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Convex hull of set X A = A T Matrix A is real symmetric He(A) = A T + A xxi Thesis framework and contribution The thesis is the contuinity of the works done by former PhD studies in the same SLR team:

• Ricardo Ramirez-Mendoza (see [START_REF] Ramirez | Sur la modélisation et la commande de véhicules automobiles[END_REF]]), "Sur la modélisation et la commande de véhicules automobiles", which was the first study in the automotive framework. The work was focused on the description and modeling of vehicles, as well as first attempts on control methodologies for active cruise control.

• Damien Sammier (see [Sammier 2001b]), "Sur la modélisation et la commande de suspension de véhicules automobiles" presented the modeling and control design of an active suspension (using H ∞ control for LTI system). The semi-active suspension modeling and control were also studied for a PSA Peugeot-Citroën semi-active damper.

• Alessandro Zin (see [START_REF] Zin | Sur la commande robuste de suspensions automobiles en vue du contrôle global de châssis[END_REF]]), "Sur la commande robuste de suspensions automobiles en vue du contrôle global de châssis", which extended the previous works with a strong attention on H ∞ /LP V control of an active suspension in order to improve robustness properties. A sketch of global chassis control through the use of the four suspensions was also derived using an anti-roll distribution.

• Charles Poussot-Vassal (see [Poussot-Vassal 2008]) "Robust Multivariable Linear Parameter Varying Control of Automotive Chassis" provided tools and control design methodologies in order to improve comfort and safety in automotive vehicles. The two main 2 Thesis framework and contribution contributions were the semi-active suspension control (using an LPV approach to handle the dissipativity constraint of the damper and to improve the passenger comfort and road holding) and the Global Chassis Control (involving the control of the braking and steering actuators for vehicle active safety improvement).

• Sébastien Aubouet (see [START_REF] Aubouet | Modélisation et commande de suspensions semi-actives SOBEN[END_REF])"Modélisation et commande de suspensions semi-actives SOBEN" presented an observer design methodology allowing the suspension designer to build and adjust an appropriate observer, estimating the non-measured variables. Then, the previous results of Charles Poussot-Vassal, for semi-active suspension control, were extended to the full vertical car, and completed with both a pole placement method, a scheduling strategy based on a damper model and a local damper control for a semi-active hydraulic suspension designed by SOBEN.

• Anh-Lam DO (see [Do et al. 2011a]) "LPV Approach for Robust Control of vehicle dynamics: Joint improvement of comfort and road holding", which concentrated on controller design for semi-active suspension system aiming at providing a good compromise between comfort and road holding while taking into account the important physical characteristics and constraints. The main contributions were a LPV modeling and control for nonlinear semi-active suspension systems, a constrained control (passitivity constraint and mechanical limits), and the controller design was performed, based on multi-objective optimization problems using genetic algorithm.

• Soheib Fergani (see [START_REF] Fang | A LPV suspension control with performance adaptation to roll behavior, embedded in a global vehicle dynamic control strategy[END_REF]) "Robust Multivariable Control for vehicle dynamics" presented Global Chassis MIMO controllers that enhance the overall dynamics of the vehicle while preserving the vehicle stability in critical driving situations. The controllers were developped based on the LP V /H ∞ approach and took into account simultaneously the braking, steering and suspension actuators. Then, some stratetegies have been developed to estimate the road profile characteristics and to adapt the vehicle control, depending on the road roughness. Finally, fault tolerant control strategies have been also considered to handle the actuators failures while keeping the vehicle stability, safety.

During three years of research, several collaborations have been done:

• I had the opportunity to colloborate with Pr. Joao M. Gomes da Silva Jr. from UFRGS -Universidade Federal do Rio Grande do Sul on the control saturation desgin for the LPV MIMO system appplied to semi-active suspension control. The collaboration resulted in two conference papers [Nguyen et al. 2015a] in "8th IFAC Symposium on Robust Control Design 2015" and [START_REF] Nguyen | Semi-active suspension control problem: some new results using an LPV/Hinf state feedback input constrained control[END_REF] in "54th IEEE Conference on Decision and Control 2015". These results will be presented in the chapter 4.

• Moreover, during the thesis, the Rhônes-Alpes Région offered me an ExploraDoc scholarship to spend six months in a foreign institute. Therefore, I had the chance to work with Pr. Massimo Canale (Dipartimento di Automatica e Informatica, Politecnico di Torino, Italia) on Model Predictive Control application to the semi-active suspension system. This was another concept beside the LPV/H ∞ approach used for most of works during my thesis. It allowed me to enrich my knowledge about the different control 0.2. General Introduction and problem statement of the thesis 3 design methods. The results we obtained were accepted to present in the "55th IEEE Conference on Decision and Control, 2016", and are given in details in the chapter 5.

General Introduction and problem statement of the thesis

Automotive vehicles are nowadays equipped with many modern technologies, intelligient subsystems in different engineering fileds such as mechanics, electronics, communications, automatic control. This fact allows automotive industry to respond to requirements from customers about safe and comfortable cars together with lower fuel consumption. Let us take an example of a smart system which is a new trend in most of modern vehicles or autonomous vehicles: ADAS system (Advanced Driving Assisted Systems). Such a system provides several functionalities such as cruise control and needs various requirements:

• Sensor Systems for Vehicle Environment Perception that provide the car with state-ofthe-art of its surroundings, securerly connect both internally within the car and externally to transport infrastructures.

• Automotive radars that give the distance between vehicles in real-time, enhance collisionavoidance and emergency braking systems.

• Vision systems and traffic sign recognition system that make maneuvering much easier and safer.

• Vehicle-to-vehicle (V2V) communication that reduces the risk of accidents and streamline road traffic, reducing costs and CO 2 emissions.

Along with these technologies, the vehicle dynamic is always an indisputable factor which decides the overall vehicle performance. Although it got a lot of attention for several decades, nowadays it is always an important subject for the automotive industry. It is well known that many solutions using various actuators (ESC-electronic stability control, ABS-anti-lock braking system, controlled suspensions) can be used to enhance the driving comfort, stability and safety. Among these actuators, the suspension systems play a central role in vehicle dynamics. Indeed, the role of suspensions in vehicle dynamics is intuitive: they establish the link between the road and the vehicle body, managing not only the vertical dynamics, but also the rotational dynamics (roll, pitch) caused by their unsynchronized motions.

The main works of this thesis concentrate on the topic of the vehicle suspension systems, especially with these using the semi-active dampers. The contributions mainly rely on two fields:

• Semi-active suspension control strategies

• Fault estimation and Fault Tolerant Control applied to the semi-active suspension system

Thesis framework and contribution

Recently, semi-active suspensions have emerged as a new trend for the automotive system thanks to their low energy consumption and ability to improve comfort and road holding of the vehicle. However, as seen from the litterature, the main challenge for the semi-active suspension control problem is the dissipativity constraint. In this thesis two different studies reported concerning semi-active suspensions:

• First, the method initiated in [Do et al. 2011a], namely a LPV control approach for input saturated systems, is here extended to the full vertical car case, and is enhanced by another method which is less conservative using different Lypunov functions.

• Then, in collaboration with Pr. M. Canale (Politecnico di Torino), some new results of the semi-active suspension control problem using the Model Predictive Control approach are developed.

Besides, since demand is now concerned with safer and more comfortable vehicles, the requirement of reliability must be also ensured. In this regard, the semi-active damper may be sensitive to faults such as oil leakage which reduces the damping force causing the vehicle performance degradation. This motivates our study about a control reconfiguration to minimize handling and comfort deterioration. To this aim, in this thesis, we concentrate on the Fault Diagnosis and Fault Tolerant Control problem:

• First, a general actuator fault estimation problem is addressed and solved by using a switched LPV observer approach.

• Then, it is applied to the damper fault estimation problem and the Fault Tolerant Control (FTC) is designed based on the fault information to preserve the vehicle performance.

Structure of the thesis

In this thesis, the main contributions will be presented following the organisation:

• Part I: Thesis background and preliminary results

• Part II: Semi-active suspension control problem

• Part III: Fault Estimation and Fault Tolerant Control: Application to Semi-Active Suspension System

The first part gives some general introductions and tools which allows to fallicitate the reading of the thesis. Then, some preliminary results are given. This part is composed of the following chapter:

• Chapter 1 provides a general introduction mainly on the automotive suspension systems. Some popular damper technologies and their mathematical modeling are presented. Finally some well-known vehicle models used throughout the thesis are recalled.

• Chapter 2 aims at providing some backgrounds on control theory and some necessary elements used in this thesis for the developpements in both control and observation designs of the vehicle dynamic. For this purpose, some well-known definitions, lemmas and theorems are recalled, concerning Linear Matrix Inequality (LMI), Convex Optimization, the LPV system, H ∞ , H 2 performances, LP V /H ∞ control design using Bounded Real Lemma and polytopic approach for the state feedback and dynamic output feedback.

It is worth noting that, since other control approaches and tools have been considered in this work (as MPC control), the tools to capture the essence of the study will be presented when needed.

• Chapter 3 presents a methodology to detect three main vertical motions of the vehicle: roll, pitch and bounce. It is based on the supervision of load transfer distributions. An LP V /H ∞ controller is then designed, which is able to adapt the semi-active suspension forces at the four corners of the vehicle according to the vehicle's motion and to mitigate the road-induced effects.

The second part is devoted to one of the major contributions of the thesis which deals with the semi-active suspension control problem using the following approaches:

• Chapter 4 concentrates on the semi-active suspension control problem using LP V /H ∞ approach, with LP V /H ∞ state feedback input and state constrained control strategies developed for the semi-active suspension system. Here, the dissipative characteristic of the semi-active damper is recast as an input saturation. Then, a multiple objectives problem is considered for stability and disturbance attenuation. The sector condition approach is used to derive the stability condition. The disturbance attenuation problem is treated in the H ∞ framework.

• Chapter 5 presents a semi-active suspension MPC controller for a full vehicle model equipped with 4 semi-active dampers. The MPC controller is designed while taking into account the road disturbance effects which will be estimated by an observer. Then, the proposed solution integrates a state feedback controller with an observer of the vehicle state variables and of the road disturbance.

The final part presents some results on Fault Diagnosis and Fault Tolerant Control, to be applied on the semi-active suspension system:

• Chapter 6 considers a general actuator fault estimation problem. Actuator faults are modeled in the form of multiplicative faults by using effectiveness factors representing the loss of efficiency of the actuators. The faulty actuator system is rewritten as a switched LPV system by considering the control inputs as scheduling parameters. Then, the actuator faults and the system states are estimated using a switched LPV extended Thesis framework and contribution observer. The observer gain is derived, based on LMIs solution for the switched LPV system.

• Chapter 7 provides a comparative study of 3 different approaches to estimate a damper fault (for instance oil leakage): a switched LPV observer approach, a parametric adaptive observer, a fast adaptive fault estimation approach. Finally, an LPV Fault scheduled Tolerant Control is then presented to reconfigure the performance of semi-active suspension system in the presence of damper fault.

Part I Thesis background and preliminary results

Chapter 1 This chapter provides firstly some general introductions about the automotive suspension systems, especially different technologies of suspension systems and their characteristics. In the second part, some well known vehicle models which have been used in design and simulation throughout the thesis are presented.

Introduction and Vehicle Modeling

Automotive suspension systems

Introduction

An automative suspension is made up mainly of two components, the spring and the damping element (the shock absorber), see Fig. 1.1. Both components need to work properly in order to keep the tyre in contact with the road. In a vehicle, shock absorbers reduce the effect of traveling over rough ground, leading to improved ride quality and vehicle handling. While shock absorbers serve the purpose of limiting excessive suspension movement, their intended main purpose is to damp spring oscillations. The shock absorber is therefore a crucial link to ensure a smooth and safer ride. It is well known that:

• With springs but no shock absorbers, the vehicle is able to absorb bumps, but the undampened suspension means that the vehicle continues to bounce which might cause the tyres leave the road.
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• With springs and shock absorbers, the vehicle not only absorbs bumps but also the shock absorbers dampen the motion and prevent the vehicle from bouncing. Along with the strong development of the automotive industry during past decades, the suspension system has also evolved continuously to be able to meet the requirements of this industry and of the customers. A lot of different types of suspension systems have been developed, the evolution was based on the mechanics, hydraulics and electrical technological advance. In order to classify the suspension, we list here two main types of suspensions systems:

• Passive Suspension Systems

• Controllable Suspension Systems: active suspension and semi-active suspension.

In the following, we present some main points of these suspensions. The interested readers are refered to some detailed histories and functionalities of automotive suspension systems in [START_REF] Aubouet | Modélisation et commande de suspensions semi-actives SOBEN[END_REF]], [Isermann 2007].

Passive suspension

A suspension system is passive if the characteristics of the components (springs and dampers) are fixed [Isermann 2007], [START_REF] Savaresi | Semi-active suspension control design for vehicles[END_REF]]. These characteristics are determined by the designer of the suspension, according to the design goals and the intended application. The passive suspension can only dissipate the energy which is characterized by the Speed Effort Rule (SER) between the suspension deflection speed (difference between the chassis and the wheel speeds) and the damping force of the passive suspension. The Fig. 1.2 gives the SER diagram of a passive Electro-Rheological damper of the SOBEN Car (see Chapter 3,3.6) which corresponds to a fixed level duty cycle (Pulse-width modulation P W M = 10%). 

Active suspension

In an active suspension, the passive damper or both the passive damper and spring are replaced by a force actuator. The actuator is able to both generate and dissipate energy from the system (see Fig. 1.3), unlike the passive damper which can only dissipate energy. With an active suspension, the actuator can apply a force independent of the relative displacement across the suspension. Given the correct control strategy, this results in a better compromise between ride comfort and vehicle stability [START_REF] Fischer | Mechatronic semi-active and active vehicle suspensions[END_REF], [START_REF] Savaresi | Semi-active suspension control design for vehicles[END_REF]].

Active suspension systems, though they are able to improve both ride and stability, do have disadvantages. Indeed, the actuators used in an active suspension system typically have large power requirements. Such types of suspensions can be found in expensive passenger vehicles.

Semi-active suspensions

Semi-active suspension systems were first proposed in the early 1970's. For this type of system, the conventional spring element is retained, but the damper is replaced with a controllable damper. Because the power demand of active suspensions in luxury and/or heavy vehicles is too big to meet with standard vehicular supplies, semi-active suspensions have gained importance for car manufacturers during last decades. Whereas an active suspension system requires an external energy source to power an actuator that controls the vehicle, a semi-active system uses a little external power only to adjust the damping levels, and operate an embedded controller and a set of sensors. The controller determines the level of damping based on the control strategy, and automatically adjusts the damper to achieve that damping. Like passive suspensions, semi-active suspensions can only dissipate the energy but their damping capacity can be modified online to meet the tradeoff between the vehicle safety and the passengers comfort (Fig. 1.4).

As an illustration, the SER diagram of an Electro-Rheological semi-active damper of the SOBEN Car is given in Fig. 1.5. On the left, the real data of the damper force is plotted w.r.t the deflection speed. It can be seen that the damping capacity of the damper can be modified according to the different levels of PWM control signals. On the right of Fig. 1.5, each damper characteristic at the corresponding PWM level is approximated by a fitted curve. It leads to a damper characteristic map in the form of Fig. 1.4. This map can be used to convert the damper force to the PWM signal as seen later in the Chapter 3.

To get more details on semi-active suspensions, the interested readers can refer to [START_REF] Patten | Suppression of vehicle induced bridge vibration via hydraulic semiactive vibration dampers[END_REF]], [START_REF] Fischer | Mechatronic semi-active and active vehicle suspensions[END_REF], [START_REF] Savaresi | Semi-active suspension control design for vehicles[END_REF]] and references therein.

We can list here three main technologies of semi-active dampers in the market:

• Electrohydraulic Dampers: Compared to the classical passive element, the electrohydraulic device involves electronic valves instead of passive valves. Then, the semiactiveness depends on the variable opening of an electro-valve between the damper chambers [START_REF] Hong | Modified skyhook control of semi-active suspensions: A new model, gain scheduling, and hardware-in-the-loop tuning[END_REF], [START_REF] Spelta | Design and applications of semi-active suspension control systems[END_REF]]. Typically, the damping coefficient varies continuously and linearly with the area of the valve. An application of Electrohydraulic Dampers were developed in [START_REF] Aubouet | Modélisation et commande de suspensions semi-actives SOBEN[END_REF]] with SOBEN.

• Magneto-Rheological damper (MR damper): incorporates a magneto rheological fluid with magnetic particles. It exploits the physical properties of magnetorheological fluids (MR fluids, invented by [START_REF] Rabinow | The magnetic fluid clutch[END_REF]]) whose viscosity can change when subject to a magnetic field. When a magnetic field (e.g generated by an electric current through a coil) is applied to the fluid, the particles form chains, the fluids becomes very viscous, leading to change of the damping coefficient of the suspension system. This kind of dampers allows to use different control strategies to adapt them to the desired performance objectives by providing the suitable electric current. MR damper is already used in some luxury and sport cars such as Ferrari, Audi TT, R8, Cadillac...

• Electro-Rheological damper (ER damper): has some similarites to MR dampers. The ER shock absorber is filled by an ER fluid (invented by [START_REF] Winslow | Method and means for translating electrical impulses into mechanical force[END_REF]). The ER fluid is a mixture of oil and micron sized particles sensitive to electric field. Therefore, as the electric field changes, the volume of the ER fluid changes and thus the damping coefficient of these dampers changes. The semi-activeness is controlled by adjusting the electric field [START_REF] Choi | Hinf control of electrorheological suspension system subjected to parameter uncertainties[END_REF]. This kind of damper is used in the test-bench developed in Gipsa-Lab (with Soben) for the vehicle vertical dynamics study and analysis.

Chapter 1. Introduction and Vehicle Modeling

Vehicle modeling

Vehicle systems are very complex systems composed of many components such as the engine, gearbox, clutch, wheels, suspensions, shock absorber, brakes and many other elements. Dynamical models of such systems are very complex, highly nonlinear, since their behavior can change a lot during driving situations.

Enhancing the vehicle dynamics using smart systems becomes nowadays one of the most important requirements for the automotive industry. To this aim, understanding the vehicle behavior is so important. Furthermore having a good model is needed for control design. In general, the model can be built, based on the physical equations. However, due to to the complexity of the vehicle as well as nonlinearities..., vehicle modeling is not an easy task. Forturnately, nowadays, there exist dedicated sofwares (CarSim, Catia, SolidWorks...) which allow realistic simulations for the vehicle modeling, validation and performance analysis before the implementation. A lot of vehicle models have been in particular developed and introduced in [START_REF] Gillespie | Fundamentals of vehicle dynamics[END_REF]], [START_REF] Milliken | Race car vehicle dynamics[END_REF], [Kiencke and Nielsen 2005]. It is well-known that there are several models dedicated to specific studies such as the vertical dynamic (including suspensions) and others which concern the overall dynamics of vehicles. In this section, we focus on some models which are interesting for the suspensions system and the vertical vehicle dynamics:

• Quarter vehicle model

• Full vertical vehicle model

• Full vehicle nonlinear model These models will be used in this thesis for the control design as well as for simulation. The quarter vertical and full vehicle model are used to study the vertical behaviour of the car.

The mathematical equations describe the full non linear vehicle dynamic which is used for the simulation. It is worth noting that the full vehicle model from a real car Renault Mégane Coupé is used in this thesis. These models were obtained from the experimental validation procedures on the test car available in MIPS Laboratory (Mulhouse, France) (see [START_REF] Zin | A nonlinear vehicle bicycle model for suspension and handling control studies[END_REF], [START_REF] Zin | Sur la commande robuste de suspensions automobiles en vue du contrôle global de châssis[END_REF]], [Poussot-Vassal 2008], [START_REF] Fang | A LPV suspension control with performance adaptation to roll behavior, embedded in a global vehicle dynamic control strategy[END_REF]). The parameters given in table 1.1 provide the main notations for the vehicle dynamics. Moreover, throughout this section, the following notations will be adopted: subscripts i=(f, r) and j=(l, r) are used to identify the vehicle front, rear and left, right positions respectively. The subscripts (s, t) stand for the forces provided by suspensions and tires, respectively. The index (x, y, z) denotes forces or dynamics in the longitudinal, lateral and vertical axes, respectively.

Vehicle parameters description

Vertical quarter car model

The quarter car model represented in Fig. 1.7 is among the simplest suspension models. It allows to study the vertical dynamic behavior of the vehicle: This model considers only one suspension system (a single corner) and it is composed by:

• The sprung mass m s that represents a quarter of the chassis body. z s is the vertical displacement around the equilibrium point of m s .

• The sprung mass m us that represents the wheel and the tire of the vehicle. z us is the vertical displacement around the equilibrium point of m us .

• The suspension is composed by a spring with the stiffness coefficient k s and a damper with the damper coefficient c. As seen thereafter (Fig. 1.8), the damper could be passive (left) or controlled (right).

• The tire is modeled by a spring with the stiffness coefficient k t .

• Finally, the car is excited by the road profile disturbance z r .

The dynamical equations of the quarter car model are governed by:

m s zs = -F k -F damper m us zus = F k + F damper -F t (1.1)
where F k stands for the spring force, F damper is the damper force and F t the tire force. 

F t = k t (z us -z r ) (1.2)
The spring force is a nonlinear function of the suspension deflection z def (see Fig. 1.9). However, for the control oriented linear model, the spring force is assumed to be a linear function of z def and is given by:

F k = k s (z s -z us ) (1.3)
where k s is the stiffness coefficient of the spring. The damper force can be a linear or a nonlinear function of the deflection speed. For example, for a linear damper model, this force is given by:

F damper = c(.) żdef = c(.)( żs -żus ) (1.4)
where c(.) is variable damping coefficient which corresponds to a controlled damper. If c(.) = c 0 constant, it means that the damper is passive.

Finally, the control oriented suspension linear model is given as follows:

m s zs = -k s (z s -z us ) -c(.)( żs -żus ) m us zus = k s (z s -z us ) + c(.)( żs -żus ) -k t (z us -z r ) (1.5)
Besides the above very popular quarter car model, in the litterature, the following model for the vertical quarter car dynamic can be described as in the Fig. 1.10: Actually, compared to the previous model, the difference is that the tire is modeled by a spring with the stiffness coefficient k t and a passive damper with damping coefficient c t . Therefore, in this case, the tire force is given by:

F t = k t (z us -z r ) + c t ( żus -żr ) (1.6)
Then, the dynamical equations are given by:

m s zs = -k s (z s -z us ) -c(.)( żs -żus ) m us zus = k s (z s -z us ) + c(.)( żs -żus ) -k t (z us -z r ) -c t ( żus -żr ) (1.7)
It is noted that setting c t = 0 leads to the model in (1.5).

Full vertical vehicle model

Although the quarter car model allows to study the vertical dynamic of the vehicle, this model cannot describe the full dynamical behavior of the vehicle, in particular for example the roll and pitch dynamics. Therefore, the full car vertical model (see Fig.1.11) is used to represent more accurately the vehicle vertical dynamics. This is a classical 7 degree-of-freedom (DOF) suspension model, obtained from a nonlinear full vehicle model (referred in [START_REF] Poussot-Vassal | Attitude and handling improvements through gainscheduled suspensions and brakes control[END_REF], [START_REF] Gillespie | Fundamentals of vehicle dynamics[END_REF]], [START_REF] Kiencke | Automotive control systems: for engine, driveline, and vehicle[END_REF]). This model involves the chassis dynamics (vertical (z s ), roll (θ) and pitch(φ)), and the vertical displacements of the wheels z us ij at the front/rear (i = (f, r))-left/right corner (j = (l, r)). The vertical 7 DOF full-car model is governed by the following dynamic equations: 

       m s zs = -F sf l -F sf r -F srl -F srr + F dz I x θ = (-F sf r + F sf l )t f + (-F srr + F srl )t r + mha y + M dx I y φ = (F srr + F srl )l r -(F sf r + F sf l )l f -mha x + M dy m us zus ij = F s ij -F tz ij (1.8)
where m s is the mass of the chassis, I x , I y are the moments of inertia of the sprung mass around the longitudinal and lateral axis respectively, h is the height of center of gravity (COG). l f , l r , t f , t r are COG-front, rear, left, right distances respectively. a x , a y are the longitudinal and lateral accelerations. F dz is the vertical force disturbance. M dx , M dy are the disturbance moments along the x,y-axis.

• F tz ij are the vertical tire forces, given as:

F tz ij = k t ij (z us ij -z r ij ) (1.9)
where k t ij are the stiffness coefficients of the tires, and z r ij the road profiles.

• The vertical suspension forces F s ij at the 4 corners of the vehicle are modeled by a spring and a damper. The equation (1.10) allows to model the suspension force used in the control design step:

F s ij = k ij (z s ij -z us ij ) + F d ij (1.10)
where k ij are the nominal spring stiffness coefficients, z s ij the chassis position at each corner and F d ij the controlled damper forces given by: [START_REF] Nguyen | Commande MIMO LPV/Hinf de suspension semi-active[END_REF] where żdef ij are the deflection speed and the damping coefficient c ij (.) are assumed to be varying for control purpose.

F d ij = c ij (.) żdef ij = c ij (.)( żs ij -żus ij ) (1.
The sprung mass positions z s ij at each vehicle corner can be easily derived from the vehicle equations of motions and are given by:

       z s f l = z s -l f sin φ + t f sin θ, z s f r = z s -l f sin φ -t f sin θ, z s rl = z s + l r sin φ + t r sin θ, z srr = z s + l r sin φ -t r sin θ, (1.12)
Assuming that the roll and pitch angles are small enough, the nonlinear equations (1.12) are linearized by:

       z s f l = z s -l f φ + t f θ, z s f r = z s -l f φ -t f θ, z s rl = z s + l r φ + t r θ, z srr = z s + l r φ -t r θ, (1.13) 
Throughout this thesis, this model will be used for control design purposes for the full vertical dynamics of the car. Depending on the control methods, the suitable models will be given.

Full vehicle simulation oriented nonlinear model

This model, intially presented in [START_REF] Zin | A nonlinear vehicle bicycle model for suspension and handling control studies[END_REF]], [START_REF] Zin | Sur la commande robuste de suspensions automobiles en vue du contrôle global de châssis[END_REF]] and [Poussot-Vassal 2008], has been recently updated in the PhD thesis [START_REF] Fang | A LPV suspension control with performance adaptation to roll behavior, embedded in a global vehicle dynamic control strategy[END_REF]].

The full vehicle model is defined by the following nonlinear dynamical equations (1.14).

                                                       vx = (F tx f r -F tx f l ) cos(δ) -(F txrr + F tx rl ) + (F ty f r + F ty f l ) sin(δ) + m ψv y + F dx /m a x = vx -φv y ÿs = (F tx f r + F tx f l ) sin(δ) + (F tyrr + F ty rl ) + (F ty f r + F ty f l ) cos(δ) -m ψv x + F dy /m a y = vy + φv x zs = -F sz f l + F sz f r + F sz rl + F szrr + F dz /m s zus ij = F sz ij -F tz ij /m us ij θ = (F sz rl -F szrr )t r + (F sz f l -F sz f r )t f + mh vy + M dx /I x φ = (F szrr + F sz rl )l r -(F sz f r + F sz f l )l f -mha x + M dy /I y ψ = (F ty f r + F ty f l )l f cos(δ) -(F tyrr + F ty rl )l r -(F tx f r + F tx f l )l f sin(δ) -(F txrr -F tx rl )t r + (F tx f r -F tx f l )t f cos(δ) -(F tx f r -F tx f l )t f sin(δ) + M dz /I z ωij = (R ij F tx ij -T b ij )/I w β = (F ty f + F ty r )/(mv) + ψ (1.14)
where m s and m us ij hold for the chassis and sprung masses respectively; m is the total mass of the vehicle. The vehicle inertia in the x-axis (resp. y-axis, z-axis) is denoted as I x (resp. I y , I z ). {F dx , F dy , F dz } (resp. {M dx , M dy , M dz }) are external forces (resp. moments) disturbances on the {x, y, z} axes. ω ij are the wheel rotational velocities and λ ij the wheel slip ratio. β is the slip angle at the center of gravity. δ holds for the front wheel angle. F tx ij (resp. F ty ij and F tz ij ) represents the longitudinal (resp. lateral and vertical) tire forces and F sz ij are the vertical forces provided by the suspension system. Finally, h denotes the vehicle height at the center of gravity.

Regarding to the modeling of tires and suspensions for each corner of the vehicle, one has:

F sz ij = k s z def ij + F d ij (1.15) z def ij = z s ij -z us ij (1.16) F t zij = k t z def tij (1.17) z def tij = z us ij -z r ij (1.18) β f = δ -tan -1 ( l f ψ + v sin β v cos β ) (1.19) β r = tan -1 ( l r ψ -v sin β v cos β ) (1.20) λ ij = v x R ij w ij cos β ij max(v x , R ij w ij cos β ij ) (1.21)
The nonlinear tire forces can be obtained from Pacejka models as follows:

F tx ij = D x sin[C x arctan(B x λ ij -E x (B x λ ij -arctan(B x λ ij )))] (1.22) F ty ij = D y sin[C y arctan(B y β -E y (B x β -arctan(B y β)))] (1.23)
Chapter 2

Theoretical background

Contents

This chapter is devoted to recall some theoretical backgrounds on the control theory and optimization used in this dissertation for advanced control design and analysis. First, it should be kept in mind that these theoretical backgrounds have been widely developed in the past by the authors such as [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]], [START_REF] Scherer | Multiobjective outputfeedback control via LMI optimization[END_REF], [START_REF] Apkarian | Self-scheduled Hinf control of linear parameter-varying systems: a design example[END_REF], [START_REF] Scherer | Linear matrix inequality in control[END_REF], [START_REF] Apkarian | Advanced gain-scheduling techniques for uncertain systems[END_REF]]. They 26 Chapter 2. Theoretical background are not the core of the thesis but they facilitate the unfamiliar reader in robust control, LMI and LPV approaches. Therefore, we first start with a brief recall of some basic definitions on Convex Optimization and Linear Matrix Inequality (LMI) in Section 1. Then, some definitions on dynamical systems (nonlinear , LTI, LPV system) are given in Section 2. Section 3 presents some signal and system norms. The stability analysis based on the Lyapunov theory and LMI formulation is given in the section 4. The H ∞ , H 2 performances are recalled in the section 5, 6. The H ∞ control problem is given in the section 7, and finally, the it is solved for the LTI and LPV case respectively in sections 8 and 9.

LMI and Convex Optimization

Convex Optimization

Convex optimization has applications in a wide range of disciplines, such as automatic control systems, estimation and signal processing, communications and networks, electronic circuit design, data analysis and modeling, statistics (optimal design) and finance. With recent improvements in computing and in optimization theory, convex minimization is nearly as straightforward as linear programming. Many optimization problems can be reformulated as convex minimization problems. For this reason, convex optimization becomes nowadays an indispensable tool for many automatic control problems such as robust control, LPV control, constrained control etc.In order to solve a convex optimization problem, some efficient methods can be applied such as interior-point and ellipsoid methods. Moreover, nowadays, there exist many tools allowing to solve convex problems for e.g Yalmip/Sedumi ([YALMIP ]). Let us now recall some useful definitions ( [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]):

Definition 2.1.1 (Convex Set). A set S in the vector space X is convex if the line segment between any two points in S lies in S: 

λx 1 + (1 -λ)x 2 ∈ S, ∀x 1 , x 2 ∈ S and 0 ≤ λ ≤ 1 (2.1)
Co{S} = {λ 1 x 1 + λ 2 x 2 + ... + λ n x n |x i ∈ S, λ i ≥ 0, i = 1 : n, n i=1 λ i = 1} (2.2) Definition 2.1.3 (Convex functions). A function f : R → R is convex if for all x, y ∈ R n and all α, β ∈ R, α + β = 1, α ≥ 0, β ≥ 0: f i (αx + βy) ≤ αf i (x) + βf i (y) (2.3)
Definition 2.1.4 (Affine Set). The set S in the vector space X is affine if the line through any two points in S lies in S, i.e.

λx 1 + (1 -λ)x 2 ∈ S, ∀x 1 , x 2 ∈ S and λ ∈ R (2.4) Definition 2.1.5 (Affine functions). A function f : R → R is affine if for all x, y ∈ R n and all α ∈ R : f (αx + (1 -α)y) = αf (x) + (1 -α)f (y) (2.5)

Linear Matrix Inequality

It is well known that in the field of automatic control, Linear Matrix Inequalities (LMI) are very efficient tool for many convex optimization problems. An LMI constraint on a vector x ∈ R n can be defined by the following:

F (x) = F 0 + m i=1 F i x i 0 (2.6)
where F 0 = F 0 T and F i = F i T ∈ R n×n are given, and symbol F 0 means that F is symmetric and positive definite, i.e. {∀u|u T F u > 0} or λ min (F ) > 0.

Feasibility problem:

The LMI problem F (x) 0 is considered as feasible if there exist x ∈ R n such that F (x) 0, otherwise it is said to be infeasible.

Convex Optimization Problem

The convex optimization problems considered in this thesis formulated with LMIs are referred to as LMI optimization. Semi-definite programming (SDP) which is a subfield of convex optimization concerned with the optimization of a linear objective function is presented in what follows. In automatic control theory, SDPs are used in the context of LMI. SDPs are in fact a special case of cone programming and can be efficiently solved by interior point methods: Definition 2. 1.6 (SDP problem). A SDP problem is defined as,

min c T x subject to F (x) ≺ 0 (2.7)
where F (x) is the LMI constraint, function of x ∈ R n and C ∈ R n is a given real vector, that defines the problem objective.

Some useful tools for LMI reformulation

While solving the LMI optimization, we usually encounter some nonlinear or bilinear inequality constraints. The following lemmas are useful for LMI relaxations and to convert a nonlinear optimization problem (in control theory) into a convex linear one:

2.1.4.1 Schur's lemma Lemma 2.1.1. The LMI Q(x) S(x) S(x) T R(x) ≺ 0 (2.8)
is equivalent to

Q(x) ≺ 0 R(x) -S(x) T Q(x) -1 S(x) ≺ 0 (2.9) and to R(x) ≺ 0 Q(x) -S(x)R(x) -1 S(x) T ≺ 0 (2.10)
It can be seen from the Schur's lemma that the nonlinear inequalities (2.9)-(2.10) can be transformed into a linear inequality (2.8).

Projection lemma

Lemma 2.1.2. [START_REF] Doyle | State-space solutions to standard H 2 and Hinf control problems[END_REF]] For given matrices W = W T , M and N , of appropriate size, there exists a real matrix

K = K T such that, W + M KN T + N K T M T ≺ 0 (2.11)
if and only if there exist matrices U and V such that,

W + M U + U T M T ≺ 0 (2.12) W + N V + V T N T ≺ 0 (2.13)
or, equivalently, if and only if there exists a scalar > 0 such that,

W ≺ M M T (2.14) W ≺ N N T (2.15)
or, equivalently, if and only if,

M T ⊥ W M ⊥ ≺ 0 (2.16) N T ⊥ W N ⊥ ≺ 0 (2.17)
where M ⊥ and N ⊥ are the orthogonal complements of M , N respectively (i.e. M T ⊥ M = 0). [START_REF] Oliveira | Stability tests for constrained linear systems[END_REF]). If x ∈ R n , Q is a symmetric matrix, B ∈ R m×n such that rank(B) < n, B ⊥ denotes a basis for the null-space of B, then the following statements are equivalent:

• x T Qx < 0 ∀Bx = 0, x = 0 • B ⊥ T QB ⊥ ≺ 0 • ∃µ ∈ R : Q -µB T B ≺ 0 • ∃X ∈ R n×m : Q + XB + B T X T ≺ 0 2.1.4.4 S-Procedure
The S-procedure is a mathematical result that gives conditions under which a particular quadratic inequality is a consequence of another quadratic inequality. The S-procedure was developed independently in a number of different contexts and has applications in control theory, linear algebra and mathematical optimization. Although the main drawback of the Sprocedure is that it usually leads to a more conservative formulation than the original problem, it is a useful tool in control theory. We usually find the S-procedure in LMI reformulations and analysis of quadratic programming [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]], [START_REF] Scherer | Linear matrix inequality in control[END_REF].

Definition 2.1.7. S-Procedure for quadratic function and nonstrict inequalities Let F 0 , F 1 , ...F p be quadratic functions of the variable x ∈ R n : 2.18) where T i = T T i , u i and v i are known vectors with appropriate dimensions.

F i (x) = x T T i x + 2u T i x + v i , i = 0, ..., p ( 
If there ∃τ 1 , τ 2 ..., τ p ∈ R + such that for all x F 0 (x) -p i=1 τ i F i (x) 0 Then: F 0 0 for all x such that F i (x) 0, i=1,...,p.

When p = 1, the converse holds if there exists x 0 such that F 1 (x 0 ) 0. Definition 2.1.8. S-Procedure for quadratic function and strict inequalities Let T 0 , T 1 , ..., T p be symmetric matrices in R n×n .

If there ∃τ 1 ≥ 0, τ 2 ≥ 0..., τ p ≥ 0 such that T 0 -p i=1 τ i T i > 0 Then:

x T T 0 x > 0 for all x = 0 such that x T T i x ≥ 0, i=1,...,p.

When p = 1, the converse holds if there exists some x 0 such that x T 0 T 1 x 0 > 0.

Chapter 2. Theoretical background Remark 1. In order to model and solve convex and nonconvex optimization problems, several tools have been developed LMI toolbox [START_REF] Gahinet | The LMI control toolbox[END_REF], YALMIP [START_REF] Lofberg | YALMIP: A toolbox for modeling and optimization in MATLAB[END_REF]]...Among thems, YALMIP is rapid algorithm development and simple to use. To solve an optimization problem, YALMIP concentrates on the language and the higher level algorithms, while relying on external solvers for the actual computations external solvers for the actual computations. Some well known external solvers have been used throughout the thesis such as SEDUMI, SDPT-3, GUROBI.

Dynamical systems

This section briefly recall some important notions about the dynamical systems. The Fig. 2.2 gives a very first idea about the different types of systems that we consider in the control theory. 

Nonlinear dynamical systems

Nonlinear problems are of interest to engineers, physicists and mathematicians and many other scientists because most systems are inherently nonlinear in nature. Nonlinear systems may appear chaotic, unpredictable or counterintuitive, contrasting with the much simpler linear systems. We are interested in nonlinear dynamical systems that can be described by nonlinear ODEs.

Definition 2.2.1 (Nonlinear dynamical system). For given functions f : R n × R q → R n and g : R n × R q → R r , a nonlinear dynamical system (Σ N L ) can be described as:

ẋ(t) = f (x(t), w(t)) z(t) = g(x(t), w(t)) (2.19)
where x(t) is the state which takes values in a state space X ∈ R n , w(t) is the input taking values in the input space W ∈ R q and z(t) is the output that belongs to the output space Z ∈ R r .

LTI dynamical systems

The main interest of nonlinear systems is to provide a representation close to the actual physical system. However, analysis of these systems remain complex and lack of automation mathematics. In contrast, linear systems theory proposes many analysis and synthesis tools.

Although their model is less accurate, they can be used to represent the system around an operation point (and to include uncertainties to tackle robustness analysis). Therefore, the LTI dynamical modeling is often adopted for control and observation purposes for both SISO and MIMO systems. The LTI dynamical modeling consists in describing the system through linear ODEs. According to the previous nonlinear dynamical system definition, LTI modeling leads to a local description of the nonlinear behavior (see Fig. 2.2).

Definition 2.2.2 (LTI dynamical system). Given matrices A ∈ R n×n , B ∈ R n×q , C ∈ R r×n and D ∈ R r×q , a Linear Time Invariant (LTI) dynamical system (Σ LT I ) can be described as:

ẋ(t) = Ax(t) + Bw(t) z(t) = Cx(t) + Dw(t) (2.20)
where x(t) is the state which takes values in a state space X ∈ R n , w(t) is the input taking values in the input space W ∈ R q and z(t) is the output that belongs to the output space Z ∈ R r .

However, as mentioned previously, the main restriction is that LTI models only describe the system locally, then, compared to nonlinear models, they lack of information and, as a consequence, are incomplete and may not provide global stabilization. To deal with this, the class of LPV systems can be considered. LPV systems have kept the accuracy of nonlinear systems while they can also use some tools of linear dynamics.

LPV dynamical systems

LPV systems are a very special class of nonlinear systems which appears to be well suited for control of dynamical systems with parameter variations. In general, LPV techniques provide a systematic design procedure for self-scheduled multivariable controllers. This methodology allows performance, robustness and bandwidth limitations to be incorporated into a unified framework.

The LPV systems can be represented as an extension of the LTI system where the matrices A, B, C, D depend on a scheduling parameter vector ρ as follows;

Chapter 2. Theoretical background Definition 2.2.3 (LPV dynamical system). Considering ρ(.) is a varying parameter vector that takes values in the parameter space P ρ (a convex set) such that, 2.21) where p is the number of varying parameters. Now, given the linear matrix functions A ∈ R n×n , B ∈ R n×q , C ∈ R r×n and D ∈ R r×q , a Linear Parameter Varying (LPV) dynamical system (Σ LP V ) can be described as:

P ρ := {ρ := ρ 1 . . . ρ p T ∈ R p and ρ i ∈ ρ i ρ i ∀i = 1, . . . , p} ( 
ẋ(t) = A(ρ)x(t) + B(ρ)w(t) z(t) = C(ρ)x(t) + D(ρ)w(t) (2.22)
where x(t) is the state which takes values in a state space X ∈ R n , w(t) is the input taking values in the input space W ∈ R q and z(t) is the output that belongs to the output space Z ∈ R r . Then, if:

• ρ(.) = ρ, a constant value, (2.22) is a Linear Time Invariant (LTI) system.

• ρ(.) = ρ(t), (2.22) is a Linear Time Varying (LTV) system, where the parameter vector is a priori known.

• ρ(.) = ρ(t) is an external parameter vector, (2.22) is an LPV system.

• ρ(.) = ρ(x(t)), (2.22) is a quasi-Linear Parameter Varying (qLPV) system.

Thereby, an LPV model can be viewed as a nonlinear system linearized along the varying parameters trajectories, characterized by ρ ∈ P ρ . Such a LPV model allows to represent the dynamics of the nonlinear system, while keeping the linear structure. In other words, LPV systems can model nonlinear plants through the linearization of these nonlinear models along the trajectories of ρ. Therefore, the tools of the linear control theory can be used with some modifications.

Based on the dependence of the system matrices on the scheduling parameters, the LPV systems are classified into two types: affine and polytopic systems.

Affine systems

In this case, all matrices A(ρ), B(ρ), C(ρ), D(ρ) are affine in the scheduling parameter vector ρ, i.e:

A(ρ) = A 0 + p i=1 A i ρ i B(ρ) = B 0 + p i=1 B i ρ i C(ρ) = C 0 + p i=1 C i ρ i D(ρ) = D 0 + p i=1 D i ρ i (2.23)
ρ i is the i th element of ρ and A i are constant matrices. In that case, the system matrices are represented by

A(ρ) = N =2 p i=1 α i A i B(ρ) = N =2 p i=1 α i B i C(ρ) = N =2 p i=1 α i C i D(ρ) = N =2 p i=1 α i D i (2.24)
where N =2 p i=1 α i = 1 and α i ≥ 0.

The polytopic systems offer a great interest in controller design and implementation. Since in this case, the LPV system is a convex hull of a finite number of LTI systems, it allows to solve a finite number of LMI problems (see [START_REF] Apkarian | Self-scheduled Hinf control of linear parameter-varying systems: a design example[END_REF], [START_REF] Gahinet | Affine parameter-dependent Lyapunov functions and real parametric uncertainty[END_REF], [START_REF] Scherer | Robust mixed control and LPV control with full block scalings[END_REF]], [START_REF] Bruzelius | Linear parameter-varying systems-an approach to gain scheduling[END_REF]) to find a global LPV controller (which is also a convex hull of a finite number of local LTI controllers).

Lyapunov function-based stability analysis

In the theory of ordinary differential equations (ODEs), Lyapunov functions are scalar functions that may be used to prove the stability of an equilibrium of an ODE. The method of Lyapunov functions (also called the Lyapunov's second method for stability) is important to stability and control theory of dynamical systems. Actually, it is the only universal method for the investigation of the stability of nonlinear dynamical systems of general configuration. For many classes of ODEs, the existence of Lyapunov functions is a necessary and sufficient condition for stability. Informally, a Lyapunov function is a function that takes positive values everywhere and decreases (or is non-increasing) along every trajectory of the ODE.

Stability for the LTI system

Let consider an autonomous LTI system ẋ(t) = Ax(t) and the corresponding Lyapunov function candidate V (x(t)) = x(t) T P x(t) > 0 where P T = P .

Stability conditon

The system ẋ(t) = Ax(t) is quadratically stable if:

P > 0, V (x) = x T (A T P + P A)x < 0
The above conditions can be rewritten in the form of the following LMI:

-P 0 0 A T P + P A < 0

where P is the decision variable.

It is worth noting that in this case, quadractic stability implies also asymptotic and exponential stability [START_REF] Wu | Control of linear parameter varying systems[END_REF]].

α-Stability

This characteristic involves the decay rate of the system. Let consider the system ẋ(t) = Ax(t) and the quadratic Lyapunov function V (x) = x T P x. The decay rate (or largest Lyapunov exponent) of this system is defined by α > 0 if:

dV (x) dt ≤ -2αV (x) for all trajectories (2.25)
Or equivalently:

A T P + P A + 2αP ≤ 0 (2.26)
In this formulation, instead of guaranteeing that the derivative of the Lyapunov fuction is negative ( V < 0), one guarantees that its convergence dynamic is faster than α ( V < -2αV ). It means that in the control synthesis, it can allow to place the poles in the left of -α.

Stability for the LPV system

It is worth noting that the stability analysis of a LPV system is much more complex than that of a LTI system because it is in the world of LTV systems. Indeed, the system may be stable for frozen parameter values and unstable for varying parameters (as for switching systems).

Besides, the asymptotic and exponential stability are no more equivalent. In order to deal with the stability analysis of LPV systems, we use also the notion of quadratic stability with quadratic Lyapunov function [START_REF] Wu | Control of linear parameter varying systems[END_REF]], [START_REF] Blanchini | The gain scheduling and the robust state feedback stabilization problems[END_REF]], [START_REF] Blanchini | Stability results for linear parameter varying and switching systems[END_REF].

Let consider an LPV system ẋ(t) = A(ρ)x(t). In the following, two notions of the stability for the LPV system are recalled:

• Quadratic Stability: The system ẋ(t) = A(ρ)x(t) is quadratically stable if there exists a quadratic Lyapunov function V (x(t)) = x(t) T P x(t) > 0, P = P T > 0 satisfying:

A(ρ) T P + P A(ρ) < 0 ∀ρ ∈ P ρ Remark 2.
-The above problem is an infinite dimension problem due to infinite values of ρ. It can be relaxed using gridding approach, polytopic approach (see in the next section), etc.

-It could be conservative since stability is checked for any variation of the parameters with a constant Lyapunov function. To reduce the conservatism, Parameter Varying Lyapunov functions will be considered.

Signal and system norms

• Robust Stability: The system ẋ(t) = A(ρ)x(t) is robustly stable if there exists a quadratic Lyapunov function V (x(t)) = x(t) T P (ρ)x(t) > 0, P (ρ) = P (ρ) T > 0 satisfying:

A(ρ) T P (ρ) + P (ρ)A(ρ) + ρ ∂P ∂ρ < 0 ∀ρ ∈ P ρ
which, in addition to bounded parameters, needs to consider rate-bounded parameter variations.

Remark 3. -As well as the parameter vector ρ, the parameter variation rate ρ is assumed to be measurable (or estimable) and bounded.

-Such a condition of Robust Stability is more complex since in addtion to be checked for all ρ(t) ∈ P ρ , it involves the partial differentiation of Lyapunov matrix P (ρ).

-In order to take into account the effect of derivation, we should choose a parametrization of P (ρ) which can be affine or polynomial, for instance:

P (ρ) = P 0 + N 1 i=1 P i ρ i P (ρ) = P 0 + N 2 i=1 P i ρ i 2.

Signal and system norms

In this section, some definitions of the signal and system norms are recalled.

Signal norms

Assuming that x(t) is a function in the complex space where x(t) ∈ C, then the conjugate of x(t) is denoted as x * (t). The signal norms are defined as follows:

Definition 2.4.1 (L 1 , L 2 , L ∞ norms).
• The 1-Norm of a function x(t) is given by,

x(t) 1 = +∞ 0 |x(t)|dt (2.27)
• The 2-Norm (that introduces the energy norm) is given by, (2.31)

x(t) 2 = +∞ 0 x * (t)x(t)dt (2.28) • The ∞-Norm is given by, x(t) ∞ = sup t |x(t)| (2.29) X ∞ = sup Re(s)≥0 X(s) = sup ω X(jω) (2.30)
The H ∞ represents the maximal gain of the frequency response of the system. It is also called the worst case attenuation level in the sense that it measures the maximum amplification that the system can deliver on the whole frequency set. For SISO (resp. MIMO) systems, it represents the maximal peak value on the Bode magnitude (resp. singular value). The H ∞ norm can be only obtained from numerical solutions such as LMI resolution.

Definition 2.4.3 (H 2 norm). The H 2 norm of a strictly proper LTI system, defined as on (2.2.2) from input w(t) to output z(t), is the energy (L 2 norm) of the impulse response g(t) defined as,

G(jω) 2 = +∞ -∞ g * (t)g(t)dt = 1 2π +∞ -∞ T r[G * (jω)G(jω)]dω = sup w(s)∈H 2 ||z(s)||∞ ||u(s)|| 2 (2.32)
The norm H 2 is finite if and only if G(s) is strictly proper.

In case of the SISO systems, the H 2 norm represents the area located below the Bode diagram. For MIMO systems, the H 2 norm is the impulse-to-energy gain of z(t) in response to a white noise input w(t). The H 2 norm can be computed analytically (through the use of the controllability and observability Grammians) or numerically using LMIs.

H ∞ (or

L 2 to L 2 ) performance for LTI system
The H ∞ performance is convenient to enforce robustness to model uncertainty and to express frequency domain specifications such as bandwidth, low frequency gain, and roll-off.

The H ∞ problem consists in bounding to a given γ ∞ level the system gain between ||w|| 2 and ||z|| 2 (or minimizing γ ∞ ). This is actually a L 2 to L 2 induced norm. Lemma 2.5.1. Suppose that the LTI system defined in (2.20) is controllable. The transfer function between w and z is given by T (s) = C(sI -A) -1 B + D. Let us consider the quadratic supply function s(w, z) = γ 2 ∞ w T w-z T z, γ ∞ > 0. Then the considered system is asymptotically stable and T ∞ < γ ∞ , if there exists a symmetric positive definite matrix P such that the following LMI holds:

  A T P + P A P B C T B T P -γI D T C D -γI   ≺ 0 (2.33)
It has to be noted that the above lemma is actually the well known Bounded Real Lemma (BRL). Therein, the L 2 -norm of the output z of a system Σ LT I is uniformly bounded by γ 2 ∞ times the L 2 -norm of the input w (initial condition x(0) = 0). This property is the basis of the H ∞ control, later used in this thesis.

H 2 performance for LTI system

The H 2 performance is useful to handle stochastic aspects such as measurement noise and random disturbance.

Lemma 2.6.1. Suppose that the LTI system Σ LT I defined in (2.20) asymptotically stable and strictly proper, e.g. D = 0 with T (iω) is the corresponding transfer function. Let us consider the quadratic supply function s(w, z) = w T w. Then the considered system is asymptotically stable and T 2 < γ 2 , if there exists a P = P T 0 and Q such that the following LMIs are feasible:

A T P + P A P B B T P -I < 0

P C T C Q > 0 T r(Q) < γ 2 2
(2.34)

2.7 H ∞ (or L 2 to L 2 ) performance for LPV system Definition 2.7.1 (L 2 induced norm for LPV system). Given the LPV system Σ LP V as defined in (2.22). The induced L 2 norm is defined as:

Σ LP Vρ i,2 = sup ρ(t)∈Pρ sup w(t) =0∈L 2 z 2 w 2 (2.35)
which is often referred to as the H ∞ gain Σ LP Vρ ∞ of the LPV system from input w(t) to output z(t).

Lemma 2.7.1. [START_REF] Wu | Control of linear parameter varying systems[END_REF]] A sufficient condition for the L2 stability of system Σ LP V in (2.22) is the generalized BRL, using parameter dependent Lyapunov functions, i.e assuming the parameter variation rate is bounded | ρi | < ν i , ∀i, if there exists P (ρ), ∀ρ such that:

   A(ρ) T P (ρ) + P (ρ)A(ρ) + N i=1 ν i ∂P ∂ρ i P (ρ)B(ρ) C(ρ) T B(ρ) T P (ρ) -γI D(ρ) T C(ρ) D(ρ) -γI    ≺ 0 (2.36) then Σ LP Vρ i,2 < γ 2.

H ∞ control problem and design

H ∞ methods are used in control theory to synthesize controllers achieving stabilization with guaranteed performance [START_REF] Zhou | Robust and optimal control[END_REF], [START_REF] Skogestad | Multivariable feedback control: analysis and design[END_REF].

To use H ∞ methods, a control designer expresses the control problem as a mathematical optimization problem and then finds the controller that solves this optimization. H ∞ techniques have the advantage over classical control techniques in that they are readily applicable to problems involving multivariate systems with cross-coupling between channels. Figure 2.3 presents a standard H ∞ control scheme. The plant has two input vectors, the exogenous input w, that includes reference signal and disturbances, and the manipulated variables u. There are two output vectors, the controlled outputs z that we want to minimize, and the measured variables y that are used as the inputs of the controller C(s) to calculate the control signal u.

The effect of w on z after closing the loop is measured in terms of the energy and the worst disturbance w. H ∞ optimal control problem: Find a controller C(s) using the information of the output y that generates a control signal u which ensures the internal stability of the closed loop system and counteracts the influence of the disturbances w on the controlled outputs z, thereby minimizing the closed-loop norm from w to z.

In the H ∞ framework, to satisfy performance specifications, some weighting function W i (s) and W o (s) are added on the input disturbances and the controlled outputs respectively as illustrated in Fig. 2.4. These weighting functions allow to shape some specific controlled output in the frequency domain. The interconnection between the weigting functions and the system Σ(s) provides the generalized system P (s). Let consider first the LTI case, the generalized LTI system P (s) can be described as follows: Then, according to this general formulation, the controller C is defined as,

  ẋ z y   =   A B 1 B 2 C 1 D 11 D 12 C 2 D 21 D 22     x w u   (2.37) x ∈ R n , z ∈ R r , y ∈ R p , w ∈ R q and u ∈ R m .
ẋc u = A c B c C c D c x c y (2.38)
where

x c ∈ R n , u ∈ R m , y ∈ R p .
Then, the resulting closed-loop system can be derived from the generalized plant P (s) and the controller C(s) as follows:,

ξ z = A B C D ξ w (2.39)
For sake of simplicity, we will consider here only strictly proper systems i.e it is assumed that D 22 = 0. Then resulting matrices of the closed-loop system are then given thereafter:

                     A = A + B 2 D c C 2 B 2 C c B c C 2 A c B = B 1 + B 2 D c D 21 B c D 21 C = C 1 + D 12 D c C 2 D 12 C c D = D 11 + D 12 D c D 21 (2.40) where ξ = [x T x T c ] T ∈ R 2n , z ∈ R r , w ∈ R q .
H ∞ problem: -The objective of the synthesis is to find a controller C of the form (2.38) such that the closed-loop system is quadratically stable and that, for a given positive real γ ∞ , the induced-L 2 norm of the operator mapping w into z is bounded by

γ ∞ i.e sup w =0,w∈L 2 z 2 w 2 ≤ γ ∞ (2.41)

LT I/H ∞ control design

The solution of the H ∞ control problem using a dynamic output-feedback for the LTI system is given in the following:

Proposition 2.9.1 (LTI/H ∞ solution [START_REF] Scherer | Multiobjective outputfeedback control via LMI optimization[END_REF]). Consider the system (2.37), a dynamical output feedback controller C(s) as in (2.38) that solves the H ∞ control problem, is obtained by solving the following LMIs in (X, Y, A, B, C and D), while mini-

mizing γ ∞ ,     M 11 ( * ) T ( * ) T ( * ) T M 21 M 22 ( * ) T ( * ) T M 31 M 32 M 33 ( * ) T M 41 M 42 M 43 M 44     ≺ 0 X I n I n Y 0 (2.42)
where,

M 33 = -γ ∞ I m M 41 = C 1 X + D 12 C M 42 = C 1 + D 12 DC 2 M 43 = D 11 + D 12 DD 21 M 44 = -γ ∞ I p (2.43)
Then, the reconstruction of the controller C is obtained by the following equivalent transformation,

         D c = D C c = ( C -D c C 2 X)M -T B c = N -1 ( B -YB 2 D c ) A c = N -1 ( A -YAX -YB 2 D c C 2 X -N B c C 2 X -YB 2 C c M T )M -T (2.44)
where M and N are defined such that M N T = I n -XY which can be solved through a singular value decomposition plus a Cholesky factorization.

Numerical issues: Note that for practical issues, LMI (2.42) is solved a first time to find γ * ∞ , the optimal bound solution. Then, we will often solve the LMIs with a fixed higher attenuation level γ ∞ = γ * ∞ (1 + ν), (ν being a percentage) [START_REF] Scherer | Multiobjective outputfeedback control via LMI optimization[END_REF]. In this second step, the second statement of (2.42) is replaced by,

X αI n αI n Y > 0 (2.45)
where α > 0, and the optimization to be done consists in maximizing α. This procedure maximizes the minimal eigenvalue of XY , and hence pushes it away from I n , and avoid bad conditioning when inverting M and N in the controller reconstruction step (2.44).

2.10 LP V /H ∞ control design

LPV control synthesis

Let consider now the LPV case (see Fig. 

  ẋ z y   =   A(ρ) B 1 (ρ) B 2 (ρ) C 1 (ρ) D 11 (ρ) D 12 (ρ) C 2 (ρ) D 21 (ρ) D 22 (ρ)     x w u   (2.46)
where x ∈ R n , z ∈ R r , y ∈ R p , w ∈ R q and u ∈ R m are the state vector , the controlled output vector, the measured output vector, the disturbance vector, and the control input vector respectively. ρ = (ρ 1 (t), ρ 2 (t), . . . , ρ p (t)) ∈ P ρ , is a vector of time-varying parameters (P ρ convex set). ρ is assumed to be known (measurable or estimable).

Then the LPV controller C(ρ) with the structure as seen in Fig. 2.6 is defined as:

ẋc u = A c (ρ) B c (ρ) C c (ρ) D c (ρ) x c y (2.47)
where

x c ∈ R n , u ∈ R m , y ∈ R p .
As considered in the LTI section, and assuming also D 22 (ρ) = 0, the closed-loop system 

ξ z = A(ρ) B(ρ) C(ρ) D(ρ) ξ w (2.48) where                      A = A(ρ) + B 2 (ρ)D c (ρ)C 2 (ρ) B 2 (ρ)C c (ρ) B c (ρ)C 2 (ρ) A c (ρ) B = B 1 (ρ) + B 2 (ρ)D c (ρ)D 21 (ρ) B c (ρ)D 21(ρ) C = C 1 (ρ) + D 12 (ρ)D c (ρ)C ( ρ)2 D 12 (ρ)C c (ρ) D = D 11(ρ) + D 12 (ρ)D c (ρ)D 21(ρ) (2.49) where ξ = [x T x T c ] T ∈ R 2n , z ∈ R r , w ∈ R q .
The H ∞ control synthesis solution for LPV systems is extended from the LTI ones as follows.

Proposition 2.10.1 (LMI-based LPV/H ∞ solution). Consider the system (2.46). A dynamical output feedback controller C(s) (2.47) that solves the H ∞ control problem, is obtained by solving the LMIs (2.50) 

in (X(ρ), Y(ρ), A(ρ), B(ρ), C(ρ) and D(ρ)) while minimizing γ ∞ , ∀ρ ∈ P ρ     M 11 ( * ) T ( * ) T ( * ) T M 21 M 22 ( * ) T ( * ) T M 31 M 32 M 33 ( * ) T M 41 M 42 M 43 M 44     ≺ 0 X(ρ) I n I n Y(ρ) 0 (2.50)
where,

M 11 = A(ρ)X(ρ) + X(ρ)A(ρ) T + ∂X(ρ) ∂ρ ρ + B 2 C(ρ) + C(ρ) T B T 2 M 21 = A(ρ) + A(ρ) T + C T 2 D(ρ) T B T 2 M 22 = Y(ρ)A(ρ) + A(ρ) T Y(ρ) + ∂Y (ρ) ∂ρ ρ + B(ρ)C 2 + C T 2 B(ρ) T M 31 = B 1 (ρ) T + D 21 (ρ) T D(ρ) T B T 2 M 32 = B 1 (ρ) T Y(ρ) + D 21 (ρ) T B(ρ) T M 33 = -γI m M 41 = C 1 (ρ)X(ρ) + D 12 (ρ) C(ρ) M 42 = C 1 (ρ) + D 12 (ρ) D(ρ)C 2 M 43 = D 11 (ρ) + D 12 (ρ) D(ρ)D 21 (ρ) M 44 = -γI p (2.51)
Then, the reconstruction of the controller C is obtained by the following equivalent transformation (for

∂X(ρ) ∂ρ ρ = 0, ∂Y (ρ) ∂ρ ρ = 0),              D c (ρ) = D(ρ) C c (ρ) = ( C(ρ) -D c (ρ)C 2 (ρ)X(ρ))M (ρ) -T B c (ρ) = N (ρ) -1 ( B(ρ) -Y(ρ)B 2 (ρ)D c (ρ)) A c (ρ) = N (ρ) -1 ( A(ρ) -Y(ρ)A(ρ)X(ρ) -Y(ρ)B 2 (ρ)D c (ρ)C 2 (ρ)X(ρ) -N (ρ)B c (ρ)C 2 (ρ)X(ρ) -Y(ρ)B 2 (ρ)C c (ρ)M (ρ) T )M (ρ) -T (2.52)
where M (ρ) and N (ρ) are defined such that M (ρ)N (ρ) T = I n -X(ρ)Y (ρ) which can be solved through a singular value decomposition plus a Cholesky factorization.

Remark 4. It is worth noting that the controller reconstruction as above that takes ∂X(ρ) ∂ρ ρ = 0, ∂Y (ρ) ∂ρ ρ = 0 is actually the case for the polytopic approach (see in next section). Otherwise, we need to choose a parametrization of X(ρ), Y (ρ) which can be affine or polynomial and the gridding approach can be used to derive the controller ( [START_REF] Wu | Induced L 2-norm control for LPV system with bounded parameter variation rates[END_REF]).

Polytopic approach for the design of LPV controllers

As seen in the last section, in order to design the LPV controller, we need to solve various parameter-dependent sets of matrix inequalities, which results in an infinite number of dimension problem (due to the infinite possible values of the scheduling parameters). Then to relax it into a finite dimension problem, different approaches can be used:

1. The polytopic approach ( [START_REF] Apkarian | Self-scheduled Hinf control of linear parameter-varying systems: a design example[END_REF]).

2. The gridding approach ( [START_REF] Wu | Induced L 2-norm control for LPV system with bounded parameter variation rates[END_REF])

3. The Linear Fractional Representation (LFR) approach ( [START_REF] Apkarian | Advanced gain-scheduling techniques for uncertain systems[END_REF]).

Since it simplifies the computation and programming design, the polytopic approach is used in this thesis.In order to apply such an approach, the following conditions must be satisfied:

• There is no direct transfer between the input and the output, i.e D 22 (ρ) = 0

• The input and output matrices are parameter independent of, i.e B 2 , D 12 and C 2 , D 21 are constant.

If the system cannot be written such that these conditions are fulfilled, a simple solution consists of filtering the input and/or the output with a strictly proper filter as proposed in ( [START_REF] Apkarian | Self-scheduled Hinf control of linear parameter-varying systems: a design example[END_REF]).

From LPV system to polytopic system: When all scheduling parameters ρ i of the LPV system are independent and bounded in [ρ i , ρ i ], i.e. the set P is a hypercube of N = 2 p vertices ω 1 , ω 2 ,...,ω 2 p , the LPV system can be represented by an equivalent polytopic one:

Σ (ρ) = A (ρ) B (ρ) C (ρ) D (ρ) = N i=1 α i (ρ) A (ω i ) B (ω i ) C (ω i ) D (ω i )
where

α i (ρ) = p i=1 |ρ i -Compl(ω i )| p i=1 (ρ i -ρ i ) (2.53)
and Compl(ω i ) k is the k th component of the vector Compl(ω i ) defined as

Compl(ω i ) k := {ρ k : ρ k = ρk if (ω i ) k = ρ k or ρ k = ρ k otherwise} (2.54)
Now the polytopic controller is computed by synthesizing a controller at each vertex of the polytopic system. It means that a set of N = 2 p controllers is derived:

A c 1 B c 1 C c 1 D c 1 , . . . , A c N B c N C c N D c N (2.55)
It has to be noted that, if a single Lyapunov function can be found for all the controllers, the derived LPV controller stabilizes the LPV system for all the possible variations of scheduling parameters in the bounded set. This leads to the global stability of the closed-loop LPV system (quadratic stability).

Remark 2.10.1. Since a single Lyapunov function is used, the solution could be conservative.

In order to reduce the conservatism, Parameter-Dependent Lyapunov functions can be used. However, this requires the available information of the parameter variation rates. If it is the case, to derive the controller from the parameter-dependent sets of matrix inequalities, the gridding approach is a good choice [START_REF] Wu | Induced L 2-norm control for LPV system with bounded parameter variation rates[END_REF].

For the implementation of the LPV polytopic controller, one has:

C(ρ) = N i=1 α i A c i B c i C c i D c i (2.56)
where,

α i (ρ) := l k=1 |ρ k -C(ω i ) k | l k=1 (ρ k -ρ k ) , i = 1, . . . , N (2.57) α i (ρ) ≥ 0 and N i=1 α i (ρ) = 1 (2.58)
As illustrated on Figure 2.7 (in the case of 2 scheduling parameters), the controller "evolves" in a controller set according to the parameter variation. 
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Conclusions

To conclude, this chapter have been briefly recalled some theoretical backgrounds on control theory to help unfamiliar readers the basic ideas used in the next chapters. The notions of the stability for LTI/LPV systems were introduced. The H ∞ control problem have been stated, and the corresponding solutions have been also given both for LTI and LPV systems. The controller design formulation, based on LMI, has been chosen since they provide simple and flexible control synthesis tools. This chapter presents some preliminary results of the thesis on suspension control problems. A motion-scheduled LP V /H ∞ suspension controller that takes into account the three main motions of the vehicle vertical dynamics: bounce, roll and pitch motions are designed. This approach aims, by using a vehicle motion detection method, at designing a controller which is able to adapt the suspension forces at the four corners of the vehicle, in order to mitigate the road-induced effects. The motion detection strategy is based on the supervison of load transfer distributions (pitch and roll motions). The main idea of the LPV control is to use some scheduling parameters, representative of the motion distribution of the car dynamics, in order to adapt and distribute efficiently the suspension actuators. The developed strategy 48 Chapter 3. LPV Motion Adaptation suspension control has led to a publication in [Nguyen, Sename, and Dugard 2015a] ( 14th European Control Conference, ECC 2015).

Motivations

Introduction

It is well known that among various actuators of an automative system, the suspension system plays a key role in vehicle dynamics. Indeed, a well designed suspension system may considerably improve not only the passenger comfort but also the car road holding. Several control design problems for suspension systems have then been tackled with many approaches during the last decades. In [START_REF] Savaresi | Semi-active suspension control design for vehicles[END_REF]], [START_REF] Poussot-Vassal | Survey and performance evaluation on some automotive semi-active suspension control methods: A comparative study on a single-corner model[END_REF]] the authors presented several control strategies for semi-active suspensions (based on the Skyhook, Groundhook, ADD and LPV approaches). Other works concerning quarter car model have dealt with optimal control [START_REF] Hong | Modified skyhook control of semi-active suspensions: A new model, gain scheduling, and hardware-in-the-loop tuning[END_REF]], adaptive control [START_REF] Koch | Driving State Adaptive Control of an Active Vehicle Suspension System[END_REF] or robust linear control [START_REF] Lauwerys | Robust linear control of an active suspension on a quarter car test-rig[END_REF]. Suspension control problems have also been solved on a half car models using an optimal control [START_REF] Krtolica | Optimal active suspension control based on a half-car model[END_REF] , or multi-objective control [START_REF] Sun | Multiobjective output-feedback suspension control on a half-car model[END_REF] or decoupling strategies [START_REF] Zhang | A new approach to half-car active suspension control[END_REF]. Finally, a full car vertical model was considered to simultaneously handle the bounce, pitch and roll motions, using a mixed H 2 /H ∞ multiobjective control [START_REF] Lu | Multiobjective optimal suspension control to achieve integrated ride and handling performance[END_REF], or developing H ∞ controllers for two decoupled vehicle heave-pitch and roll-warp subsystems [START_REF] Hayakawa | Robust H ∞ -output feedback control of decoupled automobile active suspension systems[END_REF] .

Regarding to the vehicle dynamics, it is well known that the vehicle motion depends considerably on the road conditions and it is well admitted that the vehicle dynamics (in terms of comfort and road holding) will benefit from the online adaptation of the suspension performances. Then if the information of road profile or the vehicle motion state can be measured or estimated, the suspension controller can improve the vehicle performance much better. Let us mention here the "Magic Body Control" system [Body Magic Control ] of Mercedes which achieves such an adaptation using online camera-based measurements of road disturbances in advance. Some studies have been developed to adapt the suspension actuators according to the road environments (see [START_REF] Fialho | Road adaptive active suspension design using linear parameter-varying gain-scheduling[END_REF], [START_REF] Tudon-Martınez | Road adaptive semi-active suspension in a pick-up truck using an lpv controller[END_REF]], [START_REF] Doumiati | Road profile estimation using an adaptive Youla-Kučera parametric observer: Comparison to real profilers[END_REF]) based only on existing usual sensors (accelerometers, gyrometers). Recently, a motion mode energy method was developped by calculating the energy contribution of each vibration mode to the entire vehicle vibration and then to detect in which motions the vehicle is. It is used to design a switched control that handles the bounce, roll and pitch motions in [START_REF] Du | Switched control of vehicle suspension based on motion-mode detection[END_REF]. However, the fact of using such a switched controller can lead to abrupt changes and the stability is not proved. This problem can be tackled by using the LPV approach and presented in this chapter.

Chapter Contributions

The main contribution of this chapter is to propose for the first time a motion-scheduled Multi-Input Multi-Output (MIMO) LPV controller to enhance the car vertical dynamics using suspension actuators only. The suspension controller is designed in two steps:

• Firstly, a new simple (and easy to implement) way to detect the vehicle motions is proposed, which uses the online computation of the load transfer distribution.

• Then, a MIMO suspension control strategy is designed in the LPV framework in order to allow for real time performance adaptation according to the vehicle dynamics detection. Indeed, by using a suitable definition of varying parameters, the controller allows to have a smooth transition from a motion-mode to another. Since the passengers' comfort is the main objective in this work, the aim is to improve the road induced vibration insulation on the bounce, roll and pitch motions. Thanks to LPV/H ∞ framework, the suspension controller ensures the stability and performances of the closed system for all parameter variations.

This chapter is organized as follows. Section 2 is devoted to a brief description of the full vehicle model used for control design. Section 3 presents the method allowing to detect the different motions of vehicle. Section 4 describes the design of a LPV/H ∞ suspension controller that will adapt to the three motions of chassis. In section 5, the results of the proposed method are given along with some time domain simulations. The suspension control approach is then implemented on the SOBEN Car testbed in the section 6. Finally, some conclusions are drawn in the last section.

The control oriented full vertical vehicle model: an LTI model

Let us first recall the 7 degree of freedom (DOF) full car vertical model used for the control design purposes as seen in section 1.2.3, Chapter 1. The 7 DOF model (1.8) is governed by the following dynamic equations:

       m s zs = -F sf l -F sf r -F srl -F srr + F dz I x θ = (-F sf r + F sf l )t f + (-F srr + F srl )t r + M dx I y φ = (F srr + F srl )l r -(F sf r + F sf l )l f + M dy m us zus ij = F s ij -F tz ij (3.1)
The vertical suspension forces F s ij at the 4 corners of the vehicle are modeled by a spring and a damper. For the control design purposes, the suspension forces F s ij are written by linear models as in the equation (3.2):

F s ij = k ij (z s ij -z us ij ) + c ij ( żs ij -żus ij ) + u H∞ ij (3.2)
where k ij are the nominal spring stiffness coefficients, z s ij the chassis position at each corner, c ij the nominal damping coefficients and u H∞ ij the suspension control inputs (u H∞ ij = 0 holds for passive suspension).

Replacing the suspension force equations (3.2), the tire force equations (1.9) (as seen in the Chapter 1) into (3.1) andchoosing: x = [z s θ φ z usf l z usf r z usrl z usrr żs θ φ żusfl żusfr żusrl żusrr ] T as the state vector of the full car model, w = [z rf l z rf r z rrl z rrr F dz M dx M dy ] T as the disturbance input vector, and u = [u H∞ f l , u H∞ f r , u H∞ rl , u H∞ rr ] T as the control input vector, the dynamic equations (3.1) of the full car model can be rewritten in the following state space representation:

ẋ(t) = Ax(t) + B 1 w(t) + B 2 u (3.3)
where

A = 0 7×7 I 7×7 -M z -1 K z -M z -1 B z ; B 2 = 0 7×4 M z -1 T a ; B 1 = 0 7×4 0 7×3 M z -1 K r I 7×3 ; M z = M s 0 3×4 0 4×3 M u ; B z = T B s T T -T B s -B s T T B s ; K z = T K s T T -T K s -K s T T K s + K t ; K r = 0 3×4 K t ; T a = T -I 4×4 ; M s = diag[m s , I x , I y ]; M u = diag[m usf l , m usf r , m usrl , m usrr ] ; B s = diag[c f l , c f r , c rl , c rr ]; K s = diag[k sf l , k sf r , k srl , k srr ]; K t = diag[k tf l , k tf r , k trl , k trr ]; T =   1 1 1 1 t f -t f t r -t r -l f -l f l r l r   ;
Remark: The details of manipulations to obtain the state state representation of the 7 DOF vertical model are given in [START_REF] Park | Decentralized variable structure control for active suspensions based on a full-car model[END_REF]], [Sammier 2001a].

In the remaining sections, this 7DOF model is used to design a LPV control with suspension actuators (see Fig.3.1). One uses also the "Clipped strategy" (as [START_REF] Savaresi | Semi-active suspension control design for vehicles[END_REF]) that ensures the dissipativity caracteristic of the semi-active suspension. The "clipped method" is derived thanks to the force/deflection speed map shown in Fig. 3.2. Such a map depends on the dissipativity constraint of semi-active dampers and is given by the manufacturer or can be obtained thank to the identification step. The principle of the "Clipped strategy" is simple: for a given deflection speed ( żdef ), if the controller gives a force F * out of the achivable force area, the force provided to the system will be the projection F ⊥ of F * on the admissible force range, ensuring the semi-activeness property. This method will be integrated in the simulation. 

Vehicle Motion Detection

The study of vehicle dynamics is complex since it requires to account for translation (lateral, longitudinal, vertical) and rotation (roll, pitch, yaw) modes. As emphasized in many works, they are strongly coupled even if the vehicle dynamics are often decomposed to solve some local problems (braking control, steering control...).

This chapter is concerned with the improvement of the vertical dynamics that include vertical, pitch, and roll motions. More particularly, as considered in previous studies ([ [START_REF] Lu | Multiobjective optimal suspension control to achieve integrated ride and handling performance[END_REF], [START_REF] Hayakawa | Robust H ∞ -output feedback control of decoupled automobile active suspension systems[END_REF]], [START_REF] Du | Switched control of vehicle suspension based on motion-mode detection[END_REF], [START_REF] Wang | Multi-objective control of decoupled vehicle suspension systems[END_REF]...) the objective is to develop a suspension control strategy that aims at reducing the effect of the road induced vibrations on pitch, roll and bounce motions, and thus to enhance the passengers' comfort. Note that the road holding objective could be considered as well since the 7 DOF model accounts for the wheel position dynamics (this could be the scope of future works). Moreover, as stated in the introduction, the vibration insulation for the vertical, roll and pitch motions will be based on a motion detection strategy by using the estimation of some load transfers. The main idea is based on the evaluation the lateral load transfer (5.18) when the vehicle is running (see [START_REF] Fang | A LPV suspension control with performance adaptation to roll behavior, embedded in a global vehicle dynamic control strategy[END_REF]). As soon as there exists a load transfer from the left to the right or vice-versa, it means that the vehicle is faced with roll vibrations. Computing the right and left vertical forces allows to define:

Motions supervision based on

ρ 1 = F z l -F zr F z l + F zr (3.4) 
with:

F z l = m s g 2 + m s h ay l f F zr = m s g 2 -m s h
ay lr (3.5) where F z l and F zr are the vertical forces, a y is the lateral acceleration. Note that

ρ 1 ∈ [0 1].
When ρ 1 → 0, there are neither lateral load transfer nor roll motion. When ρ 1 = 0, the vehicle is in the roll motion.

Pitch monitoring by longitudinal load transfer(ρ 2 )

Using the same principle as previously, the longitudinal load transfer (3.6)(see [START_REF] Short | Local stabilization of discrete-time linear systems with saturating controls: an LMI-based approach[END_REF]) is defined between the front and rear wheels when the vehicle accelerates or decelerates, leading to pitch motion. The pitch monitor is then defined as:

ρ 2 = (F z f L lr -F zr L l f ) (F z f L lr + F zr L l f ) (3.6)
where F z f , F zr are the front and rear forces, given by :

F z f = m s ( lr L cos(φ) + h L sin(φ)) -m s a x h L F zr = m s ( l f L cos(φ) -h L sin(φ)) + m s a x h L (3.7)
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where a x is the longitudinal acceleration, L is the distance from front to rear axle. Note that ρ 2 ∈ [0 1]. In reality, when the vehicle speeds up, the load is transferred to the rear wheels, and during the braking it is transferred to the front wheels. The longitudinal load transfer distribution is handled as: whilst ρ 2 → 0, there are neither longitudinal load transfer nor pitch motion. Conversely when ρ 2 = 0, the pitch motion is detected.

Bounce monitoring (ρ 3 )

Thanks to the two load transfer distribution monitoring system for roll and pitch motions, another scheduling parameter ρ 3 computed according to (3.8) will be used to monitor the bounce motion:

ρ 3 = 2 -ρ 1 -ρ 2 2 (3.8) Since ρ 1 , ρ 2 ∈ [0 1], one has also ρ 3 ∈ [0 1].
When ρ 3 = 0, the bounce motion (z s ) should be taken into account.

Remark 5.

-In this load transfer distribution method, only two accelerometers are needed to measure the lateral and longitudinal accelerations, one gyrometer sensor to measure the pitch angle. Thus, it is much easier than the energy method developed in [START_REF] Du | Switched control of vehicle suspension based on motion-mode detection[END_REF] (that requires much more sensors) to implement in real time.

-Such a motion dection using load transfer approach is easy to implement, however, it only works when the lateral and longitudianl accelerations (a x , a y ) differ from zero. Otherwise, another way to detect the vehicle motion is needed (it will be presented later in the case of SOBEN car).

An LP V /H ∞ motion adaptation suspension controller for global chassis control

From the previous motion detection strategies, an LP V /H ∞ motion-scheduled suspension control is proposed to ameliorate the vehical vertical dynamics. This controller is designed in the H ∞ framework, which allows to get real-time adaptive performances using parameter dependent weighting functions.

Global control structure model

The controller is tuned thanks to the LPV/H ∞ strategy using the full 7 DOF vertical model (3.1). The generalized plant, given in Fig. 3.4, includes the parameterized weighting functions.

As discussed previously, one uses the three varying parameters to schedule the weighting functions for the control objectives. These filters are selected as follows: 

• W zs (ρ 3 ) = ρ 3 3 s/(2πf 1 )
+1 is shaped to reduce the bounce amplification of the sprung mass (z s ) between [0, 10]Hz (f 1 = 8Hz).

• W θ (ρ 1 ) = ρ 1 2 s/(2πf 2 )+1 , aims at attenuating the roll amplification in low frequency (f 2 = 2Hz). • W φ (ρ 2 ) = ρ 2 2
s/(2πf 3 )+1 reduces the pitch motion in particularly in low frequency (f 3 = 2Hz).

• W u = 10 -2 limits the control signal amplification. This coefficient should be chosen according to the actuator gain.

In addition, some weighting functions, derived by W z rij = 3.10 -2 are used to shape the road profiles (z rij ).

Notice that the interest of parameter dependant weighting functions is to allow for performance adaptation to the behavior of the vehicle dynamic. Indeed, the suspension actuators will be tuned according to the varying parameters in order to meet the desired performance. For example, as far as the roll motion is concerned, when the scheduling parameter ρ 1 -→ 1, the gain of the weighting function W θ (ρ 1 ) is large, penalizing therefore the roll angle. In the same way, when ρ 2 and ρ 3 are large, the pitch and bounce motions will be reduced.

It is worth noting that, while the model car is a LTI system, the generalized plant (which consists of the suspension model and weighting functions) is a LPV one. Indeed, according to the interconnection between the 7 DOF vertical model Σ vert and the weighting functions defined above, the following parameter dependent suspension generalized plant (Σ gv (ρ))is obtained: ρ = [ρ 1 ρ 2 ρ 3 ]: the varying parameters,ρ i ∈ [0 1],i = 1,2,3 The generalized plant (3.9) depends on 3 varying parameters (ρ 1 , ρ 2 , ρ 3 ), so in general, Σ gv (ρ) can be expressed as a polytopic system composed by N = 2 3 vertices. However, in this context, from the definition of ρ 3 = 2-ρ 1 -ρ 2 2 linearly dependent on ρ 1 , ρ 2 , the scheduling parameters vary only in a smaller polytope with 4 vertices ω i , i=1, ..., 4 (see Fig. 3.5). The second polytope is clearly less conservative than the first one. Indeed, instead of 8 vertices, we end with only 4, and we obtain a polytope closer to the real parameter variations. Let us now rewrite system Σ gv (ρ) as the combination of systems at vertices of the polytope:

Σ gv (ρ) :    ξ = A(ρ)ξ + B 1 (ρ) w + B 2 u z = C 1 (ρ)ξ + D 11 (ρ) w + D 12 u y = C 2 ξ + D 21 w (3.9)
Σ gv (ρ) = Σ 4 i=1 α i (ρ)Σ i gv (ρ) (3.10)
where

α i (ρ) := Π 2 k=1 |ρ k -C(ω i ) k | Π 2 k=1 (ρ k -ρ k ) , i = 1, ..., 4 and Σ 4 i=1 α i (ρ) = 1; ρ k ∈ [ρ k ρ k ]. Σ i gv (ρ) defines the system at i th vertice; C(ω i ) k := {ρ k if (ω i ) k = ρ k or ρ k if (ω i ) k = ρ k }.

LPV/H ∞ polytopic solution

Following the polytopic model presented above, the suspension controller is designed using a LPV strategy for the polytopic system.

The LPV/H ∞ problem (see [Sename, Gaspar, and Bokor 2013] ) consists in finding a stabilizing controller, scheduled by ρ = (ρ 1 , ρ 2 , ρ 3 ), of the form:

K c (ρ) : ẋc = A c (ρ)x c + B c (ρ)y u H∞ ij = C c (ρ)x c (3.11)
where the controller order is same order of the generalized system, i.e

x c ∈ R 17 y ∈ R 4 , u H∞ ij ∈ R 4 .
The controller minimizes the H ∞ norm of the transfer function between the input disturbances w and the controlled outputs z. The synthesis of such a controller can be made in the framework of LPV/H ∞ based on the LMI solution (see [START_REF] Apkarian | Self-scheduled Hinf control of linear parameter-varying systems: a design example[END_REF], [START_REF] Scherer | Multiobjective outputfeedback control via LMI optimization[END_REF]) for polytopic systems (here in the framework of quadratic stabilization).

Let us note that the generalized plant (3.9) does not have any direct transfer between the input and the output (i.e D 22 = 0). Moreover, the input and output matrices

[B 2 , D 12 ], [C 2 , D 21 ] do not depend on parameters ρ = [ρ 1 , ρ 2 , ρ 3 ].
Then, the polytopic system is a convex combination (as (3.10)) of the systems defined at each vertex of the polytope given by the bounds of the scheduling parameters. The designed controller is also the convex combination of the 4 controllers synthesized at the 4 vertices of the polytope. Thanks to the polytopic approach, the global suspension controller can ensure the global stability because each of the closed-loop system at a vertex is quadratically stable.

The main contribution in this synthesis is that the controller can adapt according to vehicle motions. This also allows a smoother transition from a motion to another, and ensures the closed loop stability for all parameter variations. Moreover, when ρ i = 0, i = 1, 2, 3, the designed controller provides an accurate suspension force to warrant the vehicle stability and driving comfort.

Simulation results: Application to a Renault Mégane Coupé model

To validate the proposed controller strategy, simulations are performed on a full non linear vehicle model [START_REF] Poussot-Vassal | Attitude and handling improvements through gainscheduled suspensions and brakes control[END_REF]] for a Renault Mégane Coupé.

The following scenario (see Fig. 3.6-Fig. 3.7) is used to test the effectiveness of the proposed LPV/H ∞ controller:

• the vehicle runs at 45km/h in a straight line on dry road ( µ = 1, where µ stands for the adherence to the road).

• A 5cm bump occurs simultaneously on the left and right wheels (from t = 0.5s to t = 1s) to excite the bounce motion.

• The vehicle accelerates from t = 3s to t = 3.5s, which induces a pitch motion.
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• A double lines change is performed from t = 2s to t = 6s).

• And a 5cm bump on the left wheels (from t = 5s to t = 5.5s) during the manoeuvre that causes the roll vibration. The results of the simulation using the load transfer method to detect the vehicle motions are given below. Fig. 3.8 shows the longtidunal and lateral accelerations which induce the pitch and roll motions of the vehicle. The longitudinal acceleration from t = 3-3.5s is positive since the vehicle accelerates. During the manoeuvre (t = 2 -6s) and when a bump occurs on the left wheels (t = 5 -5.5s), the vehicle has a non zero lateral acceleration. Fig. 3.9 shows the scheduling parameters for the LPV controller. We see that, at the beginning, the LPV controller concentrates on improving the bounce motion (ρ 1 -→ 1). From t = 3-3.5s, the vehicle accelerates, the scheduling parameter of pitch motion ρ 2 increases, the In Fig. 3.15, the input forces F sij adapt the suspension actuators according to the motions of the vehicle so that the performance objectives are achieved. 

Experimental Results: Application on INOVE testbed

In this section, the presented LPV Motion Adaptation approach will be applied on SOBEN car (a 1/5 scaled vehicle) in order to improve the vertical dynamics of the car, i.e. bounce, roll and pitch movements.

INOVE Testbed presentation

Firstly, the INOVE test bench is described in regarding its components and its operational characteristics, then some remarks on the use of the platform are discussed. This experimental platform is composed of 3 main parts as seen in Fig. 3.16: • Host PC: The control interface is hosted in this computer. This interface allows the user to set the initialization parameters, configure the desired road profile, implement the suspension control algorithms and record the acquired data. This interface is developed using M atlab/Simulink T M .

• Target PC: This computer runs a RT operating system (xPC T arget T M ). In this PC, the control algorithm is compiled and executed at a sampling time of 200 Hz.

• Process: The process includes sensors, actuators and the scaled vehicle.

In the Process, the principal element is a 1 : 5-scaled racing car, which represents a full vehicle including wheels, engine, steering, breaking system, and a semi-active suspension system as a key element. In fact, this platform is dedicated to study only the vertical behaviour of the car, so neither the steering nor the breaking systems will be used.

The Semi-Active suspension system involves four Electro-Rheological (ER) dampers which have a force range of ±50 N. These dampers are adjusted using a manipulation voltage between 0 and 5 kV, generated thanks to the amplifiers modules. The control input for the modules is a PWM signal at 25 kHz. These amplifiers proportionally transform the duty-cycle of the received PWM signal into a voltage . A linear servomotor, located below each wheel, mimics the desired road profile. The servomotors have a bandwidth of 0 -20 Hz with a maximum velocity of 1.5 m/s. Each motor has its own servo-driver and is operated from the Host PC by sending the desired road profile through a Data Acquisition Card.

To capture the behaviour of the vehicle, this platform is equipped with a wide variety of sensors. To measure the vertical accelerations of the unsprung masses (z us ) 4 capacitive accelerometers are used. The deflection of the suspensions (z def ) are measured using 4 resistive linear displacement sensors and 4 other sensors to measure road profile (z r ). Also 4 draw-wire displacement sensors are used to measure the unsprung masses displacements (z us ).

Since the main idea of this platform is to evaluate the dynamical behaviour of the full vehicle, the system is equipped with a M EM S based Attitude and Heading Reference System (AHRS) which measures the movements of the sprung mass; 3 accelerations: longitudinal (ẍ), lateral (ÿ ) and vertical (z ), and 3 angular velocities: pitch rate ( φ ), roll rate ( θ ), and yaw rate ( ψ).

To analyse the force changes of the ER dampers, 4 force sensors are available. Moreover, 4 other sensors are used to measure tire forces. The data acquisition and signal outputs for all the sensors and actuators are done through 2 National Instruments Data Acquisition Cards (NI DAQs).

Operation remarks:

Since this system is specially designed to evaluate the vertical dynamics of a vehicle controlled by of the suspension system, some considerations, regarding its operation mode, need to be taken into account when operating the experimental platform:

• The only external input of the system is the movement of the linear servomotors, which represent the desired road profile applied to each of the wheels.

• To operate the semi-active dampers, the considered control input should be the percentage of duty cycle for the PWM command signal. The PWM signals can vary in the range [0.1 0.8]. However, from the experimental tests, it is concluded that when the PWM signal is higher than 0.35, the damper forces have almost the same behaviors.

• Due to the physical characteristics of the system, only the vertical dynamics, pitch, roll and vertical bounce, can be inferred from the system evolution. Even if the sensors detect other dynamics (longitudinal or lateral), these movements should be neglected.

• The platform is operated directly from a Matlab/Simulink interface. So, there is practically no limitation in the type of controllers that can be implemented.

An Adapted Vehicle Motion Detection Method

As mentioned previously in section 3.3, the vehicle motion can be detected using the load transfer approach. However, this approach is more appropriate for the case where the roll and pitch motions are strongly excited, i.e., for instance when a maneuver or a speed-up is performed (then, the lateral, longitudinal accelerations are strongly variable).

For the INOVE testbed, it is worth noting that the car is fixed on the platform and the steering action is not considered. In this regard, the lateral acceleration is very small and the roll motion, detected by the load transfer approach, may be then neglected. An alternative solution is therefore proposed to deal with this. Indeed, in order to detect the roll, one will take into account the difference between suspension deflection at the left and right corners of the vehicle. In the same way, the pitch motion is detected by the difference between suspension deflection at the front and rear corners of the car. Mathematically, the parameters can be given as follows:

• Roll monitoring parameter:

ρ 1 = (z def f l + z def rl ) -(z def f r + z defrr ) z def f l + |z def rl | + z def f r + |z defrr | (3.12)
• Pitch monitoring parameter:

ρ 2 = (z def f l + z def f r ) -(z def rl + z defrr ) z def f l + |z def rl | + z def f r + |z defrr | (3.13)
• Bounce monitoring parameter: For the bounce motion supervision, one still chooses as previously, i.e: 

ρ 3 = 2 -ρ 1 -ρ 2 2 (3.14)
F ER Damper Force (N ) c p Viscous damping coeffcient (N s/m) k p Stiffness coeffcient (N/m) v % PWM of Manipulation (%) a 1
Hysteresis coeffcient due to velocity (N s/m) a 2

Hysteresis coeff cient due to displacement (N/m) f c

Damping coeffcient (N/%) It is worth noting that the ER damper force dynamic is highly non-linear (i.e. saturation, hysteresis, etc.). These effects could be accurately modelled by equations that mimic the damper force (F ER ) as a function of the damper defection (z def ), defection speed ( żdef ), and manipulation signal (v), as such the Guo Model [START_REF] Guo | Dynamic modeling of magnetorheological damper behaviors[END_REF]:

F ER = c p ( żdef ) + k p (z def ) + vf c tanh(a 1 ( żdef ) + a 2 (z def )) (3.15)
where the description of the parameters is given in the Table 3.1.
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Because the nonlinear damper model is not included in the controller design, an inverse damper model would be needed to regenerate the PWM input signals. In the design step, the damper force is modeled by a linear model as:

F ER = c 0 żdef + u H∞ (3.16)
Then, a very simple way could be to use the model (3.15) for the inverse model, i.e the control input PWM signal will be recovered by the following equation:

v = c 0 żdef + u H∞ -c p ( żdef ) -k p (z def ) f c tanh(a 1 ( żdef ) + a 2 (z def )) (3.17)
But doing so, it requires a very good model of the nonlinear ER damper which is not an easy 3.17) is actually not numerically good because some problems could arise when (a 1 ( żdef ) + a 2 (z def )) approaches zero and when the measurements of z def and żdef are noisy. A solution that could be considered is to design a local controller of the damper force in order to avoid the use of such an inverse model (as proposed in [START_REF] Aubouet | Modélisation et commande de suspensions semi-actives SOBEN[END_REF]).

In this chapter, another soulution based a Force-PWM map is used. Indeed, several identifications have been performed to derive the "Force-Speed-PWM" map as in Fig. 3.19. This map allows to give the dependence of the damper force, at each time, as a function of the relative deflection speed and the PWM input signal. From this map, a look up table is established and the damper force computed from the LPV controller is converted into the corresponding PWM input signal. This method is easy to implement and avoid the numerical problems.

Experimental results

In order to assess the LPV controller, a five consecutive bumps road profile is send to the four corners of the car (delayed phases between the front and rear corners) which induce the pitch motion as seen in Fig. 3.20: In the sequel, the comparisons between the closed loop suspension system (with LPV controller) and the nominal suspension system (where the dampers are manipulated by a PWM input signal of 25%) are performed. chirp signal road profile from 0-3Hz, as seen in Fig. 3.25 (also delayed phases between the front and rear corners): The motion detection and the pitch motion are given respectively in Fig. 3.26 and Fig. 3.27. They show that the pitch motion is more excited in this scenario and the LPV controller allows to reduce the pitch dynamics of the vehicle. 

Conclusion

The chapter presented a new MIMO LPV motion-scheduled suspension control to enhance the full car vehicle vertical dynamics. A single suspension LPV controller is designed to mitigate the vehicle vibrations and guarantee the ride quality. It is worth noting that this strategy permits to have a smooth adaptation when the vehicle has to face road changing without switching between several controllers that would be dedicated to a specific mode. It must be stressed that using the LPV framework allows also to simplify the implementation procedure.

The LPV control approach is then implemented on the SOBEN Car for the first time and provides some results. However, intensive investigations will be performed to improve the implementation results. In fact, we are working on a research testbed which still has several problems with some broken damper force sensors. It prevents to give a good model for the ER damper. Moreover, the SOBEN car is equipped with four ER semi-active dampers which were manufactured by SOBEN. However, those dampers are not on the shelf products and have been designed for this testebed only (without prior trials). Therefore, in order to improve the implementation results, the damper characteristic study need a deeper investigation. 

Introduction

It is well known that the main challenge of the semi-active suspension control problem is to face the dissipative constraints of the semi-active dampers [START_REF] Savaresi | Semi-active suspension control design for vehicles[END_REF]]. This chapter is devoted to present some methodologies using the LP V /H ∞ approach to deal with such a 74 Chapter 4. LP V /H ∞ state feedback input and state constrained control approaches for semi-active suspension system control problem. The main idea is to recast the dissipativity constraint as the input saturation condition by using a quasi LPV model. Then, the generalized sector condition approach is used to handle the nonlinearity caused by the input saturation and to ensure the stability. An LPV state feedback control is designed within the H ∞ framework which aims at minimizing the effects of the road disturbances on the controlled output (comfort, road holding...).

Some results in this chapter have been developed in colloboration with Pr. Joao M. Gomes da Silva Jr. from UFRGS -Universidade Federal do Rio Grande do Sul, and were presented in conference papers [Nguyen et al. 2015a] in "8th IFAC Symposium on Robust Control Design 2015" and [START_REF] Nguyen | Semi-active suspension control problem: some new results using an LPV/Hinf state feedback input constrained control[END_REF] in "54th IEEE Conference on Decision and Control 2015"

Related works

In many practical control applications, the actuator saturation is a challenge for control system designer because it induces a nonlinear behavior for the closed-loop system even if the plant is linear. Actually, the input saturation is a source of instability in control and loss in performances of the closed-loop system. In the recent years, researchers have focused on the problem of input saturation control. First, several models of the saturation nonlinearity have been proposed. The first one is based on the use of polytopic differential inclusions. It involves a local description of the saturated closed-loop system through a polytopic model. This allows stability and stabilization problems to be tackled using robust control approaches. We can cite here [Silva and Tarbouriech 2001], [START_REF] Hu | Analysis and design for discrete-time linear systems subject to actuator saturation[END_REF] or for more details in [Hu and Lin 2001] and [START_REF] Tarbouriech | Stability and stabilization of linear systems with saturating actuators[END_REF]]. The second representation involves re-writing the closed-loop system and replacing the saturation term by a dead-zone nonlinearity. Hence, sector conditions, locally or globally valid, can be used to relax stability and stabilization conditions. A full discussion about this can be found in ( [START_REF] Tarbouriech | Stability and stabilization of linear systems with saturating actuators[END_REF]). Based on these models of the saturation, several works have been done not only for the stability analysis but also for the disturbance attenuation problem. In ( [START_REF] Fang | A LPV suspension control with performance adaptation to roll behavior, embedded in a global vehicle dynamic control strategy[END_REF]), a polytopic model is used for the saturation, then the stability and disturbance rejection ability is measured by the size of two ellipsoids and the difference between them. ( [START_REF] Castelan | L2-Stabilization of continuous-time linear systems with saturating actuators[END_REF]) uses a sector nonlinearity model and Finsler's lemma to give a solution to the L 2 stabilization problem. The interest of using such a Finsler approach is to decouple the Lyapunov matrix from the controller gain variables. The controller derived from the synthesis thus does not depend on the Lyapunov matrix. Such an interesting feature will be used later in this chapter. In fact, in the multiple objectives case, we can use the multiple candidate Lyapunov functions, which potentially allows to reduce the conservatism. However, most of these works consider the LTI systems. For the class of LPV systems, in ( [START_REF] Cao | Set invariance analysis and gainscheduling control for LPV systems subject to actuator saturation[END_REF]) the stability analysis and the gain scheduling control design of LPV systems with actuator saturation are given. ( [START_REF] Cao | An anti-windup design for polytopic systems by a parameter-dependent Lyapunov function approach[END_REF]) addresses an anti-windup design for polytopic LPV systems under actuator saturations using a parameter-dependent Lyapunov function approach. Another anti-windup synthesis for LPV systems under the Linear Fractional Representation form is presented in ( [START_REF] Prempain | Coprime factor based anti-windup synthesis for parameter-dependent systems[END_REF]).

Regarding to the suspension system with actuator saturation, [Sun, Zhao, and Gao 2013] and [START_REF] Sun | Vibration isolation for active suspensions with performance constraints and actuator saturation[END_REF] proposed some kinds of saturated adaptive robust compensation control for active suspension systems. The controllers were designed based respectively on the anti-windup technique and the saturation compensation with the backstepping approach to tackle saturation effect. As to semi-active control problems, several works have been developped with many different approaches during the last decades. In ( [START_REF] Savaresi | Semi-active suspension control design for vehicles[END_REF]), the authors presented several control strategies for semi-active suspensions (based on the Skyhook, Groundhook, ADD). Moreover, to cope with the dissipativity constraints of semi-active dampers, some control approaches using the LPV techniques have been presented.

In ([Poussot-Vassal et al. 2008]), a kind of LPV gain scheduling anti-windup strategy was proposed by using a scheduling parameter which represents in some sense the excess of active control. More specifically, in some recent works, the dissipativity constraint of the semi-active damper has been recast as an actuator saturation problem. In ( [START_REF] Do | An LPV Control Approach for Semi-active Suspension Control with Actuator Constraints[END_REF]), the nonlinearities of the semi-active suspension (including the saturation of the control input) are taken into account and written in an LPV form. In ( [START_REF] Do | Control design for LPV systems with input saturation and state constraints: An application to a semi-active suspension[END_REF]), another output feedback LPV control with input saturation and state contraints was designed. Nevertheless, the results are valid only for the quarter car model equipped with one semi-active damper which is not enough to express the full dynamic of the vehicle equipped with four semi-active dampers. This problem will be considered in this chapter.

Chapter Contributions

The main contribution of this chapter is to present two strategies of LPV state feedback control design for the semi active suspension control problem. As in [START_REF] Do | Control design for LPV systems with input saturation and state constraints: An application to a semi-active suspension[END_REF]), the semiactive suspension system is rewritten in the form of a quasi LPV system subject to actuator saturation (corresponding to dissipative constraints of semi-active damper), state constraints (corresponding to physical constraints) and disturbances (road disturbances). Then, a multiobjective problem is considered involving stability and performance requirements. For the stability analysis, a generalized sector condition for LPV systems is used to treat the saturation nonlinearity caused by the actuator saturation and to guarantee the stability. The considered performance objective regards the reduction of the L 2 gain from the disturbances to the controlled outputs. This chapter gives two strategies to handle such a problem:

• A single quadratic Lyapunov function is used for both stability and performance requirements. This method will be mentioned later as "An LPV standard approach" in this chapter. The general idea is to find a common Lyapunov function that satisfies both the stability and the disturbance attenuation. Then, the controller is computed from the Lyapunov matrix. This case is developed in section 4.3.

• Two different Lyapunov functions are used in this strategy, one for the stability analysis and the other one for the disturbance attenuation requirements. Thanks to the Finsler's lemma, the controller is computed such that both stability and performance requirements hold, but the controller gain does not explicitly depend on the Lyapunov matrices, which allows to reduce the conservatism and to improve the closed loop performance in Chapter 4. LP V /H ∞ state feedback input and state constrained control approaches for semi-active suspension system comparison with the first strategy. This method will be called later "An LPV Finsler approach" and is presented in section 4.4.

Both LPV state feedback input constrained control strategies are derived in the LP V /H ∞ framework and based on LMI solutions for polytopic systems. The resolution of these LMIs allows to compute LPV state feedback input constrained controls that ensure the semi-activeness of the dampers, while minimizing the effects of road induced disturbances on the controlled outputs. Such a solution is an intersting alternative to dynamic output feedback control since it reduces the complexity of the implementation. It assumes that the state variables are known, or estimated as proposed in [START_REF] Dugard | Full vertical car observer design methodology for suspension control applications[END_REF]), ( [START_REF] Aubouet | Hinf/LPV observer for an industrial semi-active suspension[END_REF]).

The rest of this chapter is organized as follows: firstly, the general input constrained control problem for a quasi LPV system is presented in section 4.2. Then, the LPV state feedback input constrained control is designed using "LPV standard" approach and the approach is validated with the suspension control problem for a full vertical vehicle in section 4.3, and section 4.4 shows how to derive the controller using the "LPV Finsler" strategy and the comparison between the two approaches. Finally, the chapter is concluded in section 4.5.

General input constrained control problem

System description

Consider a generalized quasi-LPV system S ρ as follows:

ẋ = A(ρ)x + B 1 (ρ)w + B 2 u z = C 1 (ρ)x + D 11 (ρ)w + D 12 u (4.1)
where x ∈ R n is the state vector, u ∈ R m is the control vector, z ∈ R r is the controlled output vector and w ∈ R q is the input disturbance signal vector. ρ(t) = (ρ 1 , ..., ρ p ) is the time-varying parameter vector. It is assumed that ρ(t) is known or measured during the operation of the system, and that it is bounded as follows:

ρ(t) ∈ Ω ρ = ρ i (t) | ρ i ≤ ρ i (t) ≤ ρ i , i = 1, ..p
Note that ρ will be used instead of ρ(t) for simplicity. The matrices

A(ρ), B 1 (ρ), C 1 (ρ), D 11 (ρ)
are assumed to depend affinely on the parameter ρ = (ρ 1 , ..., ρ p ), that is:

M(ρ) = M 0 + ρ 1 M 1 + ... + ρ p M p
where M stands for matrices A, B 1 , C 1 , D 11 . Then, provided that ρ belongs to a polytopic set, the system S ρ can be written as a convex combination of the vertices S j ρ of a polytope of matrices as follows: S ρ = 2 p j=1 α j (ρ)S j ρ , where

2 p j=1 α j (ρ) = 1 and S j ρ = [A j , B 1j , B 2 , C 1j , D 11j , D 12 ], j = 1, .., 2 p .
4.2. General input constrained control problem 77 Remark 6. Matrices B 2 , D 12 are constant (parameter independent) in order to be able apply the polytopic approach.

Let us now consider the following assumptions:

• The applied control signal u takes values in the compact set:

U = {u ∈ R m / -u 0i u i u 0i , i = 1, ..., m} (4.2) 
• The input disturbances w are bounded in amplitude i.e w belongs to a set W:

W = w ∈ R q /w T w < δ (4.3)
• The state vector is known (measured or estimated). Moreover, there exists some constraints on the state variables i.e the trajectories of system belong to a region X defined as follows:

X = {x ∈ R n /|H i x| ≤ h 0i , i = 1, ..., k} (4.4) 
In this work, a state feedback control law is considered (as represented in Fig. 4.1) and the unsaturated control signal v(t) is given by:

v(t) = K(ρ(t))x(t)
where K(ρ) ∈ R m×n is a parameter dependent state feedback matrix gain and given by:

K(ρ) = 2 k j=1 α j (ρ)K j
where K j is the state feedback gain which is computed at each vertex S j ρ of the polytope.

Then, by virtue of the input constraints (4.2), the applied control u to the system (4.1) is a saturated one, i.e:

u(t) = sat(v(t)) = sat(K(ρ(t))x(t)) (4.5)
where sat(.) is the saturated function, given by:

sat(v i (t)) =      u 0i if v i (t) > u 0i v i (t) if -u 0i ≤ v i (t) ≤ u 0i -u 0i if v i (t) < -u 0i (4.6)
The closed-loop system obtained from the application of (4.5) in (4.1) reads as follows:

ẋ = A(ρ)x + B 1 (ρ)w + B 2 sat(K(ρ)x) z = C 1 (ρ)x + D 11 (ρ)w + D 12 sat(K(ρ)x) (4.7
) approaches for semi-active suspension system 

φ(K(ρ)x) = sat(K(ρ)x) -K(ρ)x (4.8)
From (4.8), the closed-loop system can therefore be re-written as follows:

ẋ = (A(ρ) + B 2 K(ρ))x + B 2 φ(K(ρ)x) + B 1 (ρ)w z = (C 1 (ρ) + D 12 K(ρ))x + D 12 φ(K(ρ)x) + D 11 (ρ)w (4.9)

Problem definition

It should be noticed that under the input saturation, the state may become unbounded for large disturbances ( [START_REF] Tarbouriech | Stability and stabilization of linear systems with saturating actuators[END_REF]). Hence, in this work, we propose the design of a state feedback K(ρ) for the LPV system (4.7) that satisfies the following conditions:

• When the control input signal is saturated, the nonlinear behavior of the closed-loop system must be considered and the internal and input to state stability has to be guaranteed , that is:

-for w ∈ W, the trajectories of the closed-loop system must be bounded.

-if w(t) = 0 for t > t 1 > 0 then the trajectories of the system converge asymptotically to the origin.

• The control performance objective consists in minimizing the upper bound for the L 2 gain from the disturbance w to the controlled output z. More specifically, the following optimization problem is considered:

min γ, such that: sup

w∈W z 2 w 2 < γ, ∀ρ ∈ Ω ρ (4.10)
In order to reduce the conservatism, it is worth noting that in this work, the L 2 performance problem is solved only when the input saturation is not activated. Actually, this is relevant in reality because in the presence of actuator saturation, the main concern is to guarantee that the trajectories are bounded and that the state constraints are not violated.
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4.3 "An LPV standard approach" using a common quadratic Lyapunov function for the stability analysis and disturbance attenuation

This section present a method to design the LPV controller that uses a common Lyapunov function for both the stability and the disturbance attenuation requirements.

Controller Design

Stability analysis

In this part, a regional (local) stability approach is used in order to prove the closed-loop stability of the system (4.7) considering the constraints (4.2 to 4.3).Let us first define the following polyhedral set:

S ρ (K, G, u 0 ) = {x ∈ R n | -u 0 (K(ρ) -G(ρ))x u 0 } (4.11) Lemma 4.3.1. If x ∈ S ρ (K, G, u 0 )
, then the deadzone function φ satisfies the following inequality:

φ(K(ρ)x) T T (ρ)[φ(K(ρ)x) + G(ρ)x] 0 (4.12)
for any diagonal positive definite matrix T (ρ) ∈ R m×m .

Proof: It can be inferred easily from [START_REF] Silva | Antiwindup design with guaranteed regions of stability: an LMI-based approach[END_REF].

Because of the boundness of the disturbance w ∈ W, we consider the W-invariance concept ( [START_REF] Blanchini | The gain scheduling and the robust state feedback stabilization problems[END_REF]):

Definition 4.3.1. The set E ⊂ R n is said to be W-invariant if ∀x(t 0 ) ∈ E, ∀w(t) ∈ W implies that the trajectory x(t) ∈ E for all t t 0 .
As known, the quadratic stability can be interpreted in terms of invariant ellipsoids ( [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]). Therefore, to study the stability of the system (4.9), let us consider a quadratic Lyapunov candidate function V (x) = x T P x, where P = P T > 0; the level set associated with this function is given by the following ellipsoid:

E(P ) = x ∈ R n : x T P x < 1 (4.13)
Then, the main idea to prove the stability of the system (4.9) is to ensure that E(P ) is Winvariant for the closed-loop system (4.9). This can be achieved if V (x) < 0 in the boundary of E(P ). Thus, it suffices to ensure that V (x) < 0 ∀x ∈ E(P ) i.e for x T P x ≥ 1 and for any Chapter 4. LP V /H ∞ state feedback input and state constrained control approaches for semi-active suspension system w ∈ W i.e w T w ≤ δ. By using the S-procedure ( [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]), this condition can be satisfied if there exist scalars λ 1 > 0 and λ 2 > 0, such that:

V + λ 1 (x T P x -1) + λ 2 (δ -w T w) < 0 (4.14)
Then, the following theorem provides a stabilization condition for the system (4.7):

Theorem 4.3.1. If there exist a matrix Q-positive definite, a matrix S(ρ)-diagnonal positive definite, matrices K(ρ), Ḡ(ρ) of appropriate dimensions and positive scalars λ 1 , λ 2 such that the following conditions are verified ∀ρ ∈ Ω p :

  M(ρ) (B 2 S(ρ) -Ḡ(ρ) T ) B 1 (ρ) (S(ρ)B T 2 -Ḡ(ρ)) -2S(ρ) 0 B 1 (ρ) T 0 -λ 2 I   < 0 (4.15)
where

M(ρ) = (QA(ρ) T + K(ρ) T B T 2 ) + (QA(ρ) T + K(ρ) T B T 2 ) T + λ 1 Q. Q ( Ki (ρ) -Ḡi (ρ)) T Ki (ρ) -Ḡi (ρ) u 2 0i 0, i = 1, ..., m (4.16) 
where Ki (ρ), Ḡi (ρ) are i th line of K(ρ), Ḡ(ρ) respectively.

Q QH T i H i Q h 2 0i
≥ 0, i = 1, ..., k (4.17)

λ 2 δ -λ 1 < 0 (4.18)
Then, with K(ρ) = K(ρ)Q -1 : a) For any w ∈ W and x(0) ∈ E(P) the trajectories of the closed-loop system (4.7) do not leave E(P), i.e. E(P) is an W-invariant domain for the system (4.7). b) If x(0) ∈ E(P) and w(t) = 0 for t > t 1 , then corresponding trajectories of the closed-loop system (4.7) converge asymptotically to the origin , i.e. E(P) (with P = Q -1 ) is included in the region of attraction of the closed-loop system (4.7).

Proof: As mentioned previously, E(P) is W-invariant if:

V + λ 1 (x T P x -1) + λ 2 (δ -w T w) < 0 (4.19)
Now, from (4.12) and (4.19), provided that x ∈ S ρ (K, G, u 0 ) one obtains the following condition:

V + λ 1 (x T P x -1) + λ 2 (δ -w T w) ≤ V + λ 1 (x T P x -1) + λ 2 (δ -w T w) - 2φ(K(ρ)x) T T (ρ)[φ(K(ρ)x) + G(ρ)x] < 0 (4.20)
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Reminding that:

ẋ = (A(ρ) + B 2 K(ρ))x + B 2 φ(K(ρ)x) + B 1 (ρ)w
then by developping V (x) = ẋT P x + x T P ẋ, (4.20) is rewritten as:

x T M(ρ)x -λ 2 w T w -2φ T T (ρ)φ + w T B 1 (ρ) T P x + φ T (B T 2 P -T (ρ)G(ρ))x + x T P B 1 (ρ)w + x T (P B 2 -G(ρ) T T (ρ)) + λ 2 δ -λ 1 < 0 (4.21)
where

M(ρ) = (A(ρ) + B 2 K(ρ)) T P + P (A(ρ) + B 2 K(ρ)) + λ 1 P .
Then the condition (4.21) is guaranteed if both following inequalities hold:

ξ T   M(ρ) (P B 2 -G(ρ) T T (ρ)) P B 1 (ρ) (P B 2 -G(ρ) T T (ρ)) T -2T (ρ) 0 B 1 (ρ) T P 0 -λ 2 I   ξ < 0 (4.22) λ 2 δ -λ 1 < 0 (4.23)
where

ξ T = [x T φ T w T ].
Pre and post-multiplying (4.22) by diag(P -1 , T -1 (ρ), I), and denoting K(ρ)P

-1 = K(ρ), G(ρ)P -1 = Ḡ(ρ), P -1 = Q, T (ρ) -1 = S(ρ), one obtains:   M(ρ) (B 2 S(ρ) -Ḡ(ρ) T ) B 1 (ρ) (S(ρ)B T 2 -Ḡ(ρ)) -2S(ρ) 0 B 1 (ρ) T 0 -λ 2 I   < 0
which is actually the LMI (4.15). Finally, to ensure that x(t) belongs effectively to S ρ (K, G, u 0 ) and that the state constraints are not violated, we must ensure that E(P ) ⊂ S ρ (K, G, u 0 ) ∩ X (see Fig.4.2). This means that we must show that E(P ) ⊂ S ρ (K, G, u 0 ) and E(P ) ⊂ X .
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To ensure that E(P ) ⊂ S ρ (K, G, u 0 ), we should satisfy:

P (K i (ρ) -G i (ρ)) T K i (ρ) -G i (ρ) u 2 0i 0, i = 1, ..., m (4.24) 
Pre and post-multiplying (4.24) by diag(P -1 , I), one obtains :

Q ( Ki (ρ) -Ḡi (ρ)) T Ki (ρ) -Ḡi (ρ) u 2 0i 0, i = 1, ..., m
which is actually the inequality (4.16).

To ensure that E(P ) ⊂ X , the following should be verified:

P H T i H i h 2 0i 0, i = 1, ..., k (4.25) 
Pre and post-multiplying (4.25) by diag(P -1 , I), one obtains:

Q ( Ki (ρ) -Ḡi (ρ)) T Ki (ρ) -Ḡi (ρ) u 2 0i 0, i = 1, ..., m
which is actually the inequality (4.17).

Thus, if inequalities (4.15 to 4.18) are satisfied, it follows that the ellipsoid E(P) is an W-invariant set. Now, let us consider the case w(t) = 0, from (4.19), it follows: V (x(t)) ≤ -λ 1 x T P x. Thus, V (x(t)) ≤ -λ 1 V (x(t)) < 0 i.e V (x(t)) ≤ e -λ 1 t V (x(0)), which means that the trajectories of the system converge asymptotically to the origin.

Disturbance attenuation

Besides the stability conditions, the state feedback controller is synthesized to improve the performance of the closed loop system, i.e to minimize the effect of the disturbance w on the controlled output z. Regarding to the problem defined in section 4.2.2, it is well known that the disturbance attenuation condition in (4.10) is verified if the following condition holds:

V (x) + 1 γ z T z -γw T w < 0 (4.26)
As mentioned before, in this work, the control objective regarding the disturbance attenuation is considered for the unconstrained closed-loop system, i.e. when the saturation is not actived or sat(K(ρ)x) = K(ρ)x.

Without the input saturation, the closed loop system (4.7) becomes:

ẋ = (A(ρ) + B 2 K(ρ))x + B 1 (ρ)w (4.27) z = (C 1 (ρ) + D 12 K(ρ))x + D 11 (ρ)w 4.
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Then, from the standard derivation of the Bounded Real Lemma, condition (4.26) holds if the following inequality is satisfied:

  N (ρ) P B 1 (ρ) (C 1 (ρ) + D 12 K(ρ)) T B 1 (ρ) T P -γI D T 11 C 1 (ρ) + D 12 K(ρ) D 11 -γI   < 0 (4.28)
where

N (ρ) = (A(ρ) + B 2 K(ρ)) T P + P (A(ρ) + B 2 K(ρ)).
Pre and post-multiplying (4.28) by diag(P -1 , I, I), and with P -1 = Q one obtains:

  N (ρ) B 1 (ρ) (QC 1 (ρ) T + K(ρ)) T D T 12 B 1 (ρ) T -γI D T 11 C 1 (ρ)Q + D 12 K(ρ) D 11 -γI   < 0 (4.29)
where

N (ρ) = (QA(ρ) T + K(ρ) T B T 2 ) + (QA(ρ) T + K(ρ) T B T 2 ) T
By this way, if the computed controller K(ρ) is subject to (4.29), the effect of the perturbation is well attenuated by the L 2 gain level γ.

Controller computation

The state feedback gain K(ρ) that satisfies the stability condition for the saturated system (section 4.3.1.1) and the disturbance attenuation for the unsaturated system (section 4.3.1.2) can be derived by solving the following optimization problem: min Q,S, K, Ḡ,λ 2 γ subject to (4.15, 4.16, 4.17, 4.18, 4.29)

, Q, S > 0, λ 2 > 0, ρ ∈ Ω ρ . (4.30)
Then the state feedback gain matrix K(ρ) can be computed by:

K(ρ) = K(ρ)P = K(ρ)Q -1 (4.31)
It is worth noting that the above optimization problem has an infinite number of LMIs to solve because the varying parameter ρ varies in the set Ω. To relax this problem, the LMI framework for the polytopic system is used, i.e the optimization problem is solved at each vertex S j ρ of the polytope defined by the bounds of the varying parameters to obtain the state feedback matrix gain K j at each vertex. Then, considering the measured value of ρ, the parameter dependent state feedback matrix K(ρ) is computed as follows: 

K(ρ) = 2 k j=1 α j (ρ)K j , 2 k j=1 α j (ρ) = 1. Chapter 4. LP V /
       m s zs = -F sf l -F sf r -F srl -F srr + F dz I x θ = (-F sf r + F sf l )t f + (-F srr + F srl )t r + mha y + M dx I y φ = (F srr + F srl )l r -(F sf r + F sf l )l f -mha x + M dy m us zus ij = F s ij -F tz ij (4.32)
The vertical suspension forces F s ij at the 4 corners of the vehicle are modeled by a spring and a damper. The equation (4.33) allows to model the suspension force used in the control design step:

F s ij = k ij (z s ij -z us ij ) + F d ij (4.33)
where k ij is the nominal spring stiffness coefficient, z s ij is the chassis position at each corner, and F d ij is the semi-active controlled damper force:

F d ij = c ij (.) żdef ij = c ij (.)( żs ij -żus ij ) (4.34)
where c ij (.) the damping coefficient assumed to be varying for control purpose. To ensure the dissipativity constraint of the semi-active damper, the following constraint must be considered:

0 c min ij c ij (.) c max ij (4.35)
Now, let us rewrite the above semi-active damper force as follows: 4.36) where:

F d ij = (c nom ij + u H∞ ij ) żdef ij = c nom ij żdef ij + u H∞ ij ρ ij ( 
• c nom ij = (c max ij + c min ij )/2 is the nominal damping coefficient, • u H∞ ij
is the control input representing the variation of the damping coefficient, 4.3. "An LPV standard approach" using a common quadratic Lyapunov function for the stability analysis and disturbance attenuation 85

• ρ ij = żdef ij are considered as the scheduling parameters (in this case, one has 4 semiactive dampers, hence 4 scheduling parameters are used). It has to be noted that the scheduling parameters belong to a bounded set. Therefore, we suppose that the absolute deflection velocity

| żdef ij | is smaller than 1 m/s, hence ρ ij ∈ [-1, 1].
Then the equation ( 4.33) becomes:

F s ij = k ij (z s ij -z us ij ) + c nom ij ( żs ij -żus ij ) + u H∞ ij ρ ij (4.37)
The state-space representation of the dynamical equation ( 4.32) is given by:

ẋg (t) = A g x g (t) + B 1g w(t) + B 2g (ρ)u (4.38)
where x g = [z s θ φ z usf l z usf r z usrl z usrr żs θ φ żusfl żusfr żusrl żusrr ] T is the state vector of the full car model, u = [u H∞ f l , u H∞ f r , u H∞ rl , u H∞ rr ] T is the control input vector, w = [F dz M dx M dy z rf l z rf r z rrl z rrr ] T corresponds to the disturbance vector. A g , B 1g , B 2g (ρ) are the matrices of the state space representation.

Remark 1: As in chapter 3, the manipulations to obtain the state state representation of the 7 DOF vertical model of the vehicle are omitted here. The interested reader can refer to [Sammier 2001a] for more details.

The dissipativity conditions of the semi-active damper given in (4.35) will be transformed into input constraints. Note that from (4.35,4.36), it follows that:

c min ij żdef ij ≤ F d ij ≤ c max ij żdef ij if żdef ij > 0 (4.39) c max ij żdef ij ≤ F d ij ≤ c min ij żdef ij if żdef ij ≤ 0
The dissipativity constraint is now recast into:

c min ij żdef ij ≤ c nom ij żdef ij + u H∞ ij żdef ij ≤ c max ij żdef ij if żdef ij > 0 c max ij żdef ij ≤ c nom ij żdef ij + u H∞ ij żdef ij ≤ c min ij żdef ij if żdef ij ≤ 0 Since c nom ij = (c max ij + c min ij ) 2
, we must have:

|u H∞ ij | ≤ (c max ij -c min ij ) 2 (4.40)
Hence the dissipativity conditions (4.35) have been recast into the input constraints given in (4.40).

It is worth noting that (4.38) is actually a quasi-LPV system since the 4 scheduling parameters are defined by ρ ij = żdef ij (i = (f, l); j = (l, r)), and then depend on the system state.As mentioned previously, In this application, the chosen controlled output is the roll motion of the vehicle which is to be reduced. To do this, we aim at limiting the effects of the disturbance by minimizing the L 2 gain level γ of the closed loop transfer function from the road disturbance w to the controlled output z (the roll motion θ) while taking into account the actuator saturation. The H ∞ framework is used to solve this problem and we add the weighting function W θ on θ, that can be chosen as ( [Do et al. 2011c]) using genetic algorithms:

|ρ ij | = | żdef ij | = | żs ij -żus ij | ≤ 1.
W θ = k θ s 2 + 2ξ 11 Ω 11 s + Ω 11 2 s 2 + 2ξ 12 Ω 12 s + Ω 12 2 . (4.42)
It should be noted that that the 7 DOF vertical model (4.38):

ẋg (t) = A g x g (t) + B 1g w(t) + B 2g (ρ)u 4.
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W f ilter = w f s + w f
It is noted that four control inputs are involved, then four low pass filters will be used. Then according to the interconnection between the 7 DOF vertical model, the weighting function W θ , and the low pass filters W f ilter , the following parameter dependent suspension generalized plant (Σ gv (ρ))is obtained:

Σ gv (ρ) : ẋ = A(ρ)x + B 1 w + B 2 u z = C 1 x + D 11 w + D 12 u (4.43) where x = [x T g x T wf x T f ] T , x g , x wf ,
x f are the vertical model, weighting function and filter states respectively. z = θ is the controlled output; w, u are as defined in (4.38) 

and ρ = [ρ 1 ρ 2 ρ 3 ρ 4 ] is the vector of varying parameter, ρ i ∈ [-1 1], i = 1, 2, 3, 4.
Remark 7. -The generalized plant (4.43) composes of the 7 DOF vertical model, the weighting function, and the low pass filters. Its order is 20.

LPV suspension controller computation procedures:

Step 1: In this step, we verify whether the problem in section 4.3.2.2 can be applied by the theory presented in section 4.3.1. Indeed, the generalized plant (4.43) has the form of the generalized quasi-LPV system S ρ defined in (4.1), so we can follow the steps presented in the section 4.3 to design "An LPV Standard" Controller.

According to the section 4.2.1, the previous assumptions about the quasi LPV system are:

• The varying parameter ρ ij = żdef ij ∈ [-1 1]
• The damping coefficients vary as follows: for the front dampers, c min f = 660 N s/m, c max f = 3740 N s/m and for the rear dampers, c minr = 1000 N s/m, c maxr = 8520 N s/m. Thus, the input constraints (4.2) lead to:

[|u H∞ f l | |u H∞ f r | |u H∞ rl | |u H∞ rr |] ≤ [1540 1540 3760 3760]
• The road profile is chosen in the set W subject to (4.3) with δ = 0.01 m 2 .

• The state constraint in (4.4) is the constraint on suspension deflection speed:

| żdef ij | = | żs ij -żus ij | = |H g .x g | = |[H g 0 wf 0 f ]x| = |Hx| ≤ 1
, where H g is the matrix that allows to calculate żdef ij from x g and 0 wf , 0 f are zero matrices. Step 2: Solve optimization problem (4.30) to find the controller.

Since (4.43) depends on 4 varying parameters (ρ 1 , ρ 2 , ρ 3 , ρ 4 ), hence we have a polytopic system which is computed by a convex combination of the systems defined at N=16 vertices ω j , (j = 1...16) of the polytope. Then from the section 4.3.1.3 and thanks to polytopic approach, solving problem (4.30) gives us Q, Kj , j = 1...16. Then the state feedback gains K j is given by K j = Kj Q -1 , (j = 1...16) corresponding to 16 vertices of the polytope. And, the global suspension controller K(ρ) is derived by:

K(ρ) = Σ 16 j=1 α j (ρ)K j (4.44)
where

α j (ρ) := Π 4 k=1 |ρ k -Compl(ω j ) k | Π 4 k=1 (ρ k -ρ k ) , ρ k ∈ [ρ k ρ k ] and Σ 16 j=1 α j (ρ) = 1, j = 1, ..., 16; Compl(ω j ) k := {ρ k if (ω j ) k = ρ k or ρ k if (ω j ) k = ρ k }.
Then, the control input vector for the system (4.43) given by:

u H∞ = Σ N =16 j=1 α j (ρ)K j x (4.45)
ensures the stability for the the closed loop system (4.43) and limits the effects of the disturbances on the roll motion for all parameter variations.

Performance analysis

The following frequency domain plots allow to analyse the roll performances of the suspension controller. This is a part of the total transfer function between the controlled outputs and the disturbances z/w. Fig. 4.4 plots the frequency response of the roll dynamics of the vehicle in different cases. Indeed, a comparison between three passive vehicle cases (nominal, min and max) and the controlled vehicle case (closed loop) is given. For the LPV controlled closed loop system, the frequency domain can be interpreted in such a way that the varying parameters are fixed and the achieved linear time invariant systems are analyzed in the frequency domain. For the three cases provided, one has: passive nominal vehicle (where the control input u H∞ ij = 0), Passive min vehicle (where the suspension dampers are set to be 'soft', i.e c ij = c min ij ) and Passive max vehicle (where the suspension dampers are set to be 'hard', i.e c ij = c max ij ). Therefore, it can be seen from the frequency responses that the roll motion given by the suspension controller gives a better performance than the others, that means that the roll angle θ is reduced to enhance the passengers safety. First scenario: This scenario is used to demonstrate the effectiveness of the proposed LP V /H ∞ State feedback control:

• The vehicle runs at 90km/h in a straight line on a dry road ( µ = 1, where µ stands for the adherence to the road).

• A 5cm bump occurs on the left wheels (from t = 0.5s to t = 1s).

• Moreover, a doubleline change that causes also the roll motion is performed from t = 2s to t = 6s.

The road profile and steering angle are shown in the Fig. 4.5. (4.40). Moreover, it can be seen that the actuator saturation occurs when the damper forces are saturated by the bounds c max żdef , c min żdef , and thanks to the proposed LPV state feedback, the stability is kept.

Second scenario: In order to enrich the analysis and to prove the effeciency of the proposed LP V /H ∞ State Feedback, another simulation using a real road profile (ISO road D) is performed to show the interesting of the proposed LPV standard approach. 

Conclusion

This section has presented the application of an LP V /H ∞ Standard State Feedback approach subject to input saturation to the problem of semi-active suspension control for a full vehicle equipped with 4 semi-active dampers. A single Lyapunov function is used for both stability and performance analysis. Very promising results prove the efficiency of the proposed LPV Standard approach. In the following, another method using the application of Finsler's lemma 4.3. "An LPV standard approach" using a common quadratic Lyapunov function for the stability analysis and disturbance attenuation 93 Chapter 4. LP V /H ∞ state feedback input and state constrained control approaches for semi-active suspension system 4.4 "An LPV Finsler approach" using two Lyapunov functions

Introduction

As mentioned in the last section 4.3, the multi-objective control problem given in section 4.2.2 has been treated using a single Lyapunov function for both stability and performance analysis.

In this section, a potentially less conservative approach using two Lyapunov functions, one for stability conditions and another one for performance objective will be presented. Such an interesting approach is derived thanks to the Finsler's lemma which allows to define a Lyapunov matrix isolated from the control gain in the LMI constraints and, furthermore, the control gain does not explicitly depend on it (an application of the Finsler's lemma is presented in [START_REF] Castelan | L2-Stabilization of continuous-time linear systems with saturating actuators[END_REF]). This feature allows to consider different candidate Lyapunov functions associated with each control requirement and then to reduce the conservatism.

The Finsler's lemma is recalled below ( [START_REF] Oliveira | Stability tests for constrained linear systems[END_REF]):

Lemma 4.4.1 (Finsler's lemma). If x ∈ R n , Q is a symmetric matrix, B ∈ R m×n such that rank(B)
< n, then the following statements are equivalent:

• x T Qx < 0 ∀Bx = 0, x = 0 • ∃X ∈ R n×m : Q + XB + B T X T < 0 4.4.
2 A new LPV control in the presence of input saturation

Stability analysis

As presented in the section 4.2.1, the system (4.7) is subject to a nonlinear behavior caused by the input saturation term and the system state trajectory belongs to the region X as defined in (4.4) (state constraints). In this section, the generalized sector condition approach is still considered to analyze the stability of the saturated system. For ease of reading, let us recall the definition of the polyhedral set :

S ρ (K, G, u 0 ) = {x ∈ R n | -u 0 (K(ρ) -G(ρ))x u 0 } (4.46)
As introduced previously, two different Lyapunov functions will be used here. To derive the stability conditions for the system (4.7), one considers the first quadratic Lyaponov candidate function:

V 1 (x) = x T P x, where P = P T > 0.

The ellipsoid set associated with the Lyapunov function is given by:

E(P ) = x ∈ R n : x T P x < 1 (4.47)
Then, the idea is to ensure that E(P ) is W-invariant for the closed-loop system (4.9). This can be achieved if V (t) < 0 in the boundary of E(P ). Thus, it suffices to ensure that V (t) < 0 ∀x ∈ E(P ) i.e for x T P x ≥ 1 and for any w ∈ W i.e w T w ≤ δ. By using the S-procedure ( [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]), this condition can be satisfied if there exist scalars λ 1 > 0 and λ 2 > 0, such that:

V1 + λ 1 (x T P x -1) + λ 2 (δ -w T w) < 0 (4.48)
Then, the following theorem provides stabilization conditions for the system (4.7):

Theorem 4.4.1. If there exist a symmetric positive definite matrix W , a diagnonal positive definite matrix N (ρ), matrices M, Z(ρ), Y (ρ) of appropriate dimensions and positive scalars λ 1 , λ 2 , 1 such that the following conditions are verified ∀ρ ∈ Ω ρ :

     λ 1 W + A(ρ)M + B 2 Z(ρ) + M T A(ρ) T + Z(ρ) T B T 2 W + 1 A(ρ)M + 1 B 2 Z(ρ) -M T -1 M -1 M T -Y (ρ) + N (ρ)B T 2 1 N (ρ)B T 2 -2N (ρ) B 1 (ρ) T 1 B 1 (ρ) T 0 -λ 2 I      < 0 (4.49) W (Z i (ρ) -Y i (ρ)) T Z i (ρ) -Y i (ρ) u 2 0i ≥ 0, i = 1, ..., m (4.50) 
W M T H T i H i M h 2 0i ≥ 0, i = 1, ..., k (4.51) λ 2 δ -λ 1 < 0 (4.52)
where Z i (ρ), Y i (ρ) are the i th lines of Z(ρ), Y (ρ) respectively and H i the i th line of the state constraint matrix H. Then, the system (4.7) with K(ρ) = Z(ρ)M -1 is such that,

• For any w ∈ W and x(0) ∈ E(P ) with P = M -T W M -1 , the trajectories of the closed loop system (4.7) do not leave E(P ), i.e. E(P ) is an W-invariant domain for the system (4.7).

• If x(0) ∈ E(P ) and w(t) = 0 for t > t 1 , then the corresponding trajectory of the closed loop system (4.7) converges asymptotically to the origin , i.e. E(P ) is included in the region of attraction of the closed-loop system (4.7).

Proof of Theorem 4.4.1: As mentioned previously, E(P ) is W-invariant if:

V1 + λ 1 (x T P x -1) + λ 2 (δ -w T w) < 0 (4.53)
Now, from the lemma 4.3.1, provided that x ∈ S ρ (K, G, u 0 ), (4.53) is satisfied if:

V1 + λ 1 (x T P x -1) + λ 2 (δ -w T w) - 2φ(K(ρ)x) T T (ρ)[φ(K(ρ)x) + G(ρ)
x] < 0 (4.54) approaches for semi-active suspension system (4.54) is rewritten as follows:

ẋT P x + x T P ẋ + λ 1 x T P x -λ 2 w T w - 2φ(K(ρ)x) T T (ρ)φ(K(ρ)x) -2φ(K(ρ)x) T T (ρ)G(ρ)x + λ 2 δ -λ 1 < 0 (4.55)
Then the condition (4.55) is guaranteed if both following inequalities hold:

λ 2 δ -λ 1 < 0 (4.56) ξ T Pξ < 0 (4.57)
where

P =      λ 1 P P -G T T 0 P 0 0 0 -T G 0 -2T 0 0 0 0 -λ 2 I      and ξ = x T ẋT φ T w T T .
Note that the closed loop system (4.9

): ẋ = (A(ρ) + B 2 K(ρ))x + B 2 φ(K(ρ)x) + B 1 (ρ)w is rewritten in the form: B(ρ)ξ = 0 where B(ρ) = [A F (ρ) -I B 2 B 1 (ρ)] with A F (ρ) = A(ρ) + B 2 K(ρ).
Now, using the Finsler's lemma: ξ T Pξ < 0, ∀B(ρ)ξ = 0 if there exists a matrix X such that:

P + XB(ρ) + B(ρ) T X T < 0 (4.58)
In particular, by choosing

X =     F T 1 F T 0 0   
 with F ∈ R n×n and 1 being a positive scalar.

Then (4.58) becomes (4.59).

     λ 1 P + F T A F (ρ) + A F (ρ) T F P + 1 F T A F (ρ) -F -1 M -1 M T B T 2 F -T (ρ)G(ρ) 1 B T 2 F -2T (ρ) B 1 (ρ) T F 1 B 1 (ρ) T F 0 -λ 2 I      < 0 (4.59)
Pre and post-multiplying (4.59) by R T and R = diag(F -1 , F -1 , T -1 , I), and denoting:

F -1 = M, T (ρ) -1 = N (ρ), W = M T P M, Z(ρ) = K(ρ)M, Y (ρ) = G(ρ)M ,
and noting that A F (ρ) = A(ρ) + B 2 K(ρ), the conditon (4.59) becomes (4.49) described as follows:

     λ 1 W + A(ρ)M + B 2 Z(ρ) + M T A(ρ) T + Z(ρ) T B T 2 W + 1 A(ρ)M + 1 B 2 Z(ρ) -M T -1 M -1 M T -Y (ρ) + N (ρ)B T 2 1 N (ρ)B T 2 -2N (ρ) B 1 (ρ) T 1 B 1 (ρ) T 0 -λ 2 I      < 0 4.4
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Finally, to ensure that x(t) belongs effectively to S ρ (K, G, u 0 ) and that the state constraints are not violated, it must be proven that E(P ) ⊂ S ρ (K, G, u 0 ) ∩ X , i.e E(P ) ⊂ S ρ (K, G, u 0 ) and E(P ) ⊂ X .

To ensure that E(P ) ⊂ S ρ (K, G, u 0 ), we should satisfy:

P (K i (ρ) -G i (ρ)) T K i (ρ) -G i (ρ) u 2 0i ≥ 0, i = 1, ..., m (4.60) 
Pre and post-multiplying (4.60) by R T 1 and R 1 = diag(F -1 , I), we obtain (4.50):

W (Z i (ρ) -Y i (ρ)) T (Z i (ρ) -Y i (ρ)) u 2 0i ≥ 0, i = 1, ..., m (4.61) 
To ensure that E(P ) ⊂ X , the following should be verified:

P H T i H i h 2 0i ≥ 0, i = 1, ..., k (4.62) 
Pre and post-multiplying (4.62) by R T 1 and R 1 = diag(F -1 , I), one obtains (4.51):

W M T H T i H i M h 2 0i ≥ 0, i = 1, ..., k (4.63) 
Thus, if inequalities (4.49-4.52) are satisfied, it follows that the ellipsoid E(P ) is an Winvariant set.

Now, let us consider the case w(t) = 0; from (4.53), it follows:

V (x(t)) ≤ -λ 1 x T P x. Thus, V (x(t)) ≤ -λ 1 V (x(t)) < 0, i.e V (x(t)) ≤ e -λ 1 t V (x(0)
), which means that the trajectories of the system converge asymptotically to the origin.

Disturbance attenuation

Along with the stability requirement, the designed controller aims at satisfying also the disturbance attenuation objective. To this aim, another Lyapunov candidate function is chosen. Let us consider the following Lyapunov candidate function:

V 2 (x) = x T Qx where Q = Q T > 0.
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It is well known that from the Bounded Real Lemma, relation (4.10) is verified if the following condition holds:

V2 + z T z -γ 2 w T w < 0 (4.64)
As mentioned before, in this work, we consider a control objective regarding the L 2 gain disturbance attenuation for the unconstrained closed-loop system, i.e. when the saturation is not actived, i.e when sat(K(ρ)x) = K(ρ)x.

Now, without the input saturation, the closed loop system (4.7) becomes:

ẋ = (A(ρ) + B 2 K(ρ))x + B 1 (ρ)w (4.65) z = (C 1 (ρ) + D 12 K(ρ))x + D 11 (ρ)w (4.66)
Rewriting (4.65) as: B p (ρ)Ξ = 0 where:

B p (ρ) = A F (ρ) -I B 1 (ρ) with A F (ρ) = A(ρ) + B 2 K(ρ) and Ξ = x T ẋT w T T .
Denoting C F (ρ) = C 1 (ρ) + D 12 K(ρ), the condition (4.64) is rewritten as follows:

ẋT Qx + x T Q ẋ + (C F x + D 11 w) T (C F x + D 11 w) -γ 2 w T w < 0 (4.67)
Then the condition (4.67) is guaranteed if the following inequality holds:

Ξ T QΞ < 0 (4.68) where Q =   C T F C F Q C T F D 11 Q 0 0 D T 11 C F 0 D T 11 D 11 -γ 2 I  
Applying the Finsler's lemma again, one has: Ξ T QΞ < 0, ∀B p (ρ)Ξ = 0 if there exists a matrix X p such that:

Q + X p B p (ρ) + B p (ρ) T X p T < 0 (4.69)
In particular, if one chooses

X p =   F T 2 F T 0   with 2 a positive scalar, then (4.69) becomes (4.70).   C F (ρ) T C F (ρ) + F T A F (ρ) + A F (ρ) T F Q + 2 F T A F (ρ) -F -2 F -2 F T D 11 (ρ) T C F (ρ) + B 1 (ρ) T F 2 B 1 (ρ) T F D 11 (ρ) T D 11 (ρ) -γ 2 I   < 0 (4.70)
Pre and post-multiplying (4.70) by R p

T and R p = diag(F -1 , F -1 , I), denoting F -1 = M, U = M T QM, Z(ρ) = K(ρ)M , one obtains (4.71):   M T C F (ρ) T C F (ρ)M + M T A F (ρ) T + A F (ρ)M U + 2 A F (ρ)M -M T -2 M -2 M T D 11 (ρ) T C F (ρ)M + B 1 (ρ) T 2 B1(ρ) T D 11 (ρ) T D 11 (ρ) -γ 2 I   < 0 (4.71)
Now, using the Schur's lemma and noting that A F (ρ) = A(ρ) + B 2 K(ρ) and C F (ρ) = C 1 (ρ) + D 12 K(ρ) one obtains the condition (4.72):

     A(ρ)M + B 2 Z(ρ) + M T A(ρ) T + Z(ρ) T B T 2 U + 2 A(ρ)M + 2 B 2 Z(ρ) -M T -2 M -2 M T B 1 (ρ) T 2 B 1 (ρ) T -γ 2 I C 1 (ρ)M + D 12 Z(ρ) 0 D 11 (ρ) -I      < 0 (4.72)
Remark 8. Although the L 2 performance is optimized only when the saturation is not active, the input-to-state stability is indeed guaranteed for the nonlinear input saturating system. This means that if w ∈ W saturation may effectively occur, the conditions in Theorem 4.4.1 ensure that the system trajectories are bounded. Moreover, if w is vanishing (an L 2 -disturbance, for example), the conditions guarantee also that the state converge to the origin asymptotically.

On the other hand, conditions for the L 2 gain minimization considering the behavior of the closed-loop system also under saturation can be easily obtained (see [START_REF] Tarbouriech | Stability and stabilization of linear systems with saturating actuators[END_REF]). However, in this case, it is not possible to consider different Lyapunov functions and the results are, in general, highly conservative in terms of the provided L 2 gain upper bound.

Controller computation

The state feedback gain K(ρ) that satisfies the stability condition for the saturated system (see section 4.4.2.1) and the disturbance attenuation for the unsaturated system (see section 4.4.2.2) can be derived by solving the following optimization problem:

min W,U,N,M,Z,Y,λ 1 ,λ 2 , 1 , 2 γ 2
subject to (4.49, 4.50, 4.51, 4.52, 4.72), W, U, N > 0, λ 1 , λ 2 , 1 , 2 > 0, ρ ∈ Ω ρ .

(4.73)

Then the state feedback gain matrix K(ρ) can be computed by:

K(ρ) = Z(ρ)M -1 (4.74)
It worth noting that the inequalities (4.49) and ( 4.72) are quasi-LMIs where there exist some couplings between W, M, Z and scalars λ 1 , 1 , 2 . A feasible solution can be attained by fixing the scalars λ 1 , 1 , 2 and solving the LMI feasibility problem.

Moreover, the above optimization problem has an infinite number of LMIs to solve because the varying parameter ρ varies in the set Ω. To relax this problem, the LMI framework for the polytopic systems is used, i.e we will solve the optimization problem at each vertex S j ρ of the polytope defined by the bounds of the varying parameters in order to obtain a state feedback matrix gain K j at each vertex. Then, considering the measured value of ρ, the parameter dependent state feedback matrix K(ρ) is computed as follows:

K(ρ) = 2 k j=1 α j (ρ)K j , 2 k j=1 α j (ρ) = 1.
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) := Π k i=1 |ρ i -Compl(ω j ) i | Π k i=1 (ρ i -ρ i ) , ρ i ∈ [ρ i ρ i ]. Compl(ω j ) i := {ρ i if (ω j ) i = ρ i or ρ i if (ω j ) i = ρ i }.

A new LPV/H ∞ semi-active suspension control strategy for the vehicle dynamic

In order to demonstrate the efficiency of the proposed LPV Finsler approach, preliminary results are given in this section where the proposed approach is applied to a quarter semiactive suspension system.

The controlled oriented quarter-car suspension model

Let us consider a quarter vehicle model, with m s and m us standing for the sprung and unsprung masses, respectively; k s is the suspension stiffness. The tire model is given by a passive damper with coefficient c t and a spring with stiffness coefficient k t ; z r (t) is the vertical road displacement; z s (t) and z us (t) represent the vertical displacements of the sprung and unsprung masses, respectively. Then the dynamic equations of the quarter vehicle around the equilibrium are governed by (as presented in Chapter 1, section 1.2.2):

m s zs = -k s (z s -z us ) -F damper m us zus = k s (z s -z us ) + F damper -k t (z us -z r ) -c t ( żus -żr ) (4.75)
where z s -z us := z def is the damper deflection, assumed to be measured or estimated, and F damper is the semi-active controlled damper force:

F damper = c(.) żdef (4.76)
with żdef = żs -żus being the deflection velocity and c(.) is the damping coefficient assumed to be varying for control purpose. To ensure the dissipativity constraint of the semi-active damper, the following constraint must be satisfied:

0 c min c(.) c max (4.77)
Rewrite now (4.76) as follows:

F damper = c(.) żdef = (c 0 + u H∞ ) żdef = c 0 żdef + u H∞ ρ (4.78)
with c 0 = (c max + c min )/2, ρ = żdef a time-varying scheduling parameter and u H∞ is the control input representing the variation of the damping coefficient. Thus, replacing F damper in (4.78) into (4.75), one obtains the following state space representation:

ẋs = A s x s + B s1 w + B s2 (ρ)u z = C z x s + D z (ρ)u (4.79)
where x s = (z s -z us , żs , z us -z r , żus ) T , w = żr , z = zs , and u = u H∞ .
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A s =      0 1 0 -1 -ks ms -c 0 ms 0 c 0 ms 0 0 0 1 ks mus c 0 mus -kt mus -c 0 -ct mus      , D z = -ρ ms B s1 = 0 0 -1 ct mus T , B s2 = 0 -ρ ms 0 ρ mus T C z = -ks ms -c 0 ms 0 c 0 ms .
Note that in order to allow for application of the polytopic approach, B s2 and D z must be constant. As the scheduling parameter apprears on the input matrices B s2 and D z , the requirement on LPV polytopic is not satisfied. A simple way to make it possible is to introduce a strict low-pass filter as in the subsection 4.3.2.3.

Input and State constraints:

The dissipativity and physical constraints of semi-active dampers are transformed into the input and state constraints in this section. Denoting c(.) = c 0 +u H∞ , the dissipativity constraint (4.77) is now recast into the following input constraint:

|u H∞ | < (c max -c min )/2 (4.80)
It is worth noting that, as for the full car model in the section 4.3.2.1, (4.79) is actually a quasi-LPV system since the scheduling parameter ρ = żdef depends on the system state. It is supposed that | żdef | ≤ 1. Moreover, in this study, the following constraint on the suspension stroke limit is considered: |z def | ≤ 0.125. These two constraints can be rewritten as a generic state constraint as follows:

żdef

z def = |Hx| 1 0.125 (4.81)
where x is the system state, H = 0 1 0 -1 1 0 0 0 and stands for a componentwise inequality.

Semi-active suspension control problem

Here, we aim at enhancing the comfort evaluated in term of the vertical body acceleration. Therefore, the minimization of the L 2 gain γ of the closed-loop transfer function from the disturbance w to the controlled output zs is considered as the performance criterion.

The control problem to be addressed can be therefore stated as follows: design a suspension control that improves the passenger comfort and satisfies the input saturation constraints (4.80) and the state constraints (4.81), i.e one aims at minimizing the upper bound for the approaches for semi-active suspension system L 2 gain from the disturbance w ( żr ) to the controlled output z (z s ). More specifically, the following optimization problem is considered: LPV suspension controller computation procedures:

min γ,
Step 1: In this step, we verify whether the problem in section 4.4.3.3 can be applied by the theory presented in section 4.4.2. Indeed, the interconnection between the quarter car model, the weighting function W zs , and the low pass filter W f ilter (as in section 4.3.2.3) has the form of the generalized quasi-LPV system S ρ defined in (4.1). Then, in this application, one will follow the steps presented in the section 4.4.2 to design "An LPV Finsler" Controller.

The dissipativity constraint is given by 700 ≤ c ≤ 5000, then the control input condition (4.80) is given by |u H∞ | < 2150 and the state constraint are given by (4.81).

Step 2: Solve optimization problem (4.82) to find the "LPV Finsler" controller using the polytopic approach for LPV systems.

In this case, since one has one scheduling parameter, a polytopic system is computed by a convex combination of the systems defined at N=2 vertices ω j , (j = 1, 2) of the polytope. Then from the section 4.4.2.3 and thanks to polytopic approach, solving problem (4.73) gives us M, Z j , j = 1, 2. Then the state feedback gains K j is given by K j = Z j M -1 , (j = 1, 2) corresponding to 2 vertices of the polytope. And, the global suspension controller K(ρ) is derived by:

K(ρ) = Σ 2 j=1 α j (ρ)K j (4.84)
where

α 1 (ρ) + α 2 (ρ) = 1.
Then, the control input vector for the closed loop system is given by:

u H∞ = Σ N =2 j=1 α j (ρ)K j x (4.85)
ensures the stability for the the closed loop system and limits the effects of the disturbances on the controlled output for all parameter variations.

To demonstrate the efficiency of the proposed LPV Finsler approach, we show a comparaison between this approach and the last LPV controller based on the "LPV Standard approach" using a single Lyapunov function for both objectives: stability and disturbance attenuation requirements (as presented in the section 4.3).

At first, by solving the optimisation problem (4.82), we obtained the value of L 2 gain in two cases as follows: γ F insler = 16.6685 and γ Standard = 17.7322. It means that the "LPV Finsler approach" allows to reduce the conservatism with respect to the "LPV Standard approach".

Frequency domain analysis: 4.12 shows the magnitude of the frequency response of the accleration zs regarding to the disturbance. It shows that with LPV approaches, the chassis acceleration is reduced in the frequency range [0.1-10]Hz in comparison with the "Uncontrolled damper" (i.e u H∞ = 0). Moreover, the "LPV Finsler approach" gives a better performance than the "LPV Standard approach".

Time domain simulation results

To validate the proposed LPV state feedback input constrained control, simulations are performed on a Renault Mégane Coupé (RMC) quarter car model using the semi-active suspension. The model parameters are given in the following table: Then, the vehicle is assumed to run on a typical road profile with a bump of the following form:

P arameter m s [kg] m us [kg] k t [N/m] k s [N/m] c[N m/s] c t [N m/s] V
z r (t) = A 2 1 -cos 2πV L t if 0 ≤ t ≤ L V 0 otherwise
with A and L the bump height and length and V the vehicle velocity. In this study, we have A = 0.1 m, L = 5 m and V = 7.5 m/s. 4.13 shows the road profile z r and its derivative żr that is considered as the input disturbance w = żr of the system. Then, the input disturbance w satisfies condition (4.3): w T w < δ where δ = 0.25 (since |w| < 0.5). Fig. 4.14 shows the acceleration of the sprung mass in three cases: the semi-active damper is controlled by the 'LPV Finsler', by the 'LPV Standard', and the uncontrolled damper (where c damper = c 0 and u H∞ = 0). It can be seen that the accelaration in the controlled case is reduced considerably, improving the passenger comfort which is the control objective. The performance with the proposed approach is also slightly better than the one obtained with the standard LPV approach (one single Lyapunov function). Fig. 4.15 shows the control input applied to the system. Note that from 0 to 1s, the control input is saturated during a short instant. In Fig. 4.16, the suspension deflection and its speed are depicted. This figure shows that the state constraints are not violated (| żdef | ≤ 1 and |z def | ≤ 0.125 ,see (4.81)).

Conclusion

In this section, an LPV Finsler state feedback control was designed for the semi-active suspension control problem in order to ensure the stability in case of saturation and to improve the passenger comfort. Thanks to the Finsler's lemma, the proposed approach allows to use two Lyapunov functions for multi-objective problems, which allows to reduce the conservatism with respect to LPV Standard approach. The simulation results show the effectiveness of this approach: the stability is kept in case of saturated input, the state constraints are not violated and the disturbance effects are minimized.

For future work, this approach can applied for the full car case with four semi-active Chapter 4. LP V /H ∞ state feedback input and state constrained control approaches for semi-active suspension system suspension (i.e four scheduling parameters will be used). Besides, other performance objectives could be considered (road holding,...). Moreover, the use of parameter dependent Lyapunov functions could be a next step to improve the controller. For this, an appropriate bound on the derivative ρ of the scheduling parameter rho must be derived.

Chapter Conclusion

In this chapter, LP V /H ∞ state feedback input and state constrained control strategies for the semi-active suspension system has been presented. The dissipative characteristic of the semi-active damper is recast as an input saturation. Then, a multiple objectives problem is considered : stability and disturbance attenuation. The sector condition approach is used to derive the stability condition. The disturbance attenuation problem is treated in the H ∞ framework. The efficiency of the proposed control strategies has been proven through two main contributions:

• The LPV standard approach (a common quadratic Lyapunov function for stability analysis and performance objectives). This approach is applied for the first time on a full vertical vehicle equipped with 4 semi-active dampers.

• The LPV Finsler approach (multiple Lyapunov functions for stability and performance objectives). Preliminary results on semi-active suspension quarter car model validate the effectiveness of this approach.

Chapter 5

Model predictive control approach for semi-active suspension control problem 

Introduction

As seen in the previous chapter, the main challenge in the semi-active suspension control problem is to handle the dissipativity constraints of the semi-active dampers. To deal with this problem, the constraints were recast as actuator saturation conditions. Moreover, there exists additional physical constraints on the suspension system such as the suspension stroke limits that can be considered as some state constraints. Regarding to the control design problem for such semi-active suspension system subject to actuator saturation and state constraints, 108 Chapter 5. Model predictive control approach for semi-active suspension control problem besides the LP V /H ∞ approach as seen in the last chapter, an alternative solution using Model Predictive control approach is proposed in this chapter.

This chapter is the result of the collaboration with Pr. Massimo Canale (Dipartimento di Automatica e Informatica, Politecnico di Torino, Italia) on Model Predictive Control application to the semi-active suspension system. Some results were presented in [START_REF] Nguyen | A Model Predictive Control approach for semi-active suspension control problem of a full car[END_REF] in the "55th IEEE Conference on Decision and Control, 2016".

State of the art

It is well known that Model Predictive Control (MPC) allows to explicitly take into account the effect of input and state constraints in the control design step, see e.g. [START_REF] Mayne | Constrained model predictive control: Stability and optimality[END_REF]]. In general, to design a MPC controller, the information of the system state is required and this can be obtained by measurement or estimation. Based on the current state, the system behavior is predicted on a prediction horizon and the best sequence of control actions is computed. The first element of the control sequence is then applied as the actual control action. However, in the practical point of view, the system is usually subject to exogenous disturbances. In this case, the MPC controller can be designed considering two assumptions. Firstly, the disturbance effects are not taken into account during the prediction step. However, it can reduce the performances of the controller. Secondly, the system behavior is predicted by adding the disturbance effects during the prediction horizon. To this aim, the information of the disturbances must be available, which can be obtained by disturbance estimation or preview. Now, regarding to the semi-active suspension control problem where dissipativity and physical constraints of semi-active dampers are transformed to input and state constraints. MPC is an interesting solution for such a problem. In fact, several works have employed the MPC approach for semi-active suspension systems in the litterature. Nevertheless, most of the studies considered the MPC control design problem based on a quarter-car model. Let us mention here [START_REF] Giorgetti | Hybrid model predictive control application towards optimal semi-active suspension[END_REF] where the constrained quarter-car semi-active suspension system is modelled as a switching affine system and the MPC controller is computed thanks to mixed-integer quadratic programming techniques. In [START_REF] Canale | Semi-Active Suspension Control Using Fast Model Predictive Control[END_REF], a fast MPC is designed for a half car model, but the MPC controller is still designed based on a quarter car suspension model. However, in [START_REF] Giorgetti | Hybrid model predictive control application towards optimal semi-active suspension[END_REF]] and [START_REF] Canale | Semi-Active Suspension Control Using Fast Model Predictive Control[END_REF], the effects of road disturbances are not taken into account in the prediction horizon. On the other hand, [START_REF] Poussot-Vassal | A methodology for optimal semi-active suspension systems performance evaluation[END_REF] proposes a methodology for optimal semi-active suspension system based on MPC control for a quarter car model while assuming that the road disturbance is measured in advance and taken into account within the prediction horizon.

On the other hand, it is worth noting that the quarter car model equipped with one semiactive damper is not able to describe the full dynamic of the vehicle with four semi-active dampers. In order to deal with the full car model case, one possibility is to design four separate controllers at the four corners. However, doing so, the effects of the coupling and the load transfer distribution between the corners during various driving situations (cornering, steering, accelerating, and braking...) may not be considered, which could lead to lower performance.

Concerning the full car dynamics, up to our knowledge, very few studies have been proposed to develop MIMO MPC semi-active control techniques. In particular, [START_REF] Gohrle | Model predictive control of semi-active and active suspension systems with available road preview[END_REF]] employs a nonlinear programming approach (not suitable for implementation). To overcome such a problem, [START_REF] Gohrle | Model predictive control of semi-active and active suspension systems with available road preview[END_REF]] introduces an approximate description of the constraints as well as the clipping of the control action. On the other hand, taking into account the disturbance effects for the computation of the MPC control action leads to better performance results. In this regard, [START_REF] Gohrle | Road Profile Estimation and Preview Control For Low-Bandwidth Active Suspension Systems[END_REF] employs the road profile preview by means of expensive and not standard sensors (e.g. camera) for the case of active suspension. Disturbance estimation is not used, except in a case, to verify the preview obtained by the camera and still in the context of active suspension.

Objectives and Contributions

In this chapter, a semi-active suspension MPC controller is designed for a full vehicle model equipped with 4 semi-active dampers. The MPC controller is designed while taking into account the road disturbance effects which will be estimated by an observer. Then, the proposed solution integrates a state feedback control with an observer of the vehicle state variables and road disturbance. The chapter contributions are twofolds:

• An observer approach is proposed to estimate both the system state (needed anyway by MPC approaches) and road disturbances. It is worth mentioning that while the estimation of the road inputs allows to improve the efficiency of the predictive controller, it is here obtained using standard sensors and then differs from the road preview approach. This will be presented in section 5.4.

• A MPC suspension control with road disturbance estimation (but without road preview) is obtained by optimimizing a quadratic cost function. This cost describes the ride comfort and road holding performances, while ensuring the dissipativity constraints of the semi-active dampers. The controller is derived through the solution to a mixed integer quadratic programming (MIQP). The results are compared to those obtained by MPC with disturbance preview and by MPC without taking into account the disturbance during the prediction; they show the interest of the proposed approach.

It has to be noted that the proposed approach is validated first on a Renault Mégane Coupé vehicle. It is then adapted to be applicable and implementable on the SOBEN Car.

The structure of this chapter is given as follows. The next section describes briefly a full vertical vehicle model and the problem formulation. Section 5.3 introduces the semi-active suspension control design using MPC. Section 5.4 presents the observer design for state and control problem road disturbance estimation. Simulation results on the Renault Mégane Coupé vehicle are given in section 5.5. The application to the SOBEN Car is given in section 5.6. Finally, some conclusions are drawn in the final section.

A full car model equipped with 4 semi-active suspensions

Full car model

The vehicle suspension model with 7 DOF is used for the control design purposes. This model includes the bounce, roll and pitch chassis motions (z s , θ, φ) and the vertical motions of the wheels (z us ij , i = (f ront, rear), j = (lef t, right)). The dynamic equations of this 7 DOF model are given as follows (as seen in Chapter 1, section 1.2.3):

       m s zs = -F sf l -F sf r -F srl -F srr I x θ = (-F sf r + F sf l )t f + (-F srr + F srl )t r I y φ = (F srr + F srl )l r -(F sf r + F sf l )l f m us zus ij = F s ij -F tz ij (5.1)
For each i, j, The vertical suspension forces F s ij is given by:

F s ij = k ij (z s ij -z us ij ) + F d ij (5.2)
where k ij is the nominal spring stiffness coefficient, z s ij the chassis position at each corner and F d ij the semi-active controlled damper force given by:

F d ij = c ij (.) żdef ij = c ij (.)( żs ij -żus ij ) (5.3)
where żdef ij is the deflection speed and the damping coefficient c ij (.) is assumed to be varying for control purpose. To ensure the dissipativity constraint of each semi-active damper, the following constraint must be considered:

0 c min ij c ij (.) c max ij (5.4)
Now, let us rewrite the damper force (5.3) as follows: 5.5) where c nom ij = (c max ij + c min ij )/2 is the nominal damping coefficient, u ij is the incremental force and is considered as the control input. Then, the equation ( 5.2) becomes:

F d ij = c nom ij żdef ij + u ij ( 
F s ij = k ij (z s ij -z us ij ) + c nom ij ( żs ij -żus ij ) + u ij (5.6)
where z s ij is the sprung mass position at each corner of the vehicle.
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Now, the dynamic equations ( 7.1) of the 7 DOF full vertical vehicle model is rewritten as the following LTI state-space representation with 14 state variables:

ẋ(t) = Ax(t) + B 1 w(t) + B 2 u(t) y(t) = Cx(t) + D 1 w(t) + D 2 u(t) + ν(t) (5.7) where              x = [z s , θ, φ, z usf l , z usf r , z usrl , z usrr , żs , θ, φ, żusfl , żusfr , żusrl , żusrr ] ∈ R 14 u = [u f l , u f r , u rl , u rr ] ∈ R 4 w = [z rf l , z rf r , z rrl , z rrr ] ∈ R 4 y = [z sf l , zsfr , zsrl , zsrr , z usf l , z usf r , z usrl , z usrr ] ∈ R 8
are the state, the control input vector, the disturbance inputs, and output measurements vectors respectively. ν(t) ∈ R 8 is the measurement noise vector. A, B 1 , B 2 , C, D 1 , D 2 are the matrices of the state space representation.

Since in the MPC approach the optimization problem must be performed in discrete time domain, the continuous time model (5.7) has been discretized with a sampling time T s = 0.005s using the zero order hold method. The obtained discrete time model is denoted as:

x k+1 = A d x k + B 1d w k + B 2d u k y k = C d x k + D 1d w k + D 2d u k + ν k (5.8)
where A d , B 1d , B 2d , C d , D 1d , D 2d are the matrices of the state space representation.

Input constraints

The dissipativity conditions of the semi-active damper given in (5.4) are here transformed into input constraints. Note that from (5.4-5.5), it follows that:

c min ij żdef ij ≤ F d ij ≤ c max ij żdef ij if żdef ij ≥ 0 (5.9) c max ij żdef ij ≤ F d ij ≤ c min ij żdef ij if żdef ij < 0
In the discrete time domain, the dissipativity constraint is now recast into:

c min ij żdef ij k ≤ c nom ij żdef ij k + u ij k ≤ c max ij żdef ij k if żdef ij k ≥ 0 c max ij żdef ij k ≤ c nom ij żdef ij k + u ij k ≤ c min ij żdef ij k if żdef ij k < 0 Since c nom ij = (c max ij + c min ij ) 2
, it results:

|u ij k | ≤ (c max ij -c min ij ) 2 | żdef ij k | (5.10) control problem
Or equivalently, for i corresponding to front/rear and j to left/right:

if żdef ij k ≥ 0, then    u ij k ≥ (c min ij -cmax ij ) 2 ( żs ij k -żus ij k ) u ij k ≤ (cmax ij -c min ij ) 2 ( żs ij k -żus ij k ) if żdef ij k < 0, then    u ij k ≥ (cmax ij -c min ij ) 2 ( żs ij k -żus ij k ) u ij k ≤ (c min ij -cmax ij ) 2 ( żs ij k -żus ij k ) (5.11)
The dissipativity constraints (5.11) can be expressed as a set of linear inequalites which involve both the control input u ij k and the state variables x k . Notice that żdef ij k = żs ij k -żus ij k is a linear combination of the system state x k . Actually, since:

         żs f l = żs -l f φ + t f θ, żs f r = żs -l f φ -t f θ, żs rl = żs + l r φ + t r θ, żsrr = żs + l r φ -t r θ, (5.12) then, one can rewrite żdef ij k = żs ij k -żus ij k = C in x k ,
where C in is given by:

C in =     0 0 0 0 0 0 0 1 t f -l f -1 0 0 0 0 0 0 0 0 0 0 1 -t f -l f 0 -1 0 0 0 0 0 0 0 0 0 1 t r l r 0 0 -1 0 0 0 0 0 0 0 0 1 -t r l r 0 0 0 -1    
Thus, the control input u ij k must satisfy the following constraints:

if C in x k ≥ 0, u ij k ≥ (c min ij -cmax ij ) 2 C in x k u ij k ≤ (cmax ij -c min ij ) 2 C in x k if C in x k < 0, u ij k ≥ (cmax ij -c min ij ) 2 C in x k u ij k ≤ (c min ij -cmax ij ) 2 C in x k (5.13)
It is worth noting that these constraints will be taken into account in the solution of the control design problem.

Semi-active suspension control using MPC

Performance index

As mentioned previously, the main objective of the suspension in the vehicle system is to isolate the body (comfort performance) from the road disturbances, without deteriorating the road holding (handling performance). Comfort and handling performances can be described 5.3. Semi-active suspension control using MPC 113 through the vehicle center of gravity heave acceleration zs and roll angle θ respectively. In particular, in this chapter, the following performance indices can be considered:

J comf ort = T 0 z2 s (t)dt (5.14) J handling = T 0 θ 2 (t)dt (5.15)
However, it is a well known fact that (5.14) and ( 5.15) are conflicting objectives. For this reason, a control law will be designed in order to optimize the overall performance through a suitable trade-off between (5.14) and ( 5.15) and taking into account the dissipativity constraint (5.11). Thus, the semi-active suspension control problem can be formulated as a constrained optimization problem that can be casted in the well known framework of MPC.

In this regard, by defining N p as the prediction horizon, the following cost function is chosen as the performance index to be minimized: 5.16) where zs k+i|k , θ k+i|k denote the chassis acceleration and roll angle predicted by using the model (5.8), given the initial state x k|k , and U = [u k|k , u k+1|k , ..., u k+Np-1|k ] is the vector of the control to be optimized. ρ ∈ [0 1] is a weighting coefficient which can be tuned to achieve a suitable trade-off between comfort and handling performances.

J(U, N p , x k|k ) = Np-1 i=0 (1 -ρ)(z s k+i|k ) 2 + ρ(θ k+i|k ) 2 ( 
It is worth mentioning that the tuning of the design parameter ρ can be usually obtained through a sequence of trial and error steps. However, in this work, an alternative approach is proposed which consists in considering ρ as the Load Transfer Ratio (LTR) of the vehicle (as seen in Chapter 3, section 3.3). Actually, LTR can be computed by evaluating the roll load transfer while the vehicle is running. As soon as there exists a load transfer from the left to the right or vice-versa, it means that the vehicle is faced to roll motion. By defining the vertical forces acting on the left and right sides by F zl and F zr respectively, we have:

F z l = m s g 2 + m s h ay l f F zr = m s g 2 -m s h
ay lr (5.17) that allows us to introduce the LTR as:

ρ := F z l -F zr F z l + F zr (5.18)
where a y is the lateral acceleration of the vehicle at COG. Note that, according to (5.17), the LTR ratio can be evaluated online through the measurement of the lateral acceleration a y . Since ρ ∈ [0 1], when ρ → 0, there is neither lateral load transfer, nor roll motion, i.e the cost function (5.16) minimizes the chassis acceleration, aiming at improving the comfort performance. On the other hand, when ρ → 1, the vehicle is within a critical situation caused by the roll motion. In this case, the roll motion in (5.16) needs to be weighted in order to improve the road holding performance.

u k = u k|k . On the other hand, the dissipativity constraint (5.13) depends on the sign of the suspension deflection speed C in x k . Therefore, the switching between the constraints according to the sign of C in x k must be satisfied.

To this aim, the optimization problem (5.20) can be formulated as a quadratic problem involving logic constraints. In this regard, the optimization procedure is a mixed integer quadratic programming (MIQP) problem ( [START_REF] Bemporad | Control of systems integrating logic, dynamics, and constraints[END_REF]). Thanks to YALMIP [START_REF] Lofberg | YALMIP: A toolbox for modeling and optimization in MATLAB[END_REF]] and using GUROBI optimisation solver [GurobiOptimization 2012], the optimal control law can be computed.

State and road disturbance estimation

This section presents the observer design methodology. First, following the definition of the extended state in (5.19), the output equation introduced in (5.8) can be augmented as follows:

y k = C d D 1d x k w k + D 2d 0 u k + ν k (5.20)
Within the available measurements, described in section II, the observability condition of the augmented system (5.19,5.20) is satisfied. Then, both the system state and road disturbances can be estimated by using an extended observer with the following structure:

       xk+1 ŵk+1 = A o xk ŵk + B 2o u k + L(y k -ŷk ) ŷk = C o xk ŵk + D 2d 0 u k (5.21)
where L ∈ R 18×8 is the observer gain to be designed and

A o = A d B 1d 0 I ; B 2o = B 2d 0 ; C o = C d D 1d .
Let us define the estimation error of the augmented system:

e k = x k w k -xk ŵk
Then, the estimation error can be inferred from (5.19) and (7.14) as:

e k+1 = A o x k w k -xk ŵk -LC o x k w k -xk ŵk -Lν k (5.22)
Finally, one has:

e k+1 = (A o -LC o )e k -Lν k (5.23)
It is well known that the state estimation of dynamic systems in the presence of measurement noise is one of the important problems in control engineering. One of the effective solutions control problem dealing with this problem is to use the H 2 filtering approach. Therefore, the observer design consists in calculating a observer gain L so that the transfer function T νe from the measurement noise ν k to the estimation error e k meets the H 2 -norm upper bound constraint. Moreover, in order to improve the performances of the observer, the poles of the observer are placed in the circle C(σ, r)(centered at σ and with the radius r) which is smaller than the unit circle (see Fig. 5.1). The following theorem allows to solve this problem: Proof: Consider the estimation error system (5.23), and by applying the H 2 performance conditions to the discrete-time system (see [START_REF] Masubuchi | LMI-based controller synthesis: A unified formulation and solution[END_REF]), one has 

T νe 2 < γ if:   P P (A o -LC o ) -P L (A o -LC o ) P P 0 -L P 0 I   > 0 (5.

Simulation results on the Renault Mégane Coupé

To assess the proposed observer-controller strategy, simulations are performed on the full non linear vehicle model validated on a Renault Mégane Coupé (see Chapter 1). The simulations are performed with a sampling time T s = 0.005 s and a prediction horizon N p = 10. The following scenario is used to test the effectiveness of the proposed MPC controller:

• The vehicle runs at 120 km/h in a straight line on dry road ( µ = 1, µ the adherence to the road).

• A 5cm bump occurs simultaneously on the left and right wheels (from t = 0.5 s to t = 1 s) to excite the bounce motion and chassis vibration.

• A 5 cm bump on the left wheels (from t = 2 s to t = 2.5 s) causes the roll motion.

Observer simulation results

This section provides first some simulation results in order to assess the observer performance. It is worth noting that the observer is activated from t = 0.5s. And the initial condition of the system is: x(0) = 0.01 * eye(14, 1). Firstly, Fig. 5.2 shows that the road profiles are well estimated using the proposed observer approach. Such an estimated road profile has been computed each sampling time, used for MPC design with road disturbance estimation and not used for road preview.

Moreover, the proposed observer allows also to estimate the state of the system required by the MPC controller. The system state estimation is shown in the Fig. 5.3 and Fig.5.4 

Controller simulation results

To demonstrate the efficiency of the proposed MPC control approach, we show comparison results of the following control strategies:

• MPC with road disturbance estimation, called Proposed MPC

• MPC without taking into account the road disturbance during the prediction horizon, called MPC without w

• MPC with road disturbance preview, called MPC preview w In particular, it can be noted that all the considered MPC strategies improve the road holding performance compared to the Nominal damper. Moreover, we observe that the same behavior occurs for the Proposed MPC and MPC preview w methods, while very slight improvements are obtained with respect to MPC without w.

The dissipativity conditions of the semi-active dampers are also ensured as seen Fig. 5.8. .9 describes the suspension forces at front left corner. It shows that when the bump occurs at t = 0.5 s, the suspension is set to be soft to reduce the shock and then, after the bump, the suspension is harder to limit the rebounce response of the vehicle. This allows to enhance the overall performance of the vehicle.

Remark 9. As mentioned previously, with the full car model case, another possibility is to design four separated controllers at the four corners. However, doing so, the effects of the coupling and the load transfer distribution between the corners during various driving situations (cornering, steering, accelerating, and braking...) may not be considered, which could lead to lower performance. To study in more details this, four MPC controllers have been designed separately for four semi-active suspensions at four corners using the quarter car model. It will be then compared to the proposed approach with the single MIMO MPC controller. The simulation results are shown in the Fig. 5.10. It can be easily seen that the single MPC controller give a better performance. Case 2: Using some "benchmark" road profiles Now, a deeper analysis is provided. Simulations are carried out using "benchmark" road profiles employed in standard industrial tests. In particular, the following road profiles (see Fig. 5.11) are taken into account:

• ISO road A (smooth runway), vehicle runs at 130 km/h.

• ISO road D (rough runway), maximum amplitude of 0.015 m and run at 90 km/h.

• A random road profile for comfort test, run at 60 km/h. All the simulations last 14 s. To evaluate the effectiveness of each approach, the RMS (root mean square) of the chassis acceleration (z s ) is computed and the results are presented in table I. Note that the RMS evaluation of the roll angle is not shown here since the roll motion is not excited since the same road profile is applied at the four wheels within a delay between the front and rear axles. As shown in the presented simulation results, in the context of semi-active suspensions it seems that MPC preview w does not introduce significant improvements with respect to Proposed MPC. Moreover, the feedforward action obtained by Proposed MPC introduces improvements over the case of MPC without w. This demonstrates once again the usefullness of the proposed approach. 

Application to the SOBEN Car testbed

This section is concerned by the application of the MPC controller on the SOBEN Car (as seen in Chapter 3, section 3.6) as well as the preparation for the implementation. This study have been benefited from Antoine BURNAND, master student at EPFL during his master internship in GIPSA Lab (March -June 2016).

It has to be noted that the presented MPC approach is quite efficient but its main disadvantage is its high computation time for the optimization procedure. This restricts the direct implementation of the presented MPC approach on the SOBEN Car testbed whose sampling time is T s = 0.005s.

To deal with this problem, several solutions can be dedicated for a fast MPC implementation:

• Firstly, it is well-known that coding the optimization algorithm in C/C + + instead of MATLAB will reduce considerably the computation time. Therefore, a solution is to write the MIQP optimization in code C. This is a very common way for industrial MPC applications. This solution will be considered as a perspective of the thesis.

• Another solution is the use of set membership methodologies for the approximation of MPC laws for LTI systems [START_REF] Canale | Set membership approximation theory for fast implementation of model predictive control laws[END_REF]. Such approximated MPC laws are derived from a finite number of exact control moves computed off-line. Indeed, the state-space of state variables, previously determined by a set of experiments, is given by a polyhedron set and it is then discretized. At each discretization point, one should compute off-line the first optimum input. Then, a search algorithm locates the control problem closest optimal input depending on the current state. This kind of methodology is well suited for a system with a low number of states [START_REF] Canale | Semi-Active Suspension Control Using Fast Model Predictive Control[END_REF], [START_REF] Canale | Approximate NMPC for vehicle stability: design, implementation and SIL testing[END_REF]. In the case of the 7 DOF model, one has an extended system with 18 states, this technique would then require a huge amount of calculation and would be time consuming. Despite of this disadvantage, since the set of control laws are computed off-line, the real-time control can be easily implemented.

• It has to be noted that the suspension system is actually a bilinear system while considering the product between the damping coefficient (related to control input u) and the defection speed (related to system states x). Therefore, a kind of MPC bilinear approach can be designed for such a system. This methodology is inspired from discussions with Pr. Mazen Alamir, Research Senior CNRS, Gipsa Lab. In the following, the MPC bilinear approach will be presented.

Let us consider a bilinear model of the system. As a reminder, a bilinear system is a system that is linear with respect to two variables. In this thesis, the following bilinear model is considered :

ẋ = (A 0 + m 1 u i (t)A i )x(t) + B 1 w(t) (5.31) 
where x(t) are the system state, u(t) the control input and w(t) the disturbance.

As seen previously, the damper force is given by F damper = c(t) żdef where c is the controlled damping cofficient, żdef the suspension deflection speed which is actually a combination of the system state. By considering the damping coefficient c(t) as the controlled input and taking into account the road disturbance, the 7DOF full car model can be rewritten in the following form:

ẋ = A(c(t))x(t) + B 1 w(t) = A(u(t))x(t) + B 1 w(t) (5.32)
where x ∈ R 14 , u ∈ R 4 , A and B 1 are appropriate matrices of the system.

The dissipativity constraint of the semi-active damper is given by:

c min ≤ u(t) ≤ c max where u(t) = c(t) (5.33) 
In order to design a Model Predictive Control for such a bilinear system, first of all, one assumes that the disturbance w and the damping coefficients c remain constant over the prediction horizon (i.e. u is also considered to constant).

It is worth noting the system (5.32) is bilinear but it becomes linear during the prediction horizon since u is considered to be constant in the prediction time.

The system is discretized and the cost function is then defined as follows:

J(U, N p , x k|k ) = Np-1 i=0 (1 -ρ)(z s k+i|k ) 2 + ρ(θ k+i|k ) 2 := Np-1 i=0
x k+i|k Qx k+i|k (5.34) To be able to compute the cost function, all the matrices needed for the calculation of the cost function is computed off-line, and the state trajectory is predicted as follows:

x k+1 = A d (c|c = cst)x k + B 1d w k = A d x k + B 1d w k x k+2 = A 2 d x k + A d B 1d w k + B 1d w k x k+3 = A 3 d x k + (A 2 d B 1d + A d B 1d + B 1d )w k . . . x k+Np = A Np d x k + (A Np-1 d B 1d + A Np-2 B 1d + • • • + A d B 1d + B 1d )w k (5.35)
Remark 10. The road disturbances are still considered to be constant during the prediction horizon. So, it is possible to design an extended observer to estimate both the system state and road disturbances as seen in section 5.4.

The main idea behind this optimization algorithm is to consider a set of possible combinations of damping coefficients considered in the interval [c min , c max ] and to compute the cost function by successively considering each control element u (i) of the control input trajectory, and the optimal control input is the one which minimizes the cost function.

To determine the possible control input trajectory, i.e the set of possible combinations of damping coefficients c ij , the interval [c min , c max ] is divided into a grid of N c points. For instance, the division of the set [c min , c max ] in four linearly spaced damping coefficients is given by ([c min , c min + (c max -c min )/2, c max -(c max -c min )/2, c max ]). Then, since one has 4 dampers, the number of possible combinations of damping coefficients c ij is 4 Nc . The cost function is computed over this set of the control input, the minimal cost function provides the corresponding optimal control input u

(i) opt .
Besides, the tunable parameters are the weighting factors, the number N c of damping coefficients considered and the horizon length. Varying these parameters shows that the ones that influence the most the final results are the weighting factors. In that sense, the horizon length remains the same as for the MPC controller. The only two remaining parameters left to determine are the number of damping coefficients considered and the weighting factors. Even if both of the methods have the same objective function, the controlled inputs are not the same (force and damping coefficient). This explained the fact that the weighting factors change from a method to another. It is worth noticing also that the computation time will dramatically increase when adding more possibilities for the damping coefficients. Once the optimal number of coefficients that needs to be taken into account are found, the function that computes the objective function will be generated in code C using M AT LAB Coder in order to make it portable and faster.

Remark 11. -If one chooses only 2 damping coefficients in the set of possible ones and reduces the horizon to its minimum, the controller will exhibit some similar results with the well known Skyhook controller. Nevertheless, the principle of two methods are different. The presented MPC bilinear method computes the optimal damping coefficients by an optimization problem while the Skyhook approach depends on the body speed and suspension deflection speed. control problem -By increasing the number of possible damping coefficients, one would finally end up with the same controller as the proposed MPC in the last sections.

Simulation Results on the SOBEN Car

As the main goal of this method is to decrease the computation time for the implementation of the control of a system with fast dynamic, one has first to find the maximal number of damping coefficients that can be considered. In order to do so, the controller obtained with the proposed method has been tested on different ISO road profiles (ISO AB, BC, CD, DE and EF) [START_REF] Ngwangwa | Reconstruction of road defects and road roughness classification using vehicle responses with artificial neural networks simulation[END_REF]]. The following results have been obtained : First of all, Figure 5.12 shows that the MPC bilinear would be applicable in terms of computation time. Indeed, by considering different possible damping coefficients N c ≤ 5, the mean time to optimize the objective function and to return the input is less than the desired sampling time.

To assess the proposed controller, simulations are performed on the full vehicle model of the SOBEN Car with linear suspension forces and compared with the MPC controller as well with the nominal system. The simulations are performed with a sampling time T s = 0, 005

[s].
The number of damping coefficients has been chosen to be five since it includes all of the previous set. In order to test the effectiveness of the controllers, the following scenario has been used:

• The vehicle runs at 12.6 m/s (maximum speed) in a straight line

• The road profiles of the class ISO AB are applied respectively to the right and left corners of the car. .14 shows the chassis acceleration of the nominal system, the system controlled by the MPC controller and the MPC bilinear. The MPC controller and the MPC bilinear improve the RMS value of the chassis acceleration. The proposed method is more effective compared to the MPC and the improvement is respectively of 25% and 11%. This leads to the smoother ride comfortfor both methods compared to the uncontrolled passive suspension Figure 5.15 shows the roll angle for the nominal system, the system controlled by the MPC controller and the MPC bilinear method. As one can see, the MPC controller and the MPC bilinear improve the RMS value of the roll angle. In that case, the MPC bilinear method is less effective compared to the MPC and the improvement is respectively of 32% and 58%. This leads to a decrease of the load transfers, and therefore to a better road holding compared to the uncontrolled passive suspension case (Nominal damper).

Conclusion

In this chapter, a single MIMO state feedback control was designed for the semi-active suspension system of a full vertical vehicle model using a MPC strategy. An observer was designed to estimate the system states and the road disturbances. The effects of the disturbances were taken into account in the control design step. The simulation results showed the effectiveness of the presented approach. Thanks to predictive control techniques, multi-objective problems were considered where the control laws were computed to improve the passenger comfort and the road handling, while ensuring dissipativity constraints.

Besides, another MPC bilinear approach was also presented in order to give an alternative solution for the implemenation on the SOBEN car.

In the near future, the implementation of the approaches on the SOBEN Car will be done.

Fault Estimation and Fault Tolerant Control: Application to Semi-Active Suspension System

Nowadays, various industrial sectors like aerospace, nuclear, automotive industries, automated systems have been widely developed. However, the more automated the process is, the more subject to the occurence of faults it is.

For the fault classification, we recall thereafter some well known terminologies [START_REF] Isermann | Fault-diagnosis systems: an introduction from fault detection to fault tolerance[END_REF]]:

• Fault: A fault is an unpermitted deviation of at least one characteristic property (feature) of the system from the acceptable, usual, standard condition.

• Failure: A failure is a permanent interruption of a system's ability to perform a required function under specified operating conditions. A failure can result from one or more faults.

• Malfunction: A malfunction is an intermittent irregularity in the fulfillment of a system's desired function. A malfunction is a temporary interruption of a system's function which can be recovered or not. In general, in a system, faults can occur in the actuators, sensors, or other components of the system (see Fig. 5.16). Faults in a single component can cause major effects on the performance degradation of the system as a whole. Consequently, a conventional feedback control design may result in unsatisfactory performances when faults occur. This may even lead the system to instability and loss of the system operation.

In order to face this challenge, Fault Diagnosis (FD) and Fault Tolerant Control (FTC) have emerged as indispensable solutions for maintaining the performance of the systems. In general, the main ideas for FD and FTC are:

• Fault Diagnosis: The faults have to be dectected, isolated and identified (location and magnitude).

• Fault Tolerant Control: The controller is reconfigured to be adapted to the faulty situation so that the overall system operation is satisfied after the appearance of a fault, possibly after a short time of degraded performance.
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Fault Diagnosis has received significant interest in both research and application domains since the last two decades. For complex systems highly equipped with sensors and actuators (aerospace, automotive applications...) FD has become one essential issue for reliability and safety. The procedure of a Fault Diagnosis (FD) includes the following steps:

• Fault detection: allows to know if a system is subject to a fault or not. This step provides also the time at which the fault occurs.

• Fault Isolation: The location of the fault is determined in this step (i.e. what component is affected by the fault).

• Fault identification and estimation: This step allows to identify the fault and estimate its magnitude, and therefore it provides the severity of the fault. The design of an FTC system requires obviously fast Fault Detection and Isolation (FDI) for adequate decision making (see Fig. 5.17). Hence, to preserve the operation safety and the system reliability, the presence of faults must be taken into account during the system control design.

FTC can be divided in two types: passive and active ones. While the former aims at designing a controller that will accommodate the fault effects, and could be referred to as a Fault Estimation and Fault Tolerant Control: Application to Semi-Active Suspension System robust controller, the second one includes a reconfiguration mechanism linked to a FDI scheme [START_REF] Lunze | Reconfigurable fault-tolerant control: a tutorial introduction[END_REF], [Zhang and Jiang 2008]. Some different strategies can be mentioned here for the active FTC type such as:

• The fault hiding approach (virtual sensors, virtual actuators techniques), where the reconfiguration block takes place in between the faulty plant and the nominal controller, with the objective is to keep the system closed-loop performances.

• The control redesign approach, for which a new controller, accounting for the faulty plant model, is to be synthetized. It is worth noting that, while the reconfiguration must operate in real-time, the design of the controller it-self may be done off-line or on-line according to the considered approach.

This part addresses some topics concerning FD and FTC. The considered faults are the actuator faults where the loss efficiency of actuators is the main problem. In the following, two main results about the FDI/FTC in this thesis will be presented.

• The chapter 6 presents a general FD problem where the actuator fault estimation is dealt with using a switched LPV extended state observer

• The chapter 7 deals with a fault estimation for the semi-active suspension system. A Fault Tolerant Control is designed in order to preserve the performance of the faulty semi-active suspension system.

Chapter 6

Actuator fault estimation based on a switched LPV extended state observer 

Introduction

This chapter proposes a new method for the general actuator fault estimation problem. Actuator faults are modeled as multiplicative faults by using effectiveness factors representing the loss of efficiency of the actuators.

The main contribution of this chapter lies in the capability of solving the problem by using a switched Linear Parameter Varying (LPV) observer approach. Indeed, the considered system in the presence of faulty actuators is rewritten as a switched LPV system by considering the control inputs as scheduling parameters. Then, the actuator faults and the system states are estimated using a switched LPV extended observer. The observer gain is derived from LMIs 136 Chapter 6. Actuator fault estimation based on a switched LPV extended state observer solution for the switched LPV system. The presented actuator fault estimation approach is validated by an illustrative example concerned to fault estimations on a multiple actuators system. Indeed, the developed strategy has led to the paper [Nguyen, Sename, and Dugard 2015b] in 1st IFAC Workshop on Linear Parameter Varying systems.

Related works

Fault estimation is a step in Fault Diagnosis and plays a key role in designing a fault tolerant control. Many different approaches have been developped to estimate a fault which can be either actuator or sensor malfunction. Let us mention some classical methods, based on the parity space theory [START_REF] Gertler | Fault detection and isolation using parity relations[END_REF]] to generate the residues and approximate the fault, or the bank of observers approach [Isermann 2011], or the sliding mode observers [START_REF] Edwards | Sliding mode observers for fault detection and isolation[END_REF].

Recently, [START_REF] Hamdi | Fault detection and isolation in linear parameter-varying descriptor systems via proportional integral observer[END_REF]] used an Unknown Input Proportional Integral Observer for actuator fault detection and estimation but this method is more oriented for constant faults. To deal with the time-varying faults, [START_REF] Zhang | Adaptive observer-based fast fault estimation[END_REF]] presented a method using a Fast Adaptive Fault Estimation (FAFE) methodology based on an adaptive observer. Therein, the authors solved the problem with a regular LTI system without considering the disturbances. Then, [START_REF] Rodrigues | Actuator fault estimation based adaptive polytopic observer for a class of LPV descriptor systems[END_REF] proposed an adaptive polytopic unknown input observer for time-varying fault estimation, for a class of descriptor LPV systems.

Besides, several works have been done for fault estimation and fault tolerant control for LPV systems. [START_REF] Bibliography Abdullah | Sensor-Fault-Tolerant Control for a Class of Linear Parameter Varying Systems With Practical Examples[END_REF] proposes the design of a low-order LPV observer to estimate the unmeasured states of the system and to estimate the sensor faults for a class of uncertain LPV systems. An LMI-based pole-placement robust LPV estimator is presented in [START_REF] Patton | An LPV pole-placement approach to friction compensation as an FTC problem[END_REF], an interval observer for LPV systems in [START_REF] Oca | Robust fault detection based on adaptive threshold generation using interval LPV observers[END_REF], an LPV sliding mode observer in [START_REF] Hamayun | An LPV fault tolerant control scheme using integral sliding modes[END_REF]. Moreover, a new approach in [START_REF] Shi | Active fault tolerant control of LPV descriptor systems based on extended state observers[END_REF]] considers the fault element as a state of the augmented system and an LPV extended observer is designed to estimate, at the same time, the state and the fault of system where constant faults are considered.

Regarding to the actuator fault estimation problem, along with the additive model, the fault can be also written in a multiplicative form by using fault effect factors which are assumed to be constant or slow-varying. Besides, inspired by the fact that the control input is known, the considered system can be rewritten as an extended LPV system while considering the control inputs as scheduling parameters. Moreover, it has to be noticed that when the control input is zero, the actuator fault information is not available. Therefore, to deal with this problem, the considered system is modeled as a switched LPV system .

It is well known that for the switched system, the main challenge for a controller or observer design problem for this type of system is to deal with the stability analysis, especially for the continuous time switched system due to the discontinuities of the Lyapunov function at switching instants. A lot of studies have been investigated for such a problem during recent decades. Let us mention firstly the LTI case. The stability of continuous-time LTI switched systems has been addressed in [START_REF] Branicky | Multiple Lyapunov functions and other analysis tools for switched and hybrid systems[END_REF]], [START_REF] Hespanha | Stability of switched systems with average dwell-time[END_REF]], [START_REF] Liberzon | Switching in systems and control[END_REF]], [START_REF] Geromel | Stability and stabilization of continuous-time switched linear systems[END_REF]. Therein, the stability under dwell time, average dwell time constraints using multiple Lyapunov functions are studied. The main idea is to ensure that the Lyapunov function is non-increasing at switching instants or to allow some short-time increasing but the dwell time between two consecutive switching instants is sufficient large in order to compensate for possible increase of Lyapunov functions. In particular, [START_REF] Geromel | Stability and stabilization of continuous-time switched linear systems[END_REF]] provides an efficient way to get the stability for the switched LTI system under minimum dwell-time by mean of a family of quadratic Lyapunov function.

However, such an approach is not easy to extend to the switched uncertain systems because of nonconvex dependence on the system matrices. To overcome this, recently, [START_REF] Briat | Affine characterizations of minimal and modedependent dwell-times for uncertain linear switched systems[END_REF] presented the Lyapunov looped-functionals approach, a new type of functionals leading to stability conditions that are affine in the system matrices. [START_REF] Briat | Convex conditions for robust stabilization of uncertain switched systems with guaranteed minimum and mode-dependent dwell-time[END_REF]] proposes an alternative solution using lifted conditions which are convex in the system matrices and shown to be equivalent to the nonconvex conditions proposed in [START_REF] Geromel | Stability and stabilization of continuous-time switched linear systems[END_REF]. Another possibility is presented in [START_REF] Allerhand | Robust stability and stabilization of linear switched systems with dwell time[END_REF], [START_REF] Allerhand | Robust control of linear systems via switching[END_REF] where a piecewise linear in time, quadractic Lyapunov form function is used to derive convex conditions for both stability and stabilization problems with dwell time.

For the class of switched LPV systems, most works have considered the control problem but very few the observation one. [START_REF] Lu | Switching LPV control designs using multiple parameterdependent Lyapunov functions[END_REF] proposed a switching LPV controller based on the multiple Lypunov functions under hysteresis switching and average dwell time constraint. [START_REF] Zhang | Model reduction for switched LPV systems with average dwell time[END_REF]] dealt with a model reduction problem for switched LPV system in which the stability was derived also by using the average dwell time technique.

Contributions

The main purpose of this chapter is to propose a methodology to estimate multiplicative faults for the actuators. An actuator fault is considered in the form of actuator power loss. Then, effectiveness factors are used to model the efficiency of actuators. The chapter contributions are concerned by the following aspects:

• Firstly, the system in the presence of actuator faults is modeled in the form of an extended switched LPV system by considering the fault effect factors as augmented states and the control inputs as scheduling parameters.

• Secondly, a switched LPV extended observer is designed to estimate both the actuator faults and the system state. The stability of the switched LPV observer is guaranteed using the dwell time constraint. To this aim, inspired from [START_REF] Allerhand | Robust stability and stabilization of linear switched systems with dwell time[END_REF], a non-increasing piecewise linear in time quadratic Lyapunov function is assigned for each subsystem. The H ∞ performance is used to minimize the L 2 gain from the disturbance to the estimation error.

The chapter is organized as follows: the next section presents the problem formulation. Section 3 gives some preliminaries about the stability of the switched system. Section 4 observer gives a full description for the multiplicative faults estimation based on the switched LPV observer approach. In Section 4, numerical examples illustrate the effectiveness of the proposed approach. Finally, some conclusions are drawn in the section 5.

Problem Formulation

System definition

Consider a continuous time linear invariant system:

ẋ(t) = Ax(t) + B 2 u(t) + B 1 w(t) y(t) = Cx(t) (6.1)
where x(t) ∈ R n , u(t) ∈ R m , w(t) ∈ R q and y(t) ∈ R p are the state, the control input, the input disturbance and the measured output vectors, respectively. Matrices A ∈ R n×n , B 2 ∈ R n×m , B 1 ∈ R n×q , C ∈ R p×n are known matrices of appropriate dimensions. In this study, only actuator faults are considered. Assume that the system (6.1) is in the faulty actuator situation, e.g loss of actuator power (Fig. 6.1). These actuator faults are modeled in a multiplicative representation. In fact, denoting that ūi is the output of i th faulty actuator , then:

ūi (t) = λ i u i (t) (6.2)
where λ i stands for the efficiency coefficient of the i th actuator and λ i is assumed to be constant. λ i = 1 implies that the i th actuator is fault-free, λ i = 0 mean that the i th actuator is in total failure. And 0 < λ i < 1 represents the fact that the fault of the ith acutator is a partial loss of control effectiveness, e.g if λ i = 0.8, the i th actuator loses 20% of its effectiveness.

It is worth noting also that even if λ i is assumed to be constant, the corresponding additive fault magnitude on ith actuator given by f i (t) = (1 -λ i )u i (t) is a time varying signal and depends on the value of the control input u i (t). Thanks to the multiplicative representation, the information about the actuator fault λ i is considered as constant or slow-varying and λi = 0 which will be used later for the extended system.

In the presence of the actuator faults, the input matrix B 2 becomes B 2 Λ where Λ ∈ R m×m is a diagonal matrix representing the impact factors of the actuator faults, i.e:

Λ = diag([λ 1 λ 2 ...λ m ])
Then, the following equation gives the representation of the faulty system subject to the actuator faults:

ẋ(t) = Ax(t) + B 2 Λu(t) + B 1 w(t) y(t) = Cx(t) (6.3)
Since Λ is a diagonal matrix, (6.3) can be rewritten as:

ẋ(t) = Ax(t) + B 2     u 1 u 2 . . . u m     U      λ 1 λ 2 . . . λ m      λ +B 1 w(t) (6.4)
The objective of this work is to estimate the vector λ = [λ 1 λ 2 ... λ m ] T where λ i represents the effectiveness factor of the actuator i th . The estimation, based on an extended switched observer, is presented in the sequel.

Switched LPV system

Thanks to the multiplicative fault representation, considering λi = 0, the system (6.4) can be augmented as follows: 6.5) where the dimension of the augmented system is n + m.

         ẋ λ = A B 2 U 0 0 x λ + B 1 0 w y = [C 0] x λ ( 
In order to estimate the vector λ, the system (6.5) must be observable or at least detectable. However, it can be seen that if the control input u i (t) = 0, then the fault information of the ith actuator λ i in (6.5) becomes unobservable. It makes the problem unfeasible in the observer design step. Thus, in this proposed method, the persistent excitation condition on the control input u is required. Moreover, an interesting remedy is to take into account the effect of the sign of u i (t) in the observer synthesis step, i.e the observer will be designed for different cases where the control inputs are positive and negative. To account for the change the sign of u i (t), the system will be rewritten as a switched system and a switched observer will be designed in the sequel. It is well known that in a real mechatronic system, the actuators always observer admit some physical constraints, i.e the control input u(t) satisfies the following saturation constraint: 6.6) where u i , u i are the lower, upper bounds of the ith actuator u i .

u(t) ∈ U = u ∈ R m |u i ≤ u i ≤ u i (
Moreover, since the control input u(t) is known, the system (6.3) can be represented as an LPV system by choosing u(t) as the vector of scheduling parameters. Let us rewrite u i (t) = |u i (t)|sign(u i (t)), and denote ρ i (t) = |u i (t)| as a scheduling parameter. Then,

u i (t) = ρ i (t)sign(u i (t)) = ρ i (t) if u(t)) ≥ 0 -ρ i (t) if u(t) < 0 (6.7)
Thus, the scheduling parameter vector ρ = [ρ 1 ρ 2 ... ρ m ] T is assumed to read for the following constraint: (6.8) where > 0, ρ i are the bounds of the parameter ρ i .

ρ(t) ∈ Ω = {ρ ∈ R m | ≤ ρ i ≤ ρ i }
The faulty system (6.4) is now rewritten as the following LPV system:

ẋ(t) = Ax(t) + B σ (ρ)λ + B 1 w(t) (6.9) 
where

B σ (ρ) = B 2     ρ 1 sign(u 1 ) ρ 2 sign(u 2 ) . . . ρ m sign(u m )     and λ = [λ 1 λ 2 ... λ m ] T .
The system (6.9) can then be augmented into the following form:

                 ẋ λ = A B σ (ρ) 0 0 Ae(ρ) x λ + B 1 0 w y = [C 0] Ce x λ (6.10)
The system (6.10) is actually a switched system where σ(t) is the switching rule that depends on the value of the function sign(u i (t)) and takes values on the discrete set {1, 2, ..., M }. M = 2 m is the number of subsystems of the switched system. Indeed, the matrix B σ (ρ) switches between different matrices and the switching moments depend on the sign of the actuators i.e. sign(u i (t)). For example, if we consider a system with 2 actuators (m = 2), the matrix B σ (ρ) belongs to the following set:

B 2 ρ 1 ρ 2 , B 2 -ρ 1 ρ 2 , B 2 ρ 1 -ρ 2 , B 2 -ρ 1 -ρ 2
Therefore, we can rewrite the system (6.10) in the following switched LPV system form: 6.11) where A e,σ (ρ) ∈ R (n+m)×(n+m) switches among the subsystems {A e,1 (ρ), A e,2 (ρ), ..., A e,M (ρ)}.

         ẋ λ = A e,σ (ρ) x λ + B 1 0 w y = C e x λ ( 

Problem Statement

The actuator fault estimation problem is recast into that of the parameter vector λ. To this aim, a switched LPV Extended State Observer (ESO) will be designed for the switched LPV system (6.11).

Then, the following detectability condition is assumed for the design of the ESO of extended LPV system (6.11):

A1: rank sI -A e,σ (ρ) 
C e = n + m, s > 0, ∀ρ ∈ Ω (6.12)

Remark 1. The observability for the LPV system is not a trivial problem because the variation of the parameter ρ(t) is considered in computing the observability matrix. Several definitions of observability for the LPV systems have been given in the literature such as Quadratic detectability [START_REF] Wu | Control of linear parameter varying systems[END_REF] in the sense of Lyapunov function or Structural Observability [START_REF] Toth | Modeling and identification of linear parameter-varying systems[END_REF]] (i.e. the observability matrix is full rank in function sense of ρ(t) but one can lose the observability in some frozen point).

Under the Assumption A1, the problem consists now in designing a switched LPV observer in order to estimate the effectiveness factors of the actuator faults. Therefore, considering the switched LPV system (6.11), the following switched LPV extended observer is proposed to estimate the system's state and the effectiveness coefficient vector λ : 6.13) From (6.11) and (6.13), the estimation error e(t) is calculated by: Problem definition: Let consider the switched LPV system (6.11). The system (6.13) is said to be an ESO for the system (6.11) if it satisfies the following conditions:

           ẋ λ = A e,σ (ρ) x λ + L σ (.)(y -ŷ) ŷ = C e x λ ( 
ė = ėx ėλ = A e,σ ( 
• when w(t) ≡ 0, the estimation errors (6.15) is asymptotically stable

• when w(t) = 0, the estimation error satisfies the following L 2 -induced gain performance criterion: 6.16) where . 2 stands for L 2 norm and z is given by: z = e if both state and fault estimation error are minimized z = [0 I m ]e if the fault estimation error only is to be minimized Therefore, the main problem now is to design the switched LPV observer (6.13). As mentioned previously, regarding to a switched observer, the main challenge is to ensure the stability requirement. To deal with, the main result presented in the the next section is a switched LPV observer with dwell-time. In order to ensure the stability of the switched observer, a piecewise linear in time Lyapunov function in quadratic form is used. The applied Lyapunov function is non-increasing at switching instants and is assigned seperately to each subsystem. During the dwell time, this function varies piecewise linearly in time and after the dwell time, it becomes time invariant. Such a Lyapunov function allows to derive the stability conditions for the switched LPV system. Moreover, the minimization of L 2 induced gain is performed in order to minimize the effect of disturbance on the estimation error.

min γ s.t sup w =0,w∈L 2 z 2 w 2 < γ ( 
6.3 Preliminaries on the stability of switched LPV system

Recall for the LTI case

This section is devoted to recall some results on the stability analysis for the continuous time, switched system by using the multiple Lyapunov function. The interested readers can refer to several works of [START_REF] Hespanha | Stability of switched systems with average dwell-time[END_REF], [START_REF] Liberzon | Switching in systems and control[END_REF]], [START_REF] Geromel | Stability and stabilization of continuous-time switched linear systems[END_REF], [START_REF] Allerhand | Robust stability and stabilization of linear switched systems with dwell time[END_REF].

Let us consider the following switched LTI system:

ẋ(t) = A σ(t) x(t),
x(0) = x 0 , (6.17)

where σ(t) is the switching signal and A σ(t) ∈ {A 1 , ..., A M } , A i ∈ R n×n , i = 1...M . Obviously, this model is discontinuous w.r.t A σ(t) since this matrix jumps instanteously from A i to A j for i = j.
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It is shown in [START_REF] Geromel | Stability and stabilization of continuous-time switched linear systems[END_REF] that the stability of this switched LTI system is ensured under a minimum dwell time i.e, if, for some T > 0, there exists a family of symmetric and positive Lyapunov matrices {P 1 , ...P M }, such that:

A i P i + P i A i < 0, ∀i = 1, ...M
e A i T P j e A i T -P i < 0, ∀i = j = 1, ...M (6.18)

Then the system is globally asymptotically stable for a dwell time greater than or equal to T . However, since the condition (6.18) is non convex in A i , it is not easy to generalize to a system with uncertainties or to an LPV system.

More recently, an alternative solution was proposed in [START_REF] Allerhand | Robust stability and stabilization of linear switched systems with dwell time[END_REF] to deal with both nominal and uncertain systems using a piecewise linear in time Lyapunov quadratic function. This Lyapunov function is non-increasing at the switching instants and is assigned to each subsystem. This method could be more conservative than the one presented in [START_REF] Geromel | Stability and stabilization of continuous-time switched linear systems[END_REF], however it provides an efficient way to deal with uncertainties and LPV systems. Inspired by this approach, one will use this kind of Lyapunov function in order to guarantee the stability of the switched LPV system in the next section.

Stability condition for switched LPV system

Now, the LPV case is taken into account with the following switched LPV system:

ẋ(t) = A σ(t) (ρ)x(t),
x(0) = x 0 , (6.19) where σ(t) is the switching signal, ρ = [ρ 1 ρ 2 . . ρ m ] T ∈ Ω ⊂ R m is the scheduling parameter vector and A σ(t) (ρ) ∈ {A 1 (ρ), ..., A M (ρ)} , A i ∈ R n×n , i = 1...M .

Let consider the a piecewise linear in time Lyapunov candidate function V (x(t)) = x (t)P σ(t) x(t) where P σ(t) is given as: 6.20) where i = 1, ...M with M is number of subsystems, i 0 = σ(0). τ 1 , τ 2 , ... are the switching instants. T is the dwell time satisfying τ s+1 -τ s ≥ T , and τ s,k = τ s + k(T /G) for k = 0, ...G , τ s = τ s,0 , τ s,G = τ s + T ). P i,k are symmetric matrices of compatible dimensions, where G is an integer that may be chosen a priori.

P σ(t) (t) =        P i,k + (P i,k+1 -P i,k ) t -τ s,k T /G := Pi,k , if t ∈ [τ s,k , τ s,k+1 ) P i,G if t ∈ [τ s,G , τ s+1,0 ) P i 0 ,G if t ∈ [0, τ 1 ) ( 
The switched LPV system (6.19) is asymptotically stable if all subsystems are stable and the Lyapunov function V (x(t)) is non-increasing at the switching instants, i.e: A i (ρ) P σ (t) + P σ (t)A i (ρ) + Ṗσ (t) < 0, ∀i = 1, ...M (6.21)

V (x(τ k )) ≤ V (x(τ - k )
), τ k is the switching instant (6.22) In order to transform these conditions into convex conditions, the following lemma is used: observer Lemma 6. 3.1 ([Boyarski and Shaked 2009]). Assume that for some interval t ∈ [t 0 t f ], and δ = t f -t 0 , there exist two symmetric positive matrices P 1 , P 2 of appropriate dimensions that satisfy the following conditions:

P 2 -P 1 δ + P 1 A + A P 1 < 0, P 2 -P 1 δ + P 2 A + A P 2 < 0 (6.23)
Then, for the system ẋ = Ax, the Lyapunov function V (t) = x (t)P (t)x(t), where P (t) =

P 1 + (P 2 -P 1 ) t -t 0 δ , is strictly decreasing over the interval [t 0 t f ].
Then, by using the formula of P σ (t) in ( 6.20) and applying the polytopic approach for the LPV system, the following theorem gives stability conditions for the switched LPV system (6.19): Theorem 6.3.1. Consider the switched LPV system (6.19), if there exists a collection of matrices P i,k > 0, k = 0, ...G, i = 1, ...M , of appropriate dimensions and G is a prescribed integer, such that for all i = 1, ..M and j = 1, ...N , (N = 2 m : number of the vertices of the polytope), the following LMIs hold:

(P i,k+1 -P i,k ) T /G + A (j) i P i,h + P i,h A (j) i < 0, (6.24) 
k = 0, ...G -1, h = k, k + 1 A (j) i P i,G + P i,G A (j) 
i < 0 (6.25) P i,G -P l,0 ≥ 0 ∀l = 1, ..i -1, i + 1, ...M. (6.26) then the switched LPV system (6.19) is asymptotically stable.

Proof: The switched LPV system (6.19) is asymptotically stable if:

V (x) = x(t) (A i (ρ) P σ (t) + P σ (t)A i (ρ) + Ṗσ (t))x(t) < 0 (6.27)

V (x(τ k )) ≤ V (x(τ - k )
), τ k is the switching instant (6.28) It is assumed that at switching instant τ k (see Fig. 6.2 avec τ k = τ s+1,0 ) , the system switches from A i (ρ) to A l (ρ), i.e we can write the Lyapunov function at instant τ k as:

V (x(τ - k )) = x(τ k )P i,G x(τ k ), V (x(τ k )) = x(τ k )P l,0 x(τ k ) (6.29)
Then the non-increasing Lyapunov function condition V (x(τ k )) ≤ V (x(τ - k )) holds if P i,G -P l,0 ≥ 0 which is actually (6.26). Now, we apply Lemma 6.3.1 for each switching instant τ s . Indeed, during the dwell time, considering the time interval [τ s,k , τ s,k+1 ) (see Fig. 6.3), the Lyapunov matrix P σ (t) changes linearly from P i,k to P i,k+1 . Then from Lemma 6.3.1 with δ = τ s,k+1 -τ s,k = T /G and the polytopic approach for LPV system, (6.27) is true if (6.24) holds: After the dwell time and before the next switching instant, i.e t ∈ [τ s,G , τ s+1,0 ) (see Fig. 6.4), the Lyapunov matrix P σ (t) becomes time invariant P i,G , then (6.27) holds if A i (ρ) P i,G + P i,G A i (ρ) < 0 that is equivalent to (6.25) thanks to polytopic approach for LPV system. Remark 12. Such a choice of piecewise Lyapunov function as mentioned above gives an efficient way to deal with the stability analysis problem for the class of switched LPV system. Indeed, the Lyapunov matrix P depends on time but not on parameter ρ(t), then the derivative of P depends on the varition of the piecewise Lyapunov function during the dwell time and not on ρ(t). An alternative solution is to use the Lifted Conditions with Lyapunov dependant parameter function to convexify the stability condition as in [START_REF] Briat | Convex conditions for robust stabilization of uncertain switched systems with guaranteed minimum and mode-dependent dwell-time[END_REF]].

(P i,k+1 -P i,k ) T /G + A (j) i P i,h + P i,h A (j) i < 0, k = 0, ...G -1, h = k, k + 1
Extension to the observation problem: Chapter 6. Actuator fault estimation based on a switched LPV extended state observer

Consider the system (6.19) and y = C σ(t) (ρ)x ∈ R p is the output vector of the system. Then, the states of the system (6.19) are reconstructable if there exist a matrix P σ(t) (t) ∈ R n×n of form of (6.20) and a function L σ(t) (t) ∈ R n×p , such that:

P σ (t)[A σ (ρ) -L σ (t)C σ (ρ)] + [A σ (ρ) -L σ (t)C σ (ρ)] P σ (t) + Ṗσ (t) < 0 (6.30)
The following theorem allows to solve the problem in (6.30):

Theorem 6.3.2. Consider the switched LPV system (6.19), if there exists a collection of matrices P i,k > 0, Y i,k , k = 0, ...G, i = 1, ...M , of appropriate dimensions and G is a prescribed integer, such that for all i = 1, ..M and j = 1, ...N , (N = 2 m : number of the vertices of the polytope), the following LMIs hold: (6.33) then the states of the system (6.19) are reconstructable. And L σ(t) (t) is given by:

(P i,k+1 -P i,k ) T /G + A (j) i P i,h -C i Y i,h + P i,h A (j) i -Y i,h C i < 0, (6.31) k = 0, ...G -1, h = k, k + 1 A (j) i P i,G -C i Y i,G + P i,G A (j) i -Y i,G C i < 0 (6.32) P i,G -P l,0 ≥ 0 ∀l = 1, ..i -1, i + 1, ...M.
L σ(t) (t) = P σ(t) (t) -1 Y σ(t) (t) =      P -1 i,k Ŷi,k , if t ∈ [τ s,k , τ s,k+1 ) P -1 i,G Y i,G , if t ∈ [τ s,G , τ s+1,0 ) P -1 i 0 ,G Y i 0 ,G , if t ∈ [0, τ 1 ) (6.34) 
where: 6.35) .

Y σ(t) (t) =        Y i,k + (Y i,k+1 -Y i,k ) t -τ s,k T /G := Ŷi,k , if t ∈ [τ s,k , τ s,k+1 ) Y i,G if t ∈ [τ s,G , τ s+1,0 ) Y i 0 ,G if t ∈ [0, τ 1 ) ( 
Proof: The proof can be infered easily from the theorem 6.3.1.

Switched LPV observer under a dwell-time constraint

In this section, the design of the switched observer using the dwell time constraint is presented.

Considering the switched system (6.11), as presented in section 6.2. The following switched LPV extended observer is proposed to estimate the system's state and the effectiveness coefficient vector λ : (6.37) where B 1e = B 1 0 and L σ (t) is the observer gain which has to be determined. Now, regarding to the Problem definition in section 2, and thank to the Bounded Real Lemma and the Polytopic approach, the following theorem allows to compute the observer gain.

ẋ λ = A e,σ ( 
Theorem 6.4.1. Consider the switched system (6.11) and the switched extended observer (6.36). If there exists a collection of matrices P i,k > 0, Y i,k , k = 0, ...G, i = 1, ...M , of appropriate dimensions and G is a prescribed integer, such that for all i = 1, ..M and j = 1, ...N , (N = 2 m : number of the vertices of the polytope), the following LMIs hold:

    (P i,k+1 -P i,k ) T /G + He[P i,h A (j) e,σ -Y i,h C e ] B 1e P i,h -γ 2 I I 0 -I     < 0 (6.38) for k = 0, ...G -1, h = k, k + 1,   A (j) e,σ P i,G -C e Y i,G + P i,G A (j) e,σ -Y i,G C e B 1e P i,G -γ 2 I I 0 -I   < 0 (6.39) P i,G -P l,0 ≥ 0 ∀l = 1, ..i -1, i + 1, ...M. (6.40) then L σ(t) (t) = P σ(t) (t) -1 Y σ(t) (t) =      P -1 i,k Ŷi,k , if t ∈ [τ s,k , τ s,k+1 ) P -1 i,G Y i,G , if t ∈ [τ s,G , τ s+1,0 ) P -1 i0,G Y i0,G , if t ∈ [0, τ 1 ) (6.41)
is the gain of the extended observer (6.36) and the error estimation asymptotically converges to zero for a dwell time of T , where: 6.42) Proof: Let V (e(t)) = e (t)P σ (t)e(t) be the Lyapunov candidate function for the estimation error system (6.37) where P σ (t) is a piecewise linear in time Lyapunov matrix defined as in (6.20). From the Bounded Real Lemma, the condition (6.16) is satisfied if the following condition holds:

Y σ(t) (t) =        Y i,k + (Y i,k+1 -Y i,k ) t -τ s,k T /G := Ŷi,k , if t ∈ [τ s,k , τ s,k+1 ) Y i,G if t ∈ [τ s,G , τ s+1,0 ) Y i0,G if t ∈ [0, τ 1 ) ( 
V + e e -γ 2 w w < 0 (6.43)

i.e: 6.46) hold for i = 1, 2...M .

i,k ) T /G B 1e P i,h -γ 2 I I 0 -I     < 0 (6.45) holds for h = k, k + 1, i = 1, 2...M , k = 0, ...G -1. and   A e,σ (ρ) P i,G -C e Y i,G + P i,G A e,σ (ρ) -Y i,G C e B 1e P i,G -γ 2 I I 0 -I   < 0 ( 
The equation (6.45) guarantees that the Lyapunov function V σ (t) decreases and that (6.43) holds during the time intervals t ∈ [τ s,0 , τ s,G ). The LMIs (6.46) ensure that V σ (t) decreases and that (6.43) holds after the dwell time and before the next switching instant, i.e t ∈ [τ s,G , τ s+1,0 ).

From the definition of P σ (t), consider that at instant τ k , that the system switches from the mode i to the mode l. To guarantee the Lyapunov function is non-increasing at the switching instants, we must ensure: (6.47) Now, in order to resolve the LMIs in (6.45), (6.46), we apply the polytopic solution for the LPV system where the polytope is given by Ω ρ = ρ ρ and we obtain the LMIs in (6.38), (6.39).

P i,G -P l,0 ≥ 0 ∀l = 1, ..i -1, i + 1, ...M.
Extension with a decay rate on the convergence:

The next result extends the previous one, imposing a prefixed decay rate on the convergence of the estimation error. Theorem 6.4.2. Consider the switched system (6.11) and the switched observer (6.36). If there exists a collection of matrices P i,k > 0, Y i,k , k = 0, ...G, i = 1, ...M , of appropriate dimensions, G is a prescribed integer, and a positive scalar β such that for all i = 1, ..M and j = 1, ...N , (N = 2 m : number of the vertices of the polytope), the following LMIs hold: 6.48)

    (P i,k+1 -P i,k ) T /G + He[P i,h A (j) e,σ -Y i,h C e ] + 2βP i,h B 1e P i,h -γ 2 I I 0 -I     < 0 ( 
for k = 0, ...G -1, h = k, k + 1,   A (j) e,σ P i,G -C e Y i,G + P i,G A (j) e,σ -Y i,G C e + 2βP i,G B 1e P i,G -γ 2 I I 0 -I   < 0 (6.49)
Chapter 6. Actuator fault estimation based on a switched LPV extended state observer to the switching signal σ(t) as follows:

                   A e,σ (ρ) = A B σ (ρ) 0 2×2 0 2×2 , B σ (ρ) ∈ B 2 × ρ 1 ρ 2 , -ρ 1 ρ 2 , ρ 1 -ρ 2 , -ρ 1 -ρ 2 Ce = 1 1 0 0 1 -1 0 0
Moreover, by using the polytopic approach, at each mode, one has four different matrices corresponding to four vertices of the polytope

Ω ρ = ρ 1 ρ1 ∨ ρ 2 ρ2 .
The assumption A1 is fulfilled. Then, in order to estimate the vector of effectiveness factors, the switched LPV observer is designed using the observer design procedure presented in Section 6.4.

Let us choose:

G = 1, T = 0.2, β = 1e -4
By solving the optimization problem (6.51) with LMIs (6.48)-( 6.50) for the four modes corresponding to A e,1 (ρ), A e,2 (ρ), A e,3 (ρ), A e,4 (ρ) to obtain the matrices P i,k , Y i,k , i = 1, 2, 3, 4 and k = 0, 1, then the gain of the switched observer is calculated by L σ (t) = P σ (t) -1 Y σ (t).

The minimal γ satisfying the optimization problem (6.51) is γ = 0.195.

In order to analyze the achieved disturbance decoupling, we consider the Bode diagrams (given in Fig. 6.5) of the transfer functions between the disturbance w and the estimation error e on each state of the augmented system (x 1 , x 2 , and λ 1 , λ 2 ). These results emphasize the attenuation of the disturbance effect on the estimation error, since the disturbance amplification over the whole frequency range is very small when the magnitude in dB is negative.

Simulation results

Fig. 6.6 shows the disturbance w(t), the control inputs u 1 , u 2 , the correspondant scheduling parameters ρ 1 , ρ 2 and the switching signal σ(t). Fig. 6.7 plots the estimation of the system state. Fig. 6.8 shows the estimation of the effectiveness factors λ 1 , λ 2 . Obviously, despite of the input disturbance w(t), the switched observer allows to have a good estimation of both the system states and the coefficients λ 1 , λ 2 .

Conclusion

In this chapter, the actuator fault estimation problem has been solved within the LPV approach. The actuator faults are modeled in a multiplicative way by using the effectiveness Fault estimation and Fault Tolerant Control for the semi-active suspension system 

Introduction

This chapter presents a fault estimation and a fault tolerant control for the semi-active suspension system. Some results in this chapter were presented in [Nguyen, Sename, andDugard 2016] (3rd SYSTOL, 2016)and [Nguyen, Sename, and Dugard 2015c] (9th SAFEPROCESS, 2015).

In the automotive field, the demand is now concerned with safer and more comfortable vehicles. Among all sub-systems impacting the vertical vehicle dynamics, the supension systems play a key role since they ensure the link between the wheels and the chassis (see [START_REF] Fischer | Mechatronic semi-active and active vehicle suspensions[END_REF]). In particular, as explained before, semi-active suspension systems are 156 Chapter 7. Fault estimation and Fault Tolerant Control for the semi-active suspension system efficient actuators that can considerably improve not only passengers comfort but also car road holding.

However such smart subsystems need to be reliable to spread across the market. In particular, it has been noted that semi-active dampers are more susceptible to faults than their traditional (passive dampers) counterpart. Therein, oil leakage is the most common fault and its induced effect is a reduction of the damping force. In this regard, a control reconfiguration is indispensable if one wants to prevent handling and comfort deterioration. To this aim, the fault information is required and the damper fault estimation becomes a key step when designing a Fault Tolerant Control (FTC) to preserve the vehicle performance.

The main contribution of this chapter is to present an application of FD/FTC for the semi-active suspension system (Fig. 7.1). The considered suspension system is assumed to be subject to a fault on the damper actuator. The problem is then is solved in two main steps:

Suspension FTC Controller

Damper Fault Estimation

Reconfiguration mechanism

Vehicle

Road profile FTC r

Damper Actuator

Fault Tolerant Strategy Fault Diagnosis • Fault Diagnosis: The damper fault is identified and its magnitude is estimated

• Fault Tolerant Design : Thanks to the fault information obtained from the Fault Diagnosis step, the controller is reconfigured to be adapted to the presence of the damper fault and to minimize the performance deterioration of the suspension system.
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During the fault estimation step, the damper fault is firstly estimated using a switched LPV observer (approach developped in the last chapter: Method 1). Then, this approach will be compared with two other approaches:

• Method 2: The damper fault is represented as an additive fault, then a fast fault adaptive estimation approach (FAFE approach) is used. Such an approach is inspired and extended from the method presented in [START_REF] Zhang | Adaptive observer-based fast fault estimation[END_REF]].

• Method 3: The damper fault is modeled in a multiplicative way using a effectiveness coefficient. Then, this coefficient can be estimated by a parametric adaptive observer (AO approach) [START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems[END_REF]].

As for the Fault Tolerant design step, an LPV fault-scheduling suspension control strategy is proposed. The achievable domain of the semi-active damper is modified in the presence of the damper fault. Then the controller is redesigned according to the new domain to satisfy the dissipativity constraints of faulty dampers and to get good performances for the vehicle dynamic.

The rest of this chapter is organized as follows. The next section presents the different methods to estimate damper actuator fault on a quarter car model. The results of the fault estimation are also given in this section. Section 3 details the way to design an LPV fault tolerant suspension control. The simulation results show the efficency of the propopsed FTC/LPV controller. Conclusions and discussions are given in the last section. 

m s zs = -k s (z s -z us ) -F sa m us zus = k s (z s -z us ) + F sa -k t (z us -z r ) (7.1)
where F sa is the semi-active damper force, which can be represented by a linear model:

F sa = c żdef = c( żs -żus ) (7.2)
where c is the damping coefficient that varies in real-time for control purpose, while satisfying the dissipativity constraints c min ≤ c ≤ c max .

Let us assume now that a fault occurs on the semi-active damper e.g an oil leakage which induces the effectiveness loss of the damper. Denoting α the efficiency loss coefficient for the damper, and F sa (t) the force of the faulty damper, then one can write:

F sa (t) = (1 -α)F sa (t) (7.3)
In this study, α is considered as a constant parameter. For example α = 0 corresponds to a healthy damper, α = 0.8 corresponds to that the damper loses 80% of its efficiency. α = 1 represents a total damper failure. Note that (7.3) is a multiplicative fault modeling, but an additive fault modeling could be also used (see section 7.2.3).

The problem consists now in estimating the damper fault, i.e the coefficient α (that, by abuse of language, will be refered to as the damper fault) which can be done following several approaches: a switched LPV observer (section 7.2.2), a fast adaptive fault estimation (FAFE) approach (where an additive fault modeling is used, see section 7.2.3) and an adaptive observer (section 7.2.4).

Method 1: Application of the switched LPV observer approach

This section briefly presents the method presented in the last chapter, to estimate the damper fault using a switched LPV observer. For this method, we consider directly the total damper force as the control input u(t) , i.e: u(t) = F sa (t). Let rewrite a faulty damper force as:

F sa (t) = (1 -α)F sa (t) = λF sa (t) = λu(t) ( λ = 1 -α) (7.4)
This leads to the state space representation of the quarter vehicle model (7.1) as follows:

ẋ(t) = Ax(t) + B 2 λu(t) + B 1 w(t) (7.5) y(t) = Cx(t)
x = (z s , żs , z us , żus ) T is the state vector, w = z r the disturbance input, u the control input and λ the damper fault information. y = [z def , żdef , z s ] is the output vector.

A =      0 1 0 0 -ks ms 0 ks ms 0 0 0 0 1 ks mus 0 -ks+kt mus 0      , B 1 =      0 0 0 kt mus      , 7.
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B 2 = 0 -1 ms 0 1 mus T , C =   1 0 -1 0 0 1 0 -1 1 0 0 0  
Let consider now the faulty damper system (7.5). If the control input u(t) = 0, the damper fault information λ in (7.5) becomes unobservable. Thus, it is assumed that the control input u(t) is persistent exciting. Moreover, as seen in the last chapter, we will consider a switched model depending on the sign of u(t) in the observer synthesis step. Now, since the control input u(t) is known, the system (7.5) can be represented as an LPV system by choosing u(t) as a scheduling parameter. Let us rewrite u(t) = |u(t)|sign(u(t)), and denote ρ(t) = |u(t)| as a scheduling parameter. Then,

u(t) = ρ(t)sign(u(t)) = ρ(t) if u(t)) ≥ 0 -ρ(t) if u(t) < 0 (7.6)
ρ is assumed to satisfy: ≤ ρ ≤ ρ m , where > 0, ρ m is the maximal bound of the parameter ρ. The system (7. 5) is now rewritten as the following LPV system:

ẋ(t) = Ax(t) + B σ (ρ)λ + B 1 w(t) (7.7)
where B σ (ρ) = B 2 ρsign(u(t)).

Since λ is constant, the original system (7.5) can be augmented in the following form:

ẋ λ = A B σ (ρ) 0 0 Ae(ρ) x λ + B 1 0 w (7.8) y = [C 0] Ce x λ
The system (7.8) is actually a switched system where σ(t) is the switching rule that depends on the value of the function sign(u(t)). Actually, one has B σ (ρ) ∈ {-B 2 ρ, B 2 ρ}. Thus, (7.8) can be rewritten in the following switched LPV system form:

ẋ λ = A e,σ (ρ) x λ + B 1 0 w (7.9) y = C e x λ
where A e,σ (ρ) switches among two subsystems

A -B 2 ρ 0 0 , A B 2 ρ 0 0 .
Consider the switched LPV system (7.9). The following switched LPV extended observer is proposed to estimate the system's state and the effectiveness coefficient λ :

ẋ λ = A e,σ (ρ) x λ + K σ (t)(y -ŷ) (7.10) ŷ = C e x λ suspension system
From (7.9) and (7.10), the estimation error e(t) is given by:

ė = ėx ėλ = (A e,σ (ρ) -K σ (t)C e ) e x e λ + B 1e w
where B 1e = B 1 0 and K σ (t) is the observer gain which has to be determined. The design of the LPV observer (7.10) is based also on the H ∞ performance since one aims at minimizing the effect of the disturbances w on the estimation error.

Therefore, in order to design the LPV switched observer, one can use the theorem 6.4.1 as seen in Chapter 6, section 6.4. This allows to derive the estimation of λ, and the damper fault estimation is given by: α = 1 -λ.

Method 2: FAFE approach

In this section, an additive modeling for damper fault is considered. In fact, let us decompose the total semi-active damper force as: F sa (t) = c 0 żdef (t) + u(t), where c 0 = (c min + c max )/2 is the nominal damping coefficient, żdef the deflection speed and u(t) the control input corresponding to the varying damping property of the semi-active force F sa in (7.2). Then, the faulty damper force in (7.3) can be rewritten as follows: 7.11) where f (t) = α(c 0 żdef (t) + u(t)) is the loss of damper force. Note that α is slowly varing or constant, but the additive fault f = α(c 0 żdef + u) could be time varying even if α is constant. Now, the state space representation of the quarter car model (7.1) considering a faulty semi-active damper, is given as follows:

F sa (t) = (1 -α)F sa (t) = c 0 żdef (t) + u(t) -f (t) ( 
ẋ(t) = Ax(t) + B 1 w(t) + B 2 u(t) + Ef (t) (7.12) y(t) = Cx(t)
where x = (z s , żs , z us , żus ) T is the state vector, w = z r the disturbance input, u the control input and f the damper fault. y = [z def , żdef , z s ] is the output vector. Such a choice of y allows to satisfy Assumption 1 presented later.

                           A =     0 1 0 0 -ks ms -c0 ms ks ms c0 ms 0 0 0 1 ks mus c0 mus -ks+kt mus -c0 mus     , B 1 =     0 0 0 kt mus     , B 2 =     0 -1 ms 0 1 mus     , E =     0 1 ms 0 -1 mus     , C =   1 0 -1 0 0 1 0 -1 1 0 0 0   (7.13)
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The fault estimation problem consists in providing an estimation f (t) of the fault f and the estimation of α can be given by: α = f /F sa .

Since f (t) can be fast time varying, in order to get a good estimation of the damper fault, the Fast Adaptive Fault Estimation (FAFE) approach proposed in [START_REF] Zhang | Adaptive observer-based fast fault estimation[END_REF]], [START_REF] Rodrigues | Actuator fault estimation based adaptive polytopic observer for a class of LPV descriptor systems[END_REF]] is used. Moreover, since the vehicle dynamic is affected by the road disturbance, an extended result using an H ∞ performance is used to attenuate the disturbance effects on the state and fault estimation error (this allows to improve the quality of the estimation).

Let us consider now the state space repesentation (7.12) with the additive fault f . The following assumptions are satisfied:

• Assumption 1 : rank (CE) = rank(E), and the invariant zeros of (A,E,C) are in the left half plane.

• Assumption 2 : The fault f (t) and its time derivative are norm bounded i.e:

0 ≤ f (t) < β 1 and 0 ≤ ḟ (t) < β 2 with 0 ≤ β 1 , β 2 < ∞.
Let us note that the state space repesentation (7.12) includes the road disturbance w = z r which is an unknown input disturbance in the suspension system. Therefore, while estimating the actuator fault f (t), one needs to take into account the effect of this unknown input. To deal with this problem, an unknown input adaptive fault observer is proposed as:

ż(t) = N z(t) + Gu(t) + Ly(t) + T 1 E f (t) x(t) = z(t) + T 2 y(t) (7.14) ŷ(t) = C x(t)
where z ∈ R n is the state vector of the observer, x ∈ R n the estimated state vector. ŷ ∈ R p is the estimated output vector and f (t) ∈ R r is the estimation of the damper fault f (t). N, G, L, T 1 , T 2 are observer matrices ensuring the convergence of x (reps. f ) toward x (reps. f ).

Let us denote e x (t) = x(t) -x(t), e y (t) = y(t) -ŷ(t), e f (t) = f (t) -f (t) as the state, output and fault estimation errors respectively.

Since rank[ I C ] = n, there exist a full-row rank matrix [T 1 T 2 ] such that:

T 1 + T 2 C = I then from (7.14), e x = (I -T 2 C)x -z = T 1 x -z and ėx = T 1 ẋ - ż = T 1 (Ax + B 1 w + B 2 u + Ef ) -(N z + Gu + Ly + T 1 E f ) suspension system
After some manipulations, one gets:

ėx = N e x + T 1 Ee f + + (T 1 A -N T 1 -LC)x + (T 1 B 2 -G)u + T 1 B 1 w
If the following conditions hold:

T 1 A -N T 1 -LC = 0 T 1 B 2 -G = 0,
then, the estimation error dynamic is given by:

ėx = N e x + T 1 Ee f + T 1 B 1 w (7.15) e y = Ce x Since T 1 = I -T 2 C, then by denoting K = N T 2 -L, one has N = T 1 A + KC.
Equation ( 7.15), governing the state and fault estimation errors, is affected by the unknown road disturbance w. Therefore two cases can be considered:

• If T 1 B 1 = 0, the effect of the road disturbance on the estimated states is cancelled.

This condition is equivalent to (I -T 2 C)B 1 = 0, where T 2 has to be determined. This equation is solvable if and only if rank(CB 1 ) = rank(B 1 ).

• Otherwise, the disturbance effect has to be minimized and the problem is to find N stable such that the effect of w on e y is minimized.

In order to minimize the disturbance effect on the estimation error using an H ∞ performance index, the Bounded Real Lemma is used to design the observer.

Then, the following theorem gives an extension to the results in [START_REF] Zhang | Adaptive observer-based fast fault estimation[END_REF]] and aims at minimizing the disturbance effect on the estimation error and ensuring the convergence of the estimation error in (7.15): Theorem 7.2.1. Consider the system (7.12) and the observer (7.14). Under assumptions 1-2 and given scalars σ, µ, γ 2 > 0, if there exist symmetric positive definite matrices Q, P 1 , and matrices W, U such that the following conditions hold: 7.16) Proof:

     He[QT 1 A + W C] + C T C - 1 σ (T 1 E) T [QT 1 A + W C] - 2 σ E T T T 1 QT 1 E + 1 σµ P 1 (T 1 B 1 ) T Q - 1 σ (T 1 B 1 ) T QT 1 E -γ 2 2 I      < 0 ( 
and E T T T 1 Q = U C ( 
The following lemma will be used in the proof:

Lemma 1: Given a scalar µ > 0, a symmetric matrix P 1 > 0, the following inequality holds:

2x T y ≤ 1 µ x T P 1 x + µy T P -1 1 y, x, y ∈ R n (7.19)
Let us consider the following Lyapunov candidate function:

V (e x , e f ) = e T x (t)Qe x (t) + 1 σ e T f (t)Γ -1 e f (t) (7.20)
Then, the L 2 induced gain conditon e y 2 < γ 2 w 2 is satisfied if:

V + e T y e y -γ 2 2 w T w < 0 (7.21)

Now, from the equation ( 7.15), the inequality (7.21) is developped as follows:

( 7.22) Since: ėf = ḟḟ = ḟ -ΓU C( ėx + σe x ), and E T T T 1 Q = U C, then (7.22) becomes:

N e x + T 1 Ee f + T 1 B 1 w) T Qe x + e T x Q(N e x + T 1 Ee f + T 1 B 1 w) +2 1 σ e T f Γ -1 ėf + e T x C T Ce x -γ 2 2 w T w < 0 ( 
e T x (N T Q + QN + C T C)e x - 2 σ e T f E T T T 1 QN e x - 2 σ e T f E T T T 1 QT 1 B 1 w - 2 σ e T f E T T T 1 QT 1 Ee f + 2e T x QT 1 B 1 w + 2 σ e T f Γ -1 ḟ -γ 2 2 w T w < 0 (7.23)
Now by applying the lemma 1 and note that ḟ < β 2 , one has: 7.24) (or equivalent: ξ T ∆ξ < 0, where ξ = [e T x e T f w T ] T ). Note that N = T 1 A + KC and by denoting W = KQ, the inequality (7.24) is equivalent to the inequality (7.16). .

2 σ e T f Γ -1 ḟ ≤ 1 µσ e T f P 1 e f + µ σ ḟ T Γ -T P -1 1 Γ -1 ḟ ≤ 1 µσ e T f P 1 e f + µ σ β 2 2 λ max (Γ -T P -1 1 Γ -1 ) Since P 1 , Γ > 0, then µ σ β 2 2 λ max (Γ -T P -1 1 Γ -1 ) > 0 and (7.23) holds if: ∆ =     N T Q + QN + C T C -1 σ N T QT 1 E QT 1 B 1 - 2 σ E T T T 1 QT 1 E + 1 σµ P 1 -1 σ E T T T 1 QT 1 B 1 -γ 2 2 I     < 0 ( 
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Then, the estimated fault can be deduced from (7.18) as follows : 7.25) where t f is the time since fault occurs. Therefore, to estimate the fault, one needs to solve the two conditions (7.16), (7.17) in Theorem 1. Solving this problem, the observer matrices can be computed by: N = T 1 A + KC, K = Q -1 W and the estimation of the fault actuator is performed.

f (t) = ΓU e y (t) + σ t t f e y (τ )dτ ( 

Method 3: Adaptive Observer (AO) approach

This part shows the procedure to estimate a multiplicative damper fault α. Since α is constant (or slowly varying), the fault estimation can be considered as a parameter estimation problem. This problem can be solved based on an adaptive observer for joint state-parameter estimation [START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems[END_REF]]. However, therein, the effect of the disturbances is not taken into account explicitly. Moreover, regarding to vertical vehicle dynamics, the system is always affected by the unknown road disturbances. Therefore, the developements in [START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems[END_REF]] are adapted to our problem and applied for the automotive suspension systems. An H ∞ performance is here proposed to attenuate the disturbance effects on the state and fault estimation. Now, the total damper force is still written as: F sa (t) = c 0 żdef (t) + u(t), where c 0 is the nominal damping coefficient and u(t) the control input corresponding to the varying damping property of the semi-active force F sa in (7.2). From (7.3), one has:

F sa (t) = (1 -α)F sa (t) = (1 -α)(c 0 żdef (t) + u(t)) (7.26)
Then the state space representation of the quarter car model (7.1) under the damper fault is here written as:

ẋ(t) = Ax(t) + B 1 w(t) + B 2 u(t) + Ψ(y, u, t)α (7.27) y(t) = Cx(t)
where x = (z s , żs , z us , żus ) T is the state vector, w = z r the disturbance input, u the control input and α the efficiency loss coefficient of the damper. y = [z def , żdef , z s ] is the output vector, Matrices A, B 1 , B 2 , C are given as in (7.13) and

Ψ = -0 -1 ms 0 1 mus T (c 0 żdef + u).
(7.28)

Let consider now the system (7.27) with the multiplicative fault α. Following [START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems[END_REF]], an adaptive observer of the following structure can be used to estimate both the states and the fault α:

   Υ(t) = (A -KC)Υ(t) + Ψ(y, u, t) ẋ = Ax + B 2 u + Ψ(y, u, t)α + K(y -C x) + Υ(t) α α = ΓΥ C Σ(y -C x) (7.29)
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where K is the adaptive observer gain to be determined. Γ, Σ are some bounded symmetric positive-definite matrices to be tuned. Since the quarter car model is a LTI system, K, Γ, Σ are considered constant. Υ(t) satisfies the following assumption:

Assumption 1 : Υ ∈ R n × R p is a matrix of signals generated by the ordinary differential equation (ODE) system Υ(t) = [A -KC]Υ(t) + Ψ(t) (7.30)
Morever, to apply the adaptive observer approach, an important required condition is that Ψ(y, u, t) in (7.28) is persistently exciting. It means that, in our case, there exist always a damper force c 0 żdef + u. It can be obtained if the vehicle is always subject to non-zero amplitude road disturbance (this is true in reality).

The following lemma is used to get the convergence of the adaptive observer.

Lemma 7.2.1. [START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems[END_REF]] Assume that Ψ(t) is persistently exciting, so that there exist positive constants θ, β, T and some bounded symmetric positive definitve matrix Σ ∈ R m × R m such that, for all t, the following inequalities hold:

θI ≤ t+T t Υ T (τ )C T (τ )Σ(τ )C(τ )Υ(τ )dτ ≤ βI (7.31) then the system: ż(t) = -ΓΥ C ΣCΥz(t) is exponentially stable
Let us denote e x (t) = x(t) -x(t), e α (t) = α(t) -α(t) the state and fault estimation errors respectively.

Since α is constant (or slowly varying), then α 0, then (see [START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems[END_REF]):

ėα = α -α = - α ėx = ẋ -ẋ = (A -KC)e x + Ψ(y, u)e α + B 1 w -Υ α (7.32)
Let us now define η as a combination of state and fault estimation errors, one has:

η = e x -Υe α , e x = η + Υe α η = ėx -Υe α + Υ α η = (A -KC)η + B 1 w (7.33) ėα = -ΓΥ C ΣCη -ΓΥ C ΣCΥe α (7.34)
As seen in the above equations, the estimation errors e x , e α are affected by the unknown road disturbance w(t). Then, the disturbance effect has to be minimized. It is worth noting that from the Lemma 1, the homogenous term of (7.34), i.e. ėα = -ΓΥ C ΣCΥe α is exponentially stable. Therefore, if η(t) -→ 0, then e α -→ 0, and e x = η + Υe α -→ 0 provided that Υ is bounded. However, due to the presence of the road disturbance w, in this work, we aim at minimizing the effect of w on the estimation errors e x , e α . To this aim, the effect of w on η in (7.33) is minimized as follows: suspension system Proposition 7.2.1. If there exists a matrix K ∈ R n×m so that the system:

η(t) = [A -KC]η(t) + B 1 w(t) (7.35)
satisfies the following conditions:

• when w(t) ≡ 0, the system is exponentially stable

• when w(t) = 0, the following L 2 -induced gain performance criterion is ensured : 7.36) where . 2 stands for L 2 norm or equivalenty, if there exist matries P > 0, Y such that

min γ s.t sup w =0,w∈L 2 η 2 w 2 < γ ( 
  A P + P A -C Y -Y C P B 1 I -γ 2 I 0 -I   < 0 (7.37)
then the state and fault estimation can be performed using the adaptive observer (7.29) and the gain K is given by P -1 Y .

Proof: Let us consider a candidate Lyapunov function V (η) = η T P η for the system (7.35). In order to satisfy the condition in (7.36), the following inequality should be ensured:

V + η T η -γ 2 w T w < 0 (7.38)
Applying the Bounded Real Lemma leads to:

  (A -KC) P + P (A -KC) P B 1 I -γ 2 I 0 -I   < 0 (7.39)
Let Y = P K, one obtains (7.37). If (7.37) holds, the effect of disturbances on the estimation error is minimized.

Finally, the observer design problem consists in solving the LMI (7.37). Then the observer gain K is computed by: K = P -1 Y , and the damper fault is given by α thanks to the adaptive observer.

Damper fault estimation results: Comparison of the 3 methods

The physical parameters characterizing the quarter car model are given by: m

s = 350kg, m us = 37.5kg, k s = 29500N/m, k t = 210000N/m, c min = 500, c max = 5000N m/s,
The following scenario is used to test the performance of the three observers. It is assumed that the vehicle runs at 30km/h over a sinusoid road profile w(t) = 0.03sin(2πt). Then, the 7.2. Damper actuator fault estimation for the semi-active suspension system167 fault-free semi-active damper force is given by: F sa = c żdef (blue line in Fig. 7.3), where c varies linearly such that 700 ≤ c ≤ 5000.

The vehicle has a faulty semi-active damper because of an oil leakage. For t = 0 -5s, the damper loses 20% of its total force (α = 0.2). For t = 5 -8s, an greater fault occurs with a damper loss of 60% (α = 0.6).

It is noted that all observers are activated from t = 0.6s. Fig. 7.3 plots the behavior of the fault-free damper force F sa (blue line), the faulty damper force F sa (green line) and the estimation of the additive fault f (t) (red line) using FAFE method. Fig. 7.4 shows the comparison of the damper fault estimation (i.e. the Table 7.1: RMS of error estimation FAFE AO LPVO 0.1003 0.0933 0.1967 estimation α of α is computed) using the 3 approaches: fast adaptive fault estimation approach (FAFE), Adaptive Observer approach (AO) and switched LPV observer approach (LPVO). The "reference" stands for the damper fault coefficient. Despite of the presence of road disturbances, the estimation errors still converge to zero (see Fig. 7.4). Even if all methods give a good estimation of α, the AO approach seems to be the best solution and provides a better estimation than LPVO and FAFE approaches do. For more details, the RMS of error signals is computed and is shown in the table 7.1.

For the second scenario, the damper oil is assumed to leak slowly from t = 0 -6s, and the suspension system The second test in shown in Fig. 7.5 considering a slowly varying damping efficiency coefficient α. Here, these observers are also activated from t=0.6s. Even if when the damper fault is not constant, all methods perform quite well.

Robustness evaluation:

It has to be noted also that the presented results are shown only in the normal conditions.
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However, in reality, vehicles in general can be considered as systems with large uncertainties. It can be seen that the vehicle mass can change dramatically, depending on working conditions (empty or overcharged). Therefore, in order to evaluate the robustness of the proposed damper fault estimation approaches, we consider a change in the sprung mass.

To this aim, a constant uncertainty is considered. Indeed, it is assumed that the sprung mass changes 25% w.r.t the design value. Now, to evaluate the robustness of the observer approaches, the following steps are performed:

• The observers ( using FAFE, AO, LPVO approaches) are designed with the nominal value of the sprung mass (as seen in last sections)

• Simulations are performed with uncertainties, i.e the sprung mass changes 25% w.r.t the design value. The simulation results is given in Fig. 7.6. It can be seen that in the presence of uncertainty, all the three approaches still give a good estimation of the damper fault. It shows the robustness of the presented approaches for the damper fault estimation.

Conclusion

The damper actuator fault estimation problem was solved in this section. The damper fault can be estimated from three different methods: FAFE approach, AO approach and LPVO approach. The simulation results proved the effectiveness of the proposed approaches for the fault estimation. In the sequel, a Fault Tolerant semi-active suspension Control will be designed.

Fault tolerant LPV semi-active suspension control

When a fault occurs on the damper actuator, the nominal controller may lose significantly its efficiency. Therefore, it is necessary to redesign another controller which has the capacities to take into account the effect of the damper malfunction and to enhance the vehicle dynamics in terms of comfort and road holding improvements. To this aim, the fault actuator estimation obtained from the last section will be used for the design of a Fault Tolerant Control.

Introduction and Problem statement

Regarding the semi-active suspension control problem, as mentioned before in the Part II, the main challenge is to take into account the dissipativity of the damper and the saturation in the synthesis step. If this dissipativity constraint is not considered, it is necessary to "saturate" the control input without any performance and stability guarantees, which is referred to as the "clipped" strategy in [START_REF] Savaresi | Semi-active suspension control design for vehicles[END_REF]). In ([Poussot-Vassal et al. 2008]), a kind of LPV gain-scheduling anti-windup strategy has been proposed to handle such a constraint. Indeed, the considered semi-active damper is simply modeled as a static map of the deflection speed/Force, i.e. lower and upper bounds of the achievable forces as shown on Fig. 7.7. This static model is thus a saturation function of the deflection speed, denoted as the dissipative domain D( żdef ). Moreover, a "smart" parameter is introduced, allowing to take the real abilities of the damper into account. This scheduling parameter is indeed defined as a function of the difference "ε" between the computed damper force F d (given by the controller) and the achievable one F ⊥ d , that was used to satisfy the dissipative damper constraints. Therefore, the scheduling parameter depends on D( żdef ). As shown in [Poussot-Vassal et al. 2008], this method gives very good results in nominal condition i.e without faults. However, if the damper is subject to faults e.g. oil leakages, the method becomes no longer appropriated. Indeed, for a faulty semi-active suspension, the available damping force (low and high level) is lower than that of a heathy damper and consequently the deflection motion increases. It means that the dissipative domain will change in the presence of fault. Therefore, this domain depends on both the deflection speed and the fault, and is called D f ( żdef , f ) as in Fig. 7.8 where f stands for a fault to the damper. As a consequence, if the saturation constraint is not adapted, then the dissipativity condition is not guaranteed. Indeed, the required force could be outside the range of the "real" faulty force (even if valid inside the range of the healthy force). In this case, the control performances are not ensured if some fault information is not included into the control design. To deal with this problem, here an LPV fault tolerant control is proposed to include the dissipativity constraints of the semi-active suspension in case of malfunction in order to achieve good performances.

FTC/LPV semi-active suspension control design

In this section, an LPV fault scheduling state feedback control is designed to ensure the damper dissipativity and to keep good dynamic performances of the faulty semi-active suspension system. Of course, some graceful performance degradations are allowed. The overall control structure is presented in Fig. (7.9). The LPV state feedback controller K receives the state vector ξ (which consists of the state of the quarter model and of the weighting function) as an input and computes the damping forces u to be added to the nominal damping forces c 0 żdef in order to improve the vehicle performances. This controller is scheduled by the parameter ρ that constraints the control signal or not, in such a way that the required forces F d remain semi-active and adapted to damper ability. The fault estimation algorithm, proposed in the last section, allows to estimate the fault of the damper. This estimated fault is used to modify the dissipativity domain D f ( żdef , f ) of the semi-active suspension allowing to schedule the parameter ρ. Some weighting functions are then taken into account in the controller synthesis to improve the performances of the vehicle:

• W zr is used to shape the road disturbance effects z r 

• W u (ρ) = ρ 2π50
s+2π50 is used to penalize (more or less) the control input signal amplification according to the ρ signal. More specifically, it is used to guarantee the semi-activeness (see next subsection).

Remark 13. The weighting functions W zs , W zus are obtained using the genetic algorithm as in [Do et al. 2011c] .

Remark 14. Another choice for semi-active suspension FTC were presented in [START_REF] Sename | LPV methods for fault-tolerant vehicle dynamic control[END_REF]. Therein, a non linear model of a semi-active damper is rewritten in the LPV form allowing to transform dissipativity of the semi-active damper into a problem of saturation of the control input. In the case of the damper malfuntion, a specific parameter for the loss of damping efficiency (estimated using the parity space approach) is used to schedule the suspension actuator work according to new damping characteristics and to ensure the performances of the suspension controller in terms of comfort and road holding.

Scheduling parameter

The method proposed in the previous work of [ Poussot-Vassal et al. 2008] for a quarter car model in order to fulfill the dissipativity constraint, aims at increasing or decreasing the gain of the weighting filter W u on the damper control signals, according to a given scheduling strategy. Indeed, if the required force computed by the controller is active, a scheduling parameter allows the controller to enhance or not the performance specifications, so that the required force remains dissipative. This method is extended here in the case of a faulty damper. Let us now define the clipping function for the faulty case.

Definition of Fault-scheduled clipping function:

Due to the controlled damper limitations (i.e. the effective force provided by the damper F d should lie in the dissipative domain), the following Fault-scheduled clipping function D f (F d , żdef , f ) is defined (see also illustration in Fig. 7.8) as: 7.40) where F d is the required force (given by the controller) and F ⊥ d is the orthogonal projection of F d on D f . This definition will inspire the form of the considered scheduling parameter used in the LPV control.

D f (F d , żdef , f ) → F d = F d if F d ∈ D f F ⊥ d if F d / ∈ D f ( 
More precisely, the ρ parameter is tuned as following:

• when ρ is low, W u (ρ) is small and it does not penalize the control signal u.

• when ρ is high, W u (ρ) is large and it attenuates the control signal u to remain in the semi-active domain.

For that purpose, the following scheduling strategy ρ(ε) is introduced: 7.42) where ε is the distance between the required force and the force projected on the adapted dissipative domain D f (according to the function of D f (F d , żdef , f ). µ is a design parameter that modifies the dead-zone of the ρ(ε) function (µ is chosen sufficiently low, e.g µ = 0.1).

ρ(ε) :=      ρ if ε < µ ρ + ρ-ρ µ (ε -µ) if µ ≤ ε ≤ 2µ ρ if ε > 2µ (7.41) ε = ||F d -F ⊥ d || 2 ( 
Remark 15.

• By this definition, ρ(ε) belongs to [ρ, ρ] which is essential in the LPV framework (ρ = 0.01, ρ = 1).

• ε = 0(⇔ F d = F ⊥ d ) means that the required force is outside the allowed range. Conversely, ε = 0(⇔ F d = F ⊥ d ) means that the force required by the controller is reachable for the considered semi-active actuator.

This varying parameter has been used to schedule the designed static state-feedback vehicle controller.

H ∞ /LP V control design for FTC

It is worth noting that, while the model car is a LTI system, the generalized plant (which consists of the suspension model and the weighting functions) is LPV because of parameter suspension system dependant weighting function W u (ρ). Then, the following parameter dependent suspension generalized plant (Σ v (ρ))is expressed by: Σ v (ρ) : The generalized plant (7.43) depends on the varying parameter (ρ), so Σ v (ρ) can be expressed as a polytopic system composed by N = 2 vertices:

Σ v (ρ) = |ρ -ρ| (ρ -ρ) Σ v (ρ) + |ρ -ρ| (ρ -ρ) Σ v (ρ) (7.44)
Now, let denote K(ρ) the parameter dependent state feedback controller of the generalized plant Σ v (ρ) such that the control input: u H∞ = K(ρ)ξ. Then, thanks to the Bounded Real Lemma (BRL), finding such a controller leads to solve the following optimization problem (see [START_REF] Scherer | Multiobjective outputfeedback control via LMI optimization[END_REF] where P is a symmetric positive definite matrix. The condition (7.45) is a Bilinear Matrix Inequality (BMI), by denoting Q(ρ) = K(ρ)P, one obtains the following LMI: FTC/LPV suspension controller computation procedures:

Step 1: Table 7.2 shows the parameters used to guarantee the performance specifications of the designed LP V /H ∞ fault tolerant controller.

Step 2: Solve the following optimization problem to find the controller: min P,Q γ, subject to (7.46), P > 0, ∀ρ ∈ Ω ρ = [0.01 1] (7.47)

It is important to note that the suspension controller is designed in the H ∞ /LP V framework for the polytopic system. Therefore, thanks to polytopic approach, one need only to solve the problem (7.47) at each vertex of the polytope (i.e ρ and ρ). It gives us γ opt = 6.58, Q(ρ), Q(ρ), P and the state feedback gains at each vertex is given by:

K(ρ) = Q(ρ)P -1 K(ρ) = Q(ρ)P -1
Then the LPV-FTC controller is a convex combination of the controllers computed at each vertex, so the control input can be expressed as:

u H∞ = |ρ -ρ| (ρ -ρ) K(ρ) + |ρ -ρ| (ρ -ρ) K(ρ) ξ (7.48)
Since the LMI problem is solved at all vertices of the polytope formed by the limit values of the varying parameter, the stability will be guaranteed for all trajectories of the varying parameter. The following scenario is used to test the performance of the proposed LP V /H ∞ fault tolerant control:

Simulation results

• The vehicle runs at 30km/h in a straight line on a dry road (µ = 1 stands for the adherence to the road).

• The vehicle has a faulty semi-active damper because of a oil leakage, 50% of reduction of the nominal damping force (α = 0.5), occurs at t=0.

• a 3cm bump on the wheel from t = 1 to 1.5s.

First, the damper fault actuator has been estimated using the same procedure presented in last section. Fig. 7.11 shows the estimation of damper fault which represents a loss of 50% damper effectiveness with respect to the fault-free damper case. Here, the given simulation results aim at proving that the fault-scheduled LPV strategy to handle a damper failure, improves the performances of the previous LPV semi-active control strategy in [Poussot-Vassal et al. 2008].

The results show a comparaison between classical semi-active LPV controller without fault tolerance features, i.e the dissipative domain is not adapted and it can induces an erroneous damping solution of control design problem (see Fig.7.10). It is denoted as "LPV nominal without FTC" in blue, and the proposed LPV-FTC in red. Figure 7.12 shows that in case .12: Sprung mass motion of faulty damper, the LPV-FTC mitigates the sprung mass displacement with respect to the LPV nominal without FTC. Indeed, when the vehicle meets a bump, the suspension force is required to reduce this motion. Because of a reduction of the nominal damping force, the LPV without FTC cannot compensate the fault. On the other hand, using a FTC strategy allows to reconfigure the damper force and attenuates the motion. The comfort of the passengers is then increased with respect to the not adapted case. The unsprung mass displacement and the suspesion displacement are plotted in Fig. 7.13 and Fig. 7.14. The LPV-FTC allows to reduce the unsprung mass motion as well as the relative deflection with respect to the LPV nominal without FTC. It demonstrates that the road holding is improved by the proposed method.

Different scenarios: In order to get a deeper analysis, some other simulations are carried out using "benchmark" road profiles employed in standard industrial tests: a random road profile and the road profile of the class ISO AB. The results are given in Fig. 7.15. Once again, we can see that the LPV FTC suspension controller provides a better performance than the case without taking into account the fault information in control design step.

Conclusion

This chapter has presented the fault estimation and a new LP V /H ∞ fault tolerant control for a faulty semi-active suspension system. When there exists a fault such as oil leakages in the damper, the damper fault can be estimated using several approaches: FAFE approach, AO approach and LPVO approach. Then, using the obtained fault information, the LPV FTC is designed to ensure the damper dissipativity constraint. This FTC strategy allows to reconfigurate online the provided suspension force according to fault situation, in order to achieve the designed performance objectives in both comfort and road holding. 

Conclusion and Perspectives

General Conclusions

The thesis has been addressed various studies aiming at enhancing the overall dynamics of the vehicle using the suspension systems. Several control and observation design problems have been solved through the use of different tools. The two main issues are the MIMO semiactive suspension control problem for the full vehicle dynamic and the Fault Estimation and Fault Tolerant Control of the Semi-Active Suspension Systems. In summary, the works of the thesis are presented in 3 main parts and 7 chapters as follows:

• In the first Chapter, a general introduction on the automotive suspension systems with different damper technologies have been presented. Then, some well-known vehicle models, used for design and simulation and focusing on the vertical dynamics, are given.

• The second Chapter recalls some backgrounds and theoretical tools used in this thesis: Linear Matrix Inequality (LMI), Convex Optimization, the LTI/LPV systems and their stability, H ∞ , H 2 performances, LP V /H ∞ control design using Bounded Real Lemma and polytopic approach for the state feedback and dynamic output feedback.

• In the third Chapter, the first contribution on suspension control problem is presented. An LP V /H ∞ motion adaptation suspension controller is investigated to mitigate the road-induced effects and enhance three mains vertical dynamics: roll, pitch and bounce motions. This controller is designed thanks to a motion detection of the vehicle which is based on the supervision of load transfer distributions.

Preliminary experimental results on the SOBEN Car of 1:5 scale vehicle have been used to evaluate the proposed LPV motion adaptation approach.

• In fourth chapter, LP V /H ∞ state feedback input and state constrained control strategies for the semi-active suspension system has been presented. The dissipative characteristic of the semi-active damper is recast as an input saturation. Then, a multiple objectives problem is considered : stability and disturbance attenuation. The sector condition approach is used to derive the stability condition. The disturbance attenuation problem is treated in the H ∞ framework. The efficiency of the proposed control strategies has been proven through two main contributions:

-The LPV standard approach (a common quadratic Lyapunov function for stability analysis and performance objectives). This approach is applied on a full vertical vehicle equipped with 4 semi-active dampers.

-The LPV Finsler approach (multiple Lyapunov functions for stability and performance objectives). Preliminary results on semi-active suspension quarter car model validate the effectiveness of this approach.

Conclusion

• In the fifth Chapter the MIMO semi-active suspension control problem for the full vehicle is tackled by using the MPC approach. An observer is designed to estimate both the vehicle system state and the road disturbance. The MPC controller is then designed while taking into account the road disturbance effects in order to improve the ride comfort and handling of the vehicle.

The MPC approach is also applied to the SOBEN Car using an MPC bilinear method. Some simulation results are given and the preparation for the implementation of the MPC control is done.

• In the chapter Six, a general actuator fault estimation problem is tackled. The considered faults are the loss of efficiency of the actuators. Actuator faults are modeled in the form of multiplicative faults by using effectiveness factors. The faulty actuator system is rewritten as a switched LPV system by considering the control inputs as scheduling parameters. Then, the actuator faults and the system states are estimated using a switched LPV extended observer. The stability of the switched LPV observer is derived thank to a piecewise linear in time Lyapunov function and using the dwell time constraint. The observer gain is computed, based on LMIs solution for the switched LPV system.

• Chapter seven takes into account the Fault Estimation and Fault Tolerant Control of the Semi-Active Suspension Systems. The considered damper fault is the damper loss efficiency (for instance because of an oil leakage). Firstly, the switched LPV observer approach presented in chapter six is applied to this case study. Then, it is compared with two other approaches using a parametric adaptive observer, a fast adaptive fault estimation method. Finally, an LPV Fault scheduled Tolerant Control is then presented to reconfigure the performance of semi-active suspension system in the presence of damper fault.

Perspectives

During the thesis, several developements were initated and some results have been obtained. Besides, regarding to presented works, the followings seem to be of great interest to be continued and developed in the future.

• Implementation: More implementations have to be performed on the SOBEN car of the INOVE testbed for both the developed suspension control approaches and Fault Estimation, Fault Tolerant Control applications on the semi-active suspension systems.

As seen in the chapter 3, to this aim, an intensive investigation for Identification and modeling of the Electro-Rheological semi-active dampers as well as the vehicle model will be very important.

Regarding to MPC control implementation, since the computation speed of the MIQP optimization algorithm is a crucial factor that limits the implementation of the proposed approach. A solution is to write such optimization approach in code C/C + + leading to considerably higher computation speeds. Therefore, more rigorous investigations on how to code the algorithm most effectively should be done.

• Suspension control design and analysis: Complete the semi-active suspension control problem by considering the multi-objective problems: comfort, road holding performances, suspension stroke limits...An application of the "LPV Finsler" approach for the full car as well as the use of Lyapunov parameter dependent with Finsler Lemma could give interesting results for the suspension control problem.

More comparisons between LPV, MPC approaches would give a deeper analysis and provide the interest of each approach.

• Fault Tolerant Control for Semi-active suspension system: As seen in the Chapter 7, in the presence of damper fault, the achivable domain of semi-active damper force changes and this must be taken into account in fault tolerant control design step. Indeed, the dissipativity constraints must be modified and then the saturation condition of the control input will be also updated. To take into account this change, two following approaches can be of great interest:

-The Fault Tolerant semi-active suspension control is designed using the "Invariance Set" theory with "Sector Condition" approach.

-The Fault Tolerant Model Predictive Control would be interesting solution which allows to consider the change of actuator conditions.

Moreover, the Fault Tolerant Control for the MIMO case with the full vehicle subject to several actuator/sensor faults would be considered. In this regard, the coordination of actuators/sensors for automatic control reconfiguration of MIMO systems would be an interesting solution.

Besides, in the thesis, the design Fault Estimation and Fault Tolerant Control were performed separately. An Integrated FTC which could reduce the conservatism would be investigated.
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	Parameters	Unit	Description
	m s	kg	suspended mass
	m us f j	kg	front unsprung mass
	m us rj	kg	rear unsprung mass
	I x	kg.m 2	Roll inertial moment of the chassis
	I y	kg.m 2	Pitch inertial moment of the chassis
	I z	kg.m 2	Yaw inertial moment of the chassis
	I w	kg.m 2	wheel inertia
	z s	m	Vertical displacement of the COG of chassis
	z us ij	m	Vertical displacement of the wheel.
	z s ij	m	Vertical displacement of each vehicle corner.
	z def ij	m	Suspension deflection of each vehicle corner.
	z r ij	m	Road profile.
	θ	rad	Roll angle of the chassis.
	φ	rad	Pitch angle of the chassis.
	ψ	rad	Yaw angle of the chassis.
	t f	m	Front axle of the vehicle
	t r	m	Rear axle of the vehicle
	l f	m	COG-front distance
	l r	m	COG-rear distance
	R	m	nominal wheel radius
	h	m	chassis height
	k f j	N/m	front suspension stiffness
	k rj	N/m	rear suspension stiffness
	c f j	N/m/s	front suspension damping
	c rj	N/m/s	rear suspension damping
	k t ij	N/m	tire stiffness
	c t ij	N/m/s	tire damping
	F s ij	N	Suspension force
	F tx ij	N	Longitudinal tire force
	F ty ij	N	Lateral tire force
	λ ij		Longitudinal slip ratio of each wheel
	β		Sideslip of the vehicle
	ω ij		Angular velocity of each wheel.
	δ	rad	Steering angle
	v x	m/s	Longitudinal speed of the vehicle.
	v y	m/s	Lateral speed of the vehicle.
	a x	m/s 2	Longitudinal acceleration of the vehicle.
	a y	m/s 2	Lateral acceleration of the vehicle.
	g	m/s 2	gravitational constant

1: Renault Mégane Coupé parameters 1.2. Vehicle modeling

Table 3 .

 3 Let us recall that the SOBEN Car is equipped with four ER semi-active dampers which are manipulated by PWM signals. The implementation scheme is depicted in Fig.3.18. As seen in this figure, there is a Signal converter block. This block is needed since the PWM signal is the control input signal of the damper while the obtained outputs of the LPV suspension controller are the forces.

1: ER damper model parameters 3.6.3 Force to PWM control input signals

  H ∞ state feedback input and state constrained control approaches for semi-active suspension system 4.3.2 Application to a full vertical vehicle model equipped with 4-semiactive dampers As mentioned previously in the section 4.1.1, several works have been developped for the semi-active suspension control problem but validated only on a quarter car model. In this section, thanks to LPV Standard approach, a state feedback controller will be designed for the first time on a full vertical vehicle equipped with 4 semi-active dampers. The state feedback controller aims at improving the roll dynamic of the vehicle. 4.3.2.1 The control oriented full vertical vehicle model: a quasi LPV model The vehicle suspension model with 7 DOF is used for control design purposes. This model includes the bounce, roll and pitch chassis motions (z s , θ, φ) and the vertical motions of the wheels (z us ij , i = (f ront, rear), j = (lef t, right)). The dynamic equations of this 7 DOF model are given as follows (see Chapter 1, section 1.2.3):

  Thus, to ensure the constraints on the scheduling parameter |ρ ij | ≤ 1, we must ensure also a state constraint which will be rewritten later as: Chapter 4. LP V /H ∞ state feedback input and state constrained control approaches for semi-active suspension system4.3.2.2 Semi-active suspension control problemBased on the full car model and the semi-active suspension constraints detailed in previous sections, the control problem we are interested in is the following:Design a suspension control in order to reduce the roll motion of the vehicle equipped with 4 semi-active dampers. The suspension control must satisfy the input saturation constraints (4.40) and the state constraint(4.41).

	4.3.2.3 LP V /H ∞ suspension controller synthesis		
				q
	P ( , , , )		
	( ,	,	,	)
	K ( , , , )			
	|Hx| ≤ 1			(4.41)

where x is the generalized system state (see

(4.43)

) and H is the state constraint matrix. q

Figure 4.3: Block diagram for semi-active suspension control

Table 4 .

 4 1 shows the parameters used to guarantee the performance specifications of the designed LP V /H ∞ suspension controller obtained with Genetic algorithms. Chapter 4. LP V /H ∞ state feedback input and state constrained control approaches for semi-active suspension system

			Table 4.1: Controller synthesis parameters	
	ξ 11	ξ 12	Ω 11	Ω 12	k θ	w f	λ 1
	11	1	62.83 rad/s 6.28 rad/s 16	314 rad/s 1

Table 4 .

 4 Fig. 4.8 shows the relation between the damper force and suspension speed. It shows that the damper force satisfies the dissipativity constraint

		2: RMS of roll angles (1st scenario)
	LPV Standard Passive nominal Passive min Passive max
	2.1300	2.3385	2.4932	2.1288

  such that: sup In the same way as in the section 4.3, the semi-active supension control problem is also solved in the H ∞ framework. The weighting function W zs on the acceleration zs is chosen thanks to the genetic algorithm as follows:

		w∈W	z 2 w 2	< γ, ∀ρ ∈ Ω ρ	(4.82)
	4.4.3.4 LPV/H ∞ suspension controller synthesis
	W zs = 0.79 ×	s 2 + 35.76s + 145.05 s 2 + 12.51s + 53.66	(4.83)

Table 4 .

 4 3: Quarter-car model parameters Chapter 4. LP V /H ∞ state feedback input and state constrained control approaches for semi-active suspension system

	alue	315	37.5	29500	210000	{700, 5000} 100

Table 5 .

 5 

		1: RMS of chassis acceleration for different road profiles
		Proposed MPC	MPC preview w	MPC without w
	ISO road A	0.0091	0.0091	0.0102
	ISO road D	0.8140	0.7678	0.9129
	Random road	0.7582	0.7542	0.8454

  (.) is the observer gain which has to be determined.

							observer
	where B 1e =	B 1 0	and L σ		
					ρ)	e x e λ	-L σ (.)(y -ŷ) +	B 1 0	w	(6.14)
	Or equivalently:				
			ė =	ėx ėλ	= (A e,σ (ρ) -L σ (.)C e )	e x e λ	+ B 1e w	(6.15)

  He[Pi,h A e,σ (ρ) -Y i,h C e ] +(P i,k+1 -P

						observer
	From the formula of P σ (t) in (6.20), (6.44) is satisfied if				
						
	  					
		He[P σ (t)(A e,σ (ρ) -L σ (t)C e )] + Ṗσ (t) P σ (t)B 1e I		
		*	-γ 2 I	0	 < 0	(6.44)
		*	*	-I		
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  can ensure that e x (t) and e f (t) are uniformly bounded, where Γ ∈ R r×r is a symmetric positive definite learning rate matrix.

	7.2. Damper actuator fault estimation for the semi-active suspension system163
	then, the following fault estimation algorithm:	
	ḟ (t) = ΓU ( ėy (t) + σe y (t))	(7.18)
		7.17)

Table 7 .

 7 2: LPV/FTC controller synthesis paramters

	ξ 11	ξ 12	Ω 11	Ω 12	k zs	
	178	63.6	2π67.7	2π11.4	258	
	ξ 21	ξ 22	Ω 21	Ω 22	k zus	W zr
	174.5	199.4	2π122	2π0.86	89.3	3.10 -2
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Part II Semi-active suspension control problem

Chapter 5. Model predictive control approach for semi-active suspension control problem

Optimisation problem setup

Following the definitions given in the previous section, the optimization problem of the MPC design can be defined as:

In order to compute the control action in the MPC framework, the cost function J in (5.16) has to be evaluated along the state trajectory, within the prediction horizon, using the state equation in (5.8). It is worth noting that the control sequence solution U depends on the system state x k and the disturbance w k .

In this regard, given the available measurements defined in section 5.2.1 at each sampling time, the system state has to be estimated using a suitable observer. Regarding the disturbance contribution, differently from [START_REF] Gohrle | Model predictive control of semi-active and active suspension systems with available road preview[END_REF], it is not assumed that road profile preview measurements can be obtained using a camera. Thus, to be able to account for the disturbance effects during the prediction, an extended state observer is designed, considering exisiting standard sensors, allowing to estimate the road input and the state variables simultaneously. In this way, the overall state equation is employed for both prediction and state estimation. To this aim, a disturbance model is needed. One of the most common assumptions in MPC design is that the disturbance is considered to be constant within the prediction horizon, i.e w k+i = w k , i = 0, ..., N p -1. In this way, the following augmented state space model can be considered in the optimization problem (5.19):

The optimzation problem (5.19) now becomes:

The MPC control law is then computed by applying the receding horizon strategy, where only the first element of the computed optimal sequence U is applied as the actual control action:

State and road disturbance estimation

Part III Fault Estimation and Fault Tolerant Control: Application to Semi-Active Suspension Systems 6.5. Numerical Examples: Actuator faults estimation for a MIMO system 149

is the gain of the extended observer (6.36) and the error estimation asymptotically converges to zero for a dwell time of T .

Proof: The proof is similar to the last cases and is omitted here for simplification.

Proposition 6.4.1. The design of the switched observer (6.36) can be performed by solving the following optimization problem:

subject to (6.48), (6.49), (6.50) and P i,k > 0 (6.51)

By solving this optimization problem, one can derive P σ (t), Y σ (t) and the observer gain is calculated by L σ (t) = P σ (t) -1 Y σ (t).

Numerical Examples: Actuator faults estimation for a MIMO system

In this section, numerical examples are presented in order to illustrate the effectiveness of the proposed switched LPV observer.

Let us consider the following MIMO system:

Observer synthesis

The system is subject to the control inputs u 1 (t) = 20 sin(4πt), u 2 (t) = 30 sin(2πt) and the disturbance w(t).

Then, the scheduling parameters ρ

| are assumed to be bounded by: 0.001 ≤ ρ 1 ≤ 20, 0.001 ≤ ρ 2 ≤ 30. λ 1 , λ 2 are the effectiveness factors of the two control inputs u 1 , u 2 .

We have two actuators, so the system (6.52) is rewritten as a switched system with four subsystems, i.e A e,σ (ρ) switches between four modes A e,1 (ρ), A e,2 (ρ), A e,3 (ρ), A e,4 (ρ) according Résumé -Le système de suspension semi-active joue un rôle central de la dynamique verticale de véhicule dans le but d'amélioration du confort et de la sécurité routière. Les travaux de recherche de cette thèse sont divisés en deux grandes parties. La première partie considère le problème de commande de suspension semi-active dont le défi principal est des contraintes physiques: la contrainte de passivité, la butée de suspension. Elles sont transformées en contraintes sur la commande et l'état du système. Ainsi, de commandes de suspension sont synthétisées en utilisant de méthodes différentes: commande linéaire à paramètres variantes (LPV) avec la saturation et la commande prédictive (MPC).

La deuxième partie est consacrée pour l'estimation de défaut et la commande Tolérante aux défauts : application au système de suspension semi-active. On considère le défaut étant une perte de puissance de l'amortisseur par exemple avec une fuite de l'huile et ce défaut peut être évalué en utilisant plusieurs approches à la base des observateurs. Puis, avec le défaut estimé, une commande est reconfigurée selon le défaut pour empêcher la détérioration de performance de véhicule.

Mots clés : Suspension semi-active, commande saturation, commande LPV, commande prédictive, estimation de défaut, commande tolérante aux défauts .

Abstract -Semi-active suspension system plays a central role of vertical vehicle dynamics in enhancing comfort and handling. The thesis research work is divided into two main parts. The first one considers the semi-active suspension control problem of which the main challenge is the physical constraints: dissipativity constraint, suspensions stroke limitation. These constraints are recast as the input and state constraints. Thereby, the suspension control is designed in the framework of Linear Parameter Varying (LPV) approach with input constrained and Model Predictive Control (MPC) approach.

The second part is devoted to Fault Estimation and Fault Tolerant Control (FTC): Application to Semi-Active Suspension System. The considered fault is the loss efficiency of the actuator for example a damper with an oil leakage and this fault can be estimated using several observer-based approaches. Then, thanks to the fault information from the estimation step, an LPV/FTC fault scheduling control is designed to prevent the vehicle performance deterioration.