mg L⁻¹). XXI = POC (% SPM). XXII = POC (mg L⁻¹).

I	Ш	Ш	IV	V	VI	VII	VIII	IX	X	XI	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX	XX	XXI	XXII
Q	1	04/06/2015	16,9	90	7,2	154	382	1735	0,043	75	457	402	14	-13,2	0,1	4,5	590	32	9,4	19,2	1,8
Q	2	04/06/2015	17,0	86	7,3	150	363	1635	0,043	70	433	418	3	-12,8	0,1	3,3	494	21	10,1	17,4	1,8
Q	3	01/06/2015	15,6	93	7,0	132	129	1330	0,045	59	188			-14,7	0,3	4,7	395	20	8,5	16,6	1,4
Q	4	02/06/2015	15,8	86	6,4	128	97	2810	0,044	125	222	203	16	-18,2	0,7	2,7	411	19	6,5	22,0	1,4
Q	5	02/06/2015	16,5	83	6,2	163	69	3700	0,043	161	230	208	9	-19,9	0,3	5,1	921	33	6,9	20,4	1,4
Q	6	01/06/2015	15,4	88	7,0	146	563	1380	0,045	62	625	534	4			3,3			7,7	17,6	1,4
Q	7	02/06/2015	15,1	86	7,3	179	451	1600	0,045	73	524			-12,8	0,3	3,6	421	14	8,0	18,5	1,5
Q	8	02/06/2015	15,3	98	6,5	106	104	2480	0,045	112	216	185	1	-17,0	0,0	5,0	780	46	2,6	26,9	0,7
Q	9	04/06/2015	18,5	110	6,7	163	177	3000	0,041	123	300	247	3	-16,7	0,1		81	2			
Q	10	04/06/2015	17,5	95	6,9	201	213	1825	0,042	77	290	245	1	-15,3	0,1	3,9	442	2	5,5	16,0	0,9
Q	11	04/06/2015	13,4	98	6,7	110	185	2045	0,048	98	283	245	16	-15,9	0,2	3,4	165	6	2,3	26,7	0,6
Q	12	04/06/2015	15,4	76	5 <i>,</i> 8	105	125	11050	0,045	497	622	631	60	-21,6	0,1	5,4	109	0			
Q	13	01/06/2015	17,1	99	6,1	173	48	2160	0,043	92	140	116	15	-16,2	0,2	2,6	29	1	0,2	107,0	0,2
Q	14	04/06/2015	20,1	91	7,0	215	165	1485	0,039	58	223	208	38	-16,5	0,0	5,1	18	2	0,9	40,5	0,4
Q	15	01/06/2015	16,5	81	6,2	128	91	5185	0,043	225	316	314	9	-19,4	0,2	7,0	319	10	1,6	30,6	0,5
Q	16	01/06/2015	17,6	92	6,2	108	88	3215	0,042	135	223	182	2	-19,2	0,0	3,1	108	6	0,7	54,4	0,4
Q	17	01/06/2015	17,0	87	6,9	120	108	1980	0,043	85	193	202	10	-17,7	0,4	5,0	110	6	1,9	26,4	0,5
Q	18	01/06/2015	18,6	96	6,2	198	157	6100	0,041	249	406	396	27	-16,8	0,1	4,2	166	5	1,3	43,1	0,6
Q	19																				
Q	20	01/06/2015	17,6	96	5 <i>,</i> 8	370	135	11100	0,042	467	602	615	1	-16,9	0,0	2,8	149	2	2,4	43,9	1,0
Q	21										0										
Q	22	01/06/2015	14,7	73	6,0	124	69	5625	0,046	259	328			-21,9	0,1	2,9	148	3	1,9	22,9	0,4
Q	23	01/06/2015	14,4	93	5,7	185	36	2750	0,046	128	164	136	3	-18,9	0,0	2,4	159	6	0,9	40,5	0,4
Q	24	02/06/2015	18,1	95	6,2	128	75	2810	0,041	116	191	142	5	-18,5	0,1	2,8	164	5	0,8	39,0	0,3
Q	P1	03/06/2015	14,3	63	4,8	131	60	20600	0,047	959	1019	814	7	-24,8	0,1	4,8	47	4			
Q	P 2	03/06/2015	14,7	90	5,0	394	34	34793	0,046	1600	1634	1372	7	-20,9	0,6	6,1	16	1			
Q	P3	03/06/2015	13,5	60	4,5	347	102	22300	0,048	1065	1167	978	16	-18,6	0,3	4,1	131	1			
Q	P4	03/06/2015	12,7	2	4,6	100	72	46473	0,049	2279	2351	2007	14	-27,6	2,3	5,5	4380	134			
Q	P5	03/06/2015	13,3	18	4,8	85	32	44336	0,048	2132	2164	1823	25	-26,0	0,1	7,3	167	2			

Légendes en-têtes : I = Campagne. II = Station. III = Date. IV = Température (°C). V = O₂ (%). VI = pH. VII = Conductivité (μ S cm⁻¹). VIII = TA (μ mol L⁻¹). XIX = pCO₂ (ppmv). X = K₀ (mol L⁻¹ atm⁻¹). XI = CO₂ (μ mol L⁻¹). XII = DIC calculé (μ mol L⁻¹). XIII = DIC mesuré (μ mol L⁻¹). XIV = SD DIC mesuré (μ mol L⁻¹). XV = δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD CH₄ (nmol L⁻¹). XIX = SPM (mg L⁻¹). XXI = POC (% SPM). XXII = POC (mg L⁻¹).

I	Ш	Ш	IV	V	VI	VII	VIII	IX	Х	ХІ	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX	ХХ	XXI	XXII
R	1	10/07/2015	18, 3		6,5	156	455	2050	0,041	84	539	488	15	-13,2	0,5	2,7	917	40	8,6	16,2	1,4
R	2	10/07/2015	17,6		7,0	146	375	1550	0,042	65	440	395	7	-12,3	0,2	2,8	478	11	8,4	16,9	1,4
R	3	08/07/2015	18,5	92	6,9	119	147	1300	0,041	53	200			-14,0	0,2	3,9	358	11	6,2	19,3	1,2
R	4	08/07/2015	17,8	91	6,5	106	122	2665	0,042	111	233			-17,6	0,2	2,3	252	5	4,4	22,3	1,0
R	5	08/07/2015	17,8	82	6,2	123	116	4620	0,042	193	309	229	1	-20,0	0,1	4,1	1034	31	4,9	26,2	1,3
R	6	08/07/2015	19,5	90	7,5	145	633	1250	0,040	50	683	671	75	-12,8	0,1	3,3	556	15	7,4	16,5	1,2
R	7	08/07/2015	19,2	88	7,4	135	528	1430	0,040	57	585	533	1	-12,4	0,1	3,0	395	6	6,7	19,1	1,3
R	8	08/07/2015	17,2	88	6,5	100	130	2690	0,043	114	244			-16,9	0,2	3,4	969	35	2,7	22,7	0,6
R	9																				
R	10	08/07/2015	19,9	95	7,1	219	319	1610	0,039	63	382			-13,9	0,2	5,1	486	19	7,9	11,4	0,9
R	11	08/07/2015	14,7	104	6,7	111	184	1600	0,046	74	258			-14,3	0,0	3,0	141	1	3,2	19,4	0,6
R	12	08/07/2015	16,9	76	5 <i>,</i> 8	104	40	10900	0,043	468	508	102	1	-19,5	0,1	2,3	115	3			
R	13																				
R	14																				
R	15	09/07/2015	17,0				57	12200	0,043	522	579			-21,0	0,2	2,4	523	1	3,6	18,2	0,7
R	16	09/07/2015	17,0				55	11700	0,043	501	556	353	5	-23,1	0,1		204	3			
R	17																				
R	18																				
R	19																				
R	20																				
R	21																				
R	22	09/07/2015	17,0				50	5650	0,043	242	292			-21,6	0,2	2,2	158	2	1,6	22,0	0,4
R	23	09/07/2015	17,0				126	2910	0,043	125	251	473	22	-21,9	0,2	6,1	118	0	1,2	28,3	0,3
R	24																				
R	P1	09/07/2015	13,8				58	43154	0,047	2029	2087	1828	5	-25,4	0,5	3,7	30	2			
R	P2	09/07/2015	13,8				115	29665	0,047	1395	1510	1150	4	-18,9	0,1	5,1	26	0			
R	P3	09/07/2015	13,8				87	31916	0,047	1501	1588			-17,6	0,0	4,4	32	1			
R	P4	09/07/2015	13,8		4,1	102	73	49179	0,047	2327	2400	2133	3	-27,8	1,4	3,8	1818	79			
R	P5	09/07/2015	14,0		3,7	92	35	45049	0,047	2118	2153	1779		-25,9	0,3	6,6	153	18			

Légendes en-têtes : I = Campagne. II = Station. III = Date. IV = Température (°C). V = O₂ (%). VI = pH. VII = Conductivité (μ S cm⁻¹). VIII = TA (μ mol L⁻¹). XIX = pCO₂ (ppmv). X = K₀ (mol L⁻¹ atm⁻¹). XI = CO₂ (μ mol L⁻¹). XII = DIC calculé (μ mol L⁻¹). XIII = DIC mesuré (μ mol L⁻¹). XIV = SD DIC mesuré (μ mol L⁻¹). XV = δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD δ^{13} C-DIC (%). XVI = SD CH₄ (nmol L⁻¹). XIX = SPM (mg L⁻¹). XXI = POC (% SPM). XXII = POC (mg L⁻¹).

Annexe 7 : Communications orales et posters

Deirmendjian, L., Anschutz, P., Abril, G. Rapid CO₂ degassing and isotopic equilibration of dissolved inorganic carbon at the groundwater-stream-atmosphere interface. Oral. *ASLO*, summer meeting 2016 – June 5-10, 2016 – Santa Fe, New Mexico, USA.

Deirmendjian, L., Abril, G. CO_2 degassing and $\delta^{13}C$ -DIC equilibration along the groundwater-stream-river continuum in a temperate catchment (Leyre River, France). Oral.

ASLO, winter meeting 2015 – February 22-27, 2015 – Granada, Spain.

Deirmendjian, L., Rapin, A., Anschutz, P., Abril, G. Carbon fluxes at the terrestrialwater interface in the Leyre River Basin. Poster.

14th International Symposium on Oceanography of the Bay of Biscay – June 11-13, 2014 – Bordeaux, France.

Annexe 8 : Soutenance orale (8 décembre 2016)

Plan :

- I. Contexte, problématique et objectifs
- II. Site d'étude, Stratégie d'échantillonnage
- III. Export de C terrestre vers le milieu aquatique
- IV. Devenir de l'export terrestre dans le milieu aquatique
- V. Apports de l'étude et perspectives possibles

> Stratégie d'échantillonnage

- □ Eaux souterraines (3 forestières dont bilos, 2 agricoles) :
- $\checkmark~pCO_2,$ TA, DIC, $\delta^{13}C\text{-DIC},~CH_4,~DOC$
- □ Eaux de surfaces : 24 stations
- ✓ SPM, POC, POC%
- D Prélèvements mensuel Janvier 2014-Juillet 2015
- D Ecologie forestière (Tour à Flux, Parcelle forestière de Bilos) :
- ✓ Pompage biologique net de C atmosphérique par la forêt (NEE)✓ Evapotranspiration (ETR)
- □ Autres mesures à Bilos :
- Précipitation (P), hauteur de nappe (H)

> Plan :

- I. Contexte, problématique
- II. Site d'étude, Stratégie d'échantillonnage
- III. Export de C terrestre vers le milieu aquatique
- IV. Devenir du C terrestre dans le milieu aquatique
- V. Apports de l'étude et perspective possible

> Influence de l'occupation du sol

	Ruisseaux Forestiers	Ruisseaux Agricoles
Conductivité		+ 40%
CH₄ (méthane)	Contraction of the second	+ 48%
DOC (carbone organique dissous)		+ 28%
SPM (matières en suspension)	Constanting of the second	+60%
POC (carbone organique particulaire)	Sector Sector Sector	+60%
%POC (% de POC par rapport aux SPM)	+15%	

Shapiro-Wilk

Mann-Whitney ou t-test + = significativement différent

Mais également mieux contraindre les flux agricoles

- Tour à flux dans parcelles agricoles
- Bilan hydrique dans parcelle agricole en intégrant irrigation, jaugeages dans les fossés.

> Perspective globale

- Appliquer notre modèle dans d'autres bassins versants
- Utiliser notre bilan isotopique sur une base de données mondiale
- Transposer notre stratégie d'échantillonnage dans d'autres types d'environnement ou le drainage est important.

> Remerciements

- Cabex Co
- Membres du Jury : Marie-France DIGNAC, Alberto BORGES, Denis LOUSTAU, Wolfgang LUDWIG.
- Directeur de thèse : Gwenael ABRIL
- Francis COLIN, Mr LALAUX
- Benoît GARAT, société Envolis
- □ Equipe ISPA : Laurent AUGUSTO, Christophe CHIPEAUX, Sébastien LAFONT, Denis LOUSTAU, Alain MOLLIER, Christian MOREL.
- □ Equipe ECOBIOC au complet
- Laboratoire EPOC, Stéphane BUJAN, Vincent HANQUIEZ

