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Abstract

The interest of compressive sampling in ultrasound imaging has been recently exten-
sively evaluated by several research teams. Following the different application setups, it
has been shown that the RF data may be reconstructed from a small number of mea-
surements and/or using a reduced number of ultrasound pulse emissions. According to
the model of compressive sampling, the resolution of reconstructed ultrasound images
from compressed measurements mainly depends on three aspects: the acquisition setup,
i.e. the incoherence of the sampling matrix, the image regularization, i.e. the sparsity
prior, and the optimization technique. We mainly focused on the last two aspects in
this thesis. Nevertheless, RF image spatial resolution, contrast and signal to noise ra-
tio are affected by the limited bandwidth of the imaging transducer and the physical
phenomenon related to Ultrasound wave propagation. To overcome these limitations,
several deconvolution-based image processing techniques have been proposed to enhance
the ultrasound images.

In this thesis, we first propose a novel framework for Ultrasound imaging, named
compressive deconvolution, to combine the compressive sampling and deconvolution.
Exploiting an unified formulation of the direct acquisition model, combining random
projections and 2D convolution with a spatially invariant point spread function, the
benefit of this framework is the joint data volume reduction and image quality improve-
ment.

An optimization method based on the Alternating Direction Method of Multipliers is
then proposed to invert the linear model, including two regularization terms expressing
the sparsity of the RF images in a given basis and the generalized Gaussian statistical as-
sumption on tissue reflectivity functions. It is improved afterwards by the method based
on the Simultaneous Direction Method of Multipliers. Both algorithms are evaluated on
simulated and in vivo data.

With regularization techniques, a novel approach based on Alternating Minimization
is finally developed to jointly estimate the tissue reflectivity function and the point spread
function. A preliminary investigation is made on simulated data.

Keywords − Ultrasound imaging, signal and image processing, resolution enhance-
ment, inverse problems, compressive sampling, deconvolution, optimization, alternating
direction method of multipliers, simultaneous direction method of multipliers.
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Résumé

L’intérêt de l’échantillonnage compressé dans l’imagerie ultrasonore a été récemment
évalué largement par plusieurs équipes de recherche. Suite aux différentes configura-
tions d’application, il a été démontré que les données RF peuvent être reconstituées à
partir d’un faible nombre de mesures et / ou en utilisant un nombre réduit d’émission
d’impulsions ultrasonores. Selon le modèle de l’échantillonnage compressé, la résolution
des images ultrasonores reconstruites à partir des mesures compressées dépend prin-
cipalement de trois aspects: la configuration d’acquisition, c.à.d. l’incohérence de la
matrice d’échantillonnage, la régularisation de l’image, c.à.d. l’a priori de parcimonie
et la technique d’optimisation. Nous nous sommes concentrés principalement sur les
deux derniers aspects dans cette thèse. Néanmoins, la résolution spatiale d’image RF,
le contraste et le rapport signal sur bruit dépendent de la bande passante limitée du
transducteur d’imagerie et du phénomène physique lié à la propagation des ondes ultra-
sonores. Pour surmonter ces limitations, plusieurs techniques de traitement d’image en
fonction de déconvolution ont été proposées pour améliorer les images ultrasonores.

Dans cette thèse, nous proposons d’abord un nouveau cadre de travail pour l’imagerie
ultrasonore, nommé déconvolution compressée, pour combiner l’échantillonnage com-
pressé et la déconvolution. Exploitant une formulation unifiée du modèle d’acquisition
directe, combinant des projections aléatoires et une convolution 2D avec une réponse
impulsionnelle spatialement invariante, l’avantage de ce cadre de travail est la réduction
du volume de données et l’amélioration de la qualité de l’image.

Une méthode d’optimisation basée sur l’algorithme des directions alternées est en-
suite proposée pour inverser le modèle linéaire, en incluant deux termes de régularisation
exprimant la parcimonie des images RF dans une base donnée et l’hypothèse statistique
gaussienne généralisée sur les fonctions de réflectivité des tissus. Nous améliorons les
résultats ensuite par la méthode basée sur l’algorithme des directions simultanées. Les
deux algorithmes sont évalués sur des données simulées et des données in vivo.

Avec les techniques de régularisation, une nouvelle approche basée sur la minimisation
alternée est finalement développée pour estimer conjointement les fonctions de réflectivité
des tissus et la réponse impulsionnelle. Une investigation préliminaire est effectuée sur
des données simulées.

Mots-clés − Imagerie ultrasonore, traitement du signal et de l’image, amélioration
de la résolution, problèmes inverses, l’échantillonnage compressé, déconvolution, optimi-
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Chapter 1. Ultrasound Medical imaging

The first chapter is devoted to introducing ultrasound imaging, its place in the major
medical imaging modalities as well as its specific characteristics, strengths and weak-
nesses. After explaining the physics of ultrasound, including the generation and the
propagation of ultrasound waves, the formation of the ultrasound images will be de-
tailed. Inherent limitations directly related to the characteristics of ultrasound and dif-
ferent imaging modes or acquisitions will be also discussed in this introduction. Finally,
we will present the main current issues related to this modality.

1.1 Why ultrasound imaging?

Ultrasound (US), usually referring to the sound waves with frequencies higher than
20, 000 Hz which is the upper audible limit of human hearing, is one of the most widely
used imaging technologies in medicine.

Since 1942, when the Austrian neurologist Karl Theo Dussik first applied ultrasound
as a medical diagnostic tool to image the brain, ultrasound has been used to image the
human body for over half a century [Edler 2004]. Medical doctors today use it to view
the heart, blood vessels, kidneys, liver and other organs.

Compared with other imaging modalities, such as magnetic resonance imaging (MRI)
and computed tomography (CT) (see Table 1.1), the US imaging has the advantage of
being noninvasive, free of radiation risk, portable and relatively inexpensive. Further-
more, since US images are captured in real-time, they can also show the structure and
movement of the body’s internal organs, as well as blood flowing through blood ves-
sels, thus providing instantaneous visual guidance for many interventional procedures
including those for regional anesthesia and pain management [Chan 2011].

Table 1.1: Comparison of imaging modalities [Szabo 2004, p. 23].
Modality Ultrasound X-ray CT MRI

Physical agent Ultrasound X-ray X-ray Magnetic field

Principle Mechanical
properties

Mean tissue
absorption

Tissue
absorption Biochemistry

Spatial
resolution

frequency and axially
dependent 0.3-3 mm ∼1 mm ∼1 mm ∼1 mm

Penetration frequency dependent
3-25cm Excellent Excellent Excellent

Safety Very good Ionizing
radiation

Ionizing
radiation Very good

Cost $ $ $$$$ $$$$$$$$
Portability Excellent Good Poor Poor

Speed ≤ 10 ms ∼1 min ≥1 min ≤ 0.1 s

However, from the table above, we may also remark that US imaging has the disad-
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1.2. Physics of Ultrasound

vantage of spatial resolution (which is related to US frequencies) and penetration, two
important challenges addressed in the literature. Before deeply presenting the details
of the work realized in this PhD, we will first remind the most common features of
ultrasound imaging systems.

1.2 Physics of Ultrasound

US images are created based on the physical interaction between an emitted acoustic
wave and the human tissues. To form an US image, sound waves need to be produced,
received and interpreted. Let us denote the frequency of the US wave by f , and the
corresponding wavelength by λ. The range of f in medical ultrasound imaging is 2 to
60 MHz, and even more in some specific applications such as acoustic microscopy.

1.2.1 The Piezoelectrical transducer

US waves are typically produced by a transducer which is composed of a certain number
of piezoelectric elements (Fig. 1.1). The piezoelectric element is an essential part of the
transducer able to generate and receive the US waves. According to the Piezoelectric
phenomena: a voltage is applied on the two sides of a piezoelectric crystal, the piezoelec-
tric crystal will oscillate by repeatedly expanding and contracting, generating a sound
wave, which is also called the "direct piezoelectric effect". In contrast, the "indirect
piezoelectric effect" will happen: when the element is externally excited by a vibration
(or an ultrasonic wave), it generates a voltage. Thus, the conversion between the elec-
trical energy and the acoustic energy is completed by transmitting and receiving the US
waves. This phenomenon is illustrated in Fig. 1.2.

Figure 1.1: Transducer and elements [Kouamé 2015].

An US transducer can contain one or several piezoelectric elements. However, the
transducer composed by a single element will usually require mechanical scanning to form
an US image. Most current sensors use multi-element arrays (rectangular or annular)
allowing electronic scanning (see section 1.3.2). Typically, a rectangular bar is composed

3



Chapter 1. Ultrasound Medical imaging

Figure 1.2: Direct and indirect piezoelectric effects [Kouamé 2015].

by 50 to 100 elements for a total of 1 cm (height of each element) to 3 cm. The width
of each element is approximately a quarter of the wavelength, i.e., standardly between
0.2 and 0.75 mm.

1.2.2 Wave propagation

US wave brings the information of an object to the imaging system, and provides in-
formation at the same time on the nature of the medium it crossed. In general cases,
the study of its propagation and its interaction with various elements encountered is
relatively complex. Three assumptions are usually used to simplify the analytical deriva-
tions. Firstly, we will assimilate the human body to a non-elastic liquid medium in which
the US waves propagate. The proportion of water in the human body helps to legitimize
this hypothesis and to perform many experimental measurements in water-filled tanks.
The second assumption is that the waves obey the principle of linearity. However, we
should keep in mind that although this assumption holds, in many imaging context the
interaction between the wave and the tissues can be highly nonlinear: it is also the basis
for harmonic imaging, a major current technique for improving US image quality. Fi-
nally, we will consider here that the support materials for propagation are lossless. This
assumption is obviously wrong and will be corrected later.

To establish propagation equations, an US longitudinal wave is considered moving in
a homogeneous medium. We should note that, when the particles move forth and back
in the same direction as the US wave is travelling, the US wave is called a longitudinal
wave. In medical ultrasound, waves mostly propagate in soft tissues. At time t, a particle
belonging to the medium located at position (x, y, z) moves forth and back along the axis
of propagation z, and thus depends on (x, y, z, t). The movement speed v(x, y, z, t) can
then be obtained by differentiating the displacement with respect to time in the ideal
incompressible fluid. Similarly, these disturbances generate a local acoustic pressure
p(x, y, z, t) and in these conditions, in a homogeneous medium the propagation equation
of US waves can be written as

∇2p = 1
c2
∂2p

∂t2
(1.1)

where ∇2 is the Laplacian operator defined as
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∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . (1.2)

The wave equation is sometimes involving the Alembertian operator � = 1
c2
∂2

∂t2
−∇2

turning into

�p = 0. (1.3)

The propagation waves come from the solution to (1.2) or (1.3). Although, the
analytical solution cannot be easily obtained in the general case, it can be written in
a more direct manner depending on the geometry of the wave. Under the assumptions
(near or far field, focal area or not), the wave will be considered as a plane or a spherical
one. The corresponding wavefronts, that is to say the phase surfaces during propagation,
are illustrated in Fig. 1.3.

Figure 1.3: (a)Plane Wave, (b)Spherical Wave [Morin 2013a].

Plane Wave
The geometry of a plane wave is the simplest of all: the wave surface is plane and
the changes over time in only one spatial direction which is the propagation axis. For
example, if p(x, y, z, t) is constant for any x and y for a given z, then p(x, y, z, t) = p(z, t)
propagates along z-direction and (1.1) becomes an one dimensional wave equation as

∂2p

∂z2 = 1
c2
∂2p

∂t2
(1.4)

Its general solution can be written as

p(z, t) = p+(t− z

c
) + p−(t+ z

c
). (1.5)

Therefore, there are two components in the wave, the forward travelling wave p+(z, t)
propagating toward positive z and the backward travelling wave p−(z, t) evolving to-
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wards negative z.

Spherical Wave
In an isotropic material, a spherical wave can be generated by a small, local dis-
turbance in the pressure. A spherical wave depends only on time and the radius
r =

√
x2 + y2 + z2. In this case, the pressure travelling in the radial direction can

be shown to verify

1
r

∂2

∂r2 (rp) = 1
c2
∂2p

∂t2
(1.6)

The general solution to this spherical wave equation can be written as

p(r, t) = 1
r
p+(t− r

c
) + 1

r
p−(t+ r

c
) (1.7)

Similar to (1.5), there are also two components. p+(r, t) represents the outward travelling
wave propagating toward outward direction and p+(r, t) represents the inward travelling
wave evolving towards inward direction. We observe that the structure is similar to the
one of plane wave equation, except for the factor 1

r which cause spherical wave to lose
amplitude as it propagates radially outward. This is due to the conservation of the to-
tal energy and the increased surface of the wave edges as one moves away from the source.

1.2.3 Reflection/Transmission at interfaces

The spread of US waves and their behavior at the interfaces between two different
acoustic environments may be considered as reflection and transmission in the context
of geometrical optics.

Figure 1.4: Illustration of Descartes law for the optical geometry [Kouamé 2015].

According to the geometrical optics shown in Fig. 1.4, when an US wave (incident
wave in the figure) meets the interface between two mediums of different mechanical
properties, i.e. the speed of sound (see Table 1.2), part of the energy will be transmitted
into the second medium while part of it will be reflected as an echo. For the transmission
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of US waves, the big difference between the two mediums will produce a great energy
loss. From the Table 1.2, we may consider that in most biological tissues, the speed of
sound is approximately 1500 m/s which is very different from the one in the air. For this
reason a gel is usually applied on the skin in order to avoid the interact between the air
and the tissue.

In most cases, there are two kinds of US waves reflections during imaging process.

Reflection on a plane surface: specular reflection (mirror effect)
This kind of reflection happens when the transmitted ultrasound wave encounters an
interface whose size is much bigger than the US wavelength. In this case, when θi is
equal to 0, the transducer can receive the maximum reflected US wave, as shown in Fig.
1.5 (a) .

Reflection on a rough surface or on very small targets: diffuse reflection
In contrast, when the dimension of the target is small compared to the US wavelength,
the wave will be scattered in all the direction. This kind of reflection is also called
scattering, the target is then called a scatterer. These scatterers do not reflect but they
vibrate as small spherical particles giving rise to spherical wave in all the directions.
The amplitude of this spherical wave (called back-scattered wave) is a fraction of the
incident wave. The diffuse reflection is the basis of many concepts in medical imaging.
In fact, the "noisy" nature or the "speckle" of US images comes from it. Moreover, the
tissues are often modelled as an aggregate of tiny point scatterers as the one shown in
Fig. 1.5 (b). In the case of US waves at low frequencies, whose wavelengths are usually
long, the diffuse reflection is more likely to appear.

Table 1.2: Acoustical characteristics for some materials [Kouamé 2015]

Medium Density
kg/m3

Speed of sound
m/s

Characteristic acoustic
impedance
kg/m2 · s

Air 1.2 333 0.4× 103

Blood 1.06× 103 1566 1.66× 106

Bone 1.38− 1.81× 103 2070− 5350 3.75− 7.38× 106

Brain 1.03× 103 1505− 1612 1.55− 1.66× 106

Fat 0.92× 103 1446 1.33× 106

Kidney 1.04× 103 1567 1.62× 106

Lung 0.40× 103 650 0.26× 106

Liver 1.06× 103 1566 1.66× 106

Muscle 1.07× 103 1542− 1626 1.65− 1.74× 106

Spleen 1.06× 103 1566 1.66× 106

Distilled water 1.00× 103 1480 1.48× 106
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Figure 1.5: Two kinds of reflections. (a) Specular reflection (mirror effect), (b) diffuse
reflection [Kouamé 2015].

1.2.4 Attenuation

While propagating, the amplitude of an US wave decreases. This wave amplitude loss is
called attenuation. US waves are attenuated over time by several mechanisms: absorp-
tion (dissipation of energy converted into heat), diffusion (creation of secondary waves)
and mode conversion (transverse wave transformation or shear). From section 1.2.2, we
know that p(z, t) represents a forward plane wave who is travelling in +z direction. Let
us denote p(0, t) by

p(0, t) = A0s(t) (1.8)

where A0 is the original amplitude of the wave, and s(t) represents the US wave.
Consider only the forward traveling wave p+(z, t) in (1.5) for the moment, in the absence
of attenuation, i.e. the ideal case,

p(z, t) = A0s(t− z/c) (1.9)

However, because of the attenuation, we actually have

p(z, t) = A(z)s(t− z/c) (1.10)

where A(z) is the amplitude of the wave depending on the z-position. The amplitude
decay is usually modelled as

A(z) = A0e
−αLz (1.11)

where αL is the amplitude attenuation factor expressed in m−1 or Nepers/cm. From
(1.11), we have

αL = 1
z
ln(A(z)

A0
) (1.12)

Since generally the gain in amplitude is expressed in dB, the amplitude attenuation
factor in dB/cm is defined by
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α = 20log10(e)αL ≈ 8.69αL (1.13)

where α is called attenuation coefficient.
Moreover, the attenuation coefficient depends on the frequency f of the wave, the

model generally admitted to represent their relation is

α(f) = βfm (1.14)

where m is slightly greater than 1 for most biological tissues. In other words, an US
wave with higher frequency attenuates faster, thus its depth of penetration is smaller.

Time Gain Compensation (TGC)
Time Gain Compensation (TGC) is a widely known enhancement mechanism to reduce
the effect of attenuation in US imaging systems. Its principle is to divide the image
into bands which are orthogonal to the direction of propagation and involve a variable
gain to each band. The adjustment must be made to achieve a gray level which is
approximately globally uniform. Figure 1.6 provides an overview of this approach in
the case of 4-zone correction. Each zone has an adjusted gain to compensate locally the
average loss. Finally, if the dynamics of an ultrasound imaging device is known, then
its maximum exploration depth can be determined, that is to say, the distance beyond
which US wave will not have enough energy to be captured by the transducer.

(a) (b)

Figure 1.6: Principle of gain compensation over time. (A) The exponential decay in dB
is offset by a gain of the same shape approximated by zones. (B) Effect resulting from
loss compensation [Prince 2006].

1.2.5 Doppler Effect

Aside from the reflection/transmission and attenuation, the Doppler effect of US waves
is also very important allowing the development of Doppler Ultrasound (see section
1.3.1.4). Doppler effect describes the change in frequency of a wave for an observer
moving relatively to the source of the wave. For example, this change can be commonly
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heard when a vehicle sounding a siren approaches, passes, and recedes from an observer.
The frequency of the received wave will be higher during approach, identical at instant
of passing by and lower during recession.
In Fig. 1.7, we show a simple example of Doppler ultrasound imaging. The transducer
emits the US wave at the frequency of fe which transmits at the speed of c. v is the
velocity of blood flow and θ is the angle between the US wave propagation and the blood
flow. Because of the Doppler effect, the Doppler shift will happen. That is, the received
US wave will have a different frequency fd. Since the variation in frequency is due to the
movement of the blood while the wave is not modified and its wave length is preserved,
we can compute the Doppler frequency fd as 2fe‖v‖cosθ

c .

Figure 1.7: Doppler ultrasound effect.

1.3 Ultrasound image formation

As described in the subsection above, US waves are produced by a piezoelectrical trans-
ducer and then transmitted, reflected, attenuated. To form an US image, the US echos
will still need to be received and interpreted. In this section, we will describe the main
principles of US image formation.

1.3.1 Ultrasound images modes : A, B, M, Doppler

Once the US echos are acquired by the US probe, there are many ways to view the results
for the user depending on the characteristics of the probe, the scope and the physical
properties of the tissues to be imaged.

1.3.1.1 A-Mode

A-mode, denoting the Amplitude Mode, is the starting point of US imaging systems since
it consists of displaying the amplitude of 1D echoes of a single pulse, after detection of
their envelope, as a function of the distance it has traveled (or equivalently the travel
time) in the direction of propagation z.
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1.3. Ultrasound image formation

The transducer firstly emits an ultrasonic pulse and then it runs the receiver for
the remainder of the cycle time to capture the echoes from the tissue. These pressure
waves picked up by the transducer are converted to electrical current by the piezoelectric
element and the evolution of this electric current over time forms the Radio Frequency
line (RF line). An example of RF line together with the corresponding detected envelope
signal is shown in Fig. 1.8.

One can thus observe a typical signal in A-mode with the first detected peak corre-
sponding to the initial echo of the transmitted pulse. All these peaks can bring the user
information about the structure of the analyzed medium: penetration into the human
body at the skin, the interfaces of the organs, etc.

Figure 1.8: Scheme for obtaining the A-Mode.

1.3.1.2 B-Mode

To form a 2D US image, a typical operation is to move (mechanically or electronically)
the active area of the transducer according to the lateral axis x. One RF 1D line
corresponds to one column of the 2D US image. The scanning can be done in several
ways and affects the outlook of the final image. The US image composed by multiple
RF lines is also called RF image, see Fig. 1.9(a). We may remark that the RF image
is difficult to interpret visually. A common way to improve its visibility is to process
envelope detection followed by logarithmic compression to reduce the dynamics of the
image. The dynamics of the image is usually reduced from 120 to 60 dB to suit human
vision. The relationship between RF and B-mode image is illustrated in a thyroid image
in Fig. 1.9.

1.3.1.3 M-Mode

The M-mode, also known as Time Motion or TM-Mode, aims at displaying the juxtapo-
sition of 2D A-mode signals over time. Every A-mode signal is translated in gray scale
as a column of the image and its temporal evolution can be followed in the horizontal
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Figure 1.9: Relationship between RF and B-mode image for a thyroid image
[Basarab 2008]. (a) RF image, (b) B-Mode image, (c) an extraction of axial profile,
RF signal in blue and corresponding envelope in red.

direction, see Fig. 1.10 (a). Thus, the M-mode image can represent moving structures
over time. Initially a 2D image is acquired and a single scan line is placed along the area
of interest, see Fig. 1.10 (b). The M-mode will then show how the intersected structures
move toward or away from the probe over time.

(a) (b)

Figure 1.10: (a) Scheme for obtaining the M-Mode, (b) an M-Mode example in cardiac
imaging [Szabo 2004].

1.3.1.4 Doppler mode

Doppler Ultrasound imaging is based on the Doppler effect as described in the previous
section 1.2.5. It can be used to detect the flow in a vessel, the direction of the flow and
its type (arterial or venous, normal or abnormal). Moreover, it is able to measure the
flow velocity. Compared to other modes, the Doppler US requires higher frame rate.
However, higher frame rate usually turns into lower resolution which will be discussed
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in a later section.
The Doppler US instrument has been developed rapidly from Continuous Wave (CW)
Doppler to Pulsed Wave (PW) Doppler, Duplex Doppler, Color Doppler and Power
Doppler. We hereby give an example of Duplex Doppler in Fig. 1.11. For Duplex
Doppler, both B-mode and Doppler need to be displayed. The scanner has to be able
to switch between imaging and Doppler modes at a sufficiently high rate to permit real-
time "duplex" imaging at a somewhat reduced frame rate. Although this is sometimes
at the expense of signal-to-noise performance of the Doppler system, the facility of
simultaneous imaging and Doppler is useful when there are slow movements (such as
those of respiration or of a fetus) making the positioning of the Doppler volume difficult.

Figure 1.11: Duplex Doppler US image showing both B-mode image and the doppler
image [Kouamé 2015].

1.3.2 Ultrasound acquisition schemes

Although in some US imaging modes (such as A and M modes), the 1D signal in the
direction of propagation which is called axial direction will be enough, it is necessary to
move the transducer assembly in a second direction which is called lateral direction to
form 2D images. For 3D imaging, the third dimension (azimuthal direction) will also
be necessary. This kind of scanning may be performed mechanically in the case of a
single-element probe (Fig. 1.12) or electronically in the case of a multi-element probe.

In practice, the probe used by the physician remains stationary during a short period
of time of image acquisition. In the case of a single-element transducer, an electric motor
located inside the probe moves physically the element. In the case of a multi-element
piezoelectric array, scanning may be performed by stimulating a portion of the elements
and moving electronically this active zone via the beamforming techniques explained in
the subsection below.
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Figure 1.12: Ultrasound acquisitions with a single element transducer. (a) Rectangular
image, (b) sector image and (c) circle image [Kouamé 2015].

3D imaging. Since the anatomy is usually 3D, the medical doctors usually need to
combine mentally several 2D images in order to obtain a 3D representation of the organ
anatomy. In order to overcome this limitation in 2D US imaging, 3D US imaging systems
have been developed. There are also various kinds of acquisition of 3D US images. The
existing strategies include the use of linear arrays in mechanical and free-hand scanning
and the use of 2D matrix arrays. For the former two ways of acquisition, a 2D transducer
(shown in Fig. 1.13) is used followed by dedicated post-processing. Usually, a large
number of US lines need to be acquired, which brings a trade-off between data volume
and/or frame rate and spatial resolution (see section 1.3.4). The matrix array transducer
(shown in Fig. 1.13) was designed to overcome the speed limitations and the need to
move by hand. The main challenge of this technique is to physically connect all the
elements to wires and activate them on transmission/reception modes. Since this kind
of technology is complex, few companies provide it and these systems are not yet common
in the clinical routine [Lorintiu 2015a].

1.3.3 Focusing and beamforming

The summation of all waves generated by the piezoelectric crystals forms the ultrasound
beam. The ideal ultrasound beam is usually considered as narrow as possible, similar to
a laser, as shown in Fig. 1.14 (a). However, as one can expect, this ideal situation is
not possible in practice, thus influencing the lateral resolution of US images (see section
1.3.4). It is necessary to concentrate the energy emitted by the transducer in a given
area in order to better identify local echoes, see Fig. 1.14 (c). The Focal Zone is the area
in the ultrasound beam that has the smallest beam diameter. Through the technique
of beamforming, the spatial shape of the pulse can be adjusted to make it as close as
possible to a narrow beam. There are two kinds of beamforming, one is called mechanical
beamforming and the other one is electronic beamforming.
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Figure 1.13: A 2D matrix array transducer.

Figure 1.14: Shapes of ultrasound beams. (a) ideal beam, (b) unfocused beam, (c)
focused beam.

Mechanical beamforming
In this case, the focusing can be performed by mechanically adding a concave lens on the
front of the single element transducer. However, the beam will tend to diverge (increased
beam width) once it passes the focal zone.

Electronic beamforming
For multi-element probes, the focusing can be done by electronic beamforming tech-
niques. The main principle of this kind of technique is to play with the offset (emission
or reception) of each piezoelectric element signal in order to optimize performance of an
area and/or a direction.
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The most commonly used electronic beamforming technique is called delay and sum
(DAS) beamforming. The idea is to transmit or to receive the US waves taking into
account the relative delay between different elements of the piezoelectric array and sum
all these signals consistently to improve the image quality of an area and/or a particular
direction, as it is schematically illustrated in Fig. 1.15. The focusing can be done in
a conventional manner to a focal point or set dynamically by taking into account the
evolution of this focus area over time. The data acquired before receiving beamforming
is called raw RF data or channel RF data and the one after beamforming in reception
is usually called beamformed RF data.

(a)

(b)

Figure 1.15: Delay and sum beamforming. (a) in emission, (b) in reception
[Lorintiu 2015a].

1.3.4 Spatial Resolution

Spatial resolution represents the ability of an US system to distinguish two structures
close to each other. In other words, it determines the degree of image clarity. The spatial
resolution of an US system is determined by the axial and lateral resolutions, both of
them are closely related to the ultrasound frequency and bandwidth.
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1.3.4.1 Axial Resolution

Axial resolution, also called depth resolution, refers to the ability to display and dis-
tinguish two structures that are close together and lie along the axis of the ultrasound
beam. Axial resolution is directly affected by the frequency of the transducer and the
pulse length. Ultrasound waves are generated in pulses and each pulse commonly consists
of 2 or 3 sound cycles of the same frequency. The pulse length is the distance travelled
per pulse before vanishing. A high frequency wave with a short pulse length will yield
better axial resolution than a low frequency wave, see Fig. 1.16.
From an instrumental point of view, the axial resolution can be improved mainly by
increasing the frequency of the emitted US wave. However, we should keep in mind that
if the probes run from 20 to 30 MHz, the depth of penetration will be decreased because
of the phenomena of attenuation (see section 1.2.4). Instrumental techniques based on
increasing the frequency of the probe have now reached their physical limit related to
technological considerations, like the clock frequency of computer processors.

(a) (b)

Figure 1.16: (a) A high frequency wave with a short pulse length, (b) A low frequency
wave with a long pulse length.

1.3.4.2 Lateral Resolution

Lateral resolution represents the ability to display and distinguish two structures that
are close together and lie in a plane perpendicular to the ultrasound beam. Fig. 1.17
illustrates an example of three structures in a same lateral line. The distance between
structure 1 and 2 is within the beam width, making the returning echoes overlapping
with each other side by side. Thus, we cannot distinguish these two structures in the
display image anymore.
From this example, one can conclude that the lateral resolution in an ultrasound beam
varies with beam width. Therefore, it can be improved in two ways. The first one is
to further reduce the beam width by adjusting the focal zone. Lateral resolution is the
best at the focal zone, where the beam is the narrowest. Using beamforming techniques,
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the focusing can be modified to give an optimal resolution in the region of interest. The
second one is to increase the frequency of the probe. The higher the frequency is, the
shorter wavelenth the US wave is and the thinner the beam is. It is therefore clinically
important to choose the highest frequency transducer possible to keep the beam width
as narrow as possible in order to provide the best possible lateral resolution. However,
as it was mentioned above, one must strike a right balance between resolution and
attenuation. Finally it is possible to combine the two ways of improving lateral solution.

Figure 1.17: An example for lateral resolution.

Point Spread Function (PSF) A conventional approach to evaluate the resolution of
an US imaging system is to analyze its PSF which contains complete information about
the spatial resolution. The PSF represents the response of an US imaging system to a
single point object. Using a Gaussian 1D PSF as example in Fig. 1.18, there are three
different situations: the source points imaged by the acquisition system are separated, or
at the limitation of resolution, or mixed. The Full-Width-at-Half-Maximum (FWHM)
value is the common way to quantify the spatial resolution.

Regarding the 2D case, Fig. 1.19 displays an example of simulated US 2D PSF using
Field II [Jensen 1996]. We can see 20 different PSFs in the same image, i.e., the response
of the US imaging system to 20 points at different depths. We may remark that the
PSF represents both axial and lateral resolutions. While the frequency, the probe, and
the focal zone are directly related to the spatial resolution as discussed above, they have
thus a key influence on the PSF. Playing an important role in our research about image
resolution enhancement, the PSF will be discussed in details in the next chapter.
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(a) (b)

(c)

Figure 1.18: Three different cases of resolution in terms of FWHM: the source points are
(a) separated, (b) at the limit of resolution and (c) confused. According to [Prince 2006].
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Figure 1.19: US PSFs simulated by Field II with a frequency of 3 MHz. In the graphs A
- C, 64 of the transducer elements was used for imaging, and the scanning was done by
translating the 64 active elements over the aperture and focusing in the proper points.
In graph D and E 128 elements were used and the imaging was done solely by moving
the focal points. Graph A uses only a single focal point at 60 mm for both emission and
reception. B also uses reception focusing at every 20 mm starting from 30 mm. Graph
C further adds emission focusing at 10, 20, 40, and 80 mm. D applies the same focal
zones as C, but uses 128 elements in the active aperture. The focusing scheme used for
E and F applies a new receive profile for each 2 mm [Jensen 1996].
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1.4 Open challenges
Compared to other devices, ultrasound imaging has many advantages such as the high
flexibility, low cost and noninvasive nature. It is therefore positioned as a preferred
medical imaging modality. However, it still faces two main challenges listed below.

1.4.1 Image quality enhancement

All the advantages of US imaging come at a price - the reduced resolution and contrast
compared to other image modalities. While the quality of a medical image determines
the ability of a device to view the details of a biological structure, potentially important
for diagnosis, it is facing physical and technological limitations today: the technological
limitations related to the manufacture of high frequency piezoelectric elements, and the
physical limitation related to the spread of US in tissues that it can hardly penetrate
deeper at higher frequencies.
Many studies have therefore been undertaken to improve US image quality using post-
processing approaches. As a typical class of these techniques, state-of-art deconvolution
methods in US will be presented in Chapter 2.

1.4.2 Higher frame rate and/or less acquired data volume

The development and application of Doppler US imaging and 3D imaging bring a growing
demand for higher frame rate or less data volume acquisition. While US imaging is
still considered a "real-time" modality, it may however suffer from the frame rate. For
example, in Doppler imaging and 3D imaging, the frame rate is strongly decelerated
and the data volume is substantially increased. Moreover, the frame rate and the data
volume usually conflict with the spatial resolution. Therefore, how to keep a reasonable
spatial resolution when accelerating the frame rate or reduce the data volume is a new
challenge in US imaging.
Instrumental solutions related to the emission modes like ultrafast imaging [Tanter 2014]
have been proposed lately to overcome this issue. Another possible solution for post-
processing would be the compressive sampling framework which will be presented in the
next chapter.
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The second chapter focuses on describing compressive sampling and deconvolution,
two frameworks that will be used in this thesis. Compressive sampling, which aims at
long term accelerating the frame rate or reduce the data volume, is firstly presented. Its
theory, the state of art methods and its application in ultrasound imaging are included.
We will then introduce the deconvolution by highlighting its effect on image quality
enhancement. Numerous deconvolution algorithms applied in ultrasound imaging will
be discussed. Finally, the main contributions of this thesis will be briefly highlighted in
the last section of this chapter.

2.1 Compressive sampling

To accomplish the objective of less data volume, compression represents the technique of
choice. Once the image is found to be sparse or to have a compressed representation in
a basis or a frame, the values of the largest coefficients will be preserved and the rest of
the coefficients discarded. Thus the data volume is reduced. However, since the image
still needs to be completely acquired, the frame rate is not reduced due to compression.

In this context, compressive sampling is considered as one of the most promising
techniques to reduce the acquired data volume (potentially accelerating the frame rate)
without degrading the image quality.

2.1.1 Problem Formulation

Conventional approaches to sample signals or images follow the Shannon-Nyquist theo-
rem. According to the Shannon-Nyquist sampling theorem, the sampling rate must be
at least twice the maximum frequency presented in the signal. However, the theory of
Compressive Sampling makes it possible to go against the common knowledge in data
acquisition.

2.1.1.1 Direct Model

Compressive Sampling (CS), also known as compressed sensing, allows to recover, via non
linear optimization routines, an image from few linear measurements (below the limit
standardly imposed by the Shannon-Nyquist theorem) [Donoho 2006, Candès 2006a].
The direct model of CS is

y = Φr (2.1)

where y ∈ RM corresponds to the M compressed measurements of signal or image
r ∈ RN , Φ ∈ RM×N represents the acquisition matrix, also called sampling matrix, with
M << N .

The CS theory demonstrates that r, containingN samples or pixels, may be recovered
from theM measurements in y provided two conditions: i) the image must have a sparse
representation in a known basis or frame and ii) the measurement matrix and sparsifying
basis must be incoherent [Candès 2008]. These two concepts are detailed hereafter.
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2.1. Compressive sampling

2.1.1.2 Sparsity

When a signal or an image can be expressed as a linear combination of just a few non-
zero values in a known basis, frame or dictionary, we can say that the signal/image is
sparse.

r = Ψa (2.2)

where a is the sparse representation of r in the basis of Ψ. If a only contains K(K < N)
non zero coefficients, r is called K-sparse.

Although sparsity is almost never reachable due to the presence of noise, one can find
that many natural signals/images have almost sparse representations in certain basis.
That is, most of the coefficients are small and almost the whole energy of the image is
contained by a small number of elements. For example, the image in Fig. 2.1(a) has the
coefficients in wavelet domain as Fig. 2.1(b) (Haar wavelet, 3 level). One may remark
from the image that most coefficients are small, thus the relatively few large coefficients
can store most of the information. By taking only 5% of the largest coefficients, most of
the information in the original image can be reconstructed shown as Fig. 2.1(c).

Figure 2.1: (a) Original image (256×256) and (b) its sorted wavelet transform coefficients
in log-scale. (c) The reconstruction obtained by setting all the coefficients in wavelet
domain to zero except the 5% largest.

Aside from the wavelet basis, there are other known basis such as Fourier, curvelets,
and wave atoms that have already been used in the literature to provide sparsity [Candès 2005,
Candès 2006b, Candès 2008, Baraniuk 2007]. If certain characteristics of the signal/image
are known, the sparsest representation basis will be chosen among known basis. Oth-
erwise, adaptive dictionaries could be obtained through dictionary learning to build
more sparse representation [Duarte-Carvajalino 2008]. However, for known basis, math-
ematical properties are usually well known and the associated transforms provide fast
implementations [Mallat 1999].

2.1.1.3 Incoherence

The coherence between the sampling matrix Φ and the sparsifying basis Ψ is defined as

25



Chapter 2. Compressive sampling and Deconvolution

µ(Φ,Ψ) =
√
N · max

16k,j6N
|〈φk, ψj〉| (2.3)

where 〈φk, ψj〉 represents the inner product between the k-th column of Φ and the j-th
column of Ψ.

The coherence above measures the largest correlation between any two elements of Φ
and Ψ [Candès 2008, Donoho 2001]. The value of µ(Φ,Ψ) drops in [1,

√
N ]. If Φ and Ψ

contain correlated elements, the coherence is large. Otherwise, it is small. Compressive
sampling is mainly concerned with low coherence pairs, in other words, incoherent pairs.

In the next subsection, we will show the importance of the incoherence between Φ and
Ψ. In subsection 2.1.2, we will review the existing techniques to compose the sampling
matrice Φ.

2.1.1.4 Sparse recovery

With the sparse representation in (2.2), (2.1) can be rewritten as

y = Aa (2.4)

where A = ΦΨ. According to CS framework, a can be recovered by solving the
following `0-minimization problem (P0):

(P0) min
a∈RN

‖ a ‖0 subject to y = Aa (2.5)

where ‖ a ‖0= #(i|ai 6= 0) representing the total number of non-zero elements
in vector a. (P0) seeks the sparsest solution to (2.1). However, solving (P0) requires
exhaustive searches over all subsets of columns of A, a procedure which is combinatorial
and has thus exponential complexity.

An alternative to (P0) is to consider the convexification of (2.5) to an `1-norm min-
imization problem, namely basis pursuit problem [Chen 2001]:

(P1) min
a∈RN

‖ a ‖1 subject to y = Aa (2.6)

where ‖ a ‖1=
∑N
i=1 |ai|. It has been proven that the (P1) problem gives an exact

reconstruction with the Restricted Isometry Property which will be detailed later.

Theorem 1 ([Candès 2007a]) Fix r ∈ RN and suppose that the coefficient sequence
a of r in the basis Ψ is K-sparse. Select M measurements in the Φ domain uniformly
at random. Then if

M > C ·µ2(Φ,Ψ) ·K · logN (2.7)

for some positive constant C, the solution to (2.6) is exact with overwhelming probability.
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2.1. Compressive sampling

From this theorem we may firstly conclude that the smaller the coherence, the fewer
measurements are needed for exact reconstruction. At the same time, the sparsity of the
signal/image is also related since a more sparse signal/image has a smaller number K.

2.1.1.5 The Restricted Isometry Property (RIP)

The theoretical results previously correspond to the noiseless case. However, in practice,
we are always in presence of noise. We will continue the discussion on CS with the more
general case:

y = Aa+ n (2.8)

where n is an additive Gaussian noise with a bounded energy. The corresponding recon-
struction can be done by using `1-minimization with relaxed constraints [Candès 2008]:

(P2) min
a∈RN

‖ a ‖1 subject to ‖ y −Aa ‖22≤ ε (2.9)

where ε is a noise related hyper-parameter.
In this context, the restricted isometry property (RIP) which allows to study the gen-

eral robustness of CS and provides a mean to evaluate the precision of the reconstruction
was introduced by Candès, Tao and others [Candès 2005, Candès 2006b, Candès 2006a,
Baraniuk 2008].

Definition 1 ([Candès 2005]) For each integer K = 1, 2, ..., define the isometry con-
stant δK of a matrix A as the smallest number such that

(1− δK) ‖ a ‖22≤‖ Aa ‖22≤ (1 + δK) ‖ a ‖22 (2.10)

holds for all K−sparse vector a.

We say that the matrix A obeys RIP of order K if δK ∈ (0, 1). To better explain
the RIP, let us take an extreme example. Suppose δK = 0, then A is an orthogonal
matrix which means that it should be a square matrix. However, in CS, A is supposed
to be a "short" and "fat" matrix, i.e., M << N . Thus RIP describes the approximate
orthogonality of the matrix of A. That is, for a matrix which obeys RIP of order K, all
subsets of K columns taken from it are nearly orthogonal. The smaller the δK is, the
closer the A is to be orthogonal.

To reconstruct the signal/image from compressed measurements, we need to guaran-
tee the distance between every two signals/images is preserved after the sampling. That
is, (1− δ2K) ‖ a1−a2 ‖22≤‖ Aa1−Aa2 ‖22≤ (1 + δ2k) ‖ a1−a2 ‖22 holds for all K-sparse
vectors a1,a2. This is how RIP connects with CS.

If RIP holds, then (P1) problem gives an exact reconstruction [Candès 2006b, Candès 2008,
Cohen 2009].
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Theorem 2 ([Candès 2006b]) Assume that δ2K <
√

2 − 1. Then the solution a∗ to
(P1) obeys

‖ a∗ − a ‖2≤ C0 · ‖ a− aK ‖2 /
√
K and

‖ a∗ − a ‖1≤ C0 · ‖ a− aK ‖1
(2.11)

for some constant C0, where aK is the vector a with all but the largest K components
set to 0.

The conclusions of Theorem 2 are stronger than those of Theorem 1. If a isK-sparse,
then a = aK , thus, the recovery is exact.

In the noisy case (2.8), the next theorem assesses a stable reconstruction of the
signal/image.

Theorem 3 ([Candès 2006b]) Assume that δ2K <
√

2 − 1. Then the solution a∗ to
(P2) obeys

‖ a∗ − a ‖2≤ C0 · ‖ a− aK ‖2 /
√
K + C1 · ε (2.12)

for some constants C0 and C1.

Theorem 3 states that the reconstruction error is proportional to the noise level of
the measurements.

2.1.2 Sampling matrices

According to RIP, for successful CS reconstruction, we need to find sensing matrices A
with the property that column vectors taken from arbitrary subsets are nearly orthogo-
nal. The larger these subsets, the better. Due to the proved connection between the RIP
and the coherence property (section 2.1.1.3) [Cai 2009], the problem turns to construct
a sampling matrix Φ which is maximally incoherent with the sparsifying basis Ψ.

Fortunately, it has been shown that random matrices are largely incoherent with any
fixed basis [Candès 2008, Eldar 2012]. Thus, a popular family of sampling matrices is a
random projection or a matrix of independent and identically distributed (i.i.d.) random
variables from a sub-Gaussian distribution such as Gaussian (2.13) or Bernoulli (2.14)
[Candès 2006c, Mendelson 2008].

φi,j ∼ N (0, 1
M

) (2.13)

φi,j :=
{

+1/
√
M with probability 0.5

−1/
√
M with probability 0.5 (2.14)
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where φi,j is the element of sampling matrix Φ at ith row and jth column. It has
been proven that this kind of sampling matrices are universally incoherent with all other
sparsifying basis. This universality property of a sampling matrix allows us to sample
a signal directly in its original domain without significant loss of sensing efficiency and
without any other prior knowledge.

However, this kind of random matrix approach usually requires very high compu-
tational complexity and huge memory buffering due to their completely unstructured
nature. It is sometimes impractical to build in hardware. To overcome this issue, an-
other class of sampling matrices was developed to have significantly more structure. For
example, the partial FFT [Needell 2009b, Candès 2007a] is well known for having fast
and efficient implementation. However, it only works well in the case when the sparsify-
ing basis is the identity matrix. The Noiselets has also low-complexity implementation
but it is designed to be incoherent with the Haar wavelet basis [Coifman 2001]. T.T.Do
[Do 2012] then proposed the structurally random matrix (SRM) to obtain its low com-
plexity, fast computation and universal incoherence with most sparsifying basis at the
same time. Since we employed the SRM in our simulations in the next two chapters, we
give a detailed description hereafter. The SRM is defined as a product of three matrices:

Φ =

√
N

M
DFR (2.15)

where R ∈ RN×N is either a uniform random permutation matrix or a diagonal
random matrix whose diagonal entries Rii are i.i.d Bernoulli random variables with
identical distribution P (Rii = ±1) = 1/2. This corresponds to the pre-randomize step
which randomizes a target signal by either flipping its sample signs or uniformly permut-
ing its sample locations. F ∈ RN×N stands for the transform step to spread information
(or energy) of the signal’s samples over all measurements. In practice, F can be fast
computable such as popular fast transforms: FFT, DCT, WHT or their block diagonal
versions. Finally, a subsample step is done through matrix D ∈ RM×N . It randomly
pick up M measurements out of N transform coefficients.

Finally more recent works proposed some deterministic sensing matrices with promis-
ing results [Naidu 2015].

2.1.3 Sparse recovery algorithms

The core problem in CS is to recover a sparse signal/image a from a set of measurements
y by solving a minimization problem such as (P0), (P1) or (P2). A variety of algorithms
have been introduced and proposed to perform fast, accurate, and stable reconstruction
of a from y. We hereby give a brief introduction and review to the existing algorithms
by classifying them into three groups: greedy methods, convex optimization-based ap-
proaches, and other techniques [Baraniuk 2011].
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2.1.3.1 Greedy methods

The intuition of sparse recovery is to find the solution to (P0). In other words, it is to
recover the sparsest a from the measurements y. It is well-known that this is an NP-
hard problem. Greedy methods tackle this problem by greedily selecting columns of the
sampling matrix Φ and iteratively approximate y. There are a lot of greedy methods for
CS reconstruction, among which the most used are the Matching Pursuit (MP)-based
methods and the Iterative Hard Thresholding (IHT).

MP has been firstly introduced in the field of signal processing by [Mallat 1993,
Mallat 1999]. The problem of MP is that the complexity grows linearly with the number
of iterations. It has been then extended to the Orthogonal MP (OMP) to upper bound
the maximum number of MP iterations [Pati 1993]. In [Tropp 2007], Tropp and Gilbert
proved that OMP can be used to recover a sparse signal with high probability using
CS measurements. However, it is ineffective when the signal is not strictly sparse.
For approximately sparse signals in a large-scale setting, the Stagewise OMP (StOMP)
proposed by Donoho in [Donoho 2012] is a better choice. Other examples of greedy
algorithms include Compressive sampling MP (CoSaMP) [Needell 2009a] and various
regularized OMP methods [Needell 2009b, Needell 2010] which have also been developed
to guarantee uniform signal recovery.

IHT is a well-known algorithm for solving nonlinear inverse problems. It starts with
an initial estimate â0 and iterates a gradient descent step followed by hard thresholding
until a convergence criterion is met. In [Blumensath 2009], Blumensath and Davies
proved that the iterations can converge to a fixed point â.

Instead of doing a exhaustive search, greedy methods compute iteratively approxima-
tion of the signal coefficients and support until a convergence criterion is met. Compared
to the convex optimization-based approach described below, they are relatively straight-
forward and fast. However, they can not always guarantee that the local optimal solution
they find is the optimal global solution.

2.1.3.2 Convex optimization-based methods

It has been proven that under certain conditions, the solution to (P1) can give an exact
reconstruction of a when there is no noise while the solution to (P2) can give a stable
one when there is noise (see section 2.1.1.5). Thus, the sparse recovery problem turns
to be a convex optimization problem.

(P2) can be also reformulated as an unconstrained problem:

min
a∈RN

‖ a ‖1 + 1
2µ ‖ y −Aa ‖

2
2 (2.16)

where µ > 0 is a Lagrange parameter which can be chosen by trial-and error, or by
statistical techniques such as cross-validation (see section 2.2.2.1). Another formulation
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of (P2) is the so-called Lasso problem:

min
a∈RN

‖ y −Aa ‖22 subject to ‖ a ‖1≤ δ (2.17)

where δ is a fixed threshold for the `1-norm term.
Since the applications of CS are usually large-scale (an image of a resolution of

1024 × 1024 pixels leads to optimization over a million of variables) and the objective
function is nonsmooth (`1 term), a lot of efforts have been made to propose and improve
the sparse recovery algorithms. The standard second-order methods such as the interior-
point methods (`1-magic [Candès 2007b], `1-ls [Kim 2007]) were proposed to solve (2.16).
They are usually accurate but problematic with the bottleneck of the calculation of the
Newton step. In this context, first-order methods are largely developed. Inspired by the
iterative shrinkage (also called soft thresholding), numerous methods in this category are
now available: the gradient projection method (GPSR) [Figueiredo 2007], the iterative
shrinkage-thresholding (IST) method [Daubechies 2004], the fixed-point continuation
(FPC) [Hale 2007], the fast IST (FIST) [Beck 2009a], etc. The shrinkage operator on
any scalar component can be defined as follows:

shrink(s, t) =


s− t if s > t,
0 if − t ≤ s ≤ t,
s+ t if s < −t.

(2.18)

This notion was then extended to that of proximal thresholding (proximity operator)
by P.L. Combbettes and J.C. Pesquet in [Combettes 2007]. More details about the
notion of proximal operator will be given in section 2.2.2.3.

Several algorithms also exist to obtain the solution to the constrained optimization
problem in (2.9). Bregman iterations have been shown as an efficient method to obtain
the solution to this constrained optimization problem and can be derived by solving a
small number of unconstrained problems [Yin 2008]. These algorithms are known to
be equivalent to the augmented Lagrangian (AL) method. The ideal of AL was intro-
duced in the 70’s, e.g. [Gabay 1976]. It was used by different authors for solving many
convex optimization problems [Eckstein 1994, Fortin 2000, Fukushima 1992, He 2002,
Kontogiorgis 1998] including the `1-minimization problem for compressive sampling, e.g.
the YALL1 method [Yang 2011]. Moreover, in [Van Den Berg 2008], the spectral pro-
jection gradient method (SPGL1) was proposed by Friedlander and Van den Berg based
on the Lasso problem in (2.17).

Convex optimization-based approaches always have a guaranteed convergence to the
global optimum. The literature of corresponding algorithms proposed in the context
of CS is vast. However, to the best of our knowledge, there is no exhaustive review
classifying or comparing all these existing algorithms. We thus consider that there is no
clear winner which would always achieve the best performance in terms of both accuracy
and speed.
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2.1.3.3 Other methods

In this section, we will review some other sparse recovery techniques which are classical
but have not been mentioned previously.

Aside from the `0-minimization in 2.1.3.1 and the convex `1-minimization in 2.1.3.2,
the `p-minimization (0 < p < 1) in (2.19) has also shown its ability for sparse recovery.
Numerical experiments in e.g. [Chartrand 2007, Chartrand 2008b, Chartrand 2008a]
have demonstrated that fewer measurements are required for exact reconstruction than
the case when p = 1.

min
a∈RN

‖ a ‖pp subject to y = Aa (2.19)

where ‖ a ‖pp=
∑
i |ai|p represents the `p-norm of a. This minimization problem

has also the noisy and unconstrained variants (2.9) and (2.16). In practice, this `p-
minimization can be carried out by various algorithms based on the Iteratively Reweighted
Least Squares (IRLS) which was firstly proposed in [Lawson 1961, Beaton 1974] for p ≥ 1
and then extended to the case of p < 1 in [Rao 1999]. Hence, the nonconvexity does not
necessarily make the problem intractable [Chartrand 2008c, Daubechies 2010].

Another new class of algorithms called approximate message passing or AMP was
firstly introduced by Donoho in [Donoho 2009]. They proposed a simple costless modi-
fication to iterative thresholding making the sparsity-undersampling tradeoff of the new
algorithms equivalent to that of the corresponding convex optimization procedures.

In addition to the algorithms mentioned above, based on variational frameworks,
another family of sparse recovery algorithms are studied in the Baysian framework,
where the sparsity constraint is incorporated by choosing a suitable sparse prior on
the coefficient vector a, e.g. [Dobigeon 2012]. Bayesian pursuit algorithms are the
Bayesian counterparts of the greedy method presented in section 2.1.3.1 [Schniter 2008,
Zayyani 2009]. There are also Bayesian methods that employ some other fixed and
computationally convenient family of priors such as Laplacian or α-stable distribution
[Ji 2008, Babacan 2010]. Sparse Bayesian learning (SBL) used a prior that is learned
from the data [Tipping 2001, Wipf 2004, Wipf 2007]. The algorithms in this category
are usually robust but computationally expensive.

2.1.4 Application to Ultrasound imaging

As described in Chapter 1, despite its intrinsic rapidity of acquisition, several US ap-
plications such as Doppler or 3D imaging may require higher frame rates than those
provided by conventional acquisition schemes or may suffer from the high amount of
acquired data. In this context, CS framework appears as a natural solution to overcome
these issues.

Since the first works published in 2010 [Friboulet 2010, Quinsac 2010a, Quinsac 2010b],
there have been several studies devoted to this topic to date. In this subsection, we will
review the existing works within two aspects, the sparsity study and the incoherent
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acquisition, which are two key elements for successful CS reconstruction as discussed
previously in section 2.1.1.1.

2.1.4.1 Sparsity in US imaging

Existing works have proposed diverse strategies to apply CS framework in different
stages of US imaging. Thus, the recovery targets are different, resulting in various
sparsity assumptions detailed as below.

Scatterers The works in [Tur 2011, Wagner 2012, Chernyakova 2014, Schiffner 2012,
Schiffner 2011] employ CS based on the sparse assumption of scatterer map.

In [Schiffner 2012, Schiffner 2011], the authors propose to image using only a single
plane wave emission. The inverse scattering problem is increasingly ill-posed in this case.
Thus, they established and investigated a solution based on CS. The approach accounts
for the lack of measurement data by assuming sparsity of the scatterers in an arbitrary
basis. In their experiments, they have chosen different sparsifying basis such as wave
atoms, Daubechies-20 and curvelets, see Fig. 2.2.

In [Wagner 2012], a compressed beamforming method based on the finite rate of
innovation model [Tur 2011, Gedalyahu 2011] was introduced. In [Mishali 2011], CS
and Xampling ideas were developed to reduce the number of samples needed to recon-
struct an image containing strong reflectors. A drawback of this method is its inability
to treat speckle, which is of significant importance in medical imaging. Chernyakova
and Eldar then extended it to a general concept of beamforming in frequency domain
[Chernyakova 2014]. In their works, the authors assume the scatterers are sparse in the
direct spatial domain.

Raw RF signals Friboulet et al. and Liebgott et al. studied the feasibility of CS
for the reconstruction of raw RF data, i.e., the 2D set of channel RF data gathered at
the receive elements [Friboulet 2010, Liebgott 2013]. These raw RF data were subsam-
pled by removing varying amounts of samples and providing the input raw RF to CS
reconstruction. Beamforming was then applied to these reconstructed channel RF data
using the delay and sum beamformer. `1-minimization based on three sparsifying bases,
Fourier, Daubechies wavelets and wave atoms have been employed. The obtained results
showed that the wave atoms give the best reconstruction result.

Beamformed RF signals Most of the works exploring the application of CS in US
imaging concern the beamformed RF signals, i.e., the US RF images, are sparse in given
basis.

In [Quinsac 2010a, Quinsac 2012, Dobigeon 2012, Basarab 2013], the authors con-
sider the US RF images have a sparse representation in Fourier domain (see Fig. 2.3),
while in [Chuo 2013], the RF signals are considered to be sparse in the wavelet domain.

In [Achim 2010, Achim 2014, Achim 2015], `p-minimization for CS reconstruction
has been employed to adjust to the assumption of α-stable distributed beamformed RF
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Figure 2.2: Result from [Schiffner 2012]. (a) synthetic aperture (SA; 128 emissions, each
of them is emitted from an element and received by all the elements [Jensen 2006]) result
with the region of interest indicated, (b) delay and sum, (c) filtered backpropagation
[Jensen 2006], (d)-(f) CS results with sparsifying basis of wave atoms, Daubechies-20
and curvelets.

signals. The results showed a significant increase of the reconstruction quality when
compared with `1-minimization algorithms.

Aside from some fixed and known basis, adaptive overcomplete dictionaries could
also be used to do the CS reconstruction in US image. The authors in [Lorintiu 2014,
Lorintiu 2015b] built sparser representations through dictionary learning for 3D US im-
age reconstruction. However, compared to the fixed and known basis, the resulting
dictionaries are more computationally expensive.

2.1.4.2 Incoherent acquisition in US imaging

The existing works mentioned above, according to their different CS application scenar-
ios, exploit three different ways to achieve incoherent measurements.
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Figure 2.3: Result from [Quinsac 2012]. (a) A fully sampled US RF signal, (b) its sparse
representation in Fourier domain where most of the coefficients are equal or close to
zero, (c) Compressed US RF signal (gray), corresponding to 30% of the largest Fourier
coefficients, the rest of them being set to zero. The difference between the full and
compressed US RF signal (black) is minimal.

Plane wave In [Schiffner 2012, Schiffner 2011], the authors applied the CS to regu-
larize the inverse scattering problem modelling the imaging procedure based on single
plane wave emission. Thus, the sampling matrix in this case is related to the plane wave
propagation.

Xampling The acquisitions in [Wagner 2012, Chernyakova 2014] were obtained using
a Xampling-based hardware. It is able to compute low-rate samples of the input from
which a certain set of DFT coefficients can be computed on the outputs. The Xampling
idea was proposed in [Mishali 2011] for sub-Nyquist sampling.

Random matrices So far, there are two strategies for incoherent acquisition of pre-
beamformed or beamformed US data.

Gaussian projections The first one adopted the existing sampling matrices de-
scribed in section 2.1.2 and take the linear projection of the data on sub-Gaussian random
matrices [Friboulet 2010, Achim 2010, Achim 2014, Achim 2015]. Their universal inco-
herence with most of the sparsifying basis allow the measurements for exact recovery.
However, in practice, these random sampling matrices are difficult to implement.
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Bernoulli masks The second strategy is to apply a random mask to the US data.
The mask, of the same size as the original US data, have entries ones at random positions
and zeros elsewhere. However, switching rapidly from one position to the next one in this
kind of sampling pattern might be also difficult from the instrumentation point of view.
The authors in [Quinsac 2012] proposed to choose uniformly random several lines or
columns of the mask and set them all zeros. On the remaining lines or columns, random
points are set to zeros and the other to ones (see an example in Fig. 2.4). In other
words, the mask allows to skip RF lines in 2D or 3D. The results in [Dobigeon 2012,
Basarab 2013, Liebgott 2013, Lorintiu 2014, Lorintiu 2015b] have all showed successful
CS recovery using this kind of strategy.
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Figure 2.4: An incoherent acquisition example using Bernoulli random vectors. (a) Orig-
inal US image, (b) sampling mask (M/N=0.5), (c) measurements, (d) CS reconstruction
[Quinsac 2012].

2.1.5 Conclusion

The fundamental concepts of CS theory, the existing research on CS theory and its
application to US imaging have made it possible to recover US images from few linear
measurements (below the limit standardly imposed by the Shannon-Nyquist theorem),
thus aiming at the objective of higher frame rates or less amount of acquired data.
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However, there are still two problems remaining. i) The noise, the incomplete sparsity
or the incomplete incoherence make it difficult to get exact CS recovery. For a low
number of measurements, the reconstructed image tends to be less good than the fully
sampled ones, ii) even if it is possible to obtain an exact CS recovery, the quality of the
recovered US images is at most equivalent to those acquired using standard schemes and
as described in section 1.4. Their quality is one of the open challenges US imaging is
facing nowadays.

In the next subsection, we will present the deconvolution technique as one of the
main post-processing approaches in US imaging for image quality enhancement.

2.2 Deconvolution

Deconvolution, also called deblurring, is a widely used technique in signal and image
processing. It represents a valuable tool that can be used for improving image quality
without requiring complicated calibrations of the real-time image acquisition and pro-
cessing systems. Since the first proposition of convolution model for US images in 1980
(see [Fatemi 1980]), deconvolution methods have been intensively considered to enhance
the quality of US images.

2.2.1 Problem Formulation

Based on the first order Born approximation, the US RF image is assumed to follow a
2D convolution model as below [Jensen 1992, Ng 2007b]:

r = Hx+ n (2.20)

where r ∈ RN represents hereby an RF US image, i.e. the observation from the
acquisition device in a general case, H ∈ RN×N is a Block Circulant with Circulant
Block (BCCB) matrix related to the 2D PSF of the system and x ∈ RN represents
the lexicographically ordered Tissue Reflectivity Function (TRF) [Jensen 1991], i.e. the
image to be recovered. n ∈ RN is a zero-mean additive white Gaussian noise with
variance σ2. Since BCCB matrices are diagonalized using the 2-D Discrete Fourier
Transform (DFT), (2.20) can be expressed in the discrete frequency domain which is
very useful for practical computation.

The objective of the deconvolution is to recover x from r. It is not an easy task
because i) it is an ill-posed inverse problem and consequently requires proper incorpo-
ration of prior knowledge about the TRF x into the restoration process, ii) the PSF is
usually unknown. The methods assuming the PSF known are categorized as non-blind
deconvolution, in opposition to blind deconvolution where the PSF is jointly estimated
with x. In the next subsection, we will first assume the PSF known and discuss about
the regularizations and corresponding existing non-blind deconvolution algorithms.
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2.2.2 Regularization and recovery algorithms

Regularization should be incorporated into the deconvolution problem because of its
ill-posedness. Thus, the TRF can be estimated by solving the minimization problem
below

min
x∈RN

P (x) subject to ‖ r −Hx ‖22≤ κ (2.21)

where P (x) is the regularization term and κ is an "SNR-dependent" hyper-parameter.
The corresponding unconstrained form of this minimization problem is

min
x∈RN

αP (x)+ ‖ r −Hx ‖22 (2.22)

where α is called the regularization parameter.
From a statistical point of view, in the case of Gaussian distributed noise, this min-

imization problem is also a Maximum A Posteriori (MAP) estimation which stands for
maximizing the log-posterior distribution ln(p(x|r)). According to the Bayes’ rule

p(x|r) ∝ p(r|x)p(x) (2.23)

The form of p(x) defines the prior probability distribution related to the expression
of P (x) and has a direct impact on the solution obtained. In this context, the common
approach is to adopt an appropriate prior distribution p(x) which can make the de-
convolved images meet some visual quality requirements at a reasonable computational
expense. The goal of deconvolution is indeed to restore higher quality information on
the tissues, to be exploited for its characterization or visual analysis. We will remind
several regularization terms adopted in the literature of US deconvolution.

2.2.2.1 Gaussian prior

Wiener filter was the very first deconvolution technique applied to US imaging [Fatemi 1980,
Liu 1983, Robinson 1984]. The TRF was supposed to be Gaussian distributed and an
`2-norm, also called Tikhonov regularization, was employed as below.

P (x) =‖ x ‖22 (2.24)

Then the analytical solution to (2.22) is

x̂ = HT

HTH + αI
r = f(H,α)r (2.25)

where I ∈ RN×N is the identity matrix and f(H,α) stands for the Wiener filter-
ing which is related to the PSF and the regularization parameter α. An appropriate
choice of α is necessary to guarantee the balance between data fidelity and smoothness
of the deconvolution result. It can be found empirically or assumed equal to the ra-
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tio between the squared spectrum of the noise and the squared spectrum of the signal,
as in [Taxt 1995, Taxt 1997, Taxt 2001b]. However, it can also be estimated from the
recorded data in a Bayesian framework [Jirik 2008] or with some other deterministic
approaches like the Constrained least squares (CLS) [Hunt 1973], the Degree of freedom
(EDF) [Wahba 1983], the Mean square error (MSE) based method [Galatsanos 1992],
the predictive mean square error (PMSE) based method [Hall 1987] and the General-
ized Stein’s unbiased risk estimate (GSURE) [Eldar 2009]. Particularly, the method of
Generalized cross-validation (GCV) [Golub 1979] and the one based on marginal likeli-
hood (ML) [Galatsanos 1992] do not require any information about the SNR. All these
methods including the ratio between the squared spectrum of the noise and the squared
spectrum of the signal (denoted by 1/SNR) are compared in Fig. 2.5. More simulation
results for the comparison of these methods in the context of Wiener filtering can be
found in [Chen 2015c].

Figure 2.5: Results from [Chen 2015c]. SNR=30dB. From left to right, the images
are Cyst phantom tissue reflectivity function, Cyst phantom B-mode US image and its
deconvolution results (B-mode visualisation).
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The main shortcoming of this method, however, is the Gibbs-like artifacts, which are
usually produced by the filter near edge-shaped structures within the TRF x. Moreover,
because of its linearity, the Wiener filter is not able to interpolate the information lost
in the process of image formation. As a result, the Wiener solutions are frequently over
smoothed.

2.2.2.2 Laplacian prior

In the case when the samples of the reflectivity function are assumed to be independent,
zero-mean random variables obeying the Laplacian distribution (corresponding to the
assumption of "sparse tissue"), the regularization term is an `1-norm [Michailovich 2005,
Michailovich 2007, Yu 2012].

P (x) =‖ x ‖1 (2.26)

The results in these works have shown that the sparse prior can produce a superior
gain in resolution and contrast compared to the Gaussian prior. In [Michailovich 2005,
Michailovich 2007], the authors used truncated Newton method to solve the uncon-
strained `1-minimization problem in (2.22). They have also pointed out the possibility
to apply Conic Programming for the constraint equation (2.21).

In addition, in general image deconvolution [Bolte 2010, Repetti 2015], the proximal
forward-backward (PFB) algorithm [Combettes 2005, Combettes 2011, Chouzenoux 2013,
Raguet 2013, Bolte 2014], also called proximal gradient method, has been employed to
solve this unconstrained `1-minimization problem.

More interestingly, the deconvolution problem actually becomes a convex sparse re-
covery problem as described in section 2.1.3.2. It is therefore possible to employ any
existing algorithm to get the solution of (2.21) or (2.22).

2.2.2.3 General Gaussian Distribution

Although the previous statistical models are sufficient for achieving appreciable visual
quality improvements in some applications, they are not flexible enough to describe a gen-
eral tissue response. As a consequence, the use of these techniques may introduce a bias
in the solutions which may distort important structural features that should be preserved
in a tissue characterization context. In this context, the authors in [Alessandrini 2011b]
proposed to model the TRF with a Generalized Gaussian Distribution (GGD), previously
used for simulating the TRF in [Michailovich 2003]. The GGD probability distribution
function (PDF) is

p(xi) = a exp(−|xi
b
|p) (2.27)

where p is the shape parameter, b = σx
√

Γ(1/p)/Γ(3/p) is the scale parameter, σx
is the standard deviation, a = p/(2bΓ(1/p)) is the normalization term and Γ( · ) is the
Gamma function. Note that Gaussian and Laplacian distributions are also included
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as special cases of GGD corrsponding to p = 2 and p = 1, respectively. For a MAP
estimate, the regularization term becomes:

P (x) =‖ x ‖pp (2.28)

where p > 0. Aside from the methods mentioned in section 2.1.3.3, this `p-minimization
problem can also be solved in an expectation maximization (EM) framework [Alessandrini 2011b,
Alessandrini 2011a] or a Bayesian framework [Zhao 2014, Zhao 2016].

Moreover, with the growing popularity of proximal operator (defined as below)
[Pesquet 2012, Pustelnik 2011, Pustelnik 2012], the Proximal Forward Backward (PFB)
algorithm mentioned above is able to solve efficiently (2.22) with an `p prior term. Com-
pared to the EM algorithm and Bayesian based method, it is faster.

Since we will use this method in the next chapter, we hereby give the details of PFB.
Let f1(x) = α ‖ x ‖pp and f2(x) =‖ r −Hx ‖22, the PFB for deconvolution is shown in
Algorithm 1.

Algorithm 1 PFB algorithm
Input: x0, α, t0

1: while not converged do
2: gn ← xn − tn∇f2(x) . Forward step
3: xn+1 ← proxt0α‖ · ‖p

p
(gn) . Backward step

4: end while
Output: x

where tn > 0 is step size, set to a constant or determined by line search. prox stands
for the proximal operator. The proximal operator of a function f is defined for x0 ∈ RN
by:

proxf (x0) = argmin
x∈RN

f(x) + 1
2 ‖ x− x

0 ‖22 (2.29)

When f = K|x|p, the corresponding proximal operator has been given by [Combettes 2011]:

proxK|x|p(x0) = sign(x0)q (2.30)

where q > 0 and

q + pKqp−1 =
∣∣∣x0
∣∣∣ (2.31)

It is obvious that the proximal operator of K |x| is a soft thresholding as mentioned
in section 2.1.3.2, which is equal to:

proxK|x|(x0) = max
{∣∣∣x0

∣∣∣−K, 0} x0

|x0|
(2.32)

When p 6= 1, we can use Newton’s method to obtain its numerical solution, i.e. the
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value of q.
In fact, when p = 1, the PFB algorithm becomes the IST method as mentioned in

section 2.1.3.2.
To conclude about the three kinds of regularization terms described above, we herein

give a comparison result based on an in vivo US image, see Fig. 2.6.

Figure 2.6: Results from [Zhao 2016]. (a) Observed B-mode image, (b) restored B-mode
images with `2-norm, (c) `1-norm and (d) `p-norm.

2.2.2.4 Total Variation

Another deeply explored regularization term used in deconvolution is the Total Varia-
tion (TV). It is frequently used for piece-wise constant image deconvolution because of
its edge-preserving property by not over-penalizing discontinuities in the image while
imposing smoothness [Chan 1998, Chambolle 2004, Beck 2009b, Babacan 2009]. How-
ever, recently, it has also been adopted for B-mode US image deconvolution [Morin 2012,
Morin 2013b]. The TV is defined as

TV (x) =
∑
i

√
(∆h

i (x))2 + (∆v
i (x))2 (2.33)

where the operators ∆h
i (x) and ∆v

i (x) correspond to, respectively, the horizontal
and vertical first order differences at pixel i. Various kinds of methods could be used
to solve the TV regularized deconvolution problem such as the Fast IST algorithm
(FISTA) [Beck 2009b] and the Bayesian method in [Babacan 2009]. The authors in
[Ng 2010, Morin 2012, Morin 2013b] employed TV in both deconvolution and super-
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resolution problems and using alternative direction method of multipliers (ADMM)
framework to get the solution.

2.2.3 Blind deconvolution

The deconvolution minimization problem in (2.21) or (2.22) assumes that the PSF is
known. In this subsection, we will discuss the existing blind deconvolution in which the
PSF is supposed to be unknown, which is obviously the case in most practical situations.

So far, two kinds of blind deconvolution methods have been commonly applied to
both fields of general and ultrasound imaging [Campisi 2007]: the first is called a priori
blur identification methods in which the PSF is identified separately from the observed
image and later used in combination with one of the non-blind deconvolution algorithms
as described above, the second is called joint identification methods which estimate the
image and the PSF simultaneously.

2.2.3.1 A priori blur identification methods

In this category, the PSF H and the TRF x are estimated separately and sequentially.
Since the x-estimation part has been introduced in the previous subsection, here we only
focus on the H-estimation part.

One class of algorithms is the parametric ones which explicitly model the PSF
with a stochastic or deterministic model. For example, in [Jensen 1993, Jensen 1994a,
Rasmussen 1994], the authors employed the autoregressive moving average (ARMA)
model related to the theory of system identification and the PSF is recovered by es-
timating the ARMA parameters. In these methods, 1-D deconvolution only along the
axial direction was applied.

The other class is the nonparametric algorithms. In [Abeyratne 1995], the proposed
high-order spectra (HOS) based approach is shown to be less sensitive to measurement
noises. Being noniterative, it offers some computational advantages and has been used
for both axial and lateral deconvolution of RF images. However, the extension to higher-
dimensional cases seems not practical. In [Jensen 1994b], the approach in the framework
of homomorphic signal processing was firstly introduced followed by some substantial de-
velopments in [Taxt 1997]. The idea is to take the logarithm of the signal and convert
the convolution into sums of their cepstra, for linear separation. In this context, a few
cepstrum-based methods like [Taxt 1995, Taxt 2001a, Taxt 2001b, Jiřík 2006] have been
demonstrated to result into accurate estimation and efficient computation. In particular,
the phase unwrapping problem which concerns the estimation of the Fourier transform
phase of the PSF exists in these cepstrum-based methods and is a very difficult recon-
struction problem. The authors in [Michailovich 2004] then proposed a way to solve it
and generalized the main concepts of homomorphic deconvolution in [Michailovich 2005]
combining it with the outlier resistant denoising [Michailovich 2003]. Due to its accu-
racy, in the next two chapters presenting the work done during this PhD thesis, we
employed this PSF estimation method proposed in [Michailovich 2005].
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2.2.3.2 Joint identification methods

A different category of blind deconvolution approaches is to estimate the PSF H and
TRF x simultaneously. One such method was presented in [Michailovich 2007], where
the recovery of H and x is based on linear inverse filtering. Most of the methods in this
category for both general image processing and US imaging, however, are to estimate
the PSF and image of interest by solving the following problem:

min
x∈RN ,h∈Rn

αP (x) + γP (h)+ ‖ r −Hx ‖22 (2.34)

where h ∈ Rn represents the PSF with a support of size n, P (h) is the regular-
ization term containing prior information on the PSF. The authors in [Molina 2006,
Babacan 2009, Zhao 2015] solved this problem in a Bayesian framework. While in
[Almeida 2010, Yu 2012, Morin 2013b], the alternative minimization (AM) method have
been used to solve this non-convex problem.

2.2.4 Conclusion

Deconvolution has a long story in US imaging since 1980s. It is mainly devoted to
overcoming one of the disadvantage of US imaging, the image quality. All the research
works, including the prior assumptions made for TRF, the PSF estimation, the non-
blind deconvolution algorithms and the blind deconvolution, have made it possible to
enhance the quality of US images in a post-processing stage. In the next subsection, we
will introduce the contributions of this thesis combining the deconvolution and CS as
described in the previous subsection.

2.3 Contributions

The objective of this thesis is to meet with two challenges in US imaging mentioned in
Chapter 1, i.e., to obtain a higher frame rate or less data volume and enhance the image
quality at the same time.

We thus first propose a framework called compressive deconvolution in US imag-
ing. Compressive deconvolution, called also CS deblurring, has recently been stud-
ied in general-purpose image processing [Ma 2009, Xiao 2011, Zhao 2010, Amizic 2013,
Spinoulas 2012]. To our knowledge, our work is the first attempt of addressing the
compressive deconvolution problem in US imaging. The direct model is

y = ΦHx+ n (2.35)

Inverting the model in 2.35 will allow us to estimate the TRF x from the compressed
RF measurements y. We then formulate the reconstruction process into an optimization
problem.

44
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In Chapter 3 and Chapter 4, we propose two novel algorithms to find its optimal
solution. Opposed to these contributions, in which the PSF is supposed to be known or
estimated in a preceding stage, in Chapter. 5, we will present some preliminary results
with joint PSF estimation. Conclusions and perspectives will be done in the last chapter.
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Chapter 3

Compressive Deconvolution using
ADMM

Part of the work in this chapter has been published in [Chen 2015a], [Chen 2015b] and
[Chen 2016a].
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3.1 Introduction

As introduced in the previous chapter, the direct model of Compressive Deconvolution
is as follows:

y = ΦHx+ n (3.1)

where the variables y ∈ RM corresponds to the M compressed measurements, Φ ∈
RM×N represents the sampling matrix, H ∈ RN×N is a BCCB matrix related to the 2D
PSF of the system, x ∈ RN represents the TRF and n is a zero-mean additive white
Gaussian noise. Inverting the model in (3.1) will allow us to estimate the TRF x from
the compressed RF measurements y.

In the general-purpose image processing literature, a few methods have been al-
ready proposed aiming at solving (3.1) [Hegde 2009, Hegde 2011, Zhao 2010, Ma 2009,
Xiao 2011, Amizic 2013, Spinoulas 2012]. In [Hegde 2009, Hegde 2011, Zhao 2010], the
authors assumed x was sparse in the direct or image domain and the PSF was unknown.
In [Hegde 2009, Hegde 2011], a study on the number of measurements lower bound is
presented, together with an algorithm to estimate the PSF and x alternatively. The
authors in [Zhao 2010] solved the compressive deconvolution problem using an `1-norm
minimization algorithm by making use of the "all-pole" model of the autoregressive pro-
cess. In [Ma 2009, Xiao 2011], x was considered sparse in a transformed domain and the
PSF was supposed known. An algorithm based on Poisson singular integral and itera-
tive curvelet thresholding was shown in [Ma 2009]. The authors in [Xiao 2011] further
combined the curvelet regularization with total variation to improve the performance in
[Ma 2009]. Finally, the methods in [Amizic 2013, Spinoulas 2012] supposed the blurred
signal r = Hx was sparse in a transformed domain and the PSF unknown. They pro-
posed a compressive deconvolution framework that relies on a constrained optimization
technique allowing to exploit existing CS reconstruction algorithms.

3.2 Optimization Problem Formulation

3.2.1 Sequential approach

In order to estimate the TRF x from the compressed and blurred measurements y, an
intuitive idea to invert the direct model in (3.1) is to proceed through two sequential
steps. The aim of the first step is to recover the blurred US RF image r = Hx from
the compressed measurements y by solving the following optimization problem or the
constrained one as (2.17):

min
a∈RN

‖a‖ 1 + 1
2µ ‖y − ΦΨa‖ 2

2 (3.2)

where a is the sparse representation of the US RF image r in the transformed domain
Ψ, that is, r = Hx = Ψa. Different basis have been shown to provide good results in
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the application of CS in US imaging, such as wavelets, waveatoms or 2D Fourier basis
[Liebgott 2012]. In this chapter the wavelet transform has been employed.

Once the blurred RF image, denoted by r̂, is recovered by solving the convex problem
in (3.2), one can restore the TRF x by minimizing:

min
x∈RN

α ‖x‖pp + ‖r̂ −Hx‖ 2
2 (3.3)

which is a typical deconvolution problem and equivalent to (2.22).

3.2.2 Proposed approach

While the sequential approach represents the most intuitive way to solve the compres-
sive deconvolution problem, dividing a single problem into two separate subproblems
will inevitably generate larger estimation errors as shown by the results in section 3.6.
Therefore, we propose herein a method to solve the CS and deconvolution problem si-
multaneously. Similarly to [Amizic 2013], we formulate the reconstruction process into
a constrained optimization problem exploiting the relationship between CS recovery (as
(3.2)) and deconvolution (as (3.3)).

min
x∈RN ,a∈RN

‖ a ‖1 +αP (x) + 1
2µ ‖ y − ΦΨa ‖22

s.t. Hx = Ψa
(3.4)

where α is the hyper-parameter.
Since our goal is to recover enhanced US images by estimating the TRF x, we further

reformulate the problem above into an unconstrained optimization problem:

min
x∈RN

‖ Ψ−1Hx ‖1 +αP (x) + 1
2µ ‖ y − ΦHx ‖22 (3.5)

where P (x) represents the prior information of x. The objective function in (3.5)
contains, in addition to the data fidelity term, two regularization terms. The first one
aims at imposing the sparsity of the RF data Hx (i.e. minimizing the `1-norm of the
target image x convolved with a bandlimited function) in a transformed domain Ψ. We
should note that such an assumption has been extensively used in the application of
CS in US imaging. Transformations such as 2D Fourier, wavelet or wave atoms have
been shown to provide good results in US imaging (see section 2.1.4.1). The second
term P (x) represents the priori information of the target image x. We will employ
the `p-norm where the shape parameter related to the GGD is ranging from 1 to 2
(1 ≤ p ≤ 2), allowing us to generalize the existing works in US image deconvolution
mainly based on Laplacian or Gaussian statistics as described in section. 2.2.2. While
our main contribution is given for the case when this term is equal to ‖ x ‖pp (adapted
to US images), our approach using a generalized total variation regularization will also
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Figure 3.1: Sparsity comparison of x and Hx in wavelet domain. (a) A random scatterer
map (TRF, denoted by x) generated according to a zero-mean Generalized Gaussian dis-
tribution and (b) its corresponding blurred version (RF data, denoted by Hx), obtained
by convolving the TRF with an US PSF.(c) the magnitude decay rates of the sorted
wavelet coefficients, calculated for x and Hx.

detailed in this chapter and may be useful for other (medical) applications.
We notice that our regularized reconstruction problem based on the objective func-

tion in (3.5) is different from a typical CS reconstruction. Specifically, the objective
function of a standard CS technique applied to our model would only contain the clas-
sical data fidelity term and an `1-norm penalty similar to the first term in (3.5) but
without the operator H, shown as below:

min
x∈RN

‖ x ‖1 + 1
2µ ‖ y − ΦHx ‖22 (3.6)

However, it would not take fully advantage of the prior information we may inject
in the reconstruction process, i.e., the sparsity of Hx in a given transformation and
the generalized Gaussian distributed x. Moreover, blurred signals usually exhibit faster
decay rates for the magnitude of their wavelet coefficients than their respective original
versions. In Fig.3.1, we analyze the effect of blurring on the decay rates of the magni-
tude of the sorted wavelet coefficients for a random scatterer map. In addition, such
a CS reconstruction is not adapted to compressive deconvolution, mainly because the
requirements of CS theory such as the RIP might not be guaranteed [Amizic 2013].

3.3 Basics of Alternating Direction Method of Multipliers

Before going into the details of our algorithm, we report in this paragraph the basics of
ADMM. ADMM has been extensively studied in the areas of convex programming and
variational inequalities, e.g., [Boyd 2011]. The general optimization problem considered
in ADMM framework is as follows:
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min
u,v

f(u) + g(v)

s.t. Bu+ Cv = b,u ∈ U ,v ∈ V
(3.7)

where U ⊆ Rs and V ⊆ Rt are given convex sets, f : U → R and g : V → R are
closed convex functions, B ∈ Rr×s and C ∈ Rr×t are given matrices and b ∈ Rr is a
given vector.

By attaching the Lagrangian multiplier λ ∈ Rr to the linear constraint, the Aug-
mented Lagrangian (AL) function of (3.7) is

L(u,v,λ) = f(u) + g(v)− λt(Bu+ Cv − b) + β

2 ‖ Bu+ Cv − b ‖22 (3.8)

where β > 0 is the penalty parameter for the linear constraints to be satisfied. The
standard ADMM framework follows the three steps iterative process:

uk+1 ∈ argmin
u∈U

L(u,vk,λk)

vk+1 ∈ argmin
v∈V

L(uk+1,v,λk)

λk+1 = λk − β(Buk+1 + Cvk+1 − b)

(3.9)

The main advantage of ADMM, in addition to the relative easy of implementation,
is its ability to split awkward intersections and objectives to easy subproblems, resulting
into iterations comparable to those of other first-order methods.

3.4 Proposed ADMM parameterization

In this subsection, we propose an ADMM method for solving the ultrasound compressive
deconvolution problem in (3.5).

Using a trivial variable change, the minimization problem in (3.5) can be rewritten
as:

min
x∈RN

‖ w ‖1 +αP (x) + 1
2µ ‖ y −Aa ‖

2
2 (3.10)

where a = Ψ−1Hx, w = a and A = ΦΨ. Let us denote z =
[
w
x

]
. The reformulated

problem in (3.10) can fit the general ADMM framework in (3.7) by choosing: f(a) =
1

2µ ‖ y − Aa ‖22, g(z) =‖ w ‖1 +αP (x), B =
[
IN
Ψ

]
, C =

[
−IN 0

0 −H

]
and b = 0.

IN ∈ RN×N is the identity matrix.
The AL function of (3.10) is then given by
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L(a, z,λ) = f(a) + g(z)− λt(Ba+ Cz) + β

2 ‖ Ba+ Cz ‖22 (3.11)

where λ ∈ R2N stands for λ =
[
λ1
λ2

]
, λi ∈ RN (i = 1, 2). According to the standard

ADMM iterative scheme, the minimizations with respect to a and z will be performed
alternatively, followed by the update of λ.

3.5 Implementation Details

In this subsection, we detail each of the three steps of our ADMM-based compressive
deconvolution method.

Step 1 consists in solving the z-problem as below.

zk = argmin
z∈R2N

g(z)− (λk−1)t(Bak−1 + Cz) + β

2 ‖ Ba
k−1 + Cz ‖22 (3.12)

Since z =
[
w
x

]
, this z-problem can be further divided into two subproblems.

Step 1.1 aims at solving:

wk =argmin
w∈RN

‖ w ‖1 −(λk−1
1 )t(ak−1 −w) + β

2 ‖ a
k−1 −w ‖22

⇔ wk =argmin
w∈RN

‖ w ‖1 +β

2 ‖ a
k−1 −w − λ

k−1
1
β
‖22

⇔ wk =prox‖ · ‖1/β

(
ak−1 − λ

k−1
1
β

) (3.13)

where prox stands for the proximal operator as proposed in [Pesquet 2012, Pustelnik 2011,
Pustelnik 2012]. The proximal operators of various kinds of functions including ‖x‖pp
have been given explicitly in the literature (see e.g. [Combettes 2011]). Basics about
the proximal operator of ‖x‖pp have been reminded in Section.2.2.2.3.

Step 1.2 consists in solving:

xk = argmin
x∈RN

αP (x)− λk−1
2 (Ψak−1 −Hx) + β

2 ‖ Ψak−1 −Hx ‖22 (3.14)
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Step 1.2a Being adapted to US images, P (x) =‖ x ‖pp. For p equal to 2, the mini-
mization in (3.14) can be easily solved in the Fourier domain, as follows:

xk =
[
βHtH + 2αIN

]−1
×
[
βHtΨak−1 −Htλk−1

2

]
(3.15)

For 1 6 p < 2, we propose to use the proximal operator to solve (3.14). In this case,
(3.14) will be equivalent to

xk = argmin
x∈RN

α ‖ x ‖pp +β

2 ‖ Ψak−1 −Hx− λ
k−1
2
β
‖22 (3.16)

Denoting h(x) = 1
2 ‖ Ψak−1 −Hx− λk−1

2
β ‖ 2

2, we can further approximate h(x) by

h′(xk−1)(x− xk−1) + 1
2γ ‖ x− x

k−1 ‖22 (3.17)

where γ > 0 is a parameter related to the Lipschitz constant [Chouzenoux 2014] and
h′(xk−1) is the gradient of h(x) when x = xk−1, which is equal to

h′(xk−1) = Ht(Hxk−1 −Ψak−1 + λk−1
2
β

) (3.18)

By plugging (3.17) into (3.16), we obtain:

xk ≈argmin
x∈RN

α ‖ x ‖pp +βh′(xk−1)(x− xk−1) + β

2γ ‖ x− x
k−1 ‖22

⇔ xk ≈argmin
x∈RN

α ‖ x ‖pp + β

2γ ‖ x− x
k−1 + γh′(xk−1) ‖22

(3.19)

According to the definition of the proximal operator, we can finally get

xk ≈ proxαγ‖ · ‖p
p/β
{xk−1 − γh′(xk−1)} (3.20)

We should note that (3.20) provides an approximate solution, thus resulting into an
inexact ADMM scheme. However, the convergence of such inexact ADMM has been
already established in [He 2002, Boyd 2011, Yang 2011].

Step 1.2b For general-purpose or some other image processing, a generalized total
variation regularization would be more appropriate. By changing the priori term of the
target image x, our proposed method is still applicable.

As suggested in [Amizic 2013], the generalized TV is given by:∑
d∈D

21−o(d)∑
i

∣∣∣∆d
i (x)

∣∣∣p (3.21)

where o(d) ∈ {1, 2} denotes the order of the difference operator ∆d
i (x), 0 < p < 1,
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and d ∈ D = {h, v, hh, vv, hv}. ∆h
i (x) and ∆v

i (x) correspond, respectively, to the
horizontal and vertical first order differences, at pixel i, that is, ∆h

i (x) = ui − ul(i) and
∆v
i (x) = ui− ua(i), where l(i) and a(i) denote the nearest neighbors of i, to the left and

above, respectively. The operators ∆hh
i (x), ∆vv

i (x), ∆hv
i (x) correspond, respectively, to

horizontal, vertical and horizontal-vertical second order differences, at pixel i.
Replacing the `p-norm by the generalized TV in our compressive deconvolution

scheme results in a modified x update step, that turns in solving:

xk = argmin
x∈RN

α
∑
d∈D

21−o(d)∑
i

∣∣∣∆d
i (x)

∣∣∣p − λk−1
2 (Ψak−1 −Hx) + β

2 ‖ Ψak−1 −Hx ‖22

(3.22)
Similarly to the first step of the method in [Amizic 2013], the equation above can be

solved iteratively by:

xk,l =
[
βHtH + αp

∑
d

21−o(d)(∆d)tBk,l
d (∆d)

]−1

×
[
βHtΨak−1 −Htλk−1

2

]
(3.23)

where l is the iteration number in the process of updating x, Bk,l
d is a diagonal matrix

with entries ∆d is the convolution matrix (BCCB matrix) of the difference operator
∆d
i ( · ) and Bk,l

d (i, i) = (vk,ld,i), which is updated iteratively by:

vk,l+1
d,i = [∆d

i (xk,l)]2 (3.24)

When a stopping criterion is met, we can finally get an update of x.

Step 2 aims at solving:

ak = argmin
a∈RN

1
2µ ‖ y −Aa ‖

2
2 −(λk−1)t(Ba+ Czk)

+ β

2 ‖ Ba+ Czk ‖22

⇔ ak = ( 1
µ
AtA+ βIN + βΨtΨ)−1( 1

µ
Aty + λk−1

1 + Ψtλk−1
2

+ βwk + βΨtHxk)

(3.25)

The formula above is equivalent to solving an N ×N linear system or inverting an
N × N matrix. However, since the sparse basis Ψ considered is orthogonal (e.g. the
wavelet transform), it can be reduced to solving a smaller M × M linear system or
inverting an M ×M matrix by exploiting the Sherman-Morrison-Woodbury inversion
matrix lemma [Deng 2013]:
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(β1IN + β2A
tA)−1 = 1

β1
IN −

β2
β1
At(β1IM + β2AA

t)−1A (3.26)

In our work, without loss of generality, we considered the compressive sampling
matrix Φ as a Structurally Random Matrix (SRM) [Do 2012]. Therefore, A was formed
by randomly taking a subset of rows from orthonormal transform matrices, that is,
AAt = IM . As a consequence, there is no need to solve a linear system and the main
computational cost consists into two matrix-vector multiplications per iteration.

Step 3 consists in solving:

λk = λk−1 − β(Bak + Czk) (3.27)

The proposed optimization routine is summarized in Algorithm 2.

Algorithm 2 Compressive deconvolution ADMM-based algorithm.
Input: a0, λ0, α, µ, β

1: while not converged do
2: wk ← ak−1,λk−1 . update wk using (3.13)
3: switch P (x) do
4: case P (x) =

∑
d∈D 21−o(d)∑

i

∣∣∣∆d
i (x)

∣∣∣p
5: for l = 1, 2, ... until a stopping criterion is met do
6: xk,l ← ak−1,λk−1, vk,ld,i . update xk,l using (3.23)
7: vk,l+1

d,i ← xk,l . update vk,l+1
d,i using (3.24)

8: end for
9: case P (x) =‖ x ‖pp

10: xk ← ak−1,λk−1 . update xk using (3.15) or (3.20)
11: ak ← wk,xk,λk−1 . update ak using (3.25)
12: λk ← wk,xk,ak,λk−1 . update λk using (3.27)
13: end while
Output: x

3.6 Results
The performance of the proposed compressive deconvolution method are evaluated on
several simulated and experimental data sets. First, we evaluate the performance of the
proposed approach on a Shepp-Logan phantom compared to the one in [Amizic 2013],
referred as CD_Amizic hereafter. Second, we test our algorithm on a modified Shepp-
Logan phantom containing speckle noise to confirm that i) the lp-norm regularization
term is more adapted to US images than the generalized TV used in [Amizic 2013],
ii) the proposed optimization scheme as (3.5) is more appropriate than a typical CS
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reconstruction as (3.6). Third, we give the results of our algorithm for different lp-norm
optimizations on simulated US images, showing the superiority of our approach over the
intuitive sequential method explained in section 3.1. Finally, compressive deconvolution
results on two in vivo ultrasound images are presented.

3.6.1 Quantitative evaluation criterions

To evaluate the results quantitatively, we employed three metrics in this chapter. Two
of them are for simulated data which has the ground truth and the other is for in vivo
data.

PSNR The standard peak signal-to-noise ratio (PSNR) is defined as

PSNR = 10log10
NL2

‖ x− x̂ ‖2
(3.28)

where x and x̂ are the original and reconstructed images, and the constant L repre-
sents the maximum intensity value in x.

SSIM The Structural Similarity (SSIM) [Wang 2004] is extensively used in US imaging
and defined as

SSIM = (2µxµx̂ + c1)(2σxx̂ + c2)
(µ2
x + µ2

x̂ + c1)(σ2
x + σ2

x̂ + c2)
(3.29)

where x and x̂ are the original and reconstructed images, µx, µx̂, σx and σx̂ are
the mean and variance values of x and x̂, σxx̂ is the covariance between x and x̂; c1 =
(k1L)2 and c2 = (k2L)2 are two variables aiming at stabilizing the division with weak
denominator, L is the dynamic range of the pixel-values and k1, k2 are constants. Herein,
L = 1, k1 = 0.01 and k2 = 0.03.

CNR Given that the true TRF is not known in experimental conditions, the qual-
ity of the reconstruction results is evaluated using the contrast-to-noise ratio (CNR)
[Lyshchik 2005], defined as

CNR = |µ1 − µ2|√
σ2

1 + σ2
2

(3.30)

where µ1 and µ2 are the mean of pixels located in two regions extracted from the
image while σ1 and σ2 are the standard deviations of the same blocks.

3.6.2 Results on Shepp-Logan phantom

In this subsection we show an experiment aiming to evaluate the performance of the
proposed approach compared to CD_Amizic. The comparison results are obtained on
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the standard 256 × 256 Shepp-Logan phantom. The measurements have been gener-
ated in a similar manner as in [Amizic 2013], i.e. the original image was normalized,
degraded by a 2D Gaussian PSF with a 5-pixel variance, projected onto a structured
random matrix (SRM) to generate the CS measurements and corrupted by an additive
Gaussian noise. We should remark that in [Amizic 2013] the compressed measurements
were originally generated using a Gaussian random matrix. However, we have found
that the reconstruction results with CD_Amizic are slightly better when using a SRM
compared to the PSNR results reported in [Amizic 2013]. Both methods were based on
the generalized TV to model the image to be estimated and the 3-level Haar wavelet
transform as sparsifying basis Ψ. With our method, the hyperparameters were set to
{α, µ, β} = {10−1, 10−5, 102}. The same hyperparameters as reported in [Amizic 2013]
were used for CD_Amizic. Both algorithms based on the non-blind deconvolution (PSF
is supposed to be known) and used the same stopping criteria.

Fig.3.2 shows the original Shepp-Logan image, its blurred version and a series of
compressive deconvolution reconstructions using both our method and CD_Amizic for
CS ratios running from 0.4 to 0.8 and a SNR of 40 dB. Table.3.1 regroups the PSNRs ob-
tained with our method and with CD_Amizic for two SNRs and for four CS ratios from
0.2 to 0.4. In each case, the reported PSNRs are the mean values of 10 experiments. We
may observe that our method outperforms CD_Amizic in all the cases, allowing a PSNR
improvement in the range of 0.5 to 2 dB. Moreover, Fig.3.3 shows the computational
times with CD_Amizic and the proposed method, obtained with Matlab implementa-
tions (for CD_Amizic, the original code provided by the authors of [Amizic 2013] has
been employed) on a standard desktop computer (Intel Xeon CPU E5620 @ 2.40GHz,
4.00G RAM). We notice that our approach is less time consuming than CD_Amizic for
all the CS ratios considered.

Table 3.1: PSNR assessment for Shepp-Logan phantom
SNR CS ratios 20% 40% 60% 80%

40dB CD_Amizic 23.04 24.88 25.30 25.51
Proposed method 24.09 25.38 26.26 26.91

30dB CD_Amizic 22.61 24.05 24.40 24.55
Proposed method 23.92 25.12 25.82 26.33
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.2: Shepp-logan image and its compressive deconvolution results for a SNR of
40dB. (a) Original image, (b) Blurred image, (c,e,g) Compressive deconvolution results
with CD_Amizic for CS ratios of 0.8, 0.6 and 0.4, (d,f,h) Compressive deconvolution
results with the proposed method for CS ratios of 0.8, 0.6 and 0.4.58
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Figure 3.3: Mean reconstruction running time for 10 experiments conducted for each CS
ratio for a SNR of 40 dB.
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3.6.3 Results on modified Shepp-Logan phantom

We modified the Shepp-Logan phantom in order to simulate the speckle noise that
degrades in practice the US images. For this, we followed the procedure classically used
in US imaging [Ng 2007a]. First, scatterers at uniformly random locations have been
generated, with amplitudes distributed according to a zero-mean generalized Gaussian
distribution (GGD) with the shape parameter set to 1.3 and the scale parameter equal to
1. The scatterer amplitudes were further multiplied by the values of the original Shepp-
Logan phantom pixels located at the closest positions to the scatterers. The resulting
image, mimicking the tissue reflectivity function (TRF) in US imaging, is shown in
Fig.3.4(a). The blurred image in Fig.3.4(b) was obtained by 2D convolution between
the TRF and a spatially invariant PSF generated with Field II [Jensen 1991], a state-
of-the-art simulator in US imaging. It corresponds to a 3.5 MHz linear probe, sampled
in the axial direction at 20 MHz. The compressive measurements were obtained by
projecting the blurred image onto SRM and by adding a Gaussian noise corresponding
to a SNR of 40 dB.

3.6.3.1 Comparison between different prior terms

Reconstruction results for a CS ratio of 0.6 are shown in Fig.3.4. They were obtained
with: the recent compressive deconvolution technique reported in [Amizic 2013] (re-
ferred as CD_Amizic), the proposed method using the generalized TV prior (denoted
by ADMM_GTV) and the proposed method using the lp-norm for p equal to 1.5, 1.3 and
1 (denoted respectively by ADMM_L1.5, ADMM_L1.3 and ADMM_L1). All the hy-
perparameters were set to their best possible values by cross-validation. For CD_Amizic,
{β, α, η, τ} = {107, 1, 104, 102}. For ADMM_GTV {µ, α, β} = {10−5, 2×10−1, 102} and
for the proposed method with lp-norms, {µ, α, β, γ} = {10−5, 2× 10−1, 101, 3× 10−2} .

The quantitative results for different CS ratios are regrouped in Table.3.2. They
confirm that the lp-norm is better adapted to recover the TRF in US imaging than the
generalized TV. The difference between the two priors is further accentuated when the
CS ratio decreases.

Keeping in mind that the generalized TV prior is not well suited to model the TRF in
US imaging, we did not use CD_Amizic in the following sections dealing with simulated
and experimental US images. Moreover, the proposed method was only evaluated in its
lp-norm minimization form.

3.6.3.2 Comparison with a typical CS reconstruction

In Fig.3.4 and Table.3.2, we have also shown the results of a typical CS reconstruction
algorithm, YALL1 [Yang 2011]. Both the visual and quantitative results confirm that the
proposed optimization scheme can outperform the typical CS reconstruction algorithms.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.4: Reconstruction results for SNR = 40dB and a CS ratio of 0.6. (a) Mod-
ified Shepp-Logan phantom containing random scatterers (TRF), (b) Degraded image
by convolution with a simulated US PSF, (c) Reconstruction result with CD_Amizic,
(d) Reconstruction result with the proposed method using a generalized TV prior
(ADMM_GTV), (e, f, g) Reconstruction results with the proposed method using an lp-
norm prior, for p equal to 1.5, 1.3 and 1 (ADMM_L1.5, ADMM_L1.3 and ADMM_L1),
(h) Reconstruction results with the Yall1.
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Table 3.2: Quatitative results for the modified Shepp-Logan phantom with US speckle
(SNR = 40dB)

CS ratios CD
_Amizic

ADMM
_GTV

ADMM
_L1.5

ADMM
_L1.3

ADMM
_L1 YALL1

80% PSNR 30.82 31.11 32.23 32.32 32.05 27.12
SSIM 83.24 85.03 86.44 88.77 87.70 77.43

60% PSNR 29.68 29.83 31.27 31.50 31.32 26.91
SSIM 74.58 77.83 82.26 86.03 85.64 75.78

40% PSNR 26.76 28.11 29.58 30.04 30.12 26.73
SSIM 43.43 61.46 73.88 79.95 81.75 73.33

20% PSNR 20.22 21.53 26.81 27.29 28.20 25.78
SSIM 8.35 12.77 51.70 62.93 72.34 64.82
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3.6.4 Results on simulated data

In this section, we compared the compressive deconvolution results with our method to
those obtained with a sequential approach. The latter recovers in a first step the blurred
US image from the CS measurements and reconstructs in a second step the TRF by
deconvolution.

Two ultrasound data sets were generated, as shown in Figures 3.5 and 3.6. They
were obtained by 2D convolution between spatially invariant PSFs and the TRFs. For
the first simulated image, the same PSF as in the previous section was simulated and the
TRF corresponds to a simple medium representing a round hypoechoic inclusion into
a homogeneous medium. The scatterer amplitudes were random variables distributed
according to a GGD with the shape parameter set to 1. The second data set is one of the
examples proposed by the Field II simulator [Jensen 1991], mimicking a kidney tissue.
The PSF was also generated with Field II corresponding to a 4 MHz central frequency
and an axial sampling frequency of 40 MHz. It corresponds to a focalized emission (the
PSF was measured at the focal point) with a simulated linear probe containing 128
elements. The shape parameter of the GGD used to generate the scatterer amplitudes
was set to 1.5 and the number of scatterers was considered sufficiently large (106) to
ensure fully developped speckle. In both experiments, the compressed measurements
were obtained by projecting the RF images on SRM, aiming at reducing the amount of
data available.

With the sequential approach, YALL1 was used to process the CS reconstruction fol-
lowing the minimization in (2.16). The deconvolution step was processed using the PFB
as described in section.2.2.2.3. Both the CS reconstruction and the deconvolution pro-
cedures were performed with the same priors as the proposed compressive deconvolution
approach.

The algorithm stops when the convergence criterion ‖ xk − xk−1 ‖ / ‖ xk−1 ‖<
1e−3 is satisfied. In order to highlight the influence of these hyperparameters on the
reconstruction results, we consider the simulated US image in Fig. 3.5. The PSNR
values obtained while varying the values of these hyperparameters are shown in Fig.
3.7. From Fig. 3.7, one can observe that the best results are obtained for small values
of µ, corresponding to an important weight given to the data attachment term. The
best value of α is the one providing the best compromise between the two prior terms
considered in (3.5), promoting minimal `1-norm of Hx in the wavelet domain and GGD
statistics for x. The choice of β and γ parameters, used in the augmented Lagrangian
function and in the approximation of the `p-norm proximal operator, have an important
impact on the algorithm convergence. Moreover, one may observe that for a given range
of values, the choice of γ has less impact on the quality of the results than the other
three hyperparameters. Despite different optimal values for each CS ratio, in the results
presented through the paper, we considered their values fixed for all the CS ratios. The
hyperparameters with our approach were set to {µ, α, β, γ} = {10−5, 2×10−1, 1, 10−2} for
the round cyst image and {µ, α, β, γ} = {10−5, 2× 10−1, 1× 103, 10−4} for the simulated
kidney image.

The quantitative results in Table 4.1 show that the proposed method outperforms
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the sequential approach, for all the CS ratios and values of p considered. They confirm
the visual impression given by Figures 3.5 and 3.6. We should remark that for the first
simulated data set, the l1-norm gives the best result. This may be explained by the
simple geometry of the simulated TRF, namely its sparse appearance. The second data
set, more realistic and more representative of experimental situations, shows the interest
of using different values of p. It confirms the generality interest of the proposed method,
namely its flexibility in the choice of TRF priors.

Table 3.3: Quantitative results for simulated US images (SNR = 40dB)
CS Sequential Proposed Proposed Proposed

Ratios (l1.5) (l1.3) (l1)
Figure 3.5

80% PSNR 26.50 24.74 25.29 26.82
SSIM 75.01 73.91 77.66 79.45

60% PSNR 25.96 24.44 24.74 26.03
SSIM 68.59 69.37 74.72 76.26

40% PSNR 23.38 24.21 24.57 25.28
SSIM 47.60 62.58 71.86 72.78

20% PSNR 21.10 23.72 24.42 24.77
SSIM 36.07 50.34 66.48 70.44

Figure 3.6

80% PSNR 26.06 26.71 26.72 26.69
SSIM 45.99 56.81 56.84 56.71

60% PSNR 25.44 26.38 26.31 26.29
SSIM 38.86 54.14 53.90 53.80

40% PSNR 25.37 25.89 25.95 25,97
SSIM 34.61 50.22 50.51 50.61

20% PSNR 24.96 25.22 25.20 25.12
SSIM 30.89 41.41 41.32 40.97
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Simulated US image and its compressive deconvolution results for a CS
ratio of 0.4 and a SNR of 40 dB. (a) Original tissue reflectivity function, (b) Simulated
US image, (c) Results using the sequential method, (d, e, f) Results with the proposed
method for p equal to 1.5, 1.3 and 1 respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Simulated kidney image and its compressive deconvolution results for a CS
ratio of 0.2 and a SNR of 40dB. (a) Original tissue reflectivity function, (b) Simulated
US image, (c) Results using the sequential method, (d, e, f) Results with the proposed
method for p equal to 1.5, 1.3 and 1 respectively.
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Figure 3.7: The impact of hyperparameters on the performance of proposed algorithm
on Figure. 3.5.
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3.6.5 Results on in vivo data

In this section, we tested our method with two in vivo data sets. The experimental
data were acquired with a 20 MHz single-element US probe on a mouse bladder (first
example) and kidney (second example). Unlike the simulated cases studied previously,
the PSF is not known in these experiments and has to be estimated from the data. In our
work, the PSF estimation method presented in [Michailovich 2005] has been adopted.
The PSF estimation adopted is not iterative and the computational time for this pre-
processing step is negligible compared to the reconstruction process. The compressive
deconvolution results are shown in Figures 3.8 and 3.9 for different CS ratios.

The two regions selected for the computation of the CNR are highlighted by the
two red rectangles in Figures 3.8(a) and 3.9(a). Table. 3.4 gives the CNR assessment
for these two in vivo data sets with different CS ratios and p values. Given the sparse
appearance of the bladder image in Fig. 3.8(a), the best result was obtained for p equal
to 1. However, the complexity of the tissue structures in the kidney image in Fig. 3.9
results into better results for p larger than 1. Nevertheless, both the visual impression
and the CNR results show the ability of our method to both recover the image from
compressive measurements and to improve its contrast compared to the standard US
image. In particular, we may remark the improved contrast of the structures inside the
kidney on our reconstructed images compared to the original one.

Table 3.4: CNR assessment for in vivo data
Figure Original CNR p values CS ratios

100% 80% 60% 40%

Fig.6 1.106 p = 1 1.748 1.546 1.367 1.333
p = 1.5 1.690 1.424 1.304 1.287

Fig.7 1.316 p = 1 2.373 2.162 1.895 1.434
p = 1.5 2.317 2.082 1.905 1.451
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Figure 3.8: (a)Original in vivo image and (b-e) its compressive deconvolution results for
CS ratios of 1, 0.8, 0.6 and 0.4 respectively with p = 1.
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Figure 3.9: (a)Original in vivo image and (b-e) and its compressive deconvolution results
for CS ratios of 1, 0.8, 0.6 and 0.4 respectively with p = 1.5.
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3.7 Conclusion
This chapter introduced an ADMM-based compressive deconvolution framework for ul-
trasound imaging systems. The main benefit of our approach is its ability to reconstruct
enhanced ultrasound RF images from compressed measurements, by inverting a linear
model combining random projections and 2D convolution. Simulation results on the
standard Shepp-Logan phantom show the superiority of our method, both in accuracy
and in computational time, over a recently published compressive deconvolution ap-
proach. Moreover, we show that the proposed joint CS and deconvolution approach is
more robust than an intuitive technique consisting of first reconstructing the RF data
and second deconvolving it. Finally, promising results on in vivo data demonstrate the
effectiveness of our approach in practical situations. We emphasize that the 2D convolu-
tion model may not be valid over the entire image because of the spatially variant PSF.
While in our work we focused on compressive image deconvolution based on spatially
invariant PSF, a more complicated global model combining several local shift invariant
PSFs represents an interesting perspective of our approach.
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Compressive Deconvolution using
SDMM

Part of the work in this chapter has been published in [Chen 2016b].

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Basics of Simultaneous Direction Method of Multipliers . . . 74
4.3 Proposed SDMM parameterization . . . . . . . . . . . . . . . . 75
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Results on simulated data . . . . . . . . . . . . . . . . . . . . . 78
4.4.1.1 Cartoon phantom image . . . . . . . . . . . . . . . . . 78
4.4.1.2 Simulated kidney image . . . . . . . . . . . . . . . . . 81
4.4.1.3 Results’ discussion . . . . . . . . . . . . . . . . . . . . 81

4.4.2 Results on in vivo data . . . . . . . . . . . . . . . . . . . . . . 86
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

73



Chapter 4. Compressive Deconvolution using SDMM

4.1 Introduction

The direct model of Compressive Deconvolution we have introduced is

y = ΦHx+ n (4.1)

where the variables y ∈ RM corresponds to the M compressed measurements, Φ ∈
RM×N represents the sampling matrix, H ∈ RN×N is a BCCB matrix related to the 2D
PSF of the system, x ∈ RN represents the TRF and n is a zero-mean additive white
Gaussian noise.

In this Chapter, we further improve the US Compressive Deconvolution scheme de-
scribed in the previous chapter by proposing a new reconstruction algorithm based on
the Simultaneous Direction Method of Multipliers (SDMM) [Setzer 2010]. We hereby
focus on the US imaging adjusted objective function as

min
x∈RN

‖ Ψ−1Hx ‖1 +α ‖ x ‖pp + 1
2µ ‖ y − ΦHx ‖22 (4.2)

4.2 Basics of Simultaneous Direction Method of Multipli-
ers

The algorithm of Simultaneous Direction Method of Multipliers (SDMM) e.g, [Setzer 2010],
generalizes the alternating split Bregman method (ASB) [Goldstein 2009] to a sum of
more than two functions. The ASB was initially proposed to solve optimization problems
that can be expressed in the following form:

argmin
u∈Rs,v∈Rt

f(u) + g(v) s.t. v = Cu (4.3)

where C ∈ Rt×s is a given matrix, f : Rs → R̄ and g : Rt → R̄ are convex functions.
R̄ is designated for extended real numbers, i.e., R

⋃
{+∞}.

The iterative ASB method declines as follows:

uk+1 = argmin
u∈Rs

f(u) + 1
2β ‖ b

k + Cu− vk ‖22 (4.4)

vk+1 = argmin
v∈Rt

g(v) + 1
2β ‖ b

k + Cuk+1 − v ‖22 (4.5)

bk+1 = bk + Cuk+1 − vk+1 (4.6)

where b ∈ Rt is the Lagrangian parameter. It has been proven that the alternat-
ing split Bregman method is equivalent to Alternating Direction Method of Multipliers
(ADMM) when the constraints are linear [Esser 2009].
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Inspired from ASB, the general optimization problem considered in the framework
of SDMM is:

argmin
u∈Rs

m∑
i=1

fi(Ciu) (4.7)

where Ci ∈ Rti,s and fi : Rti → R̄ are convex functions. Considering vi ∈ Rti ,
vi = Ciu, f(u) = 〈0, u〉 and g(v) =

∑m
i=1 fi(vi), (4.7) can be reformulated as

argmin
u∈Rs,vi∈Rt

i

f(u) +
m∑
i=1

fi(vi) (4.8)

Similarly to ASB method, SDMM iteratively solves the optimization problem above
as follows:

uk+1 = argmin
u∈Rs

1
2β ‖

 b
k
1
...
bkm

+

C1
...
Cm

u−
v

k
1
...
vkm

 ‖2 (4.9)


vk+1

1
...

vk+1
m

 = argmin
vi∈Rt

i

{ 1
2β ‖

 b
k
1
...
bkm

+

C1
...
Cm

uk+1 −

 v1
...
vm

 ‖2 +
m∑
i=1

fi(vi)} (4.10)


bk+1

1
...

bk+1
m

 =

 b
k
1
...
bkm

+

C1
...
Cm

uk+1 −


vk+1

1
...

vk+1
m

 (4.11)

4.3 Proposed SDMM parameterization

In this chapter we propose an SDMM-based optimization scheme adapted to solve the
problem in (4.2). First, we remark that (4.2) can be reformulated as

argmin
x

f1(v1) + f2(v2) + f3(v3) (4.12)

with 

f1(v1) = α ‖ v1 ‖pp
f2(v2) =‖ v2 ‖1

f3(v3) = 1
2µ ‖ y − Φv3 ‖22

v1 = C1x,v2 = C2x,v3 = C3x
C1 = IN , C2 = Ψ−1H,C3 = H
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Chapter 4. Compressive Deconvolution using SDMM

Using the parametrization above, the SDMM steps given in (4.9)-(4.11) write for our
compressive deconvolution problem as follows:

xk+1 = argmin
x∈RN

1
2β ‖

b
k
1
bk2
bk3

+

 IN
Ψ−1H
H

x−
vk1vk2
vk3

 ‖2 (4.13)

v
k+1
1
vk+1

2
vk+1

3

 = argmin
v1,v2,v3

{ 1
2β ‖

b
k
1
bk2
bk3

+

 IN
Ψ−1H
H

xk+1 −

v1
v2
v3

 ‖2 +
3∑
i=1

fi(vi)} (4.14)

b
k+1
1
bk+1

2
bk+1

3

 =

b
k
1
bk2
bk3

+

 IN
Ψ−1H
H

xk+1 −

v
k+1
1
vk+1

2
vk+1

3

 (4.15)

In the following, we give the details of solving each of the steps above. Firstly, we
remark that (4.13) is a classical l2-norm minimization problem that can be efficiently
solved in the Fourier domain [Ng 2010].

(4.14) consists in solving three subproblems, corresponding to the update of v1, v2
and respectively v3. The v1-subproblem can be solved as follows:

vk+1
1 =argmin

v1
α ‖ v1 ‖pp + 1

2β ‖ b
k
1 + xk+1 − v1 ‖22

=proxαβ‖ · ‖p
p
(bk1 + xk+1)

(4.16)

where prox represents the proximal operator and the proximal operator of ‖ x ‖pp
has been given explicitly previously in section.2.2.2.3.

The v2-subproblem can also be solved using the proximal operator associated to
the `1-norm that corresponds to the soft thresholding operator [Ng 2010] (see sec-
tion.2.2.2.3):

vk+1
2 =argmin

v2
‖ v2 ‖1 + 1

2β ‖ b
k
2 + Ψ−1Hxk+1 − v2 ‖22

=proxβ‖ · ‖1(bk2 + Ψ−1Hxk+1)
(4.17)

Finally, the v3-subproblem can be solved as follows:

vk+1
3 = argmin

v3

1
2µ ‖ y − Φv3 ‖22 + 1

2β ‖ b
k
3 +Hxk+1 − v3 ‖22

⇔ [βΦtΦ + µ]vk+1
3 = βΦty + µbk3 + µHxk+1

(4.18)
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For orthogonal sampling matrices Φ, the Sherman-Morrison-Woodbury inversion ma-
trix lemma [Deng 2013] allows us to efficiently find the solution of the v3-subproblem
above. However, when the sampling matrix Φ is non-orthogonal, the solution of v3-
subproblem in (4.18) cannot be computed in practical situations because of the high-
dimensional matrices. To overcome this issue and make our compressive deconvolution
method more general and therefore relevant to various compressive acquisition schemes
in US imaging, we propose to use Newton’s method to approximate its solution.

Let us denote

h(v3) = [βΦtΦ + µ]v3 − βΦty + µbk3 + µHxk+1 (4.19)

At each iteration, we approximate vk+1
3 by

vk+1
3 = vk3 − stp ∗ h(vk3) (4.20)

where stp is defined as

stp = h(vk3)th(vk3)
β[Φh(vk3)]t[Φh(vk3)] + µh(vk3)th(vk3)

(4.21)

To conclude, Algorithm. 3 summarizes the SDMM-based numerical scheme proposed
for solving (4.2).

Algorithm 3 Compressive deconvolution SDMM-based algorithm.
Require: α, µ, β, v0

i , b0
i , i = 1, 2, 3

1: while not converged do
2: xk+1 ← vki , b

k
i . update xk+1 using (4.13)

3: vk+1
1 ← bk1,x

k+1 . update vk+1
1 using (4.16)

4: vk+1
2 ← bk2,x

k+1 . update vk+1
2 using (4.17)

5: vk+1
3 ← bk3,x

k+1 . update vk+1
3 using (4.18)

6: if Φ is orthogonal then
7: Solve (4.18) by Sherman-Morrison-Woodbury inversion matrix lemma
8: else
9: Solve (4.18) by using (4.20)

10: end if
11: bk+1

i ← vk+1
i ,xk+1 . update bk+1

i using (4.15)
12: end while
Ensure: x

We emphasize that compared to the ADMM-based scheme that we have discussed in
the previous chapter, the method resumed in Algorithm. 3 requires one less hyperparam-
eter. Moreover, with the proposed optimization scheme all the subproblems are solved
exactly, while in the ADMM-based method we have only obtained an approximation
for the v1-subproblem in (4.16). This improvement allows the SDMM-based iterative
scheme to converge faster than the ADMM-based algorithm described in Chapter 3.
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Since this v1-subproblem is critical for the deconvolution process, one may also expect
more accurate compressive deconvolution results with SDMM than with ADMM.

4.4 Results
In this section, we provide numerical experiments to evaluate the effectiveness of the pro-
posed compressive deconvolution optimization framework, denoted by SDMM hereafter.
Since we have shown in Chapter 3 the superiority of the ADMM-based method (denoted
by ADMM in this section) compared to other compressive deconvolution methods, the
technique in Chapter. 3 is used herein for comparison purpose.

4.4.1 Results on simulated data

Two groups of simulation experiments (named Group 1 and 2) have been conducted to
evaluate the performance of the proposed scheme. The RF images have been generated
following the procedure in [Ng 2007a] using a 2D convolution between a US PSF and a
map of scatterers, i.e, tissue reflectivity function (TRF).

4.4.1.1 Cartoon phantom image

For Group 1, the TRF was generated by assigning the scatterers random amplitudes
following a given distribution, weighted by a cartoon image denoted by mask hereafter.
A Laplacian distribution has been employed and the mask has been hand drawn to
simulate four different regions with different echogenicity. The PSF was generated using
a Field II [Jensen 1991] simulation corresponding to a 128-element linear probe operating
at 3.5 MHz and an axial sampling frequency of 20 MHz. The resulting TRF and US image
(plotted in B-mode) are shown in Fig. 4.1 (a) and (b). The compressed measurements
were obtained by projecting the RF images onto orthogonal Structurally Random Matrix
(SRM) [Do 2012] and were degraded by an additive Gaussian noise corresponding to
a SNR of 40 dB. In order to evaluate the performance of the algorithm with a non-
orthogonal measurement matrix, namely nSDMM, we have also projected the RF data
onto a random Gaussian matrix. The corresponding results are provided in Fig. 4.1 (e),
(h) and (k).

Sampling with Bernoulli masks In section 2.1.4.2, we have presented several exist-
ing CS acquisition schemes in US imaging. In order to show how the proposed method is
able to handle such acquisition schemes, we give hereafter an example in Fig. 4.2. Based
on the same simulated data as Group 1, the measurements were obtained by sampling
with Bernoulli masks.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 4.1: Results on simulated data (Group 1). (a) TRF, (b) Simulated US image,
(c,f,i) Reconstruction results using ADMM for CS ratios of 0.6, 0.4 and 0.2, (d,g,j) Re-
construction results using SDMM for CS ratios of 0.6, 0.4 and 0.2, (e,h,k) Reconstruction
results using nSDMM for CS ratios of 0.6, 0.4 and 0.2.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.2: Results with Bernoulli masks on simulated data (Group 1). (a,b,c) Bernoulli
mask, CS measurements and reconstruction using proposed method with CS ratio of
0.8, (d,e,f) Bernoulli mask, CS measurements and reconstruction using proposed method
with CS ratio of 0.5, (g,h,i) Bernoulli mask, CS measurements and reconstruction using
proposed method with CS ratio of 0.2.
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4.4.1.2 Simulated kidney image

The PSF for Group 2 was also generated with Field II [Jensen 1991] and corresponds to
a sectorial probe with the central frequency of 4 MHz and an axial sampling frequency
of 40 MHz. The TRF follows one of the examples proposed by the Field II simulator
[34], mimicking a kidney. The sampling matrix considered was a Structurally Random
Matrix (SRM) [Do 2012] and the SNR was set at 40 dB. The TRF and the simulated
US image are displayed in Fig. 4.3 (a) and (e).

4.4.1.3 Results’ discussion

Fig. 4.1 and Fig. 4.3 display the compressive deconvolution reconstruction results
obtained with different methods for CS ratios of 0.6, 0.4 and 0.2. The value of p used
to regularize the TRF estimations was set to 1 for Group 1 and 1.5 for Group 2. All
the other hyperparameters were set to their best possible values by cross-validation.
We should note that since both ADMM and SDMM methods aim at solving the same
objective function in (4.2), the hyperparameters α and µ have been assigned the same
values in order to ensure a fair comparison. For the same reason, both algorithms were
assigned the same convergence criterion, i.e. ‖ xk − xk−1 ‖ / ‖ xk−1 ‖< 5e−4, with k
the iteration number and xk the estimated image at iteration k.

Taking benefit from the fact that the TRF ground truth is available in simulation
experiments, the PSNR and SSIM are also used in this subsection to assess the quality
of the reconstruction results. The definition of PSNR and SSIM can be found as (3.28)
and (3.29). Higher PSNR or SSIM indicates that the reconstruction is of higher quality.
The definition of PSNR and SSIM can be found in section.3.6.1.

These quantitative results are regrouped in Table 4.1, where the reported PSNRs
and SSIMs are the mean values of 10 experiments. The bold values stand for the best
result obtained for each experiment. Note that given the more complex structures in
Group 2, the intrinsic values of PSNR and SSIM are lower for Group 2 than for Group
1. However, the improvement between SDMM and ADMM is globally higher for Group
2 than for Group 1.

Both the visual inspection of images in figures 4.1 and 4.3 and the quantitative re-
sults in Table 4.1 show that the proposed SDMM-based method outperforms the ADMM
algorithm for the two simulated images and for all the CS ratios. In addition to the re-
construction quality gain, the proposed method also offers better convergence properties
compared to ADMM. This convergence improvement is clearly highlighted by the plots
in Fig. 4.4. We may thus remark that for all the CS ratios, the convergence curves,
both in terms of objective function (as eq. (4.2)) and of Normalized Mean Square Error
(NMSE) defined in eq.(4.22), decreases much faster with SDMM than with ADMM. The
computations were performed using a computer with Intel Xeon CPU E5620 @2.40GHz,
4.00G RAM. Depending on the stopping criterion, the convergence rate of SDMM for
Group 1 is at least twice faster than the one of ADMM. We emphasize that the same
convergence properties have been obtained for Group 2. The convergence performance
of nSDMM is also shown in Fig. 4.4. We may remark that nSDMM has degraded con-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.3: Results on simulated data (Group 2). (a) TRF, (b-d) Reconstruction re-
sults using ADMM for CS ratios of 0.6, 0.4 and 0.2, (e) Simulated US image, (f-h)
Reconstruction results using SDMM for CS ratios of 0.6, 0.4 and 0.2.
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Table 4.1: Quantitative results for compressive deconvolution reconstruction of simulated
US images

CS ratios 0.8 0.6 0.4 0.2
Group 1

ADMM PSNR(dB) 29.14 28.34 27.01 24.60
SSIM(%) 81.58 77.44 69.07 51.65

SDMM PSNR(dB) 30.67 29.55 27.94 26.18
SSIM(%) 85.77 81.66 74.37 63.15

Group 2

ADMM PSNR(dB) 28.02 26.89 26.20 25.32
SSIM(%) 60.56 58.20 54.21 45.35

SDMM PSNR(dB) 31.53 30.95 30.19 28.10
SSIM(%) 76.85 74.45 70.40 56.20

vergence properties compared to SDMM method, caused by the approximation in (4.20).
However, when the convergence is achieved, both objective function value and NMSE
obtained with nSDMM and SDMM are similar.

NMSE = 1
N
‖ x− x̂ ‖22 (4.22)

where x and x̂ are the normalized original and reconstructed TRF images and N
represents the number of pixels in the image.

As explained previously, the value of the regularization parameter p has been manu-
ally tuned in the two simulated experiments. However, one may notice the importance
of this parameter on the reconstruction results, as it directly affects the regularization
of the TRF [Achim 2014]. In order to show its influence on the results, we regroup in
Fig. 4.5 the PSNR and SSIM results for both SDMM and ADMM methods for three
values of p, versus the CS ratio. In addition to the superiority of SDMM compared to
ADMM, one may remark that the choice of p is more important for low CS ratios. This
observation can be explained by the further importance of the regularization when only
a small amount of data is available.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Convergence performance on simulated data (Group1). (a,c,e) Objective vs
CPU time for CS ratios of 0.6, 0.4, 0.2, (b,d,f) NMSE vs CPU time for CS ratios of 0.6,
0.4, 0.2.
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Figure 4.5: Results of all the methods with different p on simulated data (Group1).
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4.4.2 Results on in vivo data

In this section, we evaluate the results of the proposed SDMM-based compressive decon-
volution method on two in vivo US images, denoted by Group 3 and Group 4. Group 3
corresponds to a mouse bladder shown in Fig. 4.6 (a), while Group 4 represents a mouse
kidney, see Fig. 4.7 (a). Both images were acquired with a 20 MHz single-element
US probe. Since the PSF is unknown in practical situations, it has been initially esti-
mated from the data, as a pre-processing step, following the PSF estimation procedure
presented in [Michailovich 2005]. The compressive deconvolution results obtained with
ADMM and SDMM are shown in figures 4.6 (b-g) and 4.7 (b-g) for CS ratios of 0.8,
0.6 and 0.4. Given the "sparse" appearance of the mouse bladder caused by the weak
amount of scatterers in the liquid, the value of p was set to 1 for Group 3 and to 1.5 for
Group 4.

For the in vivo data, the true TRFs are obviously not available, making thus im-
possible the computation of quantitative results such as the PSNR or the SSIM. As a
consequence, the quality of the compressive deconvolution results is evaluated in this
section according to the standard contrast-to-noise ratio (CNR) and the resolution gain
(RG) proposed in [Yu 2012]. The RG is the ratio of the normalized auto correlation
(higher than −3 dB) of the original RF US image to the normalized auto correlation
(higher than −3 dB) of the reconstructed TRF. Moreover, CPU times for both ADMM
and SDMM reconstructions are shown in Table 4.2. The CNR values were computed
for the regions highlighted by the red or orange rectangles in Figures 4.6 and 4.7. For
instance, two CNRs have been calculated for Group 3, between one region in the bladder
cavity and respectively two regions extracted from the bladder wall. The numbers in
Table 4.2 show equivalent results between ADMM and SDMM. Nevertheless, SDMM
was roughly 2 to 6 times faster than ADMM, due to its better convergence properties
discussed in the previous section. The contrast of the reconstructed images is shown to
be better, in terms of CNR, than the one of the original B-mode images. Moreover, the
RG computed between the estimated TRFs and the original images is always larger than
1. This demonstrates the ability of our compressive deconvolution method to improve
the spatial resolution.

The visual inspection of the results highlights better denoising achievements with
SDMM compared to ADMM, as for example in weak scatterer regions such as the bladder
cavity. We emphasize that the reconstructed TRF in Figures 4.6 and 4.7 are shown after
envelope detection and log compression, in order to be comparable to the standard
B-mode images. However, the deconvolution process results into TRFs that, contrary
to RF images, are not longer modulated in the axial direction. Indeed, the carrier
information is included in the PSF that is eliminated during the deconvolution process.
For this reason, the standard procedure of envelope detection based on the amplitude of
the complex analytic signal, is not adapted to TRF. Instead, we have used an envelope
estimator based on the detection and interpolation of local maximum, classically used
in empirical mode decomposition techniques [Flandrin 2004].
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1 2

1 2

(a)

(b) (c) (d)

(e) (f) (g)

Figure 4.6: Results on in vivo data (Group 3). (a) Original US image, (b-d) Recon-
struction results using ADMM for CS ratios of 0.8, 0.6 and 0.4, obtained for p = 1, (e-g)
Reconstruction results using SDMM for CS ratios of 0.8, 0.6 and 0.4, obtained for p = 1.
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1 2

(a)

(b) (c) (d)

(e) (f) (g)

Figure 4.7: Results on in vivo data (Group 4). (a) Original US image, (b-d) Recon-
struction results using ADMM for CS ratios of 0.8, 0.6 and 0.4, obtained for p = 1.5,
(e-g) Reconstruction results using SDMM for CS ratios of 0.8, 0.6 and 0.4, obtained for
p = 1.5.
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Table 4.2: Quantitative results for the in vivo data
Images Group 3 Group 4
Criterion CNR1 CNR2 RG Time/s CNR RG Time/s
Original 1.41 2.62 1.00 - 1.48 1.00 -

ADMM

1 1.65 2.51 2.32 76.40 1.98 2.69 629.57
0.8 1.63 2.00 2.39 77.36 1.90 2.68 561.20
0.6 1.57 1.52 2.45 100.88 1.77 2.34 484.93
0.4 1.40 1.10 2.50 112.96 1.40 2.68 343.09

SDMM

1 1.61 2.56 3.30 12.90 1.90 3.50 186.64
0.8 1.60 3.28 2.39 17.62 1.87 3.61 216.66
0.6 1.54 2.62 2.81 24.89 1.84 3.89 265.43
0.4 1.52 2.07 3.17 40.57 1.58 4.17 312.12
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4.5 Conclusion
The main objective of this chapter was to propose an SDMM-based algorithm dedi-
cated to solve the compressive deconvolution problem in US imaging which is able to
reconstructing enhanced US images from compressed measurements. Compared to an
ADMM-based method that we have presented in the previous chapter, the proposed al-
gorithm requires one less hyperparameter since one of the optimization subproblems can
be solved without any approximation. Moreover, the proposed variable splitting scheme
made possible by SDMM is shown to allow faster convergence compared to ADMM.
Finally, an alternative to compressed measurements obtained with non-orthogonal ma-
trices is provided, thus extending the practical interest of the compressive deconvolution
approach.
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5.1 Introduction

In the previous two chapters, two algorithms were proposed to solve the compressive
deconvolution problem with the assumption that the PSF was known or could be esti-
mated in a pre-processing step. Obviously, the PSF cannot be perfectly known in prac-
tical situations. As described in section 2.2.3, blind deconvolution includes two classed
approaches. The first identifies the PSF in a precede step and later use it in combina-
tion with one of the non-blind deconvolution. The second estimates the target image
and the PSF simultaneously. Following the idea of joint image reconstruction and PSF
estimation, we present in this chapter an approach for compressive blind deconvolution.

5.2 Optimization Problem Formulation

Inspired by the existing joint identification methods for blind deconvolution problem (see
(2.34) in section 2.2.3.2) and the priori information on the PSF adopted in [Morin 2013b,
Repetti 2015], we formulate the compressive blind deconvolution problem as below.

min
x∈RN ,a∈RN ,h∈Rn

‖ a ‖1 +αP (x) + γ ‖ h ‖22 + 1
2µ ‖ y − ΦΨa ‖22

s.t. Hx = Ψa
(5.1)

where all the variables have the same significance as in the previous chapters and γ is
a hyper-parameter weighting the energy term envolving the PSF. As described in the
previous chapters, the first term aims at imposing the sparsity of the RF data Hx in a
transformed domain Ψ, the second and the third terms represent the prior information
on the target image x and the PSF h respectively. In US imaging, instead of the general
total variation as used in [Amizic 2013], an `p-norm was adopted to adjust the GGD
statistics of the TRF. Inspired by [Morin 2013b, Repetti 2015], we employed an `2-norm
to regularize the PSF.

Compared to the compressive deconvolution problem in (3.4), this objective function
in no longer a convex optimization problem. We hereafter present a dedicated algorithm
to solve this problem.

5.3 Alternating Minimization (AM)-based algorithm

The aforementioned objective function in (5.1) can be divided into two sub-problems
by using the Alternating Minimization (AM)-based algorithm [Wang 2008]. The first
sub-problem, aiming to estimate a and x for a fixed h at kth iteration, is:
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(xk+1,ak+1) = argmin
x∈RN ,a∈RN

‖ a ‖1 +αP (x) + 1
2µ ‖ y − ΦΨa ‖22

s.t. Hkx = Ψa
(5.2)

This sub-problem is in fact the same with the compressive deconvolution problem
addressed in the previous chapters. Both ADMM-based and SDMM-based algorithms
are able to get an optimal x and a by solving the unconstrained form of this optimization
problem:

xk+1 = argmin
x∈RN

‖ Ψ−1Hx ‖1 +αP (x) + 1
2µ ‖ y − ΦHx ‖22 (5.3)

ak+1 = ΨHxk+1 (5.4)

The second sub-problem concerns the estimation of h for fixed a and x

hk+1 = argmin
h∈Rn

γ ‖ h ‖22 s.t. Xk+1Ph = Ψak+1
(5.5)

where Xk+1 ∈ RN×N is a Block Circulant with Circulant Block (BCCB) matrix with the
same structure as H. Its circulant kernel is xk+1 ∈ RN , P ∈ RN×n is a simple structure
matrix mapping the n coefficients of the PSF kernel h to a N length vector so that
Hxk+1 = Xk+1Ph. Its definition and implementation can be found in Appendix A. The
constrained problem above can be solved by reformulating it as an unconstrained one:

hk+1 = argmin
h∈Rn

γ ‖ h ‖22 + ‖ Xk+1Ph−Ψak+1 ‖22 (5.6)

It thus becomes a regularized least square problem and its analytical solution can be
written as [Morin 2013b]:

hk+1 = [(Xk+1P )tXk+1P + γIn]−1(Xk+1P )tΨak+1 (5.7)

where In ∈ Rn is an identity matrix. Instead of inverting the N ×N matrix, we hereby
only need to deal with the inversion of an n × n matrix. Thus the computational cost
is reduced. More details about the practical implementation of the analytic solution in
(5.7) can be found in Appendix B.

To conclude, the AM-based algorithm for compressive blind deconvolution is sum-
marized in Algorithm 4.
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Algorithm 4 Compressive blind deconvolution AM-based algorithm.
Input: h0, α, µ, β, γ

1: while not converged do
2: xk+1,ak+1 ← hk . update xk+1, ak+1 using Algorithms 2 or 3
3: hk+1 ← xk+1,ak+1 . update hk+1 using (5.7)
4: end while
Output: x,a,h

5.4 Results
In this section, we provide a preliminary evaluation through two numerical experiments
of the performance of the proposed compressive blind deconvolution method, denoted
by CBD_AM hereafter. The first simulation is based on the Shepp-Logan phantom and
serves to compare our approach to the method in [Amizic 2013], referred as CBD_Amizic
hereafter. Second, we test our algorithm on a simulated US image, showing the effec-
tiveness of our approach compared to compressive non-blind deconvolution.

5.4.1 Results on Shepp-logan phantom

In this subsection we show an experiment aiming to evaluate the performance of the
proposed approach compared to CBD_Amizic. The comparison results are obtained
on the standard 256 × 256 Shepp-Logan phantom. As described in section 3.6.2, the
measurements have been generated in a similar manner as in [Amizic 2013], i.e. the
original image was normalized, degraded by a 17× 17 Gaussian PSF with variance of 9,
projected onto a structured random matrix (SRM) to generate the CS measurements.
Finally, the compressed measurements were corrupted by an additive Gaussian noise.
We should remark that in [Amizic 2013] the compressed measurements were originally
generated using a Gaussian random matrix. However, we have found that the recon-
struction results with CBD_Amizic are slightly better when using a SRM compared to
the PSNR results reported in [Amizic 2013]. Both methods were based on the general-
ized TV to model the image to be estimated and the 3-level Haar wavelet transform as
sparsifying basis Ψ. With our method, the ADMM-based (Algorithm 2) approach was
employed to update the x and a. Interestingly, although the SDMM-based method is
shown faster converged compared to the ADMM-based method in the previous chapter,
the latter one performs better than the former one in this experiment. Hyperparameters
were set to {α, µ, β, γ} = {10−1, 10−4, 10−4, 1}. The same hyperparameters as reported
in [Amizic 2013] were used for CD_Amizic. Both algorithms used the same stopping
criteria.

Fig. 5.1 shows the original Shepp-Logan image, its blurred version and a series of
compressive deconvolution reconstructions using both our method and CBD_Amizic for
CS ratios running from 0.4 to 0.8 and a SNR of 40 dB. Additionally, in Fig. 5.2, we
provided the estimated PSFs together with the true Gaussian PSF of variance 9 used
to degrade the original images and the initial Gaussian PSF of variance 2 as used in
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[Amizic 2013]. Table 5.1 regroups the PSNR of the estimated x and h obtained with our
method and with CBD_Amizic for four CS ratios from 0.2 to 0.8 when SNR is equal to
40dB. In each case, the reported PSNRs are the mean values of 10 experiments. We may
observe that our method outperforms CBD_Amizic in all the cases. Moreover, Table
5.1 also shows the computational times with CBD_Amizic and the proposed method,
obtained with Matlab implementations (for CBD_Amizic, the original code provided by
the authors of [Amizic 2013] has been employed) on a standard desktop computer (Intel
Xeon CPU E5620 @ 2.40GHz, 4.00G RAM). We notice that our approach is less time
consuming than CBD_Amizic for all the CS ratios considered.

Table 5.1: Quantitative assessment for Shepp-Logan phantom
Methods CS ratios PSNRx PSNRh Time/s

CBD_Amizic

80% 22.55 86.86 353.64
60% 22.48 86.49 415.96
40% 22.38 86.18 535.59
20% 19.80 82.41 534.34

CBD_AM

80% 24.39 92.41 243.31
60% 23.12 89.70 320.82
40% 22.59 88.36 321.39
20% 21.48 85.96 329.90
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.1: Results on Shepp-logan phantom. (a) Original, (b) blurred, (c,e,g) recon-
struction results with CBD_Amizic for CS ratios of 0.8, 0.6 and 0.4, (d,f,h) reconstruc-
tion results with AM_ADMM for CS ratios of 0.8, 0.6 and 0.4.
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Figure 5.2: Estimated PSFs for compressive blind deconvolution presented in Fig. 5.1.
(a) Original, (b) initial, (c,e,g) estimated PSFs with CBD_Amizic for CS ratios of 0.8,
0.6 and 0.4, (d,f,h) estimated PSFs with CBD_AM for CS ratios of 0.8, 0.6 and 0.4.
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5.4.2 Results on simulated US images

In this section, we tested the proposed CBD_AM method on one simulated US image.
We should keep in mind that since the CBD_Amizic method using a generalized TV
prior is not well suited to model the TRF in imaging (see section 3.6.3), we did not use
it in the following simulation.

As an initial investigation, we generated hereby a B-mode US image by 2D convolu-
tion between a spatially invariant Gaussian PSF of variance 2 and a TRF, shown in Fig.
5.3. The TRF corresponds to a simple medium representing a round hypoechoic inclu-
sion into a homogeneous medium, as described in section 3.6.4. The scatterer amplitudes
were random variables distributed according to a GGD with the shape parameter set to
1. The compressed measurements were then obtained by projecting the RF images onto
a SRM, aiming at reducing the amount of data available.

In order to evaluate the performance of the proposed method, we compared the
blind reconstruction results with the one without updating the PSF estimation, i.e. the
compressive non-blind deconvolution (denoted by CD). As it is done in the previous
two chapters with in vivo data, the initial PSF used here is also estimated from the
blurred data as a pre-processing step following the PSF estimation procedure presented in
[Michailovich 2005]. We employed the SDMM-based compressive deconvolution method
in this experiment to update x and a.

The reconstruction results of the compressive non-blind deconvolution and the pro-
posed method are presented in Fig. 5.4. We have also displayed the true, initial and
estimated PSFs in Fig. 5.5. One may remark from the images and the quantitative
results in Table 5.2 that the CBD_AM is able to recover both TRF and PSF with good
accuracy.

Table 5.2: Quantitative assessment for simulated US data
Methods CS ratios PSNRx SSIM PSNRh

CD

80% 21.31 50.64

20.8460% 21.25 45.87
40% 20.81 40.48
20% 19.77 29.46

CBD_AM

80% 23.83 48.41 27.71
60% 23.34 47.01 27.64
40% 22.94 48.64 27.00
20% 22.02 52.50 22.18
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Figure 5.3: (a) TRF (256×128), (b) Gaussian PSF (7×7 central part) and (c) Simulated
B-mode US image.

99



Chapter 5. Compressive Blind Deconvolution

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.4: Simulated US image and its compressive blind deconvolution results for a
SNR of 40 dB. (a) Original tissue reflectivity function, (b) Simulated B-mode US image,
(c,e,g) results using CD with a pre-estimated PSF for CS ratios of 0.8, 0.6 and 0.4, (d,f,h)
results using CBD_AM for CS ratios of 0.8, 0.6 and 0.4.
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Figure 5.5: Estimated PSFs using CBD_AM for compressive blind deconvolution. (a)
True PSF, (b) estimated PSF using an existing method [Michailovich 2005], (c,d,e) es-
timated PSF of CBD_AM for CS ratios of 0.8, 0.6 and 0.4.
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5.5 Conclusion
In this chapter, we gave an initial investigation to a compressive blind deconvolution
algorithm. The proposed AM-based approach is composed by two parts with a initial
guess of PSF. The first part is to estimate the TRF and the sparse representation of the
blurred US RF image, which can be completed by either the ADMM-based or SDMM-
based method. The second part is to update the PSF estimation by solving an analytical
equation. Simulation results on the standard Shepp-Logan phantom show the superiority
of our method, both in accuracy and in computational time, over a recently published
compressive deconvolution approach. Moreover, preliminary results on a simulated US
image have also shown the efficiency of the proposed approach on both TRF and PSF
estimation.
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Chapter 6

Conclusions and Perspectives

6.1 Conclusions
The goal of this work was to propose a framework for reconstructing enhanced ultrasound
images from compressed measurements, namely compressive deconvolution. Aside from
the compressive sampling matrix, an US RF image was modelled as the convolution
product between a TRF and a PSF. The objective of our work was then to estimate the
TRF from compressed measurements.

We first assumed the PSF known or estimated in a precede step and formulated the
inverse problem as a regularized unconstrained optimization problem. Compared to a
standard compressive sampling reconstruction that operates in the sparse domain, our
minimization problem combined the data attachment and two regularization terms. One
of the regularizers promoted minimal `1-norm of the target image transformed by 2D
convolution with a bandlimited ultrasound PSF. The second one is seeking for imposing
GGD statistics on the TRF to be reconstructed. To obtain the optimal solution, we
proposed an ADMM-based approach to split these three awkward terms and solve them
in three sub-problems separately and iteratively. Simulation results on the standard
Shepp-Logan phantom showed the superiority of our method, both in accuracy and
in computational time, over a recently published compressive deconvolution approach.
Moreover, we showed that the proposed joint CS and deconvolution approach is more
robust than an intuitive technique consisting of first reconstructing the RF data and
second deconvolving it. Promising results on in vivo data have also been obtained to
demonstrate the effectiveness of our approach in practical situations.

In a second step, we proposed an SDMM-based algorithm to improve the recon-
struction in the compressive deconvolution framework. Compared to the ADMM-based
method, this method split the three terms completely and required one less hyperparam-
eter since one of the optimization subproblems can be solved without any approximation.
Moreover, simulation results on both simulated US images and in vivo data have proven
that the proposed variable splitting scheme made possible by SDMM allows faster con-
vergence compared to ADMM. Additionally, an alternative to compressed measurements
obtained with non-orthogonal matrices is provided, thus extending the practical interest
of the compressive deconvolution approach.

Our last contribution was to develop an algorithm to jointly estimate the TRF and
PSF. Compared to the methods proposed previously, the PSF is supposed to be un-
known. We employed an additional `2-norm term for PSF regularization in the corre-
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sponding optimization problem. Starting from an initial guess of PSF, we proposed an
AM-based method to iteratively estimate the TRF and PSF. The TRF estimation step
could be done by either ADMM-based or SDMM-based algorithm and the PSF was up-
dated using an efficient implementation of an analytical solution. Simulation results on
the standard Shepp-Logan phantom showed its superiority over an existing method. We
have also investigated this method on a simulated US image and obtained encouraging
results.

6.2 Perspectives
Our research on the feasibility of compressive deconvolution in US imaging has however
some limitations and thus opens several research perspectives.

One of the limitations comes from the assumption of an invariant PSF. The 2D
convolution model may not be valid over the entire image because of the spatially vari-
ant PSF. While in our work we focused on compressive image deconvolution based on
spatially invariant PSF, a more complicated global model combining several local shift
invariant PSFs represents an interesting perspective of our approach.

The second limitation concerns the validation of the compressive blind deconvolution
algorithm. More experimental data should be processed in the future in order to further
validate the efficiency of our methods in practical situations. In addition, different
regularization for the PSF may be adopted and tested. It will become more attractive
if we can extend it to 3D ultrasound imaging.

Moreover, an automatic choice of the optimal value of the regularization parameter
p would be of great interest in practice. This optimal choice may be considered through
statistical assumptions on the US images, such as the heavy-tailed distributions discussed
in [Achim 2014]. While in this thesis we focused on p values larger than or equal to 1,
the case p < 1 may be of interest in practical situations involving sparse US images. To
handle both situations, we will mainly focus on an automatic selection of p embedded
into both convex and non-convex optimization routines.

Finally, evaluating our reconstruction method with other existing setups for generat-
ing the compressed measurements, having a practical interest in decreasing the acquisi-
tion time instead of only reducing the amount of acquired data, is also of great interest.
As an example, an interesting future research track will be to evaluate the compres-
sive deconvolution with specific compressed measurements, such as those obtained by
Xampling [Chernyakova 2014] or with optimized sparse arrays [Diarra 2013].
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Appendix
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Appendix A

Construction of the P matrix

For online PSF estimation, we write the convolution model as below [Morin 2013a]:

r = XPh+ n (A.1)

where r,h,n are the observation, the PSF and the noise in vector forms respectively,
r,n ∈ RN , h ∈ Rn. We should note that n << N . X ∈ RN×N is the BCCB matrix
representing the original image x and P ∈ RN×n is a matrix defined to extend h to N .
Let us denote the size of x and r as N = S × T , and the size of the PSF kernel h as
n = s× t.

X has exactly the same structure with H, classically used in deconvolution problems.
The P could be written by

P =
[
P ′

©

]

where © ∈ RS(T−t)×n is a zero matrix and P ′ ∈ RSt×n can be written like

P ′ =



Is Os . . . Os

O(S−s)s O(S−s)s . . . O(S−s)s
Os Is . . . Os

O(S−s)s O(S−s)s . . . O(S−s)s
...

... . . . ...
Os Os . . . Is

O(S−s)s O(S−s)s . . . O(S−s)s


where Os represents a zero square matrix of size s × s and O(S−s)s is a zero matrix of
size (S − s)× s, Is is an identity square matrix of size s× s.
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Appendix B

Implementation of the analytical
solution for PSF estimation

In Chapter 5, the analytical solution for PSF estimation is

hk+1 = [(Xk+1P )tXk+1P + γIn]−1(Xk+1P )tΨa (B.1)

To simplify the notations, we will ignore the iteration number k and denote the
z = Ψa. The key to solve this equation is to find an efficient way to compute (XP )tXP
and (XP )tz.

Firstly, for the term of (XP )tz, Xt is actually the circular matrix of the transformed
x. Let us denote the transformed x as x′. Xtz is then the convolution between x′ and
z. While x represents the 2D image x2D in a vectorized version, x′ corresponds to the
transformed 2D image x′2D. We define x in 2D as:

x2D =


x11 x12 x13 . . . x1T
x21 x22 x23 . . . x2T
x31 x32 x33 . . . x3T
...

...
... . . . ...

xS1 xS2 xS3 . . . xST


The transformation from x2D to x′2D usually includes flips both in horizontal and

vertical directions. However, the exact details of these flips depend also on the way how
we define the convolution, including its boundary condition and which part we take from
the full convolution result. Here we will detail about the transformation in the case of
circular convolution with periodic boundary extensions, and we take the center part of
the full convolution. Then the x2D can be obtained by flipping x twice: the first row to
the last second and first column to the last second, which is equal to

x′2D =


x(S−1)(T−1) x(S−1)(T−2) . . . x(S−1)1 x(S−1)T
x(S−2)(T−1) x(S−2)(T−2) . . . x(S−2)1 x(S−2)T

...
... . . . ...

...
x1(T−1) x1(T−2) . . . x11 x1T
xS(T−1) xS(T−2) . . . xS1 xST
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According to the analysis about P above, P t multiplying a vector is actually equiv-
alent to choose several elements from a vector. In our case, P t aims picking up the first
s elements from every S elements until we get n elements.

Secondly, concerning the term P tXtXP , its result is actually a matrix of size n× n.
To avoid constructing the big matrix P or X during implementation, we can find a way
to compute these n× n elements instead.

Let us denote U = XtX, U is a symmetric matrix and has the structure:

U =


U1 U2 U3 . . . UT
U2 U1 U2 . . . UT−1
U3 U2 U1 . . . UT−2
...

...
... . . . ...

UT UT−1 UT−2 . . . U1


where Ui(i = 1, 2...T ) is a matrix sized by S×S. Let us analyse the elements in this

relative small matrix.
We know that every column in X is a transformed x. This kind of transformation

includes circulation both in horizontal and vertical directions. Let us denote the image
which is circulated i times in horizontal direction and j times in vertical direction as
x

(ij)
2D . Take an example, x(12)

2D is equal to

x(12) =


x(S−1)T x(S−1)1 x(S−1)2 . . . x(S−1)(T−1)
xST xS1 xS2 . . . xS(T−1)
x1T x11 x12 . . . x1(T−1)
...

...
... . . . ...

x(S−2)T x(S−2)1 x(S−2)2 . . . x(S−2)(T−1)


As a result, every element in XtX is an inner product between two x(ij) (vectorized

image x(ij)
2D ). Now we can present every detail of Ui. Here we use x(ij) as the vectorized

image.

Ui =


x(00)x(i0) x(00)x(i1) . . . x(00)x(i(S−1))

x(01)x(i0) x(01)x(i1) . . . x(01)x(i(S−1))

...
... . . . ...

x(0(S−1))x(i0) x(0(S−1))x(i1) . . . x(0(−1)S)x(i(S−1))


As we can see, Ui is also a symmetric matrix. Moreover, since x00xij = x00xi(S−j),

there are several elements with the same values even in the same row.
After understanding every detail about the XtX, now we can try to choose several

elements out of the matrix to get the final result of P tXtXP . According to the definition
of P we mentioned before, the structure of P tXtXP can be written as

110



P TXTXP =


U ′1 U ′2 U ′3 . . . U ′t
U ′2 U ′1 U ′2 . . . U ′t−1
U ′3 U ′2 U ′1 . . . U ′t−2
...

...
... . . . ...

U ′t U ′t−1 U ′t−2 . . . U ′1


where U ′i ∈ Rs×s is

U ′i =


x(00)x(i0) x(00)x(i1) . . . x(00)x(i(s−1))

x(01)x(i0) x(01)x(i1) . . . x(01)x(i(s−1))

...
... . . . ...

x(0(s−1))x(i0) x(0(s−1)x(i1) . . . x(0(s−1))x(i(s−1))


So an efficient way to solve P tXtXP is to compute the t× t matrix U ′i . Since both

P tXtXP and U ′i are symmetric, the amount of calculations can be further reduced.

111



Appendix B. Implementation of the analytical solution for PSF estimation

112



List of publications

International Journal Papers

[J1] Zhouye Chen, Adrian Basarab, and Denis Kouamé, ”Reconstruction of Enhanced
Ultrasound Images From Compressed Measurements Using Simultaneous Direction
Method of Multipliers,” in IEEE Transactions on Ultrasonics, Ferroelectrics and
Frequency Control, 2016, accepted.

[J2] Zhouye Chen, Adrian Basarab, and Denis Kouamé, ”Compressive deconvolution in
medical ultrasound imaging,” in IEEE Transactions on Medical Imaging, Vol. 35
N. 3, p. 728-737, march 2016.

International Conference Papers

[C1] Zhouye Chen, Adrian Basarab, and Denis Kouamé, ”Joint compressive sampling
and deconvolution in ultrasound medical imaging,” in Proc. IEEE International
Ultrasonics Symposium (IUS), 2015, p. 1-4. (Best Student Paper Finalist)

[C2] Zhouye Chen, Adrian Basarab, and Denis Kouamé, ”A simulation study on the
choice of regularization parameter in l2-norm ultrasound image restoration,” in
Proc. IEEE Engineering in Medicine and Biology Society Conference (EMBC),
2015, p. 6346-6349.

[C3] Zhouye Chen, Ningning Zhao, Adrian Basarab, and Denis Kouamé, ”Ultrasound
compressive deconvolution with lp-norm prior ,” in Proc. European Signal and
Image Processing Conference (EUSIPCO), 2015, p. 2841-2845.

113



List of publications

114



Bibliography

Bibliography

[Abeyratne 1995] Udantha R Abeyratne, Athina P Petropulu and John M Reid. Higher
order spectra based deconvolution of ultrasound images. Ultrasonics, Ferro-
electrics, and Frequency Control, IEEE Transactions on, vol. 42, no. 6, pages
1064–1075, 1995.

[Achim 2010] Alin Achim, Benjamin Buxton, George Tzagkarakis and Panagiotis
Tsakalides. Compressive sensing for ultrasound RF echoes using a-stable distri-
butions. In Engineering in Medicine and Biology Society (EMBC), 2010 Annual
International Conference of the IEEE, pages 4304–4307. IEEE, 2010.

[Achim 2014] Alin Achim, Adrian Basarab, George Tzagkarakis, Panagiotis Tsakalides
and Denis Kouamé. Reconstruction of compressively sampled ultrasound images
using dual prior information. In Image Processing (ICIP), 2014 IEEE Interna-
tional Conference on, pages 1283–1286. IEEE, 2014.

[Achim 2015] Alin Achim, Adrian Basarab, George Tzagkarakis, Panagiotis Tsakalides
and Denis Kouamé. Reconstruction of ultrasound RF echoes modelled as stable
random variables. IEEE Transactions on Computational Imaging, vol. 1, no. 2,
pages 86–95, juin 2015.

[Alessandrini 2011a] M. Alessandrini. Statistical methods for analysis and processing of
medical ultrasound: applications to segmentation and restoration. PhD thesis,
University of Bologna, 2011.

[Alessandrini 2011b] Martino Alessandrini, Simona Maggio, Jonathan Porée, Luca
De Marchi, Nicolo Speciale, Emilie Franceschini, Olivier Bernard and Olivier
Basset. A restoration framework for ultrasonic tissue characterization. Ultrason-
ics, Ferroelectrics, and Frequency Control, IEEE Transactions on, vol. 58, no. 11,
pages 2344–2360, 2011.

[Almeida 2010] Mariana SC Almeida and Luis B Almeida. Blind and semi-blind deblur-
ring of natural images. Image Processing, IEEE Transactions on, vol. 19, no. 1,
pages 36–52, 2010.

115



Bibliography

[Amizic 2013] Bruno Amizic, Leonidas Spinoulas, Rafael Molina and Aggelos K Kat-
saggelos. Compressive blind image deconvolution. Image Processing, IEEE Trans-
actions on, vol. 22, no. 10, pages 3994–4006, 2013.

[Babacan 2009] S Derin Babacan, Rafael Molina and Aggelos K Katsaggelos. Variational
Bayesian blind deconvolution using a total variation prior. Image Processing,
IEEE Transactions on, vol. 18, no. 1, pages 12–26, 2009.

[Babacan 2010] S Derin Babacan, Rafael Molina and Aggelos K Katsaggelos. Bayesian
compressive sensing using Laplace priors. Image Processing, IEEE Transactions
on, vol. 19, no. 1, pages 53–63, 2010.

[Baraniuk 2007] Richard Baraniuk and Philippe Steeghs. Compressive radar imaging.
In 2007 IEEE Radar Conference, pages 128–133. IEEE, 2007.

[Baraniuk 2008] Richard Baraniuk, Mark Davenport, Ronald DeVore and Michael
Wakin. A simple proof of the restricted isometry property for random matrices.
Constructive Approximation, vol. 28, no. 3, pages 253–263, 2008.

[Baraniuk 2011] Richard Baraniuk, Mark A Davenport, Marco F Duarte and Chinmay
Hegde. An introduction to compressive sensing. Connexions e-textbook, 2011.

[Basarab 2008] Adrian Basarab. Estimation du mouvement dans des séquences d’images
échographiques : application à l’élastographie de la thyroide. Thèse de doctorat,
INSA-Lyon, septembre 2008.

[Basarab 2013] Adrian Basarab, Hervé Liebgott, Olivier Bernard, Denis Friboulet and
Denis Kouamé. Medical ultrasound image reconstruction using distributed com-
pressive sampling. In 2013 IEEE 10th International Symposium on Biomedical
Imaging, pages 628–631. IEEE, 2013.

[Beaton 1974] Albert E Beaton and John W Tukey. The fitting of power series, meaning
polynomials, illustrated on band-spectroscopic data. Technometrics, vol. 16, no. 2,
pages 147–185, 1974.

[Beck 2009a] Amir Beck and Marc Teboulle. Fast gradient-based algorithms for con-
strained total variation image denoising and deblurring problems. Image Process-
ing, IEEE Transactions on, vol. 18, no. 11, pages 2419–2434, 2009.

[Beck 2009b] Amir Beck and Marc Teboulle. Fast gradient-based algorithms for con-
strained total variation image denoising and deblurring problems. Image Process-
ing, IEEE Transactions on, vol. 18, no. 11, pages 2419–2434, 2009.

[Blumensath 2009] Thomas Blumensath and Mike E Davies. Iterative hard thresholding
for compressed sensing. Applied and Computational Harmonic Analysis, vol. 27,
no. 3, pages 265–274, 2009.

116



Bibliography

[Bolte 2010] Jérôme Bolte, Patrick L Combettes and J-C Pesquet. Alternating proximal
algorithm for blind image recovery. In Image Processing (ICIP), 2010 17th IEEE
International Conference on, pages 1673–1676. IEEE, 2010.

[Bolte 2014] Jérôme Bolte, Shoham Sabach and Marc Teboulle. Proximal alternating
linearized minimization for nonconvex and nonsmooth problems. Mathematical
Programming, vol. 146, no. 1-2, pages 459–494, 2014.

[Boyd 2011] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato and Jonathan Eck-
stein. Distributed optimization and statistical learning via the alternating di-
rection method of multipliers. Foundations and Trends R© in Machine Learning,
vol. 3, no. 1, pages 1–122, 2011.

[Cai 2009] T Tony Cai, Guangwu Xu and Jun Zhang. On recovery of sparse signals via
minimization. Information Theory, IEEE Transactions on, vol. 55, no. 7, pages
3388–3397, 2009.

[Campisi 2007] Patrizio Campisi and Karen Egiazarian. Blind image deconvolution:
theory and applications. CRC press, 2007.

[Candès 2005] Emmanuel J Candès and Terence Tao. Decoding by linear programming.
Information Theory, IEEE Transactions on, vol. 51, no. 12, pages 4203–4215,
2005.

[Candès 2006a] Emmanuel J Candès, Justin Romberg and Terence Tao. Robust uncer-
tainty principles: Exact signal reconstruction from highly incomplete frequency
information. Information Theory, IEEE Transactions on, vol. 52, no. 2, pages
489–509, 2006.

[Candès 2006b] Emmanuel J Candès, Justin K Romberg and Terence Tao. Stable signal
recovery from incomplete and inaccurate measurements. Communications on pure
and applied mathematics, vol. 59, no. 8, pages 1207–1223, 2006.

[Candès 2006c] Emmanuel J Candès and Terence Tao. Near-optimal signal recovery
from random projections: Universal encoding strategies? Information Theory,
IEEE Transactions on, vol. 52, no. 12, pages 5406–5425, 2006.

[Candès 2007a] Emmanuel Candès and Justin Romberg. Sparsity and incoherence in
compressive sampling. Inverse problems, vol. 23, no. 3, page 969, 2007.

[Candès 2007b] Emmanuel J Candès. `1-magic. Technical report, 2007.

[Candès 2008] Emmanuel J Candès and Michael B Wakin. An introduction to compres-
sive sampling. Signal Processing Magazine, IEEE, vol. 25, no. 2, pages 21–30,
2008.

[Chambolle 2004] Antonin Chambolle. An algorithm for total variation minimization
and applications. Journal of Mathematical imaging and vision, vol. 20, no. 1-2,
pages 89–97, 2004.

117



Bibliography

[Chan 1998] Tony F Chan and Chiu-Kwong Wong. Total variation blind deconvolution.
Image Processing, IEEE Transactions on, vol. 7, no. 3, pages 370–375, 1998.

[Chan 2011] Vincent Chan and Anahi Perlas. Basics of ultrasound imaging, pages 13–19.
Springer, 2011.

[Chartrand 2007] Rick Chartrand. Exact reconstruction of sparse signals via nonconvex
minimization. Signal Processing Letters, IEEE, vol. 14, no. 10, pages 707–710,
2007.

[Chartrand 2008a] Rick Chartrand. Nonconvex compressive sensing and reconstruction
of gradient-sparse images: random vs. tomographic Fourier sampling. In Image
Processing, 2008. ICIP 2008. 15th IEEE International Conference on, pages 2624–
2627. IEEE, 2008.

[Chartrand 2008b] Rick Chartrand and Valentina Staneva. Restricted isometry proper-
ties and nonconvex compressive sensing. Inverse Problems, vol. 24, no. 3, page
035020, 2008.

[Chartrand 2008c] Rick Chartrand and Wotao Yin. Iteratively reweighted algorithms for
compressive sensing. In Acoustics, speech and signal processing, 2008. ICASSP
2008. IEEE international conference on, pages 3869–3872. IEEE, 2008.

[Chen 2001] Scott Shaobing Chen, David L Donoho and Michael A Saunders. Atomic
decomposition by basis pursuit. SIAM review, vol. 43, no. 1, pages 129–159, 2001.

[Chen 2015a] Z Chen, N Zhao, A Basarab and D Kouamé. Ultrasound compressive
deconvolution with lp-norm prior (regular paper). In European Signal and Image
Processing Conference (EUSIPCO), Nice, France, volume 31, pages 2841–2845,
2015.

[Chen 2015b] Zhouye Chen, Adrian Basarab and Denis Kouamé. Joint compressive sam-
pling and deconvolution in ultrasound medical imaging. In Ultrasonics Symposium
(IUS), 2015 IEEE International, pages 1–4. IEEE, 2015.

[Chen 2015c] Zhouye Chen, Adrian Basarab and Denis Kouame. A simulation study on
the choice of regularization parameter in `2-norm ultrasound image restoration.
In Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual
International Conference of the IEEE, pages 6346–6349. IEEE, 2015.

[Chen 2016a] Zhouye Chen, Adrian Basarab and Denis Kouamé. Compressive decon-
volution in medical ultrasound imaging. IEEE transactions on medical imaging,
vol. 35, no. 3, pages 728–737, 2016.

[Chen 2016b] Zhouye Chen, Adrian Basarab and Denis Kouamé. Reconstruction of En-
hanced Ultrasound Images From Compressed Measurements Using Simultaneous
Direction Method of Multipliers. IEEE Transactions on Ultrasonics, Ferroelectrics
and Frequency Control, 2016.

118



Bibliography

[Chernyakova 2014] Tanya Chernyakova and Yonina Eldar. Fourier-domain beamform-
ing: the path to compressed ultrasound imaging. Ultrasonics, Ferroelectrics, and
Frequency Control, IEEE Transactions on, vol. 61, no. 8, pages 1252–1267, 2014.

[Chouzenoux 2013] Emilie Chouzenoux, Jean-Christophe Pesquet and Audrey Repetti.
A block coordinate variable metric forward–backward algorithm. Journal of Global
Optimization, pages 1–29, 2013.

[Chouzenoux 2014] Emilie Chouzenoux, Jean-Christophe Pesquet and Audrey Repetti.
Variable metric forward–backward algorithm for minimizing the sum of a differ-
entiable function and a convex function. Journal of Optimization Theory and
Applications, vol. 162, no. 1, pages 107–132, 2014.

[Chuo 2013] Yen Chuo, Tsung-Han Chan and Meng-Lin Li. Ultrasound compressed sens-
ing: Performance study of reconstruction on different ultrasound imaging data.
In Ultrasonics Symposium (IUS), 2013 IEEE International, pages 903–905. IEEE,
2013.

[Cohen 2009] Albert Cohen, Wolfgang Dahmen and Ronald DeVore. Compressed sensing
and best k-term approximation. Journal of the American mathematical society,
vol. 22, no. 1, pages 211–231, 2009.

[Coifman 2001] Ronald Coifman, F Geshwind and Yves Meyer. Noiselets. Applied and
Computational Harmonic Analysis, vol. 10, no. 1, pages 27–44, 2001.

[Combettes 2005] Patrick L Combettes and Valérie R Wajs. Signal recovery by proximal
forward-backward splitting. Multiscale Modeling & Simulation, vol. 4, no. 4, pages
1168–1200, 2005.

[Combettes 2007] Patrick L Combettes and Jean-Christophe Pesquet. Proximal thresh-
olding algorithm for minimization over orthonormal bases. SIAM Journal on
Optimization, vol. 18, no. 4, pages 1351–1376, 2007.

[Combettes 2011] Patrick L Combettes and Jean-Christophe Pesquet. Proximal splitting
methods in signal processing. In Fixed-point algorithms for inverse problems in
science and engineering, pages 185–212. Springer, 2011.

[Daubechies 2004] Ingrid Daubechies, Michel Defrise and Christine De Mol. An itera-
tive thresholding algorithm for linear inverse problems with a sparsity constraint.
Communications on pure and applied mathematics, vol. 57, no. 11, pages 1413–
1457, 2004.

[Daubechies 2010] Ingrid Daubechies, Ronald DeVore, Massimo Fornasier and C Sinan
Güntürk. Iteratively reweighted least squares minimization for sparse recovery.
Communications on Pure and Applied Mathematics, vol. 63, no. 1, pages 1–38,
2010.

119



Bibliography

[Deng 2013] Wei Deng, Wotao Yin and Yin Zhang. Group sparse optimization by al-
ternating direction method. In SPIE Optical Engineering+ Applications, pages
88580R–88580R. International Society for Optics and Photonics, 2013.

[Diarra 2013] Bakary Diarra, Marc Robini, Piero Tortoli, Christian Cachard and Hervé
Liebgott. Design of optimal 2-D nongrid sparse arrays for medical ultrasound.
IEEE Transactions on Biomedical Engineering, vol. 60, no. 11, pages 3093–3102,
2013.

[Do 2012] Thong T Do, Lu Gan, Nam H Nguyen and Trac D Tran. Fast and efficient
compressive sensing using structurally random matrices. Signal Processing, IEEE
Transactions on, vol. 60, no. 1, pages 139–154, 2012.

[Dobigeon 2012] Nicolas Dobigeon, Adrian Basarab, Denis Kouamé and Jean-Yves
Tourneret. Regularized Bayesian compressed sensing in ultrasound imag-
ing (regular paper). In European Signal and Image Processing Conference
(EUSIPCO), Bucharest, Romania, 27/08/2012-31/08/2012, pages 2600–2604,
http://www.eurasip.org/, août 2012. EURASIP.

[Donoho 2001] David L Donoho and Xiaoming Huo. Uncertainty principles and ideal
atomic decomposition. Information Theory, IEEE Transactions on, vol. 47, no. 7,
pages 2845–2862, 2001.

[Donoho 2006] David L Donoho. Compressed sensing. Information Theory, IEEE Trans-
actions on, vol. 52, no. 4, pages 1289–1306, 2006.

[Donoho 2009] David L Donoho, Arian Maleki and Andrea Montanari. Message-passing
algorithms for compressed sensing. Proceedings of the National Academy of Sci-
ences, vol. 106, no. 45, pages 18914–18919, 2009.

[Donoho 2012] David L Donoho, Yaakov Tsaig, Iddo Drori and Jean-Luc Starck. Sparse
solution of underdetermined systems of linear equations by stagewise orthogonal
matching pursuit. Information Theory, IEEE Transactions on, vol. 58, no. 2,
pages 1094–1121, 2012.

[Duarte-Carvajalino 2008] Julio M Duarte-Carvajalino and Guillermo Sapiro. Learning
to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary
optimization. Technical report, DTIC Document, 2008.

[Eckstein 1994] Jonathan Eckstein and Masao Fukushima. Some reformulations and
applications of the alternating direction method of multipliers. In Large scale
optimization, pages 115–134. Springer, 1994.

[Edler 2004] Inge Edler and Kjell Lindström. The history of echocardiography. Ultra-
sound in Medicine & Biology, vol. 30, no. 12, pages 1565 – 1644, 2004.

120



Bibliography

[Eldar 2009] Yonina C Eldar. Generalized SURE for exponential families: Applications
to regularization. Signal Processing, IEEE Transactions on, vol. 57, no. 2, pages
471–481, 2009.

[Eldar 2012] Yonina C Eldar and Gitta Kutyniok. Compressed sensing: theory and
applications. Cambridge University Press, 2012.

[Esser 2009] Ernie Esser. Applications of Lagrangian-based alternating direction methods
and connections to split Bregman. CAM report, vol. 9, page 31, 2009.

[Fatemi 1980] Mostafa Fatemi and Avinash C Kak. Ultrasonic B-scan imaging: Theory
of image formation and a technique for restoration. Ultrasonic Imaging, vol. 2,
no. 1, pages 1–47, 1980.

[Figueiredo 2007] Mário AT Figueiredo, Robert D Nowak and Stephen J Wright. Gra-
dient projection for sparse reconstruction: Application to compressed sensing and
other inverse problems. Selected Topics in Signal Processing, IEEE Journal of,
vol. 1, no. 4, pages 586–597, 2007.

[Flandrin 2004] Patrick Flandrin, Gabriel Rilling and Paulo Goncalves. Empirical mode
decomposition as a filter bank. Signal Processing Letters, IEEE, vol. 11, no. 2,
pages 112–114, 2004.

[Fortin 2000] Michel Fortin and Roland Glowinski. Augmented lagrangian methods:
applications to the numerical solution of boundary-value problems, volume 15.
Elsevier, 2000.

[Friboulet 2010] D Friboulet, H Liebgott and R Prost. Compressive sensing for raw
RF signals reconstruction in ultrasound. In Ultrasonics Symposium (IUS), 2010
IEEE, pages 367–370. IEEE, 2010.

[Fukushima 1992] Masao Fukushima. Application of the alternating direction method of
multipliers to separable convex programming problems. Computational Optimiza-
tion and Applications, vol. 1, no. 1, pages 93–111, 1992.

[Gabay 1976] Daniel Gabay and Bertrand Mercier. A dual algorithm for the solution of
nonlinear variational problems via finite element approximation. Computers &
Mathematics with Applications, vol. 2, no. 1, pages 17–40, 1976.

[Galatsanos 1992] Nikolas P Galatsanos and Aggelos K Katsaggelos. Methods for choos-
ing the regularization parameter and estimating the noise variance in image
restoration and their relation. Image Processing, IEEE Transactions on, vol. 1,
no. 3, pages 322–336, 1992.

[Gedalyahu 2011] Kfir Gedalyahu, Ronen Tur and Yonina C Eldar. Multichannel sam-
pling of pulse streams at the rate of innovation. Signal Processing, IEEE Trans-
actions on, vol. 59, no. 4, pages 1491–1504, 2011.

121



Bibliography

[Goldstein 2009] Tom Goldstein and Stanley Osher. The split Bregman method for L1-
regularized problems. SIAM Journal on Imaging Sciences, vol. 2, no. 2, pages
323–343, 2009.

[Golub 1979] Gene H Golub, Michael Heath and Grace Wahba. Generalized cross-
validation as a method for choosing a good ridge parameter. Technometrics,
vol. 21, no. 2, pages 215–223, 1979.

[Hale 2007] Elaine T Hale, Wotao Yin and Yin Zhang. A fixed-point continuation method
for l1-regularized minimization with applications to compressed sensing. CAAM
TR07-07, Rice University, vol. 43, page 44, 2007.

[Hall 1987] Peter Hall and DM Titterington. Common structure of techniques for choos-
ing smoothing parameters in regression problems. Journal of the Royal Statistical
Society. Series B (Methodological), pages 184–198, 1987.

[He 2002] Bingsheng He, Li-Zhi Liao, Deren Han and Hai Yang. A new inexact alter-
nating directions method for monotone variational inequalities. Mathematical
Programming, vol. 92, no. 1, pages 103–118, 2002.

[Hegde 2009] Chinmay Hegde and Richard G Baraniuk. Compressive sensing of streams
of pulses. In Communication, Control, and Computing, 2009. Allerton 2009. 47th
Annual Allerton Conference on, pages 44–51. IEEE, 2009.

[Hegde 2011] Chinmay Hegde and Richard G Baraniuk. Sampling and recovery of pulse
streams. Signal Processing, IEEE Transactions on, vol. 59, no. 4, pages 1505–
1517, 2011.

[Hunt 1973] B R_ Hunt. The application of constrained least squares estimation to im-
age restoration by digital computer. Computers, IEEE Transactions on, vol. 100,
no. 9, pages 805–812, 1973.

[Jensen 1991] Jørgen Arendt Jensen. A model for the propagation and scattering of
ultrasound in tissue. Acoustical Society of America. Journal, vol. 89, no. 1, pages
182–190, 1991.

[Jensen 1992] Jørgen Arendt Jensen. Deconvolution of ultrasound images. Ultrasonic
imaging, vol. 14, no. 1, pages 1–15, 1992.

[Jensen 1993] Jørgen Arendt Jensen, Jan Mathorne, Torben Gravesen and Bjarne Stage.
Deconvolution of in vivo ultrasound B-mode images. Ultrasonic Imaging, vol. 15,
no. 2, pages 122–133, 1993.

[Jensen 1994a] Jørgen Arendt Jensen. Estimation of in vivo pulses in medical ultrasound.
Ultrasonic imaging, vol. 16, no. 3, pages 190–203, 1994.

[Jensen 1994b] Jorgen Arendt Jensen and Sidney Leeman. Nonparametric estimation
of ultrasound pulses. Biomedical Engineering, IEEE Transactions on, vol. 41,
no. 10, pages 929–936, 1994.

122



Bibliography

[Jensen 1996] Jørgen Arendt Jensen. Field: A program for simulating ultrasound sys-
tems. In 10TH NORDICBALTIC CONFERENCE ON BIOMEDICAL IMAG-
ING, VOL. 4, SUPPLEMENT 1, PART 1: 351–353. Citeseer, 1996.

[Jensen 2006] Jørgen Arendt Jensen, Svetoslav Ivanov Nikolov, Kim Løkke Gammel-
mark and Morten Høgholm Pedersen. Synthetic aperture ultrasound imaging.
Ultrasonics, vol. 44, pages e5–e15, 2006.

[Ji 2008] Shihao Ji, Ya Xue and Lawrence Carin. Bayesian compressive sensing. Signal
Processing, IEEE Transactions on, vol. 56, no. 6, pages 2346–2356, 2008.

[Jiřík 2006] Radovan Jiřík and Torfinn Taxt. High-resolution ultrasonic imaging us-
ing two-dimensional homomorphic filtering. Ultrasonics, Ferroelectrics, and Fre-
quency Control, IEEE Transactions on, vol. 53, no. 8, pages 1440–1448, 2006.

[Jirik 2008] Radovan Jirik and Torfinn Taxt. Two-dimensional blind Bayesian deconvo-
lution of medical ultrasound images. Ultrasonics, Ferroelectrics, and Frequency
Control, IEEE Transactions on, vol. 55, no. 10, pages 2140–2153, 2008.

[Kim 2007] Seung-Jean Kim, Kwangmoo Koh, Michael Lustig, Stephen Boyd and Dim-
itry Gorinevsky. An interior-point method for large-scale `1-regularized least
squares. Selected Topics in Signal Processing, IEEE Journal of, vol. 1, no. 4,
pages 606–617, 2007.

[Kontogiorgis 1998] Spyridon Kontogiorgis and Robert R Meyer. A variable-penalty al-
ternating directions method for convex optimization. Mathematical Program-
ming, vol. 83, no. 1-3, pages 29–53, 1998.

[Kouamé 2015] Denis Kouamé. Ultrasound imaging: Systems, signals and image pro-
cessing. 2015.

[Lawson 1961] C.L. Lawson. Contributions to the theory of linear least maximum ap-
proximations. PhD thesis, UCLA, 1961.

[Liebgott 2012] Hervé Liebgott, Adrian Basarab, Denis Kouame, Olivier Bernard and
Denis Friboulet. Compressive sensing in medical ultrasound. In 2012 IEEE In-
ternational Ultrasonics Symposium, pages 1–6. IEEE, 2012.

[Liebgott 2013] Hervé Liebgott, Rémy Prost and Denis Friboulet. Pre-beamformed RF
signal reconstruction in medical ultrasound using compressive sensing. Ultrason-
ics, vol. 53, no. 2, pages 525–533, 2013.

[Liu 1983] CN Liu, Mostafa Fatemi and RC Waag. Digital processing for improvement
of ultrasonic abdominal images. Medical Imaging, IEEE Transactions on, vol. 2,
no. 2, pages 66–75, 1983.

123



Bibliography

[Lorintiu 2014] Oana Lorintiu, Hervé Liebgott, Martino Alessandrini, Olivier Bernard
and Denis Friboulet. Compressed sensing reconstruction of 3d ultrasound data
using dictionary learning. In Image Processing (ICIP), 2014 IEEE International
Conference on, pages 1317–1321. IEEE, 2014.

[Lorintiu 2015a] O. Lorintiu. Compressed sensing reconstruction for 3D and Doppler
medical ultrasound. PhD thesis, INSA-Lyon, Lyon, 2015. Jury: M.
Davies(rapporteur), D. Friboulet (directeur), D. Kouamé (rapporteur), H. Lieb-
gott (co-directeur), J.-P. Thiran (président).

[Lorintiu 2015b] Oana Lorintiu, Hervé Liebgott, Martino Alessandrini, Olivier Bernard
and Denis Friboulet. Compressed sensing reconstruction of 3D ultrasound data
using dictionary learning and line-wise subsampling. Medical Imaging, IEEE
Transactions on, vol. 34, no. 12, pages 2467–2477, 2015.

[Lyshchik 2005] A Lyshchik, T Higashi, R Asato, S Tanaka, J Ito, M Hiraoka, AB Brill,
Tsuneo Saga and K Togashi. Elastic moduli of thyroid tissues under compression.
Ultrasonic imaging, vol. 27, no. 2, pages 101–110, 2005.

[Ma 2009] Jianwei Ma and Francois-Xavier Le Dimet. Deblurring from highly incom-
plete measurements for remote sensing. Geoscience and Remote Sensing, IEEE
Transactions on, vol. 47, no. 3, pages 792–802, 2009.

[Mallat 1993] Stéphane G Mallat and Zhifeng Zhang. Matching pursuits with time-
frequency dictionaries. Signal Processing, IEEE Transactions on, vol. 41, no. 12,
pages 3397–3415, 1993.

[Mallat 1999] Stéphane Mallat. A wavelet tour of signal processing. Academic press,
1999.

[Mendelson 2008] Shahar Mendelson, Alain Pajor and Nicole Tomczak-Jaegermann.
Uniform uncertainty principle for Bernoulli and subgaussian ensembles. Con-
structive Approximation, vol. 28, no. 3, pages 277–289, 2008.

[Michailovich 2003] Oleg Michailovich and Dan Adam. Robust estimation of ultrasound
pulses using outlier-resistant de-noising. Medical Imaging, IEEE Transactions
on, vol. 22, no. 3, pages 368–381, 2003.

[Michailovich 2004] Oleg Michailovich and Dan Adam. Phase unwrapping for 2-D blind
deconvolution of ultrasound images. Medical Imaging, IEEE Transactions on,
vol. 23, no. 1, pages 7–25, 2004.

[Michailovich 2005] Oleg V Michailovich and Dan Adam. A novel approach to the 2-
D blind deconvolution problem in medical ultrasound. Medical Imaging, IEEE
Transactions on, vol. 24, no. 1, pages 86–104, 2005.

124



Bibliography

[Michailovich 2007] Oleg Michailovich and Allen Tannenbaum. Blind deconvolution of
medical ultrasound images: a parametric inverse filtering approach. Image Pro-
cessing, IEEE Transactions on, vol. 16, no. 12, pages 3005–3019, 2007.

[Mishali 2011] Moshe Mishali, Yonina C Eldar, Oleg Dounaevsky and Eli Shoshan. Xam-
pling: Analog to digital at sub-Nyquist rates. Circuits, Devices & Systems, IET,
vol. 5, no. 1, pages 8–20, 2011.

[Molina 2006] Rafael Molina, Javier Mateos and Aggelos K Katsaggelos. Blind decon-
volution using a variational approach to parameter, image, and blur estimation.
Image Processing, IEEE Transactions on, vol. 15, no. 12, pages 3715–3727, 2006.

[Morin 2012] Renaud Morin, Adrian Basarab and Denis Kouamé. Alternating direction
method of multipliers framework for super-resolution in ultrasound imaging. In
Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on, pages
1595–1598. IEEE, 2012.

[Morin 2013a] Renaud Morin. Amélioration de la résolution en imagerie ultrasonore.
Thèse de doctorat, Université de Toulouse, Toulouse, France, novembre 2013.
(Soutenance le 29/11/2013).

[Morin 2013b] Renaud Morin, Stéphanie Bidon, Adrian Basarab and Denis Kouamé.
Semi-blind deconvolution for resolution enhancement in ultrasound imaging. In
Image Processing (ICIP), 2013 20th IEEE International Conference on, pages
1413–1417. IEEE, 2013.

[Naidu 2015] R Ramu Naidu, Phanindra Jampana and CS Sastry. Deterministic com-
pressed sensing matrices: Construction via Euler Squares and applications. IEEE
Transactions on Signal Processing, vol. 64, no. 14, pages 3566–3575, 2015.

[Needell 2009a] Deanna Needell and Joel A Tropp. CoSaMP: Iterative signal recovery
from incomplete and inaccurate samples. Applied and Computational Harmonic
Analysis, vol. 26, no. 3, pages 301–321, 2009.

[Needell 2009b] Deanna Needell and Roman Vershynin. Uniform uncertainty principle
and signal recovery via regularized orthogonal matching pursuit. Foundations of
computational mathematics, vol. 9, no. 3, pages 317–334, 2009.

[Needell 2010] Deanna Needell and Roman Vershynin. Signal recovery from incomplete
and inaccurate measurements via regularized orthogonal matching pursuit. Se-
lected Topics in Signal Processing, IEEE Journal of, vol. 4, no. 2, pages 310–316,
2010.

[Ng 2007a] James Ng, Richard Prager, Nick Kingsbury, Graham Treece and Andrew
Gee. Wavelet restoration of medical pulse-echo ultrasound images in an EM
framework. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Con-
trol, vol. 54, no. 3, page 550, 2007.

125



Bibliography

[Ng 2007b] James Kee Huat Ng. Restoration of medical pulse-echo ultrasound images.
PhD thesis, Citeseer, 2007.

[Ng 2010] Michael K Ng, Pierre Weiss and Xiaoming Yuan. Solving constrained total-
variation image restoration and reconstruction problems via alternating direction
methods. SIAM journal on Scientific Computing, vol. 32, no. 5, pages 2710–2736,
2010.

[Pati 1993] Yagyensh Chandra Pati, Ramin Rezaiifar and PS Krishnaprasad. Orthog-
onal matching pursuit: Recursive function approximation with applications to
wavelet decomposition. In Signals, Systems and Computers, 1993. 1993 Confer-
ence Record of The Twenty-Seventh Asilomar Conference on, pages 40–44. IEEE,
1993.

[Pesquet 2012] Jean-Christophe Pesquet and Nelly Pustelnik. A parallel inertial prox-
imal optimization method. Pacific Journal of Optimization, vol. 8, no. 2, pages
273–305, 2012.

[Prince 2006] Jerry L Prince and Jonathan M Links. Medical imaging signals and sys-
tems. Pearson Prentice Hall Upper Saddle River, NJ, 2006.

[Pustelnik 2011] Nelly Pustelnik, Caroline Chaux and Jean-Christophe Pesquet. Paral-
lel proximal algorithm for image restoration using hybrid regularization. Image
Processing, IEEE Transactions on, vol. 20, no. 9, pages 2450–2462, 2011.

[Pustelnik 2012] Nelly Pustelnik, Jean-Christophe Pesquet and Caroline Chaux. Re-
laxing tight frame condition in parallel proximal methods for signal restoration.
Signal Processing, IEEE Transactions on, vol. 60, no. 2, pages 968–973, 2012.

[Quinsac 2010a] Céline Quinsac, Adrian Basarab, Jean-Marc Girault and Denis
Kouamé. Compressed sensing of ultrasound images: sampling of spatial
and frequency domains (regular paper). In IEEE Workshop on Signal
Processing Systems, San Francisco, 06/10/2010-08/10/2010, pages 231–236,
http://www.ieee.org/, octobre 2010. IEEE.

[Quinsac 2010b] Céline Quinsac, Adrian Basarab, Jean-Marc Gregoire and Denis
Kouamé. 3D compressed sensing ultrasound imaging (regular paper). In IEEE
International Ultrasonic Symposium, San Diego, 11/10/2010-14/10/2010, pages
363–366, http://www.ieee.org/, octobre 2010. IEEE.

[Quinsac 2012] Céline Quinsac, Adrian Basarab and Denis Kouamé. Frequency domain
compressive sampling for ultrasound imaging. Advances in Acoustics and Vi-
bration, Advances in Acoustic Sensing, Imaging, and Signal Processing, vol. 12,
pages 1–16, 2012.

[Raguet 2013] Hugo Raguet, Jalal Fadili and Gabriel Peyré. A generalized forward-
backward splitting. SIAM Journal on Imaging Sciences, vol. 6, no. 3, pages 1199–
1226, 2013.

126



Bibliography

[Rao 1999] Bhaskar D Rao and Kenneth Kreutz-Delgado. An affine scaling methodology
for best basis selection. Signal Processing, IEEE Transactions on, vol. 47, no. 1,
pages 187–200, 1999.

[Rasmussen 1994] Klaus Bolding Rasmussen. Maximum likelihood estimation of the at-
tenuated ultrasound pulse. Signal Processing, IEEE Transactions on, vol. 42,
no. 1, pages 220–222, 1994.

[Repetti 2015] Audrey Repetti, Mai Quyen Pham, Laurent Duval, Emilie Chouzenoux
and J-C Pesquet. Euclid in a Taxicab: Sparse Blind Deconvolution with Smoothed
Regularization. Signal Processing Letters, IEEE, vol. 22, no. 5, pages 539–543,
2015.

[Robinson 1984] DE Robinson and M Wing. Lateral deconvolution of ultrasonic beams.
Ultrasonic imaging, vol. 6, no. 1, pages 1–12, 1984.

[Schiffner 2011] Martin F Schiffner and Georg Schmitz. Fast pulse-echo ultrasound imag-
ing employing compressive sensing. In Ultrasonics Symposium (IUS), 2011 IEEE
International, pages 688–691. IEEE, 2011.

[Schiffner 2012] MF Schiffner, T Jansen and G Schmitz. Compressed sensing
for fast image acquisition in pulse-echo ultrasound. Biomedical Engineer-
ing/Biomedizinische Technik, vol. 57, no. SI-1 Track-B, pages 192–195, 2012.

[Schniter 2008] Philip Schniter, Lee C Potter and Justin Ziniel. Fast Bayesian matching
pursuit. In Information Theory and Applications Workshop, 2008, pages 326–333.
IEEE, 2008.

[Setzer 2010] Simon Setzer, Gabriele Steidl and Tanja Teuber. Deblurring Poissonian
images by split Bregman techniques. Journal of Visual Communication and Image
Representation, vol. 21, no. 3, pages 193–199, 2010.

[Spinoulas 2012] Leonidas Spinoulas, Bruno Amizic, Miguel Vega, Rafael Molina and
Aggelos K Katsaggelos. Simultaneous bayesian compressive sensing and blind
deconvolution. In Signal Processing Conference (EUSIPCO), 2012 Proceedings
of the 20th European, pages 1414–1418. IEEE, 2012.

[Szabo 2004] Thomas L Szabo. Diagnostic ultrasound imaging: inside out. Academic
Press, 2004.

[Tanter 2014] Mickael Tanter and Mathias Fink. Ultrafast imaging in biomedical ultra-
sound. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions
on, vol. 61, no. 1, pages 102–119, 2014.

[Taxt 1995] Torfinn Taxt. Restoration of medical ultrasound images using two-
dimensional homomorphic deconvolution. Ultrasonics, Ferroelectrics, and Fre-
quency Control, IEEE Transactions on, vol. 42, no. 4, pages 543–554, 1995.

127



Bibliography

[Taxt 1997] Torfinn Taxt. Comparison of cepstrum-based methods for radial blind decon-
volution of ultrasound images. Ultrasonics, Ferroelectrics, and Frequency Control,
IEEE Transactions on, vol. 44, no. 3, pages 666–674, 1997.

[Taxt 2001a] Torfinn Taxt. Three-dimensional blind deconvolution of ultrasound im-
ages. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on,
vol. 48, no. 4, pages 867–871, 2001.

[Taxt 2001b] Torfinn Taxt and Jarle Strand. Two-dimensional noise-robust blind decon-
volution of ultrasound images. Ultrasonics, Ferroelectrics, and Frequency Control,
IEEE Transactions on, vol. 48, no. 4, pages 861–866, 2001.

[Tipping 2001] Michael E Tipping. Sparse Bayesian learning and the relevance vector
machine. The journal of machine learning research, vol. 1, pages 211–244, 2001.

[Tropp 2007] Joel A Tropp and Anna C Gilbert. Signal recovery from random measure-
ments via orthogonal matching pursuit. Information Theory, IEEE Transactions
on, vol. 53, no. 12, pages 4655–4666, 2007.

[Tur 2011] Ronen Tur, Yonina C Eldar and Zvi Friedman. Innovation rate sampling of
pulse streams with application to ultrasound imaging. Signal Processing, IEEE
Transactions on, vol. 59, no. 4, pages 1827–1842, 2011.

[Van Den Berg 2008] Ewout Van Den Berg and Michael P Friedlander. Probing the
Pareto frontier for basis pursuit solutions. SIAM Journal on Scientific Computing,
vol. 31, no. 2, pages 890–912, 2008.

[Wagner 2012] Noam Wagner, Yonina C Eldar and Zvi Friedman. Compressed beam-
forming in ultrasound imaging. Signal Processing, IEEE Transactions on, vol. 60,
no. 9, pages 4643–4657, 2012.

[Wahba 1983] Grace Wahba. Bayesian "confidence intervals" for the cross-validated
smoothing spline. Journal of the Royal Statistical Society. Series B (Method-
ological), pages 133–150, 1983.

[Wang 2004] Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh and Eero P Si-
moncelli. Image quality assessment: from error visibility to structural similarity.
Image Processing, IEEE Transactions on, vol. 13, no. 4, pages 600–612, 2004.

[Wang 2008] Yilun Wang, Junfeng Yang, Wotao Yin and Yin Zhang. A new alternating
minimization algorithm for total variation image reconstruction. SIAM Journal
on Imaging Sciences, vol. 1, no. 3, pages 248–272, 2008.

[Wipf 2004] David P Wipf and Bhaskar D Rao. Sparse Bayesian learning for basis
selection. Signal Processing, IEEE Transactions on, vol. 52, no. 8, pages 2153–
2164, 2004.

128



Bibliography

[Wipf 2007] David P Wipf and Bhaskar D Rao. An empirical Bayesian strategy for
solving the simultaneous sparse approximation problem. Signal Processing, IEEE
Transactions on, vol. 55, no. 7, pages 3704–3716, 2007.

[Xiao 2011] Liang Xiao, Jun Shao, Lili Huang and Zhihui Wei. Compounded regular-
ization and fast algorithm for compressive sensing deconvolution. In Image and
Graphics (ICIG), 2011 Sixth International Conference on, pages 616–621. IEEE,
2011.

[Yang 2011] Junfeng Yang and Yin Zhang. Alternating direction algorithms for `1-
problems in compressive sensing. SIAM journal on scientific computing, vol. 33,
no. 1, pages 250–278, 2011.

[Yin 2008] Wotao Yin, Stanley Osher, Donald Goldfarb and Jerome Darbon. Bregman
iterative algorithms for `1-minimization with applications to compressed sensing.
SIAM Journal on Imaging Sciences, vol. 1, no. 1, pages 143–168, 2008.

[Yu 2012] Chengpu Yu, Cishen Zhang and Lihua Xie. A blind deconvolution approach
to ultrasound imaging. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE
Transactions on, vol. 59, no. 2, pages 271–280, 2012.

[Zayyani 2009] Hadi Zayyani, Massoud Babaie-Zadeh and Christian Jutten. Bayesian
pursuit algorithm for sparse representation. In Acoustics, Speech and Signal
Processing, 2009. ICASSP 2009. IEEE International Conference on, pages 1549–
1552. IEEE, 2009.

[Zhao 2010] Manqi Zhao and Venkatesh Saligrama. On compressed blind de-convolution
of filtered sparse processes. In Acoustics Speech and Signal Processing (ICASSP),
2010 IEEE International Conference on, pages 4038–4041. IEEE, 2010.

[Zhao 2014] Ningning Zhao, Adrian Basarab, Denis Kouamé and Jean-Yves Tourneret.
Restoration of Ultrasound Images Using A Hierarchical Bayesian Model with A
Generalized Gaussian Prior (regular paper). In IEEE International Conference
on Image Processing (ICIP), Paris, France, 27/10/2014-30/10/2014, pages 4577–
4581, http://www.ieee.org/, octobre 2014. IEEE.

[Zhao 2015] Ningning Zhao, Adrian Basarab, Denis Kouame and Jean-Yves Tourneret.
Joint Bayesian deconvolution and pointspread function estimation for ultrasound
imaging. In Biomedical Imaging (ISBI), 2015 IEEE 12th International Sympo-
sium on, pages 235–238. IEEE, 2015.

[Zhao 2016] Ningning Zhao, Adrian Basarab, Denis Kouamé and Jean-Yves Tourneret.
Joint Segmentation and Deconvolution of Ultrasound Images Using a Hierarchical
Bayesian Model based on Generalized Gaussian Priors. IEEE Transactions on
Image Processing, 2016.

129


	Acknowledgments
	Abstract
	Resume
	Ultrasound Medical imaging
	Why ultrasound imaging?
	Physics of Ultrasound
	The Piezoelectrical transducer
	Wave propagation
	Reflection/Transmission at interfaces
	Attenuation
	Doppler Effect

	Ultrasound image formation
	Ultrasound images modes : A, B, M, Doppler
	A-Mode
	B-Mode
	M-Mode
	Doppler mode

	Ultrasound acquisition schemes
	Focusing and beamforming
	Spatial Resolution
	Axial Resolution
	Lateral Resolution


	Open challenges
	Image quality enhancement
	Higher frame rate and/or less acquired data volume


	Compressive sampling and Deconvolution
	Compressive sampling
	Problem Formulation
	Direct Model
	Sparsity
	Incoherence
	Sparse recovery
	The Restricted Isometry Property (RIP)

	Sampling matrices
	Sparse recovery algorithms
	Greedy methods
	Convex optimization-based methods
	Other methods

	Application to Ultrasound imaging
	Sparsity in US imaging
	Incoherent acquisition in US imaging

	Conclusion

	Deconvolution
	Problem Formulation
	Regularization and recovery algorithms
	Gaussian prior
	Laplacian prior
	General Gaussian Distribution
	Total Variation

	Blind deconvolution
	A priori blur identification methods
	Joint identification methods

	Conclusion

	Contributions

	Compressive Deconvolution using ADMM
	Introduction
	Optimization Problem Formulation
	Sequential approach
	Proposed approach

	Basics of Alternating Direction Method of Multipliers
	Proposed ADMM parameterization
	Implementation Details
	Results
	Quantitative evaluation criterions
	Results on Shepp-Logan phantom
	Results on modified Shepp-Logan phantom
	Comparison between different prior terms
	Comparison with a typical CS reconstruction

	Results on simulated data
	Results on in vivo data

	Conclusion

	Compressive Deconvolution using SDMM
	Introduction
	Basics of Simultaneous Direction Method of Multipliers
	Proposed SDMM parameterization
	Results
	Results on simulated data
	Cartoon phantom image
	Simulated kidney image
	Results' discussion

	Results on in vivo data

	Conclusion

	Compressive Blind Deconvolution
	Introduction
	Optimization Problem Formulation
	Alternating Minimization (AM)-based algorithm
	Results
	Results on Shepp-logan phantom
	Results on simulated US images

	Conclusion

	Conclusions and Perspectives
	Conclusions
	Perspectives

	Appendix
	Construction of the P matrix
	Implementation of the analytical solution for PSF estimation
	List of publications
	Bibliography

