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Abstract

Since the data collected during the first run of the LHC by the ATLAS and CMS collab-
orations allowed for the discovery of the BEH boson, a huge effort has been done toward
the detailed studies of its properties. This thesis is particularly oriented toward the un-
derstanding of the BEH boson lineshape in its diphoton decay channel, using the data
collected by the ATLAS detector in 2011 and 2012. The electromagnetic calibration of the
ATLAS detector is described in details, and the precise measurement of the BEH boson
mass it allowed for, at mh = 125.98 ± 0.50 GeV, is summarized. A first upper limit on
the BEH boson decay width, that gave a limit at Γh < 5.3 GeV at 95% C.L., is presented
in details). The last part of this thesis presents a study of quantum interferences between
signal and background processes in the gg → γγ channel, which are expected to distord the
diphoton lineshape and create a shift of the measured BEH boson mass, that is estimated
to be of 35 MeV, which is small but not negligible.

Résumé

Depuis que les données collectées par les collaborations ATLAS et CMS au cours de la
premiere periode de fonctionnement du LHC ont permis la découverte du boson BEH,
un effort important a été investi dans l’étude détaillée de ses propriétés. Cette thèse est
orientée en particulier vers la compréhension de la distribution en masse du boson BEH
dans son canal de désintégration en deux photons, en utilisant les données collectées par
le détecteur ATLAS en 2011 et 2012. L’étalonnage en énergie des électrons et les photons
est décrit en détail, et la mesure précise de la masse qu’il a permis, à mh = 125.98± 0.50
GeV, est résumé. Une premiere limite sur la largeur de désintégration du boson BEH est
aussi présentée en détail, et donne une limite à Γh < 5.3 GeV à 95% C.L. . La dernière
partie de cette thèse est dédiée à une étude de l’impact des interferences quantiques entre
les processus de signal et de bruit de fond dans le canal gg → γγ, dont l’effet déforme le
spectre en masse et crée un biais pour la mesure de masse dans ce canal, qui a été estimé
a 35 MeV, ce qui est petit mais non-négligeable.
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Introduction

Within the last couple of years it became clear that the most important legacy of the Run I
of the LHC was the discovery of a new scalar boson. This new particle constitutes the first
- and so far only - observation of what appears to be a fundamental scalar particle, and
finally completes the Standard Model of particle physics, whose only missing component
was the exact mechanism for the electro-weak symmetry breaking. But as it is the newest
sector of the theory, it is also vastly unexplored and its properties need to be determined
with the best possible precision. Within the Standard Model all the properties of the
BEH (or Higgs) boson are fixed once its mass is known, and this parameter mh is the
only free parameter of the theory. But in several scenarios beyond the standard model the
existence of new particles can imply new decay channels for the Higgs boson, or different
couplings due to the apparition of these particles in the loops, which may be detected by
a broadening of the Higgs boson width. This thesis wants to understand the lineshape of
the Higgs boson in its di-photon decay channel with the dataset that was collected in 2011
and 2012 by the ATLAS detector at the LHC. The measurement of the Higgs boson mass
and an upper limit on its width are reported in this thesis, together with a description of
the electro-magnetic calibration procedure for the ATLAS detector which is required to
have a proper understanding of the mass distributions. Furthermore a preliminary study
of the interferences between signal (gg → h → γγ) and background (gg → γγ) processes
is also reported as it is required to completely understand the Higgs boson line-shape in
this particular channel, where the background is not negligible.

This document is organized as follows : the first three chapters are dedicated to a
description of the scientific background surrounding this thesis and of the necessary tools
that will be needed afterwards. The contents of the three following chapters are gradually
converging towards the current understanding of the Higgs boson line-shape in its di-
photon decay channel.

Chapter 1 begins with a brief historical summary of the development of the electro-weak
theory before describing with more details the Brout-Englert-Higgs mechanism. Then the
phenomenology of the Higgs boson productions and decays is outlined, while the last part
of this chapter is dedicated to a brief review of the methods used to set limits on the
Higgs boson width, and to the theoretical description of interferences between signal and
background processes in the h→ γγ channel.

Chapter 2 explains the statistical method that is used at the LHC and that is necessary
to extract physical information which we are interested in from the data. It starts by the
general outline of the statistical theory and ends by describing the standard statistical
tests and tools used by ATLAS and CMS.

Chapter 3 describes the experimental setup without which this thesis could not have
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been made. It starts with a description of the LHC collider and its performance, as
well as the different pre-acceleration steps that are required for the beams before their
injection into the LHC. Then the ATLAS detector is detailed, with a particular emphasis
on the liquid Argon electro-magnetic calorimeter that plays a central role for the physics
that is being studied in this thesis. At the end of this chapter the methods used to
reconstruct electro-magnetic clusters and identify electrons and photons are described and
its performance is given.

Chapter 4 details the full calibration procedure for the energy of electro-magnetic ob-
jects, starting from the material determination and Monte-Carlo calibration, going to the
final cross-checks of the linearity of the response and of the electron to photon extrapola-
tion of the energy scale. This includes the descriptions of the various pre-corrections and
of the method used to set the in-situ energy scale. At the end of this chapter, the small
differences that were observed between the 2011 and 2012 datasets are discussed.

Chapter 5 shows the results that were obtained for the Higgs boson mass and the Higgs
boson width in the h → γγ channel. It starts with an overall description of the selection
applied on the data, of its modelling and of the categories that are defined to improve the
performance of the analysis. In this process the various uncertainties that have an impact
on either the mass, the peak resolution or the signal strength are explained, together with
the method used to extract it. Then the measurement of the Higgs boson mass is outlined,
first in the h → γγ channel alone and then in its combination with the h → ZZ∗ → 4l
channel. Afterwards the upper limit on the width that has been set using a direct fit of
the di-photon lineshape to a non-relativistic Breit-Wigner is detailed.

Finally, chapter 6 describes an on-going preliminary study of the impact of interferences
between signal and background processes in the gg → γγ channel on the Higgs boson
mass. First, the calculation implemented in the interference plug-in of Sherpa 2 is detailed
and cross-checked, then the pT spectrum generated by this plug-in is tuned to match the
current best description of the Higgs boson pT and a simple smeared detector simulation is
described. The last part of this chapter gives the preliminary results of the mass shift that
are obtained using the full statistical model used for the Higgs boson mass measurement.

Throughout this document comparisons between the analyses made by the ATLAS and
CMS collaborations and its performance is outlined, whenever it is relevant. The com-
parison between the two detectors and their reconstruction methods for electro-magnetic
particles has been made in chapter 3, while the comparison between the electro-magnetic
calibrations procedures of the two detectors, as well as their impact on the BEH mass mea-
surement, is done in chapter 4. The comparison between the categories that have been
defined to measure the Higgs boson mass in ATLAS and CMS, as well as their impact on
the width and on the statistical error on the Higgs mass, is done in chapter 5.
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1.1 The Standard Model of particle physics

With time our understanding of the nature of fundamental particles and of the forces that
rule their interactions has evolved, and this converged toward what is now known as being
the Standard Model of particle physics. This model characterizes itself by the existence of
three families of matter, each one being constituted by one neutrino, one charged lepton,
two quarks, and their anti-particles. The forces are formed by two fundamental gauged
symmetry groups, SU(3)C that describes the strong interaction and generates its 8 gluons,
and SU(2)L×U(1)Y which describes the unified electro-weak interaction with its 4 vector
boson. In addition to that, the model embeds a scalar field, the Brout-Englert-Higgs
(BEH) field (sometimes called the Higgs field, both terms will be used in this thesis) that
spontaneously breaks the SU(2)L × U(1)Y symmetry down to U(1)Q which describes the
electro-magnetic interactions. Although this picture is now clear and complete both on the
experimental and theoretical side, its full development took more than a century, starting
from the discovery of the electron and the quantization of light at the end of the 19th
century, ending with the experimental discovery of a scalar boson in 2012. In this chapter
a very brief historical review of the construction of the electro-weak theory is sketched,
but it will obviously not be complete. Further details may be found in [4–9] , especially
for the strong interaction and the quark sector that will not be reviewed here.

1.1.1 Discovery of the neutrino and the Fermi theory

In the early twentieth century the radioactivity coming from β decays had been discovered,
and its properties were being studied [10]. In particular the energy spectrum of the out-
going electron was being studied by Lise Meitner and Otto Hahn and, following their
studies and the definitive proof by Chadwick [11], displayed a continuous distribution while
it was expected to be a discrete ray because of the energy-momentum conservation under
the hypothesis of a two-body decay. It is only in 1930 that Pauli imagined the existence
of a new weakly-interacting and light particle that would be involved within this process
and carries out a part of the energy of the decay, the ”neutrino”, explaining the continuous
spectrum that was observed. A theory of this interaction, based on contact-interaction,
was published by Fermi in 1933 [12]. In 1936 this theory also proved useful in describing
the decay of the newly discovered muon, whose decay was described as a four-fermion
contact interaction, whose coupling constant GF is called the Fermi constant. Although
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this theory gives accurate predictions at low-energy, it predicts cross-sections that are
diverging as E2 hence it is expected to be only an effective-theory to which massive vector
bosons should be added to regularize the high-energy behaviour of the theory, which has
been the first indirect hint of the existence of the W and Z bosons that will be presented
later.

1.1.2 Maximal parity violation and V − A interactions

At the middle of the twentieth century, parity was believed to be an exact symmetry
of nature, which had been tested extensively in strong and electro-magnetic interactions,
and it was believed to be valid in weak interactions too. It was noticed by Lee and
Yang in [13] that there were no experimental data that could either rule out the parity
conservation in weak interactions or confirm it, and they proposed experimental ideas to
check for it. A year later a team lead C.S. Wu [14] did an experiment that showed that the
weak-interactions were not respecting the parity-conservation (see also [15, 16]). Atoms of
Cobalt-60 were subject to a magnetic field in which their spin would align, and they were
cooled to a sufficiently low temperature so that the thermal fluctuations would not break
this alignment. In the case of a parity-conserving interaction the electrons produced in the
Co60 β-decays were expected to be emitted symmetrically with respect to the magnetic
field. It was seen that the decay electrons were predominantly emitted in the direction
opposite to the magnetic field (i.e. opposite to the spin direction of the Cobalt atoms), in
a fraction of 60%, which proved that the weak radioactive decays were not conserving the
parity. In fact within the Standard-Model it is maximally violated in the sense that only
left-handed particles and right-handed anti-particles are sensitive to the (charged) weak
interaction, which implies that right-handed neutrinos would not interact, and within the
SM they do not exist. This had strong implications on the weak interaction and on its
Lagragian, that was now expected to display a V − A structure which characterizes this
maximal parity violation, which for instance transformed the Lagrangian for the β-decay
n→ pe−ν̄e into :

Lβ = GF√
2

(p̄γµ(1− γ5)n)(ēγµ(1− γ5)ν) (1.1)

where 1−γ5
2 = PL projects a spinor onto its left-handed component.

1.1.3 The electro-weak symmetry group and prediction of W and
Z bosons

It was noticed by Schwinger [17] that there is a deep connection between weak and electro-
magnetic interactions, in the sense that they are both mediated by spin-1 particles and
that in both cases the gauge couplings does not depend on the particle that is considered.
Schwinger only considered a simple triplet of vector fields, which already allowed him to
connect the electric charge to the weak iso-spin and the hyper-charge, and the fourth
vector boson was predicted by Glashow in [18]. These four bosons are the generators
of the SU(2)L × U(1)Y gauge group, where the SU(2)L group only acts on left-handed
fermion doublets, while the right-handed fermions are singlet of SU(2)L, which creates the
V − A structure of the interaction. This gauge group will later become widely accepted
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as the basis of the unified electro-weak interactions. But at this point the theory was
not renormalizable because there were no adequate mechanism to generate the mass of
the gauge boson. This mass term had to be included ”by hand”, although a generic
mass term was known to break the gauge invariance that is required to show that the
theory is renormalizable. Still this paper predicted the existence of the Z0 boson that was
indirectly confirmed first by the Gargamelle collaboration [19–21] that observed neutral
currents interactions, that could only be mediated by a Z0 boson, then by the UA 1 and
UA 2 collaborations at the Spp̄S that discovered the W± [22, 23] and Z0 bosons [24, 25].

1.1.4 Development of the spontaneous symmetry breaking

The details of the mechanism of spontaneous symmetry breaking and of its application
to gauge symmetries will be given in the next section, and we shall here only give a few
historical details. This mechanism originates from condensed matter physics, where it is
at the heart of the description of the phenomenon of super-conductivity that was first
formally developed in [26] and received a microscopical explanation with the BCS theory
in [27]. This work was acknowledged and brought to particle physics by Nambu [28–31],
whose aim was to understand the short-range of the strong interaction by generating a
mass to its vector boson. This model required the existence of a mass-less boson, whose
existence was afterwards proved to be a general property of the spontaneous breaking of
global continuous symmetries by Goldstone [32, 33]. In the context of strong interaction
this Nambu-Goldstone boson was believed to be the neutral pion (π0), that was not mass-
less but its relatively small mass was believed to come from the fact that the symmetry
was only approximate. The mechanism that extends the concept of symmetry breaking
to local symmetries was first sketched in an article of Anderson [34] in the non-relativistic
context of a Plasma and was separately brought into the context of particle physics by
four independent articles by Brout and Englert [35], Higgs [36, 37] and Guralnik, Hagen
and Kibble [38]. At this stage only Abelian symmetry groups had been considered and the
extension to non-Abelian groups was done in [39]. Furthermore these studies were carried
in the context of strong interaction, trying to explain the short range of this interaction by
the generation of a mass to its vector boson. Its application to electro-weak interactions
has been done by Weinberg [40] and Salam [41]. This mechanism predicts the existence of
a new massive scalar boson, that has been discovered separately by the ATLAS [42] and
CMS [43] experiments at the LHC on the 4th of July, 2012.

1.1.5 The electro-weak theory for quarks and leptons

The electro-weak model based on the local SU(2)L×U(1)Y symmetry group that is broken
down to U(1)Q with the BEH mechanism that is described in [40] has a very specific
structure for the lepton sector, as the left-handed component for the charged lepton of a
given family lies within a doublet with the corresponding neutrino, while the right-handed
component lies within a singlet. The couplings of the W, Z and γ photons to the different
leptons are induced by the covariant derivative which gives a powerful predictive power
to this theory, whose properties have now been precisely confirmed in a wide variety of
experiments. In [40] the quark sector is not included, because the structure of the quark
sector was not properly known at this time, as the existence of the charm quark was not
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yet accepted. This completion of the theory, including the quark sector, only came with
the GIM mechanism [44] that forbids the existence of flavour-changing neutral current
(FCNC) at tree level. This suppression is necessary to explain the low branching ratio of
K0
L → µ+µ− (BR ≈ 10−9), that would be enormous if FCNCs were allowed, as it would

imply interactions such as sd̄→ Z → µ+µ−. But, even with this FCNC cancellation, the
loop-induced process gave a branching ratio bigger than the one that is observed, hence the
second part of this mechanism was the addition of a fourth quark, called the charm quark
that would later be simultaneously observed by two independent collaborations [45, 46].
The quarks were expected to exists in left-handed doublets, such as the leptons, with one
doublet by generation : (u; d)L and (c; s)L, and right-handed singlets uR, dR, cR, sR. At
this stage the structure of the theory was completed, and only the last fermion family
was missing, which would later be predicted [47] to allow the CP-violation that had been
observed in the kaon sector [48].

1.1.6 Hints of physics beyond the standard model

Within our current knowledge there are only few well accepted experimental facts that
do not fit within the framework of the standard model, and are explicitly calling for new
physics phenomenons. One fact comes from the galaxy rotation curve, which is the orbital
velocity of a star in a galaxy as a function of the distance of this star to the center of this
galaxy. This can be computed or simulated from the basic laws of gravity, and was seen
that the measurement carried out on real galaxies were very different from the predictions
[49]. One of the possible solutions to this problem would be to add an additional massive
component, ”the Dark Matter”, that has not been discovered and that would contribute
to a sizeable extent to the total mass of the galaxies, hence modifying their gravitational
properties and the velocity curve. There are also some alternative hypothesis using, for
instance, a modified version of the laws of gravity that may also solve this problem [50].

Another fact is the existence of a mass for the neutrinos, which is not possible in
the Standard Model as there are no right-handed neutrinos. This mass was observed
through the existence of oscillations between the different flavours of neutrinos [51], as
these oscillations can only happen if there is a difference of mass between the different
neutrino mass eigenstates. Several models exist to generate these masses [52], and predict
the existence of new particles, potentially sterile neutrinos, that could have very high
masses.

So far there is no evidence of new physics in the scalar sector. There are a few the-
oretical arguments that concern the consistency of the electro-weak theory, such as the
naturalness of the Higgs boson mass [53] or the meta-stability of the electro-weak vacuum
[54], but they do not imply a break-down of the physical laws of the SM and may well
receive an answer within the current theoretical framework, without requiring any new
physics phenomenon. But this sector is also the one that has been the most recently dis-
covered and it is yet vastly unexplored, hence it may well bring some intriguing puzzles in
the coming years and the study of its properties may unravel new physics.
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1.2 Spontaneous Symmetry Breaking

The notion of symmetry has been of primary importance in the development of modern
physics, and this has been reinforced by the Noether theorem [55] that allowed to link
abstract symmetries to the conservation of physical quantities. Although the principle
of symmetry had been used before, especially in the development of special and general
relativity, it is with this theorem that it started to play a central role in the development
of new fundamental theories. A short summary of the development of the concept of
symmetries and of its impact on physics has been given in [56]. But this concept cannot
explain everything as it was observed that depending on the energy or temperature scale at
which a given system is studied, its behaviour may exhibit a different level of symmetry.
In fact in this contect the underlying physical laws, that may be explained with the
Lagrangian, are still invariant under the fundamental symmetry of the nature but their
specific solution are not invariant anymore, and this may be explained in the context
of spontaneous symmetry breaking. There are several examples of this phenomenon in
nature, and we will try to progressively develop them below, from the simple example
up to the full construction that is needed to understand the BEH mechanism and the
electro-weak symmetry breaking.

1.2.1 Breaking of global symmetries

The most simple illustrative example of spontaneous symmetry breaking that exists in
nature corresponds to the bending of a rod [57], which is illustrated in fig. 1.1. In the
absence of any force applied on the rod it will be a rigid straight line, and the whole physics
of this problem is invariant under a rotation around the axis of this rod. This picture does
not change if a small force is applied at both ends of this rod, but if this force becomes
strong enough the rod will start to bend. At this point this system will not be invariant
anymore under a rotation around the initial axis of the rod, as the system will collapse
into a specific position. But the ensemble of the positions in which it may collapse is itself
symmetrical under this rotation, as the different positions are not differentiable by their
energy level or any conceivable selection rule. In this particular case the exact ground
state the rod falls in is determined by small perturbations of the initial conditions of this
problem. Any of the ground state is equivalent by rotational invariance, and every possible
position is as likely as an other. This is a good illustration of the concept of symmetry
breaking : in each case that will be discussed below the same phenomenon happen. The
description of the system in term of its Lagrangian will always be invariant under a specific
transformation, and the ensemble of solutions to the system will also be invariant under
this transformation. The system will fall in a specific state of this ensemble, and in a given
energy or temperature range this ensemble is reduced to one state, while outside of this
range it will correspond to an infinite ensemble and the system will fall in a specific state.
This ground state will not be invariant under the symmetry that rules the physical theory,
but it belongs to a set of solutions that is itself invariant, and the underlying physics will
still be invariant.

A similar phenomenon happens for ferro-magnetic materials [58]. In the absence of an
external field the magnet as a O(3) rotational invariance, and we could expect the same
property for the magnetic field generated by this ferro-magnetic material, which means that
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Figure 1.1: Bending of a rod under an external force parallel to its axis : the left case corre-
sponds to the symmetric ground state when no external force is applied and the right one to the
spontaneously broken ground state

Figure 1.2: Direction of the spins in a ferromagnetic material : above Tc on the left and below
on the right

it should be 0. It is not the case at low temperature where a non-negligible magnetization of
the material appears, which is essentially due to the fact that the lowest energy level for this
material is reached when the spins are aligned, otherwise the magnetic interaction between
the spins increases the total energy of this system. As the temperature rises the kinematic
energy available for thermal variations increases, and at a given critical temperature (Tc)
this counteracts the alignment from magnetic interactions and the material will not be
magnetic anymore, in the absence of an external field. Below Tc the O(3) rotational
invariance breaks down to O(2) which is a invariance by rotation around the magnetic
field axis. The invariance by inversion of the system along this axis is broken.

But these two examples correspond to the breaking of global symmetries, which is
not what we are interested in for the electro-weak symmetry breaking. For instance in
ferro-magnetism materials, even in the phase where O(3) is not broken the spins are not
rotated independently from each others : it is the complete system that is invariant under
O(3). For the electro-weak theory this invariance has to be local : every point in space
may be subject to a different transformation of the symmetry group of the theory.

1.2.2 Spontaneous symmetry breaking of a U(1) symmetry and
the Goldstone theorem

Now we shall consider a simple toy model that describes a single complex scalar that is
invariant under a global U(1) symmetry, i.e. for which φ → eiαφ does not change the
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Figure 1.3: The so-called ”Mexican Hat” potential driving the spontaneous symmetry breaking

Lagrangian. Its Lagrangian writes :

L = ∂µφ∗∂µφ− V (φ∗φ) (1.2)

V (φ∗φ) = µ2φ∗φ+ λ
2 (φ∗φ)2 (1.3)

where the potential V (φ∗φ) (the so-called ”Mexican Hat” potential) describes the phe-
nomenon that will spontaneously break the U(1) symmetry, and may be visualized in fig.
1.3. This potential was first used in particle physics in [33], and in order to induce the sym-

metry breaking one need to have µ2 < 0 and λ > 0. It has a minimum at |φ0| = v =
√
−µ2

λ

which is degenerate in the sense that any phase rotation will also give a minimum, i.e. the
ensemble of minima is defined as {veiα | α ∈ R}. As a complex field φ actually embeds
two degrees of freedom, which may be written as φ = φ1 + iφ2 and we chose that the true
minimum of our theory corresponds to φ0 = v + i× 0. Although choosing this particular
projection of the field clearly is a convenient choice, it is equivalent to any other of the
points of the minimum as they may be reached by a simple phase rotation, which is not
observable. As v corresponds to the true minimum of the theory it is the point around
which it should be developed, which we express through φ = (v + σ(x)) + iπ(x) and this
gives the following Lagrangian :

L = C + |∂µπ(x)|2 + |∂µσ(x)|2 + 2µ2σ2 − λ(π2σ2 + 2π2vσ)− λ

2 (σ4 + π4 + 4vσ3) (1.4)

where C corresponds to a calculable constant that has no impact on physics. The first
two derivatives are identified as the kinetic terms for the two degrees of freedoms, and the
third term is the mass term for the σ (of mass

√
−2µ2) but there is no mass term for the

π. The following terms are corresponding in particular to interactions between the fields
π and σ, and to self-interactions of σ with itself. With respect to the figure 1.3 the σ
corresponds to lateral excitations of the field where it is actually |φ| that is modified, and
this requires energy to go against the rise of the potential. The massless π corresponds to
a movement of the phase, that does not need energy as all the points at a given |φ| but
different phase are equivalent.

The existence of this massless ”Goldstone” boson is completely general, and was first
inferred in [33], following the work of Nambu [30, 31], although it was only rigorously
demonstrated in [32]. For every spontaneously broken continuous symmetry there should
be a massless scalar boson, but these bosons have never been observed. Here we have only
considered global symmetries, and the Brout-Englert-Higgs mechanism [35–38] is a way
to effectively evade this problem for gauge symmetries.
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1.2.3 The Brout-Englert-Higgs mechanism and the associated
scalar boson

Now we consider a local U(1) symmetry, where we need to add terms describing the gauge
fied into the Lagragian, which is done as follows :

L = −1
4(Fµν)2 + |Dµφ|2 − V (φ) (1.5)

where the first term correspond to the kinetic term for the gauge field, that will not be
considered further below, the second term is the covariant derivative is Dµ = ∂µ + ieAµ
and the potential V (φ) has the same functional form than in the previous subsection.
The gauge field Aµ is a real vector field while φ still describes complex scalar field. This
Lagrangian is invariant under the following transformation :

φ(x)→ eiα(x)φ(x) and Aµ(x)→ Aµ(x)− 1
e
∂µα(x) (1.6)

If we define φ = (v + φ1) + iφ2, the covariant derivative may be developed into :

|Dµφ|2 = |∂µφ|2 + e2AµA
µ(v2 + 2vφ1 + φ2

1 + φ2
2)− 2eAµ(−(v + φ1)∂µφ2 + φ2∂µφ1) (1.7)

and using the gauge transformation defined in eq. 1.6, we can chose a gauge where φ is
real hence φ2(x) = 0 for every x, which gives :

|Dµφ|2 = |∂µφ1|2 + e2v2AµA
µ + e2AµA

µ(2vφ1 + φ2
1) (1.8)

The second term correspond to a mass term for the gauge field Aµ and the last term will
give rise to interactions such as h→ AA and hh→ AA. The full Lagrangian is therefore
written :

L = −1
4(Fµν)2 + |∂µφ1|2 + e2v2AµA

µ + e2AµA
µ(2vφ1 +φ2

1)− 2λv2φ2
1−

λ

2 (φ4
1 + 4vφ3

1) (1.9)

and this includes kinetic and mass terms for both φ1 and Aµ, as well as interactions
between these two fields. The masses of these two fields are determined by the vacuum
expectation value v and the gauge coupling constant (for the mass of A) or λ (for the
mass of φ1). The second part of the scalar field, φ2, has completely disappeared from the
theory : there is not anymore a mass-less Goldstone boson. However the corresponding
degree of freedom still exists. A mass-less vector boson only has transverse polarizations,
because there is no rest frame for such a particle, while when it is massive it acquires a
longitudinal polarization which is a third degree of freedom for this field. The mass-less
Goldstone boson is ”eaten” by the former mass-less gauge field which in turn acquires a
third polarization component and its mass. In the high-energy regime, where the gauge
symmetry is unbroken, the longitudinal component of the gauge boson behaves as the
Goldstone boson it has absorbed [59, 60]. The remaining φ1 corresponds to an actual
massive particle that we call the BEH boson.
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1.2.4 Application to the electro-weak symmetry group

Now we will consider the full electro-weak theory [40, 44, 61], which is described by the
SU(2)L × U(1)Y local symmetry [18, 41]. The Higgs field is now described by a complex
vector field with two components, which is defined as follows :

φ(x) = 1√
2

(
φ+

φ0

)
= 1√

2

(
φ1 + iφ2
φ3 + iφ4

)
=
(

0
1√
2(v + χ(x))

)
(1.10)

where the last equality comes from an adequate choice of gauge. The Lagrangian for the
Higgs sector of the theory [62] is written

L = |Dµφ|2 − µ2φ†φ− λ(φ†φ)2 (1.11)

Here the covariant derivative corresponds to the SU(2)L × U(1)Y part of the theory and

is expressed as Dµφ = (∂µ − igW a
µT

a − ig′Y2 Bµ)φ, where the Ti are linked to the Pauli

matrices as Ti = 1
2σi, W

a
µ corresponds to the triplet of gauge bosons associated to SU(2)L

and Bµ the gauge boson associated to U(1)Y . g and g′ are the coupling constants of
SU(2)L and U(1)Y , respectively. By construction φ has an hyper-charge 1, and as we are
interested at what happen in the vacuum we may take φ = v. If we were to consider the
full theory with the physical excitation χ(x) too, we would describe the same mass term
and mass generation mechanism, and would only add the interactions between the gauge

and scalar bosons, which we are not interested in at this point. If we define W±
µ = W 1

µ∓iW 2
µ√

2
this gives :

Dµφ = − i

2
√

2

(
g′Bµ + gW 3

µ

√
2gW+

µ√
2gW−

µ g′Bµ − gW 3
µ

)
×
(

0
v

)
(1.12)

which translates into :

|Dµφ|2 = v2

4 g
2W+

µ W
µ, − + v2

8 (g′Bµ − gW 3
µ)2 (1.13)

The first term in the previous equation corresponds to the mass term for the W± bosons
and this indeed describes the physical W± bosons, whose mass is mW = vg

2 . The last term
is interpreted as giving the mass to the Z0 boson and can be written :

1
2
v2(g2 + g′2)

4 ZµZµ with Zµ = g√
g′2 + g2W

3
µ −

g′√
g′2 + g2Bµ (1.14)

where the physical particle corresponds to the Z0 mass eigenstate. The other eigenstate
is the photon and has a zero mass. These two eigenvectors are orthogonal to each others

and are aligned with

(
g′

g

)
for the photon and

(
g
−g′

)
for the Z boson. In eq. 1.13,

developed in term of the physical eigenstates we can determine that the mass of the Z is of
mZ = 1

2v
√
g2 + g′2. If we define the angle θW as cosθW = g√

g2+g′2
and sinθW = g′√

g2+g′2
,

the change of basis from (W 3
µ , Bµ) to (Aµ, Zµ) is done with the following rotation :(
Zµ
Aµ

)
=
(
cosθW −sinθW
sinθW cosθW

)
×
(
W 3
µ

Bµ

)
(1.15)
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Furthermore the mass of the W and Z bosons are linked by the following relation :

ρ = M2
W

M2
Z cos

2θW
= 1. This comes from the ”custodial” symmetry which is an approximate

symmetry of the scalar sector of the theory in the limit where the hyper-charge coupling
vanishes. In this case where g′ → 0, there is an approximate SU(2)L × SU(2)R global
symmetry in the scalar sector of theory, and MW →MZ which is due to the fact Zµ = W 3

µ

i.e. there is no mixing with the U(1)Y gauge field, and the three gauge fields of SU(2)Y
have the same properties. This approximate symmetry is broken both by the hyper-charge
coupling and by the existence of a mass of the fermions, although it is only slightly broken
and is valid at tree order. There are actual deviations of ρ that can happen at loop-order
which were tested at LEP. The results have been proven to be close to the Standard Model
expectation. More generally this means that deviations of the coupling of the Higgs boson
to the Z boson should have equivalent deviations in its couplings to the W bosons.

We must also include a mechanism to generate the mass of the fermions, as the most
naive mass term mψ̄ψ is not gauge invariant. We denote the left-handed doublets de-
scribing fermions fields L and the right-handed singlets R. The doublet may describe
every quarks and leptons in there left-handed form, while the right-handed singlets do not
include neutrinos. For a given generation this gives the following additional part of the
Lagrangian :

L = −λe(L̄e,νeφRe + R̄eφ
†Le,νe)− λu(L̄u,dφRu)− λd(L̄u,dφRd) (1.16)

where the λi are called the Yukawa coupling. If we focus only on one particle, for instance
the electron, and develop the Higgs potential around its minimum we find :

L = −λe(L̄eRe + R̄eLe)(
v + χ√

2
) = −vλe√

2
ēe− λeχ√

2
ēe (1.17)

where the first term is a mass term for the electron, that acquire a mass of λev√
2 and the

second term describes the h→ ee interaction.
It should be noted that the mass generation mechanism is very different between vector

bosons and fermions. For vector bosons it comes directly from the existence of the gauge
field, through the covariant derivative, and the value of the vector boson mass and of
its couplings to the Higgs boson is entirely defined in term of the vacuum expectation
value and of the gauge coupling constant, which gives a strong predictive power to this
mechanism. For the fermionic part of the theory, the Yukawa terms are not determined by
any particular structure of the theory and are added by hand. In particular the Yukawa
couplings λi are free parameters that may be adjusted to fit the observation, and they do
not carry any predictive power on the mass of the particle.

1.2.5 Elitzur’s theorem

It was shown in [63] that it is actually not possible to spontaneously break a local (or gauge)
symmetry. Although this demonstration is explicitly done on a lattice and no equivalent
demonstration exists for a theory in continuous space-time, it is believed that it also holds
for this latter case. In fact, the BEH mechanism breaks a remnant global symmetry. The
gauge symmetry itself needs to be broken in the Lagrangian to allow for the computation
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of observables and to conduct the renormalization program. The action with which the
observables are computed is Seff = S+Sg.f.+Sghost where Sg.f. corresponds to terms that
are fixing the gauge in which we want to do the computation, and Sghost to counter-terms
that ensures that the result of the computation is the same in every gauge, but at this
point the actual gauge is explicitly fixed, which is properly explained in [64]. In the toy
example of an U(1) symmetry where we imposed the scalar field to be real, the gauge is
completely fixed by the choice of the phase (equal at 0), and this is explicitly breaking the
symmetry at the level of Seff . For a complete physical model, after gauge fixing there may
still be a remaining global symmetry with respect to one or several parameters, but not
anymore with respect to the infinite number of parameters required to describe the local
gauge change. The BEH mechanism is actually breaking this remaining global symmetry,
which is a subgroup of the original local symmetry.

1.3 Higgs boson production and decays

1.3.1 Initial state and the parton distribution functions

General concept of Parton Distribution Functions

A proton is made of three valence quarks (two ups and one down) that are sensitive to the
strong interaction therefore it cannot be considered as a static object. The three valence
quarks are exchanging gluons between each other, and the splitting of these gluons creates
virtual pairs of a quark and its anti-quark. These virtual particles are called the sea quarks
and are very important in the description of proton collisions, as for instance the processes
that are mainly initiated by heavy quarks can only be initiated by the sea quarks and
are very sensitive to their modelling. For a given collision energy Q2 we can compute
the probability to find a given parton carrying a given fraction of the proton momentum,
which is represented by the Parton Distribution Functions (PDFs) f(x,Q2). The PDFs
allow to split the calculation of a cross-section into two parts : the evolution of the proton
content before the collision, which is a complicated process that involves low energy and
large distance interaction that are sensitive to non-perturbative effects, and the partonic
cross-sections that involves a well defined family of partons and high-energies, which may
be computed in perturbative QCD. The factorization theorem brings these two pieces
together and allows to compute the cross-section for the production of given phenomena
in the scattering of two hadrons. It is expressed as follows :

σ(P1, P2) =
∑
i,j

∫
dx1 dx2 fi/h1(x1, µ

2
F ) fj/h2(x2, µ

2
F )σ̂i,j(x1P1, x2P2, Q

2, µ2
F ) (1.18)

where :

� fi,hn corresponds to the PDF of the parton i in the initial hadron n

� σ̂ corresponds to the partonic cross-section

� The factorization scale µF corresponds to the energy scale that distinguish long and
short distance physical processes, i.e. below this scale the physics is described by
the PDFs while above it comes from perturbative QCD

24



CHAPTER 1. THEORY

Figure 1.4: Parton distribution functions of the proton from the MSTW collaboration [70]

Furthermore this expression allows for the extraction of PDF sets from data, which is
necessary as the non-perturbative component of the PDF cannot be evaluated from the
theory, although we need a process that may be measured and for which the partonic
cross-section is known at a sufficient order in perturbative QCD. The evolution of the
PDF from the energy scale at which it is measured to the energy scale at which we need
to evaluate it comes from the DGLAP equation [65–67] and requires the knowledge of
functions that describe the splitting of incoming partons into several partons, in a regime
where the outgoing partons are collinear to the incoming one. This has been derived up to
NNLO in [68, 69], although the order at which the splitting are used in any computation
need to match the order at which the partonic cross-section is used.

A typical result for the extraction of the PDFs is shown in fig. 1.4 and outlines some of
the important features of PDFs. First the probability of finding a parton of a given family
inside the proton diverges at low x as it corresponds to virtual partons with a low energy
for which the splitting g → qq̄ is more likely. The bulk of the momentum fraction of the
proton is indeed carried by its valence quarks, and not by the sea. As the momentum
transfer Q2 increases there are new quark families that have to be taken into account, as
for instance the splitting g → cc̄ is not allowed below Q = 2mc. This effect is illustrated
in fig. 1.4 by the absence of the bottom quark at low Q2 while it is not negligible at
Q2 = 104 GeV 2.

Most usual PDF sets

There are several collaborations that provide complete sets of PDFs, and they may differ
by the methodology used to extract the PDF, the way the heavy quarks are handled
within this extraction, the datasets they are considering and the way the uncertainties are
handled. A proper review of all the existing PDF sets has been given in [71, 72] and in
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the following only the few sets that are used the most in particle physics will be described.
These PDFs are coming from the collaborations CTEQ [73, 74], MSTW [70] and NNPDF
[75] and are now computed using NNLO fits. But these sets are under constant evolution
and, in particular, have recently published updated versions of their results. These new
versions will be used soon and include the additional informations provided by the LHC
measurements.

These sets are determined by global analyses of the data provided by different ex-
periments, coming either from the analysis of hadronic collisions or from deep-inelastic
scattering. The different collaborations have chosen different sets of data, but they have
also different prescriptions to extract information on the PDFs from the data. CTEQ and
MSTW are using explicit parametrizations of the PDFs and the global fit extracts the free
parameters that are involved in these parametrizations, and this is the most widespread
method used by the different collaborations. NNPDF uses a method that is conceptually
very different, as the parametrization of the PDFs actually comes from Neural Networks
(NN) that are trained with the measurements provided by the experiments. This allows to
have much more free parameters in the model, and not to be biased by the explicit choice
of parametrization of the PDF. But this approach is still not completely unbiased as the
NN that gives the best fit has to be determined, and this may create a dependency on the
prescription used for this. All of these three PDF sets are using a different treatment of
the heavy quark flavour, and also of whether αs is taken as an external parameter or is
determined during the fit of the PDF.

Combining PDF uncertainties : PDF4LHC and METAPDF

Each of the collaboration provides several PDF sets, a central one and several that are
here to represent the various uncertainties on the PDF, which have to be propagated as an
uncertainty on the cross-section of the processes we are interested in. Most collaborations
determine this uncertainty from the variation of the χ2 around the best-fit of the PDFs,
but NNPDF uses an approach based on pseudo-datasets that are generated by randomly
drawing each of the input variable within its error band, taking into account the correlation
between the different variables in the randomization. As the central value and errors of
the PDFs provided by the different collaborations do not necessarily agree, they have to
be combined. During the Run 1 of the LHC this had been done using the PDF4LHC
recommandation [76], which advocates the use of the envelope of the error bands defined
by NNPDF2.0, CTEQ6.6 and MSTW2008. Unfortunately the agreement between these
three PDF sets is poor, which is illustrated by fig. 1.5, and this is artificially increasing
the impact of the PDFs on the uncertainty on cross-sections which is of the order of ≈ 7%
for the production of gg → H. These three collaborations have produced updated versions
of their PDF sets that include LHC data and improvements regarding their methodology,
and these improved PDF sets are expected to be used for the Run II of the LHC. The
compatibility between the different sets improved a lot, as is illustrated in fig. 1.6, and the
error it would imply on the cross-section is of the order of ≈ 3%. This is still not sufficient
as it requires to produce a lot of different Monte-Carlo samples, and does not allow to
implement the correlation of the PDF uncertainty with other effects in the statistical
model. To solve this issue the META-PDF approach [77] has been developed and could be
used for the Run II. All the PDF sets are estimated at a low energy scale Q0 at which they
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Figure 1.5: Ratio of gluon luminosity between the different PDF sets used during the Run 1 of
the LHC and MSTW2008 [78]

Figure 1.6: Ratio of gluon luminosity between the different PDF sets will be used in the Run 2
of the LHC and NNPDF3.0 [72, 79]

are combined, and the evolution of the PDFs to any other energy scale Q2 is determined
by the DGLAP equations. At the same time the uncertainty on the combined PDF is
determined, and as the different collaborations may have estimated the same uncertainties
in a different way, this combination allows to sizeably reduce the number of PDF sets that
have to be evaluated to determine the error bands.

1.3.2 Standard Model Higgs boson production channels

There are several processes that may produce a Higgs boson at the LHC, and their cor-
responding Feynman diagrams are all shown in fig. 1.7. All of these processes will be
further described below. They have different initial states and may be used to probe dif-
ferent properties of the Higgs boson. The precision at which their cross-sections have been
computed also differs from one process to another. The values of these cross-sections are
shown in fig. 1.8 for several values of mh in the region around the value of mh at which
the Higgs boson was found [42, 43].
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Figure 1.7: Most important diagrams for the production of a Higgs boson in proton collisions
[80]
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The gluon fusion process

The dominant production mode at the LHC corresponds to the gluon fusion process,
whose leading order is already at one-loop and happens through a triangle of heavy quarks
(mainly top quarks, but the bottom also contributes). The fact that it is not a tree order
diagram is compensated by the very high gluon luminosity of the LHC, and this channel
corresponds to ≈ 86% of the total Higgs boson production cross-section for mH = 125 GeV
and
√
s = 8 TeV, at which the official cross-section of the gluon fusion process, that is

provided by the LHC Higgs cross-section working group [81], is of 19.27 pb. Computations
for this process can use HRes 2 [82, 83] which gives the state-of-the-art computation of
the Higgs boson transverse momentum. The LHC Higgs cross-section working group
implements a calculation [84] that is exact at NNLO in αs and at NLO in mtop and mb,
with large logarithm resummation up to NNLL with exact finite quark mass dependence
and electroweak corrections. The impact of higher order effects may be estimated by the
variation of the QCD renormalization scale µR between mh

2 and 2×mh, and within HRes 2
it gives an error of ±7% for mh = 125 GeV. Recently first results of the computation of the
gg → H cross-section at N3LO in αs have been published [85] for mh = 125 GeV, and a
complete paper describing this result and including an evaluation of the electro-weak and
finite mass effects is expected to be published soon. The central value of this N3LO cross-
section is 19.47 pb at

√
s = 8 TeV and the uncertainty coming from QCD scale variation

decreased to ±3%. At 13 TeV this cross-section will be of 44.31± 2.64%. As this channel
offers the biggest statistics it will have the biggest weight in most precision measurements,
and therefore it needs to be accurately described. During the Run 1 the Monte-Carlo that
was used the most for gg → H in ATLAS was PowHeg [86, 87], complemented by Pythia
[88] for the parton shower, but this does not accurately describes the pT spectrum of the
produced Higgs boson, which may have an impact on some observables such as the signal
strength. To improve this description a reweighting of the pT spectrum was developed
in [89]. Furthermore PowHeg only implements the gg → H cross-section at NLO in αs
which gives a cross-section that is lower, as there are less channels with additional partons
produced in the loop than at NNLO or N3LO, and a k-factor of ≈ 1.45 is applied as an
additional weight to the PowHeg events to rescale its cross-section to the most up-to-date
cross-section. Furthermore this channel provides so far the most powerful way to probe
the coupling of the Higgs boson to the top quark, although it assumes that there is no
new particle in the gluon fusion loop as they may also modify the cross-section or various
distributions.

Vector Boson Fusion and Higgstrahlung processes

The second most important production mode is the Vector Boson Fusion (VBF), that
is initiated by two quarks that both emit either W or Z bosons that interact together
to produce a Higgs boson. In this process the final state corresponds to a Higgs boson
that is central and two outgoing quarks that are in the forward region. The study of
this production channel allows for the determination of the couplings of the Higgs to the
W and Z bosons, and the distribution of the two outgoing quarks may be sensitive to
the determination of the CP-admixture of the Higgs boson. In importance the following
production process is the Higgsstrahlung where an off-shell W or Z boson is produced in
the s-channel and emits a Higgs boson. In principle all of these bosons could be off-shell
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but at the LHC the dominant production comes from the case where the vector boson in
the s-channel is off-shell and there is an on-shell Higgs boson and an on-shell vector boson
in the final state. The best Monte-Carlo to compute both of these processes is HAWK [90]
that includes the full NLO computation for both the QCD and electro-weak parts. For
mh = 125 GeV and

√
s = 8 TeV this gives a cross-section for the VBF process of 1.578

pb with an uncertainty of ±0.2% from the QCD scale variation, while for Higgsstrahlung
it is of 0.7046 pb ±1% for WH and 0.4153 pb ±3% for ZH. These errors are smaller than
for the gluon fusion process because the leading order diagrams are at tree level and are
quarks-induced, and also because this corresponds to electro-weak processes.

Associated productions with quarks

The last production mode that has been considered at the LHC corresponds to the as-
sociated production with heavy quarks, where two initial gluons are both splitting into a
qq̄ pair and among those four quarks two will interact to form a Higgs boson while the
two other will be present in the final state and hadronize. If they are measured these
associated productions will allow to directly measure the Yukawa coupling of the Higgs
boson to a given family of quark, which is especially important for the top quark as there
is no other way to directly probe its coupling to the Higgs boson, and given its mass it
may probe physics at an higher energy scale. The best tool to study the tt̄H production
channel is PowHel [91] that implements the NLO matrix elements and is interfaced with a
parton shower. At mh = 125 GeV and

√
s = 8 TeV the tt̄H cross-section is 0.1293 pb+3

−9%
and the bb̄H cross section is 0.2035 pb+10

−15%. Despite the small Yukawa coupling of the
bottom with respect to the top, its PDF is much larger than the one of top which explains
why its cross-section is still sizeable.

1.3.3 Standard Model Higgs boson decays

As the several decay channels of the Higgs boson progressively open when its mass in-
creases, its total decay width increases too as this may be seen in fig. 1.9. Far from the
threshold, for the bosonic channels the partial width evolves as ∝ m2

H while for fermionic
channels it goes as mH . In the standard model and in the low mass region where the
Higgs boson has been discovered the total decay width of the Higgs boson is very small,
Γh = 4.07 ± 1.6 MeV for mh = 125 GeV [92] and will be hard to measure unless it
is sizeably broadened by new physics effects. We will discuss below the evolution of the
branching ratios of the various channels, that are presented in fig. 1.10, as well as the main
analyses that may be carried within these channel and their advantages and drawbacks,
are presented. All the partial widths can be computed with the program HDECAY [93],
which can be complemented by PROPHECY4F [94] for the specific case of h→ V V ∗ → 4l,
where V = W or Z.

Main decay channels

In the low mass region where the Higgs boson has been discovered, the main decay channel
is by far the h → bb̄ channel whose branching ratio is higher than 50%. This dominance
comes from the fact that it is the heaviest particle whose decay channel is completely
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Figure 1.9: Total decay width of the Standard Model Higgs boson as a function of its mass [81]
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opened. It suffers from a high-level of background, and the fact that b quarks are hard to
identify although specific algorithms exist to try to infer from the properties of a jet
whether it has been initiated by a b-quark [95, 96]. Only the associated production
channels may be studied, as requiring events where e.g. a Z boson or a tt̄ pair is observed
allows to sizeably improve the signal-to-noise ratio, but it also implies a sizeable loss on
signal statistics. Its observation is the most powerful way to measure the Yukawa coupling
of the Higgs boson to the bottom quark.

In this region the next decay channel in terms of branching ratio is the h→ W (∗)W (∗)

channel that is steeply rising as it comes closer to its kinematical threshold (2mW ). It
is still below the bb̄ channel in terms of branching ratio, because one of the two vector
bosons has to be off-shell which makes this decay less likely. Depending on the decays of
the two W bosons this channel may be well identified, for instance if the two W decay into
W → lν where l = e, µ it is possible to have a clean selection of h→ WW events. To this
extent this channel is well suited to measure associated production modes or cross-sections
as it has a reasonable statistics and background, but it is a very poor channel to study
the lineshape of the resonance as all the decay channels involve either neutrinos or quarks,
that have a poor energy resolution.

The h→ ττ decay channel is so far the most promising channel to measure the Yukawa
coupling of the Higgs boson to a lepton. The τ energy resolution is poor as the decay of
a τ involves two neutrinos, and effectively this means that the Z → ττ decay is still a
background at the measured value of mh, which needs to be properly taken into account
as it is the biggest background. It is not possible to precisely determine the properties
of the lineshape of the Higgs boson in this decay channel, because of the poor energy
resolution of the τ leptons, but it is also possible to measure cross-sections and associated
productions, as well as CP-admixture parameters.

The h→ gg and h→ cc̄ are not expected to be studied at the LHC. They suffer from
the same issue of background than the h→ bb̄ channel but their statistics is much smaller
and it is not yet possible to efficiently identify jets from gluon or charm quarks. However
it was suggested that quarkonium interferometry [97] could constrain in a modest way the
h→ cc̄ coupling using h→ J/Ψγ, which has been done in [98].

Precision channels

Most of the precision measurements, especially those related to the lineshape of the Higgs
boson, are carried by two high-precision channels. The first one is the h → ZZ∗ → 4l
channel and the second the h→ γγ channel, that will be further described below. There
are several final topologies for the h→ ZZ∗ decay channel but only the one with electrons
and muons gives a reasonable precision, although this imply a loss in statistics as the
branching ratio of both the Z bosons has to be taken into account. But the irreducible
background for this process is also very low and its signal-to-noise ratio is higher than 2,
with a very good resolution because electrons and muons are very well measured. It may
be used to measure the lineshape parameter of the Higgs boson, differential cross-section,
CP-admixture parameters, ect. But it is less promising than other decay channel for the
measurement of associated production processes as it has a very low statistics hence require
extensive datasets to do such studies, which are not yet available. As for the h → WW ∗

channel the branching ratio of h → ZZ∗ rises steeply with mh, for the same reason that
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Figure 1.11: Leading-order Feynman diagrams for the h→ γγ decay [102]

it is getting closer to its kinematical threshold.

The H → γγ decay channel

The h→ γγ decay channel is already loop-induced at leading order, because the photons
are massless and therefore cannot directly couple to the Higgs boson, therefore it has a
very small branching ratio, with BR(h → γγ) = 2.28 10−3 ± 4.9% for mh = 125 GeV.
There are three different diagrams contributing to this decay at leading-order, all of which
are shown in 1.11, and the dominant contribution comes from the W loop. In terms of the
couplings of the Higgs boson to the different particles (normalized to the SM couplings)
the h→ γγ branching ratio varies as [99]

BR(h→ γγ) ∝ 1.59κ2
W + 0.07κ2

t − 0.66κWκt (1.19)

where the first two terms are coming from the W and top loops and the last from the
interferences between the two, which are destructive and have a sizeable impact. Within
the Standard Model and around the value of mh where the Higgs boson has been discov-
ered, this branching ratio is at its maximal value and is approximately constant. As it is
a loop-induced process its branching ratio is very sensitive to new physics scenarios where
heavy particles may appear in this loop. This channel was studied since the beginning of
the prospects at LHC, on Monte-Carlo by C. Seez and J. Virdee [100], and then in ATLAS
[101].

1.4 Defining masses and widths

1.4.1 General definition

The concept of the mass of a given particle is deeply connected to its propagation in the
vacuum, as for instance a mass-less particle will never be at rest, independently of the
frame in which it is a studied. If we denote φ(x) the operator that represent the state of
a field at the space-time position x, the amplitude for this field to propagate from x to y
is < 0|φ(x)φ(y)|0 > where |0 > corresponds to the vacuum, and its analytical formulation
may be determined from the equation of motion. For a scalar field in a theory without
interaction, the motion is described by the Klein-Gordon equation that is expressed as :

∂µ∂
µφ+m2φ = 0 (1.20)
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where the operator φ describing the field state and the wave function of a given particle
of this field are mistaken for one another. The solution for this differential equation can
be computed and is given by :

< 0|[φ(x)φ(y)]|0 >∼
∫ d4p

(2π)4
i

p2 −m2 e
−ip(x−y) (1.21)

In this expression, the term 1
p2−m2 is called the propagator for the field φ and represents the

whole dynamic of its propagation in a free field theory. When we are interested in complete
theory we need to consider the potential impact of virtual particles on the propagation of
our initial particle. To do so the concept of one-particle irreducible diagrams is defined
as the ensemble of the diagrams that can not be split in two by a removing a single line
corresponding to the propagator, to which we associate the amplitude −iM2(p2). Then
the full propagation can be expressed in a diagrammatic way as is done in fig. 1.12. In
terms of amplitudes, the first of these diagrams corresponds to the propagator of the free
theory, while the other ones are corresponding to a factorization of the free theory and
of −iM2(p2). If we define m0 the mass we would have in the equivalent free theory, this
corresponds to the following geometrical series [103] :

i

p2 −m2
0

+ i

p2 −m2
0
(−iM2) i

p2 −m2
0

+ ... = i

p2 −m2
0 −M2(p2) (1.22)

and the denominator may be expressed as p2 −m2
0 −Re(M2)− iIm(M2), hence the pole

of the propagator which defines the actual value of the mass is m2 = m2
0 + Re(M2) and

is slightly displaced with regard to the bare mass of a non-interacting theory. The last
term Im(M2(p2)) = Im(M2(p→ p)) = mΓ can be used to define the decay width of the
particle, and can be expressed as the decay probability by the use of the Optical Theorem
[103], which is done as follows :

Im(M2(p2)) ∼ 1
2
∑
f

∫
dΠf |M(p→ f)|2 (1.23)

where the sum runs over all possible final states for the decay of this particle. Hence the
decay width is

Γ = 1
2m

∑
f

∫
dΠf |M(p→ f)|2 (1.24)

If the different decay branching ratios are stable over the width of the resonance, the only
possible variation of the width with respect to the collision energy

√
s comes from the

evolution of the phase space over which the integral is done. This is typically the case for
the W and Z bosons where the only variation with respect to a standard relativistic Breit-
Wigner is the fact that the term involving the width is replaced by mΓ→ mΓ(s) = Γ0× s

m

[104] where Γ0 corresponds to the width at the pole. For a narrow resonance the phase
space do not vary over the width of the resonance and the width may be taken as a constant.
In the general case the full dependence of the decays on

√
s should be considered, which

potentially includes opening of new decay channels, and it is a much harder task.
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Figure 1.12: Sum of all possible amplitudes that correspond to the propagation of a given particle
in a complete theory [103]

1.4.2 The Complex Pole Scheme

A possible prescription to define the propagator of the Higgs boson is the Complex-Pole
scheme [105] which uses the full structure of the pole in the complex plane. This was
developed for the search for a high-mass Higgs boson, and has since been used to develop
the study of the off-shell event yield in the h → ZZ∗ and h → WW ∗ decay channels
in ATLAS [106] and CMS [107]. One of its main interest with respect to a Standard
Breit-Wigner formula is that it does not factorize the production, propagation, and decay
of the Higgs boson, as this factorization is not expected to hold in the off-shell regime.
This prescription has the advantage of taking into account the variation of the position of
the pole with respect to

√
s beyond leading-order, and does not assume that the width is

constant at the on-shell width. This is needed as the mass goes higher as the opening of
the decay into four fermions translates into a non-negligible three-loop component of the
Higgs self-energy, that has to be taken into account.

1.4.3 The Breit-Wigner formula

Now we consider the case where the resonance is sufficiently narrow so that the decay
branching ratios does not vary. We have seen before that the corresponding propagator
writes M(s|m,Γ) = i

s−m2−imΓ which translates into a probability distribution of :

f(s|m,Γ) = k

(s−m2)2 +m2Γ2 (1.25)

which is the relativistic Breit-Wigner function, where k is a normalization factor. In the
low width regime this is equivalent to :

k

((
√
s−m)(

√
s+m))2 +m2Γ2 ≈

k

4m2(
√
s−m)2 +m2Γ2 = k′

(
√
s−m)2 + Γ2

4
(1.26)

which is the non-relativistic Breit-Wigner that was initially published in [108].

1.5 Interferences between signal and background pro-

cesses in gg → h→ γγ

1.5.1 General description of the phenomenon

In quantum mechanics two processes that bring a given system from an identical initial
state to another identical final state can interfere among each other, either destructively
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or constructively. This needs to be taken into account properly, which is achieved by
summing the amplitudes of the two processes. The case of the gg → h → γγ channel
is a perfect representation of this problem, as is outlined in fig. 1.13 where qg → Hq
is also included (the contribution of qq̄ → Hg being neglected). There is a sub-part of
the irreducible continuum background that is gluon-initiated and where the two photons
are appearing through a box of light quarks. If we denote Agg→h and Ah→γγ the two
vertices involved in the production and the decay in gg → h→ γγ, Acont the amplitude of
the gg → γγ background and treat this resonance as a relativistic Breit-Wigner, the full
amplitude for gg → γγ is written :

Agg→γγ = Acont −
Ah→γγAgg→h

ŝ−m2
h + imhΓh

(1.27)

and the cross-section may be determined from |Agg→γγ|2. Most usually |Acont|2 and
|Asignal|2 are computed separately and the interference term neglected. It may be com-
puted as :

δ =
AcontA

∗
h→γγA

∗
gg→h

ŝ−m2
h − imhΓh

− A∗contAh→γγAgg→h
ŝ−m2

h + imhΓh
(1.28)

and as the two terms in this equation are complex conjugate this may be simplified to

δ = − 2
(ŝ−m2

h)2 +m2
hΓ2

h

Re((ŝ−m2
h − imhΓh)A∗contAh→γγAgg→h) (1.29)

= − 2
(ŝ−m2

h)2 +m2
hΓ2

h

((ŝ−m2
h)Re(A∗contAh→γγAgg→h) (1.30)

+mhΓh Im(A∗contAh→γγAgg→h)) (1.31)

This is a partonic cross-section for a given value of the out-going mγγ, and if we want
to have the impact of interferences on the total-cross section we need to compute the
convolution with the PDFs and to integrate over the whole mass peak. Now if we are
to consider the vicinity of the mass peak we can assume that the product of amplitudes
A∗contAh→γγAgg→h is a constant, in which case the term that involves the real part (cor-
responding to eq. (1.30)) would cancel out in the total cross-section as it is odd around
the pole, while the term involving the imaginary part (eq. (1.31)) would not, as it has
the same ŝ dependence that the resonance itself. This term therefore gives an overall
decrease of the gg → γγ cross-section if there is a relative phase between the signal and
background amplitudes. The decrease of cross-section was first considered in [109] at LO
where it was estimated to be negligible, but this was only due to an accidental cancellation
of the effect at LO. It was first computed at NLO in [110], where a decrease of ≈ 2% on
the gg → H → γγ yield was computed. At this point the real part of the interference
term had not been considered, because it does not have an impact on the cross-section,
but its impact on the line-shape was not negligible and was first computed in [111] at
LO. The NLO computation was provided later in [112] (following partial computations in
[111, 113]), where a shift of ≈ 70 MeV was advertised (for the standard model), coming
from the distortion of the line-shape that may be seen in fig. 1.14. Furthermore it was
noticed in [112] that because of the different dependence of the interference term and of the
signal on the width of the boson and on the couplings, this variation of the line shape may
be used to constrain the Higgs boson width independently from the couplings, although
ideally the two should be done in a global simultaneous fit.
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Figure 1.13: Representative diagrams for interference between the Higgs boson resonance and the
continuum in the diphoton channel. They correspond to gg → γγ at NLO and qg → γγq. The
Higgs boson signal resonant amplitudes correspond to the diagrams on the left of the dashed
vertical lines, and their time evolution goes from left to right, the background gg → γγ (or
qg → γγq) amplitudes to the right diagrams, and their time evolution is inverted [112]
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Figure 1.14: Di-photon invariant mass spectrum generated by the interference term between the
Higgs boson signal and its background in the gg → γγ process (and qg → γγq [112]
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Figure 1.15: Higgs boson mass shift induced by the interferences between the gg → H → γγ and
its background gg → γγ, versus the jet-veto pT cut [112]

1.5.2 State of the art computation for the gluon fusion

The most recent and complete computation of the interference term, for both the real and
imaginary part, comes from [112]. The knowledge of the interference term at a given order
in perturbation theory requires the knowledge of both the signal and interference ampli-
tudes at the same order, which is limited by the background computation that exists only
at NLO [114]. As may be seen in fig. 1.13 there are a few subtleties as, for instance, one
can see that the tree Born graph corresponding to the background qg → γγq can interfere
with the signal qg → qH (see top right graph of fig. 1.13) and is labelled ”LO (qg)”. The
same signal graph qg → qH can interfere (at higher αS order) with a background box
diagram qg → γγq (bottom right graph of fig. 1.13). This computation includes diagrams
with a real emission of one additional gluon or quark, and had been carried out in the
context of an Higgs effective-field theory where the top loop is not resolved. The result
may be seen in fig. 1.14, where the term denoted ”LO (qg)” corresponds to terms that
are at tree-level and have a zero total cross-section. At leading order the phase between
the signal and background amplitudes crosses 0 at the pole, as seen in the blue and pink
curves of fig. 1.14, while at NLO this zero is slightly shifted. The inclusive mass shift was
estimated to be of 70 MeV in [112] but it uses a simplified Gaussian signal model. At LO
the mass shift was estimated to be of ≈ 120 MeV in [111]. In [112] a jet veto is simulated
by throwing away events with pT,j > pT,veto and |ηj| < 3. The apparent Higgs boson mass
shift is shown in fig. 1.15 versus the jet-veto pT cut. One sees again that the mass shift
for inclusive production (large pT,veto) is around 70 MeV at NLO (red curve), significantly
smaller than the LO prediction of 120 MeV.

In fig. 1.16 the jet veto is removed and the mass shift is studied versus the lower cut
on the Higgs boson transverse momentum, pT > pT,H . Since LO gg → γγ has zero pT ,
it does not contribute to fig. 1.16, which only receives contribution from real radiation
diagrams. The blue line receives contribution from the bottom left diagram of fig. 1.13.
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Figure 1.16: Higgs boson mass shift induced by the interferences between the gg → H → γγ and
its background gg → γγ, versus the lower cut on the di-photon pT

The top right diagram is then added in order to get the magenta line, and the final result
(red line) is then obtained by summing the bottom right diagram.

Despite the improvement of the pT spectrum brought by the inclusion of the one-
parton emission in the matrix elements, the description of the pT spectrum generated by
the interference term is still poor and not well under control. This may be complemented
by a Parton Shower, as will be seen later (in section 6.3), but this implies a sizeable
uncertainty. An improved computation that includes soft-gluon resummation is currently
being carried out and is expected to be published by the end of this year [115]. No
computation of the interferences at an order higher than NLO is expected, because the
gg → γγ box component of the background is not known to a better accuracy, and is not
expected to be computed in the near future.

1.5.3 State of the art computation for the other production
mechanisms

As the interference term is determined by the signal and irreducible background amplitudes
we can naively think that the relative variation of the cross-section they are implying vary
as the inverse of S

B
. In this picture we expect the interference in the non gluon-fusion

decay channel to be smaller, because the background is much smaller. Recently a first
computation of the interference term at LO in h(→ γγ) + 2 jets has been published [116],
which includes the interference between the VBF production channel and its background,
but also the interference between gluon fusion plus two jets and its background, as well as
the interference between the VBF and gluon-fusion plus two jets channels (this last graph
corresponds to two gluons radiated by two initial quarks). This last part is expected to be
very small [117–120]. A few examples of some of the representative Feynman diagrams for
this interference term are shown in fig. 1.17. In [116] the computation of the interference
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Figure 1.17: Some Feynman diagrams contributing to the interference term in the h+2jets modes
[116]

term in h(→ γγ) + 2j is done only at LO, and only the real part of the interference has
been considered (i.e. only the shift of the mass is studied, and not the impact on the
cross-section). The mass shift from gluon-fusion plus two jets and the one from VBF have
opposite signs, and with suitable selection cuts they largely cancel. For instance if the
only cuts that defines the VBF category is on the dijet invariant mass, at Mjj > 400 GeV,
the two contributions are summing up to give a mass shift of δmh = −6 MeV. For the
worst case studied in [116] the mass shift in h+ 2j is as high as 20 MeV, which should be
compared to the 70 MeV of [112] as it uses the same fit methodology. The work presented
in [116] is very recent and has not been used in an experimental collaboration yet, as the
Monte-Carlo tools that were used there are not yet public.

So far there is no computation of the interference for the other channels (e.g. VH).
A new version of MadGraph5 aMC@NLO [121] is currently under development and is
expected to include the possibility to automatically generate NLO matrix elements to
processes that are loop-induced at LO, and a module to separately generate signal, back-
ground and interferences [122]. This would allow to perform all the studies required to
determine the interference terms in every production and decay channel, although still at
NLO (potentially complemented by a parton shower program) therefore the issue of the
control of the pT spectrum description may still remain.
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1.6 Overview of the methods setting limits on the

Higgs boson width

An increase of the width of the BEH boson directly connects to new physics, as it can
happen only through an enhancement of the Higgs couplings to one (or several) particle(s),
which are very well defined in the SM once the quark masses are known, or by the existence
of a new decay channel, or of new particle inside the loops that are involved in several
decay channels. Therefore this would be a key parameter to measure, but it is also a
measurement that is impossible to perform at the current colliders. Several methods have
been developed to infer an upper limit on this parameter, and they all have advantages
and drawbacks, as it is not possible to obtain soon a strong limit in a model-independent
setting. This thesis will present a method to set a direct upper limit on the Higgs boson
width, using a direct fit of the reconstructed di-photon lineshape in part 5. Some of the
other methods that have been developed to determine upper limits on the Higgs boson
width are explained below (a lower limit is given in [123]).

1.6.1 Width from off-shell events in h→ ZZ∗ and h→ WW ∗

Due to the increase of the branching ratio of the h → ZZ∗ decay channel at mh = 2 mZ

there is a sizeable contribution of the region at m4l > 2 mZ to the total Higgs signal
cross-section, and this region actually amounts to ≈ 15% of the Higgs signal yield in the
h → 4l decay channel. This effect is illustrated by fig. 1.18. The cross-section in this
off-shell region only depends on the Higgs boson couplings to the incoming and out-going
particle as σoffshell ∝ (κinκout)2 while, on-shell, the cross-section is a function of the width

of the Higgs boson, as σonshell ∝
(κinκout)2

Γh
, hence from the ratio of these two cross-section

it is possible to infer an upper-limit on the Higgs boson width, as long as the interferences
between signal and background that are not negligible in the off-shell region are treated
properly. This idea was initially developed in [124] (see also [123] where the analysis has
been generalized to include anomalous couplings of the Higgs boson to two electroweak
bosons), and has been used both in CMS [107] and ATLAS [106] where it has also been
extended to the h → WW ∗ decay channel. In ATLAS, after the combination of all the
channels, the 95% C.L. observed limit on the width is at Γh = 22.7 MeV assuming that the
background k-factor is the same than the signal, and using the CLs technique described
below, while in CMS, that uses only h → ZZ∗ → 4l and h → ZZ∗ → 2l2ν the 95%
C.L. limit is at Γh = 22 MeV using the test-statistics q̃Γ that will be described below (see
paragraph 2.2.3).

As it has been presented above (look at the width Γh), this analysis assumes that the
couplings in the off-shell region are the same than on the mass-shell, but the couplings
are running parameters and this is where the model-dependence of this method appears.
Within the standard-model this running of the couplings is small, about ≈ 5% between
mh = 125 GeV and 300 GeV, and would have a negligible impact on the current upper limit
on the width, that is at ≈ 5ΓSM . Within a given model the running can be computed and
implemented in the analysis to give another estimate of the width, that would be specific to
this model. The only quantities that may be interpreted in a model-independent approach
are the on-shell and off-shell signal strength µoff/on, and a model dependency is injected
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Figure 1.18: Invariant mass distribution generated by a Higgs boson in gg → V V , with V = W
(red curve) or Z (black curve) for mh = 125 GeV [125]
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from the moment they are combined and interpreted as an information on the width.
Therefore this upper-limit on the width should be seen more as a consistency check of
the Standard-Model as it is not clear that a measurement by this method of a ”width”
Γ 6= ΓSM would be connected to the width itself or to the couplings, although these two
quantities are correlated. Such a scenario was developed in [126] where the addition of a
light scalar in the gluon-fusion loop was able to sizeably modify the Higgs boson width
without modifying µoff/on. Furthermore in the h → ZZ∗ → 4l the off-shell region is
defined up to m4l = 1 TeV and may receive contributions from a new physics sector at
the TeV-scale that has not yet been discovered, which could also have a sizeable impact
on this result. Examples are the presence of additional Higgs bosons [127] or anomalous
h→ ZZ∗ couplings [128].

1.6.2 Width from Higgs boson couplings combination

In the context of the Higgs combinations produced by ATLAS [99, 129] and CMS [130],
whose initial aim is to determine the couplings of the Higgs boson to different particles,
few scenarios (with some hypothesis) can be developed in order to set an upper limit on
the Higgs boson width. It is impossible, without assumptions, to constrain the width as
any increase of the width can be absorbed, keeping the rate constant, in an increase of the
couplings. The rate i→ H → j is given by, assuming all the coupling modification factors

have a common value κ, ratei,j =
κ4σSMi ΓSMj

κ2ΓSMtot + Γnew
and it is invariant if κ = 1√

1−BRnew
[127].

The most simple of these scenarios assumes that all the couplings to SM particles are at
their SM value (κi = 1), but that there is an additional decay channel to a state that is
either invisible (in the sense that it does not interact with the detector) or undetected (in
the sense that no specific analysis is searching for this final state). Within the combination
all the probability amplitudes for a process that starts in a state i to end in a state
f through a Higgs boson are proportional to κiκf , and the width may be expressed as

Γh(κj, BRi,u) = κ2
h(κj)

1−BRi,u

ΓSMh , where κ2
h(κj) is equal to the sum of the scaled partial decay

widths to SM particles [131]. Once the κi,j are fixed to 1 (except for those corresponding
to loops, κγ, κγZ and κg) this benchmark model yields a measurement of the width of
Γh

ΓSMh
= 1.03+0.13

−0.03 in ATLAS, but it is also very model dependent as there is no modified

couplings with respect to the Standard Model, except in the loops. For instance this
implies that the minimal possible value of Γh is its SM value, when BRi,u = 0.

A second method uses the unitarity constraint in vector-boson scattering to add the
external constraint that κV < 1, which is valid in a wide class of models, in particular in
all models with multiple Higgs doublets [70, 132–136], but is not valid in general as the
unitarity conservation may come from a different mechanisms [137]. One then makes a fit
with the ten free parameters κW , κZ , κt, κb, κtau, κµ, κγ, κg, κZγ and BRi,u. Within

this framework a measurement of the Higgs boson width is obtained, at
Γh

Γh,SM
= 0.64+0.40

−0.25

for ATLAS.

The last benchmark model is similar except that BRi,u = 0. This also allows to give
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a more powerful measurement of the width, at
Γ

ΓSM
= 0.64+0.31

−0.25 for ATLAS. Additional

scenarios can be found in [129].

1.6.3 Higgs boson width at future colliders

At e+e− colliders the measurement of the beam energy allows for a measurement of the
parameters of the line-shape of a resonance produced in the s-channel, that is much more
precise than what would be obtained with an energy measurement provided by the detector
itself, and for instance this is what allowed a precise measurement of the Z0 boson mass
and width at LEP [138]. At LEP, this good measurement of the beam energy was achieved
by resonant depolarization of the beam [139], but it was only possible up to a beam energy
of Ebeam = 60 GeV due to the depolarization induced by synchrotron radiations, and for
the FCC-ee electron-positron collider that is under study [140] it will only be possible up
to Ebeam = 80 GeV. This is not sufficient for the Higgs boson which is anyway produced by
Higgsstrahlung and other methods will be needed at FCC-ee and at the ILC [141]. A direct
scan of the line-shape that allows to determine the Higgs boson width, which would only
be possible at a muon collider [142, 143], where, for a luminosity of ≈ 1 fb−1 a precision
on the width of 0.15-0.45 MeV can be obtained. Therefore an indirect method has been
developed and reported in [144], where the relatively pure sample of Higgs boson produced
in e+e− → Z∗ → ZH events are tagged by triggering on a clean Z0 decay channel (e.g
Z → µµ) and checking that the mass of the object that recoils against the Z0, which can be
determined using the energy-momentum conservation (the so-called recoil-mass method),
is compatible with a Higgs boson. This allows to measure the total Higgsstrahlung cross-
section which is proportional to Γ(h → ZZ), and Γh is then determined by measuring
the branching ratio of h→ ZZ∗ within this pure Higgsstrahlung sample, BR(h→ ZZ∗).

Γ(h) is then obtained as Γh = Γ(h→ ZZ∗)
BR(h→ ZZ∗) . This method still implies some model-

dependence as the Higgsstrahlung production is at an energy scale of
√
s = 250 GeV

while the h → ZZ∗ decay is at an energy scale of
√
s = mh ≈ 125 GeV, but it is not

as important as for the off-shell method used at the LHC as the energy scale that is
being probed does not go up to the TeV scale. The FCC-ee [140] and ILC [145] (see also
[141, 146]) collaboration are claiming to be able to reach with this method a statistical
precision of 1 to 2% on the width with their full expected datasets. Similar results for
CLIC may be found in [147].
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Statistics for particle physics

Contents
2.1 Fundamental building blocks . . . . . . . . . . . . . . . . . . . . 45

2.1.1 Probability density function and likelihood . . . . . . . . . . . . 46

2.1.2 Maximal likelihood estimation and inclusion of uncertainties . . 47

2.2 Construction of confidence intervals . . . . . . . . . . . . . . . 49

2.2.1 Definition and choice of a test-statistics . . . . . . . . . . . . . . 49

2.2.2 General definition of a confidence interval . . . . . . . . . . . . . 50

2.2.3 Particular cases used in particle physics . . . . . . . . . . . . . . 51

2.3 Distribution of the test-statistics . . . . . . . . . . . . . . . . . 54

2.3.1 Distribution from pseudo-experiments . . . . . . . . . . . . . . . 54

2.3.2 Asymptotic formulae for the significance . . . . . . . . . . . . . 55

2.4 Expected results : the Asimov dataset . . . . . . . . . . . . . . 56

2.1 Fundamental building blocks

The goal of any particle physics analysis is to make an inference on the fundamental
properties of the nature, either by determining one or several parameters that are ruling
the theory (the parameters of interest, ~µ), or by trying to determine whether a new physics
phenomenon exists or not. Our only input to do this is a set of observable quantities ~xe that
have been measured separately on N events by a detector, and this defines the ensemble
{~xe} from which we may try to do the inference. If both the underlying theory and the
detector response are perfectly known (in particular, if the parameters of interest are fixed),
we can determine the probability of observing this ensemble, P ({~xe}|~µ). If the observables
are properly chosen it will vary with respect to the parameter of interest, and this property
will be used to produce our statistical inference on ~µ. Formally, in the frequentist point of
view, we cannot know the probability for a given set ~µ to be the true one, but only what
is the probability of observing {~xe} under the hypothesis that ~µ are the underlying true
parameters. The actual true value of these parameters are a fixed, but unknown, state of
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nature and this is what we actually want to evaluate. In the Bayesian point of view one
may determine the probability for a given hypothesis ~µtest to be the true one, which has to
be viewed as the degree of belief we may have in this hypothesis. The current chapter will
try to describe the necessary methods and tools to build a measurement and the related
confidence intervals in the frequentist point of view. The Bayesian point of view will not
be described further as it is not actually used in this thesis, but a proper review of this
method may be found in [52].

2.1.1 Probability density function and likelihood

In the frequentist point of view the probability for the outcome of an experiment is seen
as the limit frequency of drawing this particular outcome when the experiment is repeated
an infinite number of time, i.e.

P (A) = lim
N→∞

N(A)
N

(2.1)

This has clearly some limitation : for instance the experiment needs to be reproducible,
which is not always the case as for instance the Higgs boson exists in nature or not, and it
is not possible to redo this experiment. Still this definition is the most objective definition
of probability that may have a practical use.

This definition may be directly applied to cases were A takes discrete values, but it
is not always sufficient in particle physics. For instance in a counting experiment the
different values that A may take are corresponding to a given integer number of events,
and for each possible number of events there is a well defined probability of observing this
number. But we are often interested in the value of continuous variables, for instance the
invariant mass of the di-photon system in h→ γγ events has a continuous distribution and
the knowledge of the probability of observing a given event with a given mγγ is of little
use as it will always be an infinitesimal number. For those cases we define the Probability
Density Function (PDF) of x, f(x), from the probability of observing this variable within
the interval [x, x+ dx], which is done as follows :

P (x ∈ [x, x+ dx]) = f(x)dx (2.2)

In practical particle physics cases there are various ways of determining the PDF of a
given observable. It can either come from an analytic formula, or from Monte-Carlo
simulations, or from several data-driven techniques. In general it is possible to combine
the information of several observables (denoted ~xe) in the PDF, although it requires the
knowledge of the correlations between the various variables. For a set of N events this
may be translated into f({~xe}) = ∏N

e=1 f(~xe), and if the observed number of events N is
also a random number fluctuating around an expectation of Nexp events this formula may
be extended by a Poisson term, and becomes f({~xe}) = 1

N !e
−Nexp(Nexp)N

∏N
e=1 f(~xe). The

observables that are considered are chosen in such a way that their distribution depends
on the parameter of interests of our problem, or are different between the two physical
models that we are testing against each others, which means that the total probability for
the N observation will depend on the parameters ~µ : f({~xe}) = f({~xe}|~µ). In particle
physics the ensemble {~xe} corresponds to the data given by the experiment and is fixed,
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while ~µ will be varied to test different values : this is called the likelihood function and
may be denoted L(data|~µ). If it is complemented by a Poisson term it will be called an
extended likelihood.

If we take the example of a search for a narrow resonance with an unknown cross-section
S over a background with a cross-section B, we may use the reconstructed invariant mass
m of the potential decay products in selected events. Then the parameter of interest is S
and the per-event PDF is f(m|S) = 1

S+B (SfS(m) + BfB(m)), where fS and fB are the
PDF for m corresponding to the signal and background processes, respectively, and may
be constructed using the Monte-Carlo or other techniques, such as a side-band fit for the
determination of fB. Then if N events have been observed the likelihood of this analysis
is

L(data|S) = 1
N !e

−(S+B)(S+B)N
N∏
i=1

(SfS(mi) +BfB(mi))
S +B

= e−(S+B)

N !

N∏
i=1

(SfS(mi)+BfB(mi))

(2.3)
and depending on the value of L(data|S) for different values of S we may derive an
exclusion limit on S, or claim a discovery, following the methods that will be further
described below.

It is also possible to use histograms to conduct the statistical analysis, in which case
the likelihood to be used will be a binned likelihood, that is defined as the product of the
Poisson distribution of each bin :

Lbinned =
Nbins∏
i=1

n
ni,obs
i,exp

ni,obs!
e−ni,exp (2.4)

where ni,exp depends on S and B. It may be shown that it is equivalent to the unbinned
likelihood whenever the dataset is sufficiently large [148] although it is preferable to use an
unbinned likelihood whenever possible as the binned likelihood implies a loss of information
that could improve the performance of the statistical analysis.

2.1.2 Maximal likelihood estimation and inclusion of uncertain-
ties

Since the work of Fisher, which is summarized in [149], the most widespread and gen-
eral method for parameter estimation is based on the maximal likelihood estimator. This
method assumes that an unbiased model of the data is known as a function of the param-
eter of interest, and the best estimate of this parameter is estimated as being the value
that maximizes the likelihood function, which is demonstrated for instance in [150]. Fur-
thermore it may be shown that in the large sample limit the maximal likelihood estimate
reaches the smallest possible variance that an unbiased estimator may achieve [150]. In
general the use of −2lnL is preferred first because it is usually computationally easier, as
it transforms the products into sums and the exponential into their components, but also
because for a binned likelihood where all the bins are sufficiently populated it is strictly
equivalent to minimize −2lnL and to minimize a χ2.

But there is an additional complication as the parameters of interest are not always
sufficient to completely describe a proper model of the data. For instance in h → γγ
the background is determined by a analytical fit of this background, and there are no
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prior knowledge or external constraints for the parameters of the background function.
These additional parameters, that are needed for the completeness of the model but do
not correspond to our primary physical interest, are called the nuisance parameters and
will be denoted ~θ. They increase the degrees of freedom of the fit so that the model may
adjust itself to the observed data, and in turn this increases the statistical uncertainty on
the estimate of the parameter of interest.

These parameters may also be used to represent the systematic uncertainties that are
involved in any physics analysis. In that case we most usually have an external knowledge
on the systematic uncertainty, as it may be estimated from another analysis, which will
be called the auxiliary measurement. The central value of this measurement is generally
applied to correct the data, which is typically the case of the energy scale that corrects
the energy measured on data, or on Monte-Carlo to correct the expectation, which is for
instance the case of the number of events which is corrected for the mis-modeling of the
identification efficiency, among other effects. These uncertainties are applied by a slight
modification of the expression of the parameter of interest in the full statistical model,
which is done as follows : mH → m′H = mH K(θ), where K(θ) is linked to the constraint
brought by the auxiliary measurement and will be further described below. These auxiliary
measurements themselves involve a statistical modelling and the measured value of θ will
fluctuate around its true value θ̃, where θ̃ is called the global observable, and this could
be described by the implementing the full likelihood of the auxiliary measurement in the
statistical model of our main measurement. As this would in general over-complicate
the analysis, the likelihood of the auxiliary measurement is usually approximated by a
Gaussian, whose central value corresponds to the global observable and is most usually set
to 0, and whose standard deviation corresponds to the size of the systematic uncertainty (δ)
that is considered. For instance in the case of the impact of the energy scale uncertainties
on the Higgs boson mass, this translates into :

mH → m′H = mH(1 + δθ) (2.5)

L(mH , θ)→ L′(m′H , θ) = L(m′H , θ)×G(θ|θ̃ = 0, σ = 1) (2.6)

where G(θ|a, b) is a Gaussian of mean a and standard deviation b. It is not always possible
to use a Gaussian constraint, because there may be some parameters in the model for which
a negative value is meaningless. This is for instance the case of the resolution of the peak,
which is uncertain but can only be positive. In that case a Log-Normal constraint is used,
as it forbids negative values for the uncertain parameter, and it is defined by modifying
the definition of the resolution through :

σres → σ′res = σres × eθ
√
log(1+δ2) (2.7)

and the Gaussian term G(θ|θ̃, σ = 1) is kept in the definition of the full likelihood. As
the exponential cannot become negative the parameter σres will not become negative
either, whatever the value of the nuisance parameter θ. This constraint is also used for
instance for efficiencies. There is a last kind of constraint which is the flat constraint,
where the nuisance parameter may take any value within the ”±1σ” error band with an
equal probability, but will never take a value that is outside of this error band. This is
especially adequate for theory uncertainties that actually corresponds to missing terms in
the theoretical computation. These terms will have a given value that is unknown and for
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which we only have an upper limit, and this does not correspond to the measurement of
a parameter that fluctuates around a true value.

Once the full model is constructed it will depend on a set of nuisance parameters ~θ
that may be fairly large, and on a few parameters of interest ~µ. The best estimate of
the parameters of interest is determined by the absolute maximum of the likelihood with
respect to every parameter, and the value of the parameters corresponding to this minimum

will be denoted ~̂µ and ~̂θ. In the following part we will also be interested in determining
the compatibility of different hypothesis on ~µ with our data, which will require the value
of the likelihood for each of these hypothesis. It is determined as the maximum value
with respect to the nuisance parameters for fixed values of ~µ, and the values of the ~θ

corresponding to this conditional minimum will be denoted
ˆ̂
~θ.

2.2 Construction of confidence intervals

Although we have described the statistical tools that are needed to give the best estimate
of a parameter, we do not yet have the necessary tools to build a complete statistical
analysis as we also need to compute error bands, or to determine whether one of the
statistical hypotheses we are testing may be rejected or not. The proper way to construct
these intervals and obtain these informations will be described below. More details can be
found in [52, 151, 152].

2.2.1 Definition and choice of a test-statistics

It is usually not possible to use the full ensemble of measured values {~xe} to conduct the
statistical inference, as its information needs to be condensed before it can be used. This
is done using a test-statistics, that we denote t({~xe}), and that may be any function that
maps the ensemble {~xe} to a real number.

First we consider the context of hypothesis testing, where two different statistical
hypotheses are tested against each others. The first hypotheses H0 is the ”null” or ”back-
ground” hypothesis, which in particle physics most usually corresponds to the Standard
Model, while the second one H1 characterize the existence of new physics. The value of
t({~xe}) will differ between the two hypotheses that are being tested, and we may define a
threshold k below which the null hypothesis is accepted, and above which the alternative
hypothesis is accepted as being the true one. In each of these cases the second proposi-
tion is rejected. The region defined by t < k is called the acceptance region (for the null
hypothesis) and t > k the critical region. The first important property of a test-statistics
is its size (or significance level) α, which is the probability that a dataset generated under
the background hypothesis falls outside of the acceptance region. We can also define the
power of the test which is given by 1− β where β is the probability of accepting the null
hypothesis when the data has been generated under the alternative one, i.e. the power
is the probability of accepting the alternative hypothesis when it is true. Usually α is
chosen by the physicist depending on the analysis he is conducting, and the most powerful
test-statistics is searched for (i.e. the one having the highest power for a given significance
level). Although there is no general answer to this problem the Neyman-Pearson lemma
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[153] states that for two simple hypotheses that do not depend on any parameter, the most

powerful test is the ratio of the likelihood of the two hypotheses λ = L({ ~xe}|H1)
L({ ~xe}|H0) .

There is no equivalent principle for composite hypothesis that are depending on several
parameters, but an intuitive generalization may be done by using the ratio of profile
likelihoods, where the likelihood of the two hypotheses are maximized with respect to all
the parameters of the model [154], except for the parameters of interest that are used to
label the hypotheses.

2.2.2 General definition of a confidence interval

In the context of parameter estimation, the same profile likelihood ratio may be used, but
we do not have anymore a background-only hypothesis. What is used instead is a series
of test statistics where different points are tested for the parameter of interest. At each
of these points the tested value of the parameter of interest is taken has being the null
hypothesis while the alternative hypothesis corresponds to the overall best-fit of the data,

i.e. the test statistics is λ(~µtest) = L({~xe}|~µtest,
ˆ̂
~θ)

L({~xe}|~̂µ, ~̂θ)
. This is called the profile likelihood ratio

(between the likelihood of the tested parameter of interest and the value of the likelihood
at its maximum). The confidence interval corresponds to the ensemble of points ~µ where
the tested null hypothesis is accepted. The rejected interval may be written symbolically
as I = {~µ|P (λ > k|~µ) < α} [151], and this is called the Neyman construction [155]. In
order to construct this interval the distribution of the test-statistics needs to be known,
and the construction of this distribution will be explained below.

In practice this construction is simple in the case of a single observable x. For every
value of the parameter of interest µ, the distribution of the observable is constructed and
the acceptance interval containing a fraction α of the possible values for the observable is
constructed for every value of µ. Then the actual value of the observable x0 is measured
on an experiment, and every value of µ for which x0 falls into the acceptance interval is
considered to be a part of the confidence interval for µ. This construction is summarized
in fig. 2.1, but it is harder to visualize it when there is a complete ensemble of observables
and several parameters. It is still possible to do it using the complete test-statistics t, like
above, where t is a profile likelihood ratio. This generalization is sketched in [151].

The problem of the Neyman construction is that it is too general : there are several
possible definitions of an acceptance interval of size α, depending on its center. As we
will see below the different definitions may have different use in a physics analysis, the
most important property that they should all share being the coverage. In the method
described, as the data fluctuates, the confidence interval on µ should also be seen as
fluctuating, the true value of µ being fixed. The coverage of a confidence interval is the
probability that it contains the true value of the parameter, and it should correspond to
the confidence level that we want to reach. The Neyman construction has perfect coverage
by construction, and its coverage is directly determined by the size of the test-statistics,
but there are other ways to construct a confidence interval in which the coverage is not
perfect. It is acceptable to have a coverage higher than expected but a lower coverage
should be avoided as it would give an overly aggressive interval.
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Figure 2.1: Schematic visualization of the Neyman construction, where θ is the parameter of
interest, x the observable and x0 its measured value [151]

Figure 2.2: Schematics of the definition of a critical region of size α = 5% for a one-sided and a
two-sided test-statistics

2.2.3 Particular cases used in particle physics

In this sub-part we will describe what are the most common ways to define confidence
intervals in particle physics, and give the expression of the corresponding test-statistics
to be used to conduct the statistical inference. We will see later that for most of these
test-statistics an analytical formula may be approximated for their distributions, which
allows to easily compute the probabilities that are needed for the construction of the
confidence intervals that have been described above. Usually these probabilities are called
the p-values of the tested hypotheses, and are computed as the integrals of the PDF of the
test-statistics from its observed value up to +∞. The coverage of the different methods
used to set upper limits may be seen in fig. 2.3.

Interval for measurements In the case of a measurement we have a best estimate
of the parameter of interest, µ̂, and we are interested in excluding values of µ that are
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incompatible with this estimate. There are two ways for specific values to be incompatible
with the best-fit value : either because it is too low or because it is too high. In that case
the critical region is chosen to be symmetric with regard to µ̂ : if we were to generate data
under the hypothesis that µ is true, a fraction α

2 of the experiments should be rejected
because they yield to a value of µ̂ that is too low and another α

2 because they give a µ̂
that is too high. This corresponds to the left case in fig. 2.2. In practice the following

(two-sided) test-statistics is used [156] to do such an interval : tµ = −2 ln L(µ, ˆ̂
θ)

L(µ̂, θ̂)
, without

any cut on µ̂.

CLs+b interval for limits Although the same reasoning may be conducted in the case
of lower limits, we will only consider upper limits on a given parameter. For an upper
limit the critical region should extend from the limit itself up to +∞, and the acceptance
region will always contain the lowest possible value for µ. In this case, when we test an
hypothesis µ 6= 0 the relevant alternative hypothesis is µ = 0, and therefore the high value
of µ (µ̂ > µtest) should always be accepted. To do so the value of their test-statistics is set

to 0, and this corresponds to the following (one-sided) test-statistics : qµ = −2 ln L(µ, ˆ̂
θ)

L(µ̂, θ̂)
if µ̂ < µ and qµ = 0 otherwise. The confidence level constructed with this method is
denoted CLs+b and is equal to pµ =

∫+∞
qobs

f(qµ|signal)dqµ, as in the case of a counting
experiment what is actually observable is the number of signal plus background events,
and it is on this total number of events that we actually set an upper limit. The limit on
the signal comes after the background is taken into account and subtracted.

The CLs procedure In this context, if there is a downward fluctuation of the number
of background events an overly aggressive limit may be derived. In this case, given that
both the signal and background only hypothesis are unlikely, it is not really meaningful
to exclude the signal as there is no relevant alternative hypothesis that may explain the
observation. This problem was treated in [157], where an alternative way of computing
the confidence level for a given hypotheses has been advocated. The confidence level is not
anymore the p-value of the hypotheses, pµ, but is actually penalized by the confidence level

we have on the background hypotheses and is expressed as follows CLs = CLs+b
CLb

= pµ
1− pb

.

pb is obtained on data generated under the background hypothesis but tested with the
hypothesis µ, and is computed as pb =

∫+∞
qobs

f(qµ|background) dqµ. Because of the CLb
penatly, the CLs method is more conservative than the usual CLs+b confidence level,
and the confidence interval extracted in this way have a tendency to over-cover. This is
done on purpose as an interesting feature of this method is to cancel any possibility of
excluding a hypothesis to which we are not sensitive. This is particularly true for weak
signals where the signal and background hypothesis are very close to each other and almost
indistinguishable, where an exclusion is most likely coming from background fluctuations.
But because of this property CLs will never be able to exclude the background hypothesis
in case there is for instance an actual deficit induced by new physics, and this is why it
should be complemented by the p0 test (see [156] for a detailed description) whose only
aim is to exclude the background [156].
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The Feldman-Cousins procedure The Feldman-Cousins procedure has been described
in [158], and is a way to produce an ideal frequentist interval without measuring a physical
parameter in a region where it is meaningless, for instance it avoids the measurement of
a negative mass. The boundaries of the confidence interval are defined by two hypothesis
of equal likelihood, or by the physical boundaries of the problem. Effectively when we are
far from the physical boundary this method will be equivalent to a measurement, while
if we are at the boundary it will correspond to an upper limit. There is an intermediate
range where not all the critical region will be on one side of the best estimate, as it should
be in the case of an upper limit, but the two critical regions on each sides will not have
the same size, as it should for a measurement. The transition between the two regimes is
smooth and occurs without any loss of coverage, but an interval constructed under this
prescription will correspond neither to an upper limit nor a measurement. Its main in-
terest corresponds to cases that are at the border between these two regimes, where it
is not possible to tell whether the sensitivity will be sufficient to do a measurement, but
looking at the data before choosing whether a limit or a measurement will be done would
create an under-coverage. In practice the Feldman-Cousins procedure corresponds to the
following (two-sided) test-statistics : [156]

t̃µ = −2 ln L(µ, ˆ̂
θ(µ))

L(µ̂, θ̂)
if µ̂ > 0

= −2 ln L(µ, ˆ̂
θ(µ))

L(0, ˆ̂
θ(0))

otherwise

It is possible to derive a similar type of interval for upper limits too, where the un-
physical region is not considered, which is achieved using the following (one-sided) test-
statistics :

q̃µ = 0 if µ̂ > µ

= −2 ln L(µ, ˆ̂
θ(µ))

L(µ̂, θ̂)
if µ̂ > 0 and µ̂ < µ

= −2 ln L(µ, ˆ̂
θ(µ))

L(0, ˆ̂
θ(0))

otherwise
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Figure 2.3: Coverage of upper limits obtained with several methods. The methods that are not
defined in the text may be found in [159]. See also [160]

2.3 Distribution of the test-statistics

In the previous sections we had to assume that the distribution of the test-statistics was
known to extract useful information. There are several ways to determine these distri-
butions, and below the two methods that are used the most in particle physics will be
described. The first one is the most general as it only requires a statistical model of the
data, from which pseudo-experiments are generated to determine the distribution of the
test-statistics. The second one is the most powerful as it provides an analytical formula
for this distribution, but it cannot always be used as it makes few assumptions.

2.3.1 Distribution from pseudo-experiments

The first method generates pseudo-datasets at various values of the parameter of interest,
and measures the test-statistics on each of these datasets. We then construct the distribu-
tions that interest us when the number of pseudo-experiments that is generated becomes
sufficiently large.

In the case of a simple model with only one parameter this is simple, but there are few
subtleties to take into account when nuisance parameters are involved in the modelling.
First a specific value has to be chosen before the generation of the pseudo-datasets, and
ideally it should be the true value for this parameter. As it is clearly not available it
is estimated as being the best fit for this parameter under the hypothesis of the tested

parameter of interest,
ˆ̂
θ(µ), which is the best estimate of the true parameter a physicist
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may provide. During the generation of the pseudo-datasets, the nuisance parameters are
set to these values in the statistical model, and therefore the difference between the pseudo-
datasets that are generated for a given hypothesis only comes from statistical fluctuations
and nothing else. But as the nuisance parameters are initially determined from an auxiliary
measurement, which is itself described by a PDF, they should be varied. This is done at
the time of the fit of the pseudo-dataset, where the global observable associated to a given
nuisance parameter θ̃ is varied, randomly with a Gaussian distribution, which allows to
randomize the outcome of the auxiliary measurement without varying the true hypothesis
under which the pseudo-experiments are generated. This is called the ”unconditional
ensemble” [154, 161] (see also [162]). To determine the likelihood ratio two fits are done on
each pseudo-dataset, the overall best fit and the best fit at the value that is being tested,
and the nuisance parameters are left free in each of these fits.

As long as it is possible to provide a valid statistical model of the data, this method
is completely general, but it has the drawback that depending on the p-value we want to
reach it may require to generate an extensive number of pseudo-datasets, hence implying
a very large number of fits too. Depending on the model this may be too time consuming
and become impossible, in which case it may be sufficient to check that the asymptotic
formulae that will be described below are valid on only one value of the parameter of
interest, and use these formulae instead of the pseudo-experiments.

2.3.2 Asymptotic formulae for the significance

It was shown by Wilks and Wald [163, 164] that if the number of events in the observed
dataset is sufficiently large, the maximum likelihood estimator of the parameter of interest
follows a Gaussian distribution and the profile log-likelihood ratio can be developed as

a parabola, i.e. −2 ln λ(µ) = (µ−µ̂)2

σ2 where σ is the standard deviation of µ̂. A change
of variable may be done to determine the distribution of −2 ln λ, and this is precisely
what is done in [156] for several test-statistics that are commonly used in particle physics.
Given that the distributions are analytically known there is a direct connection between
the value of the test-statistics measured on data for a given hypothesis, and the p-value
of this hypothesis, hence it is sufficient to do the profile of the test-statistics as a function
of µ on data to determine the confidence interval on this parameter. The value of the
test-statistics corresponding to the most usual confidence levels are given in table 2.1.

In the case of the two-sided test-statistics tµ the distribution f(tµ|µ) is a simple χ2

distribution, assuming that the hypothesis being tested by tµ is the same than the one
used to generate the (pseudo-)data. It is possible to extend this formula to cases where
these two parameters are different, which is done using a non-central χ2 and is detailed in
[156]. In the case of the one-sided test-statistics qµ half of the distribution of µ̂ will have
a test-statistics of 0, which will create a Dirac peak at qµ = 0. The other half creates a
distribution of the test-statistics that follows χ2 as it does not change with regard to tµ,
hence the distribution will become f(qµ|µ) = 1

2δ(qµ) + 1
2χ

2(qµ). A nice point for both of
these distributions is that they do not depend at all on the nuisance parameters, neither
on their number nor on their values or the size of the systematic they represent. The only
dependence in the nuisance parameter will be in the observed value of the test statistics,
tobsµ , as additional uncertainties will imply slower variation with respect to µ and hence
bigger uncertainties.
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Confidence level qµ tµ
1σ 1

95% 2.71 3.84
99% 4.22 5.41
5σ 25

Table 2.1: Value of the test-statistics corresponding to a given confidence level, for the most
commonly used test-statistics

This is not anymore the case for q̃µ and t̃µ, where the Gaussian distribution of µ̂ is
cut at 0 and depending the exact variance of µ̂ and on its center the fraction of events
falling in the region µ̂ < 0 may differ. It has been demonstrated in [156] that this may
be well described by adding a Gaussian component to the distribution of tµ and qµ. More

precisely for t̃µ < (µ
σ

)2 the distribution of tµ and t̃µ are the same, but above this threshold

the distribution of t̃µ is modified. This is well described by the following formula :

f(t̃µ|µ) =


1√
2π

1√
t̃µ
e−t̃µ/2 if t̃µ ≤ µ2/σ2 ,

1
2

1√
2π

1√
t̃µ
e−t̃µ/2 + 1√

2π(2µ/σ) exp
[
−1

2
(t̃µ+µ2/σ2)2

(2µ/σ)2

]
if t̃µ > µ2/σ2

(2.8)

It is important to note that the addition of a dependency on the variance of µ̂ implies a
dependency on the number of the nuisance parameter, and on the size of the associated
Gaussian constraint in the case these nuisance parameters are associated to a systematic
uncertainty.

In the case of q̃µ the solution is essentially the same, except that half of the potential
outcomes of the experiment at high µ̂ have a test-statistics set to 0, which requires the
addition of the Dirac peak that we already had for f(qµ|µ) but also implies that the χ2

component that exists at high µ̂ for t̃µ should not appear in the distribution of q̃µ. This
gives the following formula :

f(q̃µ|µ) = 1
2δ(q̃µ) +


1
2

1√
2π

1√
q̃µ
e−q̃µ/2 0 < q̃µ ≤ µ2/σ2 ,

1√
2π(2µ/σ) exp

[
−1

2
(q̃µ+µ2/σ2)2

(2µ/σ)2

]
q̃µ > µ2/σ2

(2.9)

2.4 Expected results : the Asimov dataset

In particle physics we often want to estimate the expected sensitivity of an analysis before
actually applying it on data. This is achieved using the so-called Asimov dataset whose
construction and properties have been demonstrated in [156]. First a given hypothesis
is chosen for the parameter of interest, µA, and all the nuisance parameters are profiled
on data at µA, which completely determines the statistical model. If the model is a
binned likelihood, an histogram that perfectly follows this model can be defined, where
the content of each bin is defined as the median of the number of events in this bin

(nAi = E[ni](µA, ˆ̂
θA)), without any statistical fluctuation. A typical example of such an

Asimov dataset is shown in fig. 2.4. In the case of an unbinned likelihood it cannot be
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Figure 2.4: Typical example of an Asimov dataset corresponding to an example of the h → γγ
analysis [89]

exactly defined and it is approximated as the limit of the equivalent binned likelihood in
the limit where the width of the bins goes to 0. The test-statistics used in the analysis may
then be evaluated on the Asimov dataset and it may be shown that if we were to generate
pseudo-experiments under the hypothesis used to define the Asimov, the median of the
test-statistics of the toys would be equal to the test-statistics measured on the Asimov
dataset. In this sense the Asimov dataset corresponds to the most representative dataset
that exists for a given hypothesis, and it allows to derive the expected uncertainty for a
measured parameter or the expected exclusion limit for a given phenomenon.
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3.1 The Large Hadron Collider

3.1.1 Motivations for a pp collider

Improving the knowledge of physics at particle colliders can be schematically achieved in
two ways : either increasing the particles energy or the number of recorded collisions. The
first way allows the direct production of new, heavier, particles while the second gives
sensitivity to smaller deviations from the prediction. Those approaches can be combined
as some models may predict the existence of heavy particles, but with low production
probabilities. To some extent this was the case in the design of the LHC, whose one of
the design benchmarks was the search for the BEH boson : as its mass could have been as
high as 1 TeV a high energy was needed to cover the whole range. This required the use
of hadrons, as electrons would lose too much energy through synchrotron radiation, and
as muons can not be yet accelerated in an efficient way.

The only stable hadrons are the protons and their anti-particles. Anti-protons have
been used in the past at the Spp̄S where they helped discovering the W and Z bosons (as
the initial state is qq̄′), and also at the TeVatron. However the p̄ production is complicated
and not very efficient, and it considerably lowers the interaction rate of the collider. Given
that the main production mode of the Standard Model BEH boson is already at one loop,
its cross-section is fairly low, therefore a high interaction rate was a design requirement of
the LHC and dictated the choice of protons for the two beams. The price of this choice is
to have two beam pipes and two sets of magnets (in fact the magnets are ”two in one” as
will be explained below). Although only the case of the BEH boson is discussed here, the
argument holds for many searches for particles predicted by beyond the standard model
scenarios.

3.1.2 The CERN accelerator complex

The Large Hadron Collider (LHC) is a pp collider, and can also collide lead nuclei. It relies
also on the pre-existing machines, since it is not possible to accelerate the beam from 0 to
the desired energy (the nominal energy being 7 TeV) in one step. A sketch of the complete
complex can be seen on fig. 3.1.

The first step is the creation of protons from an hydrogen bottle (H2) : these molecules
are submitted to an intense electric field breaking them into protons and electrons. The
protons are then accelerated in a linear accelerator (LINAC 2, used since 1978) where
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Figure 3.1: Schematics description of the CERN accelerator complex [166]

they reach a momentum of 50 MeV. It is also this accelerator that creates the bunch
structure. They are then injected into the proton synchrotron booster (PSB) which consists
of four circular accelerators, on top of each others. They are accelerated until they reach
a momentum of 1.4 GeV/c [165] and are then injected into the Proton Synchrotron (PS),
where they reach a momentum of 26 GeV/c. Until the early seventies, particles were
directly injected in the PS. But given the destructive impact of coulomb forces on low
energy beams it was not possible to increase the intensities, and this is why the PSB
consists of four rings : each one has the same intensity limitations but they allow to
simultaneously accelerate four beams that are merged afterwards.

When working with heavy ions the beginning of the chain is different. Lead ions,
which come from vaporized lead, are stripped off of their electrons while being accelerated
in the LINAC 3, and are then injected into the Low Energy Ion Ring (LEIR) where there
momentum increases from 4.2 MeV/c to 72 MeV/c before they are injected in the PS. At
this point the acceleration chain becomes the same as for protons.

After the PS, particles are injected in the 7km long Super Proton Synchrotron (SPS),
which is one of the cornerstones of the CERN complex as it provides beams to a variety
of experiments, including the LHC. Before the injection in the LHC, the protons are
accelerated to 450 GeV and the remaining acceleration from the SPS to the multi-TeV
energy is done in the LHC and takes roughly 20 minutes. At this point the beams can be
put in collision, and can keep colliding for several hours.
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Figure 3.2: Description of a LHC dipole

3.1.3 LHC magnets

The LHC has been installed in the 27 km tunnel in circumference that was hosting the
LEP collider and its experiments. The main difference between the two colliders is linked
to the nature of the colliding particles, as electrons have to be continuously accelerated
to compensate for synchrotron radiation losses while for protons the main challenge is to
control the trajectory of high energy particles and keep them on the LHC circumference.
Therefore the LHC is almost exclusively made of magnets while the LEP had a sizeable
number of radio-frequency (RF) accelerating cavities.

The momentum of a particle in a magnetic field is given by p = 0.3Bqρ where B is the
strength of the magnetic field, q the charge of the particle and ρ the curvature radius of its
trajectory (4.3 km is the radius of the tunnel). After several years of R&D, the magnets
designed for the LHC were able to create a 8.3 T magnetic field, leading to a 10.7 TeV
beam energy assuming that the curvature radius of the trajectory is the trajectory of the
tunnel. The current nominal value is 7 TeV per beam as only the 1232 dipole magnets are
used to bend the beams while the LHC also requires 392 quadrupoles to focus the beams,
688 sextupoles to decrease the proton energy spread and 16 superconducting RF cavities
to accelerate the beam. And this only accounts for the main components, the full list of
magnets can be found in [167]. Taking this into account the effective bending radius at the
LHC is of 2.7 km, which gives in nominal conditions a center of mass energy of

√
s = 14

TeV. It is realized by eight straight lines, connected by eight arcs.

The standard way of creating a magnetic field is to run an electric current into a coil
and the field will be higher if the current gets higher. The same idea is used in LHC
magnets. For the main dipoles, which can be seen on fig. 3.2, the required field is very
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Figure 3.3: Current in the LHC dipoles (green) and resulting magnetic field (yellow)

high (8.3 T) and a sufficient current (11850 A) cannot be achieved with usual conductors.
Super-conducting cables made out of Niobium-Titanium (NbTi) alloy have been used, and
are cooled using super-fluid Helium 4. These filaments are embedded in a matrix of very
pure Copper, that acts as an insulator in the superconducting phase while conducting
the current and heat above the critical temperature for NbTi. The nominal operating
temperature is 1.9 K. The particles in the two beams have the same charges and are
accelerated in opposite directions, therefore the magnetic field in the two beam pipes need
to be in opposite directions. This is achieved by setting a proper flow of the current in the
two dipole coils, as pictured in fig. 3.3.

The radio-frequency cavities reuse the technology developed for LEP, and provide a
voltage of 2 MV and an integrated accelerating field of 5 MV/m at a frequency of 400.8
MHz. As the two beams have to be controlled independently, the RF cavities operating
on the two beam pipes are independent and each beam pipe has 8 RF cavities. These
cavities also help in the conservation of the bunch structure as a proton that is delayed
with regard to the rest of the bunch will be subjected to an higher accelerating field while
one that is in advance will be decelerated. After the acceleration phase protons should not
be affected by the RF field as they are synchronized with the center of the wave.

Powerful quadrupoles are placed on each side of the four experiments and produce low
β∗. Their goal is to do a final transverse squeeze before the collision, during which the
radius of the beam decrease from 1.6mm to about 16µm.

3.1.4 Bunch filling scheme for the LHC

The design bunch spacing in the LHC is of 24.95 ns, which corresponds to ≈ 7.49 m and
a collision rate of 40.08 MHz, where each collision can be identified by a single Bunch
Crossing Identifier (BCID). This gives 3564 possible slots for proton bunches, but they
cannot all be used and several filling schemes are described in [168]. They all have to
respect certain constraints. First, a sufficient time is needed after the last bunch to dump
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the beam before it accomplishes one turn of the LHC, which requires at least 119 empty
bunches. Secondly several transfers from the SPS to the LHC are needed to completely
fill the LHC, and between each batch 38 bunches have to be left free as this corresponds
to the time needed for the kicker’s magnetic field to rise. The same story repeats itself for
the injection from the PS to the SPS : 8 bunches have to be left free between each transfer
to the SPS. At the end, with its nominal parameters, the LHC is running with 39 batches
of 72 bunches (2808 bunches), spaced with missing bunches to respect the aforementioned
constraints, and each bunch contains ≈ 1.15 1011 protons. The scheme for heavy ions
collision is different, and there are also different schemes developed for the low luminosity
runs at the beginning of data taking.

Because of the 2008 LHC accident the running conditions for the Run 1 have changed.
The bunch spacing is increased to 50 ns, and the beam energy decreased to 3.5 TeV (in
2011) then to 4 TeV (2012). A rough description of the bunch filling scheme may be found
in [169], the most important thing being the decrease of the number of bunches to 1374
(sometimes 1380) and the increase of number of protons per bunch to ≈ 1.7 1011 (in 2012).
Most of the batches contained 144 bunches.

3.1.5 Experiments using LHC beams and collisions

Seven experiments have been designed to analyze the LHC collisions data, among which
four are bigger and have been constructed around the main interaction points. The two
biggest detectors, ATLAS and CMS are general purpose detectors that will be described
later. Their goal is to search for new physics in the broadest possible spectra, and to make
precise measurements of standard model processes at the highest energies.

A third one, LHCb, is a forward spectrometer whose main research interest is the
study of flavour physics and which is aiming at taking profit of the large number of b and
c mesons that are produced in the forward direction. As it can not cope with more than
a few pile-up events it is using a luminosity levelling, i.e. the collisions do not occur on
the full area of the beam but only on a small subpart. During the run, the decrease of
the beam intensity (and of the number of collisions per bunch crossing) is compensated
by getting the beams closer to each other hence increasing the area of collision.

The last large experiment, ALICE, is specialized in heavy ion physics and aims to
study the quark-gluon plasma.

Within the three smaller experiments, two are interested in low-angle scattering (LHCf
and TOTEM), either to study the total cross-section or to test and develop models to be
used in cosmic-rays physics. The last one, MoEDAL, has been made to search for magnetic
monopoles.

3.1.6 Luminosity

The rate of a specific type of event can be linked to the accelerator’s properties using :

dNevent

dt
= Lσevent (3.1)
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where the cross-section σevent depends on the physical process of interest and the luminosity
is given by the machine operating parameters, using the following formula :

L = k n2 ν

2π
√
σ2

1 x + σ2
2 x

√
σ2

1 y + σ2
2 y

F (3.2)

where the various parameters are defined as follows :

� k is the number of bunches in the machine

� n is the number of protons per bunch

� ν is the revolution frequency of a particle in the machine (≈ 11245 Hz)

� σi x,y corresponds for each beam i to its size in each direction of the transverse

plane at the collision point. Usually we define σx,y eff =
√
σ2

1 x,y + σ2
2 x,y

� F is a geometrical reduction factor, due to the fact that the beams do not collide
heads on but have a small crossing angle

The detectors are equipped with devices specialized in the measurement of the lumi-
nosity, whose main function is to detect the number of interactions for each bunch crossing.
The luminosity is then

L = µvis k f

σvis
(3.3)

where µvis is the number of visible interactions per bunch crossing and σvis = εσinelastic
the visible cross-section, and both these quantities already include detectors efficiency
effects. These detectors need a specific calibration to determine σvis, that is related to the
size and shape of the beams, which is achieved using Van Der Meer scans [170]. In these
scans the beams are progressively separated from one another, while the rate of interaction
is monitored by the luminosity detectors. This rate is a function of the beam separation
and follows the beam shape (Gaussian at the LHC). From the RMS of this function it
is possible to determine the transverse size of the beam and from its maximal value, the
number of visible interactions in nominal running conditions.

The number of protons per bunch is given by the accelerators instrumentation and at
the end the visible cross-section is given by :

σvis = µmaxvis

2πσx effσy eff

n2
max

(3.4)

More details can be found in [171–174].

3.1.7 LHC Performance

At its nominal performance the LHC was expected to provide a luminosity of 1034 cm−2 s−1

to ATLAS and CMS at a center of mass energy of
√
s = 14 TeV. Assuming a 25 ns bunch

spacing, this would have given, on average, about 23 simultaneous interactions by bunch-
crossing (pile-up events). Given the decrease of energy and the change of bunch spacing in
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Figure 3.4: Peak luminosity delivered to ATLAS by the LHC between 2010 and 2012. This
corresponds to the luminosity just after a fill.

the Run 1 (50 ns), a reasonable luminosity of 7.5 1033 cm−2 s−1 was achieved by increasing
the number of protons per bunch. This gave an average number of pile-up events higher
than anticipated, above 35 during the luminosity peaks. The instantaneous luminosity
was not constant as a function of time during the years. This is shown in fig. 3.4 where
one can see that the instantaneous luminosity kept rising during these three years, thanks
to the hard work of machine experts.

The total integrated luminosity recorded by ATLAS and CMS is 5 fb−1 at
√
s = 7

TeV and 20 fb−1 at 8 TeV. Collisions were also recorded in 2010 at
√
s = 7 TeV but were

not combined with the two other years, given the low integrated luminosity (40 pb−1). It
was still an important year, as the reduced interaction rate allowed to take data with loose
online selection and reduced pile-up.

For the Run 2 the bunch spacing is expected to decrease to its nominal value, while the
center of mass energy will increase to at least

√
s = 13 TeV. The luminosity should reach

1.6 1034 cm−2 s−1 and the number of interactions by crossing could be as high as 45. We
expect to have an integrated luminosity of 2-5 fb−1 by the end of 2015 and 100 fb−1 by the
end of the run. Because of the energy increase, all cross-sections of interesting phenomena
will increase as well, as can be seen in fig. 3.5. In some processes that involve a high mass
scale the statistics will grow much faster at high energy : this is for instance the case of
the BEH production in association with top quarks, where the production cross-section
increases by a factor of four.
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Figure 3.5: Evolution of the cross-sections for various processes as a function of the center-of-
mass energy in hadron collisions. The break at 4 TeV corresponds to the switch between pp̄ and
pp [175]
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3.2 Description of the ATLAS detector [1]

3.2.1 Overall description of the ATLAS detector

The ATLAS detector is a general purpose detector, in the sense that its design has been
done in particular to search for new particles and phenomena in the broadest possible range
of signatures, although always targeting the high-energy signatures of the new physics, as
well as to measure SM processes with W bosons, Z bosons or heavy quarks. To that end,
it should be able to detect every particles that are long-lived enough to travel inside the
detector. This includes electrons, photons, muons, hadrons and neutrinos. The detector
should also offer reasonable particle-identification capabilities, in the central region that
corresponds to the most usual production region of new heavy particles. This is achieved
using a standard cylindrical geometry for the detector, where the axis of the cylinder
corresponds to the beam axis and the center of the detector to the collision point. There are
various sub-detectors that are built as several concentric layers, where each sub-detector
has its own specific function, and will be further described in the following part. The
detector also has a set of powerful magnets, that are including some of the sub-detectors
in a magnetic field which allows a better reconstruction of charged particle.

The first detector is the inner tracker, which lies in a 2T solenoidal magnetic field
and that is here to reconstruct the trajectory of every charged particle that is passing
through it, hence allowing for a measurement of its momentum. It also needs to be
sufficiently precise to be able to reconstruct displaced vertices, that are for instance a
crucial input to identify jets coming from b quarks. The second layer consists of the
two calorimeters, electro-magnetic and hadronic, in which incident particles will create a
shower of secondary particles from which a measurable signal will be generated. The first
one is the electro-magnetic calorimeter that measures the energy, position and direction of
electrons and photons, while the second one, the hadronic calorimeter measures the energy
and direction of jets by measuring the energy deposited by hadrons inside these objects.
The final layer corresponds to the muon spectrometer, where the momentum of muons,
which are the only charged particles that are expected to cross the previous layers, is
measured, thanks to toroidal field of ≈ 1T that curves their trajectories. At this point the
only standard model particles that have not been detected are the neutrinos, that will cross
the complete detector without any interaction. The only hint of their presence comes from
the imbalance of the transverse momentum between what is measured in the detector and
what is expected from the collision. Therefore the detector needs to be hermetic, which
is accomplished by extending the detectors to a high rapidity, bringing them very close
to the beam-pipe, with the forward calorimeters. Still given that the neutrinos are not
actually detected, there may be new particles beyond the standard model that will have
the same signature although they are different, which is typically the case of dark matter.

3.2.2 Coordinate system of the ATLAS dectector

The origin of the ATLAS coordinate system corresponds to the nominal crossing point of
the two beams. The cartesian coordinate system (x; y; z) is defined as having the z axis
following the beam axis, and the x axis is in the plane defined by the LHC ring, oriented
from the detector center towards the the center of the LHC. Positive values of z correspond
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Figure 3.6: General schematics description of the ATLAS detector [1]

to the side oriented counter-clockwise with respect to the interaction point along the LHC
ring. The cylindrical coordinates (θ;φ; z) is defined so that θ = π

2 → 0 corresponds to
z > 0 (also called ”side A”) and θ = π → π

2 to z < 0 (”side C”), where θ = π
2 corresponds

to the direction perpendicular to the beam axis. The direction φ = 0 coincides with the
x axis, and φ > 0 corresponds to the upper half of the detector. It is common in particle
physics to use the pseudo-rapidity η = −ln(tan( θ2)) instead of θ, which is equivalent to

the rapidity y = 1
2 ln(E+pz

E−pz ) for ultra-relativistic particles. y has the nice property of being

invariant under a boost along the beam axis (z).
Then any observable may be projected on the transverse plane and the z axis using

the following formulae :

PT = P
ch(η)

Pz = P tanh(η)

The distance between two objects in the detector may be determined using the variable
∆R, which is computed as ∆R2 = ∆η2 + ∆φ2, which is also invariant under a boost along
the z axis.

This defines the general concepts used to determine the coordinates of every object in
the ATLAS detector, but there are a few subtleties. For instance the actual interaction
vertex from which an object of interest originates will not always be at z = 0, and we
will see later that we have to take this shift into account using the pointing (the direction
is measured using the first two longitudinal samplings of the calorimeter [176]). Also the
end-cap of the calorimeters had to be slightly translated with respect to their nominal
position, and this created a global shift of the coordinates in the end-caps. Then two
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different coordinates are available : those that are seen from the calorimeter and the
global ATLAS coordinates, which are translated by δη ≈ 0.02 (in the end-caps).

3.2.3 Magnets of the ATLAS detector

The ATLAS detector has two independent magnetic systems : the solenoidal magnet
responsible for curving the charged particles trajectories in the inner tracker, and the
toroidal magnet providing the field in the muon spectrometer. The generated magnetic
fields are orthogonal to one another and they allow for independant measurements of the
muon momentum in the innermost and outermost part of the ATLAS detector. Even
if it is afterward possible to improve the momentum determination by combining both
measurements, in itself this redundancy is a nice feature. For instance one could not use
the inner detector information if the impact of pile-up on tracking becomes too high to
deal with.

The solenoidal magnet

The solenoidal magnet, which is described in [177], is designed to provide a 2 Tesla mag-
netic field in the center of the detector. The magnet covers a region of 2.4m diameter and
a length of 5.3m and it requires an electric current of 7600 A. This is achieved using a
superconducting magnet, made out of a Niobium-Titanum alloy, and cooled by liquid He-
lium at 4.5 K. Filaments of this composite are embedded in a matrix of pure Aluminium,
which allows to increase the critical current. It provides an alternative path for the cur-
rent in case the magnet goes back to its normal conducting phase, which allows to use
it at higher intensities without causing a quench. It is especially useful as this magnet
has to be as thin as possible (5 cm thickness), since it lies upstream of the liquid Argon
calorimeter and a high material budget would have worsen the calorimeter performance.
In this configuration it contributes to 0.66 X0 at |η| = 0. To further decrease the material,
the magnet shares the same cryostat as the barrel liquid Argon calorimeter. An additional
2mm heat shield in aluminium lies between the magnet and the calorimeter. This is re-
quired to have both liquid argon and liquid helium, which have different temperatures, in
the same cryostat.

The field return is done in the iron absorbers of the tile calorimeter. As it is far from the
solenoid the magnetic field is not completely uniform in the tracking region and therefore
has to be mapped precisely to get a sufficiently precise tracking. This was done only in
the region of the inner tracker [178], using sensors based on Hall effect. The knowledge of
the field beyond the tracking region, and especially of its return to the Tile calorimeter,
comes from a model of the field.

The toroidal magnet

The toroidal magnets are here to provide the magnetic field necessary for the spectrometers
to reconstruct the muons momentum, hence they are expected to cover a large volume and
it would not be possible for it to generate a completely homogeneous field. The barrel
system is constituted of 8 large barrel coils, that are arranged in a star configuration, and
of two end-cap systems that are also made of 8 coils each, and that are following the same
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Figure 3.7: Schematics description of the inner tracker installation and of its various sub-
components [1]

arrangement than in the barrel. The basic constituent of the magnets is the same than
for the solenoid magnet, i.e. it uses liquid-helium cooled superconducting magnets based
on an aluminium stabilized niobium-titanium alloy. The peak magnetic field provided by
this magnet is of 4 Tesla, which requires a current of 20.5 kA, but it has sizeable variations
inside its volume, especially close to the coils. A set of 1800 sensors based on Hall effect
have been set up close to the coils and are used to measure the magnetic field where
it varies the most. From this information it is possible to compute the magnetic field
everywhere in the instrumented part of the muon spectrometer, with a precision of 1 mT.
There are also two end-cap toroids [1], and together with the barrel toroid they produce
a toroidal magnetic field of approximately 0.5 T and 1 T for the muon detector in the
central and end-cap regions, respectively.

3.2.4 The inner tracker

The main role of the inner tracker is to provide a precise measurement of the parameters
of the trajectory of charged particles, but it can also provide information to identify
particles. In ATLAS the inner tracker is composed of three separate parts based on
different technologies. The first two parts are based on sensors made of silicium semi-
conductors, while the last one uses the transition radiation technique, which allows to
distinguish electrons from other particles, and is made out of straw tubes filled with
Xenon. The closest layers to the beam-pipe are the more segmented. A global description
of the installation and of the composition of the inner tracking may be seen in fig. 3.7. It
is important to note that the tracking only extends up to |η| = 2.5.
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The pixel detector

The pixel detector corresponds to three most inner layers of the ATLAS tracker, which
are those that allow for the most precise measurements of the tracks. In the barrel, the
layers are arranged as three concentric cylinders while in the end-cap these are made of
three disks perpendicular to the beam. Each of the pixel corresponds to a semi-conductor
sensor made in silicon, that have a size of 50µm in azimuth, 400µm in z and a thickness of
250µm. The complete pixel detector contains approximately 80 million read-out channels,
each one corresponding to a pixel. The accuracy on the charged particle positions are of
10µm in (R − φ) and 115µm in z. The first layer is called the b-layer and is of primary
importance as it allows for a precise reconstruction of the tracks parameters, especially of
its impact parameter with regard to the primary vertex, which is very sensitive for the
reconstruction of b-jets where the B meson flies away from the interaction region before
decaying. Furthermore it allows to discriminate between converted photons which (in
general) are not expected to convert before reaching the b-layer, and electrons for which
a hit should be recorded in the b-layer. For the Run 2 the current pixel detector will
be complemented by an additional pixel layer, the IBL, that will be even closer to the
beam pipe and is expected to improve the performance of the identification of jets that
are initiated by b-quarks.

The Semiconductor Tracker

The following part of the tracker is the Semiconductor Tracker (SCT) which is composed
of four cylinders in the barrel and 9 disks in the end-cap, which allows for at least 4
additional hits everywhere in the detector. These detectors are made of silicon micro-
strips that are 12 cm long (in z) and 80 µm wide (in (R − φ)). The smaller z coordinate
accuracy comes from having two sensors per layer, with a slight angle (40 mrad, in the
z − φ direction) between each sensor. At the end the resolution in position from the SCT
is of 17µm in (R−φ) and 580 µm in z (R) in the barrel (end-cap). There is a total number
of approximately 6.3 million read-out channels in the SCT.

The Transition Radiation Tracker

The Transition Radiation Tracker (TRT) is the last part of the ATLAS inner tracker, and
is the further away from the beam. The most frequent signal creation mechanism is the
ionization of the Xenon in the straw tube by a charged particle, which deposits a small
signal, but the specificity of the TRT is the use of another physical process, the transition
radiation, which is present only for electrons. Whenever a charged relativistic particle
crosses the interface between two materials with different optical properties, it will emit
a light radiation, ”the transition radiation”, which may be detected. This constitutes the
basis of this sub-detector which is based on straw-tubes filled mainly with Xenon, and
the transition radiation will be emitted at the boundary of the radiator material, which
is made of polypropylene and polyethylene fibres. This radiation corresponds to X-rays
photons with an energy of 5 − 30 keV, and is strictly proportional to the value of E

m
for

the incident particle, therefore for a given momentum it will be much higher for electrons
than for pions and muons. These X-rays will be absorbed by the Xenon in the straw
tubes, and increase the detected signal. Therefore there are two thresholds in the read-out
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of the TRT : the first one specifies whether a given sensor was hit, while the second one
(the ”high-threshold hits”) requires higher signal amplitude and is expected to be specific
to electrons. The straw-tubes have a diameter of 4 mm, and contain a conductive wire
(anode) in their center at which the signal electrons will be collected. In the barrel they
are parallel to the beam axis while in the end-cap the straws are arranged radially in
wheels, which allows to do measurement of the (R, φ) coordinates with a precision per
straw-tube of 170µm. This is lower than the one from the SCT and the pixel, but this
lack of precision is compensated by the higher number of hits in this sub-detector, as there
are 73 parallel planes of straw-tubes in the barrel and 80 planes for each end-cap.

3.2.5 Hadronic and forward calorimeters

The measurement of the jet energy, as well as of the missing energy, requires an ade-
quate measurement of the hadron energy that is inside the jet, and this requires specific
calorimeters as the only interaction of neutral hadron will be the strong interaction, and
the nuclear interaction length of the LAr EM calorimeter is too small to give sufficient
performance for hadrons. Therefore different hadronic calorimeter have been included in
ATLAS : one barrel Tile calorimeter up to |η| = 1 and one extended barrel with the same
technology up to |η| = 1.7, one LAr-copper calorimeter for the end-cap, and one forward
calorimeter.

The Tile Calorimeter In the central part of the detector, the hadronic calorimeter
consists in a sampling calorimeter made out of steel absorbers to create particle showers,
and of plastic scintillator tiles as active medium to measure them. What is actually
measured in this calorimeter is the ultraviolet scintillation light that is produced when a
charged particle crosses the active medium. For each tile, this scintillation light is collected
by a wavelength-shifting optical fibre, and is converted into visible light in this fibre. The
output of the fibre is connected to a photo-multiplier where the signal is measured. It
is segmented into three layers in depth, and the total depth of this system is of ≈ 7λ
(nuclear interaction length). This ensures a negligible amount of hadronic leakage to the
muon spectrometer (punch-through), especially given that it should be added to the depth
of the LAr calorimeter and of the services, giving a total of more than 10λ in front of the
muon spectrometer everywhere in the detector.

End-cap Hadronic Calorimeter The hadronic end-cap calorimeter (HEC) is also a
sampling calorimeter based on a LAr technology, except that its absorbers are made of
copper. It spans a region 1.6 < |η| < 3.2, and is embedded in the same cryostat as the
end-cap LAr EM calorimeter. Each HEC is built as two separate wheels, the first of which
is composed of a series of 25 mm thick flat copper layer and 8.5 mm wide LAr gaps. In
the second wheel the main change is the thickness of the copper layers, which is of 50 mm.
The HEC is approximatively 10 interaction lengths deep.

Forward Calorimeter The measurement of the missing-energy and of forward jets
requires a detector that is as hermetic as possible, which is achieved by extending the
calorimeter system up to |η| = 4.9 with the forward calorimeter (FCal), which is also a
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sampling calorimeter based on a LAr technology. The detector is segmented in three layers
in depth. The first layer uses absorbers in copper and is targeting the measurement of
forward electromagnetic particles, while the two others, that are further downstream, are
using tungsten absorbers. The size of the LAr gap varies between 0.27 mm in the first
sampling to 0.51 mm in the third. The FCal is approximatively 10 interaction lengths
deep.

3.2.6 The muon spectrometer

The muon spectrometer is composed of several chambers, whose technology varies as a
function of their utility and of their position (in η). Indeed it was not possible to achieve
at the same time a precise measurement of the muon momentum and a response that
is sufficiently fast for the trigger, therefore in a given region these two different kinds of
chambers are installed. Furthermore given the variation of the muon-tracks density with
respect to the pseudo-rapidity, the requirements were different between the inner-part of
the detector and the outer one, hence the technology used slightly changes at |η| = 2. The
complete layout of the muon system may be seen in fig. 3.8.

Up to |η| = 2 the precision momentum measurement is done solely by monitored drift
tubes (MDT) that are straw tubes in which a gas will be ionized, and the ionization
electrons will be collected at a wire in the center of the tube. At every φ there is at least 3
layers of chambers of this kind. At 2.7 > |η| > 2 the most inner layer changes and is using
cathode strip chambers (CSC), which allow for a higher segmentation of the chamber. The
CSC are essentially multi-wire proportional chambers, with the cathode segmented into
strips, and where the direction of the strip is perpendicular to the one of the wires. This
allows for two independent measurements of the muon : one for the ionization electrons
that are collected at the wire, the other one from the induced signal collected at the strips.
This also gives the two coordinates of the muon, which in the MDTs comes from the
trigger chambers.

The trigger chambers extends up to |η| = 2.4. For |η| < 1.05 the trigger is done by
Resistive Plate Chambers (RPCs), in which two parallel plates are separated by a thin
layer of gas than the crossing muon will ionize. This ionization signal will drift toward
one of the two metallic plates at which it will be measured. Beyond |η| = 1.05 the trigger
uses thin gap chambers (TGCs), in which a layer of anode wires lies between two parallel
plates that are at the ground. The whole system is inside a gas that the crossing muons
will ionize, and the ionization electrons will be collected on the wires. An optimization of
both the gas gap and of the high-voltage at which the system is operated allows to have
a very fast response for both the RPCs and TGCs, which makes them well suited from
triggering purposes.

It should be noted that in the very center of the detector (|η| < 0.1) the muon chambers
are not instrumented, and the LAr EM and Tile calorimeter are used to recover a sizeable
part of the muons. For more details see [179, 180].

3.2.7 Luminosity detectors

Several techniques can be used to measure the luminosity delivered by the LHC to ATLAS,
and some of them are using sub-detectors that have already been described before. For
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Figure 3.8: Schematic view of the muon spectrometer in the x-y (left) and z-y (right) projection.
Inner, Middle and Outer chamber stations are denoted BI, BM, BO in the barrel and EI, EM,
EO in the end-cap. [181]

instance the multiplicity of tracks in the inner detector, or the current measured at the
output of the calorimeter are sensitive to the luminosity as is described in [174]. But there
are also a few sub-detectors that have not been described before and which are essential in
the luminosity determination. The two detectors below provide only a relative luminosity
measurement and need to be calibrated using the Van Der Meer scans.

LUminosity measurement using Cerenkov Integrating Detector (LUCID) The
LUCID detector is a Cherenkov detector, installed at 17 m from the interaction point
(η ≈ 6). Effectively it gives a measurement of the multiplicity of charged particle in the
forward direction, as all the Cherenkov signals will be integrated. This is connected to
the rate of inelastic scattering at this angle, and from the measurement of this rate it is
possible to determine the luminosity of the LHC.

Beam Conditions Monitor (BCM) The BCM, whose first use-case was to provide
a beam diagnostic system in order to dump the beam in cases where it may damage the
inner-tracker, can be used to measure the luminosity. It is made of four small diamond
detectors that are set around the beam-pipe at ≈ 2 m (η = 4.2) of the interaction point
and estimates the level of background by giving a precise count of the number of crossing
particles. There is one detector of this kind on each side of the interaction point.
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3.3 Description of the ATLAS electromagnetic calorime-

ter

3.3.1 Global description of the concept

The electromagnetic (EM) calorimeter of the ATLAS detector is a sampling calorimeter,
based on absorbers that are made of lead where most of the signal is actually created, and
of liquid-argon gaps between the absorbers, that constitute the active material where the
signal is actually measured. The details of the physical processes that are involved in the
creation and measurement of this signal are described in the following part. This detector
is of primary importance in ATLAS as it is the only detector the measures photons, and
it is the most powerful for electrons (except at low-energy where the inner tracker is more
precise), which are at the center of the Higgs physics program. Therefore it was thoroughly
optimized to suit the needs of the h → 4e and h → γγ channels, which requires a good
energy resolution, good background rejection (especially against boosted π0 → γγ), and
an efficient identification of electro-magnetic particles. Furthermore this calorimeter is
segmented into three layers in depth, which allows to use the barycentre of the energy
deposited in the first two layers to constrain the position of the primary vertex, which
improves the mass resolution. With regard to previous noble-liquid calorimeters, the big
break-through of the ATLAS EM calorimeter is the geometry of the absorbers and read-
out electrodes, that is based on an accordion shape, following an idea of D. Fournier [182].
The details of this geometry and its advantages will be described below.

3.3.2 Interaction of electromagnetic particles with matter

A proper understanding of the electromagnetic showers development inside the EM calorime-
ter requires a knowledge of the interactions between electromagnetic particles and matter.
This physics is diverse and depends a lot on the energies involved in the process, but we
are here only interested in the physics of high-energy particles, whose interactions with
matter are essentially ruled by bremsstrahlung for the electrons and conversion for the
photons. The process of ionization also needs to be described as it is the source of the
signals that are recorded by the EM calorimeter, and it has a fundamental role in the
physics of electromagnetic showers. All other processes, such as Compton scattering, will
not be described here but are explained in [52]. In ATLAS, all these processes are simu-
lated using the Geant 4 framework [183, 184], which implements them with a description
that is more complete than what will be described below. Also all the numerical values
that will be quoted as example are corresponding to the ATLAS EM calorimeter, and are
taken from [1], where the corresponding values for other materials may be found.

Ionization of a field by charged high-energy particles

In the low energy regime (from βγ = 0.1 to ≈ 20) the main mechanism of energy loss
for electrons and positrons is the ionisation of the surrounding medium. Effectively this
corresponds to a scattering of the particle on the electrons of the atoms of the medium in
which it moves, during which these electrons are also scattered out of their atoms. This
can be treated as the scattering of the incoming particle on the atom itself, which is the
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base of the Bethe formula [52] that gives the mean energy loss of the incident particle
per unit length, and incidentally also the total energy that the electrons scattered in this
interval will carry. This formula reads :

− <
dE

dx
>= Kz2 Z

Aβ2 (1
2 ln

2mec
2β2γ2Tmax
I2 − β2) (3.5)

and its effect is represented in fig. 3.5. The result is given in MeV g−1 cm2, and the
parameters are defined as follows :

� K is a constant

� Z is the charge of one nucleus in the target and A its atomic mass

� z the charge of the incident particle

� β the velocity of the incident particle

� Tmax the maximal kinetic energy that may be transferred to the electron in a collision,
which in a low-energy approximation can be expressed as 2mec

2β2γ2

� I ≈ 10Z eV is the ionisation energy of the target atoms

Assuming this is the only source of loss, the energy loss of low energy particles is
the most extreme, because they suffer from the field of the electron they are scattering
on before escaping, and the energy loss decreases until βγ = 3 − 4, which correspond
to what is usually called ”minimum ionizing particles” (MIP). The value of the energy
loss at the MIP can be fitted by a linear function of Z for sufficiently large Z (> 6).
Going at further higher energies, the loss will start to logarithmically grow, because of
the increase of the transverse component of the electric field in the relativistic regime,
which will make the incoming particle sensitive to electrons that are further away from its
path. In the region where this formula is valid, and for a given target medium, the energy
loss almost exclusively depends on the charge and the momentum of the incident particle,
the dependence on its mass being fairly small. The dependency on the target density is
recovered by converting < dE

dx
> to its equivalent in MeV cm−1. It should be noted that

for dense targets with incident particles in the relativistic regime an additional correction
to the Bethe formula is required to take into account the fact that the increased electric
field may polarize the target near its path.

Bremsstrahlung

At higher energies the electrons will start to lose energy by emitting photons under the
effect of the bremsstrahlung. It is a known fact that the trajectory of any charged particle
in a magnetic field will bend, and that the momentum conservation requires the emission
of an additional particle, which implies a decrease of the energy of the incident particle.
In matter the magnetic field will be the electromagnetic field of the nuclei of the medium.
It can be shown that the average energy loss can be simply parametrized as dE

dx
= E

X0
,

X0 being the radiation length which grows linearly with the number of nucleons in the
nuclei, and decreases with the number of protons, which is expected as the mean free path
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Figure 3.9: Mean energy loss for various type of particles and different mediums, as computed
by the Bethe formula [52]

of a charged particle in a medium has to decrease when the density of charged particles
increases. After one radiation length a given electron will only have in average a fraction
1
e

of its initial energy anymore. For the ATLAS EM calorimeter the main contribution to
the radiation length comes from the lead, for which X0 = 0.56 cm.

Photon conversions

Although the Compton scattering process has a non-negligible cross-section up to energies
of a few GeVs, in this energy range the main mechanism for photon energy loss is the
conversion of photons to e+e− pairs, which can only happen in a medium. In this process,
after the γee vertex one of the two electrons will have to be off-shell because of energy-
momentum conservation. This off-shell particle will then exchange another photon with
one of the component of the medium - most probably a nucleus but it can also be an
electron. This process is described in fig. 3.10. It may be shown that at high-energy (> 1
GeV) the cross-section for photon conversion may be approximated as σ = 7

9
A

X0NA
, and

therefore the dependence in the medium constituents is the qualitatively the same than
for bremsstrahlung. It may also be used to show that the probability that a photon has
not converted after ∆x = 9

7X0 is e−1.

It should be noted that for very-high energies, both the bremsstrahlung and the photon
conversion processes may be suppressed. As the electromagnetic interaction spreads over
longer distances, the incident particle will start to become more sensitive to atoms further
away from its path, and the scattering amplitudes over the multiple atoms will interfere,
most usually destructively. This effect, which is called the ”Landau-Pomeranchuk-Migdal”
effect is further described in [52] and would start to have an importance for particles with
energies of several TeVs in the ATLAS EM calorimeter.
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Figure 3.10: Feynman diagram for the photon conversion process

Physics of electromagnetic showers

In a real detector, with an incident particle at sufficiently high energy, the processes of
bremsstrahlung and photon conversion may happen in cascade, hence creating a shower
of electromagnetic particles. It is the shower that is actually used to detect photons and
electrons, and measures their energies in the EM calorimeters used at the LHC. Most of
the physics of these showers may be described using two scales : a distance scale that is the
radiation length X0, and an energy scale Ec which is the critical energy. Ec corresponds
to the energy at which the energy lost by an electron due to bremsstrahlung is equal to
the energy lost by ionization, which is 7.4 MeV for electrons in the lead of the ATLAS
EM calorimeter. This also corresponds to the energy scale at which an electromagnetic
shower does not develop anymore : above Ec an electron will emit a photon through
bremsstrahlung that may itself convert to an e+e− pair, but below Ec the electron will
mainly ionize the medium and will not generate more electromagnetic particles, hence
effectively stopping the shower development. It is possible to show that Ec = a

Z+b where
a, b only depends on whether the target medium is a gas. Now we can introduce the two
dimensionless variables y = E

Ec
and t = x

X0
, t being the depth in the shower, which can

parametrize the shower.

It is possible to show that during the shower development the maximum of the energy
deposited will occur at tmax = a−1

b
= ln y + Cj where a,b depend on the material and

the incident particle energy and Cj = 0.5 for photon, -0.5 for electrons. Therefore the
penetration power for the shower created by a given particle does not increase much with
its energy, as it increases only by ≈ 2 X0 when the energy is increased by a factor 10. It is
also important to realize that the penetration power of electron showers is more important
than the one of photons, by about 1 X0, which essentially comes from the fact that for
photons the first interaction will have to be a conversion, which is less probable than
the bremsstrahlung emission for an electron. Now it is also possible [185] to show than
in a simplified shower model the maximal depth a particle may reach in the shower is
proportional to X0 and to E0

Ec
where E0 is the initial energy of the incident particle, and

95% of the energy is contained in t95 = tmax + 0.08Z + 9.6. This explains why at higher
energies there may be a sizeable energy leakage in the back of the ATLAS EM calorimeter
or even beyond it. The full longitudinal shower profile can be described analytically and
is represented in fig. 3.11 for a typical material. At the end, the total number of particles
produced in the shower is proportional to E0

Ec
(that shows the need of having low Ec), and

this is what is used to determine the energy of the incident particle : each of the charged
particle in the shower will create an ionization signal, and effectively the signal measured
by the calorimeter correspond to a counting of these particles that is afterwards converted
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Figure 3.11: Electron shower profiles in copper for several energies of the incident electron, as a
function of the depth in the material [185]

to an energy. This also explains the existence of the sampling term in the resolution
parametrization, that corresponds to Poisson fluctuation on this count, which is measured
in the ATLAS accordion sampling calorimeter.

Now we are not only interested in the depth of the shower, but also in its lateral
extension. In the high-energy regime this is dominated by multiple-scattering effects,
which generate a Gaussian distribution of the scattering angles in the collisions. The RMS
of this distribution will correspond to the opening angle of the shower itself, and is given,

for a shower that grows over a length x, by < θ >= Es
Ec

√
x
X0

where Es = mec
2
√

4π
α

= 21.2
MeV is the scale energy, related to the characteristic energy of fundamental processes in
the multiple scattering. If we focus the development of a shower over 1 X0, this opening
angle may be converted into a physical distance scale, which defines the Moliere radius
RM = X0Es

Ec
, which is a very powerful characterization of the showers that will develop in a

given medium as 90% of the shower energy will be contained in 1RM , 95% in 2RM . In the
ATLAS EM calorimeter RM ≈ 4.8 cm [186]. The only dependence of the lateral shape of
a shower on the material comes through a simple parametrization with regard to Ec and
X0, that is very accurate in the core of the shower. In the one or two first X0, or far in
the lateral tails (at several RM), this parametrization is not very accurate as other effects
have a similar importance that the multiple interaction.

3.3.3 From electromagnetic shower to recorded signals

In the ATLAS EM calorimeter the showers are mainly generated in the lead, which is the
denser material, and the LAr is primarily here as an active material in which the ionisation
electrons can move and will drift toward an electrode where the signals they produce will
be measured.
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Figure 3.12: Description of the composition of the LAr EM calorimeter

Drift of ionisation electrons toward electrodes

Between each lead absorber there is a LAr gap, in which an electric field is applied. In the
middle of the gap lies an electrode at high voltage which will also collect the signal. This
electrode corresponds to the red lines in fig. 3.12, but in fact it is itself divided in several
parts : there are two outer electrodes on each side from which the electric field is imposed,
and one inner electrode which is here to collect the signal. All of these electrodes are made
out of copper, and between these lies a layer of Kapton (see for instance the original test-
beam publication in 1991 [187]) which insulates the electrodes from each others. The two
outer electrodes are connected to a different high-voltage (HV) power supply, which allows
for redundancy and gives the possibility to preserve the energy response of the cells when
one side of one cell does not hold the HV. The HV is uniform over the whole electrode since
in general there is no current in the electrodes. The two sides of each gap are delimited by
the lead absorbers, which are glued inside stainless steel, and are set at the ground of the
system, which is required to set the gradient of potential in the proper direction to make
the electrons drift toward the read-out electrode. To avoid short-circuits in this system,
which would modify the field in the gap and decrease the calorimeter performance, and
to stabilize the accordion shape of the electrodes, a honeycomb spacer lies in the LAr
gaps. The honeycomb is the most optimized shape to conserve a mechanical stability
without disturbing the electric field lines. In the barrel of the EM calorimeter, the full
LAr gap width is 4.2 mm, the thickness of an absorber is 1.7 mm and the power supply
gives a nominal HV of 2000 V, while in the end-cap it varies with η between 1000 and
2500 V [1]. In the barrel this corresponds to a drift time of Tdrift ≈ 450 ns at T = 88.5
K and the corresponding ionisation of a shower signal has a triangular shape before the
electronic shaping, that lasts from 0 to Tdrift, as may be seen in fig. 3.13. The drift velocity
changes with the LAr temperature, which affects the energy response of the calorimeter as
it changes the pulse length, hence it modifies the signal. The variation of the calorimeter
response is of −2%/K out of which the biggest part (-1.5%) comes from the change of the
drift velocity ([188] paragraph 2.1.2.3), and the small remaining fraction comes from the
variation of the LAr density. The presence of impurities in the LAr could also bias the
energy response as the additional components may capture part of the ionisation electrons.
It was shown that the level of impurities should stay below one part per million in order
not to impact the response, and until now it stayed at the level of 0.1-0.3 per million,
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Figure 3.13: Ionisation signal from the ATLAS EM calorimeter, before (triangular) and after the
electronic bipolar filtering. The dots correspond to the 25 samples that may be recorded for a
given signal

depending on η.

Impact of short-circuits and non-nominal HV

During the construction and the filling of the calorimeter few impurities have formed, and
”connected” the electrodes at 2000 V to the lead which is at the ground. This creates a
change in voltage distribution over the electrode, as it will be forced to be at 0 V at the
point of the short and upstream, while it will vary from 0 to the power supply voltage
beyond the short, and this effectively modifies the energy response of the cell in which the
short happens. Moreover due to the effect of Ohm’s law, the power supply that corresponds
to the affected cell will start drawing current which means that every cell of the sector
which is alimented by this power supply will be affected, and that the voltage measured
at the power supply does not correspond to the one that exists at the level of the cells.
Some attempts to burn these shorts by injecting a high current pulse were conducted [189],
and were successful in several sectors, but not for all the observed shorts. When a short
remains, it is sometimes possible to reduce the HV at a level where there is no leakage
current, or even to set the HV at 0 V for the side where the short lies. In such cases a
method to recover the energy response of the cell was described in [190] and essentially
multiplies the measured cell energies by a power of the measured HV, where the exact
exponent is fitted on a simulation. It was not possible to derive a correction for the case
where there is a leakage current as it would require the knowledge of the position of the
short-circuit.

3.3.4 Anatomy of the ATLAS EM calorimeter

There are actually three electromagnetic calorimeters in ATLAS, each in its own cryostat
: one barrel calorimeter and two end-caps, as may be seen in fig. 3.14. In the end-caps,
beyond the electromagnetic calorimeter one finds the end-cap hadronic calorimeter, and
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Figure 3.14: Overall schematic description of the liquid argon calorimeters [191]

in the most inner part of the end-caps cryostats are the forward calorimeters. While both
of them are also based on a liquid-argon technology, they are described in subsection 3.2.5
and will not be detailed here as their geometry, absorbers and services are fairly different.
The barrel of the calorimeter was also constructed as two separate yet identical parts, one
for η < 0 (side C) and one for η > 0 (side A) that were assembled and installed in the same
cryostat afterwards. As a consequence there is a small gap of ∆η = 2 ∗ 0.025/8 (aroung
2× 5 mm) at η = 0 which is not instrumented.

Anatomy of an accordion cell

One of the big breakthrough of the ATLAS EM calorimeter is the geometry of its elec-
trodes, which follows an accordion shape in φ, where the LAr gaps, electrodes and ab-
sorbers are interleaved and projective with respect to the interaction point. The previous
LAr calorimeters were made in a sequence absorbers, gaps and electrodes that were placed
at given radii, and the readout was done on the side of the electrodes which required holes
in the calorimeter at specific (η, φ) coordinates. In ATLAS the readout is done either on
the front of the cells for the first layer of the calorimeter or on there back for the others,
which allows for a more hermetic and uniform detector. It also allows for a faster read out
as the connections are shorter [192]. In the barrel a constant width was required for the
LAr gap, which was achieved by changing the angle at each fold of the accordion, decreas-
ing it at increasing radius. This was not possible in the end-cap, but it is compensated by
varying the HV as a function of η too.

The calorimeter is read-out in three different samplings in depth, and the cells of the
three samplings have different properties, that are displayed in fig. 3.15 for η = 0, hence
they can serve different purposes in physics analyses. The first sampling (strips) has a
very fine segmentation in η which allows to differentiate between a genuine photon and
an energy deposit coming from a π0 → γγ decay which may happen inside a jet, and
where the π0 is boosted hence the opening angle of the diphoton pair is small, but can
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Figure 3.15: Sketch of a typical barrel module of the liquid argon EM calorimeter [1]

still be resolved in the strips. The second sampling (middle) carries most of the energy
measured and is the deepest, while the third one is thinner and is mainly here to estimate
the amount of energy leaking beyond the LAr. The exact segmentations of the cells of the
three layers as a function of η are given in table 3.16, and there are 256 cells in φ for the
second layer. Due to the accordion geometry of the electrodes, a given electrode usually
spreads over the size of two cells (in φ) in the middle, although it is read-out in only one
of them. In the barrel there are 1024 accordion-shaped absorbers (see fig. 3.15) while in
the outer wheel of the end-cap (|η| < 2.5) there are 768 absorbers, and 256 in the inner
wheel.

As stated before, each electrode needs to be connected to two HV power supplies, but
these supplies will be the same for several cells. In the barrel all the HV sectors have a
segmentation of ∆η × ∆φ = 0.2 × 0.2 (= 8 × 8 middle cells), as is the case for most of
the end-cap sectors except for a few cases where the sector is smaller in η. These smaller
sectors are defined as follow : |η| ∈ [1.375− 1.5], [1.5− 1.6], [2.0− 2.1]. The same power
supply is feeding the three samplings, which requires the existence of electrical connexions
between the electrodes, and this is achieved using a resistive ink that connects the layers.
This can be seen in fig. 7 of [193].

The Front End Boards

The signals from the read-out electrodes are collected from the back of the calorimeter
(for the middle and back layer), or from its front (for the strips), and are then sent to the
Front-End Crates (FECs) next to the feed through of the calorimeter, and are described
in fig. 3.17. For the EM calorimeter, there is no cold electronics inside the LAr cryostat.
The electronic amplification and shaping of the signal, as well as its digitization, is done
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Figure 3.16: Summary of the main parameters of the ATLAS calorimeters [1]
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Figure 3.17: Block diagram depicting the EM calorimeter frond-end crates components [1]

on the Front-End Board (FEB) [194, 195], which we will focus on in this sub-part. The
trigger and calibration boards will be described later. The main role of the FEB is to
amplify and shape the signal from the electrodes, then to send it to the read-out back-end
if the event from which the signal originates passes the trigger.

First, a pre-amplifier multiplies the signal to a level which is above the noise of the
full electronic chain that comes downstream. The gain of the pre-amplifier, as well as the
detector sampling fraction, are roughly constant over the detector and changes only at
|η| = 0.8, where the thickness of the lead absorber is modified, which is compensated by
changing the gain of the pre-amplifier between the region |η| < 0.8 and |η| > 0.8. The
output of the pre-amplifier is sent to the shaper, which is one of the key elements of the
calorimeters electronics. It uses a bipolar CR-RC2 electronic filter, whose main property
is to give an output signal with a null integral, as may be seen in fig. 3.13 . This has the
advantage that it suppresses the pile-up noise on average, and afterwards the only impact
of the pile-up will be a degradation of the resolution due to the Poisson fluctuations of the
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number of pile-up interactions. Simultaneously to this shaping an additional amplification
of the signal is done, and there are in fact three outputs from the electronic shaping chip,
each one corresponding to a different gain : high, medium and low (HG/MG/LG), where
the ratio of these three gains is 93/9/1. The output of this chip is sampled every 25 ns
and stored in Switched Capacitor Arrays (SCA), with one SCA by gain. These SCAs can
register up to 144 samples which give sufficient to time to wait for the trigger decision
before further processing. If the event is saved, the corresponding samples are digitized
using a commercial 12 bits Analog to Digital Converter (ADC). Together with the three
gains, the 12 bits ADC gives the required dynamic range of 16 bits. In order to chose which
gain will be used for a given event, the sample corresponding to the expected maximum
of the ionization peak (the third sample recorded in the event) is digitized in MG, and
depending on the value of the ADC counts for this sample, the gain in which the cell will
be read is chosen. All the samples corresponding to the same pulse will be digitized in the
same gain for a given cell. Basically a cell of the middle layer will be read-out in HG until
its transverse energy reaches 30 GeV, then in MG up to 400 GeV, then in LG and the
ADC will saturate at a transverse energy of roughly 3 TeV. It is not necessary to have the
whole pulse (25 samples) to reconstruct the energy of a particle, and for the Run 1 it was
decided to save only the first five contiguous samples. The digitized samples are then sent
to the read-out crates which are in the service cavern where there is no radiation. The
read-out crates will not be detailed here but are documented in [196].

Trigger cards

During their processing in the FEBs, right after the shaper, the calorimeter signals are
sent to the Tower Builder electronics card [194], which is the only component of the trigger
that lies in the FECs. The tower builder receive the signal of several cells and sums them
to build a trigger tower which is the basic ingredient for the calorimeter trigger. The region
covered by a given tower is of ∆η × ∆φ = 0.1 × 0.1 which corresponds to 4 × 4 middle
cells in most of the detector. The signal of the trigger tower is digitized in the cavern by
steps of 1 GeV, and with a saturation of the trigger ADC at 256 GeV, but this is sufficient
for a trigger. This digital signal is obtained from an analog signal obtained in the Tower
Builder sent to the service cavern, where the trigger informations from all the calorimeter
and the other sub-detectors are gathered and processed, which corresponds to the level 1
trigger (L1). Several algorithms may create a L1 trigger signal, which is then sent back to
the controller board of the FEC. After a trigger signal, the whole detector is sent to the
read-out back-end and stored in the read-out buffers, and it is the controller board that
will initiate the digitization and read-out of the SCAs on the FEBs. The latency of the
L1 trigger system is of 2.5 µs, and it has a rate of ≈ 75 kHz.

Afterwards there are two other level of trigger. The layer 2 (L2) has access only to the
region of interests (RoI), that are cones around the regions from which a trigger signal
originated, but it has access to the all the sub-detectors in this region, including all the
cells of the calorimeter in the RoI, which allows to run more complex algorithms and to
decrease the trigger rate by a factor ≈ 100. The last level is the ”Event Filter” which
is a high-level trigger in which the full event can be reconstructed and processed, using
a reconstruction program that is very close to the offline reconstruction. At the end the
trigger rate is of ≈ 100 Hz. A visual description of the full chain of triggers may be found
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Figure 3.18: Sketch of the ATLAS trigger systems [197]

in fig. 3.18.

The presampler

Although it is also based on a LAr technology, the pre-sampler (PS) of the ATLAS EM
calorimeter is very different from the accordion calorimeter. First, the pre-sampler does
not contain any absorber material, but only the electrodes and the LAr, and it also does
not cover the entire calorimeter, as it stops at |η| = 1.8 in the end-cap. The geometries
for the barrel (|η| = 0 − 1.52) and end-cap (1.5-1.8) pre-samplers are different, but are
relying on the same concept of having a thin layer of LAr (≈ 1 cm in the barrel) in which
electrodes are interleaved. In such a scheme the main energy loss will be by ionization of
the LAr, which allows to recover part of the energy for a particle that would have started
showering before reaching the PS.

The barrel pre-sampler modules are made of interleaved cathode and anode electrodes,
and have a spacing of 2 mm between each others. The anode electrodes are made of three
layers, like the electrodes of the accordion calorimeter, with the two outer layers being
connected to a +2 kV HV and the inner layer being here for the read-out. The three
layers are separated by a glass-fibre composite. The cathodes consist of two layers that
are connected to the ground. In the end-cap the electrodes are perpendicular to the beam-
axis and thus parallel to the cryostat wall [188]. There are three electrodes : two external
electrodes are fixed to the inner and outer walls of the end-cap PS and are connected
to a negative HV, while the third one, where the signal will be read, is connected at a
ground. The spacing between the external and the read-out electrodes is still of 2 mm in
the end-cap.
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3.3.5 Energy reconstruction with the calorimeter signals

Reconstruction of the calorimeter pulses

The only outputs that are measured for a given cell in a given event (and saved for the cells
that are above a given threshold), are the 5 digitized samples of the ionization pulse, which
are evaluated in number of ADC counts. These are the values from which the energy and
timing of the signal in this cell will be reconstructed. Every other informations that are
needed to reconstruct the cells energies come from either test-beam studies or the detector
simulation, or calibration runs. The calibration runs rely on a specific electronic card that
injects a signal in the calorimeter, and that will be described below. The complete formula
used to reconstruct the energy is [198] :

Ecell = FµA→MeV FDAC→µA
1

Mphys

Mcal

G
Samples∑

aj(sj − p) (3.6)

where the parameters are defined as follows :

� sj correspond to the measured digital samples, in ADC counts

� p corresponds to the electronic pedestal, which is measured in specific calibration
runs

� FµA→MeV corresponds to the conversion factor between the ionisation current gen-
erated in a cell and the total energy deposited in this cell in MeV, which has been
measured in a test-beam [199]

� FDAC→µA makes the conversion between the digital signal sent to the calibration
card and its output which is an analogical current. This allows to convert back
the samples sj to the original current, and it is known from the calibration cards
construction

� G is the gain of the cell, measured during the calibration runs (expressed in ADC
→ DAC)

�
1

Mphys

Mcal

is a factor that corrects the gain to take into account the fact that the injected

calibration signal is exponential while the physics signal is triangular, and have
therefore slightly different maximal amplitudes after the bipolar shaping. It can be
obtained from delayed calibration runs, as is described in [200]

� aj corresponds to a part of the Optimal Filtering Coefficients (OFC) that are at the
heart of the calorimeter signal reconstruction, and are determined using the expected
shape of the signal [4, 201]

There are in fact two sets of OFCs, ai and bi, which are linked to the amplitude and
the timing of the signal. We define the following two values U = ∑samples ai(si − p) and
V = ∑samples bi(si − p), and the OFCs are defined as the values of the (ai,bi) for which
< U > corresponds to the amplitude of the signal A, and < V >= Aτ where τ is the
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timing of the signal, and for which the variance of U and V are minimal. Therefore this
gives by construction the most powerful determination of the amplitude and of the timing
of the pulse. This minimization requires the knowledge of the expected shape of the signal,
as well as of the expected noise as it modifies the variance of U and V. During the 2011
data-taking this optimization was done only considering the electronic noise, and the pile-
up noise was added only for the 2012 run but was assuming 20 simultaneous interactions
and a bunch-crossing period of 50 ns.

Electronics calibration

As can be seen on fig. 3.17 a specific electronics card [202], the Calibration Board, is
embedded in the FEB crate. Its main role is the injection of a signal of known amplitude
and timing to the cells. The calibration pulse originates from a known digital signal
which is converted to an analog current in the calibration board. This current flows in
an inductance LC , and once LC is loaded the current is switched off and the magnetic
energy is released and creates a voltage which is transmitted to the read-out electrode
by a resistance that is in the LAr cryostat. Given that the central process here is the
decay of the charge of an inductance it can only give an exponential signal, which is an
approximation of the triangular shape of the physics signal. A given calibration board
serves several calorimeter cells in φ, but always only one in η which allows to study to
cross-talk between cells in calibration runs. Indeed, due to the structure of the absorbers
that are following the accordion in φ, there is no cross-talk in φ in the LAr itself. A
cross-talk could still exist in the electronic read-out but it is expected to be much smaller
than the one in the LAr, which is in η only. The exact repartition of the calibration lines
to the EM calorimeter cells may be seen in fig. 3.19. Typical peak-peak cross-talk values
for neighbouring cells are ≈ 7% for the strips and ≈ 1% for the middle layer [203].
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Figure 3.19: Schematic description of the repartition of the electronic calibration lines to the
LAr cells, in the barrel of the EM calorimeter [188]
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3.4 Reconstruction of electrons and photons at AT-

LAS

3.4.1 Reconstruction of electromagnetic clusters

The sliding window cluster seeding

The algorithm used to find clusters in the electromagnetic calorimeter is based on a sliding
window technique, which has been described in [204], as well as the full logic on which
the cluster construction is based. This constructs pre-clusters of 3 × 5 middle cells (in
η× φ), and sums all the cells in the 4 longitudinal samplings that are facing these 15 cells
(including the pre-sampler). If one of these pre-clusters has a transverse energy above 2.5
GeV an actual cluster is seeded. After having found these 3× 5 cells pre-clusters, one will
produce the final clusters, whose exact size will depend on the nature of the particle and
of the detector (barrel or end-cap). For an electron or a converted photon in the barrel,
the size of the cluster is of 3 × 7 cells which allows to recover part of the energy lost by
bremsstrahlung, that is expected to be found in φ given the direction of the inner tracker
magnetic field, along the beam axis. For unconverted photons, that are not sensitive to
this effect, the cluster is of 3× 5 which allows to slightly decrease the impact of the noise.
In the end-cap every electromagnetic object has a cluster of 5× 5 cells. The size of these
clusters was optimized before the data-taking, and they were chosen to improve the energy
resolution of the electromagnetic objects. These cluster sizes are likely to be changed for
the Run 2.

Differentiation between electrons, unconverted and converted photons

In ATLAS the differentiation between electrons, converted photons and unconverted pho-
tons relies solely on the inner tracker. Tracks matching the cluster (in η and φ) are searched
for, and if two matching tracks are found an attempt to fit a conversion vertex is carried
out. To be valid this conversion vertex has to satisfy a few conditions, for instance on the
invariant mass of the two-tracks system that needs to be close to 0 (= mγ). In some cases
there may be converted photons for which only one track is reconstructed, for instance if
the two tracks are too collimated to be separately reconstructed or if the conversion is very
asymmetric and one of the tracks is not energetic enough to be detected. In such cases
it is not possible to build a conversion vertex, but there is a track matching the cluster
that may be reconstructed, and it is still possible to flag the photon as converted. Strong
requirements are enforced on this track parameters, such as requirements on the position
of the first hit in the track which can not be on the b-layer as we consider only photons
that convert in the tracker, or on the fraction of high-threshold hits in the TRT which
discriminates between conversion electrons and pions. The full logic of conversion recon-
struction has been described in [205–208] . The clusters that are not flagged as coming
from converted photons and in front of which there is no matching tracks are considered
as coming from unconverted photons, while those for which there is a track are flagged
as electrons. Although there might be some ambiguities between converted photons and
electrons, a tool was developed to resolve them and is also described in [208] . For the
final results of the Run 1 an additional constraint on the conversion radius was enforced
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(Rconv < 80 cm) in order to remove conversions in the outer part of the inner detector
where the conversion reconstruction is expected to be inefficient, and where most of the
converted photons are coming from fake conversions. In two-tracks conversion Rconv is the
radius of the conversion vertex while in one-track conversion it is the radius of the first hit
of the track.

3.4.2 Offline identification of photons [2]

The identification menus

The identification of photons in ATLAS is based on a sequence of rectangular cuts that are
applied on several variables that characterize the shape of the corresponding electromag-
netic showers [209]. Another discriminating variable is the amount of energy that leaks
beyond the EM calorimeter as charged hadrons are expected to deposit a sizeable part of
their energy in the hadronic calorimeter too. For the photons two identification criteria are
provided, loose and tight, the first one giving the highest efficiency to select photons, but
also the largest background contamination. The second one, which is used for the h→ γγ
analysis, decreases the signal efficiency but improves the purity of the sample. The vari-
ables used for the identification are independent of whether the photons are flagged as
converted, although the precise values of the cuts may vary. The loose selection only looks
at energy leaking in the hadronic calorimeter and at the shape of the shower as seen in
the middle sampling, which is expected to give a coarser description of the shower as it is
less granular than the strips. This menu uses the same cuts for converted and unconverted
photons, and gives a photon efficiency higher than 99% at Eγ

T > 40 GeV. The tight menu
includes the cuts from the loose criteria, and adds cuts on the shape of the shower as it
is seen in the strips, which is a more powerful layer to reject the background from jets
in which light hadrons (such as π0, η) may decay to two collimated photons. Using the
fine segmentation of the strips it is possible to build variables that are sensitive to the
difference between such a decay and a prompt photon, as can clearly be seen on fig. 3.20
where for the π0 → γγ decay there are two distinguished energy maxima in the strips that
are not resolved in the middle. This gives a photon efficiency of ≈ 85% and a very good

rejection of the jet background of R = Njet

Nfake γ

= 5000. The optimization of the tight

menu is done separately for the converted and unconverted photons. The exact variables
that are considered during the optimization of the tight and loose menus are shown in
table 3.1. Another approach based on a neural network was developed for photons in the
2011 data [89, 210]. The input variables to the neural network algorithm are the same as
for the cut-based approach, with the addition of the photon pseudo-rapidity.

Fudge-Factors for shower shape variables

As will be described later in this thesis, the lateral shape of the electromagnetic showers
is imperfectly described by the ATLAS detector simulation [211, 212], and the source of
this mismodelling has not been understood yet. As these variables are at the heart of
the photon identification strategy, a method to overcome this discrepancy was needed and
this corresponds to the ”Fudge Factors” that are documented in [4]. The mismodelling is
approximated by a shift of the mean of the shower shape variable and can be effectively
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Category Description Name Loose Tight

Acceptance |η| < 2.37, with 1.37 < |η| < 1.52 excluded – X X

Hadronic leakage Ratio of ET in the first sampling of the
hadronic calorimeter to ET of the EM cluster
(used over the range |η| < 0.8 or |η| > 1.37)

Rhad1 X X

Ratio of ET in the hadronic calorimeter to ET
of the EM cluster (used over the range 0.8 <
|η| < 1.37)

Rhad X X

EM Middle layer Ratio of energies in 3 × 7 η×φ cells over 7 ×
7 cells

Rη X X

Lateral width of the shower wη2 X X

Ratio of energies in 3×3 cells over 3×7 cells Rφ X

EM Strip layer Shower width calculated from three strips
around the strip with maximum energy de-
posit

ws 3 X

Total lateral shower width ws tot X

Energy outside the core of the three central
strips but within seven strips divided by en-
ergy within the three central strips

Fside X

Difference between the energy associated with
the second maximum in the strip layer and the
energy reconstructed in the strip with the min-
imal value found between the first and second
maxima

∆E X

Ratio of the energy difference associated with
the largest and second largest energy deposits
over the sum of these energies

Eratio X

Table 3.1: Variables used for loose and tight photon identification. The X corresponds to the
variables that are included in a given menu [2]
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Figure 3.20: Zoom of two events displays on the EM calorimeter, showing the energy deposited
by a prompt photon (left) and the shower created by a π0 → γγ (right)

corrected on the MC, by adding a constant value to the simulated shower shape of each
photon. This fudge-factors are estimated in single-photon samples, and are taken as the
data to MC difference of the average of the shower-shape that is being considered, and are
afterwards applied on the MC to correct it. The corrected MC is then used to optimize
the cuts and evaluate the photon efficiency and the background rejection.

Estimation of the efficiency

Three different methods have been developed to estimate the photon efficiency, and are
afterwards combined together, which improves the result especially given that they cover
different energy ranges. Preliminary results for the Run 1 photon efficiency can be found
in [213] and the final results are expected to be published later [2].

The first method, which is particularly optimized for the low-energy regime, is based
on a tag-and-probe technique that uses radiative Z → llγ decays. The main cut that
impact the photon is a cut on mllγ, every other cut being done on the quality of the
lepton reconstruction and on their energies, and this is sufficient to give a pure photon
sample. The photon identification can then be studied and the efficiency to select photons

using the tight menu is estimated as εγ = Ntigth γ

NZ→llγ events

. The main source of systematic

uncertainty in this study is the uncertainty on the background normalization, whose impact
is estimated by subtracting it from the mllγ fit. This method has the drawback that the
energy of the photon in radiative Z events is fairly low, and this analysis stops at pT = 80
GeV and is precise only up to pT = 40 GeV.

The second method makes an extrapolation from the shower shape variables of the
electrons in Z → ee events to estimate photon shower shapes. For each of the shower
shape variables a Smirnov transform [214] is build on MC to transform the distribution for
electrons into the photon distributions. This transform is then applied to the shower shape
variable observed for Z → ee electrons on data, which is a very pure sample of electrons,
and the distributions for the transformed electrons correspond to what is expected for
photons. The photon identification criteria are applied on the transformed electrons,
which allows to derive the photon efficiency. The main systematic for this method is the
material budget in front of the calorimeter, which modifies the transform build on the MC
as the shower shapes are changing with the material. As this method is using the Z → ee
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peak it can only probe the transverse energy range 30-100 GeV, but has a decent precision
over this whole range.

The last method, the ”matrix method” [215, 216], uses a dataset of single-photons that
are passing the loose identification criteria, and gets the level of background by splitting
the dataset in two with regard to a variable that can isolate the background, and the
background is then extrapolated to the region where the signal is. Applying the same
method to a dataset where the tight identification criteria is enforced allows to derive the
photon efficiency of the tight identification menu. In this case the variable that is used to
extract the background is the track isolation, as the prompt photon are expected not to be
surrounded by tracks while the photons from the jet backgrounds will be. The dominant
systematic comes from the difference between the true track isolation and the observed
one, which changes the selection efficiency when applying this isolation. The big advantage
of this method is its ability to cover a wide energy range (20-1500 GeV) as it uses single
photons, for which it is easy to get a large statistics.

These three methods are then combined to give the best possible determination of the
efficiency. The photon efficiency, which is displayed in fig. 3.21 is everywhere above 90%
for Eγ

T > 40 GeV, while its uncertainty is everywhere below 2% and even falls below 1%
for Eγ

T > 40 GeV. These efficiencies are increasing with Eγ
T .

3.4.3 Offline identification of electrons [3]

The procedure for the electron identification in ATLAS, as well as its performance, is fully
documented in [3]. It provides more identification menus than for the photon identification,
as it can cut not only on the shower shape variables but also on the quality of the tracks, the
number of hits in the different layers of the tracker, and the high-threshold hits information
from the TRT. Four menus based on rectangular cuts on these variables are provided.
Loose, medium, tight are single-electron identification criteria but there is also one menu,
the MultiLepton, that was optimized for the h → ZZ∗ → 4l channel where there are
low pT electrons. The information from the TRT, especially the fraction of hits in the
reconstructed track that are passing the high-threshold criteria, is not included in the loose
selection but is considered in all the others. It is similar for the b-layer hit information.
In addition to these cut-based menus three menus based on a likelihood-ratio have been
developed : loose, medium and very-tight. The final h → ZZ∗ → 4l analysis of the
Run 1 used the likelihood-based loose identification criteria, which was optimized for
this particular signature and gave the same signal efficiency than the cut-based multi-
lepton menu, but improved the background rejection by a factor of ≈ 2. The efficiency is
estimated on data using a tag-and-probe method based on Z → ee and J/Ψ→ ee decays,
where strong requirements are set on one of the two electrons (the tag electron), and the
only requirement on the second electron (the probe electron) is on the di-electron invariant
mass and on the track quality. Then the number of probe electrons that pass a given
identification gives the electron efficiency of this specific identification criteria. The main
uncertainty on this method comes from the background modelling, which is evaluated
from control regions where the isolation and identification cuts of the tag electrons are
inverted. The results from Z and J/Ψ decays are afterwards combined together. The
electron identification efficiency is above 95% for ET above 15 GeV and its uncertainty
varies from 1.5% at low ET to 0.5% for ET > 25 GeV.
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Figure 3.21: Photon efficiency of the tight photon selection criteria, for converted (bottom) and
unconverted (top) photons, as a function of their transverse energy and pseudo-rapidity [213]
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3.5 Comparison with the CMS detector

3.5.1 Overall description of the CMS detector

The CMS detector [217] was conceived to address the same physics program as ATLAS,
and follows a similar building architecture, but the conception of the sub-detectors and
of the reconstruction algorithms is different. Its overall design architecture may be seen
in fig. 3.22. A detailed comparison of the design of the two detectors can be found in
[218]. First, its inner tracker is entirely done with technologies based on Silicium, and
the magnetic field in the region of the tracker is much stronger than in ATLAS, reaching
4 T. Both the electromagnetic and hadronic calorimeter are within the solenoid magnet,
which gives additional constraints to the detector electronics. The hadronic calorimeter
is a sampling calorimeter, made of brass absorbers and of plastic scintillators as active
material. There are also one or two thin layers of scintillator outside of the magnet coil
at low η in order to detect late showers and suppress noise in the muon chambers. The
electromagnetic calorimeter will be described below. The magnetic field return is done
with a steel yoke, within which the muon chambers are embedded. The muon chambers
are made of RPCs for the trigger and either drift tube chambers (in the barrel) or CSCs
in the end-cap. The detector is made hermetic by adding a forward calorimeter made
of steel absorbers and quartz fibres to collect the signal. The overall design of the CMS
detector (and the fact that the CMS hadronic calorimeter has a worse resolution than the
one from ATLAS) implies that its event reconstruction relies more on the tracker than
ATLAS does, which is for instance illustrated by the use of the particle flow [219] or the
fact that given the high material budget in the return yoke, the resolution of the muon
momentum would be worse without the tracker.

3.5.2 Description of the electromagnetic calorimeter

The CMS electromagnetic calorimeter is a homogeneous calorimeter made of lead tungstate
(PbWO4) crystals. An overall scheme of its design may be seen in fig. 3.23. The com-
plete shower of the incident particle is measured and not only its energy deposits in the
active material samplings, which means that it is less sensitive to statistical fluctuations
on an event-by-event basis, and the stochastic resolution term becomes smaller by con-
struction. As the PbWO4 crystals have a high density, short radiation length and a small
Moliere radius of 2.3 cm [221] they allow for a compact calorimeter with reasonably fine
granularity (a crystal has a segmentation of ∆η × ∆φ = 0.0174 × 0.0174 in the barrel).
The scintillation light is collected in the rear of the crystals where its yield is measured
by photo-detectors, whose exact technology varies between barrel (avalanche photo-diode)
and end-caps (vacuum photo-triode). A laser system has been designed [222] to monitor
the response of the crystal and compensate for temporary radiation induced losses of the
crystal transparency. The CMS EM calorimeter is built as one barrel calorimeter and two
end-caps, where the separation between the two detectors is done at |η| = 1.5, while the
full calorimeter covers the region up to |η| = 3. It is not segmented in depth and cannot be
used to reconstruct the direction of incident particles, which means that the reconstruction
of the primary vertex only relies on the tracking detector. To improve the π0 rejection
capabilities in the end-cap a pre-shower detector is added in front of the calorimeter, and
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Figure 3.22: Overall layout of the CMS detector [220]
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Figure 3.23: Schematic description of the CMS electromagnetic calorimeter [223]

it is made of two planar silicon detectors that are placed after lead absorbers.

3.5.3 Reconstruction of electromagnetic particles in CMS

The reconstruction of electromagnetic particles in CMS is based on the super-cluster algo-
rithm and is fairly different than in ATLAS. This starts by finding a seeding crystal, whose
energy should pass a given threshold, and from this seed the super-cluster is expanded dy-
namically. Lines of 5 × 1 crystals (in η × φ) that are contiguous to the super-cluster are
looked at in both φ directions, and if they pass some energy threshold they are added to the
super-cluster, although no more than 17 lines may be added. The variable R9 = E3×3

ESuperCluster

is defined, and if the R9 > 0.94 (in the barrel, 0.95 in the end-cap) the super-cluster is
narrowed to its 5×5 inner crystals, otherwise the full super-cluster is kept to estimate the
particle energy. At this point no difference have been made between electrons, converted
and unconverted photons. Given the high magnetic field and high material budget in the
CMS tracking region, in addition to the fact that there is no additional material between
the tracker and the calorimeter, the shower shapes are more sensitive to the type of incident
particle in CMS than in ATLAS : for instance the electrons are expected to radiate more,
and the angular opening (at the level of the calorimeter) of the conversion pairs will be
larger. Both of these effects happen in φ. This means that, from the calorimeter point of
view, the R9 variable drives the discrimination between the different particle hypotheses,
as may be seen in fig. 3.24 for the discrimination between the different conversion status.
The discrimination between the photon and electron hypothesis comes from the tracker
and is described in [224]. As the cluster reconstruction does not depend on whether the
incident particle converted, the photon energy calibration may be done in the same way,
which implies that the systematic uncertainties related to the conversion reconstruction
mis-modelling are considered as not relevant.
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Figure 3.24: Distribution of R9 = E3×3
ESuperCluster

for converted (with a radius of conversion lower

than 85 cm) or unconverted photons (or late-converted) in CMS [221]
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4.1 Global overview of the calibration procedure

The energy calibration for electrons and photons in the ATLAS detector is an involved
process, that will be described below. It required several studies to optimize the energy
reconstruction, develop all the pre-corrections to be applied on data to correct for biases
in the energy response, extract the systematic effects that would create uncertainties,
determine the absolute energy scale of the calorimeter, and cross-check these results on
other processes. The sequence of all these steps is described on fig. 4.1, and will be
detailed is this part. It starts with the determination of the material budget in front of
the calorimeter. This is a study that requires a proper inter-calibration of the first two
layers of the EM calorimeter, derived using the signal from muons crossing the detector.
Once the material budget is known, a multi-variate algorithm (MVA) is trained on Monte-
Carlo samples to reconstruct the particles energy from different variables that can be
measured in the calorimeters. On data there are several effects that may create localized
or time-dependent biases of the energy response, which require the determination of a set
of pre-corrections that are applied to data after the MVA energy reconstruction. At this
point the absolute energy scale of the EM calorimeter, as well as its energy resolution,
can be determined by a fit of the Z → ee mass peak, whose shape is well known from the
LEP measurements [52, 138] . These measurements are applied to every electro-magnetic
particle that is reconstructed inside the ATLAS detector, and effectively this is what
constitutes the energy calibration of electro-magnetic particles. The last step corresponds
to a cross-check of the validity of this calibration in a different energy range, and of the
validity of the extrapolation to photons of the in-situ energy-scale extracted with electrons.
This last step insures that neither energy-dependent effects biasing the energy response,
nor effects that could have a different impact on electrons and photons have been missed,
hence guaranteeing that the full calibration chain is robust.
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Figure 4.1: Flowchart of the electro-magnetic calibration procedure for the ATLAS detector [198]

4.2 Monte-Carlo based calibration

The ATLAS electromagnetic calorimeter does not measure the total energy of an incoming
particle as there are energy losses before the calorimeter, in the lead absorbers, ... that
will not be measured because they will not translate into ionization electrons in the argon,
hence measuring the particles energy requires to find a way to recover for these effects. In
the past ATLAS had been using the so-called ”Calibration hits” method [225] where all
the energy deposits, including in dead material and before the EM calorimeter, are stored
in the Monte-Carlo datasets and explicit parametrizations of these losses as a function
of measurable quantities are derived. These parametrizations are used to correct for the
measured clusters energies and give the measurement of the initial energy of the incident
particle. This method has not been used for the last Run 1 results, except for the region
of the crack (1.37 < |η| < 1.52) which is not used in the h → γγ analyses, and will
therefore not be described further in this thesis. A multi-variate (MVA) calibration [226]
was implemented and is doing an equivalent job, except that explicit analytic formulae
for the losses are not needed as the MVA is expected to find them on its own. Therefore
it is more powerful than the calibration hits as it can use weak dependences of given
effects on a variable that would not be implemented in the calibration hits, or complicated
correlations that were needed to be known analytically before. But a proper training of this
MVA requires an accurate description of the detector response and of the material budget
in front of the EM calorimeter, as it would give a perfect estimation of the energy only
if it had been trained with a perfect simulation of the detector. This required a sizeable
amount of work [198] both for the determination of the material budget in ATLAS and
for its implementation inside the Geant 4 detector simulation.

4.2.1 Determination of the material in front of the calorimeter

Inner detector material budget For the Run 1 analyses, the material budget of the
inner tracker, as well as its uncertainty, has been estimated using prior knowledge coming
from its construction, especially the weights of its components [1]. This gave a relative
uncertainty on the ID material of ±5%, and although a few methods had been developed
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(see [227, 228]) to give an in-situ estimate of the ID material, looking at the tracks either in
photon conversions [207, 229], or in secondary hadronic interactions [230], none have been
able to give a competitive uncertainty, as they suffer from systematic effects regarding the
track efficiencies that are hard to control. They have not given any hint of deviation in the
material description that would not be covered by the 5% uncertainty. In the following
the ID material is assumed to be perfectly known and well implemented in the ATLAS
detector simulation, and the uncertainty on the ID will be propagated.

Material budget upstream of the calorimeter Before the data-taking different
methods had been developed to estimate the amount of matter upstream of the calorime-
ter that are summarized in [231]. They all relied on the variation of the electromagnetic
particles shower shapes as a function of the material budget. However, as will be explained
in section 4.5, it was realized that the lateral shower shapes were not accurately described
by our Geant 4 simulation [211, 212] and it has not been possible to use them. Still an
equivalent solution had been implemented, using a longitudinal shower shape namely E1

E2
,

which is the ratio of the energies in the first two layers of the calorimeter, as more mate-
rial in front of the EM calorimeter will imply an earlier shower and therefore an increased
amount of energy in the first layer with regard to the second. It is in fact the ratio of the
averages of E1 and E2 that is used and for simplicity it will be denoted E1/2.

The first step of this method [232] is the estimation of the sensitivity of the chosen
shower shape to the material in front of the accordion, which is represented by a single
factor given by

∂X/X0

∂E1/2
(4.1)

that is displayed in fig. 4.2. It is evaluated by studying the variation of E1/2 under
material changes in the Geant 4 simulation, and estimated from a linear interpolation
of E1/2 = f(XInjected

0 ) where XInjected
0 is the amount of material that is added in the

modified detector simulation. Several modifications of the material budget have been
tried and all yield a similar sensitivity factor, therefore only one was kept. This method
is only sensitive to the integral of the material budget in front of the calorimeter, and can
not actually resolve detailed radial variations, but it is possible to study both electrons
and unconverted photons to create a mild sensitivity and split the material between what
lies between the PS and the first layer, and what is in front of the PS. To make sure
these photons are actually unconverted and did not convert toward the end of the tracker
where we cannot reconstruct the conversion pair, a veto on the presampler activity is
enforced (E0 < 500 MeV), and the unconverted photon samples is really only sensitive to
the amount of material between the PS and the accordion.

Once these factors are known the amount of material in data can by estimated by
simply scaling eq. 4.1 by EData

1/2 /EMC
1/2 , assuming the relative calibration of E1 vs E2 in

data is correct, as will be explained later. This study has been carried along η, and has
been used to give hints of where the material budget in the simulation should be modified.
Every modification that had been implemented was qualitatively supported by studies of
either the detector building plans or by pictures of the detector construction. The evolution
of the material budget between the final Run 1 detector simulation and the one that was
used before is described on fig. 4.3. The most striking improvement is the suppression of
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[198]

the big discrepancy at |η| = 1.9, which was coming from a mismodelling of the SCT heater
tubes. There are still a few discrepancies between the final detector simulation and the
real detector, especially at the beginning of the end-cap (|η| = 1.4− 1.5) where there is a
sizeable excess of material in the simulation that has not been understood. The transition
inside the inner detector at |η| ≈ 0.8 also suffers from a budget deficit in the simulation.

The uncertainty on this measurements comes from the statistical uncertainty on the
sensitivity factor that is extracted from finite MC samples, variations of the Geant 4 phys-
ical processes descriptions, and from the inter-calibration of the two first layers of the
calorimeter that will be described in subsection 4.3.4 . Whenever the remaining discrep-
ancy between data and MC is higher than this estimated uncertainty, the full difference
is taken as the uncertainty. The total uncertainty on the material budget is shown in fig.
4.4.
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4.2.2 Multi-variate Calibration

The multi-variate calibration [226] used for electrons and photons is done using a boosted
regression tree (BRT) implemented in the TMVA package [233]. There are in fact several
BRTs, which correspond to different type of particles and different parts of the phase
space. Three different BRTs have to be trained for electrons, converted and unconverted
photons as they may be sensitive to different effects, e.g. the material in front of the
electromagnetic calorimeter will not have the same impact on unconverted photons than
it has on electrons. The conversion status of a given photon is defined by its conversion
radius : converted photons have 0 < Rconv < 800 mm while unconverted either have a
”negative” radius or one higher than 800 mm, which corresponds to the limit beyond which
the conversion reconstruction is not reliable anymore. It was also decided to have several
BRTs as a function of the pseudo-rapidity of the cluster and of the transverse energy in the
LAr accordion, as it was observed that it was giving a better resolution in specific corners
of the phase space. This is because TMVA had more freedom to independently optimize
its response in specific problematic regions of the detector. This binning in ηcluster closely
follows known detector features and response variations.

The BRTs are trained to give a multiplicative correction factor to the energy measured
in the accordion, i.e. the target variable is Etrue

Eaccordion
where Eaccordion is the sum of the

measured energies in the three samplings of the calorimeter while Etrue is the incident
particle energy given by the simulation. Using this ratio narrows the range in which the
target variable varies, hence improving the performance of the BRT. All the particles use
the same measurable input variables, except for the converted photons for which additional
informations are used. These variables are listed below :

� Eaccordion which is the sum of energies in the three accordion layers

� EPS the energy measured in the presampler, that recovers part of the energy lost by
the particle before the EM calorimeter
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� X which is the shower depth (=
∑

XiEi∑
Ei

, where Ei is the amount of energy measured

in layer i and Xi the amount of matter in the same layer or before at this position)

� The cluster barycentre where both η in the ATLAS frame and in the calorimeter
frame (including also the position with respect to the cell edge in this calorimeter
frame) are looked at while φ is taken only in the calorimeter frame. The position in
the calorimeter frame allows to take into account variations of the energy depending
on the position of the particle with regard to the lead absorber, which may increase
the amount of energy loss in inactive material, and with regard to the cell edge, as
a particle hitting the calorimeter closer to a cell edge has a tendency to have more
energy leaking outside the cluster. Having also the position in the ATLAS frame
allows to have more sensitivity to the material budget in front of the calorimeter

For the converted photons Rconv is also used, but only if the sum of the pT of the two
tracks is above 3 GeV. If both of the conversion tracks are reconstructed and have hits in
either the pixel or silicium detectors, the following variables are also considered :

� pconvT which is the sum of the conversion track transverse momenta

�
pmaxT

pconvT
the ratio of the highest momentum between the two conversion tracks to the

transverse momentum of the vectorial sum of the two tracks

One important thing to note is the absence of variables related to the shape of the
shower. Although promising on Monte Carlo they are not accurately modelled by our
current detector simulation, as will be seen later, and it was therefore decided not to use
them in the calibration.

When compared to the previous calibration based on the calibration hits method, the
use of BRTs has improved the performance of the calibration for simulated h→ γγ events,
illustrated by fig. 4.5 left. Improvements were observed both on the linearity of the energy
response, which is illustrated by the better compatibility between the input mass and the
maximum of the invariant mass peak in fig. 4.5, and on the energy resolution. The
linearity is estimated as the variation of the position of EMVA

Etrue
with respect to the true

energy, and has been estimated to be below 0.3% for every electromagnetic particle above
Etrue
T = 10 GeV. The values of the energy resolution for various η and pT bins are shown in

fig. 4.6. With regard to the previous calibration, the most striking improvement was seen
on converted photons whose resolution improved by typically 20% (mainly because the
conversion tracks momentum is used) while the energy resolution of unconverted photons
improved by ≈ 10 − 15% in the endcap and only 3 − 10% in the barrel. In most of the
detector electrons have seen only a modest improvement of a few percents. For low energy
electrons coming from J/Ψ→ ee (fig. 4.5 right), where the energy resolution is the worst,
one does not even see an improvement.
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4.3 Corrections to the energy response on data

4.3.1 Intermodule gaps

The EM calorimeter is built as 16 modules in φ, and at the separation between two modules
there is an inter-module widening (IMW) of the LAr gap. This implies a decrease of the
energy response in these small regions as a subpart of the shower will ionize the LAr with
a lower electric field, and therefore a lower energy response. Effectively this translates
in a downward variation of the particles energies with a φ-periodicity of π

8 , that can be
observed in fig. 4.7. Furthermore the effect is bigger at φ > 0 than on the other side, which
has been interpreted as a gravity-induced modification of the gaps between the modules.
On the top of the detector the modules started to spread apart under the effect of their
weights, giving a decrease of ≈ 2% of the energy response, while on the bottom they were
getting compressed, yielding to a decrease of only ≈ 1%. This structure was only observed
in the barrel, which could be explained by the mechanical differences in the construction
of the endcap : barrel modules are well tightened from the inner and outer sides of the
calorimeter, while the edges of the endcap modules have freedom to distord themselves
and adapt to the gaps. A correction was derived to recover for this effect, and is based
on a fit of the energy response (estimated by E

p
of electrons coming from W → eν events)

in a given module to a double Fermi-Dirac function [227, 234], where the ratio between
the flat top of the energy response and the rest of the module is used to determine the
correction. Although the impact of this effect was already taken partially into account by
setting the absolute energy scale of the calorimeter with Z → ee events, it had an impact
on the energy resolution and the correction improved slightly the constant term.

4.3.2 Pre-sampler high-voltage

In nominal conditions the barrel PS of the EM calorimeter is operated at the same voltage
than the accordion, i.e. 2000 V. But this subpart of the calorimeter suffered from a sporadic
noise that appeared in 2010 and became more and more frequent as the instantaneous
luminosity was increasing, and whose source was not clearly identified. To mitigate this
effect it was decided to decrease the PS HV, to 1600 V for the 2011 run and the first part
of the 2012 run. Then it was further reduced to 1200 V in September 2012 with some
channels operating at 800 V. In the endcap PS the effect has not been observed, which may
be explained by a different layout of the detector or the fact that the nominal HV is lower,
and no action had to be taken to preserve its performance. Although a recipe to correct
the energy response for a non-nominal HV exists, using the expected HV dependence of
the PS response [198, 235], it is only perfect when the OFCs and electronic calibration
constants have been recomputed using the actual HV value. This was not done until
September, and the period where the PS HV was at 1600 V has been processed with the
OFCs computed for the nominal HV, hence leaving a ≈ 1% bias in the energy response
that is absorbed in the absolute energy scale measured in-situ using the Z peak. After
this procedure the stability of the PS response has been checked, and a difference between
the two periods was observed (fig. 4.8). To make the response stable with regard to time
a correction was derived, comparing the PS response between the two periods in Z → ee
events, and it was decided to apply it to the period after September 2012. The remaining
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possible bias is still taken into account by the in-situ energy scale, and effectively this
improvement of the detector stability improves the energy resolution.

4.3.3 High-voltage in the accordion

While doing detailed studies of the reconstructed invariant mass distributions of Z → ee
candidates, sizeable and localized deviations of the energy response were observed, and
are described below [234]. They are always affecting one accordion HV sector, and most
of them have been understood and corrected for.

Short-circuits in the accordion Most of these defaults are linked to short-circuits in
the LAr accordion gaps, which are generated by impurities in the liquid argon accordion
that connect the electrodes to the lead absorbers, which are themselves connected to the
ground. This creates a potential difference between the power supply and the location of
the short-circuits, and also an electric current because of Ohm’s law. In such cases the
voltage generated by the power supply decreases, but the correction computed using the
expected HV dependence of the response does not apply as it assumes that the current
is negligible (a few µA) while it can become higher than 1 mA in case of a short-circuit.
The main problem to derive a correction for this effect is then the loss of homogeneity of
the voltage on the electrode : it is 0 V between the most inner part of the calorimeter and
the short-circuit (if there is a ”complete” short-circuit) and upstream it increases from 0 to
the power supply voltage value, in proportion of the resistors that are crossed. A proper
correction would need the knowledge of the position of the short-circuit.

The average reconstructed di-electron mass in φ bins for a η range (0.4 - 0.6) with HV
sectors suffering from this effect is displayed in fig. 4.9, while the maps of the current for
the full detector are shown in fig. 4.10 and HV in fig. 4.11. The deviations of the energy
response can clearly be seen by the localized drop of almost 2 GeV of the reconstructed
Z0 mass at φ ≈ 0 and ≈ −1. It can be seen from the current map for the second half-gap
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that the power supply of this sector leaks a current of more than 1 mA, while a normal
sector is close to 0 A, hence confirming the effect indeed comes from short-circuits. The
HV maps in fig. 4.11 shows that these sectors are operated at a lower voltage (less than
500 V).

The variation of electrical potential over the electrode will only happen on one of the
electrodes of the sector, and for all the others the potential will still be uniform over the
electrode, but it will not be at its nominal value neither at the value that is measured
at the power supply, which explain the partial loss of energy response over the whole
HV sector. Some of the cables that are needed to insure the power supply are shared
between all the electrodes of a given sector, and they are obviously carrying a resistance.
In case of short-circuit the power supply will leak a non-negligible current and due to the
effect of Ohm’s law, a tension will be created across these connections, which means that
the potential at the beginning of the electrode will not be the same than the one that is
measured, which is the one at the power supply. Therefore the impact of the short-circuit
will propagate and modify the energy response in the whole HV sector, and depending
on how deep the short is in the calorimeter it may affect several of its layers. It is not
possible to derive an exact correction which would require the knowledge of the position
of the short, however an empirical correction is derived based on profiles such as the one
shown in fig. 4.9, where the effect of this correction is also shown. The full set of plots of
the Z0 mass profiles may be seen in appendix A.

Wrongly corrected half-module Some HV sectors have been splitted in two, with
the two halves operated separately and potentially at a different voltage. This is usually
not a problem but we found one case where the HV correction was not applied to the
proper half, but to the one that was at nominal voltage. The corresponding di-electron
mass distribution is displayed in fig. 4.12, where on the side that should be corrected the
energy response has decreased below its nominal value while on the other side the energy
is over-evaluated. The correction to the cells energies, as registered in the database, is of
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Figure 4.9: Reconstructed invariant mass of Z0 → ee candidates with electrons falling in 0.4 <
η < 0.6, as a function of φ of one of their electrons, before and after the HV correction [198]
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Figure 4.12: Variation along φ of the reconstructed di-electron invariant mass in Z0 → ee events
for a specific HV sector where the two halves are at a different voltage, but the wrong one received
a correction

3% which is compatible with the 1.5% variation of the di-electron mass that is observed
on both sides of this sector.

Further checks were done to find the origin of this inversion, which turned out to be a
mistake in the original mapping of the cables to the power supply, that had already been
seen in signal injection tests. Although a few other sectors are operated in two halves,
they are most usually not operated at two different HV, and no equivalent effects had
been seen in signal injection tests. The mapping in the ATLAS database was updated for
future runs to use the correct one.

Description of the correction Using the expected invariance of the reconstructed mass
of Z → ee events around the beam axis, it was possible to derive an offline correction for
this effect, using profiles such as the one shown in fig. 4.9. Using the fact that for a
perfect detector the di-electron mass should not depend on φ, we can assume that the
average reconstructed Z → ee mass in a faulty HV sector should be the same than for
other sectors at the same η and correct the energy of particles falling in this sector.
This correction is a multiplicative factor directly applied to the energy of electromagnetic
particles that are falling within problematic sectors, and has been derived to equalize the
energy response, estimated by the reconstructed Z → ee mass, of a faulty sector to the one
of the other sectors at same η. The value of all the correction factors and the location of the
corresponding sectors can be found in table 4.1. Although this correction is derived using
the Z0 peak it is done to correct the response of the cells and therefore one will apply it to
other energy range and particles too. The main effect of this correction is to improve the
energy resolution of the calorimeter. Its impact on the energy scale was already recovered
on average by the use of the absolute energy scale extracted from Z → ee events. The
same correction was applied on 2012 and 2011 data, as only one sector had a change of
energy response between the two years.
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η range × φ range Correction factor
[−0.6,−0.4]× [13π

32 ,
14π
32 ] 1.035

[−0.6,−0.4]× [12π
32 ,

13π
32 ] 0.965

[0.4, 0.6]× [−2π
32 , 0] 1.028

[0.4, 0.6]× [−10π
32 , −8π

32 ] 1.044
[0.6, 0.8]× [12π

32 ,
14π
32 ] 1.022

[1.2, 1.4]× [−24π
32 , −22π

32 ] 1.038
[1.9, 2.0]× [18π

32 ,
20π
32 ] 1.029

[−1.4,−1.2]× [−10π
32 , −8π

32 ] 1.048
[−1.4,−1.2]× [−14π

32 , −12π
32 ] 1.048

[−1.8,−1.6]× [18π
32 ,

16π
32 ] 1.024

[−2.5,−2.3]× [−18π
32 , −16π

32 ] 1.037
[−2.5,−2.3]× [8π

32 ,
10π
32 ] 1.031

[−2.5,−2.3]× [16π
32 ,

18π
32 ] 1.040

[−2.5,−2.3]× [18π
32 ,

20π
32 ] 1.030

[−2.5,−2.3]× [20π
32 ,

22π
32 ] 1.020

Table 4.1: Correction factors applied to the particles’ energies to flatten the reconstructed in-
variant mass of Z → ee candidates, correcting for incorrect HV behaviours in specific sectors

Improperly averaged corrections Although we derived a correction only for the two
aforementioned HV problems, we found out a few others that are related, although in these
cases they are not impacting a full HV sector but only one layer 1 or one layer 2 cell. The
first one corresponds to the case where the HV on one half LAr gap is put at 0, leaving the
other half gaps of the Voltage power supply to its nominal value. The online correction
is computed separately for each of the three samplings of the calorimeter, but is always
averaged over one cell. Given that the three samplings have different granularities this can
give residual deviations : if a problem occurs in a gap corresponding to a given cell of the
middle sampling, all the strips facing the faulty gap will receive a correction. Given that
strips cells are 4 times bigger in ∆φ than middle cells, the correction gets propagated to
particles falling close to the 3 other middle cells facing this layer 1 cell, although it should
not have been corrected. Effectively this means that the energy for particles hitting the
middle cells having the faulty gap will be under-evaluated, while elsewhere it will be
over-evaluated, as can be seen in fig. 4.13. Properly correcting this effect would require
sizeable changes to the reconstruction program. Only 3 sectors displaying this effect have
been found.

Remaining effects A final effect was observed, but not understood. We found 5 HV
modules with drops of the energy response that seemed to affect a region of only one cell
in φ but the full sector in η. A typical case is displayed in fig. 4.14. As the origin of this
effect has not been found we decided not to correct for it.
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Figure 4.13: Mass distribution in sectors where a HV correction is averaged over a whole strip
cell while only one middle cell has a problem. The two top sector are more complicated as several
electrodes are operated at different voltages in the middle sampling
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4.3.4 Inter-layer calibration

After the electronic calibration described in [202, 236, 237], there may be residual effects
that have not been accounted for and need to be corrected before the in-situ energy scales
are computed, as they only allow to derive one scale factor by η bin. It was observed,
already at the time of the ATLAS test-beam (see fig. 20 of [238]), that there is a difference
of ≈ 3% of the energy response of the first layer of the EM calorimeter with regard to
the second one, on average. As the fraction E1

E2
varies with the energy this relative mis-

calibration would create a non-linearity, and would also bias the material determination
whose current method relies on this fraction. Therefore it was decided to derive an inter-
calibration correction factor α1/2 whose goal is to equalize the energy response between
the two first samplings before any other correction, especially before the overall in-situ
energy scale. It should be noted that although the third sampling of the calorimeter may
in principle suffer from similar effects, it was not studied as it starts to have a weight in
the energy measurements at a few hundred GeV which is beyond the energy range we were
interested in Run 1, especially for the Higgs boson measurements in the diphoton channel
where the mean pT is ≈ 60 GeV.

In order to have a measurement of α1/2 that does not depend on the amount of material
in front of the calorimeter, whose determination already requires corrected E1 and E2, it
was decided [235] to study the energies deposited by muons in the EM calorimeter, that are
almost insensitive to matter : the energy they deposit in a layer is only proportional to the
depth of active material crossed. They are selected in Z → µµ events where it is required
that pµT > 25 GeV, which gives a very pure sample. Their trajectory is measured in the
inner tracker and extrapolated to the calorimeter to determine cells that have been crossed
by the particle. Because of the accordion geometry, an electrode of the EM calorimeter
usually spreads over two cells in the middle sampling, and it is therefore necessary to sum
several cells to estimate the muons energies. It was chosen to use the most energetic cell
around the extrapolated track, and its most energetic neighbour in φ, as the magnetic field
tends to bend the tracks in φ. In the strips the cells are bigger in φ but have a sizeable
level of cross-talk between adjacent cells in η, that is not well modelled in the simulation,
and to mitigate this effect it was decided to sum three contiguous strip cells in η. The
energy deposited by the muons is small (≈ 200 MeV in the middle layer) therefore the
measurement suffers from an important electronic noise, that is at the level of 40 to 50
MeV in the middle layer. Therefore the distribution of the energies in each sampling is
described by the convolution of a Landau distribution, that describes the energy deposition
of the muon, and a Gaussian, that describes the electronic noise. Two methods have been
developed to extract the Most Probable Value (MPV) of the deposited energy. The first
one uses a full fit of the energy distribution while the second one is using a truncated
mean, as the Landau distribution as a large tail toward high energies. Denoting < E1/2 >
the ratio of the MPVs in the first and second layer, the inter-layer calibration factor is
then simply the ratio of α1/2 =< E1/2 >

data / < E1/2 >
MC , and can be seen in fig. 4.15.

The difference between the two methods is taken as an uncertainty, while the statistical
uncertainty on α1/2 is completely negligible. In principle this factor can be applied to
either of the two samplings, and after the overall in-situ energy scales this choice will not
make any difference, but as it was noticed that the spike at η ≈ 1.5 is carried by the
middle sampling, it was decided that it is its energy that should be modified.
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Figure 4.15: Inter-layer calibration correction factor α1/2 =< E1/2 >Data / < E1/2 >MC as
measured with muons, where < E1/2 > corresponds either to this fraction most probable value
obtained from a fit, or to its average value in a window [198]

Although this inter-calibration factor is extracted with muons, it is directly applied to
electrons and photons, and this extrapolation implies a systematic uncertainty on α1/2 due
to the improper modelling of the details of the EM calorimeter in Geant 4. The following
uncertainties were studied, and they all were evaluated by implementing related variations
at the Geant 4 level of the simulation of signal particles samples :

� Uncertainties on the cross-talk between the LAr cells, either in a given sampling or
between the first two layers, which affects the muon energy measurement

� Uncertainties on the size of the inactive material area in the electrode between the
first and the second layer but also on its exact position, which changes the area of
transition within which the electric field is decreased

� Uncertainty on the variation of the response of a cell due to the variation of the
electric field along an electrode due to their accordion geometry

The total uncertainty on α1/2 varies between 1% and 1.5% as a function of η, and
translates into a non-linearity of the energy response as it is taken into account by the
overall energy scales set using the Z → ee mass peak, meaning that the uncertainty on the
particles energy is 0 for 40 GeV electrons, but rises to 0.1% of the energy for unconverted
photons from h → γγ decays. This uncertainty on α1/2 has also been propagated to the
uncertainty on the material determination described in [232] . For this study another
uncertainty coming from the mis-modelling of the lateral shower shape, that has a bigger
impact on the second layer than the first, has been taken into account and was evaluated
as the full Data/MC discrepancy.

4.3.5 Presampler (PS) energy scale

Being an independent detector with a different design from the one of the LAr accordion
calorimeter, the PS has its own energy scale that also needs to be computed. It could
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simply be estimated as αPS = Edata0
EMC

0
where E0 corresponds to the PS energy, measured

with electrons coming either from W or Z bosons [235]. However this ratio is plagued
by potential biases from material mis-modeling in front of the PS, that have to be taken
into account before this ratio can be interpreted as being the PS energy scale. As an
increased material budget before the PS creates earlier and broader showers, it is expected
to increase the fraction of energy in the pre-sampler and in the strips. It can be observed
on fig. 4.16 that the impact of material upstream of the PS on both E0 and E1/2 can be
described by a linear parametrization, while the impact of material between the PS and
the first sampling is only shifting this parametrization with regard to E1/2. Therefore,
under any material variation the PS energy response can be described using the following
formula :

Evar
0

EMC
0

(η) = 1 + A(η)(
Evar

1/2

EMC
1/2 b1/2

(η)− 1) (4.2)

In this formula variations of A(η) are describing the impact of the (ID) material budget
upstream of the PS (i.e. the slope of fig. 4.16) while b1/2 describes any other bias that
affects E1/2, such as the mis-modeling of the material budget between the PS and the
accordion or the relative calibration of the first two layers, and needs to be measured.
This is done using unconverted photons, that are insensitive to the material in front of
the PS, and for which a veto on the PS activity is required (E0 < 500 MeV) to ensure
that the photons have not converted beyond the region where the tracker may reconstruct
conversions. Therefore they only measure effects that may bias E1/2, and b1/2 is then taken
as < EData

1/2 > / < EMC
1/2 >. Once b1/2 is known eq. 4.2 can be used to estimate a corrected

PS energy Ecorr
0 , which corresponds to what would be the result of the simulation if the

amount of material in front of PS was correct, by replacing Evar
1/2 by EData

1/2 in the right
hand of eq. 4.2. The pre-sampler energy scale, which may be found in fig. 4.17, is then
simply computed with electrons from W and Z decays using the following formula :

αPS = EData
0

ECorr
0

(4.3)

The PS energy scale that is applied on data corresponds to the average of αPS over one
PS module, and the variation of αPS over one module is taken as an uncertainty on this
measurement. The uncertainty on αPS varies between 2-3% depending on η.
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4.4 Correction for an apparent non-linearity

4.4.1 Presentation of the problem

As was mentioned in subsection 3.3.4, the electronics of the detector has three different
gains, that are effectively covering different transverse energy ranges. As the in-situ energy
scales are determined using Z → ee events they assume a given mixture of the various
gains, and if the inter-calibration of the three gains is imperfect these energy scales may
not be valid at a different energy where the fraction of cells read-out in each gain is
different than the one observed at the Z, and this would create a non-linearity of the
energy response. This is especially a problem for h→ γγ as in the middle layer the turn-
on of the Medium Gain (MG) is essentially between the average energy of Z → ee events
and the one of h → γγ events. Typically in the barrel only a few percents of Z → ee
events have one of their electrons whose cluster has a cell read-out in medium-gain, while
for h → γγ it is already almost two third of the events. In the following section we will
be interested only in the gain of the middle layer cells. At the Z → ee peak all the events
will have some of the cells of the strips read-out in MG for every electron cluster, but the
energy in the strips is small. For the energies we were interested in for the run 1 the back
layer only has a mild impact on the energy measurement. In the following the events will
be labelled as MG as long as one of the electromagnetic clusters in the event has at least
one cell of the middle sampling that is read-out in MG, and HG (High Gain) if all the
cells are read-out in high-gain. A similar denomination is used for electrons and photons.
The case of the low-gain will not be discussed as there is no pure source of electrons or
photons with a sufficiently high yield to study it, and it is not relevant for h→ γγ.

The relative calibration of high and medium gain can be studied using the di-electron
invariant mass in Z → ee events, that has a sizeable number of events in both MG and
HG. It was first observed at the end of 2012 [239] that the mass distribution of the events
registered in HG or MG are shifted with regard to each other, in a way that can not be
reproduced by the MC, as may be seen for the barrel events in fig. 4.18. At this time only
three broad bins were done, splitting between events where the two electrons are falling
in the barrel, the end-cap or when there is one electron in each of these sub-parts. Most
of the shift of the reconstructed Z mass between HG and MG comes from a kinematic
effect, that will be explained below, and which is well simulated by the MC. But there is
also a remaining ≈ 200 MeV shift that is different between data and MC, which gives an
apparent non-linearity of the energy response. In the note [239] this was only treated as a
systematic uncertainty and it was estimated to give a systematic uncertainty of 0.15% on
the Higgs boson mass measured in the h→ γγ channel. This number was derived taking
into account the distribution of mee observed in the three bins for the two gains, and the
different fraction of events in each gain for Z → ee and h→ γγ.

4.4.2 Extraction of the energy response difference

This study was conducted by splitting the datasets in two separate categories : the events
where one middle cell (i.e. one cell in the middle longitudinal sampling) was read-out
in MG, and those where all the middle cells are read-out in HG. But selecting a specific
electronic gain biases the energy distribution of the selected sample, and this in turn has
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Figure 4.18: Di-electron invariant mass distribution of Z → ee events where the two electrons
are falling in the barrel. The left plot corresponds to the data and the right to the MC, HG
events are in black and MG in red

an impact on the distribution of the di-electron invariant mass. Indeed the MG electrons
will be at higher energies than the HG ones, and on average this means that they will
come from Z → ee events that are in the high-mass tail of the Z Breit-Wigner. Therefore
the reconstructed di-electron invariant mass distribution for MG events is expected to be
biased toward higher masses, and the one from HG events toward lower masses. But this
effect is purely kinematical hence it is well modelled by the MC, if the gain-switching
threshold is properly modelled in the MC. In order to remove this effect, it was decided to
study the difference of the reconstructed mZ→ee mass between MC and data, which allows
to subtract the kinematical effect hence cancelling it. But the gain-switching thresholds
are not perfectly implemented in the MC, and depending on the cell it may differ by up
to 5% with regard to the thresholds of the real detector. This is usually not a problem as
no other analysis may be sensitive to this exact threshold. Furthermore on the MC the
selected read-out gain is only a relabelling of the energy range : the detector simulation
gives the energy of the cell in MeV and the corresponding number of ADCs is determined
using the conversion factor measured on the detector. The chosen gain is defined by
sharp cuts on the value of the number of ADC counts, and the read-out electronic is
perfectly calibrated and linear. To get rid of the threshold mis-modelling it was decided
to do this analysis in small bins of ET , of typically 5-10 GeV. Then the energy and mass
distributions in each bin are well under control, as we are selecting precisely the energy
of the electrons falling in each bin. Technically this is achieved by studying the profiles of
the reconstructed di-electron invariant mass mee along the transverse energy of one of the
electrons ET , which gives the average and statistical uncertainty of mZ→ee by transverse
energy bin. The second electron in the event is averaged over, and as its energy is corrected
by the in-situ energy scale any observed mis-modelling of the reconstructed Z mass will
only be connected to a mis-modelling of the energy response of the first bin, which may
be defined with the formula ∆E

E
= 2∆M

M
(see demonstration in subsection 3.3.4 ).

For the final Run 1 measurement, the study [240] was carried out in fine η bins, and
almost everywhere in the detector the difference of the reconstructed Z mass between
the two gains is not zero, but it is usually quite small, at the level of 100-200 MeV,
which would translates into a 0.2-0.4% difference of energy response between the two
electronic gains. But there are a few bins at the beginning of the end-cap where the
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Figure 4.19: Profile of the reconstructed Z mass for two specific η bins where the apparent
difference between the two chains is the biggest (right) and the smallest (left)
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Figure 4.20: Distribution of the di-electron invariant mass in HG and MG, for data and MC,
in the bins where the difference is the biggest for the barrel (0.6 < η < 0.8) and the end-cap
(1.62 < η < 1.72)

difference in the reconstructed Z mass is much bigger, reaching 1 GeV which, interpreted
as a difference of energy response between the two electronic chains, would correspond
to a 1% difference. Two of the most extreme bins are displayed in fig. 4.19. Assuming
that the difference between data and MC does not depend on the energy of the electron,
which seems acceptable with the current statistics, we can derive a single number that
characterizes the energy response deviation, by averaging all the ET bins. This number is
given in table 4.2 for all the η bins that have been considered. As this study used profiles
of the reconstructed Z mass and not fits of these distributions, there may be a bias in the
estimated mass, which is expected to cancel out in the data to MC difference. To confirm
this cancellation, the di-electron invariant mass distribution is displayed in fig. 4.20, for
the bins where the effect is the most striking in the barrel and in the end-cap, and it is
clear that the data to MC difference is bigger for the MG than the HG, hence driving the
energy response difference. Furthermore in the end-cap the data-MC shift is in a different
direction for the two gains.
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η (Data-MC)MHG
Z [MeV] (Data-MC)MMG

Z [MeV] Absolute difference (MeV)
[−2.4,−2.32] -411 52 463
[−2.32,−2.22] 83 121 38
[−2.22,−2.12] -219 -40 179
[−2.12,−2.02] -140 -43 97
[−2.02,−1.92] -102 -48 54
[−1.92,−1.82] -198 49 247
[−1.82,−1.72] -145 213 358
[−1.72,−1.62] -388 539 927
[−1.62,−1.52] -41 685 726
[−1.37,−1.20] -72 95 167
[−1.20,−0.80] -25 -50 25
[−0.80,−0.60] -37 161 198
[−0.60,−0.40] -53 43 96
[−0.40,−0.20] -16 175 191

[−0.20, 0] -32 130 162
[0, 0.20] -49 107 156

[0.20, 0.40] -55 40 95
[0.40, 0.60] -61 145 206
[0.60, 0.80] -30 148 178
[0.80, 1.20] -30 103 133
[1.20, 1.37] -65 177 242
[1.52, 1.62] -82 712 794
[1.62, 1.72] -415 657 1072
[1.72, 1.82] 19 235 216
[1.82, 1.92] -186 33 219
[1.92, 2.02] -125 26 151
[2.02, 2.12] -156 -45 111
[2.12, 2.22] -174 -37 137
[2.22, 2.32] -92 104 193
[2.32, 2.40] -184 74 258

Table 4.2: Apparent energy response difference between HG and MG, as measured by the recon-
structed Z mass, as a function of η of the electron. The uncertainty on these numbers is small
(typically < 30 MeV)
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4.4.3 Cross-checks of potential explanations

At this point the energy response difference between the two gains is only an apparent
energy response difference : it appears when we split the dataset between the two gains,
but this does not imply that it is a problem of inter-calibration of the two gains as we may
also split the dataset with regard to another effect that is correlated with the gain, and it
may well be that it is this unknown effect that is not properly modelled in the simulation.
Several cross-checks of effects that could generate this bias have been conducted, and are
described below.

Mapping of HG and MG clusters in the detector

In some cases there could be hot-spots of HG or MG clusters in the detector, either because
the gain-switching threshold is lower in the region of the hot-spot, or for another reason
that might be connected to the bias we observe. Therefore the first thing that was done
was a mapping of the HG and MG clusters in the detector, compared between data and
MC, as even a hot-spot would not have an impact on the performance if it was properly
modelled. This comparison can be seen in fig. 4.21, where the region at |η| < 0.05 and
near the crack is removed by the program that builds the clusters on final analysis datasets
format, which does not handle the changes of segmentation or alignment that are occurring
in these regions. The overall agreement between the data and MC maps is very good, and
there are only a few discrepancies that are localized at the end of the end-cap (|η| > 2),
therefore they cannot explain the discrepancy that we observed between the two gains. In
the barrel there are a few cold-spots for the HG, that are corresponding to dead cells, and
that are all reproduced in the MC.

Effect of material budget in front of the EM calorimeter

Another possible explanation of this effect was a mis-modelling of the material budget in
front of the EM calorimeter. In such a scenario, a particle of a given energy will start to
shower earlier in the detector when the amount of material upstream of the calorimeter is
increased, which will imply broader electro-magnetic showers in the calorimeter. In this
case the amount of energy in the most central cell of this particle cluster will be reduced as
the energy will be more spread in the cluster, and as it is usually this cell that is read-out in
MG, the cluster will be less likely to be flagged as MG, which in turn biases the di-electron
mass distribution for each of the two gains. An important reason to investigate this is the
fact that the worst difference between the two gains lies at the low η edge of the end-cap,
where the knowledge of the material budget is also the worst. This was checked using
simulations of Z → ee events, with one sample that used the nominal detector description
for the simulation, and one that used a simulation where additional material was added
upstream of the calorimeter. The amount of additional material was the maximal amount
allowed by the material studies based on E1

E2
. As usual the profile of the reconstructed Z

mass along the energy of the electron is computed, and the difference of this profile between
the nominal MC and the one with an increased material budget may be found in fig. 4.22.
As expected the additional material modifies the energy response of the detector, in a way
that is not constant with regard to the energy of the incident particle, which is represented
by the slopes observed on this figure. But the most important point is that the additional
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Figure 4.21: Distribution of HG (left) and MG (right) electrons in data (top) and in MC (bottom),
for electrons from Z → ee events
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Figure 4.22: Difference, between the nominal Z → ee Monte-Carlo and one with the maximal
possible addition of material upstream of the calorimeter, of the reconstructed Z mass profiled
along the energy of one of its electrons, for the electrons in HG and in MG. Only the region at
the beginning of the end-cap is displayed

material biases the energy response of the two gains in the same way. Therefore a mis-
modelling of the material budget upstream of the calorimeter cannot explain the observed
response discrepancy between the two gains : the data to MC difference in reconstructed
Z mass will change with regard to the material, but not the HG to MG difference of this
variable.

Timing of the cells in each gain

Computing the OFCs require a proper prediction of the ionization pulse from the physical
signal, and in particular if the timing of the pulse is too delayed with respect to the
prediction its amplitude will not be properly reconstructed. At its maximum the physics
pulse is essentially flat for a few nano-seconds, which means that the maximal acceptable
delay before the reconstructed cell energy starts to be biased is of 3-4 ns (in addition the
OFCs minimize the sensitivity to timing). Given that the output of the shaper of the three
gains is different they can in principle have a different timing, and if their relative timing
is too different this aforementioned bias will translate in an apparent gain inter-calibration
issue. In order to check for this issue, the timing of the most energetic cell in electron
clusters coming from Z → ee events has been studied, and averaged separately for the
high and medium gain in narrow bins of η, which may be seen in fig. 4.23. The calibration
of the pulse timing is done on MC, and t = 0 correspond to the timing of the ionization
pulses of particles that are coming from z = 0 and are travelling at the speed of light.
Therefore the small trend that is seen on MC only represents the fact that the collisions
are in average slightly displaced with respect to z = 0 and the related pulses will come
in earlier on one side of the detector than the other. The variations observed on data are
only representative of the imperfections of the electronics of the detector, which do not
exist on MC. Effectively, in each electronic shaper chip the three gains are corresponding
to three electronic circuits, as is described in [241], and each of these circuits has its own
time constant, which implies that the three circuits will have different timings as they
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Figure 4.23: Average timing of the most energetic cell in electron clusters coming from Z → ee
events, separately for the two gains

are not calibrated independently for each gain. This feature is clearly seen in fig. 4.23
where the HG and MG have a fairly different timing, but the timing shift between the two
gains is of less than 0.8 ns everywhere in the detector hence cannot be the source of the
difference between the two gains.

Inter-layer calibration

As this study was developed before the final Run 1 calibration was frozen, some of the pre-
corrections that have been described above were not applied and could have a link with the
observed difference between the two gains. This was the case of the inter-layer calibration,
as in some cases an incoming electro-magnetic particle may deposit more energy in the
strips than in the middle, which means that its cluster is less likely to contain a middle
cell read-out in MG, although the total energy in the complete cluster is the same. If the
strips are not properly calibrated with regard to the middle, an apparent bias between the
responses of the two gains may appear, although it is in fact a bias in the strips calibration.
This was checked on data by comparing the reconstructed Z mass before and after the
application of the layer inter-calibration, and can be seen in fig. 4.24 for the region at the
beginning of the end-cap, where the magnitude of both the layer inter-calibration scale
and of the difference between the responses of the two gains is the largest. From this
figure, it is clear that the inter-layer calibration does not create a difference between HG
and MG and can not be at the source of the effect we observe.

Electronics non-linearities

Several checks of the behaviour of the electronics have been derived, which are mostly based
on the electronic calibration runs and on the expected shape of the ionization pulses, but
none of them displayed an unexpected effect or generated a better understanding of this

problem. The first check has been a comparison of the factors
Mphys

Mcal

(see eq. 3.6), which

are used to equalize the amplitude of the exponential pulse of calibration runs to the
triangular shape of physics run, between the two electronic gains, and this may be seen
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Figure 4.24: Difference of the reconstructed Z mass profiled along the energy of one of its
electrons, between the data with and without the layer inter-calibration used with its nominal
tune, for the electrons in HG and in MG. Only the region at the beginning of the end-cap is
displayed

Figure 4.25: Ratio of
Mphys

Mcal
between high-gain and medium-gain in the barrel (left) and in the

end-cap (right) [240]

in fig. 4.25. At |η| = 1.8 (ieta = 16), there is a clear structure where
Mphys

Mcal

varies from

a baseline of 1.002 at |η| < 1.8 to 1.006 at |η| > 1.8, but there is no similar structure in

the barrel (|η| = 0.4− 0.6 corresponds to ieta = 16− 24), and the effect on
Mphys

Mcal

is still

present toward the end of the end-cap where nothing is seen with MZ . Therefore it seems
that this structure is not correlated to the apparent difference between the two gains.

The second check was an estimation of the impact of using wrong OFCs on the esti-
mation of the amplitude of the ionization pulse. The OFCs obtained from the high-gain
were used to reconstruct the amplitude and timing of pulses recorded in MG. Although
this variation of OFCs is extreme and not supported by any observation, it also allows to
use OFCs that are expected to hold in an actual physical case, although it is for a different
energy range. This check may be seen in fig. 4.26, and there are no clear structures that
may be connected to what had been seen with the Z0 boson mass. The structure seen at
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Figure 4.26: Effect of applying the wrong OFCs (computed for HG) on a pulse shape (coming
from MG) [240]

Figure 4.27: Ratio of the gain ramps between HG and MG (in the barrel) [240]

ieta = 32 (|η| = 0.8) likely corresponds to the variation of the lead absorbers that changes
the ionization signal, and it is not connected to any structure seen with the Z0 mass.

The ratio of the gain ramps between HG and MG may be seen in fig. 4.27 for the
barrel, and there are also no clear structures that may be connected to what is seen with
the Z0 boson.

The last check concerns the intercept with 0 of the MG calibration run, in terms of
injected DAC counts. During the calibration runs for the medium gain the response is not
probed down to an injected signal of 0 DAC counts, as the medium gain is not expected
to be used for such a low signal. Effectively this implies that the value of injected DAC
counts for which the fit of the response (in terms ADC counts) is 0 will not be 0, but this
intercept will have a non-zero value. The value of this intercept as a function of |η| is
displayed in fig. 4.28 for the barrel, and there are no strong variation in the barrel, up to
|η| = 1, while the biggest effect in the barrel is observed at |η| ≈ 0.6.

Extracting the response difference from E
p

In Z → ee events the Z boson is most usually produced with a small transverse momentum,
and the two electrons are therefore roughly back-to-back. Previously we profiled the Z
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Figure 4.28: Intercept of the calibration ramp for the medium gain with the axis corresponding to
a signal of 0 reconstructed amplitude (i.e. fitted number of injected DAC count in the calibration
run for an output of 0 ADC counts) [240]

mass along the energy and pseudo-rapidity of one of its electrons, and assumed that any
mis-modelling seen in the Z mass was originating from a mis-modelling of the energy
response of this electron, as the second one is averaged out and the in-situ energy scale are
correcting its response on average. But given this correlation of the direction of the two
electron direction, the mis-modelling may still be on the second electron, and therefore
could appear on the first one only through the correlation. This explanation can be ruled
out by looking at the energy to momentum ratio for each of these electrons (E

p
), as with

this variable there is no remaining dependency on the second electron. The momentum is
estimated using the tracker information, where it is expected to be precisely calibrated,
while the energy is still estimated with the EM calorimeter. In some regions with high-
material budget, for instance at the beginning of the end-cap, the performance of the track
momentum measurement may be worse but the effect observed using the reconstructed Z
mass is expected to be sufficiently big to be seen with E

p
too. The profiles of E

p
along the

energy of the electron are displayed in fig. 4.29 for the two bins where the effect observed
with the reconstructed Z mass was the biggest in the barrel and in the end-cap, and it is
clear from these plots that the effect is also observed with E

p
. It is possible to convert the

difference observed in E
p

into an equivalent in reconstructed Z mass difference by using

the formula ∆M
M

= 2∆E
p

, and we observed an overall qualitative compatibility between

the two methods, for instance E
p

gives a mass difference of 1160 ± 130 MeV in the bin
1.62 < η < 1.72 instead of the 1072 MeV that were observed with the di-electron mass,
and 316± 71 MeV instead of 178 MeV in 0.6 < η < 0.8. The fact that the compatibility
is only qualitative is expected as we only use profile of E

p
, which is a variable with long

tails toward higher values, that are not necessarily well modelled, and also because of the
impact of additional material budget on this variable.

FEBs with lower MG threshold in 2011

The previous study was performed on the 2012 dataset only, and qualitatively cross-
checked with the 2011 dataset, as the available statistics is not sufficient to derive the
correction that will be described below separately for the two years. But in 2011 there was

132



CHAPTER 4. ELECTROMAGNETIC CALIBRATION OF THE ATLAS DETECTOR

 [GeV]elE
20 40 60 80 100 120

)
pE

(D
a
ta

M
C

)(

0.2

0.15

0.1

0.05

0

0.05

0.1

0.15

0.2

 < 60η as a function of gain  40 < 100*
el

 profiled along Ep
E(DataMC)(

HG

MG

 [GeV]elE
50 100 150 200 250 300

)
pE

(D
a
ta

M
C

)(

0.2

0.15

0.1

0.05

0

0.05

0.1

0.15

0.2

 < 172η as a function of gain  162 < 100*
el

 profiled along Ep
E(DataMC)(

HG

MG

Figure 4.29: Profile of E
p for electrons from Z → ee events that have either 0.4 < η < 0.6 (left)

or 1.62 < η < 1.72 (right)

an additional detector feature that can be exploited, as for 17 of the FEBs the threshold
at which the cells were read-out in MG was lower (11 FEBs in the barrel and 6 in the end-
cap). Studying the mass distribution separately for these FEBs and the other, as is done
in fig. 4.30, could help separate an effect coming from the gain only from other effects,
especially kinematics effect as for these FEBs the implicit kinematic cut that exists when
requiring MG electrons will be removed. This cross-check has some limitations, first it is
statistically limited because these FEBs are only representing a small fraction of the 2011
dataset, but also because the energy reconstruction for the FEBs with low thresholds uses
the calibration coefficients and OFCs that are computed for the MG electronic chain, and
are not optimized for the low-energy range. If we forget about this last point, and that
the inter-calibration of the gains is good, we would expect the mass distribution for the
low-threshold FEBs to be close to the mass distribution of all the events, but we observe
in fig. 4.30 some difference. Although this should be considered with caution, because of
the aforementioned limitations of this argument, it may be a additional hint of improper
gain inter-calibration.

4.4.4 Derivation of an ad-hoc correction

No clear origin of this mis-modelling has been identified so far, therefore it was decided
to derive an ad-hoc correction on this effect, whose role is to correct for the difference
of energy response between the two gains on average, assuming that it is a difference of
electronic calibration between the two electronic chain.

First, for a given cluster the bias of energy response may be broken into two-components
(one for each gain) : δE = (1 − TOMG

Es2 )δEHG + TOMG
Es2 δEMG, where TOMG

Es2 corresponds
to the turn-on of the MG read-out as a function of the energy of the cluster in the middle
sampling and δEHG, MG corresponds to the bias of the particles energies in a given gain
induced by a problem in the MG response. The turn-on is fitted on MC by Fermi-Dirac
functions, with a different function for different bins in η, and there is a single function for
electrons, converted and unconverted photons, since we parametrize the TO as a function
of the energy in the middle sampling. The typical turn-on for h→ γγ events may be seen
in fig. 4.31. In the following we assume that the HG electronics is properly calibrated,
and only the MG is biased, which implies that the only issue for the low-energy clusters
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Figure 4.30: Di-electron mass distributions for Z → ee events, separated between the FEBs
where the gain switch is at a lower threshold, and separating the other events between those that
are read-out in HG and those that are read-out in MG. The top plot corresponds to the barrel
and the bottom to the end-cap
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comes through the energy scales, that are computed on a dataset that has a non-negligible
fraction of MG clusters. Furthermore we have only one measurement of the potential bias
of the two gains, which comes from Z → ee events, but the impact of a bias in the MG
energy response will not be the same for clusters of different energies. If a cluster of low
energy is flagged in MG, the fraction of energy in this MG cell is more important than it
would be for a MG cluster of higher energy, which means that the bias of low-energy MG
clusters will be more important than at the Z peak. But for even higher energies, there
will be several cells read-out in MG, which will also increase the importance of this bias
on high-energy clusters. The very high-energy clusters will also have some cells read-out
in low-gain, but in the following we consider that MG and LG are biased in the same way,
and can be considered altogether. This means that the values δEMG need to be scaled
as a function of the cluster energy, and this evolution of the bias on the clusters’ energies
is estimated from MC, by injecting a 1% bias to the cells that are read-out in MG and
measuring the bias this creates on the cluster’s energy itself. This function, that we will
denote varMGE(E, η) is fitted separately in several bins of η by polynomial functions. If
we denote ∆E0

HG, MG the bias that is measured with Z → ee events we get the following
parametrization for the bias in energy response :

δE = (1− TOEs2(E, η)) ∆E0
HG(η) + TOEs2(E, η) ∆E0

MG(η) varMGE(E, η) (4.4)

The last piece we need to derive the correction is a way to convert the bias in the Z
mass that is observed into its equivalent in term of energy. To do so we start with the
basic formulae m2 = 2E1E2(1− cosθ) that is valid as long as there are two particles with
negligible masses in the final state. It is easy to show that an infinitesimal variation of
the energy gives the following variation of mass : 2m dm = m2(dE1

E1
+ dE2

E2
) but the in-

situ energy scales are applied on both electrons, and the second electron is averaged over.
By construction the energy scale are made to take into account any potential discrepancy
between data and MC on average, which implies that dE2 = 0, and hence gives dm

m
= 1

2
dE1
E1

.
If we inject this into eq. 4.4 we get the final value of the bias :

δE = 2E
MZ

(∆M0
MG varMGE(E, η) TOEs2(E, η)) + ∆M0

HG (1− TOEs2(E, η)) (4.5)

where ∆M0
HG, MG corresponds to the mass bias that is measured with the Z → ee mass

peak. Effectively eq. 4.5 gives a proper way to extrapolate the bias on the reconstructed
Z mass that we observe by splitting the Z → ee dataset into the two gains to any other
energy range, assuming that it is really an improper calibration of the electronic gain. The
δE can then be subtracted to the energies measured on data to correct for this effect. As
it is not clear that this corresponds to the actual origin of the effect, which has not been
found, it was decided to associate a conservative uncertainty to this correction, and the
value of this uncertainty has the same value than the correction itself.

The impact of this correction on h → γγ events may be seen in fig. 4.32, where
it is estimated in a h → γγ simulation, on an event-by-event basis by computing the
difference of the di-photon invariant mass before and after the application of this correction.
The average of this distribution, which also corresponds to the expected decrease of mH

measured in the h→ γγ channel, is of 115 MeV, although it has an important tail toward
higher values that directly connects to the variations along η observed with the Z → ee
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Figure 4.31: Turn-on of the middle layer MG as a function of the transverse energy measured in
the middle, for typical simulated h→ γγ events [240]

peak. For instance the events that have a correction as high as one GeV are those that have
one leg falling at the beginning of the end-cap. These 115 MeV also roughly correspond
to the value of the uncertainty on the Higgs boson mass that is induced by this issue,
although the exact value depends on the way the categories that are used in the analysis
are defined.

4.4.5 Correlation with the shower-shape mismodeling

For the final Run 1 measurements the study that was presented above, and the correction
that comes with it, were used although there were no clear hint of the origin of this effect
as specific structure that could be correlated to this effect had neither been found on
calibration runs nor on the detailed study of the Z → ee peak presented above. This
study was resumed later, as a part of the preparation for Run 2, by another group [242]
that observed a correlation between the discrepancy of the response between the two gains
and the mis-modelling of shower shapes, in particular for the variable ws,tot (see table 3.1)
that has a much higher value in data than in the MC in the region around η ≈ 1.65, which
explains part of the effect for the bin at the beginning of the end-cap where the effect is
the worst. But this study is still under development, and this correlation with shower-
shape mis-modelling may not explain the full effect that had been observed. In addition
it does not explain the smaller effect that had been observed elsewhere in the detector.
It is also not yet clear how the impact of shower-shape could be effectively corrected nor
how to derive an uncertainty from this mis-modelling. All the conclusion of the analysis
described above were confirmed in this new study, especially the fact that although the
effect is correlated with shower shapes, it does not seem to be explained by a material
budget mis-modelling as it was observed on a distorted MC sample that the shower shape
and response variation created by additional material are cancelling out in the difference
between HG and MG. More work is needed to understand the correlation with the mis-
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Figure 4.32: Distribution of the difference of reconstructed di-photon mass in simulated h→ γγ
events before and after the effective correction described by eq. 4.5, in GeV [240]

modelling of ws,tot since it has a higher value in data than in MC, which also seems in
contradiction with the estimation of material budget upstream of the EM calorimeter (see
fig. 4.3 which seems to indicate that there is an excess of material in the simulation).

4.5 Lateral energy leakage

4.5.1 Position of the problem

Shower-shape mis-modelling

During the first year of the Run 1 data-taking it was realized that the lateral shape of
electro-magnetic showers was poorly modelled by the Geant 4 detector simulation imple-
mented in ATLAS : as may be seen in fig. 4.33 the showers are wider in data. A lot of
studies were carried out to understand this effect but it was never completely understood or
fixed. An improved description of the calorimeter absorbers, where they are not described
as a mixture of materials but split into their actual components, have been implemented
in the detector description and decreased this mis-modelling by a factor ≈ 2. But the
remaining half of the effect is still an open point, and was found out to be incompatible
with missing material in the detector simulation. If this mis-modelling is not universal it
can bias the energy estimation provided by the MVA, as it is possible that the average
amount of energy leaking outside of an electro-magnetic cluster varies with respect to pT
or is different between electrons and photons. For electrons at ET ≈ EZ→ee

T (e) this loss
of energy is corrected for by the in-situ energy scales, but this will not work in an other
energy range or for photons if the leakage is not universal.
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Figure 4.33: Distribution of Rη = E3×7
E7×7

measured on Z → ee events either on the 2010 dataset,
and on two versions of the Monte-Carlo that implements a different description of the absorbers.
”new geo” corresponds to the last version of the absorbers that is now used in the simulation
[243]

|η| < 0.8 0.8 < |η| < 1.475 1.475 < |η|
3× 5 cells 0.3% 1.1% 1.6%
3× 7 cells 0.3% 1.0% 1.5%
5× 5 cells 0.1% 0.2% 0.6%

Table 4.3: Differential fraction (data minus Monte-Carlo) of energy leaking outside of electro-
magnetic clusters, as measured using W → eν events on the 2010 data and Monte-Carlo, in three
broad η bins and for several cluster sizes, computed with respect to the number of cells in the
second layer (in η × φ) [244, 245]

Correction extracted from the 2010 Monte-Carlo

The first study of this effect has been done using the 2010 Monte-Carlo, and used W → eν
events as the statistics of Z → ee events available in this year was not sufficient. The
fraction of energy leaking outside of the electromagnetic clusters was derived in three
broad η bins and for several cluster sizes, and the results concerning the difference of
leakage between data and Monte-Carlo are summarized in table 4.3. The energy leakage
was evaluated in 19×19 middle cells which allowed to compute the integral of the shower.
It is the only time this could be done as it requires low-level datasets that are heavy and
cannot be used when the number of events becomes big. From this study we know that
the energy leaking outside of a cluster of 7×11 cells, which will be used later, is negligible.

When the Monte-Carlo calibration was based on the calibration hits method these
numbers were applied as a correction to the cluster energy, both for electrons and photons
clusters and independently of the particle energy. This is not anymore the case with the
calibration based on a MVA technique, but the MVA itself learns the leakage and is able to
recover for it, although this is based on the leakage as it is seen on the detector simulation.
In both cases the mis-modelling of the energy leakage is taken into account by the in-situ
energy scale and therefore does not have an important impact on the estimation of the
particles energy for electrons around ≈ 40 GeV. It is more important in the extrapolation
of electrons to photons. In 2010 there were no clean photon probes to estimate the leakage
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from photons. It was also difficult to estimate the pT variation due to the fact that showers
could become broader at increasing energy, because of a lack of statistics.

4.5.2 Overview of the method

As we are looking for a possible difference between electrons and photons in the mis-
modelling of the lateral energy leakage, we would like to have pure sources for both of
these particles, which is possible with Z decay, either Z → ee or radiative Z → llγ decays.
The Z → llγ events constitute the only pure source of photons that is available at a hadron
collider, but they have the drawback that they are fairly rare. There is not yet a large
dataset from these decays and the pT spectrum of the photons is softer than the one of
the electrons.

For all the electromagnetic particles passing a few weak criteria (pT > 15 GeV, loose
identification) several informations about all the cells within a cone of ∆R = 0.4 around
the particle have been saved on the final analysis datasets, together with a link between
the particle and the cells that are in this cone. Within these cells, 7× 11 (in η× φ, in the
middle sampling) correspond to the initial particle, while others are sporadically present
either because there are two clusters that overlap, or for other reasons that have not been
understood. A dedicated logic has been developed and is actually doing an iterative search
for this array of 7 × 11 cells, which allows to build back ≈ 90% of the electromagnetic
clusters. Within the other 10% a first half are lost because they are too close to an
alignment or segmentation change (at η = 0 and in the crack), where this logic is expected
not to work, while the last 5% are lost either because one or several cells are missing. The
clusters are only built in the middle sampling, as there are too many segmentation changes
in the strips to implement this logic properly.

Once this 7×11 cells cluster and its center have been found it is possible to build clusters
of arbitrary sizes, as long as they are smaller. The fraction of energy leaking outside a

given cluster is estimated as
Es2(7× 11)− Es2(cluster)

Es2(cluster) where the size of Es2(cluster)
depends on the type of particle we are looking at and its position in the detector. As

will be shown below, the mis-modelling of
Es2(7× 11)− Es2(cluster)

Es2(cluster) is different between

electrons and photons, and several tentative scenarios have been checked to determine
whether we understand the source of this difference. They will be described below too.

Because of the difference of cluster size between electrons and unconverted photons
a slight dependence with respect to to the pile-up could have been expected. This is
corrected by the bipolar shaping of the calorimeter electronics, which is perfect only for
infinite bunch train. The variation of the cell energy that is observed as a function of the
position of the bunch crossing inside the bunch train, is sizeable mainly at the beginning
of the bunch train where it is not possible to average the in-time and the out-of-time
pile-up, and has been corrected for [246]. This correction requires the knowledge of the
luminosity with respect to the BCID and of the energy deposited in a cell per collision as
a normalization (in addition to the luminosity). This may be extracted from special runs
where there is only one bunch. The remaining dependencies are cancelling in the data-MC
difference and in the electron to photon difference.
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4.5.3 Cross-checks of potential electron to photon differences

Difference between electron-like and photon-like clusters

There are two main reasons that may give a different mis-modelling for the lateral energy
leakage between electrons and photons, the first one being the different nature of the
two particles and the second the difference of the size of the clusters that are used to
reconstruct these particles. Two ways of measuring this effect are possible : the leakage
can either be measured with clusters of different sizes for electrons and photons, using the
nominal size of these clusters, or for clusters of a given size that is the same for electrons
and photons (e.g. 3 × 7 cells) and complemented by a measurement of the difference of
leakage between clusters of different size, using only one kind of particle. We decided
to use the first method but have still measured for each type of particles the difference
between clusters used in the barrel for electrons (3 × 7 cells) and unconverted photons
(3× 5 cells).

Difference between clusters of different size To study the impact of different cluster
sizes the mis-modelling of the energy leaking outside of a 3 × 5 cells cluster into a 3 × 7
cells cluster has been studied, and may be seen in fig. 4.34. If we take E(3×7)−E(3×5)

E(3×5) as
an estimation of the width of the electromagnetic shower, the showers would be narrower
on data than in the MC which is in contradiction with what had been observed with the
studies of the shower shape variables (e.g. ws,tot) or what is observed when the full energy
leakage is studied. It is not clear what is the exact origin of this negative baseline. It may
originate from a uniform material mis-modelling, for instance at the level of the beam-
pipe, but there is no supporting evidence for this to happen. The closest distorted material
geometry available corresponds to a scaling of the inner detector material budget by +5%
(conf A) and does not mimic this effect. The big variation that exists just before the crack
(1.3 < |η| < 1.37) can be explained by a material mis-modelling, which is supported by
the studies of the Z boson lineshape that is not properly modelled in this region, but not
by the material studies based on E1

E2
. Still it was decided to cut this part of the detector in

the extraction of the leakage, as well as the part at the end of the crack which is too close
to the various changes of segmentation that are happening in the crack, and therefore the
part 1.3 < |η| < 1.6 will not be further considered in the following section.

Impact of the pedestal shift As electrons and unconverted photons clusters have
different sizes, the data to MC shift of electronic pedestal that is described in subsection
4.6.2 can have a different impact between these two types of particles, although it is
expected to be fairly small, as this shift gives an impact that is less than one MeV per cell.
The difference of mis-modelling between different types of particles may be seen in table
4.4, and taking into account the pedestal shift slightly improves this difference, although
not by much. As the Z → ee electrons and Z → llγ photons have a different pT spectrum
this would be the case even if they all had the same cluster sizes, which can be seen in the
end-cap. The pedestal shift will therefore be applied.

Impact of the Geant 4 physics list Within the Geant 4 tool-kit several different
models can be used to generate different types of physical processes that impact the
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Figure 4.34: Relative energy response mis-modelling difference between clusters of different sizes,
using electrons from Z → ee events. ”Nominal” corresponds to the nominal MC and ”confA” to
a distorded geometry with an increased inner material budget

Particle type |η| < 0.8 0.8 < |η| < 1.3 1.6 < |η| < 2.37
Before pedestal subtraction

El - Unconv −0.00052± 0.00040 −0.00113± 0.00060 −0.00056± 0.00040
El - Conv −0.00152± 0.00108 −0.00369± 0.00101 −0.00148± 0.00107

After pedestal subtraction
El - Unconv −0.00030± 0.00040 −0.00093± 0.00060 −0.00054± 0.00040
El - Conv −0.00123± 0.00107 −0.00338± 0.00101 −0.00140± 0.00107

Table 4.4: Difference of energy leakage mis-modelling between different types of particles, before
and after the subtraction of pedestal shift. The numbers taken for the photons corresponds to a

combination of the Z → eeγ and Z → µµγ numbers. Differences if
E3×7 − E3×5

E3×5
shown in fig.

4.34.
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Figure 4.35: Mis-modelling of the lateral energy leakage for electrons for two versions of the
description of conversion and bremsstrahlung processes, the most recent being conv95/brem95

development of a shower, such as the bremsstrahlung or the photon conversion. A complete
model for all these processes is called a physics list, and as the state-of-the-art computation
evolves, the physics list may change. During the production of the last Monte-Carlo
samples for ATLAS (MC12C) the physics list had not been updated and was using an
older description of the conversion and bremsstrahlung processes. With respect to this
older physics list the newer one was expected to generate broader showers, which could
have explained the mis-modelling of E(3×7)−E(3×5)

E(3×5) . To study this, a sample of Z → ee
events was passed through the two versions of the full detector simulation, and the mis-
modelling of the electron energy leakage was computed for both, which may be seen in
fig. 4.35. Although the mis-modelling of E(3×7)−E(3×5)

E(3×5) slightly improves with the new
implementation, this is only by a negligible amount and the local features are still present.

Impact of additional material in front of the calorimeter

An increased amount of material budget in front of the electromagnetic calorimeter is ex-
pected to broaden the showers measured in the calorimeter, as they would start to shower
earlier, and this may have a different impact if the photons are converted or not. In this
context the sub-detector that is expected to have the largest impact is the inner tracker
hence it was decided to use the distorted geometry where its material is scaled by +5%
to do this test, whose results are displayed in fig. 4.36. In this test the difference between
converted photons and electrons is smaller than the difference between unconverted pho-
tons and electrons, which goes in the opposite direction than what is observed in data
(see subsection 4.5.4), therefore we believe that additional material cannot explain the
difference between converted photons and electrons.
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Figure 4.36: Difference of lateral energy leakage between the detector simulation with an in-
creased tracker material and the nominal simulation, for different types of particles

Impact of conversion reconstruction mis-modelling

As this analysis makes a classification with respect to whether the photon is converted, the
impact of the mis-modelling of photon conversion reconstruction that is described in sub-
section 4.7.1 needs to be taken into account. This is done on Monte-Carlo by reweighting
the photon population that has a true conversion status different than the reconstructed
one, so that the fraction of events whose conversion status are mis-reconstructed match the
one that is measured on data. As the total number of true converted and true unconverted
photons in a MC sample only depends on the number of events generated it should not
be impacted by the conversion reconstruction mis-modelling, and therefore an additional
reweighting is derived for those photons where the true converted status is the same than
the reconstructed. The difference of lateral energy leakage between these reweighted sam-
ples and the nominal ones may be taken as an uncertainty, and is seen in table 4.5, where
it is clear that this effect is not negligible. The size of the inner cluster used to compute
the leakage is chosen from the reconstructed conversion status of the photon, and this dif-
ference of cluster size between converted and unconverted photons has a big impact and is
driving the uncertainty that is induced by this reweighting. If we consider that the weights
are giving the most accurate description of the detector the electron to photon difference
of leakage mis-modelling decreases for unconverted photons while it sizeably increases for
converted photons.

Lateral leakage in the strips

Up to now, the leakage has been computed only in the middle layer, and naively we can
expect that this is a conservative estimation of the effect. At the energies we are interested
for h→ γγ the back layer has a negligible weight in the energy measurement, and we expect
the shower to be narrower in the strips hence the leakage should be better modelled as it
is expected not to exist. In this sense if we apply the energy loss fraction that is measured
in the middle to the full cluster energy we may over-estimate the uncertainty that will be
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Unconverted Converted
Z → eeγ

0 < |η| < 0.8 0.00031± 0.00026 −0.00039± 0.00075
0.8 < |η| < 1.3 0.00051± 0.00048 −0.00127± 0.00074
1.6 < |η| < 2.37 0.00049± 0.00041 −0.00059± 0.00079

Z → µµγ
0 < |η| < 0.8 0.00028± 0.00031 −0.00025± 0.00090

0.8 < |η| < 1.3 0.00048± 0.00041 −0.00120± 0.00079
1.6 < |η| < 2.37 0.00035± 0.00029 −0.00031± 0.00079

Table 4.5: Difference of the lateral energy leakage between samples with or without the reweight-
ing of the conversion reconstruction mismodelling

Figure 4.37: Mis-modelling of the lateral energy leakage in the strips (in %), computed as
E(56× 2)− E(24× 2)

E(24× 2) where E(N ×M) corresponds to the energy in N ×M cells (in η × φ)

around the particle in the strips [247]

applied, while if we are able to probe that the leakage in the strips is well modelled or
does not exist, this fraction can be scaled by the fraction of energy in the middle sampling.
This check can be seen on fig. 4.37 where the mis-modelling of the leakage in the strips is
displayed, and is computed with electrons coming from Z → ee events. It is of the order of
2-3� hence cannot be neglected, and the full effect of the leakage measured in the middle
layer is still used to estimate the uncertainty.

Lateral leakage for lower pT photons

A first cross-check of the potential non-linearity induced by the leakage had been conducted
on Z → ee events, with electrons that have a pT higher than 25 GeV, and no source of
non-linearity had been observed. To further develop this cross-check we decided to do it on
photons too, and given the selection criteria for Z → llγ events it is possible to go to lower
pT , down to 15 GeV. Below this energy the information from the cells were not available
anymore. Two pT bins were studied, the first between 15 and 25 GeV and the second
one above 25 GeV, and they are summarized in table 4.6, where the electrons are always
asked to have pT > 25 GeV (and the effects of conversion mis-modelling and pedestal shift
are taken into account). There is no obvious variation of the leakage with respect to the
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Particle type |η| < 0.8 0.8 < |η| < 1.3 1.6 < |η| < 2.37
15 < pγT < 25 GeV

El - Unconv 0.00022± 0.00036 −0.00082± 0.00052 −0.00128± 0.00038
El - Conv −0.00162± 0.00139 −0.00394± 0.00112 −0.00357± 0.00105

pγT > 25 GeV
El - Unconv −0.00002± 0.00040 −0.00056± 0.00060 −0.00014± 0.00040
El - Conv −0.00162± 0.00109 −0.00458± 0.00102 −0.00185± 0.00108

Table 4.6: Difference of mis-modelling of the lateral energy leakage between electrons and photons
for different kinematic ranges for the photon from Z → llγ

0 < |η| < 0.8 0.8 < |η| < 1.3 1.6 < |η| < 2.37
Unconverted photons 0.04% 0.1% 0.05%
Converted photons 0.16% 0.46% 0.19%

Table 4.7: Magnitude of the uncertainty related to the difference of the mis-modelling of lateral
leakage between photons and electrons

energy, although this is limited by the statistical uncertainty on the photons. A similar
study was conducted, using a reweighting of the photon pT spectrum to the electron pT
spectrum which allows to suppress the kinematic dependence of this effect, and it gave
the same conclusion. In the following we decided to keep only the photons above pT > 25
GeV in order not to suffer from potential non-linearities that we could have missed during
this cross-check.

4.5.4 Final results

A conservative uncertainty has been associated to the electron to photon difference of
lateral energy leakage mis-modelling, and is taken directly as the double difference (Data−
MC)(e − γ)E(7×11)−Ecluster

Ecluster
. This double difference is evaluated for each |η| bin with and

without the conversion mis-modelling and the most conservative values are taken [234, 248].
At the end, in a given bin, if the statistical uncertainty on this effect is bigger than the
effect itself, we take the statistical uncertainty to represent this systematic uncertainty,
and not the magnitude of the effect itself, as it is not clear whether there is no effect
at all or whether we are just not sensitive to it, and the value of these uncertainties are
given in table 4.7. For unconverted photons the uncertainty for the low and large |η| bins
corresponds to a statistical uncertainty, while for converted photons the effects in all bins
are coming from the central value of the effect itself. Moreover after the reweighting that
is used to model the impact of conversion reconstruction mis-modelling there is a very
small leakage mis-modelling at all between unconverted photons and electrons while the
effect is fairly big between converted photons and electrons, which is a hint that there is
an effect that is fairly different between converted and unconverted photons. Therefore we
decided to de-correlate the systematic uncertainties used for converted and unconverted
photons.
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4.6 Determination of the energy scale of the calorime-

ter

4.6.1 Absolute energy scale

Even after the initial electronic calibration, the MC-based calibration and all the pre-
corrections applied on data, there may be some remaining discrepancies between the de-
tector simulation and the actual detector. These discrepancies may affect both the central
value of the energy response and the energy resolution, and this needs to be taken into
account. The potential difference in the central values may come from effects such as a
different LAr temperature between the data and the simulation and needs to be effectively
recovered in the data, and this is done by extracting the in-situ energy scales α using
the Z → ee peak as a standard candle. They will act as multiplicative factors to the
particles energies. The potential difference in the resolution comes from effects such as an
improper description of the spread of the material or of the temperature gradients, which
are parameters that are intrinsic to the detector and need to be effectively corrected in
the simulation. This is done by deriving an effective constant term, at the same time
as the in-situ energy scales, that is applied on simulation as a Gaussian smearing to the
particles energies. The whole extraction of the in-situ scales and of the resolution is done
by ensuring that the di-electron invariant mass distribution in the corrected data and the
smeared MC match, which relies on a few formulae [249, 250].

Denoting two particular η bins (i, j), the di-electron invariant mass for Z → ee events
with one of the electrons falling in i and the other in j is given by m2

ee = 2EiEj(1− cosθee)
where θee corresponds to the opening angle between the two electrons (the impact of the
uncertainty on the angle θee on the mass mee is neglected). If the energy scale is not
perfectly estimated the energies Ei, Ej are not the true energies but may be replaced by
Ei = (1+αi)EMC

i , because the Monte-Carlo is assumed to be perfectly calibrated. This can
be translated on the di-electron invariant mass as mee = mMC

ee

√1 + αi + αj + αiαj, and
keeping only the first order in αi, αj this gives mee ≈ mMC

ee (1 + αi+αj
2 ) ≡ mMC

ee (1 + αi,j).
In a similar way the variation of the resolution can be derived. It can be shown that
(σm
m

)2 = 1
4((σEi

Ei
)2 + (σEj

Ej
)2) and an additional resolution constant term ci term may be

included into the resolution as (σDataEi
)2 = (σMC

Ei
)2 + c2

iE
2
i . This gives

((σm
m

)Data)2 = ((σm
m

)MC)2 +
c2
i + c2

j

4 ≡ ((σm
m

)MC)2 + c2
i,j (4.6)

In practice, the distributions ofmee are studied separately in each of the (i,j) configurations,
and a fit is performed were αi,j and ci,j are the parameters of interest. This gives two
matrices that are inverted to determine the values of the energy scales and of the effective
constant term for each of the individual η bins (αi, ci).

Two different methods have been developed to fit the αi,j and ci,j, and the difference
between the two results has been taken as an additional uncertainty. The first method,
whose result is taken as the central value, is based on a template fit method, where
histograms are created in each (i,j) configuration and for a two-dimensional grid of αi,j and
ci,j, by shifting and smearing a Monte-Carlo sample. These histograms are then compared
to the data, using a χ2 test, and the best values of αi,j, ci,j correspond to the template
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that gives the minimal χ2. The second method is based on an unbinned likelihood fit.
In order to obtain the αi,j one uses a likelihood based on parametrized functions close to
Breit-Wigner distributions which are displaced by MZ → MZ

1+αi,j . In order to get the ci,j one

uses a convolution of a Breit-Wigner and a Crystal-Ball, and ci,j comes from a comparison
of the resolution fitted in data and on the MC. The final values of the energy scales are
given in fig. 4.38, and the resolution in fig. 4.39. As the two sides of the detector are
identical, we expect the energy scales to be symmetric with regard to η = 0, which is the
case except in the end-caps where there is a shift between the two due to a different LAr
temperatures. Once the αi correction is applied on data and the Monte-Carlo is smeared
by the ci they are in good agreement, as is illustrated by fig. 4.40.

Several source of uncertainties have been considered, in addition to the comparison
between the two methods, and are explained below. The value of the uncertainty on the
energy scale can be seen in fig. 4.38, and is much better than 2 10−3 everywhere except
at η = 1.5 which is removed in the h → γγ analysis. The uncertainty on the resolution
will be discussed in section 4.8.

� Uncertainties regarding the event selection, which come from the potential bias that
is introduced by the electron identification requirements or by the chosen trigger.
The energy scales are extracted a second time with tightened identification criteria,
and the difference between the two sets of scales is taken as an uncertainty. For the
trigger, the efficiencies scale factors that are applied on MC to reproduce the data
efficiencies are varied within ±1σ, and the values of the scales that are extracted
after this variation define the uncertainty from the trigger requirement. The mee

range that defines the Z → ee peak region in which the fit of the energy scales is
done is also varied (by 2.5 GeV) to extract an uncertainty.

� Impact of the bremsstrahlung, as ideally the energy scales should only correct the
EM calorimeter energy response, but there may be a substantial energy loss by the
electrons before the EM calorimeter because of the impact of the magnetic field.
As the tracking algorithm is able to estimate the ratio q

p
(q being the charge of the

particle and p its momentum) at both the interaction point and at the end of the
tracker, it has been possible to build a variable that estimates the fraction of energy
lost by the electron, fbrem = 1 − ( q

p
)IP/( q

p
)out. The energy scales are re-extracted

using a sample where a cut on this variable is required, and the variation with regard
to the nominal sample is taken as an uncertainty.

� Uncertainty on the modelling of the pile-up, which is evaluated by varying how the
pile-up distribution in MC is reweighted to match the one of the data

� Uncertainty on the modelling of the background, which are fairly small but could
still bias the fit. The impact of electro-weak backgrounds (Z → ττ , tt̄ and di-
boson) is tested by removing them from the templates. The normalization of the
QCD background (multi-jet) is determined with a data-driven technique that uses
a control region where the electron identification criterion is reverted. Once the
normalization is determined, it is subtracted from data and the energy scales are
re-evaluated, the difference between the nominal scales and those extracted from the
background subtracted data being taken as an uncertainty.
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Figure 4.38: Value of the energy scales α that are applied to correct the energy response on data,
and of its uncertainty (bottom). It should be noted that the values of the energy scales that
were extracted after the first year of data-taking (2010 [251] ) are already applied on the cells
energies [198]

Once the energy scales are determined and applied on data, the energy response of
electrons with ET =< EZ→ee

T (e) >= 40 GeV is perfectly determined up to the accuracy
of the scale extraction method, which is of 5 10−4 in most of the detector. Most of the
bins where the accuracy is worse are not considered in the h → γγ analysis. The other
uncertainties on the electromagnetic energy response are either coming from non-linearities
of the energy response, or from the extrapolation of the energy scale going from electrons
to photons.

4.6.2 Stability, uniformity and linearity of the energy response

Stability of the energy response with regard to time Because of the radiation
hardness of the LAr EM calorimeter, its energy response is expected not to vary with
respect to time, and the only effect that is expected to create an evolution in time of the
EM particles energy response is the variation of the PS HV, that is corrected for. Still
this stability needs to be checked for, which can be done by splitting the 2012 data taking
in several periods of time and measuring separately the energy response in each of these
periods, either using mee in Z → ee events or E

p
for electrons from W → eν events, as can

be seen in fig. 4.41. After the pre-corrections the stability of the response was better than
0.05% during the 2012 data-taking.

Stability of the energy response with regard to the pile-up The same kind of
cross-check can be done with respect to the number of pile-up events in a given bunch
crossing, which is expected not to bias the energy response on average, thanks to the
electronic bipolar shaping that is included in the calorimeter read-out electronics. As can
be seen in fig. 4.42, this stability is also better than 0.05%. It should be noted that when
studied as a function of the number of reconstructed vertices the energy response is not
stable anymore, as chosing a given value for Nvertex biases the number of in-time pile-up
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Figure 4.39: Value of the effective constant term used to smear the Monte-Carlo hence adding
resolution effects not implemented in the MC simulation, and its uncertainty (bottom) [198]
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Figure 4.41: Energy response as a function of time, measured either using mee in Z events or E
p

for electrons from Ws, normalized to its average. Each point corresponds to
∫
Ldt = 100 pb−1

[198]

events with respect to the average and therefore the bipolar shaping does not compensate
completely the in-time pile-up, but then this trend is well reproduced by the simulation.

Non-uniformity of the energy response in φ The remaining non-uniformity after
the pre-corrections and in-situ energy scales could in principle be looked at in two different
directions, η and φ, but as the non-uniformity in η is already corrected for by the in-situ
energy scales, it was not studied and only the remaining non-uniformity in φ is computed
in [234]. It is estimated in 6 broad η bins, using the reconstructed di-electron mass in
Z → ee events. First the most-probable value of MZ→ee is determined in fine φ bins
that correspond to one cell in φ (∆φ = 0.025). From this an expected statistical error
on the estimated MZ→ee after integration over all the bins in φ is estimated as σ2

stat =
1

Nbin

∑Nbin
i=1 σ2

(i),stat where σ2
(i),stat is the measured statistical error on MZ→ee in a given φ bin.

If there was no additional source of non-uniformity, this would on average correspond to the
rms (= standard deviation) along φ of the estimated MZ→ee therefore the remaining non-

uniformity is estimated as σunif =
√
RMS2 − σ2

stat where RMS is the measured standard
deviation, and directly translates into a contribution to the resolution constant term. The
result is shown in fig. 4.43 and also in fig. 4.39. In the most central part of the detector
this non-uniformity, which contributes to the constant-term, is at the level of 0.45%, and
it increases to 0.75% in the endcap, which should be compared to the design value of the
constant term that was of 0.7% [252] , which nicely agrees, although it does not take into
account the short-range non-uniformities in η, that are also impacting the constant-term.

Cross-check of the linearity of the energy response and pedestal shift Two
ways have been used to cross-check the linearity of the response, and make sure that no
effect impacting the linearity have been forgotten. The result of both methods is shown
in fig. 4.44 for the most central bin of the detector, where ∆α = α − αZ→ee is a direct
comparison of the energy scales measured in the cross-check and the nominal ones.

150



CHAPTER 4. ELECTROMAGNETIC CALIBRATION OF THE ATLAS DETECTOR

µ
10 15 20 25 30

R
el

at
iv

e 
en

er
gy

 r
es

po
ns

e

0.998

0.9985

0.999

0.9995

1

1.0005

1.001

1.0015

1.002

-1 = 20.3 fbtdL∫ = 8 TeV, sATLAS

eem

E/p

Figure 4.42: Energy response as a function of the average number of pile-up events (µ), measured
either using mee in Z events or E

p for electrons from W bosons, normalized to its average [198]

η
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

N
on

-u
ni

fo
rm

ity
 (

%
)

0

0.2

0.4

0.6

0.8

1

1.2

Uncorrected
HV, PS, IMW, Gain corrections

ATLAS -1
 Ldt=20.3 fb∫=8 TeV; s

Figure 4.43: Uniformity of the energy response along φ in broad η bins, as measured from the
RMS of the reconstructed Z → ee invariant mass after substraction of the expected statistical
fluctuations [198]

151



CHAPTER 4. ELECTROMAGNETIC CALIBRATION OF THE ATLAS DETECTOR

 [GeV]TE

10 20 30 40 50 60 70 80 90 100

α∆

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02
 ee→ ψJ/

 ee→Z 

Calibration uncertainty

|<0.6ηElectrons, |

ATLAS -1=20.3 fbtdL∫=8 TeV, s

Figure 4.44: Linearity of the energy response, measured using the variation of the reconstructed
MZ→ee as a function of the transverse energy of one of the electrons, the second one being
averaged out, and with the reconstructed MJ/Ψ→ee for the point at lowest ET [198]

The first method [250] re-uses the method used to determine the energy scale of the
EM calorimeter that has been explained above, but determines the energy scale in bins
of Ee

T . When filling this histogram, the two electrons from Z → ee decay are considered,
which means that for each electron going in this histogram the second one is averaged out
and is unbiased because its response is corrected on average by the in-situ energy scales.
Therefore any non-linearity that appears in this method would directly be linked to a
non-linearity at a given energy. No unexpected non-linearity have been observed using
this method, with the caveat of the region of the crack in 2011, that will be discussed in
subsection 4.9.2.

The second method is setting the in-situ energy scale with the J/Ψ resonance in its
di-electron decay channel [250]. This overall method is similar to the one used to set the
scales with the Z peak, but the background is higher and the available statistics is smaller
because the J/Ψ has to be boosted to pass the selection and prescaled trigger criteria. The
scales extracted from this resonance and from the Z peak are in fairly good agreement,
but the results from the J/Ψ have a tendency to be higher than those from the Z by ≈ 1σ.
It was observed that the correction of a difference of electronic pedestal between data and
simulation could improve the compatibility between the J/Ψ and Z results. This difference
was first observed during the resolution systematic studies [253, 254] , and it was found
out that it was caused by a different electronics setting during the pedestal calibration
runs and the physics runs : in the first case the link to the trigger card was switched off,
in order to be able to do the pedestal calibration separately for the trigger and normal
read-out, but additional signal reflections slightly shifted the pedestal. Although very
small (0.25-0.45 MeV by cell depending on η) this effect is not negligible at the level of
the J/Ψ as it is giving a few MeV shift per cluster hence a few 0.1% shift in the energy
scale extracted from the J/Ψ, but only a few 0.01% at the Z peak.

152



CHAPTER 4. ELECTROMAGNETIC CALIBRATION OF THE ATLAS DETECTOR

Uncertainty |η| < 0.6 0.6 ≤ |η| < 1.37 1.52 ≤ |η| < 1.81 1.81 ≤ |η| < 2.37
Inefficiency 0.02 0.03 0.10 0.02
Fake Rate 0.01 0.06 0.06 0.03

Table 4.8: Uncertainty on the photon energy scale coming from the fake rate and inefficiency
mismodelling, in % [198]

4.7 Extrapolation of the energy scale to photons

4.7.1 Mismodeling of the conversion reconstruction

As the MVA used for the calibration of converted or unconverted photons has been trained
separately for each case, if a photon is flagged with the wrong conversion status, its cali-
bration will be improperly estimated, increasing the energy for true unconverted photons
and decreasing it in the reverse case, by ≈ 2%. This can easily happen for converted
photons where the conversion tracks are not reconstructed, especially if the conversion
occurs at high radius. But it can also happen in the case of unconverted photons, where
pile-up events are creating many tracks that may be reconstructed as conversion tracks,
hence faking a converted photon. This is not a problem if the conversion reconstruction
efficiencies and the fake rates are properly modelled by the detector simulation, but it was
found not to be completely the case. Therefore an evaluation of the amount of true con-
verted and true unconverted photons [255] is done using the fraction E1/2 of the photons.
The basic idea is that a converted photon will have a high E1/2, mainly because it starts
to shower earlier. Template histograms are built from the MC, separately for photons that
are reconstructed as converted or unconverted, and the relative amount of true converted
and true unconverted photons is varied between the different templates. These templates
are compared to the data, and the one which gives the best agreement gives the fake rates
and the inefficiencies.

The dataset on which this study is conducted is the same than the one used in the
h → γγ analysis, but only the leading photon is looked at as it allows to mitigate the
impact of jet background. The background is extrapolated from control regions that are
defined by reverting the identification or isolation cuts, and is then subtracted from the
data. This procedure is done separately in each of the E1/2 bins that are considered in the
templates. All the uncertainties on E1/2, as well as the uncertainty on the inner tracker
material, are propagated to this analysis. At the end the fake rates and inefficiencies were
found to be higher in data than in the MC, by up to a few percent. This is propagated
as an uncertainty on the photon energy scale by reweighting the amount of fakes and the
inefficiencies in the MC, and the final impact on the energy scale has been found out to
be between 0.01% and 0.1% depending on |η|, and is displayed in tab. 4.8.

4.7.2 Energy scales from photons

We assume that the in-situ energy scales extracted from the Z → ee decays are effectively
correcting the EM calorimeter energy response, and therefore that they can be used for
the photons too. This is true if all the effects that are different between electrons and
photons are well under control and taken into account. We need to cross-check that no
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effect impacting this extrapolation have been forgotten [256]. This is done using radiative
Z → llγ events, where l may be an electron or a muon, and studying the double ratio R =
< m(llγ)Data > / < m(ll)Data >
< m(llγ)MC > / < m(ll)MC >

, where < m > corresponds to the most probable value of

the two or three-body invariant mass and is estimated using a fit of this distribution. The
big advantage of this double ratio is that it mitigates the effect of the lepton energy scales
uncertainties by a factor of ≈ 3.

Indeed it is possible to show that, if we parametrize the impact of a lepton energy
scale uncertainty as E ′l = (1 + ∆)El, the square of the three-body invariant mass becomes
m′2llγ = m2

llγ + ∆m2
ll + ∆m2

llγ + ∆2m2
llγ and the two-body invariant mass m′ll = (1 + ∆)mll.

Keeping only the first order in ∆ this gives the three-body invariant mass m′llγ ≈ mllγ(1 +
∆
2 (1 + ( mll

mllγ
)2)) while the ratio becomes

m′llγ
m′
ll
≈ mllγ

mll
(1− ∆

2 (1− (mllγ
mll

)2)). Now the photon

energy scale may be implemented as E” = (1+α)E and then the square of the three-body
invariant mass becomes mllγ”2 = m2

llγ + α(m2
llγ −m2

ll) while the two-body invariant mass
is not modified. At first order this gives mllγ” = mllγ(1− α

2 (1 + ( mll
mllγ

)2)) and the ratio is

obvious. Now when determining the impact of the lepton energy scale on the extracted
photon energy scale, we usually inject a variation of ∆ to the lepton energy, that has the
size of the uncertainty, and determine by how much the photon energy scale should be
modified to recover from this variation. The deviation between this value of the energy
scale and the nominal value gives the uncertainty δα. It is clear that using only mllγ would
give δα = ∆ × (1 + ( mll

mllγ
)2)(1 − ( mll

mllγ
)2)−1, while if we use the ratio we get δα = ∆. In

radiative decays the photon is usually the least energetic particle, and the ratio mll
mllγ

is

0.7 on average, therefore the ratio allows to recover a factor of 3. Doing the double-ratio
with the Monte-Carlo allows to cancel the kinematic differences between Z → ee events,
at which the nominal energy scales are extracted, and Z → llγ events from which this
cross-check will be extracted. Such differences could have biased the final values of the
energy scales that are extracted with this method.

In practice, the photon energy is modified by α in data, and this modification is prop-
agated to the three-body invariant mass and finally the double-ratio R. α is progressively
varied until the solution R = 1, which corresponds to the nominal energy scales, is found.
This extraction is done separately for unconverted photons, and converted photons with
one or two reconstructed tracks. The statistical uncertainty from the fits of the invariant
mass distributions is propagated to R to find the statistical uncertainty on the double-
ratio. The systematic uncertainties that have been considered concern the lepton energy
scale and energy resolution, the fit range, and the background modelling. The dominant
systematic uncertainty comes from the lepton energy scale. No obvious hint of additional
effect has been found, but this cross-check is still statistically limited, especially for the
converted photons. The results may be found in fig. 4.45 where ∆α is the difference
between the energy scale extracted from photons in radiative Z decays and the the one
extracted from Z → ee events.
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Figure 4.45: Difference between the energy scales extracted from Z → ee events and the photon-
energy scale extracted with the double-ratio method in Z → llγ events, as a function of |η| for
unconverted photons (bottom), and converted photons with one (top left) or two reconstructed
tracks [198]
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4.8 Electron and photon energy resolution

The main handle on the energy resolution comes from the study of the width of the Z → ee
peak observed in our data, but it has the drawback that it actually probes the resolution
for electrons at a given energy of < EZ→ee

T (e) >= 40 GeV while the resolution varies with
respect to the energy, following this parametrization :

σE
E

=
√

( a
E

)2 + ( b√
E

)2 + c2 (4.7)

where :

� a corresponds to the impact of the pile-up and electronic noise. Although it varies
with the instantaneous luminosity, it is at the order of a few hundreds of MeV

� b corresponds to the sampling term that translates the Poisson variations of the
number of particles detected in the showers into a variation of the energy, and it has
been measured to be b ≈ 10%, which had been evaluated in test-beam where there
is no matter in front of the calorimeter

� c corresponds to the constant term that represents energy response non-uniformities.
From the design of the calorimeter it is expected that c = 0.7%

An evaluation of the uncertainty on these three parameters is needed, as well as the impact
of the uncertainty on the material budget in front of the EM calorimeter. The uncertainty
on the constant term c is taken directly as the uncertainty on the effective constant term
that is extracted from Z → ee events at the same time than the in-situ energy scales, as
has been described above in subsection 4.6.1 [250].

The uncertainty on the sampling term, b, ±10%, has been evaluated mainly on MC,
by comparing the resolution obtained for true unconverted photons of various energies
(which are insensitive to the material budget in front of the calorimeter) on various Geant
4 versions with different physics modelling options. This also agrees well with the sampling
term that was extracted during the test-beam studies for the ATLAS EM calorimeter [199]
, and no sign of discrepancy of the sampling term beyond these 10% have been observed
in the Run 1 data.

The noise term is suppressed by a factor 1
E

and therefore only matters at low energy,
where it is hard to find a clean physics process with which it could be studied. Therefore
it is studied on bunch-crossings where no interesting physics is expected, using random
calorimeter clusters that have the size of the clusters that will be used for electrons or
photons. On data, the studied dataset corresponds to events that were recorded after
a zero-bias trigger signal, which randomly triggers on any filled bunch-crossing without
any requirement on any signal seen in the detector, while for the MC it corresponds to a
single-particle simulation of neutrinos, which do not create any signal in the calorimeter.
The noise for each of these datasets is estimated as the RMS of the energies of the random
clusters, and the uncertainty is the quadratic difference of the noise measured in data and
in MC. This uncertainty is almost everywhere of 100 MeV except in 1.5 < |η| < 1.8 where
it grows to 200 MeV.
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Figure 4.46: Uncertainty on the energy resolution of electrons and unconverted photons as a
function of E for a given |η| bin [198]

The presence of material upstream of the calorimeter increases the energy losses in
dead material, and also widens the shower hence increasing the energy lost outside of the
clusters, and the dependence of these effects on the energy is complicated. The first effect
that additional material creates is a bias of the effective constant term c on distorted
geometries, that has to be taken into account [257] to keep only the dependence on the
energy of the resolution variation under a material budget modification, as the effective
constant is measured on data, using the Z peak. To do this a MC sample using a distorted
detector geometry is used as the pseudo-data, and an effective constant c2

dist is extracted
from a Z → ee sample generated with this geometry. Then single particle samples are
generated, both in the nominal and in the distorted geometry, and the resolution for
each of these samples is parametrized as a function of E, η and of the type of particles
that are being looked at. Then the final uncertainty on the energy resolution is taken as
∆σ2(E, η) = σ2

dist(E, η)− σ2
nom(E, η)− c2

dist(η) and only encompass the dependency on E
and on the type of particle. This preserves the uncertainty on the effective constant term
extracted from Z → ee events.

For all these uncertainties, the fact that the only uncertainty on the resolution at
ET =< EZ→ee

T >= 40 GeV should come from the effective constant term extraction
method is enforced. The total uncertainty on the resolution is taken as being the quadratic
sum of these three uncertainties, and is displayed in fig. 4.46 for electrons and unconverted
photons at |η| = 0.2. At the energy we are interested in for h → γγ the uncertainty on
the resolution is ≈ 12%, dominated by the uncertainty on the extracted effective constant
term from the Z → ee peak.

4.9 Comparison between 2011 and 2012 data-taking

4.9.1 Layer 1 Gain

The distribution of E1/2 for electrons coming from Z → ee events was found [235] to
be unexpectedly different between the 2011 and 2012 runs, in the part of the detector
that goes from |η| = 1.8 to |η| = 2.5. The only difference that may explain this effect
is the re-optimization of the Optimal Filtering Coefficients [4, 201] that has been done
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between these two years. For the 7 TeV sample the OFCs were computed considering only
the electronic noise, and the pile-up noise was completely neglected. This was obviously
not possible anymore in 2012 for which the OFCs were computed considering these two
sources of noise. But one of the runs of 2012 have been reprocessed using the older way
to compute the OFCs, in order to cross-check the energy distributions before and after
this correction. The OFC difference allowed to explain most of the difference of E1/2 that
was observed, and showed that the problem was mainly carried by the high-gain electronic
chain from the strip cells, but it is not obvious to tell whether it is the 2012 or the 2011
OFCs that have a problem. Therefore it was decided to take the full difference of the layer
1 high-gain energy response between the two kind of OFCs as an additional systematic.
This systematic can be as high as 5% (at |η| = 2.2) but only affects the first layer, which
does not carry most of the energy measurement, and only the high-gain while for particles
that are of interest to us (with a transverse energy of 40-60 GeV) the most energetic strip
cells are always in medium-gain. Still this affects the nominal inter-layer recalibration
factor α1/2 that is extracted from muons, for which the energy deposits are only recorded
in high-gain in all three layers. This additional uncertainty on α1/2 is also propagated to
the uncertainty on the material budget in front of the EM calorimeter, which requires a
proper knowledge of the calibration of E1/2.

4.9.2 Crack non-linearity

During the cross-checks of the calibration between 2011 and 2012, it was observed that the
distribution of the di-electron invariant mass of Z → ee events where one of the electrons
falls into the region of the crack, where the scintillators that are in the crack are taken
into account in the energy reconstruction, has some problems in 2011, as is shown in fig.
4.47. Specifically the most probable value is shifted to a fairly low value of mee, and the
resolution is not as good in 2012. This problem was also seen in the linearity measured
with Z → ee (see fig. 41 of [198]), where the bin that corresponds to the crack had
a non-linearity that could not be explained by the calibration uncertainties in 2011. In
fact, taking scintillators into account in the energy measurements required to add them
with the correct weight to the energy measurement of the LAr. The weights used in 2011
were based on an estimation made before the data-taking, which did not had a correct
description of the detector geometry. They were updated in early 2012 with the proper
detector simulation. It was decided not to reprocess the 2011 dataset with the updated
weights, which explains why this feature is still observed at 7 TeV but not at 8 TeV. At
the end it was decided to inflate the calibration uncertainty in the crack for 2011 in order
to cover the observed non-linearity. This has no importance on the h→ γγ analysis where
this region is completely removed.

158



CHAPTER 4. ELECTROMAGNETIC CALIBRATION OF THE ATLAS DETECTOR

data
Entries  3782
Mean    87.12
RMS     4.348

80 82 84 86 88 90 92 94 96 98 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
data

Entries  3782
Mean    87.12
RMS     4.348

mc
Entries  15456
Mean    85.82
RMS     3.565

Data 11

MC11C

 < 1.56η1.52 < 

Figure 4.47: Distribution of the di-electron invariant in Z → ee events where one of the electrons
falls in the region 1.52 < η < 1.56, where the scintillators are used in the particles energy
measurement

4.10 Possible improvements toward Run II

This sub-part constitutes a brief summary of few of the ideas that could be developed
to improve the points mentioned above for the Run 2 of the LHC. This does not imply
that all of these will be implemented, as they may also have some drawback that will be
mentioned whenever possible. This also does not mean that this list is complete. For
instance, the pedestal shift that has been understood as a difference of electronic setting
between calibration runs and physics runs will be solved by letting the link between FEB
and the trigger board active during the pedestal calibration runs, and will not be mentioned
below.

4.10.1 Inner detector rail mismodeling

It was already stated that the main method to determine the amount of material upstream
of the EM calorimeter, as well as its position, was only done in η bins. In fact another
method was developed that also looked at the material variations in φ, but it was only
used in particular η region where problems were already spotted, such as the beginning of
the end-cap. Therefore it was possible to miss localized φ variations of the material if they
are integrated along φ in a given η bin. It was realized only after the implementation of
the final Run 1 detector geometry that such a thing happens in the region 0.6 < |η| < 1.37
close to φ ≈ 0 and π where the support rail of the inner detector is not properly modelled
in the simulation, which can be seen in fig. 4.48. In data the electrons are crossing more
material than in MC hence losing more energy, which is represented by a larger decrease
of the reconstructed m(Z → ee) mass in data than in the MC. This decrease is also
broader in φ in data. As this deviation is very localized it does not have a big impact on
performance, but the future MC samples for the Run 2 will use an improved description
of the ID support rail, and this will effectively decrease the constant-term that needs to
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Figure 4.48: Profile of the di-electron invariant mass in Z → ee events as seen on the latest
version of the simulation and on 2012 data, in a specific η bin where the ID support rail is not
well modelled, as can be seen at φ = 0, ±π

Particle type |η| < 0.8 0.8 < |η| < 1.3 1.6 < |η| < 2.37
(Data-MC)E7x11−ECluster

ECluster
(current case, γ and electron clusters are different)

El (3× 7) - Unconv γ (3× 5) −0.00030± 0.00040 −0.00102± 0.00060 −0.00054± 0.00040
El (3× 7) - Conv γ (3× 7) −0.00162± 0.00109 −0.00458± 0.00102 −0.00185± 0.00108

Using 5× 7 for every object
El - Unconv γ −0.00044± 0.00025 −0.00069± 0.00033 −0.00002± 0.00038
El - Conv γ −0.00116± 0.00092 −0.00311± 0.00081 −0.00087± 0.00058

Table 4.9: Evolution of the uncertainty related to the lateral energy leakage if the cluster size is
modified

be applied on the MC.

4.10.2 Out of cluster leakage

One of the simplest idea to decrease the impact of the mis-modelling of the lateral energy
leakage is to increase the size of the clusters : if there is less energy leaking outside of
the cluster, mis-modelling will have a milder impact on the energy response. In this
context it was checked by how much increasing the cluster to 5× 7 cells would modify the
uncertainty related to the leakage, which is summarized in table 4.9 where it is quite clear
that it would improve this uncertainty, especially for converted photons where it improves
by almost 0.1%. The drawback of this change in cluster size would be an increase of the

noise by a factor of
√

5
3 . Therefore some study of the impact on the resolution are required

before actually modifying the cluster size in the official reconstruction.

4.11 Comparison with the CMS calibration

The details of the photon calibration used by the CMS collaboration have been published
in [221] (see also [258, 259]). The algorithmic sequence used is roughly similar to the one
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for ATLAS, in the sense that it also starts with a set of pre-corrections applied to data,
then estimates the energy of the incident particle using a MVA technique, determines the
in-situ energy scales with Z0 → ee events, and then consider uncertainties that are either
related to non-linearities or electron to photon extrapolation. But the way each of these
steps is done is very different between the two collaborations, and although some of these
differences are due to the different calorimeters, some of them correspond to very different
choices at the level of the analysis. A quick description of the CMS photon calibration
procedure is outlined below, and the comparison of the impact of the calibration within the
two experiments will be done at the end of the section (see also [260]). The measurement
of the Higgs boson mass within ATLAS will be presented in more details in section 5.2.

Initial on-detector calibration procedure A first step of the calibration is done
directly on the detector. The response of the different crystals needs to be equalized to
ensure the uniformity of the response across the whole calorimeter. This is done using the
distribution of the energy coming from (special) minimum bias events, which is expected
to be invariant with respect to φ, the ratio E

p
measured with electrons from Z → ee and

W → eν electrons, and also the di-photon invariant mass of π0 and η decays to γγ, that
allows to probe the relative response of neighbouring crystals as these decays have a very
narrow opening angle. This uniformity of the energy response is re-derived on a monthly
basis. In addition to that, the transparency of the crystals is constantly monitored, as it
varies with respect to the time during a run because of radiation damages. A system of
lasers has been installed which distributes light on all the crystals to give a probe of the
transparency, every 40 minutes. The actual level of transparency is taken into account in
the energy reconstruction. This can be seen as an equivalent of the electronic calibration
procedure that is being done in ATLAS with the specific electronic calibration boards.

Pre-corrections and Monte-Carlo calibration Then a first set of pre-corrections is
applied and is mostly done to correct the energy lost in inter-module and inter-crystal gaps
that are not instrumented. They are also done to recover energy losses upstream of the
electromagnetic calorimeter and outside of the clusters. These corrections are derived on

Monte-Carlo and as a function of η, ET , R9 = E3×3

Esuper−cluster
and of the size of the super-

cluster in φ. To some extent this can be seen as an equivalent of the ”calibration hits”
method that was used on ATLAS in the past [225], although not totally as it does not give
the final estimate of the particle energy. This task is done by a multi-variate technique, that
is in fact providing the full parametrization of the detector response function individually

for every photons (i.e. it determines the distribution of
Etrue
Eraw

where Eraw is the super-

cluster energy). This response function is parametrized as a Gaussian core with two
power laws for the tails, and the multi-variate regression determines the parameters of this
function, and the photon energy is taken as the most-probable value of this distribution.
This is similar to the boosted regression tree used in ATLAS but allows to use a per-event
resolution function that is not available in ATLAS.

Extraction of in-situ energy scales The extraction of the in-situ photon energy scale
and resolution is different in ATLAS and in CMS. Although they both use Z → ee events
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Figure 4.49: Residual discrepancy of the energy scale between data and MC determined during
the third step of the in-situ energy scale extraction. The corrections to be applied on data
correspond to the inverse of these values [221]

and assume that the values determined with electrons holds for photons too, the extraction
is done in a single step in ATLAS while it is done in three different steps in CMS. The
first step is done to stabilize the energy scale with respect to time : several data-taking
epochs are defined (51 for 2012), and an energy scale is determined for each of these
epochs. In the second step both the energy resolution and the energy scale are fitted,
in two R9 and 4 |η| regions, which essentially corrects for the material mis-modelling.
The last step determines the energy scale and resolution in 20 bins defined by ranges
of |η|, R9 and ET which effectively corrects for a part of the non-linearity observed in
data, and the magnitude of this non-linearity is illustrated by fig. 4.49. The energy scale
to be applied on data corresponds to a product of the three corrections extracted after
each of the fits, and the smearing of the resolution to be applied on the Monte-Carlo is
the quadratic sum of the smearing determined in the second and third steps. There are
methodological uncertainties connected to the selection requirements, the fit range, but
also to the distribution of R9 that can be different between electrons from Z → ee and
di-photon resonances in another energy range. This uncertainty is between 0.05% and
0.1% depending on the position and kinematic of the event.

Treatment of non-linearities and related uncertainty One of the most important
difference in the assessment of the calibration between ATLAS and CMS has been the
understanding and treatment of the non-linearity of the energy response. In ATLAS all the
non-linearities that were observed have either been understood and corrected for, or have
been treated as additional uncertainties (which was for instance the case of the apparent
difference of energy response between high gain and medium gain electronics), while in
CMS non-linearities are mostly corrected for by the in-situ energy scales that are binned
in ET . There is still a remnant non-linearity of the energy response after this step, that is
taken as an additional uncertainty, and that may be seen in fig. 4.50. It is estimated by
studying mainly E

p
in Z → ee and W → eν events, where the momentum is estimated by

the inner tracker and the energy by the calorimeter. This non-linearity is then estimated
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Figure 4.50: Uncertainty band coming from the remnant non-linearity of the energy response in
Z → ee or W → eν events, using either E

p or mee to estimate the energy response either in bins

of EeT or HT /2 = E1
T+E2

T
2 [221]

from a linear fit to the different points where the energy response has been estimated, and
for events considered in the h → γγ analysis that have a transverse energy of ET ≈ 60
GeV the uncertainty arising from this differential non-linearity is at the level of 0.1%. For
boosted events that have photon energy higher than 100 GeV, this uncertainty is higher,
at the level of 0.2%. The CMS EM calorimeter also uses several electronic gains, that are
corresponding to different pre-amplifiers, and it was checked that there is no systematic
uncertainty induced by the difference of response between these various gains or by the
gain switching.

Treatment of the material mis-modelling Both the method used to determine the
amount of material upstream of the calorimeter and the way its mis-modelling is handled
are different between CMS and ATLAS. The estimation of the material budget in CMS
comes from the study of radiative energy losses of the tracks, that is estimated by the
energy loss (change in the track curvature) between the beginning and the end of the inner
tracking region. This study is done for tracks from Z → ee events and low-pT charged
hadrons tracks, which gives the estimated difference of material budget between data and
MC that is displayed in fig. 4.51. The two methods are in very good agreement up to
|η| = 1.6 where the method that uses low-pT charged hadrons is hard to implement. Unlike
ATLAS, the CMS collaboration has not updated its detector simulation with an improved
description of the detector geometry, hence it is the difference between data and MC that
is taken as an uncertainty. Furthermore some cross-checks have been done, looking at the
distribution of the position of photon conversions. The corresponding uncertainty will be
treated conservatively as it may have a bigger impact at specific positions. It was assumed
to have a deficit of 10% of the material budget at |η| < 1 and 20% at |η| > 1, which
translates into a 0.06% uncertainty on the Higgs boson mass. In ATLAS the uncertainty
on the inner detector material is of 5% and translates into an uncertainty on the Higgs
boson mass of 0.07%. The actual reason why the relative impact on the mass is higher
in ATLAS, while the relative uncertainty on the material is smaller, is not obvious, and
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Figure 4.51: Ratio of the estimated material budget between data and MC as a function of |η|
for the two methods described in the text [221]

may originate from the fact that there is no material between the tracker and the EM
calorimeter in CMS, while there is the cryostat in ATLAS. An increase of the material
budget implies an earlier shower, and the uncertainty this is creating may be amplified by
the cryostat in which the shower will develop further. In addition to that, in ATLAS there
is an additional uncertainty from the material in the cryostat itself and from the material
between the pre-sampler and the accordion, at the level of 0.04X0 corresponding to 0.1%
on the Higgs boson mass.

Electro-magnetic shower shapes modelling Within CMS the mis-modelling of the
electro-magnetic shower shapes and its impact on the energy measurement has been es-
timated by variations of the Geant 4 physics list, while in ATLAS it is taken as a mea-
surement on data of the variation of the size of these shower-shapes with respect to the
particles energy or with respect to their nature. The procedure in CMS is more aggressive
than the one used in ATLAS, but it is also justified by the fact that the modelling of the
electro-magnetic showers is better in CMS than in ATLAS. Until the last results [221] the
showers were very well modelled in CMS, but a slight disagreement between data and MC
is now observed, as is illustrated by fig. 4.52, although it is much smaller than in ATLAS
[243]. At the end the uncertainty on mh associated to the modelling of the shower shapes
is marginally smaller in CMS (0.05%) than in ATLAS (0.06%).

Variation of the light absorption with respect to the depth in the crystal Two
of the big differences between electrons and photons in CMS are coming from the difference
of tracking material budget and the difference of lateral shower shapes, which has already
been described above. The third difference comes from the variation of the light absorption
in the crystals with respect to the depth. The side of the crystal that faces the interaction
point receives a higher radiation flux and will therefore suffer from a bigger transparency
loss. On average the photons start showering later than the electrons, which means that the
energy measurement for unconverted photons will not suffer as much from the transparency
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Figure 4.52: Distribution of the shower shape σηη (which is the energy-weighted spread along η)
for photons from Z → µµγ [221]

loss than electrons, but the impact on converted photons will be bigger because they
consist in two electrons. A modified detector simulation where this variation of the light
absorption against the depth in the crystal is implemented was developed and the variation
of the energy response between the different simulations is taken as an uncertainty. The
important quantity is the difference between the electron and photon energy response, as
most of this transparency loss is taken into account by the in-situ energy scales. The energy
scale for unconverted photons will be higher than for electrons, which themselves have a
higher energy scale than the converted photons, and this means that the effect should be
anti-correlated between converted and unconverted photons. This effect is measured by
bins of R9, where it is estimated give a 0.04% systematic uncertainty on the energy scale
of photon with R9 > 0.94 and a 0.06% uncertainty for R9 < 0.94. Taking into account
the anti-correlation between the kinds of photons, the total systematic uncertainty this
implies on mh is of 0.015%.

Treatment of the resolution In both ATLAS and CMS the dominant systematic
uncertainty on the resolution comes from the extraction of the smearing parameter from
the Z0 → ee mass peak. This fact is reinforced in CMS because the smearing parameters
are extracted separately for bins of R9 × η × ET , which implies that a part of the impact
of the noise and sampling term, as well as of the material, are already covered by the
binning in which the smearing is extracted. The impact of the systematics uncertainty on
the resolution is considered to be negligible within CMS, both for the measurement of mh

and of the signal strength, and it is not quoted in [221, 261], while in ATLAS it is the
dominant experimental uncertainty on the signal strength measurements [89, 262].
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ATLAS CMS
Statistical uncertainty on mh 0.33% 0.25%
Total energy scale uncertainty 0.21% 0.12%

Energy scale and resolution from Z → ee 0.04% 0.04%
Energy non-linearity 0.12% (apparent HG/MG difference) 0.08% (remaining non-linearity after energy scales)

Conversion classification 0.02% Not relevant
The following uncertainties affect both the linearity and electron to photon extrapolation

Inner detector material 0.07% 0.06%
Rest of the material 0.1% (cryostat) Nothing

Longitudinal calibration 0.1% (
E1

E2
calibration) 0.02% (light absorption vs depth)

Lateral shower-shape mis-modelling 0.06% (data-driven, limited by stat.) 0.05% (Geant4 variations)

Table 4.10: Comparison of the systematic uncertainties between ATLAS and CMS [260]

Comparison of the impact of the calibration on the Higgs boson mass mea-
surement The impact of the uncertainties on the Higgs boson mass that have been
considered in both ATLAS and CMS are compared in table 4.10 (see also [263]). In both
detectors the dominant uncertainty is induced by the non-linearity of the energy response,
although it has been treated more aggressively in CMS where the biggest part of this non-
linearity is taken into account and effectively corrected for by the in-situ energy scales,
while in ATLAS it is entirely treated as a systematic uncertainty. In ATLAS the following
uncertainties in terms of magnitude are coming from the material budget after the inner
detector, and from the inter-layer calibration. The first item has no equivalent in CMS,
and although the second one has an equivalent, which is the variation of the light absorp-
tion with respect to the depth in the crystals, it is much smaller (although mostly because
of the anti-correlation between high and low R9 photons). The conversion classification
uncertainty also does not exists in CMS, because the whole calibration procedure is made
to be agnostic of the conversion status of the incoming photon, while it is relevant for AT-
LAS that uses different MVA calibrations for converted and unconverted, although it is
fairly small. Although there are conceptual differences in the way the other systematics are
estimated and handled, they turn out to have an equivalent impact on the measurement
of mh between the two detectors.

Here only the impact of the uncertainties on the energy scale have been discussed,
and although it describes most of the systematic uncertainty it does not explain the total
uncertainty in sufficient details. The statistical uncertainty needs to be discussed too,
and this is directly connected to photon energy resolution. This will be further discussed
in section 5.6, although this discussion will be conducted in the context of the width,
but it is possible to adapt it to the mass, as will be explained. The fact that the best
categories used for the CMS analysis have a better resolution than the best categories
used in ATLAS drives the statistical uncertainty estimated by CMS down, although the
inclusive resolution is better in ATLAS than in CMS. The precise reasons will be detailed
more in section 5.6 too (see also subsection 5.1.3 where it is seen that the uncertainty on
the error on the mass is proportional to σ3/2

res , where σres is the resolution).
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5.6.2 Upper limit on the width from the CMS collaboration . . . . . . 204

5.1 Overall description of the H → γγ analyses

5.1.1 Selection of events for the h→ γγ analysis

The events that are considered in the h → γγ analysis are selected following a sequence
of cuts, which constitutes the inclusive selection. Details of the analysis may be found
in [4, 89, 262, 264]. First we look at events that pass a specific di-photon trigger, in our
case the trigger requires at least two photons passing the loose identification criteria, one
with a pT higher than 35 GeV and a second one with pT > 25 GeV. Then a first set of
cuts is applied to remove temporary detector defaults, as well as events potentially coming
from cosmic-rays. This is followed by a series of cuts about the kinematics of the event,
especially on the pT of the two photons and on the di-photon invariant mass, which are
here to remove part of the dominant background, that is the di-photon background. The
last cuts insure that none of the photons in the di-photon pair comes from a mis-identified
jet faking a photon. The exact sequence is applied as follows :

� Trigger requirement : the event should pass the g35 loose g25 loose trigger

� Good Runs Lists : the lumi-blocks during which at least one of the sub-detector was
not fully operational are removed. A lumi-block typically corresponds to 60 seconds

� Event quality : data-quality flags are checked to insure the integrity of the data in the
event, especially the quality of the information from the calorimeter. For instance
these flags are removing noise-bursts that can be observed in the LAr calorimeters

� Primary vertex : the existence of a primary vertex in the event is checked for, which
is expected to remove events coming from cosmic-rays. This only impacts a few
low-luminosity runs of the 2011 datasets

� Pre-selection : we check the existence of two photons with pT > 25 GeV and that
are falling inside the detector acceptance (|η| < 2.37, with the part 1.37 < |η| < 1.56
that corresponds to the crack removed). After this point only the two highest-pT
photons in the event are considered

� Relative pT cuts : the leading/sub-leading photons are required to pass the cuts
pT
mγγ

> 0.35, 0.25

� Identification criteria : the two selected photons are asked to pass the tight iden-
tification criteria, which removes a sizeable part of the background generated by
π0 → γγ decays

� Isolation criteria : in order to further reduce the impact of jet backgrounds, an
isolation requirement is applied on the photons, by asking that the scalar sum of the
pT of the tracks coming from the same primary vertex than the di-photon pair and
in a cone of ∆R < 0.2 around the photon is less than 2.6 GeV, and that the amount
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of energy from topological clusters [204] in the calorimeter in a cone of ∆R < 0.4 is
less than 6 GeV

� mγγ window requirement : the di-photon mass of the selected pair is asked to be
between 105 and 160 GeV

During the previous sequence several corrections need to be applied, and will be described
below. First the energy of the particles is corrected by the calibration procedure that has
been described in the previous part. Then the computation of the di-photon mass, as
well as of the track isolation, requires a proper knowledge of the primary vertex, which is
achieved using a neural-network based on several variables from the calorimeter pointing
and the tracker. The calorimetric isolation also needs to be corrected for the impact of
the pile-up in the event, and for the impact of the energy of the photon leaking into the
isolation region.

Selection of the primary vertex

As the analysis was evolving the method used to select the primary vertex corresponding
to a h→ γγ event evolved too, but the basic building blocks remained similar.

The first method that has been considered is the pointing [89, 176, 265, 266] that uses
the barycentre of the energy deposits in the first and second layer of the calorimeter. These
two positions are fitted by a straight line and extrapolated back to the beam axis, which
gives an estimate of the z of the primary vertex, zpointing. In the case of converted photons
where the two tracks are reconstructed, and both have hits in the SCT, the information
from the middle layer is removed and the position of the conversion vertex is used instead,
which is much more precise. Then the choice of the primary vertex can be done by selecting
the vertex with the z the closest to zpointing. The resolution on zpointing is of 15 mm on
average, and improves for two-tracks conversions where it goes down to an order of 1 mm.

The second approach uses the information from the tracker, because the primary vertex
from which the actual hard-scattering originates is expected to have a higher track activity
than the others. The most naive variable to check for such an effect is

∑
p2
T where the sum

runs on all the tracks that are associated to a given vertex. In the case of the production
of a heavy particle with a hard scattering we expect to have a higher hadronic activity
from the proton remnants that will recoil against the produced particle. The information
from this variable can by combined with the information from the pointing, by combining
their likelihoods, which combines the advantages of both the methods and when the vertex
selected by the highest

∑
p2
T will not be the correct one, it will still be constrained by the

pointing, hence it will not have a big impact on the mass resolution. Fig. 1 of [267]
shows the Higgs boson mass resolution in the diphoton channel when the primary vertex
is selected with the highest

∑
p2
T or with the pointing. This last method improves largely

the resolution. The likelihood method is presented in [89].

The last approach [268], which is the one that had been used for the final Run 1
analyses, uses a neural-network where the previous variables are used as input, and a few
others are added. These additional variables are :

� The scalar sum of all the tracks associated to a given vertex,
∑
pT
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Figure 5.1: Efficiency of selecting a primary vertex within 0.3 mm of the true one, using the
neural network algorithm, for events from simulation of h → γγ and Z → ee, as well as from
data for Z → ee events. For Z → ee the electron tracks are removed from the event before
running the neural network [262]

� ∆φ between the direction of the selected h→ γγ candidate and the direction of the
vectorial sum of the tracks associated to a given vertex

� The pull between the z reconstructed with the pointing and with
∑
p2
T ,

zpointing−zp2
T

σpointing

The first two variables should improve the selection of the hard-interaction vertices, for
which the distribution of the tracks is not isotropic, i.e. for which the proton remnants
are recoiling against another particle without tracks, which is typically the case we are
interested in. At the end, with this algorithm, the efficiency of selecting a primary-vertex
that is within ±15 mm of the true one is of 93%, and the contribution of the opening angle
to the di-photon mass resolution is negligible. The efficiency to select a primary vertex
within 0.3 mm of the true one with this algorithm is shown in fig. 5.1 as a function of
the pile-up. The performance obtained from a simulated sample of h → γγ decays are
compared with those coming from Z → ee samples, both from data and MC, where the
tracks coming from the Z boson have been removed from the event before running the
neural network. As the pT of the electromagnetic particles in Z and h decay are different,
the pT of the electrons in the Z MC sample is reweighted to the one of the photon in the
simulated h→ γγ sample, which allows for a fair comparison of the performance obtained
on the two different samples.

Correction to the calorimetric isolation

The goal of the isolation is to quantify the level of hadronic activity around the photon,
hence giving a way to determine how likely is a photon to originate from a π0 decay
happening inside a jet. Ideally it should only represent the energy that comes from the
same primary-vertex than the photon itself, which means that it should not depend on
the level of pile-up, neither on the pT of the particle. But, in a high pile-up environment
there are soft energy deposits coming from all the vertices that are increasing the value of
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the calorimetric isolation. A way to suppress this effect have been developed [269]. In the
same way, to make sure that no energy coming from the photon is included in the isolation
cone, a cluster of 5 × 7 cells (in η × φ) is removed from the isolation cone. But some of
the energy of the photon can still leak outside of this cluster, hence artificially increasing
the value of the isolation energy too. This is also corrected for, and both these corrections
are described below.

Photon energy leaking inside the isolation cone The energy leakage coming from
an electro-magnetic particle into its isolation cone has been studied on single-particle MC
samples where the pile-up has not been simulated, which insures that any contribution to
the isolation cone would originate from the particle energy leakage [269]. It is expected
that this leakage will depend on the energy of the particle, but also on its type. For
instance a converted photon will have a bigger leakage because it actually consists of two
electrons with an opening angle between each other. This variation was parametrized by a
linear function of the pT where the slope and the origin of the function are fitted separately
for each type of particle, and this fit is done in nine different regions in |η|.

Ambient energy correction As was explained above the electronic shaping of the
EM calorimeter has been done to cancel the impact of pile-up on average, but there are
remaining Poisson fluctuations in the number of primary vertices that are impacting the
resolution of the cell energy at an event-by-event level. This impacts the distribution of
the calorimetric isolation too, that would become broader with an increasing pile-up, and
the efficiency of a cut on the isolation would not be constant with respect to the number
of pile-up events. To correct for this an event-by-event correction has been developed, and
is based on the energy density of the event [269]. In each event, jets of radius R = 0.5 are
built, using every topo-cluster of positive energy in the event. For each jet the transverse
momentum density is computed, as the ratio of the jet transverse momentum to of its
area, and the energy density of the event ρ is defined as the median of this distribution.
Then, assuming A is the size of the isolation area, it is possible to correct the impact of
pile-up on the isolation of each particle, by subtracting A× ρ.

5.1.2 Modelling of signal and background processes

Analytical description of the signal

The shape of the invariant mass of the di-photon system in h→ γγ events has been studied
using Monte-Carlo samples, using a full simulation of the detector, and an analytical
description of the signal has been derived. This distribution can be seen in fig. 5.2 for
the inclusive case, where it is clear that the core of this distribution is Gaussian in first
approximation, which corresponds to what we expect for the resolution, but has a slightly
larger tail at low mγγ. This tail corresponds to converted photons, where one of the two
electrons of the conversion pair lose energy by radiating soft photons, hence decreasing
the reconstructed invariant mass of the di-photon pair. This kind of distribution is well
described by the Crystal-Ball function (CB) [270], which is defined as follows, if we denote
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Figure 5.2: Distribution of the reconstructed di-photon invariant mass for simulated h → γγ
events with mH = 125 GeV and ΓH = 4 MeV [264]

t = mγγ−mH
σm

:

N ·
{
e−t

2/2 if t > −α
( n
|α|)

n · e−|α|2/2 · ( n
|α| − |α| − t)

−n otherwise
(5.1)

Although this describes the core of the distribution very well, it was noticed that there
were tails at high and low mγγ that were not properly described by this distribution. A
broad Gaussian component has been added to the signal model to improve the description
of the distribution, but its fraction is very small with respect to the CB. The signal model
is then :

fs = fCBCB(mγγ | µCB, σCB, n, α) + (1− fCB)Gaus(mγγ | µgaus, σgaus) (5.2)

Where the fraction of Crystal-Ball component (fCB) in the model is always higher than
95%. Except for n that is fixed at 10, the value of all the parameters in the model are
determined from a fit of the Monte-Carlo samples, using the following recipe. Several MC
samples are generated at different values of mH , and the signal model is fitted separately
on each of the samples. The parameters µCB,gaus and σCB are expected to vary linearly
with respect to mh. It is therefore possible to express them as a function of mh, and as we
have their values at several points of mh it is possible to fit the slope and the offset of this
function, taking the origin at mh = 125 GeV. σgaus is not fitted by itself but expressed
as σgaus = κσCB and it is the κ, which is a constant, that is fitted. In this process α is
fitted only once on the MC at mh = 125 GeV. We will see later that we need to define
categories of events to improve the analysis performance, and the signal model will be
extracted separately for each of the categories.

Description of the background and its uncertainty

The main component of the background in the h→ γγ analysis after selection comes from
prompt di-photon event (≈ 75% of the total background), essentially through qq̄ → γγ
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although there is also a non-negligible contribution from gg → γγ, that is already at one-
loop at LO but still accounts for ≈ 10% of this background, and from qg → qγγ where one
of the photons is a final state radiation of a quark. The two other important background
are the gamma-jet (20%) and di-jet processes (5%), where the jets are mis-identified as
photons. Although these processes have a much bigger cross-section, the procedure of
photon identification is sufficiently powerful to reject most of these events. Still even after
the h→ γγ selection the cross-section for the background events is high, but as their mγγ

distribution follows a smoothly falling form, it is possible to use an analytical function to
parametrize it, and the actual estimation of the background comes from a fit of the data.
But the real analytical expression of the mγγ distribution is not known, hence the choice
of a specific function introduce a new uncertainty that has been implemented on ATLAS
by using the ”spurious signal” method [271]. This method also constitutes the basis on
which the specific form that will be used to fit the background on data will be chosen.

The spurious signal The goal of the spurious signal is to represent the potential bias
of the fitted number of signal coming from the choice of the functional form used to
describe the background shape. High-statistics Monte-Carlo samples have been generated
for the γγ, gamma-jet and di-jet background processes, and are used to study the potential
background shapes. For each of these shapes a full signal plus background fit is performed,
using the signal shape described above. This fit will give a non-zero value for the number
of signal events, which gives the value for the spurious signal. The spurious signal will
be considered as an additional uncertainty on the fitted number of events, given that if
both the simulation and the tested functional form were perfectly describing the data,
the number of signal events returned by the fit should be 0. In this sense, the size of the
spurious signal is small if the tested function is close to the actual shape of the background
mγγ distribution.

Choice of a functional form The background shape is determined separately in each
category, and to chose it a broad range of functions are tested. The list of functions includes
for instance several kinds of polynomials, and exponential of polynomials. First, the
functions that clearly do not fit the high-statistics MC or that are creating fit convergence
problems are discarded. For each of the remaining background models, the three following
parameters are considered in order to select the best model : the expected number of
signal events in this category N sig

SM , the spurious signal Nspur and the uncertainty on the
number of background events σbkg which is extracted from the fit of a pure background
Asimov dataset. The chosen signal should pass at least one of these two criteria :

� Nspur < 20%σbkg
� Nspur < 10%N sig

SM

If more than one parametrization passes these tests, the one with the lowest spurious signal
is kept, although there are usually few parametrizations that pass this test.

5.1.3 Event categorization for the mass and width analysis

To fully benefit from the variation of resolution and of the signal-to-background ratio in the
dataset that has been selected for the h → γγ analysis, it is possible to define categories
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of events. Afterwards the full likelihood of this analysis will be defined as the product of
the individual likelihoods of each of the categories. The constraint terms on the nuisance
parameters associated to uncertainties that are correlated among categories only appear
once in the full likelihood. To define the individual likelihoods one needs to re-evaluate
the parameters of the signal model, re-define the functional form used for the background
and re-derive the value of all the systematic uncertainties for each of these categories.
This allows to isolate particular classes of events that have poor performance, while not
excluding them from the analysis. At the end the measurements will mainly be driven
by the few categories that have a good resolution, a high S

B
and low uncertainties. The

presence of the other categories allows to slightly improve the performance but their impact
is smaller. For the measurement of the Higgs boson mass the most important uncertainties
are those impacting the photon energy scale, but they need to be propagated to the mass
itself. The method used to do that is described below.

Propagation of the energy scale uncertainty to the mass

The uncertainties on the energy scale of individual electromagnetic particles, as a function
of their position, type and momentum are derived from the electromagnetic calibration.
This needs to be converted into an uncertainty on one of the parameter of the signal
model, namely mh here. As this conversion mainly implies kinematic effects it can be
done using MC samples, on which this kinematic is well modelled. The nominal h → γγ
MC is modified by injecting an upward or a downward bias on the photon energy of the
size of the uncertainty that is being probed. The full mγγ distribution of this biased MC
is then re-derived, and the signal model is fitted on this distribution to obtain the value
of mh after the energy scale bias, m′h. The uncertainty on the mass is then taken as the

relative difference between the nominal mh and m′h : δ = m′h−mh
mh

. This method is applied
separately for each source, and the size of the uncertainty induced by a given source is
evaluated separately in each category.

The uncertainty on the energy and vertex position resolution are propagated to the
mass resolution using a similar method.

Other uncertainties

Although the uncertainties on the photon energy scale and on their energy resolution are
the most important for the measurement of the Higgs boson mass and the analysis of
the Higgs boson decay width, few others have been implemented too [272]. The first one
concerns the modelling of the background, because the spurious signal only represents an
uncertainty on the fitted number of signal events, and not directly on the mass, therefore
a more refined method was needed. The second effect corresponds to uncertainties on the
expected number of events in the various categories, as the different signal models in the
different categories may imply a shift of the Higgs boson mass if the number of events in
each category changes.

Uncertainty on the modelling of the background The spurious signal method is
not sufficient to estimate an uncertainty on the Higgs boson mass coming from the mis-
modelling of the background, as it only gives an estimate of the potential bias of the fitted

174



CHAPTER 5. UPPER LIMIT ON THE BEH DECAY WIDTH AND
MEASUREMENT OF ITS MASS

number of signal events. Yet it was possible to design another method to estimate the
uncertainty on the mass, which is based on the same high-statistics MC samples that were
used to extract the spurious signal. A signal template, generated in the same way as an
Asimov dataset, is overlaid on top of this high-statistics MC, and the fit of the mass is
performed on this S+B pseudo-dataset. The difference between the fitted mass and the
true injected mass gives an estimate of the uncertainty, but this fit is done at various mass
points and it is actually the maximal deviation between the true injected mass and the
estimated one that is taken as an uncertainty. Depending on the category this uncertainty
has an impact of 0.05% to 0.20% on the Higgs boson mass.

Uncertainty from event migrations between categories There are potential sources
of uncertainties coming from the relative variation of the signal yield in each category with
respect to each others. These uncertainties are treated as uncertainties on the expected
number of events in each category, although they are signed in order to impose the fact
that the total number of events should stay constant, and hence the increase in the yield of
one category implies its decrease in another category. The mis-modelling of the conversion
reconstruction creates such a migration of true unconverted photon into the converted
category, and vice-versa. The estimation of the fraction of true converted photon has been
explained in subsection 4.7.1. Another effect that creates that kind of variation is the mis-
modelling of the Higgs boson pT spectrum [89], that creates a migration of the expected
number of events between the high-pTt and low-pTt categories. This has been estimated by
varying the renormalization scale, factorization scale, and resummation scales associated
to the bottom and top quarks in HRes 2 [82, 83].

Uncertainties on the total signal yield Several effects may affect the expected total
number of events. First the theory uncertainty on the Higgs boson production cross-
section is provided by the LHC Higgs cross-section working group [81] and corresponds
to the propagation of the uncertainty on the PDF sets and on αS. The uncertainty on
αS corresponds mainly to an uncertainty on the renormalization scale. The uncertainty
is currently at the level of 10% for the gluon fusion production cross-section, which is
dominant, and 5% for the h→ γγ branching ratio. But there is also a set of experimental
uncertainties that can give this effect, such as the uncertainty on the trigger efficiency,
on the photon identification and on the isolation efficiency, but are all at the level of 1%
for the 2012 dataset. There is also an uncertainty on the luminosity recorded by ATLAS
which is of 2.8% in 2012.

Procedure of optimization and selected categorization

In order to find the best categories for the mass measurement, several categorization were
tried although they were all relying on our understanding of the detector and on the
variation of the signal-to-background ratio with respect to a few variables. For each of
these categorization the full statistical model was derived, and an Asimov dataset was
built for mH = 126.5 GeV and µ = 1. A fit of this dataset gives the expected error on
the mass, δmh, and the categorization that was finally chosen is the one that gives the
smallest δmh. The dominant uncertainty comes from the statistical power of the available
dataset, which depends on the mass resolution σres and it may be shown that the error
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varies as δmH ∝ σ3/2
res (see appendix B) and hence the quality of a given categorization

depends a lot on its ability to isolate classes of events that have a high-resolution. These
few categories will dominate the mass measurement and the other ones will essentially be
factorized out in the likelihood ratio. In this respect the categories that will be chosen to
do the mass measurement are also the best candidate to derive an upper limit on the width
too, as in this analysis we are interested at excluding a potential widening of the peak
that cannot be explained by the effect of the resolution, which is easier if the resolution is
in itself smaller.

The chosen categorization splits the dataset in ten categories as a function of η of the
two photons in the pair, whether they are converted of not, and as a function of pTt of the
selected pair. The pTt is defined as follows :

pTt = | ~pT γγ × t̂| where t̂ = ~pT
γ1 − ~pT

γ2

| ~pT γ1 − ~pT
γ2|

and ~pT
γγ = ~pT

γ1 + ~pT
γ2

and t̂ is called the thrust axis. The categories for the mass and width analysis [264] are
then defined as follows :

� First define a central category where both photons have |η| < 0.75

� A transition category where at least one photon falls into 1.3 < |η| < 1.8

� And a last category for the rest of the events

These categories are further split as a function of the conversion status of the photons,
with the events where the two photons in the pair are unconverted on one side, and the
events where at least one photon is converted on another. A last separation is applied in
the ”central” and ”rest” categories that are further split in two categories, delimiting the
two sub-categories of events by adding a cut on pTt at 70 GeV.

It was noticed that adding a VBF category could slightly improve the final error on
the Higgs boson mass, although not by a big factor and it would have required to add all
the systematic uncertainties related to the jet identification and energy response, therefore
it was decided to stay with this simpler 10 categories model, without any categorization
related to the associated production modes. The exact definition of the categories, as well
as some of the most important parameters of their models is given in table 5.1.
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Conv. status |η| region pTt cut Background shape nexp,SMsig Resolution [GeV]

Category 1
Unconv. |η| < 0.75 pTt < 70 GeV Exp. Poly. 2 59.3 1.35

Category 2 pTt > 70 GeV Exponential 7.1 1.21
Category 3

Unconv. Rest
pTt < 70 GeV Exp. Poly. 2 96.2 1.53

Category 4 pTt > 70 GeV Exponential 10.4 1.36
Category 5 Unconv. Transition None Exp. Poly. 2 26.0 1.86

Category 6
Conv. |η| < 0.75 pTt < 70 GeV Exp. Poly. 2 37.2 1.52

Category 7 pTt > 70 GeV Exponential 4.5 1.35
Category 8

Conv. Rest
pTt < 70 GeV Exp. Poly. 2 107.2 1.88

Category 9 pTt > 70 GeV Exponential 11.9 1.64
Category 10 Conv. Transition None Exp. Poly. 2 42.1 2.41

Inclusive None None None Exp. Poly. 2 402 1.67

Table 5.1: Summary of the definition of the categories, of the chosen background shape in each
of the category, of the expected number of signal events, and the signal resolution corresponding
to half of the smallest range containing 68.8% of the events. The resolution and the number of
expected signal events corresponds to the 2012 dataset only [264]

5.2 Measurement of the BEH boson mass

5.2.1 Measurement of mh in the h→ γγ channel

The mass of the BEH boson is estimated [264] from a combined signal plus background
fit to the ten categories that have been defined above, in the 2012 and 2011 datasets.
This fit is done with an unbinned likelihood that is constructed as in eq. 2.3, where the
signal and background PDFs used for each category are those defined above. All the
uncertainties are represented by constrained nuisance parameters in the likelihood, and
are profiled out during the fit. The signal strength µ is also treated as a free parameter in
the fit. The result of this fit as well as the fitted dataset may be seen in fig. 5.3, where
the events corresponding to the various categories are weighted by the S

B
of their category

for illustrative purpose. The h → γγ peak can clearly be observed over the smooth
background, and the maximum-likelihood estimate of mH and µ gives mH = 125.98±0.50
GeV with µ = 1.29± 0.30. This error can be divided into its statistics and its systematic
components, by fixing the nuisance parameters to their best-fit values, which deprives the
fit from the additional freedom that represents the systematic uncertainties. Then the
systematic uncertainty is determined as the quadratic difference between the full error
and its statistical component. This gives mH = 125.98 ± 0.42 (stat) ± 0.28 (syst) GeV.
At µ = 1.3 the expected statistical error on mh is of 0.35 GeV, and it has been estimated
from toys that 16% of the experiments generated at µ = 1.3 have an uncertainty on the
mass at least as high as 0.42 GeV. It can be shown that the statistical uncertainty on the

mass varies as δmh ∝ σ
3/2
res

µ
where σres corresponds to the resolution, and for µ = 1 the

expected statistical uncertainty is 0.45 GeV.

5.2.2 Impact of the systematic uncertainties on mh

In the h → γγ channel, the dominant systematic uncertainty on the measurement of
the Higgs boson mass comes from the photon energy scale uncertainty, followed by the
background modelling which has a non-negligible impact too. Every other uncertainties
(for instance those regarding the signal yield) have been implemented in the statistical
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Figure 5.3: Di-photon invariant mass spectrum for pairs selected by the h→ γγ selection criteria.
Each event is weighted by the S/B ratio of the category it falls in. [264]
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Figure 5.4: Relative magnitude (in %) of the main uncertainties on the Higgs boson mass mea-
surement, given by categories and using a merging of all the systematics into seven main classes
[264]

model, but their impact on the mass measurement is mild hence they will not be discussed
further below. The magnitude of the uncertainty on the mass scale, which is given as an
input to the statistical model, is shown in fig. 5.4, where all the uncertainties that were
described before have been grouped in a few groups depending on their source. In this
table the ”LAr cell non-linearity” corresponds to the combined effect of the pedestal shift
between data and MC, and of the apparent difference of energy response between the high
and medium gain electronic read-out, although it is clearly dominated by the second effect.
In most of the categories, and especially in those that are the best in terms of resolution
and signal-to-background ratio, this non-linearity is the biggest uncertainty, and it is
followed by the out-of-cluster leakage for categories associated to converted photons and
the inter-layer calibration for those with unconverted photons.

Depending on the specificities of the measurement that is being conducted, the un-
certainties may decrease after the fit because the data may bring additional information
on one of the source of uncertainties that is included in the model. In such a case the
nuisance parameters, whose best-fit value should be close to 0 with an error of 1, will be
over-constrained and potentially pulled away from 0. These pulls are shown in fig. 5.5.
At the same time the individual impact of each of the source of uncertainties on the total
error on the mass may be measured, which is done by actually estimating what is the vari-
ation of the conditional best-fit of mh under a variation of ±1σ of the nuisance parameter
associated to a given source of uncertainty around its best-fit value, which is also shown in
fig. 5.5. The associated nuisance parameter is actually fixed to its ±1σ value during the
fit. As expected the apparent energy difference between the two electronic gains has the
biggest impact on mh, and it is closely followed by the impact of the uncertainties on the
simulation of the liquid-argon calorimeter on the determination of the material budget in
front of the pre-sampler, as well as the uncertainty on the extrapolation of the inter-layer
calibration scale from muons to photons.

5.2.3 Consistency among classes of events

To ensure the stability of this measurement, it has been produced in several different sub-
samples of the data, and the compatibility between these different sub-samples have been
checked. This is summarized by fig. 5.6 where the consistency of this measurement with
respect to the level of pile-up in the event, the conversion status of the photons in the
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Figure 5.6: Difference between the best estimate of mh in different categories of events and its
combined value [264]. The notations used are the following : UU when the two photons are
unconverted, CC if both are converted and UC if there is one of each. BB if both are in the
barrel, EE for both in the end-cap and EB if there is one of each

pair and the position of the two photons within the detector is shown. To do this check
an alternative statistical model is used where a common central value mh exists for the
mass, but for a given sub-sample there is an additional parameter ∆i that captures the
variations of the best-fit of the mass in this category with respect to the combined one, and
hence allows to determine how compatible the different categories are with respect to each
others. There is one model of this kind by sub-sample, where only the ∆i corresponding
to the sub-sample that is being tested is included, and it is these values of the ∆i that are
shown in fig. 5.6, for the three different ways of defining the sub-samples of the data. In all
the sub-samples that have been tested the ∆i are found to be compatible with 0. The same
test has also been conducted with respect to the conversion topology, the instantaneous
luminosity, the photon isolation and the data taking periods and gave similar results.

The 2011 dataset has also been included in this measurement, although its statistical
power is much smaller than the one from the 2012 sample. A similar cross-check was
derived to assess the compatibility between these two datasets, where the parameter mh

represented only the mass fitted in 2012 and the mass peak of the 2011 dataset was allowed
to be shifted by a parameter ∆, i.e. in the statistical model for the 2011 category the mass
was m11

h = m12
h + ∆. The scan of the full likelihood describing the combination of the

2011 and 2012 dataset is shown in fig. 5.6, where a tension with respect to the hypothesis
∆ = 0 can be observed. The significance of this tension has been evaluated using pseudo-
experiments and found out to be at the level of 2.1σ. This is compatible with a statistical
fluctuation between the two years, and despite specific cross-checks of the difference of
calibration between the two years no effect that could explain this difference has been
found. Furthermore it should be noted that the significance of the h → γγ peak is much
weaker in 2011 than 2012, and it would not have been observed with 2011 alone.
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Figure 5.7: Scan of the likelihood with regard to the difference of Higgs boson mass between
2011 and 2012 [272]

5.2.4 Combination with the h→ ZZ∗ → 4l channel

The measurement of the mass in the h → γγ channel has been combined [264] with its
measurements in the h → ZZ∗ → 4l channel, which is the other high-precision channel.
In this channel most of the energy is carried by the on-shell Z boson, for which a Z-mass
constraint is imposed, and this implies that for this boson the only relevant energy scale
uncertainties are those related to the method of energy scale determination. The energy
of the leptons from the off-shell bosons is much smaller and may be subject their energy
scale uncertainties may be inflated without this having an impact on the uncertainty on the
Higgs boson mass. Therefore the systematic uncertainty on mh from the h → ZZ∗ → 4l
channel is very small, at the level of ±0.03% for both the electron and muon energy scales,
and the total error on mh is completely driven by the observed number of events in the
peak region. The mass measured in this channel is mh = 124.51±0.52 (stat)±0.06 (syst)
GeV (see also [263] where the systematic error is 0.04 GeV).

The combined likelihood for the h → ZZ∗ → 4l and h → γγ channels is determined
by multiplying the individual likelihoods, which allows to produce the same measurement.
The confidence interval obtained for (µ,mh) separately for the h → ZZ∗, h → γγ and
for their combination is shown in 5.8. Although this interval is clearly smaller after the
combination we can see a slight tension between the two individual channels, which will
be discussed later. The best fit of the mass is obtained for mh = 125.36 ± 0.37 (stat) ±
0.18 (syst). The uncertainty induced by each of the source of systematic effect has been
evaluated separately, which is done by performing the fit of mh with the related nuisance
parameter fixed to its best fit value, and the systematic uncertainty from this effect is
estimated as the quadratic difference between the total uncertainty with every parameter
free, and the total uncertainty with the nuisance parameter fixed in the fit. This is shown
in fig. 5.9 and the dominant uncertainty on the combined mh comes from the impact of
the mis-modelling of the liquid-argon calorimeter on the determination of the material.
Naively the inversion between this uncertainty and the liquid-argon cell non-linearity is not
expected, and it is not seen on an Asimov dataset of this problem, hence it likely originates
from statistical fluctuations of the distribution of the position of h → ZZ∗ → 4l events.
Below, the next sources of uncertainties in terms of importance are the electron-to-photon

182



CHAPTER 5. UPPER LIMIT ON THE BEH DECAY WIDTH AND
MEASUREMENT OF ITS MASS

 [GeV]Hm

123 123.5 124 124.5 125 125.5 126 126.5 127 127.5

)µ
S

ig
na

l s
tr

en
gt

h 
(

0

0.5

1

1.5

2

2.5

3

3.5

4
ATLAS

-1Ldt = 4.5 fb∫ = 7 TeV s
-1Ldt = 20.3 fb∫ = 8 TeV s

+ZZ*γγCombined 
γγ →H 

l 4→ ZZ* →H 

Best fit
68% CL
95% CL
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contours, separately for the h→ γγ, h→ ZZ∗ → 4l channels and for their combination [264]

extrapolation of the lateral leakage, the extrapolation of the inter-layer calibration scale
from muons to photons, and the uncertainties from the method of energy scale setting in
Z → ee events.

The tension between the two channels has been studied by using a combined mass
between the two channels, but adding a parameter ∆ to the mass of one of the two channel,
and in the case of an identical resonance between the two channels we expect to find ∆ = 0.
The maximum-likelihood estimate gives a value ∆ = 1.47± 0.67(stat)± 0.28(syst) GeV,
which is an improvement of compatibility with respect to the previous measurement [273]
where the h → γγ mass was 126.8 ± 0.2 (stat) ± 0.7 (syst) GeV [274], which is partially
due to a decrease of 450± 300 MeV (dominated by the effects of E1/E2 calibration and of
the gain calibration [275]) of the mass measured in the h→ γγ channel that was expected
from the improved calibration. The significance of this tension has been evaluated with
pseudo-experiments, that are shown in fig. 5.10, and is at the level of 5% (2.0σ), which is
compatible with a statistical fluctuation.

5.2.5 Combination with CMS

Recently a combined measurement of the Higgs boson mass with the Run 1 data in the
h → γγ and h → ZZ∗ → 4l has been released [263]. The result is mh = 125.09 ±
0.21 (stat)± 0.11 (syst) GeV
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Systematic Uncertainty on mH [MeV]
LAr syst on material before presampler (barrel) 70
LAr syst on material after presampler (barrel) 20
LAr cell nonlinearity (layer 2) 60
LAr cell nonlinearity (layer 1) 30
LAr layer calibration (barrel) 50
Lateral shower shape (conv) 50
Lateral shower shape (unconv) 40
Presampler energy scale (barrel) 20
ID material model (|η| < 1.1) 50
H → γγ background model (unconv rest low pTt) 40
Z → ee calibration 50
Primary vertex effect on mass scale 20
Muon momentum scale 10
Remaining systematic uncertainties 70

Total 180

Figure 5.9: Impact of the main systematic uncertainties on the combined mass measurement and
pull on the related nuisance parameters. The various systematic are ranked by the magnitude of
their impact on the mass measurement [264]
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5.3 Modelling of the width

5.3.1 Signal model as a function of the width

The actual reconstructed invariant mass distribution generated by the decay of a BEH
boson into two photons is in fact the convolution of the detector resolution, and of the
underlying distribution coming from the Higgs boson propagator who has a natural non-
zero width. Within the standard model the Higgs boson width (see paragraph 1.3.3) is of
4 MeV for a Higgs boson with mH = 125 GeV, which is completely negligible with respect
to the invariant mass resolution of the detector, that is higher than 1 GeV everywhere.
The signal model that was described above has been derived with such a sample where
the width is negligible, and it is therefore reasonable to assume that it describes only
the detector response and the resolution on the primary vertex, and nothing else. Then,
if one wants to model a distribution based on a non-zero decay width, one only has to
fold this resolution model with the proper propagator that models the natural width.
This is the method that was used in this analysis, using a non-relativistic Breit-Wigner
(BW) as a propagator, and doing the convolution with Fast Fourier Transforms (FFTs),
which offers the best performance in term of speed and numerical stability. Although the
non-relativistic Breit-Wigner is known to be an approximation at small width, and would
not represent the true propagator at large width, it allows to give an effective limit on the
width and it is this that is used here [264]. Another possibility, although it is also effective,
would have been to use a relativistic Breit-Wigner while a complete model would also take
into account the opening of the various decay channel, although it has to make explicit
assumptions on the position of the threshold for the various decay channels. In order to be
consistent with the limit in the h→ ZZ∗ → 4l decay channel, we decided to keep using a
non-relativistic Breit-Wigner. Furthermore its convolution with a Gaussian is analytically
known and is called a Voigtian [276], which makes it easier to use in the h → ZZ∗ → 4l
channel where the signal model is a sum of Gaussians [277]. Furthermore the impact of
interferences between the background gg → γγ and gg → h → γγ is neglected, and will
be discussed in another chapter.

The complete model of the data as well as its signal component is shown in fig. 5.11
for three different widths. From this plot it is clear that the difference of signal shape
between various width hypothesis is very small in the low width regime, because the effect
of the detector resolution dominates, which justifies that it is indeed safe to assume that
the signal model extracted from a MC sample with ΓH = 4 MeV represents mainly the
experimental resolution.

5.3.2 Comparison between different types of Breit-Wigner func-
tions

The non-relativistic Breit-Wigner function is expressed as follows :

BWNR(mγγ|mH ; ΓH) = k

(mγγ −mH)2 + 1
4Γ2

H

(5.3)
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Figure 5.11: Modelling of the data (top) and of its signal component only (bottom) for three
different values of the width. The data plotted in the top plot corresponds to the full Run 1
statistics

where k is a normalization factor. This is a good approximation at low width. The
relativistic Breit-Wigner is :

BWR(mγγ|mH ; ΓH) = k′

(m2
γγ −m2

H)2 +m2
HΓ2

H

(5.4)

which is equivalent to the non-relativistic version for low widths. The difference between
these two distributions for the Z boson may be seen in fig. 5.12, where we see that the
difference between these two distributions is small and affects only its tails. For the Z
boson a third type of Breit-Wigner function, which is called ”improved” in fig. 5.12, exists
[104] and takes into account the fact that the decay width is a running parameter. Given
that there are no new decay channel opening at a threshold close to the Z boson mass pole
this running is dominated by the opening of the phase space and a simple parametrization
of this effect can be derived, which is not true anymore in the case of the Higgs boson as
the threshold for the h → WW and h → ZZ are not far from the pole, in the case of a
high width. This improved BW is expressed as follows :

BWimproved(mγγ|mH ; ΓH) =
k” m2

γγ

(m2
γγ −m2

H)2 + (m
2
γγΓH
mH

)2
(5.5)

and in particular this is increasing the tail at high invariant mass, which is expected as it
is where the phase space is the biggest.

Such an ”improved” Breit-Wigner for the Higgs boson can even be ”improved” more
by requiring a parametrization of all the contributions to the Higgs boson propagator by
having ΓH(mγγ) for instance in formula 5.5. As the threshold for h→ ZZ and h→ WW
are not very far from the pole, it is much more complicated [105, 138]. A small study was
done to assess that the difference on the limit induced by using a relativistic or a non-
relativistic BW in the signal model, and is summarized by fig. 5.13. Several signal-only
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Figure 5.12: Comparison of the distribution of the invariant mass coming from various type of
Breit-Wigner distributions for the Z boson

pseudo-experiments are generated at different values of the width and with a signal model
based either on a relativistic or non-relativistic BW. In these toys the resolution is set to
0 and there is no background. All the toys are fitted twice, once by each of the two types
of BW, and the relative difference between the best-fit value from the two fits quantifies
the importance of the difference between the two types of BW. This difference is found
negligible. Nine width points are tested, ranging from 1 to 9 GeV, and for each point a set
of 1000 pseudo-experiments is generated. The median of the relative difference of best fit
between the two types of BW represents the expected bias coming from using the wrong
type of BW, and this corresponds to the content of fig. 5.13. As expected the difference
between the two BWs is the smallest at low Γ and slowly increases with Γ. But it stays
below 1 % up to 9 GeV, which is a fairly low bias and corresponds to a width point at
the border of the range we will be testing in this analysis. Therefore we consider that it
is safe to neglect the difference between these two kind of propagators.
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on a relativistic or non-relativistic BW, for various value of the true width. At each width point
two set of toys are generated, using either a relativistic or non-relativistic BW for the generation

5.4 Main results on the width

5.4.1 Overall description of the statistical method and problems

For the statistical model, the only difference between the Higgs boson mass measurement
and the upper limit on the width is in the signal model. All the uncertainties that have
been considered are the same between the two analyses, as well as the modelling of the
background and the categories that have been considered. The meaning of the signal
strength µ is similar in both analyses, in the sense that it corresponds to a scale factor
between the fitted number of signal events and what is expected in the Standard Model,
but a model predicting a decay width modified with regard to the SM has no reason to
predict the same number of events, hence it was decided to let µ free in the fit. The Higgs
boson mass mH is also let free in the fit given that if the tested width is different from the
true one the best fit of the mass may be shifted, especially given that the h → γγ peak
lies on top of a falling background.

Scan of the likelihood

If we assume that the large-sample limit is valid, we can extract the upper limit on the
width directly from the scan of the profiled likelihood ratio that is shown on fig. 5.14. In
this scan the width is forced to be positive, as a negative value would not have any physical
sense, and if we consider only the expression of the BW in eq. 5.3 allowing the width to be
negative would create a degeneracy in the model. The test-statistic that is used in fig. 5.14
is the two-sided test-statistic t̃Γ which is equivalent to the Feldman-Cousins test-statistic
[158] (see also paragraphs 2.2 and 3.4 of [156]). It is also the one used in CMS [261] (see
also the preliminary results published in [278]). In this case the upper limit on the width
at 95% C.L. is obtained for a variation of the log-likelihood ratio of 3.84, which gives an
observed (expected for the SM) upper limit at ΓH = 4.4 GeV (5.4) for the full Run 1
dataset. To quantify how much of the improvement comes from the fact that the signal
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Figure 5.14: Scan of the profiled log-likelihood ratio as a function of the width. All the parameters
are profiled out expect for the width, which is the only parameter of interest

strength profiled at Γ = ΓSM is higher than in the SM, an expected limit was derived
on an Asimov dataset generated at µ = 1.3, which yield to an expected 95% CL upper
limit of 3.8 GeV and explains part of the fact that the observed limit is stronger than
expected in the SM. Furthermore the best fit of the width in the data, that corresponds
to the minimum of the scan of the profiled likelihood-ratio, is at 800 MeV instead of the
4 MeV that are expected in the SM. This large fitted width is driven by the difference of
mH measured in the 2011 and 2012 dataset (see for instance chapter 7.5.2 of [89]), which
effectively broadens the mass peak, and explains why the observed limit is slightly weaker
than what is expected for an Asimov at µ = 1.3.

Checking the validity of the large sample limit

But the validity of the large-sample limit needs to be checked for. In order to do this we
explicitly built the distribution of the test-statistics from toy pseudo-experiments and we
will compare this distribution to the one that is expected under the large-sample limit.
In fig. 5.15 the distribution of the test-statistics obtained from the pseudo-experiments is
overlaid with the expectation from the asymptotic formula which is a χ2 distribution, since
the test-statistics is double-sided. The value of the test-statistics that is measured on the
data and on a SM-like Asimov dataset (obtained with Γh = 4 MeV) is also presented, as it
allows to estimate the p-values. These toys are generated with the complete signal model
that has been described above, which includes a convolution by category. The likelihood
is therefore very CPU-time consuming to evaluate, which explains the limited statistics in
fig. 5.15. Therefore it is hard to check by eye whether the large-sample limit is valid or
not. The actual check comes from a comparison of the p-values that are obtained with
these two distributions, which are computed as the integral of the test-statistic distribution
for the measured value of the test-statistics up to +∞. The statistical precision on the
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Figure 5.15: Distribution of the test-statistic obtained either from the asymptotic formulae (red
curve) or from the pseudo-experiments (blue histogram), for an tested width of 4.51 GeV. The
dotted lines corresponds to the value of the test-statistics. The Asimov dataset is generated with
a width of 4 MeV

p-value obtained from the toys is at the level of 1% or better depending on the width that
is tested, while the difference between the p-value obtained from the pseudo-experiments
and the one from the asymptotic formula is of 3% for fig. 5.15, hence it seems clear that
the asymptotic formulae are not valid in our case.

Therefore the whole statistical interpretation for the width, whose results will be given
below, is based on pseudo-experiments, and pseudo-experiments only. Five sets of pseudo-
experiments are generated at five different width points, and each of these sets contain
between 300 and 1000 pseudo-experiments. The p-value of each of the width points is
computed, and the variation of the p-value as a function of the width is fitted with an
exponential function, which was found out to give an accurate description of this shape.
At the end the upper limit at 95% CL comes from the intercept between this exponential
fit and the line defined by p− value = 5%.

5.4.2 Upper limit on the Higgs boson decay width

Published results : CLs+b and t̃Γ

The results presented below have been published in [264], and are the first direct limit on
the width from the h → γγ channel published by ATLAS. They are based on the two-
sided test-statistics t̃Γ, and use the method described above to extract the actual upper
limit at 95% CL. The observed test-statistics is evaluated on data, and all the parameters
except for the width are left free during the fits. The distribution of the test-statistics
extracted from pseudo-experiments is determined at five different width points, and all
the distributions are shown if fig. 5.15 and fig. 5.16. In the generation of the pseudo-
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Figure 5.16: Distribution of the test statistics for different tested widths. The convention and
information presented in these plots are the same than in 5.15. In the 4 plots the Asimov dataset
is generated with Γ = 4 MeV

experiments the nuisance parameters (including µ) are fixed at their value profiled on

data for the width that is being tested, i.e. at
ˆ̂
θ(Γinj). As the generation of the pseudo-

experiments is time-consuming (up to 4 CPU-days for one pseudo-experiment), we decided
not to generate another set to determine the expected exclusion limit, but to re-use the
distribution generated with the nuisance parameters profiled on data.

Having both the distribution of the test-statistics and its measured value allows to
extract the p-values and hence the 95% CL upper limit on the width, which is shown in
fig. 5.17. The p-values extracted from the toys is limited by the statistics of the generated

set of toys, and this statistical uncertainty is estimated as
√

pΓ(1−pΓ)
Ntoys

where pΓ is the p-

value of a given hypothesis and Ntoys the number of pseudo-experiments generated for
this hypothesis. This is shown on fig. 5.17. As the exponential fit of pΓ = f(Γ) exploits
the correlation that exists between the different points, it gives a sizeable reduction of
this statistical uncertainty, and this is what corresponds to the dotted band in fig. 5.17,
which is the 1 σ statistical uncertainty extracted from the fit. The p-values extracted
from the asymptotic formulae for the distribution of the test-statistics are also shown in
fig. 5.17, and they do not have a statistical uncertainty since they come from an analytical
description of the distribution. One should note that the 95% C.L. limit obtained for the
expected p-value with the asymptotic formula in fig. 5.17 (5.4 GeV for µ = 1) is exactly the
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same than the one that would be deduced from fig. 5.14 by the crossing of the likelihood
curve with −2 ln λ = 3.84. It is clear that the limit extracted from the toys is weaker
than from the asymptotic formula, by ≈ 15%. The published value is extracted from the
pseudo-experiments, and the observed 95% CL exclusion limit (expected for µ = 1 or 1.3)
is at ΓH < 5 GeV (6.2 or 4.2).

CLs and p0

The use of the two-sided test-statistics t̃Γ was motivated by the need to use the same
statistical method between experiments, and between the two precision channels (h→ γγ,
h → ZZ → 4l), which allows for a proper comparison between the different results, and
also by the note [279]. But this note only deals with measurement that are done near a
physical limit, and not with upper limits, although it was used several time to justify the
use of t̃Γ in the determination of upper limits, such as in [280]. The real recommendation
to set an upper limit is the use of the CLs method [157] which should be complemented
with the value of the p0 of the background hypothesis as CLs will never be able to exclude
the background. These numbers were extracted after the publication of [264], and are
presented below.

The CLs confidence level is computed as CLs = CLs+b
1−pb

, where CLs+b is the confidence
level extracted by using the one-sided test-statistics q̃Γ, and pb is the p-value of the hy-
pothesis being tested when the pseudo-experiment is generated under the background hy-
pothesis (which is Γ = ΓSM = 4 MeV in our case), therefore it requires generating another

set of toys. pb is then computed as pb =
∫ qobsΓ

0 f(q̃Γ|Γ = ΓSM) dq̃Γ, where f(q̃Γ|Γ = ΓSM)
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is the distribution of the test-statistics. The toys that were generated to determine the
exclusion level of fig. 5.17 are used to determine the value of CLs+b although for the toys
that have Γ̂ > Γinj the value of the test-statistics q̃Γ is set to zero, which changes the actual
distribution. The distribution for both the s+ b and background-only pseudo-experiments
is shown on fig. 5.18. The test-statistics measured on the Asimov dataset of a given
hypothesis is expected to be equal to the median of the distribution of the test-statistics
constructed from the pseudo-experiments generated under this hypothesis, up to potential
statistical fluctuations of the nuisance parameters if they are not fixed to the value that
is profiled on data during the generation of the Asimov. As the toys are generated with
all the nuisance parameters profiled on data, including µ, the proper Asimov to which the
median of the toys should be compared is the one created at µ̂(ΓSM) = 1.3, which indeed
roughly corresponds to the median of the toys, as seen in fig. 5.18.

The value of CLs extracted from these distributions is then constructed and shown on
fig. 5.20. In the large sampling limit the expected 95% CL exclusion limit from CLs is
the same than the asymptotic limit of fig. 5.16, because the penalty that comes from the
1− pb is 0.5 for the expected which exactly compensates the change from the two-sided to
the one-sided test-statistics. However even if 1−pb = 0.5 the corresponding expected CLs
limit for the toys will differ from the expected CLs+b limit because the change from the
two-sided test-statistics to the one-sided test-statistics will not be exactly a factor 2 on toys
(contrary to the asymptotics) and therefore will not exactly compensate 1− pb = 0.5. For
the observed limit since 1− pb 6= 0.5 the difference can be larger. The observed (expected
at µ = 1) 95% CL exclusion limit is then at 5.3 GeV (7.2 GeV). Due to the broadening
of the h→ γγ mass peak induced by the statistical fluctuation between the best-fit of the
mass in 2011 and 2012, the observed data were more compatible with the bigger width
hypothesis than expected, hence decreasing pb, which explains why the degradation of the
exclusion limit is worse for the expected than the observed limit.

The p-value of the background hypothesis, p0, was computed too, in order to check that
the SM value of the width is not excluded by the data. This is done with the one-sided
test-statistic q0 and requires to run a set of pseudo-experiments that are both generated
and tested at Γ = ΓSM = 4 MeV, whose distribution is shown in fig. 5.21. Then the
observed test-statistics qobs0 is evaluated on data and p0 is obtained by integrating the
distribution of q0 from its observed value up to +∞. The measured p0 is at the level of
15% and clearly does not exclude the SM value for the width.

Impact of the systematic uncertainties

In order to check the impact of systematic uncertainties, a cross-check was done where all
the nuisance parameters associated to an uncertainty were fixed to 0, and this corresponds
to what is shown in fig. 5.22. If we assume that the asymptotic formulae are valid and can
be used to extract the upper limit on the width from the scan of the likelihood, the impact
of the nuisance parameters on this limit is negligible. It is the biggest for the expected
limit at µ = 1.3, and changes the limit by 100 MeV, when the limit itself is at 4.4 GeV. To
cross-check that it was not coming from a bug in the implementation of the uncertainty, it
was decided to increase the size of the resolution uncertainty, which is expected to have the
most important effect on the limit, and re-do the scan of the likelihood with the increased
uncertainties, which is shown in fig. 5.23. The limit clearly worsens when this uncertainty
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Figure 5.18: Distribution of the test-statistics from the pseudo-experiments, for the cases that
are entering in the definition of CLs. The red histogram corresponds to the background-only
pseudo-experiments and the black to the s+ b. The other points are shown in fig. 5.19
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Figure 5.22: Scan of the profiled log-likelihood ratio as a function of the width, both for the data
and for an Asimov generated at the observed µ = 1.3, and with the nuisance parameters either
profiled or fixed to θ = 0

is increased but it reaches a value of the limit beyond which it cannot worsen anymore,
because the resolution uncertainty starts to be over-constrained by the data, as it is not
possible to have a negative resolution. The fact that this limit is not sensitive to the
systematic uncertainties included in the statistical model clearly shows how statistically
limited this limit is.
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5.5 Checks on the observed non-asymptoticity

The fact that we were not in a case where the large sample limit is valid and that we
could not use the asymptotic formulae to extract the significance of the different width
hypothesis has been an important problem in this analysis. This limit was expected to
be valid, because the dataset involved in the h → γγ analysis is fairly large, and every
other analyses conducted in this channel have been able to use this approximation, even
when the available statistics was much smaller, as was demonstrated in [281]. Therefore
several cross-checks were conducted to insure that it was not a bug, to understand the
origin of this non-asymptotic behaviour, and to try to find potential alternative asymptotic
formulae.

5.5.1 Presentation of the problem on the full statistical model

In order to understand the origin of this non-asymptotic behaviour we still study only one
value of ΓH , and therefore generate toys at only this value. Furthermore, in order to check
whether a specific region of Γ̂ was affected we decided not to use the usual variants of the
test-statistics, but a slightly different one that clearly separates the region Γ̂ < Γinj and Γ̂ >

Γinj. It is still based on profiled log-likelihood ratios but when Γ̂ > Γinj the test-statistics

is multiply by −1 and becomes 2 lnλ, then the region where Γ̂ > Γinj will have negative

values of the test-statistics while they will be positive for the region where Γ̂ < Γinj. This
will be called the uncapped log-likelihood ratio in the following, and its distribution is
shown in fig. 5.24 for one width value, from which we see an asymmetry between the two
sides of this test-statistics, while in case of a perfectly asymptotic behaviour we would
expect that both sides follow a 1

2χ
2 distribution. The positive side, that corresponds to a

best fit of the width narrower than the one injected to generate toys, is the one that is the
further away from this distribution. This also means that when we used t̃Γ, where both
sides are merged together, we were in fact closer to the asymptotic case than if we used q̃Γ
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Figure 5.24: Distribution of the uncapped log-likelihood ratio from toys generated with the full
statistical model at Γinj = 3.71 GeV

as this second test would discard the region that is properly described by the asymptotic
formulae.

5.5.2 Impact of the various nuisance parameters

In order to check that there are no problems in the implementation of the statistical model,
several sets of a few hundred toys were generated at Γinj = 3.71 GeV but with different
nuisance parameters fixed during the fits, either at 0 for the nuisance parameters associated
to a systematic uncertainty, or to their values profiled on data. The goal of this study is
to find a parameter, or a subset of parameters, that would explain this non-asymptotic
behaviour. Then the integral

∫+∞
q̃Γlow

f(q̃Γ) dq̃Γ is computed on each of these set of toys as

a function of qlowΓ , and this corresponds to the figures displayed in fig. 5.25. One can
note that if we set q̃Γ

low equal to the observed value of test-statistics on data for Γ = 3.71
GeV, this integral directly corresponds to the p-value of the hypothesis Γh = 3.71 GeV.
This value may be computed from the asymptotic formulae too, and we will be able to
compare in which case we recover the large-sample limit. We clearly see from fig. 5.25
that fixing the nuisance parameters associated to systematic uncertainties has no impact
on the behaviour of the test-statistics, but if we fix the mass during the fit too, we then
recover the behaviour that we expect under the large-sample limit. Therefore the most
important parameter seems to be mh, and more specific checks related to this hypothesis
may be devised.

5.5.3 Cross-check on a simplified model

In order to rule out possible numerical instabilities and problems in the implementation
of the model, a very simple toy model reproducing a similar experiment has been devised.
It is made of a simple exponential background on top of which a Gaussian signal is added.
The number of signal and background events roughly reproduced those of the h → γγ
analysis. As this model is very simple it allows to generate a large number of pseudo-
experiments, on which χ2 fits are performed with both the resolution of the Gaussian
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Figure 5.26: Distribution of the test-statistics ∆χ2 on simple toys, with one case where mh is
free in the fit (left) and the other where it is fixed (right)

fixed at its tested value or left free. The test-statistics used is then the ∆χ2 between these
two fits, which is equivalent to the log-likelihood ratio in the case of h → γγ where the
number of events is sufficient to consider that the distribution of the content of each bins
follows a Gaussian distribution. Two sets of toys are analysed, one where mh is left free
during the fits and the other where it is fixed, and both these results are shown in fig. 5.26.
These toys are well reproducing the qualitative result that we got earlier that most of the
asymptotic behaviour is lost when the mass is released, and that it is indeed a statistical
effect that needs to be taken into account in the analysis. Even when the mass is fixed
the distribution of the test-statistics is not perfectly asymptotic, but it is much closer to
what is expected and it would be sufficiently close to actually use the asymptotic formula
in this analysis.

5.5.4 Comparison with the h→ ZZ∗ → 4l channel

Once the non-asymptotic behaviour of the test-statistics was observed in the h → γγ
channel, the same cross-check was asked for the h → ZZ∗ → 4l channel, where the
distribution of the test-statistics coming from the toys was shown to be very close to what
is expected from the asymptotic formula, as may be seen in fig. 5.27. There are important
differences between the two channels, but only two were believed to be important in this
comparison, the first one being the difference of background which is much smaller and flat
for the h → 4l decay channel, and the second is the difference of significance that comes
from the fact that the best fit of µ in the 4l channel is very high (1.7) [264, 282] yielding a
higher signal significance (≈ 8 for h→ ZZ∗ → 4l and ≈ 5 for h→ γγ). Using the simple
toy model described in subsection 5.5.3 we were able to check both these hypotheses. First
the exponential background was replaced by a flat function, while the significance was kept
unchanged at ≈ 5, and we observed that the non-asymptotic behaviour remained. In a
second step the number of signal events was changed in order to keep S

B
constant and

increase S√
B

to the value corresponding to the one of the 4l channel. In this latter case the

distribution of ∆χ2 from toys properly matched the one from the asymptotic formulae,
and it was further checked that at constant S√

B
the impact of varying S

B
was only mild

(while we were still in a regime were χ2 fits are valid).
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Figure 5.27: Distribution of the test-statistics for the width, constructed from toys in the h →
ZZ∗ → 4l decay channel [283]

5.5.5 Look-elsewhere effect and the Leadbetter formula

At the time of the discovery of the BEH boson a similar problem had been observed and
is described precisely in [284, 285]. In summary, during the preparation of the statistical
method to be used for the BEH boson searches it had been noticed that letting the mass
free in the fits needed to evaluate q0 creates a departure from the asymptotic formulae for
q0, whose reason will be explained below. The solution was to fix the mass in the fits,
and evaluate q0 at different masses. The distribution of q0 was then asymptotic at each
mass point, and a local p0 was quoted separately for each of these points, and the global
p0 was then determined using the method of Trial Factors that is defined in [286]. For
the discovery, the energy scale uncertainties were included in the model. This consists in
the following modification : mh → m′h = mh(1 + δθ) where θ, although it is constrained
by a Gaussian, is a free parameter. This means that even if mh is fixed in the fit the
parameter θ and therefore m′h can still move, hence the distribution of q0 will not follow
perfectly the asymptotic formulae although it is a small deviation. Such a scenario was
studied by Leadbetter in [287] where a modified asymptotic formula was derived to deal
with such cases. This formula adds an exponential component to the usual χ2 formula,
where the slope of the exponential is 1/2 and the exact fraction of exponential and χ2

depends on the specific problem. The origin of the problem comes from the definition
of the parameters of the statistical model : the asymptotic formulae assume that all the
parameters are well defined under all the tested hypotheses, but in the case of a discovery
the mass is not defined under the background hypothesis, as there should be no mass peak.
In such a case the best-fit can correspond to any statistical fluctuation that happens in
the fit range, and not only to the fluctuation that are happening at a specific point,
hence there are more statistical fluctuations than what is described by the asymptotic
formulae. In the Leadbetter formula the fluctuations that may be chosen by the fit are
limited by the Gaussian constraint, and the further away the fluctuations are from the
mass point that is being tested, the bigger they need to be to overcome the penalty from
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Figure 5.28: Distribution of the test-statistics ∆χ2 constructing on simple toys, and comparison
with the usual asymptotic formula and with the Leadbetter formula

the constraint. It is not obvious that this explanation is still valid in the case of the upper
limit on the width, as the background hypothesis is then ΓSM and the mass is still a well
defined parameter under this hypothesis, but given that fixing the mass gives a sizeable
improvement in the distribution of qΓ it could be a possible explanation. A comparison
between the distribution extracted from the toys and the Leadbetter formula is shown in
fig. 5.28. There is a clear improvement with respect to the usual χ2. As a cross-check it
was tried to fit the slope of the exponential in the Leadbetter formula too, to verify that it
indeed had the proper value of 1/2, and we can see that it is not exactly the case although
the fit is essentially driven by the region at low ∆χ2. When the slope is fixed at its nominal
value the description of the tail at high ∆χ2 is much better. This explanation also gives
a reason why a higher significance improves the asymptotic behaviour, as the existence
of the exponential component describes the possibility of fitting statistical fluctuations in
the neighbourhood of the mass peak, but the more significant the peak becomes the less
likely it is to find a statistical fluctuation that is at least as significant.

5.6 Impact of the resolution and comparison with

CMS

5.6.1 Variation of the limit as a function of the resolution

As setting an upper limit on the width essentially consists in studying how broad the
h→ γγ mass peak is, we expect that the parameter that impacts the most the performance
of the analysis is the resolution, and this was qualitatively cross-checked on a simplified
model. This model consists in a simple exponential background, and a Voigtian signal.
The Voigtian corresponds to an analytical implementation of the convolution of a Gaussian
with a non-relativistic Breit-Wigner [276] and is therefore a powerful tool to make a simple
modelling of the signal that has statistical and physical properties that are close to the
full model. The width of the Breit-Wigner of the Voigtian is fixed to 4 MeV while its
resolution is progressively varied from 250 MeV to 4 GeV, by steps of 250 MeV. At each
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Figure 5.29: Value of the median 95% CL upper limit determined with the asymptotic formulae
on 100 toy pseudo-experiments, for various values of the resolution

point a set of 100 pseudo-experiments are generated, and for each of these toys a 95% C.L.
upper-limit on the width is determined from a scan of the profiled log-likelihood ratio,
which is done by steps of 250 MeV. The median of the distribution of the upper limits
is considered as being the most representative value for the limit for a given value of the
resolution, and is displayed in fig. 5.29. As expected the exclusion limit worsens when the
resolution is degraded, and a few simple polynomials have been tried to parametrize this
variation. The best description is given by a power 3

2 of the resolution, i.e. Γ95% CL
UL ∝ σ3/2

res .
A similar result was obtained for the mass measurement where, for a simple model, it is
shown (see subsection 5.1.3) that the statistical uncertainty on mh increases as a power
3
2 of the resolution. It is possible to adapt this demonstration for the case of the width.
Both of these calculations have been outlined in appendix B. The same study can be
done to estimate the dependency of the upper limit on the signal to noise ratio, which is

summarized by fig. 5.30 where the dependency is shown to be in Γ95% C.L.
U.L. ∝ 1

(S/B)0.3 .

Although the computation sketched in appendix B also gives the dependency of the limit
on S and B it is harder to translate it in a variation with respect to S/B than it was
to translate it in a dependency with respect to the resolution. Indeed the different terms
involved in the final expression of the limit are not exact powers of S/B while they were
exact powers of σres, and therefore the exponent determined in the fit of fig. 5.30 cannot
be compared to a value determined analytically.

5.6.2 Upper limit on the width from the CMS collaboration

As the upper limit on the width degrades very quickly when the resolution worsens, ex-
tracting categories that have a higher resolution matters even more than in a typical
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Figure 5.30: Value of the median 95% CL upper limit determined with the asymptotic formulae
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analysis. This is also the case in the mass measurement, and for both of these analyses
it is in fact the two or three best categories that will drive the measurement. The CMS
h→ γγ analysis is extensively based on multi-variate techniques, and a per-event estima-
tion of the resolution enters in both the MVA used for the selection of the events and for
their categorization. Effectively this allows to remove regions that have a low resolution
already during the selection, for instance the high-η region of the end-cap (|η| > 2), where
the radiation-induced degradation of the resolution had a bigger impact, is almost com-
pletely removed [261]. The variation of the resolution inside the CMS detector is larger
than in ATLAS, which means that the resolution of the inclusive signal peak is slightly
better in ATLAS, as may be seen from fig. 5.31, but for its best categories CMS is able to
extract classes of events that have a better resolution than the best categories ATLAS can
define, as can be shown from table 5.2, where the parameters of the untagged categories
are shown. CMS also uses categories that isolates specific production modes although
they are expected to have only a mild impact for the width and mass analysis, and should
mainly matter for the Higgs boson couplings measurement. For the two experiments the
best category isolates central and boosted di-photon pairs, where both the resolution and
signal-to-background ratio are the best, but the resolution for this central part of the
detector is better in CMS than in ATLAS, which explains why the CMS result is better
[271], with an observed 95% CL upper limit (expected) at 2.4 GeV (3.1 GeV), and also
why the CMS statistical uncertainty on the mass is smaller, at 0.31 GeV instead of 0.42
GeV for ATLAS [264].
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Figure 5.31: Inclusive di-photon mass distribution and its corresponding signal model for ATLAS
(left) [264] and CMS (right) [261], for the 8 TeV samples. The effective resolution σeff , defined
in table 5.2, is 200 MeV better in ATLAS (1.67 GeV) than in CMS (1.87 GeV)

Category nexpsig σeff [GeV] S
B

in signal region
CMS

Untagged 0 6.0 1.05 0.42
Untagged 1 50.8 1.19 0.12
Untagged 2 117. 1.46 0.07
Untagged 3 153. 2.04 0.03
Untagged 4 121. 2.62 0.01

ATLAS
Unconverted central low pTt 59.3 1.35 0.07
Unconverted central high pTt 7.1 1.21 0.25

Unconverted rest low pTt 96.2 1.53 0.03
Unconverted rest high pTt 10.4 1.36 0.10

Unconverted transition 26.0 1.86 0.03
Converted central low pTt 37.2 1.52 0.06
Converted central high pTt 4.5 1.35 0.19

Converted rest low pTt 107.2 1.88 0.03
Converted rest high pTt 11.9 1.64 0.07

Converted transition 42.1 2.41 0.02

Table 5.2: Some parameters for the performance of the mass and width analysis in the h→ γγ
channel, taken from [261] for CMS (for some categories) and [264] for ATLAS. Only the numbers
for the 8 TeV datasets, which carries most of the statistical power, are quoted here. σeff
correspond to half of the smallest range containing 68.3% of the events. For CMS, S/B is
computed in ±σeff while for ATLAS it is computed in the window containing 90% of signal
events
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Interferences between gg → h→ γγ
and gg → γγ
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All the results produced in the h → γγ channel during the first Run of the LHC, in
both ATLAS and CMS, had an improper treatment of the interferences that exists between
the main signal process (gg → h→ γγ) and the gg → γγ background process. Only their
impact on the total yield was taken into account, as it is expected that interferences
decrease the total cross-section of ≈ 2% [110, 227]. But it is also expected that the
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interference sizeably modifies the di-photon invariant mass distribution, as was initially
noticed in [111], and as may be seen in fig. 1.14. This was neglected as no Monte-Carlo
were available to study this effect. This became available at the end of 2013 with the
release of Sherpa 2 [288] in which a specific ”plug-in” implemented the computation that
had been published a few month earlier in [112]. This chapter will present a study that
aimed at understanding the actual content of this plug-in, how it should be configured, and
how to generate samples that may be used in physics analyses in the future. In addition to
[111] and [112] several theory papers where published recently on the h → γγ mass shift
induced by the interferences [111, 113, 116] (see also a rough prospective study in ATLAS
[289]).

6.1 Monte-Carlo generation of interferences

6.1.1 Precision of the Sherpa 2 computation

The interference plug-in of Sherpa 2 is an implementation of the computation published
in [112], which is itself based on a NLO computation of the signal and on the NLO
computation of the gg → γγ background that was published in [114], and therefore the
interference term is itself computed at NLO too. There are some subtleties to take into
account in this description : in the interference one need to match signal and background
diagrams that have the same initial and final states, and at the LHC this corresponds
mostly to processes that are initiated by two gluons and have two photons in the final
state. But there is also a non-negligible part coming from processes initiated by one quark
and one gluon where the quark may emits one gluon, which will interact with the initial
state gluon to create one Higgs by gluon fusion (see section 1.5 and figure 1.13). For the
signal this is a NLO diagram of gluon fusion but a similar background process can arise
as a tree level diagram, where the initial quark will absorb one gluon, and then emit two
photons by bremsstrahlung, and there is only one gluon in this process. For the gluon-
gluon initiated process it has been possible to interface the Sherpa event generation of
interferences with a Parton Shower that mimic the impact of higher order parton emission,
although it only modifies the momentum distribution of the initial and final state partons.
For the leading order quark-gluon interference processes this has not been possible, and it
is not obvious why, although it probably comes from the fact that the total interference
cross-section for the quark-gluon initiated part is 0 at leading-order, as may be seen in
fig. 1.14. This is not a problem when we are interested in the inclusive distributions, as
it has been checked that this problem was neither impacting the total cross-section nor
the invariant mass spectrum, but it is a sizeable problem when we are interested in the pT
spectrum as we have been for the mh and Γh analyses, or as it was proposed to do in order
to infer an upper limit on the width in [112]. Furthermore it will be shown below that
even for the gluon-gluon initiated processes the inclusion of the Parton Shower creates
a sizeable dependency on the parton shower resummation scale, and is therefore also a
problem for analyses that rely on the description of the pT spectrum.
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Figure 6.1: Di-photon mass distribution from gg → h → γγ events generated by Sherpa 2 for
Γh = 9.6 GeV

6.1.2 Implemented Higgs boson propagator

Close to the pole and in the low mass regime it is not possible to differentiate between the
various type of propagators that may be used to describe the Higgs boson. The invariant
mass distribution of the di-photon pair in gg → h → γγ events is displayed in fig. 6.1
and does not correspond at all to the Breit-Wigner distribution that is naively expected
for the decay of a resonance, especially not in the high invariant mass tail where a small
bump appears at ≈ 160 GeV (≈ 2mW ). In fact in this module of Sherpa the total width
of the Higgs boson is kept constant at its input value Γh, while the exact dependence of
the partial decay width of h → γγ on mγγ has been implemented. This partial width is
expressed as follows [102] :

Γ(h→ γγ) = Gµα
2m3

h

128π3
√

2
|AH1 (mγγ) +

∑
f

NcQ
2
fA

H
1/2(mγγ)|2 (6.1)

where AH1 and AH1/2 are two well defined complex function whose imaginary part is 0 below
the kinematical threshold of the W (for A1) or of the top (for A1/2). These two functions
can be computed [102], but given that the most problematic feature in fig. 6.1 happens
at the 2mW kinematic threshold we are only interested in the evolution of AH1 , which is
displayed in fig. 6.2. The strong variation of AH1 at mγγ = 2mW explains the additional
bump that is seen at this mass on the di-photon invariant mass spectra, as there is a strong
change in the trend of the partial decay width at this point that is not compensated by
the total decay width, which is constant. Furthermore the increase of the partial width
as m3

h also explains the stronger tail at high invariant mass than what is naively expected
from a Breit-Wigner distribution. For the description of the mass shift we are interested
in the description of the mass lineshape near the pole and therefore are not sensitive to
the exact modelling of the tails of the distribution.

6.1.3 Cross-check of the output cross-sections

The cross-section predicted by Sherpa 2 has been cross-checked against state-of-the-art
NLO computations, and this comparison is summarized in table 6.1. It is slightly higher

209



CHAPTER 6. INTERFERENCES BETWEEN GG→ H → γγ AND GG→ γγ

Figure 6.2: Variation of the AH1 function that is ruling the evolution of the h → γγ partial

decay width [102]. The variable τW is defined as τW = m2
γγ

(2mW )2 hence is equal to 1 at the 2mW

kinematical threshold

Sherpa 2.0.0 HNNLO Yellow Report
σ ×BR (in fb) for gg → H → γγ 32.005 + /− 0.002 30.27± 0.01 30.65± 0.01

Table 6.1: Comparison between results from Sherpa 2, HNNLO at NLO [290], and NLO results
from Yellow Report 3 [81]

than the output of HNNLO at NLO and of the NLO results quoted in the Yellow Report
[81], by ≈ 6%. This corresponds to the expected difference [81] between the NLO com-
putation done with only the top loop in the infinite mass limit, which is implemented in
Sherpa 2, and with the bottom and top loop treated in the finite mass scheme, as it is
used in HNNLO or in the Yellow Report. As the signal cross-section will be rescaled to
the state-of-the-art signal NNLO cross-section which is computed in the Yellow Report
[81], which gives a k-factor of 1.45, it is not a problem. An uncertainty of ±10% is taken
on this k-factor, which corresponds to the combination of the PDF and αs uncertainties
for the NNLO computation. The square-root of this k-factor will also be applied on the
interference term, and this uncertainty propagated to the interference template.

For the gg → γγ background, no computation exists beyond NLO and it is not possible
to quote an estimate of the background k-factor. The gluon fusion signal produces harder
radiations than the background, because the top quarks in the gluon fusion triangle are
heavier than the light quarks in the gg → γγ box which explained why LO to NLO
background k-factor was smaller for the background than for the signal, and it is expected
that the same argument is valid for the NLO to higher orders k-factor. We decided to vary
kB between 1 and 2, and to quote this variation as an error on the interference template
to which the square-root of the background k-factor is applied as a scaling factor. As the
description of the background part itself will be taken from an analytic fit to the data, it
is not needed to apply this k-factor to the background itself.
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6.1.4 Reweighting of the cross-section to the Standard Model

An increase of the Higgs boson width can only happen in a new physics scenario, and
depending on the scenario one is considering it may happen in different ways : it can
either modify the gluon fusion (and the h → γγ decay one also, even if its impact is
probably negligible) loop, or just create a new decay channel that has a sizeable decay
width and does not modify the loops. Within Sherpa the second scheme has been chosen
: the h → γγ partial width is left constant while the total width is varied, which gives a
scaling of the h→ γγ branching ratio as the inverse of the width that is propagated to the
cross-sections gg → h → γγ that Sherpa gives as an output. In this analysis we do not
want to depend on the total cross-section but only on the lineshape of the Higgs boson,
and therefore we need to apply an additional weight to rescale this total cross-section to
the Standard Model. This scaling can be derived [112] within the κ framework used for
the couplings [99], which only assumes the tensor structure of the Standard Model which
implies that every couplings may only be rescaled by a scalar. The Feynman diagrams in
which we are interested are shown in fig. 1.13, and if we decide to treat these diagrams
in the effective theory where the κg, κγ are not resolved we can derive a rescaling of these
diagrams in order to keep the total signal plus interference cross-section constant. The

signal cross-section gets rescaled as S = κ2
gκ

2
γ

Γh/ΓSMh
SSM and the interference cross-section as

I = κgκγISM . If we denote cgγ = κgκγ it is possible to derive a way to determine cgγ from
the fact that we want to keep constant S + I = SSM + ISM , which is done in this way :

c2
gγσ

sherpa
S (Γh) + cgγσ

sherpa
I (Γh) = σsherpaS (ΓSMh ) + σsherpaI (ΓSMh ) (6.2)

where σsherpaS,I (Γh) corresponds to the total gg → γγ cross-sections that are determined by
Sherpa for a given width, and this equivalent to equation 6 of [112]. The cross-sections
above are the mass integrated cross-sections and we have σSherpaI (Γh) = σSherpaI (ΓSMh ) while

σSherpaS (Γh) = σSherpaS (ΓSMh )ΓSMh
Γh

. Another way to look at this problem is to think to a fit

of a differential cross-section (with respect to the di-photon invariant mass mγγ) :

dσ

dmγγ

= c2
gγ

dσsherpaS

dmγγ

+ cgγ
dσsherpaI

dmγγ

+ dσbkg
dmγγ

(6.3)

where the three parameters of interest are mh, Γh and cgγ in the general case. If we are
interested only in the SM case cgγ and Γh are fixed to their SM values (1 and ΓSMh = 4 MeV)
and only mh is fitted. In general, this implies a variation of both the signal and interference
cross-sections with respect to the width, only their sum being constant. Once these two
cross-sections are known they can be used to reweight the signal and interference Monte-
Carlo samples to be used later, so that the analysis will only be sensitive to variations
of the lineshape and not to variations of the number of events. But this reweighting is
perfect only for pure gg → γγ samples and do not account for the associated production
modes, that do not produce a cross-section proportional to cgγ or c2

gγ. The inclusion of
these modes either requires to make explicit assumptions on which part of the effective cgγ
comes from the gluon fusion modifier and which comes from the h → γγ decay modifier,
or to produce a global fit where additional channels can bring additional constraints on
κγ separately from κg.
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6.2 Detector effect folding

As this specific Sherpa module generates weighted events the relative uncertainty on the

cross-section will be |δσ
σ
| = |

∑
w2∑
w
|, where the numerator will have a small but finite value,

while the denominator will be close to 0 because the cross-section of the interference term is
0 at leading order, and the negative and positive weights corresponding to different events
will cancel each others. Given that the interference cross-section is not strictly 0 and that

the weights are fairly small the ratio
δσ

σ
is under control but, in order to achieve a relatively

small statistical uncertainty on these templates, it requires a lot of events : for instance
generating 400000 events still gives an error of ≈ 25% on the interference cross-section. In
most cases the datasets that were used contained more than 200 million events, which is
clearly too much to go through a realistic detector simulation. Instead a framework that
does a fast smearing and a fast folding of the efficiencies has been developed, and its main
components are described below.

6.2.1 Simulation of photon conversions

As the energy resolution of the photons is very different between converted photons and
unconverted, it is important to have a proper description of the probability for a photon
to convert. To do so a two-dimensional map of the fraction of converted photon has been
constructed on a Monte-Carlo sample generated with the full detector simulation. The
sample that had been used corresponds to single-photon events and implements the last
description of the detector material budget, and had been previously used to train the
calibration MVA [226]. The (η × φ) map that is constructed in this way may be found
in fig. 6.3. A tentative to produce a 3D map where the dependency on the photon pT
was implemented as well has been done, but given that this dependency is negligible the
simpler 2D map was kept.

For each photon a random number is generated in [0, 1] according to an uniform prob-
ability distribution. If this random r is smaller than the fraction of converted photons f
in the (η×φ) bin the photon falls in, we classify this photon as being converted, otherwise
it is unconverted. Once h→ γγ samples are generated using this logic we have an overall
fraction of converted photons of 28% while on the official h→ γγ samples, which uses the
full detector simulation and PowHeg-Pythia [86–88] to generate the events, it is of 30%.
We considered the difference between these two numbers to be negligible.

6.2.2 Identification and reconstruction efficiencies

The selection efficiency of h → γγ events is known to vary as a function of the pT of
the photon in the events, on their pseudo-rapidity, and on whether or not one of the two
photons have converted. This dependency had been computed before to create the fast
smeared Monte-Carlo [291] that has been used to generate large background samples to
study the spurious signal and chose the background shape used in the h → γγ analysis.
Therefore we decided to use these numbers. They actually give a per-photon efficiency, and
have been derived in 4 η and 4 pT bins. These efficiencies are applied as a multiplicative
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Figure 6.3: Two-dimensional map (η × φ) of the fraction of converted photons obtained from a
single photon MC that used the last detector material description

factor to the Monte-Carlo event weights, i.e. the weight that are used to create the final
datasets are w′ = εγ 1εγ 2w, and this is done separately for every event.

A second approach can be applied, based on a method that was designed for the
differential cross-section analysis [292]. For this analysis, global factors were derived to
unfold the impact of detector efficiency, and the efficiencies obtained with the per-event
weights and with the global factors can be compared. This is done on table 6.2 at several
stages of the analysis, and the final efficiencies differs by a few per-cents. At the same
time it was realized that the efficiency obtained with the global folding factors was higher
than the one that was obtained for the mass [264] and couplings [262] analyses, therefore
it was decided to rescale all the efficiencies to the smallest value, which corresponds to the
one of the couplings analysis that is ≈ 2% lower (a small change in the isolation efficiency
occurred between the mass and couplings papers), as it is the most conservative number.

6.2.3 Implementation of the mass resolution

The implementation of the energy and vertex position resolution is done at the level of
the di-photon invariant mass, separately for each events, and is based on the resolution
model that have been determined for the mass analysis [264]. For each di-photon pair, the
category to which it belongs is determined, depending on the η, pT and the randomized
conversion status of the photons. This provides a model of the mass resolution for this
event, which has been described in subsection 5.1.2. In this model the value of mH

is replaced by the current value of the di-photon invariant mass, and this completely
determines the model. A new, smeared, value for the invariant mass is then randomly
drawn on this model, and is used as the reconstructed invariant mass of the current
event. This effectively implements the convolution between the underlying physics and
the detector resolution.

Although this method is perfect when the event generation is interfaced with a Parton
Shower, it does not work for the fixed order computation. In Sherpa divergence subtraction
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Table 6.2: Value of the cross-sections (in fb−1) and of the efficiencies in several pT bins, compared
between the methods to apply the resolution and efficiency folding. ”w/ cuts” corresponds to the
acceptance cuts on |η|, pT

m . Values (1) to (6) correspond to [292]
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is handled using correlated events : a given event is in fact made of several sub-events,
that are all weighted and whose weights are correlated among one another. Although all
these sub-events have the same mγγ they are usually very different in η and φ, and may
fall in different categories. If after the smearing the various sub-events have a different
mass, the divergence subtraction is lost and the mass spectrum becomes meaningless. In
that case the mass smearing is determined only for the first sub-event and the same mass
variation is applied to all the following sub-events, which allows not to lose the divergence
subtraction property.

6.3 Parton shower tuning

6.3.1 Principle of the optimization

The accuracy of the description of the pT distribution generated by Sherpa is only NLO
in the matrix elements, with additional initial and final states radiations generated by a
parton shower, and within Sherpa the default parton shower program is CSS++ [293] and
the matching between parton emissions from matrix elements and from the shower is done
via MC@NLO. This does not correspond to the best description of the Higgs boson pT
that may be achieved, which comes from HRes 2 [82], but it is possible to tune the parton
shower to try to improve this description. This is done by a modification of the parameter
CSS IS AS FAC, which modifies the behaviour of the parton shower for initial state radi-
ation in the way that will be described below. Obviously for h → γγ the parton shower
has no impact on final state particles (except through the change of the boost).

Effectively a parton shower program does an iterative resolution of the DGLAP equa-
tions [65–67] to determine the splitting of the partons and their kinematics after the split-
ting. In the initial state this is done backward in time : we start from the partons that
collide and we reconstruct their history to determine if they come from a splitting, and
how their momentum has been modified in this splitting. This modifies the momentum
of the colliding partons, and therefore this also modifies the momentum of the particles
that will be produced in the collision. If we denote qi the parton density function for the
quark family i and g the density of the gluon, the DGLAP equation is expressed as follows
[294, 295] :

dqi(x, µ2)
dlogµ2 = αs

2π

∫ 1

x

dξ

ξ
(qi(ξ, µ2)Pqq(

x

ξ
) + g(ξ, µ2)Pqg(

x

ξ
)) (6.4)

dg(x, µ2)
dlogµ2 = αs

2π

∫ 1

x

dξ

ξ
(
∑
i

qi(ξ, µ2)Pgq(
x

ξ
) + g(ξ, µ2)Pgg(

x

ξ
)) (6.5)

where the functions Px(xξ ) are the splitting kernels that give the probability for an initial
parton to emit another parton that carries a fraction x

ξ
of its momentum. These splitting

functions may be seen in term of Feynman diagrams in fig. 6.4 and are functions of αS.
In the DGLAP equation αs is evaluated at an energy scale Q2 that corresponds to the

energy scale of the process being considered. The idea behind the tuning of CSS IS AS -
FAC is to modify this energy scale by a multiplicative factor, i.e. we do the following
replacement : αs(Q2)→ αs(CSS IS AS FAC ×Q2). Due to the running of αs a bigger
CSS IS AS FAC implies a smaller αs hence less emissions of jets by the initial state partons
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Figure 6.4: Feynman diagrams corresponding to the various splitting function described in the
text [296]

and a lower pT for the Higgs boson produced in the process gg → h→ γγ. On the contrary
a very small value for this parameter implies a large cross-section for the production of
high-pT Higgs bosons. If we have a prior knowledge for the pT distribution of Higgs bosons
in the gg → H process we can search the value of CSS IS AS FAC that gives the best
agreement between this prior distribution and the one that is determined by Sherpa 2.
It is not directly possible to tune the pT spectrum generated by the interference term,
because we do not have any previous knowledge of this distribution. But we may tune the
distributions obtained for the signal and re-use the value determined for CSS IS AS FAC
on the interference and background samples.

6.3.2 State of the art description of the Higgs boson pT distri-
bution

The best description of the Higgs boson pT distribution in the gluon fusion process comes
from HRes 2 [82, 83] which is NNLO in αs and where the quark triangle has been computed
with finite top and bottom masses at NLO, and this impacts the pT distribution especially
at low pT where the addition of the bottom mass contribution has a sizeable impact, as may
be seen on fig. 6.5. The emission of soft gluons is described using the technique of large
logarithm resummation, up to NNLL in HRes 2, and gives a more accurate description
of the pT than a parton shower Monte-Carlo. The official Monte-Carlo samples used for
h → γγ in ATLAS are generated with PowHeg which is interfaced with Pythia 8 for the
parton shower. A detailed comparison between HRes 2 and PowHeg-Pythia8 may be found
in [89], where a reweighting of the pT distribution of PowHeg-Pythia8 to the distribution
determined on HRes 2 had been derived. This reweighting has been applied on all the
samples that are used for the final h→ γγ analyses of the Run 1.

6.3.3 Results for the tuning

The best value of CSS IS AS FAC is determined from the best compatibility between the
pT distribution from Sherpa 2 and the one either from HRes 2 or from the reweighted (to
HRes) PowHeg-Pythia8 sample. The comparison with HRes 2 should be done with the true
value of the pT before any detector effect as HRes 2 cannot implement such effect, while
the comparison with PowHeg-Pythia8 should be done after having applied the efficiency
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Figure 6.5: Distribution of the Higgs boson pT determined with HRes 2.0 with different approx-
imations. All the curves are normalized to the infinite top mass approximation [82]

and smearing functions, as this sample went through a full detector simulation. Both of
these tunings have been produced.

First, Higgs boson signal samples are generated using Sherpa at several points of
CSS IS AS FAC, and their pT distributions are compared with those from PowHeg-Pythia8,
which may be seen in fig. 6.6. Just after pγγT = 120 GeV there is a clear drop in the num-
ber of events in Sherpa with regard to PowHeg, which originates from the value of the
resummation scale, that is set at mH in Sherpa. This means that the parton shower may
generate parton emission up to pT ≈ mH and will not have much impact above, where all
the parton emission will have to be described by an underlying matrix element. But this
corresponds to the CSS++ parton shower with the MC@NLO procedure, and PowHeg
works differently and is still able to create parton emission above mH . At a very high-pT
(> 250 GeV) both parton shower modules will have the same behaviour as all the parton
emissions will come from the matrix elements in both cases, and this is shown in fig. 6.7
although the statistics quickly becomes small at high-pT . Furthermore it is not possible
to cancel the deficit of events that is observed after pγγT = mH with an adequate tuning,
as the parton shower has no effect in this region.

Although fig. 6.6 seems to hint that CSS IS AS FAC = 1.5 is the best value, it is
not easy to determine it only from this plot. The fraction of events falling in three broad
pT bins (in GeV) for the various Monte-Carlo samples is given in table 6.3 at a truth
level and in table 6.4 at a detector level. In principle the tuning extracted from these two
tables should be the same, but there is a slight disagreement as the optimization done at
truth level tends to favour CSS IS AS FAC = 1 and the one done at detector level favours
CSS IS AS FAC = 1.5, although the difference in term of fraction of events in each of
the pT bins is not big. We decided to use CSS IS AS FAC = 1.5 in the generation of our
Monte-Carlo samples.

Figures 6.8, 6.9 and 6.10 show the pT spectrum obtained with MC@NLO and with the
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Figure 6.7: Ratio of the pT distribution generated by Sherpa to the one generated by PowHeg-
Pythia8 reweighted to HRes 2, for several values of CSS IS AS FAC, and up to a high pT

CSS IS AS FAC frac pT 0-30 frac pT 30-80 frac pT 80-500
0.5 55.92 34.65 9.43
1.0 58.61 32.47 8.93
1.5 60.02 31.32 8.67
2.0 60.96 30.54 8.49

HRes 2 57.9 32.9 9.2

Table 6.3: Fraction of events falling in three broad pT bins (in GeV) at a truth level, either from
HRes 2.0 or from Sherpa, and for different values of CSS IS AS FAC
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CSS IS AS FAC frac pT 0-30 frac pT 30-80 frac pT 80-500
0.5 57.13 33.76 9.10
1.0 59.71 31.65 8.64
1.5 61.10 30.51 8.39
2.0 62.00 29.76 8.24

PowHeg-Pythia8 61.39 30.15 8.46

Table 6.4: Fraction of events falling in three broad pT bins (in GeV) at a detector level, either
from PowHeg-Pythia8 reweighted to HRes 2 or from Sherpa, and for different values of
CSS IS AS FAC
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Figure 6.8: pT spectrum generated by background gg → γγ processes with Sherpa 2 (with and
without Parton Shower) and with the previous version of Sherpa (used for Run 1 analyses)

fixed order calculation used in [112] and [289]. Using the fixed order computation, one had
a mass shift at high transverse momentum which is much smaller (see fig. 1.16) and this
can be used in order to have two sets of categories with different mass shifts (for a fixed
width) and therefore help to constrain the width. Unfortunately this is largely diluted
with MC@NLO and cannot be used. It has been proposed (for instance in [297]) to use
instead the mass coming from the h → ZZ∗ analysis (see section 5.2) which is much less
sensitive to interference effects.

219



CHAPTER 6. INTERFERENCES BETWEEN GG→ H → γγ AND GG→ γγ

 [GeV]γγ

T
p

0 50 100 150 200 250 300 350 400 450 500

-410

-310

-210

-110

Fixed order (sherpa 2)

MC@NLO (sherpa 2)

Powheg-Pythia8

Fixed order (sherpa 2)

Figure 6.9: pT spectrum generated for the gg → h → γγ signal processes with Sherpa 2 (with
and without Parton Shower) and with PowHeg-Pythia8 (used for Run 1 analyses)
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Figure 6.10: pT spectrum generated for the interference term between gg → H → γγ and
gg → γγ processes with Sherpa 2 (with and without Parton Shower)
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6.4 Impact of interferences on the measurement of

mh

6.4.1 Generation of pseudo-Asimov datasets

In order to determine the mass shift, two datasets representative of the h → γγ analysis
are needed : one with the interferences included and one without. To this purpose we use
large signal and interference samples (including both g-g and q-g initiated components, see
subsection 1.5.1 and fig. 1.13) that are generated with the Sherpa 2 Monte-Carlo generator,
tuned in the way that has been presented above, and scale them to a luminosity of 20 fb−1

(corresponding to the
√
s = 8 TeV dataset). Furthermore an additional normalization

factor kS is applied to rescale this cross-section computed at NLO to the value of the
Yellow Report 3 [81], which gives kS = 1.45 ± 10% (where the uncertainty accounts for
uncertainties on the PDFs and on αS). A similar factor kB is applied on the background
and although it is not known as no higher-order background computation is available,
we chose it to be kB = kS as a nominal value and a conservative uncertainty will be
assessed by applying large variations on this parameter (from 1 to kS). Because of the
difference of the quark mass in the gg-induced (box) background and signal triangle loops
the background is expected to receive a smaller k-factor between NLO and NNLO than
the signal, because the top-quarks will emit harder radiations [298] and also because there
is an additional term from short-distance renormalization for the signal, that does not
exists for the background (eq. 23 of [114]). The formula 6.3 is then changed to :

dσ

dmγγ

= c2
gγkS

dσsherpaS

dmγγ

+ cgγ
√
kSkB

dσsherpaI

dmγγ

+ kB
dσbkg
dmγγ

(6.6)

A last normalization factor is applied to take into account the contribution of the associated

production processes, which is done by rescaling the signal template by a factor of
N tot
h

N gg→h
h

.

This fraction of gg → h events is given in table 6.5, and we only rescale the signal template
because we assume that there is no interference that involves these associated production
processes as the background is much smaller.

The background template is directly taken from a fit to data, using the background
shape presented in subsection 5.1.2 to do the fit, and there is one S + B + I template
per event category, which is required to produce combined S + B fit to the 10 categories
defined for the mass analysis. Despite this procedure the generated samples are not exact
Asimov datasets, as there are still statistical fluctuations in the Monte-Carlo templates,
especially for the interference templates.

6.4.2 Main results on the mass shift

The fit of the Higgs boson mass is carried out on this pseudo-Asimov datasets, and the
comparison of the mass fitted between the templates with and without interferences allows
an estimation of the impact of interferences between signal and background processes on
the best estimate of the Higgs boson mass. The rescaling of the interference and signal
templates to the SM requires to solve equation 6.2, which has two solutions in cgγ : one of
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Category gg → H fraction (%)
1 90.33
2 58.95
3 90.18
4 59.00
5 86.81
6 90.39
7 59.55
8 90.07
9 60.30
10 86.84

Table 6.5: Fraction of Higgs bosons produced by gluon with respect to the total number of
produced Higgs bosons (for a mass of 125.4 GeV [299]). The numbering of the categories is the
same than in table 5.1

each sign. One of these solutions increases the total number of events with respect to the
case where the interferences are not considered hence will be called ”constructive”. Inci-
dentally it also corresponds to a case where the mass spectrum increases, i.e. is on average
at a higher value than without interferences. The second solution which decreases both
the number of events and the mass spectrum will be called ”destructive” and corresponds
to the actual Standard Model (cgγ = 1 in the exact SM), and interferences should decrease
the number of events at very high-mass to allow for unitarity conservation at high-energy
[300]. In the following we are only interested in assessing the impact of interferences in the
SM, hence we decided to assess only the impact of interferences in the destructive case.
The interference template for the Standard Model case may be seen in fig. 6.11.

The measurement of the mass on each of these templates uses the same modelling of
the data and procedure as the one that had been presented in section 5.2, with a combined
signal and background fit to the 10 mass categories. The only difference comes from the
use of a binned likelihood, with bins of 10 MeV, instead of an unbinned likelihood that can
not be used for the interference templates that require several hundred of millions of events
with small weights. This fit is actually done two times, iteratively and using the result
of the first as starting point to the second. The stability of this result has been checked
with respect to the bin size, and by comparing the result of the fit to a full likelihood
scan. Given that these MC templates are not exact Asimov datasets the production has
been split in four samples, and the mass shift have been separately assessed for each of
these samples which allow to check that the size of each sample is large enough since
the standard deviation computed by comparing one sample to another is small enough.
These results are summarized in table 6.6, that show a constant decrease of 35 MeV of the
Higgs boson mass estimate within the Standard Model due to interferences, and also show
that the RMS of this result computed over four different sample is completely negligible,
therefore the impact of Monte-Carlo statistical fluctuations on this estimation of the mass
shift will not be considered further.

In the case for the template generated in the destructive scheme and in which the
interferences are implemented we expect to find back the number of events that have been
used in the mass analysis as a prediction of the SM, hence the result of the fit should
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Figure 6.11: Detector-level di-photon mass distributions induced by interferences between gg →
γγ and gg → h → γγ within the Standard Model, in fb/GeV (after all cuts applied in the
h→ γγ analysis)

Int. type With/out interf. Quantity Sample 1 Sample 2 Sample 3 Sample 4 Mean RMS

destructive

no I
mh 124.998 124.998 124.997 124.997
µ 0.995 0.995 0.995 0.994

w/ I
mh 124.963 124.962 124.962 124.962
µ 0.988 0.988 0.988 0.988

∆mh[MeV ] -34.7 -35.4 -35.0 -34.8 -35.0 0.3

Table 6.6: Summary of the Higgs boson mass fit for different templates (with or without inter-
ference) for an injected Higgs mass of 125 GeV and for kB = kS = 1.45
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give µ = 1, and the best fit of the signal strength is indeed close to it, as seen in fig.
6.6. This result already implements the rescaling of the efficiencies of our smeared MC to
the efficiencies estimated during the couplings analysis which was mentioned earlier, and
the impact of this rescaling on the mass shift has been checked and was at the order of 2
MeV, hence can be neglected. We also expect a closure for the best-fit of mh on the S+B
samples (without interferences), as it should give back the value of mh injected for the
generation of the MC samples, and it is indeed the case. In addition to this closure, the
results obtained on the four samples do not display a big variance, hence it is safe to quote
a mass shift of ∆mh = −35 ± 0.3 MeV for the standard model case. This means that
if we were to correct for the effect of interferences in the mass measurement, the Higgs
mass measured by ATLAS in the γγ channel [264] would be 35 MeV higher. Here the
RMS of these four samples has been quoted as a statistical error, and the same notation
will be used below. Several samples had to be generated to study systematic effects, using
different settings of the MC generators. For these additional samples, no statistical error
will be quoted as only one sample per setting has been generated. Given the size of the
statistical error for the main templates, it is expected to be negligible for the templates
with systematic variations too.

6.4.3 Systematic effects affecting the mass shift

k-factor variations

One important systematic uncertainty comes from the imperfect knowledge of the signal
and background cross-sections, which needs to be propagated to the templates. In this
process the signal template is scaled by kS and the interference template by

√
kSkB (see

subsection 6.4.1). As it is taken from data, the background template is not rescaled by any
k-factor. First the signal k-factor kS has been varied by ±0.1 which roughly corresponds
to its uncertainty (±7%), and the impact on the estimation of the mass shift was at
the order of 1 MeV, which is negligible. As the signal varies linearly with kS while the
interference term varies only with

√
kS the increased interference cross-section does not

imply a bigger mass shift as the signal is more significant and there is, to some extent,
a partial cancellation of this uncertainty. The background k-factor is unknown hence
requires to be varied over a large range in order to have a fair estimation of the associated
uncertainty on the mass shift. Two values have been taken (1 and kS) and the mass shift
has been estimated for each of these values. As kB only enters within the interference
cross-section, it directly translates in a variation of the mass-shift without any possible
cancellation of this effect, hence giving a bigger uncertainty. This variation of the mass
shift against the value of the k-factors is given in table 6.7 where one may see variation
of ≈ 6 MeV of the mass shift coming from these extreme variations of kB, within the
Standard Model.

Scale variations

Within this problem three QCD scales have to be considered : renormalization (µRes),
factorization (µFac) and resummation (µRes, linked to the parton shower). For the central
value of ∆mh presented in this document, the value of these scales have all been chosen
to be of mγγ, and an additional theory uncertainty has to be evaluated due to the fact the
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ks = 1.35 ks = 1.45 ks = 1.55
kB = 1 −29.9± 0.2 −29.0± 0.2 −28.1± 0.2
kB = kS −34.7± 0.3 −34.9± 0.3 −35.1± 0.3

Table 6.7: Variation of the mass shift induced by the interferences against the value of the
background k-factor kB and signal k-factor kS

Renormalization (µRen) Factorization (µFac) Resummation (µRes)
Down mγγ

2
mγγ

2
mh
4

Nominal mγγ mγγ mγγ

Up 2mγγ 2mγγ 2mγγ

Table 6.8: Summary of the different scale variations used in the evaluation of theory uncertainties,
for kB = kS = 1.45

exact value of this scale is not known. To do so we use the standard method of varying
these three scales. This variation is taken to be of a factor 2 for µRen and µFac, which
corresponds to the standard scale variation, but it is higher for µRes. For the background
the central value for the resummation scale is usually taken as mγγ while for the signal
is often suggested to be close to mh

2 , therefore it is not clear which value should be used
in the generation the interference template. Furthermore this scale is very important for
the result of this document, as it completely modifies the impact of interferences in the
high-pTt categories, therefore a conservative approach has been chosen for the uncertainty
linked to this scale. The maximal envelope of the variations used for the signal and the one
used for the background has been considered, which corresponds to µRes = mh

4 → 2mγγ.
Only the two extrema of this interval have been evaluated. All these scale variations are
summarized in table 6.8.

Within Sherpa 2.0, evaluating the impact of a new value for these scales requires to
create full new signal and interference samples. The mass shift ∆mh is estimated by using
signal and interference templates that are generated with the same settings for the three
scales, while the background does not suffer from this uncertainty as it comes from a fit to
data. In a first step, this has been done by varying each of these three scales separately.
This cannot capture the behaviour of potential non-trivial interplays between the three
scales, which is estimated in a second step by varying coherently the three scales at once
and in the same direction (i.e. all the scales are at ”nominal”, ”up” or ”down” at the same
time). This last setting does not display any obvious effect that could not be explained
by the individual scales variations, and it was therefore decided not to investigate the
potential effect of incoherent scale variations as the three scales do not seem to display a
non-trivial interplay. The biggest effect is observed for the samples where all the scales are
varied at once, and is at the level of ±5 MeV. It is clearly dominated by the variation of
the factorization scale, which has been understood to be coming from the relative variation
of the cross-section of the interference term compared to the signal. Despite having a big
impact on the pT spectrum, the resummation scale has a fairly small impact on the mass
shift, because it does not impact the cross-sections at all. Furthermore the categories
that give the biggest statistical power in the measurement of mh correspond to low pTt
categories [301] where the relative impact of the variation of µRes is small (see subsection
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Variations Nominal µRen up µRen down µFac up µFac down µRes up µRes down All up All down
mh (S+B) 124.997 124.997 124.998 125.000 124.998 125.000 124.997 124.998 124.997
µ (S+B) 0.995 0.982 0.983 0.835 1.181 1.057 0.947 0.911 1.151

mh (S+B+I) 124.962 124.961 124.963 124.960 124.967 124.962 124.961 124.959 124.967
µ (S+B+I) 0.988 0.976 0.977 0.831 1.172 1.05 0.941 0.906 1.143
∆mH [MeV ] -34.9 -36.6 -34.8 -38.3 -30.7 -36.0 -35.8 -39.4 -30.7

Table 6.9: Estimated mass shift (∆mh) due to the impact of interferences, for different QCD
scales variations

Cat. 1 2 3 4 5 6 7 8 9 10
Nomin. −41.2± 1.0 −1.8± 0.6 −54.4± 0.2 −12.8± 0.8 −59.2± 0.7 −39.0± 0.8 −1.3± 0.7 −55.7± 0.7 −10.5± 0.7 −61.7± 1.2
µ

up
Ren

−43.3 −0.1 −54.6 −14.9 −59.2 −38.7 −0.2 −58.5 −13.8 −65.4
µdown

Ren −41.0 −2 −54.5 −11.1 −59.4 −40.1 −1.8 −56.4 −9.8 −63.8
µ

up
F ac

−45.0 −1.7 −57.9 −14.2 −65.1 −41.4 −4.3 −61.3 −13.7 −69.1
µdown

F ac −36.1 −0.5 −48.7 −11.1 −54.8 −34.9 0.6 −49.2 −9.9 −56.6
µ

up
Res

−40.3 −14.9 −54.7 −23.6 −60.4 −39.9 −15.0 −57.1 −23.0 −61.5
µdown

Res −41.8 12.2 −55.3 2.5 −59.2 −39.5 11.3 −58.0 3.7 −66.5
all up −43.8 −17.2 −58.0 −30.5 −67.1 −42.4 −16.5 −59.5 −28.8 −69.4

all down −37.5 10.4 −51.1 1.0 −52.7 −34.6 9.5 −52.5 2.2 −55.4
kB = 1 −34.2± 0.9 −1.5± 0.6 −45.1± 0.3 −10.6± 0.3 −48.6± 0.6 −32.2± 0.6 −1.1± 0.6 −46.2± 0.6 −8.7± 0.6 −51.1± 1

Table 6.10: Estimate of ∆mh by categories (in MeV), together with the uncertainty coming
from scale variations, for kS = 1.45 and kB = 1.45 (unless specified otherwise). The numbering
scheme is the same than in table 5.1

6.4.4).

6.4.4 Results by categories

The same analysis has been conducted category by category, and these results are summa-
rized in tab. 6.10. Here the individual likelihood of the category that is being looked at is
used, and fits to both the S+B and S+B+I of this category are performed to extract ∆mh.
As expected the categories where the interference term has the biggest impact corresponds
to low pTt categories, and it is much smaller at high pTt . The impact of the interference is
also larger in the regions that are at higher η as the level of background becomes larger.
It also larger in the barrel-endcap transition region where the resolution is worse. All the
variations of the scales are shown in 6.10, but with only the impact of the most extreme
k-factor variation (kB = 1.45→ 1) as the variation of kS has a small impact.

For the low pTt and crack categories the conclusion is the same than in the full fit, as the
factorization scale has the dominant impact while the renormalization and resummation
scales have a fairly small impact. But in the high pTt categories the dominant uncertainty
comes from variations of the resummation scale, that can even change the sign of ∆mh

when µRes is small. In the plain fixed-order NLO computation, the impact of interferences
on the high-pTt categories is completely negligible as it has an effect that affects mainly
the very low-pT region, where most of the background events are found. Therefore in
NLO+PS samples most of the interference cross-section in high-pTt categories will be
induced by additional radiations coming from the parton shower, that does not give any
emission above pT = µRes. This means the region pHT > µRes is described by the fixed-
order computation, and it is a feature of the shower used in sherpa that the transition
between these two region is very sharp around µRes [302], although there is an ongoing
effort to improve its description [303]. At fixed-order the high-pTt interference cross-section
is dominated by the quark-gluon initiated process (denoted ”LO (qg)” in fig. 1.13), as it
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Figure 6.12: Di-photon pT spectrum at fixed-order for the full (gg+qg) and gluon-initiated only
components of the interference term. The difference between the full and dotted lines gives the
qg term, which is 0 over the whole mγγ , and has therefore been splitted into mγγ < mh and
mγγ > mh

is seen in fig. 6.12. As the total cross-section for this term is null, it has been split into
two sides in fig. 6.12 : one above the Higgs pole and one below, each having a non-zero
cross-section. At any given mγγ, this term as an opposite sign with respect to the gluon-
induced process (at leading order while at NLO the change of sign of the gluon induced
process is slightly shifted in mγγ, see fig. 1.14), and it is dominating at high pγγT as may be
seen in fig. 6.12. This explains the change of sign of ∆mh : when the resummation scale
is smaller than pT ≈ 100 GeV (which roughly corresponds to pγγT = 70GeV ), the impact
of the gluon-induced interference term is not sufficient in the high-pTt category to balance
out the one of the quark-gluon induced process and get back ∆mh < 0. As soon as the
resummation scale becomes higher than 100 GeV (µRes = mγγ) there is a contamination
from the gluon-induced interference process that can balance the quark-gluon one and give
back ∆mh < 0, as it has a higher total cross-section. Using an even higher resummation
scale (2 mγγ) increases further the cross-section of the gluon-initiated interference term in
the high-pTt categories, as it increases the magnitude of migration from low to high pTt
categories, and hence it decreases further ∆mh.
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6.4.5 Conclusions

An estimate of the impact of the interferences between signal and background processes
has been estimated and found out to be small, at ∆mh = 35 ± 8 MeV, where the uncer-
tainty is the quadratic sum of the uncertainty due to the k-factors and the one from scale
variations (a correction for this effect would increase the value of the mass quoted). It
has been safely neglected for the current published values [130, 263, 264] but can become
important for the next runs, when the uncertainty will decrease. At this stage there are
still uncertainties on the pT distribution which is poorly described by the current best
theoretical tools. Hence its impact on the high-pTt categories has large uncertainties due
to the resummation scale used. One should note that there is currently some work ongoing
inside the theory community to improve the describe of the pT spectrum, by performing
an analytical resummation. Therefore it will probably be possible to achieve an accurate
description of the pT spectrum of the interference term in the coming years, which will
help to have a better knowledge of the full interference term, in all the categories. In
addition there is a new computation of the interference in h+2jets that could be taken
into account [116].
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Conclusion

The outstanding performance of both the LHC and the ATLAS detector during this first
run of the LHC have allowed for a harvest of mature results, especially in the sector of the
Higgs boson, which has just been discovered. The aim of this thesis was to summarize the
current understanding of the h→ γγ lineshape that we have been able to derive with the
data recorded by the ATLAS detector.

The details of the final electro-magnetic calibration procedure, whose development
yielded to a very good understanding of the ATLAS electro-magnetic calorimeter, has
been explained in chapter 4. In this chapter the uncertainties related to the extrapolation
of the energy scale from electrons to photons are derived. They are mainly related to
the material modelling uncertainty, to the lateral leakage mis-modelling, as well as the
uncertainties related to the non-linearity of the energy response (which is mainly induced
by the apparent difference of energy response between the different electronic gain chains).
The set of pre-corrections applied on data, which are mainly targeting an improvement of
the energy resolution, are also described.

This improved calibration procedure brought a sizeable improvement to the systematic
uncertainty on the Higgs boson mass, from 700 MeV [274] to 280 MeV [264]. The final
Run I measurement of the Higgs boson mass using the ATLAS data has been presented
too with mh = 125.98±0.42 (stat)±0.28 (syst) GeV for the h→ γγ channel alone, and of
mh = 125.36±0.37 (stat)±0.18 (syst) GeV when it is combined with the h→ 4l channel.
The impact of the different uncertainties on this measurement have been explained too.
In the same effort [264], an upper limit on the Higgs boson width using a direct fit of the
lineshape has been set, at Γh < 5.3 GeV at 95% C.L. using the CLs method, and this
analysis has been detailed in this manuscript.

Finally a first study of the impact of interferences between signal and background
processes on the distribution of the di-photon invariant mass in the h→ γγ decay channel
is shown. An estimate of the impact of this effect on the measurement of the Higgs boson
mass is given, and has been found out to be small (35 MeV) but it will be more important
for the next Run of the LHC, where the statistical uncertainty is expected to shrink by a
factor of more than 3. Most of the theory uncertainties that are, so far, limiting the use of
this number in an actual analysis are given. This study is expected to be more important
for the Run II of the LHC as it has an impact on the estimate of the width and on the
estimate of the mass, which have so far been neglected, and because we expect an improved
description of the pT spectrum of interferences. Furthermore if a proper modelling of the
pT spectrum is achieved, the method outlined in [112] where the variation of the mass
shift with respect to pT of the di-photon pair is used to infer a limit on the width, could
be developed and applied on the future ATLAS data.
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Appendix A

Distribution of the reconstructed Z0

boson mass in Z0→ ee events profiled
along φ in narrow η bins

In this appendix all the reconstructed Z0 → e+e− mass distributions that were required
to derive to high-voltage corrections that have been described in subsection 4.3.3 are
displayed. They correspond to profiles of the Z boson mass in Z0 → ee events along φ,
in narrow η bins. As the short-circuits have no reason to be symmetrical with respect
to η = 0, the side A and C of the detector are displayed separately. These profiles are
shown both before and after the effective corrections applied to correct for the impact of
short-circuits on the response of the calorimeter.
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APPENDIX A. DISTRIBUTION OF THE RECONSTRUCTED Z0 BOSON MASS IN
Z0 → EE EVENTS PROFILED ALONG φ IN NARROW η BINS
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Figure A.1: Endcap C - Profile of MZ→ee along φ by bins in η, before and after the HV correction
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Figure A.2: Barrel C - Profile of MZ→ee along φ by bins in η, before and after the HV correction
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Figure A.3: Barrel A - Profile of MZ→ee along φ by bins in η, before and after the HV correction
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Figure A.4: Endcap A - Profile of MZ→ee along φ by bins in η, before and after the HV correction
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Appendix B

Calculation of the error on the mass
and of the upper limit on the width
as a function of the resolution

Error on mh The computation that is sketched below was initially done in [304], and
shows the variation of the expected error on the mass ∆ as a function of the peak resolution

σ. This error may be defined through
1

∆2 = E(−∂
2lnL
∂m2

h

) where L is the likelihood of the

experiment and E() the expectation of a given parameter. This second-order derivative
may be developed into :

∂2(−lnL)
∂m2

h

= (∂lnL
∂mh

)2 − 1
L
∂2L
∂m2

h

(B.1)

Now by definition of the expectation we got E[ 1
L
∂2L
∂m2

h

] =
∫ 1
L
∂2L
∂m2

h

Ldx where x corresponds

to the observable, and mh is the parameter of interest. The two L are factorizing out
and the derivative with respect to mh may be inverted with the integral, which gives

E[ 1
L
∂2L
∂m2

h

] = ∂2

∂m2
h

(
∫
Ldx) = 0 hence the error on the mass is only expressed as

1
∆2 = E[(∂lnL

∂mh

)2] (see also [305] for a slightly different demonstration). For a signal plus

background experiment the most general log-likelihood is written as lnL = −NS −NB +∑
i ln(NSPS + NBPB), where PS,B respectively corresponds to the signal and background

PDFs, and if we assume a Gaussian signal the derivative may expressed as

E[( ∂

∂mh

(lnL))2] =
∑
i

E[( NSPS
NSPS +NBPB

mi −mh

σ2 )2] = 1
∆2 (B.2)

where the expectation and the sum may be inverted because all the events are independent
from each other, which implies that the cross-terms that are appearing in the development
of the square are cancelling out in the expectation. So far the only assumption is that the
signal peak is Gaussian, which is already an approximation although it is reasonable. It is
not possible to go further without making stronger assumptions. Now we assume that the
background is flat over the whole mass range that is being considered, and we approximate
the mass peak by a square peak that has a non-zero value only in [mh− σ;mh + σ] where
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UPPER LIMIT ON THE WIDTH AS A FUNCTION OF THE RESOLUTION

σ is the mass resolution. Then if we denote Np
B the number of background events under

the signal peak, eq. B.2 translates into :

1
∆2 = ( NS

NS +Np
B

)2 ∑
mi∈[mh−σ;mh+σ]

(mi −mh

σ2 )2 (B.3)

If we assume that the background has a contribution to the total number of events under

the peak that is much bigger than the signal contribution, this sum may be written as
Np
B

3σ2
which finally gives

∆ = σ

√
3Np

B

NS

= σ ×
√

6σ ×

√
B/GeV

NS

(B.4)

This formula is not perfect because it approximates a Gaussian peak to a square peak, and
this is especially a bad approximation if the tails of the distribution are sizeable. But it is
known to be a fairly good approximation for the mass measurement in the h→ γγ channel
where it qualitatively reproduces the results that are observed on pseudo-experiments.

Upper limit on Γh Instead of considering Γh itself we consider a measurement of the
resolution of a Gaussian mass peak, σ, and the evolution of the limit on the width will then
straightforwardly be estimated by considering a case where the convolution between the
Breit-Wigner and the Gaussian can be approximated by a convolution between two Gaus-

sian, which corresponds to another Gaussian of standard deviation σeff ≈
√
σ2 + ( Γ

2.35)2.

The biggest complication is the fact that the derivative involved in the definition of the
uncertainty is not with respect to mh, but with respect to σ. This gives, with the only
assumption of a Gaussian signal :

1
∆2 =

∑
i

E[( NSPS
NSPS +NBPB

((mi −mh)2

σ3 − 1
σ

))2] (B.5)

Now if we apply the trick of approximating the signal peak to a square peak and consider
only a flat background, this translates into :

1
∆2 = ( NS

Np
B +NS

)2 1
σ2

∑
mi∈[mh−σ;mh+σ]

((mi −mh

σ
)4 + 1− 2(mi −mh)2

σ2 ) (B.6)

where the first part of the sum corresponds to the kurtosis of the distribution (β), which is
equal to 3 for a Gaussian and 1.8 for a square peak. As we only want to have a qualitative
estimate of the evolution of the peak with respect to the resolution, the precise value of
this multiplicative parameter is not important, as long as we can consider it to be constant,
which we assume. Finally we have the following value for the uncertainty on σ, assuming
NS < Np

B :

∆ ≈
σ
√
Np
B

NS

(B.7)

This gives an uncertainty on the measurement of the resolution, which can also be in-
terpreted as an uncertainty on the width, and we consider the 95% C.L. exclusion limit

for the width to be at ≈ 2∆. Since
√
Np
B evolves as

√
σ the limit goes as σ3/2, which

corresponds to what is observed on pseudo-experiments in chapter 5 (fig. 5.29).
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boson de Brout-Englert-Higgs se désintégrant en deux photons par l’expérience
ATLAS au LHC. PhD thesis, U. Paris-Sud 11, Dept. Phys., Orsay, Jul, 2014.
https://cds.cern.ch/record/1756391. Presented 11 Jul 2014. 29, 57, 93, 165,
168, 169, 175, 189, 216

[90] A. Denner, S. Dittmaier, S. Kallweit, and A. Mück, HAWK 2.0: A Monte Carlo
program for Higgs production in vector-boson fusion and Higgs strahlung at hadron
colliders, Comput.Phys.Commun. 195 (2015) 161–171, arXiv:1412.5390
[hep-ph]. 30

[91] M. Garzelli, A. Kardos, C. Papadopoulos, and Z. Trocsanyi, Standard Model Higgs
boson production in association with a top anti-top pair at NLO with parton
showering, Europhys.Lett. 96 (2011) 11001, arXiv:1108.0387 [hep-ph]. 30

[92] LHC cross-section working group. 30

245

http://arxiv.org/abs/1307.1347
http://arxiv.org/abs/1307.1347
http://dx.doi.org/10.1007/JHEP09(2013)129
http://arxiv.org/abs/1306.4581
http://dx.doi.org/10.1007/JHEP06(2012)132
http://arxiv.org/abs/1203.6321
http://dx.doi.org/10.1016/j.physletb.2012.10.019
http://arxiv.org/abs/1206.4133
http://arxiv.org/abs/1206.4133
http://dx.doi.org/10.1016/j.physletb.2014.08.067
http://dx.doi.org/10.1016/j.physletb.2014.08.067
http://arxiv.org/abs/1403.4616
http://dx.doi.org/10.1088/1126-6708/2009/04/002
http://arxiv.org/abs/0812.0578
http://dx.doi.org/10.1007/JHEP02(2012)088
http://dx.doi.org/10.1007/JHEP02(2012)088
http://arxiv.org/abs/1111.2854
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://arxiv.org/abs/0710.3820
https://cds.cern.ch/record/1756391
http://dx.doi.org/10.1016/j.cpc.2015.04.021
http://arxiv.org/abs/1412.5390
http://arxiv.org/abs/1412.5390
http://dx.doi.org/10.1209/0295-5075/96/11001
http://arxiv.org/abs/1108.0387


BIBLIOGRAPHY

[93] A. Djouadi, J. Kalinowski, and M. Spira, HDECAY: A Program for Higgs boson
decays in the standard model and its supersymmetric extension,
Comput.Phys.Commun. 108 (1998) 56–74, arXiv:hep-ph/9704448 [hep-ph]. 30

[94] A. Bredenstein, A. Denner, S. Dittmaier, and M. Weber, Precision calculations for
H —> WW/ZZ —> 4fermions with PROPHECY4f, arXiv:0708.4123 [hep-ph].
30

[95] Calibration of the performance of b-tagging for c and light-flavour jets in the 2012
ATLAS data, Tech. Rep. ATLAS-CONF-2014-046, CERN, Geneva, Jul, 2014.
http://cds.cern.ch/record/1741020. 32

[96] Calibration of b-tagging using dileptonic top pair events in a combinatorial
likelihood approach with the ATLAS experiment, Tech. Rep.
ATLAS-CONF-2014-004, CERN, Geneva, Feb, 2014.
http://cds.cern.ch/record/1664335. 32

[97] G. T. Bodwin, F. Petriello, S. Stoynev, and M. Velasco, Higgs boson decays to
quarkonia and the Hc̄c coupling, Phys. Rev. D88 no. 5, (2013) 053003,
arXiv:1306.5770 [hep-ph]. 32

[98] ATLAS Collaboration, G. Aad et al., Search for Higgs and Z Boson Decays to
J/Ψγ and υ(nS)γ with the ATLAS Detector, Phys. Rev. Lett. 114 no. 12, (2015)
121801, arXiv:1501.03276 [hep-ex]. 32

[99] Measurements of the Higgs boson production and decay rates and coupling strengths
using pp collision data at

√
s = 7 and 8 TeV in the ATLAS experiment, Tech. Rep.

ATLAS-CONF-2015-007, CERN, Geneva, Mar, 2015.
http://cds.cern.ch/record/2002212. 33, 43, 211

[100] ECFA Higgs Working Group Collaboration, C. J. Seez, T. S. Virdee, L. Di Lella,
R. H. Kleiss, Z. Kunszt, and W. J. Stirling, Photon decay modes of the
intermediate mass Higgs,. http://cds.cern.ch/record/220524. 33

[101] L. Fayard and G. Unal, Search for Higgs decay into photons with EAGLE. Add. 1
Addendum on the Higgs search with photons. Add. 2 (final?) update on Higgs decay
to photons, Tech. Rep. ATL-PHYS-92-001. ATL-GE-PN-1, CERN, Geneva, Dec,
1992. http://cds.cern.ch/record/682120. 33

[102] A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson
in the standard model, Phys.Rept. 457 (2008) 1–216, arXiv:hep-ph/0503172
[hep-ph]. 33, 209, 210

[103] M. E. Peskin and D. V. Schroeder, An introduction to quantum field theory.
Advanced book program. Westview Press Reading (Mass.), Boulder (Colo.), 1995.
http://opac.inria.fr/record=b1131978. Autre tirage : 1997. 34, 35

[104] D. Y. Bardin, S. M. Bilenky, W. Beenakker, F. A. Berends, W. L. van Neerven,
S. C. Van der Marck, G. Burgers, W. F. L. Hollik, T. Riemann, and M. Sachwitz,
Z line shape,. https://cds.cern.ch/record/199969. 34, 186

246

http://dx.doi.org/10.1016/S0010-4655(97)00123-9
http://arxiv.org/abs/hep-ph/9704448
http://arxiv.org/abs/0708.4123
http://cds.cern.ch/record/1741020
http://cds.cern.ch/record/1664335
http://dx.doi.org/10.1103/PhysRevD.88.053003
http://arxiv.org/abs/1306.5770
http://dx.doi.org/10.1103/PhysRevLett.114.121801
http://dx.doi.org/10.1103/PhysRevLett.114.121801
http://arxiv.org/abs/1501.03276
http://cds.cern.ch/record/2002212
http://cds.cern.ch/record/220524
http://cds.cern.ch/record/682120
http://dx.doi.org/10.1016/j.physrep.2007.10.004
http://arxiv.org/abs/hep-ph/0503172
http://arxiv.org/abs/hep-ph/0503172
http://opac.inria.fr/record=b1131978
https://cds.cern.ch/record/199969


BIBLIOGRAPHY

[105] S. Goria, G. Passarino, and D. Rosco, The Higgs Boson Lineshape, Nucl.Phys.
B864 (2012) 530–579, arXiv:1112.5517 [hep-ph]. 35, 186

[106] ATLAS Collaboration, G. Aad et al., Constraints on the off-shell Higgs boson
signal strength in the high-mass ZZ and WW final states with the ATLAS
detector, arXiv:1503.01060 [hep-ex]. 35, 41

[107] CMS Collaboration, V. Khachatryan et al., Constraints on the Higgs boson width
from off-shell production and decay to Z-boson pairs, Phys. Lett. B736 (2014) 64,
arXiv:1405.3455 [hep-ex]. 35, 41

[108] G. Breit and E. Wigner, Capture of Slow Neutrons, Phys. Rev. 49 (1936) 519–531.
http://link.aps.org/doi/10.1103/PhysRev.49.519. 35

[109] D. A. Dicus and S. S. Willenbrock, Photon Pair Production and the Intermediate
Mass Higgs Boson, Phys.Rev. D37 (1988) 1801. 36

[110] L. J. Dixon and M. S. Siu, Resonance continuum interference in the diphoton Higgs
signal at the LHC, Phys.Rev.Lett. 90 (2003) 252001, arXiv:hep-ph/0302233
[hep-ph]. 36, 207

[111] S. P. Martin, Interference of Higgs diphoton signal and background in production
with a jet at the LHC, Phys.Rev. D88 no. 1, (2013) 013004, arXiv:1303.3342
[hep-ph]. 36, 38, 208

[112] L. J. Dixon and Y. Li, Bounding the Higgs Boson Width Through Interferometry,
Phys.Rev.Lett. 111 (2013) 111802, arXiv:1305.3854 [hep-ph]. 36, 37, 38, 40,
208, 211, 219, 229

[113] D. de Florian, N. Fidanza, R. Hernández-Pinto, J. Mazzitelli,
Y. Rotstein Habarnau, et al., A complete O(α2

S) calculation of the
signal-background interference for the Higgs diphoton decay channel, Eur.Phys.J.
C73 no. 4, (2013) 2387, arXiv:1303.1397 [hep-ph]. 36, 208

[114] Z. Bern, L. J. Dixon, and C. Schmidt, Isolating a light Higgs boson from the
diphoton background at the CERN LHC, Phys.Rev. D66 (2002) 074018,
arXiv:hep-ph/0206194 [hep-ph]. 38, 208, 221

[115] D. de Florian, Private Communication,. 39

[116] F. Coradeschi, D. de Florian, L. Dixon, N. Fidanza, S. Hoeche, et al., Interference
effects in the H(→ γγ) + 2 jets channel at the LHC, arXiv:1504.05215 [hep-ph].
39, 40, 208, 228

[117] J. R. Andersen and J. M. Smillie, QCD and electroweak interference in Higgs
production by gauge boson fusion, Phys. Rev. D75 (2007) 037301,
arXiv:hep-ph/0611281 [hep-ph]. 39

[118] J. R. Andersen, T. Binoth, G. Heinrich, and J. M. Smillie, Loop induced
interference effects in Higgs Boson plus two jet production at the LHC, JHEP 02
(2008) 057, arXiv:0709.3513 [hep-ph].

247

http://dx.doi.org/10.1016/j.nuclphysb.2012.07.006
http://dx.doi.org/10.1016/j.nuclphysb.2012.07.006
http://arxiv.org/abs/1112.5517
http://arxiv.org/abs/1503.01060
http://dx.doi.org/10.1016/j.physletb.2014.06.077
http://arxiv.org/abs/1405.3455
http://dx.doi.org/10.1103/PhysRev.49.519
http://link.aps.org/doi/10.1103/PhysRev.49.519
http://dx.doi.org/10.1103/PhysRevD.37.1801
http://dx.doi.org/10.1103/PhysRevLett.90.252001
http://arxiv.org/abs/hep-ph/0302233
http://arxiv.org/abs/hep-ph/0302233
http://dx.doi.org/10.1103/PhysRevD.88.013004
http://arxiv.org/abs/1303.3342
http://arxiv.org/abs/1303.3342
http://dx.doi.org/10.1103/PhysRevLett.111.111802
http://arxiv.org/abs/1305.3854
http://dx.doi.org/10.1140/epjc/s10052-013-2387-9
http://dx.doi.org/10.1140/epjc/s10052-013-2387-9
http://arxiv.org/abs/1303.1397
http://dx.doi.org/10.1103/PhysRevD.66.074018
http://arxiv.org/abs/hep-ph/0206194
http://arxiv.org/abs/1504.05215
http://dx.doi.org/10.1103/PhysRevD.75.037301
http://arxiv.org/abs/hep-ph/0611281
http://dx.doi.org/10.1088/1126-6708/2008/02/057
http://dx.doi.org/10.1088/1126-6708/2008/02/057
http://arxiv.org/abs/0709.3513


BIBLIOGRAPHY

[119] M. Ciccolini, A. Denner, and S. Dittmaier, Electroweak and QCD corrections to
Higgs production via vector-boson fusion at the LHC, Phys. Rev. D77 (2008)
013002, arXiv:0710.4749 [hep-ph].

[120] A. Bredenstein, K. Hagiwara, and B. Jager, Mixed QCD-electroweak contributions
to Higgs-plus-dijet production at the LHC, Phys. Rev. D77 (2008) 073004,
arXiv:0801.4231 [hep-ph]. 39

[121] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, et al., The automated
computation of tree-level and next-to-leading order differential cross sections, and
their matching to parton shower simulations, JHEP 1407 (2014) 079,
arXiv:1405.0301 [hep-ph]. 40

[122] E. Vryonidou, MadGraph5 aMC@NLO update,.
https://indico.cern.ch/event/400327/. 40

[123] CMS Collaboration, V. Khachatryan et al., Limits on the Higgs boson lifetime and
width from its decay to four charged leptons, arXiv:1507.06656 [hep-ex]. 41

[124] F. Caola and K. Melnikov, Constraining the Higgs boson width with ZZ production
at the LHC, Phys.Rev. D88 (2013) 054024, arXiv:1307.4935 [hep-ph]. 41

[125] N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light
Higgs boson signal, JHEP 08 (2012) 116, arXiv:1206.4803 [hep-ph]. 42

[126] C. Englert and M. Spannowsky, Limitations and Opportunities of Off-Shell
Coupling Measurements, Phys. Rev. D90 (2014) 053003, arXiv:1405.0285
[hep-ph]. 43

[127] H. E. Logan, Hiding a Higgs width enhancement from off-shell gg (–> h*) –> ZZ
measurements, arXiv:1412.7577 [hep-ph]. 43

[128] J. S. Gainer, J. Lykken, K. T. Matchev, S. Mrenna, and M. Park, Beyond
Geolocating: Constraining Higher Dimensional Operators in H → 4` with Off-Shell
Production and More, Phys. Rev. D91 no. 3, (2015) 035011, arXiv:1403.4951
[hep-ph]. 43

[129] ATLAS Collaboration, G. Aad et al., Measurements of the Higgs boson production
and decay rates and coupling strengths using pp collision data at

√
s = 7 and 8 TeV

in the ATLAS experiment, arXiv:1507.04548 [hep-ex]. 43, 44

[130] CMS Collaboration, V. Khachatryan et al., Precise determination of the mass of
the Higgs boson and tests of compatibility of its couplings with the standard model
predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C75 no. 5, (2015)
212, arXiv:1412.8662 [hep-ex]. 43, 228

[131] LHC Higgs Cross Section Working Group Collaboration, A. David, A. Denner,
M. Duehrssen, M. Grazzini, C. Grojean, G. Passarino, M. Schumacher, M. Spira,
G. Weiglein, and M. Zanetti, LHC HXSWG interim recommendations to explore
the coupling structure of a Higgs-like particle, arXiv:1209.0040 [hep-ph]. 43

248

http://dx.doi.org/10.1103/PhysRevD.77.013002
http://dx.doi.org/10.1103/PhysRevD.77.013002
http://arxiv.org/abs/0710.4749
http://dx.doi.org/10.1103/PhysRevD.77.073004
http://arxiv.org/abs/0801.4231
http://dx.doi.org/10.1007/JHEP07(2014)079
http://arxiv.org/abs/1405.0301
https://indico.cern.ch/event/400327/
http://arxiv.org/abs/1507.06656
http://dx.doi.org/10.1103/PhysRevD.88.054024
http://arxiv.org/abs/1307.4935
http://dx.doi.org/10.1007/JHEP08(2012)116
http://arxiv.org/abs/1206.4803
http://dx.doi.org/10.1103/PhysRevD.90.053003
http://arxiv.org/abs/1405.0285
http://arxiv.org/abs/1405.0285
http://arxiv.org/abs/1412.7577
http://dx.doi.org/10.1103/PhysRevD.91.035011
http://arxiv.org/abs/1403.4951
http://arxiv.org/abs/1403.4951
http://arxiv.org/abs/1507.04548
http://dx.doi.org/10.1140/epjc/s10052-015-3351-7
http://dx.doi.org/10.1140/epjc/s10052-015-3351-7
http://arxiv.org/abs/1412.8662
http://arxiv.org/abs/1209.0040


BIBLIOGRAPHY

[132] J. F. Gunion, H. E. Haber, and J. Wudka, Sum rules for Higgs bosons, Phys. Rev.
D 43 (1991) 904–912. http://link.aps.org/doi/10.1103/PhysRevD.43.904. 43

[133] B. A. Dobrescu and J. D. Lykken, Coupling spans of the Higgs-like boson, JHEP
02 (2013) 073, arXiv:1210.3342 [hep-ph].

[134] M. E. Peskin, Comparison of LHC and ILC Capabilities for Higgs Boson Coupling
Measurements, arXiv:1207.2516 [hep-ph].

[135] M. Duhrssen, S. Heinemeyer, H. Logan, D. Rainwater, G. Weiglein, and
D. Zeppenfeld, Extracting Higgs boson couplings from CERN LHC data, Phys. Rev.
D70 (2004) 113009, arXiv:hep-ph/0406323 [hep-ph].

[136] M. Duhrssen, S. Heinemeyer, H. Logan, D. Rainwater, G. Weiglein, and
D. Zeppenfeld, Determination of Higgs-boson couplings at the LHC, 2004.
arXiv:hep-ph/0407190 [hep-ph].
http://inspirehep.net/record/654651/files/arXiv:hep-ph_0407190.pdf.
43

[137] H. E. Logan and M.-A. Roy, Higgs couplings in a model with triplets, Phys. Rev.
D82 (2010) 115011, arXiv:1008.4869 [hep-ph]. 43

[138] ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD
Electroweak Group, SLD Heavy Flavour Group Collaboration, S. Schael et al.,
Precision electroweak measurements on the Z resonance, Phys.Rept. 427 (2006)
257–454, arXiv:hep-ex/0509008 [hep-ex]. 44, 104, 186

[139] L. Arnaudon, B. Dehning, P. Grosse-Wiesmann, R. Jacobsen, M. Jonker,
J. Koutchouk, J. Miles, R. Olsen, M. Placidi, R. Schmidt, J. Wenninger,
R. Assmann, and A. Blondel, Accurate determination of the LEP beam energy by
resonant depolarization, Zeitschrift für Physik C Particles and Fields 66 no. 1-2,
(1995) 45–62. http://dx.doi.org/10.1007/BF01496579. 44

[140] TLEP Design Study Working Group Collaboration, M. Bicer et al., First Look at
the Physics Case of TLEP, JHEP 01 (2014) 164, arXiv:1308.6176 [hep-ex]. 44

[141] T. Behnke, J. E. Brau, B. Foster, J. Fuster, M. Harrison, et al., The International
Linear Collider Technical Design Report - Volume 1: Executive Summary,
arXiv:1306.6327 [physics.acc-ph]. 44

[142] T. Han and Z. Liu, Potential precision of a direct measurement of the Higgs boson
total width at a muon collider, Phys. Rev. D87 no. 3, (2013) 033007,
arXiv:1210.7803 [hep-ph]. 44

[143] A. Conway and H. Wenzel, Higgs Measurements at a Muon Collider,
arXiv:1304.5270 [hep-ex]. 44

[144] H. Li, Higgs Recoil Mass and Cross-Section Analysis at ILC AND Calibration of
the CALICE SiW ECAL Prototype. Theses, Université Paris Sud - Paris XI, Oct.,
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ture de ce manuscrit, ainsi que Stefan pour tes (patientes) explications sur l’électronique
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