
HAL Id: tel-01470199
https://theses.hal.science/tel-01470199

Submitted on 17 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and mining business process variants in cloud
environments
Karn Yongsiriwit

To cite this version:
Karn Yongsiriwit. Modeling and mining business process variants in cloud environments. Modeling
and Simulation. Université Paris-Saclay, 2017. English. �NNT : 2017SACLL002�. �tel-01470199�

https://theses.hal.science/tel-01470199
https://hal.archives-ouvertes.fr

DOCTORAT EN CO-ACCREDITATION
TELECOM SUDPARIS ET L’UNIVERSITE PARIS-SACLAY

Spécialité: Informatique

Ecole doctorale: Sciences et Ingénierie

Présenté par Karn Yongsiriwit

Pour obtenir le grade de DOCTEUR DE TELECOM SUDPARIS

MODELING AND MINING BUSINESS PROCESS
VARIANTS IN CLOUD ENVIRONMENTS

Soutenue le 23/01/2017

devant le jury composé de :

Directeurs de thèse :

M. Walid Gaaloul Professeur, TELECOM SudParis, France

Co-encadrant de thèse :

M. Mohamed Sellami Mâıtre de conférences, ISEP, France

Rapporteurs :

M. François Charoy Professeur, University of Lorraine, France

M. Pascal Poizat Professeur, Université Paris Ouest, France

Examinateurs :

M. Khalil Drira Professeur, Université de Toulouse, France

M. Djamal Benslimane Professeur, Université Claude Bernard Lyon 1, France

Mme. Anne Doucet Professeur, LIP6, France

Thèse numéro : 2017SACLL002

3

to my family

Acknowledgment
G

First and foremost, I would like to express my appreciation and gratitude to my ad-
visor, Dr. Walid Gaaloul, who offered abundantly helpful assistance, support and
guidance. His vision, creativeness and enthusiasm inspired me greatly to work. This
dissertation would not have been possible without his help.

I am sincerely and heartily grateful to my co-director, Dr. Mohamed Sellami, who
gave me a lot of valuable advice. His expertise and experiences influenced and helped
me be more mature in doing research.

I acknowledge the TELECOM SudParis institute for offering me a scholarship and
providing me good environment and facilities to complete my thesis.

I am obliged to my colleagues, Emna Hachicha, Nour Assy, who made many useful
discussions in research.

Finally, I am forever indebted to my beloved parents for their understanding, end-
less patience and encouragement. They have given me constant supports, needed
inspiration and always wish the best things to me. I dedicate this thesis to them.

5

6

Abstract

More and more organizations are adopting cloud-based Process-Aware Information
Systems (PAIS) to manage and execute processes in the cloud as an environment to
optimally share and deploy their applications. This is especially true for large organi-
zations having branches operating in different regions with a considerable amount of
similar processes. Such organizations need to support many variants of the same pro-
cess due to their branches’ local culture, regulations, etc. However, developing new
process variant from scratch is error-prone and time consuming. Motivated by the
“Design by Reuse” paradigm, branches may collaborate to develop new process vari-
ants by learning from their similar processes. These processes are often heterogeneous
which prevents an easy and dynamic interoperability between different branches.

A process variant is an adjustment of a process model in order to flexibly adapt
to specific needs. Many researches in both academics and industry are aiming to
facilitate the design of process variants. Several approaches have been developed
to assist process designers by searching for similar business process models or using
reference models. However, these approaches are cumbersome, time-consuming and
error-prone. Likewise, such approaches recommend entire process models which are
not handy for process designers who need to adjust a specific part of a process model.
In fact, process designers can better develop process variants having an approach
that recommends a well-selected set of activities from a process model, referred to as
process fragment. Large organizations with multiple branches execute BP variants in
the cloud as environment to optimally deploy and share common resources. However,
these cloud resources may be described using different cloud resources description
standards which prevent the interoperability between different branches.

In this thesis, we address the above shortcomings by proposing an ontology-based
approach to semantically populate a common knowledge base of processes and cloud
resources and thus enable interoperability between organization’s branches. We con-
struct our knowledge base built by extending existing ontologies. We thereafter pro-
pose an approach to mine such knowledge base to assist the development of BP
variants. Furthermore, we adopt a genetic algorithm to optimally allocate cloud re-
sources to BPs. To validate our approach, we develop two proof of concepts and
perform experiments on real datasets. Experimental results show that our approach
is feasible and accurate in real use-cases.

Keywords. Business process models, process mining, cloud resource allocation, busi-
ness process fragments, ontology, knowledge base.

7

8

Abstract

De plus en plus les organisations adoptent les systèmes d’informations sensibles aux
processus basés sur Cloud en tant qu’un environnement pour gérer et exécuter des
processus dans le Cloud dans l’objectif de partager et de déployer leurs applications
de manière optimale. Cela est particulièrement vrai pour les grandes organisations
ayant des succursales opérant dans des différentes régions avec des processus con-
sidérablement similaires. Telles organisations doivent soutenir de nombreuses vari-
antes du même processus en raison de la culture locale de leurs succursales, de leurs
règlements, etc. Cependant, le développement d’une nouvelle variante de processus
à partir de zéro est sujet à l’erreur et peut prendre beaucoup du temps. Motivés
par le paradigme <<la conception par la réutilisation>>, les succursales peuvent
collaborer pour développer de nouvelles variantes de processus en apprenant de leurs
processus similaires. Ces processus sont souvent hétérogènes, ce qui empêche une
interopérabilité facile et dynamique entre les différentes succursales.

Une variante de processus est un ajustement d’un modèle de processus afin de
s’adapter d’une façon flexible aux besoins spécifiques. De nombreuses recherches
dans les universités et les industries visent à faciliter la conception des variantes de
processus. Plusieurs approches ont été développées pour aider les concepteurs de
processus en recherchant des modèles de processus métier similaires ou en utilisant
des modèles de référence. Cependant, ces approches sont lourdes, longues et sujettes
à des erreurs. De même, telles approches recommandent des modèles de processus
pas pratiques pour les concepteurs de processus qui ont besoin d’ajuster une partie
spécifique d’un modèle de processus. En fait, les concepteurs de processus peuvent
mieux développer des variantes de processus ayant une approche qui recommande un
ensemble bien défini d’activités à partir d’un modèle de processus défini comme un
fragment de processus. Les grandes organisations multi-sites exécutent les variantes de
processus BP dans l’environnement Cloud pour optimiser le déploiement et partager
les ressources communes. Cependant, ces ressources Cloud peuvent être décrites en
utilisant des différents standards de description des ressources Cloud ce qui empêche
l’interopérabilité entre les différentes succursales.

Dans cette thèse, nous abordons les limites citées ci-dessus en proposant une ap-
proche basée sur les ontologies pour peupler sémantiquement une base de connaissance
commune de processus et de ressources Cloud, ce qui permet une interopérabilité en-
tre les succursales de l’organisation. Nous construisons notre base de connaissance en
étendant les ontologies existantes. Ensuite, nous proposons une approche pour ex-
ploiter cette base de connaissances afin de supporter le développement des variantes
BP. De plus, nous adoptons un algorithme génétique pour allouer d’une manière op-
timale les ressources Cloud aux BPs. Pour valider notre approche, nous développons
deux preuves de concepts et effectuons des expériences sur des ensembles de données
réels. Les résultats expérimentaux montrent que notre approche est réalisable et

9

10

précise dans des cas d’utilisation réels.

Mot clés. Modèle de processus métier, fouille du processus, allocation des ressources
Cloud, fragment du processus métier, ontologie, base de connaissances.

Table of contents

1 Introduction 19

1.1 Research context . 19

1.2 Research problem: How to support business process variant design by
exploiting process data . 22

1.2.1 On assisting business process variant design by exploiting pro-
cess data . 22

1.2.2 On modeling heterogeneous business process models in a com-
mon knowledge base . 23

1.2.3 On modeling heterogeneous process event logs in a common
knowledge base . 25

1.3 Research problem: How to optimally allocate heterogeneous cloud re-
source to business processes . 26

1.3.1 On modeling heterogeneous cloud resources in a common knowl-
edge base . 26

1.3.2 On solving optimal allocation of heterogeneous cloud resources
to business processes . 26

1.4 Thesis principles, objectives and contributions 27

1.4.1 Thesis principles . 27

1.4.2 Thesis objectives . 28

1.4.3 Thesis contributions . 28

1.5 Thesis outline . 30

2 Related Work 33

2.1 Introduction . 34

2.2 Assisting business process variant design 34

2.2.1 Business process modeling . 34

2.2.2 Business process similarity . 35

2.2.3 Business process querying . 36

2.2.4 Business process mining . 37

2.2.5 Synthesis . 38

2.3 Modeling heterogeneous business process models 38

2.3.1 MIT process handbook . 39

2.3.2 Process Specification Language (PSL) 40

2.3.3 Process Interchange Format (PIF) 40

2.3.4 Web Ontology Language for Web Services (OWL-S) 41

2.3.5 General Process Ontology (GPO) 42

2.3.6 Business Process Modelling Ontology (BPMO) 43

2.3.7 Synthesis . 44

2.4 Modeling heterogeneous process event logs 45

11

12 Table of contents

2.4.1 Event ontology and Time-Annotated RDF 46

2.4.2 Event Ontology (EVO) . 46

2.4.3 Synthesis . 47

2.5 Modeling heterogeneous cloud resources 48

2.5.1 Cloud resources description standards 48

2.5.2 TOSCA . 48

2.5.3 OCCI . 49

2.5.4 CIMI . 50

2.5.5 Cloud resources modeling . 50

2.6 Cloud resource allocation to business processes 52

2.7 Conclusion . 52

3 Assisting BP Variant Design by Exploiting BP Models 55

3.1 Introduction . 55

3.2 Illustrating example . 56

3.3 Approach overview . 58

3.4 Knowledge Base of Business Process Models 59

3.4.1 Business Process Modeling Ontology (BPMO) 60

3.4.2 Semantic Business Process Model Annotation 61

3.5 Neighborhood Context Fragment Ontology 66

3.5.1 Neighborhood Conext Fragment Ontology (NCFO) 66

3.5.2 Neighborhood Conext Fragment Annotation 69

3.6 Neighborhood Context Graph Matching 71

3.6.1 Neighborhood Element matching 72

3.6.2 Neighborhood Connection Flow matching 73

3.6.3 Neighborhood Context matching 74

3.7 Conclusion . 75

4 Assisting BP Variant Design by Exploiting Process Event Logs 77

4.1 Introduction . 77

4.2 Illustrating example . 78

4.2.1 Approach overview . 79

4.3 Preliminaries . 80

4.3.1 Causal Net (C-net) . 81

4.4 Knowledge Base of Process Event Logs 82

4.4.1 Linked Causal Net (Linked-CN) 82

4.4.2 Neighborhood Context Fragment Ontology (NCFO) 86

4.5 Neighborhood Context Graph Matching 88

4.5.1 Connection flow matching . 88

4.5.2 Neighborhood context matching 89

4.6 Conclusion . 90

Table of contents 13

5 Supporting Cloud Resource Descriptions Interoperability 93

5.1 Introduction . 93

5.2 Illustrating example . 93

5.3 Semantic Framework of Cloud Resources 96

5.3.1 Standard-specific ontologies . 97

5.3.1.1 sTOSCA . 97

5.3.1.2 sOCCI . 98

5.3.1.3 sCIMI . 100

5.3.2 Upper-level ontology . 101

5.3.3 Standard translation . 102

5.3.4 Querying . 103

5.4 Conclusion . 104

6 Assisting Cloud Resource Allocation to Business Processes using
Genetic Algorithm 107

6.1 Introduction . 107

6.2 Illustrating example . 107

6.3 Cloud Resource Allocation Operator 109

6.4 Problem Formalization using Genetic Algorithm 110

6.4.1 Genome Encoding . 110

6.4.2 Fitness Function . 111

6.5 Conclusion . 113

7 Evaluation and Validation 115

7.1 Introduction . 115

7.2 Proof of Concept . 116

7.2.1 BP variant design support application 117

7.2.2 Cloud resource knowledge base populating application 119

7.3 Experimentation . 119

7.3.1 Modeling and mining business process models experiments . . 119

7.3.1.1 Approach feasibility 120

7.3.1.2 Approach accuracy 121

7.3.2 Modeling and mining process event logs experiments 122

7.3.2.1 Setting the testbed 122

7.3.2.2 Recommendation evaluation 123

7.3.3 Solving optimal cloud resource allocation to business process
variants . 124

7.3.4 Modeling cloud resources . 126

7.3.4.1 Qualitative evaluation 126

7.3.4.2 Quantitative evaluation 126

7.4 Conclusion . 128

14 Table of contents

8 Conclusion and Future Works 129
8.1 Contributions . 129
8.2 Future work . 131

8.2.1 Improving the quality of automated support 131
8.2.2 Modeling for cloud resource allocation to business process variants131

Appendices 133

A Business Process Model and Notation (BPMN) 135

B Event-driven Process Chain (EPC) 137

C List of Publications 139

List of Tables

2.1 Synthesis of the approaches for assisting BP variant design 38
2.2 Synthesis of approaches for modeling heterogeneous BPs 45
2.3 Synthesis of approaches for modeling heterogeneous process event logs 47

3.1 Concepts of BPMO connectors by types and behaviors 63

4.1 Excerpt of BP1 process event logs . 79
4.2 Excerpt of BP2 process event logs . 79

6.1 Genome encoding of cloud resource allocation variants encoded to genome112

7.1 Dataset details . 123
7.2 Linked-CN and NCFO coverage to standards 123
7.3 Ontology concept coverage to standards 126
7.4 Linked-CR concept deviations from standards 127
7.5 Numbers of RDF triples after translation 127

15

16 List of Tables

List of Figures

1.1 BP variant development in the BPM lifecycle inspired from [1] 21

1.2 Our BP variant development problematic 23

1.3 Process data heterogeneity . 24

1.4 Cloud resource allocation to BP problematic 27

1.5 Thesis contribution . 29

2.1 Two processes and their graph representations [2] 36

2.2 PSL-Core extension for modeling activities and ordering relations [3] . 40

2.3 PIF classes and their relations [4] . 41

2.4 The process ontology of OWL-S [5] . 42

2.5 General process ontology (GPO) [6] represented using RML [7] 43

2.6 Business Process Modelling Ontology (BPMO) 44

2.7 SUPER Event Ontology (EVO) . 46

2.8 TOSCA topology and its relations [8] 49

2.9 UML class diagram of OCCI infrastructure model [9] 50

3.1 Two BP variants of an order processing BP 56

3.2 BP2 fragment recommendation for the selected BP1 fragment 58

3.3 New BP variant for branch1 . 58

3.4 An overview of our approach . 59

3.5 BPMO and NCFO . 61

3.6 Partially semantic annotation of process models with BPMO ontology 64

3.7 Partially semantic annotation of processes with a domain ontology . . 65

3.8 Example: neighborhood context graph 68

3.9 Example: Connection flows . 71

4.1 Scenario of BP variant development 78

4.2 An overview of our approach . 80

4.3 C-net modeling language . 81

4.4 C-nets . 82

4.5 SUPER ontologies, NCFO and Linked-CN 83

4.6 C-net fragments . 87

5.1 Scenario of cloud resource interoperability 94

5.2 Semantic framework overview . 96

5.3 Excerpt from sTOSCA ontology . 98

5.4 Excerpt from sOCCI ontology . 100

5.5 Excerpt from sCIMI ontology . 101

5.6 Excerpt from Linked-CR ontology . 103

17

18 List of Figures

6.1 Illustrating example . 108
6.2 Example: cloud resource allocation variants of the same BP 108
6.3 Example: configurable resource operators 110

7.1 Our prototypes . 117
7.2 A screen-shot of our BP variant design support application 118
7.3 Average number of recommendation 121
7.4 Precision and recall values . 122
7.5 Percentage of recommended BP fragments 124
7.6 Precision and recall values . 125
7.7 Comparing Genetic-based approach with Linear integer programming 125

A.1 Example: BPMN model . 135

B.1 Example: EPC model . 137

Chapter 1

Introduction

Contents

1.1 Research context . 19

1.2 Research problem: How to support business process variant
design by exploiting process data 22

1.2.1 On assisting business process variant design by exploiting process
data . 22

1.2.2 On modeling heterogeneous business process models in a common
knowledge base . 23

1.2.3 On modeling heterogeneous process event logs in a common knowl-
edge base . 25

1.3 Research problem: How to optimally allocate heterogeneous
cloud resource to business processes 26

1.3.1 On modeling heterogeneous cloud resources in a common knowl-
edge base . 26

1.3.2 On solving optimal allocation of heterogeneous cloud resources to
business processes . 26

1.4 Thesis principles, objectives and contributions 27

1.4.1 Thesis principles . 27

1.4.2 Thesis objectives . 28

1.4.3 Thesis contributions . 28

1.5 Thesis outline . 30

1.1 Research context

In highly competitive business environments, organizations are forced to effectively
utilize Information Technology (IT) to achieve excellent performance of their business
processes management and execution [10,11]. Organizations are increasingly adopting
software systems, so called Process-Aware Information Systems (PAISs). Such sys-
tems manage and execute operational processes on the basis of business process (BP)
models involving multiple people, applications, and/or information sources [12, 13].

19

20 Introduction

Examples of PAISs are Business Process Management (BPM) systems [14–18] and
Enterprise Resource Planning (ERP) systems [19].

PAISs explicitly describe a BP model to represent the logical and the tempo-
ral order in which organizational tasks have to be performed to achieve a specific
goal [20]. Business process management (BPM) is a field that focuses on improving
performance by managing and optimizing BPs [21]. Traditionally, BPM life-cycle can
be categorized into four repeated steps to continuously improve BP models. It con-
sists of: (1) process design, (2) process implementation, (3) process execution, and
(4) process diagnosis. In the process design phase, a BP is modeled using graphical
notations proposed in the literature, such as Event-Driven Process Chain (EPC) [22],
Business Process Model and Notation (BPMN) [23], UML Activity Diagram [24],
Petri nets [25], Yet Another Workflow Language (YAWL) [22], etc. The designed BP
model is thereafter implemented and executed by a PAIS. During the BP execution,
the underlying PAIS records and accumulates historical data of the process execu-
tion (i.e., process event logs) [26]. Such data is then analyzed in the diagnosis phase
to identify possible problems and to improve the designed BP model using process
mining techniques [27–30].

Many large organizations with multiple branches situated in different regions are
adopting PAIS to support many variants of the same BP due to branches’ local
culture, regulations, etc [31]. For example, considering a car rental company having
branches located in different regions, each branch needs to develop variants of their
reservation process to comply with its local regulation and culture. Hence, BPs
are shared among different branches and can be flexibly adjusted and executed to
branches’ specific needs [31].

Cloud computing [32] has rapidly grown for delivering shared ICT services and
resources over the internet. According to the National Institute of Standards and
Technology, cloud computing is a model that enables providers sharing their comput-
ing resources (e.g., networks, servers, storage, applications, and services) and users
can access them in ubiquitous, convenient and on-demand way with a minimal man-
agement effort [33]. A recent study from Gartner states that PAISs on cloud envi-
ronments is the biggest segment with 77% of the market and predicts a growth from
$84.1B in 2012 to $144.7B in 2016, generating a global compound annual growth rate
of 15% [34]. Such organization can provision their BP variants in cloud environments
to adopt agile, flexible and cost-effective business solutions and also to reduce BP
development and maintenance costs.

In fact, more and more organizations are adopting PAIS on cloud environments
to manage their considerable amount of BP variants. Thus, a large amount of cloud
resources are being consumed by these BP variants. Hence, within an organization,
its branches are willing to share their accumulated cloud resources and useful process
data (i.e., BP models and process event logs) in order to assist the design of BP
variants.

In fact, in a highly competitive environment organizations need to flexibly ad-

Research context 21

just their existing BP models to develop new BP variants in order to meet emerging
business needs. BPM life-cycle allows organizations to significantly reduce BP devel-
opment time and cost savings [35]. The design phase in the BPM life-cycle is the
initial and key phase of a BP development [14]. Many approaches have been pro-
posed to facilitate the BP design phase using BP templates [36], reference BPs [37],
and measuring the similarity between BPs [38–41]. Existing approaches, however,
mainly study conceptual BP models and take into account the entire BP topology
which is labor-intensive and often the cause for error-prone and time consuming BP
variant development [42]. Moreover, they barely consider BP variant deployment in
cloud environments and more specifically cloud resource allocation.

Our thesis focuses on the development of process variants in the process design
phase of the traditional BPM lifecycle (Figure 1.1) and the allocation of cloud re-
sources consumed by BPs. To do so, we exploit process data (i.e., collection of
BP models and process event logs), and cloud resources shared by an organization’s
branches to assist respectively the design and deployment of process variants in cloud
environment by: (i) facilitating process variant design using heterogeneous process
data (i.e., BP models and process event logs), and (ii) solving optimal allocation
problem of cloud resources to BPs.

Process
design

Process
implementation

Process
execution

Process
diagnosis

ka b j
e

f
h

a
b

c
j

e

f
h

V

Business process model
repository

Process event log
repository

Facilitating business process
variant design using

heterogeneous process data

Process data

Generating

BPM life-cycle

Thesis scope

Cloud resources

Solving optimal
allocation problem of
cloud resources to BP

variants

Process variants

Designing

Consuming

Figure 1.1: BP variant development in the BPM lifecycle inspired from [1]

22 Introduction

1.2 Research problem: How to support business process
variant design by exploiting process data

1.2.1 On assisting business process variant design by exploiting pro-
cess data

Motivated by the “Design by Reuse” paradigm, many approaches have proposed
to take into consideration previous design experience, best practices and how other
organization’s branches perform similar BPs in order to assist business process variant
design.

Several approaches aim at supporting BP design by providing best-practice ref-
erence BP models [43, 44] or measuring BP similarity. For example in [38], Dijkman
et al. presented and compared four algorithms for calculating the similarity of BP
models based on graph matching. Dongen et al. [39] represented behaviors, so-called
causal footprints (e.g. task a is always succeeded by b, but that b can also occur be-
fore a) [45], of BP models to compute similarity between them. In [40], Kunze et
al. proposed an indexing approach to search for similar BP models based on metric
trees and edit distances. Yan et al. [41] presented an algorithm for classifying similar
BP models based on their features, e.g., tasks and task succession. These approaches
however do not consider process event logs which reflect closely the behavior of BPs
and always exist in information systems [46].

In some circumstances, process designer may need recommendations for some
parts of an under design BP, called BP fragments, instead of entire BPs. For ex-
ample, we consider a process designer designing a BP model as shown in Figure 1.2.
The process designer is looking for activities and their relations (i.e., BP fragments)
that are suitable for the selected position (with the ‘?’ mark) in the under-design
process. In this case, recommending an entire BP will not be helpful. Instead, BP
fragment recommendation is more suitable and straightforward. Recent works mainly
recommend entire BP which is labor-intensive and often the cause for an error-prone
and time consuming BP variant design [42].

In light of these limitations, our objective is to facilitate the design of BP vari-
ants without confusing the process designer with large and complex results. We
aim at recommending BP fragments that are relevant to selected positions of an
under-design BP. To ensure this objective, we propose to reuse heterogeneous process
data-sources providing as shared knowledge base of BP models (Section 1.2.2) and
process event logs (Section 1.2.3), to recommend focused and comprehensible results
(see Figure 1.2). To address this research problem, we need to answer the following
question:

• R1: How to identify BP fragments that are close to process designer interests
from heterogeneous process data?

These recommended BP fragments can be used in three typical cases:

Research problem: How to support business process variant design by exploiting
process data 23

a1

?

a2

a3

a4

a5

What are appropriate
activities here?

V

Business process model
repository

Process event log
repository

Figure 1.2: Our BP variant development problematic

• when a suitable BP fragment is needed to add for an empty place in an under
design BP model;

• when a BP model is needed to be adopted as a new variant to meet new business
goals;

• when the execution of a BP fragment fails, and thus needs to be replaced with
another BP fragment having similar behavior.

A serious challenge that prevents fostering the use of process data (i.e., BP models
and process event logs) between organization’s branches is that of interoperability [47].
Interoperability is defined as the ability of ICT systems to exchange information and to
use the information that has been exchanged [48,49]. Figure 1.3 depicts our problems
in which process data (i.e., BP models and process event logs) are heterogeneous
and could not be easily interoperated between an organization’s branches. Therefore,
process data should be semantically modeled in a machine-interpretable way, such
that it enables interoperability between an organization’s branches on BP model level
(Section 1.2.2) and process event log level (Section 1.2.3).

1.2.2 On modeling heterogeneous business process models in a com-
mon knowledge base

The variety of BP modeling languages (e.g. EPC [22], BPMN [23], UML [24], Petri
nets [25], YAWL [22], etc.) along with model elements’ labels usually written in a

24 Introduction

Figure 1.3: Process data heterogeneity

natural language have mostly implied semantic heterogeneity in BP models. In fact,
an organization’s branches usually define their own BP models with their preferred
modeling language and element’s labels as they like. This makes BP models diverse,
heterogeneous and thus difficult to exploit by other branches without making a proper
data transformation.

Ontology engineering is one of the semantic web fields that allows to model the
knowledge in organizations. It offers the means for solving semantic heterogeneity
problems [50]. Many approaches have been proposed to use ontologies to model
BP models described in a certain process modeling language. Concretely, they use
ontologies as means to conceptualize and represent BP models in EPC [51–54] and
BPMN [55]. These approaches however focus only on certain BP modeling languages.
They do not take into account the heterogeneity problems of BP models. Thus,
scenarios where an organization’s branches describe their BP models using different
languages are not supported by these works.

On the other hand, several approaches have proposed generic ontologies to repre-
sent BP models. In [56], Cabral et al. have presented the Business Process Modeling
Ontology (BPMO) as a part of the approach developed by the SUPER European
project [57] to construct generic BP models at the semantic level. In [6], Lin et al.
proposed to semantically annotate heterogeneous process models to ensure semantic
interoperability and to manage process knowledge from different enterprises. They
formalized a new process model representation, namely PSAM (Process Semantic
Annotation Model) to provide links from process models to domain-specific ontolo-
gies. In [58], Thomas et al. have presented a semantic language-independent process
modeling as an extension of semi-formal process modeling languages using ontologies.
Among these works, BPMO is the most promising because of its capability to rep-
resent BP models in various modeling languages. However, the automatic translate
back and forth between heterogeneous BPs to BPMO is still semi-manual.

In our work, we aim at modeling heterogeneous BP models to enable interoper-

Research problem: How to support business process variant design by exploiting
process data 25

ability when exploiting process data. To this end, we aim at representing these BP
data using appropriate ontologies. Thereafter, we want to automate the construction
of a shared knowledge base which can be used as a data-source to develop BP variants.
To address this research problem, we need to answer the following question:

• R2: How to model heterogeneous BP models to be shared in a common knowl-
edge base?

1.2.3 On modeling heterogeneous process event logs in a common
knowledge base

Typical process-aware information systems (e.g., ERP, CRM, and workflow manage-
ment systems) always produce and accumulate process event logs. Process event logs
contain information on when tasks were executed and by whom [27, 28], which is
essential for identifying important business execution paths.

Organization’s branches using PAIS execute their heterogeneous BP models and
accumulate heterogeneous process event logs which are not easy to exploit by other
branches. Several efforts have been made to conceptualize events as ontologies [59,
60]. However, proposed ontologies represent events for general use. Thus they did
not describe relationships between events and BPs and hence are not suitable for
representing process event logs. In [61], authors defined the Event Ontology (EVO)
to model events taking place during BP executions. This work is a part of SUPER
European project [57], therefore events described using EVO correspond to tasks
described using BPMO. However, authors do not specifically describe how to model
heterogeneous process event logs with EVO.

Process mining techniques [28] allow BP discovery using process event logs, BP
conformance checking (i.e., comparing a BP model with its process event logs to check
if the actual execution conforms to the model or not) and BP enhancement (i.e.,
using process mining results to improve BP models). By using such techniques [62],
we can discover a BP model from process event logs as graphs. Such graphs can be
represented as log-based BP graph [29], Causal Net (C-net) [63], etc. However, only
C-nets allow modeling XOR, AND and OR logical connectors and hence fit well with
various BP modeling languages [28].

Our objective is to model heterogeneous process event logs such that they can
be easily used by different organization’s branches. We aim at representing process
event logs using appropriate ontologies. Thereafter, we want to populate a shared
knowledge base with this data as mentioned in Section 1.2.2 which can be later used
as a data-source to apply process mining techniques assisting BP variant design. To
address this research problem, we need to answer the following question:

• R3: How to model heterogeneous process event logs to be shared in a common
knowledge base?

26 Introduction

1.3 Research problem: How to optimally allocate het-
erogeneous cloud resource to business processes

1.3.1 On modeling heterogeneous cloud resources in a common knowl-
edge base

Interoperability between cloud resources is one of the most substantial challenges
in order to effectively share and reuse resources within an organization. As Cloud
Computing is relatively a new paradigm, the interoperability issue is being increas-
ingly addressed at different level of IaaS [64], PaaS [65–68] and SaaS [69, 70]. Many
cloud resource management standards have also been proposed to cope with this is-
sue by providing description models for cloud resources. Such models describe cloud
resources and thus enable interoperability between them. Among the most known
stardards, we cite TOSCA [71] (Topology and Orchestration Specification for cloud
Applications), OCCI [72] (Open Cloud Computing Interface), and CIMI [73] (Cloud
Infrastructure Management Interface).

Organizations’ branches are describing their cloud resources by different cloud re-
source description standards. Such standards are being developed in isolation. For
example, TOSCA is developed by the OASIS Technical Committee, OCCI by the
Open Grid Forum community, and CIMI by the DMTF Cloud Management Working
Group. Hence, cloud resources described using these different standards might not be
simply interoperable because of their heterogeneous schema and vocabulary. In a col-
laborative environment where organizations are willing to share their cloud resources,
translating cloud resource descriptions is usually done manually and is therefore a
tedious task. This in turn creates cloud silos and non-reusable cloud resources.

With the objective of enabling interoperability between cloud resource descrip-
tion standards, we aim at representing cloud resources using appropriate ontologies.
Hence, we want to populate a knowledge base with this data allowing the sharing of
cloud resources within an organization. To address this research problem, we need to
answer the following question:

• R4: How to model heterogeneous cloud resources to be shared in a common
knowledge base?

1.3.2 On solving optimal allocation of heterogeneous cloud resources
to business processes

The tremendous emergence of cloud computing has generated several challenges in
order to efficiently provision cloud resources [74]. This is especially true for large
organizations having large amount of BP variants executed in cloud environments. A
lot of cloud resources are being consumed by BPs. Hence, optimal allocation of cloud
resources to BPs is needed for organizations to optimize their costs. However, cloud
resource allocation to BPs is a combinatorial problem with large-scale complexity.

Thesis principles, objectives and contributions 27

Such problem consists of how to select the most suitable resources required by different
BP activities to ensure an optimal resource consumption in term of quality of service
(QoS).

Figure 1.4 illustrate this problem where a considerable amount of cloud resources
needs to be allocated to BP activities. To the best of our knowledge, selecting a set of
cloud resources to be allocated to BP activities remains a difficult and open problem.

Cloud resources

c1 c2

n1

n2

n2

s1 s2

What are the suitable
cloud resource

allocation for these
activities?

a1

a3

a2

Legend:

Network

Storage

Compute

Business process model

Figure 1.4: Cloud resource allocation to BP problematic

Our objective is to solve the problem of optimal cloud resource allocation to BPs.
We aim at proposing a genetic-based approach, which is adequate for combinato-
rial problems, for selecting an optimal cloud resource allocation using a heteroge-
neous cloud resource data-source, i.e., a shared knowledge base of cloud resources
(Section 1.3.1). To address this research problem, we need to answer the following
question:

• R5: How to solve optimal allocation of cloud resources to business processes?

1.4 Thesis principles, objectives and contributions

1.4.1 Thesis principles

In this thesis we consider the following principles while developing our approach:

• Heterogeneous data modeling: The approach should model heterogeneous
process data and cloud resources in a machine-interpretable way, such that it
enables interoperability among an organization.

• Automation: The approach should propose automated techniques.

28 Introduction

• Implicit knowledge exploitation: The approach should be driven by the
“Design by Reuse” paradigm. Consequently, it should extract and utilize im-
plicit knowledge hidden in existing and accessible cloud-based PAIS data such
as already designed BP models, process event logs and cloud resources.

• Focused results: To not confuse process designers, the approach should rec-
ommend focused results that are close to their interest.

It is noteworthy that the proposed work in this thesis needs to be (i) validated
through proof of concepts and (ii) evaluated through different experiments on real
datasets. Therefore, the implementation, experiments, and case study results with
end users should be detailed.

1.4.2 Thesis objectives

In this thesis, we aim at proposing automated support for BP variant design
by exploiting existing process data and proposing automated support for
optimal allocation of cloud resources to business process variants. Our
first goal is twofold: (i) model and mine heterogeneous process data by constructing
a shared knowledge base and (ii) utilize such knowledge base to assist the design
of BP variants by proposing fine-grained results that are close to process providers’
interests. The second goal is also twofold: (iii) model heterogeneous cloud resources
to construct a shared knowledge base, and (iv) optimally allocate cloud resource to
BP variants.

To achieve the first and third objective, we propose a semantic framework tack-
ling this heterogeneity issues. This framework promotes the creation of a semantic
knowledge base from heterogeneous process data and cloud resources shared by an or-
ganization’s branches. Our framework promotes the interoperability and thus enables
the reuse of such data within an organization.

For the second objective, we propose to learn from past process data in our knowl-
edge base to assist BP variant design by recommending process fragments. The rec-
ommended process fragments are close to process designers’ interests and inspire them
to flexibly adjust specific parts in their under-design BPs.

To achieve the fourth objective, we allocate cloud resources to BP variants using
cloud resource descriptions stored in our knowledge base. Furthermore, we propose
a novel approach using a genetic algorithm to solve such combinatorial problem with
large-scale complexity.

1.4.3 Thesis contributions

We propose an ontology-based approach to semantically populate a knowledge base
with heterogeneous process data (i.e., BP models and process event logs). This knowl-
edge base is developed upon a set of ontologies that we define to represent this data.

Thesis principles, objectives and contributions 29

Our proposed ontologies extend ontologies developed in the context of the European
project SUPER [57] which aims to enable interoperability between enterprises’ busi-
ness and system perspectives in a machine understandable way [61].

Figure 1.5: Thesis contribution

To promote a flexible adjustment of BPs in the process design phase, we aim to
exploit process data (i.e., BP models and process event logs) to assist BP variant
design. To do so, we propose to populate a common knowledge base using hetero-
geneous process data as input (Figure 1.5). Thereafter, we mine process data stored
in our knowledge base to recommend suitable mined process fragments to selected
positions of an under-design BP.

Considerable amount of cloud resources will be consumed by BP variants. There-
fore, we propose to populate a knowledge base with the descriptions of cloud resources
consumed by BPs with the aim at enabling interoperability and sharing such resources
within an organization. Furthermore, we propose to adopt genetic algorithm to deal
with the optimal cloud resource allocation to BP variants.

We validate our work in two steps. Firstly, we developed two proof-of-concepts:
(i) a BP variant modeling application, and (ii) a cloud resource knowledge base
application. We performed experiments on modeling and mining BP models for rec-
ommendation on two large datasets: (i) SAP reference models [75], (ii) and IBM
BP models proposed in [76]. We also conducted experiments on synthesized process
event logs generated from SAP reference models. We then evaluated the feasibility,
efficiency and accuracy of our proposed approaches. Regarding modeling heteroge-
neous cloud resources, we applied our approaches on use cases identified from different
standards.

30 Introduction

In summary, our contributions in this thesis are as follows:

1. An automated approach to model heterogeneous process data and
cloud resources in a shared knowledge base:

• An ontology-based approach to represent heterogeneous process data (i.e.,
BP models and process event logs) and heterogeneous cloud resources in a
shared knowledge base.

2. An automated approach to assist the design of process variants by
mining our shared knowledge base:

• A data mining based approach to extract process fragments from process
data in our shared knowledge base;

• An algorithm that measures similarities betweens process fragments for
recommendation.

3. An automated approach to optimally allocate cloud resources to busi-
ness process variants:

• A genetic-based algorithm that select suitable cloud resource allocation to
BPs.

4. Validation:

• Two proof-of-concepts for each contribution implemented as extensions of
the Signavio process editor;

• Experiments on two large datasets from SAP reference BP models and IBM
BP models to demonstrate the feasibility, efficiency and accuracy of our
proposed assisting BP variant design approach;

• Experiments on use-cases to compare our genetic-based resource allocation
approach with other approaches;

1.5 Thesis outline

This thesis is organized as follows: Chapter 2 presents a background on our research
context. It starts by presenting existing works related to modeling heterogeneous BP
models, process event logs, and cloud resource descriptions. Thereafter, we present
different approaches for supporting the design of BP variants. We review their models
and analyze their solutions. This analysis allows us to justify the need for proposing
an automated support for BP variant design by exploiting existing process
data and proposing an automated support for optimal allocation of cloud
resources to business processes.

Thesis outline 31

Chapters 3, 4 and 5 are the core of our thesis which elaborate our approach to
support the design of BP variants by exploiting heterogeneous process data (i.e., BP
models and process event logs), and automated support for interoperating heteroge-
neous cloud resources.

In Chapter 3, we present our approach to model heterogeneous BP models in a
common knowledge base and support the design of BP variants using such knowledge
base. We reuse an existing ontology, namely BPMO, to model heterogeneous BP
models in our knowledge base. We propose the NCFO ontology as an extension
of BPMO to represent fragments of BP models. Then, we present our approach for
matching and recommending similar BP fragments to assist the design of BP variants.

In Chapter 4, we present our automated approach for supporting the design of BP
variants by exploiting process event logs. We propose the Linked-CN ontology as an
extension of an existing ontology, namely EVO. We present our approach to discover
BP models from process event logs and to populate a knowledge base of discovered
BP models using Linked-CN ontology. We extend the NCFO ontology (Chapter 3)
to represent fragments of discovered BP models. Thereafter, we present our matching
algorithm to recommend similar BP fragment which can be used as means for BP
variant design.

In Chapter 5, we present an approach for modeling heterogeneous cloud resource
described by different standards. We propose an ontology, namely Linked-CR, which
defines high level concepts to describe cloud resources modeled with different stan-
dards (e.g., TOSCA, OCCI, and CIMI). We populate a common knowledge base of
cloud resources using Linked-CR. We use semantic inference rules to enable an au-
tomated standard translation. Cloud resource descriptions modeled with Linked-CR
allows organizations to query and customize cloud resources regardless of their rep-
resentation by cloud providers.

In Chapter 6, we present an approach to optimal allocate of cloud resources to
BP variants using genetic algorithm. We encode our problem to a genome then apply
genetic algorithm to find the most optimal cloud resource allocation.

In chapter 7, we present the proof of concepts that we implemented, the exper-
iments that we performed and the case study that we conducted to validate our
approach.

Finally, Chapter 8 concludes this thesis by summarizing the presented work and
discussing possible extensions.

32 Introduction

Chapter 2

Related Work

Contents

2.1 Introduction . 34

2.2 Assisting business process variant design 34

2.2.1 Business process modeling . 34

2.2.2 Business process similarity . 35

2.2.3 Business process querying . 36

2.2.4 Business process mining . 37

2.2.5 Synthesis . 38

2.3 Modeling heterogeneous business process models 38

2.3.1 MIT process handbook . 39

2.3.2 Process Specification Language (PSL) 40

2.3.3 Process Interchange Format (PIF) 40

2.3.4 Web Ontology Language for Web Services (OWL-S) 41

2.3.5 General Process Ontology (GPO) 42

2.3.6 Business Process Modelling Ontology (BPMO) 43

2.3.7 Synthesis . 44

2.4 Modeling heterogeneous process event logs 45

2.4.1 Event ontology and Time-Annotated RDF 46

2.4.2 Event Ontology (EVO) . 46

2.4.3 Synthesis . 47

2.5 Modeling heterogeneous cloud resources 48

2.5.1 Cloud resources description standards 48

2.5.2 TOSCA . 48

2.5.3 OCCI . 49

2.5.4 CIMI . 50

2.5.5 Cloud resources modeling . 50

2.6 Cloud resource allocation to business processes 52

2.7 Conclusion . 52

33

34 Related Work

2.1 Introduction

In this chapter, we review the existing works in the literature relevant to our research
problems which are How to support business process variant design by exploiting pro-
cess data? (Section 1.2) and How to optimally allocate heterogeneous cloud resource
to business process variants (Section 1.3). Firstly, we study existing solutions for
facilitating the design of BP variants in Section 2.2. Thereafter, we focus on exist-
ing ontology-based approaches for modeling heterogeneous process data (BP models
and process event logs) in Section 2.3 and 2.4, respectively. In Section 2.5, we focus
on existing ontology-based approaches for modeling heterogeneous cloud resources
Section 2.5. Then, we study existing works for cloud resource allocation to BPs
(Section 2.6). Finally, we conclude the chapter in Section 2.7.

2.2 Assisting business process variant design

In this section, we review existing approaches that aim at assisting BP variant de-
sign. We categorize these approaches into four categories: business process modeling
(Section 2.2.1), business process similarity (Section 2.2.2), business process querying
(Section 2.2.3), and business process mining (Section 2.2.4).

2.2.1 Business process modeling

Business process modeling refers to techniques that represent BPs by means of appro-
priate graphical notation [15] in order to filter out the complexity of the real world,
and thus the important parts of the system can be focused [77]. Over the past few
decades, there has been a large amount of effort to propose process modeling languages
to represent BPs, such as Event-Driven Process Chain (EPC) [22], Business Process
Model and Notation (BPMN) [23], UML Activity Diagram [24], Petri nets [25], Yet
Another Workflow Language (YAWL) [22], etc. Moreover, many tools have been de-
veloped to provide the ease of designing BPs with graphical interface, such as Visio,
Workflow designer, Process marker, Tibco, Holosofx, Questetra, Bizagi, Bonita, etc.
Despite the considerable number of techniques and tools, BP model design is still
time-consuming and labor-intensive [78].

In today’s rapidly changing business environments, organizations need to flexibly
adjust their BPs to quickly adapt to new requirements (i.e., BP variant design) [79,80].
Re-designing or adjusting existing BP without considering similar BP from other
community is not effective [81]. Thus, several associations and vendors have defined
models, so-called reference models, to capture proven practices and recurring busi-
ness operations (i.e., common business activities) in a specific application domain.
Reference models are generic model to be individualized to fit specific requirements
for organizations or IT projects. Several commercial process modeling tools integrate
reference models as standardized libraries in order to reuse the proven practices across

Assisting business process variant design 35

process (re-)design projects. They do so by capturing knowledge about common ac-
tivities, information artifacts and flows encountered in specific application domains.
Examples of such tools are the SAP reference models [82] and the Supply Chain
Operations Reference (SCOR) models [83].

Reference model has shortcomings when given to BP designers as a reference to
design BP variants because (i) it is provided manually, thus the design of BP variants
from reference model is error-prone and time-consuming and (ii) reference model is
given as an entire model while sometimes only some parts of the model need to be
considered.

2.2.2 Business process similarity

Designing BP variants start by finding similar BP models by measuring the similarity
between them. This helps identifying the overlapping and redundant parts between
BP models in a BP repository. Many approaches have been proposed to measure such
similarity [2, 84–89].

Several existing approaches compute this similarity metric based solely on concep-
tual BP models. For example, Dijkman et al. [2] have proposed to rank BP models
in a repository based on their similarity to a given BP model. Concretely, the au-
thors represent a BP model as a graph (Figure 2.1). Thus, perform matching between
graphs by establishing 1-to-1 correspondences between nodes in the compared graphs.
Bunke [84] has proposed to represent BP model as a directed attributed graph and
then uses graph-edit distance to compute the similarity between BP models. Con-
cretely, the number of deletions/insertions/substitutions of nodes and edges in order
to transfer from one model to another is measured as a similarity metric. Yan et.
al. [85] compute the similarity between two BP models by focusing on the charac-
teristics of model elements, i.e., activity label and connection elements (e.g., start,
end, sequence, split and join). The similarity between two activity labels is computed
using the text edit distance [90] while the similarity between two connection element
is computed by the average number of input and output paths. Finally, the similarity
between two BP models is synthesized from the similarity of their activity labels and
connection elements.

Li et. al. [86] have proposed to measure the difference between two BP models
based on the number of operations that need to be performed to transform one pro-
cess to the other. Concretely, they considered execution orders between activities
and measured the difference based on the deletions/insertions/movements of activi-
ties. Ehrig et. al [87] represent Petri-net BP models by an ontology with a set of
properties. The similarity between model elements is computed based on the syntac-
tic and semantic matching of their properties. They use string-edit distance for the
syntactic matching and WordNet library for the semantic matching.

Some approaches [88,89] measure similarity by exploiting process event logs. For
example, Aalst et. al. [88] have proposed to compute the similarity value of two BP

36 Related Work

Figure 2.1: Two processes and their graph representations [2]

models based on their process execution logs (i.e., process event logs). BP models
are modeled using Petri-Net, while process event logs are modeled as sequence of
activities, namely log traces. They defined the fitness notion between two process
events based on the enable state (e.g., int, ready, running, terminated, skipped) of
activities in the traces. The similarity between two BP models is evaluated based
on their respective precision and recall metrics. Such metrics are computed based on
the fitness between the log traces of the two BP models. Dongen et. al. [89] measure
the similarity between two EPC BP models using vector space model (VSM), i.e. the
cosine value of the angle created by the two corresponding vectors. They defined the
‘causal footprint’ as a vector to represent the execution orders of activities. Finally,
the similarity between two causal footprints is computed using VSM which represents
the similarity of their corresponding BP models.

Measuring similarity between two entire BPs often leads to the graph-matching
problem, which is NP-complete [91], and might need to deal with the trade-off among
the complexity, accuracy, and system performance. In our approach, we focus on
specific positions of BP models (i.e., process fragments). By measuring the similarity
between process fragments, we can retrieve relevant process fragment for recommen-
dation to assist the BP variant design without facing the complexity problem.

2.2.3 Business process querying

In order to accelerate the BP variant design, many research contributions have been
made to query desired BPs and activities [92–98].

Awad et. al. [92–96] have developed a BP query language, namely BPMN-Q.
Concretely, they extended the BPMN notations to develop BPMN-Q by adding new
model elements, such as variable node which represents an unknown activity in a
query, generic which indicates an unknown node in a BP, and path which states that
there must be a path between two nodes [95]. Such query is considered as a graph.
Thus, the query graph is then matched with existing BP models to retrieve BPs that
relevant are to the query.

Assisting business process variant design 37

Several query-based approaches adopt text mining techniques. Hornung et. al.
have developed an approach to query BPs using text mining techniques [97]. Con-
cretely, They extract model element labels from Petri-net BP models, and translate
them to a text-based document. Once the part of the BP is translated to a docu-
ment, it is matched to other BP in the BP model repository based on the vector space
model (VSM) and the term frequency inverse document frequency (TF-IDF) similar-
ity metric. Lincoln et. al. [98] also use text mining techniques to perform matching
between BP segments. They defined object grouping model (OGM) to represent a
BP segment. OGM represents relationships between a primary object and others in
a process segment. Edges connecting between objects are weighted by repetitions.
Finally, the similarity between BP segments, represented in OGM is measured based
on TF-IDF.

In general, existing query-based approaches perform matching between BP frag-
ments. Therefore, they do not often face the graph-matching problem. However, in
term of exploiting implicit knowledge, they barely consider process event logs. In our
approach, we exploit both BP model and process event logs to assist the design of
business BP variant.

2.2.4 Business process mining

Typical information systems, especially PAIS, record and accumulate their business
transactions as process event logs [26]. Examples of such systems are ERP systems
(e.g. SAP), case handling systems (e.g. FLOWer), workflow management systems
(e.g.Staffware), CRM systems (e.g. Microsoft Dynamics CRM), middle ware (e.g.,
IBM’sWebSphere), hospital information systems (e.g., Chipsoft), and so on. Their
process event logs can be analyzed to identify execution errors, a-priori BP models,
and so on, which can be useful as a data-source to design business BP variants.

Several process mining approaches have been proposed to discover BP models from
process event logs [99–103]. Some approaches mine process event logs and an a-priori
BP model to check the conformance between them [104–107]. Several approaches
focus on identifying BP execution errors [108, 109]. Some approaches examine social
behaviors between groups of BP users [110,111]. Furthermore, our previous works [29,
30,112] use process mining techniques to support the BP design.

In our approach, we exploit not only BP models but also process event logs as a
data-source to assist the design of BP variants. We exploit process event logs because
such logs alway exist in today’s information systems and reflect actual behaviors of
BPs during execution. By adopting process mining techniques, we can discover BP
models from process event logs. Thereafter, we perform matching between fragments
of discovered BP models and a selected fragment of an under-design process. Thus,
an under-design process can be adjusted based on the matching result.

38 Related Work

2.2.5 Synthesis

Existing approaches attempt to assist the (re-)design of BP models in which new
BP variants are designed to meet new requirements. Several works proposed to use
reference models as proven practices [82,83] which are provided manually, thus cause
error-prone and time-consuming. Many approaches perform matching between BP
models based on their conceptual models [2,84–87] or their process event logs [88,89].
However, their approaches provide entire BP models while sometimes only some parts
of the model need to be considered, and thus often high in computational complexity.
Several approaches retrieve specific parts of BP models by using query [94,96–98] to
provide focused results. To sum up, presented approaches do not exploit the implicit
knowledge offered by both BP models and process event logs, and only some of them
partially assist BP variant design in an automatic manner.

Table 2.1 illustrates a synthesis of the presented approaches in terms of our last
principles identified in Section 1.4.1: (i) automation, (ii) implicit knowledge exploita-
tion, and (iii) focused results. None of them can fulfill all principles. ‘+’ indicates
that the corresponding principle is fulfilled by the corresponding approach, ‘−’ in-
dicates that the corresponding principle is not fulfilled and ‘+/−’ indicates that the
corresponding principle is partially fulfilled.

Approaches
Principles

Automation Implicit knowledge Focused
exploitation results

[82], [83] − +/− −
[2], [84], [85], [86], +/− +/− −

[87], [88], [89]
[94], [96], [97], +/− +/− +

[98]
[99], [100], [101], − +/− −

[102], [103]

Table 2.1: Synthesis of the approaches for assisting BP variant design

In our approach, we focus on a part of a BP (i.e., process fragment). We aim
at recommending process fragment that are relevant to a selected position of a BP
using our knowledge base constructed from heterogeneous BP models and process
event logs (see Section 2.3 and 2.4). We take into account the relation of activities
in a process fragment as a similarity metric. We compute similarity values between
a selected fragment of an under-design BP model with process fragments represented
in a knowledge base. This allows retrieving relevant process fragments which can be
flexibly used in an under-design model.

2.3 Modeling heterogeneous business process models

Semantic interoperability problems of BPs have arisen especially in collaborative or-
ganizations’ PAIS systems where heterogeneous processes are operated by multiple

Modeling heterogeneous business process models 39

branches in order to learn best practices from each other [113]. Generally, researches
on semantic interoperability are classified into two categories: mapping and inter-
mediary approaches. (i) Mapping approaches construct mappings between partic-
ipant systems (in our case, BPs) and a global schema [114–116]. However, global
schema does not allow a flexible adaptation of new participant system. (ii) Interme-
diary approaches model domain-specific knowledge, mapping knowledge, or rules in
a machine-interpretable way such as ontologies [117]. Concretely, these approach for-
malize concepts and relationships between concepts as a shared common understand-
ing within a community. Such formalization is independent of particular applications
and schemas.

Semantic Web technology and ontology engineering researches have initiated sub-
stantial amount of interests to solve interoperability problems. In this section, we
review existing ontology-based approaches for modeling processes.

2.3.1 MIT process handbook

The MIT process handbook project [118] has addressed the semantic interoperabil-
ity problem of business knowledge by developing an approach to organize and share
business activities in an online knowledge base. Concretely, they have proposed a set
of fundamental concepts, namely entries, to model business activities in a knowledge
base. They adopted the inheritance from the object-oriented programming paradigm
to represent the specialization of activities and the dependency of coordination the-
ory [119] to represent control flow between activities. The core entries described in
the book are as follows:

• Description. Any information related to the given activity, such as definitions,
comments, or links to other entries.

• Use. A set of activities in which the given activity is used as a part.

• Part. A part represents a structure of multiple activities.

• Generalization. The set of activities are type of the given activity.

• Specialization. The level specialized activities of the given activity.

• Bundle. A group of related specializations based on questions of an activity:
what? when? where? why? who? and how?.

The MIT process handbook mainly describes generic reference models for typical
business activities (e.g., buying, selling, and making). Their approach, however, do
not consider the heterogeneity of BPs in term of process modeling languages. Hence,
modeling heterogeneous BPs using their generic models might be error-prone and
time consuming.

40 Related Work

2.3.2 Process Specification Language (PSL)

The PSL [3] is one of the National Institute of Standards and Technology (NIST)
projects that tackles the interoperability issues of manufacturing process informa-
tion. Concretely, they have developed an ontology, namely PSL-Core, based on the
Knowledge Interchange Format (KIF) specification [120]. PSL-Core defines four basic
classes (Object, Activity, Activity Occurrence, and Timepoint) and four basic rela-
tions (Participates-in, Before, BeginOf, and Endof). Based on these generic classes
and relations, they have developed an extension of PSL-Core to model business ac-
tivities and their ordering relations (Figure 2.2). Other extensions can also be made
based on the specific domain, such as the process planning domain described in the
project.

soning

d s and x
e

Ordering

Figure 2.2: PSL-Core extension for modeling activities and ordering relations [3]

PSL-Core allows modeling BPs. However, they do not consider the heterogeneity
of BPs in term of process modeling languages. Thus, modeling heterogeneous BPs
using PSL-Core might be tedious and complex.

2.3.3 Process Interchange Format (PIF)

PIF [4] has a goal to develop an interchange format to automate process description
exchange among different process modeling languages and support systems such as
workflow software, flow charting tools, process repositories, etc. Concretely, PIF is
a process modeling language developed based on the Knowledge Interchange Format
(KIF) specification [120]. PIF defines three core classes for process description: Ac-
tivity, Actor and Resource. PIF main classes and their relationships are illustrated
in Figure 2.3.

PIF provides a common language through which different process representations
can be automatically translated back and forth to PIF. However, the mechanism
to achieve such automatic translation is the responsibility of individual groups who

Modeling heterogeneous business process models 41

Figure 2.3: PIF classes and their relations [4]

want to use PIF. Therefore, PIF has not yet provided a tool or mechanism to model
heterogenous BPs.

2.3.4 Web Ontology Language for Web Services (OWL-S)

OWL-S [5] is an ontology built on top of Web Ontology Language (OWL) for de-
scribing Semantic Web Services. It allows users and software agents to automatically
discover, invoke, compose, and monitor Web resources offering services. The process
ontology has been defined as a part of the OWL-S ontology to describe how to inter-
act with a service that can be viewed as a process. Figure 2.4 illustrates the process
ontology modeled in OWL classes, properties and axioms. They have defined 3 types
of processes: (i) atomic processes representing the actions a service can perform in
a single interaction; (ii) composite processes representing actions that require multi-
step protocols and/or multiple actions; and (iii) simple processes providing abstract
multiple views of the process.

OWL-S is criticized as suffers conceptual ambiguity, and offer an overly narrow
view on Web Services [121]. Hence, using OWL-S to model heterogeneous BPs is not
suitable.

42 Related Work

Figure 2.4: The process ontology of OWL-S [5]

2.3.5 General Process Ontology (GPO)

GPO [6] is an explicit and formal specification of concepts to model BPs in general.
Concretely, it provides a common semantic annotation schema to represent BPs.
Thus, GPO assists human and machines to understand heterogeneous BP models
using semantic annotations. Example of the main concepts in GPO (Figure 2.5) are:

• Activity is a concept which composes a process.

• Artifact represents something involved in an activity such as information, soft-
ware, etc.

• WorkflowPattern represents the ordering of activities. WorkflowPattern can
be specialized into multiple specific patterns based on typical workflow pat-
terns [122], such as Sequence, Choice (ExclusiveChoice, MultipleChoice, Par-
allelSpit), and Merge (SimpleMerge, MultipleMerge, Synchronization), which

Modeling heterogeneous business process models 43

are typical workflow control patterns supported by most process modeling lan-
guages.

Figure 2.5: General process ontology (GPO) [6] represented using RML [7]

GPO is also defined as the semantic mediator for different process modeling lan-
guages. In article [123], authors provide case studies where two BPs (one described
in BPMN [124] and another one described in EEML [125]) are translated into GPO.
Hence, their approach has a capability to model heterogeneous BPs. However, their
approach is relatively immature to model heterogeneous BPs.

2.3.6 Business Process Modelling Ontology (BPMO)

The BPMO [56] ontology is one of the research contributions of the European project
SUPER [57]. It is capable of representing workflow elements from various process
modeling languages. Concretely, BPMO abstracts different business process modeling
notations such as BPMN [124] and EPC [125]. Figure 2.6 depicts BPMO concepts
and relationships. BPMO core concepts are:

• bpmo:Process is an abstraction of a BP model.

• bpmo:WorkflowElement is a model element in a BP model. It has three sub-
concepts: bpmo:Task, bpmo:WorkflowEvent and bpmo:GraphPattern. It is re-
lated to a process model through the property bpmo:hasHomeProcess.

• bpmo:Task is an atomic unit of work or activity in a business process model.

• bpmo:WorkflowEvent is an event that occurs during the execution of a business
process. It has three sub-concepts bpmo:StartEvent, bpmo:IntermediateEvent
and bpmo:EndEvent.

44 Related Work

: Ontology clas

: Speciali
: Property definition

Figure 2.6: Business Process Modelling Ontology (BPMO)

• bpmo:GraphPattern represents the connection between workflow elements in a
business process model. It has three sub-concepts:

– bpmo:ControlflowConnector is the control flow (sequence) connecting two
model elements through the properties bpmo:hasSource and bpmo:hasTarget.

– bpmo:IncomingFlow represents variant types of logical connector having a
merging behavior (i.e. join behavior). The bpmo:hasIncomingConnector
property relates a merging connector to the workflow elements in its in-
coming flow. A bpmo:Merge connector has three main sub-concepts:
bpmo:MultipleMerge, bpmo:SimpleMerge and bpmo:Synchronization.

– bpmo:OutgoingFlow represents variant types of logical connector having a
split behavior. The bpmo:hasOutgoingConnector property relates a split
connector to the workflow elements in its outgoing flow. bpmo:OutgoingFlow
connector has three primary sub-concepts: bpmo:ExclusiveChoice,
bpmo:ParallelSplit and bpmo:Multiplechoice.

In the context of SUPER project, the sBPMN [126] and sEPC [53] ontologies
have been also defined to formalize BPMN and EPC, respectively. By employing
these ontologies, processes can be translated from BPMN and EPC to BPMO and vice
versa [127]. Therefore, using such ontologies is suitable for modeling heterogeneous
BPs.

2.3.7 Synthesis

Some existing approaches [3–6, 56, 118] tried to examine common properties of BPs,
and thus define ontologies to semantically describe BPs in order to ensure the inter-
operability of such data within an organization. Most of them [3–6] developed tools

Modeling heterogeneous process event logs 45

to assist the modeling of BPs to realize their ontologies. Some of them applied their
approaches on use cases [6, 56,118] to evaluate their solutions.

Table 2.2 shows a synthesis on the presented approaches in terms of the first
two principles identified in Section 1.4.1: (i) heterogeneous data modeling, and (iii)
automation. We review existing works regarding the heterogeneous data modeling
principle by looking at BPs as data-source, and automation principle by focusing on
the capability to automatically translate back and forth between heterogeneous BPs
to the representation with their proposed ontologies.

Approaches
Principles

Heterogeneous Automatic
BP translation

modeling
The MIT process +/− −

handbook project [118]
PSL [3] +/− −
PIF [4] +/− −

OWL−S [5] +/− −
GPO [6] + +/−

BPMO [56] + +/−

Table 2.2: Synthesis of approaches for modeling heterogeneous BPs

In general, existing ontology-based approaches attempted to solve interoperability
problems of BPs [3–6,56,118]. However, most of these approaches have not considered
the heterogeneity problem of BP modeling languages [3–5,118], thus it might be error-
prone and time consuming to model heterogeneous BPs using such approaches. On
the other hand, some approaches [6, 56] have studied the BP heterogeneity problem
and provide mediated mechanisms to facilitate the translation of heterogeneous BPs
to constitute a shared knowledge base using their proposed ontologies.

Our approach aims at constructing a shared knowledge base of heterogeneous
process data using ontologies. Reusing and extending existing ontologies is extremely
valuable [128], thus we have decided to reuse and extend BPMO in our approach be-
cause BPMO has sufficient capability to model heterogeneous BP models. Moreover,
this ontology is highly mature and is part of the SUPER European project [57] where
a lot of research contribution has been done regarding to the interoperability of BPs.

2.4 Modeling heterogeneous process event logs

PAIS systems accumulates historical data of process execution (i.e., process event
logs). In a large organization with multiple branches, each branch executes heteroge-
neous BPs on PAIS, and thus generates heterogeneous process event logs. Hence, the
semantic interoperability problem of process event logs have arisen when organization
branches are willing to share such data to learn from each other in order to improve
their BPs. In addition, process event logs can be useful data-source to improve BPs
using process mining techniques [27].

46 Related Work

2.4.1 Event ontology and Time-Annotated RDF

As we mentioned previously in Section 2.3, using an intermediary approach (i.e.,
ontology-based) can help modeling process event logs and enabling interoperabil-
ity within an organization. Some efforts have been made to conceptualize events
as ontologies (Event ontology [59] and Time-Annotated RDF [60]). However, these
proposed ontologies represent events for general use. Thus they do not describe rela-
tionships between events and BPs, and thus are not suitable for representing process
event logs. In this section, we review existing ontology-based approaches for modeling
process event logs.

2.4.2 Event Ontology (EVO)

Event Ontology (EVO) [129] is defined as a part of the European SUPER project [57].
Unlike other existing ontologies, events described with EVO can have explicit link to
BPs by its defined relationships to BPMO ontology which is also part of the SUPER
project. Figure 2.7 depicts those concepts and relationships. EVO main concepts are:

ub-

Figure 2.7: SUPER Event Ontology (EVO)

• evo:MonitoringEvent represents event taking place during the runtime of PAIS
system. An agent which generates an event and a timestamp are described
through the property evo:generatedBy and evo:hasCreationTimestamp respec-
tively.

• evo:ProcessEvent represents an event recorded during the execution of a BP.
evo:occurred-

Modeling heterogeneous process event logs 47

DuringProcessExecution and evo:occurredDuringActivityExecution properties re-
spectively describe a BP model and an activity which have been executed and
consecutively event has been recorded.

• evo:DataValue is a generic attribute stored in an event. It represents a charac-
teristic of an event, such as, title, description and so on.

EVO links to BPMO through UPO ontology because UPO acts as an integration
point for all other SUPER ontologies. Note that UPO is an ontology defined by
the SUPER project to formalize top-level concepts of BP and organizational-related
entities [56]. The main concepts defined in UPO are: upo:TimeInstance represents
a point in time, i.e. timestamp where event can take place during the execution of
a BP; upo:BusinessProcessModel and upo:BusinessActivity respectively represents a
BP model and an business activity.

2.4.3 Synthesis

Table 2.3 depicts a synthesis of the presented approaches in terms of the first two
principles described in Section 1.4.1: (i) heterogeneous data modeling, and (iii) au-
tomation. We study the heterogeneous data modeling principle, and automation prin-
ciple at process event log level by looking on the capability of automatic discover of
BPs from process event logs using their proposed ontologies.

Approaches
Principles

Heterogeneous Automatic
process event log translation

modeling
Event ontology [59] +/− −

Time−Annotated RDF [60] +/− −
Event Ontology (EVO) [129] + −

Table 2.3: Synthesis of approaches for modeling heterogeneous process event logs

Existing ontology-based approaches have capability to model events in general [59,
60, 129]. Only EVO ontology [129], part of SUPER project, can explicitly model
process event logs because of its defined relationships to other SUPER ontologies
(BPMO and UPO). Moreover, using SUPER ontologies allows modeling process event
logs and discovered BP model when using process mining techniques. However, there
is still lack of automatic mechanism to do such translation.

Our goal is to construct a shared knowledge base of heterogeneous process data
using ontologies. Thus, we have decided to reuse and extend related SUPER ontolo-
gies (i.e., UPO, BPMO, and EVO) in our approach to semantically represent process
event logs in a shared knowledge base. However, without proper data translation, pro-
cess event logs cannot be directly compared to an under-design process for assisting
BP variant design. Therefore, we propose to a discover BP model from process event
logs, and thus store in the knowledge base. To do so, we apply the heuristic mining

48 Related Work

technique introduced in [62] to discover BP model as Causal Net (C-net) [63]. We
extend SUPER ontologies to define Linked C-Net ontology for representing discovered
BP models in our knowledge base. This knowledge is later used as a data-source for
assisting BP variant design.

2.5 Modeling heterogeneous cloud resources

In this section, we review existing approaches that aim at modeling heterogeneous
cloud resources such that they enable interoperability between different cloud providers
and users. Firstly, we discuss standards that allow describing cloud resources (Sec-
tion 2.5.1). Therefore, we describe existing works in the literature regarding the
modeling of cloud resources (Section 2.5.5).

2.5.1 Cloud resources description standards

In a large organization, each branch may adopt different cloud resource description
standards to describe their cloud resources. Hence, this prevents the interoperability
between an organization’s branches at cloud resource level. In this section, we briefly
introduce existing cloud resource description standards: TOSCA (Section 2.5.2),
OCCI (Section 2.5.3), and CIMI (Section 2.5.4).

2.5.2 TOSCA

TOSCA [8] is an OASIS standard that provides a description specification in order
to enable ted deployment and management of cloud-based application while being
portable between different cloud environments [130]. A TOSCA application descrip-
tion consists of a Topology Template and a Plan (Fig. 2.8). The Topology Template defines
the structure of the application and the Plan defines process models used to manage an
application during its lifecycle (e.g., create, configure, and terminate). In this work,
we focus on the topology template since it allows the description of cloud resources
at the infrastructure level.

The Topology Template is a directed graph with Node Templates as its nodes and
Relationship Templates as its edges. Node Templates represent an application component
(e.g., compute and network) and are defined by a Node Type. A Node Type defines
the properties and the offered operations (i.e., interfaces) to manage the application.
Normative Node Types are defined in [131]. Examples of Node Types at infrastructure
level are as follows: (i) Compute, a real or virtual server, (ii) Network, a simple, logical
network service, (iii) BlockStorage, a block storage device, and (iv) Port, a logical entity
that associates between Compute and Network.

Also, relations between these nodes might exist and are referred to as Relationship

templates. The semantics and properties of these relationships are defined by Rela-

tionship type. Relationship type also indicates connected nodes and the direction of the

Modeling heterogeneous cloud resources 49

Figure 2.8: TOSCA topology and its relations [8]

relationship (source and target nodes). Examples of Relationship type at infrastructure
level defined in [131] are BindsTo and LinksTo which are network association relation-
ships from port to compute and to network node types, respectively. AttachesTo is a
relationship between a Storage node to a Compute node.

2.5.3 OCCI

OCCI is an Open Grid Forum (OGF) standard that provides a meta-model for ab-
stracting cloud resources and a RESTful protocol for their management. It focus on
interoperability and offer a high degree of extensibility. OCCI provides an extensible
model, called OCCI core model, for cloud resource description [132]. Concretely, the
model defines a Resource class to expose any cloud resource and a Link class which
describes associations from one Resource to another. In order to describe resources at
the infrastructure level, OCCI infrastructure [9] is proposed as an extension of the
OCCI core model.

In OCCI infrastructure, the Resource from the core model is specialized into: (i)
Compute, representing a generic processing resource, (ii) Network, representing a net-
working entity (e.g. a virtual switch), and (iii) Storage, representing a resource that
record information to a data storage device. Link is also specialized in OCCI in-
frastructure to: (i) NetworkInterface, representing an interaction between Compute and
Network (e.g. network adapter), and (ii) StorageLink, representing an interaction be-

50 Related Work

Figure 2.9: UML class diagram of OCCI infrastructure model [9]

tween Resource to a Storage.

2.5.4 CIMI

CIMI is a Distributed Management Task Force (DMTF) standard that describes stan-
dardized ways to set up and manage infrastructure resources on the cloud. It provides
a specification to describe and manage cloud resources [133,134]. Some uses cases are
provided in [135]. CIMI defines the following basic resource types at the infrastruc-
ture level: (i) Machine, representing a compute resource that encapsulates both CPU
and Memory, (ii) Network, representing an interconnected logical service for forward-
ing data traffic between end points, and (iii) Volume: representing a storage resource
either at the block level or the file-system level. CIMI also defines associations for
connecting these resource types: MachineNetworkInterface between Machine and Network,
and MachineVolume between Machine and Volume.

2.5.5 Cloud resources modeling

In the literature, several works have been proposed to standardize cloud resource
management between different cloud provider. For example, the authors from [136]
deliberate the need for a generic API that manages cloud resources across different
cloud providers. They have investigated that most of available cloud management
APIs use similar concepts, properties, and actions but different names and schema.
Therefore, they propose modeling of a common cloud API based on semantic technolo-
gies. In [137], the authors suggest common API (an API for all APIs) that specifies

Modeling heterogeneous cloud resources 51

a set of core functionalities needed for any cloud provider. The IEEE P2302 Work-
ing Group is working on defining a standard to support the management of cloud
resources among different providers, namely Intercloud [138]. Concretely, they aim to
define a topology, a set of functionalities, and a model to support cloud interoperabil-
ity among different providers. In [139], authors propose an ontology to semantically
represent cloud resources modeled with Intercloud. However, Intercloud is a relatively
new work-in-progress and focuses on interoperability between cloud providers. More-
over, several cloud brokers (i.e., CompatibleOne [140]) have been proposed to assists
cloud end users managing cloud resource in their cloud provider choices. Such brokers:
(i) do not consider standard or comply with only one standard, and (ii) do not offer
means for discovery, managing and interconnecting cloud resources. Thus, we pro-
pose a semantic framework that allows populating a knowledge base of heterogeneous
cloud resources to enable interoperability between them.

Several approaches focus on defining taxonomies or ontologies to describe cloud
resources. Authors from [141] proposed a taxonomy for IaaS cloud resources. They
developed their taxonomy based on the analysis of cloud providers and Web hosting
providers. Another work from [142] also proposed a taxonomy to describe cloud
elements at the infrastructure level. Their taxonomy discusses many aspects of cloud,
such as resources, security, Service-Level Agreements (SLAs), etc. In fact, their tax-
onomy is built based on three cloud standards: Open Virtualization Format (OVF),
OCCI and Cloud Data Management Interface (CDMI). These three standards have
been defined for different cloud aspects. OVF [143] is a preliminary standard of
DMTF for packaging and distributing of Virtual Applications. CIMI [73] is a Dis-
tributed Management Task Force (DMTF) standard that describes infrastructure
resources in the cloud. CDMI [144] is a Storage Networking Industry Association’s
(SNIA) standard that provides a specification for rich cloud storage management in-
terfaces. [145] proposed a semantic framework for managing grid and cloud resources.
Their framework is based on an ontology developed from their previous work [146].
However, they built an ontology without considering cloud resource description stan-
dards. Authors from [147] proposed an ontology to model cloud resources, SLA and
their configurations. They studied only one cloud resource description standard which
is TOSCA standard. In [148], the authors presented an ontology-based approach to
describe cloud resources. They developed a set of ontologies based upon OCCI stan-
dard. Existing approaches, however, model cloud resource description by taking into
account only one standard. In this work, we focus solely on cloud resource description
modeling by looking at three well-known and mature cloud resource description stan-
dards (TOSCA, OCCI and CIMI) to develop our ontologies based upon these three
standards.

52 Related Work

2.6 Cloud resource allocation to business processes

In this section, we review existing approaches that provide means to allocate cloud
resources to BPs. Recently, organizations have investigated the deployment of service-
based BPs in cloud environments. S. Schulte, E. Duipmans and M. Wang et al.
in [149–151] discuss the advantages and disadvantages of deploying BPs in cloud
environments. Few works handle the resource perspective of BPs. For example, some
works focus on human resources behavior and allocation [152, 153]. In our work, we
focus on the cloud resource allocation to BP activities.

Many approaches have been proposed to optimally allocated resource to BPs. For
example, Hoenisch et al. [154, 155] have proposed a prediction and reasoning algo-
rithm to allocate cloud resources to BP activities under user-defined non-functional
requirements. Schulte et al. [156] have presented an optimization model and heuristic
for workflow scheduling and resource allocation for BP execution with the ability to
allocate and release cloud resources. However, solving optimal resource allocation
might be combinatorial problem due to the amount of possible allocation variants.
Genetic algorithm is one of the powerful means to deal with such problem. It has
been preferred than other approaches in large-scale complexity problems. Existing
approaches, however, have not address the optimal resource allocation problem using
genetic algorithm.

2.7 Conclusion

In this chapter we present approaches that support the design of BP variants, in which
we classified approaches into four categories: business process modeling, business pro-
cess similarity, business process querying and business process mining. Furthermore,
we review approaches that model heterogeneous process data (i.e., BP models and
process event logs) and cloud resources. We briefly introduced these approaches and
identified their principles. We present that most of the existing ontology-based ap-
proaches are not capable of modeling heterogeneous cloud resources and process data.
Such approaches also lack of automatic mechanism to transform heterogeneous pro-
cess data and cloud resources to a shared common knowledge. On the other hand,
most of existing approaches that assist the design of BP variants do not generate
focused results, encounter the computational complexity problem, and are currently
manual. Moreover, we present the difference between existing approaches and our
approach.

We start presenting in detail our approach in the next chapters. We present
our approach to support the design of BP variants using heterogeneous BP models
(Chapter 3) and process event logs (Chapter 4) in which we model in a common
knowledge base. In Chapter 5, we present an approach for modeling heterogeneous
cloud resource described by different standards. Thereafter, we present an approach
to optimal allocate of cloud resources to BP variants using genetic algorithm in Chap-

Conclusion 53

ter 6.

54 Related Work

Chapter 3

Assisting BP Variant Design by
Exploiting BP Models

Contents

3.1 Introduction . 55

3.2 Illustrating example . 56

3.3 Approach overview . 58

3.4 Knowledge Base of Business Process Models 59

3.4.1 Business Process Modeling Ontology (BPMO) 60

3.4.2 Semantic Business Process Model Annotation 61

3.5 Neighborhood Context Fragment Ontology 66

3.5.1 Neighborhood Conext Fragment Ontology (NCFO) 66

3.5.2 Neighborhood Conext Fragment Annotation 69

3.6 Neighborhood Context Graph Matching 71

3.6.1 Neighborhood Element matching 72

3.6.2 Neighborhood Connection Flow matching 73

3.6.3 Neighborhood Context matching 74

3.7 Conclusion . 75

3.1 Introduction

This chapter address the research questions: R1: How to identify BP fragments that
are close to process designer interests from heterogeneous process data? and R2: How
to model heterogeneous BP models to be shared in a common knowledge base? We
presents our approach for assisting the design of BP variants by exploiting heteroge-
neous BP models shared within an organization. We start the chapter by introducing
an illustrating example (Section 3.2) and overview of our approach (Section 3.3). In
section 3.4, we present our ontologies and algorithms to construct a knowledge base
from heterogeneous BP models. In section 3.5, we detail the semantic representation
of BP fragments from our knowledge base. Section 3.6 continues with the matching

55

56 Assisting BP Variant Design by Exploiting BP Models

of BP fragments for recommendation to assist the design of BP variants. Finally, we
conclude the chapter in Section 3.7.

The work in this chapter was published in conference proceedings [157].

3.2 Illustrating example

We present in the following a scenario to illustrate our approach. We consider an
e-commerce company that has multiple branches in different cities and countries.
These branches execute different variants of the same process that may differ in their
structure and behavior according to their branches’ local culture, regulations, and
customer needs. We show two variants of an order processing BP executed by two
branches: branch1 (Figure 3.1a) and branch2 (Figure 3.1b) which are modeled in EPC
and BPMN, respectively. EPC is a graphical modeling language for business process
workflows [22]. It has been applied in ERP system describing workflow, e.g. SAP
R/3 [82]. The main elements of EPC notations are events, functions and connectors.
On the other hand, BPMN is a standard of modeling BPs [23]. The basic elements
of BPMN are event, task, process/subprocess, gateways, etc.

 to
 a

 c

(a) BP1 of branch1

 to
 a

nd

(b) BP2 of branch2

Figure 3.1: Two BP variants of an order processing BP

The first variant BP1 (Figure 3.1a) corresponds to an order processing BP modeled
in EPC. Upon instantiation of BP1, the order data is first received (event e1) from

Illustrating example 57

a customer and processed (task t1) by a member. Then, the invoice can be either
automatically posted (event e2) or cancelled (event e5) based on some criteria. If the
invoice is posted, a member will release/issue the invoice (task t2) to the customer,
thereafter waiting for payment to be affected (event e3). Once it is affected, a member
will send the invoice to the customer (task t3 and event e4). However, if the invoice
is cancelled (event e5) after processing, a member will send the cancel notification
to the customer (task t4 and event e6). The second variant BP2 (in Figure 3.1b)
is modeled in BPMN, and corresponds also to an order processing BP. The steps
are approximately the same as the first variant with the addition of the promotion
offering functionality (event e10 and task t7).

Suppose now that branch1 wants to design a new variant of BP1 to support more
requirements. It may need to search for BP models representing good practices,
then carefully extract adequate prcess fragments, and apply them on the designed
BP model. However, this might be a cumbersome and time consuming task when
ensured manually. As stated in Chapter 2, existing approaches (such as reference
models, searching for similar processes, etc.) that propose entire process models
are not suitable in this circumstance because the process designer only looks for
adjusting a selected BP fragment. Hence, recommending BP fragments during a BP
variant design could alleviate a process designer’s workload. For example, branch1 BP
designer might look for suitable BP fragment (i.e., a set of tasks and their connection
flows) that can be executed after releasing an invoice task. Thereafter, he selects a
group of tasks and their relations, called BP fragment, including tasks t2 and t3, then
ask a recommendation system for recommendation.

Based on this illustrating example, we notice that the process designers might need
to search for appropriate BP fragments that can be flexibly inserted with minimum
adjustment in a given BP model. By capturing the interactions between tasks in
processes, we can detect that the fragment of BP2 including tasks t6 and t7 at branch2

is similar to the selected fragment of BP1 (see Figure 3.2). Such recommendation
allows process designers to easily get new ideas for designing new BP variants as
shown in Figure 3.3.

In this example, we consider a use case where organization’s branches are willing
to collaborate and share their BP models. Therefore, we propose to recommend BP
fragments based on similarity to other fragments using interaction between function-
s/tasks. However, an issue that prevents fostering the use of BP models between
different organization’s branches is their heterogeneity. An organization’s branches
might have similar BPs in term of functionalities, however their BP models could be
defined in different modeling notations and using different element’s labels. For exam-
ple, BP1 is modeled with EPC, while BP2 is modeled with BPMN (see Figure 3.1).

58 Assisting BP Variant Design by Exploiting BP Models

 to
 a

nd

on

 to
 a

nd

BP

BP

Figure 3.2: BP2 fragment recommendation for the selected BP1 fragment

Payment to
be affected

V

Promotion
requested

Send
promotion

Promotion
sent

Figure 3.3: New BP variant for branch1

3.3 Approach overview

To foster BP variant design, we provide a comprehensive semantic framework for
managing the heterogeneity of BP models (Figure 3.4). Based on this framework, we
propose an approach which includes four main steps:

1. Semantically populate a shared knowledge base of heterogeneous BP models
(Section 3.4). This knowledge base will serve as a common repository for BP
models. Our knowledge base is built based upon a mature ontology describing
BP models, namely BPMO [56].

2. Retrieve BP fragments from the shared knowledge base modeled as neighbor-
hood context graphs (Section 3.5). We semantically describe such fragments
using our proposed ontology, namely NCFO, which is an extension of BPMO.

3. Compute the matching between neighborhood context graphs using vector space

Knowledge Base of Business Process Models 59

Figure 3.4: An overview of our approach

model (Section 3.6). This matching presents the similarity between two frag-
ments in term of relations between the two root tasks to their neighbors.

4. Finally, a process designer may select a BP fragment of an under-design process.
Thereafter, we retrieve and sort top-n similar fragments from our knowledge
base in descending order of similarity for recommendation.

In the next section, we show how to populate a shared knowledge base of hetero-
geneous BP models.

3.4 Knowledge Base of Business Process Models

We define a BP model, also called BP graph, as a directed graph with labeled nodes.
This definition is an abstraction of the common elements of existing graphical BP
modeling notations [158] such as Event-driven Process Chain (EPC) [125] and Busi-
ness Process Modeling Notation (BPMN) [124].

Definition 3.4.1 (BP graph). A BP graph P = (N,S, T, L) is a labeled directed
graph where:

• N is a set of nodes representing BP modeling notation (i.e., workflow element),
for example, a function in EPC and an activity in BPMN.

• S ⊆ N ×N is the set of arcs connecting two nodes;

• T : N → t is a function that assigns for each node n ∈ N a type t. t depends on
the element type for each standard notation (e.g., function and event for EPC);

60 Assisting BP Variant Design by Exploiting BP Models

• L : N → label is a function that assigns for each node n ∈ N a given label.
label is a string representing the functionality of its workflow element.

An example of a BP graph modeled with the EPC notation is illustrated in
Figure. 3.1a). This BP graph model is represented by P1 = (N,S, T, L) where
N = {e1, e2, ..., e6, t1, t2, ..., t4, c1}, S = {s1, s2, ..., s10}. EPC workflow elements type
e, f , and c in N are represented respectively by T = {event, function, connector}.
Give the workflow elements labels are defined as follows: for n ∈ N , if T (n) =
event ∨ function, then L(m) is its label, for example L(t1) = “Order processing”. If
T (n) = connector then L(n) ∈ {∨,∧,×} representing OR, AND, and XOR connec-
tors, respectively.

As stated above, process models can be described in many different languages
(e.g., EPC, BPMN, UML, Petri nets, etc.). Furthermore, workflow element labels
added by process designers in natural language imply more semantic heterogeneity in
BP models. The analysis of such heterogeneity in [58] shows that workflow elements
(i.e., symbols) do not directly represent the things they stood for. To avoid such
heterogeneity, workflow elements can be annotated through concepts formalized by
experts to explicitly establish their semantics of a BP modeling notation. In this
thesis, we propose to semantically annotate workflow elements with concepts from
dedicated ontologies (section 3.4.1).

3.4.1 Business Process Modeling Ontology (BPMO)

We use a dedicated ontology to formally represent BP models in our knowledge base.
Using an ontology allows capturing the semantics of BP models such that they are
represented by reusing conceptual models [159]. It also handles heterogeneity of
workflow element labels. Furthermore, it supports automated reasoning which allows
knowledge base enriching (i.e., new knowledge discovery). In this work, we formally
define an ontology as follow:

Definition 3.4.2 (Ontology). An ontology O is defined as O = (C,A,R, I) where C
is a set of concepts, A is a set of data properties that define the relationship between
concepts and primitive data type (e.g., string, integer), R is a set of object proper-
ties that define the relationship between different concepts and I is the set of object
instantiated from concepts (i.e., instance).

To cope with the problems of semantic heterogeneity between different process
modeling languages, we use Business Process Modeling Ontology [56] (BPMO) as
mentioned in Section 2.3.6 to semantically annotate BP models from existing het-
erogeneous processes among organization’s branches. BPMO is an existing ontology
formalized by the european project SUPER [57]. BPMO is capable of represent-
ing notations from various process modeling languages. It abstracts different busi-
ness process modeling notations such as BPMN and EPC. In the context of SUPER

Knowledge Base of Business Process Models 61

project, the sBPMN [126] and sEPC [53] ontologies have been also defined to for-
malize BPMN and EPC, respectively. By employing these ontologies, processes can
be translated from BPMN and EPC to BPMO and vice versa [127].

The core concepts of BPMO that abstract the representation of BP models are
bpmo:Process, bpmo:WorkflowElement, bpmo:Task, bpmo:WorkflowEvent and
bpmo:GraphPattern (see Section 2.3.6 for details). Figure. 3.5 depicts these concepts
and their relationships. In this Figure, NCFO ontology representing fragments of BP
models will be introduced later in Section 3.5.1

NCFO

bpmo:Workflow
Element

bpmo:Task

BPMO

bpmo:Process

bpmo:hasHome
Process

bpmo:hasTarget
bpmo:hasSource

ncfo:hasRoot

ncfo:Neighborhood
ContextGraph

ncfo:Connection
Flow

ncfo:Connection
Element

c:hasConnection
Flow

ncfo:has
Connection
Elements

ncfo:Neighborhood
Elementncfo:hasSource

xsd:int

c:atZone

bpmo:hasHome
Process

xsd:int
ncfo:atLayer

ncfo:hasTarget

ncfo:nextRelation

:RPropertyRdefinition:RConceptRInstance :RInstantiation :Rsub-concept:RConcept

Legend:

bpmo:Controlflow
Pattern

bpmo:Incoming
Flow

bpmo:Outgoing
Flow

bpmo:Controlflow
Connector

p:Parallel
Split

p:Exclusive
Choice

bpmo:Graph
Patternbpmo:WorkFlow

Event

bpmo:Start
Event

bpmo:Intermediate
Event

bpmo:End
Event

ncfo:hasNext

Figure 3.5: BPMO and NCFO

3.4.2 Semantic Business Process Model Annotation

To build a knowledge base from heterogeneous BP models. We semantically annotate
semantic BP models which enables: (i) interoperability between different BP model-
ing notations through BPMO ontology, and (ii) formalization of business understand-

62 Assisting BP Variant Design by Exploiting BP Models

ing in a given domain through an ontology, i.e., domain-specific ontology. Concretely,
we conceptualize the abstraction of BPMO concepts to other modeling notations [127]
to annotate heterogeneous process models with BPMO concepts. Firstly, we define a
BP model annotated with BPMO concept as a semantic BP graph. A semantic BP
graph is semantically annotated with concepts from an ontology O and it is defined
as:

Definition 3.4.3 (Semantic BP graph). A semantic BP graph PS = (P,O, IN , IO)
is defined as:

• P is a BP graph as specified in Definition 3.4.1;

• O is an ontology as specified in Definition 3.4.2;

• IN : O.I → P.N is a function that assigns for each instance i ∈ O.I a workflow
element n ∈ P.N if i annotates it; and

• IO : O.I → O.C is a function that assigns for each instance i ∈ O.I a concept
c ∈ O.C from which i is instantiated.

In order to verify that two notations described with different BP modeling lan-
guages are equivalent, we define the notion of equivalence between BPMO concepts
and elements from other standard modeling languages (see Definition 3.4.4).

Definition 3.4.4 (BPMO notation equivalence). Let N be a set of modeling notations
where Nx is the set of notation elements in the modeling language x. Let Obpmo be the
BPMO ontology. The BPMO notation equivalence, defined as Πbpmo = {(c, n) : c ∈
Obpmo, n ∈ Nx} is the pairs of semantically equivalent mapping of BPMO concepts to
the notation elements in the modeling language X .

For example, let X = EPC denoting the EPC language and NEPC = {Function,
StartEvent,IntermediateEvent,....} the notation elements in EPC. The Function in
EPC is equivalent to the concept bpmo:Task in BPMO and the StartEvent is equiva-
lent to bpmo:StartEvent in BPMO; therefore (Function,bpmo:Task) and (StartEvent,
bpmo:StartEvent) ∈ Πbpmo. Table 3.1 illustrates the mapping between the general
connectors (×,∨,∧) presented in most process modeling languages to BPMO connec-
tor concepts. Note that BPMO classifies connectors based on their behavior into 2
types: (i) merging: a point where two or more sequence flow paths are combined into
one, and (ii) splitting: the dividing of a sequence flow path into two or more. More
details on the BPMO mapping equivalence to other modeling languages can be found
in [127].

Given a BP graph P , the BPMO ontology Obpmo and the BPMO equivalence
Πbpmo, Algorithm 1 generates the associated semantic BP graph PS . In PS , all work-
flow elements n ∈ N are annotated with a set of instances of Obpmo concepts.

To do this, firstly, we iterate over each workflow element n ∈ N in PS and we
retrieve its BPMO equivalence from Πbpmo (lines 2-4). Using the retrieved concept c

Knowledge Base of Business Process Models 63

BPMO concepts

Merging Splitting
Connectors behavior behavior

∨ MultiMerge MultipleChoice

× SimpleMerge ExclusiveChoice

∧ Synchronisation ParallelSplit

Table 3.1: Concepts of BPMO connectors by types and behaviors

Algorithm 1 Semantic BP graph construction algorithm

Input: P,Obpmo,Πbpmo

Output: PS

1: N ← GetModelElements(P)
2: for each n in N do
3: for each (c, x) in Πbpmo do
4: if T (n) = x then
5: i← Instantiate(n, c) . Create a new instance with assocaited

data/object properties based on the workflow element n and the concept c
6: IN ← i
7: IO ← c
8: end if
9: end for

10: end for
11: PS .P ← P
12: PS .Obpmo ← Obpmo

13: PS .IN ← IN
14: PS .IO ← IO
15: return PS

from BPMO equivalence, we instantiate a new instance i with asserted data/object
properties c from the model element n (line 5 and 6). We add the created instance
to the set of instances IM (Line 6). Finally, a semantic BP graph Ps is constructed
from P , Obpmo, IN , and IO (line 11-14).

Figure. 3.6 shows examples of two semantic BP graphs (partially annotated with
BPMO concepts) constructed using Algorithm 1. The semantic process models de-
scribed in EPC (BP1) and BPMN (BP2) have the instances t2 and t6, respectively. t2
and t6 are semantically annotated to the function “Release invoice” in the EPC model
BP1 and the task “Deliver invoice” in the BPMN model BP2, respectively. Conse-
quently, these two workflow elements are considered as tasks in BPMO. Therefore,
they are semantically BPMO notation equivalent.

64 Assisting BP Variant Design by Exploiting BP Models

Order
received

Order
processing

Payment to
be affected

Promotion
requested

Send
promotion

Promotion
sent

Invoice
posted

Deliver
invoice

Order
received

Order
processing

Invoice
posted

Release
invoice

Payment to
be affected

Send
invoice

Invoice
sent

V

Invoice
cancelled

Send cancel
notification

Notification
sent

bpmo:Workflow
Element

bpmo:WorkFlow
Event

bpmo:Start
Event

bpmo:Intermediate
Event

bpmo:End
Event bpmo:Task

bpmo:Controlflow
Pattern

bpmo:Incoming
Flow

bpmo:Outgoing
Flow

bpmo:Controlflow
Connector

p:Parallel
Split

p:Exclusive
Choice

bpmo:Graph
Pattern

:e1 :e7 :t1 :t2 :t6 :c1 :c2 :s1,:s2,…,:s18

from all
sequences

BPMO

t5 t6

t7

e7 e8

e9

e10 e11

t1

t2 t3

e1

e2 e3

e5 t4 e6

e4

: Concept Instance : Instantiation

bpmo:hasTarget

bpmo:hasSource

BP1

BP2

:e2 :e8

: sub-concept: Concept

Legend:

c1

c2

Figure 3.6: Partially semantic annotation of process models with BPMO ontology

After the BPMO annotation, we annotate semantic BP models with a domain-
specific ontology to enable common understanding of BPs models in a given domain.
Figure. 3.7 shows BP1 and BP2 annotated with a domain-specific ontology. The
prefix “d” represents the namespace of the domain-specific ontology. For example,
the task “Release invoice” in BP1 and the task “Deliver invoice” in BP2 are annotated

Knowledge Base of Business Process Models 65

with the instances t2 and t6 respectively having bpmo:hasBusinessDomain relations
to the concept d:release invoice. The relation bpmo:hasBusinessDomain of BPMO
represents the functionality of a workflow element by its annotated concept from
a domain-specific ontology. Therefore, tasks t2 and t6 having different labels are
semantically equivalent, i.e. they have the same functionality represented by the
concept d:release invoice.

BP1

BP2

d:Entity

d:Abstract d:Physical

d:Proposition

d:Event

d:Process d:Object

d:Task

:t1

Domain-specific ontology

d:order processing
with reference d:release invoice d:promotion

notification

Order
received

Order
processing

Payment to
be affected

Promotion
requested

Send
promotion

Promotion
sent

Invoice
posted

t5 t6

Deliver
invoice t7

e7 e8

e9

e10 e11

Order
received

Order
processing

Invoice
posted

Release
invoice

Payment to
be affected

Send
invoice

Invoice
sent

V

Invoice
cancelled

t1

t2 t3

e1

e2 e3

e5

Send cancel
notification

Notification
sent

t4 e6

e4

:t5 :t6 :t2 :t7

bpmo:hasBusiness
Domain

bpmo:hasBusiness
Domain

c1

c2

bpmo:hasBusiness
Domain

bpmo:hasBusiness
Domain

bpmo:hasBusiness
Domain

Figure 3.7: Partially semantic annotation of processes with a domain ontology

A knowledge base can serve as a common repository to model and share het-
erogeneous data. Hence, we populate a shared knowledge base from semantic BP
graphs. For example, a knowledge base of semantic BP graphs constructed from

66 Assisting BP Variant Design by Exploiting BP Models

BP1 is shown in Listing 3.1. In this thesis, we represent the knowledge base using
Turtle RDF triple1 for simplicity. For example, t2 is instantiated from the BPMO
concept bpmo:Task which is in the BP model bp1 describing through the object prop-
erty bpmo:hasHomeProcess. Its label “Release invoice” is described through the data
property bpmo:hasName. Its functionality is described by the specific-domain ontol-
ogy concept d:release invoice through the object property bpmo:hasBusinessDomain.

Listing 3.1: A BP model described with BPMO

1 :t2 a bpmo:Task ;

2 bpmo:hasHomeProcess :bp1 ;

3 bpmo:hasName "Release_invoice"^^xsd:string ;

4 bpmo:hasBusinessDomain d:release_invoice ;

5 ...

6 :t6 a bpmo:Task ;

7 bpmo:hasHomeProcess :bp2 ;

8 bpmo:hasName "Deliver_invoice"^^xsd:string ;

9 bpmo:hasBusinessDomain d:release_invoice ;

10 ...

11 :e1 a bpmo:StartEvent;

12 bpmo:hasHomeProcess :bp1 ;

13 bpmo:hasName "Order recieved"^^xsd:string ;

14 ...

15 :e2 a bpmo:IntermediateEvent;

16 bpmo:hasHomeProcess :bp1 ;

17 bpmo:hasName "Invoice posted"^^xsd:string ;

18 ...

19 ...

3.5 Neighborhood Context Fragment Ontology

In this section, we define the Neighborhood Context Fragment Ontology (NCFO) as an
extension of BPMO to semantically represent fragments of a BP model (Section 3.5.1).
Some concepts in NCFO are inspired from our previous work [112]. Furthermore, we
show how to populate fragments of semantic BP models using NCFO in the knowledge
base (Section 3.5.2).

3.5.1 Neighborhood Conext Fragment Ontology (NCFO)

We represent a BP fragment by a graph, called neighborhood context graph [112], in
which one task (namely root task) is located at the center. Its neighbors (i.e., directly
connected tasks) are located in layers according to their shortest path lengths (i.e.,
consecutive nodes connected by an arc) to the root task. This graph represents the
interaction of the root task to its neighbors. Based on this graph representation of

1The Resource Description Framework (RDF) is a World Wide Web Consortium (W3C) data
model for web resources [160]

Neighborhood Context Fragment Ontology 67

BP fragments, we propose an approach to retrieve similar BP fragment for recom-
mendation by selecting a root task and its neighborhood tasks in a process model.
Figure. 3.5 depicts NCFO concepts and their properties for describing a BP fragment
as a neighborhood context graph.

• ncfo:NeighborhoodContextGraph represents a fragment of a semantic BP model
that contains a root task and connections to its neighbors. Concretely, the
concept ncfo:NeighborhoodContextGraph is represented by a root task through
the relation ncfo:hasRoot to the concept bpmo:Task of BPMO and consists of
multiple ncfo:ConnectionFlow defined by the relation ncfo:hasConnectionFlow.

For example, Figure. 3.8 shows a neighborhood context graph retrieved from
BP1 (Figure. 3.6) having t3 as a root task and another one retrieved from
BP2 (Figure. 3.6) having t7 as a root task. The two neighborhood context
graphs are annotated with the instances g1 and g2, respectively from the concept
ncfo:NeighborhoodContextGraph of NCFO to represent BP fragments in the
knowledge base.

• ncfo:NeighborhoodElement represents a workflow element in a neighborhood con-
text graph. We consider tasks, start and end events having a connection path
to the root task of the neighborhood context graph and the root task itself
as neighborhood elements. Therefore, we model ncfo:NeighborhoodElement as
a super-concept of bpmo:Task, bpmo:StartEvent or bpmo:EndEvent of BPMO.
Furthermore, the data property ncfo:atLayer is used to indicate the shortest
connection path distance from the root task, called layer number.

For example, in Figure. 3.8, t1, t2, t3, t4, e1, e4, e6 are neighborhood elements of
g1 and t5, t6, t7, e9, e1 are neighborhood elements of g2 by their annotation to
the ncfo:NeighborhoodElement of NCFO.

• ncfo:nextRelation represents a object property from a bpmo:NeighborhoodElement
to another bpmo:NeighborhoodElement. ncfo:nextRelation can be inferred an as-
sertion with the inference rule to enrich the knowledge base (i.e., when a control
flow connector s has as source a and as target b, we can infer that a and b are
connected through s). The inference rule in Listing 3.2 using SWRL rules2

to refer ncfo:nextRelation between a and b from bpmo:ControlflowConnector s
having bpmo:hasSource a and bpmo:hasTarget b.

Listing 3.2: SWRL rule for nextRelation assertion

1 bpmo:ControlflowConnector(?s) ∧ bpmo:hasSource(?s,?a)

2 ∧ bpmo:hasTarget(?s,?b) −→ ncfo:nextRelation(?a,?b)

2SWRL is a language expressing rules for Semantic Web [161]

68 Assisting BP Variant Design by Exploiting BP Models

d by bpm
, e d by bpm
, e , e , e d by bpm
x d by bpm

 pr
 i

nd i
nd c not

 pr
 i

nd p

 a k na

Figure 3.8: Example: neighborhood context graph

• ncfo:ConnectionFlow represents a connection path from a neighborhood element
to its closest neighbor. It consists of a source and a target neighborhood ele-
ment specified through properties ncfo:hasSource and ncfo:hasTarget. The data
property ncfo:atZone shows its distance (namely zone number) from the root
task determined through the number of layers between the source and the target
neighborhood elements through the property ncfo:atLayer. Furthermore, it has
a sequence of connection sequences from the source to the target specified by
the property ncfo:hasConnectionElements.

For example, in Figure. 3.6, the connection sequence between task t1 and t2
in BP1 is formed by a sequence of c1 and e2, while the connection sequence
between task t6 and t7 in BP2 is one connection element e8. The two connec-

Neighborhood Context Fragment Ontology 69

tion sequences are represented in the neighborhood context graphs g1 and g2

(Figure. 3.8) as the instances cf2 and cf8, respectively, which are instantiated
from the concept ncfo:ConnectionFlow.

3.5.2 Neighborhood Conext Fragment Annotation

Based on NCFO, to generate the neighborhood context graph from a selected root
task, we first determine the shortest connection path from a root task to its neighbor-
hood elements. This undirected path is represented as a sequence of neighborhood
elements. It is retrieved by the recursive procedure presented in Algorithm 2. In this
procedure, a and b are neighborhood elements, CP is a sequence of neighborhood
elements and isRelation (line 2), getRelation (line 6) procedures are implemented by
the execution of SPARQL queries from Listing 3.3 and 3.4, respectively. We check if
a and b has direct relation (line 1), then we add b to CP and return CP . Otherwise,
we get a set of neighborhood elements that has an undirected next relation from a as
X (line 6), then for each neighborhood elements, we recursively call this procedure
to continue obtaining its next neighborhood element.

Algorithm 2 Algorithm for retrieving shortest connection paths

1: procedure getConnectionPath(a,b,CP)
2: if isRelation(a, b) then
3: CP add b
4: return CP
5: else
6: X in getRelation(a)
7: for each x in X do
8: getConnectionPath(a,b,CP)
9: end for

10: end if
11: end procedure

Listing 3.3: SPARQL query for verifying undirected relation

1 ASK {

2 :a ncfo:nextRelation :b || :b ncfo:nextRelation :a .

3 }

Listing 3.4: SPARQL query for retrieving undirected relation elements

1 SELECT ?x

2 WHERE {

3 :a ncfo:nextRelation ?x .

4 ?x ncfo:nextRelation :a .

5 }

70 Assisting BP Variant Design by Exploiting BP Models

For example, in BP1 (Figure. 3.6), the shortest connection path from t1 to t3 is
the sequence t1, t2 and t3. The shortest connection path from t3 to t4 is the sequence
t3, t2 and t4.

Algorithms 3 shows how to generate connections flows from a shortest connection
path CP . We iterate neighborhood elements in CP (line 3), then get the current and
next neighborhood elements (line 4 and 5) and their layer number (line 6 and 7). We
retrieve a connection sequence cs between these two neighborhood elements (line 8)
and the number of zones (line 9). Thereafter, we instantiate a new connection flow
cf (line 10) and add it to a set of connection flow CF . Finally, we return CF (line
14).

Algorithm 3 Algorithm for creating connection flow

1: procedure createConnectionFlow(CP)
2: i ← 1
3: for i < size of CP do
4: source ← CP [i− 1]
5: target ← CP [i]
6: source.atLayer ← i− 1
7: target.atLayer ← i
8: cs ← getConnectionSequence(source, target)
9: zone ← i

10: cf ← instatiateCF (source, target, cs, zone)
11: add cf to CF
12: i ← i+ 1
13: end for
14: return CF
15: end procedure

For example, Figure. 3.9 constructed from BP1 (Figure. 3.6) using Algorithm 3
shows examples of connection flows from t3 to t2 and from t2 to t1 having t3 as a root
task in BP1 (see Figure. 3.6).

In this example, neighbors are located on a circle whose center is the root task
with the number of layers as radius. Figure. 3.8 shows examples of neighborhood
context graphs of t3 and t7 from BP1 and BP2 (Figure. 3.6), respectively. Thus,
NCFO is used to populate fragments of semantic BP models in the knowledge base.
An example of neighborhood context graph of t3 from BP1 (Figure. 3.6) modeled in
NCFO using a triplet notation is given in Listing 3.5.

Listing 3.5: A process fragment modeled with NCFO

1 :g1 a ncfo:NeighborhoodContextGraph ;

2 ncfo:hasRoot :t3 ;

3 ncfo:hasConnectionFlow :cf1 ;

4 ncfo:hasConnectionFlow :cf2 ;

Neighborhood Context Graph Matching 71

:c1

:e2

:cf3

ncfo:hasConnection
Elements

:t1 :t2 12 ncfo:atLayerncfo:atLayer

ncfo:hasSource

ncfo:hasTarget

1

ncfo:atZone

:e3

:cf1

ncfo:hasConnection
Elements

:t3 :t2 10 ncfo:atLayerncfo:atLayer

ncfo:hasSource

ncfo:hasTarget

1

ncfo:atZone

NCFO

ncfo:Neighborhood
ContextGraph

ncfo:Connection
Flow

ncfo:Connection
Element

ncfo:hasConnection
Flow

ncfo:has
Connection
Elements

ncfo:Neighborhood
Elementncfo:hasSource

xsd:int

ncfo:atZone

xsd:int
ncfo:atLayer

ncfo:hasTarget

ncfo:hasRootdktodTaskdindBPMOB

ncfo:hasNext

ncfo:hasNext

Figure 3.9: Example: Connection flows

5 ...

6 :cf5 a ncfo:ConnectionFlow ;

7 ncfo:hasSource :t2;

8 ncfo:hasTarget :t4;

9 ncfo:atZone "2"^^xsd:integer ;

10 ncfo:hasConnectionElement e2 ;

11 ncfo:hasConnectionElement c1 ;

12 ncfo:hasConnectionElement e5 ;

13 ...

14 :t2 a ncfo:NeighborhoodElement ;

15 ncfo:atLayer "1"^^xsd:integer ;

16 ...

17 :t4 a ncfo:NeighborhoodElement ;

18 ncfo:atLayer "2"^^xsd:integer ;

19 ...

20 :e2 ncfo:hasNext :c1 ;

21 :c1 ncfo:hasNext :e5 ;

22 ...

3.6 Neighborhood Context Graph Matching

In order to assist the design of BP variants, we propose to recommend similar neigh-
borhood context graphs (i.e., BP fragments) populated in our knowledge base to an
under design BP model. To do so, we propose a semantic-based approach to identify
semantically similar BP fragments populated in a knowledge base for recommenda-

72 Assisting BP Variant Design by Exploiting BP Models

tions. Concretely, we measure the matching degree (i.e., similarity of tasks and their
relations) between two BP fragments. To do so, firstly, we consider the matching
between the elements of a BP fragments annotated by a common domain-specific
ontology and we introduce the domain equivalence metric for matching them (Sec-
tion 3.6.1). Thereafter, we describe how to compute the matching degree between two
connection flows (Section 3.6.2). Finally, we compute the matching degree between
two BP fragments by matching all connection flows that belong to the same zone
(Section 3.6.3). We later on use such computed matching degrees for recommending
similar BP fragments.

3.6.1 Neighborhood Element matching

In our approach, the element of a neighberhood context graph, called neighborhood
element, can be a task, a start event, or an end event annotated by bpmo:Task,
bpmo:StartEvent, and bpmo:EndEvent, respectively. For tasks, we consider that two
tasks are similar, called domain equivalent, if they are annotated with the same
concept from a domain-specific ontology (Definition 3.6.1).

Definition 3.6.1 (Domain equivalent ≡d). Let a ∈ g1 and b ∈ g2 be two tasks in two
different neighborhood context graphs g1 and g2. a and b are domain equivalent, de-
noted as a ≡d b if they are linked through an object property bpmo:hasBusinessDomain
to the same concept of a domain-specific ontology.

The SPARQL query to verify the domain equivalence is provided in Listing 3.6.
Given task a and b are linked through an object property bpmo:hasBusinessDomain
x and y, respectively, the query returns true if x is equivalent to y.

Listing 3.6: SPARQL query for verifying domain equivalence

1 ASK {

2 :a rdf:type bpmo:Task .

3 :a bpmo:hasBusinessDomain ?x .

4 :b rdf:type bpmo:Task .

5 :b bpmo:hasBusinessDomain ?y .

6 FILTER (?x = ?y)

7 }

For example, considering the two BP graphs BP1 and BP2 of Figure. 3.7, t1 ≡d t5
because they are connected through the bpmo:hasBusinessDomain object property to
the same concept bpmo:order processing with reference of a domain-specific ontology.
We also have t6 ≡d t2 as they are related to the same concept d:release invoice through
bpmo:hasBusinessDomain property.

In the same way, examine the domain equivalence of events in BP graphs, we
consider two events are similar if they are annotated with the same meta-model
concept from BPMO (see Definition 3.6.2).

Neighborhood Context Graph Matching 73

Definition 3.6.2 (Meta-model equivalent ≡m). Let task a ∈ g1 and task b ∈ g2

be two neighborhood elements in two different neighborhood context graphs. a and b
are meta-model equivalent, denoted as a ≡m b, if they are annotated with the same
meta-model concept from BPMO.

For example in Figure. 3.6, e1 ≡m e7 because they are annotated with the same
meta-model concept ‘StartEvent’ from BPMO.

Based on these two definitions we consider neighborhood elements to be equivalent
by Definition 3.6.3

Definition 3.6.3 (Neighborhood element equivalent ≡n). Let a ∈ g1 and b ∈ g2 be
two neighborhood element in two different neighborhood context graphs. a and b are
equivalent, denoted as a ≡n b if a ≡d b when both a and b are tasks.

3.6.2 Neighborhood Connection Flow matching

Since each connection flow represents a sequence of connection elements, it can be
easily mapped to a sequence of characters formed by their annotating BPMO con-
cepts. We propose to use the Levenshtein distance [90] to compute the matching
degree between two connection flows. It computes the minimum number of edits (i.e.
insertions, deletions or substitutions) required to change one character sequence to
the other. Given two connection sequences of connection elements cs1 and cs2, the
matching M(cs1, cs2) between them is computed by Equation. 3.1 where size is a
function returning the number of connection elements in a connection sequence, LD
is a function returning the Levenshtein distance between two connection sequences,
and the Max function returns the maximum number.

M(cs1, cs2) = 1− LD(cs1, cs2)

Max(size(cs1), size(cs2))
(3.1)

For example, we show how to compute the matching between connection flows cf2

and cf8 of two neighborhood context graphs g1 and g2, respectively (Figure. 3.8) as
follows:

M(cf2, cf8) = 1− (LD(IntermediateEvent ParallelSplit,

IntermediateEvent)/Max(2, 1))

= 1− (1/2) = 0.5

Levenshtein distance LD between “IntermediateEvent ParallelSplit” and “Inter-
mediateEvent” is 0.5 as we consider one connection element as one character. There-
fore, the minimum number of edits required to change between them is 1 by removing
“IntermediateEvent”.

74 Assisting BP Variant Design by Exploiting BP Models

3.6.3 Neighborhood Context matching

To compute the neighborhood context matching degree between two fragments, we
compute the matching degree of the connection flows of the two neighborhood con-
text graphs. We consider two cases: matching in the first zone and matching in other
zones. In the first zone, we match the connection flows of the root tasks and the
domain equivalent neighborhood elements (≡d). In other zones, we match the con-
nection flows that connect domain equivalent neighborhood elements. The matching
degree between connection flows is computed using Equation 3.1. To compute the
neighberhood context matching degree, we sum all matching values then divide them
by the number of connection flows in the considered zones. Concretely, the match-
ing between two neighborhood context graphs g1 and g2 within k zones, denoted by
MCk(g1, g2), is computed by Equation 4.2.

MCk(g1, g2) =

k∑
t=1

∑
ev
eucfg1∈Zt

g1
,enemcfg2∈Zt

g2

MFt(eveucfg1 ,
en
em cfg2)

k∑
t=1

|Zt
g1 |

(3.2)

where k is the number of considered zones, Z is the set of connection flows,
b
acfg ∈ Zt

g is a connection flow from neighborhood element a to b within tth zone of

the neighborhood context graph g, and MFt(eveucfg1 ,
en
em cfg2) is the matching between

two connection flows ev
eucfg1 and en

emcfg2 in tth zone where:

MFt(eveucfg1 ,
en
em cfg2) =



M(eveucfg1 ,
en
em cfg2), if (t = 1, (eu ≡n em)

∨ (ev ≡n en)

∨ (eu ≡n ev ∧ em ≡n en))

∧ (t 6= 1, (eu ≡n em ∧ ev ≡n en))

0 otherwise

For example, the neighborhood context matching between the two neighborhood
graphs g1 and g2 (Figure. 3.8) within 1 zone is computed by Equation 4.2 as follow:

MC1(g1, g2) = (M(t3t2cfg1 ,
t7
t6
cfg2) +M(e4t3 cfg1 ,

e11
t7
cfg2)/(3)

= (0.5 + 1)/3 = 0.5

Another example of the neighborhood context matching between the two neigh-
borhood graphs g1 and g2 within 3 zones is as follow:

MC3(g1, g2) = (M(t3t2cfg1 ,
t7
t6
cfg2) +M(e4t3 cfg1 ,

e11
t7
cfg2)+

M(t2t1cfg1 ,
t6
t5
cfg2) +M(t1e1cfg2 ,

t5
e7 cfg2))/(3 + 2 + 2)

= (0.5 + 1 + 0.5 + 1)/7 = 0.428

Conclusion 75

3.7 Conclusion

In this chapter, we answered the research questions raised in the thesis problematic
which are: R1: How to identify BP fragments that are close to process designer in-
terests from heterogeneous process data? and R2: How to model heterogeneous BP
models to be shared in a common knowledge base?.

A shared knowledge base can serve as a common repository within an organization.
To model heterogeneous BP models in a knowledge base, we proposed to adopt an
existing mature BPMO ontology developed by the european project SUPER. BPMO
allows modeling BP models described in various BP modeling languages such as
BPMN and EPC. We presented an algorithm to construct BP models described in
BPMO from heterogeneous BP models. Hence, by using such algorithm, BP models
can be translated from any BP modeling lanaguage to BPMO which enables the
interoperability of BPs within an organization.

We also proposed the NCFO ontology to represent fragments of BP models ex-
tracted from our knowledge base. We developed NCFO as an extension of BPMO to
describe a BP fragment around a selected task as graphs. This graph represents the
task (i.e., the root task) and the relations to its neighbors (i.e., tasks having relation
to the root task). Based on this representation, we proposed an approach to retrieve
BP fragments that are similar to a selected one in an under-design BP model. Such
retrieved BP fragments can be used for BP variant design.

The approach we present in this section respects our principles introduced in
Section 1.4.1:

• Heterogeneous data modeling: We propose to adopt an existing BPMO
ontology to model heterogeneous BP models. Furthermore, we define an ontol-
ogy as an extension of BPMO, namely NCFO, to model BP fragments. Some
concepts in NCFO are inspired from our previous work [112]. However, the
main difference is the use of semantics in our work.

• Automation: We propose an automated approach to construct a knowledge
base from heterogeneous BP models. Moreover, similar BP fragments can be
automatically retrieved from our knowledge base to facilitate the design of BP
variants.

• Implicit knowledge exploitation: We utilize existing and accessible BP
models shared within an organization.

• Focused results: We exploit the relation between activities to measure the
similarity matrices between BP fragments. Such relation, so called neighbor-
hood context, is implicit knowledge hidden in BP models to represent our BP
fragments.

76 Assisting BP Variant Design by Exploiting BP Models

We validate our approach by demonstrating our proof of concept application to
support the BP variant design by recommending appropriate BP fragments in Sec-
tion 7.2.1. Thereafter, we evaluate our approach by performing several experiments
to prove that our approach is feasible in real use cases in Section 7.3.1

Chapter 4

Assisting BP Variant Design by
Exploiting Process Event Logs

Contents

4.1 Introduction . 77

4.2 Illustrating example . 78

4.2.1 Approach overview . 79

4.3 Preliminaries . 80

4.3.1 Causal Net (C-net) . 81

4.4 Knowledge Base of Process Event Logs 82

4.4.1 Linked Causal Net (Linked-CN) 82

4.4.2 Neighborhood Context Fragment Ontology (NCFO) 86

4.5 Neighborhood Context Graph Matching 88

4.5.1 Connection flow matching . 88

4.5.2 Neighborhood context matching 89

4.6 Conclusion . 90

4.1 Introduction

In this chapter, we address the research questions: R1: How to identify BP fragments
that are close to process designer interests from heterogeneous process data? and R3:
How to model heterogeneous process event logs to be shared in a common knowledge
base? We presents our approach for assisting the design of BP variants by using on
process event logs. As mentioned in Chapter 1, BP models do not always exist in in-
formation systems. However, typical systems always produce and accumulate process
event logs which contain useful information related to the important business execu-
tion paths. We start the chapter by introducing an illustrating example and overview
of our approach (Section 4.2). In section 4.4, we present our ontologies and algorithms
to discover BP models from heterogeneous process event logs. In section 4.4.2, we

77

78 Assisting BP Variant Design by Exploiting Process Event Logs

w
e

e

e

e

Figure 4.1: Scenario of BP variant development

detail the semantic representation of process event logs in our knowledge base. Sec-
tion 4.5 continues with the matching of BP fragments for recommendation to assist
the design of BP variants. Finally, we conclude the chapter in Section 4.6.

The work in this chapter was published in conference proceedings [162].

4.2 Illustrating example

We extend our example presented in Section 3.2 to illustrate our approach. Figure 4.1
shows that an organization have two branches branch1 and branch2 have developed
and executed their BP variants BP1 and BP2, respectively. Upon instantiation of
BP1, the order data is first stored (task a). Thereafter, the following concurrent
activities take place: (b) a carrier is automatically selected based on the order data,
(c) the good is manually packed by a staff person, (d) the good is picked up by the
selected carrier. Finally, (e) the good is either shipped or (f) refused to ship by the
selected carrier. BP1 provider may need to design a new variant of his BP to support
more prospective customers’ needs. Examples of needs could be: move goods to the
pick-up area, archive details related to the shipping at the end of the BP, etc.

Suppose that branch1 needs to adjust BP1 to support more requirements. To do
so, the process designer may look for appropriate BP fragments that can be flexibly
plugged in the selected position. A recommendation system can assist such task by

Illustrating example 79

recommending that the fragment of BP2 including activities b, j, g and f at branch2 is
similar to the selected fragment of BP1. This recommendation allows process designer
to easily get new ideas for designing new BP variants of BP1 as shown in the figure.

We consider a use case where organization’s branches are willing to share their
process event logs. Therefore, we propose to recommend BP fragments based on simi-
larity between fragment of process event logs. However, an issue that prevent fostering
the use of such data between different organization’s branches is their heterogeneity
(syntactic or semantic). In this work, we assume that process data have already been
preprocessed to solve the syntactic problem, thus we focus only on semantic level.
Organization’s branches execute similar BPs, but accumulate heterogeneous process
event logs (see examples of BP1 and BP2 process event logs in Table 4.1 and Ta-
ble 4.2 respectively). We need to resolve this heterogeneity issue in order to benefit
from such logs.

Order ID Task Timestamp Product Quantity

8801 Receive order (a) 03-07-2015@12.00 Printer 100
8802 Receive order (a) 03-07-2015@12.30 Scanner 50
8801 Select carrier (b) 03-07-2015@16.00 Printer 100
8803 Receive order (a) 03-07-2015@16.30 Monitor 200
8802 Pack good(c) 04-07-2015@09.00 Scanner 50

...

Table 4.1: Excerpt of BP1 process event logs

Order number Activity DateTime Item No.

101 Prepare command (k) 13:00, 3 July 2015 Screen 20
101 Select carrier (b) 13:00, 4 July 2015 Screen 20
102 Prepare command (k) 11:00, 5 July 2015 Router 100
101 Move shipment... (j) 13:30, 5 July 2015 Router 100
103 Prepare command (k) 16:00, 5 July 2015 Scanner 20
...

Table 4.2: Excerpt of BP2 process event logs

4.2.1 Approach overview

Our approach aims to solving interoperability issues of heterogeneous process event
logs by proposing a semantic framework as depicted in Figure 4.2. Concretely, our
approach includes four main steps:

1. Discover BP models from heterogeneous process event logs, and thus populate
a shared knowledge base of such models (Section 4.4). Our knowledge base

80 Assisting BP Variant Design by Exploiting Process Event Logs

Figure 4.2: An overview of our approach

serves as a common repository for discovered BP models. We populate our
knowledge base based upon our proposed ontology, namely Linked-CN, which
is an extension of mature ontologies describing BP models and process event
logs from European project SUPER [57].

2. Retrieve fragments of discovered BP models from the shared knowledge base as
neighborhood context graphs (Section 4.4.2). We extend our NCFO ontology
(Section 3.5) to describe such fragments. Thereafter, we compute the similarity
between BP fragments for recommendation.

3. Compute the matching between neighborhood context graphs (Section 4.5).
This matching presents the similarity between two fragments in term of relations
between activities’ execution.

4. Lastly, a process designer may select a BP fragment of an under-design pro-
cess. Then, we retrieve and sort similar BP fragments to the selected one in
descending order of similarity and retrieve top-n fragment for recommendation.

4.3 Preliminaries

To cope with the heterogeneity problem between process event logs between organiza-
tion’s branches, we define an ontology based on Linked Data principles [159], namely
Linked Causal Net (Linked-CN). We develop Linked-CR as an extension of exist-
ing ontologies of European project SUPER and our ontology NCFO (Section 3.5).
In Linked-CN, we adopt C-net modeling language to represent discovered BP mod-
els from process event logs. Hence, we firstly briefly describe C-net in this section.

Preliminaries 81

Thereafter, we introduce Linked-CN in the next section.

4.3.1 Causal Net (C-net)

C-net [63] is a BP modeling language representing concurrency of activities and their
causal dependencies, i.e., relationships between activities where one is triggering the
other one. C-net is a dependency graph where nodes represent activities, and arcs
correspond to causal dependencies. Input and output bindings denote the occurrence
of task. Each arc is annotated with a set of input and output bindings, represented
by black dots. A set of dots connected on the input (resp. output) arcs of a node is
an input (resp. output) binding. Input and output bindings allow modeling typical
logical connectors in various modeling languages such as, BPMN, EPC, YAWL, etc
(Figure 4.3(a)). Nodes can be annotated with numbers [63] which represent occur-
rences of activities and reflect the importance of a task (Figure 4.3(b)). Arcs can be
annotated with frequencies of bindings which show the strength of a relations between
activities [28].

 and out bi ng a

Figure 4.3: C-net modeling language

In our approach, we use C-nets to model discovered BP from process event logs
because: (i) they can be discovered using existing process mining languages since
they use similar representations, (ii) they allow to model XOR, AND and OR logical
connectors and hence they fit well with various BP modeling languages [28], and (iii)
they consider occurrence of activities unlike other BP modeling languages (e.g. EPC,
BPMN, UML).

To illustrate C-nets, we consider BP1 from Fig. 4.1 and a process event log col-
lected after several executions (An excerpt is provided in Table 4.1). Nodes and arcs
of the C-net represented in Fig. 4.4(a) are discovered by applying the heuristic min-
ing technique introducted in [62]. The nodes of this C-net represent the activities
a, b, c, d, e and f extracted from the process event log and annotated with their
number of occurrence from the log (e.g. a occured 7 times). The arcs of this C-net
represent the relations between activities. For example, the arc from a to b represents

82 Assisting BP Variant Design by Exploiting Process Event Logs

a precedence dependency (i.e. a is executed before b). Input and output bindings
represent split and join logical connectors, respectively. Arcs are annotated by input
and output bindings which are discovered by applying a process mining technique,
such as heuristics using time window before and after each task [28]. For example,
in BP1 a has one output binding therefore there is only one possibility that both b
and c (i.e., AND-split) occur 7 times after a. On the other hand, d has two output
bindings therefore e or f (i.e., XOR-split) occur 3 or 4 times after d, receptively.

a
7

b
7

c
7

d
7

7

7

7

7

7

7

7

7

e
3

f
4

3

4

3

4

k
5

55

b
5

55

j
5

f
3

g
2

h
5

3

2

3

2

3

2

3

2

(a) C-net of BP1

(b) C-net of BP2

Figure 4.4: C-nets

4.4 Knowledge Base of Process Event Logs

To enable the interoperability between different organization’s branches at the log
level, we propose to construct a knowledge base containing C-nets discovered from
process event logs. Such C-nets are represented using the Linked-CN ontology (Sec-
tion 4.4.1). We reuse the NCFO ontology (described in Section 3.5) to represent a
C-net fragment (Section 3.5.1), thus promoting similarity computation between BP
fragments.

4.4.1 Linked Causal Net (Linked-CN)

Fig. 4.5 depicts our proposed ontology Linked-CN which allows representing process
event logs and C-nets discovered from these logs. Linked-CN offers the following
concepts and properties:

Knowledge Base of Process Event Logs 83

Legend:

evo:Process
Event

evo:Data
Value

evo:has
InputValue

xsd:iri

xsd:string

evo:has
Parameter

evo:has
Value

upo:Business
Activity

upo:Business
ProcessModel

evo:occurred
DuringProcess

Execution

evo:occurred
DuringActivity

Execution

xsd:iri

cn:hasTrace
Identifier

bpmo:Business
Activity

bpmo:Process

bpmo:Task

bpmo:Workflow
Element

bpmo:Graph
Pattern

bpmo:has
HomeProcess

bpmo:Outgoing
Flow

bpmo:Control
flowConnector

bpmo:Exclusive
Choice

bpmo:Parallel
Split

bpmo:hasSource

bpmo:hasTarget

BPMO UPO

EVO

cn:Event

cn:Activity

cn:occurs

cn:Activity
Binding

cn:hasOutput
Binding

cn:hasInput
Binding

cn:CausalNet

cn:has
Activity

upo:Time
Instance

evo:generated
By

evo:Monitoring
Event

evo:has
OutputValue

ncfo:Neighborhood
ContextFragment

LinkedZCN

ncfo:atZone

ncfo:Connection
Flow

ncfo:has
ConnectionFlow

ncfo:has
Connection
Elements

ncfo:Connection
Sequence

ncfo:has
Next

ncfo:has
Root

ncf:hasSource
ncf:hasTarget

xsd:int

NCFO

cn:has
Frequency

cn:has
Frequencyxsd:int

ncf:atLayer

cn:Trace

cn:has
Event

cn:has
Trace

cn:has
Activity

UPO:b
UpperbProcessbOntology

BPMO:b
BusinessbProcessbModelingbOntology

EVO:
EventsbOntologyb

Linked-CN:
LinkedbCausalbNet

NCFO:
NeighborhoodbContextbFragmentbOntology

cn:Attribute
cn:has

Attribute

cn:has
Attribute

cn:hasAttributeDomainZspecificbontology

qqq

qqq qqq

bpmo:hasBusinessDomain

Figure 4.5: SUPER ontologies, NCFO and Linked-CN

• cn:Event concept represents an event in a process event log. Inspired by the
extensibility and flexibility of the XES [163], we define cn:Event as a refinement
of evo:ProcessEvent with an object property cn:hasAttribute to describe generic
event attributes. For example, an event representing the execution of Receive
order (a) (line 1 in Table 4.1) is modeled in Linked-CN as shown in Listing 4.1
(line 1-4). Such event is used to populate a BP execution knowledge base (In
this work, we represent the knowledge base using Turtle RDF triple).

• cn:Attribute concept is a refinement of the evo:DataValue concept. Based on XES,
we define a reflexive object property cn:hasAttribute in order to describe nested
attributes (i.e. attributes themselves might have child attributes).

• cn:Activity concept is a refinement of the bpmo:BusinessActivity concept. Different
events might occur during an activity execution and are recorded in process
event logs. Therefore, we define an object property cn:occurs to describe events

84 Assisting BP Variant Design by Exploiting Process Event Logs

Listing 4.1: BP1 execution events modeled with Linked-CN

1 :8801_a a cn:Event ;

2 evo:hasCreationTimestamp :03-07-2015@12.00 ;

3 cn:hasAttribute :order_number_8801 ,

4 ...

5 :03-07-2015@12.00 a upo:TimeInstance ;

6 upo:yearOf "2015"^^xsd:integer ,

7 upo:monthOf "07"^^xsd:integer ,

8 ...

9 :order_number_8801 a evo:DataValue ;

10 evo:hasParameter "www.example.com/order_id"

11 ^^xsd:iri ;

12 evo:hasValue "8801"^^xsd:string ;

13 ...

occurring during an activity execution and a data type property cn:hasFrequency

to store its number of occurrence. Activities may have input and output bind-
ings represented by the cn:hasActivityInputBinding and cn:hasActivityOutputBinding

object properties, respectively. Hence, activities with no input or output bind-
ings are considered as start or end activity, respectively. For example, events
in Table 4.1 are described by activities that triggered them using Linked-CN
(Listing. 4.5, lines 4-13).

• cn:Trace concept represents an ordered sequence of activities. We consider
events having identical specific attribute (e.g, Order ID) as belonging to the
same trace. Therefore, we define the data type property cn:hasTraceIdentifier to
associate an attribute (e.g., IRI) to a trace. We also define the object property
cn:hasEvents to represent events belonging to a trace. Algorithm 4 depicts how
to retrieve traces from our knowledge base given a trace attribute (traceIRI)
and an activity attribute (activityIRI). First, all trace identifiers, traceIDs
are retrieved (line 2). This done by executing the SPARQL query getTraceIDs.
Afterwards, for every traceID in traceIDs (lines 3-6), we execute the getActivi-
tySequence SPARQL query to retrieve the sequence of activities (actSeq) from
traceID, traceIRI and activityIRI. This sequence will be added to a list traces
(Line 5). Finally, the algorithm returns traces as output (Line 7). For example,
Listing 4.4 illustrates traces retrieved from events modeled with Link-CN in
Listing 4.1.

• cn:CausalNet concept represents discovered C-net from process event logs. Fig. 4.4
depicts examples of C-nets built from traces of BP1 (Listing 4.4) and BP2. We
associate to cn:CausalNet three object properties: cn:hasTrace representing the
traces used to discover the C-net, cn:hasActivity representing the activities in the
C-net and cn:hasAttribute representing global attribute, i.e. an attribute that is

Knowledge Base of Process Event Logs 85

Listing 4.2: getTraceIDs SPARQL query

1 SELECT ?traceIDs WHERE {

2 ?event cn:hasDataValue ?dataValue .

3 ?dataValue evo:hasParameter :traceIRI ;

4 evo:hasValue ?traceIDs . } GROUP BY ?traceIDs

Listing 4.3: getActivitySequence SPARQL query

1 SELECT ?activity WHERE {

2 ?event cn:hasDataValue ?dataValue .

3 ?dataValue evo:hasParameter :traceIRI ;

4 evo:hasValue :traceID .

5 ?dataValue evo:hasParameter :activityIRI ;

6 evo:hasValue ?activity .

7 ?event evo:hasCreationTimestamp ?timestamp .

8 OPTIONAL { ?timestamp upo:yearOf ?year } .

9 OPTIONAL { ?timestamp upo:monthOf ?month } .

10 OPTIONAL { ?timestamp upo:dayOf ?day } }

11 ORDER BY ?year ?month ?day ...

Listing 4.4: Traces of BP1 process event logs modeled with Linked-CN

1 :8801 a cn:Trace ;

2 cn:hasTraceIdentifier "www.example.com/order_id" ;

3 cn:hasEvent :8801_a ,

4 cn:hasEvent :8801_b ,

5 cn:hasEvent :8801_c ,

6 cn:hasEvent :8801_d ,

7 cn:hasEvent :8801_e ,

8 :8802 a cn:Trace ;

9 cn:hasTraceIdentifier "www.example.com/order_id" ;

10 cn:hasEvent :8801_a ,

11 cn:hasEvent :8801_c ,

12 cn:hasEvent :8801_b ,

13 cn:hasEvent :8801_d ,

14 cn:hasEvent :8801_e ,

15 ...

86 Assisting BP Variant Design by Exploiting Process Event Logs

Algorithm 4 Retrieving traces

1: procedure getTraces(traceIRI)
2: traceIDs ← getTraceIDs(traceIRI)
3: for each traceID in traceIDs do
4: actSeq ← getActivitySequence(traceID, traceIRI, activityIRI)
5: traces ← traces.add(actSeq)
6: end for
7: return traces
8: end procedure

Listing 4.5: BP1 activity binding modeled with Linked-CN

1 :c_net a cn:CausalNet ;

2 cn:hasActivitiy :a ,

3 ...

4 :a a cn:Activity ;

5 cn:hasFrequency "7"^^xsd:integer ,

6 cn:occurs :8801_a ,

7 cn:occurs :8802_a ,

8 ...

9 cn:hasActivityOutputBinding :a_binding1 ;

10 :a_binding1 a cn:ActivityBinding ;

11 cn:hasFrequency "7"^^xsd:integer ,

12 cn:hasActivity b ,

13 cn:hasActivity c ;

14 ...

available for every event. Listing. 4.5 shows the C-net from Fig. 4.4(a) modeled
with Linked-CN.

• cn:ActivityBinding concept describes causal dependency, i.e, relationship be-
tween activities where one is triggering the other one. The data type prop-
erty cn:hasFrequency reflects the number of occurrence of an activity, and the
cn:hasActivity object property represents activities that are part of the binding.
An example of an activity binding is shown in Listing. 4.5 at lines 9-13.

4.4.2 Neighborhood Context Fragment Ontology (NCFO)

We have introduced our NCFO ontology in Section 3.5 to represent a fragment of
BP models. NCFO is developed based up on a graph, namely neighborhood con-
text graph, in which a selected activity (i.e., root activity) is located at the center.
Its neighbors (i.e., directly connected tasks) are located in layers according to their
shortest path lengths (i.e., consecutive nodes connected by an arc) to the root activity.
Therefore, we extend our NCFO ontology in order to represent a C-net fragment.

Knowledge Base of Process Event Logs 87

C-net fragment can be retrieved from our knowledge base by selecting an activity
and indicating the size of the fragment (i.e. zoneth number). The selected activity
is considered as a root activity of the fragment. Its neighboring activities and their
activity bindings are included in the fragment based on the zoneth number. Fragments
of C-nets captured from BP1 and BP2 (Figure 4.4(a) and Figure 4.4(b)) having root
activities a and k are shown in Figure 4.6(a) and Figure 4.4(b), respectively.

 C f of BP1 C f of BP2

Figure 4.6: C-net fragments

Fig. 4.5 depicts our NCFO ontology offering the following concepts and associated
properties:

• ncf:NeighborhoodContextFragment concept represents a fragment of a C-net that
contains a root activity and connections to its neighbors. The fragment’s root
activity, of type cn:Activity, is defined through the object property ncf:hasRoot.
An ncf:NeighborhoodContextFragment has also multiple ncf:ConenctionFlows defined
using the ncf:hasConnectionFlow object property. Listing. 4.6 shows an example
of a neighborhood context fragment of the C-net fragment from Fig. 4.6(a).

• ncf:ConnectionFlow concept represents a dependency relation from an activity
to its closest neighbor. It consists of a source and a target activity defined
through the object properties ncf:hasSouce and ncf:hasTarget. It has a sequence of
ncf:ConnectionSequence defined through the object property ncf:hasConnectionElements.
Furthermore, the data property ncf:atZone shows the maximum connection path
distance (namely zone number) between source and target activities to the root
activity. We extract connection flows from by finding the shortest path from a
root activity to its neighborhood activity in C-net1. An example of a connection
flow is depicted in Listing. 4.6 at lines 3-4 and 9-11.

1Due to the lack of space, we have described how to extract connection flows from C-net at:
(http://www-inf.it-sudparis.eu/SIMBAD/tools/semantic_cnet_fragment/connection_flow/)

88 Assisting BP Variant Design by Exploiting Process Event Logs

Listing 4.6: A neighborhood context fragment from Fig. 4.6(a)

1 :c_net_fragment1 a ncf:NeighborhoodContextFragment ,

2 ncf:hasRoot :d ,

3 ncf:hasConnectionFlow :cf1 ,

4 ncf:hasConnectionFlow :cf2 ,

5 ...

6 :d a cn:Activity ;

7 cn:hasFrequency "7"^^xsd:integer ,

8 ...

9 :cf2 a ncf:ConnectionFlow ;

10 ncf:hasSource :b ,

11 ncf:hasTarget :d ,

12 ncf:ConnectionSequence cs2 ;

13 :cs2 a bpmo:ControlflowConnector ;

14 ncf:hasNext :cs2_1

15 :cs2_1 a bpmo:ParallelSplit

16 ...

• ncf:ConnectionSequence concept represents a sequence of connection elements
from one activity to another. Connection element is a logical connector which
can be described by BPMO, such as bpmo:ExclusiveChoice, bpmo:ParallelSplit, etc.
Thus, we represent the sequence of connection elements by using the ncf:hasNext

object property. An example of a connection sequence is shown in Listing. 4.6
at lines 12-15.

4.5 Neighborhood Context Graph Matching

Using neighborhood context graphs associated to C-nets, we propose an approach to
recommend similar BP fragments to assist the design of BP variants. This recom-
mendation is based on similarity factors between the different connection flows in BP
fragments. The similarity computation is similar to Section 3.6, the main difference
is that we take into account the frequency of executed activities. In the following we
present our recommendation approach using our formulas for connection flow match-
ing, and neighberhood context matching in Section 4.5.1 and 4.5.2, respectively.

4.5.1 Connection flow matching

Two connection flows can be matched, only if they have identical activities at their
beginning and end. In our work, we consider that activities are semantically annotated
by concepts from a common domain-specific ontology through an object property
bpmo:hasBusinessDomain. We identify whether two activities are identical or not
based on these concepts (Definition 3.6.1).

For two connection flows, once activities at their beginning and end are domain

Neighborhood Context Graph Matching 89

equivalent, the matching is done as follows. Each connection flow represents a se-
quence of connection elements, which can be considered as a sequence of characters
by their BPMO concept. For example, a connection sequence cs2 (Listing. 4.6 at line
12-15) has a sequence of two connection elements bpmo:ControlflowConnector (line
13) and bpmo:ParallelSplit (line 15), and will be mapped into “ControlflowConnec-
torParallelSplit”. To compute the similarity between two connection flows, we use the
Levenshtein distance [90]. The Levenshtein distance measures the minimum number
of edits (i.e. insertions, deletions or substitutions) required to change one character
sequence to the other. Concretely, given two character sequences scf1 and scf2 as-
sociated to two connection flows cf1 and cf2, the similarity factor between them is
computed by Equation (4.1) where w is a function that returns the frequency of an
activity binding and size is a function that returns the number of connection elements
in a connection sequence.

SFcf (cf1, cf2) =(1−
LevenshteinDistance(scf1 , scf2)

max(size(cf1), size(cf2))
)

× w(cf1) + w(cf2)

2×max(w(cf1), w(cf2))

(4.1)

For example, the similarity factor between cs1 and cs9 (Fig. 4.6) is computed as
follows:

SFcf (cs1, cs9) = SFcf (“ExclusiveChoiceControlflowConnector”,

“ExclusiveChoiceControlflowConnector”)

= (1− 0)× (3 + 2)/(2× 3) = 0.83

4.5.2 Neighborhood context matching

To compute the neighborhood context matching between two BP fragments, we match
the connection flows that connect identical activities belonging to the same zone
number (zoneth). Such connection flows are called common connection flows (Defini-
tion 4.5.1)

Definition 4.5.1 (Common connection flows ≡cf). Let s1, s2 and t1, t2 be the source
and target activities of the connection flows cf1, cf2 from neighborhood context graphs
nc1, nc2, respectively. Let r1 and r2 be the root activities of nc1 and nc2, respectively.
cf1 and cf2 are common connection flows, denoted as cf1 ≡cf cf2 if s1 ≡d s2, t1 ≡d t2
and cf1 is at the same zoneth number as cf2.

In order to compute similarity between two neighborhood context fragments, we
sum all connection flow matching values then divide them by the maximum number
of connection flows in the considered zones. Concretely, the similarity factor be-
tween two neighborhood context fragments nc1 and nc2 within k zones, denoted by
SF k(nc1, nc2), is computed using Equation (4.2) where cfi are cfj belong to nc1 and

90 Assisting BP Variant Design by Exploiting Process Event Logs

nc2, respectively, cfi ≡cf cfj , n and m are the numbers of connection flows within
the k zones of nc1 and nc2, respectively.

SF k(nc1, nc2) =

∑n
i=1

∑m
j=1 SFcf (cfi, cfj)

max(n,m)
(4.2)

For example, the neighborhood context matching between the fragments of activ-
ity d and j (i.e., ncd and ncj) within the first zone from Fig. 4.6(a) and Fig. 4.6(b),
respectively, giving that e ≡d g, computed by Equation 4.2 is:

SF 1(ncd, ncj) =
SFcf (cs1, cs9) + SFcf (cs2, cs7) + SFcf (cs4, cs8)

max(4, 3)

=
0.83 + 0.43 + 0.88

4
= 0.54

4.6 Conclusion

In this chapter, we answered the question raised in the thesis problematic which are:
R1: How to identify BP fragments that are close to process designer interests from
heterogeneous process data? and R3: How to model heterogeneous process event logs
to be shared in a common knowledge base?.

We model heterogeneous process event logs in a shared knowledge base by using
our proposed ontology, namely Linked-CN. Link-CN is constructed by extending on-
tologies developed from European SUPER project (i.e., BPMO, UPO, and EVO).
Using Linked-CN allows to model discovered BP models from heterogeneous process
event logs which enables the interoperability of process event logs within an organi-
zation.

We reuse and extend our ontology NCFO to represent fragments of discovered
BP models from process event logs. A BP fragment modeled with NCFO represents
a root task and relations to its closest neighbors. We retrieved BP fragments that
are similar to the selected one in an under-design PB model. Thereafter, such BP
fragments can be used as a data-source to design BP variants.

Our principles presented in Section 1.4.1 are respected:

• Heterogeneous data modeling: We use our proposed Linked-CR ontology
to model heterogeneous process event logs.

• Automation: We propose an automated approach to construct a knowledge
base of BP models discovered from heterogeneous process event logs. Moreover,
similar BP fragments can be automatically retrieved from our knowledge base
to facilitate the design of BP variants.

• Implicit knowledge exploitation: We utilize existing process event logs
shared within an organization.

Conclusion 91

• Focused results: We exploit the relation between activities to measure the
similarity matrices between BP fragments. Such relation, so called neighbor-
hood context, is implicit knowledge hidden in BP models to represent our BP
fragments.

We demonstrate our approach by developing a proof of concept to support the BP
variant design by recommending appropriate BP fragments in Section 7.2.1. Further-
more, we present the experimentations to validate our approach using real use-cases
to prove that our approach is feasible in Section 7.3.2.

92 Assisting BP Variant Design by Exploiting Process Event Logs

Chapter 5

Supporting Cloud Resource
Descriptions Interoperability

Contents

5.1 Introduction . 93

5.2 Illustrating example . 93

5.3 Semantic Framework of Cloud Resources 96

5.3.1 Standard-specific ontologies . 97

5.3.1.1 sTOSCA . 97

5.3.1.2 sOCCI . 98

5.3.1.3 sCIMI . 100

5.3.2 Upper-level ontology . 101

5.3.3 Standard translation . 102

5.3.4 Querying . 103

5.4 Conclusion . 104

5.1 Introduction

This chapter addresses the research question R4: How to model heterogeneous cloud
resources to be shared in a common knowledge base? We start the chapter by intro-
ducing an illustrating example (Section 5.2). In section 5.3, we propose a semantic
framework where we develop a knowledge base that enables the interoperability be-
tween heterogeneous cloud resource descriptions and provide means for customization.
Finally, we conclude the chapter in Section 5.4.

The work in this chapter was published in conference proceedings [164].

5.2 Illustrating example

We present in the following a scenario (see Fig. 5.1) to illustrate and motivate our ap-
proach. Let us consider that an organization’s branches Branch1 and Branch2 possess

93

94 Supporting Cloud Resource Descriptions Interoperability

their own cloud environments C1 and C2 offering different cloud resources: ca, na,
and sa in C1, and cb and nb in C2. These resources consist of three type: Compute,
Network, and Storage. Compute represents a compute resource that encapsulates
both CPU and memory. Network represents a networking entity with the purpose of
forwarding data traffic between end points. Storage is a resource that records infor-
mation to a data storage device. Link and interlink represents a connection between
internal and external resources, respectively. We consider only cloud resources at the
infrastructure level in this scenario.

Legend:

Link

Network

Storage

Compute

Interlink

ca
na

la

Branch1 Branch2

nb

cb
lb

lab

C1 (TOSCA) C2 (OCCI)
sa

?

Figure 5.1: Scenario of cloud resource interoperability

In this scenario, we suppose that Branch1 and Branch2 are willing to enable
interoperability between their cloud resources C1 and C2 in order to share the storage
sa. Since sa and C1 are connected (represented in the figure by link), and C1 is
connected to network resource na in C1, thus C2 in C2 should be connected to na in
order to access sa. However, C1 and C2 are described using different cloud resource
description standards. C1 resources described are in TOSCA (see Listing 5.1) and C2

described in OCCI (see Listing 5.2) using their respective standard specifications [131,
165]. Due to these heterogeneous descriptions, creating a connection between na and
C2 is not a straightforward task. It is required that cloud providers translate the
description of na from TOSCA to OCCI, and then create a link lab from C2 to na.

Manually translating cloud resources descriptions is a tedious and error-prone
task because of the lack of a common schema and vocabulary. For example, the
representation of the compute resource ca in C1 described in TOSCA in Listing 5.1
(line 2-8) is completely different from the compute resource cb in C2 described in OCCI
in Listing 5.2 (line 1-5). In order to overcome this issue, we define a set of ontologies
that represent cloud resources described by different standards (i.e., standard-specific
ontologies) and an ontology (i.e., Linked-CR) that abstracts high-level representation
of these standards. Based on these ontologies, we propose a semantic framework
that populates a shared knowledge base of cloud resources described by different
standards. Furthermore, Semantic Web technologies allows to query the knowledge
base to look for available cloud resources regardless of their actual representation and

Illustrating example 95

Listing 5.1: Excerpt from resources C1 TOSCA description

1 node_templates:

2 ca:

3 type: Compute

4 capabilities:

5 host:

6 properties:

7 num_cpus: 1

8 ...

9 na:

10 type: Network

11 ...

12 porta:

13 type: Port

14 requirements:

15 - binding: ca

16 relationship:

17 type: LinksTo

18 - link: na

19 relationship:

20 type: BindsTo

21 ...

Listing 5.2: Excerpt from cloud resources C2 OCCI description

1 Category: compute;

2 scheme="http://.../occi/infrastructure#";

3 class="kind";

4 X-OCCI-Attribute: occi.compute.hostname="cb"

5 X-OCCI-Attribute: occi.compute.cores=2

6 Link: <lb>;

7 rel="http://.../occi/infrastructure#network";

8 self="cb";

9 category=".../infrastructure#networkinterface";

10 ...

11 ...

96 Supporting Cloud Resource Descriptions Interoperability

customize these resources in order to enable interoperability between organizations in
a collaborative environment.

5.3 Semantic Framework of Cloud Resources

To enable the interoperability of cloud resources described by different standards and
to provide means to customize cloud resources regardless of their representation, we
propose a semantic framework with a knowledge base of heterogeneous cloud resource
descriptions. Fig. 5.2 provides an overview of the proposed framework.

Figure 5.2: Semantic framework overview

This framework offers two core layers. The standard-specific ontologies layer
offers ontologies defining concepts to describe cloud resources modeled with a spe-
cific standard. These ontologies include sTOSCA, sOCCI and sCIMI which allow

Semantic Framework of Cloud Resources 97

describing cloud resrouces modeled with TOSCA, OCCI, and CIMI standards, re-
spectively (see section 5.3.1). The upper level ontology layer offers an ontology
(Linked-CR) which defines high level concepts to describe cloud resources modeled
with different standards (see section 5.3.2). We use semantic inference rules to enable
on automated standard translation from standard-specific ontologies to Linked-CR and
vise-versa (see section 5.3.3). Cloud resource descriptions modeled with Linked-CR are
stored in a shared knowledge base which allows organizations to query and cus-
tomize (see section 5.3.4) cloud resources regardless of their representation used by
cloud providers (see section 5.3.4). In the following, we detail these two core layers
of our framework as well as the standard translation and query.

5.3.1 Standard-specific ontologies

In order to represent cloud resource descriptions described using different standards,
we propose Standard-specific ontologies. We define Standard-specific ontologies as on-
tologies describing cloud resource description standards. In our work we consider
TOSCA, OCCI, and CIMI. Concretely, we identify concepts and relationships de-
fined in the standard specifications of these description models and represent them
as ontologies. We define three Standard-specific ontologies as follows:

5.3.1.1 sTOSCA

sTOSCA ontology represents cloud resources described in TOSCA. Fig. 5.3 provides an
excerpt from sTOSCA concepts and their properties. Note that we do not include all
concepts in this thesis due the limited space. The prefix “st” represents the sTOSCA

namespace. The core sTOSCA concepts are:

• st:Node is the root concept that all complex sTOSCA concepts derive from,
such as st:Compute, st:BlockStorage, st:Network, and st:Port. st:Node can describe its
st:Capability through object property st:hasCapability and its Requirement through
st:hasRequirement which will be described later on.

• st:Compute represents a real or virtual processors of software applications or
services.

• st:Network represents a simple, logical network service.

• st:Port represents a logical entity that associates between st:Compute and st:Network.

• st:BlockStorage represents a storage device.

• st:Capability represents a set of data that associated with st:Node, for exam-
ple, the data property st:hasCPU which describes the number of CPU of the
st:Compute.

98 Supporting Cloud Resource Descriptions Interoperability

Legend:

st:Node

st:Compute

st:Block
Storage

st:Network

st:Capabilityst:hasCapability

st:Port

st:Requirement

st:has
CPU

hasRequirement

st:Relationship

st:has
Relationship

st:Links
To

st:Binds
To

st:has
Target

st:Attachs
To

concept sub-concept data/objectAproperty

xsd:int

literal

Figure 5.3: Excerpt from sTOSCA ontology

• st:Requirement represents a kind of requirement that a st:Node can expose. It
can also represent a relationship to another st:Node through object property
st:hasRelationship.

• st:Relationship represents a connection from one Node to another through ob-
ject properties st:hasSource and st:hasTarget. It has multiple sub-concepts, for
example, st:LinksTo, st:BindsTo and st:AttachesTo.

• st:LinksTo represents a network connection from st:Port to st:Network.

• st:BindsTo represents a network connection from st:Port to st:Compute.

• st:AttachesTo represents a connection relationship between st:Storage and st:Compute.

Cloud resources C2 from Fig. 5.1 modeled with sTOSCA is shown in Listing 5.3.
Such representation populates to the shared knowledge base.

5.3.1.2 sOCCI

sOCCI ontology semantically represents cloud resources described in OCCI. Fig. 5.4
provides an excerpt from sOCCI concepts and their properties. The prefix “so” repre-
sents the sOCCI namespace. The core sOCCI concepts are:

• so:Category is the root concept that all sOCCI concepts derive from.

Semantic Framework of Cloud Resources 99

Listing 5.3: Cloud resources C2 modeled with sTOSCA

1 cb rdf:type st:Compute ;

2 hasCapability capability1 ;

3 capability1 rdf:type st:Capability ;

4 st:hasCPU "2"^^xsd:int ;

5 nb rdf:type st:Network

6 port rdf:type st:Port ;

7 st:hasRequirement linkable1 ;

8 linkable1 rdf:type st:Requirement ;

9 st:hasRelationship lb ;

10 lb rdf:type st:LinksTo ;

11 st:hasTarget nb ;

12 ...

• so:Kind represents the type identification so:Entity types.

• so:Mixin represents an extension mechanism, which allows defining new resource
types with additional data/object properties.

• so:Entity represents an abstract type, which both so:Resource and so:Link inherit.
so:Entity type identification is described through object property so:isKindOf to
so:Kind. It can extend more data/object properties through object property
so:hasMixin.

• so:Resource represents a cloud resource modeled with OCCI. It has three sub-
concepts: so:Compute, so:Network, and so:Storage.

• so:Link represents a connection between cloud resources modeled with OCCI.
It has two sub-concepts: so:NetworkInterface and so:StorageLink. A so:Link be-
tween two so:Resource instances can be represented through the object proper-
ties so:hasSource and so:hasTarget.

• so:Compute represents an information processing resource, e.g. a virtual ma-
chine. One of the data properties of so:Compute is so:hasCores which describes
the number of CPU.

• so:Network represents a networking device (e.g., switch).

• so:Storage represents a data storage device (e.g., disk).

• so:StorageLink inherits from so:Link and represents a link from a so:Compute to a
target so:Storage instance (e.g. Linking a Virtual machine to a disk).

• so:NetworkInterface inherits from so:Link and represents a link from a so:Compute

to a target so:Network instance (e.g. network adapter).

Listing 5.4 depicts cloud resources C2 from Fig. 5.1 modeled with sOCCI.

100 Supporting Cloud Resource Descriptions Interoperability

so:Categoryso:Kind so:Mixin

so:Entity
so:isKindOf so:hasMixin

so:Resource so:Link

so:hasSource

so:hasTarget

so:Network so:Storageso:Compute
so:Storage

Link
so:Network

Interface

so:hasCores

xsd:int

Figure 5.4: Excerpt from sOCCI ontology

Listing 5.4: Cloud resources C2 modeled with sOCCI

1 cb rdf:type so:Compute ;

2 so:hasCores "2"^^xsd:int ;

3 nb rdf:type so:Network

4 lb rdf:type so:NetworkInterface

5 so:hasSource cb ;

6 so:hasTarget nb ;

7 ...

5.3.1.3 sCIMI

sCIMI ontology represents cloud resources described in CIMI. Fig. 5.4 provides an
excerpt from sCIMI concepts and their properties. The prefix “sc” represents the sCIMI

namespace. The core sCIMI concepts are:

• sc:CloudEntryPoint represents the cloud interface defined by CIMI.

• sc:Resource represents a cloud resource modeled with CIMI. It has three sub-
concepts: sc:Machine, sc:Network, and sc:Volume.

• sc:Machine represents a compute resource that encapsulates both CPU and
Memory. We define different data properties to define an sc:Machine charac-
teristics. For instance, the number of sc:Machine CPU can be described using
the data property sc:hasCPU.

• sc:Network represents a logical network service with the purpose of forwarding
data traffic between resources (e.g., switch).

Semantic Framework of Cloud Resources 101

• sc:Volume represents a storage at either the block or the file-system level. An
sc:Volume can be connected to an sc:Machine. Once connected, sc:Volume can be
accessed by processes on that sc:Machine.

• sc:NetworkPort represents a connection point between an sc:Network and an
sc:MachineNetworkInterface through the object property sc:hasNetworkPort.

• sc:MachineNetworkInterface represents an association between an sc:Machine and
an sc:Network. We define sc:Machine connects to sc:MachineNetworkInterface through
object property sc:hasMachineNetworkInterface and sc:MachineNetworkInterface con-
nects to sc:Network through object property sc:hasNetwork.

• sc:MachineVolume represents an association between an sc:Machine and an sc:Volume

through the object property sc:hasMachineVolume.

sc:CloudEntry
Point

sc:Machine
Volume

sc:Resource

sc:Network sc:Machine sc:Volume

sc:hasResource

sc:MachineNetwork
Interface

sc:hasMachineNe
twork

Interface
has

Network

sc:Network
Port

sc:hasNetwork
Port

sc:hasMachine
Volume

sc:hasNetwork
Port

sc:hasVolume

sc:hasCPU

xsd:int

Figure 5.5: Excerpt from sCIMI ontology

Cloud resources C2 from Fig. 5.1 modeled with sCIMI is shown in Listing 5.5.

5.3.2 Upper-level ontology

We define Linked-CR as an upper level representation of our standard-specific ontologies.
Thus, Linked-CR enables interoperability between different cloud resource description
standards and facilities the sharing of cloud resources in a collaborative environment
independently from used standards. Concretely, we identify the common concepts

102 Supporting Cloud Resource Descriptions Interoperability

Listing 5.5: Cloud resources C2 modeled with sCIMI

1 cb rdf:type sc:Machine ;

2 sc:hasCPU "2"^^xsd:int ;

3 sc:hasMachineNetworkInterface lb ;

4 nb rdf:type sc:Network

5 lb rdf:type sc:MachineNetworkInterface

6 sc:hasNetwork nb ;

7 ...

of standard-specific ontologies. Fig. 5.6 depicts Linked-CR concepts and their properties.
The prefix “cr” represents the Linked-CR namespace. The core Linked-CR concepts are
as follows:

• cr:CloudResource subsumes all concepts describing cloud resources. It has three
sub-concepts: cr:Compute, cr:Network, and cr:Storage.

• cr:Compute represents common concepts: st:Compute, so:Compute, and sc:Compute.

• cr:Network represents common concepts: st:Network, so:Network, and sc:Network.

• cr:Storage represents common concepts: st:BlockStorage, so:Storage, and sc:Volume.

• cr:NetworkInterface represents common concepts: both st:LinksTo and st:BindsTo

so:NetworkInterface, and sc:MachineNetworkInterface. It describes the link between
so:Compute and so:Network through object properties so:hasNetworkInterface and
so:hasNetwork.

• cr:NetworkPort represents common concepts: st:Port and sc:NetworkPort. It repre-
sents the link between cr:NetworkInterface and cr:Network through object property
cr:hasNetworkPort.

• cr:StorageLink represents common concepts: st:AttachesTo, so:StorageLink, and
sc:MachineVolume. It describes the link between sc:Compute and sc:Storage through
object properties so:hasStorageLink and so:hasStorage.

We store cloud resource descriptions modeled with Linked-CR in a knowledge base.
The example of cloud resources C2 from Fig. 5.1 modeled with Linked-CR in our knowl-
edge base is shown in Listing 5.6.

5.3.3 Standard translation

Thanks to Semantic technologies, we can define a set of inference rules for an au-
tomated translation of cloud resource descriptions represented with one standard-
specific ontology to another. For example, we can define a set of SWRL rules to

Semantic Framework of Cloud Resources 103

cr:Storage
Link

cr:Cloud
Resource

cr:Network cr:Compute cr:Storage

cr:Network
Interface

cr:hasNetwork
Interface

cr:hasNetwork

cr:Network
Port

cr:hasNetwork
Port

cr:hasStorage
Link

hasNetwork
Port

cr:hasStorage

cr:hasCPU

xsd:int

Figure 5.6: Excerpt from Linked-CR ontology

Listing 5.6: Cloud resources C2 modeled with Linked-CR

1 cb rdf:type cr:Compute ;

2 cr:hasCPU "2"^^xsd:int ;

3 cr:hasNetworkInterface lb ;

4 nb rdf:type cr:Network

5 lb rdf:type cr:NetworkInterface

6 cr:hasNetwork nb ;

7 ...

translate a cloud resource description modeled with sTOSCA to Linked-CR (in List-
ing 5.7), and from Linked-CR to sOCCI (in Listing 5.8). Such rules allows an automatic
translation of cloud resources semantically represented in one upper level ontology to
another.

5.3.4 Querying

We populate a shared knowledge base of cloud resources semantically represented in
Linked-CR. The knowledge base allows organizations to retrieve and manipulate these
cloud resources regardless of their actual description models used by cloud providers.
To query the knowledge base, we use the SPARQL query language. Listing 5.9 shows a
SPARQL query that retrieves a list of compute resources linked to network resources.
Given cloud resources C1 and C2 from Fig. 5.1 semantically represented in Linked-CR,
we can execute this query on the knowledge base and the result are C1 links to na and

104 Supporting Cloud Resource Descriptions Interoperability

Listing 5.7: Excerpt from sTOSCA → Linked-CR SWRL rules

1: st:Compute(?x) −→ cr:Compute(?x)

2: st:Compute(?x) ∧ st:hasCapability(?x, ?c) ∧
st:hasCPU(?c, ?cpu) −→ cr:hasCPU(?c, ?cpu)

3: st:Network(?x) −→ cr:Network(?x)

4: st:LinksTo(?x) −→ cr:NetworkInterface(?x)

5: st:LinksTo(?x) ∧ st:hasSource(?x, ?y)

−→ cr:hasNetworkInterface(?y, ?x)

6: st:LinksTo(?x) ∧ st:hasTarget(?x, ?y)

−→ cr:hasNetwork(?x, ?y)

Listing 5.8: Excerpt from Linked-CR → sOCCI SWRL rules

1: cr:Compute(?x) −→ so:Compute(?x)

2: cr:Compute(?x) ∧ cr:hasCPU(?c, ?cpu)

−→ so:hasCores(?x, ?cpu)

3: cr:Network(?x) −→ so:Network(?x)

4: cr:NetworkInterface(?x) −→ so:NetworkInterface(?x)

5: cr:NetworkInterface(?x)

∧ cr:hasNetworkInterface(?x, ?y)

−→ so:hasSource(?x, ?y)

6 cr:NetworkInterface(?x) ∧ cr:hasNetwork(?x, ?y)

−→ so:hasTarget(?x, ?y)

C2 links to nb. Furthermore, a user can execute the SPARQL query in Listing 5.10
to create a link lab between C2 and na which enables interoperability between cloud
resources C1 and C2.

5.4 Conclusion

In this chapter, we answered questions raised in the thesis problematic which is R4:
How to model heterogeneous cloud resources to be shared in a common knowledge

Listing 5.9: SPARQL query for retrieving links between compute and network re-
sources

SELECT ?compute ?network

WHERE

{

?compute rdf:type cr:Compute .

?compute cr:hasNetworkInterface ?networkInterface .

?networkInterface cr:hasNetwork ?network .

}

Conclusion 105

Listing 5.10: SPARQL query for creating a link between compute and network re-
sources

INSERT DATA

{

:l2 rdf:type ?networkInterface .

:c2 cr:hasNetworkInterface :l2 .

:l2 cr:hasNetwork :n1 .

}

base?.
To model heterogeneous cloud resources described using different standards, we

propose a semantic framework built based upon our proposed ontologies. Concretely,
we have defined ontologies to represent cloud resources and thus store in a shared
the knowledge base. These cloud resources are described using a common ontology
Linked-CR. Our framework also offers three Standard-specific ontologies, enriched
with translation rules, allowing an automatic translation between resource descrip-
tions in TOSCA, OCCI, and CIMI.

Our principles presented in Section 1.4.1 are respected:

• Heterogeneous data modeling: We propose our ontologies to model hetero-
geneous cloud resource described using different standards..

• Automation: We propose an automated approach to construct a knowledge
base from heterogeneous cloud resources. Moreover, we define translation rules
to automatically translate cloud resources between different description stan-
dards (i.e., TOSCA, OCCI, CIMI).

• Implicit knowledge exploitation: We utilize existing cloud resources shared
within an organization.

To validate our approach, we develop a proof of concept prototype to populate
a knowledge base from cloud resources described using different standards in Sec-
tion 7.2.2. We also evaluate our proposed ontologies in qualitative and quantitative
aspect in Section 7.3.4.

106 Supporting Cloud Resource Descriptions Interoperability

Chapter 6

Assisting Cloud Resource
Allocation to Business Processes

using Genetic Algorithm

Contents

6.1 Introduction . 107

6.2 Illustrating example . 107

6.3 Cloud Resource Allocation Operator 109

6.4 Problem Formalization using Genetic Algorithm 110

6.4.1 Genome Encoding . 110

6.4.2 Fitness Function . 111

6.5 Conclusion . 113

6.1 Introduction

This chapter addresses the research question: R5: How to solve optimal allocation
of cloud resources to business processes? To do so, we present a novel approach
using a genetic algorithm to select the optimal cloud resource allocations to BPs in
term of quality of service (QoS). We start by an illustrating example (Section 6.2).
Thereafter, we describe how to model cloud resource allocation to BPs (Section 6.3).
In Section 6.4, we present our approach to find the most optimal resource allocation
variant using a genetic algorithm. Finally, we conclude the chapter in Section 6.5.

The work in this chapter was published in conference proceedings [166].

6.2 Illustrating example

We present in the following a scenario (Fig. 6.1) to illustrate our approach. We
consider an organization that is going to deploy their BP on their own cloud envi-
ronment. Such cloud environment offers different cloud resources: c1, c2, n1, n2, n3,

107

108Assisting Cloud Resource Allocation to Business Processes using Genetic Algorithm

s1, and s2. These resources types are: Compute (ci), Network (ni), and Storage (si).
Compute represents a computing resource that encapsulates both CPU and mem-
ory. Network represents a networking entity that forwards data traffic between end
points. Storage is a resource that stores information. Note that we consider only
cloud resources at the infrastructure level. We suppose that these cloud resources are
modeled with Linked-CR ontology (Section 5.3.2) in a knowledge base shared within
an organization.

Figure 6.1: Illustrating example

Figure 6.2: Example: cloud resource allocation variants of the same BP

Cloud Resource Allocation Operator 109

In this chapter, we take into account variants of resource allocation to BPs instead
of variants of BP control flow. Suppose that an organization needs to allocate cloud
resources to BP activities a1, a2, and a3. However, ensuring an optimal resource
allocation in term of quality of service (QoS) might be combinatorial problem due
to the amount of possible allocation variants. For example, the number of possible
cloud resource allocation variants of a1 is 27 = 128 because there are 7 available cloud
resources. Thereafter, the number of possible cloud resource allocations variants for
a1, a2, and a3 is 1283. Figure 6.2 depicts two example of such variants. Solving this
allocation problem is tedious and complex. Thus, we overcome this issue by proposing
an operator to model cloud resource allocation which allows to specify only desirable
allocation variants (Section 6.3). Then, we formalize our problem using a genetic
algorithm in order to obtain an optimal allocation variant with respect to particular
QoS properties.

6.3 Cloud Resource Allocation Operator

In this section, we describe how to model resource allocation to BPs inspired from
our previous work [167]. Each BP activity has different requirements/needs of cloud
resources which could be modeled with variables. Therefore, we propose a cloud
resource allocation operator describes cloud resources allocated to a specific activity.
To do so, we define two parameters for the operation: (i) a connector type and (ii)
a range. We formally define our operator as follow:

Definition 6.3.1 (Cloud resource allocation operator). A cloud resource allocation
operator is denoted as O = {CRO, AO, ct, R} where:

• CRO = {cr1, cr2, ..., crn} is a set of possible cloud resource allocation;

• AO = {a1, a2, ...an} is a set of assigned BP activity;

• ct ∈ {XOR,OR,AND} is a connector type (i.e., gateway);

• Rrt = {(min,max)} is an order pair of range (i.e., allocation guideline) for
connector type OR, rt ∈ {C,N, S} is a cloud resource type (C is compute, N
is network, and S is storage), min and max is the minimum and maximum
number of allocated resources, respectively;

• R = {RC , RN , RS} is a set of ranges for each cloud resource type.

Figure 6.3 shows examples of our operator with its parameters. A connector type
ct parameter can be either a exclusive choice (XOR), a inclusive choice (OR), or
a parallel flow (AND). These connectors have similar behavior as the BP control
flow connectors. Concretely, XOR allows only one cloud resource to be allocated,
AND allocates all resources, and OR allocates one or more cloud resources to be

110Assisting Cloud Resource Allocation to Business Processes using Genetic Algorithm

allocated. A range Rangex parameter represents the minimal and maximum number
of cloud resource needed where x ∈ {C,N, S} is a required resource type. For example,
a1 is assigned to an operator o1 which has type OR, requires from 1 to 2 compute
resources (RC = {1, 2}), and only 1 network resource (RN = {1, 2}). Therefore, cloud
resources allocation variants of o1 are {c1, n1}, {c1, n2}, {c2, n1}, {c2, n2}, {c1, c2, n1},
and {c1, c2, n2}.

rce
 [

r :

erator e:

erator e:

Figure 6.3: Example: configurable resource operators

6.4 Problem Formalization using Genetic Algorithm

In this section, we formalize our problem that aims at ensuring an optimal cloud re-
source allocation to BPs using genetic algorithm. Genetic algorithm is a powerful tool
to deal with combinatorial problems. In large-scale complexity problem, genetic algo-
rithm has been preferred than other approaches such as Linear Integer Programming
(LIP) [168]. Furthermore, it has been successfully applied in many other research
domains. To apply genetic algorithm, we encode the problem in the form of genomes
(Section 6.4.1). Thereafter, we show our genetic algorithm with the assessment of
particular quality of service (QoS) properties in Section 6.4.2.

6.4.1 Genome Encoding

We use a genetic algorithm to find the most optimal cloud resource allocation variant
in BPs. Genetic algorithm [169] is an optimal solution search in which the problem is
encoded in the form of an array which represent individuals. The set of these individu-
als, which constitute a population, is randomly created to represent different points in
the search space. Each individual is evaluated by a fitness function that represent the
degree of goodness. Operators (e.g., crossover, and mutation) are applied to generate
new individuals. This generation continues until a maximum number of generations

Problem Formalization using Genetic Algorithm 111

is achieved or specific conditions are satisfied, then the output is the individual with
the best fitness value as an optimal solution [170].

Our BP model contains a set of activities A and a set of cloud resources CR; and
using our resource allocation operator, each activity ai is associated with multiple
cloud resource allocation variants RAVai (Definition 6.4.1). For example, an activity
a1 (Fig. 6.3) has the following resource allocation variants RAVa1 = {{c1, n1}, {c1, n2},
{c2, n1}, {c2, n2}, {c1, c2, n1}, {c1, c2, n2}}.

Definition 6.4.1 (Resource allocation variant). A set of resource allocation variants
for a BP is denoted as RAVBP = {RAVa1 , RAVa1 , ..., RAVak} where:

• A = {a1, a2, ..., am} is a set of activities;

• CR = {cr1, cr2, ..., crl} is a set of cloud resources;

• RAVai = {RAVai1 , RAVai2 , ..., RAVain} is a set of resource allocation variant
for activity ai. It contains multiple combinations of cloud resources from CR
based on cloud resource allocation operators assigned to ai where n is the number
of possible variants.

We encode multiple cloud resource allocation variants to a genome. The genome
represents an array where the array size is equal to the number of activities. Each
element refers to an activity ai in which its array value is an index into the set of
cloud resource allocation variant RAVai . We apply the standard two-point crossover
operator to generate the populations of genome array. Such operator use previous
populations to produce a new population. We use mutation operator to randomly
select an activity ai (i.e., an index in the genome array) and replaces the array value by
the index to possible resource allocation variant in RAVai . In our example (Fig. 6.3),
the maximum number of resource allocation variants for one activity is 6. Thus, three
bits are enough to express every cloud resource allocation variants (Table 6.1). One
of the possible generated population is 010 0 01 which represents respectively cloud
resource allocation variants RAVa13 = {c2, n1} for the activity a1, RAVa21 = {s1} for
a2, and RAVa32 = {c2} for a3.

6.4.2 Fitness Function

We can now model the problem by means of a fitness function. To do so, we associate
our fitness function to the important quality of service (QoS) properties: cost (CT),
response time (RT) and availability (AT). The two first constraints denote that the
CT and RT of a given BP should be less than maximal thresholds cmax and rmax.
While the last constraint means that the AT should be greater than minimal threshold
referred to as amax.

112Assisting Cloud Resource Allocation to Business Processes using Genetic Algorithm

Activity Cloud resource allocation Bit
variant representation

a1

RAVa11 = {c1, n1} 000
RAVa12 = {c1, n2} 001
RAVa13 = {c2, n1} 010
RAVa14 = {c2, n2} 011

RAVa15 = {c1, c2, n1} 100
RAVa16 = {c1, c2, n2} 101

a2 RAVa21 = {c3} 0

a3

RAVa21 = {c1} 00
RAVa22 = {c2} 01

Table 6.1: Genome encoding of cloud resource allocation variants encoded to genome

CT (BP) ≥ cmax
RT (BP) ≥ rmax
AT (BP) ≤ amax

(6.1)

Thereafter, we define a fitness function (FF) to enable the assessment of these
QoS properties for a given BP described as follows.

FF (BP) = α1 ∗ (cmax− CT (BP)) + α2 ∗ (rmax−RT (BP))

+ α3 ∗ (AT (BP)− amax)
(6.2)

Where α1, α2 and α3 are defined as the weighting factors that belong to the interval
[0,1]. They represent the user preferences w.r.t the QoS properties (α1 +α2 +α3 = 1).

We model our problem by means of a fitness function. The fitness function needs
to maximize the function FF (see Equation 6.2). It is necessary to define a stop
condition for genetic algorithm. Hence, we consider the following condition:

FF (g) ≥ δ (6.3)

where δ is the weighting quality factor (positive real value). The value of δ is
determined by experimentations. A solution represented by a genome is feasible only
if it respects this stop condition. Algorithm 5 shows the steps of our genetic-based
algorithm. Firstly, our algorithm input is a set of cloud resource allocation variants
RAVBP and a δ value. Firstly, we generate an initial bit representation bit based on
the maximum number of cloud resources in RAV (line 1). For example, an initial

Conclusion 113

bit representation for cloud resource allocation variants in Table 6.1 is 6 bits (000
0 00). We start our genetic algorithm with an initial bit in line 2 and return a
bit represented optimal allocation in line 3. In our genetic algorithm (line 4-11), we
compute the fitness function FF from bit (line 5). If the result is less then the δ value,
we apply the crossover operator for obtaining next bit representation by taking into
account previous populations to produce a new population (line 6-7). The mutation
operator randomly selects an activity (i.e., a position in the genome) and randomly
replaces the bit representation with another possible cloud resource allocation variant.
Thus, we recursively call the genetic algorithm function for the next population (line
8). If the result is satisfy with the δ value, the algorithm will return the resource
allocation variant of the bit representation bit (line 9).

Algorithm 5 Energy efficient resource allocation variant construction’s algorithm

Input: RAVBP , δ
Output: bit

1: bit← GenerateAnInitialBit(RAVBP) . Generate an initial bit representation
2: bit ← GENOME(bit, δ) . Start genetic algorithm.
3: return bit . Return an optimal cloud resource allocation variant.
4: procedure genome(bit, δ) . Check if the stop condition is respected
5: while FF (bit) < δ do
6: bit← Crossover() . Apply the crossover operation to the bit
7: bit←Mutation() . Apply the mutation operation to the bit
8: GENOME(bit, δ) . Recuresive call for the next population.
9: end while

10: return bit . Return an optimal cloud resource allocation variant.
11: end procedure

6.5 Conclusion

In this chapter, we answered the research questions raised in the thesis problematic
which is: R5: How to solve optimal allocation of cloud resources to business processes?.

We proposed an approach that aims at ensuring an optimal cloud resource allo-
cation to BPs. We reuse our previous work [167] to model cloud resource allocation
to BP models. Thereafter, we apply our genetic-based approach to guarantee, on the
one hand, the selection of the process variant which best fits to the organization’s
branch requirements, and optimize on the other hand the QoS impact.

The approach we present in this section respects our principles introduced in
Section 1.4.1:

114Assisting Cloud Resource Allocation to Business Processes using Genetic Algorithm

• Automation: We propose an automated approach find the optimal cloud re-
source allocation to BPs using genetic algorithm.

We validate our approach by performing experiment (Section 7.3.3) to compare our
genetic-based approach with LIP which is a broadly used mathematical optimization
program [171].

Chapter 7

Evaluation and Validation

Contents

7.1 Introduction . 115

7.2 Proof of Concept . 116

7.2.1 BP variant design support application 117

7.2.2 Cloud resource knowledge base populating application 119

7.3 Experimentation . 119

7.3.1 Modeling and mining business process models experiments 119

7.3.1.1 Approach feasibility . 120

7.3.1.2 Approach accuracy . 121

7.3.2 Modeling and mining process event logs experiments 122

7.3.2.1 Setting the testbed . 122

7.3.2.2 Recommendation evaluation 123

7.3.3 Solving optimal cloud resource allocation to business process variants124

7.3.4 Modeling cloud resources . 126

7.3.4.1 Qualitative evaluation . 126

7.3.4.2 Quantitative evaluation 126

7.4 Conclusion . 128

7.1 Introduction

In this chapter, we present (i) a prototype as a proof of concept to realize our auto-
mated approaches to assist the design of BP variants and populate a knowledge base
of heterogeneous process data (i.e., BP models and process event logs) and cloud
resources, and (ii) experiments that we have conducted to evaluate the efficiency of
our solutions. Our objective is to prove that our approach is feasible and accurate in
real use-cases.

Basically, we implemented two proof of concepts:

115

116 Evaluation and Validation

• A BP variant modeling application by extending Signavio Process Editor1. It
assists the design of BP variants by recommending BP fragments. Its imple-
mentation is based on the ontologies and algorithms developed in Chapter 3
and 4.

• An application that populates a knowledge base of cloud resources. Its imple-
mentation is based on the ontologies and algorithms developed in Chapter 5.

Regarding the validation of our approach, we have performed experiments on large
public datasets and real use cases.

• For the automated support of BP variant design by exploiting heterogeneous
BP models, we used two large public dataset of real BPs: (i) SAP reference
models [75], (ii) and BP models [76] shared by the IBM Business Integration
Technologies (BIT) team. We showed that our approach is feasible in realistic
situations by providing the recommendation results. We also proved that our
approach is accurate by evaluating its precision and recall metrics.

• For the automated support of BP variant design by exploiting heterogeneous
process event logs, firstly we evaluated our proposed ontologies by comparing
process event representation to their standards. Secondly, we evaluated our
recommendation approach by using simulated logs generated from the SAP
reference models. We showed that our approach is feasible and accurate by
evaluating its precision and recall metrics.

• For the optimal cloud resource allocation to BP variants, we compare our ap-
proach with another technique, Linear Integer Programming (LIP) [168]. We
showed that our approach performs better than LIP when a large number of
cloud resources are considered.

• For modeling heterogeneous cloud resources, firstly we evaluated our ontologies
by comparing ontology concepts to classes from cloud resource description stan-
dards. Thereafter, we showed that our approach is feasible by applying it on
use cases identified in different standard specifications.

We present in Section 7.2 our two implemented proof of concepts. The experiments
and related discussion are presented in Section 7.3. Finally, we conclude the chapter
in Section 7.4.

7.2 Proof of Concept

In this section, we present the proof of concepts that we have developed to realize our
approach. Our approach aims to enable interoperability of heterogeneous process data

1https://code.google.com/p/signavio-core-components/

Proof of Concept 117

(i.e., BP models and process event logs) and cloud resources between an organization’s
branches. Thereafter, we exploit such data to design BP variants. To do so, we have
developed prototypes to populate a common knowledge base using heterogeneous
process data and cloud resources as input (Figure 7.1). We have extended Signavio
application for assisting BP variant design by populating and mining process data in
our knowledge base (Section 7.2.1). Secondly, we present an application that offers
populating a knowledge base from heterogeneous cloud resources (Section 7.2.2).

Figure 7.1: Our prototypes

7.2.1 BP variant design support application

Our approach provides means for BP variant design by recommending BP fragments
that are relevant to selected positions of an under-design BP. Such recommended BP
fragments are retrieved from a knowledge base of heterogeneous process data. In order
to validate our approach, we extend the Signavio Process Editor as a proof of concept
to support BP variant design by recommending appropriate BP fragments. Signavio is
an open-source Web-based application for editing BPs in BPMN. As Signavio is Web-
based, it is prone to be a cloud-based application. Our developed application can be
found at http://www-inf.it-sudparis.eu/SIMBAD/tools/BPVariant-modeling/.
We have added new functionalities to the Signavio which are highlighted in the screen-
shot of Fig. 7.2.

Originally, only BPMN is supported by Signavio (area 6). Hence, we have en-
hanced it to also support EPC (area 1). To populate a knowledge base of heteroge-
neous process models (Chapter 3), we provide three properties for each BP element

118 Evaluation and Validation

Figure 7.2: A screen-shot of our BP variant design support application

for semantic annotation as follows: (i) semantic instance representing the instance
identifier in a knowledge base, (ii) meta-model annotation representing the BPMO
concept, and (iii) domain-specific annotation representing the domain-specific con-
cept. Users may semantically annotate a BP element by specifying these properties.

Furthermore, we provide a functionality to recommend process fragment based
on neighborhood context matching based on ontologies and algorithms in Chapter 3
and 4 as a plugin in Signavio. Users may select a task from an under design BP in
area 1, then click on the recommendation plugin (through the button highlighted in
area 3). Area 4 illustrates the fragment of the business process model. Thereafter,
the recommended process fragments and their matching degrees will be showed in
area 5 and 6. Area 5 shows a list of BP fragments recommendations retrieved from
the knowledge base. Area 6 shows the recommended BP fragment selected from the
recommendation list.

After the construction of a semantically annotated BP model in Signavio, it is
automatically stored as a set of RDF triples [160] in a knowledge base (represented as a
triplestore database). OpenLink Virtuoso2, a well-known opensource database engine
for triplestores, is used as a triplestore. We extended Signavio with a functionality
allowing it to access OpenLink Virtuoso triplestore using the Virtuoso Jena Provider
API [172]. Hence, we can retrieve information from our knowledge base using a
SPARQL endpoint provided by OpenLink Virtuoso. To recommend BP fragments,
we assume that a knowledge base has already been populated by different BP models
which can be done using this application.

2http://virtuoso.openlinksw.com/

Experimentation 119

7.2.2 Cloud resource knowledge base populating application

We develop a prototype as a proof of concept to populate an ontology-based knowl-
edge base from cloud resources described using different standards. Concretely, we
use OWL3 ontology language to develop Standard-specific ontologies and Linked-CR via
Protege4, an open source ontology editor. Thus, our prototype stores the knowl-
edge base as RDF triples modeled with these ontologies. Our prototype accesses the
triplestore via Virtuoso Jena Provider API [172]. This API facilitates retrieving and
manipulating the data in our knowledge base using SPARQL.

Cloud providers may use our application to import their cloud resource descrip-
tions and thus populate the knowledge base using Standard-specific ontologies and Linked-

CR. Once cloud resource descriptions have been stored in the knowledge base, cloud
users (e.g., organizations) may retrieve and manipulate these resources through SPARQL
queries. Users can also define links between cloud resource descriptions at this point
in order to share existing resources and thus enable interoperability between organi-
zations. Developed prototype can be found at http://www-inf.it-sudparis.eu/

SIMBAD/tools/linked-cr/

7.3 Experimentation

In this section, we present the experiments that we performed to evaluate our two
dedicated approaches for: (i) assisting BP variant design by exploiting heterogeneous
process data (i.e., process models and process event logs) and (ii) optimal allocation of
heterogeneous cloud resource to BPs. We firstly present the experiments for assisting
the BP variant design by modeling and mining BP models (Section 7.3.1) and process
event logs (Section 7.3.2) in a shared knowledge base. We evaluate our approach
to optimally allocate cloud resources to BPs in Section 7.3.3. Thereafter, we show
the evaluation on modeling heterogeneous cloud resources in our knowledge base
(Section 7.3.4).

7.3.1 Modeling and mining business process models experiments

In order to evaluate the approach presented in Chapter 3, we conducted several ex-
periments to prove that our approach is feasible in real use cases and assesses its
accuracy in retrieving similar BP fragments from the knowledge base having similar
neighborhood contexts from a large collection of heterogeneous BP models. Con-
cretely, we populated a shared knowledge base with BP models annotated with BPMO
and domain-specific ontology, namely Suggested Upper Merged Ontology (SUMO)5.
SUMO is a formal public domain ontology mainly used for research. We implemented

3OWL is a knowledge representation language [173]
4 http://protege.stanford.edu/
5http://www.adampease.org/OP/

120 Evaluation and Validation

a script to extract BP fragments from the knowledge base. Thereafter, BP Fragments
are represented in the knowledge base with our NCFO ontology. Finally, we devel-
oped a tool to compute the matching between BP fragments for recommendations.
To do so, we considered two datasets having different modeling languages (EPC and
BPMN):

1. Dataset 1 containing 205 EPC processes from the SAP reference models [75]
represented in EPML (EPC Markup Language) format. In average, there are
4.2 functions, 4.2 start events, 6 end events, 14.2 events, 7.3 logical connectors
and 25.9 flows per one process.

2. Dataset 2 containing 850 BPMN process models [76] shared by the IBM Busi-
ness Integration Technologies (BIT) team. In average, there are 11.3 activities,
2.6 start events, 3.4 end events, 19 gateways and 46.8 flows per one process.

We conduct two experiments to evaluate the feasibility (Section 7.3.1.1) and the
recommendation accuracy (Section 7.3.1.2) of our approach.

7.3.1.1 Approach feasibility

BP fragments are extracted from the datasets. We consider matching degrees between
BP fragments within the same dataset only because the two datasets do not have the
same type of deliverable services. We consider the size of fragments as zone = 1, and
compute the matching degrees between fragments in the same dataset. For dataset 1,
814/870 fragments from the knowledge base (93.6%) have matching values with others
greater than 0, in which 76.3% have matching values greater than 0.5 and 32.6% have
matching values belonging to [0.9,1.0]. For dataset 2, 4373/4466 fragments from the
knowledge base (97.9%) have matching values with fragments greater than 0, in which
1889 (43.2%) have matching values greater than 0.5 and 168 fragments (3.8%) have
matching values belonging to [0.9,1.0].

In another experiment, for each BP fragment, within the fragment’s size (zone ≤
3), we calculate the average number of recommended BP fragments that have match-
ing values greater than a given threshold. With 0.8 as threshold, for each frag-
ment, our approach recommends on average 21.3 fragments for the first dataset (see
Fig. 7.3a), while for the second dataset (see Fig. 7.3b) the recommendation average is
6.05 fragments. We also notice that the average number of recommended fragments
decreases when the threshold increases.

Our experiments, using a knowledge base populated from real and heterogeneous
BP models, show that our approach is feasible in realistic situations. Therefore,
similar BP fragments can be retrieved. Hence, BP variant designer can use this
recommendation approach to facilitate the design of new BP variants by retrieving
similar process fragments within an organization.

Experimentation 121

21.3

10.8
8.4 7.0 5.8

0

10

20

30

0.5 0.6 0.7 0.8 0.9

A
vg

. o
f r

ec
om

m
en

d
fr

ag
m

en
ts

Threshold

(a) Dataset 1

108.8

23.8 18.4
6.1 0

0

50

100

150

0.5 0.6 0.7 0.8 0.9

A
vg

. o
f r

ec
om

m
en

d
fr

ag
m

en
ts

Threshold

(b) Dataset 2

Figure 7.3: Average number of recommendation

7.3.1.2 Approach accuracy

We use the domain-specific ontology annotation as the ground-truth data for Precision
(i.e., the rate of relevant recommended BP fragments) and Recall (i.e., the fraction
of relevant BP fragments that are recommended) computation. To do so, for each
fragment in each semantic BP model, we consider its root task as unknown. We
then consider its recommended fragments. These fragments should have root tasks
annotated to the same domain-specific concept.

Concretely, let’s consider a selected fragment having a root task r in a process
P . r appears in n processes. The recommendation results for this selected fragment,
consist of l fragments from the knowledge base. Among them, we consider t ≤ l as the
number of fragments having root task domain equivalent to r. Precision and Recall
are computed as follows (Equation 7.1 and 7.2 respectively).

Precision =
t

l
(7.1)

Recall =
t

n
(7.2)

We conduct the precision/recall evaluation on the first dataset by retrieving rec-
ommendation for each fragment in each BP model. We vary the number of recom-
mended fragments 5 to 1. Furthermore, we consider the matching in the first zone to
ignore the noise of the irrelevant tasks in further zones. We compute Precision and
Recall for only fragments having a root task that appear in at least 10 semantic BP
models from the knowledge base. Consequently, 29 tasks selected as root tasks and
267 processes are considered for our experiments.

The average Precision and Recall values are shown in Fig. 7.4. The Precision
value increases when the number of recommended fragments decreases which means
that the relevant fragments are mostly part of the recommended fragments. However,
the Recall value is not very high due to the fact that the number of recommended
fragments is much more smaller than the relevant fragments.

122 Evaluation and Validation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5

Pr
ec

is
io

n
&

 re
ca

ll
va

lu
es

Number of recommendation

precision recall

Figure 7.4: Precision and recall values

7.3.2 Modeling and mining process event logs experiments

In the following, we present the experimentation efforts made to validate our ap-
proach in Chapter 4. We first provide in Section 7.3.2.1 a testbed for our recom-
mendation evaluation and an evaluation of our proposed ontologies. Thereafter, we
use this testbed to experiment the feasibility of our recommendation approach in
Section 7.3.2.2.

7.3.2.1 Setting the testbed

As a testbed for our approach evaluation, we populate a knowledge base of heteroge-
neous process event logs represented by our ontologies. We used simulated logs from
realistic business processes to develop a shared knowledge base between organization’s
branches. The advantage of using simulated logs is that it is possible to vary external
factors (e.g., user, timestamp) and thus to ensure a better diversity of examples and
a more accurate validation.

We performed experiments on a large public dataset [174] which contains 186
different SAP reference models in EPC. We developed a script to transform SAP BP
models to Colored Petri Nets (CPN) format and used a high-level Petri net tool,
known as CPN Tools6, to simulate the execution of these BP models and generate
XES process event logs7. Table 7.1 provides more details about the generated logs.

On top of the generated logs, we use a heuristic mining technique to discover C-
net BP models and then extract BP fragments. Thereafter, we represent discovered
C-nets and C-net fragments in our knowledge base using Linked-CN and NCFO,
respectively. Afterwards, we deploy our knowledge base on an open-source triple-
store database, namely OpenLink Virtuoso.

6http://wiki.daimi.au.dk/cpntools/cpntools.wiki
7Our dataset in EPC, CPN and XES format are published at: http://www-inf.it-sudparis.

eu/SIMBAD/tools/semantic_cnet_fragment/dataset/

Experimentation 123

Min. Max. Average
No. of start events in an instance 1 9 1.68
No. of end events in an instance 1 11 2.60
No. of events in a process 2 28 5.32
No. of executions for each process model 52 299 178.9
No. of occurring events in a process 40 2910 425.23

Table 7.1: Dataset details

One of the most common approaches for evaluating ontologies is comparing them
to a gold standard [175]. This can be done by checking the coverage of concepts
defined in ontologies with classes defined in standards. In our case, the fundamental
goal of this work is to semantically represent and share process event log fragments
among organization’s branches. Therefore, we build Linked-CN and NCFO based
upon two standards: XES and Causal Net Modeling language. Hence, we evaluate
our ontologies by analyzing their coverage to these two standards. We determine the
coverage by checking if a standard class can be represented by our ontology concept
or not. The results summarized in Table 7.2 show that we cover all classes of these
two standards.

Standard Classes Covered Ratio
XES Log, Trace, Event, Attribute 7 100%

Nested Attribute, Global Attribute
Event Classifiers

Causal Causal net, Activity, Start activity 7 100%
Net End activity, Input binding

Output binding, Dependency relation

Table 7.2: Linked-CN and NCFO coverage to standards

7.3.2.2 Recommendation evaluation

Using our knowledge base, we evaluate the number of recommended BP fragments for
different activity fragments with a fragment size (zone) varying from 1 to 5. Fig. 7.5
shows the percentage of fragments that has at least 1 recommended fragment with a
similarity value greater than 0, 0.5, and 0.8. Concretely, our experiments show that
56.49% fragments have at least one similar fragment (i.e. similarity value greater
than 0) with zone number between 1 and 5. For zone = 1, 36.64% fragments with a
similarity value greater than 0.5 and 30.92% fragments with a similarity value greater
than 0.8 were recommended. Moreover, the percentage of recommended BP fragments
decreases when the zone number increases because BP fragments contain more and
more different neighbor activities. The obtained results indicate that our approach
provides recommendations for the majority of fragments as we can retrieve similar
fragments for more than 50% of fragments in average. This shows that our approach

124 Evaluation and Validation

is feasible and can be applied to assist BP variant design.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

zone = 1 zone = 2 zone = 3 zone = 4 zone = 5

Pe
rc

en
ta

ge
s o

f p
ro

ce
ss

 fr
ag

m
en

t

Similarity value

> 0
>= 0.5
>= 0.8

Figure 7.5: Percentage of recommended BP fragments

We also evaluate the accuracy of our approach based on precision and recall met-
rics. The primary objective is to retrieve fragments that are likely relevant (i.e., high
precision) and to retrieve potentially relevant fragments (i.e., moderate recall). We
measure the precision based on the root activity, i.e., a recommendation is precise
if recommended fragment and selected fragments have the same root activity. Con-
cretely, consider a fragment having root activity a as a selected fragment P . The
recommendation for P consists of l fragments, in which t fragments having root ac-
tivity a. Hence, Precision = t

l . Assume that n fragments have a as a root activity.
Therefore, Recall = t

n . We compute the precision and recall values on top-N rec-
ommended fragments for each selected fragment. We performed the experiment with
zone equals to 1 and on activities that appear in at least 10 different BPs. The
results (see Fig. 7.6) show that we obtain good precision values (from 0.55 to 0.54).
We also obtain moderate recall values (0.34 at top-10 fragments recommendation).
Recall values increase when we increase the number of recommended fragments N
which means that we can retrieve more relevant fragments when the number of rec-
ommended fragments increase. These results show that our approach is accurate
enough to be applied in real use-cases.

7.3.3 Solving optimal cloud resource allocation to business process
variants

To validate our cloud resource allocation approach, we present a comparison with
LIP which is a broadly used mathematical optimization program [171]. For this end,
we study the growth of our algorithm computation time comparing to the number of
consumed resources per process variant. Concretely, we generate 5 variants from our
configurable process model having number of assigned cloud resources per activity
from 4 to 20. In addition, we maximize the inclusive choice (OR) resource operators

Experimentation 125

0.00

0.10

0.20

0.30

0.40

0.50

0.60

1 4 7 10Pr
ec

is
io

n
an

d
R

ec
al

l v
al

ue
s

Top-N fragment recommendation

Precision
Recall

Figure 7.6: Precision and recall values

to increase the complexity. For example, having 8 cloud resources allocated to an
activity can imply 255 possible resource allocation variants.

Fig. 7.7 depicts the results of our comparison. It shows that when the number
of assigned cloud resources per activity is small (4-12), LIP marginally outperforms
our genetic-based approach. However, when the number of cloud resources becomes
higher (16-20), our genetic-based approach is able to keep its computation time al-
most constant while LIP performs an important exponential growth. For instance, if
the activity allocates 20 resources, the computation time of our genetic algorithm is
700ms, whereas the computation time related to LIP algorithm reaches 14000ms.

0

2000

4000

6000

8000

10000

12000

14000

16000

4 8 12 16 20

C
om

pu
ta

tio
n

tim
e

(m
ill

is
ec

on
d)

Number of assigned cloud resources per activity

Genetic-based
approach

Linear integer
programming

Figure 7.7: Comparing Genetic-based approach with Linear integer programming

Therefore, the LIP algorithm can be efficient only when the problem is not com-
plex. We can conclude that our genetic-based approach should be preferred than LIP
in case where have a large number of cloud resources that can be assigned to process
activities. We refer herein to the case of large-scale service-based business processes.

126 Evaluation and Validation

7.3.4 Modeling cloud resources

In this section, we present the experiments to validate our approach in Chapter 5.
We evaluate our proposed ontologies in qualitative aspect (Section 7.3.4.1) and quan-
titative aspect (Section 7.3.4.2).

7.3.4.1 Qualitative evaluation

We compare concepts in an ontology to classes in a standard to indicate the overall
coverage and deviations to standards. We define four ontologies, namely sTOSCA,
sOCCI, sCIMI, and Linked-CR based upon three standards: TOSCA, OCCI and CIMI.
Hence, we evaluate our ontologies by analyzing their coverage to these standards. The
results summarized in Table 7.3 show that we have a complete coverage of standard
classes related to cloud resource at the infrastructure level.

Standard Concepts Covered Ratio

TOSCA 11 11 100%

OCCI 11 11 100%

CIMI 8 8 100%

Average 100%

Table 7.3: Ontology concept coverage to standards

We also evaluate the deviations, i.e., the difference of concepts between an ontology
and a standard, of Linked-CR concepts comparing to these three standards. In fact,
we have identified common concepts between Standard-specific ontologies when develop-
ing Linked-CR since it is an upper level representation of these ontologies. We found
that Linked-CR cannot describe all the concepts defined in Standard-specific ontologies.
For example, cr:NetworkPort represents common concepts st:Port and sc:NetworkPort.
However, this resource type cannot be represented in sOCCI unless using so:Mixin to
create a new resource instance for network port (cr, st, and so namespaces associate
to Linked-CR, sTOSCA, and sOCCI, respectively).

Table 7.4 shows the deviations of concepts in Linked-CR comparing to concepts
in standard-specific ontologies. The results show that we have a high coverage (on av-
erage 80.7%) of our common Linked-CR over standard-specific ontologies concepts. This
good coverage indicates that Linked-CR although it drastically reduces the number of
concepts (from 30 standard-specific ontologies concepts to 7 Linked-CR concepts), ensures
minimum semantic loss.

7.3.4.2 Quantitative evaluation

In order to quantitatively evaluate our approach, we use ten use cases identified
in the different standard specifications [9, 131, 135]: 4 use cases from TOSCA, 4

Experimentation 127

Linked-CR

Common Deviating Coverage
Standard concepts concepts ratio

TOSCA 9 2 81.8%

OCCI 8 3 72.7%

CIMI 7 1 87.5%

Average 80.7%

Table 7.4: Linked-CR concept deviations from standards

use cases from OCCI and 2 use cases for CIMI. We use our prototype to construct
RDF triples upon these use cases using the Standard-specific ontologies. Thereafter,
we translate these RDF triples to other standards using predefined inference SWRL
rules (Section 5.3.3). The number of RDF triples after translation and the coverage
percentage of RDF triples by the translation rules are shown in Table 7.5. The
results show that most of the triples are covered by the translation rules apart from
the translation between sTOSCA and sOCCI because of their limitation. We also found
that all use cases are completely translated to Linked-CR which means the deviating
concepts (Table 7.4) are not often used (e.g., cr:NetworkPort and st:Port). In conclusion,
our evaluation shows that practically Linked-CR is semantically rich enough to model
heterogeneous cloud resources. We publish use cases and their RDF triples at http:

//www-inf.it-sudparis.eu/SIMBAD/tools/linked-cr/.

TOSCA use cases
sTOSCA sOCCI sCIMI Linked-CR

No. of RDF triples 88 64 58 58

Coverage by the translation rules 100.0% 93.2% 100.0% 100.0%

OCCI use cases
sOCCI sTOSCA sCIMI Linked-CR

No. of RDF triples 35 27 29 29

Coverage by the translation rules 100.0% 85.2% 100.0% 100.0%

CIMI use cases
sCIMI sTOSCA sOCCI Linked-CR

No. of RDF triples 18 23 38 18

Coverage by the translation rules 100.0% 100.0% 100.0% 100.0%

Table 7.5: Numbers of RDF triples after translation

128 Evaluation and Validation

7.4 Conclusion

In this chapter, we presented the implementations and experiments conducted to
validate our contribution. Two applications have been implemented proving that our
approach is feasible.

Regarding the modeling and mining of process data (i.e., BP models and process
event logs) in a knowledge base, we performed experiments on large datasets. Exper-
imental results showed that our approach recommends comprehensible BP fragments
of low complexity. They also showed that the recommended BP fragments are accu-
rate.

Regarding our genetic-based approach to solve optimal cloud resource allocation to
BP variants, we compare our proposed approach with a broadly used mathematical
optimization program, i.e., LIP. The results showed that our approach should be
preferred than LIP in when having a large number of cloud resources that can be
assigned to BP activities.

For modeling heterogeneous cloud resources in our knowledge base, we firstly
compared our proposed ontologies to standards. The results showed that we have
a complete coverage. Thereafter, we applied our approach on use cases identified
in different cloud resource description standards. Experimental results showed that
our approach is adequate for describing and translating descriptions of heterogeneous
cloud resources.

Chapter 8

Conclusion and Future Works
G

The research problem of this thesis is expressed by this question: How to support
business process variant design in cloud environments? Previous chapters presented
our solutions to answer the raised interrogation. In this chapter, we summarize our
work (Section 8.1) and present the future work (Section 8.2).

8.1 Contributions

More and more organizations are adopting PAIS on cloud environments, especially
large organizations having multiple branches situated in different regions. Such or-
ganizations need to support many BP variants and provision large amount of cloud
resources. Thus, BP models need to be flexibly adjustable to derive individual BP
variants that suit particular requirements. In addition, cloud resources consumed by
these BP variants need to be effectively allocated and shared within an organization to
optimize costs. These challenges are considered in many researches at both academic
and industry level.

Contemporary approaches tackle these challenges in different ways. They have
proposed to support BP design by using process templates or finding similar BPs using
graph matching. However, theses approaches mainly study conceptual BP models and
take into account the entire BP topology which is labor-intensive and often the cause
for error-prone and time consuming BP variant design. Moreover, they do not consider
the allocation of cloud resources consumed by BP variants. To address these issues,
we proposed in this thesis an approach to support BP variant design by exploiting
heterogeneous process data (i.e., BP models and process event logs). Furthermore,
we proposed an approach to optimally allocate cloud resources to BP variants using
genetic algorithm.

In this thesis, we addressed the problems of modeling heterogeneous process data
and cloud resources by using ontologies. We reused and extended ontologies from the
European project SUPER to describe heterogeneous process data. These heteroge-
neous process data are represented using ontologies and stored in a shared knowledge
base to offer means for reusing these data.

129

130 Conclusion and Future Works

We proposed to use our knowledge base as a data-source for assisting BP variant
design. To do so, we recommend relevant BP fragments (i.e., a set of activities and
their relations) for selected positions on an under design BP model.

We proposed to compute the similarity between BP fragments by matching their
neighborhood contexts. The recommendation results are based on these computed
similarities. Our approach extracts fragments from BP models and process event logs.
Thereafter, our approach assists finding suitable BP fragments that can be plugged-in
into selected positions of BP models.

We have also developed ontologies to describe cloud resources based on different
cloud resource description standards. These heterogeneous cloud resources are stored
in a shared knowledge base to offer means for reusing.

We proposed to adopt a genetic algorithm to ensure the optimal cloud resource
allocation to BP variants. We proposed a modeling operator to describe possible
cloud resource allocations to BP activities. We derived possible variants of cloud
resource allocation from this operator. Thereafter, we adopt a genetic algorithm by
encoding such variants to a genome in the form of array which represent individuals.
We apply genetic operators (i.e., crossover, and mutation) to randomly generate new
individuals (i.e., cloud resource allocation variant). Each individual is evaluated by
a fitness function that represents the degree of goodness. Finally, we identify the
individual (i.e., cloud resource allocation variant) with the best fitness value as an
optimal solution.

In order to validate our approach, we have developed two applications: (i) BP
variant design support application, and (ii) cloud resource knowledge base populating
application. The first application demonstrates modeling heterogeneous process data
using ontologies and recommendation technique for BP variant design. The second
application demonstrates modeling heterogeneous cloud resources using ontologies.
We performed different experiments on a real public dataset and use cases identified
in different cloud resource description standards. Experimental results showed that
our approach is feasible and accurate (according to obtained precision matrices).

Hence, the principles that we have set in Section 1.4.1 are respected:

• Heterogeneous data modeling: We proposed to adopt and extend exist-
ing ontologies to model heterogeneous process data. Moreover, we developed
our ontologies based on different standards to describe heterogeneous cloud re-
sources.

• Automation: We proposed an automated approach to construct a knowledge
base from heterogeneous process data. Similar BP fragments can be automati-
cally retrieved from our knowledge base to facilitate the design of BP variants.
We also proposed a genetic-based approach to optimally allocate cloud resources
to BP variants. Furthermore, we proposed an automated approach to construct
a knowledge base of heterogeneous cloud resources using our ontologies.

Future work 131

• Implicit knowledge exploitation: We utilized existing and accessible process
data shared within an organization as a data-source to design BP variants.
Furthermore, we solved the optimal cloud resource allocation to BP variants
using cloud resources and BP models shared within an organization.

• Focused results: We exploited the relation between activities to measure the
similarity matrices between BP fragments. Therefore, we assist the design of BP
variants by recommending BP fragments based on this similarity computation.

8.2 Future work

In the future work, we aim at improving the quality of automated support (Sec-
tion 8.2.1) and at supporting cloud resource allocation for BPs (Section 8.2.2).

8.2.1 Improving the quality of automated support

Currently, our work takes into account the control-flow of BPs, execution paths of
process event logs, and task functionality by its annotated specific-domain ontology.
In our future work, we intend to extend our approach by taking into account other
important perspectives such as the resource and data perspectives. We intend to
associate our approach to existing works related to different perspectives, for example,
resource modeling in BP [176] and BP role-based approaches [177,178].

Moreover, we aim to improve our BP fragment matching by using multiple criteria.
So far we consider that two tasks are similar in term of the functionality if they are
semantically annotated with the same concept from a domain-specific ontology. In the
future, we will construct a vector of task characteristics, including name, description,
location, input, output, etc. Thereafter, the matching between two characteristic
vectors will precisely improve our BP fragment similarity computation.

Currently, we match only connection flows having similar begin and end tasks in
the same fragment layer (i.e., the number of tasks from the shortest path relation
to the root task). We do not take into account the connection flow in different
layers. This may miss some meaningful information that would improve the quality
of our matching algorithm. Thus, we will extend our matching algorithm by matching
connection flows from different layers.

8.2.2 Modeling for cloud resource allocation to business process vari-
ants

We have exploited the elasticity of cloud resources by effectively allocating heteroge-
neous cloud resources to BPs. Concretely, we have proposed a genetic-based approach
to identify an optimal cloud resource allocations for BP variants. We have also pro-
posed a semantic framework that populates a common knowledge base of heteroge-
neous BPs and cloud resources. However, the link (e.g., allocation and consumption)

132 Conclusion and Future Works

between BPs and cloud resources have not been yet defined. Therefore, we aim to
propose an ontology-based approach to model cloud resource allocations to BPs. Ex-
isting works have provided models for cloud resource perspective of BPs [179, 180].
Hence, we can integrate such models into our work for modeling BPs taking into
account their cloud resources allocation. Thereafter, BPs and their cloud resource
allocation could be shared and interoperated between an organization’s branches.

Appendices

133

Appendix A

Business Process Model and
Notation (BPMN)

Business Process Model and Notation (BPMN), formerly known as Business Pro-
cess Modeling Notation, has been introduced by Business Process Management [124].
BPMN provide a standard specification to create and document BP models. It is
widely used in industries as the de facto BP modeling notation. BPMN in latest
versions has been semantically enhanced to enable the execution of BP models.

 to
 a

nd

Figure A.1: Example: BPMN model

BPMN provides a rich set of elements to capture different perspectives of the
BP. The BPMN elements can be categorized into four categories: (i) flow objects,
(ii) connecting objects, (iii) swimlanes, and (iv) artifacts. Flow Objects represents
the control flow perspective of a BP in terms of activities, events, gateways, and
sequence flow. Figure A.1 depicts an example of BP at the control flow perspective.
An activity is the main element of a BP model describing the task that must be
done. It is graphically represented as a rectangle. An event represents something
that happens during the execution of a BP which consists of three main types: Start,
Intermediate, and End event. An event can also be specialized to other types, such as,
Message event that can either send a message to a communication partner or react
on the arrival of message, and Error event that reacts on a canceled transaction. An
event is graphically represented with a circle. A gateway represents the split (from
one control flow to two or more flows) and join (from two or more control flows to

135

136 Business Process Model and Notation (BPMN)

one flow) paths in the BP model which consists of three main types: AND (parallel
forking and synchronization), XOR (exclusive choice and merging) and OR (inclusive
choice and merging). A gateway can also be specialized into other types, such as,
event-based gateway, and complex gateways. However, they can still mapped to AND,
XOR, and OR. The flow objects elements are connected through the sequence flow
elements that determine the order of activities that will be performed in a BP model.
Lastly, the Artifacts, Swimlanes and other elements represent the resource and data
perspectives in the BP.

Appendix B

Event-driven Process Chain
(EPC)

Event-driven Process Chain (EPC) is a widespread process modeling technique adopted
by many Process-Aware Information Systems (PAISs), such as, Enterprise Resource
Planning (ERP) systems, and Workflow Management (WFM) systems [125]. Origi-
nally, EPC has been introduced in the early 1990s in the framework of Architecture
of Integrated Information Systems (ARIS) [181].

 to
 a

 c

Figure B.1: Example: EPC model

The EPC elements can be categorized into many categories. However, the main
control flow elements are categorized into four types: (i) Function, (ii) Event, (iii)
Logical connector, and (iv) Control flow. An event represents a circumstance/state of
a function/process. It is graphically represented with a hexagon. Typically, an EPC
model starts with an event and ends with an event. A function represents the task
or activity and describes a transformation from an initial state to a resulting state.
It is graphically represented with a rounded rectangle. A logical connector represents
a split from one control flow to two or more flows, and to synchronize from two or
more control flows to one flow. It consists of three main types: AND (Fork/Join),
XOR (Branch/Merge) and OR. Lastly, a control flow connects events with functions,
or logical connectors creating sequence between them.

137

138 Event-driven Process Chain (EPC)

Appendix C

List of Publications
Journal Article

1. Karn Yongsiriwit, Nour Assy and Walid Gaaloul, A Semantic Framework for
Multi-tenant Business Process Design, Journal of Networking and Computer
Applications published by Elsevier 59, 168-184 (2016).

Conference Proceeding

1. Karn Yongsiriwit, Mohamed Sellami, Walid Gaaloul, A Semantic Framework

Supporting Business Process Variability Using Event Logs, 13th International
Conference on Services Computing, IEEE SCC 2016, San Francisco, USA, June
27 - July 2, 2016.

2. Karn Yongsiriwit, Mohamed Sellami, Walid Gaaloul, A Semantic Framework

Supporting Cloud Resource Descriptions Interoperability, 9th International Con-
ference on Cloud Computing, IEEE CLOUD 2016, San Francisco, USA, June
27 - July 2, 2016.

3. Emna Hachicha, Karn Yongsiriwit, Walid Gaaloul, Energy Efficient Config-

urable Resource Allocation in Cloud-Based Business Processes, 13th Interna-
tional Conference on Cooperative Information Systems, CoopIS 2016, Rhodes,
Greece, October 24 - 28, 2016.

4. Karn Yongsiriwit, Mohamed Sellami, Walid Gaaloul, Semantic Process Frag-

ments Matching to Assist the Development of Process Variants, 12th Interna-
tional Conference on Services Computing, IEEE SCC 2015, NY, USA, June 27
- July 2, 2015.

5. Karn Yongsiriwit, Nguyen Ngoc Chan, Walid Gaaloul, Log-Based Process Frag-

ment Querying to Support Process Design, 48th Hawaii International Conference
on System Sciences, HICSS 2015, Kauai, Hawaii, USA, January 5-8, 2015.

6. Nguyen Ngoc Chan, Karn Yongsiriwit, Walid Gaaloul, Jan Mendling, Mining
Event Logs to Assist the Development of Executable Process Variants, 26th In-
ternational Conference on Advanced Information Systems Engineering, CAiSE
2014, Greece, June 16-20, 2014.

139

140 List of Publications

7. Nour Assy, Karn Yongsiriwit, Walid Gaaloul, Imen Grida Ben Yahia, A Frame-

work for Semantic Telco Process Management-An Industrial Case Study, 14th

International Conference on Intelligent Systems Design and Applications, IEEE
ISDA 2014, Okinawa, Japan, November 27-29, 2014.

Bibliography
[1] F. Gottschalk. Configurable Process Models. Phd thesis, Eindhoven University

of Technology, December 2009.

[2] Remco Dijkman, Marlon Dumas, and Luciano Garcia-Banuelos. Graph match-
ing algorithms for business process model similarity search. In BPM ’09.

[3] Craig Schlenoff, Michael Gruninger, Taddle Creek, Mihai Ciocoiu, and Jintae
Lee. The essence of the process specification language. Transactions of the
Society for Computer Simulation, 16:204–16, 1999.

[4] Jintae Lee, Michael Gruninger, Yan Jin, Thomas W. Malone, Austin Tate, and
Gregg Yost. The process interchange format and framework. Knowledge Eng.
Review, 13(1):91–120, 1998.

[5] Owl-s: Semantic markup for web services. https://www.w3.org/Submission/
OWL-S/.

[6] Yun Lin and John Krogstie. Semantic annotation of process models for facili-
tating process knowledge management. IJISMD, 1(3):45–67, 2010.

[7] Arne Sølvberg. Data and What They Refer to. Springer Berlin Heidelberg,
1999.

[8] Topology and orchestration specification for cloud applications version
1.0. http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.

html, January 2013.

[9] Open cloud computing interface - infrastructure (june 2011). http://ogf.org/
documents/GFD.184.pdf.

[10] Antonucci Y.L. Using workflow technologies to improve organizational compet-
itiveness. International journal of management, 14(1):117–126, 1997.

[11] Richard Lenz and Manfred Reichert. It support for healthcare processes -
premises, challenges, perspectives. Data Knowl. Eng., 61(1):39–58, April 2007.

[12] Marlon Dumas, Wil M. van der Aalst, and Arthur H. ter Hofstede. Process-
aware Information Systems: Bridging People and Software Through Process
Technology. John Wiley & Sons, Inc., New York, NY, USA, 2005.

[13] Wil M. P. van der Aalst. Process-aware information systems: Lessons to be
learned from process mining. Trans. Petri Nets and Other Models of Concur-
rency, 2:1–26, 2009.

141

142 Bibliography

[14] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Mathias Weske.
Business process management: A survey. In Business Process Management,
International Conference, BPM 2003, Eindhoven, The Netherlands, June 26-
27, 2003, Proceedings, pages 1–12, 2003.

[15] Mathias Weske. Business Process Management - Concepts, Languages, Archi-
tectures, 2nd Edition. Springer, 2012.

[16] Howard Smith and Peter Fingar. Business process management: the third wave.
Springer, 2003.

[17] Wil M. P. van der Aalst and Kees M. van Hee. Workflow Management: Models,
Methods, and Systems. MIT Press, 2002.

[18] Dimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An overview of
workflow management: From process modeling to workflow automation infras-
tructure. Distrib. Parallel Databases, 3(2):119–153, April 1995.

[19] Pernille Kræmmergaard Jensen, Harry Boer, and Charles Møller. ERP im-
plementation: an integrated process of radical change and continuous learning.
2001.

[20] Becker J., Kugeler M., and Rosemann M. Process Management: A guide for he
design of business processes. Springer, 2003.

[21] T. Panagacos. The Ultimate Guide to Business Process Management: Every-
thing You Need to Know and How to Apply It to Your Organization. CreateS-
pace Independent Publishing Platform, 2012.

[22] W. M. P. van der Aalst and A. H. M. ter Hofstede. Yawl: Yet another workflow
language. Inf. Syst., 30(4):245–275, June 2005.

[23] OMG. Business process model and notation (bpmn) 2.0. http://www.omg.

org/spec/BPMN/2.0/.

[24] v2.3 OMG. Unified modelling language. http://www.omg.org/spec/uml/2.3/.

[25] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, 1989.

[26] Wil M. P. van der Aalst. Challenges in business process analysis. In 9th Inter-
national Conferenc on Enterprise Information Systems (Selected Papers), pages
27–42. Springer, 2007.

[27] Wil M. P. van der Aalst, Hajo A. Reijers, A. J. M. M. Weijters, Boudewijn F. van
Dongen, Ana Karla Alves de Medeiros, Minseok Song, and H. M. W. (Eric) Ver-
beek. Business process mining: An industrial application. Inf. Syst., 32(5):713–
732, 2007.

Bibliography 143

[28] Wil M. P. van der Aalst. Process Mining - Discovery, Conformance and En-
hancement of Business Processes. Springer, 2011.

[29] Nguyen Ngoc Chan, Karn Yongsiriwit, Walid Gaaloul, and Jan Mendling. Min-
ing event logs to assist the development of executable process variants. In CAiSE
2014, pages 548–563, 2014.

[30] Karn Yongsiriwit, Nguyen Ngoc Chan, and Walid Gaaloul. Log-based process
fragment querying to support process design. In HICSS 2015, pages 4109–4119,
2015.

[31] W.M.P. van der Aalst. Business process configuration in the cloud: How to sup-
port and analyze multi-tenant processes? Web Services, European Conference
on, 0:3–10, 2011.

[32] Aaron Weiss. Computing in the clouds. netWorker, 11(4):16–25, December
2007.

[33] Peter M. Mell and Timothy Grance. Sp 800-145. the nist definition of cloud
computing. Technical report, 2011.

[34] Gartner. Forecast overview: Public cloud services, worldwide, 2011-2016, 2q12
update. Technical report, 2012.

[35] Jörg Becker, Martin Kugeler, and Michael Rosemann. Process management
: a guide for the design of business processes / Jörg Becker, Martin Kugeler,
Michael Rosemann, editors. Springer Berlin ; Heidelberg ; New York, 2003.

[36] Rania Khalaf. From rosettanet pips to bpel processes: a three level approach
for business protocols. In BPM ’05, 2005.

[37] Peter Fettke and Peter Loos. Classification of reference models: a methodology
and its application. Information Systems and eBusiness Management, 2003.

[38] Remco M. Dijkman, Marlon Dumas, and Luciano Garćıa-Bañuelos. Graph
matching algorithms for business process model similarity search. In BPM
2009, pages 48–63, 2009.

[39] Boudewijn F. van Dongen, Remco M. Dijkman, and Jan Mendling. Measur-
ing similarity between business process models. In Seminal Contributions to
Information Systems Engineering, pages 405–419. 2013.

[40] Matthias Kunze and Mathias Weske. Metric trees for efficient similarity search
in large process model repositories. In BPM 2010, pages 535–546, 2010.

[41] Zhiqiang Yan, Remco M. Dijkman, and Paul W. P. J. Grefen. Fast business
process similarity search. Distributed and Parallel Databases, 30(2):105–144,
2012.

144 Bibliography

[42] Wil M. P. van der Aalst, Niels Lohmann, Marcello La Rosa, and Jingxin Xu.
Correctness ensuring process configuration: An approach based on partner syn-
thesis. In Business Process Management - 8th International Conference, BPM
2010, Hoboken, NJ, USA, September 13-16, 2010. Proceedings, pages 95–111,
2010.

[43] Thomas Curran, Gerhard Keller, and Andrew Ladd. SAP R/3 Business
Blueprint: Understanding the Business Process Reference Model. 1998.

[44] Scott Stephens. Supply chain operations reference model version 5.0: A new
tool to improve supply chain efficiency and achieve best practice. Information
Systems Frontiers, 3(4):471–476, 2001.

[45] Boudewijn F. van Dongen, Jan Mendling, and Wil M. P. van der Aalst. Struc-
tural patterns for soundness of business process models. In EDOC 2006, pages
116–128, 2006.

[46] Wil M. P. van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining:
Discovering process models from event logs. IEEE Trans. Knowl. Data Eng.,
16(9):1128–1142, 2004.

[47] Dana Petcu. Portability and interoperability between clouds: Challenges and
case study - (invited paper). In ServiceWave 2011, pages 62–74, 2011.

[48] Ieee, standard computer dictionary - a compilation of ieee standard computer
glossaries, 1990.

[49] Europeen Comission. European interoperability framework for pan-european
egovernment services. IDA working document, 2, 2004.

[50] Line Pouchard and Agent based Systems. Ontology engineering for distributed
collaboration in manufacturing.

[51] Oliver Thomas and Michael Fellmann. Semantic business process management:
Ontology-based process modeling using event-driven process chains. pages 29–
44, 2007.

[52] Andreas Bögl, Michael Schrefl, Gustav Pomberger, and Norbert Weber. Se-
mantic annotation of epc models in engineering domains by employing semantic
patterns. In ICEIS (2), pages 106–115, 2008.

[53] Agata Filipowska, Monika Kaczmarek, and Sebastian Stein. Semantically anno-
tated EPC within semantic business process management. In Business Process
Management Workshops, BPM 2008 International Workshops, Milano, Italy,
September 1-4, 2008. Revised Papers, pages 486–497, 2008.

Bibliography 145

[54] Yun Lin and Hao Ding. Ontology-based semantic annotation for semantic in-
teroperability of process models. In 2005 International Conference on Com-
putational Intelligence for Modelling Control and Automation (CIMCA 2005),
International Conference on Intelligent Agents, Web Technologies and Inter-
net Commerce (IAWTIC 2005), 28-30 November 2005, Vienna, Austria, pages
162–167, 2005.

[55] Witold Abramowicz, Agata Filipowska, Monika Kaczmarek, and Tomasz Kacz-
marek. Semantically enhanced business process modelling notation. In SBPM,
2007.

[56] Liliana Cabral, Barry Norton, and John Domingue. The business process mod-
elling ontology. In Proceedings of the 4th International Workshop on Semantic
Business Process Management, SBPM ’09, pages 9–16, 2009.

[57] Super (semantics utilised for process management within and between enter-
prises) integrated project. http://projects.kmi.open.ac.uk/super/.

[58] Oliver Thomas and Michael Fellmann. Semantic process modeling - design
and implementation of an ontology-based representation of business processes.
Business & Information Systems Engineering, 1(6):438–451, 2009.

[59] Yves Raimond and Samer Abdallah. The event ontology (2007). http://purl.
org/NET/c4dm/event.owl.

[60] Alejandro Rodŕıguez, Robert E. McGrath, Yong Liu, and James D. Myers.
Semantic management of streaming data. In ISWC 2009, pages 80–95, 2009.

[61] Carlos Pedrinaci and John Domingue. Towards an ontology for process moni-
toring and mining. In SBPM 2007, 2007.

[62] A. J. M. M. Weijters and A. K. Alves De Medeiros. Process mining with the
heuristicsminer algorithm.

[63] Wil M. P. van der Aalst, Arya Adriansyah, and Boudewijn F. van Dongen.
Causal nets: A modeling language tailored towards process discovery. In CON-
CUR 2011, pages 28–42, 2011.

[64] Grace A. Lewis. The role of standards in cloud- computing interoperability.
Technical report, 2012.

[65] Fotis Gonidis, Anthony J. H. Simons, Iraklis Paraskakis, and Dimitrios Kour-
tesis. Cloud application portability: An initial view. In Proceedings of the 6th
Balkan Conference in Informatics, BCI ’13, pages 275–282, 2013.

[66] A V Parameswaran and Asheesh Chaddha. Cloud interoperability and stan-
dardization. 19 SETLabs Briefings, 7, 2009.

146 Bibliography

[67] Jingxin K. Wang, Jianrui Ding, and Tian Niu. Interoperability and standard-
ization of intercloud cloud computing. CoRR, abs/1212.5956, 2012.

[68] Mohamed Sellami, Sami Yangui, Mohamed Mohamed, and Samir Tata. Paas-
independent provisioning and management of applications in the cloud. In 2013
IEEE Cloud, Santa Clara, CA, USA, June 28 - July 3, 2013, pages 693–700,
2013.

[69] Reza Rezaei, Thiam K. Chiew, Sai P. Lee, and Zeinab S. Aliee. A Semantic
Interoperability Framework for Software as a Service Systems in Cloud Com-
puting Environments. Expert Systems with Applications, 2014.

[70] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N. Calheiros. Intercloud: Utility-
oriented federation of cloud computing environments for scaling of application
services. CoRR, 2010.

[71] Topology and orchestration specification for cloud applications (tosca). https:
//www.oasis-open.org/committees/tosca/.

[72] Open cloud computing interface (occi). http://occi-wg.org/.

[73] Cloud infrastructure management interface (cimi). https://www.dmtf.org/

standards/cloud.

[74] Jean-Philippe Martin-Flatin. Challenges in cloud management. IEEE Cloud
Computing, 1(1):66–70, 2014.

[75] Gerhard Keller and Thomas Teufel. Sap R/3 Process Oriented Implementation.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,
1998.

[76] Dirk Fahland, Cédric Favre, Barbara Jobstmann, Jana Koehler, Niels Lohmann,
Hagen Völzer, and Karsten Wolf. Instantaneous soundness checking of industrial
business process models. In 7th BPM, pages 278–293, 2009.

[77] GeorgeM. Giaglis. A taxonomy of business process modeling and information
systems modeling techniques. International Journal of Flexible Manufacturing
Systems, 13(2):209–228, 2001.

[78] Wil M. P. van der Aalst, Marlon Dumas, Florian Gottschalk, Arthur H. M. ter
Hofstede, Marcello La Rosa, and Jan Mendling. Preserving correctness during
business process model configuration. Formal Asp. Comput., 22(3-4):459–482,
2010.

[79] Stefanie Rinderle, Manfred Reichert, and Peter Dadam. Flexible support
of team processes by adaptive workflow systems. Distributed and Parallel
Databases, 16(1):91–116, 2004.

Bibliography 147

[80] Gabriel Hermosillo, Lionel Seinturier, and Laurence Duchien. Using Complex
Event Processing for Dynamic Business Process Adaptation. In IEEE Interna-
tional Conference on Services Computing, pages 466–473, 2010.

[81] Marcello La Rosa, Marlon Dumas, Arthur H. M. ter Hofstede, and Jan
Mendling. Configurable multi-perspective business process models. Inf. Syst.,
36(2):313–340, 2011.

[82] Thomas Curran, Gerhard Keller, and Andrew Ladd. SAP R/3 business
blueprint: understanding the business process reference model. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1998.

[83] Scott Stephens. Supply chain operations reference model version 5.0: A new
tool to improve supply chain efficiency and achieve best practice. Information
Systems Frontiers, 3:471–476, December 2001.

[84] H. Bunke. On a relation between graph edit distance and maximum common
subgraph. Pattern Recogn. Lett., 18(9):689–694, August 1997.

[85] Zhiqiang Yan, Remco Dijkman, and Paul Grefen. Fast business process similar-
ity search with feature-based similarity estimation. In Proceedings of the 2010
international conference on On the move to meaningful internet systems - Vol-
ume Part I, OTM’10, pages 60–77, Berlin, Heidelberg, 2010. Springer-Verlag.

[86] Chen Li, Manfred Reichert, and Andreas Wombacher. On measuring process
model similarity based on high-level change operations. In Proceedings of the
27th International Conference on Conceptual Modeling, ER ’08, pages 248–264,
Berlin, Heidelberg, 2008. Springer-Verlag.

[87] Marc Ehrig, Agnes Koschmider, and Andreas Oberweis. Measuring similarity
between semantic business process models. In Proceedings of the fourth Asia-
Pacific conference on Comceptual modelling - Volume 67, APCCM ’07, pages
71–80, Darlinghurst, Australia, Australia, 2007. Australian Computer Society,
Inc.

[88] W.M.P. Aalst, A.K.Alves Medeiros, and A.J.M.M. Weijters. Process equiva-
lence: Comparing two process models based on observed behavior. In Schahram
Dustdar, JosÃ c©Luiz Fiadeiro, and AmitP. Sheth, editors, Business Process
Management, volume 4102 of Lecture Notes in Computer Science, pages 129–
144. Springer Berlin Heidelberg, 2006.

[89] Boudewijn Dongen, Remco Dijkman, and Jan Mendling. Measuring similar-
ity between business process models. In Proceedings of the 20th international
conference on Advanced Information Systems Engineering, CAiSE ’08, pages
450–464, Berlin, Heidelberg, 2008. Springer-Verlag.

148 Bibliography

[90] VI Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady, 10:707, 1966.

[91] Mohammad Abdulkader Abdulrahim. Parallel algorithms for labeled graph
matching. PhD thesis, Golden, CO, USA, 1998. AAI0599838.

[92] Ahmed Awad. Bpmn-q: A language to query business processes. In EMISA,
pages 115–128, 2007.

[93] Ahmed Awad, Artem Polyvyanyy, and Mathias Weske. Semantic querying of
business process models. In Proceedings of the 2008 12th International IEEE
Enterprise Distributed Object Computing Conference, pages 85–94, Washington,
DC, USA, 2008. IEEE Computer Society.

[94] Ahmed Awad, Gero Decker, and Mathias Weske. Efficient compliance check-
ing using bpmn-q and temporal logic. In Proceedings of the 6th International
Conference on Business Process Management, BPM ’08, pages 326–341, Berlin,
Heidelberg, 2008. Springer-Verlag.

[95] Sherif Sakr and Ahmed Awad. A framework for querying graph-based business
process models. In Proceedings of the 19th international conference on World
wide web, WWW ’10, pages 1297–1300, New York, NY, USA, 2010. ACM.

[96] Sherif Sakr, Emilian Pascalau, Ahmed Awad, and Mattias Weske. Partial pro-
cess models to manage business process variants. International Journal of Busi-
ness Process Integration and Management (IJBPIM), 6(2):20, September 2011.

[97] Thomas Hornung, Agnes Koschmider, and Georg Lausen. Recommendation
based process modeling support: Method and user experience. In Proceedings
of the 27th International Conference on Conceptual Modeling, ER ’08, pages
265–278, Berlin, Heidelberg, 2008. Springer-Verlag.

[98] Maya Lincoln, Mati Golani, and Avigdor Gal. Machine-assisted design of busi-
ness process models using descriptor space analysis. In Proceedings of the 8th
international conference on Business process management, BPM’10, pages 128–
144, Berlin, Heidelberg, 2010. Springer-Verlag.

[99] A. J. M. M. Weijters and W. M. P. van der Aalst. Rediscovering workflow
models from event-based data using little thumb. Integr. Comput.-Aided Eng.,
10(2):151–162, April 2003.

[100] Wil van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining: Dis-
covering process models from event logs. IEEE Trans. on Knowl. and Data
Eng., 16(9):1128–1142, September 2004.

Bibliography 149

[101] FabrizioM. Maggi, R.P.JagadeeshChandra Bose, and WilM.P. Aalst. Efficient
discovery of understandable declarative process models from event logs. In
Jolita Ralyte, Xavier Franch, Sjaak Brinkkemper, and Stanislaw Wrycza, edi-
tors, Advanced Information Systems Engineering, volume 7328 of Lecture Notes
in Computer Science, pages 270–285. Springer Berlin Heidelberg, 2012.

[102] Robert Engel, Wil van der Aalst, Marco Zapletal, Christian Pichler, and Hannes
Werthner. Mining inter-organizational business process models from edi mes-
sages: A case study from the automotive sector. In Jolita RalytÃ c©, Xavier
Franch, Sjaak Brinkkemper, and Stanislaw Wrycza, editors, Advanced Informa-
tion Systems Engineering, volume 7328 of Lecture Notes in Computer Science,
pages 222–237. Springer Berlin / Heidelberg, 2012.

[103] Wil M. P. van der Aalst. Process discovery: capturing the invisible. Comp.
Intell. Mag., 5(1):28–41, February 2010.

[104] A. Rozinat and W. M. P. van der Aalst. Conformance checking of processes
based on monitoring real behavior. Inf. Syst., 33(1):64–95, March 2008.

[105] Wil M. P. van der Aalst, Arya Adriansyah, and Boudewijn F. van Dongen.
Replaying history on process models for conformance checking and perfor-
mance analysis. Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery,
2(2):182–192, 2012.

[106] A. Adriansyah, B. F. van Dongen, and W. M. P. van der Aalst. Conformance
checking using cost-based fitness analysis. In Proceedings of the 2011 IEEE 15th
International Enterprise Distributed Object Computing Conference, EDOC ’11,
pages 55–64, Washington, DC, USA, 2011. IEEE Computer Society.

[107] Dirk Fahland, Massimiliano De Leoni, Boudewijn F. Van Dongen, and Wil
M. P. Van Der Aalst. Conformance checking of interacting processes with over-
lapping instances. In Proceedings of the 9th international conference on Busi-
ness process management, BPM’11, pages 345–361, Berlin, Heidelberg, 2011.
Springer-Verlag.

[108] Jan Mendling, Gustaf Neumann, and Wil Van Der Aalst. Understanding the
occurrence of errors in process models based on metrics. In Proceedings of the
2007 OTM Confederated international conference on On the move to meaningful
internet systems: CoopIS, DOA, ODBASE, GADA, and IS - Volume Part I,
OTM’07, pages 113–130, Berlin, Heidelberg, 2007. Springer-Verlag.

[109] J. Mendling, H. M. W. Verbeek, B. F. van Dongen, W. M. P. van der Aalst, and
G. Neumann. Detection and prediction of errors in epcs of the sap reference
model. Data Knowl. Eng., 64(1):312–329, January 2008.

150 Bibliography

[110] WilM.P. Aalst and Minseok Song. Mining social networks: Uncovering interac-
tion patterns in business processes. In Jorg Desel, Barbara Pernici, and Mathias
Weske, editors, Business Process Management, volume 3080 of Lecture Notes
in Computer Science, pages 244–260. Springer Berlin Heidelberg, 2004.

[111] Wil M. P. Van Der Aalst, Hajo A. Reijers, and Minseok Song. Discovering
social networks from event logs. Comput. Supported Coop. Work, 14(6):549–
593, December 2005.

[112] Nguyen Ngoc Chan, Walid Gaaloul, and Samir Tata. Assisting business pro-
cess design by activity neighborhood context matching. In Service-Oriented
Computing - 10th International Conference, ICSOC 2012, Shanghai, China,
November 12-15, 2012. Proceedings, pages 541–549, 2012.

[113] W.M.P. van der Aalst. Intra- and Inter-Organizational Process Mining: Dis-
covering Processes within and between Organizations. In PoEM ’11.

[114] Linda G. DeMichiel. Resolving database incompatibility: An approach to per-
forming relational operations over mismatched domains. IEEE Trans. Knowl.
Data Eng., 1(4):485–493, 1989.

[115] Christine Collet, Michael N. Huhns, and Wei-Min Shen. Resource integration
using a large knowledge base in carnot. IEEE Computer, 24(12):55–62, 1991.

[116] Vipul Kashyap and Amit P. Sheth. Semantic and schematic similarities between
database objects: A context-based approach. VLDB J., 5(4):276–304, 1996.

[117] Jinsoo Park and Sudha Ram. Information systems interoperability: What lies
beneath? ACM Trans. Inf. Syst., 22(4):595–632, 2004.

[118] Thomas W. Malone, Kevin Crowston, and George A. Herman, editors. Orga-
nizing Business Knowledge: The MIT Process Handbook, volume 1. The MIT
Press, 1 edition, 2003.

[119] Thomas W. Malone and Kevin Crowston. The interdisciplinary study of coor-
dination. ACM Computing Surveys, 26:87–119, 1994.

[120] Michael Genesereth, Richard E. Fikes, Ronald Brachman, Thomas Gruber,
Patrick Hayes, Reed Letsinger, Vladimir Lifschitz, Robert Macgregor, John Mc-
carthy, Peter Norvig, and Ramesh Patil. Knowledge interchange format version
3.0 reference manual, 1992.

[121] P. Mika, D. Oberle, A. Gangemi, and M. Sabou. In S. Staab and
P. Patel-Schneider, editors, Proceedings of the World Wide Web Conference
(WWW2004), Semantic Web Track.

Bibliography 151

[122] W. M. P. van der Aalst, A. P. Barros, A. H. M. ter Hofstede, and B. Kie-
puszewski. Advanced Workflow Patterns, pages 18–29. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2000.

[123] Yun Lin. Semantic Annotation for Process Models : Facilitating Process Knowl-
edge Management via Semantic Interoperability. PhD thesis, Norwegian Uni-
versity of Science and Technology, Department of Computer and Information
Science, 2008.

[124] OMG Business Process Model and Notation. http://www.omg.org/spec/

BPMN/2.0.2/.

[125] August-Wilhelm Scheer. ARIS - vom Geschäftsprozess zum Anwendungssystem.
Springer, 4., durchges. aufl. edition, 2002.

[126] Martin Hepp, Knut Hinkelmann, Dimitris Karagiannis, Rüdiger Klein, and Ne-
nad Stojanovic, editors. SBPM 2007, volume 251 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 2007.

[127] Super specification: sbpmn and sepc to bpmo translation. http://www-inf.

it-sudparis.eu/SIMBAD/SUPER/D4.5.doc.

[128] Deborah L. Mcguinness, Richard Fikes, James Rice, and Steve Wilder. An
environment for merging and testing large ontologies. pages 483–493. Morgan
Kaufmann, 2000.

[129] Boudewijn F. van Dongen and Wil M. P. van der Aalst. A meta model for
process mining data. In EMOI - INTEROP’05, Porto (Portugal), 13th-14th
June 2005, 2005.

[130] Tobias Binz, Gerd Breiter, Frank Leymann, and Thomas Spatzier. Portable
cloud services using TOSCA. IEEE Internet Computing, 16(3):80–85, 2012.

[131] Tosca simple profile in yaml version 1.0 (nov. 2013). http:

//docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/

TOSCA-Simple-Profile-YAML-v1.0.pdf.

[132] Open cloud computing interface - core (june 2011). http://ogf.org/

documents/GFD.183.pdf.

[133] Cloud infrastructure management interface (cimi) model and restful http-
based protocol (mar 2015). https://www.dmtf.org/sites/default/files/

standards/documents/DSP0263_2.0.0c.pdf.

[134] Cimi xml schema (feb 2014). https://www.dmtf.org/standards/cloud.

152 Bibliography

[135] Cloud infrastructure management interface (cimi) use cases (dec 2014). https:
//www.dmtf.org/standards/cloud.

[136] Nikolaos Loutas, Vassilios Peristeras, Thanassis Bouras, Eleni Kamateri, Dim-
itrios Zeginis, and Konstantinos A. Tarabanis. Towards a reference architecture
for semantically interoperable clouds. In CloudCom 2010, November 30 - De-
cember 3, 2010, Indianapolis, Indiana, USA, Proceedings, pages 143–150, 2010.

[137] Eleni Kamateri, Nikolaos Loutas, Dimitris Zeginis, James Ahtes, Francesco
D’Andria, Stefano Bocconi, Panagiotis Gouvas, Giannis Ledakis, Franco
Ravagli, Oleksandr Lobunets, and Konstantinos A. Tarabanis. Cloud4soa: A
semantic-interoperability paas solution for multi-cloud platform management
and portability. In ESOCC 2013, Málaga, Spain, September 11-13, 2013. Pro-
ceedings, pages 64–78, 2013.

[138] Deepak K. Vij and David Bernstein. Draft standard for intercloud interoper-
ability and federation (siif). In IEEE P2303. 2014.

[139] Beniamino Di Martino, Giuseppina Cretella, Antonio Esposito, A. Willner,
A. Alloush, David Bernstein, Deepak Vij, and J. Weinman. Towards an
ontology-based intercloud resource catalogue. In IEEE IC2E 2015, Tempe,
AZ, USA, March 9-13, 2015, pages 458–464, 2015.

[140] Sami Yangui, Iain James Marshall, Jean-Pierre Laisné, and Samir Tata. Com-
patibleone: The open source cloud broker. J. Grid Comput., 12(1):93–109,
2014.

[141] Radu Prodan and Simon Ostermann. A survey and taxonomy of infrastructure
as a service and web hosting cloud providers. In 10th IEEE/ACM International
Conference on Grid Computing, October 13-15, 2009, Banff, Alberta, Canada,
pages 17–25, 2009.

[142] Ralf Teckelmann, Christoph Reich, and Anthony Sulistio. Mapping of cloud
standards to the taxonomy of interoperability in iaas. In IEEE CloudCom
2011, Athens, Greece, November 29 - December 1, 2011, pages 522–526, 2011.

[143] Open virtualization format white paper, distributed management task force,
apr. 2014, dsp2017 version 2.0.0. https://www.dmtf.org/sites/default/

files/standards/documents/DSP2017_2.0.0.pdf.

[144] Cloud data management interface (cdmi), snia technical position, june 2012,
version 1.0.2. http://www.snia.org/sites/default/files/CDMI20v1.0.2.

pdf.

Bibliography 153

[145] Thamarai Selvi Somasundaram, Kannan Govindarajan, Usha Kiruthika, and
Rajkumar Buyya. Semantic-enabled CARE resource broker (secrb) for manag-
ing grid and cloud environment. The Journal of Supercomputing, 68(2):509–556,
2014.

[146] Balachandar R. Amarnath, Thamarai Selvi Somasundaram, Mahendran Ellap-
pan, and Rajkumar Buyya. Ontology-based grid resource management. Softw.,
Pract. Exper., 39(17):1419–1438, 2009.

[147] Pierfrancesco Bellini, Daniele Cenni, and Paolo Nesi. Smart cloud engine and
solution based on knowledge base. In Procedia Comput. Sci., vol. 68, pages
3–16.

[148] Beniamino Di Martino, Giuseppina Cretella, Antonio Esposito, and Graziella
Carta. An OWL ontology to support cloud portability and interoperability.
IJWGS, 11(3):303–326, 2015.

[149] Stefan Schulte, Christian Janiesch, Srikumar Venugopal, Ingo Weber, and
Philipp Hoenisch. Elastic business process management: State of the art and
open challenges for BPM in the cloud. Future Generation Comp. Syst., 46:36–
50, 2015.

[150] Evert Ferdinand Duipmans. Business process management in the cloud: Busi-
ness process as a service (bpaas). In 2012.

[151] MingXue Wang, Kosala Yapa Bandara, and Claus Pahl. Process as a service.
In 2010 IEEE International Conference on Services Computing, SCC 2010,
Miami, Florida, USA, July 5-10, 2010, pages 578–585, 2010.

[152] Cristina Cabanillas and et al. Towards process-aware cross-organizational hu-
man resource management. In Enterprise, Business-Process and Information
Systems Modeling - 15th International Conference, BPMDS 2014, 19th Inter-
national Conference, EMMSAD, Held at CAiSE, Thessaloniki, Greece, June
16-17., pages 79–93, 2014.

[153] Cristina Cabanillas and et al. Ralph: A graphical notation for resource assign-
ments in business processes. In Advanced Information Systems Engineering -
27th International Conference, CAiSE, Stockholm, Sweden, June 8-12, pages
53–68, 2015.

[154] Philipp Hoenisch, Stefan Schulte, Schahram Dustdar, and Srikumar Venugopal.
Self-adaptive resource allocation for elastic process execution. In 2013 IEEE
Sixth International Conference on Cloud Computing, Santa Clara, CA, USA,
June 28 - July 3, 2013, pages 220–227, 2013.

154 Bibliography

[155] Philipp Hoenisch and et al. Workflow scheduling and resource allocation for
cloud-based execution of elastic processes. In IEEE 6th International Confer-
ence on Service-Oriented Computing and Applications, Koloa, USA, December
16-18, pages 1–8, 2013.

[156] Stefan Schulte, Dieter Schuller, Phillipp Hoenisch, Ulrich Lampe, Schahram
Dustdar, and Ralf Steinmetz. Cost-driven optimization of cloud resource alloca-
tion for elastic processes. International Journal of Cloud Computing, 1(2):1–15,
2013.

[157] Karn Yongsiriwit, Mohamed Sellami, and Walid Gaaloul. Semantic process
fragments matching to assist the development of process variants. In SCC
2015, 2015.

[158] Marcello La Rosa, Marlon Dumas, Reina Uba, and Remco M. Dijkman. Busi-
ness process model merging: An approach to business process consolidation.
page 11, 2013.

[159] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so
far. Int. J. Semantic Web Inf. Syst., 5(3):1–22, 2009.

[160] W3c. rdf vocabulary description language 1.0: Rdf schema. http://www.w3.

org/TR/rdf-schema/.

[161] Semantic web rule language. http://www.w3.org/Submission/SWRL/.

[162] Karn Yongsiriwit, Mohamed Sellami, and Walid Gaaloul. A semantic framework
supporting business process variability using event logs. In IEEE International
Conference on Services Computing, SCC 2016, San Francisco, CA, USA, June
27 - July 2, 2016, pages 163–170, 2016.

[163] H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst.
XES, XESame, and ProM 6. In P. Soffer and E. Proper, editors, Information
Systems Evolution, volume 72 of Lecture Notes in Business Information Pro-
cessing, pages 60–75. Springer-Verlag, Berlin, 2010.

[164] Karn Yongsiriwit, Mohamed Sellami, and Walid Gaaloul. A semantic framework
supporting cloud resource descriptions interoperability. In IEEE International
Conference on Cloud Computing, 2016, San Francisco, CA, USA, June 27 -
July 2, 2016, 2016.

[165] Open cloud computing interface - restful http rendering (june 2011). http:

//ogf.org/documents/GFD.185.pdf.

[166] Emna Hachicha, Karn Yongsiriwit, and Walid Gaaloul. Energy efficient con-
figurable resource allocation in cloud-based business processes (short paper).

Bibliography 155

In On the Move to Meaningful Internet Systems: OTM 2016 Conferences -
Confederated International Conferences: CoopIS, C&TC, and ODBASE 2016,
Rhodes, Greece, October 24-28, 2016, Proceedings, pages 437–444, 2016.

[167] Emna Hachicha, Nour Assy, Walid Gaaloul, and Jan Mendling. A config-
urable resource allocation for multi-tenant process development in the cloud.
In Advanced Information Systems Engineering - 28th International Conference,
CAiSE 2016, Ljubljana, Slovenia, June 13-17, 2016. Proceedings, pages 558–
574, 2016.

[168] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1982.

[169] S. N. Sivanandam and S. N. Deepa. Introduction to genetic algorithms. Springer,
2008.

[170] Darrell Whitley. A genetic algorithm tutorial. Statistics and Computing,
4(2):65–85.

[171] Srinivas Talluri and R. C. Baker. A multi-phase mathematical programming
approach for effective supply chain design. European Journal of Operational
Research, 141(3):544–558, 2002.

[172] Virtuoso jena provider. http://virtuoso.openlinksw.com/dataspace/doc/

dav/wiki/Main/VirtJenaProvider.

[173] Deborah L. McGuinness and Frank van Harmelen. Owl web ontology language
overview. Technical report, W3C, 2004.

[174] Jan Mendling and Markus Nüttgens. EPC markup language (EPML): an xml-
based interchange format for event-driven process chains (epc). Inf. Syst. E-
Business Management, 4(3):245–263, 2006.

[175] Marta Sabou and Miriam Fernández. Ontology (network) evaluation. In On-
tology Engineering in a Networked World., pages 193–212. 2012.

[176] Nick Russell, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and David Ed-
mond. Workflow resource patterns: Identification, representation and tool sup-
port. In Advanced Information Systems Engineering, 17th International Con-
ference, CAiSE 2005, Porto, Portugal, June 13-17, 2005, Proceedings, pages
216–232, 2005.

[177] David F. Ferraiolo, Ravi S. Sandhu, Serban I. Gavrila, D. Richard Kuhn, and
Ramaswamy Chandramouli. Proposed NIST standard for role-based access
control. ACM Trans. Inf. Syst. Secur., 4(3):224–274, 2001.

156 Bibliography

[178] Elisa Bertino, Elena Ferrari, and Vijayalakshmi Atluri. The specification and en-
forcement of authorization constraints in workflow management systems. ACM
Trans. Inf. Syst. Secur., 2(1):65–104, 1999.

[179] Philipp Hoenisch, Christoph Hochreiner, Dieter Schuller, Stefan Schulte, Jan
Mendling, and Schahram Dustdar. Cost-efficient scheduling of elastic processes
in hybrid clouds. In 8th IEEE International Conference on Cloud Computing,
CLOUD 2015, New York City, NY, USA, June 27 - July 2, 2015, pages 17–24,
2015.

[180] Emna Hachicha and Walid Gaaloul. Towards resource-aware business process
development in the cloud. In 29th IEEE International Conference on Advanced
Information Networking and Applications, AINA 2015, Gwangju, South Korea,
March 24-27, 2015, pages 761–768, 2015.

[181] August-Wilhelm Scheer. ARIS - vom Geschäftsprozess zum Anwendungssystem.
Springer, Berlin [u.a.], 4., durchges. aufl. edition, 2002.

