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Résumé

Titre

Modélisation de la relation entre le signal EMG de surface et la force musculaire par

analyse de données d’un réseau de capteurs a haute résolution

Contenu

Les systémes neuro-musculaire et musculo-squelettique sont considérés comme un systéme de systémes
complexe. En effet, le mouvement du corps humain est controlé par le systéme nerveux central par
lactivation des cellules musculaires squelettiques [1]. L’activation du muscle produit deux phénomeénes
différents : mécanique et électrique [2]. Ces deux activités possédent des propriétés différentes, mais I'ac-
tivité mécanique ne peut avoir lieu sans 'activité électrique et réciproquement. L’activité mécanique de
la contraction du muscle squelettique est responsable du mouvement [3|. Le mouvement étant primordial
pour la vie humaine, il est crucial de comprendre son fonctionnement et sa génération qui pourront aider
a détecter des déficiences dans les systémes neuro-musculaire et musculo-squelettique [3]. Ce mouvement
est décrit par les forces musculaires et les moments agissant sur une articulation particuliére. En consé-
quence, les systémes neuro-musculaire et musculo-squelettique peuvent étre évalués avec le diagnostic et
le management des maladies neurologiques et orthopédiques a travers l’estimation de la force [4]. Néan-
moins, la force produite par un seul muscle ne peut étre mesurée que par une technique trés invasive. C’est
pour cela, que I'estimation de cette force reste I'un des grands challenges de la biomécanique. De plus,
comme dit précédemment, 'activation musculaire posséde aussi une réponse électrique qui est corrélée
a la réponse mécanique. Cette résultante électrique est appelée 1’électromyogramme (EMG) et peut étre

mesurée d’une fagon non invasive a I’aide d’électrodes de surface [5].

L’EMG est la somme des trains de potentiel d’action d’unité motrice qui sont responsable de la contrac-
tion musculaire et de la génération du mouvement [5, 2]. Ce signal électrique peut étre mesuré par des

électrodes a la surface de la peau et est appelé 'TEMG de surface (SEMG). Pour un muscle unique, en



supposant que la relation entre ’amplitude du sEMG et la force est monotone [6], plusieurs études ont es-
sayé d’estimer cette force en développant des modéles actionnés par ce signal |7, 8]. Toutefois, ces modéles

contiennent plusieurs limites & cause des hypothéses irréalistes par rapport a I’activation neurale.

Dans cette thése, nous proposons un nouveau modéle de relation SEMG /force en intégrant ce qu’on ap-
pelle le SEMG haute définition (HD-sEMG), qui est une nouvelle technique d’enregistrement des signaux
sEMG ayant démontré une meilleure estimation de la force [9] en surmontant le probléme de la position
de l’électrode sur le muscle [10]. Ce modéle de relation SEMG /force sera développé dans un contexte sans
fatigue pour des contractions isométriques, isotoniques et anisotoniques du Biceps Brachii (BB) lors une

flexion isométrique de l'articulation du coude & 90°.

Pour cela, nous sommes passés par plusieurs étapes de traitement et de préparation des signaux sEMG
afin de pouvoir mettre en place ce modeéle. La premiére étape de ce travail a été le traitement des signaux
HD-sEMG afin de les préparer pour ’étape de la fusion des données. Ce traitement se fait d’abord par
un débruitage de ces signaux. Dans la littérature, il n’existe pas d’algorithme de débruitage multi-voies
prenant en compte ’hétérogénéité du bruit propagé sur la grille HD-sEMG. Ainsi, la premiére contribution
de cette thése est le développement d’un algorithme de débruitage basé sur une méthode de séparation
aveugle de source (BSS) du second ordre appelée I'analyse par composante canonique (CCA). Cette
méthode est appelée le CCA sélectif (sCCA) combinant une procédure de sélection suivie de I’élimination
de certaines sources puis d’un seuillage afin de débruiter de fagon optimale les signaux HD-sEMG. Cet
algorithme a aussi été comparé a d’autres méthodes de débruitage et a démontré son efficacité et sa
robustesse. La seconde étape du traitement des signaux avait pour but de séparer I'activité électrique du
BB de celle du Brachialis (BR). En effet, le BR étant un muscle profond proche du BB, le sEMG du BR
n’est pas facilement mesurable en utilisant des électrodes bipolaires classiques, ainsi des superpositions
des signaux électriques des deux muscles peuvent étre enregistrées. C’est pour cela qu’il est important
d’extraire I'activité électrique du BR et du BB. La seconde contribution de cette thése est la proposition
d’une procédure de séparation des activités électriques musculaires aussi basée sur le CCA ainsi que sur
un algorithme de segmentation d’images. Cette méthode nous permet de retirer I’activité du BR présente

lors de la mesure des signaux sEMG sur le BB.

Aprés le traitement des signaux, la prochaine étape du travail s’est intéressée a la fusion des données et
la sélection du vecteur de paramétres d’entrée du modéle de relation HD-sEMG /force. Pour la fusion des
données, nous avons utilisé un algorithme de segmentation d’image qui traite la matrice de parameétres
des signaux sEMG comme une image. Cela a réduit le nombre de voies utilisées en localisant une région
d’intérét. Ensuite, la troisiéme contribution de ce travail est I’étude de la variation des statistiques d’ordres
supérieures (HOS) pendant des contractions isométriques anisotoniques en proposant une méthode de
fusion des données basée sur le 'analyse par composante principales (PCA) donnant la sélection optimale

de la position des filtres Laplaciens. Ce travail nous a permis de trouver les mémes profils pour les



deux parameétres des HOS pour tous les sujets malgré la grande variabilité anatomique, neuronale et
morphologique entre eux. La derniére contribution de cette partie de travail est I’étude global en simulation
et en expérimentation de la variation des HOS ainsi que des paramétres de distances de forme (SD) avec
le niveau de contraction musculaire selon les valeurs des paramétres morphologiques, anatomiques et de
contrdle nerveux. Cette tache a été réalisé grace & un modéle cylindrique multi-couches de simulation des

signaux HD-sEMG personnalisé par des parameétres physiologiques obtenus par échographie.

La derniére étape de cette thése a été consacré a la modélisation de la relation SEMG /force. Pour
cela nous avons utilisé le modéle cylindrique multi-couches pour la simulation des signaux HD-sEMG et
un modéle Twitch pour la simulation de la force musculaire correspondante. Tout d’abord, nous avons
réalisé une étude de sensibilité de cette relation par rapport aux paramétres morphologiques, anatomiques
et neuraux. Cette étude nous a permis d’établir les paramétres essentiels qui influent sur la forme de la
relation SEMG /force et qui doivent étre pris en compte dans la modélisation. Ensuite nous avons comparé
les différentes équations proposées dans la littérature décrivant cette relation. Ce qui nous a permis de
trouver la meilleure équation; un polyndéme d’ordre 3. En se basant sur cette équation, nous avons
étudié plus profondément D'effet des paramétres sur les coefficients de I’équation. Finalement, la derniére
contribution de cette thése est de proposer une méthode d’estimation de force basée sur un réseau de
neurones artificiels entrainé sur une base de données suffisamment large et une alternative analytique par
optimisation sou contraintes. Partant de ce qui a été présenté ci-dessus, cette thése est organisée comme

suit :

e Chapitre 1 : il présente une revue bibliographique décrivant des informations indispensables sur les
mécanismes de génération de la force musculaire et du signal sEMG ainsi que leurs caractéristiques.
De plus, il expose un état de l'art sur la relation sEMG /force ainsi que les modéles d’estimation de
la force musculaire a partir du signal SEMG. Ensuite, il introduit 'HD-sEMG comme une technique
innovante d’enregistrement du sEMG et il expose ses applications et ses avantages. Finalement, il
finit par définir notre position vis & vis de la problématique principale de la thése : la modélisation

de la relation SEMG /force.

e Chapitre 2 : le travail de ce chapitre vise & préparer les données pour ’étape de fusion. Il com-
prend deux parties principales : le débruitage des signaux HD-sEMG et la séparation des activités
électriques du BB et du BR. En effet, les signaux sEMG sont souvent contaminés par différents
types de bruit notamment le bruit blanc et le bruit du réseau (50 Hz). Ainsi, on a développé
une méthode de débruitage basée sur le CCA avec une méthode de sélection des sources basée sur
un nouveau critére de seuillage qui est explicité dans la premiére section de ce chapitre. Pour la
deuxiéme section, nous avons expliqué en détails la méthode de séparation de sources qui combine

le CCA avec une méthode de segmentation d’images afin de séparer les sources électriques du BB



et du BR.

e Chapitre 3 : ce chapitre présente une étude sur les paramétres d’entrée du modéle sEMG /force
obtenu par fusion de données du réseau de capteurs HD-sEMG. Le chapitre commence par l'intro-
duction d’une méthode de fusion basée sur la segmentation des matrices de paramétres calculées
sur la matrice HD-sEMG de 64 signaux. Ensuite, deux différentes études sont faites afin d’étudier la
variation des paramétres HOS en fonction de la force musculaire. La premiére étude est une étude
expérimentale qui traite des contractions isométriques anisotoniques. La deuxiéme étude présente
une étude globale en simulation et en expérimentation sur les HOS ainsi que les SD. Ce chapitre
se termine par une étude sur la déformation de la surface du BB afin de d’explorer la relation

activation/déformation musculaire.

e Chapitre 4 : ce dernier chapitre a pour but de modéliser la relation sSEMG /force. Pour cela, il
présente une étude de sensibilité de la forme de cette relation par rapport aux différents paramétres.
Ensuite, une étude sur ’équation qui décrit au mieux cette relation est réalisée. par la suite, cette
équation sera utilisée pour quantifier 'effet des paramétres étudiés dans la partie précédente sur
les coefficients de ’équation. Pour finir, un modéle d’estimation de force basée sur un réseau de
neurones a apprentissage est détaillé. Une alternative analytique est aussi présentée qui préte mieux

au contexte multi-muscle

Mots clés

Systéme de systémes, électromyogramme de surface, force musculaire, analyse par composantes canon-

iques, modélisation, analyse de forme, biceps brachii, réseau de capteurs & haute résolution.



Abstract

The neuromuscular and musculoskeletal systems are complex System of Systems (SoS) that perfectly
interact to provide motion. This interaction is illustrated by the muscular force, generated by muscle
activation driven by the Central Nervous System (CNS) which pilots joint motion. The knowledge of the
force level is highly important in biomechanical and clinical applications. However, the recording of the
force produced by a unique muscle is impossible using noninvasive procedures. Therefore, it is necessary
to develop a way to estimate it. The muscle activation also generates another electric phenomenon,
measured at the skin using electrodes, namely the surface electromyogram (SEMG). In the biomechanics
literature, several models of the SEMG /force relationship are provided. They are principally used to
command musculoskeletal models. However, these models suffer from several important limitations such
lacks of physiological realism, personalization, and representability when using single sEMG channel
input. In this work, we propose to construct a model of the SEMG //force relationship for the Biceps
Brachii (BB) based on the data analysis of a High Density sEMG (HD-sEMG) sensor network. For
this purpose, we first have to prepare the data for the processing stage by denoising the sEMG signals
and removing the parasite signals. Therefore, we propose a HD-sEMG denoising procedure based on
Canonical Correlation Analysis (CCA) that removes two types of noise that degrade the SEMG signals
and a source separation method that combines CCA and image segmentation in order to separate the
electrical activities of the BB and the Brachialis (BR). Second, we have to extract the information from
an 8 x 8 HD-sEMG electrode grid in order to form the input of the sEMG /force model. Thusly, we
investigated different parameters that describe muscle activation and can affect the relationship shape
then we applied data fusion through an image segmentation algorithm. Finally, we proposed a new HD-
sEMG /force relationship, using simulated data from a realistic HD-sEMG generation model of the BB
and a Twitch based model to estimate a specific force profile corresponding to a specific SEMG sensor
network and muscle configuration. Then, we tested this new relationship in force estimation using both
machine learning and analytical approaches. This study is motivated by the impossibility of obtaining

the intrinsic force from one muscle in experimentation.

Keywords: System of systems, surface electromyogram, muscle force, canonical correlation analysis,

machine learning, biceps brachii, high resolution sensor network.
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(General introduction

The neuromuscular and musculoskeletal systems are complex System of Systems (SoS) that mutually
interact during motion genesis. In fact, the human motion is managed by the Central Nervous System
(CNS) through activation of skeletal muscle cells [1]. The muscle activation produces two types of contrac-
tile responses; mechanical and electrical [2]. These two activities have different properties, nevertheless
one cannot occur without the other. The mechanical outcome of skeletal muscle contraction manifests
by motion production [3]. And since movement is crucial for survival and human life, it is imperative to
understand all its aspects that can determine the functions and detect anomalies of the musculoskeletal
and neuromuscular systems [3]. This movement is portrayed by muscle forces and moments that act
on a certain joint. Accordingly, the neuromuscular, musculoskeletal, biomechanics, and robotic systems
can be evaluated along with the diagnosis and management of both neurological and orthopedic diseases
through estimation and qualification of this mechanical response which is the force [4]. Nevertheless,
the force produced by an individual muscle can only be measured through very invasive procedures. For
these reasons, the estimation of individual muscle force remains one of the leading challenges in biome-
chanics and motor control. However, as mentioned earlier the muscle activation have another contractile
response that is correlated to the mechanical one; the electrical activity. This electrical response is called

the Electromyogram (EMG) and can be measured in a non invasive manner using surface electrodes [5].

The EMG signal is the summation of Action Potential (AP) trains produced by Motor Units (MUs)
which are responsible for muscle contraction and motion genesis [2, 5]. This electrical signal can be
measured from the surface of the skin above the muscle using surface electrodes. The signal measured
by the surface electrodes is called surface EMG (sEMG). Considering that the relationship between
the sSEMG amplitude of a particular muscle and the corresponding force is monotonic [6] many studies
attempted to estimate the individual muscle force or moment by proposing SEMG driven force estimation
models [7, 8]. However, these models suffer from many physiological and non-physiological limitations

due to unrealistic assumptions about muscle activation and neural command.

In this thesis, we will propose a new sEMG /force relationship model using a novel multichannel sSEMG

recording technique; the High density sEMG (HD-sEMG) which has proven to improve force estimation

29
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[9] by overcoming the electrode positioning dilemma [10]. This HD-sEMG /force relationship model will
be defined in an isometric isotonic and anisotonic non-fatiguing context for the Biceps Brachii (BB)

muscle during isometric flexion of the elbow joint at 90° degree of elbow angle.

Based on all of the above, this manuscript is organized as follow:

e Chapter 1: In this chapter, we start the first section by introducing the main notions concerning the
skeletal muscles and motion genesis, essentially the skeletal muscle properties and architecture, the
MU and the fiber types. Wherein we describe also the mechanisms of muscle contraction and sEMG
signal generations by detailing the generation and propagation of Fiber AP (FAP), MUAP, MU
recruitment and firing and enumerating the different types of contractions and the relations between
the discharge frequency and the generated force. In addition we define the different electrode
configurations and spatial filtering as well as some of the basic SEMG signal processing tools. In
the second section, we propose a state of the art of the SEMG driven force estimation models
that exist in the literature after exploring the SEMG /force relationship. Afterwards, in the next
section, we introduce the HD-sEMG technique as a innovative recording procedure that have many
applications and advantages and can improve sEMG based force estimation. Finally, we finish this
chapter by positioning the proposed thesis work in the face of the current force estimation paradigm

and indicating the objectives of the thesis.

e Chapter 2: This chapter is dedicated to the data preprocessing. Therefore, it is divided into two
steps: denoising and separation of the Brachialis’s sSEMG from that of the Biceps Brachii. In fact,
the HD-sEMG channels are usually contaminated by noise in a heterogeneous manner. These noises
are mainly power line interference, white Gaussian noise and motion artifacts. Thus, we propose
in this first part, a denoising algorithm based on a the Canonical Correlation Analysis (CCA). We
proposed a specific and automatic canonical component selection, using noise ratio thresholding.
We also proposed amelioration based on a channel selection procedure that we called selective CCA.
These methods showed better abilities in the denoising of our HD-sEMG signals for low contraction
levels in comparison with other commonly used denoising techniques (ICA, bipolar, etc..). The
second part of the preprocessing was oriented toward the separation of the two electrical activities
of the Brachialis (BR) and the BB in order to minimize the error of the force estimation due to the

crosstalk from the Brachialis in collaboration with the LISIN Laboratory (Prof. R. Merletti).

e Chapter 3: The purpose of this step was the combination of the information collected from the
64 sensors of a grid in order to construct the input vector of the SEMG /Force Model after feature
selection based on a focused study of the parameters sensitivity. Therefore, we studied the variation
of the probability density function shape with force level increase by using High Order Statistics

(HOS) and principal component analysis for the data fusion step. This study was applied on iso-
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metric anisotonic experimental signals. Afterwards, both experimental and personalized simulation
studies were conducted for isometric isotonic contractions at different contraction levels. Wherein,
we used ultrasound imaging in order to measure physiological parameters from the subjects. Then,
an image segmentation algorithm was employed for the data fusion of the HOS and the Shape Dis-
tance (SD) parameters. We also simulated different electrode configurations, recruitment threshold
and motor unit type distributions in the muscle to assess the sensitivity of PDF shape descriptors
with force level toward several physiological and anatomical parameters. A final exploratory work
concerns the use of the Motion Capture (MoCap) technique to estimate in a non-invasive manner

the muscle activation based on the surface deformation of the BB muscle.

e Chapter 4: This block represents the SEMG /force relationship modeling and prediction step for
one muscle, the BB, after the preprocessing and the data fusion phases. Before the actual force
estimation, we studied the shape variation of HD-sEMG /Force relationship using a multilayered
cylindrical model for the simulation of the HD-sEMG signals and a twitch model for the simulation
of the corresponding force during isometric plateaus of several intensities. This study is achieved by
a focused sensitivity analysis of the relationship shape variation according to neural, anatomical and
physiological parameters. Finally, we will test a machine learning system that will be trained using
a selection of parameters (amplitude and statistics) obtained from the HD-sEMG grid after data
fusion, as well as physiological parameters (skin and adipose tissue thickness) in order to estimate the
muscle force. In addition, we will also propose an analytical resolution for muscle force estimation
using an optimization approach. Then, a validation phase will be conducted, in simulation, to assess
the model prediction accuracy and generalization ability following several configurations (input).
Finally, the obtained results and main contributions of the thesis are discussed and benefits and

limitations are pointed out for future applications mainly in a multi-muscle configuration.
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1.1 Introduction

Since the early human life, man has shown unceasing interest in the organs responsible for mobility in
his own body first and those of animals after. This extreme curiosity is due to the fact that movement
is considered the capital sign of animal life; to move is to survive. Actually, part of the first ever
scientific experiments were conducted on muscles to study its functions. A lot of philosophers and
scientists from Leonardo da Vinci, Andreas Vesalius to Galvani, whose findings constructed the beginning
of neurophysiology and muscle contraction dynamics studies, showed immense interest in neuromuscular
and musculoskeletal systems. However, the most important contribution in this domain was that of
Duchenne, with his immortal work "Physiologie des mouvements" [21]. Where he introduced the use of

electricity for understanding the conductivity of neural pathways and the dynamics of muscle contractions.

Modestly, this thesis will continue this investigation by the focus on the interaction between the neuro-

muscular and musculoskeletal systems (see Figure 1.1) illustrated by muscular force generation. Actually,
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Figure 1.1: The neuromuscular and musculoskeletal system interaction (figure adapted from (C) Pearson
Education Inc 2012 and 2013).
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these systems are complex systems that perfectly interact in order to provide motion. The muscle force
produced following this interaction is generated by muscle activation driven by the CNS which pilots
the joint motion. In fact, the understanding of the force generation mechanism is fundamental in many
areas such as the study of muscle activation and coordination forces since it is the main determinant of
joint loading. But more importantly, this understanding allows the evaluation of the two systems, the
neuromuscular and the musculoskeletal systems, interaction and the ability of this system of systems to

produce mechanical work.

This study is motivated by the fact that individual muscle force modeling is still an open field of
research due to the lack of consensus and limited validation; direct measures on muscle need very invasive
procedures [22, 8]. Consequently, it is essential to find pertinent ways to model it. At the current stage,
we know for a certainty that muscle activation, in addition to the mechanical response, produces an
electrical response which is the EMG signal. Experimentally, this signal can be measured non-invasively
using simple surface electrodes placed on the surface of the skin. As a matter of fact the EMG signal
and the generated force following muscle activation are associated. Accordingly, the majority of the force
estimation models are based on SEMG recordings [8]. However, these approaches for muscle modeling or
estimation present several problems [8, 7]. Thus, in this work we propose to use a novel SEMG recording
technique called High Density sEMG (HD-sEMG). This innovative sEMG measurement approach presents

many advantages relative to the classical technique and surpasses its limitations.

In this chapter we will introduce the notions of skeletal muscle and motion genesis, EMG and muscle
force generation (section 1.2). Then, we will detail the relationship between the SEMG and the muscle
force and present the EMG based muscle force estimation models that exist in the literature as segmental
motions generator (section 1.3). Finally, after introducing the HD-sEMG technique (section 1.4) we will

conclude this chapter by presenting the problem and the objectives of this thesis (section 1.5).

1.2 Skeletal muscles and motion genesis

The human body contains more than 700 muscles attached to the bones of the skeletal system that
make up roughly half of a person’s body weight [23]. These muscles can generate force, accomplish
movements of the skeletal units, conform to a wide variety of needs, assist to temperature regulation of

the body, and repair themselves when needed. There are three types of muscle tissue in vertebrates [23]:

e Visceral or smooth muscles are involuntary muscles found within the walls of organs like the stom-

ach, intestines, blood vessels and uterus;

e Cardiac muscle is found only in the heart and is responsible for pumping blood throughout the

body. It is also an involuntary muscle that stimulates itself in order to contract;
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e Skeletal muscles are the only voluntary muscles in the human body. All physical movements that

a person consciously achieve require skeletal muscles.

Muscle properties

The skeletal muscles possess four essential characteristics:

Excitability: is the capability of the muscle tissue to contract when stimulated by a voluntary or

involuntary neural command;

Contractility: is the ability of the muscle tissue to respond to a stimulus by developing a tension;

Elasticity: refers to the ability of the tissue to return to its resting state after being stretched;

e Extensibility: refers to the ability of the muscle tissue to be stretched or increased in length.

Except for facial muscles, all skeletal muscles are attached to two bones by tendons. Tendons are tough
band of fibrous connective tissues whose strong collagen fibers firmly attach muscles to bones. Tendons
are able to withstand tension. They are put under extreme stress when muscles pull on them, so they

are strong and are interlaced into the covering of both muscles and bones.

In this thesis, our interest will be focused on the skeletal muscles and more precisely the elbow flexors.
A muscle is called a flexor when it acts to bend a joint in the body. Figure 1.2 illustrates the elbow joint

and the three flexors: the BB, the Brachialis (BR) and the Brachioradialis (BRD).

Biceps brachii Supinator Pronator teres
Short head Brachioradialis Flexor carpi
Long head Flexor carpi :Ir':aris‘ :

radialis almaris longus

Brachialis

Pronator
quadratus

Medial epicondyle
of humerus
Biceps brachii

tendon Aponeurosis of

biceps brachii

Pronator teres ulna

Figure 1.2: The elbow joint muscles responsible for elbow flexion (image from McGraw-Hill companies,
Inc).

The BB is located between the shoulder and the elbow joint. It has two heads, the long and the short

head, that starts from the scapula in the shoulder and then are merged to form the muscle belly near the
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deltoid insertion [24]. The BB ends also in two tendons, the stronger is attached to the radial tuberosity
on the radius and the other on the ulnar part of the antebrachial fascia. The main functions of the BB are
elbow flexion and forearm supination [24]. As for the BR, it is a deeper muscle that is located between
the lower half of the front of the humerus and extends 2.5 cm below the margin of the articular surface
of the humerus at the elbow joint [25]. Further, the BR emerges from the intermuscular septa of the arm
more frequently from the medial. It is separated from the lateral below by the BRD and extensor carpi
radialis longus muscles. Its fibers gather to form a thick tendon at the tuberosity of the ulna [25]. Its
main function is the elbow flexion. This muscle works as a synergist to the BB in elbow flexing. The
last elbow flexor is the BRD. Unlike the BR, the BRD is a superficial muscle attached to the lateral
supracondylar ridge of the humerus and to the radius. Near the elbow, this muscle constitutes the lateral

limit of the cubital fossa [25].

Muscle architecture

The skeletal muscles in the human body have a variety of shapes depending on the fiber orientation
whether it is in the direction of the tendon (fusiform) or at a certain angle from the tendon (pennate).
In the case of a pentane muscle, the fibers are connected to the aponeurosis of the muscle [26]. Thus,
the muscle fiber types vary between: fusiform, parallel, unipennate, bipennate, multipennate, circular

and convergent as illustrated in Figure 1.3 where every shape has its own conveniences. In this thesis as
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Figure 1.3: Muscle architecture (photo created by (©) Benjamin Cummings, Addison Wesley Longman,
Inc 2001).

mentioned before, we will focus on the elbow joint flexors (BB, BR and BRD) especially the BB. The BB

is generally active during flexion of spine forearm but not during the flexion of the prone forearm [5]. It
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was also, reported that the long head of the BB provides more activity than the short head [5]. The BR
is considered to be a “flexor with excellence” since it contributes to the flexion of supine, semi-prone and
prone forearm [27, 28]. As for the BRD, it assists the BB in the flexion. It is described by Duchenne [21]
as a supinator of the prone forearm and a pronator of the supine forearm. All three muscles are fusiform
muscles. The BB and the BRD are superficial muscles. Otherwise, the BR is a deeper muscle that have

a superficial part between the BB and the Triceps.

The skeletal muscles are covered by a firm coat of connective tissue called the epimysium. The epimy-
sium covers the entire muscle and separates it from other muscles [29]. It contains packages of collagen
fibers connected to the perimysium (see Figure 1.4). The perimysium itself is also strong. It partitions
the muscle into fascicles and supplies the pathway for the blood vessels and nerves to pass through the

muscle belly [29].
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Figure 1.4: Skeletal muscle structure (photo created by (C) Encyclopedia Britannica 2015).

The foundation of the skeletal muscle tissue is the muscle fiber, also called muscle cell. The muscle
fibers are wrapped into fascicles, which are themselves bundled together to form the muscle (see Figure
1.4). The collagenous membranes, at each level of bundling, support the muscle functions including a
resistance to passive stretching of the tissue and the distribution of forces applied to the muscle. The fiber
cells are threadlike shaped, where each one of them contains nuclei, myofibril, mitochondrion, endoplasmic

reticulum and is sheathed with its own endomysium of collagen fibers [30] (see figure 1.4 and 1.5).

They are arranged in parallel with each other with a diameter between 10 and 100 um [31] and a length
that can reach 30 ¢m for some muscles. Most of the muscle fiber volume (~ 80%) is occupied by the

myofibrils which are a cylindrical elements with a diameter between 1 and 2 pm [29, 31]. The myofibril
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Figure 1.5: Muscle fiber structure (photo created by (C) Pearson Education Inc 2013).

are the units responsible for contraction and relaxation of the fiber [29]. Each myofibril contains two
types of protein filament: actin (thin filament) and myosin (thick filament). In fact, the alternation of
the dark, anisotropic, A-bands corresponding to the presence of myosin filaments and the light, isotropic,
I-bands that contain actin filament along the myofibril gives the myofibril and the muscle fiber its striated

appearance.

In rest position, actin and myosin filaments overlap to a certain extent as shown in Figure 1.5. The
region of myosin without overlapping in the A-band is called the H-zone as illustrated in Figures 1.5 and
1.6. In the middle of the H-zone there is a dark region which is the M-region that contains filamentous
structures that cross-connect the myosin filaments [29]. Similarly, in the center of the I-Band we have
a dark line called the Z-disk where actin filaments are bounded together (see Figures 1.5 and 1.6). The

cylindrical space bounded by two consecutive Z-disks is called a sarcomere. It is the basic unit of striated
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Figure 1.6: Muscle fiber structure (photo created by (©) Benjamin Cummings, Addison Wesley Longman
Inc 2001).

muscle tissue. At the resting position, a sarcomere has a length of about 2.2 ym. The length of the
muscle fiber depends on the number of sarcomeres in series that comprise it [29]. For example, a muscle
fiber from the BB can contain up to 100000 sarcomeres. FEach muscle fiber is surrounded by a plasma
membrane called sarcolemma. The extension of the sarcolemma between the muscle cells is a transverse
tubules called T tubules. These extensions are perpendicular to the fiber length as shown in Figure 1.6

and have the role of conducting electrical impulses deep into the muscle fiber.

Motor Unit (MU)

In the skeletal muscle, the muscle cells (fibers) contract in troops never as an independent entity. These
groups of muscle fibers contracting at the same moment are innervated by the same motoneuron [5].
Accordingly, this motoneuron along with its axon, terminal branches and all the muscle cells innervated

by these branches compose the Motor Unit (MU) (see Figure 1.7).

The motoneuron called «—motoneuron is the point of summation for the voluntary and the reflex inputs
[2]. In fact, the final membrane current brought by the synaptic innervation sites at this a—motoneuron
decides the activity of the MU [2]. The MU is considered to be the functional unit in a striated muscle as all
the corresponding fibers contract almost as one, following an impulse in the associated nerve. The number
of MUs in the muscle has always been an ambiguous issue for the anatomists, therefore they estimated

this number using various methods. This number can vary between 100 MUs for the smaller hand muscles
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Figure 1.7: Motor Unit (MU) illustration from (C) Pearson Education Inc 2013.

and 1000 MUs for bigger leg muscles [29]. For example, the number of MUs in the BB muscle has been
approximated to 770 MUs in [32]. The MUs in the skeletal muscles have a wide range of physiological
properties similar to the vast morphological and electrophysiological properties of the corresponding
motoneurons. Therefore, a distinct motoneuron and the corresponding MU that it innervates have similar
biochemical, histochemical and contractile properties [2]. However, the classification of the MUs following
their physiological properties is a laborious task [29]. As a result, all studies try to identify the muscle
fiber populations in the muscle’s cross section by studying their histochemical criteria. Figure 1.8 shows

the histochemical typing in a human deltoid muscle. Hence, MUs are classified based on the properties

Figure 1.8: Four cross sections of the deltoid muscle showing different myofibrillar ATPase reactions,
illustrating the morphological typing of muscle fibers [11].
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of their muscle fibers [33]. Theses properties and fiber types are presented in the following paragraph.

Types of fibers

As described in the previous paragraph, the skeletal muscles are heterogeneous structures that possess
great adaptation abilities. These muscles contain several types of muscle fibers which are classified into
two main categories, type I or slow twitch fibers and type II or fast twitch fibers that are presented in

Figure 1.9. Where all fibers innervated by the same a-motoneuron are of the same type.

S FR Fint FF

Twitch
__ Twitch
Twitch

Figure 1.9: Tllustration of the muscle fibers characteristics according to their types [12].

e Type I fibers are characterized by a low force, power and speed production but an important
endurance. They have smaller diameter but a higher mitochondrial and capillary density, and a
higher myoglobin content. That’s why they have darker coloration (red). These fibers have slow
twitch response (slow contraction) and a slow fatiguability. They contain enzymes involved in the
oxidative pathways (Krebs cycle, electron transport chain). From the activity point of view, these
fibers are used in low force level requiring activities like maintaining posture, walking and daily

activities. The MUs that contains these types of fibers are called Slow MUs (SMUs) [2, 5].

e Type II fibers are described by having a high force production but low resistance to fatigue. They
have bigger diameter than the type I fibers but less myoglobin content. Therefore, they are lighter in
color. They also have higher rates of calcium release by the sarcoplasmic reticulum and by myosin-
ATPase enzyme activity that breaks down Adenosine Triphosphate (ATP) inside the myosin head

of the contractile proteins [2, 5]. This type of fibers can be further sub-classified into three classes:
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1. Type ITA: These fibers have similarities with the type I fibers, from the fact that they are

relatively more resistant to fatigue than other type II fibers. They also have more mitochon-

drial, capillary and myoglobin numbers. The associated MUs are called Fast Resistant MUs

(FRMUs);

2. Type IIB: These fibers resembles mostly the type II description, having high force production,

fast contraction velocity and very low resistance to fatigue. The corresponding MUs are called

Fast Fatiguable MUs (FFMUs);

3. Type IIX: The MUs counsisting of this fiber type are called Fast Intermediate (FIntMUs). This

means that they are intermediate between the FF and the FR type.

All these fiber types are presented in Figure 1.9 with a summary of their characteristics presented in

Table 1.1.

Table 1.1: Summary of the differences in skeletal muscle fiber types (Table adapted from [19]) .

y S FR Flnt FF
Contraction speed Slow Moderate fast Fast Very fast
Resistance to fatigue High Fairly high Moderate Low
Activity Aerobic Long-term Short-term Short term
anaerobic anaerobic anaerobic
Maximum contraction Hours Less than Less than Less than
duration 30 minutes 5 minutes one minute
Power produced Low Medium High Very High
Mitochondrial density Very high High Medium Low
Capillary density High Intermediate Low Low
Oxidative capacity High High Moderate Low
Major storage fuel Triglycerides Creatine phosphate, ATP, creatine ATP, creatine
glycogen phosphate, phosphate
glycogen
Properties Consumes lactic | Produce lactic acid | Consume creatine | Consume creatine
acid and creatine phosphate phosphate

phosphate

1.2.1

Mechanism of muscle contraction

In this part, we will introduce the mechanisms of muscle contraction starting from the sliding filament

theory and the cross-bridge theory to the generation and propagation of AP in the fibers.

The leading contribution to the understanding of muscle contraction mechanism was brought by Hux-

ley in the early 50’s [34, 35]. He introduced what we call the sliding filament theory of muscle con-

traction. In reality, a muscle fiber contracts following two phases: muscle fiber stimulation phase and

excitation-contraction phase. The block diagram of the contraction mechanism is presented in Figure

1.10. Accordingly, a muscle fiber excitation starts by a stimulation with an AP at the terminal of a
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Figure 1.10: The block diagram describing the muscle fiber contraction mechanism.

motoneuron’s axon. This phenomenon is presented in Figure 1.11a where the Calcium (Ca?*) dynamics

are exhibited.

Wherefore, the muscle fiber excitation phase starts by the arrival of AP at the axon’s terminal which
causes the release of Acetylcholine (ACh) following the penetration of Ca®T ions in the axon’s terminal.
Then, the ACh binds to the sarcolemma receptors which induces the opening of ion channels. In conse-
quence, Sodium (Na?") ions enters and Potassium (K1) ions exits the muscle fiber. This variation in
the ions concentrations changes the membrane potential (end plate potential) which causes the depolar-
ization of the membrane and the propagation of the AP at the sarcolemma. The second phase of muscle

contraction, the excitation-contraction phase, is illustrated in Figure 1.11b.

Following the propagation of the AP along the sarcolemma, the AP travels down the T tubule where
the voltage sensitive proteins lead to the opening of Ca?t channels and the releasing of Ca?t in the
sarcoplasmic reticulum. Thus, the Ca?*t ions concentration in the sarcoplasmic reticulum increases and
the Ca®T ions start to bind to the troponin of the actin filaments (see Figure 1.11b). When the Ca**
binds to the troponin, it causes it to change shape exposing binding sites for myosin and the sliding

filaments phenomenon responsible for muscle contraction begins [36, 37].



CHAPTER 1. GENERAL CONTEXT 44

N Myelinated
D

©2013 Pearson Education, Inc.

(b) The dynamic of AP propagation in the fiber.

Figure 1.11: The mechanism of muscle contraction (image from (C) Pearson Education, Inc, 2013).

As mentioned before the sliding filament theory introduced by Huxley [38] is the essence of muscle
contraction where the shortening of muscle fibers is induced by the sliding of actin filaments changing
the fiber length. It also describes in details the formation of cross bridges from the binding of energized
myosin heads to actin filaments. The binding of myosin head to the actin filament induces the release of
adenosine diphosphate (ADP) and phosphate. Sequently, the myosin head pulls the actin filament towards
the M line. Then, the myosin head detaches from the actin filament when an adenosine triphosphate
(ATP) is attached to the myosin. Ultimately, the ATP is hydrolyzed into ADP and phosphate and the

myosin head retakes its original position. This cycle is presented in Figure 1.12.
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Figure 1.12: The steps of the sliding filaments phenomenon during muscle contraction (image from (€
McGraw Hill, Inc).

1.2.1.1 Generation and propagation of fiber action potential (FAP)

The generation of the AP starts at the axon terminal and sarcolemma interface called the Neuromus-

cular Junction (NMJ). As described in the previous paragraph, when a neural AP arrives at the NMJ,

it causes the change of ion concentrations at the membrane of the fiber (sarcolemma). In the case where

this AP exceeds a certain threshold, it results in the depolarization of the fiber’s membrane causing the

generation of an AP at the sarcolemma. This AP changes quickly from -70 mV to +30 mV (see Figure

1.13).
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Figure 1.13: Action potential (image from (C) Pearson prentice Hall, Inc 2005).

This depolarization is expressed by an outburst of monopolar electric tension that induces the muscle

contraction. This is followed by a repolarization state where the membrane’s potential regains its original
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potential of -70 mV and the muscle contraction ends. This repolarization is caused either by cessation of
signals from the motoneuron or a lack of ATP caused by fatigue. Eventually, the potential is stable after
an undershoot state due to the recovery of the ion concentrations in the membrane by the active pumping
mechanism [31]. This FAP propagates along the fiber length in the two directions with a velocity that

lies between 2 and 6 m/s and an intensity of ~100 mV [31, 37].

1.2.1.2 Different types of muscle contraction

The muscle contraction type is usually divided into two main classes based on muscle length variation

[39]:

e Isometric contraction, during which the muscle length does not change when the muscle generates
tension. However, we can also observe changes in the muscle shape due to the shortening of the

contractile element.

e Anisometric contraction also called dynamic contraction, implies that the muscle length changes
during the contraction causing also a deformation of the muscle shape due to both length variation

of the contractile element and the tendons. This type can be further broken down into two subtypes:

— Anisometric eccentric contraction which is described by a lengthening of the muscle during

contraction.

— Anisometric concentric contraction which is distinguished by a shortening of the muscle during

contraction.
From the point of view of the produced force we can differentiate between:

e Isotonic contraction: which is the type of contraction obtained when the generated force does not

change along the contraction time.

e Anisotonic contraction: which is attained when the generated force changes all along the contraction.

In this thesis work, the proposed studies in both simulation and experimentation will concern isometric

isotonic and anisotonic contractions.

1.2.2 Surface Electromyogram (sEMG)

The first study of EMG was achieved in 1912 in Germany by H. Piper, where he used a string gal-
vanometer to measure the EMG [5]. Afterwards, during the 20’s similar studies appeared by different

researchers among which the concentric electrode technique was introduced [40]. This impressive tool
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employed by Adrian and Bronk [40] is still used until nowadays. Then, through the 50’s and 70’s major
contributions were achieved including the quantitative analysis of the Motor Unit AP (MUAP) which will
be explained in the following paragraph, EMG decomposition techniques and EMG amplitude analysis.
Thereupon, the sEMG was introduced as a non invasive technique that has the advantage of detecting
the MUAP activity in a large volume as opposed to the needle EMG technique that detects the MUs
activity in a small volume near the needle’s tip. The first team to use the SEMG technique was Hardyck
and his researchers in 1966 [41]. Subsequently, in the following years the use of SEMG technique was
radiated by many hundreds of papers. And nowadays, Basmajian’s book, “Muscles alive”, remains the
ultimate reference on sEMG technique [5]. Despite the fact that the SEMG signal is a stochastic and
often non stationary signal, many applications have been rising since the last decade 26, 42, 16, 43|
indicating its ability to asses the functional behaviors of skeletal muscles. However, this technique suffers
from limitations that have to be carefully taken into account such as spatial filtering of living tissues
and electrodes. In addition to the auto-cancellation phenomenon that can lead to a misestimation of the

muscle activation |7, 44].

1.2.2.1 Motor Unit Action Potential (MUAP)

As explained in section 1.2, the MU consists of a a—motoneuron and the group of fibers by which they
are innervated. Therefore, when this MU is recruited all the fibers are activated almost instantly. The
electrical result of this recruitment is an electrical discharge with an amplitude that can be evaluated in
1V (using needle electrodes) and a duration of about 9 msec [5]. Indeed, the potential resulting from
corresponding fiber responses of a MU is called MUAP. The shape and the amplitude of this MUAP
depends on several parameters that will be discussed later on. Beyond recall, the summation of these

MUAP generates the EMG signal as portrayed in Figure 1.14.

The sEMG is a noninvasive technique to measure the electrical activity of a muscle on the surface of
the skin. The obtained sEMG signal is the summation of MUAP corresponding to the activated MUs
detected by an electrode placed on the surface of the skin (see Figure 1.15). Thus, in this thesis we
will focus on sEMG signal analysis since it contains information about the MU recruitment process, AP
characteristics, that are influenced by anatomical and physiological parameters [45], and is also correlated

to the mechanical response of muscle activation, i.e the muscle force.

1.2.2.2 Motor Unit recruitment and firing (Rate coding)

When a muscle is voluntarily activated, the sEMG signal and the produced force are modulated by
two major mechanisms: the spatial MU recruitment (number and localization) and the MU rate coding

(firing rate variation) [2]. Actually, the force and the SEMG amplitude increase when the number of
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Figure 1.15: EMG generation during voluntary contraction.

recruited MU and their firing rate increase [2]. Clearly, these two mechanisms depend mainly on the
contraction level and speed (in the dynamic case). A low contraction level implies a low recruitment
threshold for the MUs. These MUs are typified as low force generation MUs (SMU) that are resistant to
fatigue. Howbeit, a high contraction level suggests that additional MUs are recruited. These MUs are

much more fatiguable and have a higher force response (FFMU).

The MU recruitment depends on the level of contraction and is based on the “size principle” defined by
Henneman in [46], which evidenced that the recruitment of MUs is done through increasing motoneuron
and MU size [46, 47]. This size based recruitment is often referred to as the “orderly recruitment” [48, 2].
It was evidenced that the MU recruitment law, which described the evolution of the recruitment threshold
with contraction level, is exponential [49]. At a certain contraction level that varies between 60 and 85 %
of the maximum voluntary contraction (MVC) depending on the muscle characteristics [45, 49], all MUs

are recruited. Beyond this contraction level only increasing MU firing rate can influence the resulting
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force and sEMG signals.

When recruited, a MU’s motoneuron discharges, following random point processes, at a minimal fre-
quency that increases with force level increase following a certain strategy [49]. In the literature, recent
studies defined different types of firing rate strategies [13, 49]. These strategies vary between linear and
nonlinear with similar or different minimal and maximal discharge frequencies [50, 45, 49, 51]. The MU
firing regularity can be assessed by analysis of the Coefficient of Variation (CoV) of the Inter Spike In-
tervals (ISIs), corresponding to elapsed time between two successive firings, that is supposed to respect

a Gaussian distribution.

1.2.2.3 Discharge frequency and generated force

The force frequency relationship has different characteristics [29] that depends on the MU type and
other circumstantial properties like the muscle’s prior activity and temperature. These characteristics

are:

e Fusion frequency which is the lowest frequency at which there is no oscillations in the force
e Peak force which is the maximal obtained force

e Tetanic force ratio which is the ratio of the developed force of a twitch to the peak force

1.2.2.4 Electrode configurations and spatial filtering

The electrodes usually used in surface electromyography are simple silver chloride discs of different
sizes. Their main advantages are being noninvasive and convenient for use without giving discomfort to
the subjects. One thing that should be verified is a correct electrical conduction between the skin and
the electrode. This should be thoroughly prepared by removing first the dead cell layer and the oils of
the skin in order to have reduced skin-electrode interface impedance of ~ 3 K {2 [5]. This can be achieved

by providing sufficient quantity of conductive gel between the electrode and the skin.

A sEMG signal is called monopolar when it is recorded using differential amplifier by measuring the
difference between two signals; a first signal recovered by a surface electrode placed on the surface of
the skin above a certain muscle (active electrode) and the signal recorded by an electrode placed in a
neutral position (reference electrode). This arrangement has the largest detection volume compared to
the others [5]. In the case where two electrodes connected to the differential amplifier are placed on the
skin over the muscle, the sSEMG signal is called bipolar (see Figure 1.16). The bipolar installation of the
acquisition system has a filtering effect on the obtained SEMG signals [52]. This filtering effect causes

a reduction of the detection volume by altering the spatial selectivity of the electrode system [53, 10].
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Figure 1.16: Different electrode configurations and the corresponding recorded MUAP.

Other electrode setups are used such as the double differential and the Laplacian configurations (Figure
1.16). The Laplacian configuration presents the advantage of filtering the non propagating component
in the sEMG signal. This non propagating component is due to the extinction of the transmembrane
currents at the tendon. It is important to note that the detection volume depends largely on the electrode
configuration since when the filtering order increases the volume detection becomes smaller and the signal
amplitude decreases. Finally, in order to record an sEMG with an excellent quality there is a number
of factors to consider like the electrode configuration, the electrode placement on the surface of the skin

and electrodes alignment with respect to the direction of fibers [54, 55].

1.2.2.5 sEMG signal Processing

As previously described, muscle contraction is a consequence of physical and chemical sequence of events
that the signal processing of SEMG is expected to qualify and quantify. Among the many information
contained in the sEMG signal, we can register anatomical facts like the location and the shift of the NM.J
[56, 57|, mechanical information [26, 42, 16] and fatigue evaluation [58, 59]. Moreover, a direct relationship
exists between the sSEMG and the exerted force [2, 60]. This technique has been also extensively used
in a variety of applications; in kinesiology, sEMG is often used in the control of prosthetic devices
for individuals with amputations or congenitally deficient limbs [61, 43, 62|, in rehabilitation and in
biofeedback experiments [63]; in biomechanics, for the estimation of muscle activation, neural command
[64], muscle force and moments [65, 59]; in clinical neurophysiology, for the estimation of nerve conduction
variables [66], anatomical properties of the muscular tissue [65] and the study of motor unit behavior

[59, 67].
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1.2.2.6 Basic signal processing of the sEMG signal

Usually the sSEMG signal is processed either in the time or the frequency domain before it is exploited.

Some of the most popular parameters are:

In the time domain, the parameters allowing quantification of the activation level are:

e The integrated EMG (iIEMG) which is the integral of a rectified digitized signal z; during a period

of time corresponding to Ny, samples:

Ntot

iEMG =" |xil (1.1)

=1

e The Averaged Rectified Value (ARV) that corresponds as its name indicates to the average of the
rectified values of a sSEMG signal x; during a segment of time corresponding to N, samples. It is

expressed by the following equation:

1 Niot
ARV = xX; 1.2
=3 12

i=1

e The Root Mean Squared (RMS) value that correlates with the signal power. It is computed using

the equation below:

In the frequency domain, the spectral parameters are based on the Power Spectral Density (PSD) of

the SEMG signal expressed by [2]:

—+o0

Sy = 3 r(r).e Ik (1.4)

T=—00

Where e~ 7%« (w = 2I1f) is the k" sinusoidal harmonic and r(k) is the autocorrelation function ex-

pressed as: r(7) = E [z (k + 7) z (k)].

The power of the sSEMG signal is generally comprised between 5 and 500 Hz with the primary energy
contained in 50-150 Hz portion [58]. The change in the spectral content of the EMG signal is usually

tested using frequency parameters such as:

e The modal frequency f,,,q presenting the frequency corresponding to the maximum PSD in the

signal defined by:

Ma:z:(S) = S(fm,od)7 fmod >0 (1.5)
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e The median frequency fn.q presenting the frequency that breaks the PSD in two parts with equal

power. It is expressed by [68]:

fmed Fiot
D Sk= > Sk (1.6)
k=1 k=fmea

With Fi,; is the total number of samples in the frequency domain.

e The mean frequency fean presenting the ratio of the first spectral moment with respect to the
signal power. It is computed using the following equation [68]:

Ftot

kaSk
=1

fmean =

With f; is the frequency value at the i*" sample.

1.2.2.7 Elements affecting the sEMG signal

Ftot

>
k=1

As described earlier, the SEMG signal reflects the process of MU recruitment in addition to the MUs

characteristics. Nevertheless, the amplitude and spectral content of the sEMG signal depend on different

factors that can lead to misinterpretation of the measured signals. These factors were targeted in details

by De Luca [6]. They are illustrated with a schematic diagram in Figure 1.17 and are grouped by De
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Figure 1.17: The factors affecting the SEMG signal [6].

Luca into three categories:

o Causative factors that elementary influences the signal and are further branched into two classes:
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— Extrinsic causative aspects are related to the electrode structures and their positions on the
skin. A few of these factors are:
* The electrodes configuration (size and arrangement);
* The electrodes positions with respect to the NMJ and other muscles;
— Intrinsic causative aspects are connected to the physiological, anatomical and biochemical
properties of the muscle like:
* The type distribution of fibers composing the muscle;
* The depth and the diameters of the fibers in the muscle;

* The conjunctive tissue that separates the muscle and the electrode (skin and adipose

tissues thickness);

* The blood flow in the muscle;

e Intermediate factors which represent physical and physiological phenomena influenced by causative

factors and influencing in their turn the deterministic factors. Some of these factors are:

FAP conduction velocity;

Spatial filtering effect due to the electrode position;
— MUAP superposition and auto-cancellation phenomenon;
— Electrode detection volume;

e Deterministic facts that have direct impact on the information present in the sEMG signal and the

obtained muscular force. Among these factors:

— The active MU number;
— MU force or twitch;

— Mechanical interaction between fibers;

MU discharge frequency;

The number of detected MUs;

— MUAP amplitude and duration;

All these parameters have to be taken into account when designing any experimental protocol and ana-

lyzing the obtained results to avoid possible misinterpretation.
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1.2.3 Muscle force generation

In this section, we will introduce the generation of the other consequences to muscle activation, in
complement to the electrical response (EMG signal), which is the muscle force. First, we will explain
the contractile response of a MU then we will discuss the genesis of the global force and the parameters

influencing this force.

1.2.3.1 Twitch generation and summation of twitches

The twitch is the elementary contractile event. It is the mechanical response i.e. contractile force (in
Newton) of a single MU to a neural stimulus from the corresponding motoneuron (in the voluntary case).
The shape of the twitch is presented in Figure 1.18a. By looking at Figure 1.18a, we can note different
stages of this contractile response: stimulus is sent, start of contraction (time delay to the stimulus),

contraction phase and relaxation phase.
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Fouaz Ayachi).

Figure 1.18: Twitch force shape and parameters and twitch shape variation according to the MU type.

The delay between the detection of the AP and the start of the contraction or force development is
called the electromechanical delay [29]. It is due to the time needed to conduct the AP into the T tubule
and release Ca?t ions into the cytoplasm in order to initiate the cross-bridge cycle after the binding of
Ca** ions on the troponin (see section 1.2.1). Furthermore, we have to note that the contraction and the
relaxation durations depend on the MU type [20, 69, 70] (see Section 1.2). Thus, the shape of the twitch
as well as its parameters changes with respect to the MU type as illustrated in Figure 1.18b. Where Tgs
is the electromechanical delay between the time the stimulus is sent and the start of the contraction, T is
the contraction time between the start of the contraction and when it reaches its maximum value Fj, 4,
Ty is the duration between the start of the contractile response and the moment the force decreases to

half of the maximum value and T},; is the total duration of the contraction.
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Whenever another stimulation is exercised before the end of relaxation of the previous twitch response,

we obtain a twitch summation. This results in an unfused tetanic force as shown in figure 1.19. The
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Figure 1.19: Tetanic force generation during voluntary contraction (figure from (C) Pearson Education,

Inc 2013).

obtained peak force depends on the MU type and firing rate. When the firing rate is sufficiently high

in order to obtain a force plateau, we have what we call a fused or a complete tetanic force (figure

1.19). Thus, the total force produced by a muscle is the summation of the contractile response of all

the activated MUs as presented in Figure 1.20. As mentioned before the contraction level depends on

two major factors: the spatial recruitment and the firing rate of MUs. The spatial recruitment of MUs

based on the size principle has been discusses earlier (Section 1.2.2.2). Thus, we will focus on the relation

between the discharge frequency and the generated force.
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Figure 1.20: Muscle force generation from the superposition of MU twitches.

1.3 EMG driven force estimation models

The estimation of the force generated by an individual muscle is of high importance in many fields
such as clinical applications for diagnosis and treatment purposes, biomechanical studies for prosthesis
control and kinesiology applications for rehabilitation purposes [43, 71, 72, 73]. Several force estimation

techniques exist in the literature. Figure 1.21 presents a mind mapping of these different techniques.

Motion P —— MRI
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v
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Figure 1.21: Mind mapping of the techniques used for muscle force estimation.

Among these methods, we have the Mechanomyogram (MMG) which is a signal that represents the

muscle oscillations on the surface of the skin caused by the change in the muscle shape during con-



CHAPTER 1. GENERAL CONTEXT o7

traction [74]. This techniques has been used in muscle force estimation [75, 74, 76] but its validation is
questionable. Another force estimation method would be based on the Sonomyography (SMG) technique,
which represents the continuous capturing of ultrasound images of the muscle. It aims at tracking the
morphological variation of the muscle with muscle force variation [77, 78, 79]. This technique is similar
to the elastography technique which measures the elasticity variation of the muscle using various tech-
niques like MRI or ultrasound based elastography [80, 81| and supersonic shear imaging [4]. One of these
elastography based force estimation models that is worth mentioning is that of Bouillard et al. [4]. Tt is
the only study where they successfully measured the individual muscle force of two muscle fingers, the
abductor digitimi minimi and the first dorsal interosseous, during abduction by using both supersonic
shear imaging and sEMG. But although this study was really innovative, it supposes a linear relationship
between the RMS and the muscle force which is not true in many conditions (see section 1.3.1). Also,
it only applies to specific muscle architecture (intrinsic hand muscles). Lastly, a new motion tracking
technique that is popular mainly in the entertainment industry, the Motion Capture (MoCap) technique,
was also proven to be an efficient tool to track the muscle force variation through measuring the surface
deformation of the muscle [82]. However, the SEMG based estimation models remain the most popular
and effective force estimation models out there since it was evidenced that, under isometric static con-
tractions, it can give a viable measurement of the force output [7]. This can be justified by the strong
link between the SEMG and the force produced by a singular muscle since they are driven by the same
recruitment pattern. Thus, in this section, we will carry out the state of the art for the sSEMG based
force estimation models present in the literature. All these models can be classified into three main types:

phenomenological, physiological and regressive type models.

1.3.1 sEMG /force relationship

The sEMG /force relationship has been the focal point of inspection for researchers since the early
70s [83, 5]. The reason behind this grown interest in this relationship is motivated by the fact that
understanding this relationship can contribute to a great extent in the force estimation and modeling
paradigms. Thus, a number of studies attempted to discover the shape of this relationship. Some of these
studies found it to be linear for small muscles, such as the first dorsal interosseous, and nonlinear for
larger muscle, such as the BB and the deltoid [84]. However, these results were obtained using bipolar
electrodes, which suffer from experimental issues, especially electrodes placement problems. They also
consider the relationship between a certain muscle, the BB for example, and the global force measured
at the elbow which is not the individual BB force but rather the summation of all muscle forces acting
on this joint [85]. Despite all the later work, the relationship between the SEMG and the force of a single
muscle is not well understood. Aside from these experimental studies, more recent work by Zhou and

Rymer [13] used simulation in order to study the factors affecting the shape of the relationship between
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the EMG of the first dorsal interosseous and the corresponding muscle force. Figure 1.22 illustrates
the different relationship patterns they obtained for different linear firing rate strategies FR1 (the slope
of the excitatory drive-firing rate relation was set to be the same for all motoneurons. Peak firing
rate of a motoneuron was inversely proportional to its recruitment threshold), FR2 (the slope of the
excitatory drive-firing rate relation of a motoneuron increased with increasing recruitment threshold. All
motor units finally reached the same peak firing rate at maximum excitation) and FR3 (the slope of
the excitatory drive-firing rate relation was set to be the same for all motoneurons. Peak firing rates
were linked to mechanical properties of motor units) and for linear twitch-MUAP relation and square
root twitch-MUAP relation [13]. They found that the nonlinear relationship is mainly affected by the
relation between electrical and mechanical characteristics of MUs [13] and by the recruitment threshold
range [49]. Based on these linear and nonlinear relationship hypothesis, an Botter et al. [42] tried to
solve this relationship by classifying the sEMG /force relationship into three patterns (see Figure 1.23):
linear, nonlinear with downward concavity and nonlinear with upward concavity. This study defines the

EMG /force relationship for each muscle m by [42]:

F,, =z,sEMGY™ (1.8)

with z,, and y,,are constant coefficients.

A simulation study of the sEMG /force relationship form will be presented in chapter 4, where we will
study in details the effect of different neural (recruitment strategy and firing rate), anatomical (MUs
type percentages in the muscle) and physiological parameters (subcutaneous tissue thickness, skin tissue
thickness and muscle length) on the shape of the SEMG /force relationship, in the purpose of a more
realistic modeling and estimation since there are different factors that can influence the sEMG /force

relationship shape. These factors are [7]:

The MU activation law;

e The anatomical, mechanical and electrical properties of the muscle;

e The placement of the SEMG electrodes on the surface of the skin above the considered muscle;

The characteristics of contraction filaments;

The morphological properties of the muscle (skin tissue thickness and adipose tissue thickness);

e The recruitment strategy and firing rate.
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Figure 1.22: Normalized EMG /force amplitude relations using different simulations [13]. A, C, and E:
simulated EMG /force amplitude relation when MUAP amplitude is proportional to square root of twitch
force. A: simulated force-EMG amplitude relation derived from motor unit firing rate strategy FR1. C:
simulated force-EMG amplitude relation derived from MU firing rate strategy FR2. E: simulated force-
EMG amplitude relation derived from motor unit firing rate strategy FR3. B, D, and F: simulated force-
EMG amplitude relation when MUAP amplitude is linearly proportional to twitch force. B: simulated
force-EMG amplitude relation derived from motor unit firing rate strategy FR1. D: simulated force-EMG
amplitude relation derived from MU firing rate strategy FR2. F: simulated force-EMG amplitude relation
derived from MU firing rate strategy FR3. FR1, FR2 and FR3 are defined in [13].

1.3.2 Phenomenological models

During the past centuries, a large number of papers attempted to quantify the muscle force based
on the sEMG signal. The majority of these studies are phenomenological models derived from Hill’s
study [86] and resumed by Zajac [26]. These studies started to appear after the first observation of
the changes in the SEMG amplitude with muscle force by Inman et al. [87] and then the study of the
sEMG /force relation by Bigland and Lippold [88]. Usually in these type of models, we have two major
blocks [26, 89, 16, 90]:

1. Neural excitation to muscle activation;

2. Muscle activation to muscle force.
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These stages outline the muscle tissue dynamics and are presented in Figure 1.24.
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Figure 1.24: The transformation of neural excitation u(t) to muscle force F(t) by means of activation
dynamics and muscle contraction dynamics.

As we can see, the first step is to transform the neural excitation w(t), namely the neural intent
to contract at a specific level, into muscle activation a(t), namely the normalized intensity of muscle
contraction, which is not a trivial task. On the contrary, it consists on several steps. Starting from
the raw input sEMG signal, the muscle activation can be obtained by the steps presented in Figure
1.25. Initially, the neural excitation is obtained after removal of DC component by rectification, low-
pass filtering and normalization of the raw sEMG input signal [16, 91]. The low pass filtering aims at
extracting the envelope of the rectified sEMG signal. A strong hypothesis behind this approach is that
the sEMG signal intensity should be correlated (hopefully, in a linear manner) with the neural intent
from the CNS. The cutoff frequency is usually somewhere between 3 and 10 Hz [16]. Some studies in
the literature consider this envelope, after normalization, as the muscle activation a(t) [89]. Still, even
if this hypothesis could be practical under certain conditions, it is not always acceptable and pertinent.
Thus, Zajac presented a detailed model of muscle activation dynamics that allows to obtain the neural
activation u(t) from the processed sEMG signal e(t) [26]. He proposed a first order differential equation

to model the activation dynamics. This equation is presented below [26]:
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Figure 1.25: Transformation from sEMG signal into muscle activation a(t).

du(t)
dt

(84 (= B)ele)] ) = e (1.9)

Ta

where [ is a constant (0 < 8 < 1) and 7, is the muscle activation delay. Additional to this first order
differential equation, a second order differential equation proposed by Milner et al. [92] was found to be

more convenient [16]. This equation is elaborated as follow:

d?e(t) de(t)
a2 T BT + Ce(t) (1.10)

u(t)=A

where A, B and C are constants. The discrete approximation of equation 1.10 would be the recursive

filter given by:

u(t) = ae(t —d) — Pu(t — 1) — yu(t — 2) (1.11)

with d being the electromechanical delay and «, 8 and « are constants. A lot of studies considers u(t)
to be an acceptable representative of muscle activation a(t). However, studies showed that in isometric
condition the sEMG signal is nonlinearly related to the muscle force, especially for low contraction levels

[91, 16]. Therefore, some studies used a nonlinear power function [91], others used logarithmic function
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for low level contractions and linear for the higher contraction levels [15] such as:

a(t) = dn(cu(t) + 1) if 0 < u(t) <0.3 (1.12)

alt)=mau(t)+b  if 0.3<u(t) <1

where ¢, d, m and b can be transformed into one parameter A (0.00 < A < 0.12) [15]. This parameter

is thusly used for the tuning of the nonlinearity of this relationship as presented in Figure 1.26.
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Figure 1.26: The relationship between a(t) and u(t) for muscle-specific values of A as presented by [15].
Each plot has a reference line u = a. The node point for each piecewise curve is specified by (ug,aq) as
described in [15].

Further formulations have been used that are easier to use. One of these formulations is presented by

the following equation [93]:

Au(t) _ 1
€
alt) = ~—5—1 (1.13)

Where A is the nonlinear parameter (—3 < A < 0).

The second step to force estimation, as previously discussed and illustrated in Figure 1.24, is the muscle

contraction dynamics which estimate the relationship between the activation a(t) and the generated
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muscle force F(t). For this step, the Hill-type model is mostly used since it is simple and fast to compute

[86]. The general Hill model is composed of three elements [86, 16] as shown in Figure 1.27:

e The Contractile Element (CE) which models the fiber contraction at the sarcomere level and is

responsible for force production;

e The Serial spring Element (SE) which models the mechanical attitude of the tendon and represents

the elasticity of the myofilaments;

e The Parallel spring Element (PE) which models the mechanical behavior of the connective tissues

and presents their passive force surrounding the muscle fiber.

CE

==

SE

Figure 1.27: Schematic representation of the Hill muscle model.

According to this model, the total force F' produced by the muscle is computed by:

F =FPP  pSE pCF — pSE (1.14)

with FEF FSE and FPF the forces produced by the CE, the SE and the PE respectively.

Similarly, the total muscle length L is represented by:

L=LY 415 L =LFF (1.15)

with LEF | LSE and LY the lengths of the CE, SE and the PE respectively.
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The muscle-tendon complex is modeled as displayed in Figure 1.28 [26]. As indicated in Figure 1.28,

this model takes into account the muscle pennation angle 6 (for the BB case 6 = 0).

Tendon

Tendon

W\,

112

F
Y

Figure 1.28: Schematic representation of the musculotendinous actuator.

Usually, the muscle and tendon properties previously discussed, are normalized with respect to a set

of parameters specifically to a certain muscle. From these parameters, we note:

e Maximum isometric active fiber force Fy;

Muscle fiber length Ly corresponding to the maximum force;

Muscle fiber pennation angle 8y corresponding to the maximum force;

Maximal velocity V,,, corresponding to the muscle shortening;

Activation time 7;

Deactivation time 7y;

e Time parameter for time scaling 75 (75 = %)

Then, based on the Hill-type muscle model, the muscle force F'(t) is obtained from the muscle activation

a(t) (see Figure 1.24) by the following equation [86, 16]:

F(t) = a(t).f(v).f(1).Fy (1.16)

Where f(v) and f(I) are the normalized velocity and length dependent fiber force respectively. Thus, in
order to characterize the muscle force, in anisometric conditions, we need to consider two relationships [94]:

the force-length and the force-velocity functions. Starting by the muscle length and force relationship,
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Figure 1.29 illustrates a normalized muscle force-length relationship in dimensionless units. As we can
see we have two parts: active and passive ones. The active part is caused by the CE. It produces maximal
force when the length is equal to Lg. As for the passive force it is produced by the PE that produces a

force when it is stretched beyond its limits.

Thus, the total force produced by a muscle during contraction is the summation of both active and

passive components:

F=Fy+Fp (1.17)

with F4 and Fp are the active and the passive forces respectively. The active force is defined by [95]

using the equation below:

Fa = fa(l).Fy.alt) (1.18)

with fa(l) is the normalized length dependent fiber active force.

And the passive force Fp is given by [26] as:

Fp = fp(l)Fo (1.19)

£10(1—1)

with fp(l) = €2 [16].

Although this model is widely used by researchers because of its simplicity, computational efficiency
and somewhat accuracy, it is only valid in a limited number of scenarios. A recent work evaluated the
accuracy of the Hill-type muscle models during movement [96]. They found the errors at low firing rates to
be consequential and even obtained errors that exceeds 50% for large m