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plein d’énergie pour tout le travail qui m’attend. Encore merci pour m’avoir
fait grandir tant sur le plan mathématique que sur le plan humain.
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Introduction

Le transport optimal (TO) est un domaine de recherche très dynamique et
il y a tant d’exemples et d’applications qu’il est difficile de choisir l’un d’entre
eux pour introduire ce sujet fascinant; nous mentionnons les manuels “old and
new” comme [3, 61, 105, 115, 116]. Nous avons décidé d’introduire le problème
du transport optimal classique, et certaines de ses variantes que nous traiterons
tout au long de ce manuscrit, en utilisant un exemple donné par Villani dans
[116].

Situons notre contexte à Paris et prenons en considération l’ensemble des
boulangeries qui produisent des pains au chocolat (le lecteur peut bien sur choisir
la viennoiserie qui lui plâıt le plus). Ces derniers doivent être livrés chaque matin
aux cafés dans lesquels les clients pourront les goûter. La production et la con-
sommation de pains au chocolat sont décrites par µ et ν, respectivement. Nous
supposons que la quantité total de la production et de la consommation est le
même. Le problème du transport optimal consiste alors à transporter la quantité
de pains au chocolat produite par la boulangerie x ∈ X (X ⊂ R

d est l’ensemble
des boulangeries) à un café y ∈ Y (Y ⊂ R

d est l’ensemble des cafés) de sorte
que le coût de transport c(x, y), par exemple la distance entre la boulangerie
et le café, soit minimal. Le problème introduit par Monge dans [94] consiste à
chercher un transport y = T (x) qui nous indique le café y où l’intégralité des
pains au chocolat produits par x seront délivrés. Dans le chapitre 1 nous mon-
trerons que ce problème est difficile à traiter et qu’on a besoin d’une relaxation
(connu sous le nom de problème de Monge-Kantorovich) : on permet, par exem-
ple, qu’une partie des pains au chocolat produite en x soit envoyée au café y1 et
l’autre à y2. Dans ce cas, nous cherchons un couplage optimal γ(x, y) qui nous
indique comment la masse en x est répartie sur chaque y ∈ Y . Si le couplage
optimal γ(x, y) consiste à assigner le même café y à tous les pains au chocolat
produits par la boulangerie x, alors on dit que le couplage est déterministe et
qu’un transport optimal T existe. Lorsque le coût c(x, y) est la distance au carré,
l’existence d’un couplage déterministe a été prouvée par Yann Brenier dans [21].

Beaucoup de questions se posent à ce stade: que se passe-t-il si l’offre et la
demande de pains au chocolat sont différentes? Et si le camion, représenté par
γ, peut transporter une quantité de marchandises plus petite que celle produite
en x et que celle demandée par le café y? De plus, nous pouvons également
ajouter une troisième catégorie, par exemple les hôtels, de sorte que maintenant
nous devons minimiser le coût de transport des pains au chocolat aux cafés et
aux hôtels qui se trouvent à Paris. Ce problème peut-il encore être interprété
comme un problème de TO? Peut-on introduire une méthode numérique capable
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de résoudre toutes ces variantes du transport optimal? Cette thèse s’attache à
répondre à ces questions et à quelques autres portant sur des modèles de trans-
port optimal qui apparaissent en physique, notamment en physique quantique
et en mécanique des fluides. De plus, nous souhaitons souligner trois thèmes
récurrents. Le premier traite de la régularisation entropique des problèmes de
transport optimal. L’idée principale, que nous détaillerons dans la suite, est
de “relâcher” le problème de Monge-Kantorovich en ajoutant un bruit. Cela
nous permet de remplacer le problème de Monge-Kantorovich par un problème
strictement convexe qui admet une solution unique. En outre, le plus grand
avantage de cette régularisation réside dans le fait que nous pouvons introduire
un algorithme (assez simple à coder) pour calculer la solution. Dans ce cas,
nous ne pouvons plus nous attendre à des plans de transport déterministes. En
effet considèrons γ comme le camion qui livre les pains au chocolat à chaque
cafés. Ajouter une régularisation entropique revient à faire boire au conduc-
teur de γ beaucoup de bières. Ce dernier essaiera de suivre le chemin le moins
cher entre les boulangeries et les cafés mais, étant ivre, il suivra une trajec-
toire aléatoire, livrant ainsi les pains au chocolat à plusieurs cafés voisins.
Remarquons que la régularisation entropique nous permet de définir un al-
gorithme puissant, mais, comme le lendemain d’une soirée alcolisée, présente
aussi quelques inconvénients: par exemple, si le problème non régularisé admet
un plan optimal déterministe, alors nous l’approcherons toujours avec un plan
non déterministe (ou étalé). Il est clair que l’étalement de plan approximatif
dépendra de l’amplitude du paramètre de régularisation (équivalente au nombre
de bières bues par le conducteur).

Cela nous conduit au deuxième thème: l’existence d’un plan non-déterministe.
Nous avons dit que le problème régularisé présente des solutions non déterministes
à cause du type de régularisation que nous avons introduit. En effet, de telles
solutions apparaissent également pour des problèmes non régularisés. Nous ver-
rons que dans le cas du transport multi-marges, et son application aux équations
d’Euler généralisées et à la théorie de la fonctionnelle de la densité (TFD), il
peut y avoir plusieurs solutions optimales parmi lesquelles il y a à la fois des
plans déterministes et non-déterministes.

Le troisième thème traite ensuite du problème de transport optimal multi-
marges. Ne considérons plus uniquement les boulangeries et les cafés, mais
prenons également en compte les hôtels, les restaurants, etc. et cherchons un
couplage γ(x1, · · · , xK) nous indiquant la quantité de pains au chocolat envoyée
par la boulangerie x1 au café x2, à l’hôtel x3, etc. Cet exemple peut parâıtre
simple, mais nous pouvons remarquer que le transport optimal multi-marges
apparâıt plus général que le TO classique, car il nous permet de modéliser
l’interaction entre les boulangeries et tous les clients possibles, à savoir des
cafés, des restaurants, des hôtels, etc.

Avoir plusieurs marges augmente évidemment la difficulté du problème et sa
résolution, en particulier avec la formulation de Monge, est une tâche délicate.
Cela donne toutefois lieu à des solutions présentant une structure surprenante
et qui n’ont pas d’équivalent dans le cas du transport à deux marges. Nous
montrerons par exemple qu’il existe pour le coût harmonique répulsif un plan
optimal déterministe qui se concentre sur des transports “fractals”.
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Décrivons maintenant en détail les principaux résultats mathématiques in-
clus dans cette thèse.

Partie I: régularisation entropique du transport
optimal classique

Dans la partie I nous abordons le problème de transport optimal standard
et certaines de ses variantes telles que le barycentre de Wasserstein, le trans-
port optimal partiel, le transport optimal avec une contrainte de capacité et
une application pour calculer les équilibres de Cournot-Nash. Le but principal
est d’introduire une méthode numérique qui nous permet de résoudre tous ces
problèmes. Cette partie comprend les chapitres 1, 2, 3, 4 et 5.

Le chapitre 1 est un panorama de la théorie du transport optimal (classique):
nous introduisons le problème de Monge-Kantorovich

inf

{∫

X×Y
c(x, y)dγ(x, y) | γ ∈ Π(Rd;µ, ν)

}
, (MK)

ainsi que quelques résultats qui seront utiles tout au long de la thèse. Nous
verrons comment tous ces concepts et résultats sont modifiés dans le cas du
transport optimal multi-marges (TOMM) dans les parties II et III.

Le chapitre 2 est consacré à l’étude de la régularisation entropique du problème
de Monge-Kantorovich

inf

{∫

X×Y
c(x, y)dγ(x, y) + εH(γ|µ⊗ ν) | γ ∈ Π(Rd;µ, ν)

}
, (MKε)

où ε > 0 est un paramètre de régularisation et

H(γ|µ⊗ ν) :=





∫

X×Y

(
log
( dγ

dµ⊗ ν

)
− 1

)
dγ ifγ ≪ µ⊗ ν

+∞ sinon

(0.1)

est l’entropie relative. Nous verrons que grâce à l’entropie, le problème (MKε)
est strictement convexe et admet une solution unique qui a une forme presque
explicite. De plus, comme souligné par C. Léonard dans de nombreux travaux,
voir [84, 85] par exemple, la régularisation de (MK) lorsque le coût est la dis-
tance au carré est en relation avec le problème introduit par Schrödinger dans
[107, 108].

L’idée de régulariser le problème de transport optimal, d’un point de vue
numérique, à l’aide d’un terme d’entropie a été introduite indépendamment par
Cuturi [46] et Galichon et Salanié [63]. Dans [BCC+15], nous étendons cette
idée à d’autres problèmes de transport optimal. Dans le chapitre 3, nous allons
voir que, en utilisant l’algorithme des projections alternées, nous utilisons la
même méthode numérique pour approcher des solutions de plusieurs problèmes
variationnels liés au transport optimal (voir aussi partie II et III). Les chapitres
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3, 4 et 5 représentent une contribution importante de cette thèse car ils donnent
une méthode numérique simple, robuste et flexible.

Nous donnons maintenant une brève description de cette méthode. Après
quelques calculs algébriques simples, le problème (MKε) peut être réécrit comme
la minimisation de la divergence KL de Kullback-Leibler, qui est en fait l’entropie
relative

inf
{
KL (γ|ηε) | γ ∈ Π(Rd;µ, ν)

}
, (KL)

où KL (γ|ηε) := H(γ|ηε) et ηε = 1
L exp (c(x, y)/ε)µ⊗ ν avec L tel que η est une

mesure de probabilité. La distance (KL) peut être placée dans le cadre plus
général des distances de Bregman [18]. On peut alors résoudre le problème en
utilisant l’algorithme des projections alternées de Bregman ou sa généralisation
(nécessaire lorsque les ensembles convexes ne sont pas affines) connue sous le
nom d’algorithme de Dykstra. Notez que l’ensemble Π(Rd;µ, ν) peut être vu
comme l’intersection de deux ensembles convexes Ci, chacun étant associé à une
contrainte de marginale.

L’idée de l’algorithme des projections alternées est de construire une suite
de plans γ(n) telle que le (n + 1)−ième terme est la projection, pour la diver-
gence KL, de γ(n) sur l’ensemble C[n+1] où [·] désigne le modulo. Dans le cas du
problème classique (TO), l’ensemble convexe Ci est un sous-espace affine et nous
montrerons que l’algorithme de Bregman/Dykstra peut être reformulé comme
l’algorithme connu sous le nom de IPFP (Iterative Proportional Fitting Proce-
dure) ou Sinkhorn.

Le chapitre 4 est basé sur [BCC+15]. Nous montrons ici que l’algorithme de
Bregman peut être appliqué pour résoudre différents types de (TO):

• Supposons que nous avons K marginales µi qui modélisent la consom-
mation de pains au chocolat des cafés, des hôtels, des restaurants, des
supermarchés, etc et nous voulons trouver une quantité optimale de pro-
duction ν qui est proche de chaque µi afin de minimiser le coût transport
des marchandises. La distribution ν est le barycentre des mesures µi dans
l’espace de Wasserstein (voir [1]).

• Si nous ne pouvons déplacer qu’une fraction des pains au chocolat ou si
les cafés ne peuvent accepter qu’une partie des biens produits, alors nous
avons un problème connu sous le nom de transport optimal partiel (voir
[27] et [54]).

• Supposons maintenant que nous ne pouvons pas transporter de x à y une
quantité de biens plus grande qu’une limite donnée θ(x, y), alors nous
imposons une contrainte supplémentaire, une “contrainte de capacité” ,
sur le plan de transport: cela nous conduit au transport optimal avec une
contrainte de capacité introduit par Korman et McCann dans [79, 80].

Notons que tous ces problèmes de transport optimal sont intrinsèquement différents,
mais en utilisant la régularisation entropique, nous pouvons les reformuler tous
en termes de minimisation de la divergence de Kullback-Leibler et appliquer
l’algorithme de Bregman.
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Cette partie s’achève avec le chapitre 5, consacré au calcul des équilibres de
Cournot-Nash. Ceci est basé sur un travail en commun avec Adrien Blanchet
et Guillaume Carlier [BCN16b]. Le problème peut être décrit comme suit: les
acteurs hétérogènes doivent chacun choisir une stratégie (ou une probabilité par
rapport aux stratégies, c’est-à-dire que des stratégies mixtes sont autorisées)
afin de minimiser un coût, sur lequel on fait deux hypothèses majeures. D’une
part, chaque joueur a une influence négligeable sur le coût. D’autre part, les
interactions entre les joueurs sont de type champ moyen: ce qui importe n’est
pas vraiment qui joue quoi, mais plutôt combien de joueurs jouent une strategie
donnée. Il existe différents effets de champ moyen, de nature différente et qui
peuvent être soit répulsifs (c’est-à-dire favorisant la dispersion des stratégies)
soit attractifs (favorisant la concentration des stratégies). La congestion (le coût
d’une stratégie est plus élevée si il y a beaucoup de joueurs qui la choisissent)
est un exemple typique d’effet dispersif. Plus récemment, Blanchet et Carlier
[15] (voir aussi [14]) ont souligné le fait que pour une classe de coûts séparables,
les équilibres de Cournot-Nash peuvent être obtenus en minimisant une certaine
fonctionnelle sur l’ensemble des mesures sur l’espace des stratégies. Cette fonc-
tionnelle comporte généralement deux termes: un coût de transport optimal et
une fonctionnelle intégrale plus classique qui peut capturer à la fois la conges-
tion et les effets attractifs (comme dans [83]). Plus précisément, nous avons le
problème de minimisation suivant

inf
ν
{MKc(µ, ν) + E(ν)}, (CN)

où MKc(µ, ν) est le problème (MK) avec un coût c et E(ν) est une fonction-
nelle qui capture à la fois la congestion et les effets attractifs. Le but de ce
chapitre est de montrer qu’une extension de l’algorithme de Bregman/Dykstra,
récemment proposé par Peyré [100] pour les flots gradients dans l’espace de
Wasserstein, peut être parfaitement adaptée au calcul des équilibres de Cournot-
Nash. Notons que jusqu’à présent les tentatives de résolution numérique de
(CN) ont été faites dans le cas du coût quadratique, en raison de la structure
spéciale des solutions optimales. Ici, grâce à la régularisation entropique et par
conséquent à l’algorithme de Bregman/Dykstra, nous sommes capables de cal-
culer les équilibres de Cournot-Nash quelle que soit la fonction de coût c dans
MKc. Enfin, nous présentons quelques simulations numériques qui donnent
des indications intéressantes sur la topologie des équilibres et nous proposons
également une extension du modèle à plusieurs populations.

Partie II: des équations d’Euler au transport op-
timal répulsif

Cette partie est consacrée au problème du transport optimal multi-marges
(TOMM). Nous verrons que ce type de problème apparâıt de façon très naturelle
dans de nombreux contextes en physique comme en dynamique des fluides et en
théorie de la fonctionnelle de la densité (TFD). La deuxième contribution impor-
tante de la thèse est de donner un cadre unificateur des applications du transport
optimal multi-marges en physique. Par ailleurs, nous introduisons une classe de
problèmes de transport optimal, le transport optimal répulsif (qui trouve son ap-
plication principale en TDF), pour lequel nous résumons les résultats existants
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dans la littérature et donnons de nouveaux, comme l’existence de transports
fractals.

Le chapitre 6 traite des problèmes variationnels associés aux équations d’Euler
incompressibles. Nous nous concentrons surtout sur le principe variationnel in-
troduit par Brenier dans [20, 19] car il peut être considéré comme un précurseur
du problème multi-marges. Ce chapitre est basé sur un travail en commun avec
Jean-David Benamou et Guillaume Carlier [BCN16a].

Soient u : [0, T ]×D → R
d le champ de vitesse et p : [0, T ]×D → R le champ

de pression. On peut écrire les équations d’Euler de la façon suivante





∂tu+ (u · ∇)u+∇p = 0 dans [0, T ]×D
div(u) = 0 dans [0, T ]×D
u · n = 0 sur [0, T ]× ∂D,

(0.2)

où n est le vecteur unitaire normal à ∂D. Le mouvement d’un fluide incom-
pressible à l’intérieur de D peut aussi être décrit d’un point de vue Lagrangien:
on regarde alors le mouvement des particules du fluide par rapport à leur posi-
tion initiale. Nous supposons donc que le champ de vitesse u est une solution
régulière du système (6.1) et on note par g : [0, T ]×D → R

d la solution de

{
∂tg(t, x) = u(t, g(t, x)) (t, x) ∈ [0, T ]×D
g(0, x) = x x ∈ D. (0.3)

Puisque u est à divergence nulle, pour chaque temps t le flot g(t, ·) est un
difféomorphisme qui préserve la mesure (on note g(t, ·) ∈ SDiff(D)) c’est à dire
g(t, ·)♯LD = LD. Si l’on écrit (0.10) en fonction de g on obtient





∂ttg(t, x) = −∇p(t, g(t, x)) dans [0, T ]×D
g(0, x) = x x ∈ D
g(t, ·) ∈ SDiff(D)

(0.4)

Dans [6], Arnold a interprété l’équation ci-dessus comme une équation géodésique
dans l’espace SDiff(D) : on peut ainsi chercher la solution de (0.12) en min-
imisant ∫ T

0

∫

D

1

2
|ġ(t, x)|2dxdt (A)

parmi les chemins g(t, ·) ∈ SDiff(D) avec configuration initiale g(0, ·) = g⋆
et configuration finale g(T, ·) = g⋆ (par invariance on peut prendre g⋆ égale
à l’identité Id). Dans [51], Ebin et Marsden ont prouvé que, lorsque D est
une variété compacte sans frontière, le problème de minimisation (A) a une
solution unique, qui est aussi une solution des équations d’Euler, si g⋆ et g⋆

sont suffisamment proches dans une norme de Sobolev adéquate. Malgré ces
résultats, Shnirelman a prouvé dans [112, 111] que quand d > 3 l’infimum n’est
pas atteint et que quand d = 2 il existe une configuration finale γ⋆ ∈ SDiff(D)
qui ne peut pas être reliée à Id par un chemin d’énergie finie. Ces résultats
motivent l’étude des formulations relaxées du problème d’Arnold, introduites
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par Brenier dans [20]: il considère les mesures de probabilité γ sur Ω(D), l’espace
des chemins absolument continus ω, et minimise

∫

Ω(D)

∫ 1

0

1

2
|ω̇(t)|2dtdγ(ω), (E)

sous les contraintes

(e0, eT )♯γ = (Id, g⋆)♯LD, (et)♯γ = LD, ∀t ∈ [0, T ], (0.5)

où et(ω) := ω(t) indique la projection à l’instant t. Brenier a appelé γ un flot in-
compressible généralisé dans [0, T ] entre Id et g⋆. On remarque que le problème
(E) ressemble à un problème de Monge-Kantorovich avec un nombre infini de
marges. Dans la section 6.3 nous présentons une discrétisation temporelle du
problème de Brenier obtenue en fixant le nombre K de pas de temps (à savoir
le nombre de marges) :

inf

{∫

Ω

K∑

i=1

|ω(ti)− ω(ti−1)|2dγ |

γ ∈ P(Ω), (ei)♯γ = LD, (e0, eT )♯γ = (Id, g⋆)♯LD

}
,

(EK)

et nous prouvons que le problème discret (EK) converge vers (E) quand K → ∞.

On conclut ce chapitre en décrivant un modèle, introduit d’abord par Léonard
et ses co-auteurs dans [5] (et ensuite dans [BCN16a]) qui peut être vu comme un
principe de Brenier avec viscosité. On peut retrouver ce modèle à partir de la
régularisation entropique de (EK): la version régularisée de (EK) peut être vue
comme une discrétisation temporelle d’un problème avec un nombre infini de
marges. En effet, nous retrouvons un problème de minimisation d’une entropie
relative (définie comme dans (MKε)) où la mesure de référence est une mesure
de Wiener. En d’autres termes, nous obtenons un problème de Schrödinger avec
un nombre infini de marges, ce qui peut être considéré comme une extension du
problème avec deux marges.

Le chapitre 7 est consacré à l’introduction du transport optimal multi-marges
et à la présentation d’une généralisation de l’algorithme IPFP à ce cas. Ce
chapitre est basé sur [BCC+15, BCN16a]. Soit K le nombre de marges. Le
problème de Monge-Kantorovich multi-marges devient

inf

{∫

RdK

c(x1, . . . , xK)dγ(x1, · · · , xK) | γ ∈ Π(RdK ;µ1, · · · , µK)

}
, (MKK)

où Π(RdK ;µ1, · · · , µK) est l’ensemble des couplages γ(x1, · · · , xK) ayant µ1, · · · , µK
comme marges. Le problème de Monge correspondant devient alors

inf

{∫

RdK

c(x, T2(x), · · · , TK(x))dµ1(x) | T = {Ti}Ki=1 ∈ TK
}
, (MK)

où

TK := {T = {Ti}Ki=1 | Ti : Rd → R
d (Ti)♯µ1 = µi, ∀i = 2, · · · ,K, T1 = Id}.

CONTENTS 7



CONTENTS

Ces problèmes multi-marges sont apparus pour la première fois dans le travail
de Gangbo et Świȩch [66] qui ont résolu le cas du coût quadratique et ont prouvé
l’existence de solutions de Monge (c’est-à-dire d’applications de transport opti-
males). Au cours des dernières années, les problèmes multi-marges ont suscité
beaucoup d’intérêt, car ils apparaissent naturellement dans de nombreux con-
textes différents, tels que l’économie [32], [96] et la théorie de la fonctionnelle
de la densité [26, 43, 49, 60, 44] comme nous le verrons dans la dernière partie.
Dans la section 7.5, nous présentons des simulations numériques pour différents
types de problèmes de transport optimal multi-marges. Nous soulignons que
cela est possible grâce à une extension de l’algorithme IPFP proposé par l’auteur
[BCC+15, BCN15, BCN16a, DMGN15].

Le chapitre 8 est basé sur un travail en commun avec Simone Di Marino et
Augusto Gerolin [DMGN15]. Ici, nous avons essayé de donner un cadre général
pour une classe particulière de fonctions de coût : les coûts répulsifs. Comme
nous l’expliquerons dans la dernière partie de cette thèse, la principale moti-
vation qui nous a amenés à étudier ce type de problème de transport optimal
provient de la théorie de la fonctionnelle de la densité où certains coûts, comme
le coût de Coulomb ou le coût harmonique répulsif, jouent un rôle central . Du
point de vue mathématique, le cas intéressant est celui où toutes les marges du
couplage γ dans (MKK) sont absolument continues par rapport à la mesure de
Lebesgue et sont identiques. En particulier, puisque les coûts sont “repulsifs”,
si des solutions de type Monge existent, elles doivent suivre la règle “plus c’est
loin, mieux c’est !”, ce qui veut dire que nous cherchons à déplacer la masse
autant que possible.

Le résultat principal de cette section est contenu dans le théorème 8.1.6 où
nous montrons qu’il existe des transports optimaux pour le problème de Monge
lorsque le coût est donné par

c(x1, · · · , xK) = −
∑

i<j

|xi − xj |2

et ces transports ont la particularité d’avoir une structure fractale quand k > 3.
On note que c’est un résultat surprenant qui n’a pas de version équivalente dans
le cas de deux marges.

Partie III: rencontre entre transport optimal et
la théorie de la fonctionnelle de la densité

La dernière partie de cette thèse est consacrée à exploiter la connexion en-
tre la théorie de la fonctionnelle de la densité et le transport optimal multi-
marges. On peut décrire la structure d’une molécule avec N électrons en
étudiant l’équation de Schrödinger pour une fonction d’onde ψ ∈ L2(R3K ;C)
(négligeons pour le moment la variable de spin). La limite de cette approche
est dans la complexité du calcul numérique : pour prédire le comportement
d’une molecule H2O (10 électrons) en discrétisant R en une grille de 10 points,
nous devons résoudre l’équation de Schrödinger sur une grille de 1030 points.
C’est pourquoi Hohenberg, Kohn et Sham ont introduit, dans [73] et [78], la
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théorie de la fonctionnelle de la densité (TFD) comme méthode d’approximation
numérique pour résoudre l’équation de Schrödinger plus efficacement. L’idée
principale de la DFT est de calculer seulement la densité électronique

ρ(x1) =

∫
γK(x1, x2 · · · , xK)dx2 · · · dxK ,

où γK = |ψ(x1, · · · , xK)|2 est la densité de probabilité jointe des électrons aux
positions x1, · · · , xK ∈ R

3, au lieu de la fonction d’onde ψ. Un cas intéressant
pour la DFT est lorsque la répulsion entre les électrons domine sur l’énergie
cinétique. Alors, le problème peut être reformulé comme un problème de trans-
port optimal (OT) comme souligné dans les travaux pionniers de Buttazzo, De
Pascale et Gori-Giorgi [26] et Cotar, Friesecke et Klüppelberg [43].

Dans le chapitre 9, nous introduisons la théorie de la fonctionnelle de la
densité et le transport optimal multi-marges avec le coût de Coulomb. Dans la
théorie de la fonctionnelle de la densité [73] l’énergie totale d’un système (avec
N électrons) est obtenue en minimisant la fonctionnelle suivante par rapport à
la densité électronique ρ(x):

E(ρ) = min
ρ∈R

FHK(ρ) +

∫

R3

v(x)ρ(x)dx (0.6)

où R := {ρ : R3 → R|ρ > 0,
√
ρ ∈ H1(R3),

∫
R3 ρ(x)dx = K},

v := − Z

|x−R| est le potentiel d’interaction électron-noyau (Z et R sont la

charge et la position du noyau), FHK est la fonctionnelle Hohenberg-Kohn qui
est définie comme la valeur minimale parmi toutes les fonctions ψ qui donnent
ρ:

FHK(ρ) = min
ψ→ρ

~
2T (ψ) + Vee(ψ), (0.7)

où ~
2 est un facteur constant,

T (ψ) =
1

2

∫
· · ·
∫ K∑

i=1

|∇xi
ψ|2dx1 · · · dxK

est l’énergie cinétique et

Vee(ψ) =

∫
· · ·
∫ N∑

i=1

N∑

j>i

1

|xi − xj |
|ψ|2dx1 · · · dxK

est l’interaction électron-électron. Si l’on considère la limite semi-classique

lim~→0 minψ→ρ ~
2T (ψ) + Vee(ψ)

et si l’on suppose avoir le droit d’échanger minimum et limite (Cotar, Friesecke
et Klüppelberg dans [43] l’ont prouvé pour K = 2 ), alors on obtient la fonc-
tionnelle suivante:

V SCEee (ρ) = min
ψ→ρ

∫
· · ·
∫ K∑

i=1

K∑

j>i

1

|xi − xj |
|ψ|2dx1 · · · dxK (0.8)
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où V SCEee est l’énergie minimale de répulsion de Coulomb dont le minimiseur
caractérise l’état de Strictly Correlated Electrons (SCE). On peut noter que, en
notant γ = |ψ|2, V SCEee correspond au problème de Monge-Kantorovich avec
le coût de Coulomb. Puisque le coût est à symétrie radiale, si les marges ρ
sont également à symétrie radiale, alors (0.16) peut être réduit à un problème
unidimensionnel avec le coût donné par la minimisation sur les angles de
∑K
i=1

∑K
j>i

1

|xi − xj |
. Dans la section 9.5.2, nous prouvons que

FHK(ρ) > min
{
H(γ|η) | γ ∈ ΠK(RdK ; ρ)

}

où η := 1
L exp (−∑i<j

1
ε|xi−xj | )⊗

K
i=1 dxi et ε =

π~2

2
. Cela nous montre que la

régularisation entropique, introduite pour des raisons “numériques”, a en fait
un sens “physique” en ce sens qu’elle tient compte des effets dus à l’énergie
cinétique.

Le chapitre 10 est basé sur un travail en commun ([SDMG+]) avec Simone Di
Marino, Augusto Gerolin, Klaas Giesbertz, Paola Gori-Giorgi et Michael Seidl.
Nous y donnons un contre-exemple (nous renvoyons le lecteur aussi à [41] pour
d’autres contre-exemples) à la conjecture de Seidl 0.0.1.

Le dernier chapitre 11 est consacré aux simulations numériques pour le
(TOMM) avec coût de Coulomb obtenues avec l’IPFP. Ce chapitre est basé
sur [BCN15, DMGN15, SDMG+]. Remarquons que la section 11.3 est liée au
chapitre 10 car nous y présentons des contre-exemples numériques à la conjec-
ture 0.0.1.
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Introduction

Optimal Transportation is a very dynamic research field and there are so
many examples and applications that it is actually difficult to choose one among
them in order to introduce this fascinating subject; we refer the reader to some
“old and new” textbooks such as [3, 61, 105, 115, 116]. Here, we have decided
to introduce the classical optimal transport problem, and some of its variants
which we deal with throughout the thesis, by using an example given by Villani
in [116].

Imagine that we are in Paris and consider the bakeries, producing pain au
chocolat (the reader is free to choose his favorite French pastry), which should
be transported each morning to the local cafés where customers will enjoy eating
them. The production and the consumption of pain au chocolat are described
by a distribution µ and ν, respectively; we assume that the total amount of the
production and the consumption is the same. Then, the Optimal Transporta-
tion problem consists in transporting the amount of pain au chocolat produced
by the bakery x ∈ X (X ⊂ R

d is the set of bakeries) to a café y ∈ Y (Y ⊂ R
d

is the set of cafés) such that the transport cost c(x, y), for instance the distance
between the bakery and the café, is minimized. The problem introduced by
Monge in [94] deals with searching for a transport map y = T (x) which tells
us the café y where all the amount of pain au chocolat produced by x is sent.
In chapter 1, we will recall that this problem is actually difficult to treat and
a relaxation (known as the Monge-Kantorovich problem) is needed: we allow
to split the “mass” at x such that, as an example, a fraction is sent to y1 and
the other one to y2. So, in this second case we are looking for an optimal cou-
pling γ(x, y) which tells us how mass at x is distributed to all y ∈ Y . In the
case in which the “cheapest” coupling γ(x, y) is to assign the same café y to all
the pain au chocolat produced by the bakery x, then we say that the optimal
coupling is deterministic and an optimal map exists. When cost c(x, y) is the
squared distance the existence of such a deterministic coupling was proved by
Yann Brenier in [21].

Many questions arise at this point: what happens if the supply and the de-
mand of pain au chocolat are different? and if the truck, represented by γ, can
transport a quantity of goods smaller than the one produced at x and requested
by the café y? Moreover, we can also add a third category, e.g. the hotels, so
that now we have to minimize the cost of sending the pain au chocolat to both
the cafés and the hotel in Paris. Can this problem still be interpreted as an OT
problem? Can we introduce a numerical method which is able to solve all these
variants of Optimal Transport? This thesis is, actually, devoted to answer these
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questions and a few other ones dealing with optimal transport models arising in
Physics, especially in Quantum Physics and Fluid Dynamics. Moreover, there
are three recurring themes that we wish to highlight. The first one deals with
the entropic regularization of Optimal Transport problems. The main idea, that
we will detail in the following, is to “relax” the Monge-Kantorovich problem by
adding a noise. This enable us to replace the Monge-Kantorovich problem by
a strongly convex problem which admits a unique solution. Furthermore, the
greatest advantage of this regularization lies on the fact that we can introduce a
simple algorithm to compute the solution. In this case we cannot expect deter-
ministic transport plans anymore: if we consider γ as the truck which delivers
the pain au chocolat to each cafés, then adding an entropic regularization is
equivalent to make the driver of γ drink many beers. Thus, the driver will try
to follow the cheapest path between the bakeries and the cafés but, since he is
drunk, he will follow a random trajectory, delivering pain au chocolat to sev-
eral nearby cafés. Notice that the entropic regularization allow us to define a
powerful algorithm, but, as an hangover, has also some drawbacks: for instance,
if the unregularized problem admits a deterministic optimal plan, then we al-
ways approximate it with a non-deterministic (or spread) plan. It is clear that
the “spreadness” of the approximate plan will depend on the magnitude of the
regularization parameter (roughly speaking it depends on the number of beers
drunk by the driver).

This leads to the second theme: the existence of non-deterministic plan. We
have said that the regularized problem has solutions which are non-deterministic
and this is due to the kind of regularization we have introduced. Indeed these
kinds of solutions arise also in the case of un-regularized problems. We will see
that in the case of multi-marginal transportation, and its application to gener-
alized Euler equations and Density Functional theory, there could be many op-
timal solutions among which there are both deterministic and non-deterministic
plans.

Then, the third theme deals with multi-marginals optimal transport prob-
lem. Instead of considering only bakeries and cafés, we take into account also
hotels, restaurants, etc and we look for a coupling γ(x1, · · · , xK) which tells us
the amount of pain au chocolat sent by the bakery x1 to the café x2, the hotel
x3, etc. Even if this is a simple example, we can notice that the multi-marginal
optimal transport appears more general than the classic OT as it let us model
the interaction between the bakeries and all the possible customers which in-
clude cafés, restaurants, hotel etc.

The multi-marginality character of the problem obviously increases its diffi-
culty and treat it, especially the Monge formulation, is a delicate task. However
this also gives rise to solutions with a surprising structure which have not a
counterpart in the two marginals case. For instance, we will show that for the
repulsive harmonic cost, there exists a deterministic optimal plan which is con-
centrated on “fractal” maps.

Now we shall describe in details the main mathematical results included in
the present thesis. We shall see how they are presented with respect to the
chapters as well.
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Part I: entropic regularization of classic optimal
transport

In part I we address the standard optimal transport problem and some of
its variants such as Wasserstein barycenter, Partial optimal transport, Optimal
Transport with capacity constraint and an application to compute Cournot-
Nash equilibria. The main purpose is to introduce a numerical method which
is used to solve all these problems. This part is composed by chapters 1, 2, 3,
4 and 5.

Chapter 1 is a survey on (classical) Optimal Transport Theory: we introduce
the Monge-Kantorovich problem

inf

{∫

X×Y
c(x, y)dγ(x, y) | γ ∈ Π(Rd;µ, ν)

}
, (MK)

as well as some results which will be useful throughout the thesis. Especially,
we will see how all these concepts and results will be modified in the case of the
Multi-Marginal Optimal Transport (MMOT) in parts II and III.

Chapter 2 is devoted to study the entropic regularization of the Monge-
Kantorovich problem

inf

{∫

X×Y
c(x, y)dγ(x, y) + εH(γ|µ⊗ ν) | γ ∈ Π(Rd;µ, ν)

}
, (MKε)

where ε > 0 is a regularization parameter and

H(γ|µ⊗ ν) :=





∫

X×Y

(
log
( dγ

dµ⊗ ν

)
− 1

)
dγ ifγ ≪ µ⊗ ν

+∞ otherwise

(0.9)

is the relative entropy. We will see that thanks to the entropy, problem (MKε)
is strictly convex and admits a unique solution which has an almost explicit
form. Moreover, as highlighted by C. Léonard in many works, see for instance
[84, 85], the regularization of (MK) when the cost is the quadratic distance is
related to the problem introduced by Schrödinger in [107, 108].

The idea of regularizing the optimal transport problem, from a numerical
point of view, by means of an entropy term was introduced, independently by
Cuturi [46] and Galichon and Salanié in [63]. In [BCC+15] we extend this to
other optimal transport problems. In chapter 3 we will see that by using the
alternate projections algorithm we use the same numerical method to approxi-
mate solutions to several variational problems related to optimal transport (see
also part II and III). Chapters 3, 4 and 5 represent an important contribution
of this thesis as they give a simple, robust and flexible numerical method.

Let us now give a brief description of this method. After some simple alge-
braic computations, problem (MKε) can be rewritten as the minimization of
the Kullback-Leibler KL divergence, which is indeed the relative entropy,

inf
{
KL (γ|ηε) | γ ∈ Π(Rd;µ, ν)

}
, (KL)
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where KL (γ|ηε) := H(γ|ηε) and ηε = 1
L exp (−c(x, y)/ε)µ⊗ ν with L such that

η is a probability measure. The (KL) distance can be placed in the more general
framework of Bregman distances [18]. Then, problem (KL) can be solved by
using the Bregman alternate projections algorithm or its generalization (needed
when the convex sets are not affine) known as Dykstra’s algorithm. Notice that
the set Π(Rd;µ, ν) can be seen as the intersection of two convex set Ci each of
them associated to a marginal constraint.

The idea of the alternate projections algorithm is to build a sequence of plans
γ(n) such that the (n + 1)−th term is the projection, with respect to the KL
divergence, of γ(n) onto the set C[n+1] where [·] denotes the modulo operation.
In the case of the classical (OT) problem the convex set Ci are affine subspaces
and we will show that the Bregman/Dykstra algorithm can be reformulated as
the IPFP, Iterative Proportional Fitting Procedure, (or Sinkhorn) algorithm.

Chapter 4 is based on [BCC+15]. Here, we show that the Bregman algorithm
can be applied to solve different kinds of (OT):

• Suppose that we have K marginals µi which model the consumption of
pain au chocolat of cafés, hotels, restaurants, supermarket, etc and we
want to find an optimal amount of production ν which is close to each µi
in order to minimize the cost of transporting the goods. The distribution
ν is the barycenter of the measures µi in the Wasserstein space (see [1]).

• If we can move only a fraction of pain au chocolat or the cafés can accept
only a part of the goods produced, then we have a problem which is known
as Partial Optimal Transport (see [27] and [54]).

• Assume now that we cannot transport from x to y a quantity of goods
larger than a given limit θ(x, y), then we are imposing an additional con-
straint, a “capacity constraint”, on the transport plan: this leads us to
the so-called Optimal Transport with capacity constraint introduced by
Korman and McCann in [79, 80].

Notice that all these optimal transport problems are intrinsically different, but
by using the entropic regularization we can recast all of them in terms of mini-
mization of a Kullback-Leibler divergence and apply the Bregman algorithm.

We end this Part with chapter 5, devoted to the computation of Cournot-
Nash equilibria. This is based on a joint work with Adrien Blanchet and Guil-
laume Carlier [BCN16b]. The problem can be described as follows: heteroge-
neous players each have to choose a strategy (or a probability over strategies,
i.e. mixed strategies are allowed) so as to minimize a cost, the latter depending
on the choice of the whole population of players only through the distribution
of their strategies. In other words, on the one hand, each player has a negligible
influence on the cost. On the other hand, the interactions between players are of
mean-field type: it does not matter who plays such and such strategy but rather
how many players chose it. There are different mean-field effects, of different
nature and which can be either repulsive (i.e. favoring dispersion of strategies)
or attractive (favoring concentration of strategies). Congestion (the cost of a
strategy is higher if it is frequently played) is a typical example of dispersive
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effect. More recently, Blanchet and Carlier [15] (also see [14]) emphasized the
fact that for a separable class of costs, Cournot-Nash equilibria can be obtained
by the minimization of a certain functional on the set of measures on the space
of strategies. This functional typically involves two terms: an optimal transport
cost and a more standard integral functional which may capture both conges-
tion and attractive effects (as in [83]). More precisely we have the following
minimization problem

inf
ν
{MKc(µ, ν) + E(ν)}, (CN)

where MKc(µ, ν) is problem (MK) with a cost c and E(ν) is a functional which
captures both congestion and attractive effects. The purpose of the chapter is
to show that a recent extension of the Bregman/Dykstra’s algorithm proposed
by Peyré [100] for the Wasserstein gradient flows is perfectly well-suited to the
computation of Cournot-Nash equilibria. Notice that so far the attempts to
solve numerically (CN) were made in the case of the quadratic cost, due to
the special structure of the optimal solutions. Here, thanks to the entropic
regularization, and consequently the Bregman/Dykstra’s algorithm, we are able
to compute the Cournot-Nash equilibria whatever the cost function c in MKc
is. We, finally, present some numerical simulations which give interesting hints
on the topology of the equilibria and we also propose an extension of the model
to several populations.

Part II: from Euler equations to repulsive optimal
transportation

This part is entirely devoted to the Multi-Marginal optimal transportation
problem (MMOT). We will see that this kind of problems arises in a very natural
way in many contexts in Physics such as Fluid dynamics and Density Functional
Theory (DFT). The other important contribution of the thesis is actually to
give a unifying framework of applications of multi-marginal optimal transport
in Physics. Furthermore, we also introduce a class of optimal transportation
problems, the so-called repulsive OT (which finds its principal application in
DFT), where we summarize existing results in the literature and we give also
some new important ones such as the appearance of fractal optimal transport
maps.

Chapter 6 deals with the variational problems for the incompressible Eu-
ler equations. We especially focus on the variational principle introduced by
Brenier in [20, 19] as it can be considered a forerunner of multi-marginal OT
problem. This chapter is partly based on a joint work with Jean-David Ben-
amou and Guillaume Carlier [BCN16a].

Let u : [0, T ]×D → R
d denote the velocity field and p : [0, T ]×D → R the

pressure field, then the Incompressible Euler Equations read as





∂tu+ (u · ∇)u+∇p = 0 in [0, T ]×D
div(u) = 0 in [0, T ]×D
u · n = 0 on [0, T ]× ∂D,

(0.10)
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where n is the unit external normal to ∂D. The motion of an incompressible
fluid inside D can be described also by a Lagrangian point of view: one can look
at the motion of the particles of the fluid with respect to their initial position.
Thus, let us assume that the velocity field u is a smooth solution of the system
(6.1) and let g : [0, T ]×D → R

d denote the flow map solution of
{
∂tg(t, x) = u(t, g(t, x)) (t, x) ∈ [0, T ]×D
g(0, x) = x x ∈ D. (0.11)

Since u is divergence free, for each time the map g(t, ·) is a measure-preserving
diffeomorphism (say g(t, ·) ∈ SDiff(D)) such that g(t, ·)♯LD = LD. Writing
(0.10) in terms of g leads us to the following equation





∂ttg(t, x) = −∇p(t, g(t, x)) in [0, T ]×D
g(0, x) = x x ∈ D
g(t, ·) ∈ SDiff(D)

(0.12)

In [6], Arnold interpreted the equation above as a geodesic equation in the space
SDiff(D) so that on can look for solution to (0.12) by minimizing

∫ T

0

∫

D

1

2
|ġ(t, x)|2dxdt (A)

among all the paths g(t, ·) ∈ SDiff(D) with prescribed initial g(0, ·) = g⋆ and
final g(T, ·) = g⋆ configuration (typically, by right invariance, g⋆ is take as
the identity map Id). In [51], Ebin and Marsden proved that, when D is a
smooth compact manifold with no boundary, the minimization of (A) leads to
a unique solution, corresponding also to a solution to Euler equations, if g⋆ and
g⋆ are sufficiently close in a suitable Sobolev norm. Despite this positive results,
Shnirelman proved in [112, 111] that when d > 3 the infimum is not attained
in general, and that when d = 2 there exists a γ⋆ ∈ SDiff(D) which cannot be
connected to Id by a path with finite energy. This negative results motivate the
study of relaxed formulations of Arnold’s problem, firstly introduced by Brenier
in [20]: he considered probability measures γ on Ω(D), the space of absolutely
continuous path ω, and minimize the problem

∫

Ω(D)

∫ 1

0

1

2
|ω̇(t)|2dtdγ(ω), (E)

under the constraints

(e0, eT )♯γ = (Id, g⋆)♯LD, (et)♯γ = LD, ∀t ∈ [0, T ], (0.13)

where et(ω) := ω(t) denote the evaluation maps at time t. Brenier called γ
generalized incompressible flow in [0, T ] between Id and g⋆. Notice that problem
(E) looks like a Monge-Kantorovich problem with an infinite number of marginal.
In section 6.3 we provide a time discretization of the Brenier’s problem obtained
by fixing the number K of time steps (namely the number of marginals)

inf

{∫

Ω

K∑

i=1

|ω(ti)− ω(ti−1)|2dγ |

γ ∈ P(Ω), (ei)♯γ = LD, (e0, eT )♯γ = (Id, g⋆)♯LD

}
,

(EK)
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and we prove that the discrete problem (EK) converges to (E) as K → ∞.

This chapter ends with a model, firstly introduced by Léonard and coau-
thors in [5] (and then in [BCN16a]) which can be seen as a Brenier’s principle
with viscosity. This model arises, as we have conceived it, by the entropic reg-
ularization of (EK): roughly speaking, the regularized version of (EK) can be
seen as a time discretization of a problem with an infinite number of marginals.
Indeed, we retrieve a problem which deals with the minimization of a relative
entropy (defined as in (MKε)) where the reference measure is a Wiener mea-
sure. In other words we obtain a Schrödinger’s problem with infinitely many
marginals, which can be regarded as an extension of the two marginals problem.

Chapter 7 is devoted to introduce Multi-Marginal optimal transportation
and to present a generalization of the IPFP algorithm to this case. This chapter
is based on [BCC+15, BCN16a]. Take K marginals, then the Multi-Marginal
Monge-Kantorovich problem reads

inf

{∫

RdK

c(x1, . . . , xK)dγ(x1, . . . , xK) | γ ∈ Π(RdK ;µ1, · · · , µK)

}
, (MKK)

where Π(RdK ;µ1, · · · , µK) denotes the set of couplings γ(x1, . . . , xK) having µi
as marginals. The corresponding Monge problem then becomes

inf

{∫

RdK

c(x, T2(x), · · · , TK(x))dµ1(x) | T = {Ti}Ki=1 ∈ TK
}
, (MK)

where

TK := {T = {Ti}Ki=1 | Ti : Rd → R
d (Ti)♯µ1 = µi, ∀i = 2, · · · ,K, T1 = Id}.

Such multi-marginals problems first appeared in the work of Gangbo and Świȩch
[66] who solved the quadratic cost case and proved the existence of Monge solu-
tions (namely of optimal transport maps). In recent years, there has been a lot
of interest in such multi-marginal problems because they arise naturally in many
different settings such as economics [32], [96], polar factorization of vector fields
and theory of monotone maps [68, 69, 70, 62] and Density Functional Theory
[26, 43, 49, 60, 44] as we will see in the last part. In section 7.5 we present
numerical simulations for different kinds of multi-marginal optimal transporta-
tion problems. We highlight that this is possible thanks to an extension of the
IPFP algorithm proposed by the author [BCC+15, BCN15, BCN16a, DMGN15].

Chapter 8 is based on a joint work with Simone Di Marino and Augusto
Gerolin [DMGN15]. Here, we tried to give a general framework for a particular
class of cost functions, the so-called repulsive costs. As we will explain in the
last part of this thesis, the main motivation which led us to study this kind
of optimal transport problem arises from the Density Functional Theory where
some interesting costs, as the Coulomb one or the repulsive harmonic, play a
central role. From a mathematical perspective the interesting case is when all
marginals of the coupling γ in (MKK) are absolutely continuous with respect to
Lebesgue measure and are all the same. In particular, since the cost functions
are “repulsive”, if Monge-type solutions exists, they should follow the rule “the
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further, the better!”, which means that we want to move the mass as much as
we can.

The main result of this section is contained in theorem 8.1.6 where we show
that there exists optimal maps for the Monge problem when the cost is given
by

c(x1, · · · , xK) = −
∑

i<j

|xi − xj |2

and these maps have the particularity of having a fractal structure when k > 3.
Notice that this is a surprising result which has not an equivalent version in the
2 marginals case.

Part III: optimal transport meets Density Func-
tional Theory

The last part of the thesis is devoted to exploit the connection between the
Density Functional Theory and Multi-Marginal optimal transportation.

Quantum mechanics for a molecule with N electrons can be studied in terms
of the many-electron Schrödinger equation for a wave function ψ ∈ L2(R3K ;C)
(for now, we neglect the spin variable). The practical limitation of this ap-
proach is computational: in order to predict the chemical behavior of H2O
(10 electrons) using a 10 grid-points discretization of R, we need to solve the
Schrödinger equation on 1030 grid-points. This is why Hohenberg, Kohn and
Sham introduced, in [73] and [78], the Density Functional Theory (DFT) as an
approximate computational method for solving the Schrödinger equation at a
more reasonable cost.

The main idea of the DFT is to compute only the marginal density for one
electron

ρ(x1) =

∫
γK(x1, x2 · · · , xK)dx2 · · · dxK ,

where γK = |ψ(x1, · · · , xK)|2 is the joint probability density of electrons at po-
sitions x1, · · · , xK ∈ R

3, instead of the full wave function ψ. One scenario of
interest for the DFT is when the repulsion between the electrons largely domi-
nates over the kinetic energy. In this case, the problem can, at least formally, be
reformulated as an Optimal Transport (OT) problem as emphasized in the pio-
neering works of Buttazzo, De Pascale and Gori-Giorgi [26] and Cotar, Friesecke
and Klüppelberg [43].

In chapter 9 we give a brief introduction to Density Functional Theory and
to Multi-Marginal optimal transportation with Coulomb cost. In Density Func-
tional Theory [73] the ground state energy of a system (with N electrons) is
obtained by minimizing the following functional w.r.t. the electron density
ρ(x):

E(ρ) = min
ρ∈R

FHK(ρ) +

∫

R3

v(x)ρ(x)dx (0.14)

where R := {ρ : R3 → R|ρ > 0,
√
ρ ∈ H1(R3),

∫
R3 ρ(x)dx = K},
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v := − Z

|x−R| is the electron-nuclei potential (Z and R are the charge and

the position of the nucleus, respectively) and FHK is the so-called Hohenberg-
Kohn which is defined by minimizing over all wave functions ψ which yield
ρ:

FHK(ρ) = min
ψ→ρ

~
2T (ψ) + Vee(ψ), (0.15)

where ~
2 is a semiclassical constant factor,

T (ψ) =
1

2

∫
· · ·
∫ K∑

i=1

|∇xiψ|2dx1 · · · dxK

is the kinetic energy and

Vee(ψ) =

∫
· · ·
∫ N∑

i=1

N∑

j>i

1

|xi − xj |
|ψ|2dx1 · · · dxK

is the Coulomb repulsive energy operator.
Let us now consider the Semiclassical limit

lim~→0 minψ→ρ ~
2T (ψ) + Vee(ψ)

and assume that taking the minimum over ψ commutes with passing to the
limit ~ → 0 (Cotar, Friesecke and Klüppelberg in [43] proved it for K = 2), we
obtain the following functional

V SCEee (ρ) = min
ψ→ρ

∫
· · ·
∫ K∑

i=1

K∑

j>i

1

|xi − xj |
|ψ|2dx1 · · · dxK (0.16)

where V SCEee is the minimal Coulomb repulsive energy whose minimizer charac-
terizes the state of Strictly Correlated Electrons (SCE). Notice that by denot-
ing γ = |ψ|2, V SCEee corresponds to the Monge-Kantorovich problem with the
Coulomb cost. Since the cost is radially symmetric, if the marginals ρ are also ra-
dially symmetric, then (0.16) can be reduced to 1−dimensional (MMOT) prob-

lem with the cost given by the minimization over the angles of
∑K
i=1

∑K
j>i

1

|xi − xj |
.

In section 9.5.2 we prove that

FHK(ρ) > min
{
H(γ|η) | γ ∈ ΠK(RdK ; ρ)

}

where η := 1
L exp (−∑i<j

1
ε|xi−xj | ) ⊗

K
i=1 dxi and ε =

π~2

2
. This tells us

that the entropic regularization, that we have introduced in order to define a
numerical method, has indeed a “physical” meaning in the sense that it takes
into account effects due to the kinetic energy.

Chapter 10 is based on a joint work ([SDMG+]) with Simone Di Marino,
Augusto Gerolin, Klaas Giesbertz, Paola Gori-Giorgi and Michael Seidl. Here,
we give a counterexample (we refer the reader also to [41] for other counterex-
amples) to the following conjecture on the geometrical characterization of the
optimal maps in d > 1 and with radially symmetric marginals
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Conjecture 0.0.1 (Strong Seidl Conjecture). Let µ ∈ P(Rd) be an absolutely
continuous measure with respect to the Lebesgue measure, with radial symmetry,
and let ρ(r) = | · |♯µ. Let 0 = r0 < r1 < . . . < rK−1 < rK = ∞ such that the
intervals Ai = [ri, ri+1) have all the same radial measure ρ(Ai) = 1/K. Then
let F (r) = ρ(0, r] be the cumulative radial function and let S : [0,∞) → [0,∞)
be defined piecewise such that the interval Ai is sent in the interval Ai+1 in an
anti monotone way:

S(r) = F−1(2i/K − F (r)) if ri−1 6 r < ri and i < K (0.17)

S(r) =

{
F−1(F (r) + 1/K − 1) if K is odd

F−1(1− F (r)) if K is even,
if rK−1 6 r < rK .

(0.18)

Then the optimal maps Ti are defined as T1 = Id, Ti = S(i−1) (S(i−1) stands
for the (i− 1)−th composition of S with itself).

Furthermore, we will show in the framework of this counterexample, these
maps are never optimal and that fractal maps can appear, as for the repulsive
harmonic cost.

The last chapter 11 is devoted to present numerical simulations for the
(MMOT) with the Coulomb cost obtained by using the IPFP algorithm. This
chapter is based on [BCN15, DMGN15, SDMG+]. We remark that the sec-
tion 11.3 is related to chapter 10 as we present numerical counterexamples to
conjecture 0.0.1.

Notations Throughout the thesis, with a textual citation, e.g. [BCC+15], we
refer to an original contribution of the author, where as with numbered citations,
e.g. [94], to a “standard” reference.
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Résumé

Dans cette partie nous présentons le problème du transport optimal et
la régularisation entropique. Nous étudieons plus précisément les méthodes
numériques bases sur l’algorithme des projections alternées de Bregman (ainsi
que sa généralisation introduite par Dykstra) et les applications au problème
du barycentre dans l’espace de Wasserstein, au transport optimal partiel et au
transport optimal avec une contrainte de capacité (voir chapitre 4).
Nous présentons enfin une extension de l’algorithme de Dykstra qui nous permet
de calculer l’équilibre de Cournot-Nash pour des coûts généraux (voir chapitre
5). Cette partie est basée sur des travaux en commun avec Jean-David Benamou,
Adrien Blanchet, Marco Cuturi, Guillaume Carlier et Gabriel Peyré:[BCC+15]
and [BCN16b].

Abstract

In this Part we introduce the standard optimal transport problem and the
entropic regularization. We focus on numerical methods, based on Bregman’s
projections algorithm (and its generalization due to Dykstra), and applications
to Wasserstein barycenter, Partial Optimal Transport, Optimal Transport with
capacity constraint (see chapter 4).
We finally present an extension of Dykstra’s algorithm to compute Cournot-
Nash equilibria (see chapter 5). This part is, mostly, based on joint works with
Jean-David Benamou, Adrien Blanchet, Marco Cuturi, Guillaume Carlier and
Gabriel Peyré:[BCC+15] and [BCN16b].
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Chapter 1

A Survey on Optimal
Transportation

In this section we give a brief survey on Optimal Transportation.

1.1 The Continuous Setting

The birth of Optimal Transportation dates back to 1781 when Monge [94]
introduced the following problem:

Problem 1.1.1. Given two probability measures µ ∈ P(X) and ν ∈ P(Y ) and
a cost function c : X × Y → [0,+∞[, solve

(M) inf

{∫

X

c(x, T (x))dµ(x) | T♯µ = ν

}
, (1.1)

where X and Y are compact metric spaces, c is a continuous (or semi-continuous)
cost function (in [94] Monge used c(x, y) = |x−y|), T is a transport map (namely
a push-forward, see definition 1.1.2)

Definition 1.1.2 (Push-forward). The measure denoted T♯µ is defined through
T♯µ(A) := µ(T−1(A)) for all measurable subset A ⊂ Y and is called Push-
forward.

Remark 1.1.3 (Change-of-variables formula). Notice that T♯µ can be equiva-
lently defined by the change-of-variables formula

∫

Y

f(y)dT♯µ(y) =

∫

X

f(T (x))dµ(x), ∀f ∈ C(Y ).

When we stay in the Euclidean setting, with two measures µ and ν induced
by densities f, g and assume that the map T is C1 and injective, then the con-
straint T♯µ = ν can be recast as the following PDE

g(T (x)) det(DT (x))) = f(x), (1.2)

which is actually the Jacobian condition obtained as a consequence of a change
of variable computation. Notice that this equation is highly nonlinear in T
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1.1. THE CONTINUOUS SETTING

and this is one of the difficulties preventing an easy analysis of the Monge
problem. One also remarks that (M) is rigid in the sense that all the mass that
is at x must be associated to the same target T (x). In 1942 Kantorovich (see
[75, 74]) suggested a relaxed formulation, which allows mass splitting, known as
the Monge-Kantorovich problem

Problem 1.1.4. Given µ ∈ P(X) and ν ∈ P(Y ) and a cost function c :
X × Y → [0,+∞[ solve

(MK) inf

{∫

X×Y
c(x, y)dγ(x, y) | γ ∈ Π(Rd;µ, ν)

}
, (1.3)

where Π(Rd;µ, ν) is the set of so-called transport plans

Π(Rd;µ, ν) := {γ ∈ P(X × Y ) | (πx)♯γ = µ, (πy)♯γ = ν},

where πx and πy are the two projections of X × Y onto X and Y , respectively.

We remark that the constraints πx and πy mean that we only consider the
probability measures γ whose marginals coincide with µ and ν. The probability
measures γ are a different way to describe the displacement of the mass of µ:
instead of specifying the destination T (x) of the mass originally at x, we specify
for each pair (x, y) how much mass goes from x to y. It is clear that if the
mass splitting really occurs (which means that there are multiple destinations
for the mass at x) then this displacement cannot be described by a map T .
Moreover, if there exists a γ of the form γT = (Id, T )♯µ (one can easily check
that γT ∈ Π(Rd;µ, ν) if and only if T♯µ = ν) then one obtains

∫

X×Y
c(x, y)dγT (x, y) =

∫

X

c(x, T (x))dµ(x).

Thus, if (MK) admits a minimizer, the so-called optimal transport plan, of the
form γT then T is an optimal transport map for (M). Notice that the Monge-
Kantorovich problem is more general than the Monge one: as an example, take
µ = δ0 then it is impossible to transport µ, through a map T satisfying the
constraint, onto a target measure which is not itself a Dirac mass. On the
contrary, there always exist transport plans in Π(Rd;µ, ν) (at least γ = µ ⊗ ν)
and the following holds

Theorem 1.1.5 (Theorem 1.4, [105]). Let X and Y be compact metric spaces,
µ ∈ P(X) and ν ∈ P(Y ) and c : X × Y → R a continuous function. Then
(MK) admits a solution.

For the proof, one just needs to show that Π(Rd;µ, ν) is compact and that
γ 7→

∫
X×Y c(x, y)dγ(x, y) is continuous (take the weak convergence in probabil-

ity measures), and apply Weierstrass’s theorem.

Remark 1.1.6. Theorem 1.1.5 still holds if X and Y are Polish spaces and
c : X × Y → [0,+∞] is lower semi-continuous (see 1.1 in [105]).

Remark 1.1.7 (A distance between probability measures). Notice that if c(x, y) =
|x−y|p, with p > 1, then (MK) defines a distance between the probability mea-
sures µ and ν.
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1.1. THE CONTINUOUS SETTING

The Monge-Kantorovich problem is a linear optimization problem under
linear constraints, so it is interesting to look at the dual problem and exploit
the relations between the two. Introducing the Lagrange multipliers ϕ ∈ Cb(X)
and ψ ∈ Cb(Y ) then the Lagrangian associated to (MK) reads as

L(γ, ϕ, ψ) =
∫

X

ϕ(x)dµ(x)+

∫

Y

ψ(y)dν(y)+

∫

X×Y
(c(x, y)−ϕ(x)−ψ(y))dγ(x, y)

(1.4)
and we have now the following problem

inf
γ

sup
ϕ,ψ

L(γ, ϕ, ψ). (1.5)

Assuming we can interchange sup and inf, we get

sup
ϕ,ψ

∫

X

ϕ(x)dµ(x) +

∫

Y

ψ(y)dν(y) + inf
γ>0

∫

X×Y
(c(x, y)− ϕ(x)− ψ(y))dγ(x, y)

(1.6)
and the inf in γ can be re-written as a constraint on ϕ and ψ

inf
γ>0

∫

X×Y
(c(x, y)− ϕ(x)− ψ(y))dγ(x, y) =

{
0 ϕ(x) + ψ(y) 6 c onX × Y,

−∞ otherwise.

(1.7)
This lead to the dual formulation of Monge-Kantorovich problem

Problem 1.1.8. Given two probability measures µ ∈ P(X) and ν ∈ P(Y ) and
a cost function c : X × Y → [0,+∞[, solve

(MKd) sup

{∫

X

ϕ(x)dµ(x) +

∫

Y

ψ(y)dν(y) | (ϕ, ψ) ∈ Kc
}
, (1.8)

where

Kc := {ϕ ∈ Cb(X), ψ ∈ Cb(Y ) | ϕ(x) + ψ(y) 6 c(x, y) ∀(x, y) ∈ X × Y }.

The optimal ϕ and ψ, if they exist, are called the Kantorovich potentials. By
a direct application of the Fenchel-Rockafellar theorem we obtain the following
result

Theorem 1.1.9 (Theorem 1.46, [105]). If X,Y are compact spaces and c con-
tinuous, then inf(MK) = sup(MKd).

Remark 1.1.10. Notice that the constraint ϕ(x) + ψ(y) 6 c(x, y) is saturated
(namely the equality holds) γ−a.e. where γ is solution to (MK).

However an existence result for (MKd) is not so straightforward as for the
primal one due to lackness of compactness for the class of admissible functions.

Theorem 1.1.11 (Proposition 1.11, [105]). Let X and Y be compact and c
continuous. Then there exists a solution (ϕ, ψ) to (MKd) and it has the form
ϕ ∈ c− conc(X), ψ ∈ c− conc(Y ) and ψ = ϕc.

We remind that for a given function f : X → R, we define its c− transform
f c : Y → R as
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f c(y) = infx∈X c(x, y)− f(x),

and in an analogous way we define the c− transform of g : Y → R as

gc(x) = infy∈Y c(x, y)− g(y).

Then, we say that a function ψ on Y is c− concave if there exists f such that
ψ = f c (analogously a function ϕ on X is c − concave if there exists g on Y
such that ϕ = gc) and we denote by c − conc(X) and c − conc(Y ) the sets of
c− and c− concave functions.

Thus, if we take

F(ϕ, ψ) =
∫
X
ϕ(x)dµ(x) +

∫
Y
ψ(y)dν(y),

then for any admissible pair (ϕ, ψ), since ϕc > ψ, we have

F(ϕ,ϕc) > F(ϕ, ψ)

end the pair (ϕ,ϕc) is still admissible. If we iterate the concavification trick, we
have that the pair (ϕcc, ϕc) is admissible and

F(ϕcc, ϕc) > F(ϕ,ϕc) > F(ϕ, ψ).

It is now clear that thanks to this trick, the optimization in (1.1.8) can be
reduced to pair of the form (ϕ,ϕc) and (ϕcc, ϕc)

(MKd) = supϕ∈Cb(X) F(ϕ,ϕc) = supϕ∈Cb(X) F(ϕcc, ϕc).

It turns out that these kinds of pairs form a sufficient rigid set to get compact-
ness and thus prove theorem 1.1.11.

As we have said above when the optimal plan γ has the form γT = (Id, T )♯µ then
T is also an optimal transport map for the Monge problem. Indeed one would
like to understand when this equivalence between (M) and (MK) holds and thus
have existence result for (M). According to this, if we take X = Y = Ω ⊂ R

d

and c(x, y) = h(x − y) with h : Rd → R strictly convex then we have strong
results, in particular we have existence as well as a representation formula for
the optimal T . In [65] Gangbo and McCann establish the following result

Theorem 1.1.12 (Theorem 1.2, [65]). Given µ, ν ∈ P(Ω), where Ω ∈ R
d is a

compact domain, there exists an optimal transport plan γ for the cost c(x, y) =
h(x − y) with h strictly convex. It is unique and of the form γT = (Id, T )♯µ,
provided µ is absolutely continuous and ∂Ω is negligible. Moreover, there exists
a Kantorovich potential ϕ, and T and the potential ϕ are linked by

T (x) = x−Dh−1(Dϕ(x)) for a.e.− x. (1.9)

Remark 1.1.13. If c(x, y) = |x − y|2, the so-called quadratic cost, one actually
retrieves the result firstly proved by Yann Brenier in [21]. In this case one obtains
that the map T has the form T (x) = x − Dϕ = Du(x) where u is a convex
function defined as u(x) = 1

2 |x|2 − ϕ(x). Moreover, if µ = ρ0Ld and ν = ρ1Ld
(where Ld is the Lebesgue measure) then the Brenier’s map ∇u satisfies the
Monge-Ampère equation

det(D2 u)ρ1(Du) = ρ0. (1.10)

In [30, 31] Caffarelli establishes conditions under which the Brenier’s map is
smooth. We recall here theorem 4.14 of [115] which summarizes the results
obtained by Caffarelli
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Theorem 1.1.14 (Theorem 4.14, [115]). Let ρ0, ρ1 ∈ C0,α(Ω) (0 < α < 1)
be Hölder-continuous functions defined on a bounded open set Ω, bounded from
above and below by positive constants. Assume that Ω is convex. Then the
unique Brenier solution u of (1.10) belongs to C2,α(Ω)∩ C1,α(Ω) and u satisfies
the Monge-Ampère equation in the classical sense (hence also in the Alexandroff
and viscosity senses).

Remark 1.1.15. Theorem 1.1.12 holds for all the costs of the form c(x, y) =
|x− y|p with p > 1.

Remark 1.1.16. A similar result as the one in theorem 1.1.12 can be derived
also for other cost functions, see [34] for more details.

1.1.1 The Benamou-Brenier formulation

So far we have described the so-called static framework, in [10] Benamou and
Brenier give a dynamic formulation of optimal transport. Even if the Benamou-
Brenier formulation can be generalized to more general convex costs, here we
only consider the case of the quadratic cost. Let us consider a source µ =
ρ0Ld and a target ν = ρ1Ld measures, where ρ0 and ρ1 are the associated
densities, then the Monge-Kantorovich problem with the quadratic cost (also
called the 2-Wasserstein distance) is defined as above. The idea of the Benamou-
Brenier formulation is to compute a curve of measures connecting µ to ν and
minimizing some action functional. Indeed this curve is given by the solution
of the continuity equation

∂tρ+ div(ρv) = 0, ρ(0, x) = ρ0. (1.11)

Assuming that the velocity v is smooth then the solution of the continuity
equation is given by ρ(t, x) = g(t, x)♯ρ0 where g(t, x) is the flow of v

∂tg(t, x) = v(t, g(t, x)), g(0, x) = x.

The curve of measures we are looking for is the one which minimizes the average
kinetic energy (the constant speed geodesic in the Wasserstein space) and the
Benamou-Brenier problem takes the form

Problem 1.1.17. given µ = ρ0Ld and ν = ρ1Ld solve

(BB) inf

{∫ 1

0

∫

Rd

|v(t, x)|2ρ(t, x)dxdt | (ρ, v) solve (1.11),

ρ|t=0 = ρ0, ρ|t=1 = ρ1

}
.

(1.12)

Remark 1.1.18 (Optimality condition and Hamilton-Jacobi equation). It is in-
teresting to derive the optimality condition of problem (1.12). Indeed by writing
down the Lagrangian associated to (1.12) and denoting by ϕ the Lagrange mul-
tiplier of the constraints in (1.12) (namely the continuity equation and the initial
and final configurations ρ0 and ρ1), it is easy to see that the formal optimality
conditions turn out to be

v(t, x) = ∇xϕ(t, x),
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and the Hamilton-Jacobi equation

∂tϕ+
|∇xϕ|2

2
= 0.

This says that the optimal solution is given by a pressureless potential flow.

We end this section by giving the following theorem which establishes the
relationship between the Monge-Kantorovich problem with the quadratic cost
and the Benamou-Brenier problem (1.12).

Proposition 1.1.19 (Proposition 1.1,[10]). Given two probability measures
µ, ν ∈ P(Ω) which are absolutely continuous with respect the Lebesgue measure.
Denote by ρ0 and ρ1 the associated density. Then the following holds

inf(MK2) = inf(BB), (1.13)

where MK2 stands for the Monge-Kantorovich problem with the quadratic cost
and BB is problem (1.12).

Remark 1.1.20 (McCann’s interpolant, [92]). We have previously said that one
can define the geodesic ρ through a map g(t, x) associated to the velocity field
v(x, t). If we consider the optimal solution (ρ, v) to (BB) then (see [10] for the
details) the flow map g(t, x) is given by g(t, x) = (1− t)x+ t∇u(x) where u(x)
is a Brenier’s solution. Thus, one can rewrite ρ(t, x) = g(t, x)♯ρ0 as

ρ(t, x) = (1− t) Id♯ ρ0 + t∇u♯ρ0, (1.14)

which is known as McCann’s interpolant.

1.2 The Discrete setting

As we have pointed out in the previous section, the Monge-Kantorovich
problem is indeed a linear programming problem in infinite dimension. So it is
quite natural to discretize it in a way we can exploit this fact. According to this
we replace µ and ν with a sum of Dirac masses

µ =
∑N
i=1 µiδxi

and ν =
∑N
i=1 νiδyi ,

where {xi}Ni=1 and {yi}Ni=1 are the gridpoints used to discretize X and Y (for
simplicity we have chosen the same number N of points) and {µi}Ni=1 and

{νi}Ni=1 are the weights associated to the gridpoints, such that
∑N
i=1 µi = 1

and
∑N
i=1 νi = 1 (indeed we are imposing that µ and ν belong to the simplex

ΣN := {p ∈ R
N | ∑N

i=1 pi = 1}). Let us now denote cij the cost of transporting
the mass located at xi to yi, the the discrete Monge-Kantorovich problem reads
as follows

Problem 1.2.1. Given µ, ν ∈ ΣN and C ∈ R
N × R

N , such that (C)ij = cij,
solve

(DMK) inf





N∑

i,j=1

cijγij | γ ∈ ΠN (RdN ;µ, ν)



 , (1.15)

where ΠN (RdN ;µ, ν) := {γ ∈ R
N × R

N | γ > 0, γ111 = µ, γT111 = ν} and 111 =
(1, · · · , 1) is a vector in R

N .
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The problem is now finite-dimensional and it is, actually, a classical linear
problem in the standard form which, for instance, can be solved with the simplex
algorithm. Consider now the following measures

µ =

N∑

i

δxi and ν =

N∑

j

δyj ,

then notice that a matrix γ admissible for problem (1.2.1) is a matrix such that
the sum of entries on each row and each column is 1. Such matrices are usually
called bistochastic. Problem (1.2.1) is a minimization over the set of bistochastic
matrices which is a convex and compact, so the minimum in (1.2.1) is attained
at one extreme point. Furthermore, define a permutation matrix as a matrix
of the form γij = δjσ(i), where σ is a permutation of {1, · · · , N}, then the set
of permutation matrices is trivially included in the set of bistochastic. Indeed,
thanks to the following result established by Birkhoff, we can identify the set of
extremal points of the set of bistochastic matrices with the permutation matrices

Theorem 1.2.2 (Birkhoff’s theorem). The set of extreme points of the set of
bistochastic matrices coincides with the set of permutation matrices. In par-
ticular, the set of bistochastic measures is a polyhedron with N ! vertices and
every bistochastic matrix is a convex combination of permutation matrices (as
a consequence of the Krein-Milman’s theorem).

We end the section by recalling the dual problem of 1.2.1

Problem 1.2.3. Given µ, ν ∈ ΣN and C ∈ R
N × R

N , such that (C)ij = cij,
solve

(DMKd) sup





N∑

i=1

ϕiµi +

N∑

j=1

ψjνj | (ϕ, ψ) ∈ KNc



 , (1.16)

where KNc := {ϕ ∈ R
N , ψ ∈ R

N | ϕi + ψj 6 cij ∀(i, j) ∈ {1, · · · , N}2}.

We briefly remark the advantages and disadvantages of these two approaches:

• (DMK) has N2 unknowns, but 2N linear constraints to verify;

• on the contrary, (DMKd) has 2N unknowns, but N2 constraints.

Thus, if N is large the computational cost of the simplex algorithm becomes pro-
hibitive. Other methods have also been found such as the so-called Hungarian
algorithm [81] or the Auction algorithm [12].
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Chapter 2

Regularized Optimal
Transport

2.1 The continuous setting

In this Section we present a regularization of problem (1.3) which consists
in replacing the non-negative constraint on the plan γ by a relative entropy
penalization. In other words the entropy plays the role of a barrier function on
the non-negativity constraint. In Chapter 3, we will show that the main interest
of this kind of regularization resides in the algebraic properties which make it
the unique possible choice when one wants to solve the regularized problem by
using Bregman’s projections algorithm. Here, we want to describe the continu-
ous setting of the regularized problem (in analogy to Section 1.1) and highlight
that in the special case of the quadratic Monge-Kantorovich problem (namely
c(x, y) = 1

2 |x− y|2) we retrieve the Schrödinger problem [107, 85].

Definition 2.1.1 (Relative entropy). Let p and r be two probability measures
(for instance p, r ∈ P(Rd×R

d)), such that p is absolutely continuous with respect
to r, then the relative entropy of p with respect to r is given by

H(p|r) =
∫

Rd×Rd

(
log(

dp

dr
)− 1

)
dp. (2.1)

If p and r are absolutely continuous with respect to the Lebesgue measure then
(2.1) takes the form

H(p|r) =
∫

Rd×Rd

(log(
p

r
)− 1)pdx,

where we have identify a measure with the corresponding density.

Remark 2.1.2. We will also use the following definition of relative entropy

H(p|r) =
∫

Rd×Rd

(
log(

dp

dr
)− 1

)
dp+ 1, (2.2)

with p, r two probability measure. Notice that in this case H ∈ [0,∞].
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Then the entropy regularized variant of problem (1.3) reads as

Problem 2.1.3. Given µ, ν ∈ P(X) (for instance X = R
d), absolutely con-

tinuous with respect to the Lebesgue measure, a cost function c : X ×X → R,
solve

(MKε) inf

{∫

X×X
c(x, y)dγ(x, y) + εH(γ|µ⊗ ν) | γ ∈ Π(Rd;µ, ν)

}
, (2.3)

where ε > 0 is the regularization parameter.

One can easily rewrite problem (2.3) in the following compact form

(MKε) inf

{∫

X×X
H(γ|ηε) | γ ∈ Π(Rd;µ, ν)

}
, (2.4)

where

ηε =
1

L
exp (−c(x, y)/ε)µ⊗ ν,

with L =
∫
X×X exp (−c(x, y)/ε)dµ ⊗ ν. Before introducing the Schrödinger

problem and its connection to both the regularized and unregularized Monge-
Kantorovich problem, let us give the Γ−convergence result established by Carlier
et al. in [35]

Theorem 2.1.4. Given two probability measures µ, ν ∈ P(Rd) having finite
entropy and finite moment of order p > 1, and a cost function c : Rd ×R

d → R

such that c(x, y) = h(|x − y|) and |x|p 6 h(x) 6 1 + |x|p. Define the following
functionals

Fε(γ) =
{ ∫

Rd×Rd cdγ + εH(γ|µ⊗ ν) if γ ∈ Π(Rd;µ, ν)

+∞ otherwise,
(2.5)

and

F(γ) =

{ ∫
Rd×Rd cdγ if γ ∈ Π(Rd;µ, ν)

+∞ otherwise.
(2.6)

Then, Fε Γ−converges to F w.r.t. the weak topology on P(Rd).

Without loss of generality, from now on we consider the quadratic cost func-
tion c(x, y) = 1

2 |x−y|2 in order to clarify the link with the Schrödinger problem.
In the next paragraph, mostly based on Léonard’s survey [85], we will show that
the Monge-Kantorovich problem with the quadratic cost can be seen as the limit
of the Schrödinger problem.

2.1.1 The Schrödinger problem

In his seminal works [107, 108] Schrödinger addressed the following problem:
knowing the distribution of particles at an initial time t0 and a final time t1,
identify the most likely flow of density of particles between these two points. It
only later became clear that the problem posed by Schrödinger could be recast
as a convex optimization problem. As for the Monge-Kantorovich problem we
give a static and a dynamic version of the Schrödinger’s problem (see [84, 85]
for more details).
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Problem 2.1.5 (Dynamic Schrödinger’s problem). Denote by R some reference
probability measure on the space of continuous paths Ω = C([0, 1],Rd) (we define
ω : [0, 1] → R

d an element of Ω), then the dynamic Schrödinger’s problem
associated to the reference path measure R ∈ P(Ω) is the following entropy
minimization problem

(Sdyn) inf {H(P |R) | P ∈ P(Ω), (e0)♯P = µ, (e1)♯P = ν} , (2.7)

where e0 : Ω → R
d and e1 : Ω → R

d are the evaluation maps at time 0 and 1 (no-
tice that in probability et is usually denoted as Xt and called canonical process),
respectively, and µ, ν ∈ P(Rd) are the prescribed initial and final configuration.

If we consider the projection η := (e0, e1)♯R ∈ P(R2d) of R, then we have
the following alternative definition of the previous problem.

Problem 2.1.6 (Static Schrödinger’s problem). The static Schrödinger’s prob-
lem associated with the reference measure η ∈ P(R2d) is the following problem

(Sstatic) inf
{
H(γ|η) | γ ∈ P(R2d), (π0)♯γ = µ, (π1)♯γ = ν

}
, (2.8)

where πi is the canonical projection.

Remark 2.1.7. Notice that in problem (2.8) we are minimizing over all the
probability measures which belong to Π(Rd;µ, ν). Thus we can already see
problem (2.4) as a static “Schrödinger problem” (up to an additive constant
log(L)ε) where the reference measure is given by ηε =

1
L exp (−c(x, y)/ε)µ⊗ ν.

Remark 2.1.8 (Static and Dynamic Monge-Kantorovich). One can generalize
the static and dynamic Monge-Kantorovich problem to a generic cost function
as follows. Take a cost function c : R2d → R then the static Monge-Kantorovich
problem is

(MKstatic) inf

{∫

R2d

c(x, y)dγ(x, y) | γ ∈ Π(Rd;µ, ν)

}
, (2.9)

where the marginals are prescribed. Consider now a cost C : Ω → [0,∞] defined
on the path space, then the dynamic Monge-Kantorovich problem can be defined
as

(MKdyn) inf

{∫

Ω

C(ω)dP (ω) | P ∈ P(Ω), (e0)♯P = µ, (e1)♯P = ν

}
.

(2.10)
One can prove (see theorem 2.8 in [84]) that inf(MKstatic) = inf(MKdyn)
whenever c and C are related by

c(x, y) = inf{C(ω) | ω ∈ Ω, ω(0) = x, ω(1) = y}, ∀(x, y) ∈ R
2d.

Moreover, if P ⋆ and γ⋆ are optimal solutions to (MKdyn) and (MKstatic),
respectively, then the following holds

γ⋆ = (e0, e1)♯P
⋆, (2.11)

P ⋆ =

∫

R2d

δΓxy
dγ⋆(x, y), (2.12)

CHAPTER 2. REGULARIZED OPTIMAL TRANSPORT 35



2.1. THE CONTINUOUS SETTING

where (x, y) 7→ δΓxy
∈ P(Ω) is any measurable mapping such that for γ⋆−almost

each (x, y), δΓxy
concentrates on the set of geodesic paths

Γxy := {ω ∈ Ω | ω(0) = x, ω(1) = y, C(ω) = c(x, y)}.
To conclude this remark, notice that if the cost in (MKdyn) is the classical

kinetic action functional, namely C(ω) = 1
2

∫ 1

0
|ω̇(t)|2dt for any path ω(t), then

it is easy to show by using the Jensen’s inequality, that the cost in the static
formulation is exactly the quadratic one. Moreover, if the hypothesis of Brenier’s
theorem hold and so there exists a unique minimizer of (MKstatic) then Γxy is
the constant speed geodesic path, induced by the optimal map, connecting x to
y and the marginal (et)♯P

⋆ of P ⋆ is the McCann’s interpolant (1.14) between µ
and ν.

Denote by Ωxy := {ω ∈ Ω | ω(0) = x, ω(1) = y} the subspace of Ω
such that ∀ω ∈ Ωxy ω(0) = x and ω(1) = y. It follows that a probability
measure P xy (usually called the bridge between x and y of the process P ) in
P(Ωxy) is a probability measure on Ω such that its initial and final marginals
are (e0)♯P

xy = δx and (e1)♯P
xy = δy, respectively, and a measure P ∈ P(Ω)

can be disintegrated as

P =

∫

R2d

P xydP01(x, y),

where P01 = (e0, e1)♯P . Then, one can prove (see [55]) that inf(Sdyn) =
inf(Sstatic) ∈ [0,∞] and since the relative entropy is a strictly convex function,
if inf(Sdyn) <∞ then they admit a unique minimizer P ⋆ and γ⋆, respectively.
Moreover, these solutions are related as follows

γ⋆ = (e0, e1)♯P
⋆, (2.13)

P ⋆ =

∫

R2d

Rxydγ⋆(x, y). (2.14)

Notice that in this case the bridge Rxy plays the role of δΓxy and the time-
marginal (et)♯P

⋆ of P ⋆ is the entropic interpolant. In order to improve the
resemblance between (Sdyn) and (MKdyn), we should find a way to encode
the dynamic cost C(ω) in the reference measure. In [84] the author shows that
this can be done by replacing R with a sequence of reference processes Rε which
satisfies a large deviation principle with scale 1

ε as ε tends to 0 and rate function
C(ω). In other words

Rε ≍ε→0 exp (−1

ε
inf

ω∈A⊂Ω
C(ω)).

In the case of the original Schrödinger problem theorem A.3 in [84] states that

C is actually C(ω) = 1
2

∫ 1

0
|ω̇(t)|2dt (Rε is the law of a Brownian motion with

diffusion coefficient ε) and the density of ηε := (e0, e1)♯R
ε is given by the density

of the Brownian motion between the final and the initial position

ηε = (2πε)−d/2 exp (−1

ε
|y − x|2/2).

Thus, as ε tends to 0, Léonard proves that (S ε
dyn) and (S ε

static) Γ−converges
to (MKdyn) and (MKstatic), respectively. Moreover, it is not surprising that
the entropic interpolant converges to McCann’s interpolant.
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Remark 2.1.9. We end this section with a remark about the parameter ε. One
can consider ε as a temperature so that the problem posed by Schrödinger deals
with finding the way how an heated system of Brownian particles moves from
an initial configuration µ to a final one ν, when the temperature is at ε. Thus,
the temperature ε defines the level of the kinetic energy of the system and the
Schrödinger problem can be seen as a viscous version of Monge-Kantorovich.
Indeed, the Monge-Kantorovich is the zero-temperature limit of (Sstatic) (and
(Sdyn) ) which corresponds actually to cool down the original system of parti-
cles.

2.2 The discrete setting

In this section we introduce the entropic regularization of the discrete Monge-
Kantorovich problem; we recall that this kind of problem has been firstly ad-
dressed in [46, 63].
As in Section 1.2 we consider the following discretization of µ and ν

µ =
∑N
i=1 µiδxi and ν =

∑N
i=1 νiδyi ,

such that µ, ν ∈ ΣN . We define the discrete entropy on a coupling γ ∈ R
N ×R

N

as

E(γ) :=
N∑

i,j=1

γij(log(γij)− 1) + iD(γ),

with the convention that 0 log(0) = 0 and where iD (with D = R
N
+ ×R

N
+ ) is the

indicator function

iD(γ) =

{
0 if γ ∈ D
+∞ otherwise

Then the discrete relative entropy of γ ∈ R
N
+ ×R

N
+ with respect to η ∈ R

N
+ ×R

N
+

has the form

H(γ|η) :=
N∑

i,j=1

γij(log(
γij
ηij

)− 1).

Following the idea described in Section 2.1, we now penalize the problem (1.2.1)
by adding an entropy term as follows

min




∑

ij

cijγij + εH(γ|η) | γ ∈ C



 , (2.15)

where η = µ⊗ν (⊗ must be understood as an entry-wise operation, i.e. µ⊗ν :=
(µiνj)ij), C := {γ ∈ R

N
+ × R

N
+ | γ111 = µ, γT111 = ν} and after some algebraic

operations (2.15) can be re-written as

min {H(γ|γ) | γ ∈ C} , (2.16)

where
γij = exp (−cij/ε)ηij .

Moreover, (2.16) is also known as the minimization of the Kullback-Leibler
distance KL, defined as

KL (γ|γ) := H(γ|γ). (2.17)
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Finally, we have the following regularized problem

Problem 2.2.1. Given µ, ν ∈ ΣN and C ∈ R
N × R

N , such that (C)ij = cij,
solve

(KL) min {KL (γ|γ) | γ ∈ C} , (2.18)

where C := {γ ∈ R
N
+ × R

N
+ | γ111 = µ, γT111 = ν}.

The problem (2.2.1) reads as the projection, in terms of the KL distance, of
the point γ on the set of constraints C := C1 ∩ C2 where

C1 :=
{
γ ∈ R

N
+ × R

N
+ | γ111 = µ

}
, (2.19)

C2 :=
{
γ ∈ R

N
+ × R

N
+ | γT111 = ν

}
. (2.20)

Remark 2.2.2. Problem (2.2.1) can be seen as a discretization of the Schrödinger
problem (see [84] for the continuous formulation).

Then, the dual problem of (2.2.1) reads as

Problem 2.2.3. Given µ, ν ∈ ΣN and C ∈ R
N × R

N , such that (C)ij = cij,
solve

(KLd) sup





N∑

i=1

ϕiµi +

N∑

j=1

ψjνj − ε
∑

ij

exp (
ϕi + ψj − cij

ε
) | ϕ ∈ R

N , ψ ∈ R
N



 .

(2.21)

Remark 2.2.4. The dual is actually the unconstrained penalized version of
(1.2.3).

The minimization problem (2.2.1) is now a strictly convex problem and we
have the following proposition

Proposition 2.2.5. Problem (2.2.1) admits a unique solution γε,⋆. Moreover,
there exist two non-negative vectors a, b ∈ R

N
+ , uniquely determined up to a

multiplicative constant, such that γε,⋆ has the form

γε,⋆ij = aiγijbj , (2.22)

where γij = exp (−cij/ε)ηij.

Proof. The existence and the uniqueness of γε,⋆ follow from the boundedness of
C and the strictly convexity of KL. Notice that problem (2.2.1) can be recast
as the following saddle point problem

inf
γ

sup
ϕ,ψ

L(γ, ϕ, ψ)

where ϕ, ψ ∈ R
N are the Lagrange multipliers the Lagrangian L is given by

L(γ, ϕ, ψ) =
∑

ij

cij + ε
∑

ij

γij(log(γij)− 1)− · · ·
∑

i

ϕi(
∑

j

γij − µi)−
∑

j

ψj(
∑

i

γij − νi),
(2.23)
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where, for simplicity, we have taken ηij = 1 ∀(i, j) ∈ {1, · · · , N}2. Notice now
that a critical point (γ, ϕ, ψ) exists. Then the optimality condition w.r.t. γij
reads as

∂L
∂γij

= cij + ε log(γij)− ϕi − ψj = 0,

so that the optimal γε,⋆ must have the form

γε,⋆ij = aiγijbj ,

where ai := exp (ϕi/ε) and bj := exp (ψj/ε) and they are uniquely determined,
up to a multiplicative constant, by the marginal constraints

ai =
µi∑
j γijbj

and bj =
νj∑
i γijai

. (2.24)

Remark 2.2.6. We refer to equations (2.24) as the discrete Berstein-Schrödinger
equations.

Remark 2.2.7. The existence of solutions to (2.24) can be also proven by using
a different approach, for instance see theorem 3.2.5 in section 3.2.1.

Remark 2.2.8. In section 3.2 we will show that equations (2.24) can be used to
define a fixed point iterative algorithm, known as IPFP (Iterative Proportional
Fitting Procedure) or Sinkhorn.

In Section 1.2 we have pointed out that an optimal solution of the discrete
(MK) (assume that the marginals are sum of dirac such that an admissible
plan γ belongs to the set of bistochastic matrices) lies on the vertices of the set
ΠN (RdN ;µ, ν) and so it is a permutation matrix. On the contrary the optimal
solution γε,⋆ of regularized problem (2.2.1) belongs to the relative interior of
the set ΠN (RdN ;µ, ν) and so it can be seen as a convex combination of the
permutation matrices, see theorem 3.2.2 . On one hand, if ε tends to +∞, we
find that the optimal solution of the regularized problem is γε,⋆ = µ⊗ ν; on the
other hand if ε→ 0 we expect that γε,⋆ → γ⋆. Moreover, if the optimal transport
problem admits a unique solution γ⋆, then γε,⋆ should converge exactly to this
solution. If the optimal transport problem admits more than one solution then
the optimal γε,⋆ should converge to the one with minimal entropy as ε → 0.
Indeed we have the following convergence result

Theorem 2.2.9 (Cominetti-San Martin,[42]). Let γε,⋆ be the optimal solution
of (2.2.1), for a given ε, and γ⋆ be the optimal transport plan of (1.2.1). Then
γε,⋆ → γ⋆. Moreover, γε,⋆ has asymptotic expansion

γε,⋆ = γ⋆ + ηε,

where the error term ηε converges exponentially fast to 0 as ε→ 0.

Remark 2.2.10. Theorem 2.2.9 says that the convergence of the minimizers of
(2.2.1) to the ones of (1.2.1) is exponential

‖γε,⋆ − γ⋆‖ 6M exp (−λ
ε ),

where the M and λ depend on the cost function cij , the marginals µ, ν and the
number of gridpoints N used for the discretization
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Figure 2.1 displays examples of transport plans γ = γε,⋆ solving (2.2.1), for
two 1-D marginals (µ, ν) ∈ R

N × R
N discretized on a uniform grid {xi}Ni=1 of

[0, 1], and with a ground cost cij = ||xi − xj ||2. The computation is performed
with N = 256. This figure shows how γε,⋆ converges towards a solution of the
original un-regularized transport as ε→ 0.

Marginals µ and ν

ε = 60/N ε = 40/N ε = 20/N

ε = 10/N ε = 6/N ε = 3/N

Figure 2.1: Top: the input densities µ (blue curve) and ν (red curve). Bottom:
solution γε,⋆ of (2.2.1) for several values of ε.
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Chapter 3

Bregman’s Projection
Algorithm

3.1 Bregman alternate projections

Here, we present a numerical method which is not based on linear pro-
gramming techniques, but on an entropic regularization and the so-called al-
ternate projection method. It has recently been applied to various optimal
transport problems (see for instance [BCC+15, BCN15, SDMG+, BCN16b] and
[46, 45, 100]) and in Chapter 4 we will present some interesting application.

The initial idea goes back to Von Neumann [95, 117] who proved that the
sequence obtained by projecting orthogonally iteratively onto two affine sub-
spaces converges to the projection of the initial point onto the intersection of
these affine subspaces. Since the seminal work of Bregman [18], it is by now
well-known that one can extend this idea not only to several affine subspaces
(the extension to convex sets is due to Dyskstra and we will discuss it in Sec-
tion 3.3) but also by replacing the Euclidean distance by a general Bregman
divergence associated to some suitable f .

Definition 3.1.1 (Bregman divergence). Given a convex function f of Legendre
type, the Bregman divergence associated with f is given by

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉, (3.1)

where 〈·, ·〉 denote the dot product.

Definition 3.1.2 (Function of Legendre type). Suppose f is a closed convex
proper function on D ⊂ R

d with int(domf) 6= 0. Then f is a convex function
of Legendre type, if it satisfie every one of the following condition:

• f is differentiable on int(domf).

• limt→0+〈∇f(x+ t(y − x)), y − x〉, ∀x ∈ bd(domf), ∀y ∈ int(domf).

• f is strictly convex int(domf).

Then the minimization problem with a Bregman divergence now reads
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Problem 3.1.3. Given a strictly convex and differentiable function f , a point
y and a set of constraints C = ∩Ml=1Cℓ, where Cℓ are convex sets, solve

min {Df (x, y) | x ∈ C} . (3.2)

If we now take as f(x) the Boltzmann/Shannon entropy

f(x) :=
∑

i

xi(log xi − 1), x ∈ R
N
+

then the Bregman divergence (restricted to probabilities i.e. imposing the nor-
malization

∑
i xi = 1) is the Kullback-Leibler distance or relative entropy

Df (x, y) =
∑

i

xi

(
log
(xi
yi

)
− 1
)
,

and if we consider two matrices A,B ∈ R
N
+ ×R

N
+ , A = (aij) and B = (bij) then

the Bregman divergence becomes

Df (A,B) =
∑

ij

aij

(
log
(aij
bij

)
− 1
)
.

Thus, the problem 3.1.3 looks like 2.2.1, if we choose properly the set C.
Let us now consider the special case where the convex sets Cℓ are affine

subspaces, then it is possible to solve (3.1.3) by simply using iterative KL pro-
jections. Starting from x(0) = x (where x is a suitable initial point, i.e. x = y),
one computes

∀n > 0, x(n) := PKL
C[n]

(x(n−1)), (3.3)

where PKL stands for the projection w.r.t. the Kullback-Leibler distance and
[·] denotes the mod M function with values in {1, · · · ,M}. Then one has the
following convergence result (for a detailed proof see [7]):

Theorem 3.1.4 (Theorem 4.3, [7]). Let f be a convex function of Legendre
type. Suppose Cℓ with l = 1, · · · ,M are finitely many affine subspaces of RN

with C = ∩Ml=1Cℓ and C ∩ intdomf 6= ∅. Then the sequence x(n) defined as in
(3.3) converges to the unique solution of (3.1.3).

3.2 The Iterative Proportional Fitting Proce-
dure (aka the Sinkhorn algorithm)

Let now consider the problem described in Section 2.2

min {KL (γ|γ) | γ ∈ C} , (3.4)

where C = C1 ∩ C2 and

C1 :=
{
γ ∈ R

N
+ × R

N
+ | γ111 = µ

}
, (3.5)

C2 :=
{
γ ∈ R

N
+ × R

N
+ | γT111 = ν

}
. (3.6)

It is clear that the set Cl are affine subspaces of RN+×R
N
+ and so we can apply the

algorithm introduced in the previous Section, being aware of the convergence
guaranteed by theorem 3.1.4. Then, the projections PKL

C[n]
can be easily computed

as stated in the following proposition
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Proposition 3.2.1 ([BCC+15]). Consider the set Cl as in 3.5, then for γ(n) ∈
R
N
+ × R

N
+ the projection γ(n) := PKL

C[k]
(γ(n)) satisfies ∀n

γ(n) = γ(n) diag

(
µ

γ̄(n)111

)
, if [n] = 1 (3.7)

γ(n) = diag

(
ν

γ̄(n)
T
111

)
γ(n), if [n] = 2. (3.8)

Proof. Let us consider the case [n] = 1 (the case [n] = 2 is analogous), then
the first order condition of the projection PKL

C1
(γ(n)) states the existence of a

Lagrange multiplier ϕ(n) ∈ R
N such that

∀n log(γ
(n)

γ(n) )− ϕ(n) = 0 which can be re-written as γ(n) = γ(n) diag(a(n)),

where a(n) := eϕ
(n)/ε. As the optimal γ(n) must belong to C1 we obtain

a(n) =
µ

γ(n)111
,

and so the projection is

γ(n) = γ(n) diag

(
µ

γ̄(n)111

)
.

In Section 2.2 we have pointed out that problem (3.4) admits a unique and,
almost explicit solution of the form

γε,⋆ = diag(a)γ diag(b),

where a, b ∈ R
N are uniquely determined, up to a multiplicative constant, by

the marginal constraints and γ := e−C/ε. This leads to iterates γ(n) which
satisfy

γ(n) = diag(a(n))γ diag(b(n)) (3.9)

for two vectors
(
a(n), b(n)

)
∈ R

N × R
N initialized as a(0) = 111 and computed

with the iterations

a(n) =
µ

γb(n)
and b(n+1) =

ν

γTa(n)
.

This algorithm has been firstly introduced by Sinkhorn in [113] and it is also
known as Iterative Proportional Fitting Procedure (IPFP). We remark that the
Bregman algorithm iterates on the primal variable, where as the (IPFP) on the
dual ones. It is clear that iterating on the dual variable a, b, due to the special
structure of the solution, is equivalent to alternatively projecting on C1 and C2.
Indeed, let us define γ(2n) and γ(2n+1) as

γ(2n) := diag(a(n))γ diag(b(n)) and γ(2n+1) := diag(a(n))γ diag(b(n+1)),

then we have

π1(γ
(2n)) = µ and π2(γ

(2n+1)) = ν
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which means that γ(2n) ∈ C1 and γ(2n+1) ∈ C2. Moreover, take γ(2n−1) :=
diag(a(n−1))γ diag(b(n)), which can be written as

γ diag(b(n)) =
γ(2n−1)

diag(a(n−1))

, then, after some simple algebraic computations, one can re-write γ(2n) as

γ(2n) = γ(2n−1) diag(
µ

γ(2n−1)111
)

which corresponds to the Bregman’s projection on C1 (analogously for the pro-
jection on C2).

Figure 3.1 displays examples of transport plans γ = γε,⋆ solving (3.4), for
two 1-D marginals (µ, ν) ∈ R

N × R
N discretizing continuous densities on a

uniform grid {xi}Ni=1 of [0, 1], and with a ground cost cij = ||xi − xj ||2. The
computation is performed with N = 256. This figure shows how the iterates of
the algorithm γ(n) progressively shift mass away from the diagonal during the
iterations.

Marginals µ and ν

n = 1 n = 4 n = 10

n = 40 n = 100 n = 1000

Figure 3.1: Top: the input densities µ (blue curve) and ν (red curve). Bottom:
evolution of the couplings γ(n) at iteration n of the Sinkhorn algorithm.

In [104] Rüschendorf proves the convergence of the IPFP in a measure con-
tinuous framework. In the following Section we will give a convergence result
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in the Hilbert metric and in finite dimension; anyway this kind of result can be
easily extended to the infinite dimension case (see for instance [57, 17, 67]).

3.2.1 The Convergence of the IPFP in the Hilbert’s metric

We now present a constructive proof of the convergence of the IPFP by
using the Hilbert metric and the Birkhoff-Bushell theorem. The main idea of
this approach lies on the fact that the solution of problem (3.4) can be seen
as the fixed point of a contractive map in the Hilbert metric. Moreover, one
obtains a geometric rate of convergence, and the rate factor can be estimated a
priori. Let us firstly introduce the Hilbert’s projective metric and the Birkhoff-
Bushell theorem. Let p and q be elements of RN++ (i.e. pi > 0 for i = 1, · · · , N),
then

dH (p, q) := log

(
maxi(

pi
qi
)

mini(
pi
qi
)

)
= log

(
maxi,j

piqj
qipj

)

defines a projective metric on R
N
++; the following properties hold for p, q, z ∈ R

N
+

dH (p, q) = 0 ⇐⇒ p = αq for α ∈ R+ (3.10)

dH (p, q) = dH (q, p) (3.11)

dH (p, z) 6 dH (p, q) + dH (q, z) . (3.12)

We refer to dH as the Hilbert’s metric (see [25] for a survey of applications and
remarks). Take a m×n matrix A = (aij) with positive entries which maps Rm++

into R
n
++ (without loss of generality we take m = n = N) then we define the

projective diameter as follows

δ(A) := sup{dH (Ap,Aq) | p, q ∈ R
N
+}

= max

{
log

(
aijakl
ailakj

)
| (i, j, k, l) ∈ {1, · · · , N}4

}
,

and the contraction ratio as

η(A) := sup{dH (Ap,Aq)

dH (p, q)
| p, q ∈ R

N
++, p 6= αq for α ∈ R

N
++}.

Then the following theorem, due to Birkhoff [13], holds

Theorem 3.2.2 (Birkhoff-Bushell, [13] and [25]). Let A = (aij) ∈ R
N
++ ×R

N
++

such that 0 < α 6 aij 6 β < +∞ ∀(i, j) ∈ {1, · · · , N}2 then the equality

η(A) =
e

1
2 δ(A) − 1

e
1
2 δ(A) + 1

= tanh

(
1

4
δ(A)

)

holds.

Remark 3.2.3. Actually, as tanh(x) < 1, theorem 3.2.2 states that the operator
A is a contraction.

Remark 3.2.4. The same result holds in infinite dimensions in which case A is
a linear positive operator.

Let us briefly recall the iterates of the IPFP for the problem (3.4)
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a(n) =
µ

γb(n)
and b(n+1) =

ν

γTa(n)
,

where b(0) = 111 and γ = e−C/ε. Then on can re-write them in the following way

a(n) = Iµ(Aγ(b
(n))) and b(n+1) = Iν(AγT(a(n))),

where the operators Iµ,Aγ , Iν ,AγT are defined as

Iµ : p 7→ q =
µ

p
,

Iν : p 7→ q =
ν

p
,

Aγ : p 7→ q = γp,

AγT : p 7→ q = γT p.

It is clear that the iterates can be finally written as

b(n+1) = D(b(n)),

where
D := Iν ◦AγT ◦ Iµ ◦Aγ . (3.13)

Then, the main result of this Section is

Theorem 3.2.5 (see also [56, 38]). Given a positive matrix γ ∈ R
N
++ × R

N
++,

such that 0 < α 6 aij 6 β < +∞ ∀(i, j) ∈ {1, · · · , N}2, and two vectors µ, ν ∈
R
N
++ then there exist two positive vectors a⋆, b⋆ solutions of the Schrödinger

equations

a⋆i =
µi∑
j γijb

⋆
j

and b⋆j =
νj∑
i γija

⋆
i

and they are unique up to a multiplicative constant.

The proof of theorem 3.2.5 relies on the following lemma

Lemma 3.2.6 (see also [56, 38]). Let γ, µ, ν as above. Then the map D : RN+ →
R
N
+ , defined in (3.13), is a contraction in the Hilbert’s metric.

Proof of Lemma 3.2.6. We firstly note the operators Iµ and Iν are isometries
in the Hilbert’s metric since the inversion and element-wise scaling are both
isometries: take two vectors p, q ∈ R

N
+ then

dH (p, q) = log

(
max
ij

piqj
qipj

)

= log

(
max
ij

1
pj

1
qi

1
qj

1
pi

)
= dH

(
p−1, q−1

)
,

and

dH (µ⊙ p, µ⊙ q) = log

(
max
ij

(µipi)(µjqj)

(µiqi)(µjpj)

)
= dH (p, q) ,

where ⊙ must be understood as an element-wise multiplication. Next we note
that δ(γ) is finite and

δ(γ) = δ(γT ),
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so that we can reduce to study only the operator Aγ . Aγ is a linear positive
operator, thanks to the hypothesis on the matrix γ (which means we can apply
theorem 3.2.2), we have that

η(Aγ) < 1.

Then

η(D) = η(Iν ◦AγT ◦ Iµ ◦Aγ) = η(Iν)η(AγT)η(Iµ)η(Aγ) = η(Aγ)
2 < 1,

and so the operator D is a contraction in the Hilbert’s metric.

Proof of theorem 3.2.5. [25] ensures that there exists a unique positive fixed
point of the map D (and so we have the existence of vectors a⋆ and b⋆).

3.3 Dykstra’s Algorithm

In Section 3.1 we have introduced the Bregman’s algorithm when the convex
set Cℓ are affine subspaces. Indeed one can still use the iterative Bregman
projections when Cℓ are not affine subspaces, but the sequence x(n) does not
converge in general to the projection on the intersection, and so to the solution
of problem (3.1.3). A way to avoid this issue is to use a generalization of
Bregman projections proposed by Dykstra in [50]. Let us consider the same
function f as in Section 3.1, and the induced Bregman distance Df , M convex
sets C1, · · · , CM , M auxiliaries variables z−(i−1) := 000 for i = 1, · · · ,M and an
initial point x(0) = x. The Dykstra’s iterates are defined as follows

Definition 3.3.1 (Dykstra’s iterates).

x(n) := (P
(f)
C[n]

◦ ∇f∗)(∇f(x(n−1)) + z(n−M)), (3.14)

z(n) := ∇f(x(n−1)) + z(n−M) −∇f(x(n)), (3.15)

where [·] denotes the mod M function with values in {1, · · · ,M} and f∗ is the
Legendre transform of f , see Definition 3.3.2 .

Definition 3.3.2 (Legendre transformation). Let f : RN → R ∪ {+∞} be a
convex function then the Legendre transform is a function f∗ : RN → R∪{+∞}
defined by

f∗(x∗) := sup
x∈RN

(〈x, x∗〉 − f(x)) ,

where 〈·, ·〉 denotes the dot product.

Then we have the following theorem (see [7] for a detailed proof)

Theorem 3.3.3 (Theorem 3.2, [7]). Let f be a convex function of Legendre type.

The sequence x(n) defined in (3.14) converges to P
(f)
C (x), where C := ∩Mℓ=1Cℓ.

We want now to re-write the iterates (3.14) by using Boltzmann/Shannon
entropy f(x) := x(log x− 1), (we have already showed in Section 3.1 that prob-
lem (3.1.3) becomes the minimization of the Kullback-Leibler distance). Note
that the Legendre transform of f(x) is simply f∗(x∗) = ex

∗

and (3.14) become

x(n) := PKL
C[n]

(elog(x
(n−1))+z(n−M)

), (3.16)

z(n) := log(x(n−1)) + z(n−M) − log(x(n)). (3.17)
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If we define qn−M := exp zn−M , the iterates (3.16) can be re-written in a more
convenient form

x(n) := PKL
C[n]

(x(n−1) ⊙ q(n−M)),

q(n) := q(n−M) ⊙ x(n−1)

x(n)
,

where ⊙ and ·
· denotes entry-wise multiplication and division, respectively. Fi-

nally, consider the following regularized transport problem

min {KL (γ|γ) | γ ∈ C} , (3.18)

where C := ∩Mℓ=1Cℓ, for instance see Sections 4.3,4.4 and 5.1, then Dykstra’s
algorithm starts by initializing

γ(0) := γ and q(0) = q(−1) = · · · = q−(M−1) := 111.

and one iteratively defines

γ(n) := PKL
Cn

(γ(n−1) ⊙ q(n−L)), and q(n) := q(n−L) ⊙ γ(n−1)

γ(n)
. (3.19)
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Chapter 4

Applications

4.1 Optimal Transport Barycenters

We are given a set {µk}Kk=1 of input marginals µk ∈ ΣN (we remind that
ΣN := {u ∈ R

N | ∑i ui = 1}), and we wish to compute a weighted barycenter
according to the Wasserstein metric. This problem finds many applications, as
highlighted in [45] and [BCC+15].

Following [1], the general idea is to define the barycenter as a solution of a
variational problem mimicking the definition of barycenters in Euclidean spaces.
Given a set of normalized weights λ ∈ ΣK , we consider the regularized Wasser-
stein barycenter problem studied in [45]

min

{
K∑

k=1

λkMKε(µk, ν) | ν ∈ ΣN

}
, (4.1)

which as in [33] can be re-written as

∀ k = 1, . . . ,K, ν = γk
T111,

where the set of optimal couplings γ = {γk}Kk=1 ∈ (RN×N
+ )K solves

min

{
KLλ (γ|γ) :=

K∑

k=1

λk KL
(
γk|γk

)
| γ ∈ C1 ∩ C2

}
(4.2)

where ∀k, γk := γ := e−
C
ε ,

and the constraint sets are defined by

C1 :=
{
γ = {γk}k ∈ (ΣN )K | ∀ k, γk111 = µk

}

and C2 :=
{
γ = {γk}k ∈ (ΣN )K | ∃ν ∈ R

N , ∀ k, γkT111 = ν
}
.

It is easy to check that the Bregman iterative projection scheme can be
applied to this setting by simply replacing KL by KLλ.

The KLλ projection on C1 is computed as detailed in Proposition 3.2.1,
since it is equal to the KL projection of each γk = γ on a constraint of fixed
marginal µk. The KLλ projection on C2 is computed as detailed in the following
proposition.

49



4.1. OPTIMAL TRANSPORT BARYCENTERS

Proposition 4.1.1 ([BCC+15]). For γ̄ := {γ̄k}k ∈ (RN×N
+ )K , the projection

γ := {γk}Kk=1 = PKLλ

C2
(γ̄) satisfies

∀ k, γk = diag

(
ν

γ̄k111

)
γ̄k where ν :=

K∏

r=1

(γ̄r111)λr (4.3)

where
∏

and (·)λr should be understood as entry-wise operators.

Proof. Introducing the variable ν such that for all k, γTk 111 = ν, the first order

conditions of the projection PKLλ

C2
(γ̄) states the existence of Lagrange multipliers

(uk)k such that

∀ k, λk log

(
γk

γ̄k

)
+ uk111

T = 0 and
∑

r

ur = 0.

Denoting ak = e−uk , one has
∏
k ak = 111 and γk = diag(a

1/λk

k )γ̄k. Condition
γTk 111 = ν thus implies that

ak =

(
ν

γ̄k111

)λk

,

and condition
∏
k ak = 111 gives the desired value (4.3) for p.

Remark 4.1.2 (Special case). Note that when K = 2, (λ1, λ2) = (0, 1), one
retrieves exactly the IPFP/Sinkhorn algorithm to solve the entropic OT, as
detailed in Section 3.2. Our novel scheme to compute barycenters should thus be
understood as the natural generalization of this IPFP algorithm to barycenters.

Remark 4.1.3 (Memory efficient and parallel implementation,[BCC+15]). As we
have showed in Section 3.2, one verifies that iterations (3.3) in the special case
of problem (4.2) leads to iterates γ(n) = {γk,(n)}k which satisfy, for each k

γk,(n) = diag(u
(n)
k )γ diag(v

(n)
k )

for two vectors (u
(n)
k , v

(n)
k ) ∈ R

N × R
N initialized as v

(0)
k = 111 for all k, and

computed with the iterations

u
(n)
k =

ν(n)

γv
(n)
k

and v
(n+1)
k =

µk

γTu
(n)
k

where ν(n) is the current estimate of the barycenter, computed as

ν(n) =
N∏

k=1

(
u
(n)
k ⊙ (γv

(n)
k )

)λk

.

A nice feature of these iterations is that they can be computed in parallel for all

k using multiplications between the matrix γ and matrices storing (u
(n)
k )k and

(v
(n)
k )k as columns.

Figure 4.1 shows an example of barycenters computation for K = 3. The
three vertices of the triangle show the input densities (p1, p2, p3) which are
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uniform on binary shapes (diamond, annulus and square). The other points in
the triangle display the results for the following values of λ

(0,0,1)
(1, 0, 3)/4 (0, 1, 3)/4

(1,0,1)/2 (1,1,2)/4 (0,1,1)/2
(3,0,1)/4 (2,1,1)/4 (1,2,1)/4 (0,3,1)/4

(1,0,0) (3,1,0)/4 (1,1,0)/2 (1,3,0)/4 (0,1,0)

The computation is performed on an uniform 2-D grid of N = 256× 256 points
in [0, 1]2, and ε = 2/N .

Figure 4.1: Example of OT barycenters with entropic smoothing.

We benchmark the performance of the Bregman iterative projection scheme
to compute barycenters with the approaches proposed in [45] and [33]. We pro-
pose for this benchmark to compute the quadratic-Wasserstein barycenter of
K = 12 probability histograms on the N = 100 × 100 planar grid. These his-
tograms are obtained as discretized and then renormalized truncated mixtures
of Gaussians on the grid, as displayed in Figure 4.2. We consider for the N ×N
cost matrix C the matrix of squared Euclidean distances on the grid, normalized
to have median 1.

We review briefly two competing methods for this task. The authors of [45]
proposed to minimize directly Equation (4.1) with a regularizer ε > 0. That
objective can be evaluated by running K Sinkhorn fixed-point iterations. That
objective is differentiable and its gradient is equal to ε

∑
k λk log uk, where the

uk are the left optimal scalings obtained with the Sinkhorn subroutine, run in
parallel. The cost of each iteration of the Sinkhorn algorithm is 2KN2, namely
the cost associated to the updates of row and column scalings, each obtained
by multiplying a N ×N matrix (the kernel γ) times a N ×K matrix (a matrix
of scalings). A weakness of that approach is that a precision threshold τ for
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Figure 4.2: Input measures considered in our experiment. They are formed
by considering truncated mixtures of Gaussian densities on the planar square,
which are then discretized on a regularly spaced 100 × 100 grid and normalized
as histograms in Σ104 .

each Sinkhorn fixed-point sub-iteration must be chosen. That precision can be
measured by the difference in l1 norm between the row and column marginals
of diag(uk)γ diag(vk) and the target marginals. Setting that tolerance τ to a
larger value ensures a faster convergence of the subroutine but results in noisier
gradients. We experiment here with two thresholds τ ∈ {0.01, 0.1} and set a
constant gradient stepsize t0 to 1. The authors of [33] propose to solve directly
the (non-differentiable) energy of Equation (4.1) when ε = 0. They study a
dual formulation for that energy that involves splitting across dual variables
and show that subgradients of the energy for each of these K dual variables can
be computed in closed form by solving K × N nearest neighbor assignments
(among N neighbors) on a shifted metric. They propose to use a L-BFGS
method that exploits directly such subgradients, which we implement in practice
using Matlab’s fmincon function. At each step of their algorithm, iterates in
the primal can be obtained by averaging all of the K subgradients.

Because our approach as well as that of [45] on the one hand, and that of [33]
on the other hand, minimizes two different energies—the sum of K smoothed
distancesWε and the sum ofK original Wasserstein distancesW0 respectively—
comparing them on only one of these two energies does not make sense. We
plot in Figure 4.3 the gap to optimality of each method with respect to smooth
(ε = 1/100) and non smooth energies as a function of the number of iterations
consumed by the algorithm. By gap to optimality we mean in the y axis the
difference between the objective evaluated at the primal iterate and the optimal
value for that problem, after x iterations in the x axis. We consider as a proxy
for the optimal value the smallest value obtained across all methods after 105

iterations. This minimum across all methods is in fact attained much earlier
by the Bregman alternated projections approach after only 771 iterations (we
do not plot that point in our graph), which is set to terminate when the l1
norm of two successive iterates is less than 10−8. By one iteration, we mean an
iteration whose cost is equal to N2K elementary operations. The number N2K
corresponds to the K matrix-vector products of cost N2 needed by both the
Sinkhorn subroutine or the Bregman alternative projections, or K×N nearest-
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Smoothed Primal, ε=1/100, t0=1, τ=0.01

Smoothed Primal, ε=1/100, t0=1, τ=0.1

Dual L-BFGS

Bregman alternate project ions, ε = 1/100

Figure 4.3: Optimality gap as a function of the number of iterations (each
consisting in N2K operations) of the three considered methods with respect to
both the smoothed Wasserstein energy that involves a sum of K smoothed dis-
tances W1/100 terms, and the original Wasserstein barycenter energy involving
sums of W0 terms. The smoothed primal descent approach of [45] is considered
here with two different tolerance parameters τ that control the convergence of
the Sinkhorn subroutine used in that algorithm. We set the smoothing param-
eter ε to 1/100, having renormalized the matrix of squared Euclidean distances
between all nodes on the grid to have a median of 1. Notice that both x and
y axis are displayed in logarithmic units. The Bregman alternative projection
approach advocated in this paper converges orders of magnitude faster.
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neighbor assignments involving N candidates carried out in the dual descent. A
perhaps surprising observations from these experiments is that the minimizer of
the smoothed energy ends up providing, using either smoothed primal descent
or Bregman iterations, a better minimizer of the non-smoothed energy as well.
This is certainly due to the fact that we apply a relatively small smoothing
ε = 1/100, and partly due to the tolerance and convergence criteria we have
applied to the dual L-BFGS method. This reflects however the fundamental
inability of the dual L-BFGS method to solve with a subgradient descent what
is essentially a very large and degenerate linear program.

The barycenters we obtain for each of the three methods are displayed in
Figure 4.4. We only report the barycenters as they appear after at most 104

iterations. The barycenter obtained after more than 105 iterations with the
smoothed primal descent approach of [45] (not plotted here) is identical to
that obtained with the Bregman iterative projection scheme, which should be
expected since they minimize the same energy.

Figure 4.4: Isobarycenters obtained with three different methods for the in-
put measures displayed in Figure 4.2 after up to 104 iterations. The Bregman
barycenter is obtained with a couple of hundred iterations.

4.2 Matching for Teams

In this Section we present an application of the IPFP algorithm to the
matching for teams problem which can be regarded as a generalization of the
Wasserstein Barycenter. This model was introduced by Carlier and Ekeland
in [32] and it deals with equilibrium of a market for a quality good. Indeed,
producing a good requires gathering a team consisting of one buyer/consumer
and a set of producers. In the following we will restrict ourselves to the finite
setting and we introduce the model by the example of the real estate mar-
ket. Thus, in the real estate market houses are the goods and they have
a range of feasible qualities (location, surface, facilities, etc..) denoted by
a set Z := {zj}j∈J , J is finite; the buyers buy one unit of good and they
are characterized by the set X0 := {x0i }i∈I0 and, finally, there are the pro-
ducers k ∈ {1, · · · , N} (e.g. plumbers, electricians, etc...) characterized by
Xk := {xki }i∈Ik . For each population k ∈ K := {0, · · · , N} we are given a cost
function ck := {ckij}i∈Ik,j∈J ∈ R

Ik×J which can be interpreted as a cost for
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an agent k with type xki to work in a team that produces the good zj . The
distribution of type xki is known and given by the probability µk ∈ Σk with

ΣIk := {p ∈ R
Ik |

∑

i∈Ik
pi = 1}.

The goal is to find an equilibrium production line ν ∈ ΣJ which clears both
the quality good and the market. Moreover, one looks for an equilibrium of
monetary transfers: a system of transfers is a collection of vectors {ϕk}k∈K ∈
R
J where ϕkj is the amount paid to k by the other members of the team for

producing the good j. It is clear that an equilibrium requires that the teams
are self-financed ∑

k∈K
ϕkj = 0 ∀j ∈ J. (4.4)

The ck−transform of ϕk

ϕc
k

:= {ϕcki }i∈Ik = min
j∈J

ckij − ϕkj ,

gives the net minimal cost for an agent from the population k with type xki ∈ Xk.

Then, it follows that ϕkj + ϕc
k

i 6 ckij ∀(i, j) ∈ Ik × J and the agents choose cost
minimizing qualities j ∈ J such that

ϕkj + ϕc
k

i = ckij . (4.5)

The last unknown is a collection of transport plans {γk}k∈K ∈ R
Ik×J such that

γkij is the probability that an agent k has a type xki and belongs to the team
which produces a quality j. It is obvious that at the equilibrium, we must have
the following

γk ∈ Π(µk, ν) ∀k ∈ K.

Thus, we have the following formal definition of equilibrium

Definition 4.2.1. An equilibrium consists of a transfer system Φ = (ϕ0, · · · , ϕN ),
a collection probability measures γ = {γk}k∈K and a probability measure ν ∈ ΣJ
such that

• (4.4) holds,

• γk ∈ Π(µk, ν) for k ∈ K,

• (4.5) holds on the support of γk for k ∈ K.

If one knows the equilibrium ν then the two last conditions imply that the
plan γk is optimal for the Monge-Kantorovich problem

MKck(µk, ν) = inf
γk∈Π(µk,ν)

∑

i,j∈Ik×J
ckijγ

k
ij .

Indeed, in [32] the equilibrium can be characterize by a variational approach,
related to the following problem

inf

{
∑

k∈K
MKck(µk, ν) | ν ∈ ΣJ

}
, (4.6)
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and its dual formulation

sup

{
∑

k∈K

∑

i∈Ik
ϕc

k

i µ
k
i |

∑

k∈K
ϕk = 0

}
. (4.7)

Thus, we have the following result

Theorem 4.2.2 ([32] Theorem 4). (Φ,γ, ν) is an equilibrium if and only if:

1. ν solves (4.6),

2. Φ solves (4.7),

3. γk solves MKck(µk, ν) for k ∈ K.

It is clear that the problem we have described so far, it is actually a gener-
alization of the Wasserstein Barycenter problem. It follows that one can easily
generalize the algorithm described in Section 4.1. We consider the regularized
matching for teams problem which reads as

min

{
∑

k∈K
λkMKck,ε(µk, ν) | ν ∈ ΣJ

}
, (4.8)

where λk = 1
N+1 ∀k ∈ K. The problem can be re-written as

∀ k = 1, . . . ,K, ν = γk
T
111,

where the set of optimal couplings γ = {γk}Kk=1 ∈ ×k∈K(RIk×J+ ) solves

min

{
KLλ (γ|γ) :=

K∑

k=1

λk KL
(
γk|γk

)
| γ ∈ C1 ∩ C2

}
(4.9)

where ∀k, γk := γk := e−
ck

ε ,

and the constraint sets are defined by

C1 :=
{
γ = {γk}k ∈ ⊗k∈KΣIk | ∀ k, γk111 = µk

}

and C2 :=
{
γ = {γk}k ∈ ⊗k∈KΣIk | ∃ν ∈ R

J , ∀ k, γkT111 = ν
}
.

It is easy to check that the Bregman iterative projection scheme can be applied
to this setting by simply replacing KL by KLλ.

The KLλ projection on C1 is computed as detailed in Proposition 3.2.1, since
it is equal to the KL projection of each γk = γ on a constraint of fixed marginal
µk. The KLλ projection on C2 is computed as detailed in Proposition 4.1.1.

Remark 4.2.3 (Memory efficient and parallel implementation). Similarly as for
Remark 4.1.3, one verifies that iterations (3.3) in the special case of prob-
lem (4.9) leads to iterates γ(n) = {γk,(n)}k which satisfy, for each k

γk,(n) = diag(u
(n)
k )γk diag(v

(n)
k )
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for two vectors (u
(n)
k , v

(n)
k ) ∈ R

N × R
N initialized as v

(0)
k = 111 for all k, and

computed with the iterations

u
(n)
k =

ν(n)

γkv
(n)
k

and v
(n+1)
k =

µk

γk
T
u
(n)
k

where ν(n) is the current estimate of the barycenter, computed as

ν(n) =
N∏

k=1

(
u
(n)
k ⊙ (γkv

(n)
k )

)λk

.

For the numerical experiments we consider the same example as in [37].
Z := {(z1j , z2j )}j∈J and X0 := {(x0i , y0i )}i∈I0 are a M × M discretization of

[0, 1]2 and [1, 2]2 respectively, X1 := {(x1i , y1i )}i∈I1 is a M ×M discretization of
[1.25, 1.75]× [1, 2] and X2 := {(x2i , y2i )}i∈I2 of [1, 2]× [1.25, 1.75] with M = 100
and ε = 0.05. The given densities are

µ0 = χ[1,2]2 ,

µ1 = χ[1.25,1.75]×[1,2],

µ2 = χ[1,2]×[1.25,1.75],

and corresponding cost functions are

c0ij = −5.5(x0i z
1
j + y0i z

2
j )

ckij = (xki + z1j )
2 + (yki + z2j )

2 k = 1, 2.

As displayed in Figure 4.5 the support of the optimal solution ν is mostly
concentrated at the boundary and at the corners of the domain. If we compare
it with the optimal one in [37], the effect of the regularization is clear.

Figure 4.5: Plot of the optimal solution ν.
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4.3 Partial Transport

In the partial transport problem, one is given two marginals (µ, ν) ∈ (RN+ )2,
not necessarily with the same total mass. We wish to transport only a given
fraction of mass

m ∈ [0,min(µT111, νT111)],

minimizing the transportation cost 〈C, γ〉 where C ∈ (R+)
N×N is the ground

cost.
The corresponding regularized problem reads

min
γ∈R

N×N
+

{
〈C, γ〉+ εH(γ|η) | γ111 6 µ, γT111 6 ν,111T γ111 = m

}
(4.10)

where ηij = 1 ∀(i, j) ∈ {1, · · · , N}2 and the inequalities should be understood
component-wise.

Similarly to (3.4), this is equivalent to computing the projection of γ = e−
C
ε

on the intersection C1 ∩ C2 ∩ C3 of K = 3 convex sets where

C1 := {γ | γ111 6 µ} , C2 :=
{
γ | γT111 6 ν

}
, C3 :=

{
γ | 111T γ111 = m

}
. (4.11)

The following proposition shows that the KL projection onto those three sets
can be obtained in closed form.

Proposition 4.3.1 ([BCC+15]). Let γ ∈ R
N×N
+ . Denoting γk := PKL

Ck
(γ) for

k ∈ {1, 2, 3} where Ck is defined by (4.11), one has

γ1 = diag

(
min

(
µ

γ111
,111

))
γ,

γ2 = γ diag

(
min

(
ν

γT111
,111

))
,

γ3 = γ
m

111T γ111
,

where the minimum is component-wise.

Since the considered sets C1 and C2 are convex but not affine, one thus needs
to use Dykstra iterations (3.19) which are ensured to converge to the solution
of (4.10).

If γ⋆ is the optimal solution of (4.10) and

µm := γ⋆111 and νm := γ⋆,T111

are its marginals, then we define the active source Sm and the active target Tm
regions as follow

Sm := {xi | (νm)i/m > η} ,
Tm := {xi | (µm)i/m > η} ,

where η > 0 is a threshold we use to detect the region, namely the active region,
where the transported mass is concentrated.

The continuous partial optimal transport problem has been studied in Caf-
farelli-McCann [27] and Figalli [54]. They show in particular that if there exists
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an hyperplane separating the support of the two marginals then the “active
region” is separated from the “inactive region” by a free boundary which can
be parameterized as a semi concave graph over the separating hyperplane. This
can be observed on the test case presented in Figure 4.6. The computation is
performed on an uniform 2D-grid of N = 256 × 256 points in [0, 1]2, ε = 10−3

and m = 0.7min(〈µ, 111〉, 〈ν, 111〉).

Figure 4.6: The red region is the active source Sm, the green region is the
active target Tm and the black ones are the inactive regions.

4.4 Capacity Constrained Transport

Korman and McCann proposed and studied in [79, 80] a variant of the
classical OT problem when there is an upper bound on the coupling weights
so as to capture transport capacity constraints. The capacity is described by
θ ∈ (R+)

N×N , where θi,j is the maximum possible mass that can be transferred
from i to j. The corresponding regularized problem reads, for a ground cost
C ∈ (R+)

N×N and marginals (µ, ν) ∈ (RN+ )2,

min
γ∈R

N×N
+

{
〈C, γ〉+ εH(γ|η) | γ111 = µ, γT111 = ν, γ 6 θ

}
(4.12)

where ηij = µi ⊗ νj for every (i, j) ∈ {1, · · · , N}2 and the inequalities should
be understood component-wise. This problem is equivalent to a KL projection
problem with K = 3 convex sets and

C1 := {γ | γ111 = µ} , C2 :=
{
γ | γT111 = ν

}
, C3 := {γ | γ 6 θ} . (4.13)

The projection on C1 and C2 is given by Proposition 3.2.1. The projection on
C3 is simply

PKL
C3

(γ̄) = min(γ, γ̄)

where the minimum is component-wise. Here we have to emphasize the dif-
ference between continuous and discrete notations for pointwise capacity con-
straints; in the continuous problem, one looks for an absolutely continuous with
respect to Lebesgue’s measure plan γ and the capacity constraint reads as γ ≤ θ
where γ represents a density and θ the capacity constraint. In the case of uni-
dimensional marginals, if we think of the discrete weight γi,j as the mass of a cell
of area 1/N2, γ̄i,j represents the integral of θ on this cell, hence γ̄i,j ≃ θi,j/N

2.
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Korman and McCann [80] established several interesting properties of mini-
mizers in the continuous setting, in particular, they proved (theorem 3.3) that
optimal plans must saturate the capacity constraint, that is optimal plans γ
are of the form θ 1W , where 1W is the characteristic function of a subset W of
R
d × R

d. For the quadratic transport cost, uniform marginals and a constant
maximal capacity constraint θ, they also prove symmetry properties between
minimizers γ⋆, γ̃⋆ with the same marginals but different capacity constraints θ
and θ̃ which are Hölder conjugate, i.e. 1

θ +
1
θ̃
= 1. More precisely, assuming for

simplicity that the marginals are symmetric with respect to 0, they show that

γ⋆ = θ 1W ⇐⇒ γ̃⋆ = θ̃ 1R(Ω\W ) (4.14)

where R(x, y) = (x,−y) is the symmetry with respect to the second marginal
axis and W the optimal support of the saturated constraint C3.

θ = 3/2 θ = 3 θ = 2

Figure 4.7: Comparison of optimal couplings γ⋆ for different values of θ.
The saturated region W is represented in black.

Korman and McCann [80] illustrated their theory with two 1-D numerical
test cases (Figures 1 and 2 of [80]) computed by linear programming and a
discretization of the problem on a cartesian grid. We tested our method on the
same examples. The ground cost is the standard quadratic distance ci,j = ||xi−
xj ||2, the marginals are discretization of the uniform distribution on [−1/2, 1/2]
using N = 100 points (xi)i. The simulation uses ε = 10−3. We reproduce the
expected symmetries (4.14) in Figure 4.7 in the 1-D test case for θ = 3

2 and

θ̃ = 3 and also for the self dual Hölder conjugate θ = θ̃ = 2.
We also computed the solutions of similar test cases but this time in 2-D,

which would be computationally too expensive to solve with linear programming
methods. The marginals (p, q) are discretization of the uniform distribution on
the square [−1/2, 1/2]2, discretized on a grid of N = 50× 50 points (xi)i. The
simulation uses ε = 10−3. Figure 4.8 shows some slices of the 4-D array repre-
senting the optimal transport plan γ⋆, γ̃⋆, illustrating the symmetries (4.14) in
this setting.
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(i2, j2) = (
√
N
4 ,

√
N
4 ) (i2, j2) = (

√
N
2 ,

√
N
2 ) (i2, j2) = ( 3

√
N

4 , 3
√
N

4 )

Figure 4.8: 2-D slices of the optimal coupling γ⋆ of the form (γ⋆(i1,i2)(j1,j2))i1,j1 ,

each time for some fixed value of (i2, j2) ∈ {1, . . . ,
√
N}2, for θ = 3/2 (top row)

and θ = 3 (bottom row).
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Chapter 5

Entropic Cournot-Nash
equilibria

5.1 Cournot-Nash equilibria

We will restrict ourselves here to the following finite Cournot-Nash setting.
Not only this will simplify the exposition and enable us to give a simple and self-
contained exposition of the variational approach but this will also be consistent
with our numerical scheme which anyway considers a finite number of agents’
types and a finite number of strategies. We refer to [15] for the analysis of
the continuum case. We consider a population of players, each of whom is
characterized by a type which takes values in the type set X := {xi}i∈I where
I is finite. The frequencies of the players’ type in the population is given by a
probability µ := {µi}i∈I with µi ≥ 0 and

∑N
i=1 µi = 1. Each agent has to choose

a strategy y from the strategy set Y := {yj}j∈J with J finite. The unknown of
the problem is a matrix γ := {γij}i∈I, j∈J where γij is the probability that a
player of type xi chooses strategy yj , there is an obvious feasibility constraint on
this matrix, obviously it should have nonnegative entries and its first marginal
should match the given distribution of players µ i.e.:

∑

j∈J
γij = µi, ∀i ∈ I. (5.1)

The matrix γ induces a probability ν = π2(γ) = {νj}j∈J (where π2 : RI×R
J →

R
J is the canonical projection) on the set of strategies given by its second

marginal :

νj :=
∑

i∈I
γij , ∀j ∈ J. (5.2)

Agents of type xi who play strategy yj incur a cost that not only depends on
xi and yj but also on the whole probability ν := {νj}j∈J on the strategy space
induced by the behavior of the whole population of players, and we denote this
cost by Ψij [ν]. An equilibrium is then a probability matrix γ which is feasible
and which is consistent with the cost minimizing behavior of players, which is
summarized in the next definition:
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Definition 5.1.1. A Cournot-Nash equilibrium is a matrix γ = {γij}i∈I, j∈J ∈
R
I×J
+ which satisfies the feasibility constraint 5.1 and such that, defining the

strategy marginal ν = π2(γ) by 5.2, one has

γij > 0 ⇒ Ψij [ν] = min
k∈J

Ψik[ν].

Provided Ψij depends continuously on ν, the existence of an equilibrium can
easily be proven by Kakutanis’ fixed-point theorem, but not much more can be
said, at this level of generality. If one further specifies the form of the cost,
as we shall do now, following [15], one may obtain equilibria by minimizing a
certain cost functional.

5.2 A variational approach to Cournot-Nash equi-
libria

We now suppose that the cost Ψij [ν] takes the following separable form

Ψij [ν] := cij + fj(νj) +
∑

k∈J
ϕkjνk

where c := {cij}i∈I, j∈J ∈ R
I×J , each function fj is nondecreasing and contin-

uous, the matrix ϕ := {ϕkj} ∈ R
J×J is symmetric, i.e. ϕkj = ϕjk,

A possible interpretation of this model is the following: the players represent
a population of doctors, their type x represent their region of origin and their
y strategy represent the location where they chose to dwell, the total cost of
xi-type doctors is the sum of

• a transport cost cij = c(xi, yj),

• a congestion cost fj(νj): if location yj is very crowded i.e. if νj is large,
the doctors settling at yj will see their benefit decrease,

• an interaction cost with the rest of the population of doctors, one can
think that ϕkj is an increasing function of some distance between yk and
yj so that

∑
k∈J ϕkjνk represents the average distance to the rest of the

population.

The variational approach of [15] relies on optimal transport, and we shall
give a self-contained and simple presentation in the present discrete setting.
Firstly it is useful to introduce the marginal maps:

γ ∈ R
I×J 7→ π1(γ) = α ∈ R

I , αi :=
∑

j∈J
γij ,

and

γ ∈ R
I×J 7→ π2(γ) = ν ∈ R

J , νj :=
∑

i∈I
γij ,

as well as

C1 := {γ = {γij}i∈I, j∈J ∈ R
I×J
+ : π1(γ) = µ}
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which is the set of probabilities on X×Y having µ as first marginal (recall that
µ is fixed). For ν = {νj}j∈J ∈ R

J
+ such that

∑
j∈J νj = 1, let us also define

C2 := {γ = {γij}i∈I, j∈J ∈ R
I×J
+ : π2(γ) = ν}

as the set of probabilities on X × Y having ν as second marginal. Let us then
also define the set of transport plans between µ and ν as

Π(µ, ν) := C1 ∩ C2. (5.3)

Given ν a probability on Y , let us define

MK(ν) := inf
{ ∑

i,j∈I×J
cijγij | γ ∈ Π(µ, ν)

}
(5.4)

that is the value of the optimal transport problem between µ and ν for the cost
c. Setting

ΣJ := {ν ∈ R
J
+ :

∑

j∈J
νj = 1}

consider the optimization problem

inf
ν∈ΣJ

MK(ν) + E(ν) (5.5)

where the energy E is given by

E(ν) :=
∑

j∈J
Fj(νj) +

1

2

∑

k,j∈J×J
ϕkjνkνj (5.6)

and Fj is a primitive of the congestion function fj :

Fj(t) :=

∫ t

0

fj(s)ds.

We then have

Theorem 5.2.1 ([BCN16b]). Let ν solve (5.5) and γ ∈ Π(µ, ν) be such that∑
i,j∈I×J cijγij = MK(ν), then γ is a Cournot-Nash equilibrium. This implies

in particular that there exists Cournot-Nash equilibria.

Proof. We have to prove that whenever γij > 0 one has

cij + fj(νj) +
∑

k∈J
ϕkjνk = ui (5.7)

with
ui := min

j∈J
{cij + fj(νj) +

∑

k∈j
ϕkjνk}.

First observe that E is of class C1 and by construction

∂E

∂νj
= fj(νj) +

∑

k∈j
ϕkjνk. (5.8)
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To treat the transport term, MK, we shall recall the classical Kantorovich
duality (see [115, 105]) as follows. Firstly for v ∈ R

J let us define

K(v) := −
∑

i∈I
min
j∈J

(cij − vj)µi

note that K is a convex and Lipschitz function whose conjugate, thanks to
Kantorovich duality, can be expressed as

K∗(ν) = MK(ν) :=

{
MK(ν) if ν ∈ ΣJ ,

+∞ otherwise.

Since ν minimizes MK + E, one has 0 ∈ ∂MK(ν) + ∇E(ν), setting v :=

−∇E(ν), this can be rewritten as ν ∈ ∂MK
∗
(v) = ∂K(v) and since MK(ν) =∑

i,j∈I×J cijγij this gives

MK(ν) =
∑

i,j∈I×J
cijγij =

∑

j∈J
vjνj +

∑

i∈I
min
j∈J

(cij − vj)µi

=
∑

j∈J
vjνj +

∑

i∈I
uiµi =

∑

i,j∈I×J
(ui + vj)γij .

which, since ui + vj ≤ cij implies that whenever γij > 0, one has cij − vj =
ui which is exactly 5.7. This clearly implies the existence of Cournot-Nash
equilibria since ΣJ is compact and both MK and E are continuous.

Note that if E is convex then the optimality condition 0 ∈ ∂MK(ν)+∇E(ν)
is necessary and sufficient and there is actually an equivalence between being
an equilibrium and being a minimizer in this case.

5.3 Entropic regularization

Solving 5.5 in practice (even if E is convex) might be difficult because of the
transport cost term MK for which it is expensive to compute a subgradient.
There is however a simple regularization of MK which is much more convenient
to handle: the entropic regularization (see chapter 2). Given a regularization
parameter ε > 0, let us define for every ν ∈ ΣJ :

MKε(ν) := inf
γ∈Π(µ,ν)

{ ∑

i,j∈I×J
cijγij + ε

∑

i,j∈I×J
γij(ln(γij)− 1)

}
.

We then consider the regularization of 5.5

inf
ν∈ΣJ

MKε(ν) + E(ν) (5.9)

where E is again given by 5.6. Thanks to the entropic regularization term, 5.9
is a smooth minimization problem which consists in minimizing with respect to
γ and ν the objective

∑

i,j∈I×J
cijγij + ε

∑

i,j∈I×J
γij(ln(γij)− 1) + E(ν)
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subject to γij ≥ 0 (but because of the entropy, these non-negativity constraints
are not binding) and the linear marginal constraints γ ∈ Π(µ, ν). The first-order
optimality conditions give the following Gibbs form for γij :

γij = ai exp
(
− 1

ε
(cij + fj(νj) +

∑

k∈J
ϕkjνk)

)
(5.10)

for some ai > 0 which has to fulfill the first marginal constraint i.e.

ai =
µi

∑
j∈J exp

(
− 1

ε (cij + fj(νj) +
∑
k∈J ϕkjνk)

) .

Note that these conditions can also be interpreted as a regularized form of a
Cournot-Nash equilibrium since they mean that the conditional probabilities
on the set of strategies given the players type {γijµi

}j∈J are proportional to

exp(−Ψij(ν)
ε ) where Ψij [ν] = cij+fj(νj)+

∑
k∈J ϕkjνk is the total cost incurred

by players xi when choosing strategy yj . Another equilibrium interpretation
(which is customary in economics and econometrics in the framework of discrete
choice models) is to consider that the total cost actually contains a random
component that is of the form εXij where the Xij are i.i.d. logistic random
variables (see [61]).

Of course, again when E is convex, since MKε is strictly convex, there is a
unique minimizer and the first-order optimality condition for 5.9 is necessary
and sufficient so that there is again equivalence between being a minimizer and
a (regularized) Cournot-Nash equilibrium.

5.4 A proximal splitting algorithm

To solve 5.9, we shall use a proximal splitting scheme using the Kullback-
Leibler divergence that was recently introduced by Peyré [100] in the context of
entropic regularization of Wasserstein gradient flows. First, let us observe that
5.9 can be rewritten as a special instance of a Bregman proximal problem. To
see this, let us first rewrite

∑

i,j∈I×J
cijγij + ε

∑

i,j∈I×J
γij(ln(γij)− 1) = ε

∑

i,j∈I×J
γij(ln

( γij

e−
cij
ε

)
− 1)

which is the same as εKL(γ|γ) where γij = e−
cij
ε and KL is the Kullback-Leibler

divergence

KL(γ|θ) :=
∑

i,j∈I×J
γij

(
ln
(γij
θij

)
− 1
)
, γ ∈ R

I×J
+ , θ ∈ R

I×J
+ .

Note that KL is the Bregman divergence associated to the entropy. Solving 5.9
then amounts to the proximal problem

proxKL
G (γ) = argminγ∈R

I×J
+

{
KL(γ|γ) +G(γ)

}
(5.11)

with

G(γ) := χ{π1(γ)=µ} +
1

ε
E(π2(γ)).
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Computing directly proxKL
G (γ) may be an involved task, but the idea of Peyré’s

splitting algorithm is to express G as a sum of more elementary functionals:

G :=
L∑

l=1

Gl

each of whom being simple in the sense that computing proxKL
Gl

can be done
easily (ideally in close form). The algorithm proposed by Peyré generalizes
Dykstra’s algorithm for KL projections on the intersection of convex sets and
can be described as follows. First extend the sequence of functions G1, · · · , GL
by periodicity:

Gl+nL = Gl, l = {1, · · · , L}, n ∈ N

initialize the algorithm by setting the following values for the I × J matrices

γ(0) = γ, z(0) = z(−1) = · · · = z(−L+1) = e, eij = 1, (i, j) ∈ I × J,

and then iteratively define for n ≥ 1

γ(n) = proxKL
Gn

(
γn−1 ⊙ z(n−L)

)
(5.12)

and

z(n) = z(n−1) ⊙
(γ(n−1)

γ(n)

)
(5.13)

where ⊙ and ÷ stand for entrywise multiplication/division operations:
We refer to [100] for the convergence of this algorithm under suitable as-

sumptions (convexity of the functions Gl and a certain qualification condition),
the idea being that at the level of the dual problem, which is smooth, this
algorithm amounts to perform an alternate block minimization.

5.4.1 A class of convex problems

Note that the congestion term
∑
j∈J Fj(νj) is convex because fj is non-

decreasing, but the quadratic interaction energy ν 7→ ∑
j,k∈J×J ϕkjνkνj is in

general not convex. However, using Cauchy-Schwarz inequality, it satisfies

∑

j,k∈J×J
ϕkjνkνj ≥ −

( ∑

j,k∈J×J
ϕ2
kj

)∑

j∈J
ν2j

so that if Fj is 1-strongly convex:

Fj(t) =
1

2
t2 +Hj(t)

with Hj convex and ∑

j,k∈J×J
ϕ2
kj < 1, (5.14)

then E is convex as the sum E = E2 + E3 of the convex quadratic term

E2(ν) :=
1

2

∑

j∈J
ν2j +

1

2

∑

k,j∈J×J
ϕkjνkνj
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and the remaining convex congestion term

E3(ν) :=
∑

j∈J
Hj(νj).

In this setting one can write 5.9 as

inf
γ∈R

I×J
+

{
KL(γ|γ) +G1(γ) +G2(γ) +G3(γ)

}

where

G1(γ) = χ{π1(γ)=µ} =

{
0 if π1(γ) = µ

+∞ otherwise

and

G2 =
1

ε
E2 ◦ π2, G3 =

1

ε
E3 ◦ π2.

To implement the proximal splitting scheme 5.12-5.13 in this case, one has to
be able to compute the three proximal maps proxKL

Gl
with l = 1, 2, 3. The

proximal map of G1 corresponds to the fixed marginal constraint π1(γ) = µ, it
is well-known and it is given in closed form as:

(
proxKL

G1
(θ)
)
ij
=

µiθij∑
k∈J θik

.

Given θ ∈ R
I×J
+ , γ := proxKL

G2
(θ) is of the form

γij = θij exp
(
− νj +

∑
k∈J ϕkjνk
ε

)

where ν denotes the second marginal of γ, so that summing over i, ν is obtained
by solving the system:

νj =
(∑

i∈I
θij

)
exp

(
− νj +

∑
k∈J ϕkjνk
ε

)

which, when 5.14 holds, can be solved in practice in a few Newton’s steps.
The computation of γ := proxKL

G3
(θ) is simpler, setting hj := H ′

j the first-order
equation first leads to

γij = θij exp
(
− hj(νj)

ε

)

and the νj ’s are obtained by solving

νj =
(∑

i∈I
θij

)
exp

(
− hj(νj)

ε

)
(5.15)

which is a separable system of monotone equations, which we shall again solve
by Newton’s method.
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5.4.2 A semi-implicit scheme for more general nonconvex
cases

We now go back to the general case where E is not necessarily convex because
of the interaction term given by the symmetric matrix ϕkj . Eventhough there is
no theoretical convergence guarantee (but if the folllowing scheme converges, it
converges to an equilibrium), the semi-implicit scheme which we now describe
gives good results in practice. The idea is simple and consists in replacing
the nonconvex interaction term by its linearization. More precisely, we will
approximate our initial problem 5.9:

inf
ν∈ΣJ

MKε(ν) + E(ν) (5.16)

where E is the sum of the convex congestion cost and the nonconvex quadratic
interaction cost, by a succession of convex problems, starting from ν0 ∈ ΣJ ,
iteratively solve for n ≥ 1

ν(n+1) = argminν∈ΣJ
MKε(ν) + E(n)(ν) (5.17)

where in E(n) we have linearized the interaction term:

E(n)(ν) =
∑

j∈J
Fj(νj) +

∑

j∈J
V

(n)
j νj , V

(n)
j :=

∑

k∈J
ϕkjν

(n)
k .

Of course, we can solve 5.17 by the Dykstra proximal-splitting scheme described
in the previous paragraph. More precisely, the linear term can be absorbed by
the KL term so that we only have two proximal steps: one corresponding to
the (explicit) projection fixed marginal constraint and one corresponding to the
congestion cost (corresponding to 5.15 using fj instead of hj).

5.5 Numerical results

We now present some numerical results in dimension d = 1 and d = 2. As
we have pointed out in section 5.3, the strength of the entropic regularization,
and consequently of the Dykstra’s algorithm, lies in the fact that we can treat
optimal transportation problems with any transport cost, in particular both
concave and convex cost functions can be considered. Thus, if we consider the
cost cij = |xi − yj |p with p > 0 (convex cost if p > 1 and concave otherwise),
then the idea is to analyze how the shape of the unknown marginal ν changes
by varying the exponent p. Before showing the results, we want to focus on an
other aspect of the entropic regularization, namely diffusion. Indeed, once we
add the entropic term to the optimal transport term, then this regularization
spreads the support of the plan γ and defines a strongly convex problem with
a unique solution. So it is interesting to see how the support of the optimal γ
varies by decreasing the parameter ε. Let us consider the standard quadratic
cost cij = |xi − yj |2 and the following energy E(ν)

E(ν) =
∑

j∈J
ν8j +

1

2

∑

k,j∈J×J
ϕkjνkνj +

∑
|yj − 9|4, (5.18)

where ϕkj = 10−4|yk − yj |2 and the third term is a confinement potential. We
notice that there is no need to compute a proximal step for the potential, indeed
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it can be absorbed by the KL term. We know that in this case the optimal γ
(for instance see [15]) is a pure Cournot-Nash equilibrium, which actually means
that γ has the form γT = (id, T )#µ where T is the optimal map. In Figure 5.1
we plot the support of the optimal γ and its marginal ν for different values of
ε. As expected the support of the regularized γ concentrates on the graph of T
as ε decreases.

ε = 0.05 ε = 0.1 ε = 0.5 ε = 10

ε = 0.05 ε = 0.1 ε = 0.5 ε = 10

Figure 5.1: Top: The initial distribution µ (blue solid line) and the solution
ν (red solid line) for ε ∈ {0.05, 0.1, , 0.5, 10}. Bottom: The support of γ for
ε ∈ {0.05, 0.1, , 0.5, 10}.

In Section 5.4.2, we have pointed out that a semi-implicit approach can be
applied in order to treat an energy E which is not convex. We want, now,
to compare the performances of the implicit and the semi-implicit approach in
terms of CPU time and number of iterations when ε varies. By looking at the
Figure 5.2 we notice the number of iterations, as well as the CPU time, of the
semi-implicit approach is smaller than the ones for the implicit approach. This
is quite obvious as in the semi-implicit scheme, the interaction term can be
absorbed by the KL term so that one has to compute only two proximal steps
instead of three.

5.5.1 Dimension one

Let us first consider the one-dimensional case. One of the main advantages of
the scheme we have proposed is that we can consider any kind of cost function.
Thus, take cij = |xi − yj |p and the energy E given by (5.18), then we want
to visualize the optimal ν as p ∈ (0,M ] with M large. For the simulations in
Figure 5.3, we have used a N = 500 grid points discretization of [0, 16] and we
have treated the interaction term with a semi-implicit approach. Then, we have
chosen the smallest ε possible for each cost function tested. As one can notice
for p 6 1 the optimal ν has a connected support where as for p > 1, the support
of ν is closer to the one of µ. Finally, we obtain an optimal ν which tends to be
concentrated near y = 9 due to the external potential, except for large p where
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iterations CPU time in seconds

Figure 5.2: Left: the number of iterations for the semi-implict (blue) and for
the implicit (red). Right: CPU time for the semi-implict (blue) and for the
implicit (red).

the optimal transport term becomes dominant so that the second marginal ν
tends to be close to the initial distribution µ.

Let us now consider an energy E given by

E(ν) =
∑

j∈J
ln(νj) +

∑

k,j∈J×J
ϕkjνkνj +

∑

j∈J
(yj − 5)3 (5.19)

where ϕkj is a cubic interaction ϕkj = 10−4|xi − yj |3. The simulations are
presented in Figures 5.4 and 5.5 for different initial distribution: a uniform
density on [0, 1] and the sum of two translated gaussians, respectively. For both
the numerical experiments we have used N = 500 grid points discretization of
[0, 10] and treated the interaction term with a semi-implicit approach. One can
observe, as in the previous case, that the structure of the optimal ν becomes
close to the one of the initial ditribution as p increases.

5.5.2 Dimension two

For the 2d case, we always take a cost c(x, y) = ‖x−y‖p and then a congestion
Fj(νj) = ν8j , an interaction ϕkj = 10−4‖yk−yj‖2 and a potential vj = ‖yj−3‖4.
The simulations in Figure 5.6 are obtained by using a N × N , with N = 80,
discretization of [0, 5]2 and by treating the interaction term with a semi-implicit
approach. As in the 1−dimensional case, we notice the same effect on the
support of ν when we make p vary.

5.6 Extension to several populations

5.6.1 A class of two-populations models

We end the paper by briefly explaining how our approach can easily be
extended to the case of several populations of players. For the sake of simplicity,
we take the two-populations case and assume that these two populations interact
through a congestion term. More precisely, we are given two finite type spaces
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p = 0.1 p = 1 p = 2

p = 3 p = 4 p = 8

p = 16 p = 32 p = 64

Figure 5.3: The initial distribution µ, a sum of two translated gaussian, (blue
solid line) and the solution ν (red solid line) for p ∈ {0.1, 1, 2, 3, 4, 8, 16, 32, 64}.
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p = 0.1 p = 1 p = 2

p = 3 p = 4 p = 8

p = 16 p = 32 p = 64

Figure 5.4: The initial distribution µ, a uniform density on [0, 1], (blue solid
line) and the solution ν (red solid line) for p ∈ {0.1, 1, 2, 3, 4, 8, 16, 32, 64}.
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p = 0.1 p = 1 p = 2

p = 3 p = 4 p = 8

p = 16 p = 32 p = 64

Figure 5.5: The initial distribution µ, a sum of two translated gaussians, (blue
solid line) and the solution ν (red solid line) for p ∈ {0.1, 1, 2, 3, 4, 8, 16, 32, 64}.
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surface plot of µ support of µ surface plot of ν for p = 0.5 support of ν for p = 0.5

surface plot of ν for p = 1 support of ν for p = 1 surface plot of ν for p = 2 support of ν for p = 2

surface plot of ν for p = 4 support of ν for p = 4

Figure 5.6: The initial distribution µ, a sum of two translated gaussian, and
the solution ν for different values of p.
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X1 = {x1i }i∈I1 and X2 = {x2i }i∈I2 , a common strategy space Y = {yj}j∈J ,
given distributions of the players types µ1 ∈ ΣI1 , µ

2 ∈ ΣI2 , two transport cost
matrices c1 ∈ R

I1×J , c2 ∈ R
I2×J , and consider the minimization problem:

inf
(ν1,ν2)∈ΣJ×ΣJ

{
MK1

ε1(ν
1)+MK2

ε2(ν
2)+E1(ν

1)+E2(ν
2)+F (ν1+ν2)

}
(5.20)

where for l = 1, 2, εl > 0 is a regularization (or noise) parameter, MKlεl(νl)
represents the regularized transport cost:

MKlεl(νl) := inf
γ∈Π(µl,νl)

{ ∑

i,j∈Il×J
clijγij + εl

∑

i,j∈Il×J
γij(ln(γij)− 1)

}
,

El(ν
l) represents an individual cost for population k, for instance, an interaction

cost:
El(ν

l) :=
∑

j,k∈J×J
ϕlkjν

l
jν
l
k

and F is a total congestion cost

F (ν1 + ν2) :=
∑

j∈J
Fj(ν

1
j + ν2j )

where Fj is convex.

Remark 5.6.1. The proximal step related to F can be computed as in (5.15) by
taking νj = ν1j + ν2j .

Numerical Results

For the two populations case, we take the following energies El

El(ν
l) =

∑

j∈J
(νlj)

8 +
∑

k,j∈J×J
ϕlkjν

l
jν
l
k +

∑

j∈J
|yj − 10|4,

where ϕlkj = 10−4|yk − yj |2 and the total congestion Fj is given by

Fj(ν
1
j + ν2j ) = (ν1j + ν2j )

4.

As usual, we consider cost functions of the form cij = |xi− yj |p and we want to
analyze the support of νl as p varies. For the simulations in Figure 5.7 we have
used N = 500 grid points discretization of [0, 16] and treated the interaction
term with a semi-implicit approach. As we can notice in Figure 5.7 there is a
competition between the confinement potential and the total congestion: the
two populations tend to concentrated near y = 10 by the potential, but the
effect of the congestion term makes it costly. This becomes clear if we compare
(for instance, the case with p = 2) ν1 with the optimal one in Figure 5.3; even
if the energies are the same, the effect of congestion makes the support of the
optimal solutions quite different.

Thus, let us now consider the following case: let El be as above and p = 2,
then we take the total congestion given by

Fj(ν
1
j + ν2j ) = (ν1j + ν2j )

r

and we compute the optimal νl for different values of r. In Figure 5.8 we can
see that the congestion term becomes more dominant as r increases so that the
two populations try to be as far as possible, despite the effect of the confinement
potential which is minimal at y = 10.
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p = 0.5 p = 1

p = 1.5 p = 2

Figure 5.7: The initial distributions µ1 and µ2 (blue solid line and blue dotted
line) and the solutions ν1 and ν2 (red solid line and red dotted line) for different
values of p.

r = 4 r = 8 r = 32

Figure 5.8: The initial distributions µ1 and µ2 (blue solid line and blue dotted
line) and the solutions ν1 and ν2 (red solid line and red dotted line) for different
values of r.
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Résumé

Dans cette Partie nous présentons le problème du transport optimal multi-
marges (TOMM) et sa version régularisée. On montre que le problème (TOMM)
apparâıt d’une façon assez naturelle dans le cadre des solutions généralisées, au
sens de Brenier, des équations d’Euler pour les fluides incompressibles. D’ailleurs,
nous montrons que, en se basant sur le principe variationnel de Brenier, on
retrouve un problème de transport multi-marges. Ensuite nous présentons le
problème (TOMM) avec le coût quadratique, qui a été introduit par Gangbo et
Swiech dans leur article fondateur [66]. De plus, d’autres types de problèmes
comme le barycentre dans l’espace de Wasserstein et le matching for teams
peuvent être reformulés dans la cadre du (TOMM). Nous étendons la méthode
numérique présentée dans la partie I afin de les traiter numériquement. En-
fin nous exposons une classe particulière de problèmes du transport optimal
multi-marges, connue sous le nom de transport optimal répulsif. Cette partie
est basée sur des travaux en commun avec Jean-David Benamou, Marco Cu-
turi, Guillaume Carlier, Simone Di Marino, Augusto Gerolin et Gabriel Peyré:
[BCC+15], [BCN15], [DMGN15] and [BCN16a].

Abstract

In this Part we introduce the multi-marginal optimal transportation (MMOT)
and its entropic counterpart. We show that a (MMOT) problem naturally arises
in the framework of generalized solutions of incompressible Euler equations. In-
deed, we will show that starting from the Brenier’s variational principle, we
retrieve a multi-marginal optimal transport problem. Then we present the
quadratic MMOT, firstly introduced by Gangbo and Swiech in their seminal
work [66]. Moreover, some problems such as the Wasserstein Barycenter or the
Matching for teams can be easily re-cast in multi-marginal transportation term.
We provide an extension of the numerical method described in Part I. Finally, we
introduce a particular class of (MMOT) problems, known as repulsive optimal
transport problems. This part is based on joint works with Jean-David Ben-
amou, Marco Cuturi, Guillaume Carlier, Simone Di Marino, Augusto Gerolin
et Gabriel Peyré: [BCC+15], [BCN15], [DMGN15] and [BCN16a].
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Chapter 6

From Euler equations to
Multi-Marginal optimal
transport

In this Chapter, we wish to introduce the incompressible Euler equations and
Brenier’s variational principle. Indeed we will show that the principle introduced
by Brenier in several works [20, 19, 22, 23] can be considered as the forerunner
of the so-called Multi-Marginal optimal transport. We will also point out that
as we add the relative entropy to the Brenier’s problem in order to regularize
it and derive a suitable numerical method , as we have explained in Chapter 2
and 3, we recover a new interesting problem which can be seen as a variational
principle for a stochastic Navier-Stokes system (see [4, 5]).
Sections 6.1 and 6.2 present the variational models introduced by Arnold [6]
and Brenier [20]; this brief review follows very closely the survey of Daneri and
Figalli [47].

6.1 Incompressible Euler Equations and Arnold’s
Principle

In 1755 Euler (we refer the interested reader to Euler’s seminal work [52])
introduced a set of equations governing the motion of incompressible fluids inside
a bounded Lipschitz domain D ⊆ R

d without the action of external forces. Let
u : [0, T ]×D → R

d denote the velocity field and p : [0, T ]×D → R the pressure
field, then the Incompressible Euler Equations read as





∂tu+ (u · ∇)u+∇p = 0 in [0, T ]×D
div(u) = 0 in [0, T ]×D
u · n = 0 on [0, T ]× ∂D,

(6.1)

where n is the unit external normal to ∂D. The motion of an incompressible
fluid inside D can be described also by a Lagrangian point of view: one can look
at the motion of the particles of the fluid with respect to their initial position.
Thus, let us assume that the velocity field u is a smooth solution of the system
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(6.1) and let g : [0, T ]×D → R
d denote the flow map solution of

{
∂tg(t, x) = u(t, g(t, x)) (t, x) ∈ [0, T ]×D
g(0, x) = x x ∈ D. (6.2)

One can notice that due to the boundary condition in (6.1) we have that
g(t,D) = D ∀t ∈ [0, T ]. By differentiating (6.2) and using the identity

d

dλ
det(A+ λBA)|λ=0 = Tr(B) det(A)

we obtain

∂t(det(∇g(t, x))) = div(u(t, x)) det(∇g(t, x)), (6.3)

where we have used the fact that Tr(∇u(t, x)) = div(u(t, x)). Then, (6.3) and
the incompressibility constraint in (6.1) imply

det(∇g(t, x)) = 1, (6.4)

which means that the map g(t) := g(t, ·) belongs to the space SDiff(D) of orien-
tations and measure-preserving diffeomorphisms of D. Let us now differentiate
(6.2) with respect to t and use the equations (6.1), then we obtain that the map
t 7→ g(t) satisfies the following ODE

∂ttg(t, x) = −∇p(t, g(t, x)) in [0, T ]×D (6.5)

under the constraint

g(t) ∈ SDiff(D) ∀t ∈ [0, T ].

Thus one can show that the following is true: in the smooth case, u : [0, T ]×
D → R

d solves (6.1) with the initial condition u(0, x) = u0(x) if and only if
its flow map g satisfies (6.5) with the initial conditions ∂tg(0, x) = u0(x) and
g(0) = IdD, where IdD : D → D denotes as usual the identity map.
In [6], Arnold interprets the ODE (6.5) as the geodesic equation on SDiff(D),
seen formally as an infinite-dimensional submanifold of L2(D;Rd) with respect
to the induced metric. Thus, in analogy with the finite dimensional Riemannian
setting one has the following problem

Problem 6.1.1. Given g⋆, g
⋆ ∈ SDiff(D), then solve

(A) inf {A(g) | t 7→ g(t) ∈ S (g⋆, g
⋆)} , (6.6)

where A(g) = T
∫ T
0

1

2
‖∂tg(t, x)‖2L2(D;Rd)

dt and

S (g⋆, g
⋆) := {t 7→ g(t) ∈ SDiff(D) | g(0) = g⋆, g(T ) = g⋆}.

Observe that the functional A(g) is invariant with respect to the right com-
position on SDiff(D), which means that by composing any curve connecting g⋆
to g⋆ with the map g−1

⋆ , the problem (6.6) is equivalent to connect the identity
map IdD to g⋆. Hence, without loss of generality we will always take g⋆ = IdD.
Moreover, up to rescaling time we can also assume that T = 1.
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Remark 6.1.2. Let us notice that the functional in (6.6) does not penalize the
spatial derivatives of g which actually appear in the unit Jacobian constraint
defining SDiff(D). Thus, one can try to relax (6.6) by replacing SDiff with
S ⊂ L2(D;Rd) where S stands for the space of maps preserving the Lebesgue
measure on D

S := {f : D → D | f♯LD = L♯D}.
Notice that in the case in which d > 3 S is the L2−closure of SDiff. Despite
this, problem 6.6 may not have minimizers as we will see below. In some way
we can highlight an analogy between the problem introduced by Arnold and the
Monge problem. Both of them are difficult to treat due to the high non linearity
of the constraint and a solution does not necessarily exist, as we will see below.

The first result about the existence of solutions for problem (6.6) has been
established by Ebin and Marsden in [51].

Theorem 6.1.3 (Theorem 3.1, [51]). If D is a smooth compact manifold with
no boundary and ‖g⋆− IdD ‖Hs(D;Rd) ≪ 1 for some s > [d2 ]+1, then there exists
a unique minimizer for (6.6).

Notice that the main hypothesis of theorem 6.1.3 concerns the fact that the
initial and final data must be very close in a strong topology, indeed there is no
general existence result for arbitrary data.
The existence of connecting curves of finite energy on the d−dimensional unit
cube D = [0, 1]d with d > 3 was proved by Shnirelman in [112].

Theorem 6.1.4 ([112]). If D = [0, 1]d and d > 3, then for all g⋆ ∈ SDiff(D)
there exists a curve t 7→ g(t) ∈ SDiff(D), with A(g) <∞, connecting IdD to g⋆.

Unfortunately, Shnirelman also found two counterexamples to the existence
of minimizers (for more details see [112, 111]).

Theorem 6.1.5 (Theorem 1.1, [112]). If D = [0, 1]d and d > 3, there exists
g⋆ ∈ SDiff(D) for which the infimum in (6.6) is not achieved.

Theorem 6.1.6 (Corollary in Section 2.3, [111]). If D = [0, 1]2, there exists
g⋆ ∈ SDiff(D) for which there is no curve t 7→ g(t) ∈ SDiff(D) satisfying g(0) =
IdD, g(T ) = g⋆ and A(g) <∞.

Here we report a simplified and pedagogical proof of theorem 6.1.5 given by
Brenier in [22].

proof of theorem 6.1.5. Consider the following velocity field

u(t, x) = (u1(t, x1, x2), u2(t, x1, x2), 0)

and the induced path gu(t, x). It is clear that h(x1, x2, x3) = gu(T, x1, x2, x3)
must have the form h(x1, x2, x3) = (H(x1, x2), x3), so we can introduce the
subset S2 of SDiff([0, 1]3) defined as following

S2 := {h ∈ SDiff([0, 1]3) | h(x1, x2, x3) = (H(x1, x2), x3) with H ∈ SDiff([0, 1]2)}.

Then, define

I2(h) := inf{A(g) | g(t) ∈ S2, g(0) = IdD, g(T ) = h},
I3(h) := inf{A(g) | g(t) ∈ SDiff([0, 1]3), g(0) = IdD, g(T ) = h}.
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It follows that I2 > I3. By theorems 6.1.4 and 6.1.6, we can choose h̃ ∈ S2

such that I2(h̃) > I3(h̃) (for instance, h̃(x1, x2, x3) = (H(x1, x2), x3) with H
as in theorem 6.1.6). Take now a map t 7→ g(t) ∈ SDiff([0, 1]3) such that
A(g) < I2(h̃), then if we look at the associated velocity field u = ∂tg ◦ g−1,
we have that the third component of u = (u1(t, x), u2(t, x), u3(t, x)) cannot be
identically equal to 0, otherwise ∂tg3(t) = 0 and g(t) would belong to S2. This
would mean that A(g) > I2(h̃). We can rescale u by setting η(x3) = a(x3
mod 1), where a ∈ N and obtain ũ = (ũ1, ũ2, ũ3) defined as follows

ũ1(t, x1, x2, x3) = u1(t, x1, x2, η(x3)),

ũ2(t, x1, x2, x3) = u2(t, x1, x2, η(x3)),

ũ3(t, x1, x2, x3) =
1

a
u3(t, x1, x2, η(x3)).

ũ induces a path g̃ which still belongs to SDiff([0, 1]3) and such that it connects
IdD to h̃, but the energy A(g̃) is strictly smaller than A(g). Indeed one has

A(g̃) = T

∫

D

∫ 1

0

(
∂tg

2
1 + ∂tg

2
2 +

1

a2
∂tg

2
3

)
dtdx.

Thus, if g is assumed to be minimal, this lead to a contradiction.

In remark 6.1.2 we have pointed out that the problem posed by Arnold is
actually difficult to treat by the direct method of calculus of variations. These
considerations led Brenier [20] to introduce a relaxed formulation of problem
(6.6), and the concept of generalized solution, as we will see in the next section.

6.2 Brenier’s Principle and Generalized Solu-
tions

6.2.1 Generalized incompressible flows

Let us consider T = 1 and Ω(D) the space of continuous paths

Ω(D) := C([0, 1];D),

whose elements are denoted by ω(t) : [0, 1] → D and denote by P(Ω(D)) the
space of probability measures on Ω(D). Ω(D) is a separable Banach space with
respect to the supremum norm. We refer to an element γ of P(Ω(D)) as a
generalized flow. Define for a finite subset of times {t1, · · · , tk} ⊂ [0, 1], the
evaluation map

{eti}Ki=1 : D[0,1] → DK , {eti}Ki=1(ω) := {ω(ti)}ki=1,

where D[0,1] = ⊗t∈[0,1]D (note that D[0,1] is the space of all paths t ∈ [0, 1] 7→
ω(t) ∈ D) and Dk = ⊗ki=1D, then the marginal of γ ∈ P(Ω(D)) at times
{t1, · · · , tk} is

γt1,··· ,tk := ({eti}ki=1)♯γ.

Then every smooth family of diffeomorphisms g(t) induces a generalized flow
γg setting

γg := Φg,♯LD, Φg(x) := g(·, x) : D → Ω(D), (6.7)
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where LD denotes the (renormalized) Lebesgue measure on D. If g(0) = IdD,
one can reconstruct g from γg via the disintegration formula

(e0, et)♯γg = (IdD, g(t, ·))♯LD. (6.8)

Given two diffeomorphisms g0, g1 : D → D, such that g0 ∈ SDiff(D), then we
say that g connects g0 to g1 if

γ0,1 := (e0, e1)♯γ = (g0, g1)♯LD = (IdD, g1 ◦ g−1
0 )♯LD.

Remark 6.2.1. We say that a curve of plans γ0,t is deterministic if ∀t ∈ [0, 1] the
plan γ0,t is concentrated on the graph of a function, namely γ0,t = (h0, ht)♯LD
with h0, ht : D → D. Notice that if γ0,1 is deterministic, the curve γ0,t may not
be deterministic in between.

Definition 6.2.2 (Incompressible generalized flow). A generalized flow γ ∈
P(Ω(D)) is incompressible if

(et)♯γ = γt = LD, ∀t ∈ [0, 1], (6.9)

Remark 6.2.3. Notice that constraint 6.9 can be phrased in term of test func-
tions: ∫

Ω

ϕ(ω(t))dγ(ω) =

∫

D
ϕ(x)dx, ∀ϕ ∈ C(Ω).

Remark 6.2.4. The flow γg defined in (6.7) is incompressible if and only if
(et)♯γg = (g(t))♯LD = LD ∀t ∈ [0, 1], that is, if and only if g(t) is a measure
preserving map (we remind that a function f : D → D is a measure preserving
map if and only if f♯LD = LD).
Remark 6.2.5. We remark that if γ is incompressible then the curve γ0,t is a
curve of measure preserving plans

t 7→ γ0,t ∈ Γ(D) for t ∈ [0, 1],

where Γ(D) := {γ ∈ P(D × D) | π1(γ) = LD, π2(γ) = LD, } and π1, π2 : D ×
D → D are the canonical projections. We refer also to Γ(D) as the set of doubly
stochastic measures. Moreover, if γ0,t is deterministic, i.e. γ0,t = (IdD, ht)♯LD
for a function ht : D → D, then ht is a measure preserving map.

We are now ready to introduce the Brenier’s variational principle

Problem 6.2.6. Given an initial and a final configuration g⋆, g
⋆ ∈ SDiff(D),

solve
(B) inf

{
E(γ) | γ ∈ ΠΩ(Ω; γ̃,LD)

}
, (6.10)

where

E(γ) :=
∫

Ω(D)

∫ 1

0

1

2
|ω̇(t)|2dtdγ(ω)

and ΠΩ(Ω; γ̃,LD) is defined as

ΠΩ(Ω; γ̃,LD) := {γ ∈ P(Ω(D)) | (et)♯γ = LD, ∀t ∈ [0, 1] and γ0,1 = γ̃},

where γ̃ := (g⋆, g
⋆)♯LD.
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Remark 6.2.7. Notice that γ̃ belongs to Γ(D). Using the terminology introduced
by Brenier, we refer to the elements of ΠΩ(Ω; γ̃,LD) as the incompressible flows
compatibles with γ̃.

Remark 6.2.8. If the generalized incompressible flow γ is induced by a smooth
family of diffeomorphism t 7→ g(t), namely γ = γg, then E(γg) = A(g).

Remark 6.2.9. In remark 6.1.2 we have pointed out an analogy between Arnold’s
problem and the Monge’s one. In the same way we can state that the Brenier’s
model is a Monge-Kantorovich problem with an infinite number of marginals.
Indeed if we look closer at (6.10), it is clear that this kind of relaxation allow the
splitting of mass: the fluid particles are allowed to split/cross at intermediate
times. Even if this might look unphysical, in [23] Brenier shows that these
generalized solutions are quite conventional, in the sense that they obey a variant
of the Euler equations for which the vertical acceleration is neglected, according
to the hydrostatic approximation of Euler equations (see 6.2.2).

6.2.2 The hydrostatic approximation

In section 6.1 we have introduced the Arnold’s principle and then we have
given both existence and non-existence results due to Shnirelman, see theorems
6.1.4 and 6.1.5 , 6.1.6. Thus, consider the unit cube D = [0, 1]3 and the special
data g⋆ = h (we will refer to them as Shnirelman’s data) which have the form

h(x1, x2, x3) = (H(x1, x2), x3),

where H belongs to SDiff([0, 1]2) and xi are the components of x ∈ [0, 1]3. In
the proof of theorem 6.1.5 we have shown that due to the degeneracy of the
data in the vertical coordinate, we cannot get a solution to problem (6.6). We
will show that a new kind of solution can be introduced. Let us firstly consider
the functional A(g) dropping the vertical component of the flow map g so that
the minimization problem (6.6) becomes

(A2) min {A2(g) | t 7→ g(t) ∈ S (IdD, h)} , (6.11)

where

A2(g) =

∫ 1

0

(
1

2

∫

D
∂tg1(t, x)

2 + ∂tg2(t, x)
2dx

)
dt

S (IdD, h) is as in (6.6) and t 7→ g(t) is still valued in SDiff(D) with D = [0, 1]3.
Then the corresponding Lagrangian becomes

L(g, p) =
∫ 1

0

∫

D

[
1

2
( ∂tg1(t, x)

2 + ∂tg2(t, x)
2) − p(t, g(t, x)) + p(t, x)

]
dxdt,

where the pressure p(t, x) plays the role of the Lagrangian multiplier associated
to the incompressibility constraint and the optimality equations

∂ttgi(t, x) + ∂ip(t, g(t, x)) = 0, i = 1, 2, (6.12)

∂3p(t, g(t, x)) = 0, (6.13)

det(∇xg(t, x)) = 1. (6.14)
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If we rewrite (6.12), (6.13) and (6.14) in Eulerian coordinates by using the
velocity field u(t, x) given by (6.2) we obtain

∂tui + (u · ∇)ui + ∂ip = 0, i = 1, 2, (6.15)

∂3p = 0, (6.16)

div(u) = 0, (6.17)

which are the Euler equations where the vertical acceleration is neglected under
the hydrostatic approximation (see that the pressure does not depend on the
vertical coordinate). Even if the system of equations (6.12), (6.13) and (6.14) is
fully 3 dimensional, we can ignore the component g3 and find a set of equations
still consistent for p and g̃ := (g1, g2). Consider the following initial and final
condition

g̃(0, x1, x2, x3) = g⋆ = (x1, x2) ∀(x1, x2) ∈ [0, 1]2,

g̃(1, x1, x2, x3) = g⋆ = H(x1, x2) ∀(x1, x2) ∈ [0, 1]2,
(6.18)

then it is clear that the component x3 is now just an extra parameter without a
geometric meaning and we can rename it as x̃. Thus, the horizontal component
of the 3D flow obtained through the hydrostatic approximation can be seen as a
2D flow. Notice that the flow t 7→ g̃(t, x, x̃) ∈ [0, 1]2 is not conventional at all as
the fluid particle initially located at x ∈ D2 := [0, 1]2 can now split and follow
different paths (allowed to cross each other) labeled by x̃. Indeed we can see the
2D flow g̃ as the horizontal projection of a conventional 3D incompressible flow:
each fluid particle initially located at x ∈ D corresponds to an entire vertical
column of 3D fluid particles (see figure 6.1 left), which ends up at t = 1 as
the vertical column above H(x). However, at each time 0 < t < 1, the fluid
3D particles, initially located at x do not necessarily form a vertical column,
but rather a curve in [0, 1]3 (see 6.1 center) with horizontal projection given by
x̃ 7→ g̃(t, x, x̃). Thus, this generalized 2D flow arises as a projection from 3 to 2
dimensions.

• x

•

(a) t=0

•

g̃(t, x, x̃)

•

(b) 0 < t < 1

•H(x)

•

(c) t=1

Figure 6.1: Display the 3D euler flow particles in the unit cube at time t = 0,
0 < t < 1 and t = 1 for fixed position x.

Now we have to minimize the action

A(g̃) =
1

2

∫ 1

0

dt

∫

D2×[0,1]

|∂tg̃(t, x, x̃)|2dxdx̃,

over all the g̃ which satisfy the boundary conditions (6.18) and the incompress-
ibility constraint

∫

D2×[0,1]

f(g̃(t, x, x̃))dxdx̃ =

∫

D2

f(x)dx, ∀f ∈ C(D2).
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If we define a probability measure γ = ωx,x̃♯ (LD2
⊗ L[0,1]) where ωx,x̃(t) :=

g̃(t, x, x̃), the action A(g̃) reads as

1

2

∫ 1

0

dt

∫

Ω([0,1]3)

|ω̇(t)|2dγ,

and we exactly recover the functional E(γ) which appears in (6.10).

Remark 6.2.10 (An exact unique generalized solution). In [20] Brenier manages
to compute an exact generalized solution for a 1−dimensional example. Take
h(x) = 1− x and D = [0, 1] then the map g̃ is given by

g̃(t, x, x̃) =
1

2
+ (x− 1

2
) cos(πt) + v(x, x̃) sin(πt),

where

v(x, x̃) =

√
x(1− x)

2
cos(πx̃),

for t, x, x̃ ∈ [0, 1].
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Figure 6.2: Display the g̃(t, x, x̃) for three particles initially located at x = 0.1,
x = 0.5 and x = 0.8. Each path x̃ has a different color.

6.2.3 Existence and Consistency with classical solutions

We discuss now the main results concerning the existence of minimizers of
(6.10) and the consistency of the generalized solutions with the classical ones. If
we consider a compact D, then the existence of generalized incompressible flows
in ΠΩ(Ω; γ̃,LD), guarantees, by standard compactness and lower semicontinuity
arguments, the existence of a minimizer. Let us consider a preliminary result
given by Brenier in [19]

Proposition 6.2.11 (Proposition 8.1, [19]). For all R > 0, the set

PR(Ω) := {γ ∈ P(Ω(D)) | E(γ) 6 R}
is sequentially weak*-compact in P(Ω(D)).

Then one can prove the following

Proposition 6.2.12 (Proposition 3.3, [20]). Let D ⊂ R
d be a compact set.

Then, for all γ ∈ ΠΩ(Ω; γ̃,LD) for which problem E(γ) is finite, problem (6.10)
has a solution.
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In the case in which D is the d−dimensional torus, with, d > 2, the following
theorem holds

Theorem 6.2.13 (Proposition 4.3, [20]). Let D = T
d, d > 2. Then for any

g̃ ∈ Γ(D) there exists a generalized incompressible flow γ⋆ ∈ ΠΩ(Ω; γ̃,LD) such
that E(γ⋆) 6 2d.

Remark 6.2.14. Notice that the previous theorem holds if D = T
d. Indeed,

Ambrosio and Figalli managed in [2], see theorem 3.3, to extend it to any
domain D for which there exists a Lipschitz measure preserving map Ψ from
[0, 1]d to D.

A question which may naturally arise is whether the notion of generalized
incompressible flow is consistent with the one of classical solution of the Cauchy
problem (6.2). In [20], Brenier provides an answer which states that whenever
a generalized incompressible flow is concentrated on solutions of (6.2) for a
sufficiently regular pressure field p, then it is a minimizer of (6.10) for small
times. This is summarized in the following theorem

Theorem 6.2.15 (Theorem 5.1, [20]). Let γ ∈ ΠΩ(Ω; γ̃,LD) be a generalized
incompressible flow such that

ω̈(t) = −∇p(t, ω(t)), for γ − a.e. ω ∈ Ω(D), (6.19)

where p : [0, T ] × D → R is continuously differentiable with respect to x and
satisfies

sup
(t,x)∈(0,T )×D

∇2
xp(t, x) 6 (

π2

T 2
) Id (6.20)

in the sense of distributions and symmetric matrices. Then γ solves problem
(6.10) among all incompressible flows in ΠΩ(Ω; γ̃,LD). Moreover, if the in-
equality (6.20) is strict, then γ is the unique minimizer and has the following
deterministic property: γ−almost surely, two paths ω and ω′ satisfying both
ω(0) = ω′(0) and ω(T ) = ω′(T ) are equal.

Then, a direct consequence of the above theorem is the following corollary
which treats the case of deterministic generalized flows induced by a map g ∈
SDiff(D).

Corollary 6.2.16 (Corollary 1.35, [47]). Let t 7→ g(t) ∈ SDiff(D) for t ∈ [0, T ]
be a smooth flow whose trajectories t 7→ g(t, x) satisfy (6.5) for LD−a.e. x ∈ D,
with the pressure field p : [0, T ] × D → R which is continuously differentiable
with respect to x and satisfies (6.20). Then γg is a minimizer of (6.10) among
all the possible generalized incompressible flows in ΠΩ(Ω; γ̃,LD). Moreover, if
the inequality (6.20) is strict, then γg is the unique minimizer.

Remark 6.2.17. The inequality (6.20) is sharp. In 7.5.6 we will show an example
(supported both by theory and numerics) on the unit disk in R

2 such that there
are several (both classical and non-deterministic) minimizers at the time T for
which the equality in (6.20) holds.
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6.3 Brenier’s principle and Multi-Marginal Op-
timal Transport

We want now to show that a new kind of optimal transport problem (namely
the multi-marginal optimal problem) arises when one tries to discretize in time
(6.10). Notice that in [19] Brenier had already remarked that the time discretiza-
tion of (6.10) yielded to a ”multidimensional” Monge-Kantorovich problem, so
this is the reason why we can consider the Brenier’s principle a sort of forerunner
of the multi-marginal transportation.

We take D = T
d, where T

d is the d−dimensional torus, K = 2l with l > 0,
ti =

i
K and we denote by EK : Ω → R+ ∪ {+∞} the discrete (in time) energy

defined as

EK(ω) =

K∑

i=1

K

2
|ω(ti)− ω(ti−1)|2,

and by E : Ω → R+ ∪ {+∞} the continuous energy

E(ω) =

{ ∫ 1

0
|ω̇(t)|2dt, if ω ∈ H1([0, 1];D)

+∞ otherwise.

By using the Cauchy-Schwarz inequality and the mean value theorem one
has

EK(ω) 6 E2K(ω) 6 E(ω) ∀K = 2l,

and consequently

EK(γ) 6 E2K(γ) 6 E(γ) ∀γ ∈ P(Ω). (6.21)

Moreover, if we consider paths with finite energy E(ω) < ∞, namely ω ∈
H1([0, 1];D), then EK is a non-increasing bounded sequence and E(ω) = supK EK .
Denote by ΠΩ

K(Ω; γ̃,LD) the set

ΠΩ
K(Ω; γ̃,LD) := {γ ∈ P(Ω) | γ0,1 = γ̃, γti = LD i = 0, · · · ,K}. (6.22)

If we define the set of piecewise linear paths, for {t0, · · · , tK}, G :=
⋃

(x0,··· ,xK)∈DK+1 Gx0,··· ,xK
,

where

Gx0,··· ,xK
:= {ω ∈ Ω | ω(ti) = xi i = 0, · · · ,K, E(ω) = EK(ω)}.,

and we denote byG : DK+1 → G the map which associates a point (x0, · · · , xK) ∈
DK+1 with a path in G. Given a measure λ ∈ P(DK+1), we can define the image
measure γ ∈ P(Ω(D)) through the map G as

〈γ, ϕ〉 =
∫

DK+1

ϕ(G(x0, · · · , xK))λ(x0, · · · , xK) ∀ϕ ∈ C(Ω).

Moreover, such a γ belongs to ΠΩ
K(Ω; γ̃,LD) and satisfies

EK(γ) =

∫

Ω

EK(ω)dγ(ω) =

∫

DK+1

K∑

i=1

K

2
|xi − xi−1|2dλ(x0, · · · , xK) =

∫

DK+1

E(G(x0, · · · , xK))dλ(x0, · · · , xK) = E(γ).
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By fixing the number K of marginals, we can define a discretized, in time,
version of the problem (6.10) which reads as

(BK) inf
{
EK(γ) | γ ∈ ΠΩ

K(Ω; γ̃,LD)
}
, (6.23)

moreover we have

inf(BK) = inf{
∫

DK+1

K∑

i=1

K

2
|xi − xi−1|2dλ(x0, · · · , xK) | λ ∈ P(DK+1),

π0,1(λ) = γ̃, πi(λ) = LD i = 0, · · · ,K}.
(6.24)

Problem (6.23) looks like a standard optimal transport problem with K > 2
marginals: indeed if we look at (7.1) in section 7.1, this is exactly the same
problem with an extra constraint on the initial and final position.

Remark 6.3.1. If we assume that a measure γ ∈ ΠΩ(Ω; γ̃,LD) has finite energy
E(γ), then it follows that

inf(BK) 6 inf(B2K) 6 · · · 6 inf(B) < +∞,

since the inequality (6.21) holds and ΠΩ(Ω; γ̃,LD) ⊂ ΠΩ
K(Ω; γ̃,LD).

We end the section by summarizing in the following theorem the results of
section 6 in [19].

Theorem 6.3.2 (Γ−convergence). Given the following functionals

FK(γ) =

{ ∫
Ω
EK(ω)dγ(ω) γ ∈ ΠΩ

K(Ω; γ̃,LD)
+∞ otherwise,

(6.25)

and

F(γ) =

{ ∫
Ω
E(ω)dγ(ω) γ ∈ ΠΩ(Ω; γ̃,LD)

+∞ otherwise,
(6.26)

where EK(γ) and E(γ) have been defined above. Then, FK Γ−converges to F
w.r.t. the weak* topology on P(Ω(D)).

Before giving the proof of theorem 6.3.2, we recall the definition of Γ−convergence.

Definition 6.3.3 (Γ−convergence). Let X be a metric space and Fk : X →
R ∪ {∞} be a sequence of functionals on X. Then Fk is said to Γ−converge to
the Γ−limit F : X → R ∪ {∞} if the following conditions hold

• For every sequence xk ∈ X such that xk → x as k → +∞,

F (x) 6 lim inf
k→+∞

Fk(xk). (6.27)

• For every x ∈ X, there is a sequence xk converging to x such that

F (x) > lim sup
k→+∞

Fk(xk). (6.28)
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Proof. We can skip the case γ /∈ ΠΩ
K(Ω; γ̃,LD) as the conditions (6.27) and

(6.28) trivially hold. We begin by proving the lim inf inequality: for a sequence
γK ∈ ΠΩ

K(Ω; γ̃,LD) such that γK ⇀ γ we have to prove

F(γ) 6 lim inf
K→+∞

FK(γK), (6.29)

γ ∈ ΠΩ(Ω; γ̃,LD). (6.30)

We denote by IK : ω 7→ ωK the map from the a.c. path to the piecewise linear
path such that ωK(ti) = ω(ti) for every i = 0, · · · ,K. Then, it is clear that we
have the equalities

∫

Ω

EK(ω)dγ(ω) =

∫

Ω

(E ◦ IK)(ω)dγ(ω) =

∫

Ω

E(ω)dγ, (6.31)

where γK := (IK)♯γ, notice that IK converges to the identity as K → ∞. We
can restrict ourselves to the paths ω ∈ H1([0, 1];D) with finite energy E(ω) <
∞ otherwise the inequality trivially holds. Thus, we can consider probability
measures γK ∈ Pα(Ω(D)), where

Pα(Ω(D)) := {η ∈ P(Ω(D)) | E(η) < α, α > 0},

and since for all α > 0 Pα(Ω(D)) is sequentially weak*-compact in P(Ω(D)) (see
proposition 6.2.11) we have that for every sequence γK ∈ Pα(Ω(D)) there exists
a subsequence (γk)k which converges to γ ∈ Pα(Ω(D)). Take a sequence γk ⇀ γ
such that γK ∈ Pα(Ω(D))∩ΠΩ

K(Ω; γ̃,LD) and by compactness of Pα(Ω(D)) we
have that γ ∈ Pα(Ω(D)). Then, by (6.31), take the image measure γ̃K =
(IK)♯γK), and the l.s.c. of E(γ) we have that (6.29) holds. In order to prove
(6.30) we have to verify that

(i)
∫
Ω
ϕ(ω(0), ω(1))dγ(ω) =

∫
D2 ϕ(x, y)dγ̃(x, y) ∀ϕ ∈ C(D2),

(ii)
∫
Ω
ϕ(ω(t))dγ(ω) =

∫
D ϕ(x)dx ∀t ∈ [0, 1] and ∀ϕ ∈ C(D).

(i) trivially holds so we have only to verify (ii). Notice that if t is dyadic then
the property (ii) is true since K is of the form 2l. It is enough if we check (ii)
when ϕ is Lipschitz continuous (denote by Mϕ the Lipschitz constant), so for
every ti with i = 0, · · · ,K we have:

∣∣∣∣
∫

D
ϕ(ω(t))dγK(ω)−

∫

D
ϕ(x)dx

∣∣∣∣

=

∣∣∣∣
∫

D
(ϕ(ω(t))− ϕ(ω(ti))) dγK(ω)

∣∣∣∣

6

∫

D

∣∣∣∣ϕ(ω(t))− ϕ(ω(ti))

∣∣∣∣dγK(ω)

6Mϕ

∫

D

∣∣∣∣ω(t)− ω(ti)

∣∣∣∣dγK(ω)

6M |t− ti|1/2,

(6.32)

where M = 2Mϕ

√
E(γK) <∞ as γK ∈ Pα(Ω(D)), then (ii) follows.

We now prove the lim sup inequality. Again we can restrict ourselves to probabil-
ity measures in Pα(Ω(D)). Choose γ ∈ Pα(Ω(D))∩ΠΩ(Ω; γ̃,LD), then it is clear

94 CHAPTER 6. EULER EQUATIONS AND MM-OT



6.4. A BRENIER’S PRINCIPLE WITH VISCOSITY

that γ belongs to ΠΩ
K(Ω; γ̃,LD) for every K. Moreover, as E(ω) = supK EK(ω)

then by monotone convergence we have FK(γ) → F(γ) and the lim sup inequal-
ity holds.

Remark 6.3.4 (Convergence of the minimizers). As a consequence of the Γ−convergence
of FK to F and proposition 6.2.11, we have that the minimizers of inf(BK) con-
verge to the minimizers of inf(B).

6.4 A Brenier’s principle with viscosity

In section 2.1 we have proposed a regularization of the standard optimal
transport by adding an entropy term. Moreover, we have showed that in the
case in which the cost function is the square distance, then the regularized
optimal transport problem coincides with the Schrödinger problem which can
be seen as a viscous version of Monge-Kantorovich. Thus, following section
2.1 we present a Schrödinger problem, with an infinite number of marginals
and prescribed initial and final configuration, which can be seen as a Brenier’s
principle for viscid fluids (see [4, 5] ). Let us consider the following extension of
the dynamic Schrödinger problem (2.7)

(S∞) inf
{
H(P |R) | P ∈ P(Ω), (et)♯P = LD, (e0, e1)♯P = P̃

}
, (6.33)

where P̃ ∈ Γ(D) links the initial and the final configuration, for instance one can
take P̃ = (IdD, g⋆)♯LD as for the Brenier’s principle, and R(·) =

∫
D Wx(·)dx is a

reference measure with Wx which is the Wiener measure induced by a Brownian
motion Bxt which starts at x. Notice that one usually considers a standard
Brownian motion Bt starting at 0 and, since Bt is invariant by translation , the
Brownian motion starting at x is given by Bxt = Bt + x. Let us now give the
following definition of the Wiener measure.

Definition 6.4.1. Consider the space Ω and the Brownian motion Bt starting
at 0. Then, Bt induces a distribution measure W0 on Ω called the Wiener
measure. That is, W0 is the unique probability measure on Ω such that for any
finite sequence of times 0 < t1 < · · · < tK and Borel sets A1, · · · , AK
W0({ω | ω(t1) ∈ A1, · · · , ω(tK) ∈ AK}) =
∫

A1

· · ·
∫

AK

p(t1, 0, x1)p(t2 − t1, x1, x2) · · · p(tK − tK−1, xK−1, xK)dx1, · · · dxK ,

(6.34)

where

p(t, x, y) =
1

(2πt)d/2
exp (−|x− y|2

2t
),

defined for any x, y ∈ D and t ∈ [0, 1].

Let us now fix the number K = 2l l > 0 of marginals, as we have done in
section 6.3, such that ti = i/K for i = 0, · · · ,K, then the discretization in time
of problem (6.33) can be written as follows

(Sdyn,K) inf
{
H(P |R) | P ∈ ΠΩ

K(Ω; γ̃,LD)
}
, (6.35)
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where ΠΩ
K(Ω; γ̃,LD) is defined as in (6.22). Notice that inf(Sdyn,K) 6 inf(S∞)

as we are minimizing over a larger set. Moreover, we can now define also a static
formulation of (Sdyn,K) which reads as

(Sstatic,K) inf
{
H(γ|η) | γ ∈ ΠK(DK+1; γ̃,LD)

}
, (6.36)

where

ΠK(DK+1; γ̃,LD) := {γ ∈ P(DK+1) | π0,1(γ) = P̃, πi(γ) = LD, ı = 0, · · · ,K}

and η = (et0 , · · · , etK )♯R.
Notice that if R(·) =

∫
D Wx(·)dx is the Wiener probability measure with

initial marginal δx then thanks to definition 6.4.1 one can deduce that η is
absolutely continuous with respect the Lebesgue measure and its density η̃ is
given by

η̃ :=

K∏

i=1

p(ti − ti−1, xi−1, xi), (6.37)

where ti − ti−1 = 1
K ∀i, xi := ω(ti) and we have considered a Wiener measure

induced by a Brownian motion which starts at x0. Then, η̃ can be rewritten as

η̃ =
1

(2π/K)dK/2
exp (−K

2

K∑

i=1

|xi − xi−1|2). (6.38)

Take now the relative entropy

H(γ|η) =
∫

DK+1

(
log(

dγ

dη
)− 1

)
dγ + 1,

then thanks to the special form of η we can rewrite H(γ|η) as

H(γ|η) =
∫

DK+1

(
log(

γ

η̃
)− 1

)
γdx+ 1,

where now γ denotes the density of γ (notice that γ must be absolutely contin-
uous with respect to η) and by using the property of the logarithm one obtains

H(γ|η) =H(γ|L)−
∫

DK+1

log(η̃)γdx =

H(γ|L) + K

2

∫

DK+1

K∑

i=1

|xi − xi−1|2γdx+ log(
1

(2π/K)dK/2
) =

H(γ|L) + 1

(2π/K)dK/2
EK(γ) + C,

(6.39)

which corresponds to the entropic regularization of the discrete problem (6.23).

Notice that C = log(
1

(2π/K)dK/2
) is a constant and we can neglect it when we

consider inf H(γ|η).
Remark 6.4.2 (The regularized problem). As we have done in section 2.1.1 we
can define a reference measure Rε which depends on a parameter ε and we
recover

η̃ε =
1

(2πε/K)dK/2
exp (−K

2ε

K∑

i=1

|xi − xi−1|2),
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then
(S ε

static,K) inf
{
H(γ|ηε) | γ ∈ ΠK(DK+1; γ̃,LD)

}

is, indeed, the entropic regularization of

inf
{
EK(γ) | γ ∈ ΠK(DK+1; γ̃,LD)

}

where ε is the regularization parameter. In section 7.4 we will show an extension
of the IPFP (sinkhorn) algorithm to this multi-marginal case which actually
leads to solve the discrete, in space, version of (S ε

static,K).

The optimization problems (Sdyn,K) and (Sstatic,K) are strictly connected;
in the two marginals case we have seen that the solution of the dynamic and
the static Schrödinger problems are closely related (this is proven in [55]). In
this case we want to extend the Föllmer’s result to the K−marginals case.

Proposition 6.4.3 ([BCN16a]). The problems (6.35) and (6.36) admit respec-
tively at most one solution P ⋆ ∈ P(Ω) and γ⋆ ∈ P(DK+1). If (6.35) admits
a solution P ⋆, then γ⋆ = P ⋆0,··· ,K := (e0, · · · , eK)♯P

⋆ is the solution of (6.36).
Conversely, if γ⋆ solves (6.36), then (6.35) admits the solution

P ⋆(·) =
∫

DK+1

Rx0···xKdγ⋆(x0 · · ·xK) ∈ P(Ω) (6.40)

which means that P ⋆0,··· ,K = γ⋆ and

P ⋆,x0···xK = Rx0···xK ∀(x0 · · ·xK) γ⋆ − a.e.

Remark 6.4.4 (Disintegration formula). As we have showed in section 2.1.1, a
measure P ∈ P(Ω) disintegrates as follows

P (·) =
∫

DK+1

P x0···xK (·)dP0···K(x0, · · · , xK), (6.41)

where P0···K = (e0, · · · , eK)♯P , P
x0···xK ∈ P(Ωx0···xK ) with (ei)♯P

x0···xK = δxi

for i = 0, · · · ,K and

Ωx0···xK := {ω ∈ Ω | ω(ti) = xi}

is the space of continuous paths such that ω(ti) = xi for i = 0, · · · ,K.

Remark 6.4.5. Notice that P ⋆,x0···xK is the bridge of P ⋆.

Proof. Being strictly convex problems, (6.35) and (6.36) admit respectively at
most one solution. Given a function ϕ : Ω → DK+1 such that ϕ = (e0, · · · , eK)
then the following property formula of the entropy holds

H(P |R) =H(ϕ♯P |ϕ♯R) +
∫

DK+1

H(P x0···xK |Rx0···xK )dϕ♯P (x0 · · ·xK) =

H(P0,··· ,K |R0,··· ,K) +

∫

DK+1

H(P x0···xK |Rx0···xK )dP0,··· ,K(x0 · · ·xK).

(6.42)

Now, we can rewrite the constraint in (6.35) as follows:

P ∈ ΠΩ
K(Ω; γ̃,LD) ⇐⇒ P ∈ {P ∈ P(Ω) | (e0, · · · , eK)♯P = γ, with γ ∈ ΠK(DK+1; γ̃,LD)}.
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Thus, the minimization problem can be recast as

inf
{
H(P |R) | P ∈ ΠΩ

K(Ω; γ̃,LD)
}
=

inf
{
inf {H(P |R) | P ∈ P(Ω) P0,··· ,K = γ} | γ ∈ ΠK(DK+1; γ̃,LD)

}
.

(6.43)

Considering the additive formula (6.42), the inner minimization becomes

inf {H(P |R) | P ∈ P(Ω) P0,··· ,K = γ} =

H(γ|R0,··· ,K) + inf

{∫

DK+1

H(P x0···xK |Rx0···xK )dγ(x0 · · ·xK) | P ∈ P(Ω) P0,··· ,K = γ

}
=

H(γ|η),

where inf is uniquely attained when P x0···xK = Rx0···xK for γ−almost every
(x0 · · ·xK) ∈ DK+1 since H(P x0···xK |Rx0···xK ) = 0 is the minimal value of the
relative entropy. Moreover, for each γ ∈ ΠK(DK+1; γ̃,LD) we have

inf {H(P |R) | P ∈ P(Ω) P0,··· ,K = γ} = H(Rγ |Rx0···xK
) = H(γ|η),

where

Rγ(·) =
∫

DK+1

Rx0···xK (·)dγ(x0 · · ·xK),

and the solution of (6.35) is
P ⋆ = Rγ

⋆

where γ⋆ is the unique solution of (6.36).

We end this section by listing all the models for both inviscid and viscous
flows. In section 7.5.3 we propose a numerical algorithm based on the entropic
regularization and we show some numerical results in d = 1 and d = 2.
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Arnold’s Principle

inf {A(g) | t 7→ g(t) ∈ S (IdD, g
⋆)} ,

where

A(g) =

∫ 1

0

1

2
‖∂tg(t, x)‖2L2(D;Rd)dt.

Brenier’s Principle

inf
{
E(γ) | γ ∈ ΠΩ(Ω; γ̃,LD)

}
,

where

E(γ) :=
∫

Ω(D)

∫ 1

0

1

2
|ω̇(t)|2dtdγ(ω)

and γ̃ = (Id, g⋆)♯LD.
Discrete Brenier’s Principle

inf
{
EK(γ) | η ∈ ΠΩ

K(Ω; γ̃,LD)
}
,

where EK(γ) =
∫
Ω
EK(ω)dγ(ω) and EK(ω) =

∑K
i=1

K

2
|ω(ti)− ω(ti−1)|2.

Viscous Brenier’s Principle

inf
{
H(P |Rε) | P ∈ P(Ω), (et)♯P = LD, (e0, e1)♯P = P̃

}
,

where H(P |Rε) is the relative entropy, P̃ = γ̃, Rε a Brownian motion with
variance ε and ε can be interpreted as a viscosity parameter.
Discrete Viscous Brenier’s Principle

inf
{
H(P |Rε) | P ∈ ΠΩ

K(Ω; γ̃,LD)
}
= inf

{
H(γ|ηε) | γ ∈ ΠK(DK+1; γ̃,LD)

}
,

where

ηε =
1

(2πε/K)dK/2
exp (−K

2ε

K∑

i=1

|xi − xi−1|2)dx0 · · · dxK .
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Chapter 7

A Review on
Multi-Marginal Optimal
Transportation

7.1 The Multi-Marginal OT problem: the con-
tinuous setting

We denote by K the number of marginals, d the dimension of the space
and I = {1, . . . ,K} an index set. Then the multi-marginal Monge-Kantorovich
problem becomes

Problem 7.1.1. Given K marginals µi ∈ P(Rd) ∀i ∈ I and c : RdK → R, a
lower semi-continuous cost function c(x1, · · · , xK) : RdK → R

d, solve

(MKK) inf

{∫

RdK

c(x1, . . . , xK)dγ(x1, . . . , xK) | γ ∈ Π(RdK ;µ1, · · · , µK)

}
,

(7.1)
where Π(RdK ;µ1, · · · , µK) denotes the set of couplings γ(x1, . . . , xK) having µi
as marginals, for all i ∈ I,

Π(RdK ;µ1, · · · , µK) := {γ ∈ P(RdK) | πi(γ) = µi ∀i ∈ I},

where πi : R
dK → R

d is the canonical projection.

Notice that the existence of a minimum for (7.1) is quite standard in Op-
timal Transport Theory. Indeed, Π(RdK ;µ1, · · · , µK) is trivially non empty,
since the independent coupling ⊗i∈Iµi belongs to Π(RdK ;µ1, · · · , µK); the set
Π(RdK ;µ1, · · · , µK) is convex and compact for the weak*-topology thanks to
the imposed marginals; and moreover the quantity to be minimized γ 7→

∫
c dγ

is linear with respect to γ. Hence, we can guarantee the existence of a mini-
mum for (7.1) by imposing a very weak hypothesis on the cost function, such
as lower-semicontinuity.

We are interested in characterizing some class of optimal transport plans or,
at least, understand when that optimal coupling is deterministic, namely when
the transport plan has the form γ = (T1, · · ·TK), where Ti : R

d → R
d are the
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transport maps and T1 = Id. Thus, as in the 2 marginal case one can define the
multi-marginal Monge problem

Problem 7.1.2. Given K marginals µi ∈ P(Rd) ∀i ∈ I and c : RdK → R, a
lower semi-continuous cost function c(x1, · · · , xK) : RdK → R

d, solve

(MK) inf

{∫

RdK

c(x, T2(x), · · · , TK(x))dµ1(x) | T = {Ti}i∈I ∈ TK
}
, (7.2)

where

TK := {T = {Ti}i∈I | Ti : Rd → R
d (Ti)♯µ1 = µi, ∀i ∈ I and T1 = Id}.

Remark 7.1.3. When K = 2 in (7.1) and (7.2), we exactly retrieve the standard
Monge-Kantorovich and Monge problem, respectively.

As usual, it is easy to see that the set of admissible plans in (7.1) “con-
tains” the set of Monge transport maps in (7.2): in fact, given a transport
map T = (Id, T2, . . . , TK), we can consider a measure γT on R

dK defined by
γT = (Id, T2, · · · , TK)♯µ1. Let h : RdK → R be a γT -measurable function, then

∫

RdK

h(x1, . . . , xK)dγT (x1 . . . , xK) =

∫

Rd

h(x1, T2(x1), . . . , TK(x1))dµ1(x1);

and if we have γT -measurable function f : Rd → [0,∞]

∀i ∈ I,
∫

RdK

f(xi)dγT (x1, . . . , xK) =

∫

Rd

f(xi)dµi(xi),

and so, γT is a transport plan. In particular, the value of the minimization over
all the feasible couplings in Π(RdK ;µ1, · · · , µK) is smaller than or equal to the
value of the minimization over the deterministic couplings

min(MKK) 6 inf(MK).

Contrary to (7.1), the existence of transport maps in (7.2) is not obvious and the
difficulties lie both on the “multi-marginality” of the problem (see for instance
the fractal map in theorem 8.1.6 which appears in the three marginals case, but
not in the 2 marginals one) and on the high non-linearity of the constraints as for
the 2 marginal case. Moreover, as we will show later (see for instance chapter
8 and 9) the multi-marginal problem presents a high sensitivity to the cost
function which is largely absent from two marginal problems: we will exhibit
cost functions for which optimizers of (7.1) have a Monge form (namely the
optimal plan γ is induced by an optimal map T = (Id, T2, · · · , TK)) and are
unique, as well as some for which these properties fail.

An important disadvantage in using the relaxed approach (7.1) in the multi-
marginal OT is that the set of optimal transportation plans could be very large
and we could need to select some special classes of transportation plans.

In the 2-marginal setting, the two formulations (7.1) and (7.2) are proved
to have the same value for general Polish Spaces, in particular we have the
following result established by Pratelli in [101].
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Theorem 7.1.4 (Monge equals Monge-Kantorovich in the 2-marginals case,
[101]). Let (X,µ), (Y, ν) be Polish spaces, where µ ∈ P(X) and ν ∈ P(Y ) are
non-atomic probability measures. If c : X × Y → R∪ {∞} is a continuous cost,
then

inf

{∫

X×Y
c(x, y)dγ(x, y) : γ ∈ Π(Rd;µ, ν)

}
= (7.3)

= inf

{∫

X

c(x, T (x))dµ(x), :
T♯µ = ν,
T : X → Y Borel

}
(7.4)

where Π(Rd;µ, ν) denotes, as usual, the set of transport plans γ ∈ P(X × Y )
having µ and ν as marginals.

In the case of the multi-marginal OT problems, (7.2) and (7.1), whith K
marginals to µi, we can apply the previous theorem (7.1.4) on the Polish spaces
X = R

d, Y = (Rd)K−1 with measures µ = µ1 and ν = (π2, · · · , πK)♯γ, for every
γ ∈ Π(RdK ;µ1, · · · , µK), and obtain the following corollary

Corollary 7.1.5. Let µ1, · · · , µK be probability measures on R
d and c : RdK →

R be a continuous cost function. Then,

min(MKK) = inf(MK).

Notice that, in general, the equivalence between (7.1) and (7.2) is not an
immediate consequence of the theorem 7.1.4. In particular, remark that the
image measure of Y = R

d(K−1) is not prescribed, but only its marginals.

7.1.1 The Dual problem

As in the two marginal case we can derive the following dual formulation of
(7.1)

Problem 7.1.6. Given K marginals µi ∈ P(Rd) solve

(KK) sup

{∫

Rd

∑

i∈I
ui(xi)dµi(xi) | ui ∈ L1(Rd, µi) ∀i ∈ I,

∑

i∈I
ui(xi) 6 c(x1, · · · , xK), ∀(x1, · · · , xK) ∈ R

dK

}
,

(7.5)

where ui are called Kantorovich potentials and are upper semicontinuous for all
i ∈ I.

Remark 7.1.7. Notice that, when all marginals are equal µi = ρ(x)Ld ∀i ∈ I
and the cost is symmetric (i.e. the quadratic cost

∑
i 6=j |xi − xj |2), we can

assume the Kantorovich potentials ui(xi) are all the same u(xi), and we can
rewrite the constraint in (7.5) as

K∑

i=1

u(xi) 6 c(x1, . . . , xK).
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Among all Kantorovich potentials, a particular class is of special interest.

Definition 7.1.8 (c-conjugate function). Let c : R
dK → R ∪ {∞} a Borel

function. We say that the K-tuple of functions (u1, . . . , uK) is a c-conjugate
function for c, if

ui(xi) = inf

{
c(x1, . . . , xK)−

K∑

j=1,j 6=i
uj(xj) : xj ∈ Xj , j 6= i

}
, ∀i = 1, . . . ,K.

As we will see in the next theorem 7.1.9, the optimal potentials u1, . . . , uK
in (KK) are c-conjugates, and therefore semi-concave. So, they admit super-
differentials ∂ui(xi) at each point xi ∈ R

d and then, at least in the compact
case, we can expect that for each xi ∈ R

d, there exists {xj}j 6=i ∈ R
d(K−1), such

that
ui(xi) = c(x1, . . . , xK)−

∑

j 6=i
uj(xj).

Moreover, if c : R
dK → R is differentiable and |ui(xi)| < ∞, for some

xi ∈ R
d, ui is locally Lipschitz. The well-known general result linking both

(7.1) and (7.5) has been proven by Kellerer in 1984.

Theorem 7.1.9 (Kellerer, [76]). Let (X1, µ1), · · · , (XK , µK) be Polish spaces
equipped with Borel probability measures µ1, . . . , µK . Consider c : X1 . . . XK →
R a Borel cost function and assume that c = supXc <∞ and c = infX c > −∞.
Then,

(i) There exists a solution γ of the Monge-Kantorovich problem (7.1) and a
c-conjugate solution (u1, u2, ..., uK) of the dual problem (7.5).

(ii) “Duality holds”,

inf

{∫

X1...XK

cdγ : γ ∈ Π(µ1, . . . , µK)

}
= sup

{ K∑

i=1

∫

Xi

ui(xi)dµi : ui ∈ D
}
,

(7.6)
where D is the set of functions ui : R

d → R, i = 1, . . . ,K, such that

K∑

i=1

ui(xi) 6 c(x1, . . . , xK), and
1

K
c− (c− c) 6

K∑

i=1

ui(xi) 6
1

K
c.

(iii) For any solution γ of (7.1), any conjugate solution of (7.5) and γ a.e.
(x1, . . . , xK), we have

K∑

i=1

ui(xi) = c(x1, . . . , xK).

Remark 7.1.10. We remark that despite its generality, Kellerer’s theorem can
not be applied directly to some interesting costs as Coulomb-type ones

c(x1, · · · , xK) =

K∑

i 6=j

1

|xi − xj |s
,
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since they do not satisfy the boundedness hypothesis c = supXc < ∞ and
can not be bounded by functions in L1(Rd, ρLd). A generalization of Kellerer’s
theorem due to M. Beiglboeck, C. Léonard and W. Schachermayer [9], extends
this duality for more general costs, but only a recent result by De Pascale [48]
extended the proof of duality to Coulomb-type costs, see Theorem 9.5.1. In
fact, suppose µ = ρ(x)dx is a probability measure on R

d which does not give
mass to sets of cardinality less than or equal to d− 1, then

min
γ∈ΠK(µ)

∫

RdK

K∑

i=1

K∑

j=i+1

1

|xi − xj |
dγ = max

u∈D̃

∫

Rd

Ku(x)ρ(x)dx (7.7)

where D̃ is the set of potentials u ∈ L1(Rd, µ) such that

K∑

i=1

u(xi) 6

K∑

i=1

K∑

j=i+1

1

|xj − xi|
, ⊗Ki=1ρ− almost everywhere. (7.8)

Moreover, we get the conclusions (i) and (iii) of the theorem 7.1.9.

More generally, the main theorem in [48] shows that the Kantorovich duality
holds, for instance, for costs of form

K∑

i=1

K∑

j=i+1

1

|xj − xi|s
, s > 1.

7.1.2 Geometry of the Optimal Transport sets

We now present the relation between the support of a coupling γ and opti-
mality in the Monge-Kantorovich problem (7.1). In the following, we will just
summarize some key results necessary to discuss recent developments of optimal
transportation with Coulomb and repulsive harmonic-type costs (see chapters
8 and 9).

Roughly speaking, it is well-known in optimal transport theory with 2-
marginals that, for a wide class of costs c, a coupling γ is optimal if, and only
if, the support of γ is concentrated in a c-cyclically monotone set [3, 102, 106]:

Definition 7.1.11 (c-cyclically monotone, 2-marginal case). Let X,Y be Polish
spaces, c : X×Y → R∪{∞} be a cost function, Γ be subset of the product space
X × Y and σ a permutation of {1, · · · ,M}. We say that Γ is a c-cyclically
monotone set if, for any finite couples of points {(xi, yi)}Mi=1 ⊂ Γ,

M∑

i=1

c(xi, yi) 6

M∑

i=1

c(xi, yσ(i)).

In [97], Pass suggested a possible extension of the concept of c-cyclically
monotone sets for the multi-marginal case. Here, it is enough to consider this
notion in R

d.
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Definition 7.1.12 (c-cyclically monotone set). Let c : R
dK → R be a cost

function. A subset Γ ⊂ R
dK is said to be c-monotone with respect to a partition

(p, pc), p ⊂ I, if, for all x = (x1, . . . , xK), y = (y1, . . . , yK) ∈ Γ

c(x) + c(y) 6 c(X(x, y, p)) + c(Y (x, y, p)),

where X(x, y, p), Y (x, y, p) ∈ R
K are functions obtained from x and y by ex-

changing their coordinates on the complement of p, namely

Xi(x, y, p) =

{
xi, if i ∈ p
yi, if i ∈ pc

and Yi(x, y, p) =

{
yi, if i ∈ p
xi, if i ∈ pc

∀i ∈ I

We say that Γ ⊂ R
dK is c-cyclically monotone, if it is c-monotone with

respect to any partition (p, pc), p ⊂ I.

The notion of c-cyclical monotonicity in the multi-marginal setting was stud-
ied by Ghoussoub, Moameni, Maurey, Pass [68, 69, 97, 98] and successfully ap-
plied in the study of decoupling PDE systems [70]. In [49] the authors have used
it in order to characterize the optimal transport maps in the one-dimensional
case for the Coulomb cost.

More recently, Beiglboeck and Griessler [8], presented a new notion called
finistic optimality inspired by the martingale optimal transport, which is equiv-
alent, in the 2-marginals case, to the definition 7.1.11.

The next proposition gives a necessary condition on the support for an op-
timal transport plan γ. For the proof, which is based on the 2-marginal result
[114], we refer the reader to Lemma 3.1.2 of [97].

Proposition 7.1.13 (Support of transport plan are c-cyclically monotonic).
Let c : RdK → [0,∞] be a continuous cost and µ1, . . . , µK absolutely continuous
probability measures on R

d. Suppose that γ ∈ Π(RdK ;µ1, · · · , µK) is an optimal
transport plan for the multi-marginal Monge-Kantorovich Problem (7.1) and
assume (MK) <∞. Then γ is concentrated in a c-cyclically monotone set.

7.1.3 Some symmetric cases

The radial symmetry

An interesting class of examples is those for which the cost function is radially
symmetric.

Definition 7.1.14 (Radially symmetric cost). A cost c : R
dK → R is said

radially symmetric if

c(Ax1, · · · , AxK) = c(x1, · · · , xK),

for all rotations A ∈ SO(Rd).

This class includes the Gangbo-Swiech cost
∑
i 6=j |xi−xj |2 (aka the quadratic

cost for the multi-marginal case) [66], the determinant cost − det(x1, · · · , xK),
with K = d so that (x1, · · · , xK) is a square matrix, introduced by Carlier and
Nazaret in [36] (see also section 8.3 for a detailed description) and the Coulomb

cost
∑
i 6=j

1

|xi − xj |
(see chapter 9). We define a radially symmetric measure as

follows

106 CHAPTER 7. A REVIEW ON MULTI-MARGINAL OPTIMAL
TRANSPORTATION



7.1. THE MULTI-MARGINAL OT PROBLEM: THE CONTINUOUS
SETTING

Definition 7.1.15 (Radially symmetric probability measures). A probability
measure µ ∈ P(Rd) is radially symmetric if

(A)♯µ = µ ∀A ∈ SO(Rd).

γ ∈ P(RdK) is radially symmetric if

(A, · · · , A)♯γ = γ ∀A ∈ SO(Rd).

Then we have the following result, firstly proven in [36] and then extended
to the general case by Pass in [99]

Theorem 7.1.16. Assume c and each µi is radially symmetric then there is an
optimal γ for (7.1) such that

• γ is radially symmetric.

• For each (x1, · · · , xK) ∈ supp(γ) we have

(x1, · · · , xK) ∈ argmin|yi|=ri,i∈I c(y1, · · · , yK), (7.9)

where ri = |xi|.

Even more interesting is a corollary of the previous theorem which states
that for some cost functions the optimal plan is not of Monge type, but it is
supported on sets of Hausdorff dimension equal or bigger then 2K − 2

Corollary 7.1.17 (Pass, [99]). Let c : R
dK → R be a symmetric cost (see

definition 7.1.14) and {µi}i∈I be radially symmetric and absolutely continuous
with respect to Lebesgue measure in R

d. Suppose that for every radii (r1, ...rK)
the minimizers

(x1, . . . , xK) ∈ argmin|yi|=ri c(y1, y2, . . . yK) are not all co-linear.

Then, there exists solutions γ whose support is at least (2K − 2)-dimensional.

We, finally, remark that if c(y1, y2, . . . yK) and each µi is radially symmetric
then problem (7.1) can be reduced to a 1−dimensional problem. The following
lemma holds

Lemma 7.1.18 ([BCN15]). Let µi ∈ P(Rd) be K radially symmetric measures.
In particular each µi is determined by µir = | · |♯µ. Consider the following
1−dimensional problem

(MKrK) min

{∫

RK

c̃(r1, . . . , rK)dγr | γr ∈ ΠK(µ1
r, · · · , µKr )

}
, (7.10)

where c̃ is the reduced cost

c̃(r1, . . . , rK) = min {c(x1, · · · , xN ) | |xi| = ri ∀i = 1, . . . ,K} .

Then,

min(MKK) = inf(MKrK).
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Proof. We first prove that min(MKK) > inf(MKrK). This is quite easy: in-
deed for an optimal γ ∈ Π(RdK ;µ1, · · · , µK) we can define its radial compo-
nent as γr = R♯γ, where R : (x1, . . . , xK) 7→ (|x1|, . . . , |xK |). It is clear that
γr ∈ ΠK(µ1

r, · · · , µKr ) and since c > c̃ the inequality min(MKK) > inf(MKrK)
follows. In order to prove the converse inequality, we use duality. Indeed, by
standard convex duality, we have

(MKK) = sup
ui

{ K∑

i=1

∫

Rd

ui(x)dµi(x) |
N∑

i=1

ui(xi) ≤ c(x1, · · · , xK)
}

(7.11)

and similarly

(MKrK) = sup
vi

{ K∑

i=1

∫

R+

vi(r)dµ
i
r(r) |

N∑

i=1

vi(ri) ≤ c̃(r1, · · · , rN )
}
. (7.12)

Now since µi are radially symmetric and the constraint of (7.11) is invariant
by changing ui by ui ◦ A with A a rotation, there is no loss of generality in
restricting the maximization in (7.11) to potentials of the form ui(|xi|) = vi(ri).
Thus, take for example vi optimal for (7.12), then the constraint of (7.11) are
automatically satisfied, but vi could not be the optimal solutions to (7.11) and
so we have min(MKK) ≤ inf(MKrK).

The indistinguishability symmetry

Consider now the case in which all the marginals are equal µi = µ i =
1, ...,K, in other words the marginals are indistinguishable, and the cost is
symmetric in the marginals (with an abuse of notation we will refer to this
kind of cost as indistinguishability or cyclically symmetric cost) which means
the following

c(x1, · · · , xK) = c(σ(x1, x2, . . . , xK))

for all cyclical permutations σ. Then, we can reduce our study of the Monge-
Kantorovich (7.1) and the Monge problems (7.2) to a suitable class of transport
plans (symmetric plans) and transport maps (called cyclic maps), respectively.

Remark 7.1.19. Notice that radial symmetry and indistinguishability symme-
try are quite different. For instance, the cost c(x1, x2, x3) = |x1−x2|2 is radially
symmetric, but not indistinguishability symmetric. And the cost c(x1, · · · , xK) =∑
i<j |xi − xj |∞ is indistinguishability symmetric, but not radially.

Definition 7.1.20 (Cyclically symmetric probability measures). A probability
measure γ ∈ P(RdK) is cyclically symmetric if

∫

RdK

f(x1, . . . , xK)dγ =

∫

RdK

f(σ(x1, . . . , xK))dγ, ∀f ∈ C(RdK)

where σ is the cyclical permutation

σ(x1, x2, . . . , xK) = (x2, x3, . . . , xK , x1).

We will denote by ΠsymK (RdK ;µ), the space of all cyclically symmetric probability
measures on R

dK having all the marginals equal to µ.
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As previously, we can define the multi-marginal symmetric Monge-Kantorovich
problem as follows

Problem 7.1.21 (Symmetric Monge-Kantorovich problem). Solve

(MKsym) inf

{∫

RdK

c(x1, . . . , xK)dγ(x1, . . . , xK) | γ ∈ ΠsymK (RdK ;µ)

}
,

(7.13)

and the associated multi marginal cyclically Monge Problem

Problem 7.1.22 (Cyclically Monge Problem). Solve

(Mcycl) inf

{∫

Rd

c(x, T (1)(x), T (2)(x), . . . , T (K−1)(x))dµ1(x) |

T : Rd → R
d, T♯µ = µ, T (K) = Id

}
,

(7.14)

where T (i) stands for the i−th composition of T with itself.

Remark 7.1.23. (Mcycl) is related to (M) by choosing T♯µ = µ, Ti+1(x) =
T (i)(x) for every i ∈ {1, . . . ,K − 1}, T (K) = Id.

Proposition 7.1.24. Suppose µ1 = · · · = µK = µ ∈ P(Rd) is an absolutely
continuous probability measure with respect to the Lebesgue measure and c :
R
dK → R is a continuous cyclically symmetric cost. Then,

inf(MK) = inf(MKsym).

Proof. The fact that the infimum of (7.1) is smaller than or equal to (7.13) is
obvious. Now, we need to show that for every transport plan γ ∈ ΠK(µ) we can
associate a symmetric plan in ΠsymK (RdK ;µ). Indeed, given γ ∈ ΠK(RdK ;µ)
(where ΠK(RdK ;µ) is the set of plans γ having all marginals equal to µ), we
define

γ =
1

K!

∑

σ∈SK

σ♯γ,

and finally we notice that γ has the same cost as γ.

We remark that proving inf(Mcycl) 6 inf(MK) is not obvious . How-
ever, we can avoid this problem in order to prove the equivalence between the
Multi-marginal cyclic problem and Multi-marginal OT problem, by noticing
that inf(Msym) 6 inf(Mcycl). The last part was proved by M. Colombo and S.
Di Marino [40]. We give the precise statement of this theorem.

Theorem 7.1.25 (M. Colombo and S. Di Marino, [40]). Let c : RdK → R be
a symmetric continuous function and bounded from below. If µ has no atoms,
then

inf(MKsym) = inf(Mcycl).

Finally, we have the equality between the multi-marginal cyclic problem and
multi-marginal OT problem.
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Corollary 7.1.26. If µ has no atoms and c : RdK → R is a cyclically symmetric
continuous function and bounded from below, then

inf(MKsym) = inf(MK) = inf(MK) = inf(Mcycl).

Remark 7.1.27 (N-cyclically vector fields). We remark that in the literature (see
[68, 69, 62]) we can find example of symmetric Monge-Kantorovich problem like
(7.13) for which the existence of Monge solutions (namely transport optimal
supported on the graph of cyclical maps) has been established ([69]). The idea
is to consider cost of the form

c(x1, · · · , xK) =

K−1∑

i=1

〈ui(x1), xi+1〉,

where the uis are a family of jointlyK−monotone vector fields, namely for every
cycle x1, · · · , xK of points such that xK+l = x1 we have that

K∑

i=1

K−1∑

l=1

〈ul(xi), xi − xi+l〉 > 0.

Notice that if we take two marginals and u(x) = −x we retrieve the classic
quadratic cost and the Brenier’s transport map, see [68].

7.1.4 The Gangbo-Swiech cost

We want to conclude this section about the continuous multi-marginal prob-
lem by presenting the MM-OT with the so-called Gangbo-Swiech cost, after the
seminal work by Gangbo and Swiech [66], which can be regarded as an extension
of the classical quadratic cost we have introduced in chapter 1.

Let us consider K marginals µi ∈ P(Rd) then the multi-marginal Monge
problem with the Gangbo-Swiech cost is

inf





∫

Rd

K∑

i=1

K∑

j=i+1

|Ti(x)− Tj(x)|2
2

dµ1(x) | T = {Ti}i∈I ∈ TK



 , (7.15)

where TK := {T = {Ti}i∈I | Ti : Rd → R
d (Ti)♯µ1 = µi T1 = Id} and the

Monge-Kantorovich problem becomes

inf





∫

RdK

K∑

i=1

K∑

j=i+1

|xi − xj |2
2

dγ(x1, · · · , xK) | γ ∈ Π(RdK ;µ1, · · · , µK)



 .

(7.16)

Remark 7.1.28. If we assume that the marginals µi have finite second moment
then, as in the two marginal case, problem (7.16) can be rewritten in the fol-
lowing form

sup





∫

RdK

K∑

i=1

K∑

j=i+1

〈xi, xj〉dγ(x1, · · · , xK) | γ ∈ Π(RdK ;µ1, · · · , µK)



 ,

(7.17)
where 〈·, ·〉 denotes the usual dot product in R

d.
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One can easily derive the dual formulation of (7.16)

sup

{
K∑

i

∫

Rd

uidµi | ui ∈ L1(Rd, µi) ui are upper semicontinuous and

K∑

i=1

ui(xi) 6

K∑

i=1

K∑

j=i+1

|xi − xj |2
2

∀(x1, · · · , xK) ∈ R
dK

}
.

(7.18)

Then, Gangbo and Swiech proved the following theorem which yields the
existence of optimal maps

Theorem 7.1.29 (Gangbo-Swiech [66]). Assume that µ1 · · · , µK probability
measure vanishing on (d− 1)−rectifiable sets and having finite second moments
(i.e.

∫
Rd |x|2dµi(x) < +∞). Then,

(1). Problem (7.18) admits a maximizer u = {ui}i∈I .

(2). There is a minimizer T ∈ TK for (7.15). The Ti are one-to-one µi−a.e.,
are uniquely determined, and have the form

Ti(x) = D f∗i (D f1(x)) where fi(x) =
|x|2
2

+ ϕi(x), (7.19)

the ϕi are convex functions, and f∗i ∈ C1(Rd).

(3). Duality holds: the optimal values in problems (7.15) and (7.18) coincide.

(4). If u is another maximizer for problem (7.18) we can modify the ui’s on
sets of zero µi measure to obtain a maximizer, still denoted u, such that
ui is differentiable µi−a.e.. Furthermore,

Dui = Dui µi-a.e.

(5.) Problem (7.16) admits a unique minimizer γ ∈ Π(RdK ;µ1, · · · , µK).

Remark 7.1.30. Theorem 7.1.29 provides a geometrical characterization of the
optimal measure for problem 7.16.

Remark 7.1.31 (Connection with the Wasserstein barycenter). In section 7.3.1
we will show that the Wasserstein barycenter problem is indeed a multi-marginal
problem and that theorem 7.1.29 can provide a geometrical characterization of
the barycenter.

Remark 7.1.32 (Connection with the standard OT problem with the quadratic
cost). Notice that if K = 2 then we exactly retrieve the Brenier’s theorem for
the standard quadratic cost; indeed (2) returns the Brenier’s map.

Remark 7.1.33. (4) states that as in the two marginal case the Kantorovich
potential are unique up to an additive constant.

Remark 7.1.34 (Monge-Ampère system). As we have seen in section 1.1 the con-
straint of the Monge problem with can be rewritten as the Monge-Ampère equa-
tion. In this case we actually have a system of Monge-Ampère equations. As-
sume that the measures µi are absolutely continuous with respect the Lebesgue
measure µi = ρiLd then formally the fi’s satisfy the following set of equations

ρi(D f
∗
i (x)) det(D

2 f∗i (x)) = ρ1(D f
∗
1 (x)) det(D

2 f∗1 (x)) = ρ(x), (7.20)

where the function ρ(x) is unknown.
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7.2 The Multi-Marginal OT problem: the dis-
crete setting

In this section we introduce the discrete version of the Multi-Marginal Monge-
Kantorovich

(MKK) min

{∫

(Rd)K
c(x1, · · · , xK)dγ(x1, · · · , xK) | γ ∈ Π(RdK ;µ1, · · · , µK)

}
,

(7.21)
where K is the number of marginals , c(x1, ..., xK) is the cost function, γ the
transport plan and Π(RdK ;µ1, · · · , µK) := {γ ∈ P(RdK) | πi(γ) = µi} with πi :
R
dK → R

d the canonical projection. From now on, we assume (with an abuse of
notation) that µi = µi(xi)Ld where µi : R

d → R. Then we use a discretization
withN points of the support of the kth density as {xjk}jk=1,··· ,N . If the densities
µk are approximated by

∑
jk
µjkδxjk

, we get the following discrete problem

Problem 7.2.1. Given K marginals µk ∈ ΣN := {µk ∈ R
N | ∑N

jk=1 µjk = 1},
solve

min




∑

j1,···jK
cj1,··· ,jKγj1,··· ,jK | γ ∈ ΠKN (RdKN ;µ1, · · · , µK)



 , (7.22)

where cj1,··· ,jK = c(xj1 , · · · , xjK ) is a matrix in ⊗Ki=1R
N , the transport plan

support for each coordinate is restricted to the points {xjk}k = 1, · · · , N thus
becoming a (N)K matrix with non-negative entries again denoted γ with ele-
ments γj1,··· ,jK and the set ΠKN (RdKN ;µ1, · · · , µK) is defined as

ΠKN (RdKN ;µ1, · · · , µK) := {γ ∈ R
(N)K

+ | Sk(γ) = µk, ∀k = 1, · · · ,K}. (7.23)

where the push-forward Sk(γ) ∈ R
N of such a γ along dimension k is computed

as

∀ i ∈ {1, . . . , N}, Sk(γ)i :=
∑

j1,j2,...,jk−1,jk+1,..,jK

γj1,j2,...,jk−1,i,jk+1,..,jK .

(7.24)

The discrete optimal transport problem (7.22) is a linear program problem
and its dual can be written as follows

max{
K∑

i=1

M∑

ji=1

uijiµ
i
ji |

K∑

k=1

ukjk 6 cj1,...,jK ∀(j1, · · · , jK) ∈ {1, · · · ,M}K}.

(7.25)
where uiji = ui(xji).

Remark 7.2.2. Notice that the primal (7.22) has (N)K unknowns and N ×K
linear constraints and the dual (7.25) N × K unknowns but still (N)K con-
straints. This makes them computationally not solvable with standard linear
programming methods even for small cases.
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7.3 Hidden multi-marginal optimal transport prob-
lems

7.3.1 The multi-marginal Wasserstein Barycenter

In section 4.1 we have introduced the discrete formulation of the Wasserstein
barycenter and then we have used the IPFP algorithm in order to compute
the barycenter. Here, we would like to underline that the formulation of the
Wasserstein barycenter given by Agueh and Carlier in [1] is indeed equivalent
to solve a multi-marginal optimal problem with a Gangbo-Swiech type cost Let
us consider, as usual, K marginals µi ∈ P(Rd), having finite second moment,
and K weights λ = {λi}Ki=1 such that λ ∈ ΣK , then the minimization problem
is

Problem 7.3.1 (Wasserstein barycenter). Solve

inf

{
K∑

i=1

λiMK(µi, ν) | ν ∈ P(Rd)

}
, (7.26)

where the measure ν is the barycenter and MK is the 2-Wasserstein distance,
namely the optimal transport problem with the quadratic cost.

Define now for every x = (x1, · · · , xK) ∈ R
dK the Euclidean barycenter

B(x) :=∑K
i=1 λixi, then consider the following multi-marginal problem

inf
{
c(x1, · · · , xK)dγ(x1, · · · , xK) | γ ∈ Π(RdK ;µ1, · · · , µK)

}
, (7.27)

where the cost function is

c(x1, · · · , xK) :=

K∑

i=1

λi
2
|xi − B(x)|2. (7.28)

If we now develop the square in (7.28) we immediately notice that problem
(7.27) is equivalent to

sup





K∑

i=1

K∑

j=i+1

λiλj〈xi, xj〉dγ(x1, · · · , xK) | γ ∈ Π(RdK ;µ1, · · · , µK)



 ,

(7.29)
which is actually the problem (7.17) solved by Gangbo and Swiech. Thus, we
can apply theorem 7.1.29 noticing that due to the weights λi, the fi must be
rewritten as

fi(x) =
λi
2
|x|2 + ϕi(x).

Then, Agueh and Carlier established the following relation between problems
(7.26) and (7.27)

Proposition 7.3.2 (Proposition 4.2 in [1]). Assume the same hypothesis as in
theorem 7.1.29. Then the solution of (7.26) is given by ν = B♯γ, where γ is the
solution of (7.27).
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Remark 7.3.3. It is not surprising that since the optimal measure γ is induced by
maps Ti (see (2) in theorem 7.1.29), then the barycenter ν can be characterized
as follows

ν := (

K∑

i=1

λiTi)♯µ1.

We refer the reader to section 7.5.1 for the numerical experiments by using
the multi-marginal formulation of the Wasserstein barycenter.

7.3.2 The multi-marginal Matching for teams problem

We conclude this section by pointing out that another problem, namely
the Matching for teams problem, can be recast as a multi-marginal problem.
Again, consider K marginals µi ∈ P(Rd) and cost functions ck : R2d → R then
the matching for teams problem introduced by Carlier and Ekeland in [32] is

inf

{
K∑

i=1

MKci(µi, ν) | ν ∈ P(Rd)

}
, (7.30)

ν is the equilibrium and MKci are the optimal transport problems with cost
ci. Then Carlier and Ekeland showed that problem (7.30) is indeed equivalent
to the following multi-marginal problem

inf
{
c(x1, · · · , xK)dγ(x1, · · · , xK) | γ ∈ Π(RdK ;µ1, · · · , µK)

}
, (7.31)

where the cost function c(x1, · · · , xK) is given by

c(x1, · · · , xK) := inf

{
K∑

i=1

ci(xi, y) | y ∈ R
d

}
. (7.32)

Assume now that the infimum in (7.32) is uniquely attained for every x =
(x1, · · · , xK) ∈ R

dK at some point y(x), then the connection between problems
(7.30) and (7.31) is established by the following proposition

Proposition 7.3.4 (Proposition 3 in [32]). Under the previous assumptions,
one has

(1). Problems (7.30) and (7.31) have the same value.

(2). If γ is solution to (7.31), then ν := y♯γ is solution to (7.30).

(3). If ν solves (7.30), then there exists a solution to (7.31) such that ν = y♯γ.

7.4 Regularized Multi-Marginal OT and gener-
alization of the IPFP

Let us now consider the discrete formulation of the multi-marginal problem
that we have discussed in section 7.2. We would like to introduce its regularized
counterpart as we have done for the standard optimal transport problem. Thus,

we are given K marginals (µk)
K
k=1. We denote by γ ∈ R

NK

+ a K-dimensional
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array, indexed as γj for j = (j1, . . . , jK) ∈ {1 . . . , N}K where N is the number of
gridpoints used to discretize R

d
+ and by Sk(γ) ∈ R

N the push-forward defined
in (7.24). In order to simplify the notation, take j := (j1, · · · , jK) ∈ K where
K := {1, · · · , N}K Then, the regularized OT problem (2.15) can be generalized
to the multi-marginal setting as

Problem 7.4.1. Given K marginals (µk)
K
k=1 and a cost matrix C ∈ R

NK
+ such

that (C)j1,··· ,jK = cj1,··· ,jK , solve

min




∑

j∈K
cjγj + εH(γ|η) | γ ∈ ΠKN (RdKN ;µ1, · · · , µK)



 (7.33)

where η = ⊗Ki=1µi and H(·|·) is the relative entropy defined as follows

H(γ|η) :=
∑

j∈K
γj(log(

γj
ηj

)− 1)∀γ, η ∈ R
NK

++ .

Similarly as (2.15), this problem can be re-cast as a KL projection (we remind
that KL (γ|η) = H(γ|η))

min {KL (γ|γ) | γ ∈ C1 ∩ C2 ∩ . . . ∩ CK} where γj := exp (−cj
ε)

(7.34)

where the exponentiation is exponent-wise, and where

Ck :=
{
γ ∈ R

NK

++ | Sk(γ) = µk

}
.

The Bregman projection on each of the convex Ck are again given by a simple
normalization as detailed in the following proposition.

Proposition 7.4.2 (KL projection for the multi-marginal problem, [BCC+15]).
For any k, denoting γ = PKL

Ck
(γ̄), one has

∀ j = (j1, . . . , jK), γj =
(µk)jk
Sk(γ̄)jk

γ̄j

Proof. Introducing Lagrange multipliers λjk associated to the constraint asso-
ciated to Ck

Sk(γj)jk = (µk)jk (7.35)

the KL projection is given by the optimality condition :

log

(
γj
γ̄j

)
− λjk = 0 (7.36)

so that
γj = ajk γ̄j , (7.37)

where ajk = exp (λjk). By using both equation (7.37) and (7.35), we get

ajk =
(µk)jk
Sk(γ̄)jk

,

γj =
(µk)jk
Sk(γ̄)jk

γ̄j ,

which end the proof.
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It is thus possible to use the Bregman iterative projection detailed in Sec-
tion 3.1 to compute the projection (7.34).

Remark 7.4.3. Here, we have assumed that the sets Ck are all affine subspaces
of RNK++ which thanks to theorem 3.1.4 assures the convergence of the alternate
projections algorithm. If Ck are not affine, see for instance section 7.5.2, then
one must apply the Dykstra’s iterates as we have explained in section 3.3.

As we have already noticed for the two marginals case, problem (7.34) is a
strictly convex problem. Moreover, one can generalize proposition 2.2.5 to the
multi-marginal case and obtain the following result

Proposition 7.4.4. Assume that all the sets Ck are affine subspaces of RNK++ ,
then problem (7.34) admits a unique solution. Furthermore, there exist K non-
negative vectors ak ∈ R

N
+ , uniquely determined, up to a multiplicative constant,

such that the solution γε,⋆ to (7.34) has the form

γε,⋆j = γj

K∏

k=1

akjk .

Remark 7.4.5. As for the 2-marginal case the vectors ak play the role of the
dual variable of problem (7.34).

Remark 7.4.6. The ak are uniquely determined, up to a multiplicative constant,
by the constraints over the marginals of γ

akjk =
(µk)jk
Sk(g̃)jk

, (7.38)

where g̃ ∈ R
NK
++ defined as

(g̃)j := γ̄j
∏

ℓ 6=k
aℓjℓ .

Thanks to proposition 7.4.4 and remark 7.4.6 we can now define the IPFP
procedure (aka the Sinkhorn algorithm) for K marginals as

a
k,(n)
jk

=
(µk)jk

Sk(g̃k,(n))jk
, (7.39)

where g̃k,(n) is defined as

(g̃k,(n))j := γ̄j(
∏

ℓ<k

a
ℓ,(n)
jℓ

)(
∏

ℓ>k

a
ℓ,(n−1)
jℓ

).

7.5 Applications

7.5.1 Wasserstein Barycenter

As shown in Section 7.3.1, the computation of barycenters of measures can
be computed by solving a multi-marginal transport problem.

Let us suppose that the input measures {µk}Kk=1 defined on R
d are of the

form µk =
∑N
i=1 µk,iδxi

, where µk = {µki }Ni=1 ∈ ΣN , where {xi}i ⊂ R
d and δx is
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the Dirac measure at location x ∈ R
d. In section 7.3.1 we have shown that the

Wasserstein barycenter of the µk with weights {λk}k ∈ ΣK for the quadratic
Euclidean distance ground cost is

µλ :=
∑

j=(j1,j2,...,jK)

µjδBj(x) (7.40)

where Aj(x) :=
∑
k λkxjk is the Euclidean barycenter and γ ∈ R

NK

+ is an
optimal multi-marginal coupling that solves (7.34) for the following cost

Cj =
∑

16k6K

λk
2
||xjk − Bj(x)||2.

An important point to note is that the measure barycenter (7.40) is in general
composed of more than M Diracs, and that these Diracs are not constrained to
be on the discretization grid (xi)i. In particular, the obtained result is different
from the one obtained by solving (4.1), which computes a barycenter that lies
on the same grid as the input measures. In some sense, formulation (7.40) is
able to compute the “true” barycenter of measures, whereas (4.1) computes
an approximation on a fixed grid, but the price to pay is the resolution of a
high-dimensional multi-marginal program.

Figure 7.1 shows an histogram depiction of the measure µλ defined in (7.40),
for the iso-barycenter (i.e. λk = 1/K for all k). It is computed by first solving
(7.34) with the same three marginals used in Figure 4.1. The histogram µλ ∈ ΣN
computed on a grid of N = 60 × 60 points. Each µi is the total mass of µλ in
the discretization square Si of size 1/

√
N × 1/

√
N , i.e. µi = µλ(Si).

Figure 7.1: Barycenter computed by solving the multi-marginal problem with
three marginals (annulus, diamond and square) discretized on an uniform 2-D
grid of N = 60× 60 points in [0, 1]2 and ε = 0.005. See the main text body for
details about how the display of the barycenter measure is performed.

7.5.2 Partial Optimal Transport

In [77] Pass and Kitagawa studied the multi-marginal partial transport prob-
lem and, as a natural extension, the partial barycenter problem. Let us consider
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K marginals {µk}Kk=1 and a transport plan γ ∈ R
NK

+ . We now combine the (reg-
ularized) partial optimal transport and the “standard” multi-marginal problem,
as described in Sections 4.3 and 7.4 respectively. We obtain the following prob-
lem

min
γ

{KL (γ|γ) | γ ∈ C1 ∩ C2 ∩ . . . ∩ CK+1} where γ := exp (−C
ε
) (7.41)

where

Ck :=
{
γ ∈ R

NK

+ | πk(γ) 6 µk
}

k = 1, . . . ,K,

CK+1 :=
{
γ ∈ R

NK

+ | ∑j γj = m
}
,

where m ∈ [0,mink(〈µk, 111〉)] and πk : RN
K

+ → R
N
+ denotes the usual canonical

projection.
The KL projections on these convex sets are detailed in the following propo-

sition.

Proposition 7.5.1 ([BCC+15]). For any k = 1, . . . ,K + 1, denoting γk =
PKL
Ck

(γ̄), one has

∀ k = 1, . . . ,K, ∀ j = (j1, . . . , jK), γkj = min

(
(µk)jk
πk(γ̄)jk

, 1

)
γ̄j

γK+1 =
m∑
j γ̄j

γ̄.

Once again the sets Ck are not affine, so one needs to use Dykstra itera-
tions (3.19).

Figure 7.2 shows the results obtained when solving (7.41) with the same
three marginals (µ1, µ2, µ3) used in Figure 4.1, using the cost

Cj1,j2,...,jK =
∑

16s,t6K

1

2
||xjs − xjt ||2, (7.42)

The computation is performed on an uniform 2D-grid of N = 60× 60 points in
[0, 1]2, ε = 0.005 and m = 0.7mink(〈µk, 111〉).

7.5.3 Generalized Solutions of Euler Equations

As explained in section 6.3, if we consider a fixed uniform discretization of
[0, 1]d with points {xi|Ni=1 and of [0, T ] (assume for simplicity T = 1) with K+1
steps in time, we recover a discrete multi-marginal problem with the specific
cost function

Cj0,...,jK =
K

2T

∑

k=0,...,K−1

||xjk+1
− xjk ||2 (7.43)

for the discretized kinetic energy. The coupling γj0,...,jK is the probability matrix
to find a ”generalized particle” on the discrete time path xj0 , . . . , xjK . Because
the fluid is incompressible the kth ”time” marginal, or the probability to find a
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Figure 7.2: Multi-marginal partial transport. The active regions are displayed
in red.

path at time k at any point of the domain xjk is uniform, i.e we have the usual
marginals constraints with µk = 111/K for all k.

For each k ∈ {0, . . . ,K}, the transition probability from ”time” 0 to ”time”
k : γ0,k ∈ R

N×N is defined as

∀ (s, w) ∈ {1, . . . , N}2, (γ0,k)s,w =
∑

ji 6=j0,jk
γs,j2,...,jk−1,w,jk+1,...,jK . (7.44)

It represents the probability to find a ”generalized particle” initially at xs to be
at xw at time k.

Brenier initial and final constraints take the form of deterministic values for
the matrix γ0,K . Given a permutation of the grid points, i.e. a discrete bijection
σ : {1, . . . , N} → {1, . . . , N}, we have the additional constraint

(γ0,K)s,w = δσ(s),w. (7.45)

Where δ is the Kronecker symbol. This is an additional linear constraint on the
coupling π and the Bregman approach would imply to compute the projection on
this set. Another possibility, simpler to implement, is to include this constraint
by adding a term (which acts as a penalization) to the cost function (7.43) :

Cj0,...,jK =
∑

k=0,...,K−1

K

2T
||xjk+1

− xjk ||2 + p||xσ(j0) − xjK ||2,

where p is a penalization parameter (for all the following simulations we take
p = 50).

Brenier’s numerical method [23] is based on an approximation of the measure
preserving map by a one to one permutation. The domain and the representation
of the diffuse coupling therefore needs a large number of particles.

Our resolution method is different and computes a space discretization of
the coupling matrix and naturally encodes non-diffeomorphic volume preserving
maps. The coupling γ is an array of size (Nd)K where the d-dimensional physical
domain is discretized on Nd points and we have K times steps. However, as
explained in Remark 7.5.2 below, thanks of the separable structure of the cost
we only need to store and multiply matrices of size (Nd)2 .

Remark 7.5.2. [Reduction to Transitions probabilities ] As detailed in proposi-
tion 7.4.2, the resolution of the regularized K-marginal OT problem boils down
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to the computation of a KL projection of γ = exp (−C
ε ). We can rewrite the

coupling using only 2 smaller matrices γ0, γ1 ∈ R
N×N since

γj0,...,jK =

(
K−1∏

k=0

γ0jk,jk+1

)
γ1jKσ(j1) (7.46)

where γ0α,β = exp (−Dαβ

ε
), γ1β,α = exp (−Dβσ(α)

ε
).

andDαβ = ||xα−xβ ||2. We recall that all the marginals are equal to (a discretiza-
tion of) the Lebesgue measure and {xi}i are discretized on the unit cube [0, 1]d.
It is obvious that we can apply the IPFP procedure described in (7.39) since all
the sets Ck are affine. However, one can notice that the sum in (7.39), namely
the push-forward Sk could be computationally onerous, but thanks to (7.46) we
can rearrange it as

a
k,(n)
jk

=
1/K

Bjk,jk

where ak,(n) is the kth vector at step (n) and B is the the product of K + 1
smaller N ×N matrices

B = γinit
K−1⊗

ℓ=1

γ̃ℓ with γinit =

{
γ0 for k 6= K,
γ1 otherwise

and γ̃ℓ =





diag(aσ
k(ℓ),(n))⊗ γ0 for σk(ℓ) 6= K and σk(ℓ) < k,

diag(aσ
k(ℓ),(n−1))⊗ γ0 for σk(ℓ) 6= K and σk(ℓ) > k,

diag(aK,(n−1))⊗ γ1 otherwise,

where ⊗ is the standard matrix product and we use the convention that diag of
vector is the diagonal matrix with vector values and diag of matrix is the vector
of its diagonal. We also highlight that, to use the simplification the aℓ must
be ordered in the correct way so that the computation of the sum for the kth

update starts at k + 1 and finishes at k − 1. We have introduced the circular
permutations σk(ℓ) = (ℓ + k mod K) which returns the (σk(ℓ))th term at the
ℓth position of the product.

Each iteration of the IPFP procedure therefore only involves (2K) 2-coupling
matrices multiplications and only requires storing K vectors and the 2-coupling
cost matrices γ0 and γ1. The computation of the 2-coupling maps (7.44) can
be simplified with the same remark.

7.5.4 1 dimension experiments

Figures 7.3, 7.4 and 7.5 show γ0,k for three test cases in dimension d = 1
proposed in [23]. The computation is performed with a uniform discretization
(xi)i of [0, 1] with N = 200 points, ε = 10−3 and K + 1 = 16. They agree with
the solutions produced by Brenier and the mass spreading of the generalized
flow is nicely captured by the 2 marginals couplings (7.44). In figure 7.6 we
show the displacement of the mass originally located at a fixed point xs when
the final configuration is given by g⋆(x) = 1 − x. In particular we are plotting
the set Γs := {(xi, tk) ∈ [0, 1]2 | (γ1,k)s,i > 0}. Notice that this is the case
presented in remark 6.2.10 and that we retrieve, taking into account the effect
of the entropy, the analytical solution (figure 6.2) found by Brenier.
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t = 0 t = 1/8 t = 1/4 t = 3/8 t = 1/2

t = 5/8 t = 3/4 t = 7/8 t = 1

Figure 7.3: Display of γ0,k showing the evolution of the fluid particles from x
to g⋆(x) = min(2x, 2− 2x) for x ∈ [0, 1]. The corresponding time is t = k−1

K−1 ∈
[0, 1].

t = 0 t = 1/8 t = 1/4 t = 3/8 t = 1/2

t = 5/8 t = 3/4 t = 7/8 t = 1

Figure 7.4: Same as Figure 7.3 for the map g⋆(x) = (x + 1/2) mod 1 for
x ∈ [0, 1].

7.5.5 2 dimension experiment: the Beltrami flow

Consider the unit square D = [0, 1]2 and the Beltrami flow obtained from
the following time-independent velocity and pressure fields (one can verify that
they solve the steady Euler equations):

u(x1, x2) = (− cos(πx1) sin(πx2), sin(πx1) cos(πx2)),

p(x1, x2) =
1

2
(sin(πx1)

2 + sin(πx2)
2).

Then one can compute the Hessian of the pressure ∇2p and find that the maxi-
mum eigenvalue is π2 which suggests that the critical time is Tmax = 1. Indeed
we remind that we have deterministic solutions when all the eigenvalues of ∇2p

are strictly smaller than
π2

T
for a given final time T . The matrix γ1ij is now

given by γ1ij = exp (‖g
⋆(x1)−xK‖2

ε ) where g⋆ is the solution to the Cauchy prob-
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t = 0 t = 1/8 t = 1/4 t = 3/8 t = 1/2

t = 5/8 t = 3/4 t = 7/8 t = 1

Figure 7.5: Same as Figure 7.3 for the map g⋆(x) = 1− x for x ∈ [0, 1].
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Figure 7.6: Displacement of the mass initially located at x = 0.1, x = 0.5 and
x = 0.8 for g⋆(x) = 1− x (third row)

lem (6.2) at the given final time T . In this case, we cannot simply visualize the
matrix γ1,k as it is a 4-dimension matrix, so we consider the following quantities:

(γ1k)j =
∑

i∈I1
(γ1,k)ij , (γ2k)j =

∑

i∈I2
(γ1,k)ij , (γ3k)j =

∑

i∈I3
(γ1,k)ij , (7.47)

where I1, I2 and I3 are defined as follows

I1 := {i ∈ {1, · · ·N} | (xi1, xi2) ∈
[
0,

1

3

]
×
[
0, 1
]
},

I2 := {i ∈ {1, · · ·N} | (xi1, xi2) ∈
(
1

3
,
2

3

]
×
[
0, 1
]
},

I3 := {i ∈ {1, · · ·N} | (xi1, xi2) ∈
(
2

3
, 1

]
×
[
0, 1
]
},

where {((xi1, xi2)}Ni=1 is a discretization of [0, 1]2. As one can see in figures
7.7, 7.11 and 7.15, we plot the support of the quantities γ1k, γ

2
k and γ3k by using

three different colors; moreover if mixture of mass occurs (which means that the
solution γ is not deterministic) then we expect overlaps of the supports of γℓk. In
figures 7.8, 7.9 and 7.10 we show the support of γ1k (red), γ

2
k (green) and γ

3
k (blue)

for T = 0.9; notice that no overlaps among the three supports occur (excluding
the diffusion effect due both to the discretization and the regularization) On the
contrary if we look at figures 7.12, 7.13, 7.14 and 7.16, 7.17 and 7.18, we can
see, as expected, and overlap among the supports. Figures 7.7, 7.11 and 7.15
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show γ1k, γ
2
k and γ3k for three test cases and the solution of the corresponding

Cauchy problem. We remark that a small error appear at the boundaries of the
domain if we compare the solution of the Cauchy problem with the generalized
one at the last time step, this probably due to the discretization used to obtain
the final g⋆; a finer grid could provide a better result. All the computations are
performed with a uniform discretization of [0, 1]2 with N = 64 × 64, ε = 10−4

and K + 1 = 16. The solution of the Cauchy problem are computed by using
an explicit Euler method for the time derivative and a discretization of [0, 1]2

with N = 500× 500. The simulation in figure 7.7 has been obtained by taking
a final time T = 0.9, which means that the inequality (6.20) is satisfied. Indeed
we can observe that no mixture of mass happens. On the contrary, simulations
in 7.11 and 7.15 are performed by taking T = 1.3 and T = π respectively
(T > Tmax) and we can notice that a split of mass occurs (although the solution
appears ”more deterministic” than the one to the unit disk that we present in
the next paragraph); moreover the generalized solutions differ from the one of
the Cauchy problem as we can see a clockwise rotation in the middle of the
square and a counterclockwise rotation near the boundary. Notice that our
solutions are in accordance with ones provided in [93] (see also [64] where the
authors provide a numerical method to solve the Cauchy problem). All these
simulation take approximately a CPU time of 3 hours, this means that the code
must be parallelized in order to become competitive.

7.5.6 2 dimension experiment: the unit disk

On the unit disk D := {(x1, x2) ∈ R
2 | x21+x22 6 1}, a solution to stationary

Euler equations is given by the following pressure and velocity field

p(x1, x2) =
1

2
(x21 + x22), (7.48)

u(x1, x2) = (−x2, x1), (7.49)

and if we solve the Cauchy problem (6.2), the corresponding flow map g(t) is
the rotation of angle t.

It is easy to see that the generalized incompressible flow γg± induced by the
clockwise and counterclockwise rotations of angle t ∈ [0, π],

g±(t) = (x1 cos(t)∓ x2 sin(t),±x1 sin(t) + x2 cos(t)),

connect g⋆ = IdD to g⋆ = − IdD at time T = π and are concentrated on the
solution of

ẍ(t) = −x(t)
, which is exactly the ODE (6.19) for the pressure field in (7.48). As the maxi-
mum eigenvalue of the ∇2p is 1 at every point in D then the inequality (6.20)
is satisfied for any final time T such that T 6 Tmax where Tmax = π. Then, by
applying theorem 6.2.15 one can deduce that both γg+ and γg− are minimizers
of (6.10); moreover, thanks to corollary 6.2.16 we have that for any T < Tmax
the flows γg+ and γg− are the unique minimizers of problem (6.10) between
g⋆ = IdD and g⋆ = g+(T, ·) and g⋆ = g−(T, ·), respectively. As T = π the loss
of uniqueness is not limited to the previous example (γ± are both solutions of
(6.10) at T = π), but it is also due to the existence of non-deterministic solu-
tion. An explicit example of non-deterministic generalized solution was already
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g(t, x) at t = 0 g(t, x) at t = T
8

γk at t = 0 γk at t = T
8

g(t, x) at t = T
4 g(t, x) at t = 3T

8
γk at t = T

4 γk at t = 3T
8

g(t, x) at t = T
2 g(t, x) at t = 5T

8 γk at t = T
2 γk at 5T

8

g(t, x) at t = 3T
4 g(t, x) at t = 7T

8 γk at t = 3T
4 γk at t = 7T

8

g(t, x) at t = T γk at t = T

Figure 7.7: Display the evolution of the fluid particles from x ∈ [0, 1]2 to the
solution of the Cauchy problem at T = 0.9 for the Beltrami’s flow. We plot the
solution of the Cauchy problem g(t, x) and the support of γ1k (red), γ2k (green)
and γ3k (blue).

discovered by Brenier in [20]: given a point x ∈ D and a velocity field u, denote
by ωx,u the curve ωx,u(t) = x cos(t) + u sin(t), t ∈ [0, 1]. Then, the solution is
obtained as the push-forward by the map (x, u) 7→ ωx,u of the following measure
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γ1k at t = 0 γ1k at t = T
8 γ1k at t = T

4

γ1k at t = 3T
8 γ1k at t = T

2 γ1k at t = 5T
8

γ1k at t = 3T
4 γ1k at t = 7T

8 γ1k at t = 1

Figure 7.8: Display the support γ1k at each timestep t = kT
K for T = 0.9.

γ2k at t = 0 γ2k at t = T
8 γ2k at t = T

4

γ2k at t = 3T
8 γ2k at t = T

2 γ2k at t = 5T
8

γ2k at t = 3T
4 γ2k at t = 7T

8 γ2k at t = 1

Figure 7.9: Display the support γ2k at each timestep t = kT
K for T = 0.9.

CHAPTER 7. A REVIEW ON MULTI-MARGINAL OPTIMAL
TRANSPORTATION

125



7.5. APPLICATIONS

γ3k at t = 0 γ3k at t = T
8 γ3k at t = T

4

γ3k at t = 3T
8 γ3k at t = T

2 γ3k at t = 5T
8

γ3k at t = 3T
4 γ3k at t = 7T

8 γ3k at t = 1

Figure 7.10: Display the support γ3k at each timestep t = kT
K for T = 0.9.

on D × R
2

γ(dx, du) =
1

π
H2(dx)⊗ 1

2π
√

1− |x|2
H1|{|u|=√1−|x|2}(du), (7.50)

where Hℓ denotes the ℓ−dimensional Hausdorff measure. Notice that this non-
deterministic flow spreads each particle of fluid uniformly in all directions, see
figure 7.19. Moreover, Bernot et al. (see [11]) proved that the set of solutions to
(6.10) is very rich.. In order to visualize the solution, we consider the coupling

γ1,k, we fix a position xi = (xi1, x
i
2) at t = 0 and we look at the evolution of

the quantity (γx1,k)j = (γ1,k)ij . So it is clear that if the solution is deterministic

then we should visualize a dirac by plotting γx1,k. On the contrary if the solution

is not deterministic then γx1,k represents how the mass is displaced between the
initial and the final configuration. Figures 7.20 and 7.21 show the support and
the surface of γx1,k for two different x. The simulations are performed on a

discretization {xi := (xi1, x
i
2)}Ni=1 of D with N = 64 × 64, ε = 10−4, T = π

and K + 1 = 17. As expected the solution is not deterministic; indeed we
retrieve a solution, among all the possible ones, which spread the mass as much
as possible: we remind that if non-uniqueness holds for the OT problem then
the solution of the regularized problem converges toward the one with minimal
entropy, namely the ”most diffuse”.
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g(t, x) at t = 0 g(t, x) at t = T
8 γk at t = 0 γk at t = T

8

g(t, x) at t = T
4 g(t, x) at t = 3T

8 γk at t = T
4 γk at t = 3T

8

g(t, x) at t = T
2 g(t, x) at t = 5T

8 γk at t = T
2 γk at 5T

8

g(t, x) at t = 3T
4 g(t, x) at t = 7T

8 γk at t = 3T
4 γk at t = 7T

8

g(t, x) at t = T γk at t = T

Figure 7.11: Display the evolution of the fluid particles from x ∈ [0, 1]2 to the
solution of the Cauchy problem at T = 1.3 for the Beltrami’s flow. We plot the
solution of the Cauchy problem g(t, x) and the support of γ1k (red), γ2k (green)
and γ3k (blue).
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γ1k at t = 0 γ1k at t = T
8 γ1k at t = T

4

γ1k at t = 3T
8 γ1k at t = T

2 γ1k at t = 5T
8

γ1k at t = 3T
4 γ1k at t = 7T

8 γ1k at t = 1

Figure 7.12: Display the support γ1k at each timestep t = kT
K for T = 1.3.

γ2k at t = 0 γ2k at t = T
8 γ2k at t = T

4

γ2k at t = 3T
8 γ2k at t = T

2 γ2k at t = 5T
8

γ2k at t = 3T
4 γ2k at t = 7T

8 γ2k at t = 1

Figure 7.13: Display the support γ2k at each timestep t = kT
K for T = 1.3.
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γ3k at t = 0 γ3k at t = T
8 γ3k at t = T

4

γ3k at t = 3T
8 γ3k at t = T

2 γ3k at t = 5T
8

γ3k at t = 3T
4 γ3k at t = 7T

8 γ3k at t = 1

Figure 7.14: Display the support γ3k at each timestep t = kT
K for T = 1.3.
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g(t, x) at t = 0 g(t, x) at t = T
8 γk at t = 0 γk at t = T

8

g(t, x) at t = T
4 g(t, x) at t = 3T

8 γk at t = T
4 γk at t = 3T

8

g(t, x) at t = T
2 g(t, x) at t = 5T

8 γk at t = T
2 γk at 5T

8

g(t, x) at t = 3T
4 g(t, x) at t = 7T

8 γk at t = 3T
4 γk at t = 7T

8

g(t, x) at t = T γk at t = T

Figure 7.15: Display the evolution of the fluid particles from x ∈ [0, 1]2 to the
solution of the Cauchy problem at T = π for the Beltrami’s flow. We plot the
solution of the Cauchy problem g(t, x) and the support of γ1k (red), γ2k (green)
and γ3k (blue).
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γ1k at t = 0 γ1k at t = T
8 γ1k at t = T
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γ1k at t = 3T
8 γ1k at t = T

2 γ1k at t = 5T
8

γ1k at t = 3T
4 γ1k at t = 7T

8 γ1k at t = 1

Figure 7.16: Display the support γ1k at each timestep t = kT
K for T = 1.3.

γ2k at t = 0 γ2k at t = T
8 γ2k at t = T
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γ2k at t = 3T
8 γ2k at t = T

2 γ2k at t = 5T
8

γ2k at t = 3T
4 γ2k at t = 7T

8 γ2k at t = 1

Figure 7.17: Display the support γ2k at each timestep t = kT
K for T = 1.3.
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γ3k at t = 0 γ3k at t = T
8 γ3k at t = T
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γ3k at t = 3T
8 γ3k at t = T

2 γ3k at t = 5T
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γ3k at t = 3T
4 γ3k at t = 7T

8 γ3k at t = 1

Figure 7.18: Display the support γ3k at each timestep t = kT
K for T = π.
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t = 0 t = 0 t = 0

t = 1π
5 t = 1π

5 t = 1π
5

t = 2π
5 t = 2π

5 t = 2π
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t = 3π
5 t = 3π

5 t = 3π
5

t = 4π
5 t = 4π

5 t = 4π
5

t = π t = π t = π

Figure 7.19: Display the trajectories of three particles initally located at xi,
i = 1, 2, 3 at different time t.
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Support at t = 0 Surface at t = 0 Support at t = 2π
K Surface at t = 2π
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K Surface at t = 4π

K Support at t = 6π
K Surface at t = 6π
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Figure 7.20: Display the support and the surface of γx1,k for a particle at x at
t = 0.
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Figure 7.21: Display the support and the surface of γx1,k for a particle at x at
t = 0.
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Chapter 8

Repulsive Optimal
Transport

In this chapter we want to introduce a particular class of cost functions, the
so-called repulsive costs. As we will explain in the last part of this thesis, the
main motivation which led us to study this kind of optimal transport problem
arises from the Density Functional Theory where some interesting costs, as the
Coulomb one or the repulsive harmonic, play a central role. From a mathemat-
ical perspective the interesting case is when all marginals of the coupling γ in
(MKK) are absolutely continuous with respect to Lebesgue measure and are all
the same. In particular, since the cost functions are “repulsive”, if Monge-type
solutions exists, they should follow the rule “the further, the better!”, which
means that we want to move the mass as much as we can. In other words, in
the present case, optimal transport plans tend to be as spread as possible. Be-
fore introducing the repulsive optimal transport, it would be interesting to have
a formal definition of repulsive cost. Indeed this is quite difficult since usually
this concept is based on the intuition that comes solving the particular problem.
Anyway, we can try to define a repulsive cost as follows

Definition 8.0.1 (Repulsive cost). Given a cost c : RdK → R, we say that it
is repulsive if it satisfies the following condition for all the possible pair (xi, xj)
with i 6= j

c(x1, · · · , xi, · · · , xi, · · · , xK) + c(x1, · · · , xj , · · · , xj , · · · , xK) >

c(x1, · · · , xi, · · · , xj , · · · , xK) + c(x1, · · · , xj , · · · , xi, · · · , xK).

Here we will treat only the case of the repulsive harmonic cost and the
determinant cost, showing that the set of optimal solutions can be very rich,
where as we will devote the last part of the thesis to the physical motivation
and to the study of the Coulomb cost.

8.1 Multi-marginal OT with repulsive Harmonic
Cost

This section is devoted to the study of the repulsive harmonic cost.
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More precisely, we are interested in characterizing the minimizers of the
following problem

(MKweak) min
γ∈Π(RdK ;µ1,··· ,µK)

∫

RdN

K∑

i,j=1

−|xj − xi|2dγ(x1, . . . , xK), (8.1)

where µ1, . . . , µK are absolutely continuous probability measures in R
d.

From a mathematical viewpoint this cost has some advantages compared to
some others repulsive cost as the Coulomb one. Indeed, from a technical point of
view, this problem is an interesting toy model to approach the case of Coulomb
cost. From applications, some minimizers of (8.1) seem to have no particular
relevance in physics because, as we will see in the examples 8.1.10, 8.1.11 and
8.1.12 below, certain optimal γ of (8.1) allow particles to overlap.

We will see that the set of solutions has a very rich structure which is different
from the standard 2-marginal case. From now on we consider only marginals
µi ∈ P(Rd) having finite second moment. First of all we notice that minimizers
of this problem are also minimizers of the problem with the cost c(x1, . . . , xn) =
|x1 + . . .+ xn|2; in fact we have that

∫

RdK

K∑

i,j=1

−|xi − xj |2 dγ = 2

∫

RdK

c dγ − (K + 1)
K∑

i=1

∫

Rd

|x|2 dµi,

but this last additive term depends only on the marginals and not on the specific
plan γ. The cost c is very particular since it has a wide class of “trivial” optimal
plans, that is the ones that are concentrated on x1 + . . .+ xK = 0; however the
structure is very rich, see Lemma 8.1.3.

Concerning the existence of minimizers of (8.1), we will assume that the
measures µi have finite second moments; then existence follows immediately
from the equality

argmin
γ

∫
−

K∑

i=1

K∑

j=i+1

|xj − xi|2dγ = argmin
γ

∫
|x1 + · · ·+ xK |2dγ.

In particular, Corollary 7.1.26 holds in this case too. Notice that the fact that
the repulsive harmonic cost is smooth and has linear gradient does not make
the Multi-marginal Optimal Transportation problem easier compared to the
Coulomb cost. In fact, in this case the problem is that if we write down the
optimality conditions for the potentials, in the case described in Lemma 8.1.3,
we simply find the condition x1 + . . . + xK = const, since in this case the
potentials are linear functions.

However, we can enjoy the symmetries of this problem and build easy Monge
solutions for some particular cases of (8.1), see examples 8.1.9, 8.1.10, 8.1.11,
8.1.12 and 8.1.14 below.

Before stating the main result in the multi-marginal setting, we start an-
alyzing the problem (8.1) in the 2-marginals case, where everything seems to
work fine, just as in the square distance case.

Proposition 8.1.1 ([DMGN15]). Let µ, ν ∈ P(Rd) and c(x, y) = −|x− y|2 be
the opposite of the square-distance in R

d. Suppose that µ is absolutely continuous
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with respect to the Lebesgue measure in R
d and ν has no atoms. Then, there

exists a unique optimal transport map T : Rd → R
d for the problem

min

{∫
c(x, y)dγ | γ ∈ Π(Rd;µ, ν)

}
= inf

{∫
c(x, T (x))dµ | T♯µ = ν

}

Moreover, T = ∇ϕ, where ϕ : Rd → R is a concave function and there exists a
unique optimal transport plan γ, that is γ = (Id, T )♯µ .

Proof. This result is an easy consequence of the Brenier’s theorem. Indeed, it
is enough to verify that, taking C = 2

∫
|x|2 dµ+ 2

∫
|x|2 dν, we have

C + inf
T♯µ=ν

∫
−|x− T (x)|2dµ(x) = inf

G♯µ=ν̃

∫
|x−G(x)|2dµ(x)

where G = −T and ν̃ = (− Id)♯ν. Then by Brenier’s theorem there exists an
unique optimal map G which can be written as G(x) = ∇ψ(x), and ψ : Rd → R

is a convex map. In other words, T is a gradient of a concave function.

Notice that if we suppose µ = f(x)dx and ν = g(x)dx are probability mea-
sures with densities f, g concentrated, respectively, on convex sets Ωf ,Ωg and
assume there exits a constant λ > 0 such that λ 6 f, g 6 1/λ, then T is a C1,α

function inside Ωf [28, 29].

Example 8.1.2 (2 marginals case, uniform measure in the d-dimensional cube).
Suppose that µ = ν = L

∣∣
[0,1]d

. In this case, we can verify easily that the optimal

map T : [0, 1]d → [0, 1]d is given by the anti-monotone map T (x) = (1, . . . , 1)−x.
Surprisingly, the next theorem says that we can not always expect Caffarelli’s

regularity for the optimal transport maps for the repulsive harmonic cost with
finitely many marginals K > 2 even when the support of the measures has
convex interior (see corollary 8.1.8 below). Before stating the theorem we will
prove a lemma that characterizes the optimal plans:

Lemma 8.1.3 ([DMGN15]). Let {µi}Ki=1 be probability measures on R
d and

h : R
d → R be a strictly convex function and suppose c : ([0, 1]d)K → R a

cost function of the form c(x1, . . . , xK) = h(x1 + · · · + xK). Consider a plan
γ ∈ Π(µ1, . . . , µK), then supp(γ) ⊂ {x1 + . . . + xK = a} (with a ∈ R) is a
necessary and sufficient condition for γ to be optimal. In this case we will say
that γ is a flat optimal plan and {µi}Ki=1 is a flat K-tuple of measures.

Proof. First of all we show that k is fixed by the marginals µi, and it is in
fact the sum of the barycenters of these measures. Let ci =

∫
x dµi; then let

us suppose that there exists γ ∈ Π(RdK ;µ1, · · · , µK) that is concentrated on
{x1 + . . . + xK = a}. Then, using that the i-th marginal of γ is µi, we can
compute

k =

∫
(x1 + . . .+ xK) dγ =

K∑

i=1

∫
xi dγ =

K∑

i=1

∫
x dµi =

K∑

i=1

ci.

In particular we notice also that for every admissible plan γ̃ we have
∫
(x1 +

. . .+ xK) dγ̃ = a and so by Jensen inequality we have
∫
h(x1+. . .+xK) dγ̃ > h

(∫
(x1 + . . .+ xK) dγ̃

)
= h(a) =

∫
h(x1+. . .+xK) dγ.
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This proves that γ is an optimal plan. Thanks to the strict convexity of h, this
shows also that if γ̃ is optimal then γ̃-a.e. we should have x1+ . . .+xK = a.

This reveals a very large class of minimizers in some cases, as we will see
later. However not every K-tuple of measures is flat: it is clear that we can
have marginals such that there is no plan with such property:

Remark 8.1.4. Let K = 3 and µi = µ for every i = 1, 2, 3 with µ = ν1 + ν2 with
ν1 = (− Id)♯ν2 and ν1 concentrated on [2, 3]. Now it is clear that the barycenter
of µ is 0 but for every 3 points x1, x2, x3 in the support of µ we cannot have
x1 +x2 +x3 = 0: two of them have the same sign, let’s say x1 and x2, but then
we have |x1 + x2| > 4 > 3 > |x3|, which contradicts x1 + x2 = −x3. So there is
no admissible plan concentrated on H0 = {x1+x2+x3 = 0}; in fact we showed
that for every γ ∈ Π(µ) we have supp(γ) ∩H0 = ∅.
Remark 8.1.5. In the case K = 2 the condition for which there exists an admis-
sible plan γ concentrated on an hyperplane of the form x1+x2 = k implies that
the two measures µ and ν̃ = (− Id)♯ν are equal up to translation. This condition
is in fact very restrictive. However when we think at the DFT problem (see part
III) and in particular we assume that µ = ν then the said condition amounts to
have that µ is centrally symmetric about its barycenter and in the context of
density of 2 electrons around a nucleus this seems a fairly natural condition.

Theorem 8.1.6 ([DMGN15]). Let µi = µ = Ld
∣∣
[0,1]d

, ∀i = 1, . . . ,K be the uni-

form measure on the d-dimensional cube [0, 1]d ⊂ R
d, h : Rd → R a convex func-

tion and suppose c : ([0, 1]d)K → R a cost function such that c(x1, . . . , xK) =
h(x1 + · · · + xK). Then, there exits a transport map T : [0, 1]d → [0, 1]d such
that T♯µ = µ, T (K)(x) = x and

min
γ∈ΠK(µ)

∫
cdγ = min

T♯µ=µ,

T (K)=Id

∫
c(x, T (x), . . . , T (K−1)(x))dµ,

which means that the optimal plan γ has the form γT = (Id, T, · · · , T (K−1))♯µ.
Moreover, T is not differentiable at any point and it is a fractal map, meaning
that it is the unique fixed point of a “self-similar” linear transformation F acting
on L∞([0, 1]d; [0, 1]d).

Proof. We express every z ∈ [0, 1] by its base-K system, z =
∑∞
k=1

ak
Kk with

ak ∈ {0, 1 . . . ,K − 1}. Consider the map given by S(z) =
∑∞
k=1

σ(ak)
Kk , where σ

is the permutation of K symbols such that σ(i) = i + 1, ∀{i = 0, 1, . . . ,K − 2}
and σ(K − 1) = 0. A straightforward computation shows that

z +

K∑

i=1

S(i)(z) =
K

2
(8.2)

Let T : Rd → R
d be a map defined by T (x) = T (z1, . . . , zd) = (S(z1), . . . , S(zd))

and denote by T (j)(x) = (S(j)(z1), . . . , S
(j)(zd)), j = 1, . . . ,K− 1. We will first

show that S is a measure-preserving map. In fact, we can show that there exist
functions Sk : [0, 1] → [0, 1] defined recursively by

S0(x) = x, and Sk+1(x) = Tk+1(Sk(x))
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where Tk acts only of the k-th digit: Tk(x) = x− (K − 1) ·K−k if x ∈ Ck and
Tk(x) = x+K−k if x ∈ [0, 1] \ Ck. The sets Ck are defined by

Ck =

Kk−1⋃

j=1

(
j

Kk−1
− 1

Kk
,

j

Kk−1

]
.

In order to understand how the Tk acts we have plotted in figure 8.1 the first
three iterations T1, T2 and T3 for K = 2 and K = 3.

Figure 8.1: The functions T1(x), T2(x) and T3(x) (in red, green and blue,
respectively) for the case K = 2 (left) and K = 3 (right).

Moreover, it is easy to see that

(Tk)♯L[0,1] = L[0,1] ∀k ∈ N, and Sk → S uniformly.

Hence ∫
f(x)S♯Ld =

∫
f(x)dx, ∀f ∈ C0([0, 1]).

Figure 8.2 clearly illustrates for K = 2 that Sk(x) → 1− x as k → ∞, while for
K = 3 the graph of S3(x) becomes a fractal in that limit.

Now, it remains to show that T is optimal. But this is true thanks to the
fact that (8.2) implies that the plan induced by T satisfies the hypothesis of
Lemma 8.1.3.

It is clear that we can reduce to prove the non-differentiability and the fractal
properties only for the map S. The non-differentiability comes from the fact
that for each z ∈ [0, 1], we have that the base-K representation z =

∑∞
k=1

ak
Kk

is such that ak can’t be definitively K − 1. Now it is sufficient to choose those
kj such that akj 6= K − 1 and consider the numbers zj = z+(K − 1− akj )/K

kj

and z′j = z ± 1/Kkj (depending on whether akj = 0 or not) which have the
same digits as z apart from the jk-th digit. Then it is straightforward to see
that S(zj)− S(z) = −(akj + 1)/Kkj while S(z′j)− S(z) = z′j − z; in particular

we have
S(z′j)−S(z)

z′j−z
= 1 while

S(zj)−S(z)
zj−z 6 − 1

K and so, letting j → ∞, we get

that S is not differentiable at the point z.
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Figure 8.2: The functions S1(x), S2(x) and S3(x) (in red, green and blue,
respectively) for the case K = 2 (left) and K = 3 (right).

As for the fractal property: we consider the transformation

F(g)(x) =

{
1
K g(Kx− i) + i+1

K for i
K 6 x < i+1

K , with i = 0, . . . ,K − 2
1
K g(Kx−K − 1) for K−1

K 6 x < 1.

In order to see what the construction is doing we imagine to divide [0, 1]2 in a
grid K ×K of squares and then we are putting scaled copies (by a factor K) of
the original function in the above diagonal squares and in the rightmost bottom
one. Now it is easy to see that S is the unique1 fixed point of F , and this gives
the property of self-similarity.

Remark 8.1.7. Another proof of Theorem 8.1.6 can be done noticing that the
transformation F (the one defined in the proof) acts as a 1/K-contraction in
the space of measures preserving L∞-bijections from [0, 1) to [0, 1).

Corollary 8.1.8 ([DMGN15]). Let µ = Ld
∣∣
[0,1]d

be the uniform measure on

the d-dimensional cube [0, 1]d in R
d and suppose c : ([0, 1]d)K → R the K-

dimensional repulsive harmonic cost

c(x1, . . . , xK) = −
K∑

i=1

K∑

j=i+1

|xj − xi|2, (x1, . . . , xK) ∈ ([0, 1]d)K

Then, there exists an optimal cyclical transport map T : [0, 1]d → [0, 1]d: in
particular

min
γ∈ΠK(µ)

∫
cdγ = min

T♯µ=µ,

T (K)=I

∫
c(x, T (x), T (2)(x), . . . , T (K−1)(x))dµ.

Moreover, T is not differentiable at any point.

Proof. As we already observed, the problem with the cost c is equivalent to the
problem with the cost |x1 + . . .+ xK |2 and the result follows from the Theorem
8.1.6.

1We notice that F is a contraction: ‖F(g)−F(g′)‖∞ 6
1

K
‖g − g′‖∞
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We remark the construction of T in the proof of the Theorem 8.1.6 also
works if K = 2 and T is exactly the optimal transport map described in the
example (8.1.2).

The unexpected aspect of Corollary 8.1.8 is the existence - for K > 3 - of an
optimal transport map which is not differentiable almost everywhere. It turns
out that this optimal map T could be not unique if d > 1 and K > 3 and,
in that case, we can construct explicitly a regular optimal map. This kind of
richness appears already in the case d = 1 with the Coulomb cost; however in
that case we have uniqueness if we restrict ourselves to the symmetric optimal
plan. Here this is not the case as it is easy to see that modifying the action S
on the digits (the important thing is that when we see S as a permutation, it is
a cycle), we obtain another map, and the symmetrized plan is not equal to the
one generated by the map described before.

In the following, we are going to present some concrete examples where
we have other explicit solutions for such kind of optimal maps for (MKweak)
in (8.1). For these examples the goal is to show that there can be smooth
optimal maps but they don’t necessarily satisfy the “group rule”, that is, we
can find maps T2, . . . TK such that (Id, T1, T2, . . . , TK−1)♯µ1 is an optimal plan
but T1 ◦ T1 6= Ti for any index i ∈ {1, . . . ,K − 1}.
Example 8.1.9 (3 particles, asymmetric). Consider the case when three parti-
cles are distributed in R

3 as Gaussians, µ1 = µ2 = 1
(2π)3/2

exp(− 1
2 (x

2
1+x

2
2+x

2
3))

and µ3 = 1
2π3/2 exp(−(x21+x

2
2+x

2
3)). In this case, we can verify that the couple

(T1, T2) of maps T1, T2 : Rd → R
d, T1(x) = x a.e. and T2(x) = −2x a.e. is

admissible and it is optimal since x+ T1(x) + T2(x) = 0.

Example 8.1.10 (2K particles on S1, ). Suppose µ1, . . . , µ2K uniform proba-
bility measures on the circle S1. The rotation map Rθ : R2 → R

2 with angle
θ = π/K is an optimal transport map. Also, the maps Rkθ, k = 2, . . . ,K, are
optimal transport maps for the repulsive harmonic cost.

Example 8.1.11 (2K particles, breathing map). Suppose µ1, . . . , µ2K uniform
probability measures on S2 ⊂ R

3. Consider a vector v, A : R
3 → R

3 the
antipodal map A(x) = −x and Rvθ : R3 → R

3 the rotation of angle θ = π/K and
direction v. Then, T = A ◦Rvθ is a cyclic optimal transport map.

The optimal solution γ = (x, T, T (2), . . . , T (2K−1))♯µ1 is called “breathing”
solution [110]: the coupling γ represent the configuration where the 2K electrons
are always at the same distance from the center, opposite to each other in the
equilibrium configuration.

Example 8.1.12 (2K particles in R
d, symmetric ρ). In this case, on can con-

sider the maps T (x) = x a.e. and S(x) = −x a.e. which are such that

c(T (x), S(x), . . . , T (x), S(x)) = 0.

We notice that in this case we have S(2)(x) = T (x) = x and so in particular
this solution has the cyclic structure

(T (x), S(x), . . . , T (x), S(x)) = (x, S(x), S(2)(x), . . . , S(2K−1)).

Example 8.1.13 (Optimal Maps which do not satisfy a group law). Let us
consider the case d = 1 and K = 3 where the measures are µ1 = µ2 = µ3 =
1
2L|[−1,1].
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Then we define the maps

T (x) =

{
x+ 1 if x 6 0

x− 1 if x > 0,
S(x) =

{
−1− 2x if x 6 0

1− 2x if x > 0.

We have that T♯µ = µ and S♯µ = µ, and moreover x + T (x) + S(x) = 0; in
particular (Id, S, T )♯µ is a flat optimal plan and so the thesis.

Example 8.1.14 (Optimal Transport diffuse plan). Let us consider the same
problem as in Example 8.1.13. Now we consider a general symmetric plan γ =
1
2H2|Hf(max{|x|, |y|, |z|}), where H is defined as H = {x+ y+ z = 0} ∩ {|x| 6
1, |y| 6 1, |z| 6 1} and f is a function to be chosen later. This is a symmetric
flat optimal plan; now we compute the marginals. Since it is clear that γ is
invariant under x 7→ −x, it is sufficient to consider the marginal on the set
x > 0. But then we can make the computation

∫

x>0

ϕ(x) dγ(x, y, z) =

∫∫

|x|,|y|,|x+y|61,
x>0

√
3ϕ(x)f(max{|x|, |y|, |x+ y|}) dxdy

=

∫ 1

0

∫ 1−x

0

√
3ϕ(x)f(x+ y) dy dx+

√
3

∫ 1

0

∫ 0

−x
ϕ(x)f(x) dy dx

+
√
3

∫ 1

0

∫ −x

−1

ϕ(x)f(|y|) dy dx

=

∫ 1

0

√
3ϕ(x)

(
xf(x) + 2

∫ 1

x

f(t) dt

)
dx.

In particular the choice f(x) =
√
3
6 x gives the marginals equal to 1

2L|[−1,1].
We notice also that any even density ρ = h(|x|) for some decreasing function
h : [0, 1] → [0,∞) can be represented in this way: in fact it is sufficient to choose

f(x) = 1√
3

(
h(x)
x − 2x

∫ 1

x
h(t)
t3 dt

)
.

Remark 8.1.15 (A Counterexample on the uniqueness K > 3). As mentioned
in corollary 7.1.17 and in [60], it was already understood by Pass that in these
high dimensional cases, the solution of repulsive costs may also be non unique,
as opposite to the two marginals case. On a higher dimensional surface there
can be enough wiggle room to construct more than one measure with common
marginals, as shown in the examples 8.1.9–8.1.14. In most of the cases, the
non-uniqueness seems to be given by the symmetries of the problem, but in
Example 8.1.14 and Corollary 8.1.8 this is not the case, as we exploit the fact
that the dimension of the set c(x+ y + z)− ϕ(x)− ϕ(y)− ϕ(z) = 0, is greater
than the minimal one.

Finally, the last proposition of this section states that when d = 1 and odd
K we have no hope in general to find piecewise regular cyclic optimal transport
maps.

Proposition 8.1.16 ([DMGN15]). Let µ = L|[0,1] and K > 3 be an odd number.
Then, the infimum

inf

{∫
c(x, T (x), T (2)(x), . . . , T (K−1))dµ :

T♯µ = µ,
TK = Id

}
.

is not attained by a map T which is differentiable almost everywhere.
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Proof. First of all we notice that if T is differentiable almost everywhere then
also T (2) has the same property, thanks to the fact that T♯µ = µ. In particular,
since the Lusin property holds true for T (i) for every i = 1, . . . ,K and T♯µ = µ,
the change of variable formula holds and in particular we have that (T (i))′(x) =
±1 for almost every x (notice also that T is bijective almost everywhere since
T (K)(x) = x).

Since µ is K-flat we have that the condition on T in order to be an opti-
mal cyclical map is x + T (x) + T (2)(x) + . . . + T (K−1)(x) = K/2; now we can
differentiate this identity and so we will get

1 + T ′(x) + (T (2))′(x) + . . .+ (T (K−1))′(x) = 0 for a.e. x.

But this is absurd since on the left hand side we have an odd number of ±1 and
their sum will be an odd number.

In conclusion, also in the case of the repulsive harmonic cost, the picture
is far from being clear: an interesting structure appears when {µi}Ki=1 is a flat
K-tuple of measures but we still can’t characterize this property. Moreover, in
the flat case in which µi = µ, for example when µ = 1

2L1|[−1,1], we have both
diffuse optimal plan and a cyclical optimal map.

An interesting open problem is whether for any K-flat measure µ, say ab-
solutely continuous with respect to the Lebesgue measure, we have a cyclical
optimal map and a diffuse plan.

8.2 Numerical Results: MM-OT with repulsive
Harmonic Cost

As shown in section 8.1 the minimizers of the OT problem with the harmonic
cost are also minimizers of the problem with c(x1, · · · , xK) = |x1 + · · ·+ xK |2,
so for the discrete problem (7.22) we take cj1···jK = |xj1 + · · · + xjK |2. Let
us first consider the two marginals case and the uniform density on [0, 1] (see
example 8.1.2), and, as expected, we find a deterministic coupling given by
γ(x, y) = µ(x)δ(y − T (x)) where T (x) = 1 − x, see figure 8.3. The simulation
in figure 8.3 has been performed on a discretization of [0, 1] with N = 1000
gridpoints and ε = 0.005.

Figure 8.3: Left: support of the optimal coupling. Right: optimal coupling.

CHAPTER 8. REPULSIVE OPTIMAL TRANSPORT 145



8.2. NUMERICAL RESULTS: MM-OT WITH REPULSIVE HARMONIC
COST

The multi-marginals case is more delicate to treat: the original OT problem
does not admit a unique solution whereas the regularized problem does. As
we have explained in section 2.2 the regularized problem is a strongly convex
problem which admits a unique solution and the resulting coupling is the one
with the minimal entropy. However we are able to make the IPFP algorithm
converge to a selected coupling among the optimal ones for the original problem.
Let us focus on the example 8.1.13. In this case we have all marginals equal
to µ = 1

2L|[−1,1] and we can find a deterministic coupling given by γ(x, y, z) =
µ(x)δ(y− T (x))δ(z − S(x)) for the maps T (x) and S(x). In order to select this
coupling, the idea is to modify the cost function by adding a penalization term
p(x, y) = τ

|x−y| which makes µ1 and µ2 be as far as possible (if we consider µ1

and µ2 as particles). Thus, the discretized cost now reads as

cj1,j2,j3 = |xj1 + xj2 + xj3 |2 +
τ

|xj1 − xj2 |
. (8.3)

Then we expect, as shown in figure 8.4, that the projection γ̃12(x, y) =
(e1, e2)γ(x, y, z) and γ̃13(x, z) = (e1, e3)γ(x, y, z) of the computed coupling are
induced by map T and S respectively. The simulation has been performed on a
discretization of [−1, 1] with N = 1000 gridpoints, ε = 0.0005 and η = 0.1.
We, finally, take the same marginals as in the previous example, but we do not

Figure 8.4: Top-Left: support of the optimal coupling γ̃12(x, y). Top-Right: op-
timal coupling γ̃12(x, y). Bottom-Left: support of the optimal coupling γ̃13(x, z).
Bottom-Right: optimal coupling γ̃13(x, z).

add the penalization. In this case we expect a diffuse plan since, if we forget
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about the marginal constraint, it is simple to show that the second order Γ-limit
of the regularized problem as ε → 0 is the relative entropy of γ with respect
to H2|{x+y+z=0}; we expect that the Γ-limit is the same also when we add the
marginal constraint.

In figure 8.5 we present the projection γ̃12(x, y) = (e1, e2)γ(x, y, z) of the
computed coupling (it is enough to visualize only this projection because of the
symmetries of the problem) and, as expected, we observe a diffuse plan. . The
simulation has been performed on a discretization of [−1, 1] with N = 1000
gridpoints, ε = 0.0005.

Figure 8.5: Left: support of the optimal coupling γ̃12(x, y). Right: optimal
coupling γ̃12(x, y).

8.3 Multi-marginal OT for the Determinant

We are going to give a short overview of the main results in [36], where
Carlier and Nazaret consider the following optimal transport problems for the
determinant:

(MKDet) sup
γ∈Π((Rd)d,µ1,...,µd)

∫

(Rd)d
det(x1, . . . , xd)dγ(x1, . . . , xd) (8.4)

and

(MK|Det|) sup
γ∈Π((Rd)d,µ1,...,µd)

∫

(Rd)d
| det(x1, . . . , xd)|dγ(x1, . . . , xd), (8.5)

where µ1, . . . , µd are absolutely continuous probability measures in R
d. In ad-

dition, in order to guarantee existence of a solution, we assume that there exist
p1, . . . , pd ∈ [1,∞[ such that

d∑

i=1

1

pi
= 1, and

d∑

i=1

∫

Rd

|xi|pi
pi

dµ(xi) < +∞.

Notice that for this particular cost the problem (7.1) makes sense only when
K = d. In the following, we will focus on problem (8.4) and exhibit explicit
minimizers γ in the radial case. Clearly, the difference between (8.4) and (8.5)
is that the second one admits positively and negatively oriented basis of vectors,
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while the first one “chooses” only the positive ones. Moreover, if we assume that
among marginals µ1, . . . , µd there exist two symmetric probability measures
µi, µj , i 6= j, i.e. µi = (-Id)♯µi and µj = (-Id)♯µj , then any solution γ of
(8.4) satisfies det(x1, . . . , xd) > 0 γ-almost everywhere and so solves also (8.5)
(Proposition 6, [36]).

Similarly to the Gangbo-Świȩch cost [66], the Monge-Kantorovich problem
for the determinant (8.4) can be seen as a natural extension of classical optimal
transport problem with two marginals and so, it is equivalent to the 2-marginals
repulsive harmonic cost (8.1).

Indeed, we can write in the two marginals case, det(x1, x2) = 〈x1, Rx2〉,
where R : R2 → R

2 is the rotation of angle −π/2. Hence, since µ1 and µ2

have finite second moments, up to a change of variable x̃2 = Rx2, the problem
(MKDet) in (8.4) is equivalent to the classical Brenier’s optimal transportation
problem:

argmax
γ∈Π(µ1,µ2)

∫

R2

det(x1, x2)dγ(x1, x2) = argmax
γ∈Π(µ1,µ2)

∫

R2

〈x1, x̃2〉dγ(x1, x2)

= argmax
γ̃∈Π(µ1,µ̃2)

∫

R2

〈x1, x2〉dγ̃

= argmin
γ∈Π(µ1,µ̃2)

∫

R2

|x1 − x2|2
2

dγ(x1, x2)− C

where C = 1/2(
∫
|x1|2 dµ1 +

∫
|x2|2 dµ2) and µ̃2 = R♯µ2.

In the sequel, we are going to construct maximizers for (8.4), thanks to some
properties of the Kantorovich potentials of the dual problem associated to (8.4)
(see theorem 8.3.1 bellow),

(KDetK ) inf

{∫

Rd

d∑

i=1

ui(xi)dµi(xi) : det(x1, . . . , xd) 6

K∑

i=1

ui(xi)

}
. (8.6)

In [36], the authors provide a useful characterization of optimal transport
plans through the potentials ui, given by theorem 8.3.1 . In addition, by means
of a standard convexification trick we obtain regularity results on the Kan-
torovich potentials.

Theorem 8.3.1 ([36]). A coupling γ ∈ Π((Rd)d, µ1, . . . , µd) is optimal in (8.4)
if and only if there exists lower semi-continuous convex functions ui : Rd →
R ∪ {∞} such that for all i ∈ {1, . . . , d},

d∑

j=1,j 6=i
uj(xj) > u∗i ((−1)i+1

∧

j 6=i
xj), on (Rd)d;

d∑

j=1,j 6=i
uj(xj) = u∗i ((−1)i+1

∧

j 6=i
xj), γ − almost everywhere;

(−1)i+1
∧

j 6=i
xj ∈ ∂ui(xi), γ − almost everywhere.
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where
∧d
i=1 xj denotes the wedge product and, for every i, u∗i is the convex dual

of the Kantorovich potential ui.

Now, the main idea is to use the geometrical constraints on the Kantorovich
potentials ui (8.6), given by the theorem (8.3.1), in order to construct an explicit
solution.

We illustrate the theorem (8.3.1) and explain how to construct a particular
optimal γ for (8.4) by an example in the three marginals case. Let µi = ρiL3, i =
1, 2, 3 radially symmetric probability measures on the 3-dimensional ball B.

In this particular situation, the optimizers of (8.4) and (8.5) have a natural
geometric interpretation: what is the best way to place three random vectors
x, y, z, distributed by probability measures µ1, µ2, µ3 on the sphere, such that
the simplex generated by those three vectors (x, y, z) has maximum average
volume?

Suppose γ ∈ Π(B,µ1, µ2, µ3) optimal in (8.4) when d = 3. From optimality
of γ, we have

u1(x) + u2(y) + u3(z) = det(x, y, z), γ − almost everywhere.

Applying the theorem (8.3.1), we get

{ u2(y) + u3(z) = u∗1(y ∧ z)
u1(x) + u3(z) = u∗2(−x ∧ z)
u1(x) + u2(y) = u∗3(x ∧ y)

, γ − almost everywhere,

and, { ∇u1(x) = y ∧ z
∇u2(y) = −x ∧ z
∇u3(z) = x ∧ y

, γ − almost everywhere. (8.7)

It follows from (8.7), given a vector x in the ball, the conditional probability
of y given x is supported in a “meridian” M(x)

M(x) = {y ∈ S2 : 〈∇u1(x), y〉 = 0},

where S2 is the 2−sphere. Finally, assuming that 〈x,∇u1(x)〉 6= 0, the condi-
tional probability of z given the pair (x, y) is simply given by a delta function
on z

z =
∇u1(x) ∧∇u2(y)

〈x,∇u1(x)〉
;

In particular, we have

〈x,∇u1(x)〉+〈y,∇u2(y)〉+〈z,∇u3(z)〉 = det(x, y, z) = det(∇u1(x),∇u2(y),∇u3(z)).

Example 8.3.2 (An explicit solution in the ball B ⊂ R
3, see also [36]). Suppose

µi = L3
B , i = 1, 2, 3, the 3-dimensional Lebesgue measure in the ball B ⊂ R

3.
The following coupling γ∗

∫

B3

fdγ∗ =
1

L3(B)

∫

B

(∫

M(x)

f(x, |x|y, x ∧ y)dH
1(y)

2π

)
dx, ∀f ∈ C(B3,R).

(8.8)
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is an optimizer for (8.4) with d = 3. Indeed, from we can show explicit potentials
u∗1(x) = u∗2(x) = u∗3(x) = |x|3/3; clearly we have

det(x, y, z) 6 |x||y||z| 6 |x|3/3 + |y|3/3 + |z|3/3, ∀ (x, y, z) ∈ B,

with equality when |x| = |y| = |z| and x, y, z are orthogonal. Since γ∗ is con-
centrated on this kind of triples of vector we have the optimality. Finally, by a
suitable change of variable, it is easy to see that γ∗ ∈ Π3(L3

B).

Some comments on the radially symmetric d-marginals case: In [36], for
d radially symmetric probability measures, the authors exhibit explicit optimal
couplings γ∗. In their proof, two aspects were crucial: the first one is remark that
if {µi}di=1 are radially symmetric measures in R

d, then the optimal Kantorovich
potentials ui(xi) = ui(|xi|) are also radially symmetric; in particular the system
(8.7) for general d implies that the support of γ∗ is contained in the set of an
orthogonal basis. The second observation is to notice that in the support of
γ∗ we have Gi(|x1|) = |xi|, where Gi is the unique monotone increasing map
such that (G̃i)♯µ1 = µi, where G̃i(x) = x

|x|Gi(|x|). This is done analyzing

the corresponding radial problem (with cost c(r1, . . . , rd) = r1 · · · rd), using the
optimality condition ϕ′

i(ri) = ∂ic and the fact that in this case riϕ
′
i(ri) =

r1ϕ
′
1(r1) = c > 0; then, exploiting the convexity of ϕi we get ri = Gi(r1) for

some increasing function Gi, that is uniquely determined.

Existence of Monge-type solutions: In the 3-marginals case in the unit ball,
by construction of the coupling γ∗ in (8.8) or, more generally, the optimal
coupling in the d-marginal case (see theorem 4 in [36]), we can see that their
support are not concentrated in the graph of cyclic maps T, T 2, . . . , T d−1 or
simply on the graph of maps T1, . . . , Td−1 as we could expect from corollary
(7.1.26). In other words, γ∗ in (8.8) is not Monge-type solution.

The existence of Monge type solutions for the determinant cost is still an
open problem for odd number of marginals. From the geometric conditions we
discussed above, in the case in which µi = µ a radial measure, if Monge solutions
exists then, for every x ∈ R

d, (x, T1(x), . . . , Td−1(x)) should be an orthogonal
basis, and |Ti(x)| = |x| , i = 1, . . . , d− 1.

For the interesting even dimensional case, we can observe a similar phe-
nomena remarked in the repulsive harmonic costs, concerning the existence of
trivial even dimensional solutions for the Monge problem in (8.4). We expect
the existence of non-regular optimal transport map also to this case.

Example 8.3.3 (Carlier & Nazaret, [36]). The even dimensional phenomenon:
as in the repulsive harmonic cost, it is easy to construct Monge minimizers for
the determinant cost for even number of marginals > 4. For instance, suppose
c(x1, x2, x3, x4) = det(x1, x2, x3, x4), alle the marginals equal to the uniform
measure µ on the ball, define transport maps T1, T2, T3 : B → R

4 by, for x =
(x1, x2, x3, x4) ∈ B

T1(x) =




−x2
x1
−x4
x3


 , T2(x) =




−x3
x4
x1
−x2


 , T3(x) =




−x4
−x3
x2
x1


 .

We can see that γT = (Id, T1, T2, T3)♯µ is a Monge-type optimal transport plan
for (8.4) and (8.5).
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8.4 Numerical Results: MM-OT with Determi-
nant Cost

Numerical simulations for the multi-marginal problem with the determinant
cost present an obvious computational difficulty: in order to compute the solu-
tion just for the 3-marginals case, we have to introduce a discretization of R3 (as
the cost function now is c(x1, · · · , xK) = det(x1, · · · , xK) with xi ∈ R

K). How-
ever if we take radially symmetric densities µi as marginals (see section 8.3 for
a more complete description of the problem in the measure framework), Carlier
and Nazaret show that (MK) can be reduced to a 1-dimensional problem: the
only unknowns are the relations between the norms ri = ‖xi‖ of each vector.
These relations can be obtained by solving the following problem

min
γ∈Π(λ1(r),··· ,λK(r))

−
∫
(

K∏

i=1

ri)γ(r1, · · · , rK)dr1 · · · drK , (8.9)

where λi(r) = σ(r)µi(r) (e.g. K = 3 then r = (r, θ, ϕ) and σ(r) = 4πr2).
Moreover, for this problem we know that there exists a unique (deterministic)
optimal coupling (see Proposition 5 in [36]). The discretized cost now reads

cj1···jK =
∏K
k=1 rjk . Let us consider the 3-marginals case and all densities λi

equal to the uniform density on the ball B0.5 = {x ∈ R
3|‖x‖ 6 0.5}. As

proved in [36], the optimal coupling is actually supported by the graph of maps
which rearrange measure (see figure 8.6 ). The simulation in figure 8.6 has
been performed on a discretization of [0, 0.5] with N = 100 and ε = 0.01. In

Figure 8.6: (Uniform density) Left: support of the optimal coupling γ̃12(r1, r2).
Right: optimal coupling γ̃12(r1, r2).

the same way we can take all marginals λi(r) = 4πr2e−4r and we obtain again
a deterministic coupling, figure 8.7. The simulation has been performed on a
discretization of [0, 3] with N = 300 and ε = 0.05.

We, finally, present a simulation (see figure 8.9) with three different marginals
λi (see figure 8.8). As one can observe we obtain that the projections of the
optimal coupling are concentrated on the graph of a map which rearranges the
densities in a monotone way. The simulation has been performed on a dis-
cretization of [0, 4] with N = 300 and ε = 0.07.
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Figure 8.7: (Exponential density)Left: support of the optimal coupling
γ̃12(r1, r2). Right: optimal coupling γ̃12(r1, r2).

λ1 λ2 λ3

Figure 8.8: Densities λ1, λ2 and λ3.

Figure 8.9: Top-Left: optimal coupling γ̃12(r1, r2). Top-Center: optimal cou-
pling γ̃13(r1, r3). Top-Right: optimal coupling γ̃23(r2, r3). Bottom: supports of
those couplings.
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Application to Density
Functional Theory
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Résumé

Dans cette partie nous présentons la théorie de fonctionnelle de la den-
sité (TFD). Nous montrons que la résolution du problème de minimisation
de l’énergie de répulsion interne de K électrons dans un densité donnée µ,
est equivalent à trouver la meilleure façon de transporter K − 1 fois la den-
sité µ sur elle-même, avec le coût repulsif coulombien. Cela signifie que nous
étudions un problème du transport optimal multi-marges. Nous soulignons
également que la régularisation entropique du problème peut être vu comme
une borne inférieure de la fonctionnelle de Hohenberg-Kohn. On se concentre
sur les résultats rigoureux et les conjectures sur l’existence et la caractérisation
géométrique des transports optimaux, pour le problème (TOMM) avec le coût
de Coulomb. En particulier, nous fournissons des contre-exemples théoriques
ainsi que numériques (voir aussi [41]) à la conjecture de Seidl. Cette partie est
basée sur des travaux en commun avec Jean-David Benamou, Guillaume Car-
lier, Simone Di Marino, Augusto Gerolin, Klass Giesbertz, Paola Gori-Giorgi et
Michael Seidl: [BCN15], [DMGN15] et [SDMG+].

Abstract

In this part we introduce the Density Functional Theory (DFT). We show
that solving the problem of finding the minimum internal repulsion energy for
K electrons in a given density µ is equivalent to find the optimal way of trans-
porting K − 1 times the density µ into itself, with cost function given by the
Coulomb repulsion. This means that we finally deal with a multi-marginal opti-
mal transport problem. We also highlight that the entropic regularized problem
can be seen as a lower bound of the Hohenberg-Kohn functional. We focus on
rigorous results and conjectures on the existence and the geometrical charac-
terization of optimal transport maps for the MMOT problem with Coulomb
cost. In particular we provide both theoretical and numerical counterexamples
(for other counterexamples we refer the reader to [41]) to the so-called Strong
Seidl’s conjecture. This part is based on joint works with Jean-David Benamou,
Guillaume Carlier, Simone Di Marino, Augusto Gerolin, Klass Giesbertz, Paola
Gori-Giorgi and Michael Seidl: [BCN15], [DMGN15] and [SDMG+].
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Chapter 9

Density Functional Theory
and Multi-Marginal
Optimal Transport

9.1 Brief introduction to Quantum Mechanics
of K-body systems

Energies and geometries of a molecule depend on the kind of atom and the
chemical environment. Semi-empirical models as Lewis structure explain some
aspects, but they are far from being satisfactory, mostly because they are not
quantitative.

Classical behavior of atoms and molecules is described accurately, at least
from a theoretical point of view, by quantum mechanics. However, in order to
predict the chemical behavior of a molecule with a large number of electrons
we need to deal with computational aspects and approximations. For example,
if we use a direct approximation of 10 grid points in R of the time-dependent
Schrödinger equation in order to simulate the chemical behavior of the water
molecule (H2O), which has 10 electrons and its position is represented in the
space R

30, then we need to compute the solution over 1030 grid points.

Quantum Chemistry studies the ground state of individual atoms and molecules,
the excited states and the transition states that occur during chemical reactions.
Many systems use the so-called Born-Oppenheimer approximation and many
computations involve iterative and other approximation methods.

The main goal of Quantum Chemistry is to to predict the evolution of a
molecular system. Classical models consider a molecule with K electrons and
M nuclei. We denote by a point xi ∈ R

3 the position coordinates of the i-th
electron of mass me and by si its i-th electron spin. The charges, the masses
and the positions of the α-th nucleus are represented, respectively, by Zα ∈ R

M ,
mα ∈ R

M
+ and Rα ∈ (R3)M

The state of the system is described by a time-dependent wave function ψ ∈
L2([0, T ];⊗Ki=1L

2(R3×Z2)×⊗Mα=1L
2(R3)), ψ(x1, s1, · · · , xK , sK ;R1, · · · , RM , t).

The group Z2 = {↑, ↓} represents the spin of a particle.

We say that a wave function is antisymmetric or fermionic if it changes
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sign under a simultaneous exchange of two electrons i and j with the space
coordinates xi and xj and spins si and sj , that is,

ψ(xσ(1), sσ(1), · · · , xσ(K), sσ(K)) = sign(σ)ψ(x1, s1, · · · , xK , sK) σ ∈ SK

where SK denotes the permutation set of K elements.
In physics literature, the Fermionic wave function obeys the Fermi-Dirac

statistics and, in particular, the Pauli exclusion principle. On the other hand,
a wave function is called symmetric or bosonic when it obeys Bose-Einstein
statistics which also implies that when one swaps two bosons, the wave function
of the system is unchanged.

If it is not mentioned explicitly, we will suppose that the wave function
is spinless, i.e. ψ is a function depending only on time, electrons and nuclei
position ψ(t, x1, x2, · · · , xK , R1, · · · , RM ).

The evolution of a wave function ψ is modeled by a (time-dependent) Schrödinger
Equation

i∂tψ = Hψ , H = Tn + Te + Vne + Vee + Vnn (9.1)

where the operators Tn, Te, Vne, Vee and Vnn are defined by

Tn = −~

M∑

α=1

1

2mα
∆Rα

(Nuclei Kinetic Energy)

Te = −~

K∑

i=1

1

2me
∆xi

(Electron Kinetic Energy)

Vne = −
K∑

i=1

v(xi) = −
K∑

i=1

( M∑

α=1

Zα
|xi −Rα|

) (
Potential Energy of Inte-

raction Nuclei-Electron

)

Vee =
K∑

i=1

K∑

j=1,j 6=i

1

|xi − xj |
(Interaction Electron-Electron)

Vnn =

M∑

α=1

M∑

β=1,β 6=α

ZαZβ
|Rα −Rβ |

(Interaction Nuclei-Nuclei)

Born-Oppenheimer Approximation: The Born-Oppenheimer approxi-
mation (named for its original inventors, Max Born and Robert Oppenheimer)
is based on the fact that nuclei are several thousand times heavier than elec-
trons. The proton, itself, is approximately 2000 times more massive than an
electron. Roughly speaking, in the Born-Oppenheimer approximation we sup-
pose that nuclei behave as point classical particles. This is reasonable, since
typically 2000me 6 mα 6 100000me.

In other words, we suppose mα ≫ me, we fix me = 1 and we consider an
ansatz of type ψ(x,R, t) = ψe(x,R)χ(R, t), which physically means that the
dynamics of the electron ψe are decoupled from the dynamics of the atomic
nuclei χ. Substituting that ansatz in (9.1), we can show that the electronic part
ψe(x,R) solves the following eigenvalue problem, so-called Electronic Schrödinger
Equation

Heψe = λeψe, He = Te + Vne + Vee + Vnn (9.2)
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where the eigenvalue λe = λe(R) depends on the position vectorR = (R1, · · · , RM )
of the atomic nuclei. The function He = He(R) is called Electronic Hamilto-
nian. From the other side, through a formal argument, the nuclei wave function
χ(R, t) is a solution of a Schrödinger Equation restricted to the nuclei with
potential energy λe,

i∂tχ(R) = (Tn + λe(R))χ(R).

We refer to [16] for all computations and formal deduction of those formulas.
Another consequence of that approximation is that the nuclear components of
the wave function are spatially more localized than the electronic component of
the wave function. In the classical limit, the nuclei are fully localized at single
points representing classical point particles.

In Quantum Chemistry it is interesting to study the so called Geometric
Optimization Problem.

The Geometric Optimization Problem: Compute the following mini-
mizer

inf

{
E0(R1, · · · , RM ) +

M∑

α=1

M∑

β=1,β 6=α

ZαZβ
|Rα −Rβ |

| (R1, · · · , RM ) ∈ R
3M

}
(9.3)

where

• The second term is the nuclei-nuclei iteration Vnn, as defined in (9.1).

• The function E0(R) = E0(R1, · · · , RM ) corresponds to the effective po-
tential created by the electrons and is, itself, given by a minimization
problem (see Electronic minimization problem below).

The value of the potential E0 = E0(R1, · · · , RM ) for given fixed positions of
the nuclei is obtained by solving the electronic problem:

The Electronic minimization problem: Compute the lowest eingenvalue
(“ground state energy”) E0 of the following linear operator, called Electronic
Hamiltonian

Definition 9.1.1 (Electronic Hamiltonian). The Electronic Hamiltonian is a
linear operator Hel : L

2
anti(R

3K) → L2
anti(R

3K),

Hel = −~
2

2

K∑

i=1

∆xi
+

K∑

i=1

v(xi) +

K∑

i=1

K∑

j=i+1

f(xj − xi),

where L2
anti(R

3K) denotes the set of square-integrable antisymmetric func-
tions ψ : R3K → R, v : R3 → R is a L2(R3K) function and f : R → R is a
continuous function.

The first term of the Electronic Hamiltonian is the Kinetic Energy and the
second term, the function v(xi), depends only on the single electron. Typically,

v(xi) = −∑M
α=1

Zα

|xi−Rα| is the interaction electron-nuclei energy of the single

electron. The function f depends only on the distance of two electrons and
measures the electron-electron potential interaction; typically f is the Coulomb
Interaction f(xj−xi) = 1/|xj−xi| or the repulsive harmonic interaction f(xj−
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xi) = −|xj − xi|2. From both mathematical and physical viewpoint, it may be
also useful to study more general convex and concave functions.

The ground state of the functional (9.1.1) is given by the Rayleigh-Ritz vari-
ational principle

E0 = E0(R1, · · · , RM ) = min{〈ψ,Helψ〉 | ψ ∈ H},

where H = {ψ ∈ H1(R3K) : ψ is antisymmetric and ‖ψ‖ = 1}. Equivalently,

E0 = min
{
Te(ψ) + Vne(ψ) + Vee(ψ) | ψ ∈ H

}
(9.4)

where Te(ψ) is the Kinetic energy,

Te(ψ) =
~
2

2

∑

s1∈Z2

∫

R3

· · ·
∑

sK∈Z2

∫

R3

K∑

i=1

|∇xi
ψ(x1, s1 · · · , xK , sK)|2dx1 · · · dxK

Vne(ψ) is the electron-nuclei interaction energy,

Vne(ψ) =
∑

s1∈Z2

∫

R3

· · ·
∑

sK∈Z2

∫

R3

K∑

i=1

v(xi)|ψ(x1, s1 · · · , xK , sK)|2dx1 · · · dxK

and, Vee(ψ) is the electron-electron interaction energy

Vee(ψ) =
∑

s1∈Z2

∫

R3

· · ·
∑

sK∈Z2

∫

R3

K∑

i=1

K∑

j=i+1

f(xj−xi)|ψ(x1, s1 · · · , xK , sK)|2dx1 · · · dxK

Notice that, with a slightly abuse of notations, we denote in the same way
operators and energies. Here, the ground state quantum K-body problem refers
to the problem of finding equilibrium states for system of type (9.1). A theorem
proved first by Zhislin [119], guarantees the existence of the minimum in (9.4).
Some variants can be found in the literature due, for instance, to Lieb & Simon
[90], Lions [91] and Friesecke [59].

In computational chemistry, the most computationally practicable methods
are not numerical (in the sense in which this terminology is used in mathemat-
ics), but power series of analytical solutions of reduced models.

9.2 Probabilistic Interpretation and Marginals

The square norm of the wave function ψ(x1, s1, · · · , xK , sK) can be inter-
preted as a K-point probability density distribution for the electrons to be in
the points xi with spins si.

∫

R3K

∑

s1,··· ,sK∈Z2

|ψ(x1, s1, · · · , xK , sK)|2dx = 1.

If ψ is a L2(R3K) function we can define the single particle density by

ρ(x1) = K

∫

R3(K−1)

γK(x1, s1, · · · , xK , sK)dx2, · · · dxK , (9.5)
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where γK represents the K-point position density

γK(x1, · · · , xK) =
∑

s1,··· ,sK∈Z2

|ψ(x1, s1, · · · , xK , sK)|2. (9.6)

Analogously, we can define the k-density

γk(x1, · · · , xk) =
(
K

k

)∫

R3(K−k)

γK(x1, s1, · · · , xK , sK)dxk+1. · · · dxK (9.7)

We remark that when the particle is spinless the single particle density (9.5)
can be simply be written as

ρ(x1) = K

∫

R3(K−1)

|ψ(x1, · · · , xK)|2dx2, · · · dxK .

The relevance of ρ and γ2 to compute the ground state energy (9.4) is due to
the fact that the interaction nuclei-nuclei energy Vne(ψ) and electron-electron
energy Vee(ψ) depends only on these.

Lemma 9.2.1 ([43]). If ψ,∇ψ ∈ L2((R3 × Z2)
K ,R), ψ antisymmetric and

‖ψ‖2 = 1, then

Vne(ψ) =

∫

R3

v(x)ρ(x)dx, Vee(ψ) =

∫

R6

1

|x− y|γ2(x, y)dxdy.

It is natural to wonder about the space of those densities arising from such
a wave-function ψ: the space A of densities ρ : R3 → R verifying (9.5) for an
antisymmetric ψ such that ψ,∇ψ ∈ L2((R3 × Z2)

K ,R) and ‖ψ‖2 = 1. The
following explicit characterization has been given by Lieb in [88]):

A =

{
ρ : R3 → R | ρ > 0,

√
ρ ∈ H1(R3) and

∫

R3

ρ(x)dx = K

}
. (9.8)

9.3 Density Functional Theory (DFT)

The Density Functional Theory is the standard approximation to quantum
mechanics. It can be used for simulations of a system with more than a dozen
electrons and showed to be successful in many instances but has rare dras-
tic failures as, for instance, in predicting the behavior of Cr2 molecules [39].
DFT theory approximates quantum mechanics via variational principle on the
marginal density

ρ(x1) :=

∫

Rd(K−1)

|ψ(x1, · · · , xK)|2dx2 · · · dxK , (9.9)

where ψ is a wave function associated to the K-body quantum problem as in
equation (9.5). Roughly speaking, DFT models are semi-empirical models of
the pair density

γ2(x1, x2) :=

∫

R3(K−2)

|ψ(x1, · · · , xK)|2dx3 · · · dxK . (9.10)
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in terms of its marginal ρ. We simply write ψ → ρ and ψ → γ2 to denote the
relation between ψ and ρ, and ψ and γ2. This means, respectively, that ψ has
single particle density ρ and pair density γ2.

Concerning the ground state problem (9.4), we the following result which let
us split the minimization problem into two problems

Theorem 9.3.1 ([73],[86],[88]). Let ρ ∈ P(R3) be a probability density such that
ρ ∈ H1(R3) and f : R → R be a continuous function. There exists a functional
FHK : P(R3) → R depending only on the single-particle density ρ such that
for any potential Vnn, the exact Quantum Mechanics ground state energy (9.4)
satisfies

E0 = min
{(
FHK(ρ) +K

∫

R3

v(x)ρ(x)dx
)
| ρ ∈ P(R3)

}
(9.11)

Moreover, FHK(ρ) is given itself as a minimum problem

FHK(ρ) = min

{〈
ψ,
(
− ~

2

2
∆ +

K∑

i=1

K∑

j=i+1

f(xj − xi)
)
ψ
〉

| ψ ∈ H, ψ → ρ

}

where, ψ → ρ means that ψ has single-particle density ρ and A is the set of
ρ : R3 → R such that ρ > 0,

√
ρ ∈ H1(R3) and

∫
R3 ρ(x)dx = K.

We refer to FHK as the Hohenberg-Kohn functional. The Hohenberg-Kohn
theorem states that the functional FHK is universal in the sense that it does not
depend on the molecular system under consideration. From a Physics point of
view, it guarantees that in a molecular system of K electrons, the single electron
density ρ determines the pair density of the system (see corollary 9.3.2). From
a mathematical perspective, the proof of this theorem is a functional analysis
exercise that, for sake of completeness, we are going to present in a version we
learnt from Gero Friesecke.

Proof. Firstly we remark that the electron-nuclei interaction only depends on
ρ:

〈ψ,
K∑

i=1

v(xi)ψ〉 =
∫

R3K

K∑

i=1

v(xi)|ψ(x1, · · · , xK)|2dx = K

∫

R3

v(x)ρ(x)dx

Then, we rewrite problem (9.4) as a double inf problem

E0 = inf
ψ

(
〈ψ,Hel ψ〉+K

∫
v(r)ρ(r)dr

)

= inf
ρ

(
inf
ψ 7→ρ

(
〈ψ,Hel ψ〉

)
+K

∫
v(r)ρ(r)dr

)

= inf
ρ

(
FHK(ρ) +K

∫
v(r)ρ(r)dr

)

where FHK(ρ) = infψ 7→ρ

(
〈ψ,Hel ψ〉

)
.

The present version stated in theorem 9.3.1 is due to Levy [86] and Lieb [88].
The next corollary contains the main physical and mathematical consequence
of the Hohenberg-Kohn theorem (9.3.1).
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Corollary 9.3.2 (HK Theorem and Coupling problem). Let ρ ∈ P(R3) be
a measure and ψ ∈ H1(R3K) be an antisymmetric function with ‖ψ‖2 = 1.
There exists a universal map from single-particle density ρ(x1) to a pair densities
γ2(x1, x2) - or even k-density γk(x1, · · · , xk) - which gives the exact pair density
of any K-electron molecular ground state ψ(x1, · · · , xK) in terms of its single-
particle density.

Proof. Consider
ψ ∈ argmin{〈ψ,Helψ〉 | ψ → ρ}

and define by γk the universal k-point density of that minimizer, i.e.

γk(x1, · · · , xk) =
∫

|ψ(x1, · · · , xK)|2dk+1 · · · dxK

9.4 “Semi-classical limit” and Optimal Trans-
port problem

A natural approach to understand the behavior of the Hohenberg-Kohn func-
tional FHK(ρ) (??) is to study separately the contributions of the kinetic energy
and electron-electron repulsion (namely the Coulomb interaction). Consider the
Hohenberg-Kohn functional where the electron-electron interaction is rescaled
by a real parameter λ while keeping the density ρ fixed [82, 118]

FHKλ (ρ) = min
ψ∈H
ψ→ρ

{
〈ψ,
(
− ~

2

2
∆ +

K∑

i=1

K∑

j=i+1

λ

|xj − xi|
)ψ〉

}
. (9.12)

The strictly correlated electron limit (λ→ ∞), up to relaxing in the space of
probability measures, was first considered by two papers in physics literature:
Seidl [109] and Seidl, Gori-Giorgi & Savin [110]. In [71], Gori-Giorgi, Seidl
and Vignale interpreted the strong-interaction regime as a mass transportation
problem with a Coulomb cost.

Later, an equivalent limit, so-called “semi-classical limit”, was made math-
ematically rigorous in the two particles case by Cotar, Friesecke & Klüppelberg
[43]. They considered the Hohenberg-Kohn functional FHK = FHK

~
as a func-

tion of both ρ and ~ (λ = 1) and proved that - up to passage to the limit ~ → 0
- the functional FHK reduces to the following one

F̃ (ρ) = inf

{∫

R6

1

|x− y|γ2(x, y)dxdy | γ2 ∈ A2, γ2 → ρ

}
, (9.13)

where γ2 → ρ means that γ2 satisfies the equation (9.7), and the set A2 of
admissible pair density functions is defined by the image of A under the map
ψ → γ2. As pointed out in [43], contrary to the corresponding single particle
density case, we do not know any characterization of the space of admissible
pair density function A2.

We state in the next theorem the semi-classical limit for the 2-particles case.
The general case of K particles is still an open problem.
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Theorem 9.4.1 (“Semi-classical limit” for K = 2, Cotar-Friesecke-Klüppel-
berg, [43]). Let ρ : R3 → [0,∞] be a probability density such that

√
ρ ∈ H1(R3),

K = 2 and f : R → R be the Coulomb or the repulsive harmonic interaction
potentials. Then,

FHK
~

(ρ) = min
ψ∈H1(R6),ψ→ρ

〈ψ,
(
− ~

2

2 ∆+ f(x2 − x1)
)
ψ〉

→
~→0

min
γ∈Π2(R6,ρ)

∫

R3K

f(x2 − x1)dγ(x1, x2) =: FOT (ρ),
(9.14)

where the set Π2(R
6, ρ) denotes the set of measures γ ∈ P(R6) having ρ as

marginals, i.e. (πi)♯γ = ρ where, for i = 1, 2, πi : R
3 × R

3 → R
3 are the

canonical projections.

Remark 9.4.2 (FOT and Monge-Kantorovich). Notice that FOT coincides with
the two marginal Monge-Kantorovich problem.

The main difficulty in proving Theorem 9.4.1 is that for any transport plan
given by a density ψ, γ = |ψ(x1, · · · , xK)|2dx1 · · ·xK , it may be that ψ 6∈
H1(R3K), ψ 6∈ L2(R3K) and T (ψ) = ∞. Moreover, smoothing the optimal γ does
not work at this level, because this may change the marginals of the problem
(9.14). Cotar, Friesecke & Klüppelberg developed a smoothing technique in
order to deal with this problem without changing the marginals. A complete
proof of the previous theorem can be found in [43].

Let us precise somewhat the terminology. In Quantum Mechanics, the
“semi-classical limit” has a precise meaning: it is an asymptotic regime for
the Hamiltonian dynamics of a Quantum system defined in a Hilbert space and
it is given by a Weyl-Wigner quantization (or quantization by deformation stud-
ied in the more abstract context of Poisson manifolds). In those specific cases,
the limit ~ → 0 is called “semi-classical” limit, because the first and second
order terms of an asymptotic expansion of the Hamiltonian operator is given by
“classical” terms, functions of the Hamiltonian function in a symplectic mani-
fold [53, 103].

In DFT context, that limit seems to be up to now merely a question of
re-scaling. The minimizers of FOT (ρ) are candidates of ansatz to develop ap-
proximating methods to compute the ground state energy of the Electronic
Hamiltonian.

At this point, it is natural to define the DFT-Optimal Transportation ground
state EDFT−OT

0 [43],

EDFT−OT
0 (ρ) = inf

{
Te(ψ) + Vne(ψ) + EOT (ψ) | ψ ∈ H

}

= inf

{
TQM (ρ) + Vne(ρ) + EOT (ρ) | ρ ∈ A

}
.

(9.15)

where ρ represents the single particle density (see (9.5)), TQM and EOT are
defined, respectively, by

TQM (ρ) = inf

{
Te(ψ) | ψ ∈ H, ψ → ρ

}
and
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EOT (ρ) = inf

{∫

R3K

K∑

i=1

K∑

i=1

f(xj − xi)dγ(x1, · · · , xK) | γ ∈ ΠK(RdK ; ρ)

}
,

(9.16)
where ΠK(RdK ; ρ) denotes the set of probability measures γ : (Rd)K → R+

having ρ as marginals.
The problem of minimizing EDFT−OT

0 in (9.15) is called DFT-OT problem.
Finally, we have

Theorem 9.4.3 (Cotar-Friesecke-Klüppelberg, [43]). Consider f(|xj − xi|) =
1/|xj − xi|. For every K, and any potential v ∈ L3/2 + L∞(R3), the density
functional with electron-electron interaction energy (9.16) is a rigorous lower
bound of the Electronic minimization problem (9.4)

E0 > EDFT−OT
0

One of the central question of DFT-OT problem with Coulomb potentials
is to characterize the minimizers γ of EOT (ρ). Those minimizers could be used
as ansatz in order to find minimizers of the Hohenberg-Kohn FHK(ρ). In [109],
the physicist Seidl formulated the following conjecture.

Conjecture 9.4.4 (Weak Seidl Conjecture [109]). There exists a deterministic
minimizer of EOT (ρ) with Coulomb potential/cost

c(x1, · · · , xK) =

K∑

i=1

K∑

j=i+1

1

|xi − xj |
.

In other words, for Coulomb-type electron-electron interactions, Seidl con-
jectures1 state that, at least for radially symmetric measures ρ, there exists
an optimal measure γ for EOT of the form γ = (Id, T1, · · · , TK−1)♯ρ, with
T1, · · · , TK−1 : R3 → R

3. These maps Ti are called co-motion functions and,
due to the symmetries of the problem, a natural group law is required for them,
namely that for every i, j there exists k such that Ti ◦ Tj = Tk; this is satisfied
if for example Ti = T (i) (cyclical case, see Equation (7.14)).

It is natural to ask the same kind of question for other cost functions. In
the following we mention some interesting results:

(i) In the 2-electrons case, the minimizers of EDFT−OT
0 are well-understood

[43] and there exists a map which correlates the density of a given mini-
mization plan of EOT (ρ), see Theorem 10.1.1.

(ii) Gangbo & Świȩch (without being aware of Seidl) reinforces the conjecture
9.4.4 showing in [66] that for the attractive harmonic cost c(x1, · · · , xK) =∑K
i,j=1 |xi − xj |2 there exists a unique optimal plan, and it is a determin-

istic one.

(iii) Colombo, De Pascale & Di Marino [49] answer affirmatively the (strong)
Seidl conjecture in the one dimensional case (d = 1), as we will describe
in section 9.5.

1There is also a stronger version of the conjecture, the Strong Seidl Conjecture, where the
author describes explicitly a possible optimal map in the radially symmetric case: for the
precise statement see the conjecture 10.1.4 and the lemma 10.1.3 in section 9.5.
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(iv) “Seidl’s conjecture” is not true for the repulsive harmonic cost c(x1, · · · , xK) =∑K
i,j=1 −|xi − xj |2 (see theorem 8.1.6). Moreover, for the same cost and

for a particular single particle density, there exists “fractal-like” optimal
transport maps, i.e. an optimal map T which are not differentiable at
every point, see section 8.1.

Remark 9.4.5 (Warning: notations). From now on we refer to FOT (ρ) and
EOT (ρ) as MK(ρ) and MKK(ρ) (which are actually the notations for the
Monge-Kantorovich problem in the 2-marginals case and in the K−marginals
used throughout all the thesis), respectively.

9.5 Multi-marginal OT with Coulomb Cost

This section is devoted to the summary of the results present in literature
on the multi marginal optimal transport with Coulomb cost. We already high-
lighted the fact that the interesting case is when all the marginals are equal,
since this is the physical case. We point out that, as always, the focus will be on
characterizing the optimal plans as well as looking for cyclical transport maps:
in this direction an important conjecture has been made by Seidl in his seminal
paper [109], where he gave an explicit construction of a map for measures with
radial symmetry in R

d. In the last years the conjecture was proven to be true in
the 1D case when µ is the uniform measure on an interval, and then generalized
to any diffuse measure on the real line. However, quite recently various authors
disproved the conjecture in the case R

d for d > 2 and for K = 3 marginals, yet
the Seidl map is still optimal for some class of measures.

We begin by analyzing the general problem, and then we will proceed to
look at the radial case.

9.5.1 General theory: duality, equivalent formulations and
many particles limit

We begin by stating the duality theorem in this case proved by De Pascale
[48], by means of Γ-convergence of finite dimensional problems for which the
duality is classical.

Theorem 9.5.1 ([48]). Let µ ∈ P(Rd) be a measure that is not concentrated
on a set of cardinality smaller or equal than K−1. Then the duality (7.7) holds
and the dual problem has a bounded maximizer.

The boundedness of the maximizer u can let us prove also some regularity
properties. The first one is the fact that any optimal plan is supported away
from the diagonals, while the second one proves second order regularity of u.

Lemma 9.5.2 (Corollary 3.13 in [48]). Let µ as in Theorem 9.5.1; then there ex-
ists α > 0 such that for every optimal plan γ we have supp(γ) ⊆ {(x1, . . . , xK) :
|xi − xj | > α, ∀ i 6= j}.

Lemma 9.5.3 ([DMGN15]). Let µ as in Theorem 9.5.1 and u be a bounded
maximizer in the dual problem in (7.7); then u has a µ-representative that is
Lipschitz and semi concave.
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Proof. As in the classical case we first prove a structural property of the max-
imizer u, namely that the constraint (7.8) is saturated, that is (u, . . . , u) is a
c-conjugate K-tuple. Let us consider

w(x1) = ess-inf
(x2,...,xK)∈Rd(K−1)





∑

16i<j6K

1

|xi − xj |
−

K∑

i=2

u(xi)



 ,

where the ess-inf is made with respect to the measure µ⊗K−1. It is obvious
that w(x1) > u(x1) for µ-a.e x1, thanks to (7.8). Suppose that w > u in a set
of positive measure; but then (w, u, . . . , u) would be a better competitor in the
(not symmetric) dual problem contradicting the fact that u is a maximizer (we
use the fact that the symmetric dual problem and the not symmetric one have
the same values). Now we have that w is defined everywhere and so we can talk
about its regularity.

Let d > 0 be a number such that there exists points p1, . . . pK in the support
of µ such that |pi − pj | > d; this number exists as long as ♯ supp(µ) > K. Let

us fix ε > 0 such that 1
2ε >

2K(K−1)
d + 2K‖u‖∞ and ε 6 d/8; in this way it is

true that if we define

wx0
(x1) = ess-inf

|xi−x0|>ε, i=2,...,K





∑

16i<j6K

1

|xi − xj |
−

K∑

i=2

u(xi)



 ,

we have wx0
= w on B(x0, ε). In fact in the definition of w we can choose

xi among the pi (or very close to them, as they belong to the support) such
that |xi − xj | > d/2 − 2ε > d/4 for every i 6= j, and so we have that w 6
2K(K−1)

d + K‖u‖∞ but then it is clear that for any (x2, . . . , xK) such that
|xi − x0| 6 ε we will have

∑

16i<j6K

1

|xi − xj |
−

K∑

i=2

u(xi) >
1

2ε
> w(x1) ∀x1 ∈ B(x0, ε);

this proves that in fact wx0
= w on the set B(x0, ε) and so in particular also

in B(x0, ε/2). But in this set wx0
is Lipschitz and semi concave since it is an

infimum of uniformly C∞ functions on B(x0, ε/2). Moreover the bounds on the
first and second derivatives don’t depend on x0 but only on ε, that is fixed a
priori, and so by a covering argument we obtain the thesis.

Another interesting reformulation of the Coulomb-like problem, or more gen-
erally when we have only interaction between two particles, can be found in [60]
where, seeking a dimensional reduction of the problem, the authors use the fact
that if γ ∈ ΠK(RdK ;µ) is a symmetric plan then

∫

RdK

∑

16i<j6K

1

|xi − xj |
dγ =

(
K

2

)∫

R2d

1

|x− y| d(π1, π2)♯γ,

that is, since the electrons are indistinguishable, it is sufficient to look at the
potential energy of a couple of electrons and then multiply it by the number of
couples of electrons. It is clear that γ2 = (π1, π2)♯γ is a 2-plan whose marginals
are still µ; we will say that η ∈ Π2(R

d2;µ) is K-representable whenever it exists
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γ ∈ ΠK(RdK ;µ) such that η = (π1, π2)♯γ. The equivalent formulation they give
is

min
γ∈ΠK(RdK ;µ)

∫

RdK

∑

16i<j6K

1

|xi − xj |
dγ = min

η∈Π2(R
d2;µ)

η is K-representable

(
K

2

)∫

R2d

1

|x− y| dη.

Unfortunately the conditions for being K-representable are not explicit and
they are very difficult to handle; this is correlated to the K-representability for
matrices, but here, since we are in the semiclassical limit, we deal with densities
instead. In [60] the authors propose, as a method for reducing the dimension
of the problem, to substitute the condition of being K-representable with that
of being k-representable with k 6 K; the resulting problem will give a lower
bound to the SCE functional .

We present also a general theorem regarding the many particles limit, that
embodies the well-known fact that when K → ∞ then the solution is the mean
field one

Theorem 9.5.4 ([44]). Let µ ∈ P(Rd). Then we have that

lim
K→∞

1(
K
2

) min
γ∈ΠK(RdK ;µ)

∫

RdK

∑

16i<j6K

1

|xi − xj |
dγ =

∫

R2d

1

|x− y| dµ⊗ µ.

In terms of DFT we are saying that EOT (µ) =
(
K
2

)
EMF (µ) + o(K2), where

EMF is the normalized mean field energy EMF (µ) =
∫

1
|x−y| dµ(x) dµ(y).

Remark 9.5.5. The statement about the Coulomb cost in the physical case is
quite classical. In fact, for a measure ρ ∈ L4/3(R3) the Lieb-Oxford bound holds
[87, 89]:

(
K

2

)
EMF (µ) > MKK(µ) > K2EMF (µ)− CK4/3

∫

R3

µ4/3(x) dx,

and so the conclusion is immediate. However, in [44] the proof is completely
different and relies on the fact that a measure γ ∈ Π2(R

d2;µ) that is K-
representable for every K must be in the convex envelope of measures of the
type ν ⊗ ν, and then on a direct computation using the Fourier transform. In
particular, aside from the Coulomb cost in dimension 3 they prove the theorem
for more general costs with binary interaction of the form

∑
16i<j6K f(xi−xj),

where f ∈ Cb(Rd) ∩ L1(Rd) satisfies f(z) = f(−z) and also f̂ > 0.

9.5.2 Regularized Optimal Transport and Hohenberg-Kohn
functional

Consider now theK−marginals Monge-Kantorovich problem with the Coulomb
cost and all marginals equal to µi(x) = ρ(x)Ld (w.l.o.g. we will identify the
measure µ with its density ρ)

(MKK) min





∫

RdK

∑

i<j

1

|xi − xj |
γ(x1, · · · , xK)dx1, · · · , dxK | γ ∈ ΠK(RdK ; ρ)



 ,

(9.17)
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and the entropic regularization

SK,ε(ρ) := min
{
H(γ|ηε) | γ ∈ ΠK(RdK ; ρ)

}
, (9.18)

where ηε :=
1
L exp (−∑i<j

1
ε|xi−xj | )⊗

K
i=1 dxi (L is the normalization constant)

and the entropy is defined as in (2.2). We show now that problem (9.18) with
a fixed parameter ε is a lower bound of the Hohenberg-Kohn functional.
Take a plan γ(x1, · · · , xK) =

∑
s1,··· ,sK∈Z2

|ψ(x1, s1, · · · , xK , sK)|2 (it is obvious

that
√
γ ∈ H1(RdK)), then the Hohenberg-Kohn functional FHK(ρ) reads as

FHK = inf

{
~
2

2

∫

RdK

|∇
√
γ(x1 · · ·xK)|2dx1 · · · dxK+

∫

RdK

∑

i<j

1

|xi − xj |
γ(x1 · · ·xK)dx1 · · · dxK | γ ∈ ΠK(RdK ; ρ)

}
.

(9.19)

We can establish the following result

Theorem 9.5.6 (Entropy Lower bound,[DMN]). Let be ρ ∈ P(Rd) and ψ ∈
H1((Rd × Z2)

K ;R), then the following inequality holds

FHK(ρ) > SK,ε(ρ), (9.20)

with ε =
π~2

2
.

In order to prove theorem 9.5.6 we need some useful results on the logarith-
mic Sobolev inequality for the Lebesgue measure.

Corollary 9.5.7 (Corollary 7.3, [72]). Let us consider ν ∈ P(Rd) such that
ν(x) = e−V (x) with D2 V > κId. Then, for every f > 0 such that fν ∈ P(Rd)
we have that

H(fν|ν) 6 2

κ

∫

Rd

|∇
√
f |2 dν. (9.21)

Notice that, thanks to the 1-homogeneity of both sides of the inequality with
respect to f , one can forget the constraint fν ∈ P(Rd). Now we are ready to
state our result for the Lebesgue measure:

Theorem 9.5.8 (LSI,[DMN]). Let f > 0 be a function such that
√
f ∈ H1(Rd)

and fLd ∈ P(Rd). Then the following holds:

H(fLd|Ld) 6 1

π

∫

Rd

|∇
√
f |2 dx. (9.22)

Proof. The proof is rather simple: it relies on the observation that if
∫
f dν 6 1

then H(fν|ν) >
∫
f log f dν. In particular we can consider the measure νy =

e−π|x−y|
2

. It is clear that, since νy 6 Ld, we have that
∫
f dνy 6 1 for every y.

In particular, we have that
∫
f log f dµy 6 H(fνy|νy).
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Now we can integrate this with respect to y and use that
∫
e−π|x−y|

2

dy = 1 to
obtain

∫
f log f dx 6

∫
H(fνy|νy) dy.

Now considering V (x) = π|x − y|2, we have D2 V = 2πId and in particular we
have that (9.21) holds with κ = 2π and so we conclude

H(fLd|Ld) =
∫

Rd

f log f dx 6

1

π

∫

Rd

∫

Rd

|∇
√
f |2 dµy dy =

1

π

∫

Rd

|∇
√
f |2 dx.

(9.23)

Proof Theorem 9.5.6. Notice that by definition γ > 0 and γ ∈ H1(RdK) so we
can apply theorem 9.5.8 and we have

~
2

2

∫

RdK

|∇x
√
γ|2dx1 · · · dxK > εH(γ|LdK), (9.24)

where ε :=
π~2

2
. It follows that

∫

RdK

|∇x

√
γ(x1 · · ·xK)|2dx1 · · · dxK +

∫

RdK

∑

i<j

1

|xi − xj |
γ(x1 · · ·xK)dx1 · · · dxK >

εH(γ|LdK) +

∫

RdK

∑

i<j

1

|xi − xj |
γ(x1 · · ·xK)dx1 · · · dxK =

H(γ|ηε),
(9.25)

where ηε = exp (−∑i<j
1

ε|xi−xj | )⊗
K
i=1dxi (notice that w.l.o.g. we can normalize

ηε in order to have a probability measure). Then, the inequality (9.20) easily
follows.

Remark 9.5.9. Since we obtain the plan γ by symmetrizing ψ, we cannot distin-
guish a γ induced by a symmetric ψ from the one induced by an antisymmetric
wave-function. Anyway the inequality (9.20) still holds; moreover we have the
following chain of inequalities

FHKanti(ρ) > FHKsym(ρ) > SK,ε(ρ). (9.26)

Remark 9.5.10 (Logarithmic Sobolev exponential Inequality). For the sake of
completeness we give also a stronger inequality, the logarithmic Sobolev exponen-
tial inequality, exploiting the fact that the Lebesgue measure is scale invariant.
We will use repeatedly the fact that

∫
g(kx)dx = k−d

∫
g(x)dx.
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Theorem 9.5.11 (LSEI,[DMN]). Let us assume that f > 0,
∫
Rd f(x)dx = 1 and

f ∈ H1(Rd). Then we have that

d exp (
2H(fLd|Ld)

d
) 6

2e

π

∫
|∇
√
f |2 dx. (9.27)

Proof. Let us consider fk(x) = kdf(kx) and let us do the calculation for the
scaling of the quantities involved:

H(fk(x)Ld|Ld) = kd
∫
f(kx)(log(kdf(kx))− 1) dx+ 1

=

∫
f(log(f)− 1) dx+ 1 + d log(k)

= H(fLd|Ld) + d log(k).

Instead we have that
∫

Rd

|∇
√
fk(x)|2 dx =

∫

Rd

k2d|∇
√
f |2(kx) dx = k2

∫

Rd

|∇
√
f |2 dx;

In particular considering (9.22) for fk we obtain

H(fLd|Ld) 6 k2

π

∫

Rd

|∇
√
f |2 dx− d log(k).

Now we want to minimize the right hand side in k: let us consider the function
ak2 − b log(k). Its minimum is reached for k =

√
b/(2a), and so the minimum

is

a ·
(√

b

2a

)2

− b log

(√
b

2a

)
=
b

2
(1 + log(2a)− log(b)).

Thus we get, denoting H(fLd|Ld) = H

H 6
b

2
(log(2ea)− log(b))

be2H /b
6 2ea

that is precisely our conclusion.
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Chapter 10

The Seidl’s Conjecture and
Counterexamples

In the previous chapter we have given the weak Seidl’s conjecture which
inquires the existence of optimal maps for the multi-marginal problem with the
Coulomb cost. In [110], Seidl, Gori-Giorgi and Savin go a step further and
formulate, in the case of a radial symmetric measure, a conjecture (we refer to
it as Strong Seidl Conjecture) in which they establish the existence of optimal
maps and also give a geometric characterization of the maps. Here, we explain
this strong conjecture and we also give a counterexample which disproves it.
Moreover, we show that, in the framework of this counterexample, high non-
uniqueness of optimal solutions holds and that fractal maps, as for the repulsive
harmonic cost, appears.

10.1 The Monge problem: deterministic exam-
ples and counterexamples

In this section we will illustrate the cases in which we know that there
exists a deterministic solution; in those cases moreover there is also a result
of uniqueness. We remark that these are two extreme cases, namely the case
K = 2 (and any d) and the case d = 1 (and any K). We will just sketch the
proofs in order to make clear the method used here, and why it is difficult to
generalize it. We begin with the 2-particles case, in every dimension d: this
result was proved in [43] by means of standard optimal transport techniques.

Theorem 10.1.1 ([43]). Let µ ∈ P(Rd) be a probability measure that is ab-
solutely continuous with respect to the Lebesgue measure. Then there exists a
unique optimal plan γO ∈ Π2(R

d2;µ) for the problem

min

{∫

R2d

1

|x1 − x2|
dγ | γ ∈ Π2(R

d2;µ)

}
.

Moreover this plan is induced by an optimal map T , that is, γ = (Id, T )♯µ, and

T (x) = x + ∇ϕ
|∇ϕ|3/2 µ-almost everywhere, where ϕ is a Lipschitz maximizer for

the dual problem.
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Proof. Let us consider γ a minimizer for the primal problem and ϕ a bounded
and Lipschitz maximizer of the dual problem (it exists thanks to Lemma 9.5.3).
Then we know that

F (x1, x2) = ϕ(x1) +ϕ(x2)−
1

|x1 − x2|
6 0 for µ⊗ µ-almost every (x1, x2),

and we know also that F = 0 γ-almost everywhere. But then F has a maximum
on the support of γ and so ∇F = 0 in this set; in particular we have that
∇ϕ(x1) = − x1−x2

|x1−x2|3 on the support of γ. Finding x2 we have that x2 = x1 −
∇ϕ

|∇ϕ|3/2 (x1) = T (x1) on the support of γ and this implies γ = (Id, T )♯µ as we

wanted to show.

The first positive K-marginal result for the Coulomb cost is instead shown
in [49] where, in dimension d = 1, the authors can prove that for non-atomic
measure an optimal plan is always “induced” by a cyclical optimal map T .

Theorem 10.1.2 ([49]). Let µ ∈ P(R) be a diffuse probability measure. Then
there exists a unique optimal symmetric plan γO ∈ ΠK(RK ;µ) that solves

min





∫

RK

∑

16i<j6K

1

|xj − xi|
dγ | γ ∈ ΠK(RK ;µ)



 .

Moreover this plan is induced by an optimal cyclical map T , that is, γO =
1
K!

∑
σ∈SK

σ♯γT , where γT = (Id, T, T (2), . . . , T (K−1))♯µ. An explicit optimal
cyclical map is

T (x) =

{
F−1
µ (Fµ(x) + 1/K) if Fµ(x) 6 (K − 1)/K

F−1
µ (Fµ(x) + 1− 1/K) otherwise.

Here Fµ(x) = µ(−∞, x] is the distribution function of µ, and F−1
µ is its lower

semicontinuous left inverse.

Proof. We begin by observing that if γ is a symmetric optimal plan then a
stronger statement than Proposition 7.1.13 holds, namely we have that for every
x, y ∈ supp(γ):

c(x)+c(y) = min{c(X(x, σ(y), p))+c(Y (x, σ(y), p)) : ∀p ⊂ {1, . . . ,K}, ∀σ ∈ SK},

where c is the Coulomb cost on the K-tuple of points x = (x1, . . . , xK) and σ
acts on the indices. The key point here is that one can show (Proposition 2.4
[49]) that this property holds if and only if a more geometric condition holds
true for x and y: they are well-ordered. This property amounts to the fact that,
up to permute the coordinates of both points, we have

x1 6 y1 6 x2 6 · · · 6 xK 6 yK ,

or the other way around. Once this property is proven the rest of proof is
rather straightforward, since we proved that the support of (e1, e2)♯γ|D, where
D = {xi 6 xj and yi 6 yj , ∀ i < j}, is monotone in the usual sense. We remark
that the key property does not easily generalize to d > 1 since it (heavily) uses
the ordered structure of R.
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Let us notice that in this case we don’t have uniqueness of optimal plan
neither of cyclical optimal maps, as pointed out in Remark 1.2 in [49].

For the general case we thus have to assume d > 1 and K > 2: from now
on we will look at the case in which the measure µ has radial symmetry. As
we have seen in section 7.1.3 we can reduce our problem to a multi-marginal
problem in R.

Lemma 10.1.3 (Radial case). Let µ ∈ P(Rd) be a radially symmetric mea-
sure. In particular µ is determined by ρ = | · |♯µ. Then for every optimal
plan γ ∈ ΠK(RdK ;µ), if we consider γr = R♯γ, where R : (x1, . . . , xK) 7→
(|x1|, . . . , |xK |), we have that γr is an optimal plan for the 1D multi marginal
problem

min

{∫

RK
+

c̃(r1, . . . , rK) dη | η ∈ ΠK(Rd+; ρ)

}
. (10.1)

where c̃ is the reduced Coulomb cost

c̃(r1, . . . , rK) = min





∑

16i<j6K

1

|xj − xi|
: |xi| = ri ∀i = 1, . . . ,K



 . (10.2)

Moreover ∫

RdK

∑

16i<j6K

1

|xi − xj |
dγ =

∫

RK
+

c̃(r1, . . . rK) dγr.

Proof. See proof of lemma 7.1.18.

Given the one dimensional character of this problem, one could expect that
the solution is similar to the one depicted in Theorem 10.1.2. In fact in [110]
the authors conjecture a similar structure:

Conjecture 10.1.4 (Strong Seidl Conjecture, [110]). Let µ ∈ P(Rd) be an
absolutely continuous measure with respect to the Lebesgue measure, with radial
symmetry, and let ρ(r) = | · |♯µ. Let 0 = r0 < r1 < . . . < rK−1 < rK = ∞ such
that the intervals Ai = [ri, ri+1) have all the same radial measure ρ(Ai) = 1/K.
Then let F (r) = ρ(0, r] be the cumulative radial function and let S : [0,∞) →
[0,∞) be defined piecewise such that the interval Ai is sent in the interval Ai+1

in an anti monotone way:

S(r) = F−1(2i/K − F (r)) if ri−1 6 r < ri and i < K (10.3)

S(r) =

{
F−1(F (r) + 1/K − 1) if K is odd

F−1(1− F (r)) if K is even,
if rK−1 6 r < rK .

(10.4)

Then S is an optimal cyclical map for the problem (10.1).

Remark 10.1.5 (Notations). Form now on ρ stands for both the measure and
its density.

Example 10.1.6 (Example for K = 5). Consider the density

ρ(r) =
1

4π
exp−r, (10.5)
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In this case, r0 = 0, rN = ∞, and

F (r) = (1− e−r), F−1(y) = − log
(
1− y

)
. (10.6)

For K = 5, Eqs. (10.3) and (10.4) yield the functions

S(r) = − log(
2(K − i)

K
− exp (−r)) if ri−1 6 r < ri and i < 5 (10.7)

S(r) = − log(
1

5
− exp(−r)) if rK−1 6 r < rK (10.8)

and the maps T1(r) = r, Ti(r) = S(i−1)(r) for i = 2, · · · ,K are plotted in the
right panel of figure 10.1

Remark 10.1.7 (Seidl’s notations). In Physics the map Ti are usually referred
as co-motion functions or SGS maps (where SGS stands for Seidl, Gori-Giorgi
and Savin [110]) fi and are defined in the following way

• for even i ∈ {2, ..., N}

fi(r) =

{
F−1

(
i/K − F (r)

)
r ≤ ri,

F−1
(
F (r)− i/K

)
r ≥ ri.

(10.9)

Since r 6 rK , this implies fK(r) = F−1
(
K − F (r)

)
when K is even.

• for odd i ∈ {1, ...,K}, we define

fi(r) =

{
F−1

(
F (r) + i/K − 1

)
r < rK−i+1,

F−1
(
2 + (1− i)/K − F (r)

)
r > rK−i+1,

(10.10)

generally implying that f1(r) = r.

Then if we consider the density in example 10.1.6, the maps fi are plotted in
the left panel of figure 10.1.

Figure 10.1: The co-motion functions fi(r) (left) and the maps Ti (right) for
density 10.5 with K = 5 marginals. Colors: black, red, yellow, green, blue,
respectively for i=1,2,3,4,5.

In the following section we present a (counter)example ( from [SDMG+])
which disproves conjecture 10.1.4. For the sake of completeness we refer the
reader to [41] where Maria Colombo and Federico Stra propose some other
counterexamples. Moreover, they also give a positive example, namely a class
of measures for which the conjecture holds:
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Proposition 10.1.8 (Proposition 2.2, [41]). There exists M > 0 such that for
any probability measure ρ, such that ρ([1, 2]) = ρ([3, 4]) = ρ([M,+∞[) = 1

3 , the
conjecture 10.5 holds.

10.2 Counterexample

Counterexample 10.2.1 (Thin Shell, [SDMG+]). Let be δ > 0, K = 3 and
ρδ(r) the density given by

ρδ(r) =





1

aδ
r ∈ [a, a+ aδ],

0 otherwise,
(10.11)

then for δ sufficiently small, the conjecture 10.1.4 does not hold.

Remark 10.2.2. We remind that ρδ = | · |♯µδ = 4πr2µδ(|x|) = if d = 3, where

µδ(|x|) =
1

4πaδ|x|2 .

For simplicity we take a = 1.

Remark 10.2.3 (Optimal maps). In this case the cumulative function F (r) is
given by

F (r) =





0 r < 1,
1

δ
(r − 1) r ∈ [1, 1 + δ]

1 r > +∞,

(10.12)

and r1 = 1 + δ
3 , r2 = 1 + 2δ

3 . Then the map S(r) is

S(r) =





2(
δ

3
+ 1)− r r ∈ [1, r1[,

2(
2δ

3
+ 1)− r r ∈ [r1, r2[,

r − 2δ

3
r ∈ [r2, 1 + δ[,

(10.13)

and the optimal maps Ti are plotted in the right panel of figure 10.2

The proof of counterexample 10.2.1 relies on the following proposition

Proposition 10.2.4 ([SDMG+]). Consider the cost cδ defined as

cδ(x1, x2, x3) := c̃(1 + δx̃1, 1 + δx̃2, 1 + δx̃3),

where c̃ is the reduced cost (10.2) and the functionals Fδ,F

Fδ(γ) :=





∫

[0,1]3
cδ(x1, x2, x3)dγ(x1, x2, x3) γ ∈ Π3([0, 1]

3;L[0,1]),

+∞ otherwise,
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Figure 10.2: The co-motion functions fi(r) (left) and the maps Ti (right) for
density 10.11 with K = 3 marginals and δ = 3. Colors: black, red and blue for
i=1,2,3.

F(γ) :=





∫

[0,1]3
c(x1, x2, x3)dγ(x1, x2, x3) γ ∈ Π3([0, 1]

3;L[0,1]),

+∞ otherwise,

where c(x1, x2, x3) = |x1 + x2 + x3|2. Then,

lim
δ→0

Fδ(γδ) = F(γ)

for every {γδ} ∈ Π3([0, 1]
3;L[0,1]) such that γδ ⇀ γ. Moreover, the minimizers

of Fδ converge to the minimizers of F .

Before proving proposition 10.2.4 we need the following result dealing with
the Taylor expansion of the reduced cost at (a, a, a) with a 6= 0:

Lemma 10.2.5 (Taylor Expansion of c̃(r1, r2, r3) at r1 = r2 = r3 = a). Let
c̃(r1, r2, r3) the reduced cost, then the Taylor expansion of c̃ at r1 = r2 = r3 = a
is given by

c̃(r1, r2, r3) =

√
3

a

[
1− u1 + u2 + u3

3a

+
u1u2 + u1u3 + u2u3

5a2
+ 2

u21 + u22 + u23
15a2

+ O
(u1
a
,
u2
a
,
u3
a

)3]
, (10.14)

where ui = ri − a.

Remark 10.2.6. Here we present a simplified proof of lemma 10.2.5; notice that
near a point (a, a, a) the reduced cost is C3 so that we can compute the Taylor
expansion (see [41]).

Proof. In the caseK = 3, a minimum-energy configuration has the three charges
on a plane containing the origin. For k = 1, 2, let θk be the angle between xk
and x3. Then,

c̃(r1, r2, r3) = min
θ1,θ2

c(r1, r2, r3, θ1, θ2), (10.15)
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where, due to the cosine theorem,

c(r1, r2, r3, θ1, θ2) =
[
r21 + r22 − 2r1r2 cos(θ1 + θ2)

]−1/2

+
2∑

k=1

[
r2k + r23 − 2rkr3 cos θk

]−1/2

. (10.16)

In the trivial case r3 = 0, we find θ1 + θ2 = π and

c̃(r1, r2, 0) =
1

r1 + r2
+

1

r1
+

1

r2
. (10.17)

Finding the general function c̃(r1, r2, r3) explicitly seems to be a difficult task.
Instead, we shall now evaluate c̃ and its partial derivatives c̃i and c̃ij for the

case r1, r2, r3 = a, when the K = 3 charges occupy one sphere with radius a
and at equilibrium make an equilateral triangle with side length a

√
3,

c̃(a, a, a) =

√
3

a
. (10.18)

The symmetry of this problem implies for i = 1, 2, 3

c̃i(a, a, a) =
1

3

3∑

k=1

c̃k(a, a, a)

=
1

3

d

da
c̃(a, a, a) = − 1√

3
a−2, (10.19)

and, since c̃12(a, a, a) = c̃23(a, a, a) = c̃13(a, a, a), as well as c̃11(a, a, a) =
c̃22(a, a, a) = c̃33(a, a, a),

2√
3
a−3 ≡ d

da
c̃i(a, a, a)

=

3∑

k=1

Vik(a, a, a)

= c̃33(a, a, a) + 2c̃12(a, a, a). (10.20)

Since c̃33(a, a, a) =
4

5
√
3
a−3, Eq. (10.29) below, we have

c̃12(a, a, a) =
3

5
√
3
a−3. (10.21)

We obtain the Taylor expansion

c̃(r1, r2, r3) =

√
3

a

[
1− u1 + u2 + u3

3a

+
u1u2 + u1u3 + u2u3

5a2
+ 2

u21 + u22 + u23
15a2

+ O
(u1
a
,
u2
a
,
u3
a

)3]
, (10.22)

where ui = ri − a.

CHAPTER 10. THE SEIDL’S CONJECTURE AND
COUNTEREXAMPLES

179



10.2. COUNTEREXAMPLE

To find c̃33(a, a, a) =
d2

dr2 c̃(a, a, r)|r=a, we observe that any equilibrium con-
figuration with r1 = r2 = a has equal angles θ1 = θ2 = θ. In this case,
Eq. (10.16) reads

c(r1, r2, r3, θ1, θ2) =
1

a

{ 1

2 sin θ
+

2√
1 + s2 − 2s cos θ

}
=:

W̃ (s, θ)

a
, (10.23)

with the new variable s = r3
a . For s = 1, the equilibrium angle is θ = 2π

3 . For

W̃ (s, 2π3 + α) ≡W (s, α), the addition theorems yield

W (s, α) =
1√

3 cosα− sinα

+2
[
1 + s2 + s

(
cosα+

√
3 sinα

)]−1/2

= W (s, 0) +

∞∑

n=1

Wn(s)α
n. (10.24)

The equilibrium angle α(s) is fixed by ∂
∂αW (s, α) = 0,

0 =W1(s) + 2W2(s)α(s) + 3W3(s)α(s)
2 + · · · (10.25)

Taking the derivative d
ds yields

0 = W ′
1(s) + 2

[
W ′

2(s)α(s) +W2(s)α
′(s)
]

+ 3
[
W ′

3(s)α(s) + 2W3(s)α
′(s)
]
α(s) + · · · (10.26)

Setting s = 1 and using α(1) = 0, we obtain

α′(1) = − W ′
1(1)

2W2(1)
= −

√
3

15
, (10.27)

where we have usedW1(s) =
1
3 −s

√
3(1+s+s2)−3/2 andW2(s) =

5
6
√
3
+ 1

4 (2s+

11s2 + 2s3)(1 + s+ s2)−5/2. Eventually, we find

c̃33(a, a, a) ≡ d2

dr2
c̃(a, a, r)

∣∣∣
r=a

=
1

a2
d2

ds2
W
(
s, α(s)

)

a

∣∣∣
s=1

=
1

a3

[∂2W
∂s2

+ 2
∂2W

∂s∂α
α′(s) +

∂2W

∂α2
α′(s)2 +

∂W

∂α
α′′(s)

]∣∣∣
s=1

. (10.28)

The partial derivatives of W =W (s, α) are readily evaluated from Eq. (10.24).
As expected, ∂W

∂α |s=1 = 0. With Eq. (10.27), the remaining three terms in
Eq. (10.28) yield

c̃33(a, a, a) =
4

5
√
3
a−3. (10.29)
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Proof of proposition 10.2.4. Notice that thanks to lemma 10.2.5 we have that

c̃(1, 1, 1) =
√
3[1− δ

1

3
(x̃1 + x̃2 + x̃3) + δ2

2

15
(x̃21 + x̃22 + x̃23)+

δ2
1

5
(x̃1x̃2 + x̃1x̃3 + x̃2x̃3) +O(δx̃1, δx̃2, δx̃3)].

(10.30)

It follows that cδ converges pointwise to c(1, 1, 1). Take now a sequence of plan
γδ ∈ Π3([0, 1]

3;L[0,1]) such that γδ ⇀ γ ∈ P([0, 1]3), then by compactness of
Π3([0, 1]

3;L[0,1]) we have that γ still belongs to Π3([0, 1]
3;L[0,1]). Then, it is easy

to prove that Fδ(γδ) →
∫
[0,1]3

c̃(1, 1, 1)dγ, where c̃ is given by (10.30). Moreover,

we have that the minimizers of inf(Fδ(γ)) converges to the minimizers of

inf{
∫

[0,1]3
c̃(1, 1, 1)dγ | γ ∈ Π3([0, 1]

3;L[0,1])}. (10.31)

Notice now that c̃(1, 1, 1) can be decomposed into two terms

c̃(1, 1, 1) = csep(x̃1, x̃2, x̃3) + κδ2(x̃1x̃2 + x̃1x̃3 + x̃2x̃3) +O(δ3),

where κ =
√
3
5 and

csep(x̃1, x̃2, x̃3) :=

3∑

i=1

1√
3
(1− δx̃i + δ2

2

5
x̃2i ).

This means that in minimization (10.31) the term csep depends only on the fixed
marginals of γ, O(δ3) is negligible at the limit and problem (10.31) is equivalent
to

inf{
∫

[0,1]3
c(x̃1, x̃2, x̃3)dγ | γ ∈ Π3([0, 1]

3;L[0,1])},

which ends the proof.

Proof of Counterexample 10.2.1. We are given the following minimization prob-
lem

inf

{∫

[1,1+δ]3
c̃(r1, r2, r3)dγ(r1, r2, r3) | γ ∈ Π3([1, 1 + δ]3;L[1,1+δ])

}
. (10.32)

By setting ri = 1 + δxi with xi ∈ [0, 1] for i = 1, 2, 3, the cost becomes
c̃(r1, r2, r3) = c̃(1 − δx1, 1 − δx2, 1 − δx3) and the marginals ρδ = L[0,1]. Thus,
problem (10.32) can be rewritten as

inf

{∫

[0,1]3
c̃(1− δx1, 1− δx2, 1− δx3)dγ(x1, x2, x3) | γ ∈ Π3([0, 1]

3;L[0,1])

}

(10.33)
and by applying proposition 10.2.4 we have that for δ → 0 problem (10.33)
collapses to

inf

{∫

[0,1]3
|x1 + x2 + x3|2dγ(x1, x2, x3) | γ ∈ Π3([0, 1]

3;L[0,1])

}
. (10.34)
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In section 8.1 we have showed that high non-uniqueness holds for problem
(10.34). Moreover, thanks to theorem 8.1.6 we know that in this case frac-
tal like maps exist.
We show now that the SGS maps are never optimal and so that the Seidl’s
conjecture does not hold. If we consider the limit problem with the cost |x1 +
x2 + x3|2, we know that a necessary and sufficient condition for a plan γ being
optimal (see lemma 8.1.3) is

|x1 + x2 + x3| = k γ − a.e,

where k is a constant. This means that the Seidl’s maps Ti, associated to density
(10.2.1) are optimal if and only if the induced plan γ = (Id, T2, T3)♯L[0,1] satisfies
the condition above. The maps Ti can be easily computed as follows

T2(x) = S(x),

where S(x) is given by equation (10.13) and

T3(x) = S(S(x)) =





r +
2δ

3
r ∈ [1, r1[,

2(
δ

3
+ 1)− r r ∈ [r1, r2[,

2(
2δ

3
+ 1)− r r ∈ [r2, 1 + δ[.

It is now clear that the plan induced by these maps never satisfies the condition
for being optimal.

Remark 10.2.7 (Fractal map for the Thin Shell). In figure 10.3 we plot the
fractal maps defined in theorem 8.1.6 for the density (10.2.1)
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Figure 10.3: The fractal co-motion functions fi(r) for density (10.2.1), with
a = 1 and δ = 3. Colors: black, red (dots) and blue (dots) for i = 1, 2, 3,
respectively. For comparison we have also plotted the maps Ti from the right
panel of figure 10.2
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Chapter 11

Numerical Results

11.1 1−dimensional density: analytical solutions
and numerical examples

In this section we treat some simple 1−dimensional case for which we can
compute the analytical solutions and then we compare them with the numerical
ones obtained by using the IPFP procedure.

11.1.1 1−dimensional for K = 2

Let us consider 2 particles in one dimension and marginal densities

µ1(x) = µ2(x) =

{
a if |x| 6 a/2

0 otherwise.
(11.1)

After a few computations, we obtain the following associated co-motion func-
tion

T (x) =

{
x+ a

2 if x 6 0

x− a
2 otherwise

. (11.2)

If we take

µ1(x) = µ2(x) =
a− |x|
a2

defined in [−a, a], (11.3)

we get

T (x) =
x

|x| (
√

2a|x| − x2 − a) on [−a, a] (11.4)

Figure 11.1 shows the co-motion functions for (11.1) and (11.3).
We want now to compare the analytical solutions in figure 11.1 with the ones

obtained numerically. Thus consider a uniform density (as (11.1) with a = 2)
in 1D. In table 11.1, we analyze the performance of the numerical method by
varying the parameter ε. We notice that the error becomes smaller by decreasing
the regularizing parameter, but the drawback is that the method needs more

185



11.1. 1−DIMENSIONAL DENSITY: ANALYTICAL SOLUTIONS AND
NUMERICAL EXAMPLES

Figure 11.1: Right: Co-motion function for (11.1) with a = 2. Left: Co-
motion function for (11.3) with a = 1.

iterations to converge. Figure 11.2 shows the Kantorovich potential, the co-
motion function which can be recovered from the potential and the transport
plan. The simulation is performed with a discretization of (11.1) with a = 2,
N = 1000 (gridpoints) and ε = 0.004.

Remark 11.1.1. One can notice that, in the case of a uniform density, the trans-
port plan presents a concentration of mass on the boundaries. This is a com-
bined effect of the regularization and of the fact that the density has a compact
support.

ε Error (‖uε − u‖∞/‖u‖∞) Iteration CPU time (s)

0.256 0.1529 11 0.4017
0.128 0.0984 16 0.5977
0.064 0.0578 25 0.9282
0.032 0.0313 38 1.4411
0.016 0.0151 66 2.4297
0.008 0.0049 114 4.2674
0.004 0.0045 192 7.0638

Table 11.1: Numerical results for uniform density in 1D. uε is the numerical
Kantorovich potential and u is the analytical one.

11.1.2 1−dimensional for K > 3

We now consider the 3−marginal case and a uniform density ρ on the unit
interval. By applying theorem 10.1.2 we show that we can easily recover the
following optimal maps.

T2(x) =

{
x+ 1/3 if x 6 2/3

x− 2/3 if x > 2/3
,

T3(x) = T2(T2(x)) =

{
x+ 2/3 if x 6 1/3

x− 1/3 if x > 1/3
.

(11.5)

Furthermore, we know that the Kantorovich potential u satisfies the relation
(here we take K = 3)
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Figure 11.2: Top-Left: Kantorovich Potential u(x). Top-Right: Numerical co-
motion function (solid line) and analytical co-motion (star-solid line) . Bottom-
Left: Transport plan γ̃. Bottom-Right: Support of γ̃.

u′(x) = −
K∑

i=2

x− Ti(x)

|x− Ti(x)|3
(11.6)

and by substituting the optimal maps in (11.6) (and integrating it) we get

u(x) =





45
4 x 0 6 x 6 1/3
15
4 1/3 6 x 6 2/3

− 45
4 x+ 45

4 2/3 6 x 6 1

(11.7)

Figure 11.3 illustrates this example.

Figure 11.3: Right: co-motion function T2 for (11.5). Center: co-motion
function T3 for (11.5). Left: Kantorovich Potential u(x) (11.7).

As we have done in the previous section, we compare the analytical results
with the numerical ones. In table 11.2, we present the performance of the
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method for a uniform density on [0, 1] by varying ε and, as expected, we see the
same behavior as in the 2 marginals case. Figure 11.4 shows the Kantorovich
potential and the projection of the transport plan onto two marginals (namely
γ2 = π12(γ

ε)). The support gives the relative positions of two electrons.

The simulation is performed on a discretization of [0, 1] with a uniform den-
sity, N = 1000 and ε = 0.02. If we focus on the support of the projected
transport plan we can notice that the numerical solution correctly reproduces
the prescribed behavior. The concentration of mass is again due to the compact
support of the density.

ε Error (‖uε − u‖∞/‖u‖∞) Iteration CPU time (s)

0.32 0.0658 15 5.8372
0.16 0.0373 27 20.061
0.08 0.0198 64 55.718
0.04 0.0097 178 194.22
0.02 0.0040 374 542.63

Table 11.2: Numerical results for uniform density in 1D and three electrons.
uε is the numerical Kantorovich potential and u is the analytical one.

Figure 11.4: Left: Numerical Kantorovich potential u(x) (solid line) and an-
alytical potential (star-solid line). Center: Projection of the transport plan
π12(γ(x, y, z)). Right: Support of π12(γ(x, y, z)) The dot-dashed lines delimit
the intervals where ρi, with i = 1, · · · , 3, are defined.

We finally present some simulations for densities which have not a com-
pact support to show that we have not the same concentration of mass at
the boundary as for the uniform density. The simulations in figure 11.5 are
all performed on a discretization of [−5, 5] with N = 200, with marginals
µi = µ(x) = K

10 (1 + cos(π5x)) i = 1, · · · ,K and ε = 0.02. If we focus on
the support of the coupling γ̃12(x, y) = π12γ(x, y, z), where π12 : RKN → R

N

is the canonical projection, we can notice that the numerical solution correctly
reproduces the prescribed behavior: the transport plan is induced by a cyclical
optimal map.

Remark 11.1.2. Theorem 10.1.2 actually works also for other costs functions
as c(x1, · · · , xK) =

∑K
i<j − log(|xi − xj |). This means that if we use the den-

sity µ(x) = K
10 (1 + cos(π5x)), we expect to obtain the same solution as for the

Coulomb cost. Thus if we now consider the 3-marginals case and the discretized
cost cj1,j2,j3 = − log(|xj1 −xj2 |)− log(|xj1 −xj3 |)− log(|xj2 −xj3 |), we can notice
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Figure 11.5: On the Left: support of the optimal coupling γ̃12(x, y), on the
Right: graph of the optimal coupling γ̃12(x, y) , in the cases K = 3 (1st Row),
K = 4 (2nd Row), K = 5 (3rd Row). The dashed lines delimit the supports of
µ̃i , with i = 1, · · · ,K.
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(see figure 11.6) that we recover the same optimal coupling as the corresponding
case for Coulomb (first row of figure 11.5). The simulation is performed on a dis-
cretization [−5, 5] withN = 200, with marginals µ(x) = K

10 (1+cos(π5x)) K = 3
and ε = 0.01.

Figure 11.6: (logarithmic cost) Left: support of the optimal coupling γ̃12(x, y)
for K = 3. Right: support of the optimal coupling γ̃12(x, y) for K = 3. The
dashed lines delimit the intervals where µ̃i , with i = 1, · · · , 3, are defined.

11.2 d−dimensional radial symmetric density

11.2.1 N = 2 electrons in dimension d > 3 : analytical
examples

As explained in section 7.1.3, we can also compute the co-motion for a radi-
ally symmetric density. We have tested the method in 2D and 3D, figure 11.7
and 11.8 respectively, by using the normalized uniform density on the unit ball.
Moreover, in the radial case we have proved that the OT problem can be reduced
to a 1−dimensional problem by computing c̃ which is trivial for the 2 electrons
case: let us set the problem in 2D in polar coordinates (r1, θ1) and (r2, θ2),
for the first and the second electron respectively (without loss of generality we
can set θ1 = 0), then it is easy to verify that the minimum is achieved with
θ2 = π. Figure 11.7 shows the Kantorovich potential (the radial component
v(r) as defined in section 7.1.3), the co-motion and the transport plan for the
2−dimensional case, the simulation is performed with N = 1000 and ε = 0.002.
In figure 11.8 we present the result for th 3−dimensional case, the simulation is
performed with N = 1000 and ε = 0.002.

11.2.2 K = 2 electrons in dimension d = 3 : Helium atom

Once we have validated the method with some analytical examples, we solve
the regularized problem for the Helium atom by using the electron density com-
puted in [58]. In figure 11.9, we present the electron density, the Kantorovich
potential and the transport plan. The simulation is performed with a discretiza-
tion of [0, 4] with N = 1000 and ε = 510−3. We can notice the potential cor-

rectly fits the asymptotic behavior from [110], namely v(r) ∼ K − 1

|r| for r → ∞,

where K is the number of electrons.
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Figure 11.7: Top-Left: Kantorovich Potential v(r). Top-Right: Numerical co-
motion function (solid line) and analytical co-motion (star-solid line) . Bottom-
Left: Transport plan γ̃. Bottom-Right: Support of γ̃.

11.2.3 K = 3 electrons in dimension d = 3 radial case :
Lithium atom

We finally perform some simulations for the radial 3−dimensional case for
K = 3. As for the 3−dimensional case with 2 marginals we solve the reduced
problem: let us consider the spherical coordinates (ri, θi, ϕi) with i = 1, · · · , 3
and we fix θ1 = 0 and ϕ1 = ϕ2 = 0 (the first electrons defines the z axis and
the second one is on the xz plane). We then notice that ϕ3 = 0 as the electrons
must be on the same plane of the nucleus to achieve compensation of forces (one
can see it by computing the optimality conditions), so we have to minimize on
θ2 and θ3 in order to obtain c̃.

Figure 11.10 shows the electron density of the Lithium (computed in [24]),
the Kantorovich Potential (and the asymptotic behavior) and the projection of
the transport plan onto two marginals γ̃2 = π12(γ̃

ε). The support gives the
relative positions of two electrons.

The simulation is performed on a discretization of [0, 8] with N = 300 and
ε = 0.007. Our results show (taking into account the regularization effect) a
concentrated transport plan for this kind of density and they match analogous
result obtained in [110].
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Figure 11.8: Top-Left: Kantorovich Potential v(r). Top-Right: Numerical co-
motion function (solid line) and analytical co-motion (star-solid line) . Bottom-
Left: Transport plan γ̃. Bottom-Right: Support of γ̃.

11.3 Numerical Counterexamples to Seidl’s con-
jecture

In this section we provide some numerical experiments, by using different
methods, to disprove Seidl’s conjecture. We firstly consider the density (10.2.1)
of the thin shell counterexample we have previously treated

11.3.1 The Thin Shell

Hessian matrix of classical potential energy

We define the potential energy as follows:

Definition 11.3.1 (Potential energy). Let c : RdK → R be the Coulomb cost
(or the reduced cost in case of radial symmetric marginals), µ the marginals and
u the optimal Kantorovich potential then the potential energy Epot[ρ] : R

dK → R

is

Epot[µ](x1, · · · , xK) = c(x1, · · · , xK)−
K∑

i=1

u(xi). (11.8)

Remark 11.3.2 (Optimal solution and Potential energy). We know that Epot[µ]
is actually non-negative as u is the optimal Kantorovich potential; moreover if
we evaluate the potential energy at (x1, · · · , xK), where (x1, · · · , xK) belongs
to the support of the optimal γ, then we have Epot[µ](x1, · · · , xK) = L (L is a
constant).

For a density ρ, for which the Seidl’s maps are optimal, the potential en-
ergy function Epot[ρ](x1, . . . , xK) must be minimum, and therefore constant,
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Figure 11.9: Top-Left: Helium density λ(r) = 4πr2ρ(r). Top-Right: Kan-
torovich Potential v(r) (solid line) and asymptotic behavior (dashed line) v(r) ∼
1
r r → ∞. Bottom-Left: Transport plan γ̃. Bottom-Right: Support of γ̃. All
quantities are in Hartree atomic units.

on a d-dimensional subset (namely the support of the optimal plan γ which is
concentrated on the optimal maps) of the Kd-dimensional configuration space.
Consequently, the (Kd×Kd) Hessian matrix of this function,

H(x1, . . . , xK) = D2Epot[ρ](x1, . . . , xK), (11.9)

evaluated at any (x1, · · · , xK) ∈ supp γ , where γ = (Id, T2, · · · , TK)♯ρ (Ti are
the Seidl’s maps for ρ),

H̃(x) = H(x, T2(x), . . . , TK(x)), (11.10)

should always have p ≥ d eigenvectors to the eigenvalue 0, while all the other
Kd− p eigenvalues must be > 0.

For the density ρδ of eq. (10.2.1), with d = K = 3, the Kd = 9 eigenvalues
λq[ρ](r) (where r = |x|), q = 1, . . . , 9, are plotted versus r ∈ [1, 1 + δ] in figure
11.11. The persistence of at least one significantly negative eigenvalue, for all
different values of the parameter δ > 0 considered here, is indicating that,
for this particular set of densities, the Seidl’s maps Ti do not yield the true
minimum.

LP and Entropic approach

In this section we compare the results obtained by using the IPFP and a
standard Linear Programming approach (LP). Since the marginals are radially
symmetric we can solved the discretized problem in 1−dimension and precom-
pute the reduced cost c̃ijk. Notice that only three marginals are involved so
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Figure 11.10: Top-Left: lithium density ρ(r) = 4πr2ρ(r). Top-Right: Kan-
torovich Potential v(r) (solid line)) and asymptotic behavior (dashed line)
v(r) ∼ 2

r r → ∞. Bottom-Left: Projection of the Transport plan γ̃2 = π12(γ̃
ε).

Bottom-Right: Support of the projected transport plan γ̃2. The dot-dashed lines
delimit the three regions that the electrons must occupy, we computed them nu-
merically following the idea in [110]. All quantities are in Hartree atomic units.

the standard problem without entropic regularization can be easily solved by
using a simplex method. For the simulations we have used a uniform discretiza-
tion of [1, 1 + δ] with 100 gridpoints. In table 11.3 we report the values of the
Monge-Kantorovich problem obtained by using the Seidl’s maps ((MK)SGS) ,
the LP approach ((MK)LP ) and the entropic regularization ((MK)entropic). In
figure 11.12 we compare (MK)LP − (MK)SGS and (MK)entropic − (MK)SGS :
notice that, as expected, the values of Monge-Kantorovich obtained with LP
are smaller than the ones associated to the Seidl’s maps. In figure 11.13 we plot
an isosurface of the optimal plan obtained by using the LP approach; we can
see that as δ becomes smaller, the plan tends to concentrate on the hyperplane
|x1 + x2 + x3|, namely the optimal γ is converging towards a solution of (MK)
with the cost c(x1, x2, x3) = |x1 + x2 + x3|2.

11.3.2 Some others numerical counterexamples

In this final section we show some further numerical counterexamples to
Seidl’s conjecture. In section 11.2.3 we have seen that for the Lithium density
the conjectures holds (from a numerical point of view). Here we present the
evolution of the optimal transport plan by considering the following family of
densities

ρα(r) = αρ(r)lithium + (1− α)ρexp(r), α ∈ [0, 1]

where ρlithium is the density used in section 11.2.3 and ρexp(r) =
3
π exp (−2r) In

figure 11.14 we plot the support and the surface of the projection γ̃2 := π12(γ̃
ε)
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δ SGS LP H

0.1 1.6497 1.6497 1.6500
0.3 1.5071 1.5070 1.5079
0.5 1.3877 1.3875 1.3885
0.7 1.2862 1.2858 1.2870
0.9 1.1987 1.1983 1.1995
1.1 1.1226 1.1221 1.1232
1.3 1.0557 1.0551 1.0560
1.5 0.9964 0.9957 0.9966
1.7 0.9434 0.9427 0.9436
1.9 0.8959 0.8951 0.8960
2.1 0.8529 0.8521 0.8530
2.3 0.8139 0.8130 0.8139
2.5 0.7783 0.7774 0.7783
2.7 0.7457 0.7448 0.7457
2.9 0.7158 0.7148 0.7157
3.1 0.6881 0.6872 0.6881
3.3 0.6626 0.6616 0.6625
3.5 0.6388 0.6379 0.6388

Table 11.3: Values of the Monge-Kantorovich problem obtained by using the
Seidl’s maps (SGS), the Linear Programming approach (LP) and the entropic
one for different δ

of the optimal plan obtained by using the entropic regularization; notice that as
α → 1 the plan tends to concentrate on the Seidl’s maps. This becomes more
clear if we look at the values (see table 11.4) of the Monge-Kantorovich problem:
when the plan is spread the entropic regularization returns a value smaller than
the Seidl’s maps. If the SGS maps were optimal, then the associated value of
(MK) would be smaller than the one of the entropic regularization. In table
11.4 we report also the values obtained via an LP approach; notice that one the
Seidl’s map appear the LP returns a values larger than the one computed by
using the map, this is due to the discretization: as the Seidl’s maps can be easily
computed we can use a finer grid than the one for the LP problem. This implies
that when the Seidl’s maps are optimal, they provide a fast computational
method to compute the value of (MK).

We end this section by showing, in figure 11.15, the transition of the trans-
port plans γ obtained by using the entropic regularization and the LP approach.
We remark that, as expected, the LP plan concentrates on the graph of the
transport maps, where as the entropic plan stays more spread because of the
regularization
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α LP H SGS

0 1.2109 1.2122 1.2178
0.1429 1.2270 1.2284 1.2325
0.2857 1.2471 1.2506 1.2499
0.4286 1.2723 1.2741 1.2723
0.5714 1.3045 1.3064 1.3026
0.7143 1.3462 1.3483 1.3434
0.8571 1.3989 1.4019 1.3902

1 1.4663 1.469 1.4624

Table 11.4: Values of the Monge-Kantorovich problem obtained by using the
Seidl’s maps (SGS), the Linear Programming approach (LP) and the entropic
one for different α
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δ = 1

δ = 3

δ = 10

Figure 11.11: Eigenvalues of the Hessian (11.10) for the density (10.2.1).
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Figure 11.12: Comparison between (MK)LP − (MK)SGS (blue dots) and
(MK)entropic − (MK)SGS (red dots).

Figure 11.13: Isosurface of the optimal plan γ, solution of the LP problem,
for δ = 0.5 (left) and δ = 3.5 (right).
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Figure 11.14: Display the support (left) and the surface (right) of the projec-
tion γ̃2 for different values of the parameter α.
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optimal plan γε for α = 0 optimal plan γε for α = 0.2857 optimal plan γε for α = 1

optimal plan γLP for α = 0 optimal plan γLP for α = 0.2857 optimal plan γLP for α = 1

Figure 11.15: Display the support (left) and the surface (right) of the projec-
tion γ̃2 for different values of the parameter α.
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Nenna, and Gabriel Peyré. Iterative Bregman projections for regu-
larized transportation problems. SIAM Journal on Scientific Com-
puting, 37(2):A1111–A1138, 2015.

[BCN15] Jean-David Benamou, Guillaume Carlier, and Luca Nenna. A nu-
merical method to solve optimal transport problems with Coulomb
cost. arXiv preprint arXiv:1505.01136, to appear as a chapter
in ”Splitting Methods in Communication and Imaging, Science
and Engineering”, Editors R. Glowinski, S. Osher, and W. Yin.,
Springer, 2015.

[BCN16a] Jean-David Benamou, Guillaume Carlier, and Luca Nenna. Multi-
marginal optimal transportation and incompressible Euler equa-
tions. in preparation, 2016.

[BCN16b] Adrien Blanchet, Guillaume Carlier, and Luca Nenna. Computation
of Cournot-Nash equilibria by entropic regularization. September
2016. working paper or preprint.

[DMGN15] Simone Di Marino, Augusto Gerolin, and Luca Nenna. Opti-
mal transportation theory with repulsive costs. arXiv preprint
arXiv:1506.04565, 2015.

[DMN] Simone Di Marino and Luca Nenna. in preparation.

[SDMG+] Michael Seidl, Simone Di Marino, Augusto Gerolin, Luca Nenna,
Klaas Giesbertz, and Paola Gori-Giorgi. The strictly-correlated
electron functional for spherically symmetric systems revisited. in
preparation.

201



CONTRIBUTIONS

202 CONTRIBUTIONS



Bibliography

[1] M. Agueh and G. Carlier. Barycenters in the Wasserstein space. SIAM J.
on Mathematical Analysis, 43(2):904–924, 2011.

[2] Luigi Ambrosio and Alessio Figalli. Geodesics in the space of measure-
preserving maps and plans. Archive for rational mechanics and analysis,
194(2):421–462, 2009.

[3] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in
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Résumé 

Mots Clés 

Abstract 

Keywords 

Dans cette thèse, notre but est de donner un
cadre numérique général pour approcher les
solutions des problèmes du transport optimal
(TO). L’idée générale est d’introduire une
régularisation entropique du problème initial. Le
problème régularisé correspond à minimiser une
entropie relative par rapport à une mesure de
référence donnée. En effet, cela équivaut à
trouver la projection d’un couplage par rapport à
la divergence de Kullback-Leibler. Cela nous
permet d’utiliser l’algorithme de
Bregman/Dykstra et de resoudre plusieurs
problèmes variationnels liés au TO. Nous nous
intéressons particulièrement  à la résolution des
problèmes du transport optimal multi-marges
(TOMM) qui apparaissent dans le cadre de la
dynamique des fluides (équations d’Euler
incompressible à la Brenier) et de la physique
quantique (la théorie de fonctionnelle de la
densité ). Dans ces cas, nous montrons que la
régularisation entropique joue un rôle plus
important que de la simple stabilisation
numérique. De plus, nous donnons des résultats
concernant l’existence  des transports optimaux
(par exemple des transports fractals) pour le
problème TOMM.

In this thesis we aim at giving a general
numerical framework to approximate solutions
to optimal transport (OT) problems. The general
idea is to introduce an entropic regularization of
the initial
problems. The regularized problem corresponds
to the minimization of a relative entropy with
respect a given reference measure. Indeed, this
is equivalent to find the projection of the joint
coupling with respect the Kullback-Leibler
divergence. This allows us to make use the
Bregman/Dykstra’s algorithm and solve several
variational problems related to OT. We are
especially interested in solving multi-marginal
optimal transport problems (MMOT) arising in
Physics such as in Fluid Dynamics (e.g.
incompressible Euler equations à la Brenier)
and in Quantum Physics  (e.g. Density
Functional Theory). In these cases we show
that the entropic regularization plays a more
important role than a simple numerical
stabilization. Moreover, we also give some
important results concerning existence  of
optimal transport maps (e.g. fractal maps) for
MMOT .

Transport optimal, Transport Optimal
Multi-Marges, régularisation entropique,
algorithme de Bregman, algorithme de Dykstra,
équations d’Euler, TFD, problème de
Schrödinger, map fractale, Cournot-Nash,
Transport Partiel, Contarinte de capacité,
barycentre de Wasserstein

Optimal transport, Multi-Marginal Optimal
transport, Entropic regularization, Dykstra
algorithm, Bregman algorithm, Euler equations,
DFT, Schrödinger problem, fractal map,
Cournot-Nash, Partial transport, Capacity
constraint, Wasserstein barycenter
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