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Alice, Gabriel, et Léonore que j’ai eu plaisir à croiser pendant ces 4 ans, sans oublier Maya
que je connais depuis le début grâce à ses incursions au labo !
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Mathematical and numerical symbols

Symbol Description Page

Sgn : the sign function
[[f ]] : the jump of the function f across the face of an element 40
πL2 : the L2 projection 107
[µ] : the physical dimensions of the quantity µ
t(v) : the transposed of the vector v
Id : the identity matrix 262
∇s ·u : the surfacic divergence of u 262
δ : the Dirac function
χ : the characteristic function 51
h : the mesh size
dt : the time step
d : the space dimension, in this work, d = 2 or 3
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i Introduction

Français

Le sang est un fluide au comportement complexe. Il est composé de plasma, un fluide dans
lequel baignent des cellules : globules rouges, globules blancs et plaquettes. Ces différentes
entités ayant des propriétés mécaniques riches, confèrent au sang des comportements très
variés. Depuis très longtemps, les scientifiques essayent de décrire les écoulements du sang.
Au 19ème siècle, Poiseuille étudiait l’écoulement du sang dans les veines et les capillaires.
Il tenta de décrire le sang comme un fluide homogène, ce qui le conduisit à découvrir, en
même temps que Hagen, la loi qui porte désormais leurs noms.

Cette loi décrit la vitesse d’un fluide dans une conduite cylindrique lorsqu’on lui ap-
plique une différence de pression. De plus, pour un rayon de tube donné, le rapport entre
la différence de pression appliquée au tube et la vitesse maximum acquise par le fluide
donne une définition de la viscosité. Même si cette loi est encore utilisée de nos jours pour
des fluides homogènes, elle n’est pas suffisante pour décrire l’écoulement du sang dans de
petits vaisseaux.

Plus tard, F̊ahræus et Lindqvist découvrirent que la viscosité d’un même échantillon de
sang était plus faible lorsqu’il circulait dans des vaisseaux de très petite taille. Cet effet a
été expliqué par le fait que les globules rouges ont une tendance à migrer vers le centre des
vaisseaux, créant une zone proche des parois dans laquelle le flux sanguin peut s’écouler
facilement, ce qui réduit la résistance globale de l’écoulement et fait apparâıtre la viscosité
plus faible que dans de grands vaisseaux où cette zone sans globules est négligeable. Cet
effet très connu illustre parfaitement le problème de l’étude de l’écoulement du sang.

Les propriétés telles que la viscosité ou la vitesse d’écoulement dans un vaisseau sont
grandement influencées par les propriétés mécaniques individuelles des globules rouges
(99% des cellules présente dans le sang), les interactions entre les globules, les interac-
tions des globules avec la paroi des vaisseaux sanguins, et même les interactions entre les
globules rouges et les autres cellules. De nos jours, une grande partie des études réalisées
pour la compréhension des écoulements sanguins s’attache à comprendre ces phénomènes
au niveau microscopique pour ensuite les appliquer à une description à plus grande échelle.
De plus, l’intérêt grandissant pour les écoulements de fluides biologiques dans des micro
canaux artificiels dans le but de créer des laboratoires sur puce augmente encore le besoin
de connaissance des comportements microscopiques de ces fluides. Pour cela, de nom-
breuses expériences, théories et simulations sont développées. C’est dans cette dernière
catégorie que s’inscrit cette thèse. En effet, depuis la fin du 20ème siècle la simulation
numérique a pris une importance croissante dans tous les domaines de la physique et
des mathématiques. L’évolution constante de la puissance des ordinateurs conduit les
physiciens et mathématiciens à repenser constamment leurs modèles et les faire évoluer
en conséquence. S’il paraissait impossible il y a une dizaine d’année de résoudre en même
temps les équations régissant un fluide, les coupler avec les équations gouvernant les pro-
priétés mécaniques d’un globule rouge, le tout dans une géométrie complexe, l’arrivée de
super calculateurs et la démocratisation du calcul parallèle rendent aujourd’hui ces simu-
lations possibles dans certaines mesures. La recherche de nouvelles méthodes numériques
couplée à des codes de calculs performants est donc un des défis auquel se confrontent
les scientifiques aujourd’hui. De plus l’utilisation de ces codes de calcul pour extraire de
nouvelles lois physique est aussi un axe de recherche prenant une importance grandis-
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sante dans les laboratoire et conduit physiciens et mathématiciens à travailler en étroite
collaboration.

C’est dans ce contexte que se place cette thèse. L’objectif est de développer un cadre
de calcul générique pour la modélisation et la simulation d’écoulements sanguins, et de
l’utiliser dans un contexte de simulation en interaction avec des expériences. Le but
d’avoir un environnement de calcul très générique est qu’il ne soit pas simplement un outil
de simulation, mais aussi un “laboratoire d’expérimentation de méthodes numériques”.
En effet, l’objectif est de pouvoir tester quelques-unes des méthodes de calcul les plus
intéressantes et les différents modèles d’écoulement sanguins. Lors de ce travail, deux
stratégies différentes ont par exemple été testées pour assurer l’inextensibilité de la mem-
brane des objets en suspension. Par soucis de généricité, un effort particulier a été fait
durant le développement pour que le même code de calcul soit utilisable en deux et trois
dimensions, sur une machine de bureau ou un cluster de calcul, sur un seul ou plusieurs
processeurs. Ceci est rendu possible par l’utilisation d’une librairie d’éléments finis util-
isant les avancées des dernières technologies informatiques (1MPI, méta-programmation
et dernière norme du C++).

Durant ce travail, les méthodes numériques développées ont été vérifiées grâce à des
simulations tests dans lesquelles la solution numérique est connue. Elles ont également
été validées sur des simulations dans lesquelles les résultats physiques étaient connus par
expériences, théories ou d’autres simulations.

Bien que les parties numériques de ce travail fassent partie du projet Feel++ in-
teractions fluide structure, les problèmes physiques étudiés sont liés aux recherches de
l’équipe Dynamique des fluides complexes (DYFCOM) du laboratoire interdisciplinaire
de physique dans lequel ce travail a été effectué. Le champ de recherche de cette équipe
est le comportement des fluides complexes en général et celui des fluides complexes bi-
ologiques en particulier. Dans ce contexte, l’équipe étudie entre autre la rhéologie et
l’écoulement du sang par l’intermédiaire d’expériences, de développements théoriques et
bien entendu de simulations. Les travaux numériques effectués dans cette thèse, avaient
comme but, l’application à des problèmes étudiés au sein de l’équipe DYFCOM.

Ainsi, l’étude de l’influence du confinement sur la fréquence des oscillations d’une
bulle a été guidée par les expériences d’O.Vincent [111] sur la cavitation de bulles dans
un hydrogel.

Puis, une méthode de simulation d’objets rigides a été appliqué au problème de la
répartition d’une suspension diluée de particules rigides lors de son passage dans une
bifurcation micro-fluidique. En collaboration avec les expérimentateurs G.Coupier et
T.Podgorski, l’effet de l’accroissement de la concentration de particules dans la branche
recevant le plus grand débit a été expliqué par un effet géométrique de la répartition des
particules dans le canal d’entrée. De plus, nous avons mis à jour l’existence d’une force
poussant les particules vers la branche de plus bas débit et entrant en concurrence avec
le précédent effet.

Enfin, la rhéologie d’une suspension de disques rigides dans un écoulement de ci-
saillement confiné a été étudiée. Nous avons pu confirmer l’influence décroissante de
l’interaction entre les particule sur la viscosité pour des grands confinements. Cet effet
avait déjà été observé en 3D numériquement et expérimentalement et est maintenant con-

1http://fr.wikipedia.org/wiki/Message_Passing_Interface
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firmé en 2D. Durant ce travail, l’influence de la position des particules d’une suspension
diluée relativement aux bords du domaine a aussi été exploré.

Tous les problèmes étudiés en utilisant la méthode de simulation d’objets rigides on
été adaptés à l’étude de d’objets déformables. Dans un futur proche, ces méthodes seront
utilisées pour explorer l’influence de la déformabilité sur ces différents phénomènes.

English

Blood is a fluid having a complex behavior. It is composed of plasma, a fluid in which are
flowing cells: red blood cells, white blood cells and blood platelets. These different cells
having rich mechanical properties, confer to blood diverse behaviors. For a long time,
scientists have tried to describe blood flows. In the 19th century, Poiseuille studied blood
flow in veins and capillaries. He tried to describe blood as a homogeneous fluid, which
led him to discover, at the same time as Hagen, the law which carries their names.

This law describes the velocity of a fluid in a cylindrical channel when one applies
a pressure different at the extremities. Moreover, for a given channel radius, the ratio
between the pressure difference and the maximum velocity of the fluid gives a measure
of the viscosity. Even if this law is still used nowadays for homogeneous fluids, it is not
sufficient to describe the flow of blood in very small vessels.

Later, F̊ahræus and Lindqvist discovered that the viscosity of a given sample of blood
is smaller when it flows in very small vessels. This effect has been explained by the fact
that red blood cells tend to migrate toward the center of the channel, making a cell free
layer around the vessel walls in which the plasma can circulate more easily. This reduces
the global resistance of the flow and makes the viscosity appear smaller than in large
channels in which the free layer zone impact is negligible. This famous effect illustrates
the problem of the study of blood flow.

The properties such as the viscosity or the flowing velocity in a channel are greatly
influenced by the individual mechanical properties of red blood cells (99% of the cells
present in the blood), the interaction between the red blood cells, the interaction between
the cells and the vessel walls, and even the interactions between the red blood cells and
the other cells. Nowadays, a large part of the study devoted to the understanding of
blood flow is trying to understand these phenomenons at a microscopic scale to apply
them to a macroscopic one. Moreover, the increasing interest for the biological flows in
artificial microfluidic devices with the goal to create lab on chip tools increases the need
of knowledge of the microscopic behaviors of these fluids.

To this goal, many experiments, theories and simulations have been developed. This
thesis is consecrated to this last category. Indeed, since the end of the 20th century
the numerical simulation took an increasing importance in all the fields of physics and
mathematics. The constant evolution of computers leads physicists and mathematicians
to re-think their models and make them evolve. Although it seemed impossible ten years
ago to solve at the same time the equations governing a fluid, couple them with the one of
the mechanical properties of red blood cells and do so in a complex geometry, the rise of
super computers and the ready availability of parallel computing make these simulations
possible today in some measure. The research of new numerical methods coupled to
powerful codes is thus one of the challenge faced by scientists today. Moreover the use
of these codes to extract new physical laws is also a research axis growing in laboratories
and leads physicists and mathematicians to work in close collaboration.
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It is in this context that belongs this thesis. The objective is to develop a generic
numerical framework for the model and simulation of blood flows, and to use it in a
context of simulation in close collaboration with experiments. The goal to have a very
generic framework environment is that it is not simply a numerical tool to make simulation,
but also a laboratory to experiment new numerical methods. Indeed, the objective is to
be able to test some of the most promising techniques and different models for blood flow
simulation. For example, during this work, two different strategies have been tested to
insure the inextensibility of the cells membrane. For general purposes, a particular care
has been taken during the development in order to be able to use the same code in 2D or
3D, on a cluster or on a single computer, on a single or several processors. This has been
possible thanks to the use of a finite element library using some of the latest programming
tools (2MPI, meta-programming, and recent C++ norms).

During this work, the numerical methods have been verified thanks to test simulations
in which the numerical solution is known. They have also been validated on simulations
for which the physical result was known by experiment, theory or other simulations.

Although the numerical part of this thesis takes place in the context of the Feel++

fluid structure interaction project, the physical problems studied are related to the re-
searches of the Dynamics of Complex Fluids (DYFCOM) team of the interdisciplinary
laboratory of Physics in which this work has been made. The research subject of this
team is the behavior of complex fluids in general and the one of biological related fluids
in particular. In this context, blood rheology and circulation are studied in the team, ex-
perimentally, theoretically and of course numerically. The numerical developments made
in this work had as goals applications in the fields of interest of the DYFCOM team.

As a matter of fact, the study of the influence of the confinement on the oscillation fre-
quency of a bubble has been suggested by the experiments of O.Vincent [111] on cavitation
of bubbles in an hydrogel.

Then, a solid disk simulation method has then been applied to the problem of the
splitting of a suspension of particles when flowing in a micro fluidic bifurcation. In
collaboration with the experimenters by G.Coupier and T.Podgorski, the effect of the
increasing concentration of particles in the high flow rate branch has been explained by
the geometrical distribution of particles in the inlet channel. Moreover, a force pushing
particles toward the low flow rate branch balancing the previous effect has been discovered.

Finally, the rheology of a suspension of solid disks in a confined shear flow has been
made. We were able to confirm the effect of the decreasing influence of the interactions
between particles on the viscosity for strong confinements. This effect has already been
seen in 3D numerically and experimentally and is now also confirmed in 2D. During this
work, the influence of the position of the particles of a dilute suspension relative to the
walls of a confined shear flow has also been explored.

All the problems studied with the solid disk simulation method have been adapted
to soft object simulations and will be used in a near future to explore the influence of
deformability on these phenomenons.

2http://fr.wikipedia.org/wiki/Message_Passing_Interface
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ii Vesicles as a model for red blood cells

Red blood cells (RBCs) are cells measuring about 7 µm of diameter and having no nu-
cleus. The inside of a RBC is principally composed of hemoglobin and a cytoskeleton.
The surrounding membrane is a bi-layer of phospholipids. Many proteins compose the
membrane in a minor manner compared to the phospholipids as one can see in figure 1. A

Figure 1: Scheme representing the membrane of a red blood cell.

common simple model of red blood cell (RBC) is a vesicle. A vesicle is a fluid drop sur-
rounded by a bi-layer phospholipidic membrane as shown in figure 2. Generally, artificial
vesicles are of the order of 10 µm. A vesicle does not include the cytoskeleton which adds

Figure 2: Scheme of a vesicle. The scale is not correct, the phospholipids are about 5 nm
whereas the diameter of an artificial vesicle is about 10 µm

some elastic properties to the RBC. Nevertheless, a big part of the mechanical behavior
of the RBCs can be reproduced by vesicles. Indeed, both vesicles and RBC membranes
are resist strongly to stretching and both have the same curvature energy expression. One
of the first theoretical works trying to model the vesicle goes back to 1982 with Keller
and Skalak [99], and the first simulation arrived more than 10 years after that with [61]
followed by the first experimental work one year after that [23]. Since then, many works
have been done to understand the behaviors of these objects. From the numerical point
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of view, the system of a single vesicle in a shear or Poiseuille flow has been studied widely
and scientists start to get interested in many vesicle interacting systems or flowing in
complex geometries. Many efforts are done in this sense, and many works are done to
modify existing techniques. We give a short overview of the existing methods to simulate
vesicles and their advantages or drawbacks.

iii State of the art of the simulation of vesicles

The simulation of a vesicle is a difficult task. It is part of the large field of the fluid
structure interactions. Indeed, one has to deal at the same time with the fluid equations
and the membrane of the vesicle having its own properties. Two fluids are involved in
this kind of simulation. The fluids inside and outside the vesicle which are in the general
case different. Thus, the fluid solver has to be able to deal with a viscosity ratio. The
equations involved are the incompressible Navier-Stokes equations in the general case,
which are nonlinear. Most of the time, in microcapillaries, one can consider the limit of
the vanishing Reynolds number and solve the Stokes equations which are linear and thus
easier to handle.
The model for the vesicle has three main properties. The first one is that the membrane
resists stretching. It is modeled as inextensible, its local surface is conserved. The total
volume of the vesicle is also conserved. The membrane can let solvent particles pass
through it, but the osmotic pressure balance insures that in a small time scale, the same
amount of particle is going in and out. Thus in a continuous description, the total volume
of fluid inside the vesicle is conserved. The last property needed to be incorporated in
the models is the fact that it costs some energy to bend the membrane. This energy has
been derived by Canham and Helfrich respectively in [16, 43] and it is proportional to the
square of the curvature of the membrane. Many different methods have been developed to
deal with the membrane and the fluids. One can put them in three categories of methods.
In the pure Lagrangian methods, only the membrane is discretized and one follows each
discretization point individually. In Lagrangian / Eulerian methods, the membrane is
discretized in a Lagrangian manner but the fluid has an Eulerian treatment. And finally,
in the pure Eulerian methods both the membrane and the fluid are seen from an Eulerian
point of view. Let us give a brief overview of some of these methods.

The pure Lagrangian methods

Principle of the boundary integral method

Under the pure Lagrangian methods, we can name all the variants of the boundary integral
methods. They have been introduced for the vesicle problem by Pozrikidis in 2001 [85].
The principle is to use the Green tensor G of the Stokes equation and couple it to a
force giving to the membrane all its properties. The Helfrich energy is derived to give
the curvature force. A tension force is added with a huge energy value which makes the
membrane unstreatchable, in other implementations, a Lagrange multiplier enforces the
local area conservation exactly. A typical expression for the membrane force in 2D is
given by:

f = kB

(
d2κ

ds2
+
κ3

2

)

n− ξκn+
dξ

ds
t
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with κ the curvature of the membrane, n and t the normal and tangent unit vector to
the membrane, s the arc-length coordinate and kB the membrane bending rigidity. ξ is
a tension accounting for the inextensibility. The velocity for a given point of the domain
can be computed as an integral over the membrane boundary. Thus for each point x0 on
which one wants to compute the velocity u(x0), it is given by:

u(x0) = u0(x0) +
1

µ

∫

membrane

G(x− x0)fds

where u0 is the imposed velocity flow without vesicle. Here, G(x − x0)f is the product
matrix-vector resulting in a vector. A more general formulation exists providing the abil-
ity to deal with a different viscosity inside and outside of the vesicle.

To have the evolution of a vesicle in a flow, one has to compute the velocity of each
point of the membrane which depends on an integral of all the other points of the mem-
brane. Then, the membrane position is updated by integration of the velocity. One of
the advantages of this method is that for a 2D problem, the problem is reduced to only
a 1D problem (since only the membrane has to be discretized) and only integrals have to
be calculated. However, the fact that the velocity of each point of the membrane depends
on all the other points makes the complexity of algorithms vary as N2 where N is the
number of discretization points. However, this complexity can be decreased to N log(N)
thanks to a fast multi-pole method [96].

The tensor G can be given for an infinite Stokes fluid, or simple geometry cases like a
semi-infinite fluid (with one wall). This does not make impossible to add other walls, but
one has to integrate over all the walls by addition to the integration over the membrane
which can be costly in the case of a geometry with many walls. The method is well suited
for simulations where the positions and shapes of the particles are important since they
are computed at every time step. They are also good to do rheology since the viscosity of
a suspension can be computed with only the knowledge of the velocity on the walls of the
domain. However, in a simulation where one would like to see for example the velocity
field in all the domain in a complex geometry, one would have to compute an integral for
each point of the domain, running on all points of the complex geometry boundary and all
points of the membrane. This is one of the limitation of this method. It is however very
accurate and efficient for simulation in simple flows and is probably the method which
gave the most numerical results on vesicles until now. Let us present briefly some of the
implementations and results obtained with this method.

The use of the boundary integral method in the literature

In 2009, Veerapaneni et al. [108] have used the boundary integral method where the
Fourier transform of the arc-length is used to compute derivatives of the shape (normal
and curvature). They performed a 2D simulation of 256 highly deformable vesicles in an
unbounded Poiseuille flow. The method has been extended to the 3D case in [109] and
[117, 116]. The boundary integral method has been one of the most used methods and
led to many progress in the understanding of vesicle behaviors. In [54] the authors used a
2D boundary integral method to explore the lateral migration of a vesicle in a Poiseuille
flow. In [57] the authors explored the different shapes of a vesicle in Poiseuille flow and

20



iii. State of the art of the simulation of vesicles Table of Contents

the influence of the relevant parameters. They were able to construct a phase diagram out
of these simulations. The differences between 2D and 3D calculations in Poiseuille flow
have been explored in [55]. The rheology of a single vesicle in a shear flow has also been
explored in [37] where some comparisons with the phase field method have been made.
The rheology of a dilute suspension of vesicles in a curved flow have been studied in [38].

Some other works have been using the Lagrangian point of view for both the fluid
and the membrane. For example, in [79], the authors use a particle collision dynamics to
explore the shapes of vesicles in capillary flows. In this method, the fluid is seen as many
particles interacting by collision and the membrane is meshed independently.

The Lagrangian / Eulerian methods

The fact that the boundary integral method can not handle Navier-Stokes equation and
the difficulty to use it in complex geometries lead researchers to try another strategy in
which the fluid is seen in an Eulerian way which brings the possibility to use the huge
literature on classical fluid solver. By keeping an explicit discretization of the membrane,
the hybrid Lagrangian / Eulerian methods have been created. Indeed, in the Lagrangian
/ Eulerian methods, the membrane is discretized and followed explicitly in a Lagrangian
manner, whereas the fluid equations are solved on a separate grid following an Eulerian
point of view.

The immersed boundary method

Under these methods, the immersed boundary method is one of the most popular. It has
been introduced by Peskin [82] in 1977 for general fluid structure interaction problems
and has been applied to the flow of vesicles in 2007 by Zhang et al. [115]. The principle of
the immersed boundary method is to have two different discretization grids for the fluid
and the membrane. The membrane properties are computed on the membrane grid like
the Helfrich force and the force responsible for the inextensibility. Then some smooth
delta-like functions having a thickness bigger than the step of the fluid grid are used to
distribute these forces on the fluid grid. Then the fluid problem is solved by taking into
account the membrane through the forces applied on it. The method to solve the fluid
problem can be taken as any usual fluid solver : Fourier Transform, lattice Boltzmann
method, finite differences, finite element or finite volume. Finally, the velocity of each
point of the membrane is computed by interpolation of the solution found by the fluid
solver on the membrane grid. The membrane position is finally updated according to
this velocity. This method can handle Stokes, Navier-Stokes or more complicated non
Newtonian flows.
There is no limitation for the method to work in 2D and 3D. The method can also work
in parallel if the fluid solver supports parallel computing. One can see for example [75] in
which an immersed boundary method has been carried on in parallel. The fluid motion
was in this case solved using the finite volume method. There can be many variants of
the immersed boundary method, with different fluid solvers and schemes in integrating
the position of the membrane and also different methods to calculate with accuracy the
curvature of the membrane which is a crucial point. The method can also work in a
complex geometry if the fluid solver provides this possibility. One of the drawback of
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the immersed boundary method is that the interpolation step of the velocity on the
interface grid leads to numerical error. This can cause a loss of mass of the vesicle.
Special care has also to be taken when some particles are entering or leaving the domain.
Indeed, since there is a Lagrangian knowledge of the interface, they have to be destroyed
or reconstructed explicitly at the boundaries. The last drawback of this method is the
difficulty of the method to handle a different viscosity inside and outside a vesicle. In
such case, one has to explicitly locate the points of the fluid mesh being inside or outside
the vesicle. This method gives a lot of results and many different implementations of it
have been made.
In the first implementation [115] the authors used a lattice Boltzmann method as fluid
solver and shown 2D simulations of a vesicle in Poiseuille and shear flows. Kim [60] used
an immersed boundary method in which the fluid was solved using Fourier transforms
which limits the simulation to periodic boundaries. They validated their results on the
equilibrium shapes of vesicles and on the simulation of vesicles in a shear flow. They also
performed simulation with 56 vesicles. In [35], the authors used a finite element solver
and shown the ability of their code to work properly in 3D. In [53] the authors used a
lattice Boltzmann method to solve the fluid equations in 2D and validated their code on
the equilibrium shapes on vesicles. They have also shown the dependency of the tank
treading angle on the confinement of the vesicle.

The other methods

There exist also some other methods, which can be classified as Lagrangian / Eulerian
methods. In [11], a deformation field for the membrane is introduced and advected in
time. The problem of finding the coupled velocity, pressure and deformation field while
taking into account the particle is solved in an Eulerian manner. But at each time step,
the interface is localized and the mesh is adapted so that mesh points are always present
at the exact location of it. In this sense, one can say that there is a Lagrangian handling of
the interface. In other works [107, 47], the coupling between the fluid and the membrane
is not done by the forces exerted on the fluid, but by a force acting on the membrane
discretization points. That is to say, at the step of updating the membrane points, a
force is added to mimic the membrane properties. This is different from the immersed
boundary method in which the force is also computed on the membrane points but is
transmitted to the fluid thanks to the delta-like functions. In such implementation, the
membrane points have generally some thickness and are seen as rigid particles embedded
in the fluid. The membrane is thus seen as a particle necklace.

The pure Eulerian methods

To avoid the interpolation problem of the velocity at membrane points introduced by the
immersed boundary method, to have the possibility to handle easily a viscosity ratio and
to handle also more easily the vesicles at the boundary of the domain, researchers have
introduced some pure Eulerian methods in which both the fluid and the membrane are
lying on the same grid.

22



iii. State of the art of the simulation of vesicles Table of Contents

Phase field and level set methods

The two pure Eulerian methods which have been adapted to the simulation of vesicles are
the phase field method and the level set methods. They both present many similarities.
The principle is to define a field on the mesh which accounts for the position of the
interfaces. From this field, delta-like and Heaviside-like functions are defined which make
possible to differentiate the inner and outer fluid, distribute interfacial forces, and define
different viscosities for each fluid. The normal and curvature of the interfaces are also
computed from this position field.
The fluid equations are solved on the same mesh and the membrane is taken into account
thanks to the forces added on it. The difference between the phase field method and the
level set method resides on the choice of the function representing the position of the
interfaces. In the phase field method, the function representing the two fluids is equal to
1 in one fluid, −1 in the other one and varies smoothly from one to the other. Whereas
for the level set method, the representation of the interface is made by a signed distance
function to the interface. The level set function carries more information than the phase
field one, but it needs to be reset to a distance function often because the advection does
not preserve the distance function property of the field. The methods can work in 2D
and 3D and can be carried in principle on multiple processors. The fluid solver can be
Stokes, Navier-Stokes or more complicated non-Newtonian solver. Complex geometries
can be also handled since the fluid solver is able to deal with it. However, one of the
drawbacks of pure Eulerian methods is that, since the membrane is not independently
meshed, the number of discretization points around it might be low. Indeed, if the mesh
size is the same everywhere in the domain, one has to use very small mesh size to have a
lot of discretization points around the membrane which might be costly. An alternative
is to use a mesh adaptation algorithm but the need to project a solution from a mesh to
another one arises. Usually, to obtain a projection with a good accuracy, a multi step
prediction - projection is needed [12, 62]. Another drawback which is in general attributed
to the level set methods is that the advection and procedure to reset the level set to a
signed distance field leads to some mass loss. This can be reduced by improving the
discretization or using conservative schemes but it might still be an issue for long time
simulations.

Eulerian methods for the simulation of vesicles

A phase field method to do simulation of vesicles has been introduced by Biben and
Misbah in [7] for 2D simulations. It has been then extended to three dimensions in [8].
In these works, a tension field is searched to penalize the extensibility of the membrane.
The problems were solved using finite difference methods. Later, in [20, 21], Cottet et
al. used a level set field to simulate an inextensible object in flow. They showed that the
stretching of the interface was recorded in the level set field and derived a force out of it to
insure the inextensibility of the membrane. This force has been used in the PhD thesis of
Milcent [76] combined with a force accounting for the curvature to simulate vesicles. The
simulations have been made both in 2D and 3D. A comparison between level set and phase
field methods for the simulation of vesicles has then been made in [70] showing all the
similarities between them. Another level set strategy has been developed by Laadhari [62]
during his PhD where the inextensibility of the membrane where insured by a Lagrange
multiplier. The simulations were made in 2D with a finite element method for which a
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mesh adaptation have been developed to follow more precisely the interface. A level set
method in which both the level set and its gradient are advected has been presented in
[92]. Moreover the authors presented a 4 step projection solving Navier Stokes equation
while searching for a surface tension term imposing the inextensibility of the membrane.

iv Contributions and outline of this thesis

The goal of this thesis was to develop a generic framework for the simulation of vesicles
in flow with a maximum of generality to be able to test different models in the future
and compare them. A special care was also taken to make the framework efficient and
easy to handle in order to be applied to real physical problems. Several verifications and
validations have been made. The second goal of the thesis was to prepare some physical
studies on a simpler model of rigid circular particle with the goal to be applied in the
future to vesicles and red blood cells.

First part : the numerical methods

The first part of this thesis is dedicated to the description and the tests of the numerical
methods we used.

First chapter

The numerical framework for the simulation of vesicles had to be able to capture vesicles
with non-unit viscosity ratio, to be easily coupled with Stokes, Navier Stokes or other
fluid solver, and to be easy to run in complex geometries. Following the previous state
of the art on the numerical methods available for vesicles, we choose a level set method
which includes all these ingredients. We also choose a finite element method because of
the great number of theoretical results available in the literature compared to the finite
difference or finite volume methods. Moreover, the finite element method allows us to use
complex geometries. The promising work of A. Laadhari [62] on the simulation of a vesi-
cle with level set method solved by finite element has also been an ingredient for our choice.

Consequently, the first chapter of this thesis is dedicated to the level set method. We
present the strategy we used to create the level set framework, particularly the stabi-
lization methods that we used for the advection of the level set field. We also present
the different strategies of reinitialization of the level set field to a distance function, their
limitations and advantages. We then show our results on a verification test which is a
famous numerical benchmark: the solid rotation of a slotted disk. Finally we show a
simple application of the level set which does not need any fluid solver: the detection of
boundaries in an image.

Second chapter

For the sake of generality, we choose to decouple the fluid solver and the level set advec-
tion solver. That is to say, instead of solving the fluid equations and the advection of the
level set field in the same problem (i.e in the same matrix for the algebraic point of view),
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we choose to solve them one after the other. On the coding part, both fluid and level set
framework are independent and separate C++ classes that we can plug into each other
at will. The goal of having this separation is to be able to couple any fluid solver which is
implemented in our library to the level set framework. For example during this thesis, two
different fluid solvers have been used, a simple Stokes solver and a Navier-Stokes solver.
Thus, in the second chapter, we introduce the fluid equation and their discretization with
the finite element method. Then we show how the coupling between the fluid framework
and the level set framework is done to create a two fluid flow system. We extend this
coupling to a multi-level set framework to show that it is also possible to have an N-fluid
flow system with N greater than two. After that, we present a verification on a precise
numerical benchmark for two fluid flow: the rising of a viscous drop in a fluid. Finally,
we show a validation on a physical problem which is also a problem suggested by exper-
imental physicists in our group: the oscillation frequency of a bubble in a fluid viscous
fluid. Indeed, we have shown that the oscillation frequency of a bubble in a fluid is not
influenced by its confinement.

Third chapter

Although the goal of this thesis was the simulation of vesicles, we wanted to show that it is
also possible to deal with simpler objects with the same framework. Indeed, in a physical
applications context, most of the time, to understand the precise role of the deformability
of the vesicles, one would have to understand first the phenomenon with rigid spheres
or disks. Thus, being able to simulate efficiently these kind of objects is a nice feature
offered by our framework.
This is why the third chapter is dedicated to the simulation of solid objects in flow. We
first make a brief review of the existing methods dedicated to this kind of simulations.
Then we show that two of them are closely linked: the fluid particle dynamics and the
penalty method. Finally we show that the two fluid flow framework presented in chap-
ter two can be easily used for the simulation of solid objects. We also show that, from
the fluid solver point of view, the method is equivalent to a fluid particle dynamics or a
penalty method which brings all the theoretical development made for these methods to
our framework. The only difference with these methods is that with level set method, the
particles are followed in an Eulerian point of view. We then discuss the advantages and
drawbacks compared to the classical Lagrangian point of view used in this context.

Fourth chapter

The fourth chapter is dedicated to our simulation method for vesicles. We start by de-
scribing the curvature force and show that it needs the knowledge of the curvature and
its derivatives with a good accuracy. Thus, we present two strategies to obtain this in-
formation in finite element / level set context which are: increasing the polynomial order
of approximation of the finite element bases, or smoothing the derivative fields. We then
present in detail two different strategies to insure the inextensibility of the membrane
which have been found in the literature and adapted to our framework. We finally make
validation simulations on known results of vesicles which are the equilibrium shapes in

25



iv. Contributions and outline of this thesis Table of Contents

a fluid at rest, the tank treading motion, and the tumbling motion. Finally we compare
both methods.

Second part : the implementation

The implementation of the numerical methods presented in the first part was an important
piece of this work. The second part of this thesis is dedicated to the implementation of
some particular ingredients needed to achieve the simulation of vesicles under flow.

Fifth chapter

The numerical framework that we developed has been based on the finite element library
Feel++ . A special care has been taken to make all the different ingredients needed for
the simulation of vesicles as general as possible both on the methodology and implemen-
tation level. By generality on the methodology level, we mean that we tried as much as
possible to keep every development valid both in 2D and 3D, at order one and higher,
and valid on a single or several CPU’s. The library Feel++ being developed in this
spirit, most of the time, the proper use of the standard features of the library leads to
such genericity. However on few occasions, some specific development had to be made to
keep the code valid. By generality at the implementation level, we mean that we tried to
make the codes as re-usable as possible. In this spirit, most of the tools developed for this
application are meant to become some part of the Feel++ library. Thus, a special design
needed to be done properly to ease the usability and future maintainability of the codes.
To this goal, the object oriented paradigm included in C++ has been a powerful tool. For
example the solution of the advection equation framework, the level set framework, the
fluid framework are all C++ classes. Moreover some special tools helped to build really
independent frameworks, like the 3boost::program options which allows each level set
or fluid solver object to have its own external options when such object is created.
The fifth chapter is dedicated to the implementation tools needed for the simulation of
vesicles in flow and which have been designed to be included in Feel++ . We first
describe the projection operator, which is a small useful tool to ease the use of several
projection methods. Then we explain how the level set class works, what are the essential
features and how to use them in a two fluid flow context. Finally, we explain how we
created the multi-level set class which derives from the level set class making it easy to
pool the resources of the many level set fields for a maximum efficiency.

Sixth chapter

In the sixth chapter, a description is made of some development done for the simulation
of vesicles which can not be transposed directly to other works. In this chapter we first
describe the problem of constructing efficiently the Lagrange multiplier in the method
where the inextensibility of vesicles is insured by it. We also describe how we interfaced
the vesicle application. Indeed, because of the high generality spirit of the development,
many parameters have been allowed to be set by the user as external options. Thus, at

3http://www.boost.org/doc/libs/1_54_0/doc/html/program_options.html
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the user point of view, it might be useful to have a small interface to deal at least with
the inter dependent options.

Third part : Flow of object in micro capillary and rheology

The last part of this thesis is dedicated to the physical applications of the flow of objects
in microcapillaries and their rheology. In order to understand the precise role of the
deformability of the particles in such systems, it is important to start with the simpler
case of rigid bodies. This is why, in this part, most of the applications are made on rigid
disks.

Seventh chapter

One of the building blocks of any microfluidic or biological micro-circulation is the splitting
of a channel into two daughter channels having different flow rates. Understanding the
behavior of a suspension of particles in such a configuration is a big step forward in the
understanding of the micro-circulation in general. The seventh chapter adresses study
of the suspension in splitting channels. We started by the most simple case: a dilute
suspension of rigid disks in a bifurcation. In collaboration with experimental physicists, we
were able to explain the effect of the increasing concentration of the higher flow rate branch
already known for several years as the Zweifach-Fung effect and often miss interpreted.
We then show the possibility to extend this work to deformable particles and the way to
measure properly the interesting quantities.

Eighth chapter

In the future, one issue we want to study is the rheology of a confined suspension of vesicles.
To this goal, once again, it is necessary to understand the basic behaviors of rigid disks
in order to be able to extract the role of the deformability of the particles. Moreover
rheology study requires measurement of the viscosity of a suspension with a controlled
accuracy. Finally, even if it has been studied for a long time, the basic behaviors of a
suspension of rigid disks in a confined environment still have many open questions and its
study is interesting to many groups in the world. For these reasons, the eighth chapter
is dedicated to the study of the rheology of solid disks. We first show three methods to
measure the effective viscosity of a suspension. We show that two of them always converge
to the theoretical effective viscosity and explain the condition for the last one to converge.
The errors made on the viscosity are also quantified as a function of the mesh size.
In the second part of the chapter, we study the contribution of a single particle to the
effective viscosity and the contribution of a pair of particles. We finally use the study
of these contributions to recover the effective viscosity of a suspension of semi dilute
particles in a confined shear flow. We show that with this method, we are able to simulate
the effective viscosity of a great number of different configurations for every suspension
concentration studied in a relatively small time. Finally, we show that the phenomenon
of the decrease of the second order viscosity of a suspension with the confinement which
was a known effect of a 3D suspension still holds in 2D.
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v The finite element library Feel++

The library Feel++

This work has been done using the library Feel++ which stands for Finite Element
Embedded Library in C++ [86, 87]. This is a C++ library solving partial differential
equation (PDE) by finite element method. The goal of Feel++ is to provide a language
close to the mathematical one to solve complex PDEs. The idea is to provide to scientists
a framework in which they can express in a language close to the mathematics the strategy
they propose for solving complex systems of PDE and generate a high performance code.
Feel++ can be classified as a domain specific embedded language (DSEL), that is to
say, it is a C++ code but provides a language which makes the interface between the
mathematics written by the user of the library and the lower level high performances
computer science domain. To this goal, Feel++ uses the last standards of C++ and
meta-programming (through the template and boost meta-programming library) to have
a maximum of generality. Indeed, the code written using the standard formulation of
Feel++ is valid in 1D, 2D and 3D and works with an arbitrary polynomial order since
the mathematical formulation allows it. Moreover, the code can run on a single or several
processors [17]. It also uses external libraries as for example the mesh generator Gmsh

[36], or the library Petsc [3] which provides a large class of method to solve numerical
problems.

How does this work fit in Feel++ ?

Within Feel++ , this work is a part of the fluid structure interaction (FSI) project.
The goal of this project is to develop strategies toward the simulation of complex blood
circulation system. Blood flow is a complex subject and to simulate whole its complexity,
one would have to deal with a complex geometry, the interaction between the elastic vessel
walls and the blood plasma, and include the red blood cells and possibly other objects
dealing with the plasma. During his PhD, Vincent Chabannes developed an arbitrary
Lagrangian Eulerian (ALE) method [18] able to deal with the coupling between an elastic
wall and a Newtonian fluid. Moreover, flows in complex geometries such as part of the
cerebrovenous system, the aorta or an artery with an aneurysm have been investigated
with Stokes flow in [15, 17]. This work is dedicated to the simulation of the blood vessels.
It could be in the future coupled with the Eulerian part of the ALE method created to
deal with the vessel walls to simulate realistic blood flows.

The tools created for the simulation of vesicles can be used to other purposes. For
example, we have shown that our two fluid flow system can handle drop suspensions.
Future development can be made using the large existing literature on level set methods
[98] to create many different applications based on this framework.
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1.1. Principle of the method Chapter 1. The level set method

In this chapter we will present the level set numerical methods we have used and some
verification results. We will firstly remind some basic principles of level set methods. Then
we will detail the formulations of the stabilization methods that we developed to stabilize
the transport of the level set function. We will also detail the reinitialization methods
available, especially the reinitialization by solving a Hamilton Jacobi equation and the
fast marching method. We will discuss our strategy to make the fast marching method
valid for high order polynomial approximations. The results of the famous benchmark of
the rotation of a slotted disk will be presented. Both time and space convergence will
be addressed. Finally, an application of the level set method which does not require a
coupling with fluid equations will be presented to show the genericity of the method. This
application is the contour detection of an image.

1.1 Principle of the method

1.1.1 The level set method

Many domains in scientific computing require knowledge of the position of an interface
between two regions. The method called level set proposes a solution to this problem.
It has been introduced by Sethian during his PhD on propagating flames in 1982 [97]. He
has then kept developing the method and pushed its application fields. His book [98] and
Osher’s [101] are two major references for the introduction to the method and overview
its possible applications. The principle of the method is the following: it defines a scalar
function on all the computing space so that the 0 value of this function defines the inter-
face between the two domains. This function is then transported respecting the equations
of the system. At each moment, the value where this function is 0 represents the interface.
This method, for which the interface is known implicitly, thanks to a function, is classified
as an Eulerian method. This classification is made by opposition to Lagrangian methods
in which the points on the interface are known explicitly. In the level set method, finding
the interface is equivalent to find the 0 value of a function. This function is often taken as
a signed distance function to the interface. Then, the function can be seen as the altitude
on a map for which the interface would be the sea level. One can easily see where the
name level set comes from.

One of the advantages using an implicit function to follow the interface is that the
method can handle naturally topological changes. Indeed, if the velocity imposed to the
level set field induces a sign change in a region, this leads naturally to the creation of a new
interface. It is also possible to have an interface disappearing during a simulation. This is
automatically taken into account in a level set context which is not the case in Lagrangian
point of view. Another big advantage is that it is possible to handle many interfaces with
the same level set function. Indeed, the two domains can be spread in many different
places on the domain. Nothing forbids the level set function to have the value 0 at many
different connected components. The computing time is then not necessarily impacted
by the number of interfaces, as opposed to Lagrangian methods in which following one
interface or several generally makes a difference from the computational cost point of view.

The method only introduces a scalar field and to use it, one needs to be able to solve
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partial differential equations (PDE). It is often used in applications which already need
PDE solvers (fluid mechanics, combustion, solid mechanics ...) and offers then a solution
to follow interfaces without introducing a new tool. It can be used in finite difference
FD, finite volume FV or finite element FE frameworks and going from two to three
dimensions does not lead to methodological problems. For all these reasons the level
set method has been adopted in the multi-fluid flows simulation community for example,
but its application fields are much larger. In the book [98], it is applied to combustion,
deposition and etching of thin layers on surfaces, noise removal and shape recognition in
images, shape optimization, optimal path search, solidification and grid generation.

1.1.2 The level set function

Let us describe in detail the principle of the method. As already explained, the main
characteristic of the level set function is that it has to be negative in one domain, positive
in the other and vanishes between them. Any function satisfying this property could be
used as a level set function. In practice, the function almost always used is the signed
distance function to the interface. The choice of this function implies by definition that
it has a unit gradient magnitude. As this quantity is used during the advection of the
function, it is appreciable to have this property. Moreover, the signed distance function
has the property to be regular at each side of the interface. Since the level set function
is used as support for Dirac and Heaviside functions, it is important to have also this
property. Let us define a function φ on a domain Ω composed of two subdomains Ω1 and
Ω2. The interface between Ω1 and Ω2 is denoted Γ. The definition of the function φ is
the following:

φ(x) =







dist(x,Γ), x ∈ Ω1

0, x ∈ Γ
− dist(x,Γ), x ∈ Ω2

(1.1)

with
dist(x,Γ) = min

y ∈ Γ
(|x− y|). (1.2)

This function is represented in the figure 1.1. As we explained previously, this function has
by definition the property |∇φ| = 1. We also define the regularized Heaviside function:

Hε(φ) =







0, φ ≤ −ε,

1

2






1 +

φ

ε
+

sin

(
πφ

ε

)

π






, −ε ≤ φ ≤ ε,

1, φ ≥ ε

(1.3)

and the regularized Dirac function:

δε(φ) =







0, φ ≤ −ε,
1

2ε

(

1 + cos

(
πφ

ε

))

, −ε ≤ φ ≤ ε,

0, φ ≥ ε.

(1.4)

These two functions are the smoothed versions of the classical Heaviside and Dirac func-
tions. They have a thickness of 2ε. That is to say, the thickness of the zone in which
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(a) Level set function on the plane. The color is
the value of the level set. The iso 0 is represented
in red. The iso values are represented as black line.

(b) Level set function represented in elevation. The
elevation corresponds to the value of φ. The 0 plane
is represented in grey. The iso 0 of φ is represented
as a red line. Every points above the 0 plane are in
Ω1, every points below are in Ω2.

Figure 1.1: Representations of the level set function φ.

the Heaviside goes from 0 to 1 and the one in which the Dirac function is not 0 is 2ε.
This value has to be taken sufficiently small to approach the real functions and has to
be large enough not to induce very brutal jumps in the quantities they define. A typical
value often found in the literature is ε = 1.5h with h the typical size of the mesh. An
example of the regularized Heaviside function is given by figure 1.2 and an example of the
regularized delta function is given figure 1.3. Both are represented for an interface being
a circle.

(a) Hε function represented in the plane. (b) Hε function represented in elevation.

Figure 1.2: Representation of the regularized Heaviside function.

The function Hε is used to define quantities having different values on each side of
the interface. Let µ be a function having a value µ1 in Ω1 and µ2 in Ω2. In level set
formulation, µ is defined as:

µ = µ2 + (µ1 − µ2)Hε. (1.5)
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(a) δε function represented in the plane. (b) δε function represented in elevation.

Figure 1.3: Representation of the regularized delta function.

The function δε is used to define quantities having a non 0 value only at the interface (for
example interfacial forces). A function f which needs to be distributed on the interface
can be distributed on all the domain Ω. Its action is restricted to the interface thanks to
the function δε: ∫

Γ

f ≃
∫

Ω

f δε. (1.6)

Thanks to these functions, one can also define the volume (area in 2D) inside each domain,
so as the surface (perimeter in 2D) of the interface. The volume inside a domain defined
according to the level set is often called the mass because of its use in fluid mechanics in
which the volume inside the domain and the mass are proportional. One can thus define
the regularized volume and a surface:

V +
ε =

∫

Ω

Hε (1.7)

SΓ
ε =

∫

Ω

δε. (1.8)

One also defines the unit outward normal vector to the interface as well as the curvature.
These two quantities are given by:

n =
∇φ

|∇φ| (1.9)

κ = ∇ ·n = ∇ ·
(

∇φ

|∇φ|

)

. (1.10)

The evolution of the level set function under the incompressible velocity field u is the
advection equation:

∂tφ+ u ·∇φ = 0. (1.11)

This hyperbolic equation is a particular form of the advection reaction equation and
presents some numerical difficulties to be solved. These issues are presented theoretically
in [67]. Few schemes for its resolution are presented in [98] for finite difference methods.
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We will present in section 1.2 the method we used to solve this equation in a finite element
framework. The advection velocity u has to be equal to the velocity of the interface on Γ.
It is thus given by the problem to solve (Navier-Stokes, combustion, shape detection in
images). There is no a priori restriction to its value on the rest of the domain except its
divergence has to vanish. We will see that usually there is a natural extension for u away
from the interface, and if not, one can construct an extension making to advection easy
to solve. The equation (1.11) does not conserve φ as a distance function which can bring
some numerical problems. One needs then a way to bring regularly φ close to a distance
function. The methods that we used are presented section 1.3.

1.2 Advection

In this section, we will describe how to handle the transport of the function φ. The
governing equation is the advection equation (1.11) that we recall here:

∂tφ+ u ·∇φ = 0.

This is an hyperbolic equation. After time discretization, this equation can be seen as a
particular form of the advection reaction equation:

σφ+ β ·∇φ = f. (1.12)

We choose to treat the general equation (1.12) and to apply it to the advection (1.11). In
this manner, any time discretization scheme can be treated the same way, by discretizing
the time derivative and make the terms depending on the previous iterations in the right
hand side f . It is also possible to treat the case of other advection reaction equations
like for example the one appearing in the reinitilization by Hamilton Jacobi equation
framework (see section 1.3).

1.2.1 Discretization of the advection reaction equation

Spatial discretization

The variational formulation of the equation (1.12) is found by multiplying it by a test
function ψ and integrating it on Ω. The problem becomes: find φ ∈ H1(Ω) so that
∀ψ ∈ H1(Ω): ∫

Ω

σφψ +

∫

Ω

(β ·∇φ)ψ =

∫

Ω

fψ. (1.13)

Dirichlet boundary conditions are added at the boundary of the domain. Let us introduce
the discrete finite element space Rk

h depending on mesh size h and spanned by Lagrange
polynomials of degree k. We also introduce (φh, ψh) ∈ (Rk

h,R
k
h) the discrete versions of

(φ, ψ). The discrete form of the equation (1.13) becomes: find φh ∈ Rk
h so that ∀ψh ∈ Rk

h:
∫

Ω

σφhψh +

∫

Ω

(β ·∇φh)ψh =

∫

Ω

fψh. (1.14)

The advection equation being numerically unstable when solved by finite element (or finite
difference), a stabilization term has to be added to the variational formulation. We will
give more details about this term in section 1.2.2.
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Temporal discretization

A framework to solve the problem (1.14) is implemented in Feel++ and will be pre-
sented in section 5.2. To be able to use the equation (1.11), one needs to do a temporal
discretization of (1.11) and identify the coefficients in this equation to the coefficients
(σ,β, f). The time derivative of the level set function is discretized by both Euler scheme
of order 1 (1.15) and a Backward Differentiation Formula of order 2 BDF2 (1.16). Let
∆t be the time discretization step so that, at the iteration n : tn = n∆t, we approximate
the temporal derivative by:

Euler : ∂tφ ≈
φn+1 − φn

∆t
(1.15)

BDF2 : ∂tφ ≈
3φn+1 − 4φn + φn−1

2∆t
(1.16)

where φn is an approximation of φ(tn). By multiplying the equation (1.11) by a test
function, integrating over Ω, and replacing the time derivative by the approximations
(1.15) and (1.16), we obtain, for the Euler scheme: find φ ∈ H1(Ω) so that ∀ψ ∈ H1(Ω):

∫

Ω

φn+1

∆t
ψ +

∫

Ω

(un+1 ·∇φn+1)ψ =

∫

Ω

φn

∆t
ψ (1.17)

and for the BDF2 scheme: find φ ∈ H1(Ω) so that ∀ψ ∈ H1(Ω):

∫

Ω

3φn+1

2∆t
ψ +

∫

Ω

(un+1 ·∇φn+1)ψ =

∫

Ω

4φn − φn−1

2∆t
ψ. (1.18)

By identifying in these equations the coefficients of the equation (1.14), we find the coef-
ficients given in table 1.1. When BDF2 is used, the first step is an Euler step since φ−1

does not exist. A similar special care has to be taken when a reinitialization is performed.
Indeed, if a reinitialization has been made at iteration n, there is a break in the regu-
larity between φn−1 and φn. Thus, if a reinitialization step occurs at iteration n, φn+1 is
obtained by an Euler step.

σ β f

Euler
1

∆t
un+1 φn

∆t

BDF2
3

2∆t
un+1 4φn − φn−1

2∆t

Table 1.1: Identification of the terms in equations (1.17, 1.18) to those of the advection
reaction equation (1.14)

1.2.2 Stabilization methods

The transport equation (1.12) is difficult to solve numerically. More generally the resolu-
tion of the advection-reaction-diffusion equation:

σφ+ β ·∇φ+ ε∆φ = f (1.19)
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sees some spurious oscillations appearing in the convection dominated regime when no care
is taken to stabilize the discretized problem. The equation (1.19) is general and the range
of fields where it appears goes from propagating acoustic waves, shallow water equations,
Navier-Stokes with incompressibility constraint or not, noise removal in images [98] and
of course propagating interfaces. Thus, a lot of effort has been spent to stabilize this
equation. In finite volume and finite difference methods, some special schemes have been
written to overcome these oscillations. They are called Essentially non-oscillatory (ENO)
or Weighted ENO (WENO) schemes [68] and are efficient to solve hyperbolic equations
in FV and FD methods. The idea of these methods is to solve the equation using stencils
so that the derivative is always taken in a upwind manner (in the same direction of the
flow). One can show [10] that it is equivalent to add a small artificial diffusion term only
in the direction of the flow. However, these methods are designed for regular grids and
do not apply directly for finite element formulations. Many other methods have been
written to stabilize equation (1.19) in finite element. We have implemented four of them
with Feel++ . In this section we describe all these methods, that we separated in two
different classes. First, we will show three methods in which a perturbation term is added
to the elements of the computational domain. Secondly, we will present a more recent
method based on the stabilization of the internal faces of the domain.

Elements stabilization

In 1982, Brooks [10] introduced the streamline upwind Petrov Galerkin method (SUPG)
in which one adds a perturbation term to each element of the domain. The perturbation
has a weight depending on the upstream values of the flow and on the advection coeffi-
cients terms. The method is applied in [10] on 1D advection equation and 2D convection
dominated Navier Stokes. One can actually see this perturbation as a way to modify
the test functions so that the upstream values are favored compared to the downstream
ones. In this sense, it is close to the methods used by finite difference to stabilize the
convection dominated problem. Later, Hughes and Franca [44] proposed a formulation
in which the advection equation was re-written as a minimization problem. The least
square minimization leads to a new formulation of an element stabilization called the
Galerkin Least Square formulation (GLS). Finally Hauke [42] presented a complete study
of the sub-grid scale method SGS in which he developed an idea of Hughes and applied
it to more general cases (negative source term f). A Matlab implementation of the SGS
method is also given in [42]. Good reviews and presentations of those techniques are given
in [34, 89, 9]. The way we present the stabilization methods follows these reviews (by
using an operator L). In the cited references, the authors present the way to stabilize
equation (1.19) with a parameter ε very small compared to |β| (convection dominated
regime). In the following, we will focus on the pure advection equation and thus we set
ε = 0.

The advantage of using element stabilization is that it does not introduce new elements
to the matrix associated to the algebraic representation of the discretized problem. Thus,
the size of the stabilized problem is the same as without stabilization.
To have a general view of these methods, let us introduce the operator L and its adjoint
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L∗ defined by:

L = β ·∇+ σ

−L∗ = β ·∇− σ.

With the operator L, one can rewrite (1.12) as:

L(φ) = f.

so that we re-write the equation (1.14) using this notation and introducing a stabilization
term, the problem becomes, find φh ∈ Rk

h so that ∀ψ ∈ Rk
h:

∫

Ω

L(φh)ψh +

Nelt∑

K=1

SK(φh, ψh) =

∫

Ω

fψh

where SK(φh, ψh) denotes the stabilization term for a given element K of the discretized
domain Ω and Nelt represents the total number of elements in Ω. Let us give the definitions
of SK(φh, ψh) for the methods SUPG, GLS and SGS. They are all defined the same way,
it is the product of an element dependent parameter (τK), the residual of equation (1.12):
L(φ) − f and a linear form of the test function ψ. The whole product being integrated
on each element of the mesh Ωe. They read:

SSUPG =

∫

Ωe

τSUPG
K (β ·∇ψh) (L(φh)− f)

SGLS =

∫

Ωe

τK L(ψh) (L(φh)− f)

SSGS =

∫

Ωe

τK −L∗(ψh) (L(φh)− f)

(1.20)

with the associated coefficients:

τSUPG
K =

h

2 |β|

τK =
1

2 |β|
h

+ |σ|

where h is the typical size of the concerned element Ωe. Let us explain into more details
the SUPG formulation. The stabilization term is proportional to the residual (L(φh)− f)
which insures that the consistency of the discrete equation will not be modified by the
stabilization term. Indeed, when adding a stabilization term SK to a discrete equation
the consistency requires that SK → 0 when h → 0 and ∆t → 0, which is the case of
the residual term. The term (β ·∇ψ) insures that the stabilization only occurs upwind
where it is needed. Finally, the coefficient τSUPG

K controls the amount of diffusivity added.
It vanishes with h. This value is not unique but we choose one of the most commonly
admitted values for it.
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Internal faces stabilization

Another kind of method has been proposed for the first time by Douglas and Dupont in
1976 [25] and a convergence study has been made long time after that (2004) by Burman
and Hansbo in [13] on the advection-diffusion-reaction problem and has been applied to
Navier Stokes by the same authors in [14]. The precise error analysis at high order has
been made in [100]. Two implementations in the context of level set advection can be
found in [81, 112]. The idea is to add a penalty term on the jump of the gradient of the
solution. This avoids artificial higher gradients to appear. The advantage of this method
is that it stays consistent even for higher order finite element. The drawback is that it
adds new non-zero entries in the matrix and leads to a more difficult problem to solve.
Let us denote the internal faces of the mesh by ΓI, being all the lines (surfaces in 3D)
which are not on a boundary. We also need to define the jump of a quantity across two
elements called K0 and K1. The jump of a scalar quantity f is a vector defined by:

[[f ]] = f0N0 + f1N1 (1.21)

where Ni denotes the normal of the concerned face pointing outward from the element
Ki. And the jump of a vector f is a scalar defined by:

[[f ]] = f0 ·N0 + f1 ·N1 (1.22)

Thus, in a configuration where K0 and K1 are neighbors, N0 = −N1 as shown in
figure 1.4. The CIP stabilization consists of adding the following term to the discretized

Figure 1.4: Normal of the touching faces of two neighbors elements.

weak formulation (1.14), with (φ, ψ) ∈ (H1(Ω), H1(Ω)):

SCIP =

∫

ΓI

γ
h2f
k3.5
|β ·N | [[∇φ]][[∇ψ]] (1.23)

with γ a small factor, hf the length of the edge and N the outward normal of the edge.

1.3 Keeping the level set function close to a distance

function: the reinitialization methods

The function φ transported by the equation (1.11) does not conserve the property to be
a signed distance function (|∇φ| = 1). In the areas where the velocity u goes from a
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big value to a smaller one, one sees an accumulation of the iso lines or iso surface of the
level set function. The gradient magnitude of the function increases and the Heaviside
and Dirac function supports are getting thinner. These functions can even have no more
mesh element on which they are supported if |∇φ| is too large. At the opposite, an area
where u goes roughly from a small value to a big one sees the support of these functions
getting larger and the extension of the interface becoming too large. Several solutions
exist to this problem.

1.3.1 The advection by an extended velocity

As explained previously, the velocity u used in the equation (1.11) has to be equal to
the velocity of the interface on Γ but no particular restriction on the rest of the domain
is needed. It is then possible to define an extended velocity uext equal to the velocity of
the interface on Γ and being defined elsewhere in a way so that the advection of φ with
this velocity does not change the property |∇φ| = 1. An example of extended velocity
is the one we have used in section 1.5. This velocity is defined by the equation (1.24),
that is to say that the value of uext on a point of the domain is equal to its value on the
closest point in Γ. In practice, searching for each point in the domain the closest point to
it on the interface is costly and we choose not to use an extended velocity for multi-fluid
applications.

uext(x) =

{
u(x) if x ∈ Γ
u(x∗) else

(1.24)

with

dist(x,x∗)
x∗∈Γ

= dist(x,Γ)

Other ways exist to create extensional velocities, many are described in [98]. Nevertheless,
they all must be calculated at every time iteration and for performance purposes we choose
other methods for multi-fluid applications. This method could be really interesting when
there is no obvious definition of the velocity in all the domain. For example, for a multi-
fluid application, taking the velocity of the fluid on all the domain as the advection velocity
is an obvious choice. For contour detection on an image (see section 1.5), such a velocity
does not exist, thus an extended velocity is well suited for this application.

1.3.2 The interface local projection

When φ is not too irregular, it has been shown in [81, 21] that the function
φ

|∇φ| is
close to a distance function where φ vanishes, that is to say near the interface. So it is

possible to use
φ

|∇φ| as support for the functions Hε and δε which will then have a regular

extension at each side of the interface. Nevertheless, for a long time simulation with a
velocity field u(t) irregular, |∇φ| can take extreme values. If |∇φ| becomes too big, it is

possible than
φ

|∇φ| tends to 0 and with the numerical error changes of sign. In this case,

a new artificial interface appears and is advected by the equation (1.11) as if it was a real
interface. This method is not completely sufficient to solve the problem of keeping φ as
a distance function but it is extremely useful for two purposes: i) it maintains a relative
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regularity of the functions Hε and δε for a simulation time longer than if one uses the
classical φ as a support. ii) It can be used as an exact value for a distance function close to
the interface. This last advantage is particularly valuable in the case of a reinitialization
by a fast marching method as we will see in section 1.3.4.

1.3.3 Reinitialization by solving a Hamilton Jacobi problem

Hamilton Jacobi equation leading φ to a distance function

It is possible to reset the function φ regularly to a signed distance function. The position
of the 0 value of the new function has to be the same as the previous one, in this way,
the interface does not move. A method based on an idea of [91], modified in [104] and
used several times since (a non-exhaustive list is given by [103, 106, 31, 78, 110]) consists
in solving a Hamilton Jacobi equation of the form:

∂tφ = Sgn(φ)(1− |∇φ|) (1.25)

Sgn being the sign function. When this equation is solved to equilibrium (∂tφ = 0) the
solution is a signed distance function (one has |∇φ| = 1). One can rewrite the equation
(1.25) as:

∂tφ− Sgn(φ)(1−
∇φ

|∇φ| ·∇φ) = 0. (1.26)

Equation (1.26) is a transport equation with a velocity equal to Sgn(φ)
∇φ

|∇φ| . One can

then see this reinitialization as a front propagating and resetting φ to a distance function.

The velocity
∇φ

|∇φ| is normal to the interface and is pointing out from the interface. The

reinitialization front with such a velocity would always go from the interface Γ to the
exterior of the domain Ω1 (i.e toward φ > 0). This is the reason for the introduction
of the sign function as a factor to this velocity. This way, the front always goes from
the interface Γ to both the domains Ω1 and Ω2. Thus, the areas close to the interface
are always reinitialized first. This can be useful since the need of having a distance
function is stronger close to the interface. Moreover, generally the initial function φ is not
too far away from a signed distance function, the equation (1.25) is not too far from the
equilibrium. One can generally use a large pseudo time step and few iterations are needed
to reach the equilibrium state. The sign function is smoothed so that the numerical error
does not make the front go to the wrong side. It is often found on the form initially given
by [104]:

Sgn(φ) =
φ

√

φ2 + ε2
(1.27)

with ε a small smoothing parameter. In our case, we prefer to use the formula given in
[63] using the function Hε. Thus, the smoothing parameter ε is the interface thickness.
So we use:

Sgn(φ) = 2Hε −
1

2
. (1.28)

The advantage of using this formulation, is that it does not need a new parameter ε, the
interface thickness is used and the sign function is defined the same way as the Heaviside
and Delta functions.
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Discretization and resolution of the problem

The equation (1.25) is discretized in time using an Euler scheme and linearized by taking

the velocity term as being the value of
∇φ

|∇φ| at the previous iteration. We obtain the

equation:
φn+1

∆τ
+
Sgn(φ

n)∇φn

|∇φn| ·∇φn+1 = Sgn(φ
n) +

φn

∆τ
(1.29)

with ∆τ the pseudo time step. The weak formulation associated is obtained by multiplying
by the test function ψ and integrating the equation (1.29) on all the space. The problem
obtained is then: find φ ∈ H1(Ω) so that ∀ψ ∈ L2(Ω):

∫

Ω

φn+1

∆τ
ψ +

∫

Ω

(
Sgn(φ

n)∇φn

|∇φn| ·∇φn+1

)

ψ =

∫

Ω

(

Sgn(φ
n) +

φn

∆τ

)

ψ. (1.30)

One recognizes an equation of the form (1.14) with the coefficients given by:

σ =
1

∆τ

β =
Sgn(φ

n)∇φn

|∇φn|

f = Sgn(φ
n) +

φn

∆τ

One understands that the great advantage of this method is that it is simple to implement
since it does not need other tools than the one already implemented for the advection
of the function φ. Moreover, this formulation is very generic and no hypothesis has
been done for the dimension of the spaces or the polynomial order of the finite element
functions. It also works on one or many processors since the PDE solver used provides
this possibility (as opposed to the fast marching, for which a special care has to be taken
in the algorithm).
It is possible to create an indicator to know at each iteration if one needs to reinitialize
or not. An example of indicator is the distance to a distance function. It measures the
relative distance of φ to a signed distance function. It is given by:

edist to dist =
1

V

∫

Ω

√

(|∇φ| − 1)2 (1.31)

with V the volume of the domain. One can then choose a stop criterion for the reinitial-
ization thanks to this indicator.
In practice, we prefer to fix a reinitialization frequency. At this frequency, we solve the

equation (1.30) until we obtain
|φn+1 − φn|
|φn| < εtol, with εtol a numerical tolerance imposed

according to the needs of the application.

The reinitialization requires choosing correctly the parameters: reinitialization fre-
quency, ∆τ and εtol. These parameters depend on the space discretization h, on the
time step ∆t, on the precision needed for the application. Even if one can find relations
between these parameters, there does not exist any absolute formula working for every
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application, and, in practice, one needs to do many tests before finding optimal parame-
ters. It is the principal drawback that one can find to this method. The other drawback
is that in general, the interface slightly moves during the first iteration of (1.30), and for
long time simulations, one can see large variations of the volume of the domains due to
the implied numerical errors.

An example: the signed distance function to an ellipse

The figure 1.5 shows different iterations of the equation (1.30). The example is taken
from chapter 2.4 for which this reinitialization method has been used. We do not know
an analytic expression for a signed distance function to an ellipse. To initialize a level set
function to an ellipse, we have to use the following function:

φellipse
0 =

√
(
x− x0
a

)2

+

(
y − y0
b

)2

− 1 (1.32)

with (x0, y0) the position of the center of the ellipse and a and b its semi-axes. This

function is not a signed distance function, one can easily show that
∣
∣
∣∇φellipse

0

∣
∣
∣ 6= 1, but

the iso surface of value 0 and the sign of each side of the interface are well positioned. φ0

is an acceptable approximation of a distance function when the 1eccentricity of the ellipse
is very small. If one starts the simulation with this function, one sees that the Dirac
and Heaviside functions will have a different thickness along the interface. Thus, we need
to reinitialize this function to a signed distance function. The initial reinitialization is
the one taking the longest time since, after that, we never let φ be so different from a
distance function. Moreover, since we do not want to lose too much mass at the beginning
of the simulation, a small pseudo time step is chosen. In this example, the mesh size is
h = 0.025, the time step for the simulation is ∆t = 0.0125 and the pseudo time step has
been taken as ∆τ = 0.08. The equation is stabilized by a SUPG method. We see on the
figure 1.5 the state of φellipse

0 every 10 iterations.

1.3.4 The fast marching method

Basic principle of the fast marching

Another way to reinitialize φ to a distance function is to modify one by one every degree of
freedom of the system by calculating the new value of φ. Such a method has already been
described in [98] and with more details in [72]. The method is named the fast marching
method (FMM). This method is a way to efficiently iterate over the degrees of freedom
and updating the visited points.

The idea is the following: it starts by an initialization phase, let us suppose that one
already knows the value of φ as a distance function on a few degrees of freedom. One
marks these points as being accepted, they will never be changed again during the reini-
tialization step. Then, one searches for all the closest neighbors to the accepted points
and we mark them as close. All the other points are marked as far. A new value φ̃ is

1The eccentricity is defined as

√

1−
(
b

a

)2

. At the limit of a vanishing eccentricity, the ellipse is a

circle.
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(a) iteration 0 (b) iteration 10 (c) iteration 20

(d) iteration 30 (e) iteration 40 (f) iteration 50

Figure 1.5: Successive iterations of the discretized Hamilton Jacobi equation for the
reinitialization of the function φellipse

0 . The line φellipse
0 = 0 is represented in red and

other values of level lines equally separated are represented in black. The background

color represents
∣
∣
∣∇φellipse

0

∣
∣
∣. One can see that

∣
∣
∣∇φellipse

0

∣
∣
∣ expands to a value of 1 while the

shape of the iso 0 stay preserved.

calculated for each point marked as close, this value is computed by using the values of φ
of the points marked accepted for which one knows that φ is a correct distance function.

The elements in close are then sorted by their values of
∣
∣
∣φ̃
∣
∣
∣. They are stored in a heap so

that the one having smallest value is on the top. Then follows the real marching proce-
dure, it is reported in the algorithm 1.

With this method, we are sure that one point is accepted every iteration and the
algorithm 1 has a complexity of O(N). The fact that the elements close are in a sorted
heap is important, indeed, once the heap is sorted, it is easy to find the smallest value of
φ̃ and update the heap. The initialization procedure has a complexity of O(log(N)).
One understands the term marching. Indeed, the idea is never to modify an already ac-
cepted point. Thus, the algorithm always goes from known points to the unknowns. The
method requires that some points are already known at the initialization step. For that,
one uses the interface local projection method presented above 1.3.2. Thus, the elements
close to the interface are known at the beginning of the marching algorithm. The way to
calculate the new value of φ̃ using the known values of φ is given in detail in [112] both
for 2D and 3D, but it assumes monotonicity of φ between the nodes (only P1 elements).
The fast marching method for Feel++ has already been implemented during the PhD
thesis of Christophe Winkelmann [112]. We used it without changes except adding the
possibility to handle periodic boundary conditions. This implementation has been done
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Algorithm 1 Fast Marching procedure

Require: initialization of the arrays done far, and the heap close
while close is not empty do

• find the element in close having the smallest value of
∣
∣
∣φ̃
∣
∣
∣, let us call it trial

• delete the trial point from close
• mark the trial point as accepted
• compute the values φ̃ of the far neighbors of trial and put them at the right place
in the close heap
• update the values φ̃ of the elements in close being neighbors of trial

end while

for finite element P1. Its direct extension to higher order would be difficult. We choose a
different strategy which is presented hereafter.

The advantage of the fast marching is its robustness. Indeed, if the elements around
the interface are correctly set when starting the fast marching algorithm, it always results
to a nice distance function and there is not any parameter to be set by the user. This
is an advantage compared to the reinitialization by solving the Hamilton Jacobi equation
presented in section 1.3.3 where many parameters have to be set correctly and depend on
the application. Moreover the method is efficient and fast. The main drawback is that at
the time this document is written, the marching algorithm has not been made for parallel
computation. Thus it works only in sequential. Even if it does not seem too difficult to
make the algorithm work in parallel, the performances would not be increased since the
algorithm described above is not meant to be parallel.

Fast marching at high order

There exists in Feel++ a method called operator Lagrange P1 allowing one to cre-
ate a polynomial P̂1 space from a Pn space, let us call it OpLag. We denote with a hat
the space obtained by the transformation OpLag: P̂1 = OpLag(Pn). The mesh associated
to the P̂1 space is created from the mesh associated to the Pn space on which all the
degrees of freedom have been replaced by nodes of a P̂1 element. Such a transformation
is represented on the figure 1.6 for n = 2. The two spaces have the exact same number of
degrees of freedom. There also exists an operator πPn→P̂1

to project a field living in the

Figure 1.6: Action of operator Lagrange P1 on a P2 element in 2D. It transforms a
P2 element into 4 P1 elements. The degrees of freedom are represented as black dots and
the nodes of the elements are linked by black lines. The total number and the geometrical
position of the degrees of freedom are not changed by this transformation.
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Pn space onto the P̂1 space. The opposite projector also exists πP̂1→Pn

. We emphasize
the fact that an element created by the operator πPn→P̂1

has the exact same number of
degrees of freedom that the element in the Pn space used to create it. Moreover, both
elements have the exact same values at degrees of freedom having the same geometrical
coordinates. Of course the same remark holds for πP̂1→Pn

. We use this transformation to
create a temporary level set function φ̂ being in a P1 space φ̂ = πPn→P̂1

(φ). Then φ̂ is
reinitialized using the fast marching method, let us call it φ̂∗ after reinitialization. Finally,
the inverse transformation is used φ∗ = πP̂1→Pn

(φ̂∗) and one obtains a function φ∗ being a
distance function in a Pn space. We summarized this transformation on the scheme 1.7.
We present an example of reinitialization using the proposed high order fast marching

Figure 1.7: Scheme of the transformations used to do a reinitialization using the fast
marching method for an element being in a space of polynomials of order greater than 1.
The P̂1 space is created from the Pn space: P̂1 = OpLag(Pn).

method. The level set function is set on a unit square by the equation (1.32) for which
we put a = 0.3 and b = 0.1. With this equation, we can show easily that |∇φ| 6= 1 thus
φ is not a distance function. We use a space of polynomials of order 2 as space for φ and
test the procedure below. Figure 1.8(a) shows the mesh associated to the P2 space and
figure 1.8(b) shows the mesh associated to the P1 space created from the P2 mesh using
OpLag. The faces which already existed in the initial mesh are reported in red so that it
becomes clear which faces and points have been added.

Figures 1.9(a) and 1.9(b) represent the value of φ before and after the reinitialization
procedure on a mesh thinner than the one used in figure 1.8. The iso 0 is represented in
green and 30 iso lines are represented as black lines. The color is given by |∇φ|. We see
clearly that |∇φ| becomes close to 1 and that the iso lines are equally spaced.

Finally, figure 1.10 shows the same reinitialization procedure but taking φ ∈ P5. We
have also plotted a close up of the intermediate mesh constructed with Operator Lagrange
P1 on the mesh associated to the P5 space.
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(a) Mesh associated to the P2 space. (b) Mesh associated to the P1 space after using Op-
erator Lagrange P1. The edges which were already
present in the previous mesh are represented in red.

Figure 1.8: Action of Operator Lagrange P1 on a mesh associated to a P2 space.

(a) φ before reinitialization procedure. (b) φ after reinitialization procedure.

Figure 1.9: Value of φ ∈ P2 before and after the reinitialization procedure by fast marching
method. The iso 0 is represented in green and 30 iso lines are represented as black lines.
The color is given by |∇φ|.

The distance to the boundaries of a domain

The fast marching has been designed to reinitialize the level set field to a distance function,
but it can also be used in another context: to get the distance to the closest boundary of
a domain. Indeed, some applications need the information of the distance to the closest
boundary as for example turbulence models where a boundary layer model is used. Al-
though it is trivial to get the distance to the boundary when the geometry is a rectangle,
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Figure 1.10: The fast marching procedure for φ ∈ P5. The left and right hand side colored
plot show respectively |∇φ| before and after the reinitialization procedure. On the center,
a close up is shown. It represents on the left, the mesh on which is defined φ and on the
right the one after the use of Operator Lagrange P1.

it might be difficult in a complex geometry. A solution is to use the fast marching method.

The trick is to give to the fast marching algorithm a starter field φ0 so that the degrees
of freedom touching the boundaries have a value very close to 0 but negative and the other
degrees of freedom of the elements touching the boundaries have the value of the distance
from it. This way, everything is like if a level set field was present with the iso 0 at the
boundary and the first elements around the iso 0 have the value of a distance function.

The value given to the degrees of freedom not touching the boundary but being in an
element touching it, is the local size of the mesh h. If the mesh is sufficiently regular, this
is a good approximation of the distance of the degree of freedom to the wall (at least in
a P1 approximation, but for higher order, the Operator Lagrange P1 can be used). Then
the value of the degrees of freedom touching the wall has to be set to a negative value

very small compared to h. In practice, one can set it to
−h
100

for example. Finally, one

can use the fast marching with this starter field and the result is the distance to the walls
of the domain.

Figure 1.11(a) shows the distance function obtained by using this procedure on the
bifurcation geometry of the chapter 7. The figure 1.11(b) shows the geometry for which
we have actually designed this procedure. It represents the inside of an airplane cabin,
some Feel++ users try to model the flow and heat transfer of the air through it. The
flow is turbulent, and, as mentioned above, the distance to the boundary is needed to
know where to activate the boundary layer model. The fast marching algorithm is used
to provide this distance field.

The distance to a parametrized curve

For most of the simulations using the level set method, the initial value of the level set
field should be a distance function or a field not too far from that. This way, a reinitializa-
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(a) Bifurcation geometry. (b) Airplane cabin.

Figure 1.11: Distance to the boundaries of two geometries computed by the fast marching
method.

tion procedure can be applied and the simulation can start with a distance function field.
Writing a distance function to a line or a circle is easy. Distance functions of shapes being
a combination of lines and circles can be written with min and max functions of distance
to lines and circles. Distance function to more complicated shapes are impossible to write
analytically. To be able to start with more complicated shapes, we built a method to
create a distance function to a parametrized curve.

Once again, the key is to create a distance function to the first elements touching the
curve. Since this field is created, it can be given as a starter to the fast marching method
which gives as a result a nice distance field. The procedure to create a distance function
to a parametrized curve is given in appendix C.

1.4 Benchmark, solid rotation of a slotted disk

1.4.1 Presentation of the benchmark

This test has been initially proposed by Zalesac in [114]. It has become one of the most
common tests for interface propagation. It has been used for example in [59, 12, 78, 29] to
test numerical frameworks. The test consists of the rotation of a slotted disk in a square
domain. The geometry of the domain is represented in figure 1.12(a). The domain Ω
is the square [0, 1] × [0, 1]. The center of the slotted disk is initially in (0.5, 0.75). The
imposed velocity is a solid rotation of center (0.5, 0.5). The angular velocity is chosen
so that the disks makes one round every tf = 628. The velocity has the following form

u =
( π

314
(50− y), π

314
(x− 50)

)

, it is represented on the domain in the figure 1.12(b).
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(a) Initial geometry (b) Amplitude and vector of the imposed velocity.

Figure 1.12: Zalesac test.

One imposes Neumann boundary conditions on the boundary of the domain. Every 628
time unit, the circle is supposed to come back at the initial place with the same shape.
Thus, one can define errors by computing the difference between φ0 = φ(t = 0) and
φf = φ(t = tf ). One can define three different errors to measure the quality of the
advection scheme. First, the mass error,

em =

∣
∣mφf

−mφ0

∣
∣

mφ0

=

∣
∣
∣
∣

∫

Ω

χ(φf < 0)−
∫

Ω

χ(φ0 < 0)

∣
∣
∣
∣

∫

Ω

χ(φ0 < 0)
(1.33)

with χ the characteristic function defined by:

χ(f(φ)) =

{
1 if f(φ) 6= 0
0 if f(φ) = 0.

(1.34)

This error measures the global mass loss. It is a tricky indicator, since in general, the level
set method gains and loses some mass at the same time at different areas of the domain.
Thus, one needs a better estimate of how the interface has moved during the simulation.
Thus we introduce the sign change error :

esc =

√
∫

Ω

((1−H0)− (1−Hf ))
2 (1.35)

where H0 = Hε(φ0) and Hf = Hε(φf ). This error is a way to compute the area in which
φ0φf < 0, in others words, where the interface has moved. The last error estimate that we
define is the classical L2-error. In this context, it might not be the best one to quantify the
quality of the advection since it measures the difference between initial and final solution
on all the space whereas our interest is only the interface transport quality. Indeed, there
exists some inflow at the boundaries, and the value of φ in this inflow is not necessarily
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(a) Euler (b) BDF2

Figure 1.13: Final shapes after one rotation with Euler and BDF2 scheme. The original
shape is shown in black.

the same as the values of the initial φ. Thus, we modify this error quantification to make
a local L2-difference in the region near the initial interface. The L2 error on the interface
is given by:

eL2 =

√
√
√
√
√

1
∫

Ω

χ(δε(φ0) > 0)

∫

Ω

(φ0 − φf )2χ(δε(φ0) > 0). (1.36)

1.4.2 Time convergence

The first test that we present is the convergence of the time schemes. To this goal, we
set a fixed grid discretization h = 0.004 which leads to 72314 degrees of freedom (on a
P1 space). Then we let the circle make one round and measure the errors. We set the
following different time steps dt = (2.14, 1, 0.5, 0.25, 0.20) and compare the errors obtained
by an Euler or BDF2 discretization. The stabilization strategy used for this test is SUPG.
This benchmark is run in sequential for the first tested time step and in parallel for the
other one, going from 1 to 10 processors. The final shapes are represented in figure 1.13.
The errors associated are reported in table 1.2 for Euler discretization and table 1.3 for
BDF2 discretization. The shapes represented by figure 1.13(b) are asymmetrical, this is
due to the fact that the BDF2 scheme has a strong asymmetry in time, the result depends
on the two previous iterations. Since the circle rotates only in one way, a bias is created
in one direction of space more than in the other. For Euler scheme at the opposite, only
the previous iteration is needed to advance forward in time, the asymmetry does not exist
and the shapes on figure 1.13(a) are symmetrical.

The convergence graph corresponding to the data of tables 1.2 and 1.3 are shown in
figure 1.14(a), 1.14(b) and 1.14(c). As explained previously, the error on the sign change
is better than the mass error to characterize the real quality of the scheme. The figure
1.14(b) shows the rate of convergence for this error. To our knowledge, there are no
theoretical results giving the rate of convergence of such a test. However, a better rate of
convergence is expected for the highest order of discretization. This is the result shown
by the figures 1.14(a), 1.14(b) and 1.14(c). The error mass convergence is more a guide
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dt eL2 esc em
2.14 0.0348851 0.202025 0.202025
1.00 0.0187567 0.147635 0.147635
0.50 0.0098661 0.10847 0.10847
0.25 0.008791 0.0782569 0.0782569
0.20 0.00803373 0.0670677 0.0670677

Table 1.2: Errors on the time convergence of Euler scheme for Zalesac benchmark.

dt eL2 esc em
2.14 0.0118025 0.0906617 0.0492775
1.00 0.00436957 0.0445275 0.0163494
0.50 0.00173637 0.0216359 0.0100621
0.25 0.001003 0.0125971 0.00354644
0.20 0.000949343 0.0117449 0.00317368

Table 1.3: Errors on the time convergence of BDF2 scheme for Zalesac benchmark.

for the eyes since, as we already explained, the loss of mass in a region is sometimes
compensated by a gain of mass in another region, making the mass error a poor error
estimate. Thus this error might not be relevant in this case. The sign change error shows
a gain of around half an order going from Euler discretization scheme to BDF2 whereas
in the same case, the L2 error shows a gain of one order.

1.4.3 Space convergence

The goal of the second test is to verify the space convergence. We set a relation between

the time step and the space discretization. The time step, is usually taken as dt = C
h

Umax

,

where C is a constant smaller than one and Umax the maximum velocity on the domain.
In our case we set C = 0.8 and the maximum velocity is obtained for the points having
the highest distance from the center. With the velocity imposed, we have Umax = 0.007.

Thus the time step is taken as dt = 0.8
h

0.007
. A BDF2 time scheme is chosen for the

time discretization. Different mesh sizes are taken: h = 0.32, 0.16, 0.08, 0.04. The test
is run in parallel from 2 processors, for h = 0.32 to 10 processors for h = 0.04. All the
stabilization methods at our disposal are tested, namely, CIP, SUPG, GLS, SGS. The
final shapes obtained are represented in figure 1.15. The numerical errors are represented
in table 1.4. The sign change error is represented in figure 1.16(a). All the stabilization
methods show a rate of convergence of 0.6 and all the errors are almost equivalent. The
L2 error convergence is represented in figure 1.16(b) and the convergence of this error is
not as clear as the previous one. All the element stabilization show a rate of convergence
of 0.9, whereas the CIP stabilization only shows a rate of convergence of 0.6.
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10−1 100

dt

10−2

10−1
e m

Euler

slope = 0.80

BDF2

slope = 1.20

(a) Mass error as a function of time step for Zalesac benchmark.

10−1 100

dt

10−2

10−1

e s
c

Euler

slope = 0.50

BDF2

slope = 0.90

(b) Sign change error as a function of time step for Zalesac bench-
mark.

10−1 100

dt

10−3

10−2

e L
2

Euler

slope = 0.60

BDF2

slope = 1.10

(c) L2 local error as a function of time step for Zalesac bench-
mark.

Figure 1.14: Convergence of the errors measured in the benchmark for the time discretiza-
tion methods Euler and BDF2.
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Figure 1.15: Final shapes of the Zalesac circle after a whole revolution for different mesh
sizes. The initial shape is also depicted.

stab h eL2 esc em

CIP

0.32 0.0074 0.072 0.00029
0.16 0.0046 0.055 0.00202
0.08 0.0025 0.033 0.00049
0.04 0.0023 0.020 0.00110

SUPG

0.32 0.012 0.065 0.01632
0.16 0.008 0.049 0.07052
0.08 0.004 0.030 0.00073
0.04 0.001 0.018 0.00831

GLS

0.32 0.013 0.066 0.02499
0.16 0.008 0.051 0.05180
0.08 0.004 0.031 0.00805
0.04 0.001 0.019 0.00672

SGS

0.32 0.012 0.065 0.01103
0.16 0.008 0.050 0.07570
0.08 0.004 0.030 0.00084
0.04 0.001 0.018 0.00850

Table 1.4: Errors for different mesh sizes and stabilization methods.
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10−2

h

10−2

10−1

e s
c

CIP

slope = 0.6

GALS

slope = 0.6

SGS

slope = 0.6

SUPG

slope = 0.6

(a) Error and rate of convergence of the sign change error as a function of the space
discretization.

10−2

h

10−3

10−2

e L
2

CIP

slope = 0.6

GALS

slope = 0.9

SGS

slope = 0.9

SUPG

slope = 0.9

(b) Error and rate of convergence of the L2 error as a function of the space discretiza-
tion.

Figure 1.16: Space convergence of the measured errors for the four stabilization methods
tested.
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1.5 An application : the active contours

The level set method can be used in different domains than multi-fluids simulations, for
example it can be used in image analysis to find systematically the boundaries of objects.
This technique has been used for the first time by Malladi [72]. Many improvements have
been made, and a good review of those enhancements is given in [102]. This method is
often used in image analysis. One can find it for example as a plugin for the free image
analysis software imageJ 2. An image being organized in pixels, it is easy to represent
it on a regular grid. Thus, the finite difference method is often used for this kind of
application and most of the schemes presented in the cited references are written for
the finite difference method. However, the method naturally extends to finite element
method. We were interested to implement the active contours method not for a research
purpose but to test the generality of the LevelSet class implemented in Feel++ .
Indeed, the LevelSet class has to be totally decoupled from the fluid part and has to
be usable for totally different applications than multi-fluid simulations. Moreover, if the
class interface is correctly designed, a basic active contours application has to be easy and
simple to implement. This part shows that, as for the level set method, the LevelSet

class implemented can be used for other goals than multi-fluids simulations, and it has
been a guide to design the LevelSet interface.

1.5.1 Principle of active contours method

The principle of the active contours method is to see an image as a scalar function of
gray level (the method can be extended to colored images by using a vectorial function,
but we will not go into the details in this description). Let us call I(x) the function
representing the gray level of an image. Finding a boundary in an image is equivalent to
finding the part in the image where there exists a strong contrast. In other words, finding
the boundary of an object in an image, is equivalent to find the set of x so that |∇I|
is big. A possible solution could be to calculate the gradient of gray level everywhere in
the image and define the boundary as being the set of x for which |∇I| > Imax. The
drawback of this method, is that if the image is noisy, all the noise will be included in the
boundary. Malladi has then proposed to define a scalar level set field in the image and to
initialize it as a small circle inside the area in which the boundary is searched. The idea
is then to make evolve the iso 0 of the level set (called the front) by applying a velocity
field u. This velocity is normal to the front and depends on the function I. The goal is
that at the end of the simulation, the front fits the contour of the object in the image.
This front is called the active contour. The velocity u has to vanish when |∇I| is big
enough. Such a velocity is given by :

u =
1

1 + α |∇I|
∇φ

|∇φ| (1.37)

where α is a parameter. Let us now imagine what happens in a noisy region. In such a
region, a lot of small regions exists where |∇I| is big, making the front stop around them.
These regions being small, the curvature of the front around it should very high. Thus,
one can add to the velocity term, a component proportional to the curvature of the front.

2 Module maintained by Erwin Frise http://fiji.sc/Level_Sets
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This way, the velocity will not vanish anymore in these regions, and the front will bypass
the noise. This is a solution to the problem explained previously. The velocity where the
curvature term has been added is then given by :

u =
1− βκ

1 + α |∇I|n (1.38)

with κ the curvature of the level set function, recalling κ = ∇ ·
(

∇φ

|∇φ|

)

= ∇ ·n and

β a parameter. One generally adds a term attracting the front to the boundaries of the
object. This term stabilizes the position of the active contour to the boundary of the
object. It is an attractive force which derivates from a potential P = − |∇I|. This term
can be seen as a potential well in which falls the active boundary. The velocity is then :

u =
1− βκ− γ∇P ·n

1 + α |∇I| n. (1.39)

The velocity u can contain other terms improving the precision or performances of the
boundary detection. Once given an expression to u, it goes to the user to choose the
right parameter set (α, β, γ) adapted to his images and to the boundary being searching.
The method is then quite flexible. Moreover, since the level set can handle topological
changes, the user can start the detection with many circles of different radii at many
places in the image. When different fronts meet, they naturally merge, this can enhance
the quality of the detection or makes possible to find disjoint objects.

1.5.2 Implementation

The image

Feel++ does not allow one yet to load an image as an element of a finite element space.
Nevertheless, the mesh generation software 3Gmsh allows creating a mesh associated to
an image and to extract a field corresponding to the function I previously described. The
boundary detection by level set method being for the moment a simple doability test, the
interface allowing one to load Gmsh generated functions has not been written. However,
it could be implemented for future applications. We wrote analytically some I functions
representing different geometrical shapes. To this goal one only needs to know a formula
giving the inside and outside boundary of a curve, and to give a different value to I(x)
according to the position of x with respect to the curve. We then smoothed this image
thanks to the smoothing projection tool 4.1.2. In [72], the authors apply to the images a
Gaussian filter called G. The image on which the boundary is actually searched is then
G⋆I with ⋆ the convolution product. We defined two test images (fig 1.17(a) and 1.17(b))
representing a rectangle intersected by an ellipse. On the second image, some artificial
noise has been introduced as small white disks.

The advection velocity

The major difference with a multi-fluid simulation system is that one cannot give on all
the domain the previously described velocity u. Indeed, this velocity is only written for

3http://geuz.org/gmsh
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(a) Rectangle intersected by an ellipse. (b) Rectangle intersected by an ellipse with noise.

Figure 1.17: Images used for the detection.

the front (the 0 value of φ). Applying this velocity everywhere in the domain would lead
to instabilities. A solution consists on calculating an extended velocity ue being equal
to the velocity u close to the interface and sufficiently regular everywhere else to avoid
instabilities. Let us call Ωfar the space far away from the interface and Ωclose the space
near the interface. In practice, one has to define what is far and close. In our case,
we consider that a point is close if it is on an element crossed by the interface φ = 0
as represented on the figure 1.18. One could also define close the same way we defined

Figure 1.18: Marker on the element crossed by the interface.

the thickness of the Dirac function since the thickness is thin enough. The extensional
velocity is defined by :

ue(x) =

{
u(x) if x ∈ Ωclose,

u(xmindist) if x ∈ Ωfar
(1.40)

with
xmindist ∈ Ωclose| dist(xmindist,x) = min(dist(x2,x)

x2∈Ωfar

) (1.41)

in other words, each point in Ωfar has the same velocity as the closest point in Ωclose. At
every iteration, one calculates the velocity at the interface and iterates on the degrees of
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freedom far from the interface. One associates to each degree of freedom the velocity of the
closest point in the interface. This should be done by iterating on the degrees of freedom
in an optimized way, for example using a fast marching method as for the reinitialization
step. Our goal for this application being the workable and not the performance, we only
implemented a simple non optimized iterative process.

Stop criterion

The velocity never totally vanishes since |∇I| is never infinite. Thus, it is important to
define a threshold below which the velocity is considered as 0. This minimum velocity
umin is another parameter the user has to monitor. The real velocity advecting the level
set function is thus :

u′

e(x) = ue(x) χ (|ue(x)| > umin) (1.42)

In the following, we will intentionally forget the apostrophe and consider that ue is the
velocity on which the threshold has been applied. We can now write a stop criterion for
the simulation. The program stops when the active contour does not move anymore, thus
when ∫

Ωclose

ue(x) = 0, (1.43)

we integrate on Ωclose which is the real matter of interest, but since the extended velocity
follows the velocity of the interface, it would be equivalent to integrate on all the domain.

1.5.3 Detection tests

The first and the simplest detection is done on the noiseless image. It is done without
curvature term and with a very weak attractive force. This test being easy, a relatively
big time step is used and few iterations are necessary to reach the final state. The results
are presented in the figure 1.19. The second test (figure 1.20) is done on the noisy image
but keeping the parameter β = 0. Thus, the noisy areas are detected as boundaries.
The image resolution chosen being rough so as the time step, these boundaries are only
approximately described. Finally the last test (figure 1.21) is done on the same noisy image
but by choosing a β parameter big enough to overstep the noisy areas but sufficiently small
in order not to modify the image boundary at the corners where the curvature is high.
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Figure 1.19: Active boundary detecting the boundary on a noiseless image.

Figure 1.20: Active boundary moving on a noisy image with a velocity independent on
its curvature.
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Figure 1.21: Active boundary moving on a noisy image with a velocity depending of its
curvature to overstep the noise.
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In this chapter, we will present the fluid equations, the strategy we used to solve
them and their coupling with the level set method presented previously. We will start by
recalling the Stokes and Navier-Stokes equations and show how they are solved in finite
element context. Then we will show how we can couple the level set method and the fluid
solver to have a two-fluid flow and extend this method to a multi-fluid flow. A verification
on a precise benchmark on two-fluid flow will be done and a test of a 9 fluid flow will be
presented. Finally, we will use this framework to answer a physical question proposed by
experimental physicists: does the theoretical frequency of oscillations of a bubble in an
infinite fluid still hold in a very confined environment?

2.1 Fluid equations

2.1.1 Stokes equations

Derivation of the Stokes equation

The Stokes equation is used to describe the behavior of a fluid when the viscosity domi-
nates the flow. A way to determine the relative strength of the inertia and the viscosity
is to compute the Reynolds number. This number gives a typical value of the ratio of the
inertial and the viscous terms. It is given by:

Re =
ρUL

µ
(2.1)

with ρ the density of the fluid, µ its viscosity, L a typical length of the flow and U a
typical velocity magnitude of the flow. When the effect of inertia is negligible compared
to the viscous terms ( Re << 1 ), the momentum equation can be written as:

∇ ·σ = −f . (2.2)

With σ the fluid stress and f the volume forces exerted to the fluid. The expression of σ
can be complicated and the rheology is the science dedicated to the study of this object.
Nevertheless, it is known for common fluids that the stress is proportional to the rate of
strain being defined by:

D(u) =
∇u+t(∇u)

2
. (2.3)

A fluid for which the strain rate and stress tensors are proportional is called a Newtonian
fluid. For these fluids, the stress tensor can be expressed as:

σ = −pId + 2µD(u) (2.4)

with p the pressure, Id the identity matrix, u the fluid velocity and µ the viscosity of the
fluid. When the velocities and forces involved are not too high and for a common liquid,
one can usually admit that the liquid is incompressible. This results in:

∇ ·u = 0 (2.5)

by taking the divergence of the equation (2.4) and using equation (2.5) one can re-writes
(2.2) as:

− µ∆u+∇p = f (2.6)
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Equations (2.5) and (2.6) are the so-called Stokes equations governing an incompressible
fluid at vanishing Reynolds number. Stokes equations are linear, and independent of time
which makes them more simple than the general Navier-Stokes equations.

Discretization of the Stokes equations: a simple example

Let us see on a simple example how we solve the Stokes equations with finite element
methods, from the physical equations to the algebraic representation. Let us write the
Stokes equations with Dirichlet boundary conditions:

−µ∆u+∇p = f in Ω,
∇ ·u = 0 in Ω,

u = uD on ∂Ω.
(2.7)

with uD a known value of the velocity on the boundary ∂Ω of the domain Ω.
Let us introduce some functional spaces:

L2(Ω) =

{

f : Ω→ R;

∫

Ω

|f |2 < +∞
}

[L2(Ω)]d =

{

f : Ωd → Rd;

∫

Ω

|f |2 < +∞
}

[L2
0(Ω)]

d =

{

f ∈ [L2(Ω)]d;

∫

Ω

f = 0

}

H1(Ω) =
{
f ∈ L2(Ω);∇f ∈ [L2(Ω)]d if Ω ⊂ Rd

}

[H1(Ω)]d =
{
f ∈ [L2(Ω)]d;∇f ∈ [L2(Ω)]d×d if Ω ⊂ Rd

}

[H1
0 (Ω)]

d =
{
f ∈ [H1(Ω)]d;f = 0 on ∂Ω

}
.

The problem (2.7) is not well posed since the pressure is only defined by its gradient. Thus
there is not a unique solution. If (u, p) is a solution, then (u, p +K) is also a solution,
with K a constant. A common solution to fix this constant is to impose that the pressure
has a vanishing mean value on the domain

∫

Ω

p = 0,

thus, the solution (u, p) to the problem (2.7) is unique [90]. For this example, we will not
enter into the details how to impose this constraint, we will assume p ∈ L2

0(Ω). Later on,
we will see two methods to impose this zero mean pressure. The variational formulation of
the problem (2.7) is obtained by taking the scalar product of the first equation with a test
function v ∈ [H1

0 (Ω)]
d and multiplying the second one by a test function q ∈ L2

0(Ω) and
integrating over Ω. After integrating by parts, and recalling that v = 0 on ∂Ω, we have:
for a given f ∈ [L2(Ω)]d, find (u, p) ∈ [H1(Ω)]d×L2

0(Ω) so that ∀ (v, q) ∈ [H1
0 (Ω)]

d×L2
0(Ω):

∫

Ω

µ∇u : ∇v −
∫

Ω

p∇ ·v =

∫

Ω

f ·v
∫

Ω

q∇ ·u = 0
(2.8)
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with : the double contraction (see appendix G for details). Let us now introduce the finite
element spaces:

Un+1
h ⊂ [H1(Ω)]d, Un+1

h = {wh|wh =

N
Uh
dof∑

i=1

wiΦi}

Pn
h ⊂ L2(Ω), Pn

h = {rh|rh =

N
Ph
dof∑

i=1

riψi}

with:

NUh

dof and N
Ph

dof the total number of degrees of freedom of respectively Un+1
h and Pn

h.

Φi and ψi the finite element basis functions, Lagrange polynomials of order n + 1
and n.

One can remark that the basis functions associated to the pressure are not constructed
with the null mean constraint. In practice, this constraint is added by Lagrange multiplier
or penalty method as we will see in the next section.

It can be proven theoretically that the Stokes equations solved with the formulation
(2.9) are not stable if the same polynomial order is used for the velocity and for the pres-
sure. These instabilities can be avoided by using the stabilization techniques described
in section 1.1 and adapted to the Stokes problem. We choose another approach which
consists of using the so-called Taylor-Hood finite element. They are defined by elements
with polynomial approximations of order n for the pressure and n+ 1 for the fluid. This
explains our space discretization choice Un+1

h × Pn
h. In practice, Lagrange basis functions

are used.

Let us introduce now (uh, ph) ∈ Un+1
h × Pn

h and (vh, qh) ∈ Un+1
h × Pn

h the discrete
versions of (u, p) and (v, q). The problem (2.8) discretized reads now, for a given fh, find
(uh, ph) ∈ Un+1

h × Pn
h so that ∀ (vh, qh) ∈ Un+1

h × Pn
h:

∫

Ω

µ∇uh : ∇vh −
∫

Ω

ph∇ ·vh =

∫

Ω

fh ·vh
∫

Ω

qh∇ ·uh = 0
(2.9)

As the problem (2.9) stands for all (vh, qh), it stands in particular for vh =

N
Uh
dof∑

i=1

Φi and

qi =

N
Ph
dof∑

i=1

ψi the basis functions. Thus we can re-write the problem (2.9) in an algebraic

representation by introducing the matrices

A, Aij =

∫

Ω

µ(∇Φj : ∇Φi),

B, Bij =

∫

Ω

−ψj∇ ·Φi,
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and the vectors

U, uj

P , pj

F , fj.

The problem (2.9) can be written as
(

A B
BT 0

)

︸ ︷︷ ︸

D

(
U
P

)

︸ ︷︷ ︸

U

=

(
F
0

)

︸ ︷︷ ︸

F

(2.10)

Finally, a sparse problem DU = F is obtained and can be solved numerically.

Impose vanishing mean pressure

The problem (2.7) is not posed correctly because when only Dirichlet boundary conditions
are prescribed on ∂Ω, the pressure is only defined by its gradient and thus exists with an
infinity of possible solutions. The usual solution consists of imposing

∫

Ω

p = 0.

There are two ways to impose this constraint, and both of them are implemented in our
framework. The first method consists of adding a Lagrange multiplier λ to impose the
constraint. The Lagrange multiplier is a single constant since the pressure only needs
one constant to fix its value. The pressure no longer belongs to L2

0(Ω) but L2(Ω) since
the zero mean value constraint is now imposed by λ. The variational formulation reads
then, for a given f ∈ [L2(Ω)]d, find (u, p, λ) ∈ [H1(Ω)]d × L2(Ω)× R so that ∀(v, q, ν) ∈
[H1

0 (Ω)]
d × L2(Ω)× R:

∫

Ω

µ∇u : ∇v −
∫

Ω

p∇ ·v =

∫

Ω

f ·v
∫

Ω

q∇ ·u+

∫

Ω

λ q = 0
∫

Ω

p ν = 0

(2.11)

The discretizations of (u, p) are the same as in the previous formulation and give (uh, ph) ∈
Un+1

h × Pn
h. The discretized Lagrange multiplier λh is taken in a space L0

h for which the
basis functions are continuous polynomials of degree 0. That is to say a single constant
for all Ω, this constant is simply 1. Let us name the vector associated to the coupling
between the pressure and the Lagrange multiplier, which is simply the integral of the
basis functions associated to the pressure:

Sj =

∫

Ω

ψj. (2.12)

The algebraic representation of the discretized problem then reads:




A B 0
BT 0 S
0 ST 0









U
P
λh



 =





F
0
0



 (2.13)
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The main advantage of this method is that only one degree of freedom is added to the
system and the constraint is fulfilled exactly. The drawback is that in Feel++ , the
choice to construct the solution U either in a composite space U ∈ Un+1

h × Pn
h × L0

h or
U ∈ Un+1

h × Pn
h has to be made at compilation time. Thus, for a very general application

for which the boundary conditions have to be changed by the user without recompiling
the code, two options remain: i) compile two versions of the code and choose at execution
time the one to run according to the needs. ii) Use a penalty term to impose the zero
mean pressure.

Indeed, the second method to impose the zero mean pressure is to add a penalty term
to the second equation of (2.7) insuring that the mean value of p is very small. The
weak problem reads, for a given f ∈ [L2(Ω)]d, find (u, p) ∈ [H1(Ω)]d × L2(Ω) so that
∀(v, q) ∈ [H1

0 (Ω)]
d × L2(Ω):

∫

Ω

µ∇u : ∇v −
∫

Ω

p∇ ·v =

∫

Ω

f ·v
∫

Ω

q∇ ·u+

∫

Ω

ε p q = 0
(2.14)

with ε a small scalar. The corresponding algebraic representation is given by:
(

A B
BT εId

)(
U
P

)

=

(
F
0

)

(2.15)

The advantage of this method is that it does not change the composite space in which
belongs the solution U . Thus, the choice to impose or not the null mean pressure can
be done automatically in the code without recompiling. As a drawback, the constraint
is only imposed approximately whereas it was exact with a Lagrange multiplier. An
added drawback is that the penalty term deteriorates the matrix conditioning making
the system more difficult to solve. Finally, the tolerance of the iterative solver used to
solve the algebraic system has to be tuned with respect to the penalty term, which can
be tricky.

Boundary conditions

The boundary conditions have been purposefully left apart previously. Let us now describe
how we treat them in our framework. First of all, let us re-write the problem (2.7) by
adding both Neumann and Dirichlet boundary conditions. The boundary having Dirichlet
conditions is called ∂ΩD and the one having Neumann ∂ΩN. The Neumann boundary
conditions for Stokes equations impose the normal stress at the boundary. Thus, we
will re-write (2.7) in a form making appear σ and the strain D. Of course this is not
compulsory, and one can use the form (2.7) and get the same results. The problem reads:

−∇ ·σ = f in Ω,
∇ ·u = 0 in Ω,

u = uD on ∂ΩD,
σ = σN = −pNId + 2µD(uN) on ∂ΩN.

(2.16)

With uD and σN some known functions on the boundary. One multiplies (2.16) by test
functions, integrate by parts and remark that ∇v can be replaced by D(v) (see appendix
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A, one obtains the problem, for a given f ∈ [L2(Ω)]d find (u, p) ∈ [H1(Ω)]d × L2(Ω) so
that ∀(v, q) ∈ [H1(Ω)]d × L2(Ω):

∫

Ω

2µD(u) : D(v)−
∫

Ω

p∇ ·v =

∫

Ω

f ·v +

∫

∂ΩN

(σNn) ·v
∫

Ω

q∇ ·u = 0.
(2.17)

Thus, the Neumann boundary terms arise directly from the integration by parts of the
Stokes equations since we do not take v ∈ [H1

0 (Ω)]
d which makes the boundary terms

vanish.
The Dirichlet boundary conditions can be treated in two ways. First they can be imposed
strongly by modifying the entries in the matrix A and the right hand side F to put the
exact values of uN on the entries where it is known. Feel++ allows performance of this
operation by a simple function on as shown on listing 2.1.

Listing 2.1: Imposing a simple shear flow on Top and Bottom boundaries of a domain
with Feel++

//shear
form2 (Xh, Xh, A)+=

+on (markedfaces (mesh , ”Top” ) , u , F , u shear ∗ oneX ( ) )
+on (markedfaces (mesh , ”Bottom” ) , u , F , −u shear ∗ oneX ( ) ) ;

The advantages of strongly imposing the Dirichlet boundary conditions are:

i) the boundary conditions are imposed exactly

ii) since the keyword on is already a part of Feel++ language, the condition is very
simple to add and no further changes in the variational formulation are needed

whereas the drawbacks are:

i) the matrix A and the vector F have to be modified together every time one of them
is modified. Thus, in an application where only the external forces are changing in
time, one has to re-impose the boundary conditions and modify the matrix A every
iteration.

ii) for some matrices, finding the good entry to modify can be computationally costly

Thus another way to impose Dirichlet boundary conditions has been proposed by Nitsche
(1971). The idea is to impose weakly the Dirichlet boundary conditions by adding a
penalty term. This way, the boundary condition is imposed the same way as the Neumann
boundary conditions, that is to say, included in the variational formulation. We multiply
the problem (2.16) by test functions (v, q) ∈ [H1(Ω)]d × L2(Ω) and integrate by parts.

We then add a penalty term with a factor
γ

h
which insures consistently that the boundary

condition is satisfied. The problem reads, for a given f ∈ [L2(Ω)]d find (u, p) ∈ [H1(Ω)]d×
L2(Ω) so that ∀(v, q) ∈ [H1(Ω)]d × L2(Ω):

∫

Ω

2µD(u) : D(v)−
∫

∂ΩD

(σn) ·v −
∫

Ω

p∇ ·v +

∫

∂ΩD

γ

h
u ·v

=

∫

Ω

f ·v +

∫

∂ΩD

γ

h
uD ·v

∫

Ω

q∇ ·u = 0.

(2.18)
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The parameter γ has to be set strong enough to impose correctly the condition and low
enough not to create instabilities. A typical value lies between 1 and 20. The advantages
of this method are

i) in the common case discussed previously where only the vector F changes during
successive iterations, the boundary conditions in the matrix A are set once for all
the simulation

ii) every boundary conditions (Neumann and Dirichlet) can be treated the same way.

The drawbacks are

i) the parameter γ has to be fixed by hand. But the range of γ for which the boundary
conditions are correctly imposed can be quite large and usually a value between 10
and 20 is satisfying

ii) the boundary conditions are not imposed exactly. However, the formulation is still
consistent and optimal convergence rates are still obtained.

2.1.2 Navier-Stokes equations

The Navier-Stokes equation

The Navier-Stokes equations govern fluid motion when neither the viscosity neither the
inertia is negligible. We will only deal with the incompressible Navier-Stokes equations
when the density is constant; hence we deal with incompressible fluid flow. This equation
is obtained by writing the momentum conservation:

ρ
Du

Dt
= ∇ ·σ + f (2.19)

where ρ is the density of the fluid. By expressing the stress tensor for a Newtonian fluid,
developing the divergence as done previously, and developing the Lagrangian derivative
D

Dt
, one obtains:

ρ(∂tu+ (u ·∇)u)− µ∆u+∇p = f , (2.20)

∇ ·u = 0, (2.21)

which are the Navier-Stokes incompressible equations. The framework we used to solve
these equations has been developed by Vincent Chabannes during his PhD [17]. In this
section, we will describe briefly the method used. For more details, the interested reader
should see [17].

Temporal discretization

The time is discretized by a time step ∆t so that at iteration n, t = n∆t. The time
derivative is discretized by a finite difference scheme of arbitrary high order. We use
the backward differentiation formulation BDF. For a given order q, the BDFq scheme is
given by:

∂tu
n+1 ≈ β−1

∆t
un+1 −

q−1
∑

j=0

βj
∆t

un−j. (2.22)

The coefficients βj for BDFq schemes up to order q = 4 are given in the table 2.1.
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q β−1 β0 β1 β2 β3
1 1 1
2 3/2 2 -1/2
3 11/6 3 -3/2 1/3
4 25/12 4 -3 4/3 -1/4

Table 2.1: BDFq schemes up to order q = 4

Spatial discretization

The variational formulation is given by find (un+1, pn+1) ∈ [H1(Ω)]d × L2(Ω) so that
∀(v, q) ∈ [H1(Ω)]d × L2(Ω):

∫

Ω

ρ∂tu
n+1 ·v +

∫

Ω

ρ((un+1 ·∇)un+1) ·v −
∫

Ω

µ∇un+1 : ∇v

+

∫

Ω

pn+1∇ ·v =

∫

Ω

f ·v, (2.23)
∫

Ω

q∇ ·un+1 = 0.

One introduces then (uh, ph) ∈ Un+1
h × Pn

h and (vh, qh) ∈ Un+1
h × Pn

h the discrete versions
of (u, p) and (v, q) has for equation (2.9). The problem finally reads: find (uh, ph) ∈
Un+1

h × Pn
h so that ∀(vh, qh) ∈ Un+1

h × Pn
h:

∫

Ω

ρ∂tu
n+1
h ·vh +

∫

Ω

ρ((un+1
h ·∇)un+1

h ) ·vh−
∫

Ω

µ∇un+1
h : ∇vh

+

∫

Ω

pn+1
h ∇ ·vh =

∫

Ω

f ·vh, (2.24)
∫

Ω

qh∇ ·un+1
h =0.

One obtains an algebraic representation of (2.24). Once again, the problem (2.24) is
solved as one problem, i.e. both equations are solved at the same time. This strategy
is called monolithic. The advantage of a monolithic strategy is that the solution fulfills
all the equations at the same time. The drawback is that the algebraic problem can be
difficult to solve numerically. Other ways exist where one splits the equations and solves
them separately, they are called projection methods [41]. The advantage of projection
methods is that they are simple to implement and the algebraic problems obtained by the
different equations are simpler to solve than the one given by the monolithic method. The
drawback of projection methods is that at each projection, the solution does not fulfill all
the equations at the same time. In our framework, Navier-Stokes equations are always
solved using a monolithic strategy.

Non linear solver

The equation (2.24) is non-linear. A non-linear solver is used to find its solution. Two
different non linear solvers are available in the Navier-Stokes framework. A fixed point
method and a Newton method. In general, we use the Newton method which requires
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computation of the Jacobian of the matrix associated to the algebraic problem but con-
verges in few iterations.

2.2 Coupling fluid and level set equations

2.2.1 Two-fluid flow

In a two-fluid flow simulation, several quantities depend on the position of the interface
between the two-fluids. These quantities are the density, the viscosity, and the forces.
Let us call Ω1 and Ω2 the domains on which are set the fluids 1 and 2 with densities and
viscosities being respectively (ρ1, µ1) ∈ (R × R) and (ρ2, µ2) ∈ (R × R). Let us also call
Ω = Ω1 ∪ Ω2 the whole domain. The interface between Ω1 and Ω2 is called Γ. A level
set function φ is defined as the signed distance function to the interface, positive in Ω1,
negative in Ω2 and zero on Γ as described in section 1.1.

In this section, we will add a subscript φ on all the fluid problem related quantities
which depend on the interface position, and thus, on the level set function φ. We can
define the density and viscosity of the whole domain as ρφ ∈ L2(Ω), µφ ∈ L2(Ω):

ρφ = ρ2 + (ρ1 − ρ2)Hε(φ), (2.25)

µφ = µ2 + (µ1 − µ2)Hε(φ). (2.26)

The forces are given by a function depending on the interface position. This function can

depend on the normal n and curvature κ of the interface, thus
∇φ

|∇φ| and ∇ · (
∇φ

|∇φ|). It

can also depend on higher derivatives of the curvature as we will see for vesicles. Let us
say that one knows the expression g(φ,n, κ) of the density of interfacial forces on all the
space. The force is the projection of this expression, fφ ∈ [L2(Ω)]d:

fφ = g(φ,n, κ). (2.27)

The forces can be volume or surface forces. In the case of a surface force, the expression
for g is in general written for the entire domain and the force is projected on the interface
thanks to the delta function. It reads then:

fφ = g(φ,n, κ)δε(φ). (2.28)

A typical two-fluid flow problem is then given by the set of equations:

ρφ = ρ2 + (ρ1 − ρ2)Hε(φ), (2.29)

µφ = µ2 + (µ1 − µ2)Hε(φ), (2.30)

D(ρφu)

Dt
−∇ · (2µφD(u)) +∇p = fφ, (2.31)

∇ ·u = 0, (2.32)

∂tφ+ u ·∇φ = 0. (2.33)

One also adds boundary conditions. The equations (2.31), (2.32) and (2.33) could be
solved using a monolithic strategy, but the algebraic problem might be difficult to solve.
Moreover, we chose not to use a monolithic strategy because of the flexibility we wanted
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to keep. Indeed, this framework is meant to be very generic, and its goal is to keep
independent as much as possible the level set from the fluid. This way, many fluid models
could be coupled with the level set framework without much change in the code. Thus,
the framework we present decouples the definition of density, viscosity, and forces, the
solution of the Navier-Stokes problem, and the advection of the level set. The associated
algorithm is given by algorithm 3. One can note that the FluidSolver could be also a

Algorithm 2 Coupling between Fluid solver and Level Set solver.

Require: φ0

φ0 ← φ0

for n = 0 to Ntf do

ρn+1
φ = UpdateDensity(φn), eq (2.25)

µn+1
φ = UpdateViscosity(φn), eq (2.26)

fn+1
φ = UpdateForces(φn,n(φn), κ(φn)), eq (2.27)

(un+1, pn+1) = FluidSolver(ρn+1
φ , µn+1

φ ,fn+1
φ ), eq (2.31) and (2.32)

φn+1 = AdvectionSolver(un+1), eq (2.33)
end for

Stokes solver or another fluid model. The forces can take many forms, volume forces or
interfacial forces. Thus, this strategy is very generic and many models can be tested with
it.

2.2.2 Multi-fluid flow

As we have shown previously, one level set field can handle two-fluids. The two-fluids can
have many interfaces but there are still only two different fluids. Some applications may
need more than only two fluids in the domain. For example, one wants to simulate the
behavior of a mixture of immiscible fluids. For a blood flow purpose, it can be interesting
to have two different kind of red blood cells, with some cells very rigid to simulate diseases
like drepanocitosis. It may also be interesting for a low number of objects, to have a sort
of Lagrangian information on each objects. Indeed, in an application where one looks at
the interaction between few vesicles, it can be useful to have the independent information
of the position, velocity, surface and volume of each object which is impossible if only one
level set is involved. In these cases, it is necessary to define more than one level set field.
Each field will define the interface between two fluids. All the level set fields have to be
advected, thus the equation (2.33) has to be solved for each level set field which can be
computationally costly. However, from an implementation point of view, we will see in
section 5.4 that many features can be shared between all the level set fields to enhance
the performance of the application, like the matrix associated to the discretized equation
(2.33) or the reinitialization framework.
In our many-fluid flow, each level set represents the interface between one domain and its
exterior called domain 0. The domain 0 does not need a proper level set since it will be
defined by the area in which there is no level set having a negative value.
From a fluid application point of view, one can say that we need to define a level set for
each embedded fluid. The solvent being simply defined by the area in which there is no
other fluid. That is to say that for an N fluid flow, we need N − 1 level set fields.
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Link fluids and level set fields

Let us call NLS the number of level set fields in a multi-fluid application and φ1, ..., φNLS

the different level set fields. We start intentionally the numbering by 1 to keep the number
0 for the ambient fluid defined according to the others. We define φ0 in eq (2.34) as being
the min value of all the other level set fields. This way, φ0 is a field being negative if
one of the other φ is negative, and positive else. This function has also the information
of the positions of all the interfaces and can be used to distribute common values on the
interface or compute general information like the area of the total interfaces.

φ0 = min(φ1, ..., φNLS
) (2.34)

The density and viscosity of such a multi-fluid system can be defined by using the fact
that the function Hε(φ0) vanishes in the regions where one other fluid is supposed to be.
Thus, the value ρ0 and µ0 has to be set in the area where Hε(φ0) = 1. They are defined
by:

ρφ = ρ0Hε(φ0) +

NLS∑

i=1

ρi(1−Hε(φi)), (2.35)

µφ = µ0Hε(φ0) +

NLS∑

i=1

µi(1−Hε(φi)). (2.36)

We emphasize the fact that the previous definitions hold for a mixture of immiscible
fluids. It can be the case for example of drops of fluids immiscible or any object with
a membrane (vesicle, red blood cell, white blood cell, capsule ...). More precisely, the
definitions hold when the inner domains (φi < 0) are not intersecting which is the case
in figure 2.1(a). In the case of an intersection between the inner domains, like in figure
2.1(b), the definitions of the density and viscosity cannot be given by equations (2.35)
and (2.36). The correct equations have to be given by the physics one wants to express.
Anyway, it should not be too difficult since the intersected areas are easy to identify
thanks to the sign of the different level set fields.

(a) No intersection between the inner domains of
the level set fields.

(b) Intersection exists between the inner domains
of the level set fields.

Figure 2.1: Intersection or not of the inner domains of the level set fields in a multi level
set context.
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Forces in multi-fluids context

The forces fi0 at the interface between one fluid i > 0 and the fluid 0 can be simply
written as:

fi0 = g(φi,ni, κi) δε(φi) (2.37)

where g is the known expression of the force possibly depending on the normal ni and
curvature κi of this interface. The forces fij at the interface between a fluid i and a fluid j
can be distributed by multiplying the expression of the force g by the product of the two
delta functions, which is non-zero only where the interfaces are touching. Such a force
reads then:

fij = g(φi,ni, κi) δε(φi)δε(φj). (2.38)

Computing the normal and the curvature would require twice computing the derivative of

φi for each interface if one uses ni =
∇φi

|∇φi|
and κi = ∇ ·

(
∇φi

|∇φi|

)

. Fortunately, noticing

that on the interface i, we have ni = n0 and κi = κ0 since φ0 has the information of
the positions of all the interfaces, one can replace equation (2.38) by equation (2.39) and
compute only once the normal and curvature for all the level set fields at the same time.

fij = g(φi,n0, κ0) δε(φi)δε(φj). (2.39)

The same trick can be done for higher derivatives of the level set and in general for every
geometrical parameter depending only on the position of the interface.

Solution of a multi-fluid flow problem

The generalization of the two-fluid flow problem to a multi-flow problem is simple. We
have already seen how to define the density and the viscosity of all the fluids and how the
different forces could be handled. The only difficulty is that the advection has to be done
NLS times, increasing the computational cost. A general algorithm to solve this problem
is shown in algorithm 3.

Algorithm 3 Coupling between Fluid solver and multi level set.

Require: φ0
1, ..., φ

0
NLS

for n = 0 to Ntf do

ρn+1
φ = UpdateDensities(φn

i ), eq (2.35)

µn+1
φ = UpdateViscosities(φn

i ), eq (2.36)

fn+1
φ = UpdateForces(φn

i ,n(φ
n
0 ), κ(φ

n
0 )), eq (2.37) or (2.38)

(un+1, pn+1) = FluidSolver(ρn+1
φ , µn+1

φ ,fn+1
φ ), eq (2.31) and (2.32)

for i = 1 to NLS do
φn+1
i = AdvectionSolver(un+1), eq (2.33)

end for
end for
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2.3 Benchmarks and tests

2.3.1 Rising of a bubble in a viscous fluid

We will present a benchmark which has been proposed in [45] and simulates the rising of
a bubble of a viscous fluid in another viscous fluid. This benchmark is a good verification
of the level set code, the Navier-Stokes solver and the coupling between both of them.
The Navier-Stokes code that we used has been written and verified by Vincent Chabannes
during his PhD [17]. We will show that we found a good agreement between the results
of other groups and ours. We published these results in [26].

The benchmark objective is to simulate the rising of a 2D bubble in a Newtonian fluid.
The idea is to put a fluid as a bubble in another fluid of a higher density. Both fluids
are initially at rest. Because of the gravity, the bubble having the lower density rises.
The equations solved are the incompressible Navier-Stokes equations for the fluid and the
advection for the level set as described in section 2.2. To simulate the rising of a bubble,
one adds a gravity force fg and a surface tension force fst defined by:

fg = ρφg (2.40)

fst =

∫

Γ

σκn (2.41)

with g =t (0, 0.98) the gravity acceleration and σ the surface tension. We recall that

n =
∇φ

|∇φ| is the normal to the interface and κ = ∇ · ( ∇φ

|∇φ|) is its curvature.
The computational domain is Ω×]0, T ] where Ω = (0, 1)×(0, 2) and T = 3. We denote

Ω1 the domain outside the bubble Ω1 = {x|φ(x) > 0}, Ω2 the domain inside the bubble
Ω2 = {x|φ(x) < 0} and Γ the interface Γ = {x|φ(x) = 0}. On the lateral walls, slip
boundary conditions are imposed, i.e. u ·n = 0 and t · (∇u +t∇u) ·n = 0 where n is
the unit normal to the interface and t the unit tangent. No slip boundary conditions are
imposed on the horizontal walls i.e. u = 0. The initial bubble is circular with a radius
r0 = 0.25 and centered on the point (0.5, 0.5). The figure 2.2 taken from [45] shows the
initial configuration of the simulation. We denote with indices 1 and 2 the quantities
relative to the fluid in respectively in Ω1 and Ω2. The parameters of the benchmark are
ρ1, ρ2, µ1, µ2 and σ and we define two dimensionless numbers. The first dimensionless
number is the Reynolds number which is the ratio between inertial and viscous terms and
is defined in this simulation by :

Re =
ρ1
√

|g|(2r0)3
µ1

. (2.42)

The second one, is the Eötvös number which represents the ratio between the gravity
force and the surface tension, it takes the form :

E0 =
4ρ1|g|r20

σ
. (2.43)

The table 2.2 reports the values of the parameters used for the two different test cases
proposed in [45]. The quantities measured are Xc the position of the center of mass of
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Figure 2.2: Initial configuration taken from [45]. In this notation u = (u, v).

Tests ρ1 ρ2 µ1 µ2 σ Re E0

Test 1 (ellipsoidal bubble) 1000 100 10 1 24.5 35 10
Test 2 (squirted bubble) 1000 1 10 0.1 1.96 35 125

Table 2.2: Numerical parameters taken for the benchmarks.

the bubble defined by

Xc =

∫

Ω2

x

∫

Ω2

1
=

∫

Ω

x(1−Hε(φ))
∫

Ω

(1−Hε(φ))
, (2.44)

the velocity of the center of mass Uc :

Uc =

∫

Ω2

u

∫

Ω2

1
=

∫

Ω

u(1−Hε(φ))
∫

Ω

(1−Hε(φ))
, (2.45)

and the circularity defined as the ratio between the perimeter of a circle which has the
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same area and the perimeter of the bubble :

c =

(

4π

∫

Ω2

1

) 1
2

∫

Γ

1
=

(

4π

∫

Ω

(1−Hε(φ))

) 1
2

∫

Ω

δε(φ)
. (2.46)

The results of both test cases are represented in figure 2.3 for test case 1 and in figure
2.4 for test case 2. One can see with the arrows and colors that the boundary conditions
are correctly imposed, especially the slip boundary conditions on the left and right sides.
Three different groups have done the same benchmark and the results are presented in

[45] and are available online 1. The name of the codes, the institutions and the authors of
the tests are reported in the table 2.3 taken from [45] in which we added our own code.

Group and affiliation Code/Method

TU Dortmount, Inst. of Applied Math. TP2D
S. Turek, D. Kuzmin, S. Hysing FEM-Level Set

EPFL Lausanne, Inst. of Analysis ans Sci. Comp. FreeLIFE
E.Burman, N.Parolini FEM-Level Set

Uni. Magdeburg, inst. of Analysis and Num. Math. MooNMD
L. Tobiska, S. Ganesan FEM-ALE

Univ. Joseph Fourier, LIPhy. Feel++
V.Doyeux, Y.Guyot, V.Chabannes, C.Prud’homme, M.Ismail FEM-Level Set

Table 2.3: Summarize of the different groups having done the benchmark and the method
used.

In the first test case, the energy cost to deform the bubble is strong enough to keep the
shape of the bubble close to an ellipsoid. We will call this bubble the ellipsoidal bubble,
whereas in the second test, the surface tension is weak and not sufficient to keep the bubble
in one piece. The bottom part of the bubble lets appear some squirts, thus, this bubble
will be called the squirted bubble. The quantities Xc and Uc are calculated directly from
Feel++ using the discretized Heaviside function. Whereas the circularity c is calculated
both by integrating the discretized Dirac function in Feel++ and by post processing
using an interpolation tool of the software Paraview . Both circularity computation
methods give the same results but we only show the post processed one. Indeed it shows
almost no noise since thanks to Paraview we are able to reconstruct an iso 0 level set
line by interpolation and integrate over Γ without the use of the delta function which
always has some thickness. The final shapes of the bubbles are also monitored. We only
plot the better approximation shape for the comparison. All the groups did not use the
same approximations; the best approximation used for each group is reported in table
2.4.

The curves of the shape of the bubble, Xc, Uc and c as functions of time are plotted on
the same graph for different mesh sizes respectively in figures 2.5(a), 2.6(a), 2.7(a), 2.8(a)
for the ellipsoidal bubble and 2.9(a), 2.10(a), 2.11(a), 2.12(a) for the squirted bubble.

1http://www.featflow.de/en/benchmarks/cfdbenchmarking/bubble.html
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(a) t = 0 (b) t = 0.6 (c) t = 1.2

(d) t = 1.8 (e) t = 2.4 (f) t = 3

Figure 2.3: Simulation of test case 1 at different times. The color is the magnitude of
the velocity, the arrows represent the velocity vectors with a length proportional to the
magnitude. The iso-0 line of the level set is represented by a white line.
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(a) t = 0 (b) t = 0.6 (c) t = 1.2

(d) t = 1.8 (e) t = 2.4 (f) t = 3

Figure 2.4: Simulation of test case 2 at different times. The color is the magnitude of
the velocity, the arrows represent the velocity vectors with a length proportional to the
magnitude. The iso-0 line of the level set is represented by a white line.
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Group h Nelt

FEEL++ 0.00625 120174
TP2 0.003125 204800

FreeLIFE 0.00625 102400
MooNMD 8066

Table 2.4: Summary of the best spatial approximation for all the groups. h is the mesh
size and Nelt is the number of elements. MooNMD has no typical mesh size. Since it used
an adaptive mesh, the mean mesh size would not be a representative value.

The same parameters are plotted versus the 3 different group results in figures 2.5(b),
2.6(b), 2.7(b), 2.8(b) for the ellipsoidal bubble and 2.9(b), 2.10(b), 2.11(b), 2.12(b) for
the squirted bubble. The curves can be compared by eye. Ones see that all the groups
agree on the ellipsoidal bubble results whereas all groups have varying results for the
squirted bubble. The difference comes from the squirts appearing on the bottom of the
bubble which are difficult to resolve. In our case, the squirts are quite large and do not
break from the bubble, this might be due to the reinitialization frequency set quite high
(one reinitialization every 5 time step) which always make the bubble difficult to break.
These part having a low velocity, the overall velocity of the bubble is lowered by the large
amount of squirts in our simulation. This explains why our velocity curve in figure 2.11(b)
is below the other curves. A more quantitative comparison uses few remarkable points
that are quantitatively monitored. The quantitative points that are measured for the first
test case are cmin the minimum of the circularity, tcmin

the time to attain this minimum,
ucmax

the maximum velocity, tucmax
the time to reach it, and yc(t = 3) the position of the

bubble at final time (t = 3).

For the second test, we monitor the same quantities and add the second maximum
velocity ucmax2

, and the time to reach it tucmax2
. The simulations are run for different mesh

sizes and the benchmark quantities are reported in table 2.5 for the first case and table 2.6
for the second case with, for reference, the max and min values found by the groups in [45].

h cmin tcmin
ucmax

tucmax
yc(t = 3)

lower bound 0.9011 1.8750 0.2417 0.9213 1.0799
upper bound 0.9013 1.9041 0.2421 0.9313 1.0817

0.02 0.8981 1.925 0.2400 0.9280 1.0787
0.01 0.8999 1.9 0.2410 0.9252 1.0812

0.00875 0.89998 1.9 0.2410 0.9259 1.0814
0.0075 0.9001 1.9 0.2412 0.9251 1.0812
0.00625 0.9001 1.9 0.2412 0.9248 1.0815

Table 2.5: Results comparison between benchmark values (lower and upper bounds) and
ours for the ellipsoidal bubble.
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h cmin tcmin
ucmax1

tucmax1
ucmax2

tucmax2
yc(t = 3)

lower bound 0.4647 2.4004 0.2502 0.7281 0.2393 1.9844 1.1249
upper bound 0.5869 3.0000 0.2524 0.7332 0.2440 2.0705 1.1380

0.02 0.4744 2.995 0.2464 0.7529 0.2207 1.8319 1.0810
0.01 0.4642 2.995 0.2493 0.7559 0.2315 1.8522 1.1012

0.00875 0.4629 2.995 0.2494 0.7565 0.2324 1.8622 1.1047
0.0075 0.4646 2.995 0.2495 0.7574 0.2333 1.8739 1.1111
0.00625 0.4616 2.995 0.2496 0.7574 0.2341 1.8828 1.1186

Table 2.6: Results comparison between benchmark values (lower and upper bounds) and
ours for the squirted bubble

(a) Comparison of different mesh sizes.
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(b) Comparison with other codes.

Figure 2.5: Final shape (t = 3) of the ellipsoidal bubble.
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(a) Comparison of different mesh sizes.
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(b) Comparison with other codes.

Figure 2.6: y position of the ellipsoidal bubble versus time.
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(a) Comparison of different mesh sizes.
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(b) Comparison with other codes.

Figure 2.7: Velocity magnitude the ellipsoidal bubble versus time
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(a) Comparison of different mesh sizes.
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(b) Comparison with other codes.

Figure 2.8: Circularity of the ellipsoidal bubble versus time

(a) Comparison of different mesh sizes.
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(b) Comparison with other codes.

Figure 2.9: Final shape (t = 3) of the squirted bubble.
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(a) Comparison of different mesh sizes.
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(b) Comparison with other codes.

Figure 2.10: y position of the squirted bubble versus time.
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(b) Comparison with other codes.

Figure 2.11: Velocity magnitude the squirted bubble versus time
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(a) Comparison of different mesh sizes.
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(b) Comparison with other codes.

Figure 2.12: Circularity of the squirted bubble versus time
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2.3.2 Rising of different fluid bubbles

This test is made to test the method described in section 2.2.2 in which one uses many
level set fields to describe different fluids flowing in the domain. It consists of having
8 bubbles of fluids with different densities rising in another fluid. It is inspired by the
benchmark presented in section 2.3.1, the bubbles are set in a fluid at rest and rise by
gravity. We denote with a subscript number, the quantities related to the different fluids.
The subscript 0 is kept for the surrounding fluid, which is not defined by a negative value
of its own level set, but by the area where all the other level sets are not negative, as
explained in section 2.2.2. The gravity force is given by :

fg =

(

ρ0Hε(φ0) +
8∑

i=1

ρi(1−Hε(φi))

)

g (2.47)

with g =t (0, 0.98) the gravity acceleration.
The surface tension force is naturally given by the sum of the surface tension forces

acting on all the interfaces :

fst =
8∑

i=0

8∑

j>i

∫

Γij

σij κij nij (2.48)

with Γij the interface between fluid i and fluid j, κij and nij the curvature and normal
related to this interface. As already explained in section 2.2.2 with the equation (2.37),
the interface between the ambient fluid and any other fluid can be handled by :

∫

Γ0i

1 ≈
∫

Ω

δε(φi), with i > 0 (2.49)

and the interface between the other fluids is handled by the equation (2.38) that is to say
∫

Γij

1 ≈
∫

Ω

δε(φi)δε(φj) with i > 0 and j > i. (2.50)

The surface tension σij is an intrinsic property related to the interaction between two
fluids (i and j). Consequently, the case of each fluid i interacting with any other fluid j
by surface tension should be considered and all the σij should be set. Of course σij = σji,
this would make 36 different surface tensions to handle. There is no methodological
problem to handle this, but for the sake of simplicity, in this particular application, we
will only deal with the interaction with the surrounding fluid 0. Indeed, we allow a space
between the bubbles large enough so that the bubbles do not touch each other. Thus, the
only surface tensions to handle are σ0i with i = (1, ..., 8). Since only the interactions with
interface 0 are considered, there is no ambiguity and the subscript 0 can be omitted. In
what follows, we will denote Γi, κi, ni, σi the quantities Γ0i, κ0i, n0i, σ0i. The surface
tension reads then :

fst =
8∑

i=1

∫

Ω

σi κi ni δε(φi) =
8∑

i=1

∫

Ω

σi κ(φi)n(φi) δε(φi). (2.51)

The quantities ni and κi could be naturally calculated using ni = n(φi) and κi = κ(φi).
But an improvement is made recalling that φ0 = min(φ1, ..., φ8) contains the information
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of the positions of all the interfaces at the same time. Thus n(φ0) has the same value as
n(φi) on the interface i. Hence the following equality stands :

∫

Ω

n(φi)δε(φi) =

∫

Ω

n(φ0)δε(φi) for all 1 < i < 8. (2.52)

The equivalent for κi is also true. The equality (2.52) is important when one recalls that
one needs to differentiate the level set function to get the normal and differentiate one
more time to get the curvature. Thus, for each time step, one can calculate n(φ0) and
κ(φ0) and economize the computing of 8 derivatives of the fields φi and 8 derivatives of
ni. The expression of the force becomes :

fst =
8∑

i=1

∫

Ω

σi κ(φ0)n(φ0) δε(φi)

fst =
8∑

i=1

∫

Ω

σi∇ ·
(

∇φ0

|∇φ0|

)
∇φ0

|∇φ0|
δε(φi) (2.53)

The equation (2.53) is the form of the surface tension force used in this test.
The computational domain is Ω×]0, T [ with Ω = (0, 8) × (0, 2) and T = 4.5. On the

lateral walls, slip boundary conditions are imposed, u ·n = 0 and t · (∇u +t∇u) ·n = 0
where n is the unit normal to the interface and t the unit tangent. No slip boundary
conditions are imposed on the horizontal bottom wall, u = 0. And Neumann homogeneous
boundary conditions are imposed on the horizontal top wall, σ ·n = 0. The initial
parameters given for each bubble are reported in table 2.7 and a scheme of the initial
configuration is given in figure 2.13. The parameters of the fluids for the bubbles are

Bubble 1 2 3 4 5 6 7 8
r0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
x0 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5
y0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
σ 50 50 50 50 50 50 50 50
µ 1 1 1 1 1 1 1 1
ρ 800 700 600 500 400 300 200 100

Table 2.7: Initial parameters given for the 8 bubbles, r0 being the radius, (x0, y0) the
initial position, σ the surface tension with the surrounding fluid, µ the viscosity, and ρ
the density.

identical except the density. This makes the bubbles rise at different velocities. The local
Reynolds number for a single bubble varies slightly since the densities and the velocities of
each bubble are different, but all of them are of the same order. The quantities monitored
are the same as for the benchmark presented in section 2.3.1, that is to say the center of
mass Xc (and in particular its y component yc), the mean velocity Uc and the circularity
c given by respectively equations (2.44), (2.45) and (2.46). The simulation has been run
on the super computer SuperMUC on 10 processors. The time step was set to dt = 0.01,
the final time to 4.5 and the mesh size to h = 0.03. With this mesh size, the number of
elements in the mesh was 41902, and all simulations lasted 50 minutes. This makes one
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Figure 2.13: Initial geometry, boundary conditions and densities of the different bubbles.

total iteration last for about 7 seconds. The figure 2.14 shows the colored results for 4
different times. The densities of the bubbles decrease from the left to the right. Thus
the first bubble moves very slowly compared to the last one. The color on background
represents the velocity magnitude of the fluid. One sees that as for the single bubble,
the velocity is the highest on the sides of the bubbles where the fluid is pushed down.
In figure 2.15 we have plotted the position of the center of mass of the bubbles as a
function of time. As we can see, the shapes seem similar to the single bubble. We can
see clearly a difference between all the bubbles, which attains a higher position for the
lower density ones as expected. We can add that due to the other bubbles, the system is
not symmetrical in the x direction at the opposite of the single bubble simulation, and
this symmetry breaking induces a movement of the center of mass of the bubble in the x
direction. The figure 2.16 shows the velocities of the center of mass of the bubbles. The
fastest bubble is the bubble 8, its velocity attains a maximum, then, decreases to a local
minimum and finally increases again. The bubbles 7, 6, 5 follow almost the same behavior
than the single bubbles, being that the velocity increases quickly and attains a maximum
then decreases and finally increases again to attain a second maximum. The bubbles 4,
3, 2, and 1 have a velocity increasing to attain a kind of plateau, the maximum velocity
attained is smaller for the higher densities. Finally the figure 2.17 shows the circularities
of the bubbles. The circularities show a noise which is approximately of the order of
magnitude of the mesh. This is due to the fact that for this simulation, the circularity
is computed directly by integrating the perimeter and the surface of the bubbles on the
mesh without any post processing. Thus, the perimeter being very sensitive to the mesh
size, the circularities show a bigger noise that the one post processed in the previous
section. We recall that one advantage of using a multi-level set method is that it is
possible to do such a computation directly in the simulation. Computing the circularity
of many interfaces with only one level set is not possible in general since there is no way
to differentiate the interfaces. We can see that the bubbles 8 to 4 show the same behavior
as the single bubble with local variation stronger for the lower density bubbles. This can
be explained by the fact that, this bubble going faster, the hydrodynamical forces acting
on it are stronger and thus lead to more deformation. Finally, the higher density bubbles
show weak deformations which can be directly seen on the graph since the circularity is
roughly unchanged.
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(a) t = 0.2

(b) t = 1.6

(c) t = 3

(d) t = 4.5

Figure 2.14: Rising of 8 bubbles of different fluids. Velocity magnitude |u| is represented
in color outside the bubbles. The bubbles are colored by their density ρ.
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Figure 2.15: Position of each bubble as a function of time.
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Figure 2.16: Velocity of each bubble as a function of time.
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Figure 2.17: Circularity of each bubble as a function of time.
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2.4 Oscillations of a bubble in a fluid at rest

2.4.1 Motivation

A validation of our code has been suggested to us by Philippe Marmottant and Olivier
Vincent, experimental physicists in our laboratory. In the context of his PhD, Olivier
Vincent [111] studied the cavitation of a bubble in a hydrogel. His experimental subject
was composed of a hydrogel with many holes in it, these holes are called inclusions. These
inclusions are filled with water. The hydrogel is then dried letting the water evaporate
slowly toward the exterior of the inclusions. The water is then under tension, its pressure
is strongly negative, that is to say that it pulls on the walls of the inclusions. At some
pressure, a bubble forms very quickly, the pressure relaxes to a positive value. It is the
cavitation phenomenon. The bubble formation is done in two different steps: i) the bubble
size increases very quickly and compresses the fluid and the hydrogel. The Reynolds
number of this step is relatively high (Re ∼ 100). The initially empty bubble is filled with
vapor. ii) In the second step, the bubble is formed but its shape is out of equilibrium.
It oscillates around its equilibrium shape. The oscillations come from the surface tension
which exists between the vapor and the liquid water. The Reynolds number of this step
is lower (Re ∼ 5), the fluid can be considered as incompressible. We were interested
in reproducing this last phenomenon. The oscillation frequency of a bubble in a fluid
is known theoretically since 1932 by Lamb [64]. It depends on the surface tension, the
densities and the effective radius of the bubble. When Olivier Vincent compared his
experimental data to the theoretical ones, he showed that an effective surface tension
of about 30% lower than the one given for the water fitted well his data. Two main
explanations were possible for that. The first one is that some chemical contamination
could have happened during the polymerization of the hydrogel, which could have changed
the surface tension of the solvent. The second one is that the confinement could have an
impact on the oscillation frequency of the drops. It is this last point that we tried to figure
out with our simulations. Indeed, the Lamb theory has been made with the assumption
that the drop is in an infinite fluid. The goal of this study was to see if there exists a
strong influence of the confinement on the oscillation frequency of the bubble. As we
will see, our simulations have shown that the Lamb theory still holds even in a confined
domain. Indeed, we have recovered the Lamb frequency with a good precision even
with our strongest confinement. Consequently, as a first conclusion we can say that the
influence of the confinement on the oscillation frequency of a bubble is relatively small.
The second conclusion is that since we are able to recover the theoretical frequency of the
oscillation, this test was a good validation for our model of two fluid flow. A similar test
has already been done to validate a two fluid flow system with level set method [81].

2.4.2 Description of the simulation

Let us define a circular domain Ω, the fluid and the pressure are governed by the Navier-
Stokes equations. No gravity force is added to the system. The only force added in the
right hand side of the Navier Stokes equations is the surface tension force given by:

FSurfTens =

∫

Ω

σκnδε (2.54)
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where σ is the surface tension between the two fluids. No-slip boundary conditions are
added on the boundary of Ω. The bubble is initially at the center of the domain with-
out any initial velocity. The initial shape given to the bubble is an ellipse. The non-
dimensional characteristic numbers for this flow are the Reynolds number:

Re =
ρUL

µ

and the Weber number:

We =
ρU2L

σ
(2.55)

which characterizes the relative importance of the inertia on the surface tension. Ex-
perimentally, the rigid inclusion size is of the order of 40 µm, the size of a bubble is
about 10 µm. The densities of the liquid water and vapor at the experimental conditions
are respectively ρ1 = 103 kg/m3 and ρ2 = 2× 10−2 kg/m3, the viscosities are given by
µ1 = 10−3 Pa · s and µ2 = 2× 10−2 Pa · s. The surface tension between the two water
phases is σ = 70× 10−3 N/m. For this experiment, the Reynolds and Weber numbers
have been estimated as Re ∼ 5 andWe ∈ [0.3, 2]. The numerical parameters are simplified
to ease the numerical simulation and to see a good number of oscillations in a short time.
We choose ρ1 = 10, ρ2 = 103, µ1 = µ2 = 1. The surface tension is σ = 12.5. The area is
taken as A = 4.87. The effective radius R0 is defined as the radius of a circle having the

same area as the bubble, R0 =

√

A

π
= 0.775. With these parameters, the Weber number

is estimated to We = 1.4 and the Reynolds number to Re = 100. The Reynolds number is
taken larger than the experimental one to be able to see many oscillations in a reasonable
time. If it is taken too low, the oscillations are overly damped and the frequency is difficult
to measure. The domain radius has been taken to the following values RΩ = [2, 4, 6, 8],

giving a confinement Cn =
RΩ

R0

of respectively

[
1

2
,
1

4
,
1

6
,
1

8

]

.

2.4.3 Results

The shapes that the bubbles take during their oscillations are represented in figure 2.18.
The resolution of the experiments being done in our lab cannot give us the clear shape
of the bubble. Nevertheless, Apfel et al. [2] did picture these shapes during a micro
gravity experiment led in the Columbia space shuttle. In this experiment, the bubbles
have been excited with an acoustic field, giving them a non equilibrium shape. After
stopping the acoustic field, the bubbles did oscillate around their equilibrium shapes as
in our simulations. In the same paper, some simulations by boundary integral method
are compared to experiments. The results of these experiments and simulations are given
in figure 2.19. The Reynolds number for these simulations is 600. One can see that we
recover correctly the experimental shapes in our own simulations, even if the Reynolds
number is 6 times lower. The only shape that we can not recover is the 8 shape at time
3.05 in figure 2.19 which needs a high Reynolds number.

The oscillation frequency of a bubble has been given by Lamb in 1932 [64] for a 3D
bubble in an infinite fluid. Later, the oscillation frequency of an infinite cylinder in the
z direction under surface tension has been given by Chandrasekhar [19]. The oscillation
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Figure 2.18: Our simulation of the shape oscillations of a bubble during time. The
confinement is 1

2
and we have taken Re = 50, We = 1. Only half a period is represented

since the following shapes are of the same type with different amplitudes.

frequency ωn of a mode n is given by:

ω2
n = n(n− 1)(n+ 1)

σ

ρ1R3
(2.56)

where R is the radius of the bubble at equilibrium. The excited mode in our simulation is
n = 2. The theoretical frequency that we obtain with the numerical parameters we used
is w2 = 0.40.
The simulations have been carried out on 6 processors. The mesh sizes have been taken
to 0.135 away from the bubble and to 0.045 around and inside it. The time step is taken
to 0.025. The reinitialization has been done by solving the Hamilton Jacobi equation
presented in section 1.3.3 every 5 iterations. To measure the frequency of the oscillations,
we choose to measure ylength the y long axis of the bubble. That is to say, the length of the
bubble in the y direction at the center of the bubble. At equilibrium, this is equal to the
diameter. Out of equilibrium, it oscillates around this value. We then do a fit of ylength(t).
For this fit, we use a model of damped oscillation for which we add a corrective term
accounting for the loss of area due to the reinitialization of the level set. We modeled the
loss of area by a linear loss of perimeter in time. At the end of the simulation, around 1%
of the total mass has been lost, which is an acceptable result when taking into account
how long last the simulation in time. The fits are done by the mean square method
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Figure 2.19: Figure taken from [2]. The first line represents the oscillation shape simula-
tion of a bubble with an integral boundary method for a Reynolds number of 600. The
two other lines are the views from two different axes of the oscillations of a bubble in the
micro gravity experiment.

implemented in MINPACK 2 and interfaced by scipy 3 [51] that we used as a black box.
The formula used has been given by:

ylength = a sin(ωt+ ψ)e−
t
τ − 2R0 − bt (2.57)

where a is the amplitude of the oscillations, ω the frequency we are seek, τ a character-
istic time and b accounts for the loss of mass. The whole equation has subtracted the
equilibrium value 2R0. The figure 2.20 represents the oscillations of ylength as a function of
time. The curves with the parameters taken from the fit are represented as dashed lines.
An offset is given to each curve so that we can plot them all on the same graph. Table 2.8
gives the values of the fit parameters for all the curves of figure 2.20. It turns out that the

Cn a ω τ b
1/2 0.86 0.40 54 0.0014
1/4 0.81 0.40 61 0.0013
1/6 0.79 0.40 62 0.0013
1/8 0.78 0.42 57 0.0018

Table 2.8: Parameters taken from the fit of the simulation curves with the model equation
2.57.

frequency is equal to the theoretical frequency up to the second decimal for the three first
bubbles. The bubble with the lowest confinement has a slightly higher value, but it can
be explained by the fact that the error for this simulation is also slightly higher than the
other ones. Indeed, the value of the linear loss of area is much higher for this simulation

2 http://www.netlib.org/minpack
3 http://www.scipy.org
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Figure 2.20: Results of the simulations of the oscillation of a drop around its equilibrium
position for different confinements. The parameter being monitored, ylength is the length
of the y axis of the bubble. An offset is added to each curve for the sake of visibility. The
dashed lines are the curves of equation (2.57) with the parameters obtained from the fit
of the simulation curves. The first period of the oscillations has been cut to see the actual
oscillations without the initial excitation.

than the others. Anyway, in the experiments, a surface tension about 30% higher than
the theoretical one is observed. If we compute how important should be the frequency
gap with the theoretical one in our simulation to get the same percentage difference, we
found that the frequency difference ∆ω = ω − ωth should be of the order of 0.1. Thus
we can say that we do not see a significant effect of the confinement on the oscillation
frequency and that the Lamb formula still holds at such confinements. Moreover, the
theoretical frequency is obtained with a good accuracy and this simulation was a good
validation of our two-fluid flow framework.
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In this chapter we will address the problem of the simulation of solid objects in flow.
Indeed, in general the understanding of the influence of the deformability of vesicles on
a particular problem starts by the precise understanding of the same phenomenon with
rigid particles and a comparison between both behaviors. Being able to simulate a rigid
object in the same framework as the vesicle framework is then a significant advantage.
We will show in this chapter that our framework is able to deal with solid objects and
that it is actually close to two common methods used in the literature to address this kind
of problem. Firstly we will give a brief review of some methods used for the simulation of
solid objects in flow. Then we will show that the fluid particle dynamics and the penalty
methods are two equivalent methods. Then we will show that at the fluid point of view,
setting a huge viscosity inside the objects tracked by level set methods is equivalent to a
penalty method in which the particles are followed with an Eulerian point of view. We
will finally discuss the advantages and drawbacks of such a point of view.

3.1 Existing methods

The problem is to simulate the motion of several rigid bodies in a Newtonian fluid. Let

us call B =
Npart⋃

i=1

Bi where Bi is the domain representing the particle i, and Ω the whole

domain. Thus, the fluid domain is given by Ωf = Ω \ B. We denote by xi and vi

the velocities of the center of mass of the particle i and ωi its angular velocity. The
mass of the particle is called mi and its moment of inertia Ii. The fluid is governed by
the incompressible Navier-Stokes equations. There are no slip conditions between the
particles and the fluid, thus the velocity of the fluid is equal to the velocity of the particle
at the particle boundaries ∂Bi. The spatial and angular accelerations of the particles are
the result of the total forces applied on it divided by the mass and angular momentum as
expressed by the fundamental principle of dynamics. These conditions can be expressed
as follows:

ρ
Du

Dt
− µ∆u+∇p = f in Ωf , (3.1)

∇ ·u = 0 in Ωf , (3.2)

mi
dvi

dt
= Fi ∀i, (3.3)

Ii
dωi

dt
= Ti ∀i, (3.4)

u = vi + ωi(x− xi)
⊥ on ∂B. (3.5)

where the total forces Fi and torques Ti on the particles are the sum of the hydrodynamic
forces and external additional forces:

Fi = Fext +

∫

∂Bi

σn on ∂Bi, ∀i (3.6)

Ti = Text +

∫

∂Bi

(x− xi)× σn on ∂Bi, ∀i. (3.7)

We recall that σ = µ(∇u+t
∇u)−pId. There exist several ways to solve these equations.

Three good bibliographic works reviewing the different methods have been done in the
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PhD theses [46, 66] and [32] (all in french). We will name briefly the main methods before
comparing the penalty and fluid particle dynamic methods.

The conform methods

The simplest method to solve this problem is to create a conforming mesh to the domain
Ωf , in which the domains Bi are represented as holes in Ωf . The velocities vi and
positions xi are defined independently of the mesh. The equations (3.1) and (3.2) with the
condition (3.5) are solved on the mesh by a PDE solver. Then the velocities and positions
are updated solving the equations (3.3) and (3.4). The domain is finally re-meshed to
conform to the new positions xi and the loop is closed. A simple implementation of such a
method is made with the software FreeFem++ in appendix D. This method suffers from
several issues. Indeed, the re-meshing procedure can be computationally costly. Moreover,
if one actually solves the Navier-Stokes equations, the solution to the previous iteration
is needed at the current iteration. The problem is that the previous solution belongs
to a different mesh and a projection procedure has to be employed which induces some
error. An alternative to the systematic re-meshing is to move slightly the points of the
mesh around the particles to their new positions. These methods are called Arbitrary
Lagrangian Eulerian methods. This way, since the displacement of the mesh is not too
high, the re-meshing procedure can be avoided. Such a method is used for example in
[50] and an implementation of an ALE method for Feel++ has been done by Vincent
Chabannes during his PhD [17].

Fictitious domain methods

The fictitious domain methods are a set of methods in which the fluid is defined on
all the space Ω which is a domain larger than Ωf but simpler. A rigid body constraint
is applied to the fluid on the space which belongs to the particles. These methods have
the advantage of not having to handle a changing mesh as done with the direct methods.
There are two main ways to impose the no slip boundary condition (3.5). In a finite
element context, one can impose the rigid body motion of the particles by adding a
Lagrange multiplier to the equations as done in [40, 39]. The Lagrange multiplier is a
vector which can be seen as the volume force needed to impose the rigid body constraint.
The advantage of this method is to impose exactly the constraint and it does not change
the conditioning of the matrix to invert. The drawback is that it can be difficult to
implement. The other method, that we will develop in this section, consists of adding
a penalty term to force the rigid body motion; as a shortcut name, we will call these
methods penalty methods. This method has been introduced for the problem of rigid
particles in a fluid in [49] and a precise analysis has been made in [73]. The method has
also been studied during the PhD thesis of A.Lefebvre-Lepot [66]. It has the advantage
of being simple to implement. However, the drawback is that the penalty term generally
deteriorates the conditioning of the matrix, making the problem more difficult to solve
numerically. Moreover, both methods induce a discontinuity in the normal derivative of
the solution at the boundary of the particles. Some methods called control methods try
to get a better regularity by changing the value of the forces inside the particle. Indeed,
the value of the right hand side of the Stokes equation is usually extended by zero in the
particle, but since this value has no physical meaning or natural value, it can be extended
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to a value making the solution of the problem smoother. Such a method has been the
subject of study of the PhD of B. Fabrèges [32].

The fat boundary method

The fat boundary method (FBM) has been introduced in [74] and study during the
PhD thesis of M.Ismail [46]. It consists of writing the problem on two different meshes.
A first mesh, called global mesh being defined on all the domain, having a relatively large
discretization step. This mesh can possibly be structured in order to use fast solvers on
it. A second mesh is defined around the particles, it is called the local mesh. It is thinner,
and can move with the particles if they are motile. The problems written on the global
and local meshes are coupled. The solution is obtained by an iterative procedure which,
at convergence, imposes that the solution on both meshes match. A condition is added
to impose the continuity of the normal derivative. Thus, the spatial error obtained with
this method has a better rate of convergence than the previous one. An implementation
of the FBM for Feel++ has been made in [17] and a mathematical analysis has been
done in [6].

The immersed boundary method

The immersed boundary method has been introduced by C.Peskin [82]. A general
description of this method is given in [83]. It has been initially written for a finite difference
scheme but it can be extended to finite element. The idea is to write the structure
boundary (here the particle boundary) as a collection of Lagrangian points. The velocity
and pressure of the fluid are discretized on a fixed grid. The forces acting on the interface
are calculated off the grid, since they usually depend only on the positions of the points
of the interface (the normal, its curvature, or higher derivatives of the curvature). The
forces obtained are defined only on the boundary, which do not belong to the grid points,
thus it is projected on the grid thanks to a regularized delta-like function (with a form
equivalent to the one used in a level set context). The thickness of the delta function is
taken large enough so that few grid points are always intersected. Then the fluid equations
are solved on the grid with the forces due to the boundary as right hand side. The solution
is then interpolated to the Lagrangian points of the boundary which are advected at the
fluid velocity. This method has been written for arbitrary interface force, but it has been
extended to the rigid body motion in [113].

The fluid particle dynamics method

An other method comes from the physics community whereas all the methods presented
above arise from the applied mathematics one. It has been introduced by H. Tanaka
[105] for the simulation of colloids. It has been also used in [22, 84] in the context of
rheology of rigid spheres and in the PhD of L. Jibuti [48] and [88] for the rheology of
micro-swimmers. The idea is once again to have a Lagrangian approach for the particles.
Then, the coupling with the fluid is made by fixing the fluid viscosity to a huge value
where the particles are. The huge viscosity induces a rigid body motion of the fluid in
this region. In [105], the flow field was solved by inverse Fourier transform. In [22, 84, 48]
the method was written in a finite difference context, we will see that its extension to a
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finite element context makes this method very similar to the fictitious domain where the
rigid body constraint is imposed by a penalty term.

3.2 Penalty method vs Fluid Particle Dynamics method

3.2.1 A similar formulation for FPD and penalty method

We propose to show that the finite element version of fluid particle dynamics [105] is
exactly equivalent to the penalty fictitious domain method [49]. Let us describe the
methods following both points of view and show that at the end, the same equations
are solved. We start by the penalty method, for the sake of simplicity. To make the
problem unique, we impose the Dirichlet boundary conditions (3.8), but the problem can
be extended to any type of boundary condition.

u = 0 on ∂Ω. (3.8)

Let us introduce the space:

KB =
{
u ∈ [H1

0 (Ω)]
d,D(u) = 0 in B

}
. (3.9)

As we have already shown in section 2.1.1, the problem (3.1) (3.2) (3.3) (3.4) (3.5) (3.8)
can be written in a variational form as, for a given f ∈ [L2(Ω)]d, find (u, p) ∈ KB×L2(Ω)
so that ∀(v, q) ∈ KB × L2(Ω):

∫

Ω

ρ
Du

Dt
·v +

∫

Ω

2µD(u) : D(v)−
∫

Ω

p∇ ·v =

∫

Ω

f ·v
∫

Ω

q∇ ·u = 0,
(3.10)

where the problem has been written on all the domain Ω instead of Ωf by imposing the
constraint that the solution belongs to KB. This is the principle of the fictitious domain
method. Now let us relax the constraint on the space by adding a penalty term, the
formulation reads, for a given f ∈ [L2(Ω)]d find (u, p) ∈ [H1

0 (Ω)]
d × L2(Ω) such that

∀(v, q) ∈ [H1
0 (Ω)]

d × L2(Ω):
∫

Ω

ρ
Du

Dt
·v +

∫

Ω

2µD(u) : D(v) +

∫

B

2

ε
D(u) : D(v)−

∫

Ω

p∇ ·v =

∫

Ω

f ·v
∫

Ω

q∇ ·u = 0,

(3.11)

with ε << 1 to impose correctly the constraint. We can notice at this point that
1

ε
has

the physical dimension of a viscosity

[
1

ε

]

= [µ]. The space discretization of this equation

is made as done previously, by introducing (uh, ph) ∈ Un+1
h × Pn

h the discrete versions
of (u, p) and their test functions (vh, qh) ∈ Un+1

h × Pn
h. A special treatment has to be

done for the penalty integral. Indeed, it is defined on the space B which depends on the
positions of the particles B = B(xi(t)). The simplest way to treat this integral is to define
a characteristic function χ(xi):

χ(x) =

{
1 if x ∈ B,
0 else.

(3.12)
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This characteristic function can be defined analytically for simple shapes like a sphere
of radius r: χ(x) = |x− xi| < r or an ellipsoid of parameters (a, b, c): χ(x, y, z) =
(x− xi)2

a2
+

(y − yi)2
b2

+
(z − zi)2

c2
< 1, but it would be more difficult to handle a problem

in which the rigid bodies have complicated shapes. Then one replaces the integral over
B by an integral over Ω thanks to the characteristic function. The problem reads, find
(uh, ph) ∈ Un+1

h × Pn
h so that ∀(vh, qh) ∈ Un+1

h × Pn
h:

∫

Ω

ρ
Duh

Dt
·vh +

∫

Ω

2µD(uh) : D(vh) +

∫

Ω

2χ(xi)

ε
D(uh) : D(vh)−

∫

Ω

ph∇ ·vh =

∫

Ω

fh ·vh
∫

Ω

qh∇ ·uh = 0.

(3.13)
Finally, the time discretization is performed if one considers a non zero Reynolds number.
Our goal is now to show that a term similar to the third integral of equation 3.13 will be
applied in the FPD method.
In [105] the authors propose to impose the rigid body constraint on the particle by solving
the Navier-Stokes equations with a space dependent viscosity having a huge value inside
the particle. Such a problem reads:

ρ
Du

Dt
− µ̃(xi)∆u−∇p = f

∇ ·u = 0
(3.14)

with, µp >> µ if one call µ the viscosity of the fluid and µp the viscosity inside the
particles. We also call ∆µ = µp − µ the viscosity difference. With these notations we
define the viscosity µ̃ as:

µ̃(xi) = µ+ Ξ(xi)∆µ, (3.15)

Ξ(xi) =

Npart∑

i=1

1

2

{

tanh

(
r − |x− xi|

ζ

)

+ 1

}

(3.16)

where r is the radius of the rigid particle and ζ an interface thickness. The function Ξ
imposes the shape of the particles to be spherical, and the viscosity varies continuously
(but sharply) from µ to µp. If the problem is solved in a finite element context, the
equations are put on a variational form and spatially discretized on finite element bases.
The problem reads, find (uh, ph) ∈ Un+1

h × Pn
h so that ∀(vh, qh) ∈ Un+1

h × Pn
h:

∫

Ω

ρ
Duh

Dt
·vh +

∫

Ω

2 µ̃(xi)D(uh) : D(vh)−
∫

Ω

ph∇ ·vh =

∫

Ω

fh ·vh
∫

Ω

qh∇ ·uh = 0,
(3.17)

which reads if one replace µ̃ by its expression (3.15):
∫

Ω

ρ
Duh

Dt
·vh +

∫

Ω

2µD(uh) : D(vh) +

∫

Ω

2Ξ(xi)∆µD(uh) : D(vh)−
∫

Ω

ph∇ ·vh =

∫

Ω

fh ·vh
∫

Ω

qh∇ ·uh = 0.

(3.18)
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We see clearly with this expression that the two formulations are actually similar. They
both introduce an additional term to the classical formulation defined as the integral over
all the domain of 2D(u) : D(v) times a factor being the product of a term equivalent to
a viscosity and having a huge value, and a term representing the shape and distribution
of the particles. The only difference lies in the fact that one of the characteristic function
is sharp and the other is continuous. However, Ξ→ χ when ζ → 0, . Thus we have shown
that both methods are actually completely similar in a finite element context.

3.2.2 Particle motion in FPD/penalty methods

We have shown that FPD solved by finite element and penalty methods are the same
methods for the fluid equations. The particle motion is actually also handled the same
way in both methods. The particles are seen in a Lagrangian point of view. That is to
say that one keeps the information of the position and velocity of each particle. We will
see how the coupling is done between the fluid velocity and the particle velocities and
positions.

First of all, one has to define the initial positions and velocities of the rigid inclusions.
Then one solves the fluid equations with the rigid body constraint and possibly external
forces depending on the positions of the particles (electrostatic forces for example). Then,
from the solution u, one needs to compute the velocity of each particle vi. To this end,
the velocity vi is simply taken as the mean velocity of u in B:

vi =
1

volume(Bi)

∫

Bi

u. (3.19)

Finally, the velocities are integrated to get the new positions. A classical BDF integration
scheme can be employed. For the example, let us take the simple Euler scheme:

xn+1
i = xn

i + vn
i δt. (3.20)

An algorithm for FPD or penalty method is presented in algorithm 4.

Algorithm 4 FPD method or fictitious domain with penalty term method for the simu-
lation of rigid inclusions in a fluid

Require: x0
i ,v

0
i

for n = 0 to Ntf do
χn = ComputeCharacteristicFunction(xn

i ) eq (3.12) or (3.16)
(un, pn) = SolveFluidProblem(χn,xn

i ) eq (3.13) or (3.18)
vn
i = MeanVelocities(un, χn) eq (3.19)

xn+1
i = UpdatePositions(xn

i ,v
n
i ) eq (3.20)

end for

This Lagrangian point of view has the advantage of being simple to implement. More-
over, in a context of a physical problem in which one needs the individual trajectories of
the particles (as the bifurcation problem presented in section 7.1), the Lagrangian point of
view is also the best. We will show that it is not the only option available and that in some
cases, seeing the particles in an Eulerian point of view can also have some advantages.
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3.3 FPD in Level set framework

In [27] (which we report in section 7.1), we used a penalty (FPD) method taken from
[49], implemented on FreeFem++ . Another implementation of the same method has
been made with Feel++ . The advantage was to be able to treat the problem in 2D
and 3D with the same code. The implementation can be found in [87] and 2D and 3D
simulations are shown respectively on figures 3.1 and 3.2. We can show easily that the

Figure 3.1: 2D simulation of the bifurcation problem presented in section 7.1. The color
is the magnitude of the velocity vector |u|. The area in which µ = µ2 is represented in
black. The particle enters in the low flow rate branch of the bifurcation.

Figure 3.2: 3D simulation of the bifurcation problem. Some streamlines are represented
on the figure and colored with the velocity magnitude |u|. The area in which µ = µ2 is
represented in red. This simulation has been run on a single processor which explains the
rough grain of the particle.

level set framework presented previously can be used as an implementation of an FPD
method. Indeed, one only needs to set the internal viscosity of the fluid to a huge value
compared to the fluid one, and the fluid formulation would be equivalent to (3.13) or
(3.18). Such an algorithm is shown in algorithm 5. It is very simple and uses only tools
already developed in the previous parts. Thus, the code need not to be changed and
only the initial configuration and viscosities which can be monitored as a user, need to
be modified to add rigid inclusions in the fluid. Of course, the level set field would play
the role of the characteristic function making the integration on the domain B possible
thanks to the Heaviside function.
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The only difference from the FPD and penalty method is that in a level set context
one does not follow the position of each rigid inclusion independently. Indeed, one would
advect one level set field and lose the information of the position of each rigid inclusion.
Moreover, this advection step takes generally more computational time than to do the
integration of the positions of the particles (3.20). However, in a simulation where only
one rigid inclusion is present (bifurcation in [27]) the position of the particle would not
be lost by using a level set function instead of integrating the position x of the particle.
On the other hand, for a very large number of rigid particles, one generally does not care
about the exact position of each particle, and only mean values are monitored (viscosity,
density of particles in a region) which are accessible by the level set field. In these cases,
only the computational time could be a drawback for the use of level set instead of indi-
vidual coordinates for the particles.
Nevertheless, two main advantages can be found for the use of level set field. The first one,
is that the shape of the rigid particles has to be given once and for all at the beginning of
the simulation. Then, there is no need to re-use any shape function and the initial shape
will be advected correctly by the velocity of the fluid. The shape can be given by analytic
distance functions (or close to it), as for spheres, lines or ellipses. It can also be given
analytically by combination of min and max of these functions, as it has been done for
the slotted disk in section 1.4. Or, for more complicated shapes, it can be given by the
parametrization of a curve as explained in appendix C. Instead, for the FPD method, the
shape function has to be easy to express since it is used at any time step to update the
characteristic function.
Moreover, we only considered in this section spherical or disk shapes for which the incli-
nation angle of the object has no influence. But to use ellipsoidal particles in an FPD
context for example, one would have to add new sets of variables accounting for the angles
of the objects (αi, βi, γi) (in 3d) and the rotational velocities wi as it is done for example
in [48]. At each time step, the positions and angles have to be updated which can start to
be heavy in a 3D simulation where 3 angles are needed to describe the rotation. This is
completely transparent in a level set context and only the initial shape has to be changed
to go from spherical particles to other asymmetric particles.
The second advantage of the use of level set instead of classical explicit following of the
particles resides in the fact that it can be easily coupled with deformable objects. In-
deed, by using the multi level sets framework introduced in section 2.2.2, one can set a
viscosity to a huge value for rigid inclusion and softer values to model vesicles, bubbles
or other objects. In conclusion, we can say that using level set for the simulation of rigid
inclusions might not be optimal for a simple simulation but it brings more flexibility like
the possibility to handle easily the rotation and complex forms or to couple it with soft
objects.

Algorithm 5 FPD method or fictitious domain with penalty term method using a level
set field.
Require: φ0, µ2 >> µ1

for n = 0 to Ntf do
(un, pn) = SolveFluidProblem(Hε(φ

n)) eq (2.31) and (2.32)
φn+1 = SolveAdvection(un) eq (2.33)

end for
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In this chapter we will describe our strategy for the simulation of vesicles in flow. First
we will recall the expression of the bending force and its level set expression. This force
requires the knowledge of the 4th derivative of the level set field. Two strategies will be
described to get this high order derivative, the increase of the polynomial approximation
order of the level set field and the smoothing of the fields during each differentiation.
Then we will present our implementation of two different methods used in the literature
to impose the inextensibility of the vesicle membrane. The first one uses the information
of the stretching of the interface recorded in the level set field to derive a force opposed to
it (this is a penalty method). The other one uses a Lagrange multiplier to impose that the
surface divergence is zero on the membrane. We finally present some validation tests on
the behavior of a vesicle in a simple shear flow including its equilibrium shape, and show
that the Lagrange multiplier method gives a better accuracy and is more stable than the
penalty method.

4.1 Bending force in level set context

The energy associated to the bending of a vesicle membrane has been addressed by Can-
ham and Helfrich, respectively, in [16, 43]. They have shown that this energy varies
as:

Eb =
kB
2

∫

Γ

κ2 (4.1)

where kB is the bending modulus of the vesicle (a typical value is 10−19 J), and κ is
the curvature of the membrane. In the context of phase field simulation, the authors of
[8] used the principle of virtual works to derive this energy and get a force. The same
procedure has been done in the level set context in [71]. We used the force formulation
given in [71]. A comparison between level set and phase field methods has been made
in [70] where the authors have shown that equivalent results can be obtained with both
methods. The curvature force given in [71] can be written as:

Fb =

∫

Ω

kB∇ ·
(−κ2

2

∇φ

|∇φ| +
1

|∇φ|

(

Id −
∇φ⊗∇φ

|∇φ|2
)

∇{|∇φ|κ}
)

δε∇φ (4.2)

where

(

Id −
∇φ⊗∇φ

|∇φ|2
)

is the orthogonal projector operator, often called P⊥ and can be

simplified in 2D by the expression P2D
⊥
(v) = t(t ·v), with t = n⊥. An index expression of

the orthogonal projector operator is given in appendix G. One can see that the expression
(4.2) leads to some numerical difficulties. Indeed, it consists of the divergence of a function
of the gradient of the curvature, the curvature being itself the divergence of the gradient

of the level set field (κ = ∇ ·n = ∇ · ∇φ

|∇φ|). Thus the curvature force requires taking

four times the derivative of the field φ. This problem is not specific to the level set or
phase field methods as all the methods involving a force derived from the bending energy
of the form (4.1) need the fourth-order derivative of the shape function of the membrane
with a good accuracy. To overcome this issue different techniques have been used. In the
context of spectral boundary integral methods [108, 33, 116, 117, 109] the shape is usually
represented as a function of the spherical coordinates and time r(θ1, θ2, t) (in 3D) and is
discretized using finite spherical harmonics. The fourth order derivative of the shape can
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be obtained with a good accuracy by using high order spherical harmonics. In a finite
element context, Laadhari during his PhD [62] used L2 projection with quadrature order
of 1 (mass lumping).

In this section, we will present two different strategies that we developed to be able
to obtain the derivatives of the curvature. The first one is done by increasing the poly-
nomial order of the discretized level set field. This method gives the better accuracy. It
can be difficult to derive all the coefficients we talked about in this work for high order
approximations. Indeed, all the parameters depending on the mesh size should, for a
high order simulation, also depend on the polynomial approximation order used. These
coefficients are: the interface thickness and the stabilization coefficients for the element
stabilization (the CIP method already includes high order finite element). Moreover, to
keep a reasonable computational time, one would need to decrease the mesh size, thus,
the polynomial approximation for the fluid and pressure should also be increased in conse-
quence to keep the overall approximation accurate. This is already included in our model
and should work satisfactorily. Increasing the polynomial order of approximation for the
vesicle application is thus possible and a few tests have been made in this way. However,
we wanted also to derive a method working at low order (order 1). The goal was to be
able to keep the classical level set parameters and simplify the method. Consequently,
we also derived a projection method in which we smooth the projected field by adding a
small Laplacian term to the left hand side of a projection. This method has a much worse
accuracy but is enough to get an approximation of the curvature and its derivatives.

4.1.1 High order derivative by increasing polynomial approxi-
mation order

Let us define a function u ∈ H1(Ω) for which we want to find the gradient ∇u. One way
to get this gradient is to do a L2 projection of ∇u. Such a projection reads, for a given
u ∈ H1(Ω), find g ∈ [L2(Ω)]d such that ∀v ∈ [L2(Ω)]d:

∫

Ω

g ·v =

∫

Ω

∇u ·v. (4.3)

One discretizes this equation by introducing the continuous finite element spaces Uk
h and

Gl
h, respectively scalar and vectorial finite element spaces based on a mesh of typical size

h and Lagrange polynomials of order k and l. Let us introduce the discrete version of
u and g, uh ∈ Uk

h and gh ∈ Gl
h. The discretized equation (4.3) reads then, for a given

uh ∈ Uk
h, find gh ∈ Gl

h such that ∀vh ∈ Gl
h:

∫

Ω

gh ·vh =

∫

Ω

∇uh ·vh. (4.4)

Let us write this projection in a more general form. We introduce the vectorial finite
element space Am

h ⊂ L2(Ω) and Bn
h ⊂ L2(Ω)∩C0 based on a discretization mesh of size h

and Lagrange polynomials of order respectively m and n. Let us introduce ah ∈ Am
h and

bh ∈ Bn
h elements of those spaces. We define the L2 projection operator on space Bn

h as
follows:

π
Bn
h

L2 : Am
h → Bn

h

ah
(4.6)7→ bh

(4.5)
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





find bh ∈ Bn
h so that ∀vh ∈ Bn

h:∫

Ω

bh ·vh =

∫

Ω

ah ·vh
(4.6)

Thus, the projection (4.4) can be rewritten as:

g = π
Gl

h

L2 (∇uh) (4.7)

Since uh is discretized on polynomials of order k, its gradient∇uh has only the information
of polynomials of order k − 1. If one wants to derive a quantity n times by this method
(let us say one needs ∇nu), this limitation requires taking uh in a finite element space of
order k >= n to have at least ∇nu as polynomial of degree 0.

In the case where one projects the gradient of a P1 field, the field to project (ah in the
formulation (4.6)) is a discontinuous piecewise polynomials of order 0. Since the solution
of the problem (4.6) is searched in a continuous space (we recall that Bn

h ⊂ L2(Ω)∩C0), the
solution is continuous; consequently, in this case, the projection is equivalent to project a
discontinuous field on a continuous one.

Feel++ allows use of a basis with arbitrarily high polynomial order. Consider a
graphical example taken from the test presented in section 4.1.3 in which we define a level
set field as a circle of radius r = 0.5. We want to compute the curvature of the level set
field on the iso 0 of the field, and the gradient of the curvature (called ih). It requires
then to differentiate 3 times the level set field φh. The quantities are computed this way,
for a level set field φh ∈ Rk

h, we compute:

nh = π
(Rk

h
×Rk

h
)

L2 (
∇φh

|∇φh|
)

κh = π
Rk
h

L2 (∇ ·nh)

ih = π
(Rk

h
×Rk

h
)

L2 (∇κh)

What is the expected result? The curvature field of the level set has the form of concentric
circles and has the value 2 where the level set field is 0. The gradient of the curvature
field is supposed to be a vector field for which each vector is pointing to the center of
the domain. On this graphical example, we plot the iso value 2 of the curvature κh, and
some vectors of ih on this iso line. The figure 4.1(a) represents these values for a level
set field taken in R2

h. The approximation is not sufficient to get a correct value of ih.
One can see on the figure that κh which carries the information of a field of degree 0 has
some oscillations. If one needs only the value of the curvature (as for a surface tension
force for example), this approximation could be enough. But if one needs the gradient of
κh, the result is completely wrong as we can see from the vectors plotted on the graph.
On the figure 4.1(b) by contrast, we plotted the same values but by taking an initial
approximation φh ∈ R3

h. This way, the curvature field κh is differentiable and its gradient
can be calculated correctly. This method of increasing the approximation order to get
the proper derivative is very precise as we will see in the convergence test made in section
4.1.3, even though it suffers a few drawbacks.
No hypothesis has been made on the approximation order of the level set framework and
consequently it can work at high order. Nevertheless, a special care has to be taken at the
reinitialization step if the fast marching method is used as explained in section 1.3.4. The
stabilization methods of the elements presented in section 1.2.2 has also been derived only
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(a) φh ∈ R2
h (b) φh ∈ R3

h

Figure 4.1: The iso 0 line of the level set field φh is represented in black. The iso value
2 of the curvature κh is represented as the red line, and its gradient ih as black vectors
randomly distributed on the curvature line.

for first order finite elements. These methods also work for high order finite elements but
the stabilization factor has to be set by hand and to our knowledge no theoretical relation
exists which includes the polynomial order (as for the CIP stabilization for example).
Moreover, the thickness of the interface ε usually set as 1.5h might depend on the poly-
nomial order. Indeed, since high order finite elements method are computationally costly,
the mesh size is usually increased compared to low order finite elements. Consequently, if
the thickness is kept to few mesh size, it can be too large, once again the parameter must
be prescribed according to the needs of the simulation. An added drawback with the use
of high order finite elements is that not all the visualization software are able to handle
them. For example, Paraview that we used in this work can not plot such elements. It
is then necessary to use the operator described in section 1.3.4 which creates a first order
space out of a high order one. The visualization of a high order field can then be made,
but this operation has a cost. Finally, not every finite elements software or library can
provide an arbitrary high order finite element basis. Some numerical methods coupled
with the level set framework added in the future could also work only at first order (for
example some interface localization algorithm). For these reasons, we found necessary to
develop a method able to get high order derivative of a low order field. This method is
developed in section 4.1.2.

4.1.2 High order derivative by smooth projections

We saw in section 4.1.1 that one can differentiate a finite element field since the number
of derivative is lower or equal to the polynomial order of the initial field. But what
is happening if one takes a field in a low polynomial approximation set, let us say 1
and differentiate it twice by the method of derivation / projection explained previously?
After the first derivation, the derivative is discretized by construction on a continuous
polynomial set of order 1 even if it carries only the information of a piecewise discontinuous
polynomial set of order 0. The missing information is filled by unpredictable values,
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leading to oscillations (as seen in the curvature of figure 4.1(a)) making the differentiated
field impossible to differentiate once again. The idea of the method presented here is to
add artificial diffusion to the projection (4.3) to minimize the oscillations happening when
deriving a variable discretized on a low order polynomial set. One adds a small term
proportional to ∆g which smooths the oscillations and makes the obtained derivative
possible to derivate. The continuous formulation of such a smoothed projection, after
integrating by parts is the following, for a given u ∈ H1(Ω), find g ∈ [H1(Ω)]d ∩ [C0]d so
that ∀v ∈ [H1(Ω)]d:

∫

Ω

g ·v +

∫

Ω

ε1 ∇g : ∇v −
∫

∂Ω

ε1 (∇g n) ·v =

∫

Ω

∇u ·v (4.8)

with ε1 a sufficiently small parameter. To be precise, ∇g n is the classical product of the
matrix ∇g and the vector n, thus it is a vector. One remarks that for ε1 = 1, we obtain a
classical H1 projection. One needs to impose boundary conditions to the equation (4.8).
The third integral could be passed to the right hand side and ∇gn replaced by ∇(∇u)n
to impose Neumann boundary conditions but this would require that u ∈ H2(Ω) and we
do not want to impose such a strong regularity on u. Instead, we impose weakly Dirichlet
boundary conditions to fix the value of g at the boundary using the Nitsche method. First
we symmetrize the equation by adding the symmetric of the third integral on both sides
of the equation. Then we impose the value of g on the boundary by adding a penalty
term. Finally the projection reads, for a given u ∈ H1(Ω), find g ∈ [H1(Ω)]d ∩ [C0]d so
that ∀v ∈ [H1(Ω)]d:

∫

Ω

g ·v +

∫

Ω

ε1 ∇g : ∇v −
∫

∂Ω

ε1 (∇g n) ·v −
∫

∂Ω

ε1 (∇v n) · g

+γ1

∫

∂Ω

g ·v =

∫

Ω

∇u ·v −
∫

∂Ω

ε1 (∇v n) ·∇u+ γ1

∫

∂Ω

∇u ·v
(4.9)

with γ1 a big enough parameter. The discrete version reads, for a given ∇uh ∈ Uk−1
h , find

gh ∈ Gk
h so that ∀vh ∈ Gk

h:

∫

Ω

gh ·vh +

∫

Ω

ε2
h

k
∇gh : ∇vh −

∫

∂Ω

ε2
h

k
(∇ghn) ·vh −

∫

∂Ω

ε2
h

k
(∇vhn) · gh

+
γ2
h

∫

∂Ω

gh ·vh =

∫

Ω

∇uh ·vh −
∫

∂Ω

ε2
h

k
(∇vhn) ·∇uh +

γ2
h

∫

∂Ω

∇uh ·vh

(4.10)

with h the element mesh size as a factor of a small parameter ε2 to insure consistency and
γ2 a penalty parameter strong enough to impose the boundary conditions. Once again
we can write this projection in a more general form, it reads:

π
Gk

h
sm : Uk−1

h → Gk
h

∇uh
(4.10)7→ gh

(4.11)

Of course, this projection also works to get the divergence of a vector by replacing the
double contracted product (:) by a scalar product ( · ), and the scalar products of vectors
by simple products of scalars. The πsm projection smooths the information, thus it might
modify the initial field that one wants to project. Let us test graphically the method on
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the same example as in section 4.1.1. The calculated quantities are the same except that
this time, we use the following projections:

nh = π
(Rk

h
×Rk

h
)

sm (
∇φh

|∇φh|
)

κh = π
Rk
h

sm(∇ ·nh)

ih = π
(Rk

h
×Rk

h
)

sm (∇κh)

The results are presented in figure 4.2. The figure 4.2(a) is the same than 4.1(a) that we
reported here to compare more easily the methods. We recall that it uses L2 projections
and that the level set space is R2

h making impossible to differentiate twice φh by this
method, consequently, the gradient of the curvature vectors is wrong. We can see now
on the figure 4.2(b) that with a smooth projection method, it is indeed possible to derive
the level set field in R2

h. However, the interface moved slightly during the smoothing
projections (the red curve representing the iso line 2 of the curvature is not exactly on
the iso 0 of φ). Thus this method works to get high order curvature but the smoothing
parameter ε2 has to be tuned to get a value strong enough to smooth the field but small
enough to keep the approximation correct.

(a) φh ∈ R2
h, projectors used: π

R
2

h

L2 and

π
(R2

h
×R

2

h
)

L2

(b) φh ∈ R2
h, projectors used: π

R
2

h

sm and

π
(R2

h
×R

2

h
)

sm

Figure 4.2: The iso 0 line of the level set field φh is represented in black. The iso value
2 of the curvature κh is represented as the red line, and its gradient ih as black vectors
randomly distributed on the curvature line.

4.1.3 Test on the curvature of a circle

We choose to test the order of the curvature that we can get with this method. The test
is simple consisting in taking the curvature of a function φ ∈ Pn for which we know an
exact value for the curvature and compute the error. The domain Ω is taken as a square
of dimensions (−1, 1)× (−1, 1). The level set function φ is taken so that the interface Γ
is a circle centered in the domain with a radius equal to 0.5, thus φ =

√

x2 + y2 − 0.5.
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The level set lines of the function φ are concentric circles of radii r =
√

x2 + y2. The

curvature of a circle of radius r is equal to
1

r
. Thus the iso lines of the function curvature

defined by κ = ∇ · ( ∇φ

|∇φ|) are concentric circles of radii
1

√

x2 + y2
. The goal of the test

is to compute with the best accuracy possible the curvature of Γ. Theoretically, one has
κexact = 2 for any point (x, y) ∈ Γ but numerically, the integral over Γ is replaced by an
integral over Ω by multiplying the expression by δε(φ). Since δε(φ) has a given thickness
equal to 2ε, assuming that κexact = 2 on all Γ is only first order accurate. The exact value

of the curvature for a point (x, y) ∈ Γ is κexact =
1

√

x2 + y2
. Thus, for this test, the L2

error will be defined as follow:

eL2 =










∫

Ω

(

κ(φ)− 1
√

x2 + y2

)2

δε(φ)

∫

Ω

δε(φ)










1
2

(4.12)

The simulation is run on a single processor Intel(R) Xeon(R) CPU E5-2670, 2.60GHz.
The initial mesh size is set to h = 0.12 and divided by 2 at each iteration. We have
performed 6 iterations for polynomial approximation P1 and P2, 5 iterations for P3 and 4
iterations for P4 and P5 because of the increase in computational time.
Figure 4.3 shows the results obtained by the method in which we increase the polynomial
order of the initial function φ and project each derivative on the same space without
smoothing the solution. We can see clearly that the logarithmic slope of the error as
a function of the mesh size is increased by one when the polynomial approximation in
increased by one as well. Two major consequences can be given from this error analy-
sis. Firstly, it confirms that it is impossible to get a good value of the curvature for a
polynomial approximation of 1 by using this method. The error is bigger than unity and
never decreases with the mesh size. Secondly, this method can give very high precision
to compute the curvature for higher order. Indeed, at the best polynomial approximation
that we tried, which is 5, the error decreases as h4, and we were able to get an error
down to 2 · 10−8 on a single processor. Of course, the computational cost for such an
approximation is very high. But for an application for which the approximation of the
bending forces has to be really good (for steady shape study, for example), one might
consider using high order polynomial approximation. The computational time could be
decreased by increasing the number of processors on which running the application.
The figure 4.4 shows the same simulation for which we used the smooth projection as

described in (4.10) by taking a factor ε2 =
1

3
. We see that for any polynomial order

approximation we get a rate of convergence of 1. This convergence at order one is reached
when the number of degrees of freedom is high enough. Thus, the two first points of the
P1 and P2 approximations do not respect this behavior. Thus, two main conclusions can
be found from this simulation. Firstly, the absolute error at high order is big. Even at a
polynomial approximation of order 5, the best error we get with the smallest mesh size is
bigger than 10−2. Secondly, the only configuration for which the multiple derivation by
smooth projection is better than without smooth projection is for a polynomial approxi-
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Figure 4.3: L2 error as a function of mesh size for different polynomial approximation
order (Pn) using a L2 projection. The legend gives the polynomial approximation order
of the initial level set field and the slope associated to the error.

mation lower than the degree of differentiation needed. Indeed, in figure 4.5 we reported
the errors for a P1 approximation for both methods. We see clearly that, even if the
approximation is not very precise with smoothing projection, it is better than without.
Consequently, for a simulation in which one can go to high order approximation, and if
the precision required for the derivative is not too high (for a suspension of vesicles in
which the major effect would be the volume fraction), the smoothing method is a good
option.

4.2 Inextensibility by elastic force

4.2.1 Principle of the method

One method to model a membrane having its surface area conserved in time is to introduce
a strong elastic force Fel on it. This force derives from an elastic energy. The energy
depends on the stretching of the interface and on a scaling parameter being the energy
cost to pay to stretch it. Thus, for a huge stretching energy cost, the membrane would
be quasi-inextensible. It has been shown in [20, 21, 76] that the level set field can record
the information of the variation of surface area (the stretching). Indeed, if there is no

reinitialization between iteration 0 and iteration n, the quantity
|∇φn|
|∇φ0|

is proportional to

the relative change in surface area. The mathematical proof has been given in [20], but
it can be explained in a simple manner. Indeed, in figure 4.6, it is shown that when the
interface is stretched, somehow, to fulfill the divergence free condition, the fluid has to
pull in the direction perpendicular to the stretching direction. Thus, the level set lines
get closer to each other and |∇φ| increases. A force can be derived from this information,
thus, the model of vesicle using such inextensibility force is such that one adds two external
forces to the fluid solver depending only on the level set field. The big advantage of this
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Figure 4.4: L2 error as a function of mesh size for different polynomial approximation
orders (Pn) using a smooth projection method. The legend gives the polynomial approx-
imation order of the initial level set field and the slope associated to the error.

method is that the fluid solver can be seen as a black box taking as entry an external
force field, and giving as output the velocity and pressure solutions. This is an advantage
if one wants to test different numerical techniques to solve a fluid equation or even test
different fluid models. Another advantage is that the time cost to solve such a problem
would be almost independant of the number of vesicles in the flow. As a matter of facts,
the total number of elements in the final problem is always the same if one increases the
number of vesicles. Only the number of non-zero entries in the force vector is increased.
This is a big advantage compared to the method described in section 4.3 in which the
Lagrange multiplier increases the number of unknowns to find. This method can be seen
as a penalty method to restrict surface area change. It is not an exact method and suffers
from some technical difficulties that we will describe later on. First, let us describe the
method in detail. The elastic energy Eel is defined as:

Eel =

∫

Ω

E(|∇φ|)δε, (4.13)

where E(|∇φ|) is a constitutive law for the membrane such that E(1) = 0 meaning
that there is no initial stretching. Different models could be used for E(|∇φ|), usually
we prefer to describe E ′(|∇φ|) the derivative of E(|∇φ|) which is directly used in the
expression of the elastic force Fel. A simple expression usually sufficient to get most of
the effects is a linear law E ′(|∇φ|) = Λ(|∇φ| − 1) with Λ the energy cost per unit of
surface to stretch the membrane. For this expression, the energy would be a quadratic
law E(|∇φ|) = Λ

2
(|∇φ| − 1)2 making the membrane modeled as a spring, pulling when

it is stretched and pushing back when it is compressed. A more realistic model is to cut
the force when the membrane is compressed, making the membrane more like a tensile or
a balloon, the derivative of the energy would be then E ′(|∇φ|) = Λmin (|∇φ| − 1, 0). It
has been shown in [20] that after having derived the energy (4.13), the elastic force takes
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Figure 4.5: Comparison of the L2 error on the curvature as a function of mesh size for a
polynomial approximation of first order.

the form:

Fel =

∫

Ω

{

∇E ′(|∇φ|)−∇ ·
[

E ′(|∇φ|) ∇φ

|∇φ|

]
∇φ

|∇φ|

}

δε. (4.14)

If we re-write this equation by replacing
∇φ

|∇φ| by n and E ′(|∇φ|) by the spring like

model, we obtain:

Fel = Λ

∫

Ω

∇(|∇φ| − 1)−∇ · [(|∇φ| − 1)n] δεn. (4.15)

4.2.2 Record the stretching information

Several difficulties arise when using this method. The first one has already been seen in the
previous section: the high order derivative of the level set field. Indeed, the formulation
(4.15) leads to a 2nd derivative of the level set field. This problem has already been
addressed in section 4.1. Another difficulty is that for a given simulation, one needs to

keep the information
∇φ

|∇φ| during all the simulation time. Thanks to the elastic force

Fel, this quantity is supposed to stay close to 1 on the membrane. The problem is that
it can reach really high values away from the membrane. For example, for a simulation
of one vesicle at the center of a shear flow, the velocity induced by the wall forces the
level set field to move in one direction since its value has to be 0 on the membrane. This
results in an accumulation of level set lines on one side of the vesicle and a depletion in
the other side. The gradient magnitude of the level set takes extremes values, leading to
instabilities when solving the advection equation 1.11. For other level set simulations, the
reinitialization resets |∇φ| to values close to 1 and the problem is solved. But doing so in
this context would lose the stretching information. A way to overcome this last problem
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Figure 4.6: Scheme explaining how the divergence free velocity implies that |∇φ| records
the stretching of the interface. If the interface is stretched it means that the velocity field
is pulling on it from two sides as shown on the left scheme. Since the velocity is divergence
free, it has to push in the other direction to fulfill this condition. Thus, the level set lines
are getting closer, consequently, the gradient magnitude of φ increases.

is to introduce e = |∇φ|, an alternative field being governed by the equation:

∂te+ u ·∇e = −e∇φ⊗∇φ

|∇φ|2
: D(u). (4.16)

This field is set initially to e0 = |∇φ0| and then advected as an independent field. It
can be solved numerically by the numerical framework presented in sections 1.2 and 5.2
as for the advection of the level set, by changing the right hand side f . This method
of taking the gradient magnitude of the level set field as an independent field is known
as the gradient augmented level set method in [78], it has also been used in the vesicle
simulation context in [92]. A first advantage of using this method is that it reduces the
degree of derivation of equation (4.14) by one. Indeed, replacing |∇φ| by e in equation
(4.15) leads to only one differentiation of the field e. This field e is usually discretized on
the same polynomial set as the level set field.
The problem of the extremes values of |∇φ| is still here. The solution that we propose is
to reinitialize the level set field and the field e, but to keep the information of the field e
before reinitialization around the interface.

By doing so, after reinitializing, φ is equal to a distance function, e is almost equal
to the unit everywhere and we reset e to its value before the reinitialization around the
interface. This does not lead to a huge discontinuity of e since it is supposed to stay close
to one thanks to the strong elastic force. Moreover, the discontinuity can be smeared out
by using a Heaviside like function.

Let us call e∗ and ẽ respectively the values of e before and after the reinitialization step
(ẽ is almost equal to 1 everywhere). We call e the value of ẽ for which we reincorporated
the information of the stretching before reinitialization. The value of e can be obtained
by:

e = ẽ+ e∗Rε2(φ) (4.17)

with Rε2 the smoothed rectangular function being equal to one in a thickness ε2 around
the interface. It can be defined by:

Rε2 = Hε(φ+ ε2)−Hε(φ− ε2). (4.18)
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The parameter ε2 has to be taken larger than the interface thickness so that inside the
interface one has Rε2 = 1. One can also replace Rε2 by a characteristic function if the
discontinuities involved are not too large.

4.2.3 Equations and dimensionless numbers

A complete set of equations to solve a problem of vesicles flowing in a Newtonian fluid
with the inextensibility ensured by a strong elastic force reads:

ρφ = ρ2 + (ρ1 − ρ2)Hε(φ)

µφ = µ2 + (µ1 − µ2)Hε(φ)

Fb = kB

∫

Ω

∇ ·
[−κ2

2
n+

1

|∇φ|(Id − n⊗ n)∇{|∇φ|κ}
]

δε(φ)

Fel = Λ

∫

Ω

∇(e− 1)−∇ · [(e− 1)n]n δε(φ)

ρφ(∂tu+ (u ·∇)u)− µφ∆u+∇p = Fel + Fb

∇ ·u = 0

∂tφ+ u ·∇φ = 0

∂te+ u ·∇e = −e (n⊗ n) : D(u).

A typical simulation is solved by the algorithm given in algorithm 6. The condition
Reinitialize is often set by a reinitialization frequency. It can also be monitored by the
max of the gradient magnitude of the level set field.

Algorithm 6 Algorithm for the coupling of level set simulation of vesicles by using a
stretching force to ensure inextensibility of the membrane and a fluid solver.

Require: φ0

for n = 0 to Ntf do

ρn+1
φ = UpdateDensity(φn), eq (2.25)

µn+1
φ = UpdateViscosity(φn), eq (2.26)

F n+1
b , F n+1

el = UpdateForces(φn,n(φn), κ(φn))
(un+1, pn+1) = FluidSolver(ρn+1

φ , µn+1
φ ,F n+1

b ,F n+1
el )

φ̃n+1, ẽn+1 = AdvectionSolvers(un+1, φn, en), eq (2.33), eq (4.16)
if Reinitialize then
φn+1 = Reinitialization(φ̃n+1), Fast Marching or Hamilton Jacobi equation
en+1 = SaveStretchingInformation(en, ẽn+1), eq (4.17)

else
φn+1 = φ̃n+1

en+1 = ẽn+1

end if
end for

There are many parameters to set for this simulation. All the parameters are not
independent and we propose now to see how we can reduce the physical parameters to
a few dimensionless parameters controlling the behavior of the simulation. To do so, as
usual in fluid mechanics, we need characteristic values. Let us call L the characteristic
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length, U the characteristic velocity of a particular flow and τ a characteristic time. For

a simulation of vesicles, the typical length L of the flow is usually taken as R0 =
per
2π

,

the radius of a circle having the same perimeter as the vesicle. A simulation given by
the equations presented above is typically governed by the values of a few dimensionless
numbers. The first one is the classical Reynolds number Re, representing the ratio between
the inertial and the viscous terms. We recall that its expression is:

Re =
ρUL

µ
.

The second dimensionless number is the Weissenberg number. Usually, the Weissenberg
number is used for a viscoelastic fluid and represents the ratio between the characteristic
time of the fluid and the characteristic time of one specific event. In this case, the event
is the relaxation time of the membrane under the elastic force. The Weissenberg number
is given by:

We =
µU

Λ
.

The third dimensionless number is the capillary number associated to the curvature force.
It represents the relative strength of the hydrodynamic forces and the curvature force. It
reads:

Ca =
µUL2

kB
.

Of course the dynamics of the vesicle is also governed by the viscosity ratio
µ2

µ1

and the

density ratio
ρ1
ρ2

. All these parameters should in principle rule all the dynamics of the

simulation from a physical point of view. Of course, there are still physical parameters to
set, and the relative value of these parameters can not be taken randomly as well. Thus
we shall see what range of dimensionless parameter values are acceptable. Firstly, for our
simulations the Reynolds number is very low O(10−4) and we solve the Stokes equations.
The capillary number is taken between 10−1 and 10. The Weissenberg number has to be
quite low to insure inextensibility. A better estimation of how this number should be set is

to look at the ratio between the typical time scale of the curvature force (τkB =
µL3

kB
) and

the one of the elastic force (τΛ =
µL

Λ
). The typical time associated to the elastic force has

to be much smaller than time associated to the curvature force so that the inextensibility
force has a very fast response. The ratio between those two time scales is given by:

Rτ =
τΛ
τkB

=
kB
ΛL2

.

This ratio takes typical values between 10−3 and 10−5. The numerical parameters have
to be set as well according to the numerical values given to the physical parameters. In
particular, the time discretization choice is critical in this simulation. Indeed, the elastic
force being really strong for a good local surface conservation, the time step has to be
small enough so that the force does not lead to instabilities. This parameter is difficult
to choose. To start, a relation between the numerical ingredients should be:

dt <
h

max(UΛ, UkB , U)
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where UΛ and UkB are the typical velocities induced by the elastic force and the curvature
force, and U is the typical velocity of the flow. Replacing the velocities by their values
leads to the relation:

dt <
h

max

(
kB
µL2

,
Λ

µ
, U

) .

This relation is a good starting point to check the range in which should be dt, however,
usually one has to try different values to find the optimal one not leading to instabilities
while keeping a reasonable computational time. In the previous formulation, usually the
leading term is the velocity due to the inextensibility force. Indeed, if it is not the case,
the membrane has some extensibility.

4.3 Inextensibility by Lagrange multiplier

4.3.1 Introduction of the Lagrange Multiplier

A more stable way than having a force to impose inextensibility of the membrane is to
impose this constrain by adding a Lagrange multiplier to the equations. This method has
been employed in [62] and we propose to see in this section its implementation within our
framework. The idea is to insure that the velocity of the membrane is divergence free.
Since in this model, the membrane is a part of the fluid, we can write this constraint as
the fact that in the fluid, the surface divergence on the interface Γ has to vanish, that is
to say:

∇s ·u = 0 on Γ (4.19)

where ∇s ·u is the surface divergence, it can be written as: ∇s ·u = (Id−n⊗n) : ∇u =
∇ ·u − (∇u n) ·n. One can see appendix G for the indexes notation of the surface
divergence. This constraint on the fluid is added to the fluid system of equation. For the
sake of simplicity, we will only write the incompressible Stokes equations for this part but
there is no problem to extend it to the Navier-Stokes equations. The system of equation
reads now:

−2µ∇ ·D(u) +∇p = f in Ω

∇ ·u = 0 in Ω

∇s ·u = 0 on Γ.

Boundary conditions are also applied depending on the type of flow needed, for the sake of
simplicity, in this example we will consider that we impose Dirichlet boundary conditions
on ∂Ω. The variational formulation of the Stokes equations are classically obtained as
for the problem 2.17 by using the strain tensor D(u). A Lagrange multiplier λ is also
added to insure the constraint (4.19). The problem reads: for a given f ∈ [L2(Ω)]d, find
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(u, p, λ) ∈ [H1(Ω)]d × L2
0(Ω)×H1/2(Γ) so that ∀(v, q, ν) ∈ [H1

0 (Ω)]
d × L2

0(Ω)×H1/2(Γ):
∫

Ω

2µD(u) : D(v)−
∫

Ω

p ∇ ·v +

∫

Γ

λ ∇s ·v =

∫

Ω

f ·v (4.20)
∫

Ω

q ∇ ·u = 0 (4.21)
∫

Γ

ν∇s ·u = 0 (4.22)

The third integral of equation 4.20 might theoretically not be always defined. It should
actually be seen as a duality bracket: < λ,∇s ·v >. In practice, the functions we are
dealing with are regular enough so that the integral is always defined, and we will prefer
the integral notation to the bracket one.

We can see what λ represents physically. As we can see in equation (4.20), the Lagrange
multiplier plays a role very similar to the pressure. Indeed, the pressure p can be seen
as a Lagrange multiplier imposing the constraint ∇ ·u = 0 on all the domain, whereas λ
imposes ∇s ·u = 0 on the interface. We can do a simple dimensional analysis on equation
(4.20) to express what this parameter is physically. We recall that d is the topological
dimension of the problem (2 or 3), F and L the dimensions of force and length and [A]
the dimension of a quantity A. Equation (4.20) shows that we have:

[f ] =
F

Ld

[p] =
F

L(d−1)

[λ] =
F

L(d−2)

Thus, in 3D, f is a body force, p a surface force and λ a line force. Whereas in 2D, f
is a surface force, p a line force and λ a point force. Thus λ is like a tension, that is to
say a pressure of a topological dimension lower than the pressure p. Moreover, the other
difference between p and λ is that p is defined on the all domain Ω whereas λ is restricted
on the interface Γ.

4.3.2 Discretization

We discretize the equations (4.20), (4.21) and (4.22) by introducing the finite element
spaces Un+1

h ⊂ [H1(Ω)]d, Pn
h ⊂ L2(Ω) and Ln

h ⊂ L2(Ω). These spaces can be defined as:

Un+1
h = {uh|uh ∈ [C0]d,uh =

N
U
n+1
h

dof∑

i=1

uiΦi}

Pn
h = {ph|ph ∈ C0, ph =

N
P
n
h

dof∑

i=1

piφi}

Ln
h = {λh|λh ∈ C0, λh =

N
L
n
h

dof∑

i=1

λiξi},
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where Φi, ψi and ξi are the finite element basis functions being Lagrange polynomials of
orders n+1, n and n respectively. We introduce (uh, ph, λh) ∈ Un+1

h ×Pn
h×Ln

h the discrete
versions of (u, p, λ). The discrete version of equations (4.20), (4.21) and (4.22) reads, for
a given fh find (uh, ph, λh) ∈ Un+1

h × Pn
h × Ln

h so that ∀(vh, qh, νh) ∈ Un+1
h × Pn

h × Ln
h:

∫

Ω

2µφD(uh) : D(vh)−
∫

Ω

ph ∇ ·vh +

∫

Ω

λh ∇s ·vh δε(φ) =

∫

Ω

fh ·vh (4.23)
∫

Ω

qh ∇ ·uh = 0 (4.24)
∫

Ω

νh∇s ·uh δε(φ) = 0, (4.25)

where we replaced the integral on Γ by an integral on Ω thanks to the delta function. This
is important from the point of view of the dimensional analysis we performed previously.
Indeed, as opposed to λ, λh is defined on the domain Ω even if most of its values are 0
on it. Thus it is defined on a space with the same topological dimension as the space of
p. If we perform a dimensional analysis of equation (4.23), we can show that

[λh] = [ph] =
F

Ld−1
.

Consequently, by discretizing the Lagrange multiplier and projecting it on a space of
topological dimension superior to the one where it belongs, we changed its physical di-
mensions and transformed it to a pressure. It can be seen as a pressure acting on a very
small portion of the fluid trying to keep the surface divergence free. Thus, the pressure
ph and the Lagrange multiplier λh are the same kind of objects. To put this problem in
an algebraic form, we introduce the following matrices:

A,Aij =

∫

Ω

2µD(Φj) : D(Φi)

B,Bij =

∫

Ω

−ψj∇ ·Φi

C,Cij =

∫

Ω

δε ξj∇s ·Φi

and the following vectors:

U,uj

P , pj

Q, λj

F ,fj.

Then, the problem (4.23) (4.24) (4.25) can be written as:




A B C
BT 0 0
CT 0 0









U
P
Q



 =





F
0
0



 (4.26)

This algebraic system can be solved by a direct solver. The same method can be applied
for the Navier-Stokes equation, for which a non-linear solver is used (Newton).
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4.4 Validation

In this section we will try to validate our two different methods on several known behaviors
of vesicles. The first one is the equilibrium shape of a vesicle in a fluid at rest. The other
ones are the behaviors of vesicles under shear flow. In this system two remarkable motions
are well known: the tank-treading and the tumbling motions. We will show that we can
recover them easily with the Lagrange multiplier method and explain why it is difficult
to do the same with the forces methods.

4.4.1 Equilibrium shape

The first validation of the model that we address is the equilibrium shapes of the vesicles.
If one puts a vesicle in a fluid at rest in a shape which does not minimize the Helfrich
energy (4.1), the bending force is not zero and leads to a movement of the membrane which
causes a motion of the fluid as well. The force and the velocity vanish when the membrane
attains its equilibrium shape. When the inner of two fluids is a drop, the surface energy
is proportional to the curvature which leads to a minimization of the shape of a sphere.
The case is different for a vesicle, indeed, the surface energy is proportional to the square
of the curvature which leads to a different minimal energy shape. It has been shown
[24, 95, 94, 1] that the equilibrium shape depends strongly on a geometrical parameter
being given by the ratio between the volume and the area of the vesicle. A dimensionless
parameter has been defined to quantify this ratio. It is called the reduced volume, it is
defined as the ratio of the volume of the vesicle and the volume of a sphere having the
same area as the vesicle. In two dimensions, the parameter is the reduced area α which is
the ratio between the area of the vesicle and the area of a disk having the same perimeter.
Its definition is

α =
4πA

p2er
, (4.27)

where A is the area of the vesicle and per its perimeter. This coefficient measures how
much the vesicle is swollen or deflated. A reduced area of 1 means that the vesicle is
circular, thus completely swollen. If one considers a vesicle for which α < 1, it means
that the vesicle is deflated. It has been shown that a deflated vesicle tends to take a
bi-concave shape as shown in figure 4.7 taken from [95]. This test will mostly validate the
expression of the bending force Fb since the equilibrium shape is totally dependent on it.
The inextensibility is not too difficult to achieve in this simulation. Indeed, the initial
shape that we set is not too far away from the equilibrium shape and the movement that
the vesicle has to do is relatively small. Thus, the vesicle is not stretched too much. The
difficulties of this test are, firstly to calculate precisely the bending force. Secondly, since
this force vanishes close to the equilibrium, the time for which the equilibrium shape is
reached can be long. Thus the numerical error, especially the loss of mass induced by
the level set advection, has to be controlled. We chose to compare our results to those of
Badr Kaoui obtained during his PhD [56] and published in [53].

In [53], Kaoui used a Lattice Boltzmann method to compute the equilibrium shapes of
the vesicles that he compared to the one he obtained with the Boundary Integral Method.
Both methods showed the same results. The numerical data being available to us, we
chose to compare our results to it. Another possibility could have been to solve coupled
EDO as shown in [62]. Since the inextensibility of the membrane is not the most critical
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Figure 4.7: Scheme taken from [95] of the equilibrium shapes of a vesicle for different
reduced volumes. The values of the reduced volumes are indicated at the bottom of each
vesicle. One can see clearly the transition from a quasi circular vesicle to a bi-concave
one, from right to left.

point of this simulation, it is insured by the inextensibility force seen in section 4.2 and we
did not performed the same study with the Lagrange multiplier method which would have
lead to a similar result. For this simulation, the domain has been taken as a square of 8×8,
the mesh size was h = 0.16 away from the center and a box with a better mesh around
the vesicle has been taken with h = 0.064. The fluid equations are the incompressible
Navier-Stokes equations with Dirichlet boundary conditions. The zero mean pressure is
imposed by a Lagrange multiplier. The viscosities inside and outside are µ1 = µ2 = 1
and the volumic mass ρ1 = ρ2 = 10−5. The vesicles are taken initially as ellipses with
major and minor axes a and b, since this shape is not the equilibrium shape, the vesicle’s
membrane will start to move. We have already seen in section 1.3.3 that we can put the
following field as initial level set field:

φ0 =

√
(
x− x0
a

)2

+

(
y − y0
b

)2

− 1

which is not a signed distance function but has the property to be an ellipse on the
iso-0 and positive outside and negative inside the ellipse. Thus we can start with this
function, and the reinitialization procedure resets it to a distance function quickly. For
this simulation, the fast marching method presented in section 1.3.4 has been used as
reinitialization procedure. The chosen reduced areas go from 1 to 0.6. The perimeter per
is fixed to 8, the equivalent radius is R0 = 1.27. A simple numerical way to find a and
b when α and per (or A) are fixed is presented in appendix B. The parameters for the
forces are fixed to kB = 0.01 and Λ = 400 giving a time ratio Rτ = 1.5 × 10−5, thus the
inextensibility of the membrane should be correctly maintained. With this parameter,
if we consider the previous study of the relevant velocity, the time step should be really
small. But in this particular case, the membrane will move smoothly and slowly and
will not be too much stretched. Thus, the inextensibility force should stay small and
the time step can rather be set according to the time scale of the bending force. Taking

the previous scaling, the time step should follow: dt <
hµR2

0

kB
= 0.64. We chose a time

step dt = 0.01, one order of magnitude smaller. The time discretization was BDF2 and
the stabilization method GALS. The simulations have been run on a single processor.
Figure 4.8 shows the result of the simulation for 4 different reduced areas that we already
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presented in [28]. The results of our simulations are represented by blue dots and the one
of Kaoui by red lines. One can see that there is a small difference in the results due to
the error on the total surface conservation by the level set method. The relative variation
of area is lower than 4%, this value is already large but enough to validate shape of the
vesicles and thus the curvature force.

4.4.2 Dynamics of single vesicle under shear flow

The behavior of a vesicle which has been the most studied and therefore the one which is
the most understood is probably the dynamics of a single vesicle in a shear flow. A shear
flow is a simple kind of flow in which the velocity has only the x component different from
zero, and this component is a linear value of the y position. The coefficient linking the
y position and the x velocity is called the shear rate (γ) and has the dimension of the
inverse of a time. To summarize, in 2d:

ushear = γ

(
0 1
0 0

)

x. (4.28)

It has been shown by the theory of Keller and Skalak [99] that when an ellipsoidal particle
like a vesicle is placed at the center of a shear flow, it undergoes a kind of solid rotation
if the viscosity of the internal fluid is high enough compared to the external one. This
motion is called the tumbling motion (see figure 4.9). If the viscosity ratio decreases be-
low a critical value λc, the vesicle takes a steady angle and the membrane of the vesicle
rotates like a tank-tread. Thus, this behavior has been called the tank-treading motion
(see figure 4.10). The authors have shown that the critical viscosity ratio depends on
the reduced volume α. Later on, this transition between tank-treading and tumbling has
been studied numerically in detail [7, 5]. Experimentally, the tank-treading motion has
been obtained on vesicles by Kantsler et al. in [52]. The transition to tumbling has also
been studied experimentally by Mader and Podgorski [69]. A state transition between
the tank-treading and the tumbling has been found at the same time by Misbah et al.
[77] and Kantsler et al. [52], it has been called the vacillating breathing or the swinging
mode. In this motion, the vesicle’s angle oscillates around its equilibrium value. The
angle the a vesicle takes in a shear flow is defined as the angle between the horizontal
line and the larger axis of the vesicle. Numerical investigations has been made to clarify
the role of the different parameters and the associated regime in which the vesicle should
be [58] and quantitative details about the phase diagram (represented schematically in
figure 4.11) have been found. In [53], the effect of the confinement on the tank-treading
regime has also been studied. The goal of the following tests will be to reproduce the
tank-treading and tumbling motions to be sure that we are able to capture this physics
with our framework.

Tank-Treading motion of a vesicle with inextensibility force

The first test that we have done is getting the tank-treading motion using the method
presented in section 4.2. In this method, the inextensibility is obtained thanks to a force
applied on the membrane and depending on the stretching of the level set field (recorded
by a field e).
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(a) (b)

(c) (d)

Figure 4.8: Equilibrium shapes of vesicles for different reduced areas. The blue points
are our simulations, whereas the red lines are the simulation taken from [53] done by
Lattice Boltzmann method. The exact reduced area is given as legend on the graphs.
The difference between the two models are mainly due to the change of area in level set
method.
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Figure 4.9: Experimental observation of the tumbling motion taken from [69]. The vesicle
is doing a solid like rotation around its center.

Figure 4.10: Experimental observation of the tank-treading motion taken from.

For this simulation we have set γ = 1 and the viscosity ratio λv = 1. A reduced area
of α = 0.9 is chosen. The force ratio is taken to Rτ = 5 × 10−4 which is small enough
to get a correct incompressibility. The time step is taken as ∆t = 3 × 10−3 and the
simulation is run on 104 elements. The finite element spaces in which are discretized the
variables (u, p, φ) are taken as Uk

h×Pl
h×Qm

h where (k, l,m) are the polynomial orders of
the discretization.

As we explained previously in section 2.1.1, for stability reasons we use the Taylor-
Hood finite element, thus we always set k = l + 1. Moreover, we chose to discretize the
stretching field e on the same space as the level set field, thus we have e ∈ Qm

h .

This simulation is run in sequential mode, thus the Fast Marching method was well
suited to reset the level set to a distance function. The reinitialization procedure has
been made every 5 iterations. Figure 4.12 represents the simulation at different times.
In the figures 4.12(a) and 4.12(b), the vesicle is not yet at its equilibrium angle. Thus it
undergoes a rotation centered on the vesicle’s center. In figures 4.12(c) and 4.12(d), the
vesicle has reached its equilibrium angle and the streamlines are taking the shape of the
vesicle membrane, thus, the membrane is rotating as expected for a tank-treading.

The same simulation has been performed with several polynomial discretization sets to
search for a good compromise between computational time and precision. The monitored
property of a physical interest is the angle that the vesicle takes. Thus, this quantity
is always measured and we see how the discretization influences it. The other property
monitored is the perimeter of the vesicle. Indeed, the inextensibility force applied at the
vesicle membrane is supposed to keep this value constant. Consequently, the choice of the
approximation is made to have this constraint satisfied as well as possible. We monitor
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Figure 4.11: Scheme taken from [58] representing the phase diagram of the vesicle dynam-
ics under shear flow. The y axis represents the viscosity ratio and the x axis the capillary
number

the percentage of loss of perimeter defined as:

∆per = 100× per − per0
per0

(4.29)

where per0 is the perimeter at the initial time.
We first checked that changing the polynomial approximation of the fluid velocity and

pressure does change neither the perimeter conservation nor the measure of the angle.
Indeed, the perimeter conservation is mainly a consequence of the stretching force. By
looking at the expression (4.15) we see that the force is the sum of two terms involving the

first derivative of the level set field (n =
∇φ

|∇φ|) and the first derivative of the stretching

(e− 1).
When the polynomial order of discretization of the level set field and the stretching

field is taken as m = 1, the derivatives of φ and e are discontinuous piecewise constants.
Thus, even by projecting on a P1 space, the inextensibility force carries only this infor-
mation. This is in fact the biggest limitation of this model for the inextensibility, and the
approximation error on the velocity and the pressure are dominated by the error brought
by the inextensibility force. Figure 4.13(a) shows the percentage of loss of perimeter as
a function of time and figure 4.13(b) the angle dependency as a function of time for two
different polynomial approximations for the fluid being (k = 2, l = 1) and (k = 4, l = 3).

We see clearly that the increase of the polynomial approximation has almost no effect
on the loss of perimeter and on the evolution of the angle during time. By contrast, figure
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(a) (b)

(c) (d)

Figure 4.12: Vesicle in shear flow under tank-treading regime. The inside fluid of the
vesicle (where φ < 0) is represented in red, whereas the outside fluid (φ > 0) is represented
in blue. The streamlines are represented as black lines.
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(a) Percentage of loss of perimeter. No effect is seen
by increasing the fluid polynomial approximation.

(b) Angle evolution in time.

Figure 4.13: Loss of perimeter and angle as a function of time for different polynomial
approximation for the fluid: U2

h × P1
h and U4

h × P3
h.

4.14(a) and 4.14(b) show the same simulation in which only the level set (and stretching)
polynomial approximation has been raised from 1 to 3. We see in figure 4.14(a) that the
loss of perimeter is greatly improved by increasing the polynomial order of the level set
from 1 to 2. Indeed, this makes the inextensibility force carry the information of a P1

continuous field which improves a lot the perimeter conservation (gain of almost 2%) for
this particular simulation. Increasing again the approximation ameliorates slightly the
perimeter conservation but the gain is small.

The angle dependency in figure 4.14(b) is not greatly affected by the change of poly-
nomial approximation. This could be understood by the fact that the vesicle perimeter
decreases almost symmetrically. Thus, the overall shape of the vesicle is almost the same
and the angle with respect to the horizontal does not change much even if the global
perimeter decreases. Of course, for a long time simulation this loss of perimeter would be
critical.

Let us discuss the quality of this method. Even for the better approximation, the loss
of perimeter is of the order of 3% for a simulation time which is not so long. This is a
relatively bad result.

Moreover, we see some instabilities appearing around the vesicle if the time step is not
small enough. This is because the inextensibility force has to be very strong to have good
perimeter conservation. Thus, a relatively big local change in the stretching introduces a
huge response of the inextensibility force. If the time step is not very small, this response
introduces a local movement of the interface which possibly brings more stretching and
makes the simulation completely unstable.

This stability issue makes this method unsuitable for difficult simulations of long time
for now. Even if the advantage of having a vesicle completely defined only by adding a
right hand side term in the fluid solver is really attractive, we did not go further than this
test and the previous one with this method.

Moreover, keeping the stretching information might be difficult in the context of the
simulation of a suspension of vesicles. When two particles get very close to each other,
the level set has to be reinitialized often to avoid the merging of the two interfaces. In the
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(a) Percentage of loss of perimeter. (b) Angle of the vesicle in time. The effect on the
angle dependency in time is not significant.

Figure 4.14: Loss of perimeter and angle as a function of time for different polynomial
approximation of the level set and stretching fields: Q1

h, Q
2
h and Q3

h.

context of inextensibility forces many mesh elements between two vesicles are needed to
do the computation of the stretching and the force, and to distribute the force on several
elements.

In the future, this method might be improved to overcome those issues, maybe with
a different formulation of the force or a mesh adaptation making the local approximation
of the force very precise.

Tank-treading motion of a vesicle with inextensibility imposed by Lagrange
multiplier

We will see that the Lagrange multiplier method gives better results and brings a better
stability for this simulation. We take the model described in section 4.3 and put a vesicle
in the conditions for a tank-treading motion.

The viscosity ratio is set to λv = 1. The vesicle is in the center of a box where the top
and bottom walls are moving in opposite directions at speed U = 1. On the lateral walls,
a linear velocity is imposed. The velocities of the walls are imposed by strong Dirichlet
boundary conditions. The vesicles are chosen to have a fixed area A = π2. The capillary

number defined as Ca =
µUL2

kB
is equal to π. The quantities (u, p, λ, φ) are discretized

on finite element spaces Uk+1
h × Pk

h × Lk
h × Qk

h, where we choose the Lagrange multiplier
and the level set field to be discretized on a finite element basis of the same order as the
pressure field. For this simulation, we have set k = 1.

We show a first simulation in which we set a box of [30 × 8]2, the mesh size is fixed
at hmin = 0.06 in a box centered on the vesicle of size [1× 7]2 and hmax = 0.4 elsewhere.
This mesh has 36144 elements. The simulations are run in parallel on 5 processors.

A picture of the computational domain, the associated mesh and the mesh partitions
is represented in figure 4.15. The time step is taken as dt = 0.008 and the final time is
set to 40 which makes this simulation relatively long.

Since the simulation is run in parallel and since the Fast Marching method is not a
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Figure 4.15: A vesicle in tank-treading simulation in the computational domain. The
mesh has been added with its refinement around the vesicle. The sub domains associated
to different processors are represented with different colors.

parallel algorithm, the reinitialization procedure has been made by solving the Hamilton
Jacobi equation as explained in section 1.3.3. The reinitialization procedure is made every
5 iterations.

As expected, the vesicle rotates to attain a steady angle and a steady shape in which
the curvature forces (shown in figure 4.16) and the hydrodynamic one are equilibrated.
The tank-treading motion is obtained as we can see in figure 4.19(a) in which the stream-

Figure 4.16: Curvature forces exerted on the vesicle at steady state.

lines are represented as black lines.
One can see that the streamlines are along the membrane, which implies that the

membrane (as well as the internal fluid) is rotating. The velocity of the fluid is almost
zero at the middle abscissa of the channel, but the continuity of the velocity imposes the
streamlines to close.

On figure 4.19(b) we have plotted the magnitude of the perturbation field induced by
the presence of the vesicle. This magnitude is defined by |u− ushear|, where ushear is the
shear velocity as defined in equation (4.28).

We can see clearly on this figure that the disturbance of the velocity field is local and
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that after two or three vesicle sizes on the lateral sides it has completely vanished. The
disturbance is higher on the top right and bottom left sides of the vesicle. This can be
understood by the fact that at these locations, the vesicle causes the fluid to go in the
opposite direction that it would go in a pure shear flow.

At the top and bottom of the vesicle, one sees a blue spot where the perturbation flow
seems to quickly vary. This is a numerical artifact due to the fact that the mesh becomes
rough in this area.

Figure 4.19(c) shows the pressure field around the vesicle. We recall that a zero mean
pressure is imposed to fix the pressure constant which is defined only by its gradient in
Stokes flow with Dirichlet boundary conditions.

We see that the vesicle is compressed on its lateral sides whereas it is elongated along
its long axis. The pressure inside the vesicle is higher than outside and is almost constant.

An interesting point is to look at the high variations of the pressure which arise inside
the membrane area. To emphasize this, we have drawn two black lines representing the
area in which the delta function is higher than 0.1.

Inside this region, the Lagrange multiplier is defined and the curvature force is applied.
These additional terms to the Stokes equation make the pressure vary significantly in that
small region. For this particular case, we wanted to show explicitly the variations, thus
an interface thickness of 6 mesh elements has been chosen. In general, only 3 or 4 mesh
elements are sufficient to distribute correctly the forces and the Lagrange multiplier.

The perimeter conservation is obtained with a better accuracy than in the case of the
simulations by inextensibility forces. The stability issue that we had with the forces does
not exist since the Lagrange multiplier is distributed on a sufficient number of elements
across the interface. Figures 4.17 and 4.18 show the loss of perimeter and surface as a
function of time for this simulation.
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(a) Loss of perimeter (in percent) for the whole
simulation.
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(b) Close up of the loss of perimeter. The steps
are due to the reinitialization procedure.

Figure 4.17: Perimeter conservation (in percent) as a function of time for the tank-treading
simulation.

We recall that since the velocity chosen for this simulation is low U = 1, the shear
rate is also weak γ = 0.2, and the time necessary to attain a steady state in tank-treading
motion is long (4000 iterations for the whole simulation). This makes this simulation hard
in the sense of perimeter and surface conservation. Thus, regarding the simulation time,
the conservation of these quantities is good.
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(a) Loss of surface (in percent) for the whole sim-
ulation.
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(b) Close up of the loss of surface. The steps are
due to the reinitialization procedure.

Figure 4.18: Surface conservation (in percent) as a function of time for the tank-treading
simulation.

We also emphasize the fact that much of the loss of perimeter and surface is lost
during the reinitialization procedure. Indeed, the figures 4.17(b) and 4.18(b) show some
close up of the figures 4.17(a) and 4.18(a) in which we see that at each reinitialization
step (every 5 iterations), the errors increase quickly compared to the error added by the
simple advection without reinitialization.

The angle that the vesicle takes is measured between the long axis and the horizontal
line. We call this angle Θ.

The variation of Θ as a function of time is represented in figure 4.20(a). On this graph,
we have plotted the same information for different reduced areas. We can see that the
steady angle decreases with the reduced area. In the limit case, where the vesicle is almost
totally swollen (circular), the angle tends to the value 45◦ and of course, the steady state
is obtained almost instantaneously.

The figure 4.20(b) shows the steady angle as a function of the reduced volume for two
different confinements. We define the confinement as the ratio between twice the radius
of a circle having the same area than the vesicle and the length of the channel:

Cn =
2R0

L
. (4.30)

In our case, we have R0 =
√
π. We see that when the confinement increases, the steady

angle decreases.
At the limit, one can imagine that when the length of the channel is really small,

there is no space for the vesicle to rotate, and the angle has to go to 0. The behaviors
shown in figure 4.20(a) and 4.20(b) are in good agreement with what was expected. The
results are slightly different from those of [53] but it can be attributed to the difference
of parameters chosen (capillary number and shear rate). However, the behavior is good.
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(a) Velocity of the fluid for a vesicle in tank-treading regime. The color is the magnitude of the velocity.
The streamlines are represented with black lines. The vesicle is at steady state, the streamlines are
along the membrane which is rotating.

(b) Magnitude of the perturbation velocity |u− ushear|. The perturbation field vanishes away from
the vesicle. It is higher in the regions where the vesicle membrane forces the fluid to go in the opposite
direction that the unperturbed one.

(c) Pressure field. We can see that the vesicle is elongated in the direction of its axis and
compressed in the other direction. Because of the Lagrange multiplier, the pressure inside the
membrane has values varying quickly. The membrane boundary are represented in black lines.

Figure 4.19: Results of the simulation of a tank-treading motion.
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Figure 4.20: Angle behaviors with respect to different parameters.

Tumbling motion

We also wanted to check that we can obtain the tumbling motion. To reproduce this
behavior, we set initially a vesicle as an ellipse in a box of size [14, 5]2, discretized with
7218 elements. We chose a time step of δt = 3 × 10−2. These parameters are not as
refined as in the previous section in order to get long time simulations in a reasonable
computational time. The other parameters of the simulation were: Ca = 6 × 10−2,
Cn = 0.25 and α = 0.8. Figure 4.21 shows 3 snapshots of a vesicle tumbling motion.

Increasing the viscosity ratio increases the rotation frequency of the tumbling as can
be seen in figures 4.22(a) and 4.22(b). Moreover, as described in [37], when one increases
the viscosity ratio, the rotation frequency of the vesicle reaches a steady value which
corresponds to the steady rotation of a solid object in a shear flow. We can see this
phenomenon in figure 4.22(b).

We can understand the fact that the rotation frequency decreases with decreasing
viscosity as the egg theorem: take a raw egg and a cooked egg. Make them rotate with
the same torque, the cooked egg rotates faster than the other one, because the different
layers of fluid inside the raw egg are sheared and dissipate some energy.

(a) t = 1.0 (b) t = 1.1 (c) t = 6.0

Figure 4.21: Tumbling of a vesicle
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(a) Tumbling angle as a function of time for two different viscosity ratios.
One can see that the higher viscosity ratio exibits a higher rotation fre-
quency.

(b) Tumbling frequency for different viscosity ratios. The frequency in-
creases with the viscosity ratio. It reaches the limit of a solid object rota-
tion.

Figure 4.22: Tumbling angle and frequency.
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In this chapter, we will present some development made for the vesicle application but
which can be useful in other ones. Thus, a special care has to be taken to make these
applications as generic and re-usable as possible. We first present a projection tool which
has been of great use in writing the bending forces in the vesicle context but which can
be used in many applications. Then, we present the framework for solving the advection
equation which is used to transport the level set function and reinitialize it by solving the
Hamilton Jacobi equation previously presented. We explain in this chapter how the C++
templates can be used to make a class solving this equation for any coefficient expression.
Then the LevelSet class is presented and the MultiLevelSet class derived from it is
also introduced.

5.1 Projection operator as a C++ class

5.1.1 Motivation

In Feel++ , a projection operator exists. It is a useful tool to do nodal projections. The
function is a part of the language, its arguments are the following:

p r o j e c t ( space=<nodal f unc t i on space in which the i n t e r p o l an t l i v e s>
range=<domain range i t e r a t o r s >,
expr=<exp r e s s i on to be in t e rpo l a t ed >, . . . . )

Note that this function uses the 1boost parameter library which allows passing of
arguments independently and in any order by name (prefixed with an underscore). This
function calculates the expression given in expr at every quadrature point in the range
range which is a part of the domain on which is defined the space space. The resulting
function is thus exact at quadrature points of range. We have seen in section 4.1 that
the vesicle application requires L2 and smooth projections rather than nodal projections.
These projections were already supported in Feel++ since they require solving a simple
PDE problem. But each application requiring it had to create its own projector framework
by providing the bilinear forms of the projection and solving the final problem. Since the
application we were interested in required many of these projections, we created a C++
class which was able to handle all the types of projections (L2, H1, smooth,CIP) needed
for this application. Then, other types of projection needed in other applications have
been added to complete this tool like Hdiv, Hcurl or the LIFT operator. The advantage to
have a single model object for all these projections is that they are all handled the same
way, the declarations of these objects are the same and only a parameter has to be given
to differentiate the projector type. The project function itself takes exactly the same
expression for any projector which brings more clarity in the different codes. Moreover,
some optimization can be done (like keeping the bilinear form as it will be explained
below) and the optimizations are completely hidden in the projector class, making the
optimization systematic. Finally, the bilinear form projections are written and tested
once and for all and there is no need to re-write them for each application.
The basic idea of this class is to construct projector objects. Each object can do a given
projection. For the construction of such an object, one only need the type of projection,
and the space in which the projection is done. Providing this information, one can create
the matrix associated to the bilinear form (the left hand side of the projection equation)

1http://www.boost.org/doc/libs/
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since the entries in the matrix depend only on the trial and test basis functions. Then a
function project, for which the user provides the right hand side, solves the projection
equation and returns the projected function. The matrix has only to be created once at
the construction of the projection object and can be reused as many times as needed.
All the matrices are completely hidden for the user of the class, and only the constructor
and the project function are seen from the user point of view, making these projections
almost as simple as the nodal projection.

5.1.2 Usage of the Projector class

At the construction of a new projector object, a bilinear form is created. Once the bilinear
operator is created, its associated matrix is stored in memory and kept until the operator
is destroyed. This form depends on the type of projection needed. The bilinear forms
associated to each projection are reported in appendix E. As an example, the bilinear
form associated to the L2 projection is:

aL2 =

∫

Ω

u ·v

where u ∈ [L2(Ω)2]d is the trial function and v ∈ [L2(Ω)2]d is the test function. This
bilinear form takes the Feel++ expression:

a = in t e g r a t e ( elements ( mesh ) , t rans ( i d t (u) ) ∗ id ( v ) ) ;

where idt represents the trial test functions and id the test functions.
Then only the expression of the right hand side is needed and the system can be

solved. Consequently, the use of the projector class is very simple. First, one has to
declare one projector object for each projection wanted. One only needs to give the
functional space on which is done the projection, a backend used to solve the problem,
and if they are needed, the parameters for the projection. Second, the projection is
done using simply the project function. We show in listing 5.1 an example of code
creating two projectors and using them to project the function f = sin(2 π x) cos(2 π y).

Listing 5.1: Example showing how to make L2 and smooth projectors and use them to
project a simple function.

// defines scalar polynomial space of order 1
auto Xh = Pch<1>(mesh ) ;

auto pro j L2 = pro j e c t o r (Xh, Xh, backend ( ) , L2 ) ;
auto proj SM = pro j e c t o r (Xh, Xh, backend ( ) , DIFF , eps i l on , gamma) ;

auto f = s i n (2∗ pi ∗Px ( ) ) ∗ cos (2∗ pi ∗Py ( ) ) ;

auto func L2 = proj L2−>p r o j e c t ( f ) ;
auto func SM = proj SM−>p r o j e c t ( f ) ;

The figure 5.1 shows the results of the projection of f for the following projections:
nodal, L2, smooth, div, CIP, and H1. For the details of the formulation of the projectors,
see appendix E. We can notice that, there is no difference between nodal, L2, div and CIP
projectors. The smooth projection tends to diffuse the field. It can be seen by looking at
the iso value circles on the graph which are slightly enlarged. Finally, the H1 projection is
used without imposing the boundary conditions, thus implicitly, the Neumann boundary
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condition ∇f ·n = 0 is imposed. Consequently, there is no gradient of the function in
the normal direction close to the boundaries, this makes the iso values perpendicular to
the borders of the domain as we can see in figure 5.1(f).

(a) Nodal projection (b) L2 projection (c) smooth projection

(d) Hdiv projection (e) CIP projection (f) H1 projection

Figure 5.1: Results of the projection of f using different projectors. The color is the
amplitude of the projected function f . The deepest red is 1, the deepest blue is -1. 10
iso values are reported in black.

5.1.3 Projector class used to compute the derivative of a field

Let us consider that we want u ∈ [L2(Ω)]d as the projection of the gradient of a known
scalar field f ∈ H1(Ω). We can write this expression on the weak form (5.1) which is the
classical L2 projection of the gradient of f . We can also integrate by parts this equation,
which leads to the formulation (5.2). This formulation requires that the test function
v ∈ [H1(Ω)]d.

∫

Ω

u ·v =

∫

Ω

∇f ·v (5.1)
∫

Ω

u ·v = −
∫

Ω

f∇ ·v +

∫

∂Ω

f v ·n (5.2)

The formulation (5.2) has the advantage of never computing directly the gradient of the
function f since the derivatives are on the test functions. We remark also that the left
hand side is exactly the same as for a classical L2 projection. Thus by changing only
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the form of the right hand side term, we can provide an operator which computes the
projection of the gradient of an expression. We called such a method derivate.

If we take the previous example, and we want the projection of g = ∇f , we only
need to create a projector in a vectorial space (since g is a vector), and use the derivate
function on the expression f . The listing 5.2 gives an example of such a code. In this
example, we also show an alternative to get the derivative of a field, by projecting the
expression on the vectorial space, and doing a nodal projection of its gradient on the same
space.

Listing 5.2: Create a projector and compute the projection of ∇f

// Vectorial functionspace
const int order = 1 ;
auto Xhv = Pchv<order>(mesh ) ;

// defines the expression to derive
auto f = s i n (2∗ pi ∗Px ( ) ) ∗ cos (2∗ pi ∗Py ( ) ) ;

// compute the derivative using the projector class
auto pro j L2 vec = p r o j e c t o r (Xhv , Xhv , backend ( ) , L2 ) ;
auto g = pro j L2 vec−>de r i v a t e ( f ) ;

// compute the derivative of a nodal projection of f
auto f n oda l = p r o j e c t (Xhv , elements (mesh ) , f ) ;
auto g nodal = p ro j e c t (Xhv , elements (mesh ) , gradv ( f noda l ) ) ;

We made this test by taking a discretization of f as polynomials of order 1 and 3 and u

has been taken in vectorial spaces of the same polynomial order.

The results of the nodal projection have been plotted in figure 5.3 and the result of the
projection using the method derivate has been plotted in figure 5.4. Since the theoretical
result is known, the L2 error has been computed. We can see on figures 5.2(a) and 5.2(b)
that we obtain one order of convergence higher using the derivate method compared to
the nodal projection of ∇f on the same space.
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nodale proj, slope = 1.0

derivate(f ), slope = 2.0

(a) f and u taken as polynomials of order 1
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nodale proj, slope = 3.0
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(b) f and u taken as polynomials of order 3

Figure 5.2: Comparison between the derivative using the derivate method and a nodal
projection of the derivative.
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(a) X component of ∇f (b) Y component of ∇f

Figure 5.3: Gradient of f computed using a nodal projection.

(a) X component of g (b) Y component of g

Figure 5.4: Gradient of f computed using 5.2.

5.2 The Advection class

Solving the advection equation (1.12) is a key point for this work. Indeed, it is used
every time step for the evolution of the level set field that we have seen in section 1.2
and it is also used to reinitialize the level set front in the context of a reinitialization by
solving a Hamilton-Jacobi equation as seen in section 1.3.3. Thus, the need of a general
framework to solve this equation arises. A C++ class has been created during the PhD
of Christophe Winkelmann [112]; we updated this to fit our needs and we added the
stabilization methods presented in section 1.2.2. We will present in this section some
aspects of the implementation of this class.
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5.2.1 Description of the class

A simplified view of the Advection class is given in listing 5.3

Listing 5.3: Simplified view of the Advection class.

public :
enum s t ab i l i z a t i onMethod {NO, GALS, CIP , SUPG, SGS} ;

Advection ( space type space , s t ab i l i z a t i onMethod sMeth ) ;

// update the coefficients to solve the equation:
// σφ+ β ·∇φ = f in Ω
// φ = g on ∂Ω
template <typename SigmaT , typename BetaT , typename FT, typename GT>
void update (SigmaT sigma , BetaT beta , FT f , GT g ) ;

e l ement type phi ( ) ;

private :
spa r s e mat r ix D;
v e c t o r p t r t ype F ;

s t ab i l i z a t i onMethod stabMethod ;

The matrix D associated to the discretization of the equation and the right hand side F
are created at the construction of the object once and for all. Of course, the matrix has to
be reassembled at each resolution of the equation, but for a given problem, the test and
trial functions of the problem do not change at each new resolution. Thus, creating the
non null entries of the matrix once and for all is an optimization. From the user point of
view, when solving the equation (1.12), one only has to give the values of σ,β, f and some
Dirichlet boundary conditions g which are applied at the inflow boundaries. The method
update is meant for that. The types of σ,β, f, g might be complicated. Indeed, we want
to allow the possibility for the user to enter expressions for these values and not simply
element of the space. The type of an expression in Feel++ depends on the expression.
Thus, it is impossible to write explicitly the types of these parameters. It is not a problem
since C++ handles meta-programming thanks to the template feature. Thus, the update
function is a template function and the SigmaT, BetaT, FT, GT which are the types of
respectively σ,β, f, g are computed automatically at compilation time depending on the
expression that have been given to the function. In the update function, the matrix D
and the vector F are assembled according to the variational formulation (1.14) as one can
see on listing 5.4.

Listing 5.4: Assembly of the matrix D and the vector F in the update function

// trial function φ
auto phi = space−>element ( ) ;
// test function ψ
auto p s i = space−>element ( ) ;

//
∫

Ω fψ
form1 ( space , F)= i n t e g r a t e (elements (mesh ) , f ∗ id ( p s i ) ) ;

//
∫

Ω(σφ+ β ·∇φ)ψ
form2 ( space , space , D)= i n t e g r a t e (elements (mesh ) ,

( sigma ∗ i d t ( phi ) + gradt ( phi ) ∗ beta ) ∗ id ( p s i ) ) ;
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As one can see on listing 5.4, there are obviously some restrictions on the types of the pa-
rameters given to this method. But the restrictions are more related to the mathematical
objects that represent the parameters σ,β, f than to the C++ types. More precisely, the
method can work since σ and f are of a type representing a scalar function or a scalar
number, and β a line vector. If these conditions are not respected, an error will be thrown
during the compilation.

The stabilization method is chosen by the user. It has to be picked as one of the
enumeration stabilizationMethod elements. Then the algebraic representation of the
corresponding terms of equations (1.20) or (1.23) is added to the matrix D and the vector
F . Listing 5.5 gives an example of such terms for the SUPG stabilization.

Listing 5.5: SUPG stabilization added to the matrix D and vector F

// β ·∇ψ
auto supg term = grad ( p s i ) ∗ beta ;

// τSUPG

auto tau supg = h ( ) / (2 ∗ s q r t ( t rans ( beta )∗ beta ) ) ;

// L(φ)
auto L op = gradt ( phi ) ∗ beta + sigma ∗ i d t ( phi ) ;

form2 ( space , space , D)+=in t e g r a t e (elements (mesh ) ,
tau supg ∗ supg term ∗ L op ) ;

form1 ( space , F)+=in t e g r a t e (elements (mesh ) ,
tau supg ∗ supg term ∗ f ) ;

Finally the method phi solves the equation and returns the solution.

5.2.2 Example on Hamilton-Jacobi equation for reinitialization

As an example of the use of Advection class we could give the advection equation (1.11)
used for the motion of the level set field, but we chose to present the Hamilton Jacobi
equation used for the reinitialization as presented in section 1.3.3. This is a bit more
complicated. We have shown that the signed distance function can be obtained from a
field being not too far from a distance function by solving the equation (1.26) which is an
advection equation of the form (1.12) for which the coefficients are:

σ =
1

∆τ
,

β =
Sgn(φ

n)∇φn

|∇φn| ,

f = Sgn(φ
n) +

φn

∆τ
,

with the same notations that we used in section 1.3.3. Given the Advection class, the
implementation of the reinitialization by solving the Hamilton Jacobi equation is simple.
An example is given in listing 5.6.
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Listing 5.6: Hamilton Jacobi equation for the reinitialization of the level set field solved
by using the Advection class.

// max_iter and dtau are taken from user options
// create an Advection object
advec t i on h j = advec t i on type : : New( space , SUPG ) ;

for ( int i =0; i<=max iter ; ++i )
{

// update the Heaviside function according to (1.3)
auto H = vf : : p r o j e c t ( space , elements (mesh ) ,
ch i ( phi< −ep s i l o n ) ∗ 0 .
+ ch i ( phi >= −ep s i l o n )
∗ ch i ( phi <= ep s i l o n )
∗ 1/2∗(1 + phi / ep s i l o n + s i n ( p i ∗phi / ep s i l o n ) / p i )
+ ch i ( phi > ep s i l o n ) ∗ 1 . ) ;

// expressions of Sgn(φ), σ, β, f
auto sgn = 2 ∗ ( idv (H) − 0 .5 ) ;
auto sigma = 1 / dtau ;
auto beta = sgn ∗ t rans ( gradv ( phi ) )
/ sq r t ( gradv ( p h i r e i n i t )∗ t rans ( gradv ( p h i r e i n i t ) ) ) ;
auto f = idv ( p h i r e i n i t ) / dtau + s i gne ;

// update the matrices D and f
advect i on h j−>update ( sigma , beta , f , true ) ;

// solve the equation and save into phi
phi = advect ion h j−>phi ( ) ;

}

5.3 Design of the Level Set class

In this section, we will explain how we structured the Level Set class. This class has been
made with the goal of a maximum generality and ease re-use.

5.3.1 The public part

Let us describe how we designed the LevelSet class in order to make it as generic as
possible. The core of the level set class should provide methods to initialize a level set field
and advect it with respect to the advection equation since the user provides a velocity.
The advection equation should also contain the possibility to reinitialize the level set field
if needed. The advection and the reinitialization should be the only two ways to modify
the level set field and the C++ encapsulation is used to make sure it happens this way.
The class should also provide some accessors to the Dirac and Heaviside fields which
should be automatically updated after each modification of the level set fields. Thus, the
basic components of the public level set class are the following:

Listing 5.7: Simplified part of the core of the public part of the LevelSet class.

public :

/* constructor and initialization*/
Leve lSet ( mesh ptrtype mesh ) ;
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void i n i t i a l i z e ( e l ement ptr type phio , bool doF i r s tRe in i t ) ;

/* advection method */
template <typename Tu> bool advect ( Tu& u ) ;

/* getters */
const e l ement ptr type phi ( ) ;
const e l ement ptr type H( ) ;
const e l ement ptr type D( ) ;

where the suffix ptrtype represents the fact that the given type is actually a smart pointer
type, the 2boost::shared ptr is used. The initialize method is used to set the initial
level set φ0 to the given phio field. If we are not able to provide an exact distance function
for phio, the parameter doFirstReinit can be set to true and then a reinitialization
is performed. The methods phi(), H() and D() are accessors to the values of respec-
tively φ, δε, and Hε. They could be used directly in an expression, for example if one
has to define the viscosity of a two fluids system, we have seen that the viscosity field
has to be defined as: µφ = µ2 + (µ1 − µ2)Hε(φ). If one has an instance levelset of the
class LevelSet , providing the values of µ1 and µ2, the formulation simply takes the form:

mu2 + ( mu1 − mu2 ) ∗ idv ( l e v e l s e t−>H() ) ;

where idv is the Feel++ keyword to have access to the values of an element of a function
space.
The advect method is used to advect the level set field with the given velocity u, check
if the reinitialization is needed, do it if necessary, and update the quantities φ, Hε and
δε. The advect method has to be a template method since the type of the velocity is not
known a priori. The type will be deduced at the compilation time according to the type
of the velocity given when the method is used. By introducing this template parameter,
every velocity type for which the operator * is implemented can be used in this method.
Indeed, only this operation is needed in the advection equation.
The type of an element of a functional space depends on its polynomial order of ap-
proximation. The * operator is implemented between elements of different polynomial
orders. Thus, providing this template function advect allows coupling the level set with
a velocity of an arbitrarily high order. Since in the level set framework the coupling with
the fluid only appears at the level of the advection equation, making this method generic
leads to a generic LevelSet class which will be easy to couple to any type of fluid velocity.

5.3.2 The markers

We also created other useful methods that we did not report in the listing 5.7, like sev-
eral markers calculated from the level set field. A marker is a P0 element defined on all
the space and having integer values at different regions of the domain. It is possible in
Feel++ to do operations only on the area on which a marker has a specific value. We
provide the following markers:

2 http://www.boost.org/doc/libs/1_54_0/libs/smart_ptr/shared_ptr.htm
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• Marker Interface is 1 in the region where |φ| < ε, 0 elsewhere (fig 5.5(a)).

• Marker Delta is 1 in the region where δε > 0, and vanishes elsewhere (fig 5.5(b)).

• Marker H is 1 in the region where Hε > 0.999, and vanishes elsewhere (fig 5.5(c)).

• Marker H inverted is 1 in the region where Hε < 0.001, and vanishes elsewhere
(fig 5.5(d)).

• Marker H In Out is 1 in the region where Hε < 0.5, and vanishes elsewhere
(fig 5.5(e)).

• Marker Crossed Elements is 1 only in the elements crossed by the interface between
two iterations, thus, where φnφn−1 < 0 (fig 5.5(f)).

(a) Marker Interface. (b) Marker Delta. (c) Marker H.

(d) Marker H inverted. (e) Marker H In Out. (f) Marker Crossed Elements.
φn−1 is represented in green.

Figure 5.5: Markers available in LevelSet . The elements having the value 1 are repre-
sented in red. The iso-0 line of the level set function is represented in white. The interface
thickness is 2ε = 3h.

These markers can be used as follows: let us say that we have a two-fluid flow appli-
cation, and we want to create the surface tension force between the two different fluids.
The surface tension needs the curvature and the normal of the interface. These quantities
can be computed only in the region where the delta function is different from 0 since the
force will be projected on the interface by multiplying by δε. Thus, computing the normal
and the curvature only on these elements could be a relevant optimization. An example
of the use of markerDelta in this context is given in listing 5.8.
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Listing 5.8: An example of the use of markerDelta to compute quantities only where the
function δε is different from 0.

// declare the elements on the right space
// the elements are initialized to 0
auto n = vec to r i a lSpace−>element ( ) ;
auto k = sca larSpace−>element ( ) ;
auto F = vec to r i a lSpace−>element ( ) ;

// update the marker2 of mesh with the markerDelta of levelset
mesh−>updateMarker2 ( l e v e l s e t−>markerDelta ( ) ) ;

// make the projections only on the elements marked as 1 (where δε > 0)
n += pro j e c t ( vec to r i a lSpace , marked2elements (mesh , 1 ) ,
gradv ( l e v e l s e t−>phi ( ) )
/ sq r t ( gradv ( l e v e l s e t−>phi ( ) ) ∗ t rans ( gradv ( l e v e l s e t−>phi ( ) ) ) ) ) ;

k += pro j e c t ( sca larSpace , marked2elements (mesh , 1 ) , divv (n) ) ;

F += pro j e c t ( vec to r i a lSpace , marked2elements (mesh , 1 ) ,
sigma ∗ idv (k ) ∗ idv (n) ∗ idv ( l e v e l s e t−>D( ) ) ) ;

5.3.3 The external options

Many choices of different numerical methods have to be made regarding the level set
class, for example, the way to discretize and stabilize the advection equation, the choice
of the reinitialization method, the reinitialization frequency and so on. Many numerical
parameters have also to be set by the user. It can seem odd that these parameters never
appear in the public part of the LevelSet class but the reason is simple. All these
parameters are given through external options from the user to the program. The option
parser used by Feel++ is the 3boost::program options library. It provides an easy way
to handle a big number of options and recover it in the program. Thus, the LevelSet

class provides a set of options which are used to monitor the behavior of each level set
instance. This makes the code clear since the developer using the LevelSet class does
not have to set the parameters at the time he writes the code and brings generality since
one can, at execution time, try different parameters just by changing the options given
to the program. The number of options can be high, but default parameters are set
in order not to have to reset the parameters used almost always with the same value.
Moreover, a configuration file can be written and given as options. As an example, let
us say we have an application using the level set framework coupled with a fluid solver.
This application is called twoFluidFlow. Let us say we want to use the Fast Marching
method as reinitialization method every 10 iterations and we want a BDF2 time dis-
cretization for the advection equation stabilized with the SUPG method and an interface
thickness of 0.01. An example set of options that one could give to this application is:
. / twoFluidFlow −− l e v e l s e t . time−d i s c r−scheme=BDF2 \
−− l e v e l s e t . th i cknes s−i n t e r f a c e =0.01 \
−− l e v e l s e t . advec−stab−method=SUPG \
−− l e v e l s e t . enable−r e i n i t=true \
−− l e v e l s e t . r e i n i t e v e r y=10
−− l e v e l s e t . r e i n i t−method=fm

3http://www.boost.org/doc/libs/1_54_0/doc/html/program_options.html
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5.3.4 The protected part

The protected part of the level set function is by definition not accessible for the user of
the class but its attribute are accessible from a class derived from it. These parameters
and methods are important for the multi level set framework, thus, it is important to
describe it. A simplified list of the protected part of the LevelSet class is given in
listing 5.9

Listing 5.9: Simplified list of protected parameters and methods of the LevelSet class

protected :

e l ement ptr type p t r ph i ;
e l ement ptr type ptr h ;
e l ement ptr type ptr d ;

void updateHeavis ide ( ) ;
void updateDirac ( ) ;

The parameters ptr phi, ptr h and ptr d are pointers on the elements representing the
levelset, Heaviside and Delta fields. The methods updateHeaviside and updateDirac

are used just after the advection step to update the fields pointed by ptr h and ptr d

according to the new value of the field pointed by ptr phi.

5.4 The MultiLevelSet class

5.4.1 From LevelSet to MultiLevelSet

To handle several level set fields at the same time, one could think at first to create an
array of LevelSet instances. This could work but would be dramatically costly in terms
of computational time and memory. Indeed, this would copy all the internal ingredients
of LevelSet such as for example the bilinear matrices for the advection. It would
also copy the reinitialization framework which contains some features possibly heavy in
memory. For example, the bilinear matrix for the reinitialization by solving Hamilton
Jacobi equation or the table of the closest degree of freedom needed for the fast marching
method.
Consequently, it is essential to think differently and try to share at maximum everything
which can be constructed once and reused for all the different level set. For example,
the non-stabilized part of the bilinear matrix associated to the advection equation only
depends on the given velocity u. Thus, in a context of multi-fluid flow, the velocity is the
same for all the level sets and this matrix could be computed once and for all and reused
to advect all the level set fields. The table of the first neighbors used for the fast marching
reinitialization depends only on the mesh, this can also be used for all the level sets. Thus,
we created a MultiLevelSet class which allows to handle an arbitrary high number of
different level sets fields. The MultiLevelSet class derives from the LevelSet class.
It defines in addition, a vector of elements phis, hs, and ds meant to contain several
elements φ, Hε and δε. It also provides a method called switchPhi(i) which takes an
integer i as argument. This method is essential. It makes the pointers ptr phi, ptr h

and ptr d that we described previously, point on the ith element of phis, hs, and ds.
This way, the methods advect, updateHeaviside and updateDirac will act on the ith
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level set element since they act on the value pointed by ptr phi, ptr h and ptr d. We
emphasize the fact that switchPhi(i) only changes the value of a few pointers, thus it
does not cost anything in term of performance. Thanks to this method, it is possible to
do operations on a single chosen level set field without duplicating all the attributes of
the LevelSet class since by inheritance, MultiLevelSet has these attributes once.
A scheme representing the effect of switchPhi(i) is given on figure 5.6. The advect

Modifies the value 

      pointed by

Figure 5.6: Action of switchPhi() on the pointers inherited from LevelSet .

method in a multi-level set context takes new arguments being the number of the level
set to advect. Then one only needs to switch to the desired level set and advect it. The
code is given in listing 5.10

Listing 5.10: The advect method in multilevelset context. super represents the mother
class (here LevelSet )

template < typename Tu >
bool advect (Tu& u , int i )
{

switchPhi ( i ) ;
return super : : advect (u ) ;

}

5.4.2 Specific MultiLevelSet methods

The MultiLevelSet class provides accessors to individual φ, δε or Hε fields by the
methods called phi(i), H(i) and D(i) accepting one argument being the number of the
field wanted. The class also provides interesting methods such as minPhi(), globH()
and globD(). The first method returns a field corresponding to the minimum of all the
level set fields (that we called φ0 in section 2.2.2, equation (2.34)). Indeed, as explained
in section 2.2.2, in the context of a multi-fluid application, this can be useful since the
normal and curvature depend only on the geometry of the iso 0 and are not specific to
each level set field. Thus, if the level sets are not interpenetrating, one could compute
the geometrical fields (normal and curvature) once and finally use the delta function to
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differentiate the areas of the different level sets.
The two other methods are simply the delta and Heaviside functions applied to the field
φ0. The globH() function can be used to describe the regions inside any interface or
outside every interface. The globD() function can be used to distribute a quantity on all
the interfaces regardless of which individual level set it is. We give an example to illustrate
the use of these functions. In section 5.3, we have seen how to define the viscosity and
the surface tension force in the context of a two-fluid flow. Let see how this works for a
more than two-fluid flow. We already showed that the viscosity of such a system is given
by the equation (2.36). The surrounding fluid is represented by the area in which all the
level set fields are positive, it has a given viscosity mup. The other fluids have different
viscosities stored in an array mum. Let us say we have an instance multilevelset of the
class MultiLevelSet . The viscosity of such a system can be given by:

auto mu = pro j e c t ( sca larSpace , elements (mesh ) ,
mup ∗ idv ( mu l t i l e v e l s e t−>globH ( ) ) ) ;

for ( int i =0; i<mu l t i l e v e l s e t−>getNbPhi ( ) ; i++)
{

mu += pro j e c t ( sca larSpace , elements (mesh ) ,
mum[ i ] ∗ (1 − idv ( mu l t i l e v e l s e t−>H( i ) ) ) ) ;

}

If the number of different fluids is known at the compilation time, one could avoid the
for loop and directly write the viscosity in one single projection. We wrote here the more
general way to do it where the number of different fluids is not known at compilation time,
but only at execution. Let us see now how to write the surface tension force between the
different interfaces and the surrounding fluid. We will not describe here the general case
where all the interfaces can be interacting with each other. Such a force is given by
equation (2.37). As explained in section 2.2.2, we will use the fact than the min of all the
level sets contains the geometrical information (normal and curvature) of all the interfaces
at the same time. The different surface tension coefficients are given in an array called
sigma. The surface tension force reads:

// expression of |∇φ|
auto modgradphi = sq r t ( gradv ( mu l t i l e v e l s e t−>minPhi ( ) )
∗ t rans ( gradv ( mu l t i l e v e l s e t−>minPhi ( ) ) ) ) ;

// normal
auto n = pro j e c t ( ve c to r i a lSpace , elements (mesh ) ,

gradv ( mu l t i l e v e l s e t−>minPhi ( ) )
/ modgradphi ) ;

// curvature
auto k = pro j e c t ( sca larSpace , elements (mesh ) , divv (n) ) ;

// surface tension force
auto F = vec t o r i a l Spa c e ()−>element ( ) ;
for ( int i =0; i<mu l t i l e v e l s e t−>getNbPhi ( ) ; i++)
{

F += pro j e c t ( vec to r i a lSpace , elements (mesh ) ,
− sigma [ i ] ∗ idv (k ) ∗ idv (n) ∗ idv ( mu l t i l e v e l s e t−>D( i ) ) ) ;

}
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We present in this chapter a few developments which have been made specially for the
vesicle application. The first one is the problem of constructing the Lagrange multiplier
which insures that the vesicle is unstretchable. This requires creating a subspace defined
on a submesh around the vesicle. The Lagrange multiplier is defined only in this subspace
which reduces substentially the number of total degrees of freedom in the final problem.
Then we explain our strategy to make user-friendly simulations. Indeed, the vesicle code
is made to be very generic and many options have to be set by the user. For real physicall
simulation in which we only want to see the physically relevant parameters, we created a
Python interface which allows us to concentrate on the physics of the problem, making
transparent all the inter-dependent options.

6.1 Lagrange multiplier construction

6.1.1 A size problem

We have seen in section 4.3 that the constraint of the inextensibility of the membrane
can be satisfied by adding a Lagrange multiplier to the variational formulation of the
problem. This Lagrange multiplier is supposed to act on the membrane of the vesicle (i.e.
in the area where δε > 0). If we look at the expression (4.23), the discretized Lagrange
multiplier λh is defined on all the domain Ω and its action is restricted to the interface
by multiplying by the function δε. Thus, from the algebraic point of view, the matrix C,
which corresponds to the contribution of the variables in the trial space Lk

h(Ω) associated
to the Lagrange multiplier and the test space Uk+1

h (Ω) associated to the velocity, has its
coefficients defined by

Cij =

∫

Ω

δεξj∇s ·Φi =

∫

Ω

δεξj(Id − n⊗ n) : ∇Φi.

The sparse matrix C has as many entries as there are non-vanishing pairs (ξj,∇s ·Φi) in
all the domain Ω. Of course, most of these entries are set to 0 thanks to the delta function,
but they are still created. The size of this matrix is large. It makes the global matrix heavy
to store in memory and the problem (4.26) is at best difficult, at worst impossible to solve.

An optimization has been made which consists of adding in the matrix C only the
entries which are not vanishing because of the delta function. This optimization is made
by changing the space in which is defined the Lagrange multiplier Ln

h(Ω) by Ln
h(ΩI). The

domain ΩI is a sub domain of Ω which corresponds to the elements of Ω for which |φ| < ε.
In other words, ΩI corresponds to the domain of the interface, where δε 6= 0. Doing so
requires extracting the submesh associated to these elements in an optimized manner.
Then create the matrix C which counts a much lower number of entries than with the
non optimized construction. Finally, one has to assemble the global matrix.

6.1.2 Extract the submesh

There is a method in Feel++ to extract a submesh from another mesh. The method
makes sure that the daughter and the mother meshes keep the information of their rela-
tionship. It is always possible to project a variable which belongs to a space defined on a
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(a) Initial mesh, the different partitions are rep-
resented in color. The area in which δε > 0 is
represented in grey. The iso 0 of the level set is
represented in white.

(b) Extracted submesh. The partitions are the
same than the one of the original mesh. The level
set position did not change during the extraction.

Figure 6.1: Extraction of a sub mesh.

mesh, on a space defined on another mesh. The degrees of freedom of the space owning
the variable are localized on the mesh on which it is projected. This localization takes
time. By keeping the information of the relationship between the meshes, we are able to
avoid the localization since the two meshes perfectly match. This optimization has been
made by the Feel++ developers in the context of the vesicle application but can be now
used for many purpuses. Moreover, the submesh keeps the information of the partition of
the mesh. Thus, there is no need to repartition it, to find again the ghost cells and so on.
Extracting the submesh is then a relatively costless operation. The method used to create
the submesh is called createSubmesh, which needs the original mesh and an iterator on
the elements to be extracted. In the context of the Lagrange multiplier acting on the
interface, we can use the marker described in section 5.3: markerDelta which marks the
elements for which δε > 0. The figure 6.1(a) shows a mesh on which is defined a level set
field for which the 0 represents a circle centered on the domain. The different partitions
are represented in color. The area in which markerDelta is 1 is grey tone. The figure
6.1(b) represents the sub mesh extracted from the initial one. The colors are the different
partitions. We can check that the partitions are exactly the same as the position of the
iso 0 of the level set.

The code to create the associated submesh to the elements around the interface is
really simple. We give an example doing so in listing 6.1

Listing 6.1: Extracting the submesh around the interface.

// mark the elements to extract
mesh−>updateMarker2 ( ∗ l e v e l s e t−>markerDelta ( ) ) ;
// extract the submesh and store it
auto submesh = createSubmesh (mesh , marked2elements (mesh , 1) ) ;
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6.1.3 Creating the Lagrange Multiplier contribution

For clarity reasons, in section 4.2 we expressed the matrices as if all the spaces associated to
the velocity, the pressure and the Lagrange multiplier were completely separated. In fact,
in the implementation that we did, the velocity and the pressure are actually embedded
in a composite space being the product of the velocity space and the pressure space. Let
us call this space Dk

h(Ω) = Uk+1
h (Ω) × Pk

h(Ω). This way, the matrix associated to the
pure fluid problem is assembled in one block. We can call this matrix D, and it is simply
defined as the contributions of the velocity and the pressure in the same matrix. With
the notation of section 4.2, it reads:

D =

(
A B
Bt 0

)

.

We can remark by looking at the equations (4.23), (4.24) and (4.25) that since the equa-
tions solved are the Stokes equations, the only time dependent parameter is the position
of the interface. Thus in these equations, only the viscosity µφ is time dependent. Conse-
quently, if one makes a simulation with a viscosity ratio between the inner and outer fluid
equal to 1, the whole matrix D can be created once and for all at the beginning of the
simulation and reused every time step. If the viscosity is changing, we can optimize by
changing only the elements which have been crossed by the interface (which are accessible
by the marker crossedelements).

Then a matrix associated to the trial space Lk
h(ΩI) and the test space Dk

h(Ω) is as-
sembled. Let us call this matrix E. Of course, since there is no coupling between the
pressure and the Lagrange multiplier, the corresponding entries are null. The matrix E
is thus expressed as:

E =

(
C
0

)

At the opposite of D for which the construction might be optimized from an iteration
to the other, the matrix E has to be recreated every time step. Moreover, this matrix
does not have the same number of elements at each iteration since the size of ΩI depends
on how many elements are in the area where δε > 0. A typical example of the way
to construct this matrix is given in listing 6.2. It assumes that we already provided a
submesh associated to the elements of the interface. Then it creates the space Lk

h(ΩI)
and assembles the associated matrix.

Listing 6.2: Creation and assembly of the matrix E.

// fluidSpace represents Dk
h(Ω)

// create Lk
h(ΩI)

lagMultSpace = lagMultSpace type : : New( mesh=submesh ) ;

// get basis functions associated to λ and u
auto lam = lagMultSpace−>element ( ) ;
auto u = D−>element<0>();

// identity matrix Id
auto Id = Id<Dim, Dim>() ;
// n⊗ n
auto nxn = idv (n)∗ t rans ( idv (n ) ) ;
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//surfacic divergence: (Id − n⊗ n) : ∇u
auto d ivs = t ra c e ( ( Id−nxn ) ∗ t rans ( grad (u ) ) ) ;

E = M backend−>newMatrix( lagMultSpace , f l u i dSpac e ) ;
form2 ( t r i a l=lagMultSpace , test=f lu idSpace , matrix=E)=
//

∫

ΩI
δε λ∇s ·u

i n t e g r a t e ( elements ( submesh ) , i d t ( lam ) ∗ d ivs ∗ idv ( l e v e l s e t−>D( ) ) ) ;
E−>c l o s e ( ) ;

The transpose of E will also be needed in the final assembled matrix. It can simply be
constructed by doing:

Et = M backend−>newMatrix( f lu idSpace , lagMultSpace ) ;
E−>transpose (Et ) ;

6.1.4 The global matrix assembly

At this stage, we dispose of the matrix associated to the fluid problem D, and the one
associated to the Lagrange multiplier E and its transpose Et. The final global matrix (let
us call it G) is then the assembly of the different blocks:

G =

(
D E
Et Z

)

.

The last matrix Z corresponds to the coupling between the test and trial functions of the
Lagrange multiplier space; since such terms do not exist in the variational formulation,
all these entries are vanishing but the matrix still needs to be created.

During his PhD, Vincent Chabannes [17] created a tool to assemble some matrices
block by block. This algorithm is fully parallel. We used this framework to assemble
together the different contributions. In listing 6.3 we have put an example of how to
create the matrix G.

Listing 6.3: Creation of the matrix G block by block.

// creation of the 0 matrix
auto Z = backend()−>newMatrix( test=lagMultSpace type ,

t r i a l=lagMultSpace type ) ;
Z−>zero ( ) ;

// assemble the blocks
BlocksBaseSparseMatrix<double> myblockMat ( 2 , 2 ) ;
myblockMat (0 , 0 ) = D; // fluid (velocity + pressure)
myblockMat (0 , 1 ) = E; // lagrange multiplier / velocity coupling
myblockMat (1 , 0 ) = Et ; // transposed of E
myblockMat (1 , 1 ) = Z ; // the zero matrix

// create the matrix G
auto G = backend()−>newBlockMatrix( block=myblockMat , copy va lue s=true ) ;

6.1.5 Performance test

A small performance test has been made in order to show how important was this op-
timization. The setup is close to the one presented in section 4.4.2. A vesicle with a
reduced area of 1 and a perimeter equal to 2π is centered in a box of (10 × 10). The
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viscosity ratio is equal to 1 as well. The interface thickness is set to ε = 2h, where h
is the mesh size. The polynomial order has been taken to k = 1. A shear flow is im-
posed. The goal of the test is simply to compute the size of the matrices associated to
this problem by taking the non-optimized method L1

h(Ω) or the optimized one L1
h(ΩI).

We also performed one resolution of the final linear system and recorded the time to do it.

The table 6.1 shows the results for the non-optimized version of the test while the
table 6.2 gives the results of the optimized one. We reported in the table the mesh size,
the number of non-zero entries (nnz) of the different matrices of the problem and the
time to solve the resulting linear problem. We emphasize the fact that nnz represents
the number of entries which are non-zero by construction since the product of their basis
functions does not vanish. All the entries which are in this case are taken into account in
nnz, even the ones for which their value is set to 0 after the construction of the matrix
(else the matrix Z would always have nnz(Z) = 0). Consequently, nnz gives how much
information is stored in memory for each sparse matrix.

The simulations have been run separately on a single processor Intel(R) Core(TM)

i7-2820QM CPU @ 2.30GHz. If the time to solve the final problem exceeded 6 minutes,
the program was killed and a cross × is reported in table 6.1.

We report in the figure 6.2 some values taken in the tables which emphasize how much
the optimization is essential. One can see in figure 6.2(a) that the slope of the logarithmic
curve of the number of degrees of freedom in the space L1

h as a function of the mesh size
is better for the optimized version than for the non optimized one.
Moreover, the absolute value of the number of degrees of freedom is always one or two
orders of magnitude lower for the optimized version. The same remark can be made
for the number of non-zero entries in the matrices E and Z. Finally, the time cost
increases dramatically when decreasing the mesh size in the non-optimized version. Even
for this simple problem, the time was too long to solve the problem for the two best
approximations. The optimized version, at the opposite, is solved in a reasonable time
and shows a slope 3 order lower on the graph 6.2(d).

h N
L1
h
(Ω)

dof N
D1
h
(Ω)

dof nnz(E) nnz(D) nnz(Z) nnz(G) time (s)

0.2 5076 45178 197072 1.32853 106 35026 1.62518 106 8.16
0.15 9008 80398 351488 2.36947 106 62382 2.8994 106 38.96
0.10 20046 179408 785418 5.29902 106 139316 6.48066 106 357.76
0.08 31500 282242 1.23654 106 8.34389 106 219242 1.02041 107 ×
0.06 55626 498960 2.18792 106 1.47635 107 387708 1.80572 107 ×

Table 6.1: Results of the test without the optimization. In this test, λ ∈ L1
h(Ω). We

denote nnz(M) the number of non zero entries of a matrix M .
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h N
L1
h
(ΩI)

dof N
D1
h
(Ω)

dof nnz(E) nnz(D) nnz(Z) nnz(G) time (s)

0.2 198 45178 7869 1.32853 106 1242 1.33913 106 0.72
0.15 263 80398 10525 2.36947 106 1651 2.3843 106 1.51
0.10 382 179408 15166 5.29902 106 2378 5.31921 106 4.02
0.08 501 282242 20023 8.34389 106 3133 8.37059 106 7.49
0.06 652 498960 25966 1.47635 107 4064 1.47977 107 15.81

Table 6.2: Results of the test with the optimization. In this test, λ ∈ L1
h(ΩI). We denote

nnz(M) the number of non zero entries of a matrix M .
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Figure 6.2: Some results taken from tables 6.1 and 6.2 comparing the optimized and non
optimized methods. We can see that the non zero entries in the matrices increases slower
when the mesh size decreases with the optimization than without. Moreover, the absolute
value of the number of non zero entries in the optimized version is one or two order of
magnitude lower than the non optimized one.
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6.2 A Python interface

6.2.1 Why an interface is needed?

A lot of parameters have been presented in this work which have to be set by the user
according to the needs of the simulation. All the design of the different programs pre-
sented in this work has been made with the goal of a maximum of generality. Thus, all
the parameters arising from the numerical models are never set in the code to a value, but
left as an external option to the user. In section 5.3 we briefly presented the options auto-
matically present when one creates a LevelSet object. To give a few examples of what
are these options, let us just cite the thickness of the interface, the advection stabilization
method, the coefficient for the stabilization, the reinitialization frequency, the reinitializa-
tion method; if the Hamilton Jacobi equation reinitialization is chosen, the pseudo time
step, the maximum iteration, the tolerance, the stabilization for this advection equation
and so on. With these options, come the Feel++ standard options, like the format in
which the data are exported, the directory to export the data and many others. Other
options come from other Feel++ classes, as for example the fluid solver which is coupled
to the level set or the backend options. The backend options are the options which are
given to Petsc [3], the algebra solver that Feel++ uses. Thus it controls by which
method a particular algebraic system is solved, consequently, if one wants a control to
every system solved in his program, one needs as many copy of the backend options that
it exists different types of system to solve in the problem. All these added options make
a huge number of options to set. Feel++ uses the 1boost::program options library as
option parser. This library provides the possibility to set default options. Thus, when
an option is frequently used to a common value, the default value can be set and there
is, most of the time, no need to change it. This reduces the number of options to be
set by the user. Another feature that boost::program options provides is the possibility
to handle configuration files. Thus, the options do not need to be given directly in the
command line but can be set in a file.
The backend and test applications presented in section 2.3 have a precise set of param-
eters which are defined when the test is designed and almost never changed. Thus, for
these applications, a configuration file have been set and no more options than the name
of this file has to be given. Launching the application is then very simple, it looks like:
application name --config-file=a config file.cfg.
For the vesicles or rigid disk applications, things are more complicated. Indeed, these
applications are meant to explore some physical parameters which are not necessarily
known when creating the application and the numerical parameters have to be adapted
to the particular simulation. Moreover, the options are generally inter-dependent. As an
example, the interface thickness depends on the mesh size, as well as the time step. The
reinitialization frequency depends on the time step, the pseudo time for reinitialization
depends on the mesh size and the time step as well... The physical parameters are also
inter-dependent or might at least be defined thanks to dimensionless numbers (Reynolds,
capillary) that a physicist user prefers to give instead of direct parameters (velocity, rigid-
ity).
For all these reasons, we usually created an interface to our programs which handles the

1http://www.boost.org/doc/libs/1_54_0/doc/html/program_options.html
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inter-dependency of the options. These interfaces are simple Python programs. The
choice of Python has been made because of the easy readability of codes that it gener-
ates and the dynamic typing which makes the code easy to modify day to day. Moreover,
it provides an efficient oriented object paradigm and a well furnished set of libraries (in-
cluding scientific libraries like 2scipy ) [51] which allow more complicated operations if
needed.
The idea is the following: for a particular simulation, we put all the options which are
unlikely to be modified and which are not inter-dependent in a config file which is almost
never modified. Then, we create the Python code which handles the inter-dependencies,
reducing the number of variables to set by the user to only a few of them. Finally, an
argument parser for python is used and the user runs the python program with very few
parameters of direct interest to the simulation being made.

6.2.2 An example: the vesicle in a shear flow application

As a simple example, let us show what the interface looks like for the application of a single
vesicle in a shear flow that we presented in section 4.4.2. Many parameters have to be set,
but the user, when interested in the physics, only wants to see some physical parameters
such as the shear rate, the size of the box, the reduced area, and the viscosity ratio, as
well as some numerical parameters such as the mesh size or the number of processors on
which the application in run. First of all, a config file has to be made to set all the fixed
parameters which do not have the same value as the defaults. An example of such a config
file for this application is given in appendix F. Then, the Python program sets a few
options of direct interest for the simulation, thanks to the module 3argparse:

Listing 6.4: Create the options of the vesicle in shear flow application

import argparse

par s e r = argparse . ArgumentParser ( )

# physical parameters
par s e r . add argument ( ”−he ight ” , type=f loat , d e f au l t=10 )
par s e r . add argument ( ”− l a r g e ” , type=f loat , d e f au l t=30 )
par s e r . add argument ( ”−reduced−area ” , type=f loat , d e f au l t =0.9 )
par s e r . add argument ( ”−v i sco−r a t i o ” , type=f loat , d e f au l t =1. )
par s e r . add argument ( ”−gamma” , type=f loat , d e f au l t =1. )

# numerical parameters
par s e r . add argument ( ”−h−min” , type=f loat , d e f au l t =0.1 )
par s e r . add argument ( ”−h−max” , type=f loat , d e f au l t =0.1 )
par s e r . add argument ( ”−nb−proc ” , type=int , d e f au l t=1 )
par s e r . add argument ( ”−export−name” , type=str , d e f au l t=”data” )

args = par s e r . p a r s e a r g s ( )

Then we get the axes of the ellipse according to the reduced volume for a fixed area (that
we fixed to π). For that, we use the method presented in appendix B and the same code
which has been wrapped in a Python function called computeAxes. It reads:

a e l l , b e l l = computeAxes ( alpha = args . reduced area , area = pi )

2http://scipy.org/
3http://docs.python.org/2/library/argparse.html

163

http://scipy.org/
http://docs.python.org/2/library/argparse.html


6.2. A Python interface Chapter 6. Development for Vesicle application

The mesh is also created from the interface. Actually, Feel++ provides interfaces to
create several meshes which are really useful for testing applications (unit square, unit
circle or sphere). But if we want a precise control of the mesh, like having a part of the
mesh with a smaller typical size, once again, a Python interface can be useful. Thus, we
made several functions which generate scripts for Gmsh and call it to create the mesh of
the application. As examples, functions creating the following meshes are available:

• simple rectangular mesh

• rectangular mesh with one rectangular area in the middle having a different mesh
size

• rectangular mesh having an arbitrary number of rectangular areas with different
mesh sizes

• circular mesh having a circular area with different mesh size

• the bifurcation mesh used in section 7.1 as well as the 3D version [87]

We use for this application the rectangular mesh with a smaller mesh size at the middle:

mesh name = makeMeshBox( l a r g e = L , he ight = l ,
largeBand = 3∗ a e l l , heightBand = 3∗ b e l l ,
hmin = args . h min , hmax = args . h max ,
name=”mesh” , p e r i o d i c=True , p a r t i t i o n s=args . nb proc )

We then create the command to run and compute at the same time the dependent
parameters. The command is put in an array in which each argument is an element. And
finally, the command is launched by the module 4subprocess of Python .

l = args . he ight
L = args . l a r g e
command = [
# mpi command to run on multiple processors
”mpirun” ,
”−np” ,
str ( args . nb proc ) ,
”−bind−to−core ” ,

# -- application options --
# name of the executable
ExeName ,
”−−con f i g− f i l e=”+Config ,
”−−expor te r . d i r e c t o r y=”+args . export name ,
”−−meshFile=”+mesh name ,

# -- numerical parameters --
”−−bdf . time−s tep=”+str ( args . h min / 4 . ) ,
”−− l e v e l s e t . th i cknes s−i n t e r f a c e=”+str ( args . h min ∗ 1 . 5 ) ,
”−−dif fnum=”+str ( args . h min /50 . ) ,

# -- physical parameters --
# µ2 = λ ∗ µ1
”−−mum=”+str ( 10 ∗ v i s c o r a t i o ) ,
”−−a e l l=”+str ( a e l l ) ,

4http://docs.python.org/2/library/subprocess.html
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”−−b e l l=”+str ( b e l l ) ,
”−−x0=”+str (L/ 2 . ) ,
”−−y0=”+str ( l / 2 . ) ,
”−−s t oke s . sh ea rVe l o c i t y=”+str ( l ∗ gamma / 2 . ) ]

c a l c = subproces s . Popen (command)
c a l c . wait ( )

The user can now concentrate on the physics and has only few arguments to set. As
an example, we can now do a simulation of vesicle under shear flow by calling:
vesInShearFlow.py -reduced-area=0.8 -gamma=2 -visco-ratio=3 -nb-proc=5
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7.1. The splitting of a suspension at a bifurcation Chapter 7. Disks at a bifurcation

In this chapter, we present some results on the physical problem of the splitting of a
suspension of particles in a microfluidic bifurcation. We first start by a simplified problem:
a dilute suspension of hard disks. With this simplified model, we are able, in collaboration
with experimenters, to explain the known phenomenon of the increasing concentration of
particles in the higher flow rate branch. These explanations have been published in
Journal Of Fluid Mechanics [27] and we reported the publication in this chapter. We
finally show that it will be possible in the near future to do the same simulation with
vesicles. We show that it is possible to measure the flux of vesicles in each branch and
present a preliminary result. Finally we extend this simulation to the simulation of a
suspension of two different kind of vesicles.

7.1 The splitting of a suspension at a bifurcation

7.1.1 The Zweifach-Fung effect

When a dilute suspension of particles reaches a geometrically symmetric bifurcation in
which the branches do not have the same flow rate, the branch which has the higher flow
rate always sees its concentration of particles increase. This phenomenon is called the
Zweifach-Fung effect. It has often been interpreted as a consequence of the existence of
an hydrodynamical force pushing particles toward the high flow rate branch. In other
words, some particles in the inlet channel which have their center of mass in a region
where the fluid goes to the low flow rate branch would actually go in the high flow rate
branch. The goal of this work was to figure out if such a force exists. We have actually
shown that there is no need for an hydrodynamical force to have an increase of the volume
fraction of particles in the high flow rate branch. Indeed, this effect is a consequence of a
geometrical effect of the distribution of particles in the inlet channel. Then, experiments
in our group combined with our numerical simulations have shown that, at the opposite,
there exists a force pushing particles toward the low flow rate branch. This force is not
strong enough to overcome the geometrical distribution effect; this is why one sees an
increase of the volume fraction of particles in the high flow rate branch. Let us explain
in more detail this phenomenon.

7.1.2 The bifurcation without particles

We consider a fluid flow governed by the Stokes equations in a 2D bifurcation for which
the inlet channel makes a 90◦ angle with the two daughter branches. A different flow rate
exists in the two daughter branches. We call the branch having the lower flow rate branch
1 and its flow rate Q1, the other one is branch 2 and its flow rate Q2. Finally the mother
branch is branch 0 and its flow rate Q0 = Q1 + Q2. The velocity profile of the fluid in
each branch away from the bifurcation is a parabolic profile. Thus we can calculate the
position yf in the inlet channel separating the fluid regions going to the branch 1 or 2 by
simply writing the flow rate ratio:

Q1

Q0

=

∫ L/2

yf

u0 ·n0

∫ L/2

−L/2

u0 ·n0

(7.1)
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where u0 is the velocity profile in the inlet channel, n0 is the outward normal to the

inlet 0 and L is the length of the channel and the ratio
Q1

Q0

is known. Assuming that u0

is a parabolic profile (Poiseuille flow), one obtains the value of yf . A scheme of such a
bifurcation is represented in figure 7.1.

Figure 7.1: Bifurcation with a flow rate ratio Q1

Q0
= 0.37. The separating line of fluid yf is

represented in dashed line. The fluid on the left of the separating line in the inlet channel
goes in the left hand side branch and reciprocally for the right hand side.

7.1.3 Particle distribution with the simplest model

We will now start by the simplest possible approximation of the bifurcation and then
add the following effects: influence of the free particle zone, influence of a hydrodynamic
force. To start, we make the hypothesis that the center of mass of the particles can be
anywhere in the inlet channel. Of course this is not true since it would mean that the
particles can cross the wall. Nevertheless, this hypothesis could be relevant for very small
particles for which the effect of the free particle zone is negligible. We also make the
assumption that the dilute suspension is homogeneous, thus the probability to find the
center of a particle is the same everywhere in the inlet branch. Such a configuration is
shown in figure 7.2. In this figure, the positions of the particles can seem too close to
be in the dilute regime in which there is no interaction between the particles, but only
the position relative to the wall is important. Thus, we can say that we shrank a lot the
distance between the particles for the scheme but that in reality it should be high enough
so that the hydrodynamic interactions between particles are negligible. We also make the
hypothesis that there is no hydrodynamic force pushing particles preferentially toward
any branch. Thus, if the center of a particle is at the left of the separating line, it goes in
the left hand side branch and respectively for the other one. The area in the inlet channel
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Figure 7.2: Distribution of particles in a bifurcation when the finite size of the particles is
not taken into account and when no force pushed them to a particular branch. The center
of mass of the particles are represented as red dots. The area in the inlet channel for which
the particles present will go in the high flow rate branch is represented in blue. The area
to go in the other branch is in green. In this configuration, there is no concentration
increase in any branch.

in which particles will go in channel 1 is represented in green in figure 7.2 and the one in
which the particles are going in branch 2 is represented in blue. The line separating the
two areas is yf , because of the no force assumption. We call N1 and N2 the particle flow
rate in branches, respectively, 1 and 2.

With the previous hypotheses, we can say that the ratio between the number of par-

ticles going in each branch is the same as the flow rate ratio (
N1

N2

=
Q1

Q2

). Indeed the

area in the inlet branch determining the destination branch is the same for the particles
and the fluid. Thus, the volume fraction, which is the ratio between the number of par-

ticles going in a branch and the flow rate in the same branch
N

Q
, is the same for the two

daughter branches (
N1

Q1

=
N2

Q2

). With this relation and recalling that Q0 = Q1 + Q2 and

N0 = N1 +N2, we obtain that
N0

Q0

=
N1

Q1

=
N2

Q2

. Consequently, under the hypotheses that

we formulated, the volume fraction is the same in all the branches. This is actually the
case for very small particles for which our hypotheses are correct.

7.1.4 Effect of the free particle zone

Let us now consider that the particles are big enough so that the hypothesis saying that
the center of mass of the particle can be everywhere in the inlet channel is not correct
anymore. The particle’s center cannot be closer to the wall than their radii. Thus, there
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Figure 7.3: Distribution of particles in a bifurcation when the finite size of the particle
is taken into account. The free particle layer in the inlet channel is marked in red. The
number of particles entering in the low flow rate branch has been decreased more than
the one entering in the other one. Consequently, there is an increase in the concentration
of particles in the high flow rate branch.

exists a particle free zone in the inlet channel having a thickness equal to the radius of the
particles in both sides of the channel. A scheme of the bifurcation with the free particle
zone represented in red is shown in figure 7.3. A consequence of this free particle layer
is that the area in the inlet channel in which the particles would enter the branch 1 is
penalized compared to the other one. Indeed, an equal area (the free layer) is deleted
from two non equal areas, thus relatively to their size, the smallest area is much more
lowered than the other. In other words, N1 decreases more than N2. In a mean time,
the fluid flow rate is not affected by the free layer zone, thus Q1 and Q2 stay the same

than in figure 7.2. This breaks the previous equality and one has
N2

Q2

>
N1

Q1

, which means

that there is an increase in the concentration of the particles in the high flow rate branch.
Thus, only a geometrical consideration on the distribution of particles in the inlet channel
is enough to explain the concentration increase in the high flow rate branch.

7.1.5 Hydrodynamic force

Even if we have shown that there is no need for an hydrodynamical force pushing particles
toward the high flow rate branch to increase its concentration, it does not mean that such
a force does not exist. Thus we compared the results found in the literature and the
concentration of particles expected under the assumption that no hydrodynamical force
such as described earlier exists. We have found that all the results in literature had
actually a concentration of particles in the high flow rate branch lower than it should be
if only the geometrical effect were present. This led us to think that there could at by
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Figure 7.4: Scheme of the bifurcation when the finite size of the particle is taken into
account so as a force pushing particles toward the low flow rate branch. The line separating
the areas for which the particles go in each branch is represented as a black dotted line
(at position yp).

contrast exist a force pushing particles toward the low flow rate branch. We have shown
by experiments and simulations that this force actually exists. The consequence of such
a force is represented in figure 7.4. The line separating the areas where the fluid goes
in each branch is no longer the same as the line separating the areas where the particles
goes in each branch. The position of the separating line of particles is yp. Subsequently,
there exists a zone in the inlet channel, between yp and yf in which a solid particle would
go to the low flow rate branch whereas a fluid particle would go to the higher flow rate
one. The fact that particles are pushed toward the low flow rate branch implies that N1

increases compare to the no force assumption. However, this force is never strong enough

to invert the inequality
N2

Q2

>
N1

Q1

.

7.1.6 Finding the separating line of particles

The position of the separating line of particles (yp) was the key to understand the whole
phenomenon. Hence, our goal was to find this position. The experimenters Thomas
Podgorski, Sarah Peponas and Gwennou Coupier designed an experiment in which they
control with precision the position of an inlet particle in a bifurcation and explored the
different trajectories until they found the separating line of particles. They did this
experiment for several flow rate ratios and different sizes of particles. For the simulation
part, we used the penalty method presented in section 3.1. The code has been written
with the software FreeFem++ . Later, it has been re-written with Feel++ [87] to be
able to handle 3D simulations. We searched for the separating line for different flow rate
ratio, radii of particles, and sizes of channels. All the results, and their consequences on
the Zweifach-Fung effect are published in [27] that we give hereafter.
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The problem of the splitting of a suspension in bifurcating channels divided into two
branches of non-equal flow rates is addressed. As has long been observed, in particular
in blood flow studies, the volume fraction of particles generally increases in the high-
flow-rate branch and decreases in the low-flow-rate branch. In the literature, this
phenomenon is sometimes interpreted as the result of some attraction of the particles
towards this high-flow-rate branch. In this paper, we focus on the existence of such
an attraction through microfluidic experiments and two-dimensional simulations and
show clearly that such an attraction does not occur but is, on the contrary, directed
towards the low-flow-rate branch. Arguments for this attraction are given and a
discussion on the sometimes misleading arguments found in the literature is given.
Finally, the enrichment of particles in the high-flow-rate branch is shown to be mainly
a consequence of the initial distribution in the inlet branch, which shows necessarily
some depletion near the walls.

Key words: blood flow, microfluidics, particle/fluid flows

1. Introduction

When a suspension of particles reaches an asymmetric bifurcation, it is well-known
that the particle volume fractions in the two daughter branches are not equal; basically,
for branches of comparable geometrical characteristics, but receiving different flow
rates, the volume fraction of particles increases in the high-flow-rate branch. This
phenomenon, sometimes called the Zweifach–Fung effect (see Svanes & Zweifach
1968; Fung 1973), has been observed for a long time in the blood circulation. Under
standard physiological circumstances, a branch receiving typically one fourth of the
blood inflow will see its haematocrit (volume fraction of red blood cells) drop down to
zero, which will have obvious physiological consequences. The expression ‘attraction
towards the high-flow-rate branch’ is sometimes used in the literature as a synonym
for this phenomenon. Indeed, the partitioning not only depends on the interactions
between the flow and the particles, which are quite complex in such a geometry, but
also on the initial distribution of particles.

Apart from the huge number of in vivo studies on blood flow (see Pries, Secomb &
Gaethgens 1996 for a review), many other papers have been devoted to this effect,
either to understand it, or to use it in order to design sorting or purification devices.

† Email address for correspondence: gwennou.coupier@ujf-grenoble.fr
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In the latter case, one can play at will with the different parameters characterizing
the bifurcation (widths of the channels and relative angles of the branches), in order
to reach a maximum efficiency. As proposed in many papers, focusing on rigid
spheres has already given some keys to understand or control this phenomenon (see
Bugliarello & Hsiao 1964; Chien et al. 1985; Audet & Olbricht 1987; Ditchfield &
Olbricht 1996; Roberts & Olbricht 2003, 2006; Yang, Ündar & Zahn 2006; Barber
et al. 2008). In vitro behaviour of red blood cells has also attracted some attention
(see Dellimore, Dunlop & Canham 1983; Fenton, Carr & Cokelet 1985; Carr &
Wickham 1990; Yang et al. 2006; Jäggi, Sandoz & Effenhauser 2007; Fan et al. 2008;
Zheng, Liu & Tai 2008). The problem of particle flow through an array of obstacles,
which can be considered as somewhat similar, has also been studied recently (see
El-Kareh & Secomb 2000; Davis et al. 2006; Balvin et al. 2009; Frechette & Drazer
2009; Inglis 2009).

All the studies mentioned above have focused on the low-Reynolds-number limit,
which is the relevant limit for applicative purposes and the biological systems of
interest. Therefore, this limit is also considered throughout this paper.

In most studies, as well as in in vivo blood flow studies, which are for historical
reasons the main sources of data, the main output is the particle volume fraction
in the two daughter branches as a function of the flow rate ratio between them.
Such data can be well described by empirical laws that still depend on some ad hoc
parameters but allow some rough predictions (see Dellimore et al. 1983; Fenton et al.
1985; Pries et al. 1989), which have been exhaustively compared recently (see Guibert,
Fonta & Plouraboue 2010).

On the other hand, measuring macroscopic data such as volume fraction does not
allow identification of the relevant parameters and effects involved in this phenomenon
of asymmetric partitioning.

For a given bifurcation geometry and flow rate ratio between the two outlet
branches, the final distribution of the particles can be straightforwardly derived
from two sets of data: first, their spatial distribution in the inlet and, second, their
trajectories in the vicinity of the bifurcation, starting from all possible initial positions.
If the particles follow their underlying unperturbed streamlines (as a sphere would do
in a Stokes flow in a straight channel), their final distribution can be easily computed,
although particles near the apex of the bifurcation require some specific treatment,
since they cannot approach it as closely as their underlying streamline does.

The relevant physical question in this problem is thus to identify the hydrodynamic
phenomenon at the bifurcation that would make flowing objects escape from their
underlying streamlines and, as a consequence, a large particle would be driven towards
one branch while a tiny fluid particle located at the same position would travel to the
other branch.

In order to focus on this phenomenon, we need to identify more precisely the
other parameters that influence the partitioning, for a given choice of flow rate ratio
between the two branches.

(i) The bifurcation geometry. Audet & Olbricht (1987) and Roberts & Olbricht
(2003) made it clear, for instance, that the partitioning in Y-shaped bifurcations
depends strongly on the angles between the two branches (see figure 1a). For instance,
while the velocity is mainly longitudinal, the effective available cross-section to enter
a perpendicular branch is smaller than in the symmetric Y-shaped case. Even in the
latter case, the position of the apex of the bifurcation relative to the separation line
between the fluids travelling in the two branches might play a role, due to the finite
size of the flowing objects.
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Figure 1. (Colour online) (a) The two Y-shaped geometries mainly studied in the literature.
Here Q1 < Q2 and the dashed line stands for the separating streamline between the flows that
will eventually enter branches 1 and 2 in the absence of particles. (b) The T-bifurcation that
is studied in this paper and also in Chien et al. (1985) in order to remove geometrical effects
as much as possible.

(ii) Radial distribution in the inlet channel. In an extreme case where all the particles
are centred in the inlet channel and follow the underlying fluid streamline, they all
enter the high-flow-rate branch; more generally, the existence of a particle free layer
near the walls favours the high-flow-rate branch, since the depletion in particles it
entails is relatively more important for the low-flow-rate branch, which receives fluid
that occupied less space in the inlet branch. The existence of such a particle free
layer near the wall has long been observed in blood circulation and is called plasma
skimming. More generally, it can be due to lateral migration towards the centre,
which can be of inertial origin (high-Reynolds-number regime) (see Schonberg &
Hinch 1989; Asmolov 2002; Eloot, De Bisschop & Verdonck 2004; Kim & Yoo 2008;
Yoo & Kim 2010) or viscous origin. In such a low-Reynolds-number flow case, while
a sphere does not migrate transversally due to symmetry and linearity in the Stokes
equation, deformable objects such as vesicles (closed lipid membranes) (see Coupier
et al. 2008; Kaoui et al. 2009), red blood cells (see Bagchi 2007; Secomb, Styp-
Rekowska & Pries 2007), which exhibit dynamics similar to vesicles (see Abkarian,
Faivre & Viallat 2007; Vlahovska, Podgorski & Misbah 2009), drops (see Mortazavi &
Tryggvason 2000; Griggs, Zinchenko & Davis 2007) or elastic capsules (see Risso,
Collé-Paillot & Zagzoule 2006; Bagchi 2007; Secomb et al. 2007) might adopt a
shape that allows lateral migration. This migration is due to the presence of walls
(see Olla 1997; Abkarian, Lartigue & Viallat 2002; Callens et al. 2008) as well as
the non-constant shear rate (see Kaoui et al. 2008; Danker, Vlahovska & Misbah
2009). Even in the case where no migration occurs, the initial distribution is still not
homogeneous: since the barycentre of particles cannot be closer to the wall than their
radius, there is always some particle free layer near the walls. This sole effect will
favour the high-flow-rate branch.

(iii) Interactions between objects. As illustrated by Ditchfield & Olbricht (1996)
or Chesnutt & Marshall (2009), interactions between objects tend to smooth the
asymmetry of the distribution, in that the second particle of a couple will tend to
travel to the other branch from the first one. A related issue is the study of trains of
drops or bubbles at a bifurcation, which completely obstruct the channels and whose
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passage in the bifurcation greatly modifies the pressure distribution in its vicinity, and
thus influences the behaviour of the following element (see Engl et al. 2005; Jousse
et al. 2006; Schindler & Ajdari 2008; Sessoms et al. 2009).

In spite of the large body of literature on this subject, but perhaps because of
the applicative purpose of most studies, the relative importance of these different
parameters is seldom discussed quantitatively, although most authors are fully aware
of the different phenomena at stake.

Since we focus here on the question of cross-streamline migration in the vicinity of
the bifurcation, we will consider rigid spheres, for which no transverse migration in
the upstream channel is expected. These spheres are in the vanishing concentration
limit and flow through symmetric bifurcations, that is the symmetric Y-shaped and
T-shaped bifurcations shown in figure 1, where the two daughter branches have the
same cross-section and are equally distributed relative to the inlet channel.

Indeed, the case of rigid spheres is still quite unclear in the literature. In the
following, first we briefly review previous studies that consider a geometrically
symmetric situation and thoroughly re-analyse their results in order to determine
whether the Zweifach–Fung effect they see is due to initial distribution or due to some
attraction in the vicinity of the bifurcation, which generally has not been done (§ 2).

Then, we present in §§ 3 and 4 our two-dimensional simulations and quasi-two-
dimensional experiments (in the sense that the movement of three-dimensional objects
is planar). We mainly focus on the T-shaped bifurcation, in order to avoid as much
as possible the geometric constraint due to the presence of an apex.

Our main result is that there is some attraction towards the low-flow-rate branch
(§ 4.1). This result is then analysed and explained through basic fluid mechanics
arguments, which are compared with those previously discussed in the literature.

Secondly, we discuss consequences of this drift on the final distribution in the
daughter branches. To do so, we focus on particle concentrations possible at the
outlets in the simplest case, where particles are homogeneously distributed in the inlet
channel, with the sole (and unavoidable) constraint that they cannot approach the
walls closer than their radius (termed depletion effect below, see figure 1b). This has
been done through simulations, which allow us to easily control the initial distribution
in particles (§ 4.2). Consequences for the potential efficiency of sorting or purification
devices are discussed. We finally recall, in § 4.3, some previous studies from the
literature for quantitative comparisons to check the consistency between them and
our results.

Before discussing the results from the literature and presenting our data, we
introduce useful common notation (see figure 1b).

The half-width of the inlet branch is set as the length scale of the problem. The
inlet channel is divided into two branches of width 2a (the case a = 1 is mainly
considered here by default, unless otherwise stated) and spheres of radius R � 1. The
flow rate at the inlet is denoted by Q0, and Q1 and Q2 are the flow rates at the upper
and lower outlets (Q0 = Q1 + Q2). In the absence of particles, all the fluid particles
situated initially above the line y = yf eventually enter branch 1. This line is called
the (unperturbed) fluid separating streamline. Here y0 is the initial transverse position
of the considered particle long before it reaches the bifurcation (|y0| � 1 − R). N1

and N2 are the numbers of particles entering branches 1 and 2 in unit time, while
N0 = N1 + N2 have entered the inlet channel. The volume fractions in the branches
are Φi = V Ni/Qi , where V is the volume of a particle.

With this notation, we can reformulate our question: if y0 = yf , does the particle
experience a net force in the y-direction (e.g. a pressure difference) that would push
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it towards one of the branches, while a fluid particle would remain on the separating
streamline (by definition of yf )? If so, for which position y∗

0 does this force vanish,
so that the particle follows the streamlines and eventually hits the opposite wall and
reaches an (unstable) equilibrium position? If Q1 � Q2 and y∗

0 <yf , then one will talk
about attraction towards the low-flow-rate branch.

Following this notation, we have

N1 =

∫ 1

y∗
0

n(y)u∗
x(y) dy, (1.1)

Q1 =

∫ 1

yf

ux(y) dy, (1.2)

where n(y) is the mean density of particles at height y in the inlet branch, and u∗
x

and ux are respectively particle and flow longitudinal upstream velocities. Note that
N0 and Q0 are given by the same formula with y∗

0 = yf = −1.
The Zweifach–Fung effect can then be written as follows: if Q1/Q0 < 1/2 (branch

1 receives less flow than branch 2), then N1/N0 <Q1/Q0 (branch 1 receives even less
particles than fluid) or equivalently Φ1 <Φ0 (the particle concentration decreases in
the low-flow-rate branch).

2. Previous results in the literature

In the literature, the most common symmetric case that is considered is the Y-
shaped bifurcation with daughter branches leaving the bifurcation with a 45◦ angle
relative to the inlet channel, and cross-sections identical as those of the inlet channel
(figure 1a) (see Audet & Olbricht 1987; Ditchfield & Olbricht 1996; Roberts &
Olbricht 2003, 2006; Yang et al. 2006; Barber et al. 2008). The T-shaped bifurcation
(figure 1b) has attracted little attention (see Yen & Fung 1978; Chien et al. 1985).
All studies but Yen & Fung (1978) showed results for rigid spherical particles, while
some results for deformable particles are given by Yen & Fung (1978) and Barber
et al. (2008). Explicit data on a possible attraction towards one branch are scarce and
can only be found in a recent paper dealing with two-dimensional simulations (see
Barber et al. 2008). In three other papers, dealing with two-dimensional simulations
(see Audet & Olbricht 1987) or experiments in square cross-sectional channels (see
Roberts & Olbricht 2006; Yang et al. 2006), the output data are the concentrations Φi

at the outlets. In this section, we re-analyse their data in order to discuss the possibility
of an attraction towards one branch. Experiments in circular cross-sectional channels
were also performed (see Yen & Fung 1978; Chien et al. 1985; Ditchfield & Olbricht
1996; Roberts & Olbricht 2003), on which we comment later in the text.

In the two-dimensional simulations presented by Audet & Olbricht (1987), some
trajectories around the bifurcation are shown; however, the authors focused on an
asymmetric Y-shaped bifurcation. In addition, some data for N1/N0 in a symmetric
Y-shaped bifurcation and R = 0.5 are presented. Yang et al. (2006) performed
experiments with balls of similar size (R =0.46) in a symmetric Y-shaped bifurcation
with a square cross-section and showed data for N1/N0 as a function of Q1/Q0 (see
Yang et al. 2006). Experiments with larger balls (R = 0.8) in square cross-sectional
channels were carried out by Roberts & Olbricht (2006). Once again, the output
data are the ratios N1/N0. In both experiments, the authors made the assumption
that the initial ball distribution is homogeneous, as also considered in a paper on
simulation by Audet & Olbricht (1987). In these three papers, although the authors
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Figure 2. Comparison between data from the literature and theoretical distribution under the
assumption of no attraction, which would indicate some previously unseen attraction towards
the low-flow-rate branch. Rigid spheres distribution N1/N0 is shown as a function of the flow
distribution Q1/Q0 in a symmetric Y-shaped bifurcation and a homogeneous distribution at
the inlet (but the unavoidable depletion effect). Symbols: data extracted from previous papers:
�, Yang et al. (2006, figure 3), experiments, R = 0.46; �, Audet & Olbricht (1987, figure 8),
two-dimensional simulations, R = 0.5; �, Roberts & Olbricht (2006, figure 5A), experiments,
R = 0.8. Dotted and full lines, theoretical distribution for R = 0.48 and R = 0.8 in the case
where the particles follow their underlying streamline (y∗

0 = yf : no-attraction assumption) and
u∗

x given by our simulations; dashed line, fluid distribution (N1/N0 = Q1/Q0).

were sometimes conscious that the depletion and attraction effects might screen each
other, the relative weight of each phenomenon has not been discussed. However, Yang
et al. (2006) explicitly considered that there must be some attraction towards the high-
flow-rate branch and gave some qualitative arguments for this. This opinion, initially
introduced by Fung (see Fung 1973; Yen & Fung 1978; Fung 1993), is widespread
in the literature (see El-Kareh & Secomb 2000; Jäggi et al. 2007; Kersaudy-Kerhoas
et al. 2010). We shall come back to the underlying arguments in the following.

In figure 2, we present the data of N1/N0 as a function of Q1/Q0 taken from
Audet & Olbricht (1987) for R = 0.5 (two-dimensional simulations), Yang et al. (2006)
for R = 0.46 (experiments) and Roberts & Olbricht (2006) for R = 0.8 (experiments).
It is instructive to compare these data with the corresponding values calculated with
a very simple model based on the assumption that no particular effect occurs at
the bifurcation, that is, the particles follow their underlying streamline (no-attraction
assumption). To do so, we consider the two-dimensional case of flowing spheres
and calculate the corresponding N1 according to (1.1). The no-attraction assumption
implies that y∗

0 = yf and, as in the considered papers, the density n(y) is considered
constant for |y| � 1 − R. The particle velocity u∗

x is given by the simulations presented
in § 4.2. Since we consider only flow ratios, this two-dimensional approach is a good
enough approximation to discuss the results of the three-dimensional experiments, as
the fluid separating plane is orthogonal to the plane where the channels lie; moreover,
the position of this plane differs only by a few per cent from that of the separating
line in two dimensions.

In all curves, it is seen that, if Q1/Q0 < 1/2, then N1/N0 < Q1/Q0, which is precisely
the Zweifach–Fung effect. Note that this effect is present even under the no-attraction
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assumption: as already discussed, the sole depletion effect is sufficient to favour the
high-flow-rate branch.

Let us first consider spheres of medium size (R ≃ 0.48, Audet & Olbricht 1987 and
Yang et al. 2006). If we compare the data from the literature with the theoretical
curve found under the no-attraction assumption, we see that the enrichment of
particles in the high-flow-rate branch is less pronounced than in the simulations by
Audet & Olbricht (1987) and of the same order in the experiments by Yang et al.
(2006). Therefore, we can assume that in the two-dimensional simulations by Audet &
Olbricht (1987), there is an attraction towards the low-flow-rate branch, which lowers
the enrichment of the high-flow-rate branch. The case of the experiments is less clear:
it seems that no particular effect takes place.

The R = 0.8 case is even more striking: under the no-attraction assumption, we can
see that for Q1/Q0 < 0.35, N1 = 0 because yf > 1−R and no sphere can enter the low-
flow-rate branch. However, a non-negligible number of particles are found to enter
branch 1 for Q1/Q0 < 0.35 by Roberts & Olbricht (2006) in their experiments (see
figure 2). Thus, it is clear that there must be some attraction towards the low-flow-rate
branch.

For channels with circular cross-sections, the data found in the literature do not
all tell the same story, although spheres of similar sizes are considered. In Chien
et al. (1985), R = 0.79 spheres are considered in a T-shaped bifurcation. The Y-shaped
bifurcation was considered twice by the same research group, with very similar spheres:
R = 0.8 (see Ditchfield & Olbricht 1996) and R = 0.77 (see Roberts & Olbricht 2003).
In a circular cross-sectional channel, the plane orthogonal to the plane where the
channels lie, parallel to the streamlines in the inlet channel and located at distance 0.78
from the inlet channel wall corresponds to the flow-separating plane for Q1/Q0 = 0.32.
At low concentrations, very few spheres are observed in branch 1 for Q1/Q0 < 0.32
in Chien et al. (1985, figure 3D) and Ditchfield & Olbricht (1996, figure 3), in
agreement with a no-attraction assumption. Chien et al. (1985) also showed that their
data can be well described by the theoretical curve calculated by assuming that the
particles follow their underlying streamlines. In marked contrast to these results, a
considerable number of spheres are still observed in branch 1 in the same situation in
Roberts & Olbricht (2003, figure 4). Similarly, in Ditchfield & Olbricht (1996, figure 4),
many particles with R = 0.6 are found to enter the low-flow-rate branch 1 even
when Q1/Q0 < 0.19, which would indicate some attraction towards the low-flow-rate
branch. Thus, in a channel with circular cross-section, the results are contradictory.
In the pioneering work of Yen & Fung (1978), a T-shaped bifurcation is also
considered, with flexible disks mimicking red blood cells, but the deformability of
these objects and the noise in the data do not allow us to make any reasonable
comments.

More recently, Barber et al. (2008) have presented simulations of two-dimensional
spheres with R � 0.67 and two-dimensional deformable objects mimicking red blood
cells in a symmetric Y-shaped bifurcation. The values of y∗

0 as a function of the
flow rate ratios and the spheres radius are clearly discussed. For spheres, it is shown
that y∗

0 <yf if Q1 <Q2, that is, there is an attraction towards the low-flow-rate branch,
which increases with R. Deformable particles are also considered. However, it is not
possible to discuss from their data (or, probably, from any other data) whether the
cross-streamline migration at the bifurcation is more important in this case or not:
for deformable particles, transverse migration towards the centre occurs due to the
presence of walls and non-homogeneous shear rates. This migration will probably
screen the attraction effect, at least partly, and it seems difficult to quantify the relative
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contribution of both effects. In particular, y∗
0 depends on the (arbitrary) initial distance

from the bifurcation. In Chesnutt & Marshall (2009), attraction towards the low-flow-
rate branch is also quickly evoked, but considered as negligible since the focus was
on large channels and interacting particles.

Finally, from our new analysis of previous results from the literature (and despite
some discrepancies) it appears that there should be some attraction towards the
low-flow-rate branch, although the final result is an enrichment of the high-flow-rate
branch due to the depletion effect in the inlet channel. This effect was seen by Barber
et al. (2008) in their simulations. On the other hand, if one considers the flow around
an obstacle, as simulated in El-Kareh & Secomb (2000), it seems that spherical
particles are attracted towards the high-flow-rate side.

From the above discussion, we conclude that the different effects occurring at
the bifurcation level are neither well identified nor explained. Moreover, to date, no
direct experimental proof of any attraction phenomenon exists. In § 4.1, we show
experimentally that attraction towards the low-flow-rate branch takes place and
confirm this through numerical simulations.

It is then necessary to discuss whether this attraction has important consequences
on the final distributions in particles in the two daughter channels. This was not done
explicitly in Barber et al. (2008); however, in § 4.2 through simulations we discuss the
relative weight of the attraction towards the low-flow-rate branch and the depletion
effect, which have opposite consequences.

3. Method

3.1. Experimental set-up

We studied the behaviour of hard balls as a first reference system. Since the potential
migration across streamlines is linked to the way the fluid acts on the particles, we
also studied spherical fluid vesicles. These are closed lipid membranes enclosing a
Newtonian fluid. The lipids that we used are in liquid phase at room temperature,
so that the membrane is a two-dimensional fluid. In particular, it is incompressible
(so that spherical vesicles will remain spherical even under stress, unlike drops), but
it is easily sheared: this means that a torque exerted by the fluid on the surface of
the particle can imply a different response depending on whether it is a solid ball or
a vesicle. Moreover, since vesicle suspensions are polydisperse, it is a convenient way
to vary the radius R of the studied object.

The experimental set-up is a standard microfluidic chip made of polydimethylsilox-
ane bonded on a glass plate (figure 3). We wish to observe what happens to an object
located around position yf , that is, in which branch it goes at the bifurcation. In
order to determine the corresponding y∗

0 , we need to scan different initial positions
around yf . One solution would be to let a suspension flow and hope that some of the
particles are close enough to the region of interest. In the meantime, as we shall see,
the cross-streamline effect is weak and requires precise measurement, and noticeable
effects appear only at high radius R, typically R > 0.5. Clogging is unavoidable with
such objects, which would modify the flow rates ratio, and if a very dilute suspension
is used, it is likely that the region of interest will only partly be scanned.

Therefore, we designed a microfluidic system that allowed us to use only one
particle, which would go through the bifurcation with a controlled initial position
y0, would be taken back, its position y0 modified, would flow again through the
bifurcation, and so on. Moreover, we allowed continuous modification of the flow
rate ratio between the two daughter branches. The core of the chip is the five branch
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Figure 3. (Colour online) Scheme of the microfluidic device. The photograph shows the
trajectory of a particle from branch a to branch 1 after having been focused on a given
streamline thanks to flows from lateral branches b and c.

crossroad shown in the inset to figure 3. These five branches have different lengths
and are linked to reservoirs placed at different heights, in order to induce flow by a
hydrostatic pressure gradient. A focusing device (branches a–c) is placed before the
bifurcation of interest (branches 1 and 2), in order to control the lateral position of
the particle. Particles are initially located in the central branch a, where the flow is
weak and the incoming particles are pinched between the two lateral flows. In order
to modify the position y0 of the particle, the relative heights of the reservoirs linked to
the lateral branches are modified. The total flow rate and the flow rate ratios between
the two daughter branches after the bifurcation are controlled by varying the heights
of the two outlet reservoirs. Note that the flow rate ratio also depends on the heights
of the reservoirs linked to inlet branches a, b and c. Since the latter two must be
continuously modified to vary the position y0 of the incoming particle in order to find
y∗

0 for a given flow rate ratio, it is convenient to place them on a pulley so that their
mean height is always constant (resistances of branches b and c being equal). If the
total flow rate is a relevant parameter (which is not the case here since we consider
only Stokes flow of particles that do not deform), one can do the same with the two
outlet reservoirs. In such a situation, if the reservoir of branch a is placed at height
0, reservoirs of branches b and c at heights ±h0, and reservoirs of branches 1 and 2
at heights −H + h and −H − h, the flow rate ratio is governed by setting (h, H ) and
h0 can be modified independently in order to control y0. Once the particle has gone
through the bifurcation, height H and the height of reservoir a are modified so that
the particle comes back to branch a, and h0 is modified in order to get closer and
closer to the position y∗

0 . Note that Q1/Q0 (or equivalently yf ) is a function of H ,
h, and the flow resistances of the five branches of rectangular cross-sections, which
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Figure 4. Photographs showing the different positions of a vesicle of radius R = 0.60 starting
just above and just below its separating line. No clear difference between these two starting
positions can be seen by eye, which illustrates the accuracy we get in the measurement of y∗

0 .
Here Q1/Q0 is set to 0.28.

are known functions of their lengths, widths and thicknesses (see White 1991). The
accuracy of the calculation of this function was checked by measuring y∗

0 for small
particles, which must be equal to yf .

Note that the length of the channel is much more important than the size of a
single flowing particle, so that we can neglect the contribution of the latter in the
resistance to the flow: hence, even though we control the pressures, we can consider
that we work at fixed flow rates.

Finally, as can be seen in figure 4, our device allows us to scan very precisely the
area of interest around the sought y∗

0 , so that the uncertainty associated with it is
very low.

At the bifurcation level, channels widths are all equal to 57 ± 0.2 µm. Their thickness
is 81 ± 0.3 µm. We used polystyrene balls of maximum radius 40.5 ± 0.3 µm in
soapy water (therefore R � 0.71) and fluid vesicles of size R � 0.60. The vesicle
membrane is a dioleoylphosphatidylcholine lipid bilayer enclosing an inner solution
of sugar (sucrose or glucose) in water. Vesicles are produced following the standard
electroformation method (see Angelova et al. 1992). Maximum flow velocity at the
bifurcation level was around 1 mm s−1, so that the Reynolds number Re ≃ 10−1.

3.2. The numerical model

In the simulations, we focus on the two-dimensional problem (invariance along the
z-axis). Our problem is a simple fluid/structure interaction and can be modelled
by Navier–Stokes equations for the fluid flow and Newton–Euler equations for the
sphere. These two problems can be coupled in a simple manner.

(i) The action of fluid on the sphere is modelled by the hydrodynamic force and
torque acting on its surface. They are used as the right-hand sides of Newton–Euler
equations.

(ii) The action of the sphere on fluid can be modelled by no-slip boundary
conditions on the sphere (in the Navier–Stokes equations).
However, this explicit coupling can be numerically unstable and its resolution often
requires very small time steps. In addition, as we have chosen to use the finite element
method (FEM) (for accuracy) and since the position of the sphere evolves in time,
we have to remesh the computational domain at each time step or in best cases every
few time steps.
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For these reasons, we chose another strategy to model our problem. Instead of
using Newton–Euler equations for modelling the sphere motion and Navier–Stokes
equations for the fluid flow, we use only the Stokes equations in the entire domain of
the bifurcation (including the interior of the sphere). The use of Stokes equations is
justified by the small Reynolds number in our case and the presence of the sphere is
rendered by a second fluid with a ‘huge’ viscosity on which we impose a rigid body
constraint. Such a strategy is widely used in the literature under different names, e.g.
the so-called fluid particle dynamics (FPD) method (see Tanaka & Araki 2000; Peyla
2007), but we can group them generically as penalty-like methods. The method used
here was mainly developed by Lefebvre et al. (see Janela, Lefebvre & Maury 2005;
Lefebvre 2007) and we can find a mathematical analysis of such methods in Maury
(2009).

In what follows, we briefly describe the basic ingredients of the FEM and the
penalty technique applied to the problem.

The fluid flow is governed by Stokes equations written as follows:

−ν�u + ∇p = 0 in Ωf , (3.1)

∇ · u = 0 in Ωf , (3.2)

u = f on ∂Ωf , (3.3)

where the variables
(i) ν, u and p are respectively the viscosity, velocity and pressure fields of the fluid;
(ii) Ωf is the domain occupied by the fluid; typically Ωf = Ω\B̄ if we denote by

Ω the whole bifurcation and by B the rigid particle;
(iii) ∂Ωf is the border of Ωf ;
(iv) f is some given function for the boundary conditions.

It is known that under some reasonable assumptions the problem (3.1)–(3.3) has a
unique solution (u, p) ∈ H 1(Ωf )2 × L2

0(Ωf ) (see Girault & Raviart 1986). Below, we
use the following functional spaces:

L2(Ω) =

{

f : Ω → �;

∫

Ω

|f |2 < +∞
}

, (3.4)

L2
0(Ω) =

{

f ∈ L2(Ω);

∫

Ω

f = 0

}

, (3.5)

H 1(Ω) = {f ∈ L2(Ω); ∇f ∈ L2(Ω)}, (3.6)

H 1
0 (Ω) = {f ∈ H 1(Ω); f = 0 on ∂Ω}. (3.7)

As we use the FEM for the numerical resolution of the problem (3.1)–(3.3), we
need to rewrite this in a variational form (an equivalent formulation of the initial
problem). For the sake of simplicity, we start by writing it in a standard way
(fluid without sphere), then we modify it using the penalty technique to take into
account the presence of the particle. In what follows, we briefly describe these two
methods, the standard variational formulation for the Stokes problem and the penalty
technique.

3.2.1. Variational formulation

First recall the deformation tensor τ , which is useful in what follows

τ (u) = 1
2
(∇u + (∇u)t ) . (3.8)
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Thanks to the incompressibility constraint ∇ · u = 0, we have

�u = 2∇ · τ (u). (3.9)

Hence, the problem (3.1)–(3.3) can be rewritten as follows: find (u, p) ∈
H 1(Ωf )2 L2

0(Ωf ) such that

−2ν∇ · τ (u) + ∇p = 0 in Ωf , (3.10)

∇ · u = 0 in Ωf , (3.11)

u = f on ∂Ωf . (3.12)

By simple calculations (see the Appendix for details) we show that problem (3.10)–
(3.12) is equivalent to the following: find (u, p) ∈ H 1(Ωf )2 × L2

0(Ωf ) such that

2ν

∫

Ωf

τ (u) : τ (v) −
∫

Ωf

p∇ · v = 0, ∀v ∈ H 1
0 (Ωf )2, (3.13)

∫

Ωf

q∇ · u = 0, ∀q ∈ L2
0(Ωf ), (3.14)

u = f on ∂Ωf , (3.15)

where ‘:’ denotes the double contraction.

3.2.2. Penalty method

We chose to use the penalty strategy in the framework of FEM, described here
briefly (see Janela et al. 2005 and Lefebvre 2007 for more details).

The first step consists in rewriting the variational formulation (3.13)–(3.15) by
replacing the integrals over the real domain occupied by the fluid (Ωf = Ω \ B̄) by
those over the whole domain Ω (including the sphere B). This means that we extend
the solution (u, p) to the whole domain Ω . More precisely, by the penalty method
we replace the particle by an artificial fluid with huge viscosity. This has been made
possible by imposing a rigid-body motion constraint on the fluid that replaces the
sphere (τ (u) = 0 in B). Obviously, the divergence-free constraint is also ensured in B .

The problem (3.13)–(3.15) is then modified as follows: find (u, p) ∈ H 1(Ω)2 L2
0(Ω)

such that

2ν

∫

Ω

τ (u) : τ (v) +
2

ε

∫

B

τ (u) : τ (v)

−
∫

Ω

p∇ · v = 0, ∀v ∈ H 1
0 (Ω)2, (3.16)

∫

Ω

q∇ · u = 0, ∀q ∈ L2
0(Ω), (3.17)

u = f on ∂Ω, (3.18)

where ε ≪ 1 is a given penalty parameter.
Finally, if we denote the time discretization parameter by tn = nδt , the velocity and

the pressure at time tn by (un, pn), the velocity of the sphere at time tn by V n and its
centre position by Xn, we can write our algorithm as

V n =
1

volume(B)

∫

B

un, (3.19)

Xn+1 = Xn + δtV n, (3.20)



Spheres in the vicinity of a bifurcation 371

where (un +1, pn+1) solves

2ν

∫

Ω

τ (un+1) : τ (v) +
2

ε

∫

B

τ (un+1) : τ (v)

−
∫

Ω

pn+1∇ · v = 0, ∀v ∈ H 1
0 (Ω)2, (3.21)

∫

Ω

q∇ · un+1 = 0, ∀q ∈ L2
0(Ω), (3.22)

un+1 = f on ∂Ω. (3.23)

The implementation of algorithm (3.19)–(3.23) is done with a user-friendly finite
element software Freefem++ (see Hecht & Pironneau 2010).

Finally, we consider the bifurcation geometry shown in figure 1(b) and impose no-
slip boundary conditions on all walls and prescribe parabolic velocity profiles at the
inlets and outlets such that, for a given choice of flow rate ratio, Q0 = Q1 + Q2. For
a given initial position y0 of the sphere of radius R at the outlet, the full trajectory
is calculated until it definitely enters one of the daughter branches. A dichotomy
algorithm is used to determine the key position y∗

0 . Spheres of radius R up to 0.8 are
considered.

Remark 1. In practice, the penalty technique may deteriorate the pre-conditioning of
our underlying linear system. To overcome this problem, one can regularize (3.22) by
replacing it with the following:

−ε0

∫

Ω

pn+1q +

∫

Ω

q∇ · un+1 = 0, ∀q ∈ L2
0(Ω), (3.24)

where ε0 ≪ 1 is a given parameter.

4. Results and discussion

4.1. The cross-streamline migration

4.1.1. The particle-separating streamlines

In figure 5, we show the position of the particle-separating line y∗
0 relative to

the position of the fluid-separating line yf when branch 1 receives less fluid than
branch 2 (see figure 1b), which is the main result of this paper. For all particles
considered, in the simulations or in the experiments, we find that the particle-
separating line lies below the fluid-separating line, the upper branch being the low-
flow-rate branch. These results clearly indicate an attraction towards the low-flow-rate
branch: while a fluid element located below the fluid-separating streamline will enter
into the high-flow-rate branch, a solid particle can cross this streamline and enter
into the low-flow-rate branch, provided it is not too far away initially. It is also clear
that the attraction increases with the sphere radius R.

In particular, in the experiments (figure 5a), particles of radius R � 0.3 behave
like fluid particles. Note that R =0.52 balls show a slight attraction towards the
low-flow-rate branch, while the effect is more marked for big balls of radius R = 0.71.
Vesicles show a comparable trend and it seems from our data that solid particles or
vesicles with fluid membrane behave similarly in the vicinity of the bifurcation.

In the simulations (figure 5b), we clearly see that for a given R, the discrepancy
between the fluid and particle behaviour increases when Q1/Q0 decreases. On the
contrary, in the quasi-two-dimensional case of the experiments, the difference between
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Figure 5. Position of the particle-separating line y∗
0 . The T-bifurcation with branches of equal

widths is considered. Branch 1 receives flow from high y values, so y∗
0 < yf for Q1/Q0 < 1/2

indicates attraction towards the low-flow-rate branch (see also figure 1b). (a) Data from
quasi-two-dimensional experiments and comparison with the two-dimensional case for one
particle size. The two-dimensional and three-dimensional fluid-separating lines are shown to
illustrate the low discrepancy between the two cases, as required to validate our new analysis
of the literature in § 2. The horizontal dotted line shows the maximum position y0 = 1 − R for
R = 0.71 spheres. Its intersection with the curve y∗

0 (Q1/Q0) yields the critical flow rate ratio
Q1/Q0 below which no particle enters branch 1, the low-flow-rate branch. These expected
critical flow rates for the two- and three-dimensional cases are shown by arrows. (b) Data
from two-dimensional simulations.

the flow and the particle streamlines seems to be rather constant in a wide range
of Q1/Q0 values. Finally, for small enough values of Q1/Q0, the attraction effect is
more pronounced in the two-dimensional case than in the quasi-two-dimensional case,
as shown in figure 5(a) for R = 0.71. This result was expected, since this effect has
something to do with the non-zero size of the particle, and the real particle to channel
size ratio is lower in the experiments for a given R, due to the third dimension. In all
cases, below a given value of Q1/Q0, the critical position y∗

0 would enter the depletion
zone y0 > 1 − R, so that no particle will eventually enter the low-flow-rate branch.
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The corresponding critical Q1/Q0 is much lower in the two-dimensional case than in
the experimental quasi-two-dimensional situation (see figure 5a).

4.1.2. Discussion

The first argument for some attraction towards one branch was initially given by
Fung (see Fung 1973; Yen & Fung 1978; Fung 1993) and strengthened by recent
simulations (see Yang & Zahn 2004): a sphere in the middle of the bifurcation is
considered (y0 = 0) and it is argued that it should go to the high-flow-rate branch
since the pressure drop P0 − P2 is higher than P0 − P1 because Q2 >Q1 (see figure 1b
for notation). This is true (we also found y∗

0 > 0 when Q1 <Q2) but this is not the
point to be discussed: if one wishes to discuss the increase in volume fraction in
branch 2, therefore to compare the particles and fluid fluxes N2 and Q2, one needs to
focus on particles in the vicinity of the fluid-separating streamline (to see whether or
not they behave like the fluid) and not in the vicinity of the middle of the channel.
On the other hand, this incorrectly formulated argument by Fung has led to the idea
that there must be some attraction towards the high-flow-rate branch in the vicinity
of the fluid-separating streamline (see Yang et al. 2006), which appears now in the
literature as a well-established fact (see Jäggi et al. 2007; Kersaudy-Kerhoas et al.
2010).

In Barber et al. (2008), Fung’s argument has been rejected, although it is not
explained why. Arguments for attraction towards the low-flow-rate branch (that is,
P2 > P1 in figure 1b) are given, considering particles in the vicinity of the fluid
separating streamline. The authors’ main idea was, first, that some pressure difference
P0 − Pi builds up on each side of the particle because it travels more slowly than
the fluid. Then, as the particle intercepts a relatively more important area in the low-
flow-rate branch region (yf <y < 1) than in the high-flow-rate region, they consider
that the pressure drop is more important in the low-flow-rate region, so that P2 >P1.
The authors called this effect ‘daughter vessel obstruction’.

However, it is not clear in Barber et al. (2008) where the particles must be for this
argument to be valid: they could be at the entrance of the bifurcation, in the middle of
it or close to the opposite wall, since their arguments are used to explain what happens
in the case of daughter branches of different widths. Indeed, we shall see that the
effects can be quite different according to this position and, furthermore, the notion
of ‘relatively larger part intercepted’ is not the key phenomenon to understand the
final attraction towards the low-flow-rate branch, even though it clearly contributes
to it.

To understand this, let us focus on the simulated trajectories starting around y∗
0

shown in figure 6(a) (R = 0.67, Q1/Q0 = 0.2). These trajectories must be analysed in
comparison with the unperturbed flow streamlines, in particular the fluid separating
streamline, starting at y = yf and ending against the front wall at a stagnation point.

Particles starting around y∗
0 <yf show a clear attraction towards the low-flow-

rate branch (displacement along the y-axis) as they enter the bifurcation. More
precisely, there are three types of motions: for low initial position y0 (in particular
y0 = 0), particles travel directly into the high-flow-rate branch. Similarly, above y∗

0 , the
particles travel directly into the low-flow-rate branch. Between some y∗∗

0 > 0 and y∗
0 ,

the particles first move towards the low-flow-rate branch, but finally enter the high-
flow-rate branch: the initial attraction towards the low-flow-rate branch becomes
weaker and the particles eventually follow the streamlines entering the high-flow-rate
branch. This non-monotonic variation of y0 for a particle starting just below y∗

0 is
also seen in experiments, as shown in figure 4(b): the third position of the vesicle is
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Figure 6. Comparison between fluid and particle trajectories in the vicinity of the
bifurcation. Grey lines, some trajectories of an R =0.67 particle when Q1/Q0 = 0.2 for
(a) branches of equal widths, (b) daughter branches 2.5 times wider than the inlet branch
and (c) daughter branches 7.5 times wider than the inlet branch. The unperturbed fluid
separating streamline starting at y = yf is shown in black. The particle is shown approximately
at its stagnation point.

characterized by a y0 slightly higher than the initial one. Returning to the simulations,
note that, at this level, there is still some net attraction towards the low-flow-rate
branch: the particle stagnation point near the opposite wall is still below the fluid-
separating streamline (that is, on the high-flow-rate side). This two-step effect is
even more visible when the width 2a of the daughter branches is increased, so that
the entrance of the bifurcation is far from the opposite wall, as shown in figure
6(b, c). The second attraction is, in such a situation, more dramatic: for a = 7.5, the
particle stagnation point is even on the other side of the fluid-separating streamline,
that is, there is some attraction towards the high-flow-rate branch. Thus, there are
clearly two antagonistic effects along the trajectory. In the first case of branches of
equal widths, where the opposite wall is close to the bifurcation entrance, the second
attraction towards the high-flow-rate branch coexists with the attraction towards the
low-flow-rate branch and finally only diminishes it.

These two effects occur in two very different situations. At the entrance of the
channel, an attraction effect must be understood in terms of streamlines crossing:
does a pressure difference build up orthogonally to the main flow direction? Near the
opposite wall, the flow is directed towards the branches and being attracted means
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Figure 7. (Colour online) Schematic of the geometry considered for the two effects occurring
in the bifurcation. (a) Entrance to the bifurcation showing attraction towards the low-flow-rate
branch (P1 <P2). (b) Opposite wall showing attraction towards the high-flow-rate branch
(P ′

1 > P ′
2).

flowing upstream or downstream. In both cases, in order to discuss whether some
pressure difference builds up or not, the main feature is that, in a two-dimensional
Stokes flow between two parallel walls, the pressure difference between two points
along the flow direction scales like �P ∝ Q/h3, where Q is the flow rate and h is
the distance between the two walls. This scaling is sufficient to discuss in a first-order
approach the two effects at stake.

The second effect is the simplest one: the sphere is placed in a quasi-elongational,
but asymmetric, flow. As shown in figure 7(b), around the flow stagnation point,
the particle movement is basically controlled by the pressure difference P ′

2 − P ′
1,

which can be written (P ′
0 − P ′

1) − (P ′
0 − P ′

2). Focusing on the y-component of the
velocity field, which becomes all the more important as a is larger than 1, we have
P ′

0−P ′
i ∝ Qi/(a−R)3. Around the flow stagnation point, the pressure difference P ′

2−P ′
1

has then the same sign as Q1–Q2 and is thus negative, which indicates attraction
towards the high-flow-rate branch. For wide daughter branches, when this effect is
not screened by the first one, this implies that the stagnation point for particles is
above the fluid separating line, as seen in figure 6(c). The argument that we use here
is similar to that introduced by Fung (see Fung 1993; Yang et al. 2006) but resolves
only one part of the problem. Following these authors, it can also be pointed out
that the shear stress on the sphere is non-zero: in a two-dimensional Poiseuille flow
of width h, the shear rate near a wall scales as Q/h2, so the net shear stress on the
sphere is directed towards the high-flow-rate branch, making the sphere roll along the
opposite wall towards this branch.

Finally, this situation is similar to that of a flow around an obstacle, which was
considered by El-Kareh & Secomb (2000) as a model situation to understand what
happens at the bifurcation. Indeed, the authors found that spheres are attracted
towards the high-velocity side of the obstacle. However, we show here that this
modelling is misleading, as it neglects the first effect, which eventually governs the net
effect.
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This first effect leads to an attraction towards the low-flow-rate branch. To
understand this, let us consider a sphere located in the bifurcation with transverse
position y0 = yf . The exact calculation of the flow around it is much too complicated,
and simplifications are needed. Just as we considered the large a case to understand
the second mechanism eventually leading to attraction towards the high-flow-rate
branch, let us consider the small a limit to understand the first effect: as soon as the
ball enters the bifurcation, it hits the front wall. On each side, we can write in a first
approximation that the flow rate between the sphere and the wall scales as Q ∝ �Ph3,
where �P =P0 − Pi is the pressure difference between the back and the front of the
sphere, and h is the distance between the sphere and the wall (see figure 7a).

Since the ball touches the front wall, the flow rate Q is either Q1 or Q2 and is,
by definition of yf , the integral of the unperturbed Poiseuille flow velocity between

the wall and the y = yf line, so Q ∝ h̃2 − h̃3/3, where h̃ = 1 ± yf (see figure 7a for
notation).

We have then, on each side,

�P ∝ h̃2 − h̃3/3

h3
. (4.1)

To make things clear, let us consider the extreme case of a flat particle: h = h̃. Then,
�P ∝ 1/h̃ − 1/3 is a decreasing function of h̃, that is, a decreasing function of Q.
Therefore, the pressure drop is more important on the low-flow-rate side, and finally
P1 < P2: there is an attraction towards the low-flow-rate branch. This is exactly the
opposite result from the simple view claiming that there is some attraction towards
the high-flow-rate branch since �P scales as Q/h3 so as Q. Since one has to discuss
what happens for a sphere in the vicinity of the separating line, Q and h̃ are not
independent. This is the key argument. Note finally that there is no need for some
obstruction arguments to build up a different pressure difference on each side. It only
increases the effect since the function h̃ �→ (h̃2 − h̃3/3)/(h̃ − R)3 decreases faster than
the function h̃ �→ (h̃2 − h̃3/3)/h̃3. One can be even more precise and take into account
the variations in the gap thickness as the fluid flows between the sphere and the wall
to calculate the pressure drop by lubrication theory. Still, it is found that �P is a
decreasing function of h̃.

In the more realistic case a ≃ 1, the flow repartition becomes more complex, and
the particle velocity along the x-axis is not zero. Yet, as it reaches a low-velocity
area (the velocity along the x-axis of the streamline starting at yf drops to zero),
its velocity is lower than its velocity at the same position in a straight channel. In
addition, as the flow velocities between the sphere and the opposite wall are low, and
since the fluid located e.g. between yf and the top wall will eventually enter the top
branch by definition, we can assume that it will mainly flow between the sphere and
the top wall. Note that this is not true in a straight channel: there are no reasons for
the fluid located between one wall and the y = y0 line, where y0 is the sphere lateral
position, to enter completely, or to be the only fluid to enter, between the wall and
the particle. Therefore, we can assume that the arguments proposed to explain the
attraction towards the low-flow-rate branch remain valid, even though the net effect
will be weaker.

Note, finally, that contrary to what we discussed for the second effect, the particle
rotation probably plays a minor role here, as in this geometry the shear stress exerted
by the fluid on the particle will mainly result in a force acting parallel to the x-axis.
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Finally, this separation into two effects can be used to discuss a scenario for
bifurcations with channels of different widths: if the inlet channel is broadened, the
first effect becomes less strong while the second one is not modified, which results
in a weaker attraction towards the low-flow-rate branch. If the outlet channels
are broadened, as in figure 6(b, c), it becomes more subtle. Let us start again
with the second effect (migration upstream or downstream) before the first effect
(transverse migration). As seen in figure 6, the position of the particle stagnation point
(relative to the flow-separating line) is an increasing function of a, so the second effect
is favoured by the broadening of the outlets: for a → ∞, we end up with the problem
of flow around an obstacle, while for small a, one cannot write that the width of the
gap between the ball and the wall is just a − R, therefore independent from Qi , as it
also depends on the y-position of the particle relative to y ′

0. In other words, in such
a situation, the second effect is screened by the first effect. On the other hand, as a

increases, the distance available for transverse migration becomes larger, which could
favour the first effect, although the slowdown of the particle at the entrance of the
bifurcation becomes less pronounced.

Finally, it appears difficult to predict the consequences of an outlet broadening:
for instance, in our two-dimensional simulations presented in figure 6 (R = 0.67,
Q1/Q0 = 0.2), y∗

0 varies from 0.27 when the outlet half-width a is equal to 1, to 0.31
when a is equal to 2.5 and drops down to 0.22 for a = 7.5. Note that the net effect is
always an attraction towards the low-flow-rate branch (y∗

0 <yf ).
For daughter branches of different widths, it was illustrated in Barber et al. (2008)

that the narrower branch is favoured. This can be explained through the second effect
(see figure 7b): the pressure drop P ′

0 − P ′
i ∝ Qi/(a − R)3 increases when the channel

width decreases, which favours the narrower branch even in the case of equal flow
rates between the branches.

4.2. The consequences for the final distribution

As there is some attraction towards the low-flow-rate branch, we could expect some
enrichment of the low-flow-rate branch. However, as already discussed, even in the
most uniform situation, the presence of a free layer near the walls will favour the
high-flow-rate branch. We discuss now, through our simulations, the final distribution
that results from these two antagonistic effects.

As in most previous papers in the literature, we focus on the case of uniform
number density of particles in the inlet (n(y) = 1 in (1.1)). In order to compute the
final splitting N1/N0 of the incoming particles as a function of flow rate ratio Q1/Q0,
one needs to know, according to (1.1), the position y∗

0 of the particle-separating
line and the velocity u∗

x of the particles in the inlet channel. From figure 5, we see
that y∗

0 depends roughly linearly on (Q1/Q0–1/2), so we will consider a linear fit of
the calculated data in order to get values for all Q1/Q0. The longitudinal velocity
u∗

x was computed for all studied particles as a function of transverse position y0.
As shown in figure 8, the function u∗

x(y0) is well described by a quartic function
u∗

x(y0) = αy4
0 +βy2

0 + γ , which is an approximation also used in Barber et al. (2008).
Values for the fitting parameters for this velocity profile and for the linear relationship
y∗

0 = ξ × (Q1/Q0 − 1/2) are given in table 1.
The evolution of N1/N0 as a function of Q1/Q0 for two-dimensional rigid spheres

is shown in figure 9 for two representative radii. By symmetry, considering Q1 < Q2 is
sufficient. In order to discuss the enrichment of particles in the high-flow-rate branch
(branch 2 then), it is also convenient to consider directly the volume fraction variation
Φ2/Φ0 = (N2/Q2)/(N0/Q0).
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R 0 0.25 0.42 0.48 0.53 0.60 0.67 0.71 0.80
α 0 −0.96 −3.45 −4.77 −6.33 −9.52 −11.6 −12.6 –
β −1 −0.85 −0.65 −0.70 −0.64 −0.61 −0.71 −0.73 –
γ 1 0.96 0.91 0.89 0.87 0.84 0.81 0.79 0.75
ξ – −1.35 −1.25 −1.17 −1.09 −1.01 −0.90 −0.81 –

Table 1. Values for the fitting parameters (α, β, γ ) for the longitudinal velocity
u∗

x(y0) = αy4
0 + βy2

0 + γ of a two-dimensional sphere of radius R in a Poiseuille flow of
imposed velocity at infinity ux(y) = 1 − y2; for R = 0.80, the velocity profile is too flat to
be reasonably fitted by a three-parameter law, since all velocities are equal to 0.75 ± 0.005 in
the explored interval y0 ∈ [−0.15; 0.15]. We also give the values for the fitting parameter ξ
of the linear relationship between the particle separating line position y∗

0 and flow rate ratios:
y∗

0 = ξ × (Q1/Q0 − 1/2). For R = 0.8, the strong confinement leads to numerical problems as
the sphere approaches the walls.
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Figure 8. Some longitudinal velocity profiles u∗
x(y0) for two-dimensional spheres of different

radii R in the inlet channel, where a Poiseuille flow of velocity ux(y) = 1 − y2 is imposed at
infinity. The full lines show the fits by the quartic law u∗

x(y0) = αy4
0 + βy2

0 + γ .

When Q1/Q0 = 1/2, the particle flow splits equally into the two branches: N1 = N0

and Φ2 = Φ0. For all explored sizes of spheres, when the flow rate in branch 1 decreases,
there is an enrichment of particles in branch 2, which is precisely the Zweifach–Fung
effect: N1/N0 <Q1/Q0 or Φ2/Φ0 > 1. Then, even in the most homogeneous case, the
attraction towards the low-flow-rate branch is not strong enough to counterbalance
the depletion effect that favours the high-flow-rate branch. However, this attraction
effect cannot be considered as negligible, in particular for large particles: while, when
the particles follow their underlying fluid streamline, the maximum enrichment in the
high-flow-rate branch would be around 40 % for R =0.71, it drops down to less than
17 % in reality. Similarly, the critical flow rate ratio Q1/Q0 below which no particle
enters into branch 1 is greatly shifted: from around 0.29 to around 0.15 for R =0.71.
For smaller spheres (R =0.42), this asymmetry in the distribution between the two
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Figure 9. Final particle distributions. Full lines, spheres’ relative distribution N1/N0 (a) and
volume fraction Φ2/Φ0 (b) as a function of the flow rate distribution Q1/Q0 from our
two-dimensional simulations for two representative radii R = 0.42 and R = 0.71. The curves
are straightforwardly derived from (1.1) and (1.2) and computed values of y∗

0 and u∗
x (table 1).

The results are compared with the hypothesis where the particles would follow the streamlines
(y∗

0 = yf ) (dashed lines).

branches is weak: while the maximum enrichment in the high-flow-rate branch would
be around 15 % in a no-attraction case, it drops to less than 8 % due to the attraction
towards the low-flow-rate branch.

When the flow Q1 is equal to zero or Q0/2, Φ2 is equal to Φ0; thus, there is a maximal
enrichment for some flow rate ratio between 0 and 1/2. Starting from Q1/Q0 =0.5,
the increase in Φ2 with the decrease of Q1 is mainly due to the decrease of the relative
importance of the free layer near the wall on the side of branch 2. Two mechanisms
are then responsible for the decrease of Φ2 when Q1 goes on decreasing: first, when
no particle can enter the low-flow-rate branch because its hypothetical separation line
y∗

0 is above its maximum position 1 − R, then the high-flow-rate branch receives only
additional solvent when Q1/Q0 decreases and its particles are more diluted. Then, all
curves fall onto the same curve Φ2/Φ0 = 1/(1 − Q1/Q0) corresponding to N1 = 0 (or
N2 =N0), which results in a sharp variation as Q1/Q0 goes through the critical flow
rate ratio. A smoother mechanism is also to be taken into account here, which is the
one that finally determines the maximum for smaller R. As Q1/Q0 decreases, branch
2 recruits fluid and particles that are closer and closer to the opposite wall. As seen
in figure 8, the discrepancy between the flow and particle velocities increases near
the walls, so that N2 increases less than Q2: the resulting concentration in branch 2
finally decreases.

Finally, for applicative purposes, the consequences of the attraction towards the
low-flow-rate branch are twofold: if one wishes to obtain a particle-free fluid (e.g.
plasma without red blood cells), one has to set Q1 low enough so that N1 = 0. Because
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of attraction towards the low-flow-rate branch, this critical flow rate is decreased and
the efficiency of the process is lowered. If one prefers to concentrate particles, then
one must find the maximum of the Φ2/Φ0 curve. This maximum is lowered and
shifted by the attraction towards the low-flow-rate branch (see figure 9). Note that for
small spheres (e.g. R = 0.42), the position of the maximum does not correspond to the
point at which N1 vanishes; in addition, the shift direction of the maximum position
depends on the sphere size: while it shifts to lower Q1/Q0 values for R =0.71, it shifts
to higher values for R = 0.42.

The choice of the geometry, within our symmetric frame, can also greatly modify
the efficiency of a device. Since the depletion effect eventually governs the final
distribution, narrowing the inlet channel is the first requirement. On the other hand,
it also increases the attraction towards the low-flow-rate branch, but one can try
to diminish it. As discussed in the preceding section, this can be done by widening
reasonably the daughter branches. For instance, if their half-width is not 1 but 2.5,
as in figure 6(b), the slope ξ in the law y∗

0 = ξ × (Q1/Q0 − 1/2) increases by around
15 % for R = 0.67. The critical Q1/Q0 below which no particle enters the low-flow-
rate branch increases from 0.13 to 0.19, which is good for fluid–particle separation,
and the maximum enrichment Φ2/Φ0 that can be reached is 22 % instead of 15 %.
Alternatively, since the attraction is higher in two dimensions than in three, we can
also infer that considering thicker channels, which does not modify the depletion
effect, can greatly improve the final result. Note that this conclusion would have been
completely different in the case of the high-flow-rate branch enrichment due to some
attraction towards it, as claimed in some papers: in such a case, confining as much as
possible would have been required, as it increases all kinds of cross-streamline drifts.

4.3. Consistency with the literature

We now come back to the previous studies already discussed in § 2 in order to check
the consistency between them and our results.

The only paper that dealt with the position of the particle-separating streamline
was by Barber et al. (2008), where a symmetric Y-shaped bifurcation was studied
(branches leaving the bifurcation with a 45◦ angle relative to the inlet channel,
see figure 1a). In figure 10(a), we compare their results with our simulations in a
similar geometry. The agreement between the two simulations (based on two different
methods) is very good, except for large particles (R =0.67) and low Q1/Q0. Note that
Barber et al. (2008) have chosen to consider branches whose widths follow the law
w3

0 = w3
1 +w3

2 , where w0 is the width of the inlet branch and w1 and w2 are the widths
of the daughter branches. This law has been shown to describe approximately the
relationship between vessel diameters in the arteriolar network (see Mayrovitz & Roy
1983). With our notation, they thus consider a = 3

√
1/2 ≃ 0.79, while we focused on

a =1 in order to compare with the T-shaped bifurcation. In addition, their apex has
a radius 0.75 (for the R = 0.67 case) while ours is sharper (with radius of 0.1). These
differences seem to impact only partly on the results, as discussed above. We can
expect this slight discrepancy to be due to the treatment of the numerical singularities
that appear when the particle is close to one wall. For R = 0.67, the maximum position
y0 is 0.33, which is close to the separating streamline position.

It is also interesting to compare our results in the Y-shaped bifurcation with the
results in the T geometry, which was chosen to make the discussion easier. We can
see that, for low enough Q1/Q0, the attraction towards the low-flow-rate branch is
slightly higher. This can be understood by considering a particle with initial position
y0 slightly below the critical position y∗

0 found in the T geometry: in the latter
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Figure 10. (a) Position of the particle separation line y∗
0 in a symmetric Y-shaped bifurcation:

according to Barber et al. (2008) (data extracted from their figure 4) and according to our
simulations. The results for similar spheres in our T geometry are also shown. (b) Trajectories
from our simulations in the T- and Y-shaped bifurcations, for similar sphere size (R =0.67)
and flow rate ratio (Q1/Q0 =0.2). Full lines, T geometry; dashed lines, Y geometry. The
corresponding separating streamline positions (respectively y∗

0 (T ) and y∗
0 (Y )) are also indicated.

The sphere shown is located at its stagnation point y ′
0 (see figure 6) in the Y geometry.

geometry, it will eventually enter the high-flow-rate branch, by definition of y∗
0 . As

shown in figure 10(b), in the Y geometry, this movement is hindered by the apex
since the final attraction towards the high-flow-rate branch occurs near the opposite
wall (the second effect discussed in § 4.1.2). Finally, from this comparison we see
that comparing results in T and symmetric Y geometry is relevant but for highly
asymmetric flow distributions.

In § 2, the analysis of the two-dimensional simulations for R = 0.5 spheres in
Audet & Olbricht (1987) showed that there should be some attraction towards the
low-flow-rate branch. Our simulations for R =0.48 showed that this effect is non-
negligible (figure 5b) and modifies significantly the final distribution (figure 9). Finally,
we can see in figure 11 that our simulations give results similar to those of Audet &
Olbricht (1987).

As for the experiments presented in Yang et al. (2006) for R =0.46, we showed that
the final distribution was consistent with a no-attraction assumption. As we showed
in figure 5(a), in a three-dimensional case, the attraction towards the low-flow-rate
region is weak for spheres of radius R ≃ 0.5 or smaller, which is again consistent with
the results of Yang et al. (2006). Note that, while their results were considered by the
authors as a basis to discuss some attraction effect towards the high-flow-rate branch,
we see that their final distributions are just reminiscent of the depletion effect in the
inlet channel.

The other consistent set of studies in the literature deals with large balls in three-
dimensional channels. We have studied balls of radius R = 0.71 that stop entering
branch 1 when Q1/Q0 � 0.22 (figure 5a), while this critical flow rate would be around
0.29 if they followed the fluid streamlines. This critical flow rate is expected to be
slightly higher for larger balls of radius R ≃ 0.8, but far lower than 0.35, which
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Figure 11. Particle distribution as a function of flow rate ratios for spheres of medium size,
according to simulations of this paper and Audet & Olbricht (1987) (same data as plotted in
figure 2).

would be the no-attraction case. In the experiments of Roberts & Olbricht (2006),
some balls are still observed in branch 1 when Q1/Q0 ≃ 0.22 (figure 2), indicating a
stronger attraction effect towards the low-flow-rate branch, which can be associated
with the fact that the authors considered a square cross-sectional channel, while the
confinement in the third direction is 0.5 < 0.71 in our case. The experiments with
circular cross-sectional channels lead to contradictory results: in Chien et al. (1985)
and Ditchfield & Olbricht (1996), the results were consistent with a no-attraction
assumption; therefore, they are in contradiction with our results. On the contrary, in
Roberts & Olbricht (2003), the critical flow rate for R = 0.77 is around 0.2, which
would show a stronger attraction than in our case. Note that all these apparently
contradictory observations are to be considered keeping in mind that the data of
N1/N0 as a function of Q1/Q0 are sometimes very noisy in the papers cited.

5. Conclusion

In this paper, we have focused explicitly on the existence and direction of some
cross-streamline drift of particles in the vicinity of a bifurcation with different flow
rates in the daughter branches. A new analysis of some previous unexploited results
from the literature first gave us some indications on the possibility of an attraction
towards the low-flow-rate branch.

Then, the first direct experimental proof of attraction towards the low-flow-rate
branch was shown and arguments for this attraction were given with the help of two-
dimensional simulations. In particular, we showed that this attraction is the result
of two antagonistic effects: the first effect, which takes place at the entrance of the
bifurcation, induces migration towards the low-flow-rate branch, while the second
effect takes place near the stagnation point and induces migration towards the high-
flow-rate branch but is not strong enough, in standard configurations of branches of
comparable sizes, to counterbalance the first effect.

Only the second effect was previously considered in most papers in the literature,
which has led to the misleading idea that the enrichment of particles in the high-flow-
rate branch is due to some attraction towards it. On the contrary, it had been argued
by Barber et al. (2008) that there should be some attraction towards the low-flow-rate
branch. By distinguishing the two effects mentioned above, we have tried to clarify
their statements.
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In the second step, we have discussed the consequences of such an attraction on
the final distribution of particles. It appears that the attraction is not strong enough,
even in a two-dimensional system where it is stronger, to counterbalance the impact
of the depletion effect. Even in the most homogeneous case where the particles are
equally distributed across the channel but cannot approach the wall closer than their
radius, the existence of a free layer near the walls favours the high-flow-rate branch,
which eventually receives more particles than fluid.

However, these two antagonistic phenomena are of comparable importance, and
neither can be neglected: the increase in the particle volume fraction in the high-
flow-rate branch is typically divided by two because of the attraction effect. On the
other hand, the initial distribution is a key parameter for the prediction of the final
splitting. For deformable particles, initial lateral migration can induce a narrowing
of their distribution, which will eventually favour the high-flow-rate branch. For
instance, Barber et al. (2008) had to adjust the free layer width in their simulations
in order to fit experimental data on blood flow. On the other hand, in a network of
bifurcations, the initially centred particles will find themselves close to one wall after
the first bifurcation, which can favour a low-flow-rate branch in a second bifurcation.

Note, finally, that as seen in Enden & Popel (1992), these effects become weaker
when the confinement decreases. Typically, as soon as the sphere diameter is less
than half the channel width, the variations of volume fraction do not exceed a few
per cent.

For applicative purposes, the consequences of this attraction have been discussed
and some prescriptions have been proposed. Of course, one can go further than our
symmetric case and modify the angle between the branches, or consider many-branch
bifurcations, and so on. However, the T-bifurcation case allowed us to distinguish
between two goals: concentrating a population of particles or obtaining a particle-
free fluid. The optimal configuration can be different according to the chosen goal.
Similar considerations are also valid regarding sorting in polydisperse suspensions,
which is an important activity (see Pamme 2007): getting an optimally concentrated
suspension of large particles might not be compatible with getting a suspension of
small particles free of large particles.

Now that the case of spherical particles in a symmetric bifurcation has been
studied and the framework well established, we believe that quantitative discussions
could be made in the future about the other parameters that we put aside here. In
particular, discussing the effect of the deformability of the particles is a challenging
task if one only considers the final distribution data, as the deformability modifies
the initial distribution, but most probably also the attraction effect. In a network,
the importance of these contributions will be different according, in particular, to the
distance between two bifurcations, so they must be discussed separately.

Considering concentrated suspensions is of course the next challenging issue.
Particles close to each other will obviously hydrodynamically interact, but so will
distant particles, through the modification of the effective resistance to flow of the
branches. In such a situation, considering pressure-driven or flow-rate-driven fluids
will be different.

For concentrated suspensions of deformable particles in a network, like blood in
the circulatory system, the relevance of a particle-based approach can be questioned.
Historical models for the major blood flow phenomena are continuum models with
some ad hoc parameters, which must be somehow related to the intrinsic mechanical
properties of the blood cells (for a recent example, see Obrist et al. 2010). Building
up a bottom-up approach in such a system is a long quest. For dilute suspensions,
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some links between the microscopic dynamics of lipid vesicles and the rheology of
a suspension have been recently established (see Danker & Misbah 2007; Vitkova
et al. 2008; Ghigliotti, Biben & Misbah 2010). For red blood cells, which exhibit
qualitatively similar dynamics (see Abkarian et al. 2007; Deschamps et al. 2009;
Dupire, Abkarian & Viallat 2010; Farutin, Biben & Misbah 2010; Noguchi 2010),
we can hope that such a link will soon be established, following Vitkova et al.
(2008). For confined and concentrated suspensions, the distribution is known to
be non-homogeneous, which has direct consequences on the rheology (the Fahraeus–
Lindquist effect). Once again, while empirical macroscopic models are able to describe
this reality, establishing the link between the viscosity of the suspension and the local
dynamics is still a challenging issue. The final distribution of the flowing bodies is
the product of a balance between migration towards the centre, as discussed in the
Introduction, and interactions between them that can broaden the distribution (see
Kantsler, Segre & Steinberg 2008; Podgorski et al. 2010). The presence of deformable
boundaries also needs to be taken into account, as shown in Beaucourt et al. (2004).
In the meantime, the development of simulation techniques for quantitative three-
dimensional approaches is a crucial task, which is becoming more and more feasible
(see McWhirter, Noguchi & Gompper 2009; Biben, Farutin & Misbah 2011).

The authors thank G. Ghigliotti for his final reading and acknowledge financial
support from ANR MOSICOB and CNES.

Appendix. Derivation of the variational formulation

In this appendix, details of the derivation of (3.13)–(3.15) from (3.10)–(3.12) are
given.

First, we introduce the scalar product in L2(Ωf )2 as follows:

∀ f , g ∈ L2(Ωf )2, 〈 f , g〉L2(Ωf )2 =

∫

Ωf

f · g. (A 1)

The variational formulation of the problem (3.10)–(3.12) is obtained by taking the
scalar product of (3.10) in L2(Ωf )2 with a test function v ∈ H 1

0 (Ωf )2 and we multiply
(3.11) by a test function q ∈ L2

0(Ω). It leads to the following problem: find (u, p) ∈
H 1(Ωf )2 × L2

0(Ωf ) such that

−2ν

∫

Ωf

(∇ · τ (u)) · v +

∫

Ωf

∇p · v = 0, ∀v ∈ H 1
0 (Ωf )2, (A 2)

∫

Ωf

q∇ · u = 0, ∀q ∈ L2
0(Ωf ), (A 3)

u = f on ∂Ωf . (A 4)

Applying Green’s formula to (A 2), we obtain

2ν

∫

Ωf

τ (u) : ∇v − 2ν

∫

∂Ωf

τ (u)n · v

−
∫

Ωf

p∇ · v +

∫

∂Ωf

pv · n = 0, (A 5)

where n denotes the outer unit normal on ∂Ωf . Taking into account the fact that
v vanishes on ∂Ωf (recall that we have chosen the test function v ∈ H 1

0 (Ωf )2), the
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problem (A 2)–(A 4) is now equivalent to this one: find (u, p) ∈ H 1(Ωf )2 × L2
0(Ωf )

such that

2ν

∫

Ωf

τ (u) : ∇v −
∫

Ωf

p∇ · v = 0, ∀v ∈ H 1
0 (Ωf )2, (A 6)

∫

Ωf

q∇ · u = 0, ∀q ∈ L2
0(Ωf ), (A 7)

u = f on ∂Ωf . (A 8)

Note that τ (u) is symmetric (τ (u) : ∇v = τ (u) : (∇v)t ). So we can write τ (u) :
∇v = τ (u) : τ (v). Finally, the variational formulation of our initial problem (3.1)–(3.3)
is given by: find (u, p) ∈ H 1(Ωf )2 × L2

0(Ωf ) such that

2ν

∫

Ωf

τ (u) : τ (v) −
∫

Ωf

p∇ · v = 0, ∀v ∈ H 1
0 (Ωf )2, (A 9)

∫

Ωf

q∇ · u = 0, ∀q ∈ L2
0(Ωf ), (A 10)

u = f on ∂Ωf . (A 11)

Remark 2. As we have

τ (u) : τ (v) = τ (u) : ∇v = 1
2
∇u : ∇v + 1

2
(∇u)t : ∇v, (A 12)

the first integral in (A 9) can be rewritten thanks to this identity
∫

Ωf

τ (u) : τ (v) =
1

2

∫

Ωf

∇u : ∇v. (A 13)

Indeed, by integration by parts and using the incompressibility constraint ∇ · u = 0,
we have

∫

Ωf
(∇u)t : ∇v = 0. Thus, we can retrieve the formulation of our problem as

a minimization of a kind of energy. The velocity field u is then the solution of this
problem

J(u) = inf
v∈H1(Ωf )2

∇·v=0,v|∂Ωf
= f

J(v), (A 14)

where

J(v) =
1

2
ν

∫

Ωf

∇v : ∇v = ν

∫

Ωf

τ (v) : τ (v). (A 15)
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7.2 Suspension of vesicle in a bifurcation

In the future we would like to continue the work previously done for dilute suspension of
spheres and expand it to the simulation of soft objects and suspensions. In this section,
we will show the ability of our framework to handle a complete suspension of vesicles in
a bifurcation. We will explain some technical aspects and how to obtain the quantities
of interest and show a few results. Then we will show that it is also possible to handle
suspensions with two different kinds of vesicles.

7.2.1 Entry and exit of vesicles

The goal is to simulate the entry of a continuous flow of vesicle in a bifurcation and mea-
sure the out flux in each branch. As opposed to what has been done in the previous study
for dilute suspension, the goal is not to follow the trajectory of an individual particle but
to have a global information. First of all let us explain how it is possible to deal with the
entry and exit of vesicles.

As all the vesicles are of the same kind (same viscosity and rigidity), a single level set
field φ is defined and handles all the interfaces. The geometry of the bifurcation is the
same as in the previous study, as are the fluid equations and boundary conditions. A first
vesicle is set as an ellipse in the inlet boundary. Since a Poiseuille flow is imposed at the
entrance of the channel, the vesicle moves forward. To have a continuous flow of vesicles
it is necessary to add new vesicles in the inlet channel. One way to do it could be to add
new vesicles periodically in time, but this might not be the way which most represents
the reality. Indeed, if the vesicles at the bifurcation slow down the flow of vesicle, new
vesicles would still be added and the concentration in the inlet branch would increase.
Consequently, we choose to add a new vesicle only when the one before it has left an inlet
region that we define. Indeed, we define a band of size Lin in the x direction and of the
size of the inlet channel in the y direction, we call it Ωin. We compute the amount of
vesicles in this region Ain as:

Ain =

∫

Ωin

(1−Hε(φ)). (7.2)

When Ain is smaller than a certain value, a new vesicle is added in Ωin or a bit upstream
of it as shown on the scheme 7.2.1. The length Lin, the position of the new vesicle, as
well as the threshold of Ain under which a new vesicle is added are the three parameters
on which one can vary to change the concentration of particles in the inlet.
Let us explain now how we can add a new vesicle in the system. Since we are in a Stokes
regime, the solution of Stokes equations does not need the previous one. Thus, no special
care has to be taken at the fluid point of view and we can simply add a new object in
the inlet, the Stokes equations will take it into account instantaneously. We only need to
be careful to put the particle far enough from the center of interest of the physical study
to avoid modifying the behavior we want to observe. In this case, it is sufficient to add
the new particles at the very beginning of the inlet to be sure that the physics of the
bifurcation point is not modified. Consequently, the procedure of adding a new vesicle
simply consists of modifying the level set function φ to a new one, φ∗ containing the new
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Figure 7.5: Scheme of the inlet of the bifurcation. The domain Ωin is represented in green.
The area where (1−Hε(φ)) 6= 0 is represented in red. On the left hand side, the quantity
Ain is too high for a new vesicle to be added. On the right hand side, the vesicle just
exited the domain Ωin, this makes Ain vanishing, thus a new vesicle is added.

vesicle. This is done by computing a field which represents the distance function to the
new vesicles, φves and set:

φ∗ = min(φves, φ). (7.3)

This way, the interfaces already present in the bifurcation are not lost, and the new vesicle
is added. Nevertheless, even if the fluid equations are independent of the time since we
are concerned about the Stokes flow, the time evolution of the advection equation of the
level set might by of order two. If so, we need to impose a first order scheme when a new
particle is added in order to avoid the need of the previous value of φ which would induce
an unwanted jump.

We discussed the choice of the x position of the new vesicle added in the channel, but
the y position is also an important parameter. From the numerical point of view, there is
no restriction for the vesicle to be set at any y position in the inlet channel, the choice is
guided by the physics we want to represent. To represent a homogeneous suspension in
the inlet branch, a random choice of the position y with the same probability in all the
accessible y can be done. One can also take into account that the vesicles tend to migrate
to the center and pick the new y position in a distribution taking into account this effect.

The exit of vesicles at the outlet channels is not difficult to handle. The only care
which might have to be taken is because the curvature and its higher order derivatives
might not be captured correctly when the vesicle is cut at the outlet. The vesicle is not a
closed shape anymore and its normal, curvatures and higher derivatives have unpredictable
values creating huge force points. This can be avoided simply by making vanish the forces
few mesh sizes away from the exit. This way, from the fluid point of view, the vesicle
outlet is a few mesh sizes before the geometric outlet, and at this point, the curvature is
still defined.

7.2.2 Quantity of interest: the flux of vesicles

For a simulation of a semi-dilute or concentrated suspension, the quantities of interest
are not anymore the trajectories of individual particles but the flux of particles in each
branch. To measure these fluxes, we define three very small bands of about 2h size in
length that we call ΩN0

, ΩN1
and ΩN2

. The fluxes of particles are computed through these
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domains as :

Ni =

∫

ΩNi

(u ·ni)(1−Hε(φ))

∫

ΩNi

1
with i = 0, 1, 2 (7.4)

where u is the fluid velocity and ni is the normal to the domain ΩNi
. More precisely,

n0 = (1, 0), n1 = (0, 1), and n2 = (0,−1). The different domains are disposed as in figure
7.6, not too far from the outlets.

Figure 7.6: Scheme representing the positions of the domains in which the fluxes are
measured.

The figure 7.8 shows a simulation made on 12 processors. The time step has been fixed
to 2 · 10−3 and the mesh size h = 0.05. The flow forces are assumed to be much stronger
than the membrane forces, thus the parameter kB has been set to a value close to 0. The

flow rate ratio has been set to
Q1

Q2

=
2

3
. In this simulation we choose to pick the new y

position of the vesicle in the inlet channel randomly, with an equal probability of each y to
occur. The resulting fluxes are shown in figure 7.7(a). We also made another simulation
for which all the vesicles were set at the center of the inlet channel. This could simulate
the fact that a focusing device has been used upstream. The result of this simulation is
shown in figure 7.7(b). We can see on the figure 7.7(b) that the inlet channel presents a
nice regular periodicity. This comes from the fact that the vesicles are all at the center
of the channel initially and thus pass through Ω0 all the same way. Whereas, in figure
7.7(a), the vesicles which are closer to a wall see a local shear and incline which might
result in a larger flux peak. Moreover, these particles are moving faster than the one at
the center, thus, they also exhibit a slightly higher peak.

We can also guess only from the flux graphs which branch is the high or low flow rate
one. Indeed, one sees clearly that the top branch sees a smaller flux of particles and more-
over, the peaks are large which means that the vesicles spend a long time in the domain
Ω1 and the height is low which also means they are going slowly. It is the opposite in the
branch 2. Furthermore, we see clearly that the first particles are entering in this branch.

The kind of information that we would like to extract in the future is the influence of
the many parameters that we can change on the mean fluxes in each branch. We define
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the mean fluxes as:

< Ni >=
1

tf − ti

∫ tf

ti

Ni (7.5)

where ti and tf are respectively the initial and final time of the simulation. Thus, by
integrating the fluxes in the branches we can compare the ratio of particle fluxes and

the ratio of fluid fluxes. We obtained for this particular case:
< N1 >

< N2 >
= 0.48 for the

simulation where the y inlet positions were random, and
< N1 >

< N2 >
= 0.46 for the other

one. We can see that there is still a concentration increase in the high flow rate branch

since the initial flow rate ratio were
Q1

Q2

=
2

3
.

This value should be studied by varying many parameters in this problem and we
hope to be able to extract general laws out of such simulations on the general repartition
of the cells in vivo and in vitro.

0 2 4 6 8 10 12 14
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
i

N0 (in)

N1 (top)

N2 (bot)

(a) Fluxes in each branch when the y position of
the vesicle is randomly set.
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(b) Fluxes in each branch when the y position of the
vesicle is always at the center of the inlet channel.

Figure 7.7: Fluxes measured in each branch of a bifurcation. An offset of 0.9 have been
used to separate all the curves.

7.2.3 Extension to two different kinds of vesicles

In the future we want to address the problem of the splitting of a suspension of different
kinds of vesicles. It happen in some diseases like drepanocitosis, also called sickle cell
disease, that some red blood cells become very rigid. This property makes their flow
in microcapillaries very difficult and leads to dramatic effects on patients. A better un-
derstanding of the flow of suspensions with objects of different rigidity or viscosity ratio
could also lead to a better knowledge of these diseases. During this work, we set up the
simulation of such a problem and checked that we were able to measure the different fluxes.

The method to simulate vesicles is the one described in chapter 4 and the multi-level
set framework presented in section 2.2.2 is used to deal with the two different kinds of
vesicles. For this test, we call a kind of vesicles the vesicles 0 and the other one the
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Figure 7.8: Suspension of vesicles in a bifurcation.
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vesicles 1. We set the capillary number of the vesicles 0 to a huge value so that there is
almost no curvature force. The viscosity ratio of these vesicles is set to 1. By contrast,
the vesicles 1 have a viscosity ratio of 20 which makes them much less deformable. We set
the inlet conditions so that one particle 1 enters for every two particles 0. Thus globally

we have in the suspension
Φ1

Φ0

=
1

2
. The flux of each kind of vesicle is measured in every

branch, the figure 7.10 shows this flux monitoring. We can see on this figure that the
peaks associated to the vesicles 1 are more broad than those of vesicle 0 when they are in
the daughter branches. This is because they are more deformable and a very elongated
particle takes more time to pass through the line where the flux is defined. This effect is
lowered for the first particles and for the particles inside the inlet branch because at these
times of the simulation, the particles did not interact much with each other nor with the
fluid and are not too deformed.
The time for which the fluxes are measured is too low to be able to say if there is a
big difference between the fluxes going in each branch for the different kind of particles.
The goal of this simulation was to show the ability of the code to handle such kind of
simulation and show what kind of information it is possible to extract from it.
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Figure 7.9: Simulation of a suspension of two kind of vesicles in a bifurcation. The dark
red are 20 times more viscous than the light red. The curvature force is set to a very
small value, allowing the vesicles to present very thin tails.
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Figure 7.10: Fluxes of vesicle in each branch of the bifurcation. In the legend, in, top and
bottom represent respectively the inlet, the top branch and the bottom branch. One can
see that at the inlet, one vesicle 0 is added for every two vesicles 1. The vesicles 0 are
highly deformable, which explains why the peaks when they pass through the branches
are broad.
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The goal of this chapter is to show results that we obtained in preparation for the
rheology study of semi dilute suspensions of vesicles within our framework. To be able
to perform quantitative study of such a system, some work needs to be done to make
sure that we are able to recover the basic known results of rheology. Moreover, a precise
understanding of the rheology of deformable objects in flow requires the knowledge of
the behavior of simple non-deformable objects. This is why we will start this chapter by
showing the system used to measure the viscosity of a suspension. Then we will show that
we are able to recover the Einstein viscosity of a dilute suspension of 2D rigid disks and
control the accuracy of the measure of the viscosity. We will then measure the viscosity
of a single particle in a confined shear flow, explore the possible parameters and compare
our results with an analytical model. We extend the same method to the viscosity of two
interacting particles. Finally, we will use these results to derive a method to measure
the viscosity of a semi dilute suspension of particles for different configurations. We will
show with this method that we can recover a behavior already known in 3D which is the
decrease of the influence of the pair interactions at high confinement.

8.1 Numerical measurement of the viscosity of a sus-

pension of particles

We compared three different methods to compute the effective viscosity of a suspension
of rigid disks confined between two moving walls. The configuration of the problem is
shown in figure 8.1. The fluid is governed by the Stokes equations. As in section 3.1, we
denote Ω the whole computational domain, Ωf the fluid domain and Bi the rigid disks.

We recall the definition of the flow rate γ =
2U

l
.

Figure 8.1: Suspension of rigid disks between two moving walls.

214



8.1. Measurement of the viscosity Chapter 8. Rheology of solid disks

8.1.1 Some methods to compute the effective viscosity

Computing the forces on the walls

A possible way to compute the effective viscosity, is to compute the forces exerted by the
fluids on the walls. It is equivalent to what is done experimentally with a rheometer. It
is also the intuition that one has of viscosity: if you put a liquid between your fingers
and move your fingers in opposite directions, you will say the liquid is more viscous if it
causes a higher resistance.

Let us show that in a fluid where no particles are present, this is a way to get the
viscosity. The force acting on the upper wall (called ft) is defined as :

ft =

∫

Top Wall

σn (8.1)

where, in this case, n = (0, ny) is the outward normal of the wall. Let us consider now
only the x component of this force, that we will call ft. We have, for a flow without
particles:

ft =

∫

Top Wall

µ0(∂xuy + ∂yux)ny. (8.2)

Which can be re-written for a pure shear flow:

ft = µ0γL.

Thus, using the x component of the bottom force (that we will call fb) defined the same
way and having opposite sign, one has a relation between the force difference and the
viscosity:

ft − fb = 2µ0γL. (8.3)

By substitution, a definition of the effective viscosity of a suspension µeff can be given as:

µeff =
ft − fb
2Lγ

=
l (ft − fb)

4LU
(8.4)

The advantage of this definition is that one has only to integrate the velocity field over the
top and bottom walls to get the effective viscosity. Thus, it can be done really quickly.
Moreover, this method is valid for vesicles as well as for rigid disks or other objects.
This method is very close to the experimental one. Indeed, an experimental rheometer
is measuring the force needed to impose a given velocity. The drawbacks of having to
integrate only on few elements of the boundary of the domain is that the effective viscosity
can be more sensitive to numerical noise than in other methods integrating in the whole
volume.

Computing the mean of the stress tensor

Another way to compute the effective viscosity of a suspension of rigid disks is to integrate
the off-diagonal part of the stress tensor. Let us call it σxy. Once again, we start by
showing that we can recover the viscosity of a Newtonian fluid without particles with this
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information and then extend the definition to the effective viscosity of a suspension. The
mean of the off-diagonal part of the stress tensor reads:

< σxy >=
1

V

∫

Ω

µ0(∂xuy + ∂yux)

with V the volume of Ω. It becomes for a pure shear flow of a Newtonian fluid:

< σxy >= µ0γ

The viscosity is thus given by: µ0 =
< σxy >

γ
. Consequently, a way to define the effective

viscosity is:

µeff =
µ0

γV

∫

Ω

∂xuy + ∂yux. (8.5)

The advantage compared to the previous method is that we integrate over the whole
domain, which tends to smooth more the numerical error. The method is valid for solid
particles and can be extended to vesicles if one recalls that the stress to integrate is the
total stress and not only the one induced by the fluid. Thus the stress coming from the
membrane forces have also to be incorporated in the computation of the viscosity.

Computing the dissipation rate

It as been shown in [65] that the effective viscosity of a suspension can also be calculated by
integrating the dissipation in the fluid. We have reported the ways to do this calculation
in appendix H. The expression of the effective viscosity is:

µeff =
µ0 l

8LU2

∫

Ωf

|∇u+t
∇u|2. (8.6)

This integral is defined on the fluid domain. This is an advantage when only the fluid
domain is defined and the inclusions are seen as holes on the mesh, as in the conform
method or the fat boundary method (see section 3.1 for more details). In our case, with
the penalty method presented in algorithm 5, we can access the fluid domain thanks to
the Heaviside like function. Since the integrand vanishes inside the particles, we can also
integrate over the whole domain without changing the result.

8.1.2 Convergence to the Einstein’s viscosity

We made a simple test in order to compare the three different ways to compute the
viscosity. It consists in putting a single solid particle of radius R = 1 at the center of a
rectangular domain Ω of size (L, l) and imposing a shear flow of shear rate γ = 1. The
viscosity has been fixed to µ0 = 10. The method used to simulate the fluid and the particle
is the one described in algorithm 5 of chapter 3, that is, a penalty method for which the
position of the particle is tracked by level set method. The thickness of the interface is
defined as 1.5 h with h the discretization step of the domain around the particle. When
the wanted mesh size becomes too small, the domain is meshed with a thin mesh size h
in a vertical band of size (5R, l) and with a bigger mesh size of 5 h everywhere else. The
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viscosity is computed using the three different methods exposed above. The theoretical
viscosity of a dilute suspension of particles has been calculated by Einstein in 1905 [30].
We recall that the hypothesis of a dilute suspension means that each particle does not
interact hydrodynamically with its neighbors. This theory has also been made for an
infinite fluid. In our case, we only consider one particle, thus there is no possible mutual
influence, and the walls are sufficiently far away for us to be able to neglect their influence
on the particle. Thus, we normally are in the range where the Einstein’s viscosity formula
should work. The Einstein law for the viscosity of a dilute suspension is:

µeff = µ0(1 + αΦ) (8.7)

where µ0 is the viscosity of the solvent, α is a coefficient, one has α = 2.5 for 3D spheres
and α = 2 for 2D disks. Here Φ is the volume fraction of particles. Note that it is
unrelated to the level set field φ which is denoted by a minor φ. The volume fraction Φ
is defined as the volume (surface in 2D) occupied by the particles divided by the total
volume of the suspension.

Computing the numerical volume fraction

In penalty / FPD methods, the following question arises: were is exactly the limit between
the particle and the fluid? Since the particle is seen as part of the fluid having a huge
viscosity, and since the transition from the viscosity of the fluid to the one of the particle
is smooth, it is not obvious where the precise boundary of the particle should be defined.
The simplest answer that one could give is that, in our case, the particle is defined thanks
to the level set function by the region where φ < 0. Doing this simple approximation
leads to an underestimate of the real value of the volume fraction, the particle seen by
the system is actually slightly bigger than that. This problem as been addressed by
L.Jibuti [48] in his thesis for a 3D particle, where he did two numerical experiments for
which the result is known to calibrate the real size of the particle. The first experiment
was to compute the Stokes force on a sphere moving in a fluid at rest. This problem has
no analytic solution in 2D (Stokes paradox) and was not accessible to us. The second
one was the same simulation that we are concerned with here, i.e recovering the Einstein
viscosity. We did similar tests and found that a correct behavior is obtained by setting the

particle region as the region in which φ <
ε

2
, that is to say for this simulation φ < 0.75 h.

Thus we compute the numerical volume fraction as:

Φh =
1

V

∫

Ω

χ(φ < 0.75 h). (8.8)

A consequence is that for a given radius, the size of the mesh has influence on the volume
fraction of the suspension.

Results of the test

The test has been made for several mesh sizes. For h < 0.1, the refinement in the band
around the particle explained previously has been used. The following error has been
calculated:

evisco = |µeff − µ0(1 + 2Φh)| (8.9)
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which is the absolute error of the effective viscosity compared to the theoretical viscosity
at this numerical volume fraction. The length of the box in the x direction has been taken
equal to L = 50 and two different channel widths have been tested: l = 30 and l = 8.
To differentiate the methods, we will call the force method the method using expression
(8.4) to compute the effective viscosity, the stress method the one using (8.5) and finally
the dissipation method the one using equation (8.6).

We have reported in figure 8.2 the effective viscosity computed by each method for
both channel widths. The theoretical value of the viscosity using the volume fraction of
a particle with a fixed radius R = 1 has been represented as a red line, it is simply given

in this problem by: µ0 (1 + 2
π

L l
). The viscosity calculated using the numerical volume

fraction is also represented as red squares. It is given by: µ0 (1 + 2 Φh). Of course, since
Φh → Φ when h → 0, the theoretical effective viscosity computed with Φh tends to the
absolute theoretical one for small h.

We have also reported in figure 8.3 the values of evisco for the different methods. The
errors are plotted in logarithmic scale and the slope of the fit with a linear law has been
given in the legend.

We see in figures 8.2(a) and 8.3(a) that for the problem with l = 8, the viscosities
computed by the force method and the stress method are giving exactly the same results
and we can almost not distinguish the different points on the graphs. This can be ex-
plained by the fact that the same components of the stress tensor is used to compute
both of them whereas the dissipation method uses all the components of the stress tensor.
Anyway, all the methods are giving comparable results and the rate of convergence to
the theoretical value is 1 for all of them. The absolute value of the error can seem high
compared with the system l = 30. This can be explained by the fact that the unconfined
hypothesis starts to be false at this confinement. The theoretical value of the viscosity
should be slightly higher than the one that we took, and then, the absolute value of the
error should be of the same order as for the system l = 30.

The figures 8.2(b) and 8.3(b) show the results for the problem l = 30. We see that
contrary to the previous result, the effective viscosity computed by the force method is
completely wrong. It does not converge to the theoretical value. Whereas the other
methods still have a rate of convergence of 1. This can be explained by the fact that
the influence of the particle on the walls decreases with the distance. Theoretically, even
the small influence that the particle exerts on the walls should be enough to measure the
viscosity of the system. But in practice, at a certain distance, the disturbance induced by
the particle on the values of the forces exerted on the walls are too small to be captured
numerically. To emphasize this phenomenon, we have reported in figure 8.4 the following
coefficient:

Mf = |µ0(∂xu
p
y + ∂yu

p
x)|

where up = (upx, u
p
y) is the perturbation velocity defined by up = u − ushear. Here, Mf

has been chosen this way because at the boundary, it gives directly the magnitude of the
perturbation on the force induced by the particle. We see clearly in figure 8.4(a) that
for a box with l = 8, the boundaries see a non-negligible perturbation whereas in figure
8.4(b), for l = 30, the perturbation almost vanishes at the boundaries. The two other
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methods, for which we integrate over the whole domain Ω or the whole fluid domain Ωf

do not suffer from this drawback.

Consequently, we can say that we validated our numerical method to measure the
effective viscosity of a suspension by recovering a rate of convergence of 1 of the numerical
error when compared to the Einstein viscosity of a suspension. We also showed a limitation
of the method of the forces that we are able to explain. We can now do rheological studies
of 2D disks with a controlled error in the effective viscosity.

8.2 A simulation method for confined semi-dilute sus-

pension

We have shown in section 8.1 that our code was able to recover the Einstein viscosity which
has been derived under the hypotheses that the suspension is dilute i.e. the particles are
not interacting with each other and the fluid is infinite that is to say that the effects of the
boundaries of the domain are negligible. A long time after Einstein’s theory, Batchelor
and Green [4] extended the formula to a suspension of semi-dilute particles. In this work,
they were considering pair interactions in an infinite fluid. They found that the effective
viscosity of a semi-dilute suspension should obey the expression:

µeff = µ0(1 + αΦ + βΦ2) (8.10)

where β is a coefficient which is β = 5.2 for a homogeneous suspension of 3D, non Brow-
nian, neutrally buoyancy particles under shear flow.
Finding the β coefficient is not a simple task, even numerically. Indeed, getting the
viscosity of a suspension of hard disks in pure shear flow is not so difficult, but each con-
figuration of the suspension corresponds to a different viscosity. Thus the β factor should
represent the value for the more probable configuration and thus it is usually a mean on
a great number of simulations with a random configuration.
To our knowledge, the value of the factor β has not been derived for a 2D suspension.
Recently, some work has been done to incorporate the effects of the confinement on the
coefficients α and β in 3D. Davit and Peyla [22] have shown that the α coefficient increases

when the confinement Cn =
2R

l
is greater than about

1

6
. They have also shown that the

coefficient β decreases for a confinement greater than 0.2 and even becomes negative for
confinements greater than 0.4. These results have been confirmed experimentally [84]
and the decrease of the influence of the particle-particle interaction (the coefficient β) has
been investigated in [93], still in 3D.

There are two main goals in this section. The first one is to show a numerical method
for the fast simulation of the viscosity of a great number of different configurations. It
consists of creating some maps of the mean stress tensor thanks to finite element solutions
of a simplified system, and re-use these maps to obtain the viscosity of a suspension of
particles. Indeed, since the Stokes equations are linear, the mean xy component of the
stress tensor of a system of two particles interacting in a shear flow can be decomposed
as:

< σxy >=< σshear
xy > +Φ1 < σpart 1

xy > +Φ2 < σpart 2
xy > +(Φ1Φ2) < σ2 part

xy > (8.11)

219



8.2. Semi-dilute suspensions Chapter 8. Rheology of solid disks

0.0 0.1 0.2 0.3 0.4 0.5
h

10.1

10.2

10.3

10.4

10.5

10.6

µ
e
ff

forces

stress

dissipation

theory with Φh

theory with Φ

(a) l = 8

−0.1 0.0 0.1 0.2 0.3 0.4 0.5
h

10.00

10.02

10.04

10.06

10.08

10.10

10.12

µ
e
ff

forces

stress

dissipation

theory with Φh

theory with Φ

(b) l = 30

Figure 8.2: Effective viscosity computed by three different methods as a function of the
mesh size. The theoretical value of the viscosity using the volume fraction of a particle
with a fixed radius R = 1 is represented as a red line. The theoretical value computed
using the numerical volume fraction is represented as red squares. This value naturally
converges to the other theoretical value for small h.
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Figure 8.3: Error on the viscosity (evisco) computed with different methods as a function
of the mesh size in logarithmic scale. A fit of each line with a linear relation is shown as
dashed lines and each slope is reported in the legend.
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(a) l = 8

(b) l = 30

Figure 8.4: Representation of Mf on all the domain for l = 8 and l = 30. One can see
that the walls of the larger domain do not experience a sensible perturbation due to the
presence of the particle.
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where < σshear
xy > is the contribution of the pure shear flow (< σshear

xy >= µ0γ), < σpart 1
xy >

and < σpart 2
xy > are respectively the contributions of the first and second particle and

< σ2 part
xy > is the contribution of the interaction between particles 1 and 2 together. Φ1

and Φ2 are respectively the volume fractions of particles 1 and 2. For the decomposition,
we extract from the mean tensor the volume fraction corresponding to each contribution.
It is thus possible to create a map of the contribution of a single particle in a shear
flow for every possible position in a channel. Then, we can use this map to extract the
contribution of the interaction of two particles. Finally, for any random configuration of
suspension, it is possible to search in the map the value of the contribution of each particle
and each pair of particles. This way, a fast solution of the viscosity of a suspension of such
a system can be obtained as long as the hypothesis of neglecting higher order interaction
than pair interactions is enough. The method will be applied here for suspensions of solid
disks but it can be extended to vesicles or drops easily.

The second objective of this section is to determine the behaviors of suspension of
confined disks. Indeed, as we already explained, the understanding of the effect of the
deformability of the vesicles on the viscosity of 2D suspensions starts by the knowledge
of the behaviors of disks. Nothing indicated clearly that the effects found in [22, 84, 93]
should still be true in 2D.

8.2.1 The viscosity of a confined dilute suspension of solid disks

The first step is to study and get a precise map of the effective viscosity of a rigid particle
in a confined shear flow. We made the simulation represented in figure 8.5. The shear
rate γ has been kept equal to 1 for all the simulations. The box was taken large enough
(L = 60) so that no boundary effects were present in the x direction, and the wall distance
l has been varied in order to study the effect of the confinement. The mesh size was taken
equal to h = 0.13, the radius R = 1, the viscosity of the fluid µ0 = 10 and the thickness
of the interface ε = 1.5h. Since the x direction is very long compared to the y one,

Figure 8.5: Scheme of the simulation of a single particle in a shear flow.
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the viscosity of this system should depend only on the confinement Cn and the distance
between the particle and the wall (that we called yp). Following equation (8.11), the
contribution of the particle to the viscosity is obtained by:

< σ1 part
xy > (yp, Cn) =

< σxy > − < σshear
xy >

Φ1 part
(8.12)

< σxy > is measured during the simulation, we have < σshear
xy >= γµ0 = µ0 = 10 and

Φ1 part =
πR2

(l L)
=
π(1 + 0.75h)2

(l L)
. The problem is symmetric with respect to the center of

the channel. Thus, we can restrict our interest on the range:
l

2
< yp < l −R.

The simulation consists in setting a particle at different yp in the channel in the range
given above and measuring of the viscosity. Since the Stokes equation does not depend
on time, the measure is obtained instantaneously. The figure 8.6 shows the result of such
a simulation for several confinements. The result is that when the particle approaches
the wall, the viscosity of the system increases. The rate of increase is higher when the
particle is closer to the wall. In the figure, we can see that for a small confinement, we
recover the Einstein formula, which gives, for this simulation: < σ1 part

xy >= 2µ0 = 20.
For medium confinement, the viscosity is high near the wall and decreases to the Einstein
viscosity when approaching the center of the channel. It is interesting to see that for
strong confinements, the viscosity never decreases to the Einstein limit. This is due to
the fact that at these confinements, the presence of the walls is still important at the

distance
l

2
.

In [93] the authors used theory coupled with numerical results to show that the viscos-
ity of a 3D particle in the center of the channel increases when the confinement increases.
They have also shown that the viscosity of a uniform dilute suspension of particles in-
creases with the confinement. The direct simulation of < σ1 part

xy > (yp, Cn) was not done
but the two limiting cases: very confined and particle not too confined with the position
near the center of the channel were studied and gave results similar to the one obtained
figure 8.6.

Alexander Farutin, a physicist in our group, made a development similar to the one
done in [93] where he considered the problem of a single circular particle near a single
wall. The fluid is then infinite in one direction. One can write the velocity in a complex
form (ux + iuy) and develop it as a series of integer powers of complex coordinate (x −
xp) + i(y − yp) and its complex conjugate. The reflection method is employed to satisfy
the null boundary conditions at the wall (one considers that there is another particle on
the other side of the wall at the same distance). He found the solution u and derived the
mean stress; developped as series of integer powers of the distance from the center of the
particle to the wall (l − yp). The result is, if one cuts the expansion at the 6th order and
normalizes by the viscosity of the fluid:

< σ1 part th
xy > (yp)

µ0

= 2 +
2

(l − yp)2
− 1

4 (l − yp)4
+

15

16 (l − yp)6
. (8.13)

We have plotted in figure 8.7 the same data as in figure 8.6 and added the values of
equation (8.13) for the different confinements. An offset has been added to separate the
curves and we have split the high and low confinements for more visibility.
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Figure 8.6: Contribution to the mean stress tensor of the particle. The position of the
particle has been normalized by the length of the channel l for lisibility. The confinement

of each curve Cn =
2R

l
is reported in the legend. The limit position that the particle can

have without touching the wall l−R is marked as a vertical dashed line, normalized also
by l. Thus, the position 0.5 represents the center of the channel, and the dashed line, the
top accessible. The dots are the results of the simulation, the line joining them is a guide
for the eyes.

We can see in figure 8.7(b) that the equation (8.13) describes correctly our results
except for the closest points to the wall. This might be due to the fact that we only
took up to 6th order terms in the expansion. The finite element solution might also
not be precise very close to the wall because of the presence of the interface thickness
of the particle. Moreover, for the larger confinements (figure 8.7(a)), we can see that
the simulation points are not correctly represented by the model. Once again this was
expected since the region of the large gap assumption is smaller for higher confinement and
the interaction with the second wall is not negligible. The conclusion of this comparison
is that the model (8.13) is valid for confinements smaller than about 0.13.

The conclusion of this section is that at the same time we have shown how we obtained
the maps of the contribution to the viscosity of a single particle for many positions in
the channel and several different confinements. In the next section we will show that it is
possible to use linear interpolations of these curves to extract the two particles contribu-
tion.
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Figure 8.7: Contribution to the viscosity of a single particle displaced from the center
of a channel. The points are representing the same data as in figure 8.6 except that we
added an offset to separate the curves from each other. The lines represent the values of
equation (8.13) with the same offset, which is the model of a particle near a single wall.
For lisibility reasons, the high and low confinements have been split into two different
graphs.
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In the same time, we explored the behavior of the contribution to the viscosity of a solid
circular particle in presence of walls. We can already extend this work on the viscosity
of dilute suspensions. Indeed, for a dilute suspension of particles, the contribution of
each particle is simply added. Thus, for a suspension of Np similar particles of the same
volume where the position of each one is known, one can express the viscosity of the whole
suspension as:

< σxy >=< σshear
xy > +Φ1 part

Np∑

n=1

< σ1 part
xy > (yn) (8.14)

where yn is the vertical position of the particle n. For a large number of particles, one can
drop the sum to integrate over the length l of the channel and multiply by the probability
density P (y) of finding a particle at the vertical position y. The equation 8.14 becomes:

< σxy > =< σshear
xy > +Φ1 part

∫ l−R

R

< σ1 part
xy > (y)P (y)Npdy (8.15)

=< σshear
xy > +ΦN part

∫ l−R

R

< σ1 part
xy > (y)P (y)dy (8.16)

where ΦN part = NpΦ
1 part is the volume fraction of all the particles, and we recall the

property of a probability density :

∫ l

0

P (y)dy = 1. With the expression (8.16), we see

clearly the different influences of the distribution of particles and the intrinsic function of
contribution to the viscosity.

From this formula, we can also extract the minimum and maximum viscosity values
that a confined dilute suspension of a given volume fraction can have. Indeed, the min-
imum effective viscosity is obtained by a distribution where all the particles are aligned
on the center of the channel. The probability density of such configuration is given by

P (y) = δ(y− l

2
) where δ is the Dirac function (the real one, not the smoothed δε used in

the level set framework of course). On the contrary, the maximum viscosity is obtained
at the opposite when all the particles are almost touching the wall: P (y) = δ(y − R) or
P (y) = δ(y − (l −R)). A common configuration is the random distribution, in this case,
there is the same probability to find a particle for any accessible position in the channel.

Such a configuration is given by P (y) =
1

l − 2R
.

8.2.2 The contribution to the viscosity of the pair interaction

Since we are able to get the contribution of a single vesicle in a confined shear flow, it
is also possible to extract the contribution to the viscosity of the pair interaction of two
particles. It is given by:

< σ2 part
xy >=

< σxy > −Φ1 < σ1 part
xy > (y1)− Φ2 < σ1 part

xy > (y2)

Φ1Φ2

(8.17)

where y1 and y2 are the positions of the two particles. The contribution of one particle
< σ1 part

xy > can be either taken as the interpolation of the curves of the previous study
or recomputed by solving the same system but taking into account only one particle. We
made the following simulation: for a given confinement, we start a simulation with two
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Figure 8.8: Three remarkable configurations at the points of view of the effective viscosity
and their probability densities. The first and last one are respectively the configurations
giving the lowest and highest effective viscosity. The middle one is the one often consid-
ered: a homogeneous suspension. In these schemes, the x direction has been shrunk for a
better representation, but the particles should be separated of at least 5 radii to consider
the suspension as dilute.

particles far away from each other in the x direction. Then, by keeping the y position
of each particle the same, we measure the viscosity of the fluid when approaching the
two particles. This simulation is repeated for many different y positions and different
confinements. The two particles are located symmetrically to the center of the channel.
Consequently, for a given confinement, the quantity < σ2 part

xy > depends only on ∆x =
|x1 − x2| and ∆y = |y1 − y2|. The range in which ∆y varies is 0 < ∆y < l − 2R. The
maximum value given for ∆x is 15R, for ∆x higher than this value, the contribution
is small enough to be neglected. The minimum values that ∆x and ∆y can have is 0
(particles aligned) or higher if the particles are too close (contact is avoided). The scheme
of such a simulation and the corresponding notations are shown in figure 8.9. The result
of the simulation is shown in 2D for the different ∆y in figure 8.11(a) and in 3D for
all the (∆x,∆y) in figure 8.11(b). We also reported in figure 8.10 the snapshots of the
value of σ2 part

xy for three different ∆x showing characteristic behaviors. The 2D plot of
the contribution is also given in figure 8.12 for a confinement twice greater than the one
of figure 8.11(a).
We can see that, as expected, when the distance between the particles is large enough
(∼ 10R), the contribution of the pair interaction vanishes. This can be seen graphically
with the very low values of σ2 part

xy in figure 8.10(a), the plateau on the 3D surface of figure
8.11(b) and the systematic 0-value of the curves in 8.11(a) for large ∆x.

It is also interesting to see that on the other hand, when the two particles are on the
top of each other (∆x = 0), the contribution of the pair to the viscosity is negative. This
is illustrated by the figure 8.10(c), the negative values at (∆x = 0) in figure 8.11(a) and
the negative gradient of the 3D surface.

Finally, we observe a maximum of the contribution to the viscosity for sufficiently
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Figure 8.9: Scheme of the simulation of the two particles interaction in shear flow.

close particles with a certain disposition. This peak can be large and have a great value.
It appears when the particles are aligned with an angle of around 45◦ with respect to the
direction of the flow as we can see in figure 8.10(b).

It is interesting to see how evolve these behaviors for higher confinements. We have
reported in figure 8.12 the contribution to the viscosity of a pair of particles in a channel
having a confinement twice higher than the one of graph 8.11(a). The first obvious thing is
that the high interaction occurring when the particles are close to each other is enhanced
by the confinement. But this actually happens only for relatively high ∆y, since, for lower
∆y the particles would touch at the same ∆x.

The other important remark to make is that from medium to low ∆x at this confine-
ment, almost all the curves are negative on a large domain. Thus, at high confinement,
adding a pair of particles at a random place in the box would in general add a negative
contribution to the overall viscosity.

The same simulation has been done for different confinement in the range 0.04 < Cn <
0.33. The maps generated are used to compute the viscosity of a semi-dilute suspension.

8.2.3 Extension to the simulation of a semi dilute suspension

We will show that the previous information can be used to compute the viscosity of a
semi-dilute suspension of mono-disperse rigid disks. Indeed, for a given random configu-
ration of positions, the contribution of each particle to the viscosity can be computed by
interpolating the curves presented in section 8.2.1. Then, for each pair of particles, doing
a 2D interpolation of the information presented in section 8.2.2 leads to the second order
term of the effective viscosity. Two remarks have to be made about the accuracy of the
method. The first one is that higher order interactions are neglected. These interactions
can be dominant for high concentration, thus we limit our study to the semi-dilute case
(φ < 0.2).
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(a) The particles are far away and almost do not interact.

(b) The pair interaction is at its maximum when the particles are aligned at around 45◦ with respect to
the shear direction.

(c) The interaction is at its minimum when the particles are aligned along their y axis (∆x = 0).

Figure 8.10: The value of the field σ2 part
xy for a confinement Cn = 0.1 and a given ∆y at

three different ∆x.

The second hypothesis made and which might be a source of error is that we will
consider that for a given confinement, the pair interaction only depends on ∆x and ∆y.
Thus we do not take into account the fact that the absolute distance of the pair of particles
to the wall might change its viscosity contribution.

Effect of the confinement on the viscosity of a 2D semi dilute suspension

The processes to compute the viscosity of a suspension of a given confinement at a given
volume fraction Φ is first to compute the number of particles needed to achieve such a
volume fraction:

Npart = int

(
ΦlL

πR2

)

(8.18)

where “int” represents the closest integer of the argument. Then Npart coordinates (x, y)
are generated randomly in the range ([R,L−R], [R, l−R]). The viscosity of this config-
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Figure 8.11: The value of < σ2 part
xy > represented in 2D and 3D for a confinement of

Cn = 0.2.
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Figure 8.12: This figure represents the same graph as in figure 8.11(a), the contribution
to the viscosity of a pair of particles, except that it is done for a higher confinement:
Cn = 0.4.

uration is computed using the formula:

< σxy >=< σsh
xy > +Φ1

Npart∑

i=1

< σ1 part
xy > (yi)+Φ2

1

Npart−1
∑

i=1

Npart∑

j=i+1

< σ2 part
xy > (|xi−xj|, |yi−yj|)

(8.19)
where the values of < σ1 part

xy > (yi) and < σ2 part
xy > (|xi−xj|, |yi− yj|) are extracted from

the data presented in sections 8.2.1 and 8.2.2 thanks to the interpolation tools of scipy
[51].

Since each configuration has its own effective viscosity, this process is repeated on a
great number of different configurations. Finally the mean value of all these viscosities is
taken as the value for this particular volume fraction and the standard deviation is taken
as the error bars.

The result of such simulation is shown in figure 8.13 where three different confinements
have been plotted. They have been fitted with the expression (8.10). The coefficients of
these fits and some other confinements are shown in figure 8.14.

The figure 8.14 shows a similar behavior as [22] which confirms that the same decrease
of the interaction between the particles for high confinement also occurs in 2D.

Link with the two particle interaction effect

Thanks to the work done in the previous section, we can try to explain qualitatively what
is happening. At low confinement, when a pair of particles is added, if the particles are
not too far from each other, by addition to the linear single particle contributions, the
interaction contribution exists. If we look at the figure 8.11(a), we see that there are large
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areas where this contribution is positive. Moreover, the values where the contribution
has a high negative value are obtained for high ∆y. There are fewer possibility to obtain
large ∆y than small ones. For example, in the extreme case, to obtain a ∆y of l− 2R the
only possibilities are to have (y1 = R, y2 = l −R) and (y1 = l −R, y2 = R).

Thus, we can say that globally, for this confinement, a pair of particles randomly
disposed will add a positive contribution to the viscosity. Consequently, we expect the
second order viscosity coefficient viscosity to be positive.

At the opposite, the figure 8.12 shows that for a strong confinement, a randomly chosen
pair of particle will add a negative contribution to the linear viscosity. Indeed, there
are large regions where the pair contribution is negative. Moreover these contributions
are more probable since they exist at low ∆y. At the contrary, the areas where the
contribution is positive are happening for large ∆y which have few chances to happen.
Consequently, we can say that adding a particle in such a system would add a negative
value to the second order viscosity, thus one can expect that the second order coefficient
viscosity of such a confinement is negative.

Discussion about the method

The drawback of this method is the systematic errors that are added to the problem.
Making the maps and extracting their data by interpolation are error prone and the
coefficients obtained from the fits of the simulation of a large number of objects might
not be very precise.

The whole simulation to obtain the figure 8.14 took only few minutes since we already
had the maps of the single particle and pair contribution. This is one of the advantages of
this method, since the maps are calculated, the rest of the simulation is done in a really
short time.

The other advantage of not simulating directly a large number of particles as solution
of the finite element problem, is that we are able to explain the behavior of a collection
of objects thanks to their individual contributions.
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Français

Dans cette thèse, nous avons présenté un cadre méthodologique et numérique de simu-
lation d’objets rigides et déformables sous écoulement. Notre approche est totalement
Eulerienne et est basée sur la méthode de level set. Nous avons ensuite utilisé ce cadre
pour explorer des problèmes ouverts de mécanique des fluides.

Première Partie

La première partie de cette thèse a été consacrée à l’exposé des méthodes mathématiques
choisies et à leur validation et vérification. Nous avons commencé par exposer la méthode
des level set et les choix que nous avons fait la concernant. En particulier, nous avons
exposé les méthodes de stabilisations utilisées pour son transport, et les méthodes de
réinitialisation implémentées. Pour chacune de ces méthodes, nous avons précisé si elles
sont applicables pour des calculs parallèles, en deux comme en trois dimensions, et si un
traitement spécial était nécessaire pour qu’elle soit aussi valable avec une discrétisation
spatiale d’ordre élevée. Nous avons ensuite vérifié ces méthodes sur des cas tests.

Nous avons ensuite décrit notre stratégie pour la simulation d’un système multi-fluides,
qui est la brique de base de la simulation d’une suspension de globules rouges. Le système
classique bi-fluides a été décrit et vérifié sur un cas test. Puis nous avons présenté notre
méthode pour passer d’un système bi-fluides à un système contenant un nombre arbi-
traire de fluides. Nous avons montré un exemple d’un tel système avec la simulations de
la montée de huit bulles de fluides différents dans un neuvième fluide.

Nous avons aussi utilisé cette méthode de calcul pour montrer que les oscillations
d’une bulle autour de sa forme d’équilibre ne dépendent pas du confinement auquel elle
est soumise. Ce résultat a aussi une valeur de validation puisque nous sommes capable
de retrouver la fréquence d’oscillations théorique d’une bulle avec une bonne précision.

Nous avons ensuite montré que notre méthode de simulation à deux fluides pouvait
être utilisée pour simuler l’écoulement d’objets rigides dans un fluide. Nous avons fait le
lien entre cette méthode de simulation et des méthodes déjà existantes dans la littérature.
Nous avons enfin discuté de l’intérêt et des inconvénients d’utiliser une méthode de level
set pour ce genre de simulation.

La fin de notre première partie est consacrée à la simulation de vésicules. Nous
avons présenté deux méthodes différentes pour calculer la force de courbure appliquée
aux vésicules qui dépend de la dérivée seconde de la courbure de la membrane. Les avan-
tages et inconvénients de ces méthodes ont aussi été discutés.

Nous avons aussi testé deux méthodes tirées de la littérature pour appliquer la con-
trainte d’inextensibilité de la membrane des vésicules. Une méthode basée sur la pénalisation
de l’étirement de la membrane par l’intermédiaire d’une force élastique, l’autre utilise un
multiplicateur de Lagrange forçant la contrainte voulue. Nous avons ensuite montré une
validation de ces méthodes sur des comportements connus de vésicules et avons conclus
que la méthode utilisant le multiplicateur de Lagrange est bien plus stable que la méthode
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de pénalisation. Bien qu’elle nécessite un développement numérique plus complexe, nous
utiliserons la méthode du multiplicateur de Lagrange dans le futur pour nos simulations.

Futurs développements méthodologiques

Dans le futur, certains aspects méthodologiques pourraient être explorés en prenant
comme base le travail effectué durant cette thèse. Il serait par exemple intéressant de
développer un cadre de méthodes de stabilisation à l’ordre élevé. Une telle adaptation a
déjà été faite pour la stabilisation des faces internes (CIP), néanmoins elle reste inconnue
pour la stabilisation des éléments (SUPG, SGS, GLS).

Sauf indication contraire, toutes les méthodes que nous avons présenté sont utilisable
en deux et trois dimensions. La librairie Feel++ a été conçue de telle sorte qu’un code
soit aussi valable en deux et trois dimensions grâce à la méta-programmation. La plupart
des tests présentés dans cette thèse sont donc déjà prêts à fonctionner en 3 dimensions.
Néanmoins, les simulations 3D sont peu nombreuses dans ce travail. Bien que les codes
soient valable en 3D, la simulation d’objets 3D nécessite de passer à un grand nombre de
degrés de liberté. Elle nécessite aussi la parallélisation des codes de calculs ainsi que le ra-
patriement des données depuis le cluster de calcul sur lequel elles ont été obtenues et enfin
le traitement du grand nombre de données ainsi générées. Tous ces éléments nécessitant
un certain temps de développement, ils ne sont pas tous opérationnels aujourd’hui mais
le seront dans un futur très proche.

Enfin, durant cette thèse, seul les cas de suspensions diluées ou semi-diluées ont été
traités. Dans le futur, une extension à des suspensions concentrées pourrait être envisagée.
Il se poserait alors le problème de la gestion des contacts entre les vésicules.

En théorie, les forces hydrodynamiques dues au fluide se trouvant entre deux vésicules
devrait éviter leur contact. Cet effet a été suffisant pour éviter le contact entre les vésicules
pour toutes les concentrations que nous avons testé jusqu’à présent (jusqu’à une fraction
volumique de 25%). En pratique, cela nécessite de toujours avoir un certain nombre de
points de discrétisation entre deux membranes. Il est possible que pour des suspensions
de vésicules très concentrées, la force hydrodynamique ne soit plus suffisante pour éviter
le contact faute d’un nombre suffisant de points de discrétisation entre les vésicules. Dans
ce cas, plusieurs stratégies pourraient être imaginées.
Une méthode de raffinement de maillage pourrait être utilisée pour s’assurer qu’il y ait
toujours assez d’éléments entre deux membranes. Un pas de temps adaptatif pourrait
alors être mis en place pour garder une cohérence entre les discrétisations spatiale et
temporelle.
Une force de contact dépendant de la distance à l’interface la plus proche pourrait aussi
être développée. Une telle force est assez simple à implémenter dans le cas d’interfaces
étant suivies par des champs de level set différents.
Néanmoins, il n’est pas trivial de trouver l’expression d’une force de contact pour des
interfaces suivies par le même champ de level set. Ces questions pourraient faire le sujet
de futurs travaux.
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Deuxième partie

Les développements numériques apportés durant cette thèse s’inscrivent dans le projet in-
teractions fluide structure de la librairie Feel++ dédiée à la résolution d’équations aux
dérivées partielles. Ainsi certains codes développés dans le cadre de cette thèse pourraient
être utiles dans d’autres contextes. Nous avons donc essayé de séparer un maximum les
solutions apportées aux différents problèmes de façon à pouvoir les réutiliser et les faire
évoluer dans le futur. La programmation orientée objet ayant été en grande partie inventée
dans ce but, différentes classes ont été crées et seront incluses dans la partie publique de
Feel++ dans le futur.

Ainsi, le début de notre seconde partie a été consacré à la description des classes
pouvant être intégrées à Feel++ dans le futur et utilisées dans différent contextes de
simulation.

La première de ces classes, propose un cadre pour créer différent opérateurs de pro-
jections nécessitant la solution d’une équation aux dérivées partielles (projection L2, H1,
etc ...). Elle propose aussi la possibilité de dériver une expression mathématiques de façon
efficace.

La deuxième classe, propose de résoudre l’équation d’advection utilisée par la méthodes
des level set dans deux contextes différents (transport de la fonction et réinitialisation).
Cette classe inclue toutes les méthodes de stabilisation décrites en première partie.

La troisième classe présentée est la classe LevelSet , qui contient tous les développements
numériques nécessaires à la mise en place d’une méthode de level set.

Enfin, la dernière classe est une généralisation de la précédente, elle propose de mu-
tualiser certains éléments de la classe LevelSet pour proposer une classe multi levelset
capable de gérer efficacement plusieurs champs de level set à la fois.

La fin de notre seconde partie est consacrée à la présentation de développements créés
pour les applications liées à cette thèse et qui ne sont pas directement applicable à d’autres
contextes.

Nous avons ainsi présenté les détails de la construction du multiplicateur de Lagrange
associé à la contrainte d’inextensibilité de la membrane. Puis nous avons décrit l’interface
Python que nous avons développé pour lancer un grand nombre de simulation assez facile-
ment.

Troisième Partie

La dernière partie de cette thèse est consacrée au comportement de disques rigides dans
des géométries complexes et à leur rhéologie. Les problèmes étudiés dans cette partie
s’inscrivent dans la thématique d’étude de l’équipe Dynamique des fluides complexes au
sein de laquelle a été préparée cette thèse.

Le premier problème auquel cette partie est dédiée est l’étude du comportement d’une
suspension diluée de particules rigides lorsqu’elle atteint une bifurcation micro-fluidique.
L’hypothèse de faible concentration de particule nous a conduit à ne considérer qu’une
particule à la fois dans le système étudié. Nous avons exploré un grand nombre de
trajectoires possibles pour les particules en fonction de divers paramètres (rayons, rapport
de débits dans les branches ...). Enfin, en comparant nos résultats avec des expériences
réalisées dans notre laboratoire, nous avons pu expliquer l’effet connu d’accroissement de
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la concentration de particule dans la branche recevant le plus grand débit. De plus, nous
avons mis à jour l’existence d’une force hydrodynamique inconnue jusqu’alors poussant les
particules vers la branche de bas débit et entrant en concurrence avec l’effet précédemment
mentionné.

Enfin, nous avons étendu cette méthode à la simulation d’une suspension de vésicules
dans une bifurcation. Nous avons aussi montré qu’il était possible d’effectuer la simula-
tion d’une suspension de deux types de vésicules différent, c’est à dire ayant des rapports
de viscosité ou des forces de courbure différents.

Dans le futur, un grand nombre de questions peuvent encore être posées à propos de
ces systèmes. Des simulations de bifurcations dans lesquels deux particules sont présentes
ont été menées depuis notre travail [80]. Il serait maintenant intéressant de voir comment
la concentration en particules dans la branche de départ influe sur la répartition dans les
branches d’arrivée.

L’influence de la déformabilité des particules sur la répartition dans les différentes
branches est aussi une suite logique à ce travail. Finalement, des simulations de suspen-
sions dans lesquels quelques vésicules se comportent comme de longues particules quasi-
rigide pourraient être menée et représenteraient une avancée dans la compréhension de
maladies telles que la drépanocytose dans laquelle un certain nombre de globules rouges
se rigidifient et gênent la circulation sanguine lors du passage dans de petits vaisseaux.

La fin de cette troisième partie a été consacrée à la rhéologie d’une suspension de
disques rigides dans un écoulement de cisaillement confiné. De précédents travaux ont
montrés que lorsqu’une suspension de particules rigides est suffisamment confinée, l’effet
de l’interaction entre les particules sur la viscosité effective de la suspension diminue
grandement. Ces résultats on été obtenus en trois dimensions. Un des objectifs de ce
travail était de vérifier si cet effet était un effet purement 3D ou si il était aussi présent en
deux dimensions. Pour cela nous nous sommes d’abord intéressés à la viscosité effective
d’une suspension diluée confinée, ce qui nous a permis de mettre en évidence l’influence
de la position d’une particule par rapport au bord du domaine cisaillé.

Puis, nous avons exploré la viscosité d’un système de deux particules dans un écoulement
de cisaillement confiné. En combinant les deux différentes études, nous avons pu montrer
que l’effet connus à 3D était aussi présent en 2D bien que les phénomènes soient quanti-
tativement différents.

Ce genre d’étude pourrait aussi être généralisée à une suspension de vésicules. Ainsi,
l’influence de la déformabilité sur la viscosité effective d’une vésicule proche d’une parois
pourrait être étudiée. Il est connu que les vésicules ont une tendance à migrer vers le centre
du canal dans lequel elles évoluent. Connâıtre la dépendance de la viscosité effective par
rapport à la position des vésicules dans le canal pourrait alors faire un lien entre les
phénomènes de migration et la viscosité effective.
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English

In this thesis, we have presented a numerical and methodological framework for the sim-
ulation of rigid and deformable objects in flow. Our approach is totally Eulerian and is
based on the level set method. We then used this framework to explore open problems in
fluid mechanics.

Part I

The first part of this thesis was dedicated to the overview of the mathematical methods
chosen and their validation and verification. We explained the level set method and the
choices that we made for it. Indeed, we have explained the stabilization methods used for
its transport, and the implemented reinitialization methods. For each of these methods,
we made precise if they are directly applicable to parallel computation, in 2 or 3 dimen-
sions, and, if a special treatment is needed for high order polynomial approximation. We
then verified these methods on test cases.

We then described our strategy concerning the simulation of a multi-fluid flow, which
is the building block for the simulation of a red blood cell suspension. The classical two-
fluid system has been described and verified on a test case. After what, we presented our
method to adapt the two-fluid system to a system with an arbitrary number of fluids. We
have shown an example of such a system with the simulation 8 rising bubbles of different
fluids in a 9th fluid.

We have used the two-fluid flow framework to show that the oscillations of a bubble
around its equilibrium shape are not dependent on its confinement. This result has also
a validation value since we are able to recover the theoretical oscillation frequency of the
bubbles with a good accuracy.

Next, we have shown that our two-fluid flow simulation method can be used to sim-
ulate rigid object flows. We made a link between this simulation method and already
existing ones. Finally, we discussed the advantages and drawbacks of using the level set
method for this kind of simulations.

The end of our first part was dedicated to the simulation of vesicles. We have pre-
sented two different methods to compute the curvature force applied on the membrane
of the vesicles. This force is complex since it requires the second derivative of the cur-
vature of the membrane. We discussed the advantages and drawbacks of the two methods.

We also tested two methods taken from the literature to apply the inextensibility con-
straint on the membrane. One of them penalizes the stretching by using an elastic force,
while the other one requires use of a Lagrange multiplier to enforce the constraint. We
then showed a validation of these methods on known behaviors of vesicles and concluded
that the method using the Lagrange multiplier is more stable than the penalty one. Al-
though it necessitates a more complex numerical development, we will use the Lagrange
multiplier method in the future for our vesicles simulations.
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Future methodological developments

In the future, some methodological aspects could be explored taking this work as a basis.
It would be interesting for example to develop a high order stabilization framework. Such
adaptation has already been made for the internal faces stabilization (CIP), but it is still
unknown for the elements stabilization (SGS, SUPG, GLS).

Unless we specifically mentioned it, all the methods that we presented are valid in 2
and 3 dimensions. The Feel++ library has been made so that the same code is valid in
2 and 3 dimensions thanks to the meta-programming concept. Most of the tests presented
in this thesis are then ready to work in 3D. Nevertheless, 3D simulations are very rare
in this work. Although the codes are valid in 3D, the simulation of 3D object necessi-
tates a large number of degrees of freedom. It also necessitates making the code work in
parallel as well as the downloading and treatment of the data from the cluster on which
the simulations are made. All these features are time consuming to prepare and are not
all operational to this date but they will be in a near future and the 3D versions of our
simulations will be made.

Finally, during this thesis, only dilute or semi-dilute suspensions have been studied. In
the future, an extension to more concentrated suspensions could be made. The problem
of handling the contacts between the vesicles would arise.

Theoretically, the hydrodynamical forces due to the fluid being in between the vesicles
should be sufficient to avoid their contact. This effect has been strong enough to avoid
contact in every concentration we have tested (until a volume fraction of 25%). In practice,
it necessitates always having several discretization points between two membranes. It is
possible that for highly concentrated vesicles, the hydrodynamical force is not sufficient
to avoid contact because of a lack of discretization points between two interfaces. In this
case, several strategies could be used.
A mesh refinement method could be used to be sure that there are always enough elements
between the membranes. An adaptive time step could also be set to keep coherent the
spatial and temporal discretizations.
A contact force depending on the distance to the closest interface could also be developed.
Such a force is simple to implement in the case of interfaces tracked by different level set
fields.
Nevertheless, it is non-trivial to find an expression of this force for interfaces tracked by
the same level set field. These questions could be the subject of future works.

Part II

The numerical developments made in this thesis take place in the Feel++ fluid structure
interaction project of the library. Consequently, several codes developed for this thesis
purpose could be used in other contexts. Thus, we tried to separate the solutions that
we made to the different problems in order to re-use them and make them evolve in the
future. The object oriented programming paradigm being created to this goal, different
classes have been made and will be included in the public part of Feel++ in the future.

In this way, the beginning of our second part has been dedicated to the description
of the classes which can be integrated in Feel++ in the future and used in other context.
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The first of these classes proposes a framework to create different projection operator
which necessitate to solve a partial differential equation (L2 or H1 projections ...).
The second one proposes solving the advection equation used by the level set method in
two different contexts (transport and reinitialization). This class includes all the stabi-
lization methods described in the first part.
The third class presented is the LevelSet class. It contains all the numerical develop-
ments necessary to setting up of a level set method.

Finally, the last class is a generalization of the previous one. It proposes to share several
elements of the level set class to make a multi-level set class able to handle efficiently many
level set fields at the same time.

The end of this second part, was dedicated to the developments made to create appli-
cations linked to this thesis by which are not directly applicable to other contexts.

We presented the details of the construction of the Lagrange multiplier associated to
the inextensibility constraint. Then we described the Python interface that we developed
to run easily a large number of simulations.

Part III

The last part of this thesis was dedicated to the behavior of rigid disks in complex ge-
ometries and their rheology. The problems studied in this part take place in the field of
the studies of the Dynamics of Complex Fluids team in which this thesis has been done.

The first problem addressed in this part was the study of the behavior of a dilute
suspension of particles when it reached a bifurcation. The low concentration hypothesis
led us to only consider one particle in the system. We studied a large number of possible
trajectories for the particles as a function of the different parameters (radius, flow rate
ratio ...). Finally, by combining our results to experimental ones, we have explained the
known effect of the increasing concentration of particles in the high flow rate branch.
Moreover, we have discovered a hydrodynamic force pushing the particles toward the
other branch balancing the first effect.

Finally, we have shown that our simulation framework was adapted to the simulation
of a suspension of vesicles in a bifurcation. We also have shown that it is possible to use
it for the simulation of a suspension having two types of different vesicles, that is to say
having different viscosity ratio or curvature force intensities.

In the future, a large number of questions can be addressed. Simulations in which two
particles are present have been made since our work [80]. It would be interesting to see
how the concentration of the suspension in the inlet branch changes the repartition in the
outlet branches.

The influence of the deformability of the particles on the concentration in the differ-
ent branches could also be a relevant continuation of this work. Finally, simulations of
suspension in which several vesicles behave as long rigid particles could be done. This
would represent a step ahead in the understanding of diseases like drepanocitosis for which
few red blood cells are getting rigid which hindrances the blood flow in circulatory system.
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The end of this third part was dedicated to the rheology of a suspension of rigid disks
in a confined shear flow. Previous works have shown that when a suspension of particles is
sufficiently confined, the interaction effect between the particles is lowered. These results
have been obtained in 3D. One of the objectives of this work was to check if this effect
is purely 3D or if it is also present in 2D. To this goal, we first addressed the problem of
the effective viscosity of a a dilute suspension, which allowed us to show the importance
of the position of the particle relatively to the walls of the domain.

Then we explored the viscosity of a system of two particles in a confined shear flow.
By combining the two studies, we were able to show that the known 3D effect was indeed
present in 2D even if the results are quantitatively different.

This kind of study could also be generalized to a vesicle suspension. This way, the
influence of the deformability on the effective viscosity of a vesicle near a wall could be
studied. The vesicles having the property to lift toward the center of the channel, one
understands the interest to study the influence of the distance to the wall on the viscosity.
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A Stokes variational formulation

Let us prove that:

∫

Ω

−(∇ ·σ) ·v =

∫

Ω

2µD(u) : D(v)−
∫

Ω

p∇ ·v −
∫

∂Ω

(σn) ·v (1)

First of all, let us integrate by part the first term and develop σ following the Newtonian
fluid law:

∫

Ω

−(∇ ·σ) ·v

=

∫

Ω

σ : ∇v −
∫

∂Ω

(σn) ·v

=

∫

Ω

2µD(u) : ∇v −
∫

Ω

p∇ · v −
∫

∂Ω

(σn) ·v

Now let us remark that D(u) is a symmetrical, thus when taking the contracted product
with ∇v, the same results can be obtained if we invert the anti-symmetrical part of ∇v

(i.e taking t(∇v), we have then:

D(u) : ∇v = D(u) :t (∇v)

Thus we can write:

D(u) : ∇v

=
D(u) : ∇v

2
+

D(u) :t (∇v)

2

=
D(u) : 2D(v)

2
= D(u) : D(v)

Thus, by replacing this expression we get:

∫

Ω

−∇ ·σ ·v =

∫

Ω

2µD(u) : D(v)−
∫

Ω

p∇ ·v −
∫

∂Ω

(σn) ·v
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B Finding the axes of an ellipse

We will show in this appendix how to find easily the minor and major axes (a, b) of an
ellipse for a given reduced area (α) and a fixed area A. The problem could be modified
to find these parameters for a fixed perimeter P . Let us recall that the area of an ellipse
is given by:

A = π a b.

The perimeter of an ellipse does not have a simple exact analytic expression but a good
approximation is given by the Srinivasa Ramanujan formula:

P ≈ π
(

3 (a+ b)−
√

(3 a+ b)(a+ 3 b)
)

.

We recall that the reduced area is given by the ratio between the area of the ellipse and
the area of a circle having the same perimeter:

α =
4πA

P 2
.

The problem is to find (a, b) for a given A = A0 and α = α0. Thus it can be re-written
as, for a given (A0, α0), find (a, b) so that:

π a b− A0 = 0

π
(

3 (a+ b)−
√

(3 a+ b)(a+ 3 b)
)

−
√

4 π A0

α0

= 0.

The problem is of the form F (U ) = 0, with U = (a, b). It can be solved by the Newton
Krylov non linear solver of scipy [51] that we use as a black box. We give as initial
guess of the solution the radius of a circle having the area A0 plus and minus an epsilon:

U0 =

(√

A0

π
+ ε,

√

A0

π
− ε
)

. With this guess, the non linear solver always converges in

the range of α0 and A0 we are looking at. An example of such code, searching for the
parameters (a, b) for a list of different α0 is given in listing 1.

Listing 1: Finding minor and major axes of an ellipse given the area and reduced area
from pylab import ∗
from s c ipy . opt imize import newton krylov as nk

# define equations on perimeter P (a, b), area A(a, b) and the residual F (a, b)
P = lambda a , b : p i ∗ (3∗ ( a+b)− s q r t ( (3∗ a+b )∗ ( a+3∗b ) ) ) − s q r t (4∗ pi ∗A0/alpha )
A = lambda a , b : p i ∗ a ∗ b − A0
F = lambda x : ( P(x [ 0 ] , x [ 1 ] ) , A(x [ 0 ] , x [ 1 ] ) )

# define the fixed values of A0 and a list of different α0
A0 = 1 .
a l p h a l i s t = 1 . , 0 . 95 , 0 . 9 , 0 . 85 , 0 . 8 , 0 . 75 , 0 . 6 , 0 . 5 , 0 . 4

# initial guess
X0 = sq r t (A0/ p i )+0.2 , s q r t (A0/ p i )−0.2

for alpha in a l p h a l i s t :
a , b = nk (F , X0)
print ” alpha = %f , a=%f , b=%f ”%(alpha , a , b )
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C Create a distance function to a parametrized curve

The level set field φ has to be initialized to a value on all the domain: φ0. This value has
to be a signed distance function or a function close to that. Indeed, if the reinitializa-
tion method used for the application is the reinitialization by solving a Hamilton Jacobi
equation as presented in section 1.3.3, the method converges only if the initial function is
not too far from the solution. In the case of a reinitialization by fast marching method as
presented in section 1.3.4, φ0 has to be a distance function in the first elements crossed by
the iso 0 of φ0. There are only few cases where the distance function to a curve is known
analytically. For example, the distance function to a single line, or to a circle. A function
close to a signed distance function to an ellipse is given by equation (1.32). Some shapes
can be constructed by a combination of min and max function of the previous curves and
thus, a distance function to these curves is known. It is the case for example of the slotted
disk used in section 1.4 which is a combination of a signed distance to a circle and three
signed distances to lines. For more complicated shapes, it is not possible to have a signed
distance function. However, it might be useful to be able to describe more shapes than
circles or lines and one might want to have directly the distance function to an ellipse
and do not need to reinitialize it even before the first advection. Thus, we created a tool
which provides a signed distance function to a parametrized curve. Parametrized curve
is one of the better way to describe analytically a shape. We will present in this section,
the method and the algorithm used to create such a distance function. Finally we will
show how to use this method which is included in the level set framework and show some
examples.

The method

The idea is to create a starter state for the fast marching method. That is to say, to
have a distance function φ0 to a parametrized curve only in the first elements crossed
by the curve. Then, all the other elements are initialized by using the fast marching
method presented in section 1.3.4. A brief explanation of the principle of the method is
the following: we discretized the parametrized curve into a set of points. For each point,
we locate the element to which it belongs, we store this information and we mark this
element. Then, for all the degrees of freedom of all the marked elements (all the elements
containing points), we compute the distance between the degree of freedom position and
each point contained in this element. If the closest distance computed is smaller than the
absolute value of φ0 at this degree of freedom, φ0 takes this value. The sign is determined
thanks to the direction of the parametrized curve. Let us show into details how such a
method is implemented.
To simplify, we will assume that we are in 2D even if the method can be extended to 3D.
The curve is given by a parametrization s(θ) = (x(θ), y(θ)). We assume that the user of
the method provides the functions x(θ) and y(θ), the parametrized equations for the x
and y positions of a point of the curve. The curve s has to be a closed curve. The user also
provides the range in which is defined the parameter θ ∈ [θmin, θmax] and a discretization
step dθ which will be used to discretize s(θ). Indeed, the first step of the method consists
on creating a discretization of the curve s(θ). A set of points pi is computed. It is a
discretization of s defined as {pi = (x(θi), y(θi))} for all θi ∈ [θmin, θmax] being multiple of
dθ. For each point pi, we locate the element on the mesh to which it belongs. The global
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index of the element (called id) is a way to differentiate and access each element of the
mesh. Thus, for each point pi, we search for the id of the element in which it is lying.
We store all these information in a map for which the keys are the ids of the elements and
the value are vectors containing all the (θi,pi) present in the element id. Let us call this
map map points at index. We also mark all the elements which contain at least one point
in order to be able to iterate on it. A scheme of the mesh and the discretized curve is
given in section 1(a) and the associated map is given in figure 1(b). Then, starts the most
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(a) Scheme of the first step of the discretization of
the parametrized curve. The indexes of the ele-
ments are represented in black. The parametrized
curve is a circle and its discretization points are
represented in red. The value of the parameter θ is
given below the discretization points. We assume
dθ = 1. We represented in gray the marked ele-
ments, that is to say, the elements in which at least
one discretization point is present.
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(b) Representation of the mapmap points at index.
Each element of the map is composed of a key and
a value. The key is the index (id) of the considered
element. The value is a vector of pairs (θi,pi), the
value of the parameter and the coordinates of the
considered point. Thanks to this map, all the infor-
mation concerning the discretization points which
belong to an element are easily accessible.

Figure 1: First step of the creation of a distance function to a parametrized curve.

computationally costly part. For all the degrees of freedom of all the marked elements
(all the elements crossed by the interface), we compute the distance between the position
of the degree of freedom (let us call these points pdof

j ) and all the points pi contained in
this element (they can be accessed easily via the map map points at index. We search for
the point pi having the smallest distance to pdof

j , we call it pmin. If the distance to pmin

is smaller than the value of φ0 at this degree of freedom (called φdof
0 ), then φdof

0 takes this
value. The sign of φdof

0 is given by the vectorial product of the vector v = pmin − pdof
j

and the normal to the curve ns at the point pmin. That is to say, Sgn(φ
dof
0 ) = Sgn(v×ns)

The normal to the curve at the point pmin is given by the difference between pmin and the
position of the next point on the curve. In other words, if pmin corresponds to a value
of the parameter θ = θpmin

, that is to say pmin = p(θpmin
) then the vector ns is given by:

ns = p(θpmin
+ dθ)− p(θpmin

). An example of these vectors is given in figure 2 for a given
element. This whole algorithm gives a good approximation of a distance function to the
parametrized curve s on the elements crossed by it. Then this function can be given to
the fast marching algorithm which makes a distance function on all the domain from it.
The method as we presented it is valid also at high order. But in the case of an high order
approximation, making a loop on all the degrees of freedom of all the elements crossed by
the curve can be computationally costly. We also recall that even at high order, the fast
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1 2

3

Figure 2: Representation of the second part of the algorithm. One element in represented
and the considered degree of freedom is the number 3. Its coordinates are given by pdof

3 .
The curve is represented in red dotted line, and its discretization points in this element
are represented as the three red squares. In this scheme, one has |pdof

3 −p3| < |pdof
3 −p4| <

|pdof
3 −p2|. Thus pdof

3 = pmin. The approximation of the normal ns = p4−p3 is represented
in blue. The vector v = pdof

3 − pmin is represented in green. One sees that the vector
v × ns is pointing toward the z positive.

marching method requires the field being reinitialized to be in a P1 space as explained in
section 1.3.4. In practice, it is better to use the algorithm 7 directly in the same P1 space
than the one used for the fast marching. It increases a bit the number of elements crossed
by the curve, but decreases the number of degree of freedom to iterate in each element.
It is usually benefit in term of computational cost to do it in this order.

Example of use

The previous algorithm has been embedded in the LevelSet class. To use it, one simply
has to call the method makeDistFieldFromParametrizedCurve of the LevelSet class.
We will show a simple example of use of this method. Let us say that we want a distance
function to an 1epitrochoid. The shape of the latter can be defined thanks to the following
parametrization :

x(θ) = (1 + a) cos(a θ)− a b cos((1 + a) θ) + x0

y(θ) = (1 + a) sin(a θ)− a b sin((1 + a) θ) + y0

where θ is the parameter, a and b are parameters used to change the shape and the
number of branches of the epitrochoid, finally x0 and y0 define the center of the shape.
If we have defined a mesh and a level set object, we simply need to define the previous
functions and start the algorithm. The function x(θ) and y(θ) are given as argument
to makeDistFieldFromParametrizedCurve. Their types are 2std::function which is a
feature present in the standard C++11. The functions have to take one double argument
as entry (θ) and returns one double. A very convenient way to define these functions is
to use another C++11 feature, the 3lambda functions which allow to create a function

1http://en.wikipedia.org/wiki/Epitrochoid
2http://en.cppreference.com/w/cpp/utility/functional/function
3http://en.cppreference.com/w/cpp/language/lambda
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Algorithm 7 Algorithm making a distance function to a parametrized curve in the
elements crossed by the curve.

Require: θmin, θmax, dθ, x(θ), y(θ) given
Require: φ0(x) = HugeValue
for θi = θmin to θmax do
id= index of element containing point(pi = x(θi), y(θi))
if map points at index contains key id then
add pi to map points at index at key id

else
create key id in map points at index and add the value pi

end if
create key θi in map point param with the value pi

mark the element id
end for
for id i in (ids of all marked elements) do
for dofj in dof(id i) do
pdof
j = position of dofj

minDistToDof = HugeValue
for pk in (all points in map points at index at index id i ) do
distToDof = compute distance(pk, p

dof
j )

if distToDof < minDistToDof then
minDistToDof = distToDof
pmin = pk

end if
end for
if minDistToDof < |φdof

0 | then
ns =map point param(θ + dθ)− pmin

v = pdof
j − pmin

φdof
0 = Sgn(v × ns) minDistToDof

end if
end for

end for
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embedded in another function in a very simple way. The code 2 shows on the example of
the epitrochoid how to define these functions and use them as initial level set field.

Listing 2: Example showing how to define the functions x(θ), y(θ) and create a distance
function from a parametrized curve using the algorithm present in LevelSet .

double a=0.1 , b=0.8 ;
double x0=5, y0=5;
double t min=0, t max=20∗pi , dt =0.0001;

auto x = [& ] (double t ) { return (1+a ) ∗ cos ( a∗ t ) − a∗b ∗ cos ( (1+a ) ∗ t ) + x0 ; } ;
auto y = [& ] (double t ) { return (1+a ) ∗ s i n ( a∗ t ) − a∗b ∗ s i n ( (1+a ) ∗ t ) + y0 ; } ;

auto phio = l e v e l s e t−>makeDistFieldFromParametrizedCurve (x , y , t min , t max , dt ) ;

The resulting field is shown in figure 3(a). We also show in figure 3(b) the result of
the parametrization of an ellipse having a relatively big eccentricity, for which our usual
approximation equation (1.32) is far from a distance function. One can see that in both
cases, the gradient magnitude is around 1 almost every where and that the shape is well
defined.

(a) Distance function from a epitrochoid with 10
branches.

(b) Distance function from an ellipse with a rela-
tively big eccentricity.

Figure 3: Distance function from parametrized curves. The iso 0 is represented in green,
some iso lines are represented in white and the color represents the gradient magnitude
|∇φ0|.
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D Simulation of rigid disk by direct method

We present in this appendix a toy code which simulates the flow of a rigid disk in a
2D Stokes fluid by a direct method. The equations solved are the Stokes equations, the
particle is seen as a hole in the mesh as shown in figure 4. There are no slip boundary

Figure 4: Mesh of a bifurcation in the case of a direct method for the simulation of a
solid particle. One can see that the mesh is conform to the particle. The density of
triangles around the particle can be increased to have a better accuracy when computing
the hydrodynamical forces exerted on it.

conditions between the particle and the fluid and between the fluid and the walls. The
geometry is the bifurcation studied in chapter 7. At each time step, the stokes equation
is solved, the forces and torque are computed on the boundary of the particle. Then,
the position and velocity of the particle are updated. Finally the domain is re-meshed
according to the new position of the particle. Since the Stokes equations are independent
of time, there is no need to project the solution of the previous step on the mesh of
the current step. The Stokes equations are solved by finite element method using the
variational formulation (2.14) where the null mean pressure is imposed by a penalty
term. The finite element software chosen to solve this problem is FreeFem++ which
is a Domain Specific Language dedicated for the solutions of PDE, that is to say that
the software has its own language (with a syntax close to the one of C++). The use
of FreeFem++ for this particular application is made because it integrates a mesh
generator. Thus re-meshing the domain at each time step is very simple at the user point
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of view. The update of the velocities and positions of the particle is made by a simple
explicit Euler integration which is first order. This is one of the limitation of this method.
A very small time step has to be taken to keep the system stable. And since the re
meshing is time costly this method might not be adapted for long time simulations. For
the case of the bifurcation problem, we finally chose a fictitious domain method. However,
it is interesting to see how simple can be the implementation of such method if the PDE
and meshing tools are provided.

Listing 3: Direct method for the simulation of a rigid disk with FreeFem++

// pressure penalty parameter
real ep s i l o n =0.0000001;
// viscosity
real nu=666.67 ;
// radius of the particle
real R=1.2 ;
// mass of the particle
real M=10 ;
// intertial momentum of a disk
real I = M∗0 .5∗Rˆ2 ;

string FileName=”Forces ” ;

// time parameters
real dt =0.0003;
real f ina lTime = 3 ;

// mesh parameters
int n=3;
real m=2;

// geometrical parameters of the bifurcation
real H1=4;
real L1=6;
real H2=6;
real L2=4;

// flow rate imposed to the branches Q=Qh+Qb
real Q = 150 ;
real Qratio =2 ./3 . ; // Qb/Qh
real Qh = Q/(1+Qratio ) ;
real Qb = Qh∗Qratio ;

// Poiseuille flow velocities imposed with respect to the flow rates
func V = −(6∗Q /H1ˆ3)∗ ( y+H1/2)∗ ( y−H1/2 ) ; // V_inlet vx(y)
func Vh = −(6∗Qh/L2ˆ3)∗ ( x−L1 )∗ ( x−(L1+L2 ) ) ; // V_outlet top vy(x)
func Vb = (6∗Qb/L2ˆ3)∗ ( x−L1 )∗ ( x−(L1+L2 ) ) ; // V_outlet bottom vy(x)

// create the borders of the bifurcation
border b1 ( t=H1/2. ,−H1/2 . ) {x=0; y=t ; l a b e l =1;} ;
border b2 ( t=0,L1) {x=t ; y=−H1/2 ; l a b e l =2;} ;
border b3 ( t=−H1/2 . , −(H1/2.+H2) ) {x=L1 ; y=t ; l a b e l =3;} ;
border b4 ( t=L1 , L1+L2) {x=t ; y=−(H1/2+H2 ) ; l a b e l =4;} ;
border b5 ( t=−(H1/2.+H2) , (H1/2.+H2) ) {x=L1+L2 ; y=t ; l a b e l =5;} ;
border b6 ( t=L1+L2 , L1) {x=t ; y=H1/2+H2 ; l a b e l =6;} ;
border b7 ( t=H1/2.+H2 , H1/2 . ) {x=L1 ; y=t ; l a b e l =7;} ;
border b8 ( t=L1 , 0 ) {x=t ; y=H1/2 ; l a b e l =8;} ;
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ofstream f f ( FileName ) ;
f f<<”#time x1 y1 t e ta vx1 vy1 w1 fx fy
C”<<endl ;

// initial positions and velocities of the center of the particle
real x1=3, y1=−0.1, t e t a =0;
real w1=0;
real vx1=0;
real vy1=0;

func X=x−x1 ;
func Y=y−y1 ;

for ( real t t =0; tt<f ina lTime ; t t+=dt )
{

// define the particle boundary
border Part1 ( t=0 ,2∗ pi ){

x=R∗ cos ( t)+x1 ;
y=R∗ s i n ( t)+y1 ;
l a b e l =100;} ;

// build the mesh
mesh Th=buildmesh ( b1 ( int (n ∗ H1) )

+b2 ( int (n ∗ L1 ) )
+b3 ( int (n ∗ H2) )
+b4 ( int (n ∗ L2 ) )
+b5 ( int (n ∗ (H1+H2) ) )
+b6 ( int (n ∗ L2 ) )
+b7 ( int (n ∗ H2) )
+b8 ( int (n ∗ L1 ) )
+Part1(− int (5 ∗ n ∗ 2 ∗ pi ) ) ) ;

//----------------------------------------------------
// spaces for velocity and pressure
fespace Esp (Th, P2 ) ;
fespace Pre (Th, P1 ) ;
Esp ux , uy , vx , vy , modU;
Pre p , pp ;
//----------------------------------------------------

//----------------------------------------------------
// define the bilinear form and impose boundary conditions
problem Stokes ( [ ux , uy , p ] , [ vx , vy , pp ])=

int2d (Th) ( // bilinear form
// µ(∇u : ∇v)

−nu∗( dx (ux )∗dx ( vx)+dy (ux )∗dy ( vx)+dx (uy )∗dx ( vy)+dy (uy )∗dy ( vy ) )
−dx ( vx )∗p − dy ( vy ) ∗ p // p∇ ·v
−dx (ux )∗pp − dy (uy ) ∗ pp // q∇ ·u
+ep s i l o n ∗ p ∗ pp ) // ε p q

// boundary conditions
// no slip conditions on walls
+on (2 , 3 , 5 , 7 , 8 , ux=0, uy=0)
// velocities imposed at outlet
+on (1 , ux=V, uy=0)
+on (6 , ux=0, uy=Vh)
+on (4 , ux=0, uy=Vb)
// no slip condition on the particle
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+on (100 , ux=vx1−w1∗Y, uy=vy1+w1∗X) ;
//----------------------------------------------------

// solve Stokes problem
Stokes ;

//----------------------------------------------------
// Compute the force exerted on the particle
real F, fx , fy ;
fx=int1d (Th, 1 0 0 ) ( (−p+2∗nu∗dx (ux ) )∗N. x + nu∗( dx (uy)+dy (ux ) )∗N. y )/M;
fy=int1d (Th, 1 0 0 ) ( (−p+2∗nu∗dy (uy ) )∗N. y + nu∗( dx (uy)+dy (ux ) )∗N. x )/M;
//----------------------------------------------------

//----------------------------------------------------
// Compute the torque on the particle
real C=−in t1d (Th, 1 0 0 ) ( X∗((−p+2∗nu∗dy (uy ) )∗N. y + nu∗( dx (uy)+dy (ux ) )∗N. x )

− Y∗((−p+2∗nu∗dx (ux ) )∗N. x + nu∗( dx (uy)+dy (ux ) )∗N. y )
//----------------------------------------------------

// ------------- save the results ---------
f f<<tt<<” ”<<x1<<” ”<<y1<<” ”<<teta<<” ”<<vx1<<” ”<<vy1<<”

”<<w1<<” ”<<fx ∗M<<” ”<<fy ∗M<<” ”<<C∗ I<<endl ;
//-----------------------------------------------------

//---- update the new positions and velocities by Euler step ---
vx1 = vx1 + fx ∗ dt ;
vy1 = vy1 + fy ∗ dt ;
w1 = w1 + C ∗ dt ;
x1 = x1 + vx1 ∗ dt ;
y1 = y1 + vy1 ∗ dt ;
t e t a = te ta + w1 ∗ dt ;
//----------------------------------------------------

modU=sqr t ( ux∗ux+uy∗uy ) ;
plot (modU, f i l l =true , va lue=1, wait = f a l s e ) ;

}
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E Bilinear forms of the different projection operators

implemented in Projector

Here are the different expression of the bilinear forms implemented in the class Projec-
tor and the corresponding code. The Feel++ expression are valid for u and u vectors
or scalar.

• L2 projection Bilinear form:

aL2 =

∫

Ω

u ·v

Feel++ expression:

a = in t e g r a t e ( elements ( mesh ) , t rans ( i d t (u) ) ∗ id ( v ) ) ;

• H1 projection Bilinear form:

aH1 =

∫

Ω

u ·v +

∫

Ω

∇u : ∇v

Feel++ expression:

a = in t e g r a t e ( elements ( mesh ) ,
t rans ( i d t (u) ) ∗ id ( v )
+ t ra c e ( gradt (u) ∗ t rans ( grad (v ) ) ) ) ;

• Hdiv projection Bilinear form:

aHdiv =

∫

Ω

u ·v +

∫

Ω

(∇ ·u)(∇ ·v)

Feel++ expression:

a = in t e g r a t e ( elements ( mesh ) ,
t rans ( i d t (u) ) ∗ id ( v )
+ trans ( d iv t (u) ) ∗ div (v ) ) ;

• Smooth projection A special care has to be taken to impose the boundary conditions
in a weak manner. The bilinear form reads:

asmooth =

∫

Ω

u ·v +

∫

Ω

ε∇u : ∇v −
∫

∂Ω

ε(∇u n) ·v −
∫

∂Ω

ε(∇v n) ·u+

∫

∂Ω

ε
γ

h
u ·v

Feel++ expression:

a = in t e g r a t e ( elements ( mesh ) ,
t rans ( i d t (u) ) ∗ id ( v )
+ ep s i l o n ∗ t r a c e ( gradt (u) ∗ t rans ( grad (v ) ) ) ) ;

a += in t e g r a t e ( boundaryfaces ( mesh ) ,
e p s i l o n ∗ ( − t rans ( id (v ) ) ∗ gradt (u) ∗ N() )

+ep s i l o n ∗ ( − t rans ( i d t (u ) ) ∗ grad (v ) ∗ N() )
+ep s i l o n ∗ ( gamma ∗ t rans ( i d t (u) ) ∗ id ( v ) / vf : : hFace ( ) ) ) ;
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• Hcurl projection Bilinear form:

aHcurl =

∫

Ω

u ·v +

∫

Ω

(∇× u) · (∇× v)

Feel++ expression (in 2d):

a = in t e g r a t e ( elements ( mesh ) ,
t rans ( i d t (u) ) ∗ id ( v )
+ cu r l z t (u) ∗ cu r l z ( v ) ) ;

• CIP projection Bilinear form:

aCIP =

∫

Ω

u ·v +

∫

ΩI

γ

h2
[[∇u]][[∇v]]

where ΩI represents the internal faces of the domain Ω. Feel++ expression:

a = in t e g r a t e ( elements ( mesh ) ,
t rans ( i d t (u) ) ∗ id ( v ) ) ;

a += in t e g r a t e ( internalfaces ( mesh ) ,
gamma ∗ hFace ( ) ∗ hFace ( )
∗ t rans ( jumpt (u ) ) ∗ jump( grad (v ) ) ) ;
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F A configuration file

In this appendix we present a configuration file. This file is used to give the static options
of the simulation of a vesicle in a shear flow.

Listing 4: Configuration file for a simple simulation of vesicle in a shear flow. The
options set in this files are the option usually not changed and do not depend on changing
parameters. The other options are handled in a Python interface.

# -- application options --
mup=10
k=10.
i n i t i a l −s t a t e=0
export−plus=1
save−every=10

# -- levelset options --
[ l e v e l s e t ]
time−d i s c r−scheme=BDF2
advec−stab−method=GALS
enable−r e i n i t=1
r e i n i t e v e r y=5
r e i n i t−method=hj
hj−max−i ter=5
hj−dtau=0.01
hj−t o l =0.05

# -- fluid options --
[ s t oke s ]
c l t y p e=strong
f l ow type=shear

# -- time options --
[ bdf ]
time− i n i t i a l =0
time− f i n a l =40

# -- backend options --
# advection system
[ l s−advec ]
reuse−prec=0
ksp−a t o l =0.0000000001
pc−f a c to r−mat−so l v e r−package−type=mumps

# fluid system
[ f l u i d ]
pc−f a c to r−mat−so l v e r−package−type=mumps
reuse−prec=1
ksp−monitor=1

# projectors (L2, smooth)
[ p r o j e c t o r s ]
ksp−monitor=1
reuse−prec=0
pc−f a c to r−mat−so l v e r−package−type=mumps
pc−type=lu
pc−gasm−over lap=1
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G Indexes notations

In this work, we have choose to write all the equations using vectors and matrices. In
other works, one can find the same equations written in component form. We will give
in this appendix some equivalent forms between the vector and indexes notations. We
assume the space has ND dimensions. The position of a point is given by

x = xi, i = 1, ..., ND.

The partial derivative of a scalar s in the direction xi is given by,
∂s

∂xi
and will be written

in our notations ∂xi
s.

For each vector v, one can write its components as

v = vi, i = 1, ..., N

with N the number of component of the vector. The same way, we can write the compo-
nents of any matrix A as:

A = aij, i = 1, ..., N and j = 1, ...,M

with N the number of columns and M the number of lines of A.
The scalar product of two vectors u and v is given by:

u ·v = uivi

with the Einstein summation convention, which stands that we sum over all the repeated
indexes. In the following, we will always use the Einstein convention.
The double contraction product between a matrix A and a matrix B is a scalar given by:

A : B = aijbij.

The product of a matrix A and a vector v is a vector given by:

A v = aijvj, i = 1, ..., N.

The gradient of a scalar, let us say p is a vector given by:

∇p = ∂xi
p, i = 1, ..., ND.

The gradient of a vector v is a matrix given by:

∇v = ∂xi
vj, i = 1, ..., ND and j = 1, ..., N.

The divergence of a vector v is a scalar given by:

∇ ·v = ∂xi
vi
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The laplacian of a vector v is a vector given by:

∆v = ∂xj
∂xj

vi, i = 1, ..., N

The Navier-Stokes equation which we have written in the vectorial form:

ρ(∂tu+ (u ·∇)u)− µ∆u+∇p = f

∇ ·u = 0

ρ(∂tui + (uj∂xj
)ui)− µ∂xm

∂xm
ui + ∂xi

p = fi, i = 1, ..., ND

∂xl
ul = 0.

The surface divergence:

∇s ·u = (Id − n⊗ n) : ∇u = ∇ ·u− (∇u n) ·n (2)

∇s ·u = (δij − njni)∂xj
ui = ∂xi

ui − ((∂xi
uj)nj)ni (3)

with δij the Kronecker symbol. We emphasize the fact that (∇u n) is the product of
the matrix ∇u by the vector n, thus it is a vector. We can denote its components by
(∇u n)i. Consequently (∇u n)i ni is a scalar which is expected.

The same way, we can re-write:

D(u) : D(v)

(∂xi
uj + ∂xj

ui)(∂xi
vj + ∂xj

vi).
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H Derive the effective viscosity from energy dissipa-

tion

In this section, we will explicit the expression given in [65] where the viscosity of a suspen-
sion of rigid spheres or disks is given as a function of the energy dissipation |∇u+t

∇u|2.
In this appendix, all the notations are the same than in section 8.1. We will show that
the energy dissipation in the fluid domain can be related to the forces applied on the
top and bottom walls. Then we can use the definition of the effective viscosity given in
equation (8.4). In this problem, we only consider a pure shear flow which is infinite in the
x direction (or with periodic boundary conditions). Consequently, the boundaries ∂Ωf

are only the top and bottom moving walls.
The Stokes equation (2.6) without external forces can be re-written as:

− 2µ0∇ ·D(u) +∇p = 0 (4)

since ∇ ·u = 0. We multiply the equation (4) by the velocity u and integrate over the
fluid domain Ωf . Integration by part gives:

−2µ0

∫

∂Ωf

[D(u)n] ·u+ 2µ0

∫

Ωf

D(u) : ∇u+

∫

∂Ωf

p(u ·n)−
∫

Ωf

p∇ ·u = 0

• Thanks to the symmetry of 2D(u) = (∇u+t
∇u), the second term becomes:

(
∇u+t

∇u
)

: ∇u

=
(∇u+t

∇u) : ∇u+ (∇u+t
∇u) :t∇u

2

=
(∇u+t

∇u) : (∇u+t
∇u)

2

=
|∇u+t

∇u|2
2

= 2 |D(u)|2

• The third term can be re-written as [(pId)n] ·u so that we can factorize it with the
fisrt term.

• The last term vanishes since ∇ ·u = 0.

Factorization of the first and third term leads to:

2µ0

∫

Ωf

|D(u)|2 −
∫

∂Ωf

[(−p Id + 2µ0D(u))n] ·u = 0

2µ0

∫

Ωf

|D(u)|2 −
∫

∂Ωf

(σn) ·u = 0

Finally, computing the last integral, which is done on the top and bottom boundaries
gives:

2µ0

∫

Ωf

|D(u)|2 = (ft − fb) U
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The forces difference applied on the walls is related to the definition of the effective
viscosity given in equation (8.4), it reads:

(ft − fb) =
4 L U µeff

l

Replacing this term in the previous equation leads to the definition of the effective viscosity
using the dissipation in the fluid domain:

µeff =
µ0 l

2LU2

∫

Ωf

|D(u)|2.
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la méthode des fonctions de niveau. PhD thesis, Universite de Grenoble, 2011.

[63] Aymen Laadhari, Pierre Saramito, and Chaouqi Misbah. Computing the dynamics
of biomembranes by combining conservative level set and adaptive finite element
methods. CNRS, June 2011.

[64] H LAMB. Hydrodynamics. Cambridge University Press., 1932.

[65] Aline Lefebvre and Bertrand Maury. Apparent viscosity of a mixture of a newtonian
fluid and interacting particles. Comptes Rendus Mécanique, 333(12):923 – 933, 2005.
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